
Faster algorithms for Steiner tree

and related problems:

From theory to practice

vorgelegt von
M. Sc.

Daniel Markus Rehfeldt
ORCID: 0000-0002-2877-074X

von der Fakultät II – Mathematik und Naturwissenschaften
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Dietmar Hömberg
Gutachter: Prof. Dr. Thorsten Koch
Gutachter: Prof. Dr. Eduardo Uchoa
Gutachter: Dr. Renato Werneck

Tag der wissenschaftlichen Aussprache: 16. August 2021

Berlin 2021

Abstract

The Steiner tree problem in graphs (SPG) is one of the most studied problems in
combinatorial optimization. Part of its theoretical appeal might be attributed to
the fact that the SPG generalizes two other classic optimization problems: Shortest
paths, and minimum spanning trees. On the practical side, many applications can be
modeled as SPG or closely related problems. The SPG has seen impressive theoretical
advancements in the last decade. However, the state of the art in (practical) exact
SPG solution, set in a series of milestone papers by Polzin and Vahdati Daneshmand,
has remained largely unchallenged for almost 20 years. While the DIMACS Challenge
2014 and the PACE Challenge 2018 brought renewed interest into the exact solution
of SPGs, even the best new solvers fall far short of reaching the state of the art.

This thesis seeks to once again advance exact SPG solution. Since many practical
applications are not modeled as pure SPGs, but rather as closely related problems,
this thesis also aims to combine SPG advancements with improvement in the exact
solution of such related problems. Initially, we establish a broad theoretical basis
to guide the subsequent algorithmic developments. In this way, we provide various
new theoretical results for SPG and well-known relatives such as the maximum-
weight connected subgraph problem. These results include the strength of linear
programming relaxations, polyhedral descriptions, and complexity results. We go on
to introduce many algorithmic components such as reduction techniques, cutting
planes, graph transformations, and heuristics—both for SPG and related problems.
Many of these methods and techniques are provably stronger than previous results
from the literature. For example, we introduce a new reduction concept that is strictly
stronger than the well-known and widely used bottleneck Steiner distance. We also
provide theoretical analyses (e.g. concerning complexity) of the new algorithms. The
individual components are combined in an exact branch-and-cut algorithm. Notably,
all problem classes can be handled by a single branch-and-cut kernel.

As a result, we obtain an exact solver for SPG and 14 related problems. The new
solver is on each of the 15 problem classes faster than all other (problem-specific)
solvers from the literature, often by orders of magnitude. In particular, the solver out-
performs the long-reigning state-of-the-art solver for SPG. Finally, many benchmark
instances from the literature for several problem classes can be solved for the first
time to optimality—some containing millions of edges. These problem classes include
the SPG, the prize-collecting Steiner tree problem, the maximum-weight connected
subgraph problem, and the Euclidean Steiner tree problem.

i

Zusammenfassung

Das Steinerbaumproblem in Graphen (SPG) ist eines der am besten untersuchten
Probleme der kombinatorischen Optimierung. Das große theoretische Interesse für das
Problem kann auch darauf zurückgeführt werden, dass das SPG zwei weitere klassische
Optimierungsprobleme verallgemeinert: Kürzeste Wege und Minimale Aufspannende
Bäume. Auf der anderen (Praxis orientierten) Seite können viele Anwendungen in
Industrie ond Forschung als SPG oder verwandte Probleme modelliert werden. Das
SPG hat in den letzten 10 Jahren beeindruckende theoretische Fortschritte erfahren.
Im Gegensatz dazu hat es in der exakten SPG-Lösung seit fast 20 Jahren praktisch
keinen Fortschritt gegeben. Wenngleich die DIMACS Challenge 2014 und die PACE
Challenge 2018 neues Interesse für die exakte Lösung von SPGs in der Forschungsge-
meinschaft weckten, blieben selbst die besten neuen Verfahren für SPG weit hinter
der führenden Lösungstechnologie zurück.

Diese Arbeit wurde mit dem Ziel gestartet, die exakte Lösung von SPGs nun
erneut voranzubringen. Da viele praktische Anwendungen nicht als reine SPGs, son-
dern als eng verwandte Probleme modelliert werden, zielt diese Arbeit auch darauf ab,
Fortschritte in der Lösung von SPGs mit Verbesserungen bei der exakten Lösung ver-
wandter Probleme zu kombinieren. Die Arbeit beginnt mit dem Errichten eines breiten
theoretischen Fundaments, auf welches die darauffolgenden algorithmischen Entwick-
lungen aufgebaut werden. So werden etwa verschiedene neue theoretische Ergebnisse
für SPG und bekannte Verwandte wie das Maximum-Weight Connected Subgraph
Problem eingeführt. Diese Ergebnisse beinhalten etwa Komplexitätsresultate für die
betrachteten Probleme, oder stärkere polyedrische Beschreibungen des Lösungsraums.
Anschließend werden diverse algorithmische Komponenten wie Reduktionstechniken,
Schnittebenen, Graphentransformationen und Heuristiken vorgestellt - sowohl für
SPG als auch für verwandte Probleme. Viele dieser Methoden und Techniken sind be-
weisbar stärker als bisherige Ergebnisse aus der Literatur. Weiterhin werden auch the-
oretische Analysen (z.B. bezüglich der Komplexität) der neuen Algorithmen gegeben.
Die einzelnen Komponenten werden schließlich in einem exakten Branch-and-Cut-
Algorithmus kombiniert. Herauszustellen ist, dass alle Problemklassen mit einem
einzigen Branch-and-Cut Kern gelöst werden können.

Das praktische Ergebnis dieser Arbeit ist ein exakter Löser für SPG und 14
weitere verwandte Probleme. Der neue Löser ist auf jeder dieser 15 Problemklassen
schneller als alle anderen (problemspezifischen) Löser aus der Literatur, oft um
Größenordnungen. Insbesondere liefert der neue Löser bessere Ergebnisse als der

iii

iv Zusammenfassung

eingangs erwähnte bisher führende SPG Löser. Weiterhin können viele Benchmark-
Instanzen aus der Literatur für mehrere Problemklassen zum ersten Mal gelöst wer-
den - dies beeinhaltet Instanzen mit Millionen an Kanten. Zu diesen Problemklassen
gehören das SPG, das prize-collecting SPG, das Maximum-Weight Connected Sub-
graph Problem und das Euklidische Steinerbaumproblem.

Acknowledgements

First of all, I would like to thank Thorsten Koch for awaking my interest in Steiner
tree problems, and for his support and advice during the creation of this thesis. In
particular, I would like to thank him for giving me the opportunity to work almost
exclusively on the creation of this thesis in the last one and a half years of my PhD
studies. I am also very grateful to Eduardo Uchoa and Renato Werneck for agreeing
to be part of my PhD committee. I would furthermore like to thank Dietmar Hömberg
for agreeing to chair my PhD committee.

I would like to thank my colleagues at TU Berlin and Zuse Institute Berlin (ZIB)
for the nice working atmosphere. Even though the project I was working on for most
of my time at TU and ZIB had nothing to do with Steiner trees, I learned a lot
about programming, (parallel) algorithms, and perseverance, which turned out to
also be quite useful for the creation of this thesis. Also, I would like to thank ZIB
for allowing me to use their computing clusters for the computational experiments
presented in this thesis. I would also like to thank Gerald Gamrath, Ambros Gleixner,
Nils Kempke, Benjamin Müller, and Mark Turner for proof-reading parts of this thesis
and providing many helpful comments. I would like to thank Yuji Shinano for his
collaboration on the parallelization part of this thesis. I would like to thank Cees
Duin for sending me a hard copy of his dissertation (which had been written in the
old pre-PDF days) from the Netherlands. I would also like to acknowledge the work
of the many people who worked on Steiner tree and related problems, and on whose
contributions I could built on. Last, but most of all, I would like to thank my family
for their support throughout the creation process of this thesis.

v

Contents

Abstract i

Zusammenfassung i

Acknowledgements v

Introduction 1

1 Preliminaries 9

1.1 Notation and basic concepts . 9

1.1.1 Miscellaneous, 9

1.1.2 Graph theory, 9

1.1.3 Steiner arborescence problem, 10

1.2 Experimental methodology . 11

1.2.1 Hardware and software, 11

1.2.2 Averaging and performance variability, 11

2 The prototype: Steiner tree problem in graphs 13

2.1 Introduction . 13

2.1.1 Background, 14

2.1.2 Contribution and structure, 18

2.2 Integer programming formulations . 19

2.2.1 Cut and flow formulations, 19

2.2.2 Formulations for unweighted Steiner tree problems, 22

2.3 Implications, conflicts, and reductions 26

2.3.1 Bottleneck distances and implications, 27

2.3.2 Bound-based reduction techniques, 35

2.3.3 Further reduction techniques, 39

2.3.4 From reductions to conflicts, 40

vii

viii Contents

2.4 From Steiner distances and conflicts to extended reduction techniques 42

2.4.1 The framework, 43

2.4.2 Reduction criteria, 47

2.5 Primal heuristics . 50

2.5.1 Shortest path heuristic and implications, 51

2.5.2 Reduction based heuristics, 52

2.6 Solving to optimality . 53

2.6.1 Combining extended reductions and dynamic programming, 54

2.6.2 Branch-and-cut, 54

2.7 Computational results . 57

2.7.1 Individual components, 57

2.7.2 PACE Challenge 2018, 62

2.7.3 SteinLib and beyond: A comprehensive benchmark, 63

2.8 Conclusion . 67

3 A relative: The maximum-weight connected subgraph problem 69

3.1 Introduction . 69

3.1.1 Preliminaries and additional notation, 70

3.1.2 Contribution and structure, 71

3.2 (M)IP formulations and the connected subgraph polytope 72

3.2.1 Rooted maximum-weight connected subgraphs, 72

3.2.2 Node based formulations for non-rooted connected subgraphs, 74

3.2.3 Edge based formulations for non-rooted connected subgraphs, 77

3.2.4 Comparison of the formulations, 83

3.3 Reduction techniques . 85

3.3.1 Bound-based reductions, 86

3.3.2 Alternative-based reductions, 91

3.3.3 Combining dominating sets and constrained distances, 97

3.4 From dual-ascent to exact solving 100

3.5 Primal heuristics . 105

3.5.1 Constructive heuristics, 105

3.5.2 Local search heuristics, 107

3.6 Solving to optimality . 108

3.6.1 A full-fledged exact solver, 108

3.6.2 Computational results, 109

3.7 Conclusion . 112

4 A generalization: The prize-collecting Steiner tree problem 115

4.1 Introduction . 115

4.1.1 Preliminaries and additional notation, 116

Contents ix

4.1.2 Contribution and structure, 117

4.2 Proper potential terminals and complexity 118

4.2.1 On the complexity of PCSTP, 118

4.2.2 From PCSTP to MWCSP and NWSTP, 121

4.3 Reductions within the problem class 122

4.3.1 Taking short walks, 123

4.3.2 Using bounds, 130

4.4 Changing the problem class . 135

4.4.1 Identifying roots, 136

4.4.2 Rooting the problem: RPCSTP and SPG, 140

4.5 Solving to optimality . 143

4.5.1 Interleaving the components within branch-and-cut, 143

4.5.2 Computational results, 145

4.6 Conclusion . 148

5 Further related problems 151

5.1 The partial and full terminal Steiner tree problems 152

5.2 The Steiner arborescence problem 154

5.3 The node weighted Steiner tree problem 156

5.4 The Euclidean and the rectilinear Steiner minimum tree problems . 157

5.5 The degree constrained Steiner tree problem 159

5.6 The maximum-weight connected subgraph problem with budget . . 161

5.7 The group Steiner tree problem . 163

5.8 The hop constrained directed Steiner tree problem 164

6 Implementation and parallelization 167

6.1 SCIP-Jack . 167

6.1.1 The origins, 167

6.1.2 The solver, 168

6.2 Implementation details of key components 169

6.2.1 Graph data structures, 169

6.2.2 Bottleneck Steiner distances, 171

6.2.3 Extended reduction techniques, 173

6.2.4 Separation algorithms, 177

6.3 Parallelization: Building Steiner trees on 43 000 cores 178

6.3.1 Parallelizing heuristics and reduction methods, 178

6.3.2 Parallelizing branch-and-bound, 180

x Contents

7 Conclusion and outlook 183

List of Abbreviations and Names 187

Bibliography 189

A Further proofs 207

A.1 Steiner tree problem in graphs . 207
A.1.1 Proof of Proposition 2.23, 207

A.2 Maximum-weight connected subgraph problem 207
A.2.1 Proof of Proposition 3.21, 207
A.2.2 Node separators and rejoining of flows, 208

A.3 Prize-collecting Steiner tree problem 209
A.3.1 Proof of Theorem 4.1, 209
A.3.2 Proof of Proposition 4.11, 212
A.3.3 Proof of Lemma 4.14, 214
A.3.4 Proof of Proposition 4.30, 214

B Detailed computational results 217

B.1 Steiner tree problem in graphs . 217
B.1.1 PACE 2018 instances, 217
B.1.2 SteinLib instances, 222
B.1.3 DIMACS 2014 instances, 230

B.2 Maximum-weight connected subgraph problem 236

B.3 Prize-collecting Steiner tree problem 240

B.4 Steiner arborescence problem . 246

B.5 Euclidean Steiner tree problem . 247

B.6 The degree constrained Steiner tree problem 248

B.7 The group Steiner tree problem . 248

B.8 Hop constrained directed Steiner tree problems 249

Introduction

Given an undirected graph with non-negative edge weights and a subset of vertices
called terminals, the Steiner tree problem in graphs (SPG) is to find a tree of minimum
weight that contains all terminals. The SPG is a classic NP-hard problem, and one
of the most studied problems in combinatorial optimization. The geometrical origins
of the SPG can be traced back to Pierre de Fermat’s famous treatise Methodus ad
disquirendam maximam et minimam from 1638, and the problem was rediscovered
by the likes of Carl Friedrich Gauß and Vojtěch Jarńık in the following centuries1.

Part of the appeal of the SPG might be attributed to the fact that it “lies between”
two other classic optimization problems: If there are exactly two terminals, the SPG
reduces to the shortest-path problem, if all vertices are terminals, the SPG reduces
to the minimum-spanning tree problem. However, in contrast to the SPG, for both
of these problems polynomial-time algorithms are known. Interestingly, if the SPG

“stays close enough” to either of these problems, i.e., if either the number of terminals,
or the number of non-terminals is bounded, it can also be solved in polynomial time2.
On the practical side, the large research interest in the SPG can be motivated by
the numerous and surprisingly diverse practical applications that can be modeled as
SPG or closely related problems. Two classic application areas are network design
problems and the design of integrated circuits. Other, more recent, areas are for
example systems biology and machine learning.

The SPG has seen numerous theoretical advances in the last 10 years, bringing
forth significant improvements for example in complexity and approximability. In-
deed, the SPG can be considered a flagship problem in both of these research areas.
However, when it comes to (practical) exact algorithms, the picture is significantly
more bleak. After flourishing in the 1990s and early 2000s, algorithmic advances came
to a staggering halt with the joint PhD theses of Polzin and Vahdati Daneshmand
almost 20 years ago. The authors introduced a wealth of new results and algorithms
for SPG, and combined them in a computer program that drastically outperformed
all previous results from the literature. We will refer to such computer programs for
mathematical optimization problems as solvers. While there have been some success
stories for special classes of SPG instances in the meantime, on the vast majority of
benchmark instances Polzin and Vahdati Daneshmand have stayed well out of reach.
For example, even the best solvers from the 11th DIMACS Challenge in 2014, dedi-

1 See e.g., Brazil et al. (2014)
2 See e.g., Hwang et al. (1992)

1

2 Introduction

cated to Steiner tree problems, are orders of magnitude slower on many benchmark
instances, and solve far fewer instances to optimality. Much the same can be said of
the various solvers participating at the 3rd PACE Challenge in 2018: Even on the
special class of SPG instances used at the PACE Challenge the state of the art solver
by Polzin and Vahdati Daneshmand remained largely unchallenged. However, this
solver is not publicly available.

Against this backdrop, this thesis aims at advancing once again the state of the
art in solving SPGs to optimality. But what, one might ask, is the interest in further
improving the solution of Steiner tree problems? We start with some practical points.
As just mentioned, many applications are modeled as SPG and related problems—and
in the age of big data such models naturally become larger. 15 years ago, the largest
SPG instance from the literature had roughly 200 thousand edges. In contrast, the
largest Steiner tree instances considered (and solved) in this thesis have up to 10
million edges. A huge leap for an NP-hard problem. Moreover, classic optimization
problems such as the traveling salesman problem or the SPG, have often been a
testing ground for techniques that can later be used for other problem types. And
indeed, a central contribution of this thesis is to extend results for the SPG to related
problems.

This thesis can also be seen in the larger picture of the tremendous algorithmic
progress of mixed-integer programming (MIP) algorithms in the last decades. MIP
solvers exhibit an impressive performance and have become a standard industry tool.3

Thus, one might question the need of strenuously hand-tailored, problem-specific
algorithms and implementations. However, if one starts to model SPG instances as
MIPs (using one of the many MIP formulations from the literature), and tries to
solve them with leading commercial MIP solvers, one quickly realizes that already
medium-sized instances can often not be solved even after weeks of computation (or
even run out of memory). In contrast, such instances can be solved in fractions of a
second by the SPG solver presented in this thesis.

Besides these practical points, there is also a significant theoretical interest in
advancing the exact solution of SPGs. First of all, such an advancement naturally
spawns new underlying theoretical results, for example in complexity or polyhedral
theory. Also, many techniques developed in this thesis are, arguably, theoretically
interesting in their own right, and furthermore lead to several new (NP-hard) opti-
mization problems. Finally, the strong practical results achieved in this thesis serve
to show the limits of classic complexity theory: It is possible to solve the overwhelm-
ing majority of large-scale SPG benchmark instances to optimality within minutes,
including those with hundreds of thousand of edges. We are even able to solve many
instances with millions of edges. Indeed, such practical success stories have contrib-
uted to the huge prominence of the field of parametrized complexity, which allows
for a finer scale classification of complexity. As another example, the tremendous
practical success of preprocessing techniques in many combinatorial optimization
problems (including SPG) has given rise to the field of kernelization4, which is a
flourishing area in theoretical computer science.

3 See e.g., Koch et al. (2013)
4 See e.g., Fomin et al. (2019b)

Introduction 3

The underlying assumption of this thesis is that practical advancements best go
hand-in-hand with a solid theoretical understanding of the utilized techniques and
algorithms. Thus, we will move from theory to practice and base algorithm develop-
ments on various new theoretical results, such as the fixed-parameter tractability of
the considered problems, or the tightness of their integer programming formulations.
To compete with the state of the art in exact SPG solution, we introduce a wide
range of intricate algorithmic components, which are finally combined in an exact
algorithm. As to practical usability, one also observes that many real-world problems
are not modeled as pure SPGs, but rather as closely related problems. This observa-
tion also explains the multitude of Steiner tree relatives and generalizations found
in the literature. Thus, a significant part of this thesis is devoted to extending and
complementing the new theoretical and practical SPG results such that they can be
used for several close relatives of the SPG. Finally, the new algorithms developed
in this thesis have been implemented in an exact Steiner tree solver. The practi-
cal performance of this solver is demonstrated on a wide range of well-established
benchmark sets, often originating from practical applications.

Structure and main contributions

This thesis can be roughly divided into two parts. The first part offers an in-depth
treatment of SPG and two well-known related problems. For each problem, an exten-
sive theoretical foundation is established, from which various new solution techniques
and algorithms are developed. By combining these algorithmic components, we aim
to push the limits of (computational) tractability for all three problem classes. We
highlight and exploit the strong interrelations between the three problems, but also
establish various novel problem-specific results. Each of the three problems is devoted
an individual chapter.

The second part of this thesis, starting with Chapter 5, takes a turn towards
mostly practical issues. We show how to use the previously established results to
readily solve many further related problems. Next, we discuss implementation issues,
such as data structures, and show how to parallelize some of the previously introduced
algorithms.

The coherence of the algorithmic treatment of all problem classes in this thesis
is highlighted by the fact that only a single branch-and-cut kernel is used for all 15
problem classes shown in Table 1 (although also many problem-specific algorithms
are used). To this end, an important ingredient is constituted by the (often new)
problem transformations depicted in Figure 1 and Figure 2.

In more detail, the structure of the thesis is as follows.

– Chapter 1 provides preliminaries, such as notation.

– Chapter 2 is concerned with the SPG. The chapter starts with a theoretical
analysis of two widely used integer programming formulations for SPG. We show
conditions for the linear programming relaxations to be exact, and compare the
relative strength of the formulations. Subsequently, many new algorithmic com-
ponents such as reduction techniques, conflicts, and heuristics are introduced.

4 Introduction

Table 1: The 15 problem classes considered in this thesis.

Abbreviation Problem Name

DCSTP Degree-constrained Steiner tree problem

FTSTP Full terminal Steiner tree problem

GSTP G roup Steiner tree problem

HCDSTP Hop-constrained d irected Steiner tree problem

MWCSP Maximum-weight connected subgraph problem

MWCSPB Maximum-weight connected subgraph problem with budget

NWSTP Node-weighted Steiner tree problem

OARSMT Obstacle-avoiding rectilinear Steiner minimum tree problem

PCSTP Prize-collecting Steiner tree problem

PTSTP Partial terminal Steiner tree problem

RMWCSP Rooted maximum-weight connected subgraph problem

RPCSTP Rooted prize-collecting Steiner tree problem

RSMT Rectilinear Steiner minimum tree problem

SAP Steiner arborescence problem

SPG Steiner tree problem in g raphs

SAP

SPG

PTSTP

FTSTP

GSTP RSMT ORSMT

(R) MWCSP (R) PCSTP

NWSTP

Figure 1: Transformations between problem classes used for computational solution
in this thesis.

Several of these methods and techniques are provably stronger than well-known
results from the literature. The various components are combined in an exact
SPG algorithm. The chapter closes with computational results, including a
comparison with the state of the art in exact SPG solution.

Introduction 5

SAP+

DCSTP HCDSTP MWCSPB

Figure 2: Transformations to SAP with additional constraints used for computational
solution in this thesis.

– Chapter 3 covers the maximum-weight connected subgraph problem, a well-
known relative of the SPG, which has (real-valued) vertex instead of (non-
negative) edge weights. We start with a theoretical analysis of the strength
of integer programming formulations, and also give related polyhedral results.
Based on the strongest of these formulations, various new solution techniques
and algorithms are introduced. These developments include extensions of results
from the previous chapter, but also novel contributions—such as graph transfor-
mations. Finally, we assemble the individual algorithms within a branch-and-cut
framework. Computational results of the resulting solver are also given.

– Chapter 4 discusses an important generalization of both of the previously con-
sidered problems: the prize-collecting Steiner tree problem. Initially, we pro-
vide new complexity results, showing in particular that the problem is fixed-
parameter tractable. We go on to introduce and analyze several new algorithms
and techniques. A notable example is a new implication concept that allows
us to identify vertices that are contained in all optimal solutions. As in the
previous two chapters, these algorithms are finally combined within an exact
branch-and-cut solver.

– Chapter 5 shows how to readily extend the algorithmic base established in
the previous three chapters to solve further related problems. The focus is on
breadth rather than depth: We show how to achieve strong results for many
problem classes with little additional algorithmic and implementational effort.

– Chapter 6 contains implementation details of several of the most important
algorithms introduced so far—including various data structures and auxiliary
algorithms. Furthermore, this chapter provides details on both shared- and
distributed memory parallelizations of our branch-and-cut framework.

– Chapter 7 closes the thesis, providing a conclusion as well as suggestions for
further research on the topics discussed so far.

Complementary to the theoretical results given in this thesis, a notable practical
contribution is the implementation of an exact Steiner tree solver. The new solver is
on each of the 15 problem classes it can handle faster than all other (problem-specific)
solvers from the literature5, often by orders of magnitude. In particular, it consistently

5 It should be noted, though, that for RSMT the initial full Steiner tree generation is not done by
our solver

6 Introduction

outperforms the long-reigning state-of-the-art solver for SPG. Furthermore, many
benchmark instances from the literature for several problem classes can be solved
for the first time to optimality—some containing millions of edges. These problem
classes include the SPG, the prize-collecting Steiner tree problem, the maximum-
weight connected subgraph problem, and the Euclidean Steiner tree problem. We
further discuss the software contribution in the following section.

Publications, software, and outreach

Substantial parts of this thesis have been published in or submitted to the following
peer-reviewed journals and conference proceedings. Articles submitted to, accepted
by, or published in international journals are listed below:

– An article about the theoretical aspects of Chapter 2 and 3 has been submitted
to Networks. This article is joint work with Thorsten Koch.

– Parts of Chapter 3 have been published in SIAM Journal on Optimization (Re-
hfeldt and Koch, 2019). The article is joint work with Thorsten Koch.

– Parts of Chapter 3 and Chapter 4 have been published in Journal on Computa-
tional Mathematics (Rehfeldt and Koch, 2018a). The article is joint work with
Thorsten Koch.

– Parts of Chapter 3 and Chapter 4 have been published in Networks (Rehfeldt
et al., 2019). The article is joint work with Thorsten Koch and Stephen Maher.
However, we note that several of the algorithms from Rehfeldt et al. (2019)
have been replaced by (provably) stronger counterparts in this thesis.

– Parts of Chapter 4 have been accepted for publication by the INFORMS Journal
on Computing. See Rehfeldt and Koch (2020) for a preprint. The article is joint
work with Thorsten Koch.

– Parts of Chapter 5.1 have been published in IEEE/ACM Transactions on Net-
working (Sun et al., 2020). However, the contribution of the author of this thesis
is small. It is restricted to an extension of the solver developed in this thesis
for the Steiner tree variant considered in the article, as well as computational
results.

Furthermore, a publication containing large parts of Chapter 6 and parts of Chap-
ter 2 is in preparation, and will be submitted to an international journal. Publications
in conference proceedings are as follows:

– An overview of the solver developed for this thesis has been published in the
Operations Research Proceedings 2017 (Rehfeldt and Koch, 2018b). This pub-
lication is joint work with Thorsten Koch.

– Results from several chapters of this thesis have been published in the pro-
ceedings of the 7th International Conference on High Performance Scientific
Computing (Rehfeldt et al., 2021). This publication is joint work with Yuji
Shinano and Thorsten Koch.

Introduction 7

– Parts of Chapter 2 have been published in the proceedings of the 22nd Con-
ference on Integer Programming and Combinatorial Optimization (IPCO) (Re-
hfeldt and Koch, 2021). An extended version has been submitted to Mathemat-
ical Programming B. This manuscript is joint work with Thorsten Koch.

– Parts of Chapter 6 have been published in the proccedings of CPAIOR 2019 (Shi-
nano et al., 2019b). This publication is joint work with Yuji Shinano and
Thorsten Koch.

– Results from Chapter 6.3 have been published in the proceedings of the 9th
IEEE Workshop Parallel / Distributed Combinatorics and Optimization (Shi-
nano et al., 2019a). This publication is joint work with Yuji Shinano and Tristan
Gally.

The software developed in the course of this thesis has been combined in the
Steiner tree solver SCIP-Jack. A previous version of SCIP-Jack is freely available
for academic use as part of the SCIP Optimization Suite (Gamrath et al., 2020).
We note that a forerunner of SCIP-Jack existed already prior to the start of this
thesis (with the author of this thesis being the main developer). However, more
than 95% of the current SCIP-Jack version has been newly implemented as part
of this thesis. This current version will be included in the next major release of
the SCIP Optimization Suite. The SCIP-Jack version included in the latest SCIP
Optimization Suite has been used in several research projects, e.g. van den Boogaart
(2018); Iwata and Shigemura (2019); Peters (2021), and has already received notable
recognition in the recent literature on Steiner tree and related problems, see e.g. Ljubic
(2020). Furthermore, this version of SCIP-Jack successfully competed in the 3rd
Parameterized Algorithms and Computational Experiments Challenge (Bonnet and
Sikora, 2019), dedicated to fixed-parameter tractable SPGs. Even though SCIP-Jack
did not include any special algorithms for such problems, it reached first (Track B),
second (Track A), and third (Track C) place in the three tracks of the challenge. We
note that the current version of SCIP-Jack also outperforms all other competitors
in Track A and C, see Section 2.7.2 for more details.

Finally, we note that SCIP-Jack is actively being used in several industrial
projects, for example at Open Grid Europe, one of Europe’s largest transmission
systems operators.

Chapter 1

Preliminaries

This chapter provides preliminaries that are relevant at multiple places of this thesis.
Section 1.1 introduces basic notation and concepts. Section 1.2 provides information
on the computational experiments conducted in this thesis.

1.1 Notation and basic concepts

Most notation will be introduced as needed. To keep the individual chapters largely
self-contained, we will also allow some redundancies and occasionally reintroduce
basic concepts. In the following, we merely provide the most common notation, as
well as several simple concepts. A list of frequently used abbreviations and names
can be found on page 187.

1.1.1 Miscellaneous

The sets of real, rational, and integer numbers are denoted by R, Q, and Z,
respectively, and their nonnegative versions by R≥0, Q≥0, and Z≥0. For the strictly
positive versions, we write R>0, Q>0, and Z>0. The set of natural numbers is denoted
by N. We assume 0 /∈ N, so N = Z>0. We write N0 := Z≥0. For the cardinality of
a finite set S we write |S|. Throughout this thesis, all vectors are understood to be
column vectors. The transpose of a vector or matrix is denoted by the superscript ‘T ’.
Let K be a field. For any function x : M 7→ K with M finite, and any M ′ ⊆M define
x(M ′) :=

∑
i∈M ′ x(i). For an integer programming (IP) formulation F we denote

its optimal objective value by v(F). For the linear programming (LP) relaxation
of F we denote by vLP (F) the optimal objective value, and by PLP (F) the set of
feasible points. For background information on integer and linear programming see
for example Schrijver (1998).

1.1.2 Graph theory

The general graph notation used in this thesis is largely in accordance with Bondy and
Murty (2008). It deviates at several places to, for example, be in line with the Steiner
tree literature, or to facilitate the presentation of Steiner tree specific concepts.

9

10 Preliminaries

For a given undirected graph G = (V,E) we define n := |V | and m := |E|, and for
a directed graph D = (V,A) likewise n := |V | and m := |A|. In this thesis, graphs are
always simple, i.e. without parallel edges or arcs, and finite, i.e. n,m <∞ holds. We
refer to the vertices and edges of a subgraph G′ ⊆ G as V (G′) and E(G′) respectively,
and analogously to the vertices and arcs of a directed subgraph D′ ⊆ D as V (D′)
and A(D′). An (undirected) edge between vertices v, w ∈ V is denoted by {v, w}, a
(directed) arc by (v, w). For U ⊆ V we define

E[U] :=
{
{v, u} ∈ E | v, u ∈ U

}
.

For U ⊆ V define the induced edge cut as δ(U) := {{u, v} ∈ E | u ∈ U, v ∈ V \U};
for a directed graph D = (V,A) define δ+(U) := {(u, v) ∈ A | u ∈ U, v ∈ V \ U} and
δ−(U) := δ+(V \U). We also write δG or δ+

D, δ
−
D to distinguish the underlying graph.

For a single vertex v we use the short-hand notation δ(v) := δ({v}), and accordingly
for directed graphs. In the undirected case the degree of any v ∈ V is defined as
|δ(v)|, i.e. the number of incident edges. In the directed case we distinguish between
the indegree |δ−(v)| and the outdegree |δ+(v)|.

Paths will be considered as subgraphs, and the subpath of a path Q between two
vertices v, w ∈ V (Q) will be denoted by Q(v, w). A path between two vertices v, w will
be referred to as (v, w)-path. In an undirected graph, a walk is an alternating sequence
of vertices and edges v1, e1, v2, e2, ..., vk−1, ek−1, vk, such that ei := {vi, vi+1}, i =
0, ..., k−1. For a walk W we denote the set of vertices and the set of edges it contains
by V (W) and E(W).

Let v and w be two distinct vertices of G. A subset C ⊆ V \ {v, w} is called
(v, w)-separator, or (v, w)-node-separator, if there is no path from v to w in the graph
(V \C,E[V \C]). The family of all (v, w)−separators is denoted by C(v, w). Note that
C(v, w) = ∅ if and only if {v, w} ∈ E. For directed graphs we say that C ⊆ V \ {v, w}
is a (v, w)−separator if all directed paths from v to w contain a vertex from C.

Given edge costs c : E 7→ Q>0, the triplet (V,E, c) is referred to as network. By
d(v, w) we denote the cost of a shortest path (with respect to c) between vertices
v, w ∈ V . We say that d(v, w) is the distance between v and w. For any (distance)
function d̃ :

(
V
2

)
7→ Q>0, and any U ⊆ V we define the d̃-distance graph on U as the

network

DG(U, d̃) := (U,

(
U

2

)
, c̃), (1.1)

with c̃({v, w}) := d̃(v, w) for all v, w ∈ U . If d̃ is the standard distance (i.e. d̃ = d),
we write DG(U) instead of DG(U, d). Note that we write usually d̃(v, w) instead of
d̃({v, w}).

Finally, we denote by α(G) the maximum number of independent vertices in graph
G.

1.1.3 Steiner arborescence problem

We will require the directed equivalent of the SPG, the Steiner arborescence problem
(SAP), see e.g. Hwang et al. (1992), throughout his thesis. The SAP is defined as
follows. Given a directed graph D = (V,A), costs c : A → Q>0, a set T ⊆ V of

1.2. Experimental methodology 11

terminals, and a root r ∈ T , a directed tree S ⊆ D is required such that: First, for
all t ∈ T the tree S contains exactly one directed path from r to t. Second, c(A(S))
is minimized.

We will use the following IP formulation for the SAP, due to Wong (1984), through-
out this thesis. Associate with each arc a ∈ A a binary variable y(a), indicating
whether a is contained in the Steiner arborescence (y(a) = 1) or not (y(a) = 0).

Formulation 1.1. Directed Cut Formulation (DCut)

min cT y (1.2)

y(δ−(W)) > 1 for all W ⊂ V, r /∈W,W ∩ T 6= ∅, (1.3)

y(a) ∈ {0, 1} for all a ∈ A. (1.4)

The constraints (1.3) make sure that all feasible solutions contain directed paths
from the root to each additional terminal.

1.2 Experimental methodology

At several places, this thesis will analyze the practical performance of newly introduced
algorithms by computational experiments. In the following, we describe some details
concerning our computational methodology.

1.2.1 Hardware and software

All experiments for this thesis except for those from Chapter 6.3 were conducted
on a cluster of Intel Xeon CPUs E3-1245 with 3.40 GHz and 32 GB RAM. With
the exception of Chapter 6.3, all experiments were performed single-threaded. We
ran only one job per compute node at a time, to avoid a distortion of the run time
measures—originating for example from shared (L3) cache. We used a version of our
Steiner tree solver SCIP-Jack that is embedded into a development version of SCIP
7.0.2 (Gamrath et al., 2020). We used the commercial CPLEX 12.10 (IBM, 2020),
and the non-commercial SoPlex 5.0 (Gamrath et al., 2020) as LP solvers.

A previous version of SCIP-Jack is available as part of the SCIP Optimization
Suite (Gleixner et al., 2018), which is free for academic use. A newer version of SCIP-
Jack including the developments described in this thesis will be made publicly
available as part of an upcoming release of the SCIP Optimization Suite. Most of
the experiments in this thesis were performed with the same version of SCIP-Jack.
Exceptions are marked as such, and include mostly exceptionally long runs. For
reasons of reproducibility, the SCIP-Jack versions, as well as the log files of the
experiments have been archived.

1.2.2 Averaging and performance variability

To evaluate and compare algorithmic performance on a large set of benchmark in-
stances, we rely on comparing averages and maxima. The classic arithmetic average
has the property to be strongly dominated by the largest absolute values. Since, the

12 Preliminaries

run times of state-of-the-art Steiner tree solvers usually vary widely even among
single benchmark sets, this property seems disadvantageous. Thus, we usually use the
shifted geometric mean (Achterberg, 2007b) instead, which is has become a standard
measure in discrete optimization, see e.g. Mittelmann (2020). We note, that the use of
the arithmetic mean would bias most results strongly in favor of SCIP-Jack, which
is particularly strong on harder instances—across all problem classes considered in
this thesis. Given values t1, ..., tk ∈ R>0, and a shift s ∈ R>0, the shifted geometric
mean is defined as

k

√√√√ k∏
i=1

(ti + s)− s. (1.5)

Compared to the arithmetic average, the use of a geometric mean brings the
benefit of reducing the influence of very hard instances. On the other hand, the use
of a shift helps avoid an overrepresentation of very small values. In this thesis we
use shifts of s = 1 or s = 10 (i.e., 1 or 10 seconds) for averaging run times, which
are both standard values; see e.g. Gleixner et al. (2018); Mittelmann (2020). We also
note that all run times reported for SCIP-Jack in this thesis include the reading
time.

Finally, we note that mixed-integer solvers such as SCIP are usually subject to
so-called performance variability (Lodi and Tramontani, 2013). Broadly speaking,
performance variability means a large change of the solving behavior, such as run
time, resulting from seemingly neutral changes to the solution process. Such seem-
ingly neutral changes are for example the permutation of the rows and columns of the
constraints matrix. Thus, it has become a common practice in the integer program-
ming community to perform computational experiments with several random seeds,
which modify the behavior of the solution process in a (hopefully) random way; see
e.g. Lodi and Tramontani (2013). Similarly, permutations of the constraint matrix are
employed. Also, statistical tests are often used. While we have implemented random
seed features into SCIP-Jack, the impact on the solution process is far less pro-
nounced than for general mixed-integer solvers. The impact on the run time on most
benchmark sets used in this thesis is less than five percent—the impact of permuting
the underlying graph is even smaller. A main reason for this small impact might be
attributed to the fact that the vast majority of the instances is solved already at the
root node of the branch-and-bound tree. Even more, many of the instances are al-
ready solved by the highly sophisticated presolving (or reduction) methods developed
and implemented in the thesis. Reductions techniques for Steiner tree and related
problems are far less susceptible to performance variability—both empirically, and
theoretically. See for example Kingston and Sheppard (2003) for theoretical results
concerning the robustness of reduction methods for SPG. Consequently, we do not
use multiple random seeds or graph permutations for most of the experiments in this
thesis.

Chapter 2

The prototype: Steiner tree problem in

graphs

The first problem discussed in this thesis is naturally the classic Steiner tree problem
in graphs (SPG). The results from this chapter also form a basis for the related
problems discussed later on.

2.1 Introduction

This chapter starts with a more formal definition of the SPG: Given an undirected
connected graph G = (V,E), edge costs c : E → Q>0 and a set T ⊆ V of terminals,
the problem is to find a tree S ⊆ G with T ⊆ V (S) such that c(E(S)) is minimized.
A tree S ⊆ G such that T ⊆ V (S) is called Steiner tree. The vertices in V \ T are
referred to as Steiner vertices or Steiner nodes. Note that allowing non-negative or
positive edge costs for the SPG is equivalent, since each zero-cost edge can simply be
contracted. An illustration of an SPG instance and a corresponding Steiner tree is
given in Figure 2.1. For simplicity, no edge costs are specified.

(a) An SPG instance (b) A feasible solution (Steiner tree)

Figure 2.1: Illustration of a Steiner tree problem in a graph (left) and a possible
solution (right). Terminals are drawn as squares, Steiner nodes as circles.

13

14 The prototype: Steiner tree problem in graphs

2.1.1 Background

Given the huge number of publications on Steiner tree problems6, any overview
is bound to be incomplete. Still, we try to at least touch upon some of the most
important results in prominent research fields. Furthermore, we give a short historical
background. As to practical applications of the (classic) SPG, we only note that
prominent areas are VLSI design, see e.g. Held et al. (2011), Phylogency, see e.g.
Hwang et al. (1992), and telecommunication networks, see e.g. Leitner et al. (2014).
For further interesting applications, the reader is referred to Cheng and Du (2004);
Noormohammadpour et al. (2017). For a more comprehensive background, the reader
is referred to the books Hwang et al. (1992); Korte et al. (2018); Prömel and Steger
(2002), and the recent survey Ljubic (2020). The Steiner tree problem is also the
subject of several other books, e.g. Cheng and Du (2004); Cieslik (1998); Du et al.
(2000); Voss (1990).

Historical notes

Historically, the Steiner problem in graphs is derived from a problem known as the
Euclidean Steiner tree problem : Given a finite set T of points in the plane, connect
them by line segments of minimum total Euclidean length such that any two points
are interconnected by line segments either directly or by using intermediary points.
More details on this problem are given in Section 5.4. The history of the Steiner
tree problem can be traced back to the year 1636 when Pierre de Fermat formulated
the special case of |T | = 3. Evangelista Torricelli found an elegant solution to this
problem already before 1640 (Prömel and Steger, 2002).

More than 100 years later, the general Euclidean Steiner tree problem was in-
dependently formulated by Carl Friedrich Gauß and Joseph Diaz Gergonne (Brazil
et al., 2014). The name Steiner is derived from Jakob Steiner (1796 - 1863), who
held a chair of geometry at Berlin university. The, somewhat misleading, attribu-
tion of the problem name to Jakob Steiner is due to the famous treatise What is
Mathematics? (Courant et al., 1941).

The Steiner tree problem in graphs as it is known today can be found in a publi-
cation by Hakimi (1971). Since then, hundreds of articles concerning the Steiner tree
problem in graphs have been published; see Hwang et al. (1992) for a comprehensive,
albeit outdated, survey, or Ljubic (2020) for an up-to-date one.

A detailed account of the rich history of the (Euclidean) Steiner tree problem can
be found in Brazil et al. (2014).

Complexity results

The decision variant of the SPG is strongly NP-complete, and the optimization
variant thus NP-hard. Indeed, the decision variant of the SPG is one of the famous 21
NP-complete problems by Karp (1972). However, there are several polynomially
solvable special cases of the SPG. The two most important ones are the case |T | = 2,

6 As of November 2020, a search for the term Steiner tree produced 29 200 results on Google
Scholar.

2.1. Introduction 15

which corresponds to finding a shortest path between two vertices, and |T | = n, which
corresponds to finding a minimum spanning tree in G. Further polynomially solvable
special cases can be found in Hwang et al. (1992).

Dreyfus and Wagner (1971) and Levin (1971) described a dynamic programming
algorithm for SPG that runs in

O(3|T |n+ 2|T |n2 + n2 log n+mn).

Hakimi (1971) also observed that the SPG is also fixed-parameter tractable (FPT) in
the number of Steiner nodes—by using simple enumeration. Buchanan et al. (2018)
showed that this algorithm by Hakimi (1971) is essentially best possible under the
Strong Exponential-Time Hypothesis (SETH). The run time of the algorithm by
Dreyfus and Wagner (1971) and Levin (1971) was later improved by Erickson et al.
(1987). However, the leading exponential term was unchanged. Fuchs et al. (2007b)
were the first to break the O?(3|T |) bound. Subsequently, Fuchs et al. (2007a) improved
the run time to O?((2 + ε)|T |) for any sufficiently small and fixed ε > 0. However, the
(hidden) term depending on ε grows very quickly with decreasing ε. Vygen (2011)
introduced an algorithm that runs in time

O(n|T |2|T |+log2 |T | log2 n).

This algorithm is only outperformed by that of Fuchs et al. (2007a) if the ratio

of terminals, i.e. |T |n , is small. However, for sufficiently small terminal ratio, the
algorithm by Erickson et al. (1987) is still the fastest known one. Additionally, for a
terminal ratio greater than approximately 1

2 , the enumeration scheme from Hakimi
(1971) is the fastest known solution method (for general SPG). Moreover, Marx et al.
(2018) show that under the Exponential-Time Hypothesis (ETH), SPG cannot be
solved in 2o(|T |)nO(1), even for planar graphs with unit weights. Several articles have
also exploited the fact that the SPG is FPT with respect to the tree-width of the
underlying graph, see e.g. Chimani et al. (2012).

A different line of research has focused on polynomial space algorithms for SPG, see
e.g. Fomin et al. (2013); Kisfaludi-Bak et al. (2020a). A polynomial space algorithm
that is faster than any of the algorithms mentioned in this section so far was given
by Nederlof (2009). However, this algorithm only works for a restricted set of (integer)
edge weights. See also Fomin et al. (2019a) for a recent related result.

Similarly, many articles consider exact SPG algorithms only for planar graphs.
For recent results see Kisfaludi-Bak et al. (2020b). Dom et al. (2014) showed that the
SPG parameterized by the number of terminals does not admit a polynomial kernel
(under certain general complexity assumptions widely believed to be true). A linear
programming based fixed-parameter tractable algorithm for the SPG is described
in Siebert et al. (2020a)

Approximation algorithms

Bern and Plassmann (1989) demonstrated that the SPG is MAXSNP-hard, even
for edge weights in {1, 2}. I.e., there exists an ε > 0 such that finding a (1 + ε)-
approximation to this problem is NP-hard. Chleb́ık and Chleb́ıková (2008) further

16 The prototype: Steiner tree problem in graphs

showed that approximating the SPG within a factor of 96
95 is NP-hard. However, the

SPG in planar graphs has an approximation scheme, which was found by Borradaile
et al. (2009).

A 2-approximation of the SPG was already found by Gilbert and Pollak (1968).
The idea is to compute a minimum spanning tree in the subgraph of the metric closure
of G induced by T . This and other 2-approximation algorithms were also published by
several other authors, El-Arbi (1978); Kou et al. (1981); Takahashi and Matsuyama
(1980). An O(m+n log n) algorithm for computing the minimum-spanning-tree-based
2-approximation of the SPG is suggested in Mehlhorn (1988); see also Kou (1990).

Zelikovsky (1993) was the first to break the 2-approximability bound for SPG.
He introduced a, much acclaimed, 11

6 -approximation algorithm. A faster realization
of the algorithm is given by Duin and Voss (1997). The ratio has subsequently
been improved to 1.75 by Berman and Ramaiyer (1994), to 1.65 by Karpinski and
Zelikovsky (1997), to 1.60 by Hougardy and Prömel (1999), and to 1.55 by Robins and
Zelikovsky (2005). Finally, the currently best approximation ratio of 1.39 was given
by Byrka et al. (2013), who used an LP-based approach with randomized iterative
rounding. This approach uses a hypergraphic IP formulation of the SPG that was
introduced by Polzin and Daneshmand (2003). In Goemans et al. (2012) a faster and
de-randomized version of the 1.39-approximation algorithm by Byrka et al. (2013) is
given.

Recently, a new research area has emerged that works on fixed-parameter tractable
approximation algorithms; so essentially a combination of the current and the previous
section. Results for SPG in this area can be found in the survey Feldmann et al. (2020).

Finally, despite the considerable theoretical advancements sketched above, the
empirical results of known approximation algorithms are clearly inferior to those of
both heuristic and integer-programming-based methods, see e.g. Beyer and Chimani
(2019); Ciebiera et al. (2014). The approximation algorithms fall short both in terms
of run time and solution quality.

Exact algorithms

While the algorithm introduced by Dreyfus and Wagner (1971) can in principle solve
any SPG, it is hopelessly slow and also too memory intensive for practical purposes.
Consequently, several authors, e.g. Shore et al. (1982); Beasley (1984), suggested
more practical algorithms in the following years. A comprehensive overview of exact
algorithms up to 1990 is given in Hwang and Richards (1992). A later milestone was
the exact algorithm by Duin (1993), incorporating his work on reductions (Duin and
Volgenant, 1989a,b) and heuristics (Duin and Voss, 1997). This exact algorithm used
branch-and-bound, but only a dual heuristic instead of linear programming. Compu-
tational experiments by Lucena and Beasley (1998) show that the implementation
by Duin (1993) is more than three orders of magnitude faster than any of the solvers
by Chopra et al. (1992); Beasley (1989); Lucena and Beasley (1998), which were the
best alternatives at this time. Five years later, Koch and Martin (1998) introduced a
branch-and-cut algorithm with sophisticated separation procedures, combined with
reduction techniques and primal heuristics. Koch and Martin (1998) were able to

2.1. Introduction 17

solve all problem instances that had hitherto been discussed in the literature to
optimality. Subsequently, de Aragão et al. (2001) developed a branch-and-bound al-
gorithm, based on dual heuristics, that could solve several large-scale, VLSI instances
which had been newly introduced by Koch and Martin (1998) for the first time to
optimality. A key ingredient of this branch-and-bound algorithm were the reduction
methods introduced in Uchoa et al. (2002).

A huge leap was made by the joint PhD theses of Polzin (2003) and Vah-
dati Daneshmand (2004), whose work was also published in a series of papers (Polzin
and Daneshmand, 2001a, 2002, 2001b, 2003, 2006). The authors combined known
methods with many new algorithms within a branch-and-bound framework. These
new algorithms include various sophisticated reduction techniques, a dynamic pro-
gramming algorithm, a (provably) stronger integer programming formulation, and
primal and dual heuristics. Furthermore, a prominent feature of Polzin (2003); Vah-
dati Daneshmand (2004) is the efficient implementation of their algorithms. The
resulting solver drastically outperformed any competitor—on many benchmark in-
stances even by three or more orders of magnitude. Furthermore, it could solve many
instances for the first time to optimality. In fact, the solver has remained the state
of the art until today. See Polzin and Vahdati-Daneshmand (2014) for more recent
computational results of their solver, and Polzin and Vahdati-Daneshmand (2009)
for an overview of the algorithmic components.

In 2014, the 11th DIMACS Challenge, dedicated to Steiner tree problems, took
place. In the wake of the Challenge, several new SPG solvers were introduced in the
literature. Fischetti et al. (2017) introduced a branch-and-cut solver, including reduc-
tion techniques, and a variety of heuristics. The solver is especially tailored towards
previously unsolvable instances, and instances with unit edge weights. Notably, the
solver won the exact SPG category at the DIMACS Challenge. Pajor et al. (2017)
introduced a branch-and-bound solver based on the same dual heuristic already used
in Duin (1993)—albeit Pajor et al. (2017) introduced a more efficient implementation.
Furthermore, the solver includes extensions and more efficient implementations of
primal heuristics from Ribeiro et al. (2001) and Uchoa and Werneck (2010). The
solver by Pajor et al. (2017) won the heuristic SPG category at the DIMACS Chal-
lenge. Hougardy et al. (2017) provided an extension of the algorithm by Dreyfus
and Wagner (1971), which is far more efficient in practice, but retains the worst-case
bound. However, their solver works only for instances with no more than 64 terminals.

Overall, the 11th DIMACS Challenge brought considerable progress on the so-
lution of notoriously hard SPG instances that had been designed to defy known
solution techniques, see Koch et al. (2001); Rosseti et al. (2004). Several of these
instances could be solved for the first time to optimality. In particular, Fischetti
et al. (2017) and Pajor et al. (2017) showed strong results for some of these instances.
Additionally, Gamrath et al. (2017) could solve several instances by running a branch-
and-bound search in parallel on a supercomputer. However, on the vast majority of
(real-world) instances from the literature, Polzin (2003); Vahdati Daneshmand (2004)
(whose solver did not compete at the DIMACS Challenge) stayed well out of reach:
For many benchmark instances, their solver is more than two orders of magnitude
faster, and it can furthermore solve far more instances to optimality.

18 The prototype: Steiner tree problem in graphs

In 2018, the 3rd PACE Challenge (Bonnet and Sikora, 2019) took place, dedi-
cated to fixed-parameter tractable algorithms for SPG. Thus, the PACE Challenge
considered mostly instances with a small number of terminals, or with small tree-
width. Solvers that participated in the PACE Challenge are for example described
in Fichte et al. (2020); Hušek et al. (2020); Iwata and Shigemura (2019). Notably,
the solver by Iwata and Shigemura (2019) has the worst-case complexity of Erickson
et al. (1987), but is faster than Hougardy et al. (2017) in practice. The solver can also
handle instances with more than 64 terminals. Furthermore, a forerunner of the solver
presented in this thesis competed at the PACE Challenge, see also Section 2.7.2.

While many different techniques have been employed for the exact solution of SPG
in the literature in the last 50 years, widely used ingredients are as follows: Reduction
techniques for both preprocessing and propagation, Lagrangian or dual-ascent relax-
ations for calculating strong lower bounds, various heuristics for calculating primal
bounds, and branch-and-cut or branch-and-price methods based on MIP formulations
for proving optimality.

2.1.2 Contribution and structure

This chapter aims to once again advance the state of the art in exact SPG solution.
To this end, we proceed as follows.

– Section 2.2 provides a theoretical basis for the integer-programming-based exact
solution approach of this chapter. We analyze (mixed) integer programming
formulations of the SPG that are widely used in theory and practice. Several
new results are given. In particular, we provide new, and stronger, conditions
under which the LP-relaxation of the well-known (bi-)directed cut formulation
has no integrality gap.

– Section 2.3 is based on a combination of three concepts: Implications, conflicts,
and reductions. As a result, various new SPG techniques are conceived. By
using a new implication concept, a distance function is conceived that provably
dominates the well-known bottleneck Steiner distance. As a result, several
reduction techniques that are stronger than results from the literature can be
designed. We show how to derive conflict information between edges from the
above methods. Further, we introduce a new reduction operation whose main
purpose is to introduce additional conflicts.

– Section 2.4 introduces a more general version of the powerful so-called extended
reduction techniques. We furthermore introduce stronger reduction criteria, and
make use of both the previously introduced new distance concept and the conflict
information.

– Section 2.5 reviews and introduces several primal SPG heuristics—intended
to accelerate exact SPG solution. The new heuristics integrate some of the
previously introduced implication and reduction techniques.

– Section 2.6 integrates the previously introduced algorithmic components into
an exact branch-and-cut algorithm. We also discuss further components such as

2.2. Integer programming formulations 19

separation methods, decomposition, domain propagation, or branching. Further-
more, we introduce an exact dynamic programming algorithm (based heavily
on reduction methods), which is employed for solving decomposed subproblems.

– Section 2.7 provides computational results. Besides showing the impact of
individual algorithmic components, we provide comparisons with the state of the
art on a large collection of well-established benchmark sets from the literature.

The resulting exact SPG solver consistently outperforms the current state-of-the-
art solver from Polzin (2003); Vahdati Daneshmand (2004)—both with respect to
the run time and the number of solved instances. Furthermore, we can solve several
SPG benchmark instances for the first time to optimality.

2.2 Integer programming formulations

Many (mixed) integer programming formulations for the SPG have been described
in the literature, see e.g. Goemans and Myung (1993); Magnanti and Wolsey (1995);
Polzin and Daneshmand (2001a) for overviews. This section gives new theoretical
results for some well-known IP formulations for SPG, which are also used in state-of-
the-art SPG solvers. Indeed, also the SPG solver developed as part of this thesis is
based on one of the IP formulations discussed in the following.

We are mainly concerned with the strength of the respective LP-relaxation, which
is of crucial importance for the practical success of an IP or MIP formulation—not only
for SPG, but also for many other optimization problems, such as the TSP (Applegate
et al., 2006). The strength of LP-relaxations for SPG has thus been widely discussed
in the literature. Furthermore, LP-relaxations play a crucial role in the best-known
SPG approximation algorithm, see Byrka et al. (2013). In this section, we assume
that the edge costs c are real-valued and positive. The reader is reminded of the
definitions and concepts introduced in Chapter 1.

2.2.1 Cut and flow formulations

A natural way to formulate the SPG as an integer program is by associating with each
edge e ∈ E a binary variable x(e), indicating whether e is contained in the Steiner
tree (x(e) = 1) or not (x(e) = 0). This conception paves the way for a cut-based
formulation introduced in Aneja (1980):

Formulation 2.1. Undirected Cut Formulation (UCut)

min cTx (2.1)

x(δ(W)) > 1 for all W ⊂ V, 0 < |W ∩ T | < |T |, (2.2)

x(e) ∈ {0, 1} for all e ∈ E. (2.3)

One verifies that the constraints (2.2) ensure the existence of paths from each
terminal to all other ones in a feasible solution. In this way, it can be readily demon-
strated that UCut is correct. We note that a feasible but not optimal solution to

20 The prototype: Steiner tree problem in graphs

UCut is not necessarily the incidence vector of a Steiner tree. Indeed, the convex hull
of all x ∈ NE0 that satisfy (2.2) is of blocking type, i.e. its recession cone equals RE>0.

It is well-known that any SPG can be transformed to an SAP by replacing each
edge by two anti-parallel arcs of the same cost, and distinguishing an arbitrary
terminal as the root. This procedure results in a one-to-one correspondence between
the respective solution sets. The SPG IP formulation that consists of Formulation 1.1
applied to this SAP is called bidirected cut formulation (BDCut). This formulation
is widely known, and often used in Steiner tree solvers, see e.g. Fischetti et al. (2017);
Polzin and Daneshmand (2001b).

The relation between the directed and undirected formulation has been widely
discussed in the literature, see e.g. Chopra and Rao (1994); Magnanti and Wolsey
(1995). We briefly state the most important results here:

– vLP (UCut) 6 vLP (BDCut), and sup
{ vLP (BDCut)
vLP (UCut)

}
= 2 (Duin, 1993).

– The value vLP (BDCut) is independent of the choice of the root in the trans-
formed SAP, as shown by Goemans and Myung (1993). See also Corollary 4.28
for a shorter proof.

The undirected formulation can be tightened by the Steiner partition inequalities
introduced in Grötschel and Monma (1990) and the odd hole inequalities by Chopra
and Rao (1994), but still BDCut remains strictly stronger than UCut. However, by
adding auxiliary variables, the undirected cut formulation can be made as tight as the
bidirected one (Goemans and Myung, 1993). Still, the latter is computationally more
attractive, as violated inequalities can be quickly separated by using maximum-flow
algorithms; see Section 6.2.4 for more details. Additionally, BDCut can readily be
tightened by adding additional constrains, as we will see below.

Another well-known formulation, see e.g. Wong (1984), is based on flows.

Formulation 2.2. Directed Multicommodity Flow Formulation (DF)

min cT y (2.4)

s.t. f t(δ−(v))− f t(δ+(v)) =

{
1
0

if v = t;
if v ∈ V \ {r, t} for all v ∈ V, t ∈ T \ {r},

(2.5)

f t 6 y for all t ∈ T \ {r}, (2.6)

f t > 0 for all t ∈ T \ {r}, (2.7)

y ∈ {0, 1}A. (2.8)

By using the max-flow/min-cut theorem, one shows that DF is an extended
formulation of DCut, i.e., projy(PLP (DF)) = PLP (DCut), see e.g. Duin (1993).
Both formulations can be strengthened by the so-called flow-balance constraints
from Duin (1993); Koch and Martin (1998):

y(δ−(v)) 6 y(δ+(v)) for all v ∈ V \ T. (2.9)

2.2. Integer programming formulations 21

We will refer to the extensions of the above formulations that additionally include (2.9)
as DCutFB and DFFB , respectively. The flow-balance constraints are commonly used
in SPG solvers, e.g. Koch and Martin (1998); Polzin and Daneshmand (2002), and
have moreover been applied to several related problem, see e.g. Ljubic et al. (2006);
Leitner et al. (2018b).

Although the flow-balance constraints are widely used, the only theoretical results
for SPG or SAP in the literature that the author is aware of are given by Duin (1993)
and Polzin and Daneshmand (2001a), who provide examples where vLP (DCutFB) >
vLP (DCut). For the two-stage stochastic SPG, Leitner et al. (2018b) give a corre-
sponding result. Next, we give a stronger (new) result, which will be used several
times in this thesis.

Lemma 2.3. If |T | 6 3, then vLP (DCutFB) = v(DCutFB).

Proof. For the case of |T | = 1 and |T | = 2 the lemma holds already without the flow-
balance constraints. So let (V,A, T, c, r) be an SAP with two terminals t, u besides
the root r. We additionally require that a feasible solution does not have any leaves
apart from r, t, u. For this so-called two-terminal Steiner tree problem a complete
polyhedral description is given by Ball et al. (1989):

f(δ−(v))− f(δ+(v)) >

{
−1
0

if v = r;
otherwise;

for all v ∈ V, (2.10)

(f + f t)(δ−(v))− (f + f t)(δ+(v)) =

1
−1
0

if v = t;
if v = r;
otherwise;

for all v ∈ V,(2.11)

(f + fu)(δ−(v))− (f + fu)(δ+(v)) =

1
−1
0

if v = u;
if v = r;
otherwise;

for all v ∈ V,(2.12)

f + f t + fu 6 y, (2.13)

y, f, f t, fu ∈ RA>0. (2.14)

The above description is based on the following observation: Any feasible arborescence
for the two-terminal Steiner tree problem consists of a path from r to a splitter node
v, as well as a v-t and a v-u path. Note that any of these paths can be a single node.

Let (f t, fu, y) be an optimal LP solution to DFFB . Assume that this solution is
minimal, i.e. for any feasible solution (f̃ t, f̃u, ỹ) 6 (f t, fu, y) it holds that (f̃ t, f̃u, ỹ) =
(f t, fu, y). We will show that there exist f̂ , f̂ t, f̂u ∈ RA such that (f̂ , f̂ t, f̂u, y) is
contained in the polyhedron described above. Define for all a ∈ A:

f̂(a) := min{f t(a), fu(a)}, (2.15)

f̂ t(a) := max{f t(a)− fu(a), 0}, (2.16)

f̂u(a) := max{fu(a)− f t(a), 0}. (2.17)

22 The prototype: Steiner tree problem in graphs

First, we show (2.10). Let v ∈ V . Because of the assumed minimality of (f t, fu, y)
we obtain:

f̂(δ−(v))− f̂(δ+(v)) = (f t + fu − y)(δ−(v))− (f t + fu − y)(δ+(v)) (2.18)

= (f t + fu)(δ−(v))− (f t + fu)(δ+(v)) + y(δ+(v))− y(δ−(v)).
(2.19)

If v = r, then
(f t + fu)(δ−(v))− (f t + fu)(δ+(v)) = −2 (2.20)

and
y(δ+(v))− y(δ−(v)) > 1, (2.21)

thus (2.19) implies that (2.10) holds. If v ∈ {t, u}, then

(f t + fu)(δ−(v))− (f t + fu)(δ+(v)) = 1 (2.22)

and
y(δ+(v))− y(δ−(v)) > −1. (2.23)

Finally, if v ∈ V \ {r, t, u}, the flow-balance constraints imply that (2.19) is non-
negative.

Next, consider (2.11)—and equivalently (2.12). By definition it holds that

(f̂ + f̂ t)(δ−(v))− (f̂ + f̂ t)(δ+(v)) = f t(δ−(v))− f t(δ+(v)), (2.24)

which implies (2.11). Likewise, (2.13) follows from the definition of f̂ , f̂ t, and f̂u.

Note that the lemma is best possible in the sense that there exist SAP instances
with |T | = 4 such that vLP (DCutFB) 6= v(DCutFB), see e.g. Liu (1990); Polzin and
Daneshmand (2001a).

We close with a new result for SPG, which is a direct consequence of Lemma 2.3.

Theorem 2.4. If |T | 6 3, then vLP (BDCutFB) = v(BDCutFB).

As for the previous lemma, one can readily show that the theorem is best possible,
see e.g. Polzin and Daneshmand (2001a) for an SPG instance with |T | = 4 such that
vLP (BDCutFB) 6= v(BDCutFB).

2.2.2 Formulations for unweighted Steiner tree problems

Given an undirected connected graph G = (V,E) and a set T ⊆ V of terminals,
the unweighted Steiner tree problem in graphs (USPG) is to find a tree S ⊆ G with
T ⊆ V (S) such that |E(S)| is minimized. The USPG can also be seen as a Steiner
tree problem with uniform edge weights. Many of the hardest Steiner tree benchmark
instances are unweighted, see Koch et al. (2001) for an overview. Moreover, many
theoretical articles consider just the unweighted case, see e.g. Nederlof (2013) for
complexity results.

2.2. Integer programming formulations 23

This section analyzes and compares two formulations for the USPG. First, we
analyze the BDCut formulation in the context of USPG. Second, we analyze the
node-separator formulation from Fischetti et al. (2017), which can only be applied
to problems without (or with uniform) edges weights.

Initially, we introduce the node-based USPG formulation by Fischetti et al. (2017).
This formulation associates with each node v ∈ V a binary variable x(v), which
indicates whether v is contained in a Steiner tree (x(v) = 1) or not (x(v) = 0).
Connectivity is modeled by using node-separators (see Section 1.1.2).

Formulation 2.5. Terminal Node Separator Formulation (TNCut)

min x(V)− 1 (2.25)

s.t. x(C) > 1 for all t, u ∈ T, t 6= u,C ∈ C(t, u), (2.26)

x(v) = 1 for all v ∈ T, (2.27)

x(v) ∈ {0, 1} for all v ∈ V. (2.28)

Note that in Fischetti et al. (2017) a more general version of TNCut for the
prize-collecting USPG is used. However, the prize-collecting USPG is essentially a
maximum-weight connected subgraph problem, see Chapter 3. The results of this
section can be partly extended to this more general variant (which is done in Sec-
tion 3.2.2 for the non-rooted case), but for simplicity, we now consider the USPG
only.

Exactness of the bidirected cut formulation

This section formulates conditions under which the bidirected cut formulation has
no integrality gap. A simple reduction technique for USPG is to contract adjacent
terminals (and delete one edge from each resulting pair of multi-edges). The following
proposition shows that the absolute integrality gap of BDCut is invariant under this
operation.

Proposition 2.6. Let I be an USPG instance with adjacent terminals t, u. Let I ′

be the USPG obtained from contracting t and u. It holds that:

vLP (BDCut(I)) = vLP (BDCut(I ′)) + 1. (2.29)

Proof. Throughout the proof we assume that u is the root for the BDCut formulation,
i.e. r = u. It is well-known that the choice of the root does not affect vLP (BDCut)
(this result also follows from the proof of Theorem 2.7). Furthermore, let D′ = (V ′, A′)
be the bidirected graph obtained by contracting r and t and let r′ be the new vertex.
I.e., V ′ = (V \ {r, t}) ∪ {r′}.

First, we show that vLP (BDCut(I)) > vLP (BDCut(I ′)) + 1. Let y be an optimal
LP solution to BDCut(I). The optimality of y implies that y(δ−(t)) = 1, see Polzin
and Daneshmand (2001a). Create a new optimal solution ỹ as follows. Set ỹ(a) := y(a)
for all a ∈ A \ δ−(t), ỹ(a) := 0 for all a ∈ δ−(t) \ {(r, t)}, and ỹ((r, t)) := 1. Note

24 The prototype: Steiner tree problem in graphs

that for any cut δ−(U) with U ⊂ V \ {r} such that δ−(U) ∩ δ−(t) 6= ∅ it holds that
(r, t) ∈ δ−(U). Thus, ỹ(δ−(U)) > 1. Consequently, ỹ satisfies (1.3). Define an LP
solution y′ to BDCut(I ′) as follows: y′(a) := ỹ(a) for all a ∈ A′ ∩A, and y′(a) := 0
for all a ∈ δ−D′(r′). For any a = (r′, v) ∈ δ+

D′(r
′) proceed as follows. If (r, v), (t, v) ∈ A,

set y′(a) := ỹ((r, v)) + ỹ((t, v)); if (t, v) /∈ A, set y′(a) := ỹ((r, v)); otherwise, set
y′(a) := ỹ((t, v)). Because of y(δ−(v)) 6 1, we have in any case that y′(a) 6 1.

It remains to show that vLP (BDCut(I)) 6 vLP (BDCut(I ′))+1. Given an optimal
LP solution y′ to BDCut(I ′) we define a corresponding LP solution y to BDCut(I).
First, y((r, t)) := 1, y((t, r)) := 0. Second, y(a) := y′(a) for all a ∈ A′ ∩ A, and
y(a) := 0 for all a ∈ δ−({r, t}). Next, consider the remaining edges δ+({r, t}). If
(r, v), (t, v) ∈ A set y((r, v)) := y′(r′, v), y((t, v)) := 0; otherwise, for a = (r, v) or
a = (t, v) set y(a) = y′((r′, v)).

With this result at hand, we obtain the following theorem (recall that α(G) denotes
the independence number of graph G).

Theorem 2.7. Consider an USPG on a graph G. If α(G) 6 3, then vLP (BDCut) =
v(BDCut).

Proof. Consider a USPG instance I = (G,T, c) with α(G) 6 3. Let I ′ = (G′, T ′, c′)
be the USPG obtained by (repeatedly) contracting all adjacent terminals. Let D′ =
(V ′, A′) be the bidirected equivalent of G′. Proposition 2.6 implies the following:
vLP (BDCut(I)) = v(BDCut(I)) if and only if vLP (BDCut(I ′)) = v(BDCut(I ′)).
Furthermore, because of α(G) 6 3 it holds that |T ′| 6 3. For |T ′| < 3, the BDCut
formulation is well-known to have no integrality gap. So assume |T ′| = 3. By con-
struction of I ′, the terminals form an independent set. Further, let y be an optimal
LP solution to BDCut(I ′) with an arbitrary r ∈ T ′ being the root.

Suppose that vLP (BDCut(I ′)) 6= v(BDCut(I ′)). By Lemma 2.3, there is a v ∈
V ′ \ T ′ such that

y(δ+(v)) < y(δ−(v)). (2.30)

Because of α(G) 6 3, at least one of the terminals needs to be adjacent to v. We
may assume that this property holds for r. Otherwise, we can readily create another
optimal LP solution ỹ that satisfies (2.30) and has a root adjacent to v: Assume that
a t ∈ T \ {r} is adjacent to v and let f t be a unit flow from r to t such that f t 6 y;
define ỹ((q, u)) := y((q, u))− f t((q, u)) + f t((u, q)) for all (u, q) ∈ A′.

Define a new LP solution y′ from y as follows. For a0 := (r, v) set y′(a0) :=
y(δ+(v)). For any a ∈ δ−(v) \ {a0} set y′(a) := 0. For all (remaining) a ∈ A′ \ δ−(v)
set y′(a) := y(a). Note that because of (2.30) it holds that y′(A′) < y(A′). It remains
to be shown that y′ is feasible. Suppose that there is a U ⊆ V ′ \ {r} with U ∩ T ′ 6= ∅
and y′(δ−(U)) < 1. Because y is feasible, it has to hold that v ∈ U . Let Ũ := U \ {v}.

2.2. Integer programming formulations 25

By the construction of y′ it holds that

y(δ−(Ũ)) = y′(δ−(Ũ))

= y′(δ−(Ũ)) + y′((r, v))− y′(δ+(v))

6 y′(δ−(U))

< 1,

which contradicts the feasibility of y. Consequently, we have shown that

vLP (BDCut(I ′)) = v(BDCut(I ′))

and, thus, vLP (BDCut(I)) = v(BDCut(I)).

The theorem is best possible; i.e., there exist USPG instances such that α(G) = 4
and vLP (BDCut) 6= v(BDCut), see e.g. Duin (1993); Filipecki and Van Vyve (2020).

Comparison of edge and node based formulation

Formulation 2.5 (TNCut) was used within a branch-and-cut algorithm by the most
successful solver (Fischetti et al., 2017) at the 11th DIMACS Challenge (DIMACS,
2015). Furthermore, this solver was able to solve several USPG benchmark instances
that had been unsolved for more than a decade to optimality. Thus, one might wonder
how this formulation theoretically compares with the better-known bidirected cut
formulation. As the next proposition shows, BDCut is always stronger than TNCut
and the relative gap can be rather large.

Proposition 2.8. It holds that vLP (TNCut) 6 vLP (BDCut). Furthermore,

sup

{
vLP (BDCut)

vLP (TNCut)

}
> 2, (2.31)

where the supremum is taken over all USPG instances.

Proof. For the first inequality consider an optimal LP solution y to BDCut. Define
x ∈ RV by x(v) := y(δ−(v)) for all v ∈ V \ {r} and x(r) := 1. The optimality of y
implies x(v) 6 1 for all v, see Polzin and Daneshmand (2001a). Let t, u ∈ T with
t 6= u and Ctu ∈ C(t, u). We will show that Ctu satisfies (2.26). If Ctu ∩ T 6= ∅,
then x(Ctu) > 1, because x(q) > 1 for all q ∈ T due to (1.3) and the definition of
x. Thus, (2.26) holds. If Ctu ∩ T = ∅, let Ur be the connected component in the
graph induced by V \ Ctu with r ∈ Ur. By definition of Ctu, either t /∈ Ur or u /∈ Ur.
Therefore, y(δ+(Ur)) > 1, which implies y(δ−(Ctu)) > 1 because of δ+(Ur) ⊂ δ−(Ctu).
Now we obtain from the definition of x that

x(Ctu) > y(δ−(Ctu)) > 1.

Finally, by construction of x we have that

x(V)− 1 =
∑
v∈V

y(δ−(v)) = y(A);

26 The prototype: Steiner tree problem in graphs

note that y(δ−(r)) = 0 because y is optimal.
For (2.31) we construct the following family of USPG instances. For any k > 3 let

Ik be the USPG instance with with k+k2 nodes, k+k2 edges, and k terminals defined
as follows. Let ti for i = 1, ...k be the terminals and define for each i ∈ {1, ..., k} Steiner
nodes vi,j , j = 1, ...k. For each i ∈ {1, ..., k} define edges {ti, vi,1}, {t(i+1) mod k, vi,k},
and {vi,j , vi,j+1} for j = 1, ..., k−1. Instance I3 is shown in Figure 2.2. A feasible (and
indeed optimal) LP solution x to TNCut(Ik) is given by x(t) := 1 for all terminals

t and x(v) := 0.5 for any Steiner node v. Its objective is k2

2 + k − 1. On the other
hand, vLP (BDCut(Ik)) = k + k(k − 1) = k2. Thus,

lim
k→∞

vLP (DCut(Ik))

vLP (TNCut(Ik))
= lim
k→∞

k2

k2

2 + k − 1
= 2, (2.32)

which concludes the proof.

Corollary 2.9. The (relative) integrality gap of TNCut is at least 2.

Note that one can strengthen TNCut by constraints that correspond to the flow-
balance constraints for BDCut, see Fischetti et al. (2017). However, if compared
to BDCutFB , the results of Proposition 2.8 remain the same for this stronger ver-
sion of TNCut. As to the practical performance of TNCut, we note that the SPG
solver developed in this thesis, which is based on BDCutFB , also solves more of the
aforementioned notoriously hard, unweighted benchmark instances than the solver
of Fischetti et al. (2017) (which uses TNCut). See Section 2.7 for the computational
results.

Figure 2.2: USPG instance I3. Terminals are drawn as squares.

2.3 Implications, conflicts, and reductions

Informally, reduction methods transform a given instance to another, reduced, one,
such that any optimal solution to the reduced instance can be re-transformed to
an optimal solution to the original instance. In Section 2.3.4 we give a more formal
definition. Reduction techniques have been a key ingredient in exact SPG solvers,
see e.g. Duin (1993); Koch and Martin (1998); Uchoa et al. (2002); Polzin and
Daneshmand (2001b). However, reduction techniques are also useful to improve the
performance of heuristics, or even approximation algorithms (Beyer and Chimani,
2015).

2.3. Implications, conflicts, and reductions 27

This section reviews key results from the literature and introduces several new
techniques that are (provably) stronger than previously known methods. A vital
ingredient in several of the new techniques is the integration of new implication and
conflict concepts. Later on we will see that these concepts are also useful beyond
reduction methods.

2.3.1 Bottleneck distances and implications

Among the various SPG reduction techniques from the literature, the bottleneck
Steiner distance introduced in Duin and Volgenant (1989a) is arguably the most
important one, being the backbone of several powerful reduction methods. This section
introduces a provably stronger distance concept, and discusses several applications
for improved reduction methods.

The bottleneck Steiner distance

Let P be a simple path with at least one edge. The bottleneck length (Duin and
Volgenant, 1989a) of P is

bl(P) := max
e∈E(P)

c(e). (2.33)

Let v, w ∈ V . Let P(v, w) be the set of all simple paths between v and w. The
bottleneck distance (Duin and Volgenant, 1989a) between v and w is defined as

b(v, w) := inf{bl(P) | P ∈ P(v, w)}, (2.34)

with the common convention that inf ∅ = ∞. Note that b(v, w) is equal to the
bottleneck length of the path between v and w on any minimum spanning tree of
(G, c), as observed in Dreyfus and Wagner (1971).

Now consider the distance graph D := DG(T ∪ {v, w}). Let bD be the bottleneck
distance in D. Define the bottleneck Steiner distance or special distance (Duin and
Volgenant, 1989a) between v and w as

s(v, w) := bD(v, w). (2.35)

One also finds alternative, path-based definitions of the bottleneck Steiner distance
in the literature, but these are weaker than the above definition. The bottleneck
Steiner distance is arguably the most important reduction concept for SPG, with
various applications. The arguably best-known one is the following criterion, which
allows for edge deletion (Duin and Volgenant, 1989a).

Theorem 2.10. Let e = {v, w} ∈ E. If s(v, w) < c(e), then no minimum Steiner
tree contains e.

Note the beautiful analogy between bottleneck distance applied to MST, and
bottleneck Steiner distance applied to SPG: Any edge e = {v, w} that satisfies
b(v, w) < c(e) cannot be part of an MST. Otherwise, e could be replaced by an edge
of cost at most b(v, w) to obtain a spanning tree of smaller cost. Any edge e = {v, w}

28 The prototype: Steiner tree problem in graphs

that satisfies s(v, w) < c(e) cannot be part of a minimum Steiner tree. Otherwise, e
could be replaced by a path in G corresponding to an edge in D = DG(T ∪ {v, w})
with cost at most bD(v, w). In this case, one would obtain a Steiner tree of smaller cost.
We also point out that bottleneck Steiner distances can be computed in polynomial
time, but in practice (heuristic) approximations are used. See Polzin and Daneshmand
(2001b) for a state-of-the-art algorithm.

A stronger bottleneck concept

In the following, we describe a generalization of the bottleneck Steiner distance.
Initially, for an edge e = {v, w} define the restricted bottleneck distance b(e) (Polzin
and Daneshmand, 2001b) as the bottleneck distance between v and w on (V,E\{e}, c).

The basis of the new bottleneck Steiner concept is formed by a node-weight
function that we introduce in the following. For any v ∈ V \ T and F ⊆ δ(v) define

p+(v, F) := max
{

0, sup{b(e)− c(e) | e ∈ F, e ∩ T 6= ∅}
}
. (2.36)

We call p+(v, F) the F-implied profit of v. The following observation motivates the
subsequent usage of the implied profit. Assume that p+(v, {e}) > 0 for an edge
e ∈ δ(v). If a Steiner tree S contains v, but not e, then there is a Steiner tree S′ with
e ∈ E(S′) such that c(E(S′)) + p+(v, {e}) 6 c(E(S)).

Let v, w ∈ V . Consider a finite walk W = (v1, e1, v2, e2, ..., er−1, vr) with v1 = v
and vr = w. We say that W is a (v, w)-walk. For any k, l ∈ N with 1 6 k 6 l 6 r
define the subwalk W (k, l) := (vk, ek, vk+1, ek+1, ..., el−1, vl). W will be called Steiner
walk if V (W) ∩ T ⊆ {v, w} and v, w are contained exactly once in W (the latter
condition could be omitted, but has been added for ease of presentation). The set of
all Steiner walks from v to w will be denoted by WT (v, w). With a slight abuse of
notation we define δW (u) := δ(u) ∩ E(W) for any walk W and any u ∈ V . Define
the implied Steiner cost of a Steiner walk W ∈ WT (v, w) as

c+p (W) :=
∑

e∈E(W)

c(e)−
∑

u∈V (W)\{v,w}

p+ (u, δ(u) \ δW (u)) . (2.37)

Further, set

P+
W := {u ∈ V (W) | p+ (u, δ(u) \ δW (u)) > 0} ∪ {v, w}. (2.38)

Define the implied Steiner length of W as

l+p (W) := max{c+p (W (vk, vl)) | 1 6 k 6 l 6 r, vk, vl ∈ P+
W }. (2.39)

Define the implied Steiner distance between v and w as

d+
p (v, w) := min{l+p (W) |W ∈ WT (v, w)}. (2.40)

Note that d+
p (v, w) = d+

p (w, v). At last, consider the distance graph D+ := DG(T ∪
{v, w}, d+

p). Let bD+ be the bottleneck distance in D+. Define the implied bottleneck
Steiner distance between v and w as

sp(v, w) := bD+(v, w). (2.41)

2.3. Implications, conflicts, and reductions 29

Note that sp(v, w) 6 s(v, w) and that the inequality can be strict. Indeed, s(v,w)
sp(v,w)

can become arbitrarily large. Thus, the following result provides a strictly stronger
reduction criterion than Theorem 2.10.

Theorem 2.11. Let e = {v, w} ∈ E. If sp(v, w) < c(e), then no minimum Steiner
tree contains e.

Proof. Assume sp(v, w) < c(e) and let S be a Steiner tree with e ∈ E(S). We will
show the existence of a Steiner tree S′ with e /∈ E(S′) such that c(E(S′)) 6 c(E(S)),
which concludes the proof. First, remove e from S to obtain a new subgraph S̃,
which consists of exactly two connected components. Assume that each connected
component contains at least one terminal (otherwise the proof is already finished).
Consider a (v, w)-path P in D+ such that blD+(P) = bD+(v, w). Let {t, u} be an
edge on P such that t and u are in different connected components of S̃ (where t and
u are considered in the original SPG). Let S̃t and S̃u be the connected components
of S̃ such that t ∈ V (S̃t) and u ∈ V (S̃u). By the definition of the bottleneck length
it holds that

d+
p (t, u) 6 sp(v, w). (2.42)

Let W ∈ WT (t, u) such that

l+p (W) = d+
p (t, u). (2.43)

Assume that W is given as W = (v1, e1, ..., er−1, vr). Define b := min{k ∈
{1, ..., r} | vk ∈ V (S̃u)} and a := max{k ∈ {1, ..., b} | vk ∈ V (S̃t)}. Further, de-
fine x := max{k ∈ {1, ..., a} | vk ∈ P+

W } and y := min{k ∈ {b, ..., r} | vk ∈ P+
W }. By

definition, x 6 a < b 6 y and furthermore:∑
e∈E(W (a,b))

c(e)−
∑

v∈V (W (a,b))\{vx,vy}

p+
(
v, δ(v) \ δW (x,y)

)
6 c+p (W (x, y)) . (2.44)

Reconnect S̃t and S̃u by W (a, b), which yields a connected subgraph S′0 with
T ⊆ V (S′0). Assume that S′0 is a tree (otherwise remove any redundant edges).7 It
holds that ∑

e∈E(S′0)

c(e) 6
∑

e∈E(S)

c(e) +
∑

e∈E(W (a,b))

c(e)− c({v, w}). (2.45)

Let v+
1 , v

+
2 , ..., v

+
z be the vertices in P+

W (a,b) \ {va, vb}. Choose for each i = 1, ..., z an

edge e+
i ∈ δ(v

+
i) \ δW (x,y)(v

+
i) such that e+

i ∩ T 6= ∅ and

b(e+
i)− c(e+

i) = p+(v+
i , δ(v

+
i) \ δW (x,y)). (2.46)

Note that all e+
i are pairwise disjoint (just as the v+

i).

7 Because we assume all edges to be of positive cost, S′0 will in fact always be a tree.

30 The prototype: Steiner tree problem in graphs

We will construct Steiner trees S′i for i ∈ {1, ..., z} that satisfy

∑
e∈E(S′i)

c(e) 6
∑

e∈E(S′0)

c(e)−
i∑

k=1

p+(v+
k , δ(v) \ δW (x,y)), (2.47)

as well as
z⋃

k=i+1

{e+
k } ∩ E(S′i) = ∅, (2.48)

and
V (S′i) = V (S′0). (2.49)

One readily verifies that S′0 satisfies (2.47)-(2.49). Let i ∈ {1, ..., z} and assume
that (2.47)-(2.49) hold for S′i−1. Thus, e+

i /∈ E(S′i−1). Let Pi be the (unique) path
in S′i−1 between v+

i and the terminal ti with {ti} = e+
i ∩ T . Choose any ẽi ∈

E(Pi) with c(ẽi) = bl(Pi). Define the tree S′i by V (S′i) := V (S′i−1) and E(S′i) :=(
E(S′i−1) \ {ẽi}

)
∪ {e+

i }. We claim that S′i satisfies (2.47)-(2.49). Equality (2.48)
follows from the fact that all e+

i are disjoint. And (2.49) follows from the construction
of S′i. For (2.47), observe that by definition of the bottleneck distance it holds that
c(ẽi) > b(e

+
i) and therefore

b(e+
i)− c(e+

i) 6 c(ẽi)− c(e+
i). (2.50)

Thus, equation (2.46) implies that S′i satisfies (2.47).
Finally, set S′ := S′z. Because of (2.49) it holds that T ⊆ V (S′). Furthermore,

one obtains:∑
e∈E(S′)

c(e)
(2.47)

6
∑

e∈E(S′0)

c(e)−
z∑
k=1

p+(v+
k , δ(v

+
k) \ δW (x,y)) (2.51)

(2.45)

6
∑

e∈E(S)

c(e) +
∑

e∈E(W (a,b))

c(e)− c({v, w})−
z∑
k=1

p+(v+
k , δ(v

+
k) \ δW (x,y))

(2.52)

(2.44)

6
∑

e∈E(S)

c(e)− c({v, w}) + c+p (W (x, y)) (2.53)

(2.43)

6
∑

e∈E(S)

c(e)− c({v, w}) + l+p (W) (2.54)

(2.42)

6
∑

e∈E(S)

c(e)− c({v, w}) + sp(v, w) (2.55)

6
∑

e∈E(S)

c(e), (2.56)

where the last inequality follows from the initial assumptions.

2.3. Implications, conflicts, and reductions 31

Furthermore, we define the restricted implied bottleneck Steiner distance sp(v, w)
between any v, w ∈ V as the implied bottleneck Steiner distance between v and w in
the SPG (V,E \ {{v, w}} , c). One obtains the following corollary.

Corollary 2.12. Let e = {v, w} ∈ E. If sp(v, w) 6 c(e), then at least one minimum
Steiner tree does not contain e.

