# Faster algorithms for Steiner tree and related problems: From theory to practice 

vorgelegt von<br>M. Sc.<br>Daniel Markus Rehfeldt<br>ORCID: 0000-0002-2877-074X<br>von der Fakultät II - Mathematik und Naturwissenschaften<br>der Technischen Universität Berlin<br>zur Erlangung des akademischen Grades<br>Doktor der Naturwissenschaften<br>- Dr. rer. nat. -<br>genehmigte Dissertation<br>Promotionsausschuss:<br>Vorsitzender: Prof. Dr. Dietmar Hömberg<br>Gutachter: Prof. Dr. Thorsten Koch<br>Gutachter: Prof. Dr. Eduardo Uchoa<br>Gutachter: Dr. Renato Werneck

Tag der wissenschaftlichen Aussprache: 16. August 2021

## Abstract

The Steiner tree problem in graphs (SPG) is one of the most studied problems in combinatorial optimization. Part of its theoretical appeal might be attributed to the fact that the SPG generalizes two other classic optimization problems: Shortest paths, and minimum spanning trees. On the practical side, many applications can be modeled as SPG or closely related problems. The SPG has seen impressive theoretical advancements in the last decade. However, the state of the art in (practical) exact SPG solution, set in a series of milestone papers by Polzin and Vahdati Daneshmand, has remained largely unchallenged for almost 20 years. While the DIMACS Challenge 2014 and the PACE Challenge 2018 brought renewed interest into the exact solution of SPGs, even the best new solvers fall far short of reaching the state of the art.

This thesis seeks to once again advance exact SPG solution. Since many practical applications are not modeled as pure SPGs, but rather as closely related problems, this thesis also aims to combine SPG advancements with improvement in the exact solution of such related problems. Initially, we establish a broad theoretical basis to guide the subsequent algorithmic developments. In this way, we provide various new theoretical results for SPG and well-known relatives such as the maximumweight connected subgraph problem. These results include the strength of linear programming relaxations, polyhedral descriptions, and complexity results. We go on to introduce many algorithmic components such as reduction techniques, cutting planes, graph transformations, and heuristics-both for SPG and related problems. Many of these methods and techniques are provably stronger than previous results from the literature. For example, we introduce a new reduction concept that is strictly stronger than the well-known and widely used bottleneck Steiner distance. We also provide theoretical analyses (e.g. concerning complexity) of the new algorithms. The individual components are combined in an exact branch-and-cut algorithm. Notably, all problem classes can be handled by a single branch-and-cut kernel.

As a result, we obtain an exact solver for SPG and 14 related problems. The new solver is on each of the 15 problem classes faster than all other (problem-specific) solvers from the literature, often by orders of magnitude. In particular, the solver outperforms the long-reigning state-of-the-art solver for SPG. Finally, many benchmark instances from the literature for several problem classes can be solved for the first time to optimality -some containing millions of edges. These problem classes include the SPG, the prize-collecting Steiner tree problem, the maximum-weight connected subgraph problem, and the Euclidean Steiner tree problem.

## Zusammenfassung

Das Steinerbaumproblem in Graphen (SPG) ist eines der am besten untersuchten Probleme der kombinatorischen Optimierung. Das große theoretische Interesse für das Problem kann auch darauf zurückgeführt werden, dass das SPG zwei weitere klassische Optimierungsprobleme verallgemeinert: Kürzeste Wege und Minimale Aufspannende Bäume. Auf der anderen (Praxis orientierten) Seite können viele Anwendungen in Industrie ond Forschung als SPG oder verwandte Probleme modelliert werden. Das SPG hat in den letzten 10 Jahren beeindruckende theoretische Fortschritte erfahren. Im Gegensatz dazu hat es in der exakten SPG-Lösung seit fast 20 Jahren praktisch keinen Fortschritt gegeben. Wenngleich die DIMACS Challenge 2014 und die PACE Challenge 2018 neues Interesse für die exakte Lösung von SPGs in der Forschungsgemeinschaft weckten, blieben selbst die besten neuen Verfahren für SPG weit hinter der führenden Lösungstechnologie zurück.

Diese Arbeit wurde mit dem Ziel gestartet, die exakte Lösung von SPGs nun erneut voranzubringen. Da viele praktische Anwendungen nicht als reine SPGs, sondern als eng verwandte Probleme modelliert werden, zielt diese Arbeit auch darauf ab, Fortschritte in der Lösung von SPGs mit Verbesserungen bei der exakten Lösung verwandter Probleme zu kombinieren. Die Arbeit beginnt mit dem Errichten eines breiten theoretischen Fundaments, auf welches die darauffolgenden algorithmischen Entwicklungen aufgebaut werden. So werden etwa verschiedene neue theoretische Ergebnisse für SPG und bekannte Verwandte wie das Maximum-Weight Connected Subgraph Problem eingeführt. Diese Ergebnisse beinhalten etwa Komplexitätsresultate für die betrachteten Probleme, oder stärkere polyedrische Beschreibungen des Lösungsraums. Anschließend werden diverse algorithmische Komponenten wie Reduktionstechniken, Schnittebenen, Graphentransformationen und Heuristiken vorgestellt - sowohl für SPG als auch für verwandte Probleme. Viele dieser Methoden und Techniken sind beweisbar stärker als bisherige Ergebnisse aus der Literatur. Weiterhin werden auch theoretische Analysen (z.B. bezüglich der Komplexität) der neuen Algorithmen gegeben. Die einzelnen Komponenten werden schließlich in einem exakten Branch-and-CutAlgorithmus kombiniert. Herauszustellen ist, dass alle Problemklassen mit einem einzigen Branch-and-Cut Kern gelöst werden können.

Das praktische Ergebnis dieser Arbeit ist ein exakter Löser für SPG und 14 weitere verwandte Probleme. Der neue Löser ist auf jeder dieser 15 Problemklassen schneller als alle anderen (problemspezifischen) Löser aus der Literatur, oft um Größenordnungen. Insbesondere liefert der neue Löser bessere Ergebnisse als der
eingangs erwähnte bisher führende SPG Löser. Weiterhin können viele BenchmarkInstanzen aus der Literatur für mehrere Problemklassen zum ersten Mal gelöst werden - dies beeinhaltet Instanzen mit Millionen an Kanten. Zu diesen Problemklassen gehören das SPG, das prize-collecting SPG, das Maximum-Weight Connected Subgraph Problem und das Euklidische Steinerbaumproblem.

## Acknowledgements

First of all, I would like to thank Thorsten Koch for awaking my interest in Steiner tree problems, and for his support and advice during the creation of this thesis. In particular, I would like to thank him for giving me the opportunity to work almost exclusively on the creation of this thesis in the last one and a half years of my PhD studies. I am also very grateful to Eduardo Uchoa and Renato Werneck for agreeing to be part of my PhD committee. I would furthermore like to thank Dietmar Hömberg for agreeing to chair my PhD committee.

I would like to thank my colleagues at TU Berlin and Zuse Institute Berlin (ZIB) for the nice working atmosphere. Even though the project I was working on for most of my time at TU and ZIB had nothing to do with Steiner trees, I learned a lot about programming, (parallel) algorithms, and perseverance, which turned out to also be quite useful for the creation of this thesis. Also, I would like to thank ZIB for allowing me to use their computing clusters for the computational experiments presented in this thesis. I would also like to thank Gerald Gamrath, Ambros Gleixner, Nils Kempke, Benjamin Müller, and Mark Turner for proof-reading parts of this thesis and providing many helpful comments. I would like to thank Yuji Shinano for his collaboration on the parallelization part of this thesis. I would like to thank Cees Duin for sending me a hard copy of his dissertation (which had been written in the old pre-PDF days) from the Netherlands. I would also like to acknowledge the work of the many people who worked on Steiner tree and related problems, and on whose contributions I could built on. Last, but most of all, I would like to thank my family for their support throughout the creation process of this thesis.

## Contents

Abstract ..... i
Zusammenfassung ..... i
Acknowledgements ..... v
Introduction ..... 1
1 Preliminaries ..... 9
1.1 Notation and basic concepts ..... 9
1.1.1 Miscellaneous, ..... 9
1.1.2 Graph theory, ..... 9
1.1.3 Steiner arborescence problem, ..... 10
1.2 Experimental methodology ..... 11
1.2.1 Hardware and software, ..... 11
1.2.2 Averaging and performance variability, ..... 11
2 The prototype: Steiner tree problem in graphs ..... 13
2.1 Introduction ..... 13
2.1.1 Background, ..... 14
2.1.2 Contribution and structure, ..... 18
2.2 Integer programming formulations ..... 19
2.2.1 Cut and flow formulations, ..... 19
2.2.2 Formulations for unweighted Steiner tree problems, ..... 22
2.3 Implications, conflicts, and reductions ..... 26
2.3.1 Bottleneck distances and implications, ..... 27
2.3.2 Bound-based reduction techniques, ..... 35
2.3.3 Further reduction techniques, ..... 39
2.3.4 From reductions to conflicts, ..... 40
2.4 From Steiner distances and conflicts to extended reduction techniques ..... 42
2.4.1 The framework, ..... 43
2.4.2 Reduction criteria, ..... 47
2.5 Primal heuristics ..... 50
2.5.1 Shortest path heuristic and implications, 5
2.5.2 Reduction based heuristics, ..... 52
2.6 Solving to optimality ..... 53
2.6.1 Combining extended reductions and dynamic programming, 54
2.6.2 Branch-and-cut, ..... 54
2.7 Computational results ..... 57
2.7.1 Individual components, ..... 57
2.7.2 PACE Challenge 2018, ..... 62
2.7.3 SteinLib and beyond: A comprehensive benchmark, ..... 63
2.8 Conclusion ..... 67
3 A relative: The maximum-weight connected subgraph problem ..... 69
3.1 Introduction ..... 69
3.1.1 Preliminaries and additional notation, 70
3.1.2 Contribution and structure, 7
3.2 (M)IP formulations and the connected subgraph polytope ..... 72
3.2.1 Rooted maximum-weight connected subgraphs, ..... 72
3.2.2 Node based formulations for non-rooted connected subgraphs, ..... 74
3.2.3 Edge based formulations for non-rooted connected subgraphs, ..... 77
3.2.4 Comparison of the formulations, ..... 83
3.3 Reduction techniques ..... 85
3.3.1 Bound-based reductions, ..... 86
3.3.2 Alternative-based reductions, ..... 91
3.3.3 Combining dominating sets and constrained distances, ..... 97
3.4 From dual-ascent to exact solving ..... 100
3.5 Primal heuristics ..... 105
3.5.1 Constructive heuristics, ..... 105
3.5.2 Local search heuristics, ..... 107
3.6 Solving to optimality ..... 108
3.6.1 A full-fledged exact solver, 108
3.6.2 Computational results, 109
3.7 Conclusion ..... 112
4 A generalization: The prize-collecting Steiner tree problem ..... 115
4.1 Introduction ..... 115
4.1.1 Preliminaries and additional notation, 116
4.1.2 Contribution and structure, 117
4.2 Proper potential terminals and complexity ..... 118
4.2.1 On the complexity of PCSTP, 118
4.2.2 From PCSTP to MWCSP and NWSTP, 121
4.3 Reductions within the problem class ..... 122
4.3.1 Taking short walks, ..... 123
4.3.2 Using bounds, 130
4.4 Changing the problem class ..... 135
4.4.1 Identifying roots, 136
4.4.2 Rooting the problem: RPCSTP and SPG, 140
4.5 Solving to optimality ..... 143
4.5.1 Interleaving the components within branch-and-cut, 143
4.5.2 Computational results, ..... 145
4.6 Conclusion ..... 148
5 Further related problems ..... 151
5.1 The partial and full terminal Steiner tree problems ..... 152
5.2 The Steiner arborescence problem ..... 154
5.3 The node weighted Steiner tree problem ..... 156
5.4 The Euclidean and the rectilinear Steiner minimum tree problems ..... 157
5.5 The degree constrained Steiner tree problem ..... 159
5.6 The maximum-weight connected subgraph problem with budget ..... 161
5.7 The group Steiner tree problem ..... 163
5.8 The hop constrained directed Steiner tree problem ..... 164
6 Implementation and parallelization ..... 167
6.1 SCIP-JACK ..... 167
6.1.1 The origins, 16
6.1.2 The solver, 168
6.2 Implementation details of key components ..... 169
6.2.1 Graph data structures, ..... 169
6.2.2 Bottleneck Steiner distances, ..... 171
6.2.3 Extended reduction techniques, ..... 173
6.2.4 Separation algorithms, ..... 177
6.3 Parallelization: Building Steiner trees on 43000 cores ..... 178
6.3.1 Parallelizing heuristics and reduction methods, ..... 178
6.3.2 Parallelizing branch-and-bound, ..... 180
7 Conclusion and outlook ..... 183
List of Abbreviations and Names ..... 187
Bibliography ..... 189
A Further proofs ..... 207
A. 1 Steiner tree problem in graphs ..... 207
A.1.1 Proof of Proposition 2.23, 207
A. 2 Maximum-weight connected subgraph problem ..... 207
A.2.1 Proof of Proposition 3.21, 207
A.2.2 Node separators and rejoining of flows, ..... 208
A. 3 Prize-collecting Steiner tree problem ..... 209
A.3.1 Proof of Theorem 4.1, ..... 209
A.3.2 Proof of Proposition 4.11, ..... 212
A.3.3 Proof of Lemma 4.14, ..... 214
A.3.4 Proof of Proposition 4.30, ..... 214
B Detailed computational results ..... 217
B. 1 Steiner tree problem in graphs ..... 217
B.1.1 PACE 2018 instances, ..... 217
B.1.2 SteinLib instances, ..... 222
B.1.3 DIMACS 2014 instances, ..... 230
B. 2 Maximum-weight connected subgraph problem ..... 236
B. 3 Prize-collecting Steiner tree problem ..... 240
B. 4 Steiner arborescence problem ..... 246
B. 5 Euclidean Steiner tree problem ..... 247
B. 6 The degree constrained Steiner tree problem ..... 248
B. 7 The group Steiner tree problem ..... 248
B. 8 Hop constrained directed Steiner tree problems ..... 249

## Introduction

Given an undirected graph with non-negative edge weights and a subset of vertices called terminals, the Steiner tree problem in graphs (SPG) is to find a tree of minimum weight that contains all terminals. The SPG is a classic $\mathcal{N} \mathcal{P}$-hard problem, and one of the most studied problems in combinatorial optimization. The geometrical origins of the SPG can be traced back to Pierre de Fermat's famous treatise Methodus ad disquirendam maximam et minimam from 1638, and the problem was rediscovered by the likes of Carl Friedrich Gauß and Vojtěch Jarník in the following centuries ${ }^{1}$.

Part of the appeal of the SPG might be attributed to the fact that it "lies between" two other classic optimization problems: If there are exactly two terminals, the SPG reduces to the shortest-path problem, if all vertices are terminals, the SPG reduces to the minimum-spanning tree problem. However, in contrast to the SPG, for both of these problems polynomial-time algorithms are known. Interestingly, if the SPG "stays close enough" to either of these problems, i.e., if either the number of terminals, or the number of non-terminals is bounded, it can also be solved in polynomial time ${ }^{2}$. On the practical side, the large research interest in the SPG can be motivated by the numerous and surprisingly diverse practical applications that can be modeled as SPG or closely related problems. Two classic application areas are network design problems and the design of integrated circuits. Other, more recent, areas are for example systems biology and machine learning.

The SPG has seen numerous theoretical advances in the last 10 years, bringing forth significant improvements for example in complexity and approximability. Indeed, the SPG can be considered a flagship problem in both of these research areas. However, when it comes to (practical) exact algorithms, the picture is significantly more bleak. After flourishing in the 1990s and early 2000s, algorithmic advances came to a staggering halt with the joint PhD theses of Polzin and Vahdati Daneshmand almost 20 years ago. The authors introduced a wealth of new results and algorithms for SPG, and combined them in a computer program that drastically outperformed all previous results from the literature. We will refer to such computer programs for mathematical optimization problems as solvers. While there have been some success stories for special classes of SPG instances in the meantime, on the vast majority of benchmark instances Polzin and Vahdati Daneshmand have stayed well out of reach. For example, even the best solvers from the 11th DIMACS Challenge in 2014, dedi-

[^0]cated to Steiner tree problems, are orders of magnitude slower on many benchmark instances, and solve far fewer instances to optimality. Much the same can be said of the various solvers participating at the 3rd PACE Challenge in 2018: Even on the special class of SPG instances used at the PACE Challenge the state of the art solver by Polzin and Vahdati Daneshmand remained largely unchallenged. However, this solver is not publicly available.

Against this backdrop, this thesis aims at advancing once again the state of the art in solving SPGs to optimality. But what, one might ask, is the interest in further improving the solution of Steiner tree problems? We start with some practical points. As just mentioned, many applications are modeled as SPG and related problems-and in the age of big data such models naturally become larger. 15 years ago, the largest SPG instance from the literature had roughly 200 thousand edges. In contrast, the largest Steiner tree instances considered (and solved) in this thesis have up to 10 million edges. A huge leap for an $\mathcal{N} \mathcal{P}$-hard problem. Moreover, classic optimization problems such as the traveling salesman problem or the SPG, have often been a testing ground for techniques that can later be used for other problem types. And indeed, a central contribution of this thesis is to extend results for the SPG to related problems.

This thesis can also be seen in the larger picture of the tremendous algorithmic progress of mixed-integer programming (MIP) algorithms in the last decades. MIP solvers exhibit an impressive performance and have become a standard industry tool. ${ }^{3}$ Thus, one might question the need of strenuously hand-tailored, problem-specific algorithms and implementations. However, if one starts to model SPG instances as MIPs (using one of the many MIP formulations from the literature), and tries to solve them with leading commercial MIP solvers, one quickly realizes that already medium-sized instances can often not be solved even after weeks of computation (or even run out of memory). In contrast, such instances can be solved in fractions of a second by the SPG solver presented in this thesis.

Besides these practical points, there is also a significant theoretical interest in advancing the exact solution of SPGs. First of all, such an advancement naturally spawns new underlying theoretical results, for example in complexity or polyhedral theory. Also, many techniques developed in this thesis are, arguably, theoretically interesting in their own right, and furthermore lead to several new ( $\mathcal{N} \mathcal{P}$-hard) optimization problems. Finally, the strong practical results achieved in this thesis serve to show the limits of classic complexity theory: It is possible to solve the overwhelming majority of large-scale SPG benchmark instances to optimality within minutes, including those with hundreds of thousand of edges. We are even able to solve many instances with millions of edges. Indeed, such practical success stories have contributed to the huge prominence of the field of parametrized complexity, which allows for a finer scale classification of complexity. As another example, the tremendous practical success of preprocessing techniques in many combinatorial optimization problems (including SPG) has given rise to the field of kernelization ${ }^{4}$, which is a flourishing area in theoretical computer science.

[^1]The underlying assumption of this thesis is that practical advancements best go hand-in-hand with a solid theoretical understanding of the utilized techniques and algorithms. Thus, we will move from theory to practice and base algorithm developments on various new theoretical results, such as the fixed-parameter tractability of the considered problems, or the tightness of their integer programming formulations. To compete with the state of the art in exact SPG solution, we introduce a wide range of intricate algorithmic components, which are finally combined in an exact algorithm. As to practical usability, one also observes that many real-world problems are not modeled as pure SPGs, but rather as closely related problems. This observation also explains the multitude of Steiner tree relatives and generalizations found in the literature. Thus, a significant part of this thesis is devoted to extending and complementing the new theoretical and practical SPG results such that they can be used for several close relatives of the SPG. Finally, the new algorithms developed in this thesis have been implemented in an exact Steiner tree solver. The practical performance of this solver is demonstrated on a wide range of well-established benchmark sets, often originating from practical applications.

## Structure and main contributions

This thesis can be roughly divided into two parts. The first part offers an in-depth treatment of SPG and two well-known related problems. For each problem, an extensive theoretical foundation is established, from which various new solution techniques and algorithms are developed. By combining these algorithmic components, we aim to push the limits of (computational) tractability for all three problem classes. We highlight and exploit the strong interrelations between the three problems, but also establish various novel problem-specific results. Each of the three problems is devoted an individual chapter.

The second part of this thesis, starting with Chapter 5, takes a turn towards mostly practical issues. We show how to use the previously established results to readily solve many further related problems. Next, we discuss implementation issues, such as data structures, and show how to parallelize some of the previously introduced algorithms.

The coherence of the algorithmic treatment of all problem classes in this thesis is highlighted by the fact that only a single branch-and-cut kernel is used for all 15 problem classes shown in Table 1 (although also many problem-specific algorithms are used). To this end, an important ingredient is constituted by the (often new) problem transformations depicted in Figure 1 and Figure 2.

In more detail, the structure of the thesis is as follows.

- Chapter 1 provides preliminaries, such as notation.
- Chapter 2 is concerned with the SPG. The chapter starts with a theoretical analysis of two widely used integer programming formulations for SPG. We show conditions for the linear programming relaxations to be exact, and compare the relative strength of the formulations. Subsequently, many new algorithmic components such as reduction techniques, conflicts, and heuristics are introduced.

Table 1: The 15 problem classes considered in this thesis.

| Abbreviation | Problem Name |
| :--- | :--- |
| DCSTP | Degree-constrained Steiner tree problem |
| FTSTP | Full terminal Steiner tree problem |
| GSTP | Group Steiner tree problem |
| HCDSTP | Hop-constrained directed Steiner tree problem |
| MWCSP | Maximum-weight connected subgraph problem |
| MWCSPB | Maximum-weight connected subgraph problem with budget |
| NWSTP | Node-weighted Steiner tree problem |
| OARSMT | Obstacle-avoiding rectilinear Steiner minimum tree problem |
| PCSTP | Prize-collecting Steiner tree problem |
| PTSTP | Partial terminal Steiner tree problem |
| RMWCSP | Rooted maximum-weight connected subgraph problem |
| RPCSTP | Rooted prize-collecting Steiner tree problem |
| $R S M T$ | Rectilinear Steiner minimum tree problem |
| SAP | Steiner arborescence problem |
| SPG | Steiner tree problem in graphs |



Figure 1: Transformations between problem classes used for computational solution in this thesis.

Several of these methods and techniques are provably stronger than well-known results from the literature. The various components are combined in an exact SPG algorithm. The chapter closes with computational results, including a comparison with the state of the art in exact SPG solution.


Figure 2: Transformations to SAP with additional constraints used for computational solution in this thesis.

- Chapter 3 covers the maximum-weight connected subgraph problem, a wellknown relative of the SPG, which has (real-valued) vertex instead of (nonnegative) edge weights. We start with a theoretical analysis of the strength of integer programming formulations, and also give related polyhedral results. Based on the strongest of these formulations, various new solution techniques and algorithms are introduced. These developments include extensions of results from the previous chapter, but also novel contributions - such as graph transformations. Finally, we assemble the individual algorithms within a branch-and-cut framework. Computational results of the resulting solver are also given.
- Chapter 4 discusses an important generalization of both of the previously considered problems: the prize-collecting Steiner tree problem. Initially, we provide new complexity results, showing in particular that the problem is fixedparameter tractable. We go on to introduce and analyze several new algorithms and techniques. A notable example is a new implication concept that allows us to identify vertices that are contained in all optimal solutions. As in the previous two chapters, these algorithms are finally combined within an exact branch-and-cut solver.
- Chapter 5 shows how to readily extend the algorithmic base established in the previous three chapters to solve further related problems. The focus is on breadth rather than depth: We show how to achieve strong results for many problem classes with little additional algorithmic and implementational effort.
- Chapter 6 contains implementation details of several of the most important algorithms introduced so far-including various data structures and auxiliary algorithms. Furthermore, this chapter provides details on both shared- and distributed memory parallelizations of our branch-and-cut framework.
- Chapter 7 closes the thesis, providing a conclusion as well as suggestions for further research on the topics discussed so far.

Complementary to the theoretical results given in this thesis, a notable practical contribution is the implementation of an exact Steiner tree solver. The new solver is on each of the 15 problem classes it can handle faster than all other (problem-specific) solvers from the literature ${ }^{5}$, often by orders of magnitude. In particular, it consistently

5 It should be noted, though, that for RSMT the initial full Steiner tree generation is not done by our solver
outperforms the long-reigning state-of-the-art solver for SPG. Furthermore, many benchmark instances from the literature for several problem classes can be solved for the first time to optimality - some containing millions of edges. These problem classes include the SPG, the prize-collecting Steiner tree problem, the maximumweight connected subgraph problem, and the Euclidean Steiner tree problem. We further discuss the software contribution in the following section.

## Publications, software, and outreach

Substantial parts of this thesis have been published in or submitted to the following peer-reviewed journals and conference proceedings. Articles submitted to, accepted by, or published in international journals are listed below:

- An article about the theoretical aspects of Chapter 2 and 3 has been submitted to Networks. This article is joint work with Thorsten Koch.
- Parts of Chapter 3 have been published in SIAM Journal on Optimization (Rehfeldt and Koch, 2019). The article is joint work with Thorsten Koch.
- Parts of Chapter 3 and Chapter 4 have been published in Journal on Computational Mathematics (Rehfeldt and Koch, 2018a). The article is joint work with Thorsten Koch.
- Parts of Chapter 3 and Chapter 4 have been published in Networks (Rehfeldt et al., 2019). The article is joint work with Thorsten Koch and Stephen Maher. However, we note that several of the algorithms from Rehfeldt et al. (2019) have been replaced by (provably) stronger counterparts in this thesis.
- Parts of Chapter 4 have been accepted for publication by the INFORMS Journal on Computing. See Rehfeldt and Koch (2020) for a preprint. The article is joint work with Thorsten Koch.
- Parts of Chapter 5.1 have been published in IEEE/ACM Transactions on Networking (Sun et al., 2020). However, the contribution of the author of this thesis is small. It is restricted to an extension of the solver developed in this thesis for the Steiner tree variant considered in the article, as well as computational results.

Furthermore, a publication containing large parts of Chapter 6 and parts of Chapter 2 is in preparation, and will be submitted to an international journal. Publications in conference proceedings are as follows:

- An overview of the solver developed for this thesis has been published in the Operations Research Proceedings 2017 (Rehfeldt and Koch, 2018b). This publication is joint work with Thorsten Koch.
- Results from several chapters of this thesis have been published in the proceedings of the 7th International Conference on High Performance Scientific Computing (Rehfeldt et al., 2021). This publication is joint work with Yuji Shinano and Thorsten Koch.
- Parts of Chapter 2 have been published in the proceedings of the 22nd Conference on Integer Programming and Combinatorial Optimization (IPCO) (Rehfeldt and Koch, 2021). An extended version has been submitted to Mathematical Programming B. This manuscript is joint work with Thorsten Koch.
- Parts of Chapter 6 have been published in the proccedings of CPAIOR 2019 (Shinano et al., 2019b). This publication is joint work with Yuji Shinano and Thorsten Koch.
- Results from Chapter 6.3 have been published in the proceedings of the 9 th IEEE Workshop Parallel / Distributed Combinatorics and Optimization (Shinano et al., 2019a). This publication is joint work with Yuji Shinano and Tristan Gally.

The software developed in the course of this thesis has been combined in the Steiner tree solver SCIP-JACK. A previous version of SCIP-JACK is freely available for academic use as part of the SCIP Optimization Suite (Gamrath et al., 2020). We note that a forerunner of SCIP-JACK existed already prior to the start of this thesis (with the author of this thesis being the main developer). However, more than $95 \%$ of the current SCIP-JACK version has been newly implemented as part of this thesis. This current version will be included in the next major release of the SCIP Optimization Suite. The SCIP-Jack version included in the latest SCIP Optimization Suite has been used in several research projects, e.g. van den Boogaart (2018); Iwata and Shigemura (2019); Peters (2021), and has already received notable recognition in the recent literature on Steiner tree and related problems, see e.g. Ljubic (2020). Furthermore, this version of SCIP-JACK successfully competed in the 3rd Parameterized Algorithms and Computational Experiments Challenge (Bonnet and Sikora, 2019), dedicated to fixed-parameter tractable SPGs. Even though SCIP-JACK did not include any special algorithms for such problems, it reached first (Track B), second (Track A), and third (Track C) place in the three tracks of the challenge. We note that the current version of SCIP-JACK also outperforms all other competitors in Track A and C, see Section 2.7.2 for more details.

Finally, we note that SCIP-JACK is actively being used in several industrial projects, for example at Open Grid Europe, one of Europe's largest transmission systems operators.

## Chapter 1

## Preliminaries

This chapter provides preliminaries that are relevant at multiple places of this thesis. Section 1.1 introduces basic notation and concepts. Section 1.2 provides information on the computational experiments conducted in this thesis.

### 1.1 Notation and basic concepts

Most notation will be introduced as needed. To keep the individual chapters largely self-contained, we will also allow some redundancies and occasionally reintroduce basic concepts. In the following, we merely provide the most common notation, as well as several simple concepts. A list of frequently used abbreviations and names can be found on page 187.

### 1.1.1 Miscellaneous

The sets of real, rational, and integer numbers are denoted by $\mathbb{R}, \mathbb{Q}$, and $\mathbb{Z}$, respectively, and their nonnegative versions by $\mathbb{R}_{\geq 0}, \mathbb{Q} \geq 0$, and $\mathbb{Z}_{\geq 0}$. For the strictly positive versions, we write $\mathbb{R}_{>0}, \mathbb{Q}_{>0}$, and $\mathbb{Z}_{>0}$. The set of natural numbers is denoted by $\mathbb{N}$. We assume $0 \notin \mathbb{N}$, so $\mathbb{N}=\mathbb{Z}_{>0}$. We write $\mathbb{N}_{0}:=\mathbb{Z}_{\geq 0}$. For the cardinality of a finite set $S$ we write $|S|$. Throughout this thesis, all vectors are understood to be column vectors. The transpose of a vector or matrix is denoted by the superscript ${ }^{~} T$, Let $\mathbb{K}$ be a field. For any function $x: M \mapsto \mathbb{K}$ with $M$ finite, and any $M^{\prime} \subseteq M$ define $x\left(M^{\prime}\right):=\sum_{i \in M^{\prime}} x(i)$. For an integer programming (IP) formulation $F$ we denote its optimal objective value by $v(F)$. For the linear programming (LP) relaxation of $F$ we denote by $v_{L P}(F)$ the optimal objective value, and by $\mathcal{P}_{L P}(F)$ the set of feasible points. For background information on integer and linear programming see for example Schrijver (1998).

### 1.1.2 Graph theory

The general graph notation used in this thesis is largely in accordance with Bondy and Murty (2008). It deviates at several places to, for example, be in line with the Steiner tree literature, or to facilitate the presentation of Steiner tree specific concepts.

For a given undirected graph $G=(V, E)$ we define $n:=|V|$ and $m:=|E|$, and for a directed graph $D=(V, A)$ likewise $n:=|V|$ and $m:=|A|$. In this thesis, graphs are always simple, i.e. without parallel edges or arcs, and finite, i.e. $n, m<\infty$ holds. We refer to the vertices and edges of a subgraph $G^{\prime} \subseteq G$ as $V\left(G^{\prime}\right)$ and $E\left(G^{\prime}\right)$ respectively, and analogously to the vertices and arcs of a directed subgraph $D^{\prime} \subseteq D$ as $V\left(D^{\prime}\right)$ and $A\left(D^{\prime}\right)$. An (undirected) edge between vertices $v, w \in V$ is denoted by $\{v, w\}$, a (directed) arc by $(v, w)$. For $U \subseteq V$ we define

$$
E[U]:=\{\{v, u\} \in E \mid v, u \in U\} .
$$

For $U \subseteq V$ define the induced edge cut as $\delta(U):=\{\{u, v\} \in E \mid u \in U, v \in V \backslash U\}$; for a directed graph $D=(V, A)$ define $\delta^{+}(U):=\{(u, v) \in A \mid u \in U, v \in V \backslash U\}$ and $\delta^{-}(U):=\delta^{+}(V \backslash U)$. We also write $\delta_{G}$ or $\delta_{D}^{+}, \delta_{D}^{-}$to distinguish the underlying graph. For a single vertex $v$ we use the short-hand notation $\delta(v):=\delta(\{v\})$, and accordingly for directed graphs. In the undirected case the degree of any $v \in V$ is defined as $|\delta(v)|$, i.e. the number of incident edges. In the directed case we distinguish between the indegree $\left|\delta^{-}(v)\right|$ and the outdegree $\left|\delta^{+}(v)\right|$.

Paths will be considered as subgraphs, and the subpath of a path $Q$ between two vertices $v, w \in V(Q)$ will be denoted by $Q(v, w)$. A path between two vertices $v, w$ will be referred to as $(v, w)$-path. In an undirected graph, a walk is an alternating sequence of vertices and edges $v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{k-1}, e_{k-1}, v_{k}$, such that $e_{i}:=\left\{v_{i}, v_{i+1}\right\}, i=$ $0, \ldots, k-1$. For a walk $W$ we denote the set of vertices and the set of edges it contains by $V(W)$ and $E(W)$.

Let $v$ and $w$ be two distinct vertices of $G$. A subset $C \subseteq V \backslash\{v, w\}$ is called $(v, w)$-separator, or $(v, w)$-node-separator, if there is no path from $v$ to $w$ in the graph $(V \backslash C, E[V \backslash C])$. The family of all $(v, w)$-separators is denoted by $\mathcal{C}(v, w)$. Note that $\mathcal{C}(v, w)=\emptyset$ if and only if $\{v, w\} \in E$. For directed graphs we say that $C \subseteq V \backslash\{v, w\}$ is a $(v, w)$-separator if all directed paths from $v$ to $w$ contain a vertex from $C$.

Given edge costs $c: E \mapsto \mathbb{Q}_{\geqslant 0}$, the triplet $(V, E, c)$ is referred to as network. By $d(v, w)$ we denote the cost of a shortest path (with respect to $c$ ) between vertices $v, w \in V$. We say that $d(v, w)$ is the distance between $v$ and $w$. For any (distance) function $\tilde{d}:\binom{V}{2} \mapsto \mathbb{Q} \geqslant 0$, and any $U \subseteq V$ we define the $\tilde{d}$-distance graph on $U$ as the network

$$
\begin{equation*}
D_{G}(U, \tilde{d}):=\left(U,\binom{U}{2}, \tilde{c}\right) \tag{1.1}
\end{equation*}
$$

with $\tilde{c}(\{v, w\}):=\tilde{d}(v, w)$ for all $v, w \in U$. If $\tilde{d}$ is the standard distance (i.e. $\tilde{d}=d$ ), we write $D_{G}(U)$ instead of $D_{G}(U, d)$. Note that we write usually $\tilde{d}(v, w)$ instead of $\tilde{d}(\{v, w\})$.

Finally, we denote by $\alpha(G)$ the maximum number of independent vertices in graph $G$.

### 1.1.3 Steiner arborescence problem

We will require the directed equivalent of the SPG, the Steiner arborescence problem $(S A P)$, see e.g. Hwang et al. (1992), throughout his thesis. The SAP is defined as follows. Given a directed graph $D=(V, A)$, costs $c: A \rightarrow \mathbb{Q} \geqslant 0$, a set $T \subseteq V$ of
terminals, and a root $r \in T$, a directed tree $S \subseteq D$ is required such that: First, for all $t \in T$ the tree $S$ contains exactly one directed path from $r$ to $t$. Second, $c(A(S))$ is minimized.

We will use the following IP formulation for the SAP, due to Wong (1984), throughout this thesis. Associate with each arc $a \in A$ a binary variable $y(a)$, indicating whether $a$ is contained in the Steiner arborescence $(y(a)=1)$ or not $(y(a)=0)$.

Formulation 1.1. Directed Cut Formulation (DCut)

$$
\begin{array}{rll}
\min c^{T} y & & \\
y\left(\delta^{-}(W)\right) & \geqslant 1 & \text { for all } W \subset V, r \notin W, W \cap T \neq \emptyset \\
y(a) & \in\{0,1\} &  \tag{1.4}\\
\text { for all } a \in A .
\end{array}
$$

The constraints (1.3) make sure that all feasible solutions contain directed paths from the root to each additional terminal.

### 1.2 Experimental methodology

At several places, this thesis will analyze the practical performance of newly introduced algorithms by computational experiments. In the following, we describe some details concerning our computational methodology.

### 1.2.1 Hardware and software

All experiments for this thesis except for those from Chapter 6.3 were conducted on a cluster of Intel Xeon CPUs E3-1245 with 3.40 GHz and 32 GB RAM. With the exception of Chapter 6.3, all experiments were performed single-threaded. We ran only one job per compute node at a time, to avoid a distortion of the run time measures-originating for example from shared (L3) cache. We used a version of our Steiner tree solver SCIP-JACK that is embedded into a development version of SCIP 7.0.2 (Gamrath et al., 2020). We used the commercial CPLEX 12.10 (IBM, 2020), and the non-commercial SoPlex 5.0 (Gamrath et al., 2020) as LP solvers.

A previous version of SCIP-JACK is available as part of the SCIP Optimization Suite (Gleixner et al., 2018), which is free for academic use. A newer version of SCIPJACK including the developments described in this thesis will be made publicly available as part of an upcoming release of the SCIP Optimization Suite. Most of the experiments in this thesis were performed with the same version of SCIP-JACK. Exceptions are marked as such, and include mostly exceptionally long runs. For reasons of reproducibility, the SCIP-JACK versions, as well as the log files of the experiments have been archived.

### 1.2.2 Averaging and performance variability

To evaluate and compare algorithmic performance on a large set of benchmark instances, we rely on comparing averages and maxima. The classic arithmetic average has the property to be strongly dominated by the largest absolute values. Since, the
run times of state-of-the-art Steiner tree solvers usually vary widely even among single benchmark sets, this property seems disadvantageous. Thus, we usually use the shifted geometric mean (Achterberg, 2007b) instead, which is has become a standard measure in discrete optimization, see e.g. Mittelmann (2020). We note, that the use of the arithmetic mean would bias most results strongly in favor of SCIP-JACK, which is particularly strong on harder instances-across all problem classes considered in this thesis. Given values $t_{1}, \ldots, t_{k} \in \mathbb{R}_{\geqslant 0}$, and a shift $s \in \mathbb{R}_{\geqslant 0}$, the shifted geometric mean is defined as

$$
\begin{equation*}
\sqrt[k]{\prod_{i=1}^{k}\left(t_{i}+s\right)}-s \tag{1.5}
\end{equation*}
$$

Compared to the arithmetic average, the use of a geometric mean brings the benefit of reducing the influence of very hard instances. On the other hand, the use of a shift helps avoid an overrepresentation of very small values. In this thesis we use shifts of $s=1$ or $s=10$ (i.e., 1 or 10 seconds) for averaging run times, which are both standard values; see e.g. Gleixner et al. (2018); Mittelmann (2020). We also note that all run times reported for SCIP-JACK in this thesis include the reading time.

Finally, we note that mixed-integer solvers such as SCIP are usually subject to so-called performance variability (Lodi and Tramontani, 2013). Broadly speaking, performance variability means a large change of the solving behavior, such as run time, resulting from seemingly neutral changes to the solution process. Such seemingly neutral changes are for example the permutation of the rows and columns of the constraints matrix. Thus, it has become a common practice in the integer programming community to perform computational experiments with several random seeds, which modify the behavior of the solution process in a (hopefully) random way; see e.g. Lodi and Tramontani (2013). Similarly, permutations of the constraint matrix are employed. Also, statistical tests are often used. While we have implemented random seed features into SCIP-Jack, the impact on the solution process is far less pronounced than for general mixed-integer solvers. The impact on the run time on most benchmark sets used in this thesis is less than five percent-the impact of permuting the underlying graph is even smaller. A main reason for this small impact might be attributed to the fact that the vast majority of the instances is solved already at the root node of the branch-and-bound tree. Even more, many of the instances are already solved by the highly sophisticated presolving (or reduction) methods developed and implemented in the thesis. Reductions techniques for Steiner tree and related problems are far less susceptible to performance variability-both empirically, and theoretically. See for example Kingston and Sheppard (2003) for theoretical results concerning the robustness of reduction methods for SPG. Consequently, we do not use multiple random seeds or graph permutations for most of the experiments in this thesis.

## Chapter 2

## The prototype: Steiner tree problem in graphs

The first problem discussed in this thesis is naturally the classic Steiner tree problem in graphs (SPG). The results from this chapter also form a basis for the related problems discussed later on.

### 2.1 Introduction

This chapter starts with a more formal definition of the SPG: Given an undirected connected graph $G=(V, E)$, edge costs $c: E \rightarrow \mathbb{Q}_{>0}$ and a set $T \subseteq V$ of terminals, the problem is to find a tree $S \subseteq G$ with $T \subseteq V(S)$ such that $c(E(S))$ is minimized. A tree $S \subseteq G$ such that $T \subseteq V(S)$ is called Steiner tree. The vertices in $V \backslash T$ are referred to as Steiner vertices or Steiner nodes. Note that allowing non-negative or positive edge costs for the SPG is equivalent, since each zero-cost edge can simply be contracted. An illustration of an SPG instance and a corresponding Steiner tree is given in Figure 2.1. For simplicity, no edge costs are specified.

(a) An SPG instance

(b) A feasible solution (Steiner tree)

Figure 2.1: Illustration of a Steiner tree problem in a graph (left) and a possible solution (right). Terminals are drawn as squares, Steiner nodes as circles.

### 2.1.1 Background

Given the huge number of publications on Steiner tree problems ${ }^{6}$, any overview is bound to be incomplete. Still, we try to at least touch upon some of the most important results in prominent research fields. Furthermore, we give a short historical background. As to practical applications of the (classic) SPG, we only note that prominent areas are VLSI design, see e.g. Held et al. (2011), Phylogency, see e.g. Hwang et al. (1992), and telecommunication networks, see e.g. Leitner et al. (2014). For further interesting applications, the reader is referred to Cheng and Du (2004); Noormohammadpour et al. (2017). For a more comprehensive background, the reader is referred to the books Hwang et al. (1992); Korte et al. (2018); Prömel and Steger (2002), and the recent survey Ljubic (2020). The Steiner tree problem is also the subject of several other books, e.g. Cheng and Du (2004); Cieslik (1998); Du et al. (2000); Voss (1990).

## Historical notes

Historically, the Steiner problem in graphs is derived from a problem known as the Euclidean Steiner tree problem: Given a finite set $T$ of points in the plane, connect them by line segments of minimum total Euclidean length such that any two points are interconnected by line segments either directly or by using intermediary points. More details on this problem are given in Section 5.4. The history of the Steiner tree problem can be traced back to the year 1636 when Pierre de Fermat formulated the special case of $|T|=3$. Evangelista Torricelli found an elegant solution to this problem already before 1640 (Prömel and Steger, 2002).

More than 100 years later, the general Euclidean Steiner tree problem was independently formulated by Carl Friedrich Gauß and Joseph Diaz Gergonne (Brazil et al., 2014). The name Steiner is derived from Jakob Steiner (1796-1863), who held a chair of geometry at Berlin university. The, somewhat misleading, attribution of the problem name to Jakob Steiner is due to the famous treatise What is Mathematics? (Courant et al., 1941).

The Steiner tree problem in graphs as it is known today can be found in a publication by Hakimi (1971). Since then, hundreds of articles concerning the Steiner tree problem in graphs have been published; see Hwang et al. (1992) for a comprehensive, albeit outdated, survey, or Ljubic (2020) for an up-to-date one.

A detailed account of the rich history of the (Euclidean) Steiner tree problem can be found in Brazil et al. (2014).

## Complexity results

The decision variant of the SPG is strongly $\mathcal{N} \mathcal{P}$-complete, and the optimization variant thus $\mathcal{N} \mathcal{P}$-hard. Indeed, the decision variant of the SPG is one of the famous 21 $\mathcal{N} \mathcal{P}$-complete problems by Karp (1972). However, there are several polynomially solvable special cases of the SPG. The two most important ones are the case $|T|=2$,

6 As of November 2020, a search for the term Steiner tree produced 29200 results on Google Scholar.
which corresponds to finding a shortest path between two vertices, and $|T|=n$, which corresponds to finding a minimum spanning tree in $G$. Further polynomially solvable special cases can be found in Hwang et al. (1992).

Dreyfus and Wagner (1971) and Levin (1971) described a dynamic programming algorithm for SPG that runs in

$$
O\left(3^{|T|} n+2^{|T|} n^{2}+n^{2} \log n+m n\right) .
$$

Hakimi (1971) also observed that the SPG is also fixed-parameter tractable (FPT) in the number of Steiner nodes - by using simple enumeration. Buchanan et al. (2018) showed that this algorithm by Hakimi (1971) is essentially best possible under the Strong Exponential-Time Hypothesis (SETH). The run time of the algorithm by Dreyfus and Wagner (1971) and Levin (1971) was later improved by Erickson et al. (1987). However, the leading exponential term was unchanged. Fuchs et al. (2007b) were the first to break the $O^{\star}\left(3^{|T|}\right)$ bound. Subsequently, Fuchs et al. (2007a) improved the run time to $O^{\star}\left((2+\varepsilon)^{|T|}\right)$ for any sufficiently small and fixed $\varepsilon>0$. However, the (hidden) term depending on $\varepsilon$ grows very quickly with decreasing $\varepsilon$. Vygen (2011) introduced an algorithm that runs in time

$$
O\left(n|T| 2^{|T|+\log _{2}|T| \log _{2} n}\right)
$$

This algorithm is only outperformed by that of Fuchs et al. (2007a) if the ratio of terminals, i.e. $\frac{|T|}{n}$, is small. However, for sufficiently small terminal ratio, the algorithm by Erickson et al. (1987) is still the fastest known one. Additionally, for a terminal ratio greater than approximately $\frac{1}{2}$, the enumeration scheme from Hakimi (1971) is the fastest known solution method (for general SPG). Moreover, Marx et al. (2018) show that under the Exponential-Time Hypothesis (ETH), SPG cannot be solved in $2^{o(|T|)} n^{O(1)}$, even for planar graphs with unit weights. Several articles have also exploited the fact that the SPG is FPT with respect to the tree-width of the underlying graph, see e.g. Chimani et al. (2012).

A different line of research has focused on polynomial space algorithms for SPG, see e.g. Fomin et al. (2013); Kisfaludi-Bak et al. (2020a). A polynomial space algorithm that is faster than any of the algorithms mentioned in this section so far was given by Nederlof (2009). However, this algorithm only works for a restricted set of (integer) edge weights. See also Fomin et al. (2019a) for a recent related result.

Similarly, many articles consider exact SPG algorithms only for planar graphs. For recent results see Kisfaludi-Bak et al. (2020b). Dom et al. (2014) showed that the SPG parameterized by the number of terminals does not admit a polynomial kernel (under certain general complexity assumptions widely believed to be true). A linear programming based fixed-parameter tractable algorithm for the SPG is described in Siebert et al. (2020a)

## Approximation algorithms

Bern and Plassmann (1989) demonstrated that the SPG is MAXSNP-hard, even for edge weights in $\{1,2\}$. I.e., there exists an $\varepsilon>0$ such that finding a $(1+\varepsilon)$ approximation to this problem is $\mathcal{N} \mathcal{P}$-hard. Chlebík and Chlebíková (2008) further
showed that approximating the SPG within a factor of $\frac{96}{95}$ is $\mathcal{N} \mathcal{P}$-hard. However, the SPG in planar graphs has an approximation scheme, which was found by Borradaile et al. (2009).

A 2-approximation of the SPG was already found by Gilbert and Pollak (1968). The idea is to compute a minimum spanning tree in the subgraph of the metric closure of $G$ induced by $T$. This and other 2-approximation algorithms were also published by several other authors, El-Arbi (1978); Kou et al. (1981); Takahashi and Matsuyama (1980). An $O(m+n \log n)$ algorithm for computing the minimum-spanning-tree-based 2-approximation of the SPG is suggested in Mehlhorn (1988); see also Kou (1990).

Zelikovsky (1993) was the first to break the 2-approximability bound for SPG. He introduced a, much acclaimed, $\frac{11}{6}$-approximation algorithm. A faster realization of the algorithm is given by Duin and Voss (1997). The ratio has subsequently been improved to 1.75 by Berman and Ramaiyer (1994), to 1.65 by Karpinski and Zelikovsky (1997), to 1.60 by Hougardy and Prömel (1999), and to 1.55 by Robins and Zelikovsky (2005). Finally, the currently best approximation ratio of 1.39 was given by Byrka et al. (2013), who used an LP-based approach with randomized iterative rounding. This approach uses a hypergraphic IP formulation of the SPG that was introduced by Polzin and Daneshmand (2003). In Goemans et al. (2012) a faster and de-randomized version of the 1.39-approximation algorithm by Byrka et al. (2013) is given.

Recently, a new research area has emerged that works on fixed-parameter tractable approximation algorithms; so essentially a combination of the current and the previous section. Results for SPG in this area can be found in the survey Feldmann et al. (2020).

Finally, despite the considerable theoretical advancements sketched above, the empirical results of known approximation algorithms are clearly inferior to those of both heuristic and integer-programming-based methods, see e.g. Beyer and Chimani (2019); Ciebiera et al. (2014). The approximation algorithms fall short both in terms of run time and solution quality.

## Exact algorithms

While the algorithm introduced by Dreyfus and Wagner (1971) can in principle solve any SPG, it is hopelessly slow and also too memory intensive for practical purposes. Consequently, several authors, e.g. Shore et al. (1982); Beasley (1984), suggested more practical algorithms in the following years. A comprehensive overview of exact algorithms up to 1990 is given in Hwang and Richards (1992). A later milestone was the exact algorithm by Duin (1993), incorporating his work on reductions (Duin and Volgenant, 1989a,b) and heuristics (Duin and Voss, 1997). This exact algorithm used branch-and-bound, but only a dual heuristic instead of linear programming. Computational experiments by Lucena and Beasley (1998) show that the implementation by Duin (1993) is more than three orders of magnitude faster than any of the solvers by Chopra et al. (1992); Beasley (1989); Lucena and Beasley (1998), which were the best alternatives at this time. Five years later, Koch and Martin (1998) introduced a branch-and-cut algorithm with sophisticated separation procedures, combined with reduction techniques and primal heuristics. Koch and Martin (1998) were able to
solve all problem instances that had hitherto been discussed in the literature to optimality. Subsequently, de Aragão et al. (2001) developed a branch-and-bound algorithm, based on dual heuristics, that could solve several large-scale, VLSI instances which had been newly introduced by Koch and Martin (1998) for the first time to optimality. A key ingredient of this branch-and-bound algorithm were the reduction methods introduced in Uchoa et al. (2002).

A huge leap was made by the joint PhD theses of Polzin (2003) and Vahdati Daneshmand (2004), whose work was also published in a series of papers (Polzin and Daneshmand, 2001a, 2002, 2001b, 2003, 2006). The authors combined known methods with many new algorithms within a branch-and-bound framework. These new algorithms include various sophisticated reduction techniques, a dynamic programming algorithm, a (provably) stronger integer programming formulation, and primal and dual heuristics. Furthermore, a prominent feature of Polzin (2003); Vahdati Daneshmand (2004) is the efficient implementation of their algorithms. The resulting solver drastically outperformed any competitor - on many benchmark instances even by three or more orders of magnitude. Furthermore, it could solve many instances for the first time to optimality. In fact, the solver has remained the state of the art until today. See Polzin and Vahdati-Daneshmand (2014) for more recent computational results of their solver, and Polzin and Vahdati-Daneshmand (2009) for an overview of the algorithmic components.

In 2014, the 11th DIMACS Challenge, dedicated to Steiner tree problems, took place. In the wake of the Challenge, several new SPG solvers were introduced in the literature. Fischetti et al. (2017) introduced a branch-and-cut solver, including reduction techniques, and a variety of heuristics. The solver is especially tailored towards previously unsolvable instances, and instances with unit edge weights. Notably, the solver won the exact SPG category at the DIMACS Challenge. Pajor et al. (2017) introduced a branch-and-bound solver based on the same dual heuristic already used in Duin (1993) -albeit Pajor et al. (2017) introduced a more efficient implementation. Furthermore, the solver includes extensions and more efficient implementations of primal heuristics from Ribeiro et al. (2001) and Uchoa and Werneck (2010). The solver by Pajor et al. (2017) won the heuristic SPG category at the DIMACS Challenge. Hougardy et al. (2017) provided an extension of the algorithm by Dreyfus and Wagner (1971), which is far more efficient in practice, but retains the worst-case bound. However, their solver works only for instances with no more than 64 terminals.

Overall, the 11th DIMACS Challenge brought considerable progress on the solution of notoriously hard SPG instances that had been designed to defy known solution techniques, see Koch et al. (2001); Rosseti et al. (2004). Several of these instances could be solved for the first time to optimality. In particular, Fischetti et al. (2017) and Pajor et al. (2017) showed strong results for some of these instances. Additionally, Gamrath et al. (2017) could solve several instances by running a branch-and-bound search in parallel on a supercomputer. However, on the vast majority of (real-world) instances from the literature, Polzin (2003); Vahdati Daneshmand (2004) (whose solver did not compete at the DIMACS Challenge) stayed well out of reach: For many benchmark instances, their solver is more than two orders of magnitude faster, and it can furthermore solve far more instances to optimality.

In 2018, the 3rd PACE Challenge (Bonnet and Sikora, 2019) took place, dedicated to fixed-parameter tractable algorithms for SPG. Thus, the PACE Challenge considered mostly instances with a small number of terminals, or with small treewidth. Solvers that participated in the PACE Challenge are for example described in Fichte et al. (2020); Hušek et al. (2020); Iwata and Shigemura (2019). Notably, the solver by Iwata and Shigemura (2019) has the worst-case complexity of Erickson et al. (1987), but is faster than Hougardy et al. (2017) in practice. The solver can also handle instances with more than 64 terminals. Furthermore, a forerunner of the solver presented in this thesis competed at the PACE Challenge, see also Section 2.7.2.

While many different techniques have been employed for the exact solution of SPG in the literature in the last 50 years, widely used ingredients are as follows: Reduction techniques for both preprocessing and propagation, Lagrangian or dual-ascent relaxations for calculating strong lower bounds, various heuristics for calculating primal bounds, and branch-and-cut or branch-and-price methods based on MIP formulations for proving optimality.

### 2.1.2 Contribution and structure

This chapter aims to once again advance the state of the art in exact SPG solution. To this end, we proceed as follows.

- Section 2.2 provides a theoretical basis for the integer-programming-based exact solution approach of this chapter. We analyze (mixed) integer programming formulations of the SPG that are widely used in theory and practice. Several new results are given. In particular, we provide new, and stronger, conditions under which the LP-relaxation of the well-known (bi-)directed cut formulation has no integrality gap.
- Section 2.3 is based on a combination of three concepts: Implications, conflicts, and reductions. As a result, various new SPG techniques are conceived. By using a new implication concept, a distance function is conceived that provably dominates the well-known bottleneck Steiner distance. As a result, several reduction techniques that are stronger than results from the literature can be designed. We show how to derive conflict information between edges from the above methods. Further, we introduce a new reduction operation whose main purpose is to introduce additional conflicts.
- Section 2.4 introduces a more general version of the powerful so-called extended reduction techniques. We furthermore introduce stronger reduction criteria, and make use of both the previously introduced new distance concept and the conflict information.
- Section 2.5 reviews and introduces several primal SPG heuristics-intended to accelerate exact SPG solution. The new heuristics integrate some of the previously introduced implication and reduction techniques.
- Section 2.6 integrates the previously introduced algorithmic components into an exact branch-and-cut algorithm. We also discuss further components such as
separation methods, decomposition, domain propagation, or branching. Furthermore, we introduce an exact dynamic programming algorithm (based heavily on reduction methods), which is employed for solving decomposed subproblems.
- Section 2.7 provides computational results. Besides showing the impact of individual algorithmic components, we provide comparisons with the state of the art on a large collection of well-established benchmark sets from the literature.

The resulting exact SPG solver consistently outperforms the current state-of-theart solver from Polzin (2003); Vahdati Daneshmand (2004) -both with respect to the run time and the number of solved instances. Furthermore, we can solve several SPG benchmark instances for the first time to optimality.

### 2.2 Integer programming formulations

Many (mixed) integer programming formulations for the SPG have been described in the literature, see e.g. Goemans and Myung (1993); Magnanti and Wolsey (1995); Polzin and Daneshmand (2001a) for overviews. This section gives new theoretical results for some well-known IP formulations for SPG, which are also used in state-of-the-art SPG solvers. Indeed, also the SPG solver developed as part of this thesis is based on one of the IP formulations discussed in the following.

We are mainly concerned with the strength of the respective LP-relaxation, which is of crucial importance for the practical success of an IP or MIP formulation - not only for SPG, but also for many other optimization problems, such as the TSP (Applegate et al., 2006). The strength of LP-relaxations for SPG has thus been widely discussed in the literature. Furthermore, LP-relaxations play a crucial role in the best-known SPG approximation algorithm, see Byrka et al. (2013). In this section, we assume that the edge costs $c$ are real-valued and positive. The reader is reminded of the definitions and concepts introduced in Chapter 1.

### 2.2.1 Cut and flow formulations

A natural way to formulate the SPG as an integer program is by associating with each edge $e \in E$ a binary variable $x(e)$, indicating whether $e$ is contained in the Steiner tree $(x(e)=1)$ or not $(x(e)=0)$. This conception paves the way for a cut-based formulation introduced in Aneja (1980):

Formulation 2.1. Undirected Cut Formulation (UCut)

$$
\begin{array}{rll}
\min c^{T} x & & \\
x(\delta(W)) & \geqslant 1 & \text { for all } W \subset V, 0<|W \cap T|<|T|, \\
x(e) & \in\{0,1\} &  \tag{2.3}\\
\text { for all } e \in E .
\end{array}
$$

One verifies that the constraints (2.2) ensure the existence of paths from each terminal to all other ones in a feasible solution. In this way, it can be readily demonstrated that UCut is correct. We note that a feasible but not optimal solution to

UCut is not necessarily the incidence vector of a Steiner tree. Indeed, the convex hull of all $x \in \mathbb{N}_{0}^{E}$ that satisfy (2.2) is of blocking type, i.e. its recession cone equals $\mathbb{R}_{\geqslant 0}^{E}$.

It is well-known that any SPG can be transformed to an SAP by replacing each edge by two anti-parallel arcs of the same cost, and distinguishing an arbitrary terminal as the root. This procedure results in a one-to-one correspondence between the respective solution sets. The SPG IP formulation that consists of Formulation 1.1 applied to this SAP is called bidirected cut formulation ( $B D C u t$ ). This formulation is widely known, and often used in Steiner tree solvers, see e.g. Fischetti et al. (2017); Polzin and Daneshmand (2001b).

The relation between the directed and undirected formulation has been widely discussed in the literature, see e.g. Chopra and Rao (1994); Magnanti and Wolsey (1995). We briefly state the most important results here:

$$
-v_{L P}(U C u t) \leqslant v_{L P}(B D C u t), \text { and } \sup \left\{\frac{v_{L P}(B D C u t)}{v_{L P}(U C u t)}\right\}=2 \text { (Duin, 1993). }
$$

- The value $v_{L P}(B D C u t)$ is independent of the choice of the root in the transformed SAP, as shown by Goemans and Myung (1993). See also Corollary 4.28 for a shorter proof.

The undirected formulation can be tightened by the Steiner partition inequalities introduced in Grötschel and Monma (1990) and the odd hole inequalities by Chopra and Rao (1994), but still BDCut remains strictly stronger than $U C u t$. However, by adding auxiliary variables, the undirected cut formulation can be made as tight as the bidirected one (Goemans and Myung, 1993). Still, the latter is computationally more attractive, as violated inequalities can be quickly separated by using maximum-flow algorithms; see Section 6.2.4 for more details. Additionally, BDCut can readily be tightened by adding additional constrains, as we will see below.

Another well-known formulation, see e.g. Wong (1984), is based on flows.
Formulation 2.2. Directed Multicommodity Flow Formulation (DF)

$$
\left.\begin{array}{rlr}
\min c^{T} y & \\
\text { s.t. } f^{t}\left(\delta^{-}(v)\right)-f^{t}\left(\delta^{+}(v)\right) & = \begin{cases}1 & \text { if } v=t ; \\
0 & \text { if } v \in V \backslash\{r, t\}\end{cases} & \text { for all } v \in V, t \in T \backslash\{r\},
\end{array}\right\} \begin{array}{ll}
f^{t} & \leqslant y \\
f^{t} & \geqslant 0 \\
y & \in\{0,1\}^{A} .
\end{array}
$$

By using the max-flow/min-cut theorem, one shows that $D F$ is an extended formulation of $D C u t$, i.e., $\operatorname{proj}_{y}\left(\mathcal{P}_{L P}(D F)\right)=\mathcal{P}_{L P}(D C u t)$, see e.g. Duin (1993). Both formulations can be strengthened by the so-called flow-balance constraints from Duin (1993); Koch and Martin (1998):

$$
\begin{equation*}
y\left(\delta^{-}(v)\right) \leqslant y\left(\delta^{+}(v)\right) \quad \text { for all } v \in V \backslash T \tag{2.9}
\end{equation*}
$$

We will refer to the extensions of the above formulations that additionally include (2.9) as $D C u t_{F B}$ and $D F_{F B}$, respectively. The flow-balance constraints are commonly used in SPG solvers, e.g. Koch and Martin (1998); Polzin and Daneshmand (2002), and have moreover been applied to several related problem, see e.g. Ljubic et al. (2006); Leitner et al. (2018b).

Although the flow-balance constraints are widely used, the only theoretical results for SPG or SAP in the literature that the author is aware of are given by Duin (1993) and Polzin and Daneshmand (2001a), who provide examples where $v_{L P}\left(D C u t_{F B}\right)>$ $v_{L P}(D C u t)$. For the two-stage stochastic SPG, Leitner et al. (2018b) give a corresponding result. Next, we give a stronger (new) result, which will be used several times in this thesis.

Lemma 2.3. If $|T| \leqslant 3$, then $v_{L P}\left(D C u t_{F B}\right)=v\left(D C u t_{F B}\right)$.

Proof. For the case of $|T|=1$ and $|T|=2$ the lemma holds already without the flowbalance constraints. So let ( $V, A, T, c, r$ ) be an SAP with two terminals $t, u$ besides the root $r$. We additionally require that a feasible solution does not have any leaves apart from $r, t, u$. For this so-called two-terminal Steiner tree problem a complete polyhedral description is given by Ball et al. (1989):

$$
\begin{align*}
& f\left(\delta^{-}(v)\right)-f\left(\delta^{+}(v)\right) \geqslant\left\{\begin{array}{ll}
-1 & \text { if } v=r ; \\
0 & \text { otherwise; }
\end{array} \text { for all } v \in V,(2.10)\right. \\
&\left(f+f^{t}\right)\left(\delta^{-}(v)\right)-\left(f+f^{t}\right)\left(\delta^{+}(v)\right)=\left\{\begin{array}{ll}
1 & \text { if } v=t ; \\
-1 & \text { if } v=r ; \\
0 & \text { otherwise; }
\end{array} \text { for all } v \in V,(2.11)\right. \\
&\left(f+f^{u}\right)\left(\delta^{-}(v)\right)-\left(f+f^{u}\right)\left(\delta^{+}(v)\right)=\left\{\begin{array}{ll}
1 & \text { if } v=u ; \\
-1 & \text { if } v=r ; \\
0 & \text { otherwise; }
\end{array} \text { for all } v \in V,(2.12)\right. \\
& f+f^{t}+f^{u} \leqslant y,  \tag{2.13}\\
& y, f, f^{t}, f^{u} \in \mathbb{R}_{\geqslant 0}^{A} . \tag{2.14}
\end{align*}
$$

The above description is based on the following observation: Any feasible arborescence for the two-terminal Steiner tree problem consists of a path from $r$ to a splitter node $v$, as well as a $v-t$ and a $v-u$ path. Note that any of these paths can be a single node.

Let $\left(f^{t}, f^{u}, y\right)$ be an optimal LP solution to $D F_{F B}$. Assume that this solution is minimal, i.e. for any feasible solution $\left(\tilde{f}^{t}, \tilde{f}^{u}, \tilde{y}\right) \leqslant\left(f^{t}, f^{u}, y\right)$ it holds that $\left(\tilde{f}^{t}, \tilde{f}^{u}, \tilde{y}\right)=$ $\left(f^{t}, f^{u}, y\right)$. We will show that there exist $\hat{f}, \hat{f}^{t}, \hat{f}^{u} \in \mathbb{R}^{A}$ such that $\left(\hat{f}, \hat{f}^{t}, \hat{f}^{u}, y\right)$ is contained in the polyhedron described above. Define for all $a \in A$ :

$$
\begin{align*}
\hat{f}(a) & :=\min \left\{f^{t}(a), f^{u}(a)\right\},  \tag{2.15}\\
\hat{f}^{t}(a) & :=\max \left\{f^{t}(a)-f^{u}(a), 0\right\},  \tag{2.16}\\
\hat{f}^{u}(a) & :=\max \left\{f^{u}(a)-f^{t}(a), 0\right\} . \tag{2.17}
\end{align*}
$$

First, we show (2.10). Let $v \in V$. Because of the assumed minimality of $\left(f^{t}, f^{u}, y\right)$ we obtain:

$$
\begin{align*}
\hat{f}\left(\delta^{-}(v)\right)-\hat{f}\left(\delta^{+}(v)\right) & =\left(f^{t}+f^{u}-y\right)\left(\delta^{-}(v)\right)-\left(f^{t}+f^{u}-y\right)\left(\delta^{+}(v)\right)  \tag{2.18}\\
& =\left(f^{t}+f^{u}\right)\left(\delta^{-}(v)\right)-\left(f^{t}+f^{u}\right)\left(\delta^{+}(v)\right)+y\left(\delta^{+}(v)\right)-y\left(\delta^{-}(v)\right) \tag{2.19}
\end{align*}
$$

If $v=r$, then

$$
\begin{equation*}
\left(f^{t}+f^{u}\right)\left(\delta^{-}(v)\right)-\left(f^{t}+f^{u}\right)\left(\delta^{+}(v)\right)=-2 \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
y\left(\delta^{+}(v)\right)-y\left(\delta^{-}(v)\right) \geqslant 1 \tag{2.21}
\end{equation*}
$$

thus (2.19) implies that (2.10) holds. If $v \in\{t, u\}$, then

$$
\begin{equation*}
\left(f^{t}+f^{u}\right)\left(\delta^{-}(v)\right)-\left(f^{t}+f^{u}\right)\left(\delta^{+}(v)\right)=1 \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
y\left(\delta^{+}(v)\right)-y\left(\delta^{-}(v)\right) \geqslant-1 \tag{2.23}
\end{equation*}
$$

Finally, if $v \in V \backslash\{r, t, u\}$, the flow-balance constraints imply that (2.19) is nonnegative.

Next, consider (2.11) -and equivalently (2.12). By definition it holds that

$$
\begin{equation*}
\left(\hat{f}+\hat{f}^{t}\right)\left(\delta^{-}(v)\right)-\left(\hat{f}+\hat{f}^{t}\right)\left(\delta^{+}(v)\right)=f^{t}\left(\delta^{-}(v)\right)-f^{t}\left(\delta^{+}(v)\right) \tag{2.24}
\end{equation*}
$$

which implies (2.11). Likewise, (2.13) follows from the definition of $\hat{f}, \hat{f}^{t}$, and $\hat{f}^{u}$.
Note that the lemma is best possible in the sense that there exist SAP instances with $|T|=4$ such that $v_{L P}\left(D C u t_{F B}\right) \neq v\left(D C u t_{F B}\right)$, see e.g. Liu (1990); Polzin and Daneshmand (2001a).

We close with a new result for SPG, which is a direct consequence of Lemma 2.3.
Theorem 2.4. If $|T| \leqslant 3$, then $v_{L P}\left(B D C u t_{F B}\right)=v\left(B D C u t_{F B}\right)$.
As for the previous lemma, one can readily show that the theorem is best possible, see e.g. Polzin and Daneshmand (2001a) for an SPG instance with $|T|=4$ such that $v_{L P}\left(B D C u t_{F B}\right) \neq v\left(B D C u t_{F B}\right)$.

### 2.2.2 Formulations for unweighted Steiner tree problems

Given an undirected connected graph $G=(V, E)$ and a set $T \subseteq V$ of terminals, the unweighted Steiner tree problem in graphs (USPG) is to find a tree $S \subseteq G$ with $T \subseteq V(S)$ such that $|E(S)|$ is minimized. The USPG can also be seen as a Steiner tree problem with uniform edge weights. Many of the hardest Steiner tree benchmark instances are unweighted, see Koch et al. (2001) for an overview. Moreover, many theoretical articles consider just the unweighted case, see e.g. Nederlof (2013) for complexity results.

This section analyzes and compares two formulations for the USPG. First, we analyze the $B D C u t$ formulation in the context of USPG. Second, we analyze the node-separator formulation from Fischetti et al. (2017), which can only be applied to problems without (or with uniform) edges weights.

Initially, we introduce the node-based USPG formulation by Fischetti et al. (2017). This formulation associates with each node $v \in V$ a binary variable $x(v)$, which indicates whether $v$ is contained in a Steiner tree $(x(v)=1)$ or not $(x(v)=0)$. Connectivity is modeled by using node-separators (see Section 1.1.2).

Formulation 2.5. Terminal Node Separator Formulation (TNCut)

$$
\begin{array}{rlrl}
\min & x(V)-1 & & \\
& \text { s.t. } x(C) & \geqslant 1 & \\
x(v) & =1 & & \text { for all } t, u \in T, t \neq u, C \in \mathcal{C}(t, u), \\
x(v) & \in\{0,1\} & & \text { for all } v \in T,  \tag{2.28}\\
& \text { for } v \in V .
\end{array}
$$

Note that in Fischetti et al. (2017) a more general version of TNCut for the prize-collecting USPG is used. However, the prize-collecting USPG is essentially a maximum-weight connected subgraph problem, see Chapter 3. The results of this section can be partly extended to this more general variant (which is done in Section 3.2.2 for the non-rooted case), but for simplicity, we now consider the USPG only.

## Exactness of the bidirected cut formulation

This section formulates conditions under which the bidirected cut formulation has no integrality gap. A simple reduction technique for USPG is to contract adjacent terminals (and delete one edge from each resulting pair of multi-edges). The following proposition shows that the absolute integrality gap of $B D C u t$ is invariant under this operation.

Proposition 2.6. Let $I$ be an USPG instance with adjacent terminals $t, u$. Let $I^{\prime}$ be the USPG obtained from contracting $t$ and $u$. It holds that:

$$
\begin{equation*}
v_{L P}(B D C u t(I))=v_{L P}\left(B D C u t\left(I^{\prime}\right)\right)+1 \tag{2.29}
\end{equation*}
$$

Proof. Throughout the proof we assume that $u$ is the root for the $B D C u t$ formulation, i.e. $r=u$. It is well-known that the choice of the root does not affect $v_{L P}(B D C u t)$ (this result also follows from the proof of Theorem 2.7). Furthermore, let $D^{\prime}=\left(V^{\prime}, A^{\prime}\right)$ be the bidirected graph obtained by contracting $r$ and $t$ and let $r^{\prime}$ be the new vertex. I.e., $V^{\prime}=(V \backslash\{r, t\}) \cup\left\{r^{\prime}\right\}$.

First, we show that $v_{L P}(B D C u t(I)) \geqslant v_{L P}\left(B D C u t\left(I^{\prime}\right)\right)+1$. Let $y$ be an optimal LP solution to $B D C u t(I)$. The optimality of $y$ implies that $y\left(\delta^{-}(t)\right)=1$, see Polzin and Daneshmand (2001a). Create a new optimal solution $\tilde{y}$ as follows. Set $\tilde{y}(a):=y(a)$ for all $a \in A \backslash \delta^{-}(t), \tilde{y}(a):=0$ for all $a \in \delta^{-}(t) \backslash\{(r, t)\}$, and $\tilde{y}((r, t)):=1$. Note
that for any cut $\delta^{-}(U)$ with $U \subset V \backslash\{r\}$ such that $\delta^{-}(U) \cap \delta^{-}(t) \neq \emptyset$ it holds that $(r, t) \in \delta^{-}(U)$. Thus, $\tilde{y}\left(\delta^{-}(U)\right) \geqslant 1$. Consequently, $\tilde{y}$ satisfies (1.3). Define an LP solution $y^{\prime}$ to $B D C u t\left(I^{\prime}\right)$ as follows: $y^{\prime}(a):=\tilde{y}(a)$ for all $a \in A^{\prime} \cap A$, and $y^{\prime}(a):=0$ for all $a \in \delta_{D^{\prime}}^{-}\left(r^{\prime}\right)$. For any $a=\left(r^{\prime}, v\right) \in \delta_{D^{\prime}}^{+}\left(r^{\prime}\right)$ proceed as follows. If $(r, v),(t, v) \in A$, set $y^{\prime}(a):=\tilde{y}((r, v))+\tilde{y}((t, v))$; if $(t, v) \notin A$, set $y^{\prime}(a):=\tilde{y}((r, v))$; otherwise, set $y^{\prime}(a):=\tilde{y}((t, v))$. Because of $y\left(\delta^{-}(v)\right) \leqslant 1$, we have in any case that $y^{\prime}(a) \leqslant 1$.

It remains to show that $v_{L P}(B D C u t(I)) \leqslant v_{L P}\left(B D C u t\left(I^{\prime}\right)\right)+1$. Given an optimal LP solution $y^{\prime}$ to $B D C u t\left(I^{\prime}\right)$ we define a corresponding LP solution $y$ to $B D C u t(I)$. First, $y((r, t)):=1, y((t, r)):=0$. Second, $y(a):=y^{\prime}(a)$ for all $a \in A^{\prime} \cap A$, and $y(a):=0$ for all $a \in \delta^{-}(\{r, t\})$. Next, consider the remaining edges $\delta^{+}(\{r, t\})$. If $(r, v),(t, v) \in A$ set $y((r, v)):=y^{\prime}\left(r^{\prime}, v\right), y((t, v)):=0$; otherwise, for $a=(r, v)$ or $a=(t, v)$ set $y(a)=y^{\prime}\left(\left(r^{\prime}, v\right)\right)$.

With this result at hand, we obtain the following theorem (recall that $\alpha(G)$ denotes the independence number of graph $G$ ).

Theorem 2.7. Consider an USPG on a graph $G$. If $\alpha(G) \leqslant 3$, then $v_{L P}(B D C u t)=$ $v(B D C u t)$.

Proof. Consider a USPG instance $I=(G, T, c)$ with $\alpha(G) \leqslant 3$. Let $I^{\prime}=\left(G^{\prime}, T^{\prime}, c^{\prime}\right)$ be the USPG obtained by (repeatedly) contracting all adjacent terminals. Let $D^{\prime}=$ ( $V^{\prime}, A^{\prime}$ ) be the bidirected equivalent of $G^{\prime}$. Proposition 2.6 implies the following: $v_{L P}(B D C u t(I))=v(B D C u t(I))$ if and only if $v_{L P}\left(B D C u t\left(I^{\prime}\right)\right)=v\left(B D C u t\left(I^{\prime}\right)\right)$. Furthermore, because of $\alpha(G) \leqslant 3$ it holds that $\left|T^{\prime}\right| \leqslant 3$. For $\left|T^{\prime}\right|<3$, the BDCut formulation is well-known to have no integrality gap. So assume $\left|T^{\prime}\right|=3$. By construction of $I^{\prime}$, the terminals form an independent set. Further, let $y$ be an optimal LP solution to $B D C u t\left(I^{\prime}\right)$ with an arbitrary $r \in T^{\prime}$ being the root.

Suppose that $v_{L P}\left(B D C u t\left(I^{\prime}\right)\right) \neq v\left(B D C u t\left(I^{\prime}\right)\right)$. By Lemma 2.3, there is a $v \in$ $V^{\prime} \backslash T^{\prime}$ such that

$$
\begin{equation*}
y\left(\delta^{+}(v)\right)<y\left(\delta^{-}(v)\right) \tag{2.30}
\end{equation*}
$$

Because of $\alpha(G) \leqslant 3$, at least one of the terminals needs to be adjacent to $v$. We may assume that this property holds for $r$. Otherwise, we can readily create another optimal LP solution $\tilde{y}$ that satisfies (2.30) and has a root adjacent to $v$ : Assume that a $t \in T \backslash\{r\}$ is adjacent to $v$ and let $f^{t}$ be a unit flow from $r$ to $t$ such that $f^{t} \leqslant y$; define $\tilde{y}((q, u)):=y((q, u))-f^{t}((q, u))+f^{t}((u, q))$ for all $(u, q) \in A^{\prime}$.

Define a new LP solution $y^{\prime}$ from $y$ as follows. For $a_{0}:=(r, v)$ set $y^{\prime}\left(a_{0}\right):=$ $y\left(\delta^{+}(v)\right)$. For any $a \in \delta^{-}(v) \backslash\left\{a_{0}\right\}$ set $y^{\prime}(a):=0$. For all (remaining) $a \in A^{\prime} \backslash \delta^{-}(v)$ set $y^{\prime}(a):=y(a)$. Note that because of $(2.30)$ it holds that $y^{\prime}\left(A^{\prime}\right)<y\left(A^{\prime}\right)$. It remains to be shown that $y^{\prime}$ is feasible. Suppose that there is a $U \subseteq V^{\prime} \backslash\{r\}$ with $U \cap T^{\prime} \neq \emptyset$ and $y^{\prime}\left(\delta^{-}(U)\right)<1$. Because $y$ is feasible, it has to hold that $v \in U$. Let $\tilde{U}:=U \backslash\{v\}$.

By the construction of $y^{\prime}$ it holds that

$$
\begin{aligned}
y\left(\delta^{-}(\tilde{U})\right) & =y^{\prime}\left(\delta^{-}(\tilde{U})\right) \\
& =y^{\prime}\left(\delta^{-}(\tilde{U})\right)+y^{\prime}((r, v))-y^{\prime}\left(\delta^{+}(v)\right) \\
& \leqslant y^{\prime}\left(\delta^{-}(U)\right) \\
& <1
\end{aligned}
$$

which contradicts the feasibility of $y$. Consequently, we have shown that

$$
v_{L P}\left(B D C u t\left(I^{\prime}\right)\right)=v\left(B D C u t\left(I^{\prime}\right)\right)
$$

and, thus, $v_{L P}(B D C u t(I))=v(B D C u t(I))$.
The theorem is best possible; i.e., there exist USPG instances such that $\alpha(G)=4$ and $v_{L P}(B D C u t) \neq v(B D C u t)$, see e.g. Duin (1993); Filipecki and Van Vyve (2020).

## Comparison of edge and node based formulation

Formulation 2.5 (TNCut) was used within a branch-and-cut algorithm by the most successful solver (Fischetti et al., 2017) at the 11th DIMACS Challenge (DIMACS, 2015). Furthermore, this solver was able to solve several USPG benchmark instances that had been unsolved for more than a decade to optimality. Thus, one might wonder how this formulation theoretically compares with the better-known bidirected cut formulation. As the next proposition shows, BDCut is always stronger than TNCut and the relative gap can be rather large.

Proposition 2.8. It holds that $v_{L P}(T N C u t) \leqslant v_{L P}(B D C u t)$. Furthermore,

$$
\begin{equation*}
\sup \left\{\frac{v_{L P}(B D C u t)}{v_{L P}(T N C u t)}\right\} \geqslant 2 \tag{2.31}
\end{equation*}
$$

where the supremum is taken over all USPG instances.
Proof. For the first inequality consider an optimal LP solution $y$ to $B D C u t$. Define $x \in \mathbb{R}^{V}$ by $x(v):=y\left(\delta^{-}(v)\right)$ for all $v \in V \backslash\{r\}$ and $x(r):=1$. The optimality of $y$ implies $x(v) \leqslant 1$ for all $v$, see Polzin and Daneshmand (2001a). Let $t, u \in T$ with $t \neq u$ and $C_{t u} \in \mathcal{C}(t, u)$. We will show that $C_{t u}$ satisfies (2.26). If $C_{t u} \cap T \neq \emptyset$, then $x\left(C_{t u}\right) \geqslant 1$, because $x(q) \geqslant 1$ for all $q \in T$ due to (1.3) and the definition of $x$. Thus, (2.26) holds. If $C_{t u} \cap T=\emptyset$, let $U_{r}$ be the connected component in the graph induced by $V \backslash C_{t u}$ with $r \in U_{r}$. By definition of $C_{t u}$, either $t \notin U_{r}$ or $u \notin U_{r}$. Therefore, $y\left(\delta^{+}\left(U_{r}\right)\right) \geqslant 1$, which implies $y\left(\delta^{-}\left(C_{t u}\right)\right) \geqslant 1$ because of $\delta^{+}\left(U_{r}\right) \subset \delta^{-}\left(C_{t u}\right)$. Now we obtain from the definition of $x$ that

$$
x\left(C_{t u}\right) \geqslant y\left(\delta^{-}\left(C_{t u}\right)\right) \geqslant 1
$$

Finally, by construction of $x$ we have that

$$
x(V)-1=\sum_{v \in V} y\left(\delta^{-}(v)\right)=y(A)
$$

note that $y\left(\delta^{-}(r)\right)=0$ because $y$ is optimal.
For (2.31) we construct the following family of USPG instances. For any $k \geqslant 3$ let $I_{k}$ be the USPG instance with with $k+k^{2}$ nodes, $k+k^{2}$ edges, and $k$ terminals defined as follows. Let $t_{i}$ for $i=1, \ldots k$ be the terminals and define for each $i \in\{1, \ldots, k\}$ Steiner nodes $v_{i, j}, j=1, \ldots k$. For each $i \in\{1, \ldots, k\}$ define edges $\left\{t_{i}, v_{i, 1}\right\},\left\{t_{(i+1)} \bmod k, v_{i, k}\right\}$, and $\left\{v_{i, j}, v_{i, j+1}\right\}$ for $j=1, \ldots, k-1$. Instance $I_{3}$ is shown in Figure 2.2. A feasible (and indeed optimal) LP solution $x$ to $\operatorname{TNCut}\left(I_{k}\right)$ is given by $x(t):=1$ for all terminals $t$ and $x(v):=0.5$ for any Steiner node $v$. Its objective is $\frac{k^{2}}{2}+k-1$. On the other hand, $v_{L P}\left(B D C u t\left(I_{k}\right)\right)=k+k(k-1)=k^{2}$. Thus,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{v_{L P}\left(\operatorname{DCut}\left(I_{k}\right)\right)}{v_{L P}\left(T N C u t\left(I_{k}\right)\right)}=\lim _{k \rightarrow \infty} \frac{k^{2}}{\frac{k^{2}}{2}+k-1}=2 \tag{2.32}
\end{equation*}
$$

which concludes the proof.

Corollary 2.9. The (relative) integrality gap of TNCut is at least 2.
Note that one can strengthen TNCut by constraints that correspond to the flowbalance constraints for BDCut, see Fischetti et al. (2017). However, if compared to $B D C u t_{F B}$, the results of Proposition 2.8 remain the same for this stronger version of TNCut. As to the practical performance of TNCut, we note that the SPG solver developed in this thesis, which is based on $B D C u t_{F B}$, also solves more of the aforementioned notoriously hard, unweighted benchmark instances than the solver of Fischetti et al. (2017) (which uses TNCut). See Section 2.7 for the computational results.


Figure 2.2: USPG instance $I_{3}$. Terminals are drawn as squares.

### 2.3 Implications, conflicts, and reductions

Informally, reduction methods transform a given instance to another, reduced, one, such that any optimal solution to the reduced instance can be re-transformed to an optimal solution to the original instance. In Section 2.3.4 we give a more formal definition. Reduction techniques have been a key ingredient in exact SPG solvers, see e.g. Duin (1993); Koch and Martin (1998); Uchoa et al. (2002); Polzin and Daneshmand (2001b). However, reduction techniques are also useful to improve the performance of heuristics, or even approximation algorithms (Beyer and Chimani, 2015).

This section reviews key results from the literature and introduces several new techniques that are (provably) stronger than previously known methods. A vital ingredient in several of the new techniques is the integration of new implication and conflict concepts. Later on we will see that these concepts are also useful beyond reduction methods.

### 2.3.1 Bottleneck distances and implications

Among the various SPG reduction techniques from the literature, the bottleneck Steiner distance introduced in Duin and Volgenant (1989a) is arguably the most important one, being the backbone of several powerful reduction methods. This section introduces a provably stronger distance concept, and discusses several applications for improved reduction methods.

## The bottleneck Steiner distance

Let $P$ be a simple path with at least one edge. The bottleneck length (Duin and Volgenant, 1989a) of $P$ is

$$
\begin{equation*}
b l(P):=\max _{e \in E(P)} c(e) \tag{2.33}
\end{equation*}
$$

Let $v, w \in V$. Let $\mathcal{P}(v, w)$ be the set of all simple paths between $v$ and $w$. The bottleneck distance (Duin and Volgenant, 1989a) between $v$ and $w$ is defined as

$$
\begin{equation*}
b(v, w):=\inf \{b l(P) \mid P \in \mathcal{P}(v, w)\} \tag{2.34}
\end{equation*}
$$

with the common convention that $\inf \emptyset=\infty$. Note that $b(v, w)$ is equal to the bottleneck length of the path between $v$ and $w$ on any minimum spanning tree of ( $G, c$ ), as observed in Dreyfus and Wagner (1971).

Now consider the distance graph $D:=D_{G}(T \cup\{v, w\})$. Let $b_{D}$ be the bottleneck distance in $D$. Define the bottleneck Steiner distance or special distance (Duin and Volgenant, 1989a) between $v$ and $w$ as

$$
\begin{equation*}
s(v, w):=b_{D}(v, w) \tag{2.35}
\end{equation*}
$$

One also finds alternative, path-based definitions of the bottleneck Steiner distance in the literature, but these are weaker than the above definition. The bottleneck Steiner distance is arguably the most important reduction concept for SPG, with various applications. The arguably best-known one is the following criterion, which allows for edge deletion (Duin and Volgenant, 1989a).

Theorem 2.10. Let $e=\{v, w\} \in E$. If $s(v, w)<c(e)$, then no minimum Steiner tree contains e.

Note the beautiful analogy between bottleneck distance applied to MST, and bottleneck Steiner distance applied to SPG: Any edge $e=\{v, w\}$ that satisfies $b(v, w)<c(e)$ cannot be part of an MST. Otherwise, $e$ could be replaced by an edge of cost at most $b(v, w)$ to obtain a spanning tree of smaller cost. Any edge $e=\{v, w\}$
that satisfies $s(v, w)<c(e)$ cannot be part of a minimum Steiner tree. Otherwise, $e$ could be replaced by a path in $G$ corresponding to an edge in $D=D_{G}(T \cup\{v, w\})$ with cost at most $b_{D}(v, w)$. In this case, one would obtain a Steiner tree of smaller cost. We also point out that bottleneck Steiner distances can be computed in polynomial time, but in practice (heuristic) approximations are used. See Polzin and Daneshmand (2001b) for a state-of-the-art algorithm.

## A stronger bottleneck concept

In the following, we describe a generalization of the bottleneck Steiner distance. Initially, for an edge $e=\{v, w\}$ define the restricted bottleneck distance $\bar{b}(e)$ (Polzin and Daneshmand, 2001b) as the bottleneck distance between $v$ and $w$ on $(V, E \backslash\{e\}, c)$.

The basis of the new bottleneck Steiner concept is formed by a node-weight function that we introduce in the following. For any $v \in V \backslash T$ and $F \subseteq \delta(v)$ define

$$
\begin{equation*}
p^{+}(v, F):=\max \{0, \sup \{\bar{b}(e)-c(e) \mid e \in F, e \cap T \neq \emptyset\}\} . \tag{2.36}
\end{equation*}
$$

We call $p^{+}(v, F)$ the $F$-implied profit of $v$. The following observation motivates the subsequent usage of the implied profit. Assume that $p^{+}(v,\{e\})>0$ for an edge $e \in \delta(v)$. If a Steiner tree $S$ contains $v$, but not $e$, then there is a Steiner tree $S^{\prime}$ with $e \in E\left(S^{\prime}\right)$ such that $c\left(E\left(S^{\prime}\right)\right)+p^{+}(v,\{e\}) \leqslant c(E(S))$.

Let $v, w \in V$. Consider a finite walk $W=\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, e_{r-1}, v_{r}\right)$ with $v_{1}=v$ and $v_{r}=w$. We say that $W$ is a $(v, w)$-walk. For any $k, l \in \mathbb{N}$ with $1 \leqslant k \leqslant l \leqslant r$ define the subwalk $W(k, l):=\left(v_{k}, e_{k}, v_{k+1}, e_{k+1}, \ldots, e_{l-1}, v_{l}\right)$. $W$ will be called Steiner walk if $V(W) \cap T \subseteq\{v, w\}$ and $v, w$ are contained exactly once in $W$ (the latter condition could be omitted, but has been added for ease of presentation). The set of all Steiner walks from $v$ to $w$ will be denoted by $\mathcal{W}_{T}(v, w)$. With a slight abuse of notation we define $\delta_{W}(u):=\delta(u) \cap E(W)$ for any walk $W$ and any $u \in V$. Define the implied Steiner cost of a Steiner walk $W \in \mathcal{W}_{T}(v, w)$ as

$$
\begin{equation*}
c_{p}^{+}(W):=\sum_{e \in E(W)} c(e)-\sum_{u \in V(W) \backslash\{v, w\}} p^{+}\left(u, \delta(u) \backslash \delta_{W}(u)\right) . \tag{2.37}
\end{equation*}
$$

Further, set

$$
\begin{equation*}
P_{W}^{+}:=\left\{u \in V(W) \mid p^{+}\left(u, \delta(u) \backslash \delta_{W}(u)\right)>0\right\} \cup\{v, w\} . \tag{2.38}
\end{equation*}
$$

Define the implied Steiner length of $W$ as

$$
\begin{equation*}
l_{p}^{+}(W):=\max \left\{c_{p}^{+}\left(W\left(v_{k}, v_{l}\right)\right) \mid 1 \leqslant k \leqslant l \leqslant r, v_{k}, v_{l} \in P_{W}^{+}\right\} \tag{2.39}
\end{equation*}
$$

Define the implied Steiner distance between $v$ and $w$ as

$$
\begin{equation*}
d_{p}^{+}(v, w):=\min \left\{l_{p}^{+}(W) \mid W \in \mathcal{W}_{T}(v, w)\right\} \tag{2.40}
\end{equation*}
$$

Note that $d_{p}^{+}(v, w)=d_{p}^{+}(w, v)$. At last, consider the distance graph $D^{+}:=D_{G}(T \cup$ $\left.\{v, w\}, d_{p}^{+}\right)$. Let $b_{D^{+}}$be the bottleneck distance in $D^{+}$. Define the implied bottleneck Steiner distance between $v$ and $w$ as

$$
\begin{equation*}
s_{p}(v, w):=b_{D^{+}}(v, w) . \tag{2.41}
\end{equation*}
$$

Note that $s_{p}(v, w) \leqslant s(v, w)$ and that the inequality can be strict. Indeed, $\frac{s(v, w)}{s_{p}(v, w)}$ can become arbitrarily large. Thus, the following result provides a strictly stronger reduction criterion than Theorem 2.10.

Theorem 2.11. Let $e=\{v, w\} \in E$. If $s_{p}(v, w)<c(e)$, then no minimum Steiner tree contains $e$.

Proof. Assume $s_{p}(v, w)<c(e)$ and let $S$ be a Steiner tree with $e \in E(S)$. We will show the existence of a Steiner tree $S^{\prime}$ with $e \notin E\left(S^{\prime}\right)$ such that $c\left(E\left(S^{\prime}\right)\right) \leqslant c(E(S))$, which concludes the proof. First, remove $e$ from $S$ to obtain a new subgraph $\tilde{S}$, which consists of exactly two connected components. Assume that each connected component contains at least one terminal (otherwise the proof is already finished). Consider a $(v, w)$-path $P$ in $D^{+}$such that $b l_{D^{+}}(P)=b_{D^{+}}(v, w)$. Let $\{t, u\}$ be an edge on $P$ such that $t$ and $u$ are in different connected components of $\tilde{S}$ (where $t$ and $u$ are considered in the original SPG). Let $\tilde{S}^{t}$ and $\tilde{S}^{u}$ be the connected components of $\tilde{S}$ such that $t \in V\left(\tilde{S}^{t}\right)$ and $u \in V\left(\tilde{S}^{u}\right)$. By the definition of the bottleneck length it holds that

$$
\begin{equation*}
d_{p}^{+}(t, u) \leqslant s_{p}(v, w) \tag{2.42}
\end{equation*}
$$

Let $W \in \mathcal{W}_{T}(t, u)$ such that

$$
\begin{equation*}
l_{p}^{+}(W)=d_{p}^{+}(t, u) \tag{2.43}
\end{equation*}
$$

Assume that $W$ is given as $W=\left(v_{1}, e_{1}, \ldots, e_{r-1}, v_{r}\right)$. Define $b:=\min \{k \in$ $\left.\{1, \ldots, r\} \mid v_{k} \in V\left(\tilde{S}^{u}\right)\right\}$ and $a:=\max \left\{k \in\{1, \ldots, b\} \mid v_{k} \in V\left(\tilde{S}^{t}\right)\right\}$. Further, define $x:=\max \left\{k \in\{1, \ldots, a\} \mid v_{k} \in P_{W}^{+}\right\}$and $y:=\min \left\{k \in\{b, \ldots, r\} \mid v_{k} \in P_{W}^{+}\right\}$. By definition, $x \leqslant a<b \leqslant y$ and furthermore:

$$
\begin{equation*}
\sum_{e \in E(W(a, b))} c(e)-\sum_{v \in V(W(a, b)) \backslash\left\{v_{x}, v_{y}\right\}} p^{+}\left(v, \delta(v) \backslash \delta_{W(x, y)}\right) \leqslant c_{p}^{+}(W(x, y)) . \tag{2.44}
\end{equation*}
$$

Reconnect $\tilde{S}^{t}$ and $\tilde{S}^{u}$ by $W(a, b)$, which yields a connected subgraph $S_{0}^{\prime}$ with $T \subseteq V\left(S_{0}^{\prime}\right)$. Assume that $S_{0}^{\prime}$ is a tree (otherwise remove any redundant edges). ${ }^{7}$ It holds that

$$
\begin{equation*}
\sum_{e \in E\left(S_{0}^{\prime}\right)} c(e) \leqslant \sum_{e \in E(S)} c(e)+\sum_{e \in E(W(a, b))} c(e)-c(\{v, w\}) \tag{2.45}
\end{equation*}
$$

Let $v_{1}^{+}, v_{2}^{+}, \ldots, v_{z}^{+}$be the vertices in $P_{W(a, b)}^{+} \backslash\left\{v_{a}, v_{b}\right\}$. Choose for each $i=1, \ldots, z$ an edge $e_{i}^{+} \in \delta\left(v_{i}^{+}\right) \backslash \delta_{W(x, y)}\left(v_{i}^{+}\right)$such that $e_{i}^{+} \cap T \neq \emptyset$ and

$$
\begin{equation*}
\bar{b}\left(e_{i}^{+}\right)-c\left(e_{i}^{+}\right)=p^{+}\left(v_{i}^{+}, \delta\left(v_{i}^{+}\right) \backslash \delta_{W(x, y)}\right) . \tag{2.46}
\end{equation*}
$$

Note that all $e_{i}^{+}$are pairwise disjoint (just as the $v_{i}^{+}$).

[^2]We will construct Steiner trees $S_{i}^{\prime}$ for $i \in\{1, \ldots, z\}$ that satisfy

$$
\begin{equation*}
\sum_{e \in E\left(S_{i}^{\prime}\right)} c(e) \leqslant \sum_{e \in E\left(S_{0}^{\prime}\right)} c(e)-\sum_{k=1}^{i} p^{+}\left(v_{k}^{+}, \delta(v) \backslash \delta_{W(x, y)}\right) \tag{2.47}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\bigcup_{k=i+1}^{z}\left\{e_{k}^{+}\right\} \cap E\left(S_{i}^{\prime}\right)=\emptyset \tag{2.48}
\end{equation*}
$$

and

$$
\begin{equation*}
V\left(S_{i}^{\prime}\right)=V\left(S_{0}^{\prime}\right) \tag{2.49}
\end{equation*}
$$

One readily verifies that $S_{0}^{\prime}$ satisfies (2.47)-(2.49). Let $i \in\{1, \ldots, z\}$ and assume that (2.47)-(2.49) hold for $S_{i-1}^{\prime}$. Thus, $e_{i}^{+} \notin E\left(S_{i-1}^{\prime}\right)$. Let $P_{i}$ be the (unique) path in $S_{i-1}^{\prime}$ between $v_{i}^{+}$and the terminal $t_{i}$ with $\left\{t_{i}\right\}=e_{i}^{+} \cap T$. Choose any $\tilde{e}_{i} \in$ $E\left(P_{i}\right)$ with $c\left(\tilde{e}_{i}\right)=b l\left(P_{i}\right)$. Define the tree $S_{i}^{\prime}$ by $V\left(S_{i}^{\prime}\right):=V\left(S_{i-1}^{\prime}\right)$ and $E\left(S_{i}^{\prime}\right):=$ $\left(E\left(S_{i-1}^{\prime}\right) \backslash\left\{\tilde{e}_{i}\right\}\right) \cup\left\{e_{i}^{+}\right\}$. We claim that $S_{i}^{\prime}$ satisfies (2.47)-(2.49). Equality (2.48) follows from the fact that all $e_{i}^{+}$are disjoint. And (2.49) follows from the construction of $S_{i}^{\prime}$. For (2.47), observe that by definition of the bottleneck distance it holds that $c\left(\tilde{e}_{i}\right) \geqslant \bar{b}\left(e_{i}^{+}\right)$and therefore

$$
\begin{equation*}
\bar{b}\left(e_{i}^{+}\right)-c\left(e_{i}^{+}\right) \leqslant c\left(\tilde{e}_{i}\right)-c\left(e_{i}^{+}\right) \tag{2.50}
\end{equation*}
$$

Thus, equation (2.46) implies that $S_{i}^{\prime}$ satisfies (2.47).
Finally, set $S^{\prime}:=S_{z}^{\prime}$. Because of (2.49) it holds that $T \subseteq V\left(S^{\prime}\right)$. Furthermore, one obtains:

$$
\begin{align*}
\sum_{e \in E\left(S^{\prime}\right)} c(e) & \stackrel{(2.47)}{\leqslant} \sum_{e \in E\left(S_{0}^{\prime}\right)} c(e)-\sum_{k=1}^{z} p^{+}\left(v_{k}^{+}, \delta\left(v_{k}^{+}\right) \backslash \delta_{W(x, y)}\right)  \tag{2.51}\\
& \stackrel{(2.45)}{\leqslant} \sum_{e \in E(S)} c(e)+\sum_{e \in E(W(a, b))} c(e)-c(\{v, w\})-\sum_{k=1}^{z} p^{+}\left(v_{k}^{+}, \delta\left(v_{k}^{+}\right) \backslash \delta_{W(x, y)}\right)  \tag{2.52}\\
& \stackrel{(2.44)}{\leqslant} \sum_{e \in E(S)} c(e)-c(\{v, w\})+c_{p}^{+}(W(x, y))  \tag{2.53}\\
& \stackrel{(2.43)}{\leqslant} \sum_{e \in E(S)} c(e)-c(\{v, w\})+l_{p}^{+}(W)  \tag{2.54}\\
& \stackrel{(2.42)}{\leqslant} \sum_{e \in E(S)} c(e)-c(\{v, w\})+s_{p}(v, w)  \tag{2.55}\\
& \leqslant \sum_{e \in E(S)} c(e) \tag{2.56}
\end{align*}
$$

where the last inequality follows from the initial assumptions.

Furthermore, we define the restricted implied bottleneck Steiner distance $\bar{s}_{p}(v, w)$ between any $v, w \in V$ as the implied bottleneck Steiner distance between $v$ and $w$ in the SPG ( $V, E \backslash\{\{v, w\}\}, c)$. One obtains the following corollary.

Corollary 2.12. Let $e=\{v, w\} \in E$. If $\bar{s}_{p}(v, w) \leqslant c(e)$, then at least one minimum Steiner tree does not contain e.


Figure 2.3: Segment of a Steiner tree instance. Terminals are drawn as squares. The dashed edge can be deleted by employing Theorem 2.11.

Figure 2.3 shows a segment of an SPG instance for which Theorem 2.11 allows for the deletion of an edge, but Theorem 2.10 does not. The implied bottleneck Steiner distance between the endpoints of the dashed edge is 1 -corresponding to a walk along the four non-terminal vertices. The edge can thus be deleted. In contrast, the (standard) bottleneck Steiner distance between the endpoints is 1.5 (corresponding to the edge itself). Unfortunately, already computing the implied Steiner distance is hard, as the following proposition shows.

Proposition 2.13. Computing the implied Steiner distance is $\mathcal{N} \mathcal{P}$-hard.
The proposition can for example be proved by a reduction from the Hamiltonian path problem. See also Section 3.3.2, which shows the $\mathcal{N} \mathcal{P}$-hardness of a related concept for the maximum-weight connected problem. A proof of Proposition 2.13 can be formulated along the same lines, but with more technicalities. Thus, we omit it here.

Despite this $\mathcal{N} \mathcal{P}$-hardness, one can devise heuristics that provide upper bounds on $s_{p}$. These upper bounds are always at least as strong as those used for $s$, and are empirically often stronger. We will discuss one such heuristic in Section 6.2.2.

## Bottleneck Steiner reductions beyond edge deletion

This section discusses applications of the implied bottleneck Steiner distance that allow for additional reduction operations: Edge contraction and node replacement. We
start with the former. For an edge $e$ and vertices $v, w$ define $b_{e}(v, w)$ as the bottleneck distance between $v$ and $w$ on $(V, E \backslash\{e\}, c)$. With this definition at hand, we introduce a generalization of the classic $N S V$ reduction test from Duin and Volgenant (1989b).

Proposition 2.14. Let $\{v, w\} \in E$ and $t_{i}, t_{j} \in T, t_{i} \neq t_{j}$. If

$$
\begin{equation*}
s_{p}\left(v, t_{i}\right)+c(\{v, w\})+s_{p}\left(w, t_{j}\right) \leqslant b_{\{v, w\}}\left(t_{i}, t_{j}\right), \tag{2.57}
\end{equation*}
$$

then there is a minimum Steiner tree $S$ with $\{v, w\} \in E(S)$.
Proof sketch. Unfortunately, the use of the implied bottleneck Steiner distance makes the proof of the proposition far more difficult than that of the original result from Duin and Volgenant (1989b). To avoid an abundance of technicalities, we therefore only provide a proof sketch.

Assume there is an optimal solution $S$ such that $\{v, w\} \notin E(S)$. Remove from $E(S)$ an edge on the (unique) path between $t_{i}$ and $t_{j}$ in $S$ of maximum cost. This operation results in two disjoint trees: $S_{i}$ with $t_{i} \in S_{i}$ and $S_{j}$ with $t_{j} \in S_{j}$. By definition of $b_{\{v, w\}}\left(t_{i}, t_{j}\right)$ it holds that

$$
\begin{equation*}
c\left(E\left(S_{i}\right)\right)+c\left(E\left(S_{j}\right)\right)+b_{\{v, w\}}\left(t_{i}, t_{j}\right) \leqslant c(E(S)) \tag{2.58}
\end{equation*}
$$

Now the sketchy part starts: Similar to the proof of Theorem 2.11, condition (2.57) allows us to connect $S_{i}$ to $v$ such that the resulting tree $\tilde{S}_{i}$ satisfies

$$
\begin{equation*}
c\left(E\left(\tilde{S}_{i}\right)\right) \leqslant c\left(E\left(S_{i}\right)\right)+s_{p}\left(v, t_{i}\right) \tag{2.59}
\end{equation*}
$$

Equivalently, we can connect $S_{j}$ to $w$ with the result satisfying

$$
\begin{equation*}
c\left(E\left(\tilde{S}_{j}\right)\right) \leqslant c\left(E\left(S_{j}\right)\right)+s_{p}\left(w, t_{j}\right) \tag{2.60}
\end{equation*}
$$

However, the above is only true, because the two Steiner walks that correspond to $s_{p}\left(v, t_{i}\right)$ and $s_{p}\left(w, t_{j}\right)$ in (2.59) and (2.60), respectively, have no vertex in common. If they had a vertex in common, one could build a new Steiner walk $W_{0}$ with $l_{p}^{+}\left(W_{0}\right) \leqslant$ $s_{p}\left(v, t_{i}\right)+s_{p}\left(w, t_{j}\right)$ out of the two above Steiner walks, such that $W_{0}$ connects $S_{i}$ and $S_{j}$. This walk $W_{0}$ could then be used to reconnect $S_{i}$ and $S_{j}$ to a Steiner tree of weight smaller than $b_{\{v, w\}}\left(t_{i}, t_{j}\right)$.

Finally, we define $\tilde{S}$ as the union of $\tilde{S}_{i}, \tilde{S}_{j}$, and $\{v, w\}$. This connected subgraph is not necessarily a tree, but can be made one without increasing $c(E(\tilde{S}))$ by deleting an edge from each cycle. From (2.58), (2.59), and (2.60) it follows that

$$
\begin{equation*}
c(E(\tilde{S})) \leqslant c(E(S)) \tag{2.61}
\end{equation*}
$$

which concludes the proof.
If criterion (2.57) is satisfied, one can contract edge $\{v, w\}$ and make the resulting vertex a terminal. The original criterion from Duin and Volgenant (1989b) uses the standard distance in (2.57) instead of the implied bottleneck Steiner distance. We note that using the (standard) bottleneck Steiner distance in (2.57) does not improve the


Figure 2.4: Segment of a Steiner tree instance. Terminals are drawn as squares. The dashed edge can be contracted by employing Proposition 2.14.
original test. However, using the implied bottleneck Steiner distance leads to a strictly stronger criterion, as the example in Figure 2.4 shows. Note that $b_{\left\{t_{1}, v_{1}\right\}}\left(t_{1}, t_{3}\right)=2$ and $s_{p}\left(v_{1}, t_{3}\right)=1$. Thus, (2.57) is satisfied for edge $\left\{t_{1}, v_{1}\right\}$ and terminals $t_{1}, t_{3}$.

The following proposition allows one to identify edges that are candidates for edge contraction. Afterwards, the bottleneck distances can be computed for all these edges in $O(m+n \log n)$ amortized time (Duin, 1993).

Proposition 2.15. Let $\{v, w\} \in E$ and $t_{i}, t_{j} \in T, t_{i} \neq t_{j}$. If (2.57) holds, then there is a minimum spanning tree $S_{M S T}$ on $(V, E, c)$ such that $\{v, w\} \in E\left(S_{M S T}\right)$.

Proof. Assume there is a spanning tree $S$ such that $\{v, w\} \notin E(S)$. Remove from $E(S)$ an edge on the (unique) path between $t_{i}$ and $t_{j}$ in $S$ of maximum cost. This operation results in two disjoint trees: $S_{i}$ with $t_{i} \in S_{i}$ and $S_{j}$ with $t_{j} \in S_{j}$. By definition of $b_{\{v, w\}}\left(t_{i}, t_{j}\right)$ it holds that

$$
\begin{equation*}
c\left(E\left(S_{i}\right)\right)+c\left(E\left(S_{j}\right)\right)+b_{\{v, w\}}\left(t_{i}, t_{j}\right) \leqslant c(E(S)) \tag{2.62}
\end{equation*}
$$

If $v$ and $w$ are in different trees, one can add $\{v, w\}$ to connect $S_{i}$ and $S_{j}$ and obtain a spanning tree of no higher cost than $S$. Otherwise, assume that $v, w \in V\left(S_{j}\right)$. Let $W_{i}$ be a Steiner walk from $v$ to $t_{i}$ with $l_{p}^{+}\left(W_{i}\right)=s_{p}\left(v, t_{i}\right)$. There is at least one edge $\{p, q\} \in E\left(W_{i}\right)$ such that $p \in V\left(S_{i}\right)$ and $q \in V\left(S_{j}\right)$. By definition it holds that $c(\{p, q\}) \leqslant l_{p}^{+}\left(W_{i}\right)$. Thus, one can add both $\{p, q\}$ and $\{v, w\}$ to $S_{i}, S_{j}$ to obtain a connected spanning subgraph $S^{\prime}$. Because of condition (2.57) and (2.62) it holds that

$$
\begin{equation*}
c\left(E\left(S^{\prime}\right)\right) \leqslant c(E(S)) \tag{2.63}
\end{equation*}
$$

Delete any edge other than $\{v, w\}$ on the cycle in $E\left(S^{\prime}\right)$ that includes $\{v, w\}$. In this way one obtains a spanning tree $S^{\prime \prime}$ of no higher cost than $S$.

Now we turn to a different reduction operation. To this end, we first introduce a reduction criterion based on the standard bottleneck Steiner distance. Besides being
a new technique, this result also serves to highlight the complications that arise if one attempts to formulate similar conditions based on the implied bottleneck Steiner distance.

Proposition 2.16. Let $D:=D_{G}(T, d)$. Let $Y$ be a minimum spanning tree in $D$. Write its edges $\left\{e_{1}^{Y}, e_{2}^{Y}, \ldots, e_{|T|-1}^{Y}\right\}:=E(Y)$ in non-ascending order with respect to their weight in $D$. Let $v \in V \backslash T$. If for all $\Delta \subseteq \delta(v)$ with $|\Delta| \geqslant 3$ it holds that:

$$
\begin{equation*}
\sum_{i=1}^{|\Delta|-1} d\left(e_{i}^{Y}\right) \leqslant \sum_{e \in \Delta} c(e) \tag{2.64}
\end{equation*}
$$

then there is at least one minimum Steiner tree $S$ such that $\left|\delta_{S}(v)\right| \leqslant 2$.
The proposition follows from Corollary 2.29 , which we will introduce in Section 2.4. If the conditions (2.64) are satisfied for a vertex $v \in V \backslash T$, one can pseudoeliminate (Duin and Volgenant, 1989b) or replace (Polzin, 2003) vertex $v$, i.e., delete $v$ and connect any two distinct vertices $u, w \in N(v)$ by a new edge $\{u, w\}$ of weight $c(\{v, u\})+c(\{v, w\})$. A vertex replacement might require additional edges to be added. However, these edges can often be removed by other methods, such as the criterion from Theorem 2.11. In the implementation for this thesis, vertices are only replaced if the total number of edges is not increased.

The SPG depicted in Figure 2.5 exemplifies why Proposition 2.16 cannot be formulated by using the implied Steiner distance. The weight of the minimum spanning tree $Y$ for $D_{G}(T, d)$ is 4 , but the weight of a minimum spanning tree with respect to the implied bottleneck Steiner distance is 2 . Similarly also the $\mathrm{NTD}_{\mathbf{k}}$ reduction technique described below cannot be directly formulated by using the implied bottleneck distance. Still, it is possible to formulate a similar criterion that makes use of the implied bottleneck distance. Unfortunately, both the result and the corresponding proof are more involved than those of their edge elimination counterparts (see Theorem 2.11). Thus, we omit the details here. The important point is to make sure that the selected Steiner walks do not overlap at vertices with a positive implied profit. The code developed for this thesis only includes a very limited implementation of these replacement methods.


Figure 2.5: SPG instance. Terminals are drawn as squares
The (standard) bottleneck Steiner distance can further be utilized for another classic reduction test: Non-Terminals of Degree $k\left(N T D_{\mathbf{k}}\right)$ which was introduced in Duin and Volgenant (1989b) and is based on the following proposition:

Proposition 2.17. Let $v \in V \backslash T$. There is a minimum Steiner tree $S$ with $\left|\delta_{S}(v)\right| \leqslant$ 2 if for each $\Delta \subseteq N(v)$ with $|\Delta| \geqslant 3$ the following holds: $c(\delta(v) \cap \delta(\Delta))$ is not less than the weight of a minimum spanning tree for the distance network $D_{G}(\Delta, s)$.

