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Model Order Redution ofNonlinear Ciruit EquationsAndreas Steinbreher and Tatjana StykelMay 3, 2011AbstratIn this paper, we present a model order redution approah for nonlinear iruitequations with a small number of nonlinear elements. This approah is based onthe deoupling of linear and nonlinear subiruits and reduing the linear part usingbalaning-related model redution tehniques. The eÆieny and appliability of theproposed model redution approah is demonstrated on numerial examples.Keywords: di�erential-algebrai equations, eletroni iruits, modi�ed nodalanalysis, model redution, balaned trunation, indexAMS(MOS) subjet lassi�ation: 15A24, 34A09, 93C05, 94C991 IntrodutionThe eÆient and robust numerial simulation of integrated iruits plays a major role inomputer-aided hip design. While the strutural size of eletroni devies is dereasing,their omplexity is ever inreasing. The mathematial modeling of suh iruits leads tononlinear systems of di�erential-algebrai equations (DAEs) ontaining up to millions oreven more unknowns. Simulation of suh large systems is mostly impossible or, at least,unaeptably time and storage onsuming. Model order redution provides a way out ofthis problem. A general idea of model redution is to replae a large-sale system bya muh smaller model whih approximates the input-output relation of the original systemwithin a required auray.While a large variety of model redution tehniques suh as PRIMA [13℄, SPRIM [6, 7℄ andPABTEC [17℄ exists for linear networks, model redution of nonlinear iruits is only in its�Institut f�ur Mathematik, TU Berlin, Stra�e des 17. Juni 136, D-10623 Berlin, Germany;fsteinbreher,stykelg�math.tu-berlin.de. This work was supported by the Researh Network SyreNe- System Redution for Nanosale IC Design funded by the German Federal Ministry of Eduation andSiene (BMBF), grant no. 03STPAE3. Responsibility for the ontents of this publiation rests with theauthors. 1



infany [14, 19, 20, 23℄. Typially, integrated iruits ontain huge linear subnetworks mo-deling interonnets. A standard approah for model redution of suh nonlinear systemsis to extrat linear subsystems and replae them by redued-order models, e.g., [5, 9, 13℄.Then ombining these redued-order linear models with unhanged nonlinear omponents,one obtains a redued-order nonlinear model that approximates the original system. Theonept of this model redution approah is presented in Figure 1. Although this approahis widely used in pratie, only a little attention has been paid to approximation qualityand properties of redued-order nonlinear models.
Deoupling

nonlinear iruit equations
Model order redution

linear subsystem
Reoupling redued linear subsystemnonlinear subsystem
redued nonlinear systemFigure 1: Model order redution strategy for nonlinear iruitsIn [9℄, model redution based on partitioning linear and nonlinear subnetworks for a speiallass of RLC iruits with only nonlinear resistors has been onsidered and global errorbounds have been presented. In this paper, we onsider model redution of more generaliruits that may ontain other nonlinear elements like nonlinear apaitors, indutors andtransistors. We restrit ourself to iruits with a small number of nonlinear omponents.In this ase, the extrated linear subiruits have a small number of terminals, and theyan be redued by any known linear model redution method. The separation of linearsubnetworks from iruits ontaining many nonlinear elements will result in linear modelswith many inputs. For suh systems, model order redution an be ombined with terminalredution, e.g., [1, 4, 12℄.The extration of linear subsystems from a DAE system may lead to many unexpetede�ets suh as index jump in the deoupled DAE subsystems or loss of regularity of thelinear subsystem. This may then result in numerial instabilities, poor approximation andeven failure of model redution and simulation tools. In this paper, we develop a topology-based deoupling tehnique that avoids the inreasing of the index and guarantees the2



well-posedness of deoupled linear subsystems.Another important issue in model redution of eletroni iruits via partitioning is thepreservation of passivity and reiproity in the redued-order submodels. An interon-netion of passive models is again passive meaning that the interonneted system doesnot generate energy [22℄. Furthermore, passive and reiproal systems an be realized aseletrial iruits in a netlist format [10, 15, 25℄ that allows their transient analysis withstandard iruit simulators. Therefore, for model redution of linear subnetworks, we willuse the passivity-preserving balaned trunation methods developed espeially for eletri-al iruits in [17, 18℄. An advantage of these methods over Krylov-type model redutiontehniques is that they provide omputable error bounds whih an be used to estimatethe approximation error for the redued-order nonlinear system.The paper is organized as follows. In Setion 2, we briey disuss the modeling of eletrialiruits using the modi�ed nodal analysis and present the iruit equations to be onsi-dered. In Setion 3, we present a model redution tehnique for nonlinear iruits basedon partitioning linear and nonlinear subiruits followed by redution of the linear part.We also propose a deoupling strategy exploiting the topologial struture of the iruitand investigate the properties of the deoupled systems. In Setion 4, the eÆieny of theproposed model redution approah is demonstrated on numerial examples.2 Ciruit equationsA ommonly used modeling tool for eletrial iruits is the Modi�ed Nodal Analysis(MNA) [24℄. A iruit an be modeled as a direted graph whose edges orrespondto the iruit elements like apaitors, resistors, indutors and transistors and whosenodes orrespond to the interonnetions of these elements. The topologial strutureof suh a graph with n� + 1 nodes and ne edges an be desribed by an inidene matrixA0 2 f�1; 0; 1gn�+1;ne whih has entries aij = 0, �1 and 1 depending on whether edge jis inident with node i and whether this edge leaves or enters node i. Using Kirhho�'surrent and voltage laws as well as the branh onstitutive relations, the dynamis of theiruit an be desribed by a DAE system of the formE(x) ddtx = A x+ f(x) + B u; (1a)y = BTx; (1b)where xT = � �T {TL {T
V