1

2

1

1

1.5 1

1

Figure 2.3: Segment of a Steiner tree instance. Terminals are drawn as squares. The
dashed edge can be deleted by employing Theorem 2.11.

Figure 2.3 shows a segment of an SPG instance for which Theorem 2.11 allows for
the deletion of an edge, but Theorem 2.10 does not. The implied bottleneck Steiner
distance between the endpoints of the dashed edge is 1—corresponding to a walk
along the four non-terminal vertices. The edge can thus be deleted. In contrast, the
(standard) bottleneck Steiner distance between the endpoints is 1.5 (corresponding
to the edge itself). Unfortunately, already computing the implied Steiner distance is
hard, as the following proposition shows.

Proposition 2.13. Computing the implied Steiner distance is NP-hard.

The proposition can for example be proved by a reduction from the Hamiltonian
path problem. See also Section 3.3.2, which shows the NP-hardness of a related
concept for the maximum-weight connected problem. A proof of Proposition 2.13 can
be formulated along the same lines, but with more technicalities. Thus, we omit it
here.

Despite this NP-hardness, one can devise heuristics that provide upper bounds
on sp. These upper bounds are always at least as strong as those used for s, and are
empirically often stronger. We will discuss one such heuristic in Section 6.2.2.

Bottleneck Steiner reductions beyond edge deletion

This section discusses applications of the implied bottleneck Steiner distance that
allow for additional reduction operations: Edge contraction and node replacement. We

32 The prototype: Steiner tree problem in graphs

start with the former. For an edge e and vertices v, w define be(v, w) as the bottleneck
distance between v and w on (V,E\{e}, c). With this definition at hand, we introduce
a generalization of the classic NSV reduction test from Duin and Volgenant (1989b).

Proposition 2.14. Let {v, w} ∈ E and ti, tj ∈ T, ti 6= tj. If

sp(v, ti) + c({v, w}) + sp(w, tj) 6 b{v,w}(ti, tj), (2.57)

then there is a minimum Steiner tree S with {v, w} ∈ E(S).

Proof sketch. Unfortunately, the use of the implied bottleneck Steiner distance makes
the proof of the proposition far more difficult than that of the original result from Duin
and Volgenant (1989b). To avoid an abundance of technicalities, we therefore only
provide a proof sketch.

Assume there is an optimal solution S such that {v, w} /∈ E(S). Remove from
E(S) an edge on the (unique) path between ti and tj in S of maximum cost. This
operation results in two disjoint trees: Si with ti ∈ Si and Sj with tj ∈ Sj . By
definition of b{v,w}(ti, tj) it holds that

c(E(Si)) + c(E(Sj)) + b{v,w}(ti, tj) 6 c(E(S)). (2.58)

Now the sketchy part starts: Similar to the proof of Theorem 2.11, condition (2.57)
allows us to connect Si to v such that the resulting tree S̃i satisfies

c(E(S̃i)) 6 c(E(Si)) + sp(v, ti). (2.59)

Equivalently, we can connect Sj to w with the result satisfying

c(E(S̃j)) 6 c(E(Sj)) + sp(w, tj). (2.60)

However, the above is only true, because the two Steiner walks that correspond to
sp(v, ti) and sp(w, tj) in (2.59) and (2.60), respectively, have no vertex in common. If
they had a vertex in common, one could build a new Steiner walk W0 with l+p (W0) 6
sp(v, ti) + sp(w, tj) out of the two above Steiner walks, such that W0 connects Si
and Sj . This walk W0 could then be used to reconnect Si and Sj to a Steiner tree of
weight smaller than b{v,w}(ti, tj).

Finally, we define S̃ as the union of S̃i, S̃j , and {v, w}. This connected subgraph
is not necessarily a tree, but can be made one without increasing c(E(S̃)) by deleting
an edge from each cycle. From (2.58), (2.59), and (2.60) it follows that

c(E(S̃)) 6 c(E(S)), (2.61)

which concludes the proof.

If criterion (2.57) is satisfied, one can contract edge {v, w} and make the resulting
vertex a terminal. The original criterion from Duin and Volgenant (1989b) uses the
standard distance in (2.57) instead of the implied bottleneck Steiner distance. We note
that using the (standard) bottleneck Steiner distance in (2.57) does not improve the

2.3. Implications, conflicts, and reductions 33

v3

t3

t1

v1

t2

v2

2

1

2

1 1

1

Figure 2.4: Segment of a Steiner tree instance. Terminals are drawn as squares. The
dashed edge can be contracted by employing Proposition 2.14.

original test. However, using the implied bottleneck Steiner distance leads to a strictly
stronger criterion, as the example in Figure 2.4 shows. Note that b{t1,v1}(t1, t3) = 2
and sp(v1, t3) = 1. Thus, (2.57) is satisfied for edge {t1, v1} and terminals t1, t3.

The following proposition allows one to identify edges that are candidates for
edge contraction. Afterwards, the bottleneck distances can be computed for all these
edges in O(m+ n log n) amortized time (Duin, 1993).

Proposition 2.15. Let {v, w} ∈ E and ti, tj ∈ T, ti 6= tj . If (2.57) holds, then there
is a minimum spanning tree SMST on (V,E, c) such that {v, w} ∈ E(SMST).

Proof. Assume there is a spanning tree S such that {v, w} /∈ E(S). Remove from E(S)
an edge on the (unique) path between ti and tj in S of maximum cost. This operation
results in two disjoint trees: Si with ti ∈ Si and Sj with tj ∈ Sj . By definition of
b{v,w}(ti, tj) it holds that

c(E(Si)) + c(E(Sj)) + b{v,w}(ti, tj) 6 c(E(S)). (2.62)

If v and w are in different trees, one can add {v, w} to connect Si and Sj and obtain
a spanning tree of no higher cost than S. Otherwise, assume that v, w ∈ V (Sj). Let
Wi be a Steiner walk from v to ti with l+p (Wi) = sp(v, ti). There is at least one
edge {p, q} ∈ E(Wi) such that p ∈ V (Si) and q ∈ V (Sj). By definition it holds that
c({p, q}) 6 l+p (Wi). Thus, one can add both {p, q} and {v, w} to Si, Sj to obtain a
connected spanning subgraph S′. Because of condition (2.57) and (2.62) it holds that

c(E(S′)) 6 c(E(S)). (2.63)

Delete any edge other than {v, w} on the cycle in E(S′) that includes {v, w}. In this
way one obtains a spanning tree S′′ of no higher cost than S.

Now we turn to a different reduction operation. To this end, we first introduce a
reduction criterion based on the standard bottleneck Steiner distance. Besides being

34 The prototype: Steiner tree problem in graphs

a new technique, this result also serves to highlight the complications that arise if
one attempts to formulate similar conditions based on the implied bottleneck Steiner
distance.

Proposition 2.16. Let D := DG(T, d). Let Y be a minimum spanning tree in D.
Write its edges {eY1 , eY2 , ..., eY|T |−1} := E(Y) in non-ascending order with respect to

their weight in D. Let v ∈ V \ T . If for all ∆ ⊆ δ(v) with |∆| > 3 it holds that:

|∆|−1∑
i=1

d(eYi) 6
∑
e∈∆

c(e), (2.64)

then there is at least one minimum Steiner tree S such that |δS(v)| 6 2.

The proposition follows from Corollary 2.29, which we will introduce in Sec-
tion 2.4. If the conditions (2.64) are satisfied for a vertex v ∈ V \ T , one can pseudo-
eliminate (Duin and Volgenant, 1989b) or replace (Polzin, 2003) vertex v, i.e., delete
v and connect any two distinct vertices u,w ∈ N(v) by a new edge {u,w} of weight
c({v, u}) + c({v, w}). A vertex replacement might require additional edges to be
added. However, these edges can often be removed by other methods, such as the
criterion from Theorem 2.11. In the implementation for this thesis, vertices are only
replaced if the total number of edges is not increased.

The SPG depicted in Figure 2.5 exemplifies why Proposition 2.16 cannot be for-
mulated by using the implied Steiner distance. The weight of the minimum spanning
tree Y for DG(T, d) is 4, but the weight of a minimum spanning tree with respect to
the implied bottleneck Steiner distance is 2. Similarly also the NTDk reduction tech-
nique described below cannot be directly formulated by using the implied bottleneck
distance. Still, it is possible to formulate a similar criterion that makes use of the
implied bottleneck distance. Unfortunately, both the result and the corresponding
proof are more involved than those of their edge elimination counterparts (see Theo-
rem 2.11). Thus, we omit the details here. The important point is to make sure that
the selected Steiner walks do not overlap at vertices with a positive implied profit.
The code developed for this thesis only includes a very limited implementation of
these replacement methods.

1

1

1

Figure 2.5: SPG instance. Terminals are drawn as squares

The (standard) bottleneck Steiner distance can further be utilized for another
classic reduction test: Non-Terminals of Degree k (NTDk) which was introduced
in Duin and Volgenant (1989b) and is based on the following proposition:

2.3. Implications, conflicts, and reductions 35

Proposition 2.17. Let v ∈ V \T . There is a minimum Steiner tree S with |δS(v)| 6
2 if for each ∆ ⊆ N(v) with |∆| > 3 the following holds: c(δ(v) ∩ δ(∆)) is not less
than the weight of a minimum spanning tree for the distance network DG(∆, s).

A proof is given in Duin and Volgenant (1989b). Also, the proposition is a special
case of Corollary 2.29, which will be introduced in Section 2.4.

2.3.2 Bound-based reduction techniques

Bound-based reduction techniques are preprocessing methods that identify edges and
vertices for elimination by examining whether they induce an lower bound that
exceeds a given upper bound (Polzin and Daneshmand, 2001b). In this section a
bound-based reduction concept is introduced that generalizes the Voronoi-regions
concept from Polzin and Daneshmand (2001b). Note that the bounding technique
described in this section can be seen as a special case of the bound-based reduction
technique for the prize-collecting Steiner tree problem, which will be introduced in
Chapter 4. Thus, no proofs are provided for most of the results in this section.

Terminal-regions decomposition

The base of the reduction technique is the following new concept: a terminal-regions
decomposition of an SPG—with underlying graph (V,E)—is a partition H =

{
Ht ⊆

V | t ∈ T
}

of V such that for each t ∈ T the subgraph (Ht, E[Ht]) is connected and
T ∩Ht = {t} holds. Each of the Ht will be called a region of H. Define for all t ∈ T

rH(t) := min{d(t, v) | v /∈ Ht}. (2.65)

In Polzin and Daneshmand (2001b) a special terminal-regions decomposition
called Voronoi-regions decomposition is used. The more general results presented
here allow us to improve on the Voronoi preprocessing methods introduced in Polzin
and Daneshmand (2001b). However, it will also turn out that finding an optimal
terminal-regions decomposition is NP-hard. The following three propositions not
only improve on the results from Polzin and Daneshmand (2001b) by using a more
general decomposition, but also by making use of the following distance function.
Given vertices vi, vj ∈ V define d(vi, vj) as the length of a shortest path between vi
and vj without intermediary terminals. In Duin (1993) an O(m+ n log n) algorithm
was introduced to compute for each non-terminal vi a constant number of r d-nearest
terminals vi,1, vi,2, ..., vi,r (if existent) along with the corresponding paths. In the
remainder of this section it will be assumed that a terminal-regions decomposition
H is given. Moreover, for ease of presentation it will be assumed that the terminals
T = {t1, t2, ..., tk} are ordered such that rH(t1) 6 rH(t2) 6 ... 6 rH(tk).

Proposition 2.18. Let vi ∈ V \ T and set k := |T |. If there is a minimum Steiner
tree S such that vi ∈ V (S), then

d(vi, vi,1) + d(vi, vi,2) +
k−2∑
q=1

rH(tq) (2.66)

36 The prototype: Steiner tree problem in graphs

is a lower bound on the weight of S.

Each vertex vi ∈ V \ T such that the affiliated lower bound stated in Proposi-
tion 2.18 exceeds a known upper bound can be eliminated. Moreover, if a solution S
corresponding to the upper bound is given and vi is not contained in it, the latter
can already be eliminated if the lower bound stated in Proposition 2.18 is equal to
the cost of S. A similar proposition holds for edges in a minimum Steiner tree:

Proposition 2.19. Let {vi, vj} ∈ E and set k := |T |. If there is minimum Steiner
tree S such that {vi, vj} ∈ E(S), then L defined by

L := c({vi, vj}) + d(vi, vi,1) + d(vj , vj,1) +
k−2∑
q=1

rH(tq) (2.67)

if vi,1 6= vj,1 and

L := c({vi, vj}) + min{d(vi, vi,1) + d(vj , vj,2), d(vi, vi,2) + d(vj , vj,1}

+
k−2∑
q=1

rH(tq) (2.68)

otherwise, is a lower bound on the weight of S.

If the above lower bound L for an edge e ∈ E exceeds a known upper bound, e
can be eliminated. The following proposition allows us to replace vertices.

Proposition 2.20. Let vi ∈ V \ T . If there is a minimum Steiner tree S such that
δS(vi) > 3, then

d(vi, vi,1) + d(vi, vi,2) + d(vi, vi,3) +
k−3∑
q=1

rH(tq) (2.69)

with k := |T | is a lower bound on the weight of S.

To efficiently apply Proposition 2.18, one would like to maximize (2.66)—and for
Proposition 2.19 and Proposition 2.20 to maximize (2.67) and (2.69), respectively.
Unfortunately, this problem turns out to be NP-hard. The decision variant of the
problem can be stated as follows. Let α ∈ N0 and let G0 = (V0, E0) be an undirected,
connected graph with edge cost c : E → N. Furthermore, let T0 ⊆ V , and assume
that α < |T0|. For each terminal-regions decomposition H0 of G0 define T ′0 (T0 such
that |T ′0| = α and rH0

(t′) > rH0
(t) for all t′ ∈ T ′0 and t ∈ T0 \ T ′0. Let:

CH0 :=
∑

t∈T0\T ′0

rH0(t). (2.70)

2.3. Implications, conflicts, and reductions 37

We now define the α terminal-regions decomposition problem as follows: Given a
k ∈ N, is there a terminal-regions decomposition H0 such that CH0

> k? In the
following proposition it is shown that this problem is NP-complete, which forth-
with establishes the NP-hardness of finding a terminal-regions decomposition that
maximize (2.66), (2.67), (2.68), or (2.69)—which corresponds to α = 2 and α = 3,
respectively.

Proposition 2.21. For each α ∈ N0 the α terminal-regions decomposition problem
is NP-complete.

Proof. Given a terminal-regions decomposition H0 it can be tested in polynomial
time whether CH0

> k. Consequently, the terminal-regions decomposition problem
is in NP .

In the remainder it will be shown that the, NP-complete (Garey and Johnson,
1979), independent set problem can be reduced to the terminal-regions decomposition
problem. To this end, let Gind = (Vind, Eind) be an undirected, connected graph and
k ∈ N. The problem is to determine whether an independent set in Gind of cardinality
at least k exists. To establish the reduction, construct a graph G0 from Gind as follows.
Initially, set G0 = (V0, E0) := Gind, and T0 := V0. Next, extend G0 by replacing each
edge el = {vi, vj} ∈ E0 with a vertex v′l and the two edges {vi, v′l} and {vj , v′l}. Define
edge weights c0(e) = 1 for all e ∈ E0 (which includes the newly added edges). If

α > 0, choose an arbitrary vi ∈ V0 ∩Vind and add for j = 1, ..., α vertices t
(j)
i to both

V0 and T0. Finally, add for j = 1, ..., α edges {vi, t(j)i } with c0({vi, t(j)i }) = 2 to E0.
First, one observes that the size |V0|+ |E0| of the new graph G0 is a polynomial in

the size |Vind|+ |Eind| of Gind. Next, rH0
(vi) = 2 holds for a vertex vi ∈ G0 ∩Gind if

and only if Hvi contains all (newly inserted) adjacent vertices of vi in G0. Moreover,

in any terminal-regions decomposition H0 for (G0, c0), it holds that rH0
(t

(j)
i) = 2 for

j = 1, ..., α. Hence, there is an independent set in Gind of cardinality at least k if and
only if there is a terminal-regions decomposition H0 for (V0, E0, T0, c0) such that

CH0
> |Vind|+ k.

This proves the proposition.

Figure 2.6 depicts an SPG, a corresponding Voronoi-regions decomposition as
described in Polzin and Daneshmand (2001b), and an alternative terminal-regions
decomposition. The second terminal-regions decomposition yields a stronger lower
bound than the Voronoi-regions decomposition and indeed allows to eliminate a
vertex if an upper bound that is sufficiently close to the optimal solution value is
known.

For computing a terminal-regions decomposition, we, unsurprisingly, resort to
heuristic methods. More details are given in Section 4.3, where an extension of the
terminal-regions decomposition to the prize-collecting Steiner tree problem is intro-
duced. Computational experiments for this thesis have shown that it is in many cases
possible to improve on the bound provided by the Voronoi-regions decomposition,

38 The prototype: Steiner tree problem in graphs

3

3

3

3

2

3

1

3

1

(a) SPG instance (b) Voronoi-regions decomposition

(c) terminal-regions decomposition

Figure 2.6: Illustration of a Steiner tree instance (a), a Voronoi-decomposition (b),
and a second terminal-regions decomposition (c). Terminals are drawn as squares. If
an upper bound less than 11 is known, the vertex drawn filled in (c) can be deleted
by means of the terminal-regions decomposition depicted in (c), but not by means
of the Voronoi-regions decomposition.

and that significantly stronger graph reductions can be achieved. Still, empirically
the methods only work well for (some) sparse instances with few terminals. Thus, we
only execute the terminal-regions decomposition tests for these kind of instances.

Reduced-costs reductions

In Wong (1984) a dual-ascent algorithm for the SAP was introduced that, empirically,
both provides strong lower bounds and allows for fast computation—defying its worst-
case time complexity of O(|A|min{|V ||T |, |A|}) (Polzin and Daneshmand, 2001b).
Practically efficient implementations of this algorithm can be found in Duin (1993)
and Pajor et al. (2017). We use an implementation that is similar to these two. In
Section 3.4 we give a description of the dual-ascent algorithm (in the context of the
maximum-weight connected subgraph problem).

At termination, dual-ascent provides a dual solution to the LP-relaxation of

2.3. Implications, conflicts, and reductions 39

Formulation 1.1. The reduced-costs of this dual LP solution can be used for an
SPG reduction criterion, see e.g. Duin (1993). Given an SPG instance, consider an
equivalent (bidirected) SAP (V,A, T, c, r). Let v ∈ V/T , and let S? be an optimal
Steiner arborescence to the given SAP instance. Let LDA be the lower bound obtained
by dual-ascent. If S? contains v, the weight of S? can be bounded from below by
LDA plus the length (with respect to the reduced-costs provided by dual-ascent)
of a shortest path from the r to v and the length of a shortest path from v to a
closest terminal (other than the root). Hence, v can be deleted if the just defined
bound exceeds a known upper bound U . Similarly, an arc (v, w) can be deleted if
its reduced-cost plus the reduced-cost distance from r to v plus the reduced-cost
distance from w to a closest terminal exceeds U − LDA. The test can be extended
to the case of equality if a solution corresponding to U is given—and if the arc to
be eliminated is not contained in this solution. Whenever a vertex can be deleted in
the SAP, the same is true for its counterpart in the original SPG. Similarly, if two
anti-parallel arcs of the SAP have been shown to be removable, the corresponding
edge of the SPG can be discarded. Finally, one can formulate a similar test to replace
(or pseudo-eliminate) vertices.

The above procedure can also be performed by using the reduced-costs obtained
during a branch-and-cut solution based on BDCut. Instead of deleting edges or ver-
tices, one fixes the corresponding variables to 0 in the IP formulation. However, vertex
replacements cannot be directly transferred to the IP formulation, see Section 2.6 for
more details.

2.3.3 Further reduction techniques

Besides the methods described already, the literature describes a large number of
further SPG reduction techniques. See e.g. Hwang et al. (1992) for an overview of
reduction techniques published before 1992. An overview of newer methods is given
in Polzin (2003). However, most of these methods are dominated by (or are special
cases of) the techniques described in Duin (1993); Polzin and Daneshmand (2001b,
2002). As we have seen in this chapter, the latter reduction techniques are in turn
dominated by the new techniques introduced in this thesis.

In particular, several trivial reduction methods are only special cases of the meth-
ods introduced so far. For example, a simple reduction method is to delete any Steiner
vertex of degree 1. This method is, however, just a special case of Proposition 2.17.
Still, one independent class of SPG reduction methods has not been covered so far.
We will shortly describe those methods in the following.

Terminal separator methods

It is well known that bi-connected components of an SPG instance can be solved
independently, see e.g. Hwang et al. (1992). In Polzin and Daneshmand (2006) a
more general decomposition method is introduced, based on terminal separators.
Let I = (V,E, T, c) be an SPG instance. A T ′ ⊂ T is called terminal separator if
G′ := (V \ T ′, E[V \ T ′]) is not connected. In the case of |T ′| > 1, the biconnected
components of G′ cannot be solved independently, but a case distinction is necessary.

40 The prototype: Steiner tree problem in graphs

In Polzin and Daneshmand (2006) several techniques are described to speed-up this
case distinction, based on the bottleneck Steiner distance. We note that one could
also use the implied bottleneck Steiner distance introduced in this thesis instead.
Notwithstanding the improvements by Polzin and Daneshmand (2006), the case
distinction can still be prohibitively expensive on large bi-connected components.
Thus, Polzin and Daneshmand (2006) also use reduction tests on (small) individual
bi-connected components. If an edge is contained in an optimal solution to the sub-
SPG for all possible cases, it must be included in the original instance I. Conversely,
if an edge is never contained in an optimal solution to a sub-SPG, it can be removed
from the original instance I. Finally, Polzin and Daneshmand (2006) describe a
sophisticated bound-based reduction approach that does not require explicit case
distinction.

For this thesis, we have only fully implemented the latter bound-based approach.
We use a limited version of the exact approach. To find terminal separators, we use
a maximum-flow algorithm on a split-graph obtained from the given SPG instance
I—as suggested in Polzin and Daneshmand (2006). We use a newly implemented
maximum-flow algorithm with warm start-capabilities, described in Section 6.2.4.

2.3.4 From reductions to conflicts

This section shows an additional advantage of the node replacement reduction: The
creation of conflicts between the newly inserted edges. Furthermore, a new replace-
ment operation is introduced. We say that a set E′ ⊂ E with |E′| > 2 is in conflict
if no minimum Steiner tree contains more than one edge of E′.

Node replacement

Unfortunately, this section requires some additional technicalities regarding reduction
methods. Recall that we have seen three types of reductions so far: Edge deletion,
edge contraction, and node replacement. For simplicity, we assume in the following
that a reduction is only performed if it retains all optimal solutions. E.g., we only
delete an edge if we can show that there is no minimum Steiner tree that contains
this edge. We say that such a reduction is valid. We start with an SPG instance
I = (G,T, c), and consider a series of subsequent, valid reductions (of one of the three
above types) that are applied to I. In each reduction step i > 0, the current instance
I(i) = (G(i), T (i), c(i)) is transformed to instance I(i+1) = (G(i+1), T (i+1), c(i+1)). We
set I(0) := I. We define ancestor information for each i = 0, 1, ..., k by Π(i) : E(i) →
P(E) and Π

(i)
FIX ⊆ E. We set Π(0)(e) := {e} for all e ∈ E, and Π

(0)
FIX = ∅. Consider a

reduced instance I(i). If we contract an edge e ∈ E(i), we set Π
(i+1)
FIX := Π

(i)
FIX∪Π(i)(e);

otherwise, we set Π
(i+1)
FIX := Π

(i)
FIX . If we replace a vertex v ∈ V (i), we set for each

newly inserted edge {u,w}—with u,w ∈ N(v)—Π(i+1)({u,w}) := Π(i)({v, u}) ∪
Π(i)({v, w}). For all other remaining edges e we set Π(i+1)(e) := Π(i)(e). Overall, one
observes the following.

Observation 2.22. Let I be an SPG and let I(k) be the SPG obtained from per-
forming a series of k valid reductions on I. For any Steiner tree S(k) for I(k), the

2.3. Implications, conflicts, and reductions 41

tree S with

E(S) =
⋃

e∈E(k)(S(k))

Π(k)(e) ∪Π
(k)
FIX

is a Steiner tree for I, and it holds that

c (E(S)) = c(k)
(
E(k)(S(k))

)
+ c

(
Π

(k)
FIX

)
.

Furthermore, if S(k) is optimal for I(k), then S is optimal for I.

Polzin and Daneshmand (2002) observed that two edges that originate from a
common edge by a series of replacements cannot both be contained in a minimum
Steiner tree. Using the above notation, we can formulate the condition as follows: If
e1, e2 ∈ E(k) satisfy Π(k)(e1) ∩Π(k)(e2) 6= ∅, then there is no minimum Steiner tree
that contains both e1 and e2. As we will see in Section 2.4, such conflict information
can be used for further reductions.

In the following, we will introduce an edge conflict criterion that is strictly stronger
than the one from Polzin and Daneshmand (2002). Initially, we define additional
ancestor information for each i = 0, 1, ..., k. Namely, sets of replacement ancestors

Λ(i) : E(i) → P(N), and Λ
(i)
FIX ∈ P(N). We set Λ(0)(e) := ∅ for all e ∈ E, and

Λ
(0)
FIX := ∅. Further, we define λ(0) := 0. Consider a reduced instance I(i). If we

contract an edge e ∈ E(i), we set Λ
(i+1)
FIX := Λ

(i)
FIX ∪ Λ(i)(e). If we replace a vertex

v ∈ V (i), we set λ(i+1) := λ(i) + 1. Further, we define the replacement ancestors for
each newly inserted edge {u,w}, with u,w ∈ N(v), as follows:

Λ(i+1)({u,w}) := Λ(i)({v, u}) ∪ Λ(i)({v, w}) ∪ {λ(i)}.

If no node replacement is performed, we set λ(i+1) := λ(i). For the replacement ances-
tors one obtains the following technical, but nevertheless important, result (proven
in Appendix A.1.1).

Proposition 2.23. Let I be an SPG and let I(k) be the SPG obtained from per-
forming a series of k valid reductions on I. Further, let e1, e2 ∈ E(k). If Λ(k)(e1) ∩
Λ(k)(e2) 6= ∅, then no minimum Steiner tree S(k) for I(k) contains both e1 and e2.

Corollary 2.24. Let I, I(k) as in Proposition 2.23, and let e ∈ E(k). If Λ(k)(e) ∩
Λ

(k)
FIX 6= ∅, then no minimum Steiner tree S(k) for I(k) contains e.

Note that any edge e as in Corollary 2.24 can be deleted.

Edge replacement

This subsection introduces a new replacement operation, whose primary benefit lies
in the conflicts it creates. We start with a condition that allows us to perform this
operation.

42 The prototype: Steiner tree problem in graphs

Proposition 2.25. Let e = {v, w} ∈ E with e ∩ T = ∅. Define

D := {∆ ⊆ (δ(v) ∪ δ(w)) \ {e} | ∆ ∩ δ(v) 6= ∅,∆ ∩ δ(w) 6= ∅} .

For any ∆ ∈ D let

U∆ := {u ∈ V | {u, v} ∈ ∆ ∨ {u,w} ∈ ∆} .

If for all ∆ ∈ D with |∆| > 3 the weight of a minimum spanning tree on DG(U∆, s)
is smaller than c(∆), then each minimum Steiner tree S satisfies |δS(v)| 6 2 and
|δS(w)| 6 2.

The proposition can be proven by using Corollary 2.29, which will be introduced
in Section 2.4. If the condition of Proposition 2.25 is successful, we can perform what
we will call a path replacement of e: We delete e and add for each pair p, q ∈ V with
p ∈ N(v)\{w}, q ∈ N(w))\{v}, p 6= q an edge {p, q} with weight c({p, v})+c({v, w})+
c({q, w}). At first glance, the apparent increase in the number of edges by this
operation seems highly disadvantageous. However, due to the increased weight, the
new edges can often be deleted by using the criterion from Theorem 2.11. Furthermore,
an edge does not need to be inserted if any two of the three edges it originates from
have a common replacement ancestor. Indeed, we only perform a path replacement if
at most one of the new edges needs to be inserted. The case that all new edges can be
deleted is in principle also covered by the extended reduction technique introduced in
the next section (albeit being potentially far more expensive). If exactly one new edge
remains, we create new replacement ancestors as follows: Let ê = {p, q} be the newly
inserted edge. Initially, set λ(i+1) := λ(i) and Λ(i+1)(ê) := Λ(i)({p, v})∪Λ(i)({v, w})∪
Λ(i)({v, q}). Next, for each e′ ∈ (δ(v) ∪ δ(w)) \ {e} increment λ(i+1), and add λ(i+1)

to Λ(i+1)(ê) and Λ(i+1)(e′). One can show that Proposition 2.23 remains valid if path
replacement is added to the list of valid reduction operations.

Figure 2.7 illustrates an application of Proposition 2.25. In this example, all but
one replacement edges can be deleted by using a simple alternative path argument.
While the number of edges remains unchanged, six new conflicts are created.

2.4 From Steiner distances and conflicts to extended reduction
techniques

At the end of the last section (Section 2.3.4) we have seen a reduction method that
inspects a number of trees (of depth 3) that extend an edge considered for replacement.
This section continues along this path, based on the reduction concepts introduced
so far.

Given a tree Y (e.g. a single edge), extended reduction techniques use an enumer-
ation of trees that contain Y to show that there is an optimal Steiner tree that does
not contain Y . The trees are built by iteratively enlarging or extending Y . During
this process, reduction, conflict, and implication techniques are employed to rule out
these extensions of Y . In this way, extended reduction techniques are loosly related
to the concepts of probing and conflict (graph) analysis for MIP, see e.g. Achterberg
(2007a); Savelsbergh (1994).

2.4. From Steiner distances and conflicts to extended reduction techniques 43

2.0

(a) SPG instance segment

4.0

(b) Segment after edge replacement

Figure 2.7: Segment of a Steiner tree instance (showing only non-terminals). All edges
except for the dashed ones have unit weight. The dashed edge in (2.7a) has been
replaced in (2.7b). All edges that are in conflict with the replacement edge in (2.7b)
are drawn in bold.

The idea of extension was first introduced in Winter (1995) for the rectilinear
Steiner tree problem (see Section 5.4). Later the idea was adopted by Uchoa et al.
(2002)8 for the SPG. The authors achieved strong practical results on a set of (then)
large-scale VLSI instances. The next advancement came in Duin (2000), where back-
tracking was used, together with a number of new reduction criteria for the enumerated
trees. Finally, Polzin and Daneshmand (2002) introduced the up-to-now strongest
extended reduction techniques, which improved and complemented the previous re-
sults. The authors showed that their highly sophisticated algorithm could drastically
reduce the size of many benchmark SPG instances, and even allowed for the solution
of previously intractable instances.

In the following, we introduce new extended reduction algorithms that (provably)
dominate those by Polzin and Daneshmand (2002).

2.4.1 The framework

For a tree Y in G, let L(Y) ⊆ V (Y) be the set of its leaves. We start with several
definitions from Polzin and Daneshmand (2002). Let Y, Y ′ be trees with Y ′ ⊆ Y .
The linking set between Y and Y ′ is the set of all vertices v ∈ V (Y ′) such that there
is a path Q ⊆ Y from v to a leaf of Y with V (Q) ∩ V (Y ′) = {v}. Note that Q can
consist of a single vertex. Y ′ is peripherally contained in Y if the linking set between
Y and Y ′ is L(Y ′). Figure 2.8 exemplifies this concept. To motivate those definitions,
consider a path Q without inner terminals between vertices v and w. For Q to not
be peripherally contained in a minimum Steiner tree it is sufficient that s(v, w) is
smaller than the weight of Q. However, this condition is not sufficient to show that
Q is not contained in a minimum Steiner tree. However, if Q is indeed contained in a
minimum Steiner tree, at least one of its inner vertices needs to be of degree greater
than 2 in this tree. Thus, we can exploit this observation to enumerate extensions of

8 The article was published after Duin (2000), but had been available as a preprint already three
years earlier.

44 The prototype: Steiner tree problem in graphs

(a) Peripherally contained tree (b) Not peripherally contained tree

Figure 2.8: Illustration of peripherally inclusion. The bold subtree is peripherally
contained in the entire tree in Figure 2.8a, but not in Figure 2.8b.

Q from those inner vertices and attempt to rule those extensions out. Such kind of
deductions are used in extended reduction techniques.

For any P ⊆ V (Y) with |P | > 1 let YP be the union of the (unique) paths between
any v, w ∈ P in Y . Note that YP is a tree, and that YP ⊆ Y holds. P is called pruning
set if it contains the linking set between YP and Y . Additionally, we will use the
following new definition: P is called strict pruning set if it is equal to the linking set
between YP and Y . Figure 2.9 provides an example of pruning and strict pruning
sets. One readily verifies the following property of pruning sets.

Observation 2.26. Let Y be a tree, and let Y ′ ⊆ Y be a tree that is peripherally
contained in Y . Further, let P ⊆ V (Y ′). If P is a pruning set for Y ′, then P is also a
pruning set for Y . If P is a strict pruning set for Y ′, then P is also a strict pruning
set for Y .

Additionally, we define a stronger, and new, inclusion concept. Consider a tree
Y ⊆ G, and a subtree Y ′. Let P be a pruning set for Y ′. We say that Y ′ is P -
peripherally contained in Y if P is a pruning set for Y . Now let P be a strict
pruning set for Y ′. We say that Y ′ is strictly P -peripherally contained in Y if P is a
strict pruning set for Y . From Observation 2.26 one obtains the following important
property.

Observation 2.27. Let Y ⊆ G be a tree, let Y ′ ⊆ Y be a subtree, and let P be a
pruning set for Y ′. If Y ′ is peripherally contained in Y , then Y ′ is also P -peripherally
contained in Y .

In fact, we will use the contraposition of the observation: If Y ′ is not P -peripherally
contained in Y , then Y ′ is not peripherally contained in Y . Note that an equivalent
property holds for strict pruning sets.

Given a tree Y and a set E′ ⊆ E, we write with a slight abuse of notation Y +E′

for the subgraph with the edge set E(Y) ∪ E′. Algorithm 2.1 shows a high level

2.4. From Steiner distances and conflicts to extended reduction techniques 45

(a) Pruning set (b) Strict pruning set

Figure 2.9: Illustration of pruning and strict pruning sets. The filled vertices in
Figure 2.9a form a (non-strict) pruning set, whereas the filled vertices in Figure 2.9b
constitute a strict pruning set.

description of the extended reduction framework used in this thesis. The framework
is similar to the one introduced in Polzin and Daneshmand (2002), but more general.9

Note that the algorithm is recursive.
A possible input for Algorithm 2.1 is an SPG instance together with a single edge.

If the algorithm returns true, the edge can be deleted. Besides ExtensionSets,
which is described in Algorithm 2.2, the extended reduction framework contains the
following subroutines:

– RuledOut(I, Y, P) is given an SPG I = (G,T, c), a tree Y ⊆ G, and a pruning
set P for Y such that V (YP)∩T ⊆ L(YP). The routine returns true if Y is shown
to not be P -peripherally contained in any minimum Steiner tree. Otherwise,
the routine returns false.

– RuledOutStrict(I, Y, P) is given an SPG I = (G,T, c), a tree Y ⊆ G, and a
strict pruning set P for Y such that V (YP) ∩ T ⊆ L(YP). The routine returns
true if Y is shown to not be strictly P -peripherally contained in any minimum
Steiner tree. Otherwise, the routine returns false.

– StrictPruningSets(I, Y) is given an SPG I = (G,T, c), a tree Y ⊆ G. It
returns a subset of all strict pruning sets for Y . A typical strict pruning set is
L(Y).

– Truncate(I, Y) is given an SPG I = (G,T, c), and a tree Y ⊆ G. The routine
returns true, if no further extensions of Y should be performed; otherwise the
routine returns false.

9 We note, however, that the framework presented in Polzin and Daneshmand (2002) is (slightly)
erroneous. E.g., in their equivalent to Step 4 of Algorithm 2.2, their method only checks whether
the extended tree Y +{e} is not peripherally contained with linking set L(Y)∪{w} in a minimum
Steiner tree. However, this check does not rule out the extension of the current tree Y via the
single edge {v, w}.

46 The prototype: Steiner tree problem in graphs

– Promising(I, Y, v) is given an SPG I = (G,T, c), a tree Y ⊆ G, and a vertex
v ∈ L(Y). The routine returns true if further extensions of Y from v should be
performed; otherwise the routine returns false.

The usage of P -peripheral inclusion in RuledOut might appear somewhat awk-
ward, but is necessary for ruling-out not only trees (as in line 2 of Algorithm 2.1),
but also all possible extensions via a single edge (as in line 4 of Algorithm 2.2).

Algorithm 2.1: Extended-RuledOut

Data: SPG instance I = (G,T, c), tree Y with Y ∩ T ⊆ L(Y)
Result: true if Y is shown to not be peripherally contained in any minimum

Steiner tree; false otherwise
1 foreach P ∈ StrictPruningSets(I, Y) do
2 if RuledOutStrict(I, Y, P) then
3 return true

4 if Truncate(I, Y) then
5 return false

6 foreach v ∈ L(Y) do
7 if v ∈ T or not Promising(I, Y, v) then
8 continue

9 success := true
10 foreach E′ ∈ ExtensionSets(I, Y, v) do
11 if not Extended-RuledOut(I, Y + E′) then
12 success := false

13 if success then
14 return true

15 return false

In Lines 1-3 of Algorithm 2.1, we try to peripherally rule-out tree Y . If that is
not possible, we try to recursively extend Y in Lines 6-14. Since (given positive edge
weights) no minimum Steiner tree has a non-terminal leaf, we can extend from any
of the non-terminal leaves of Y . Note that ruling-out all extensions along one single
leaf is sufficient to rule-out Y . The correctness of Extended-RuledOut can be
proven by induction (under the assumption that the subroutines are correct). We
also remark that it is under certain conditions possible to replace the condition not
peripherally contained in any minimum Steiner tree by the condition not peripherally
contained in at least one minimum Steiner tree. See also the discussion following
Theorem 2.28.

Although the extended reduction framework shown in Algorithm 2.1 looks simple,
an efficient realization is highly intricate. Not least, because the interaction of many
different algorithmic components needs to be taken into account. Also, the re-use of
intermediate results obtained during the tree extension (such as bottleneck Steiner

2.4. From Steiner distances and conflicts to extended reduction techniques 47

Algorithm 2.2: ExtensionSets

Data: SPG instance I = (G,T, c), tree Y , vertex v ∈ V (Y)
Result: Set Γ ⊆ P(δ(v)) such that for all non-empty γ ∈ P(δ(v)) \Γ, the tree

Y + ρ is not peripherally contained in any minimum Steiner tree.
1 Q := ∅
2 R := ∅
3 foreach e := {v, w} ∈ δ(v) \ E(Y) do
4 if RuledOut(I, Y + {e}, L(Y) ∪ {w}) then
5 continue

6 if RuledOutStrict(I, Y + {e}, L(Y) ∪ {w}) then
7 R := R ∪ {e}
8 continue

9 Q := Q ∪ {e}
10 return (P(Q) \ ∅) ∪R

distances) is non-trivial. Indeed, the implementation of extended reduction techniques
for this thesis encompasses more than 20 000 lines of C code10, and includes many fur-
ther algorithmic ideas. In the following, we concentrate on mathematical descriptions
of the subroutines for ruling-out enumerated trees. Implementation details of sev-
eral key components—including nitty-gritty issues such as CPU cache-efficiency—are
given in Section 6.2.3.

2.4.2 Reduction criteria

In this section, we introduce several elimination criteria used within RuledOut and
RuledOutStrict. In fact, both of these routines consist of several subalgorithms
that check different criteria for eliminating the given tree. Note that any criterion
that is valid for RuledOut is also valid for RuledOutStrict. We also note that
several of the criteria in this section are similar to results from Polzin (2003); Polzin
and Daneshmand (2002), but are all stronger. Throughout this section we consider a
graph G = (V,E) and an SPG instance I = (G,T, c).

Consider a tree Y ⊆ G, and a pruning set P for Y such that V (YP)∩ T ⊆ L(YP).
For each p ∈ P let Y p ⊂ Y such that V (Y p) is exactly the set of vertices v ∈ V (Y) that
satisfy the following: For any q ∈ P \{p} the (unique) path in Y from v to q contains
p. Note that when removing E(YP) from Y , each non-trivial connected component
equals one Y p. Further, note that p ∈ V (Y p) for all p ∈ P . Let GY,P = (VY,P , EY,P)
be the graph obtained from G = (V,E) by contracting for each p ∈ P the subtree Y p
into p. For any parallel edges, we keep only one of minimum weight. We identify the
contracted vertices V (Y p) with the original vertex p. Overall, we thus have VY,P ⊆ V .

10 We note, however, that this code count includes comments, as well as various correctness tests
(which are only executed in debug mode). We also note that the same reductions could be achieved
with (much) less than half of the code size, but at the expense of an increased run time.

48 The prototype: Steiner tree problem in graphs

Let cY,P be the edge weights on GY,P derived from c. Let

TY,P :=
(
T ∩ VY,P

)
∪ {p ∈ P | T ∩ V (Y p) 6= ∅}. (2.71)

Finally, let sY,P be the bottleneck Steiner distance on (GY,P , TY,P , cY,P). With these
definitions at hand, we are able to formulate a reduction criterion that generalizes
a number of results from the literature. See Hwang et al. (1992); Polzin (2003) for
similar, but weaker, conditions.

Theorem 2.28. Let Y ⊆ G be a tree, and let P be a pruning set for Y such that
V (YP)∩T ⊆ L(YP). Let IY,P be the SPG on the distance network DGY,P

(
VY,P , sY,P

)
with terminal set P . If the weight of a minimum Steiner tree for IY,P is smaller than
c(E(YP)), then Y is not P -peripherally contained in any minimum Steiner tree for
I.

Proof. Let S be a (not necessarily minimum) Steiner tree for I such that Y is P -
peripherally contained in S. Let SY,P be a minimum Steiner tree for IY,P . Let S̃ ⊂ G
be the forest defined as follows:

V (S̃) := (V (S) \ V (YP)) ∪ V (SY,P), (2.72)

E(S̃) := E(S) \ E(YP). (2.73)

Let C̃ be the set of connected components of S̃. Further, let f : V → C̃∪{∅} such that
f(v) = C̃ if v ∈ V (C̃) for a C̃ ∈ C̃, and f(v) = ∅ otherwise. Note that each C̃ ∈ C̃
contains at least one vertex of P , and thus also at least one vertex of SY,P . Also,
f(v) 6= ∅ for all v ∈ V (SY,P). Further, note that for each of the contracted subtrees
Y p there is a C̃ ∈ C̃ with Y p ⊆ C̃. In the following, we will iteratively connect all the
components in C̃.

While |C̃| > 1 proceed as follows. Choose a (v, w) ∈ E(SY,P) with f(v) 6= f(w)
such that sY,P (v, w) is minimized. Let W be a (v, w)-walk in GY,P corresponding to
sY,P (v, w). Because of f(v) 6= f(w), there is at least one subwalk Q = W (q, r) of W
such that f(q), f(r) 6= ∅, f(q) 6= f(r), and f(u) = ∅ for all u ∈ V (Q) \ {q, r}. Note
that c(E(Q)) 6 sY,P (v, w), because f(t) 6= ∅ for all t ∈ T . As long as such a path
Q exists, proceed as follows. Add Q to S̃, and remove from E(SY,P) an (arbitrary)
edge of the path between f(q) and f(r) in SY,P . Also, update C̃ and f . Note that the
weight of the removed edge (with respect to sY,P) is at most sY,P (q, r).

Once |C̃| = 1, one notes that the summed up weight of all newly inserted paths
(with respect to c) does not exceed the weight of SY,P (with respect to sY,P). Because
the weight of SY,P is smaller than c(E(YP)), we obtain from the construction of S̃
that

c(E(S̃)) < c(E(S)), (2.74)

which concludes the proof.

In practice, one does not need to explicitly form GY,P . Instead, one can use the
(original) bottleneck Steiner distances between the connected components of the graph

2.4. From Steiner distances and conflicts to extended reduction techniques 49

induced by E(Y)\E(YP). Note that one can also extend Theorem 2.28 to the case of
equality if at least one vertex of YP is not contained in any of the paths corresponding
to the s values used for edges of SY,P . However, in the context of extended reduction
techniques one needs to be careful to not discard all of several equivalent extensions.
We omit the quite technical details, but merely note that allowing for equality (and
adding suitable checks) can have a significant impact for some instances.

In practice, computing a minimum Steiner tree (or even an approximation) on
DGY,P

(
VY,P , sY,P

)
is often too expensive. In such cases, the following corollary pro-

vides a strong alternative.

Corollary 2.29. Let Y , P as in Theorem 2.28. Let (P ′, P ′′) be a partition of P . Let
F ′ be a minimum spanning tree on DGY,P

(
P ′, sY,P

)
, and let z′ be the weight of F ′. Let

F ′′ be a minimum spanning tree in DGY,P

(
TY,P , sY,P

)
. Write {eF ′′1 , eF

′′

2 , ..., eF
′′

|TY,P |−1} :=

EY,P (F ′′) such that sY,P (eF
′′

i) > sY,P (eF
′′

j) for i < j. Define

z′′ :=

|P ′′|∑
i=1

sY,P (eF
′′

i). (2.75)

If z′+z′′ < c(E(YP)), then Y is not P -peripherally contained in any minimum Steiner
tree for I.

Proof. First, note that if P ′′ = ∅, then the corollary follows directly from Theorem 2.28,
because z′ is a lower bound on the weight of a minimum Steiner tree in IY,P . Thus,
we assume P ′′ 6= ∅ in the following.

Suppose there is a minimum Steiner tree S for I such that Y is P -peripherally
contained in S. Define S̃ as in the proof of Theorem 2.28. Further, proceed as in the
proof of Theorem 2.28 to reconnect all connected components of S̃ that contain a
vertex from P ′. As a result, S̃ has at most |P ′′|+ 1 connected components. Because
S is assumed to be optimal, each connected component of S̃ contains at least one
terminal. Thus, we can reconnect the remaining connected components similarly to
Theorem 2.28, by using paths corresponding to edges of F ′′. We need to add at most
|P ′′| such paths. Overall, we have increased the weight of S̃ by at most z′+ z′′. From
z′ + z′′ < c(E(YP)) we obtain that

c(E(S̃)) < c(E(S)), (2.76)

which contradicts the optimality of S.

As for Theorem 2.28, the contractions in Corollary 2.29 should only be performed
implicitly in practice. Furthermore, one requires a careful implementation to avoid
a recomputation from scratch of the two minimum spanning trees in Corollary 2.29
for each enumerated tree in Algorithm 2.1.

Next, let Y ⊆ G be a tree with pruning set P , and let v, w ∈ V (Y) and let Q be
the path between v, w in Y . We define a pruned tree bottleneck between v and w as a
subpath Q(a, b) of Q that satisfies |δY (u)| = 2 and u /∈ P for all u ∈ V (Q(a, b))\{a, b},

50 The prototype: Steiner tree problem in graphs

V (Q(a, b)) ∩ T ⊆ {a, b}, and maximizes c(V (Q(a, b))). The weight c(V (Q(a, b))) of
such a pruned tree bottleneck is denoted by bY,P (v, w). Using this definition and the
implied bottleneck Steiner distance, we obtain the following result.

Proposition 2.30. Let Y be a tree, let P be a pruning set for Y , and let v, w ∈ V (Y).
If sp(v, w) < bY,P (v, w), then Y is not P -peripherally contained in any minimum
Steiner tree.

The proposition can be proven in a similar way as Theorem 2.11 (and is indeed a
generalization of the latter).

Another criterion can be devised by using the reduced costs of the bidirected cut
formulation (BDCut). Let D = (V,A) be the bidirected equivalent of G, and let
r ∈ T be the root for BDCut. Consider a dual solution to BDCut, with reduced
costs c̃, and with objective value L̃. Further, for any v, w ∈ V , let d̃(v, w) be the
length for a shortest, directed path from v to w in A with respect to the reduced
costs. From the observation that an optimal Steiner arborescence cannot contain any
cycles, we obtain the following result with standard linear programming arguments:

Proposition 2.31. Let Y be a tree. Let P = {p1, ..., pk} be a strict pruning set for
Y such that there is a k′ 6 k with pi ∈ T if and only if i > k′. Further, assume
that V (YP) ∩ T ⊆ L(YP), and |P | < |T |. The weight of any Steiner tree that strictly
P -peripherally contains Y is at least

L̃+ min
i∈{1,...,k}

max
{t1,..ti−1,ti+1,...,tk′}⊆T\V (YP)

{d̃(r, pi) +
∑

j6k′,j 6=i

d̃(pj , tj)} (2.77)

Given an upper bound on the cost of a minimum Steiner tree, this proposition
can be used in the RuleOutStrict routine. In practice, we only use a lower bound
on the max subterm in (2.77).

Finally, another important reduction criteria is constituted by edge conflicts—this
result follows directly from Proposition 2.23.

Corollary 2.32. Let I(k) be an SPG obtained from performing a series of k valid
reductions on an SPG I. Let Y ⊆ G(k) be a tree, and let P a pruning set for Y . If
there are distinct edges e1, e2 ∈ E(k)(Y) such that Λ(k)(e1) ∩ Λ(k)(e2) 6= ∅, then Y is
not P -peripherally contained in any minimum Steiner tree.

2.5 Primal heuristics

In the mathematical world, heuristics might be characterized as the Cinderellas11

of discrete optimization. Both are mostly kept out of view (in the case of heuristics
because of the somewhat embarrassing lack of theoretical performance guarantees),
but they do much of the real work behind the scenes. Thus, heuristics are very popular
in the more practically minded operations research community. In the case of the

11 according to Wikipedia, Cinderella is a folk tale about unjust oppression and triumphant reward

2.5. Primal heuristics 51

SPG, the number of articles concerned with primal heuristics is huge. An overview
of articles up to 1992 can be found in Hwang et al. (1992). Newer developments are
referenced in Duin and Voss (1997); Pajor et al. (2017); Polzin and Daneshmand
(2001b); Ribeiro et al. (2001). See also the recent survey by Ljubic (2020).

Obtaining Steiner trees of small weight is often of independent relevance, but the
corresponding upper bounds on the optimal solution value are also highly relevant
for exact SPG solution. For example, such upper bounds are indispensable for the
bound-based reductions described in Section 2.3.2. Additionally, tight upper bounds
are highly important for ruling-out subproblems during branch-and-bound.

We use three (well-known) local-search heuristics in our implementation: Vertex-
insertion, key-path exchange, and key-vertex elimination. Given a Steiner tree S,
vertex-insertion computes for each vertex v /∈ V (S) that is adjacent to S an MST on
the graph induced by V (S) ∪ {v}. This MST is also a Steiner tree. Key-vertices of
a Steiner tree S are all v ∈ V (S) with v ∈ T or |δS(v)| > 3. A key-path is a path in
S with a key-vertex at both endpoints, but without any intermediary key-vertices.
Key-path exchange attempts to replace key-paths in S by other paths of smaller cost
between the same endpoints. Similarly, for key-vertex elimination in each step a non-
terminal key-vertex and all adjoining key-paths are removed from S, and an attempt
is made to reconnect the resulting subtrees at lower cost. Our implementation of
these heuristics follows Uchoa and Werneck (2010).

In the following, we describe several so-called construction heuristics—heuristics
that build feasible solutions from scratch.

2.5.1 Shortest path heuristic and implications

The shortest path heuristic is arguably the best-known primal SPG heuristic. Intro-
duced in 1980 by Takahashi and Matsuyama (1980), it has found its way into various
publications, e.g. Hwang et al. (1992); de Aragão and Werneck (2002); Polzin and
Daneshmand (2001b); Pajor et al. (2017). The algorithm starts with a tree S consist-
ing of a single vertex and iteratively connects S by a shortest path to a terminal closest
to S. The run time of the heuristic is in O(|T |(m+n log n)). As a simple postprocess-
ing step, one can compute a minimum spanning tree on (V (S), E[S]) and iteratively
remove non-terminal leaves. An efficient implementation is given in de Aragão and
Werneck (2002). Obviously, the solution provided by the heuristic depends on the
starting point. Since the heuristic is empirically very fast, it is therefore usually
run from several vertices. This section shows how to use the implication concept
introduced in Section 2.3.1 to (empirically) improve the algorithm.

Let v0 ∈ V , and initially set S := {v0}. Define a distance array d̃ and a predecessor
array pred by d̃[u] := ∞, pred[u] := null for all u ∈ V \ {v0}, and d̃[v0] := 0,
pred[v0] := v0. Define for all v ∈ V \ T :

p̃(v) := max
{

0, sup
{
b(e)− c(e) | e = {v, w} ∈ δ(v), w ∈ T \ V (S)

}}
. (2.78)

For all v ∈ T set p̃(v) := 0. Essentially, (2.78) is a weaker version of the implied profit
from Section 2.3.1. Finally, set Q := {v0}.

52 The prototype: Steiner tree problem in graphs

While Q 6= ∅ let v := arg minu∈Q d̃[u]. If v ∈ T , add the path P from v to S,

marked by the predecessor array, to S, add V (P) to Q, and set d̃[u] := 0 for all
u ∈ V (P). Furthermore, update (2.78). For all {v, w} ∈ δ(v) proceed as follows. If

d̃[v] + c({v, w})−min
{
c({v, w}), p̃(v), d̃[v]

}
< d̃[w], (2.79)

then set d̃[w] to the left hand side of (2.79), and add w to Q. Further, set pred[w] := v.
Note that (2.79) provides a bias for paths computed by the heuristic to include

vertices of implied profit. In this way, the distance associated with a path also reflects
the cost needed to connect additional terminals later on. Note that the minimum
spanning tree computed during postprocessing will always contain the edge associated
with each vertex of positive implied profit contained in S. For performance reasons,
we use in (2.78) instead of b(e) for e = {v, w}, w ∈ T , the value mine′∈δ(w)\{e} c(e

′).

2.5.2 Reduction based heuristics

This section introduces heuristics that make heavy use of SPG reduction techniques.
We with start with two heuristics from Polzin and Daneshmand (2001b), and end
this section with a new heuristic

Prune

While the following heuristic is originally based on Voronoi diagram reductions (Polzin
and Daneshmand, 2001b), we instead describe a modification of the heuristic based
on the (stronger) terminal-regions decomposition introduced in Section 2.3.2. Recall
that for the terminal-regions decomposition test an upper bound is provided by
the weight of a given solution. In the prune heuristic, the bound is chosen such
that a predefined number of edges is eliminated. Thereupon, all exact reduction
methods are executed on the reduced problem, motivated by the assumption that
the (possibly inexact) eliminations performed by the bound-based method will allow
for further (exact) reductions. This procedure is repeated several times. On the final
reduced problem, a solution is computed by using the above shortest path heuristic.
This solution is retransformed to a solution to the original SPG instance. To avoid
infeasibility, initially a feasible solution is computed (by using the shortest-path
heuristic introduced above) of which no vertices or edges are allowed to be deleted
by the (inexact) bound-based method.

Ascend-and-prune

Ascend-and-prune is borne from the combination of the prune heuristic and dual-
ascent. Let I be an SPG instance, and I ′ the equivalent bidirected SAP. The ascend-
and-prune heuristic computes a solution on the subproblem Ĩ constituted by the
(undirected) edges of I corresponding to zero-reduced-cost paths in I ′ from the root
to all additional terminals. This solution on Ĩ is computed by the prune heuristic.
The ascend-and-prune heuristic is motivated by the assumption that notable simi-
larities exist between an optimal (or near-optimal) Steiner tree and the LP solution

2.6. Solving to optimality 53

corresponding to the reduced costs provided by dual-ascent. Finally, we note that
the idea of searching for a solution on the subproblem induced by dual-ascent can
already be found in Wong (1984).

Recombine-and-reduce

Consider an SPG instance I = (V,E, T, c) and let L with |L| > 2 be a set of feasible
solutions to I. The recombine-and-reduce heuristic tries to compute new Steiner
trees out of the solutions in L. The key component of the heuristic is an operation
that we will refer to as n-merging. Given a solution S ∈ L, and an n ∈ N with
n > 2, define the n-merging operation as follows: Choose L′ ⊆ L \ {S} such that
|L′| = n− 1 (in a pseudo-random way). Let GS := (VS , ES) :=

⋃
S′∈L′ S

′ ∪ S. If GS
consists of several biconnected components, we perform the following procedure for
each of these biconnected components individually. In the following, we assume that
GS is biconnected. Let IS := (VS , ES , T, c �ES

). Applying the reduction techniques
introduced in this thesis to IS , we obtain a new SPG I ′S . During the reduction
process one often obtains feasible solutions to IS (since several primal heuristics are
performed). Let S̃ be the best such solution, if existent.

Another solution is computed on IS after perturbing the edge costs c �ES
as follows.

Consider for each edge e ∈ ES the ancestor set Π(e) ⊆ E defined in Section 2.3.4.
Define

α(e) :=

∑
S′∈L′ |Π(e) ∩ E(S′)|

|Π(e)|
. (2.80)

Next, the cost of each edge e ∈ ES is multiplied by a (pseudo-random) number
that is anti-proportional to α(e)—i.e., the number increases as α(e) decreases. On
this perturbed SPG instance, a heuristic solution is computed and retransformed
to the original solution space. This solution is compared with the solution obtained
during the reduction process, and the better of the two is retained.

The recombine-and-reduce heuristic is clustered around the n-merging operation:
Given a new solution S, in each run we consecutively perform several n-merging
operations with varying n. When a solution S′ is generated during an n-merging such
that c(E(S′)) < c(E(S)), we set S := S′ and add S′ to L. Moreover, in this case a
new run is started after the conclusion of the current one. The total number of runs
is limited.

We note that a forerunner of this heuristic was already included in a SCIP-Jack
version that predates this thesis. Moreover, this older version is itself a generalization
of an approach described in Pajor et al. (2017).

2.6 Solving to optimality

For solving SPG instances to optimality we rely on two methods: dynamic program-
ming and branch-and-cut. We note, however, that in this thesis the latter is the far
more important method. For both dynamic programming and branch-and-cut we
make heavy use of the algorithms introduced so far.

54 The prototype: Steiner tree problem in graphs

2.6.1 Combining extended reductions and dynamic programming

The well-known exact SPG algorithm by Dreyfus and Wagner (1971) exploits the fact
that any optimal Steiner tree S for an SPG (G,T, c) can be split at any v ∈ V (S) into
two non-empty trees S1 and S2 such that T1 := V (S1)∩ T 6= ∅, T2 := V (S2)∩ T 6= ∅,
and:

1. T1 ∩ T2 ⊆ {v} and T1 ∪ T2 = T ,

2. S1 is optimal for (G,T1 ∪ {v}, c), and S2 is optimal for (G,T2 ∪ {v}, c).

This observation can be exploited to find an optimal Steiner tree in a dynamic
programming fashion—by recursively computing an optimal Steiner tree for any
terminal set T ′ ∪ {v} for any T ′ ⊆ T and any v ∈ V \ T ′. In Erickson et al. (1987)
a slightly improved version of the algorithm by Dreyfus and Wagner (1971) is given
that achieves a run time of O(3|T |n + 2|T |(m + n log n)). The authors use the fact
that given an optimal Steiner tree for a terminal set T ′, optimal Steiner trees for
terminal sets T ′ ∪ {v} for all v ∈ V \ T ′ can be computed by just one execution of
Dijkstra’s algorithm.

There have been notable efforts during the last years to make the algorithms
by Dreyfus and Wagner (1971) and Erickson et al. (1987) competitive in practice,
see e.g. Hougardy et al. (2017); Iwata and Shigemura (2019) for prominent examples.
However, these implementations can usually not match the state of the art solver
from Polzin (2003); Vahdati Daneshmand (2004) even for instances with few terminals.
A critical component of practical realizations of the above dynamic programming
scheme are so-called pruning techniques, which allow one to discard optimal Steiner
trees for certain terminal sets. In this way, often a dramatic speed-up can be obtained
as compared to naive implementations, see e.g. Iwata and Shigemura (2019). In this
context, one notices that most of the reduction criteria introduced for extended re-
duction methods in Section 2.4.2 can also be used for pruning. The resulting methods
are considerably stronger than the pruning techniques employed in the literature so
far. Our dynamic programming implementation combines these techniques with the
node-separator concept from Iwata and Shigemura (2019). Unfortunately, however,
our implementation is only competitive with branch-and-cut for instances with less
than 20 terminals—and these instances are usually solved quickly by either approach.
Still, in the context of decomposition techniques, where we often obtain many small
sub-problems, the dynamic programming algorithm has turned out to be useful.

We also tentatively implemented FPT algorithms based on tree-width, see e.g. Chi-
mani et al. (2012), and on the border concept by Polzin and Daneshmand (2006).
However, we could only achieve performance gains on very few instances compared
to our default approach. Furthermore, we observed an overall performance degrada-
tion even when we limited the execution of these algorithms to instances with small
tree-width.

2.6.2 Branch-and-cut

This section describes how to assemble the various techniques introduced so far
within an (exact) branch-and-cut algorithm. All algorithms discussed in this chapter

2.6. Solving to optimality 55

so far are part of the following three classes, which form the main pillars of our exact
algorithm:

– reduction techniques,

– heuristics (primal and dual), and

– IP formulation and cutting planes.

The dynamic programming algorithm introduced in the previous section can be seen
as an exception to this classification. However, this algorithm is not often applied
(and usually only for sub-problems).

Notably, the three algorithmic classes are deeply intertwined. For example, reduc-
tion methods are crucial for the success of prune, ascend-and-prune, and recombine-
and-reduce, while the quality of the primal bound obtained by these heuristics deter-
mines the effectiveness of the bound-based reduction methods. Additionally, reduced
problems usually show a smaller integrality gap for the IP formulation, and require less
time for solving the LP-relaxation. In turn, the reduced-costs from the LP-relaxation
can be used for further reductions.

In the following, we list the main components of the branch-and-cut framework
that is used for exact SPG solution in this thesis. Additional technical details of
the branch-and-cut procedure—both for SPG and the subsequently discussed related
problems—can be found in Section 6.2.

Presolving For presolving, the reduction methods described in this thesis are
executed iteratively within a loop. This loop is reiterated as long as a predefined
percentage of edges has been eliminated during the previous round. Naturally, the,
empirically, faster reduction methods are performed first. Empirically, the order of
the reduction techniques only has a small impact on the strength of the presolving.
Indeed, for the classic SPG reduction techniques from Duin and Volgenant (1989b)
this behavior can also be theoretically verified, see Kingston and Sheppard (2003).
For computing reduced-costs during presolving, we employ dual-ascent.

Domain propagation During branch-and-bound we use the reduced-costs from
the LP-relaxations for fixing arcs of the BDCut formulation to 0. To this end, we use
the path-based criterion used in Section 2.3.2. Additionally, whenever a predefined
percentage of all arcs have been newly fixed during the branch-and-bound procedure,
further reduction techniques are applied as follows. Let I = (V,E, T, c) be the con-
sidered SPG instance. All edges {v, w} ∈ E such that both y((v, w)) and y((w, v))
have been fixed to 0 are removed from I. Edges {v, w} ∈ E such that either y((v, w))
or y((w, v)) has been fixed to 1 are contracted. Additionally, I is modified as to
reflect the branching history, see paragraph Branching below. Finally, several of the
reduction methods described in this thesis are performed on I, and the changes are re-
translated into arc fixing. While the deletion of edges can be directly translated into
variable fixings, the situation is more complicated for vertex replacements. Therefore,
other authors, e.g. Polzin and Daneshmand (2001b), use only edge deleting reduc-
tions for domain propagation. However, by using the ancestor concept introduced in

56 The prototype: Steiner tree problem in graphs

Section 2.3.4, one can readily devise a criterion to employ all reduction operations
used in this thesis for domain propagation.

Proposition 2.33. Let I = (V,E, T, c) be an SPG and let I(k) be the SPG obtained
from performing a series of k valid reductions on I. Define an SPG instance I ′ =
(V ′, E′, T ′, c′) as follows:

E′ :=
⋃

e∈E(k)

Π(k)(e) ∪Π
(k)
FIX ,

V ′ = {v ∈ V | ∃e ∈ E′, v ∈ e}, T ′ := T , and c′ := c �E′ . Any optimal solution to I ′

is an optimal solution to I.

We do not provide a proof, but note that the validity of the proposition follows
from Observation 2.22.

Decomposition It is well-known that the biconnected components of the graph
underlying an SPG instance can be solved separately. Given the super-linear run time
of most algorithms that we employ, such a decomposition can lead to significant speed-
ups. While SPG instances usually do not have articulation points in their original
form, this property sometimes changes after the application of reduction techniques.
Therefore, we use decomposition into biconnected components both during presolving
and during branch-and-cut.

Primal heuristics We try to retain the best solution found during presolving,
to provide it as an initial primal solution. Additionally, we use the reduced costs
obtained during the creation of the initial cutting planes (as detailed below) for ap-
plying the ascend-and-prune heuristic before the branch-and-bound procedure starts.
During branch-and-bound, we periodically employ our shortest-path heuristic, and
the recombine-and-reduce heuristic. Additionally, we use the local heuristics vertex-
insertion, key-path exchange, and key-vertex elimination to improve high quality
primal solutions. We furthermore use the solution to the current LP-relaxation to
guide the shortest-path heuristic—an idea already utilized by other authors, e.g. Koch
and Martin (1998). We alter the arc weight as follows: Given an LP solution y ∈ QA
to BDCutFB , the (directed version of the) shortest-path heuristic is called with the
arc weights (1− y(a)) · c(a) for all a ∈ A. In this way, arcs with a high LP solution
value are more likely to be selected by the heuristic.

Separation After presolving, SCIP-Jack runs the dual-ascent heuristic to select
a set of constraints from the BDCut formulation to be included into the initial LP.
Additionally, we use all 0− 1 constraints. We separate the remaining constraints of
the BDCut formulation by using a newly implemented maximum-flow algorithm,
see Section 6.2.4 for more details. We also separate the flow-balance constraints.
Additionally, we use another class of cuts from Koch and Martin (1998):

y
(
δ−(v) \ (w, v)

)
> y((v, w)), for all (v, w) ∈ δ+(v), v ∈ V \ T. (2.81)

2.7. Computational results 57

Although Polzin and Daneshmand (2001a) show that the constraints (2.81) cannot
improve the objective value of the BDCut LP-relaxation, the constraints usually lead
to a speed-up of the branch-and-cut procedure.

Branching Classic variable branching for the BDCut formulation often leads to
a badly balanced branch-and-bound tree, since the inclusion of an arc has a far
larger impact than its exclusion. Thus, a well-known strategy is to branch on vertices
instead, see e.g. Hwang et al. (1992): A selected vertex is made a terminal in one
branch-and-bound child node, and is removed in its sibling. Such a change is reflected
in the IP formulation by adding one additional constraint. We note, however, that
branching is rarely required, due to the various powerful algorithms that we apply
before. As such, more than 95 percent of the SPG instances considered in this thesis
are solved without any branching.

2.7 Computational results

This section provides computational results for our Steiner tree solver SCIP-Jack
on a large collection of SPG instances from the literature. We look at the impact
of individual components, and furthermore compare SCIP-Jack with the state of
the art in SPG solution. An overview of the test-sets is given in Table 2.1. The
second column gives the number of instances per test-sets. The third and fourth
columns give the range of nodes and edges per test-set. The fifth column states
whether for all instances of the test-set optimal solutions are known. We note that
this collection covers almost all established test-sets from the literature—including the
SteinLib (Koch et al., 2001), as well as the 11th DIMACS and 3rd PACE Challenge
instances—except for very easy ones. More details are given in Section 2.7.3. See
Section 1.2.1 for hardware details.

2.7.1 Individual components

We start with computational results for individual components of SCIP-Jack. A
common way of demonstrating the impact of a single component within an exact
solver is to report the performance change when deactivating this component, see
e.g. Achterberg (2007b). With a large number of algorithms being combined in a
solver—as is the case in this thesis—the question is on the granularity of this approach.
We have observed that several algorithms, such as individual heuristics, are reasonably
well compensated by another one, so simply deactivating one of them does not show
a large performance impact. However, deactivating two complementary algorithms
can already have a much larger impact than just deactivating either of them. Thus,
we have decided for a hybrid approach. First, we show the individual impact of the
three major building blocks of our SPG solver. Second, we take a more in-depth look
at the, arguably, most important of them: reduction techniques. In particular, we
will demonstrate the impact of the (newly introduced) implied Steiner bottleneck
distance techniques.

58 The prototype: Steiner tree problem in graphs

Name # |V | |E| Status Description

PACE-A 100 53 - 10393 80-204480 solved Instances from the 3rd PACE Challenge
Track A (few terminals).

PACE-B 100 15 - 36415 35-145635 solved Instances from the 3rd PACE Challenge
Track B (small tree-width).

2R 27 2000 11600 solved 3-D cross grid graphs from SteinLib.
VLSI 116 90 - 36711 135 - 68117 solved Grid graphs with holes (non-geometric)

from VLSI design (Koch and Martin, 1998).
vienna-s 85 1991 - 89596 3176 - 148583 solved Instances derived from telecommunication

network design, see Leitner et al. (2014),
vienna-a 85 160 - 34221 237 - 50301 solved Presolved versions of the above

network design instances.
ES10000 1 27019 39407 solved Originally rectilinear Steiner tree

instances. From SteinLib.
TSPFST 76 89-17127 104-27352 solved Originally rectilinear Steiner tree

instances. From TSPLIB (Reinelt, 1991).
GEO-org 23 42481 - 235686 52552 - 366093 solved Instances derived from telecommunication

network design. From Leitner et al. (2014).
GEO-a 23 7565 - 71184 11521 - 113616 solved Presolved versions of the above

GEO-org instances.
Cophag14 21 16 - 15473 23 - 38928 solved Originally obstacle-avoiding rectilinear

instances. From 11th DIMACS Challenge.
WRP4 63 110 - 1898 188 - 3060 solved

 Instances derived from wire-routing
processing problems (Hegde et al., 2014).

WRP3 62 84 - 3168 149 - 6220 solved

LIN 37 53 - 38418 80 - 71657 solved Grid graphs with holes (non-geometric)
from VLSI design. From SteinLib.

SP 8 6 - 3997 9 - 10278 solved Constructed hard instances; combination of
odd-wheels and odd cycles. From SteinLib.

PUC 50 64 - 4096 192 - 28512 unsolved Constructed hard instances; hypercubes,
and bipartite graphs (Rosseti et al., 2004).

PUCN 13 64 - 4096 192 - 28512 unsolved Instances with uniform edge weights derived
from PUC. From 11th DIMACS Challenge.

ES-R50 15 78754 - 79505 95363 - 97373 unsolved Originally Euclidean Steiner tree instances
with 50 thousand points (Juhl et al., 2018).

Table 2.1: Details on SPG benchmark sets.

The big picture

As elaborated in Section 2.6, the three main building blocks of our SPG solver are
reduction techniques, heuristics, and the separation routine (for BDCut). Unfor-
tunately, deactivating the separation routine is not feasible, because BDCut has
exponentially many constraints, and using the equivalent multi-commodity flow for-
mulation DF instead leads to out-of-memory aborts on many instances. Thus, we
concentrate on reduction methods and heuristics. Due to the long run times and
limited computational resources, we have not included all test-sets from Table 2.1 in
these experiments. Since we are interested in the big picture, we mostly use aggregated
test-sets, to simplify presentation. The test-sets are as follows:

– Adversarial (PUC, SP)

– Group (WRP3, WRP4)

– Rectilinear (ES10000, TSPFST)

– Telecom (GEO-org, vienna-s)

2.7. Computational results 59

– VLSI

In the following, we show the performance impact of deactivating: first, all re-
duction methods; second, all primal heuristics for finding feasible solutions during
branch-and-bound; third, all primal heuristics both for branch-and-bound and for
reduction techniques. In Table 2.2 we provide the computational results with a time
limit of two hours. The first five rows of Table 2.2 list the percentual change in the
run time with respected to the shifted geometric mean; the last five rows provide
the corresponding percentual change with respect to the arithmetic mean of the run
times. In this way, the first column of each row states the test-set to be considered.
Ensuing, each of the next three columns provides the result of excluding the solving
component specified in the head of the table. We emphasize that positive values
signify a favorable impact of the respective algorithmic component on SCIP-Jack.

Test-set reduction techniques B&B primal heuristics all primal heuristics

sh
.
g
eo

.
m
ea

n
ti
m
e Adversarial +75.8 +33.3 +63.3

Group +156.0 +48.0 +112.0

Rectilinear +750.0 +350.0 +425.0

Telecom +22821.1 -3.5 +31.6

VLSI +450.0 +25.0 +375.0

ar
it
h
m
et
ic

m
ea

n
ti
m
e Adversarial +20.0 +2.3 +4.2

Group +294.2 +130.2 +174.3

Rectilinear +12613.9 +12528.3 +12759.4

Telecom +12508.2 -5.3 +8.7

VLSI +13325.1 +85.1 +7566.2

Table 2.2: Each column reports the results of our SPG solver without the specified
methods. The values denote the percentual change with respect to the default setting.

Unsurprisingly, the largest impact is achieved by the reduction techniques. Espe-
cially the increase in the arithmetic mean time is huge, which reflects the fact that
many otherwise easily solvable instances become intractable without reduction meth-
ods. But also the primal heuristics have a considerable impact. An exception is the
Telecom test-set, where the use of primal heuristics during branch-and-bound actu-
ally leads to a slight slowdown—for these instances the LP-relaxations are very tight,
and optimal primal solutions can usually be found by a simple rounding procedure.
Additionally, it can be seen that deactivating primal heuristics also for reduction
techniques (as show in the last column) leads to a significant further slowdown. The
most prominent example is the VLSI test-set, where the impact of deactivating pri-
mal heuristics throughout the entire solution process is an order of magnitude larger
than the impact of just deactivating primal heuristics during branch-and-bound. This
behavior shows the significance of primal heuristics for reduction techniques—where
they are indispensable for bound-based methods. In turn, reduction methods are also

60 The prototype: Steiner tree problem in graphs

used in several primal heuristics, which further increases their overall impact.

Reductions

This section demonstrates the strength of the reduction methods implemented in
SCIP-Jack. To this end, we use a somewhat more aggressive reduction procedure
than in the default version of SCIP-Jack. In this way, we can better convey the
strength of the reduction techniques, since the default version of SCIP-Jack aborts
the reductions early if the problem can be decomposed into sufficiently small con-
nected components, or if the number of terminals is small. In the remainder of this
chapter we will also use a slightly newer version of SCIP-Jack (as compared to
the other chapters of this thesis), which include some (SPG-specific) improvements
of the implementation of the extended reductions techniques. Table 2.3 shows the
arithmetic mean of the percentage of vertices and edges in the presolved problems.
Further, we report the shifted geometric mean (see Section 1.2.2) of the run time
needed per test-set, with shift s = 1.

It can be seen that the considerable effort put into the various algorithms used
within presolving pays off. Apart from the constructed, adversarial test-sets PUC,
PUCN, and SP, the average size of both the number of vertices and edges is reduced
by more than 50 percent on all test-sets, on most even my more than 80 percent.
Additionally, many instances are already solved to optimality in presolving.

average reduced problem size

Test-set nodes[%] edges[%] mean reduction time [s]

2R 9.9 12.7 1.0
Copenhag14 32.1 29.4 0.8
ES-R50 12.6 16.6 100.6
ES10000FST 15.1 16.8 39.7
GEO-a 21.5 22.5 13.0
GEO-org 5.8 6.5 14.1
LIN 7.6 7.5 2.5
PUCN 78.6 62.2 0.6
PUC 98.4 99.2 0.6
SP 37.5 37.5 0.3
TSPFST 10.2 11.2 0.2
vienna-a 4.8 5.0 2.2
vienna-s 2.0 1.8 2.7
VLSI 0.1 0.1 0.3
WRP3 48.4 48.6 1.1
WRP4 33.5 33.0 0.4

Table 2.3: Average problem sizes after application of reduction algorithms.

Naturally, there is a trade-off between the strength of the reductions (which
can be strongly controlled by parameters) and the run time. Thus, it is also dif-
ficult to compare the strength of our reduction package with the state-of-the-art
implementation by Polzin (2003) and Vahdati Daneshmand (2004). Even more so,
because in the updated report Polzin and Vahdati-Daneshmand (2014) no reduc-
tion results are given, and a quite different machine is used in Polzin (2003) and
Vahdati Daneshmand (2004). Still, we note that at least with regards to the size of

2.7. Computational results 61

the reduced instances, our reduction techniques are competitive with those of Polzin
(2003) and Vahdati Daneshmand (2004). For example, on WRP4 they report an av-
erage of 44.2 percent for the remaining edges, while we achieve 33.0 percent. On the
other hand, on the 2R instances Polzin (2003); Vahdati Daneshmand (2004) report
only 6.2 percent of remaining edges, compared to 12.7 in our case.

These results also speak for the strength of the new reduction techniques developed
in this thesis, since several reduction methods from Polzin (2003) and Vahdati Danesh-
mand (2004)—such as complete backtracking in extended reductions, or full terminal
separator decomposition—have not been implemented in our solver yet.

Next, we concentrate on the impact of a particular class of reduction methods:
Those based on the sp distance. We have decided on this class of reductions, because
they generalize the most important reduction concept for SPG, the bottleneck Steiner
distance. We use seven benchmark sets from the literature; three from the DIMACS
Challenge, three from the SteinLib, and one from Juhl et al. (2018). Table 2.4 shows
in the first column the name of the test-set, followed by its number of instances. The
next columns show the percentual average number of nodes and edges of the instances
after the preprocessing without (column three and four), and with (columns five and
six) the sp based methods. The last two columns report the percentual relative change
between the previous results.

It can be seen that the sp methods allow for a significant additional reduction of the
problem size. This behavior is rather remarkable, given the variety of other powerful
reduction methods included in SCIP-Jack. Even if the percentage of remaining edges
and nodes is already small on average for the base processing (such as for VLSI),
there are for each of the seven test-sets at least a few instances that are still of large
size. These instances can often be significantly reduced by the sp techniques. While
no run times are reported in the table, we note that on each of the seven test-sets
the overall run time of the preprocessing (often significantly) decreases when the sp
based methods are used. Furthermore, even for other test-sets where the sp methods
are less (or not at all) successful, one does not observe an increase in the run time of
the preprocessing above 10 percent.

base preprocessing +sp techniques relative change

Test-set # nodes [%] edges [%] nodes [%] edges [%] nodes [%] edges [%]

VLSI 116 0.4 0.4 0.1 0.1 -75.0 -75.0
vienna-s 85 3.3 3.0 2.0 1.8 -39.4 -40.0
WRP4 63 36.2 36.0 33.5 33.0 -7.5 -8.3
Copenhag14 21 33.7 32.5 32.1 29.4 -4.7 -9.5
GEO-org 23 6.7 7.6 5.8 6.5 -13.4 -14.5
ES10000FST 1 24.1 27.1 15.1 16.8 -37.3 -38.0
ES-R50 15 17.5 22.8 12.6 16.6 -28.0 -27.2

Table 2.4: Average remaining nodes and edges after preprocessing.

62 The prototype: Steiner tree problem in graphs

2.7.2 PACE Challenge 2018

The Parameterized Algorithms and Computational Experiments Challenge (PACE)
has been initiated to investigate the practical performance of parameterized algo-
rithms. It is sponsored by the University of Amsterdam, Eindhoven University of
Technology, Leiden University, and the Center for Mathematics and Computer Science
(CWI). The 3rd PACE Challenge (Bonnet and Sikora, 2019), which took place in 2018,
was concerned with fixed-parameter tractable (FPT) algorithms for the SPG— recall
that for SPG instances with a fixed number of terminals or with a fixed treewidth,
polynomial-time algorithms are known. The PACE Challenge 2018 included three
tracks, each with 100 instances and a time limit of 30 minutes per instance. Overall,
the challenge had 75 submissions.

Although SCIP-Jack does not include any FPT algorithms, Thorsten Koch and
the author of this thesis decided to submit it to all three tracks of PACE 2018. Since no
commercial solvers were allowed, SoPlex 4.0 was used as LP solver. In Track A (exact
solution of instances with few terminals) SCIP-Jack reached 3rd place12, in Track
B (exact solution of instances with small treewidth) SCIP-Jack reached 1st place,
and in Track C (heuristic solution of instances with different FPT characteristics)
SCIP-Jack reached 2nd place13.

While the actual instances used for the challenge have not been made available,
a training test-set of 100 instances was published for each track (with the results
on these test-sets being almost identical to the ones of the actual challenge). For
these instances of the exact tracks A and B, we report results of running SCIP-
Jack with SoPlex (the configuration used in the actual challenge) as LP solver in
Table 2.5. In the actual challenge we used SoPlex 4.0, whereas in this thesis we use
SoPlex 5.0, which is the latest version. However, there have been no performance
improvements between these two versions. Note that the computational environment
used for this thesis is different from the one at the PACE Challenge, which was
hosted on the online platform optil, see Wasik et al. (2016). We observed that the
SCIP-Jack version used at the PACE Challenge runs roughly 10 percent faster on
the environment used in this thesis than on optil. To provide a reasonable comparison
with other participants of the PACE Challenge, we have scaled the run times given
in the following accordingly. The available memory was limited to 6 GB and a time
limit of 30 minutes (or respectively 1620 seconds because of the scaling) was set, as
in the PACE Challenge. The average time is reported as the arithmetic mean—since
that was the secondary criterion at the PACE Challenge in case of a tie in the number
of solved instances.

While SCIP-Jack-PACE, the version used at the challenge, can solve more than
90 % of all instances in both tracks within the time limit, it is substantially outper-
formed by SCIP-Jack-NEW, the latest version, which solves 99 of the 100 instances
in each track. Also, the average run times are considerable smaller for SCIP-Jack-
NEW. Notably, SCIP-Jack-NEW solves 99 of the 100 instances of Track A to
optimality, while the winning solver in this track from the PACE Challenge solves 95.

12 Winning team Track A: Yoichi Iwata, Takuto Shigemura (NII, Japan)
13 Winning team Track C: Emmanuel Romero Ruiz, Emmanuel Antonio Cuevas, Irwin Enrique

Villalobos López, Carlos Segura González (CIMAT, Mexico)

2.7. Computational results 63

Even better results are achievable when CPLEX is used instead of SoPlex as LP
solver. In this case already the PACE version of SCIP-Jack outperforms the best
other solver in Track A. Likewise, the current SCIP-Jack can solve all 100 instances
within the time-limit in Track A when CPLEX is used, and the average run time in
both tracks is more than halved. Finally, we note that also for the heuristic track C,
the current version of SCIP-Jack obtains a better score (as used in PACE) than
that of the winning PACE solver.

SCIP-Jack-NEW SCIP-Jack-PACE Best other

Track # instances solved avg. time [s] solved avg. time [s] solved

A 100 99 38 94 111 95
B 100 99 25 92 132 77

Table 2.5: Computational results for PACE 2018 instances.

2.7.3 SteinLib and beyond: A comprehensive benchmark

For the comparison with the solver by Polzin (2003); Vahdati Daneshmand (2004), we
are restricted to the instances used in Polzin and Vahdati-Daneshmand (2014). Still,
the experiments in Polzin and Vahdati-Daneshmand (2014) include a large number
of test-sets (both the SteinLib and the 11th DIMACS Challenge collection). Thus,
we only use test-sets with at least one instance that takes more than 10 seconds to be
solved by Polzin and Vahdati-Daneshmand (2014) or our solver. There is one notable
exception: We do not consider the test-sets I320 and I640 from the SteinLib; for the
following reason: Polzin and Vahdati-Daneshmand (2014) use specialized, non-default
settings for several test-sets, including I320 and I640, where they use only “(...) fast
calculation of bounds (...)” during branch-and-bound. As we aim to give an unbiased
picture of the performance of our solver, we only use our default settings throughout
this thesis. While we can achieve significant speed-ups on all tests-sets when using
specialized settings, the impact is by far strongest on the I instances—more than an
order of magnitude for the harder instances. We note, however, that we can match
the results from Polzin and Vahdati-Daneshmand (2014) on I320 and I640 if we use
dual-ascent bounds during branch-and-bound, instead of LP-based ones14. However,
using a different algorithm for the base component branch-and-cut constitutes a
drastic change of our solver. Consequently, we do not provide comparisons for the
I320 and I640 test-sets within the table. Other classic benchmark sets, such as the
C and D sets from the SteinLib can be considered trivial for our solver (and for

14 On I320 the default version of SCIP-Jack solves all instances within 24 hours, and takes a
(scaled) mean time of 23.1 seconds. With dual-ascent bounds, SCIP-Jack solves all instances
with a mean time of 3.8 seconds. In comparison, the solver by Polzin and Vahdati-Daneshmand
(2014) takes a mean time of 4.2 seconds. On I640 the default version of SCIP-Jack solves 86
instances within 24 hours, and takes a mean time of 92.3 seconds. With dual-ascent bounds,
SCIP-Jack solves 95 instances with a mean time of 24.1 seconds. The solver by Polzin and
Vahdati-Daneshmand (2014) takes a mean time of 22.0 seconds, and also solves 95 instances to
optimality.

64 The prototype: Steiner tree problem in graphs

that by Polzin and Vahdati-Daneshmand (2014)): All these instances are solved in
at most 0.1 seconds by SCIP-Jack.

Since the solver by Polzin (2003); Vahdati Daneshmand (2004) is not publicly
available, we give a few remarks concerning the comparison of the computational
environments. According to the DIMACS benchmark software (DIMACS, 2015), the
machine used in this thesis is 1.59 times faster than the computer used in Polzin and
Vahdati-Daneshmand (2014)15—just like Polzin and Vahdati-Daneshmand (2014) we
used the gcc 4.6.3 compiler for computing the benchmark score, with full-optimization.
While the author of this thesis does not have access to the machine used in Polzin
and Vahdati-Daneshmand (2014), preliminary experiments on different machines
have shown that the DIMACS score is a good estimate for the performance of our
solver. Thus, we have scaled the run times reported in the following accordingly.
All results were obtained single-threaded. We also note that Polzin and Vahdati-
Daneshmand (2014) use CPLEX 12.6 as LP solver, while we use (the latest) CPLEX
12.10 throughout this thesis (for reasons of consistency). However, the difference
between the two CPLEX versions for SCIP-Jack is neglectable on the instances
within this section: A change in the average run time can only be observed for the
(less than five percent of) instances that need branching, and even there the impact
is not statistically relevant when several random seeds are used.