A proof is given in Duin and Volgenant (1989b). Also, the proposition is a special case of Corollary 2.29, which will be introduced in Section 2.4.

### 2.3.2 Bound-based reduction techniques

Bound-based reduction techniques are preprocessing methods that identify edges and vertices for elimination by examining whether they induce an lower bound that exceeds a given upper bound (Polzin and Daneshmand, 2001b). In this section a bound-based reduction concept is introduced that generalizes the Voronoi-regions concept from Polzin and Daneshmand (2001b). Note that the bounding technique described in this section can be seen as a special case of the bound-based reduction technique for the prize-collecting Steiner tree problem, which will be introduced in Chapter 4. Thus, no proofs are provided for most of the results in this section.

## Terminal-regions decomposition

The base of the reduction technique is the following new concept: a terminal-regions decomposition of an SPG-with underlying graph $(V, E)$-is a partition $H=\left\{H_{t} \subseteq\right.$ $V \mid t \in T\}$ of $V$ such that for each $t \in T$ the subgraph $\left(H_{t}, E\left[H_{t}\right]\right)$ is connected and $T \cap H_{t}=\{t\}$ holds. Each of the $H_{t}$ will be called a region of $H$. Define for all $t \in T$

$$
\begin{equation*}
r_{H}(t):=\min \left\{d(t, v) \mid v \notin H_{t}\right\} . \tag{2.65}
\end{equation*}
$$

In Polzin and Daneshmand (2001b) a special terminal-regions decomposition called Voronoi-regions decomposition is used. The more general results presented here allow us to improve on the Voronoi preprocessing methods introduced in Polzin and Daneshmand (2001b). However, it will also turn out that finding an optimal terminal-regions decomposition is $\mathcal{N} \mathcal{P}$-hard. The following three propositions not only improve on the results from Polzin and Daneshmand (2001b) by using a more general decomposition, but also by making use of the following distance function. Given vertices $v_{i}, v_{j} \in V$ define $\underline{d}\left(v_{i}, v_{j}\right)$ as the length of a shortest path between $v_{i}$ and $v_{j}$ without intermediary terminals. In Duin (1993) an $O(m+n \log n)$ algorithm was introduced to compute for each non-terminal $v_{i}$ a constant number of $r \underline{d}$-nearest terminals $\underline{v}_{i, 1}, \underline{v}_{i, 2}, \ldots, \underline{v}_{i, r}$ (if existent) along with the corresponding paths. In the remainder of this section it will be assumed that a terminal-regions decomposition $H$ is given. Moreover, for ease of presentation it will be assumed that the terminals $T=\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ are ordered such that $r_{H}\left(t_{1}\right) \leqslant r_{H}\left(t_{2}\right) \leqslant \ldots \leqslant r_{H}\left(t_{k}\right)$.

Proposition 2.18. Let $v_{i} \in V \backslash T$ and set $k:=|T|$. If there is a minimum Steiner tree $S$ such that $v_{i} \in V(S)$, then

$$
\begin{equation*}
\underline{d}\left(v_{i}, \underline{v}_{i, 1}\right)+\underline{d}\left(v_{i}, \underline{v}_{i, 2}\right)+\sum_{q=1}^{k-2} r_{H}\left(t_{q}\right) \tag{2.66}
\end{equation*}
$$

is a lower bound on the weight of $S$.
Each vertex $v_{i} \in V \backslash T$ such that the affiliated lower bound stated in Proposition 2.18 exceeds a known upper bound can be eliminated. Moreover, if a solution $S$ corresponding to the upper bound is given and $v_{i}$ is not contained in it, the latter can already be eliminated if the lower bound stated in Proposition 2.18 is equal to the cost of $S$. A similar proposition holds for edges in a minimum Steiner tree:

Proposition 2.19. Let $\left\{v_{i}, v_{j}\right\} \in E$ and set $k:=|T|$. If there is minimum Steiner tree $S$ such that $\left\{v_{i}, v_{j}\right\} \in E(S)$, then $L$ defined by

$$
\begin{equation*}
L:=c\left(\left\{v_{i}, v_{j}\right\}\right)+\underline{d}\left(v_{i}, \underline{v}_{i, 1}\right)+\underline{d}\left(v_{j}, \underline{v}_{j, 1}\right)+\sum_{q=1}^{k-2} r_{H}\left(t_{q}\right) \tag{2.67}
\end{equation*}
$$

if $\underline{v}_{i, 1} \neq \underline{v}_{j, 1}$ and

$$
\begin{align*}
L:=c\left(\left\{v_{i}, v_{j}\right\}\right)+\min \left\{\underline{d}\left(v_{i}, \underline{v}_{i, 1}\right)+\underline{d}\left(v_{j}, \underline{v}_{j, 2}\right), \underline{d}\left(v_{i}, \underline{v}_{i, 2}\right)\right. & +\underline{d}\left(v_{j}, \underline{v}_{j, 1}\right\} \\
& +\sum_{q=1}^{k-2} r_{H}\left(t_{q}\right) \tag{2.68}
\end{align*}
$$

otherwise, is a lower bound on the weight of $S$.
If the above lower bound $L$ for an edge $e \in E$ exceeds a known upper bound, $e$ can be eliminated. The following proposition allows us to replace vertices.

Proposition 2.20. Let $v_{i} \in V \backslash T$. If there is a minimum Steiner tree $S$ such that $\delta_{S}\left(v_{i}\right) \geqslant 3$, then

$$
\begin{equation*}
\underline{d}\left(v_{i}, \underline{v}_{i, 1}\right)+\underline{d}\left(v_{i}, \underline{v}_{i, 2}\right)+\underline{d}\left(v_{i}, \underline{v}_{i, 3}\right)+\sum_{q=1}^{k-3} r_{H}\left(t_{q}\right) \tag{2.69}
\end{equation*}
$$

with $k:=|T|$ is a lower bound on the weight of $S$.
To efficiently apply Proposition 2.18, one would like to maximize (2.66) —and for Proposition 2.19 and Proposition 2.20 to maximize (2.67) and (2.69), respectively. Unfortunately, this problem turns out to be $\mathcal{N} \mathcal{P}$-hard. The decision variant of the problem can be stated as follows. Let $\alpha \in \mathbb{N}_{0}$ and let $G_{0}=\left(V_{0}, E_{0}\right)$ be an undirected, connected graph with edge cost $c: E \rightarrow \mathbb{N}$. Furthermore, let $T_{0} \subseteq V$, and assume that $\alpha<\left|T_{0}\right|$. For each terminal-regions decomposition $H_{0}$ of $G_{0}$ define $T_{0}^{\prime} \subsetneq T_{0}$ such that $\left|T_{0}^{\prime}\right|=\alpha$ and $r_{H_{0}}\left(t^{\prime}\right) \geqslant r_{H_{0}}(t)$ for all $t^{\prime} \in T_{0}^{\prime}$ and $t \in T_{0} \backslash T_{0}^{\prime}$. Let:

$$
\begin{equation*}
C_{H_{0}}:=\sum_{t \in T_{0} \backslash T_{0}^{\prime}} r_{H_{0}}(t) . \tag{2.70}
\end{equation*}
$$

We now define the $\alpha$ terminal-regions decomposition problem as follows: Given a $k \in \mathbb{N}$, is there a terminal-regions decomposition $H_{0}$ such that $C_{H_{0}} \geqslant k$ ? In the following proposition it is shown that this problem is $\mathcal{N P}$-complete, which forthwith establishes the $\mathcal{N P}$-hardness of finding a terminal-regions decomposition that maximize (2.66), (2.67), (2.68), or (2.69) - which corresponds to $\alpha=2$ and $\alpha=3$, respectively.

Proposition 2.21. For each $\alpha \in \mathbb{N}_{0}$ the $\alpha$ terminal-regions decomposition problem is $\mathcal{N} \mathcal{P}$-complete.

Proof. Given a terminal-regions decomposition $H_{0}$ it can be tested in polynomial time whether $C_{H_{0}} \geqslant k$. Consequently, the terminal-regions decomposition problem is in $\mathcal{N} \mathcal{P}$.

In the remainder it will be shown that the, $\mathcal{N} \mathcal{P}$-complete (Garey and Johnson, 1979), independent set problem can be reduced to the terminal-regions decomposition problem. To this end, let $G_{\text {ind }}=\left(V_{\text {ind }}, E_{\text {ind }}\right)$ be an undirected, connected graph and $k \in \mathbb{N}$. The problem is to determine whether an independent set in $G_{\text {ind }}$ of cardinality at least $k$ exists. To establish the reduction, construct a graph $G_{0}$ from $G_{\text {ind }}$ as follows. Initially, set $G_{0}=\left(V_{0}, E_{0}\right):=G_{i n d}$, and $T_{0}:=V_{0}$. Next, extend $G_{0}$ by replacing each edge $e_{l}=\left\{v_{i}, v_{j}\right\} \in E_{0}$ with a vertex $v_{l}^{\prime}$ and the two edges $\left\{v_{i}, v_{l}^{\prime}\right\}$ and $\left\{v_{j}, v_{l}^{\prime}\right\}$. Define edge weights $c_{0}(e)=1$ for all $e \in E_{0}$ (which includes the newly added edges). If $\alpha>0$, choose an arbitrary $v_{i} \in V_{0} \cap V_{\text {ind }}$ and add for $j=1, \ldots, \alpha$ vertices $t_{i}^{(j)}$ to both $V_{0}$ and $T_{0}$. Finally, add for $j=1, \ldots, \alpha$ edges $\left\{v_{i}, t_{i}^{(j)}\right\}$ with $c_{0}\left(\left\{v_{i}, t_{i}^{(j)}\right\}\right)=2$ to $E_{0}$.

First, one observes that the size $\left|V_{0}\right|+\left|E_{0}\right|$ of the new graph $G_{0}$ is a polynomial in the size $\left|V_{i n d}\right|+\left|E_{\text {ind }}\right|$ of $G_{\text {ind }}$. Next, $r_{H_{0}}\left(v_{i}\right)=2$ holds for a vertex $v_{i} \in G_{0} \cap G_{\text {ind }}$ if and only if $H_{v_{i}}$ contains all (newly inserted) adjacent vertices of $v_{i}$ in $G_{0}$. Moreover, in any terminal-regions decomposition $H_{0}$ for $\left(G_{0}, c_{0}\right)$, it holds that $r_{H_{0}}\left(t_{i}^{(j)}\right)=2$ for $j=1, \ldots, \alpha$. Hence, there is an independent set in $G_{\text {ind }}$ of cardinality at least $k$ if and only if there is a terminal-regions decomposition $H_{0}$ for $\left(V_{0}, E_{0}, T_{0}, c_{0}\right)$ such that

$$
C_{H_{0}} \geqslant\left|V_{i n d}\right|+k
$$

This proves the proposition.
Figure 2.6 depicts an SPG, a corresponding Voronoi-regions decomposition as described in Polzin and Daneshmand (2001b), and an alternative terminal-regions decomposition. The second terminal-regions decomposition yields a stronger lower bound than the Voronoi-regions decomposition and indeed allows to eliminate a vertex if an upper bound that is sufficiently close to the optimal solution value is known.

For computing a terminal-regions decomposition, we, unsurprisingly, resort to heuristic methods. More details are given in Section 4.3, where an extension of the terminal-regions decomposition to the prize-collecting Steiner tree problem is introduced. Computational experiments for this thesis have shown that it is in many cases possible to improve on the bound provided by the Voronoi-regions decomposition,


Figure 2.6: Illustration of a Steiner tree instance (a), a Voronoi-decomposition (b), and a second terminal-regions decomposition (c). Terminals are drawn as squares. If an upper bound less than 11 is known, the vertex drawn filled in (c) can be deleted by means of the terminal-regions decomposition depicted in (c), but not by means of the Voronoi-regions decomposition.
and that significantly stronger graph reductions can be achieved. Still, empirically the methods only work well for (some) sparse instances with few terminals. Thus, we only execute the terminal-regions decomposition tests for these kind of instances.

## Reduced-costs reductions

In Wong (1984) a dual-ascent algorithm for the SAP was introduced that, empirically, both provides strong lower bounds and allows for fast computation-defying its worstcase time complexity of $O(|A| \min \{|V||T|,|A|\})$ (Polzin and Daneshmand, 2001b). Practically efficient implementations of this algorithm can be found in Duin (1993) and Pajor et al. (2017). We use an implementation that is similar to these two. In Section 3.4 we give a description of the dual-ascent algorithm (in the context of the maximum-weight connected subgraph problem).

At termination, dual-ascent provides a dual solution to the LP-relaxation of

Formulation 1.1. The reduced-costs of this dual LP solution can be used for an SPG reduction criterion, see e.g. Duin (1993). Given an SPG instance, consider an equivalent (bidirected) SAP $(V, A, T, c, r)$. Let $v \in V / T$, and let $S^{\star}$ be an optimal Steiner arborescence to the given SAP instance. Let $L_{D A}$ be the lower bound obtained by dual-ascent. If $S^{\star}$ contains $v$, the weight of $S^{\star}$ can be bounded from below by $L_{D A}$ plus the length (with respect to the reduced-costs provided by dual-ascent) of a shortest path from the $r$ to $v$ and the length of a shortest path from $v$ to a closest terminal (other than the root). Hence, $v$ can be deleted if the just defined bound exceeds a known upper bound $U$. Similarly, an arc $(v, w)$ can be deleted if its reduced-cost plus the reduced-cost distance from $r$ to $v$ plus the reduced-cost distance from $w$ to a closest terminal exceeds $U-L_{D A}$. The test can be extended to the case of equality if a solution corresponding to $U$ is given-and if the arc to be eliminated is not contained in this solution. Whenever a vertex can be deleted in the SAP, the same is true for its counterpart in the original SPG. Similarly, if two anti-parallel arcs of the SAP have been shown to be removable, the corresponding edge of the SPG can be discarded. Finally, one can formulate a similar test to replace (or pseudo-eliminate) vertices.

The above procedure can also be performed by using the reduced-costs obtained during a branch-and-cut solution based on $B D C u t$. Instead of deleting edges or vertices, one fixes the corresponding variables to 0 in the IP formulation. However, vertex replacements cannot be directly transferred to the IP formulation, see Section 2.6 for more details.

### 2.3.3 Further reduction techniques

Besides the methods described already, the literature describes a large number of further SPG reduction techniques. See e.g. Hwang et al. (1992) for an overview of reduction techniques published before 1992. An overview of newer methods is given in Polzin (2003). However, most of these methods are dominated by (or are special cases of) the techniques described in Duin (1993); Polzin and Daneshmand (2001b, 2002). As we have seen in this chapter, the latter reduction techniques are in turn dominated by the new techniques introduced in this thesis.

In particular, several trivial reduction methods are only special cases of the methods introduced so far. For example, a simple reduction method is to delete any Steiner vertex of degree 1. This method is, however, just a special case of Proposition 2.17. Still, one independent class of SPG reduction methods has not been covered so far. We will shortly describe those methods in the following.

## Terminal separator methods

It is well known that bi-connected components of an SPG instance can be solved independently, see e.g. Hwang et al. (1992). In Polzin and Daneshmand (2006) a more general decomposition method is introduced, based on terminal separators. Let $I=(V, E, T, c)$ be an SPG instance. A $T^{\prime} \subset T$ is called terminal separator if $G^{\prime}:=\left(V \backslash T^{\prime}, E\left[V \backslash T^{\prime}\right]\right)$ is not connected. In the case of $\left|T^{\prime}\right|>1$, the biconnected components of $G^{\prime}$ cannot be solved independently, but a case distinction is necessary.

In Polzin and Daneshmand (2006) several techniques are described to speed-up this case distinction, based on the bottleneck Steiner distance. We note that one could also use the implied bottleneck Steiner distance introduced in this thesis instead. Notwithstanding the improvements by Polzin and Daneshmand (2006), the case distinction can still be prohibitively expensive on large bi-connected components. Thus, Polzin and Daneshmand (2006) also use reduction tests on (small) individual bi-connected components. If an edge is contained in an optimal solution to the subSPG for all possible cases, it must be included in the original instance $I$. Conversely, if an edge is never contained in an optimal solution to a sub-SPG, it can be removed from the original instance $I$. Finally, Polzin and Daneshmand (2006) describe a sophisticated bound-based reduction approach that does not require explicit case distinction.

For this thesis, we have only fully implemented the latter bound-based approach. We use a limited version of the exact approach. To find terminal separators, we use a maximum-flow algorithm on a split-graph obtained from the given SPG instance $I$-as suggested in Polzin and Daneshmand (2006). We use a newly implemented maximum-flow algorithm with warm start-capabilities, described in Section 6.2.4.

### 2.3.4 From reductions to conflicts

This section shows an additional advantage of the node replacement reduction: The creation of conflicts between the newly inserted edges. Furthermore, a new replacement operation is introduced. We say that a set $E^{\prime} \subset E$ with $\left|E^{\prime}\right| \geqslant 2$ is in conflict if no minimum Steiner tree contains more than one edge of $E^{\prime}$.

## Node replacement

Unfortunately, this section requires some additional technicalities regarding reduction methods. Recall that we have seen three types of reductions so far: Edge deletion, edge contraction, and node replacement. For simplicity, we assume in the following that a reduction is only performed if it retains all optimal solutions. E.g., we only delete an edge if we can show that there is no minimum Steiner tree that contains this edge. We say that such a reduction is valid. We start with an SPG instance $I=(G, T, c)$, and consider a series of subsequent, valid reductions (of one of the three above types) that are applied to $I$. In each reduction step $i \geqslant 0$, the current instance $I^{(i)}=\left(G^{(i)}, T^{(i)}, c^{(i)}\right)$ is transformed to instance $I^{(i+1)}=\left(G^{(i+1)}, T^{(i+1)}, c^{(i+1)}\right)$. We set $I^{(0)}:=I$. We define ancestor information for each $i=0,1, \ldots, k$ by $\Pi^{(i)}: E^{(i)} \rightarrow$ $\mathcal{P}(E)$ and $\Pi_{F I X}^{(i)} \subseteq E$. We set $\Pi^{(0)}(e):=\{e\}$ for all $e \in E$, and $\Pi_{F I X}^{(0)}=\emptyset$. Consider a reduced instance $I^{(i)}$. If we contract an edge $e \in E^{(i)}$, we set $\Pi_{F I X}^{(i+1)}:=\Pi_{F I X}^{(i)} \cup \Pi^{(i)}(e)$; otherwise, we set $\Pi_{F I X}^{(i+1)}:=\Pi_{F I X}^{(i)}$. If we replace a vertex $v \in V^{(i)}$, we set for each newly inserted edge $\{u, w\}$-with $u, w \in N(v)-\Pi^{(i+1)}(\{u, w\}):=\Pi^{(i)}(\{v, u\}) \cup$ $\Pi^{(i)}(\{v, w\})$. For all other remaining edges $e$ we set $\Pi^{(i+1)}(e):=\Pi^{(i)}(e)$. Overall, one observes the following.

Observation 2.22. Let $I$ be an $S P G$ and let $I^{(k)}$ be the $S P G$ obtained from performing a series of $k$ valid reductions on I. For any Steiner tree $S^{(k)}$ for $I^{(k)}$, the
tree $S$ with

$$
E(S)=\bigcup_{e \in E^{(k)}\left(S^{(k)}\right)} \Pi^{(k)}(e) \cup \Pi_{F I X}^{(k)}
$$

is a Steiner tree for $I$, and it holds that

$$
c(E(S))=c^{(k)}\left(E^{(k)}\left(S^{(k)}\right)\right)+c\left(\Pi_{F I X}^{(k)}\right) .
$$

Furthermore, if $S^{(k)}$ is optimal for $I^{(k)}$, then $S$ is optimal for $I$.

Polzin and Daneshmand (2002) observed that two edges that originate from a common edge by a series of replacements cannot both be contained in a minimum Steiner tree. Using the above notation, we can formulate the condition as follows: If $e_{1}, e_{2} \in E^{(k)}$ satisfy $\Pi^{(k)}\left(e_{1}\right) \cap \Pi^{(k)}\left(e_{2}\right) \neq \emptyset$, then there is no minimum Steiner tree that contains both $e_{1}$ and $e_{2}$. As we will see in Section 2.4, such conflict information can be used for further reductions.

In the following, we will introduce an edge conflict criterion that is strictly stronger than the one from Polzin and Daneshmand (2002). Initially, we define additional ancestor information for each $i=0,1, \ldots, k$. Namely, sets of replacement ancestors $\Lambda^{(i)}: E^{(i)} \rightarrow \mathcal{P}(\mathbb{N})$, and $\Lambda_{F I X}^{(i)} \in \mathcal{P}(\mathbb{N})$. We set $\Lambda^{(0)}(e):=\emptyset$ for all $e \in E$, and $\Lambda_{F I X}^{(0)}:=\emptyset$. Further, we define $\lambda^{(0)}:=0$. Consider a reduced instance $I^{(i)}$. If we contract an edge $e \in E^{(i)}$, we set $\Lambda_{F I X}^{(i+1)}:=\Lambda_{F I X}^{(i)} \cup \Lambda^{(i)}(e)$. If we replace a vertex $v \in V^{(i)}$, we set $\lambda^{(i+1)}:=\lambda^{(i)}+1$. Further, we define the replacement ancestors for each newly inserted edge $\{u, w\}$, with $u, w \in N(v)$, as follows:

$$
\Lambda^{(i+1)}(\{u, w\}):=\Lambda^{(i)}(\{v, u\}) \cup \Lambda^{(i)}(\{v, w\}) \cup\left\{\lambda^{(i)}\right\} .
$$

If no node replacement is performed, we set $\lambda^{(i+1)}:=\lambda^{(i)}$. For the replacement ancestors one obtains the following technical, but nevertheless important, result (proven in Appendix A.1.1).

Proposition 2.23. Let $I$ be an $S P G$ and let $I^{(k)}$ be the $S P G$ obtained from performing a series of $k$ valid reductions on $I$. Further, let $e_{1}, e_{2} \in E^{(k)}$. If $\Lambda^{(k)}\left(e_{1}\right) \cap$ $\Lambda^{(k)}\left(e_{2}\right) \neq \emptyset$, then no minimum Steiner tree $S^{(k)}$ for $I^{(k)}$ contains both $e_{1}$ and $e_{2}$.

Corollary 2.24. Let $I, I^{(k)}$ as in Proposition 2.23, and let $e \in E^{(k)}$. If $\Lambda^{(k)}(e) \cap$ $\Lambda_{F I X}^{(k)} \neq \emptyset$, then no minimum Steiner tree $S^{(k)}$ for $I^{(k)}$ contains e.

Note that any edge $e$ as in Corollary 2.24 can be deleted.

## Edge replacement

This subsection introduces a new replacement operation, whose primary benefit lies in the conflicts it creates. We start with a condition that allows us to perform this operation.

Proposition 2.25. Let $e=\{v, w\} \in E$ with $e \cap T=\emptyset$. Define

$$
\mathcal{D}:=\{\Delta \subseteq(\delta(v) \cup \delta(w)) \backslash\{e\} \mid \Delta \cap \delta(v) \neq \emptyset, \Delta \cap \delta(w) \neq \emptyset\}
$$

For any $\Delta \in \mathcal{D}$ let

$$
U_{\Delta}:=\{u \in V \mid\{u, v\} \in \Delta \vee\{u, w\} \in \Delta\}
$$

If for all $\Delta \in \mathcal{D}$ with $|\Delta| \geqslant 3$ the weight of a minimum spanning tree on $D_{G}\left(U_{\Delta}, s\right)$ is smaller than $c(\Delta)$, then each minimum Steiner tree $S$ satisfies $\left|\delta_{S}(v)\right| \leqslant 2$ and $\left|\delta_{S}(w)\right| \leqslant 2$.

The proposition can be proven by using Corollary 2.29, which will be introduced in Section 2.4. If the condition of Proposition 2.25 is successful, we can perform what we will call a path replacement of $e$ : We delete $e$ and add for each pair $p, q \in V$ with $p \in N(v) \backslash\{w\}, q \in N(w)) \backslash\{v\}, p \neq q$ an edge $\{p, q\}$ with weight $c(\{p, v\})+c(\{v, w\})+$ $c(\{q, w\})$. At first glance, the apparent increase in the number of edges by this operation seems highly disadvantageous. However, due to the increased weight, the new edges can often be deleted by using the criterion from Theorem 2.11. Furthermore, an edge does not need to be inserted if any two of the three edges it originates from have a common replacement ancestor. Indeed, we only perform a path replacement if at most one of the new edges needs to be inserted. The case that all new edges can be deleted is in principle also covered by the extended reduction technique introduced in the next section (albeit being potentially far more expensive). If exactly one new edge remains, we create new replacement ancestors as follows: Let $\hat{e}=\{p, q\}$ be the newly inserted edge. Initially, set $\lambda^{(i+1)}:=\lambda^{(i)}$ and $\Lambda^{(i+1)}(\hat{e}):=\Lambda^{(i)}(\{p, v\}) \cup \Lambda^{(i)}(\{v, w\}) \cup$ $\Lambda^{(i)}(\{v, q\})$. Next, for each $e^{\prime} \in(\delta(v) \cup \delta(w)) \backslash\{e\}$ increment $\lambda^{(i+1)}$, and add $\lambda^{(i+1)}$ to $\Lambda^{(i+1)}(\hat{e})$ and $\Lambda^{(i+1)}\left(e^{\prime}\right)$. One can show that Proposition 2.23 remains valid if path replacement is added to the list of valid reduction operations.

Figure 2.7 illustrates an application of Proposition 2.25. In this example, all but one replacement edges can be deleted by using a simple alternative path argument. While the number of edges remains unchanged, six new conflicts are created.

### 2.4 From Steiner distances and conflicts to extended reduction techniques

At the end of the last section (Section 2.3.4) we have seen a reduction method that inspects a number of trees (of depth 3) that extend an edge considered for replacement. This section continues along this path, based on the reduction concepts introduced so far.

Given a tree $Y$ (e.g. a single edge), extended reduction techniques use an enumeration of trees that contain $Y$ to show that there is an optimal Steiner tree that does not contain $Y$. The trees are built by iteratively enlarging or extending $Y$. During this process, reduction, conflict, and implication techniques are employed to rule out these extensions of $Y$. In this way, extended reduction techniques are loosly related to the concepts of probing and conflict (graph) analysis for MIP, see e.g. Achterberg (2007a); Savelsbergh (1994).

(a) SPG instance segment

(b) Segment after edge replacement

Figure 2.7: Segment of a Steiner tree instance (showing only non-terminals). All edges except for the dashed ones have unit weight. The dashed edge in (2.7a) has been replaced in (2.7b). All edges that are in conflict with the replacement edge in (2.7b) are drawn in bold.

The idea of extension was first introduced in Winter (1995) for the rectilinear Steiner tree problem (see Section 5.4). Later the idea was adopted by Uchoa et al. $(2002)^{8}$ for the SPG. The authors achieved strong practical results on a set of (then) large-scale VLSI instances. The next advancement came in Duin (2000), where backtracking was used, together with a number of new reduction criteria for the enumerated trees. Finally, Polzin and Daneshmand (2002) introduced the up-to-now strongest extended reduction techniques, which improved and complemented the previous results. The authors showed that their highly sophisticated algorithm could drastically reduce the size of many benchmark SPG instances, and even allowed for the solution of previously intractable instances.

In the following, we introduce new extended reduction algorithms that (provably) dominate those by Polzin and Daneshmand (2002).

### 2.4.1 The framework

For a tree $Y$ in $G$, let $L(Y) \subseteq V(Y)$ be the set of its leaves. We start with several definitions from Polzin and Daneshmand (2002). Let $Y, Y^{\prime}$ be trees with $Y^{\prime} \subseteq Y$. The linking set between $Y$ and $Y^{\prime}$ is the set of all vertices $v \in V\left(Y^{\prime}\right)$ such that there is a path $Q \subseteq Y$ from $v$ to a leaf of $Y$ with $V(Q) \cap V\left(Y^{\prime}\right)=\{v\}$. Note that $Q$ can consist of a single vertex. $Y^{\prime}$ is peripherally contained in $Y$ if the linking set between $Y$ and $Y^{\prime}$ is $L\left(Y^{\prime}\right)$. Figure 2.8 exemplifies this concept. To motivate those definitions, consider a path $Q$ without inner terminals between vertices $v$ and $w$. For $Q$ to not be peripherally contained in a minimum Steiner tree it is sufficient that $s(v, w)$ is smaller than the weight of $Q$. However, this condition is not sufficient to show that $Q$ is not contained in a minimum Steiner tree. However, if $Q$ is indeed contained in a minimum Steiner tree, at least one of its inner vertices needs to be of degree greater than 2 in this tree. Thus, we can exploit this observation to enumerate extensions of

[^3]
(a) Peripherally contained tree

(b) Not peripherally contained tree

Figure 2.8: Illustration of peripherally inclusion. The bold subtree is peripherally contained in the entire tree in Figure 2.8a, but not in Figure 2.8b.
$Q$ from those inner vertices and attempt to rule those extensions out. Such kind of deductions are used in extended reduction techniques.

For any $P \subseteq V(Y)$ with $|P|>1$ let $Y_{P}$ be the union of the (unique) paths between any $v, w \in P$ in $Y$. Note that $Y_{P}$ is a tree, and that $Y_{P} \subseteq Y$ holds. $P$ is called pruning set if it contains the linking set between $Y_{P}$ and $Y$. Additionally, we will use the following new definition: $P$ is called strict pruning set if it is equal to the linking set between $Y_{P}$ and $Y$. Figure 2.9 provides an example of pruning and strict pruning sets. One readily verifies the following property of pruning sets.

Observation 2.26. Let $Y$ be a tree, and let $Y^{\prime} \subseteq Y$ be a tree that is peripherally contained in $Y$. Further, let $P \subseteq V\left(Y^{\prime}\right)$. If $P$ is a pruning set for $Y^{\prime}$, then $P$ is also a pruning set for $Y$. If $P$ is a strict pruning set for $Y^{\prime}$, then $P$ is also a strict pruning set for $Y$.

Additionally, we define a stronger, and new, inclusion concept. Consider a tree $Y \subseteq G$, and a subtree $Y^{\prime}$. Let $P$ be a pruning set for $Y^{\prime}$. We say that $Y^{\prime}$ is $P$ peripherally contained in $Y$ if $P$ is a pruning set for $Y$. Now let $P$ be a strict pruning set for $Y^{\prime}$. We say that $Y^{\prime}$ is strictly $P$-peripherally contained in $Y$ if $P$ is a strict pruning set for $Y$. From Observation 2.26 one obtains the following important property.

Observation 2.27. Let $Y \subseteq G$ be a tree, let $Y^{\prime} \subseteq Y$ be a subtree, and let $P$ be a pruning set for $Y^{\prime}$. If $Y^{\prime}$ is peripherally contained in $Y$, then $Y^{\prime}$ is also $P$-peripherally contained in $Y$.

In fact, we will use the contraposition of the observation: If $Y^{\prime}$ is not $P$-peripherally contained in $Y$, then $Y^{\prime}$ is not peripherally contained in $Y$. Note that an equivalent property holds for strict pruning sets.

Given a tree $Y$ and a set $E^{\prime} \subseteq E$, we write with a slight abuse of notation $Y+E^{\prime}$ for the subgraph with the edge set $E(Y) \cup E^{\prime}$. Algorithm 2.1 shows a high level

(a) Pruning set

(b) Strict pruning set

Figure 2.9: Illustration of pruning and strict pruning sets. The filled vertices in Figure 2.9a form a (non-strict) pruning set, whereas the filled vertices in Figure 2.9b constitute a strict pruning set.
description of the extended reduction framework used in this thesis. The framework is similar to the one introduced in Polzin and Daneshmand (2002), but more general. ${ }^{9}$ Note that the algorithm is recursive.

A possible input for Algorithm 2.1 is an SPG instance together with a single edge. If the algorithm returns true, the edge can be deleted. Besides ExtensionSets, which is described in Algorithm 2.2, the extended reduction framework contains the following subroutines:

- RuledOut $(I, Y, P)$ is given an SPG $I=(G, T, c)$, a tree $Y \subseteq G$, and a pruning set $P$ for $Y$ such that $V\left(Y_{P}\right) \cap T \subseteq L\left(Y_{P}\right)$. The routine returns true if $Y$ is shown to not be $P$-peripherally contained in any minimum Steiner tree. Otherwise, the routine returns false.
- RuledOutStrict $(I, Y, P)$ is given an SPG $I=(G, T, c)$, a tree $Y \subseteq G$, and a strict pruning set $P$ for $Y$ such that $V\left(Y_{P}\right) \cap T \subseteq L\left(Y_{P}\right)$. The routine returns true if $Y$ is shown to not be strictly $P$-peripherally contained in any minimum Steiner tree. Otherwise, the routine returns false.
- $\operatorname{StrictPruningSets}(I, Y)$ is given an $\operatorname{SPG} I=(G, T, c)$, a tree $Y \subseteq G$. It returns a subset of all strict pruning sets for $Y$. A typical strict pruning set is $L(Y)$.
- Truncate $(I, Y)$ is given an $\operatorname{SPG} I=(G, T, c)$, and a tree $Y \subseteq G$. The routine returns true, if no further extensions of $Y$ should be performed; otherwise the routine returns false.

[^4]- Promising $(I, Y, v)$ is given an $\operatorname{SPG} I=(G, T, c)$, a tree $Y \subseteq G$, and a vertex $v \in L(Y)$. The routine returns true if further extensions of $Y$ from $v$ should be performed; otherwise the routine returns false.

The usage of $P$-peripheral inclusion in RuledOut might appear somewhat awkward, but is necessary for ruling-out not only trees (as in line 2 of Algorithm 2.1), but also all possible extensions via a single edge (as in line 4 of Algorithm 2.2).

```
Algorithm 2.1: Extended-RuledOut
    Data: SPG instance \(I=(G, T, c)\), tree \(Y\) with \(Y \cap T \subseteq L(Y)\)
    Result: true if \(Y\) is shown to not be peripherally contained in any minimum
                Steiner tree; false otherwise
    foreach \(P \in \operatorname{StrictPruningSets}(I, Y)\) do
        if RuledOutStrict \((I, Y, P)\) then
            return true
    if Truncate \((I, Y)\) then
        return false
    foreach \(v \in L(Y)\) do
        if \(v \in T\) or not \(\operatorname{Promising}(I, Y, v)\) then
            continue
        success \(:=\) true
        foreach \(E^{\prime} \in \operatorname{ExtensionSets}(I, Y, v)\) do
            if not Extended-RuledOut \(\left(I, Y+E^{\prime}\right)\) then
            success \(:=\) false
        if success then
            return true
    return false
```

In Lines 1-3 of Algorithm 2.1, we try to peripherally rule-out tree $Y$. If that is not possible, we try to recursively extend $Y$ in Lines 6 -14. Since (given positive edge weights) no minimum Steiner tree has a non-terminal leaf, we can extend from any of the non-terminal leaves of $Y$. Note that ruling-out all extensions along one single leaf is sufficient to rule-out $Y$. The correctness of Extended-RuledOut can be proven by induction (under the assumption that the subroutines are correct). We also remark that it is under certain conditions possible to replace the condition not peripherally contained in any minimum Steiner tree by the condition not peripherally contained in at least one minimum Steiner tree. See also the discussion following Theorem 2.28.

Although the extended reduction framework shown in Algorithm 2.1 looks simple, an efficient realization is highly intricate. Not least, because the interaction of many different algorithmic components needs to be taken into account. Also, the re-use of intermediate results obtained during the tree extension (such as bottleneck Steiner

```
Algorithm 2.2: ExtensionSets
    Data: SPG instance \(I=(G, T, c)\), tree \(Y\), vertex \(v \in V(Y)\)
    Result: Set \(\Gamma \subseteq \mathcal{P}(\delta(v))\) such that for all non-empty \(\gamma \in \mathcal{P}(\delta(v)) \backslash \Gamma\), the tree
                \(Y+\rho\) is not peripherally contained in any minimum Steiner tree
    \(Q:=\emptyset\)
    \(R:=\emptyset\)
    foreach \(e:=\{v, w\} \in \delta(v) \backslash E(Y)\) do
        if \(\operatorname{RuledOut}(I, Y+\{e\}, L(Y) \cup\{w\})\) then
        continue
        if RuledOutStrict \((I, Y+\{e\}, L(Y) \cup\{w\})\) then
            \(R:=R \cup\{e\}\)
            continue
        \(Q:=Q \cup\{e\}\)
    return \((\mathcal{P}(Q) \backslash \emptyset) \cup R\)
```

distances) is non-trivial. Indeed, the implementation of extended reduction techniques for this thesis encompasses more than 20000 lines of $C$ code ${ }^{10}$, and includes many further algorithmic ideas. In the following, we concentrate on mathematical descriptions of the subroutines for ruling-out enumerated trees. Implementation details of several key components-including nitty-gritty issues such as CPU cache-efficiency-are given in Section 6.2.3.

### 2.4.2 Reduction criteria

In this section, we introduce several elimination criteria used within RuledOut and RuledOutStrict. In fact, both of these routines consist of several subalgorithms that check different criteria for eliminating the given tree. Note that any criterion that is valid for RuledOut is also valid for RuledOutStrict. We also note that several of the criteria in this section are similar to results from Polzin (2003); Polzin and Daneshmand (2002), but are all stronger. Throughout this section we consider a graph $G=(V, E)$ and an SPG instance $I=(G, T, c)$.

Consider a tree $Y \subseteq G$, and a pruning set $P$ for $Y$ such that $V\left(Y_{P}\right) \cap T \subseteq L\left(Y_{P}\right)$. For each $p \in P$ let $\bar{Y}_{p} \subset Y$ such that $V\left(\bar{Y}_{p}\right)$ is exactly the set of vertices $v \in V(Y)$ that satisfy the following: For any $q \in P \backslash\{p\}$ the (unique) path in $Y$ from $v$ to $q$ contains $p$. Note that when removing $E\left(Y_{P}\right)$ from $Y$, each non-trivial connected component equals one $\bar{Y}_{p}$. Further, note that $p \in V\left(\bar{Y}_{p}\right)$ for all $p \in P$. Let $G_{Y, P}=\left(V_{Y, P}, E_{Y, P}\right)$ be the graph obtained from $G=(V, E)$ by contracting for each $p \in P$ the subtree $\bar{Y}_{p}$ into $p$. For any parallel edges, we keep only one of minimum weight. We identify the contracted vertices $V\left(\bar{Y}_{p}\right)$ with the original vertex $p$. Overall, we thus have $V_{Y, P} \subseteq V$.

[^5]Let $c_{Y, P}$ be the edge weights on $G_{Y, P}$ derived from $c$. Let

$$
\begin{equation*}
T_{Y, P}:=\left(T \cap V_{Y, P}\right) \cup\left\{p \in P \mid T \cap V\left(\bar{Y}_{p}\right) \neq \emptyset\right\} . \tag{2.71}
\end{equation*}
$$

Finally, let $s_{Y, P}$ be the bottleneck Steiner distance on $\left(G_{Y, P}, T_{Y, P}, c_{Y, P}\right)$. With these definitions at hand, we are able to formulate a reduction criterion that generalizes a number of results from the literature. See Hwang et al. (1992); Polzin (2003) for similar, but weaker, conditions.

Theorem 2.28. Let $Y \subseteq G$ be a tree, and let $P$ be a pruning set for $Y$ such that $V\left(Y_{P}\right) \cap T \subseteq L\left(Y_{P}\right)$. Let $I_{Y, P}$ be the $S P G$ on the distance network $D_{G_{Y, P}}\left(V_{Y, P}, s_{Y, P}\right)$ with terminal set $P$. If the weight of a minimum Steiner tree for $I_{Y, P}$ is smaller than $c\left(E\left(Y_{P}\right)\right)$, then $Y$ is not $P$-peripherally contained in any minimum Steiner tree for $I$.

Proof. Let $S$ be a (not necessarily minimum) Steiner tree for $I$ such that $Y$ is $P$ peripherally contained in $S$. Let $S_{Y, P}$ be a minimum Steiner tree for $I_{Y, P}$. Let $\tilde{S} \subset G$ be the forest defined as follows:

$$
\begin{align*}
& V(\tilde{S}):=\left(V(S) \backslash V\left(Y_{P}\right)\right) \cup V\left(S_{Y, P}\right)  \tag{2.72}\\
& E(\tilde{S}):=E(S) \backslash E\left(Y_{P}\right) \tag{2.73}
\end{align*}
$$

Let $\tilde{\mathcal{C}}$ be the set of connected components of $\tilde{S}$. Further, let $f: V \rightarrow \tilde{\mathcal{C}} \cup\{\emptyset\}$ such that $f(v)=\tilde{C}$ if $v \in V(\tilde{C})$ for a $\tilde{C} \in \tilde{\mathcal{C}}$, and $f(v)=\emptyset$ otherwise. Note that each $\tilde{C} \in \tilde{\mathcal{C}}$ contains at least one vertex of $P$, and thus also at least one vertex of $S_{Y, P}$. Also, $f(v) \neq \emptyset$ for all $v \in V\left(S_{Y, P}\right)$. Further, note that for each of the contracted subtrees $\bar{Y}_{p}$ there is a $\tilde{C} \in \tilde{\mathcal{C}}$ with $\bar{Y}_{p} \subseteq \tilde{C}$. In the following, we will iteratively connect all the components in $\tilde{\mathcal{C}}$.

While $|\tilde{\mathcal{C}}|>1$ proceed as follows. Choose a $(v, w) \in E\left(S_{Y, P}\right)$ with $f(v) \neq f(w)$ such that $s_{Y, P}(v, w)$ is minimized. Let $W$ be a $(v, w)$-walk in $G_{Y, P}$ corresponding to $s_{Y, P}(v, w)$. Because of $f(v) \neq f(w)$, there is at least one subwalk $Q=W(q, r)$ of $W$ such that $f(q), f(r) \neq \emptyset, f(q) \neq f(r)$, and $f(u)=\emptyset$ for all $u \in V(Q) \backslash\{q, r\}$. Note that $c(E(Q)) \leqslant s_{Y, P}(v, w)$, because $f(t) \neq \emptyset$ for all $t \in T$. As long as such a path $Q$ exists, proceed as follows. Add $Q$ to $\tilde{S}$, and remove from $E\left(S_{Y, P}\right)$ an (arbitrary) edge of the path between $f(q)$ and $f(r)$ in $S_{Y, P}$. Also, update $\tilde{\mathcal{C}}$ and $f$. Note that the weight of the removed edge (with respect to $s_{Y, P}$ ) is at most $s_{Y, P}(q, r)$.

Once $|\tilde{\mathcal{C}}|=1$, one notes that the summed up weight of all newly inserted paths (with respect to $c$ ) does not exceed the weight of $S_{Y, P}$ (with respect to $s_{Y, P}$ ). Because the weight of $S_{Y, P}$ is smaller than $c\left(E\left(Y_{P}\right)\right.$ ), we obtain from the construction of $\tilde{S}$ that

$$
\begin{equation*}
c(E(\tilde{S}))<c(E(S)) \tag{2.74}
\end{equation*}
$$

which concludes the proof.
In practice, one does not need to explicitly form $G_{Y, P}$. Instead, one can use the (original) bottleneck Steiner distances between the connected components of the graph
induced by $E(Y) \backslash E\left(Y_{P}\right)$. Note that one can also extend Theorem 2.28 to the case of equality if at least one vertex of $Y_{P}$ is not contained in any of the paths corresponding to the $s$ values used for edges of $S_{Y, P}$. However, in the context of extended reduction techniques one needs to be careful to not discard all of several equivalent extensions. We omit the quite technical details, but merely note that allowing for equality (and adding suitable checks) can have a significant impact for some instances.

In practice, computing a minimum Steiner tree (or even an approximation) on $D_{G_{Y, P}}\left(V_{Y, P}, s_{Y, P}\right)$ is often too expensive. In such cases, the following corollary provides a strong alternative.

Corollary 2.29. Let $Y, P$ as in Theorem 2.28. Let $\left(P^{\prime}, P^{\prime \prime}\right)$ be a partition of $P$. Let $F^{\prime}$ be a minimum spanning tree on $D_{G_{Y, P}}\left(P^{\prime}, s_{Y, P}\right)$, and let $z^{\prime}$ be the weight of $F^{\prime}$. Let $F^{\prime \prime}$ be a minimum spanning tree in $D_{G_{Y, P}}\left(T_{Y, P}, s_{Y, P}\right)$. Write $\left\{e_{1}^{F^{\prime \prime}}, e_{2}^{F^{\prime \prime}}, \ldots, e_{\left|T_{Y, P}\right|-1}^{F^{\prime \prime}}\right\}:=$ $E_{Y, P}\left(F^{\prime \prime}\right)$ such that $s_{Y, P}\left(e_{i}^{F^{\prime \prime}}\right) \geqslant s_{Y, P}\left(e_{j}^{F^{\prime \prime}}\right)$ for $i<j$. Define

$$
\begin{equation*}
z^{\prime \prime}:=\sum_{i=1}^{\left|P^{\prime \prime}\right|} s_{Y, P}\left(e_{i}^{F^{\prime \prime}}\right) \tag{2.75}
\end{equation*}
$$

If $z^{\prime}+z^{\prime \prime}<c\left(E\left(Y_{P}\right)\right)$, then $Y$ is not $P$-peripherally contained in any minimum Steiner tree for $I$.

Proof. First, note that if $P^{\prime \prime}=\emptyset$, then the corollary follows directly from Theorem 2.28, because $z^{\prime}$ is a lower bound on the weight of a minimum Steiner tree in $I_{Y, P}$. Thus, we assume $P^{\prime \prime} \neq \emptyset$ in the following.

Suppose there is a minimum Steiner tree $S$ for $I$ such that $Y$ is $P$-peripherally contained in $S$. Define $\tilde{S}$ as in the proof of Theorem 2.28. Further, proceed as in the proof of Theorem 2.28 to reconnect all connected components of $\tilde{S}$ that contain a vertex from $P^{\prime}$. As a result, $\tilde{S}$ has at most $\left|P^{\prime \prime}\right|+1$ connected components. Because $S$ is assumed to be optimal, each connected component of $\tilde{S}$ contains at least one terminal. Thus, we can reconnect the remaining connected components similarly to Theorem 2.28, by using paths corresponding to edges of $F^{\prime \prime}$. We need to add at most $\left|P^{\prime \prime}\right|$ such paths. Overall, we have increased the weight of $\tilde{S}$ by at most $z^{\prime}+z^{\prime \prime}$. From $z^{\prime}+z^{\prime \prime}<c\left(E\left(Y_{P}\right)\right)$ we obtain that

$$
\begin{equation*}
c(E(\tilde{S}))<c(E(S)) \tag{2.76}
\end{equation*}
$$

which contradicts the optimality of $S$.
As for Theorem 2.28, the contractions in Corollary 2.29 should only be performed implicitly in practice. Furthermore, one requires a careful implementation to avoid a recomputation from scratch of the two minimum spanning trees in Corollary 2.29 for each enumerated tree in Algorithm 2.1.

Next, let $Y \subseteq G$ be a tree with pruning set $P$, and let $v, w \in V(Y)$ and let $Q$ be the path between $v, w$ in $Y$. We define a pruned tree bottleneck between $v$ and $w$ as a subpath $Q(a, b)$ of $Q$ that satisfies $\left|\delta_{Y}(u)\right|=2$ and $u \notin P$ for all $u \in V(Q(a, b)) \backslash\{a, b\}$,
$V(Q(a, b)) \cap T \subseteq\{a, b\}$, and maximizes $c(V(Q(a, b)))$. The weight $c(V(Q(a, b)))$ of such a pruned tree bottleneck is denoted by $b_{Y, P}(v, w)$. Using this definition and the implied bottleneck Steiner distance, we obtain the following result.

Proposition 2.30. Let $Y$ be a tree, let $P$ be a pruning set for $Y$, and let $v, w \in V(Y)$. If $s_{p}(v, w)<b_{Y, P}(v, w)$, then $Y$ is not $P$-peripherally contained in any minimum Steiner tree.

The proposition can be proven in a similar way as Theorem 2.11 (and is indeed a generalization of the latter).

Another criterion can be devised by using the reduced costs of the bidirected cut formulation (BDCut). Let $D=(V, A)$ be the bidirected equivalent of $G$, and let $r \in T$ be the root for BDCut. Consider a dual solution to BDCut, with reduced $\operatorname{costs} \tilde{c}$, and with objective value $\tilde{L}$. Further, for any $v, w \in V$, let $\tilde{d}(v, w)$ be the length for a shortest, directed path from $v$ to $w$ in $A$ with respect to the reduced costs. From the observation that an optimal Steiner arborescence cannot contain any cycles, we obtain the following result with standard linear programming arguments:

Proposition 2.31. Let $Y$ be a tree. Let $P=\left\{p_{1}, \ldots, p_{k}\right\}$ be a strict pruning set for $Y$ such that there is a $k^{\prime} \leqslant k$ with $p_{i} \in T$ if and only if $i>k^{\prime}$. Further, assume that $V\left(Y_{P}\right) \cap T \subseteq L\left(Y_{P}\right)$, and $|P|<|T|$. The weight of any Steiner tree that strictly $P$-peripherally contains $Y$ is at least

$$
\begin{equation*}
\tilde{L}+\min _{i \in\{1, \ldots, k\}} \max _{\left\{t_{1}, . . t_{i-1}, t_{i+1}, \ldots, t_{k^{\prime}}\right\} \subseteq T \backslash V\left(Y_{P}\right)}\left\{\tilde{d}\left(r, p_{i}\right)+\sum_{j \leqslant k^{\prime}, j \neq i} \tilde{d}\left(p_{j}, t_{j}\right)\right\} \tag{2.77}
\end{equation*}
$$

Given an upper bound on the cost of a minimum Steiner tree, this proposition can be used in the RuleOutStrict routine. In practice, we only use a lower bound on the max subterm in (2.77).

Finally, another important reduction criteria is constituted by edge conflicts-this result follows directly from Proposition 2.23.

Corollary 2.32. Let $I^{(k)}$ be an SPG obtained from performing a series of $k$ valid reductions on an SPG I. Let $Y \subseteq G^{(k)}$ be a tree, and let $P$ a pruning set for $Y$. If there are distinct edges $e_{1}, e_{2} \in E^{(k)}(Y)$ such that $\Lambda^{(k)}\left(e_{1}\right) \cap \Lambda^{(k)}\left(e_{2}\right) \neq \emptyset$, then $Y$ is not $P$-peripherally contained in any minimum Steiner tree.

### 2.5 Primal heuristics

In the mathematical world, heuristics might be characterized as the Cinderellas ${ }^{11}$ of discrete optimization. Both are mostly kept out of view (in the case of heuristics because of the somewhat embarrassing lack of theoretical performance guarantees), but they do much of the real work behind the scenes. Thus, heuristics are very popular in the more practically minded operations research community. In the case of the

[^6]SPG, the number of articles concerned with primal heuristics is huge. An overview of articles up to 1992 can be found in Hwang et al. (1992). Newer developments are referenced in Duin and Voss (1997); Pajor et al. (2017); Polzin and Daneshmand (2001b); Ribeiro et al. (2001). See also the recent survey by Ljubic (2020).

Obtaining Steiner trees of small weight is often of independent relevance, but the corresponding upper bounds on the optimal solution value are also highly relevant for exact SPG solution. For example, such upper bounds are indispensable for the bound-based reductions described in Section 2.3.2. Additionally, tight upper bounds are highly important for ruling-out subproblems during branch-and-bound.

We use three (well-known) local-search heuristics in our implementation: Vertexinsertion, key-path exchange, and key-vertex elimination. Given a Steiner tree $S$, vertex-insertion computes for each vertex $v \notin V(S)$ that is adjacent to $S$ an MST on the graph induced by $V(S) \cup\{v\}$. This MST is also a Steiner tree. Key-vertices of a Steiner tree $S$ are all $v \in V(S)$ with $v \in T$ or $\left|\delta_{S}(v)\right| \geqslant 3$. A key-path is a path in $S$ with a key-vertex at both endpoints, but without any intermediary key-vertices. Key-path exchange attempts to replace key-paths in $S$ by other paths of smaller cost between the same endpoints. Similarly, for key-vertex elimination in each step a nonterminal key-vertex and all adjoining key-paths are removed from $S$, and an attempt is made to reconnect the resulting subtrees at lower cost. Our implementation of these heuristics follows Uchoa and Werneck (2010).

In the following, we describe several so-called construction heuristics-heuristics that build feasible solutions from scratch.

### 2.5.1 Shortest path heuristic and implications

The shortest path heuristic is arguably the best-known primal SPG heuristic. Introduced in 1980 by Takahashi and Matsuyama (1980), it has found its way into various publications, e.g. Hwang et al. (1992); de Aragão and Werneck (2002); Polzin and Daneshmand (2001b); Pajor et al. (2017). The algorithm starts with a tree $S$ consisting of a single vertex and iteratively connects $S$ by a shortest path to a terminal closest to $S$. The run time of the heuristic is in $O(|T|(m+n \log n))$. As a simple postprocessing step, one can compute a minimum spanning tree on $(V(S), E[S])$ and iteratively remove non-terminal leaves. An efficient implementation is given in de Aragão and Werneck (2002). Obviously, the solution provided by the heuristic depends on the starting point. Since the heuristic is empirically very fast, it is therefore usually run from several vertices. This section shows how to use the implication concept introduced in Section 2.3.1 to (empirically) improve the algorithm.

Let $v_{0} \in V$, and initially set $S:=\left\{v_{0}\right\}$. Define a distance array $\tilde{d}$ and a predecessor array pred by $\tilde{d}[u]:=\infty, \operatorname{pred}[u]:=$ null for all $u \in V \backslash\left\{v_{0}\right\}$, and $\tilde{d}\left[v_{0}\right]:=0$, $\operatorname{pred}\left[v_{0}\right]:=v_{0}$. Define for all $v \in V \backslash T$ :

$$
\begin{equation*}
\tilde{p}(v):=\max \{0, \sup \{\bar{b}(e)-c(e) \mid e=\{v, w\} \in \delta(v), w \in T \backslash V(S)\}\} \tag{2.78}
\end{equation*}
$$

For all $v \in T$ set $\tilde{p}(v):=0$. Essentially, (2.78) is a weaker version of the implied profit from Section 2.3.1. Finally, set $Q:=\left\{v_{0}\right\}$.

While $Q \neq \emptyset$ let $v:=\arg \min _{u \in Q} \tilde{d}[u]$. If $v \in T$, add the path $P$ from $v$ to $S$, marked by the predecessor array, to $S$, add $V(P)$ to $Q$, and set $\tilde{d}[u]:=0$ for all $u \in V(P)$. Furthermore, update (2.78). For all $\{v, w\} \in \delta(v)$ proceed as follows. If

$$
\begin{equation*}
\tilde{d}[v]+c(\{v, w\})-\min \{c(\{v, w\}), \tilde{p}(v), \tilde{d}[v]\}<\tilde{d}[w] \tag{2.79}
\end{equation*}
$$

then set $\tilde{d}[w]$ to the left hand side of (2.79), and add $w$ to $Q$. Further, set pred $[w]:=v$.
Note that (2.79) provides a bias for paths computed by the heuristic to include vertices of implied profit. In this way, the distance associated with a path also reflects the cost needed to connect additional terminals later on. Note that the minimum spanning tree computed during postprocessing will always contain the edge associated with each vertex of positive implied profit contained in $S$. For performance reasons, we use in (2.78) instead of $\bar{b}(e)$ for $e=\{v, w\}, w \in T$, the value $\min _{e^{\prime} \in \delta(w) \backslash\{e\}} c\left(e^{\prime}\right)$.

### 2.5.2 Reduction based heuristics

This section introduces heuristics that make heavy use of SPG reduction techniques. We with start with two heuristics from Polzin and Daneshmand (2001b), and end this section with a new heuristic

## Prune

While the following heuristic is originally based on Voronoi diagram reductions (Polzin and Daneshmand, 2001b), we instead describe a modification of the heuristic based on the (stronger) terminal-regions decomposition introduced in Section 2.3.2. Recall that for the terminal-regions decomposition test an upper bound is provided by the weight of a given solution. In the prune heuristic, the bound is chosen such that a predefined number of edges is eliminated. Thereupon, all exact reduction methods are executed on the reduced problem, motivated by the assumption that the (possibly inexact) eliminations performed by the bound-based method will allow for further (exact) reductions. This procedure is repeated several times. On the final reduced problem, a solution is computed by using the above shortest path heuristic. This solution is retransformed to a solution to the original SPG instance. To avoid infeasibility, initially a feasible solution is computed (by using the shortest-path heuristic introduced above) of which no vertices or edges are allowed to be deleted by the (inexact) bound-based method.

## Ascend-and-prune

Ascend-and-prune is borne from the combination of the prune heuristic and dualascent. Let $I$ be an SPG instance, and $I^{\prime}$ the equivalent bidirected SAP. The ascend-and-prune heuristic computes a solution on the subproblem $\tilde{I}$ constituted by the (undirected) edges of $I$ corresponding to zero-reduced-cost paths in $I^{\prime}$ from the root to all additional terminals. This solution on $\tilde{I}$ is computed by the prune heuristic. The ascend-and-prune heuristic is motivated by the assumption that notable similarities exist between an optimal (or near-optimal) Steiner tree and the LP solution
corresponding to the reduced costs provided by dual-ascent. Finally, we note that the idea of searching for a solution on the subproblem induced by dual-ascent can already be found in Wong (1984).

## Recombine-and-reduce

Consider an SPG instance $I=(V, E, T, c)$ and let $\mathcal{L}$ with $|\mathcal{L}| \geqslant 2$ be a set of feasible solutions to $I$. The recombine-and-reduce heuristic tries to compute new Steiner trees out of the solutions in $\mathcal{L}$. The key component of the heuristic is an operation that we will refer to as n-merging. Given a solution $S \in \mathcal{L}$, and an $n \in \mathbb{N}$ with $n \geqslant 2$, define the $n$-merging operation as follows: Choose $\mathcal{L}^{\prime} \subseteq \mathcal{L} \backslash\{S\}$ such that $\left|\mathcal{L}^{\prime}\right|=n-1$ (in a pseudo-random way). Let $G_{S}:=\left(V_{S}, E_{S}\right):=\bigcup_{S^{\prime} \in \mathcal{L}^{\prime}} S^{\prime} \cup S$. If $G_{S}$ consists of several biconnected components, we perform the following procedure for each of these biconnected components individually. In the following, we assume that $G_{S}$ is biconnected. Let $I_{S}:=\left(V_{S}, E_{S}, T, c \upharpoonright_{E_{S}}\right)$. Applying the reduction techniques introduced in this thesis to $I_{S}$, we obtain a new SPG $I_{S}^{\prime}$. During the reduction process one often obtains feasible solutions to $I_{S}$ (since several primal heuristics are performed). Let $\tilde{S}$ be the best such solution, if existent.

Another solution is computed on $I_{S}$ after perturbing the edge costs $c \upharpoonright_{E_{S}}$ as follows. Consider for each edge $e \in E_{S}$ the ancestor set $\Pi(e) \subseteq E$ defined in Section 2.3.4. Define

$$
\begin{equation*}
\alpha(e):=\frac{\sum_{S^{\prime} \in \mathcal{L}^{\prime}}\left|\Pi(e) \cap E\left(S^{\prime}\right)\right|}{|\Pi(e)|} . \tag{2.80}
\end{equation*}
$$

Next, the cost of each edge $e \in E_{S}$ is multiplied by a (pseudo-random) number that is anti-proportional to $\alpha(e)$-i.e., the number increases as $\alpha(e)$ decreases. On this perturbed SPG instance, a heuristic solution is computed and retransformed to the original solution space. This solution is compared with the solution obtained during the reduction process, and the better of the two is retained.

The recombine-and-reduce heuristic is clustered around the $n$-merging operation: Given a new solution $S$, in each run we consecutively perform several $n$-merging operations with varying $n$. When a solution $S^{\prime}$ is generated during an $n$-merging such that $c\left(E\left(S^{\prime}\right)\right)<c(E(S))$, we set $S:=S^{\prime}$ and add $S^{\prime}$ to $\mathcal{L}$. Moreover, in this case a new run is started after the conclusion of the current one. The total number of runs is limited.

We note that a forerunner of this heuristic was already included in a SCIP-JACK version that predates this thesis. Moreover, this older version is itself a generalization of an approach described in Pajor et al. (2017).

### 2.6 Solving to optimality

For solving SPG instances to optimality we rely on two methods: dynamic programming and branch-and-cut. We note, however, that in this thesis the latter is the far more important method. For both dynamic programming and branch-and-cut we make heavy use of the algorithms introduced so far.

### 2.6.1 Combining extended reductions and dynamic programming

The well-known exact SPG algorithm by Dreyfus and Wagner (1971) exploits the fact that any optimal Steiner tree $S$ for an SPG $(G, T, c)$ can be split at any $v \in V(S)$ into two non-empty trees $S_{1}$ and $S_{2}$ such that $T_{1}:=V\left(S_{1}\right) \cap T \neq \emptyset, T_{2}:=V\left(S_{2}\right) \cap T \neq \emptyset$, and:

1. $T_{1} \cap T_{2} \subseteq\{v\}$ and $T_{1} \cup T_{2}=T$,
2. $S_{1}$ is optimal for $\left(G, T_{1} \cup\{v\}, c\right)$, and $S_{2}$ is optimal for $\left(G, T_{2} \cup\{v\}, c\right)$.

This observation can be exploited to find an optimal Steiner tree in a dynamic programming fashion-by recursively computing an optimal Steiner tree for any terminal set $T^{\prime} \cup\{v\}$ for any $T^{\prime} \subseteq T$ and any $v \in V \backslash T^{\prime}$. In Erickson et al. (1987) a slightly improved version of the algorithm by Dreyfus and Wagner (1971) is given that achieves a run time of $O\left(3^{|T|} n+2^{|T|}(m+n \log n)\right)$. The authors use the fact that given an optimal Steiner tree for a terminal set $T^{\prime}$, optimal Steiner trees for terminal sets $T^{\prime} \cup\{v\}$ for all $v \in V \backslash T^{\prime}$ can be computed by just one execution of Dijkstra's algorithm.

There have been notable efforts during the last years to make the algorithms by Dreyfus and Wagner (1971) and Erickson et al. (1987) competitive in practice, see e.g. Hougardy et al. (2017); Iwata and Shigemura (2019) for prominent examples. However, these implementations can usually not match the state of the art solver from Polzin (2003); Vahdati Daneshmand (2004) even for instances with few terminals. A critical component of practical realizations of the above dynamic programming scheme are so-called pruning techniques, which allow one to discard optimal Steiner trees for certain terminal sets. In this way, often a dramatic speed-up can be obtained as compared to naive implementations, see e.g. Iwata and Shigemura (2019). In this context, one notices that most of the reduction criteria introduced for extended reduction methods in Section 2.4.2 can also be used for pruning. The resulting methods are considerably stronger than the pruning techniques employed in the literature so far. Our dynamic programming implementation combines these techniques with the node-separator concept from Iwata and Shigemura (2019). Unfortunately, however, our implementation is only competitive with branch-and-cut for instances with less than 20 terminals - and these instances are usually solved quickly by either approach. Still, in the context of decomposition techniques, where we often obtain many small sub-problems, the dynamic programming algorithm has turned out to be useful.

We also tentatively implemented FPT algorithms based on tree-width, see e.g. Chimani et al. (2012), and on the border concept by Polzin and Daneshmand (2006). However, we could only achieve performance gains on very few instances compared to our default approach. Furthermore, we observed an overall performance degradation even when we limited the execution of these algorithms to instances with small tree-width.

### 2.6.2 Branch-and-cut

This section describes how to assemble the various techniques introduced so far within an (exact) branch-and-cut algorithm. All algorithms discussed in this chapter
so far are part of the following three classes, which form the main pillars of our exact algorithm:

- reduction techniques,
- heuristics (primal and dual), and
- IP formulation and cutting planes.

The dynamic programming algorithm introduced in the previous section can be seen as an exception to this classification. However, this algorithm is not often applied (and usually only for sub-problems).

Notably, the three algorithmic classes are deeply intertwined. For example, reduction methods are crucial for the success of prune, ascend-and-prune, and recombine-and-reduce, while the quality of the primal bound obtained by these heuristics determines the effectiveness of the bound-based reduction methods. Additionally, reduced problems usually show a smaller integrality gap for the IP formulation, and require less time for solving the LP-relaxation. In turn, the reduced-costs from the LP-relaxation can be used for further reductions.

In the following, we list the main components of the branch-and-cut framework that is used for exact SPG solution in this thesis. Additional technical details of the branch-and-cut procedure - both for SPG and the subsequently discussed related problems-can be found in Section 6.2.

Presolving For presolving, the reduction methods described in this thesis are executed iteratively within a loop. This loop is reiterated as long as a predefined percentage of edges has been eliminated during the previous round. Naturally, the, empirically, faster reduction methods are performed first. Empirically, the order of the reduction techniques only has a small impact on the strength of the presolving. Indeed, for the classic SPG reduction techniques from Duin and Volgenant (1989b) this behavior can also be theoretically verified, see Kingston and Sheppard (2003). For computing reduced-costs during presolving, we employ dual-ascent.

Domain propagation During branch-and-bound we use the reduced-costs from the LP-relaxations for fixing arcs of the $B D C u t$ formulation to 0 . To this end, we use the path-based criterion used in Section 2.3.2. Additionally, whenever a predefined percentage of all arcs have been newly fixed during the branch-and-bound procedure, further reduction techniques are applied as follows. Let $I=(V, E, T, c)$ be the considered SPG instance. All edges $\{v, w\} \in E$ such that both $y((v, w))$ and $y((w, v))$ have been fixed to 0 are removed from $I$. Edges $\{v, w\} \in E$ such that either $y((v, w))$ or $y((w, v))$ has been fixed to 1 are contracted. Additionally, $I$ is modified as to reflect the branching history, see paragraph Branching below. Finally, several of the reduction methods described in this thesis are performed on $I$, and the changes are retranslated into arc fixing. While the deletion of edges can be directly translated into variable fixings, the situation is more complicated for vertex replacements. Therefore, other authors, e.g. Polzin and Daneshmand (2001b), use only edge deleting reductions for domain propagation. However, by using the ancestor concept introduced in

Section 2.3.4, one can readily devise a criterion to employ all reduction operations used in this thesis for domain propagation.

Proposition 2.33. Let $I=(V, E, T, c)$ be an $S P G$ and let $I^{(k)}$ be the $S P G$ obtained from performing a series of $k$ valid reductions on $I$. Define an $S P G$ instance $I^{\prime}=$ $\left(V^{\prime}, E^{\prime}, T^{\prime}, c^{\prime}\right)$ as follows:

$$
E^{\prime}:=\bigcup_{e \in E^{(k)}} \Pi^{(k)}(e) \cup \Pi_{F I X}^{(k)}
$$

$V^{\prime}=\left\{v \in V \mid \exists e \in E^{\prime}, v \in e\right\}, T^{\prime}:=T$, and $c^{\prime}:=c \upharpoonright_{E^{\prime}}$. Any optimal solution to $I^{\prime}$ is an optimal solution to $I$.

We do not provide a proof, but note that the validity of the proposition follows from Observation 2.22.

Decomposition It is well-known that the biconnected components of the graph underlying an SPG instance can be solved separately. Given the super-linear run time of most algorithms that we employ, such a decomposition can lead to significant speedups. While SPG instances usually do not have articulation points in their original form, this property sometimes changes after the application of reduction techniques. Therefore, we use decomposition into biconnected components both during presolving and during branch-and-cut.

Primal heuristics We try to retain the best solution found during presolving, to provide it as an initial primal solution. Additionally, we use the reduced costs obtained during the creation of the initial cutting planes (as detailed below) for applying the ascend-and-prune heuristic before the branch-and-bound procedure starts. During branch-and-bound, we periodically employ our shortest-path heuristic, and the recombine-and-reduce heuristic. Additionally, we use the local heuristics vertexinsertion, key-path exchange, and key-vertex elimination to improve high quality primal solutions. We furthermore use the solution to the current LP-relaxation to guide the shortest-path heuristic - an idea already utilized by other authors, e.g. Koch and Martin (1998). We alter the arc weight as follows: Given an LP solution $y \in \mathbb{Q}^{A}$ to $B D C u t_{F B}$, the (directed version of the) shortest-path heuristic is called with the arc weights $(1-y(a)) \cdot c(a)$ for all $a \in A$. In this way, arcs with a high LP solution value are more likely to be selected by the heuristic.

Separation After presolving, SCIP-JACK runs the dual-ascent heuristic to select a set of constraints from the $B D C u t$ formulation to be included into the initial LP. Additionally, we use all 0-1 constraints. We separate the remaining constraints of the $B D C u t$ formulation by using a newly implemented maximum-flow algorithm, see Section 6.2 .4 for more details. We also separate the flow-balance constraints. Additionally, we use another class of cuts from Koch and Martin (1998):

$$
\begin{equation*}
y\left(\delta^{-}(v) \backslash(w, v)\right) \geqslant y((v, w)), \quad \text { for all }(v, w) \in \delta^{+}(v), v \in V \backslash T \tag{2.81}
\end{equation*}
$$

Although Polzin and Daneshmand (2001a) show that the constraints (2.81) cannot improve the objective value of the $B D C u t$ LP-relaxation, the constraints usually lead to a speed-up of the branch-and-cut procedure.

Branching Classic variable branching for the BDCut formulation often leads to a badly balanced branch-and-bound tree, since the inclusion of an arc has a far larger impact than its exclusion. Thus, a well-known strategy is to branch on vertices instead, see e.g. Hwang et al. (1992): A selected vertex is made a terminal in one branch-and-bound child node, and is removed in its sibling. Such a change is reflected in the IP formulation by adding one additional constraint. We note, however, that branching is rarely required, due to the various powerful algorithms that we apply before. As such, more than 95 percent of the SPG instances considered in this thesis are solved without any branching.

### 2.7 Computational results

This section provides computational results for our Steiner tree solver SCIP-JACK on a large collection of SPG instances from the literature. We look at the impact of individual components, and furthermore compare SCIP-JACK with the state of the art in SPG solution. An overview of the test-sets is given in Table 2.1. The second column gives the number of instances per test-sets. The third and fourth columns give the range of nodes and edges per test-set. The fifth column states whether for all instances of the test-set optimal solutions are known. We note that this collection covers almost all established test-sets from the literature - including the SteinLib (Koch et al., 2001), as well as the 11th DIMACS and 3rd PACE Challenge instances - except for very easy ones. More details are given in Section 2.7.3. See Section 1.2.1 for hardware details.

### 2.7.1 Individual components

We start with computational results for individual components of SCIP-JACK. A common way of demonstrating the impact of a single component within an exact solver is to report the performance change when deactivating this component, see e.g. Achterberg (2007b). With a large number of algorithms being combined in a solver - as is the case in this thesis - the question is on the granularity of this approach. We have observed that several algorithms, such as individual heuristics, are reasonably well compensated by another one, so simply deactivating one of them does not show a large performance impact. However, deactivating two complementary algorithms can already have a much larger impact than just deactivating either of them. Thus, we have decided for a hybrid approach. First, we show the individual impact of the three major building blocks of our SPG solver. Second, we take a more in-depth look at the, arguably, most important of them: reduction techniques. In particular, we will demonstrate the impact of the (newly introduced) implied Steiner bottleneck distance techniques.

| Name | $\#$ | $\|V\|$ | $\|E\|$ | Status | Description |
| :--- | ---: | :---: | :---: | :---: | :--- |
| PACE-A | 100 | $53-10393$ | $80-204480$ | solved | Instances from the 3rd PACE Challenge <br> Track A (few terminals). |
| PACE-B | 100 | $15-36415$ | $35-145635$ | solved | Instances from the 3rd PACE Challenge <br> Track B (small tree-width). |
| 2R | 27 | 2000 | 11600 | solved | 3-D cross grid graphs from STEINLIB. <br> Grid graphs with holes (non-geometric) <br> from VLSI design (Koch and Martin, 1998). |
| VLSI | 116 | $90-36711$ | $135-68117$ | solved | Instances derived from telecommunication <br> network design, see Leitner et al. (2014), |
| vienna-s | 85 | $1991-89596$ | $3176-148583$ | solved | Presolved versions of the above |
| network design instances. |  |  |  |  |  |

Table 2.1: Details on SPG benchmark sets.

## The big picture

As elaborated in Section 2.6, the three main building blocks of our SPG solver are reduction techniques, heuristics, and the separation routine (for BDCut). Unfortunately, deactivating the separation routine is not feasible, because $B D C u t$ has exponentially many constraints, and using the equivalent multi-commodity flow formulation $D F$ instead leads to out-of-memory aborts on many instances. Thus, we concentrate on reduction methods and heuristics. Due to the long run times and limited computational resources, we have not included all test-sets from Table 2.1 in these experiments. Since we are interested in the big picture, we mostly use aggregated test-sets, to simplify presentation. The test-sets are as follows:

- Adversarial (PUC, SP)
- Group (WRP3, WRP4)
- Rectilinear (ES10000, TSPFST)
- Telecom (GEO-org, vienna-s)
- VLSI

In the following, we show the performance impact of deactivating: first, all reduction methods; second, all primal heuristics for finding feasible solutions during branch-and-bound; third, all primal heuristics both for branch-and-bound and for reduction techniques. In Table 2.2 we provide the computational results with a time limit of two hours. The first five rows of Table 2.2 list the percentual change in the run time with respected to the shifted geometric mean; the last five rows provide the corresponding percentual change with respect to the arithmetic mean of the run times. In this way, the first column of each row states the test-set to be considered. Ensuing, each of the next three columns provides the result of excluding the solving component specified in the head of the table. We emphasize that positive values signify a favorable impact of the respective algorithmic component on SCIP-JACK.

|  | Test-set | reduction techniques | B\&B primal heuristics | all primal heuristics |
| :---: | :---: | :---: | :---: | :---: |
|  | Adversarial | +75.8 | +33.3 | +63.3 |
| $\stackrel{ }{+}$ | Group | +156.0 | +48.0 | +112.0 |
| $\stackrel{\text { E }}{ }$ | Rectilinear | +750.0 | +350.0 | +425.0 |
| ¢ | Telecom | +22821.1 | -3.5 | +31.6 |
| \% | VLSI | +450.0 | +25.0 | +375.0 |
| $\stackrel{\square}{0}$ | Adversarial | +20.0 | +2.3 | +4.2 |
| $\frac{5}{5}$ | Group | +294.2 | +130.2 | +174.3 |
| S | Rectilinear | +12613.9 | +12528.3 | +12759.4 |
| ${ }^{2}$ | Telecom | +12508.2 | -5.3 | +8.7 |
| ¢ | VLSI | +13325.1 | +85.1 | +7566.2 |

Table 2.2: Each column reports the results of our SPG solver without the specified methods. The values denote the percentual change with respect to the default setting.

Unsurprisingly, the largest impact is achieved by the reduction techniques. Especially the increase in the arithmetic mean time is huge, which reflects the fact that many otherwise easily solvable instances become intractable without reduction methods. But also the primal heuristics have a considerable impact. An exception is the Telecom test-set, where the use of primal heuristics during branch-and-bound actually leads to a slight slowdown-for these instances the LP-relaxations are very tight, and optimal primal solutions can usually be found by a simple rounding procedure. Additionally, it can be seen that deactivating primal heuristics also for reduction techniques (as show in the last column) leads to a significant further slowdown. The most prominent example is the VLSI test-set, where the impact of deactivating primal heuristics throughout the entire solution process is an order of magnitude larger than the impact of just deactivating primal heuristics during branch-and-bound. This behavior shows the significance of primal heuristics for reduction techniques - where they are indispensable for bound-based methods. In turn, reduction methods are also
used in several primal heuristics, which further increases their overall impact.

## Reductions

This section demonstrates the strength of the reduction methods implemented in SCIP-Jack. To this end, we use a somewhat more aggressive reduction procedure than in the default version of SCIP-JACK. In this way, we can better convey the strength of the reduction techniques, since the default version of SCIP-JACK aborts the reductions early if the problem can be decomposed into sufficiently small connected components, or if the number of terminals is small. In the remainder of this chapter we will also use a slightly newer version of SCIP-JACK (as compared to the other chapters of this thesis), which include some (SPG-specific) improvements of the implementation of the extended reductions techniques. Table 2.3 shows the arithmetic mean of the percentage of vertices and edges in the presolved problems. Further, we report the shifted geometric mean (see Section 1.2.2) of the run time needed per test-set, with shift $s=1$.

It can be seen that the considerable effort put into the various algorithms used within presolving pays off. Apart from the constructed, adversarial test-sets PUC, PUCN, and SP, the average size of both the number of vertices and edges is reduced by more than 50 percent on all test-sets, on most even my more than 80 percent. Additionally, many instances are already solved to optimality in presolving.

|  | average reduced problem size |  |  |
| :--- | ---: | ---: | ---: |
| Test-set | nodes[\%] | edges[\%] | mean reduction time [s] |
| 2R | 9.9 | 12.7 | 1.0 |
| Copenhag14 | 32.1 | 29.4 | 0.8 |
| ES-R50 | 12.6 | 16.6 | 100.6 |
| ES10000FST | 15.1 | 16.8 | 39.7 |
| GEO-a | 21.5 | 22.5 | 13.0 |
| GEO-org | 5.8 | 6.5 | 14.1 |
| LIN | 7.6 | 7.5 | 2.5 |
| PUCN | 78.6 | 62.2 | 0.6 |
| PUC | 98.4 | 99.2 | 0.6 |
| SP | 37.5 | 37.5 | 0.3 |
| TSPFST | 10.2 | 11.2 | 0.2 |
| vienna-a | 4.8 | 5.0 | 2.2 |
| vienna-s | 2.0 | 1.8 | 2.7 |
| VLSI | 0.1 | 0.1 | 0.3 |
| WRP3 | 48.4 | 48.6 | 1.1 |
| WRP4 | 33.5 | 33.0 | 0.4 |

Table 2.3: Average problem sizes after application of reduction algorithms.
Naturally, there is a trade-off between the strength of the reductions (which can be strongly controlled by parameters) and the run time. Thus, it is also difficult to compare the strength of our reduction package with the state-of-the-art implementation by Polzin (2003) and Vahdati Daneshmand (2004). Even more so, because in the updated report Polzin and Vahdati-Daneshmand (2014) no reduction results are given, and a quite different machine is used in Polzin (2003) and Vahdati Daneshmand (2004). Still, we note that at least with regards to the size of
the reduced instances, our reduction techniques are competitive with those of Polzin (2003) and Vahdati Daneshmand (2004). For example, on WRP4 they report an average of 44.2 percent for the remaining edges, while we achieve 33.0 percent. On the other hand, on the $2 R$ instances Polzin (2003); Vahdati Daneshmand (2004) report only 6.2 percent of remaining edges, compared to 12.7 in our case.

These results also speak for the strength of the new reduction techniques developed in this thesis, since several reduction methods from Polzin (2003) and Vahdati Daneshmand (2004) -such as complete backtracking in extended reductions, or full terminal separator decomposition-have not been implemented in our solver yet.

Next, we concentrate on the impact of a particular class of reduction methods: Those based on the $s_{p}$ distance. We have decided on this class of reductions, because they generalize the most important reduction concept for SPG, the bottleneck Steiner distance. We use seven benchmark sets from the literature; three from the DIMACS Challenge, three from the SteinLib, and one from Juhl et al. (2018). Table 2.4 shows in the first column the name of the test-set, followed by its number of instances. The next columns show the percentual average number of nodes and edges of the instances after the preprocessing without (column three and four), and with (columns five and six) the $s_{p}$ based methods. The last two columns report the percentual relative change between the previous results.

It can be seen that the $s_{p}$ methods allow for a significant additional reduction of the problem size. This behavior is rather remarkable, given the variety of other powerful reduction methods included in SCIP-JACK. Even if the percentage of remaining edges and nodes is already small on average for the base processing (such as for VLSI), there are for each of the seven test-sets at least a few instances that are still of large size. These instances can often be significantly reduced by the $s_{p}$ techniques. While no run times are reported in the table, we note that on each of the seven test-sets the overall run time of the preprocessing (often significantly) decreases when the $s_{p}$ based methods are used. Furthermore, even for other test-sets where the $s_{p}$ methods are less (or not at all) successful, one does not observe an increase in the run time of the preprocessing above 10 percent.

| Test-set | \# | base preprocessing |  | $+s_{p}$ techniques |  | relative change |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | nodes [\%] | edges [\%] | nodes [\%] | edges [\%] | nodes [\%] | edges [\%] |
| VLSI | 116 | 0.4 | 0.4 | 0.1 | 0.1 | -75.0 | -75.0 |
| vienna-s | 85 | 3.3 | 3.0 | 2.0 | 1.8 | -39.4 | -40.0 |
| WRP4 | 63 | 36.2 | 36.0 | 33.5 | 33.0 | -7.5 | -8.3 |
| Copenhag14 | 21 | 33.7 | 32.5 | 32.1 | 29.4 | -4.7 | -9.5 |
| GEO-org | 23 | 6.7 | 7.6 | 5.8 | 6.5 | -13.4 | -14.5 |
| ES10000FST | 1 | 24.1 | 27.1 | 15.1 | 16.8 | -37.3 | -38.0 |
| ES-R50 | 15 | 17.5 | 22.8 | 12.6 | 16.6 | -28.0 | -27.2 |

Table 2.4: Average remaining nodes and edges after preprocessing.

### 2.7.2 PACE Challenge 2018

The Parameterized Algorithms and Computational Experiments Challenge (PACE) has been initiated to investigate the practical performance of parameterized algorithms. It is sponsored by the University of Amsterdam, Eindhoven University of Technology, Leiden University, and the Center for Mathematics and Computer Science (CWI). The 3rd PACE Challenge (Bonnet and Sikora, 2019), which took place in 2018, was concerned with fixed-parameter tractable (FPT) algorithms for the SPG- recall that for SPG instances with a fixed number of terminals or with a fixed treewidth, polynomial-time algorithms are known. The PACE Challenge 2018 included three tracks, each with 100 instances and a time limit of 30 minutes per instance. Overall, the challenge had 75 submissions.

Although SCIP-JACK does not include any FPT algorithms, Thorsten Koch and the author of this thesis decided to submit it to all three tracks of PACE 2018. Since no commercial solvers were allowed, SoPlex 4.0 was used as LP solver. In Track A (exact solution of instances with few terminals) SCIP-JACK reached 3rd place ${ }^{12}$, in Track B (exact solution of instances with small treewidth) SCIP-JACK reached 1st place, and in Track C (heuristic solution of instances with different FPT characteristics) SCIP-JACK reached 2nd place ${ }^{13}$.

While the actual instances used for the challenge have not been made available, a training test-set of 100 instances was published for each track (with the results on these test-sets being almost identical to the ones of the actual challenge). For these instances of the exact tracks A and B , we report results of running SCIPJack with SoPlex (the configuration used in the actual challenge) as LP solver in Table 2.5. In the actual challenge we used SoPlex 4.0, whereas in this thesis we use SoPlex 5.0, which is the latest version. However, there have been no performance improvements between these two versions. Note that the computational environment used for this thesis is different from the one at the PACE Challenge, which was hosted on the online platform optil, see Wasik et al. (2016). We observed that the SCIP-JACK version used at the PACE Challenge runs roughly 10 percent faster on the environment used in this thesis than on optil. To provide a reasonable comparison with other participants of the PACE Challenge, we have scaled the run times given in the following accordingly. The available memory was limited to 6 GB and a time limit of 30 minutes (or respectively 1620 seconds because of the scaling) was set, as in the PACE Challenge. The average time is reported as the arithmetic mean-since that was the secondary criterion at the PACE Challenge in case of a tie in the number of solved instances.

While SCIP-JACK-PACE, the version used at the challenge, can solve more than $90 \%$ of all instances in both tracks within the time limit, it is substantially outperformed by SCIP-JACK-NEW, the latest version, which solves 99 of the 100 instances in each track. Also, the average run times are considerable smaller for SCIP-JAckNEW. Notably, SCIP-JAck-NEW solves 99 of the 100 instances of Track A to optimality, while the winning solver in this track from the PACE Challenge solves 95 .

[^7]Even better results are achievable when CPLEX is used instead of SoPLEX as LP solver. In this case already the PACE version of SCIP-JACK outperforms the best other solver in Track A. Likewise, the current SCIP-JACK can solve all 100 instances within the time-limit in Track A when CPLEX is used, and the average run time in both tracks is more than halved. Finally, we note that also for the heuristic track $C$, the current version of SCIP-JACK obtains a better score (as used in PACE) than that of the winning PACE solver.

| Track | \# instances | SCIP-JACK-NEW |  | SCIP-JACK-PACE |  | Best other <br> solved |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | solved | avg. time [s] | solved | avg. time [s] |  |
| A | 100 | 99 | 38 | 94 | 111 | 95 |
| B | 100 | 99 | 25 | 92 | 132 | 77 |

Table 2.5: Computational results for PACE 2018 instances.

### 2.7.3 SteinLib and beyond: A comprehensive benchmark

For the comparison with the solver by Polzin (2003); Vahdati Daneshmand (2004), we are restricted to the instances used in Polzin and Vahdati-Daneshmand (2014). Still, the experiments in Polzin and Vahdati-Daneshmand (2014) include a large number of test-sets (both the SteinLib and the 11th DIMACS Challenge collection). Thus, we only use test-sets with at least one instance that takes more than 10 seconds to be solved by Polzin and Vahdati-Daneshmand (2014) or our solver. There is one notable exception: We do not consider the test-sets I320 and I640 from the SteinLib; for the following reason: Polzin and Vahdati-Daneshmand (2014) use specialized, non-default settings for several test-sets, including I320 and I640, where they use only "(...) fast calculation of bounds (...)" during branch-and-bound. As we aim to give an unbiased picture of the performance of our solver, we only use our default settings throughout this thesis. While we can achieve significant speed-ups on all tests-sets when using specialized settings, the impact is by far strongest on the $I$ instances - more than an order of magnitude for the harder instances. We note, however, that we can match the results from Polzin and Vahdati-Daneshmand (2014) on I320 and I640 if we use dual-ascent bounds during branch-and-bound, instead of LP-based ones ${ }^{14}$. However, using a different algorithm for the base component branch-and-cut constitutes a drastic change of our solver. Consequently, we do not provide comparisons for the $I 320$ and I640 test-sets within the table. Other classic benchmark sets, such as the $C$ and $D$ sets from the SteinLib can be considered trivial for our solver (and for

[^8]that by Polzin and Vahdati-Daneshmand (2014)): All these instances are solved in at most 0.1 seconds by SCIP-JACK.

Since the solver by Polzin (2003); Vahdati Daneshmand (2004) is not publicly available, we give a few remarks concerning the comparison of the computational environments. According to the DIMACS benchmark software (DIMACS, 2015), the machine used in this thesis is 1.59 times faster than the computer used in Polzin and Vahdati-Daneshmand (2014) ${ }^{15}$ _just like Polzin and Vahdati-Daneshmand (2014) we used the gcc 4.6.3 compiler for computing the benchmark score, with full-optimization. While the author of this thesis does not have access to the machine used in Polzin and Vahdati-Daneshmand (2014), preliminary experiments on different machines have shown that the DIMACS score is a good estimate for the performance of our solver. Thus, we have scaled the run times reported in the following accordingly. All results were obtained single-threaded. We also note that Polzin and VahdatiDaneshmand (2014) use CPLEX 12.6 as LP solver, while we use (the latest) CPLEX 12.10 throughout this thesis (for reasons of consistency). However, the difference between the two CPLEX versions for SCIP-JACK is neglectable on the instances within this section: A change in the average run time can only be observed for the (less than five percent of) instances that need branching, and even there the impact is not statistically relevant when several random seeds are used.

We compare the solver by Polzin (2003); Vahdati Daneshmand (2004) and the new solver SCIP-JaCK with respect to the mean time, the maximum time, and the number of solved instances. For the mean time we use the shifted geometric mean with a shift of 10 . We note that a shift of $s=1$ would lead to similar relative results of SCIP-JACK compared to Polzin and Vahdati-Daneshmand (2014). We also note that the use of an arithmetic mean would bias strongly in favor of SCIP-JACK, which is especially faster on harder instances. Table 2.6 provides the results for a time-limit of 24 hours, which is the same time-limit as used in Polzin and Vahdati-Daneshmand (2014). The second column shows the number of instances in the test-set. Column three shows the mean time taken by the solver of Polzin (2003); Vahdati Daneshmand (2004), column four shows the mean time of SCIP-JACK. The next column gives the relative speedup of SCIP-JACK. The next three columns provide the same information for the maximum run time, the last two columns give the number of solved instances.

It can be seen that SCIP-Jack consistently outperforms Polzin and VahdatiDaneshmand (2014) -both with respect to mean and maximum time. Also, SCIPJack solves on each test-set at least as many instances as Polzin and VahdatiDaneshmand (2014). The only test-set where Polzin and Vahdati-Daneshmand (2014) prevail is VLSI. On this test-set the results of the extended reductions reported in Polzin (2003) are also stronger, which might be attributed to the use of fullbacktracking, which has not yet been implemented in SCIP-JACK.

On the other test-sets, the difference in the run time is especially apparent for the maximum run time. This behavior can be explained by the fact that most test-sets contain many instances that can be solved very fast by both solvers-which brings the mean times closer together. Prominent examples are the $S P$ and Copenhag14 testsets, for which all instances can be solved by SCIP-JACK within roughly one hour,

[^9]whereas Polzin and Vahdati-Daneshmand (2014) leave several instances unsolved even after 24 hours. Also, the primal-dual gap is significantly smaller for SCIP-JACK: The arithmetic mean on the unsolved PUC instances is 2.3 percent against 3.8 percent in Polzin and Vahdati-Daneshmand (2014).

| Test-set | \# | \# solved |  | mean time (sh. geo. mean) |  |  | maximum time |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | P.\&V. | S.-J. | P.\&V. [s] | S.-J. [s] | speedup | P.\&V. [s] | S.-J. [s] | speedup |
| VLSI | 116 | 116 | 116 | 0.5 | 0.8 | 0.63 | 53.9 | 83.3 | 0.65 |
| TSPFST | 76 | 76 | 76 | 1.5 | 1.1 | 1.36 | 1161.4 | 263.1 | 4.41 |
| WRP4 | 62 | 62 | 62 | 3.2 | 2.4 | 1.33 | 106.1 | 90.8 | 1.17 |
| 2R | 27 | 27 | 27 | 5.0 | 3.0 | 1.67 | 43.9 | 21.1 | 2.08 |
| vienna-a | 85 | $85^{\star}$ | 85 | 7.2 | 5.2 | 1.38 | 441.3 | 59.0 | 7.48 |
| vienna-s | 85 | $85^{\star}$ | 85 | 7.8 | 6.2 | 1.26 | 623.5 | 60.7 | 10.27 |
| WRP3 | 63 | 63 | 63 | 22.8 | 13.5 | 1.69 | 6073.2 | 4886.4 | 1.24 |
| GEO-a | 23 | 23 * | 23 | 158.7 | 55.3 | 2.87 | 6476.5 | 880.9 | 7.35 |
| GEO-org | 23 | 23 * | 23 | 145.6 | 58.5 | 2.49 | 4385.0 | 842.1 | 5.21 |
| ES10000 | 1 | 1 | 1 | 138.0 | 83.0 | 1.66 | 138.0 | 83.0 | 1.66 |
| Cophag14 | 21 | $20^{\star}$ | 21 | 27.7 | 13.8 | 2.01 | $>86400$ | 3845.3 | $>22.47$ |
| SP | 8 | 6 | 8 | 159.4 | 25.8 | 6.18 | $>86400$ | 1688.3 | $>51.18$ |
| LIN | 37 | 35 | 36 | 31.3 | 14.7 | 2.13 | $>86400$ | >86400 | 1.00 |
| PUC | 50 | $17^{*}$ | 18 | 14964.9 | 11901.1 | 1.26 | >86400 | >86400 | 1.00 |

Table 2.6: Computational comparison of the solver developed for this article (S.-J.) and the solver described in Polzin (2003); Vahdati Daneshmand (2004) (P.EVV.). Times marked by a $\star$ were obtained by P.\&V. with (specialized) non-default settings.

As already mentioned, most test-sets in Table 2.6 contain a large number of instances that can be solved by both Polzin and Vahdati-Daneshmand (2014) and our solver in well below one second. To mitigate the impact of such very easy instances on the average times, we group the instances according to their hardness in the following experiment. We use instance groups $\left[10^{k}, 86400\right]$ for $k=-\infty, 0,1,2,3$. Any group [ $10^{k}, 86400$ ] contains each instance from Table 2.6 such that Polzin and VahdatiDaneshmand (2014) or SCIP-Jack solves this instance in not less than $10^{k}$, and at most 86400 seconds. If an instance can be solved by only one solver within the timelimit, we consider the run time of the other solver on this instance as 86400 seconds. Such groupings are commonly used in computational mathematical optimization (also with the time lower bounds being powers of 10), see e.g. Müller et al. (2020); Witzig and Gleixner (2020). In addition to the shifted geometric mean, Table 2.7 also provides the arithmetic mean of the run time for each group. As before, we give the results for both Polzin and Vahdati-Daneshmand (2014) and SCIP-JACK, and report the respective speed-up of SCIP-JACK.

Unsurprisingly, the ratio of the arithmetic mean stays largely unchanged with increasing hardness of the groups. SCIP-JACK is more than a factor of 4 faster than the solver from Polzin and Vahdati-Daneshmand (2014) on all groups. On the other hand, the performance difference with respect to the shifted geometric mean significantly increases with the hardness of the instances. For instances that take more than a thousand seconds to be solved by Polzin and Vahdati-Daneshmand (2014) or SCIP-JACK, the latter is even by a factor of more than 7 faster. This behavior

|  |  | shifted geometric mean time |  |  |  | arithmetic mean time |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | Group | $\#$ | P.\&V. $[\mathrm{s}]$ | S.-J. $[\mathrm{s}]$ | speedup |  | P.\&V. $[\mathrm{s}]$ | S.-J. $[\mathrm{s}]$ |
| $[0,86400]$ | 644 | 12.2 | 7.9 | $\mathbf{1 . 5 4}$ |  | 1235.5 | 264.9 | $\mathbf{4 . 6 6}$ |
| $[1,86400]$ | 342 | 34.5 | 19.6 | $\mathbf{1 . 7 6}$ |  | 2326.4 | 498.7 | $\mathbf{4 . 6 6}$ |
| $[10,86400]$ | 180 | 122.5 | 52.0 | $\mathbf{2 . 3 6}$ |  | 4417.1 | 944.6 | $\mathbf{4 . 6 8}$ |
| $[100,86400]$ | 66 | 1403.2 | 286.6 | $\mathbf{4 . 9 0}$ |  | 11999.0 | 2546.3 | $\mathbf{4 . 7 1}$ |
| $[1000,86400]$ | 30 | 8035.8 | 1096.9 | $\mathbf{7 . 3 3}$ |  | 25923.1 | 5435.6 | $\mathbf{4 . 7 7}$ |

Table 2.7: Computational comparison of the solver developed for this article (S.-J.) and the solver described in Polzin (2003); Vahdati Daneshmand (2004) (P. $6 V$. ), with instance groups ordered by hardness.
can be put down to the fact that we employ a proper branch-and-cut algorithm, whereas the procedure employed by Polzin and Vahdati-Daneshmand (2014) might more accurately be coined branch-and-reduce. They employ the information from LP-relaxations mostly to perform more reductions, and often restart the LP solving process. This procedure is certainly advantageous for instances that can be solved completely by reduction techniques. However, for instances that are still of significant size after aggressive application of advanced reduction techniques, the LP separation approach of SCIP-JACK shows its value.

## Further results and comparisons

We also note the large performance gap between SCIP-JACK and the best SPG solvers other than Polzin and Vahdati-Daneshmand (2014) described in the literature. For example, the solver by Fischetti et al. (2017), which won the exact SPG category at the 11th DIMACS Challenge, leaves 11 instances of vienna-a unsolved at the time-limit of one hour (using a faster machine than Polzin and Vahdati-Daneshmand (2014)), whereas we can solve all these instances within one minute, some even within one second. Furthermore, many of the non-trivial SPG instances that are solved to optimality in Fischetti et al. (2017) can be solved more than two or even three orders of magnitude faster by SCIP-JACK.

We close with results on two test-sets for which Polzin and Vahdati-Daneshmand (2014) do not report results: EST-50k and PUCN. The EST-50k instances can all be solved within five minutes. These instances are originally Euclidean Steiner tree problems; see Section 5.4 for more details and further results. Notably, 7 of the 15 instances from EST-50k were solved for the first time to optimality. On the other hand, the state-of-the-art Euclidean Steiner tree solver GeoSteiner cannot solve these instances even after seven days of computation (Juhl et al., 2018). Results on EST-50k are also reported in Pajor et al. (2017). However, their solver, which won the SPG heuristics category at the 11th DIMACS Challenge, does not reach the upper bounds from GeoSteiner on any of the EST-50k instances.

On the, unweighted, $P U C N$ instances, SCIP-JACK also shows a strong performance. It solves 9 of the 13 instances to optimality - all in less than 10 minutes, and all but one within seconds. Indeed, four of the instances were solved for the first time
to optimality. The best other results on $P U C N$ are reported in Fischetti et al. (2017), who solve five instances within their time-limit of one hour, and in Pajor et al. (2017), who solve the same five instances to optimality. Fischetti et al. (2017) further apply specialized (USPG) heuristics, which they run multiple times with different random seeds. Some of these bound are further improved by Pajor et al. (2017). In Table 2.8 we compare these results with those obtained by SCIP-JACK within a 24 hours run (with default settings), reporting the instances that can be solved for the first time to optimality.

| Name | gap [\%] | new UB | previous UB |
| :--- | ---: | ---: | ---: |
| cc10-2n | opt | $\mathbf{1 7 9}$ | 179 |
| cc3-10n | opt | $\mathbf{7 5}$ | 75 |
| cc3-11n | opt | $\mathbf{9 2}$ | 92 |
| cc3-12n | opt | $\mathbf{1 1 1}$ | 111 |

Table 2.8: PUCN instances solved for the first time to optimality (with 24 h timelimit).

Finally, we note that Fischetti et al. (2017) use the vertex-based Formulation 2.5 (TNCut) on the PUCN instances. Recall that we have shown in Section 2.2.2 that TNCut has a weaker LP-relaxation than the bidirected cut formulation (used by SCIP-JACK). Thus, the results on PUCN, where advanced reduction techniques have little impact, can be seen as a practical affirmation of this theoretical result.

### 2.8 Conclusion

This chapter has aimed to improve the state of the art in exact SPG solution. The path towards this goal turned out to be rather long and steep. Starting from new theoretical results for well-known IP formulations, we have introduced a wide range of techniques and algorithms to be combined in an exact SPG solver. Notably, we have shown new (and stronger) conditions for the LP-relaxation of the bidirected cut formulation to be tight. Moreover, we have seen that several of the new algorithms and concepts provably dominate well-known results from the literature, such as the bottleneck Steiner distance. Finally, the integration of the various components into a branch-and-cut algorithm has given way to an exact SPG solver that outperforms the formerly undisputed state-of-the-art method established by Polzin (2003); Vahdati Daneshmand (2004) almost 20 years ago. Moreover, several SPG benchmark instances have been solved for the first time to optimality.

Interestingly, the strong performance of the new SPG solver is achieved despite several important algorithms and techniques from Polzin (2003); Vahdati Daneshmand (2004) not being implemented in the solver yet. Furthermore, several new techniques introduced in this thesis have also not yet been implemented in full scope. Thus, there is still a high potential for further improvement. We provide more detail on possible further improvements and research directions in Chapter 7.

## Chapter 3

## A relative: The maximum-weight connected subgraph problem

This chapter is concerned with a relative of the SPG, the maximum-weight connected subgraph problem (MWCSP). While at first glance this problem may appear to be rather different from the SPG, this chapter shows that the two are in fact closely related. Aiming for faster exact solution, we show how several algorithmic techniques from the previous chapter can be extended for MWCSP. However, to decisively outperform state-of-the-art MWCSP solvers, fully independent MWCSP algorithms and techniques need to be developed. As before, the trajectory will be from theory to practice - with a special emphasis on the theoretical strength of the employed IP formulations and their polyhedral properties.

### 3.1 Introduction

The past ten years have witnessed a surge of research articles dealing with the MWCSP. As practitioners, for instance in computational biology, have become more aware of this problem and its practical potential, their work has in turn (re-)fueled the interest of mathematicians and computer scientists. The source of this symbiotic interplay is a rather plain looking problem: Given an undirected graph $G=(V, E)$ and vertex weights $p: V \rightarrow \mathbb{Q}$, the task is to find a connected subgraph $S=(V(S), E(S)) \subseteq G$ such that

$$
\begin{equation*}
P(S):=\sum_{v \in V(S)} p(v) \tag{3.1}
\end{equation*}
$$

is maximized. While computational biology, see e.g. Alcaraz et al. (2014); Dittrich et al. (2008); Klimm et al. (2020); Loboda et al. (2016), seems to be the most prominent application field for the MWCSP, one also encounters the problem in other, disparate, areas such as wildlife conservation, e.g. Dilkina and Gomes (2010), and computer vision, e.g. Chen and Grauman (2012), or robotics, e.g. Banfi (2018).

The MWCSP is $\mathcal{N} \mathcal{P}$-hard, see e.g. Johnson (1985). It is even $\mathcal{N} \mathcal{P}$-hard to approximate the MWCSP within any constant factor as shown in Álvarez-Miranda et al. (2013a). Furthermore, the MWCSP is fixed-parameter tractable in both the
number of positive vertices, see Section 4.2.2, and the number of non-positive vertices, see Buchanan et al. (2018). Various articles discuss theoretical aspects of the MWCSP, such as the strength of (mixed) integer-programming formulations, e.g. Álvarez-Miranda et al. (2013b); Carvajal et al. (2013), polyhedral descriptions, e.g. Biha et al. (2015); Wang et al. (2017), or complexity, e.g. Álvarez-Miranda et al. (2013a); Buchanan et al. (2018). Practical exact algorithms for MWCSP can for example be found in Álvarez-Miranda et al. (2013a); Backes et al. (2011); Fischetti et al. (2017); Leitner et al. (2018a).

The MWCSP can also be seen as fundamental model for optimization problems based on induced connectivity. I.e., one looks for a subsets of vertices, such that the subgraph induced by these vertices is connected. Which edges are selected to obtain connectivity is not relevant. This problem type can be found in many clustering and network analysis applications. In addition to the above mentioned areas, induced connectivity problems are found in social network analysis, see Moody and White (2003), political districting, see Garfinkel and Nemhauser (1970), wireless sensor network design, see Buchanan et al. (2015). Also the unweighted (as well as uniformly weighted) Steiner tree problem in graphs is based on induced connectivity: Any solution (i.e. Steiner tree) consisting of $n$ nodes will be of weight $n-1$; it does not matter which $n-1$ edges are selected as long as they connect the given nodes. As we will see in the following, the MWCSP can be regarded a generalization of the unweighted SPG.

### 3.1.1 Preliminaries and additional notation

Throughout the algorithmic part of this chapter-starting with Section 3.3-it will be assumed that in each MWCSP at least one vertex is assigned a negative and one a positive weight. In the case of only non-negative vertex weights, the MWCSP reduces to finding a connected component of maximum vertex weight; in the case of only non-positive vertex weights, the empty set constitutes an optimal solution. Moreover, for most algorithms it will be assumed that an MWCSP instance $I_{M W}=(V, E, p)$ is given such that the underlying graph $(V, E)$ is connected. The latter assumption does not limit the generality, as one can optimize each connected components of a nonconnected MWCSP separately. We define $T_{p}:=\{v \in V \mid p(v)>0\}$, and occasionally write for the sake of simplicity $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ as well as $T_{p}=\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$, with $k=\left|T_{p}\right|$.

A close relative of the MWCSP is the rooted maximum-weight connected subgraph problem (RMWCSP), see e.g. Álvarez-Miranda et al. (2013b), which incorporates the additional condition that a non-empty set $T_{f} \subseteq V$ needs to be part of any feasible solution. For simplicity, we usually assume that $p(t)=0$ for all $t \in T_{f}$. The unweighted SPG be formulated as a RMWCSP by assigning each non-terminal vertex a weight of -1 .

We introduce the distance function $\bar{d}: V \times V \mapsto \mathbb{Q} \cup\{-\infty\}$ defined as

$$
\begin{equation*}
\bar{d}\left(v_{i}, v_{j}\right):=\sup \left\{P(Q) \mid Q \text { is a }\left(v_{i}, v_{j}\right) \text {-path and }\left(V(Q) \backslash\left\{v_{i}, v_{j}\right\}\right) \cap T_{p}=\emptyset\right\} \tag{3.2}
\end{equation*}
$$

for any $v_{i}, v_{j} \in V$. In particular, $\bar{d}\left(v_{i}, v_{j}\right)=\bar{d}\left(v_{j}, v_{i}\right)$ and $\bar{d}\left(v_{i}, v_{i}\right)=p\left(v_{i}\right)$. Also, with the convention $\sup \emptyset=-\infty$, one observes that $\bar{d}\left(v_{i}, v_{j}\right)=-\infty$ if and only if there
is no path between $v_{i}$ and $v_{j}$ without intermediary positive vertices. Given a vertex $v_{0}$ and two additional vertices $v_{i}, v_{j} \in V \backslash\left\{v_{0}\right\}$, it will be said that for $v_{0}$ vertex $v_{i}$ is $\bar{d}$-nearer than vertex $v_{j}$ if $\bar{d}\left(v_{0}, v_{i}\right) \geqslant \bar{d}\left(v_{0}, v_{j}\right)$. For each vertex $v_{i}$ the $k \bar{d}$-nearest vertices of positive weight (if existent) are denoted by $\bar{v}_{i, 1}, \bar{v}_{i, 2}, \ldots, \bar{v}_{i, k}$. In Duin (1993) a similar distance function is defined for the Steiner tree problem in graphs that looks for paths of minimum edge weight without intermediary terminals-thus, we have chosen a corresponding notation.

We define the neighborhood of a vertex set $U \subseteq V$ as

$$
N(U):=\{v \in V \backslash U \mid \exists u \in U,\{u, v\} \in \delta(U)\}
$$

For a single $v \in V$ we set $N(v):=N(\{v\})$. For directed graphs we define

$$
N^{+}(U):=\left\{v \in V \backslash U \mid \exists u \in U,(u, v) \in \delta^{+}(U)\right\}
$$

Finally, given an r-t flow $f$, we denote its net flow value by $v(f):=f\left(\delta^{+}(r)\right)-$ $f\left(\delta^{-}(r)\right)$. See Chapter 1 for general notation and concepts.

### 3.1.2 Contribution and structure

This chapter aims at further enhancing exact MWCSP solution-based on integer programming. First, Section 3.2 analyzes integer and mixed integer formulations for MWCSP and RMWCSP. In particular, node-based formulations, which have gained notable attention in the recent literature, are compared with edge-based ones. It will be shown that the latter prevail with respect to the strength of their LP-relaxations. Furthermore, polyhedral results are given, including a (compact extended) description of the connected subgraph polytope - the convex hull of subsets of vertices that induce a connected subgraph-for all graphs with no four independent vertices.

The remainder of the chapter is concerned with the (practical) exact solution of MWCSP based on the strongest of the previously studied IP formulation. We proceed by combining several approaches:

- Section 3.3 introduces several new MWCSP reduction techniques. We show that some of these techniques require to solve $\mathcal{N} \mathcal{P}$-hard subproblems. However, the underlying concepts allow us to design empirically powerful approximations.
- Section 3.4 links the preceding two sections. It introduces transformations of MWCSP and RMWCSP to SAP, and discusses the use of dual-ascent on these SAPs. In this way, further reduction techniques can be applied, and we can also generate strong initial cutting planes for the IP formulations used in this chapter.
- Section 3.5 turns from dual to primal bounds. We introduce several new primal heuristics for MWCSP, which not only make use of the concepts introduced in the previous sections, but can also be used to strengthen them.
- Section 3.6 discusses the incorporation of the new techniques introduced in this chapter into an exact MWCSP solver. Furthermore, the practical performance of this solver is compared with previous results from the literature.

The new MWCSP solver significantly outperforms previous solvers from the literature - being often orders of magnitude faster, and solving more instances to optimality. As a result, several benchmark instances from the 11th DIMACS Challenge can be solved for the first time to optimality, and the best known solution for other ones can be improved.

## 3.2 (M)IP formulations and the connected subgraph polytope

In this section, we use $\mathbb{R}$ instead of $\mathbb{Q}$ for the vertex weights, because we will not be concerned with complexity, but rather polyhedral results.

### 3.2.1 Rooted maximum-weight connected subgraphs

This section discusses the directed variant of the RMWCSP, see Álvarez-Miranda et al. (2013b): Given a directed graph $D=(V, A)$, vertex weights $p: V \rightarrow \mathbb{R}$, a non-empty set $T_{f} \subseteq V$ and an $r \in T_{f}$, find a connected subgraph $S \subseteq D$ containing $T_{f}$ such that any $v \in V(S)$ can be reached from $r$ on a directed path in $S$, and such that $p(V(S))$ is maximized. Any undirected RMWCSP can be formulated in directed form by choosing an arbitrary $r \in T_{f}$ and replacing each edge by two anti-parallel arcs.

Note that any solution to the directed RMWCSP can be represented as an arborescence. This observation leads to the following IP formulation, see e.g. Álvarez-Miranda et al. (2013b), based on a well-known formulation for SAP, see e.g. Goemans and Myung (1993). Define for each $v \in V$ a variable $x(v) \in\{0,1\}$ that is equal to 1 if and only if vertex $v$ is part of the solution. Analogously, define for each $a \in A$ a variable $y(a) \in\{0,1\}$.

Formulation 3.1. Rooted Steiner Arborescence Formulation (RSA)

$$
\begin{array}{ll}
\text { max. } & p^{T} x \\
\text { s.t. } & y\left(\delta^{-}(v)\right)=x(v) \\
& \\
& y\left(\delta^{-}(U)\right) \geqslant x(v) \\
& \text { for all } v \in V \backslash\{r\} \\
& x \in\{0,1\}^{V}  \tag{3.8}\\
& \text { for all } U \subseteq V \backslash\{r\}, v \in U \\
& y \in\{0,1\}^{A} .
\end{array}
$$

In Álvarez-Miranda et al. (2013b) a new formulation for the directed RPCSTPbased on node-separators is introduced. Note that the use of node-separators for modeling connectivity is already suggested in Fügenschuh and Fügenschuh (2008).

Formulation 3.2. Rooted Node Separator Formulation (RNCut)

$$
\begin{align*}
\max p^{T} x & & &  \tag{3.9}\\
\text { s.t. } x(C) & \geqslant x(v) & & \text { for all } v \in V \backslash\left(\{r\} \cup N^{+}(r)\right), C \in \mathcal{C}(r, v)  \tag{3.10}\\
x(v) & =1 & & \text { for all } v \in T_{f}  \tag{3.11}\\
x & \in\{0,1\}^{A} . & & \tag{3.12}
\end{align*}
$$

Besides the two IP models introduced above, several other formulations for RMWCSP (sometimes including a budget constraint) have been introduced in the literature, see e.g. Álvarez-Miranda et al. (2013b); Dilkina and Gomes (2010). However, one can show that these formulations are weaker with respect to the LP-relaxation than both of the above models, see Álvarez-Miranda et al. (2013b) for some such results. Another example is the formulation from Conrad et al. (2007) that is based on single-flow. However, also this formulation can be shown to be weaker than Formulation 3.1 by using max-flow/min-cut arguments-similarly to corresponding results for minimum spanning tree or Steiner tree problems, which can be found for example in Magnanti and Wolsey (1995).