�, uT = � {TI uT
V

� and yT = � �uTI �{T
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In these model equations, � is the vetor of node potentials, {L , {V and {I are thevetors of urrents through indutors, voltage soures and urrent soures, respetively,uV and uI are the vetors of voltages of voltage soures and urrent soures, respe-tively. The matries AC 2 Rn� ;nC , AL 2 Rn� ;nL , AR 2 Rn� ;nR , AV 2 Rn� ;nV andAI 2 Rn� ;nI are the inidene matries desribing the topology of the orresponding iruitelements, where the subsripts C , L , R , V and I stand for apaitors, indutors, resis-tors, voltage and urrent soures, respetively. Note that A = � AC AL AR AV AI �is a redued inidene matrix obtained from A0 by removing a row orrespon-ding to a ground node. Furthermore, the apaitane matrix-valued funtion
C : RnC ! RnC ;nC , the indutane matrix-valued funtion L : RnL ! RnL ;nL andthe resistor relation g : RnR ! RnR haraterize the physial properties of the apaitors,indutors and resistors, respetively. The state vetor has the dimension n = n�+nL +nV ,while the input and output vetors have the dimension m = nI + nV .We will assume that the DAE system (1) is well-posed in the sense that(A1) the matrix AV has full olumn rank,(A2) the matrix � AC AL AR AV � has full row rank,(A3) the matries C (AT

C �) and L ({L ) are symmetri, positive de�nite for all admissible �and {L ,(A4) the funtion g(AT
R
�) is monotonially inreasing for all admissible �.Assumptions (A1) and (A2) imply that the iruit does not ontain loops of voltage souresand utsets of urrent soures, respetively, while assumptions (A3) and (A4) mean thatall iruit elements are passive, i.e., they do not generate energy.In the following, we will distinguish between linear iruit elements like linear resistors, a-paitors and indutors, and nonlinear iruit elements like nonlinear apaitors, indutors,diodes and transistors. A iruit element is alled linear if the urrent-voltage relation forthis element is linear. Otherwise, the iruit element is alled nonlinear. Without loss ofgenerality we assume that the iruit elements are ordered suh that the inidene matriesan be partitioned asAC = � A �C A eC �; AL = � A �L A eL �; AR = � A �R A eR �; (1e)where the inidene matries A �C , A �L and A �R orrespond to the linear iruit omponents,and A eC , A eL and A eR are the inidene matries for the nonlinear devies. We also assumethat the linear and nonlinear elements are not mutually onneted, i.e.,

C (AT
C �) =" �C 00 eC (ATeC �) #; L ({L ) =" �L 00 eL ({ eL ) #; g(AT

R �) =" �G AT�R �eg(ATeR �) #; (1f)where �C 2 Rn�C ;n�C , �L 2 Rn�L ;n�L and �G 2 Rn�R ;n�R are the apaitane, indutane andresistane matries for the orresponding linear elements, whereas eC : RneC ! RneC ;neC ,4



eL : RneL ! RneL ;neL and eg : RneR ! RneR desribe the orresponding nonlinear omponents, and{ eL is the vetor of urrents through the nonlinear indutors. It follows from assumptions(A3) and (A4) that the matries �C , �L and �G are symmetri and positive de�nite, eC (ATeC �)and eL ({ eL ) are symmetri and positive de�nite for all admissible � and { eL , and eg(ATeR �) ismonotonially inreasing for all admissible �.The index onept plays an important role in the analysis of DAEs. To haraterizedi�erent analytial and numerial properties of DAE systems, several index notations havebeen introdued in the literature, e.g., [2, 8, 11℄. For example, the di�erentiation index isroughly de�ned as the minimum of times that all or part of a DAE system must be di�eren-tiated with respet to t in order to determine the derivative of x as a ontinuous funtionof t and x. In the following we will use the shorter term \index" instead of \di�erentiationindex".It has been shown in [3℄ that the MNA system (1) satisfying assumptions (A1)-(A4) hasindex at most two. The index is zero if and only if nV = 0 and rank(AC ) = n�. Thefollowing lemma gives equivalent onditions for the iruit to be of index one.Lemma 2.1 Consider a MNA system (1) that satis�es assumptions (A1)-(A4). Let QCbe a projetor onto kerAT
C . The following onditions are equivalent:(i) system (1) is of index one;(ii) rank(QT