We compare the solver by Polzin (2003); Vahdati Daneshmand (2004) and the new
solver SCIP-Jack with respect to the mean time, the maximum time, and the number
of solved instances. For the mean time we use the shifted geometric mean with a shift
of 10. We note that a shift of s = 1 would lead to similar relative results of SCIP-Jack
compared to Polzin and Vahdati-Daneshmand (2014). We also note that the use of
an arithmetic mean would bias strongly in favor of SCIP-Jack, which is especially
faster on harder instances. Table 2.6 provides the results for a time-limit of 24 hours,
which is the same time-limit as used in Polzin and Vahdati-Daneshmand (2014). The
second column shows the number of instances in the test-set. Column three shows
the mean time taken by the solver of Polzin (2003); Vahdati Daneshmand (2004),
column four shows the mean time of SCIP-Jack. The next column gives the relative
speedup of SCIP-Jack. The next three columns provide the same information for
the maximum run time, the last two columns give the number of solved instances.

It can be seen that SCIP-Jack consistently outperforms Polzin and Vahdati-
Daneshmand (2014)—both with respect to mean and maximum time. Also, SCIP-
Jack solves on each test-set at least as many instances as Polzin and Vahdati-
Daneshmand (2014). The only test-set where Polzin and Vahdati-Daneshmand (2014)
prevail is VLSI. On this test-set the results of the extended reductions reported
in Polzin (2003) are also stronger, which might be attributed to the use of full-
backtracking, which has not yet been implemented in SCIP-Jack.

On the other test-sets, the difference in the run time is especially apparent for the
maximum run time. This behavior can be explained by the fact that most test-sets
contain many instances that can be solved very fast by both solvers—which brings
the mean times closer together. Prominent examples are the SP and Copenhag14 test-
sets, for which all instances can be solved by SCIP-Jack within roughly one hour,

15 Intel Core i7 920, 2.66 GHz

2.7. Computational results 65

whereas Polzin and Vahdati-Daneshmand (2014) leave several instances unsolved
even after 24 hours. Also, the primal-dual gap is significantly smaller for SCIP-Jack:
The arithmetic mean on the unsolved PUC instances is 2.3 percent against 3.8 percent
in Polzin and Vahdati-Daneshmand (2014).

solved mean time (sh. geo. mean) maximum time

Test-set # P.&V. S.-J. P.&V. [s] S.-J. [s] speedup P.&V. [s] S.-J. [s] speedup

VLSI 116 116 116 0.5 0.8 0.63 53.9 83.3 0.65
TSPFST 76 76 76 1.5 1.1 1.36 1161.4 263.1 4.41
WRP4 62 62 62 3.2 2.4 1.33 106.1 90.8 1.17
2R 27 27 27 5.0 3.0 1.67 43.9 21.1 2.08
vienna-a 85 85? 85 7.2 5.2 1.38 441.3 59.0 7.48
vienna-s 85 85? 85 7.8 6.2 1.26 623.5 60.7 10.27
WRP3 63 63 63 22.8 13.5 1.69 6073.2 4886.4 1.24
GEO-a 23 23? 23 158.7 55.3 2.87 6476.5 880.9 7.35
GEO-org 23 23? 23 145.6 58.5 2.49 4385.0 842.1 5.21
ES10000 1 1 1 138.0 83.0 1.66 138.0 83.0 1.66
Cophag14 21 20? 21 27.7 13.8 2.01 >86400 3845.3 >22.47
SP 8 6 8 159.4 25.8 6.18 >86400 1688.3 >51.18
LIN 37 35 36 31.3 14.7 2.13 >86400 >86400 1.00
PUC 50 17? 18 14964.9 11901.1 1.26 >86400 >86400 1.00

Table 2.6: Computational comparison of the solver developed for this article (S.-J.)
and the solver described in Polzin (2003); Vahdati Daneshmand (2004) (P.&V.).
Times marked by a ? were obtained by P.&V. with (specialized) non-default settings.

As already mentioned, most test-sets in Table 2.6 contain a large number of
instances that can be solved by both Polzin and Vahdati-Daneshmand (2014) and our
solver in well below one second. To mitigate the impact of such very easy instances on
the average times, we group the instances according to their hardness in the following
experiment. We use instance groups [10k, 86400] for k = −∞, 0, 1, 2, 3. Any group
[10k, 86400] contains each instance from Table 2.6 such that Polzin and Vahdati-
Daneshmand (2014) or SCIP-Jack solves this instance in not less than 10k, and at
most 86400 seconds. If an instance can be solved by only one solver within the time-
limit, we consider the run time of the other solver on this instance as 86400 seconds.
Such groupings are commonly used in computational mathematical optimization
(also with the time lower bounds being powers of 10), see e.g. Müller et al. (2020);
Witzig and Gleixner (2020). In addition to the shifted geometric mean, Table 2.7
also provides the arithmetic mean of the run time for each group. As before, we give
the results for both Polzin and Vahdati-Daneshmand (2014) and SCIP-Jack, and
report the respective speed-up of SCIP-Jack.

Unsurprisingly, the ratio of the arithmetic mean stays largely unchanged with
increasing hardness of the groups. SCIP-Jack is more than a factor of 4 faster
than the solver from Polzin and Vahdati-Daneshmand (2014) on all groups. On the
other hand, the performance difference with respect to the shifted geometric mean
significantly increases with the hardness of the instances. For instances that take more
than a thousand seconds to be solved by Polzin and Vahdati-Daneshmand (2014)
or SCIP-Jack, the latter is even by a factor of more than 7 faster. This behavior

66 The prototype: Steiner tree problem in graphs

shifted geometric mean time arithmetic mean time

Group # P.&V. [s] S.-J. [s] speedup P.&V. [s] S.-J. [s] speedup

[0, 86400] 644 12.2 7.9 1.54 1235.5 264.9 4.66
[1, 86400] 342 34.5 19.6 1.76 2326.4 498.7 4.66
[10, 86400] 180 122.5 52.0 2.36 4417.1 944.6 4.68
[100, 86400] 66 1403.2 286.6 4.90 11999.0 2546.3 4.71
[1000, 86400] 30 8035.8 1096.9 7.33 25923.1 5435.6 4.77

Table 2.7: Computational comparison of the solver developed for this article (S.-J.)
and the solver described in Polzin (2003); Vahdati Daneshmand (2004) (P.&V.), with
instance groups ordered by hardness.

can be put down to the fact that we employ a proper branch-and-cut algorithm,
whereas the procedure employed by Polzin and Vahdati-Daneshmand (2014) might
more accurately be coined branch-and-reduce. They employ the information from
LP-relaxations mostly to perform more reductions, and often restart the LP solving
process. This procedure is certainly advantageous for instances that can be solved
completely by reduction techniques. However, for instances that are still of significant
size after aggressive application of advanced reduction techniques, the LP separation
approach of SCIP-Jack shows its value.

Further results and comparisons

We also note the large performance gap between SCIP-Jack and the best SPG
solvers other than Polzin and Vahdati-Daneshmand (2014) described in the literature.
For example, the solver by Fischetti et al. (2017), which won the exact SPG category
at the 11th DIMACS Challenge, leaves 11 instances of vienna-a unsolved at the
time-limit of one hour (using a faster machine than Polzin and Vahdati-Daneshmand
(2014)), whereas we can solve all these instances within one minute, some even within
one second. Furthermore, many of the non-trivial SPG instances that are solved to
optimality in Fischetti et al. (2017) can be solved more than two or even three orders
of magnitude faster by SCIP-Jack.

We close with results on two test-sets for which Polzin and Vahdati-Daneshmand
(2014) do not report results: EST-50k and PUCN. The EST-50k instances can all
be solved within five minutes. These instances are originally Euclidean Steiner tree
problems; see Section 5.4 for more details and further results. Notably, 7 of the 15
instances from EST-50k were solved for the first time to optimality. On the other
hand, the state-of-the-art Euclidean Steiner tree solver GeoSteiner cannot solve
these instances even after seven days of computation (Juhl et al., 2018). Results on
EST-50k are also reported in Pajor et al. (2017). However, their solver, which won the
SPG heuristics category at the 11th DIMACS Challenge, does not reach the upper
bounds from GeoSteiner on any of the EST-50k instances.

On the, unweighted, PUCN instances, SCIP-Jack also shows a strong perfor-
mance. It solves 9 of the 13 instances to optimality—all in less than 10 minutes, and
all but one within seconds. Indeed, four of the instances were solved for the first time

2.8. Conclusion 67

to optimality. The best other results on PUCN are reported in Fischetti et al. (2017),
who solve five instances within their time-limit of one hour, and in Pajor et al. (2017),
who solve the same five instances to optimality. Fischetti et al. (2017) further apply
specialized (USPG) heuristics, which they run multiple times with different random
seeds. Some of these bound are further improved by Pajor et al. (2017). In Table 2.8
we compare these results with those obtained by SCIP-Jack within a 24 hours run
(with default settings), reporting the instances that can be solved for the first time
to optimality.

Name gap [%] new UB previous UB
cc10-2n opt 179 179
cc3-10n opt 75 75
cc3-11n opt 92 92
cc3-12n opt 111 111

Table 2.8: PUCN instances solved for the first time to optimality (with 24 h time-
limit).

Finally, we note that Fischetti et al. (2017) use the vertex-based Formulation 2.5
(TNCut) on the PUCN instances. Recall that we have shown in Section 2.2.2 that
TNCut has a weaker LP-relaxation than the bidirected cut formulation (used by
SCIP-Jack). Thus, the results on PUCN, where advanced reduction techniques have
little impact, can be seen as a practical affirmation of this theoretical result.

2.8 Conclusion

This chapter has aimed to improve the state of the art in exact SPG solution. The
path towards this goal turned out to be rather long and steep. Starting from new
theoretical results for well-known IP formulations, we have introduced a wide range
of techniques and algorithms to be combined in an exact SPG solver. Notably, we
have shown new (and stronger) conditions for the LP-relaxation of the bidirected cut
formulation to be tight. Moreover, we have seen that several of the new algorithms
and concepts provably dominate well-known results from the literature, such as the
bottleneck Steiner distance. Finally, the integration of the various components into
a branch-and-cut algorithm has given way to an exact SPG solver that outperforms
the formerly undisputed state-of-the-art method established by Polzin (2003); Vah-
dati Daneshmand (2004) almost 20 years ago. Moreover, several SPG benchmark
instances have been solved for the first time to optimality.

Interestingly, the strong performance of the new SPG solver is achieved despite
several important algorithms and techniques from Polzin (2003); Vahdati Danesh-
mand (2004) not being implemented in the solver yet. Furthermore, several new
techniques introduced in this thesis have also not yet been implemented in full scope.
Thus, there is still a high potential for further improvement. We provide more detail
on possible further improvements and research directions in Chapter 7.

Chapter 3

A relative: The maximum-weight

connected subgraph problem

This chapter is concerned with a relative of the SPG, the maximum-weight connected
subgraph problem (MWCSP). While at first glance this problem may appear to be
rather different from the SPG, this chapter shows that the two are in fact closely
related. Aiming for faster exact solution, we show how several algorithmic techniques
from the previous chapter can be extended for MWCSP. However, to decisively
outperform state-of-the-art MWCSP solvers, fully independent MWCSP algorithms
and techniques need to be developed. As before, the trajectory will be from theory
to practice—with a special emphasis on the theoretical strength of the employed IP
formulations and their polyhedral properties.

3.1 Introduction

The past ten years have witnessed a surge of research articles dealing with the MWCSP.
As practitioners, for instance in computational biology, have become more aware of
this problem and its practical potential, their work has in turn (re-)fueled the interest
of mathematicians and computer scientists. The source of this symbiotic interplay is
a rather plain looking problem: Given an undirected graph G = (V,E) and vertex
weights p : V → Q, the task is to find a connected subgraph S = (V (S), E(S)) ⊆ G
such that

P (S) :=
∑

v∈V (S)

p(v) (3.1)

is maximized. While computational biology, see e.g. Alcaraz et al. (2014); Dittrich
et al. (2008); Klimm et al. (2020); Loboda et al. (2016), seems to be the most
prominent application field for the MWCSP, one also encounters the problem in
other, disparate, areas such as wildlife conservation, e.g. Dilkina and Gomes (2010),
and computer vision, e.g. Chen and Grauman (2012), or robotics, e.g. Banfi (2018).

The MWCSP is NP-hard, see e.g. Johnson (1985). It is even NP-hard to ap-
proximate the MWCSP within any constant factor as shown in Álvarez-Miranda
et al. (2013a). Furthermore, the MWCSP is fixed-parameter tractable in both the

69

70 A relative: The maximum-weight connected subgraph problem

number of positive vertices, see Section 4.2.2, and the number of non-positive ver-
tices, see Buchanan et al. (2018). Various articles discuss theoretical aspects of
the MWCSP, such as the strength of (mixed) integer-programming formulations,
e.g. Álvarez-Miranda et al. (2013b); Carvajal et al. (2013), polyhedral descriptions,
e.g. Biha et al. (2015); Wang et al. (2017), or complexity, e.g. Álvarez-Miranda et al.
(2013a); Buchanan et al. (2018). Practical exact algorithms for MWCSP can for
example be found in Álvarez-Miranda et al. (2013a); Backes et al. (2011); Fischetti
et al. (2017); Leitner et al. (2018a).

The MWCSP can also be seen as fundamental model for optimization problems
based on induced connectivity. I.e., one looks for a subsets of vertices, such that the
subgraph induced by these vertices is connected. Which edges are selected to obtain
connectivity is not relevant. This problem type can be found in many clustering and
network analysis applications. In addition to the above mentioned areas, induced con-
nectivity problems are found in social network analysis, see Moody and White (2003),
political districting, see Garfinkel and Nemhauser (1970), wireless sensor network de-
sign, see Buchanan et al. (2015). Also the unweighted (as well as uniformly weighted)
Steiner tree problem in graphs is based on induced connectivity: Any solution (i.e.
Steiner tree) consisting of n nodes will be of weight n− 1; it does not matter which
n − 1 edges are selected as long as they connect the given nodes. As we will see in
the following, the MWCSP can be regarded a generalization of the unweighted SPG.

3.1.1 Preliminaries and additional notation

Throughout the algorithmic part of this chapter—starting with Section 3.3—it will
be assumed that in each MWCSP at least one vertex is assigned a negative and one a
positive weight. In the case of only non-negative vertex weights, the MWCSP reduces
to finding a connected component of maximum vertex weight; in the case of only
non-positive vertex weights, the empty set constitutes an optimal solution. Moreover,
for most algorithms it will be assumed that an MWCSP instance IMW = (V,E, p) is
given such that the underlying graph (V,E) is connected. The latter assumption does
not limit the generality, as one can optimize each connected components of a non-
connected MWCSP separately. We define Tp := {v ∈ V | p(v) > 0}, and occasionally
write for the sake of simplicity V = {v1, v2, ..., vn} as well as Tp = {t1, t2, ..., tk}, with
k = |Tp|.

A close relative of the MWCSP is the rooted maximum-weight connected subgraph
problem (RMWCSP), see e.g. Álvarez-Miranda et al. (2013b), which incorporates the
additional condition that a non-empty set Tf ⊆ V needs to be part of any feasible
solution. For simplicity, we usually assume that p(t) = 0 for all t ∈ Tf . The unweighted
SPG be formulated as a RMWCSP by assigning each non-terminal vertex a weight
of −1.

We introduce the distance function d : V × V 7→ Q ∪ {−∞} defined as

d(vi, vj) := sup{P (Q) | Q is a (vi, vj)-path and (V (Q) \ {vi, vj}) ∩ Tp = ∅} (3.2)

for any vi, vj ∈ V . In particular, d(vi, vj) = d(vj , vi) and d(vi, vi) = p(vi). Also, with
the convention sup ∅ = −∞, one observes that d(vi, vj) = −∞ if and only if there

3.1. Introduction 71

is no path between vi and vj without intermediary positive vertices. Given a vertex
v0 and two additional vertices vi, vj ∈ V \ {v0}, it will be said that for v0 vertex vi
is d-nearer than vertex vj if d(v0, vi) > d(v0, vj). For each vertex vi the k d-nearest
vertices of positive weight (if existent) are denoted by vi,1, vi,2, ..., vi,k. In Duin (1993)
a similar distance function is defined for the Steiner tree problem in graphs that looks
for paths of minimum edge weight without intermediary terminals—thus, we have
chosen a corresponding notation.

We define the neighborhood of a vertex set U ⊆ V as

N(U) :=
{
v ∈ V \ U | ∃u ∈ U, {u, v} ∈ δ(U)

}
.

For a single v ∈ V we set N(v) := N({v}). For directed graphs we define

N+(U) :=
{
v ∈ V \ U | ∃u ∈ U, (u, v) ∈ δ+(U)

}
.

Finally, given an r-t flow f , we denote its net flow value by v(f) := f(δ+(r)) −
f(δ−(r)). See Chapter 1 for general notation and concepts.

3.1.2 Contribution and structure

This chapter aims at further enhancing exact MWCSP solution-based on integer
programming. First, Section 3.2 analyzes integer and mixed integer formulations for
MWCSP and RMWCSP. In particular, node-based formulations, which have gained
notable attention in the recent literature, are compared with edge-based ones. It will
be shown that the latter prevail with respect to the strength of their LP-relaxations.
Furthermore, polyhedral results are given, including a (compact extended) description
of the connected subgraph polytope—the convex hull of subsets of vertices that induce
a connected subgraph—for all graphs with no four independent vertices.

The remainder of the chapter is concerned with the (practical) exact solution of
MWCSP based on the strongest of the previously studied IP formulation. We proceed
by combining several approaches:

– Section 3.3 introduces several new MWCSP reduction techniques. We show that
some of these techniques require to solve NP-hard subproblems. However, the
underlying concepts allow us to design empirically powerful approximations.

– Section 3.4 links the preceding two sections. It introduces transformations of
MWCSP and RMWCSP to SAP, and discusses the use of dual-ascent on these
SAPs. In this way, further reduction techniques can be applied, and we can
also generate strong initial cutting planes for the IP formulations used in this
chapter.

– Section 3.5 turns from dual to primal bounds. We introduce several new primal
heuristics for MWCSP, which not only make use of the concepts introduced in
the previous sections, but can also be used to strengthen them.

– Section 3.6 discusses the incorporation of the new techniques introduced in this
chapter into an exact MWCSP solver. Furthermore, the practical performance
of this solver is compared with previous results from the literature.

72 A relative: The maximum-weight connected subgraph problem

The new MWCSP solver significantly outperforms previous solvers from the
literature—being often orders of magnitude faster, and solving more instances to
optimality. As a result, several benchmark instances from the 11th DIMACS Chal-
lenge can be solved for the first time to optimality, and the best known solution for
other ones can be improved.

3.2 (M)IP formulations and the connected subgraph polytope

In this section, we use R instead of Q for the vertex weights, because we will not be
concerned with complexity, but rather polyhedral results.

3.2.1 Rooted maximum-weight connected subgraphs

This section discusses the directed variant of the RMWCSP, see Álvarez-Miranda
et al. (2013b): Given a directed graph D = (V,A), vertex weights p : V → R, a
non-empty set Tf ⊆ V and an r ∈ Tf , find a connected subgraph S ⊆ D containing
Tf such that any v ∈ V (S) can be reached from r on a directed path in S, and such
that p(V (S)) is maximized. Any undirected RMWCSP can be formulated in directed
form by choosing an arbitrary r ∈ Tf and replacing each edge by two anti-parallel
arcs.

Note that any solution to the directed RMWCSP can be represented as an arbores-
cence. This observation leads to the following IP formulation, see e.g. Álvarez-Miranda
et al. (2013b), based on a well-known formulation for SAP, see e.g. Goemans and
Myung (1993). Define for each v ∈ V a variable x(v) ∈ {0, 1} that is equal to 1 if and
only if vertex v is part of the solution. Analogously, define for each a ∈ A a variable
y(a) ∈ {0, 1}.

Formulation 3.1. Rooted Steiner Arborescence Formulation (RSA)

max pTx (3.3)

s.t. y(δ−(v)) = x(v) for all v ∈ V \ {r} (3.4)

y(δ−(U)) > x(v) for all U ⊆ V \ {r}, v ∈ U (3.5)

x(t) = 1 for all t ∈ Tf (3.6)

x ∈ {0, 1}V (3.7)

y ∈ {0, 1}A. (3.8)

In Álvarez-Miranda et al. (2013b) a new formulation for the directed RPCSTP-
based on node-separators is introduced. Note that the use of node-separators for
modeling connectivity is already suggested in Fügenschuh and Fügenschuh (2008).

3.2. (M)IP formulations and the connected subgraph polytope 73

Formulation 3.2. Rooted Node Separator Formulation (RNCut)

max pTx (3.9)

s.t. x(C) > x(v) for all v ∈ V \ ({r} ∪N+(r)), C ∈ C(r, v) (3.10)

x(v) = 1 for all v ∈ Tf (3.11)

x ∈ {0, 1}A. (3.12)

Besides the two IP models introduced above, several other formulations for RMWCSP
(sometimes including a budget constraint) have been introduced in the literature, see
e.g. Álvarez-Miranda et al. (2013b); Dilkina and Gomes (2010). However, one can
show that these formulations are weaker with respect to the LP-relaxation than both
of the above models, see Álvarez-Miranda et al. (2013b) for some such results. Another
example is the formulation from Conrad et al. (2007) that is based on single-flow.
However, also this formulation can be shown to be weaker than Formulation 3.1 by
using max-flow/min-cut arguments—similarly to corresponding results for minimum
spanning tree or Steiner tree problems, which can be found for example in Magnanti
and Wolsey (1995).

In Álvarez-Miranda et al. (2013b) it is stated that the LP-relaxations of the RNCut
and RSA model yield the same optimal value. Unfortunately, this claim is not correct,
as the following proposition shows. Appendix A.2.2 discusses the error in the line of
argumentation in Álvarez-Miranda et al. (2013b)—and furthermore provides some
insight on how the node separator constraints miss to capture structures accurately
described by edge cut constraints.

Proposition 3.3. It holds that projx(PLP (RSA)) ⊂ PLP (RNCut) and the inclusion
can be strict.

Proof. The inclusion is essentially proven in Álvarez-Miranda et al. (2013b). An
example for a strict inclusion is given in Appendix A.2.2.

One can strengthen the RSA formulation by the inequalities

y(δ−(v)) 6 y(δ+(v)) for all v ∈ V \ (Tf ∪ Tp), (3.13)

which are similar to the flow-balance constraints used in Section 2.2. However, these
constraints depend on the objective vector, so they cannot (directly) be used for
polyhedral results. We refer to the strengthened formulation as RSAFB . One readily
obtains the following result from Lemma 2.3.

Lemma 3.4. If |Tp ∪ Tf | 6 3, then vLP (RSAFB) = v(RSAFB).

Proof. Let I be an RMWCSP instance with |Tp ∪ Tf | 6 3. Define an SAP I ′ =
(V ′, A′, T ′, c′) on an extended graph (V ′, A′). Initially, set V ′ := V , A′ := A, and
T ′ := Tf . For each arc a = (v, w) ∈ A set c′(a) := max{−p(w), 0}. For each t ∈ Tp

74 A relative: The maximum-weight connected subgraph problem

we add a new terminal t′ to T ′, and arcs (r, t′) of weight p(t) and (t, t′) of weight 0
to A′. It holds that

p(Tp)− v(DCutFB(I ′)) = v(RSAFB(I)); (3.14)

recall that we assume Tp ∩ Tf = ∅. Any optimal LP solution (y, x) to RSAFB can
be extended to a feasible LP solution y′ to DCutFB defined by y′(t, t′) = x(t),
y′(r, t′) = 1− x(t) for all t ∈ Tp, as well as y′(a) := y(a) for all a ∈ A. Thus,

p(Tp)− vLP (DCutFB(I ′)) > vLP (RSAFB(I)) > v(RSAFB(I)). (3.15)

Because I ′ has at most three terminals, Lemma 2.3 guarantees that

vLP (DCutFB(I ′)) = v(DCutFB(I ′)).

Thus, (3.15) implies that the inequalities (3.15) are satisfied with equality. Conse-
quently, we have vLP (RSAFB(I)) = v(RSAFB(I)).

3.2.2 Node based formulations for non-rooted connected subgraphs

From this section on we consider the undirected MWCSP. Some of the following
results can also be extended to the directed case. However, the undirected MWCSP
is the more common (and, arguably, also more natural) problem.

This section considers formulations for MWCSP that use only node variables. The
probably best known one, see e.g. Wang et al. (2017), is given below.

Formulation 3.5. Node Separator Formulation (NCut)

max pTx (3.16)

s.t. x(v) + v(w)− x(C) 6 1 for all v, w ∈ V, v 6= w,C ∈ C(v, w)(3.17)

x(v) ∈ {0, 1} for all v ∈ V. (3.18)

The contraction of neighboring positive weight vertices drastically reduces the
size of many real-world MWCSP instances, as for example shown in Rehfeldt et al.
(2019). Note that when contracting adjacent vertices t, u ∈ Tp into a new vertex t′, we
set p(t′) := p(t) + p(u). The following result (which we will need later on), describes
the impact of this operation on the LP-relaxation of NCut.

Proposition 3.6. vLP (NCut) is invariant under the contraction of adjacent vertices
of positive weight.

Proof. Let I be an MWCSP instance with an edge {t, u} ∈ E such that t, u ∈ Tp.
Let I ′ = (V ′, E′, p′) be the instance obtained from I be contracting {t, u} into a
new vertex t′. It holds that vLP (NCut(I ′)) 6 vLP (NCut(I)), because any x′ ∈
PLP (NCut(I ′)) can be mapped to a x ∈ PLP (NCut(I)) with pTx = p′

T
x′ defined

3.2. (M)IP formulations and the connected subgraph polytope 75

by x(v) := x′(v) for all v ∈ V ∩ V ′, and x(t) := x(u) := x′(t′). The opposite case is
somewhat more involved.

Let x be an optimal LP solution to NCut(I). The optimality of x, and the fact
that {t, u} ∈ E imply

x(t) = x(u). (3.19)

Define x′ ∈ RV ′ by x′(v) := x(v) for all v ∈ V ′ \ {t′}, and x′(t′) := x(t). Assume that
x′(t′) ∈ (0, 1)—otherwise, the proof is already complete. It remains to be shown that
x′ ∈ PLP (NCut(I ′)). Suppose this is not the case. Then there are a, b ∈ V ′ and an
a-b separator C ′ab ⊂ V ′ such that

x′(a) + x′(b)− x′(C ′ab) > 1. (3.20)

Because x is feasible, t′ ∈ C ′ab. Thus, we obtain from (3.20) that

x(a) + x(b)− x(t) = x′(a) + x′(b)− x′(t′) > 1, (3.21)

and therefore

min{x(a), x(b)} > x(t). (3.22)

Now we return to the original instance I. Because x is optimal, and x(t) = x(u) < 1,
there is a q ∈ V \ {t, u} and a Cqt ∈ C(q, t) such that

x(t) + x(q)− x(Cqt) = 1. (3.23)

Similarly, there is a s ∈ V \ {t, u} and a Csu ∈ C(s, u) with x(u) + x(s)− x(Csu) = 1.
At least one such combination q, Cqt, or s, Csu satisfies u /∈ Cqt or t /∈ Csu, otherwise
we could increase x(u) and x(t). Assume w.l.o.g. u /∈ Cqt. Further, observe that (3.23)
implies

x(Cqt) 6 min{x(t), x(q)}. (3.24)

Thus, (3.23) and (3.22) imply a, b /∈ Cqt. One notes that Cqt /∈ C(a, q), because (3.22)
and (3.23) imply

x(a) + x(q)− x(Cqt) > 1. (3.25)

Likewise,Cqt /∈ C(b, q). Consequently, any path from {t, u} to a or b needs to cross Cqt;
otherwise, the latter would not separate q and t. Therefore, C̃ab := (C ′ab \ {t′}) ∪Cqt
separates a and b (in the original graph). However, from (3.20) and (3.24) we obtain

1 < x(a) + x(b)− x′(C ′ab) 6 x(a) + x(b)− x(C̃ab), (3.26)

which contradicts the feasibility of x.

Furthermore, one obtains the following optimality criterion:

Proposition 3.7. If |Tp| 6 2, then vLP (NCut) = v(NCut).

76 A relative: The maximum-weight connected subgraph problem

Proof. Consider an MWCSP I = (G, p) with |Tp| 6 2. The case |Tp| 6 1 is clear. Let
{a, b} := Tp and assume p(a) > p(b). Thus, there is a minimal optimal LP solution
x such that x(a) = 1. Let (V,A) be the bidirected equivalent of G. Create a new
directed graph (V ′, A′) by replacing each node v ∈ V \ {a, b} by two nodes v1, v2 and
arcs (v1, v2), (v2, v1). Further, all ingoing arcs of v become ingoing arcs of v1, and all
outgoing arcs of v are now outgoing arcs of v2. Define arc capacities k for each pair
of these new arcs by x(v); for any (remaining) arc e ∈ A set k(e) := ∞.16 By the
max-flow/min-cut theorem there is an a-b flow f with v(f) = x(b) in this extended
network. Define the directed MWCSP Ir := ((V,A), Tf , r, p) with Tf := {a} and
r := a, and set y := f �A. Because of the optimality and minimality of x it holds
that (x, y) ∈ PLP (RSA(Ir)). Thus, vLP (NCut(I)) 6 vLP (RSA(Ir)). Furthermore, y
satisfies constraints (3.13). Because of v(NCut(I)) = v(RSA(Ir)), Lemma 3.4 implies
that vLP (NCut(I)) = v(NCut(I)).

Figure 3.1 shows an MWCSP instance with |Tp| = 3 and vLP (NCut) 6= v(NCut).
It holds that v(NCut) = 1, but vLP (NCut) = 1.5 (set the values of all negative
weight node variables to 0.5 and the remainder to 1).

Finally, by combining the previous two propositions we obtain a significantly
shorter proof of a main result from Wang et al. (2017). Recall that α(G) denotes the
independence number of graph G.

Theorem 3.8. If α(G) 6 2, then PLP (NCut) is integral.

Proof. Let p ∈ RV . If α(G) 6 2, then Proposition 3.6 implies that the MWCSP (G, p)
can be transformed to an MWCSP with at most two positive weight vertices without
changing vLP (NCut). Now, Proposition 3.7 gives vLP (NCut) = v(NCut). Because
p can be chosen arbitrarily, PLP (NCut) is integral.

Wang et al. (2017) also show that PLP (NCut) is integral only if α(G) 6 2.

Indegree constraints

Given an undirected graph G = (V,E), a d ∈ ZE is an indegree vector if there is an
orientation D = (V,A) of G such that dv = |δ−D(v)| for all v ∈ V . For each indegree
vector d the corresponding indegree inequality is given as∑

v∈V
(1− dv)x(v) 6 1, (3.27)

where x ∈ RV>0 are the node variables. Korte et al. (2012) show that the indegree in-
equalities describe the connected subgraph polytope if G is a tree. Furthermore, Wang
et al. (2017) show conditions for (3.27) to be facet inducing and show that the con-
straints can be separated in linear time. It is further shown that the constraints (3.27)
(for suitable choices of indegree vectors) can strengthen the NCut formulation.

16 Such kind of flow network transformations are well-known in algorithmic graph theory; see also
Appendix A.2.2.

3.2. (M)IP formulations and the connected subgraph polytope 77

3.2.3 Edge based formulations for non-rooted connected subgraphs

An edge-based formulation for the directed MWCSP is introduced in Álvarez-Miranda
et al. (2013a), based on a transformation to the prize-collecting SPG. We will use
essentially the same formulation for the undirected MWCSP, but without the trans-
formation to the prize-collecting SPG, and thus with a different objective function.
Consider the bidirected equivalent D = (V,A) to the given undirected graph. Let
(Vr, Ar) be the directed graph defined as follows with an additional node r:

Vr := V ∪ {r},

and
Ar := A ∪ {(r, v) | v ∈ V }.

Define the following extended MWCSP formulation based on the new graph (Vr, Ar).

Formulation 3.9. Extended Steiner Arborescence Formulation (ESA)

max pTx (3.28)

s.t. y(δ−(v)) = x(v) for all v ∈ V (3.29)

y(δ−(U)) > x(v) for all U ⊆ V, v ∈ U (3.30)

y(δ+(r)) 6 1 (3.31)

x ∈ {0, 1}V (3.32)

y ∈ {0, 1}Ar . (3.33)

The remainder this section aims to prove an integrality condition for the polytope
projx(PLP (ESA)) based on the independence number. Our approach can be divided
in two parts. First, we show that for any MWCSP instance with 1 6 |Tp| 6 3 there
is an optimal LP solution (x, y) with x(v) = 1 for a v ∈ Tp. In the second part
(following Lemma 3.13), we use this v as a root node and apply the same principal
ideas already used in Section 2.2.2 for the USPG: I.e. we show the invariance of
the integrality gap under edge contraction and reduce any MWCSP instance with
bounded independence number to an MWCSP instance with bounded number of
positive vertices. We start with an easy technical result.

Lemma 3.10. Let (x, y) be an optimal LP solution (x, y) to ESA, and let v ∈ V .
There is a ỹ ∈ RAr with ỹ((r, v)) = x(v) such that (x, ỹ) is an optimal LP solution
to ESA.

Proof. Assume there is an optimal LP solution (x, y) with κ := y(δ−D(v)) > 0 for a
v ∈ V . Because of (3.30), there is an r-v flow fκ 6 y with v(fκ) = κ and fκ((r, v)) = 0.
Define a new solution (x, ỹ) with

ỹ((u,w)) :=

y((u,w))− fκ((u,w)) + fκ((w, u)), (u,w) ∈ A
y((u,w))− fκ((u,w)), (u,w) ∈ δ+(r) \ {(r, v)}
y((u,w)) + κ, (u,w) = (r, v).

78 A relative: The maximum-weight connected subgraph problem

For (3.29), first let u ∈ V \ {v}. It holds that

ỹ(δ−(u)) = y(δ−(u)) + fκ(δ+
D(u))− fκ(δ−D(u))− fκ((r, u)) = y(δ−(u)) = x(u).

Similarly, because of ỹ((r, v)) = y((r, v)) + κ and fκ(δ−D(v)) + fκ(δ+
D(v)) = κ it holds

that ỹ(δ−(v)) = x(v).
For (3.30), consider a U ⊆ V , and a u ∈ U . First, assume v ∈ U . Because of

(r, v) ∈ δ−(U), and fκ(δ−D(U)) + fκ(δ+
D(U)) = κ we obtain ỹ(δ−(U)) = y(δ−(U)).

Second, assume v /∈ U . In this case, flow conservation of fκ implies that

ỹ(δ−(U)) = y(δ−(U)) + fκ(δ+(U))− fκ(δ−(U)) = y(δ−(U)),

which concludes the proof.

Note that for finding an optimal solution, ESA only requires arcs (r, v) ∈ δ+(r)
with v ∈ Tp. Furthermore, only constraints (3.30) for vertices v ∈ U with v ∈ Tp
need to be enforced. We will refer to this modified formulation as ESA+. Further,
we define

A+
r := A ∪ {(r, t) | t ∈ Tp}.

In practice, it is advisable to add additional |Tp| symmetry breaking constraints
similar to those from Fischetti et al. (2017) to ESA+. As to the LP-relaxation of
ESA+, one obtains the following result.

Lemma 3.11. Let (x, y+) be an optimal LP solution to ESA+. Then (x, y) ∈ RV+Ar

with y(a) := y+(a) for a ∈ A+
r and y(a) := 0 for a ∈ Ar \ A+

r is an optimal LP
solution to ESA.

Proof. Let ESA′ be the reduced version of ESA where constraints (3.30) are only
enforced for vertices v ∈ U with v ∈ Tp. Note that

vLP (ESA) 6 vLP (ESA′) 6 vLP (ESA+). (3.34)

In this proof we only consider minimal optimal LP solutions, i.e., solutions for which
no entry can be reduced without losing either feasibility or optimality.

First, we show that any optimal LP solution to ESA+ is also optimal for ESA′.
To this end, we show the existence of an optimal LP solution (x′, y′) to ESA′ such
that y′((r, v)) = 0 for all v ∈ V \ Tp. Assume there is an optimal LP solution (x′, y′)
to ESA′ with y′((r, v)) > 0 for a v ∈ V \ Tp. Because (x′, y′) is optimal, there is a
r-t flow f t with f t 6 y′ for a t ∈ Tp with v(f t) = y′((r, v)). We can now proceed
as in Lemma 3.10 to revert the flow going to t. The resulting optimal solution (x̃, ỹ)
satisfies ỹ((r, v)) = 0 and ỹ((r, u)) 6 y′((r, u)) for all u ∈ V \ {t}.

Second, we show that any optimal LP solution (x′, y′) to ESA′ with y′((r, v)) = 0
for all v ∈ V \ Tp satisfies constraints (3.30) also for v ∈ U with v /∈ Tp. We follow
essentially the same line of argumentation used in Goemans and Myung (1993) for
the SPG bidirected cut formulation. Suppose there is a U ⊆ V and a u ∈ U with

x′(u) > y′(δ−(U)). (3.35)

3.2. (M)IP formulations and the connected subgraph polytope 79

Choose such a U with |U | as small as possible. Because of (3.35), there is an e ∈
δ−(u) \ δ−(U) such that y′(e) > 0. Because of the minimality of (x′, y′), there is a
W ⊆ V and a t ∈W ∩ Tp such that e ∈ δ−(W) and

y′(δ−(W)) = x′(t). (3.36)

Because of e ⊆ U and |e ∩W | = 1, one obtains |U ∩W | < |U |. We will show that
U ∩W satisfies (3.35), which contradicts the minimality of |U |. By standard graph
theory we have that

y′((δ−(U)) + y′(δ−(W)) > y′(δ−(U ∩W)) + y′(δ−(U ∪W)).

Together with (3.36), it follows that y′((δ−(U)) > y′(δ−(U ∪W)), which leads to the
sought for contradiction.

Corollary 3.12. vLP (ESA) = vLP (ESA+).

Further, we require the following result.

Lemma 3.13. If |Tp| 6 3, then there is an optimal LP solution (x, y) to ESA such
that x(t) ∈ {0, 1} for all t ∈ Tp.

Proof. As before, let D = (V,A) be the bidirected equivalent to the given undirected
graph. Also, we assume any optimal solution to be minimal. By Lemma 3.11 we can
consider ESA+ instead of ESA to show the required result. Thus, throughout this
proof we consider an optimal LP solution (x, y) to ESA+.

The case |Tp| 6 1 is clear. Assume |Tp| = 2, and let {a, b} := Tp such that p(a) >
p(b). By Lemma 3.10 we can assume that y(δ−D(a)) = 0. Thus, also y(δ+

D(b)) = 0.
If y(δ+(a)) = 0, either x(a) = 1 and x(b) = 0, or vice versa. If y(δ+(a)) > 0, the
minimality of (x, y) implies ∑

v∈V \{a}

p(v)y(δ−D(v)) > 0, (3.37)

which implies also β := y(δ−D(b)) > 0. Let κ := 1
β . Define ỹ ∈ RA+

r by ỹ((r, a)) := 1,

ỹ((r, b)) := 0, and ỹ(e) := κy(e) for all e ∈ A. Define x̃(v) := ỹ(δ−(v)) for all
v ∈ V . One notes that (x̃, ỹ) is feasible, and satisfies x̃(a) = x̃(b) = 1. Furthermore,
pT x̃ > pTx because of κ > 1.

In the remainder of this proof we consider an MWCSP instance I with |Tp| = 3.

Claim 1. There is an optimal LP solution (x, y) to ESA+(I) such that x(t) = 1 for
a t ∈ Tp.
Proof. Let {a, b, c} := Tp such that p(a) > max{p(b), p(c)}. Again, assume y((r, a)) =
x(a). Thus, also y(δ−D(a)) = 0. Suppose that y((r, t)) < 1 for all t ∈ Tp. Note that
y((r, b)) > 0 or y((r, c)) > 0 (otherwise y((r, a)) = 1). Assume w.l.o.g. y((r, b)) > 0.

80 A relative: The maximum-weight connected subgraph problem

Because of p(a) > p(c) and y(δ−D(a)) = 0, we can assume by a flow argument similar
to that of Lemma 3.10 that y((r, c)) = 0 holds. Similarly, we can assume that there
is a flow f cb from r to c with v(f cb) = f cb ((r, b)) = y((r, b)) and f cb 6 y—otherwise, we
decrease y((r, b)) and increase y((r, a)). Let f ba and f ca be maximum flows from a to
b and c with f ba 6 y and f ca 6 y. If v(f ba) = v(f ca) = 0, we are effectively in the case
|Tp| 6 2, since we can restrict the problem to the support graph of (x, y).

So assume v(f ba) > 0 or v(f ca) > 0. Thus, x(a) > 0. Suppose x(b) < 1 and x(c) < 1.
Note that either v(f ba) = 0, or both v(f ba) > 0 and v(f ca) > 0. First, suppose v(f ba) = 0.
Thus, y(δ−(b)) = 0 and ∑

v∈V \{a,b}

p(v)y(δ−D(v)) > 0. (3.38)

Define κ := x(a)
v(fc

a) . Define ỹ ∈ RA+
r by

ỹ(e) := max{y(e), κf ca(e)}, (3.39)

for all e ∈ A+
r , and define x̃ ∈ RV accordingly. We have κx(c) = x̃(c). Thus, (3.38)

implies pT x̃ > pTx.
Second, suppose v(f ba) > 0 and v(f ca) > 0. In this case, (3.37) holds. Furthermore,

y(δ−D(b)) = f ba(δ−D(b)). Thus, we can proceed as before and multiply both f ba and f ca
by some κ > 1 to get a better LP solution. Overall, we have shown that x(b) = 1 or
x(c) = 1.

(Proof of Lemma 3.13 continued.) Let {a, b, t} := Tp such that x(t) = 1 (which we
can assume by Claim 1). Assume y((r, t)) = x(t). In the following we mostly ignore
the arcs δ+(r) and concentrate on the bidirected graph D = (V,A). We need to show
that x(a), x(b) ∈ {0, 1}.

Suppose x(a) ∈ (0, 1) or x(b) ∈ (0, 1). Let fa and f b be maximum flows from t
to a and b with capacity y(e) for each arc e ∈ A. Note that x(a) = 1 or x(b) = 1;
otherwise we could increase fa, f b, and y as in the proof of Claim 1. Assume w.l.o.g.
x(a) = 1. Let k ∈ RA with k(e) := max{0, fa(e)− f b(e)} for all e ∈ A. Let f̌a be a
maximum t-a flow with f̌a 6 k.

Claim 2. It holds that v(f̌a) > 0.
Proof. Suppose v(f̌a) = 0. Let V t ⊂ V be the set of vertices that can be reached by
a directed path from t on the support graph induced by k (i.e., via arcs e ∈ A with
k(e) > 0). Because of v(f̌a) = 0, we have a /∈ V t. Because (x, y) is optimal, we have
b /∈ V t. Because of a /∈ V t and x(a) = 1 we obtain

fa(δ+(V t))− fa(δ−(V t)) = 1. (3.40)

From the definition of V t we get

f b(δ+(V t)) > f
a(δ+(V t)). (3.41)

3.2. (M)IP formulations and the connected subgraph polytope 81

Finally, because of x(b) < 1 we have

f b(δ+(V t))− f b(δ−(V t)) < 1. (3.42)

From (3.40),(3.41), and (3.42) we get

f b(δ−(V t)) > fa(δ−(V t)). (3.43)

Thus, there is a u ∈ V t \ {t} and e0 ∈ δ−(u) with f b(e0) > fa(e0); note that
y(e0) = f b(e0). By definition of V t, there is a directed path P from t to u such that
fa(e) > f b(e) for all e ∈ A(P). Let U ⊂ V with e0 ∈ δ−(U). If b ∈ U , the existence
of P implies y(δ−(U)) > x(b) (since we can increase f b along P). If a ∈ U , we obtain
from y(e0) > fa(e0) that y(δ−(U)) > x(a). Thus, we can decrease y(e0) while staying
feasible—in contradiction to the minimality or optimality of (x, y).

(Proof of Lemma 3.13 continued.) We assume v(f̌a) < 1. Otherwise the proof
would already be complete, since the support graphs of fa and f b would be arc disjoint.
Let f̂a := fa− f̌a. Further, for all e ∈ A define f̃ b(e) := max{0, f b(e)− fa(e)}. Note
that f̂a is a flow, but f̃ b in general not. We further have∑

v∈V
p(v)(f̂a + f̌a + f̃ b)(δ−D(v)) =

∑
v∈V \{t}

p(v)x(v). (3.44)

Claim 3. It holds that

1

v(f̂a)

∑
v∈V

p(v)(f̂a + f̃ b)(δ−D(v)) =
1

v(f̌a)

∑
v∈V

p(v)f̌a(δ−D(v)). (3.45)

Proof. Because (x, y) is optimal and fa = f̂a + f̌a, we obtain from (3.44) that for
any sufficiently small ε > 0:(
1+

ε

v(f̂a)

)∑
v∈V

p(v)(f̂a+f̃ b)(δ−D(v))+
(
1− ε

v(f̌a)

)∑
v∈V

p(v)f̌a(δ−D(v)) 6
∑

v∈V \{t}

p(v)x(v),

(3.46)
and(
1− ε

v(f̂a)

)∑
v∈V

p(v)(f̂a+f̃ b)(δ−D(v))+
(
1+

ε

v(f̌a)

)∑
v∈V

p(v)f̌a(δ−D(v)) 6
∑

v∈V \{t}

p(v)x(v).

(3.47)
Note that on the right hand sides of the previous two inequalities we have essentially
shifted an ε of the flow fa from f̌a to f̂a, and vice-versa. Finally,

0
(3.46)

6
ε

v(f̂a)

∑
v∈V

p(v)(f̂a + f̃ b)(δ−D(v))− ε

v(f̌a)

∑
v∈V

p(v)f̌a(δ−D(v))
(3.45)

6 0, (3.48)

which proves (3.45).

82 A relative: The maximum-weight connected subgraph problem

(Proof of Lemma 3.13 continued.) Set

κ :=
(
1 +

v(f̌a)

v(f̂a)

)
. (3.49)

Because of (3.45), and (3.44) we obtain

κ
∑
v∈V

p(v)(f̂a + f̃ b)(δ−D(v)) =
∑

v∈V \{t}

p(v)x(v). (3.50)

Define ỹ ∈ RA+
r by

ỹ(e) := max{y(e), κf̂a(e), κf b(e)}, (3.51)

for all e ∈ A+
r , and define x̃ ∈ RV accordingly. It holds that pT x̃ = pTx, and

x̃(c) = 1.

As the last piece, we have the now familiar contraction result.

Proposition 3.14. vLP (ESA) is invariant under the contraction of adjacent vertices
of non-negative weight.

Proof. Let I = (V,E, p) be a MWCSP instance with adjacent t, u ∈ V such that
p(t) > 0, and p(u) > 0. Let I ′ = (V ′, E′, p′) be the MWCSP obtained from contracting
t and u. Denote the resulting vertex by t′. I.e., V ′ = (V \ {t, u}) ∪ {t′}. Recall that
by definition p′(t′) = p(t) + p(u). Let D′ := (V ′r , A

′
r) be the directed graph on which

ESA(I ′) is defined. Let D = (Vr, Ar) be the corresponding graph for ESA(I).
First, we show that vLP (ESA(I)) > vLP (ESA(I ′)). One readily verifies that

there is an optimal LP solution (x, y) to vLP (ESA(I)) such that x(t) = x(u). Due
to Lemma 3.10, we can assume that y((r, t)) = x(t). By a similar flow argument, we
can further assume that y((r, u)) = 0 and y((t, u)) = x(t). Construct an LP solution
(x′, y′) to ESA(I ′): First, set y′(a) := y(a) for all a ∈ A′r ∩ Ar, and y′(a) := 0
for all a ∈ δ−D′(t

′) \ {(r, t′)}. For any a = (t′, v) ∈ δ+
D′(t

′) proceed as follows. If
(t, v), (u, v) ∈ Ar, set y′(a) := y((t, v)) + y((u, v)); if (t, v) /∈ Ar, set y′(a) = y((u, v));
otherwise, set y′(a) = y((t, v)). Because of y(δ−(v)) 6 1, we have in any case that
y′(a) 6 1. Finally, set y′((r, t′)) := x(t). Define x′(v) := y′(δ−D′(v)) for all v ∈ V ′.
Note that x′(v) = x(v) for all v ∈ V \ {t, u}, and x′(t′) = x(t); thus, pTx′ = pTx.
The feasibility of (x′, y′) can be seen by noting that any flow fq 6 y in D from either
t or u to any q ∈ V \ {t, u} can be transformed to a flow f ′q 6 y′ from t′ to q in D′

such that v(fq) = v(f ′q).
Finally, we show that vLP (ESA(I)) 6 vLP (ESA(I ′)). Given an optimal LP

solution (x′, y′) to ESA(I ′) with y′((r′, t′)) = x′(t′), we define a corresponding LP
solution (x, y) to ESA(I). First, y((t, u)) := x′(t′), y((u, t)) := 0. Second, y(a) := y′(a)
for all a ∈ A′r ∩Ar, and y(a) := 0 for all a ∈ δ−({t, u})\{(r, t)}, and y((r, t)) = x′(t′).
Next, consider the remaining edges δ+({t, u}). If (t, v), (u, v) ∈ A set y((t, v)) :=
y′(t′, v), y((u, v)) := 0; otherwise, for a = (t, v) or a = (u, v) set y(a) = y′((t′, v)).

We now reach the main result of this section.

3.2. (M)IP formulations and the connected subgraph polytope 83

Theorem 3.15. If α(G) 6 3, then projx(PLP (ESA)) is integral.

Proof. Let I = (G, p) be an MWCSP with α(G) 6 3. Let I ′ = (V ′, E′, p′) be
the MWCSP obtained from I by contracting all adjacent vertices of non-negative
weight. Let A′ be the bidirected equivalent of E′. Proposition 3.14 implies that
vLP (ESA(I)) = vLP (ESA(I ′)). Also, I ′ satisfies |T ′p| 6 3 and the vertices T ′p are
independent. By Lemma 3.13 and Lemma 3.10 there is an optimal LP solution
(x̃, ỹ) to ESA(I ′) such that x(u) ∈ {0, 1} for all u ∈ T ′p, and y((r, t)) = 1 for one
t ∈ T ′p. Consider the RMWCSP I ′t = (V ′, E′, T ′f , p

′) with T ′f := {t}. For simplicity,
we deviate from the assumption that fixed terminals have 0 weight. It holds that
v(ESA(I ′)) = v(RSA(I ′t)) and vLP (ESA(I ′)) = vLP (RSA(I ′t)). We will show that

vLP (RSA(I ′t)) = v(RSA(I ′t)), (3.52)

which concludes the proof. Let (x, y) be the restriction of (x̃, ỹ) to (V ′, A′). Note
that (x, y) is an optimal LP solution to RSA(I ′t). Suppose that (3.52) does not hold.
Thus, by Lemma 3.4 there is a v ∈ V ′ \ (T ′p ∪ T ′f) with

y(δ+(v)) < y(δ−(v)). (3.53)

The case |T ′p| < 3 can be readily ruled out by a flow argument. So assume |T ′p| = 3.
Because of α(G) 6 3, at least one vertex u ∈ T ′p is adjacent to v. Recall that
x(u) ∈ {0, 1}. If x(u) = 0, we reduce the problem to the support graph of (x, y), which
corresponds to the case |T ′p| < 3. So assume x(u) = 1. If u 6= t, define the RMWCSP
I ′u = (V ′, E′, T ′′f , p

′) with T ′′f := {t, u}. Further, construct an optimal solution (x, ỹ)

to I ′u with root u analogously to Lemma 3.10. In this way, ỹ(δ+(v)) < ỹ(δ−(v))
holds again (for the same v as above). In the following, assume u = t. Define a new
LP solution (x′, y′) from y as follows. For a0 := (t, v) set y′(a0) := y(δ+(v)). For
any a ∈ δ−(v) \ {a0} set y′(a) := 0. For all a ∈ A′ \ δ−(v) set y′(a) := y(a). Set
x′(v) := y(δ+(v)), and x′(w) := x(w) for all w ∈ V \{v}. By construction of I ′t it holds
that p(v) < 0 (otherwise, v would have been contracted into u). Thus, p′Tx′ > p′Tx.
The feasibility of (x′, y′) can be seen as in the proof of Theorem 2.7.

Note that there are graphs with a(G) = 4, such that projx(PLP (ESA)) is not
integral. For an example, extend the graph in Figure 3.1 as follows. Add a new vertex
v and edges between v and the (three) vertices of negative weight shown in the figure.

3.2.4 Comparison of the formulations

A result from Álvarez-Miranda et al. (2013a) states that the directed equivalents of
ESA and (a slight generalization of) NCut induce the same polyhedral relaxation of
the directed connected subgraph polytope. This result suggest that the same relation
holds for the undirected case. Unfortunately, the result from Álvarez-Miranda et al.
(2013a) is not correct (the proof suffers from a similar problem as that discussed in
Appendix A.2.2 for the rooted case). The strict inclusion result given in the next
proposition can indeed also be extended to the directed case.

84 A relative: The maximum-weight connected subgraph problem

Proposition 3.16. The following inclusion holds and can be strict:

projx(PLP (ESA)) ⊂ PLP (NCut). (3.54)

Proof. Let (x, y) ∈ PLP (ESA) and let a, b ∈ V , a 6= b. Let C ∈ C(a, b) and let Ua
be the connected component in the graph (V \ C,E[V \ C]) with a ∈ Ua. Define
Ūb := V \ Ua and Ūa := Ua ∪ C. Because of Ūa ∩ Ūb = C, one obtains

y(δ−(Ūa)) + y(δ−(Ūb)) = y(δ−(Ūa ∪ Ūb)) + y(δ−(C)), (3.55)

where we use δ− := δ−Dr
. Thus,

x(a) + x(b)
(3.30)

6 y(δ−(Ūa)) + y(δ−(Ūb)) (3.56)

(3.55)
= y(δ+(r)) + y(δ−(C)) (3.57)

(3.31)

6 1 + x(C). (3.58)

An example for a strict inclusion is given in Figure 3.1. E.g., consider the following
point that is in PLP (NCut), but not in projx(PLP (ESA)): Set the values of all
negative weight node variables to 0.5 and the remainder to 1.

1

-1 -1

1 1-1

Figure 3.1: MWCSP instance with given node weights.

Next, we consider the indegree constraints. Following Wang et al. (2017), we define

Q′ := {x ∈ RV>0 | x satisfies all indegree constraints}. (3.59)

While Q′ * PLP (NCut) and PLP (NCut) * Q′, see e.g. Wang et al. (2017), the inde-
gree constraints cannot improve the ESA formulation, as the following proposition
shows.

Proposition 3.17. The following inclusion holds and can be strict:

projx(PLP (ESA)) ⊂ Q′. (3.60)

Proof. Consider an undirected graph G, and let D be its bidirected equivalent. Fur-
thermore, let Dr be the extended, directed graph on which ESA is defined. Let

3.3. Reduction techniques 85

(x, y) ∈ PLP (ESA). First, note that constraints (3.29) and (3.30) imply for all
{v, w} ∈ E that

min{y(δ−Dr
(v)), y(δ−Dr

(w))} > y((v, w)) + y((w, v)). (3.61)

Let d be an indegree vector. It holds that∑
v∈V

x(v) =
∑
a∈Ar

y(a)

6
∑
a∈A

y(a) + 1

=
∑

{v,w}∈E

(
y((v, w)) + y((w, v))

)
+ 1

(3.61)

6
∑

{v,w}∈E

min{y(δ−Dr
(v)), y(δ−Dr

(w))}+ 1

6
∑
v∈V

dvx(v) + 1,

which implies that (3.27) is satisfied by x; thus, x ∈ Q′. For a strict inclusion consider
the graph in Figure 3.1 and the point x as defined in the proof of Proposition 3.16.

Summarizing the results of this section, one obtains:

Theorem 3.18. It holds that

projx(PLP (ESA)) ⊂ Q′ ∩ PLP (NCut), (3.62)

and the inclusion can be strict.

Finally, note that by using one flow for each vertex, similar to the DF formula-
tion, it is also possible to obtain a compact extended formulation for the connected
subgraph polytope that is equivalent to ESA—and thus (strictly) stronger than the
combined node-separator and indegree formulation.

3.3 Reduction techniques

Reduction techniques are a vital component for practical exact solution of MWCSP,
see El-Kebir and Klau (2014); Leitner et al. (2018a), and also for many other com-
binatorial optimization problems, such as SPG, see Section 2.3 or maximum clique,
see Verma et al. (2015). Still, reduction techniques for the MWCSP have only been
recently addressed in the literature. The first ground was broken in the course of
the 11th DIMACS Challenge, with two articles Althaus and Blumenstock (2014);
El-Kebir and Klau (2014) containing reduction techniques as part of an exact solving
approach. Later, a dual-ascent-based branch-and-bound algorithm with strong reduc-
tion properties was described in Leitner et al. (2018a). Also, several other authors,

86 A relative: The maximum-weight connected subgraph problem

e.g. Loboda et al. (2016); Álvarez Miranda and Sinnl (2017); Wang et al. (2017),
have used simple reduction techniques such as the contraction of adjacent vertices of
positive weight.

Note that an optimal solution may consist of a single vertex. Thus, care needs to
be taken to avoid the deletion or modification of an optimal positive weight vertex.
Indeed, one finds wrong reduction tests in literature that disregard this observation,
as detailed in Rehfeldt et al. (2019). An example is the contraction of a positive
weight vertex of degree 1 into its (negative weight) neighbor. Also, just remembering
a maximum-weight vertex before the start of the reduction techniques, as suggested
in the literature, is not sufficient: A single-vertex solution might be created during
the reduction process on a reduced problem. Indeed, guarding measures during the
reduction process can hardly be avoided due to the following proposition. It can be
readily proven by a reduction from the decision variant of MWCSP.

Proposition 3.19. Deciding whether no single-vertex maximum-weight connected
subgraph exists is NP-hard.

In the following, we introduce a number of MWCSP reduction techniques that are
both theoretically and practically stronger than those described by other authors in
the literature so far. These techniques can also be applied to RMWCSP if sufficiently
high weights for each fixed terminal are used. We note that a reduction technique
not implied by the methods introduced in the following is the contraction of chains
of non-positive vertices, see El-Kebir and Klau (2014).

To render the proof techniques more perspicuous, throughout this section it will
without loss of generality be assumed that each solution to IMW is given as a tree
(and not as an arbitrary connected subgraph).

3.3.1 Bound-based reductions

The term bound-based reductions describes preprocessing methods that identify edges
and vertices for elimination by examining whether they induce an upper bound that
is lower than a given lower bound (or vice versa), see e.g. Duin (1993); Hwang et al.
(1992). In the following, we will introduce a new bound-based MWCSP reduction
technique. This technique can be seen as an adaptation of the terminal-regions
decomposition method for SPG that we developed in Section 2.3.2.

The base of the reduction technique is the following, new, concept: a positive-
vertex decomposition of IMW—with underlying graph (V,E)—is a partition H ={
Hti ⊆ V | Tp∩Hti = {ti}

}
of V such that for each ti ∈ Tp the subgraph (Hti , E[Hti])

is connected. Each of the Hti is called region with center ti. Furthermore, a vertex
vj ∈ Hti adjacent to a vertex vk /∈ Hti is called boundary vertex of region Hti ; the
set of all such vertices to a region Hti will be denoted by B(Hti). Additionally, an
edge {vi, vj} with vi and vj in different regions will be called H-boundary edge.

To set the stage for the computation of an upper bound, define for all ti ∈ Tp the
positive-vertex decomposition radii :

rH(ti) := max{d(ti, vk) | vk ∈ B(Hti)} (3.63)

3.3. Reduction techniques 87

and

r+
H(ti) := max{rH(ti), 0}. (3.64)

Definition (3.64) allows us to establish three bound-based reduction criteria pre-
sented in the following. An important observation underlying all these criteria is that
for each positive vertex ti that is part of an optimal solution S with |V (S) ∩ Tp| > 2
there needs to be a path in V (S)∩Hti from ti to a vertex in B(Hti)—and the weight
of this path is bounded by rH(ti). Since ti does not have to be in V (S), one cannot
use rH(ti) to obtain a bound on the weight of S; however, one can use r+

H(ti) instead.
Moreover, one can observe that if a negative vertex vi is part of an optimal solution,
there need to be two paths in S connecting vi to positive vertices and having no
vertices but vi in common. These two observations lead to:

Proposition 3.20. Let H be a positive-vertex decomposition of IMW and assume
that |Tp| > 2. Furthermore, let vi ∈ V \ Tp and assume that for each optimal solution
S to IMW it holds that vi ∈ V (S). Finally, let

U2 :=
∑
t∈Tp

r+
H(t)−min{r+

H(t) + r+
H(t′) | t, t′ ∈ Tp, t 6= t′}. (3.65)

Thereupon,

U := U2 + d(vi, vi,1) + d(vi, vi,2)− p(vi) (3.66)

is an upper bound on the weight of S.

Proof. Let S be an optimal solution to IMW such that vi ∈ V (S). As before, it is
assumed (without limiting generality) that S is a tree. Denote the (unique) path in
S between vi and a tj ∈ V (S) ∩ Tp by Qj and set Q := {Qj | tj ∈ V (S)}. First,
note that |Q| > 2, because if Q just contained one path, say Qj , it would follow for
S′ := {tj} that vi /∈ S′ and P (S′) > P (S) (which contradicts the assumptions of
the proposition). Second, if a vertex vk is contained in two distinct paths of Q, the
subpaths of these two paths between vi and vk coincide. Otherwise there would need
to be a cycle in S. Additionally, there are at least two (distinct) paths Qk, Ql ∈ Q
such that V (Qk) ∩ V (Ql) = {vi}. Otherwise, due to the precedent observation, all
paths in Q would have one edge {vi, v′i} in common, which could be discarded to
obtain a tree S′ with vi /∈ V (S′) and P (S′) > P (S).

Now, choose two distinct paths Qk ∈ Q and Ql ∈ Q with minimum number
of combined H-boundary edges and V (Qk) ∩ V (Ql) = {vi}. Further, define Q− :=
Q \ {Qk, Ql}. For all Qr ∈ Q−, denote by Q′r the subpath of Qr from tr up to the
last vertex still in Htr . Suppose that Qk has a vertex vq ∈ V (S) in common with a
Q′r. Consequently, Ql ∩Qr = {vi}, because S is cycle-free. Furthermore, according to
the preceding observations, Qk and Qr have to contain a joint subpath including vi
and vq. But this implies that Qk contains at least one additional H-boundary edge
(in order to be able to reach tk, which is by definition not in Htr). Therefore, and

88 A relative: The maximum-weight connected subgraph problem

due to V (Ql)∩V (Qr) = {vi}, the path Qr would have initially been selected instead
of Qk.

Following the same line of argumentation, one validates that likewise Ql has no
vertex in common with any Q′r. Conclusively, the paths Qk, Ql have only the vertex
vi in common and all paths Q′r are vertex disjoint and also do not have any vertex
in common with both Qk, Ql. Using their combined weight, one can obtain an upper
bound on the weight of S by:

P (S) =
∑

v∈V (S)

p(v)

6

(∑
Qr∈Q−

P (Q′r)

)
+ P (Qk) + P (Ql)− p(vi)

6
∑
t∈Tp

r+
H(t)−min{r+

H(t) + r+
H(t′) | t, t′ ∈ Tp, t 6= t′}+ P (Qk) + P (Ql)− p(vi)

6
∑
t∈Tp

r+
H(t)−min{r+

H(t) + r+
H(t′) | t, t′ ∈ Tp, t 6= t′}+ d(vi, vi,1) + d(vi, vi,2)

− p(vi).

The first inequality follows from above discussed properties of the paths in Q− and
the paths Qk and Ql. The second inequality uses the fact that the weight of each path
Qr ∈ Q− can be bounded from above by r+

H(tr). Finally, the third inequality exploits
that the paths Qk and Ql do not contain any intermediate vertices of positive weight
and that there weight can therefore be bounded by using the distance function d.
Consequently, the proposition is proven.

It follows from the proposition that vertex of non-positive weight can be eliminated
if the associated upper bound U in (3.66) is smaller than a known lower bound (e.g. the
weight of a given feasible solution). An application of the proposition is exemplified
in Figure 3.2 for a simple MWCSP instance with positive vertices t1, t2, t3—the
weights are given next to the corresponding vertices. With H being the positive-vertex
decomposition marked by the dotted ellipses it holds that r+

H(t1) = 1, r+
H(t2) = 2, and

r+
H(t3) = 0.5. Consequently, for Proposition 3.20—with vi as labeled in the figure—it

holds that U2 = 2 and U = 2.5. Therefore, vi can be eliminated if a lower bound
higher than 2.5 is given.

The following proposition can be used to moreover eliminate vertices of positive
weight. It can be proven similarly to Proposition 3.20 (see Appendix A.2.1).

Proposition 3.21. Let H be a positive-vertex decomposition of IMW and assume
that |Tp| > 2. Furthermore, let vi ∈ Tp and assume that an optimal solution S exists
such that vi ∈ V (S) and |V (S) ∩ Tp| > 2. Define

U1 :=
∑

t∈Tp\{vi}

r+
H(t)−min{r+

H(t) | t ∈ Tp \ {vi}}. (3.67)

3.3. Reduction techniques 89

t1

2

t2

2

t3

1.5

-1

-1 -1

-2

-1.4

vi

-2

Figure 3.2: A positive-vertex decomposition of an MWCSP instance with regions
marked by dotted ellipses.

Then

U := U1 + d(vi, vi,1) (3.68)

is an upper bound on the weight of S.

The positive vertex decomposition concept does not only allow for direct elimina-
tion of vertices, but can furthermore be used for a criterion that guarantees that a
vertex cannot be of degree higher than 2 in any optimal solution. This information
will be utilized in Section 3.3.2.

Proposition 3.22. Let H be a positive-vertex decomposition of IMW and assume
that |Tp| > 3. Furthermore, let vi ∈ V \ Tp and assume that for an optimal solution
S to IMW it holds that |δS(vi)| > 3. Finally, let

U3 :=
∑
t∈Tp

r+
H(t) (3.69)

−min{r+
H(tj) + r+

H(tk) + r+
H(tl) | tj , tk, tl ∈ Tp; tj , tk, tl disjoint}.

Thereupon,

U := U3 + d(vi, vi,1) + d(vi, vi,2) + d(vi, vi,3)− 2p(vi) (3.70)

is an upper bound on the weight of S.

To efficiently apply Proposition 3.20, one would like to minimize (3.65)—and for
Proposition 3.21 and Proposition 3.22 to minimize (3.67) and (3.69), respectively.
Unfortunately, this problem turns out to be NP-hard.

The decision variant of the problem can be stated as follows. Let α ∈ N0 and
let G0 = (V0, E0) be an undirected, non-empty graph. Furthermore, let p0 : V0 → Z,

90 A relative: The maximum-weight connected subgraph problem

set T0 := {v ∈ V0 | p(v) > 0}, and assume that α < |T0|. For each positive-vertex
decomposition H0 of G0 choose T ′0 (T0 such that |T ′0| = α and r+

H0
(t′) 6 r+

H0
(t) for

all t′ ∈ T ′0 and t ∈ T0 \ T ′0. Let:

CH0 :=
∑

t∈T0\T ′0

r+
H0

(t). (3.71)

We now define the α-positive-vertex decomposition problem as follows: Given a
k ∈ N, is there a positive-vertex decomposition H0 such that CH0 6 k? In the fol-
lowing proposition it is shown that this problem is NP-complete, which forthwith
establishes the NP-hardness of finding a positive-vertex decomposition that min-
imizes (3.65), (3.67), or (3.69)—which corresponds to α = 2, α = 1, and α = 3,
respectively.

Proposition 3.23. For each α ∈ N0 the α-positive-vertex decomposition problem is
NP-complete.

Proof. Given a positive-vertex decomposition H0 it can be tested in polynomial time
whether the associated CH0

is less than or equal to k. This can be be done for instance
as follows: Consider the set of (directed) arcs A′ := {(v, w) ∈ V0 × V0 | {v, w} ∈ E}
and define edge costs c′ : A′ → Z>0 such that for a = (vi, vj) ∈ A′:

c′(a) =

{
−p0(vj), if p0(vj) < 0

0, otherwise

Thereupon, CH0
can be computed by running (the directed version of) Dijkstra’s

algorithm for each subgraph (Hti , A
′[Hti]), starting from ti and using the arcs costs

c′. Consequently, the positive-vertex decomposition problem is in NP .
Next, it will be shown that the, NP-complete (Garey and Johnson, 1979), inde-

pendent set problem can be reduced to the positive-vertex decomposition problem.
To this end, let Gind = (Vind, Eind) be an undirected, non-empty graph and k ∈ N.
The problem is to determine whether an independent set in Gind of cardinality at
least k exists. Without loss of generality it will be assumed that Gind does not include
any vertices of degree 0.

To establish the reduction, construct a graph G0 from Gind as follows. Initially,
set G0 = (V0, E0) := Gind and define vertex weights p0(vi) := 1 for all vi ∈ V0.
Next, extend G0 by replacing each edge el = {vi, vj} ∈ E0 with a vertex v′l of weight
p0(v′l) = −1 and the two edges {vi, v′l} and {vj , v′l}. Finally, if α > 0, choose an
arbitrary v0 ∈ V0 ∩ Vind and add vertices v′j of weight −1 for j = 0, ..., α and vertices
v′′j of weight 1 for j = 1, ..., α to G0. Additionally, add an edge {v0, v

′
0}. Finally, add

edges {v′0, v′j} and {v′j , v′′j } for j = 1, ..., α.
First, one observes that the size |V0|+ |E0| of the new graph G0 is a polynomial in

the size |Vind|+ |Eind| of Gind. Next, r+
H0

(vi) = 0 holds for a vertex vi ∈ G0 ∩Gind if
and only if Hvi contains all (newly inserted) adjacent vertices of vi in G0. The latter
condition implies that for each adjacent vertex vk of vi in G0 ∩ Gind it holds that
r+
H0

(vk) = 1. Moreover, in a positive-vertex decomposition for (G0, p0) of minimum

3.3. Reduction techniques 91

cost CH0
, it holds that r+

H0
(v′′j) = 0 for j = 1, ..., α. Hence, there is an independent set

in Gind of cardinality at least k if and only if there is a positive-vertex decomposition
H0 for (G0, p0) such that

CH0
6 |Vind| − k.

This proves the proposition.

Since attempting to find an exact polynomial time algorithm for minimizing (3.65)
seems to be overly optimistic, a greedy heuristic based on Dijkstra’s algorithm will
instead be used. Moreover, a local search heuristic has been developed to improve
the decomposition found by the greedy approach. The combined algorithm runs
in O(m log n), which also gives the whole bound-based reduction test a worst-case
complexity of O(m log n)—if a lower bound is already available. This reduction test
will be referred to as Positive Vertex Decomposition (PVD) test; the computation of
a lower bound will be discussed in Section 3.5.

3.3.2 Alternative-based reductions

This section covers several exclusion tests (Duin, 1993): reduction methods that
attempt to prove that a specified part of the problem graph—usually a single vertex
or edge—is not contained in at least one optimal solution. The usual procedure is
to show that for each solution that contains this specified subgraph there is another,
alternative, solution of equal or better objective value that does not. A simple example
for an exclusion test is the following. Delete any edge {v, w} ∈ E, such that there is
a t ∈ V with p(t) > 0, and edges {v, t}, {w, t} ∈ E. The reasoning is as follows: For
any connected subgraph that contains {v, w}, we can remove {v, w} and add both
{v, t}, {w, t}. The result is a connected subgraph of at least the same weight. See
also Rehfeldt et al. (2019).

Constrained walks

In the following, we again apply our new concept of walk-based distance measures
from the previous chapter. Let v, w ∈ V . A finite walk W = (v1, e1, v2, e2, ..., er−1, vr)
with v1 = v and vr = w will be called positive-weight constrained (v, w)-walk if no
u ∈ Tp∪{v, w} is contained more than once in W . For any k, l ∈ N with 1 6 k 6 l 6 r
define the subwalk W (vk, vl) := (vk, ek, vk+1, ek+1, ..., el−1, vl). In the following, let
W be a positive-weight constrained (v, w)-walk. Define the interior cost of W as:

C−(W) :=
∑

u∈V (W)\{v,w}

p(u), (3.72)

where the convention that the empty sum equals 0 is assumed, so the interior cost
of an edge is likewise 0. Furthermore, define the positive-weight constrained length of
W as:

lpw(W) := min{C−(W (vk, vl)) | 1 6 k 6 l 6 r, vk, vl ∈ Tp ∪ {v, w}}. (3.73)

92 A relative: The maximum-weight connected subgraph problem

Note that lpw(W) 6 0 holds, because the interior cost of an edge is 0. For a motivation
of the positive-weight constrained length consider two vertex-disjoint solutions S1

and S2 to IMW , and a walk W that joins S1 and S2. Thereupon, one can obtain a
new solution S3 out of S1, S2, and W such that

P (S1) + P (S2) + lpw(W) 6 P (S3). (3.74)

Denote the set of all positive-weight constrained (v, w)-walks byWpw(v, w) and define
the positive-weight constrained distance between v and w as

dpw(v, w) := max{lpw(W) |W ∈ Wpw(v, w)}. (3.75)

For the next results, let G be the underlying graph of IMW , and consider the
distance network DG(U,−dpw) for a given set U ⊆ V . For simplicity, we write
D(U,−dpw) := DG(U,−dpw) in the following. See Section 1.1.2 for the definition
of a distance network. Because dpw(v, w) 6 0 for any v, w ∈ V , the distance network
D(U,−dpw) has non-negative edge weights. Based on these concepts, we introduce
two new edge elimination criteria in the following.

Proposition 3.24. Let e = {v, w} ∈ E with p(v) 6 0. Define ∆ := (Tp∪{w})∩N(v),
and

U =
{
U ⊆ N(v) | |U | > 2, U ⊇ ∆

}
.

If for all U ∈ U the weight of a minimum spanning tree on D(U,−dpw) is smaller
than −p(v), then at least one optimal solution does not contain edge e.

Proof. Let S be a connected subgraph with e ∈ E(S). We will show that there is a
connected subgraph S′ with e /∈ E(S′) such that

P (S) 6 P (S′). (3.76)

We can assume that S is a tree, and that ∆ ⊆ NS(v). Otherwise, we can modify S to
satisfy these conditions and still contain e without decreasing the weight of S. Note
that if v is of degree 1 in S, we can simply delete edge e to obtain the desired S′. So
assume |NS(v)| > 2.

Let U := NS(v). Let Ŝ be the subgraph obtained from S by removing vertex v
and all incident edges. Let S(1), ..., S(k) be the (inclusion-wise maximal) connected
components of Ŝ. Note that k = |U |. Let FU be a minimum spanning tree on
D(U,−dpw), and denote its weight by −CU (recall that dpw is non-positive). By the
assumption of the proposition it holds that

CU − p(v) > 0. (3.77)

Assume that the S(i) are ordered such that for each i ∈ {2, ..., k} there are vertices
q(i) ∈ V (

⋃
h6i S

(h)) ∩ U and r(i) ∈ V (S(i+1)) ∩ U such that there is a (q(i), r(i))-

walk W (i) in (V,E) corresponding to an edge in the spanning tree FU . Note that
lpw(W (i)) = dpw(q(i), r(i)). Set Ŝ(1) := S(1) and proceed for i = 2, ..., k as follows.

3.3. Reduction techniques 93

First, observe that v /∈ V (W (i)) due to the assumptions of the proposition. Let
v1, v2, ..., vs be the vertices encountered (in this order) when traversing W (i) from
q(i) to r(i). So in particular v1 = q(i) and vs = r(i). Let b be the minimum number
such that vb ∈ V (S(i)). Further, let a be the largest number in {1, 2, .., b} such
that va ∈ V (Ŝ(i−1)). Further, define x := max{j ∈ {1, ..., a} | vj ∈ Tp ∪ {v1}}
and y := min{j ∈ {b, ..., s} | vj ∈ Tp ∪ {vs}}. By definition, x 6 a < b 6 y and
furthermore:

C−(W (i)(va, vb)) > C
−(W (i)(vx, vy)) > lpw(W (i)) = dpw(q(i), r(i)). (3.78)

Define Ŝ(i) := Ŝ(i−1)∪S(i)∪W (i)(va, vb), with a slight abuse of notation W (i)(va, vb)
is considered as a subgraph here. Ultimately, S′ := Ŝ(k) is a connected subgraph and
it holds that

P (S′)
(3.78)

> P (Ŝ) + CU = P (S) + CU − p(v)
(3.77)
> P (S). (3.79)

Because v /∈ V (S′) implies e /∈ E(S′), the proposition is proven.

Another reduction test can be obtained by splitting the neighborhood of the edge
considered for elimination, as detailed in the following proposition.

Proposition 3.25. Let e = {v, w} ∈ E. Assume that p(v) + p(w) 6 0. Define
∆ := (Tp ∩N(e)). Further, define

U =
{
U ⊆ N(e) | U ⊇ ∆, U ∩ (N(v) \ {w}) 6= ∅, U ∩ (N(w) \ {v}) 6= ∅

}
.

If for all U ∈ U the weight of a minimum spanning tree on D(U,−dpw) is smaller
than −(p(v) + p(w)), then no optimal solution contains edge e.

The proposition can be proved in a similar way to the previous one. Note that
both propositions can be extended to the case of equality if the walks corresponding
to positive-weight constrained distances do not contain edge e. The reduction test
obtained from the previous two propositions strictly dominates shortest-path-based
reduction methods described in the literature (El-Kebir and Klau, 2014; Leitner et al.,
2018a).

We also note that the above two propositions can be strengthened for vertices that
have been shown to be of degree at most 2 in an optimal solution. Such information can
for example be obtained by using Proposition 3.22. We give more details in Rehfeldt
and Koch (2019).

In this thesis, heuristics are employed to compute lower bounds on the positive-
weight constrained distance. To justify the use of heuristics, it will be demonstrated
that computing the positive-weight constrained distance is NP-hard. This pessimistic
worst-case complexity does not come as a surprise, since already a weaker corre-
sponding concept for the prize-collecting Steiner tree problem is NP-hard, as shown
in Uchoa (2006). See Chapter 4 for more details.

First, the decision variant of the positive-weight constrained distance is defined.
Let G0 = (V0, E0) be an undirected and connected graph with |V0| > 2. Furthermore,

94 A relative: The maximum-weight connected subgraph problem

let p0 : V0 → Z. Given two distinct vertices v, w ∈ V0 and a k ∈ Z60, the positive-
weight constrained distance problem is to determine whether dpw(v, w) > k. The
NP-hardness of the problem can be shown by a reduction from the Hamiltonian
path problem—as in the NP-hardness proof of the bottleneck Steiner distance for
the prize-collecting Steiner tree problem (Uchoa, 2006).

Proposition 3.26. The positive-weight constrained distance problem is NP-complete.

Proof. First, note that the positive-weight constrained length of a given path Q
can be computed in O(|V0(Q)|2); hence, the positive-weight constrained distance
problem is in NP. Next, let GHam = (VHam, EHam) be an undirected, connected
graph with two distinct vertices v, w. The Hamiltonian path problem asks whether
a (simple) path between v and w exists that contains all vertices. This problem can
be reduced to the positive-weight constrained distance problem as follows. Initially,
set G0 := (V0, E0) := GHam and define p0(v) := 1 for all v ∈ V0. Next, extend G0

by adding vertices v′, v′′ with weights p0(v′) = −|VHam|, p0(v′′) = 0 and vertices
w′, w′′ with weights p0(w′) = −|VHam|, p0(w′′) = 0 to V0. Finally, add edges {v, v′},
{v′, v′′} and {w,w′}, {w′, w′′} to E0. Thereupon, GHam contains an Hamiltonian
path between v and w if and only if dpw(v′′, w′′) > −|VHam| on (V0, E0, p0).

Notwithstanding its NP-hardness, the positive-weight constrained distance can
be approximated by heuristics well enough to allow for a strong practical performance
of the associated reduction tests.

Dominating connected sets

Besides paths, one can also use general connected subgraphs for alternative-based
reductions tests. This chapter introduces the concept of dominating connected sets
for the MWCSP: Let X ⊂ V such that (X,E[X]) is connected and let U ⊆ V \X.
Then X will be said to MWCS-dominate U if

N(U) ⊆ N(X) ∪X

Importantly, one can remove U from any feasible solution and reconnect the resulting
components by using only vertices of X. In the following, additional conditions will
be formulated that allow to remove U , or parts of it, without reducing the weight
of at least one optimal solution. The first such condition is stated in the following
proposition. This proposition also generalizes a result from El-Kebir and Klau (2014),
which states that a vertex v with p(v) < 0 can be deleted if there is a w ∈ V \ {v}
such that N(v) = N(w) and p(v) 6 p(w).

Proposition 3.27. Let U ⊆ V \ Tp and X ⊆ V \U such that X MWCS-dominates
U and assume ∑

u∈U
p(u) 6

∑
u∈X:p(u)<0

p(u). (3.80)

3.3. Reduction techniques 95

Then there exists an optimal solution S such that U * V (S). The set X will be said
to all-weights MWCS-dominate U .

Proof. Let S be a feasible solution with U ⊆ V (S). Note that by construction p(w) 6 0
for all w ∈ U . Define

∆S :=
{
v ∈ V (S) \ U | ∃{v, w} ∈ E(S), w ∈ U

}
.

Next, remove U from S. In this way one obtains a new (possibly empty) subgraph
S′ that contains at most |∆S | many (inclusion-wise maximal) connected components.
If S′ is connected, no further discussion is necessary. Otherwise, note that each
connected component of S′ contains a vertex v ∈ ∆S . Therefore, these components
can be reconnected as follows. First, add X \V (S′) to V (S′) to obtain a new subgraph
S′′. Second, because X MWCS-dominates U and because each connected component
contains a v ∈ ∆S , there exists a set of edges ẼS′′ ⊆ E[V (S′′)] that reconnects
S′′. Adding ẼS′′ to S′′, one obtains a, finally connected, subgraph S′′′. Finally, the
construction of S′′′ implies:

∑
u∈V (S′′′)

p(u) >
∑

u∈V (S)

p(u)−
∑
u∈U

p(u) +
∑

u∈X:p(u)<0

p(u)
(3.80)

>
∑

u∈V (S)

p(u).

This concludes the proof.

While Proposition 3.27 guarantees that set U is not part of at least one optimal
solution, the same may not be true for subsets of U . Therefore, one cannot just
eliminate U in general. However, in the case of |U | = 1 one can forthwith eliminate
U , and in the case of |U | = 2 with U = {v, w} ∈ E one can eliminate the edge {v, w}.
Figure 3.3 shows an MWCSP instance for which an edge can be eliminated by means
of the criterion formulated in Proposition 3.27. The vertices of the dashed edge have
a summed weight of −4.3, smaller than the weight of the (sole) negative vertex in
the MWCS-dominating set X marked by the upper dotted ellipse (which is −3.5).

In contrast to Proposition 3.27, the following proposition allows to eliminate non-
trivial (i.e. larger than single-vertex or single-edge) subgraphs of (V \Tp, E[V \Tp])—
but also involves a more restricting test condition.

Proposition 3.28. Let U ⊆ V \ Tp and X ⊆ V \U such that X MWCS-dominates
U and assume

max
w∈U

p(w) 6
∑

u∈X:p(u)<0

p(u). (3.81)

Then there exists an optimal solution S such that U ∩ V (S) = ∅. The set X will be
said to max-weight MWCS-dominate U .

Proof. Let S be a feasible solution with U ∩ V (S) 6= ∅. Further, define ∆S as in the
proof of Proposition 3.27. Remove U ∩V (S) from S to obtain a new (possibly empty)

96 A relative: The maximum-weight connected subgraph problem

X

U

2.7

-2.3

-3.5

-2.3

-5.2

-2

1
-8

Figure 3.3: An MWCSP instance. Considering the vertices enclosed by the upper
dotted ellipse as the set X and those enclosed by the lower one as U , one can verify
with Proposition 3.27 that the dashed edge can be deleted.

subgraph S′ that contains at most |∆S | many (inclusion-wise maximal) connected
components. Assume that there are at least two connected components. Each of
these components contains a vertex v ∈ ∆S . These components can therefore be
reconnected as in the proof of Proposition 3.27 to obtain a connected subgraph S′′′

with U ∩ V (S′′′) = ∅. Because of (3.81) it holds for the resulting connected subgraph
S′′′ that

∑
v∈V (S′′′) p(v) >

∑
v∈V (S) p(v).

X

U

3.3

-2.2

0.5

-1.2

-2.3 -1

-2

-1

Figure 3.4: An MWCSP instance. Considering the vertices enclosed by the upper
dotted ellipse as set X and the ones enclosed by the lower one as U , one can verify
with Proposition 3.28 that all vertices of U (and incident edges) can be deleted.

Figure 3.4 shows an MWCSP instance that can be reduced by using Proposi-
tion 3.28.

For the special case of |U | = 1 a vertex set X max-weight MWCS-dominates a
vertex set U if and only if X all-weights MWCS-dominates U . Therefore, such a set
will be called single-weight MWCS-dominating. As will be shown in the following,

3.3. Reduction techniques 97

already this special case is NP-hard. Let G0 = (V0, E0) be an undirected, non-empty
graph. Furthermore, let p0 : V0 → Z. Given a vertex v ∈ V0 with p0(v) 6 0 the
single-weight MWCS-domination problem is to determine whether a subset of V \{v}
exists that single-weight MWCS-dominates v.