In Álvarez-Miranda et al. (2013b) it is stated that the LP-relaxations of the RNCut and RSA model yield the same optimal value. Unfortunately, this claim is not correct, as the following proposition shows. Appendix A.2.2 discusses the error in the line of argumentation in Álvarez-Miranda et al. (2013b) -and furthermore provides some insight on how the node separator constraints miss to capture structures accurately described by edge cut constraints.

Proposition 3.3. It holds that $\operatorname{proj}_{x}\left(\mathcal{P}_{L P}(R S A)\right) \subset \mathcal{P}_{L P}(R N C u t)$ and the inclusion can be strict.

Proof. The inclusion is essentially proven in Álvarez-Miranda et al. (2013b). An example for a strict inclusion is given in Appendix A.2.2.

One can strengthen the RSA formulation by the inequalities

$$
\begin{equation*}
y\left(\delta^{-}(v)\right) \leqslant y\left(\delta^{+}(v)\right) \quad \text { for all } v \in V \backslash\left(T_{f} \cup T_{p}\right) \tag{3.13}
\end{equation*}
$$

which are similar to the flow-balance constraints used in Section 2.2. However, these constraints depend on the objective vector, so they cannot (directly) be used for polyhedral results. We refer to the strengthened formulation as $R S A_{F B}$. One readily obtains the following result from Lemma 2.3.

Lemma 3.4. If $\left|T_{p} \cup T_{f}\right| \leqslant 3$, then $v_{L P}\left(R S A_{F B}\right)=v\left(R S A_{F B}\right)$.
Proof. Let $I$ be an RMWCSP instance with $\left|T_{p} \cup T_{f}\right| \leqslant 3$. Define an SAP $I^{\prime}=$ $\left(V^{\prime}, A^{\prime}, T^{\prime}, c^{\prime}\right)$ on an extended graph $\left(V^{\prime}, A^{\prime}\right)$. Initially, set $V^{\prime}:=V, A^{\prime}:=A$, and $T^{\prime}:=T_{f}$. For each arc $a=(v, w) \in A$ set $c^{\prime}(a):=\max \{-p(w), 0\}$. For each $t \in T_{p}$
we add a new terminal $t^{\prime}$ to $T^{\prime}$, and $\operatorname{arcs}\left(r, t^{\prime}\right)$ of weight $p(t)$ and $\left(t, t^{\prime}\right)$ of weight 0 to $A^{\prime}$. It holds that

$$
\begin{equation*}
p\left(T_{p}\right)-v\left(D C u t_{F B}\left(I^{\prime}\right)\right)=v\left(R S A_{F B}(I)\right) ; \tag{3.14}
\end{equation*}
$$

recall that we assume $T_{p} \cap T_{f}=\emptyset$. Any optimal LP solution $(y, x)$ to $R S A_{F B}$ can be extended to a feasible LP solution $y^{\prime}$ to $D C u t_{F B}$ defined by $y^{\prime}\left(t, t^{\prime}\right)=x(t)$, $y^{\prime}\left(r, t^{\prime}\right)=1-x(t)$ for all $t \in T_{p}$, as well as $y^{\prime}(a):=y(a)$ for all $a \in A$. Thus,

$$
\begin{equation*}
p\left(T_{p}\right)-v_{L P}\left(D C u t_{F B}\left(I^{\prime}\right)\right) \geqslant v_{L P}\left(R S A_{F B}(I)\right) \geqslant v\left(R S A_{F B}(I)\right) \tag{3.15}
\end{equation*}
$$

Because $I^{\prime}$ has at most three terminals, Lemma 2.3 guarantees that

$$
v_{L P}\left(D C u t_{F B}\left(I^{\prime}\right)\right)=v\left(D C u t_{F B}\left(I^{\prime}\right)\right)
$$

Thus, (3.15) implies that the inequalities (3.15) are satisfied with equality. Consequently, we have $v_{L P}\left(R S A_{F B}(I)\right)=v\left(R S A_{F B}(I)\right)$.

### 3.2.2 Node based formulations for non-rooted connected subgraphs

From this section on we consider the undirected MWCSP. Some of the following results can also be extended to the directed case. However, the undirected MWCSP is the more common (and, arguably, also more natural) problem.

This section considers formulations for MWCSP that use only node variables. The probably best known one, see e.g. Wang et al. (2017), is given below.

Formulation 3.5. Node Separator Formulation (NCut)

$$
\begin{array}{rlrl}
\max p^{T} x & & \\
\text { s.t. } x(v)+v(w)-x(C) & \leqslant 1 \quad \text { for all } v, w \in V, v \neq w, C \in \mathcal{C}(v, w) \\
x(v) & \in\{0,1\} & \text { for all } v \in V . \tag{3.18}
\end{array}
$$

The contraction of neighboring positive weight vertices drastically reduces the size of many real-world MWCSP instances, as for example shown in Rehfeldt et al. (2019). Note that when contracting adjacent vertices $t, u \in T_{p}$ into a new vertex $t^{\prime}$, we set $p\left(t^{\prime}\right):=p(t)+p(u)$. The following result (which we will need later on), describes the impact of this operation on the LP-relaxation of NCut.

Proposition 3.6. $v_{L P}(N C u t)$ is invariant under the contraction of adjacent vertices of positive weight.

Proof. Let $I$ be an MWCSP instance with an edge $\{t, u\} \in E$ such that $t, u \in T_{p}$. Let $I^{\prime}=\left(V^{\prime}, E^{\prime}, p^{\prime}\right)$ be the instance obtained from $I$ be contracting $\{t, u\}$ into a new vertex $t^{\prime}$. It holds that $v_{L P}\left(N C u t\left(I^{\prime}\right)\right) \leqslant v_{L P}(N C u t(I))$, because any $x^{\prime} \in$ $\mathcal{P}_{L P}\left(N C u t\left(I^{\prime}\right)\right)$ can be mapped to a $x \in \mathcal{P}_{L P}(N C u t(I))$ with $p^{T} x={p^{\prime}}^{T} x^{\prime}$ defined
by $x(v):=x^{\prime}(v)$ for all $v \in V \cap V^{\prime}$, and $x(t):=x(u):=x^{\prime}\left(t^{\prime}\right)$. The opposite case is somewhat more involved.

Let $x$ be an optimal LP solution to $N C u t(I)$. The optimality of $x$, and the fact that $\{t, u\} \in E$ imply

$$
\begin{equation*}
x(t)=x(u) . \tag{3.19}
\end{equation*}
$$

Define $x^{\prime} \in \mathbb{R}^{V^{\prime}}$ by $x^{\prime}(v):=x(v)$ for all $v \in V^{\prime} \backslash\left\{t^{\prime}\right\}$, and $x^{\prime}\left(t^{\prime}\right):=x(t)$. Assume that $x^{\prime}\left(t^{\prime}\right) \in(0,1)$-otherwise, the proof is already complete. It remains to be shown that $x^{\prime} \in \mathcal{P}_{L P}\left(N C u t\left(I^{\prime}\right)\right)$. Suppose this is not the case. Then there are $a, b \in V^{\prime}$ and an a-b separator $C_{a b}^{\prime} \subset V^{\prime}$ such that

$$
\begin{equation*}
x^{\prime}(a)+x^{\prime}(b)-x^{\prime}\left(C_{a b}^{\prime}\right)>1 . \tag{3.20}
\end{equation*}
$$

Because $x$ is feasible, $t^{\prime} \in C_{a b}^{\prime}$. Thus, we obtain from (3.20) that

$$
\begin{equation*}
x(a)+x(b)-x(t)=x^{\prime}(a)+x^{\prime}(b)-x^{\prime}\left(t^{\prime}\right)>1, \tag{3.21}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\min \{x(a), x(b)\}>x(t) \tag{3.22}
\end{equation*}
$$

Now we return to the original instance $I$. Because $x$ is optimal, and $x(t)=x(u)<1$, there is a $q \in V \backslash\{t, u\}$ and a $C_{q t} \in \mathcal{C}(q, t)$ such that

$$
\begin{equation*}
x(t)+x(q)-x\left(C_{q t}\right)=1 . \tag{3.23}
\end{equation*}
$$

Similarly, there is a $s \in V \backslash\{t, u\}$ and a $C_{s u} \in \mathcal{C}(s, u)$ with $x(u)+x(s)-x\left(C_{s u}\right)=1$. At least one such combination $q, C_{q t}$, or $s, C_{s u}$ satisfies $u \notin C_{q t}$ or $t \notin C_{s u}$, otherwise we could increase $x(u)$ and $x(t)$. Assume w.l.o.g. $u \notin C_{q t}$. Further, observe that (3.23) implies

$$
\begin{equation*}
x\left(C_{q t}\right) \leqslant \min \{x(t), x(q)\} . \tag{3.24}
\end{equation*}
$$

Thus, (3.23) and (3.22) imply $a, b \notin C_{q t}$. One notes that $C_{q t} \notin \mathcal{C}(a, q)$, because (3.22) and (3.23) imply

$$
\begin{equation*}
x(a)+x(q)-x\left(C_{q t}\right)>1 . \tag{3.25}
\end{equation*}
$$

Likewise, $C_{q t} \notin \mathcal{C}(b, q)$. Consequently, any path from $\{t, u\}$ to $a$ or $b$ needs to cross $C_{q t}$; otherwise, the latter would not separate $q$ and $t$. Therefore, $\tilde{C}_{a b}:=\left(C_{a b}^{\prime} \backslash\left\{t^{\prime}\right\}\right) \cup C_{q t}$ separates $a$ and $b$ (in the original graph). However, from (3.20) and (3.24) we obtain

$$
\begin{equation*}
1<x(a)+x(b)-x^{\prime}\left(C_{a b}^{\prime}\right) \leqslant x(a)+x(b)-x\left(\tilde{C}_{a b}\right) \tag{3.26}
\end{equation*}
$$

which contradicts the feasibility of $x$.

Furthermore, one obtains the following optimality criterion:

Proposition 3.7. If $\left|T_{p}\right| \leqslant 2$, then $v_{L P}(N C u t)=v(N C u t)$.

Proof. Consider an MWCSP $I=(G, p)$ with $\left|T_{p}\right| \leqslant 2$. The case $\left|T_{p}\right| \leqslant 1$ is clear. Let $\{a, b\}:=T_{p}$ and assume $p(a) \geqslant p(b)$. Thus, there is a minimal optimal LP solution $x$ such that $x(a)=1$. Let $(V, A)$ be the bidirected equivalent of $G$. Create a new directed graph $\left(V^{\prime}, A^{\prime}\right)$ by replacing each node $v \in V \backslash\{a, b\}$ by two nodes $v_{1}, v_{2}$ and $\operatorname{arcs}\left(v_{1}, v_{2}\right),\left(v_{2}, v_{1}\right)$. Further, all ingoing arcs of $v$ become ingoing arcs of $v_{1}$, and all outgoing arcs of $v$ are now outgoing arcs of $v_{2}$. Define arc capacities $k$ for each pair of these new arcs by $x(v)$; for any (remaining) arc $e \in A$ set $k(e):=\infty .{ }^{16}$ By the max-flow/min-cut theorem there is an a-b flow $f$ with $v(f)=x(b)$ in this extended network. Define the directed MWCSP $I_{r}:=\left((V, A), T_{f}, r, p\right)$ with $T_{f}:=\{a\}$ and $r:=a$, and set $y:=f \upharpoonright_{A}$. Because of the optimality and minimality of $x$ it holds that $(x, y) \in \mathcal{P}_{L P}\left(R S A\left(I_{r}\right)\right)$. Thus, $v_{L P}(N C u t(I)) \leqslant v_{L P}\left(R S A\left(I_{r}\right)\right)$. Furthermore, $y$ satisfies constraints (3.13). Because of $v(N C u t(I))=v\left(R S A\left(I_{r}\right)\right)$, Lemma 3.4 implies that $v_{L P}(\operatorname{NCut}(I))=v(\operatorname{NCut}(I))$.

Figure 3.1 shows an MWCSP instance with $\left|T_{p}\right|=3$ and $v_{L P}(N C u t) \neq v(N C u t)$. It holds that $v(N C u t)=1$, but $v_{L P}(N C u t)=1.5$ (set the values of all negative weight node variables to 0.5 and the remainder to 1 ).

Finally, by combining the previous two propositions we obtain a significantly shorter proof of a main result from Wang et al. (2017). Recall that $\alpha(G)$ denotes the independence number of graph $G$.

Theorem 3.8. If $\alpha(G) \leqslant 2$, then $\mathcal{P}_{L P}(N C u t)$ is integral.
Proof. Let $p \in \mathbb{R}^{V}$. If $\alpha(G) \leqslant 2$, then Proposition 3.6 implies that the $\operatorname{MWCSP}(G, p)$ can be transformed to an MWCSP with at most two positive weight vertices without changing $v_{L P}(N C u t)$. Now, Proposition 3.7 gives $v_{L P}(N C u t)=v(N C u t)$. Because $p$ can be chosen arbitrarily, $\mathcal{P}_{L P}(N C u t)$ is integral.

Wang et al. (2017) also show that $\mathcal{P}_{L P}(N C u t)$ is integral only if $\alpha(G) \leqslant 2$.

## Indegree constraints

Given an undirected graph $G=(V, E)$, a $d \in \mathbb{Z}^{E}$ is an indegree vector if there is an orientation $D=(V, A)$ of $G$ such that $d_{v}=\left|\delta_{D}^{-}(v)\right|$ for all $v \in V$. For each indegree vector $d$ the corresponding indegree inequality is given as

$$
\begin{equation*}
\sum_{v \in V}\left(1-d_{v}\right) x(v) \leqslant 1 \tag{3.27}
\end{equation*}
$$

where $x \in \mathbb{R}_{\geqslant 0}^{V}$ are the node variables. Korte et al. (2012) show that the indegree inequalities describe the connected subgraph polytope if $G$ is a tree. Furthermore, Wang et al. (2017) show conditions for (3.27) to be facet inducing and show that the constraints can be separated in linear time. It is further shown that the constraints (3.27) (for suitable choices of indegree vectors) can strengthen the NCut formulation.

[^10]
### 3.2.3 Edge based formulations for non-rooted connected subgraphs

An edge-based formulation for the directed MWCSP is introduced in Álvarez-Miranda et al. (2013a), based on a transformation to the prize-collecting SPG. We will use essentially the same formulation for the undirected MWCSP, but without the transformation to the prize-collecting SPG, and thus with a different objective function. Consider the bidirected equivalent $D=(V, A)$ to the given undirected graph. Let $\left(V_{r}, A_{r}\right)$ be the directed graph defined as follows with an additional node $r$ :

$$
V_{r}:=V \cup\{r\},
$$

and

$$
A_{r}:=A \cup\{(r, v) \mid v \in V\}
$$

Define the following extended MWCSP formulation based on the new graph $\left(V_{r}, A_{r}\right)$.
Formulation 3.9. Extended Steiner Arborescence Formulation (ESA)

$$
\begin{array}{ll}
\max & p^{T} x \\
\text { s.t. } & y\left(\delta^{-}(v)\right)=x(v) \\
& y\left(\delta^{-}(U)\right) \geqslant x(v) \\
& y\left(\delta^{+}(r)\right) \leqslant 1
\end{array} r \text { for all } v \in V
$$

The remainder this section aims to prove an integrality condition for the polytope $\operatorname{proj}_{x}\left(\mathcal{P}_{L P}(E S A)\right)$ based on the independence number. Our approach can be divided in two parts. First, we show that for any MWCSP instance with $1 \leqslant\left|T_{p}\right| \leqslant 3$ there is an optimal LP solution $(x, y)$ with $x(v)=1$ for a $v \in T_{p}$. In the second part (following Lemma 3.13), we use this $v$ as a root node and apply the same principal ideas already used in Section 2.2.2 for the USPG: I.e. we show the invariance of the integrality gap under edge contraction and reduce any MWCSP instance with bounded independence number to an MWCSP instance with bounded number of positive vertices. We start with an easy technical result.

Lemma 3.10. Let $(x, y)$ be an optimal LP solution $(x, y)$ to $E S A$, and let $v \in V$. There is a $\tilde{y} \in \mathbb{R}^{A_{r}}$ with $\tilde{y}((r, v))=x(v)$ such that $(x, \tilde{y})$ is an optimal LP solution to $E S A$.

Proof. Assume there is an optimal LP solution $(x, y)$ with $\kappa:=y\left(\delta_{D}^{-}(v)\right)>0$ for a $v \in V$. Because of (3.30), there is an $r-v$ flow $f_{\kappa} \leqslant y$ with $v\left(f_{\kappa}\right)=\kappa$ and $f_{\kappa}((r, v))=0$. Define a new solution $(x, \tilde{y})$ with

$$
\tilde{y}((u, w)):= \begin{cases}y((u, w))-f_{\kappa}((u, w))+f_{\kappa}((w, u)), & (u, w) \in A \\ y((u, w))-f_{\kappa}((u, w)), & (u, w) \in \delta^{+}(r) \backslash\{(r, v)\} \\ y((u, w))+\kappa, & (u, w)=(r, v)\end{cases}
$$

For (3.29), first let $u \in V \backslash\{v\}$. It holds that

$$
\tilde{y}\left(\delta^{-}(u)\right)=y\left(\delta^{-}(u)\right)+f_{\kappa}\left(\delta_{D}^{+}(u)\right)-f_{\kappa}\left(\delta_{D}^{-}(u)\right)-f_{\kappa}((r, u))=y\left(\delta^{-}(u)\right)=x(u)
$$

Similarly, because of $\tilde{y}((r, v))=y((r, v))+\kappa$ and $f_{\kappa}\left(\delta_{D}^{-}(v)\right)+f_{\kappa}\left(\delta_{D}^{+}(v)\right)=\kappa$ it holds that $\tilde{y}\left(\delta^{-}(v)\right)=x(v)$.

For (3.30), consider a $U \subseteq V$, and a $u \in U$. First, assume $v \in U$. Because of $(r, v) \in \delta^{-}(U)$, and $f_{\kappa}\left(\delta_{D}^{-}(U)\right)+f_{\kappa}\left(\delta_{D}^{+}(U)\right)=\kappa$ we obtain $\tilde{y}\left(\delta^{-}(U)\right)=y\left(\delta^{-}(U)\right)$. Second, assume $v \notin U$. In this case, flow conservation of $f_{\kappa}$ implies that

$$
\tilde{y}\left(\delta^{-}(U)\right)=y\left(\delta^{-}(U)\right)+f_{\kappa}\left(\delta^{+}(U)\right)-f_{\kappa}\left(\delta^{-}(U)\right)=y\left(\delta^{-}(U)\right)
$$

which concludes the proof.
Note that for finding an optimal solution, ESA only requires arcs $(r, v) \in \delta^{+}(r)$ with $v \in T_{p}$. Furthermore, only constraints (3.30) for vertices $v \in U$ with $v \in T_{p}$ need to be enforced. We will refer to this modified formulation as $E S A^{+}$. Further, we define

$$
A_{r}^{+}:=A \cup\left\{(r, t) \mid t \in T_{p}\right\} .
$$

In practice, it is advisable to add additional $\left|T_{p}\right|$ symmetry breaking constraints similar to those from Fischetti et al. (2017) to $E S A^{+}$. As to the LP-relaxation of $E S A^{+}$, one obtains the following result.

Lemma 3.11. Let $\left(x, y^{+}\right)$be an optimal LP solution to $E S A^{+}$. Then $(x, y) \in \mathbb{R}^{V+A_{r}}$ with $y(a):=y^{+}(a)$ for $a \in A_{r}^{+}$and $y(a):=0$ for $a \in A_{r} \backslash A_{r}^{+}$is an optimal LP solution to ESA.

Proof. Let $E S A^{\prime}$ be the reduced version of $E S A$ where constraints (3.30) are only enforced for vertices $v \in U$ with $v \in T_{p}$. Note that

$$
\begin{equation*}
v_{L P}(E S A) \leqslant v_{L P}\left(E S A^{\prime}\right) \leqslant v_{L P}\left(E S A^{+}\right) \tag{3.34}
\end{equation*}
$$

In this proof we only consider minimal optimal LP solutions, i.e., solutions for which no entry can be reduced without losing either feasibility or optimality.

First, we show that any optimal LP solution to $E S A^{+}$is also optimal for $E S A^{\prime}$. To this end, we show the existence of an optimal LP solution $\left(x^{\prime}, y^{\prime}\right)$ to $E S A^{\prime}$ such that $y^{\prime}((r, v))=0$ for all $v \in V \backslash T_{p}$. Assume there is an optimal LP solution $\left(x^{\prime}, y^{\prime}\right)$ to $E S A^{\prime}$ with $y^{\prime}((r, v))>0$ for a $v \in V \backslash T_{p}$. Because $\left(x^{\prime}, y^{\prime}\right)$ is optimal, there is a r-t flow $f^{t}$ with $f^{t} \leqslant y^{\prime}$ for a $t \in T_{p}$ with $v\left(f^{t}\right)=y^{\prime}((r, v))$. We can now proceed as in Lemma 3.10 to revert the flow going to $t$. The resulting optimal solution ( $\tilde{x}, \tilde{y}$ ) satisfies $\tilde{y}((r, v))=0$ and $\tilde{y}((r, u)) \leqslant y^{\prime}((r, u))$ for all $u \in V \backslash\{t\}$.

Second, we show that any optimal LP solution $\left(x^{\prime}, y^{\prime}\right)$ to $E S A^{\prime}$ with $y^{\prime}((r, v))=0$ for all $v \in V \backslash T_{p}$ satisfies constraints (3.30) also for $v \in U$ with $v \notin T_{p}$. We follow essentially the same line of argumentation used in Goemans and Myung (1993) for the SPG bidirected cut formulation. Suppose there is a $U \subseteq V$ and a $u \in U$ with

$$
\begin{equation*}
x^{\prime}(u)>y^{\prime}\left(\delta^{-}(U)\right) \tag{3.35}
\end{equation*}
$$

Choose such a $U$ with $|U|$ as small as possible. Because of (3.35), there is an $e \in$ $\delta^{-}(u) \backslash \delta^{-}(U)$ such that $y^{\prime}(e)>0$. Because of the minimality of $\left(x^{\prime}, y^{\prime}\right)$, there is a $W \subseteq V$ and a $t \in W \cap T_{p}$ such that $e \in \delta^{-}(W)$ and

$$
\begin{equation*}
y^{\prime}\left(\delta^{-}(W)\right)=x^{\prime}(t) \tag{3.36}
\end{equation*}
$$

Because of $e \subseteq U$ and $|e \cap W|=1$, one obtains $|U \cap W|<|U|$. We will show that $U \cap W$ satisfies (3.35), which contradicts the minimality of $|U|$. By standard graph theory we have that

$$
y^{\prime}\left(\left(\delta^{-}(U)\right)+y^{\prime}\left(\delta^{-}(W)\right) \geqslant y^{\prime}\left(\delta^{-}(U \cap W)\right)+y^{\prime}\left(\delta^{-}(U \cup W)\right)\right.
$$

Together with (3.36), it follows that $y^{\prime}\left(\left(\delta^{-}(U)\right) \geqslant y^{\prime}\left(\delta^{-}(U \cup W)\right)\right.$, which leads to the sought for contradiction.

Corollary 3.12. $v_{L P}(E S A)=v_{L P}\left(E S A^{+}\right)$.
Further, we require the following result.
Lemma 3.13. If $\left|T_{p}\right| \leqslant 3$, then there is an optimal LP solution $(x, y)$ to $E S A$ such that $x(t) \in\{0,1\}$ for all $t \in T_{p}$.

Proof. As before, let $D=(V, A)$ be the bidirected equivalent to the given undirected graph. Also, we assume any optimal solution to be minimal. By Lemma 3.11 we can consider $E S A^{+}$instead of $E S A$ to show the required result. Thus, throughout this proof we consider an optimal LP solution $(x, y)$ to $E S A^{+}$.

The case $\left|T_{p}\right| \leqslant 1$ is clear. Assume $\left|T_{p}\right|=2$, and let $\{a, b\}:=T_{p}$ such that $p(a) \geqslant$ $p(b)$. By Lemma 3.10 we can assume that $y\left(\delta_{D}^{-}(a)\right)=0$. Thus, also $y\left(\delta_{D}^{+}(b)\right)=0$. If $y\left(\delta^{+}(a)\right)=0$, either $x(a)=1$ and $x(b)=0$, or vice versa. If $y\left(\delta^{+}(a)\right)>0$, the minimality of $(x, y)$ implies

$$
\begin{equation*}
\sum_{v \in V \backslash\{a\}} p(v) y\left(\delta_{D}^{-}(v)\right)>0 \tag{3.37}
\end{equation*}
$$

which implies also $\beta:=y\left(\delta_{D}^{-}(b)\right)>0$. Let $\kappa:=\frac{1}{\beta}$. Define $\tilde{y} \in \mathbb{R}^{A_{r}^{+}}$by $\tilde{y}((r, a)):=1$, $\tilde{y}((r, b)):=0$, and $\tilde{y}(e):=\kappa y(e)$ for all $e \in A$. Define $\tilde{x}(v):=\tilde{y}\left(\delta^{-}(v)\right)$ for all $v \in V$. One notes that $(\tilde{x}, \tilde{y})$ is feasible, and satisfies $\tilde{x}(a)=\tilde{x}(b)=1$. Furthermore, $p^{T} \tilde{x} \geqslant p^{T} x$ because of $\kappa \geqslant 1$.

In the remainder of this proof we consider an MWCSP instance $I$ with $\left|T_{p}\right|=3$.
Claim 1. There is an optimal LP solution $(x, y)$ to $E S A^{+}(I)$ such that $x(t)=1$ for a $t \in T_{p}$.
Proof. Let $\{a, b, c\}:=T_{p}$ such that $p(a) \geqslant \max \{p(b), p(c)\}$. Again, assume $y((r, a))=$ $x(a)$. Thus, also $y\left(\delta_{D}^{-}(a)\right)=0$. Suppose that $y((r, t))<1$ for all $t \in T_{p}$. Note that $y((r, b))>0$ or $y((r, c))>0$ (otherwise $y((r, a))=1)$. Assume w.l.o.g. $y((r, b))>0$.

Because of $p(a) \geqslant p(c)$ and $y\left(\delta_{D}^{-}(a)\right)=0$, we can assume by a flow argument similar to that of Lemma 3.10 that $y((r, c))=0$ holds. Similarly, we can assume that there is a flow $f_{b}^{c}$ from $r$ to $c$ with $v\left(f_{b}^{c}\right)=f_{b}^{c}((r, b))=y((r, b))$ and $f_{b}^{c} \leqslant y$-otherwise, we decrease $y((r, b))$ and increase $y((r, a))$. Let $f_{a}^{b}$ and $f_{a}^{c}$ be maximum flows from $a$ to $b$ and $c$ with $f_{a}^{b} \leqslant y$ and $f_{a}^{c} \leqslant y$. If $v\left(f_{a}^{b}\right)=v\left(f_{a}^{c}\right)=0$, we are effectively in the case $\left|T_{p}\right| \leqslant 2$, since we can restrict the problem to the support graph of $(x, y)$.

So assume $v\left(f_{a}^{b}\right)>0$ or $v\left(f_{a}^{c}\right)>0$. Thus, $x(a)>0$. Suppose $x(b)<1$ and $x(c)<1$. Note that either $v\left(f_{a}^{b}\right)=0$, or both $v\left(f_{a}^{b}\right)>0$ and $v\left(f_{a}^{c}\right)>0$. First, suppose $v\left(f_{a}^{b}\right)=0$. Thus, $y\left(\delta^{-}(b)\right)=0$ and

$$
\begin{equation*}
\sum_{v \in V \backslash\{a, b\}} p(v) y\left(\delta_{D}^{-}(v)\right)>0 \tag{3.38}
\end{equation*}
$$

Define $\kappa:=\frac{x(a)}{v\left(f_{a}^{c}\right)}$. Define $\tilde{y} \in \mathbb{R}^{A_{r}^{+}}$by

$$
\begin{equation*}
\tilde{y}(e):=\max \left\{y(e), \kappa f_{a}^{c}(e)\right\} \tag{3.39}
\end{equation*}
$$

for all $e \in A_{r}^{+}$, and define $\tilde{x} \in \mathbb{R}^{V}$ accordingly. We have $\kappa x(c)=\tilde{x}(c)$. Thus, (3.38) implies $p^{T} \tilde{x}>p^{T} x$.

Second, suppose $v\left(f_{a}^{b}\right)>0$ and $v\left(f_{a}^{c}\right)>0$. In this case, (3.37) holds. Furthermore, $y\left(\delta_{D}^{-}(b)\right)=f_{a}^{b}\left(\delta_{D}^{-}(b)\right)$. Thus, we can proceed as before and multiply both $f_{a}^{b}$ and $f_{a}^{c}$ by some $\kappa>1$ to get a better LP solution. Overall, we have shown that $x(b)=1$ or $x(c)=1$.
(Proof of Lemma 3.13 continued.) Let $\{a, b, t\}:=T_{p}$ such that $x(t)=1$ (which we can assume by Claim 1). Assume $y((r, t))=x(t)$. In the following we mostly ignore the arcs $\delta^{+}(r)$ and concentrate on the bidirected graph $D=(V, A)$. We need to show that $x(a), x(b) \in\{0,1\}$.

Suppose $x(a) \in(0,1)$ or $x(b) \in(0,1)$. Let $f^{a}$ and $f^{b}$ be maximum flows from $t$ to $a$ and $b$ with capacity $y(e)$ for each $\operatorname{arc} e \in A$. Note that $x(a)=1$ or $x(b)=1$; otherwise we could increase $f^{a}, f^{b}$, and $y$ as in the proof of Claim 1. Assume w.l.o.g. $x(a)=1$. Let $\bar{k} \in \mathbb{R}^{A}$ with $\bar{k}(e):=\max \left\{0, f^{a}(e)-f^{b}(e)\right\}$ for all $e \in A$. Let $\check{f}^{a}$ be a maximum t-a flow with $\check{f}^{a} \leqslant \bar{k}$.

Claim 2. It holds that $v\left(\check{f}^{a}\right)>0$.
Proof. Suppose $v\left(\check{f}^{a}\right)=0$. Let $\bar{V}_{t} \subset V$ be the set of vertices that can be reached by a directed path from $t$ on the support graph induced by $\bar{k}$ (i.e., via $\operatorname{arcs} e \in A$ with $\bar{k}(e)>0)$. Because of $v\left(\check{f}^{a}\right)=0$, we have $a \notin \bar{V}_{t}$. Because $(x, y)$ is optimal, we have $b \notin \bar{V}_{t}$. Because of $a \notin \bar{V}_{t}$ and $x(a)=1$ we obtain

$$
\begin{equation*}
f^{a}\left(\delta^{+}\left(\bar{V}_{t}\right)\right)-f^{a}\left(\delta^{-}\left(\bar{V}_{t}\right)\right)=1 \tag{3.40}
\end{equation*}
$$

From the definition of $\bar{V}_{t}$ we get

$$
\begin{equation*}
f^{b}\left(\delta^{+}\left(\bar{V}_{t}\right)\right) \geqslant f^{a}\left(\delta^{+}\left(\bar{V}_{t}\right)\right) \tag{3.41}
\end{equation*}
$$

Finally, because of $x(b)<1$ we have

$$
\begin{equation*}
f^{b}\left(\delta^{+}\left(\bar{V}_{t}\right)\right)-f^{b}\left(\delta^{-}\left(\bar{V}_{t}\right)\right)<1 \tag{3.42}
\end{equation*}
$$

From (3.40), (3.41), and (3.42) we get

$$
\begin{equation*}
f^{b}\left(\delta^{-}\left(\bar{V}_{t}\right)\right)>f^{a}\left(\delta^{-}\left(\bar{V}_{t}\right)\right) \tag{3.43}
\end{equation*}
$$

Thus, there is a $u \in \bar{V}_{t} \backslash\{t\}$ and $e_{0} \in \delta^{-}(u)$ with $f^{b}\left(e_{0}\right)>f^{a}\left(e_{0}\right)$; note that $y\left(e_{0}\right)=f^{b}\left(e_{0}\right)$. By definition of $\bar{V}_{t}$, there is a directed path $P$ from $t$ to $u$ such that $f^{a}(e)>f^{b}(e)$ for all $e \in A(P)$. Let $U \subset V$ with $e_{0} \in \delta^{-}(U)$. If $b \in U$, the existence of $P$ implies $y\left(\delta^{-}(U)\right)>x(b)$ (since we can increase $f^{b}$ along $P$ ). If $a \in U$, we obtain from $y\left(e_{0}\right)>f^{a}\left(e_{0}\right)$ that $y\left(\delta^{-}(U)\right)>x(a)$. Thus, we can decrease $y\left(e_{0}\right)$ while staying feasible - in contradiction to the minimality or optimality of $(x, y)$.
(Proof of Lemma 3.13 continued.) We assume $v\left(\check{f}^{a}\right)<1$. Otherwise the proof would already be complete, since the support graphs of $f^{a}$ and $f^{b}$ would be arc disjoint. Let $\hat{f}^{a}:=f^{a}-\check{f}^{a}$. Further, for all $e \in A$ define $\tilde{f}^{b}(e):=\max \left\{0, f^{b}(e)-f^{a}(e)\right\}$. Note that $\hat{f}^{a}$ is a flow, but $\tilde{f}^{b}$ in general not. We further have

$$
\begin{equation*}
\sum_{v \in V} p(v)\left(\hat{f}^{a}+\check{f}^{a}+\tilde{f}^{b}\right)\left(\delta_{D}^{-}(v)\right)=\sum_{v \in V \backslash\{t\}} p(v) x(v) \tag{3.44}
\end{equation*}
$$

Claim 3. It holds that

$$
\begin{equation*}
\frac{1}{v\left(\hat{f}^{a}\right)} \sum_{v \in V} p(v)\left(\hat{f}^{a}+\tilde{f}^{b}\right)\left(\delta_{D}^{-}(v)\right)=\frac{1}{v\left(\check{f}^{a}\right)} \sum_{v \in V} p(v) \check{f}^{a}\left(\delta_{D}^{-}(v)\right) \tag{3.45}
\end{equation*}
$$

Proof. Because $(x, y)$ is optimal and $f^{a}=\hat{f}^{a}+\check{f}^{a}$, we obtain from (3.44) that for any sufficiently small $\varepsilon>0$ :

$$
\begin{equation*}
\left(1+\frac{\varepsilon}{v\left(\hat{f}^{a}\right)}\right) \sum_{v \in V} p(v)\left(\hat{f}^{a}+\tilde{f}^{b}\right)\left(\delta_{D}^{-}(v)\right)+\left(1-\frac{\varepsilon}{v\left(\check{f}^{a}\right)}\right) \sum_{v \in V} p(v) \check{f}^{a}\left(\delta_{D}^{-}(v)\right) \leqslant \sum_{v \in V \backslash\{t\}} p(v) x(v), \tag{3.46}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1-\frac{\varepsilon}{v\left(\hat{f}^{a}\right)}\right) \sum_{v \in V} p(v)\left(\hat{f}^{a}+\tilde{f}^{b}\right)\left(\delta_{D}^{-}(v)\right)+\left(1+\frac{\varepsilon}{v\left(\check{f}^{a}\right)}\right) \sum_{v \in V} p(v) \check{f}^{a}\left(\delta_{D}^{-}(v)\right) \leqslant \sum_{v \in V \backslash\{t\}} p(v) x(v) \tag{3.47}
\end{equation*}
$$

Note that on the right hand sides of the previous two inequalities we have essentially shifted an $\varepsilon$ of the flow $f^{a}$ from $\check{f}^{a}$ to $\hat{f}^{a}$, and vice-versa. Finally,

$$
\begin{equation*}
0 \stackrel{(3.46)}{\leqslant} \frac{\varepsilon}{v\left(\hat{f}^{a}\right)} \sum_{v \in V} p(v)\left(\hat{f}^{a}+\tilde{f}^{b}\right)\left(\delta_{D}^{-}(v)\right)-\frac{\varepsilon}{v\left(\tilde{f}^{a}\right)} \sum_{v \in V} p(v) \check{f}^{a}\left(\delta_{D}^{-}(v)\right) \stackrel{(3.45)}{\leqslant} 0 \tag{3.48}
\end{equation*}
$$

which proves (3.45).
(Proof of Lemma 3.13 continued.) Set

$$
\begin{equation*}
\kappa:=\left(1+\frac{v\left(\check{f}^{a}\right)}{v\left(\hat{f}^{a}\right)}\right) . \tag{3.49}
\end{equation*}
$$

Because of (3.45), and (3.44) we obtain

$$
\begin{equation*}
\kappa \sum_{v \in V} p(v)\left(\hat{f}^{a}+\tilde{f}^{b}\right)\left(\delta_{D}^{-}(v)\right)=\sum_{v \in V \backslash\{t\}} p(v) x(v) . \tag{3.50}
\end{equation*}
$$

Define $\tilde{y} \in \mathbb{R}^{A_{r}^{+}}$by

$$
\begin{equation*}
\tilde{y}(e):=\max \left\{y(e), \kappa \hat{f}^{a}(e), \kappa f^{b}(e)\right\} \tag{3.51}
\end{equation*}
$$

for all $e \in A_{r}^{+}$, and define $\tilde{x} \in \mathbb{R}^{V}$ accordingly. It holds that $p^{T} \tilde{x}=p^{T} x$, and $\tilde{x}(c)=1$.

As the last piece, we have the now familiar contraction result.
Proposition 3.14. $v_{L P}(E S A)$ is invariant under the contraction of adjacent vertices of non-negative weight.

Proof. Let $I=(V, E, p)$ be a MWCSP instance with adjacent $t, u \in V$ such that $p(t) \geqslant 0$, and $p(u) \geqslant 0$. Let $I^{\prime}=\left(V^{\prime}, E^{\prime}, p^{\prime}\right)$ be the MWCSP obtained from contracting $t$ and $u$. Denote the resulting vertex by $t^{\prime}$. I.e., $V^{\prime}=(V \backslash\{t, u\}) \cup\left\{t^{\prime}\right\}$. Recall that by definition $p^{\prime}\left(t^{\prime}\right)=p(t)+p(u)$. Let $D^{\prime}:=\left(V_{r}^{\prime}, A_{r}^{\prime}\right)$ be the directed graph on which $E S A\left(I^{\prime}\right)$ is defined. Let $D=\left(V_{r}, A_{r}\right)$ be the corresponding graph for $E S A(I)$.

First, we show that $v_{L P}(E S A(I)) \geqslant v_{L P}\left(E S A\left(I^{\prime}\right)\right)$. One readily verifies that there is an optimal LP solution $(x, y)$ to $v_{L P}(E S A(I))$ such that $x(t)=x(u)$. Due to Lemma 3.10, we can assume that $y((r, t))=x(t)$. By a similar flow argument, we can further assume that $y((r, u))=0$ and $y((t, u))=x(t)$. Construct an LP solution $\left(x^{\prime}, y^{\prime}\right)$ to $E S A\left(I^{\prime}\right)$ : First, set $y^{\prime}(a):=y(a)$ for all $a \in A_{r}^{\prime} \cap A_{r}$, and $y^{\prime}(a):=0$ for all $a \in \delta_{D^{\prime}}^{-}\left(t^{\prime}\right) \backslash\left\{\left(r, t^{\prime}\right)\right\}$. For any $a=\left(t^{\prime}, v\right) \in \delta_{D^{\prime}}^{+}\left(t^{\prime}\right)$ proceed as follows. If $(t, v),(u, v) \in A_{r}$, set $y^{\prime}(a):=y((t, v))+y((u, v))$; if $(t, v) \notin A_{r}$, set $y^{\prime}(a)=y((u, v))$; otherwise, set $y^{\prime}(a)=y((t, v))$. Because of $y\left(\delta^{-}(v)\right) \leqslant 1$, we have in any case that $y^{\prime}(a) \leqslant 1$. Finally, set $y^{\prime}\left(\left(r, t^{\prime}\right)\right):=x(t)$. Define $x^{\prime}(v):=y^{\prime}\left(\delta_{D^{\prime}}^{-}(v)\right)$ for all $v \in V^{\prime}$. Note that $x^{\prime}(v)=x(v)$ for all $v \in V \backslash\{t, u\}$, and $x^{\prime}\left(t^{\prime}\right)=x(t)$; thus, $p^{T} x^{\prime}=p^{T} x$. The feasibility of $\left(x^{\prime}, y^{\prime}\right)$ can be seen by noting that any flow $f_{q} \leqslant y$ in $D$ from either $t$ or $u$ to any $q \in V \backslash\{t, u\}$ can be transformed to a flow $f_{q}^{\prime} \leqslant y^{\prime}$ from $t^{\prime}$ to $q$ in $D^{\prime}$ such that $v\left(f_{q}\right)=v\left(f_{q}^{\prime}\right)$.

Finally, we show that $v_{L P}(E S A(I)) \leqslant v_{L P}\left(E S A\left(I^{\prime}\right)\right)$. Given an optimal LP solution $\left(x^{\prime}, y^{\prime}\right)$ to $E S A\left(I^{\prime}\right)$ with $y^{\prime}\left(\left(r^{\prime}, t^{\prime}\right)\right)=x^{\prime}\left(t^{\prime}\right)$, we define a corresponding LP solution $(x, y)$ to $E S A(I)$. First, $y((t, u)):=x^{\prime}\left(t^{\prime}\right), y((u, t)):=0$. Second, $y(a):=y^{\prime}(a)$ for all $a \in A_{r}^{\prime} \cap A_{r}$, and $y(a):=0$ for all $a \in \delta^{-}(\{t, u\}) \backslash\{(r, t)\}$, and $y((r, t))=x^{\prime}\left(t^{\prime}\right)$. Next, consider the remaining edges $\delta^{+}(\{t, u\})$. If $(t, v),(u, v) \in A$ set $y((t, v)):=$ $y^{\prime}\left(t^{\prime}, v\right), y((u, v)):=0$; otherwise, for $a=(t, v)$ or $a=(u, v)$ set $y(a)=y^{\prime}\left(\left(t^{\prime}, v\right)\right)$.

We now reach the main result of this section.

Theorem 3.15. If $\alpha(G) \leqslant 3$, then $\operatorname{proj}_{x}\left(\mathcal{P}_{L P}(E S A)\right)$ is integral.
Proof. Let $I=(G, p)$ be an MWCSP with $\alpha(G) \leqslant 3$. Let $I^{\prime}=\left(V^{\prime}, E^{\prime}, p^{\prime}\right)$ be the MWCSP obtained from $I$ by contracting all adjacent vertices of non-negative weight. Let $A^{\prime}$ be the bidirected equivalent of $E^{\prime}$. Proposition 3.14 implies that $v_{L P}(E S A(I))=v_{L P}\left(E S A\left(I^{\prime}\right)\right)$. Also, $I^{\prime}$ satisfies $\left|T_{p}^{\prime}\right| \leqslant 3$ and the vertices $T_{p}^{\prime}$ are independent. By Lemma 3.13 and Lemma 3.10 there is an optimal LP solution $(\tilde{x}, \tilde{y})$ to $E S A\left(I^{\prime}\right)$ such that $x(u) \in\{0,1\}$ for all $u \in T_{p}^{\prime}$, and $y((r, t))=1$ for one $t \in T_{p}^{\prime}$. Consider the RMWCSP $I_{t}^{\prime}=\left(V^{\prime}, E^{\prime}, T_{f}^{\prime}, p^{\prime}\right)$ with $T_{f}^{\prime}:=\{t\}$. For simplicity, we deviate from the assumption that fixed terminals have 0 weight. It holds that $v\left(E S A\left(I^{\prime}\right)\right)=v\left(R S A\left(I_{t}^{\prime}\right)\right)$ and $v_{L P}\left(E S A\left(I^{\prime}\right)\right)=v_{L P}\left(R S A\left(I_{t}^{\prime}\right)\right)$. We will show that

$$
\begin{equation*}
v_{L P}\left(R S A\left(I_{t}^{\prime}\right)\right)=v\left(R S A\left(I_{t}^{\prime}\right)\right) \tag{3.52}
\end{equation*}
$$

which concludes the proof. Let $(x, y)$ be the restriction of $(\tilde{x}, \tilde{y})$ to $\left(V^{\prime}, A^{\prime}\right)$. Note that $(x, y)$ is an optimal LP solution to $R S A\left(I_{t}^{\prime}\right)$. Suppose that (3.52) does not hold. Thus, by Lemma 3.4 there is a $v \in V^{\prime} \backslash\left(T_{p}^{\prime} \cup T_{f}^{\prime}\right)$ with

$$
\begin{equation*}
y\left(\delta^{+}(v)\right)<y\left(\delta^{-}(v)\right) . \tag{3.53}
\end{equation*}
$$

The case $\left|T_{p}^{\prime}\right|<3$ can be readily ruled out by a flow argument. So assume $\left|T_{p}^{\prime}\right|=3$. Because of $\alpha(G) \leqslant 3$, at least one vertex $u \in T_{p}^{\prime}$ is adjacent to $v$. Recall that $x(u) \in\{0,1\}$. If $x(u)=0$, we reduce the problem to the support graph of $(x, y)$, which corresponds to the case $\left|T_{p}^{\prime}\right|<3$. So assume $x(u)=1$. If $u \neq t$, define the RMWCSP $I_{u}^{\prime}=\left(V^{\prime}, E^{\prime}, T_{f}^{\prime \prime}, p^{\prime}\right)$ with $T_{f}^{\prime \prime}:=\{t, u\}$. Further, construct an optimal solution $(x, \tilde{y})$ to $I_{u}^{\prime}$ with root $u$ analogously to Lemma 3.10. In this way, $\tilde{y}\left(\delta^{+}(v)\right)<\tilde{y}\left(\delta^{-}(v)\right)$ holds again (for the same $v$ as above). In the following, assume $u=t$. Define a new LP solution $\left(x^{\prime}, y^{\prime}\right)$ from $y$ as follows. For $a_{0}:=(t, v)$ set $y^{\prime}\left(a_{0}\right):=y\left(\delta^{+}(v)\right)$. For any $a \in \delta^{-}(v) \backslash\left\{a_{0}\right\}$ set $y^{\prime}(a):=0$. For all $a \in A^{\prime} \backslash \delta^{-}(v)$ set $y^{\prime}(a):=y(a)$. Set $x^{\prime}(v):=y\left(\delta^{+}(v)\right)$, and $x^{\prime}(w):=x(w)$ for all $w \in V \backslash\{v\}$. By construction of $I_{t}^{\prime}$ it holds that $p(v)<0$ (otherwise, $v$ would have been contracted into $u$ ). Thus, $p^{\prime T} x^{\prime}>p^{\prime T} x$. The feasibility of $\left(x^{\prime}, y^{\prime}\right)$ can be seen as in the proof of Theorem 2.7.

Note that there are graphs with $a(G)=4$, such that $\operatorname{proj}_{x}\left(\mathcal{P}_{L P}(E S A)\right)$ is not integral. For an example, extend the graph in Figure 3.1 as follows. Add a new vertex $v$ and edges between $v$ and the (three) vertices of negative weight shown in the figure.

### 3.2.4 Comparison of the formulations

A result from Álvarez-Miranda et al. (2013a) states that the directed equivalents of $E S A$ and (a slight generalization of) NCut induce the same polyhedral relaxation of the directed connected subgraph polytope. This result suggest that the same relation holds for the undirected case. Unfortunately, the result from Álvarez-Miranda et al. (2013a) is not correct (the proof suffers from a similar problem as that discussed in Appendix A.2.2 for the rooted case). The strict inclusion result given in the next proposition can indeed also be extended to the directed case.

Proposition 3.16. The following inclusion holds and can be strict:

$$
\begin{equation*}
\operatorname{proj}_{x}\left(\mathcal{P}_{L P}(E S A)\right) \subset \mathcal{P}_{L P}(N C u t) \tag{3.54}
\end{equation*}
$$

Proof. Let $(x, y) \in \mathcal{P}_{L P}(E S A)$ and let $a, b \in V, a \neq b$. Let $C \in \mathcal{C}(a, b)$ and let $U_{a}$ be the connected component in the graph $(V \backslash C, E[V \backslash C])$ with $a \in U_{a}$. Define $\bar{U}_{b}:=V \backslash U_{a}$ and $\bar{U}_{a}:=U_{a} \cup C$. Because of $\bar{U}_{a} \cap \bar{U}_{b}=C$, one obtains

$$
\begin{equation*}
y\left(\delta^{-}\left(\bar{U}_{a}\right)\right)+y\left(\delta^{-}\left(\bar{U}_{b}\right)\right)=y\left(\delta^{-}\left(\bar{U}_{a} \cup \bar{U}_{b}\right)\right)+y\left(\delta^{-}(C)\right), \tag{3.55}
\end{equation*}
$$

where we use $\delta^{-}:=\delta_{D_{r}}^{-}$. Thus,

$$
\begin{align*}
x(a)+x(b) & \stackrel{(3.30)}{\leqslant} y\left(\delta^{-}\left(\bar{U}_{a}\right)\right)+y\left(\delta^{-}\left(\bar{U}_{b}\right)\right)  \tag{3.56}\\
& \stackrel{(3.55)}{=} y\left(\delta^{+}(r)\right)+y\left(\delta^{-}(C)\right)  \tag{3.57}\\
& \stackrel{(3.31)}{\leqslant} 1+x(C) .
\end{align*}
$$

An example for a strict inclusion is given in Figure 3.1. E.g., consider the following point that is in $\mathcal{P}_{L P}(N C u t)$, but not in $\operatorname{proj}_{x}\left(\mathcal{P}_{L P}(E S A)\right)$ : Set the values of all negative weight node variables to 0.5 and the remainder to 1 .


Figure 3.1: MWCSP instance with given node weights.
Next, we consider the indegree constraints. Following Wang et al. (2017), we define

$$
\begin{equation*}
\mathcal{Q}^{\prime}:=\left\{x \in \mathbb{R}_{\geqslant 0}^{V} \mid \mathrm{x} \text { satisfies all indegree constraints }\right\} . \tag{3.59}
\end{equation*}
$$

While $\mathcal{Q}^{\prime} \nsubseteq \mathcal{P}_{L P}(N C u t)$ and $\mathcal{P}_{L P}(N C u t) \nsubseteq \mathcal{Q}^{\prime}$, see e.g. Wang et al. (2017), the indegree constraints cannot improve the $E S A$ formulation, as the following proposition shows.

Proposition 3.17. The following inclusion holds and can be strict:

$$
\begin{equation*}
\operatorname{proj}_{x}\left(\mathcal{P}_{L P}(E S A)\right) \subset \mathcal{Q}^{\prime} \tag{3.60}
\end{equation*}
$$

Proof. Consider an undirected graph $G$, and let $D$ be its bidirected equivalent. Furthermore, let $D_{r}$ be the extended, directed graph on which $E S A$ is defined. Let
$(x, y) \in \mathcal{P}_{L P}(E S A)$. First, note that constraints (3.29) and (3.30) imply for all $\{v, w\} \in E$ that

$$
\begin{equation*}
\min \left\{y\left(\delta_{D_{r}}^{-}(v)\right), y\left(\delta_{D_{r}}^{-}(w)\right)\right\} \geqslant y((v, w))+y((w, v)) \tag{3.61}
\end{equation*}
$$

Let $d$ be an indegree vector. It holds that

$$
\begin{aligned}
\sum_{v \in V} x(v) & =\sum_{a \in A_{r}} y(a) \\
& \leqslant \sum_{a \in A} y(a)+1 \\
& =\sum_{\{v, w\} \in E}(y((v, w))+y((w, v)))+1 \\
& \stackrel{(3.61)}{\leqslant} \sum_{\{v, w\} \in E} \min \left\{y\left(\delta_{D_{r}}^{-}(v)\right), y\left(\delta_{D_{r}}^{-}(w)\right)\right\}+1 \\
& \leqslant \sum_{v \in V} d_{v} x(v)+1,
\end{aligned}
$$

which implies that (3.27) is satisfied by $x$; thus, $x \in \mathcal{Q}^{\prime}$. For a strict inclusion consider the graph in Figure 3.1 and the point $x$ as defined in the proof of Proposition 3.16.

Summarizing the results of this section, one obtains:
Theorem 3.18. It holds that

$$
\begin{equation*}
\operatorname{proj}_{x}\left(\mathcal{P}_{L P}(E S A)\right) \subset \mathcal{Q}^{\prime} \cap \mathcal{P}_{L P}(N C u t) \tag{3.62}
\end{equation*}
$$

and the inclusion can be strict.
Finally, note that by using one flow for each vertex, similar to the $D F$ formulation, it is also possible to obtain a compact extended formulation for the connected subgraph polytope that is equivalent to $E S A$-and thus (strictly) stronger than the combined node-separator and indegree formulation.

### 3.3 Reduction techniques

Reduction techniques are a vital component for practical exact solution of MWCSP, see El-Kebir and Klau (2014); Leitner et al. (2018a), and also for many other combinatorial optimization problems, such as SPG, see Section 2.3 or maximum clique, see Verma et al. (2015). Still, reduction techniques for the MWCSP have only been recently addressed in the literature. The first ground was broken in the course of the 11th DIMACS Challenge, with two articles Althaus and Blumenstock (2014); El-Kebir and Klau (2014) containing reduction techniques as part of an exact solving approach. Later, a dual-ascent-based branch-and-bound algorithm with strong reduction properties was described in Leitner et al. (2018a). Also, several other authors,
e.g. Loboda et al. (2016); Álvarez Miranda and Sinnl (2017); Wang et al. (2017), have used simple reduction techniques such as the contraction of adjacent vertices of positive weight.

Note that an optimal solution may consist of a single vertex. Thus, care needs to be taken to avoid the deletion or modification of an optimal positive weight vertex. Indeed, one finds wrong reduction tests in literature that disregard this observation, as detailed in Rehfeldt et al. (2019). An example is the contraction of a positive weight vertex of degree 1 into its (negative weight) neighbor. Also, just remembering a maximum-weight vertex before the start of the reduction techniques, as suggested in the literature, is not sufficient: A single-vertex solution might be created during the reduction process on a reduced problem. Indeed, guarding measures during the reduction process can hardly be avoided due to the following proposition. It can be readily proven by a reduction from the decision variant of MWCSP.

Proposition 3.19. Deciding whether no single-vertex maximum-weight connected subgraph exists is $\mathcal{N} \mathcal{P}$-hard.

In the following, we introduce a number of MWCSP reduction techniques that are both theoretically and practically stronger than those described by other authors in the literature so far. These techniques can also be applied to RMWCSP if sufficiently high weights for each fixed terminal are used. We note that a reduction technique not implied by the methods introduced in the following is the contraction of chains of non-positive vertices, see El-Kebir and Klau (2014).

To render the proof techniques more perspicuous, throughout this section it will without loss of generality be assumed that each solution to $I_{M W}$ is given as a tree (and not as an arbitrary connected subgraph).

### 3.3.1 Bound-based reductions

The term bound-based reductions describes preprocessing methods that identify edges and vertices for elimination by examining whether they induce an upper bound that is lower than a given lower bound (or vice versa), see e.g. Duin (1993); Hwang et al. (1992). In the following, we will introduce a new bound-based MWCSP reduction technique. This technique can be seen as an adaptation of the terminal-regions decomposition method for SPG that we developed in Section 2.3.2.

The base of the reduction technique is the following, new, concept: a positivevertex decomposition of $I_{M W}$-with underlying graph $(V, E)$-is a partition $H=$ $\left\{H_{t_{i}} \subseteq V \mid T_{p} \cap H_{t_{i}}=\left\{t_{i}\right\}\right\}$ of $V$ such that for each $t_{i} \in T_{p}$ the subgraph $\left(H_{t_{i}}, E\left[H_{t_{i}}\right]\right)$ is connected. Each of the $H_{t_{i}}$ is called region with center $t_{i}$. Furthermore, a vertex $v_{j} \in H_{t_{i}}$ adjacent to a vertex $v_{k} \notin H_{t_{i}}$ is called boundary vertex of region $H_{t_{i}}$; the set of all such vertices to a region $H_{t_{i}}$ will be denoted by $B\left(H_{t_{i}}\right)$. Additionally, an edge $\left\{v_{i}, v_{j}\right\}$ with $v_{i}$ and $v_{j}$ in different regions will be called $H$-boundary edge.

To set the stage for the computation of an upper bound, define for all $t_{i} \in T_{p}$ the positive-vertex decomposition radii:

$$
\begin{equation*}
r_{H}\left(t_{i}\right):=\max \left\{\bar{d}\left(t_{i}, v_{k}\right) \mid v_{k} \in B\left(H_{t_{i}}\right)\right\} \tag{3.63}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{H}^{+}\left(t_{i}\right):=\max \left\{r_{H}\left(t_{i}\right), 0\right\} . \tag{3.64}
\end{equation*}
$$

Definition (3.64) allows us to establish three bound-based reduction criteria presented in the following. An important observation underlying all these criteria is that for each positive vertex $t_{i}$ that is part of an optimal solution $S$ with $\left|V(S) \cap T_{p}\right| \geqslant 2$ there needs to be a path in $V(S) \cap H_{t_{i}}$ from $t_{i}$ to a vertex in $B\left(H_{t_{i}}\right)$-and the weight of this path is bounded by $r_{H}\left(t_{i}\right)$. Since $t_{i}$ does not have to be in $V(S)$, one cannot use $r_{H}\left(t_{i}\right)$ to obtain a bound on the weight of $S$; however, one can use $r_{H}^{+}\left(t_{i}\right)$ instead. Moreover, one can observe that if a negative vertex $v_{i}$ is part of an optimal solution, there need to be two paths in $S$ connecting $v_{i}$ to positive vertices and having no vertices but $v_{i}$ in common. These two observations lead to:

Proposition 3.20. Let $H$ be a positive-vertex decomposition of $I_{M W}$ and assume that $\left|T_{p}\right| \geqslant 2$. Furthermore, let $v_{i} \in V \backslash T_{p}$ and assume that for each optimal solution $S$ to $I_{M W}$ it holds that $v_{i} \in V(S)$. Finally, let

$$
\begin{equation*}
U_{2}:=\sum_{t \in T_{p}} r_{H}^{+}(t)-\min \left\{r_{H}^{+}(t)+r_{H}^{+}\left(t^{\prime}\right) \mid t, t^{\prime} \in T_{p}, t \neq t^{\prime}\right\} \tag{3.65}
\end{equation*}
$$

Thereupon,

$$
\begin{equation*}
U:=U_{2}+\bar{d}\left(v_{i}, \bar{v}_{i, 1}\right)+\bar{d}\left(v_{i}, \bar{v}_{i, 2}\right)-p\left(v_{i}\right) \tag{3.66}
\end{equation*}
$$

is an upper bound on the weight of $S$.
Proof. Let $S$ be an optimal solution to $I_{M W}$ such that $v_{i} \in V(S)$. As before, it is assumed (without limiting generality) that $S$ is a tree. Denote the (unique) path in $S$ between $v_{i}$ and a $t_{j} \in V(S) \cap T_{p}$ by $Q_{j}$ and set $\mathcal{Q}:=\left\{Q_{j} \mid t_{j} \in V(S)\right\}$. First, note that $|\mathcal{Q}| \geqslant 2$, because if $\mathcal{Q}$ just contained one path, say $Q_{j}$, it would follow for $S^{\prime}:=\left\{t_{j}\right\}$ that $v_{i} \notin S^{\prime}$ and $P\left(S^{\prime}\right) \geqslant P(S)$ (which contradicts the assumptions of the proposition). Second, if a vertex $v_{k}$ is contained in two distinct paths of $\mathcal{Q}$, the subpaths of these two paths between $v_{i}$ and $v_{k}$ coincide. Otherwise there would need to be a cycle in $S$. Additionally, there are at least two (distinct) paths $Q_{k}, Q_{l} \in \mathcal{Q}$ such that $V\left(Q_{k}\right) \cap V\left(Q_{l}\right)=\left\{v_{i}\right\}$. Otherwise, due to the precedent observation, all paths in $\mathcal{Q}$ would have one edge $\left\{v_{i}, v_{i}^{\prime}\right\}$ in common, which could be discarded to obtain a tree $S^{\prime}$ with $v_{i} \notin V\left(S^{\prime}\right)$ and $P\left(S^{\prime}\right) \geqslant P(S)$.

Now, choose two distinct paths $Q_{k} \in \mathcal{Q}$ and $Q_{l} \in \mathcal{Q}$ with minimum number of combined $H$-boundary edges and $V\left(Q_{k}\right) \cap V\left(Q_{l}\right)=\left\{v_{i}\right\}$. Further, define $\mathcal{Q}^{-}:=$ $\mathcal{Q} \backslash\left\{Q_{k}, Q_{l}\right\}$. For all $Q_{r} \in \mathcal{Q}^{-}$, denote by $Q_{r}^{\prime}$ the subpath of $Q_{r}$ from $t_{r}$ up to the last vertex still in $H_{t_{r}}$. Suppose that $Q_{k}$ has a vertex $v_{q} \in V(S)$ in common with a $Q_{r}^{\prime}$. Consequently, $Q_{l} \cap Q_{r}=\left\{v_{i}\right\}$, because $S$ is cycle-free. Furthermore, according to the preceding observations, $Q_{k}$ and $Q_{r}$ have to contain a joint subpath including $v_{i}$ and $v_{q}$. But this implies that $Q_{k}$ contains at least one additional $H$-boundary edge (in order to be able to reach $t_{k}$, which is by definition not in $H_{t_{r}}$ ). Therefore, and
due to $V\left(Q_{l}\right) \cap V\left(Q_{r}\right)=\left\{v_{i}\right\}$, the path $Q_{r}$ would have initially been selected instead of $Q_{k}$.

Following the same line of argumentation, one validates that likewise $Q_{l}$ has no vertex in common with any $Q_{r}^{\prime}$. Conclusively, the paths $Q_{k}, Q_{l}$ have only the vertex $v_{i}$ in common and all paths $Q_{r}^{\prime}$ are vertex disjoint and also do not have any vertex in common with both $Q_{k}, Q_{l}$. Using their combined weight, one can obtain an upper bound on the weight of $S$ by:

$$
\begin{aligned}
P(S) & =\sum_{v \in V(S)} p(v) \\
\leqslant & \left(\sum_{Q_{r} \in \mathcal{Q}^{-}} P\left(Q_{r}^{\prime}\right)\right)+P\left(Q_{k}\right)+P\left(Q_{l}\right)-p\left(v_{i}\right) \\
\leqslant & \sum_{t \in T_{p}} r_{H}^{+}(t)-\min \left\{r_{H}^{+}(t)+r_{H}^{+}\left(t^{\prime}\right) \mid t, t^{\prime} \in T_{p}, t \neq t^{\prime}\right\}+P\left(Q_{k}\right)+P\left(Q_{l}\right)-p\left(v_{i}\right) \\
\leqslant & \sum_{t \in T_{p}} r_{H}^{+}(t)-\min \left\{r_{H}^{+}(t)+r_{H}^{+}\left(t^{\prime}\right) \mid t, t^{\prime} \in T_{p}, t \neq t^{\prime}\right\}+\bar{d}\left(v_{i}, \bar{v}_{i, 1}\right)+\bar{d}\left(v_{i}, \bar{v}_{i, 2}\right) \\
& \quad-p\left(v_{i}\right) .
\end{aligned}
$$

The first inequality follows from above discussed properties of the paths in $Q^{-}$and the paths $Q_{k}$ and $Q_{l}$. The second inequality uses the fact that the weight of each path $Q_{r} \in Q^{-}$can be bounded from above by $r_{H}^{+}\left(t_{r}\right)$. Finally, the third inequality exploits that the paths $Q_{k}$ and $Q_{l}$ do not contain any intermediate vertices of positive weight and that there weight can therefore be bounded by using the distance function $\bar{d}$. Consequently, the proposition is proven.

It follows from the proposition that vertex of non-positive weight can be eliminated if the associated upper bound $U$ in (3.66) is smaller than a known lower bound (e.g. the weight of a given feasible solution). An application of the proposition is exemplified in Figure 3.2 for a simple MWCSP instance with positive vertices $t_{1}, t_{2}, t_{3}$-the weights are given next to the corresponding vertices. With $H$ being the positive-vertex decomposition marked by the dotted ellipses it holds that $r_{H}^{+}\left(t_{1}\right)=1, r_{H}^{+}\left(t_{2}\right)=2$, and $r_{H}^{+}\left(t_{3}\right)=0.5$. Consequently, for Proposition 3.20 - with $v_{i}$ as labeled in the figure - it holds that $U_{2}=2$ and $U=2.5$. Therefore, $v_{i}$ can be eliminated if a lower bound higher than 2.5 is given.

The following proposition can be used to moreover eliminate vertices of positive weight. It can be proven similarly to Proposition 3.20 (see Appendix A.2.1).

Proposition 3.21. Let $H$ be a positive-vertex decomposition of $I_{M W}$ and assume that $\left|T_{p}\right| \geqslant 2$. Furthermore, let $v_{i} \in T_{p}$ and assume that an optimal solution $S$ exists such that $v_{i} \in V(S)$ and $\left|V(S) \cap T_{p}\right| \geqslant 2$. Define

$$
\begin{equation*}
U_{1}:=\sum_{t \in T_{p} \backslash\left\{v_{i}\right\}} r_{H}^{+}(t)-\min \left\{r_{H}^{+}(t) \mid t \in T_{p} \backslash\left\{v_{i}\right\}\right\} . \tag{3.67}
\end{equation*}
$$



Figure 3.2: A positive-vertex decomposition of an MWCSP instance with regions marked by dotted ellipses.

Then

$$
\begin{equation*}
U:=U_{1}+\bar{d}\left(v_{i}, \bar{v}_{i, 1}\right) \tag{3.68}
\end{equation*}
$$

is an upper bound on the weight of $S$.
The positive vertex decomposition concept does not only allow for direct elimination of vertices, but can furthermore be used for a criterion that guarantees that a vertex cannot be of degree higher than 2 in any optimal solution. This information will be utilized in Section 3.3.2.

Proposition 3.22. Let $H$ be a positive-vertex decomposition of $I_{M W}$ and assume that $\left|T_{p}\right| \geqslant 3$. Furthermore, let $v_{i} \in V \backslash T_{p}$ and assume that for an optimal solution $S$ to $I_{M W}$ it holds that $\left|\delta_{S}\left(v_{i}\right)\right| \geqslant 3$. Finally, let

$$
\begin{align*}
U_{3}:= & \sum_{t \in T_{p}} r_{H}^{+}(t)  \tag{3.69}\\
& -\min \left\{r_{H}^{+}\left(t_{j}\right)+r_{H}^{+}\left(t_{k}\right)+r_{H}^{+}\left(t_{l}\right) \mid t_{j}, t_{k}, t_{l} \in T_{p} ; t_{j}, t_{k}, t_{l} \text { disjoint }\right\} .
\end{align*}
$$

Thereupon,

$$
\begin{equation*}
U:=U_{3}+\bar{d}\left(v_{i}, \bar{v}_{i, 1}\right)+\bar{d}\left(v_{i}, \bar{v}_{i, 2}\right)+\bar{d}\left(v_{i}, \bar{v}_{i, 3}\right)-2 p\left(v_{i}\right) \tag{3.70}
\end{equation*}
$$

is an upper bound on the weight of $S$.
To efficiently apply Proposition 3.20 , one would like to minimize (3.65) -and for Proposition 3.21 and Proposition 3.22 to minimize (3.67) and (3.69), respectively. Unfortunately, this problem turns out to be $\mathcal{N} \mathcal{P}$-hard.

The decision variant of the problem can be stated as follows. Let $\alpha \in \mathbb{N}_{0}$ and let $G_{0}=\left(V_{0}, E_{0}\right)$ be an undirected, non-empty graph. Furthermore, let $p_{0}: V_{0} \rightarrow \mathbb{Z}$,
set $T_{0}:=\left\{v \in V_{0} \mid p(v)>0\right\}$, and assume that $\alpha<\left|T_{0}\right|$. For each positive-vertex decomposition $H_{0}$ of $G_{0}$ choose $T_{0}^{\prime} \subsetneq T_{0}$ such that $\left|T_{0}^{\prime}\right|=\alpha$ and $r_{H_{0}}^{+}\left(t^{\prime}\right) \leqslant r_{H_{0}}^{+}(t)$ for all $t^{\prime} \in T_{0}^{\prime}$ and $t \in T_{0} \backslash T_{0}^{\prime}$. Let:

$$
\begin{equation*}
C_{H_{0}}:=\sum_{t \in T_{0} \backslash T_{0}^{\prime}} r_{H_{0}}^{+}(t) . \tag{3.71}
\end{equation*}
$$

We now define the $\alpha$-positive-vertex decomposition problem as follows: Given a $k \in \mathbb{N}$, is there a positive-vertex decomposition $H_{0}$ such that $C_{H_{0}} \leqslant k$ ? In the following proposition it is shown that this problem is $\mathcal{N} \mathcal{P}$-complete, which forthwith establishes the $\mathcal{N} \mathcal{P}$-hardness of finding a positive-vertex decomposition that minimizes (3.65), (3.67), or (3.69)—which corresponds to $\alpha=2, \alpha=1$, and $\alpha=3$, respectively.

Proposition 3.23. For each $\alpha \in \mathbb{N}_{0}$ the $\alpha$-positive-vertex decomposition problem is $\mathcal{N} \mathcal{P}$-complete.

Proof. Given a positive-vertex decomposition $H_{0}$ it can be tested in polynomial time whether the associated $C_{H_{0}}$ is less than or equal to $k$. This can be be done for instance as follows: Consider the set of (directed) arcs $A^{\prime}:=\left\{(v, w) \in V_{0} \times V_{0} \mid\{v, w\} \in E\right\}$ and define edge costs $c^{\prime}: A^{\prime} \rightarrow \mathbb{Z}_{\geqslant 0}$ such that for $a=\left(v_{i}, v_{j}\right) \in A^{\prime}$ :

$$
c^{\prime}(a)=\left\{\begin{array}{cl}
-p_{0}\left(v_{j}\right), & \text { if } p_{0}\left(v_{j}\right)<0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Thereupon, $C_{H_{0}}$ can be computed by running (the directed version of) Dijkstra's algorithm for each subgraph $\left(H_{t_{i}}, A^{\prime}\left[H_{t_{i}}\right]\right)$, starting from $t_{i}$ and using the arcs costs $c^{\prime}$. Consequently, the positive-vertex decomposition problem is in $\mathcal{N} \mathcal{P}$.

Next, it will be shown that the, $\mathcal{N} \mathcal{P}$-complete (Garey and Johnson, 1979), independent set problem can be reduced to the positive-vertex decomposition problem. To this end, let $G_{i n d}=\left(V_{i n d}, E_{i n d}\right)$ be an undirected, non-empty graph and $k \in \mathbb{N}$. The problem is to determine whether an independent set in $G_{i n d}$ of cardinality at least $k$ exists. Without loss of generality it will be assumed that $G_{\text {ind }}$ does not include any vertices of degree 0 .

To establish the reduction, construct a graph $G_{0}$ from $G_{i n d}$ as follows. Initially, set $G_{0}=\left(V_{0}, E_{0}\right):=G_{\text {ind }}$ and define vertex weights $p_{0}\left(v_{i}\right):=1$ for all $v_{i} \in V_{0}$. Next, extend $G_{0}$ by replacing each edge $e_{l}=\left\{v_{i}, v_{j}\right\} \in E_{0}$ with a vertex $v_{l}^{\prime}$ of weight $p_{0}\left(v_{l}^{\prime}\right)=-1$ and the two edges $\left\{v_{i}, v_{l}^{\prime}\right\}$ and $\left\{v_{j}, v_{l}^{\prime}\right\}$. Finally, if $\alpha>0$, choose an arbitrary $v_{0} \in V_{0} \cap V_{\text {ind }}$ and add vertices $v_{j}^{\prime}$ of weight -1 for $j=0, \ldots, \alpha$ and vertices $v_{j}^{\prime \prime}$ of weight 1 for $j=1, \ldots, \alpha$ to $G_{0}$. Additionally, add an edge $\left\{v_{0}, v_{0}^{\prime}\right\}$. Finally, add edges $\left\{v_{0}^{\prime}, v_{j}^{\prime}\right\}$ and $\left\{v_{j}^{\prime}, v_{j}^{\prime \prime}\right\}$ for $j=1, \ldots, \alpha$.

First, one observes that the size $\left|V_{0}\right|+\left|E_{0}\right|$ of the new graph $G_{0}$ is a polynomial in the size $\left|V_{i n d}\right|+\left|E_{\text {ind }}\right|$ of $G_{\text {ind }}$. Next, $r_{H_{0}}^{+}\left(v_{i}\right)=0$ holds for a vertex $v_{i} \in G_{0} \cap G_{\text {ind }}$ if and only if $H_{v_{i}}$ contains all (newly inserted) adjacent vertices of $v_{i}$ in $G_{0}$. The latter condition implies that for each adjacent vertex $v_{k}$ of $v_{i}$ in $G_{0} \cap G_{i n d}$ it holds that $r_{H_{0}}^{+}\left(v_{k}\right)=1$. Moreover, in a positive-vertex decomposition for $\left(G_{0}, p_{0}\right)$ of minimum
$\operatorname{cost} C_{H_{0}}$, it holds that $r_{H_{0}}^{+}\left(v_{j}^{\prime \prime}\right)=0$ for $j=1, \ldots, \alpha$. Hence, there is an independent set in $G_{\text {ind }}$ of cardinality at least $k$ if and only if there is a positive-vertex decomposition $H_{0}$ for $\left(G_{0}, p_{0}\right)$ such that

$$
C_{H_{0}} \leqslant\left|V_{i n d}\right|-k
$$

This proves the proposition.
Since attempting to find an exact polynomial time algorithm for minimizing (3.65) seems to be overly optimistic, a greedy heuristic based on Dijkstra's algorithm will instead be used. Moreover, a local search heuristic has been developed to improve the decomposition found by the greedy approach. The combined algorithm runs in $O(m \log n)$, which also gives the whole bound-based reduction test a worst-case complexity of $O(m \log n)$-if a lower bound is already available. This reduction test will be referred to as Positive Vertex Decomposition (PVD) test; the computation of a lower bound will be discussed in Section 3.5.

### 3.3.2 Alternative-based reductions

This section covers several exclusion tests (Duin, 1993): reduction methods that attempt to prove that a specified part of the problem graph-usually a single vertex or edge - is not contained in at least one optimal solution. The usual procedure is to show that for each solution that contains this specified subgraph there is another, alternative, solution of equal or better objective value that does not. A simple example for an exclusion test is the following. Delete any edge $\{v, w\} \in E$, such that there is a $t \in V$ with $p(t) \geqslant 0$, and edges $\{v, t\},\{w, t\} \in E$. The reasoning is as follows: For any connected subgraph that contains $\{v, w\}$, we can remove $\{v, w\}$ and add both $\{v, t\},\{w, t\}$. The result is a connected subgraph of at least the same weight. See also Rehfeldt et al. (2019).

## Constrained walks

In the following, we again apply our new concept of walk-based distance measures from the previous chapter. Let $v, w \in V$. A finite walk $W=\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, e_{r-1}, v_{r}\right)$ with $v_{1}=v$ and $v_{r}=w$ will be called positive-weight constrained $(v, w)$-walk if no $u \in T_{p} \cup\{v, w\}$ is contained more than once in $W$. For any $k, l \in \mathbb{N}$ with $1 \leqslant k \leqslant l \leqslant r$ define the subwalk $W\left(v_{k}, v_{l}\right):=\left(v_{k}, e_{k}, v_{k+1}, e_{k+1}, \ldots, e_{l-1}, v_{l}\right)$. In the following, let $W$ be a positive-weight constrained $(v, w)$-walk. Define the interior cost of $W$ as:

$$
\begin{equation*}
C^{-}(W):=\sum_{u \in V(W) \backslash\{v, w\}} p(u), \tag{3.72}
\end{equation*}
$$

where the convention that the empty sum equals 0 is assumed, so the interior cost of an edge is likewise 0 . Furthermore, define the positive-weight constrained length of $W$ as:

$$
\begin{equation*}
l_{p w}(W):=\min \left\{C^{-}\left(W\left(v_{k}, v_{l}\right)\right) \mid 1 \leqslant k \leqslant l \leqslant r, v_{k}, v_{l} \in T_{p} \cup\{v, w\}\right\} \tag{3.73}
\end{equation*}
$$

Note that $l_{p w}(W) \leqslant 0$ holds, because the interior cost of an edge is 0 . For a motivation of the positive-weight constrained length consider two vertex-disjoint solutions $S_{1}$ and $S_{2}$ to $I_{M W}$, and a walk $W$ that joins $S_{1}$ and $S_{2}$. Thereupon, one can obtain a new solution $S_{3}$ out of $S_{1}, S_{2}$, and $W$ such that

$$
\begin{equation*}
P\left(S_{1}\right)+P\left(S_{2}\right)+l_{p w}(W) \leqslant P\left(S_{3}\right) \tag{3.74}
\end{equation*}
$$

Denote the set of all positive-weight constrained $(v, w)$-walks by $\mathcal{W}_{p w}(v, w)$ and define the positive-weight constrained distance between $v$ and $w$ as

$$
\begin{equation*}
d_{p w}(v, w):=\max \left\{l_{p w}(W) \mid W \in \mathcal{W}_{p w}(v, w)\right\} \tag{3.75}
\end{equation*}
$$

For the next results, let $G$ be the underlying graph of $I_{M W}$, and consider the distance network $D_{G}\left(U,-d_{p w}\right)$ for a given set $U \subseteq V$. For simplicity, we write $D\left(U,-d_{p w}\right):=D_{G}\left(U,-d_{p w}\right)$ in the following. See Section 1.1.2 for the definition of a distance network. Because $d_{p w}(v, w) \leqslant 0$ for any $v, w \in V$, the distance network $D\left(U,-d_{p w}\right)$ has non-negative edge weights. Based on these concepts, we introduce two new edge elimination criteria in the following.

Proposition 3.24. Let $e=\{v, w\} \in E$ with $p(v) \leqslant 0$. Define $\Delta:=\left(T_{p} \cup\{w\}\right) \cap N(v)$, and

$$
\mathcal{U}=\{U \subseteq N(v)| | U \mid \geqslant 2, U \supseteq \Delta\} .
$$

If for all $U \in \mathcal{U}$ the weight of a minimum spanning tree on $D\left(U,-d_{p w}\right)$ is smaller than $-p(v)$, then at least one optimal solution does not contain edge $e$.

Proof. Let $S$ be a connected subgraph with $e \in E(S)$. We will show that there is a connected subgraph $S^{\prime}$ with $e \notin E\left(S^{\prime}\right)$ such that

$$
\begin{equation*}
P(S) \leqslant P\left(S^{\prime}\right) \tag{3.76}
\end{equation*}
$$

We can assume that $S$ is a tree, and that $\Delta \subseteq N_{S}(v)$. Otherwise, we can modify $S$ to satisfy these conditions and still contain $e$ without decreasing the weight of $S$. Note that if $v$ is of degree 1 in $S$, we can simply delete edge $e$ to obtain the desired $S^{\prime}$. So assume $\left|N_{S}(v)\right| \geqslant 2$.

Let $U:=N_{S}(v)$. Let $\hat{S}$ be the subgraph obtained from $S$ by removing vertex $v$ and all incident edges. Let $S^{(1)}, \ldots, S^{(k)}$ be the (inclusion-wise maximal) connected components of $\hat{S}$. Note that $k=|U|$. Let $F_{U}$ be a minimum spanning tree on $D\left(U,-d_{p w}\right)$, and denote its weight by $-C_{U}$ (recall that $d_{p w}$ is non-positive). By the assumption of the proposition it holds that

$$
\begin{equation*}
C_{U}-p(v)>0 \tag{3.77}
\end{equation*}
$$

Assume that the $S^{(i)}$ are ordered such that for each $i \in\{2, \ldots, k\}$ there are vertices $q^{(i)} \in V\left(\bigcup_{h \leqslant i} S^{(h)}\right) \cap U$ and $r^{(i)} \in V\left(S^{(i+1)}\right) \cap U$ such that there is a $\left(q^{(i)}, r^{(i)}\right)$ walk $W^{(i)}$ in $(V, E)$ corresponding to an edge in the spanning tree $F_{U}$. Note that $l_{p w}\left(W^{(i)}\right)=d_{p w}\left(q^{(i)}, r^{(i)}\right)$. Set $\hat{S}^{(1)}:=S^{(1)}$ and proceed for $i=2, \ldots, k$ as follows.

First, observe that $v \notin V\left(W^{(i)}\right)$ due to the assumptions of the proposition. Let $v_{1}, v_{2}, \ldots, v_{s}$ be the vertices encountered (in this order) when traversing $W^{(i)}$ from $q^{(i)}$ to $r^{(i)}$. So in particular $v_{1}=q^{(i)}$ and $v_{s}=r^{(i)}$. Let $b$ be the minimum number such that $v_{b} \in V\left(S^{(i)}\right)$. Further, let $a$ be the largest number in $\{1,2, . ., b\}$ such that $v_{a} \in V\left(\hat{S}^{(i-1)}\right)$. Further, define $x:=\max \left\{j \in\{1, \ldots, a\} \mid v_{j} \in T_{p} \cup\left\{v_{1}\right\}\right\}$ and $y:=\min \left\{j \in\{b, \ldots, s\} \mid v_{j} \in T_{p} \cup\left\{v_{s}\right\}\right\}$. By definition, $x \leqslant a<b \leqslant y$ and furthermore:

$$
\begin{equation*}
C^{-}\left(W^{(i)}\left(v_{a}, v_{b}\right)\right) \geqslant C^{-}\left(W^{(i)}\left(v_{x}, v_{y}\right)\right) \geqslant l_{p w}\left(W^{(i)}\right)=d_{p w}\left(q^{(i)}, r^{(i)}\right) \tag{3.78}
\end{equation*}
$$

Define $\hat{S}^{(i)}:=\hat{S}^{(i-1)} \cup S^{(i)} \cup W^{(i)}\left(v_{a}, v_{b}\right)$, with a slight abuse of notation $W^{(i)}\left(v_{a}, v_{b}\right)$ is considered as a subgraph here. Ultimately, $S^{\prime}:=\hat{S}^{(k)}$ is a connected subgraph and it holds that

$$
\begin{equation*}
P\left(S^{\prime}\right) \stackrel{(3.78)}{\geqslant} P(\hat{S})+C_{U}=P(S)+C_{U}-p(v) \stackrel{(3.77)}{>} P(S) . \tag{3.79}
\end{equation*}
$$

Because $v \notin V\left(S^{\prime}\right)$ implies $e \notin E\left(S^{\prime}\right)$, the proposition is proven.
Another reduction test can be obtained by splitting the neighborhood of the edge considered for elimination, as detailed in the following proposition.

Proposition 3.25. Let $e=\{v, w\} \in E$. Assume that $p(v)+p(w) \leqslant 0$. Define $\Delta:=\left(T_{p} \cap N(e)\right)$. Further, define

$$
\mathcal{U}=\{U \subseteq N(e) \mid U \supseteq \Delta, U \cap(N(v) \backslash\{w\}) \neq \emptyset, U \cap(N(w) \backslash\{v\}) \neq \emptyset\}
$$

If for all $U \in \mathcal{U}$ the weight of a minimum spanning tree on $D\left(U,-d_{p w}\right)$ is smaller than $-(p(v)+p(w))$, then no optimal solution contains edge $e$.

The proposition can be proved in a similar way to the previous one. Note that both propositions can be extended to the case of equality if the walks corresponding to positive-weight constrained distances do not contain edge $e$. The reduction test obtained from the previous two propositions strictly dominates shortest-path-based reduction methods described in the literature (El-Kebir and Klau, 2014; Leitner et al., 2018a).

We also note that the above two propositions can be strengthened for vertices that have been shown to be of degree at most 2 in an optimal solution. Such information can for example be obtained by using Proposition 3.22. We give more details in Rehfeldt and Koch (2019).

In this thesis, heuristics are employed to compute lower bounds on the positiveweight constrained distance. To justify the use of heuristics, it will be demonstrated that computing the positive-weight constrained distance is $\mathcal{N} \mathcal{P}$-hard. This pessimistic worst-case complexity does not come as a surprise, since already a weaker corresponding concept for the prize-collecting Steiner tree problem is $\mathcal{N} \mathcal{P}$-hard, as shown in Uchoa (2006). See Chapter 4 for more details.

First, the decision variant of the positive-weight constrained distance is defined. Let $G_{0}=\left(V_{0}, E_{0}\right)$ be an undirected and connected graph with $\left|V_{0}\right| \geqslant 2$. Furthermore,
let $p_{0}: V_{0} \rightarrow \mathbb{Z}$. Given two distinct vertices $v, w \in V_{0}$ and a $k \in \mathbb{Z}_{\leqslant 0}$, the positiveweight constrained distance problem is to determine whether $d_{p w}(v, w) \geqslant k$. The $\mathcal{N} \mathcal{P}$-hardness of the problem can be shown by a reduction from the Hamiltonian path problem - as in the $\mathcal{N} \mathcal{P}$-hardness proof of the bottleneck Steiner distance for the prize-collecting Steiner tree problem (Uchoa, 2006).

Proposition 3.26. The positive-weight constrained distance problem is $\mathcal{N P}$-complete.
Proof. First, note that the positive-weight constrained length of a given path $Q$ can be computed in $O\left(\left|V_{0}(Q)\right|^{2}\right)$; hence, the positive-weight constrained distance problem is in $\mathcal{N P}$. Next, let $G_{H a m}=\left(V_{\text {Ham }}, E_{\text {Ham }}\right)$ be an undirected, connected graph with two distinct vertices $v, w$. The Hamiltonian path problem asks whether a (simple) path between $v$ and $w$ exists that contains all vertices. This problem can be reduced to the positive-weight constrained distance problem as follows. Initially, set $G_{0}:=\left(V_{0}, E_{0}\right):=G_{H a m}$ and define $p_{0}(v):=1$ for all $v \in V_{0}$. Next, extend $G_{0}$ by adding vertices $v^{\prime}, v^{\prime \prime}$ with weights $p_{0}\left(v^{\prime}\right)=-\left|V_{\text {Ham }}\right|, p_{0}\left(v^{\prime \prime}\right)=0$ and vertices $w^{\prime}, w^{\prime \prime}$ with weights $p_{0}\left(w^{\prime}\right)=-\left|V_{H a m}\right|, p_{0}\left(w^{\prime \prime}\right)=0$ to $V_{0}$. Finally, add edges $\left\{v, v^{\prime}\right\}$, $\left\{v^{\prime}, v^{\prime \prime}\right\}$ and $\left\{w, w^{\prime}\right\},\left\{w^{\prime}, w^{\prime \prime}\right\}$ to $E_{0}$. Thereupon, $G_{\text {Ham }}$ contains an Hamiltonian path between $v$ and $w$ if and only if $d_{p w}\left(v^{\prime \prime}, w^{\prime \prime}\right) \geqslant-\left|V_{H a m}\right|$ on $\left(V_{0}, E_{0}, p_{0}\right)$.

Notwithstanding its $\mathcal{N} \mathcal{P}$-hardness, the positive-weight constrained distance can be approximated by heuristics well enough to allow for a strong practical performance of the associated reduction tests.

## Dominating connected sets

Besides paths, one can also use general connected subgraphs for alternative-based reductions tests. This chapter introduces the concept of dominating connected sets for the MWCSP: Let $X \subset V$ such that $(X, E[X])$ is connected and let $U \subseteq V \backslash X$. Then $X$ will be said to $M W C S$-dominate $U$ if

$$
N(U) \subseteq N(X) \cup X
$$

Importantly, one can remove $U$ from any feasible solution and reconnect the resulting components by using only vertices of $X$. In the following, additional conditions will be formulated that allow to remove $U$, or parts of it, without reducing the weight of at least one optimal solution. The first such condition is stated in the following proposition. This proposition also generalizes a result from El-Kebir and Klau (2014), which states that a vertex $v$ with $p(v)<0$ can be deleted if there is a $w \in V \backslash\{v\}$ such that $N(v)=N(w)$ and $p(v) \leqslant p(w)$.

Proposition 3.27. Let $U \subseteq V \backslash T_{p}$ and $X \subseteq V \backslash U$ such that $X$ MWCS-dominates $U$ and assume

$$
\begin{equation*}
\sum_{u \in U} p(u) \leqslant \sum_{u \in X: p(u)<0} p(u) \tag{3.80}
\end{equation*}
$$

Then there exists an optimal solution $S$ such that $U \nsubseteq V(S)$. The set $X$ will be said to all-weights MWCS-dominate $U$.

Proof. Let $S$ be a feasible solution with $U \subseteq V(S)$. Note that by construction $p(w) \leqslant 0$ for all $w \in U$. Define

$$
\Delta_{S}:=\{v \in V(S) \backslash U \mid \exists\{v, w\} \in E(S), w \in U\}
$$

Next, remove $U$ from $S$. In this way one obtains a new (possibly empty) subgraph $S^{\prime}$ that contains at most $\left|\Delta_{S}\right|$ many (inclusion-wise maximal) connected components. If $S^{\prime}$ is connected, no further discussion is necessary. Otherwise, note that each connected component of $S^{\prime}$ contains a vertex $v \in \Delta_{S}$. Therefore, these components can be reconnected as follows. First, add $X \backslash V\left(S^{\prime}\right)$ to $V\left(S^{\prime}\right)$ to obtain a new subgraph $S^{\prime \prime}$. Second, because $X$ MWCS-dominates $U$ and because each connected component contains a $v_{\tilde{E}} \in \Delta_{S}$, there exists a set of edges $\tilde{E}_{S^{\prime \prime}} \subseteq E\left[V\left(S^{\prime \prime}\right)\right]$ that reconnects $S^{\prime \prime}$. Adding $\tilde{E}_{S^{\prime \prime}}$ to $S^{\prime \prime}$, one obtains a, finally connected, subgraph $S^{\prime \prime \prime}$. Finally, the construction of $S^{\prime \prime \prime}$ implies:

$$
\sum_{u \in V\left(S^{\prime \prime \prime}\right)} p(u) \geqslant \sum_{u \in V(S)} p(u)-\sum_{u \in U} p(u)+\sum_{u \in X: p(u)<0} p(u) \stackrel{(3.80)}{\geqslant} \sum_{u \in V(S)} p(u) .
$$

This concludes the proof.
While Proposition 3.27 guarantees that set $U$ is not part of at least one optimal solution, the same may not be true for subsets of $U$. Therefore, one cannot just eliminate $U$ in general. However, in the case of $|U|=1$ one can forthwith eliminate $U$, and in the case of $|U|=2$ with $U=\{v, w\} \in E$ one can eliminate the edge $\{v, w\}$. Figure 3.3 shows an MWCSP instance for which an edge can be eliminated by means of the criterion formulated in Proposition 3.27. The vertices of the dashed edge have a summed weight of -4.3 , smaller than the weight of the (sole) negative vertex in the MWCS-dominating set $X$ marked by the upper dotted ellipse (which is -3.5 ).

In contrast to Proposition 3.27, the following proposition allows to eliminate nontrivial (i.e. larger than single-vertex or single-edge) subgraphs of ( $V \backslash T_{p}, E\left[V \backslash T_{p}\right]$ )but also involves a more restricting test condition.

Proposition 3.28. Let $U \subseteq V \backslash T_{p}$ and $X \subseteq V \backslash U$ such that $X$ MWCS-dominates $U$ and assume

$$
\begin{equation*}
\max _{w \in U} p(w) \leqslant \sum_{u \in X: p(u)<0} p(u) . \tag{3.81}
\end{equation*}
$$

Then there exists an optimal solution $S$ such that $U \cap V(S)=\emptyset$. The set $X$ will be said to max-weight MWCS-dominate $U$.

Proof. Let $S$ be a feasible solution with $U \cap V(S) \neq \emptyset$. Further, define $\Delta_{S}$ as in the proof of Proposition 3.27. Remove $U \cap V(S)$ from $S$ to obtain a new (possibly empty)


Figure 3.3: An MWCSP instance. Considering the vertices enclosed by the upper dotted ellipse as the set $X$ and those enclosed by the lower one as $U$, one can verify with Proposition 3.27 that the dashed edge can be deleted.
subgraph $S^{\prime}$ that contains at most $\left|\Delta_{S}\right|$ many (inclusion-wise maximal) connected components. Assume that there are at least two connected components. Each of these components contains a vertex $v \in \Delta_{S}$. These components can therefore be reconnected as in the proof of Proposition 3.27 to obtain a connected subgraph $S^{\prime \prime \prime}$ with $U \cap V\left(S^{\prime \prime \prime}\right)=\emptyset$. Because of (3.81) it holds for the resulting connected subgraph $S^{\prime \prime \prime}$ that $\sum_{v \in V\left(S^{\prime \prime \prime}\right)} p(v) \geqslant \sum_{v \in V(S)} p(v)$.


Figure 3.4: An MWCSP instance. Considering the vertices enclosed by the upper dotted ellipse as set $X$ and the ones enclosed by the lower one as $U$, one can verify with Proposition 3.28 that all vertices of $U$ (and incident edges) can be deleted.

Figure 3.4 shows an MWCSP instance that can be reduced by using Proposition 3.28.

For the special case of $|U|=1$ a vertex set $X$ max-weight MWCS-dominates a vertex set $U$ if and only if $X$ all-weights MWCS-dominates $U$. Therefore, such a set will be called single-weight MWCS-dominating. As will be shown in the following,
already this special case is $\mathcal{N} \mathcal{P}$-hard. Let $G_{0}=\left(V_{0}, E_{0}\right)$ be an undirected, non-empty graph. Furthermore, let $p_{0}: V_{0} \rightarrow \mathbb{Z}$. Given a vertex $v \in V_{0}$ with $p_{0}(v) \leqslant 0$ the single-weight MWCS-domination problem is to determine whether a subset of $V \backslash\{v\}$ exists that single-weight MWCS-dominates $v$.

Proposition 3.29. The single-weight MWCS-domination problem is $\mathcal{N P}$-complete.
Proof. Given a vertex subset $X$ it can be verified with worst-case complexity of $O\left(\left|E_{0}\right|+\left|V_{0}\right|\right)$ whether this is an MWCS-dominating set to $v$. Hence, the singleweight MWCS-dominating decision problem is in $\mathcal{N} \mathcal{P}$.

In the following it will be demonstrated that the, $\mathcal{N} \mathcal{P}$-complete (Garey and Johnson, 1979), vertex cover problem can be reduced to the single-weight MWCSdomination problem. Let $G_{c o v}=\left(V_{c o v}, E_{c o v}\right)$ be an undirected, non-empty graph and $k \in \mathbb{N}$. Thereupon, for the vertex cover problem it has to be determined whether a set in $V_{\text {cov }}$ of cardinality at most $k$ exists that is incident to all edges $E_{c o v}$.

To establish the reduction, construct a graph $G_{0}$ from $G_{\text {cov }}$ as follows: Start with $G_{0}=\left(V_{0}, E_{0}\right):=G_{\text {cov }}$ and extend this graph as follows: First, define vertex weights $p_{0}(v):=-1$ for all $v \in V_{0}$. In the next step replace each edge $e_{l}=\{v, w\} \in E_{0}$ by a vertex $v_{l}^{\prime}$ of weight $p_{0}\left(v_{l}^{\prime}\right):=-(k+1)$ and the two edges $\left\{v, v_{l}^{\prime}\right\}$ and $\left\{w, v_{l}^{\prime}\right\}$. Moreover, add edges $\{v, w\}$ for each pair of distinct vertices $v, w \in V_{0} \cap V_{c o v}$ to $E_{0}$. Due to the previous step, this procedure does not lead to multi-edges. Finally, add a vertex $v_{0}^{\star}$ of weight $p_{0}\left(v_{0}^{\star}\right):=-k$ to $V_{0}$ and add edges $\left\{v_{0}^{\star}, v\right\}$ for all $v \in V_{0} \backslash\left(V_{c o v} \cup\left\{v_{0}^{\star}\right\}\right)$.

Scrutinizing the graphs $G_{0}$ and $G_{\text {cov }}$, one can verify that a single-weight MWCSdominating set $X$ to $v_{0}^{\star}$ exists if and only if to each (newly added) vertex $v \in$ $V_{0} \backslash\left(V_{\text {cov }} \cup\left\{v_{0}^{\star}\right\}\right)$ there is an adjacent vertex $w \in V_{0} \cap V_{\text {cov }}$ with $w \in X$. The latter condition is satisfied if and only if there is a vertex cover in $G_{c o v}$ of cardinality at most $k$.

### 3.3.3 Combining dominating sets and constrained distances

Despite both being $\mathcal{N} \mathcal{P}$-hard, the MWCS-domination and the constrained walk distance concept can be merged into a powerful additional reduction test. The stage for this combined routine is set by the following:

Proposition 3.30. Let $U \subseteq V \backslash T_{p}$ and define

$$
\Delta:=\{v \in V \backslash U \mid \exists\{v, w\} \in E, w \in U\}
$$

If $\Delta=\emptyset$, then no optimal solution to $I_{M W}$ contains any vertex of $U$. Otherwise, let $X \subseteq V \backslash U$ such that

$$
\Delta_{1}:=\Delta \cap(\{v \in V \backslash X \mid \exists\{v, w\} \in E, w \in X\} \cup X)
$$

is non-empty and $(X, E[X])$ is connected. Define

$$
\begin{equation*}
C_{1}:=\sum_{u \in X: p(u)<0} p(u) . \tag{3.82}
\end{equation*}
$$

Further, let $\Delta_{2}:=\Delta \backslash \Delta_{1}$ and choose for each $v_{k} \in \Delta_{2}$ an, arbitrary, $v_{k}^{\prime} \in X$. Define

$$
\begin{equation*}
C_{2}:=\sum_{v_{k} \in \Delta_{2}} d_{p w}\left(v_{k}, v_{k}^{\prime}\right) \tag{3.83}
\end{equation*}
$$

If

$$
\begin{equation*}
C:=C_{1}+C_{2}>\sum_{u \in U} p(u), \tag{3.84}
\end{equation*}
$$

then each optimal solution $S$ to $I_{M W}$ satisfies $U \nsubseteq V(S)$.
Proof. Let $S$ be a feasible solution with $U \subsetneq V(S)$. Note that both $C_{1} \leqslant 0$ and $C_{2} \leqslant 0$. Define

$$
\Delta_{1}^{S}:=\Delta_{1} \cap V(S)
$$

and

$$
\Delta_{2}^{S}:=\Delta_{2} \cap V(S)
$$

In the following it will be demonstrated how to construct a connected subgraph $S^{\prime \prime \prime}$ that does not contain all vertices of $U$ and satisfies $P\left(S^{\prime \prime \prime}\right) \geqslant P(S)$.

Let $S^{\prime}$ be the subgraph obtained from $S$ by removing $U$ and all incident edges. Note that each maximal connected component of $S^{\prime}$ contains at least one vertex of $\Delta_{1}^{S} \cup \Delta_{2}^{S}$. Furthermore, it holds that

$$
\begin{equation*}
P\left(S^{\prime}\right)=P(S)-\sum_{u \in U} p(u) . \tag{3.85}
\end{equation*}
$$

If $\Delta_{1}^{S} \neq \emptyset$, let $S^{\prime \prime}$ be the vertex-induced subgraph of $X \cup V\left(S^{\prime}\right)$. Otherwise set $S^{\prime \prime}:=S^{\prime}$. In both cases, it holds for $S^{\prime \prime}$ that

$$
\begin{equation*}
P\left(S^{\prime \prime}\right) \geqslant P\left(S^{\prime}\right)+C_{1} \stackrel{(3.85)}{=} P(S)-\sum_{u \in U} p(u)+C_{1} \tag{3.86}
\end{equation*}
$$

Moreover, all vertices of $\Delta_{1}^{S}$ are part of one connected component of $S^{\prime \prime}$.
Set $S^{\prime \prime \prime}:=S^{\prime \prime}$. Consider each $v_{k} \in \Delta_{2}^{S} \backslash V\left(S^{\prime \prime \prime}\right)$ consecutively and choose a $\left(v_{k}, v_{k}^{\prime}\right)$-walk $W^{k}$ (with $v_{k}^{\prime}$ as defined in the statement of this proposition) such that $l_{p w}\left(W^{k}\right)=d_{p w}\left(v_{k}, v_{k}^{\prime}\right)$. If $v_{k}$ and $v_{k}^{\prime}$ are in different connected components of $S^{\prime \prime \prime}$, there exist $v_{q} \in V\left(W^{k}\right)$ in the connected components of $v_{k}$ and $v_{q}^{\prime} \in V\left(W^{k}\right)$ in the connected component of $v_{k}^{\prime}$ such that $V\left(W^{k}\left(v_{q}, v_{q}^{\prime}\right)\right) \cap V\left(S^{\prime \prime \prime}\right)=\left\{v_{q}, v_{q}^{\prime}\right\}$. Add (the subgraph corresponding to) $W^{k}\left(v_{q}, v_{q}^{\prime}\right)$ to $S^{\prime \prime \prime}$. Because of condition (3.84) there is at least on vertex of $U$ that is not contained in any of these newly added pathsotherwise it would hold that $C_{2} \leqslant \sum_{u \in U} p(u)$ and therefore also $C \leqslant \sum_{u \in U} p(u)$. Moreover, because of condition (3.83) the overall procedure reduces the weight of $S^{\prime \prime}$ by at most $\left|C_{2}\right|$. Hence, it holds for the new (now connected) subgraph $S^{\prime \prime \prime}$ that

$$
\begin{equation*}
P\left(S^{\prime \prime \prime}\right) \geqslant P\left(S^{\prime \prime}\right)+C_{2} \stackrel{(3.86)}{\geqslant} P(S)-\sum_{u \in U} p(u)+C_{1}+C_{2} \tag{3.87}
\end{equation*}
$$

Finally, $U \nsubseteq V\left(S^{\prime \prime \prime}\right)$ holds and due to (3.84) it follows from (3.87) that

$$
\begin{equation*}
P\left(S^{\prime \prime \prime}\right)>P(S) \tag{3.88}
\end{equation*}
$$

Hence the proposition is proven.

Corollary 3.31. Assume that the conditions of Proposition 3.30 hold, but instead of (3.84) assume

$$
\begin{equation*}
C_{1}+C_{2}>\max _{u \in U} p(u) \tag{3.89}
\end{equation*}
$$

Then each optimal solution $S$ to $I_{M W}$ satisfies $U \cap V(S)=\emptyset$.
Proof. Let $S$ be a feasible solution. Further, let $S^{\prime \prime \prime}$ be a connected subgraph created from $S$ by the procedure described in the proof of Proposition 3.30. $S^{\prime \prime \prime}$ is connected and it holds that $P\left(S^{\prime \prime \prime}\right)>P(S)$, so only the equation $U \cap V\left(S^{\prime \prime \prime}\right)=\emptyset$ needs to be verified. By construction all vertices of $S^{\prime \prime \prime}$ are in one of the three sets: $(V(S) \backslash U), X$, and the set of vertices that are part of a $\left(v_{k}, v_{k}^{\prime}\right)$-walk $W^{k}$ with $l_{p w}\left(W^{k}\right)=d_{p w}\left(v_{k}, v_{k}^{\prime}\right)$ and $v_{k} \in \Delta_{2}^{S}$. By definition the first two of these sets cannot contain any vertices of $U$. Furthermore, because of (3.89), none of the walks $W^{k}$ can contain a vertex of $U$ since otherwise it would hold that $l_{p w}\left(W^{k}\right) \leqslant \max _{u \in U} p(u)$-which is a contradiction because of $C_{1}+C_{2} \leqslant C_{2} \leqslant l_{p w}\left(W^{k}\right)$. Thus, $U \cap V(S)=\emptyset$.


Figure 3.5: An MWCSP instance. Consider the vertices enclosed by the upper dotted ellipse as the set $X$, the lower left one as $\Delta_{1}$, the lower right ones as $\Delta_{2}$, and let $U$ be the set that only contains the bottom left (filled) vertex. One can verify with Proposition 3.30 that the bottom left vertex can be deleted.

Once again, for the special case of $|U|=1$, corollary and proposition coincide. Figure 3.5 shows an MWCSP for which a vertex can be deleted by means of this special case. Consider the upper two encircled vertices as the set $X$. The right neighbor (forming the set $\Delta_{2}$ ) of the filled vertex can be connected by a walk of positive-weight constrained length -1 to $X$, so $C_{2} \geqslant-1$. Since $C_{1}=-1$ and all other neighbors $\left(\Delta_{1}\right)$ of the filled vertex are also neighbors of $X$, one can delete the vertex.

### 3.4 From dual-ascent to exact solving

An important (bound-based) SPG reduction technique can be derived from a dualascent algorithm by Wong (1984) for Formulation 1.1 (DCut), see e.g. Duin (1993). In the following, we shortly describe this dual-ascent algorithm, before discussing its applicability for MWCSP.

Consider an $\operatorname{SAP}(V, A, T, r, c)$. Let $\mathcal{W}:=\{W \subset V \mid r \notin W, T \cap W \neq \emptyset\}$. Further, consider the dual of $D C u t$ :

$$
\begin{align*}
\max \sum_{W \in \mathcal{W}} \mu_{W} &  \tag{3.90}\\
\text { s.t. } \sum_{W \in \mathcal{W} \mid a \in \delta^{-}(W)} \mu_{W} & \leqslant c(a)  \tag{3.91}\\
\mu & \geqslant 0 . \tag{3.92}
\end{align*}
$$

Given a dual solution $\mu$, let $A_{\mu} \subseteq A$ be the set of arcs for which (3.91) is tight. For each $t \in T \backslash\{r\}$, define the root component $U_{t}$ of $t$ as the set of vertices $v \in V$ such that there exists a directed v-t path in $A_{\mu}$. A root component $U_{t}$ is active if $T \cap U_{t}=\{t\}$. Initially, the dual-ascent algorithm sets $\mu:=0$. In each iteration an active root component $U_{t}$ is chosen and $\mu$ is increased until (3.91) becomes tight for at least one $a \in \delta^{-}\left(U_{t}\right)$. This increase can be done implicitly by just adapting the reduced costs. The algorithm terminates when no active root component is left. The algorithm runs in $O(|A| \min \{|V||T|,|A|\})$, but is usually much faster in practice.

At termination, dual-ascent provides a dual solution to the LP-relaxation of Formulation 1.1, involving directed paths along arcs of reduced cost 0 from the root to each additional terminal. This information can be used to facilitate the solving process for an MWCSP, as will be show in the following. To apply the dual-ascent algorithm to MWCSP, we first devise a transformation from MWCSP to SAP. We note that Leitner et al. (2018a), independently from our work, developed an extension of the dual-ascent algorithm that can also be applied to MWCSP (as well as to the prize-collecting Steiner tree problem). However, their algorithm essentially requires a root, and thus needs to run several times to obtain valid bounds. In contrast, our approach requires just a single execution of dual-ascent.

The underlying idea of the transformation is to treat the MWCSP vertices of positive weight as terminals in the SAP. However, since all terminals need to be part of any feasible SAP solution, several vertices (including a root) and arcs are added to the SAP that allow us to model the exclusion of positive vertex from a feasible solution. Recall that we assume $I_{M W}$ to contain at least one vertex of positive, and one of negative weight.

Transformation 3.32 (MWCSP to SAP).
Input: An $M W C S P I_{M W}=(V, E, p)$
Output: An SAP $P^{\prime}=\left(V^{\prime}, A^{\prime}, T^{\prime}, c^{\prime}, r^{\prime}\right)$

1. Set $V^{\prime}:=V, A^{\prime}:=\left\{(v, w) \in V^{\prime} \times V^{\prime} \mid\{v, w\} \in E\right\}$.
2. Set $c^{\prime}: A^{\prime} \rightarrow \mathbb{Q} \geqslant 0$ such that for $a=(v, w) \in A^{\prime}$ :
$c^{\prime}(a)=\left\{\begin{array}{cl}-p(w), & \text { if } p(w)<0 \\ 0, & \text { otherwise }\end{array}\right.$
3. Add two vertices $r^{\prime}$ and $v_{0}^{\prime}$ to $V^{\prime}$.
4. Denote the set of all $v \in V$ with $p(v)>0$ by $T_{p}=\left\{t_{1}, \ldots, t_{s}\right\}$ and define $M:=\sum_{t \in T_{p}} p(t)$.
5. For each $i \in\{1, \ldots, s\}$ :
(a) Add an arc $\left(r^{\prime}, t_{i}\right)$ of weight $M$ to $A^{\prime}$.
(b) Add a new node $t_{i}^{\prime}$ to $V^{\prime}$.
(c) Add arcs $\left(t_{i}, v_{0}^{\prime}\right)$ and $\left(t_{i}, t_{i}^{\prime}\right)$ to $A^{\prime}$, both being of weight 0 .
(d) Add an arc $\left(v_{0}^{\prime}, t_{i}^{\prime}\right)$ of weight $p\left(t_{i}\right)$ to $A^{\prime}$.
6. Define the set of terminals $T^{\prime}:=\left\{t_{1}^{\prime}, \ldots, t_{s}^{\prime}\right\} \cup\left\{r^{\prime}\right\}$.
7. Return $\left(V^{\prime}, A^{\prime}, T^{\prime}, c^{\prime}, r^{\prime}\right)$.

The following proposition establishes the relation between the SAP resulting from the above transformation, and the original MWCSP.