Proposition 3.29. The single-weight MWCS-domination problem is NP-complete.

Proof. Given a vertex subset X it can be verified with worst-case complexity of
O(|E0| + |V0|) whether this is an MWCS-dominating set to v. Hence, the single-
weight MWCS-dominating decision problem is in NP .

In the following it will be demonstrated that the, NP-complete (Garey and
Johnson, 1979), vertex cover problem can be reduced to the single-weight MWCS-
domination problem. Let Gcov = (Vcov, Ecov) be an undirected, non-empty graph and
k ∈ N. Thereupon, for the vertex cover problem it has to be determined whether a
set in Vcov of cardinality at most k exists that is incident to all edges Ecov.

To establish the reduction, construct a graph G0 from Gcov as follows: Start with
G0 = (V0, E0) := Gcov and extend this graph as follows: First, define vertex weights
p0(v) := −1 for all v ∈ V0. In the next step replace each edge el = {v, w} ∈ E0 by a
vertex v′l of weight p0(v′l) := −(k+1) and the two edges {v, v′l} and {w, v′l}. Moreover,
add edges {v, w} for each pair of distinct vertices v, w ∈ V0 ∩ Vcov to E0. Due to the
previous step, this procedure does not lead to multi-edges. Finally, add a vertex v?0
of weight p0(v?0) := −k to V0 and add edges {v?0 , v} for all v ∈ V0 \ (Vcov ∪ {v?0}).

Scrutinizing the graphs G0 and Gcov, one can verify that a single-weight MWCS-
dominating set X to v?0 exists if and only if to each (newly added) vertex v ∈
V0 \ (Vcov ∪ {v?0}) there is an adjacent vertex w ∈ V0 ∩ Vcov with w ∈ X. The latter
condition is satisfied if and only if there is a vertex cover in Gcov of cardinality at
most k.

3.3.3 Combining dominating sets and constrained distances

Despite both being NP-hard, the MWCS-domination and the constrained walk dis-
tance concept can be merged into a powerful additional reduction test. The stage for
this combined routine is set by the following:

Proposition 3.30. Let U ⊆ V \ Tp and define

∆ :=
{
v ∈ V \ U | ∃{v, w} ∈ E,w ∈ U

}
If ∆ = ∅, then no optimal solution to IMW contains any vertex of U . Otherwise, let
X ⊆ V \ U such that

∆1 := ∆ ∩
({
v ∈ V \X | ∃{v, w} ∈ E,w ∈ X

}
∪X

)
is non-empty and (X,E[X]) is connected. Define

C1 :=
∑

u∈X:p(u)<0

p(u). (3.82)

98 A relative: The maximum-weight connected subgraph problem

Further, let ∆2 := ∆ \∆1 and choose for each vk ∈ ∆2 an, arbitrary, v′k ∈ X. Define

C2 :=
∑
vk∈∆2

dpw(vk, v
′
k). (3.83)

If

C := C1 + C2 >
∑
u∈U

p(u), (3.84)

then each optimal solution S to IMW satisfies U * V (S).

Proof. Let S be a feasible solution with U (V (S). Note that both C1 6 0 and C2 6 0.
Define

∆S
1 := ∆1 ∩ V (S)

and
∆S

2 := ∆2 ∩ V (S).

In the following it will be demonstrated how to construct a connected subgraph S′′′

that does not contain all vertices of U and satisfies P (S′′′) > P (S).
Let S′ be the subgraph obtained from S by removing U and all incident edges.

Note that each maximal connected component of S′ contains at least one vertex of
∆S

1 ∪∆S
2 . Furthermore, it holds that

P (S′) = P (S)−
∑
u∈U

p(u). (3.85)

If ∆S
1 6= ∅, let S′′ be the vertex-induced subgraph of X ∪ V (S′). Otherwise set

S′′ := S′. In both cases, it holds for S′′ that

P (S′′) > P (S′) + C1
(3.85)

= P (S)−
∑
u∈U

p(u) + C1. (3.86)

Moreover, all vertices of ∆S
1 are part of one connected component of S′′.

Set S′′′ := S′′. Consider each vk ∈ ∆S
2 \ V (S′′′) consecutively and choose a

(vk, v
′
k)-walk W k (with v′k as defined in the statement of this proposition) such that

lpw(W k) = dpw(vk, v
′
k). If vk and v′k are in different connected components of S′′′,

there exist vq ∈ V (W k) in the connected components of vk and v′q ∈ V (W k) in the

connected component of v′k such that V (W k(vq, v
′
q)) ∩ V (S′′′) = {vq, v′q}. Add (the

subgraph corresponding to) W k(vq, v
′
q) to S′′′. Because of condition (3.84) there is

at least on vertex of U that is not contained in any of these newly added paths—
otherwise it would hold that C2 6

∑
u∈U p(u) and therefore also C 6

∑
u∈U p(u).

Moreover, because of condition (3.83) the overall procedure reduces the weight of S′′

by at most |C2|. Hence, it holds for the new (now connected) subgraph S′′′ that

P (S′′′) > P (S′′) + C2

(3.86)

> P (S)−
∑
u∈U

p(u) + C1 + C2. (3.87)

3.3. Reduction techniques 99

Finally, U * V (S′′′) holds and due to (3.84) it follows from (3.87) that

P (S′′′) > P (S). (3.88)

Hence the proposition is proven.

Corollary 3.31. Assume that the conditions of Proposition 3.30 hold, but instead
of (3.84) assume

C1 + C2 > max
u∈U

p(u). (3.89)

Then each optimal solution S to IMW satisfies U ∩ V (S) = ∅.

Proof. Let S be a feasible solution. Further, let S′′′ be a connected subgraph created
from S by the procedure described in the proof of Proposition 3.30. S′′′ is connected
and it holds that P (S′′′) > P (S), so only the equation U ∩ V (S′′′) = ∅ needs to be
verified. By construction all vertices of S′′′ are in one of the three sets: (V (S)\U), X,
and the set of vertices that are part of a (vk, v

′
k)-walk W k with lpw(W k) = dpw(vk, v

′
k)

and vk ∈ ∆S
2 . By definition the first two of these sets cannot contain any vertices of

U . Furthermore, because of (3.89), none of the walks W k can contain a vertex of U
since otherwise it would hold that lpw(W k) 6 maxu∈U p(u)—which is a contradiction
because of C1 + C2 6 C2 6 lpw(W k). Thus, U ∩ V (S) = ∅.

X

∆1

∆2

3.3

-2.2

2.5

-1.2

-4.3

-1

-2

-1

-1

Figure 3.5: An MWCSP instance. Consider the vertices enclosed by the upper dotted
ellipse as the set X, the lower left one as ∆1, the lower right ones as ∆2, and let
U be the set that only contains the bottom left (filled) vertex. One can verify with
Proposition 3.30 that the bottom left vertex can be deleted.

Once again, for the special case of |U | = 1, corollary and proposition coincide.
Figure 3.5 shows an MWCSP for which a vertex can be deleted by means of this
special case. Consider the upper two encircled vertices as the set X. The right neighbor
(forming the set ∆2) of the filled vertex can be connected by a walk of positive-weight
constrained length −1 to X, so C2 > −1. Since C1 = −1 and all other neighbors
(∆1) of the filled vertex are also neighbors of X, one can delete the vertex.

100 A relative: The maximum-weight connected subgraph problem

3.4 From dual-ascent to exact solving

An important (bound-based) SPG reduction technique can be derived from a dual-
ascent algorithm by Wong (1984) for Formulation 1.1 (DCut), see e.g. Duin (1993).
In the following, we shortly describe this dual-ascent algorithm, before discussing its
applicability for MWCSP.

Consider an SAP (V,A, T, r, c). Let W := {W ⊂ V | r /∈W,T ∩W 6= ∅}. Further,
consider the dual of DCut:

max
∑
W∈W

µW (3.90)

s.t.
∑

W∈W|a∈δ−(W)

µW 6 c(a) for all a ∈ A, (3.91)

µ > 0. (3.92)

Given a dual solution µ, let Aµ ⊆ A be the set of arcs for which (3.91) is tight. For
each t ∈ T \ {r}, define the root component Ut of t as the set of vertices v ∈ V
such that there exists a directed v-t path in Aµ. A root component Ut is active if
T ∩ Ut = {t}. Initially, the dual-ascent algorithm sets µ := 0. In each iteration an
active root component Ut is chosen and µ is increased until (3.91) becomes tight for
at least one a ∈ δ−(Ut). This increase can be done implicitly by just adapting the
reduced costs. The algorithm terminates when no active root component is left. The
algorithm runs in O(|A|min{|V ||T |, |A|}), but is usually much faster in practice.

At termination, dual-ascent provides a dual solution to the LP-relaxation of
Formulation 1.1, involving directed paths along arcs of reduced cost 0 from the root
to each additional terminal. This information can be used to facilitate the solving
process for an MWCSP, as will be show in the following. To apply the dual-ascent
algorithm to MWCSP, we first devise a transformation from MWCSP to SAP. We
note that Leitner et al. (2018a), independently from our work, developed an extension
of the dual-ascent algorithm that can also be applied to MWCSP (as well as to the
prize-collecting Steiner tree problem). However, their algorithm essentially requires
a root, and thus needs to run several times to obtain valid bounds. In contrast, our
approach requires just a single execution of dual-ascent.

The underlying idea of the transformation is to treat the MWCSP vertices of
positive weight as terminals in the SAP. However, since all terminals need to be part
of any feasible SAP solution, several vertices (including a root) and arcs are added
to the SAP that allow us to model the exclusion of positive vertex from a feasible
solution. Recall that we assume IMW to contain at least one vertex of positive, and
one of negative weight.

Transformation 3.32 (MWCSP to SAP).

Input: An MWCSP IMW = (V,E, p)

Output: An SAP P ′ = (V ′, A′, T ′, c′, r′)

1. Set V ′ := V , A′ := {(v, w) ∈ V ′ × V ′ | {v, w} ∈ E}.

3.4. From dual-ascent to exact solving 101

2. Set c′ : A′ → Q>0 such that for a = (v, w) ∈ A′:

c′(a) =

{
−p(w), if p(w) < 0

0, otherwise

3. Add two vertices r′ and v′0 to V ′.

4. Denote the set of all v ∈ V with p(v) > 0 by Tp = {t1, ..., ts} and define
M :=

∑
t∈Tp

p(t).

5. For each i ∈ {1, ..., s}:

(a) Add an arc (r′, ti) of weight M to A′.

(b) Add a new node t′i to V ′.

(c) Add arcs (ti, v
′
0) and (ti, t

′
i) to A′, both being of weight 0.

(d) Add an arc (v′0, t
′
i) of weight p(ti) to A′.

6. Define the set of terminals T ′ := {t′1, ..., t′s} ∪ {r′}.

7. Return (V ′, A′, T ′, c′, r′).

The following proposition establishes the relation between the SAP resulting from
the above transformation, and the original MWCSP.

Proposition 3.33 (MWCSP to SAP). Let IMW = (V,E, p) be an MWCSP and
I ′ = (V ′, A′, T ′, c′, r′) an SAP obtained from IMW by Transformation 3.32. Let
S′ ⊆ (V ′, A′) be an optimal solution to I ′. The set S ⊆ (V,E) defined by

V (S) := {v ∈ V | v ∈ V ′(S′)}, (3.93)

E(S) := {{v, w} ∈ E | (v, w) ∈ A′(S′) or (w, v) ∈ A′(S′)}. (3.94)

is an optimal to IMW . Further, it holds that:

P (S) =
∑

v∈V :p(v)>0

p(v)−
∑

a∈A′(S′)

c′(a) +M. (3.95)

Proof. Let S′ be an optimal solution to I ′. One readily verifies that the S defined
by (3.93) and (3.94) is connected, and thus feasible for IMW . We first show that (3.95)
holds for S and S′. Further, one verifies that δ+

S′(r
′) = 1. Define A := {(v, w) ∈ A′ |

{v, w} ∈ E}. First, one observes that for each v ∈ V (S) such that p(v) 6 0 there is
exactly one incoming arc a ∈ A(S′), so:∑

v∈V (S):p(v)60

p(v) = −
∑

a∈A(S′)

c′(a). (3.96)

Second: ∑
v∈V (S):p(v)>0

p(v) =
∑

v∈V :p(v)>0

p(v)−
∑

v∈V \V (S):p(v)>0

p(v) (3.97)

=
∑

v∈V :p(v)>0

p(v)−
∑

a∈A′(S′)\A(S′)

c′(a) +M. (3.98)

102 A relative: The maximum-weight connected subgraph problem

Finally, by combining (3.96) and (3.97) the equation:∑
v∈V (S)

p(v) =
∑

v∈V :p(v)>0

p(v)−
∑

a∈A′(S′)

c′(a) +M (3.99)

is obtained, which coincides with (3.95).
Finally, suppose that S is not optimal. I.e., there is a solution S̃ to IMW such that

P (S̃) > P (S). Since we have presupposed that at least one vertex of V has positive
weight, we can assume that there is an u ∈ V (S̃) ∩ Tp. We build a solution S̃′ to the
SAP I ′ as follows: First, we define V ′(S̃′) := {r′, u, v′0}, A′(S̃′) := {(r′, u), (u, v′0)},
and add to A′(S̃′) all arcs reachable from u through forward arcs (v, w) such that
{v, w} ∈ E(S̃). Concomitantly, we add all vertices corresponding to arcs in A′(S̃′) to
V ′(S̃′). Second, we add for each ti ∈ Tp contained in V ′(S̃′) the arc (ti, t

′
i), which is

of cost 0, to A′(S̃′). For all ti ∈ Tp not connected we add the arc (v′0, t
′
i), which is of

cost p(ti), to A′(S̃′). Finally, we add all t′i ∈ T ′ to V ′(S̃′). Consequently, all t′i ∈ T ′
are reachable from r′ through forwards arcs and, being cycle-free and connected, S̃′

is a solution to P ′. Furthermore, because S and S′ satisfy (3.95), it holds that:∑
a∈A′(S̃′)

c′(a)− M =
∑

v∈V :p(v)>0

p(v)− P (S̃) (3.100)

<
∑

v∈V :p(v)>0

p(v)− P (S) (3.101)

=
∑

a∈A′(S′)

c′(a)−M, (3.102)

which contradicts the assumption that S′ is an optimal solution to I ′. Therefore, S
is an optimal solution to IMW .

Note that the proposition is just concerned with the correspondence of optimal
solutions. See Rehfeldt and Koch (2018a) for a (slightly more involved) map of each
feasible solution to I ′ to a feasible solution to IMW . The additional technicalities of
the latter result are not relevant in the following, and therefore no further details are
given.

Similar to Section 3.2.4, one can show that applying the DCut formulation on
the SAP I ′ from the above transformation yields (after a constant shift of the ob-
jective) the same optimal LP value as ESA. Furthermore, one notes that the con-
straints (1.3) for I ′ corresponding to all non-zero µW can be readily transformed to
constraints (3.30) for ESA+. These can be used as initial constraints for a branch-
and-cut algorithm.

In practice, one tries to only increase small root components in the dual-ascent
algorithm. Moreover, it is advantageous to only update the currently used root com-
ponent and rebuild Ut by a BFS or DFS after each change of t, see Pajor et al. (2017).
For I ′ one notices that for distinct terminals ti, tj with v′0 ∈ Uti and v′0 ∈ Utj it holds
that Uti \ {ti} = Utj \ {tj}. However, due to the structure of I ′ all root components
will remain active until the end of the algorithm. Thus, a simple, but sometimes

3.4. From dual-ascent to exact solving 103

highly effective modification of I ′ is to make v′0 a terminal. In this way, any root
component Ut ceases to be active as soon as v′0 ∈ Ut. Still, the final reduced costs
remain the same.

As already noted, an important application of dual-ascent is within reduction
techniques. Consider an SAP (V,A, T, c, r). Let v ∈ V \ T , let S? be an optimal
solution, and let LDA be the lower bound obtained by dual-ascent. If S? contains v,
the weight of S? can be bounded from below by LDA plus the length (with respect to
the reduced costs provided by dual-ascent) of a shortest path from the root to v and
the length of a shortest path from v to a nearest terminal (other than the root) to v.
Hence, v can be deleted if the just defined bound exceeds a known upper bound U .
An analogous test can be stated for the elimination of arcs. The above deliberations
forthwith set the stage for an MWCSP reduction technique: Whenever a vertex can
be deleted in the SAP, the same is true for its counterpart in the analogous MWCSP.
Whenever two anti-parallel arcs in the SAP can be deleted, the corresponding edge
can be deleted in the MWCSP.

Transformation 3.32 can additionally be used to show that a vertex ti ∈ Tp is
part of at least one optimal solution. If the reduced cost of an arc (r′, t′i) is higher
than U − LDA, it can be deduced that the vertex ti is part of at least one optimal
solution to IMW . If at least one (positive) vertex can be shown to be part an optimal
solution, the MWCSP can be solved as an RMWCSP. Note that a disadvantage of
both ESA+ and the above IP resulting from Transformation 3.32 is the existence
of symmetric solutions (for a solution S, there are |V (S) ∩ Tp| − 1 many). For the
RMWCSP one can instead apply the following (new) transformation, which gives
way to a problem that is not burdened with symmetric solutions. The transformation
will be provided in a more general setting, namely for the directed variant of the
RMWCSP (described in Section 3.2.1). As before, it will be assumed that all fixed
terminals Tf have 0-weight.

Transformation 3.34 (Directed RMWCSP to SAP).
Input: A directed RMWCSP IRMW = (V,A, Tf , p, r)
Output: An SAP I ′ = (V ′, A′, T ′, c′, r′)

1. Set V ′ := V , A′ := A, r′ := r.

2. Set c′ : A′ → Q>0 such that for a = (v, w) ∈ A′:

c′(a) =

{
−p(w), if p(w) < 0

0, otherwise

3. Denote the set of all v ∈ V \ Tf with p(v) > 0 by Tp = {t1, ..., ts}

4. For each i ∈ {1, ..., s}:

(a) Add a new node t′i to V ′.

(b) Add an arc (r′, t′i) of weight p(ti) to A′.

(c) Add an arc (ti, t
′
i) of weight 0 to A′.

5. Define the set of terminals T ′ := {t′1, ..., t′s} ∪ {Tf}.

104 A relative: The maximum-weight connected subgraph problem

6. Return (V ′, A′, T ′, c′, r′).

The transformation is illustrated in Figure 3.6. Moreover, the correspondence
between a directed RMWCSP and the SAP resulting from Transformation 3.34 is
established by the following proposition.

r

p=7

p=-2.5

p=-1.3

p=-1.5

(a) Directed RMWCSP instance

r
2.5

0

0

1.5 1.3

2.5

7

0

(b) Transformed SAP instance

Figure 3.6: Illustration of a directed RMWCSP instance with root r (left) and the
equivalent SAP obtained by Transformation 3.34 (right). Terminals are drawn as
squares.

Proposition 3.35 (Directed RMWCSP to SAP). Let I ′ = (V ′, A′, T ′, c′, r′) be
an SAP obtained from a directed RMWCSP IRMW = (V,A, Tf , p, r) by applying
Transformation 3.34. Each solution S′ to I ′ can be mapped to a solution S to IRMW

defined by:

V (S) := V ∩ V ′(S′), (3.103)

A(S) := A ∩A′(S′). (3.104)

If S′ is an optimal solution to I ′, then S is an optimal solution to IRMW and their
objective values satisfy:

P (S) =
∑

v∈V :p(v)>0

p(v)−
∑

a∈A′(S′)

c′(a). (3.105)

The proposition can be proved in a similar way as Proposition 3.33. In the follow-
ing, the DCut formulation for the SAP (V ′, A′, T ′, c′, r′) obtained from an directed
RMWCSP by performing Transformation 3.34 will be referred to as TransCut. Note
that TransCut can also be used for an undirected RMWCSP by using as simple
transformation to a bidirected graph. The objective value of a solution y ∈ {0, 1}|A′|
to TransCut is defined as:

v(TransCut) :=
∑

v∈V :p(v)>0

p(v)− c′T y. (3.106)

One can strengthen the formulation by adding the flow-balance constraints (2.9).
The SAP resulting from Transformation 3.34 displays two immediate advantages as
compared to the one from Transformation 3.32. First, the number of arcs is reduced by

3.5. Primal heuristics 105

2|Tp|. Second, while for each (LP) solution to the DCut formulation of the SAP from
Transformation 3.32 there can be up to |Tp| − 1 equivalent solutions, this symmetry
has vanished in the TransCut formulation. In addition to these advantages, the
new SAP can be solved by the separation algorithm of SCIP-Jack without any
alterations.

In Rehfeldt and Koch (2019) we additionally show that the TransCut formulation
has an LP-relaxation that is strictly stronger than that of Formulation 3.2 (RNCut),
which uses only node variables. I.e., we have vLP (TransCut) 6 vLP (RNCut), and
the inequality can be strict. The proof in Rehfeldt and Koch (2019) is rather long
and tedious, and thus omitted here. We note, however, that a shorter proof can be
obtained by adapting the results from Section 3.2.3.

One might argue that despite its inferior LP-relaxation the RNCut formulation
is preferable in practice since it leads to a problem with far fewer variables: RNCut
only considers nodes, and TransCut moreover requires additional arcs for each t ∈ Tp.
However, preprocessed MWCSP instances are in practice sparse and include only a
small amount of positive-weight vertices (Rehfeldt et al., 2019). In particular, in a
preprocessed MWCSP instance there are no adjacent vertices of positive weight.

3.5 Primal heuristics

Having discussed the computation of dual bounds for the MWCSP in the previous
section, we now turn to the primal side. Several primal heuristics for the MWCSP
have been described in the literature. In Álvarez-Miranda et al. (2013a), for example,
a breadth-first-search-based heuristic that makes use of the reduced cost obtained
during a branch-and-cut algorithm was suggested. In Leitner et al. (2018a) several
variants of a dual-ascent-based heuristic for the rooted prize-collecting Steiner tree
problem were suggested, and were also applied for the MWCSP by using a transfor-
mation initially introduced in Dittrich et al. (2008). For other MWCSP heuristics
see Álvarez Miranda and Sinnl (2017); Fu and Hao (2017b); El-Kebir and Klau (2014).

In the following, we introduce several new MWCSP primal heuristics.

3.5.1 Constructive heuristics

As the name suggests, constructive heuristics build up a new solution from scratch.

A greedy approach

The first heuristic is similar to the classic shortest paths heuristic for the SPG, see
Section 2.5, and is conceptually straightforward: Starting with a single vertex, the
heuristic iteratively connects the current subtree to vertices of positive weight (as
compared to terminals for SPG). In the case of the SPG a natural choice for the
connection of a terminal is a shortest path, but in the case of MWCSP the choice is
less clear. The following algorithm chooses paths that also take intermediary vertices
of positive weight into account.

Let vertex vr ∈ V be the start vertex. Initially, define for all v ∈ V \ {vr}:
p+(v) := max{p(v), 0}, p−(v) := max{−p(v), 0}, d̃(v) := ∞. For vr set all these

106 A relative: The maximum-weight connected subgraph problem

values to 0. Define a predecessor pred(v) := null for each v ∈ V . Define the initial
tree S as V (S) := {vr}, E(S) := ∅, and set Q := {v}. While Q 6= ∅ proceed as
follows. Choose a v = arg minu∈Q d̃(u) and remove v from Q. If p(v) > d̃(v), add
the path P between S and v marked by pred to S. Further, set for each w ∈ V (P):
d̃(w) := p+(w) := 0, and add w to Q.

In any case, define for each {v, w} ∈ δ(v)

d̃vw := d̃(v) + p−(w)−min{p−(w), p+(v)}. (3.107)

If d̃vw < d̃(w), add w to Q and set d̃(w) := d̃vw, pred(w) := v. Note that in (3.107)
we cannot just subtract p+(v), because otherwise the algorithm might cycle. Once Q
is empty, we compute a spanning tree on the graph induced by V (S), while trying to
have vertices V (S) \ Tp as leaves. Then, we use a linear-time dynamic programming
algorithm described in Magnanti and Wolsey (1995) to compute a maximum-weight
connected subgraph on this tree.

If an LP solution to the MWCSP is available, modified vertex weight p′ can be
used for the heuristic. For instance, assume an LP solution (x, y) to ESA is given. Set
p′(v) := x(v)p(v) for all v ∈ V . Moreover, the heuristic is started from a (constant)
number of distinct vertices. To this end, vertices v ∈ V with highest value x(v) in
the incumbent LP solution are chosen as starting points. In case of ties, vertices with
higher weight p are preferred.

In the following, the above algorithm is referred to as Greedy Construction (GC)
heuristic. It should be noted that the idea of reinserting vertices into the priority queue
of Dijkstra’s algorithm was already used in a heuristic for the SPG (de Aragão and
Werneck, 2002). Furthermore, the concept of using LP solutions to guide primal heuris-
tics for combinatorial optimization problems is widely used, see for example Koch
and Martin (1998).

A reduction-based approach

The first of two reduction-based approaches described in this chapter builds on a
concept introduced as prune in Polzin and Daneshmand (2001b) for SPG. By virtue
of the PVD method introduced in Section 3.3, this approach can now be used for
the MWCSP as well. While for the original PVD test an upper bound is provided
by the weight of a given solution, in the prune heuristic the bound is chosen such
that in each iteration a certain number of vertices is eliminated. Thereupon, all exact
reductions methods are executed on the reduced graph, motivated by the assumption
that the (possibly inexact) eliminations performed by the bound-based method will
allow for further (exact) reductions. To avoid infeasibility, initially a feasible solution
is computed (by using GC and the subsequently described local-search heuristics) of
which no vertices or edges are allowed to be deleted by the (inexact) bound-based
method.

The second reduction-based heuristic approach is borne from the combination of
the prune heuristic and dual-ascent: the ascend-reduce method (based on an approach
originally suggested in Wong (1984) for the Steiner tree problem in graphs). Let IMW

be the original MWCSP and I ′ the SAP resulting from Transformation 3.32. The

3.5. Primal heuristics 107

ascend-reduce heuristic attempts to find a good solution on the subproblem ĨMW

constituted by the undirected edges of IMW corresponding to zero-reduced-cost paths
in I ′ from the root to all additional terminals—in this chapter a solution is computed
by employing reduction techniques and heuristics. This approach is motivated by
the assumption that notable similarities exist between an optimal (or near-optimal)
MWCSP solution and the LP solution corresponding to the reduced costs provided
by dual-ascent.

3.5.2 Local search heuristics

Given a solution S to a problem, a local search algorithm examines a neighborhood of
S, i.e. a set of solutions obtainable from S by performing a predefined set of operations.
Consequently, all heuristics described in this section assume that a feasible solution
S is given.

Greedy extension

The Greedy Extension (GE) heuristic works in two phases: In phase one all vertices
V (S) are inserted into the priority queue of Dijkstra’s algorithm with their distance
values set to 0. Thereupon, the GC heuristic is executed. However, the GC algorithm
is only stopped when all vertices of positive weight have been scanned (the criterion
for including vertices to the current solution remains unchanged). Furthermore, the
heuristic saves (a constant number) α ∈ N (or as many as exist) vertices t′k ∈
Tp \ V (S), k = 1, ..., α such that p(t′k)− d̃vw(t′k) > p(t)− d̃vw(t) for all other vertices
t ∈ Tp \ V (S). In phase two, α iterations k = 1, ..., α are performed; in each iteration
vertex t′k is connected to S (by using the paths computed by the GC heuristic) to
obtain a solution Sk. Next, the GC heuristic is executed from Sk and updates S in
case a better solution could be found. Analogously to the GC heuristic, GE can be
executed with altered vertex weights if an LP solution is available.

Vertex inclusion and vertex exclusion

The idea of the Vertex Inclusion (VI) heuristic is to add a vertex to a given solution
such that other negative-weight vertices of the solution can be discarded. First,
compute a spanning tree Sspan on S. Next, iterate through all neighboring vertices
vi of S: Let δS,i be the set of all edges between vi and V (S). If |δS,i| 6 1, continue.
Otherwise, add an (arbitrary) edge a′0 ∈ δS,i to Sspan. Afterwards, iteratively add
each edge a′j ∈ δS,i \ {a′0} to Sspan. Whenever a new edge has been added, search
for a minimum-weight sequence of vertices of degree 2 (with respect to Sspan) on
the newly created cycle. If such a sequence being of negative weight exists (including
single vertices), remove it from Sspan, otherwise remove a′j . When all edges δS,i have
been checked and if the weight of the removed vertices is smaller than that of vi, leave
Sspan in its modified form, otherwise restore it. In the implementation of the heuristic
(linear) link-cut trees (Sleator and Tarjan, 1983) are used. This data structure allows
to easily dis- and reconnect trees. A similar heuristic is known for the SPG (Uchoa
and Werneck, 2010), but it only eliminates single edges instead of chains.

108 A relative: The maximum-weight connected subgraph problem

A complementary approach is taken by the Vertex Exclusion (VE) heuristic: it
aims to remove vertices of S. Consider the connected subgraph

GS := (V (S), E[V (S)]).

Thereupon, the heuristic employs reduction techniques from Section 3.3 on GS to
obtain a new graph G̃S . On this new graph the GE heuristic is used to obtain a
solution S̃. Finally, this solution is retransformed to a solution S′ to the original
problem.

3.6 Solving to optimality

With several algorithmic components introduced and discussed two central questions
remain: How to assemble these threads and weave them into a coherent exact solver,
and, equally important, how does the resulting algorithm perform?

3.6.1 A full-fledged exact solver

The exact solver described in this chapter is realized within our Steiner tree problem
solver SCIP-Jack. All MWCSP algorithms described so far are integrated into a
branch-and-cut algorithm, as detailed in the following. The IP formulation used by
the solver is (essentially) ESA+

FB for MWCSP, and TransCutFB for RMWCSP. For
both formulations we use separation. To this end, we use a specialized maximum-
flow algorithm with warm-start capabilities (see Section 6.2.4) to detect violated
inequalities.

Reduction techniques can be found in three components of our branch-and-cut
algorithm: In preprocessing, in domain propagation, and within primal heuristics.
Preprocessing is performed in several rounds—as long as a predefined percentage
of edges has been eliminated during the previous round. During preprocessing we
also try to transform any MWCSP instance to RMWCSP. For domain propagation
during branch-and-bound we proceed as follows: Instead of deleting edges or vertices,
the corresponding variables are fixed to 0 in the IP formulation. Additionally, instead
of the reduced-costs from dual-ascent, we use the reduced-costs provided by the
LP-relaxation for further reductions.

Another component instrumental for empirically successful exact solving is con-
stituted by the primal heuristics described in Section 3.5. In the implementation for
this chapter, ascend-reduce uses the prune heuristic to find a solution on the graph
obtained by dual-ascent and employs GE, VI and VE to improve it. In turn, the
prune heuristic calls GC to obtain an initial feasible solution, calls the local search
heuristics GE, VI to improve it, and employs several reduction methods. Finally, to
improve the solution obtained by ascend-reduce, all local search heuristics are used.
This heuristic package is repeatedly used during preprocessing. Furthermore, the
heuristics GC, GE, and VI are used during branch-and-bound.

Finally, branching is performed on vertices—by assigning the vertex vi to branch
on weight p(vi) = ∞ in one branch-and-bound child node and removing it in the
other—which seems to be the natural choice for the MWCSP.

3.6. Solving to optimality 109

A look beyond the surface of the new exact MWCSP solver reveals an intricate
synergy of the three major solving components introduced in this chapter: First,
heuristics and reduction techniques are deeply intertwined. Reduction methods are
crucial for the success of both prune and ascend-reduce, while the quality of the primal
bound obtained by these heuristics determines the effectiveness of the dual-ascent
reduction method. Indeed, the prune heuristic could only be realized due to the
newly introduced PVD concept. Furthermore, only the combination of dual-bound
and reduced costs obtained by dual-ascent, and the primal bound provided by ascend-
reduce consistently gives rise to the transformation of MWCSP to RMWCSP and the
subsequent application of the TransCut formulation. In turn, on the SAP obtained
from this transformation one can again execute the dual-ascent reduction method.

3.6.2 Computational results

For details on the hardware used in this thesis see Section 1.2.1. The computational
evaluation for this chapter has been performed on the six test-sets described in
Table 3.1. The ACTMOD and JMPALMK instances were all solved to optimality
in the course of the 11th DIMACS Challenge DIMACS (2015), whereas the SHINY
test-set Loboda et al. (2016) was introduced later. The two test-sets with the largest
instances, HANDBI and HANDBD, are from Hegde et al. (2014), and were originally
formulated as prize-collecting Steiner tree problems. However, the instances have
uniform edge weights and can therefore be transformed to MWCSP. Most of these
large instances proved to be intractable for the solvers participating in the 11th
DIMACS Challenge, and could only recently be solved to optimality by Leitner
et al. (2018a). Still, three instances of these two test-sets have remained unsolved.
Finally, the PUC test-set contains instances that were designed to defy known solution
techniques. Five of the 18 PUC instances have remained unsolved.

Name Instances |V | |E| Status Description

JMPALMK 72 500-1500 2597-20527 solved Euclidean, randomly generated instances

from Álvarez-Miranda et al. (2013a).
SHINY 39 232-3828 202-4494 solved Instances from network enrichment analysis in

computational biology (Loboda et al., 2016).
ACTMOD 8 2034-5226 3335-93394 solved Instances from integrative biological

network analysis (Dittrich et al., 2008).
HANDS 20 39600 - 42500 78704 - 84475 solved

 Images of hand-written text from a signal
processing problem (Hegde et al., 2014).

HANDB 28 158400 - 169800 315808 - 338551 unsolved

PUCNU 18 64-4096 192-24574 unsolved Adversarial instances from the
11th DIMACS Challenge (DIMACS, 2015).

Table 3.1: Classes of MWCSP instances.

Reduction results

The impact of the individual of the algorithmic components is difficult to measure due
to their strong interaction. For example, deactivating the primal heuristics also has a

110 A relative: The maximum-weight connected subgraph problem

large effect on the reduction methods, since heuristics are heavily used for the bound-
based reductions. Vice-versa, reductions techniques are also a central ingredient of
several primal heuristics. For computational results on the impact of the individual
components we refer to Rehfeldt and Koch (2019), but note that the knowledge gain
from these results is limited. Essentially, with any of the three main building blocks,
reduction techniques, primal heuristics, graph transformations and IP formulation
being deactivated, the solving behavior drastically deteriorates.

Here, we merely provide results on the strength of the reduction methods when
used for presolving. Note that these methods also make use of the primal and dual
heuristics, as well as of the new graph transformations (for applying dual-ascent).
Table 3.2 shows the arithmetic mean of the percentage of vertices and edges in the
presolved problems. Further, we report the shifted geometric mean (see Section 1.2.2)
of the run-time needed per test-set, with shift s = 1. It can be seen that the consider-
able effort put into the various algorithms used within presolving pays off. Apart from
PUCNU, the average size of both the number of vertices and edges is reduced by more
than 95 percent on all test-sets. Most instances are even solved to optimality. Given
that some of the instances contain more than 300 thousand edges, the run-times
are also tolerable: Even for the, large-scale, HANDB instances, the shifted geometric
mean of the run-times is less than three seconds. We also note that the instances in
PUCNU were designed to defy known solution techniques such as reduction methods.
Against this backdrop, the obtained reductions are still notable.

average reduced problem size

Test-set vertices[%] edges[%] mean reduction time [s]

SHINY 0.2 0.2 0.0
JMPALMK 0.1 0.0 0.0
ACTMOD 0.0 0.0 0.1
HANDS 0.4 0.2 0.3
HANDB 3.5 3.4 2.6
PUCNU 73.1 64.5 0.4

Table 3.2: Average problem sizes after application of reduction algorithms.

Exact solution and comparison

Table 3.3 provides aggregated results on the exact solution of the benchmark sets
from Table 3.1. The first column shows the test-set considered in the current row.
Columns two shows the shifted geometric mean of the run-time of SCIP-Jack. Since
most of the instances can be handled very quickly, we have chosen a shift of s = 1.
The next column provides the maximum run-time per test-set, and the last column
the number of solved instances.

The results for the first three test-sets—JMPALMK, SHINY, and ACTMOD—
reveal a strong performance of SCIP-Jack. All instances are solved in less than 0.3
seconds, and all but three instances are even solved within 0.1 seconds. To the best of
the author’s knowledge, SCIP-Jack significantly outperforms all other solvers from
the literature on these instances. For example, most instances of SHINY are solved

3.6. Solving to optimality 111

two orders of magnitude faster than the solver described in Loboda et al. (2016)
(results for the other test-sets are not given). Furthermore, the maximum run-time
in Loboda et al. (2016) on the SHINY test-set is more than a thousand seconds
(with a few instances remaining unsolved), while it is less than 0.1 seconds for SCIP-
Jack. The computational environment for the experiments in Loboda et al. (2016) is
described as AMD Opteron 6380 CPUs with 2.5 GHz. Fischetti et al. (2017), whose
solver won the MWCSP category at the 11th DIMACS Challenge, reports results for
JMPALMK and ACTOMOD, using a machine that is roughly 1.4 times slower than
ours, according to the DIMACS benchmark score. Taking the different machine into
account, Fischetti et al. (2017) is between one and two orders of magnitude slower on
almost all JMPALMK and ACTOMOD instances. The difference is even larger for
other MWCSP solvers competing at the DIMACS Challenge, such as Althaus and
Blumenstock (2014); El-Kebir and Klau (2014).

The best other results for the ACTMOD instances are achieved by the solver
from Leitner et al. (2018a). Still, the solver is about an order of magnitude slower
than SCIP-Jack on these instances (with both using the same machine). Other
MWCSP solvers introduced after the 11th DIMACS Challenge, such as Álvarez
Miranda and Sinnl (2017), are outperformed by Leitner et al. (2018a).

Also on the two HAND test-sets, SCIP-Jack is notably faster than other solvers
from the literature. Already for the easier HANDS test-set, the solver from Fischetti
et al. (2017) fails to solve several instances within the one hour time limit, see Leitner
et al. (2018a). In contrast to at most two seconds taken by SCIP-Jack. Again, the
best other results are achieved by Leitner et al. (2018a). The run-time of this solver
is within two orders of magnitude of the run-time of SCIP-Jack on most HAND
instances. Still, Leitner et al. (2018a) is always at least around one order of magnitude
slower. Further, SCIP-Jack can solve one more instance to optimality (or even two
if the time-limit is increased). This instance, handbd04, is also solved for the first
time to optimality—in less than half a minute.

Test-set # instances # solved mean time [s] maximum time [s]

JMPALMK 72 72 0.0 0.0
SHINY 39 39 0.0 0.1
ACTMOD 8 8 0.1 0.3
HANDS 20 20 0.3 1.6
HANDB 28 26 4.5 >7200
PUCNU 18 13 55.6 >7200

Table 3.3: Computational results of the MWCSP solver described in this chapter.

Finally, the PUCNU test-set proves to be the hardest for SCIP-Jack, with only
13 out of 18 instances being solved within two hours. The solver from Leitner et al.
(2018a) solves 7 instances within the same time. Fischetti et al. (2017) perform better,
and solve 10 instances to optimality. Also from the PUCNU test-set, several instances
are solved for the first time to optimality by SCIP-Jack—as detailed below.

112 A relative: The maximum-weight connected subgraph problem

Progress on unsolved instances

Name gap [%] new UB previous UB
handbd04 opt 3202.18574 3202.710021
handbd13 opt 13.184261 13.187615
cc7-3nu opt 270 271
cc10-2nu opt 167 168
handbi13 0.1 4.24964 4.260670
cc11-2nu 0.8 303 304
cc12-2nu 0.7 563 565

Table 3.4: Improvements on unsolved DIMACS instances in a long run (24 h).

Table 3.4 shows results obtained with a time limit of 24 hours on previously
unsolved instances from the 11th DIMACS Challenge. We ran the experiments with
two different random seeds. The impact of using different random seeds was limited,
but we were at least able to further improve one primal bound in this way. We provide
the final optimality gap (column two), the best primal objective value (column three),
and the known primal objective value from the literature (column four). Overall, four
instances can be solved for the first time to optimality.

3.7 Conclusion

This chapter has set about to improve the state of the art in exact MWCSP solution.
It started with analyses and comparisons of IP and MIP formulations with respect to
the strength of their LP-relaxations. Along the way, we have also provided a tighter
(compact) description of the connected subgraph polytope—the convex hull of subsets
of vertices that induce a connected subgraph. Furthermore, we have given a (compact)
complete description of the connected subgraph polytope for graphs with no four
independent vertices. As an important conclusion of the theoretical study, we have
seen that the considered edge-based formulations are consistently stronger than the
node-based ones.

Based on the strongest of the considered (M)IP formulations, this chapter has
continued with various new algorithms for exact MWCSP solution. Three central
components are reduction techniques, graph transformations, and heuristics. The—
surprisingly symbiotic—synergy of all three components gives rise to a powerful
branch-and-cut algorithm that outperforms previous approaches by a large margin.
Furthermore, several benchmark instances from the 11th DIMACS Challenge can be
solved for the first time to optimality, and the best known primal solution of other
ones can be improved.

Still, the end of the road is certainly not reached yet. For example, several powerful
algorithms introduced in Chapter 2 for SPG, such as the extended reduction tech-
niques or the FPT dynamic programming algorithm, could be extended to MWCSP.
On the theoretical side, it seems well worthwhile to study new IP formulations for
the MWCSP to further improve the strength of the LP-relaxation, and to obtain a
tighter polyhedral description. For example, it might be possible to strengthen the

3.7. Conclusion 113

node-based formulations by additional constraints to match their edge-based coun-
terparts. Improvements of MWCSP complexity results, which were not covered in
this chapter, will be introduced as part of the more general prize-collecting Steiner
tree problem in the following.

Chapter 4

A generalization: The prize-collecting

Steiner tree problem

This chapter is concerned with a well-known generalization of both problems consid-
ered in the previous two chapters: The prize-collecting Steiner tree problem (PCSTP).
As in the previous chapter, we combine extensions of already introduced algorithms
with conceptually new ones. However, since the PCSTP generalizes MWCSP and
SPG, some new results for PCSTP can also be applied to these problems.

4.1 Introduction

The prize-collecting Steiner tree problem (PCSTP) can be stated as follows: Given
an undirected graph G = (V,E), edge weights c : E → Q>0, and node weights (or
prizes) p : V → Q>0, a tree S = (V (S), E(S)) ⊆ G is required such that

C(S) :=
∑

e∈E(S)

c(e) +
∑

v∈V \V (S)

p(v) (4.1)

is minimized. By setting sufficiently high node weights for its terminals, each SPG
instance can be transformed to a PCSTP. Moreover, PCSTP can also be considered
a generalization of MWCSP: As we will see in Section 4.2.2, any MWCSP instance
is essentially a PCSTP with unit edge weights. PCSTP has occasionally also been
formulated in maximization form, see e.g. Johnson et al. (2000), where the objective
function ∑

v∈V (S)

p(v)−
∑

e∈E(S)

c(e) (4.2)

is to be maximized. While the minimization and maximization formulations are
equivalent for exact solution, for approximation algorithms the two formulations are
fundamentally different. PCSTP in its minimization form can be approximated within
a factor of 2 in polynomial time, see e.g. Goemans and Williamson (1995), but it
is NP-hard to approximate the maximization form within any constant factor, see
e.g. Feigenbaum et al. (2001).

The relevance of the PCSTP can at least partly be attributed to its large num-
ber of practical applications. These applications can be found in various areas, for

115

116 A generalization: The prize-collecting Steiner tree problem

instance in the design of telecommunication networks (Ljubic, 2004), electricity plan-
ning (Bolukbasi and Kocaman, 2018), geophysics (Schmidt et al., 2015), and even
machine learning (Hidayati et al., 2019). Moreover, PCSTP is a popular tool in com-
putational biology, see e.g. Akhmedov et al. (2018); Ideker et al. (2002); Tuncbag et al.
(2016). Recently, PCSTP has also been employed for data mining, see e.g. Gionis
et al. (2017).

The PCSTP is notably younger than the SPG (albeit still older than the author
of this thesis): It was introduced around 15 years after the SPG by Segev (1987)17.
However, since then, the PCSTP has been extensively discussed in the literature, both
from theoretical and practical perspectives. The first approximation algorithm was
introduced by Bienstock et al. (1993), and achieved a factor 3 approximation. This
factor was later improved by Goemans and Williamson (1995), Johnson et al. (2000),
and Feofiloff et al. (2007). The latter achieve a (2 − 2

|V |)-approximation. Finally,

Archer et al. (2011) proposed a (2 − ε) approximation; with 0.03 < ε < 0.04. For
approximation results on planar graphs see Bateni et al. (2011). Moreover, a large
number of heuristic algorithms for PCSTP have been suggested, see e.g. Canuto et al.
(2001); da Cunha et al. (2009); Fu and Hao (2017a).

As to (practical) exact solving, the sophisticated branch-and-cut algorithm by Lju-
bic et al. (2006) was an early milestone. A survey on the developments before 2006
is given by Costa et al. (2006). Later, the PCSTP attracted considerable interest
in the wake of the 11th DIMACS Challenge (DIMACS, 2015)—dedicated to Steiner
tree problems—where the PCSTP categories could boast the most participants by
far. Furthermore, in the recent years a considerable number of additional solvers
for the PCSTP have been introduced, see e.g. Akhmedov et al. (2016); Braunstein
and Muntoni (2016); Fischetti et al. (2017); Fu and Hao (2017a); Gamrath et al.
(2017); Leitner et al. (2018a); Ming et al. (2018); Sun et al. (2019). Some of these
solvers, in particular Leitner et al. (2018a), drastically improve on the best results
achieved at the DIMACS Challenge—being able to not only solve many instances
orders of magnitude faster, but also to solve a number of instances for the first time
to optimality. Exact approaches for PCSTP are usually based on branch-and-bound
or branch-and-cut (Fischetti et al., 2017; Gamrath et al., 2017), include specialized
(primal and sometimes dual) heuristics (Klau et al., 2004; Leitner et al., 2018a), and
make use of various preprocessing methods to reduce the problem size (Ljubic et al.,
2006; Leitner et al., 2018a). For more details on the PCSTP literature see the recent
survey Ljubic (2020).

4.1.1 Preliminaries and additional notation

Throughout this chapter it will be presupposed that a PCSTP instance IPC =
(V,E, c, p) is given such that (V,E) is connected; otherwise, one can optimize each
connected component separately. We call Tp := {v ∈ V | p(v) > 0} the set of
potential terminals (Leitner et al., 2018a). It will be assumed that Tp 6= ∅. For ease
of presentation we use {t1, t2, ..., ts} := Tp, so in particular s := |Tp|. A t ∈ Tp will

17 By the name node-weighted Steiner tree problem.

4.1. Introduction 117

be called proper potential terminal if

p(t) > min
e∈δ(t)

c(e). (4.3)

The set of all proper potential terminals will be denoted by T+
p = {t+1 , t

+
2 , ..., t

+
s+},

with s+ := |T+
p |. Accordingly, define T−p := Tp \ T+

p . The distinction of proper and
non-proper potential terminals was already made in Uchoa (2006), where it was noted
that non-proper potential terminals allow for additional presolving methods. This
distinction can also be found in Fischetti et al. (2017); Leitner et al. (2018a).

We will call any PCSTP solution that consists of just one vertex trivial. If T+
p = ∅,

then there exists a trivial optimal solution. In general, there exists an optimal solution
whose leaves are a subset of T+

p , or there exists at least one trivial optimal solution.
Finally, we define a variation of the PCSTP, the rooted prize-collecting Steiner

tree problem (RPCSTP)18. The RPCSTP incorporates the additional condition that
a non-empty set Tf ⊆ V of fixed terminals needs to be part of all feasible solutions.
We assume w.l.o.g. that p(t) = 0 for all t ∈ Tf .

4.1.2 Contribution and structure

This chapter introduces and analyses new techniques and algorithms for PCSTP
that ultimately aim for efficient exact solution. Most of the techniques are based on,
or result in reductions (or transformations) of the PCSTP to equivalent problems—
these problems can be PCSTPs itself, but can also be from different problem classes.
The reductions can for example decrease the problem size or allow us to obtain a
stronger IP formulation. Moreover, several of the new methods provably dominate
previous results from the literature. While several of the new techniques require to
solve NP-hard subproblems, the underlying concepts allow us to design empirically
efficient heuristics. Furthermore, we provide complexity results for the exact solution
of PCSTP (and related problems), which underpin the design of most algorithms in
this chapter. Also these complexity results are based on problem transformations.

A salient feature of this chapter is the intricate interaction of the individual algo-
rithmic components and their wide applicability within a branch-and-cut framework—
from preprocessing and probing, to IP formulation and separation methods, to heuris-
tics, domain propagation, and branching. The integration of the new methods into an
exact solver also brings significant computational advancements: The new solver is
significantly faster than current state-of-the-art competitors, and furthermore solves
24 benchmark instances for the first time to optimality.

The remainder of this chapter is structured as follows.

– Section 4.2 shows that PCSTP is fixed-parameter tractable (FPT) in |T+
p |. Fur-

thermore, we discuss (known and new) transformations from the node-weighted
Steiner tree and maximum-weight connected subgraph problem to PCSTP,
which directly lead to FPT results. Also, we show that non-proper potential

18 Note that in the literature it is more common to denote only problems with exactly one fixed
terminal as rooted prize-collecting Steiner tree problem, e.g. in Ljubic et al. (2006)

118 A generalization: The prize-collecting Steiner tree problem

terminals naturally arise from these transformations. Overall, Section 4.2 pro-
vides a strong theoretical motivation for distinguishing between proper and
non-proper potential terminals within PCSTP algorithms, which will be a dom-
inating theme throughout this chapter.

– Section 4.3 introduces several new reduction techniques for PCSTP. Most im-
portantly, a new distance function based on so-called prize-constrained walks
is introduced. By using this distance function, we introduce for example a new
edge elimination criterion. The new techniques are also compared with previous
methods from the literature.

– Section 4.4 makes further use of the concept of prize-constrained walks. By
a combination with the reduced-costs of a particular LP relaxation, prize-
constrained walks allow us to find vertices that need to be part of any optimal
solution. We further show how this information leads to a better IP formulation.

– Section 4.5 shows how to integrate the newly developed algorithms within a
branch-and-cut framework. Furthermore, computational results are given, as
well as comparisons with state-of-the-art PCSTP solvers.

– Finally, Section 4.6 offers a conclusion, and suggestions on possible future re-
search.

4.2 Proper potential terminals and complexity

In a number of (real-world) PCSTP instances from the literature |T−p | is considerably
larger than |T+

p |, so it seems well-worthwhile to algorithmically distinguish between
proper and non-proper potential terminals. This section provides also a theoretical
foundation for such a distinction. Namely, by showing how proper and non-proper
potential terminals arise from problems related to PCSTP and by showing how the
complexity of PCSTP depends on the number of proper potential terminals.

4.2.1 On the complexity of PCSTP

In the following we demonstrate that for the complexity of PCSTP the number
s+ = |T+

p | is the crucial parameter. One observes throughout this chapter that the
complexity of several new PCSTP algorithms is likewise governed by s+. We first
show the following.

Theorem 4.1. The PCSTP is fixed-parameter tractable for the parameter s+. It
can be solved in time O(3s

+

n+ 2s
+

n2 + n2 log n+mn).

Due to its technical nature, a detailed proof is given in Appendix A.3.1 only.
In the following we describe the main building blocks. Consider a RPCSTP If =
(G,Tf , c, p) with T+

p = ∅. By extending the well-known dynamic programming algo-
rithm from Dreyfus and Wagner (1971), we obtain the following result.

4.2. Proper potential terminals and complexity 119

Proposition 4.2. An optimal solution to If can be found in time
O(3|Tf |n+ 2|Tf |n2 + n2 log n+mn).

Now we return to PCSTP. It will be assumed that no trivial solution exists for
PCSTP (otherwise one needs to compare the solution found in the following with
the best trivial solution). The following describes how to transform any PCSTP to
an equivalent RPCSTP instance that has no proper potential terminals and satisfies
|Tf | = s+ + 1.

Transformation 4.3 (PCSTP to RPCSTP).
Input: PCSTP (V,E, c, p) with T+

p 6= ∅
Output: RPCSTP (V ′, E′, T ′f , c

′, p′)

1. Initially, set V ′ := V , E′ := E, c′ := c; define M :=
∑
t∈T+

p
p(t).

2. Define p′ : V ′ → Q>0 for all v ∈ V ′ by

p′(v) :=

{
p(v) if v ∈ T−p ,
0 otherwise.

3. Let j ∈ {1, ..., s+} such that p(tj) = mint∈T+
p
p(t).

4. Add vertex t′0 to V ′.

5. For each i ∈ {1, ..., s+}:

(a) add node t′i with p(t′i) := 0 to V ′;

(b) add edges {t′0, ti} and {ti, t′i} to E′, both of weight M .

6. For each i ∈ {1, ..., s+} \ {j}:

(a) add edge {ti, t′j} of weight M + p(tj) to E′;

(b) add edge {t′i, t′j} of weight M + p(ti) to E′.

7. Define fixed terminals T ′f := {t′1, ..., t′s+} ∪ {t
′
0}.

8. Return (V ′, E′, T ′f , c
′, p′).

Instead of a correctness proof, we give an informal description of the transforma-
tion. Let I be a PCSTP. Let I ′ be the RPCSTP resulting from Transformation 4.3,
let S′ be an optimal solution to I ′, and let S := S′ ∩ (V,E). One observes that S′

needs to contain at least one ti in order to connect t′0 with the remainder of the
fixed terminals. Because of the choice of M , one further observes that for each fixed
terminal of I ′ exactly one incident edge is in S′. Each fixed terminal t′i with i 6= j
is either connected via ti or via t′j . In the first case, ti ∈ V (S) holds, and in the
second, ti /∈ V (S). The edge weights are chosen such that the objective value of S′

corresponds to that of S in both cases. The fixed terminal t′j has a special status, as

120 A generalization: The prize-collecting Steiner tree problem

it is used to connect any fixed terminal t′i with ti /∈ V (S). Thus, t′j is connected to
all ti. Note that the corresponding tj needs to be of minimum prize among all proper
potential terminals for the transformation to be correct. Overall, S is an optimal
solution to I, and one obtains the following relation

C(S) = C(S′)− |T ′f |M.

By combining Proposition 4.2 and Transformation 4.3, one obtains Theorem 4.1.
Interestingly, one can also easily extend Transformation 4.3 such that the result

is an SPG with s+ 1 terminals (and at most 2n+ 1 vertices). To do so, one needs to
essentially consider all potential terminals as proper potential terminals. There has
been no transformation in the literature so far from SPG to PCSTP.

However, the structure of the resulting SPG does not lend itself well to an effi-
cient practical solution by state-of-the-art SPG algorithms. Still, one can use this
transformation to directly derive further complexity results for PCSTP from SPG.
E.g., Vygen (2011) shows that an SPG with k terminals can be solved in time
O(nk2k+log2 k log2 n), which translates to O(ns2s+log2 s log2 n+log2 s) for PCSTP. One
could also extend the result from Vygen (2011) (by verifying them for If similarly
to Proposition 4.2) to show that the same bound holds for s+.

Having demonstrated that PCSTP is tractable if the number of proper poten-
tial terminals is bounded from above, we now turn to the opposite case. The SPG
is well-known to be fixed-parameter tractable in n − |T |, which can be shown by
enumeration of the non-terminal vertices (Hakimi, 1971). For node-weighted Steiner
tree and maximum-weight connected subgraph problems one can show similar re-
sults (Buchanan et al., 2018). However, the situation for PCSTP with respect to
n− s+ is different, as the following proposition shows.

Proposition 4.4. PCSTP is NP-hard even if s+ = n.

Proof. We show that the—NP-complete (Garey and Johnson, 1979)—vertex cover
problem can be reduced to the decision variant of PCSTP, such that the resulting
instance satisfies s+ = n. Let Gcov = (Vcov, Ecov) be an undirected graph and
k ∈ N. In the vertex cover problem one has to determine whether a subset of Vcov
of cardinality at most k exists that is incident to all edges Ecov. Let n := |Vcov| and
m := |Ecov|. Assume that the vertices and edges of Gcov are given as {v1, v2, ..., vn}
and {e1, e2, ..., em}, respectively. Construct a PCSTP instance I ′ = (V ′, E′, c′, p′) with
2n+m+ 1 vertices and 2n+ 2m edges as follows. Denote the vertices of V ′ by u′i and
v′i for i = 1, ..., n, and w′i for i = 0, 1, ...,m. For each original edge ei = {vj , vk} ∈ Ecov
create the two edges {w′i, v′j} and {w′i, v′k} with cost c′({w′i, v′j}) = c′({w′i, v′k}) = 8.
For each original vertex vi ∈ Vcov create the two edges {v′i, u′i} and {u′i, w′0} with cost
c({v′i, u′i}) = 1 and c({u′i, w′0}) = 4. Finally, define the prizes of I ′ as follows. First,
p′(w′i) = 10 for i = 0, 1, ...,m. Second, p′(v′i) = p′(u′i) = 2 for i = 1, ..., n. Observe
that all vertices in V ′ are proper potential terminals. We claim that an independent
set for Gcov of cardinality at most k exists if and only if there is a tree S′ ⊆ (V ′, E′)
that satisfies

C(S′)− 8m− 4n 6 k. (4.4)

4.2. Proper potential terminals and complexity 121

First, assume that a vertex cover with vertex index set Jcov exists such that
|Jcov| 6 k. Build a tree S′ ⊆ (V ′, E′) as follows. Initially, set

V ′(S′) :=
{
v′j , u

′
j | j ∈ Jcov} ∪ {wj | j ∈ {0, ...,m}

}
.

For E′(S′) take all edges {v′j , u′j}, {u′j , w′0} with j ∈ Jcov. Furthermore, for i = 1, ...,m
add exactly one edge {w′i, v′j} with j ∈ Jcov. For S′ one observes that∑

e∈E′(S′)

c′(e) = 8m+ 5k

and ∑
v∈V ′\V ′(S′)

p′(v) = 4(n− k).

Thus, C(S′)− 8m− 4n = k.
Conversely, assume that a tree S′ exists that satisfies (4.4). Assume that S′ is

an optimal solution to I ′. One verifies that S′ contains all vertices w′i (e.g. by using
Theorem 4.22). Note that also δS′(w

′
i) = 1 for i = 1, ...,m. Let Jcov ⊆ {1, ..., n} such

that v′j ∈ S′ ⇐⇒ j ∈ Jcov and set k′ := |Jcov|. From the optimality of S′ one
obtains

C(S′) = 8m+ 5k′ + 4(n− k′). (4.5)

From (4.4) it follows that k′ 6 k.

4.2.2 From PCSTP to MWCSP and NWSTP

The distinction of proper potential terminals also arises in relation with the maximum-
weight connect subgraph problem (MWCSP), which was introduced in the previous
chapter. We re-define the MWCSP with a slightly different notation here. Given an
undirected graph G = (V,E) with node weights w : V → Q, the MWCSP asks for a
connected subgraph S ⊆ G that maximizes∑

v∈V (S)

w(v). (4.6)

Let I = (V,E,w) be an MWCSP instance and assume that w0 := minv∈V (S) w(v)
is negative (otherwise I is trivial to solve). I can be transformed to an equivalent
PCSTP I ′ = (V,E, c, p) by setting c(e) := −w0 for all e ∈ E, and p(v) := w(v)− w0

for all v ∈ V , as described in Dittrich et al. (2008). It should be noted, though, that
due to the special form of I ′, the state-of-the-art MWCSP algorithms introduced
in the previous chapter perform significantly better in practice on I than PCSTP
algorithms on I ′. As to proper potential terminals, one observes the following: For
any v ∈ V it holds that w(v) > 0 (in I) if and only if v is a proper potential terminal
in I ′. Thus, one also obtains the following corollary (which improves on a result
from Buchanan et al. (2018)).

122 A generalization: The prize-collecting Steiner tree problem

Corollary 4.5. MWCSP can be solved in time O(3qn+2qn2 +n2 log n+mn), where
q denotes the number of positive weight vertices.

Another natural distinction between proper and non-proper potential terminals
can be observed for the node-weighted Steiner tree problem (NWSTP), see e.g. Klein
and Ravi (1995). Given an undirected, connected graph G = (V,E) with vertex
weights w : V → Q>0 and edge weights c : E → Q>0, and given a set of terminals
T ⊆ V , the NWSTP asks for tree S ⊆ G with T ⊆ V (S) that minimizes∑

e∈E(S)

c(e) +
∑

v∈V (S)

w(v). (4.7)

Let I = (V,E, T, c, w) be an NWSTP instance and assume w.l.o.g. that w(t) = 0 for
all t ∈ T . I can be reduced to an equivalent PCSTP I ′ = (V,E, c′, p′) by the following,
new, transformation. Let z := maxv∈V w(v). Define c′(e) := c(e) + z for all e ∈ E.
Define p′(t) := k for all t ∈ T , with a sufficiently large k ∈ Q>0, e.g. k =

∑
e∈E c

′(e).
Finally, define p′(v) = z − w(v) for all v ∈ V \ T . A tree S is an optimal solution to
I if and only if it is an optimal solution to I ′. Furthermore, in this case S satisfies∑

e∈E(S)

c(e) +
∑

v∈V (S)

w(v) = C(S)− (|T | − 1)z −
∑
v∈V

p′(v). (4.8)

Note that T−p ⊇ {v ∈ V \ T | w(v) < z}. Likewise, the set of terminals T for I
corresponds to the set of proper potential terminals for I ′.

One can alternatively transform NWSTP to RPCSTP to avoid the use of the
large constant k. Also, one immediately obtains the following corollary (which was
already shown algorithmically in Buchanan et al. (2018)) from Proposition 4.2.

Corollary 4.6. NWSTP can be solved in time O(3kn+2kn2 +n2 log n+mn), where
k denotes the number of terminals.

Finally, one notes that PCSTP can be seen as a generalization of both MWCSP
and NWSTP, as these problems can be transformed to a PCSTP with the same
number of edges and vertices.

4.3 Reductions within the problem class

The methods described in the following aim to reduce a given instance to a smaller
one of the same problem class. Several articles have addressed such techniques for
the PCSTP, e.g. Leitner et al. (2018a); Ljubic et al. (2006); Uchoa (2006), but most
are dominated by the methods described in the following. In particular, several
simple reduction techniques described in the literature are just special cases of the
algorithms described in the following. See Rehfeldt et al. (2019) for more details. The
new methods will not only be employed for classic preprocessing, but also throughout
the entire solving process, e.g. for domain propagation, or within heuristics.

4.3. Reductions within the problem class 123

4.3.1 Taking short walks

The following approach uses a new, walk-based, distance function. It generalizes the
bottleneck Steiner distance concept that was the central theme of Uchoa (2006) and
is defined as follows. Let v, w ∈ V be two distinct vertices. Denote by P(v, w) the
set of all paths between v and w. Recall that we assume all paths to be simple. For
a path P and vertices x, y ∈ V (P) let P (x, y) be the subpath of P between x and y.
Define the Steiner distance of path P as

SD(P) := max
x,y∈V (P)

∑
e∈E(P (x,y))

c(e)−
∑

v∈V (P (x,y))\{x,y}

p(v). (4.9)

With this definition at hand, define the bottleneck Steiner distance between v and w
as

B(v, w) := min{SD(P) | P ∈ P(v, w)}. (4.10)

Now, we describe a stronger distance concept, which is closely related to the
implied bottleneck Steiner distance that we introduced for the SPG in Section 2.3.1.
Let v, w ∈ V . A finite walk W = (v1, e1, v2, e2, ..., er−1, vr) with v1 = v and vr = w
will be called prize-constrained (v, w)-walk if no v ∈ T+

p ∪ {v, w} is contained more
than once in W . For any k, l ∈ N with 1 6 k 6 l 6 r define the subwalk W (vk, vl) :=
(vk, ek, vk+1, ek+1, ..., el−1, vl); note that W (vk, vl) is again a prize-constrained walk.
In the following, let W be a prize-constrained (v, w)-walk. Define the prize-collecting
cost of W as

cpc(W) :=
∑

e∈E(W)

c(e)−
∑

u∈V (W)\{v,w}

p(u). (4.11)

Thereupon, define the prize-constrained length of W as

lpc(W) := max{cpc(W (vk, vl)) | 1 6 k 6 l 6 r, vk, vl ∈ T+
p ∪ {v, w}}. (4.12)

Intuitively, lpc(W) provides the cost of the least profitable subwalk of W . This measure
will in the following be useful to bound the cost of connecting any two disjoint trees
that contain the first and the last vertex of W , respectively. Finally, we denote the
set of all prize-constrained (v, w)-walks byWpc(v, w) and define the prize-constrained
distance between v and w as

dpc(v, w) := min{lpc(W) |W ∈ Wpc(v, w)}. (4.13)

Note that dpc(v, w) = dpc(w, v) for any v, w ∈ V . Also, it is important to note that for
each subwalk the cost of an edge and the prize of an inner vertex are counted exactly
once, even if an edge or vertex is contained multiple times in the subwalk. Using the
same measuring concept, one could in fact also allow arbitrary finite walks instead
of prize-constrained ones—and count for each subwalk the costs of its edges and the
prizes of its inner vertices exactly once. However, the prize-constrained distance is
already arbitrarily stronger than the bottleneck Steiner distance, and additionally
more closely related to the algorithms described below.

Furthermore, one could also apply the concept of implied profit, introduced for
the SPG in Section 2.3.1, to further improve the prize-constrained distance. Still,

124 A generalization: The prize-collecting Steiner tree problem

adaptations are necessary to also take the prize of the potential terminal that induces
the profit into account. We do not consider this improvement in the following, as it
would considerably complicate the theoretical analyses. Also, this improved version
has not been implemented yet.

By using the prize-constrained distance one can formulate a reduction criterion
that dominates the special distance test from Uchoa (2006). This criterion is expressed
in the following theorem:

Theorem 4.7. Let {v, w} ∈ E. If

c({v, w}) > dpc(v, w) (4.14)

is satisfied, then {v, w} cannot be contained in any optimal solution to IPC .

Proof. Let S be a tree with {v, w} ∈ E(S). Further, let W = (v1, e1, ..., er−1, vr) be
a prize-constrained (v, w)-walk with lpc(W) = dpc(v, w). Remove {v, w} from S to
obtain two new trees. Of these two trees denote the one that contains v by Sv, and
the other (containing w) by Sw. Define b := min{k ∈ {1, ..., r} | vk ∈ V (Sw)} and
a := max{k ∈ {1, ..., b} | vk ∈ V (Sv)}. Further, define x := max{k ∈ {1, ..., a} | vk ∈
T+
p ∪{v}} and y := min{k ∈ {b, ..., r} | vk ∈ T+

p ∪{w}}. By definition, x 6 a < b 6 y
and furthermore:

cpc(W (va, vb)) 6 cpc(W (vx, vy)). (4.15)

Reconnect Sv and Sw by W (va, vb), which yields a new tree S′. For this tree it holds
that:

C(S′) 6 C(S) + cpc(W (va, vb))− c({v, w})
(4.15)

6 C(S) + cpc(W (vx, vy))− c({v, w})
6 C(S) + lpc(W)− c({v, w})
= C(S) + dpc(v, w)− c({v, w})
(4.14)
< C(S).

Because of C(S′) < C(S) no optimal solution can contain {v, w}.

To obtain a criterion for the case of equality in (4.14), define d−pc(v, w) as the prize-
constrained distance with respect to the PCSTP (V,E \ {e}, c, p), with e := {v, w}.
If v and w are disconnected in (V,E \ {e}, c, p), define d−pc(v, w) := ∞. With this
definition at hand, one obtains the following corollary to Theorem 4.7.

Corollary 4.8. Let e = {v, w} ∈ E. If

c(e) > d−pc(v, w) (4.16)

is satisfied, then e is not contained in at least one optimal solution to IPC .

4.3. Reductions within the problem class 125

Figure 4.1 shows a PCSTP instance on which Theorem 4.7 allows one to eliminate
an edge. Only vertex v4 has a non-zero prize. Consider the (dashed) edge {v1, v2}.
For the prize-constrained (v1, v2)-walk

W = (v1, {v1, v3}, v3, {v3, v4}, v4, {v3, v4}, v3, {v2, v3}, v2)

it holds that dpc(v1, v2) = lpc(W) = 6.

v4

p=5

v3

v1 v2

1

9

5 5

Figure 4.1: PCSTP instance. Edge {v1, v2} (dashed) can be eliminated due to Theo-
rem 4.7.

Algorithms for the prize-constrained distance

Since computing the bottleneck Steiner distance is already NP-hard (Uchoa, 2006),
it does not come as a surprise that the same holds for dpc (which can be shown in
the same way). However, the definition of dpc allows us to design a simple algorithm
for finding upper bounds that yields empirically strong results—significantly better
than those reported by Uchoa (2006).

In particular, while the bottleneck Steiner distance heuristics in Uchoa (2006)
consider only paths with at most two intermediary potential terminals, the following
algorithm can find walks where the number of intermediary potential terminals is only
bounded by |Tp|. Besides dual-ascent (Rehfeldt et al., 2019), the bottleneck Steiner
distance has been the most important reduction concept for PCSTP. Due to this
importance, we will take a deeper look at the prize-constrained distance, as well as
at associated algorithms for computing upper bounds.

To check whether an edge {v, w} can be deleted by means of criterion (4.16),
we suggest the procedure detailed in Algorithm 4.1, which is based on Dijkstra’s
algorithm (Dijkstra, 1959). The algorithm is given the edge e = {v, w} as well
as one of its endpoints, say v, from which it computes prize-constrained walks of
length not higher than c(e). The algorithm starts with a priority queue that contains
v. In contrast to Dijkstra’s algorithm, all vertices except for potential terminals
and v can be reinserted into the priority queue after they have been removed. We
associate with each vertex u the distance distpc[u]—initially set to 0 for v and to
∞ otherwise. As with Dijkstra’s algorithm, in each iteration one vertex u with
minimum distance value is removed from the priority queue and neighboring vertices
of u are updated. However, a different distance value than in Dijkstra’s algorithm
is used and a neighboring vertex q is only updated if distpc[u] + c({u, q}) 6 c(e).

126 A generalization: The prize-collecting Steiner tree problem

Throughout the computation the following invariant is satisfied for any u ∈ V \ {v}:
either distpc[u] =∞ or distpc[u] + p(u) 6 c(e), and in the latter case there exists a
prize-constrained (v, u)-walk Wu such that lpc(Wu) 6 c(e).

Algorithm 4.1: PcdCheck-Edge

Data: PCSTP (V,E, c, p), edge {vstart, vend} ∈ E
Result: deletable if edge has shown to be redundant, unknown otherwise

1 Q := {vstart}
2 E0 := E \ {{vstart, vend}}
3 c0 := c({vstart, vend})
4 foreach v ∈ V \ {vstart} do
5 distpc[v] :=∞
6 forbidden[v] := false

7 distpc[vstart] := 0
8 forbidden[vstart] := true
9 while Q 6= ∅ do

10 v := arg minu∈Q distpc[u]

11 Q := Q \ {v}
12 if v ∈ Tp then
13 forbidden[v] := true

14 foreach w ∈ V with {v, w} ∈ E0 do
15 if forbidden[w] = false and distpc[v] + c({v, w}) 6 c0 and

distpc[v] + c({v, w})− p(w) < distpc[w] then
16 if w = vend then
17 return deleteable

18 distpc[w] := max{0, c({v, w}) + distpc[v]− p(w)}
19 if w /∈ Q then
20 Q := Q ∪ {w}

21 return unknown

One obtains the following results concerning the strength of the prize-constrained
distance, and the upper bound provided by Algorithm 4.1.

Proposition 4.9. For any two vertices v, w ∈ V it holds that

dpc(v, w) 6 B(v, w). (4.17)

Furthermore, let Ipc be the set of all PCSTP instances. It holds that

sup
(V,E,p,c)∈Ipc

max
v,w∈V

B(v, w)

dpc(v, w)
=∞. (4.18)

Proof. The relation (4.17) can be verified by the definitions of B and dpc. For the
second part consider the PCSTP depicted in Figure 4.2. Let n ∈ N, n > 3. The prizes

4.3. Reductions within the problem class 127

p and costs c are defined as follows: p(v) = 0 for i = 0, ..., n, and p(wi) = 3 for
i = 1, ..., n− 1; further, c ≡ 1. Observing that

lim
n→∞

B(v0, vn)

dpc(v0, vn)
= lim
n→∞

n

3
=∞,

one can validate that (4.18) holds.

Next, we show that (the heuristic) Algorithm 4.1 can yield better results than the
(exact) bottleneck Steiner distance. To this end, first define B− analogously to d−pc.
The next corollary shows that the results from Algorithm 4.1 can be (in a relative
sense) arbitrarily better than the bottleneck Steiner distance.

Corollary 4.10. For any K ∈ N0 there is a PCSTP instance IK with an edge
e = {v, w} such that

B−(v, w)

c(e)
> K,

while Algorithm 4.1 returns deletable for (IK , {v, w}).

Proof. If K = 0, condition (4.10) is trivially satisfied. Assume K > 1, and consider
the PCSTP instance in Figure 4.2 for n = 3K. Add an arc {v0, vn} of cost 3 to the
instance. For this PCSTP together with the edge {v0, vn} the PCD algorithm returns
deletable. On the other hand, B−(v0, vn) = 3K.

w1

p=3

w2

p=3

wn-1

p=3

v0 v1 v2 vn-1 vn

1 1

1 1 1

1

Figure 4.2: PCSTP instance such that the ratio of the bottleneck Steiner distance
and the prize-constrained distance between v0 and vn becomes arbitrarily large.

Since Algorithm 4.1 runs in polynomial time and the decision variant of the
prize-constrained distance is NP-complete, Algorithm 4.1 cannot be in general
exact—in the sense that it might return unknown even though c({vstart, vend}) >
d−pc(vstart, vend)—unless P = NP. However, under certain conditions Algorithm 4.1
is exact, as detailed in the following proposition (see Appendix A.3.2 for a proof).

128 A generalization: The prize-collecting Steiner tree problem

Proposition 4.11. Let {v, w} ∈ E and let W be a (v, w)-walk with lpc(W) =
d−pc(v, w). If for all t ∈ (V (W) \ {v, w}) ∩ T+

p

p(t) 6 min
e∈δ(t)∩E(W)

c(e) (4.19)

holds, then Algorithm 4.1 returns deletable if and only if c({v, w}) > d−pc(v, w).

Corollary 4.12. Let v, w ∈ V . If T+
p ⊆ {v, w} holds (which includes T+

p = ∅), then
both d−pc(v, w) and dpc(v, w) can be computed in polynomial time (with respect to the
encoding size of IPC).

To check whether an edge e can be eliminated, we run a restricted version of
Algorithm 4.1 (which only checks at most a fixed number of edges during its execution)
from both endpoints of e. If none of the two tests are successful, we check for each
vertex that has been visited in both runs whether the corresponding walks can be
combined to obtain a walk that allows to delete e. This procedure will be referred to
as prize-constrained distance (PCD) test.

We have also implemented an extension of PCD, referred to as extended prize-
constrained distance (EPCD) test, which will be sketched in the following. One down-
side of PCD, even in its unrestricted form, is that once a potential terminal has been
removed from the priority queue, it cannot be used in any other walk. Thus, EPCD
keeps for each vertex v a (bounded) list of potential terminals that are part of the
current (vstart, v)-walk. Whenever a vertex w could be updated from a vertex v, but
forbidden[w] = false, it is checked whether w is in the potential terminal list of v,
and if not, w is still updated. Another problem of PCD is that the cost of an edge on a
subwalk might be counted several times. Consider for example the instance described
in the proof of Corollary 4.10 and change the prizes for all wi to p(wi) := 2. It still
holds that d−pc(v0, vn) = 3, but PCD for edge {v0, vn} will only return deletable if
c({v0, vn}) > n. Therefore, EPCD saves for each vertex (a limited number of) edges
on the current subwalk. This list is cleared as soon as the distance value of a vertex
is set to 0. EPCD also allows that non-proper potential terminals can be used several
times on one walk, by keeping a similar list of non-proper potential terminals on the
current subwalk.

Further applications of the prize-constrained distance

The prize-constrained distance can be combined with a related walk-based concept
introduced in Section 4.4 to obtain a reduction method that allows for the contraction
of edges. Consider a graph (V,E) with non-negative edge costs c. Let P be a (simple)
path. The bottleneck length (Duin and Volgenant, 1989a) of P is

bl(P) := max
e∈E(P)

c(e). (4.20)

For vertices v, w ∈ V , the bottleneck distance (Duin and Volgenant, 1989a) is defined
as

b(v, w) := inf{bl(P) | P ∈ P(v, w)}. (4.21)

4.3. Reductions within the problem class 129

Note that if all vertices have a sufficiently large prize, then b(v, w) = dpc(v, w) for all
v, w ∈ V , but in general b(v, w) 6 dpc(v, w) holds. For a fixed edge e ∈ E we define
the restricted bottleneck distance be(v, w) as the bottleneck distance on (V,E \ {e}).
This definition gives rise to the following proposition.

Proposition 4.13. Let {v, w} ∈ E and ti, tj ∈ Tp, ti 6= tj such that:

1. If an optimal solution S with ti ∈ V (S) exists, then there is an optimal solution
S′ ⊇ S with tj ∈ V (S′).

2. If an optimal solution S with v ∈ V (S) or w ∈ V (S) exists, then there is an
optimal solution S′ ⊇ S with ti ∈ V (S′).

If furthermore it holds that

dpc(v, ti) + c({v, w}) + dpc(w, tj) 6 b{v,w}(ti, tj), (4.22)

then for any optimal solution S with v ∈ V (S), w ∈ V (S), or ti ∈ V (S) there is an
optimal solution S′ with {v, w} ∈ E(S′).

Proof. Assume there is an optimal solution S such that v ∈ V (S) or w ∈ V (S).
Because of the first two conditions of the proposition we can assume that v ∈ V (S),
w ∈ V (S), ti ∈ V (S), and tj ∈ V (S). Suppose {v, w} /∈ E(S). Remove from E(S) an
edge on the (unique) path between ti and tj in S of maximum cost. This operation
results in two disjoint trees: Si with ti ∈ Si and Sj with tj ∈ Sj . By definition of
b{v,w}(ti, tj) it holds that

C(Si) + C(Sj) + b{v,w}(ti, tj) 6 C(S). (4.23)

Similarly to the proof of Theorem 4.7, condition (4.22) allows us to connect Si to v
such that the resulting tree S̃i satisfies

C(S̃i) 6 C(Si) + dpc(v, ti). (4.24)

Equivalently, we can connect Sj to w with the result satisfying

C(S̃j) 6 C(Sj) + dpc(w, tj). (4.25)

Finally, we define S̃ as the union of S̃i, S̃j and {v, w}. This connected subgraph is
not necessarily a tree, but can be made one without increasing C(S̃) by deleting an
edge from each cycle. It holds that

C(S)
(4.23)

> C(Si) + C(Sj) + b{v,w}(ti, tj) (4.26)

(4.22)

> C(Si) + C(Sj) + dpc(v, ti) + dpc(w, tj) + c({v, w}) (4.27)

(4.24)

> C(S̃i) + C(Sj) + dpc(w, tj) + c({v, w}) (4.28)

(4.25)

> C(S̃i) + C(S̃j) + c({v, w}) (4.29)

> C(S̃). (4.30)

130 A generalization: The prize-collecting Steiner tree problem

The case that there is an optimal solution S with ti ∈ V (S) can be handled in
the same way.

Note that the contraction of edges for PCSTP is not as straightforward as for
SPG, since determining whether the contracted edge is part of any optimal solution is
NP-complete. Thus, one needs to adapt the prize of vertex ti from Proposition 4.13.
We discuss this technical issue in Rehfeldt et al. (2019). We just note here that if the
conditions of the proposition are satisfied, and p(ti) > c({v, w}), one can contract
{v, w} and subtract c({v, w}) from p(ti).

We also remark that Proposition 4.13 is similar to Proposition 2.14, which we
established in Section 2.3.1 for the SPG. However, for the SPG the conditions (1)
and (2) are not required. To check whether (1) and (2) hold, the left-rooted prize-
constrained distance introduced in Section 4.4 will be used. Finally, the following
lemma allows one to efficiently check the test condition of Proposition 4.13 for all
edges, similarly to the corresponding SPG result.

Lemma 4.14. Let {v, w} ∈ E and ti, tj ∈ Tp, ti 6= tj. If (4.22) holds, then there is
a minimum spanning tree SMST on (V,E, c) such that {v, w} ∈ E(SMST).

A proof of the lemma can be found in Appendix A.3.3.

Finally, a great advantage of the prize-constrained distance over the implied
bottleneck Steiner distance that we introduced for SPG is that the former can be
directly utilized for a generalization of the classic node replacement test from Duin
and Volgenant (1989b).

Proposition 4.15. Let v ∈ V \ Tp. There is an optimal solution S with |δS(v)| 6 2
if for each ∆ ⊆ N(v) with |∆| > 3 the following holds: c(δ(v)∩ δ(∆)) is not less than
the weight of a minimum spanning tree for the distance network DG(∆, dpc).

The proof of the proposition follows the familiar reconnection pattern and is
omitted here.

4.3.2 Using bounds

Bound-based reduction techniques identify edges and vertices for elimination by exam-
ining whether they induce a lower bound that exceeds a given upper bound (Hwang
et al., 1992). In this section, we will introduce several new bound-based reduction
methods for PCSTP, based on the following decomposition concept.

For any U ⊆ V such that T+
p ⊆ U , and for any vi, vj ∈ V let QU (vi, vj) be the set

of all (vi, vj)-paths in the graph induced by V \ (U \ {vi, vj}). Define dU : V × V 7→
Q>0 ∪ {∞} as

dU (vi, vj) := inf
Q∈QU (vi,vj)

∑
e∈E(Q)

c(e)−
∑

v∈V (Q)\{U∪{vi}}

p(v), (4.31)

4.3. Reductions within the problem class 131

with the common convention inf ∅ :=∞. The distance function defined in (4.31) will
later be used to bound the cost of connecting a vertex vi ∈ V \U to a vertex vj ∈ U .
Let vi ∈ V . Define vUi,0 := vi, and, recursively, for k ∈ N

vUi,k := arg min{dU (vi, v) | v ∈ U \ ∪k−1
j=0{v

U
i,j}}, (4.32)

assuming that such a vertex exists. So vUi,k is the k-th closest vertex from vi in U
with respect to the distance function dU .

With these definitions at hand, we introduce the following concept: a terminal-
regions decomposition of IPC is a partition (H0, H1, H2, ...,Hs+) of V such that for
i = 1, ..., s+ it holds that T+

p ∩ Hi = {t+i } and that the subgraph induced by Hi

is connected—recall that T+
p = {t+1 , t

+
2 , ..., t

+
s+}. Note that H0 does not need to be

connected. We say that Hi is the terminal region of ti. Define Hp := T+
p ∪ (H0 ∩T−p).

Further, define rpcH : T+
p 7→ Q>0 by

rpcH (t+i) := min
{
p(t+i),min{dHp(t+i , v) | v /∈ Hi}

}
(4.33)

for t+i ∈ T+
p . We will refer to this value as the prize-collecting radius of Hi. The

idea of this radius concept is to bound the cost of connecting a proper potential
terminal ti with a vertex v /∈ Hi within an optimal solution, or the prize that is
lost if ti is not included in the solution. The decomposition can easily be reduced to
SPG by using min{d(ti, v) | v /∈ Hi} instead of rpcH (ti), which corresponds to setting
sufficiently high prizes for each terminal of the SPG. Indeed, in this way we obtain
the terminal-regions decomposition concept that we introduced in Section 2.3.2. For
ease of presentation assume rpcH (t+i) 6 rpcH (t+j) for 1 6 i < j 6 s+. Also, we assume
that in the following a fixed terminal-regions decomposition H is given.

Proposition 4.16. Let vi ∈ V \ T+
p . If vi ∈ V (S) for all optimal solutions S, then

a lower bound on C(S) is defined by

dHp(vi, v
Hp

i,1) + dHp(vi, v
Hp

i,2) +
s+−2∑
k=1

rpcH (t+k) +
∑

t∈T−p \{vi}

p(t). (4.34)

Before providing a formal proof, we remark that the bound (4.34) can be motivated
by the following two observations. First, there is always an optimal solution S such
that vi is connected to two distinct proper potential terminals by edge disjoint paths
in S. The cost of these paths is bounded by dHp(vi, v

Hp

i,1) + dHp(vi, v
Hp

i,2). Second, for
all other proper potential terminals ti contained in S, there needs to be a path in S
from ti to a vertex in V (S)\Hi. To bound the cost of these paths, the prize-collecting
radius values are used.
Proof of Proposition 4.16. Initially, define b : V → {0, 1, 2, ..., s+} such that v ∈ Hb(v)

for all v ∈ V . Assume that vi is contained in all optimal solutions. This assumption
implies that |T+

p | > 2. Let S be any optimal solution. Denote the (unique) path in S
between vi and any tj ∈ V (S)∩Hp by Qj and the set of all such paths by Q. First, we
can assume that |Q| > 2, because if Q just contained one path, say Qk, then we could

132 A generalization: The prize-collecting Steiner tree problem

simply remove vi from Qk to obtain another optimal solution. Second, if a vertex vk
is contained in two distinct paths in Q, the subpaths of these two paths between vi
and vk coincide. Otherwise there would need to be a cycle in S. Additionally, there
are at least two paths in Q having only the vertex vi in common. Otherwise, due to
the precedent observation, all paths would have one edge {vi, v′i} in common. This
edge could be discarded to yield a tree of smaller cost than C(S).