Proposition 3.33 (MWCSP to SAP). Let $I_{M W}=(V, E, p)$ be an MWCSP and $I^{\prime}=\left(V^{\prime}, A^{\prime}, T^{\prime}, c^{\prime}, r^{\prime}\right)$ an SAP obtained from $I_{M W}$ by Transformation 3.32. Let $S^{\prime} \subseteq\left(V^{\prime}, A^{\prime}\right)$ be an optimal solution to $I^{\prime}$. The set $S \subseteq(V, E)$ defined by

$$
\begin{align*}
V(S) & :=\left\{v \in V \mid v \in V^{\prime}\left(S^{\prime}\right)\right\}  \tag{3.93}\\
E(S) & :=\left\{\{v, w\} \in E \mid(v, w) \in A^{\prime}\left(S^{\prime}\right) \text { or }(w, v) \in A^{\prime}\left(S^{\prime}\right)\right\} . \tag{3.94}
\end{align*}
$$

is an optimal to $I_{M W}$. Further, it holds that:

$$
\begin{equation*}
P(S)=\sum_{v \in V: p(v)>0} p(v)-\sum_{a \in A^{\prime}\left(S^{\prime}\right)} c^{\prime}(a)+M . \tag{3.95}
\end{equation*}
$$

Proof. Let $S^{\prime}$ be an optimal solution to $I^{\prime}$. One readily verifies that the $S$ defined by (3.93) and (3.94) is connected, and thus feasible for $I_{M W}$. We first show that (3.95) holds for $S$ and $S^{\prime}$. Further, one verifies that $\delta_{S^{\prime}}^{+}\left(r^{\prime}\right)=1$. Define $A:=\left\{(v, w) \in A^{\prime} \mid\right.$ $\{v, w\} \in E\}$. First, one observes that for each $v \in V(S)$ such that $p(v) \leqslant 0$ there is exactly one incoming $\operatorname{arc} a \in A\left(S^{\prime}\right)$, so:

$$
\begin{equation*}
\sum_{v \in V(S): p(v) \leqslant 0} p(v)=-\sum_{a \in A\left(S^{\prime}\right)} c^{\prime}(a) . \tag{3.96}
\end{equation*}
$$

Second:

$$
\begin{align*}
\sum_{v \in V(S): p(v)>0} p(v) & =\sum_{v \in V: p(v)>0} p(v)-\sum_{v \in V \backslash V(S): p(v)>0} p(v)  \tag{3.97}\\
& =\sum_{v \in V: p(v)>0} p(v)-\sum_{a \in A^{\prime}\left(S^{\prime}\right) \backslash A\left(S^{\prime}\right)} c^{\prime}(a)+M . \tag{3.98}
\end{align*}
$$

Finally, by combining (3.96) and (3.97) the equation:

$$
\begin{equation*}
\sum_{v \in V(S)} p(v)=\sum_{v \in V: p(v)>0} p(v)-\sum_{a \in A^{\prime}\left(S^{\prime}\right)} c^{\prime}(a)+M \tag{3.99}
\end{equation*}
$$

is obtained, which coincides with (3.95).
Finally, suppose that $S$ is not optimal. I.e., there is a solution $\tilde{S}$ to $I_{M W}$ such that $P(\tilde{S})>P(S)$. Since we have presupposed that at least one vertex of $V$ has positive weight, we can assume that there is an $u \in V(\tilde{S}) \cap T_{p}$. We build a solution $\tilde{S}^{\prime}$ to the SAP $I^{\prime}$ as follows: First, we define $V^{\prime}\left(\tilde{S}^{\prime}\right):=\left\{r^{\prime}, u, v_{0}^{\prime}\right\}, A^{\prime}\left(\tilde{S}^{\prime}\right):=\left\{\left(r^{\prime}, u\right),\left(u, v_{0}^{\prime}\right)\right\}$, and add to $A^{\prime}\left(\tilde{S}^{\prime}\right)$ all arcs reachable from $u$ through forward $\operatorname{arcs}(v, w)$ such that $\{v, w\} \in E(\tilde{S})$. Concomitantly, we add all vertices corresponding to arcs in $A^{\prime}\left(\tilde{S}^{\prime}\right)$ to $V^{\prime}\left(\tilde{S}^{\prime}\right)$. Second, we add for each $t_{i} \in T_{p}$ contained in $V^{\prime}\left(\tilde{S}^{\prime}\right)$ the arc $\left(t_{i}, t_{i}^{\prime}\right)$, which is of cost 0 , to $A^{\prime}\left(\tilde{S}^{\prime}\right)$. For all $t_{i} \in T_{p}$ not connected we add the $\operatorname{arc}\left(v_{0}^{\prime}, t_{i}^{\prime}\right)$, which is of cost $p\left(t_{i}\right)$, to $A^{\prime}\left(\widetilde{S^{\prime}}\right)$. Finally, we add all $t_{i}^{\prime} \in T^{\prime}$ to $V^{\prime}\left(\widetilde{S^{\prime}}\right)$. Consequently, all $t_{i}^{\prime} \in T^{\prime}$ are reachable from $r^{\prime}$ through forwards arcs and, being cycle-free and connected, $\widetilde{S}^{\prime}$ is a solution to $P^{\prime}$. Furthermore, because $S$ and $S^{\prime}$ satisfy (3.95), it holds that:

$$
\begin{align*}
\sum_{a \in A^{\prime}\left(\tilde{S^{\prime}}\right)} c^{\prime}(a)-M & =\sum_{v \in V: p(v)>0} p(v)-P(\tilde{S})  \tag{3.100}\\
& <\sum_{v \in V: p(v)>0} p(v)-P(S)  \tag{3.101}\\
& =\sum_{a \in A^{\prime}\left(S^{\prime}\right)} c^{\prime}(a)-M \tag{3.102}
\end{align*}
$$

which contradicts the assumption that $S^{\prime}$ is an optimal solution to $I^{\prime}$. Therefore, $S$ is an optimal solution to $I_{M W}$.

Note that the proposition is just concerned with the correspondence of optimal solutions. See Rehfeldt and Koch (2018a) for a (slightly more involved) map of each feasible solution to $I^{\prime}$ to a feasible solution to $I_{M W}$. The additional technicalities of the latter result are not relevant in the following, and therefore no further details are given.

Similar to Section 3.2.4, one can show that applying the DCut formulation on the SAP $I^{\prime}$ from the above transformation yields (after a constant shift of the objective) the same optimal LP value as $E S A$. Furthermore, one notes that the constraints (1.3) for $I^{\prime}$ corresponding to all non-zero $\mu_{W}$ can be readily transformed to constraints (3.30) for $E S A^{+}$. These can be used as initial constraints for a branch-and-cut algorithm.

In practice, one tries to only increase small root components in the dual-ascent algorithm. Moreover, it is advantageous to only update the currently used root component and rebuild $U_{t}$ by a BFS or DFS after each change of $t$, see Pajor et al. (2017). For $I^{\prime}$ one notices that for distinct terminals $t_{i}, t_{j}$ with $v_{0}^{\prime} \in U_{t_{i}}$ and $v_{0}^{\prime} \in U_{t_{j}}$ it holds that $U_{t_{i}} \backslash\left\{t_{i}\right\}=U_{t_{j}} \backslash\left\{t_{j}\right\}$. However, due to the structure of $I^{\prime}$ all root components will remain active until the end of the algorithm. Thus, a simple, but sometimes
highly effective modification of $I^{\prime}$ is to make $v_{0}^{\prime}$ a terminal. In this way, any root component $U_{t}$ ceases to be active as soon as $v_{0}^{\prime} \in U_{t}$. Still, the final reduced costs remain the same.

As already noted, an important application of dual-ascent is within reduction techniques. Consider an $\operatorname{SAP}(V, A, T, c, r)$. Let $v \in V \backslash T$, let $S^{\star}$ be an optimal solution, and let $L_{D A}$ be the lower bound obtained by dual-ascent. If $S^{\star}$ contains $v$, the weight of $S^{\star}$ can be bounded from below by $L_{D A}$ plus the length (with respect to the reduced costs provided by dual-ascent) of a shortest path from the root to $v$ and the length of a shortest path from $v$ to a nearest terminal (other than the root) to $v$. Hence, $v$ can be deleted if the just defined bound exceeds a known upper bound $U$. An analogous test can be stated for the elimination of arcs. The above deliberations forthwith set the stage for an MWCSP reduction technique: Whenever a vertex can be deleted in the SAP, the same is true for its counterpart in the analogous MWCSP. Whenever two anti-parallel arcs in the SAP can be deleted, the corresponding edge can be deleted in the MWCSP.

Transformation 3.32 can additionally be used to show that a vertex $t_{i} \in T_{p}$ is part of at least one optimal solution. If the reduced cost of an $\operatorname{arc}\left(r^{\prime}, t_{i}^{\prime}\right)$ is higher than $U-L_{D A}$, it can be deduced that the vertex $t_{i}$ is part of at least one optimal solution to $I_{M W}$. If at least one (positive) vertex can be shown to be part an optimal solution, the MWCSP can be solved as an RMWCSP. Note that a disadvantage of both $E S A^{+}$and the above IP resulting from Transformation 3.32 is the existence of symmetric solutions (for a solution $S$, there are $\left|V(S) \cap T_{p}\right|-1$ many). For the RMWCSP one can instead apply the following (new) transformation, which gives way to a problem that is not burdened with symmetric solutions. The transformation will be provided in a more general setting, namely for the directed variant of the RMWCSP (described in Section 3.2.1). As before, it will be assumed that all fixed terminals $T_{f}$ have 0-weight.

Transformation 3.34 (Directed RMWCSP to SAP).
Input: A directed RMWCSP $I_{R M W}=\left(V, A, T_{f}, p, r\right)$
Output: An SAP $I^{\prime}=\left(V^{\prime}, A^{\prime}, T^{\prime}, c^{\prime}, r^{\prime}\right)$

1. Set $V^{\prime}:=V, A^{\prime}:=A, r^{\prime}:=r$.
2. Set $c^{\prime}: A^{\prime} \rightarrow \mathbb{Q} \geqslant 0$ such that for $a=(v, w) \in A^{\prime}$ :
$c^{\prime}(a)=\left\{\begin{array}{cl}-p(w), & \text { if } p(w)<0 \\ 0, & \text { otherwise }\end{array}\right.$
3. Denote the set of all $v \in V \backslash T_{f}$ with $p(v)>0$ by $T_{p}=\left\{t_{1}, \ldots, t_{s}\right\}$
4. For each $i \in\{1, \ldots, s\}$ :
(a) Add a new node $t_{i}^{\prime}$ to $V^{\prime}$.
(b) Add an arc $\left(r^{\prime}, t_{i}^{\prime}\right)$ of weight $p\left(t_{i}\right)$ to $A^{\prime}$.
(c) Add an arc $\left(t_{i}, t_{i}^{\prime}\right)$ of weight 0 to $A^{\prime}$.
5. Define the set of terminals $T^{\prime}:=\left\{t_{1}^{\prime}, \ldots, t_{s}^{\prime}\right\} \cup\left\{T_{f}\right\}$.

## 6. Return $\left(V^{\prime}, A^{\prime}, T^{\prime}, c^{\prime}, r^{\prime}\right)$.

The transformation is illustrated in Figure 3.6. Moreover, the correspondence between a directed RMWCSP and the SAP resulting from Transformation 3.34 is established by the following proposition.

(a) Directed RMWCSP instance

(b) Transformed SAP instance

Figure 3.6: Illustration of a directed RMWCSP instance with root $r$ (left) and the equivalent SAP obtained by Transformation 3.34 (right). Terminals are drawn as squares.

Proposition 3.35 (Directed RMWCSP to SAP). Let $I^{\prime}=\left(V^{\prime}, A^{\prime}, T^{\prime}, c^{\prime}, r^{\prime}\right)$ be an SAP obtained from a directed RMWCSP $I_{R M W}=\left(V, A, T_{f}, p, r\right)$ by applying Transformation 3.34. Each solution $S^{\prime}$ to $I^{\prime}$ can be mapped to a solution $S$ to $I_{R M W}$ defined by:

$$
\begin{align*}
& V(S):=V \cap V^{\prime}\left(S^{\prime}\right)  \tag{3.103}\\
& A(S):=A \cap A^{\prime}\left(S^{\prime}\right) \tag{3.104}
\end{align*}
$$

If $S^{\prime}$ is an optimal solution to $I^{\prime}$, then $S$ is an optimal solution to $I_{R M W}$ and their objective values satisfy:

$$
\begin{equation*}
P(S)=\sum_{v \in V: p(v)>0} p(v)-\sum_{a \in A^{\prime}\left(S^{\prime}\right)} c^{\prime}(a) . \tag{3.105}
\end{equation*}
$$

The proposition can be proved in a similar way as Proposition 3.33. In the following, the $D C u t$ formulation for the $\operatorname{SAP}\left(V^{\prime}, A^{\prime}, T^{\prime}, c^{\prime}, r^{\prime}\right)$ obtained from an directed RMWCSP by performing Transformation 3.34 will be referred to as TransCut. Note that TransCut can also be used for an undirected RMWCSP by using as simple transformation to a bidirected graph. The objective value of a solution $y \in\{0,1\}^{\left|A^{\prime}\right|}$ to TransCut is defined as:

$$
\begin{equation*}
v(\text { TransCut }):=\sum_{v \in V: p(v)>0} p(v)-c^{\prime T} y . \tag{3.106}
\end{equation*}
$$

One can strengthen the formulation by adding the flow-balance constraints (2.9). The SAP resulting from Transformation 3.34 displays two immediate advantages as compared to the one from Transformation 3.32. First, the number of arcs is reduced by
$2\left|T_{p}\right|$. Second, while for each (LP) solution to the $D C u t$ formulation of the SAP from Transformation 3.32 there can be up to $\left|T_{p}\right|-1$ equivalent solutions, this symmetry has vanished in the TransCut formulation. In addition to these advantages, the new SAP can be solved by the separation algorithm of SCIP-JACK without any alterations.

In Rehfeldt and Koch (2019) we additionally show that the TransCut formulation has an LP-relaxation that is strictly stronger than that of Formulation 3.2 ( RNCut ), which uses only node variables. I.e., we have $v_{L P}(\operatorname{TransCut}) \leqslant v_{L P}(R N C u t)$, and the inequality can be strict. The proof in Rehfeldt and Koch (2019) is rather long and tedious, and thus omitted here. We note, however, that a shorter proof can be obtained by adapting the results from Section 3.2.3.

One might argue that despite its inferior LP-relaxation the $R N C u t$ formulation is preferable in practice since it leads to a problem with far fewer variables: $R N C u t$ only considers nodes, and TransCut moreover requires additional arcs for each $t \in T_{p}$. However, preprocessed MWCSP instances are in practice sparse and include only a small amount of positive-weight vertices (Rehfeldt et al., 2019). In particular, in a preprocessed MWCSP instance there are no adjacent vertices of positive weight.

### 3.5 Primal heuristics

Having discussed the computation of dual bounds for the MWCSP in the previous section, we now turn to the primal side. Several primal heuristics for the MWCSP have been described in the literature. In Álvarez-Miranda et al. (2013a), for example, a breadth-first-search-based heuristic that makes use of the reduced cost obtained during a branch-and-cut algorithm was suggested. In Leitner et al. (2018a) several variants of a dual-ascent-based heuristic for the rooted prize-collecting Steiner tree problem were suggested, and were also applied for the MWCSP by using a transformation initially introduced in Dittrich et al. (2008). For other MWCSP heuristics see Álvarez Miranda and Sinnl (2017); Fu and Hao (2017b); El-Kebir and Klau (2014).

In the following, we introduce several new MWCSP primal heuristics.

### 3.5.1 Constructive heuristics

As the name suggests, constructive heuristics build up a new solution from scratch.

## A greedy approach

The first heuristic is similar to the classic shortest paths heuristic for the SPG, see Section 2.5, and is conceptually straightforward: Starting with a single vertex, the heuristic iteratively connects the current subtree to vertices of positive weight (as compared to terminals for SPG). In the case of the SPG a natural choice for the connection of a terminal is a shortest path, but in the case of MWCSP the choice is less clear. The following algorithm chooses paths that also take intermediary vertices of positive weight into account.

Let vertex $v_{r} \in V$ be the start vertex. Initially, define for all $v \in V \backslash\left\{v_{r}\right\}$ : $p^{+}(v):=\max \{p(v), 0\}, p^{-}(v):=\max \{-p(v), 0\}, \tilde{d}(v):=\infty$. For $v_{r}$ set all these
values to 0 . Define a predecessor $\operatorname{pred}(v):=$ null for each $v \in V$. Define the initial tree $S$ as $V(S):=\left\{v_{r}\right\}, E(S):=\emptyset$, and set $Q:=\{v\}$. While $Q \neq \emptyset$ proceed as follows. Choose a $v=\arg \min _{u \in Q} \tilde{d}(u)$ and remove $v$ from $Q$. If $p(v)>\tilde{d}(v)$, add the path $P$ between $S$ and $v$ marked by pred to $S$. Further, set for each $w \in V(P)$ : $\tilde{d}(w):=p^{+}(w):=0$, and add $w$ to $Q$.

In any case, define for each $\{v, w\} \in \delta(v)$

$$
\begin{equation*}
\tilde{d}_{v w}:=\tilde{d}(v)+p^{-}(w)-\min \left\{p^{-}(w), p^{+}(v)\right\} \tag{3.107}
\end{equation*}
$$

If $\tilde{d}_{v w}<\tilde{d}(w)$, add $w$ to $Q$ and set $\tilde{d}(w):=\tilde{d}_{v w}, \operatorname{pred}(w):=v$. Note that in (3.107) we cannot just subtract $p^{+}(v)$, because otherwise the algorithm might cycle. Once $Q$ is empty, we compute a spanning tree on the graph induced by $V(S)$, while trying to have vertices $V(S) \backslash T_{p}$ as leaves. Then, we use a linear-time dynamic programming algorithm described in Magnanti and Wolsey (1995) to compute a maximum-weight connected subgraph on this tree.

If an LP solution to the MWCSP is available, modified vertex weight $p^{\prime}$ can be used for the heuristic. For instance, assume an LP solution $(x, y)$ to $E S A$ is given. Set $p^{\prime}(v):=x(v) p(v)$ for all $v \in V$. Moreover, the heuristic is started from a (constant) number of distinct vertices. To this end, vertices $v \in V$ with highest value $x(v)$ in the incumbent LP solution are chosen as starting points. In case of ties, vertices with higher weight $p$ are preferred.

In the following, the above algorithm is referred to as Greedy Construction (GC) heuristic. It should be noted that the idea of reinserting vertices into the priority queue of Dijkstra's algorithm was already used in a heuristic for the SPG (de Aragão and Werneck, 2002). Furthermore, the concept of using LP solutions to guide primal heuristics for combinatorial optimization problems is widely used, see for example Koch and Martin (1998).

## A reduction-based approach

The first of two reduction-based approaches described in this chapter builds on a concept introduced as prune in Polzin and Daneshmand (2001b) for SPG. By virtue of the PVD method introduced in Section 3.3, this approach can now be used for the MWCSP as well. While for the original PVD test an upper bound is provided by the weight of a given solution, in the prune heuristic the bound is chosen such that in each iteration a certain number of vertices is eliminated. Thereupon, all exact reductions methods are executed on the reduced graph, motivated by the assumption that the (possibly inexact) eliminations performed by the bound-based method will allow for further (exact) reductions. To avoid infeasibility, initially a feasible solution is computed (by using GC and the subsequently described local-search heuristics) of which no vertices or edges are allowed to be deleted by the (inexact) bound-based method.

The second reduction-based heuristic approach is borne from the combination of the prune heuristic and dual-ascent: the ascend-reduce method (based on an approach originally suggested in Wong (1984) for the Steiner tree problem in graphs). Let $I_{M W}$ be the original MWCSP and $I^{\prime}$ the SAP resulting from Transformation 3.32. The
ascend-reduce heuristic attempts to find a good solution on the subproblem $\tilde{I}_{M W}$ constituted by the undirected edges of $I_{M W}$ corresponding to zero-reduced-cost paths in $I^{\prime}$ from the root to all additional terminals - in this chapter a solution is computed by employing reduction techniques and heuristics. This approach is motivated by the assumption that notable similarities exist between an optimal (or near-optimal) MWCSP solution and the LP solution corresponding to the reduced costs provided by dual-ascent.

### 3.5.2 Local search heuristics

Given a solution $S$ to a problem, a local search algorithm examines a neighborhood of $S$, i.e. a set of solutions obtainable from $S$ by performing a predefined set of operations. Consequently, all heuristics described in this section assume that a feasible solution $S$ is given.

## Greedy extension

The Greedy Extension (GE) heuristic works in two phases: In phase one all vertices $V(S)$ are inserted into the priority queue of Dijkstra's algorithm with their distance values set to 0 . Thereupon, the GC heuristic is executed. However, the GC algorithm is only stopped when all vertices of positive weight have been scanned (the criterion for including vertices to the current solution remains unchanged). Furthermore, the heuristic saves (a constant number) $\alpha \in N$ (or as many as exist) vertices $t_{k}^{\prime} \in$ $T_{p} \backslash V(S), k=1, \ldots, \alpha$ such that $p\left(t_{k}^{\prime}\right)-\tilde{d}_{v w}\left(t_{k}^{\prime}\right) \geqslant p(t)-\tilde{d}_{v w}(t)$ for all other vertices $t \in T_{p} \backslash V(S)$. In phase two, $\alpha$ iterations $k=1, \ldots, \alpha$ are performed; in each iteration vertex $t_{k}^{\prime}$ is connected to $S$ (by using the paths computed by the GC heuristic) to obtain a solution $S_{k}$. Next, the GC heuristic is executed from $S_{k}$ and updates $S$ in case a better solution could be found. Analogously to the GC heuristic, GE can be executed with altered vertex weights if an LP solution is available.

## Vertex inclusion and vertex exclusion

The idea of the Vertex Inclusion (VI) heuristic is to add a vertex to a given solution such that other negative-weight vertices of the solution can be discarded. First, compute a spanning tree $S_{\text {span }}$ on $S$. Next, iterate through all neighboring vertices $v_{i}$ of $S$ : Let $\delta_{S, i}$ be the set of all edges between $v_{i}$ and $V(S)$. If $\left|\delta_{S, i}\right| \leqslant 1$, continue. Otherwise, add an (arbitrary) edge $a_{0}^{\prime} \in \delta_{S, i}$ to $S_{\text {span }}$. Afterwards, iteratively add each edge $a_{j}^{\prime} \in \delta_{S, i} \backslash\left\{a_{0}^{\prime}\right\}$ to $S_{\text {span }}$. Whenever a new edge has been added, search for a minimum-weight sequence of vertices of degree 2 (with respect to $S_{\text {span }}$ ) on the newly created cycle. If such a sequence being of negative weight exists (including single vertices), remove it from $S_{\text {span }}$, otherwise remove $a_{j}^{\prime}$. When all edges $\delta_{S, i}$ have been checked and if the weight of the removed vertices is smaller than that of $v_{i}$, leave $S_{\text {span }}$ in its modified form, otherwise restore it. In the implementation of the heuristic (linear) link-cut trees (Sleator and Tarjan, 1983) are used. This data structure allows to easily dis- and reconnect trees. A similar heuristic is known for the SPG (Uchoa and Werneck, 2010), but it only eliminates single edges instead of chains.

A complementary approach is taken by the Vertex Exclusion (VE) heuristic: it aims to remove vertices of $S$. Consider the connected subgraph

$$
G_{S}:=(V(S), E[V(S)])
$$

Thereupon, the heuristic employs reduction techniques from Section 3.3 on $G_{S}$ to obtain a new graph $\tilde{G_{S}}$. On this new graph the GE heuristic is used to obtain a solution $\tilde{S}$. Finally, this solution is retransformed to a solution $S^{\prime}$ to the original problem.

### 3.6 Solving to optimality

With several algorithmic components introduced and discussed two central questions remain: How to assemble these threads and weave them into a coherent exact solver, and, equally important, how does the resulting algorithm perform?

### 3.6.1 A full-fledged exact solver

The exact solver described in this chapter is realized within our Steiner tree problem solver SCIP-JACK. All MWCSP algorithms described so far are integrated into a branch-and-cut algorithm, as detailed in the following. The IP formulation used by the solver is (essentially) $E S A_{F B}^{+}$for MWCSP, and TransCut ${ }_{F B}$ for RMWCSP. For both formulations we use separation. To this end, we use a specialized maximumflow algorithm with warm-start capabilities (see Section 6.2.4) to detect violated inequalities.

Reduction techniques can be found in three components of our branch-and-cut algorithm: In preprocessing, in domain propagation, and within primal heuristics. Preprocessing is performed in several rounds - as long as a predefined percentage of edges has been eliminated during the previous round. During preprocessing we also try to transform any MWCSP instance to RMWCSP. For domain propagation during branch-and-bound we proceed as follows: Instead of deleting edges or vertices, the corresponding variables are fixed to 0 in the IP formulation. Additionally, instead of the reduced-costs from dual-ascent, we use the reduced-costs provided by the LP-relaxation for further reductions.

Another component instrumental for empirically successful exact solving is constituted by the primal heuristics described in Section 3.5. In the implementation for this chapter, ascend-reduce uses the prune heuristic to find a solution on the graph obtained by dual-ascent and employs GE, VI and VE to improve it. In turn, the prune heuristic calls GC to obtain an initial feasible solution, calls the local search heuristics GE, VI to improve it, and employs several reduction methods. Finally, to improve the solution obtained by ascend-reduce, all local search heuristics are used. This heuristic package is repeatedly used during preprocessing. Furthermore, the heuristics GC, GE, and VI are used during branch-and-bound.

Finally, branching is performed on vertices-by assigning the vertex $v_{i}$ to branch on weight $p\left(v_{i}\right)=\infty$ in one branch-and-bound child node and removing it in the other-which seems to be the natural choice for the MWCSP.

A look beyond the surface of the new exact MWCSP solver reveals an intricate synergy of the three major solving components introduced in this chapter: First, heuristics and reduction techniques are deeply intertwined. Reduction methods are crucial for the success of both prune and ascend-reduce, while the quality of the primal bound obtained by these heuristics determines the effectiveness of the dual-ascent reduction method. Indeed, the prune heuristic could only be realized due to the newly introduced PVD concept. Furthermore, only the combination of dual-bound and reduced costs obtained by dual-ascent, and the primal bound provided by ascendreduce consistently gives rise to the transformation of MWCSP to RMWCSP and the subsequent application of the TransCut formulation. In turn, on the SAP obtained from this transformation one can again execute the dual-ascent reduction method.

### 3.6.2 Computational results

For details on the hardware used in this thesis see Section 1.2.1. The computational evaluation for this chapter has been performed on the six test-sets described in Table 3.1. The ACTMOD and JMPALMK instances were all solved to optimality in the course of the 11th DIMACS Challenge DIMACS (2015), whereas the SHINY test-set Loboda et al. (2016) was introduced later. The two test-sets with the largest instances, HANDBI and HANDBD, are from Hegde et al. (2014), and were originally formulated as prize-collecting Steiner tree problems. However, the instances have uniform edge weights and can therefore be transformed to MWCSP. Most of these large instances proved to be intractable for the solvers participating in the 11th DIMACS Challenge, and could only recently be solved to optimality by Leitner et al. (2018a). Still, three instances of these two test-sets have remained unsolved. Finally, the PUC test-set contains instances that were designed to defy known solution techniques. Five of the 18 PUC instances have remained unsolved.

| Name | Instances | $\|V\|$ | $\|E\|$ | Status | Description |
| :--- | :---: | :---: | :---: | :---: | :--- |
| JMPALMK | 72 | $500-1500$ | $2597-20527$ | solved | $\begin{array}{l}\text { Euclidean, randomly generated instances } \\ \text { from Álvarez-Miranda et al. (2013a). } \\ \text { Instances from network enrichment analysis in } \\ \text { computational biology (Loboda et al., 2016). }\end{array}$ |
| SHINY | 39 | $232-3828$ | $202-4494$ | solved | $\begin{array}{l}\text { Instances from integrative biological } \\ \text { network analysis (Dittrich et al., 2008). }\end{array}$ |
| ACTMOD | 8 | $2034-5226$ | $3335-93394$ | solved |  |
| HANDS | 20 | $39600-42500$ | $78704-84475$ | solved |  |
| HANDB | 28 | $158400-169800$ | $315808-338551$ | unsolved |  |$\}$| Images hand-written text from a signal |
| :--- |
| processing problem (Hegde et al., 2014). |

Table 3.1: Classes of MWCSP instances.

## Reduction results

The impact of the individual of the algorithmic components is difficult to measure due to their strong interaction. For example, deactivating the primal heuristics also has a
large effect on the reduction methods, since heuristics are heavily used for the boundbased reductions. Vice-versa, reductions techniques are also a central ingredient of several primal heuristics. For computational results on the impact of the individual components we refer to Rehfeldt and Koch (2019), but note that the knowledge gain from these results is limited. Essentially, with any of the three main building blocks, reduction techniques, primal heuristics, graph transformations and IP formulation being deactivated, the solving behavior drastically deteriorates.

Here, we merely provide results on the strength of the reduction methods when used for presolving. Note that these methods also make use of the primal and dual heuristics, as well as of the new graph transformations (for applying dual-ascent). Table 3.2 shows the arithmetic mean of the percentage of vertices and edges in the presolved problems. Further, we report the shifted geometric mean (see Section 1.2.2) of the run-time needed per test-set, with shift $s=1$. It can be seen that the considerable effort put into the various algorithms used within presolving pays off. Apart from PUCNU, the average size of both the number of vertices and edges is reduced by more than 95 percent on all test-sets. Most instances are even solved to optimality. Given that some of the instances contain more than 300 thousand edges, the run-times are also tolerable: Even for the, large-scale, HANDB instances, the shifted geometric mean of the run-times is less than three seconds. We also note that the instances in PUCNU were designed to defy known solution techniques such as reduction methods. Against this backdrop, the obtained reductions are still notable.

|  | average reduced problem size |  |  |
| :--- | ---: | ---: | ---: |
| Test-set | vertices[\%] | edges[\%] | mean reduction time [s] |
| SHINY | 0.2 | 0.2 | 0.0 |
| JMPALMK | 0.1 | 0.0 | 0.0 |
| ACTMOD | 0.0 | 0.0 | 0.1 |
| HANDS | 0.4 | 0.2 | 0.3 |
| HANDB | 3.5 | 3.4 | 2.6 |
| PUCNU | 73.1 | 64.5 | 0.4 |

Table 3.2: Average problem sizes after application of reduction algorithms.

## Exact solution and comparison

Table 3.3 provides aggregated results on the exact solution of the benchmark sets from Table 3.1. The first column shows the test-set considered in the current row. Columns two shows the shifted geometric mean of the run-time of SCIP-JACk. Since most of the instances can be handled very quickly, we have chosen a shift of $s=1$. The next column provides the maximum run-time per test-set, and the last column the number of solved instances.

The results for the first three test-sets-JMPALMK, SHINY, and ACTMODreveal a strong performance of SCIP-JACK. All instances are solved in less than 0.3 seconds, and all but three instances are even solved within 0.1 seconds. To the best of the author's knowledge, SCIP-JACK significantly outperforms all other solvers from the literature on these instances. For example, most instances of SHINY are solved
two orders of magnitude faster than the solver described in Loboda et al. (2016) (results for the other test-sets are not given). Furthermore, the maximum run-time in Loboda et al. (2016) on the SHINY test-set is more than a thousand seconds (with a few instances remaining unsolved), while it is less than 0.1 seconds for SCIPJack. The computational environment for the experiments in Loboda et al. (2016) is described as AMD Opteron 6380 CPUs with 2.5 GHz . Fischetti et al. (2017), whose solver won the MWCSP category at the 11th DIMACS Challenge, reports results for JMPALMK and ACTOMOD, using a machine that is roughly 1.4 times slower than ours, according to the DIMACS benchmark score. Taking the different machine into account, Fischetti et al. (2017) is between one and two orders of magnitude slower on almost all JMPALMK and ACTOMOD instances. The difference is even larger for other MWCSP solvers competing at the DIMACS Challenge, such as Althaus and Blumenstock (2014); El-Kebir and Klau (2014).

The best other results for the ACTMOD instances are achieved by the solver from Leitner et al. (2018a). Still, the solver is about an order of magnitude slower than SCIP-JACK on these instances (with both using the same machine). Other MWCSP solvers introduced after the 11th DIMACS Challenge, such as Álvarez Miranda and Sinnl (2017), are outperformed by Leitner et al. (2018a).

Also on the two HAND test-sets, SCIP-JACK is notably faster than other solvers from the literature. Already for the easier HANDS test-set, the solver from Fischetti et al. (2017) fails to solve several instances within the one hour time limit, see Leitner et al. (2018a). In contrast to at most two seconds taken by SCIP-Jack. Again, the best other results are achieved by Leitner et al. (2018a). The run-time of this solver is within two orders of magnitude of the run-time of SCIP-JACK on most HAND instances. Still, Leitner et al. (2018a) is always at least around one order of magnitude slower. Further, SCIP-JACK can solve one more instance to optimality (or even two if the time-limit is increased). This instance, handbd04, is also solved for the first time to optimality - in less than half a minute.

| Test-set | \# instances | \# solved | mean time $[\mathrm{s}]$ | maximum time [s] |
| :--- | ---: | ---: | ---: | ---: |
| JMPALMK | 72 | 72 | 0.0 | 0.0 |
| SHINY | 39 | 39 | 0.0 | 0.1 |
| ACTMOD | 8 | 8 | 0.1 | 0.3 |
| HANDS | 20 | 20 | 0.3 | 1.6 |
| HANDB | 28 | 26 | 4.5 | $>7200$ |
| PUCNU | 18 | 13 | 55.6 | $>7200$ |

Table 3.3: Computational results of the MWCSP solver described in this chapter.

Finally, the PUCNU test-set proves to be the hardest for SCIP-JACK, with only 13 out of 18 instances being solved within two hours. The solver from Leitner et al. (2018a) solves 7 instances within the same time. Fischetti et al. (2017) perform better, and solve 10 instances to optimality. Also from the PUCNU test-set, several instances are solved for the first time to optimality by SCIP-JACK - as detailed below.

## Progress on unsolved instances

| Name | gap [\%] | new UB | previous UB |
| :--- | ---: | ---: | ---: |
| handbd04 | opt | $\mathbf{3 2 0 2 . 1 8 5 7 4}$ | 3202.710021 |
| handbd13 | opt | $\mathbf{1 3 . 1 8 4 2 6 1}$ | 13.187615 |
| cc7-3nu | opt | $\mathbf{2 7 0}$ | 271 |
| cc10-2nu | opt | $\mathbf{1 6 7}$ | 168 |
| handbi13 | 0.1 | 4.24964 | 4.260670 |
| cc11-2nu | 0.8 | 303 | 304 |
| cc12-2nu | 0.7 | 563 | 565 |

Table 3.4: Improvements on unsolved DIMACS instances in a long run (24 h).
Table 3.4 shows results obtained with a time limit of 24 hours on previously unsolved instances from the 11th DIMACS Challenge. We ran the experiments with two different random seeds. The impact of using different random seeds was limited, but we were at least able to further improve one primal bound in this way. We provide the final optimality gap (column two), the best primal objective value (column three), and the known primal objective value from the literature (column four). Overall, four instances can be solved for the first time to optimality.

### 3.7 Conclusion

This chapter has set about to improve the state of the art in exact MWCSP solution. It started with analyses and comparisons of IP and MIP formulations with respect to the strength of their LP-relaxations. Along the way, we have also provided a tighter (compact) description of the connected subgraph polytope - the convex hull of subsets of vertices that induce a connected subgraph. Furthermore, we have given a (compact) complete description of the connected subgraph polytope for graphs with no four independent vertices. As an important conclusion of the theoretical study, we have seen that the considered edge-based formulations are consistently stronger than the node-based ones.

Based on the strongest of the considered (M)IP formulations, this chapter has continued with various new algorithms for exact MWCSP solution. Three central components are reduction techniques, graph transformations, and heuristics. The surprisingly symbiotic - synergy of all three components gives rise to a powerful branch-and-cut algorithm that outperforms previous approaches by a large margin. Furthermore, several benchmark instances from the 11th DIMACS Challenge can be solved for the first time to optimality, and the best known primal solution of other ones can be improved.

Still, the end of the road is certainly not reached yet. For example, several powerful algorithms introduced in Chapter 2 for SPG, such as the extended reduction techniques or the FPT dynamic programming algorithm, could be extended to MWCSP. On the theoretical side, it seems well worthwhile to study new IP formulations for the MWCSP to further improve the strength of the LP-relaxation, and to obtain a tighter polyhedral description. For example, it might be possible to strengthen the
node-based formulations by additional constraints to match their edge-based counterparts. Improvements of MWCSP complexity results, which were not covered in this chapter, will be introduced as part of the more general prize-collecting Steiner tree problem in the following.

## Chapter 4

## A generalization: The prize-collecting Steiner tree problem

This chapter is concerned with a well-known generalization of both problems considered in the previous two chapters: The prize-collecting Steiner tree problem (PCSTP). As in the previous chapter, we combine extensions of already introduced algorithms with conceptually new ones. However, since the PCSTP generalizes MWCSP and SPG, some new results for PCSTP can also be applied to these problems.

### 4.1 Introduction

The prize-collecting Steiner tree problem (PCSTP) can be stated as follows: Given an undirected graph $G=(V, E)$, edge weights $c: E \rightarrow \mathbb{Q}_{>0}$, and node weights (or prizes ) $p: V \rightarrow \mathbb{Q}_{\geqslant 0}$, a tree $S=(V(S), E(S)) \subseteq G$ is required such that

$$
\begin{equation*}
C(S):=\sum_{e \in E(S)} c(e)+\sum_{v \in V \backslash V(S)} p(v) \tag{4.1}
\end{equation*}
$$

is minimized. By setting sufficiently high node weights for its terminals, each SPG instance can be transformed to a PCSTP. Moreover, PCSTP can also be considered a generalization of MWCSP: As we will see in Section 4.2.2, any MWCSP instance is essentially a PCSTP with unit edge weights. PCSTP has occasionally also been formulated in maximization form, see e.g. Johnson et al. (2000), where the objective function

$$
\begin{equation*}
\sum_{v \in V(S)} p(v)-\sum_{e \in E(S)} c(e) \tag{4.2}
\end{equation*}
$$

is to be maximized. While the minimization and maximization formulations are equivalent for exact solution, for approximation algorithms the two formulations are fundamentally different. PCSTP in its minimization form can be approximated within a factor of 2 in polynomial time, see e.g. Goemans and Williamson (1995), but it is $\mathcal{N} \mathcal{P}$-hard to approximate the maximization form within any constant factor, see e.g. Feigenbaum et al. (2001).

The relevance of the PCSTP can at least partly be attributed to its large number of practical applications. These applications can be found in various areas, for
instance in the design of telecommunication networks (Ljubic, 2004), electricity planning (Bolukbasi and Kocaman, 2018), geophysics (Schmidt et al., 2015), and even machine learning (Hidayati et al., 2019). Moreover, PCSTP is a popular tool in computational biology, see e.g. Akhmedov et al. (2018); Ideker et al. (2002); Tuncbag et al. (2016). Recently, PCSTP has also been employed for data mining, see e.g. Gionis et al. (2017).

The PCSTP is notably younger than the SPG (albeit still older than the author of this thesis): It was introduced around 15 years after the SPG by Segev (1987) ${ }^{17}$. However, since then, the PCSTP has been extensively discussed in the literature, both from theoretical and practical perspectives. The first approximation algorithm was introduced by Bienstock et al. (1993), and achieved a factor 3 approximation. This factor was later improved by Goemans and Williamson (1995), Johnson et al. (2000), and Feofiloff et al. (2007). The latter achieve a $\left(2-\frac{2}{|V|}\right)$-approximation. Finally, Archer et al. (2011) proposed a $(2-\varepsilon)$ approximation; with $0.03<\varepsilon<0.04$. For approximation results on planar graphs see Bateni et al. (2011). Moreover, a large number of heuristic algorithms for PCSTP have been suggested, see e.g. Canuto et al. (2001); da Cunha et al. (2009); Fu and Hao (2017a).

As to (practical) exact solving, the sophisticated branch-and-cut algorithm by Ljubic et al. (2006) was an early milestone. A survey on the developments before 2006 is given by Costa et al. (2006). Later, the PCSTP attracted considerable interest in the wake of the 11th DIMACS Challenge (DIMACS, 2015) - dedicated to Steiner tree problems - where the PCSTP categories could boast the most participants by far. Furthermore, in the recent years a considerable number of additional solvers for the PCSTP have been introduced, see e.g. Akhmedov et al. (2016); Braunstein and Muntoni (2016); Fischetti et al. (2017); Fu and Hao (2017a); Gamrath et al. (2017); Leitner et al. (2018a); Ming et al. (2018); Sun et al. (2019). Some of these solvers, in particular Leitner et al. (2018a), drastically improve on the best results achieved at the DIMACS Challenge - being able to not only solve many instances orders of magnitude faster, but also to solve a number of instances for the first time to optimality. Exact approaches for PCSTP are usually based on branch-and-bound or branch-and-cut (Fischetti et al., 2017; Gamrath et al., 2017), include specialized (primal and sometimes dual) heuristics (Klau et al., 2004; Leitner et al., 2018a), and make use of various preprocessing methods to reduce the problem size (Ljubic et al., 2006; Leitner et al., 2018a). For more details on the PCSTP literature see the recent survey Ljubic (2020).

### 4.1.1 Preliminaries and additional notation

Throughout this chapter it will be presupposed that a PCSTP instance $I_{P C}=$ ( $V, E, c, p$ ) is given such that $(V, E)$ is connected; otherwise, one can optimize each connected component separately. We call $T_{p}:=\{v \in V \mid p(v)>0\}$ the set of potential terminals (Leitner et al., 2018a). It will be assumed that $T_{p} \neq \emptyset$. For ease of presentation we use $\left\{t_{1}, t_{2}, \ldots, t_{s}\right\}:=T_{p}$, so in particular $s:=\left|T_{p}\right|$. A $t \in T_{p}$ will

[^11]be called proper potential terminal if
\[

$$
\begin{equation*}
p(t)>\min _{e \in \delta(t)} c(e) . \tag{4.3}
\end{equation*}
$$

\]

The set of all proper potential terminals will be denoted by $T_{p}^{+}=\left\{t_{1}^{+}, t_{2}^{+}, \ldots, t_{s^{+}}^{+}\right\}$, with $s^{+}:=\left|T_{p}^{+}\right|$. Accordingly, define $T_{p}^{-}:=T_{p} \backslash T_{p}^{+}$. The distinction of proper and non-proper potential terminals was already made in Uchoa (2006), where it was noted that non-proper potential terminals allow for additional presolving methods. This distinction can also be found in Fischetti et al. (2017); Leitner et al. (2018a).

We will call any PCSTP solution that consists of just one vertex trivial. If $T_{p}^{+}=\emptyset$, then there exists a trivial optimal solution. In general, there exists an optimal solution whose leaves are a subset of $T_{p}^{+}$, or there exists at least one trivial optimal solution.

Finally, we define a variation of the PCSTP, the rooted prize-collecting Steiner tree problem (RPCSTP) ${ }^{18}$. The RPCSTP incorporates the additional condition that a non-empty set $T_{f} \subseteq V$ of fixed terminals needs to be part of all feasible solutions. We assume w.l.o.g. that $p(t)=0$ for all $t \in T_{f}$.

### 4.1.2 Contribution and structure

This chapter introduces and analyses new techniques and algorithms for PCSTP that ultimately aim for efficient exact solution. Most of the techniques are based on, or result in reductions (or transformations) of the PCSTP to equivalent problemsthese problems can be PCSTPs itself, but can also be from different problem classes. The reductions can for example decrease the problem size or allow us to obtain a stronger IP formulation. Moreover, several of the new methods provably dominate previous results from the literature. While several of the new techniques require to solve $\mathcal{N P}$-hard subproblems, the underlying concepts allow us to design empirically efficient heuristics. Furthermore, we provide complexity results for the exact solution of PCSTP (and related problems), which underpin the design of most algorithms in this chapter. Also these complexity results are based on problem transformations.

A salient feature of this chapter is the intricate interaction of the individual algorithmic components and their wide applicability within a branch-and-cut frameworkfrom preprocessing and probing, to IP formulation and separation methods, to heuristics, domain propagation, and branching. The integration of the new methods into an exact solver also brings significant computational advancements: The new solver is significantly faster than current state-of-the-art competitors, and furthermore solves 24 benchmark instances for the first time to optimality.

The remainder of this chapter is structured as follows.

- Section 4.2 shows that PCSTP is fixed-parameter tractable (FPT) in $\left|T_{p}^{+}\right|$. Furthermore, we discuss (known and new) transformations from the node-weighted Steiner tree and maximum-weight connected subgraph problem to PCSTP, which directly lead to FPT results. Also, we show that non-proper potential

[^12]terminals naturally arise from these transformations. Overall, Section 4.2 provides a strong theoretical motivation for distinguishing between proper and non-proper potential terminals within PCSTP algorithms, which will be a dominating theme throughout this chapter.

- Section 4.3 introduces several new reduction techniques for PCSTP. Most importantly, a new distance function based on so-called prize-constrained walks is introduced. By using this distance function, we introduce for example a new edge elimination criterion. The new techniques are also compared with previous methods from the literature.
- Section 4.4 makes further use of the concept of prize-constrained walks. By a combination with the reduced-costs of a particular LP relaxation, prizeconstrained walks allow us to find vertices that need to be part of any optimal solution. We further show how this information leads to a better IP formulation.
- Section 4.5 shows how to integrate the newly developed algorithms within a branch-and-cut framework. Furthermore, computational results are given, as well as comparisons with state-of-the-art PCSTP solvers.
- Finally, Section 4.6 offers a conclusion, and suggestions on possible future research.


### 4.2 Proper potential terminals and complexity

In a number of (real-world) PCSTP instances from the literature $\left|T_{p}^{-}\right|$is considerably larger than $\left|T_{p}^{+}\right|$, so it seems well-worthwhile to algorithmically distinguish between proper and non-proper potential terminals. This section provides also a theoretical foundation for such a distinction. Namely, by showing how proper and non-proper potential terminals arise from problems related to PCSTP and by showing how the complexity of PCSTP depends on the number of proper potential terminals.

### 4.2.1 On the complexity of PCSTP

In the following we demonstrate that for the complexity of PCSTP the number $s^{+}=\left|T_{p}^{+}\right|$is the crucial parameter. One observes throughout this chapter that the complexity of several new PCSTP algorithms is likewise governed by $s^{+}$. We first show the following.

Theorem 4.1. The PCSTP is fixed-parameter tractable for the parameter $s^{+}$. It can be solved in time $O\left(3^{s^{+}} n+2^{s^{+}} n^{2}+n^{2} \log n+m n\right)$.

Due to its technical nature, a detailed proof is given in Appendix A.3.1 only. In the following we describe the main building blocks. Consider a RPCSTP $I_{f}=$ $\left(G, T_{f}, c, p\right)$ with $T_{p}^{+}=\emptyset$. By extending the well-known dynamic programming algorithm from Dreyfus and Wagner (1971), we obtain the following result.

Proposition 4.2. An optimal solution to $I_{f}$ can be found in time $O\left(3^{\left|T_{f}\right|} n+2^{\left|T_{f}\right|} n^{2}+n^{2} \log n+m n\right)$.

Now we return to PCSTP. It will be assumed that no trivial solution exists for PCSTP (otherwise one needs to compare the solution found in the following with the best trivial solution). The following describes how to transform any PCSTP to an equivalent RPCSTP instance that has no proper potential terminals and satisfies $\left|T_{f}\right|=s^{+}+1$.

Transformation 4.3 (PCSTP to RPCSTP).
Input: $\operatorname{PCSTP}(V, E, c, p)$ with $T_{p}^{+} \neq \emptyset$
Output: $\operatorname{RPCSTP}\left(V^{\prime}, E^{\prime}, T_{f}^{\prime}, c^{\prime}, p^{\prime}\right)$

1. Initially, set $V^{\prime}:=V, E^{\prime}:=E, c^{\prime}:=c$; define $M:=\sum_{t \in T_{p}^{+}} p(t)$.
2. Define $p^{\prime}: V^{\prime} \rightarrow \mathbb{Q} \geqslant 0$ for all $v \in V^{\prime}$ by
$p^{\prime}(v):= \begin{cases}p(v) & \text { if } v \in T_{p}^{-}, \\ 0 & \text { otherwise } .\end{cases}$
3. Let $j \in\left\{1, \ldots, s^{+}\right\}$such that $p\left(t_{j}\right)=\min _{t \in T_{p}^{+}} p(t)$.
4. Add vertex $t_{0}^{\prime}$ to $V^{\prime}$.
5. For each $i \in\left\{1, \ldots, s^{+}\right\}$:
(a) add node $t_{i}^{\prime}$ with $p\left(t_{i}^{\prime}\right):=0$ to $V^{\prime}$;
(b) add edges $\left\{t_{0}^{\prime}, t_{i}\right\}$ and $\left\{t_{i}, t_{i}^{\prime}\right\}$ to $E^{\prime}$, both of weight $M$.
6. For each $i \in\left\{1, \ldots, s^{+}\right\} \backslash\{j\}$ :
(a) add edge $\left\{t_{i}, t_{j}^{\prime}\right\}$ of weight $M+p\left(t_{j}\right)$ to $E^{\prime}$;
(b) add edge $\left\{t_{i}^{\prime}, t_{j}^{\prime}\right\}$ of weight $M+p\left(t_{i}\right)$ to $E^{\prime}$.
7. Define fixed terminals $T_{f}^{\prime}:=\left\{t_{1}^{\prime}, \ldots, t_{s^{+}}^{\prime}\right\} \cup\left\{t_{0}^{\prime}\right\}$.
8. Return $\left(V^{\prime}, E^{\prime}, T_{f}^{\prime}, c^{\prime}, p^{\prime}\right)$.

Instead of a correctness proof, we give an informal description of the transformation. Let $I$ be a PCSTP. Let $I^{\prime}$ be the RPCSTP resulting from Transformation 4.3, let $S^{\prime}$ be an optimal solution to $I^{\prime}$, and let $S:=S^{\prime} \cap(V, E)$. One observes that $S^{\prime}$ needs to contain at least one $t_{i}$ in order to connect $t_{0}^{\prime}$ with the remainder of the fixed terminals. Because of the choice of $M$, one further observes that for each fixed terminal of $I^{\prime}$ exactly one incident edge is in $S^{\prime}$. Each fixed terminal $t_{i}^{\prime}$ with $i \neq j$ is either connected via $t_{i}$ or via $t_{j}^{\prime}$. In the first case, $t_{i} \in V(S)$ holds, and in the second, $t_{i} \notin V(S)$. The edge weights are chosen such that the objective value of $S^{\prime}$ corresponds to that of $S$ in both cases. The fixed terminal $t_{j}^{\prime}$ has a special status, as
it is used to connect any fixed terminal $t_{i}^{\prime}$ with $t_{i} \notin V(S)$. Thus, $t_{j}^{\prime}$ is connected to all $t_{i}$. Note that the corresponding $t_{j}$ needs to be of minimum prize among all proper potential terminals for the transformation to be correct. Overall, $S$ is an optimal solution to $I$, and one obtains the following relation

$$
C(S)=C\left(S^{\prime}\right)-\left|T_{f}^{\prime}\right| M
$$

By combining Proposition 4.2 and Transformation 4.3, one obtains Theorem 4.1.
Interestingly, one can also easily extend Transformation 4.3 such that the result is an SPG with $s+1$ terminals (and at most $2 n+1$ vertices). To do so, one needs to essentially consider all potential terminals as proper potential terminals. There has been no transformation in the literature so far from SPG to PCSTP.

However, the structure of the resulting SPG does not lend itself well to an efficient practical solution by state-of-the-art SPG algorithms. Still, one can use this transformation to directly derive further complexity results for PCSTP from SPG. E.g., Vygen (2011) shows that an SPG with $k$ terminals can be solved in time $O\left(n k 2^{k+\log _{2} k \log _{2} n}\right)$, which translates to $O\left(n s 2^{s+\log _{2} s \log _{2} n+\log _{2} s}\right)$ for PCSTP. One could also extend the result from Vygen (2011) (by verifying them for $I_{f}$ similarly to Proposition 4.2) to show that the same bound holds for $s^{+}$.

Having demonstrated that PCSTP is tractable if the number of proper potential terminals is bounded from above, we now turn to the opposite case. The SPG is well-known to be fixed-parameter tractable in $n-|T|$, which can be shown by enumeration of the non-terminal vertices (Hakimi, 1971). For node-weighted Steiner tree and maximum-weight connected subgraph problems one can show similar results (Buchanan et al., 2018). However, the situation for PCSTP with respect to $n-s^{+}$is different, as the following proposition shows.

Proposition 4.4. PCSTP is $\mathcal{N P}$-hard even if $s^{+}=n$.
Proof. We show that the- $\mathcal{N} \mathcal{P}$-complete (Garey and Johnson, 1979)—vertex cover problem can be reduced to the decision variant of PCSTP, such that the resulting instance satisfies $s^{+}=n$. Let $G_{c o v}=\left(V_{c o v}, E_{c o v}\right)$ be an undirected graph and $k \in \mathbb{N}$. In the vertex cover problem one has to determine whether a subset of $V_{c o v}$ of cardinality at most $k$ exists that is incident to all edges $E_{\text {cov }}$. Let $n:=\left|V_{c o v}\right|$ and $m:=\left|E_{c o v}\right|$. Assume that the vertices and edges of $G_{c o v}$ are given as $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, respectively. Construct a PCSTP instance $I^{\prime}=\left(V^{\prime}, E^{\prime}, c^{\prime}, p^{\prime}\right)$ with $2 n+m+1$ vertices and $2 n+2 m$ edges as follows. Denote the vertices of $V^{\prime}$ by $u_{i}^{\prime}$ and $v_{i}^{\prime}$ for $i=1, \ldots, n$, and $w_{i}^{\prime}$ for $i=0,1, \ldots, m$. For each original edge $e_{i}=\left\{v_{j}, v_{k}\right\} \in E_{\text {cov }}$ create the two edges $\left\{w_{i}^{\prime}, v_{j}^{\prime}\right\}$ and $\left\{w_{i}^{\prime}, v_{k}^{\prime}\right\}$ with $\operatorname{cost} c^{\prime}\left(\left\{w_{i}^{\prime}, v_{j}^{\prime}\right\}\right)=c^{\prime}\left(\left\{w_{i}^{\prime}, v_{k}^{\prime}\right\}\right)=8$. For each original vertex $v_{i} \in V_{\text {cov }}$ create the two edges $\left\{v_{i}^{\prime}, u_{i}^{\prime}\right\}$ and $\left\{u_{i}^{\prime}, w_{0}^{\prime}\right\}$ with cost $c\left(\left\{v_{i}^{\prime}, u_{i}^{\prime}\right\}\right)=1$ and $c\left(\left\{u_{i}^{\prime}, w_{0}^{\prime}\right\}\right)=4$. Finally, define the prizes of $I^{\prime}$ as follows. First, $p^{\prime}\left(w_{i}^{\prime}\right)=10$ for $i=0,1, \ldots, m$. Second, $p^{\prime}\left(v_{i}^{\prime}\right)=p^{\prime}\left(u_{i}^{\prime}\right)=2$ for $i=1, \ldots, n$. Observe that all vertices in $V^{\prime}$ are proper potential terminals. We claim that an independent set for $G_{c o v}$ of cardinality at most $k$ exists if and only if there is a tree $S^{\prime} \subseteq\left(V^{\prime}, E^{\prime}\right)$ that satisfies

$$
\begin{equation*}
C\left(S^{\prime}\right)-8 m-4 n \leqslant k \tag{4.4}
\end{equation*}
$$

First, assume that a vertex cover with vertex index set $J_{\text {cov }}$ exists such that $\left|J_{\text {cov }}\right| \leqslant k$. Build a tree $S^{\prime} \subseteq\left(V^{\prime}, E^{\prime}\right)$ as follows. Initially, set

$$
V^{\prime}\left(S^{\prime}\right):=\left\{v_{j}^{\prime}, u_{j}^{\prime} \mid j \in J_{c o v}\right\} \cup\left\{w_{j} \mid j \in\{0, \ldots, m\}\right\}
$$

For $E^{\prime}\left(S^{\prime}\right)$ take all edges $\left\{v_{j}^{\prime}, u_{j}^{\prime}\right\},\left\{u_{j}^{\prime}, w_{0}^{\prime}\right\}$ with $j \in J_{\text {cov }}$. Furthermore, for $i=1, \ldots, m$ add exactly one edge $\left\{w_{i}^{\prime}, v_{j}^{\prime}\right\}$ with $j \in J_{\text {cov }}$. For $S^{\prime}$ one observes that

$$
\sum_{e \in E^{\prime}\left(S^{\prime}\right)} c^{\prime}(e)=8 m+5 k
$$

and

$$
\sum_{v \in V^{\prime} \backslash V^{\prime}\left(S^{\prime}\right)} p^{\prime}(v)=4(n-k)
$$

Thus, $C\left(S^{\prime}\right)-8 m-4 n=k$.
Conversely, assume that a tree $S^{\prime}$ exists that satisfies (4.4). Assume that $S^{\prime}$ is an optimal solution to $I^{\prime}$. One verifies that $S^{\prime}$ contains all vertices $w_{i}^{\prime}$ (e.g. by using Theorem 4.22). Note that also $\delta_{S^{\prime}}\left(w_{i}^{\prime}\right)=1$ for $i=1, \ldots, m$. Let $J_{\text {cov }} \subseteq\{1, \ldots, n\}$ such that $v_{j}^{\prime} \in S^{\prime} \Longleftrightarrow j \in J_{\text {cov }}$ and set $k^{\prime}:=\left|J_{\text {cov }}\right|$. From the optimality of $S^{\prime}$ one obtains

$$
\begin{equation*}
C\left(S^{\prime}\right)=8 m+5 k^{\prime}+4\left(n-k^{\prime}\right) \tag{4.5}
\end{equation*}
$$

From (4.4) it follows that $k^{\prime} \leqslant k$.

### 4.2.2 From PCSTP to MWCSP and NWSTP

The distinction of proper potential terminals also arises in relation with the maximumweight connect subgraph problem (MWCSP), which was introduced in the previous chapter. We re-define the MWCSP with a slightly different notation here. Given an undirected graph $G=(V, E)$ with node weights $w: V \rightarrow \mathbb{Q}$, the MWCSP asks for a connected subgraph $S \subseteq G$ that maximizes

$$
\begin{equation*}
\sum_{v \in V(S)} w(v) \tag{4.6}
\end{equation*}
$$

Let $I=(V, E, w)$ be an MWCSP instance and assume that $w_{0}:=\min _{v \in V(S)} w(v)$ is negative (otherwise $I$ is trivial to solve). $I$ can be transformed to an equivalent PCSTP $I^{\prime}=(V, E, c, p)$ by setting $c(e):=-w_{0}$ for all $e \in E$, and $p(v):=w(v)-w_{0}$ for all $v \in V$, as described in Dittrich et al. (2008). It should be noted, though, that due to the special form of $I^{\prime}$, the state-of-the-art MWCSP algorithms introduced in the previous chapter perform significantly better in practice on $I$ than PCSTP algorithms on $I^{\prime}$. As to proper potential terminals, one observes the following: For any $v \in V$ it holds that $w(v)>0$ (in $I$ ) if and only if $v$ is a proper potential terminal in $I^{\prime}$. Thus, one also obtains the following corollary (which improves on a result from Buchanan et al. (2018)).

Corollary 4.5. MWCSP can be solved in time $O\left(3^{q} n+2^{q} n^{2}+n^{2} \log n+m n\right)$, where $q$ denotes the number of positive weight vertices.

Another natural distinction between proper and non-proper potential terminals can be observed for the node-weighted Steiner tree problem (NWSTP), see e.g. Klein and Ravi (1995). Given an undirected, connected graph $G=(V, E)$ with vertex weights $w: V \rightarrow \mathbb{Q} \geqslant 0$ and edge weights $c: E \rightarrow \mathbb{Q} \geqslant 0$, and given a set of terminals $T \subseteq V$, the NWSTP asks for tree $S \subseteq G$ with $T \subseteq V(S)$ that minimizes

$$
\begin{equation*}
\sum_{e \in E(S)} c(e)+\sum_{v \in V(S)} w(v) \tag{4.7}
\end{equation*}
$$

Let $I=(V, E, T, c, w)$ be an NWSTP instance and assume w.l.o.g. that $w(t)=0$ for all $t \in T$. I can be reduced to an equivalent PCSTP $I^{\prime}=\left(V, E, c^{\prime}, p^{\prime}\right)$ by the following, new, transformation. Let $z:=\max _{v \in V} w(v)$. Define $c^{\prime}(e):=c(e)+z$ for all $e \in E$. Define $p^{\prime}(t):=k$ for all $t \in T$, with a sufficiently large $k \in \mathbb{Q} \geqslant 0$, e.g. $k=\sum_{e \in E} c^{\prime}(e)$. Finally, define $p^{\prime}(v)=z-w(v)$ for all $v \in V \backslash T$. A tree $S$ is an optimal solution to $I$ if and only if it is an optimal solution to $I^{\prime}$. Furthermore, in this case $S$ satisfies

$$
\begin{equation*}
\sum_{e \in E(S)} c(e)+\sum_{v \in V(S)} w(v)=C(S)-(|T|-1) z-\sum_{v \in V} p^{\prime}(v) . \tag{4.8}
\end{equation*}
$$

Note that $T_{p}^{-} \supseteq\{v \in V \backslash T \mid w(v)<z\}$. Likewise, the set of terminals $T$ for $I$ corresponds to the set of proper potential terminals for $I^{\prime}$.

One can alternatively transform NWSTP to RPCSTP to avoid the use of the large constant $k$. Also, one immediately obtains the following corollary (which was already shown algorithmically in Buchanan et al. (2018)) from Proposition 4.2.

Corollary 4.6. NWSTP can be solved in time $O\left(3^{k} n+2^{k} n^{2}+n^{2} \log n+m n\right)$, where $k$ denotes the number of terminals.

Finally, one notes that PCSTP can be seen as a generalization of both MWCSP and NWSTP, as these problems can be transformed to a PCSTP with the same number of edges and vertices.

### 4.3 Reductions within the problem class

The methods described in the following aim to reduce a given instance to a smaller one of the same problem class. Several articles have addressed such techniques for the PCSTP, e.g. Leitner et al. (2018a); Ljubic et al. (2006); Uchoa (2006), but most are dominated by the methods described in the following. In particular, several simple reduction techniques described in the literature are just special cases of the algorithms described in the following. See Rehfeldt et al. (2019) for more details. The new methods will not only be employed for classic preprocessing, but also throughout the entire solving process, e.g. for domain propagation, or within heuristics.

### 4.3.1 Taking short walks

The following approach uses a new, walk-based, distance function. It generalizes the bottleneck Steiner distance concept that was the central theme of Uchoa (2006) and is defined as follows. Let $v, w \in V$ be two distinct vertices. Denote by $\mathcal{P}(v, w)$ the set of all paths between $v$ and $w$. Recall that we assume all paths to be simple. For a path $P$ and vertices $x, y \in V(P)$ let $P(x, y)$ be the subpath of $P$ between $x$ and $y$. Define the Steiner distance of path $P$ as

$$
\begin{equation*}
S D(P):=\max _{x, y \in V(P)} \sum_{e \in E(P(x, y))} c(e)-\sum_{v \in V(P(x, y)) \backslash\{x, y\}} p(v) . \tag{4.9}
\end{equation*}
$$

With this definition at hand, define the bottleneck Steiner distance between $v$ and $w$ as

$$
\begin{equation*}
B(v, w):=\min \{S D(P) \mid P \in \mathcal{P}(v, w)\} . \tag{4.10}
\end{equation*}
$$

Now, we describe a stronger distance concept, which is closely related to the implied bottleneck Steiner distance that we introduced for the SPG in Section 2.3.1. Let $v, w \in V$. A finite walk $W=\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, e_{r-1}, v_{r}\right)$ with $v_{1}=v$ and $v_{r}=w$ will be called prize-constrained $(v, w)$-walk if no $v \in T_{p}^{+} \cup\{v, w\}$ is contained more than once in $W$. For any $k, l \in \mathbb{N}$ with $1 \leqslant k \leqslant l \leqslant r$ define the subwalk $W\left(v_{k}, v_{l}\right):=$ $\left(v_{k}, e_{k}, v_{k+1}, e_{k+1}, \ldots, e_{l-1}, v_{l}\right)$; note that $W\left(v_{k}, v_{l}\right)$ is again a prize-constrained walk. In the following, let $W$ be a prize-constrained $(v, w)$-walk. Define the prize-collecting cost of $W$ as

$$
\begin{equation*}
c_{p c}(W):=\sum_{e \in E(W)} c(e)-\sum_{u \in V(W) \backslash\{v, w\}} p(u) . \tag{4.11}
\end{equation*}
$$

Thereupon, define the prize-constrained length of $W$ as

$$
\begin{equation*}
l_{p c}(W):=\max \left\{c_{p c}\left(W\left(v_{k}, v_{l}\right)\right) \mid 1 \leqslant k \leqslant l \leqslant r, v_{k}, v_{l} \in T_{p}^{+} \cup\{v, w\}\right\} \tag{4.12}
\end{equation*}
$$

Intuitively, $l_{p c}(W)$ provides the cost of the least profitable subwalk of $W$. This measure will in the following be useful to bound the cost of connecting any two disjoint trees that contain the first and the last vertex of $W$, respectively. Finally, we denote the set of all prize-constrained $(v, w)$-walks by $\mathcal{W}_{p c}(v, w)$ and define the prize-constrained distance between $v$ and $w$ as

$$
\begin{equation*}
d_{p c}(v, w):=\min \left\{l_{p c}(W) \mid W \in \mathcal{W}_{p c}(v, w)\right\} \tag{4.13}
\end{equation*}
$$

Note that $d_{p c}(v, w)=d_{p c}(w, v)$ for any $v, w \in V$. Also, it is important to note that for each subwalk the cost of an edge and the prize of an inner vertex are counted exactly once, even if an edge or vertex is contained multiple times in the subwalk. Using the same measuring concept, one could in fact also allow arbitrary finite walks instead of prize-constrained ones - and count for each subwalk the costs of its edges and the prizes of its inner vertices exactly once. However, the prize-constrained distance is already arbitrarily stronger than the bottleneck Steiner distance, and additionally more closely related to the algorithms described below.

Furthermore, one could also apply the concept of implied profit, introduced for the SPG in Section 2.3.1, to further improve the prize-constrained distance. Still,
adaptations are necessary to also take the prize of the potential terminal that induces the profit into account. We do not consider this improvement in the following, as it would considerably complicate the theoretical analyses. Also, this improved version has not been implemented yet.

By using the prize-constrained distance one can formulate a reduction criterion that dominates the special distance test from Uchoa (2006). This criterion is expressed in the following theorem:

Theorem 4.7. Let $\{v, w\} \in E$. If

$$
\begin{equation*}
c(\{v, w\})>d_{p c}(v, w) \tag{4.14}
\end{equation*}
$$

is satisfied, then $\{v, w\}$ cannot be contained in any optimal solution to $I_{P C}$.
Proof. Let $S$ be a tree with $\{v, w\} \in E(S)$. Further, let $W=\left(v_{1}, e_{1}, \ldots, e_{r-1}, v_{r}\right)$ be a prize-constrained $(v, w)$-walk with $l_{p c}(W)=d_{p c}(v, w)$. Remove $\{v, w\}$ from $S$ to obtain two new trees. Of these two trees denote the one that contains $v$ by $S_{v}$, and the other (containing $w$ ) by $S_{w}$. Define $b:=\min \left\{k \in\{1, \ldots, r\} \mid v_{k} \in V\left(S_{w}\right)\right\}$ and $a:=\max \left\{k \in\{1, \ldots, b\} \mid v_{k} \in V\left(S_{v}\right)\right\}$. Further, define $x:=\max \left\{k \in\{1, \ldots, a\} \mid v_{k} \in\right.$ $\left.T_{p}^{+} \cup\{v\}\right\}$ and $y:=\min \left\{k \in\{b, \ldots, r\} \mid v_{k} \in T_{p}^{+} \cup\{w\}\right\}$. By definition, $x \leqslant a<b \leqslant y$ and furthermore:

$$
\begin{equation*}
c_{p c}\left(W\left(v_{a}, v_{b}\right)\right) \leqslant c_{p c}\left(W\left(v_{x}, v_{y}\right)\right) \tag{4.15}
\end{equation*}
$$

Reconnect $S_{v}$ and $S_{w}$ by $W\left(v_{a}, v_{b}\right)$, which yields a new tree $S^{\prime}$. For this tree it holds that:

$$
\begin{aligned}
C\left(S^{\prime}\right) & \leqslant C(S)+c_{p c}\left(W\left(v_{a}, v_{b}\right)\right)-c(\{v, w\}) \\
& \stackrel{(4.15)}{\leqslant} C(S)+c_{p c}\left(W\left(v_{x}, v_{y}\right)\right)-c(\{v, w\}) \\
& \leqslant C(S)+l_{p c}(W)-c(\{v, w\}) \\
& =C(S)+d_{p c}(v, w)-c(\{v, w\}) \\
& \stackrel{(4.14)}{<} C(S) .
\end{aligned}
$$

Because of $C\left(S^{\prime}\right)<C(S)$ no optimal solution can contain $\{v, w\}$.
To obtain a criterion for the case of equality in (4.14), define $d_{p c}^{-}(v, w)$ as the prizeconstrained distance with respect to the PCSTP $(V, E \backslash\{e\}, c, p)$, with $e:=\{v, w\}$. If $v$ and $w$ are disconnected in $(V, E \backslash\{e\}, c, p)$, define $d_{p c}^{-}(v, w):=\infty$. With this definition at hand, one obtains the following corollary to Theorem 4.7.

Corollary 4.8. Let $e=\{v, w\} \in E$. If

$$
\begin{equation*}
c(e) \geqslant d_{p c}^{-}(v, w) \tag{4.16}
\end{equation*}
$$

is satisfied, then $e$ is not contained in at least one optimal solution to $I_{P C}$.

Figure 4.1 shows a PCSTP instance on which Theorem 4.7 allows one to eliminate an edge. Only vertex $v_{4}$ has a non-zero prize. Consider the (dashed) edge $\left\{v_{1}, v_{2}\right\}$. For the prize-constrained $\left(v_{1}, v_{2}\right)$-walk

$$
W=\left(v_{1},\left\{v_{1}, v_{3}\right\}, v_{3},\left\{v_{3}, v_{4}\right\}, v_{4},\left\{v_{3}, v_{4}\right\}, v_{3},\left\{v_{2}, v_{3}\right\}, v_{2}\right)
$$

it holds that $d_{p c}\left(v_{1}, v_{2}\right)=l_{p c}(W)=6$.


Figure 4.1: PCSTP instance. Edge $\left\{v_{1}, v_{2}\right\}$ (dashed) can be eliminated due to Theorem 4.7.

## Algorithms for the prize-constrained distance

Since computing the bottleneck Steiner distance is already $\mathcal{N} \mathcal{P}$-hard (Uchoa, 2006), it does not come as a surprise that the same holds for $d_{p c}$ (which can be shown in the same way). However, the definition of $d_{p c}$ allows us to design a simple algorithm for finding upper bounds that yields empirically strong results-significantly better than those reported by Uchoa (2006).

In particular, while the bottleneck Steiner distance heuristics in Uchoa (2006) consider only paths with at most two intermediary potential terminals, the following algorithm can find walks where the number of intermediary potential terminals is only bounded by $\left|T_{p}\right|$. Besides dual-ascent (Rehfeldt et al., 2019), the bottleneck Steiner distance has been the most important reduction concept for PCSTP. Due to this importance, we will take a deeper look at the prize-constrained distance, as well as at associated algorithms for computing upper bounds.

To check whether an edge $\{v, w\}$ can be deleted by means of criterion (4.16), we suggest the procedure detailed in Algorithm 4.1, which is based on Dijkstra's algorithm (Dijkstra, 1959). The algorithm is given the edge $e=\{v, w\}$ as well as one of its endpoints, say $v$, from which it computes prize-constrained walks of length not higher than $c(e)$. The algorithm starts with a priority queue that contains $v$. In contrast to Dijkstra's algorithm, all vertices except for potential terminals and $v$ can be reinserted into the priority queue after they have been removed. We associate with each vertex $u$ the distance $\operatorname{dist}_{p c}[u]$-initially set to 0 for $v$ and to $\infty$ otherwise. As with Dijkstra's algorithm, in each iteration one vertex $u$ with minimum distance value is removed from the priority queue and neighboring vertices of $u$ are updated. However, a different distance value than in Dijkstra's algorithm is used and a neighboring vertex $q$ is only updated if $\operatorname{dist}_{p c}[u]+c(\{u, q\}) \leqslant c(e)$.

Throughout the computation the following invariant is satisfied for any $u \in V \backslash\{v\}$ : either $\operatorname{dist}_{p c}[u]=\infty$ or $\operatorname{dist}_{p c}[u]+p(u) \leqslant c(e)$, and in the latter case there exists a prize-constrained $(v, u)$-walk $W_{u}$ such that $l_{p c}\left(W_{u}\right) \leqslant c(e)$.

```
Algorithm 4.1: PcdCheck-Edge
    Data: PCSTP \((V, E, c, p)\), edge \(\left\{v_{\text {start }}, v_{\text {end }}\right\} \in E\)
    Result: deletable if edge has shown to be redundant, unknown otherwise
    \(Q:=\left\{v_{\text {start }}\right\}\)
    \(E_{0}:=E \backslash\left\{\left\{v_{\text {start }}, v_{\text {end }}\right\}\right\}\)
    \(c_{0}:=c\left(\left\{v_{\text {start }}, v_{\text {end }}\right\}\right)\)
    foreach \(v \in V \backslash\left\{v_{\text {start }}\right\}\) do
        dist \(_{p c}[v]:=\infty\)
        forbidden \([v]:=\) false
    dist \(_{p c}\left[v_{\text {start }}\right]:=0\)
    forbidden \(\left[v_{\text {start }}\right]:=\) true
    while \(Q \neq \emptyset\) do
        \(v:=\arg \min _{u \in Q} \operatorname{dist}_{p c}[u]\)
        \(Q:=Q \backslash\{v\}\)
        if \(v \in T_{p}\) then
            forbidden \([v]:=\) true
        foreach \(w \in V\) with \(\{v, w\} \in E_{0}\) do
            if forbidden \([w]=\) false and \(\operatorname{dist}_{p c}[v]+c(\{v, w\}) \leqslant c_{0}\) and
            \(\operatorname{dist}_{p c}[v]+c(\{v, w\})-p(w)<\operatorname{dist}_{p c}[w]\) then
            if \(w=v_{\text {end }}\) then
                return deleteable
                    \(\operatorname{dist}_{p c}[w]:=\max \left\{0, c(\{v, w\})+\operatorname{dist}_{p c}[v]-p(w)\right\}\)
            if \(w \notin Q\) then
                \(Q:=Q \cup\{w\}\)
    return unknown
```

One obtains the following results concerning the strength of the prize-constrained distance, and the upper bound provided by Algorithm 4.1.

Proposition 4.9. For any two vertices $v, w \in V$ it holds that

$$
\begin{equation*}
d_{p c}(v, w) \leqslant B(v, w) . \tag{4.17}
\end{equation*}
$$

Furthermore, let $\mathcal{I}_{p c}$ be the set of all PCSTP instances. It holds that

$$
\begin{equation*}
\sup _{(V, E, p, c) \in \mathcal{I}_{p c}} \max _{v, w \in V} \frac{B(v, w)}{d_{p c}(v, w)}=\infty \tag{4.18}
\end{equation*}
$$

Proof. The relation (4.17) can be verified by the definitions of $B$ and $d_{p c}$. For the second part consider the PCSTP depicted in Figure 4.2. Let $n \in \mathbb{N}, n \geqslant 3$. The prizes
$p$ and costs $c$ are defined as follows: $p(v)=0$ for $i=0, \ldots, n$, and $p\left(w_{i}\right)=3$ for $i=1, \ldots, n-1$; further, $c \equiv 1$. Observing that

$$
\lim _{n \rightarrow \infty} \frac{B\left(v_{0}, v_{n}\right)}{d_{p c}\left(v_{0}, v_{n}\right)}=\lim _{n \rightarrow \infty} \frac{n}{3}=\infty
$$

one can validate that (4.18) holds.

Next, we show that (the heuristic) Algorithm 4.1 can yield better results than the (exact) bottleneck Steiner distance. To this end, first define $B^{-}$analogously to $d_{p c}^{-}$. The next corollary shows that the results from Algorithm 4.1 can be (in a relative sense) arbitrarily better than the bottleneck Steiner distance.

Corollary 4.10. For any $K \in \mathbb{N}_{0}$ there is a PCSTP instance $I_{K}$ with an edge $e=\{v, w\}$ such that

$$
\frac{B^{-}(v, w)}{c(e)} \geqslant K
$$

while Algorithm 4.1 returns deletable for $\left(I_{K},\{v, w\}\right)$.

Proof. If $K=0$, condition (4.10) is trivially satisfied. Assume $K \geqslant 1$, and consider the PCSTP instance in Figure 4.2 for $n=3 K$. Add an arc $\left\{v_{0}, v_{n}\right\}$ of cost 3 to the instance. For this PCSTP together with the edge $\left\{v_{0}, v_{n}\right\}$ the PCD algorithm returns deletable. On the other hand, $B^{-}\left(v_{0}, v_{n}\right)=3 K$.


Figure 4.2: PCSTP instance such that the ratio of the bottleneck Steiner distance and the prize-constrained distance between $v_{0}$ and $v_{n}$ becomes arbitrarily large.

Since Algorithm 4.1 runs in polynomial time and the decision variant of the prize-constrained distance is $\mathcal{N} \mathcal{P}$-complete, Algorithm 4.1 cannot be in general exact-in the sense that it might return unknown even though $c\left(\left\{v_{\text {start }}, v_{\text {end }}\right\}\right) \geqslant$ $d_{p c}^{-}\left(v_{\text {start }}, v_{\text {end }}\right)$-unless $\mathcal{P}=\mathcal{N} \mathcal{P}$. However, under certain conditions Algorithm 4.1 is exact, as detailed in the following proposition (see Appendix A.3.2 for a proof).

Proposition 4.11. Let $\{v, w\} \in E$ and let $W$ be a $(v, w)$-walk with $l_{p c}(W)=$ $d_{p c}^{-}(v, w)$. If for all $t \in(V(W) \backslash\{v, w\}) \cap T_{p}^{+}$

$$
\begin{equation*}
p(t) \leqslant \min _{e \in \delta(t) \cap E(W)} c(e) \tag{4.19}
\end{equation*}
$$

holds, then Algorithm 4.1 returns deletable if and only if $c(\{v, w\}) \geqslant d_{p c}^{-}(v, w)$.
Corollary 4.12. Let $v, w \in V$. If $T_{p}^{+} \subseteq\{v, w\}$ holds (which includes $T_{p}^{+}=\emptyset$ ), then both $d_{p c}^{-}(v, w)$ and $d_{p c}(v, w)$ can be computed in polynomial time (with respect to the encoding size of $I_{P C}$ ).

To check whether an edge $e$ can be eliminated, we run a restricted version of Algorithm 4.1 (which only checks at most a fixed number of edges during its execution) from both endpoints of $e$. If none of the two tests are successful, we check for each vertex that has been visited in both runs whether the corresponding walks can be combined to obtain a walk that allows to delete $e$. This procedure will be referred to as prize-constrained distance ( $P C D$ ) test.

We have also implemented an extension of PCD, referred to as extended prizeconstrained distance ( $E P C D$ ) test, which will be sketched in the following. One downside of PCD, even in its unrestricted form, is that once a potential terminal has been removed from the priority queue, it cannot be used in any other walk. Thus, EPCD keeps for each vertex $v$ a (bounded) list of potential terminals that are part of the current $\left(v_{\text {start }}, v\right)$-walk. Whenever a vertex $w$ could be updated from a vertex $v$, but forbidden $[w]=$ false, it is checked whether $w$ is in the potential terminal list of $v$, and if not, $w$ is still updated. Another problem of PCD is that the cost of an edge on a subwalk might be counted several times. Consider for example the instance described in the proof of Corollary 4.10 and change the prizes for all $w_{i}$ to $p\left(w_{i}\right):=2$. It still holds that $d_{p c}^{-}\left(v_{0}, v_{n}\right)=3$, but PCD for edge $\left\{v_{0}, v_{n}\right\}$ will only return deletable if $c\left(\left\{v_{0}, v_{n}\right\}\right) \geqslant n$. Therefore, EPCD saves for each vertex (a limited number of) edges on the current subwalk. This list is cleared as soon as the distance value of a vertex is set to 0 . EPCD also allows that non-proper potential terminals can be used several times on one walk, by keeping a similar list of non-proper potential terminals on the current subwalk.

## Further applications of the prize-constrained distance

The prize-constrained distance can be combined with a related walk-based concept introduced in Section 4.4 to obtain a reduction method that allows for the contraction of edges. Consider a graph $(V, E)$ with non-negative edge costs $c$. Let $P$ be a (simple) path. The bottleneck length (Duin and Volgenant, 1989a) of $P$ is

$$
\begin{equation*}
b l(P):=\max _{e \in E(P)} c(e) \tag{4.20}
\end{equation*}
$$

For vertices $v, w \in V$, the bottleneck distance (Duin and Volgenant, 1989a) is defined as

$$
\begin{equation*}
b(v, w):=\inf \{b l(P) \mid P \in \mathcal{P}(v, w)\} \tag{4.21}
\end{equation*}
$$

Note that if all vertices have a sufficiently large prize, then $b(v, w)=d_{p c}(v, w)$ for all $v, w \in V$, but in general $b(v, w) \leqslant d_{p c}(v, w)$ holds. For a fixed edge $e \in E$ we define the restricted bottleneck distance $b_{e}(v, w)$ as the bottleneck distance on $(V, E \backslash\{e\})$. This definition gives rise to the following proposition.

Proposition 4.13. Let $\{v, w\} \in E$ and $t_{i}, t_{j} \in T_{p}, t_{i} \neq t_{j}$ such that:

1. If an optimal solution $S$ with $t_{i} \in V(S)$ exists, then there is an optimal solution $S^{\prime} \supseteq S$ with $t_{j} \in V\left(S^{\prime}\right)$.
2. If an optimal solution $S$ with $v \in V(S)$ or $w \in V(S)$ exists, then there is an optimal solution $S^{\prime} \supseteq S$ with $t_{i} \in V\left(S^{\prime}\right)$.

If furthermore it holds that

$$
\begin{equation*}
d_{p c}\left(v, t_{i}\right)+c(\{v, w\})+d_{p c}\left(w, t_{j}\right) \leqslant b_{\{v, w\}}\left(t_{i}, t_{j}\right), \tag{4.22}
\end{equation*}
$$

then for any optimal solution $S$ with $v \in V(S), w \in V(S)$, or $t_{i} \in V(S)$ there is an optimal solution $S^{\prime}$ with $\{v, w\} \in E\left(S^{\prime}\right)$.

Proof. Assume there is an optimal solution $S$ such that $v \in V(S)$ or $w \in V(S)$. Because of the first two conditions of the proposition we can assume that $v \in V(S)$, $w \in V(S), t_{i} \in V(S)$, and $t_{j} \in V(S)$. Suppose $\{v, w\} \notin E(S)$. Remove from $E(S)$ an edge on the (unique) path between $t_{i}$ and $t_{j}$ in $S$ of maximum cost. This operation results in two disjoint trees: $S_{i}$ with $t_{i} \in S_{i}$ and $S_{j}$ with $t_{j} \in S_{j}$. By definition of $b_{\{v, w\}}\left(t_{i}, t_{j}\right)$ it holds that

$$
\begin{equation*}
C\left(S_{i}\right)+C\left(S_{j}\right)+b_{\{v, w\}}\left(t_{i}, t_{j}\right) \leqslant C(S) . \tag{4.23}
\end{equation*}
$$

Similarly to the proof of Theorem 4.7, condition (4.22) allows us to connect $S_{i}$ to $v$ such that the resulting tree $\tilde{S}_{i}$ satisfies

$$
\begin{equation*}
C\left(\tilde{S}_{i}\right) \leqslant C\left(S_{i}\right)+d_{p c}\left(v, t_{i}\right) \tag{4.24}
\end{equation*}
$$

Equivalently, we can connect $S_{j}$ to $w$ with the result satisfying

$$
\begin{equation*}
C\left(\tilde{S}_{j}\right) \leqslant C\left(S_{j}\right)+d_{p c}\left(w, t_{j}\right) \tag{4.25}
\end{equation*}
$$

Finally, we define $\tilde{S}$ as the union of $\tilde{S}_{i}, \tilde{S}_{j}$ and $\{v, w\}$. This connected subgraph is not necessarily a tree, but can be made one without increasing $C(\tilde{S})$ by deleting an edge from each cycle. It holds that

$$
\begin{align*}
C(S) & \stackrel{(4.23)}{\geqslant} C\left(S_{i}\right)+C\left(S_{j}\right)+b_{\{v, w\}}\left(t_{i}, t_{j}\right)  \tag{4.26}\\
& \quad(4.22)  \tag{4.27}\\
& \stackrel{(4.24)}{\geqslant} C\left(S_{i}\right)+C\left(\tilde{S}_{j}\right)+d_{p c}\left(v, t_{i}\right)+d_{p c}\left(w, t_{j}\right)+c(\{v, w\})  \tag{4.28}\\
& \stackrel{(4.25)}{\geqslant} C\left(\tilde{S}_{j}\right)+C\left(\tilde{S}_{p c}\left(w, t_{j}\right)+c(\{v, w\})\right.  \tag{4.29}\\
& \geqslant C(\{v, w\})  \tag{4.30}\\
& \geqslant(\tilde{S}) .
\end{align*}
$$

The case that there is an optimal solution $S$ with $t_{i} \in V(S)$ can be handled in the same way.

Note that the contraction of edges for PCSTP is not as straightforward as for SPG, since determining whether the contracted edge is part of any optimal solution is $\mathcal{N} \mathcal{P}$-complete. Thus, one needs to adapt the prize of vertex $t_{i}$ from Proposition 4.13. We discuss this technical issue in Rehfeldt et al. (2019). We just note here that if the conditions of the proposition are satisfied, and $p\left(t_{i}\right) \geqslant c(\{v, w\})$, one can contract $\{v, w\}$ and subtract $c(\{v, w\})$ from $p\left(t_{i}\right)$.

We also remark that Proposition 4.13 is similar to Proposition 2.14, which we established in Section 2.3.1 for the SPG. However, for the SPG the conditions (1) and (2) are not required. To check whether (1) and (2) hold, the left-rooted prizeconstrained distance introduced in Section 4.4 will be used. Finally, the following lemma allows one to efficiently check the test condition of Proposition 4.13 for all edges, similarly to the corresponding SPG result.

Lemma 4.14. Let $\{v, w\} \in E$ and $t_{i}, t_{j} \in T_{p}, t_{i} \neq t_{j}$. If (4.22) holds, then there is a minimum spanning tree $S_{M S T}$ on $(V, E, c)$ such that $\{v, w\} \in E\left(S_{M S T}\right)$.

A proof of the lemma can be found in Appendix A.3.3.
Finally, a great advantage of the prize-constrained distance over the implied bottleneck Steiner distance that we introduced for SPG is that the former can be directly utilized for a generalization of the classic node replacement test from Duin and Volgenant (1989b).

Proposition 4.15. Let $v \in V \backslash T_{p}$. There is an optimal solution $S$ with $\left|\delta_{S}(v)\right| \leqslant 2$ if for each $\Delta \subseteq N(v)$ with $|\Delta| \geqslant 3$ the following holds: $c(\delta(v) \cap \delta(\Delta))$ is not less than the weight of a minimum spanning tree for the distance network $D_{G}\left(\Delta, d_{p c}\right)$.

The proof of the proposition follows the familiar reconnection pattern and is omitted here.

### 4.3.2 Using bounds

Bound-based reduction techniques identify edges and vertices for elimination by examining whether they induce a lower bound that exceeds a given upper bound (Hwang et al., 1992). In this section, we will introduce several new bound-based reduction methods for PCSTP, based on the following decomposition concept.

For any $U \subseteq V$ such that $T_{p}^{+} \subseteq U$, and for any $v_{i}, v_{j} \in V$ let $\mathcal{Q}_{U}\left(v_{i}, v_{j}\right)$ be the set of all $\left(v_{i}, v_{j}\right)$-paths in the graph induced by $V \backslash\left(U \backslash\left\{v_{i}, v_{j}\right\}\right)$. Define $\underline{d}_{U}: V \times V \mapsto$ $\mathbb{Q} \geqslant 0 \cup\{\infty\}$ as

$$
\begin{equation*}
\underline{d}_{U}\left(v_{i}, v_{j}\right):=\inf _{Q \in \mathcal{Q}_{U}\left(v_{i}, v_{j}\right)} \sum_{e \in E(Q)} c(e)-\sum_{v \in V(Q) \backslash\left\{U \cup\left\{v_{i}\right\}\right\}} p(v), \tag{4.31}
\end{equation*}
$$

with the common convention $\inf \emptyset:=\infty$. The distance function defined in (4.31) will later be used to bound the cost of connecting a vertex $v_{i} \in V \backslash U$ to a vertex $v_{j} \in U$. Let $v_{i} \in V$. Define $\underline{v}_{i, 0}^{U}:=v_{i}$, and, recursively, for $k \in \mathbb{N}$

$$
\begin{equation*}
\underline{v}_{i, k}^{U}:=\arg \min \left\{\underline{d}_{U}\left(v_{i}, v\right) \mid v \in U \backslash \cup_{j=0}^{k-1}\left\{\underline{v}_{i, j}^{U}\right\}\right\} \tag{4.32}
\end{equation*}
$$

assuming that such a vertex exists. So $\underline{v}_{i, k}^{U}$ is the k-th closest vertex from $v_{i}$ in $U$ with respect to the distance function $\underline{d}_{U}$.

With these definitions at hand, we introduce the following concept: a terminalregions decomposition of $I_{P C}$ is a partition $\left(H_{0}, H_{1}, H_{2}, \ldots, H_{s^{+}}\right)$of $V$ such that for $i=1, \ldots, s^{+}$it holds that $T_{p}^{+} \cap H_{i}=\left\{t_{i}^{+}\right\}$and that the subgraph induced by $H_{i}$ is connected-recall that $T_{p}^{+}=\left\{t_{1}^{+}, t_{2}^{+}, \ldots, t_{s^{+}}^{+}\right\}$. Note that $H_{0}$ does not need to be connected. We say that $H_{i}$ is the terminal region of $t_{i}$. Define $H^{p}:=T_{p}^{+} \cup\left(H_{0} \cap T_{p}^{-}\right)$. Further, define $r_{H}^{p c}: T_{p}^{+} \mapsto \mathbb{Q} \geqslant 0$ by

$$
\begin{equation*}
r_{H}^{p c}\left(t_{i}^{+}\right):=\min \left\{p\left(t_{i}^{+}\right), \min \left\{\underline{d}_{H^{p}}\left(t_{i}^{+}, v\right) \mid v \notin H_{i}\right\}\right\} \tag{4.33}
\end{equation*}
$$

for $t_{i}^{+} \in T_{p}^{+}$. We will refer to this value as the prize-collecting radius of $H_{i}$. The idea of this radius concept is to bound the cost of connecting a proper potential terminal $t_{i}$ with a vertex $v \notin H_{i}$ within an optimal solution, or the prize that is lost if $t_{i}$ is not included in the solution. The decomposition can easily be reduced to SPG by using $\min \left\{d\left(t_{i}, v\right) \mid v \notin H_{i}\right\}$ instead of $r_{H}^{p c}\left(t_{i}\right)$, which corresponds to setting sufficiently high prizes for each terminal of the SPG. Indeed, in this way we obtain the terminal-regions decomposition concept that we introduced in Section 2.3.2. For ease of presentation assume $r_{H}^{p c}\left(t_{i}^{+}\right) \leqslant r_{H}^{p c}\left(t_{j}^{+}\right)$for $1 \leqslant i<j \leqslant s^{+}$. Also, we assume that in the following a fixed terminal-regions decomposition $H$ is given.

Proposition 4.16. Let $v_{i} \in V \backslash T_{p}^{+}$. If $v_{i} \in V(S)$ for all optimal solutions $S$, then a lower bound on $C(S)$ is defined by

$$
\begin{equation*}
\underline{d}_{H^{p}}\left(v_{i}, \underline{v}_{i, 1}^{H^{p}}\right)+\underline{d}_{H^{p}}\left(v_{i}, \underline{v}_{i, 2}^{H^{p}}\right)+\sum_{k=1}^{s^{+}-2} r_{H}^{p c}\left(t_{k}^{+}\right)+\sum_{t \in T_{p}^{-} \backslash\left\{v_{i}\right\}} p(t) . \tag{4.34}
\end{equation*}
$$

Before providing a formal proof, we remark that the bound (4.34) can be motivated by the following two observations. First, there is always an optimal solution $S$ such that $v_{i}$ is connected to two distinct proper potential terminals by edge disjoint paths in $S$. The cost of these paths is bounded by $\underline{d}_{H^{p}}\left(v_{i}, \underline{v}_{i, 1}^{H^{p}}\right)+\underline{d}_{H^{p}}\left(v_{i}, \underline{v}_{i, 2}^{H^{p}}\right)$. Second, for all other proper potential terminals $t_{i}$ contained in $S$, there needs to be a path in $S$ from $t_{i}$ to a vertex in $V(S) \backslash H_{i}$. To bound the cost of these paths, the prize-collecting radius values are used.
Proof of Proposition 4.16. Initially, define $b: V \rightarrow\left\{0,1,2, \ldots, s^{+}\right\}$such that $v \in H_{b(v)}$ for all $v \in V$. Assume that $v_{i}$ is contained in all optimal solutions. This assumption implies that $\left|T_{p}^{+}\right| \geqslant 2$. Let $S$ be any optimal solution. Denote the (unique) path in $S$ between $v_{i}$ and any $t_{j} \in V(S) \cap H^{p}$ by $Q_{j}$ and the set of all such paths by $\mathcal{Q}$. First, we can assume that $|\mathcal{Q}| \geqslant 2$, because if $\mathcal{Q}$ just contained one path, say $Q_{k}$, then we could
simply remove $v_{i}$ from $Q_{k}$ to obtain another optimal solution. Second, if a vertex $v_{k}$ is contained in two distinct paths in $\mathcal{Q}$, the subpaths of these two paths between $v_{i}$ and $v_{k}$ coincide. Otherwise there would need to be a cycle in $S$. Additionally, there are at least two paths in $\mathcal{Q}$ having only the vertex $v_{i}$ in common. Otherwise, due to the precedent observation, all paths would have one edge $\left\{v_{i}, v_{i}^{\prime}\right\}$ in common. This edge could be discarded to yield a tree of smaller cost than $C(S)$.

Let $Q_{k} \in \mathcal{Q}$ and $Q_{l} \in \mathcal{Q}$ be two distinct paths with $V\left(Q_{k}\right) \cap V\left(Q_{l}\right)=\left\{v_{i}\right\}$ such that

$$
\begin{equation*}
\left|\left\{\{v, w\} \in E\left(Q_{k}\right) \cup E\left(Q_{l}\right) \mid b(v) \neq b(w)\right\}\right| \tag{4.35}
\end{equation*}
$$

is minimized. Define $\mathcal{Q}^{-}:=\mathcal{Q} \backslash\left\{Q_{k}, Q_{l}\right\}$. Consider a $\left(t, v_{i}\right)$-path $Q_{r} \in \mathcal{Q}^{-}$. If $t \in T_{p}^{+}$, let $Q_{r}^{\prime}$ be the subpath of $Q_{r}$ between $t$ and the first vertex not in the region of $t$. Suppose that $Q_{k}$ has an edge $e \in E(S)$ in common with a $Q_{r}^{\prime}$ : Consequently, $Q_{l}$ cannot have any edge in common with $Q_{r}$, because this would require a cycle in $S$. Furthermore, $Q_{k}$ and $Q_{r}$ have to contain a joint subpath including $v_{i}$ and $e$. But this would imply that $Q_{k}$ contained at least one additional edge $\left\{v_{x}, v_{y}\right\}$ with $b\left(v_{x}\right) \neq b\left(v_{y}\right)$. Thus, $Q_{r}$ would have initially been selected instead of $Q_{k}$.

Following the same line of argumentation, one validates that $Q_{l}$ has no edge in common with any $Q_{r}^{\prime}$. Conclusively, the paths $Q_{k}, Q_{l}$, and all $Q_{r}^{\prime}$ are edge-disjoint. Next, we use these paths to derive the lower bound (4.34) on $C(S)$. To this end we introduce additional notation. First, denote the union of $Q_{k}, Q_{l}$, and all $Q_{r}^{\prime}$ by $Q$. Define $S_{Q}:=S \cap Q$. Because for each non-proper potential terminal in $V(S) \backslash V\left(S_{Q}\right)$ there is one incident edge in $E(S) \backslash E\left(S_{Q}\right)$, and because this mapping can be chosen to be bijective, it holds that

$$
\begin{equation*}
c\left(E(S) \backslash E\left(S_{Q}\right)\right)-p\left(\left(V(S) \backslash V\left(S_{Q}\right)\right) \cap T_{p}^{-}\right) \geqslant 0 \tag{4.36}
\end{equation*}
$$

From the definitions of $\underline{d}_{H^{p}}$ and $r_{H}^{p c}$ one infers

$$
\begin{align*}
& c\left(E\left(S_{Q}\right)\right)+p\left(T_{p}^{+} \backslash V(S)\right)-p\left(V\left(S_{Q}\right) \cap T_{p}^{-}\right)  \tag{4.37}\\
\geqslant & \sum_{q=1}^{s^{+}-2} r_{H}^{p c}\left(t_{q}^{+}\right)+\underline{d}_{H^{p}}\left(v_{i}, \underline{v}_{i, 1}^{H^{p}}\right)+\underline{d}_{H^{p}}\left(v_{i}, \underline{v}_{i, 2}^{H^{p}}\right)-p\left(v_{i}\right) . \tag{4.38}
\end{align*}
$$

Finally, one obtains:

$$
\begin{aligned}
& C(S)= c(E(S))+p(V \backslash V(S)) \\
&= c(E(S))+p\left(T_{p}^{+} \backslash V(S)\right)+p\left(T_{p}^{-} \backslash V(S)\right) \\
&= c(E(S))+p\left(T_{p}^{+} \backslash V(S)\right)+p\left(T_{p}^{-}\right)-p\left(V(S) \cap T_{p}^{-}\right) \\
&= c(E(S))+p\left(T_{p}^{+} \backslash V(S)\right)+p\left(T_{p}^{-}\right) \\
&-p\left(V\left(S_{Q}\right) \cap T_{p}^{-}\right)-p\left(\left(V(S) \backslash V\left(S_{Q}\right)\right) \cap T_{p}^{-}\right) \\
&= c\left(E\left(S_{Q}\right)\right)+c\left(E(S) \backslash E\left(S_{Q}\right)\right)+p\left(T_{p}^{+} \backslash V(S)\right)+p\left(T_{p}^{-}\right) \\
&-p\left(V\left(S_{Q}\right) \cap T_{p}^{-}\right)-p\left(\left(V(S) \backslash V\left(S_{Q}\right)\right) \cap T_{p}^{-}\right) \\
&\left(\stackrel{(4.36)}{\geqslant} c\left(E\left(S_{Q}\right)\right)+p\left(T_{p}^{+} \backslash V(S)\right)+p\left(T_{p}^{-}\right)-p\left(V\left(S_{Q}\right) \cap T_{p}^{-}\right)\right. \\
&\left(\stackrel{4.37)}{\geqslant} \sum_{q=1}^{s^{+}-2} r_{H}^{p c}\left(t_{q}^{+}\right)+\underline{d}_{H^{p}}\left(v_{i}, \underline{v}_{i, 1}^{H^{p}}\right)+\underline{d}_{H^{p}}\left(v_{i}, \underline{v}_{i, 2}^{H^{p}}\right)-p\left(v_{i}\right)+p\left(T_{p}^{-}\right)\right. \\
& s^{s^{+}-2} \\
&= \sum_{q=1}^{p c} r_{H}^{p c}\left(t_{q}^{+}\right)+\underline{d}_{H^{p}}\left(v_{i}, \underline{v}_{i, 1}^{H^{p}}\right)+\underline{d}_{H^{p}}\left(v_{i}, \underline{v}_{i, 2}^{H^{p}}\right)+p\left(T_{p}^{-} \backslash\left\{v_{i}\right\}\right) .
\end{aligned}
$$

The first equality is just the definition of $C(S)$. The second inequality follows from $T_{p}=T_{p}^{+} \dot{\dot{U}} T_{p}^{-}$. The next three equalities result from splitting up individual sums. The last equality follows from the fact that either $v_{i} \in T_{p}^{-}$or $p\left(v_{i}\right)=0$.

Each vertex $v_{i} \in V \backslash T_{p}^{+}$with the property that the affiliated lower bound (4.34) exceeds a known upper bound can be eliminated. Moreover, if a solution $S$ corresponding to the upper bound is given and $v_{i} \notin V(S)$, one can also eliminate $v_{i}$ if the lower bound (4.34) is equal to $C(S)$. A result similar to Proposition 4.16 can be formulated for edges of an optimal solution.

Another application of the terminal-regions decomposition can be found for PCSTP instances with articulation points. While only a few instances from the literature contain articulation points in their original form, this situation changes once the reduction techniques described so far have been applied. Even more so once branch-and-bound has been initiated, see Section 4.5.1. Recall that throughout this chapter $I_{P C}$ is assumed to be connected.

First, one observes that if a biconnected component $B \subseteq G$ satisfies $T_{p}^{+} \subseteq V(B)$ and no trivial solution exists, then there is at least one optimal solution $S$ with $S \subseteq B$. The opposite case, namely that $T_{p}^{+} \nsubseteq V(B)$, is not as straightforward and requires some groundwork. In the remainder of this section it will be assumed that $I_{P C}$ contains at least one biconnected component that does not contain all proper potential terminals. Let $B \subseteq G$ be a biconnected component and let $R \subseteq G$ be a connected subgraph such that $E(R) \cap E(B)=\emptyset$. A vertex $v \in B$ such that there is a path $Q$ from $v$ to $R$ with $V(Q) \cap V(B)=\{v\}$ will be called gate vertex from $B$ to $R$. One readily acknowledges the following result.

Lemma 4.17. Let $B \subseteq G$ be a biconnected component and $R \subseteq G$ a nonempty, connected subgraph such that $E(R) \cap E(B)=\emptyset$. There exists exactly one gate vertex from $B$ to $R$.

Based on Lemma 4.17 and the terminal-regions decomposition, the following proposition gives an additional criterion to eliminate biconnected components. The proposition can be motivated similarly to Proposition 4.16. This time, however, we compare the lower bound against the maximum profit that can be attained in a biconnected component.

Proposition 4.18. Let $B \subseteq G$ be a biconnected component with $T_{p}^{+} \nsubseteq V(B)$. Let $R \subseteq G$ be a connected subgraph with $T_{p}^{+} \backslash V(B) \subseteq V(R)$ and assume that $E(R) \cap E(B)=\emptyset$. If $T_{p}^{+} \cap V(B)=\emptyset$, then there is an optimal solution that does not contain any edge of $B$. Otherwise, let $v_{i} \in V(B)$ be the gate vertex from $B$ to $R$, let $H$ be a terminal-regions decomposition of $B$, and define $\underline{d}_{H^{p}}$ and $\underline{v}_{i, 1}^{H^{p}}$ with respect to B. Let $X:=V(B) \backslash\left\{v_{i}\right\}$ and define

$$
\begin{equation*}
L:=\underline{d}_{H^{p}}\left(v_{i}, \underline{v}_{i, 1}^{H^{p}}\right)+\sum_{t \in X \cap T_{p}^{+}} r_{H}^{p c}(t)-\max _{t \in X \cap T_{p}^{+}} r_{H}^{p c}(t)+\sum_{t \in X \cap T_{p}^{-}} p(t) . \tag{4.39}
\end{equation*}
$$

If

$$
\begin{equation*}
L \geqslant \sum_{v \in X} p(v) \tag{4.40}
\end{equation*}
$$

holds, then for at least one solution $S$ to $I_{P C}$ it holds that either $S \subseteq B$ or $E(S) \cap$ $E(B)=\emptyset$.

Proof. Throughout this proof it will be assumed that no trivial (i.e. single-vertex) optimal solution exists - otherwise, the proof is already complete. Note that this assumption implies that $T_{p}^{+} \neq \emptyset$.

First, assume that $T_{p}^{+} \cap B=\emptyset$. Thus, $T_{p}^{+} \subseteq R$. Recall that because no trivial solution exists, there is at least one optimal solution $S$ whose leaves are a subset of $T_{p}^{+}$. Consequently, $S$ cannot contain any edge of $B$. Otherwise, from the ends of this edge there would be two disjoint paths to $T_{p}^{+}$, and thus there would be at least two gate vertices from $B$ to $R$.

Second, assume that $T_{p}^{+} \cap B \neq \emptyset$. Let $S$ be a feasible solution with $S \nsubseteq B$ and $E(S) \cap E(B) \neq \emptyset$. We will show that a feasible solution $S^{\prime}$ with $C\left(S^{\prime}\right) \leqslant C(S)$ exists, such that either $S^{\prime} \subseteq B$ or $E\left(S^{\prime}\right) \cap E(B)=\emptyset$. In this way, the proof is concluded. Assume that all leaves of $S$ are contained in $T_{p}^{+}$, otherwise one can always choose a $S$ of no higher cost that satisfies this property. Because this assumption implies $S \cap R \neq \emptyset$, the gate vertex $v_{i}$ from $B$ to $R$ is contained in $S$. Moreover, any path $Q \subseteq S$ starting from $v_{i}$ satisfies either $E(Q) \cap E(B)=\emptyset$ or $E(Q) \subseteq E(B)$. Otherwise, there would be at least two gate vertices from $B$ to $R$. Let $S_{B}$ be the subgraph of $S$ that consists of all paths in $S$ from $v_{i}$ to vertices in $B$. The above considerations imply that the subgraph $S^{\prime}$ obtained by removing $S_{B}$ from $S$ and adding $v_{i}$ is connected. Similar to the proof of Proposition 4.16 one can now show that

$$
\begin{equation*}
c\left(E\left(S_{B}\right)\right)+p\left(X \backslash V\left(S_{B}\right)\right) \geqslant L \tag{4.41}
\end{equation*}
$$

Therefore, it holds that

$$
\begin{aligned}
C(S) & =c(E(S))+p(V \backslash V(S)) \\
& =c\left(E\left(S^{\prime}\right)\right)+p\left(\left(V \backslash V\left(S^{\prime}\right)\right) \backslash X\right)+c\left(E\left(S_{B}\right)\right)+p\left(X \backslash V\left(S_{B}\right)\right) \\
& \stackrel{(4.41)}{\geqslant} c\left(E\left(S^{\prime}\right)\right)+p\left(\left(V \backslash V\left(S^{\prime}\right)\right) \backslash X\right)+L \\
& \stackrel{(4.40)}{\geqslant} c\left(E\left(S^{\prime}\right)\right)+p\left(\left(V \backslash V\left(S^{\prime}\right)\right) \backslash X\right)+p(X) \\
& =c\left(E\left(S^{\prime}\right)\right)+p\left(\left(V \backslash V\left(S^{\prime}\right)\right)\right. \\
& =C\left(S^{\prime}\right)
\end{aligned}
$$

which concludes the proof.
The set $R$ in Proposition 4.18 can for example be computed (or its non-existence can be shown) by a depth-first-search on the graph $(V, E \backslash E(B))$ starting from any $t \in T_{p}^{+} \backslash V(B)$. If (4.40) holds, it might still be the case that $S \subseteq B$ for all optimal solutions $S$. This case can for example be ruled out if a feasible solution $S^{\prime} \subsetneq B$ is known that satisfies $C\left(S^{\prime}\right) \leqslant \sum_{v \in V \backslash V(B)} p(v)$ (or by more sophisticated criteria involving the terminal-regions decomposition of $B$ ). If such a $S^{\prime}$ is known, one can eliminate all edges of $B$ from $I_{P C}$.

To efficiently apply the previous two propositions, one would like to maximize the lower bounds (4.34), and (4.39) respectively. Note that if $T_{p}^{-}=\emptyset$, then there always exists a terminal-regions decomposition with $H_{0}=\emptyset$ that maximizes the lower bound (4.34) -and equivalently, (4.39). Thus, one directly obtains the following result from Proposition 2.21.

Proposition 4.19. Given a $v_{i} \in V \backslash T_{p}^{+}$, finding a terminal-regions decomposition that maximizes (4.34) is $\mathcal{N} \mathcal{P}$-hard. The same holds for (4.39).

Thus, to compute a terminal-regions decomposition a heuristic approach will be used. The heuristic is similar to Dijkstra's algorithm. Put all $t_{i}^{+} \in T_{p}^{+}$in the initial priority queue (with distance value 0). Similar to Algorithm 4.1, we subtract from the distance value of each vertex $v \in V \backslash T_{p}^{+}$its prize $p(v)$ when it is updated. Moreover, the algorithm does not extend a region $H_{i}$ from a vertex $v \in H_{i}$ if an upper bound $\bar{b}_{i} \in \mathbb{Q} \geqslant 0$ on $r_{H}^{p c}\left(t_{i}^{+}\right)$is already known and $\underline{d}_{H^{p}}\left(t_{i}^{+}, v\right) \geqslant \bar{b}_{i}$. Such upper bounds can be computed during the execution of the algorithm. Finally, we apply a simple local heuristic that checks edges between different regions and fully includes them in one of the regions if advantageous.

### 4.4 Changing the problem class

The previous section discussed several techniques to prove that certain edges or vertices are not contained in an optimal solution. This section uses similar techniques to prove the opposite: That certain vertices are contained in at least one optimal solution. We show that such a rooting of a PCSTP instance sets the stage for more efficient algorithms.

### 4.4.1 Identifying roots

A cornerstone of the approach described in this section is the Steiner arborescence problem (SAP) and the associated $D C u t$ IP formulation; see Section 1.1.3. As shown in Chapter 3, the dual-ascent algorithm by Wong (1984) for DCut can quickly compute empirically strong lower bounds. Moreover, we have seen that the information provided by dual-ascent can be used for the generation of initial cutting planes, for reduction methods, and for primal heuristics. Thus, it seems promising to devise a transformation from PCSTP to SAP, to be able to apply this algorithm. Such a transformation is given in the following. We apply the idea of cost-shifting (Duin, 1993; Ljubic et al., 2006), to get rid of non-proper potential terminals (in Step 2). We also note that Ljubic et al. (2006) describe a transformation from PCSTP to an SAP variant with additional constraints.

Transformation 4.20 (PCSTP to SAP).
Input: $\operatorname{PCSTP}(V, E, c, p)$
Output: $S A P\left(V^{\prime}, A^{\prime}, T^{\prime}, c^{\prime}, r^{\prime}\right)$

1. Set $V^{\prime}:=V, A^{\prime}:=\left\{(v, w) \in V^{\prime} \times V^{\prime} \mid\{v, w\} \in E\right\}$, and $M:=\sum_{t \in T_{p}^{+}} p(t)$.
2. Define $c^{\prime}: A^{\prime} \rightarrow \mathbb{Q} \geqslant 0$ for all $a=(v, w) \in A^{\prime}$ by

$$
c^{\prime}(a):= \begin{cases}c(\{v, w\})-p(w) & \text { if } w \in T_{p}^{-} \\ c(\{v, w\}) & \text { otherwise }\end{cases}
$$

3. Add vertices $r^{\prime}$ and $v_{0}^{\prime}$ to $V^{\prime}$.
4. For each $i \in\left\{1, \ldots, s^{+}\right\}$:
(a) add arc $\left(r^{\prime}, t_{i}\right)$ of weight $M$ to $A^{\prime}$;
(b) add node $t_{i}^{\prime}$ to $V^{\prime}$;
(c) add arcs $\left(t_{i}, v_{0}^{\prime}\right)$ and $\left(t_{i}, t_{i}^{\prime}\right)$ to $A^{\prime}$, both being of weight 0 ;
(d) add arc $\left(v_{0}^{\prime}, t_{i}^{\prime}\right)$ of weight $p\left(t_{i}\right)$ to $A^{\prime}$.
5. Define set of terminals $T^{\prime}:=\left\{t_{1}^{\prime}, \ldots, t_{s^{+}}^{\prime}\right\} \cup\left\{r^{\prime}\right\}$.
6. Return $\left(V^{\prime}, A^{\prime}, T^{\prime}, c^{\prime}, r^{\prime}\right)$.

The underlying idea of the transformation is to add a new terminal $t_{i}^{\prime}$ for each original potential terminal $t_{i}$ and provide additional arcs that make it possible to connect $t_{i}^{\prime}$ from any original potential terminal $t_{j}$ with cost $p\left(t_{i}\right)$. See Figure 4.4 b for an example. Note that one needs to compare any solution obtained by the above transformation with the best single vertex tree in order to not miss a trivial optimal solution. In the following, we assume for ease of presentation that no such trivial optimal solution exists.