Let Qk ∈ Q and Ql ∈ Q be two distinct paths with V (Qk) ∩ V (Ql) = {vi} such
that

∣∣{{v, w} ∈ E(Qk) ∪ E(Ql) | b(v) 6= b(w)}
∣∣ (4.35)

is minimized. Define Q− := Q\{Qk, Ql}. Consider a (t, vi)-path Qr ∈ Q−. If t ∈ T+
p ,

let Q′r be the subpath of Qr between t and the first vertex not in the region of
t. Suppose that Qk has an edge e ∈ E(S) in common with a Q′r: Consequently,
Ql cannot have any edge in common with Qr, because this would require a cycle
in S. Furthermore, Qk and Qr have to contain a joint subpath including vi and e.
But this would imply that Qk contained at least one additional edge {vx, vy} with
b(vx) 6= b(vy). Thus, Qr would have initially been selected instead of Qk.

Following the same line of argumentation, one validates that Ql has no edge in
common with any Q′r. Conclusively, the paths Qk, Ql, and all Q′r are edge-disjoint.
Next, we use these paths to derive the lower bound (4.34) on C(S). To this end we
introduce additional notation. First, denote the union of Qk, Ql, and all Q′r by Q.
Define SQ := S ∩Q. Because for each non-proper potential terminal in V (S) \V (SQ)
there is one incident edge in E(S) \E(SQ), and because this mapping can be chosen
to be bijective, it holds that

c(E(S) \ E(SQ))− p((V (S) \ V (SQ)) ∩ T−p) > 0. (4.36)

From the definitions of dHp and rpcH one infers

c(E(SQ)) + p(T+
p \ V (S))− p(V (SQ) ∩ T−p) (4.37)

>
s+−2∑
q=1

rpcH (t+q) + dHp(vi, v
Hp

i,1) + dHp(vi, v
Hp

i,2)− p(vi). (4.38)

4.3. Reductions within the problem class 133

Finally, one obtains:

C(S) = c(E(S)) + p(V \ V (S))

= c(E(S)) + p(T+
p \ V (S)) + p(T−p \ V (S))

= c(E(S)) + p(T+
p \ V (S)) + p(T−p)− p(V (S) ∩ T−p)

= c(E(S)) + p(T+
p \ V (S)) + p(T−p)

− p(V (SQ) ∩ T−p)− p((V (S) \ V (SQ)) ∩ T−p)

= c(E(SQ)) + c(E(S) \ E(SQ)) + p(T+
p \ V (S)) + p(T−p)

− p(V (SQ) ∩ T−p)− p((V (S) \ V (SQ)) ∩ T−p)

(4.36)

> c(E(SQ)) + p(T+
p \ V (S)) + p(T−p)− p(V (SQ) ∩ T−p)

(4.37)

>
s+−2∑
q=1

rpcH (t+q) + dHp(vi, v
Hp

i,1) + dHp(vi, v
Hp

i,2)− p(vi) + p(T−p)

=
s+−2∑
q=1

rpcH (t+q) + dHp(vi, v
Hp

i,1) + dHp(vi, v
Hp

i,2) + p(T−p \ {vi}).

The first equality is just the definition of C(S). The second inequality follows from
Tp = T+

p ∪̇T−p . The next three equalities result from splitting up individual sums.
The last equality follows from the fact that either vi ∈ T−p or p(vi) = 0.

Each vertex vi ∈ V \ T+
p with the property that the affiliated lower bound (4.34)

exceeds a known upper bound can be eliminated. Moreover, if a solution S corre-
sponding to the upper bound is given and vi /∈ V (S), one can also eliminate vi if
the lower bound (4.34) is equal to C(S). A result similar to Proposition 4.16 can be
formulated for edges of an optimal solution.

Another application of the terminal-regions decomposition can be found for PC-
STP instances with articulation points. While only a few instances from the liter-
ature contain articulation points in their original form, this situation changes once
the reduction techniques described so far have been applied. Even more so once
branch-and-bound has been initiated, see Section 4.5.1. Recall that throughout this
chapter IPC is assumed to be connected.

First, one observes that if a biconnected component B ⊆ G satisfies T+
p ⊆ V (B)

and no trivial solution exists, then there is at least one optimal solution S with
S ⊆ B. The opposite case, namely that T+

p * V (B), is not as straightforward and
requires some groundwork. In the remainder of this section it will be assumed that
IPC contains at least one biconnected component that does not contain all proper
potential terminals. Let B ⊆ G be a biconnected component and let R ⊆ G be a
connected subgraph such that E(R) ∩ E(B) = ∅. A vertex v ∈ B such that there is
a path Q from v to R with V (Q) ∩ V (B) = {v} will be called gate vertex from B to
R. One readily acknowledges the following result.

134 A generalization: The prize-collecting Steiner tree problem

Lemma 4.17. Let B ⊆ G be a biconnected component and R ⊆ G a nonempty,
connected subgraph such that E(R) ∩ E(B) = ∅. There exists exactly one gate vertex
from B to R.

Based on Lemma 4.17 and the terminal-regions decomposition, the following
proposition gives an additional criterion to eliminate biconnected components. The
proposition can be motivated similarly to Proposition 4.16. This time, however, we
compare the lower bound against the maximum profit that can be attained in a
biconnected component.

Proposition 4.18. Let B ⊆ G be a biconnected component with T+
p * V (B).

Let R ⊆ G be a connected subgraph with T+
p \ V (B) ⊆ V (R) and assume that

E(R)∩E(B) = ∅. If T+
p ∩ V (B) = ∅, then there is an optimal solution that does not

contain any edge of B. Otherwise, let vi ∈ V (B) be the gate vertex from B to R, let
H be a terminal-regions decomposition of B, and define dHp and vH

p

i,1 with respect to
B. Let X := V (B) \ {vi} and define

L := dHp(vi, v
Hp

i,1) +
∑

t∈X∩T+
p

rpcH (t)− max
t∈X∩T+

p

rpcH (t) +
∑

t∈X∩T−p

p(t). (4.39)

If

L >
∑
v∈X

p(v) (4.40)

holds, then for at least one solution S to IPC it holds that either S ⊆ B or E(S) ∩
E(B) = ∅.

Proof. Throughout this proof it will be assumed that no trivial (i.e. single-vertex)
optimal solution exists—otherwise, the proof is already complete. Note that this
assumption implies that T+

p 6= ∅.
First, assume that T+

p ∩ B = ∅. Thus, T+
p ⊆ R. Recall that because no trivial

solution exists, there is at least one optimal solution S whose leaves are a subset of
T+
p . Consequently, S cannot contain any edge of B. Otherwise, from the ends of this

edge there would be two disjoint paths to T+
p , and thus there would be at least two

gate vertices from B to R.
Second, assume that T+

p ∩ B 6= ∅. Let S be a feasible solution with S * B and
E(S)∩E(B) 6= ∅. We will show that a feasible solution S′ with C(S′) 6 C(S) exists,
such that either S′ ⊆ B or E(S′) ∩ E(B) = ∅. In this way, the proof is concluded.
Assume that all leaves of S are contained in T+

p , otherwise one can always choose
a S of no higher cost that satisfies this property. Because this assumption implies
S ∩ R 6= ∅, the gate vertex vi from B to R is contained in S. Moreover, any path
Q ⊆ S starting from vi satisfies either E(Q)∩E(B) = ∅ or E(Q) ⊆ E(B). Otherwise,
there would be at least two gate vertices from B to R. Let SB be the subgraph of S
that consists of all paths in S from vi to vertices in B. The above considerations imply
that the subgraph S′ obtained by removing SB from S and adding vi is connected.
Similar to the proof of Proposition 4.16 one can now show that

c(E(SB)) + p(X \ V (SB)) > L. (4.41)

4.4. Changing the problem class 135

Therefore, it holds that

C(S) = c(E(S)) + p(V \ V (S))

= c(E(S′)) + p((V \ V (S′)) \X) + c(E(SB)) + p(X \ V (SB))

(4.41)

> c(E(S′)) + p((V \ V (S′)) \X) + L

(4.40)

> c(E(S′)) + p((V \ V (S′)) \X) + p(X)

= c(E(S′)) + p((V \ V (S′))

= C(S′),

which concludes the proof.

The set R in Proposition 4.18 can for example be computed (or its non-existence
can be shown) by a depth-first-search on the graph (V,E \ E(B)) starting from any
t ∈ T+

p \ V (B). If (4.40) holds, it might still be the case that S ⊆ B for all optimal
solutions S. This case can for example be ruled out if a feasible solution S′ (B
is known that satisfies C(S′) 6

∑
v∈V \V (B) p(v) (or by more sophisticated criteria

involving the terminal-regions decomposition of B). If such a S′ is known, one can
eliminate all edges of B from IPC .

To efficiently apply the previous two propositions, one would like to maximize
the lower bounds (4.34), and (4.39) respectively. Note that if T−p = ∅, then there
always exists a terminal-regions decomposition with H0 = ∅ that maximizes the lower
bound (4.34)—and equivalently, (4.39). Thus, one directly obtains the following result
from Proposition 2.21.

Proposition 4.19. Given a vi ∈ V \ T+
p , finding a terminal-regions decomposition

that maximizes (4.34) is NP-hard. The same holds for (4.39).

Thus, to compute a terminal-regions decomposition a heuristic approach will be
used. The heuristic is similar to Dijkstra’s algorithm. Put all t+i ∈ T+

p in the initial
priority queue (with distance value 0). Similar to Algorithm 4.1, we subtract from the
distance value of each vertex v ∈ V \ T+

p its prize p(v) when it is updated. Moreover,
the algorithm does not extend a region Hi from a vertex v ∈ Hi if an upper bound
bi ∈ Q>0 on rpcH (t+i) is already known and dHp(t+i , v) > bi. Such upper bounds can
be computed during the execution of the algorithm. Finally, we apply a simple local
heuristic that checks edges between different regions and fully includes them in one
of the regions if advantageous.

4.4 Changing the problem class

The previous section discussed several techniques to prove that certain edges or
vertices are not contained in an optimal solution. This section uses similar techniques
to prove the opposite: That certain vertices are contained in at least one optimal
solution. We show that such a rooting of a PCSTP instance sets the stage for more
efficient algorithms.

136 A generalization: The prize-collecting Steiner tree problem

4.4.1 Identifying roots

A cornerstone of the approach described in this section is the Steiner arborescence
problem (SAP) and the associated DCut IP formulation; see Section 1.1.3. As shown
in Chapter 3, the dual-ascent algorithm by Wong (1984) for DCut can quickly com-
pute empirically strong lower bounds. Moreover, we have seen that the information
provided by dual-ascent can be used for the generation of initial cutting planes, for
reduction methods, and for primal heuristics. Thus, it seems promising to devise a
transformation from PCSTP to SAP, to be able to apply this algorithm. Such a
transformation is given in the following. We apply the idea of cost-shifting (Duin,
1993; Ljubic et al., 2006), to get rid of non-proper potential terminals (in Step 2).
We also note that Ljubic et al. (2006) describe a transformation from PCSTP to an
SAP variant with additional constraints.

Transformation 4.20 (PCSTP to SAP).
Input: PCSTP (V,E, c, p)
Output: SAP (V ′, A′, T ′, c′, r′)

1. Set V ′ := V , A′ := {(v, w) ∈ V ′ × V ′ | {v, w} ∈ E}, and M :=
∑
t∈T+

p
p(t).

2. Define c′ : A′ → Q>0 for all a = (v, w) ∈ A′ by

c′(a) :=

{
c({v, w})− p(w) if w ∈ T−p ,
c({v, w}) otherwise.

3. Add vertices r′ and v′0 to V ′.

4. For each i ∈ {1, ..., s+}:

(a) add arc (r′, ti) of weight M to A′;

(b) add node t′i to V ′;

(c) add arcs (ti, v
′
0) and (ti, t

′
i) to A′, both being of weight 0;

(d) add arc (v′0, t
′
i) of weight p(ti) to A′.

5. Define set of terminals T ′ := {t′1, ..., t′s+} ∪ {r
′}.

6. Return (V ′, A′, T ′, c′, r′).

The underlying idea of the transformation is to add a new terminal t′i for each
original potential terminal ti and provide additional arcs that make it possible to
connect t′i from any original potential terminal tj with cost p(ti). See Figure 4.4b
for an example. Note that one needs to compare any solution obtained by the above
transformation with the best single vertex tree in order to not miss a trivial optimal
solution. In the following, we assume for ease of presentation that no such trivial
optimal solution exists.

Each optimal solution S′ to the SAP obtained from Transformation 4.20 can be
transformed to an optimal solution S to the original PCSTP. This mapping can be

4.4. Changing the problem class 137

done similarly to the transformation from MWCSP to SAP in the previous chapter;
we give more details in Rehfeldt and Koch (2018a). The following relation holds:

c′(A′(S′))−M + p(T−p) = C(S).

For IPC = (V,E, c, p) one can define the following formulation, which uses the
SAP (V ′, A′, T ′, c′, r′) obtained from applying Transformation 4.20 on IPC :

Formulation 4.21. Transformed prize-collecting cut (PrizeCut)

min c′
T
x−M + p(T−p) (4.42)

x satisfies (1.3), (1.4) (4.43)

y({v, w}) = x((v, w)) + x((w, v)) for all {v, w} ∈ E (4.44)

y(e) ∈ {0, 1} for all e ∈ E. (4.45)

The y variables correspond to the solution to IPC ; note that removing them does
not change the optimal solution value, neither that of the LP relaxation.

Implied potential terminals

To avoid adding an artificial root (which entails big M constants and symmetry)
in the transformation to SAP, one can attempt to identify vertices that are part of
all optimal solutions to the original PCSTP. To this end, consider a PCSTP and
let v, w ∈ V . Further, let W = (v1, e1, v2, e2, ..., er−1, vr) with v1 = v and vr = w
be a prize-constrained (v, w)-walk (as defined in Section 4.3). Define the left-rooted
prize-constrained length of W as:

~lpc(W) := max{cpc(W (v, vi)) | vi ∈ V (W) ∩ (T+
p ∪ {w})}. (4.46)

Recall that we defined cpc in (4.11). As compared to the prize-constrained length, (4.46)
considers only subwalks starting from the first vertex of walk W . Furthermore, define
the left-rooted prize-constrained (v, w)-distance as:

~dpc(v, w) := min{~lpc(W) |W ∈ Wpc(v, w)}. (4.47)

Note that in general ~dpc is not symmetric. Definition (4.47) gives rise to

Theorem 4.22. Let v, w ∈ V . If

p(v) > ~dpc(v, w) (4.48)

is satisfied, then every optimal solution that contains w also contains v.

Proof. Let S be a tree withw ∈ V (S) and v /∈ V (S). Further, letW = (v1, e1, ..., er−1, vr)

be a prize-constrained (v, w)-walk with ~lpc(W) = ~dpc(v, w) and define a := min{k ∈
{1, ..., r} | vk ∈ V (S)} and b := min{k ∈ {a, a+ 1, ..., r} | vk ∈ T+

p ∪{w}}. Note that

cpc(W (v, va)) 6 cpc(W (v, vb)). (4.49)

138 A generalization: The prize-collecting Steiner tree problem

Add the subgraph corresponding to W (v, va) to S, which yields a new connected
subgraph S′. If S′ is not a tree, make it one by removing redundant edges, without
removing any node (which can only decrease C(S′)). It holds that:

C(S′) 6 C(S) + cpc(W (v, va))− p(v)

(4.49)

6 C(S) + cpc(W (v, vb))− p(v)

6 C(S) +~lpc(W)− p(v)

= C(S) + ~dpc(v, w)− p(v)

(4.48)
< C(S).

The relation C(S′) < C(S) implicates that any optimal solution that contains w
also contains v.

Corollary 4.23. Let v, w ∈ V . If

p(v) > ~dpc(v, w) (4.50)

is satisfied and w is contained in an optimal solution, then v is also part of an optimal
solution.

The left-rooted prize-constrained distance can be exemplified by means of Fig-
ure 4.3. It holds that ~dpc(v0, v5) = 2, but ~dpc(v5, v0) = 3. A walk corresponding to
~dpc(v0, v5) is (v0, {v0, v1}, v1, {v1, v2}, v2, {v2, v1}, v1, {v1, v3}, v3, {v3, v4}, v4, {v4, v5},
v5). Corollary 4.23 implies that if v5 is part of an optimal solution, then there is an
optimal solution that contains v0. The converse does not necessarily hold. Indeed, v5

is not part of any optimal solution even though v0 is (together with v2 and v3).

As for dpc, computing ~dpc is NP-hard (which can be shown analogously). However,
one can devise a simple algorithm for finding upper bounds, which is very similar
to Algorithm 4.1. Let t0 ∈ T+

p . The subsequently sketched algorithm provides a set

of vertices T̄t0 such that ~dpc(t0, v) < p(t0) for all v ∈ T̄t0 . Initialize distpcr[v] := ∞
for all v ∈ V \ {t0}, and set distpcr[t0] := 0. Start Dijkstra’s algorithm with only t0
in the priority queue, but apply the following modifications: First, update vertex w
from vertex u if and only if both

distpcr[u] + c({u,w}) < p(t0) (4.51)

and
distpcr[w] > distpcr[u] + c({u,w})− p(w). (4.52)

In this case set distpcr[w] := distpcr[u] + c({u,w}) − p(w). No t ∈ Tp is allowed
to be reinserted into the priority queue after it has been removed. Finally, define
T̄t0 := {u ∈ V | distpcr[u] < p(t0)}. Note that t0 ∈ T̄t0 . This algorithm is basically
the same as Algorithm 4.1, except for using p(v) instead of c0 and using a slightly
different update scheme.

4.4. Changing the problem class 139

v0

p=2

v1

v2

p=2

v3

p=2

v4 v5

p=2

1.1

1.1

1

1

1

1 1

Figure 4.3: PCSTP instance. The prizes of the individual vertices are specified by p;
only non-zero prizes are shown.

Combining implications and reduced-costs

By using LP information, the above algorithm can be combined with Transforma-
tion 4.20 to obtain a criterion for potential terminals to be part of all optimal
solutions. First, note that if a separation algorithm or dual-ascent is applied, one
obtains reduced-costs for an LP relaxation of DCut that contains only a subset of
constraints (1.3). Second, observe that given an SAP I ′ obtained from IPC with
corresponding optimal solutions S′ and S, for ti ∈ Tp it holds that ti ∈ V (S) if and
only if (v′0, t

′
i) /∈ A′(S′). As a consequence one obtains

Proposition 4.24. Consider (V ′, A′, T ′, c′, r′) obtained by applying Transforma-
tion 4.20 on IPC . Let Ũ ⊆ {U ⊂ V ′ | r′ /∈ U,U ∩ T ′ 6= ∅} and let L̃ be the objective
value and c̃ the reduced-costs of an optimal solution to the LP:

min c′
T
x−M + p(T−p) (4.53)

x(δ−(U)) > 1 for all U ∈ Ũ , (4.54)

x(a) ∈ [0, 1] for all a ∈ A′. (4.55)

Moreover, let K be an upper bound on the cost of an optimal solution to IPC . Finally,
let ti ∈ T+

p and let T̄i ⊆ T+
p such that V (S) ∩ T̄i 6= ∅ ⇒ ti ∈ V (S) for each optimal

solution S to IPC . If ∑
j|tj∈T̄i

c̃((v′0, t
′
j)) + L̃ > K (4.56)

holds, then ti is part of all optimal solutions to IPC .

140 A generalization: The prize-collecting Steiner tree problem

If a ti ∈ T+
p has been shown to be part of all optimal solutions, by building T̄i

with Theorem 4.22 and using (4.56), Theorem 4.22 can again be applied—to directly
identify further tj ∈ Tp that are part of all optimal solutions by using the condition

p(tj) > ~dpc(tj , ti). Identifying such fixed terminals can considerably improve the
strength of the techniques described in Section 4.3, which usually leads to further
graph reductions and the fixing of additional terminals.

4.4.2 Rooting the problem: RPCSTP and SPG

Once at least one vertex has been shown to be part of at least one optimal solution,
the PCSTP can be reduced to a RPCSTP. Recall that we assume p(t) = 0 for all
t ∈ Tf . We introduce the following simple transformation.

Transformation 4.25 (RPCSTP to SAP).

Input: RPCSTP (V,E, Tf , c, p) and tp, tq ∈ Tf
Output: SAP (V ′, A′, T ′, c′, r′)

1. Set V ′ := V , A′ := {(v, w) ∈ V ′ × V ′ | {v, w} ∈ E}, r′ := tq.

2. Define c′ : A′ → Q>0 for all a = (v, w) ∈ A′ by

c′(a) =

{
c({v, w})− p(w) if w ∈ T−p ,
c({v, w}) otherwise.

3. For each i ∈ {1, ..., s+}:

(a) add node t′i to V ′,

(b) add arc (ti, t
′
i) of weight 0 to A′,

(c) add arc (tp, t
′
i) of weight p(ti) to A′.

4. Define set of terminals T ′ := {t′1, ..., t′s+} ∪ Tf .

5. Return (V ′, A′, T ′, c′, r′).

A comparison of Transformation 4.20 and Transformation 4.25 is illustrated in
Figure 4.4.

For an RPCSTP (V,E, Tf , c, p) we define the transformed rooted prize-collecting
cut (PrizeRCut) formulation, similar to PrizeCut, based on the SAP instance
(V ′, A′, T ′, c′, r′) obtained from Transformation 4.25:

Formulation 4.26. Transformed rooted prize-collecting cut (PrizeRCut)

min{c′Tx+ p(T−p) | x satisfies (1.3), (1.4), (x, y) satisfies (4.44), y satisfies (4.45)}.
(4.57)

4.4. Changing the problem class 141

p=2.5p=7

p=1 1.10.6

1.5

(a) PCSTP instance

r′

M M

00

00

7 2.5

1.1

0.1

0.6

1.5 0.5

(b) SAP instance obtained from
Transformation 4.20

r′
02.5

1.1

0.1

0.6

1.5 0.5

(c) SAP instance obtained
from Transformation 4.25

Figure 4.4: Illustration of a PCSTP instance (left) and the equivalent SAP obtained
by Transformation 4.20 (middle). Given the information that the potential terminal
with weight p = 7 is part of at least one optimal solution, Transformation 4.25 yields
the SAP depicted on the right. The terminals of the SAPs are drawn as squares and
the (two) potential terminals for the PCSTP are enlarged.

By PrizeRCut(IRPC , tp, tq) we denote the PrizeRCut formulation for an RPC-
STP IRPC when using (fixed) terminals tp, tq in Transformation 4.25. One might
wonder whether the choice of tp and tq in Transformation 4.25 can affect the value
of the LP relaxation vLP (PrizeRCut(IRPC , tp, tq)). However, this value does not
change, and even more:

Theorem 4.27. Let IRPC be an RPCSTP and let tp, tq, tp̃, tq̃ be any of its fixed
terminals. Define R(ti, tj) := PLP (PrizeRCut(IRPC , ti, tj)). It holds that:

projy(R(tp, tq)) = projy(R(tp̃, tq̃)). (4.58)

Proof. Let (V,E, Tf , c, p) be the RPCSTP IRPC and denote the SAP resulting from
applying Transformation 4.25 on (IRPC , tp, tq) by (V ′, A′, T ′, c′, tq). Set D = (V ′, A′).
Furthermore, let (x, y) be a feasible solution to the LP relaxation of PrizeRCut(IRPC , tp, tq)—
so (x, y) ∈ R(tp, tq). For ease of presentation, we will use the notation xij instead of
x((vi, vj)) for an arc (vi, vj). The theorem will be proved in two steps: first by fixing tq
and changing tp, and second by fixing tp and changing tq. Note that due to symmetry
reasons in both cases it is sufficient to show that one projection is contained in the
other.

1) projy(R(tp, tq)) = projy(R(tp̃, tq)) Let Ĩp̃ = (Ṽ , Ã, T̃ , c̃, tq) be the SAP resulting
from applying Transformation 4.25 on (IRPC , tp̃, tq), and set D̃ := (Ṽ , Ã); note that

Ṽ = V ′ and T̃ = T ′. Define x̃ ∈ [0, 1]Ã by x̃((tp̃, t
′
i)) := x((tp, t

′
i)) for i = 1, ..., z

(with the notation from Transformation 4.25) and by x̃ij := xij for all remaining arcs.
Suppose that there is a U ⊂ Ṽ with tq /∈ U and U ∩ T̃ 6= ∅ such that x̃(δ−

D̃
(U)) < 1.

From x(δ−D(U)) > 1 and the construction of x̃ it follows that tp̃ ∈ U—otherwise

142 A generalization: The prize-collecting Steiner tree problem

x̃(δ−
D̃

(U)) > x(δ−D(U)). For Uz := U \ {t′1, ..., t′z} one obtains

x(δ−D(Uz)) = x̃(δ−
D̃

(Uz)) 6 x̃(δ−
D̃

(U)) < 1. (4.59)

Because of tq /∈ Uz and Uz ∩ T̃ ⊇ {tp̃} 6= ∅, one obtains a contradiction from (4.59).
Therefore, x̃ satisfies (1.3) for the SAP Ĩp̃. Furthermore, ỹ defined by ỹ({vi, vj}) :=
x̃ij + x̃ji for all {vi, vj} ∈ E satisfies ỹ = y.

2) projy(R(tp, tq)) = projy(R(tp, tq̃)) Define the SAP Ĩq̃ := (V ′, A′, T ′, c′, tq̃) (the
result of transforming (IRPC , tp, tq̃)). As there is only one underlying directed graph
(namely D), in the following we write δ− instead of δ−D. Let f be a 1-unit flow from
tq to tq̃ such that fij 6 xij for all (vi, vj) ∈ A′. Define x̃ by x̃ij := xij + fji − fij
for all (vi, vj) ∈ A′. Let U ⊂ V ′ such that tq̃ /∈ U and U ∩ T ′ 6= ∅. If tq /∈ U , then
f(δ−(U)) = f(δ+(U)) and so x̃(δ−(U)) = x(δ−(U)) > 1. On the other hand, if
tq ∈ U , then f(δ+(U)) = f(δ−(U)) + 1, so

x̃(δ−(U)) > x(δ−(U)) + 1 > 1. (4.60)

Consequently, x̃ satisfies (1.3) for the SAP Ĩq̃. From xij +xji 6 1 for all (vi, vj) ∈ A′,
it follows that x̃ ∈ [0, 1]A

′
, and for the corresponding ỹ one verifies ỹ = y.

Consequently, if only the y variables are of interest, we write PrizeRCut(IRPC)
instead of PrizeRCut(IRPC , tp, tq). For the (heuristic) dual-ascent algorithm the
choice of tp and tq still matters, as it can change both lower bound and reduced-costs,
see Section 4.5.1.

Theorem 4.27 has also consequences for two well-known IP formulations for SPG
and NWSTP. Recall that for SPG a widely used formulation is the bidirected cut
formulation (Wong, 1984): Replace each edge by two anti-parallel arcs of the same
weight as the original edge, and consider the resulting problem as an SAP with an
arbitrary terminal as the root. Solve this SAP by Formulation 1.1. As a corollary of
Theorem 4.27 one easily obtains a result that was proved by Goemans and Myung
(1993) in a more involved way.

Corollary 4.28. The optimal LP value of the bidirected cut formulation for SPG
is independent of the choice of the root.

For NWSTP a similar formulation has proven effective in practice (Gamrath
et al., 2017; Leitner et al., 2018a): Transform the problem to SAP in the same way
as for SPG. Additionally, add the weight of each vertex to all its incoming arcs. Note
that when transforming an NWSTP to RPCSTP as described in Section 4.2.2, and
applying Transformation 4.25 to this RPCSTP, one obtains the same SAP as with the
procedure described above (given the same choice of the root). Thus, Theorem 4.27
directly yields the following, new, result.

Corollary 4.29. The optimal LP value of the bidirected cut formulation for NWSTP
is independent of the choice of the root.

4.5. Solving to optimality 143

From the definitions of Transformation 4.20 and 4.25 one can acknowledge that
switching from PrizeCut to PrizeRCut (if possible) does not deteriorate (and can
improve) the tightness of the LP relaxation; due to its importance we formally state
this observation in the following proposition; a proof is given in Appendix A.3.4.

Proposition 4.30. For IPC = (V,E, c, p) let T0 ⊆ Tp such that T0 ⊆ V (S) for at
least one optimal solution S to IPC . Let IT0

:= (V,E, T0, c, p) be an RPCSTP . With
RT0

:= PLP (PrizeRCut(IT0
)), R := PLP (PrizeCut(IPC)) it holds that

projy(RT0
) ⊆ projy(R). (4.61)

Moreover, the inequality

vLP (PrizeCut(IPC)) 6 vLP (PrizeRCut(IT0)) (4.62)

holds and can be strict.

Finally, by combining the reductions to RPCSTP and SAP with the reductions
techniques described in Section 4.3, it is sometimes possible to either eliminate or
fix each potential terminal. Hence the instance becomes an SPG, which allows us to
apply the more advanced SPG solution techniques introduced in Chapter 2.

4.5 Solving to optimality

In the following, the integration of the individual PCSTP techniques within an exact
solving approach will be described. Furthermore, the performance of the resulting
solver will be discussed. As before, the implementations are realized within the branch-
and-cut solver SCIP-Jack.

4.5.1 Interleaving the components within branch-and-cut

This section demonstrates the broad applicability of the PCSTP algorithms and
techniques introduced so far in a branch-and-cut framework. It also aims to highlight
the strong interrelation between the individual techniques.

As to IP formulations, for RPCSTP instances (including instances transformed
to RPCSTP) we use PrizeRCut. However, if the given instance could not be trans-
formed to RPCSTP during presolving, we use an IP formulation similar to the ESA+

formulation from Chapter 3.2.3—which requires fewer variables than PrizeCut. Still,
PrizeCut is being used for dual-ascent, and as such is a vital component within the
branch-and-cut framework.

Presolving We perform presolving in several rounds—as long as a predefined per-
centage of edges has been eliminated during the previous round. All PCSTP reduction
techniques described in this chapter are applied. We also employ a (significantly re-
stricted) adaptation of the extend reduction framework from Chapter 2.4. Because we
only use standard distances, these extended reduction techniques have a far smaller
impact than their SPG counterparts. During presolving we also try to transform any
PCSTP instance to RPCSTP or even SPG.

144 A generalization: The prize-collecting Steiner tree problem

Domain propagation During the separation phase, SCIP-Jack uses the reduced-
costs provided by the LP solver and the best known upper bound to perform variable
fixings, see Chapter 2.6. These variable fixings can often be translated into the deletion
or contraction of edges, and thus can allow for further PCSTP reductions. Therefore,
we also re-employ the reduction techniques for domain propagation (once a predefined
number of edges has been deleted by the reduced-cost criterion). Subsequently, we
translate the deletion of edges and the fixing of potential terminals into variable
fixings in the IP.

Dual heuristics Recall that the dual-ascent heuristic by Wong (1984) provides
a dual bound as well as reduced-costs. Based on our new graph transformations,
we use this dual heuristic in presolving (for reduced-cost based reduction tests), for
primal heuristics (to find a subgraph that contains a good feasible solution), and for
computing initial cuts. Whenever a problem has been transformed to RPCSTP, we
perform the dual-ascent heuristic on several SAPs resulting from different choices of
tp and tq, which usually changes the lower bound (and the reduced-costs) provided
by the heuristic.

Primal heuristics As to primal heuristics, we use adaptations of the MWCSP
primal heuristics described in Chapter 3.5.1. Several of these heuristics compute solu-
tions on newly built subgraphs (e.g. by merging feasible solutions). For such heuristics
we also employ the PCSTP reductions from this chapter. Additionally, we use an
adapted version of the SPG local-search heuristics from Uchoa and Werneck (2010),
shortly described in Section 2.5. For the PCSTP we consider all proper potential
terminals as key-vertices, and furthermore use cost-shifting (see Section 4.4.1) to take
the prizes of non-proper potential terminals into account.

LP and cutting-planes Also the LP kernel interacts with the remaining compo-
nents: By means of the prize-constrained distances and upper bounds provided by
the heuristics it is usually possible to switch to the PrizeRCut formulation. In turn,
the reduced-costs and lower bound provided by an improved LP solution can be used
to reduce the problem size—which can even enable further prize-constrained walk
based reductions. As in the previous chapters, we use a specialized maximum-flow
algorithm for the separation of the directed cut constraints (1.3). Additionally, we
separate constraints for TransRCut of the form

x(δ−(v)) + x((tp, t
′
i)) 6 1 ti ∈ T+

p \ Tf , v ∈ {u ∈ V | ~dpc(ti, u) < p(ti)},

with tp and t′i as defined in Transformation 4.25. The constraints represent the

implication that v ∈ V (S)⇒ t ∈ V (S) for any optimal solution S if ~dpc(t, v) < p(t).
Corresponding constraints are separated for TransCut.

Restart In the course of the solution process one can regularly either delete or fix
each potential terminal—through the combination of presolving, primal heuristics, the
left-rooted prize-constrained distance, and graph transformation and LP methods. In

4.5. Solving to optimality 145

such a case one might restart the solution process and use the SPG solver described in
Chapter 2. If a PCSTP instance is transformed to SPG at the root node of the branch-
and-bound tree, we run aggressive SPG presolving and translate it into variable
fixings in the IP formulation. In the remainder of the solution process SPG specific
primal heuristics and reduction techniques are used, but the remaining algorithmic
components are left unchanged. If all potential terminals are fixed already during
presolving, a full restart is initiated, including full SPG-specific presolving, and the
instance is handled entirely as an SPG.

Branching Just as for SPG, branching is performed on vertices. In the case of
PCSTP or RPCSTP, we make the vertex to branch on a fixed terminal in one branch-
and-bound child node, and remove it in the sibling node. The implications from the
left-rooted prize-constrained distance often set the state for further graph changes,
resulting in (local) variable fixings.

4.5.2 Computational results

For details on the hardware used in this thesis see Chapter 1.2.1. To the best of our
knowledge, the two other fastest PCSTP solvers are mozartballs from Fischetti et al.
(2017) (the winner of the exact PCSTP categories at the 11th DIMACS Challenge),
and dapcstp (Leitner et al., 2018a). While no solver dominates on all benchmarks, the
branch-and-bound based dapcstp is very competitive, and on several test-sets orders
of magnitude faster than mozartballs—it is even faster than state-of-the-art heuristic
methods, e.g. from Fu and Hao (2017a). Thus, dapcstp, which is publicly available19,
will in the following be used for comparison. Only single-thread mode is used (also
because dapcstp does not support multiple threads).

For the following experiments 12 well-known benchmark test-sets are used, as
detailed in Table 4.1. ACTMOD and HIV contain originally MWCSP and NWSTP
instances, which have been transformed to PCSTP by using the methods described
in Chapter 4.2.2.

Presolving results

We restrict the analysis of the impact of the individual algorithmic components to
presolving. The reason for this decision is the strong interaction of the individual
components, which makes the individual impact difficult to measure. For example,
deactivating the primal heuristics also has a large effect on the reduction methods,
since heuristics are heavily used for the bound-based reductions. Vice-versa, reduction
techniques are a central ingredient of several primal heuristics. The reader nevertheless
interested in such results is referred to Rehfeldt and Koch (2020).

Presolving can, arguably, be considered the most independent component within
our branch-and-cut algorithm, not least because it already solves most instances to
optimality. Recall that during presolving we not only make use reduction methods,
but also of primal and dual heuristics, as well as of the new graph transformations

19 https://github.com/mluipersbeck/dapcstp

https://github.com/mluipersbeck/dapcstp

146 A generalization: The prize-collecting Steiner tree problem

Name # |V | |E| Status Description

JMP 34 100 - 400 315 - 1576 solved Sparse instances of varying structure,
introduced in Johnson et al. (2000).

Cologne 29 741 - 1810 6332 - 16794 solved Instances from fiber optic network
design for German cities (Ljubic, 2004).

CRR 80 500 - 1000 625 - 25000 solved Mostly sparse instances, based on
test-sets from SteinLib (Ljubic, 2004).

ACTMOD 8 2034 - 5226 3335 - 93394 solved Instances from integrative biological
network analysis (Dittrich et al., 2008).

RANDOM 68 200 - 14000 1575 - 112369 solved Randomly generated instances
published in Biazzo et al. (2012).

E 40 2500 3125 - 62500 solved Mostly sparse instances originally for
SPG, introduced in Ljubic (2004).

HANDS 20 39600 - 42500 78704 - 84475 solved
 Images of hand-written text from

signal processing (DIMACS, 2015).
HANDB 28 158400 - 169800 315808 - 338551 unsolved

PUCNU 18 64 - 4096 192 - 28512 unsolved Instances derived from PUC test-set,
introduced at 11th DIMACS Challenge.

H2 14 64 - 4096 192 - 24576 unsolved Hard instances based on hypercubes,
introduced at 11th DIMACS Challenge.

HIV 2 386 - 205717 1477 - 2466001 unsolved HIV mutation networks,
introduced at 11th DIMACS Challenge.

MA 20 1000000 10000000 unsolved Random instances with Tp = V ,
introduced by Sun et al. (2019).

Table 4.1: Details on PCSTP tests sets.

(for applying dual-ascent). Table 4.2 shows the arithmetic mean of the percentage of
vertices and edges in the presolved problems. Further, we report the shifted geometric
mean of the run-time needed per test-set, with shift s = 1. It can be seen that the size
of most instances is drastically reduced. Apart from PUCNU and H2, the average size
of both the number of vertices and edges is reduced by more than 95 percent on all
test-sets. PUCNU and H2 were indeed designed to defy reduction techniques. Against
this backdrop, especially on PUCNU the performance of the reduction algorithms is
still notable.

While we do not provide detailed results, we note that the new PCSTP presolving
techniques are significantly stronger than previous results such as for example Ljubic
et al. (2006); Uchoa (2006). The otherwise empirically strongest reduction techniques
have been recently introduced in Leitner et al. (2018a) as part of the dapcstp solver
which we discuss below. Especially the new prize-constrained distance based tech-
niques developed in this article have in several cases a drastic impact. One example
is the hardest instance from the E set, E18-B. When exchanging just the prize-
constrained edge elimination method by that described in Uchoa (2006), the number
of remaining edges roughly doubles (to around 11 thousand). Similarly, the size of
several of the hardest MA instances is almost halved when using the prize-constrained
distance methods instead of their predecessors.

Branch-and-cut results, and comparisons

This subsection provides computational results of the entire branch-and-cut frame-
work developed for this chapter. Table 4.3 provides aggregated results of the ex-
periments with a time limit of two hours for test-sets that contain only instances

4.5. Solving to optimality 147

average reduced problem size

Test-set vertices[%] edges[%] mean reduction time [s]

JMP 0.6 0.0 0.0
Cologne 0.0 0.0 0.0
ACTMOD 0.4 0.1 0.2
CRR 1.5 0.1 0.0
HANDS 0.0 0.0 0.4
RANDOM 1.2 0.3 0.4
E 4.5 0.5 0.3
HANDB 3.0 3.0 2.9
PUCNU 72.2 62.3 1.7
H2 91.2 89.9 2.4
HIV 0.0 0.0 29.6
MA 3.3 3.3 1456.3

Table 4.2: Average problem sizes after application of reduction algorithms.

with less than a million edges, and a time limit of 24 hours for the remaining (two)
sets. We have excluded the well-known benchmark sets Cologne (Ljubic, 2004) and
JMP (Johnson et al., 2000), because all contained instances can be solved in less than
a second by both dapcstp and SCIP-Jack. We note, however, that SCIP-Jack is
faster on both benchmarks sets—with respect to the mean as well as to the maximum
time.

The second column of Table 4.3 shows the number of instances in the test-set.
Columns three and four show the number of solved instance by dapcstp, and SCIP-
Jack, respectively. The next two columns show the shifted geometric mean (see
Section 1.2.2) with shift s = 1 of the run-time taken by the respective solvers: First,
dapcstp, second, SCIP-Jack. The next column shows the speed-up obtained by SCIP-
Jack. The next two columns provide the maximum run-time, the last column the
speed-up of SCIP-Jack with respect to the maximum time.

solved mean time (sh. geo. mean) maximum time

Test-set # dapcstp S.-J. dapcstp [s] S.-J. [s] speedup dapcstp [s] S.-J. [s] speedup

CRR 80 80 80 0.2 0.0 – 4.9 0.7 7.0
ACTMOD 8 8 8 0.8 0.2 4.0 3.3 0.8 4.1
RANDOM 68 68 68 0.8 0.4 2.0 78.6 16.4 4.8
HANDS 20 20 20 2.5 0.4 6.2 54.1 1.5 36.1
E 40 37 40 2.0 0.4 5.0 >7200 22.5 >320.0
HANDB 28 25 26 32.9 5.0 6.6 >7200 >7200 1.0
PUCNU 18 7 13 441.7 67.6 6.5 >7200 >7200 1.0
H2 14 5 5 525.5 897.6 0.6 >7200 >7200 1.0

HIV 2 1 2 293.0 29.8 9.8 >86400 950.7 >90.9
MA 20 0 16 86400 9296.0 9.3 >86400 >86400 1.0

Table 4.3: Computational comparison of the solvers dapcstp (Leitner et al., 2018a)
and SCIP-Jack.

SCIP-Jack is on all but one test-sets faster than dapcstp. Furthermore, it solves
28 more instances than dapcstp to optimality. The first three test-sets can be solved

148 A generalization: The prize-collecting Steiner tree problem

within seconds by both solvers, with dapcstp being significantly slower than SCIP-
Jack both for the mean and maximum time. On the next two sets, HANDS and
RANDOM, SCIP-Jack is again faster, especially with respect to the maximum
time—being up to 33 times faster. For the next four test-sets, the new solver again
consistently dominates, with the exception of test-set H2, where dapcstp is faster with
respect to the shifted geometric mean. A striking example is the PUCNU test-set,
where the new solver can solve almost twice as many instances.

On HIV, the new solver is able so solve the hiv-1 instance, which contains more
than two million edges, to optimality in roughly 15 minutes. The best previously
known result from the literature was achieved in a 72 hours run on a large-memory
machine, see Gamrath et al. (2017). For the MA instances, with 10 million edges
each, dapcstp fails to solve any instance. In contrast, the new solver can solve all but
four of them, some even in less than one hour. To the best of the authors’ knowledge,
these are by far the largest PCSTP instances that have been solved to optimality in
the literature to date.

Finally, we remark that the heavy machinery used in this chapter can sometimes
be a disadvantage. Much effort is spent at the root node, and also within each branch-
and-bound node many cutting rounds and aggressive propagation are applied. In
contrast, the more light-weight, dapcstp searches the branch-and-bound tree far more
aggressively. Still, dual-ascent based bounds (heavily utilized by dapcstp) are often
remarkably tight. On the highly symmetric H2 instances, which are unfavorable for
LP based algorithms, dapcstp is thus competitive with our solver.

Newly solved instances

Finally, we report results on previously unsolved instances from the 11th DIMACS
Challenge. The results were obtained with a time limit of 24 hours. We used two
different random seeds, which gave slightly better results for three instances; only the
best bounds are reported here. All improved instances are listed in Table 4.4, with
the first column giving the name of the instance, the second its primal-dual gap, the
third the improved found bound, and the fourth the previously best known one. The
previously best known solutions are from DIMACS (2015); Braunstein and Muntoni
(2016); Fischetti et al. (2017); Fu and Hao (2017a); Gamrath et al. (2017); Leitner
et al. (2018a), respectively. We note that the cc and handb instances, which have
unit edge weights, can be transformed to MWCSP. The new results achieved for the
MWCSP versions of these instances in the previous chapter are not considered here.

Five DIMACS instances can be solved for the first time to optimality, three
of them, hiv-1, cc10-2nu, and hc9u2, within the standard time limit of two hours.
Furthermore, the new solver improves the best known upper bounds for another 11
instances, which comprises almost half of the still unsolved PCSTP instances from
the 11th DIMACS Challenge.

4.6 Conclusion

This chapter has introduced a number of techniques and algorithms that aim at faster
optimal solution of PCSTP. Based on the newly shown fixed-parameter tractability of

4.6. Conclusion 149

Name gap [%] new UB previous UB
hiv-1 opt 656955.33150 656970.94
handbd04 opt 3202.18574 3202.710021
cc7-3nu opt 270 271
cc10-2nu opt 167 168
hc9u2 opt 190 190
handbd13 0.0 13.18549 13.19699
handbi13 0.1 4.24964 4.251
cc11-2nu 0.8 303 304
cc12-2nu 0.7 563 565
hc8p 1.2 15204 15206
hc9p 1.1 3015 3043
hc9p2 1.4 30228 30242
hc10p 1.4 59778 59866
hc10p2 1.4 59752 59930
hc11p 1.6 118729 119191
hc11p2 1.7 118869 119236

Table 4.4: Improvements on unsolved DIMACS instances.

PCSTP with respect to the number of proper potential terminals, a key element has
been the distinction of these vertices within most new algorithms. As an interesting
byproduct, we have also demonstrated that any PCSTP can be transformed to an
SPG by adding |Tp|+1 terminals. Besides the theoretical analyses of the new methods,
a central result of this chapter is the integration of the various methods into an exact
branch-and-cut framework. The resulting solver significantly pushes the boundaries
of computational tractability for the PCSTP, being able to solve instances with up
to 10 million edges—over 30 times larger than any PCSTP instance solved in the
literature so far.

A computationally promising route for further research would be to design and
implement a PCSTP version of the SPG extended reduction paradigm described
in Chapter 2. Also, implementing the new FPT dynamic programming algorithm
together with pruning rules (similarly to the FPT algorithm in Chapter 2) could
significantly accelerate the solution of PCSTP instances with few proper potential
terminals. Additionally, further improving the LP relaxation seems to hold a high
potential, both from a computational and theoretical point of view.

Chapter 5

Further related problems

The algorithmic parts of the previous three chapters were dominated by highly
intricate techniques tailored to individual, albeit certainly related, problems. A central
aim was to demonstrate how far the boundaries of computational tractability for
each of these problems can be pushed. While there are many commonalities between
the three solution approaches, achieving this aim required many problem-specific
techniques.

This chapter moves into a different direction. It shows how the algorithmic frame-
work established so far can be used to efficiently solve a considerable number of
further related problem with little algorithmic and implementation effort. In this way,
this chapter demonstrates the versatility of the algorithmic framework described so
far, and its applicability beyond individual problems. This chapter also moves away
from the more theoretical aspects prominently featured in the previous chapters.
Instead, the focus will be on the extension of previously introduced algorithms, and
on computational results.

All problem classes covered in this chapter are solved within the exact branch-
and-cut framework developed so far. For all problem classes the following algorithmic
components are used. First, by means of transformations, we use some variant of
Formulation 1.1, usually strengthened by the flow-balance constraints (2.9) and by
the constraints (2.81). We use dual-ascent for computing the initial cuts, and use
the maximum-flow algorithm described in Section 6.2.4 for further separation. Ad-
ditionally, we always apply reduced-costs based domain propagation. As to primal
heuristics, we use a simplified version of the recombine-and-reduce heuristic intro-
duced in Section 2.5.2, and some (problem-specific) variant of the shortest-path
heuristic introduced in Section 2.5.1. For averaging the run-times and the numbers
of branch-and-bound nodes in this chapter, we use the shifted geometric mean with
shift s = 1. Furthermore, we set a time limit of two hours for all runs.

151

152 Further related problems

5.1 The partial and full terminal Steiner tree problems

The partial terminal Steiner tree problem (PTSTP) is a generalization of the SPG.
Let G = (V,E) be an undirected, connected graph with costs c : E → Q>0 and a set
T ⊆ V of terminals. Further, let TL ⊆ T be the set of partial terminals. A partial
terminal Steiner tree is a tree S ⊆ G with T ⊆ V (S) such that all vertices in TL
are leaves of S. The PTSTP asks for a partial Steiner tree S such that c(E(S)) is
minimized. Note that unlike normal Steiner trees, no partial Steiner tree might exist
for a given instance. The PTSTP is for example discussed in Chen (2016) or Hsieh
and Gao (2007), both of which include complexity and approximation results. The
special case TL = T is known as the full Steiner tree problem (FSTP), see e.g. Lu
et al. (2003). FSTP is an important subproblem for both theoretical and practical
results on SPG and geometric Steiner tree problems, see also Section 5.4.

A generalization of PTSTP is the node-weighted partial terminal Steiner tree
problem (NWPTSTP), which additionally provides vertex weights p : V → Q>0. The
NWPTSTP asks for a partial Steiner tree S such that c(E(S))+p(V (S)) is minimized.
Applications of the NWPTSTP can for example be found in network design, see Sun
et al. (2020).

Note that any SPG can be (linearly) reduced to both PTSTP (by setting TL := ∅)
and FSTP (by adding |T | additional edges and nodes), which shows the latter two
problems are NP-hard as well. Also, many results for exact PTSTP solution are the
same as for SPG, as can be seen by the simple new transformation described below.

Algorithms

PTSTP (and thus also FSTP) can be readily reduced to SPG as follows. We assume
|T | > 2, otherwise the problem can be solved easily. First, remove all edges {v, w}
with v, w ∈ TL. Second, define M := c(E), and add M to the weight of all edges
incident to a partial terminal.

NWPTSTP can be transformed to SAP by the following simple (new) procedure.
Let I = (V,E, T, TL, c, p) be a feasible NWPTSTP—note that the feasibility of any
NWPTSTP instance can be checked efficiently (Sun et al., 2020). As before, we
assume |T | > 2. Let (V,A) be the bidirected graph corresponding to (V,E). First, we
assume that T 6= TL. Choose any r ∈ T \TL. Let A′ := A\{(t, v) ∈ A | t ∈ TL \ {r}}.
Further, remove all arcs in δ−(r) from A′. Next, define c′ : A′ → Q>0 by c′((v, w)) :=
c((v, w)) + p(w) for all (v, w) ∈ A′. The SAP I ′ := (V,A′, T, c′, r) is feasible, and any
optimal solution to I ′ can be readily transformed to an optimal solution to I—by
taking the undirected equivalent of each arc contained in the optimal solution to I ′.
If T = TL, choose any r ∈ TL and proceed as before. Finally, increase the weight c′(a)
for all a ∈ δ+(r) by a sufficiently large constant.

Within SCIP-Jack, we simply apply the above transformations to any PTSTP
or NWPTSTP instance, and treat the resulting problem as a customary SPG or SAP.

5.1. The partial and full terminal Steiner tree problems 153

Computational results

In Table 5.1 we provide aggregated results on 6000 NWPTSTP instances from Sun
et al. (2020). The instances have between 127 and 810 vertices, and between 916 and
6076 edges. Because of the large number of instances we do not provide instance-wise
computational results in the appendix.

Table 5.1: Computational results for NWPTSTP instances.

Test-set # instances # solved mean time [s] maximum time [s]

IND 6000 6000 0.0 0.1

All instances from Table 5.1 can be solved in less than 0.1 seconds. We also note
that for these instances SCIP-Jack is (orders of magnitude) faster than specialized
NWPTSTP heuristics—and, being exact, also the solution quality is consistently
better. See Sun et al. (2020) for more details.

154 Further related problems

5.2 The Steiner arborescence problem

As the Steiner arborescence problem (SAP) was already introduced in Section 1.1.3,
we do not provide a definition here. Since any SPG can be solved as a (bidirected) SAP,
the SAP is NP-hard as well. Further theoretical results, concerning complexity and
approximability, can be found in Charikar et al. (1998); Halperin and Krauthgamer
(2003). An overview of SAP heuristics and partly also exact algorithms is given
in Siebert et al. (2020b). In contrast to the SPG, we allow arcs of cost 0 for the SAP,
since such arcs cannot be contracted without possibly losing all optimal solutions.

Algorithms

For primal heuristics, we use an adaptation of the shortest-path SPG heuristic intro-
duced in Section 2.5.1. Similarly, the arc weights used by the heuristic are modified
according to the current LP solution during branch-and-bound. Furthermore, we run
the shortest-path heuristic on the subgraph corresponding to the arcs of reduced-cost
0 obtained from dual-ascent.

Concerning reduction techniques, we note that most of the SPG methods cannot
easily be extended to SAP. Most of the SAP reductions that we apply were already
present in the SCIP-Jack version developed prior to this thesis. However, these
are rather simple. Importantly, for this thesis we additionally apply the dual-ascent
reduction method, see Section 2.3.2.

Computational results

Name # Instances |V | |E| Status Description

Gene 10 335-602 456-858 solved
 Sparse, non-bidirectional, instances with c ≡ 1.

From a genetics application (Johnston et al., 2000).
Gene2002 9 297-484 396-706 solved

NET 25 77120-225739 116357-321169 unsolved Instances from telecommunication network design.

Table 5.2: Details on SAP benchmark instances.

The SAP benchmarks instances described in the literature are unfortunately
rather small. An overview on these instances is provided in the first two rows of
Table 5.2. Additionally, we use 25 real-world, but non-public, network design SAP
instances, obtained from one of the largest German telecommunication companies
(which applies SCIP-Jack to solve such problems). Statistics of these instances are
given in the last row of Table 5.2.

SCIP-Jack is able to solve all instances of the two smaller test-sets within less
than 0.1 seconds. All these instances are solved already during presolving. For the
much larger instances from the NET test-set SCIP-Jack takes considerably longer,
but is still able to solve all instances within half an hour. We note that several of the
largest NET instances cannot be solved by SCIP-Jack within the two hours time
limit without the SAP enhancements implemented as part of this thesis.

5.2. The Steiner arborescence problem 155

Table 5.3: Computational results for the SAP instances.

Test-set # instances # solved mean time [s] maximum time [s]

Gene 10 10 0.0 0.0
Gene2002 9 9 0.0 0.0
NET 25 25 9.4 1486.8

As to other results from the literature, Siebert et al. (2020b) show that their
heuristic, dynamic programming based algorithm outperforms several other algo-
rithms from Watel and Weisser (2016). Unfortunately, the solver from Siebert et al.
(2020b) is not publicly available, and no explicit run times are given in Siebert et al.
(2020b). However, the solver requires the computation of all-to-all shortest paths,
which usually is already drastically slower than the entire run-time of our solver. Due
to this prohibitively large run-time, the authors in Siebert et al. (2020b) confine their
computational experiments to instances with at most 3500 nodes, whereas we can
solve instances with more than 200 000 nodes within minutes to proven optimality.

156 Further related problems

5.3 The node weighted Steiner tree problem

The node-weighted Steiner tree problem (NWSTP) is a generalization of the SPG that
also includes (non-negative) vertex weights. Given an undirected graph G = (V,E),
vertex weights p : V → Q>0, edge costs c : E → Q>0, and a set T ⊆ V of terminals,
the objective is to find a tree S with T ⊆ V (S) that minimizes:∑

e∈E(S)

c(e) +
∑

v∈V (S)

p(v).

The NWSTP has been the subject of several publications, see e.g. Buchanan et al.
(2018); Guha and Khuller (1999); Moss and Rabani (2001), although most focus
on theoretical aspects. Besides SCIP-Jack, the best alternative NWSTP solver is
described in Leitner et al. (2018a). As we have shown in Section 4.2.2, any NWSTP
can be transformed to an PCSTP by only changing its vertex weights. Computa-
tionally, we simply use this transformation for any NWSTP instance and treat the
resulting problem as a normal PCSTP. Computational results for NWSTP are given
in Section 4.5, as part of the PCSTP evaluation. It is also shown that SCIP-Jack
considerably outperforms the solver from Leitner et al. (2018a).

5.4. The Euclidean and the rectilinear Steiner minimum tree problems 157

5.4 The Euclidean and the rectilinear Steiner minimum tree
problems

The rectilinear Steiner minimum tree problem (RMSTP) is defined as follows: Given
k ∈ N points in the Euclidean plane, find a shortest tree consisting just of vertical and
horizontal line segments and containing all k points. The RMSTP can be seen as a
variant of the Euclidean Steiner minimum tree problem (EMSTP), see Section 2.1.1:
Instead of using the L2 norm, the RMSTP uses the L1 norm for computing distances.

The RMSTP is NP-hard, as for example proven in Garey and Johnson (1977)20.
The RMSTP is one of the best known Steiner tree relatives, and has been the subject
of various research articles and books, see e.g. Brazil and Zachariasen (2015); Emanet
(2010); Hwang et al. (1992). For recent complexity results see Cambazard and Catusse
(2018); Fomin et al. (2020). For practical exact algorithms see Juhl et al. (2018). A
typical RMSTP application is VLSI design, see Brazil and Zachariasen (2015).

A generalization of the RMSTP to the d-dimensional case, with natural d > 2,
has also been described in the literature. Real-world applications in up to eight
dimensions can for example be found in cancer research, see Chowdhury et al. (2013).
Another variant of the RMSTP is the obstacle-avoiding rectilinear Steiner minimum
tree problem (OARMSTP), see e.g. Brazil and Zachariasen (2015). This problems
includes the additional condition that the minimum-length rectilinear tree does not
pass through the interior of specified obstacles, which are axis-aligned rectangles. Such
obstacles occur for example in VLSI design.

Algorithms

Hanan (1966) proves that the RMSTP can be reduced to the Hanan grid, which is
obtained by constructing vertical and horizontal line segments through each given
point of the RMSTP. In this way, the RMSTP can be reduced to an SPG. In SCIP-
Jack, both this construction and its multi-dimensional generalization, see Snyder
(1992), is used by default to transform any RMSTP to SPG.

For two-dimensional RMSTP an empirically much stronger solution approach can
be obtained by using full Steiner trees (FSTs)—which were described in Section 5.1.
We delineate the approach in the following. For a detailed description see Warme et al.
(2000). In the first phase, called generation, one creates a set of FSTs that is guaranteed
to contain a minimum Steiner tree. In the second phase, called concatenation, one
selects a subset of the generated FSTs that induces a minimum Steiner tree. Warme
(1998) introduced the seminal idea to reduce the FST concatenation to finding a
minimum spanning tree in a hypergraph whose vertices are the terminals and whose
(hyper-)edges correspond to the generated FSTs. This idea forms the basis of many
theoretical results for RMSTP and SPG, see e.g. Byrka et al. (2013). Also, this
hypergraph approach is used in the well-known RMSTP solver GeoSteiner, see Juhl
et al. (2018). A similar approach can be used for solving EMSTP (Juhl et al., 2018).

A simpler method (for both RMSTP and EMSTP) is suggested by Polzin and
Daneshmand (2003): By taking the union of the edge sets of the FSTs generated in

20 Note that this reference is an article, and not the Garey and Johnson.

158 Further related problems

the first phase, the FST concatenation can be reduced to an SPG. This approach was
shown to be faster than (a previous version of) GeoSteiner when the SPG solver
developed by the authors of Polzin and Daneshmand (2003) was used. Recall that
we showed in Chapter 2 that the solver by Polzin and Daneshmand (2003) is out-
performed by SCIP-Jack. Polzin and Daneshmand (2003) use the FST generation
provided by GeoSteiner. Note, however, that the concatenation phase usually takes
much longer than the FST generation for large instances. In the following computa-
tional results we will compare SCIP-Jack with the latest version of GeoSteiner
by using the FST union method described above.

Computational results

The current version 5.1. of GeoSteiner has seen many improvements compared to
its predecessor, see Juhl et al. (2018) for details, Furthermore, unlike its predecessor,
GeoSteiner 5.1. is freely available. Just as SCIP-Jack, GeoSteiner provides an
interface to CPLEX for solving LPs during branch-and-cut.

As we have already given various results for RMSTP, and OARMSTP instances
in Section 2.7.3, we concentrate on EMSTP in the following. We note however,
that SCIP-Jack significantly outperforms GeoSteiner on the just mentioned
RMSTP and OARMSTP test-sets. In Table 5.4 we give results for Euclidean in-
stances from Juhl et al. (2018) with 25 thousand (EST-25k), 50 thousand (EST-
50k), and 100 thousand (EST-100k) points in the plane. For all these problems, the
FSTs have been generated by GeoSteiner. For EST-25k the mean and maximum
times of SCIP-Jack are between one and two orders of magnitude faster those of
GeoSteiner. Moreover, 7 of the 15 instances from EST-50k are solved for the first
time to optimality—in at most 196 seconds. On the other hand, GeoSteiner cannot
solve these instances even after seven days of computation (Juhl et al., 2018). For
EST-100k, GeoSteiner even leaves 12 of the 15 instances unsolved after one week of
computation. In contrast, we solve all these instances (for the first time) to optimality
in less than 15 minutes.

Unfortunately, Polzin and Vahdati-Daneshmand (2014) do not report results for
any of these instances. However, the solver by Pajor et al. (2017), which won the SPG
heuristics category at the 11th DIMACS Challenge, does not reach the upper bounds
from GeoSteiner on any of the EST-25k, EST-50k, and EST-100k instances.

Test-set # instances # solved mean time [s] maximum time [s]

ESMT-R25 15 15 43.2 54.6
ESMT-R50 15 15 128.2 196.5
ESMT-R100 15 15 477.9 729.7

Table 5.4: Results for Euclidean Steiner tree instances.

5.5. The degree constrained Steiner tree problem 159

5.5 The degree constrained Steiner tree problem

The degree-constrained Steiner tree problem (DCSTP) is a generalization of SPG
with additional degree constraints: One is given an undirected graph G = (V,E), a
set of terminals T ⊆ V , edge costs c : E → Q>0, and a function b : V → N. The
objective of the DCSTP is to find a Steiner tree S ⊆ G that satisfies for all v ∈ V (S)

δS(v) 6 b(v), (5.1)

and minimizes c(E(S)).
A comprehensive discussion of the DCSTP, including its applications in biology,

can be found in Liers et al. (2016).

Algorithms

We use a variation of the shortest-path heuristic that also takes the degree constraints
into account. For example, the heuristic checks before each extension of the current
solution whether any degree constraint would be violated. While the previously
discussed reduction techniques cannot be applied for the DCSTP, it is still possible to
use the dual-ascent method (while ignoring the additional constraints), as it provides
a feasible lower bound and valid reduced costs. We note, however, that small degree
constraints can considerably impede the (empirical) strength of both primal and dual
algorithms used for DCSTP in SCIP-Jack.

Computational results

Results on the (real-world) DCSTP instances from the 11th DIMACS Challenge can
be found in Table 5.5. These instances have up to 832 vertices and 345 696 edges—so
they are quite dense. The second column of Table 5.5 lists the number of instances
in the test-set, the third column states the number of instances solved to optimality
within the time limit. The next two columns consider only instances that could be
solved to optimality. We report the shifted geometric mean of the numbers of branch-
and-bound nodes, and of the run time. The final two columns give results for all
instances that could not be solved to optimality within the time limit. First, the
mean number of branch-and-bound nodes is given, second the arithmetic mean of
the optimality gaps.

Other results for those instances are given in Liers et al. (2016) and Fischetti et al.
(2017). Compared to the specialized solver by Liers et al. (2016), SCIP-Jack solves
several more instances to optimality. On the instances that can be solved by Liers
et al. (2016), SCIP-Jack is an order of magnitude or more faster. The machine used
by Liers et al. (2016) is described as an Opteron processor with 64 GB RAM and 12
cores. Unfortunately, no further details are given. We note that this processor type
has a clock rate between 1.4 and 3.5 GHz. However, any 12-core Opteron processor
generation has at least 2.4 GHz—compared to the 3.4 GHz of our machine. Compared
to the solver described in Fischetti et al. (2017), SCIP-Jack is slightly faster with
respect to the shifted geometric mean (we use the DIMACS benchmark score to
compensate for the different machine in Fischetti et al. (2017)). Fischetti et al. (2017)

160 Further related problems

solves 12 instances within one hour, whereas SCIP-Jack solves 14 in the same time.
Also, the average gap is much smaller for SCIP-Jack on the unsolved instances: it
is less than 50% of that reported by Fischetti et al. (2017), even when we exclude
the instances for which Fischetti et al. (2017) does not find a primal bound. Weak
primal bounds are also responsible for the relatively large number of instances left
unsolved by SCIP-Jack. Thus, further development for DCSTP should concentrate
on better primal heuristics. Finally, we note that the instance TF105897-t3 is solved
for first time to optimality.

optimal timeout

Test-set # # solved mean time [s] mean nodes mean nodes ∅ gap [%]

DCST-TreeFam 20 14 27.5 266.0 1866.2 31.1

Table 5.5: Computational results for DCSTP instances

5.6. The maximum-weight connected subgraph problem with budget 161

5.6 The maximum-weight connected subgraph problem with
budget

A close relative of the MWCSP is the maximum-weight connected subgraph problem
with budgets (MWCSPB), see e.g. Backes et al. (2011). Compared to the MWCSP, this
problem additionally provides vertex costs c : V 7→ Q>0 and a budget B ∈ Q>0. The
MWCSPB requires a connected subgraph S ⊆ G with c(V (S)) 6 B that maximizes
p(V (S). Both the rooted and non-rooted MWCSPB are described in the literature.
In the rooted case we are additionally given a non-empty set Tf ⊆ V , which needs to
be contained in any feasible solution. We concentrate on this rooted variant in the
following. This section describes joint work with Henriette Franz, who made major
contributions to the underlying work.

SCIP-Jack includes only a specialized heuristic for the MWCSPB, and otherwise
treats the problem as an SAP with an additional constraint. Since this heuristic has
been implemented by Henriette Franz—as part of her master thesis—we do not
provide much information here, but simply refer to Franz (2019). For computational
results we also refer to Franz (2019). Here we merely provide some remarks on
reduction techniques for the MWCSPB.

A simple, but often powerful reduction technique can be devised by using an
RMWCSP I ′ as a subproblem. Let I ′ := (G,Tf , p

′) where p′ is defined as p′(v) :=
−c(v) for all v ∈ V \ Tf and p′(v) := 0 otherwise. Let v0 ∈ V \ Tf be an arbitrary
node and add v0 to Tf . Let S′ be an optimal solution to I ′. If −w(S′) > B, then
v0 cannot be part of any solution to the original MWCSPB instance. A similar
criterion can be formulated for edges. The approach can be sped-up by first checking
whether the solution found by an MWCSP heuristic satisfies the budget constraint.
In this case, we do not need to consider the exact solution. This method might
appear computationally prohibitive in practice. However, this is not the case, by
virtue of the powerful MWCSP solver developed in Chapter 3. Also, this reduction
method is naturally parallelizable. Indeed, this reduction technique is shown to be
highly effective in practice (Franz, 2019). However, is has not yet been included into
SCIP-Jack.

Another possible approach for eliminating a vertex (or edge) is to show that for
any connected subgraph that contains this vertex there is another connected subgraph
that does not and moreover is of no smaller weight and no higher cost. Again, we
stress that no such techniques have been implemented into SCIP-Jack. For example,
using the concept of dominating connected sets introduced in Chapter 3, we obtain
the following result. As before, we define Tp := {v ∈ V | p(v) > 0} \ Tf .

Proposition 5.1. Let U ⊆ V \ (Tf ∪ Tp) and X ⊆ V \ U such that (X,E[X]) is
connected and{

v ∈ V \ U | ∃{v, w} ∈ E,w ∈ U
}
⊆
{
v ∈ V | ∃{v, w} ∈ E, v ∈ X

}
∪X.

If ∑
u∈U

p(u) 6
∑

u∈X:p(u)<0

p(u),

162 Further related problems

and ∑
u∈U

c(u) >
∑
u∈X

c(u),

then there is an optimal solution S such that U * V (S).

As special cases of Proposition 5.1, namely |U | = 1 and |U | = 2, one obtains
criteria to delete vertices or edges.

5.7. The group Steiner tree problem 163

Name # Instances |V | |E| Status Description

GSTP1 8 349-1253 731-2319 solved
 Sparse instances derived from a

problem in VLSI design.
GSTP2 10 838-3177 1468-5907 unsolved

Table 5.6: Details on GSTP benchmark instances.

5.7 The group Steiner tree problem

The group Steiner tree problem (GSTP) is a generalization of the Steiner tree problem,
motivated from VLSI design, see Reich and Widmayer (1990); Hwang et al. (1992).
Instead of terminals, one considers terminal groups. Given an undirected graph G =
(V,E), edge costs c : E → Q>0 and a set of vertex subsets T1, ..., Ts ⊂ V , s ∈ N,
the GSTP requires a tree S ⊆ G with Ti ∩ V (S) 6= ∅ for all i ∈ {1, ..., s} such that
c(E(S)) is minimized. By interpreting each terminal t as a set of cardinality 1, any
SPG can be considered as a GSTP. Thus, GSTP is a generalization of SPG (and in
particular NP-hard).

Algorithms

Voss (1988) shows that any GSTP instance can be readily transformed to an SPG, by
adding an additional terminal for each terminal group and connecting this terminal to
each vertex of the terminal group. This approach is usually used in the literature when
it comes to solving GSTP, see e.g. Duin et al. (2004). A notable exception are the
GSTP reduction techniques described in Ferreira and de Oliveira Filho (2007). How-
ever, the empirical success of these techniques is limited. We have not implemented
any GSTP-specific methods into SCIP-Jack, but simply transform any GSTP to
an equivalent SPG.

Computational results

Several GSTP test-sets, transformed to SPG, are included in the SteinLib and have
been covered in Chapter 2. It was shown that SCIP-Jack constitutes the state of
the art for solving these instances. Here, we additionally consider two test sets of
unpublished (and proprietary) group Steiner tree instances derived from industry
wire routing problems, as detailed in Table 5.6. These instances come already in
preprocessed form.

Computational results are presented in Table 5.7. We note that two of these
instances cannot be solved without the new SPG reduction algorithms introduced in
this thesis.

Test-set # instances # solved mean time [s] maximum time [s]

GSTP1 8 8 1.4 5.1
GSTP2 10 10 56.5 3451.2

Table 5.7: Computational results for GSTP instances.

164 Further related problems

5.8 The hop constrained directed Steiner tree problem

The hop-constrained directed Steiner tree problem (HCDSTP) is a generalization of
the SAP, see Burdakov et al. (2014). Let (V,A, T, c, r) be an SAP instance, and let
H ∈ N (called hop limit). A feasible solution S to the SAP is feasible for the HCDSTP
if additionally:

1. |A(S)| 6 H,

2. δ+
S (t) = 0 ∀t ∈ T \ {r}.

The HCDSTP asks for feasible solution S of minimum cost c(A(S)). Heuristics (both
primal and dual) for the HCDSTP can for example be found in Burdakov et al. (2014);
Pugliese et al. (2018). Real-world applications of the HCDSTP include the three
dimensional placement of drones for multi-target surveillance, see e.g. Olsson et al.
(2010). Finally, we note that in the Steiner tree literature the term hop constrained
is also used for problem classes where for any feasible solution the number of edges
between the root and any node is bounded by a constant, see e.g. Voß (1999).

Algorithms

The flow-balance directed-cut formulation (Formulation 1.1) used by SCIP-Jack
can be easily extended to handle the HCDSTP by first removing all outgoing arcs
from each terminal, and second adding the following constraint to Formulation 1.1:

y(A) 6 H. (5.2)

Most reduction techniques and heuristics introduced so far cannot easily be ex-
tended to HCDSTP. For example, many reduction techniques described in this thesis
remove or include edges if a less costly alternative sub-graph can be found. How-
ever, these techniques disregard whether this alternative sub-graph includes a larger
number of edges. Nevertheless, some previously introduced bound-based reduction
techniques can be adapted to HCDSTP.

First, note that dual-ascent based reductions can still be applied, despite the addi-
tional constraint: the corresponding dual variable can simply be set to 0. Additionally,
the terminal decomposition concept described in Section 2.3.2 can be adapted for
HCDSTP. Importantly, all above reductions techniques require a primal bound. To
this end, we use a simple modification of the shortest-path heuristic, which was al-
ready included in SCIP-Jack prior to this thesis. We perform the shortest path
heuristic for modified arc costs c′ with c′(a) := 1 + αc(a) for all a ∈ A, where α > 0.
Implementing more refined primal heuristics could considerably improve the perfor-
mance. For example, the local-search heuristics introduced in Burdakov et al. (2014)
would be promising candidates.

Computational results

Computational results on a number of benchmark instances (some with more than
600 000 arcs) from the 11th DIMACS Challenge are provided in Table 5.9. See
Table 5.8 for more details on the instances.

5.8. The hop constrained directed Steiner tree problem 165

Name # Instances |V | |E| Status Description

gr12 19 809 7430-44696 solved
 Instances derived from 3D placement

of unmanned aerial vehicles (Burdakov et al., 2014).
gr14 20 3209 115502-643552 unsolved

Table 5.8: Details on HCDSTP benchmark instances.

All instances can be solved to optimality. Notably, six of these instances are solved
for the first time to optimality. Details are given in Appendix B.8. Computational
results for these instances are also given in Burdakov et al. (2014); Pugliese et al.
(2018). However, only (primal and dual) heuristics are used in these articles. Especially
on the gr14 instances the run times of Burdakov et al. (2014); Pugliese et al. (2018)
are shorter, but at the same time the primal bounds are worse for more than half of
these instances. Moreover, experiments on the larger test-set gr16 (with more than
8 000 000 arcs) were performed, but SCIP-Jack ran out of memory for all but three
instances. However, these three instances wo11-gr16-cr100-tr100-se10, wo11-gr16-
cr200-tr100-se3, and wo12-gr16-cr200-tr100-se9 could be solved for the first time to
optimality—with optimal values of 121 234, 54 163 and 47 687, which also notably
improves on the previously best known bounds (Burdakov et al., 2014; Gamrath
et al., 2017; Pugliese et al., 2018).

Test-set # instances # solved mean time [s] maximum time [s]

gr12 18 18 0.4 6.8
gr14 21 21 85.5 2130.8

Table 5.9: Computational results for HCDSTP instances

Chapter 6

Implementation and parallelization

So far, this thesis has mostly concentrated on providing and proving mathematical
results, as well as on formally describing and analyzing new algorithms. In this chapter,
we enter the somewhat more mundane realms of implementation and algorithm
engineering issues. While the theoretical algorithm design is usually the far more
decisive issue, a state-of-the-art implementation cannot afford to ignore the realities
of modern computer architecture—such as CPU cache. Additionally, the ubiquity
of multiple CPU cores and even intra-core parallelism in modern computer systems
strongly suggests the use of parallel algorithms and implementations.

This chapter offers an overview of the software implementations done for this thesis,
and furthermore provides algorithm engineering details for key components. Finally,
we describe the, shared- and distributed-memory, parallel extensions of the newly
developed solver. We assume some familiarity with the basics of computer architecture
and programming. For an excellent introduction to computer architecture and related
concepts, the reader is referred to the book by Bryant and O’Hallaron (2015).

6.1 SCIP-Jack

This section provides some conceptual insight in, and background on the Steiner tree
solver developed as part of this thesis: SCIP-Jack.

6.1.1 The origins

SCIP-Jack derives its name from two other solvers: SCIP and Jack-III.

SCIP is a non-commercial solver for MIP, mixed-integer nonlinear programming,
and constraint integer programming. Additionally, SCIP can be used as a customized
branch-and-cut framework. The plugin-based design of SCIP provides a convenient
method of extension, and allows for a strong control of the solving process. For more
information on SCIP see Achterberg (2009); Gamrath et al. (2020).

Jack-III is a solver for (classic) SPG introduced by Koch and Martin (1998). It
uses a branch-and-cut approach based on the bidirected cut formulation (BDCut).
Furthermore, it comprises several preprocessing techniques and heuristics. At the time
of publishing, Jack-III was able to solve all problem instances that had hitherto been

167

168 Implementation and parallelization

discussed in the literature to optimality. Furthermore, Jack-III outperformed several
previously introduced SPG solvers, often by a wide margin (although no comparison
with solver by Duin (1993) is given in the literature). However, the solver introduced
by Polzin and Daneshmand (2002) four years later, drastically outperforms Jack-
III, solving significantly more instances and being often more than three orders of
magnitude faster on the remaining non-trivial ones, see Polzin (2003).

Prior to this thesis, an early version of SCIP-Jack was borne out the integration
of Jack-III into SCIP. In this process, the hand-tailored branch-and-bound routine,
and the cutting plane management of Jack-III were replaced by those of SCIP. The
author of this thesis was the main developer of this early SCIP-Jack version, but
significant contributions were made by Gerald Gamrath, Thorsten Koch, Stephan
J. Maher, and Michael Winkler. Notably, Thorsten Koch was the main developer of
Jack-III.

However, more than 95 percent of the source code in the current version of SCIP-
Jack has been newly implemented as part of this thesis (by the author of this thesis).

Figure 6.1: Depiction of a skipjack tuna, see Wikipedia (2021).

6.1.2 The solver

SCIP-Jack encompasses more than 110 000 lines of code and is written entirely in
C.21 Besides the parameters of SCIP, the user is given more than a hundred Steiner
tree specific parameters to control the solving behavior of SCIP-Jack. For reading
Steiner tree instances, both the widely used .stp file format (Koch et al., 2001) and the
.gr (Bonnet and Sikora, 2019) file format are supported. The final optimal solution,
as well as any intermediary feasible solution, can be obtained by the user in the
DIMACS format (DIMACS, 2015).

The use of a general MIP solver renders the model to be solved highly pliant,
which is of central importance to the generic solving approach employed in this thesis.
Furthermore, a general framework allows one to avoid the tedious implementation of
generic components such as branch-and-bound, and cut management. In particular,
MIP solvers usually provide a filtering of cuts to improve numerical stability and
efficacy. SCIP, being freely available for academic research and providing the above
described features, seems a natural choice. The plugin-based structure of SCIP also
makes it possible to readily integrate our various algorithmic components within a
branch-and-cut method.

21 Somewhat to the regret of the author of this thesis, who would nowadays have preferred C++ or
Rust as the programming language of choice.

6.2. Implementation details of key components 169

On the downside, many native methods of SCIP are prohibitively slow or memory
consuming for large or even medium-scale Steiner tree instances. This behavior can be
attributed to the fact that MIP instances that are commonly used for benchmarking
are much smaller than typical Steiner tree instances. As a consequence, we perform
the Steiner tree specific presolving before initializing the problem in SCIP. Otherwise,
many large-scale Steiner tree instances covered in this thesis would not fit into main
memory on our default machines. Additionally, most native, general-purpose algo-
rithms of SCIP such as non-trivial presolving, domain propagation, primal heuristics,
conflict analysis, or generic cutting planes are deactivated in SCIP-Jack. Besides
being too slow, most of these algorithms are (empirically) mostly not effective for
Steiner tree instances. A notable exception are {0, 1/2}-cuts (Caprara and Fischetti,
1996), which are usually computed in short time, and which are reasonably effective
for some Steiner tree instances.

6.2 Implementation details of key components

This section contains a selection of (auxiliary) algorithms, data structures, and im-
plementation aspects that are of central importance to the practical performance of
SCIP-Jack. We will mostly use the notion of (one-dimensional) arrays instead of
vectors. Further, we will use zero-based indexing unless noted otherwise. Given an
array A of size n, the i-th entry with i ∈ {0, 1, ..., n− 1} of A will be referred to as
A[i].

6.2.1 Graph data structures

In the following, we describe different data structures for sparse graphs used in SCIP-
Jack. While SCIP-Jack also contains data structures for dense graphs, these are
only used for (smaller) auxiliary graphs. The existence of multiple sparse graph data
structures reflects the conflicting needs of fast (cache-efficient) access, and efficient
adaptation to dynamic graph changes. In addition to the two data structures described
in the following, SCIP-Jack also includes a fully dynamic graph data structure (i.e.,
with both edge insertion and deletion capability), which was already present in Jack-
III, see Koch (1995). This data structure allows for the inclusion of an edge {v, w}
in O(1), and its deletion in O(|δ(v)| + |δ(w)|) time. However, the data structure is
significantly less cache-efficient for static operations such as graph traversals. Thus, we
use this data structure mostly in the context of node-replacement reduction methods,
where we frequently have to both insert and delete edges. For more information on
graph data structures and implementation aspects see Kepner and Gilbert (2011).

Compressed sparse row

Compressed sparse row (CSR) is a standard format for storing sparse matrices, see
e.g. Davis (2006). It has also been widely used for sparse graphs, see e.g. Kepner
and Gilbert (2011). Although it is fairly simple, we discuss the CSR graph format
in more detail in the following, since we will use several adaptations of this format
thereafter. Given an undirected graph G, the CSR format can be used by applying it

170 Implementation and parallelization

v0

v1

v2 v3

9

7 12

Figure 6.2: Weighted graph.

to the incidence matrix of the bidirected equivalent of G. In the following, we describe
the graph CSR format for a (possibly bi-) directed graph (V,A) with arc weights
c. Let {v0, v1, ..., vn−1} := V and {a0, a1, ..., am−1} := A. Let Starts be an array of
size n + 1, and Heads, Weights be arrays of size m. Set Starts[0] := 0 and define
Starts[i] = Starts[i−1] + |δ+(vi)| for i = 1, ..., n. For any vertex vi ∈ V , the sub-array
Heads[Starts[i],Starts[i]+1, ..., Starts[i+1]−1] stores all vertex indices of N+(vi). I.e.,
for all j with vj ∈ N+(vi), there is a k ∈ {Starts[i],Starts[i]+1, ..., Starts[i+1]−1} with
Heads[k] = j. Equivalently, the sub-array Weights[Starts[i],Starts[i] + 1, ..., Starts[i+
1] − 1], stores the weights of the arcs δ+(vi). We do not assume any order of the
entries in Heads[Starts[i],Starts[i] + 1, ..., Starts[i+ 1]− 1].

For the undirected graph shown in Figure 6.2, a CSR representation can be written
as follows.

– Starts : [0, 1, 4, 5, 6]

– Heads : [1, 0, 2, 3, 1, 1]

– Weights : [9, 9, 7, 12, 7, 12]

Dynamic compressed sparse row

While allowing for cache-efficient access, the CSR format is ill suited for any graph
changes, such as edge deletions. For this reason, we use a slightly modified data
structure in settings where edge deletions are performed (so in particular during
most of the reduction process). Instead of Starts, we keep two arrays Starts and Ends
of length n. We set Starts[0] := 0 and define Starts[i] := Ends[i − 1] := Starts[i −
1] + |δ+(vi)| for i = 1, ..., n − 1. Finally, we set Ends[n − 1] := Starts + |δ+(vn−1)|.
Equivalent formats have aleady been suggested for storing the constraints matrix
during LP presolving, see Elble (2010). Note that in the actual implementation we
use the struct construct of the C language to make sure that with each access to the
row start of a vertex, also the row end pointer is being loaded into (L1) cache. We
will refer to this extension of CSR as dynamic compressed sparse row (DCSR).

Deleting an arc a = (vi, vj) ∈ δ+(vi) can now be performed in O(|δ+(vi)|) as fol-
lows. Let k ∈ {Starts[i],Starts[i] + 1, ...,Ends[i]− 1} be the index with Heads[k] = j.
Set Heads[k] := Heads[Ends[i] − 1], and decrement Ends[i]; adapt Weights equiva-
lently.

6.2. Implementation details of key components 171

6.2.2 Bottleneck Steiner distances

Duin and Volgenant (1989b) show that the (SPG) bottleneck Steiner distance s for
all pairs of vertices can be computed in time O(n(m + n log n)) and space Θ(n2).
However, even for (nowadays) medium-scale SPG instances with a few ten thousand
vertices, both the run-time and the space are prohibitive. Thus, several authors have
suggested to approximate s(v, w). In the following, we suggest two new algorithms to
approximate s(v, w). The first algorithm approximates bottleneck Steiner distances
such that the corresponding subgraph contains at least one terminal. The second
algorithm covers the case of no intermediary terminals. The second algorithm can
also easily be adapted for PCSTP and MWCSP.

Distances with terminals

Polzin and Daneshmand (2001b) suggest the following procedure. Initially, compute
to each non-terminal vr the (constant) k d-nearest terminals vr,1, ..., vr,k (see Sec-
tion 2.3.2). For any vi, vj ∈ V \ T , use the upper bound

ŝ(vi, vj) := min
a,b∈{1,...,k}

{
max{d(vi, vi,a), s(vi,a, vj,b), d(vj , vj,b)}

}
(6.1)

on s(vi, vj). Empirically, that bound has shown to be a tight approximation of s. The
ŝ values are not pre-computed, in order to preserve an O(m+n log n) bound. Also, in
most cases not all of the k2 possible combinations have to be examined. For example,
if max{d(vi, vi,1), d(vj , vj,1)} > c({vi, vj}), the edge elimination test for {vi, vj} can
already be aborted; see Polzin and Daneshmand (2001b) for more such conditions.

For constant k ∈ N, Duin and Voss (1997) show how to compute the k d-nearest
terminals to all vertices in O(m + n log n). Thus, in the following we concentrate
on efficiently computing the exact bottleneck Steiner distances between pairs of
terminals. We suggest a new approach that requires a preprocessing of O(m+n log n)
time and space, and constant time for each query. By definition, for any t, u ∈ T , the
bottleneck Steiner distance s(t, u) corresponds to the (standard) bottleneck distance
between t and u in the distance network DG(T). Let Y be a minimum spanning tree
in DG(T). One notes that s(t, u) is equal to the maximum cost of an edge on the
path between t and u in Y . Furthermore, Mehlhorn (1988) shows that Y can be built
in O(m+ n log n)—without constructing DG(T) beforehand. See also Floren (1991)
for a simpler and practically more efficient realization.

Given a minimum spanning tree Y in DG(T), one can trivially compute s(t, u)
for any terminals t, u in O(|T |). However, already for the (standard) edge elimination
test based on (6.1), this approach is rather slow in practice. Polzin and Daneshmand
(2001b) suggest to compute the bottleneck Steiner distance for pairs of adjacent ter-
minals by creating an instance of the offline lowest common ancestor (LCA) problem,
see Tarjan (1979). This approach runs in O(q + |T | log |T |) time for q queries. How-
ever, all queries need to be known beforehand, which essentially requires to run the
bottleneck Steiner distance edge elimination algorithm that uses (6.1) twice. Further-
more, such an offline algorithm is prohibitive for the extended reduction techniques
discussed in Section 2.4. Note that there are also online algorithms for LCA that

172 Implementation and parallelization

require merely linear preprocessing time, and constant time for each query, but they
are not competitive in practice, see Fischer and Heun (2006).