Each optimal solution $S^{\prime}$ to the SAP obtained from Transformation 4.20 can be transformed to an optimal solution $S$ to the original PCSTP. This mapping can be
done similarly to the transformation from MWCSP to SAP in the previous chapter; we give more details in Rehfeldt and Koch (2018a). The following relation holds:

$$
c^{\prime}\left(A^{\prime}\left(S^{\prime}\right)\right)-M+p\left(T_{p}^{-}\right)=C(S)
$$

For $I_{P C}=(V, E, c, p)$ one can define the following formulation, which uses the SAP $\left(V^{\prime}, A^{\prime}, T^{\prime}, c^{\prime}, r^{\prime}\right)$ obtained from applying Transformation 4.20 on $I_{P C}$ :

Formulation 4.21. Transformed prize-collecting cut (PrizeCut)

$$
\begin{array}{cc}
\min \quad c^{\prime T} x-M+p\left(T_{p}^{-}\right) & \\
\quad x \text { satisfies }(1.3),(1.4) & \\
y(\{v, w\})=x((v, w))+x((w, v)) & \text { for all }\{v, w\} \in E \\
y(e) \in\{0,1\} & \text { for all } e \in E . \tag{4.45}
\end{array}
$$

The $y$ variables correspond to the solution to $I_{P C}$; note that removing them does not change the optimal solution value, neither that of the LP relaxation.

## Implied potential terminals

To avoid adding an artificial root (which entails big $M$ constants and symmetry) in the transformation to SAP, one can attempt to identify vertices that are part of all optimal solutions to the original PCSTP. To this end, consider a PCSTP and let $v, w \in V$. Further, let $W=\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, e_{r-1}, v_{r}\right)$ with $v_{1}=v$ and $v_{r}=w$ be a prize-constrained $(v, w)$-walk (as defined in Section 4.3). Define the left-rooted prize-constrained length of $W$ as:

$$
\begin{equation*}
\vec{l}_{p c}(W):=\max \left\{c_{p c}\left(W\left(v, v_{i}\right)\right) \mid v_{i} \in V(W) \cap\left(T_{p}^{+} \cup\{w\}\right)\right\} . \tag{4.46}
\end{equation*}
$$

Recall that we defined $c_{p c}$ in (4.11). As compared to the prize-constrained length, (4.46) considers only subwalks starting from the first vertex of walk $W$. Furthermore, define the left-rooted prize-constrained $(v, w)$-distance as:

$$
\begin{equation*}
\vec{d}_{p c}(v, w):=\min \left\{\vec{l}_{p c}(W) \mid W \in \mathcal{W}_{p c}(v, w)\right\} . \tag{4.47}
\end{equation*}
$$

Note that in general $\vec{d}_{p c}$ is not symmetric. Definition (4.47) gives rise to
Theorem 4.22. Let $v, w \in V$. If

$$
\begin{equation*}
p(v)>\vec{d}_{p c}(v, w) \tag{4.48}
\end{equation*}
$$

is satisfied, then every optimal solution that contains $w$ also contains $v$.
Proof. Let $S$ be a tree with $w \in V(S)$ and $v \notin V(S)$. Further, let $W=\left(v_{1}, e_{1}, \ldots, e_{r-1}, v_{r}\right)$ be a prize-constrained $(v, w)$-walk with $\vec{l}_{p c}(W)=\vec{d}_{p c}(v, w)$ and define $a:=\min \{k \in$ $\left.\{1, \ldots, r\} \mid v_{k} \in V(S)\right\}$ and $b:=\min \left\{k \in\{a, a+1, \ldots, r\} \mid v_{k} \in T_{p}^{+} \cup\{w\}\right\}$. Note that

$$
\begin{equation*}
c_{p c}\left(W\left(v, v_{a}\right)\right) \leqslant c_{p c}\left(W\left(v, v_{b}\right)\right) \tag{4.49}
\end{equation*}
$$

Add the subgraph corresponding to $W\left(v, v_{a}\right)$ to $S$, which yields a new connected subgraph $S^{\prime}$. If $S^{\prime}$ is not a tree, make it one by removing redundant edges, without removing any node (which can only decrease $C\left(S^{\prime}\right)$ ). It holds that:

$$
\begin{aligned}
C\left(S^{\prime}\right) & \leqslant C(S)+c_{p c}\left(W\left(v, v_{a}\right)\right)-p(v) \\
& \stackrel{(4.49)}{\leqslant} C(S)+c_{p c}\left(W\left(v, v_{b}\right)\right)-p(v) \\
& \leqslant C(S)+\vec{l}_{p c}(W)-p(v) \\
& =C(S)+\vec{d}_{p c}(v, w)-p(v) \\
& \stackrel{(4.48)}{<} C(S) .
\end{aligned}
$$

The relation $C\left(S^{\prime}\right)<C(S)$ implicates that any optimal solution that contains $w$ also contains $v$.

Corollary 4.23. Let $v, w \in V$. If

$$
\begin{equation*}
p(v) \geqslant \vec{d}_{p c}(v, w) \tag{4.50}
\end{equation*}
$$

is satisfied and $w$ is contained in an optimal solution, then $v$ is also part of an optimal solution.

The left-rooted prize-constrained distance can be exemplified by means of Figure 4.3. It holds that $\vec{d}_{p c}\left(v_{0}, v_{5}\right)=2$, but $\vec{d}_{p c}\left(v_{5}, v_{0}\right)=3$. A walk corresponding to $\vec{d}_{p c}\left(v_{0}, v_{5}\right)$ is $\left(v_{0},\left\{v_{0}, v_{1}\right\}, v_{1},\left\{v_{1}, v_{2}\right\}, v_{2},\left\{v_{2}, v_{1}\right\}, v_{1},\left\{v_{1}, v_{3}\right\}, v_{3},\left\{v_{3}, v_{4}\right\}, v_{4},\left\{v_{4}, v_{5}\right\}\right.$, $\left.v_{5}\right)$. Corollary 4.23 implies that if $v_{5}$ is part of an optimal solution, then there is an optimal solution that contains $v_{0}$. The converse does not necessarily hold. Indeed, $v_{5}$ is not part of any optimal solution even though $v_{0}$ is (together with $v_{2}$ and $v_{3}$ ).

As for $d_{p c}$, computing $\vec{d}_{p c}$ is $\mathcal{N} \mathcal{P}$-hard (which can be shown analogously). However, one can devise a simple algorithm for finding upper bounds, which is very similar to Algorithm 4.1. Let $t_{0} \in T_{p}^{+}$. The subsequently sketched algorithm provides a set of vertices $\bar{T}_{t_{0}}$ such that $\vec{d}_{p c}\left(t_{0}, v\right)<p\left(t_{0}\right)$ for all $v \in \bar{T}_{t_{0}}$. Initialize $\operatorname{dist}_{p c r}[v]:=\infty$ for all $v \in V \backslash\left\{t_{0}\right\}$, and set dist $_{p c r}\left[t_{0}\right]:=0$. Start Dijkstra's algorithm with only $t_{0}$ in the priority queue, but apply the following modifications: First, update vertex $w$ from vertex $u$ if and only if both

$$
\begin{equation*}
\operatorname{dist}_{p c r}[u]+c(\{u, w\})<p\left(t_{0}\right) \tag{4.51}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{dist}_{p c r}[w]>\operatorname{dist}_{p c r}[u]+c(\{u, w\})-p(w) . \tag{4.52}
\end{equation*}
$$

In this case set $\operatorname{dist}_{p c r}[w]:=\operatorname{dist}_{p c r}[u]+c(\{u, w\})-p(w)$. No $t \in T_{p}$ is allowed to be reinserted into the priority queue after it has been removed. Finally, define $\bar{T}_{t_{0}}:=\left\{u \in V \mid \operatorname{dist}_{p c r}[u]<p\left(t_{0}\right)\right\}$. Note that $t_{0} \in \bar{T}_{t_{0}}$. This algorithm is basically the same as Algorithm 4.1, except for using $p(v)$ instead of $c_{0}$ and using a slightly different update scheme.


Figure 4.3: PCSTP instance. The prizes of the individual vertices are specified by $p$; only non-zero prizes are shown.

## Combining implications and reduced-costs

By using LP information, the above algorithm can be combined with Transformation 4.20 to obtain a criterion for potential terminals to be part of all optimal solutions. First, note that if a separation algorithm or dual-ascent is applied, one obtains reduced-costs for an LP relaxation of DCut that contains only a subset of constraints (1.3). Second, observe that given an SAP $I^{\prime}$ obtained from $I_{P C}$ with corresponding optimal solutions $S^{\prime}$ and $S$, for $t_{i} \in T_{p}$ it holds that $t_{i} \in V(S)$ if and only if $\left(v_{0}^{\prime}, t_{i}^{\prime}\right) \notin A^{\prime}\left(S^{\prime}\right)$. As a consequence one obtains

Proposition 4.24. Consider $\left(V^{\prime}, A^{\prime}, T^{\prime}, c^{\prime}, r^{\prime}\right)$ obtained by applying Transformation 4.20 on $I_{P C}$. Let $\tilde{\mathcal{U}} \subseteq\left\{U \subset V^{\prime} \mid r^{\prime} \notin U, U \cap T^{\prime} \neq \emptyset\right\}$ and let $\tilde{L}$ be the objective value and $\tilde{c}$ the reduced-costs of an optimal solution to the LP:

$$
\begin{array}{rlrl}
\min c^{\prime T} x-M+p\left(T_{p}^{-}\right) & & \\
x\left(\delta^{-}(U)\right) & \geqslant 1 & & \text { for all } U \in \tilde{\mathcal{U}}, \\
x(a) & \in[0,1] & & \text { for all } a \in A^{\prime} . \tag{4.55}
\end{array}
$$

Moreover, let $K$ be an upper bound on the cost of an optimal solution to $I_{P C}$. Finally, let $t_{i} \in T_{p}^{+}$and let $\bar{T}_{i} \subseteq T_{p}^{+}$such that $V(S) \cap \bar{T}_{i} \neq \emptyset \Rightarrow t_{i} \in V(S)$ for each optimal solution $S$ to $I_{P C}$. If

$$
\begin{equation*}
\sum_{j \mid t_{j} \in \bar{T}_{i}} \tilde{c}\left(\left(v_{0}^{\prime}, t_{j}^{\prime}\right)\right)+\tilde{L}>K \tag{4.56}
\end{equation*}
$$

holds, then $t_{i}$ is part of all optimal solutions to $I_{P C}$.

If a $t_{i} \in T_{p}^{+}$has been shown to be part of all optimal solutions, by building $\bar{T}_{i}$ with Theorem 4.22 and using (4.56), Theorem 4.22 can again be applied-to directly identify further $t_{j} \in T_{p}$ that are part of all optimal solutions by using the condition $p\left(t_{j}\right)>\vec{d}_{p c}\left(t_{j}, t_{i}\right)$. Identifying such fixed terminals can considerably improve the strength of the techniques described in Section 4.3, which usually leads to further graph reductions and the fixing of additional terminals.

### 4.4.2 Rooting the problem: RPCSTP and SPG

Once at least one vertex has been shown to be part of at least one optimal solution, the PCSTP can be reduced to a RPCSTP. Recall that we assume $p(t)=0$ for all $t \in T_{f}$. We introduce the following simple transformation.

Transformation 4.25 (RPCSTP to SAP).
Input: $R P C S T P\left(V, E, T_{f}, c, p\right)$ and $t_{p}, t_{q} \in T_{f}$
Output: $\operatorname{SAP}\left(V^{\prime}, A^{\prime}, T^{\prime}, c^{\prime}, r^{\prime}\right)$

1. Set $V^{\prime}:=V, A^{\prime}:=\left\{(v, w) \in V^{\prime} \times V^{\prime} \mid\{v, w\} \in E\right\}, r^{\prime}:=t_{q}$.
2. Define $c^{\prime}: A^{\prime} \rightarrow \mathbb{Q} \geqslant 0$ for all $a=(v, w) \in A^{\prime}$ by

$$
c^{\prime}(a)= \begin{cases}c(\{v, w\})-p(w) & \text { if } w \in T_{p}^{-} \\ c(\{v, w\}) & \text { otherwise } .\end{cases}
$$

3. For each $i \in\left\{1, \ldots, s^{+}\right\}$:
(a) add node $t_{i}^{\prime}$ to $V^{\prime}$,
(b) add arc $\left(t_{i}, t_{i}^{\prime}\right)$ of weight 0 to $A^{\prime}$,
(c) add arc $\left(t_{p}, t_{i}^{\prime}\right)$ of weight $p\left(t_{i}\right)$ to $A^{\prime}$.
4. Define set of terminals $T^{\prime}:=\left\{t_{1}^{\prime}, \ldots, t_{s^{+}}^{\prime}\right\} \cup T_{f}$.
5. Return $\left(V^{\prime}, A^{\prime}, T^{\prime}, c^{\prime}, r^{\prime}\right)$.

A comparison of Transformation 4.20 and Transformation 4.25 is illustrated in Figure 4.4.

For an RPCSTP $\left(V, E, T_{f}, c, p\right)$ we define the transformed rooted prize-collecting cut (PrizeRCut) formulation, similar to PrizeCut, based on the SAP instance ( $V^{\prime}, A^{\prime}, T^{\prime}, c^{\prime}, r^{\prime}$ ) obtained from Transformation 4.25:

Formulation 4.26. Transformed rooted prize-collecting cut (PrizeRCut)
$\min \left\{c^{\prime T} x+p\left(T_{p}^{-}\right) \mid x\right.$ satisfies (1.3), (1.4), (x,y) satisfies (4.44), y satisfies (4.45) $\}$.


Figure 4.4: Illustration of a PCSTP instance (left) and the equivalent SAP obtained by Transformation 4.20 (middle). Given the information that the potential terminal with weight $p=7$ is part of at least one optimal solution, Transformation 4.25 yields the SAP depicted on the right. The terminals of the SAPs are drawn as squares and the (two) potential terminals for the PCSTP are enlarged.

By PrizeRCut $\left(I_{R P C}, t_{p}, t_{q}\right)$ we denote the PrizeRCut formulation for an RPCSTP $I_{R P C}$ when using (fixed) terminals $t_{p}, t_{q}$ in Transformation 4.25. One might wonder whether the choice of $t_{p}$ and $t_{q}$ in Transformation 4.25 can affect the value of the LP relaxation $v_{L P}\left(\operatorname{PrizeRCut}\left(I_{R P C}, t_{p}, t_{q}\right)\right)$. However, this value does not change, and even more:

Theorem 4.27. Let $I_{R P C}$ be an RPCSTP and let $t_{p}, t_{q}, t_{\tilde{p}}, t_{\tilde{q}}$ be any of its fixed terminals. Define $R\left(t_{i}, t_{j}\right):=\mathcal{P}_{L P}\left(\right.$ PrizeRCut $\left.\left(I_{R P C}, t_{i}, t_{j}\right)\right)$. It holds that:

$$
\begin{equation*}
\operatorname{proj}_{y}\left(R\left(t_{p}, t_{q}\right)\right)=\operatorname{proj}_{y}\left(R\left(t_{\tilde{p}}, t_{\tilde{q}}\right)\right) \tag{4.58}
\end{equation*}
$$

Proof. Let $\left(V, E, T_{f}, c, p\right)$ be the RPCSTP $I_{R P C}$ and denote the SAP resulting from applying Transformation 4.25 on $\left(I_{R P C}, t_{p}, t_{q}\right)$ by $\left(V^{\prime}, A^{\prime}, T^{\prime}, c^{\prime}, t_{q}\right)$. Set $D=\left(V^{\prime}, A^{\prime}\right)$. Furthermore, let $(x, y)$ be a feasible solution to the LP relaxation of $\operatorname{PrizeRCut}\left(I_{R P C}, t_{p}, t_{q}\right)$ so $(x, y) \in R\left(t_{p}, t_{q}\right)$. For ease of presentation, we will use the notation $x_{i j}$ instead of $x\left(\left(v_{i}, v_{j}\right)\right)$ for an arc $\left(v_{i}, v_{j}\right)$. The theorem will be proved in two steps: first by fixing $t_{q}$ and changing $t_{p}$, and second by fixing $t_{p}$ and changing $t_{q}$. Note that due to symmetry reasons in both cases it is sufficient to show that one projection is contained in the other.

1) $\operatorname{proj}_{y}\left(R\left(t_{p}, t_{q}\right)\right)=\operatorname{proj}_{y}\left(R\left(t_{\tilde{p}}, t_{q}\right)\right) \quad$ Let $\tilde{I}_{\tilde{p}}=\left(\tilde{V}, \tilde{A}, \tilde{T}, \tilde{c}, t_{q}\right)$ be the SAP resulting from applying Transformation 4.25 on $\left(I_{R P C}, t_{\tilde{p}}, t_{q}\right)$, and set $\tilde{D}:=(\tilde{V}, \tilde{A})$; note that $\tilde{V}=V^{\prime}$ and $\tilde{T}=T^{\prime}$. Define $\tilde{x} \in[0,1]^{\tilde{A}}$ by $\tilde{x}\left(\left(t_{\tilde{p}}, t_{i}^{\prime}\right)\right):=x\left(\left(t_{p}, t_{i}^{\prime}\right)\right)$ for $i=1, \ldots, z$ (with the notation from Transformation 4.25) and by $\tilde{x}_{i j}:=x_{i j}$ for all remaining arcs. Suppose that there is a $U \subset \tilde{V}$ with $t_{q} \notin U$ and $U \cap \tilde{T} \neq \emptyset$ such that $\tilde{x}\left(\delta_{\tilde{D}}^{-}(U)\right)<1$. From $x\left(\delta_{D}^{-}(U)\right) \geqslant 1$ and the construction of $\tilde{x}$ it follows that $t_{\tilde{p}} \in U$-otherwise
$\tilde{x}\left(\delta_{\tilde{D}}^{-}(U)\right) \geqslant x\left(\delta_{D}^{-}(U)\right)$. For $U^{z}:=U \backslash\left\{t_{1}^{\prime}, \ldots, t_{z}^{\prime}\right\}$ one obtains

$$
\begin{equation*}
x\left(\delta_{D}^{-}\left(U^{z}\right)\right)=\tilde{x}\left(\delta_{\tilde{D}}^{-}\left(U^{z}\right)\right) \leqslant \tilde{x}\left(\delta_{\tilde{D}}^{-}(U)\right)<1 \tag{4.59}
\end{equation*}
$$

Because of $t_{q} \notin U^{z}$ and $U^{z} \cap \tilde{T} \supseteq\left\{t_{\tilde{p}}\right\} \neq \emptyset$, one obtains a contradiction from (4.59). Therefore, $\tilde{x}$ satisfies (1.3) for the SAP $\tilde{I}_{\tilde{p}}$. Furthermore, $\tilde{y}$ defined by $\tilde{y}\left(\left\{v_{i}, v_{j}\right\}\right):=$ $\tilde{x}_{i j}+\tilde{x}_{j i}$ for all $\left\{v_{i}, v_{j}\right\} \in E$ satisfies $\tilde{y}=y$.
2) $\operatorname{proj}_{y}\left(R\left(t_{p}, t_{q}\right)\right)=\operatorname{proj}_{y}\left(R\left(t_{p}, t_{\tilde{q}}\right)\right) \quad$ Define the $\operatorname{SAP} \tilde{I}_{\tilde{q}}:=\left(V^{\prime}, A^{\prime}, T^{\prime}, c^{\prime}, t_{\tilde{q}}\right)$ (the result of transforming $\left(I_{R P C}, t_{p}, t_{\tilde{q}}\right)$ ). As there is only one underlying directed graph (namely $D$ ), in the following we write $\delta^{-}$instead of $\delta_{D}^{-}$. Let $f$ be a 1-unit flow from $t_{q}$ to $t_{\tilde{q}}$ such that $f_{i j} \leqslant x_{i j}$ for all $\left(v_{i}, v_{j}\right) \in A^{\prime}$. Define $\tilde{x}$ by $\tilde{x}_{i j}:=x_{i j}+f_{j i}-f_{i j}$ for all $\left(v_{i}, v_{j}\right) \in A^{\prime}$. Let $U \subset V^{\prime}$ such that $t_{\tilde{q}} \notin U$ and $U \cap T^{\prime} \neq \emptyset$. If $t_{q} \notin U$, then $f\left(\delta^{-}(U)\right)=f\left(\delta^{+}(U)\right)$ and so $\tilde{x}\left(\delta^{-}(U)\right)=x\left(\delta^{-}(U)\right) \geqslant 1$. On the other hand, if $t_{q} \in U$, then $f\left(\delta^{+}(U)\right)=f\left(\delta^{-}(U)\right)+1$, so

$$
\begin{equation*}
\tilde{x}\left(\delta^{-}(U)\right) \geqslant x\left(\delta^{-}(U)\right)+1 \geqslant 1 \tag{4.60}
\end{equation*}
$$

Consequently, $\tilde{x}$ satisfies (1.3) for the SAP $\tilde{I}_{\tilde{q}}$. From $x_{i j}+x_{j i} \leqslant 1$ for all $\left(v_{i}, v_{j}\right) \in A^{\prime}$, it follows that $\tilde{x} \in[0,1]^{A^{\prime}}$, and for the corresponding $\tilde{y}$ one verifies $\tilde{y}=y$.

Consequently, if only the $y$ variables are of interest, we write $\operatorname{PrizeRCut}\left(I_{R P C}\right)$ instead of PrizeRCut $\left(I_{R P C}, t_{p}, t_{q}\right)$. For the (heuristic) dual-ascent algorithm the choice of $t_{p}$ and $t_{q}$ still matters, as it can change both lower bound and reduced-costs, see Section 4.5.1.

Theorem 4.27 has also consequences for two well-known IP formulations for SPG and NWSTP. Recall that for SPG a widely used formulation is the bidirected cut formulation (Wong, 1984): Replace each edge by two anti-parallel arcs of the same weight as the original edge, and consider the resulting problem as an SAP with an arbitrary terminal as the root. Solve this SAP by Formulation 1.1. As a corollary of Theorem 4.27 one easily obtains a result that was proved by Goemans and Myung (1993) in a more involved way.

Corollary 4.28. The optimal LP value of the bidirected cut formulation for $S P G$ is independent of the choice of the root.

For NWSTP a similar formulation has proven effective in practice (Gamrath et al., 2017; Leitner et al., 2018a): Transform the problem to SAP in the same way as for SPG. Additionally, add the weight of each vertex to all its incoming arcs. Note that when transforming an NWSTP to RPCSTP as described in Section 4.2.2, and applying Transformation 4.25 to this RPCSTP, one obtains the same SAP as with the procedure described above (given the same choice of the root). Thus, Theorem 4.27 directly yields the following, new, result.

Corollary 4.29. The optimal LP value of the bidirected cut formulation for NWSTP is independent of the choice of the root.

From the definitions of Transformation 4.20 and 4.25 one can acknowledge that switching from PrizeCut to PrizeRCut (if possible) does not deteriorate (and can improve) the tightness of the LP relaxation; due to its importance we formally state this observation in the following proposition; a proof is given in Appendix A.3.4.

Proposition 4.30. For $I_{P C}=(V, E, c, p)$ let $T_{0} \subseteq T_{p}$ such that $T_{0} \subseteq V(S)$ for at least one optimal solution $S$ to $I_{P C}$. Let $I_{T_{0}}:=\left(V, E, T_{0}, c, p\right)$ be an RPCSTP. With $R_{T_{0}}:=\mathcal{P}_{L P}\left(\operatorname{PrizeRCut}\left(I_{T_{0}}\right)\right), R:=\mathcal{P}_{L P}\left(\operatorname{PrizeCut}\left(I_{P C}\right)\right)$ it holds that

$$
\begin{equation*}
\operatorname{proj}_{y}\left(R_{T_{0}}\right) \subseteq \operatorname{proj}_{y}(R) \tag{4.61}
\end{equation*}
$$

Moreover, the inequality

$$
\begin{equation*}
v_{L P}\left(\operatorname{PrizeCut}\left(I_{P C}\right)\right) \leqslant v_{L P}\left(\operatorname{PrizeRCut}\left(I_{T_{0}}\right)\right) \tag{4.62}
\end{equation*}
$$

holds and can be strict.
Finally, by combining the reductions to RPCSTP and SAP with the reductions techniques described in Section 4.3, it is sometimes possible to either eliminate or fix each potential terminal. Hence the instance becomes an SPG, which allows us to apply the more advanced SPG solution techniques introduced in Chapter 2.

### 4.5 Solving to optimality

In the following, the integration of the individual PCSTP techniques within an exact solving approach will be described. Furthermore, the performance of the resulting solver will be discussed. As before, the implementations are realized within the branch-and-cut solver SCIP-JACK.

### 4.5.1 Interleaving the components within branch-and-cut

This section demonstrates the broad applicability of the PCSTP algorithms and techniques introduced so far in a branch-and-cut framework. It also aims to highlight the strong interrelation between the individual techniques.

As to IP formulations, for RPCSTP instances (including instances transformed to RPCSTP) we use PrizeRCut. However, if the given instance could not be transformed to RPCSTP during presolving, we use an IP formulation similar to the $E S A^{+}$ formulation from Chapter 3.2.3-which requires fewer variables than PrizeCut. Still, PrizeCut is being used for dual-ascent, and as such is a vital component within the branch-and-cut framework.

Presolving We perform presolving in several rounds-as long as a predefined percentage of edges has been eliminated during the previous round. All PCSTP reduction techniques described in this chapter are applied. We also employ a (significantly restricted) adaptation of the extend reduction framework from Chapter 2.4. Because we only use standard distances, these extended reduction techniques have a far smaller impact than their SPG counterparts. During presolving we also try to transform any PCSTP instance to RPCSTP or even SPG.

Domain propagation During the separation phase, SCIP-JACK uses the reducedcosts provided by the LP solver and the best known upper bound to perform variable fixings, see Chapter 2.6. These variable fixings can often be translated into the deletion or contraction of edges, and thus can allow for further PCSTP reductions. Therefore, we also re-employ the reduction techniques for domain propagation (once a predefined number of edges has been deleted by the reduced-cost criterion). Subsequently, we translate the deletion of edges and the fixing of potential terminals into variable fixings in the IP.

Dual heuristics Recall that the dual-ascent heuristic by Wong (1984) provides a dual bound as well as reduced-costs. Based on our new graph transformations, we use this dual heuristic in presolving (for reduced-cost based reduction tests), for primal heuristics (to find a subgraph that contains a good feasible solution), and for computing initial cuts. Whenever a problem has been transformed to RPCSTP, we perform the dual-ascent heuristic on several SAPs resulting from different choices of $t_{p}$ and $t_{q}$, which usually changes the lower bound (and the reduced-costs) provided by the heuristic.

Primal heuristics As to primal heuristics, we use adaptations of the MWCSP primal heuristics described in Chapter 3.5.1. Several of these heuristics compute solutions on newly built subgraphs (e.g. by merging feasible solutions). For such heuristics we also employ the PCSTP reductions from this chapter. Additionally, we use an adapted version of the SPG local-search heuristics from Uchoa and Werneck (2010), shortly described in Section 2.5. For the PCSTP we consider all proper potential terminals as key-vertices, and furthermore use cost-shifting (see Section 4.4.1) to take the prizes of non-proper potential terminals into account.

LP and cutting-planes Also the LP kernel interacts with the remaining components: By means of the prize-constrained distances and upper bounds provided by the heuristics it is usually possible to switch to the PrizeRCut formulation. In turn, the reduced-costs and lower bound provided by an improved LP solution can be used to reduce the problem size - which can even enable further prize-constrained walk based reductions. As in the previous chapters, we use a specialized maximum-flow algorithm for the separation of the directed cut constraints (1.3). Additionally, we separate constraints for TransRCut of the form

$$
x\left(\delta^{-}(v)\right)+x\left(\left(t_{p}, t_{i}^{\prime}\right)\right) \leqslant 1 \quad t_{i} \in T_{p}^{+} \backslash T_{f}, v \in\left\{u \in V \mid \vec{d}_{p c}\left(t_{i}, u\right)<p\left(t_{i}\right)\right\}
$$

with $t_{p}$ and $t_{i}^{\prime}$ as defined in Transformation 4.25. The constraints represent the implication that $v \in V(S) \Rightarrow t \in V(S)$ for any optimal solution $S$ if $\vec{d}_{p c}(t, v)<p(t)$. Corresponding constraints are separated for TransCut.

Restart In the course of the solution process one can regularly either delete or fix each potential terminal - through the combination of presolving, primal heuristics, the left-rooted prize-constrained distance, and graph transformation and LP methods. In
such a case one might restart the solution process and use the SPG solver described in Chapter 2. If a PCSTP instance is transformed to SPG at the root node of the branch-and-bound tree, we run aggressive SPG presolving and translate it into variable fixings in the IP formulation. In the remainder of the solution process SPG specific primal heuristics and reduction techniques are used, but the remaining algorithmic components are left unchanged. If all potential terminals are fixed already during presolving, a full restart is initiated, including full SPG-specific presolving, and the instance is handled entirely as an SPG.

Branching Just as for SPG, branching is performed on vertices. In the case of PCSTP or RPCSTP, we make the vertex to branch on a fixed terminal in one branch-and-bound child node, and remove it in the sibling node. The implications from the left-rooted prize-constrained distance often set the state for further graph changes, resulting in (local) variable fixings.

### 4.5.2 Computational results

For details on the hardware used in this thesis see Chapter 1.2.1. To the best of our knowledge, the two other fastest PCSTP solvers are mozartballs from Fischetti et al. (2017) (the winner of the exact PCSTP categories at the 11th DIMACS Challenge), and dapcstp (Leitner et al., 2018a). While no solver dominates on all benchmarks, the branch-and-bound based dapcstp is very competitive, and on several test-sets orders of magnitude faster than mozartballs-it is even faster than state-of-the-art heuristic methods, e.g. from Fu and Hao (2017a). Thus, dapcstp, which is publicly available ${ }^{19}$, will in the following be used for comparison. Only single-thread mode is used (also because dapcstp does not support multiple threads).

For the following experiments 12 well-known benchmark test-sets are used, as detailed in Table 4.1. ACTMOD and HIV contain originally MWCSP and NWSTP instances, which have been transformed to PCSTP by using the methods described in Chapter 4.2.2.

## Presolving results

We restrict the analysis of the impact of the individual algorithmic components to presolving. The reason for this decision is the strong interaction of the individual components, which makes the individual impact difficult to measure. For example, deactivating the primal heuristics also has a large effect on the reduction methods, since heuristics are heavily used for the bound-based reductions. Vice-versa, reduction techniques are a central ingredient of several primal heuristics. The reader nevertheless interested in such results is referred to Rehfeldt and Koch (2020).

Presolving can, arguably, be considered the most independent component within our branch-and-cut algorithm, not least because it already solves most instances to optimality. Recall that during presolving we not only make use reduction methods, but also of primal and dual heuristics, as well as of the new graph transformations

[^13]| Name | \# | $\|V\|$ | $\|E\|$ | Status | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| JMP | 34 | 100-400 | 315-1576 | solved | Sparse instances of varying structure, introduced in Johnson et al. (2000). |
| Cologne | 29 | 741-1810 | 6332-16794 | solved | Instances from fiber optic network design for German cities (Ljubic, 2004). |
| CRR | 80 | 500-1000 | 625-25000 | solved | Mostly sparse instances, based on test-sets from SteinLib (Ljubic, 2004). |
| ACTMOD | 8 | 2034-5226 | 3335-93394 | solved | Instances from integrative biological network analysis (Dittrich et al., 2008). |
| RANDOM | 68 | 200-14000 | 1575-112369 | solved | Randomly generated instances published in Biazzo et al. (2012). |
| E | 40 | 2500 | 3125-62500 | solved | Mostly sparse instances originally for SPG, introduced in Ljubic (2004). |
| HANDS | 20 | 39600-42500 | 78704-84475 | solved $\}$ | Images of hand-written text from |
| HANDB | 28 | 158400-169800 | 315808-338551 | unsolved ) | signal processing (DIMACS, 2015). |
| PUCNU | 18 | 64-4096 | 192-28512 | unsolved | Instances derived from PUC test-set, introduced at 11th DIMACS Challenge. |
| H2 | 14 | 64-4096 | 192-24576 | unsolved | Hard instances based on hypercubes, introduced at 11th DIMACS Challenge. |
| HIV | 2 | 386-205717 | 1477-2466001 | unsolved | HIV mutation networks, introduced at 11th DIMACS Challenge. |
| MA | 20 | 1000000 | 10000000 | unsolved | Random instances with $T_{p}=V$, introduced by Sun et al. (2019). |

Table 4.1: Details on PCSTP tests sets.
(for applying dual-ascent). Table 4.2 shows the arithmetic mean of the percentage of vertices and edges in the presolved problems. Further, we report the shifted geometric mean of the run-time needed per test-set, with shift $s=1$. It can be seen that the size of most instances is drastically reduced. Apart from PUCNU and H2, the average size of both the number of vertices and edges is reduced by more than 95 percent on all test-sets. PUCNU and H2 were indeed designed to defy reduction techniques. Against this backdrop, especially on PUCNU the performance of the reduction algorithms is still notable.

While we do not provide detailed results, we note that the new PCSTP presolving techniques are significantly stronger than previous results such as for example Ljubic et al. (2006); Uchoa (2006). The otherwise empirically strongest reduction techniques have been recently introduced in Leitner et al. (2018a) as part of the dapcstp solver which we discuss below. Especially the new prize-constrained distance based techniques developed in this article have in several cases a drastic impact. One example is the hardest instance from the E set, $E 18-B$. When exchanging just the prizeconstrained edge elimination method by that described in Uchoa (2006), the number of remaining edges roughly doubles (to around 11 thousand). Similarly, the size of several of the hardest MA instances is almost halved when using the prize-constrained distance methods instead of their predecessors.

## Branch-and-cut results, and comparisons

This subsection provides computational results of the entire branch-and-cut framework developed for this chapter. Table 4.3 provides aggregated results of the experiments with a time limit of two hours for test-sets that contain only instances

|  | average reduced problem size |  |  |
| :--- | ---: | ---: | ---: |
| Test-set | vertices[\%] | edges[\%] | mean reduction time [s] |
| JMP | 0.6 | 0.0 | 0.0 |
| Cologne | 0.0 | 0.0 | 0.0 |
| ACTMOD | 0.4 | 0.1 | 0.2 |
| CRR | 1.5 | 0.1 | 0.0 |
| HANDS | 0.0 | 0.0 | 0.4 |
| RANDOM | 1.2 | 0.3 | 0.4 |
| E | 4.5 | 0.5 | 0.3 |
| HANDB | 3.0 | 3.0 | 2.9 |
| PUCNU | 72.2 | 62.3 | 1.7 |
| H2 | 91.2 | 89.9 | 2.4 |
| HIV | 0.0 | 0.0 | 29.6 |
| MA | 3.3 | 3.3 | 1456.3 |

Table 4.2: Average problem sizes after application of reduction algorithms.
with less than a million edges, and a time limit of 24 hours for the remaining (two) sets. We have excluded the well-known benchmark sets Cologne (Ljubic, 2004) and JMP (Johnson et al., 2000), because all contained instances can be solved in less than a second by both dapcstp and SCIP-JACK. We note, however, that SCIP-JACK is faster on both benchmarks sets-with respect to the mean as well as to the maximum time.

The second column of Table 4.3 shows the number of instances in the test-set. Columns three and four show the number of solved instance by dapcstp, and SCIPJack, respectively. The next two columns show the shifted geometric mean (see Section 1.2.2) with shift $s=1$ of the run-time taken by the respective solvers: First, dapcstp, second, SCIP-JACK. The next column shows the speed-up obtained by SCIPJack. The next two columns provide the maximum run-time, the last column the speed-up of SCIP-JACK with respect to the maximum time.

| Test-set | \# | \# solved |  | mean time (sh. geo. mean) |  |  | maximum time |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | dapcstp | S.-J. | dapcstp [s] | S.-J. [s] | speedup | dapcstp [s] | S.-J. [s] | speedup |
| CRR | 80 | 80 | 80 | 0.2 | 0.0 | - | 4.9 | 0.7 | 7.0 |
| ACTMOD | 8 | 8 | 8 | 0.8 | 0.2 | 4.0 | 3.3 | 0.8 | 4.1 |
| RANDOM | 68 | 68 | 68 | 0.8 | 0.4 | 2.0 | 78.6 | 16.4 | 4.8 |
| HANDS | 20 | 20 | 20 | 2.5 | 0.4 | 6.2 | 54.1 | 1.5 | 36.1 |
| E | 40 | 37 | 40 | 2.0 | 0.4 | 5.0 | $>7200$ | 22.5 | >320.0 |
| HANDB | 28 | 25 | 26 | 32.9 | 5.0 | 6.6 | $>7200$ | $>7200$ | 1.0 |
| PUCNU | 18 | 7 | 13 | 441.7 | 67.6 | 6.5 | $>7200$ | $>7200$ | 1.0 |
| H2 | 14 | 5 | 5 | 525.5 | 897.6 | 0.6 | $>7200$ | $>7200$ | 1.0 |
| HIV | 2 | 1 | 2 | 293.0 | 29.8 | 9.8 | $>86400$ | 950.7 | $>90.9$ |
| MA | 20 | 0 | 16 | 86400 | 9296.0 | 9.3 | $>86400$ | >86400 | 1.0 |

Table 4.3: Computational comparison of the solvers dapcstp (Leitner et al., 2018a) and SCIP-Jack.

SCIP-JACK is on all but one test-sets faster than dapcstp. Furthermore, it solves 28 more instances than dapcstp to optimality. The first three test-sets can be solved
within seconds by both solvers, with dapcstp being significantly slower than SCIPJACK both for the mean and maximum time. On the next two sets, HANDS and RANDOM, SCIP-JACK is again faster, especially with respect to the maximum time - being up to 33 times faster. For the next four test-sets, the new solver again consistently dominates, with the exception of test-set H 2 , where dapcstp is faster with respect to the shifted geometric mean. A striking example is the PUCNU test-set, where the new solver can solve almost twice as many instances.

On HIV, the new solver is able so solve the hiv-1 instance, which contains more than two million edges, to optimality in roughly 15 minutes. The best previously known result from the literature was achieved in a 72 hours run on a large-memory machine, see Gamrath et al. (2017). For the MA instances, with 10 million edges each, dapcstp fails to solve any instance. In contrast, the new solver can solve all but four of them, some even in less than one hour. To the best of the authors' knowledge, these are by far the largest PCSTP instances that have been solved to optimality in the literature to date.

Finally, we remark that the heavy machinery used in this chapter can sometimes be a disadvantage. Much effort is spent at the root node, and also within each branch-and-bound node many cutting rounds and aggressive propagation are applied. In contrast, the more light-weight, dapcstp searches the branch-and-bound tree far more aggressively. Still, dual-ascent based bounds (heavily utilized by dapcstp) are often remarkably tight. On the highly symmetric H 2 instances, which are unfavorable for LP based algorithms, dapcstp is thus competitive with our solver.

## Newly solved instances

Finally, we report results on previously unsolved instances from the 11th DIMACS Challenge. The results were obtained with a time limit of 24 hours. We used two different random seeds, which gave slightly better results for three instances; only the best bounds are reported here. All improved instances are listed in Table 4.4, with the first column giving the name of the instance, the second its primal-dual gap, the third the improved found bound, and the fourth the previously best known one. The previously best known solutions are from DIMACS (2015); Braunstein and Muntoni (2016); Fischetti et al. (2017); Fu and Hao (2017a); Gamrath et al. (2017); Leitner et al. (2018a), respectively. We note that the $c c$ and handb instances, which have unit edge weights, can be transformed to MWCSP. The new results achieved for the MWCSP versions of these instances in the previous chapter are not considered here.

Five DIMACS instances can be solved for the first time to optimality, three of them, hiv-1, cc10-2nu, and hc9u2, within the standard time limit of two hours. Furthermore, the new solver improves the best known upper bounds for another 11 instances, which comprises almost half of the still unsolved PCSTP instances from the 11th DIMACS Challenge.

### 4.6 Conclusion

This chapter has introduced a number of techniques and algorithms that aim at faster optimal solution of PCSTP. Based on the newly shown fixed-parameter tractability of

| Name | gap [\%] | new UB | previous UB |
| :--- | ---: | ---: | ---: |
| hiv-1 | opt | $\mathbf{6 5 6 9 5 5 . 3 3 1 5 0}$ | 656970.94 |
| handbd04 | opt | $\mathbf{3 2 0 2 . 1 8 5 7 4}$ | 3202.710021 |
| cc7-3nu | opt | $\mathbf{2 7 0}$ | 271 |
| cc10-2nu | opt | $\mathbf{1 6 7}$ | 168 |
| hc9u2 | opt | $\mathbf{1 9 0}$ | 190 |
| handbd13 | 0.0 | 13.18549 | 13.19699 |
| handbi13 | 0.1 | 4.24964 | 4.251 |
| cc11-2nu | 0.8 | 303 | 304 |
| cc12-2nu | 0.7 | 563 | 565 |
| hc8p | 1.2 | 15204 | 15206 |
| hc9p | 1.1 | 3015 | 3043 |
| hc9p2 | 1.4 | 30228 | 30242 |
| hc10p | 1.4 | 59778 | 59866 |
| hc10p2 | 1.4 | 59752 | 59930 |
| hc11p | 1.6 | 118729 | 119191 |
| hc11p2 | 1.7 | 118869 | 119236 |

Table 4.4: Improvements on unsolved DIMACS instances.

PCSTP with respect to the number of proper potential terminals, a key element has been the distinction of these vertices within most new algorithms. As an interesting byproduct, we have also demonstrated that any PCSTP can be transformed to an SPG by adding $\left|T_{p}\right|+1$ terminals. Besides the theoretical analyses of the new methods, a central result of this chapter is the integration of the various methods into an exact branch-and-cut framework. The resulting solver significantly pushes the boundaries of computational tractability for the PCSTP, being able to solve instances with up to 10 million edges - over 30 times larger than any PCSTP instance solved in the literature so far.

A computationally promising route for further research would be to design and implement a PCSTP version of the SPG extended reduction paradigm described in Chapter 2. Also, implementing the new FPT dynamic programming algorithm together with pruning rules (similarly to the FPT algorithm in Chapter 2) could significantly accelerate the solution of PCSTP instances with few proper potential terminals. Additionally, further improving the LP relaxation seems to hold a high potential, both from a computational and theoretical point of view.

## Chapter 5

## Further related problems

The algorithmic parts of the previous three chapters were dominated by highly intricate techniques tailored to individual, albeit certainly related, problems. A central aim was to demonstrate how far the boundaries of computational tractability for each of these problems can be pushed. While there are many commonalities between the three solution approaches, achieving this aim required many problem-specific techniques.

This chapter moves into a different direction. It shows how the algorithmic framework established so far can be used to efficiently solve a considerable number of further related problem with little algorithmic and implementation effort. In this way, this chapter demonstrates the versatility of the algorithmic framework described so far, and its applicability beyond individual problems. This chapter also moves away from the more theoretical aspects prominently featured in the previous chapters. Instead, the focus will be on the extension of previously introduced algorithms, and on computational results.

All problem classes covered in this chapter are solved within the exact branch-and-cut framework developed so far. For all problem classes the following algorithmic components are used. First, by means of transformations, we use some variant of Formulation 1.1, usually strengthened by the flow-balance constraints (2.9) and by the constraints (2.81). We use dual-ascent for computing the initial cuts, and use the maximum-flow algorithm described in Section 6.2.4 for further separation. Additionally, we always apply reduced-costs based domain propagation. As to primal heuristics, we use a simplified version of the recombine-and-reduce heuristic introduced in Section 2.5.2, and some (problem-specific) variant of the shortest-path heuristic introduced in Section 2.5.1. For averaging the run-times and the numbers of branch-and-bound nodes in this chapter, we use the shifted geometric mean with shift $s=1$. Furthermore, we set a time limit of two hours for all runs.

### 5.1 The partial and full terminal Steiner tree problems

The partial terminal Steiner tree problem (PTSTP) is a generalization of the SPG. Let $G=(V, E)$ be an undirected, connected graph with costs $c: E \rightarrow \mathbb{Q} \geqslant 0$ and a set $T \subseteq V$ of terminals. Further, let $T_{L} \subseteq T$ be the set of partial terminals. A partial terminal Steiner tree is a tree $S \subseteq G$ with $T \subseteq V(S)$ such that all vertices in $T_{L}$ are leaves of $S$. The PTSTP asks for a partial Steiner tree $S$ such that $c(E(S))$ is minimized. Note that unlike normal Steiner trees, no partial Steiner tree might exist for a given instance. The PTSTP is for example discussed in Chen (2016) or Hsieh and Gao (2007), both of which include complexity and approximation results. The special case $T_{L}=T$ is known as the full Steiner tree problem (FSTP), see e.g. Lu et al. (2003). FSTP is an important subproblem for both theoretical and practical results on SPG and geometric Steiner tree problems, see also Section 5.4.

A generalization of PTSTP is the node-weighted partial terminal Steiner tree problem (NWPTSTP), which additionally provides vertex weights $p: V \rightarrow \mathbb{Q} \geqslant 0$. The NWPTSTP asks for a partial Steiner tree $S$ such that $c(E(S))+p(V(S))$ is minimized. Applications of the NWPTSTP can for example be found in network design, see Sun et al. (2020).

Note that any SPG can be (linearly) reduced to both PTSTP (by setting $T_{L}:=\emptyset$ ) and FSTP (by adding $|T|$ additional edges and nodes), which shows the latter two problems are $\mathcal{N} \mathcal{P}$-hard as well. Also, many results for exact PTSTP solution are the same as for SPG, as can be seen by the simple new transformation described below.

## Algorithms

PTSTP (and thus also FSTP) can be readily reduced to SPG as follows. We assume $|T|>2$, otherwise the problem can be solved easily. First, remove all edges $\{v, w\}$ with $v, w \in T_{L}$. Second, define $M:=c(E)$, and add $M$ to the weight of all edges incident to a partial terminal.

NWPTSTP can be transformed to SAP by the following simple (new) procedure. Let $I=\left(V, E, T, T_{L}, c, p\right)$ be a feasible NWPTSTP-note that the feasibility of any NWPTSTP instance can be checked efficiently (Sun et al., 2020). As before, we assume $|T|>2$. Let $(V, A)$ be the bidirected graph corresponding to $(V, E)$. First, we assume that $T \neq T_{L}$. Choose any $r \in T \backslash T_{L}$. Let $A^{\prime}:=A \backslash\left\{(t, v) \in A \mid t \in T_{L} \backslash\{r\}\right\}$. Further, remove all arcs in $\delta^{-}(r)$ from $A^{\prime}$. Next, define $c^{\prime}: A^{\prime} \rightarrow \mathbb{Q} \geqslant 0$ by $c^{\prime}((v, w)):=$ $c((v, w))+p(w)$ for all $(v, w) \in A^{\prime}$. The SAP $I^{\prime}:=\left(V, A^{\prime}, T, c^{\prime}, r\right)$ is feasible, and any optimal solution to $I^{\prime}$ can be readily transformed to an optimal solution to $I$-by taking the undirected equivalent of each arc contained in the optimal solution to $I^{\prime}$. If $T=T_{L}$, choose any $r \in T_{L}$ and proceed as before. Finally, increase the weight $c^{\prime}(a)$ for all $a \in \delta^{+}(r)$ by a sufficiently large constant.

Within SCIP-JACK, we simply apply the above transformations to any PTSTP or NWPTSTP instance, and treat the resulting problem as a customary SPG or SAP.

## Computational results

In Table 5.1 we provide aggregated results on 6000 NWPTSTP instances from Sun et al. (2020). The instances have between 127 and 810 vertices, and between 916 and 6076 edges. Because of the large number of instances we do not provide instance-wise computational results in the appendix.

Table 5.1: Computational results for NWPTSTP instances.

| Test-set | \# instances | \# solved | mean time [s] | maximum time [s] |
| :--- | ---: | ---: | ---: | ---: |
| IND | 6000 | 6000 | 0.0 | 0.1 |

All instances from Table 5.1 can be solved in less than 0.1 seconds. We also note that for these instances SCIP-JACK is (orders of magnitude) faster than specialized NWPTSTP heuristics-and, being exact, also the solution quality is consistently better. See Sun et al. (2020) for more details.

### 5.2 The Steiner arborescence problem

As the Steiner arborescence problem (SAP) was already introduced in Section 1.1.3, we do not provide a definition here. Since any SPG can be solved as a (bidirected) SAP, the SAP is $\mathcal{N} \mathcal{P}$-hard as well. Further theoretical results, concerning complexity and approximability, can be found in Charikar et al. (1998); Halperin and Krauthgamer (2003). An overview of SAP heuristics and partly also exact algorithms is given in Siebert et al. (2020b). In contrast to the SPG, we allow arcs of cost 0 for the SAP, since such arcs cannot be contracted without possibly losing all optimal solutions.

## Algorithms

For primal heuristics, we use an adaptation of the shortest-path SPG heuristic introduced in Section 2.5.1. Similarly, the arc weights used by the heuristic are modified according to the current LP solution during branch-and-bound. Furthermore, we run the shortest-path heuristic on the subgraph corresponding to the arcs of reduced-cost 0 obtained from dual-ascent.

Concerning reduction techniques, we note that most of the SPG methods cannot easily be extended to SAP. Most of the SAP reductions that we apply were already present in the SCIP-Jack version developed prior to this thesis. However, these are rather simple. Importantly, for this thesis we additionally apply the dual-ascent reduction method, see Section 2.3.2.

## Computational results

\(\left.\begin{array}{lccccc}Name \& \# Instances \& |V| \& |E| \& Status \& Description <br>
\hline Gene \& 10 \& 335-602 \& 456-858 \& solved <br>

Gene2002 \& 9 \& 297-484 \& 396-706 \& solved\end{array}\right\}\)| Sparse, non-bidirectional, instances with $c \equiv 1$. |
| :--- |
| From a genetics application (Johnston et al., 2000). |
| NET |

Table 5.2: Details on SAP benchmark instances.
The SAP benchmarks instances described in the literature are unfortunately rather small. An overview on these instances is provided in the first two rows of Table 5.2. Additionally, we use 25 real-world, but non-public, network design SAP instances, obtained from one of the largest German telecommunication companies (which applies SCIP-JACK to solve such problems). Statistics of these instances are given in the last row of Table 5.2.

SCIP-JACK is able to solve all instances of the two smaller test-sets within less than 0.1 seconds. All these instances are solved already during presolving. For the much larger instances from the NET test-set SCIP-JACK takes considerably longer, but is still able to solve all instances within half an hour. We note that several of the largest NET instances cannot be solved by SCIP-JACK within the two hours time limit without the SAP enhancements implemented as part of this thesis.

Table 5.3: Computational results for the SAP instances.

| Test-set | \# instances | \# solved | mean time $[\mathrm{s}]$ | maximum time $[\mathrm{s}]$ |
| :--- | ---: | ---: | ---: | ---: |
| Gene | 10 | 10 | 0.0 | 0.0 |
| Gene2002 | 9 | 9 | 0.0 | 0.0 |
| NET | 25 | 25 | 9.4 | 1486.8 |

As to other results from the literature, Siebert et al. (2020b) show that their heuristic, dynamic programming based algorithm outperforms several other algorithms from Watel and Weisser (2016). Unfortunately, the solver from Siebert et al. (2020b) is not publicly available, and no explicit run times are given in Siebert et al. (2020b). However, the solver requires the computation of all-to-all shortest paths, which usually is already drastically slower than the entire run-time of our solver. Due to this prohibitively large run-time, the authors in Siebert et al. (2020b) confine their computational experiments to instances with at most 3500 nodes, whereas we can solve instances with more than 200000 nodes within minutes to proven optimality.

### 5.3 The node weighted Steiner tree problem

The node-weighted Steiner tree problem (NWSTP) is a generalization of the SPG that also includes (non-negative) vertex weights. Given an undirected graph $G=(V, E)$, vertex weights $p: V \rightarrow \mathbb{Q} \geqslant 0$, edge costs $c: E \rightarrow \mathbb{Q} \geqslant 0$, and a set $T \subseteq V$ of terminals, the objective is to find a tree $S$ with $T \subseteq V(S)$ that minimizes:

$$
\sum_{e \in E(S)} c(e)+\sum_{v \in V(S)} p(v)
$$

The NWSTP has been the subject of several publications, see e.g. Buchanan et al. (2018); Guha and Khuller (1999); Moss and Rabani (2001), although most focus on theoretical aspects. Besides SCIP-JACK, the best alternative NWSTP solver is described in Leitner et al. (2018a). As we have shown in Section 4.2.2, any NWSTP can be transformed to an PCSTP by only changing its vertex weights. Computationally, we simply use this transformation for any NWSTP instance and treat the resulting problem as a normal PCSTP. Computational results for NWSTP are given in Section 4.5, as part of the PCSTP evaluation. It is also shown that SCIP-JACK considerably outperforms the solver from Leitner et al. (2018a).

### 5.4 The Euclidean and the rectilinear Steiner minimum tree problems

The rectilinear Steiner minimum tree problem (RMSTP) is defined as follows: Given $k \in \mathbb{N}$ points in the Euclidean plane, find a shortest tree consisting just of vertical and horizontal line segments and containing all $k$ points. The RMSTP can be seen as a variant of the Euclidean Steiner minimum tree problem (EMSTP), see Section 2.1.1: Instead of using the $L_{2}$ norm, the RMSTP uses the $L_{1}$ norm for computing distances.

The RMSTP is $\mathcal{N} \mathcal{P}$-hard, as for example proven in Garey and Johnson $(1977)^{20}$. The RMSTP is one of the best known Steiner tree relatives, and has been the subject of various research articles and books, see e.g. Brazil and Zachariasen (2015); Emanet (2010); Hwang et al. (1992). For recent complexity results see Cambazard and Catusse (2018); Fomin et al. (2020). For practical exact algorithms see Juhl et al. (2018). A typical RMSTP application is VLSI design, see Brazil and Zachariasen (2015).

A generalization of the RMSTP to the $d$-dimensional case, with natural $d \geqslant 2$, has also been described in the literature. Real-world applications in up to eight dimensions can for example be found in cancer research, see Chowdhury et al. (2013). Another variant of the RMSTP is the obstacle-avoiding rectilinear Steiner minimum tree problem (OARMSTP), see e.g. Brazil and Zachariasen (2015). This problems includes the additional condition that the minimum-length rectilinear tree does not pass through the interior of specified obstacles, which are axis-aligned rectangles. Such obstacles occur for example in VLSI design.

## Algorithms

Hanan (1966) proves that the RMSTP can be reduced to the Hanan grid, which is obtained by constructing vertical and horizontal line segments through each given point of the RMSTP. In this way, the RMSTP can be reduced to an SPG. In SCIPJACK, both this construction and its multi-dimensional generalization, see Snyder (1992), is used by default to transform any RMSTP to SPG.

For two-dimensional RMSTP an empirically much stronger solution approach can be obtained by using full Steiner trees (FSTs)—which were described in Section 5.1. We delineate the approach in the following. For a detailed description see Warme et al. (2000). In the first phase, called generation, one creates a set of FSTs that is guaranteed to contain a minimum Steiner tree. In the second phase, called concatenation, one selects a subset of the generated FSTs that induces a minimum Steiner tree. Warme (1998) introduced the seminal idea to reduce the FST concatenation to finding a minimum spanning tree in a hypergraph whose vertices are the terminals and whose (hyper-)edges correspond to the generated FSTs. This idea forms the basis of many theoretical results for RMSTP and SPG, see e.g. Byrka et al. (2013). Also, this hypergraph approach is used in the well-known RMSTP solver GeoSteiner, see Juhl et al. (2018). A similar approach can be used for solving EMSTP (Juhl et al., 2018).

A simpler method (for both RMSTP and EMSTP) is suggested by Polzin and Daneshmand (2003): By taking the union of the edge sets of the FSTs generated in

[^14]the first phase, the FST concatenation can be reduced to an SPG. This approach was shown to be faster than (a previous version of) GeoSteiner when the SPG solver developed by the authors of Polzin and Daneshmand (2003) was used. Recall that we showed in Chapter 2 that the solver by Polzin and Daneshmand (2003) is outperformed by SCIP-Jack. Polzin and Daneshmand (2003) use the FST generation provided by GeoSteiner. Note, however, that the concatenation phase usually takes much longer than the FST generation for large instances. In the following computational results we will compare SCIP-Jack with the latest version of GEOStEInER by using the FST union method described above.

## Computational results

The current version 5.1. of GEOSteiner has seen many improvements compared to its predecessor, see Juhl et al. (2018) for details, Furthermore, unlike its predecessor, GeoSteiner 5.1. is freely available. Just as SCIP-Jack, GeoSteiner provides an interface to CPLEX for solving LPs during branch-and-cut.

As we have already given various results for RMSTP, and OARMSTP instances in Section 2.7.3, we concentrate on EMSTP in the following. We note however, that SCIP-Jack significantly outperforms GeoSteiner on the just mentioned RMSTP and OARMSTP test-sets. In Table 5.4 we give results for Euclidean instances from Juhl et al. (2018) with 25 thousand (EST-25k), 50 thousand (EST$50 k$ ), and 100 thousand (EST-100k) points in the plane. For all these problems, the FSTs have been generated by GeoSteiner. For EST-25k the mean and maximum times of SCIP-JACK are between one and two orders of magnitude faster those of GeoSteiner. Moreover, 7 of the 15 instances from EST-50k are solved for the first time to optimality - in at most 196 seconds. On the other hand, GeoSteiner cannot solve these instances even after seven days of computation (Juhl et al., 2018). For EST-100k, GEOSTEINER even leaves 12 of the 15 instances unsolved after one week of computation. In contrast, we solve all these instances (for the first time) to optimality in less than 15 minutes.

Unfortunately, Polzin and Vahdati-Daneshmand (2014) do not report results for any of these instances. However, the solver by Pajor et al. (2017), which won the SPG heuristics category at the 11th DIMACS Challenge, does not reach the upper bounds from GeoSteiner on any of the EST-25k, EST-50k, and EST-100k instances.

| Test-set | \# instances | \# solved | mean time $[\mathrm{s}]$ | maximum time [s] |
| :--- | ---: | ---: | ---: | ---: |
| ESMT-R25 | 15 | 15 | 43.2 | 54.6 |
| ESMT-R50 | 15 | 15 | 128.2 | 196.5 |
| ESMT-R100 | 15 | 15 | 477.9 | 729.7 |

Table 5.4: Results for Euclidean Steiner tree instances.

### 5.5 The degree constrained Steiner tree problem

The degree-constrained Steiner tree problem (DCSTP) is a generalization of SPG with additional degree constraints: One is given an undirected graph $G=(V, E)$, a set of terminals $T \subseteq V$, edge costs $c: E \rightarrow \mathbb{Q}>0$, and a function $b: V \rightarrow \mathbb{N}$. The objective of the DCSTP is to find a Steiner tree $S \subseteq G$ that satisfies for all $v \in V(S)$

$$
\begin{equation*}
\delta_{S}(v) \leqslant b(v), \tag{5.1}
\end{equation*}
$$

and minimizes $c(E(S))$.
A comprehensive discussion of the DCSTP, including its applications in biology, can be found in Liers et al. (2016).

## Algorithms

We use a variation of the shortest-path heuristic that also takes the degree constraints into account. For example, the heuristic checks before each extension of the current solution whether any degree constraint would be violated. While the previously discussed reduction techniques cannot be applied for the DCSTP, it is still possible to use the dual-ascent method (while ignoring the additional constraints), as it provides a feasible lower bound and valid reduced costs. We note, however, that small degree constraints can considerably impede the (empirical) strength of both primal and dual algorithms used for DCSTP in SCIP-JACK.

## Computational results

Results on the (real-world) DCSTP instances from the 11th DIMACS Challenge can be found in Table 5.5. These instances have up to 832 vertices and 345696 edges - so they are quite dense. The second column of Table 5.5 lists the number of instances in the test-set, the third column states the number of instances solved to optimality within the time limit. The next two columns consider only instances that could be solved to optimality. We report the shifted geometric mean of the numbers of branch-and-bound nodes, and of the run time. The final two columns give results for all instances that could not be solved to optimality within the time limit. First, the mean number of branch-and-bound nodes is given, second the arithmetic mean of the optimality gaps.

Other results for those instances are given in Liers et al. (2016) and Fischetti et al. (2017). Compared to the specialized solver by Liers et al. (2016), SCIP-JACK solves several more instances to optimality. On the instances that can be solved by Liers et al. (2016), SCIP-JACK is an order of magnitude or more faster. The machine used by Liers et al. (2016) is described as an Opteron processor with 64 GB RAM and 12 cores. Unfortunately, no further details are given. We note that this processor type has a clock rate between 1.4 and 3.5 GHz . However, any 12-core Opteron processor generation has at least 2.4 GHz - compared to the 3.4 GHz of our machine. Compared to the solver described in Fischetti et al. (2017), SCIP-JACK is slightly faster with respect to the shifted geometric mean (we use the DIMACS benchmark score to compensate for the different machine in Fischetti et al. (2017)). Fischetti et al. (2017)
solves 12 instances within one hour, whereas SCIP-JACK solves 14 in the same time. Also, the average gap is much smaller for SCIP-JACK on the unsolved instances: it is less than $50 \%$ of that reported by Fischetti et al. (2017), even when we exclude the instances for which Fischetti et al. (2017) does not find a primal bound. Weak primal bounds are also responsible for the relatively large number of instances left unsolved by SCIP-JACK. Thus, further development for DCSTP should concentrate on better primal heuristics. Finally, we note that the instance TF105897-t3 is solved for first time to optimality.

|  |  |  | optimal |  |  | timeout |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | Test-set | $\#$ | \# solved | mean time [s] | mean nodes |  | mean nodes |
| DCST-TreeFam [\%] | 20 | 14 | 27.5 | 266.0 |  | 1866.2 | 31.1 |

Table 5.5: Computational results for DCSTP instances

### 5.6 The maximum-weight connected subgraph problem with budget

A close relative of the MWCSP is the maximum-weight connected subgraph problem with budgets (MWCSPB), see e.g. Backes et al. (2011). Compared to the MWCSP, this problem additionally provides vertex costs $c: V \mapsto \mathbb{Q} \geqslant 0$ and a budget $B \in \mathbb{Q} \geqslant 0$. The MWCSPB requires a connected subgraph $S \subseteq G$ with $c(V(S)) \leqslant B$ that maximizes $p(V(S)$. Both the rooted and non-rooted MWCSPB are described in the literature. In the rooted case we are additionally given a non-empty set $T_{f} \subseteq V$, which needs to be contained in any feasible solution. We concentrate on this rooted variant in the following. This section describes joint work with Henriette Franz, who made major contributions to the underlying work.

SCIP-JACK includes only a specialized heuristic for the MWCSPB, and otherwise treats the problem as an SAP with an additional constraint. Since this heuristic has been implemented by Henriette Franz-as part of her master thesis-we do not provide much information here, but simply refer to Franz (2019). For computational results we also refer to Franz (2019). Here we merely provide some remarks on reduction techniques for the MWCSPB.

A simple, but often powerful reduction technique can be devised by using an RMWCSP $I^{\prime}$ as a subproblem. Let $I^{\prime}:=\left(G, T_{f}, p^{\prime}\right)$ where $p^{\prime}$ is defined as $p^{\prime}(v):=$ $-c(v)$ for all $v \in V \backslash T_{f}$ and $p^{\prime}(v):=0$ otherwise. Let $v_{0} \in V \backslash T_{f}$ be an arbitrary node and add $v_{0}$ to $T_{f}$. Let $S^{\prime}$ be an optimal solution to $I^{\prime}$. If $-w\left(S^{\prime}\right)>B$, then $v_{0}$ cannot be part of any solution to the original MWCSPB instance. A similar criterion can be formulated for edges. The approach can be sped-up by first checking whether the solution found by an MWCSP heuristic satisfies the budget constraint. In this case, we do not need to consider the exact solution. This method might appear computationally prohibitive in practice. However, this is not the case, by virtue of the powerful MWCSP solver developed in Chapter 3. Also, this reduction method is naturally parallelizable. Indeed, this reduction technique is shown to be highly effective in practice (Franz, 2019). However, is has not yet been included into SCIP-JACK.

Another possible approach for eliminating a vertex (or edge) is to show that for any connected subgraph that contains this vertex there is another connected subgraph that does not and moreover is of no smaller weight and no higher cost. Again, we stress that no such techniques have been implemented into SCIP-Jack. For example, using the concept of dominating connected sets introduced in Chapter 3, we obtain the following result. As before, we define $T_{p}:=\{v \in V \mid p(v)>0\} \backslash T_{f}$.

Proposition 5.1. Let $U \subseteq V \backslash\left(T_{f} \cup T_{p}\right)$ and $X \subseteq V \backslash U$ such that $(X, E[X])$ is connected and

$$
\{v \in V \backslash U \mid \exists\{v, w\} \in E, w \in U\} \subseteq\{v \in V \mid \exists\{v, w\} \in E, v \in X\} \cup X
$$

If

$$
\sum_{u \in U} p(u) \leqslant \sum_{u \in X: p(u)<0} p(u),
$$

and

$$
\sum_{u \in U} c(u) \geqslant \sum_{u \in X} c(u)
$$

then there is an optimal solution $S$ such that $U \nsubseteq V(S)$.
As special cases of Proposition 5.1, namely $|U|=1$ and $|U|=2$, one obtains criteria to delete vertices or edges.
\(\left.\begin{array}{lcccll}Name \& \# Instances \& |V| \& |E| \& Status \& Description <br>
\hline GSTP1 \& 8 \& 349-1253 \& 731-2319 \& solved <br>

GSTP2 \& 10 \& 838-3177 \& 1468-5907 \& unsolved\end{array}\right\}\)| Sparse instances derived from a |
| :--- |
| problem in VLSI design. |

Table 5.6: Details on GSTP benchmark instances.

### 5.7 The group Steiner tree problem

The group Steiner tree problem (GSTP) is a generalization of the Steiner tree problem, motivated from VLSI design, see Reich and Widmayer (1990); Hwang et al. (1992). Instead of terminals, one considers terminal groups. Given an undirected graph $G=$ $(V, E)$, edge costs $c: E \rightarrow \mathbb{Q} \geqslant 0$ and a set of vertex subsets $T_{1}, \ldots, T_{s} \subset V, s \in \mathbb{N}$, the GSTP requires a tree $S \subseteq G$ with $T_{i} \cap V(S) \neq \emptyset$ for all $i \in\{1, \ldots, s\}$ such that $c(E(S))$ is minimized. By interpreting each terminal $t$ as a set of cardinality 1 , any SPG can be considered as a GSTP. Thus, GSTP is a generalization of SPG (and in particular $\mathcal{N} \mathcal{P}$-hard).

## Algorithms

Voss (1988) shows that any GSTP instance can be readily transformed to an SPG, by adding an additional terminal for each terminal group and connecting this terminal to each vertex of the terminal group. This approach is usually used in the literature when it comes to solving GSTP, see e.g. Duin et al. (2004). A notable exception are the GSTP reduction techniques described in Ferreira and de Oliveira Filho (2007). However, the empirical success of these techniques is limited. We have not implemented any GSTP-specific methods into SCIP-JACk, but simply transform any GSTP to an equivalent SPG.

## Computational results

Several GSTP test-sets, transformed to SPG, are included in the SteinLib and have been covered in Chapter 2. It was shown that SCIP-JACK constitutes the state of the art for solving these instances. Here, we additionally consider two test sets of unpublished (and proprietary) group Steiner tree instances derived from industry wire routing problems, as detailed in Table 5.6. These instances come already in preprocessed form.

Computational results are presented in Table 5.7. We note that two of these instances cannot be solved without the new SPG reduction algorithms introduced in this thesis.

| Test-set | \# instances | \# solved | mean time $[\mathrm{s}]$ | maximum time $[\mathrm{s}]$ |
| :--- | ---: | ---: | ---: | ---: |
| GSTP1 | 8 | 8 | 1.4 | 5.1 |
| GSTP2 | 10 | 10 | 56.5 | 3451.2 |

Table 5.7: Computational results for GSTP instances.

### 5.8 The hop constrained directed Steiner tree problem

The hop-constrained directed Steiner tree problem (HCDSTP) is a generalization of the SAP, see Burdakov et al. (2014). Let ( $V, A, T, c, r$ ) be an SAP instance, and let $H \in \mathbb{N}$ (called hop limit). A feasible solution $S$ to the SAP is feasible for the HCDSTP if additionally:

1. $|A(S)| \leqslant H$,
2. $\delta_{S}^{+}(t)=0 \forall t \in T \backslash\{r\}$.

The HCDSTP asks for feasible solution $S$ of minimum cost $c(A(S)$ ). Heuristics (both primal and dual) for the HCDSTP can for example be found in Burdakov et al. (2014); Pugliese et al. (2018). Real-world applications of the HCDSTP include the three dimensional placement of drones for multi-target surveillance, see e.g. Olsson et al. (2010). Finally, we note that in the Steiner tree literature the term hop constrained is also used for problem classes where for any feasible solution the number of edges between the root and any node is bounded by a constant, see e.g. Voß (1999).

## Algorithms

The flow-balance directed-cut formulation (Formulation 1.1) used by SCIP-JACK can be easily extended to handle the HCDSTP by first removing all outgoing arcs from each terminal, and second adding the following constraint to Formulation 1.1:

$$
\begin{equation*}
y(A) \leqslant H \tag{5.2}
\end{equation*}
$$

Most reduction techniques and heuristics introduced so far cannot easily be extended to HCDSTP. For example, many reduction techniques described in this thesis remove or include edges if a less costly alternative sub-graph can be found. However, these techniques disregard whether this alternative sub-graph includes a larger number of edges. Nevertheless, some previously introduced bound-based reduction techniques can be adapted to HCDSTP.

First, note that dual-ascent based reductions can still be applied, despite the additional constraint: the corresponding dual variable can simply be set to 0 . Additionally, the terminal decomposition concept described in Section 2.3.2 can be adapted for HCDSTP. Importantly, all above reductions techniques require a primal bound. To this end, we use a simple modification of the shortest-path heuristic, which was already included in SCIP-JACK prior to this thesis. We perform the shortest path heuristic for modified arc costs $c^{\prime}$ with $c^{\prime}(a):=1+\alpha c(a)$ for all $a \in A$, where $\alpha>0$. Implementing more refined primal heuristics could considerably improve the performance. For example, the local-search heuristics introduced in Burdakov et al. (2014) would be promising candidates.

## Computational results

Computational results on a number of benchmark instances (some with more than 600000 arcs) from the 11th DIMACS Challenge are provided in Table 5.9. See Table 5.8 for more details on the instances.

| Name | $\#$ Instances | $\|V\|$ | $\|E\|$ | Status |
| :--- | :---: | :---: | :---: | :---: |$\quad$| Description |
| :--- |
| gr12 |
| gr14 |

Table 5.8: Details on HCDSTP benchmark instances.

All instances can be solved to optimality. Notably, six of these instances are solved for the first time to optimality. Details are given in Appendix B.8. Computational results for these instances are also given in Burdakov et al. (2014); Pugliese et al. (2018). However, only (primal and dual) heuristics are used in these articles. Especially on the gr14 instances the run times of Burdakov et al. (2014); Pugliese et al. (2018) are shorter, but at the same time the primal bounds are worse for more than half of these instances. Moreover, experiments on the larger test-set gr16 (with more than 8000000 arcs) were performed, but SCIP-JACK ran out of memory for all but three instances. However, these three instances wo11-gr16-cr100-tr100-se10, wo11-gr16-cr200-tr100-se3, and wo12-gr16-cr200-tr100-se9 could be solved for the first time to optimality - with optimal values of 121234,54163 and 47687 , which also notably improves on the previously best known bounds (Burdakov et al., 2014; Gamrath et al., 2017; Pugliese et al., 2018).

| Test-set | \# instances | \# solved | mean time $[\mathrm{s}]$ | maximum time $[\mathrm{s}]$ |
| :--- | ---: | ---: | ---: | ---: |
| gr12 | 18 | 18 | 0.4 | 6.8 |
| gr14 | 21 | 21 | 85.5 | 2130.8 |

Table 5.9: Computational results for HCDSTP instances

## Chapter 6

## Implementation and parallelization

So far, this thesis has mostly concentrated on providing and proving mathematical results, as well as on formally describing and analyzing new algorithms. In this chapter, we enter the somewhat more mundane realms of implementation and algorithm engineering issues. While the theoretical algorithm design is usually the far more decisive issue, a state-of-the-art implementation cannot afford to ignore the realities of modern computer architecture - such as CPU cache. Additionally, the ubiquity of multiple CPU cores and even intra-core parallelism in modern computer systems strongly suggests the use of parallel algorithms and implementations.

This chapter offers an overview of the software implementations done for this thesis, and furthermore provides algorithm engineering details for key components. Finally, we describe the, shared- and distributed-memory, parallel extensions of the newly developed solver. We assume some familiarity with the basics of computer architecture and programming. For an excellent introduction to computer architecture and related concepts, the reader is referred to the book by Bryant and O'Hallaron (2015).

### 6.1 SCIP-Jack

This section provides some conceptual insight in, and background on the Steiner tree solver developed as part of this thesis: SCIP-JACK.

### 6.1.1 The origins

SCIP-Jack derives its name from two other solvers: SCIP and Jack-III.
SCIP is a non-commercial solver for MIP, mixed-integer nonlinear programming, and constraint integer programming. Additionally, SCIP can be used as a customized branch-and-cut framework. The plugin-based design of SCIP provides a convenient method of extension, and allows for a strong control of the solving process. For more information on SCIP see Achterberg (2009); Gamrath et al. (2020).

Jack-III is a solver for (classic) SPG introduced by Koch and Martin (1998). It uses a branch-and-cut approach based on the bidirected cut formulation ( $B D C u t$ ). Furthermore, it comprises several preprocessing techniques and heuristics. At the time of publishing, Jack-III was able to solve all problem instances that had hitherto been
discussed in the literature to optimality. Furthermore, JACK-III outperformed several previously introduced SPG solvers, often by a wide margin (although no comparison with solver by Duin (1993) is given in the literature). However, the solver introduced by Polzin and Daneshmand (2002) four years later, drastically outperforms JackIII, solving significantly more instances and being often more than three orders of magnitude faster on the remaining non-trivial ones, see Polzin (2003).

Prior to this thesis, an early version of SCIP-JACK was borne out the integration of JACK-III into SCIP. In this process, the hand-tailored branch-and-bound routine, and the cutting plane management of JACK-III were replaced by those of SCIP. The author of this thesis was the main developer of this early SCIP-JACK version, but significant contributions were made by Gerald Gamrath, Thorsten Koch, Stephan J. Maher, and Michael Winkler. Notably, Thorsten Koch was the main developer of Jack-III.

However, more than 95 percent of the source code in the current version of SCIPJACK has been newly implemented as part of this thesis (by the author of this thesis).


Figure 6.1: Depiction of a skipjack tuna, see Wikipedia (2021).

### 6.1.2 The solver

SCIP-JACK encompasses more than 110000 lines of code and is written entirely in C. ${ }^{21}$ Besides the parameters of SCIP, the user is given more than a hundred Steiner tree specific parameters to control the solving behavior of SCIP-Jack. For reading Steiner tree instances, both the widely used .stp file format (Koch et al., 2001) and the .gr (Bonnet and Sikora, 2019) file format are supported. The final optimal solution, as well as any intermediary feasible solution, can be obtained by the user in the DIMACS format (DIMACS, 2015).

The use of a general MIP solver renders the model to be solved highly pliant, which is of central importance to the generic solving approach employed in this thesis. Furthermore, a general framework allows one to avoid the tedious implementation of generic components such as branch-and-bound, and cut management. In particular, MIP solvers usually provide a filtering of cuts to improve numerical stability and efficacy. SCIP, being freely available for academic research and providing the above described features, seems a natural choice. The plugin-based structure of SCIP also makes it possible to readily integrate our various algorithmic components within a branch-and-cut method.

[^15]On the downside, many native methods of SCIP are prohibitively slow or memory consuming for large or even medium-scale Steiner tree instances. This behavior can be attributed to the fact that MIP instances that are commonly used for benchmarking are much smaller than typical Steiner tree instances. As a consequence, we perform the Steiner tree specific presolving before initializing the problem in SCIP. Otherwise, many large-scale Steiner tree instances covered in this thesis would not fit into main memory on our default machines. Additionally, most native, general-purpose algorithms of SCIP such as non-trivial presolving, domain propagation, primal heuristics, conflict analysis, or generic cutting planes are deactivated in SCIP-JACK. Besides being too slow, most of these algorithms are (empirically) mostly not effective for Steiner tree instances. A notable exception are $\{0,1 / 2\}$-cuts (Caprara and Fischetti, 1996), which are usually computed in short time, and which are reasonably effective for some Steiner tree instances.

### 6.2 Implementation details of key components

This section contains a selection of (auxiliary) algorithms, data structures, and implementation aspects that are of central importance to the practical performance of SCIP-Jack. We will mostly use the notion of (one-dimensional) arrays instead of vectors. Further, we will use zero-based indexing unless noted otherwise. Given an array $A$ of size $n$, the $i$-th entry with $i \in\{0,1, \ldots, n-1\}$ of $A$ will be referred to as $A[i]$.

### 6.2.1 Graph data structures

In the following, we describe different data structures for sparse graphs used in SCIPJack. While SCIP-Jack also contains data structures for dense graphs, these are only used for (smaller) auxiliary graphs. The existence of multiple sparse graph data structures reflects the conflicting needs of fast (cache-efficient) access, and efficient adaptation to dynamic graph changes. In addition to the two data structures described in the following, SCIP-JACK also includes a fully dynamic graph data structure (i.e., with both edge insertion and deletion capability), which was already present in JACKIII, see Koch (1995). This data structure allows for the inclusion of an edge $\{v, w\}$ in $O(1)$, and its deletion in $O(|\delta(v)|+|\delta(w)|)$ time. However, the data structure is significantly less cache-efficient for static operations such as graph traversals. Thus, we use this data structure mostly in the context of node-replacement reduction methods, where we frequently have to both insert and delete edges. For more information on graph data structures and implementation aspects see Kepner and Gilbert (2011).

## Compressed sparse row

Compressed sparse row (CSR) is a standard format for storing sparse matrices, see e.g. Davis (2006). It has also been widely used for sparse graphs, see e.g. Kepner and Gilbert (2011). Although it is fairly simple, we discuss the CSR graph format in more detail in the following, since we will use several adaptations of this format thereafter. Given an undirected graph $G$, the CSR format can be used by applying it


Figure 6.2: Weighted graph.
to the incidence matrix of the bidirected equivalent of $G$. In the following, we describe the graph CSR format for a (possibly bi-) directed graph $(V, A)$ with arc weights $c$. Let $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}:=V$ and $\left\{a_{0}, a_{1}, \ldots, a_{m-1}\right\}:=A$. Let Starts be an array of size $n+1$, and Heads, Weights be arrays of size $m$. Set Starts $[0]:=0$ and define $\operatorname{Starts}[i]=\operatorname{Starts}[i-1]+\left|\delta^{+}\left(v_{i}\right)\right|$ for $i=1, \ldots, n$. For any vertex $v_{i} \in V$, the sub-array Heads $[\operatorname{Starts}[i], \operatorname{Starts}[i]+1, \ldots, \operatorname{Starts}[i+1]-1]$ stores all vertex indices of $N^{+}\left(v_{i}\right)$. I.e., for all $j$ with $v_{j} \in N^{+}\left(v_{i}\right)$, there is a $k \in\{\operatorname{Starts}[i], \operatorname{Starts}[i]+1, \ldots, \operatorname{Starts}[i+1]-1\}$ with Heads $[k]=j$. Equivalently, the sub-array Weights $[$ Starts $[i]$, Starts $[i]+1, \ldots, S t a r t s[i+$ $1]-1]$, stores the weights of the $\operatorname{arcs} \delta^{+}\left(v_{i}\right)$. We do not assume any order of the entries in Heads $[\operatorname{Starts}[i], \operatorname{Starts}[i]+1, \ldots, \operatorname{Starts}[i+1]-1]$.

For the undirected graph shown in Figure 6.2, a CSR representation can be written as follows.

- Starts: $[0,1,4,5,6]$
- Heads: [1, 0, 2, 3, 1, 1]
- Weights: [9, 9, 7, 12, 7, 12]


## Dynamic compressed sparse row

While allowing for cache-efficient access, the CSR format is ill suited for any graph changes, such as edge deletions. For this reason, we use a slightly modified data structure in settings where edge deletions are performed (so in particular during most of the reduction process). Instead of Starts, we keep two arrays Starts and Ends of length $n$. We set Starts $[0]:=0$ and define Starts $[i]:=\operatorname{Ends}[i-1]:=\operatorname{Starts}[i-$ $1]+\left|\delta^{+}\left(v_{i}\right)\right|$ for $i=1, \ldots, n-1$. Finally, we set Ends $[n-1]:=$ Starts $+\left|\delta^{+}\left(v_{n-1}\right)\right|$. Equivalent formats have aleady been suggested for storing the constraints matrix during LP presolving, see Elble (2010). Note that in the actual implementation we use the struct construct of the $C$ language to make sure that with each access to the row start of a vertex, also the row end pointer is being loaded into (L1) cache. We will refer to this extension of CSR as dynamic compressed sparse row (DCSR).

Deleting an arc $a=\left(v_{i}, v_{j}\right) \in \delta^{+}\left(v_{i}\right)$ can now be performed in $O\left(\left|\delta^{+}\left(v_{i}\right)\right|\right)$ as follows. Let $k \in\{\operatorname{Starts}[i], \operatorname{Starts}[i]+1, \ldots, \operatorname{Ends}[i]-1\}$ be the index with Heads $[k]=j$. Set Heads $[k]:=$ Heads $[E n d s[i]-1]$, and decrement Ends $[i]$; adapt Weights equivalently.

### 6.2.2 Bottleneck Steiner distances

Duin and Volgenant (1989b) show that the (SPG) bottleneck Steiner distance $s$ for all pairs of vertices can be computed in time $O(n(m+n \log n))$ and space $\Theta\left(n^{2}\right)$. However, even for (nowadays) medium-scale SPG instances with a few ten thousand vertices, both the run-time and the space are prohibitive. Thus, several authors have suggested to approximate $s(v, w)$. In the following, we suggest two new algorithms to approximate $s(v, w)$. The first algorithm approximates bottleneck Steiner distances such that the corresponding subgraph contains at least one terminal. The second algorithm covers the case of no intermediary terminals. The second algorithm can also easily be adapted for PCSTP and MWCSP.

## Distances with terminals

Polzin and Daneshmand (2001b) suggest the following procedure. Initially, compute to each non-terminal $v_{r}$ the (constant) $k \underline{d}$-nearest terminals $\underline{v}_{r, 1}, \ldots, \underline{v}_{r, k}$ (see Section 2.3.2). For any $v_{i}, v_{j} \in V \backslash T$, use the upper bound

$$
\begin{equation*}
\hat{s}\left(v_{i}, v_{j}\right):=\min _{a, b \in\{1, \ldots, k\}}\left\{\max \left\{\underline{d}\left(v_{i}, \underline{v}_{i, a}\right), s\left(\underline{v}_{i, a}, \underline{v}_{j, b}\right), \underline{d}\left(v_{j}, \underline{v}_{j, b}\right)\right\}\right\} \tag{6.1}
\end{equation*}
$$

on $s\left(v_{i}, v_{j}\right)$. Empirically, that bound has shown to be a tight approximation of $s$. The $\hat{s}$ values are not pre-computed, in order to preserve an $O(m+n \log n)$ bound. Also, in most cases not all of the $k^{2}$ possible combinations have to be examined. For example, if $\max \left\{\underline{d}\left(v_{i}, \underline{v}_{i, 1}\right), \underline{d}\left(v_{j}, \underline{v}_{j, 1}\right)\right\}>c\left(\left\{v_{i}, v_{j}\right\}\right)$, the edge elimination test for $\left\{v_{i}, v_{j}\right\}$ can already be aborted; see Polzin and Daneshmand (2001b) for more such conditions.

For constant $k \in \mathbb{N}$, Duin and Voss (1997) show how to compute the $k \underline{d}$-nearest terminals to all vertices in $O(m+n \log n)$. Thus, in the following we concentrate on efficiently computing the exact bottleneck Steiner distances between pairs of terminals. We suggest a new approach that requires a preprocessing of $O(m+n \log n)$ time and space, and constant time for each query. By definition, for any $t, u \in T$, the bottleneck Steiner distance $s(t, u)$ corresponds to the (standard) bottleneck distance between $t$ and $u$ in the distance network $D_{G}(T)$. Let $Y$ be a minimum spanning tree in $D_{G}(T)$. One notes that $s(t, u)$ is equal to the maximum cost of an edge on the path between $t$ and $u$ in $Y$. Furthermore, Mehlhorn (1988) shows that $Y$ can be built in $O(m+n \log n)$ —without constructing $D_{G}(T)$ beforehand. See also Floren (1991) for a simpler and practically more efficient realization.

Given a minimum spanning tree $Y$ in $D_{G}(T)$, one can trivially compute $s(t, u)$ for any terminals $t, u$ in $O(|T|)$. However, already for the (standard) edge elimination test based on (6.1), this approach is rather slow in practice. Polzin and Daneshmand (2001b) suggest to compute the bottleneck Steiner distance for pairs of adjacent terminals by creating an instance of the offline lowest common ancestor (LCA) problem, see Tarjan (1979). This approach runs in $O(q+|T| \log |T|)$ time for $q$ queries. However, all queries need to be known beforehand, which essentially requires to run the bottleneck Steiner distance edge elimination algorithm that uses (6.1) twice. Furthermore, such an offline algorithm is prohibitive for the extended reduction techniques discussed in Section 2.4. Note that there are also online algorithms for LCA that
require merely linear preprocessing time, and constant time for each query, but they are not competitive in practice, see Fischer and Heun (2006).

Similar to Polzin and Daneshmand (2001b), we essentially build an LCA instance first. However, this instance only has half as many nodes as that used by Polzin and Daneshmand (2001b). Let $\left\{e_{1}, \ldots, e_{|T|-1}\right\}$ be the edges of $Y$, and assume that $d\left(e_{i}\right) \leqslant d\left(e_{j}\right)$ for any $i, j$ with $1 \leqslant i<j \leqslant|T|-1$. Next, we build a binary tree $B$ with vertices $V_{B}=\left\{b_{1}, \ldots, b_{|T|-1}\right\}$, and an initially empty edge set $E_{B}$. Define $f: T \mapsto V_{B} \cup\{$ null $\}$ initially by $f(t):=$ null for all $t \in T$. For all $i=1, \ldots,|T|-1$ proceed as follows. For all (two) $t \in e_{i}$ : If $f(t)=$ null, set $f(t):=b_{i}$. Otherwise, add an edge between the root of the subtree that contains node $f(t)$ and $b_{i}$. Further, make $b_{i}$ the root of this new subtree. Finally, define $p: B_{V} \mapsto \mathbb{Q} \geqslant 0$ by $p\left(b_{i}\right):=d\left(e_{i}\right)$ for all $b_{i} \in V_{B}$.

The above algorithm to construct $B$ can be realized in $O(|T| \log |T|)$ by initially sorting the edges of $Y$, and using a union-find data structure (of size $2|T|-1$ ). To see the benefit of $B$, let $t, u \in T$ with $t \neq u$. Further, let $b_{i}$ be the lowest common ancestor of $f(t)$ and $f(u)$ in $B$. One notes that $p\left(b_{i}\right)=s(t, u)$.

Observing that we are not interested in the lowest common ancestor itself, but in its value $p$, we proceed as follows. First, we use the Euler tour technique by Tarjan and Vishkin (1984) on $B$. We consider $B$ as a bidirected tree and traverse its arcs in a DFS fashion starting from the root. Each time a node $b_{i}$ is visited, append the value $p\left(b_{i}\right)$ to an initially empty array $A$. For simplicity, we assume $A$ to be 1-indexed. Finally, $A$ has size $2|T|-3 .{ }^{22}$ Let $g: B_{v} \mapsto\{1, \ldots, 2|T|-3\}$ such that $g\left(b_{i}\right)$ is the first index $A$ at which $b_{i}$ has been visited during the Euler tour. Thus, in particular $A\left[g\left(b_{i}\right)\right]=p\left(b_{i}\right)$. Define $h:=g \circ f$. Next, we use the sparse table technique, see e.g. Bender et al. (2005), to efficiently find the maximum of any interval of $A$. Initially, we precompute the maximum of all intervals whose length is a power of 2 . Let $x:=|A|$. Let M be a (1-indexed, 0 -indexed) two dimensional array defined recursively by $M[i][0]:=A[i]$ for $i \in\{1, \ldots, x\}$, and $M[i][j]:=\max \left\{M[i][j-1], M\left[i+2^{j-1}\right][j-1]\right\}$ for every $i \in\{1, \ldots, x\}$ and any $j \in\{1, \ldots,\lfloor\log n\rfloor\}$. The idea is to exactly cover any interval of $A$ by two overlapping entries of $M$. Now, let $t, u \in T$ be distinct vertices such that $h(t) \leqslant h(u)$. If $h(t)=h(u)$, then $s(t, u)=d(t, u)=A[h(t)]$. Otherwise, define $i:=h(t), j:=h(u)$, and $z:=\lfloor\log (j-i)\rfloor$. It holds that

$$
\begin{equation*}
s(t, u)=\max \left\{M[i][z], M\left[j-2^{z}+1\right][z]\right\} . \tag{6.2}
\end{equation*}
$$

Concerning implementation, one notes that $z$ is equal to the most significant bit of $(j-i)_{2}$. Modern $C$ compilers provide intrinsics for this operation (if $j-i>0$ ). However, we have decided for a fully portable solution and use a table look-up instead.

Finally, we note that if the number of terminals is not more than 100, we do not use the above approach, but compute and store the Steiner bottleneck distance between all pairs of terminals. Computing these distances by an offline variant of the above approach takes $O\left(|T|^{2}+m+n \log n\right)$ time and $\Theta\left(|T|^{2}\right)$ space.

[^16]
## Distances without terminals

To also cover Steiner bottleneck distances that correspond to paths that do not include any terminals, several authors, e.g. Hwang et al. (1992); Polzin and Daneshmand (2001b), suggest to run a limited version of Dijkstra's algorithm from both endpoints of the edge to be eliminated. However, such a test can be considerably time consuming in practice. Here, we describe a more efficient alternative. Additionally, the proposed heuristic also takes the implied profit of vertices into account, and thus even serves to approximate the implied bottleneck Steiner distance.

Starting from a vertex $v_{0}$, the heuristic tries to delete several edges of $\delta\left(v_{0}\right)$ at once. Initially, define a distance array $\tilde{d}$ and a predecessor array pred as follows. For all $u \in V \backslash\left(\left\{v_{0}\right\} \cup N\left(v_{0}\right)\right): \tilde{d}[u]:=\infty$ and $\operatorname{pred}[u]:=$ null. For all $u \in N\left(v_{0}\right)$ : $\tilde{d}[u]:=c\left(\left\{v_{0}, u\right\}\right)$ and $\operatorname{pred}[u]:=v_{0}$. Moreover, set $\tilde{d}\left[v_{0}\right]:=0$ and $\operatorname{pred}\left[v_{0}\right]:=v_{0}$. Finally, set $Q:=N\left(v_{0}\right)$.

While $Q \neq \emptyset$ let $v:=\arg \min _{u \in Q} \tilde{d}[u]$. For all $\{v, w\} \in \delta(v)$ proceed as follows. First, set $p_{v w}:=\max \left\{p^{+}(v,\{e\}) \mid e \in \delta(v): w, \operatorname{pred}[v] \notin e\right\}$. If

$$
\begin{equation*}
\tilde{d}[v]+c(\{v, w\})-\min \left\{c(\{v, w\}), p_{v w}, \tilde{d}[v]\right\}<\tilde{d}[w], \tag{6.3}
\end{equation*}
$$

then set $\tilde{d}[w]$ to the left hand side of (6.3) and add $w$ to $Q$. Further, set pred $[w]:=v$. If (6.3) holds and $w \in N\left(v_{0}\right)$, then we can delete edge $\{v, w\}$.

Note that on the left hand side of (6.3) a possibly smaller value than $p_{v w}$ is subtracted to prevent the algorithm from circling. Furthermore, note that a terminal might be used more than once for a profit calculation $p_{v w}$ on one walk. However, since we subtract only a bounded part of the profit from the distance value in (6.3), the algorithm still works correctly. Note that one can extend the algorithm to cover the case of equality for edge deletion. In this case, one also needs to check whether (6.3) is satisfied with equality if $w \in N\left(v_{0}\right)$. In practice, one should bound the maximum number of visited edges. Additionally, one can abort the algorithm if $\min _{u \in Q} \tilde{d}[u]>\max _{e \in \delta\left(v_{0}\right)} c(e)$.

### 6.2.3 Extended reduction techniques

Initially, the reader is reminded that extended reduction techniques have only been implemented for SPG in this thesis. Thus, this section covers only the SPG. We note, however, that at least a partial extension of these methods to PCSTP and MWCSP is conceptually straightforward. We use a DFS strategy for the extension, see also Duin (2000). In this way, the re-use of intermediary results, such as MSTs, is simplified. Furthermore, we use the following criteria for the subroutines Promising and Truncate. Depending on the size of the instance, we bound the maximum depth of the extension, and the maximum number of leaves allowed for an extension tree. Furthermore, we bound the maximum degree of any leaf along which we extend. No extensions along terminal leaves are performed.

In the following, we give details of several algorithms and data structures. Due to the complexity of the implementation, which encompasses more than 20000 lines
of $C$ code, we need to be quite selective. Thus, we only focus on the most important components.

## Storage and bookkeeping aspects

For simplicity, we restrict the following discourse to the extension of a single edge $\left\{v_{0}, v_{1}\right\}$ from the endpoint $v_{1}$. Recall that we perform extensions only in a DFS manner. I.e., we only extend the current extension tree from vertices that are at maximum distance from $v_{0}$ with respect to the number of edges. Figure 6.3 shows an exemplary extension tree in bold for the edge $\left\{v_{0}, v_{1}\right\}$. Edges that are not part of the given extension tree, but need to be considered in other extension trees are dashed. Further extensions of the bold extension tree are only possible from vertex $v_{7}$.

We use the following terms for describing the extension process. Let $Y$ be an extension tree of $\left\{v_{0}, v_{1}\right\}$, and $v$ be a leaf of $Y$. We define the depth of $v$ in $Y$ as the number of edges on the path from $v$ to $v_{1}$ in $Y$. Each time we extend the current tree $Y$ from a leaf $v$ of depth $i-1$, we call all $\bar{L}(v, Y):=N(v) \backslash V(Y)$ the $i$-th full extension level. We call the subset of $\bar{L}(v, Y)$ that is used for the extending $Y$ the $i$-th partial extension level, denoted by $L(v, Y)$. For the extension tree shown in Figure 6.3, the set $\left\{v_{2}, v_{3}, v_{4}\right\}$ is the 1 st full extension level, and set $\left\{v_{2}, v_{4}\right\}$ the 1 st partial extension level. We say that $v$ is the root of both the partial extension level $L(v, Y)$ and the full extension level $\bar{L}(v, Y)$.


Figure 6.3: Illustration of extension from a single edge. The dashed edges are not part of the currently considered extension tree.

Throughout the extension of $\left\{v_{0}, v_{1}\right\}$, we store several auxiliary results, to avoid their continuous recomputation; most importantly, the bottleneck Steiner distances between leaves of the current extension tree, and the corresponding MSTs on the complete graphs induced by those leaves. In the following, we exemplarily describe the storage procedure for the bottleneck Steiner distances.

We call bottleneck Steiner distances between vertices that are in the same full extensions level horizontal, and bottleneck Steiner distances between vertices that are
in the different full extensions levels vertical. For each vertex of a full extension level we store the (vertical) distances to all leaves of the current extension tree that are of smaller depth than the extension level. For example, for the 2nd full extension level, consisting of the vertices $v_{5}$ and $v_{6}$, we store the (vertical) bottleneck Steiner distances from both $v_{5}$ and $v_{6}$ to the vertices $v_{0}$ and $v_{2}$. For reasons of cache-efficiency, we keep all vertical and all horizontal bottleneck Steiner distances consecutively in one array, respectively. The distances can be efficiently queried by the use of a compressed system similar to a nested CSR format. For the horizontal distances we store for each vertex of a given full extension level the distances to all of its right siblings. E.g., in Figure 6.3 we store for vertex $v_{2}$ the distances to $v_{3}$ and $v_{4}$. For each vertex we keep the start index of the horizontal distances to its right siblings. These start indices are also kept continuously. For each full extension level we keep the index where the first of its start indices are stored.

Similarly, for each vertex of a full extension level, we keep the start index of its vertical distances. The latter are sorted according to the index of the corresponding ancestor leaf. E.g., for vertex $v_{5}$ we store the distances to $v_{0}$ and $v_{2}$. Note that the order of the ancestor leaves of any full extension level stays the same as long as the level is active. Again, we use the same nested start pointer storage already used for the horizontal distances.

As another speed-up method, we only reserve the spaces for the vertical and horizontal distances. The actual computation happens once a distance is queried for the first time. In this way, we avoid the computation of distances that are never used (because the search along the corresponding full extension level is truncated).

## Computing and recomputing MSTs

Another important aspect is the storage of the MSTs on the complete graph induced by the current tree together with a pruning set. Note that while the use of minimum Steiner trees instead of MSTs is stronger, their computation is naturally more expensive. Therefore, we only use (not necessarily optimal) Steiner trees for extension trees with three leaves.

A classic result from Spira and Pan (1975) shows that it is possible to adapt an MST in $O(n)$ time after the insertion of a new vertex (and up to $O(n)$ edges). We use a different algorithm from Chin and Houck (1978), which also works in $O(n)$, but is practically more efficient than the approach by Spira and Pan (1975). Note that the deletion of a vertex is more expensive, taking $O\left(n^{2}\right)$ time. Thus, we only modify already computed MSTs by adding vertices, and never by deleting.

We store the following MSTs. First, before we add a new full extensions level, we compute and store the MST on the (complete) graph induced by all leaves of the extension tree with the new full level and without the root of the new full level. Second, whenever we add a new partial extension level, we compute and store the MST on the graph induced by all leaves of the extension tree including the new level. In this way, we can efficiently build new MSTs by extending already existing ones.

Furthermore, we can use this MST storage system together with our data structure for keeping the bottleneck Steiner distances to efficiently compute MSTs for partially
contracted extensions trees: Consider the partial extension level $L(v, Y)$ such that $v$ has the largest depth in $Y$. Store for each leaf $w$ of $Y$ that is not in $L(v, Y)$ the minimum among the bottleneck Steiner distances between $w$ and a vertex in $L(v, Y)$. Note that these distances can simply be queried from the vertical distance storage for $\bar{L}(v, Y)$. Consider the vertices in $L(v, Y)$ as a single contracted node and compute a MST on the complete graph induced by this node together with the remaining leaves of $Y$-this MST can be readily obtained by extending an already computed one. If we cannot rule out $Y$ with this MST, we proceed to the next lower partial extension level and implicitly contract both levels into a single node. Note that we just need to update the already computed distances from the remaining leaves of $Y$ to this contracted node. We proceed in this way until all partial extension levels are contracted.

Finally, yet another advantage of the algorithm by Chin and Houck (1978) is the possibility to keep the MST to be extended in CSR format. This feature allows us to store several MSTs consecutively in a nested CSR format, similarly to the storage of the bottleneck Steiner distances described in the previous section.

## Computing and recomputing bottleneck Steiner distances

As described in Section 6.2.2, approximate bottleneck Steiner distances along at least one terminal can be queried in constant time. However, as already observed by Polzin and Daneshmand (2002), these approximate values $\hat{s}$ lead to significantly worse results than the exact bottleneck Steiner distances for extended reduction tests. The authors suggest to use the value $\min \{\hat{s}(v, w), d(v, w)\}$ for vertices $v, w$ instead. We follow this suggestion. Furthermore, just as Polzin and Daneshmand (2002), we do not compute all-to-all (standard) distances, but compute and store for each vertex $v$ the distances to a constant number of nearest vertices. We sort these distances according to the indices of the corresponding end vertex of the shortest path. In this way, any (contained) distance can be readily queried by a binary search.

An equally important issue is the recomputation of the bottleneck Steiner distances after a graph modification. First, one can show that node replacements do not change the bottleneck Steiner distances. Thus, we only need to handle the deletion of edges. For the (standard) distances from each vertex to a constant number of nearest vertices, we proceed as follows. For each edge $e$ we store all vertices $v$ such that $e$ is used in one of the (constant number of) shortest path distances stored for $v$. If edge $e$ is deleted, we recompute the shortest path distances for all these $v$. In fact, we do so in a lazy fashion, i.e., we mark the vertices and only recompute the distances once they are required. Additionally, we keep state counters for all $v$ to make sure that a vertex is not marked after the deletion of an edge $e$ even though its shortest paths distances have already been updated and do not include $e$ anymore.

The recomputation of bottleneck Steiner distances along terminals is more involved. Recall that we store for each vertex $v_{i}$ the closest $k$ terminals $\underline{v}_{i, 1}, \underline{v}_{i, 2}, \ldots, \underline{v}_{i, k}$. Furthermore, we store an MST for the distance graph $D_{G}(T)$. If an edge of the distance graph is deleted, we simply recompute the MST. Preliminary experiments have shown that such a deletion rarely happens and that the computing time is
negligible. In contrast, the distances to the $k$ closest terminals change, empirically, with almost every edge deletion. Thus, a complete recomputation is prohibitive, and a repairment algorithm is required. In the following, we describe the repairment of the distances to the closest terminal. This procedure is related to the reconstruction of Voronoi regions in the context of local-search heuristics described in Uchoa and Werneck (2010). The recomputation of the distances for the $k$ 'th nearest terminals with $k>1$ is significantly more technical, and is therefore not presented here.

For each vertex $v_{i} \in V \backslash T$ we store the following information

$$
-\operatorname{base}\left[v_{i}\right]:=\underline{v}_{i, 1} ;
$$

$-\operatorname{pred}\left[v_{i}\right]$ : the last vertex before $v_{i}$ on a shortest path from base $\left[v_{i}\right]$ to $v_{i}$;

$$
-\operatorname{dist}\left[v_{i}\right]:=d\left(v_{i}, \underline{v}_{i, 1}\right) .
$$

Let $\{v, w\}$ be the edge to be deleted. Assume $\operatorname{pred}[w]=v$ (which implies $\operatorname{pred}[v] \neq w$ ). Note that if both $\operatorname{pred}[w] \neq v$ and $\operatorname{pred}[v] \neq w$, we are already finished. First, we perform a graph traversal from $w$ as follows: Initially, we set $U:=\{w\}, Q:=\{w\}$. While $U \neq \emptyset$, we remove any $u$ from $U$ and proceed as follows: For all $\{u, q\}$ such that $\operatorname{pred}[q]=u$, set base $[q]:=$ null, $\operatorname{pred}[q]:=$ null, $\operatorname{dist}[q]:=\infty$. Further, add $q$ to $U$ and $Q$.

Second, for each $q \in Q$ proceed as follows. For all $\{u, q\}$ with $u \notin Q$. If $\operatorname{dist}[u]<$ $\operatorname{dist}[q]+c(\{u, q\})$, set $\operatorname{dist}[u]:=\operatorname{dist}[q]+c(\{u, q\})$, base $[q]:=$ base $[u]$, and pred $[q]:=u$. If after this processing still $\operatorname{pred}[q]=$ null holds, remove $q$ from $Q$. Finally, run a slightly modified version of Dijkstra's algorithm with all vertices of $Q$ in the initial priority queue, and with distance values dist. During the computation of Dijkstra's algorithm we also update the base values.

### 6.2.4 Separation algorithms

Since all problem classes described in this thesis are formulated (after suitable transformations) as some variant of the $D C u t$ formulation, a major algorithmic component of our solver is the separation algorithm for the constraints (1.3). We note that additional cuts, such as the flow-balance constraints, can be easily separated. Thus, we focus on the constraints (1.3) in the following.

It is well known that cut constraints such as (1.3) can be separated by using a maximum-flow algorithm-based on the classic max-flow/min-cut theorem. One merely needs to regard the values of the LP solution as capacities and compute a maximum-flow from the root $r$ to each terminal $T \backslash\{r\}$. In Hao and Orlin (1992) an adaptation of a preflow-push algorithm is introduced that allows one to solve maximum-flows from a designated source to several other sink nodes with a runtime similar to that of a single maximum-flow computation. In Koch and Martin (1998) this algorithm is used for separating the constraints (1.3). Koch and Martin (1998) furthermore suggest to compute cuts of small cardinality by adding a small (additional) capacity $\varepsilon>0$ to all arcs. While this approach deteriorates the run-time of computing minimum cuts, the time required for re-optimizing the linear program is often notably decreased, since the constraint matrix contains fewer non-zeroes.

For this thesis we have implemented a maximum-flow algorithm for separating (1.3) with the modifications described above. We note that this algorithm is usually several times faster than the implementation from Koch and Martin (1998). Just like Koch and Martin (1998), we use a push-relabel algorithm with additional heuristics-in particular we use the heuristics described in Cherkassky and Goldberg (1997). If we merely consider the run-time for computing the first maximum-flow, we observe a considerable speed-up (of up to an order of magnitude) as compared to the widely used push-relabel implementation from Cherkassky and Goldberg (1997) ${ }^{23}$. We note, however, that this speed-up holds in the context of Steiner tree separation problems, and a different behavior might be observed on other graphs. The speed-up can be attributed to a careful implementation, and the use of cache-efficient data structures. However, we also note that empirically only a smaller part of the overall separation time is spent in computing the first maximum-flow-even though the theoretical run-time for computing this first flow is the same as that for computing all flows.

### 6.3 Parallelization: Building Steiner trees on 43000 cores

Parallel computing has become mainstream in the last decade. Also for Steiner tree problems there have been various publications considering parallel algorithms, see e.g. Bezenšek and Robič (2014); Ljubic (2020) for overviews. However, most of the reported computational results are obtained on test-sets that are considered too trivial to be included in this thesis (almost all of these instances can be solved in fractions of a second by SCIP-JACK). And even on these simple test-sets often enough no optimal solution is found, see Bezenšek and Robič (2014). Most of these publications concentrate on simple heuristics, which allow for good scalability, but are no match for state-of-the-art Steiner tree algorithms. On the other hand, the intricacy of state-of-the-art Steiner tree algorithms poses far more challenges for an efficient parallelization. Also, the usage of the Simplex algorithm, which is notoriously hard to efficiently parallelize, is problematic.

This section concentrates on the parallelization of several of the Steiner tree algorithms described in this thesis. We consider both shared- and distributed memory parallelizations.

### 6.3.1 Parallelizing heuristics and reduction methods

In the following, we describe the parallelization of several reductions methods and heuristics. The implementations are all shared-memory, and are realized with OpenMP (de Supinski et al., 2018). All parallelizations are still in an experimental stage, and not enough methods have been parallelized yet to obtain a significant parallel speed-up for most instances. Thus, we do not provide computational results in this section. Still, a short description of these methods is given because they open a promising route for further development.

One observes that most primal heuristics used in this thesis employ some version of the shortest-path heuristic described in Section 2.5.1. We always run the shortest-

[^17]path heuristic from several distinct start vertices-to increase the solution quality. Thus, a simple, so-called embarrassingly parallel, approach is to distribute these computations among the available threads. Using parallelization within a single run of the shortest-path heuristic does not seem promising, because of the short run-times, which cannot compensate the parallelization overhead. Since communication between the threads is restricted to the update of the best incumbent solution (if necessary), our embarrassingly parallel scheme scales quite well up to a handful of threads (say 8 or 16). Of course, the number of threads that can be efficiently employed is bounded by the number of distinct start vertices used by the shortest-path heuristic.

A corresponding, embarrassingly parallel, scheme could be employed for running dual-ascent in parallel from several root nodes-and store the lower bounds and reduced costs for each run. In this context, we note that Drummond et al. (2009) describe a sophisticated distributed parallelization of the dual-ascent heuristic. However, since our sequential implementation of dual-ascent is quite fast on most benchmark instances, any internal parallelization does not seem promising.

Concerning the parallelization of reduction techniques, one notes that most methods in this thesis loop over all edges or vertices, and check whether eliminations, contractions, or replacements are possible. If such an operation on a single vertex or edge does not change the validity of other reductions, we again obtain an embarrassingly parallel scheme: One simply needs to distribute all edges (or nodes) among the available threads. Unfortunately, that is not the case for most reduction methods, in particular not for the most time-consuming ones. On the other hand, communicating graph changes on the fly among the threads is prohibitive due to the short run-times of the individual checks. Thus, we do not apply any graph changes, but rather let each thread collect all possible reductions together with some reduction proof. For example, in the edge elimination test described at the end of Section 6.2.2, we store for each edge that could be eliminated, the corresponding path between its end points. Once all threads have become idle, we check sequentially for each of the stored edges whether the corresponding (alternative) path is still intact. If that is the case, we eliminate the edge. We sort the edges to be checked for elimination in non-descending order according to the number of alternative paths (needed for the elimination of other edges) in which they are contained. In particular, we first delete those edges that are not used in any alternative paths for other edges.

A similar scheme of reduction proofs can be used for extended reduction techniques. In this case, one can store for each reduction candidate the extension vertices that were used to rule it out. Once all threads have become idle, one only checks the extensions along these vertices-which are in general exponentially fewer extensions than in the original check.

### 6.3.2 Parallelizing branch-and-bound

Another seemingly promising candidate for parallelization within SCIP-JACK is the branch-and-bound search. However, most Steiner tree instances are solved at the root node of the branch-and-bound (B\&B) tree, or even in preprocessing. Still, for several notoriously hard SPG instances many branching nodes are created-and those hard problems are also natural candidates for parallelization. In the following, we will concentrate on solving such hard instances by parallelizing the B\&B search of SCIP-JACK, and using the computational power provided by supercomputers with thousands of CPU cores. This section is joint work with Yuji Shinano.

## The framework

For parallelizing the branch-and-bound search we use the Ubiquity Generator Framework (UG) (Shinano et al., 2016), a software package to parallelize branch-and-bound based solvers - for both shared- and distributed-memory environments. More precisely, we use the software library included in UG for parallelizing extensions of SCIP. Usually, it is possible to employ this UG software library by adding only a small amount of glue-code (typically 100-200 lines). However, several idiosyncrasies of SCIP-JACK (such as the preliminary use of reduction techniques) required to extend both SCIP-JACK and UG. In the following, we briefly describe UG, and go on to introduce the features newly added for parallelizing SCIP-Jack. For more details see Shinano et al. (2019b).

UG implements a Supervisor-Worker load coordination scheme, see e.g. Ralphs et al. (2018). Importantly, Supervisor functions make decisions about the load balancing without actually storing the data associated with the B\&B search tree. In UG, the Supervisor is called LoadCoordinator (LC) and the Workers are called ParaSolvers. The B\&B search tree data is managed by the ParaSolvers. The terminal nodes (subproblems) of the B\&B search tree in the ParaSolvers are sent on demand to the LC; a set of subproblems in the LC works as a buffer to ensure subproblems are available to idle ParaSolvers as needed.

During the $\mathrm{B} \& \mathrm{~B}$ process, SCIP-JACK selects a non-terminal vertex of the problem instance to be rendered a terminal in one $\mathrm{B} \& \mathrm{~B}$ child node and to be excluded in the other child. These two operations are modeled in the underlying IP formulation by including one additional constraint. This procedure could not be used in previous versions of UG since branching on constraints was not supported. Therefore, a new feature for transferring branching constraints has been added to UG

A distinguishing feature of UG is the layered presolving, in which $\mathrm{B} \& \mathrm{~B}$ tree nodes are transferred to the other ParaSolvers recursively and additional presolving is performed on the subproblems. Default MIP presolving realized in SCIP works without any additional code in this layered scheme. However, SCIP-JACK performs presolving before it formulates the subproblem as an IP. In order to realize this presolving, a callback to initialize the transferred subproblem has been added to UG. To retain previous graph based branching decisions, UG transfers the branching history together with each subproblem, enabling SCIP-JACK to change the underlying graph (by adding terminals and deleting vertices). Additionally, whenever a subproblem
has been transferred, SCIP-JACK performs aggressive reduction routines to reduce the (modified) problem further, and translates the reductions into variable fixings by means of Proposition 2.33.