Similar to Polzin and Daneshmand (2001b), we essentially build an LCA instance
first. However, this instance only has half as many nodes as that used by Polzin
and Daneshmand (2001b). Let {e1, ..., e|T |−1} be the edges of Y , and assume that
d(ei) 6 d(ej) for any i, j with 1 6 i < j 6 |T | − 1. Next, we build a binary tree
B with vertices VB = {b1, ..., b|T |−1}, and an initially empty edge set EB . Define
f : T 7→ VB ∪ {null} initially by f(t) := null for all t ∈ T . For all i = 1, ..., |T | − 1
proceed as follows. For all (two) t ∈ ei: If f(t) = null, set f(t) := bi. Otherwise,
add an edge between the root of the subtree that contains node f(t) and bi. Further,
make bi the root of this new subtree. Finally, define p : BV 7→ Q>0 by p(bi) := d(ei)
for all bi ∈ VB .

The above algorithm to construct B can be realized in O(|T | log |T |) by initially
sorting the edges of Y , and using a union-find data structure (of size 2|T | − 1). To
see the benefit of B, let t, u ∈ T with t 6= u. Further, let bi be the lowest common
ancestor of f(t) and f(u) in B. One notes that p(bi) = s(t, u).

Observing that we are not interested in the lowest common ancestor itself, but in
its value p, we proceed as follows. First, we use the Euler tour technique by Tarjan
and Vishkin (1984) on B. We consider B as a bidirected tree and traverse its arcs
in a DFS fashion starting from the root. Each time a node bi is visited, append
the value p(bi) to an initially empty array A. For simplicity, we assume A to be
1-indexed. Finally, A has size 2|T | − 3.22 Let g : Bv 7→ {1, ..., 2|T | − 3} such that
g(bi) is the first index A at which bi has been visited during the Euler tour. Thus, in
particular A[g(bi)] = p(bi). Define h := g ◦ f . Next, we use the sparse table technique,
see e.g. Bender et al. (2005), to efficiently find the maximum of any interval of A.
Initially, we precompute the maximum of all intervals whose length is a power of 2. Let
x := |A|. Let M be a (1-indexed, 0-indexed) two dimensional array defined recursively
by M [i][0] := A[i] for i ∈ {1, ..., x}, and M [i][j] := max{M [i][j−1],M [i+2j−1][j−1]}
for every i ∈ {1, ..., x} and any j ∈ {1, ..., blog nc}. The idea is to exactly cover any
interval of A by two overlapping entries of M . Now, let t, u ∈ T be distinct vertices
such that h(t) 6 h(u). If h(t) = h(u), then s(t, u) = d(t, u) = A[h(t)]. Otherwise,
define i := h(t), j := h(u), and z := blog(j − i)c. It holds that

s(t, u) = max
{
M [i][z],M [j − 2z + 1][z]

}
. (6.2)

Concerning implementation, one notes that z is equal to the most significant bit
of (j − i)2. Modern C compilers provide intrinsics for this operation (if j − i > 0).
However, we have decided for a fully portable solution and use a table look-up instead.

Finally, we note that if the number of terminals is not more than 100, we do
not use the above approach, but compute and store the Steiner bottleneck distance
between all pairs of terminals. Computing these distances by an offline variant of the
above approach takes O(|T |2 +m+ n log n) time and Θ(|T |2) space.

22 The Euler tour technique is also used to reduce LCA to the range minimum query problem, see
e.g. Bender et al. (2005).

6.2. Implementation details of key components 173

Distances without terminals

To also cover Steiner bottleneck distances that correspond to paths that do not include
any terminals, several authors, e.g. Hwang et al. (1992); Polzin and Daneshmand
(2001b), suggest to run a limited version of Dijkstra’s algorithm from both endpoints
of the edge to be eliminated. However, such a test can be considerably time consuming
in practice. Here, we describe a more efficient alternative. Additionally, the proposed
heuristic also takes the implied profit of vertices into account, and thus even serves
to approximate the implied bottleneck Steiner distance.

Starting from a vertex v0, the heuristic tries to delete several edges of δ(v0) at
once. Initially, define a distance array d̃ and a predecessor array pred as follows.
For all u ∈ V \ ({v0} ∪N(v0)): d̃[u] := ∞ and pred[u] := null. For all u ∈ N(v0):
d̃[u] := c({v0, u}) and pred[u] := v0. Moreover, set d̃[v0] := 0 and pred[v0] := v0.
Finally, set Q := N(v0).

While Q 6= ∅ let v := arg minu∈Q d̃[u]. For all {v, w} ∈ δ(v) proceed as follows.
First, set pvw := max {p+(v, {e}) | e ∈ δ(v) : w, pred[v] /∈ e}. If

d̃[v] + c({v, w})−min
{
c({v, w}), pvw, d̃[v]

}
< d̃[w], (6.3)

then set d̃[w] to the left hand side of (6.3) and add w to Q. Further, set pred[w] := v.
If (6.3) holds and w ∈ N(v0), then we can delete edge {v, w}.

Note that on the left hand side of (6.3) a possibly smaller value than pvw is
subtracted to prevent the algorithm from circling. Furthermore, note that a terminal
might be used more than once for a profit calculation pvw on one walk. However,
since we subtract only a bounded part of the profit from the distance value in (6.3),
the algorithm still works correctly. Note that one can extend the algorithm to cover
the case of equality for edge deletion. In this case, one also needs to check whether
(6.3) is satisfied with equality if w ∈ N(v0). In practice, one should bound the
maximum number of visited edges. Additionally, one can abort the algorithm if
minu∈Q d̃[u] > maxe∈δ(v0) c(e).

6.2.3 Extended reduction techniques

Initially, the reader is reminded that extended reduction techniques have only been
implemented for SPG in this thesis. Thus, this section covers only the SPG. We
note, however, that at least a partial extension of these methods to PCSTP and
MWCSP is conceptually straightforward. We use a DFS strategy for the extension,
see also Duin (2000). In this way, the re-use of intermediary results, such as MSTs, is
simplified. Furthermore, we use the following criteria for the subroutines Promising
and Truncate. Depending on the size of the instance, we bound the maximum
depth of the extension, and the maximum number of leaves allowed for an extension
tree. Furthermore, we bound the maximum degree of any leaf along which we extend.
No extensions along terminal leaves are performed.

In the following, we give details of several algorithms and data structures. Due
to the complexity of the implementation, which encompasses more than 20 000 lines

174 Implementation and parallelization

of C code, we need to be quite selective. Thus, we only focus on the most important
components.

Storage and bookkeeping aspects

For simplicity, we restrict the following discourse to the extension of a single edge
{v0, v1} from the endpoint v1. Recall that we perform extensions only in a DFS
manner. I.e., we only extend the current extension tree from vertices that are at
maximum distance from v0 with respect to the number of edges. Figure 6.3 shows an
exemplary extension tree in bold for the edge {v0, v1}. Edges that are not part of the
given extension tree, but need to be considered in other extension trees are dashed.
Further extensions of the bold extension tree are only possible from vertex v7.

We use the following terms for describing the extension process. Let Y be an
extension tree of {v0, v1}, and v be a leaf of Y . We define the depth of v in Y as the
number of edges on the path from v to v1 in Y . Each time we extend the current
tree Y from a leaf v of depth i − 1, we call all L̄(v, Y) := N(v) \ V (Y) the i-th
full extension level. We call the subset of L̄(v, Y) that is used for the extending Y
the i-th partial extension level, denoted by L(v, Y). For the extension tree shown in
Figure 6.3, the set {v2, v3, v4} is the 1st full extension level, and set {v2, v4} the 1st
partial extension level. We say that v is the root of both the partial extension level
L(v, Y) and the full extension level L̄(v, Y).

v0

v1

v2 v4

v5 v6

v7 v8

v3

Figure 6.3: Illustration of extension from a single edge. The dashed edges are not
part of the currently considered extension tree.

Throughout the extension of {v0, v1}, we store several auxiliary results, to avoid
their continuous recomputation; most importantly, the bottleneck Steiner distances
between leaves of the current extension tree, and the corresponding MSTs on the
complete graphs induced by those leaves. In the following, we exemplarily describe
the storage procedure for the bottleneck Steiner distances.

We call bottleneck Steiner distances between vertices that are in the same full
extensions level horizontal, and bottleneck Steiner distances between vertices that are

6.2. Implementation details of key components 175

in the different full extensions levels vertical. For each vertex of a full extension level
we store the (vertical) distances to all leaves of the current extension tree that are of
smaller depth than the extension level. For example, for the 2nd full extension level,
consisting of the vertices v5 and v6, we store the (vertical) bottleneck Steiner distances
from both v5 and v6 to the vertices v0 and v2. For reasons of cache-efficiency, we
keep all vertical and all horizontal bottleneck Steiner distances consecutively in one
array, respectively. The distances can be efficiently queried by the use of a compressed
system similar to a nested CSR format. For the horizontal distances we store for each
vertex of a given full extension level the distances to all of its right siblings. E.g., in
Figure 6.3 we store for vertex v2 the distances to v3 and v4. For each vertex we keep
the start index of the horizontal distances to its right siblings. These start indices
are also kept continuously. For each full extension level we keep the index where the
first of its start indices are stored.

Similarly, for each vertex of a full extension level, we keep the start index of its
vertical distances. The latter are sorted according to the index of the corresponding
ancestor leaf. E.g., for vertex v5 we store the distances to v0 and v2. Note that the
order of the ancestor leaves of any full extension level stays the same as long as the
level is active. Again, we use the same nested start pointer storage already used for
the horizontal distances.

As another speed-up method, we only reserve the spaces for the vertical and
horizontal distances. The actual computation happens once a distance is queried for
the first time. In this way, we avoid the computation of distances that are never used
(because the search along the corresponding full extension level is truncated).

Computing and recomputing MSTs

Another important aspect is the storage of the MSTs on the complete graph induced
by the current tree together with a pruning set. Note that while the use of minimum
Steiner trees instead of MSTs is stronger, their computation is naturally more ex-
pensive. Therefore, we only use (not necessarily optimal) Steiner trees for extension
trees with three leaves.

A classic result from Spira and Pan (1975) shows that it is possible to adapt an
MST in O(n) time after the insertion of a new vertex (and up to O(n) edges). We
use a different algorithm from Chin and Houck (1978), which also works in O(n), but
is practically more efficient than the approach by Spira and Pan (1975). Note that
the deletion of a vertex is more expensive, taking O(n2) time. Thus, we only modify
already computed MSTs by adding vertices, and never by deleting.

We store the following MSTs. First, before we add a new full extensions level,
we compute and store the MST on the (complete) graph induced by all leaves of
the extension tree with the new full level and without the root of the new full level.
Second, whenever we add a new partial extension level, we compute and store the
MST on the graph induced by all leaves of the extension tree including the new level.
In this way, we can efficiently build new MSTs by extending already existing ones.

Furthermore, we can use this MST storage system together with our data structure
for keeping the bottleneck Steiner distances to efficiently compute MSTs for partially

176 Implementation and parallelization

contracted extensions trees: Consider the partial extension level L(v, Y) such that
v has the largest depth in Y . Store for each leaf w of Y that is not in L(v, Y) the
minimum among the bottleneck Steiner distances between w and a vertex in L(v, Y).
Note that these distances can simply be queried from the vertical distance storage
for L̄(v, Y). Consider the vertices in L(v, Y) as a single contracted node and compute
a MST on the complete graph induced by this node together with the remaining
leaves of Y—this MST can be readily obtained by extending an already computed
one. If we cannot rule out Y with this MST, we proceed to the next lower partial
extension level and implicitly contract both levels into a single node. Note that we
just need to update the already computed distances from the remaining leaves of Y
to this contracted node. We proceed in this way until all partial extension levels are
contracted.

Finally, yet another advantage of the algorithm by Chin and Houck (1978) is the
possibility to keep the MST to be extended in CSR format. This feature allows us
to store several MSTs consecutively in a nested CSR format, similarly to the storage
of the bottleneck Steiner distances described in the previous section.

Computing and recomputing bottleneck Steiner distances

As described in Section 6.2.2, approximate bottleneck Steiner distances along at
least one terminal can be queried in constant time. However, as already observed
by Polzin and Daneshmand (2002), these approximate values ŝ lead to significantly
worse results than the exact bottleneck Steiner distances for extended reduction tests.
The authors suggest to use the value min{ŝ(v, w), d(v, w)} for vertices v, w instead.
We follow this suggestion. Furthermore, just as Polzin and Daneshmand (2002), we
do not compute all-to-all (standard) distances, but compute and store for each vertex
v the distances to a constant number of nearest vertices. We sort these distances
according to the indices of the corresponding end vertex of the shortest path. In this
way, any (contained) distance can be readily queried by a binary search.

An equally important issue is the recomputation of the bottleneck Steiner distances
after a graph modification. First, one can show that node replacements do not change
the bottleneck Steiner distances. Thus, we only need to handle the deletion of edges.
For the (standard) distances from each vertex to a constant number of nearest vertices,
we proceed as follows. For each edge e we store all vertices v such that e is used in
one of the (constant number of) shortest path distances stored for v. If edge e is
deleted, we recompute the shortest path distances for all these v. In fact, we do so
in a lazy fashion, i.e., we mark the vertices and only recompute the distances once
they are required. Additionally, we keep state counters for all v to make sure that a
vertex is not marked after the deletion of an edge e even though its shortest paths
distances have already been updated and do not include e anymore.

The recomputation of bottleneck Steiner distances along terminals is more in-
volved. Recall that we store for each vertex vi the closest k terminals vi,1, vi,2, ..., vi,k.
Furthermore, we store an MST for the distance graph DG(T). If an edge of the
distance graph is deleted, we simply recompute the MST. Preliminary experiments
have shown that such a deletion rarely happens and that the computing time is

6.2. Implementation details of key components 177

negligible. In contrast, the distances to the k closest terminals change, empirically,
with almost every edge deletion. Thus, a complete recomputation is prohibitive, and
a repairment algorithm is required. In the following, we describe the repairment of
the distances to the closest terminal. This procedure is related to the reconstruction
of Voronoi regions in the context of local-search heuristics described in Uchoa and
Werneck (2010). The recomputation of the distances for the k’th nearest terminals
with k > 1 is significantly more technical, and is therefore not presented here.

For each vertex vi ∈ V \ T we store the following information

– base[vi] := vi,1;

– pred[vi]: the last vertex before vi on a shortest path from base[vi] to vi;

– dist[vi] := d(vi, vi,1).

Let {v, w} be the edge to be deleted. Assume pred[w] = v (which implies pred[v] 6= w).
Note that if both pred[w] 6= v and pred[v] 6= w, we are already finished. First, we
perform a graph traversal from w as follows: Initially, we set U := {w}, Q := {w}.
While U 6= ∅, we remove any u from U and proceed as follows: For all {u, q} such
that pred[q] = u, set base[q] := null, pred[q] := null, dist[q] :=∞. Further, add q to
U and Q.

Second, for each q ∈ Q proceed as follows. For all {u, q} with u /∈ Q. If dist[u] <
dist[q]+c({u, q}), set dist[u] := dist[q]+c({u, q}), base[q] := base[u], and pred[q] := u.
If after this processing still pred[q] = null holds, remove q from Q. Finally, run a
slightly modified version of Dijkstra’s algorithm with all vertices of Q in the initial
priority queue, and with distance values dist. During the computation of Dijkstra’s
algorithm we also update the base values.

6.2.4 Separation algorithms

Since all problem classes described in this thesis are formulated (after suitable trans-
formations) as some variant of the DCut formulation, a major algorithmic component
of our solver is the separation algorithm for the constraints (1.3). We note that addi-
tional cuts, such as the flow-balance constraints, can be easily separated. Thus, we
focus on the constraints (1.3) in the following.

It is well known that cut constraints such as (1.3) can be separated by using
a maximum-flow algorithm—based on the classic max-flow/min-cut theorem. One
merely needs to regard the values of the LP solution as capacities and compute a
maximum-flow from the root r to each terminal T \ {r}. In Hao and Orlin (1992)
an adaptation of a preflow-push algorithm is introduced that allows one to solve
maximum-flows from a designated source to several other sink nodes with a run-
time similar to that of a single maximum-flow computation. In Koch and Martin
(1998) this algorithm is used for separating the constraints (1.3). Koch and Martin
(1998) furthermore suggest to compute cuts of small cardinality by adding a small
(additional) capacity ε > 0 to all arcs. While this approach deteriorates the run-time
of computing minimum cuts, the time required for re-optimizing the linear program
is often notably decreased, since the constraint matrix contains fewer non-zeroes.

178 Implementation and parallelization

For this thesis we have implemented a maximum-flow algorithm for separating (1.3)
with the modifications described above. We note that this algorithm is usually several
times faster than the implementation from Koch and Martin (1998). Just like Koch
and Martin (1998), we use a push-relabel algorithm with additional heuristics—in
particular we use the heuristics described in Cherkassky and Goldberg (1997). If we
merely consider the run-time for computing the first maximum-flow, we observe a
considerable speed-up (of up to an order of magnitude) as compared to the widely
used push-relabel implementation from Cherkassky and Goldberg (1997)23. We note,
however, that this speed-up holds in the context of Steiner tree separation problems,
and a different behavior might be observed on other graphs. The speed-up can be
attributed to a careful implementation, and the use of cache-efficient data structures.
However, we also note that empirically only a smaller part of the overall separation
time is spent in computing the first maximum-flow—even though the theoretical
run-time for computing this first flow is the same as that for computing all flows.

6.3 Parallelization: Building Steiner trees on 43 000 cores

Parallel computing has become mainstream in the last decade. Also for Steiner tree
problems there have been various publications considering parallel algorithms, see
e.g. Bezenšek and Robič (2014); Ljubic (2020) for overviews. However, most of the
reported computational results are obtained on test-sets that are considered too
trivial to be included in this thesis (almost all of these instances can be solved in
fractions of a second by SCIP-Jack). And even on these simple test-sets often
enough no optimal solution is found, see Bezenšek and Robič (2014). Most of these
publications concentrate on simple heuristics, which allow for good scalability, but
are no match for state-of-the-art Steiner tree algorithms. On the other hand, the
intricacy of state-of-the-art Steiner tree algorithms poses far more challenges for an
efficient parallelization. Also, the usage of the Simplex algorithm, which is notoriously
hard to efficiently parallelize, is problematic.

This section concentrates on the parallelization of several of the Steiner tree
algorithms described in this thesis. We consider both shared- and distributed memory
parallelizations.

6.3.1 Parallelizing heuristics and reduction methods

In the following, we describe the parallelization of several reductions methods and
heuristics. The implementations are all shared-memory, and are realized with OpenMP (de
Supinski et al., 2018). All parallelizations are still in an experimental stage, and not
enough methods have been parallelized yet to obtain a significant parallel speed-up
for most instances. Thus, we do not provide computational results in this section.
Still, a short description of these methods is given because they open a promising
route for further development.

One observes that most primal heuristics used in this thesis employ some version
of the shortest-path heuristic described in Section 2.5.1. We always run the shortest-

23 see www.avglab.com/andrew/soft/ for the source code

www.avglab.com/andrew/soft/

6.3. Parallelization: Building Steiner trees on 43 000 cores 179

path heuristic from several distinct start vertices—to increase the solution quality.
Thus, a simple, so-called embarrassingly parallel, approach is to distribute these com-
putations among the available threads. Using parallelization within a single run of
the shortest-path heuristic does not seem promising, because of the short run-times,
which cannot compensate the parallelization overhead. Since communication between
the threads is restricted to the update of the best incumbent solution (if necessary),
our embarrassingly parallel scheme scales quite well up to a handful of threads (say 8
or 16). Of course, the number of threads that can be efficiently employed is bounded
by the number of distinct start vertices used by the shortest-path heuristic.

A corresponding, embarrassingly parallel, scheme could be employed for running
dual-ascent in parallel from several root nodes—and store the lower bounds and
reduced costs for each run. In this context, we note that Drummond et al. (2009) de-
scribe a sophisticated distributed parallelization of the dual-ascent heuristic. However,
since our sequential implementation of dual-ascent is quite fast on most benchmark
instances, any internal parallelization does not seem promising.

Concerning the parallelization of reduction techniques, one notes that most meth-
ods in this thesis loop over all edges or vertices, and check whether eliminations,
contractions, or replacements are possible. If such an operation on a single vertex or
edge does not change the validity of other reductions, we again obtain an embarrass-
ingly parallel scheme: One simply needs to distribute all edges (or nodes) among the
available threads. Unfortunately, that is not the case for most reduction methods, in
particular not for the most time-consuming ones. On the other hand, communicating
graph changes on the fly among the threads is prohibitive due to the short run-times
of the individual checks. Thus, we do not apply any graph changes, but rather let
each thread collect all possible reductions together with some reduction proof. For
example, in the edge elimination test described at the end of Section 6.2.2, we store
for each edge that could be eliminated, the corresponding path between its end points.
Once all threads have become idle, we check sequentially for each of the stored edges
whether the corresponding (alternative) path is still intact. If that is the case, we
eliminate the edge. We sort the edges to be checked for elimination in non-descending
order according to the number of alternative paths (needed for the elimination of
other edges) in which they are contained. In particular, we first delete those edges
that are not used in any alternative paths for other edges.

A similar scheme of reduction proofs can be used for extended reduction techniques.
In this case, one can store for each reduction candidate the extension vertices that
were used to rule it out. Once all threads have become idle, one only checks the
extensions along these vertices—which are in general exponentially fewer extensions
than in the original check.

180 Implementation and parallelization

6.3.2 Parallelizing branch-and-bound

Another seemingly promising candidate for parallelization within SCIP-Jack is the
branch-and-bound search. However, most Steiner tree instances are solved at the
root node of the branch-and-bound (B&B) tree, or even in preprocessing. Still, for
several notoriously hard SPG instances many branching nodes are created—and those
hard problems are also natural candidates for parallelization. In the following, we
will concentrate on solving such hard instances by parallelizing the B&B search of
SCIP-Jack, and using the computational power provided by supercomputers with
thousands of CPU cores. This section is joint work with Yuji Shinano.

The framework

For parallelizing the branch-and-bound search we use the Ubiquity Generator Frame-
work (UG) (Shinano et al., 2016), a software package to parallelize branch-and-bound
based solvers—for both shared- and distributed-memory environments. More pre-
cisely, we use the software library included in UG for parallelizing extensions of
SCIP. Usually, it is possible to employ this UG software library by adding only a
small amount of glue-code (typically 100− 200 lines). However, several idiosyncrasies
of SCIP-Jack (such as the preliminary use of reduction techniques) required to
extend both SCIP-Jack and UG. In the following, we briefly describe UG, and go
on to introduce the features newly added for parallelizing SCIP-Jack. For more
details see Shinano et al. (2019b).

UG implements a Supervisor-Worker load coordination scheme, see e.g. Ralphs
et al. (2018). Importantly, Supervisor functions make decisions about the load balanc-
ing without actually storing the data associated with the B&B search tree. In UG, the
Supervisor is called LoadCoordinator (LC) and the Workers are called ParaSolvers.
The B&B search tree data is managed by the ParaSolvers. The terminal nodes
(subproblems) of the B&B search tree in the ParaSolvers are sent on demand to
the LC; a set of subproblems in the LC works as a buffer to ensure subproblems are
available to idle ParaSolvers as needed.

During the B&B process, SCIP-Jack selects a non-terminal vertex of the problem
instance to be rendered a terminal in one B&B child node and to be excluded in the
other child. These two operations are modeled in the underlying IP formulation by
including one additional constraint. This procedure could not be used in previous
versions of UG since branching on constraints was not supported. Therefore, a new
feature for transferring branching constraints has been added to UG

A distinguishing feature of UG is the layered presolving, in which B&B tree
nodes are transferred to the other ParaSolvers recursively and additional presolving
is performed on the subproblems. Default MIP presolving realized in SCIP works
without any additional code in this layered scheme. However, SCIP-Jack performs
presolving before it formulates the subproblem as an IP. In order to realize this pre-
solving, a callback to initialize the transferred subproblem has been added to UG. To
retain previous graph based branching decisions, UG transfers the branching history
together with each subproblem, enabling SCIP-Jack to change the underlying graph
(by adding terminals and deleting vertices). Additionally, whenever a subproblem

6.3. Parallelization: Building Steiner trees on 43 000 cores 181

has been transferred, SCIP-Jack performs aggressive reduction routines to reduce
the (modified) problem further, and translates the reductions into variable fixings by
means of Proposition 2.33.

Computational results on supercomputers

Initially, we point out that all results reported in the following were obtained with
previous versions of SCIP-Jack, due to resource constraints. We used two super-
computers. The first one (ISM) is a HPE SGI 8600 with 384 compute nodes, with
each node consisting of two Intel Xeon Gold 6154 3.0GHz CPUs (18 cores×2) sharing
384GB of memory, and an Infiniband (Enhanced Hypercube) interconnect. The other
(HLRN III) is a Cray XC40 with 1872 compute nodes, each node consisting of two
12-core Intel Xeon IvyBridge/Haswell CPUs sharing 64 GiB of RAM, and with an
Aries interconnect.

Due to resource constraints, we could only attempt to solve a few instances on the
supercomputers. The best (and partly optimal) bounds obtained for these instances
are shown in Table 6.3. We also report the best previously known primal bound for
each instance. In the following, we give more insight into the solution process with
UG/SCIP-Jack on a supercomputer. We provide details for one particular instance
solved to optimality, and for one instance for which the best known primal bound
could be improved.

We start with the PUC instance hc9p, which could be solved for the first time to
optimality—by five restarted runs and by using up to 24 576 cores. Table 6.1 shows
for each run: the supercomputer used, the computing time in seconds (racing time is
shown in parentheses), the idle time ratio for all ParaSolvers, the number of B&B
nodes transferred to ParaSolvers, primal and dual bounds, primal-dual gap, the
number of B&B nodes generated, and the number of open B&B nodes. For each run
the initial values are shown in the upper row, and the final values are shown in the
lower row.

The initial primal solution to hc9p was found by a previous run of UG/SCIP-
Jack. One notes that the final dual bound of a run is sometimes slightly different
from the initial one in the following run. This means that the dual bound in the
previous run was updated after the final checkpoint. One also observes that the
number of open B&B nodes decreases strongly at restart, since the checkpointing
mechanism only saves essential sub-tree roots. For example, run 1.1 ends up with
1 257 112 open B&B nodes, but run 1.2 starts with 15 open ones. This means that
only 15 B&B sub-tree roots existed at the end of run 1.1 and the other sub-tree roots
were descendants of one of the 15 B&B nodes. Notably, the idle time ratios for all
runs are small, which indicates that the supercomputers are used efficiently.

Next, we describe the solution process for the PUC instance hc11p. We used two
different strategies. First, a long, but small-scale run. Second, a short, but large-scale
run. Statistics are given in Table 6.2. Run 1 on the ISM supercomputer generated
11 new incumbent solutions, with the best objective value being 119 297. In the
followings runs 2.1 and 2.2 we started with the best of these solutions. Run 2.2 was
conducted from the checkpoint file of run 2.1, since run 2.1 could not improve the

182 Implementation and parallelization

Run Computer Cores
Time
(sec.)

Idle
(%)

Trans.
Primal bound
(Upper bound)

Dual bound
(Lower bound)

Gap
(%)

Nodes Open nodes

1.1 ISM 72
604,796

(317)
< 0.3 738

30,242.0000 29,879.3721 1.21 0 0
30,242.0000 30,058.9366 0.61 110,012,624 1,257,112

1.2 ISM 2,304 604,794 < 1.5 979,695
30,242.0000 30,058.7930 0.61 0 15
30,242.0000 30,102.7556 0.46 3,758,532,600 723,167

1.3 HLRN III 24,576 86,336 < 1.7 8,811,512
30,242.0000 30,102.6645 0.46 0 35
30,242.0000 30,116.3592 0.42 2,402,406,311 575,678

1.4 HLRN III 12,288 43,199 < 1.5 1,709,027
30,242.0000 30,115.3331 0.42 0 3,709
30,242.0000 30,120.4801 0.40 664,909,985 602,323

1.5 HLRN III 12,288 118,259 1.5 9,158,920
30,242.0000 30,120.4801 0.40 0 285
30,242.0000 30,242.0000 0.00 1,677,724,126 0

Table 6.1: Statistics for solving hc9p on supercomputers.

incumbent solution. Notably, run 2.2 used 43 000 thousand CPU cores, with an idle
time of less than 5 %. Still, the integrality gaps seem to suggest that long small-scale
runs are more efficient than short large-scale ones.

Run Computer Cores
Time
(sec.)

Idle
(%)

Trans.
Primal bound
(Upper bound)

Dual bound
(Lower bound)

Gap
(%)

Nodes Open nodes

1 ISM 72
604,799
(2,558)

< 0.3 71
119,492.0000 117,388.8528 1.79 0 0
119,297.0000 117,496.5470 1.53 4,314,198 1,109,629

2.1 HLRN III 12,288
43,149

(7,164)
< 0.5 31,304

119,297.0000 117,388.7971 1.63 0 0
119,297.0000 117,426.2226 1.59 28,491,470 5,433,482

2.2 HLRN III 43,000 86,354 < 4.9 86,152
119,297.0000 117,426.2226 1.59 0 103
119,297.0000 117,468.8459 1.56 267,513,609 40,499,188

Table 6.2: Statistics for solving hc11p on supercomputers.

The numbers of transferred B&B nodes are very small compared to those for
hc9p. This indicates that hc11p is much harder than hc9p for our solver. Here, the
aggressive use of cutting planes and further algorithms by SCIP-Jack at the root
node is also problematic.

Name gap [%] new UB previous UB
bip52u opt 233 234
hc9p opt 30 242 30 242
hc10p 0.7 59 733 59 797
hc11p 1.6 119 297 119 492
i640-311 0.6 35 765 35 766

Table 6.3: Improvements on unsolved SPG benchmark instances.

Finally, we note that it seems likely that several more of the open PUC and I640
instances could be solved to optimality by using supercomputer resources comparable
to those employed for the computational experiments above. In particular, the optimal
solution of the five open I640 instances appears to be well within reach. However, some
PUC instances, such as hc11p, seem to require further algorithmic improvements.

Chapter 7

Conclusion and outlook

This thesis has set about to advance the state of the art in solving SPGs to optimality.
Furthermore, this thesis has aimed to combine SPG advancements with improvements
in the exact solution of related problems. Two well-known SPG relatives have been
given special attention: The prize-collecting Steiner tree problem, and the maximum-
weight connected subgraph problem. Furthermore, this thesis has shown how to
extend the new algorithms and techniques to solve 12 further related problem classes.

To significantly advance the state of the art, many new techniques and algorithms
had to be devised. The underlying policy to move from theory to practice has resulted
not only in theoretical analyses of the utilized techniques and algorithms, but has
also led to independent results for example in polyhedral descriptions. The various
new algorithms have been combined in an intricate implementation of more than
110 thousand lines of source code—and with parallelization extensions. The new
algorithms span almost the entire spectrum of a general branch-and-cut framework:
From preprocessing and probing, to (M)IP formulations and separation methods, to
(primal and dual) heuristics, domain propagation, and branching.

In this way, this thesis succeeds in pushing the limits of computational tractability
not only for the classic SPG, but also for the 14 additionally considered, related prob-
lems. The newly developed Steiner tree solver SCIP-Jack is able to solve 57 previ-
ously intractable benchmark instances from the literature to optimality—around half
of the previously unsolved benchmark instances considered in this thesis. The newly
solved instances are from seven different problem classes, including SPG, MWCSP,
and PCSTP. Several of these instances contain millions of edges, and some had re-
mained unsolved for more than 20 years. For all 15 problem classes SCIP-Jack
significantly outperforms, to the best of the author’s knowledge, all other solvers
described in the literature. Perhaps most importantly, SCIP-Jack outperforms the
long-reigning state-of-the-art SPG solver both in terms of run-time and number of
solved instances. Even for the rectilinear and Euclidean Steiner tree problems SCIP-
Jack outperforms the specialized, well-known GeoSteiner solver—by simply solving
the SPG obtained from the union of the full Steiner trees from the generation phase
of GeoSteiner. For example, several Euclidean Steiner tree instances that could pre-
viously not be solved even after one week of computation are solved by SCIP-Jack
within three minutes.

183

184 Chapter 7. Conclusion and outlook

The newly developed SCIP-Jack solver will be made freely available for academic
use as part of the SCIP Optimization Suite. Previous versions of SCIP-Jack have
already seen notable use for research purposes, and the latest version of SCIP-Jack
is currently being applied in several industrial projects.

The future

Though much is taken, much abides
(...)

Lord Alfred Tennyson

50 years after its inception, the SPG continues to attract researchers from math-
ematics, computer science, and operations research. Much the same can be said of
the many SPG relatives described in the literature (and partly in this thesis). With
new applications being regularly discovered, Steiner tree problems can also claim a
strong interest from practitioners in many disciplines—for example in bioinformatics,
or recently machine learning.

As to theoretical advancements, several important questions remain unanswered
regarding the strength of different IP and MIP formulations for SPG and related
problems. We provide some major points below.

– Although the widely used bidirected cut formulation (BDCut) shows a very
strong practical performance, finding an upper bound better than 2 on its
integrality gap remains a well-known open problem. Similarly, the question on
the best lower bounds is quite intriguing, with the currently best result being
given in Byrka et al. (2013).

– This thesis has provided improved theoretical results for the strength of the
well-known flow-balance bidirected cut formulation BDCutFB (which improves
BDCut), but there exists an even stronger hierarchy of formulations based on
BDCutFB due to Polzin and Daneshmand (2001b). Further theoretical studies
of this hierarchy are still missing, however. See also Filipecki and Van Vyve
(2020) for another hierarchy of SPG formulations.

– Another interesting topic is the relation of general-purpose cutting planes,
such as Gomory cuts, to classic MIP formulations for Steiner trees. For the
undirected cut formulation, Gaul and Schmidt (2021) recently introduced such
results. However, results for the practically and theoretically much stronger
BDCut formulation are still to be established.

As to more practical advancements, the author of this thesis also sees several
promising ways forward. Certainly, with every further algorithmic improvement, and
with the ever-increasing intricacy of state-of-the-art SPG solvers, achieving a substan-
tial further improvement might appear a daunting task. Still, the author of this thesis
believes that significant further performance improvements are well within reach.
First of all, several of the newly introduced SPG techniques could be transferred to

185

PCSTP and MWCSP. An example are the powerful extended reduction techniques
described in Section 2.4. For many of the other related problem classes more shortly
covered in this thesis there is even more room for improvement. Additionally, major
points for future development are as follows.

– Further improvements of state-of-the-art reduction techniques, which have proven
an indispensible tool for fast exact solution of SPG and related problems, seem
highly promising. An example are better approximations of the newly intro-
duced (but NP-hard) implied bottleneck Steiner distance.

– Further practical improvements might be possible by using IP formulations that
are stronger than BDCutFB . One candidate is the hierarchy from Polzin and
Daneshmand (2001b) mentioned above. Indeed, a (very) restricted version of this
hierarchy is already used in the solver from Polzin (2003); Vahdati Daneshmand
(2004). Similarly, a better integration of general-purpose cuts, whose default
generation by SCIP is currently prohibitively slow, might lead to further speed-
ups.

– Another interesting venue are specialized algorithms for still unsolved bench-
mark instances, in particular from the PUC test-set. These instances typically
show a special structure, such as being bipartite or highly symmetric (hyper-
cube graphs). A notable approach in this direction is given in Fischetti et al.
(2017), although they still solve fewer PUC instances than SCIP-Jack. Com-
bining such algorithms with the distributed-memory parallelization framework
described in this thesis might make it possible to solve significantly more of the
remaining PUC instances.

– The solution of Euclidean and rectilinear Steiner tree problems could be further
improved by incorporating information about the full Steiner trees that are
used within the concatenation phase. At the moment, we treat the union of
these full Steiner trees as a customary SPG instance. A natural idea would for
example be to branch not on single vertices, but rather on the full Steiner trees.
However, in this case one would need to retain sufficient information during
preprocessing.

– Finally, there is considerable potential in (further) shared-memory paralleliza-
tion of several of the key algorithms of this thesis. The implementations for this
thesis have been mostly for proof of concept. In particular, for large problems
with millions of edges, a strong speed-up with multiple threads seems possible
even for instances that do not require any branching.

The author of this thesis hopes that the free availability of SCIP-Jack for aca-
demic purposes (which contrasts the fully proprietary nature of the previous leading
SPG solver) will facilitate further algorithmic advancements. In particular so, the
possibility to use the powerful reduction techniques included in SCIP-Jack for pre-
processing. Indeed, previous versions of these reduction techniques have already been
used as a basis for other algorithms, see Iwata and Shigemura (2019). Finally, the

186 Chapter 7. Conclusion and outlook

author hopes that the availability of SCIP-Jack will continue to foster the successful
use of Steiner tree and related problems in real-world applications.

List of Abbreviations and Names

See Table 1 for a list of Steiner tree problem types and their abbreviations.

BFS Breadth-first-search

CPLEX . . . Optimization software for LPs, MIPs, and (MI)QPs

DFS Depth-first-search

FiberSCIP . Shared-memory parallelization extension of SCIP

IP Integer program/programming

LP Linear program/programming

MIP Mixed-integer (linear) program/programming

MST Minimum spanning tree

ParaSCIP . . Distributed-memory parallelization extension of SCIP

SCIP Optimization software for MIPs, and for more general problems

SCIP-Jack . Optimization software for Steiner tree and related problems (de-
veloped as part of this thesis)

SoPlex . . . Optimization software for LPs

UG Framework to parallelize branch-and-bound based optimization
software

187

Bibliography

The page numbers in brackets at the end of each citation refer to the text.

T. Achterberg. Conflict analysis in mixed integer programming. Discrete Optimization, 4
(1):4–20, 2007a. doi: 10.1016/j.disopt.2006.10.006. [42]

T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität Berlin,
2007b. [12, 57]

T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Programming
Computation, 1(1):1–41, 2009. doi: 10.1007/s12532-008-0001-1. [167]

M. Akhmedov, I. Kwee, and R. Montemanni. A divide and conquer matheuristic algorithm
for the Prize-collecting Steiner Tree Problem. Computers & Operations Research, 70:18 –
25, 2016. doi: 10.1016/j.cor.2015.12.015. [116]

M. Akhmedov, L. Galbusera, R. Montemanni, F. Bertoni, and I. Kwee. A prize-collecting
Steiner tree application for signature selection to stratify diffuse large b-cell lymphoma
subtypes. bioRxiv, page 272294, 2018. [116]

N. Alcaraz, J. Pauling, R. Batra, E. Barbosa, A. Junge, A. G. Christensen, V. Azevedo, H. J.
Ditzel, and J. Baumbach. Keypathwayminer 4.0: condition-specific pathway analysis by
combining multiple omics studies and networks with cytoscape. BMC Systems Biology, 8
(1):99, Aug 2014. doi: 10.1186/s12918-014-0099-x. [69]

E. Althaus and M. Blumenstock. Algorithms for the Maximum Weight Connected
Subgraph and Prize-collecting Steiner Tree Problems. Unpublished manuscript at
http://dimacs11.cs.princeton.edu/workshop.html, 2014. [85, 111]

E. Álvarez-Miranda, I. Ljubić, and P. Mutzel. The maximum weight connected subgraph
problem. In Facets of Combinatorial Optimization, pages 245–270. Springer Berlin Hei-
delberg, 2013a. doi: 10.1007/978-3-642-38189-8 11. [69, 70, 77, 83, 105, and 109]

E. Álvarez-Miranda, I. Ljubić, and P. Mutzel. The Rooted Maximum Node-Weight Connected
Subgraph Problem, pages 300–315. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013b.
ISBN 978-3-642-38171-3. doi: 10.1007/978-3-642-38171-3 20. [70, 72, 73, 208, and 209]

Y. P. Aneja. An integer linear programming approach to the Steiner problem in graphs.
Networks, 10(2):167–178, 1980. doi: 10.1002/net.3230100207. [19]

D. L. Applegate, R. E. Bixby, V. Chvatál, and W. J. Cook. The Traveling Salesman Problem:
A Computational Study. Princeton University Press, 2006. ISBN 9780691129938. [19]

189

190 Bibliography

A. Archer, M. Bateni, M. Hajiaghayi, and H. Karloff. Improved approximation algorithms
for prize-collecting Steiner tree and TSP. SIAM Journal on Computing, 40(2):309–332,
2011. doi: 10.1137/090771429. [116]

C. Backes, A. Rurainski, G. Klau, O. Müller, D. Stöckel, A. Gerasch, J. Küntzer, D. Maisel,
N. Ludwig, M. Hein, A. Keller, H. Burtscher, M. Kaufmann, E. Meese, and H.-P. Lenhof.
An integer linear programming approach for finding deregulated subgraphs in regulatory
networks. Nucleic Acids Res, 40(6):e43, 2011. doi: 10.1093/nar/gkr1227. [70, 161]

M. Ball, W. Liu, and W. Pulleyblank. Two terminal Steiner tree polyhedra. In Contributions
to Operations Research and Economics – The Twentieth Anniversary of CORE, pages
251–284, Cambridge, MA, 1989. MIT Press. [21]

J. Banfi. Multirobot exploration of communication-restricted environments. PhD thesis,
Politecnico di Milano, 2018. [69]

M. Bateni, C. Chekuri, A. Ene, M. Hajiaghayi, N. Korula, and D. Marx. Prize-collecting
Steiner problems on planar graphs. In Proceedings of the 22nd Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011, pages 1028–1049, 2011. doi: 10.1137/1.
9781611973082.79. [116]

J. Beasley. An SST-based algorithm for the Steiner problem in graphs. Networks, 19:1–16,
1989. doi: 10.1002/net.3230190102. [16]

J. E. Beasley. An algorithm for the Steiner problem in graphs. Networks, 14(1):147–159,
1984. doi: 10.1002/net.3230140112. [16]

M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest common
ancestors in trees and directed acyclic graphs. Journal of Algorithms, 57(2):75–94, 2005.
doi: 10.1016/j.jalgor.2005.08.001. [172]

P. Berman and V. Ramaiyer. Improved approximations for the Steiner tree problem. Journal
of Algorithms, 17(3):381–408, 1994. doi: 10.1006/jagm.1994.1041. [16]

M. W. Bern and P. E. Plassmann. The Steiner Problem with Edge Lengths 1 and 2.
Information Processing Letters, 32(4):171–176, 1989. doi: 10.1016/0020-0190(89)90039-2.
[15]

S. Beyer and M. Chimani. The influence of preprocessing on steiner tree approximations.
In Z. Lu, D. Kim, W. Wu, W. Li, and D.-Z. Du, editors, Combinatorial Optimization
and Applications, pages 601–616, Cham, 2015. Springer International Publishing. doi:
10.1007/978-3-319-26626-8 44. [26]

S. Beyer and M. Chimani. Strong Steiner tree approximations in practice. J. Exp. Algorith-
mics, 24(1):1.7:1–1.7:33, Jan. 2019. doi: 10.1145/3299903. [16]

M. Bezenšek and B. Robič. A survey of parallel and distributed algorithms for the steiner
tree problem. International Journal of Parallel Programming, 42(2):287–319, 2014. doi:
10.1007/s10766-013-0243-z. [178]

I. Biazzo, A. Braunstein, and R. Zecchina. Performance of a cavity-method-based algorithm
for the prize-collecting Steiner tree problem on graphs. Phys. Rev. E, 86:026706, Aug
2012. doi: 10.1103/PhysRevE.86.026706. [146]

D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. P. Williamson. A note on the prize
collecting traveling salesman problem. Mathematical Programming, 59:413–420, 1993. doi:
10.1007/BF01581256. [116]

M. D. Biha, H. L. M. Kerivin, and P. H. Ng. Polyhedral study of the connected subgraph
problem. Discrete Mathematics, 338(1):80–92, 2015. doi: 10.1016/j.disc.2014.08.026. [70]

Bibliography 191

G. Bolukbasi and A. S. Kocaman. A prize collecting Steiner tree approach to least cost
evaluation of grid and off-grid electrification systems. Energy, 160:536 – 543, 2018. doi:
10.1016/j.energy.2018.07.029. [116]

J. A. Bondy and U. S. R. Murty. Graph Theory. Springer London, 2008. doi: 10.1007/
978-1-84628-970-5. [9]

É. Bonnet and F. Sikora. The PACE 2018 Parameterized Algorithms and Computational
Experiments Challenge: The Third Iteration. In C. Paul and M. Pilipczuk, editors,
13th International Symposium on Parameterized and Exact Computation (IPEC 2018),
volume 115 of Leibniz International Proceedings in Informatics (LIPIcs), pages 26:1–
26:15, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.IPEC.2018.26. [7, 18, 62, and 168]

G. Borradaile, P. Klein, and C. Mathieu. An O(n log n) approximation scheme for Steiner
tree in planar graphs. ACM Transactions on Algorithms (TALG), 5(3):1–31, 2009. doi:
10.1145/1541885.1541892. [16]

A. Braunstein and A. Muntoni. Practical optimization of Steiner trees via the cavity method.
Journal of Statistical Mechanics: Theory and Experiment, 2016(7):073302, jul 2016. doi:
10.1088/1742-5468/2016/07/073302. [116, 148]

M. Brazil and M. Zachariasen. Optimal interconnection trees in the plane: theory, algorithms
and applications. Algorithms and Combinatorics. Springer, 2015. ISBN 978-3-319-13914-2.
[157]

M. Brazil, R. L. Graham, D. A. Thomas, and M. Zachariasen. On the History of the
Euclidean Steiner Tree Problem. Archive for History of Exact Sciences, 68:327–354, 2014.
doi: 10.1007/s00407-013-0127-z. [1, 14]

R. E. Bryant and D. R. O’Hallaron. Computer Systems: A Programmer’s Perspective.
Addison-Wesley Publishing Company, USA, 3rd edition, 2015. [167]

A. Buchanan, J. S. Sung, S. Butenko, and E. L. Pasiliao. An integer programming approach
for fault-tolerant connected dominating sets. INFORMS Journal on Computing, 27(1):
178–188, 2015. doi: 10.1287/ijoc.2014.0619. [70]

A. Buchanan, Y. Wang, and S. Butenko. Algorithms for node-weighted Steiner tree and
maximum-weight connected subgraph. Networks, 72(2):238–248, 2018. doi: 10.1002/net.
21825. [15, 70, 120, 121, 122, 156, and 209]

O. Burdakov, P. Doherty, and J. Kvarnström. Local Search for Hop-constrained Directed
Steiner Tree Problem with Application to UAV-based Multi-target Surveillance. In
Butenko, S., Pasiliao, E.L., Shylo, and V., editors, Examining Robustness and Vulnerability
of Networked Systems, volume 37 of NATO Science for Peace and Security Series - D:
Information and Communication Security, pages 26–50. IOS Press, 2014. doi: 10.3233/
978-1-61499-391-9-26. [164, 165]

J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. Steiner Tree Approximation via Iterative
Randomized Rounding. The Journal of the ACM, 60(1):6, 2013. doi: 10.1145/2432622.
2432628. [16, 19, 157, and 184]

H. Cambazard and N. Catusse. Fixed-parameter algorithms for rectilinear Steiner tree and
rectilinear traveling salesman problem in the plane. European Journal of Operational
Research, 270(2):419–429, 2018. doi: 10.1016/j.ejor.2018.03.042. [157]

S. A. Canuto, M. G. C. Resende, and C. C. Ribeiro. Local search with perturbations for
the prize-collecting Steiner tree problem in graphs. Networks, 38(1):50–58, 2001. doi:
10.1002/net.1023. [116]

192 Bibliography

A. Caprara and M. Fischetti. {0, 1/2}-chvátal-gomory cuts. Mathematical Programming,
74(3):221–235, 1996. doi: 10.1007/BF02592196. [169]

R. Carvajal, M. Constantino, M. Goycoolea, J. P. Vielma, and A. Weintraub. Imposing
connectivity constraints in forest planning models. Operations Research, 61(4):824–836,
2013. doi: 10.1287/opre.2013.1183. [70]

M. Charikar, C. Chekuri, T.-y. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li. Approximation
Algorithms for Directed Steiner Problems. In Proceedings of the Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’98, pages 192–200, Philadelphia, PA,
USA, 1998. Society for Industrial and Applied Mathematics. ISBN 0-89871-410-9. [154]

C. Chen and K. Grauman. Efficient activity detection with max-subgraph search. In 2012
IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA,
June 16-21, 2012, pages 1274–1281, 2012. doi: 10.1109/CVPR.2012.6247811. [69]

Y. H. Chen. The bottleneck selected-internal and partial terminal Steiner tree problems.
Networks, 68(4):331–339, 2016. doi: 10.1002/net.21713. [152]

X. Cheng and D.-Z. Du. Steiner trees in industry, volume 11. Springer Science & Business
Media, 2004. doi: 10.1007/0-387-23830-1 4. [14]

B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel method for the
maximum flow problem. Algorithmica, 19(4):390–410, 1997. doi: 10.1007/PL00009180.
[178]

M. Chimani, P. Mutzel, and B. Zey. Improved Steiner tree algorithms for bounded treewidth.
Journal of Discrete Algorithms, 16:67 – 78, 2012. doi: 10.1016/j.jda.2012.04.016. Selected
papers from the 22nd International Workshop on Combinatorial Algorithms (IWOCA
2011). [15, 54]

F. Chin and D. Houck. Algorithms for updating minimal spanning trees. Journal of
Computer and System Sciences, 16(3):333–344, 1978. doi: 10.1016/0022-0000(78)90022-3.
[175, 176]

M. Chleb́ık and J. Chleb́ıková. The Steiner tree problem on graphs: Inapproximability results.
Theoretical Computer Science, 406(3):207–214, 2008. doi: 10.1016/j.tcs.2008.06.046. [15]

S. Chopra and M. Rao. The Steiner tree problem I: Formulations, compositions and extension
of facets. Mathematical Programming, 64(2):209–229, 1994. doi: 10.1007/bf01582573. [20]

S. Chopra, E. R. Gorres, and M. Rao. Solving the Steiner tree problem on a graph using
branch and cut. ORSA Journal on Computing, 4(3):320–335, 1992. doi: 10.1287/ijoc.4.3.
320. [16]

S. A. Chowdhury, S. Shackney, K. Heselmeyer-Haddad, T. Ried, A. A. Schäffer, and
R. Schwartz. Phylogenetic analysis of multiprobe fluorescence in situ hybridiza-
tion data from tumor cell populations. Bioinformatics, 29(13):189–198, 2013. doi:
10.1093/bioinformatics/btt205. [157]

K. Ciebiera, P. Godlewski, P. Sankowski, and P. Wygocki. Approximation Algorithms for
Steiner Tree Problems Based on Universal Solution Frameworks. Computing Research
Repository, abs/1410.7534, 2014. URL http://arxiv.org/abs/1410.7534. [16]

D. Cieslik. Steiner minimal trees, volume 23. Springer, 1998. doi: 10.1007/978-1-4757-6585-4.
[14]

J. Conrad, C. P. Gomes, W.-J. van Hoeve, A. Sabharwal, and J. Suter. Connections in
networks: Hardness of feasibility versus optimality. In P. Van Hentenryck and L. Wolsey,

http://arxiv.org/abs/1410.7534

Bibliography 193

editors, Integration of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems, pages 16–28, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg. ISBN 978-3-540-72397-4. [73]

A. Costa, J.-F. Cordeau, and G. Laporte. Steiner Tree Problems With Profits. INFOR:
Information Systems and Operational Research, 44(2):99–115, 2006. doi: 10.1080/03155986.
2006.11732743. [116]

H. Courant, C. Courant, R. Courant, H. Robbins, I. Stewart, P. Stewart, and P. Robbins.
What is Mathematics?: An Elementary Approach to Ideas and Methods. Oxford Paper-
backs. Oxford University Press, 1941. [14]

A. S. da Cunha, A. Lucena, N. Maculan, and M. G. Resende. A relax-and-cut algorithm
for the prize-collecting Steiner problem in graphs. Discrete Applied Mathematics, 157
(6):1198 – 1217, 2009. doi: 10.1016/j.dam.2008.02.014. Reformulation Techniques and
Mathematical Programming. [116]

T. A. Davis. Direct methods for sparse linear systems. SIAM, 2006. doi: 10.1137/1.
9780898718881. [169]

M. P. de Aragão and R. F. Werneck. On the Implementation of MST-based Heuristics for the
Steiner Problem in Graphs. In Proceedings of the 4th International Workshop on Algorithm
Engineering and Experiments, pages 1–15. Springer, 2002. doi: 10.1007/3-540-45643-0 1.
[51, 106]

M. P. de Aragão, E. Uchoa, and R. F. Werneck. Dual heuristics on the exact solution
of large Steiner problems. Electronic Notes in Discrete Mathematics, 7:150 – 153, 2001.
doi: 10.1016/S1571-0653(04)00247-1. Brazilian Symposium on Graphs, Algorithms and
Combinatorics. [17]

B. R. de Supinski, T. R. W. Scogland, A. Duran, M. Klemm, S. M. Bellido, S. L. Olivier,
C. Terboven, and T. G. Mattson. The Ongoing Evolution of OpenMP. Proceedings of
the IEEE, 106(11):2004–2019, Nov 2018. doi: 10.1109/JPROC.2018.2853600. [178]

E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1(1):
269–271, Dec. 1959. doi: 10.1007/BF01386390. [125]

B. Dilkina and C. P. Gomes. Solving connected subgraph problems in wildlife conservation.
In Proceedings of the 7th International Conference on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems, CPAIOR’10, pages
102–116, Berlin, Heidelberg, 2010. Springer-Verlag. doi: 10.1007/978-3-642-13520-0 14.
[69, 73]

DIMACS. 11th DIMACS Challenge. http://dimacs11.zib.de/, 2015. Accessed: January
10. 2020. [25, 64, 109, 116, 146, 148, and 168]

M. Dittrich, G. Klau, A. Rosenwald, T. Dandekar, and T. Müller. Identifying functional
modules in protein-protein interaction networks: An integrated exact approach. Bioinfor-
matics (Oxford, England), 24:i223–31, 08 2008. doi: 10.1093/bioinformatics/btn161. [69,
105, 109, 121, and 146]

M. Dom, D. Lokshtanov, and S. Saurabh. Kernelization Lower Bounds Through Colors and
IDs. ACM Transactions on Algorithms, 11(2), Oct. 2014. doi: 10.1145/2650261. [15]

S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks, 1(3):195–207,
1971. doi: 10.1002/net.3230010302. [15, 16, 17, 27, 54, 118, and 209]

L. M. A. Drummond, M. Santos, and E. Uchoa. A distributed dual ascent algorithm for
Steiner problems in multicast routing. Networks, 53(2):170–183, 2009. doi: 10.1002/net.
20276. [179]

http://dimacs11.zib.de/

194 Bibliography

D.-Z. Du, J. Smith, and J. H. Rubinstein. Advances in Steiner trees, volume 6. Springer,
2000. doi: 10.1007/978-1-4757-3171-2. [14]

C. Duin. Steiner Problems in Graphs. PhD thesis, University of Amsterdam, 1993. [16, 17,
20, 21, 25, 26, 33, 35, 38, 39, 71, 86, 91, 100, 136, and 168]

C. Duin. Preprocessing the Steiner Problem in Graphs, pages 175–233. Springer US, Boston,
MA, 2000. doi: 10.1007/978-1-4757-3171-2\ 10. [43, 173]

C. Duin and A. Volgenant. An edge elimination test for the Steiner problem in graphs.
Operations Research Letters, 8(2):79 – 83, 1989a. doi: 10.1016/0167-6377(89)90005-9. [16,
27, and 128]

C. Duin and S. Voss. Efficient path and vertex exchange in Steiner tree algorithms. Networks,
29(2):89–105, 1997. doi: 10.1002/(sici)1097-0037(199703)29:2〈89::aid-net3〉3.0.co;2-7. [16,
51, and 171]

C. W. Duin and A. Volgenant. Reduction tests for the Steiner problem in graphs. Networks,
19(5):549–567, 1989b. doi: 10.1002/net.3230190506. [16, 32, 34, 35, 55, 130, and 171]

C. W. Duin, A. Volgenant, and S. Voss. Solving group Steiner problems as Steiner
problems. European Journal of Operational Research, 154(1):323–329, 2004. doi:
10.1016/s0377-2217(02)00707-5. [163]

C. El-Arbi. Une heuristique pour le problème de l’arbre de Steiner. RAIRO-Operations
Research, 12(2):207–212, 1978. [16]

M. El-Kebir and G. W. Klau. Solving the Maximum-Weight Connected Subgraph Problem
to Optimality. Computing Research Repository, abs/1409.5308, 2014. [85, 86, 93, 94, 105,
and 111]

J. M. Elble. Computational experience with linear optimization and related problems. PhD
thesis, University of Illinois at Urbana-Champaign, 2010. [170]

N. Emanet. The Rectilinear Steiner Tree Problem. Lambert Academic Publishing, 2010.
[157]

R. E. Erickson, C. L. Monma, and A. F. Veinott. Send-and-split method for minimum-
concave-cost network flows. Mathematics of Operations Research, 12(4):634–664, 1987.
doi: 10.1287/moor.12.4.634. [15, 18, and 54]

J. Feigenbaum, C. H. Papadimitriou, and S. Shenker. Sharing the cost of multicast
transmissions. Journal of Computer and System Sciences, 63(1):21 – 41, 2001. doi:
10.1006/jcss.2001.1754. [115]

A. E. Feldmann, S. Karthik C., E. Lee, and P. Manurangsi. A Survey on Approximation in Pa-
rameterized Complexity: Hardness and Algorithms. arXiv e-prints, art. arXiv:2006.04411,
June 2020. [16]

P. Feofiloff, C. G. Fernandes, C. E. Ferreira, and J. C. de Pina. Primal-dual approximation
algorithms for the prize-collecting Steiner tree problem. Inf. Process. Lett., 103(5):195–202,
Aug. 2007. doi: 10.1016/j.ipl.2007.03.012. [116]

C. E. Ferreira and F. M. de Oliveira Filho. New reduction techniques for the group steiner
tree problem. SIAM Journal on Optimization, 17(4):1176–1188, 2007. doi: 10.1137/
040610891. [163]

J. K. Fichte, M. Hecher, and A. Schidler. Solving the Steiner Tree Problem with few
Terminals. arXiv preprint arXiv:2011.04593, 2020. [18]

Bibliography 195

B. Filipecki and M. Van Vyve. Stronger path-based extended formulation for the Steiner
tree problem. Networks, 75(1):3–17, 2020. doi: 10.1002/net.21901. [25, 184]

J. Fischer and V. Heun. Theoretical and practical improvements on the RMQ-problem,
with applications to LCA and LCE. In Annual Symposium on Combinatorial Pattern
Matching, pages 36–48. Springer, 2006. [172]

M. Fischetti, M. Leitner, I. Ljubić, M. Luipersbeck, M. Monaci, M. Resch, D. Salvagnin,
and M. Sinnl. Thinning out Steiner trees: a node-based model for uniform edge
costs. Mathematical Programming Computation, 9(2):203–229, Jun 2017. doi: 10.1007/
s12532-016-0111-0. [17, 20, 23, 25, 26, 66, 67, 70, 78, 111, 116, 117, 145, 148, 159, 160,
and 185]

R. Floren. A note on “a faster approximation algorithm for the steiner problem in graphs”.
Information Processing Letters, 38(4):177 – 178, 1991. doi: 10.1016/0020-0190(91)90096-Z.
[171]

F. V. Fomin, F. Grandoni, D. Kratsch, D. Lokshtanov, and S. Saurabh. Computing optimal
Steiner trees in polynomial space. Algorithmica, 65(3):584–604, 2013. doi: 10.1002/net.
3230200606. [15]

F. V. Fomin, P. Kaski, D. Lokshtanov, F. Panolan, and S. Saurabh. Parameterized single-
exponential time polynomial space algorithm for steiner tree. SIAM Journal on Discrete
Mathematics, 33(1):327–345, 2019a. doi: 10.1137/17M1140030. [15]

F. V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. Kernelization: theory of parame-
terized preprocessing. Cambridge University Press, 2019b. [2]

F. V. Fomin, D. Lokshtanov, S. Kolay, F. Panolan, and S. Saurabh. Subexponential al-
gorithms for rectilinear Steiner tree and arborescence problems. ACM Transactions on
Algorithms (TALG), 16(2):1–37, 2020. [157]

H. Franz. Connected subgraphs with budget constraints: formulations and algorithms.
Master’s thesis, TU Berlin, 2019. [161]

Z. Fu and J. Hao. Knowledge-guided local search for the prize-collecting Steiner tree problem
in graphs. Knowl.-Based Syst., 128:78–92, 2017a. doi: 10.1016/j.knosys.2017.04.010. [116,
145, and 148]

Z. Fu and J.-K. Hao. Swap-vertex based neighborhood for Steiner tree problems. Mathe-
matical Programming Computation, 9:297–320, 2017b. doi: 10.1007/s12532-016-0116-8.
[105]

B. Fuchs, W. Kern, D. Molle, S. Richter, P. Rossmanith, and X. Wang. Dynamic programming
for minimum Steiner trees. Theory of Computing Systems, 41(3):493–500, 2007a. doi:
10.1007/s00224-007-1324-4. [15]

B. Fuchs, W. Kern, and X. Wang. Speeding up the dreyfus–wagner algorithm for minimum
Steiner trees. Mathematical methods of operations research, 66(1):117–125, 2007b. doi:
10.1007/s00186-007-0146-0. [15]

A. Fügenschuh and M. Fügenschuh. Integer linear programming models for topology opti-
mization in sheet metal design. Mathematical Methods of Operations Research, 68(2):313
– 331, 2008. [72]

G. Gamrath, T. Koch, S. Maher, D. Rehfeldt, and Y. Shinano. SCIP-Jack - A solver for STP
and variants with parallelization extensions. Mathematical Programming Computation, 9
(2):231 – 296, 2017. doi: 10.1007/s12532-016-0114-x. [17, 116, 142, 148, and 165]

196 Bibliography

G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse, P. Gemander,
A. Gleixner, L. Gottwald, K. Halbig, G. Hendel, C. Hojny, T. Koch, P. L. Bodic, S. J. Maher,
F. Matter, M. Miltenberger, E. Mühmer, B. Müller, M. Pfetsch, F. Schlösser, F. Serrano,
Y. Shinano, C. Tawfik, S. Vigerske, F. Wegscheider, D. Weninger, and J. Witzig. The
scip optimization suite 7.0. Technical Report 20-10, ZIB, Takustr. 7, 14195 Berlin, 2020.
[7, 11, and 167]

M. Garey and D. Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM
Journal of Applied Mathematics, 32:826–834, 1977. doi: 10.1137/0132071. [157]

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979. ISBN 0716710447.
[37, 90, 97, and 120]

R. S. Garfinkel and G. L. Nemhauser. Optimal political districting by implicit enumeration
techniques. Management Science, 16(8):B–495, 1970. doi: 10.1287/mnsc.16.8.b495. [70]

D. Gaul and D. R. Schmidt. Chvátal–gomory cuts for the steiner tree problem. Discrete
Applied Mathematics, 291:188–200, 2021. doi: 10.1016/j.dam.2020.12.016. [184]

E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathe-
matics, 16(1):1–29, 1968. doi: 10.1137/0116001. [16]

A. Gionis, M. Mathioudakis, and A. Ukkonen. Bump hunting in the dark: Local discrepancy
maximization on graphs. IEEE Transactions on Knowledge and Data Engineering, 29(3):
529–542, 2017. doi: 10.1109/icde.2015.7113364. [116]

A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L. Gottwald, G. Hendel,
C. Hojny, T. Koch, M. E. Lübbecke, S. J. Maher, M. Miltenberger, B. Müller, M. E.
Pfetsch, C. Puchert, D. Rehfeldt, F. Schlösser, C. Schubert, F. Serrano, Y. Shinano, J. M.
Viernickel, M. Walter, F. Wegscheider, J. T. Witt, and J. Witzig. The scip optimization
suite 6.0. Technical Report 18-26, ZIB, Takustr. 7, 14195 Berlin, 2018. [11, 12]

M. X. Goemans and Y. Myung. A catalog of Steiner tree formulations. Networks, 23(1):
19–28, 1993. doi: 10.1002/net.3230230104. [19, 20, 72, 78, and 142]

M. X. Goemans and D. P. Williamson. A general approximation technique for con-
strained forest problems. SIAM J. Comput., 24(2):296–317, Apr. 1995. doi: 10.1137/
S0097539793242618. [115, 116]

M. X. Goemans, N. Olver, T. Rothvoß, and R. Zenklusen. Matroids and Integrality Gaps
for Hypergraphic Steiner Tree Relaxations. In Proceedings of the Forty-Fourth Annual
ACM Symposium on Theory of Computing, STOC ’12, page 1161–1176, New York, NY,
USA, 2012. Association for Computing Machinery. doi: 10.1145/2213977.2214081. [16]

M. Grötschel and C. L. Monma. Integer Polyhedra Arising from Certain Network Design
Problems with Connectivity Constraints. SIAM Journal on Discrete Mathematics, 3(4):
502–523, 1990. doi: 10.1137/0403043. [20]

S. Guha and S. Khuller. Improved Methods for Approximating Node Weighted Steiner Trees
and Connected Dominating Sets. Information and Computation, 150(1):57–74, 1999. doi:
10.1006/inco.1998.2754. [156]

S. L. Hakimi. Steiner’s problem in graphs and its implications. Networks, 1(2):113–133,
1971. doi: 10.1002/net.3230010203. [14, 15, and 120]

E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In L. L. Larmore and
M. X. Goemans, editors, STOC, pages 585–594. ACM, 2003. ISBN 1-58113-674-9. doi:
10.1145/780542.780628. [154]

Bibliography 197

M. Hanan. On Steiner’s problem with rectilinear distance. SIAM Journal of Applied
Mathematics, 14(2):255–265, 1966. doi: 10.1137/0114025. [157]

J. Hao and J. B. Orlin. A faster algorithm for finding the minimum cut in a graph. In G. N.
Frederickson, editor, Proceedings of the Third Annual ACM/SIGACT-SIAM Symposium
on Discrete Algorithms, 27-29 January 1992, Orlando, Florida, USA, pages 165–174.
ACM/SIAM, 1992. [177]

C. Hegde, P. Indyk, and L. Schmidt. A fast, adaptive variant of the goemans-williamson
scheme for the prize-collecting Steiner tree problem. In Workshop of the 11th DIMACS
Implementation Challenge. Workshop of the 11th DIMACS Implementation Challenge,
2014. [58, 109]

S. Held, B. Korte, D. Rautenbach, and J. Vygen. Combinatorial Optimization in VLSI
Design. Combinatorial Optimization-Methods and Applications, 31:33–96, 2011. [14]

S. C. Hidayati, K. Hua, Y. Tsao, H. Shuai, J. Liu, and W. Cheng. Garment detectives:
Discovering clothes and its genre in consumer photos. In 2019 IEEE Conference on
Multimedia Information Processing and Retrieval (MIPR), pages 471–474, March 2019.
doi: 10.1109/MIPR.2019.00095. [116]

S. Hougardy and H. J. Prömel. A 1.598 approximation algorithm for the Steiner problem in
graphs. In Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms,
pages 448–453, 1999. [16]

S. Hougardy, J. Silvanus, and J. Vygen. Dijkstra meets Steiner: a fast exact goal-oriented
Steiner tree algorithm. Mathematical Programming Computation, 9(2):135–202, 2017. doi:
10.1007/s12532-016-0110-1. [17, 18, and 54]

S.-Y. Hsieh and H.-M. Gao. On the partial terminal Steiner tree problem. The Journal of
Supercomputing, 41(1):41–52, Jul 2007. doi: 10.1007/s11227-007-0102-z. [152]

R. Hušek, D. Knop, and T. Masař́ık. Approximation algorithms for Steiner tree based on
star contractions: A unified view. arXiv preprint arXiv:2002.03583, 2020. [18]

F. Hwang, D. Richards, and P. Winter. The Steiner Tree Problem. Annals of Discrete
Mathematics. Elsevier Science, 1992. [1, 10, 14, 15, 39, 48, 51, 57, 86, 130, 157, 163,
and 173]

F. K. Hwang and D. S. Richards. Steiner tree problems. Networks, 22(1):55–89, 1992. doi:
10.1002/net.3230220105. [16]

IBM. Cplex, 2020. URL https://www.ibm.com/analytics/cplex-optimizer. [11]

T. Ideker, O. Ozier, B. Schwikowski, and A. F. Siegel. Discovering regulatory and signalling
circuits in molecular interaction networks. Bioinformatics, 18(1):S233–S240, 07 2002. doi:
10.1093/bioinformatics/18.suppl 1.s233. [116]

Y. Iwata and T. Shigemura. Separator-Based Pruned Dynamic Programming for Steiner
Tree. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
1520–1527, 2019. doi: 10.1609/aaai.v33i01.33011520. [7, 18, 54, and 185]

D. S. Johnson. The np-completeness column: An ongoing guide. J. Algorithms, 6(1):145–159,
1985. doi: 10.1016/0196-6774(85)90025-2. [69]

D. S. Johnson, M. Minkoff, and S. Phillips. The Prize Collecting Steiner Tree Problem:
Theory and Practice. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’00, pages 760–769, Philadelphia, PA, USA, 2000. Society for
Industrial and Applied Mathematics. ISBN 0-89871-453-2. [115, 116, 146, and 147]

https://www.ibm.com/analytics/cplex-optimizer

198 Bibliography

J. Johnston, R. Kelley, T. Crawford, D. Morton, R. Agarwala, T. Koch, A. Schäffer, C. Fran-
comano, and L. Biesecker. A novel nemaline myopathy in the Amish caused by a mutation
in troponin T1. American Journal of Human Genetics, pages 814–821, October 2000. doi:
10.1002/mus.24528. [154]

D. Juhl, D. M. Warme, P. Winter, and M. Zachariasen. The GeoSteiner software package
for computing Steiner trees in the plane: an updated computational study. Mathematical
Programming Computation, 10(4):487–532, 2018. doi: 10.1007/s12532-018-0135-8. [58,
61, 66, 157, and 158]

R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher,
editors, Complexity of Computer Computations, pages 85–103. Plenum Press, 1972. doi:
10.1007/978-1-4684-2001-2 9. [14]

M. Karpinski and A. Zelikovsky. New approximation algorithms for the Steiner tree problems.
Journal of Combinatorial Optimization, 1(1):47–65, 1997. [16]

J. Kepner and J. Gilbert. Graph algorithms in the language of linear algebra. SIAM, 2011.
doi: 10.1137/1.9780898719918. [169]

J. H. Kingston and N. P. Sheppard. On reductions for the Steiner Problem in Graphs.
Journal of Discrete Algorithms, 1(1):77 – 88, 2003. doi: 10.1016/S1570-8667(03)00008-X.
[12, 55]

S. Kisfaludi-Bak, J. Nederlof, and E. J. v. Leeuwen. Nearly eth-tight algorithms for planar
steiner tree with terminals on few faces. ACM Transactions on Algorithms, 16(3), June
2020a. doi: 10.1145/3371389. [15]

S. Kisfaludi-Bak, J. Nederlof, and E. J. v. Leeuwen. Nearly ETH-tight algorithms for planar
Steiner tree with terminals on few faces. ACM Transactions on Algorithms (TALG), 16
(3):1–30, 2020b. doi: 10.1145/3371389. [15]

G. W. Klau, I. Ljubić, A. Moser, P. Mutzel, P. Neuner, U. Pferschy, G. Raidl, and
R. Weiskircher. Combining a memetic algorithm with integer programming to solve
the prize-collecting Steiner tree problem. In K. Deb, editor, Genetic and Evolutionary
Computation – GECCO 2004, pages 1304–1315, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg. ISBN 978-3-540-24854-5. [116]

P. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted
Steiner trees. Journal of Algorithms, 19(1):104 – 115, 1995. doi: 10.1006/jagm.1995.1029.
[122]

F. Klimm, E. M. Toledo, T. Monfeuga, F. Zhang, C. M. Deane, and G. Reinert. Func-
tional module detection through integration of single-cell rna sequencing data with
protein–protein interaction networks. BMC genomics, 21(1):1–10, 2020. doi: 10.1186/
s12864-020-07144-2. [69]

T. Koch. Jack-III: Ein Branch & Cut-Verfahren zur Lösung des gewichteten Steiner-
baumproblems in Graphen. Master’s thesis, Technische Universität Berlin, 1995. [169]

T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Networks, 32:
207–232, 1998. doi: 10.1002/(SICI)1097-0037(199810)32:3\%3C207::AID-NET5\%3E3.0.
CO;2-O. [16, 17, 20, 21, 26, 56, 58, 106, 167, 177, and 178]

T. Koch, A. Martin, and S. Voß. SteinLib: An updated library on Steiner tree problems in
graphs. In D.-Z. Du and X. Cheng, editors, Steiner Trees in Industries, pages 285–325.
Kluwer, 2001. ISBN 1-402-00099-5. [17, 22, 57, and 168]

Bibliography 199

T. Koch, A. Martin, and M. E. Pfetsch. Progress in Academic Computational Integer
Programming. In M. Jünger and G. Reinelt, editors, Facets of Combinatorial Optimization,
pages 483–506. Springer, 2013. doi: 10.1007/978-3-642-38189-8 19. [2]

B. Korte, L. Lovász, and R. Schrader. Greedoids, volume 4. Springer Science & Business
Media, 2012. [76]

B. Korte, J. Vygen, B. Korte, and J. Vygen. Combinatorial optimization. Springer, 2018.
[14]

L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta informatica,
15(2):141–145, 1981. doi: 10.1007/bf00288961. [16]

L. T. Kou. On efficient implementation of an approximation algorithm for the Steiner tree
problem. Acta informatica, 27(4):369–380, 1990. doi: 10.1007/bf00264613. [16]

M. Leitner, I. Ljubic, M. Luipersbeck, M. Prossegger, and M. Resch. New Real-world
Instances for the Steiner Tree Problem in Graphs. Technical report, ISOR, Uni Wien,
2014. [14, 58]

M. Leitner, I. Ljubic, M. Luipersbeck, and M. Sinnl. A Dual Ascent-Based Branch-and-
Bound Framework for the Prize-Collecting Steiner Tree and Related Problems. INFORMS
Journal on Computing, 30(2):402–420, 2018a. doi: 10.1287/ijoc.2017.0788. [70, 85, 93,
100, 105, 109, 111, 116, 117, 122, 142, 145, 146, 147, 148, and 156]

M. Leitner, I. Ljubic, M. Luipersbeck, and M. Sinnl. Decomposition methods for the two-
stage stochastic steiner tree problem. Computational Optimization and Applications, 69
(3):713–752, 2018b. doi: 10.1007/s10589-017-9966-x. [21]

A. Y. Levin. Algorithm for the shortest connection of a group of graph vertices. In Doklady
Akademii Nauk, volume 200, pages 773–776. Russian Academy of Sciences, 1971. [15]

F. Liers, A. Martin, and S. Pape. Binary steiner trees: Structural results and an exact solution
approach. Discrete Optimization, 21:85 – 117, 2016. doi: 10.1016/j.disopt.2016.05.006.
[159]

W. Liu. A lower bound for the Steiner tree problem in directed graphs. Networks, 20(6):
765–778, 1990. doi: 10.1002/net.3230200606. [22]

I. Ljubic. Exact and Memetic Algorithms for Two Network Design Problems. PhD thesis,
Vienna University of Technology, 2004. [116, 146, and 147]

I. Ljubic. Solving Steiner Trees — Recent Advances, Challenges and Perspectives. Networks,
2020. accepted for publication. [7, 14, 51, 116, and 178]

I. Ljubic, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel, and M. Fischetti. An Algo-
rithmic Framework for the Exact Solution of the Prize-Collecting Steiner Tree Problem.
Mathematical Programming, 105(2-3):427–449, 2006. doi: 10.1007/s10107-005-0660-x. [21,
116, 117, 122, 136, and 146]

A. A. Loboda, M. N. Artyomov, and A. A. Sergushichev. Solving Generalized Maximum-
Weight Connected Subgraph Problem for Network Enrichment Analysis, pages 210–221.
Springer International Publishing, Cham, 2016. doi: 10.1007/978-3-319-43681-4 17. [69,
86, 109, and 111]

A. Lodi and A. Tramontani. Performance variability in mixed-integer programming. In
Theory Driven by Influential Applications, pages 1–12. INFORMS, 2013. doi: 10.1287/
educ.2013.0112. [12]

200 Bibliography

C. L. Lu, C. Y. Tang, and R. C.-T. Lee. The full Steiner tree problem. Theoretical Computer
Science, 306(1):55 – 67, 2003. doi: 10.1016/S0304-3975(03)00209-3. [152]

A. Lucena and J. E. Beasley. A branch and cut algorithm for the Steiner problem in
graphs. Networks, 31(1):39–59, 1998. doi: 10.1002/(SICI)1097-0037(199801)31:1〈39::
AID-NET5〉3.0.CO;2-L. [16]

T. L. Magnanti and L. A. Wolsey. Handbooks in Operations Research and Management
Science, volume Volume 7, chapter Chapter 9 Optimal trees, pages 503–615. Elsevier,
1995. [19, 20, 73, and 106]

D. Marx, M. Pilipczuk, and M. Pilipczuk. On Subexponential Parameterized Algorithms
for Steiner Tree and Directed Subset TSP on Planar Graphs. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS), pages 474–484, 2018. doi:
10.1109/FOCS.2018.00052. [15]

K. Mehlhorn. A Faster Approximation Algorithm for the Steiner Problem in Graphs.
Information Processing Letters, 27(3):125–128, 1988. doi: 10.1016/0020-0190(88)90066-x.
[16, 171]

Y.-F. Ming, S.-B. Chen, Y.-Q. Chen, and Z.-H. Fu. A fast vertex-swap operator for the
prize-collecting Steiner tree problem. In Y. Shi, H. Fu, Y. Tian, V. V. Krzhizhanovskaya,
M. H. Lees, J. Dongarra, and P. M. A. Sloot, editors, Computational Science – ICCS 2018,
pages 553–560, Cham, 2018. Springer International Publishing. ISBN 978-3-319-93701-4.
[116]

H. Mittelmann. Benchmarks for optimization software, 2020. http://plato.asu.edu/

bench.html. [12]

J. Moody and D. R. White. Structural cohesion and embeddedness: A hierarchical concept
of social groups. American sociological review, pages 103–127, 2003. [70]

A. Moss and Y. Rabani. Approximation algorithms for constrained for constrained node
weighted Steiner tree problems. In J. S. Vitter, P. G. Spirakis, and M. Yannakakis, editors,
STOC, pages 373–382. ACM, 2001. ISBN 1-58113-349-9. [156]

B. Müller, F. Serrano, and A. Gleixner. Using two-dimensional projections for stronger
separation and propagation of bilinear terms. SIAM Journal on Optimization, 30(2):1339
– 1365, 2020. doi: 10.1137/19M1249825. [65]

J. Nederlof. Fast polynomial-space algorithms using Möbius inversion: Improving on Steiner
tree and related problems. In International Colloquium on Automata, Languages, and
Programming, pages 713–725. Springer, 2009. doi: 10.1007/978-3-642-02927-1\ 59. [15]

J. Nederlof. Fast polynomial-space algorithms using inclusion-exclusion. Algorithmica, 65
(4):868–884, 2013. doi: 10.1007/s00453-012-9630-x. [22]

M. Noormohammadpour, C. S. Raghavendra, S. Rao, and S. Kandula. Dccast: Efficient
point to multipoint transfers across datacenters. In 9th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 17), Santa Clara, CA, July 2017. USENIX Associa-
tion. URL https://www.usenix.org/conference/hotcloud17/program/presentation/

noormohammadpour. [14]

P.-M. Olsson, J. Kvarnström, P. Doherty, O. Burdakov, and K. Holmberg. Generating
UAV communication networks for monitoring and surveillance. In In Proceedings of the
International Conference on Control, Automation, Robotics and Vision (ICARCV, 2010.
doi: 10.1109/icarcv.2010.5707968. [164]

http://plato.asu.edu/bench.html
http://plato.asu.edu/bench.html
https://www.usenix.org/conference/hotcloud17/program/presentation/noormohammadpour
https://www.usenix.org/conference/hotcloud17/program/presentation/noormohammadpour

Bibliography 201

T. Pajor, E. Uchoa, and R. F. Werneck. A robust and scalable algorithm for the Steiner
problem in graphs. Mathematical Programming Computation, Sep 2017. doi: 10.1007/
s12532-017-0123-4. [17, 38, 51, 53, 66, 67, 102, and 158]

B. Peters. Monomial patterns in polynomial optimization. PhD thesis, Otto-von-Guericke-
University Magdeburg, 2021. [7]

T. Polzin. Algorithms for the Steiner problem in networks. PhD thesis, Saarland University,
2003. [17, 19, 34, 39, 47, 48, 54, 60, 61, 63, 64, 65, 66, 67, 168, and 185]

T. Polzin and S. V. Daneshmand. A comparison of Steiner tree relaxations. Discrete Applied
Mathematics, 112(1-3):241–261, 2001a. doi: 10.1016/s0166-218x(00)00318-8. [17, 19, 21,
22, 23, 25, 57, and 209]

T. Polzin and S. V. Daneshmand. Improved Algorithms for the Steiner Problem in Net-
works. Discrete Applied Mathematics, 112(1-3):263–300, Sept. 2001b. doi: 10.1016/
S0166-218X(00)00319-X. [17, 20, 26, 28, 35, 37, 38, 39, 51, 52, 55, 106, 171, 172, 173, 184,
and 185]

T. Polzin and S. V. Daneshmand. Extending Reduction Techniques for the Steiner Tree
Problem, pages 795–807. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002. ISBN 978-
3-540-45749-7. doi: 10.1007/3-540-45749-6\ 69. [17, 21, 39, 41, 43, 45, 47, 168, and 176]

T. Polzin and S. V. Daneshmand. On Steiner trees and minimum spanning trees in hyper-
graphs. Operations Research Letters, 31(1):12 – 20, 2003. doi: 10.1016/S0167-6377(02)
00185-2. [16, 17, 157, and 158]

T. Polzin and S. V. Daneshmand. Practical Partitioning-Based Methods for the Steiner
Problem. In C. Àlvarez and M. Serna, editors, Experimental Algorithms, pages 241–252,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. doi: 10.1007/11764298 22. [17, 39,
40, and 54]

T. Polzin and S. Vahdati-Daneshmand. Approaches to the Steiner Problem in Networks,
pages 81–103. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. doi: 10.1007/
978-3-642-02094-0 5. [17]

T. Polzin and S. Vahdati-Daneshmand. The Steiner Tree Challenge: An updated Study.
Unpublished manuscript at http://dimacs11.cs.princeton.edu/downloads.html, 2014. [17,
60, 63, 64, 65, 66, 158, 222, and 230]

H.-J. Prömel and A. Steger. The Steiner Tree Problem: A Tour Through Graphs, Algorithms,
and Complexity. Advanced Lectures in Mathematics. Vieweg, 2002. [14]

L. D. P. Pugliese, M. Gaudioso, F. Guerriero, and G. Miglionico. A lagrangean-based
decomposition approach for the link constrained Steiner tree problem. Optimization
Methods and Software, 33(3):650–670, 2018. doi: 10.1080/10556788.2017.1392518. [164,
165]

T. Ralphs, Y. Shinano, T. Berthold, and T. Koch. Parallel Solvers for Mixed Integer
Linear Optimization, pages 283–336. Springer International Publishing, Cham, 2018. doi:
10.1007/978-3-319-63516-3\ 8. [180]

D. Rehfeldt and T. Koch. Transformations for the Prize-Collecting Steiner Tree Problem and
the Maximum-Weight Connected Subgraph Problem to SAP. Journal of Computational
Mathematics, 36(3):459 – 468, 2018a. doi: 10.4208/jcm.1709-m2017-0002. [6, 102, and 137]

D. Rehfeldt and T. Koch. SCIP-Jack—a solver for STP and variants with parallelization
extensions: An update. In Operations Research Proceedings 2017, pages 191 – 196, 2018b.
doi: 10.1007/978-3-319-89920-6 27. [6]

202 Bibliography

D. Rehfeldt and T. Koch. Combining NP-Hard Reduction Techniques and Strong Heuristics
in an Exact Algorithm for the Maximum-Weight Connected Subgraph Problem. SIAM
Journal on Optimization, 29(1):369–398, 2019. doi: 10.1137/17M1145963. [6, 93, 105,
and 110]

D. Rehfeldt and T. Koch. On the exact solution of prize-collecting Steiner tree problems.
Technical Report 20-11, ZIB, Takustr. 7, 14195 Berlin, 2020. [6, 145]

D. Rehfeldt and T. Koch. Implications, conflicts, and reductions for steiner trees. In M. Singh
and D. P. Williamson, editors, Integer Programming and Combinatorial Optimization -
22nd International Conference, IPCO 2021, Atlanta, GA, USA, May 19-21, 2021, Pro-
ceedings, volume 12707 of Lecture Notes in Computer Science, pages 473–487. Springer,
2021. doi: 10.1007/978-3-030-73879-2\ 33. [7]

D. Rehfeldt, T. Koch, and S. J. Maher. Reduction techniques for the prize collecting Steiner
tree problem and the maximum-weight connected subgraph problem. Networks, 73(2):
206–233, 2019. doi: 10.1002/net.21857. [6, 74, 86, 91, 105, 122, 125, and 130]

D. Rehfeldt, Y. Shinano, and T. Koch. SCIP-Jack: An Exact High Performance Solver
for Steiner Tree Problems in Graphs and Related Problems. In H. G. Bock, W. Jäger,
E. Kostina, and H. X. Phu, editors, Modeling, Simulation and Optimization of Complex
Processes HPSC 2018, pages 201–223, Cham, 2021. Springer International Publishing.
ISBN 978-3-030-55240-4. [6]

G. Reich and P. Widmayer. Beyond Steiner’s problem: A VLSI oriented generalization. In
M. Nagl, editor, Graph-Theoretic Concepts in Computer Science, pages 196–210, Berlin,
Heidelberg, 1990. Springer Berlin Heidelberg. doi: 10.1007/3-540-52292-1 14. [163]

G. Reinelt. TSPLIB–a traveling salesman problem library. ORSA Journal on Computing,
3(4):376–384, 1991. doi: 10.1287/ijoc.3.4.376. [58]

C. C. Ribeiro, E. Uchoa, and R. F. Werneck. A Hybrid Grasp With Perturbations For
The Steiner Problem In Graphs. Informs Journal on Computing, 14:200–2, 2001. doi:
10.1287/ijoc.14.3.228.116. [17, 51]

G. Robins and A. Zelikovsky. Tighter bounds for graph Steiner tree approximation. SIAM
Journal on Discrete Mathematics, 19(1):122–134, 2005. doi: 10.1137/s0895480101393155.
[16]

I. Rosseti, M. P. de Aragão, C. C. Ribeiro, E. Uchoa, and R. F. Werneck. New Benchmark
Instances for The Steiner Problem in Graphs, pages 601–614. Springer US, Boston, MA,
2004. doi: 10.1007/978-1-4757-4137-7 28. [17, 58]

M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer programming
problems. ORSA Journal on Computing, 6(4):445–454, 1994. doi: 10.1287/ijoc.6.4.445.
[42]

L. Schmidt, C. Hegde, P. Indyk, L. Lu, X. Chi, and D. Hohl. Seismic feature extraction
using Steiner tree methods. In 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1647–1651, April 2015. doi: 10.1109/ICASSP.
2015.7178250. [116]

A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998. [9]

A. Segev. The node-weighted Steiner tree problem. Networks, 17(1):1–17, 1987. doi:
10.1002/net.3230170102. [116]

Bibliography 203

Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, T. Koch, and M. Winkler. Solving
open MIP instances with parascip on supercomputers using up to 80, 000 cores. In
2016 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2016,
Chicago, IL, USA, May 23-27, 2016, pages 770–779. IEEE Computer Society, 2016. doi:
10.1109/IPDPS.2016.56. [180]

Y. Shinano, D. Rehfeldt, and T. Gally. An easy way to build parallel state-of-the-art
combinatorial optimization problem solvers: A computational study on solving steiner
tree problems and mixed integer semidefinite programs by using ug[scip-*,*]-libraries.
In Proceedings of the 9th IEEE Workshop Parallel / Distributed Combinatorics and
Optimization, pages 530 – 541, 2019a. doi: 10.1109/IPDPSW.2019.00095. [7]

Y. Shinano, D. Rehfeldt, and T. Koch. Building optimal steiner trees on supercomputers by
using up to 43,000 cores. In Integration of Constraint Programming, Artificial Intelligence,
and Operations Research. CPAIOR 2019, volume 11494, pages 529 – 539, 2019b. doi:
10.1007/978-3-030-19212-9 35. [7, 180]

M. L. Shore, L. R. Foulds, and P. B. Gibbons. An algorithm for the Steiner problem in
graphs. Networks, 12(3):323–333, 1982. doi: 10.1002/net.3230120309. [16]

M. Siebert, S. Ahmed, and G. Nemhauser. A linear programming based approach to the
Steiner tree problem with a fixed number of terminals. Networks, 75(2):124–136, 2020a.
doi: 10.1002/net.21913. [15]

M. Siebert, S. Ahmed, and G. Nemhauser. A Simulated Annealing Algorithm for the Directed
Steiner Tree Problem. arXiv preprint arXiv:2002.03055, 2020b. [154, 155]

D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput. Syst. Sci.,
26(3):362–391, June 1983. doi: 10.1016/0022-0000(83)90006-5. [107]

T. L. Snyder. On the Exact Location of Steiner Points in General Dimension. SIAM Journal
of Applied Mathematics, 21(1):163–180, 1992. doi: 10.1137/0221013. [157]

P. M. Spira and A. Pan. On finding and updating spanning trees and shortest paths. SIAM
Journal on Computing, 4(3):375–380, 1975. doi: 10.1137/0204032. [175]

Y. Sun, M. Brazil, D. Thomas, and S. Halgamuge. The fast heuristic algorithms and post-
processing techniques to design large and low-cost communication networks. IEEE/ACM
Transactions on Networking, pages 1–14, 2019. doi: 10.1109/TNET.2018.2888864. [116,
146]

Y. Sun, D. Rehfeldt, M. Brazil, D. Thomas, and S. Halgamuge. A physarum-inspired
algorithm for minimum-cost relay node placement in wireless sensor networks. IEEE/ACM
Transactions on Networking, 28(2):681–694, 2020. doi: 10.1109/TNET.2020.2971770. [6,
152, and 153]

H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem in
graphs. Mathematica Japonicae, 24:573 – 577, 1980. [16, 51]

R. E. Tarjan. Applications of Path Compression on Balanced Trees. The Journal of the
ACM, 26(4):690–715, Oct. 1979. doi: 10.1145/322154.322161. [171]

R. E. Tarjan and U. Vishkin. Finding biconnected componemts and computing tree functions
in logarithmic parallel time. In 25th Annual Symposium on Foundations of Computer
Science, 1984., pages 12–20. IEEE, 1984. doi: 10.1109/sfcs.1984.715896. [172]

N. Tuncbag, S. J. Gosline, A. Kedaigle, A. R. Soltis, A. Gitter, and E. Fraenkel. Network-
based interpretation of diverse high-throughput datasets through the omics integrator
software package. PLoS computational biology, 12(4):e1004879, 2016. [116]

204 Bibliography

E. Uchoa. Reduction tests for the prize-collecting Steiner problem. Operations Research
Letters, 34(4):437 – 444, 2006. doi: 10.1016/j.orl.2005.02.007. [93, 94, 117, 122, 123, 124,
125, and 146]

E. Uchoa and R. F. F. Werneck. Fast Local Search for Steiner Trees in Graphs. In
G. E. Blelloch and D. Halperin, editors, ALENEX, pages 1–10. SIAM Journal of Applied
Mathematics, 2010. doi: 10.1137/1.9781611972900.1. [17, 51, 107, 144, and 177]

E. Uchoa, M. Poggi de Aragão, and C. C. Ribeiro. Preprocessing Steiner problems from
VLSI layout. Networks, 40(1):38–50, 2002. doi: 10.1002/net.10035. [17, 26, and 43]

S. Vahdati Daneshmand. Algorithmic approaches to the Steiner problem in networks. PhD
thesis, Universität Mannheim, 2004. [17, 19, 54, 60, 61, 63, 64, 65, 66, 67, and 185]

A. van den Boogaart. Efficient computation of fiber optic networks. Master’s thesis,
Eindhoven University of Technology, 2018. [7]

A. Verma, A. Buchanan, and S. Butenko. Solving the maximum clique and vertex coloring
problems on very large sparse networks. INFORMS Journal on Computing, 27(1):164–177,
2015. doi: 10.1287/ijoc.2014.0618. [85]

S. Voss. A survey on some generalizations of Steiner’s problem. 1st Balkan Conference on
Operational Research Proceedings, 1:41–51, 1988. [163]

S. Voss. Steiner-probleme in Graphen. Hain, 1990. [14]

S. Voß. The Steiner tree problem with hop constraints. Annals of Operations Research, 86:
321–345, 1999. doi: 10.1023/A\%3A1018967121276. [164]

J. Vygen. Faster algorithm for optimum Steiner trees. Information Processing Letters, 111
(21):1075 – 1079, 2011. doi: 10.1016/j.ipl.2011.08.005. [15, 120]

Y. Wang, A. Buchanan, and S. Butenko. On imposing connectivity constraints in integer
programs. Mathematical Programming, pages 1–31, 2017. doi: 10.1007/s10107-017-1117-8.
[70, 74, 76, 84, and 86]

D. Warme, P. Winter, and M. Zachariasen. Exact algorithms for plane Steiner tree problems:
A computational study. In D.-Z. Du, J. Smith, and J. Rubinstein, editors, Advances in
Steiner Trees, pages 81–116. Kluwer, 2000. [157]

D. M. Warme. Spanning Trees in Hypergraphs with Applications to Steiner Trees. PhD
thesis, University of Virginia, USA, 1998. [157]

S. Wasik, M. Antczak, J. Badura, A. Laskowski, and T. Sternal. Optil.io: Cloud based
platform for solving optimization problems using crowdsourcing approach. In Proceedings
of the 19th ACM Conference on Computer Supported Cooperative Work and Social Com-
puting Companion, CSCW ’16 Companion, page 433–436, New York, NY, USA, 2016. As-
sociation for Computing Machinery. ISBN 9781450339506. doi: 10.1145/2818052.2869098.
[62]

D. Watel and M.-A. Weisser. A practical greedy approximation for the directed Steiner tree
problem. Journal of Combinatorial Optimization, 32(4):1327–1370, 2016. doi: 10.1007/
s10878-016-0074-0. [155]

Wikipedia. Skipjack tuna. https://en.wikipedia.org/wiki/Skipjack_tuna, 2021. Ac-
cessed: Feb. 18, 2021. [168]

P. Winter. Reductions for the rectilinear Steiner tree problem. Networks, 26(4):187–198,
1995. doi: 10.1002/net.3230260404. [43]

https://en.wikipedia.org/wiki/Skipjack_tuna

Bibliography 205

J. Witzig and A. Gleixner. Conflict-driven heuristics for mixed integer programming. IN-
FORMS Journal on Computing, 2020. doi: 10.1287/ijoc.2020.0973. epub ahead of print.
[65]

R. Wong. A dual ascent approach for Steiner tree problems on a directed graph. Mathematical
Programming, 28:271–287, 1984. doi: 10.1007/BF02612335. [11, 20, 38, 53, 100, 106, 136,
142, and 144]

A. Z. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem. Algo-
rithmica, 9(5):463–470, 1993. doi: 10.1007/bf01187035. [16]

E. Álvarez Miranda and M. Sinnl. A relax-and-cut framework for large-scale maximum
weight connected subgraph problems. Computers & Operations Research, 87:63 – 82, 2017.
doi: 10.1016/j.cor.2017.05.015. [86, 105, and 111]

Appendix A

Further proofs

A.1 Steiner tree problem in graphs

A.1.1 Proof of Proposition 2.23

Proof. Suppose that there is a minimum Steiner tree S(k) with e1, e2 ∈ E(k)(S(k)). Let
x ∈ Λ(k)(e1)∩Λ(k)(e2). Let i be the first reduction iteration with λ(i) = x. We may assume
that i = 1. Otherwise, we can define additional ancestor information Π and Λ starting from
I(i−1), and perform the reductions from iteration i to iteration k. Let v be the vertex that is
replaced in iteration i = 1. Note that x = λ(1) = 1. From Observation 2.22 we know that the
tree S defined by E(S) =

⋃
e∈E(k) Π(k)(e)∪Π

(k)
FIX is a minimum Steiner tree for I. However,

because of λ(1) ∈ Λ(k)(e1)∩Λ(k)(e2), we have that
∣∣∣(Π(k)(e1) ∪Π(k)(e2)

)
∩ δS(v)

∣∣∣ > 3. This

implies however, that replacing v is not valid—a contradiction.

A.2 Maximum-weight connected subgraph problem

A.2.1 Proof of Proposition 3.21

Proof. Let S be an optimal solution to IMW (and, as before, a tree) such that vi ∈ V (S) and
|V (S)∩ T | > 2. Define Q as in the proof of Proposition 3.20, and note that Q 6= ∅ (because
of |V (S) ∩ T | > 2). Next, choose a path Qk ∈ Q with a minimum number of H-boundary
edges. Further, define Q− := Q \ {Qk}. As before, for all Qr ∈ Q−, denote by Q′r the
subpath of Qr from tr up to the last vertex still in Htr . As in the proof of Proposition 3.20,
one validates that the Q′r are pairwise vertex disjoint and that Qk has no vertex in common
with any Q′r. One goes on to obtain an upper bound on the weight of S:

P (S) =
∑

v∈V (S)

p(v)

6

(∑
Qr∈Q−

P (Q′r)

)
+ P (Qk)

6
∑

t∈Tp\{vi}

r+H(t)−min{r+H(t) | t ∈ Tp \ {vi}}+ P (Qk)

6
∑

t∈Tp\{vi}

r+H(t)−min{r+H(t) | t ∈ Tp \ {vi}}+ d(vi, v
Hp

i,1).

207

208 Appendix A. Further proofs

These inqualities conclude the proof of the proposition.

A.2.2 Node separators and rejoining of flows

The following is joint work with Henriette Franz. Consider the directed RMWCSP instance
(G,T, p, r) with G = (V,A) depicted in Figure A.1.

r

a
-1

b

-1

c ed

-1

Figure A.1: Directed RMWCSP instance.

A proof from Álvarez-Miranda et al. (2013b) intends to show that vLP (RNCut) 6
vLP (RSA) holds. For this purpose, the authors consider an arbitrary solution x̄ ∈ PLP (RNCut)
and construct an auxiliary graph G′ by replacing each node v ∈ V \ {r} with an arc (v1, v2).
All ingoing arcs of v become ingoing arcs of v1, and all outgoing arcs of v are now outgoing
arcs of v2. Moreover, (non-negative) capacities k′ on G′ are introduced for each arc (v′, w′)
of G′ by

k′(v′, w′) :=

{
x̄(v), if (v′, w′) = (v1, v2) for a v ∈ V
1, otherwise.

r

a1 b1

a2 b2

c1 e1

c2 e2

d1

d2

1 1

0.5 0.5

1 1

0.51 1

1 1

1 1

Figure A.2: Illustration of an auxiliary support graph G′ corresponding to the instance
in Figure A.1 regarding the optimal solution x̄(v) = 0.5, v ∈ V \ T , and x̄(t) = 1,
t ∈ T , to the RNCut formulation.

A.3. Prize-collecting Steiner tree problem 209

Figure A.2 shows an auxiliary support graph of the instance illustrated by Figure A.1.
It is possible to send a flow with flow value x̄(v) from root node r to each arc (v1, v2) with
v ∈ V \ {r} because of constraints (3.10). Let fv(j, l) be the amount of a flow with source
node r, sink node v ∈ V \ {r}, and flow value x̄(v) sent along arc (j, l). Define the arc
variables ŷ(j, l), (j, l) ∈ A, of the RSA formulation as follows:

ŷ(j, l) :=

{
maxv∈V \{r} f

v(j2, l1), j, l ∈ V \ {r}
maxv∈V \{r} f

v(j, l1), j = r, l ∈ V \ {r}.

Hence, the arc variables of the instance in Figure A.2 are given by ŷ(j, l) = 0.5 for each
(j, l) ∈ A. Moreover, define the node variables as x̂(v) = ŷ(δ−(v)). Thus, in our case, it holds
x̂(a), x̂(b), x̂(c), x̂(e) = 0.5, and x̂(d) = 1. The proof from Álvarez-Miranda et al. (2013b)
claims that we can follow x̄(v) = x̂(v), v ∈ V , by this definition of the variables. However,
this claim is not true because of 0.5 = x̄(d) 6= x̂(d) = 1, and therefore, no solution can be
constructed from the solution x̄ to the RNCut model.

In summary, and somewhat broadly speaking, the weaker LP relaxation can be explained
as follows. The RNCut formulation can be interpreted as a multi-commodity flow problem
in an enlarged graph. However, enlarging the graph opens new possibilities for what is
sometimes called rejoining of flows (Polzin and Daneshmand, 2001a): Flows for different
commodities enter a node on different arcs, but leave on the same arc. Such a rejoining can
lead to an increased integrality gap.

A.3 Prize-collecting Steiner tree problem

A.3.1 Proof of Theorem 4.1

The proof of Theorem 4.1 is based on the well-known dynamic programming algorithm for
SPG by Dreyfus and Wagner (1971) that runs in O(3|T |n+ 2|T |n2 + n2 log n+mn), where
T is the set of terminals. We will refer to this algorithm as Dreyfus-Wagner for short. See
also Buchanan et al. (2018) for an extension of Dreyfus-Wagner to the node-weighted Steiner
tree problem. Dreyfus-Wagner exploits the fact that any optimal Steiner tree S for an SPG
(G,T, c), with T 6= ∅ and positive c, can be split at any v ∈ V (S) into two non-empty trees
S1 and S2 such that T1 := V (S1) ∩ T 6= ∅, T2 := V (S2) ∩ T 6= ∅, and:

1. T1 ∩ T2 ⊆ {v} and T1 ∪ T2 = T ,

2. S1 is optimal for (G,T1 ∪ {v}, c), and S2 is optimal for (G,T2 ∪ {v}, c).

We show that a similar property holds for PCSTP. To this end, consider the RPCSTP If ,
defined in Section 4.2.1. Moreover, we will consider only optimal (PCSTP and RPCSTP)
solutions that contain only proper potential or fixed terminals as leafs. If no such solution
exists, there is a trivial optimal solution, which can be found in linear time. For any T ⊆ Tf

we denote by If (T) the RPCSTP (G,T, c, p); so in particular If (Tf) = If . For If we obtain
the following result.

Lemma A.1. Let T1, T2 ⊆ Tf be non-empty with T1 ∪ T2 = Tf . Let S1, S2 be trees in
G such that all leaves of S1 are contained in T1, all leaves of S2 are contained in T2, and
S1 ∩ S2 6= ∅. In this case, there is a tree S ⊆ S1 ∪ S2 such that Tf ⊆ V (S), and

C(S) 6 C(S1) + C(S2)−
∑
u∈V

p(u) + min
u∈V (S1∩S2)

p(u). (A.1)

210 Appendix A. Further proofs

Proof. Initially, set S := S1 ∪ S2 and Ŝ := S1 ∩ S2. Let v0 ∈ V (Ŝ) such that p(v0) =
minu∈V (Ŝ) p(u). Let ~S1 be the arborescence corresponding to S1 that is rooted in v0. Denote

its arcs by A(~S1). For any w ∈ V (Ŝ) \ {v0} there is an (incoming) arc (u,w) ∈ A(~S1). Let
E′S := {{u,w} ∈ E(S1) \ E(S2) | w ∈ V (Ŝ) ∧ (u,w) ∈ A(~S1)} and E′′S := {{u,w} ∈ E(Ŝ) |
(u,w) ∈ A(~S1)}. Note that |E′S∪̇E′′S | = |V (Ŝ)| − 1. Because of T+

p = ∅ it holds that∑
e∈E′

S

c(e) +
∑
e∈E′′

S

c(e) >
∑

u∈V (Ŝ)\{v0}

p(u). (A.2)

Because of E′′S ⊆ E(Ŝ), inequality (A.2) implies∑
e∈E′

S

c(e) +
∑
e∈Ŝ

c(e) >
∑

u∈V (Ŝ)\{v0}

p(u). (A.3)

Note that any e ∈ E′S lies in a cycle of S and that each cycle of S contains an e ∈ E′S .
Remove E′S from S to obtain a new tree S̃ (which contains Tf). It holds that:

C(S1) + C(S2) = C(S) +
∑
e∈Ŝ

c(e) +
∑
u∈V

p(u)−
∑

u∈V (Ŝ)

p(u) (A.4)

= C(S̃) +
∑
e∈E′

S

c(e) +
∑
e∈Ŝ

c(e) +
∑
u∈V

p(u)−
∑

u∈V (Ŝ)

p(u) (A.5)

(A.3)

> C(S̃) +
∑
u∈V

p(u)− p(v0) (A.6)

= C(S̃) +
∑
u∈V

p(u)− min
u∈V (S1∩S2)

p(u). (A.7)

Thus, S̃ satisfies (A.1).

This lemma sets the stage for the desired result:

Lemma A.2. Let S be an optimal solution to If and choose any, arbitrary but fixed,
v ∈ V (S). Further, let S1, S2 ⊆ S be trees such that V (S1 ∩ S2) = {v} and S1 ∪ S2 = S.
Define T1 := (Tf ∩V (S1))∪{v} and T2 := (Tf ∩V (S2))∪{v}. It holds that S1 is an optimal
solution to If (T1), and S2 to If (T2). Furthermore:

C(S) = C(S1) + C(S2)−
∑

u∈V \{v}

p(u) (A.8)

holds.

Proof. First, observe that (A.8) holds because of V (S1 ∩ S2) = {v}. Suppose S1 is not
optimal. Thus, there exists a tree S̃1 such that all its leaves are contained in T1 and such
that

C(S̃1) < C(S1). (A.9)

We also assume that all leaves of S2 are contained in T2; note that because of T+
p = ∅ one

can always modify S2 to satisfy this property without increasing C(S2). By Lemma A.1

A.3. Prize-collecting Steiner tree problem 211

there exists a S̃ ⊆ S̃1 ∪ S2 such that Tf ⊆ V (S̃) and

C(S̃) 6 C(S̃1) + C(S2)−
∑
u∈V

p(u) + p(v) (A.10)

(A.9)
< C(S1) + C(S2)−

∑
u∈V

p(u) + p(v) (A.11)

= C(S), (A.12)

which is a contradiction to the assumption that S is optimal.

Based on the proceeding lemma, we can apply an extension of Dreyfus-Wagner to solve
If . We define an slight modification of the prize-collecting cost from Section ??. For a
(v, w)-walk W let

c′pc(W) :=
∑

e∈E(W)

c(e)−
∑

u∈V (W)\{w}

p(u). (A.13)

Let W(v, w) be the set of all finite walks from v to w and define

d′pc(v, w) := min{c′pc(W) |W ∈ W(v, w)}. (A.14)

Note that if T+
p = ∅, it is sufficient to consider only simple paths instead of walks. The next

subsection concludes the proof of Theorem 4.1.

Proof of Proposition 4.2

Proof. Initially, choose an arbitrary t0 ∈ Tf and set T−f := Tf \ {t0}. For every pair (v, w)
of vertices, set

g({w}, v) := d′pc(v, w) +
∑

u∈V \{w}

p(u). (A.15)

For i = 2, ..., |T−f | define the functions f and g recursively as follows. For Ti ⊆ T−f with
|Ti| = i set

f(Ti, w) = min
T(Ti|T 6=∅

(
g(T,w) + g(Ti \ T,w)−

∑
u∈V \{w}

p(u)
)

(A.16)

and

g(Ti, v) = min
u∈V

(
f(Ti, u) + d′pc(v, u)

)
. (A.17)

These values can be computed by a dynamic programming algorithm.

Claim 1: After the termination of the above dynamic programming algorithm it holds
that g(T−f , t0) = C(S) for any optimal solution S to If .

We will show by induction on i ∈ {1, ..., |T−f |} that for any Ti ⊆ T−f with |Ti| = i, and
any v ∈ V \ Ti it holds that

g(Ti, v) = C(S) (A.18)

for any optimal solution S to If (Ti ∪ {v}). First, one observes from the definition of d′pc
that (A.18) holds for any t ∈ T−f and any v ∈ V \ {t}. Next, let i ∈ {2, ..., |T−f |}. Assume

that (A.18) holds for all non-empty T ⊂ T−f with |T | < i. Choose any Ti ⊆ T−f with |Ti| = i,
and choose any v ∈ V \ Ti. Let S be an optimal solution to If (Ti ∪ {v}). Split S as follows:

212 Appendix A. Further proofs

If δS(v) = 1 let P := (v, ∅), otherwise let P ⊆ S be the path from v to the first vertex
w ∈ V (S) with δS(w) > 2 or w ∈ Ti. Observe that

C(P) = d′pc(v, w) +
∑

u∈V \{w}

p(u). (A.19)

Let S̃ := (V (S \ P) ∪ {w}, E(S \ P)). Because of Lemma A.2, S̃ is an optimal solution to
If (Ti ∪ {w}) and P to If ({v, w}). Further:

C(S) = C(S̃) + C(P)−
∑

u∈V \{w}

(A.19)
= C(S̃) + d′pc(v, w). (A.20)

Moreover, S̃ can be split into two trees S̃1 and S̃2 such that S̃1 ∩ S̃2 = {w}, S̃1 ∪ S̃2 = S̃,
and S̃1 ∩ Ti 6= ∅, S̃2 ∩ Ti 6= ∅. With T̃1 := (Ti ∩ S̃1) ∪ {w} and T̃2 := (Ti ∩ S̃2) ∪ {w}, it
holds by Lemma A.2 that S̃1 is an optimal solution to Tf (T̃1) and S̃2 to Tf (T̃2). Lemma A.2
furthermore implies that:

f(Ti, w) 6 C(S̃1) + C(S̃2)−
∑

u∈V \{w}

p(u). (A.21)

From the optimality of S̃ combined with Lemma A.1 we obtain:

f(Ti, w) = C(S̃1) + C(S̃2)−
∑

u∈V \{w}

p(u). (A.22)

Similarly, from Lemma A.1 and Lemma A.2 we obtain.

g(Ti, w)
(A.22)

6 C(S̃1) + C(S̃2) + d′pc(v, w) (A.23)

= C(S̃)−
∑

u∈V \{w}

p(u) + d′pc(v, w) (A.24)

(A.20)
= C(S). (A.25)

Equality follows from Lemma A.1 and the optimality of S.

Claim 2: The above dynamic programming algorithm terminates in time O(3|Tf |n+2|Tf |n2+
n2 log n+mn).

For i > 2 the algorithm differs from Dreyfus-Wagner essentially only in the weight
functions of the trees. For i = 1 one observes the following. For a given v ∈ V , the distances
d′pc(v, w) on If to all w ∈ V can be computed in time O(n log n+m) by using an adaptation
of Dijkstra’s algorithm, similar to Algorithm 4.1, that runs in time O(n log n+m). Thus, the
distances for all pairs (v, w) can be computed in O(n2 log n+mn). Consequently, the overall
dynamic programming algorithm algorithm has the same run time as Dreyfus-Wagner.

A.3.2 Proof of Proposition 4.11

Proof. First, one can verify from the definition of Algorithm 4.1 that if it returns deletable,
then c({v, w}) > d−pc(v, w) holds—also without condition (4.19). To show the converse,
assume in the following that c({v, w}) > d−pc(v, w). To simply the presentation it will also
be assumed that

p(v) = 0, (A.26)

A.3. Prize-collecting Steiner tree problem 213

which does neither change d−pc(v, w), nor the behavior of Algorithm 4.1. Further, note that
because of (4.19) one can assume that W is a (simple) path. Otherwise, replace W by a
shortest path (with respect to the edge costs c) between v and w in the subgraph corre-
sponding to W . Indeed, because of (4.19) the prize-constrained length of this shortest path
is not higher than that of W . As before, write W = (v1, e1, v2, e2, ..., er, vr) with v1 = v and
vr = w. Condition (4.19) furthermore implies that

lpc(W (v, vk+1)) = lpc(W (v, vk)) + c({vk, vk+1})− p(vk) (A.27)

for any k ∈ {1, 2, ..., r − 1}.
In the following, we will show that

distpc[vk] 6 lpc(W (v, vk))− p(vk) (A.28)

holds for any k ∈ {1, ..., r − 1}. Thereby, the proof is concluded: Algorithm 4.1 can in this
case reach w from vr−1 due to

distpc[vr−1] + c({vr−1, vr})
(A.28)

6 lpc(W (v, vr−1))− p(vr−1) + c({vr−1, vr}) (A.29)

(A.27)
= lpc(W (v, vr)) (A.30)

= d−pc(v, w) (A.31)

6 c({v, w}). (A.32)

Thus, the algorithm returns deletable.

We will show (A.28) by induction on k = 1, ..., r − 1. First, one readily verifies that
(A.28) holds for k = 1. Next, let k ∈ {1, ..., r − 2} and assume that (A.28) holds for k.
Suppose

distpc[vk+1] > lpc(W (v, vk+1))− p(vk+1). (A.33)

Now perform Algorithm 4.1 until distpc[vk] satisfies (A.28). At this point, forbidden[vk+1]
must have been set to true, otherwise one could update distpc[vk+1] from vertex vk: Indeed,
distpc[vk] + c({vk, vk+1}) 6 c({v, w}) holds, which can be shown equivalently to (A.29)-
(A.32). Thus, also the second condition for updating distpc[vk+1] from vertex vk is fulfilled.
For the third (and last condition), one obtains:

distpc[vk] + c({vk, vk+1})− p(vk+1)
(A.28)

6 lpc(W (v, vk)− p(vk) + c({vk, vk+1})− p(vk+1)
(A.34)

(A.27)
= lpc(W (v, vk+1)− p(vk+1) (A.35)

(A.33)
< distpc[vk+1]. (A.36)

If forbidden[vk+1] is set to true, the vertex vk+1 must already have been removed from
Q in Algorithm 4.1 (which happens exactly one time, because at this point vk+1 will be
marked as forbidden). We will show (by induction) for j = 1, ..., k that vj satisfies (A.28)
at the point when vk+1 is removed from Q. In this way, we obtain a contradiction, because

214 Appendix A. Further proofs

if vk satisfies (A.28), then

distpc[vk]
(A.28)

6 lpc(W (v, vk)− p(vk) (A.37)

(A.27)
= lpc(W (v, vk+1)− c({vk, vk+1}) (A.38)

(4.19)

6 lpc(W (v, vk+1)− p(vk+1) (A.39)

(A.33)
< distpc[vk+1]. (A.40)

This implies that vk would have been removed before vk+1 from Q. Consequently, the
algorithm would have updated distpc(vk+1) to distpc[vk]+c({vk, vk+1})−p(vk+1), and (A.28)
would hold for vk+1, as shown in (A.34),(A.35).

We conclude with the induction for j = 1, ..., k. By definition, v1 satisfies (A.28) when
vk+1 is removed from Q. Assume that the same holds for vj with j ∈ {2, ..., k− 1}. Then vj
must have been removed from Q before vk+1, because distpc[vj] < distpc[vk+1] holds, which
can be shown similarly to (A.37)-(A.40). Thus, one could update distpc[vj+1] from vj to

distpc[vj+1] := distpc[vj] + c({vj , vj+1})− p(vj+1)
(A.27),(A.28)

6 lpc(W (v, vj+1))− p(vj+1),
(A.41)

which shows that vj+1 satisfies (A.28).

A.3.3 Proof of Lemma 4.14

Proof. Assume there is spanning tree S such that {v, w} /∈ S. Remove from E(S) an edge
on the (unique) path between ti and tj in S of maximum cost. By definition of b{v,w}(ti, tj)
it holds that

c(E(Si)) + c(E(Sj)) + b{v,w}(ti, tj) 6 c(E(S)). (A.42)

This operation results in two disjoint trees: Si with ti ∈ Si and Sj with tj ∈ Sj . If v and
w are in different trees, one can add {v, w} to connect Si and Sj and obtain a spanning
tree of no higher cost than S. Otherwise assume that v, w ∈ V (Sj). Let Wi be a prize-
constrained (v, ti)-walk with lpc(Wi) = dpc(v, ti). There is at least one edge {p, q} ∈ E(Wi)
such that p ∈ V (Si) and q ∈ V (Sj). By definition of the prize-constrained length it holds
that c({p, q}) 6 lpc(Wi). Thus, one can add both {p, q} and {v, w} to Si, Sj to obtain a
connected spanning subgraph S′. Because of condition (4.22) and (A.42) it holds that

c(E(S′)) 6 c(E(S)). (A.43)

Delete any edge other than {v, w} on the cycle in E(S′) that includes {v, w}. In this way
one obtains a spanning tree S′′ of no higher cost than S.

A.3.4 Proof of Proposition 4.30

Proof. We only show the second part of the proposition. First it follows from the con-
struction of Transformation 4.20 and 4.25 that each optimal solution x0, y0 to the LP
relaxation of TransRCut(IT0) can be transformed to a solution x, y to the LP relax-
ation of TransCut(IPC) without changing the objective value: By setting x((vi, vj)) :=

A.3. Prize-collecting Steiner tree problem 215

x0((vi, vj)) and x((vj , vi)) := x0((vj , vi)) for all {vi, vj} ∈ E, x((r′, t0)) := 1 for any t0 ∈ T0,
x((ti, t

′
i)) := 1 for all ti ∈ T0, and by setting the remaining x((vi, vj)) accordingly. Thus

vLP (PrizeCut(IPC)) 6 vLP (PrizeRCut(IT0)). To see that the inequality can be strict,
consider the following wheel instance (which is well-known to have an integrality gap for
DCut on SPG):

v0

v1v2

v3

v4 v5

v6

Set c(e) = 1 for all edges e. Further, set p(v0) = p(v1) = p(v3) = p(v5) = 4, p(v2) = p(v6) = 0,
and p(v4) = ε with 0 < ε < 1. Let T0 := {v0, v1, v3, v4, v5}. Let I be the PCSTP

and IT0 the corresponding RPCSTP. It holds that vLP (TransCut(I)) = 4.5 +
ε

2
< 5 =

vLP (TransRCut(IT0)). Part of the solution corresponding to vLP (TransCut(I)) is shown
below (with numbers next to the arcs denoting the x values), the remaining x and y are set
accordingly (e.g., x((r′, v1)) = 1).

v0

v1v2

v3

v4 v5

v6

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Appendix B

Detailed computational results

This appendix provides detailed computational results on the problem instances discussed
in this thesis.

All following tables are structured as follows: First, the name of the respective instance is
given. The next three columns give the number of vertices, arcs, and terminals of the instance,
but only after the respective graph transformation to SAP. The subsequent segment, labelled
”Presolved”, provides the size of the preprocessed problem along with the preprocessing
time. The last segment provides first the dual and primal bound, or the optimal solution
value if the problem could be solved to proven optimality. Moreover, the number of branch-
and-bound nodes (N) and the total run time is given. A time-out is signified by a “>” in
front of the termination time. We stress that the reported final execution times include both
the preprocessing time and the reading time.

B.1 Steiner tree problem in graphs

B.1.1 PACE 2018 instances

The time limit for the following instances is 1620 seconds (which roughly corresponds to
the 30 minutes time-limit on the machines used at the PACE Challenge). For all instances
SoPlex 5.0 was used as LP solver.

Table B.1. Detailed computational results for SPG, test-set Pace (Track A).

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

instance001 53 160 4 0 0 0 0.0 503 1 0.0
instance003 2500 10000 5 0 0 0 0.0 73 1 0.0
instance005 2500 125000 5 0 0 0 0.2 15 1 0.2
instance007 157 532 6 0 0 0 0.0 1239 1 0.0
instance009 57 168 8 0 0 0 0.0 926 1 0.0
instance011 64 576 8 64 576 8 0.0 23 1 0.0
instance013 640 1920 9 0 0 0 0.0 4033 1 0.0
instance015 640 1920 9 0 0 0 0.0 3438 1 0.0
instance017 640 1920 9 0 0 0 0.0 4006 1 0.0
instance019 640 8270 9 0 0 0 0.0 2465 1 0.0
instance021 640 8270 9 0 0 0 0.0 2171 1 0.0
instance023 640 408960 9 0 0 0 0.8 1749 1 0.8
instance025 640 408960 9 0 0 0 0.8 1754 1 0.8
instance027 90 270 10 0 0 0 0.0 188 1 0.0

cont. next page

217

218 Appendix B. Detailed computational results

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

instance029 179 586 10 0 0 0 0.0 245 1 0.0
instance031 298 1006 10 0 0 0 0.0 311 1 0.0
instance033 331 1120 10 0 0 0 0.0 319 1 0.0
instance035 609 1864 10 40 118 7 0.0 581 1 0.0
instance037 777 2478 10 0 0 0 0.0 566 1 0.0
instance039 875 3044 10 0 0 0 0.0 604 1 0.0
instance041 898 3124 10 0 0 0 0.0 594 1 0.0
instance043 918 3368 10 0 0 0 0.0 604 1 0.0
instance045 1290 4540 10 0 0 0 0.0 823 1 0.0
instance047 2500 10000 10 0 0 0 0.0 145 1 0.0
instance049 3221 11876 10 0 0 0 0.1 1550 1 0.1
instance051 2500 25000 10 0 0 0 0.1 67 1 0.1
instance053 128 454 11 0 0 0 0.0 1100361 1 0.0
instance055 191 604 11 0 0 0 0.0 311 1 0.0
instance057 237 780 11 0 0 0 0.0 353 1 0.0
instance059 278 956 11 0 0 0 0.0 564 1 0.0
instance061 353 1216 11 0 0 0 0.0 350 1 0.0
instance063 572 1926 11 0 0 0 0.0 621 1 0.0
instance065 720 2538 11 0 0 0 0.0 508 1 0.0
instance067 3675 13418 11 0 0 0 0.1 6673 1 0.1
instance069 64 384 12 64 384 12 0.0 3271 1 0.1
instance071 233 772 12 0 0 0 0.0 344 1 0.0
instance073 386 1306 12 0 0 0 0.0 386 1 0.0
instance075 818 2924 12 127 408 9 0.0 5250 1 0.0
instance077 1981 7266 12 0 0 0 0.0 6618 1 0.0
instance079 4045 14188 12 155 506 11 0.2 1459 1 0.2
instance081 110 376 13 0 0 0 0.0 1300798 1 0.0
instance083 346 1166 13 0 0 0 0.0 457 1 0.0
instance085 125 1500 13 125 1032 13 0.0 20 1 0.4
instance087 125 1500 13 125 1500 13 0.0 36 1 0.8
instance089 933 3264 13 0 0 0 0.0 550 1 0.0
instance091 1359 4916 13 0 0 0 0.0 714 1 0.0
instance093 165 548 14 0 0 0 0.0 1348 1 0.0
instance095 418 1446 14 0 0 0 0.0 399 1 0.0
instance097 1196 4168 14 0 0 0 0.0 745 1 0.0
instance099 193 738 15 0 0 0 0.0 1500405 1 0.0
instance101 311 1158 16 0 0 0 0.0 1601190 1 0.0
instance103 402 1380 16 0 0 0 0.0 393 1 0.0
instance105 712 2434 16 0 0 0 0.0 847 1 0.0
instance107 837 2876 16 183 602 11 0.0 848 1 0.0
instance109 1051 3582 16 0 0 0 0.0 939 1 0.0
instance111 1848 6572 16 0 0 0 0.0 914 1 0.0
instance113 6405 20908 16 3076 10642 11 1.0 2256 1 1.0
instance115 122 388 17 0 0 0 0.0 210 1 0.0
instance117 220 748 17 0 0 0 0.0 254 1 0.0
instance119 310 1028 17 0 0 0 0.0 370 1 0.0
instance121 343 1118 17 0 0 0 0.0 454 1 0.0
instance123 2039 7096 17 0 0 0 0.0 1104 1 0.0
instance125 211 760 18 0 0 0 0.0 1801464 1 0.0
instance127 1709 5926 18 0 0 0 0.1 926 1 0.1
instance129 3738 14026 18 462 1726 12 0.3 1570 1 0.3
instance131 189 706 19 0 0 0 0.0 1900439 1 0.0
instance133 321 1080 20 0 0 0 0.0 4132 1 0.0
instance135 3683 13434 20 380 1306 12 0.2 9143 1 0.2
instance137 529 2064 21 212 788 14 0.1 2103283 1 0.1
instance139 770 2766 21 115 384 14 0.0 750 1 0.0
instance141 233 862 22 186 686 20 0.0 2200557 1 0.1

cont. next page

B.1. Steiner tree problem in graphs 219

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

instance143 828 2944 22 0 0 0 0.0 5824 1 0.0
instance145 132 460 23 0 0 0 0.0 2300245 1 0.0
instance147 3983 14216 23 0 0 0 0.2 1488 1 0.2
instance149 493 1926 24 299 1136 16 0.1 2403332 1 0.1
instance151 8007 29486 24 985 3474 20 7.3 17803 1 7.3
instance153 246 936 25 0 0 0 0.0 2500540 1 0.0
instance155 58 3306 25 0 0 0 0.0 13655 1 0.0
instance157 2213 8270 25 0 0 0 0.1 1098 1 0.1
instance159 3636 13578 25 0 0 0 0.1 1362 1 0.1
instance161 640 81792 25 331 7034 25 0.7 5199 81 339.6
instance163 640 81792 25 184 3264 25 1.9 5194 39 49.9
instance165 640 81792 25 521 15368 25 5.4 5218 87 1137.3
instance167 396 1562 26 310 1224 26 0.6 2600443 1 4.5
instance169 243 994 27 75 272 16 0.1 2700441 1 0.1
instance171 243 2430 27 241 2132 25 0.2 42 1 28.0
instance173 243 2430 27 243 2430 27 0.1 69.1389127 71 2.7 27 >1620.0
instance175 307 1118 28 0 0 0 0.0 2800379 1 0.0
instance177 245 872 29 0 0 0 0.0 2900479 1 0.0
instance179 1724 5950 29 0 0 0 0.0 1244 1 0.0
instance181 8013 29498 30 0 0 0 6.9 21757 1 6.9
instance183 1199 4156 31 0 0 0 0.0 1068 1 0.0
instance185 437 1676 33 190 700 20 0.0 3300513 1 0.0
instance187 1244 4948 34 1069 4256 32 2.2 3400646 1 3.3
instance189 8017 29506 36 0 0 0 7.3 20678 1 7.3
instance191 2132 7404 37 0 0 0 0.1 1590 1 0.1
instance193 603 2414 38 444 1810 37 1.3 3800656 1 5.5
instance195 550 10026 50 550 10026 50 0.2 54 111 209.6
instance197 10393 36086 104 0 0 0 0.4 4292 1 0.4
instance199 6163 20980 130 10 26 8 3.0 5099 1 3.0

Table B.2. Detailed computational results for SPG, test-set PaceTree (Track B).

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

instance001 74 292 25 0 0 0 0.0 1086 1 0.0
instance003 87 352 30 2 2 1 0.0 41350 1 0.0
instance005 201 506 100 0 0 0 0.0 764269099 1 0.0
instance007 216 576 100 12 34 7 0.0 20437 1 0.0
instance009 229 624 100 11 30 6 0.0 75952202 1 0.0
instance011 244 674 100 45 146 18 0.0 20492 1 0.0
instance013 1906 4166 1655 33 100 16 0.0 584948 1 0.0
instance015 114 456 33 0 0 0 0.0 1341 1 0.0
instance017 210 552 100 17 56 7 0.0 73033178 1 0.0
instance019 231 638 100 0 0 0 0.0 70446493 1 0.0
instance021 247 972 100 30 92 12 0.0 74070 1 0.0
instance023 990 2516 574 23 66 12 0.0 3509275 1 0.0
instance025 8790 19630 7397 97 296 51 0.1 22481625 1 0.1
instance027 15 70 8 15 70 8 0.0 10 1 0.0
instance029 197 500 100 0 0 0 0.0 20401 1 0.0
instance031 269 798 99 84 268 35 0.0 1225 1 0.0
instance033 480 1340 200 108 348 48 0.1 28803 1 0.1
instance035 543 1454 250 46 146 19 0.0 114650399 1 0.0
instance037 1172 3254 500 0 0 0 0.2 160586161 1 0.2
instance039 1912 4446 1173 17 48 10 0.0 53301 1 0.0
instance041 2382 5348 1889 70 228 27 0.0 295208 1 0.0
instance043 246 936 25 0 0 0 0.0 2500540 1 0.0
instance045 389 1124 150 126 404 49 0.1 25700 1 0.1
instance047 585 1598 250 33 102 18 0.0 115277351 1 0.0
instance049 623 1752 250 93 298 39 0.1 116609813 1 0.1

cont. next page

220 Appendix B. Detailed computational results

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

instance051 1416 3956 657 150 474 63 0.4 471589 1 0.5
instance053 181 578 51 113 374 39 0.0 409 1 0.1
instance055 233 862 22 186 686 20 0.0 2200557 1 0.1
instance057 245 908 20 0 0 0 0.0 2000271 1 0.0
instance059 560 1740 195 248 814 96 0.2 2386 1 0.3
instance061 528 2034 85 509 1958 85 0.5 8500739 1 16.7
instance063 1214 3400 500 168 536 68 0.4 160124233 1 0.7
instance065 2856 7282 1748 196 614 91 0.5 3194670 1 0.6
instance067 200 740 20 0 0 0 0.0 39067 1 0.0
instance069 200 740 100 0 0 0 0.0 86268 1 0.0
instance071 339 1044 100 0 0 0 0.1 75176630 1 0.1
instance073 262 1480 10 0 0 0 0.0 2146 1 0.0
instance075 557 2160 49 145 536 19 0.6 4901968 1 0.7
instance077 2413 6824 1577 94 320 48 0.1 19825626 1 0.2
instance079 36415 291270 16808 36415 291270 16808 50.3 21950.4867 25210 14.8 1 >1620.0
instance081 237 756 76 69 222 28 0.1 513 1 0.1
instance083 311 1264 32 246 998 29 0.1 3200554 1 3.6
instance085 1274 3616 500 113 366 46 0.4 161674316 1 0.4
instance087 1337 3866 500 97 318 34 0.6 162664661 1 0.6
instance089 5829 15104 3038 122 374 49 0.5 131895 1 0.5
instance091 304 1142 33 101 368 15 0.0 3300655 1 0.0
instance093 1001 2838 400 117 376 48 0.3 1490972010 1 0.4
instance095 1335 3864 500 122 370 56 0.4 164685074 1 0.4
instance097 2629 7586 1000 399 1256 166 1.6 227886471 1 1.8
instance099 1294 3706 500 312 990 133 0.5 162100435 1 0.7
instance101 2778 8166 1000 491 1600 189 0.9 230200846 1 1.2
instance103 1055 2946 493 74 220 39 0.1 320137 1 0.1
instance105 1408 4112 500 243 804 88 0.3 160756854 1 0.5
instance107 160 480 24 0 0 0 0.0 7068 1 0.0
instance109 257 1030 23 131 478 18 0.0 2300376 1 0.0
instance111 2763 8076 1000 217 730 69 1.0 231605619 1 2.0
instance113 80 320 16 0 0 0 0.0 4354 1 0.0
instance115 243 994 27 75 272 16 0.1 2700441 1 0.1
instance117 398 1576 44 156 590 27 0.3 4401504 113 1.0
instance119 678 2060 318 70 214 35 0.1 39335 1 0.1
instance121 1005 3462 18 0 0 0 0.0 780 1 0.0
instance123 2762 8094 1000 728 2356 283 1.1 227807756 1 1.5
instance125 160 480 24 0 0 0 0.0 6923 1 0.0
instance127 294 1136 22 114 416 15 0.1 2200394 1 0.1
instance129 323 1184 31 0 0 0 0.1 3100635 1 0.1
instance131 499 1722 16 0 0 0 0.0 594 1 0.0
instance133 766 3070 76 145 570 16 0.4 7602040 1 0.5
instance135 2532 7230 1000 169 544 68 0.7 228031092 1 0.8
instance137 2676 7788 1000 784 2538 305 1.1 228330602 1 1.7
instance139 2984 8968 1000 232 768 80 2.9 230904712 1 3.6
instance141 294 1236 38 48 154 15 0.1 3800606 1 0.1
instance143 388 1630 45 0 0 0 0.3 4500728 1 0.3
instance145 437 1676 33 190 700 20 0.0 3300513 1 0.0
instance147 564 2224 50 159 586 22 0.6 5001625 1 0.7
instance149 615 2464 53 361 1392 48 0.9 5301351 1 3.5
instance151 314 1300 34 0 0 0 0.1 3400525 1 0.1
instance153 670 2632 62 588 2286 62 1.5 6201016 1 15.1
instance155 770 2766 21 115 384 14 0.0 750 1 0.0
instance157 938 3738 75 236 888 30 2.0 7501712 1 2.2
instance159 2865 8534 1000 564 1834 219 1.6 230535806 1 2.1
instance161 2502 12488 100 1991 8880 90 1.2 79714 11 9.9
instance163 402 1560 26 0 0 0 0.0 2600484 1 0.0

cont. next page

B.1. Steiner tree problem in graphs 221

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

instance165 422 1616 25 152 552 10 0.0 2500828 1 0.1
instance167 632 2174 10 0 0 0 0.0 580 1 0.0
instance169 720 2538 11 0 0 0 0.0 508 1 0.0
instance171 802 3106 39 128 456 9 0.1 3903734 1 0.1
instance173 788 3876 50 163 682 19 0.4 45852 1 0.4
instance175 2397 7430 783 982 3252 367 1.1 8883 1 2.8
instance177 904 3612 59 94 318 14 0.3 5901592 1 0.3
instance179 752 2528 26 0 0 0 0.0 806 1 0.0
instance181 757 2986 58 354 1396 40 0.8 5801466 1 3.6
instance183 838 3526 60 764 3190 60 4.2 6001164 1 152.6
instance185 2834 8414 1000 663 2172 247 1.9 230639115 1 2.6
instance187 529 2064 21 212 788 14 0.1 2103283 1 0.1
instance189 467 1792 30 89 322 14 0.1 3000569 1 0.1
instance191 5096 16210 1379 2354 7884 745 5.0 56207 1 36.3
instance193 1848 6572 16 0 0 0 0.0 914 1 0.0
instance195 1724 5950 29 0 0 0 0.0 1244 1 0.0
instance197 6128 30528 200 5279 24204 168 4.0 111005 1 370.6
instance199 1011 4020 37 866 3432 37 3.6 3700485 1 5.0

222 Appendix B. Detailed computational results

B.1.2 SteinLib instances

The time limit for the following instances is 54340 seconds. This corresponds to 24 hours
on the machine used by Polzin and Vahdati-Daneshmand (2014).

Table B.3. Detailed computational results for SPG, test-set 2R.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

2r111 2000 11600 9 0 0 0 0.1 28000 1 0.1
2r112 2000 11600 9 0 0 0 0.1 32000 1 0.1
2r113 2000 11600 9 0 0 0 0.1 28000 1 0.1
2r121 2000 11532 9 0 0 0 0.1 28000 1 0.1
2r122 2000 11544 9 0 0 0 0.1 29000 1 0.1
2r123 2000 11508 9 0 0 0 0.1 25000 1 0.1
2r131 2000 11452 9 0 0 0 0.1 27000 1 0.1
2r132 2000 11450 9 636 5426 9 0.4 33000 1 0.4
2r133 2000 11458 9 0 0 0 0.1 29000 1 0.1
2r211 2000 11600 50 571 4988 34 2.8 89000 3 8.2
2r212 2000 11600 49 132 818 17 0.9 80000 1 1.1
2r213 2000 11600 48 279 2104 29 2.0 76000 1 2.5
2r221 2000 11528 50 0 0 0 1.1 83000 1 1.1
2r222 2000 11530 50 0 0 0 1.9 84000 1 1.9
2r223 2000 11540 49 562 4606 40 1.8 84000 1 4.1
2r231 2000 11474 50 0 0 0 2.3 86000 1 2.3
2r232 2000 11466 49 453 3358 37 2.0 87000 1 3.7
2r233 2000 11460 47 0 0 0 1.3 83000 1 1.3
2r311 2000 11600 95 372 2586 47 1.2 129000 1 2.0
2r312 2000 11600 92 482 3802 45 1.0 126000 1 2.4
2r313 2000 11600 97 306 2124 38 1.0 128000 1 2.0
2r321 2000 11542 92 0 0 0 0.3 125000 1 0.3
2r322 2000 11506 92 397 2784 43 1.6 130000 1 2.5
2r323 2000 11528 96 651 4856 64 1.7 142000 52 13.3
2r331 2000 11472 93 260 1584 40 1.8 134000 1 2.0
2r332 2000 11490 95 544 3820 50 1.7 136000 1 4.8
2r333 2000 11482 98 449 2938 54 2.1 143000 1 3.1

Table B.4. Detailed computational results for SPG, test-set LIN.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

lin01 53 160 4 0 0 0 0.0 503 1 0.0
lin02 55 164 6 0 0 0 0.0 557 1 0.0
lin03 57 168 8 0 0 0 0.0 926 1 0.0
lin04 157 532 6 0 0 0 0.0 1239 1 0.0
lin05 160 538 9 0 0 0 0.0 1703 1 0.0
lin06 165 548 14 0 0 0 0.0 1348 1 0.0
lin07 307 1052 6 0 0 0 0.0 1885 1 0.0
lin08 311 1060 10 0 0 0 0.0 2248 1 0.0
lin09 313 1064 12 0 0 0 0.0 2752 1 0.0
lin10 321 1080 20 0 0 0 0.0 4132 1 0.0
lin11 816 2920 10 0 0 0 0.0 4280 1 0.0
lin12 818 2924 12 47 144 8 0.0 5250 1 0.0
lin13 822 2932 16 0 0 0 0.0 4609 1 0.0
lin14 828 2944 22 0 0 0 0.0 5824 1 0.0
lin15 840 2968 34 0 0 0 0.0 7145 1 0.0
lin16 1981 7266 12 0 0 0 0.1 6618 1 0.1
lin17 1989 7282 20 0 0 0 0.1 8405 1 0.1
lin18 1994 7292 25 13 34 6 0.5 9714 1 0.5
lin19 2010 7324 41 105 350 11 0.1 13268 1 0.1

cont. next page

B.1. Steiner tree problem in graphs 223

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

lin20 3675 13418 11 0 0 0 0.1 6673 1 0.1
lin21 3683 13434 20 129 422 9 0.2 9143 1 0.2
lin22 3692 13452 28 0 0 0 0.2 10519 1 0.2
lin23 3716 13500 52 84 278 17 0.8 17560 1 0.8
lin24 7998 29468 16 2970 10706 16 1.4 15076 1 1.5
lin25 8007 29486 24 931 3254 20 4.4 17803 1 4.4
lin26 8013 29498 30 0 0 0 3.4 21757 1 3.4
lin27 8017 29506 36 94 302 18 3.3 20678 1 3.3
lin28 8062 29596 81 354 1200 44 11.8 32584 1 12.0
lin29 19083 71272 24 1022 3714 19 12.0 23765 1 12.0
lin30 19091 71288 31 190 650 19 15.9 27684 1 15.9
lin31 19100 71306 40 6577 24148 37 39.7 31696 1 44.4
lin32 19112 71330 53 6902 25308 52 49.1 39832 1 66.7
lin33 19177 71460 117 5711 20688 97 52.4 56061 1 540.8
lin34 38282 143042 34 11461 42424 33 157.1 45018 1 158.2
lin35 38294 143066 45 14095 51962 45 99.1 50559 1 120.3
lin36 38307 143092 58 17931 66096 57 102.2 55608 1 259.9
lin37 38418 143314 172 23971 88916 169 129.2 97134.5228 99773 2.7 1 >54340

Table B.5. Detailed computational results for SPG, test-set PUC.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

bip42p 1200 7964 200 990 7234 200 0.2 24657 134338 18296.0
bip42u 1200 7964 200 989 7216 200 0.2 236 98275 10918.0
bip52p 2200 15994 200 1817 14650 200 0.4 24317.3892 24563 1.0 263924 >54340
bip52u 2200 15994 200 1818 14646 200 0.6 230.569282 234 1.5 274715 >54340
bip62p 1200 20004 200 1199 20000 200 0.3 22589.1452 22882 1.3 168402 >54340
bip62u 1200 20004 200 1199 20000 200 0.5 214.924104 219 1.9 122591 >54340
bipa2p 3300 36146 300 3139 35588 300 1.0 34789.4576 35427 1.8 91345 >54340
bipa2u 3300 36146 300 3138 35590 300 1.2 330.629545 340 2.8 118047 >54340
bipe2p 550 10026 50 550 10026 50 0.1 5616 1778 156.6
bipe2u 550 10026 50 550 10026 50 0.2 54 121 75.1
cc10-2p 1024 10240 135 1024 10240 135 0.4 34531.666 35235 2.0 4227 >54340
cc10-2u 1024 10240 135 1024 10240 135 0.8 334.695705 344 2.8 3902 >54340
cc11-2p 2048 22526 244 2048 22526 244 1.3 62119.5137 63775 2.7 1606 >54340
cc11-2u 2048 22526 244 2048 22526 244 1.9 602.628793 617 2.4 2794 >54340
cc12-2p 4096 49148 473 4096 49148 473 4.4 118630.032 121609 2.5 99 >54340
cc12-2u 4096 49148 473 4096 49148 473 4.3 1150.13492 1180 2.6 267 >54340
cc3-10p 1000 27000 50 1000 27000 50 0.6 12701.8929 12774 0.6 7970 >54340
cc3-10u 1000 27000 50 1000 27000 50 1.0 120.24651 126 4.8 540 >54340
cc3-11p 1331 39930 61 1331 39930 61 1.0 15463.0715 15600 0.9 4291 >54340
cc3-11u 1331 39930 61 1331 39930 61 1.1 144.304692 154 6.7 1 >54340
cc3-12p 1728 57024 74 1728 57024 74 1.5 18735.8687 18847 0.6 3835 >54340
cc3-12u 1728 57024 74 1728 57024 74 1.7 174.415419 186 6.6 65 >54340
cc3-4p 64 576 8 64 576 8 0.0 2338 1 0.0
cc3-4u 64 576 8 64 576 8 0.0 23 1 0.0
cc3-5p 125 1500 13 125 1500 13 0.0 3661 1 0.8
cc3-5u 125 1500 13 125 1500 13 0.0 36 1 0.8
cc5-3p 243 2430 27 243 2430 27 0.1 7299 1617 3908.1
cc5-3u 243 2430 27 243 2430 27 0.1 71 195 631.5
cc6-2p 64 384 12 64 384 12 0.0 3271 1 0.1
cc6-2u 64 384 12 64 384 12 0.0 32 1 0.2
cc6-3p 729 8736 76 729 8736 76 0.3 20195.8499 20285 0.4 21389 >54340
cc6-3u 729 8736 76 729 8736 76 0.6 197 480 24751.0
cc7-3p 2187 30616 222 2187 30616 222 1.7 55409.2249 57103 3.1 693 >54340
cc7-3u 2187 30616 222 2187 30616 222 1.8 536.649655 553 3.0 803 >54340
cc9-2p 512 4608 64 512 4608 64 0.2 16910.9215 17221 1.8 7616 >54340

cont. next page

224 Appendix B. Detailed computational results

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

cc9-2u 512 4608 64 512 4608 64 0.3 163.900276 168 2.5 7493 >54340
hc10p 1024 10240 512 1024 10240 512 0.4 59290.8921 59840 0.9 45960 >54340
hc10u 1024 10240 512 1024 10240 512 0.8 567.888889 576 1.4 64217 >54340
hc11p 2048 22528 1024 2048 22528 1024 1.2 117451.059 119795 2.0 14368 >54340
hc11u 2048 22528 1024 2048 22528 1024 2.1 1125.4 1158 2.9 12159 >54340
hc12p 4096 49152 2048 4096 49152 2048 4.7 232922.491 236506 1.5 1720 >54340
hc12u 4096 49152 2048 4096 49152 2048 7.5 2233.09091 2301 3.0 370 >54340
hc6p 64 384 32 64 384 32 0.0 4003 1497 16.1
hc6u 64 384 32 64 384 32 0.0 39 695 5.9
hc7p 128 896 64 128 896 64 0.0 7905 260991 3550.8
hc7u 128 896 64 128 896 64 0.1 77 597413 5143.4
hc8p 256 2048 128 256 2048 128 0.1 15322 307517 23599.8
hc8u 256 2048 128 256 2048 128 0.1 145.714286 148 1.6 1069424 >54340
hc9p 512 4608 256 512 4608 256 0.2 29982.8096 30252 0.9 152094 >54340
hc9u 512 4608 256 512 4608 256 0.3 287.125 292 1.7 374988 >54340

Table B.6. Detailed computational results for SPG, test-set SP.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

antiwheel5 10 30 5 0 0 0 0.0 7 1 0.0
design432 8 40 4 0 0 0 0.0 9 1 0.0
oddcycle3 6 18 3 0 0 0 0.0 4 1 0.0
oddwheel3 7 18 4 0 0 0 0.0 5 1 0.0
se03 13 42 4 0 0 0 0.0 12 1 0.0
w13c29 783 4524 406 783 4524 406 0.4 507 62 95.7
w23c23 1081 6348 552 1081 6348 552 0.7 689 62 1061.8
w3c571 3997 20556 2284 3997 20556 2284 3.1 2854 1 54.9

Table B.7. Detailed computational results for SPG, test-set TSPFST.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

a280fst 313 656 279 0 0 0 0.0 2502 1 0.0
att48fst 139 404 48 58 186 23 0.0 30236 1 0.0
att532fst 1468 4304 532 270 854 103 0.4 84009 1 0.5
berlin52fst 89 208 52 0 0 0 0.0 6760 1 0.0
bier127fst 258 714 127 0 0 0 0.0 104284 1 0.0
d1291fst 1365 2912 1291 0 0 0 0.0 481421 1 0.0
d1655fst 1906 4166 1655 33 100 16 0.0 584948 1 0.0
d198fst 232 512 198 0 0 0 0.0 129175 1 0.0
d2103fst 2206 4544 2103 0 0 0 0.0 769797 1 0.0
d493fst 1055 2946 493 92 280 46 0.1 320137 1 0.2
d657fst 1416 3956 657 131 418 56 0.3 471589 1 0.7
dsj1000fst 2562 7310 1000 69 220 28 0.2 17564659 1 0.3
eil101fst 330 1076 101 166 550 56 0.1 605 1 0.2
eil51fst 181 578 51 114 376 39 0.0 409 1 0.1
eil76fst 237 756 76 92 302 35 0.1 513 1 0.1
fl1400fst 2694 9092 1400 441 1648 221 0.6 17980523 1 7.9
fl1577fst 2413 6824 1577 94 320 48 0.1 19825626 1 0.3
fl3795fst 4859 13078 3795 444 1656 222 3.2 25529856 1 8.7
fl417fst 732 2168 417 124 438 52 0.1 10883190 1 0.2
fnl4461fst 17127 54704 4461 7720 25748 2484 25.2 182361 55 165.5
gil262fst 537 1446 262 34 104 22 0.0 2306 1 0.0
kroA100fst 197 500 100 0 0 0 0.0 20401 1 0.0
kroA150fst 389 1124 150 126 404 49 0.1 25700 1 0.1
kroA200fst 500 1428 200 0 0 0 0.0 28652 1 0.0

cont. next page

B.1. Steiner tree problem in graphs 225

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

kroB100fst 230 626 100 0 0 0 0.0 21211 1 0.0
kroB150fst 420 1238 150 62 204 25 0.1 25217 1 0.1
kroB200fst 480 1340 200 102 330 45 0.1 28803 1 0.1
kroC100fst 244 674 100 45 146 18 0.0 20492 1 0.0
kroD100fst 216 576 100 12 34 7 0.0 20437 1 0.0
kroE100fst 226 612 100 46 140 21 0.0 21245 1 0.0
lin105fst 216 646 105 43 134 20 0.0 13429 1 0.0
lin318fst 678 2060 318 78 252 38 0.1 39335 1 0.1
linhp318fst 678 2060 318 78 252 38 0.1 39335 1 0.1
nrw1379fst 5096 16210 1379 2370 7936 751 4.6 56207 1 16.5
p654fst 777 1734 654 0 0 0 0.0 314925 1 0.0
pcb1173fst 1912 4446 1173 17 48 10 0.0 53301 1 0.0
pcb3038fst 5829 15104 3038 77 232 40 0.4 131895 1 0.5
pcb442fst 503 1062 442 0 0 0 0.0 47675 1 0.0
pla7397fst 8790 19630 7397 97 296 51 0.1 22481625 1 0.1
pr1002fst 1473 3430 1002 0 0 0 0.0 243176 1 0.0
pr107fst 111 220 107 0 0 0 0.0 34850 1 0.0
pr124fst 154 330 124 0 0 0 0.0 52759 1 0.0
pr136fst 196 500 136 0 0 0 0.0 86811 1 0.0
pr144fst 221 570 144 0 0 0 0.0 52925 1 0.0
pr152fst 308 862 152 0 0 0 0.0 64323 1 0.0
pr226fst 255 538 226 0 0 0 0.0 70700 1 0.0
pr2392fst 3398 7932 2392 0 0 0 0.0 358989 1 0.0
pr264fst 280 574 264 0 0 0 0.0 41400 1 0.0
pr299fst 420 1000 299 0 0 0 0.0 44671 1 0.0
pr439fst 572 1324 439 0 0 0 0.0 97400 1 0.0
pr76fst 168 494 76 33 94 16 0.0 95908 1 0.0
rat195fst 560 1740 195 182 594 70 0.2 2386 1 0.3
rat575fst 1986 6352 575 892 2940 319 2.0 6808 1 2.7
rat783fst 2397 7430 783 900 2976 338 2.2 8883 1 3.1
rat99fst 269 798 99 0 0 0 0.0 1225 1 0.0
rd100fst 201 506 100 0 0 0 0.0 764269099 1 0.0
rd400fst 1001 2838 400 161 514 65 0.1 1490972010 1 0.2
rl11849fst 13963 30630 11849 88 266 50 0.1 8779590 1 0.1
rl1304fst 1562 3388 1304 18 54 10 0.0 236649 1 0.0
rl1323fst 1598 3500 1323 0 0 0 0.0 253620 1 0.0
rl1889fst 2382 5348 1889 67 216 27 0.0 295208 1 0.0
rl5915fst 6569 13960 5915 34 102 19 0.0 533226 1 0.0
rl5934fst 6827 14730 5934 31 100 19 0.0 529890 1 0.0
st70fst 133 338 70 0 0 0 0.0 626 1 0.0
ts225fst 225 448 225 0 0 0 0.0 1120 1 0.0
tsp225fst 242 504 225 0 0 0 0.0 356850 1 0.0
u1060fst 1835 4858 1060 63 220 32 0.1 21265372 1 0.6
u1432fst 1432 2862 1432 0 0 0 0.0 1465 1 0.0
u159fst 184 372 159 0 0 0 0.0 390 1 0.0
u1817fst 1831 3692 1817 0 0 0 0.0 5513053 1 0.0
u2152fst 2167 4368 2152 0 0 0 0.0 6253305 1 0.0
u2319fst 2319 4636 2319 0 0 0 0.0 2322 1 0.0
u574fst 990 2516 574 0 0 0 0.1 3509275 1 0.1
u724fst 1180 3074 724 11 32 7 0.0 4069628 1 0.1
vm1084fst 1679 4116 1084 26 80 15 0.1 2248390 1 0.1
vm1748fst 2856 7282 1748 191 612 85 0.5 3194670 1 0.6

Table B.8. Detailed computational results for SPG, test-set VLSI.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

alue2087 1244 3942 34 0 0 0 0.0 1049 1 0.0
alue2105 1220 3716 34 0 0 0 0.0 1032 1 0.0
alue3146 3626 11738 64 0 0 0 0.1 2240 1 0.1
alue5067 3524 11120 68 50 146 16 0.1 2586 1 0.1
alue5345 5179 16330 68 62 202 17 0.9 3507 1 0.9

cont. next page

226 Appendix B. Detailed computational results

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

alue5623 4472 13876 68 20 56 9 0.6 3413 1 0.6
alue5901 11543 36858 68 41 124 18 0.7 3912 1 0.7
alue6179 3372 10426 67 0 0 0 0.1 2452 1 0.1
alue6457 3932 12274 68 0 0 0 0.1 3057 1 0.1
alue6735 4119 13392 68 140 446 20 0.1 2696 1 0.1
alue6951 2818 8838 67 57 172 19 0.1 2386 1 0.1
alue7065 34046 109682 544 41 122 17 19.5 23881 1 19.5
alue7066 6405 20908 16 2281 7962 9 0.7 2256 1 0.8
alue7080 34479 110988 2344 862 2736 344 9.8 62449 1 10.3
alue7229 940 2948 34 0 0 0 0.0 824 1 0.0
alut0787 1160 4178 34 0 0 0 0.0 982 1 0.0
alut0805 966 3332 34 0 0 0 0.0 958 1 0.0
alut1181 3041 11386 64 0 0 0 0.2 2353 1 0.2
alut2010 6104 22022 68 52 162 13 0.3 3307 1 0.3
alut2288 9070 33190 68 0 0 0 0.9 3843 1 0.9
alut2566 5021 18110 68 32 96 14 0.7 3073 1 0.7
alut2610 33901 125632 204 119 408 9 41.4 12239 1 41.4
alut2625 36711 136234 879 2875 10224 426 45.1 35459 1 52.4
alut2764 387 1252 34 0 0 0 0.0 640 1 0.0
diw0234 5349 20172 25 0 0 0 0.1 1996 1 0.1
diw0250 353 1216 11 0 0 0 0.0 350 1 0.0
diw0260 539 1970 12 0 0 0 0.0 468 1 0.0
diw0313 468 1644 14 0 0 0 0.0 397 1 0.0
diw0393 212 762 11 0 0 0 0.0 302 1 0.0
diw0445 1804 6622 33 21 60 12 0.1 1363 1 0.1
diw0459 3636 13578 25 14 40 5 0.1 1362 1 0.1
diw0460 339 1158 13 0 0 0 0.0 345 1 0.0
diw0473 2213 8270 25 0 0 0 0.1 1098 1 0.1
diw0487 2414 8772 25 0 0 0 0.0 1424 1 0.0
diw0495 938 3310 10 0 0 0 0.0 616 1 0.0
diw0513 918 3368 10 0 0 0 0.0 604 1 0.0
diw0523 1080 4030 10 0 0 0 0.0 561 1 0.0
diw0540 286 930 10 0 0 0 0.0 374 1 0.0
diw0559 3738 14026 18 171 608 12 0.2 1570 1 0.2
diw0778 7231 27454 24 0 0 0 0.6 2173 1 0.6
diw0779 11821 45032 50 32 100 8 2.7 4440 1 2.7
diw0795 3221 11876 10 0 0 0 0.1 1550 1 0.1
diw0801 3023 11150 10 0 0 0 0.1 1587 1 0.1
diw0819 10553 40132 32 0 0 0 0.2 3399 1 0.2
diw0820 11749 44768 37 88 310 12 3.8 4167 1 3.9
dmxa0296 233 772 12 0 0 0 0.0 344 1 0.0
dmxa0368 2050 7352 18 16 40 10 0.1 1017 1 0.1
dmxa0454 1848 6572 16 0 0 0 0.0 914 1 0.0
dmxa0628 169 560 10 0 0 0 0.0 275 1 0.0
dmxa0734 663 2308 11 0 0 0 0.0 506 1 0.0
dmxa0848 499 1722 16 0 0 0 0.0 594 1 0.0
dmxa0903 632 2174 10 0 0 0 0.0 580 1 0.0
dmxa1010 3983 14216 23 0 0 0 0.1 1488 1 0.1
dmxa1109 343 1118 17 0 0 0 0.0 454 1 0.0
dmxa1200 770 2766 21 33 94 13 0.0 750 1 0.0
dmxa1304 298 1006 10 0 0 0 0.0 311 1 0.0
dmxa1516 720 2538 11 0 0 0 0.0 508 1 0.0
dmxa1721 1005 3462 18 0 0 0 0.0 780 1 0.0
dmxa1801 2333 8274 17 209 716 16 0.1 1365 1 0.1
gap1307 342 1104 17 0 0 0 0.0 549 1 0.0
gap1413 541 1812 10 0 0 0 0.0 457 1 0.0
gap1500 220 748 17 0 0 0 0.0 254 1 0.0

cont. next page

B.1. Steiner tree problem in graphs 227

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

gap1810 429 1404 17 0 0 0 0.0 482 1 0.0
gap1904 735 2512 21 0 0 0 0.0 763 1 0.0
gap2007 2039 7096 17 0 0 0 0.0 1104 1 0.0
gap2119 1724 5950 29 0 0 0 0.0 1244 1 0.0
gap2740 1196 4168 14 0 0 0 0.0 745 1 0.0
gap2800 386 1306 12 0 0 0 0.0 386 1 0.0
gap2975 179 586 10 0 0 0 0.0 245 1 0.0
gap3036 346 1166 13 0 0 0 0.0 457 1 0.0
gap3100 921 3116 11 0 0 0 0.0 640 1 0.0
gap3128 10393 36086 104 0 0 0 0.2 4292 1 0.2
msm0580 338 1082 11 0 0 0 0.0 467 1 0.0
msm0654 1290 4540 10 0 0 0 0.0 823 1 0.0
msm0709 1442 4806 16 0 0 0 0.0 884 1 0.0
msm0920 752 2528 26 0 0 0 0.0 806 1 0.0
msm1008 402 1390 11 0 0 0 0.0 494 1 0.0
msm1234 933 3264 13 0 0 0 0.0 550 1 0.0
msm1477 1199 4156 31 0 0 0 0.0 1068 1 0.0
msm1707 278 956 11 0 0 0 0.0 564 1 0.0
msm1844 90 270 10 0 0 0 0.0 188 1 0.0
msm1931 875 3044 10 0 0 0 0.0 604 1 0.0
msm2000 898 3124 10 0 0 0 0.0 594 1 0.0
msm2152 2132 7404 37 0 0 0 0.1 1590 1 0.1
msm2326 418 1446 14 0 0 0 0.0 399 1 0.0
msm2492 4045 14188 12 0 0 0 0.1 1459 1 0.1
msm2525 3031 10478 12 0 0 0 0.1 1290 1 0.1
msm2601 2961 10200 16 0 0 0 0.1 1440 1 0.1
msm2705 1359 4916 13 0 0 0 0.0 714 1 0.0
msm2802 1709 5926 18 0 0 0 0.0 926 1 0.0
msm2846 3263 11566 89 52 162 22 0.3 3135 1 0.3
msm3277 1704 5982 12 0 0 0 0.0 869 1 0.0
msm3676 957 3108 10 0 0 0 0.0 607 1 0.0
msm3727 4640 16510 21 0 0 0 0.1 1376 1 0.1
msm3829 4221 14510 12 0 0 0 0.3 1571 1 0.3
msm4038 237 780 11 0 0 0 0.0 353 1 0.0
msm4114 402 1380 16 0 0 0 0.0 393 1 0.0
msm4190 391 1332 16 0 0 0 0.0 381 1 0.0
msm4224 191 604 11 0 0 0 0.0 311 1 0.0
msm4312 5181 17786 10 672 2332 10 0.5 2016 1 0.5
msm4414 317 952 11 0 0 0 0.0 408 1 0.0
msm4515 777 2716 13 0 0 0 0.0 630 1 0.0
taq0014 6466 22092 128 0 0 0 0.5 5326 1 0.5
taq0023 572 1926 11 0 0 0 0.0 621 1 0.0
taq0365 4186 14148 22 61 198 9 0.1 1914 1 0.1
taq0377 6836 23430 136 58 160 34 1.6 6393 1 1.7
taq0431 1128 3810 13 0 0 0 0.0 897 1 0.0
taq0631 609 1864 10 0 0 0 0.0 581 1 0.0
taq0739 837 2876 16 0 0 0 0.0 848 1 0.0
taq0741 712 2434 16 53 170 9 0.0 847 1 0.0
taq0751 1051 3582 16 0 0 0 0.0 939 1 0.0
taq0891 331 1120 10 0 0 0 0.0 319 1 0.0
taq0903 6163 20980 130 0 0 0 1.4 5099 1 1.5
taq0910 310 1028 17 0 0 0 0.0 370 1 0.0
taq0920 122 388 17 0 0 0 0.0 210 1 0.0
taq0978 777 2478 10 0 0 0 0.0 566 1 0.0

Table B.9. Detailed computational results for SPG, test-set WRP3.

228 Appendix B. Detailed computational results

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

wrp3-11 128 454 11 0 0 0 0.0 1100361 1 0.0
wrp3-12 84 298 12 0 0 0 0.0 1200237 1 0.0
wrp3-13 311 1226 13 131 492 13 0.1 1300497 1 0.1
wrp3-14 128 494 14 108 422 13 0.0 1400250 1 0.0
wrp3-15 138 514 15 0 0 0 0.0 1500422 1 0.0
wrp3-16 204 748 16 0 0 0 0.0 1600208 1 0.0
wrp3-17 177 708 17 151 622 13 0.0 1700442 1 0.0
wrp3-19 189 706 19 0 0 0 0.0 1900439 1 0.0
wrp3-20 245 908 20 0 0 0 0.0 2000271 1 0.0
wrp3-21 237 888 21 0 0 0 0.0 2100522 1 0.0
wrp3-22 233 862 22 186 686 20 0.0 2200557 1 0.1
wrp3-23 132 460 23 0 0 0 0.0 2300245 1 0.0
wrp3-24 262 974 24 120 416 17 0.0 2400623 1 0.0
wrp3-25 246 936 25 0 0 0 0.0 2500540 1 0.0
wrp3-26 402 1560 26 0 0 0 0.0 2600484 1 0.0
wrp3-27 370 1442 27 58 202 14 0.2 2700502 1 0.2
wrp3-28 307 1118 28 2 2 1 0.0 2800379 1 0.0
wrp3-29 245 872 29 0 0 0 0.0 2900479 1 0.0
wrp3-30 467 1792 30 73 248 14 0.1 3000569 1 0.1
wrp3-31 323 1184 31 55 188 16 0.1 3100635 1 0.1
wrp3-33 437 1676 33 100 382 13 0.0 3300513 1 0.0
wrp3-34 1244 4948 34 1057 4206 32 2.4 3400646 1 3.6
wrp3-36 435 1636 36 99 332 15 0.4 3600610 1 0.4
wrp3-37 1011 4020 37 847 3356 37 3.2 3700485 1 4.7
wrp3-38 603 2414 38 437 1780 37 1.0 3800656 1 2.0
wrp3-39 703 3232 39 609 2822 38 2.4 3900450 1 4.2
wrp3-41 178 614 41 129 448 36 0.2 4100466 1 0.2
wrp3-42 705 2746 42 572 2214 41 0.8 4200598 1 1.3
wrp3-43 173 596 43 0 0 0 0.1 4300457 1 0.1
wrp3-45 1414 5626 45 1204 4786 45 2.9 4500860 1 3.3
wrp3-48 925 3476 48 491 1816 45 1.2 4800552 1 2.0
wrp3-49 886 3600 49 693 2798 46 1.8 4900882 1 9.9
wrp3-50 1119 4502 50 915 3716 49 2.5 5000673 1 4.3
wrp3-52 701 2704 52 581 2250 49 1.6 5200825 1 5.2
wrp3-53 775 2942 53 148 534 12 0.3 5300847 1 0.3
wrp3-55 1645 6372 55 1487 5844 55 2.1 5500888 1 69.4
wrp3-56 853 3180 56 590 2238 52 0.9 5600872 1 2.7
wrp3-60 838 3526 60 785 3300 60 2.2 6001164 1 28.2
wrp3-62 670 2632 62 586 2278 62 1.1 6201016 1 5.5
wrp3-64 1822 7220 64 1592 6402 59 3.4 6400931 1 9.9
wrp3-66 2521 9716 66 2269 8946 62 3.0 6600922 1 368.1
wrp3-67 987 3846 67 467 1848 36 1.8 6700776 1 3.5
wrp3-69 856 3242 69 447 1674 61 1.6 6900841 1 2.0
wrp3-70 1468 5862 70 964 3810 56 2.7 7000890 1 11.2
wrp3-71 1221 4828 71 947 3754 62 2.7 7101028 1 20.3
wrp3-73 1890 7226 73 1679 6534 63 2.2 7301207 1 37.4
wrp3-74 1019 3882 74 861 3326 65 1.1 7400759 1 13.1
wrp3-75 729 2790 75 551 2054 75 1.6 7501020 1 2.5
wrp3-76 1761 6740 76 1049 4066 46 3.1 7601028 1 4.7
wrp3-78 2346 9312 78 1993 7980 71 3.6 7801094 1 232.2
wrp3-79 833 3190 79 0 0 0 1.1 7900444 1 1.1
wrp3-80 1491 5662 80 1214 4650 75 3.6 8000849 1 29.7
wrp3-83 3168 12440 83 2961 11852 80 3.2 8300906 1 3073.2
wrp3-84 2356 9094 84 1915 7600 73 3.4 8401094 1 18.6
wrp3-85 528 2034 85 509 1958 85 0.5 8500739 1 7.7
wrp3-86 1360 5214 86 1157 4444 86 2.9 86000746 1 44.0
wrp3-88 743 2818 88 390 1470 58 1.6 88001175 1 2.4

cont. next page

B.1. Steiner tree problem in graphs 229

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

wrp3-91 1343 5188 91 873 3356 78 3.1 91000866 1 5.5
wrp3-92 1765 7226 92 1265 5254 70 3.5 92000764 1 36.5
wrp3-94 1976 7672 94 1504 6002 79 3.9 94001181 5 53.1
wrp3-96 2518 9970 96 2193 8800 87 3.9 96001172 1 185.4
wrp3-98 2265 9090 98 1893 7712 83 4.0 98001224 1 347.2
wrp3-99 2076 8144 99 1689 6612 94 2.0 99001097 1 118.1

Table B.10. Detailed computational results for SPG, test-set WRP4.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

wrp4-11 123 466 11 0 0 0 0.0 1100179 1 0.0
wrp4-13 110 376 13 0 0 0 0.0 1300798 1 0.0
wrp4-14 145 566 14 0 0 0 0.0 1400290 1 0.0
wrp4-15 193 738 15 0 0 0 0.0 1500405 1 0.0
wrp4-16 311 1158 16 0 0 0 0.0 1601190 1 0.0
wrp4-17 223 808 17 138 486 13 0.0 1700525 1 0.0
wrp4-18 211 760 18 0 0 0 0.0 1801464 1 0.0
wrp4-19 119 412 19 0 0 0 0.0 1901446 1 0.0
wrp4-21 529 2064 21 167 644 15 0.1 2103283 1 0.1
wrp4-22 294 1136 22 108 392 15 0.1 2200394 1 0.1
wrp4-23 257 1030 23 131 478 18 0.0 2300376 1 0.0
wrp4-24 493 1926 24 0 0 0 0.1 2403332 1 0.1
wrp4-25 422 1616 25 92 332 9 0.1 2500828 1 0.1
wrp4-26 396 1562 26 310 1224 26 0.5 2600443 1 1.7
wrp4-27 243 994 27 71 260 16 0.1 2700441 1 0.1
wrp4-28 272 1090 28 190 756 28 0.2 2800466 1 0.5
wrp4-29 247 1010 29 105 394 22 0.2 2900484 1 0.2
wrp4-30 361 1448 30 296 1190 29 0.1 3000526 1 2.2
wrp4-31 390 1572 31 318 1280 30 0.3 3100526 1 2.6
wrp4-32 311 1264 32 246 998 29 0.1 3200554 1 1.2
wrp4-33 304 1142 33 103 372 19 0.0 3300655 1 0.0
wrp4-34 314 1300 34 45 154 9 0.1 3400525 1 0.1
wrp4-35 471 1908 35 320 1240 35 0.4 3500601 1 1.2
wrp4-36 363 1500 36 310 1276 36 0.2 3600596 1 1.3
wrp4-37 522 2108 37 438 1726 37 0.4 3700647 1 2.9
wrp4-38 294 1236 38 0 0 0 0.1 3800606 1 0.1
wrp4-39 802 3106 39 163 600 14 0.1 3903734 1 0.1
wrp4-40 538 2176 40 440 1774 39 0.3 4000758 1 6.9
wrp4-41 465 1910 41 377 1540 41 0.4 4100695 1 4.1
wrp4-42 552 2262 42 502 2038 42 0.4 4200701 1 9.6
wrp4-43 596 2296 43 277 1054 33 0.1 4301508 1 0.2
wrp4-44 398 1576 44 153 576 27 0.3 4401504 9 0.4
wrp4-45 388 1630 45 0 0 0 0.3 4500728 1 0.3
wrp4-46 632 2574 46 583 2356 46 0.4 4600756 1 8.6
wrp4-47 555 2196 47 0 0 0 0.9 4701318 1 0.9
wrp4-48 451 1650 48 0 0 0 0.1 4802220 1 0.1
wrp4-49 557 2160 49 158 582 22 0.5 4901968 1 0.6
wrp4-50 564 2224 50 223 860 24 0.4 5001625 1 0.6
wrp4-51 668 2612 51 407 1592 45 1.3 5101616 1 1.6
wrp4-52 547 2230 52 70 240 20 0.4 5201081 1 0.4
wrp4-53 615 2464 53 351 1370 46 0.7 5301351 1 1.5
wrp4-54 688 2776 54 356 1398 40 0.6 5401534 1 1.4
wrp4-55 610 2402 55 403 1562 51 0.7 5501952 1 1.0
wrp4-56 839 3234 56 489 1902 47 0.8 5602299 1 1.6
wrp4-58 757 2986 58 367 1446 41 0.6 5801466 1 1.3
wrp4-59 904 3612 59 154 506 29 0.2 5901592 1 0.2

cont. next page

230 Appendix B. Detailed computational results

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

wrp4-60 693 2740 60 103 346 24 0.4 6001782 1 0.4
wrp4-61 775 3076 61 138 500 19 0.2 6102210 1 0.2
wrp4-62 1283 4986 62 313 1184 29 2.6 6202100 1 2.7
wrp4-63 1121 4454 63 943 3752 60 0.9 6301479 1 57.1
wrp4-64 632 2562 64 0 0 0 0.3 6401996 1 0.3
wrp4-66 844 3382 66 229 834 24 1.0 6602931 1 1.0
wrp4-67 1518 6120 67 208 770 28 2.5 6702800 1 2.6
wrp4-68 917 3700 68 793 3182 67 0.8 6801753 1 4.3
wrp4-69 574 2330 69 0 0 0 0.7 6902328 1 0.7
wrp4-70 637 2538 70 0 0 0 0.1 7003022 1 0.1
wrp4-71 802 3218 71 0 0 0 0.1 7102320 1 0.1
wrp4-72 1151 4548 72 538 2132 48 1.1 7202807 1 4.2
wrp4-73 1898 7232 73 1290 5112 73 1.9 7302643 1 23.7
wrp4-74 802 3240 74 610 2422 72 0.8 7402046 1 1.9
wrp4-75 938 3738 75 702 2784 75 1.1 7501712 1 2.2
wrp4-76 766 3070 76 140 504 30 0.5 7602040 1 0.6

B.1.3 DIMACS 2014 instances

The time limit for the following instances is 54340 seconds. This corresponds to 24 hours
on the machine used by Polzin and Vahdati-Daneshmand (2014).