## Computational results on supercomputers

Initially, we point out that all results reported in the following were obtained with previous versions of SCIP-JACK, due to resource constraints. We used two supercomputers. The first one (ISM) is a HPE SGI 8600 with 384 compute nodes, with each node consisting of two Intel Xeon Gold 61543.0 GHz CPUs ( 18 cores $\times 2$ ) sharing 384 GB of memory, and an Infiniband (Enhanced Hypercube) interconnect. The other (HLRN III) is a Cray XC40 with 1872 compute nodes, each node consisting of two 12-core Intel Xeon IvyBridge/Haswell CPUs sharing 64 GiB of RAM, and with an Aries interconnect.

Due to resource constraints, we could only attempt to solve a few instances on the supercomputers. The best (and partly optimal) bounds obtained for these instances are shown in Table 6.3. We also report the best previously known primal bound for each instance. In the following, we give more insight into the solution process with UG/SCIP-JACK on a supercomputer. We provide details for one particular instance solved to optimality, and for one instance for which the best known primal bound could be improved.

We start with the PUC instance hc9p, which could be solved for the first time to optimality - by five restarted runs and by using up to 24576 cores. Table 6.1 shows for each run: the supercomputer used, the computing time in seconds (racing time is shown in parentheses), the idle time ratio for all ParaSolvers, the number of B\&B nodes transferred to ParaSolvers, primal and dual bounds, primal-dual gap, the number of $\mathrm{B} \& \mathrm{~B}$ nodes generated, and the number of open $\mathrm{B} \& \mathrm{~B}$ nodes. For each run the initial values are shown in the upper row, and the final values are shown in the lower row.

The initial primal solution to hc9p was found by a previous run of UG/SCIPJack. One notes that the final dual bound of a run is sometimes slightly different from the initial one in the following run. This means that the dual bound in the previous run was updated after the final checkpoint. One also observes that the number of open B\&B nodes decreases strongly at restart, since the checkpointing mechanism only saves essential sub-tree roots. For example, run 1.1 ends up with 1257112 open B\&B nodes, but run 1.2 starts with 15 open ones. This means that only $15 \mathrm{~B} \& \mathrm{~B}$ sub-tree roots existed at the end of run 1.1 and the other sub-tree roots were descendants of one of the $15 \mathrm{~B} \& \mathrm{~B}$ nodes. Notably, the idle time ratios for all runs are small, which indicates that the supercomputers are used efficiently.

Next, we describe the solution process for the PUC instance hc11p. We used two different strategies. First, a long, but small-scale run. Second, a short, but large-scale run. Statistics are given in Table 6.2. Run 1 on the ISM supercomputer generated 11 new incumbent solutions, with the best objective value being 119297 . In the followings runs 2.1 and 2.2 we started with the best of these solutions. Run 2.2 was conducted from the checkpoint file of run 2.1 , since run 2.1 could not improve the

| Run | Computer | Cores | $\begin{aligned} & \text { Time } \\ & \text { (sec.) } \end{aligned}$ | Idle <br> (\%) | Trans. | Primal bound (Upper bound) | Dual bound (Lower bound) | Gap <br> (\%) | Nodes | Open nodes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.1 | ISM | 72 | $\begin{array}{r} \hline \hline 604,796 \\ (317) \\ \hline \end{array}$ | $<0.3$ | 738 | 30,242.0000 | 29,879.3721 | 1.21 | 0 | 0 |
|  |  |  |  |  |  | 30,242.0000 | 30,058.9366 | 0.61 | 110,012,624 | 1,257,112 |
| 1.2 | ISM | 2,304 | 604,794 | < 1.5 | 979,695 | 30,242.0000 | 30,058.7930 | 0.61 | 0 | 15 |
|  |  |  |  |  |  | 30,242.0000 | 30,102.7556 | 0.46 | 3,758,532,600 | 723,167 |
| 1.3 | HLRN III | 24,576 | 86,336 | < 1.7 | 8,811,512 | 30,242.0000 | 30,102.6645 | 0.46 | 0 | 35 |
|  |  |  |  |  |  | 30,242.0000 | 30,116.3592 | 0.42 | 2,402,406,311 | 575,678 |
| 1.4 | HLRN III | 12,288 | 43,199 | < 1.5 | 1,709,027 | 30,242.0000 | 30,115.3331 | 0.42 | 0 | 3,709 |
|  |  |  |  |  |  | 30,242.0000 | 30,120.4801 | 0.40 | 664,909,985 | 602,323 |
| 1.5 | HLRN III | 12,288 | 118,259 | 1.5 | 9,158,920 | 30,242.0000 | 30,120.4801 | 0.40 | 0 | 285 |
|  |  |  |  |  |  | 30,242.0000 | 30,242.0000 | 0.00 | 1,677,724,126 | 0 |

Table 6.1: Statistics for solving hc9p on supercomputers.
incumbent solution. Notably, run 2.2 used 43000 thousand CPU cores, with an idle time of less than $5 \%$. Still, the integrality gaps seem to suggest that long small-scale runs are more efficient than short large-scale ones.

| Run | Computer | Cores | $\begin{aligned} & \text { Time } \\ & \text { (sec.) } \end{aligned}$ | Idle <br> (\%) | Trans. | Primal bound (Upper bound) | Dual bound (Lower bound) | Gap <br> (\%) | Nodes | Open nodes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | ISM | 72 | 604,799 | $<0.3$ | 71 | 119,492.0000 | 117,388.8528 | 1.79 | 0 | 0 |
|  |  |  | $(2,558)$ |  |  | 119,297.0000 | 117,496.5470 | 1.53 | 4,314,198 | 1,109,629 |
| 2.1 | HLRN III | 12,288 | 43,149 | $<0.5$ | 31,304 | 119,297.0000 | 117,388.7971 | 1.63 | 0 | 0 |
|  |  |  | $(7,164)$ |  |  | 119,297.0000 | 117,426.2226 | 1.59 | 28,491,470 | 5,433,482 |
| 2.2 | HLRN III | 43,000 | 86,354 | $<4.9$ | 86,152 | 119,297.0000 | 117,426.2226 | 1.59 | 0 | 103 |
|  |  |  |  |  |  | 119,297.0000 | 117,468.8459 | 1.56 | 267,513,609 | 40,499,188 |

Table 6.2: Statistics for solving hc11p on supercomputers.
The numbers of transferred $\mathrm{B} \& \mathrm{~B}$ nodes are very small compared to those for hc9p. This indicates that hc11p is much harder than hc9p for our solver. Here, the aggressive use of cutting planes and further algorithms by SCIP-JACK at the root node is also problematic.

| Name | gap [\%] | new UB | previous UB |
| :--- | ---: | ---: | ---: |
| bip52u | opt | $\mathbf{2 3 3}$ | 234 |
| hc9p | opt | $\mathbf{3 0 2 4 2}$ | 30242 |
| hc10p | 0.7 | 59733 | 59797 |
| hc11p | 1.6 | 119297 | 119492 |
| i640-311 | 0.6 | 35765 | 35766 |

Table 6.3: Improvements on unsolved SPG benchmark instances.

Finally, we note that it seems likely that several more of the open PUC and I640 instances could be solved to optimality by using supercomputer resources comparable to those employed for the computational experiments above. In particular, the optimal solution of the five open I640 instances appears to be well within reach. However, some PUC instances, such as hc11p, seem to require further algorithmic improvements.

## Chapter 7

## Conclusion and outlook

This thesis has set about to advance the state of the art in solving SPGs to optimality. Furthermore, this thesis has aimed to combine SPG advancements with improvements in the exact solution of related problems. Two well-known SPG relatives have been given special attention: The prize-collecting Steiner tree problem, and the maximumweight connected subgraph problem. Furthermore, this thesis has shown how to extend the new algorithms and techniques to solve 12 further related problem classes.

To significantly advance the state of the art, many new techniques and algorithms had to be devised. The underlying policy to move from theory to practice has resulted not only in theoretical analyses of the utilized techniques and algorithms, but has also led to independent results for example in polyhedral descriptions. The various new algorithms have been combined in an intricate implementation of more than 110 thousand lines of source code - and with parallelization extensions. The new algorithms span almost the entire spectrum of a general branch-and-cut framework: From preprocessing and probing, to (M)IP formulations and separation methods, to (primal and dual) heuristics, domain propagation, and branching.

In this way, this thesis succeeds in pushing the limits of computational tractability not only for the classic SPG, but also for the 14 additionally considered, related problems. The newly developed Steiner tree solver SCIP-JACK is able to solve 57 previously intractable benchmark instances from the literature to optimality - around half of the previously unsolved benchmark instances considered in this thesis. The newly solved instances are from seven different problem classes, including SPG, MWCSP, and PCSTP. Several of these instances contain millions of edges, and some had remained unsolved for more than 20 years. For all 15 problem classes SCIP-Jack significantly outperforms, to the best of the author's knowledge, all other solvers described in the literature. Perhaps most importantly, SCIP-JACK outperforms the long-reigning state-of-the-art SPG solver both in terms of run-time and number of solved instances. Even for the rectilinear and Euclidean Steiner tree problems SCIPJack outperforms the specialized, well-known GEOSTEINER solver-by simply solving the SPG obtained from the union of the full Steiner trees from the generation phase of GeoSteiner. For example, several Euclidean Steiner tree instances that could previously not be solved even after one week of computation are solved by SCIP-JACK within three minutes.

The newly developed SCIP-JACK solver will be made freely available for academic use as part of the SCIP Optimization Suite. Previous versions of SCIP-JACK have already seen notable use for research purposes, and the latest version of SCIP-Jack is currently being applied in several industrial projects.

## The future

Though much is taken, much abides (...)

Lord Alfred Tennyson
50 years after its inception, the SPG continues to attract researchers from mathematics, computer science, and operations research. Much the same can be said of the many SPG relatives described in the literature (and partly in this thesis). With new applications being regularly discovered, Steiner tree problems can also claim a strong interest from practitioners in many disciplines-for example in bioinformatics, or recently machine learning.

As to theoretical advancements, several important questions remain unanswered regarding the strength of different IP and MIP formulations for SPG and related problems. We provide some major points below.

- Although the widely used bidirected cut formulation (BDCut) shows a very strong practical performance, finding an upper bound better than 2 on its integrality gap remains a well-known open problem. Similarly, the question on the best lower bounds is quite intriguing, with the currently best result being given in Byrka et al. (2013).
- This thesis has provided improved theoretical results for the strength of the well-known flow-balance bidirected cut formulation $B D C u t_{F B}$ (which improves $B D C u t$ ), but there exists an even stronger hierarchy of formulations based on $B D C u t_{F B}$ due to Polzin and Daneshmand (2001b). Further theoretical studies of this hierarchy are still missing, however. See also Filipecki and Van Vyve (2020) for another hierarchy of SPG formulations.
- Another interesting topic is the relation of general-purpose cutting planes, such as Gomory cuts, to classic MIP formulations for Steiner trees. For the undirected cut formulation, Gaul and Schmidt (2021) recently introduced such results. However, results for the practically and theoretically much stronger $B D C u t$ formulation are still to be established.

As to more practical advancements, the author of this thesis also sees several promising ways forward. Certainly, with every further algorithmic improvement, and with the ever-increasing intricacy of state-of-the-art SPG solvers, achieving a substantial further improvement might appear a daunting task. Still, the author of this thesis believes that significant further performance improvements are well within reach. First of all, several of the newly introduced SPG techniques could be transferred to

PCSTP and MWCSP. An example are the powerful extended reduction techniques described in Section 2.4. For many of the other related problem classes more shortly covered in this thesis there is even more room for improvement. Additionally, major points for future development are as follows.

- Further improvements of state-of-the-art reduction techniques, which have proven an indispensible tool for fast exact solution of SPG and related problems, seem highly promising. An example are better approximations of the newly introduced (but $\mathcal{N} \mathcal{P}$-hard) implied bottleneck Steiner distance.
- Further practical improvements might be possible by using IP formulations that are stronger than $B D C u t_{F B}$. One candidate is the hierarchy from Polzin and Daneshmand (2001b) mentioned above. Indeed, a (very) restricted version of this hierarchy is already used in the solver from Polzin (2003); Vahdati Daneshmand (2004). Similarly, a better integration of general-purpose cuts, whose default generation by SCIP is currently prohibitively slow, might lead to further speedups.
- Another interesting venue are specialized algorithms for still unsolved benchmark instances, in particular from the PUC test-set. These instances typically show a special structure, such as being bipartite or highly symmetric (hypercube graphs). A notable approach in this direction is given in Fischetti et al. (2017), although they still solve fewer PUC instances than SCIP-JACK. Combining such algorithms with the distributed-memory parallelization framework described in this thesis might make it possible to solve significantly more of the remaining PUC instances.
- The solution of Euclidean and rectilinear Steiner tree problems could be further improved by incorporating information about the full Steiner trees that are used within the concatenation phase. At the moment, we treat the union of these full Steiner trees as a customary SPG instance. A natural idea would for example be to branch not on single vertices, but rather on the full Steiner trees. However, in this case one would need to retain sufficient information during preprocessing.
- Finally, there is considerable potential in (further) shared-memory parallelization of several of the key algorithms of this thesis. The implementations for this thesis have been mostly for proof of concept. In particular, for large problems with millions of edges, a strong speed-up with multiple threads seems possible even for instances that do not require any branching.

The author of this thesis hopes that the free availability of SCIP-JACK for academic purposes (which contrasts the fully proprietary nature of the previous leading SPG solver) will facilitate further algorithmic advancements. In particular so, the possibility to use the powerful reduction techniques included in SCIP-JACK for preprocessing. Indeed, previous versions of these reduction techniques have already been used as a basis for other algorithms, see Iwata and Shigemura (2019). Finally, the
author hopes that the availability of SCIP-JACK will continue to foster the successful use of Steiner tree and related problems in real-world applications.

## List of Abbreviations and Names

See Table 1 for a list of Steiner tree problem types and their abbreviations.
BFS . . . . . . Breadth-first-search
CPLEX . . . Optimization software for LPs, MIPs, and (MI)QPs
DFS . . . . . . Depth-first-search
FiberSCIP . Shared-memory parallelization extension of SCIP
IP . . . . . . . Integer program/programming
LP . . . . . . . Linear program/programming
MIP . . . . . . Mixed-integer (linear) program/programming
MST . . . . Minimum spanning tree
PARASCIP . . Distributed-memory parallelization extension of SCIP
SCIP . . . . . Optimization software for MIPs, and for more general problems
SCIP-Jack . Optimization software for Steiner tree and related problems (developed as part of this thesis)

SoPlex . . . Optimization software for LPs
UG . . . . . . Framework to parallelize branch-and-bound based optimization software

## Bibliography

The page numbers in brackets at the end of each citation refer to the text.
T. Achterberg. Conflict analysis in mixed integer programming. Discrete Optimization, 4 (1):4-20, 2007a. doi: 10.1016/j.disopt.2006.10.006. [42]
T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität Berlin, 2007b. [12, 57]
T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Programming Computation, 1(1):1-41, 2009. doi: 10.1007/s12532-008-0001-1. [167]
M. Akhmedov, I. Kwee, and R. Montemanni. A divide and conquer matheuristic algorithm for the Prize-collecting Steiner Tree Problem. Computers 8 Operations Research, 70:1825, 2016. doi: 10.1016/j.cor.2015.12.015. [116]
M. Akhmedov, L. Galbusera, R. Montemanni, F. Bertoni, and I. Kwee. A prize-collecting Steiner tree application for signature selection to stratify diffuse large b-cell lymphoma subtypes. bioRxiv, page 272294, 2018. [116]
N. Alcaraz, J. Pauling, R. Batra, E. Barbosa, A. Junge, A. G. Christensen, V. Azevedo, H. J. Ditzel, and J. Baumbach. Keypathwayminer 4.0: condition-specific pathway analysis by combining multiple omics studies and networks with cytoscape. BMC Systems Biology, 8 (1):99, Aug 2014. doi: 10.1186/s12918-014-0099-x. [69]
E. Althaus and M. Blumenstock. Algorithms for the Maximum Weight Connected Subgraph and Prize-collecting Steiner Tree Problems. Unpublished manuscript at http://dimacs11.cs.princeton.edu/workshop.html, 2014. [85, 111]
E. Álvarez-Miranda, I. Ljubić, and P. Mutzel. The maximum weight connected subgraph problem. In Facets of Combinatorial Optimization, pages 245-270. Springer Berlin Heidelberg, 2013a. doi: 10.1007/978-3-642-38189-8_11. [69, 70, 77, 83, 105, and 109]
E. Álvarez-Miranda, I. Ljubić, and P. Mutzel. The Rooted Maximum Node-Weight Connected Subgraph Problem, pages 300-315. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013b. ISBN 978-3-642-38171-3. doi: 10.1007/978-3-642-38171-3_20. [70, 72, 73, 208, and 209]
Y. P. Aneja. An integer linear programming approach to the Steiner problem in graphs. Networks, 10(2):167-178, 1980. doi: 10.1002/net.3230100207. [19]
D. L. Applegate, R. E. Bixby, V. Chvatál, and W. J. Cook. The Traveling Salesman Problem: A Computational Study. Princeton University Press, 2006. ISBN 9780691129938. [19]
A. Archer, M. Bateni, M. Hajiaghayi, and H. Karloff. Improved approximation algorithms for prize-collecting Steiner tree and TSP. SIAM Journal on Computing, 40(2):309-332, 2011. doi: 10.1137/090771429. [116]
C. Backes, A. Rurainski, G. Klau, O. Müller, D. Stöckel, A. Gerasch, J. Küntzer, D. Maisel, N. Ludwig, M. Hein, A. Keller, H. Burtscher, M. Kaufmann, E. Meese, and H.-P. Lenhof. An integer linear programming approach for finding deregulated subgraphs in regulatory networks. Nucleic Acids Res, 40(6):e43, 2011. doi: 10.1093/nar/gkr1227. [70, 161]
M. Ball, W. Liu, and W. Pulleyblank. Two terminal Steiner tree polyhedra. In Contributions to Operations Research and Economics - The Twentieth Anniversary of CORE, pages 251-284, Cambridge, MA, 1989. MIT Press. [21]
J. Banfi. Multirobot exploration of communication-restricted environments. PhD thesis, Politecnico di Milano, 2018. [69]
M. Bateni, C. Chekuri, A. Ene, M. Hajiaghayi, N. Korula, and D. Marx. Prize-collecting Steiner problems on planar graphs. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pages 1028-1049, 2011. doi: 10.1137/1. 9781611973082.79. [116]
J. Beasley. An SST-based algorithm for the Steiner problem in graphs. Networks, 19:1-16, 1989. doi: 10.1002/net.3230190102. [16]
J. E. Beasley. An algorithm for the Steiner problem in graphs. Networks, 14(1):147-159, 1984. doi: 10.1002/net. 3230140112 . [16]
M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest common ancestors in trees and directed acyclic graphs. Journal of Algorithms, 57(2):75-94, 2005. doi: 10.1016/j.jalgor.2005.08.001. [172]
P. Berman and V. Ramaiyer. Improved approximations for the Steiner tree problem. Journal of Algorithms, 17(3):381-408, 1994. doi: 10.1006/jagm.1994.1041. [16]
M. W. Bern and P. E. Plassmann. The Steiner Problem with Edge Lengths 1 and 2. Information Processing Letters, 32(4):171-176, 1989. doi: 10.1016/0020-0190(89)90039-2. [15]
S. Beyer and M. Chimani. The influence of preprocessing on steiner tree approximations. In Z. Lu, D. Kim, W. Wu, W. Li, and D.-Z. Du, editors, Combinatorial Optimization and Applications, pages 601-616, Cham, 2015. Springer International Publishing. doi: 10.1007/978-3-319-26626-8_44. [26]
S. Beyer and M. Chimani. Strong Steiner tree approximations in practice. J. Exp. Algorithmics, 24(1):1.7:1-1.7:33, Jan. 2019. doi: 10.1145/3299903. [16]
M. Bezenšek and B. Robič. A survey of parallel and distributed algorithms for the steiner tree problem. International Journal of Parallel Programming, 42(2):287-319, 2014. doi: 10.1007/s10766-013-0243-z. [178]
I. Biazzo, A. Braunstein, and R. Zecchina. Performance of a cavity-method-based algorithm for the prize-collecting Steiner tree problem on graphs. Phys. Rev. E, 86:026706, Aug 2012. doi: 10.1103/PhysRevE.86.026706. [146]
D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. P. Williamson. A note on the prize collecting traveling salesman problem. Mathematical Programming, 59:413-420, 1993. doi: 10.1007/BF01581256. [116]
M. D. Biha, H. L. M. Kerivin, and P. H. Ng. Polyhedral study of the connected subgraph problem. Discrete Mathematics, 338(1):80-92, 2015. doi: 10.1016/j.disc.2014.08.026. [70]
G. Bolukbasi and A. S. Kocaman. A prize collecting Steiner tree approach to least cost evaluation of grid and off-grid electrification systems. Energy, 160:536-543, 2018. doi: 10.1016/j.energy.2018.07.029. [116]
J. A. Bondy and U. S. R. Murty. Graph Theory. Springer London, 2008. doi: 10.1007/ 978-1-84628-970-5. [9]
É. Bonnet and F. Sikora. The PACE 2018 Parameterized Algorithms and Computational Experiments Challenge: The Third Iteration. In C. Paul and M. Pilipczuk, editors, 13th International Symposium on Parameterized and Exact Computation (IPEC 2018), volume 115 of Leibniz International Proceedings in Informatics (LIPIcs), pages 26:126:15, Dagstuhl, Germany, 2019. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi: 10.4230/LIPIcs.IPEC.2018.26. [7, 18, 62, and 168]
G. Borradaile, P. Klein, and C. Mathieu. An O(n $\log \mathrm{n})$ approximation scheme for Steiner tree in planar graphs. ACM Transactions on Algorithms (TALG), 5(3):1-31, 2009. doi: 10.1145/1541885.1541892. [16]
A. Braunstein and A. Muntoni. Practical optimization of Steiner trees via the cavity method. Journal of Statistical Mechanics: Theory and Experiment, 2016(7):073302, jul 2016. doi: 10.1088/1742-5468/2016/07/073302. [116, 148]
M. Brazil and M. Zachariasen. Optimal interconnection trees in the plane: theory, algorithms and applications. Algorithms and Combinatorics. Springer, 2015. ISBN 978-3-319-13914-2. [157]
M. Brazil, R. L. Graham, D. A. Thomas, and M. Zachariasen. On the History of the Euclidean Steiner Tree Problem. Archive for History of Exact Sciences, 68:327-354, 2014. doi: 10.1007/s00407-013-0127-z. [1, 14]
R. E. Bryant and D. R. O'Hallaron. Computer Systems: A Programmer's Perspective. Addison-Wesley Publishing Company, USA, 3rd edition, 2015. [167]
A. Buchanan, J. S. Sung, S. Butenko, and E. L. Pasiliao. An integer programming approach for fault-tolerant connected dominating sets. INFORMS Journal on Computing, 27(1): 178-188, 2015. doi: 10.1287/ijoc.2014.0619. [70]
A. Buchanan, Y. Wang, and S. Butenko. Algorithms for node-weighted Steiner tree and maximum-weight connected subgraph. Networks, 72(2):238-248, 2018. doi: 10.1002/net. 21825. [15, 70, 120, 121, 122, 156, and 209]
O. Burdakov, P. Doherty, and J. Kvarnström. Local Search for Hop-constrained Directed Steiner Tree Problem with Application to UAV-based Multi-target Surveillance. In Butenko, S., Pasiliao, E.L., Shylo, and V., editors, Examining Robustness and Vulnerability of Networked Systems, volume 37 of NATO Science for Peace and Security Series - D: Information and Communication Security, pages 26-50. IOS Press, 2014. doi: 10.3233/ 978-1-61499-391-9-26. [164, 165]
J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. Steiner Tree Approximation via Iterative Randomized Rounding. The Journal of the ACM, 60(1):6, 2013. doi: 10.1145/2432622. 2432628. [16, 19, 157, and 184]
H. Cambazard and N. Catusse. Fixed-parameter algorithms for rectilinear Steiner tree and rectilinear traveling salesman problem in the plane. European Journal of Operational Research, 270(2):419-429, 2018. doi: 10.1016/j.ejor.2018.03.042. [157]
S. A. Canuto, M. G. C. Resende, and C. C. Ribeiro. Local search with perturbations for the prize-collecting Steiner tree problem in graphs. Networks, 38(1):50-58, 2001. doi: 10.1002/net.1023. [116]
A. Caprara and M. Fischetti. $\{0,1 / 2\}$-chvátal-gomory cuts. Mathematical Programming, 74(3):221-235, 1996. doi: 10.1007/BF02592196. [169]
R. Carvajal, M. Constantino, M. Goycoolea, J. P. Vielma, and A. Weintraub. Imposing connectivity constraints in forest planning models. Operations Research, 61(4):824-836, 2013. doi: 10.1287 /opre.2013.1183. [70]
M. Charikar, C. Chekuri, T.-y. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li. Approximation Algorithms for Directed Steiner Problems. In Proceedings of the Ninth Annual ACMSIAM Symposium on Discrete Algorithms, SODA '98, pages 192-200, Philadelphia, PA, USA, 1998. Society for Industrial and Applied Mathematics. ISBN 0-89871-410-9. [154]
C. Chen and K. Grauman. Efficient activity detection with max-subgraph search. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16-21, 2012, pages 1274-1281, 2012. doi: 10.1109/CVPR.2012.6247811. [69]
Y. H. Chen. The bottleneck selected-internal and partial terminal Steiner tree problems. Networks, 68(4):331-339, 2016. doi: 10.1002/net.21713. [152]
X. Cheng and D.-Z. Du. Steiner trees in industry, volume 11. Springer Science \& Business Media, 2004. doi: 10.1007/0-387-23830-1_4. [14]
B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel method for the maximum flow problem. Algorithmica, 19(4):390-410, 1997. doi: 10.1007/PL00009180. [178]
M. Chimani, P. Mutzel, and B. Zey. Improved Steiner tree algorithms for bounded treewidth. Journal of Discrete Algorithms, 16:67-78, 2012. doi: 10.1016/j.jda.2012.04.016. Selected papers from the 22nd International Workshop on Combinatorial Algorithms (IWOCA 2011). [15, 54]
F. Chin and D. Houck. Algorithms for updating minimal spanning trees. Journal of Computer and System Sciences, 16(3):333-344, 1978. doi: 10.1016/0022-0000(78)90022-3. [175, 176]
M. Chlebík and J. Chlebíková. The Steiner tree problem on graphs: Inapproximability results. Theoretical Computer Science, 406(3):207-214, 2008. doi: 10.1016/j.tcs.2008.06.046. [15]
S. Chopra and M. Rao. The Steiner tree problem I: Formulations, compositions and extension of facets. Mathematical Programming, 64(2):209-229, 1994. doi: 10.1007/bf01582573. [20]
S. Chopra, E. R. Gorres, and M. Rao. Solving the Steiner tree problem on a graph using branch and cut. ORSA Journal on Computing, 4(3):320-335, 1992. doi: 10.1287/ijoc.4.3. 320. [16]
S. A. Chowdhury, S. Shackney, K. Heselmeyer-Haddad, T. Ried, A. A. Schäffer, and R. Schwartz. Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations. Bioinformatics, 29(13):189-198, 2013. doi: 10.1093/bioinformatics/btt205. [157]
K. Ciebiera, P. Godlewski, P. Sankowski, and P. Wygocki. Approximation Algorithms for Steiner Tree Problems Based on Universal Solution Frameworks. Computing Research Repository, abs/1410.7534, 2014. URL http://arxiv.org/abs/1410.7534. [16]
D. Cieslik. Steiner minimal trees, volume 23. Springer, 1998. doi: 10.1007/978-1-4757-6585-4. [14]
J. Conrad, C. P. Gomes, W.-J. van Hoeve, A. Sabharwal, and J. Suter. Connections in networks: Hardness of feasibility versus optimality. In P. Van Hentenryck and L. Wolsey,
editors, Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pages 16-28, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-72397-4. [73]
A. Costa, J.-F. Cordeau, and G. Laporte. Steiner Tree Problems With Profits. INFOR: Information Systems and Operational Research, 44(2):99-115, 2006. doi: 10.1080/03155986. 2006.11732743. [116]
H. Courant, C. Courant, R. Courant, H. Robbins, I. Stewart, P. Stewart, and P. Robbins. What is Mathematics?: An Elementary Approach to Ideas and Methods. Oxford Paperbacks. Oxford University Press, 1941. [14]
A. S. da Cunha, A. Lucena, N. Maculan, and M. G. Resende. A relax-and-cut algorithm for the prize-collecting Steiner problem in graphs. Discrete Applied Mathematics, 157 (6):1198-1217, 2009. doi: 10.1016/j.dam.2008.02.014. Reformulation Techniques and Mathematical Programming. [116]
T. A. Davis. Direct methods for sparse linear systems. SIAM, 2006. doi: 10.1137/1. 9780898718881. [169]
M. P. de Aragão and R. F. Werneck. On the Implementation of MST-based Heuristics for the Steiner Problem in Graphs. In Proceedings of the 4th International Workshop on Algorithm Engineering and Experiments, pages 1-15. Springer, 2002. doi: 10.1007/3-540-45643-0_1. [51, 106]
M. P. de Aragão, E. Uchoa, and R. F. Werneck. Dual heuristics on the exact solution of large Steiner problems. Electronic Notes in Discrete Mathematics, 7:150-153, 2001. doi: 10.1016/S1571-0653(04)00247-1. Brazilian Symposium on Graphs, Algorithms and Combinatorics. [17]
B. R. de Supinski, T. R. W. Scogland, A. Duran, M. Klemm, S. M. Bellido, S. L. Olivier, C. Terboven, and T. G. Mattson. The Ongoing Evolution of OpenMP. Proceedings of the IEEE, 106(11):2004-2019, Nov 2018. doi: 10.1109/JPROC.2018.2853600. [178]
E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1(1): 269-271, Dec. 1959. doi: 10.1007/BF01386390. [125]
B. Dilkina and C. P. Gomes. Solving connected subgraph problems in wildlife conservation. In Proceedings of the 7th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR'10, pages 102-116, Berlin, Heidelberg, 2010. Springer-Verlag. doi: 10.1007/978-3-642-13520-0_14. [69, 73]
DIMACS. 11th DIMACS Challenge. http://dimacs11.zib.de/, 2015. Accessed: January 10. 2020. [25, 64, 109, 116, 146, 148, and 168]
M. Dittrich, G. Klau, A. Rosenwald, T. Dandekar, and T. Müller. Identifying functional modules in protein-protein interaction networks: An integrated exact approach. Bioinformatics (Oxford, England), 24:i223-31, 08 2008. doi: 10.1093/bioinformatics/btn161. [69, $105,109,121$, and 146]
M. Dom, D. Lokshtanov, and S. Saurabh. Kernelization Lower Bounds Through Colors and IDs. ACM Transactions on Algorithms, 11(2), Oct. 2014. doi: 10.1145/2650261. [15]
S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1(3):195-207, 1971. doi: $10.1002 /$ net.3230010302. [15, 16, 17, 27, 54, 118, and 209]
L. M. A. Drummond, M. Santos, and E. Uchoa. A distributed dual ascent algorithm for Steiner problems in multicast routing. Networks, 53(2):170-183, 2009. doi: 10.1002/net. 20276. [179]
D.-Z. Du, J. Smith, and J. H. Rubinstein. Advances in Steiner trees, volume 6. Springer, 2000. doi: 10.1007/978-1-4757-3171-2. [14]
C. Duin. Steiner Problems in Graphs. PhD thesis, University of Amsterdam, 1993. [16, 17, $20,21,25,26,33,35,38,39,71,86,91,100,136$, and 168]
C. Duin. Preprocessing the Steiner Problem in Graphs, pages 175-233. Springer US, Boston, MA, 2000. doi: 10.1007/978-1-4757-3171-2 \_10. [43, 173]
C. Duin and A. Volgenant. An edge elimination test for the Steiner problem in graphs. Operations Research Letters, 8(2):79-83, 1989a. doi: 10.1016/0167-6377(89)90005-9. [16, 27, and 128]
C. Duin and S. Voss. Efficient path and vertex exchange in Steiner tree algorithms. Networks, 29(2):89-105, 1997. doi: 10.1002/(sici)1097-0037(199703)29:2〈89::aid-net3〉3.0.co;2-7. [16, 51, and 171]
C. W. Duin and A. Volgenant. Reduction tests for the Steiner problem in graphs. Networks, 19(5):549-567, 1989b. doi: 10.1002/net.3230190506. [16, 32, 34, 35, 55, 130, and 171]
C. W. Duin, A. Volgenant, and S. Voss. Solving group Steiner problems as Steiner problems. European Journal of Operational Research, 154(1):323-329, 2004. doi: 10.1016/s0377-2217(02)00707-5. [163]
C. El-Arbi. Une heuristique pour le problème de l'arbre de Steiner. RAIRO-Operations Research, 12(2):207-212, 1978. [16]
M. El-Kebir and G. W. Klau. Solving the Maximum-Weight Connected Subgraph Problem to Optimality. Computing Research Repository, abs/1409.5308, 2014. [85, 86, 93, 94, 105, and 111]
J. M. Elble. Computational experience with linear optimization and related problems. PhD thesis, University of Illinois at Urbana-Champaign, 2010. [170]
N. Emanet. The Rectilinear Steiner Tree Problem. Lambert Academic Publishing, 2010. [157]
R. E. Erickson, C. L. Monma, and A. F. Veinott. Send-and-split method for minimum-concave-cost network flows. Mathematics of Operations Research, 12(4):634-664, 1987. doi: 10.1287/moor.12.4.634. [15, 18, and 54]
J. Feigenbaum, C. H. Papadimitriou, and S. Shenker. Sharing the cost of multicast transmissions. Journal of Computer and System Sciences, 63(1):21-41, 2001. doi: 10.1006/jcss.2001.1754. [115]
A. E. Feldmann, S. Karthik C., E. Lee, and P. Manurangsi. A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms. arXiv e-prints, art. arXiv:2006.04411, June 2020. [16]
P. Feofiloff, C. G. Fernandes, C. E. Ferreira, and J. C. de Pina. Primal-dual approximation algorithms for the prize-collecting Steiner tree problem. Inf. Process. Lett., 103(5):195-202, Aug. 2007. doi: $10.1016 / \mathrm{j} . \mathrm{ipl} .2007 .03 .012$. [116]
C. E. Ferreira and F. M. de Oliveira Filho. New reduction techniques for the group steiner tree problem. SIAM Journal on Optimization, 17(4):1176-1188, 2007. doi: 10.1137/ 040610891. [163]
J. K. Fichte, M. Hecher, and A. Schidler. Solving the Steiner Tree Problem with few Terminals. arXiv preprint arXiv:2011.04593, 2020. [18]
B. Filipecki and M. Van Vyve. Stronger path-based extended formulation for the Steiner tree problem. Networks, 75(1):3-17, 2020. doi: 10.1002/net.21901. [25, 184]
J. Fischer and V. Heun. Theoretical and practical improvements on the RMQ-problem, with applications to LCA and LCE. In Annual Symposium on Combinatorial Pattern Matching, pages 36-48. Springer, 2006. [172]
M. Fischetti, M. Leitner, I. Ljubić, M. Luipersbeck, M. Monaci, M. Resch, D. Salvagnin, and M. Sinnl. Thinning out Steiner trees: a node-based model for uniform edge costs. Mathematical Programming Computation, 9(2):203-229, Jun 2017. doi: 10.1007/ s12532-016-0111-0. [17, 20, 23, 25, 26, 66, 67, 70, 78, 111, 116, 117, 145, 148, 159, 160, and 185]
R. Floren. A note on "a faster approximation algorithm for the steiner problem in graphs". Information Processing Letters, 38(4):177-178, 1991. doi: 10.1016/0020-0190(91)90096-Z. [171]
F. V. Fomin, F. Grandoni, D. Kratsch, D. Lokshtanov, and S. Saurabh. Computing optimal Steiner trees in polynomial space. Algorithmica, 65(3):584-604, 2013. doi: 10.1002/net. 3230200606. [15]
F. V. Fomin, P. Kaski, D. Lokshtanov, F. Panolan, and S. Saurabh. Parameterized singleexponential time polynomial space algorithm for steiner tree. SIAM Journal on Discrete Mathematics, 33(1):327-345, 2019a. doi: 10.1137/17M1140030. [15]
F. V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. Kernelization: theory of parameterized preprocessing. Cambridge University Press, 2019b. [2]
F. V. Fomin, D. Lokshtanov, S. Kolay, F. Panolan, and S. Saurabh. Subexponential algorithms for rectilinear Steiner tree and arborescence problems. ACM Transactions on Algorithms (TALG), 16(2):1-37, 2020. [157]
H. Franz. Connected subgraphs with budget constraints: formulations and algorithms. Master's thesis, TU Berlin, 2019. [161]
Z. Fu and J. Hao. Knowledge-guided local search for the prize-collecting Steiner tree problem in graphs. Knowl.-Based Syst., 128:78-92, 2017a. doi: 10.1016/j.knosys.2017.04.010. [116, 145, and 148]
Z. Fu and J.-K. Hao. Swap-vertex based neighborhood for Steiner tree problems. Mathematical Programming Computation, 9:297-320, 2017b. doi: 10.1007/s12532-016-0116-8. [105]
B. Fuchs, W. Kern, D. Molle, S. Richter, P. Rossmanith, and X. Wang. Dynamic programming for minimum Steiner trees. Theory of Computing Systems, 41(3):493-500, 2007a. doi: 10.1007/s00224-007-1324-4. [15]
B. Fuchs, W. Kern, and X. Wang. Speeding up the dreyfus-wagner algorithm for minimum Steiner trees. Mathematical methods of operations research, 66(1):117-125, 2007b. doi: 10.1007/s00186-007-0146-0. [15]
A. Fügenschuh and M. Fügenschuh. Integer linear programming models for topology optimization in sheet metal design. Mathematical Methods of Operations Research, 68(2):313 - 331, 2008. [72]
G. Gamrath, T. Koch, S. Maher, D. Rehfeldt, and Y. Shinano. SCIP-Jack - A solver for STP and variants with parallelization extensions. Mathematical Programming Computation, 9 (2):231-296, 2017. doi: $10.1007 /$ s12532-016-0114-x. [17, 116, 142, 148, and 165]
G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse, P. Gemander, A. Gleixner, L. Gottwald, K. Halbig, G. Hendel, C. Hojny, T. Koch, P. L. Bodic, S. J. Maher, F. Matter, M. Miltenberger, E. Mühmer, B. Müller, M. Pfetsch, F. Schlösser, F. Serrano, Y. Shinano, C. Tawfik, S. Vigerske, F. Wegscheider, D. Weninger, and J. Witzig. The scip optimization suite 7.0. Technical Report 20-10, ZIB, Takustr. 7, 14195 Berlin, 2020. [7, 11, and 167]
M. Garey and D. Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM Journal of Applied Mathematics, 32:826-834, 1977. doi: 10.1137/0132071. [157]
M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman \& Co., New York, NY, USA, 1979. ISBN 0716710447. [37, 90, 97, and 120]
R. S. Garfinkel and G. L. Nemhauser. Optimal political districting by implicit enumeration techniques. Management Science, 16(8):B-495, 1970. doi: 10.1287/mnsc.16.8.b495. [70]
D. Gaul and D. R. Schmidt. Chvátal-gomory cuts for the steiner tree problem. Discrete Applied Mathematics, 291:188-200, 2021. doi: 10.1016/j.dam.2020.12.016. [184]
E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathematics, 16(1):1-29, 1968. doi: 10.1137/0116001. [16]
A. Gionis, M. Mathioudakis, and A. Ukkonen. Bump hunting in the dark: Local discrepancy maximization on graphs. IEEE Transactions on Knowledge and Data Engineering, 29(3): 529-542, 2017. doi: 10.1109/icde.2015.7113364. [116]
A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L. Gottwald, G. Hendel, C. Hojny, T. Koch, M. E. Lübbecke, S. J. Maher, M. Miltenberger, B. Müller, M. E. Pfetsch, C. Puchert, D. Rehfeldt, F. Schlösser, C. Schubert, F. Serrano, Y. Shinano, J. M. Viernickel, M. Walter, F. Wegscheider, J. T. Witt, and J. Witzig. The scip optimization suite 6.0. Technical Report 18-26, ZIB, Takustr. 7, 14195 Berlin, 2018. [11, 12]
M. X. Goemans and Y. Myung. A catalog of Steiner tree formulations. Networks, 23(1): 19-28, 1993. doi: 10.1002/net.3230230104. [19, 20, 72, 78, and 142]
M. X. Goemans and D. P. Williamson. A general approximation technique for constrained forest problems. SIAM J. Comput., 24(2):296-317, Apr. 1995. doi: 10.1137/ S0097539793242618. [115, 116]
M. X. Goemans, N. Olver, T. Rothvoß, and R. Zenklusen. Matroids and Integrality Gaps for Hypergraphic Steiner Tree Relaxations. In Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC '12, page 1161-1176, New York, NY, USA, 2012. Association for Computing Machinery. doi: 10.1145/2213977.2214081. [16]
M. Grötschel and C. L. Monma. Integer Polyhedra Arising from Certain Network Design Problems with Connectivity Constraints. SIAM Journal on Discrete Mathematics, 3(4): 502-523, 1990. doi: 10.1137/0403043. [20]
S. Guha and S. Khuller. Improved Methods for Approximating Node Weighted Steiner Trees and Connected Dominating Sets. Information and Computation, 150(1):57-74, 1999. doi: 10.1006/inco.1998.2754. [156]
S. L. Hakimi. Steiner's problem in graphs and its implications. Networks, 1(2):113-133, 1971. doi: 10.1002/net. 3230010203 . [14, 15, and 120]
E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In L. L. Larmore and M. X. Goemans, editors, STOC, pages 585-594. ACM, 2003. ISBN 1-58113-674-9. doi: 10.1145/780542.780628. [154]
M. Hanan. On Steiner's problem with rectilinear distance. SIAM Journal of Applied Mathematics, 14(2):255-265, 1966. doi: 10.1137/0114025. [157]
J. Hao and J. B. Orlin. A faster algorithm for finding the minimum cut in a graph. In G. N. Frederickson, editor, Proceedings of the Third Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 27-29 January 1992, Orlando, Florida, USA, pages 165-174. ACM/SIAM, 1992. [177]
C. Hegde, P. Indyk, and L. Schmidt. A fast, adaptive variant of the goemans-williamson scheme for the prize-collecting Steiner tree problem. In Workshop of the 11th DIMACS Implementation Challenge. Workshop of the 11th DIMACS Implementation Challenge, 2014. [58, 109]
S. Held, B. Korte, D. Rautenbach, and J. Vygen. Combinatorial Optimization in VLSI Design. Combinatorial Optimization-Methods and Applications, 31:33-96, 2011. [14]
S. C. Hidayati, K. Hua, Y. Tsao, H. Shuai, J. Liu, and W. Cheng. Garment detectives: Discovering clothes and its genre in consumer photos. In 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pages 471-474, March 2019. doi: 10.1109/MIPR.2019.00095. [116]
S. Hougardy and H. J. Prömel. A 1.598 approximation algorithm for the Steiner problem in graphs. In Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms, pages 448-453, 1999. [16]
S. Hougardy, J. Silvanus, and J. Vygen. Dijkstra meets Steiner: a fast exact goal-oriented Steiner tree algorithm. Mathematical Programming Computation, 9(2):135-202, 2017. doi: $10.1007 / \mathrm{s} 12532-016-0110-1$. [17, 18, and 54]
S.-Y. Hsieh and H.-M. Gao. On the partial terminal Steiner tree problem. The Journal of Supercomputing, 41(1):41-52, Jul 2007. doi: 10.1007/s11227-007-0102-z. [152]
R. Hušek, D. Knop, and T. Masařík. Approximation algorithms for Steiner tree based on star contractions: A unified view. arXiv preprint arXiv:2002.03583, 2020. [18]
F. Hwang, D. Richards, and P. Winter. The Steiner Tree Problem. Annals of Discrete Mathematics. Elsevier Science, 1992. [1, 10, 14, 15, 39, 48, 51, 57, 86, 130, 157, 163, and 173]
F. K. Hwang and D. S. Richards. Steiner tree problems. Networks, 22(1):55-89, 1992. doi: 10.1002/net.3230220105. [16]

IBM. Cplex, 2020. URL https://www.ibm.com/analytics/cplex-optimizer. [11]
T. Ideker, O. Ozier, B. Schwikowski, and A. F. Siegel. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics, 18(1):S233-S240, 07 2002. doi: 10.1093/bioinformatics/18.suppl_1.s233. [116]
Y. Iwata and T. Shigemura. Separator-Based Pruned Dynamic Programming for Steiner Tree. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 1520-1527, 2019. doi: 10.1609/aaai.v33i01.33011520. [7, 18, 54, and 185]
D. S. Johnson. The np-completeness column: An ongoing guide. J. Algorithms, 6(1):145-159, 1985. doi: 10.1016/0196-6774(85)90025-2. [69]
D. S. Johnson, M. Minkoff, and S. Phillips. The Prize Collecting Steiner Tree Problem: Theory and Practice. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '00, pages 760-769, Philadelphia, PA, USA, 2000. Society for Industrial and Applied Mathematics. ISBN 0-89871-453-2. [115, 116, 146, and 147]
J. Johnston, R. Kelley, T. Crawford, D. Morton, R. Agarwala, T. Koch, A. Schäffer, C. Francomano, and L. Biesecker. A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. American Journal of Human Genetics, pages 814-821, October 2000. doi: 10.1002/mus.24528. [154]
D. Juhl, D. M. Warme, P. Winter, and M. Zachariasen. The GeoSteiner software package for computing Steiner trees in the plane: an updated computational study. Mathematical Programming Computation, 10(4):487-532, 2018. doi: 10.1007/s12532-018-0135-8. [58, 61, 66, 157, and 158]
R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors, Complexity of Computer Computations, pages 85-103. Plenum Press, 1972. doi: 10.1007/978-1-4684-2001-2_9. [14]
M. Karpinski and A. Zelikovsky. New approximation algorithms for the Steiner tree problems. Journal of Combinatorial Optimization, 1(1):47-65, 1997. [16]
J. Kepner and J. Gilbert. Graph algorithms in the language of linear algebra. SIAM, 2011. doi: 10.1137/1.9780898719918. [169]
J. H. Kingston and N. P. Sheppard. On reductions for the Steiner Problem in Graphs. Journal of Discrete Algorithms, 1(1):77-88, 2003. doi: 10.1016/S1570-8667(03)00008-X. [12, 55]
S. Kisfaludi-Bak, J. Nederlof, and E. J. v. Leeuwen. Nearly eth-tight algorithms for planar steiner tree with terminals on few faces. ACM Transactions on Algorithms, 16(3), June 2020a. doi: 10.1145/3371389. [15]
S. Kisfaludi-Bak, J. Nederlof, and E. J. v. Leeuwen. Nearly ETH-tight algorithms for planar Steiner tree with terminals on few faces. ACM Transactions on Algorithms (TALG), 16 (3):1-30, 2020b. doi: $10.1145 / 3371389$. [15]
G. W. Klau, I. Ljubić, A. Moser, P. Mutzel, P. Neuner, U. Pferschy, G. Raidl, and R. Weiskircher. Combining a memetic algorithm with integer programming to solve the prize-collecting Steiner tree problem. In K. Deb, editor, Genetic and Evolutionary Computation - GECCO 2004, pages 1304-1315, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-24854-5. [116]
P. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted Steiner trees. Journal of Algorithms, 19(1):104-115, 1995. doi: 10.1006/jagm.1995.1029. [122]
F. Klimm, E. M. Toledo, T. Monfeuga, F. Zhang, C. M. Deane, and G. Reinert. Functional module detection through integration of single-cell rna sequencing data with protein-protein interaction networks. BMC genomics, 21(1):1-10, 2020. doi: 10.1186/ s12864-020-07144-2. [69]
T. Koch. Jack-III: Ein Branch \& Cut-Verfahren zur Lösung des gewichteten Steinerbaumproblems in Graphen. Master's thesis, Technische Universität Berlin, 1995. [169]
T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Networks, 32: 207-232, 1998. doi: 10.1002/(SICI)1097-0037(199810)32:3<br>%3C207::AID-NET5<br>%3E3.0. CO;2-O. [16, 17, 20, 21, 26, 56, 58, 106, 167, 177, and 178]
T. Koch, A. Martin, and S. Voß. SteinLib: An updated library on Steiner tree problems in graphs. In D.-Z. Du and X. Cheng, editors, Steiner Trees in Industries, pages 285-325. Kluwer, 2001. ISBN 1-402-00099-5. [17, 22, 57, and 168]
T. Koch, A. Martin, and M. E. Pfetsch. Progress in Academic Computational Integer Programming. In M. Jünger and G. Reinelt, editors, Facets of Combinatorial Optimization, pages 483-506. Springer, 2013. doi: 10.1007/978-3-642-38189-8_19. [2]
B. Korte, L. Lovász, and R. Schrader. Greedoids, volume 4. Springer Science \& Business Media, 2012. [76]
B. Korte, J. Vygen, B. Korte, and J. Vygen. Combinatorial optimization. Springer, 2018. [14]
L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta informatica, 15(2):141-145, 1981. doi: 10.1007/bf00288961. [16]
L. T. Kou. On efficient implementation of an approximation algorithm for the Steiner tree problem. Acta informatica, 27(4):369-380, 1990. doi: 10.1007/bf00264613. [16]
M. Leitner, I. Ljubic, M. Luipersbeck, M. Prossegger, and M. Resch. New Real-world Instances for the Steiner Tree Problem in Graphs. Technical report, ISOR, Uni Wien, 2014. [14, 58]
M. Leitner, I. Ljubic, M. Luipersbeck, and M. Sinnl. A Dual Ascent-Based Branch-andBound Framework for the Prize-Collecting Steiner Tree and Related Problems. INFORMS Journal on Computing, 30(2):402-420, 2018a. doi: 10.1287/ijoc.2017.0788. [70, 85, 93, $100,105,109,111,116,117,122,142,145,146,147,148$, and 156]
M. Leitner, I. Ljubic, M. Luipersbeck, and M. Sinnl. Decomposition methods for the twostage stochastic steiner tree problem. Computational Optimization and Applications, 69 (3):713-752, 2018b. doi: 10.1007/s10589-017-9966-x. [21]
A. Y. Levin. Algorithm for the shortest connection of a group of graph vertices. In Doklady Akademii Nauk, volume 200, pages 773-776. Russian Academy of Sciences, 1971. [15]
F. Liers, A. Martin, and S. Pape. Binary steiner trees: Structural results and an exact solution approach. Discrete Optimization, 21:85-117, 2016. doi: 10.1016/j.disopt.2016.05.006. [159]
W. Liu. A lower bound for the Steiner tree problem in directed graphs. Networks, 20(6): 765-778, 1990. doi: 10.1002/net.3230200606. [22]
I. Ljubic. Exact and Memetic Algorithms for Two Network Design Problems. PhD thesis, Vienna University of Technology, 2004. [116, 146, and 147]
I. Ljubic. Solving Steiner Trees - Recent Advances, Challenges and Perspectives. Networks, 2020. accepted for publication. [7, 14, 51, 116, and 178]
I. Ljubic, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel, and M. Fischetti. An Algorithmic Framework for the Exact Solution of the Prize-Collecting Steiner Tree Problem. Mathematical Programming, 105(2-3):427-449, 2006. doi: 10.1007/s10107-005-0660-x. [21, 116, 117, 122, 136, and 146]
A. A. Loboda, M. N. Artyomov, and A. A. Sergushichev. Solving Generalized MaximumWeight Connected Subgraph Problem for Network Enrichment Analysis, pages 210-221. Springer International Publishing, Cham, 2016. doi: 10.1007/978-3-319-43681-4_17. [69, 86, 109, and 111]
A. Lodi and A. Tramontani. Performance variability in mixed-integer programming. In Theory Driven by Influential Applications, pages 1-12. INFORMS, 2013. doi: 10.1287/ educ.2013.0112. [12]
C. L. Lu, C. Y. Tang, and R. C.-T. Lee. The full Steiner tree problem. Theoretical Computer Science, 306(1):55-67, 2003. doi: 10.1016/S0304-3975(03)00209-3. [152]
A. Lucena and J. E. Beasley. A branch and cut algorithm for the Steiner problem in graphs. Networks, 31(1):39-59, 1998. doi: 10.1002/(SICI)1097-0037(199801)31:1〈39:: AID-NET5)3.0.CO;2-L. [16]
T. L. Magnanti and L. A. Wolsey. Handbooks in Operations Research and Management Science, volume Volume 7, chapter Chapter 9 Optimal trees, pages 503-615. Elsevier, 1995. [19, 20, 73, and 106]
D. Marx, M. Pilipczuk, and M. Pilipczuk. On Subexponential Parameterized Algorithms for Steiner Tree and Directed Subset TSP on Planar Graphs. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 474-484, 2018. doi: 10.1109/FOCS.2018.00052. [15]
K. Mehlhorn. A Faster Approximation Algorithm for the Steiner Problem in Graphs. Information Processing Letters, 27(3):125-128, 1988. doi: 10.1016/0020-0190(88)90066-x. [16, 171]
Y.-F. Ming, S.-B. Chen, Y.-Q. Chen, and Z.-H. Fu. A fast vertex-swap operator for the prize-collecting Steiner tree problem. In Y. Shi, H. Fu, Y. Tian, V. V. Krzhizhanovskaya, M. H. Lees, J. Dongarra, and P. M. A. Sloot, editors, Computational Science - ICCS 2018, pages 553-560, Cham, 2018. Springer International Publishing. ISBN 978-3-319-93701-4. [116]
H. Mittelmann. Benchmarks for optimization software, 2020. http://plato.asu.edu/ bench.html. [12]
J. Moody and D. R. White. Structural cohesion and embeddedness: A hierarchical concept of social groups. American sociological review, pages 103-127, 2003. [70]
A. Moss and Y. Rabani. Approximation algorithms for constrained for constrained node weighted Steiner tree problems. In J. S. Vitter, P. G. Spirakis, and M. Yannakakis, editors, STOC, pages 373-382. ACM, 2001. ISBN 1-58113-349-9. [156]
B. Müller, F. Serrano, and A. Gleixner. Using two-dimensional projections for stronger separation and propagation of bilinear terms. SIAM Journal on Optimization, 30(2):1339 - 1365, 2020. doi: 10.1137/19M1249825. [65]
J. Nederlof. Fast polynomial-space algorithms using Möbius inversion: Improving on Steiner tree and related problems. In International Colloquium on Automata, Languages, and Programming, pages 713-725. Springer, 2009. doi: 10.1007/978-3-642-02927-1 \_59. [15]
J. Nederlof. Fast polynomial-space algorithms using inclusion-exclusion. Algorithmica, 65 (4):868-884, 2013. doi: $10.1007 / \mathrm{s} 00453-012-9630-\mathrm{x}$. [22]
M. Noormohammadpour, C. S. Raghavendra, S. Rao, and S. Kandula. Dccast: Efficient point to multipoint transfers across datacenters. In 9th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 17), Santa Clara, CA, July 2017. USENIX Association. URL https://www.usenix.org/conference/hotcloud17/program/presentation/ noormohammadpour. [14]
P.-M. Olsson, J. Kvarnström, P. Doherty, O. Burdakov, and K. Holmberg. Generating UAV communication networks for monitoring and surveillance. In In Proceedings of the International Conference on Control, Automation, Robotics and Vision (ICARCV, 2010. doi: 10.1109/icarcv.2010.5707968. [164]
T. Pajor, E. Uchoa, and R. F. Werneck. A robust and scalable algorithm for the Steiner problem in graphs. Mathematical Programming Computation, Sep 2017. doi: 10.1007/ s12532-017-0123-4. [17, 38, 51, 53, 66, 67, 102, and 158]
B. Peters. Monomial patterns in polynomial optimization. PhD thesis, Otto-von-GuerickeUniversity Magdeburg, 2021. [7]
T. Polzin. Algorithms for the Steiner problem in networks. PhD thesis, Saarland University, 2003. [17, 19, 34, 39, 47, 48, 54, 60, 61, 63, 64, 65, 66, 67, 168, and 185]
T. Polzin and S. V. Daneshmand. A comparison of Steiner tree relaxations. Discrete Applied Mathematics, 112(1-3):241-261, 2001a. doi: 10.1016/s0166-218x(00)00318-8. [17, 19, 21, 22, 23, 25, 57, and 209]
T. Polzin and S. V. Daneshmand. Improved Algorithms for the Steiner Problem in Networks. Discrete Applied Mathematics, 112(1-3):263-300, Sept. 2001b. doi: 10.1016/ S0166-218X(00)00319-X. [17, 20, 26, 28, 35, 37, 38, 39, 51, 52, 55, 106, 171, 172, 173, 184, and 185]
T. Polzin and S. V. Daneshmand. Extending Reduction Techniques for the Steiner Tree Problem, pages 795-807. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002. ISBN 978-3-540-45749-7. doi: 10.1007/3-540-45749-6\_69. [17, 21, 39, 41, 43, 45, 47, 168, and 176]
T. Polzin and S. V. Daneshmand. On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters, 31(1):12-20, 2003. doi: 10.1016/S0167-6377(02) 00185-2. [16, 17, 157, and 158]
T. Polzin and S. V. Daneshmand. Practical Partitioning-Based Methods for the Steiner Problem. In C. Àlvarez and M. Serna, editors, Experimental Algorithms, pages 241-252, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. doi: 10.1007/11764298_22. [17, 39, 40, and 54]
T. Polzin and S. Vahdati-Daneshmand. Approaches to the Steiner Problem in Networks, pages 81-103. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. doi: 10.1007/ 978-3-642-02094-0_5. [17]
T. Polzin and S. Vahdati-Daneshmand. The Steiner Tree Challenge: An updated Study. Unpublished manuscript at http://dimacs11.cs.princeton.edu/downloads.html, 2014. [17, $60,63,64,65,66,158,222$, and 230]
H.-J. Prömel and A. Steger. The Steiner Tree Problem: A Tour Through Graphs, Algorithms, and Complexity. Advanced Lectures in Mathematics. Vieweg, 2002. [14]
L. D. P. Pugliese, M. Gaudioso, F. Guerriero, and G. Miglionico. A lagrangean-based decomposition approach for the link constrained Steiner tree problem. Optimization Methods and Software, 33(3):650-670, 2018. doi: 10.1080/10556788.2017.1392518. [164, 165]
T. Ralphs, Y. Shinano, T. Berthold, and T. Koch. Parallel Solvers for Mixed Integer Linear Optimization, pages 283-336. Springer International Publishing, Cham, 2018. doi: 10.1007/978-3-319-63516-3\_8. [180]
D. Rehfeldt and T. Koch. Transformations for the Prize-Collecting Steiner Tree Problem and the Maximum-Weight Connected Subgraph Problem to SAP. Journal of Computational Mathematics, 36(3):459-468, 2018a. doi: 10.4208/jcm.1709-m2017-0002. [6, 102, and 137]
D. Rehfeldt and T. Koch. SCIP-Jack-a solver for STP and variants with parallelization extensions: An update. In Operations Research Proceedings 2017, pages 191 - 196, 2018b. doi: 10.1007/978-3-319-89920-6_27. [6]
D. Rehfeldt and T. Koch. Combining NP-Hard Reduction Techniques and Strong Heuristics in an Exact Algorithm for the Maximum-Weight Connected Subgraph Problem. SIAM Journal on Optimization, 29(1):369-398, 2019. doi: 10.1137/17M1145963. [6, 93, 105, and 110]
D. Rehfeldt and T. Koch. On the exact solution of prize-collecting Steiner tree problems. Technical Report 20-11, ZIB, Takustr. 7, 14195 Berlin, 2020. [6, 145]
D. Rehfeldt and T. Koch. Implications, conflicts, and reductions for steiner trees. In M. Singh and D. P. Williamson, editors, Integer Programming and Combinatorial Optimization 22nd International Conference, IPCO 2021, Atlanta, GA, USA, May 19-21, 2021, Proceedings, volume 12707 of Lecture Notes in Computer Science, pages 473-487. Springer, 2021. doi: 10.1007/978-3-030-73879-2 $\$ _33. [7]
D. Rehfeldt, T. Koch, and S. J. Maher. Reduction techniques for the prize collecting Steiner tree problem and the maximum-weight connected subgraph problem. Networks, 73(2): 206-233, 2019. doi: $10.1002 /$ net.21857. [6, 74, 86, 91, 105, 122, 125, and 130]
D. Rehfeldt, Y. Shinano, and T. Koch. SCIP-Jack: An Exact High Performance Solver for Steiner Tree Problems in Graphs and Related Problems. In H. G. Bock, W. Jäger, E. Kostina, and H. X. Phu, editors, Modeling, Simulation and Optimization of Complex Processes HPSC 2018, pages 201-223, Cham, 2021. Springer International Publishing. ISBN 978-3-030-55240-4. [6]
G. Reich and P. Widmayer. Beyond Steiner's problem: A VLSI oriented generalization. In M. Nagl, editor, Graph-Theoretic Concepts in Computer Science, pages 196-210, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg. doi: 10.1007/3-540-52292-1_14. [163]
G. Reinelt. TSPLIB-a traveling salesman problem library. ORSA Journal on Computing, 3(4):376-384, 1991. doi: 10.1287/ijoc.3.4.376. [58]
C. C. Ribeiro, E. Uchoa, and R. F. Werneck. A Hybrid Grasp With Perturbations For The Steiner Problem In Graphs. Informs Journal on Computing, 14:200-2, 2001. doi: 10.1287/ijoc.14.3.228.116. [17, 51]
G. Robins and A. Zelikovsky. Tighter bounds for graph Steiner tree approximation. SIAM Journal on Discrete Mathematics, 19(1):122-134, 2005. doi: 10.1137/s0895480101393155. [16]
I. Rosseti, M. P. de Aragão, C. C. Ribeiro, E. Uchoa, and R. F. Werneck. New Benchmark Instances for The Steiner Problem in Graphs, pages 601-614. Springer US, Boston, MA, 2004. doi: 10.1007/978-1-4757-4137-7_28. [17, 58]
M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer programming problems. ORSA Journal on Computing, 6(4):445-454, 1994. doi: 10.1287/ijoc.6.4.445. [42]
L. Schmidt, C. Hegde, P. Indyk, L. Lu, X. Chi, and D. Hohl. Seismic feature extraction using Steiner tree methods. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1647-1651, April 2015. doi: 10.1109/ICASSP. 2015.7178250. [116]
A. Schrijver. Theory of linear and integer programming. John Wiley \& Sons, 1998. [9]
A. Segev. The node-weighted Steiner tree problem. Networks, 17(1):1-17, 1987. doi: $10.1002 /$ net. 3230170102 . [116]
Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, T. Koch, and M. Winkler. Solving open MIP instances with parascip on supercomputers using up to 80,000 cores. In 2016 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2016, Chicago, IL, USA, May 23-27, 2016, pages 770-779. IEEE Computer Society, 2016. doi: 10.1109/IPDPS.2016.56. [180]
Y. Shinano, D. Rehfeldt, and T. Gally. An easy way to build parallel state-of-the-art combinatorial optimization problem solvers: A computational study on solving steiner tree problems and mixed integer semidefinite programs by using ug[scip-*,*]-libraries. In Proceedings of the 9th IEEE Workshop Parallel / Distributed Combinatorics and Optimization, pages 530 - 541, 2019a. doi: 10.1109/IPDPSW.2019.00095. [7]
Y. Shinano, D. Rehfeldt, and T. Koch. Building optimal steiner trees on supercomputers by using up to 43,000 cores. In Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019, volume 11494, pages 529 - 539, 2019b. doi: 10.1007/978-3-030-19212-9_35. [7, 180]
M. L. Shore, L. R. Foulds, and P. B. Gibbons. An algorithm for the Steiner problem in graphs. Networks, 12(3):323-333, 1982. doi: 10.1002/net.3230120309. [16]
M. Siebert, S. Ahmed, and G. Nemhauser. A linear programming based approach to the Steiner tree problem with a fixed number of terminals. Networks, 75(2):124-136, 2020a. doi: 10.1002/net.21913. [15]
M. Siebert, S. Ahmed, and G. Nemhauser. A Simulated Annealing Algorithm for the Directed Steiner Tree Problem. arXiv preprint arXiv:2002.03055, 2020b. [154, 155]
D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput. Syst. Sci., 26(3):362-391, June 1983. doi: 10.1016/0022-0000(83)90006-5. [107]
T. L. Snyder. On the Exact Location of Steiner Points in General Dimension. SIAM Journal of Applied Mathematics, 21(1):163-180, 1992. doi: 10.1137/0221013. [157]
P. M. Spira and A. Pan. On finding and updating spanning trees and shortest paths. SIAM Journal on Computing, 4(3):375-380, 1975. doi: 10.1137/0204032. [175]
Y. Sun, M. Brazil, D. Thomas, and S. Halgamuge. The fast heuristic algorithms and postprocessing techniques to design large and low-cost communication networks. IEEE/ACM Transactions on Networking, pages 1-14, 2019. doi: 10.1109/TNET.2018.2888864. [116, 146]
Y. Sun, D. Rehfeldt, M. Brazil, D. Thomas, and S. Halgamuge. A physarum-inspired algorithm for minimum-cost relay node placement in wireless sensor networks. IEEE/ACM Transactions on Networking, 28(2):681-694, 2020. doi: 10.1109/TNET.2020.2971770. [6, 152, and 153]
H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem in graphs. Mathematica Japonicae, 24:573-577, 1980. [16, 51]
R. E. Tarjan. Applications of Path Compression on Balanced Trees. The Journal of the ACM, 26(4):690-715, Oct. 1979. doi: 10.1145/322154.322161. [171]
R. E. Tarjan and U. Vishkin. Finding biconnected componemts and computing tree functions in logarithmic parallel time. In 25th Annual Symposium on Foundations of Computer Science, 1984., pages 12-20. IEEE, 1984. doi: 10.1109/sfcs.1984.715896. [172]
N. Tuncbag, S. J. Gosline, A. Kedaigle, A. R. Soltis, A. Gitter, and E. Fraenkel. Networkbased interpretation of diverse high-throughput datasets through the omics integrator software package. PLoS computational biology, 12(4):e1004879, 2016. [116]
E. Uchoa. Reduction tests for the prize-collecting Steiner problem. Operations Research Letters, 34(4):437-444, 2006. doi: 10.1016/j.orl.2005.02.007. [93, 94, 117, 122, 123, 124, 125, and 146]
E. Uchoa and R. F. F. Werneck. Fast Local Search for Steiner Trees in Graphs. In G. E. Blelloch and D. Halperin, editors, ALENEX, pages 1-10. SIAM Journal of Applied Mathematics, 2010. doi: 10.1137/1.9781611972900.1. [17, 51, 107, 144, and 177]
E. Uchoa, M. Poggi de Aragão, and C. C. Ribeiro. Preprocessing Steiner problems from VLSI layout. Networks, 40(1):38-50, 2002. doi: 10.1002/net.10035. [17, 26, and 43]
S. Vahdati Daneshmand. Algorithmic approaches to the Steiner problem in networks. PhD thesis, Universität Mannheim, 2004. [17, 19, 54, 60, 61, 63, 64, 65, 66, 67, and 185]
A. van den Boogaart. Efficient computation of fiber optic networks. Master's thesis, Eindhoven University of Technology, 2018. [7]
A. Verma, A. Buchanan, and S. Butenko. Solving the maximum clique and vertex coloring problems on very large sparse networks. INFORMS Journal on Computing, 27(1):164-177, 2015. doi: 10.1287/ijoc.2014.0618. [85]
S. Voss. A survey on some generalizations of Steiner's problem. 1st Balkan Conference on Operational Research Proceedings, 1:41-51, 1988. [163]
S. Voss. Steiner-probleme in Graphen. Hain, 1990. [14]
S. Voß. The Steiner tree problem with hop constraints. Annals of Operations Research, 86: 321-345, 1999. doi: 10.1023/A<br>%3A1018967121276. [164]
J. Vygen. Faster algorithm for optimum Steiner trees. Information Processing Letters, 111 (21):1075-1079, 2011. doi: 10.1016/j.ipl.2011.08.005. [15, 120]
Y. Wang, A. Buchanan, and S. Butenko. On imposing connectivity constraints in integer programs. Mathematical Programming, pages 1-31, 2017. doi: 10.1007/s10107-017-1117-8. [70, 74, 76, 84, and 86]
D. Warme, P. Winter, and M. Zachariasen. Exact algorithms for plane Steiner tree problems: A computational study. In D.-Z. Du, J. Smith, and J. Rubinstein, editors, Advances in Steiner Trees, pages 81-116. Kluwer, 2000. [157]
D. M. Warme. Spanning Trees in Hypergraphs with Applications to Steiner Trees. PhD thesis, University of Virginia, USA, 1998. [157]
S. Wasik, M. Antczak, J. Badura, A. Laskowski, and T. Sternal. Optil.io: Cloud based platform for solving optimization problems using crowdsourcing approach. In Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Companion, CSCW '16 Companion, page 433-436, New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450339506. doi: 10.1145/2818052.2869098. [62]
D. Watel and M.-A. Weisser. A practical greedy approximation for the directed Steiner tree problem. Journal of Combinatorial Optimization, 32(4):1327-1370, 2016. doi: 10.1007/ s10878-016-0074-0. [155]
Wikipedia. Skipjack tuna. https://en.wikipedia.org/wiki/Skipjack_tuna, 2021. Accessed: Feb. 18, 2021. [168]
P. Winter. Reductions for the rectilinear Steiner tree problem. Networks, 26(4):187-198, 1995. doi: 10.1002/net.3230260404. [43]
J. Witzig and A. Gleixner. Conflict-driven heuristics for mixed integer programming. INFORMS Journal on Computing, 2020. doi: 10.1287/ijoc.2020.0973. epub ahead of print. [65]
R. Wong. A dual ascent approach for Steiner tree problems on a directed graph. Mathematical Programming, 28:271-287, 1984. doi: 10.1007/BF02612335. [11, 20, 38, 53, 100, 106, 136, 142, and 144]
A. Z. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem. Algorithmica, 9(5):463-470, 1993. doi: 10.1007/bf01187035. [16]
E. Álvarez Miranda and M. Sinnl. A relax-and-cut framework for large-scale maximum weight connected subgraph problems. Computers \& Operations Research, 87:63-82, 2017. doi: 10.1016/j.cor.2017.05.015. [86, 105, and 111]

## Appendix A

## Further proofs

## A. 1 Steiner tree problem in graphs

## A.1.1 Proof of Proposition 2.23

Proof. Suppose that there is a minimum Steiner tree $S^{(k)}$ with $e_{1}, e_{2} \in E^{(k)}\left(S^{(k)}\right)$. Let $x \in \Lambda^{(k)}\left(e_{1}\right) \cap \Lambda^{(k)}\left(e_{2}\right)$. Let $i$ be the first reduction iteration with $\lambda^{(i)}=x$. We may assume that $i=1$. Otherwise, we can define additional ancestor information $\bar{\Pi}$ and $\bar{\Lambda}$ starting from $I^{(i-1)}$, and perform the reductions from iteration $i$ to iteration $k$. Let $v$ be the vertex that is replaced in iteration $i=1$. Note that $x=\lambda^{(1)}=1$. From Observation 2.22 we know that the tree $S$ defined by $E(S)=\bigcup_{e \in E^{(k)}} \Pi^{(k)}(e) \cup \Pi_{F I X}^{(k)}$ is a minimum Steiner tree for $I$. However, because of $\lambda^{(1)} \in \Lambda^{(k)}\left(e_{1}\right) \cap \Lambda^{(k)}\left(e_{2}\right)$, we have that $\left|\left(\Pi^{(k)}\left(e_{1}\right) \cup \Pi^{(k)}\left(e_{2}\right)\right) \cap \delta_{S}(v)\right| \geqslant 3$. This implies however, that replacing $v$ is not valid-a contradiction.

## A. 2 Maximum-weight connected subgraph problem

## A.2.1 Proof of Proposition 3.21

Proof. Let $S$ be an optimal solution to $I_{M W}$ (and, as before, a tree) such that $v_{i} \in V(S)$ and $|V(S) \cap T| \geqslant 2$. Define $\mathcal{Q}$ as in the proof of Proposition 3.20, and note that $\mathcal{Q} \neq \emptyset$ (because of $|V(S) \cap T| \geqslant 2$ ). Next, choose a path $Q_{k} \in \mathcal{Q}$ with a minimum number of $H$-boundary edges. Further, define $\mathcal{Q}^{-}:=\mathcal{Q} \backslash\left\{Q_{k}\right\}$. As before, for all $Q_{r} \in \mathcal{Q}^{-}$, denote by $Q_{r}^{\prime}$ the subpath of $Q_{r}$ from $t_{r}$ up to the last vertex still in $H_{t_{r}}$. As in the proof of Proposition 3.20, one validates that the $Q_{r}^{\prime}$ are pairwise vertex disjoint and that $Q_{k}$ has no vertex in common with any $Q_{r}^{\prime}$. One goes on to obtain an upper bound on the weight of $S$ :

$$
\begin{aligned}
P(S) & =\sum_{v \in V(S)} p(v) \\
& \leqslant\left(\sum_{Q_{r} \in \mathcal{Q}^{-}} P\left(Q_{r}^{\prime}\right)\right)+P\left(Q_{k}\right) \\
& \leqslant \sum_{t \in T_{p} \backslash\left\{v_{i}\right\}} r_{H}^{+}(t)-\min \left\{r_{H}^{+}(t) \mid t \in T_{p} \backslash\left\{v_{i}\right\}\right\}+P\left(Q_{k}\right) \\
& \leqslant \sum_{t \in T_{p} \backslash\left\{v_{i}\right\}} r_{H}^{+}(t)-\min \left\{r_{H}^{+}(t) \mid t \in T_{p} \backslash\left\{v_{i}\right\}\right\}+\bar{d}\left(v_{i}, \underline{v}_{i, 1}^{H^{p}}\right) .
\end{aligned}
$$

These inqualities conclude the proof of the proposition.

## A.2.2 Node separators and rejoining of flows

The following is joint work with Henriette Franz. Consider the directed RMWCSP instance $(G, T, p, r)$ with $G=(V, A)$ depicted in Figure A.1.


Figure A.1: Directed RMWCSP instance.
A proof from Álvarez-Miranda et al. (2013b) intends to show that $v_{L P}(R N C u t) \leqslant$ $v_{L P}($ RSA $)$ holds. For this purpose, the authors consider an arbitrary solution $\bar{x} \in \mathcal{P}_{L P}$ (RNCut) and construct an auxiliary graph $G^{\prime}$ by replacing each node $v \in V \backslash\{r\}$ with an $\operatorname{arc}\left(v_{1}, v_{2}\right)$. All ingoing arcs of $v$ become ingoing arcs of $v_{1}$, and all outgoing arcs of $v$ are now outgoing $\operatorname{arcs}$ of $v_{2}$. Moreover, (non-negative) capacities $k^{\prime}$ on $G^{\prime}$ are introduced for each $\operatorname{arc}\left(v^{\prime}, w^{\prime}\right)$ of $G^{\prime}$ by

$$
k^{\prime}\left(v^{\prime}, w^{\prime}\right):= \begin{cases}\bar{x}(v), & \text { if }\left(v^{\prime}, w^{\prime}\right)=\left(v_{1}, v_{2}\right) \text { for a } v \in V \\ 1, & \text { otherwise }\end{cases}
$$



Figure A.2: Illustration of an auxiliary support graph $G^{\prime}$ corresponding to the instance in Figure A. 1 regarding the optimal solution $\bar{x}(v)=0.5, v \in V \backslash T$, and $\bar{x}(t)=1$, $t \in T$, to the RNCut formulation.

Figure A. 2 shows an auxiliary support graph of the instance illustrated by Figure A.1. It is possible to send a flow with flow value $\bar{x}(v)$ from root node $r$ to each arc $\left(v_{1}, v_{2}\right)$ with $v \in V \backslash\{r\}$ because of constraints (3.10). Let $f^{v}(j, l)$ be the amount of a flow with source node $r$, sink node $v \in V \backslash\{r\}$, and flow value $\bar{x}(v)$ sent along $\operatorname{arc}(j, l)$. Define the arc variables $\hat{y}(j, l),(j, l) \in A$, of the RSA formulation as follows:

$$
\hat{y}(j, l):= \begin{cases}\max _{v \in V \backslash\{r\}} f^{v}\left(j_{2}, l_{1}\right), & j, l \in V \backslash\{r\} \\ \max _{v \in V \backslash\{r\}} f^{v}\left(j, l_{1}\right), & j=r, l \in V \backslash\{r\} .\end{cases}
$$

Hence, the arc variables of the instance in Figure A. 2 are given by $\hat{y}(j, l)=0.5$ for each $(j, l) \in A$. Moreover, define the node variables as $\hat{x}(v)=\hat{y}\left(\delta^{-}(v)\right)$. Thus, in our case, it holds $\hat{x}(a), \hat{x}(b), \hat{x}(c), \hat{x}(e)=0.5$, and $\hat{x}(d)=1$. The proof from Álvarez-Miranda et al. (2013b) claims that we can follow $\bar{x}(v)=\hat{x}(v), v \in V$, by this definition of the variables. However, this claim is not true because of $0.5=\bar{x}(d) \neq \hat{x}(d)=1$, and therefore, no solution can be constructed from the solution $\bar{x}$ to the RNCut model.

In summary, and somewhat broadly speaking, the weaker LP relaxation can be explained as follows. The RNCut formulation can be interpreted as a multi-commodity flow problem in an enlarged graph. However, enlarging the graph opens new possibilities for what is sometimes called rejoining of flows (Polzin and Daneshmand, 2001a): Flows for different commodities enter a node on different arcs, but leave on the same arc. Such a rejoining can lead to an increased integrality gap.

## A. 3 Prize-collecting Steiner tree problem

## A.3.1 Proof of Theorem 4.1

The proof of Theorem 4.1 is based on the well-known dynamic programming algorithm for SPG by Dreyfus and Wagner (1971) that runs in $O\left(3^{|T|} n+2^{|T|} n^{2}+n^{2} \log n+m n\right)$, where $T$ is the set of terminals. We will refer to this algorithm as Dreyfus-Wagner for short. See also Buchanan et al. (2018) for an extension of Dreyfus-Wagner to the node-weighted Steiner tree problem. Dreyfus-Wagner exploits the fact that any optimal Steiner tree $S$ for an SPG $(G, T, c)$, with $T \neq \emptyset$ and positive $c$, can be split at any $v \in V(S)$ into two non-empty trees $S_{1}$ and $S_{2}$ such that $T_{1}:=V\left(S_{1}\right) \cap T \neq \emptyset, T_{2}:=V\left(S_{2}\right) \cap T \neq \emptyset$, and:

1. $T_{1} \cap T_{2} \subseteq\{v\}$ and $T_{1} \cup T_{2}=T$,
2. $S_{1}$ is optimal for $\left(G, T_{1} \cup\{v\}, c\right)$, and $S_{2}$ is optimal for $\left(G, T_{2} \cup\{v\}, c\right)$.

We show that a similar property holds for PCSTP. To this end, consider the RPCSTP $I_{f}$, defined in Section 4.2.1. Moreover, we will consider only optimal (PCSTP and RPCSTP) solutions that contain only proper potential or fixed terminals as leafs. If no such solution exists, there is a trivial optimal solution, which can be found in linear time. For any $T \subseteq T_{f}$ we denote by $I_{f}(T)$ the $\operatorname{RPCSTP}(G, T, c, p)$; so in particular $I_{f}\left(T_{f}\right)=I_{f}$. For $I_{f}$ we obtain the following result.

Lemma A.1. Let $T_{1}, T_{2} \subseteq T_{f}$ be non-empty with $T_{1} \cup T_{2}=T_{f}$. Let $S_{1}, S_{2}$ be trees in $G$ such that all leaves of $S_{1}$ are contained in $T_{1}$, all leaves of $S_{2}$ are contained in $T_{2}$, and $S_{1} \cap S_{2} \neq \emptyset$. In this case, there is a tree $S \subseteq S_{1} \cup S_{2}$ such that $T_{f} \subseteq V(S)$, and

$$
\begin{equation*}
C(S) \leqslant C\left(S_{1}\right)+C\left(S_{2}\right)-\sum_{u \in V} p(u)+\min _{u \in V\left(S_{1} \cap S_{2}\right)} p(u) \tag{A.1}
\end{equation*}
$$

Proof. Initially, set $S:=S_{1} \cup S_{2}$ and $\hat{S}:=S_{1} \cap S_{2}$. Let $v_{0} \in V(\hat{S})$ such that $p\left(v_{0}\right)=$ $\min _{u \in V(\hat{S})} p(u)$. Let $\vec{S}_{1}$ be the arborescence corresponding to $S_{1}$ that is rooted in $v_{0}$. Denote its arcs by $A\left(\vec{S}_{1}\right)$. For any $w \in V(\hat{S}) \backslash\left\{v_{0}\right\}$ there is an (incoming) arc $(u, w) \in A\left(\vec{S}_{1}\right)$. Let $E_{S}^{\prime}:=\left\{\{u, w\} \in E\left(S_{1}\right) \backslash E\left(S_{2}\right) \mid w \in V(\hat{S}) \wedge(u, w) \in A\left(\vec{S}_{1}\right)\right\}$ and $E_{S}^{\prime \prime}:=\{\{u, w\} \in E(\hat{S}) \mid$ $\left.(u, w) \in A\left(\vec{S}_{1}\right)\right\}$. Note that $\left|E_{S}^{\prime} \dot{\cup} E_{S}^{\prime \prime}\right|=|V(\hat{S})|-1$. Because of $T_{p}^{+}=\emptyset$ it holds that

$$
\begin{equation*}
\sum_{e \in E_{S}^{\prime}} c(e)+\sum_{e \in E_{S}^{\prime \prime}} c(e) \geqslant \sum_{u \in V(\hat{S}) \backslash\left\{v_{0}\right\}} p(u) . \tag{A.2}
\end{equation*}
$$

Because of $E_{S}^{\prime \prime} \subseteq E(\hat{S})$, inequality (A.2) implies

$$
\begin{equation*}
\sum_{e \in E_{S}^{\prime}} c(e)+\sum_{e \in \hat{S}} c(e) \geqslant \sum_{u \in V(\hat{S}) \backslash\left\{v_{0}\right\}} p(u) . \tag{A.3}
\end{equation*}
$$

Note that any $e \in E_{S}^{\prime}$ lies in a cycle of $S$ and that each cycle of $S$ contains an $e \in E_{S}^{\prime}$. Remove $E_{S}^{\prime}$ from $S$ to obtain a new tree $\tilde{S}$ (which contains $T_{f}$ ). It holds that:

$$
\begin{align*}
C\left(S_{1}\right)+C\left(S_{2}\right) & =C(S)+\sum_{e \in \hat{S}} c(e)+\sum_{u \in V} p(u)-\sum_{u \in V(\hat{S})} p(u)  \tag{A.4}\\
& =C(\tilde{S})+\sum_{e \in E_{S}^{\prime}} c(e)+\sum_{e \in \hat{S}} c(e)+\sum_{u \in V} p(u)-\sum_{u \in V(\hat{S})} p(u)  \tag{A.5}\\
& \stackrel{(\text { A.3) }}{\geqslant} C(\tilde{S})+\sum_{u \in V} p(u)-p\left(v_{0}\right)  \tag{A.6}\\
& =C(\tilde{S})+\sum_{u \in V} p(u)-\min _{u \in V\left(S_{1} \cap S_{2}\right)} p(u) . \tag{A.7}
\end{align*}
$$

Thus, $\tilde{S}$ satisfies (A.1).
This lemma sets the stage for the desired result:
Lemma A.2. Let $S$ be an optimal solution to $I_{f}$ and choose any, arbitrary but fixed, $v \in V(S)$. Further, let $S_{1}, S_{2} \subseteq S$ be trees such that $V\left(S_{1} \cap S_{2}\right)=\{v\}$ and $S_{1} \cup S_{2}=S$. Define $T_{1}:=\left(T_{f} \cap V\left(S_{1}\right)\right) \cup\{v\}$ and $T_{2}:=\left(T_{f} \cap V\left(S_{2}\right)\right) \cup\{v\}$. It holds that $S_{1}$ is an optimal solution to $I_{f}\left(T_{1}\right)$, and $S_{2}$ to $I_{f}\left(T_{2}\right)$. Furthermore:

$$
\begin{equation*}
C(S)=C\left(S_{1}\right)+C\left(S_{2}\right)-\sum_{u \in V \backslash\{v\}} p(u) \tag{A.8}
\end{equation*}
$$

holds.
Proof. First, observe that (A.8) holds because of $V\left(S_{1} \cap S_{2}\right)=\{v\}$. Suppose $S_{1}$ is not optimal. Thus, there exists a tree $\tilde{S}_{1}$ such that all its leaves are contained in $T_{1}$ and such that

$$
\begin{equation*}
C\left(\tilde{S}_{1}\right)<C\left(S_{1}\right) \tag{A.9}
\end{equation*}
$$

We also assume that all leaves of $S_{2}$ are contained in $T_{2}$; note that because of $T_{p}^{+}=\emptyset$ one can always modify $S_{2}$ to satisfy this property without increasing $C\left(S_{2}\right)$. By Lemma A. 1
there exists a $\tilde{S} \subseteq \tilde{S}_{1} \cup S_{2}$ such that $T_{f} \subseteq V(\tilde{S})$ and

$$
\begin{align*}
C(\tilde{S}) & \leqslant C\left(\tilde{S}_{1}\right)+C\left(S_{2}\right)-\sum_{u \in V} p(u)+p(v)  \tag{A.10}\\
& \stackrel{(\text { A.9) }}{<} C\left(S_{1}\right)+C\left(S_{2}\right)-\sum_{u \in V} p(u)+p(v)  \tag{A.11}\\
& =C(S), \tag{A.12}
\end{align*}
$$

which is a contradiction to the assumption that $S$ is optimal.
Based on the proceeding lemma, we can apply an extension of Dreyfus-Wagner to solve $I_{f}$. We define an slight modification of the prize-collecting cost from Section ??. For a $(v, w)$-walk $W$ let

$$
\begin{equation*}
c_{p c}^{\prime}(W):=\sum_{e \in E(W)} c(e)-\sum_{u \in V(W) \backslash\{w\}} p(u) . \tag{A.13}
\end{equation*}
$$

Let $\mathcal{W}(v, w)$ be the set of all finite walks from $v$ to $w$ and define

$$
\begin{equation*}
d_{p c}^{\prime}(v, w):=\min \left\{c_{p c}^{\prime}(W) \mid W \in \mathcal{W}(v, w)\right\} . \tag{A.14}
\end{equation*}
$$

Note that if $T_{p}^{+}=\emptyset$, it is sufficient to consider only simple paths instead of walks. The next subsection concludes the proof of Theorem 4.1.

## Proof of Proposition 4.2

Proof. Initially, choose an arbitrary $t_{0} \in T_{f}$ and set $T_{f}^{-}:=T_{f} \backslash\left\{t_{0}\right\}$. For every pair $(v, w)$ of vertices, set

$$
\begin{equation*}
g(\{w\}, v):=d_{p c}^{\prime}(v, w)+\sum_{u \in V \backslash\{w\}} p(u) . \tag{A.15}
\end{equation*}
$$

For $i=2, \ldots,\left|T_{f}^{-}\right|$define the functions $f$ and $g$ recursively as follows. For $T_{i} \subseteq T_{f}^{-}$with $\left|T_{i}\right|=i$ set

$$
\begin{equation*}
f\left(T_{i}, w\right)=\min _{T \subsetneq T_{i} \mid T \neq \emptyset}\left(g(T, w)+g\left(T_{i} \backslash T, w\right)-\sum_{u \in V \backslash\{w\}} p(u)\right) \tag{A.16}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(T_{i}, v\right)=\min _{u \in V}\left(f\left(T_{i}, u\right)+d_{p c}^{\prime}(v, u)\right) . \tag{A.17}
\end{equation*}
$$

These values can be computed by a dynamic programming algorithm.
Claim 1: After the termination of the above dynamic programming algorithm it holds that $g\left(T_{f}^{-}, t_{0}\right)=C(S)$ for any optimal solution $S$ to $I_{f}$.

We will show by induction on $i \in\left\{1, \ldots,\left|T_{f}^{-}\right|\right\}$that for any $T_{i} \subseteq T_{f}^{-}$with $\left|T_{i}\right|=i$, and any $v \in V \backslash T_{i}$ it holds that

$$
\begin{equation*}
g\left(T_{i}, v\right)=C(S) \tag{A.18}
\end{equation*}
$$

for any optimal solution $S$ to $I_{f}\left(T_{i} \cup\{v\}\right)$. First, one observes from the definition of $d_{p c}^{\prime}$ that (A.18) holds for any $t \in T_{f}^{-}$and any $v \in V \backslash\{t\}$. Next, let $i \in\left\{2, \ldots,\left|T_{f}^{-}\right|\right\}$. Assume that (A.18) holds for all non-empty $T \subset T_{f}^{-}$with $|T|<i$. Choose any $T_{i} \subseteq T_{f}^{-}$with $\left|T_{i}\right|=i$, and choose any $v \in V \backslash T_{i}$. Let $S$ be an optimal solution to $I_{f}\left(T_{i} \cup\{v\}\right)$. Split $S$ as follows:

If $\delta_{S}(v)=1$ let $P:=(v, \emptyset)$, otherwise let $P \subseteq S$ be the path from $v$ to the first vertex $w \in V(S)$ with $\delta_{S}(w)>2$ or $w \in T_{i}$. Observe that

$$
\begin{equation*}
C(P)=d_{p c}^{\prime}(v, w)+\sum_{u \in V \backslash\{w\}} p(u) . \tag{A.19}
\end{equation*}
$$

Let $\tilde{S}:=(V(S \backslash P) \cup\{w\}, E(S \backslash P))$. Because of Lemma A.2, $\tilde{S}$ is an optimal solution to $I_{f}\left(T_{i} \cup\{w\}\right)$ and $P$ to $I_{f}(\{v, w\})$. Further:

$$
\begin{equation*}
C(S)=C(\tilde{S})+C(P)-\sum_{u \in V \backslash\{w\}} \stackrel{(\mathrm{A} .19)}{=} C(\tilde{S})+d_{p c}^{\prime}(v, w) . \tag{A.20}
\end{equation*}
$$

Moreover, $\tilde{S}$ can be split into two trees $\tilde{S}_{1}$ and $\tilde{S}_{2}$ such that $\tilde{S}_{1} \cap \tilde{S}_{2}=\{w\}, \tilde{S}_{1} \cup \tilde{S}_{2}=\tilde{S}$, and $\tilde{S}_{1} \cap T_{i} \neq \emptyset, \tilde{S}_{2} \cap T_{i} \neq \emptyset$. With $\tilde{T}_{1}:=\left(T_{i} \cap \tilde{S}_{1}\right) \cup\{w\}$ and $\tilde{T}_{2}:=\left(T_{i} \cap \tilde{S}_{2}\right) \cup\{w\}$, it holds by Lemma A. 2 that $\tilde{S}_{1}$ is an optimal solution to $T_{f}\left(\tilde{T}_{1}\right)$ and $\tilde{S}_{2}$ to $T_{f}\left(\tilde{T}_{2}\right)$. Lemma A. 2 furthermore implies that:

$$
\begin{equation*}
f\left(T_{i}, w\right) \leqslant C\left(\tilde{S}_{1}\right)+C\left(\tilde{S}_{2}\right)-\sum_{u \in V \backslash\{w\}} p(u) . \tag{A.21}
\end{equation*}
$$

From the optimality of $\tilde{S}$ combined with Lemma A. 1 we obtain:

$$
\begin{equation*}
f\left(T_{i}, w\right)=C\left(\tilde{S}_{1}\right)+C\left(\tilde{S}_{2}\right)-\sum_{u \in V \backslash\{w\}} p(u) . \tag{A.22}
\end{equation*}
$$

Similarly, from Lemma A. 1 and Lemma A. 2 we obtain.

$$
\begin{align*}
g\left(T_{i}, w\right) & \stackrel{(\mathrm{A} .22)}{\lessgtr} C\left(\tilde{S}_{1}\right)+C\left(\tilde{S}_{2}\right)+d_{p c}^{\prime}(v, w)  \tag{A.23}\\
& =C(\tilde{S})-\sum_{u \in V \backslash\{w\}} p(u)+d_{p c}^{\prime}(v, w)  \tag{A.24}\\
& \stackrel{(\mathrm{A} .20)}{=} C(S) \tag{A.25}
\end{align*}
$$

Equality follows from Lemma A. 1 and the optimality of $S$.
Claim 2: The above dynamic programming algorithm terminates in time $O\left(3^{\left|T_{f}\right|} n+2^{\left|T_{f}\right|} n^{2}+\right.$ $n^{2} \log n+m n$ ).

For $i \geqslant 2$ the algorithm differs from Dreyfus-Wagner essentially only in the weight functions of the trees. For $i=1$ one observes the following. For a given $v \in V$, the distances $d_{p c}^{\prime}(v, w)$ on $I_{f}$ to all $w \in V$ can be computed in time $O(n \log n+m)$ by using an adaptation of Dijkstra's algorithm, similar to Algorithm 4.1, that runs in time $O(n \log n+m)$. Thus, the distances for all pairs $(v, w)$ can be computed in $O\left(n^{2} \log n+m n\right)$. Consequently, the overall dynamic programming algorithm algorithm has the same run time as Dreyfus-Wagner.

## A.3.2 Proof of Proposition 4.11

Proof. First, one can verify from the definition of Algorithm 4.1 that if it returns deletable, then $c(\{v, w\}) \geqslant d_{p c}^{-}(v, w)$ holds-also without condition (4.19). To show the converse, assume in the following that $c(\{v, w\}) \geqslant d_{p c}^{-}(v, w)$. To simply the presentation it will also be assumed that

$$
\begin{equation*}
p(v)=0 \tag{A.26}
\end{equation*}
$$

which does neither change $d_{p c}^{-}(v, w)$, nor the behavior of Algorithm 4.1. Further, note that because of (4.19) one can assume that $W$ is a (simple) path. Otherwise, replace $W$ by a shortest path (with respect to the edge costs $c$ ) between $v$ and $w$ in the subgraph corresponding to $W$. Indeed, because of (4.19) the prize-constrained length of this shortest path is not higher than that of $W$. As before, write $W=\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, e_{r}, v_{r}\right)$ with $v_{1}=v$ and $v_{r}=w$. Condition (4.19) furthermore implies that

$$
\begin{equation*}
l_{p c}\left(W\left(v, v_{k+1}\right)\right)=l_{p c}\left(W\left(v, v_{k}\right)\right)+c\left(\left\{v_{k}, v_{k+1}\right\}\right)-p\left(v_{k}\right) \tag{A.27}
\end{equation*}
$$

for any $k \in\{1,2, \ldots, r-1\}$.
In the following, we will show that

$$
\begin{equation*}
\operatorname{dist}_{p c}\left[v_{k}\right] \leqslant l_{p c}\left(W\left(v, v_{k}\right)\right)-p\left(v_{k}\right) \tag{A.28}
\end{equation*}
$$

holds for any $k \in\{1, \ldots, r-1\}$. Thereby, the proof is concluded: Algorithm 4.1 can in this case reach $w$ from $v_{r-1}$ due to

$$
\begin{align*}
\operatorname{dist}_{p c}\left[v_{r-1}\right]+c\left(\left\{v_{r-1}, v_{r}\right\}\right) & \stackrel{(\mathrm{A} .28)}{\lessgtr} l_{p c}\left(W\left(v, v_{r-1}\right)\right)-p\left(v_{r-1}\right)+c\left(\left\{v_{r-1}, v_{r}\right\}\right)  \tag{A.29}\\
& \stackrel{(\mathrm{A} .27)}{=} l_{p c}\left(W\left(v, v_{r}\right)\right)  \tag{A.30}\\
& =d_{p c}^{-}(v, w)  \tag{A.31}\\
& \leqslant c(\{v, w\}) \tag{A.32}
\end{align*}
$$

Thus, the algorithm returns deletable.
We will show (A.28) by induction on $k=1, \ldots, r-1$. First, one readily verifies that (A.28) holds for $k=1$. Next, let $k \in\{1, \ldots, r-2\}$ and assume that (A.28) holds for $k$. Suppose

$$
\begin{equation*}
\operatorname{dist}_{p c}\left[v_{k+1}\right]>l_{p c}\left(W\left(v, v_{k+1}\right)\right)-p\left(v_{k+1}\right) . \tag{A.33}
\end{equation*}
$$

Now perform Algorithm 4.1 until dist $_{p c}\left[v_{k}\right]$ satisfies (A.28). At this point, forbidden $\left[v_{k+1}\right]$ must have been set to true, otherwise one could update $\operatorname{dist}_{p c}\left[v_{k+1}\right]$ from vertex $v_{k}$ : Indeed, $\operatorname{dist}_{p c}\left[v_{k}\right]+c\left(\left\{v_{k}, v_{k+1}\right\}\right) \leqslant c(\{v, w\})$ holds, which can be shown equivalently to (A.29)(A.32). Thus, also the second condition for updating $\operatorname{dist}_{p c}\left[v_{k+1}\right]$ from vertex $v_{k}$ is fulfilled. For the third (and last condition), one obtains:

$$
\begin{align*}
\operatorname{dist}_{p c}\left[v_{k}\right]+c\left(\left\{v_{k}, v_{k+1}\right\}\right)-p\left(v_{k+1}\right) & \stackrel{(\mathrm{A.28)}}{\lessgtr} l_{p c}\left(W\left(v, v_{k}\right)-p\left(v_{k}\right)+c\left(\left\{v_{k}, v_{k+1}\right\}\right)-p\left(v_{k+1}\right)\right.  \tag{A.34}\\
& \stackrel{(\mathrm{A} .27)}{=} l_{p c}\left(W\left(v, v_{k+1}\right)-p\left(v_{k+1}\right)\right.  \tag{A.35}\\
& \stackrel{\text { (A.33) }}{<} \operatorname{dist}_{p c}\left[v_{k+1}\right] . \tag{A.36}
\end{align*}
$$

If forbidden $\left[v_{k+1}\right]$ is set to true, the vertex $v_{k+1}$ must already have been removed from $Q$ in Algorithm 4.1 (which happens exactly one time, because at this point $v_{k+1}$ will be marked as forbidden). We will show (by induction) for $j=1, \ldots, k$ that $v_{j}$ satisfies (A.28) at the point when $v_{k+1}$ is removed from $Q$. In this way, we obtain a contradiction, because
if $v_{k}$ satisfies (A.28), then

$$
\begin{align*}
\operatorname{dist}_{p c}\left[v_{k}\right] & \stackrel{(\mathrm{A} .28)}{\leqslant} l_{p c}\left(W\left(v, v_{k}\right)-p\left(v_{k}\right)\right.  \tag{A.37}\\
& \stackrel{(\mathrm{A} .27)}{=} l_{p c}\left(W\left(v, v_{k+1}\right)-c\left(\left\{v_{k}, v_{k+1}\right\}\right)\right.  \tag{A.38}\\
& \stackrel{(4.19)}{\leqslant} l_{p c}\left(W\left(v, v_{k+1}\right)-p\left(v_{k+1}\right)\right. \\
& \stackrel{(\mathrm{A} .33)}{<} \operatorname{dist}_{p c}\left[v_{k+1}\right] \tag{A.39}
\end{align*}
$$

This implies that $v_{k}$ would have been removed before $v_{k+1}$ from $Q$. Consequently, the algorithm would have updated $\operatorname{dist}_{p c}\left(v_{k+1}\right)$ to $\operatorname{dist}_{p c}\left[v_{k}\right]+c\left(\left\{v_{k}, v_{k+1}\right\}\right)-p\left(v_{k+1}\right)$, and (A.28) would hold for $v_{k+1}$, as shown in (A.34),(A.35).

We conclude with the induction for $j=1, \ldots, k$. By definition, $v_{1}$ satisfies (A.28) when $v_{k+1}$ is removed from $Q$. Assume that the same holds for $v_{j}$ with $j \in\{2, \ldots, k-1\}$. Then $v_{j}$ must have been removed from $Q$ before $v_{k+1}$, because $\operatorname{dist}_{p c}\left[v_{j}\right]<\operatorname{dist} t_{p c}\left[v_{k+1}\right]$ holds, which can be shown similarly to (A.37)-(A.40). Thus, one could update $\operatorname{dist}_{p c}\left[v_{j+1}\right]$ from $v_{j}$ to

$$
\begin{equation*}
\operatorname{dist}_{p c}\left[v_{j+1}\right]:=\operatorname{dist}_{p c}\left[v_{j}\right]+c\left(\left\{v_{j}, v_{j+1}\right\}\right)-p\left(v_{j+1}\right) \stackrel{(\mathrm{A} .27),(\mathrm{A} .28)}{\lessgtr} l_{p c}\left(W\left(v, v_{j+1}\right)\right)-p\left(v_{j+1}\right) \tag{A.41}
\end{equation*}
$$

which shows that $v_{j+1}$ satisfies (A.28).

## A.3.3 Proof of Lemma 4.14

Proof. Assume there is spanning tree $S$ such that $\{v, w\} \notin S$. Remove from $E(S)$ an edge on the (unique) path between $t_{i}$ and $t_{j}$ in $S$ of maximum cost. By definition of $b_{\{v, w\}}\left(t_{i}, t_{j}\right)$ it holds that

$$
\begin{equation*}
c\left(E\left(S_{i}\right)\right)+c\left(E\left(S_{j}\right)\right)+b_{\{v, w\}}\left(t_{i}, t_{j}\right) \leqslant c(E(S)) \tag{A.42}
\end{equation*}
$$

This operation results in two disjoint trees: $S_{i}$ with $t_{i} \in S_{i}$ and $S_{j}$ with $t_{j} \in S_{j}$. If $v$ and $w$ are in different trees, one can add $\{v, w\}$ to connect $S_{i}$ and $S_{j}$ and obtain a spanning tree of no higher cost than $S$. Otherwise assume that $v, w \in V\left(S_{j}\right)$. Let $W_{i}$ be a prizeconstrained $\left(v, t_{i}\right)$-walk with $l_{p c}\left(W_{i}\right)=d_{p c}\left(v, t_{i}\right)$. There is at least one edge $\{p, q\} \in E\left(W_{i}\right)$ such that $p \in V\left(S_{i}\right)$ and $q \in V\left(S_{j}\right)$. By definition of the prize-constrained length it holds that $c(\{p, q\}) \leqslant l_{p c}\left(W_{i}\right)$. Thus, one can add both $\{p, q\}$ and $\{v, w\}$ to $S_{i}, S_{j}$ to obtain a connected spanning subgraph $S^{\prime}$. Because of condition (4.22) and (A.42) it holds that

$$
\begin{equation*}
c\left(E\left(S^{\prime}\right)\right) \leqslant c(E(S)) \tag{A.43}
\end{equation*}
$$

Delete any edge other than $\{v, w\}$ on the cycle in $E\left(S^{\prime}\right)$ that includes $\{v, w\}$. In this way one obtains a spanning tree $S^{\prime \prime}$ of no higher cost than $S$.

## A.3.4 Proof of Proposition 4.30

Proof. We only show the second part of the proposition. First it follows from the construction of Transformation 4.20 and 4.25 that each optimal solution $x^{0}, y^{0}$ to the LP relaxation of TransRCut $\left(I_{T_{0}}\right)$ can be transformed to a solution $x, y$ to the LP relaxation of TransCut $\left(I_{P C}\right)$ without changing the objective value: By setting $x\left(\left(v_{i}, v_{j}\right)\right):=$
$x^{0}\left(\left(v_{i}, v_{j}\right)\right)$ and $x\left(\left(v_{j}, v_{i}\right)\right):=x^{0}\left(\left(v_{j}, v_{i}\right)\right)$ for all $\left\{v_{i}, v_{j}\right\} \in E, x\left(\left(r^{\prime}, t_{0}\right)\right):=1$ for any $t_{0} \in T_{0}$, $x\left(\left(t_{i}, t_{i}^{\prime}\right)\right):=1$ for all $t_{i} \in T_{0}$, and by setting the remaining $x\left(\left(v_{i}, v_{j}\right)\right)$ accordingly. Thus $v_{L P}\left(\operatorname{PrizeCut}\left(I_{P C}\right)\right) \leqslant v_{L P}\left(\operatorname{PrizeRCut}\left(I_{T_{0}}\right)\right)$. To see that the inequality can be strict, consider the following wheel instance (which is well-known to have an integrality gap for DCut on SPG):


Set $c(e)=1$ for all edges $e$. Further, set $p\left(v_{0}\right)=p\left(v_{1}\right)=p\left(v_{3}\right)=p\left(v_{5}\right)=4, p\left(v_{2}\right)=p\left(v_{6}\right)=0$, and $p\left(v_{4}\right)=\varepsilon$ with $0<\varepsilon<1$. Let $T_{0}:=\left\{v_{0}, v_{1}, v_{3}, v_{4}, v_{5}\right\}$. Let $I$ be the PCSTP and $I_{T_{0}}$ the corresponding RPCSTP. It holds that $v_{L P}(\operatorname{TransCut}(I))=4.5+\frac{\varepsilon}{2}<5=$ $v_{L P}\left(\operatorname{TransRCut}\left(I_{T_{0}}\right)\right)$. Part of the solution corresponding to $v_{L P}(\operatorname{TransCut}(I))$ is shown below (with numbers next to the arcs denoting the $x$ values), the remaining $x$ and $y$ are set accordingly (e.g., $x\left(\left(r^{\prime}, v_{1}\right)\right)=1$ ).


## Appendix B

## Detailed computational results

This appendix provides detailed computational results on the problem instances discussed in this thesis.

All following tables are structured as follows: First, the name of the respective instance is given. The next three columns give the number of vertices, arcs, and terminals of the instance, but only after the respective graph transformation to SAP. The subsequent segment, labelled "Presolved", provides the size of the preprocessed problem along with the preprocessing time. The last segment provides first the dual and primal bound, or the optimal solution value if the problem could be solved to proven optimality. Moreover, the number of branch-and-bound nodes $(N)$ and the total run time is given. A time-out is signified by a " $>$ " in front of the termination time. We stress that the reported final execution times include both the preprocessing time and the reading time.

## B. 1 Steiner tree problem in graphs

## B.1.1 PACE 2018 instances

The time limit for the following instances is 1620 seconds (which roughly corresponds to the 30 minutes time-limit on the machines used at the PACE Challenge). For all instances SoPlex 5.0 was used as LP solver.

Table B.1. Detailed computational results for SPG, test-set Pace (Track A).

| Instance | Original |  |  | Presolved |  |  |  | Dual | Primal | Gap \% | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |  |  |
| instance001 | 53 | 160 | 4 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance003 | 2500 | 10000 | 5 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance005 | 2500 | 125000 | 5 | 0 | 0 | 0 | 0.2 |  |  |  | 1 | 0.2 |
| instance007 | 157 | 532 | 6 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance009 | 57 | 168 | 8 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance011 | 64 | 576 | 8 | 64 | 576 | 8 | 0.0 |  |  |  | 1 | 0.0 |
| instance013 | 640 | 1920 | 9 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance015 | 640 | 1920 | 9 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance017 | 640 | 1920 | 9 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance019 | 640 | 8270 | 9 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance021 | 640 | 8270 | 9 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance023 | 640 | 408960 | 9 | 0 | 0 | 0 | 0.8 |  |  |  | 1 | 0.8 |
| instance025 | 640 | 408960 | 9 | 0 | 0 | 0 | 0.8 |  |  |  | 1 | 0.8 |
| instance027 | 90 | 270 | 10 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| cont. next page |  |  |  |  |  |  |  |  |  |  |  |  |


| Instance | Original |  |  | Presolved |  |  |  | Dual | Primal | Gap \% | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |  |  |
| instance029 | 179 | 586 | 10 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance031 | 298 | 1006 | 10 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance033 | 331 | 1120 | 10 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance035 | 609 | 1864 | 10 | 40 | 118 | 7 | 0.0 |  |  |  | 1 | 0.0 |
| instance037 | 777 | 2478 | 10 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance039 | 875 | 3044 | 10 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance041 | 898 | 3124 | 10 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance043 | 918 | 3368 | 10 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance045 | 1290 | 4540 | 10 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance047 | 2500 | 10000 | 10 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance049 | 3221 | 11876 | 10 | 0 | 0 | 0 | 0.1 |  |  |  | 1 | 0.1 |
| instance051 | 2500 | 25000 | 10 | 0 | 0 | 0 | 0.1 |  |  |  | 1 | 0.1 |
| instance053 | 128 | 454 | 11 | 0 | 0 | 0 | 0.0 | 110 | 361 |  | 1 | 0.0 |
| instance055 | 191 | 604 | 11 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance057 | 237 | 780 | 11 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance059 | 278 | 956 | 11 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance061 | 353 | 1216 | 11 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance063 | 572 | 1926 | 11 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance065 | 720 | 2538 | 11 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance067 | 3675 | 13418 | 11 | 0 | 0 | 0 | 0.1 |  |  |  | 1 | 0.1 |
| instance069 | 64 | 384 | 12 | 64 | 384 | 12 | 0.0 |  |  |  | 1 | 0.1 |
| instance071 | 233 | 772 | 12 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance073 | 386 | 1306 | 12 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance075 | 818 | 2924 | 12 | 127 | 408 | 9 | 0.0 |  |  |  | 1 | 0.0 |
| instance077 | 1981 | 7266 | 12 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance079 | 4045 | 14188 | 12 | 155 | 506 | 11 | 0.2 |  |  |  | 1 | 0.2 |
| instance081 | 110 | 376 | 13 | 0 | 0 | 0 | 0.0 | 130 | 798 |  | 1 | 0.0 |
| instance083 | 346 | 1166 | 13 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance085 | 125 | 1500 | 13 | 125 | 1032 | 13 | 0.0 |  |  |  | 1 | 0.4 |
| instance087 | 125 | 1500 | 13 | 125 | 1500 | 13 | 0.0 |  |  |  | 1 | 0.8 |
| instance089 | 933 | 3264 | 13 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance091 | 1359 | 4916 | 13 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance093 | 165 | 548 | 14 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance095 | 418 | 1446 | 14 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance097 | 1196 | 4168 | 14 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance099 | 193 | 738 | 15 | 0 | 0 | 0 | 0.0 | 150 | 405 |  | 1 | 0.0 |
| instance101 | 311 | 1158 | 16 | 0 | 0 | 0 | 0.0 | 160 | 190 |  | 1 | 0.0 |
| instance103 | 402 | 1380 | 16 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance105 | 712 | 2434 | 16 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance107 | 837 | 2876 | 16 | 183 | 602 | 11 | 0.0 |  |  |  | 1 | 0.0 |
| instance109 | 1051 | 3582 | 16 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance111 | 1848 | 6572 | 16 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance113 | 6405 | 20908 | 16 | 3076 | 10642 | 11 | 1.0 |  |  |  | 1 | 1.0 |
| instance115 | 122 | 388 | 17 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance117 | 220 | 748 | 17 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance119 | 310 | 1028 | 17 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance121 | 343 | 1118 | 17 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance123 | 2039 | 7096 | 17 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance125 | 211 | 760 | 18 | 0 | 0 | 0 | 0.0 | 180 | 464 |  | 1 | 0.0 |
| instance127 | 1709 | 5926 | 18 | 0 | 0 | 0 | 0.1 |  |  |  | 1 | 0.1 |
| instance129 | 3738 | 14026 | 18 | 462 | 1726 | 12 | 0.3 |  |  |  | 1 | 0.3 |
| instance131 | 189 | 706 | 19 | 0 | 0 | 0 | 0.0 | 190 | 439 |  | 1 | 0.0 |
| instance133 | 321 | 1080 | 20 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance135 | 3683 | 13434 | 20 | 380 | 1306 | 12 | 0.2 |  |  |  | 1 | 0.2 |
| instance137 | 529 | 2064 | 21 | 212 | 788 | 14 | 0.1 | 210 | 283 |  | 1 | 0.1 |
| instance139 | 770 | 2766 | 21 | 115 | 384 | 14 | 0.0 |  |  |  | 1 | 0.0 |
| instance141 | 233 | 862 | 22 | 186 | 686 | 20 | 0.0 | 220 | 557 |  | 1 | 0.1 |


| Instance | Original |  |  | Presolved |  |  |  | Dual | Primal | Gap \% | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ |  | $\|T\|$ | $\|V\|$ | \| $A$ \| | $\|T\|$ | t [s] |  |  |  |  |  |
| instance143 | 828 | 2944 | 22 | 0 | 0 | 0 | 0.0 | 582 |  |  | 1 | 0.0 |
| instance145 | 132 | 460 | 23 | 0 | 0 | 0 | 0.0 | 2300 |  |  | 1 | 0.0 |
| instance147 | 3983 | 14216 | 23 | 0 | 0 | 0 | 0.2 | 148 |  |  | 1 | 0.2 |
| instance149 | 493 | 1926 | 24 | 299 | 1136 | 16 | 0.1 | 2403 |  |  | 1 | 0.1 |
| instance151 | 8007 | 29486 | 24 | 985 | 3474 | 20 | 7.3 | 178 |  |  | 1 | 7.3 |
| instance153 | 246 | 936 | 25 | 0 | 0 | 0 | 0.0 | 2500 |  |  | 1 | 0.0 |
| instance155 | 58 | 3306 | 25 | 0 | 0 | 0 | 0.0 | 136 |  |  | 1 | 0.0 |
| instance157 | 2213 | 8270 | 25 | 0 | 0 | 0 | 0.1 | 109 |  |  | 1 | 0.1 |
| instance159 | 3636 | 13578 | 25 | 0 | 0 | 0 | 0.1 | 136 |  |  | 1 | 0.1 |
| instance161 | 640 | 81792 | 25 | 331 | 7034 | 25 | 0.7 | 519 |  |  | 81 | 339.6 |
| instance163 | 640 | 81792 | 25 | 184 | 3264 | 25 | 1.9 | 519 |  |  | 39 | 49.9 |
| instance165 | 640 | 81792 | 25 | 521 | 15368 | 25 | 5.4 | 521 |  |  | 87 | 1137.3 |
| instance167 | 396 | 1562 | 26 | 310 | 1224 | 26 | 0.6 | 2600 |  |  | 1 | 4.5 |
| instance169 | 243 | 994 | 27 | 75 | 272 | 16 | 0.1 | 2700 |  |  | 1 | 0.1 |
| instance171 | 243 | 2430 | 27 | 241 | 2132 | 25 | 0.2 | 42 |  |  | 1 | 28.0 |
| instance173 | 243 | 2430 | 27 | 243 | 2430 | 27 | 0.1 | 69.1389127 | 71 | 2.7 | 27 | >1620.0 |
| instance175 | 307 | 1118 | 28 | 0 | 0 | 0 | 0.0 | 2800 |  |  | 1 | 0.0 |
| instance177 | 245 | 872 | 29 | 0 | 0 | 0 | 0.0 | 2900 |  |  | 1 | 0.0 |
| instance179 | 1724 | 5950 | 29 | 0 | 0 | 0 | 0.0 | 12 |  |  | 1 | 0.0 |
| instance181 | 8013 | 29498 | 30 | 0 | 0 | 0 | 6.9 | 217 |  |  | 1 | 6.9 |
| instance183 | 1199 | 4156 | 31 | 0 | 0 | 0 | 0.0 | 106 |  |  | 1 | 0.0 |
| instance185 | 437 | 1676 | 33 | 190 | 700 | 20 | 0.0 | 3300 |  |  | 1 | 0.0 |
| instance187 | 1244 | 4948 | 34 | 1069 | 4256 | 32 | 2.2 | 3400 |  |  | 1 | 3.3 |
| instance189 | 8017 | 29506 | 36 | 0 | 0 | 0 | 7.3 | 206 |  |  | 1 | 7.3 |
| instance191 | 2132 | 7404 | 37 | 0 | 0 | 0 | 0.1 | 159 |  |  | 1 | 0.1 |
| instance193 | 603 | 2414 | 38 | 444 | 1810 | 37 | 1.3 | 3800 |  |  | 1 | 5.5 |
| instance195 | 550 | 10026 | 50 | 550 | 10026 | 50 | 0.2 | 5 |  |  | 111 | 209.6 |
| instance197 | 10393 | 36086 | 104 | 0 | 0 | 0 | 0.4 | 429 |  |  | 1 | 0.4 |
| instance199 | 6163 | 20980 | 130 | 10 | 26 | 8 | 3.0 | 509 |  |  | 1 | 3.0 |

Table B.2. Detailed computational results for SPG, test-set PaceTree (Track B).

| Instance | Original |  |  | Presolved |  |  |  | Dual Primal |  | Gap \% | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |  |  |
| instance001 | 74 | 292 | 25 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance003 | 87 | 352 | 30 | 2 | 2 | 1 | 0.0 |  |  |  | 1 | 0.0 |
| instance005 | 201 | 506 | 100 | 0 | 0 | 0 | 0.0 | 764 | 9099 |  | 1 | 0.0 |
| instance007 | 216 | 576 | 100 | 12 | 34 | 7 | 0.0 |  |  |  | 1 | 0.0 |
| instance009 | 229 | 624 | 100 | 11 | 30 | 6 | 0.0 | 759 | 202 |  | 1 | 0.0 |
| instance011 | 244 | 674 | 100 | 45 | 146 | 18 | 0.0 |  |  |  | 1 | 0.0 |
| instance013 | 1906 | 4166 | 1655 | 33 | 100 | 16 | 0.0 |  | 48 |  | 1 | 0.0 |
| instance015 | 114 | 456 | 33 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance017 | 210 | 552 | 100 | 17 | 56 | 7 | 0.0 | 730 | 178 |  | 1 | 0.0 |
| instance019 | 231 | 638 | 100 | 0 | 0 | 0 | 0.0 | 704 | 6493 |  | 1 | 0.0 |
| instance021 | 247 | 972 | 100 | 30 | 92 | 12 | 0.0 |  |  |  | 1 | 0.0 |
| instance023 | 990 | 2516 | 574 | 23 | 66 | 12 | 0.0 |  | 275 |  | 1 | 0.0 |
| instance025 | 8790 | 19630 | 7397 | 97 | 296 | 51 | 0.1 | 22 | 625 |  | 1 | 0.1 |
| instance027 | 15 | 70 | 8 | 15 | 70 | 8 | 0.0 |  |  |  | 1 | 0.0 |
| instance029 | 197 | 500 | 100 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance031 | 269 | 798 | 99 | 84 | 268 | 35 | 0.0 |  |  |  | 1 | 0.0 |
| instance033 | 480 | 1340 | 200 | 108 | 348 | 48 | 0.1 |  |  |  | 1 | 0.1 |
| instance035 | 543 | 1454 | 250 | 46 | 146 | 19 | 0.0 | 114 | 0399 |  | 1 | 0.0 |
| instance037 | 1172 | 3254 | 500 | 0 | 0 | 0 | 0.2 | 160 | 6161 |  | 1 | 0.2 |
| instance039 | 1912 | 4446 | 1173 | 17 | 48 | 10 | 0.0 |  |  |  | 1 | 0.0 |
| instance041 | 2382 | 5348 | 1889 | 70 | 228 | 27 | 0.0 |  | 208 |  | 1 | 0.0 |
| instance043 | 246 | 936 | 25 | 0 | 0 | 0 | 0.0 |  | 540 |  | 1 | 0.0 |
| instance045 | 389 | 1124 | 150 | 126 | 404 | 49 | 0.1 |  |  |  | 1 | 0.1 |
| instance047 | 585 | 1598 | 250 | 33 | 102 | 18 | 0.0 | 115 | 7351 |  | 1 | 0.0 |
| instance049 | 623 | 1752 | 250 | 93 | 298 | 39 | 0.1 | 116 | 9813 |  | 1 | 0.1 |
| cont. next page |  |  |  |  |  |  |  |  |  |  |  |  |


| Instance | Original |  |  | Presolved |  |  |  | Dual | Primal | Gap \% | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |  |  |
| instance051 | 1416 | 3956 | 657 | 150 | 474 | 63 | 0.4 | 4715 |  |  | 1 | 0.5 |
| instance053 | 181 | 578 | 51 | 113 | 374 | 39 | 0.0 | 409 |  |  | 1 | 0.1 |
| instance055 | 233 | 862 | 22 | 186 | 686 | 20 | 0.0 | 22005 |  |  | 1 | 0.1 |
| instance057 | 245 | 908 | 20 | 0 | 0 | 0 | 0.0 | 20002 |  |  | 1 | 0.0 |
| instance059 | 560 | 1740 | 195 | 248 | 814 | 96 | 0.2 | 238 |  |  | 1 | 0.3 |
| instance061 | 528 | 2034 | 85 | 509 | 1958 | 85 | 0.5 | 85007 |  |  | 1 | 16.7 |
| instance063 | 1214 | 3400 | 500 | 168 | 536 | 68 | 0.4 | 16012 | 233 |  | 1 | 0.7 |
| instance065 | 2856 | 7282 | 1748 | 196 | 614 | 91 | 0.5 | 31946 |  |  | 1 | 0.6 |
| instance067 | 200 | 740 | 20 | 0 | 0 | 0 | 0.0 | 3906 |  |  | 1 | 0.0 |
| instance069 | 200 | 740 | 100 | 0 | 0 | 0 | 0.0 | 8626 |  |  | 1 | 0.0 |
| instance071 | 339 | 1044 | 100 | 0 | 0 | 0 | 0.1 | 75176 |  |  | 1 | 0.1 |
| instance073 | 262 | 1480 | 10 | 0 | 0 | 0 | 0.0 | 214 |  |  | 1 | 0.0 |
| instance075 | 557 | 2160 | 49 | 145 | 536 | 19 | 0.6 | 49019 |  |  | 1 | 0.7 |
| instance077 | 2413 | 6824 | 1577 | 94 | 320 | 48 | 0.1 | 19825 | 26 |  | 1 | 0.2 |
| instance079 | 36415 | 291270 | 16808 | 36415 | 291270 | 16808 | 50.3 | 21950.4867 | 25210 | 14.8 | 1 | >1620.0 |
| instance081 | 237 | 756 | 76 | 69 | 222 | 28 | 0.1 | 513 |  |  | 1 | 0.1 |
| instance083 | 311 | 1264 | 32 | 246 | 998 | 29 | 0.1 | 32005 |  |  | 1 | 3.6 |
| instance085 | 1274 | 3616 | 500 | 113 | 366 | 46 | 0.4 | 16167 | 316 |  | 1 | 0.4 |
| instance087 | 1337 | 3866 | 500 | 97 | 318 | 34 | 0.6 | 162664 | 661 |  | 1 | 0.6 |
| instance089 | 5829 | 15104 | 3038 | 122 | 374 | 49 | 0.5 | 1318 |  |  | 1 | 0.5 |
| instance091 | 304 | 1142 | 33 | 101 | 368 | 15 | 0.0 | 33006 |  |  | 1 | 0.0 |
| instance093 | 1001 | 2838 | 400 | 117 | 376 | 48 | 0.3 | 149097 | 010 |  | 1 | 0.4 |
| instance095 | 1335 | 3864 | 500 | 122 | 370 | 56 | 0.4 | 164685 | 74 |  | 1 | 0.4 |
| instance097 | 2629 | 7586 | 1000 | 399 | 1256 | 166 | 1.6 | 227886 | 471 |  | 1 | 1.8 |
| instance099 | 1294 | 3706 | 500 | 312 | 990 | 133 | 0.5 | 162100 | 435 |  | 1 | 0.7 |
| instance101 | 2778 | 8166 | 1000 | 491 | 1600 | 189 | 0.9 | 230200 | 46 |  | 1 | 1.2 |
| instance103 | 1055 | 2946 | 493 | 74 | 220 | 39 | 0.1 | 3201 |  |  | 1 | 0.1 |
| instance105 | 1408 | 4112 | 500 | 243 | 804 | 88 | 0.3 | 160756 | 854 |  | 1 | 0.5 |
| instance107 | 160 | 480 | 24 | 0 | 0 | 0 | 0.0 | 706 |  |  | 1 | 0.0 |
| instance109 | 257 | 1030 | 23 | 131 | 478 | 18 | 0.0 | 23003 |  |  | 1 | 0.0 |
| instance111 | 2763 | 8076 | 1000 | 217 | 730 | 69 | 1.0 | 231605 | 619 |  | 1 | 2.0 |
| instance113 | 80 | 320 | 16 | 0 | 0 | 0 | 0.0 | 435 |  |  | 1 | 0.0 |
| instance115 | 243 | 994 | 27 | 75 | 272 | 16 | 0.1 | 27004 |  |  | 1 | 0.1 |
| instance117 | 398 | 1576 | 44 | 156 | 590 | 27 | 0.3 | 44015 |  |  | 113 | 1.0 |
| instance119 | 678 | 2060 | 318 | 70 | 214 | 35 | 0.1 | 3933 |  |  | 1 | 0.1 |
| instance121 | 1005 | 3462 | 18 | 0 | 0 | 0 | 0.0 | 780 |  |  | 1 | 0.0 |
| instance123 | 2762 | 8094 | 1000 | 728 | 2356 | 283 | 1.1 | 227807 | 756 |  | 1 | 1.5 |
| instance125 | 160 | 480 | 24 | 0 | 0 | 0 | 0.0 | 692 |  |  | 1 | 0.0 |
| instance127 | 294 | 1136 | 22 | 114 | 416 | 15 | 0.1 | 22003 |  |  | 1 | 0.1 |
| instance129 | 323 | 1184 | 31 | 0 | 0 | 0 | 0.1 | 31006 |  |  | 1 | 0.1 |
| instance131 | 499 | 1722 | 16 | 0 | 0 | 0 | 0.0 | 594 |  |  | 1 | 0.0 |
| instance133 | 766 | 3070 | 76 | 145 | 570 | 16 | 0.4 | 76020 |  |  | 1 | 0.5 |
| instance135 | 2532 | 7230 | 1000 | 169 | 544 | 68 | 0.7 | 228031 | 092 |  | 1 | 0.8 |
| instance137 | 2676 | 7788 | 1000 | 784 | 2538 | 305 | 1.1 | 228330 | 602 |  | 1 | 1.7 |
| instance139 | 2984 | 8968 | 1000 | 232 | 768 | 80 | 2.9 | 230904 | 12 |  | 1 | 3.6 |
| instance141 | 294 | 1236 | 38 | 48 | 154 | 15 | 0.1 | 38006 |  |  | 1 | 0.1 |
| instance143 | 388 | 1630 | 45 | 0 | 0 | 0 | 0.3 | 45007 |  |  | 1 | 0.3 |
| instance145 | 437 | 1676 | 33 | 190 | 700 | 20 | 0.0 | 33005 |  |  | 1 | 0.0 |
| instance147 | 564 | 2224 | 50 | 159 | 586 | 22 | 0.6 | 50016 |  |  | 1 | 0.7 |
| instance149 | 615 | 2464 | 53 | 361 | 1392 | 48 | 0.9 | 53013 |  |  | 1 | 3.5 |
| instance151 | 314 | 1300 | 34 | 0 | 0 | 0 | 0.1 | 34005 |  |  | 1 | 0.1 |
| instance153 | 670 | 2632 | 62 | 588 | 2286 | 62 | 1.5 | 62010 |  |  | 1 | 15.1 |
| instance155 | 770 | 2766 | 21 | 115 | 384 | 14 | 0.0 | 750 |  |  | 1 | 0.0 |
| instance157 | 938 | 3738 | 75 | 236 | 888 | 30 | 2.0 | 75017 |  |  | 1 | 2.2 |
| instance159 | 2865 | 8534 | 1000 | 564 | 1834 | 219 | 1.6 | 230535 | 806 |  | 1 | 2.1 |
| instance161 | 2502 | 12488 | 100 | 1991 | 8880 | 90 | 1.2 | 7971 |  |  | 11 | 9.9 |
| instance163 | 402 | 1560 | 26 | 0 | 0 | 0 | 0.0 | 26004 |  |  | 1 | 0.0 |
|  |  |  |  |  |  |  |  |  |  |  | nt. | next page |


| Instance | Original |  |  | Presolved |  |  |  | Dual | Primal | Gap \% | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |  |  |
| instance165 | 422 | 1616 | 25 | 152 | 552 | 10 | 0.0 | 250 | 828 |  | 1 | 0.1 |
| instance167 | 632 | 2174 | 10 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance169 | 720 | 2538 | 11 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance171 | 802 | 3106 | 39 | 128 | 456 | 9 | 0.1 | 390 | 734 |  | 1 | 0.1 |
| instance173 | 788 | 3876 | 50 | 163 | 682 | 19 | 0.4 |  | 52 |  | 1 | 0.4 |
| instance175 | 2397 | 7430 | 783 | 982 | 3252 | 367 | 1.1 |  |  |  | 1 | 2.8 |
| instance177 | 904 | 3612 | 59 | 94 | 318 | 14 | 0.3 | 590 | 592 |  | 1 | 0.3 |
| instance179 | 752 | 2528 | 26 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance181 | 757 | 2986 | 58 | 354 | 1396 | 40 | 0.8 | 580 | 466 |  | 1 | 3.6 |
| instance183 | 838 | 3526 | 60 | 764 | 3190 | 60 | 4.2 | 600 | 164 |  | 1 | 152.6 |
| instance185 | 2834 | 8414 | 1000 | 663 | 2172 | 247 | 1.9 | 230 | 9115 |  | 1 | 2.6 |
| instance187 | 529 | 2064 | 21 | 212 | 788 | 14 | 0.1 | 210 | 283 |  | 1 | 0.1 |
| instance189 | 467 | 1792 | 30 | 89 | 322 | 14 | 0.1 | 300 | 569 |  | 1 | 0.1 |
| instance191 | 5096 | 16210 | 1379 | 2354 | 7884 | 745 | 5.0 |  | 07 |  | 1 | 36.3 |
| instance193 | 1848 | 6572 | 16 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance195 | 1724 | 5950 | 29 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| instance197 | 6128 | 30528 | 200 | 5279 | 24204 | 168 | 4.0 |  | 005 |  | 1 | 370.6 |
| instance199 | 1011 | 4020 | 37 | 866 | 3432 | 37 | 3.6 | 370 | 485 |  | 1 | 5.0 |

## B.1.2 SteinLib instances

The time limit for the following instances is 54340 seconds. This corresponds to 24 hours on the machine used by Polzin and Vahdati-Daneshmand (2014).

Table B.3. Detailed computational results for SPG, test-set 2R.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| 2 r 111 | 2000 | 11600 | 9 | 0 | 0 | 0 | 0.1 | 28000 | 1 | 0.1 |
| 2 r 112 | 2000 | 11600 | 9 | 0 | 0 | 0 | 0.1 | 32000 | 1 | 0.1 |
| 2 r 113 | 2000 | 11600 | 9 | 0 | 0 | 0 | 0.1 | 28000 | 1 | 0.1 |
| 2 r 121 | 2000 | 11532 | 9 | 0 | 0 | 0 | 0.1 | 28000 | 1 | 0.1 |
| 2 r 122 | 2000 | 11544 | 9 | 0 | 0 | 0 | 0.1 | 29000 | 1 | 0.1 |
| 2 r 123 | 2000 | 11508 | 9 | 0 | 0 | 0 | 0.1 | 25000 | 1 | 0.1 |
| 2 r 131 | 2000 | 11452 | 9 | 0 | 0 | 0 | 0.1 | 27000 | 1 | 0.1 |
| 2 r 132 | 2000 | 11450 | 9 | 636 | 5426 | 9 | 0.4 | 33000 | 1 | 0.4 |
| 2r133 | 2000 | 11458 | 9 | 0 | 0 | 0 | 0.1 | 29000 | 1 | 0.1 |
| 2r211 | 2000 | 11600 | 50 | 571 | 4988 | 34 | 2.8 | 89000 | 3 | 8.2 |
| 2 r 212 | 2000 | 11600 | 49 | 132 | 818 | 17 | 0.9 | 80000 | 1 | 1.1 |
| 2r213 | 2000 | 11600 | 48 | 279 | 2104 | 29 | 2.0 | 76000 | 1 | 2.5 |
| 2r221 | 2000 | 11528 | 50 | 0 | 0 | 0 | 1.1 | 83000 | 1 | 1.1 |
| 2r222 | 2000 | 11530 | 50 | 0 | 0 | 0 | 1.9 | 84000 | 1 | 1.9 |
| 2r223 | 2000 | 11540 | 49 | 562 | 4606 | 40 | 1.8 | 84000 | 1 | 4.1 |
| 2r231 | 2000 | 11474 | 50 | 0 | 0 | 0 | 2.3 | 86000 | 1 | 2.3 |
| 2r232 | 2000 | 11466 | 49 | 453 | 3358 | 37 | 2.0 | 87000 | 1 | 3.7 |
| 2r233 | 2000 | 11460 | 47 | 0 | 0 | 0 | 1.3 | 83000 | 1 | 1.3 |
| 2 r 311 | 2000 | 11600 | 95 | 372 | 2586 | 47 | 1.2 | 129000 | 1 | 2.0 |
| 2 r 312 | 2000 | 11600 | 92 | 482 | 3802 | 45 | 1.0 | 126000 | 1 | 2.4 |
| 2 r 313 | 2000 | 11600 | 97 | 306 | 2124 | 38 | 1.0 | 128000 | 1 | 2.0 |
| 2r321 | 2000 | 11542 | 92 | 0 | 0 | 0 | 0.3 | 125000 | 1 | 0.3 |
| 2r322 | 2000 | 11506 | 92 | 397 | 2784 | 43 | 1.6 | 130000 | 1 | 2.5 |
| 2 r 323 | 2000 | 11528 | 96 | 651 | 4856 | 64 | 1.7 | 142000 | 52 | 13.3 |
| 2r331 | 2000 | 11472 | 93 | 260 | 1584 | 40 | 1.8 | 134000 | 1 | 2.0 |
| 2 r 332 | 2000 | 11490 | 95 | 544 | 3820 | 50 | 1.7 | 136000 | 1 | 4.8 |
| 2r333 | 2000 | 11482 | 98 | 449 | 2938 | 54 | 2.1 | 143000 | 1 | 3.1 |

Table B.4. Detailed computational results for SPG, test-set LIN.

| Instance | Original |  |  | Presolved |  |  |  | Dual | Primal | Gap \% | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | \| $A$ \| | $\|T\|$ | t [s] |  |  |  |  |  |
| lin01 | 53 | 160 | 4 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| lin02 | 55 | 164 | 6 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| lin03 | 57 | 168 | 8 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| lin04 | 157 | 532 | 6 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| lin05 | 160 | 538 | 9 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| lin06 | 165 | 548 | 14 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| lin07 | 307 | 1052 | 6 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| lin08 | 311 | 1060 | 10 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| lin09 | 313 | 1064 | 12 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| lin10 | 321 | 1080 | 20 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| lin11 | 816 | 2920 | 10 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| $\operatorname{lin} 12$ | 818 | 2924 | 12 | 47 | 144 | 8 | 0.0 |  |  |  | 1 | 0.0 |
| $\operatorname{lin} 13$ | 822 | 2932 | 16 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| lin14 | 828 | 2944 | 22 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| $\operatorname{lin} 15$ | 840 | 2968 | 34 | 0 | 0 | 0 | 0.0 |  |  |  | 1 | 0.0 |
| lin16 | 1981 | 7266 | 12 | 0 | 0 | 0 | 0.1 |  |  |  | 1 | 0.1 |
| $\operatorname{lin} 17$ | 1989 | 7282 | 20 | 0 | 0 | 0 | 0.1 |  |  |  | 1 | 0.1 |
| lin18 | 1994 | 7292 | 25 | 13 | 34 | 6 | 0.5 |  |  |  | 1 | 0.5 |
| lin19 | 2010 | 7324 | 41 | 105 | 350 | 11 | 0.1 |  |  |  | 1 | 0.1 |


| Instance | Original |  |  | Presolved |  |  |  | Dual | Primal | Gap \% | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |  |  |
| lin20 | 3675 | 13418 | 11 | 0 | 0 | 0 | 0.1 | 667 |  |  | 1 | 0.1 |
| lin21 | 3683 | 13434 | 20 | 129 | 422 | 9 | 0.2 | 91 |  |  | 1 | 0.2 |
| lin22 | 3692 | 13452 | 28 | 0 | 0 | 0 | 0.2 | 105 |  |  | 1 | 0.2 |
| lin23 | 3716 | 13500 | 52 | 84 | 278 | 17 | 0.8 | 175 |  |  | 1 | 0.8 |
| lin24 | 7998 | 29468 | 16 | 2970 | 10706 | 16 | 1.4 | 150 |  |  | 1 | 1.5 |
| lin 25 | 8007 | 29486 | 24 | 931 | 3254 | 20 | 4.4 | 178 |  |  | 1 | 4.4 |
| lin26 | 8013 | 29498 | 30 | 0 | 0 | 0 | 3.4 | 217 |  |  | 1 | 3.4 |
| lin27 | 8017 | 29506 | 36 | 94 | 302 | 18 | 3.3 | 206 |  |  | 1 | 3.3 |
| $\operatorname{lin} 28$ | 8062 | 29596 | 81 | 354 | 1200 | 44 | 11.8 | 325 |  |  | 1 | 12.0 |
| lin29 | 19083 | 71272 | 24 | 1022 | 3714 | 19 | 12.0 | 237 |  |  | 1 | 12.0 |
| lin30 | 19091 | 71288 | 31 | 190 | 650 | 19 | 15.9 | 276 |  |  | 1 | 15.9 |
| lin31 | 19100 | 71306 | 40 | 6577 | 24148 | 37 | 39.7 | 316 |  |  | 1 | 44.4 |
| lin32 | 19112 | 71330 | 53 | 6902 | 25308 | 52 | 49.1 | 398 |  |  | 1 | 66.7 |
| lin33 | 19177 | 71460 | 117 | 5711 | 20688 | 97 | 52.4 | 560 |  |  | 1 | 540.8 |
| lin34 | 38282 | 143042 | 34 | 11461 | 42424 | 33 | 157.1 | 450 |  |  | 1 | 158.2 |
| lin35 | 38294 | 143066 | 45 | 14095 | 51962 | 45 | 99.1 | 505 |  |  | 1 | 120.3 |
| lin36 | 38307 | 143092 | 58 | 17931 | 66096 | 57 | 102.2 | 556 |  |  | 1 | 259.9 |
| lin37 | 38418 | 143314 | 172 | 23971 | 88916 | 169 | 129.2 | 97134.5228 | 99773 | 2.7 | 1 | $>54340$ |

Table B.5. Detailed computational results for SPG, test-set PUC.

| Instance | Original |  |  | Presolved |  |  |  | Dual | Primal | Gap \% | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |  |  |
| bip42p | 1200 | 7964 | 200 | 990 | 7234 | 200 | 0.2 | 2465 |  |  | 134338 | 18296.0 |
| bip42u | 1200 | 7964 | 200 | 989 | 7216 | 200 | 0.2 | 236 |  |  | 98275 | 10918.0 |
| bip52p | 2200 | 15994 | 200 | 1817 | 14650 | 200 | 0.4 | 24317.3892 | 24563 | 1.0 | 263924 | $>54340$ |
| bip52u | 2200 | 15994 | 200 | 1818 | 14646 | 200 | 0.6 | 230.569282 | 234 | 1.5 | 274715 | $>54340$ |
| bip62p | 1200 | 20004 | 200 | 1199 | 20000 | 200 | 0.3 | 22589.1452 | 22882 | 1.3 | 168402 | $>54340$ |
| bip62u | 1200 | 20004 | 200 | 1199 | 20000 | 200 | 0.5 | 214.924104 | 219 | 1.9 | 122591 | $>54340$ |
| bipa2p | 3300 | 36146 | 300 | 3139 | 35588 | 300 | 1.0 | 34789.4576 | 35427 | 1.8 | 91345 | $>54340$ |
| bipa2u | 3300 | 36146 | 300 | 3138 | 35590 | 300 | 1.2 | 330.629545 | 340 | 2.8 | 118047 | $>54340$ |
| bipe2p | 550 | 10026 | 50 | 550 | 10026 | 50 | 0.1 | 561 |  |  | 1778 | 156.6 |
| bipe2u | 550 | 10026 | 50 | 550 | 10026 | 50 | 0.2 | 54 |  |  | 121 | 75.1 |
| cc10-2p | 1024 | 10240 | 135 | 1024 | 10240 | 135 | 0.4 | 34531.666 | 35235 | 2.0 | 4227 | $>54340$ |
| cc10-2u | 1024 | 10240 | 135 | 1024 | 10240 | 135 | 0.8 | 334.695705 | 344 | 2.8 | 3902 | $>54340$ |
| cc11-2p | 2048 | 22526 | 244 | 2048 | 22526 | 244 | 1.3 | 62119.5137 | 63775 | 2.7 | 1606 | $>54340$ |
| cc11-2u | 2048 | 22526 | 244 | 2048 | 22526 | 244 | 1.9 | 602.628793 | 617 | 2.4 | 2794 | $>54340$ |
| cc12-2p | 4096 | 49148 | 473 | 4096 | 49148 | 473 | 4.4 | 118630.032 | 121609 | 2.5 | 99 | $>54340$ |
| cc12-2u | 4096 | 49148 | 473 | 4096 | 49148 | 473 | 4.3 | 1150.13492 | 1180 | 2.6 | 267 | $>54340$ |
| cc3-10p | 1000 | 27000 | 50 | 1000 | 27000 | 50 | 0.6 | 12701.8929 | 12774 | 0.6 | 7970 | $>54340$ |
| cc3-10u | 1000 | 27000 | 50 | 1000 | 27000 | 50 | 1.0 | 120.24651 | 126 | 4.8 | 540 | $>54340$ |
| cc3-11p | 1331 | 39930 | 61 | 1331 | 39930 | 61 | 1.0 | 15463.0715 | 15600 | 0.9 | 4291 | $>54340$ |
| cc3-11u | 1331 | 39930 | 61 | 1331 | 39930 | 61 | 1.1 | 144.304692 | 154 | 6.7 | 1 | $>54340$ |
| cc3-12p | 1728 | 57024 | 74 | 1728 | 57024 | 74 | 1.5 | 18735.8687 | 18847 | 0.6 | 3835 | $>54340$ |
| cc3-12u | 1728 | 57024 | 74 | 1728 | 57024 | 74 | 1.7 | 174.415419 | 186 | 6.6 | 65 | $>54340$ |
| cc3-4p | 64 | 576 | 8 | 64 | 576 | 8 | 0.0 | 233 |  |  | 1 | 0.0 |
| cc3-4u | 64 | 576 | 8 | 64 | 576 | 8 | 0.0 | 23 |  |  | 1 | 0.0 |
| cc3-5p | 125 | 1500 | 13 | 125 | 1500 | 13 | 0.0 | 366 |  |  | 1 | 0.8 |
| cc3-5u | 125 | 1500 | 13 | 125 | 1500 | 13 | 0.0 | 36 |  |  | 1 | 0.8 |
| cc5-3p | 243 | 2430 | 27 | 243 | 2430 | 27 | 0.1 | 729 |  |  | 1617 | 3908.1 |
| cc5-3u | 243 | 2430 | 27 | 243 | 2430 | 27 | 0.1 | 71 |  |  | 195 | 631.5 |
| cc6-2p | 64 | 384 | 12 | 64 | 384 | 12 | 0.0 | 327 |  |  | 1 | 0.1 |
| cc6-2u | 64 | 384 | 12 | 64 | 384 | 12 | 0.0 | 32 |  |  | 1 | 0.2 |
| cc6-3p | 729 | 8736 | 76 | 729 | 8736 | 76 | 0.3 | 20195.8499 | 20285 | 0.4 | 21389 | $>54340$ |
| cc6-3u | 729 | 8736 | 76 | 729 | 8736 | 76 | 0.6 | 197 |  |  | 480 | 24751.0 |
| cc7-3p | 2187 | 30616 | 222 | 2187 | 30616 | 222 | 1.7 | 55409.2249 | 57103 | 3.1 | 693 | $>54340$ |
| cc7-3u | 2187 | 30616 | 222 | 2187 | 30616 | 222 | 1.8 | 536.649655 | 553 | 3.0 | 803 | $>54340$ |
| cc9-2p | 512 | 4608 | 64 | 512 | 4608 | 64 | 0.2 | 16910.9215 | 17221 | 1.8 | 7616 | $>54340$ |
| cont. next page |  |  |  |  |  |  |  |  |  |  |  |  |


| Instance | Original |  |  | Presolved |  |  |  | Dual | Primal | Gap \% | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |  |  |
| cc9-2u | 512 | 4608 | 64 | 512 | 4608 | 64 | 0.3 | 163.900276 | 168 | 2.5 | 7493 | $>54340$ |
| hc10p | 1024 | 10240 | 512 | 1024 | 10240 | 512 | 0.4 | 59290.8921 | 59840 | 0.9 | 45960 | $>54340$ |
| hc10u | 1024 | 10240 | 512 | 1024 | 10240 | 512 | 0.8 | 567.888889 | 576 | 1.4 | 64217 | $>54340$ |
| hc11p | 2048 | 22528 | 1024 | 2048 | 22528 | 1024 | 1.2 | 117451.059 | 119795 | 2.0 | 14368 | $>54340$ |
| hc11u | 2048 | 22528 | 1024 | 2048 | 22528 | 1024 | 2.1 | 1125.4 | 1158 | 2.9 | 12159 | $>54340$ |
| hc12p | 4096 | 49152 | 2048 | 4096 | 49152 | 2048 | 4.7 | 232922.491 | 236506 | 1.5 | 1720 | $>54340$ |
| hc12u | 4096 | 49152 | 2048 | 4096 | 49152 | 2048 | 7.5 | 2233.09091 | 2301 | 3.0 | 370 | $>54340$ |
| hc6p | 64 | 384 | 32 | 64 | 384 | 32 | 0.0 | 400 |  |  | 1497 | 16.1 |
| hc6u | 64 | 384 | 32 | 64 | 384 | 32 | 0.0 | 39 |  |  | 695 | 5.9 |
| hc7p | 128 | 896 | 64 | 128 | 896 | 64 | 0.0 | 790 |  |  | 260991 | 3550.8 |
| hc7u | 128 | 896 | 64 | 128 | 896 | 64 | 0.1 | 77 |  |  | 597413 | 5143.4 |
| hc8p | 256 | 2048 | 128 | 256 | 2048 | 128 | 0.1 | 153 |  |  | 307517 | 23599.8 |
| hc8u | 256 | 2048 | 128 | 256 | 2048 | 128 | 0.1 | 145.714286 | 148 | 1.6 | 1069424 | $>54340$ |
| hc9p | 512 | 4608 | 256 | 512 | 4608 | 256 | 0.2 | 29982.8096 | 30252 | 0.9 | 152094 | $>54340$ |
| hc9u | 512 | 4608 | 256 | 512 | 4608 | 256 | 0.3 | 287.125 | 292 | 1.7 | 374988 | $>54340$ |

Table B.6. Detailed computational results for SPG, test-set SP.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | \| $A \mid$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| antiwheel5 | 10 | 30 | 5 | 0 | 0 | 0 | 0.0 | 7 | 1 | 0.0 |
| design432 | 8 | 40 | 4 | 0 | 0 | 0 | 0.0 | 9 | 1 | 0.0 |
| oddcycle3 | 6 | 18 | 3 | 0 | 0 | 0 | 0.0 | 4 | 1 | 0.0 |
| oddwheel3 | 7 | 18 | 4 | 0 | 0 | 0 | 0.0 | 5 | 1 | 0.0 |
| se03 | 13 | 42 | 4 | 0 | 0 | 0 | 0.0 | 12 | 1 | 0.0 |
| w13c29 | 783 | 4524 | 406 | 783 | 4524 | 406 | 0.4 | 507 | 62 | 95.7 |
| w23c23 | 1081 | 6348 | 552 | 1081 | 6348 | 552 | 0.7 | 689 | 62 | 1061.8 |
| w3c571 | 3997 | 20556 | 2284 | 3997 | 20556 | 2284 | 3.1 | 2854 | 1 | 54.9 |

Table B.7. Detailed computational results for SPG, test-set TSPFST.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| a280fst | 313 | 656 | 279 | 0 | 0 | 0 | 0.0 | 2502 | 1 | 0.0 |
| att48fst | 139 | 404 | 48 | 58 | 186 | 23 | 0.0 | 30236 | 1 | 0.0 |
| att532fst | 1468 | 4304 | 532 | 270 | 854 | 103 | 0.4 | 84009 | 1 | 0.5 |
| berlin52fst | 89 | 208 | 52 | 0 | 0 | 0 | 0.0 | 6760 | 1 | 0.0 |
| bier127fst | 258 | 714 | 127 | 0 | 0 | 0 | 0.0 | 104284 | 1 | 0.0 |
| d1291fst | 1365 | 2912 | 1291 | 0 | 0 | 0 | 0.0 | 481421 | 1 | 0.0 |
| d1655fst | 1906 | 4166 | 1655 | 33 | 100 | 16 | 0.0 | 584948 | 1 | 0.0 |
| d198fst | 232 | 512 | 198 | 0 | 0 | 0 | 0.0 | 129175 | 1 | 0.0 |
| d2103fst | 2206 | 4544 | 2103 | 0 | 0 | 0 | 0.0 | 769797 | 1 | 0.0 |
| d493fst | 1055 | 2946 | 493 | 92 | 280 | 46 | 0.1 | 320137 | 1 | 0.2 |
| d657fst | 1416 | 3956 | 657 | 131 | 418 | 56 | 0.3 | 471589 | 1 | 0.7 |
| dsj1000fst | 2562 | 7310 | 1000 | 69 | 220 | 28 | 0.2 | 17564659 | 1 | 0.3 |
| eil101fst | 330 | 1076 | 101 | 166 | 550 | 56 | 0.1 | 605 | 1 | 0.2 |
| eil51fst | 181 | 578 | 51 | 114 | 376 | 39 | 0.0 | 409 | 1 | 0.1 |
| eil76fst | 237 | 756 | 76 | 92 | 302 | 35 | 0.1 | 513 | 1 | 0.1 |
| fl1400fst | 2694 | 9092 | 1400 | 441 | 1648 | 221 | 0.6 | 17980523 | 1 | 7.9 |
| fl1577fst | 2413 | 6824 | 1577 | 94 | 320 | 48 | 0.1 | 19825626 | 1 | 0.3 |
| fl3795fst | 4859 | 13078 | 3795 | 444 | 1656 | 222 | 3.2 | 25529856 | 1 | 8.7 |
| fl417fst | 732 | 2168 | 417 | 124 | 438 | 52 | 0.1 | 10883190 | 1 | 0.2 |
| fnl4461fst | 17127 | 54704 | 4461 | 7720 | 25748 | 2484 | 25.2 | 182361 | 55 | 165.5 |
| gil262fst | 537 | 1446 | 262 | 34 | 104 | 22 | 0.0 | 2306 | 1 | 0.0 |
| kroA100fst | 197 | 500 | 100 | 0 | 0 | 0 | 0.0 | 20401 | 1 | 0.0 |
| kroA150fst | 389 | 1124 | 150 | 126 | 404 | 49 | 0.1 | 25700 | 1 | 0.1 |
| kroA200fst | 500 | 1428 | 200 | 0 | 0 | 0 | 0.0 | 28652 | 1 | 0.0 |
| cont. next page |  |  |  |  |  |  |  |  |  |  |


| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \|V| | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| kroB100fst | 230 | 626 | 100 | 0 | 0 | 0 | 0.0 | 21211 | 1 | 0.0 |
| kroB150fst | 420 | 1238 | 150 | 62 | 204 | 25 | 0.1 | 25217 | 1 | 0.1 |
| kroB200fst | 480 | 1340 | 200 | 102 | 330 | 45 | 0.1 | 28803 | 1 | 0.1 |
| kroC100fst | 244 | 674 | 100 | 45 | 146 | 18 | 0.0 | 20492 | 1 | 0.0 |
| kroD100fst | 216 | 576 | 100 | 12 | 34 | 7 | 0.0 | 20437 | 1 | 0.0 |
| kroE100fst | 226 | 612 | 100 | 46 | 140 | 21 | 0.0 | 21245 | 1 | 0.0 |
| lin105fst | 216 | 646 | 105 | 43 | 134 | 20 | 0.0 | 13429 | 1 | 0.0 |
| lin318fst | 678 | 2060 | 318 | 78 | 252 | 38 | 0.1 | 39335 | 1 | 0.1 |
| linhp318fst | 678 | 2060 | 318 | 78 | 252 | 38 | 0.1 | 39335 | 1 | 0.1 |
| nrw1379fst | 5096 | 16210 | 1379 | 2370 | 7936 | 751 | 4.6 | 56207 | 1 | 16.5 |
| p654fst | 777 | 1734 | 654 | 0 | 0 | 0 | 0.0 | 314925 | 1 | 0.0 |
| pcb1173fst | 1912 | 4446 | 1173 | 17 | 48 | 10 | 0.0 | 53301 | 1 | 0.0 |
| pcb3038fst | 5829 | 15104 | 3038 | 77 | 232 | 40 | 0.4 | 131895 | 1 | 0.5 |
| pcb442fst | 503 | 1062 | 442 | 0 | 0 | 0 | 0.0 | 47675 | 1 | 0.0 |
| pla7397fst | 8790 | 19630 | 7397 | 97 | 296 | 51 | 0.1 | 22481625 | 1 | 0.1 |
| pr1002fst | 1473 | 3430 | 1002 | 0 | 0 | 0 | 0.0 | 243176 | 1 | 0.0 |
| pr107fst | 111 | 220 | 107 | 0 | 0 | 0 | 0.0 | 34850 | 1 | 0.0 |
| pr124fst | 154 | 330 | 124 | 0 | 0 | 0 | 0.0 | 52759 | 1 | 0.0 |
| pr136fst | 196 | 500 | 136 | 0 | 0 | 0 | 0.0 | 86811 | 1 | 0.0 |
| pr144fst | 221 | 570 | 144 | 0 | 0 | 0 | 0.0 | 52925 | 1 | 0.0 |
| pr152fst | 308 | 862 | 152 | 0 | 0 | 0 | 0.0 | 64323 | 1 | 0.0 |
| pr226fst | 255 | 538 | 226 | 0 | 0 | 0 | 0.0 | 70700 | 1 | 0.0 |
| pr2392fst | 3398 | 7932 | 2392 | 0 | 0 | 0 | 0.0 | 358989 | 1 | 0.0 |
| pr264fst | 280 | 574 | 264 | 0 | 0 | 0 | 0.0 | 41400 | 1 | 0.0 |
| pr299fst | 420 | 1000 | 299 | 0 | 0 | 0 | 0.0 | 44671 | 1 | 0.0 |
| pr439fst | 572 | 1324 | 439 | 0 | 0 | 0 | 0.0 | 97400 | 1 | 0.0 |
| pr76fst | 168 | 494 | 76 | 33 | 94 | 16 | 0.0 | 95908 | 1 | 0.0 |
| rat195fst | 560 | 1740 | 195 | 182 | 594 | 70 | 0.2 | 2386 | 1 | 0.3 |
| rat575fst | 1986 | 6352 | 575 | 892 | 2940 | 319 | 2.0 | 6808 | 1 | 2.7 |
| rat783fst | 2397 | 7430 | 783 | 900 | 2976 | 338 | 2.2 | 8883 | 1 | 3.1 |
| rat99fst | 269 | 798 | 99 | 0 | 0 | 0 | 0.0 | 1225 | 1 | 0.0 |
| rd100fst | 201 | 506 | 100 | 0 | 0 | 0 | 0.0 | 764269099 | 1 | 0.0 |
| rd400fst | 1001 | 2838 | 400 | 161 | 514 | 65 | 0.1 | 1490972010 | 1 | 0.2 |
| rl11849fst | 13963 | 30630 | 11849 | 88 | 266 | 50 | 0.1 | 8779590 | 1 | 0.1 |
| rl1304fst | 1562 | 3388 | 1304 | 18 | 54 | 10 | 0.0 | 236649 | 1 | 0.0 |
| rl1323fst | 1598 | 3500 | 1323 | 0 | 0 | 0 | 0.0 | 253620 | 1 | 0.0 |
| rl1889fst | 2382 | 5348 | 1889 | 67 | 216 | 27 | 0.0 | 295208 | 1 | 0.0 |
| rl5915fst | 6569 | 13960 | 5915 | 34 | 102 | 19 | 0.0 | 533226 | 1 | 0.0 |
| rl5934fst | 6827 | 14730 | 5934 | 31 | 100 | 19 | 0.0 | 529890 | 1 | 0.0 |
| st70fst | 133 | 338 | 70 | 0 | 0 | 0 | 0.0 | 626 | 1 | 0.0 |
| ts225fst | 225 | 448 | 225 | 0 | 0 | 0 | 0.0 | 1120 | 1 | 0.0 |
| tsp225fst | 242 | 504 | 225 | 0 | 0 | 0 | 0.0 | 356850 | 1 | 0.0 |
| u1060fst | 1835 | 4858 | 1060 | 63 | 220 | 32 | 0.1 | 21265372 | 1 | 0.6 |
| u1432fst | 1432 | 2862 | 1432 | 0 | 0 | 0 | 0.0 | 1465 | 1 | 0.0 |
| u159fst | 184 | 372 | 159 | 0 | 0 | 0 | 0.0 | 390 | 1 | 0.0 |
| u1817fst | 1831 | 3692 | 1817 | 0 | 0 | 0 | 0.0 | 5513053 | 1 | 0.0 |
| u2152fst | 2167 | 4368 | 2152 | 0 | 0 | 0 | 0.0 | 6253305 | 1 | 0.0 |
| u2319fst | 2319 | 4636 | 2319 | 0 | 0 | 0 | 0.0 | 2322 | 1 | 0.0 |
| u574fst | 990 | 2516 | 574 | 0 | 0 | 0 | 0.1 | 3509275 | 1 | 0.1 |
| u724fst | 1180 | 3074 | 724 | 11 | 32 | 7 | 0.0 | 4069628 | 1 | 0.1 |
| vm1084fst | 1679 | 4116 | 1084 | 26 | 80 | 15 | 0.1 | 2248390 | 1 | 0.1 |
| vm1748fst | 2856 | 7282 | 1748 | 191 | 612 | 85 | 0.5 | 3194670 | 1 | 0.6 |

Table B.8. Detailed computational results for SPG, test-set VLSI.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | \| $A$ \| | $\|T\|$ | t [s] |  |  |  |
| alue2087 | 1244 | 3942 | 34 | 0 | 0 | 0 | 0.0 | 1049 | 1 | 0.0 |
| alue2105 | 1220 | 3716 | 34 | 0 | 0 | 0 | 0.0 | 1032 | 1 | 0.0 |
| alue3146 | 3626 | 11738 | 64 | 0 | 0 | 0 | 0.1 | 2240 | 1 | 0.1 |
| alue5067 | 3524 | 11120 | 68 | 50 | 146 | 16 | 0.1 | 2586 | 1 | 0.1 |
| alue5345 | 5179 | 16330 | 68 | 62 | 202 | 17 | 0.9 | 3507 | 1 | 0.9 |


| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| alue5623 | 4472 | 13876 | 68 | 20 | 56 | 9 | 0.6 | 3413 | 1 | 0.6 |
| alue5901 | 11543 | 36858 | 68 | 41 | 124 | 18 | 0.7 | 3912 | 1 | 0.7 |
| alue6179 | 3372 | 10426 | 67 | 0 | 0 | 0 | 0.1 | 2452 | 1 | 0.1 |
| alue6457 | 3932 | 12274 | 68 | 0 | 0 | 0 | 0.1 | 3057 | 1 | 0.1 |
| alue6735 | 4119 | 13392 | 68 | 140 | 446 | 20 | 0.1 | 2696 | 1 | 0.1 |
| alue6951 | 2818 | 8838 | 67 | 57 | 172 | 19 | 0.1 | 2386 | 1 | 0.1 |
| alue7065 | 34046 | 109682 | 544 | 41 | 122 | 17 | 19.5 | 23881 | 1 | 19.5 |
| alue7066 | 6405 | 20908 | 16 | 2281 | 7962 | 9 | 0.7 | 2256 | 1 | 0.8 |
| alue7080 | 34479 | 110988 | 2344 | 862 | 2736 | 344 | 9.8 | 62449 | 1 | 10.3 |
| alue7229 | 940 | 2948 | 34 | 0 | 0 | 0 | 0.0 | 824 | 1 | 0.0 |
| alut0787 | 1160 | 4178 | 34 | 0 | 0 | 0 | 0.0 | 982 | 1 | 0.0 |
| alut0805 | 966 | 3332 | 34 | 0 | 0 | 0 | 0.0 | 958 | 1 | 0.0 |
| alut1181 | 3041 | 11386 | 64 | 0 | 0 | 0 | 0.2 | 2353 | 1 | 0.2 |
| alut2010 | 6104 | 22022 | 68 | 52 | 162 | 13 | 0.3 | 3307 | 1 | 0.3 |
| alut2288 | 9070 | 33190 | 68 | 0 | 0 | 0 | 0.9 | 3843 | 1 | 0.9 |
| alut2566 | 5021 | 18110 | 68 | 32 | 96 | 14 | 0.7 | 3073 | 1 | 0.7 |
| alut2610 | 33901 | 125632 | 204 | 119 | 408 | 9 | 41.4 | 12239 | 1 | 41.4 |
| alut2625 | 36711 | 136234 | 879 | 2875 | 10224 | 426 | 45.1 | 35459 | 1 | 52.4 |
| alut2764 | 387 | 1252 | 34 | 0 | 0 | 0 | 0.0 | 640 | 1 | 0.0 |
| diw0234 | 5349 | 20172 | 25 | 0 | 0 | 0 | 0.1 | 1996 | 1 | 0.1 |
| diw0250 | 353 | 1216 | 11 | 0 | 0 | 0 | 0.0 | 350 | 1 | 0.0 |
| diw0260 | 539 | 1970 | 12 | 0 | 0 | 0 | 0.0 | 468 | 1 | 0.0 |
| diw0313 | 468 | 1644 | 14 | 0 | 0 | 0 | 0.0 | 397 | 1 | 0.0 |
| diw0393 | 212 | 762 | 11 | 0 | 0 | 0 | 0.0 | 302 | 1 | 0.0 |
| diw0445 | 1804 | 6622 | 33 | 21 | 60 | 12 | 0.1 | 1363 | 1 | 0.1 |
| diw0459 | 3636 | 13578 | 25 | 14 | 40 | 5 | 0.1 | 1362 | 1 | 0.1 |
| diw0460 | 339 | 1158 | 13 | 0 | 0 | 0 | 0.0 | 345 | 1 | 0.0 |
| diw0473 | 2213 | 8270 | 25 | 0 | 0 | 0 | 0.1 | 1098 | 1 | 0.1 |
| diw0487 | 2414 | 8772 | 25 | 0 | 0 | 0 | 0.0 | 1424 | 1 | 0.0 |
| diw0495 | 938 | 3310 | 10 | 0 | 0 | 0 | 0.0 | 616 | 1 | 0.0 |
| diw0513 | 918 | 3368 | 10 | 0 | 0 | 0 | 0.0 | 604 | 1 | 0.0 |
| diw0523 | 1080 | 4030 | 10 | 0 | 0 | 0 | 0.0 | 561 | 1 | 0.0 |
| diw0540 | 286 | 930 | 10 | 0 | 0 | 0 | 0.0 | 374 | 1 | 0.0 |
| diw0559 | 3738 | 14026 | 18 | 171 | 608 | 12 | 0.2 | 1570 | 1 | 0.2 |
| diw0778 | 7231 | 27454 | 24 | 0 | 0 | 0 | 0.6 | 2173 | 1 | 0.6 |
| diw0779 | 11821 | 45032 | 50 | 32 | 100 | 8 | 2.7 | 4440 | 1 | 2.7 |
| diw0795 | 3221 | 11876 | 10 | 0 | 0 | 0 | 0.1 | 1550 | 1 | 0.1 |
| diw0801 | 3023 | 11150 | 10 | 0 | 0 | 0 | 0.1 | 1587 | 1 | 0.1 |
| diw0819 | 10553 | 40132 | 32 | 0 | 0 | 0 | 0.2 | 3399 | 1 | 0.2 |
| diw0820 | 11749 | 44768 | 37 | 88 | 310 | 12 | 3.8 | 4167 | 1 | 3.9 |
| dmxa0296 | 233 | 772 | 12 | 0 | 0 | 0 | 0.0 | 344 | 1 | 0.0 |
| dmxa0368 | 2050 | 7352 | 18 | 16 | 40 | 10 | 0.1 | 1017 | 1 | 0.1 |
| dmxa0454 | 1848 | 6572 | 16 | 0 | 0 | 0 | 0.0 | 914 | 1 | 0.0 |
| dmxa0628 | 169 | 560 | 10 | 0 | 0 | 0 | 0.0 | 275 | 1 | 0.0 |
| dmxa0734 | 663 | 2308 | 11 | 0 | 0 | 0 | 0.0 | 506 | 1 | 0.0 |
| dmxa0848 | 499 | 1722 | 16 | 0 | 0 | 0 | 0.0 | 594 | 1 | 0.0 |
| dmxa0903 | 632 | 2174 | 10 | 0 | 0 | 0 | 0.0 | 580 | 1 | 0.0 |
| dmxa1010 | 3983 | 14216 | 23 | 0 | 0 | 0 | 0.1 | 1488 | 1 | 0.1 |
| dmxa1109 | 343 | 1118 | 17 | 0 | 0 | 0 | 0.0 | 454 | 1 | 0.0 |
| dmxa1200 | 770 | 2766 | 21 | 33 | 94 | 13 | 0.0 | 750 | 1 | 0.0 |
| dmxa1304 | 298 | 1006 | 10 | 0 | 0 | 0 | 0.0 | 311 | 1 | 0.0 |
| dmxa1516 | 720 | 2538 | 11 | 0 | 0 | 0 | 0.0 | 508 | 1 | 0.0 |
| dmxa1721 | 1005 | 3462 | 18 | 0 | 0 | 0 | 0.0 | 780 | 1 | 0.0 |
| dmxa1801 | 2333 | 8274 | 17 | 209 | 716 | 16 | 0.1 | 1365 | 1 | 0.1 |
| gap1307 | 342 | 1104 | 17 | 0 | 0 | 0 | 0.0 | 549 | 1 | 0.0 |
| gap1413 | 541 | 1812 | 10 | 0 | 0 | 0 | 0.0 | 457 | 1 | 0.0 |
| gap1500 | 220 | 748 | 17 | 0 | 0 | 0 | 0.0 | 254 | 1 | 0.0 |


| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| gap1810 | 429 | 1404 | 17 | 0 | 0 | 0 | 0.0 | 482 | 1 | 0.0 |
| gap1904 | 735 | 2512 | 21 | 0 | 0 | 0 | 0.0 | 763 | 1 | 0.0 |
| gap2007 | 2039 | 7096 | 17 | 0 | 0 | 0 | 0.0 | 1104 | 1 | 0.0 |
| gap2119 | 1724 | 5950 | 29 | 0 | 0 | 0 | 0.0 | 1244 | 1 | 0.0 |
| gap2740 | 1196 | 4168 | 14 | 0 | 0 | 0 | 0.0 | 745 | 1 | 0.0 |
| gap2800 | 386 | 1306 | 12 | 0 | 0 | 0 | 0.0 | 386 | 1 | 0.0 |
| gap2975 | 179 | 586 | 10 | 0 | 0 | 0 | 0.0 | 245 | 1 | 0.0 |
| gap3036 | 346 | 1166 | 13 | 0 | 0 | 0 | 0.0 | 457 | 1 | 0.0 |
| gap3100 | 921 | 3116 | 11 | 0 | 0 | 0 | 0.0 | 640 | 1 | 0.0 |
| gap3128 | 10393 | 36086 | 104 | 0 | 0 | 0 | 0.2 | 4292 | 1 | 0.2 |
| msm0580 | 338 | 1082 | 11 | 0 | 0 | 0 | 0.0 | 467 | 1 | 0.0 |
| msm0654 | 1290 | 4540 | 10 | 0 | 0 | 0 | 0.0 | 823 | 1 | 0.0 |
| msm0709 | 1442 | 4806 | 16 | 0 | 0 | 0 | 0.0 | 884 | 1 | 0.0 |
| msm0920 | 752 | 2528 | 26 | 0 | 0 | 0 | 0.0 | 806 | 1 | 0.0 |
| msm1008 | 402 | 1390 | 11 | 0 | 0 | 0 | 0.0 | 494 | 1 | 0.0 |
| msm1234 | 933 | 3264 | 13 | 0 | 0 | 0 | 0.0 | 550 | 1 | 0.0 |
| msm1477 | 1199 | 4156 | 31 | 0 | 0 | 0 | 0.0 | 1068 | 1 | 0.0 |
| msm1707 | 278 | 956 | 11 | 0 | 0 | 0 | 0.0 | 564 | 1 | 0.0 |
| msm1844 | 90 | 270 | 10 | 0 | 0 | 0 | 0.0 | 188 | 1 | 0.0 |
| msm1931 | 875 | 3044 | 10 | 0 | 0 | 0 | 0.0 | 604 | 1 | 0.0 |
| msm2000 | 898 | 3124 | 10 | 0 | 0 | 0 | 0.0 | 594 | 1 | 0.0 |
| msm2152 | 2132 | 7404 | 37 | 0 | 0 | 0 | 0.1 | 1590 | 1 | 0.1 |
| msm2326 | 418 | 1446 | 14 | 0 | 0 | 0 | 0.0 | 399 | 1 | 0.0 |
| msm2492 | 4045 | 14188 | 12 | 0 | 0 | 0 | 0.1 | 1459 | 1 | 0.1 |
| msm2525 | 3031 | 10478 | 12 | 0 | 0 | 0 | 0.1 | 1290 | 1 | 0.1 |
| msm2601 | 2961 | 10200 | 16 | 0 | 0 | 0 | 0.1 | 1440 | 1 | 0.1 |
| msm2705 | 1359 | 4916 | 13 | 0 | 0 | 0 | 0.0 | 714 | 1 | 0.0 |
| msm2802 | 1709 | 5926 | 18 | 0 | 0 | 0 | 0.0 | 926 | 1 | 0.0 |
| msm2846 | 3263 | 11566 | 89 | 52 | 162 | 22 | 0.3 | 3135 | 1 | 0.3 |
| msm3277 | 1704 | 5982 | 12 | 0 | 0 | 0 | 0.0 | 869 | 1 | 0.0 |
| msm3676 | 957 | 3108 | 10 | 0 | 0 | 0 | 0.0 | 607 | 1 | 0.0 |
| msm3727 | 4640 | 16510 | 21 | 0 | 0 | 0 | 0.1 | 1376 | 1 | 0.1 |
| msm3829 | 4221 | 14510 | 12 | 0 | 0 | 0 | 0.3 | 1571 | 1 | 0.3 |
| msm4038 | 237 | 780 | 11 | 0 | 0 | 0 | 0.0 | 353 | 1 | 0.0 |
| msm4114 | 402 | 1380 | 16 | 0 | 0 | 0 | 0.0 | 393 | 1 | 0.0 |
| msm4190 | 391 | 1332 | 16 | 0 | 0 | 0 | 0.0 | 381 | 1 | 0.0 |
| msm4224 | 191 | 604 | 11 | 0 | 0 | 0 | 0.0 | 311 | 1 | 0.0 |
| msm4312 | 5181 | 17786 | 10 | 672 | 2332 | 10 | 0.5 | 2016 | 1 | 0.5 |
| msm4414 | 317 | 952 | 11 | 0 | 0 | 0 | 0.0 | 408 | 1 | 0.0 |
| msm4515 | 777 | 2716 | 13 | 0 | 0 | 0 | 0.0 | 630 | 1 | 0.0 |
| taq0014 | 6466 | 22092 | 128 | 0 | 0 | 0 | 0.5 | 5326 | 1 | 0.5 |
| taq0023 | 572 | 1926 | 11 | 0 | 0 | 0 | 0.0 | 621 | 1 | 0.0 |
| taq0365 | 4186 | 14148 | 22 | 61 | 198 | 9 | 0.1 | 1914 | 1 | 0.1 |
| taq0377 | 6836 | 23430 | 136 | 58 | 160 | 34 | 1.6 | 6393 | 1 | 1.7 |
| taq0431 | 1128 | 3810 | 13 | 0 | 0 | 0 | 0.0 | 897 | 1 | 0.0 |
| taq0631 | 609 | 1864 | 10 | 0 | 0 | 0 | 0.0 | 581 | 1 | 0.0 |
| taq0739 | 837 | 2876 | 16 | 0 | 0 | 0 | 0.0 | 848 | 1 | 0.0 |
| taq0741 | 712 | 2434 | 16 | 53 | 170 | 9 | 0.0 | 847 | 1 | 0.0 |
| taq0751 | 1051 | 3582 | 16 | 0 | 0 | 0 | 0.0 | 939 | 1 | 0.0 |
| taq0891 | 331 | 1120 | 10 | 0 | 0 | 0 | 0.0 | 319 | 1 | 0.0 |
| taq0903 | 6163 | 20980 | 130 | 0 | 0 | 0 | 1.4 | 5099 | 1 | 1.5 |
| taq0910 | 310 | 1028 | 17 | 0 | 0 | 0 | 0.0 | 370 | 1 | 0.0 |
| taq0920 | 122 | 388 | 17 | 0 | 0 | 0 | 0.0 | 210 | 1 | 0.0 |
| taq0978 | 777 | 2478 | 10 | 0 | 0 | 0 | 0.0 | 566 | 1 | 0.0 |

Table B.9. Detailed computational results for SPG, test-set WRP3.

| Instance | Original |  |  | Presolved |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] | Optimum | N | t [s] |
| wrp3-11 | 128 | 454 | 11 | 0 | 0 | 0 | 0.0 | 1100361 | 1 | 0.0 |
| wrp3-12 | 84 | 298 | 12 | 0 | 0 | 0 | 0.0 | 1200237 | 1 | 0.0 |
| wrp3-13 | 311 | 1226 | 13 | 131 | 492 | 13 | 0.1 | 1300497 | 1 | 0.1 |
| wrp3-14 | 128 | 494 | 14 | 108 | 422 | 13 | 0.0 | 1400250 | 1 | 0.0 |
| wrp3-15 | 138 | 514 | 15 | 0 | 0 | 0 | 0.0 | 1500422 | 1 | 0.0 |
| wrp3-16 | 204 | 748 | 16 | 0 | 0 | 0 | 0.0 | 1600208 | 1 | 0.0 |
| wrp3-17 | 177 | 708 | 17 | 151 | 622 | 13 | 0.0 | 1700442 | 1 | 0.0 |
| wrp3-19 | 189 | 706 | 19 | 0 | 0 | 0 | 0.0 | 1900439 | 1 | 0.0 |
| wrp3-20 | 245 | 908 | 20 | 0 | 0 | 0 | 0.0 | 2000271 | 1 | 0.0 |
| wrp3-21 | 237 | 888 | 21 | 0 | 0 | 0 | 0.0 | 2100522 | 1 | 0.0 |
| wrp3-22 | 233 | 862 | 22 | 186 | 686 | 20 | 0.0 | 2200557 | 1 | 0.1 |
| wrp3-23 | 132 | 460 | 23 | 0 | 0 | 0 | 0.0 | 2300245 | 1 | 0.0 |
| wrp3-24 | 262 | 974 | 24 | 120 | 416 | 17 | 0.0 | 2400623 | 1 | 0.0 |
| wrp3-25 | 246 | 936 | 25 | 0 | 0 | 0 | 0.0 | 2500540 | 1 | 0.0 |
| wrp3-26 | 402 | 1560 | 26 | 0 | 0 | 0 | 0.0 | 2600484 | 1 | 0.0 |
| wrp3-27 | 370 | 1442 | 27 | 58 | 202 | 14 | 0.2 | 2700502 | 1 | 0.2 |
| wrp3-28 | 307 | 1118 | 28 | 2 | 2 | 1 | 0.0 | 2800379 | 1 | 0.0 |
| wrp3-29 | 245 | 872 | 29 | 0 | 0 | 0 | 0.0 | 2900479 | 1 | 0.0 |
| wrp3-30 | 467 | 1792 | 30 | 73 | 248 | 14 | 0.1 | 3000569 | 1 | 0.1 |
| wrp3-31 | 323 | 1184 | 31 | 55 | 188 | 16 | 0.1 | 3100635 | 1 | 0.1 |
| wrp3-33 | 437 | 1676 | 33 | 100 | 382 | 13 | 0.0 | 3300513 | 1 | 0.0 |
| wrp3-34 | 1244 | 4948 | 34 | 1057 | 4206 | 32 | 2.4 | 3400646 | 1 | 3.6 |
| wrp3-36 | 435 | 1636 | 36 | 99 | 332 | 15 | 0.4 | 3600610 | 1 | 0. |
| wrp3-37 | 1011 | 4020 | 37 | 847 | 3356 | 37 | 3.2 | 3700485 | 1 | 4.7 |
| wrp3-38 | 603 | 2414 | 38 | 437 | 1780 | 37 | 1.0 | 3800656 | 1 | 2.0 |
| wrp3-39 | 703 | 3232 | 39 | 609 | 2822 | 38 | 2.4 | 3900450 | 1 | 4. |
| wrp3-41 | 178 | 614 | 41 | 129 | 448 | 36 | 0.2 | 4100466 | 1 | 0.2 |
| wrp3-42 | 705 | 2746 | 42 | 572 | 2214 | 41 | 0.8 | 4200598 | 1 | 1.3 |
| wrp3-43 | 173 | 596 | 43 | 0 | 0 | 0 | 0.1 | 4300457 | 1 | 0. |
| wrp3-45 | 1414 | 5626 | 45 | 1204 | 4786 | 45 | 2.9 | 4500860 | 1 | 3. |
| wrp3-48 | 925 | 3476 | 48 | 491 | 1816 | 45 | 1.2 | 4800552 | 1 | 2.0 |
| wrp3-49 | 886 | 3600 | 49 | 693 | 2798 | 46 | 1.8 | 4900882 | 1 | 9.9 |
| wrp3-50 | 1119 | 4502 | 50 | 915 | 3716 | 49 | 2.5 | 5000673 | 1 | 4. |
| wrp3-52 | 701 | 2704 | 52 | 581 | 2250 | 49 | 1.6 | 5200825 | 1 | 5.2 |
| wrp3-53 | 775 | 2942 | 53 | 148 | 534 | 12 | 0.3 | 5300847 | 1 | 0.3 |
| wrp3-55 | 1645 | 6372 | 55 | 1487 | 5844 | 55 | 2.1 | 5500888 | 1 | 69.4 |
| wrp3-56 | 853 | 3180 | 56 | 590 | 2238 | 52 | 0.9 | 5600872 | 1 | 2.7 |
| wrp3-60 | 838 | 3526 | 60 | 785 | 3300 | 60 | 2.2 | 6001164 | 1 | 28.2 |
| wrp3-62 | 670 | 2632 | 62 | 586 | 2278 | 62 | 1.1 | 6201016 | 1 | 5. |
| wrp3-64 | 1822 | 7220 | 64 | 1592 | 6402 | 59 | 3.4 | 6400931 | 1 | 9.9 |
| wrp3-66 | 2521 | 9716 | 66 | 2269 | 8946 | 62 | 3.0 | 6600922 | 1 | 368.1 |
| wrp3-67 | 987 | 3846 | 67 | 467 | 1848 | 36 | 1.8 | 6700776 | 1 | 3.5 |
| wrp3-69 | 856 | 3242 | 69 | 447 | 1674 | 61 | 1.6 | 6900841 | 1 | 2.0 |
| wrp3-70 | 1468 | 5862 | 70 | 964 | 3810 | 56 | 2.7 | 7000890 | 1 | 11.2 |
| wrp3-71 | 1221 | 4828 | 71 | 947 | 3754 | 62 | 2.7 | 7101028 | 1 | 20.3 |
| wrp3-73 | 1890 | 7226 | 73 | 1679 | 6534 | 63 | 2.2 | 7301207 | 1 | 37.4 |
| wrp3-74 | 1019 | 3882 | 74 | 861 | 3326 | 65 | 1.1 | 7400759 | 1 | 13.1 |
| wrp3-75 | 729 | 2790 | 75 | 551 | 2054 | 75 | 1.6 | 7501020 | 1 | 2.5 |
| wrp3-76 | 1761 | 6740 | 76 | 1049 | 4066 | 46 | 3.1 | 7601028 | 1 | 4.7 |
| wrp3-78 | 2346 | 9312 | 78 | 1993 | 7980 | 71 | 3.6 | 7801094 | 1 | 232.2 |
| wrp3-79 | 833 | 3190 | 79 | 0 | 0 | 0 | 1.1 | 7900444 | 1 | 1.1 |
| wrp3-80 | 1491 | 5662 | 80 | 1214 | 4650 | 75 | 3.6 | 8000849 | 1 | 29.7 |
| wrp3-83 | 3168 | 12440 | 83 | 2961 | 11852 | 80 | 3.2 | 8300906 | 1 | 3073.2 |
| wrp3-84 | 2356 | 9094 | 84 | 1915 | 7600 | 73 | 3.4 | 8401094 | 1 | 18.6 |
| wrp3-85 | 528 | 2034 | 85 | 509 | 1958 | 85 | 0.5 | 8500739 | 1 | 7.7 |
| wrp3-86 | 1360 | 5214 | 86 | 1157 | 4444 | 86 | 2.9 | 86000746 | 1 | 44.0 |
| wrp3-88 | 743 | 2818 | 88 | 390 | 1470 | 58 | 1.6 | 88001175 | 1 | 2.4 |


|  | Original |  |  |  | Presolved |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Instance | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\mathrm{t}[\mathrm{s}]$ | Optimum | N | $\mathrm{t}[\mathrm{s}]$ |
| wrp3-91 | 1343 | 5188 | 91 | 873 | 3356 | 78 | 3.1 | $\mathbf{9 1 0 0 0 8 6 6}$ | 1 | 5.5 |
| wrp3-92 | 1765 | 7226 | 92 | 1265 | 5254 | 70 | 3.5 | $\mathbf{9 2 0 0 0 7 6 4}$ | 1 | 36.5 |
| wrp3-94 | 1976 | 7672 | 94 | 1504 | 6002 | 79 | 3.9 | $\mathbf{9 4 0 0 1 1 8 1}$ | 5 | 53.1 |
| wrp3-96 | 2518 | 9970 | 96 | 2193 | 8800 | 87 | 3.9 | $\mathbf{9 6 0 0 1 1 7 2}$ | 1 | 185.4 |
| wrp3-98 | 2265 | 9090 | 98 | 1893 | 7712 | 83 | 4.0 | $\mathbf{9 8 0 0 1 2 2 4}$ | 1 | 347.2 |
| wrp3-99 | 2076 | 8144 | 99 | 1689 | 6612 | 94 | 2.0 | $\mathbf{9 9 0 0 1 0 9 7}$ | 1 | 118.1 |

Table B.10. Detailed computational results for SPG, test-set WRP4.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| wrp4-11 | 123 | 466 | 11 | 0 | 0 | 0 | 0.0 | 1100179 | 1 | 0.0 |
| wrp4-13 | 110 | 376 | 13 | 0 | 0 | 0 | 0.0 | 1300798 | 1 | 0.0 |
| wrp4-14 | 145 | 566 | 14 | 0 | 0 | 0 | 0.0 | 1400290 | 1 | 0.0 |
| wrp4-15 | 193 | 738 | 15 | 0 | 0 | 0 | 0.0 | 1500405 | 1 | 0.0 |
| wrp4-16 | 311 | 1158 | 16 | 0 | 0 | 0 | 0.0 | 1601190 | 1 | 0.0 |
| wrp4-17 | 223 | 808 | 17 | 138 | 486 | 13 | 0.0 | 1700525 | 1 | 0.0 |
| wrp4-18 | 211 | 760 | 18 | 0 | 0 | 0 | 0.0 | 1801464 | 1 | 0.0 |
| wrp4-19 | 119 | 412 | 19 | 0 | 0 | 0 | 0.0 | 1901446 | 1 | 0.0 |
| wrp4-21 | 529 | 2064 | 21 | 167 | 644 | 15 | 0.1 | 2103283 | 1 | 0.1 |
| wrp4-22 | 294 | 1136 | 22 | 108 | 392 | 15 | 0.1 | 2200394 | 1 | 0.1 |
| wrp4-23 | 257 | 1030 | 23 | 131 | 478 | 18 | 0.0 | 2300376 | 1 | 0.0 |
| wrp4-24 | 493 | 1926 | 24 | 0 | 0 | 0 | 0.1 | 2403332 | 1 | 0.1 |
| wrp4-25 | 422 | 1616 | 25 | 92 | 332 | 9 | 0.1 | 2500828 | 1 | 0.1 |
| wrp4-26 | 396 | 1562 | 26 | 310 | 1224 | 26 | 0.5 | 2600443 | 1 | 1.7 |
| wrp4-27 | 243 | 994 | 27 | 71 | 260 | 16 | 0.1 | 2700441 | 1 | 0.1 |
| wrp4-28 | 272 | 1090 | 28 | 190 | 756 | 28 | 0.2 | 2800466 | 1 | 0.5 |
| wrp4-29 | 247 | 1010 | 29 | 105 | 394 | 22 | 0.2 | 2900484 | 1 | 0.2 |
| wrp4-30 | 361 | 1448 | 30 | 296 | 1190 | 29 | 0.1 | 3000526 | 1 | 2.2 |
| wrp4-31 | 390 | 1572 | 31 | 318 | 1280 | 30 | 0.3 | 3100526 | 1 | 2.6 |
| wrp4-32 | 311 | 1264 | 32 | 246 | 998 | 29 | 0.1 | 3200554 | 1 | 1.2 |
| wrp4-33 | 304 | 1142 | 33 | 103 | 372 | 19 | 0.0 | 3300655 | 1 | 0.0 |
| wrp4-34 | 314 | 1300 | 34 | 45 | 154 | 9 | 0.1 | 3400525 | 1 | 0.1 |
| wrp4-35 | 471 | 1908 | 35 | 320 | 1240 | 35 | 0.4 | 3500601 | 1 | 1.2 |
| wrp4-36 | 363 | 1500 | 36 | 310 | 1276 | 36 | 0.2 | 3600596 | 1 | 1.3 |
| wrp4-37 | 522 | 2108 | 37 | 438 | 1726 | 37 | 0.4 | 3700647 | 1 | 2.9 |
| wrp4-38 | 294 | 1236 | 38 | 0 | 0 | 0 | 0.1 | 3800606 | 1 | 0.1 |
| wrp4-39 | 802 | 3106 | 39 | 163 | 600 | 14 | 0.1 | 3903734 | 1 | 0.1 |
| wrp4-40 | 538 | 2176 | 40 | 440 | 1774 | 39 | 0.3 | 4000758 | 1 | 6.9 |
| wrp4-41 | 465 | 1910 | 41 | 377 | 1540 | 41 | 0.4 | 4100695 | 1 | 4.1 |
| wrp4-42 | 552 | 2262 | 42 | 502 | 2038 | 42 | 0.4 | 4200701 | 1 | 9.6 |
| wrp4-43 | 596 | 2296 | 43 | 277 | 1054 | 33 | 0.1 | 4301508 | 1 | 0.2 |
| wrp4-44 | 398 | 1576 | 44 | 153 | 576 | 27 | 0.3 | 4401504 | 9 | 0.4 |
| wrp4-45 | 388 | 1630 | 45 | 0 | 0 | 0 | 0.3 | 4500728 | 1 | 0.3 |
| wrp4-46 | 632 | 2574 | 46 | 583 | 2356 | 46 | 0.4 | 4600756 | 1 | 8.6 |
| wrp4-47 | 555 | 2196 | 47 | 0 | 0 | 0 | 0.9 | 4701318 | 1 | 0.9 |
| wrp4-48 | 451 | 1650 | 48 | 0 | 0 | 0 | 0.1 | 4802220 | 1 | 0.1 |
| wrp4-49 | 557 | 2160 | 49 | 158 | 582 | 22 | 0.5 | 4901968 | 1 | 0.6 |
| wrp4-50 | 564 | 2224 | 50 | 223 | 860 | 24 | 0.4 | 5001625 | 1 | 0.6 |
| wrp4-51 | 668 | 2612 | 51 | 407 | 1592 | 45 | 1.3 | 5101616 | 1 | 1.6 |
| wrp4-52 | 547 | 2230 | 52 | 70 | 240 | 20 | 0.4 | 5201081 | 1 | 0.4 |
| wrp4-53 | 615 | 2464 | 53 | 351 | 1370 | 46 | 0.7 | 5301351 | 1 | 1.5 |
| wrp4-54 | 688 | 2776 | 54 | 356 | 1398 | 40 | 0.6 | 5401534 | 1 | 1.4 |
| wrp4-55 | 610 | 2402 | 55 | 403 | 1562 | 51 | 0.7 | 5501952 | 1 | 1.0 |
| wrp4-56 | 839 | 3234 | 56 | 489 | 1902 | 47 | 0.8 | 5602299 | 1 | 1.6 |
| wrp4-58 | 757 | 2986 | 58 | 367 | 1446 | 41 | 0.6 | 5801466 | 1 | 1.3 |
| wrp4-59 | 904 | 3612 | 59 | 154 | 506 | 29 | 0.2 | 5901592 | 1 | 0.2 |
|  |  |  |  |  |  |  |  | cont. next page |  |  |


| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| wrp4-60 | 693 | 2740 | 60 | 103 | 346 | 24 | 0.4 | 6001782 | 1 | 0.4 |
| wrp4-61 | 775 | 3076 | 61 | 138 | 500 | 19 | 0.2 | 6102210 | 1 | 0.2 |
| wrp4-62 | 1283 | 4986 | 62 | 313 | 1184 | 29 | 2.6 | 6202100 | 1 | 2.7 |
| wrp4-63 | 1121 | 4454 | 63 | 943 | 3752 | 60 | 0.9 | 6301479 | 1 | 57.1 |
| wrp4-64 | 632 | 2562 | 64 | 0 | 0 | 0 | 0.3 | 6401996 | 1 | 0.3 |
| wrp4-66 | 844 | 3382 | 66 | 229 | 834 | 24 | 1.0 | 6602931 | 1 | 1.0 |
| wrp4-67 | 1518 | 6120 | 67 | 208 | 770 | 28 | 2.5 | 6702800 | 1 | 2.6 |
| wrp4-68 | 917 | 3700 | 68 | 793 | 3182 | 67 | 0.8 | 6801753 | 1 | 4.3 |
| wrp4-69 | 574 | 2330 | 69 | 0 | 0 | 0 | 0.7 | 6902328 | 1 | 0.7 |
| wrp4-70 | 637 | 2538 | 70 | 0 | 0 | 0 | 0.1 | 7003022 | 1 | 0.1 |
| wrp4-71 | 802 | 3218 | 71 | 0 | 0 | 0 | 0.1 | 7102320 | 1 | 0.1 |
| wrp4-72 | 1151 | 4548 | 72 | 538 | 2132 | 48 | 1.1 | 7202807 | 1 | 4.2 |
| wrp4-73 | 1898 | 7232 | 73 | 1290 | 5112 | 73 | 1.9 | 7302643 | 1 | 23.7 |
| wrp4-74 | 802 | 3240 | 74 | 610 | 2422 | 72 | 0.8 | 7402046 | 1 | 1.9 |
| wrp4-75 | 938 | 3738 | 75 | 702 | 2784 | 75 | 1.1 | 7501712 | 1 | 2.2 |
| wrp4-76 | 766 | 3070 | 76 | 140 | 504 | 30 | 0.5 | 7602040 | 1 | 0.6 |

## B.1.3 DIMACS 2014 instances

The time limit for the following instances is 54340 seconds. This corresponds to 24 hours on the machine used by Polzin and Vahdati-Daneshmand (2014).

Table B.11. Detailed computational results for SPG, test-set Copenhagen14.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| ind1 | 18 | 62 | 10 | 0 | 0 | 0 | 0.0 | 604 | 1 | 0.0 |
| ind2 | 31 | 114 | 10 | 0 | 0 | 0 | 0.0 | 9500 | 1 | 0.0 |
| ind3 | 16 | 46 | 10 | 0 | 0 | 0 | 0.0 | 600 | 1 | 0.0 |
| ind4 | 74 | 292 | 25 | 0 | 0 | 0 | 0.0 | 1086 | 1 | 0.0 |
| ind5 | 114 | 456 | 33 | 0 | 0 | 0 | 0.0 | 1341 | 1 | 0.0 |
| rc01 | 21 | 70 | 10 | 0 | 0 | 0 | 0.0 | 25980 | 1 | 0.0 |
| rc02 | 87 | 352 | 30 | 2 | 2 | 1 | 0.0 | 41350 | 1 | 0.0 |
| rc03 | 109 | 404 | 50 | 0 | 0 | 0 | 0.0 | 54160 | 1 | 0.0 |
| rc04 | 121 | 394 | 70 | 0 | 0 | 0 | 0.0 | 59070 | 1 | 0.0 |
| rc05 | 247 | 972 | 100 | 0 | 0 | 0 | 0.0 | 74070 | 1 | 0.0 |
| rc06 | 2502 | 12488 | 100 | 1991 | 8880 | 90 | 1.2 | 79714 | 3 | 5.3 |
| rc07 | 2740 | 13156 | 200 | 2001 | 8674 | 139 | 1.9 | 108740 | 9 | 7.8 |
| rc08 | 7527 | 36340 | 200 | 6840 | 30894 | 186 | 4.8 | 112564 | 11 | 120.5 |
| rc09 | 6128 | 30528 | 200 | 5290 | 24238 | 168 | 4.0 | 111005 | 1 | 83.1 |
| rc10 | 1572 | 6490 | 500 | 572 | 2078 | 163 | 0.9 | 164150 | 1 | 1.2 |
| rc11 | 2858 | 11638 | 1000 | 1055 | 3676 | 337 | 3.1 | 230837 | 1 | 3.9 |
| rt01 | 262 | 1480 | 10 | 0 | 0 | 0 | 0.0 | 2146 | 1 | 0.0 |
| rt02 | 788 | 3876 | 50 | 0 | 0 | 0 | 0.3 | 45852 | 1 | 0.3 |
| rt03 | 1725 | 8184 | 100 | 1430 | 6198 | 82 | 0.9 | 7964 | 1 | 2.6 |
| rt04 | 9469 | 45486 | 100 | 9035 | 41352 | 94 | 4.2 | 9693 | 9 | 379.2 |
| rt05 | 15473 | 77856 | 200 | 14488 | 68570 | 190 | 7.2 | 51313 | 47 | 2418.4 |

Table B.12. Detailed computational results for SPG, test-set ES10000FST.

|  | $\|V\|$ | Original |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Instance | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\mathrm{t}[\mathrm{s}]$ | Optimum | N | $\mathrm{t}[\mathrm{s}]$ |
| es10000fst01 | 27019 | 78814 | $10000 \mid$ | 4080 | 13246 | 1621 | $39.0 \mid$ | $\mathbf{7 1 6 1 7 4 2 8 0}$ | 1 |

Table B.13. Detailed computational results for SPG, test-set geo-original.

|  |  | Original <br>  <br> Instance |  |  |  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| G101 | 67966 | 164970 | 100 | 669 | 2544 | 66 | 4.7 | $\mathbf{3 4 9 2 4 0 5}$ | 1 | 5.2 |
| G102 | 111707 | 321008 | 2052 | 9285 | 30744 | 1592 | 20.1 | $\mathbf{1 5 1 8 7 5 3 8}$ | 1 | 65.6 |
| G103 | 135543 | 403606 | 3033 | 12804 | 42348 | 2277 | 26.9 | $\mathbf{1 9 9 3 8 7 4 4}$ | 1 | 110.1 |
| G104 | 158212 | 480044 | 3914 | 16492 | 54266 | 2929 | 36.4 | $\mathbf{2 6 1 6 5 5 2 8}$ | 1 | 199.3 |
| G105 | 79244 | 202378 | 550 | 3103 | 10712 | 409 | 8.7 | $\mathbf{1 2 5 0 7 8 7 7}$ | 1 | 25.3 |
| G106 | 204621 | 636272 | 5556 | 1379 | 4618 | 233 | 70.1 | $\mathbf{4 4 5 4 7 2 0 8}$ | 1 | 486.0 |
| G107 | 85568 | 228226 | 938 | 1177 | 3824 | 247 | 7.5 | $\mathbf{7 3 2 5 5 3 0}$ | 1 | 9.8 |
| G201 | 44624 | 112410 | 190 | 775 | 2588 | 123 | 3.4 | $\mathbf{3 4 8 4 0 2 8}$ | 1 | 3.8 |
| G202 | 62174 | 175124 | 1015 | 1773 | 5766 | 357 | 7.5 | $\mathbf{6 8 4 9 4 2 3}$ | 1 | 9.4 |
| G203 | 88728 | 267250 | 2041 | 1817 | 5962 | 323 | 19.9 | $\mathbf{1 3 1 5 5 2 1 0}$ | 1 | 42.6 |
| G204 | 50002 | 130406 | 386 | 905 | 2916 | 181 | 4.9 | $\mathbf{5 3 1 3 5 4 8}$ | 1 | 5.2 |
| G205 | 120866 | 374624 | 3224 | 3873 | 12768 | 639 | 31.6 | $\mathbf{2 4 8 1 9 5 8 3}$ | 1 | 171.7 |
| G206 | 60446 | 165880 | 803 | 254 | 834 | 56 | 7.8 | $\mathbf{9 1 7 5 6 2 2}$ | 1 | 10.6 |
| G207 | 42481 | 105104 | 97 | 0 | 0 | 0 | 1.8 | $\mathbf{2 2 6 5 8 3 4}$ | 1 | 1.8 |
| G301 | 80736 | 197500 | 191 | 1313 | 4932 | 152 | 6.7 | $\mathbf{4 7 9 7 4 4 1}$ | 1 | 8.1 |
| G302 | 117756 | 330306 | 1879 | 354 | 1112 | 91 | 13.9 | $\mathbf{1 3 3 0 0 9 9 0}$ | 1 | 22.8 |
| G303 | 147718 | 428352 | 2992 | 10545 | 33992 | 1853 | 35.2 | $\mathbf{2 7 9 4 1 4 5 6}$ | 1 | 68.7 |
| G304 | 86413 | 217744 | 419 | 77 | 242 | 24 | 6.7 | $\mathbf{6 7 2 1 1 8 0}$ | 1 | 6.7 |
| G305 | 172687 | 511650 | 3902 | 2540 | 8404 | 421 | 42.7 | $\mathbf{4 0 6 3 2 1 5 2}$ | 1 | 128.2 |
| G306 | 196404 | 600072 | 4937 | 2329 | 7616 | 425 | 49.8 | $\mathbf{3 3 9 4 9 8 7 4}$ | 1 | 335.4 |
| G307 | 235686 | 732186 | 6313 | 3647 | 12044 | 610 | 79.1 | $\mathbf{5 1 2 1 9 0 9 0}$ | 1 | 529.6 |
| G308 | 78834 | 191464 | 88 | 1120 | 4464 | 72 | 6.5 | $\mathbf{4 6 9 9 4 7 4}$ | 3 | 10.9 |
| G309 | 97928 | 257264 | 902 | 576 | 1872 | 127 | 12.1 | $\mathbf{1 1 2 5 6 3 0 3}$ | 1 | 14.6 |

Table B.14. Detailed computational results for SPG, test-set geo-advanced.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| G101a | 10734 | 32690 | 96 | 286 | 1050 | 44 | 4.3 | 3492405 | 1 | 4.5 |
| G102a | 27896 | 87850 | 2003 | 8975 | 29614 | 1543 | 22.2 | 15187538 | 1 | 64.7 |
| G103a | 36270 | 114740 | 2930 | 5448 | 17926 | 970 | 26.9 | 19938744 | 1 | 98.8 |
| G104a | 44251 | 140058 | 3776 | 16048 | 52674 | 2830 | 37.9 | 26165528 | 1 | 208.2 |
| G105a | 14586 | 44900 | 525 | 3029 | 10410 | 402 | 7.6 | 12507877 | 1 | 21.8 |
| G106a | 62618 | 200134 | 5373 | 1380 | 4618 | 233 | 63.0 | 44547208 | 1 | 473.8 |
| G107a | 15536 | 47716 | 893 | 1181 | 3850 | 247 | 6.3 | 7325530 | 1 | 8.8 |
| G201a | 8286 | 25234 | 188 | 772 | 2580 | 124 | 3.3 | 3484028 | 1 | 3.6 |
| G202a | 14028 | 43220 | 985 | 1771 | 5752 | 360 | 6.7 | 6849423 | 1 | 8.7 |
| G203a | 25651 | 81220 | 1999 | 1803 | 5910 | 320 | 18.2 | 13155210 | 1 | 39.7 |
| G204a | 9939 | 30498 | 376 | 868 | 2806 | 176 | 2.8 | 5313548 | 1 | 3.2 |
| G205a | 37398 | 118646 | 3146 | 3815 | 12590 | 624 | 28.4 | 24819583 | 1 | 156.6 |
| G206a | 13688 | 42394 | 789 | 294 | 974 | 60 | 6.9 | 9175622 | 1 | 9.7 |
| G207a | 7565 | 23042 | 98 | 2 | 2 | 1 | 1.7 | 2265834 | 1 | 1.7 |
| G301a | 13291 | 40522 | 181 | 952 | 3484 | 125 | 6.3 | 4797441 | 1 | 6.9 |
| G302a | 24951 | 77294 | 1797 | 403 | 1274 | 101 | 12.6 | 13300990 | 1 | 21.6 |
| G303a | 37085 | 115422 | 2915 | 1308 | 4250 | 231 | 29.7 | 27941456 | 1 | 73.7 |
| G304a | 15213 | 46658 | 403 | 117 | 380 | 30 | 5.7 | 6721180 | 1 | 5.8 |
| G305a | 47016 | 147722 | 3809 | 14024 | 45076 | 2425 | 47.2 | 40632152 | 1 | 130.4 |
| G306a | 55423 | 175558 | 4766 | 2329 | 7614 | 425 | 50.9 | 33949874 | 1 | 374.3 |
| G307a | 71184 | 227232 | 6107 | 3648 | 12048 | 610 | 69.1 | 51219090 | 1 | 554.0 |
| G308a | 13298 | 40702 | 86 | 702 | 2740 | 67 | 6.4 | 4699474 | 1 | 7.3 |
| G309a | 18704 | 57702 | 868 | 2259 | 7478 | 402 | 11.3 | 11256303 | 1 | 13.2 |

Table B.15. Detailed computational results for SPG, test-set vienna-i-simple.

|  | Original |  |  |  |  | Presolved |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
| Instance | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\mathrm{t}[\mathrm{s}]$ | Optimum | N |  |  |
| I001 | 30190 | 95496 | 1184 | 211 | 646 | 75 | 2.1 | $\mathbf{2 5 3 9 2 1 2 0 1}$ | 1 |  |  |
| I002 | 49920 | 155742 | 1665 | 642 | 1940 | 186 | 6.4 | $\mathbf{3 9 9 8 0 9 3 0 3}$ | 1 |  |  |
| 1003 | 44482 | 146838 | 3222 | 443 | 1342 | 126 | 9.6 | $\mathbf{7 8 8 7 7 4 4 9 4}$ | 1 |  |  |
| 1004 | 5556 | 17104 | 570 | 0 | 0 | 0 | 0.1 | $\mathbf{2 7 9 5 1 2 6 9 2}$ | 1 |  |  |


| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| 1005 | 10284 | 31960 | 1017 | 0 | 0 | 0 | 0.2 | 390876350 | 1 | 0.2 |
| 1006 | 31754 | 105750 | 2202 | 544 | 1640 | 175 | 7.2 | 504526035 | 1 | 10.8 |
| 1007 | 15122 | 48742 | 737 | 136 | 400 | 42 | 0.9 | 177909660 | 1 | 1.0 |
| 1008 | 15714 | 51134 | 871 | 136 | 404 | 46 | 1.9 | 201788202 | 1 | 2.0 |
| 1009 | 33188 | 104014 | 1262 | 297 | 902 | 100 | 2.5 | 275558727 | 1 | 2.6 |
| 1010 | 29905 | 94914 | 943 | 151 | 450 | 58 | 1.4 | 207889674 | 1 | 1.4 |
| 1011 | 25195 | 82596 | 1428 | 734 | 2258 | 207 | 2.5 | 317589880 | 1 | 3.3 |
| 1012 | 12355 | 39924 | 503 | 32 | 98 | 16 | 0.3 | 118893243 | 1 | 0.3 |
| 1013 | 18242 | 57952 | 891 | 66 | 188 | 32 | 1.3 | 193190339 | 1 | 1.4 |
| 1014 | 12715 | 41264 | 475 | 10 | 26 | 5 | 0.3 | 105173465 | 1 | 0.3 |
| 1015 | 48833 | 159974 | 2493 | 424 | 1330 | 123 | 7.4 | 592240832 | 1 | 8.6 |
| 1016 | 72038 | 230110 | 4391 | 742 | 2290 | 207 | 17.5 | 1110914620 | 1 | 19.4 |
| 1017 | 15095 | 48182 | 478 | 76 | 234 | 21 | 0.5 | 109739695 | 1 | 0.5 |
| 1018 | 31121 | 102226 | 1898 | 982 | 2914 | 274 | 4.7 | 463887832 | 1 | 6.5 |
| 1019 | 25946 | 83290 | 866 | 320 | 970 | 90 | 1.8 | 217647693 | 1 | 1.9 |
| 1020 | 21808 | 69842 | 594 | 98 | 308 | 35 | 1.0 | 146515460 | 1 | 1.0 |
| 1021 | 16013 | 50538 | 392 | 17 | 46 | 7 | 0.5 | 106470644 | 1 | 0.5 |
| 1022 | 16224 | 51382 | 437 | 54 | 156 | 19 | 0.7 | 106799980 | 1 | 0.7 |
| 1023 | 22805 | 70614 | 582 | 92 | 294 | 31 | 0.7 | 131044872 | 1 | 0.7 |
| 1024 | 68464 | 217464 | 3001 | 275 | 848 | 79 | 10.9 | 758483415 | 1 | 12.3 |
| 1025 | 23412 | 75904 | 945 | 474 | 1488 | 153 | 3.6 | 232790758 | 1 | 3.7 |
| 1026 | 47429 | 158614 | 3334 | 1420 | 4372 | 409 | 11.5 | 928032223 | 1 | 13.2 |
| 1027 | 85085 | 277776 | 3954 | 1166 | 3564 | 291 | 16.9 | 976812226 | 1 | 18.2 |
| 1028 | 72701 | 230860 | 1790 | 176 | 546 | 59 | 16.6 | 384053191 | 1 | 16.6 |
| 1029 | 69988 | 223608 | 2162 | 349 | 1100 | 93 | 13.0 | 492193565 | 1 | 13.2 |
| 1030 | 33188 | 107360 | 1263 | 148 | 450 | 39 | 3.4 | 321646787 | 1 | 3.4 |
| 1031 | 54351 | 176422 | 2182 | 155 | 482 | 42 | 5.5 | 578284709 | 1 | 5.5 |
| 1032 | 56023 | 182798 | 3017 | 800 | 2404 | 244 | 6.6 | 773096651 | 1 | 7.7 |
| 1033 | 18555 | 59460 | 636 | 59 | 174 | 25 | 1.6 | 134461857 | 1 | 1.6 |
| 1034 | 22311 | 71032 | 735 | 64 | 186 | 21 | 1.9 | 165115148 | 1 | 1.9 |
| 1035 | 30585 | 100908 | 1704 | 129 | 386 | 49 | 3.7 | 414440370 | 1 | 4.2 |
| 1036 | 37208 | 120712 | 1411 | 125 | 402 | 36 | 6.5 | 375260864 | 1 | 7.0 |
| 1037 | 13694 | 44252 | 427 | 13 | 36 | 7 | 1.2 | 105720727 | 1 | 1.2 |
| 1038 | 18747 | 61278 | 967 | 679 | 2106 | 169 | 1.9 | 255767543 | 1 | 2.7 |
| 1039 | 8755 | 28898 | 347 | 88 | 258 | 38 | 0.7 | 85566290 | 1 | 0.7 |
| 1040 | 40389 | 131640 | 1762 | 398 | 1236 | 121 | 6.2 | 431498867 | 1 | 6.3 |
| 1041 | 47197 | 150614 | 1193 | 181 | 554 | 65 | 5.5 | 301914840 | 1 | 5.6 |
| 1042 | 51896 | 171100 | 2171 | 131 | 394 | 39 | 7.2 | 532131412 | 1 | 7.3 |
| 1043 | 10398 | 33574 | 367 | 108 | 328 | 41 | 0.9 | 95722094 | 1 | 1.0 |
| 1044 | 68905 | 227778 | 3358 | 352 | 1082 | 90 | 11.3 | 804532332 | 1 | 14.0 |
| 1045 | 14685 | 46932 | 421 | 80 | 234 | 26 | 0.6 | 105944062 | 1 | 0.6 |
| 1046 | 70843 | 234418 | 3598 | 172 | 516 | 50 | 12.8 | 925470052 | 1 | 14.4 |
| 1047 | 28524 | 92502 | 2354 | 2176 | 6606 | 622 | 5.8 | 695163406 | 1 | 8.4 |
| 1048 | 13189 | 42438 | 358 | 0 | 0 | 0 | 0.5 | 91509264 | 1 | 0.5 |
| 1049 | 30857 | 99182 | 990 | 159 | 468 | 51 | 2.7 | 294811505 | 1 | 2.7 |
| 1050 | 43073 | 142552 | 2868 | 3449 | 10540 | 920 | 11.1 | 792599114 | 1 | 20.6 |
| 1051 | 27028 | 90812 | 1524 | 137 | 406 | 42 | 5.0 | 357230839 | 1 | 5.8 |
| 1052 | 2363 | 7522 | 40 | 0 | 0 | 0 | 0.0 | 13309487 | 1 | 0.0 |
| 1053 | 3224 | 10570 | 126 | 19 | 52 | 8 | 0.1 | 30854904 | 1 | 0.1 |
| 1054 | 3803 | 12426 | 38 | 0 | 0 | 0 | 0.0 | 15841596 | 1 | 0.0 |
| 1055 | 13332 | 43160 | 570 | 112 | 338 | 46 | 0.8 | 144164924 | 1 | 0.8 |
| 1056 | 1991 | 6352 | 51 | 0 | 0 | 0 | 0.0 | 14171206 | 1 | 0.0 |
| 1057 | 33231 | 110298 | 1569 | 112 | 340 | 40 | 3.4 | 412746415 | 1 | 4.1 |
| 1058 | 23527 | 79256 | 1256 | 169 | 538 | 42 | 1.2 | 305024188 | 1 | 1.3 |
| 1059 | 9287 | 29950 | 363 | 49 | 134 | 22 | 0.2 | 107617854 | 1 | 0.2 |
| 1060 | 42008 | 135144 | 1242 | 160 | 504 | 54 | 6.0 | 337290460 | 1 | 6.0 |
| 1061 | 39160 | 127318 | 1458 | 171 | 532 | 46 | 7.5 | 363042722 | 1 | 8.1 |


| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| 1062 | 66048 | 220982 | 3343 | 122 | 374 | 43 | 7.7 | 792941137 | 1 | 8.1 |
| 1063 | 26840 | 87322 | 1645 | 777 | 2366 | 214 | 4.0 | 459801704 | 1 | 4.8 |
| 1064 | 63158 | 214690 | 3458 | 6440 | 20058 | 1597 | 21.0 | 863103567 | 1 | 38.2 |
| 1065 | 3898 | 12712 | 144 | 12 | 36 | 9 | 0.2 | 32965718 | 1 | 0.2 |
| 1066 | 15038 | 49192 | 551 | 70 | 212 | 28 | 0.4 | 174219813 | 1 | 0.4 |
| 1067 | 20547 | 66460 | 627 | 403 | 1256 | 121 | 1.6 | 175540750 | 1 | 1.8 |
| 1068 | 33118 | 110254 | 1553 | 353 | 1066 | 100 | 2.8 | 420730046 | 1 | 3.0 |
| 1069 | 9574 | 32416 | 543 | 258 | 804 | 71 | 0.9 | 135161583 | 1 | 1.0 |
| 1070 | 15079 | 49216 | 550 | 123 | 364 | 48 | 1.8 | 136700139 | 1 | 1.8 |
| 1071 | 33203 | 108854 | 1494 | 233 | 684 | 70 | 3.1 | 382539099 | 1 | 3.2 |
| 1072 | 26948 | 88388 | 993 | 110 | 338 | 24 | 2.1 | 289019226 | 1 | 2.1 |
| 1073 | 21653 | 70342 | 1847 | 115 | 336 | 44 | 3.0 | 663004987 | 1 | 3.7 |
| 1074 | 13316 | 44066 | 653 | 17 | 50 | 9 | 0.8 | 165573383 | 1 | 0.8 |
| 1075 | 57551 | 190762 | 2973 | 110 | 336 | 33 | 8.5 | 815404026 | 1 | 9.0 |
| 1076 | 14023 | 45790 | 598 | 71 | 208 | 31 | 0.9 | 166249692 | 1 | 0.9 |
| 1077 | 20856 | 68474 | 1787 | 3514 | 10400 | 882 | 5.0 | 472503150 | 1 | 11.4 |
| 1078 | 13294 | 43896 | 835 | 86 | 244 | 37 | 1.2 | 185525490 | 1 | 1.2 |
| 1079 | 19867 | 62542 | 565 | 757 | 2598 | 213 | 2.6 | 150506933 | 1 | 3.2 |
| 1080 | 18695 | 59416 | 548 | 313 | 966 | 92 | 1.8 | 164299652 | 1 | 2.0 |
| 1081 | 25081 | 81478 | 888 | 53 | 154 | 27 | 2.5 | 247527679 | 1 | 2.6 |
| 1082 | 15592 | 49576 | 515 | 0 | 0 | 0 | 1.0 | 147407632 | 1 | 1.0 |
| 1083 | 89596 | 297166 | 4991 | 65 | 202 | 21 | 12.5 | 1405593860 | 1 | 14.1 |
| 1084 | 44934 | 147454 | 2319 | 95 | 318 | 26 | 5.0 | 627187559 | 1 | 7.0 |
| 1085 | 9113 | 28982 | 301 | 98 | 340 | 29 | 0.4 | 80628079 | 1 | 0.4 |

Table B.16. Detailed computational results for SPG, test-set vienna-i-advanced.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| 1001a | 14675 | 44110 | 941 | 212 | 638 | 72 | 1.9 | 253921201 | 1 | 2.0 |
| 1002a | 23800 | 71516 | 1282 | 635 | 1918 | 186 | 5.0 | 399809303 | 1 | 5.9 |
| 1003a | 16270 | 47838 | 2336 | 440 | 1332 | 125 | 8.0 | 788774494 | 1 | 11.3 |
| 1004a | 867 | 2476 | 263 | 19 | 48 | 11 | 0.1 | 279512692 | 1 | 0.1 |
| 1005a | 1677 | 4860 | 491 | 0 | 0 | 0 | 0.1 | 390876350 | 1 | 0.1 |
| 1006a | 13339 | 39064 | 1842 | 104 | 316 | 28 | 6.0 | 504526035 | 1 | 9.7 |
| 1007a | 6873 | 20598 | 599 | 128 | 370 | 42 | 0.8 | 177909660 | 1 | 0.9 |
| 1008a | 6522 | 19258 | 708 | 101 | 296 | 33 | 1.6 | 201788202 | 1 | 1.7 |
| 1009a | 14977 | 44870 | 1053 | 306 | 924 | 101 | 1.9 | 275558727 | 1 | 2.1 |
| 1010a | 13041 | 39090 | 782 | 156 | 470 | 59 | 0.9 | 207889674 | 1 | 1.0 |
| 1011a | 9298 | 27370 | 1202 | 709 | 2172 | 200 | 2.4 | 317589880 | 1 | 3.0 |
| 1012a | 3500 | 10428 | 387 | 0 | 0 | 0 | 0.1 | 118893243 | 1 | 0.1 |
| 1013a | 7147 | 21216 | 670 | 67 | 192 | 33 | 1.0 | 193190339 | 1 | 1.1 |
| 1014a | 3577 | 10622 | 364 | 0 | 0 | 0 | 0.1 | 105173465 | 1 | 0.1 |
| 1015a | 20573 | 61082 | 2119 | 407 | 1270 | 120 | 6.3 | 592240832 | 1 | 7.6 |
| 1016a | 27214 | 79648 | 3434 | 507 | 1548 | 154 | 12.4 | 1110914620 | 1 | 14.9 |
| 1017a | 7571 | 23142 | 386 | 0 | 0 | 0 | 0.3 | 109739695 | 1 | 0.3 |
| 1018a | 12258 | 36028 | 1549 | 992 | 2942 | 276 | 3.5 | 463887832 | 1 | 5.0 |
| 1019a | 11693 | 35248 | 732 | 278 | 846 | 79 | 1.4 | 217647693 | 1 | 1.5 |
| 1020a | 6405 | 19128 | 508 | 58 | 180 | 18 | 0.5 | 146515460 | 1 | 0.5 |
| 1021a | 5195 | 15722 | 295 | 102 | 306 | 27 | 0.2 | 106470644 | 1 | 0.2 |
| 1022a | 8869 | 27102 | 356 | 64 | 188 | 24 | 0.5 | 106799980 | 1 | 0.5 |
| 1023a | 13724 | 41726 | 403 | 222 | 672 | 64 | 0.5 | 131044872 | 1 | 0.5 |
| 1024a | 32357 | 96500 | 2511 | 73 | 214 | 28 | 9.3 | 758483415 | 1 | 10.1 |
| 1025a | 10055 | 29922 | 833 | 73 | 228 | 28 | 3.0 | 232790758 | 1 | 3.2 |
| 1026a | 18155 | 53136 | 2661 | 1687 | 5180 | 496 | 9.1 | 928032223 | 1 | 10.9 |
| 1027a | 40772 | 121110 | 3490 | 109 | 346 | 33 | 15.6 | 976812226 | 1 | 17.3 |
| 1028a | 43690 | 132922 | 1597 | 255 | 790 | 85 | 15.4 | 384053191 | 1 | 15.5 |
| 1029a | 32979 | 99254 | 1946 | 270 | 856 | 73 | 9.6 | 492193565 | 1 | 9.8 |
| 1030a | 12941 | 38558 | 1093 | 151 | 460 | 39 | 2.3 | 321646787 | 1 | 2.4 |
| cont. next page |  |  |  |  |  |  |  |  |  |  |


| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| 1031a | 21054 | 62820 | 1832 | 156 | 484 | 42 | 3.8 | 578284709 | 1 | 3.8 |
| 1032a | 21345 | 62706 | 2454 | 344 | 1058 | 90 | 5.7 | 773096651 | 1 | 6.7 |
| 1033a | 8500 | 25400 | 548 | 252 | 770 | 76 | 1.1 | 134461857 | 1 | 1.2 |
| 1034a | 9128 | 27336 | 606 | 142 | 412 | 48 | 1.2 | 165115148 | 1 | 1.2 |
| 1035a | 13129 | 38840 | 1428 | 118 | 352 | 47 | 2.9 | 414440370 | 1 | 3.3 |
| 1036a | 17036 | 50964 | 1258 | 318 | 984 | 74 | 5.4 | 375260864 | 1 | 6.0 |
| 1037a | 5886 | 17738 | 392 | 60 | 180 | 21 | 0.8 | 105720727 | 1 | 0.8 |
| 1038a | 7733 | 22956 | 798 | 693 | 2152 | 180 | 1.4 | 255767543 | 1 | 1.9 |
| 1039a | 3719 | 11066 | 306 | 34 | 104 | 10 | 0.4 | 85566290 | 1 | 0.4 |
| 1040a | 18837 | 56312 | 1501 | 165 | 512 | 49 | 5.9 | 431498867 | 1 | 6.0 |
| 1041a | 22466 | 67736 | 1014 | 92 | 272 | 36 | 3.0 | 301914840 | 1 | 3.0 |
| 1042a | 23925 | 71612 | 1923 | 116 | 346 | 34 | 5.7 | 532131412 | 1 | 5.9 |
| 1043a | 4511 | 13480 | 335 | 99 | 288 | 35 | 0.8 | 95722094 | 1 | 0.8 |
| 1044a | 31500 | 93514 | 2954 | 1327 | 4108 | 296 | 9.6 | 804532332 | 1 | 12.2 |
| 1045a | 6775 | 20454 | 378 | 83 | 244 | 26 | 0.4 | 105944062 | 1 | 0.4 |
| 1046a | 32376 | 96108 | 3154 | 163 | 482 | 50 | 9.9 | 925470052 | 1 | 11.5 |
| 1047a | 10622 | 30880 | 1791 | 1365 | 4126 | 392 | 8.2 | 695163406 | 1 | 9.1 |
| 1048a | 4920 | 14712 | 320 | 0 | 0 | 0 | 0.3 | 91509264 | 1 | 0.3 |
| 1049a | 15045 | 45426 | 821 | 157 | 460 | 51 | 2.3 | 294811505 | 1 | 2.4 |
| 1050a | 17787 | 52352 | 2232 | 3357 | 10250 | 902 | 10.0 | 792599114 | 1 | 18.3 |
| 1051a | 12130 | 35784 | 1337 | 146 | 440 | 43 | 4.2 | 357230839 | 1 | 5.1 |
| 1052a | 160 | 474 | 23 | 0 | 0 | 0 | 0.0 | 13309487 | 1 | 0.0 |
| 1053a | 693 | 2046 | 102 | 26 | 72 | 13 | 0.0 | 30854904 | 1 | 0.0 |
| 1054a | 540 | 1634 | 25 | 0 | 0 | 0 | 0.0 | 15841596 | 1 | 0.0 |
| 1055a | 4701 | 13958 | 483 | 100 | 284 | 45 | 0.6 | 144164924 | 1 | 0.6 |
| 1056a | 290 | 878 | 34 | 0 | 0 | 0 | 0.0 | 14171206 | 1 | 0.0 |
| 1057a | 13078 | 38736 | 1346 | 178 | 546 | 64 | 3.0 | 412746415 | 1 | 3.6 |
| 1058a | 7877 | 23314 | 997 | 156 | 494 | 39 | 0.9 | 305024188 | 1 | 1.0 |
| 1059a | 2800 | 8314 | 286 | 31 | 86 | 11 | 0.1 | 107617854 | 1 | 0.1 |
| 1060a | 18991 | 57072 | 1158 | 191 | 582 | 70 | 4.8 | 337290460 | 1 | 4.8 |
| 1061a | 20958 | 62930 | 1337 | 153 | 464 | 49 | 6.1 | 363042722 | 1 | 6.6 |
| 1062a | 23714 | 70610 | 2812 | 94 | 280 | 30 | 6.7 | 792941137 | 1 | 7.0 |
| 1063a | 9600 | 28084 | 1291 | 950 | 2898 | 255 | 3.4 | 459801704 | 1 | 4.1 |
| 1064a | 31712 | 93422 | 3182 | 6460 | 20152 | 1609 | 19.5 | 863103567 | 1 | 37.1 |
| 1065a | 1185 | 3512 | 119 | 62 | 194 | 26 | 0.2 | 32965718 | 1 | 0.2 |
| 1066a | 4551 | 13642 | 417 | 59 | 182 | 24 | 0.3 | 174219813 | 1 | 0.3 |
| 1067a | 10318 | 31176 | 579 | 407 | 1272 | 123 | 1.4 | 175540750 | 1 | 1.6 |
| 1068a | 12191 | 36046 | 1302 | 321 | 976 | 91 | 2.0 | 420730046 | 1 | 2.3 |
| 1069a | 3508 | 10312 | 452 | 269 | 844 | 73 | 0.7 | 135161583 | 1 | 0.9 |
| 1070a | 6739 | 20128 | 511 | 147 | 438 | 52 | 1.4 | 136700139 | 1 | 1.5 |
| 1071a | 12772 | 37772 | 1281 | 117 | 362 | 36 | 2.3 | 382539099 | 1 | 2.5 |
| 1072a | 11628 | 34822 | 851 | 92 | 268 | 38 | 1.1 | 289019226 | 1 | 1.1 |
| 1073a | 7510 | 21746 | 1337 | 1069 | 3244 | 324 | 2.8 | 663004987 | 1 | 3.3 |
| 1074a | 4441 | 13124 | 548 | 37 | 110 | 13 | 0.3 | 165573383 | 1 | 0.3 |
| 1075a | 23195 | 68724 | 2498 | 102 | 300 | 33 | 6.7 | 815404026 | 1 | 7.1 |
| 1076a | 4909 | 14536 | 498 | 20 | 54 | 11 | 0.6 | 166249692 | 1 | 0.6 |
| 1077a | 9153 | 26726 | 1490 | 3509 | 10388 | 880 | 4.4 | 472503150 | 1 | 11.8 |
| 1078a | 5864 | 17324 | 692 | 168 | 486 | 58 | 1.1 | 185525490 | 1 | 1.1 |
| 1079a | 7933 | 23614 | 497 | 732 | 2516 | 205 | 2.1 | 150506933 | 1 | 2.6 |
| 1080a | 7589 | 22512 | 499 | 307 | 950 | 92 | 1.1 | 164299652 | 1 | 1.2 |
| 1081a | 10747 | 32058 | 751 | 85 | 246 | 45 | 2.0 | 247527679 | 1 | 2.0 |
| 1082a | 5850 | 17386 | 435 | 29 | 82 | 14 | 0.7 | 147407632 | 1 | 0.7 |
| 1083a | 34221 | 100602 | 4138 | 326 | 1010 | 86 | 9.4 | 1405593860 | 1 | 10.8 |
| 1084a | 17050 | 50402 | 1918 | 1265 | 3922 | 306 | 4.3 | 627187559 | 1 | 6.2 |
| 1085a | 2780 | 8246 | 243 | 0 | 0 | 0 | 0.2 | 80628079 | 1 | 0.2 |