Table B.11. Detailed computational results for SPG, test-set Copenhagen14.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

ind1 18 62 10 0 0 0 0.0 604 1 0.0
ind2 31 114 10 0 0 0 0.0 9500 1 0.0
ind3 16 46 10 0 0 0 0.0 600 1 0.0
ind4 74 292 25 0 0 0 0.0 1086 1 0.0
ind5 114 456 33 0 0 0 0.0 1341 1 0.0
rc01 21 70 10 0 0 0 0.0 25980 1 0.0
rc02 87 352 30 2 2 1 0.0 41350 1 0.0
rc03 109 404 50 0 0 0 0.0 54160 1 0.0
rc04 121 394 70 0 0 0 0.0 59070 1 0.0
rc05 247 972 100 0 0 0 0.0 74070 1 0.0
rc06 2502 12488 100 1991 8880 90 1.2 79714 3 5.3
rc07 2740 13156 200 2001 8674 139 1.9 108740 9 7.8
rc08 7527 36340 200 6840 30894 186 4.8 112564 11 120.5
rc09 6128 30528 200 5290 24238 168 4.0 111005 1 83.1
rc10 1572 6490 500 572 2078 163 0.9 164150 1 1.2
rc11 2858 11638 1000 1055 3676 337 3.1 230837 1 3.9
rt01 262 1480 10 0 0 0 0.0 2146 1 0.0
rt02 788 3876 50 0 0 0 0.3 45852 1 0.3
rt03 1725 8184 100 1430 6198 82 0.9 7964 1 2.6
rt04 9469 45486 100 9035 41352 94 4.2 9693 9 379.2
rt05 15473 77856 200 14488 68570 190 7.2 51313 47 2418.4

Table B.12. Detailed computational results for SPG, test-set ES10000FST.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

es10000fst01 27019 78814 10000 4080 13246 1621 39.0 716174280 1 52.2

Table B.13. Detailed computational results for SPG, test-set geo-original.

B.1. Steiner tree problem in graphs 231

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

G101 67966 164970 100 669 2544 66 4.7 3492405 1 5.2
G102 111707 321008 2052 9285 30744 1592 20.1 15187538 1 65.6
G103 135543 403606 3033 12804 42348 2277 26.9 19938744 1 110.1
G104 158212 480044 3914 16492 54266 2929 36.4 26165528 1 199.3
G105 79244 202378 550 3103 10712 409 8.7 12507877 1 25.3
G106 204621 636272 5556 1379 4618 233 70.1 44547208 1 486.0
G107 85568 228226 938 1177 3824 247 7.5 7325530 1 9.8
G201 44624 112410 190 775 2588 123 3.4 3484028 1 3.8
G202 62174 175124 1015 1773 5766 357 7.5 6849423 1 9.4
G203 88728 267250 2041 1817 5962 323 19.9 13155210 1 42.6
G204 50002 130406 386 905 2916 181 4.9 5313548 1 5.2
G205 120866 374624 3224 3873 12768 639 31.6 24819583 1 171.7
G206 60446 165880 803 254 834 56 7.8 9175622 1 10.6
G207 42481 105104 97 0 0 0 1.8 2265834 1 1.8
G301 80736 197500 191 1313 4932 152 6.7 4797441 1 8.1
G302 117756 330306 1879 354 1112 91 13.9 13300990 1 22.8
G303 147718 428352 2992 10545 33992 1853 35.2 27941456 1 68.7
G304 86413 217744 419 77 242 24 6.7 6721180 1 6.7
G305 172687 511650 3902 2540 8404 421 42.7 40632152 1 128.2
G306 196404 600072 4937 2329 7616 425 49.8 33949874 1 335.4
G307 235686 732186 6313 3647 12044 610 79.1 51219090 1 529.6
G308 78834 191464 88 1120 4464 72 6.5 4699474 3 10.9
G309 97928 257264 902 576 1872 127 12.1 11256303 1 14.6

Table B.14. Detailed computational results for SPG, test-set geo-advanced.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

G101a 10734 32690 96 286 1050 44 4.3 3492405 1 4.5
G102a 27896 87850 2003 8975 29614 1543 22.2 15187538 1 64.7
G103a 36270 114740 2930 5448 17926 970 26.9 19938744 1 98.8
G104a 44251 140058 3776 16048 52674 2830 37.9 26165528 1 208.2
G105a 14586 44900 525 3029 10410 402 7.6 12507877 1 21.8
G106a 62618 200134 5373 1380 4618 233 63.0 44547208 1 473.8
G107a 15536 47716 893 1181 3850 247 6.3 7325530 1 8.8
G201a 8286 25234 188 772 2580 124 3.3 3484028 1 3.6
G202a 14028 43220 985 1771 5752 360 6.7 6849423 1 8.7
G203a 25651 81220 1999 1803 5910 320 18.2 13155210 1 39.7
G204a 9939 30498 376 868 2806 176 2.8 5313548 1 3.2
G205a 37398 118646 3146 3815 12590 624 28.4 24819583 1 156.6
G206a 13688 42394 789 294 974 60 6.9 9175622 1 9.7
G207a 7565 23042 98 2 2 1 1.7 2265834 1 1.7
G301a 13291 40522 181 952 3484 125 6.3 4797441 1 6.9
G302a 24951 77294 1797 403 1274 101 12.6 13300990 1 21.6
G303a 37085 115422 2915 1308 4250 231 29.7 27941456 1 73.7
G304a 15213 46658 403 117 380 30 5.7 6721180 1 5.8
G305a 47016 147722 3809 14024 45076 2425 47.2 40632152 1 130.4
G306a 55423 175558 4766 2329 7614 425 50.9 33949874 1 374.3
G307a 71184 227232 6107 3648 12048 610 69.1 51219090 1 554.0
G308a 13298 40702 86 702 2740 67 6.4 4699474 1 7.3
G309a 18704 57702 868 2259 7478 402 11.3 11256303 1 13.2

Table B.15. Detailed computational results for SPG, test-set vienna-i-simple.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

I001 30190 95496 1184 211 646 75 2.1 253921201 1 2.2
I002 49920 155742 1665 642 1940 186 6.4 399809303 1 7.2
I003 44482 146838 3222 443 1342 126 9.6 788774494 1 13.2
I004 5556 17104 570 0 0 0 0.1 279512692 1 0.1

cont. next page

232 Appendix B. Detailed computational results

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

I005 10284 31960 1017 0 0 0 0.2 390876350 1 0.2
I006 31754 105750 2202 544 1640 175 7.2 504526035 1 10.8
I007 15122 48742 737 136 400 42 0.9 177909660 1 1.0
I008 15714 51134 871 136 404 46 1.9 201788202 1 2.0
I009 33188 104014 1262 297 902 100 2.5 275558727 1 2.6
I010 29905 94914 943 151 450 58 1.4 207889674 1 1.4
I011 25195 82596 1428 734 2258 207 2.5 317589880 1 3.3
I012 12355 39924 503 32 98 16 0.3 118893243 1 0.3
I013 18242 57952 891 66 188 32 1.3 193190339 1 1.4
I014 12715 41264 475 10 26 5 0.3 105173465 1 0.3
I015 48833 159974 2493 424 1330 123 7.4 592240832 1 8.6
I016 72038 230110 4391 742 2290 207 17.5 1110914620 1 19.4
I017 15095 48182 478 76 234 21 0.5 109739695 1 0.5
I018 31121 102226 1898 982 2914 274 4.7 463887832 1 6.5
I019 25946 83290 866 320 970 90 1.8 217647693 1 1.9
I020 21808 69842 594 98 308 35 1.0 146515460 1 1.0
I021 16013 50538 392 17 46 7 0.5 106470644 1 0.5
I022 16224 51382 437 54 156 19 0.7 106799980 1 0.7
I023 22805 70614 582 92 294 31 0.7 131044872 1 0.7
I024 68464 217464 3001 275 848 79 10.9 758483415 1 12.3
I025 23412 75904 945 474 1488 153 3.6 232790758 1 3.7
I026 47429 158614 3334 1420 4372 409 11.5 928032223 1 13.2
I027 85085 277776 3954 1166 3564 291 16.9 976812226 1 18.2
I028 72701 230860 1790 176 546 59 16.6 384053191 1 16.6
I029 69988 223608 2162 349 1100 93 13.0 492193565 1 13.2
I030 33188 107360 1263 148 450 39 3.4 321646787 1 3.4
I031 54351 176422 2182 155 482 42 5.5 578284709 1 5.5
I032 56023 182798 3017 800 2404 244 6.6 773096651 1 7.7
I033 18555 59460 636 59 174 25 1.6 134461857 1 1.6
I034 22311 71032 735 64 186 21 1.9 165115148 1 1.9
I035 30585 100908 1704 129 386 49 3.7 414440370 1 4.2
I036 37208 120712 1411 125 402 36 6.5 375260864 1 7.0
I037 13694 44252 427 13 36 7 1.2 105720727 1 1.2
I038 18747 61278 967 679 2106 169 1.9 255767543 1 2.7
I039 8755 28898 347 88 258 38 0.7 85566290 1 0.7
I040 40389 131640 1762 398 1236 121 6.2 431498867 1 6.3
I041 47197 150614 1193 181 554 65 5.5 301914840 1 5.6
I042 51896 171100 2171 131 394 39 7.2 532131412 1 7.3
I043 10398 33574 367 108 328 41 0.9 95722094 1 1.0
I044 68905 227778 3358 352 1082 90 11.3 804532332 1 14.0
I045 14685 46932 421 80 234 26 0.6 105944062 1 0.6
I046 70843 234418 3598 172 516 50 12.8 925470052 1 14.4
I047 28524 92502 2354 2176 6606 622 5.8 695163406 1 8.4
I048 13189 42438 358 0 0 0 0.5 91509264 1 0.5
I049 30857 99182 990 159 468 51 2.7 294811505 1 2.7
I050 43073 142552 2868 3449 10540 920 11.1 792599114 1 20.6
I051 27028 90812 1524 137 406 42 5.0 357230839 1 5.8
I052 2363 7522 40 0 0 0 0.0 13309487 1 0.0
I053 3224 10570 126 19 52 8 0.1 30854904 1 0.1
I054 3803 12426 38 0 0 0 0.0 15841596 1 0.0
I055 13332 43160 570 112 338 46 0.8 144164924 1 0.8
I056 1991 6352 51 0 0 0 0.0 14171206 1 0.0
I057 33231 110298 1569 112 340 40 3.4 412746415 1 4.1
I058 23527 79256 1256 169 538 42 1.2 305024188 1 1.3
I059 9287 29950 363 49 134 22 0.2 107617854 1 0.2
I060 42008 135144 1242 160 504 54 6.0 337290460 1 6.0
I061 39160 127318 1458 171 532 46 7.5 363042722 1 8.1

cont. next page

B.1. Steiner tree problem in graphs 233

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

I062 66048 220982 3343 122 374 43 7.7 792941137 1 8.1
I063 26840 87322 1645 777 2366 214 4.0 459801704 1 4.8
I064 63158 214690 3458 6440 20058 1597 21.0 863103567 1 38.2
I065 3898 12712 144 12 36 9 0.2 32965718 1 0.2
I066 15038 49192 551 70 212 28 0.4 174219813 1 0.4
I067 20547 66460 627 403 1256 121 1.6 175540750 1 1.8
I068 33118 110254 1553 353 1066 100 2.8 420730046 1 3.0
I069 9574 32416 543 258 804 71 0.9 135161583 1 1.0
I070 15079 49216 550 123 364 48 1.8 136700139 1 1.8
I071 33203 108854 1494 233 684 70 3.1 382539099 1 3.2
I072 26948 88388 993 110 338 24 2.1 289019226 1 2.1
I073 21653 70342 1847 115 336 44 3.0 663004987 1 3.7
I074 13316 44066 653 17 50 9 0.8 165573383 1 0.8
I075 57551 190762 2973 110 336 33 8.5 815404026 1 9.0
I076 14023 45790 598 71 208 31 0.9 166249692 1 0.9
I077 20856 68474 1787 3514 10400 882 5.0 472503150 1 11.4
I078 13294 43896 835 86 244 37 1.2 185525490 1 1.2
I079 19867 62542 565 757 2598 213 2.6 150506933 1 3.2
I080 18695 59416 548 313 966 92 1.8 164299652 1 2.0
I081 25081 81478 888 53 154 27 2.5 247527679 1 2.6
I082 15592 49576 515 0 0 0 1.0 147407632 1 1.0
I083 89596 297166 4991 65 202 21 12.5 1405593860 1 14.1
I084 44934 147454 2319 95 318 26 5.0 627187559 1 7.0
I085 9113 28982 301 98 340 29 0.4 80628079 1 0.4

Table B.16. Detailed computational results for SPG, test-set vienna-i-advanced.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

I001a 14675 44110 941 212 638 72 1.9 253921201 1 2.0
I002a 23800 71516 1282 635 1918 186 5.0 399809303 1 5.9
I003a 16270 47838 2336 440 1332 125 8.0 788774494 1 11.3
I004a 867 2476 263 19 48 11 0.1 279512692 1 0.1
I005a 1677 4860 491 0 0 0 0.1 390876350 1 0.1
I006a 13339 39064 1842 104 316 28 6.0 504526035 1 9.7
I007a 6873 20598 599 128 370 42 0.8 177909660 1 0.9
I008a 6522 19258 708 101 296 33 1.6 201788202 1 1.7
I009a 14977 44870 1053 306 924 101 1.9 275558727 1 2.1
I010a 13041 39090 782 156 470 59 0.9 207889674 1 1.0
I011a 9298 27370 1202 709 2172 200 2.4 317589880 1 3.0
I012a 3500 10428 387 0 0 0 0.1 118893243 1 0.1
I013a 7147 21216 670 67 192 33 1.0 193190339 1 1.1
I014a 3577 10622 364 0 0 0 0.1 105173465 1 0.1
I015a 20573 61082 2119 407 1270 120 6.3 592240832 1 7.6
I016a 27214 79648 3434 507 1548 154 12.4 1110914620 1 14.9
I017a 7571 23142 386 0 0 0 0.3 109739695 1 0.3
I018a 12258 36028 1549 992 2942 276 3.5 463887832 1 5.0
I019a 11693 35248 732 278 846 79 1.4 217647693 1 1.5
I020a 6405 19128 508 58 180 18 0.5 146515460 1 0.5
I021a 5195 15722 295 102 306 27 0.2 106470644 1 0.2
I022a 8869 27102 356 64 188 24 0.5 106799980 1 0.5
I023a 13724 41726 403 222 672 64 0.5 131044872 1 0.5
I024a 32357 96500 2511 73 214 28 9.3 758483415 1 10.1
I025a 10055 29922 833 73 228 28 3.0 232790758 1 3.2
I026a 18155 53136 2661 1687 5180 496 9.1 928032223 1 10.9
I027a 40772 121110 3490 109 346 33 15.6 976812226 1 17.3
I028a 43690 132922 1597 255 790 85 15.4 384053191 1 15.5
I029a 32979 99254 1946 270 856 73 9.6 492193565 1 9.8
I030a 12941 38558 1093 151 460 39 2.3 321646787 1 2.4

cont. next page

234 Appendix B. Detailed computational results

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

I031a 21054 62820 1832 156 484 42 3.8 578284709 1 3.8
I032a 21345 62706 2454 344 1058 90 5.7 773096651 1 6.7
I033a 8500 25400 548 252 770 76 1.1 134461857 1 1.2
I034a 9128 27336 606 142 412 48 1.2 165115148 1 1.2
I035a 13129 38840 1428 118 352 47 2.9 414440370 1 3.3
I036a 17036 50964 1258 318 984 74 5.4 375260864 1 6.0
I037a 5886 17738 392 60 180 21 0.8 105720727 1 0.8
I038a 7733 22956 798 693 2152 180 1.4 255767543 1 1.9
I039a 3719 11066 306 34 104 10 0.4 85566290 1 0.4
I040a 18837 56312 1501 165 512 49 5.9 431498867 1 6.0
I041a 22466 67736 1014 92 272 36 3.0 301914840 1 3.0
I042a 23925 71612 1923 116 346 34 5.7 532131412 1 5.9
I043a 4511 13480 335 99 288 35 0.8 95722094 1 0.8
I044a 31500 93514 2954 1327 4108 296 9.6 804532332 1 12.2
I045a 6775 20454 378 83 244 26 0.4 105944062 1 0.4
I046a 32376 96108 3154 163 482 50 9.9 925470052 1 11.5
I047a 10622 30880 1791 1365 4126 392 8.2 695163406 1 9.1
I048a 4920 14712 320 0 0 0 0.3 91509264 1 0.3
I049a 15045 45426 821 157 460 51 2.3 294811505 1 2.4
I050a 17787 52352 2232 3357 10250 902 10.0 792599114 1 18.3
I051a 12130 35784 1337 146 440 43 4.2 357230839 1 5.1
I052a 160 474 23 0 0 0 0.0 13309487 1 0.0
I053a 693 2046 102 26 72 13 0.0 30854904 1 0.0
I054a 540 1634 25 0 0 0 0.0 15841596 1 0.0
I055a 4701 13958 483 100 284 45 0.6 144164924 1 0.6
I056a 290 878 34 0 0 0 0.0 14171206 1 0.0
I057a 13078 38736 1346 178 546 64 3.0 412746415 1 3.6
I058a 7877 23314 997 156 494 39 0.9 305024188 1 1.0
I059a 2800 8314 286 31 86 11 0.1 107617854 1 0.1
I060a 18991 57072 1158 191 582 70 4.8 337290460 1 4.8
I061a 20958 62930 1337 153 464 49 6.1 363042722 1 6.6
I062a 23714 70610 2812 94 280 30 6.7 792941137 1 7.0
I063a 9600 28084 1291 950 2898 255 3.4 459801704 1 4.1
I064a 31712 93422 3182 6460 20152 1609 19.5 863103567 1 37.1
I065a 1185 3512 119 62 194 26 0.2 32965718 1 0.2
I066a 4551 13642 417 59 182 24 0.3 174219813 1 0.3
I067a 10318 31176 579 407 1272 123 1.4 175540750 1 1.6
I068a 12191 36046 1302 321 976 91 2.0 420730046 1 2.3
I069a 3508 10312 452 269 844 73 0.7 135161583 1 0.9
I070a 6739 20128 511 147 438 52 1.4 136700139 1 1.5
I071a 12772 37772 1281 117 362 36 2.3 382539099 1 2.5
I072a 11628 34822 851 92 268 38 1.1 289019226 1 1.1
I073a 7510 21746 1337 1069 3244 324 2.8 663004987 1 3.3
I074a 4441 13124 548 37 110 13 0.3 165573383 1 0.3
I075a 23195 68724 2498 102 300 33 6.7 815404026 1 7.1
I076a 4909 14536 498 20 54 11 0.6 166249692 1 0.6
I077a 9153 26726 1490 3509 10388 880 4.4 472503150 1 11.8
I078a 5864 17324 692 168 486 58 1.1 185525490 1 1.1
I079a 7933 23614 497 732 2516 205 2.1 150506933 1 2.6
I080a 7589 22512 499 307 950 92 1.1 164299652 1 1.2
I081a 10747 32058 751 85 246 45 2.0 247527679 1 2.0
I082a 5850 17386 435 29 82 14 0.7 147407632 1 0.7
I083a 34221 100602 4138 326 1010 86 9.4 1405593860 1 10.8
I084a 17050 50402 1918 1265 3922 306 4.3 627187559 1 6.2
I085a 2780 8246 243 0 0 0 0.2 80628079 1 0.2

B.1. Steiner tree problem in graphs 235

236 Appendix B. Detailed computational results

B.2 Maximum-weight connected subgraph problem

The time limit for the following instances is two hours.

Table B.17. Detailed computational results for MWCSP, test-set MWCS-ACTMOD.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

drosophila001 5298 187214 72 3 6 2 0.2 24.3855064 1 0.2
drosophila005 5421 187952 195 0 0 0 0.3 178.663952 1 0.3
drosophila0075 5477 188288 251 3 6 2 0.2 260.523557 1 0.2
HCMV 3919 58916 56 3 6 2 0.1 7.55431486 1 0.1
lymphoma 2102 15914 68 3 6 2 0.0 70.1663087 1 0.0
metabol expr mice 1 3674 9590 151 9 26 4 0.0 544.94837 1 0.0
metabol expr mice 2 3600 9174 86 3 6 2 0.0 241.077524 1 0.0
metabol expr mice 3 2968 7354 115 6 16 3 0.0 508.260877 1 0.0

Table B.18. Detailed computational results for MWCSP, test-set MWCS-HANDB.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

handbd01 171596 687872 1796 33 108 12 2.5 728.963591 1 2.6
handbd02 176996 720272 7196 1123 2624 436 8.9 296.496486 1 9.1
handbd03 171946 689972 2146 3 6 2 0.6 135.070605 1 0.6
handbd04 175099 708890 5299 1353 3290 462 6.9 1813.95916 1 7.0
handbd05 172125 691046 2325 3 6 2 0.6 105.474688 1 0.6
handbd06 176275 715946 6475 1715 4672 485 6.5 1528.76544 1 7.2
handbd07 172641 694142 2841 3 6 2 0.7 77.861959 1 0.7
handbd08 176911 719762 7111 919 2350 305 5.9 1368.16677 1 6.1
handbd09 172409 692750 2609 3 6 2 0.7 62.71716 1 0.7
handbd10 177713 724574 7913 225 754 74 3.7 1137.42973 1 3.8
handbd11 172111 690962 2311 3 6 2 0.6 46.772533 1 0.6
handbd12 178656 730232 8856 3 6 2 3.1 321.204744 1 3.1
handbd13 172681 694382 2881 43367 170616 792 32.9 13.1776581 13.185228 0.1 1 >7200.3
handbd14 169950 677996 150 3 6 2 0.2 4379.10424 1 0.2
handbi01 160177 642272 1777 17 52 7 0.7 1358.56338 1 0.7
handbi02 165361 673376 6961 1055 2462 417 4.8 531.810883 1 5.0
handbi03 160336 643226 1936 3 6 2 0.6 243.134201 1 0.6
handbi04 163630 662990 5230 8267 28384 718 19.9 3202.18574 1 23.8
handbi05 160691 645356 2291 3 6 2 0.6 184.467331 1 0.6
handbi06 164158 666158 5758 3190 9982 493 8.1 2921.54472 1 9.0
handbi07 160657 645152 2257 3 6 2 0.7 150.974258 1 0.7
handbi08 165259 672764 6859 595 1480 211 4.4 2270.28462 1 4.6
handbi09 160674 645254 2274 5 12 3 0.7 107.768806 1 0.7
handbi10 166033 677408 7633 72 236 25 2.6 1874.29296 1 2.6
handbi11 160843 646268 2443 3 6 2 0.6 68.944709 1 0.6
handbi12 166538 680438 8138 3 6 2 1.3 138.257023 1 1.3
handbi13 161089 647744 2689 98606 391402 1554 120.2 4.022194 4.250363 5.7 1 >7202.0
handbi14 166371 679436 7971 3 6 2 0.7 7881.76874 1 0.7

Table B.19. Detailed computational results for MWCSP, test-set MWCS-HANDS.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

handsi01 40033 160000 433 3 6 2 0.1 295.453616 1 0.1
handsi02 41304 167626 1704 321 1066 108 0.7 125.429411 1 0.7
handsi03 40220 161122 620 15 46 6 0.1 56.149422 1 0.1
handsi04 41030 165982 1430 474 1052 204 0.8 722.508197 1 0.8
handsi05 40188 160930 588 3 6 2 0.1 35.043506 1 0.1
handsi06 41513 168880 1913 182 604 61 0.5 452.953621 1 0.5

cont. next page

B.2. Maximum-weight connected subgraph problem 237

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

handsi07 40203 161020 603 3 6 2 0.1 18.410135 1 0.1
handsi08 41597 169384 1997 6 16 3 0.2 229.52993 1 0.2
handsi09 40213 161080 613 3 6 2 0.3 5.962166 1 0.3
handsi10 40966 165598 1366 1011 2642 428 1.1 1803.69751 1 1.6
handsd01 43024 172088 524 3 6 2 0.1 171.636766 1 0.1
handsd02 44084 178448 1584 691 1882 174 0.8 159.751395 1 1.0
handsd03 43213 173222 713 3 6 2 0.1 31.306275 1 0.1
handsd04 43842 176996 1342 507 1686 170 0.7 491.733164 1 0.8
handsd05 43205 173174 705 3 6 2 0.1 21.937611 1 0.1
handsd06 44477 180806 1977 326 1088 103 0.6 279.90313 1 0.7
handsd07 43176 173000 676 3 6 2 0.1 11.80412 1 0.1
handsd08 44624 181688 2124 30 96 11 0.3 143.237729 1 0.3
handsd09 43183 173042 683 3 6 2 0.1 3.818683 1 0.1
handsd10 42806 170780 306 3 6 2 0.1 1034.76736 1 0.1

Table B.20. Detailed computational results for MWCSP, test-set MWCS-JMPALMK.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

MWCS-I-D-n-10-0-a-0-6-d-0-25-e-0-25 1193 11024 193 3 6 2 0.0 931.538552 1 0.0
MWCS-I-D-n-10-0-a-0-6-d-0-25-e-0-5 1388 12194 388 3 6 2 0.0 1872.2754 1 0.0
MWCS-I-D-n-10-0-a-0-6-d-0-25-e-0-75 1564 13250 564 3 6 2 0.0 2789.57911 1 0.0
MWCS-I-D-n-10-0-a-0-6-d-0-5-e-0-25 1114 10550 114 3 6 2 0.0 522.525615 1 0.0
MWCS-I-D-n-10-0-a-0-6-d-0-5-e-0-5 1250 11366 250 3 6 2 0.0 1197.85102 1 0.0
MWCS-I-D-n-10-0-a-0-6-d-0-5-e-0-75 1374 12110 374 3 6 2 0.0 1762.70747 1 0.0
MWCS-I-D-n-10-0-a-0-6-d-0-75-e-0-25 1062 10238 62 3 6 2 0.0 332.791924 1 0.0
MWCS-I-D-n-10-0-a-0-6-d-0-75-e-0-5 1141 10712 141 3 6 2 0.0 754.300601 1 0.0
MWCS-I-D-n-10-0-a-0-6-d-0-75-e-0-75 1196 11042 196 3 6 2 0.0 998.215414 1 0.0
MWCS-I-D-n-10-0-a-1-d-0-25-e-0-25 1193 27710 193 3 6 2 0.0 939.39337 1 0.0
MWCS-I-D-n-10-0-a-1-d-0-25-e-0-5 1388 28880 388 3 6 2 0.0 1883.21361 1 0.0
MWCS-I-D-n-10-0-a-1-d-0-25-e-0-75 1564 29936 564 3 6 2 0.0 2789.57911 1 0.0
MWCS-I-D-n-10-0-a-1-d-0-5-e-0-25 1114 27236 114 3 6 2 0.0 533.4294 1 0.0
MWCS-I-D-n-10-0-a-1-d-0-5-e-0-5 1250 28052 250 3 6 2 0.0 1205.42131 1 0.0
MWCS-I-D-n-10-0-a-1-d-0-5-e-0-75 1374 28796 374 3 6 2 0.0 1770.27776 1 0.0
MWCS-I-D-n-10-0-a-1-d-0-75-e-0-25 1062 26924 62 3 6 2 0.0 336.829944 1 0.0
MWCS-I-D-n-10-0-a-1-d-0-75-e-0-5 1141 27398 141 3 6 2 0.0 760.284581 1 0.0
MWCS-I-D-n-10-0-a-1-d-0-75-e-0-75 1196 27728 196 3 6 2 0.0 1004.19939 1 0.0
MWCS-I-D-n-150–a-0-6-d-0-25-e-0-25 1785 17028 285 3 6 2 0.0 1333.47643 1 0.0
MWCS-I-D-n-150–a-0-6-d-0-25-e-0-5 2078 18786 578 3 6 2 0.0 2799.67722 1 0.0
MWCS-I-D-n-150–a-0-6-d-0-25-e-0-75 2353 20436 853 3 6 2 0.0 4230.25112 1 0.0
MWCS-I-D-n-150–a-0-6-d-0-5-e-0-25 1680 16398 180 3 6 2 0.0 847.452011 1 0.0
MWCS-I-D-n-150–a-0-6-d-0-5-e-0-5 1881 17604 381 3 6 2 0.0 1858.0926 1 0.0
MWCS-I-D-n-150–a-0-6-d-0-5-e-0-75 2060 18678 560 3 6 2 0.0 2697.45876 1 0.0
MWCS-I-D-n-150–a-0-6-d-0-75-e-0-25 1594 15882 94 3 6 2 0.0 502.17599 1 0.0
MWCS-I-D-n-150–a-0-6-d-0-75-e-0-5 1705 16548 205 3 6 2 0.0 1089.77117 1 0.0
MWCS-I-D-n-150–a-0-6-d-0-75-e-0-75 1779 16992 279 3 6 2 0.0 1423.61063 1 0.0
MWCS-I-D-n-150–a-1-d-0-25-e-0-25 1785 42758 285 3 6 2 0.0 1377.0144 1 0.0
MWCS-I-D-n-150–a-1-d-0-25-e-0-5 2078 44516 578 3 6 2 0.0 2820.05174 1 0.0
MWCS-I-D-n-150–a-1-d-0-25-e-0-75 2353 46166 853 3 6 2 0.0 4230.25112 1 0.0
MWCS-I-D-n-150–a-1-d-0-5-e-0-25 1680 42128 180 3 6 2 0.0 860.618961 1 0.0
MWCS-I-D-n-150–a-1-d-0-5-e-0-5 1881 43334 381 3 6 2 0.0 1865.66289 1 0.0
MWCS-I-D-n-150–a-1-d-0-5-e-0-75 2060 44408 560 3 6 2 0.0 2707.70001 1 0.0
MWCS-I-D-n-150–a-1-d-0-75-e-0-25 1594 41612 94 3 6 2 0.0 502.17599 1 0.0
MWCS-I-D-n-150–a-1-d-0-75-e-0-5 1705 42278 205 3 6 2 0.0 1089.77117 1 0.0
MWCS-I-D-n-150–a-1-d-0-75-e-0-75 1779 42722 279 3 6 2 0.0 1423.61063 1 0.0
MWCS-I-D-n-50–a-0-62-d-0-25-e-0-25 590 5728 90 3 6 2 0.0 460.577357 1 0.0
MWCS-I-D-n-50–a-0-62-d-0-25-e-0-5 696 6364 196 3 6 2 0.0 992.967111 1 0.0
MWCS-I-D-n-50–a-0-62-d-0-25-e-0-75 788 6916 288 3 6 2 0.0 1447.54452 1 0.0

cont. next page

238 Appendix B. Detailed computational results

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

MWCS-I-D-n-50–a-0-62-d-0-5-e-0-25 556 5524 56 3 6 2 0.0 280.832378 1 0.0
MWCS-I-D-n-50–a-0-62-d-0-5-e-0-5 629 5962 129 3 6 2 0.0 655.623217 1 0.0
MWCS-I-D-n-50–a-0-62-d-0-5-e-0-75 696 6364 196 3 6 2 0.0 965.554694 1 0.0
MWCS-I-D-n-50–a-0-62-d-0-75-e-0-25 531 5374 31 3 6 2 0.0 171.628785 1 0.0
MWCS-I-D-n-50–a-0-62-d-0-75-e-0-5 566 5584 66 3 6 2 0.0 362.188212 1 0.0
MWCS-I-D-n-50–a-0-62-d-0-75-e-0-75 593 5746 93 3 6 2 0.0 490.623986 1 0.0
MWCS-I-D-n-50–a-1-d-0-25-e-0-25 590 13572 90 3 6 2 0.0 471.393285 1 0.0
MWCS-I-D-n-50–a-1-d-0-25-e-0-5 696 14208 196 3 6 2 0.0 995.313181 1 0.0
MWCS-I-D-n-50–a-1-d-0-25-e-0-75 788 14760 288 3 6 2 0.0 1447.54452 1 0.0
MWCS-I-D-n-50–a-1-d-0-5-e-0-25 556 13368 56 3 6 2 0.0 286.920868 1 0.0
MWCS-I-D-n-50–a-1-d-0-5-e-0-5 629 13806 129 3 6 2 0.0 661.711707 1 0.0
MWCS-I-D-n-50–a-1-d-0-5-e-0-75 696 14208 196 3 6 2 0.0 965.554694 1 0.0
MWCS-I-D-n-50–a-1-d-0-75-e-0-25 531 13218 31 3 6 2 0.0 171.628785 1 0.0
MWCS-I-D-n-50–a-1-d-0-75-e-0-5 566 13428 66 3 6 2 0.0 362.188212 1 0.0
MWCS-I-D-n-50–a-1-d-0-75-e-0-75 593 13590 93 3 6 2 0.0 490.623986 1 0.0
MWCS-I-D-n-750-a-0-647-d-0-25-e-0-25 891 9278 141 3 6 2 0.0 702.644057 1 0.0
MWCS-I-D-n-750-a-0-647-d-0-25-e-0-5 1041 10178 291 3 6 2 0.0 1419.77986 1 0.0
MWCS-I-D-n-750-a-0-647-d-0-25-e-0-75 1176 10988 426 3 6 2 0.0 2116.58233 1 0.0
MWCS-I-D-n-750-a-0-647-d-0-5-e-0-25 830 8912 80 3 6 2 0.0 403.177763 1 0.0
MWCS-I-D-n-750-a-0-647-d-0-5-e-0-5 939 9566 189 3 6 2 0.0 946.129495 1 0.0
MWCS-I-D-n-750-a-0-647-d-0-5-e-0-75 1036 10148 286 3 6 2 0.0 1382.77203 1 0.0
MWCS-I-D-n-750-a-0-647-d-0-75-e-0-25 799 8726 49 3 6 2 0.0 266.983922 1 0.0
MWCS-I-D-n-750-a-0-647-d-0-75-e-0-5 856 9068 106 3 6 2 0.0 580.407832 1 0.0
MWCS-I-D-n-750-a-0-647-d-0-75-e-0-75 895 9302 145 3 6 2 0.0 764.156726 1 0.0
MWCS-I-D-n-750-a-1-d-0-25-e-0-25 891 20484 141 3 6 2 0.0 708.143835 1 0.0
MWCS-I-D-n-750-a-1-d-0-25-e-0-5 1041 21384 291 3 6 2 0.0 1426.44904 1 0.0
MWCS-I-D-n-750-a-1-d-0-25-e-0-75 1176 22194 426 3 6 2 0.0 2116.58233 1 0.0
MWCS-I-D-n-750-a-1-d-0-5-e-0-25 830 20118 80 3 6 2 0.0 403.177763 1 0.0
MWCS-I-D-n-750-a-1-d-0-5-e-0-5 939 20772 189 3 6 2 0.0 946.129495 1 0.0
MWCS-I-D-n-750-a-1-d-0-5-e-0-75 1036 21354 286 3 6 2 0.0 1382.77203 1 0.0
MWCS-I-D-n-750-a-1-d-0-75-e-0-25 799 19932 49 3 6 2 0.0 266.983922 1 0.0
MWCS-I-D-n-750-a-1-d-0-75-e-0-5 856 20274 106 3 6 2 0.0 580.407832 1 0.0
MWCS-I-D-n-750-a-1-d-0-75-e-0-75 895 20508 145 3 6 2 0.0 764.156726 1 0.0

Table B.21. Detailed computational results for MWCSP, test-set MWCS-PUCNU.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

transformed bip42nu 1307 8600 107 991 7224 106 0.6 226 168 58.0
transformed bip52nu 2303 16606 103 1819 14652 102 0.8 222 555 387.8
transformed bip62nu 1303 20616 103 1199 20000 102 0.5 211.022467 214 1.4 4003 >7200.0
transformed bipa2nu 3439 36974 139 3281 36426 139 1.8 320.430498 327 2.1 1 >7200.0
transformed bipe2nu 576 10176 26 550 10026 25 0.1 53 7 35.8
transformed cc10-2nu 1090 10630 66 981 9360 51 0.3 167 23 578.8
transformed cc11-2nu 2174 23276 126 1970 20752 101 0.9 300.580262 304 1.1 94 >7200.1
transformed cc12-2nu 4323 50504 227 3923 45066 165 1.5 559.295815 564 0.8 19 >7200.1
transformed cc3-10nu 1019 27108 19 1007 16228 18 0.3 61 1 84.0
transformed cc3-11nu 1366 40134 35 1347 23524 34 0.5 79 1 2.8
transformed cc3-12nu 1769 57264 41 1739 32648 40 0.7 95 1 5.6
transformed cc3-4nu 70 606 6 3 6 2 0.0 10 1 0.0
transformed cc3-5nu 134 1548 9 3 6 2 0.0 17 1 0.0
transformed cc5-3nu 257 2508 14 0 0 0 0.0 36 1 0.0
transformed cc6-2nu 70 414 6 3 6 2 0.0 15 1 0.0
transformed cc6-3nu 768 8964 39 701 7050 29 0.1 95 1 0.6
transformed cc7-3nu 2303 31306 116 2108 25686 91 0.4 268.268191 270 0.6 58 >7201.9
transformed cc9-2nu 542 4782 30 0 0 0 0.1 83 1 0.1

Table B.22. Detailed computational results for MWCSP, test-set MWCS-SHINY.

B.2. Maximum-weight connected subgraph problem 239

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

25e814a792c4 4186 13210 872 3 6 2 0.1 1083.30811 1 0.1
25e81700dead 4186 13210 872 3 6 2 0.0 2527.27139 1 0.0
25e83661bc4 3350 8194 36 3 6 2 0.0 65.5501822 1 0.0
25e83d7dbeea 3319 8008 5 3 6 2 0.0 11.0598178 1 0.0
25e857e14393 4186 13210 872 3 6 2 0.0 1660.33065 1 0.0
3a0d1335fe78 3555 7862 168 29 94 10 0.0 29.0905466 1 0.0
3a0d151a8ee0 3686 8314 230 9 26 4 0.0 9.51295927 1 0.0
3a0d17a83362 3357 7786 276 33 104 11 0.0 111.428553 1 0.0
3a0d1a1e31cf 3302 8924 281 37 124 12 0.0 141.063702 1 0.0
3a0d2255a681 3754 8296 177 3 6 2 0.0 5.07786653 1 0.0
3a0d226a0a5c 3259 7390 198 21 66 8 0.0 63.5028802 1 0.0
3a0d25c9a738 3552 7844 165 9 26 4 0.0 28.4732591 1 0.0
3a0d25f9bda3 3870 11056 809 12 36 5 0.0 119.083963 1 0.0
3a0d2875c8cf 3517 7634 130 21 64 7 0.0 22.8385099 1 0.0
3a0d325af5cc 3347 7402 157 27 86 9 0.0 37.0853611 1 0.0
3a0d32b18854 3214 7120 153 6 16 3 0.0 40.960459 1 0.0
3a0d33d2aa32 3905 9202 328 3 6 2 0.0 16.6661429 1 0.0
3a0d390c537e 286 722 54 3 6 2 0.0 38.6838961 1 0.0
3a0d435ee480 3657 8140 201 9 26 4 0.0 12.0074874 1 0.0
3a0d4427fe32 1955 4308 71 3 6 2 0.0 38.0000646 1 0.0
3a0d4ccc9b37 2754 6616 76 3 6 2 0.0 1162.91998 1 0.0
3a0d4dac5319 1955 4308 71 3 6 2 0.0 15.29986 1 0.0
3a0d52ee8185 3617 7900 161 3 6 2 0.0 5.02525142 1 0.0
3a0d55ddd0a5 3649 8092 193 3 6 2 0.0 5.32580928 1 0.0
3a0d568fbd87 3519 7646 132 21 64 7 0.0 24.8508763 1 0.0
3a0d5dc4a759 3615 7888 159 3 6 2 0.0 4.93513445 1 0.0
3a0d5e4aac27 3843 9256 387 17 52 7 0.0 18.2490709 1 0.0
3a0d5e4aac27x 3843 9256 387 17 52 7 0.0 18.2490709 1 0.0
3a0d610beb4c 3208 6812 107 15 46 6 0.0 66.8976568 1 0.0
3a0d6505353b 3345 7906 284 3 6 2 0.0 79.3302586 1 0.0
3a0d6a21bbd5 3237 7258 176 29 94 10 0.0 53.9189217 1 0.0
3a0d6e97602a 1955 4308 71 3 6 2 0.0 13.29986 1 0.0
3a0d724ffec9 1955 4308 71 3 6 2 0.0 6.32757816 1 0.0
3a0d73143aeb 3704 8160 168 9 26 4 0.0 10.8861513 1 0.0
3a0dff0eb70 1955 4308 71 3 6 2 0.0 19.5375417 1 0.0
48e7452da6ba 3905 8232 77 3 6 2 0.0 406.044087 1 0.0
48e7526364af 3091 7658 70 3 6 2 0.0 346.728578 1 0.0
48e76a6886bc 3691 9282 50 3 6 2 0.0 37.561934 1 0.0
795313fd138b 3259 8666 238 3 6 2 0.0 119.552962 1 0.0

240 Appendix B. Detailed computational results

B.3 Prize-collecting Steiner tree problem

The time limit for the following instances is two hours.

Table B.23. Detailed computational results for PCSTP, test-set PCSPG-ACTMOD.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

drosophila001 5298 187214 72 3 6 2 0.6 8273.98263 1 0.6
drosophila005 5421 187952 195 199 934 65 0.7 8121.31358 1 0.8
drosophila0075 5477 188288 251 0 0 0 0.5 8039.85946 1 0.5
HCMV 3919 58916 56 3 6 2 0.2 7371.53637 1 0.2
lymphoma 2102 15914 68 3 6 2 0.0 3341.89024 1 0.0
metabol expr mice 1 3674 9590 151 3 6 2 0.0 11346.9272 1 0.0
metabol expr mice 2 3600 9174 86 3 6 2 0.0 16250.2352 1 0.0
metabol expr mice 3 2968 7354 115 3 6 2 0.0 16919.6204 1 0.0

Table B.24. Detailed computational results for PCSTP, test-set PCSPG-CRR.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

C01-A 505 1274 5 3 6 2 0.0 18 1 0.0
C01-B 506 1280 6 3 6 2 0.0 85 1 0.0
C02-A 509 1298 9 3 6 2 0.0 50 1 0.0
C02-B 511 1310 11 3 6 2 0.0 141 1 0.0
C03-A 552 1556 52 3 6 2 0.0 414 1 0.0
C03-B 584 1748 84 3 6 2 0.0 737 1 0.0
C04-A 570 1664 70 3 6 2 0.0 618 1 0.0
C04-B 621 1970 121 3 6 2 0.0 1063 1 0.0
C05-A 644 2108 144 3 6 2 0.0 1080 1 0.0
C05-B 740 2684 240 3 6 2 0.0 1528 1 0.0
C06-A 504 2018 4 3 6 2 0.0 18 1 0.0
C06-B 506 2030 6 3 6 2 0.0 55 1 0.0
C07-A 510 2054 10 3 6 2 0.0 50 1 0.0
C07-B 511 2060 11 3 6 2 0.0 102 1 0.0
C08-A 561 2360 61 3 6 2 0.0 361 1 0.0
C08-B 583 2492 83 3 6 2 0.0 500 1 0.0
C09-A 587 2516 87 3 6 2 0.0 533 1 0.0
C09-B 622 2726 122 3 6 2 0.0 694 1 0.0
C10-A 664 2978 164 3 6 2 0.0 859 1 0.0
C10-B 742 3446 242 3 6 2 0.0 1069 1 0.0
C11-A 505 5024 5 3 6 2 0.0 18 1 0.0
C11-B 506 5030 6 3 6 2 0.0 32 1 0.0
C12-A 510 5054 10 3 6 2 0.0 38 1 0.0
C12-B 511 5060 11 3 6 2 0.1 46 1 0.1
C13-A 572 5426 72 3 6 2 0.0 236 1 0.0
C13-B 584 5498 84 3 6 2 0.0 258 1 0.0
C14-A 603 5612 103 3 6 2 0.0 293 1 0.0
C14-B 623 5732 123 3 6 2 0.0 318 1 0.0
C15-A 705 6224 205 3 6 2 0.0 501 1 0.0
C15-B 748 6482 248 3 6 2 0.0 551 1 0.0
C16-A 506 25030 6 3 6 2 0.1 11 1 0.1
C16-B 506 25030 6 3 6 2 0.1 11 1 0.1
C17-A 511 25060 11 3 6 2 0.1 18 1 0.1
C17-B 511 25060 11 3 6 2 0.1 18 1 0.1
C18-A 577 25456 77 114 438 40 0.3 111 1 0.3
C18-B 584 25498 84 184 820 46 0.3 113 1 0.3
C19-A 611 25660 111 3 6 2 0.0 146 1 0.0

cont. next page

B.3. Prize-collecting Steiner tree problem 241

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

C19-B 625 25744 125 3 6 2 0.0 146 1 0.0
C20-A 718 26302 218 3 6 2 0.0 266 1 0.0
C20-B 748 26482 248 3 6 2 0.0 267 1 0.0
D01-A 1003 2512 3 3 6 2 0.0 18 1 0.0
D01-B 1006 2530 6 3 6 2 0.0 106 1 0.0
D02-A 1009 2548 9 3 6 2 0.0 50 1 0.0
D02-B 1011 2560 11 3 6 2 0.0 218 1 0.0
D03-A 1096 3070 96 3 6 2 0.0 807 1 0.0
D03-B 1157 3436 157 3 6 2 0.0 1509 1 0.0
D04-A 1141 3340 141 3 6 2 0.0 1203 1 0.0
D04-B 1238 3922 238 3 6 2 0.0 1881 1 0.0
D05-A 1277 4156 277 3 6 2 0.0 2157 1 0.0
D05-B 1479 5368 479 3 6 2 0.0 3135 1 0.0
D06-A 1005 4024 5 3 6 2 0.0 18 1 0.0
D06-B 1006 4030 6 3 6 2 0.1 67 1 0.1
D07-A 1010 4054 10 3 6 2 0.0 50 1 0.0
D07-B 1011 4060 11 3 6 2 0.1 103 1 0.1
D08-A 1109 4648 109 3 6 2 0.0 755 1 0.0
D08-B 1160 4954 160 3 6 2 0.0 1036 1 0.0
D09-A 1165 4984 165 3 6 2 0.0 1070 1 0.0
D09-B 1245 5464 245 3 6 2 0.0 1420 1 0.0
D10-A 1345 6064 345 3 6 2 0.0 1671 1 0.0
D10-B 1486 6910 486 3 6 2 0.0 2079 1 0.0
D11-A 1006 10030 6 3 6 2 0.0 18 1 0.0
D11-B 1006 10030 6 3 6 2 0.0 29 1 0.0
D12-A 1011 10060 11 3 6 2 0.1 42 1 0.1
D12-B 1011 10060 11 3 6 2 0.1 42 1 0.1
D13-A 1137 10816 137 3 6 2 0.1 445 1 0.1
D13-B 1164 10978 164 3 6 2 0.0 486 1 0.0
D14-A 1206 11230 206 3 6 2 0.0 602 1 0.0
D14-B 1246 11470 246 3 6 2 0.0 665 1 0.0
D15-A 1404 12418 404 3 6 2 0.0 1042 1 0.0
D15-B 1490 12934 490 3 6 2 0.0 1108 1 0.0
D16-A 1006 50030 6 3 6 2 0.1 13 1 0.1
D16-B 1006 50030 6 3 6 2 0.1 13 1 0.1
D17-A 1011 50060 11 3 6 2 0.2 23 1 0.2
D17-B 1011 50060 11 3 6 2 0.2 23 1 0.2
D18-A 1145 50864 145 293 1324 79 0.6 218 1 0.7
D18-B 1165 50984 165 0 0 0 0.5 223 1 0.5
D19-A 1219 51308 219 3 6 2 0.1 306 1 0.1
D19-B 1248 51482 248 290 1300 83 0.3 310 1 0.3
D20-A 1437 52616 437 3 6 2 0.1 536 1 0.1
D20-B 1495 52964 495 3 6 2 0.1 537 1 0.1

Table B.25. Detailed computational results for PCSTP, test-set PCSPG-E.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

e01-A 2503 6262 3 3 6 2 0.0 13 1 0.0
e01-B 2506 6280 6 3 6 2 0.0 109 1 0.0
e02-A 2506 6280 6 3 6 2 0.0 30 1 0.0
e02-B 2511 6310 11 3 6 2 0.1 170 1 0.1
e03-A 2757 7786 257 3 6 2 0.0 2231 1 0.0
e03-B 2898 8632 398 3 6 2 0.0 3806 1 0.0
e04-A 2885 8554 385 3 6 2 0.0 3151 1 0.0
e04-B 3092 9796 592 3 6 2 0.0 4888 1 0.0
e05-A 3272 10876 772 3 6 2 0.0 5657 1 0.0
e05-B 3711 13510 1211 3 6 2 0.0 7998 1 0.0
e06-A 2505 10024 5 3 6 2 0.0 19 1 0.0
e06-B 2506 10030 6 3 6 2 0.0 70 1 0.0
e07-A 2506 10030 6 3 6 2 0.0 40 1 0.0

cont. next page

242 Appendix B. Detailed computational results

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

e07-B 2511 10060 11 3 6 2 0.2 136 1 0.2
e08-A 2794 11758 294 0 0 0 0.1 1878 1 0.1
e08-B 2905 12424 405 3 6 2 0.1 2555 1 0.1
e09-A 2941 12640 441 3 6 2 0.1 2787 1 0.1
e09-B 3103 13612 603 3 6 2 0.1 3541 1 0.1
e10-A 3401 15400 901 3 6 2 0.1 4586 1 0.1
e10-B 3709 17248 1209 3 6 2 0.1 5502 1 0.1
e11-A 2505 25024 5 3 6 2 0.1 21 1 0.1
e11-B 2506 25030 6 3 6 2 0.1 34 1 0.1
e12-A 2510 25054 10 3 6 2 0.2 49 1 0.2
e12-B 2511 25060 11 3 6 2 0.7 67 1 0.7
e13-A 2857 27136 357 3 6 2 0.4 1169 1 0.5
e13-B 2911 27460 411 34 106 19 1.2 1269 1 2.3
e14-A 3016 28090 516 3 6 2 0.1 1579 1 0.1
e14-B 3118 28702 618 3 6 2 0.2 1716 1 0.2
e15-A 3553 31312 1053 3 6 2 0.1 2610 1 0.1
e15-B 3736 32410 1236 3 6 2 0.1 2767 1 0.1
e16-A 2506 125030 6 3 6 2 0.3 15 1 0.3
e16-B 2506 125030 6 3 6 2 0.3 15 1 0.3
e17-A 2511 125060 11 3 6 2 0.9 25 1 0.9
e17-B 2511 125060 11 3 6 2 0.9 25 1 1.0
e18-A 2872 127226 372 2080 11800 229 4.2 555 7 22.5
e18-B 2917 127496 417 2023 11196 245 2.7 564 8 21.7
e19-A 3058 128342 558 0 0 0 0.8 747 1 0.8
e19-B 3121 128720 621 669 3092 146 1.5 758 1 1.8
e20-A 3619 131708 1119 3 6 2 0.3 1331 1 0.3
e20-B 3743 132452 1243 3 6 2 0.3 1342 1 0.3

Table B.26. Detailed computational results for PCSTP, test-set PCSPG-H2.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

hc10p2 1531 13276 507 1452 11952 506 5.1 58914.488 59799 1.5 5781 >7200.0
hc10u2 1203 11308 179 1024 10240 178 4.0 375.958261 380 1.1 4120 >7200.0
hc11p2 3063 28612 1015 2916 26000 1014 17.0 116909.439 119051 1.8 1791 >7200.0
hc11u2 2398 24622 350 2048 22528 349 9.1 742.747344 755 1.6 1 >7200.0
hc12p2 6126 61326 2030 6126 61326 2030 37.0 232156.555 237133 2.1 282 >7200.0
hc12u2 4798 53358 702 4798 53358 702 9.7 1475.40845 1502 1.8 1 >7200.2
hc6p2 97 576 33 93 500 32 0.0 3923 13909 63.2
hc6u2 74 438 10 0 0 0 0.0 20 1 0.0
hc7p2 192 1274 64 183 1116 63 0.2 7638.82886 7711 0.9 422469 >7200.0
hc7u2 151 1028 23 99 530 22 0.2 47 3 0.3
hc8p2 384 2810 128 368 2496 127 0.6 15046.4656 15231 1.2 78732 >7200.0
hc8u2 297 2288 41 256 2032 40 0.5 97 7 18.8
hc9p2 766 6126 254 727 5468 253 1.5 29799.6858 30233 1.5 22759 >7200.0
hc9u2 595 5100 83 512 4596 82 1.6 190 5366 2601.4

Table B.27. Detailed computational results for PCSTP, test-set PCSPG-HANDB.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

handbi01 160177 642272 1777 3 6 2 1.4 1358.56338 1 1.4
handbi02 165361 673376 6961 0 0 0 5.0 531.810883 1 5.1
handbi03 160336 643226 1936 3 6 2 1.1 243.134201 1 1.1
handbi04 163630 662990 5230 63 214 30 9.8 3202.18574 1 9.8
handbi05 160691 645356 2291 3 6 2 1.0 184.467331 1 1.0
handbi06 164158 666158 5758 0 0 0 6.8 2921.55784 1 6.8
handbi07 160657 645152 2257 0 0 0 1.4 150.974258 1 1.4
handbi08 165259 672764 6859 0 0 0 4.5 2270.28462 1 4.5

cont. next page

B.3. Prize-collecting Steiner tree problem 243

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

handbi09 160674 645254 2274 0 0 0 1.3 107.768806 1 1.3
handbi10 166033 677408 7633 3 6 2 2.6 1874.29296 1 2.6
handbi11 160843 646268 2443 3 6 2 1.0 68.944709 1 1.0
handbi12 166538 680438 8138 3 6 2 1.6 138.257023 1 1.6
handbi13 161089 647744 2689 105707 422142 1724 112.6 3.748109 4.249969 13.4 1 >7201.3
handbi14 166371 679436 7971 3 6 2 1.5 7881.76874 1 1.5
handbd01 171596 687872 1796 3 6 2 2.9 728.963591 1 2.9
handbd02 176996 720272 7196 3 6 2 5.6 296.496486 1 5.6
handbd03 171946 689972 2146 3 6 2 1.2 135.070605 1 1.2
handbd04 175099 708890 5299 0 0 0 5.0 1813.95916 1 5.1
handbd05 172125 691046 2325 3 6 2 1.1 105.474688 1 1.1
handbd06 176275 715946 6475 0 0 0 6.6 1528.76544 1 6.7
handbd07 172641 694142 2841 3 6 2 1.1 77.861959 1 1.1
handbd08 176911 719762 7111 0 0 0 5.9 1368.16677 1 5.9
handbd09 172409 692750 2609 3 6 2 1.1 62.71716 1 1.2
handbd10 177713 724574 7913 3 6 2 3.6 1137.42973 1 3.6
handbd11 172111 690962 2311 3 6 2 1.1 46.772533 1 1.1
handbd12 178656 730232 8856 3 6 2 3.1 321.204744 1 3.1
handbd13 172681 694382 2881 33638 134186 699 29.7 13.1777737 13.185068 0.1 1 >7200.3
handbd14 169950 677996 150 3 6 2 0.9 4379.10424 1 0.9

Table B.28. Detailed computational results for PCSTP, test-set PCSPG-HANDS.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

handsd01 43024 172088 524 3 6 2 0.2 171.636766 1 0.2
handsd02 44084 178448 1584 0 0 0 0.8 159.751395 1 0.8
handsd03 43213 173222 713 3 6 2 0.2 31.306275 1 0.2
handsd04 43842 176996 1342 3 6 2 0.7 491.733164 1 0.7
handsd05 43205 173174 705 3 6 2 0.2 21.937611 1 0.2
handsd06 44477 180806 1977 3 6 2 0.6 279.90313 1 0.6
handsd07 43176 173000 676 3 6 2 0.2 11.80412 1 0.2
handsd08 44624 181688 2124 3 6 2 0.7 143.237729 1 0.7
handsd09 43183 173042 683 3 6 2 0.4 3.818683 1 0.4
handsd10 42806 170780 306 3 6 2 0.2 1034.76736 1 0.2
handsi01 40033 160000 433 3 6 2 0.2 295.453616 1 0.2
handsi02 41304 167626 1704 3 6 2 0.5 125.429411 1 0.5
handsi03 40220 161122 620 3 6 2 0.2 56.149422 1 0.2
handsi04 41030 165982 1430 3 6 2 0.7 722.508197 1 0.7
handsi05 40188 160930 588 3 6 2 0.2 35.043506 1 0.2
handsi06 41513 168880 1913 0 0 0 0.6 452.953621 1 0.6
handsi07 40203 161020 603 3 6 2 0.2 18.410135 1 0.2
handsi08 41597 169384 1997 3 6 2 0.3 229.52993 1 0.3
handsi09 40213 161080 613 3 6 2 0.3 5.962166 1 0.3
handsi10 40966 165598 1366 333 1010 160 1.5 1803.69751 1 1.5

Table B.29. Detailed computational results for PCSTP, test-set PCSPG-PUCNU.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

bip42nu 1307 8600 107 989 7216 106 1.9 226 1490 327.5
bip52nu 2303 16606 103 1818 14646 102 1.7 222 440 362.7
bip62nu 1303 20616 103 1199 20000 102 2.6 210.941435 214 1.4 3306 >7200.0
bipa2nu 3439 36974 139 3279 36418 139 2.8 320.429805 326 1.7 1 >7200.0
bipe2nu 576 10176 26 550 10026 25 0.7 53 13 16.2
cc10-2nu 1090 10630 66 981 9360 51 1.4 167 33 463.8
cc11-2nu 2174 23276 126 1970 20752 101 5.4 300.589765 304 1.1 234 >7200.0
cc12-2nu 4323 50504 227 3923 45066 165 8.4 559.264693 563 0.7 99 >7200.1
cc3-10nu 1019 27108 19 1007 16228 18 3.2 61 1 57.1

cont. next page

244 Appendix B. Detailed computational results

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

cc3-11nu 1366 40134 35 1331 23460 34 6.5 79 1 11.7
cc3-12nu 1769 57264 41 1739 32648 40 9.0 95 1 16.9
cc3-4nu 70 606 6 3 6 2 0.0 10 1 0.0
cc3-5nu 134 1548 9 3 6 2 0.0 17 1 0.0
cc5-3nu 257 2508 14 3 6 2 0.0 36 1 0.0
cc6-2nu 70 414 6 3 6 2 0.0 15 1 0.0
cc6-3nu 768 8964 39 606 4938 29 1.4 95 1 1.9
cc7-3nu 2303 31306 116 2108 25686 91 3.5 268.232062 270 0.7 207 >7200.1
cc9-2nu 542 4782 30 385 2428 27 0.4 83 1 0.6

Table B.30. Detailed computational results for PCSTP, test-set PCSPG-Random.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

a0200RandGraph12 234 3470 34 3 6 2 0.0 122.214525 1 0.0
a0200RandGraph15 277 3606 77 3 6 2 0.0 141.877157 1 0.0
a0200RandGraph2 317 3906 117 3 6 2 0.0 157.017004 1 0.0
a0200RandGraph3 343 4084 143 3 6 2 0.0 170.286354 1 0.0
a0400RandGraph12 464 6766 64 3 6 2 0.0 234.981814 1 0.0
a0400RandGraph15 547 7338 147 3 6 2 0.0 272.87495 1 0.0
a0400RandGraph2 591 7724 191 3 6 2 0.0 300.920525 1 0.0
a0400RandGraph3 667 8040 267 3 6 2 0.0 337.596008 1 0.0
a0600RandGraph12 708 10284 108 3 6 2 0.0 360.393503 1 0.0
a0600RandGraph15 811 10950 211 3 6 2 0.0 407.632071 1 0.0
a0600RandGraph2 900 11456 300 3 6 2 0.0 460.016305 1 0.0
a0600RandGraph3 995 11980 395 3 6 2 0.0 507.937086 1 0.0
a0800RandGraph12 924 13644 124 3 6 2 0.0 464.776231 1 0.0
a0800RandGraph15 1066 14192 266 3 6 2 0.0 530.442058 1 0.0
a0800RandGraph2 1196 15300 396 3 6 2 0.0 603.326182 1 0.0
a0800RandGraph3 1336 15980 536 3 6 2 0.0 663.607078 1 0.0
a10000RandGraph12 11669 170604 1669 0 0 0 1.9 5927.32057 1 1.9
a10000RandGraph15 13371 180796 3371 3 6 2 1.8 6775.54991 1 1.8
a10000RandGraph2 15018 189918 5018 3 6 2 0.8 7594.383 1 0.8
a10000RandGraph3 16680 199630 6680 3 6 2 0.7 8422.56095 1 0.7
a1000RandGraph12 14039 204414 2039 5310 24894 993 8.8 7073.94654 1 16.4
a1000RandGraph15 15987 216698 3987 0 0 0 2.5 8084.12787 1 2.5
a1000RandGraph2 18002 227980 6002 3 6 2 1.2 9064.24425 1 1.2
a1000RandGraph3 19931 240478 7931 3 6 2 1.0 10061.8205 1 1.0
a1200RandGraph12 1383 19988 183 0 0 0 0.1 705.672644 1 0.1
a1200RandGraph15 1603 21662 403 3 6 2 0.0 810.482934 1 0.0
a1200RandGraph2 1787 22608 587 3 6 2 0.0 906.792746 1 0.0
a1200RandGraph3 2011 23762 811 3 6 2 0.0 1012.4502 1 0.0
a14000RandGraph12 16302 237838 2302 4082 17488 947 8.7 8271.46523 1 13.6
a14000RandGraph15 18688 252578 4688 3 6 2 3.7 9475.59356 1 3.7
a14000RandGraph2 20999 266726 6999 3 6 2 1.6 10639.2035 1 1.6
a14000RandGraph3 23275 279382 9275 3 6 2 1.3 11776.8943 1 1.3
a1400RandGraph12 1626 23734 226 3 6 2 0.1 810.633664 1 0.1
a1400RandGraph15 1848 25134 448 3 6 2 0.1 938.932467 1 0.1
a1400RandGraph2 2080 26274 680 3 6 2 0.0 1051.01074 1 0.0
a1400RandGraph3 2325 28070 925 3 6 2 0.0 1158.95534 1 0.0
a1600RandGraph12 1871 27358 271 51 158 29 0.1 943.735583 1 0.1
a1600RandGraph15 2114 28556 514 3 6 2 0.1 1078.79731 1 0.1
a1600RandGraph2 2369 30166 769 3 6 2 0.0 1217.05199 1 0.0
a1600RandGraph3 2677 32382 1077 3 6 2 0.0 1351.98377 1 0.0
a1800RandGraph12 2111 30806 311 3 6 2 0.1 1061.39359 1 0.1
a1800RandGraph15 2412 32110 612 3 6 2 0.1 1218.77778 1 0.1
a1800RandGraph2 2692 34004 892 3 6 2 0.0 1364.89276 1 0.0

cont. next page

B.3. Prize-collecting Steiner tree problem 245

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

a1800RandGraph3 2993 36214 1193 3 6 2 0.0 1507.26619 1 0.0
a2000RandGraph12 2314 33894 314 0 0 0 0.1 1151.95327 1 0.1
a2000RandGraph15 2626 35420 626 3 6 2 0.1 1330.77363 1 0.1
a2000RandGraph2 2967 37920 967 3 6 2 0.1 1483.8368 1 0.1
a2000RandGraph3 3295 39266 1295 3 6 2 0.0 1669.34571 1 0.0
a3000RandGraph12 3490 51024 490 3 6 2 0.3 1781.19442 1 0.3
a3000RandGraph15 3995 53668 995 3 6 2 0.2 2028.61995 1 0.2
a3000RandGraph2 4516 57220 1516 3 6 2 0.1 2282.91749 1 0.1
a3000RandGraph3 4993 60004 1993 3 6 2 0.1 2537.20275 1 0.1
a4000RandGraph12 4669 68182 669 3 6 2 0.4 2396.91987 1 0.4
a4000RandGraph15 5378 72500 1378 3 6 2 0.3 2735.1789 1 0.3
a4000RandGraph2 6040 75994 2040 3 6 2 0.1 3072.26147 1 0.1
a4000RandGraph3 6692 80196 2692 3 6 2 0.1 3406.61873 1 0.1
a6000RandGraph12 6969 101606 969 292 1018 133 1.0 3544.38604 1 1.1
a6000RandGraph15 7959 107902 1959 3 6 2 0.8 4059.18665 1 0.8
a6000RandGraph2 8993 114090 2993 3 6 2 0.3 4551.76667 1 0.3
a6000RandGraph3 9982 119716 3982 3 6 2 0.3 5049.26346 1 0.3
a8000RandGraph12 9343 136798 1343 0 0 0 1.6 4719.96527 1 1.7
a8000RandGraph15 10646 143494 2646 0 0 0 1.7 5394.56802 1 1.7
a8000RandGraph2 11967 151544 3967 3 6 2 0.5 6055.12642 1 0.5
a8000RandGraph3 13300 160148 5300 3 6 2 0.5 6710.61511 1 0.5

246 Appendix B. Detailed computational results

B.4 Steiner arborescence problem

The time limit for the following and all remaining instances in this thesis is two hours.

Table B.31. Detailed computational results for SAP, test-set SAP-gene.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

gene41x 335 910 43 0 0 0 0.0 126 1 0.0
gene42 335 912 43 0 0 0 0.0 126 1 0.0
gene61a 395 1024 82 0 0 0 0.0 205 1 0.0
gene61b 570 1616 82 0 0 0 0.0 199 1 0.0
gene61c 549 1580 82 0 0 0 0.0 196 1 0.0
gene61f 412 1104 82 0 0 0 0.0 198 1 0.0
gene425 425 1108 86 0 0 0 0.0 214 1 0.0
gene442 442 1188 86 0 0 0 0.0 207 1 0.0
gene575 575 1648 86 0 0 0 0.0 207 1 0.0
gene602 602 1716 86 0 0 0 0.0 209 1 0.0

Table B.32. Detailed computational results for SAP, test-set SAP-gene2002.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

microtri1 347 952 47 0 0 0 0.0 128 1 0.0
microtri3 400 1112 47 0 0 0 0.0 146 1 0.0
microtri5 416 1124 47 0 0 0 0.0 150 1 0.0
microtri6 419 1164 47 0 0 0 0.0 146 1 0.0
microtri7 437 1172 47 0 0 0 0.0 159 1 0.0
microtri8 484 1412 47 0 0 0 0.0 151 1 0.0
microtri9 297 792 47 0 0 0 0.0 131 1 0.0
microtri10 319 836 47 0 0 0 0.0 136 1 0.0
microtri11 382 1024 47 0 0 0 0.0 152 1 0.0

Table B.33. Detailed computational results for SAP, test-set SAP-NET.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

ID141 1 77120 232714 8 0 0 0 3.2 445143.514 1 3.2
ID141 2 77120 232714 3 0 0 0 3.0 127899.377 1 3.0
ID141 3 77120 232714 3 0 0 0 3.2 130314.802 1 3.2
ID141 4 77120 232714 5 0 0 0 3.4 806360.212 1 3.5
ID141 5 77120 232714 11 1705 6674 11 2.7 1371182.7 1 2.8
ID313 0 88328 272968 62 0 0 0 11.7 3e-08 1 11.7
ID313 10 88328 272968 7 103 316 7 6.7 785402.452 1 6.7
ID313 11 88328 272968 8 0 0 0 4.7 460175.719 1 4.8
ID313 12 88328 272968 3 0 0 0 4.4 60735.3624 1 4.4
ID313 13 88328 272968 4 0 0 0 5.9 378449.624 1 5.9
ID313 14 88328 272968 4 0 0 0 5.3 413106.771 1 5.4
ID313 1 88328 272968 6 364 1450 4 4.6 268092.533 1 4.7
ID313 2 88328 272968 7 0 0 0 4.5 363173.432 1 4.5
ID313 3 88328 272968 7 162 638 6 4.5 336031.786 1 4.5
ID313 4 88328 272968 4 0 0 0 4.5 108384.996 1 4.5
ID313 5 88328 272968 4 0 0 0 4.4 137775.062 1 4.4
ID313 6 88328 272968 2 0 0 0 3.9 40213.8773 1 4.0
ID313 7 88328 272968 3 0 0 0 4.4 209186.362 1 4.5
ID313 8 88328 272968 10 0 0 0 4.6 395117.997 1 4.6
ID313 9 88328 272968 6 1926 7674 6 10.0 1012291.08 1 10.1
ID314 0 225739 642338 225 171637 452808 1 27.2 1e-08 1 28.8

cont. next page

B.5. Euclidean Steiner tree problem 247

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

ID314 1 225739 642338 132 56330 213562 132 34.0 20198383.1 1 1486.8
ID314 2 225739 642338 26 23510 93554 26 29.4 1604154.66 1 450.8
ID314 3 225739 642338 30 16824 66820 30 31.2 2689408.05 1 101.6
ID314 4 225739 642338 40 0 0 0 7.5 5723922.1 1 7.5

B.5 Euclidean Steiner tree problem

Table B.34. Detailed computational results for ESMT, test-set ESMT-R25.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

R25K01EFST 39277 94524 25000 92 294 40 34.7 98.9612134 1 40.1
R25K02EFST 39306 94978 25000 59 180 30 38.4 99.0370878 1 47.1
R25K03EFST 39549 96348 25000 3893 12466 1785 35.0 99.2157207 1 45.8
R25K04EFST 39555 96260 25000 84 274 37 38.0 98.9431392 1 47.6
R25K05EFST 39153 93806 25000 49 146 26 28.9 99.4912321 1 39.1
R25K06EFST 39438 95690 25000 5990 19160 2804 12.7 99.3728768 1 29.6
R25K07EFST 39900 98180 25000 47 140 24 38.4 99.5646105 1 51.6
R25K08EFST 39529 95920 25000 65 200 32 39.6 99.2662017 1 48.5
R25K09EFST 39732 97060 25000 3807 12238 1773 38.1 99.0968636 1 44.7
R25K10EFST 39248 94668 25000 48 136 23 28.1 99.1104801 1 35.7
R25K11EFST 39425 95470 25000 2661 8418 1239 42.1 99.1216345 1 47.5
R25K12EFST 39293 94888 25000 3434 10960 1593 37.3 99.1134447 1 45.5
R25K13EFST 39284 94770 25000 3328 10524 1566 26.4 99.4005526 1 33.0
R25K14EFST 40063 98534 25000 3957 12746 1795 38.9 99.2046414 1 46.1
R25K15EFST 39498 95704 25000 44 130 21 43.7 99.2521324 1 54.6

Table B.35. Detailed computational results for ESMT, test-set ESMT-R50.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

R50K01EFST 79505 194746 50000 9521 30346 4427 120.2 140.398764 1 139.8
R50K02EFST 78754 190726 50000 254 798 119 116.2 139.955781 1 145.3
R50K03EFST 78964 191358 50000 7198 23066 3325 126.2 140.006412 1 140.3
R50K04EFST 78983 191484 50000 56 174 28 142.5 140.093852 1 154.3
R50K05EFST 79200 193418 50000 43 126 23 142.7 139.995235 1 196.5
R50K06EFST 79480 194744 50000 9705 31120 4495 133.9 140.348542 1 164.9
R50K07EFST 79046 192228 50000 13631 43506 6350 44.2 140.249582 1 86.0
R50K08EFST 79175 192822 50000 108 378 41 111.7 140.351147 1 126.8
R50K09EFST 78825 190952 50000 54 156 26 107.0 140.363481 1 120.6
R50K10EFST 78948 191740 50000 73 236 33 40.8 140.321093 1 80.0
R50K11EFST 79121 192608 50000 8136 25928 3797 122.1 140.169756 1 139.6
R50K12EFST 79133 192768 50000 51 156 24 29.3 140.201234 1 57.7
R50K13EFST 78972 191348 50000 7654 24410 3562 116.3 140.03999 1 131.6
R50K14EFST 79326 193440 50000 51 156 24 135.7 140.209795 1 151.8
R50K15EFST 79483 194414 50000 66 224 25 156.4 140.447926 1 170.4

Table B.36. Detailed computational results for ESMT, test-set ESMT-R100.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

R100K01EFST 157869 383172 100000 50 156 24 554.3 198.306705 1 631.7
R100K02EFST 158031 383994 100000 71 244 26 156.6 197.970178 1 370.1
R100K03EFST 158290 384990 100000 18337 58020 8630 477.9 198.022313 1 640.7
R100K04EFST 158205 385292 100000 64 204 29 550.8 198.189607 1 612.3
R100K05EFST 158587 386646 100000 47 146 22 123.6 198.153237 1 372.1

cont. next page

248 Appendix B. Detailed computational results

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

R100K06EFST 158514 386086 100000 73 276 25 117.7 198.174481 1 328.3
R100K07EFST 157947 383296 100000 24847 79452 11545 112.4 197.878416 1 369.6
R100K08EFST 157839 382404 100000 17086 54446 7977 471.3 197.994433 1 541.8
R100K09EFST 158069 383470 100000 26909 85924 12571 152.3 198.135832 1 391.4
R100K10EFST 158575 386344 100000 18012 57070 8424 448.3 198.039905 1 546.1
R100K11EFST 158265 385490 100000 25924 83376 11924 124.7 198.136332 1 368.6
R100K12EFST 157806 382352 100000 50 158 22 472.6 198.384696 1 570.0
R100K13EFST 157660 381462 100000 27619 87894 12879 151.4 198.053544 1 457.4
R100K14EFST 158516 386662 100000 50 162 22 510.5 198.226993 1 729.7
R100K15EFST 158033 384044 100000 27235 87188 12652 151.3 198.274048 1 460.0

B.6 The degree constrained Steiner tree problem

Table B.37. Detailed computational results for DCSTP, test-set TreeFam.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

TF101057-t1 52 2652 35 52 1462 35 0.0 infeasible 1 0.0
TF101057-t3 52 2652 35 52 2648 35 0.0 2756 362 2.1
TF101125-t1 304 92112 155 304 68242 155 4.3 infeasible 1 5.4
TF101125-t3 304 92112 155 304 92112 155 3.0 55185 302 178.8
TF101202-t1 188 35156 72 188 30044 72 0.7 79920 47303 2542.0
TF101202-t3 188 35156 72 188 35156 72 0.6 77978 4894 390.2
TF102003-t1 832 691392 407 832 526150 407 84.0 193812.178 419049 116.2 122 >7200.4
TF102003-t3 832 691392 407 832 691392 407 65.5 181328.493 188671 4.0 56 >7200.1
TF105035-t1 237 55932 104 237 45220 104 1.8 35058.2504 36311 3.6 38058 >7200.0
TF105035-t3 237 55932 104 237 55932 104 1.3 32916 396 112.8
TF105272-t1 476 226100 223 476 176594 223 13.7 134857.053 211138 56.6 2065 >7200.2
TF105272-t3 476 226100 223 476 226100 223 8.7 126868.798 127352 0.4 5431 >7200.3
TF105419-t1 55 2970 24 55 2418 24 0.0 18668 4626 19.0
TF105419-t3 55 2970 24 55 2286 24 0.0 18223 5 0.2
TF105897-t1 314 98282 133 314 80726 133 3.4 108066.522 114092 5.6 14151 >7200.0
TF105897-t3 314 98282 133 314 98282 133 2.9 97832 2650 1134.3
TF106403-t1 119 14042 46 119 11972 46 0.2 54124 1054 15.4
TF106403-t3 119 14042 46 119 4710 46 0.3 53760 1 0.4
TF106478-t1 130 16770 54 130 13908 54 0.3 55132 3809 62.4
TF106478-t3 130 16770 54 130 16174 54 0.4 54839 390 13.6

B.7 The group Steiner tree problem

Table B.38. Detailed computational results for GSTP, test-set GSTP1.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

gstp30f2 474 1828 30 0 0 0 0.1 569 1 0.1
gstp31f2 349 1284 31 0 0 0 0.1 635 1 0.1
gstp33f2 452 1746 33 0 0 0 0.0 513 1 0.0
gstp34f2 1253 5000 34 1033 4132 31 3.8 646 1 5.1
gstp36f2 442 1672 36 134 484 20 0.6 610 1 0.6
gstp37f2 1054 4216 37 978 3916 37 1.4 485 1 3.8
gstp38f2 618 2504 38 460 1892 37 1.4 656 1 2.5
gstp39f2 707 3310 39 623 2938 38 2.5 450 1 5.0

Table B.39. Detailed computational results for GSTP, test-set GSTP2.

B.8. Hop constrained directed Steiner tree problems 249

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

gstp50f2 1142 4622 50 930 3794 49 3.3 673 1 5.0
gstp55f2 1751 6804 55 1565 6176 55 2.8 888 1 65.7
gstp60f2 838 3528 60 763 3184 60 4.5 1164 1 27.6
gstp64f2 1860 7380 64 1640 6604 60 3.2 931 1 9.7
gstp66f2 2623 10100 66 2339 9224 62 4.7 920 1 393.4
gstp73f2 1911 7308 73 1704 6644 63 3.0 1207 1 38.9
gstp76f2 1818 6990 76 1133 4434 47 3.1 1026 1 5.7
gstp78f2 2355 9384 78 2009 8080 71 4.7 1094 1 315.0
gstp83f2 3177 12530 83 2975 11954 80 4.4 906 1 3451.2
gstp84f2 2358 9134 84 1989 7912 73 4.0 1094 1 27.2

B.8 Hop constrained directed Steiner tree problems

Table B.40. Detailed computational results for HCDSTP, test-set gr12.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

wo11-gr12-cr100-se10 809 7432 10 106 686 10 0.0 136516 1 0.1
wo11-gr12-cr100-se11 809 7430 10 25 48 10 0.0 145251 1 0.0
wo11-gr12-cr100-se1 809 7444 10 318 2978 10 0.1 182082 1 0.2
wo11-gr12-cr100-se2 809 7394 10 31 60 10 0.0 163872 1 0.0
wo11-gr12-cr200-se11 809 15260 10 393 5708 10 0.1 66786 1 0.3
wo11-gr12-cr200-se1 809 15274 10 549 10626 10 0.1 76353 1 0.8
wo11-gr12-cr200-se2 809 15224 10 23 44 10 0.0 75434 1 0.0
wo12-gr12-cr100-se10 809 9360 10 52 198 10 0.0 167223 1 0.0
wo10-gr12-cr100-se10 809 14428 10 27 52 10 0.0 117081 1 0.0
wo12-gr12-cr100-se11 809 9852 10 359 3686 10 0.1 199679 1 0.2
wo12-gr12-cr100-se1 809 9446 10 209 1870 10 0.0 164198 1 0.1
wo12-gr12-cr100-se7 809 9702 10 24 46 10 0.0 136232 1 0.0
wo12-gr12-cr200-se9 809 28346 10 17 32 10 0.0 46408 1 0.0
wo10-gr12-cr100-se0 809 14396 10 774 13328 10 0.1 171486 1 6.0
wo10-gr12-cr100-se11 809 14386 10 427 6672 10 0.1 125785 1 0.8
wo10-gr12-cr200-se7 809 44696 10 131 1648 10 0.1 46306 1 0.1
wo10-gr12-cr200-se8 809 44654 10 779 34890 10 0.5 61177 1 6.8
wo10-gr12-cr200-se9 809 44670 10 363 8946 10 0.1 51737 1 0.6

Table B.41. Detailed computational results for HCDSTP, test-set gr14.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

wo10-gr14-cr100-se0 3209 215940 10 3178 212040 10 5.8 163373 3 2130.8
wo10-gr14-cr100-se11 3209 215932 10 1408 75734 10 5.6 120466 1 28.9
wo10-gr14-cr200-se3 3209 643552 10 2615 317044 10 41.0 52425 1 358.9
wo10-gr14-cr200-se4 3209 643414 10 2884 479482 10 23.9 51592 1 699.9
wo11-gr14-cr100-se6 3209 115502 10 2687 108314 10 2.2 211758 81 1905.5
wo11-gr14-cr200-se2 3209 232858 10 2453 170432 10 3.4 71134 1 59.4
wo11-gr14-cr200-se3 3209 233104 10 19 36 10 0.4 57930 1 0.4
wo11-gr14-cr200-se4 3209 233038 10 2458 176768 10 5.2 63313 1 53.6
wo12-gr14-cr100-se0 3209 153366 10 687 25696 10 0.7 118617 1 3.6
wo12-gr14-cr100-se5 3209 156578 10 919 37024 10 0.8 131631 1 12.8
wo12-gr14-cr100-se6 3209 157214 10 1521 66260 10 2.5 146049 1 76.0
wo12-gr14-cr100-se7 3209 158984 10 812 35402 10 1.1 122306 1 13.3
wo12-gr14-cr100-se8 3209 157912 10 880 37954 10 1.1 116077 1 22.3
wo12-gr14-cr100-se9 3209 156658 10 163 1692 10 0.2 100813 1 0.2
wo12-gr14-cr200-se0 3209 445774 10 1029 71640 10 3.7 53883 1 19.2
wo12-gr14-cr200-se10 3209 446040 10 2160 262644 10 22.6 64582 3 1009.4
wo12-gr14-cr200-se11 3209 457496 10 2339 318702 10 8.4 69143 3 860.7

cont. next page

250 Appendix B. Detailed computational results

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

wo12-gr14-cr200-se4 3209 460250 10 2288 263776 10 12.7 72993 7 1254.8
wo12-gr14-cr200-se5 3209 456998 10 1458 126506 10 5.3 57694 1 120.0
wo12-gr14-cr200-se6 3209 460500 10 2246 265226 10 20.6 61925 7 701.6
wo12-gr14-cr200-se7 3209 464090 10 1437 150164 10 5.0 61370 3 89.6

	Title Page
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Introduction
	1 Preliminaries
	1.1 Notation and basic concepts
	1.1.1 Miscellaneous
	1.1.2 Graph theory
	1.1.3 Steiner arborescence problem

	1.2 Experimental methodology
	1.2.1 Hardware and software
	1.2.2 Averaging and performance variability

	2 The prototype: Steiner tree problem in graphs
	2.1 Introduction
	2.1.1 Background
	2.1.2 Contribution and structure

	2.2 Integer programming formulations
	2.2.1 Cut and flow formulations
	2.2.2 Formulations for unweighted Steiner tree problems

	2.3 Implications, conflicts, and reductions
	2.3.1 Bottleneck distances and implications
	2.3.2 Bound-based reduction techniques
	2.3.3 Further reduction techniques
	2.3.4 From reductions to conflicts

	2.4 From Steiner distances and conflicts to extended reduction techniques
	2.4.1 The framework
	2.4.2 Reduction criteria

	2.5 Primal heuristics
	2.5.1 Shortest path heuristic and implications
	2.5.2 Reduction based heuristics

	2.6 Solving to optimality
	2.6.1 Combining extended reductions and dynamic programming
	2.6.2 Branch-and-cut

	2.7 Computational results
	2.7.1 Individual components
	2.7.2 PACE Challenge 2018
	2.7.3 SteinLib and beyond: A comprehensive benchmark

	2.8 Conclusion

	3 A relative: The maximum-weight connected subgraph problem
	3.1 Introduction
	3.1.1 Preliminaries and additional notation
	3.1.2 Contribution and structure

	3.2 (M)IP formulations and the connected subgraph polytope
	3.2.1 Rooted maximum-weight connected subgraphs
	3.2.2 Node based formulations for non-rooted connected subgraphs
	3.2.3 Edge based formulations for non-rooted connected subgraphs
	3.2.4 Comparison of the formulations

	3.3 Reduction techniques
	3.3.1 Bound-based reductions
	3.3.2 Alternative-based reductions
	3.3.3 Combining dominating sets and constrained distances

	3.4 From dual-ascent to exact solving
	3.5 Primal heuristics
	3.5.1 Constructive heuristics
	3.5.2 Local search heuristics

	3.6 Solving to optimality
	3.6.1 A full-fledged exact solver
	3.6.2 Computational results

	3.7 Conclusion

	4 A generalization: The prize-collecting Steiner tree problem
	4.1 Introduction
	4.1.1 Preliminaries and additional notation
	4.1.2 Contribution and structure

	4.2 Proper potential terminals and complexity
	4.2.1 On the complexity of PCSTP
	4.2.2 From PCSTP to MWCSP and NWSTP

	4.3 Reductions within the problem class
	4.3.1 Taking short walks
	4.3.2 Using bounds

	4.4 Changing the problem class
	4.4.1 Identifying roots
	4.4.2 Rooting the problem: RPCSTP and SPG

	4.5 Solving to optimality
	4.5.1 Interleaving the components within branch-and-cut
	4.5.2 Computational results

	4.6 Conclusion

	5 Further related problems
	5.1 The partial and full terminal Steiner tree problems
	5.2 The Steiner arborescence problem
	5.3 The node weighted Steiner tree problem
	5.4 The Euclidean and the rectilinear Steiner minimum tree problems
	5.5 The degree constrained Steiner tree problem
	5.6 The maximum-weight connected subgraph problem with budget
	5.7 The group Steiner tree problem
	5.8 The hop constrained directed Steiner tree problem

	6 Implementation and parallelization
	6.1 SCIP-Jack
	6.1.1 The origins
	6.1.2 The solver

	6.2 Implementation details of key components
	6.2.1 Graph data structures
	6.2.2 Bottleneck Steiner distances
	6.2.3 Extended reduction techniques
	6.2.4 Separation algorithms

	6.3 Parallelization: Building Steiner trees on 43000 cores
	6.3.1 Parallelizing heuristics and reduction methods
	6.3.2 Parallelizing branch-and-bound

	7 Conclusion and outlook
	List of Abbreviations and Names
	Bibliography
	A Further proofs
	A.1 Steiner tree problem in graphs
	A.1.1 Proof of Proposition 2.23

	A.2 Maximum-weight connected subgraph problem
	A.2.1 Proof of Proposition 3.21
	A.2.2 Node separators and rejoining of flows

	A.3 Prize-collecting Steiner tree problem
	A.3.1 Proof of Theorem 4.1
	A.3.2 Proof of Proposition 4.11
	A.3.3 Proof of Lemma 4.14
	A.3.4 Proof of Proposition 4.30

	B Detailed computational results
	B.1 Steiner tree problem in graphs
	B.1.1 PACE 2018 instances
	B.1.2 SteinLib instances
	B.1.3 DIMACS 2014 instances

	B.2 Maximum-weight connected subgraph problem
	B.3 Prize-collecting Steiner tree problem
	B.4 Steiner arborescence problem
	B.5 Euclidean Steiner tree problem
	B.6 The degree constrained Steiner tree problem
	B.7 The group Steiner tree problem
	B.8 Hop constrained directed Steiner tree problems