## B. 2 Maximum-weight connected subgraph problem

The time limit for the following instances is two hours.
Table B.17. Detailed computational results for MWCSP, test-set MWCS-ACTMOD.

|  | Original |  |  |  |  | Presolved |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| Instance | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\mathrm{t}[\mathrm{s}]$ | Optimum |  |  |  |
| drosophila001 | 5298 | 187214 | 72 | 3 | 6 | 2 | 0.2 | $\mathbf{2 4 . 3 8 5 5 0 6 4}$ |  |  |  |
| drosophila005 | 5421 | 187952 | 195 | 0 | 0 | 0 | 0.3 | $\mathbf{1 7 8 . 6 6 3 9 5 2}$ |  |  |  |
| drosophila0075 | 5477 | 188288 | 251 | 3 | 6 | 2 | 0.2 | $\mathbf{2 6 0 . 5 2 3 5 5 7}$ |  |  |  |
| HCMV | 3919 | 58916 | 56 | 3 | 6 | 2 | 0.1 | $\mathbf{7 . 5 5 4 3 1 4 8 6}$ |  |  |  |
|  | 0.2 |  |  |  |  |  |  |  |  |  |  |
| lymphoma | 2102 | 15914 | 68 | 3 | 6 | 2 | 0.0 | $\mathbf{7 0 . 1 6 6 3 0 8 7}$ |  |  |  |
| metabol_expr_mice_1 | 3674 | 9590 | 151 | 9 | 26 | 4 | 0.0 | $\mathbf{5 4 4 . 9 4 8 3 7}$ |  |  |  |
| metabol_expr_mice_2 | 3600 | 9174 | 86 | 3 | 6 | 2 | 0.0 | $\mathbf{2 4 1 . 0 7 7 5 2 4}$ |  |  |  |
| metabol_expr_mice_3 | 2968 | 7354 | 115 | 6 | 16 | 3 | 0.0 | $\mathbf{5 0 8 . 2 6 0 8 7 7}$ |  |  |  |

Table B.18. Detailed computational results for MWCSP, test-set MWCS-HANDB.

| Instance | Original |  |  | Presolved |  |  |  | Dual | Primal | Gap \% | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |  |  |
| handbd01 | 171596 | 687872 | 1796 | 33 | 108 | 12 | 2.5 | 728.9 | 63591 |  | 1 | 2.6 |
| handbd02 | 176996 | 720272 | 7196 | 1123 | 2624 | 436 | 8.9 | 296.4 | 6486 |  | 1 | 9.1 |
| handbd03 | 171946 | 689972 | 2146 | 3 | 6 | 2 | 0.6 | 135.0 | 70605 |  | 1 | 0.6 |
| handbd04 | 175099 | 708890 | 5299 | 1353 | 3290 | 462 | 6.9 | 1813 | 95916 |  | 1 | 7.0 |
| handbd05 | 172125 | 691046 | 2325 | 3 | 6 | 2 | 0.6 | 105.4 | 4688 |  | 1 | 0.6 |
| handbd06 | 176275 | 715946 | 6475 | 1715 | 4672 | 485 | 6.5 | 1528 | 76544 |  | 1 | 7.2 |
| handbd07 | 172641 | 694142 | 2841 | 3 | 6 | 2 | 0.7 | 77.8 | 1959 |  | 1 | 0.7 |
| handbd08 | 176911 | 719762 | 7111 | 919 | 2350 | 305 | 5.9 | 1368 | 16677 |  | 1 | 6.1 |
| handbd09 | 172409 | 692750 | 2609 | 3 | 6 | 2 | 0.7 | 62.7 | 1716 |  | 1 | 0.7 |
| handbd10 | 177713 | 724574 | 7913 | 225 | 754 | 74 | 3.7 | 1137 | 42973 |  | 1 | 3.8 |
| handbd11 | 172111 | 690962 | 2311 | 3 | 6 | 2 | 0.6 | 46.7 | 2533 |  | 1 | 0.6 |
| handbd12 | 178656 | 730232 | 8856 | 3 | 6 | 2 | 3.1 | 321.2 | 4744 |  | 1 | 3.1 |
| handbd13 | 172681 | 694382 | 2881 | 43367 | 170616 | 792 | 32.9 | 13.1776581 | 13.185228 | 0.1 | 1 | $>7200.3$ |
| handbd14 | 169950 | 677996 | 150 | 3 | 6 | 2 | 0.2 | 4379 | 10424 |  | 1 | 0.2 |
| handbi01 | 160177 | 642272 | 1777 | 17 | 52 | 7 | 0.7 | 1358 | 56338 |  | 1 | 0.7 |
| handbi02 | 165361 | 673376 | 6961 | 1055 | 2462 | 417 | 4.8 | 531.8 | 10883 |  | 1 | 5.0 |
| handbi03 | 160336 | 643226 | 1936 | 3 | 6 | 2 | 0.6 | 243.1 | 34201 |  | 1 | 0.6 |
| handbi04 | 163630 | 662990 | 5230 | 8267 | 28384 | 718 | 19.9 | 3202 | 18574 |  | 1 | 23.8 |
| handbi05 | 160691 | 645356 | 2291 | 3 | 6 | 2 | 0.6 | 184. | 7331 |  | 1 | 0.6 |
| handbi06 | 164158 | 666158 | 5758 | 3190 | 9982 | 493 | 8.1 | 2921 | 54472 |  | 1 | 9.0 |
| handbi07 | 160657 | 645152 | 2257 | 3 | 6 | 2 | 0.7 | 150.9 | 4258 |  | 1 | 0.7 |
| handbi08 | 165259 | 672764 | 6859 | 595 | 1480 | 211 | 4.4 | 2270 | 28462 |  | 1 | 4.6 |
| handbi09 | 160674 | 645254 | 2274 | 5 | 12 | 3 | 0.7 | 107.7 | 88806 |  | 1 | 0.7 |
| handbi10 | 166033 | 677408 | 7633 | 72 | 236 | 25 | 2.6 | 1874 | 29296 |  | 1 | 2.6 |
| handbi11 | 160843 | 646268 | 2443 | 3 | 6 | 2 | 0.6 | 68.9 | 4709 |  | 1 | 0.6 |
| handbi12 | 166538 | 680438 | 8138 | 3 | 6 | 2 | 1.3 | 138.2 | 7023 |  | 1 | 1.3 |
| handbi13 | 161089 | 647744 | 2689 | 98606 | 391402 | 1554 | 120.2 | 4.022194 | 4.250363 | 5.7 | 1 | $>7202.0$ |
| handbi14 | 166371 | 679436 | 7971 | 3 | 6 | 2 | 0.7 | 7881 | 76874 |  | 1 | 0.7 |

Table B.19. Detailed computational results for MWCSP, test-set MWCS-HANDS.

|  | Original |  |  |  |  | Presolved |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
| Instance | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\mathrm{t}[\mathrm{s}]$ | Optimum | N |  |  |
| handsi01 | 40033 | 160000 | 433 | 3 | 6 | 2 | 0.1 | $\mathbf{2 9 5 . 4 5 3 6 1 6}$ | 1 |  |  |
| handsi02 | 41304 | 167626 | 1704 | 321 | 1066 | 108 | 0.7 | $\mathbf{1 2 5 . 4 2 9 4 1 1}$ | 1 |  |  |
| handsi03 | 40220 | 161122 | 620 | 15 | 46 | 6 | 0.1 | $\mathbf{5 6 6 . 1 4 9 4 2 2}$ | 1 |  |  |
| handsi04 | 41030 | 165982 | 1430 | 474 | 1052 | 204 | 0.8 | $\mathbf{7 2 2 . 5 0 8 1 9 7}$ | 1 |  |  |
| handsi05 | 40188 | 160930 | 588 | 3 | 6 | 2 | 0.1 | $\mathbf{3 5 . 0 4 3 5 0 6}$ | 1 |  |  |
| handsi06 | 41513 | 168880 | 1913 | 182 | 604 | 61 | 0.5 | $\mathbf{4 5 2 . 9 5 3 6 2 1}$ | 1 |  |  |


| Instance | Original |  |  | Presolved |  |  |  | Optimum | N |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ |  | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\mathrm{t}[\mathrm{s}]$ |  |  | t [s] |
| handsi07 | 40203 | 161020 | 603 | 3 | 6 | 2 | 0.1 | 18.410135 | 1 | 0.1 |
| handsi08 | 41597 | 169384 | 1997 | 6 | 16 | 3 | 0.2 | 229.52993 | 1 | 0. |
| handsi09 | 40213 | 161080 | 613 | 3 | 6 | 2 | 0.3 | 5.962166 | 1 | 0. |
| handsi10 | 40966 | 165598 | 1366 | 1011 | 2642 | 428 | 1.1 | 1803.69751 | 1 | 1.6 |
| handsd01 | 43024 | 172088 | 524 | 3 | 6 | 2 | 0.1 | 171.636766 | 1 | 0. |
| handsd02 | 44084 | 178448 | 1584 | 691 | 1882 | 174 | 0.8 | 159.751395 | 1 | 1.0 |
| handsd03 | 43213 | 173222 | 713 | 3 | 6 | 2 | 0.1 | 31.306275 | 1 | 0.1 |
| handsd04 | 43842 | 176996 | 1342 | 507 | 1686 | 170 | 0.7 | 491.733164 | 1 | 0.8 |
| handsd05 | 43205 | 173174 | 705 | 3 | 6 | 2 | 0.1 | 21.937611 | 1 | 0. |
| handsd06 | 44477 | 180806 | 1977 | 326 | 1088 | 103 | 0.6 | 279.90313 | 1 | 0. |
| handsd07 | 43176 | 173000 | 676 | 3 | 6 | 2 | 0.1 | 11.80412 | 1 | 0. |
| handsd08 | 44624 | 181688 | 2124 | 30 | 96 | 11 | 0.3 | 143.237729 | 1 | 0.3 |
| handsd09 | 43183 | 173042 | 683 | 3 | 6 | 2 | 0.1 | 3.818683 | 1 | 0. |
| handsd10 | 42806 | 170780 | 306 | 3 | 6 | 2 | 0.1 | 1034.76736 | 1 | 0.1 |

Table B.20. Detailed computational results for MWCSP, test-set MWCS-JMPALMK.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| MWCS-I-D-n-10-0-a-0-6-d-0-25-e-0-25 | 1193 | 11024 | 193 | 3 | 6 | 2 | 0.0 | 931.538552 | 1 | 0.0 |
| MWCS-I-D-n-10-0-a-0-6-d-0-25-e-0-5 | 1388 | 12194 | 388 | 3 | 6 | 2 | 0.0 | 1872.2754 | 1 | 0.0 |
| MWCS-I-D-n-10-0-a-0-6-d-0-25-e-0-75 | 1564 | 13250 | 564 | 3 | 6 | 2 | 0.0 | 2789.57911 | 1 | 0.0 |
| MWCS-I-D-n-10-0-a-0-6-d-0-5-e-0-25 | 1114 | 10550 | 114 | 3 | 6 | 2 | 0.0 | 522.525615 | 1 | 0.0 |
| MWCS-I-D-n-10-0-a-0-6-d-0-5-e-0-5 | 1250 | 11366 | 250 | 3 | 6 | 2 | 0.0 | 1197.85102 | 1 | 0.0 |
| MWCS-I-D-n-10-0-a-0-6-d-0-5-e-0-75 | 1374 | 12110 | 374 | 3 | 6 | 2 | 0.0 | 1762.70747 | 1 | 0.0 |
| MWCS-I-D-n-10-0-a-0-6-d-0-75-e-0-25 | 1062 | 10238 | 62 | 3 | 6 | 2 | 0.0 | 332.791924 | 1 | 0.0 |
| MWCS-I-D-n-10-0-a-0-6-d-0-75-e-0-5 | 1141 | 10712 | 141 | 3 | 6 | 2 | 0.0 | 754.300601 | 1 | 0.0 |
| MWCS-I-D-n-10-0-a-0-6-d-0-75-e-0-75 | 1196 | 11042 | 196 | 3 | 6 | 2 | 0.0 | 998.215414 | 1 | 0.0 |
| MWCS-I-D-n-10-0-a-1-d-0-25-e-0-25 | 1193 | 27710 | 193 | 3 | 6 | 2 | 0.0 | 939.39337 | 1 | 0.0 |
| MWCS-I-D-n-10-0-a-1-d-0-25-e-0-5 | 1388 | 28880 | 388 | 3 | 6 | 2 | 0.0 | 1883.21361 | 1 | 0.0 |
| MWCS-I-D-n-10-0-a-1-d-0-25-e-0-75 | 1564 | 29936 | 564 | 3 | 6 | 2 | 0.0 | 2789.57911 | 1 | 0.0 |
| MWCS-I-D-n-10-0-a-1-d-0-5-e-0-25 | 1114 | 27236 | 114 | 3 | 6 | 2 | 0.0 | 533.4294 | 1 | 0.0 |
| MWCS-I-D-n-10-0-a-1-d-0-5-e-0-5 | 1250 | 28052 | 250 | 3 | 6 | 2 | 0.0 | 1205.42131 | 1 | 0.0 |
| MWCS-I-D-n-10-0-a-1-d-0-5-e-0-75 | 1374 | 28796 | 374 | 3 | 6 | 2 | 0.0 | 1770.27776 | 1 | 0.0 |
| MWCS-I-D-n-10-0-a-1-d-0-75-e-0-25 | 1062 | 26924 | 62 | 3 | 6 | 2 | 0.0 | 336.829944 | 1 | 0.0 |
| MWCS-I-D-n-10-0-a-1-d-0-75-e-0-5 | 1141 | 27398 | 141 | 3 | 6 | 2 | 0.0 | 760.284581 | 1 | 0.0 |
| MWCS-I-D-n-10-0-a-1-d-0-75-e-0-75 | 1196 | 27728 | 196 | 3 | 6 | 2 | 0.0 | 1004.19939 | 1 | 0.0 |
| MWCS-I-D-n-150-a-0-6-d-0-25-e-0-25 | 1785 | 17028 | 285 | 3 | 6 | 2 | 0.0 | 1333.47643 | 1 | 0.0 |
| MWCS-I-D-n-150-a-0-6-d-0-25-e-0-5 | 2078 | 18786 | 578 | 3 | 6 | 2 | 0.0 | 2799.67722 | 1 | 0.0 |
| MWCS-I-D-n-150-a-0-6-d-0-25-e-0-75 | 2353 | 20436 | 853 | 3 | 6 | 2 | 0.0 | 4230.25112 | 1 | 0.0 |
| MWCS-I-D-n-150-a-0-6-d-0-5-e-0-25 | 1680 | 16398 | 180 | 3 | 6 | 2 | 0.0 | 847.452011 | 1 | 0.0 |
| MWCS-I-D-n-150-a-0-6-d-0-5-e-0-5 | 1881 | 17604 | 381 | 3 | 6 | 2 | 0.0 | 1858.0926 | 1 | 0.0 |
| MWCS-I-D-n-150-a-0-6-d-0-5-e-0-75 | 2060 | 18678 | 560 | 3 | 6 | 2 | 0.0 | 2697.45876 | 1 | 0.0 |
| MWCS-I-D-n-150-a-0-6-d-0-75-e-0-25 | 1594 | 15882 | 94 | 3 | 6 | 2 | 0.0 | 502.17599 | 1 | 0.0 |
| MWCS-I-D-n-150-a-0-6-d-0-75-e-0-5 | 1705 | 16548 | 205 | 3 | 6 | 2 | 0.0 | 1089.77117 | 1 | 0.0 |
| MWCS-I-D-n-150-a-0-6-d-0-75-e-0-75 | 1779 | 16992 | 279 | 3 | 6 | 2 | 0.0 | 1423.61063 | 1 | 0.0 |
| MWCS-I-D-n-150-a-1-d-0-25-e-0-25 | 1785 | 42758 | 285 | 3 | 6 | 2 | 0.0 | 1377.0144 | 1 | 0.0 |
| MWCS-I-D-n-150-a-1-d-0-25-e-0-5 | 2078 | 44516 | 578 | 3 | 6 | 2 | 0.0 | 2820.05174 | 1 | 0.0 |
| MWCS-I-D-n-150-a-1-d-0-25-e-0-75 | 2353 | 46166 | 853 | 3 | 6 | 2 | 0.0 | 4230.25112 | 1 | 0.0 |
| MWCS-I-D-n-150-a-1-d-0-5-e-0-25 | 1680 | 42128 | 180 | 3 | 6 | 2 | 0.0 | 860.618961 | 1 | 0.0 |
| MWCS-I-D-n-150-a-1-d-0-5-e-0-5 | 1881 | 43334 | 381 | 3 | 6 | 2 | 0.0 | 1865.66289 | 1 | 0.0 |
| MWCS-I-D-n-150-a-1-d-0-5-e-0-75 | 2060 | 44408 | 560 | 3 | 6 | 2 | 0.0 | 2707.70001 | 1 | 0.0 |
| MWCS-I-D-n-150-a-1-d-0-75-e-0-25 | 1594 | 41612 | 94 | 3 | 6 | 2 | 0.0 | 502.17599 | 1 | 0.0 |
| MWCS-I-D-n-150-a-1-d-0-75-e-0-5 | 1705 | 42278 | 205 | 3 | 6 | 2 | 0.0 | 1089.77117 | 1 | 0.0 |
| MWCS-I-D-n-150-a-1-d-0-75-e-0-75 | 1779 | 42722 | 279 | 3 | 6 | 2 | 0.0 | 1423.61063 | 1 | 0.0 |
| MWCS-I-D-n-50-a-0-62-d-0-25-e-0-25 | 590 | 5728 | 90 | 3 | 6 | 2 | 0.0 | 460.577357 | 1 | 0.0 |
| MWCS-I-D-n-50-a-0-62-d-0-25-e-0-5 | 696 | 6364 | 196 | 3 | 6 | 2 | 0.0 | 992.967111 | 1 | 0.0 |
| MWCS-I-D-n-50-a-0-62-d-0-25-e-0-75 | 788 | 6916 | 288 | 3 | 6 | 2 | 0.0 | 1447.54452 | 1 | 0.0 |
| cont. next page |  |  |  |  |  |  |  |  |  |  |


| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| MWCS-I-D-n-50-a-0-62-d-0-5-e-0-25 | 556 | 5524 | 56 | 3 | 6 | 2 | 0.0 | 280.832378 | 1 | 0.0 |
| MWCS-I-D-n-50-a-0-62-d-0-5-e-0-5 | 629 | 5962 | 129 | 3 | 6 | 2 | 0.0 | 655.623217 | 1 | 0.0 |
| MWCS-I-D-n-50-a-0-62-d-0-5-e-0-75 | 696 | 6364 | 196 | 3 | 6 | 2 | 0.0 | 965.554694 | 1 | 0.0 |
| MWCS-I-D-n-50-a-0-62-d-0-75-e-0-25 | 531 | 5374 | 31 | 3 | 6 | 2 | 0.0 | 171.628785 | 1 | 0.0 |
| MWCS-I-D-n-50-a-0-62-d-0-75-e-0-5 | 566 | 5584 | 66 | 3 | 6 | 2 | 0.0 | 362.188212 | 1 | 0.0 |
| MWCS-I-D-n-50-a-0-62-d-0-75-e-0-75 | 593 | 5746 | 93 | 3 | 6 | 2 | 0.0 | 490.623986 | 1 | 0.0 |
| MWCS-I-D-n-50-a-1-d-0-25-e-0-25 | 590 | 13572 | 90 | 3 | 6 | 2 | 0.0 | 471.393285 | 1 | 0.0 |
| MWCS-I-D-n-50-a-1-d-0-25-e-0-5 | 696 | 14208 | 196 | 3 | 6 | 2 | 0.0 | 995.313181 | 1 | 0.0 |
| MWCS-I-D-n-50-a-1-d-0-25-e-0-75 | 788 | 14760 | 288 | 3 | 6 | 2 | 0.0 | 1447.54452 | 1 | 0.0 |
| MWCS-I-D-n-50-a-1-d-0-5-e-0-25 | 556 | 13368 | 56 | 3 | 6 | 2 | 0.0 | 286.920868 | 1 | 0.0 |
| MWCS-I-D-n-50-a-1-d-0-5-e-0-5 | 629 | 13806 | 129 | 3 | 6 | 2 | 0.0 | 661.711707 | 1 | 0.0 |
| MWCS-I-D-n-50-a-1-d-0-5-e-0-75 | 696 | 14208 | 196 | 3 | 6 | 2 | 0.0 | 965.554694 | 1 | 0.0 |
| MWCS-I-D-n-50-a-1-d-0-75-e-0-25 | 531 | 13218 | 31 | 3 | 6 | 2 | 0.0 | 171.628785 | 1 | 0.0 |
| MWCS-I-D-n-50-a-1-d-0-75-e-0-5 | 566 | 13428 | 66 | 3 | 6 | 2 | 0.0 | 362.188212 | 1 | 0.0 |
| MWCS-I-D-n-50-a-1-d-0-75-e-0-75 | 593 | 13590 | 93 | 3 | 6 | 2 | 0.0 | 490.623986 | 1 | 0.0 |
| MWCS-I-D-n-750-a-0-647-d-0-25-e-0-25 | 891 | 9278 | 141 | 3 | 6 | 2 | 0.0 | 702.644057 | 1 | 0.0 |
| MWCS-I-D-n-750-a-0-647-d-0-25-e-0-5 | 1041 | 10178 | 291 | 3 | 6 | 2 | 0.0 | 1419.77986 | 1 | 0.0 |
| MWCS-I-D-n-750-a-0-647-d-0-25-e-0-75 | 1176 | 10988 | 426 | 3 | 6 | 2 | 0.0 | 2116.58233 | 1 | 0.0 |
| MWCS-I-D-n-750-a-0-647-d-0-5-e-0-25 | 830 | 8912 | 80 | 3 | 6 | 2 | 0.0 | 403.177763 | 1 | 0.0 |
| MWCS-I-D-n-750-a-0-647-d-0-5-e-0-5 | 939 | 9566 | 189 | 3 | 6 | 2 | 0.0 | 946.129495 | 1 | 0.0 |
| MWCS-I-D-n-750-a-0-647-d-0-5-e-0-75 | 1036 | 10148 | 286 | 3 | 6 | 2 | 0.0 | 1382.77203 | 1 | 0.0 |
| MWCS-I-D-n-750-a-0-647-d-0-75-e-0-25 | 799 | 8726 | 49 | 3 | 6 | 2 | 0.0 | 266.983922 | 1 | 0.0 |
| MWCS-I-D-n-750-a-0-647-d-0-75-e-0-5 | 856 | 9068 | 106 | 3 | 6 | 2 | 0.0 | 580.407832 | 1 | 0.0 |
| MWCS-I-D-n-750-a-0-647-d-0-75-e-0-75 | 895 | 9302 | 145 | 3 | 6 | 2 | 0.0 | 764.156726 | 1 | 0.0 |
| MWCS-I-D-n-750-a-1-d-0-25-e-0-25 | 891 | 20484 | 141 | 3 | 6 | 2 | 0.0 | 708.143835 | 1 | 0.0 |
| MWCS-I-D-n-750-a-1-d-0-25-e-0-5 | 1041 | 21384 | 291 | 3 | 6 | 2 | 0.0 | 1426.44904 | 1 | 0.0 |
| MWCS-I-D-n-750-a-1-d-0-25-e-0-75 | 1176 | 22194 | 426 | 3 | 6 | 2 | 0.0 | 2116.58233 | 1 | 0.0 |
| MWCS-I-D-n-750-a-1-d-0-5-e-0-25 | 830 | 20118 | 80 | 3 | 6 | 2 | 0.0 | 403.177763 | 1 | 0.0 |
| MWCS-I-D-n-750-a-1-d-0-5-e-0-5 | 939 | 20772 | 189 | 3 | 6 | 2 | 0.0 | 946.129495 | 1 | 0.0 |
| MWCS-I-D-n-750-a-1-d-0-5-e-0-75 | 1036 | 21354 | 286 | 3 | 6 | 2 | 0.0 | 1382.77203 | 1 | 0.0 |
| MWCS-I-D-n-750-a-1-d-0-75-e-0-25 | 799 | 19932 | 49 | 3 | 6 | 2 | 0.0 | 266.983922 | 1 | 0.0 |
| MWCS-I-D-n-750-a-1-d-0-75-e-0-5 | 856 | 20274 | 106 | 3 | 6 | 2 | 0.0 | 580.407832 | 1 | 0.0 |
| MWCS-I-D-n-750-a-1-d-0-75-e-0-75 | 895 | 20508 | 145 | 3 | 6 | 2 | 0.0 | 764.156726 | 1 | 0.0 |

Table B.21. Detailed computational results for MWCSP, test-set MWCS-PUCNU.

| Instance | Original |  |  | Presolved |  |  |  | Dual | Primal | Gap \% | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |  |  |
| transformed_bip42nu | 1307 | 8600 | 107 | 991 | 7224 | 106 | 0.6 | 226 |  |  | 168 | 58.0 |
| transformed_bip52nu | 2303 | 16606 | 103 | 1819 | 14652 | 102 | 0.8 | 222 |  |  | 555 | 387.8 |
| transformed_bip62nu | 1303 | 20616 | 103 | 1199 | 20000 | 102 | 0.5 | 211.022467 | 214 | 1.4 | 4003 | $>7200.0$ |
| transformed_bipa2nu | 3439 | 36974 | 139 | 3281 | 36426 | 139 | 1.8 | 320.430498 | 327 | 2.1 | 1 | $>7200.0$ |
| transformed_bipe2nu | 576 | 10176 | 26 | 550 | 10026 | 25 | 0.1 | 53 |  |  | 7 | 35.8 |
| transformed_cc10-2nu | 1090 | 10630 | 66 | 981 | 9360 | 51 | 0.3 | 167 |  |  | 23 | 578.8 |
| transformed_cc11-2nu | 2174 | 23276 | 126 | 1970 | 20752 | 101 | 0.9 | 300.580262 | 304 | 1.1 | 94 | $>7200.1$ |
| transformed_cc12-2nu | 4323 | 50504 | 227 | 3923 | 45066 | 165 | 1.5 | 559.295815 | 564 | 0.8 | 19 | $>7200.1$ |
| transformed_cc3-10nu | 1019 | 27108 | 19 | 1007 | 16228 | 18 | 0.3 | 61 |  |  | 1 | 84.0 |
| transformed_cc3-11nu | 1366 | 40134 | 35 | 1347 | 23524 | 34 | 0.5 | 79 |  |  | 1 | 2.8 |
| transformed_cc3-12nu | 1769 | 57264 | 41 | 1739 | 32648 | 40 | 0.7 | 95 |  |  | 1 | 5.6 |
| transformed_cc3-4nu | 70 | 606 | 6 | 3 | 6 | 2 | 0.0 | 10 |  |  | 1 | 0.0 |
| transformed_cc3-5nu | 134 | 1548 | 9 | 3 | 6 | 2 | 0.0 | 17 |  |  | 1 | 0.0 |
| transformed_cc5-3nu | 257 | 2508 | 14 | 0 | 0 | 0 | 0.0 | 36 |  |  | 1 | 0.0 |
| transformed_cc6-2nu | 70 | 414 | 6 | 3 | 6 | 2 | 0.0 | 15 |  |  | 1 | 0.0 |
| transformed_cc6-3nu | 768 | 8964 | 39 | 701 | 7050 | 29 | 0.1 | 95 |  |  | 1 | 0.6 |
| transformed_cc7-3nu | 2303 | 31306 | 116 | 2108 | 25686 | 91 | 0.4 | 268.268191 | 270 | 0.6 | 58 | $>7201.9$ |
| transformed_cc9-2nu | 542 | 4782 | 30 | 0 | 0 | 0 | 0.1 | 83 |  |  | 1 | 0.1 |

Table B.22. Detailed computational results for MWCSP, test-set MWCS-SHINY.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | \|A| | $\|T\|$ | t [s] |  |  |  |
| 25e814a792c4 | 4186 | 13210 | 872 | 3 | 6 | 2 | 0.1 | 1083.30811 | 1 | 0.1 |
| 25e81700dead | 4186 | 13210 | 872 | 3 | 6 | 2 | 0.0 | 2527.27139 | 1 | 0.0 |
| 25e83661bc4 | 3350 | 8194 | 36 | 3 | 6 | 2 | 0.0 | 65.5501822 | 1 | 0.0 |
| 25e83d7dbeea | 3319 | 8008 | 5 | 3 | 6 | 2 | 0.0 | 11.0598178 | 1 | 0.0 |
| 25e857e14393 | 4186 | 13210 | 872 | 3 | 6 | 2 | 0.0 | 1660.33065 | 1 | 0.0 |
| 3a0d1335fe78 | 3555 | 7862 | 168 | 29 | 94 | 10 | 0.0 | 29.0905466 | 1 | 0.0 |
| 3a0d151a8ee0 | 3686 | 8314 | 230 | 9 | 26 | 4 | 0.0 | 9.51295927 | 1 | 0.0 |
| 3a0d17a83362 | 3357 | 7786 | 276 | 33 | 104 | 11 | 0.0 | 111.428553 | 1 | 0.0 |
| 3a0d1a1e31cf | 3302 | 8924 | 281 | 37 | 124 | 12 | 0.0 | 141.063702 | 1 | 0.0 |
| 3a0d2255a681 | 3754 | 8296 | 177 | 3 | 6 | 2 | 0.0 | 5.07786653 | 1 | 0.0 |
| 3a0d226a0a5c | 3259 | 7390 | 198 | 21 | 66 | 8 | 0.0 | 63.5028802 | 1 | 0.0 |
| 3a0d25c9a738 | 3552 | 7844 | 165 | 9 | 26 | 4 | 0.0 | 28.4732591 | 1 | 0.0 |
| 3a0d25f9bda3 | 3870 | 11056 | 809 | 12 | 36 | 5 | 0.0 | 119.083963 | 1 | 0.0 |
| 3a0d2875c8cf | 3517 | 7634 | 130 | 21 | 64 | 7 | 0.0 | 22.8385099 | 1 | 0.0 |
| 3a0d325af5cc | 3347 | 7402 | 157 | 27 | 86 | 9 | 0.0 | 37.0853611 | 1 | 0.0 |
| 3a0d32b18854 | 3214 | 7120 | 153 | 6 | 16 | 3 | 0.0 | 40.960459 | 1 | 0.0 |
| 3a0d33d2aa32 | 3905 | 9202 | 328 | 3 | 6 | 2 | 0.0 | 16.6661429 | 1 | 0.0 |
| 3 a 0 d 390 c 537 e | 286 | 722 | 54 | 3 | 6 | 2 | 0.0 | 38.6838961 | 1 | 0.0 |
| 3a0d435ee480 | 3657 | 8140 | 201 | 9 | 26 | 4 | 0.0 | 12.0074874 | 1 | 0.0 |
| 3a0d4427fe32 | 1955 | 4308 | 71 | 3 | 6 | 2 | 0.0 | 38.0000646 | 1 | 0.0 |
| 3 a 0 d 4 ccc 9 b 37 | 2754 | 6616 | 76 | 3 | 6 | 2 | 0.0 | 1162.91998 | 1 | 0.0 |
| 3a0d4dac5319 | 1955 | 4308 | 71 | 3 | 6 | 2 | 0.0 | 15.29986 | 1 | 0.0 |
| 3 a 0 d 52 ee 8185 | 3617 | 7900 | 161 | 3 | 6 | 2 | 0.0 | 5.02525142 | 1 | 0.0 |
| $3 \mathrm{a} 0 \mathrm{~d} 55 \mathrm{ddd0} 55$ | 3649 | 8092 | 193 | 3 | 6 | 2 | 0.0 | 5.32580928 | 1 | 0.0 |
| 3a0d568fbd87 | 3519 | 7646 | 132 | 21 | 64 | 7 | 0.0 | 24.8508763 | 1 | 0.0 |
| 3a0d5dc4a759 | 3615 | 7888 | 159 | 3 | 6 | 2 | 0.0 | 4.93513445 | 1 | 0.0 |
| 3a0d5e4aac27 | 3843 | 9256 | 387 | 17 | 52 | 7 | 0.0 | 18.2490709 | 1 | 0.0 |
| 3a0d5e4aac27x | 3843 | 9256 | 387 | 17 | 52 | 7 | 0.0 | 18.2490709 | 1 | 0.0 |
| 3a0d610beb4c | 3208 | 6812 | 107 | 15 | 46 | 6 | 0.0 | 66.8976568 | 1 | 0.0 |
| 3a0d6505353b | 3345 | 7906 | 284 | 3 | 6 | 2 | 0.0 | 79.3302586 | 1 | 0.0 |
| 3a0d6a21bbd5 | 3237 | 7258 | 176 | 29 | 94 | 10 | 0.0 | 53.9189217 | 1 | 0.0 |
| 3a0d6e97602a | 1955 | 4308 | 71 | 3 | 6 | 2 | 0.0 | 13.29986 | 1 | 0.0 |
| 3a0d724ffec9 | 1955 | 4308 | 71 | 3 | 6 | 2 | 0.0 | 6.32757816 | 1 | 0.0 |
| 3 a 0 d 73143 aeb | 3704 | 8160 | 168 | 9 | 26 | 4 | 0.0 | 10.8861513 | 1 | 0.0 |
| 3a0dff0eb70 | 1955 | 4308 | 71 | 3 | 6 | 2 | 0.0 | 19.5375417 | 1 | 0.0 |
| 48e7452da6ba | 3905 | 8232 | 77 | 3 | 6 | 2 | 0.0 | 406.044087 | 1 | 0.0 |
| 48e7526364af | 3091 | 7658 | 70 | 3 | 6 | 2 | 0.0 | 346.728578 | 1 | 0.0 |
| 48e76a6886bc | 3691 | 9282 | 50 | 3 | 6 | 2 | 0.0 | 37.561934 | 1 | 0.0 |
| 795313fd138b | 3259 | 8666 | 238 | 3 | 6 | 2 | 0.0 | 119.552962 | 1 | 0.0 |

## B. 3 Prize-collecting Steiner tree problem

The time limit for the following instances is two hours.
Table B.23. Detailed computational results for PCSTP, test-set PCSPG-ACTMOD.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| drosophila001 | 5298 | 187214 | 72 | 3 | 6 | 2 | 0.6 | 8273.98263 | 1 | 0.6 |
| drosophila005 | 5421 | 187952 | 195 | 199 | 934 | 65 | 0.7 | 8121.31358 | 1 | 0.8 |
| drosophila0075 | 5477 | 188288 | 251 | 0 | 0 | 0 | 0.5 | 8039.85946 | 1 | 0.5 |
| HCMV | 3919 | 58916 | 56 | 3 | 6 | 2 | 0.2 | 7371.53637 | 1 | 0.2 |
| lymphoma | 2102 | 15914 | 68 | 3 | 6 | 2 | 0.0 | 3341.89024 | 1 | 0.0 |
| metabol_expr_mice_1 | 3674 | 9590 | 151 | 3 | 6 | 2 | 0.0 | 11346.9272 | 1 | 0.0 |
| metabol_expr_mice_2 | 3600 | 9174 | 86 | 3 | 6 | 2 | 0.0 | 16250.2352 | 1 | 0.0 |
| metabol_expr_mice_3 | 2968 | 7354 | 115 | 3 | 6 | 2 | 0.0 | 16919.6204 | 1 | 0.0 |

Table B.24. Detailed computational results for PCSTP, test-set PCSPG-CRR.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | \| $A$ \| | $\|T\|$ | t [s] |  |  |  |
| C01-A | 505 | 1274 | 5 | 3 | 6 | 2 | 0.0 | 18 | 1 | 0.0 |
| C01-B | 506 | 1280 | 6 | 3 | 6 | 2 | 0.0 | 85 | 1 | 0.0 |
| C02-A | 509 | 1298 | 9 | 3 | 6 | 2 | 0.0 | 50 | 1 | 0.0 |
| C02-B | 511 | 1310 | 11 | 3 | 6 | 2 | 0.0 | 141 | 1 | 0.0 |
| C03-A | 552 | 1556 | 52 | 3 | 6 | 2 | 0.0 | 414 | 1 | 0.0 |
| C03-B | 584 | 1748 | 84 | 3 | 6 | 2 | 0.0 | 737 | 1 | 0.0 |
| C04-A | 570 | 1664 | 70 | 3 | 6 | 2 | 0.0 | 618 | 1 | 0.0 |
| C04-B | 621 | 1970 | 121 | 3 | 6 | 2 | 0.0 | 1063 | 1 | 0.0 |
| C05-A | 644 | 2108 | 144 | 3 | 6 | 2 | 0.0 | 1080 | 1 | 0.0 |
| C05-B | 740 | 2684 | 240 | 3 | 6 | 2 | 0.0 | 1528 | 1 | 0.0 |
| C06-A | 504 | 2018 | 4 | 3 | 6 | 2 | 0.0 | 18 | 1 | 0.0 |
| C06-B | 506 | 2030 | 6 | 3 | 6 | 2 | 0.0 | 55 | 1 | 0.0 |
| C07-A | 510 | 2054 | 10 | 3 | 6 | 2 | 0.0 | 50 | 1 | 0.0 |
| C07-B | 511 | 2060 | 11 | 3 | 6 | 2 | 0.0 | 102 | 1 | 0.0 |
| C08-A | 561 | 2360 | 61 | 3 | 6 | 2 | 0.0 | 361 | 1 | 0.0 |
| C08-B | 583 | 2492 | 83 | 3 | 6 | 2 | 0.0 | 500 | 1 | 0.0 |
| C09-A | 587 | 2516 | 87 | 3 | 6 | 2 | 0.0 | 533 | 1 | 0.0 |
| C09-B | 622 | 2726 | 122 | 3 | 6 | 2 | 0.0 | 694 | 1 | 0.0 |
| C10-A | 664 | 2978 | 164 | 3 | 6 | 2 | 0.0 | 859 | 1 | 0.0 |
| C10-B | 742 | 3446 | 242 | 3 | 6 | 2 | 0.0 | 1069 | 1 | 0.0 |
| C11-A | 505 | 5024 | 5 | 3 | 6 | 2 | 0.0 | 18 | 1 | 0.0 |
| C11-B | 506 | 5030 | 6 | 3 | 6 | 2 | 0.0 | 32 | 1 | 0.0 |
| C12-A | 510 | 5054 | 10 | 3 | 6 | 2 | 0.0 | 38 | 1 | 0.0 |
| C12-B | 511 | 5060 | 11 | 3 | 6 | 2 | 0.1 | 46 | 1 | 0.1 |
| C13-A | 572 | 5426 | 72 | 3 | 6 | 2 | 0.0 | 236 | 1 | 0.0 |
| C13-B | 584 | 5498 | 84 | 3 | 6 | 2 | 0.0 | 258 | 1 | 0.0 |
| C14-A | 603 | 5612 | 103 | 3 | 6 | 2 | 0.0 | 293 | 1 | 0.0 |
| C14-B | 623 | 5732 | 123 | 3 | 6 | 2 | 0.0 | 318 | 1 | 0.0 |
| C15-A | 705 | 6224 | 205 | 3 | 6 | 2 | 0.0 | 501 | 1 | 0.0 |
| C15-B | 748 | 6482 | 248 | 3 | 6 | 2 | 0.0 | 551 | 1 | 0.0 |
| C16-A | 506 | 25030 | 6 | 3 | 6 | 2 | 0.1 | 11 | 1 | 0.1 |
| C16-B | 506 | 25030 | 6 | 3 | 6 | 2 | 0.1 | 11 | 1 | 0.1 |
| C17-A | 511 | 25060 | 11 | 3 | 6 | 2 | 0.1 | 18 | 1 | 0.1 |
| C17-B | 511 | 25060 | 11 | 3 | 6 | 2 | 0.1 | 18 | 1 | 0.1 |
| C18-A | 577 | 25456 | 77 | 114 | 438 | 40 | 0.3 | 111 | 1 | 0.3 |
| C18-B | 584 | 25498 | 84 | 184 | 820 | 46 | 0.3 | 113 | 1 | 0.3 |
| C19-A | 611 | 25660 | 111 | 3 | 6 | 2 | 0.0 | 146 | 1 | 0.0 |
|  |  |  |  |  |  |  |  | cont. next page |  |  |


| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| C19-B | 625 | 25744 | 125 | 3 | 6 | 2 | 0.0 | 146 | 1 | 0.0 |
| C20-A | 718 | 26302 | 218 | 3 | 6 | 2 | 0.0 | 266 | 1 | 0.0 |
| C20-B | 748 | 26482 | 248 | 3 | 6 | 2 | 0.0 | 267 | 1 | 0.0 |
| D01-A | 1003 | 2512 | 3 | 3 | 6 | 2 | 0.0 | 18 | 1 | 0.0 |
| D01-B | 1006 | 2530 | 6 | 3 | 6 | 2 | 0.0 | 106 | 1 | 0.0 |
| D02-A | 1009 | 2548 | 9 | 3 | 6 | 2 | 0.0 | 50 | 1 | 0.0 |
| D02-B | 1011 | 2560 | 11 | 3 | 6 | 2 | 0.0 | 218 | 1 | 0.0 |
| D03-A | 1096 | 3070 | 96 | 3 | 6 | 2 | 0.0 | 807 | 1 | 0.0 |
| D03-B | 1157 | 3436 | 157 | 3 | 6 | 2 | 0.0 | 1509 | 1 | 0.0 |
| D04-A | 1141 | 3340 | 141 | 3 | 6 | 2 | 0.0 | 1203 | 1 | 0.0 |
| D04-B | 1238 | 3922 | 238 | 3 | 6 | 2 | 0.0 | 1881 | 1 | 0.0 |
| D05-A | 1277 | 4156 | 277 | 3 | 6 | 2 | 0.0 | 2157 | 1 | 0.0 |
| D05-B | 1479 | 5368 | 479 | 3 | 6 | 2 | 0.0 | 3135 | 1 | 0.0 |
| D06-A | 1005 | 4024 | 5 | 3 | 6 | 2 | 0.0 | 18 | 1 | 0.0 |
| D06-B | 1006 | 4030 | 6 | 3 | 6 | 2 | 0.1 | 67 | 1 | 0.1 |
| D07-A | 1010 | 4054 | 10 | 3 | 6 | 2 | 0.0 | 50 | 1 | 0.0 |
| D07-B | 1011 | 4060 | 11 | 3 | 6 | 2 | 0.1 | 103 | 1 | 0.1 |
| D08-A | 1109 | 4648 | 109 | 3 | 6 | 2 | 0.0 | 755 | 1 | 0.0 |
| D08-B | 1160 | 4954 | 160 | 3 | 6 | 2 | 0.0 | 1036 | 1 | 0.0 |
| D09-A | 1165 | 4984 | 165 | 3 | 6 | 2 | 0.0 | 1070 | 1 | 0.0 |
| D09-B | 1245 | 5464 | 245 | 3 | 6 | 2 | 0.0 | 1420 | 1 | 0.0 |
| D10-A | 1345 | 6064 | 345 | 3 | 6 | 2 | 0.0 | 1671 | 1 | 0.0 |
| D10-B | 1486 | 6910 | 486 | 3 | 6 | 2 | 0.0 | 2079 | 1 | 0.0 |
| D11-A | 1006 | 10030 | 6 | 3 | 6 | 2 | 0.0 | 18 | 1 | 0.0 |
| D11-B | 1006 | 10030 | 6 | 3 | 6 | 2 | 0.0 | 29 | 1 | 0.0 |
| D12-A | 1011 | 10060 | 11 | 3 | 6 | 2 | 0.1 | 42 | 1 | 0.1 |
| D12-B | 1011 | 10060 | 11 | 3 | 6 | 2 | 0.1 | 42 | 1 | 0.1 |
| D13-A | 1137 | 10816 | 137 | 3 | 6 | 2 | 0.1 | 445 | 1 | 0.1 |
| D13-B | 1164 | 10978 | 164 | 3 | 6 | 2 | 0.0 | 486 | 1 | 0.0 |
| D14-A | 1206 | 11230 | 206 | 3 | 6 | 2 | 0.0 | 602 | 1 | 0.0 |
| D14-B | 1246 | 11470 | 246 | 3 | 6 | 2 | 0.0 | 665 | 1 | 0.0 |
| D15-A | 1404 | 12418 | 404 | 3 | 6 | 2 | 0.0 | 1042 | 1 | 0.0 |
| D15-B | 1490 | 12934 | 490 | 3 | 6 | 2 | 0.0 | 1108 | 1 | 0.0 |
| D16-A | 1006 | 50030 | 6 | 3 | 6 | 2 | 0.1 | 13 | 1 | 0.1 |
| D16-B | 1006 | 50030 | 6 | 3 | 6 | 2 | 0.1 | 13 | 1 | 0.1 |
| D17-A | 1011 | 50060 | 11 | 3 | 6 | 2 | 0.2 | 23 | 1 | 0.2 |
| D17-B | 1011 | 50060 | 11 | 3 | 6 | 2 | 0.2 | 23 | 1 | 0.2 |
| D18-A | 1145 | 50864 | 145 | 293 | 1324 | 79 | 0.6 | 218 | 1 | 0.7 |
| D18-B | 1165 | 50984 | 165 | 0 | 0 | 0 | 0.5 | 223 | 1 | 0.5 |
| D19-A | 1219 | 51308 | 219 | 3 | 6 | 2 | 0.1 | 306 | 1 | 0.1 |
| D19-B | 1248 | 51482 | 248 | 290 | 1300 | 83 | 0.3 | 310 | 1 | 0.3 |
| D20-A | 1437 | 52616 | 437 | 3 | 6 | 2 | 0.1 | 536 | 1 | 0.1 |
| D20-B | 1495 | 52964 | 495 | 3 | 6 | 2 | 0.1 | 537 | 1 | 0.1 |

Table B.25. Detailed computational results for PCSTP, test-set PCSPG-E.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| e01-A | 2503 | 6262 | 3 | 3 | 6 | 2 | 0.0 | 13 | 1 | 0.0 |
| e01-B | 2506 | 6280 | 6 | 3 | 6 | 2 | 0.0 | 109 | 1 | 0.0 |
| e02-A | 2506 | 6280 | 6 | 3 | 6 | 2 | 0.0 | 30 | 1 | 0.0 |
| e02-B | 2511 | 6310 | 11 | 3 | 6 | 2 | 0.1 | 170 | 1 | 0.1 |
| e03-A | 2757 | 7786 | 257 | 3 | 6 | 2 | 0.0 | 2231 | 1 | 0.0 |
| e03-B | 2898 | 8632 | 398 | 3 | 6 | 2 | 0.0 | 3806 | 1 | 0.0 |
| e04-A | 2885 | 8554 | 385 | 3 | 6 | 2 | 0.0 | 3151 | 1 | 0.0 |
| e04-B | 3092 | 9796 | 592 | 3 | 6 | 2 | 0.0 | 4888 | 1 | 0.0 |
| e05-A | 3272 | 10876 | 772 | 3 | 6 | 2 | 0.0 | 5657 | 1 | 0.0 |
| e05-B | 3711 | 13510 | 1211 | 3 | 6 | 2 | 0.0 | 7998 | 1 | 0.0 |
| e06-A | 2505 | 10024 | 5 | 3 | 6 | 2 | 0.0 | 19 | 1 | 0.0 |
| e06-B | 2506 | 10030 | 6 | 3 | 6 | 2 | 0.0 | 70 | 1 | 0.0 |
| e07-A | 2506 | 10030 | 6 | 3 | 6 | 2 | 0.0 | 40 | 1 | 0.0 |
| cont. next page |  |  |  |  |  |  |  |  |  |  |


| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| e07-B | 2511 | 10060 | 11 | 3 | 6 | 2 | 0.2 | 136 | 1 | 0.2 |
| e08-A | 2794 | 11758 | 294 | 0 | 0 | 0 | 0.1 | 1878 | 1 | 0.1 |
| e08-B | 2905 | 12424 | 405 | 3 | 6 | 2 | 0.1 | 2555 | 1 | 0.1 |
| e09-A | 2941 | 12640 | 441 | 3 | 6 | 2 | 0.1 | 2787 | 1 | 0.1 |
| e09-B | 3103 | 13612 | 603 | 3 | 6 | 2 | 0.1 | 3541 | 1 | 0.1 |
| e10-A | 3401 | 15400 | 901 | 3 | 6 | 2 | 0.1 | 4586 | 1 | 0.1 |
| e10-B | 3709 | 17248 | 1209 | 3 | 6 | 2 | 0.1 | 5502 | 1 | 0.1 |
| e11-A | 2505 | 25024 | 5 | 3 | 6 | 2 | 0.1 | 21 | 1 | 0.1 |
| e11-B | 2506 | 25030 | 6 | 3 | 6 | 2 | 0.1 | 34 | 1 | 0.1 |
| e12-A | 2510 | 25054 | 10 | 3 | 6 | 2 | 0.2 | 49 | 1 | 0.2 |
| e12-B | 2511 | 25060 | 11 | 3 | 6 | 2 | 0.7 | 67 | 1 | 0.7 |
| e13-A | 2857 | 27136 | 357 | 3 | 6 | 2 | 0.4 | 1169 | 1 | 0.5 |
| e13-B | 2911 | 27460 | 411 | 34 | 106 | 19 | 1.2 | 1269 | 1 | 2.3 |
| e14-A | 3016 | 28090 | 516 | 3 | 6 | 2 | 0.1 | 1579 | 1 | 0.1 |
| e14-B | 3118 | 28702 | 618 | 3 | 6 | 2 | 0.2 | 1716 | 1 | 0.2 |
| e15-A | 3553 | 31312 | 1053 | 3 | 6 | 2 | 0.1 | 2610 | 1 | 0.1 |
| e15-B | 3736 | 32410 | 1236 | 3 | 6 | 2 | 0.1 | 2767 | 1 | 0.1 |
| e16-A | 2506 | 125030 | 6 | 3 | 6 | 2 | 0.3 | 15 | 1 | 0.3 |
| e16-B | 2506 | 125030 | 6 | 3 | 6 | 2 | 0.3 | 15 | 1 | 0.3 |
| e17-A | 2511 | 125060 | 11 | 3 | 6 | 2 | 0.9 | 25 | 1 | 0.9 |
| e17-B | 2511 | 125060 | 11 | 3 | 6 | 2 | 0.9 | 25 | 1 | 1.0 |
| e18-A | 2872 | 127226 | 372 | 2080 | 11800 | 229 | 4.2 | 555 | 7 | 22.5 |
| e18-B | 2917 | 127496 | 417 | 2023 | 11196 | 245 | 2.7 | 564 | 8 | 21.7 |
| e19-A | 3058 | 128342 | 558 | 0 | 0 | 0 | 0.8 | 747 | 1 | 0.8 |
| e19-B | 3121 | 128720 | 621 | 669 | 3092 | 146 | 1.5 | 758 | 1 | 1.8 |
| e20-A | 3619 | 131708 | 1119 | 3 | 6 | 2 | 0.3 | 1331 | 1 | 0.3 |
| e20-B | 3743 | 132452 | 1243 | 3 | 6 | 2 | 0.3 | 1342 | 1 | 0.3 |

Table B.26. Detailed computational results for PCSTP, test-set PCSPG-H2.

| Instance | Original |  |  | Presolved |  |  |  | Dual | Primal | Gap \% | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |  |  |
| hc10p2 | 1531 | 13276 | 507 | 1452 | 11952 | 506 | 5.1 | 58914.488 | 59799 | 1.5 | 5781 | $>7200.0$ |
| hc10u2 | 1203 | 11308 | 179 | 1024 | 10240 | 178 | 4.0 | 375.958261 | 380 | 1.1 | 4120 | $>7200.0$ |
| hc11p2 | 3063 | 28612 | 1015 | 2916 | 26000 | 1014 | 17.0 | 116909.439 | 119051 | 1.8 | 1791 | $>7200.0$ |
| hc11u2 | 2398 | 24622 | 350 | 2048 | 22528 | 349 | 9.1 | 742.747344 | 755 | 1.6 | 1 | $>7200.0$ |
| hc12p2 | 6126 | 61326 | 2030 | 6126 | 61326 | 2030 | 37.0 | 232156.555 | 237133 | 2.1 | 282 | $>7200.0$ |
| hc12u2 | 4798 | 53358 | 702 | 4798 | 53358 | 702 | 9.7 | 1475.40845 | 1502 | 1.8 | 1 | $>7200.2$ |
| hc6p2 | 97 | 576 | 33 | 93 | 500 | 32 | 0.0 | 3923 |  |  | 13909 | 63.2 |
| hc6u2 | 74 | 438 | 10 | 0 | 0 | 0 | 0.0 | 20 |  |  | 1 | 0.0 |
| hc7p2 | 192 | 1274 | 64 | 183 | 1116 | 63 | 0.2 | 7638.82886 | 7711 | 0.9 | 422469 | $>7200.0$ |
| hc7u2 | 151 | 1028 | 23 | 99 | 530 | 22 | 0.2 | 47 |  |  | 3 | 0.3 |
| hc8p2 | 384 | 2810 | 128 | 368 | 2496 | 127 | 0.6 | 15046.4656 | 15231 | 1.2 | 78732 | $>7200.0$ |
| hc8u2 | 297 | 2288 | 41 | 256 | 2032 | 40 | 0.5 | 97 |  |  | 7 | 18.8 |
| hc9p2 | 766 | 6126 | 254 | 727 | 5468 | 253 | 1.5 | 29799.6858 | 30233 | 1.5 | 22759 | $>7200.0$ |
| hc9u2 | 595 | 5100 | 83 | 512 | 4596 | 82 | 1.6 | 190 |  |  | 5366 | 2601.4 |

Table B.27. Detailed computational results for PCSTP, test-set PCSPG-HANDB.

|  |  | Original |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instance | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | \| $A$ \| | $\|T\|$ | t [s] | Dual | Primal | Gap \% | N | t [s] |
| handbi01 | 160177 | 642272 | 1777 | 3 | 6 | 2 | 1.4 | 135 | 56338 |  | 1 | 1.4 |
| handbi02 | 165361 | 673376 | 6961 | 0 | 0 | 0 | 5.0 | 531 | 0883 |  | 1 | 5.1 |
| handbi03 | 160336 | 643226 | 1936 | 3 | 6 | 2 | 1.1 | 243 | 34201 |  | 1 | 1.1 |
| handbi04 | 163630 | 662990 | 5230 | 63 | 214 | 30 | 9.8 | 320 | 8574 |  | 1 | 9.8 |
| handbi05 | 160691 | 645356 | 2291 | 3 | 6 | 2 | 1.0 | 184 | 67331 |  | 1 | 1.0 |
| handbi06 | 164158 | 666158 | 5758 | 0 | 0 | 0 | 6.8 | 292 | 55784 |  | 1 | 6.8 |
| handbi07 | 160657 | 645152 | 2257 | 0 | 0 | 0 | 1.4 | 150 | 4258 |  | 1 | 1.4 |
| handbi08 | 165259 | 672764 | 6859 | 0 | 0 | 0 | 4.5 | 227 | 28462 |  | 1 | 4.5 |
| cont. next page |  |  |  |  |  |  |  |  |  |  |  |  |


| Instance | Original |  |  | Presolved |  |  |  | Dual | Primal | Gap \% | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | \| $A \mid$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |  |  |
| handbi09 | 160674 | 645254 | 2274 | 0 | 0 | 0 | 1.3 | 107.7 | 88806 |  | 1 | 1.3 |
| handbi10 | 166033 | 677408 | 7633 | 3 | 6 | 2 | 2.6 | 1874 | 29296 |  | 1 | 2.6 |
| handbi11 | 160843 | 646268 | 2443 | 3 | 6 | 2 | 1.0 | 68.9 | 4709 |  | 1 | 1.0 |
| handbi12 | 166538 | 680438 | 8138 | 3 | 6 | 2 | 1.6 | 138.2 | 7023 |  | 1 | 1.6 |
| handbi13 | 161089 | 647744 | 2689 | 105707 | 422142 | 1724 | 112.6 | 3.748109 | 4.249969 | 13.4 | 1 | $>7201.3$ |
| handbi14 | 166371 | 679436 | 7971 | 3 | 6 | 2 | 1.5 | 7881 | 76874 |  | 1 | 1.5 |
| handbd01 | 171596 | 687872 | 1796 | 3 | 6 | 2 | 2.9 | 728.9 | 63591 |  | 1 | 2.9 |
| handbd02 | 176996 | 720272 | 7196 | 3 | 6 | 2 | 5.6 | 296.4 | 6486 |  | 1 | 5.6 |
| handbd03 | 171946 | 689972 | 2146 | 3 | 6 | 2 | 1.2 | 135.0 | 0605 |  | 1 | 1.2 |
| handbd04 | 175099 | 708890 | 5299 | 0 | 0 | 0 | 5.0 | 1813 | 95916 |  | 1 | 5.1 |
| handbd05 | 172125 | 691046 | 2325 | 3 | 6 | 2 | 1.1 | 105.4 | 4688 |  | 1 | 1.1 |
| handbd06 | 176275 | 715946 | 6475 | 0 | 0 | 0 | 6.6 | 1528 | 76544 |  | 1 | 6.7 |
| handbd07 | 172641 | 694142 | 2841 | 3 | 6 | 2 | 1.1 | 77.8 | 1959 |  | 1 | 1.1 |
| handbd08 | 176911 | 719762 | 7111 | 0 | 0 | 0 | 5.9 | 1368 | 6677 |  | 1 | 5.9 |
| handbd09 | 172409 | 692750 | 2609 | 3 | 6 | 2 | 1.1 | 62.7 | 716 |  | 1 | 1.2 |
| handbd10 | 177713 | 724574 | 7913 | 3 | 6 | 2 | 3.6 | 1137 | 42973 |  | 1 | 3.6 |
| handbd11 | 172111 | 690962 | 2311 | 3 | 6 | 2 | 1.1 | 46.7 | 2533 |  | 1 | 1.1 |
| handbd12 | 178656 | 730232 | 8856 | 3 | 6 | 2 | 3.1 | 321.2 | 4744 |  | 1 | 3.1 |
| handbd13 | 172681 | 694382 | 2881 | 33638 | 134186 | 699 | 29.7 | 13.1777737 | 13.185068 | 0.1 | 1 | $>7200.3$ |
| handbd14 | 169950 | 677996 | 150 | 3 | 6 | 2 | 0.9 | 4379 | 0424 |  | 1 | 0.9 |

Table B.28. Detailed computational results for PCSTP, test-set PCSPG-HANDS.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| handsd01 | 43024 | 172088 | 524 | 3 | 6 | 2 | 0.2 | 171.636766 | 1 | 0.2 |
| handsd02 | 44084 | 178448 | 1584 | 0 | 0 | 0 | 0.8 | 159.751395 | 1 | 0.8 |
| handsd03 | 43213 | 173222 | 713 | 3 | 6 | 2 | 0.2 | 31.306275 | 1 | 0.2 |
| handsd04 | 43842 | 176996 | 1342 | 3 | 6 | 2 | 0.7 | 491.733164 | 1 | 0.7 |
| handsd05 | 43205 | 173174 | 705 | 3 | 6 | 2 | 0.2 | 21.937611 | 1 | 0.2 |
| handsd06 | 44477 | 180806 | 1977 | 3 | 6 | 2 | 0.6 | 279.90313 | 1 | 0.6 |
| handsd07 | 43176 | 173000 | 676 | 3 | 6 | 2 | 0.2 | 11.80412 | 1 | 0.2 |
| handsd08 | 44624 | 181688 | 2124 | 3 | 6 | 2 | 0.7 | 143.237729 | 1 | 0.7 |
| handsd09 | 43183 | 173042 | 683 | 3 | 6 | 2 | 0.4 | 3.818683 | 1 | 0.4 |
| handsd10 | 42806 | 170780 | 306 | 3 | 6 | 2 | 0.2 | 1034.76736 | 1 | 0.2 |
| handsi01 | 40033 | 160000 | 433 | 3 | 6 | 2 | 0.2 | 295.453616 | 1 | 0.2 |
| handsi02 | 41304 | 167626 | 1704 | 3 | 6 | 2 | 0.5 | 125.429411 | 1 | 0.5 |
| handsi03 | 40220 | 161122 | 620 | 3 | 6 | 2 | 0.2 | 56.149422 | 1 | 0.2 |
| handsi04 | 41030 | 165982 | 1430 | 3 | 6 | 2 | 0.7 | 722.508197 | 1 | 0.7 |
| handsi05 | 40188 | 160930 | 588 | 3 | 6 | 2 | 0.2 | 35.043506 | 1 | 0.2 |
| handsi06 | 41513 | 168880 | 1913 | 0 | 0 | 0 | 0.6 | 452.953621 | 1 | 0.6 |
| handsi07 | 40203 | 161020 | 603 | 3 | 6 | 2 | 0.2 | 18.410135 | 1 | 0.2 |
| handsi08 | 41597 | 169384 | 1997 | 3 | 6 | 2 | 0.3 | 229.52993 | 1 | 0.3 |
| handsi09 | 40213 | 161080 | 613 | 3 | 6 | 2 | 0.3 | 5.962166 | 1 | 0.3 |
| handsi10 | 40966 | 165598 | 1366 | 333 | 1010 | 160 | 1.5 | 1803.69751 | 1 | 1.5 |

Table B.29. Detailed computational results for PCSTP, test-set PCSPG-PUCNU.

| Instance | Original |  |  | Presolved |  |  |  | Dual | Primal | Gap \% | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |  |  |
| bip42nu | 1307 | 8600 | 107 | 989 | 7216 | 106 | 1.9 | 226 |  |  | 1490 | 327.5 |
| bip52nu | 2303 | 16606 | 103 | 1818 | 14646 | 102 | 1.7 | 222 |  |  | 440 | 362.7 |
| bip62nu | 1303 | 20616 | 103 | 1199 | 20000 | 102 | 2.6 | 210.941435 | 214 | 1.4 | 3306 | $>7200.0$ |
| bipa2nu | 3439 | 36974 | 139 | 3279 | 36418 | 139 | 2.8 | 320.429805 | 326 | 1.7 | 1 | $>7200.0$ |
| bipe2nu | 576 | 10176 | 26 | 550 | 10026 | 25 | 0.7 | 53 |  |  | 13 | 16.2 |
| cc10-2nu | 1090 | 10630 | 66 | 981 | 9360 | 51 | 1.4 | 167 |  |  | 33 | 463.8 |
| cc11-2nu | 2174 | 23276 | 126 | 1970 | 20752 | 101 | 5.4 | 300.589765 | 304 | 1.1 | 234 | $>7200.0$ |
| cc12-2nu | 4323 | 50504 | 227 | 3923 | 45066 | 165 | 8.4 | 559.264693 | 563 | 0.7 | 99 | $>7200.1$ |
| cc3-10nu | 1019 | 27108 | 19 | 1007 | 16228 | 18 | 3.2 | 61 |  |  | 1 | 57.1 |
|  |  |  |  |  |  |  |  |  |  |  | cont. | ext page |


| Instance | Original |  |  | Presolved |  |  |  | Dual | Primal | Gap \% | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |  |  |
| cc3-11nu | 1366 | 40134 | 35 | 1331 | 23460 | 34 | 6.5 | 79 |  |  | 1 | 11.7 |
| cc3-12nu | 1769 | 57264 | 41 | 1739 | 32648 | 40 | 9.0 | 95 |  |  | 1 | 16.9 |
| cc3-4nu | 70 | 606 | 6 | 3 | 6 | 2 | 0.0 | 10 |  |  | 1 | 0.0 |
| cc3-5nu | 134 | 1548 | 9 | 3 | 6 | 2 | 0.0 | 17 |  |  | 1 | 0.0 |
| cc5-3nu | 257 | 2508 | 14 | 3 | 6 | 2 | 0.0 | 36 |  |  | 1 | 0.0 |
| cc6-2nu | 70 | 414 | 6 | 3 | 6 | 2 | 0.0 | 15 |  |  | 1 | 0.0 |
| cc6-3nu | 768 | 8964 | 39 | 606 | 4938 | 29 | 1.4 | 95 |  |  | 1 | 1.9 |
| cc7-3nu | 2303 | 31306 | 116 | 2108 | 25686 | 91 | 3.5 | 268.232062 | 270 | 0.7 | 207 | $>7200.1$ |
| cc9-2nu | 542 | 4782 | 30 | 385 | 2428 | 27 | 0.4 | 83 |  |  | 1 | 0.6 |

Table B.30. Detailed computational results for PCSTP, test-set PCSPG-Random.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \|V| | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| a0200RandGraph12 | 234 | 3470 | 34 | 3 | 6 | 2 | 0.0 | 122.214525 | 1 | 0.0 |
| a0200RandGraph15 | 277 | 3606 | 77 | 3 | 6 | 2 | 0.0 | 141.877157 | 1 | 0.0 |
| a0200RandGraph2 | 317 | 3906 | 117 | 3 | 6 | 2 | 0.0 | 157.017004 | 1 | 0.0 |
| a0200RandGraph3 | 343 | 4084 | 143 | 3 | 6 | 2 | 0.0 | 170.286354 | 1 | 0.0 |
| a0400RandGraph12 | 464 | 6766 | 64 | 3 | 6 | 2 | 0.0 | 234.981814 | 1 | 0.0 |
| a0400RandGraph15 | 547 | 7338 | 147 | 3 | 6 | 2 | 0.0 | 272.87495 | 1 | 0.0 |
| a0400RandGraph2 | 591 | 7724 | 191 | 3 | 6 | 2 | 0.0 | 300.920525 | 1 | 0.0 |
| a0400RandGraph3 | 667 | 8040 | 267 | 3 | 6 | 2 | 0.0 | 337.596008 | 1 | 0.0 |
| a0600RandGraph12 | 708 | 10284 | 108 | 3 | 6 | 2 | 0.0 | 360.393503 | 1 | 0.0 |
| a0600RandGraph15 | 811 | 10950 | 211 | 3 | 6 | 2 | 0.0 | 407.632071 | 1 | 0.0 |
| a0600RandGraph2 | 900 | 11456 | 300 | 3 | 6 | 2 | 0.0 | 460.016305 | 1 | 0.0 |
| a0600RandGraph3 | 995 | 11980 | 395 | 3 | 6 | 2 | 0.0 | 507.937086 | 1 | 0.0 |
| a0800RandGraph12 | 924 | 13644 | 124 | 3 | 6 | 2 | 0.0 | 464.776231 | 1 | 0.0 |
| a0800RandGraph15 | 1066 | 14192 | 266 | 3 | 6 | 2 | 0.0 | 530.442058 | 1 | 0.0 |
| a0800RandGraph2 | 1196 | 15300 | 396 | 3 | 6 | 2 | 0.0 | 603.326182 | 1 | 0.0 |
| a0800RandGraph3 | 1336 | 15980 | 536 | 3 | 6 | 2 | 0.0 | 663.607078 | 1 | 0.0 |
| a10000RandGraph12 | 11669 | 170604 | 1669 | 0 | 0 | 0 | 1.9 | 5927.32057 | 1 | 1.9 |
| a10000RandGraph15 | 13371 | 180796 | 3371 | 3 | 6 | 2 | 1.8 | 6775.54991 | 1 | 1.8 |
| a10000RandGraph2 | 15018 | 189918 | 5018 | 3 | 6 | 2 | 0.8 | 7594.383 | 1 | 0.8 |
| a10000RandGraph3 | 16680 | 199630 | 6680 | 3 | 6 | 2 | 0.7 | 8422.56095 | 1 | 0.7 |
| a1000RandGraph12 | 14039 | 204414 | 2039 | 5310 | 24894 | 993 | 8.8 | 7073.94654 | 1 | 16.4 |
| a1000RandGraph15 | 15987 | 216698 | 3987 | 0 | 0 | 0 | 2.5 | 8084.12787 | 1 | 2.5 |
| a1000RandGraph2 | 18002 | 227980 | 6002 | 3 | 6 | 2 | 1.2 | 9064.24425 | 1 | 1.2 |
| a1000RandGraph3 | 19931 | 240478 | 7931 | 3 | 6 | 2 | 1.0 | 10061.8205 | 1 | 1.0 |
| a1200RandGraph12 | 1383 | 19988 | 183 | 0 | 0 | 0 | 0.1 | 705.672644 | 1 | 0.1 |
| a1200RandGraph15 | 1603 | 21662 | 403 | 3 | 6 | 2 | 0.0 | 810.482934 | 1 | 0.0 |
| a1200RandGraph2 | 1787 | 22608 | 587 | 3 | 6 | 2 | 0.0 | 906.792746 | 1 | 0.0 |
| a1200RandGraph3 | 2011 | 23762 | 811 | 3 | 6 | 2 | 0.0 | 1012.4502 | 1 | 0.0 |
| a14000RandGraph12 | 16302 | 237838 | 2302 | 4082 | 17488 | 947 | 8.7 | 8271.46523 | 1 | 13.6 |
| a14000RandGraph15 | 18688 | 252578 | 4688 | 3 | 6 | 2 | 3.7 | 9475.59356 | 1 | 3.7 |
| a14000RandGraph2 | 20999 | 266726 | 6999 | 3 | 6 | 2 | 1.6 | 10639.2035 | 1 | 1.6 |
| a14000RandGraph3 | 23275 | 279382 | 9275 | 3 | 6 | 2 | 1.3 | 11776.8943 | 1 | 1.3 |
| a1400RandGraph12 | 1626 | 23734 | 226 | 3 | 6 | 2 | 0.1 | 810.633664 | 1 | 0.1 |
| a1400RandGraph15 | 1848 | 25134 | 448 | 3 | 6 | 2 | 0.1 | 938.932467 | 1 | 0.1 |
| a1400RandGraph2 | 2080 | 26274 | 680 | 3 | 6 | 2 | 0.0 | 1051.01074 | 1 | 0.0 |
| a1400RandGraph3 | 2325 | 28070 | 925 | 3 | 6 | 2 | 0.0 | 1158.95534 | 1 | 0.0 |
| a1600RandGraph12 | 1871 | 27358 | 271 | 51 | 158 | 29 | 0.1 | 943.735583 | 1 | 0.1 |
| a1600RandGraph15 | 2114 | 28556 | 514 | 3 | 6 | 2 | 0.1 | 1078.79731 | 1 | 0.1 |
| a1600RandGraph2 | 2369 | 30166 | 769 | 3 | 6 | 2 | 0.0 | 1217.05199 | 1 | 0.0 |
| a1600RandGraph3 | 2677 | 32382 | 1077 | 3 | 6 | 2 | 0.0 | 1351.98377 | 1 | 0.0 |
| a1800RandGraph12 | 2111 | 30806 | 311 | 3 | 6 | 2 | 0.1 | 1061.39359 | 1 | 0.1 |
| a1800RandGraph15 | 2412 | 32110 | 612 | 3 | 6 | 2 | 0.1 | 1218.77778 | 1 | 0.1 |
| a1800RandGraph2 | 2692 | 34004 | 892 | 3 | 6 | 2 | 0.0 | 1364.89276 | 1 | 0.0 |
| cont. next page |  |  |  |  |  |  |  |  |  |  |


| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| a1800RandGraph3 | 2993 | 36214 | 1193 | 3 | 6 | 2 | 0.0 | 1507.26619 | 1 | 0.0 |
| a2000RandGraph12 | 2314 | 33894 | 314 | 0 | 0 | 0 | 0.1 | 1151.95327 | 1 | 0.1 |
| a2000RandGraph15 | 2626 | 35420 | 626 | 3 | 6 | 2 | 0.1 | 1330.77363 | 1 | 0.1 |
| a2000RandGraph2 | 2967 | 37920 | 967 | 3 | 6 | 2 | 0.1 | 1483.8368 | 1 | 0.1 |
| a2000RandGraph3 | 3295 | 39266 | 1295 | 3 | 6 | 2 | 0.0 | 1669.34571 | 1 | 0.0 |
| a3000RandGraph12 | 3490 | 51024 | 490 | 3 | 6 | 2 | 0.3 | 1781.19442 | 1 | 0.3 |
| a3000RandGraph15 | 3995 | 53668 | 995 | 3 | 6 | 2 | 0.2 | 2028.61995 | 1 | 0.2 |
| a3000RandGraph2 | 4516 | 57220 | 1516 | 3 | 6 | 2 | 0.1 | 2282.91749 | 1 | 0.1 |
| a3000RandGraph3 | 4993 | 60004 | 1993 | 3 | 6 | 2 | 0.1 | 2537.20275 | 1 | 0.1 |
| a4000RandGraph12 | 4669 | 68182 | 669 | 3 | 6 | 2 | 0.4 | 2396.91987 | 1 | 0.4 |
| a4000RandGraph15 | 5378 | 72500 | 1378 | 3 | 6 | 2 | 0.3 | 2735.1789 | 1 | 0.3 |
| a4000RandGraph2 | 6040 | 75994 | 2040 | 3 | 6 | 2 | 0.1 | 3072.26147 | 1 | 0.1 |
| a4000RandGraph3 | 6692 | 80196 | 2692 | 3 | 6 | 2 | 0.1 | 3406.61873 | 1 | 0.1 |
| a6000RandGraph12 | 6969 | 101606 | 969 | 292 | 1018 | 133 | 1.0 | 3544.38604 | 1 | 1.1 |
| a6000RandGraph15 | 7959 | 107902 | 1959 | 3 | 6 | 2 | 0.8 | 4059.18665 | 1 | 0.8 |
| a6000RandGraph2 | 8993 | 114090 | 2993 | 3 | 6 | 2 | 0.3 | 4551.76667 | 1 | 0.3 |
| a6000RandGraph3 | 9982 | 119716 | 3982 | 3 | 6 | 2 | 0.3 | 5049.26346 | 1 | 0.3 |
| a8000RandGraph12 | 9343 | 136798 | 1343 | 0 | 0 | 0 | 1.6 | 4719.96527 | 1 | 1.7 |
| a8000RandGraph15 | 10646 | 143494 | 2646 | 0 | 0 | 0 | 1.7 | 5394.56802 | 1 | 1.7 |
| a8000RandGraph2 | 11967 | 151544 | 3967 | 3 | 6 | 2 | 0.5 | 6055.12642 | 1 | 0.5 |
| a8000RandGraph3 | 13300 | 160148 | 5300 | 3 | 6 | 2 | 0.5 | 6710.61511 | 1 | 0.5 |

## B. 4 Steiner arborescence problem

The time limit for the following and all remaining instances in this thesis is two hours.
Table B.31. Detailed computational results for SAP, test-set SAP-gene.

|  | Original |  |  |  |  | Presolved |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Instance | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\mathrm{t}[\mathrm{s}]$ | Optimum | N |  |  |  |
| gene41x | 335 | 910 | 43 | 0 | 0 | 0 | 0.0 | $\mathbf{1 2 6}$ | 1 |  |  |  |
| gene42 | 335 | 912 | 43 | 0 | 0 | 0 | 0.0 | $\mathbf{1 2 6}]$ | 1 | 0.0 |  |  |
| gene61a | 395 | 1024 | 82 | 0 | 0 | 0 | 0.0 | $\mathbf{2 0 5}$ | 1 | 0.0 |  |  |
| gene61b | 570 | 1616 | 82 | 0 | 0 | 0 | 0.0 | $\mathbf{1 9 9}$ | 1 | 0.0 |  |  |
| gene61c | 549 | 1580 | 82 | 0 | 0 | 0 | 0.0 | $\mathbf{1 9 6}$ | 1 | 0.0 |  |  |
| gene61f | 412 | 1104 | 82 | 0 | 0 | 0 | 0.0 | $\mathbf{1 9 8}$ | 1 | 0.0 |  |  |
| gene425 | 425 | 1108 | 86 | 0 | 0 | 0 | 0.0 | $\mathbf{2 1 4}$ | 1 | 0.0 |  |  |
| gene442 | 442 | 1188 | 86 | 0 | 0 | 0 | 0.0 | $\mathbf{2 0 7}$ | 1 | 0.0 |  |  |
| gene575 | 575 | 1648 | 86 | 0 | 0 | 0 | 0.0 | $\mathbf{2 0 7}$ | 1 | 0.0 |  |  |
| gene602 | 602 | 1716 | 86 | 0 | 0 | 0 | 0.0 | $\mathbf{2 0 9}$ | 1 | 0.0 |  |  |

Table B.32. Detailed computational results for SAP, test-set SAP-gene2002.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| microtri1 | 347 | 952 | 47 | 0 | 0 | 0 | 0.0 | 128 | 1 | 0.0 |
| microtri3 | 400 | 1112 | 47 | 0 | 0 | 0 | 0.0 | 146 | 1 | 0.0 |
| microtri5 | 416 | 1124 | 47 | 0 | 0 | 0 | 0.0 | 150 | 1 | 0.0 |
| microtri6 | 419 | 1164 | 47 | 0 | 0 | 0 | 0.0 | 146 | 1 | 0.0 |
| microtri7 | 437 | 1172 | 47 | 0 | 0 | 0 | 0.0 | 159 | 1 | 0.0 |
| microtri8 | 484 | 1412 | 47 | 0 | 0 | 0 | 0.0 | 151 | 1 | 0.0 |
| microtri9 | 297 | 792 | 47 | 0 | 0 | 0 | 0.0 | 131 | 1 | 0.0 |
| microtri10 | 319 | 836 | 47 | 0 | 0 | 0 | 0.0 | 136 | 1 | 0.0 |
| microtri11 | 382 | 1024 | 47 | 0 | 0 | 0 | 0.0 | 152 | 1 | 0.0 |

Table B.33. Detailed computational results for SAP, test-set SAP-NET.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| ID141_1 | 77120 | 232714 | 8 | 0 | 0 | 0 | 3.2 | 445143.514 | 1 | 3.2 |
| ID141_2 | 77120 | 232714 | 3 | 0 | 0 | 0 | 3.0 | 127899.377 | 1 | 3.0 |
| ID141_3 | 77120 | 232714 | 3 | 0 | 0 | 0 | 3.2 | 130314.802 | 1 | 3.2 |
| ID141_4 | 77120 | 232714 | 5 | 0 | 0 | 0 | 3.4 | 806360.212 | 1 | 3.5 |
| ID141_5 | 77120 | 232714 | 11 | 1705 | 6674 | 11 | 2.7 | 1371182.7 | 1 | 2.8 |
| ID313_0 | 88328 | 272968 | 62 | 0 | 0 | 0 | 11.7 | 3e-08 | 1 | 11.7 |
| ID313_10 | 88328 | 272968 | 7 | 103 | 316 | 7 | 6.7 | 785402.452 | 1 | 6.7 |
| ID313_11 | 88328 | 272968 | 8 | 0 | 0 | 0 | 4.7 | 460175.719 | 1 | 4.8 |
| ID313_12 | 88328 | 272968 | 3 | 0 | 0 | 0 | 4.4 | 60735.3624 | 1 | 4.4 |
| ID313_13 | 88328 | 272968 | 4 | 0 | 0 | 0 | 5.9 | 378449.624 | 1 | 5.9 |
| ID313_14 | 88328 | 272968 | 4 | 0 | 0 | 0 | 5.3 | 413106.771 | 1 | 5.4 |
| ID313_1 | 88328 | 272968 | 6 | 364 | 1450 | 4 | 4.6 | 268092.533 | 1 | 4.7 |
| ID313_2 | 88328 | 272968 | 7 | 0 | 0 | 0 | 4.5 | 363173.432 | 1 | 4.5 |
| ID313_3 | 88328 | 272968 | 7 | 162 | 638 | 6 | 4.5 | 336031.786 | 1 | 4.5 |
| ID313.4 | 88328 | 272968 | 4 | 0 | 0 | 0 | 4.5 | 108384.996 | 1 | 4.5 |
| ID313.5 | 88328 | 272968 | 4 | 0 | 0 | 0 | 4.4 | 137775.062 | 1 | 4.4 |
| ID313_6 | 88328 | 272968 | 2 | 0 | 0 | 0 | 3.9 | 40213.8773 | 1 | 4.0 |
| ID313_7 | 88328 | 272968 | 3 | 0 | 0 | 0 | 4.4 | 209186.362 | 1 | 4.5 |
| ID313_8 | 88328 | 272968 | 10 | 0 | 0 | 0 | 4.6 | 395117.997 | 1 | 4.6 |
| ID313_9 | 88328 | 272968 | 6 | 1926 | 7674 | 6 | 10.0 | 1012291.08 | 1 | 10.1 |
| ID314_0 | 225739 | 642338 | 225 | 171637 | 452808 | 1 | 27.2 | 1e-08 | 1 | 28.8 |
| cont. next page |  |  |  |  |  |  |  |  |  |  |


|  | Original |  |  |  | Presolved |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Instance | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\mathrm{t}[\mathrm{s}]$ | Optimum | N | $\mathrm{t}[\mathrm{s}]$ |
| ID314_1 | 225739 | 642338 | 132 | 56330 | 213562 | 132 | 34.0 | $\mathbf{2 0 1 9 8 3 8 3 . 1}$ | 1 | 1486.8 |
| ID314_2 | 225739 | 642338 | 26 | 23510 | 93554 | 26 | 29.4 | $\mathbf{1 6 0 4 1 5 4 . 6 6}$ | 1 | 450.8 |
| ID314_3 | 225739 | 642338 | 30 | 16824 | 66820 | 30 | 31.2 | $\mathbf{2 6 8 9 4 0 8 . 0 5}$ | 1 | 101.6 |
| ID314_4 | 225739 | 642338 | 40 | 0 | 0 | 0 | 7.5 | $\mathbf{5 7 2 3 9 2 2 . 1}$ | 1 | 7.5 |

## B. 5 Euclidean Steiner tree problem

Table B.34. Detailed computational results for ESMT, test-set ESMT-R25.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| R25K01EFST | 39277 | 94524 | 25000 | 92 | 294 | 40 | 34.7 | 98.9612134 | 1 | 40.1 |
| R25K02EFST | 39306 | 94978 | 25000 | 59 | 180 | 30 | 38.4 | 99.0370878 | 1 | 47.1 |
| R25K03EFST | 39549 | 96348 | 25000 | 3893 | 12466 | 1785 | 35.0 | 99.2157207 | 1 | 45.8 |
| R25K04EFST | 39555 | 96260 | 25000 | 84 | 274 | 37 | 38.0 | 98.9431392 | 1 | 47.6 |
| R25K05EFST | 39153 | 93806 | 25000 | 49 | 146 | 26 | 28.9 | 99.4912321 | 1 | 39.1 |
| R25K06EFST | 39438 | 95690 | 25000 | 5990 | 19160 | 2804 | 12.7 | 99.3728768 | 1 | 29.6 |
| R25K07EFST | 39900 | 98180 | 25000 | 47 | 140 | 24 | 38.4 | 99.5646105 | 1 | 51.6 |
| R25K08EFST | 39529 | 95920 | 25000 | 65 | 200 | 32 | 39.6 | 99.2662017 | 1 | 48.5 |
| R25K09EFST | 39732 | 97060 | 25000 | 3807 | 12238 | 1773 | 38.1 | 99.0968636 | 1 | 44.7 |
| R25K10EFST | 39248 | 94668 | 25000 | 48 | 136 | 23 | 28.1 | 99.1104801 | 1 | 35.7 |
| R25K11EFST | 39425 | 95470 | 25000 | 2661 | 8418 | 1239 | 42.1 | 99.1216345 | 1 | 47.5 |
| R25K12EFST | 39293 | 94888 | 25000 | 3434 | 10960 | 1593 | 37.3 | 99.1134447 | 1 | 45.5 |
| R25K13EFST | 39284 | 94770 | 25000 | 3328 | 10524 | 1566 | 26.4 | 99.4005526 | 1 | 33.0 |
| R25K14EFST | 40063 | 98534 | 25000 | 3957 | 12746 | 1795 | 38.9 | 99.2046414 | 1 | 46.1 |
| R25K15EFST | 39498 | 95704 | 25000 | 44 | 130 | 21 | 43.7 | 99.2521324 | 1 | 54.6 |

Table B.35. Detailed computational results for ESMT, test-set ESMT-R50.

|  | Original <br> Instance |  |  |  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | Presolved |  |  |  |  |  |  | $\mathrm{t}[\mathrm{s}]$ | Optimum | N | $\mathrm{t}[\mathrm{s}]$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R50K01EFST | 79505 | 194746 | 50000 | 9521 | 30346 | 4427 | 120.2 | $\mathbf{1 4 0 . 3 9 8 7 6 4}$ | 1 | 139.8 |  |  |  |  |  |  |  |  |  |  |
| R50K02EFST | 78754 | 190726 | 50000 | 254 | 798 | 119 | 116.2 | $\mathbf{1 3 9 . 9 5 5 7 8 1}$ | 1 | 145.3 |  |  |  |  |  |  |  |  |  |  |
| R50K03EFST | 78964 | 191358 | 50000 | 7198 | 23066 | 3325 | 126.2 | $\mathbf{1 4 0 . 0 0 6 4 1 2}$ | 1 | 140.3 |  |  |  |  |  |  |  |  |  |  |
| R50K04EFST | 78983 | 191484 | 50000 | 56 | 174 | 28 | 142.5 | $\mathbf{1 4 0 . 0 9 3 8 5 2}$ | 1 | 154.3 |  |  |  |  |  |  |  |  |  |  |
| R50K05EFST | 79200 | 193418 | 50000 | 43 | 126 | 23 | 142.7 | $\mathbf{1 3 9 . 9 9 5 2 3 5}$ | 1 | 196.5 |  |  |  |  |  |  |  |  |  |  |
| R50K06EFST | 79480 | 194744 | 50000 | 9705 | 31120 | 4495 | 133.9 | $\mathbf{1 4 0 . 3 4 8 5 4 2}$ | 1 | 164.9 |  |  |  |  |  |  |  |  |  |  |
| R50K07EFST | 79046 | 192228 | 50000 | 13631 | 43506 | 6350 | 44.2 | $\mathbf{1 4 0 . 2 4 9 5 8 2}$ | 1 | 86.0 |  |  |  |  |  |  |  |  |  |  |
| R50K08EFST | 79175 | 192822 | 50000 | 108 | 378 | 41 | 111.7 | $\mathbf{1 4 0 . 3 5 1 1 4 7}$ | 1 | 126.8 |  |  |  |  |  |  |  |  |  |  |
| R50K09EFST | 78825 | 190952 | 50000 | 54 | 156 | 26 | 107.0 | $\mathbf{1 4 0 . 3 6 3 4 8 1}$ | 1 | 120.6 |  |  |  |  |  |  |  |  |  |  |
| R50K10EFST | 78948 | 191740 | 50000 | 73 | 236 | 33 | 40.8 | $\mathbf{1 4 0 . 3 2 1 0 9 3}$ | 1 | 80.0 |  |  |  |  |  |  |  |  |  |  |
| R50K11EFST | 79121 | 192608 | 50000 | 8136 | 25928 | 3797 | 122.1 | $\mathbf{1 4 0 . 1 6 9 7 5 6}$ | 1 | 139.6 |  |  |  |  |  |  |  |  |  |  |
| R50K12EFST | 79133 | 192768 | 50000 | 51 | 156 | 24 | 29.3 | $\mathbf{1 4 0 . 2 0 1 2 3 4}$ | 1 | 57.7 |  |  |  |  |  |  |  |  |  |  |
| R50K13EFST | 78972 | 191348 | 50000 | 7654 | 24410 | 3562 | 116.3 | $\mathbf{1 4 0 . 0 3 9 9 9}$ | 1 | 131.6 |  |  |  |  |  |  |  |  |  |  |
| R50K14EFST | 79326 | 193440 | 50000 | 51 | 156 | 24 | 135.7 | $\mathbf{1 4 0 . 2 0 9 7 9 5}$ | 1 | 151.8 |  |  |  |  |  |  |  |  |  |  |
| R50K15EFST | 79483 | 194414 | 50000 | 66 | 224 | 25 | 156.4 | $\mathbf{1 4 0 . 4 4 7 9 2 6}$ | 1 | 170.4 |  |  |  |  |  |  |  |  |  |  |

Table B.36. Detailed computational results for ESMT, test-set ESMT-R100.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| R100K01EFST | 157869 | 383172 | 100000 | 50 | 156 | 24 | 554.3 | 198.306705 | 1 | 631.7 |
| R100K02EFST | 158031 | 383994 | 100000 | 71 | 244 | 26 | 156.6 | 197.970178 | 1 | 370.1 |
| R100K03EFST | 158290 | 384990 | 100000 | 18337 | 58020 | 8630 | 477.9 | 198.022313 | 1 | 640.7 |
| R100K04EFST | 158205 | 385292 | 100000 | 64 | 204 | 29 | 550.8 | 198.189607 | 1 | 612.3 |
| R100K05EFST | 158587 | 386646 | 100000 | 47 | 146 | 22 | 123.6 | 198.153237 | 1 | 372.1 |


|  | $\|V\|$ | Original |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Instance | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\mathrm{t}[\mathrm{s}]$ | Optimum | N | $\mathrm{t}[\mathrm{s}]$ |  |
| R100K06EFST | 158514 | 386086 | 100000 | 73 | 276 | 25 | 117.7 | $\mathbf{1 9 8 . 1 7 4 4 8 1}$ | 1 | 328.3 |
| R100K07EFST | 157947 | 383296 | 100000 | 24847 | 79452 | 11545 | 112.4 | $\mathbf{1 9 7 . 8 7 8 4 1 6}$ | 1 | 369.6 |
| R100K08EFST | 157839 | 382404 | 100000 | 17086 | 54446 | 7977 | 471.3 | $\mathbf{1 9 7 . 9 9 4 4 3 3}$ | 1 | 541.8 |
| R100K09EFST | 158069 | 38340 | 10000 | 26909 | 85924 | 12571 | 152.3 | $\mathbf{1 9 8 . 1 3 5 8 3 2}$ | 1 | 391.4 |
| R100K10EFST | 158575 | 386344 | 100000 | 18012 | 57070 | 8424 | 448.3 | $\mathbf{1 9 8 . 0 3 9 9 0 5}$ | 1 | 546.1 |
| R100K11EFST | 158265 | 385490 | 100000 | 25924 | 83376 | 11924 | 124.7 | $\mathbf{1 9 8 . 1 3 6 3 3 2}$ | 1 | 368.6 |
| R100K12EFST | 157806 | 382352 | 100000 | 50 | 158 | 22 | 472.6 | $\mathbf{1 9 8 . 3 8 4 6 9 6}$ | 1 | 570.0 |
| R100K13EFST | 157660 | 381462 | 100000 | 27619 | 87894 | 12879 | 151.4 | $\mathbf{1 9 8 . 0 5 3 5 4 4}$ | 1 | 457.4 |
| R100K14EFST | 158516 | 386662 | 100000 | 50 | 162 | 22 | 510.5 | $\mathbf{1 9 8 . 2 2 6 9 9 9 3}$ | 1 | 729.7 |
| R100K15EFST | 158033 | 384044 | 100000 | 27235 | 87188 | 12652 | 151.3 | $\mathbf{1 9 8 . 2 7 4 0 4 8}$ | 1 | 460.0 |

## B. 6 The degree constrained Steiner tree problem

Table B.37. Detailed computational results for DCSTP, test-set TreeFam.

| Instance | Original |  |  | Presolved |  |  |  | Dual | Primal | Gap \% | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |  |  |
| TF101057-t1 | 52 | 2652 | 35 | 52 | 1462 | 35 | 0.0 | infeas |  |  | 1 | 0.0 |
| TF101057-t3 | 52 | 2652 | 35 | 52 | 2648 | 35 | 0.0 | 275 |  |  | 362 | 2.1 |
| TF101125-t1 | 304 | 92112 | 155 | 304 | 68242 | 155 | 4.3 | infeas |  |  | 1 | 5.4 |
| TF101125-t3 | 304 | 92112 | 155 | 304 | 92112 | 155 | 3.0 | 551 |  |  | 302 | 178.8 |
| TF101202-t1 | 188 | 35156 | 72 | 188 | 30044 | 72 | 0.7 | 799 |  |  | 47303 | 2542.0 |
| TF101202-t3 | 188 | 35156 | 72 | 188 | 35156 | 72 | 0.6 | 779 |  |  | 4894 | 390.2 |
| TF102003-t1 | 832 | 691392 | 407 | 832 | 526150 | 407 | 84.0 | 193812.178 | 419049 | 116.2 | 122 | $>7200.4$ |
| TF102003-t3 | 832 | 691392 | 407 | 832 | 691392 | 407 | 65.5 | 181328.493 | 188671 | 4.0 | 56 | $>7200.1$ |
| TF105035-t1 | 237 | 55932 | 104 | 237 | 45220 | 104 | 1.8 | 35058.2504 | 36311 | 3.6 | 38058 | $>7200.0$ |
| TF105035-t3 | 237 | 55932 | 104 | 237 | 55932 | 104 | 1.3 | 329 |  |  | 396 | 112.8 |
| TF105272-t1 | 476 | 226100 | 223 | 476 | 176594 | 223 | 13.7 | 134857.053 | 211138 | 56.6 | 2065 | >7200.2 |
| TF105272-t3 | 476 | 226100 | 223 | 476 | 226100 | 223 | 8.7 | 126868.798 | 127352 | 0.4 | 5431 | $>7200.3$ |
| TF105419-t1 | 55 | 2970 | 24 | 55 | 2418 | 24 | 0.0 | 186 |  |  | 4626 | 19.0 |
| TF105419-t3 | 55 | 2970 | 24 | 55 | 2286 | 24 | 0.0 | 182 |  |  | 5 | 0.2 |
| TF105897-t1 | 314 | 98282 | 133 | 314 | 80726 | 133 | 3.4 | 108066.522 | 114092 | 5.6 | 14151 | $>7200.0$ |
| TF105897-t3 | 314 | 98282 | 133 | 314 | 98282 | 133 | 2.9 | 978 |  |  | 2650 | 1134.3 |
| TF106403-t1 | 119 | 14042 | 46 | 119 | 11972 | 46 | 0.2 | 541 |  |  | 1054 | 15.4 |
| TF106403-t3 | 119 | 14042 | 46 | 119 | 4710 | 46 | 0.3 | 537 |  |  | 1 | 0.4 |
| TF106478-t1 | 130 | 16770 | 54 | 130 | 13908 | 54 | 0.3 | 551 |  |  | 3809 | 62.4 |
| TF106478-t3 | 130 | 16770 | 54 | 130 | 16174 | 54 | 0.4 | 548 |  |  | 390 | 13.6 |

## B. 7 The group Steiner tree problem

Table B.38. Detailed computational results for GSTP, test-set GSTP1.

|  | $\|V\|$ | Original |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Instance | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\mathrm{t}[\mathrm{s}]$ | Optimum | N |  |
| gstp30f2 | 474 | 1828 | 30 | 0 | 0 | 0 | $0.1 \mid$ | $\mathbf{5 6 9}$ | 1 |
| gstp31f2 | 349 | 1284 | 31 | 0 | 0 | 0 | 0.1 | $\mathbf{6 3 5}$ | 1 |
| gstp33f2 | 452 | 1746 | 33 | 0 | 0 | 0 | 0.0 | $\mathbf{5 1 3}$ | 1 |
| gstp34f2 | 1253 | 5000 | 34 | 1033 | 4132 | 31 | 3.8 | $\mathbf{6 4 6}$ | 0.1 |
| gstp36f2 | 442 | 1672 | 36 | 134 | 484 | 20 | 0.6 | $\mathbf{6 1 0}$ | 1 |
| gstp37f2 | 1054 | 4216 | 37 | 978 | 3916 | 37 | 1.4 | $\mathbf{4 8 5}$ | 1 |
| gstp38f2 | 618 | 2504 | 38 | 460 | 1892 | 37 | 1.4 | $\mathbf{6 5 6}$ | 0.1 |
| gstp39f2 | 707 | 3310 | 39 | 623 | 2938 | 38 | 2.5 | $\mathbf{4 5 0}$ | 1 |

Table B.39. Detailed computational results for GSTP, test-set GSTP2.

|  | Original |  |  |  |  | Presolved |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | :---: | ---: | ---: | ---: | ---: | ---: |
| Instance | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\mathrm{t}[\mathrm{s}]$ | Optimum | N | $\mathrm{t}[\mathrm{s}]$ |
| gstp50f2 | 1142 | 4622 | 50 | 930 | 3794 | 49 | 3.3 | $\mathbf{6 7 3}$ | 1 | 5.0 |
| gstp55f2 | 1751 | 6804 | 55 | 1565 | 6176 | 55 | 2.8 | $\mathbf{8 8 8}$ | 1 | 65.7 |
| gstp60f2 | 838 | 3528 | 60 | 763 | 3184 | 60 | 4.5 | $\mathbf{1 1 6 4}$ | 1 | 27.6 |
| gstp64f2 | 1860 | 7380 | 64 | 1640 | 6604 | 60 | 3.2 | $\mathbf{9 3 1}$ | 1 | 9.7 |
| gstp66f2 | 2623 | 10100 | 66 | 2339 | 9224 | 62 | 4.7 | $\mathbf{9 2 0}$ | 1 | 393.4 |
| gstp73f2 | 1911 | 7308 | 73 | 1704 | 6644 | 63 | 3.0 | $\mathbf{1 2 0 7}$ | 1 | 38.9 |
| gstp76f2 | 1818 | 6990 | 76 | 1133 | 4434 | 47 | 3.1 | $\mathbf{1 0 2 6}$ | 1 | 5.7 |
| gstp78f2 | 2355 | 9384 | 78 | 2009 | 8080 | 71 | 4.7 | $\mathbf{1 0 9 4}$ | 1 | 315.0 |
| gstp83f2 | 3177 | 12530 | 83 | 2975 | 11954 | 80 | 4.4 | $\mathbf{9 0 6}$ | 1 | 3451.2 |
| gstp84f2 | 2358 | 9134 | 84 | 1989 | 7912 | 73 | 4.0 | $\mathbf{1 0 9 4}$ | 1 | 27.2 |

## B. 8 Hop constrained directed Steiner tree problems

Table B.40. Detailed computational results for HCDSTP, test-set gr12.

| Instance | Original |  |  | Presolved |  |  |  | Optimum | N | t [s] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | t [s] |  |  |  |
| wo11-gr12-cr100-se10 | 809 | 7432 | 10 | 106 | 686 | 10 | 0.0 | 136516 | 1 | 0.1 |
| wo11-gr12-cr100-se11 | 809 | 7430 | 10 | 25 | 48 | 10 | 0.0 | 145251 | 1 | 0.0 |
| wo11-gr12-cr100-se1 | 809 | 7444 | 10 | 318 | 2978 | 10 | 0.1 | 182082 | 1 | 0.2 |
| wo11-gr12-cr100-se2 | 809 | 7394 | 10 | 31 | 60 | 10 | 0.0 | 163872 | 1 | 0.0 |
| wo11-gr12-cr200-se11 | 809 | 15260 | 10 | 393 | 5708 | 10 | 0.1 | 66786 | 1 | 0.3 |
| wo11-gr12-cr200-se1 | 809 | 15274 | 10 | 549 | 10626 | 10 | 0.1 | 76353 | 1 | 0.8 |
| wo11-gr12-cr200-se2 | 809 | 15224 | 10 | 23 | 44 | 10 | 0.0 | 75434 | 1 | 0.0 |
| wo12-gr12-cr100-se10 | 809 | 9360 | 10 | 52 | 198 | 10 | 0.0 | 167223 | 1 | 0.0 |
| wo10-gr12-cr100-se10 | 809 | 14428 | 10 | 27 | 52 | 10 | 0.0 | 117081 | 1 | 0.0 |
| wo12-gr12-cr100-se11 | 809 | 9852 | 10 | 359 | 3686 | 10 | 0.1 | 199679 | 1 | 0.2 |
| wo12-gr12-cr100-se1 | 809 | 9446 | 10 | 209 | 1870 | 10 | 0.0 | 164198 | 1 | 0.1 |
| wo12-gr12-cr100-se7 | 809 | 9702 | 10 | 24 | 46 | 10 | 0.0 | 136232 | 1 | 0.0 |
| wo12-gr12-cr200-se9 | 809 | 28346 | 10 | 17 | 32 | 10 | 0.0 | 46408 | 1 | 0.0 |
| wo10-gr12-cr100-se0 | 809 | 14396 | 10 | 774 | 13328 | 10 | 0.1 | 171486 | 1 | 6.0 |
| wo10-gr12-cr100-se11 | 809 | 14386 | 10 | 427 | 6672 | 10 | 0.1 | 125785 | 1 | 0.8 |
| wo10-gr12-cr200-se7 | 809 | 44696 | 10 | 131 | 1648 | 10 | 0.1 | 46306 | 1 | 0.1 |
| wo10-gr12-cr200-se8 | 809 | 44654 | 10 | 779 | 34890 | 10 | 0.5 | 61177 | 1 | 6.8 |
| wo10-gr12-cr200-se9 | 809 | 44670 | 10 | 363 | 8946 | 10 | 0.1 | 51737 | 1 | 0.6 |

Table B.41. Detailed computational results for HCDSTP, test-set gr14.

|  | Original |  |  |  | Presolved |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Instance | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\mathrm{t}[\mathrm{s}]$ | Optimum | N | $\mathrm{t}[\mathrm{s}]$ |
| wo10-gr14-cr100-se0 | 3209 | 215940 | 10 | 3178 | 212040 | 10 | 5.8 | $\mathbf{1 6 3 3 7 3}$ | 3 | 2130.8 |
| wo10-gr14-cr100-se11 | 3209 | 215932 | 10 | 1408 | 75734 | 10 | 5.6 | $\mathbf{1 2 0 4 6 6}$ | 1 | 28.9 |
| wo10-gr14-cr200-se3 | 3209 | 643552 | 10 | 2615 | 317044 | 10 | 41.0 | $\mathbf{5 2 4 2 5}$ | 1 | 358.9 |
| wo10-gr14-cr200-se4 | 3209 | 643414 | 10 | 2884 | 479482 | 10 | 23.9 | $\mathbf{5 1 5 9 2}$ | 1 | 699.9 |
| wo11-gr14-cr100-se6 | 3209 | 115502 | 10 | 2687 | 108314 | 10 | 2.2 | $\mathbf{2 1 1 7 5 8}$ | 81 | 1905.5 |
| wo11-gr14-cr200-se2 | 3209 | 232858 | 10 | 2453 | 170432 | 10 | 3.4 | $\mathbf{7 1 1 3 4}$ | 1 | 59.4 |
| wo11-gr14-cr200-se3 | 3209 | 233104 | 10 | 19 | 36 | 10 | 0.4 | $\mathbf{5 7 9 3 0}$ | 1 | 0.4 |
| wo11-gr14-cr200-se4 | 3209 | 233038 | 10 | 2458 | 176768 | 10 | 5.2 | $\mathbf{6 3 3 1 3}$ | 1 | 53.6 |
| wo12-gr14-cr100-se0 | 3209 | 153366 | 10 | 687 | 25696 | 10 | 0.7 | $\mathbf{1 1 8 6 1 7}$ | 1 | 3.6 |
| wo12-gr14-cr100-se5 | 3209 | 156578 | 10 | 919 | 37024 | 10 | 0.8 | $\mathbf{1 3 1 6 3 1}$ | 1 | 12.8 |
| wo12-gr14-cr100-se6 | 3209 | 157214 | 10 | 1521 | 66260 | 10 | 2.5 | $\mathbf{1 4 6 0 4 9}$ | 1 | 76.0 |
| wo12-gr14-cr100-se7 | 3209 | 158984 | 10 | 812 | 35402 | 10 | 1.1 | $\mathbf{1 2 2 3 0 6}$ | 1 | 13.3 |
| wo12-gr14-cr100-se8 | 3209 | 157912 | 10 | 880 | 37954 | 10 | 1.1 | $\mathbf{1 1 6 0 7 7}$ | 1 | 22.3 |
| wo12-gr14-cr100-se9 | 3209 | 156658 | 10 | 163 | 1692 | 10 | 0.2 | $\mathbf{1 0 0 8 1 3}$ | 1 | 0.2 |
| wo12-gr14-cr200-se0 | 3209 | 445774 | 10 | 1029 | 71640 | 10 | 3.7 | $\mathbf{5 3 8 8 3}$ | 1 | 19.2 |
| wo12-gr14-cr200-se10 | 3209 | 446040 | 10 | 2160 | 262644 | 10 | 22.6 | $\mathbf{6 4 5 8 2}$ | 3 | 1009.4 |
| wo12-gr14-cr200-se11 | 3209 | 457496 | 10 | 2339 | 318702 | 10 | 8.4 | $\mathbf{6 9 1 4 3}$ | 3 | 860.7 |


|  | Original |  |  |  | Presolved |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Instance | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\|V\|$ | $\|A\|$ | $\|T\|$ | $\mathrm{t}[\mathrm{s}]$ | Optimum | N |
| wo12-gr14-cr200-se4 | 3209 | 460250 | 10 | 2288 | 263776 | 10 | 12.7 | $\mathbf{7 2 9 9 3}$ | 7 |
| wo12-gr14-cr200-se5 | 3209 | 456998 | 10 | 1458 | 126506 | 10 | 5.3 | $\mathbf{5 7 6 9 4}$ | 1 |
| wo12-gr14-cr200-se6 | 3209 | 460500 | 10 | 2246 | 265226 | 10 | 20.6 | $\mathbf{6 1 9 2 5}$ | 7 |
| wo12-gr14-cr200-se7 | 3209 | 464090 | 10 | 1437 | 150164 | 10 | 5.0 | $\mathbf{6 1 3 7 0}$ | 3 |


[^0]:    1 See e.g., Brazil et al. (2014)
    2 See e.g., Hwang et al. (1992)

[^1]:    3 See e.g., Koch et al. (2013)
    4 See e.g., Fomin et al. (2019b)

[^2]:    7 Because we assume all edges to be of positive cost, $S_{0}^{\prime}$ will in fact always be a tree.

[^3]:    8 The article was published after Duin (2000), but had been available as a preprint already three years earlier.

[^4]:    9 We note, however, that the framework presented in Polzin and Daneshmand (2002) is (slightly) erroneous. E.g., in their equivalent to Step 4 of Algorithm 2.2, their method only checks whether the extended tree $Y+\{e\}$ is not peripherally contained with linking set $L(Y) \cup\{w\}$ in a minimum Steiner tree. However, this check does not rule out the extension of the current tree $Y$ via the single edge $\{v, w\}$.

[^5]:    ${ }^{10}$ We note, however, that this code count includes comments, as well as various correctness tests (which are only executed in debug mode). We also note that the same reductions could be achieved with (much) less than half of the code size, but at the expense of an increased run time.

[^6]:    11 according to Wikipedia, Cinderella is a folk tale about unjust oppression and triumphant reward

[^7]:    ${ }^{12}$ Winning team Track A: Yoichi Iwata, Takuto Shigemura (NII, Japan)
    ${ }^{13}$ Winning team Track C: Emmanuel Romero Ruiz, Emmanuel Antonio Cuevas, Irwin Enrique Villalobos López, Carlos Segura González (CIMAT, Mexico)

[^8]:    ${ }^{14}$ On I320 the default version of SCIP-JACK solves all instances within 24 hours, and takes a (scaled) mean time of 23.1 seconds. With dual-ascent bounds, SCIP-Jack solves all instances with a mean time of 3.8 seconds. In comparison, the solver by Polzin and Vahdati-Daneshmand (2014) takes a mean time of 4.2 seconds. On I640 the default version of SCIP-JACK solves 86 instances within 24 hours, and takes a mean time of 92.3 seconds. With dual-ascent bounds, SCIP-Jack solves 95 instances with a mean time of 24.1 seconds. The solver by Polzin and Vahdati-Daneshmand (2014) takes a mean time of 22.0 seconds, and also solves 95 instances to optimality.

[^9]:    ${ }^{15}$ Intel Core i7 920, 2.66 GHz

[^10]:    ${ }^{16}$ Such kind of flow network transformations are well-known in algorithmic graph theory; see also Appendix A.2.2.

[^11]:    17 By the name node-weighted Steiner tree problem.

[^12]:    18 Note that in the literature it is more common to denote only problems with exactly one fixed terminal as rooted prize-collecting Steiner tree problem, e.g. in Ljubic et al. (2006)

[^13]:    19 https://github.com/mluipersbeck/dapcstp

[^14]:    ${ }^{20}$ Note that this reference is an article, and not the Garey and Johnson.

[^15]:    ${ }^{21}$ Somewhat to the regret of the author of this thesis, who would nowadays have preferred $\mathrm{C}++$ or Rust as the programming language of choice.

[^16]:    22 The Euler tour technique is also used to reduce LCA to the range minimum query problem, see e.g. Bender et al. (2005).

[^17]:    ${ }^{23}$ see www. avglab.com/andrew/soft/ for the source code