C
AV ) = nV and rank(� AC AR AV �) = n�;(iii) rank(� AC AV �) = rank(AC ) + nV and rank(� AC AR AV �) = n�.Proof. The equivalene of (i) and (ii) was proved in [3℄. We now show that the onditionsin (ii) and (iii) are equivalent. Obviously, it is enough to prove that rank(QT

CAV ) = nV ifand only if rank(� AC AV �) = rank(AC ) + nV .Let S = � S1 S2 � be a nonsingular matrix suh that the olumns of S2 form a basis ofthe kernel of AT
C , i.e., ST2 AC = 0. Then the projetor QC an be represented asQC = S � 0 00 I �S�1:We have rank(ST1 AC ) = rank(STAC ) = rank(AC ) and rank(ST2 AV ) = rank(QT

CAV ).Therefore,rank(� AC AV �) = rank � ST1 AC ST1 AV0 ST2 AV � = rank(AC ) + rank(QT
CAV ):Thus, the onditions rank(QT

CAV ) = nV and rank(� AC AV �) = rank(AC ) + nV areequivalent.Remark 2.2 Considering the topologial struture of the iruit, the rank onditions inLemma 2.1 imply that the iruit ontains neither CV -loops (loops onsisting of apai-tors and/or voltage soures) exept for C-loops (loops onsisting of apaitors only) norLI-utsets (utsets onsisting of indutors and/or urrent soures). /5



3 Model redution for nonlinear iruitsIn this setion, we present a model redution approah for nonlinear iruits. The �rststep involves deoupling the nonlinear equations (1) into linear and nonlinear subsystemsin a suitable way. Then the linear part is approximated by a redued-order model ofmuh smaller state spae dimension using the PABTEC algorithm [17℄. Combining thisredued-order linear model with the unhanged nonlinear subsystem, we obtain a nonlinearredued-order model that approximates the original system (1). We now desribe thismodel redution proedure in more detail.3.1 Deoupling of linear and nonlinear subiruitsIn preparation to the deoupling strategy, we �rst introdue some notation and presenttwo auxiliary lemmata.Lemma 3.1 Let G1, G2 2 RneR ;neR be given suh that G1 + G2 is invertible. Then thematries �11 = G1(G1 +G2)�1G1; (2a)�12 = G1(G1 +G2)�1G2; (2b)�21 = G2(G1 +G2)�1G1; (2)�22 = G2(G1 +G2)�1G2 (2d)satisfy the relations �12 = �21 = G1 � �11 = G2 � �22: (3)Proof. For � = G1 +G2, we have�12 = G1��1(G2 +G1 �G1) = G1 � �11 = G1 � (G1 +G2 �G2)��1G1 = �21:Thus, the �rst two relations in (3) hold. The third relation in (3) an be proved analo-gously.Lemma 3.2 Let A eR 2 f�1; 0; 1gn�;neR and let the matries G1, G2 2 RneR ;neR be given suhthat � = G1 + G2 is invertible, and let �ij, i; j = 1; 2, be as in (2). Then we have therelation A eR �12ATeR = h A1eR A2eR i � G1 � �11 �12�21 G2 � �22 �" (A1eR )T(A2eR )T # ;where A1eR 2 f0; 1gn�;neR and A2eR 2 f�1; 0gn�;neR satisfy A1eR + A2eR = A eR .Proof. For A eR = A1eR + A2eR = h A1eR A2eR i � II � ;6



we get A eR �12ATeR = h A1eR A2eR i � II ��12 � I I � " (A1eR )T(A2eR )T #
= h A1eR A2eR i � �12 �12�12 �12 �" (A1eR )T(A2eR )T # :Then the statement follows from Lemma 3.1.De�nition 3.3 Two DAE systemsE1(x1) ddtx1 = f1(x1) + B1u;y1 = C1x1and E2(x2) ddtx2 = f2(x2) + B2u;y2 = C2x2with Ej(xj) 2 Rn;n, fj(xj) 2 Rn , Bj 2 Rn;m and Cj 2 Rpj ;n, j = 1; 2, are alled stateequivalent if for a given input u, the solutions of these systems satisfy x1 = �x2 witha permutation matrix �.Our goal is now to extrat a linear subiruit from a nonlinear iruit. This an be ahieved,for example, via the replaement of nonlinear iruit devies by ontrolled urrent soures.An advantage of this strategy is that no additional nodes and, hene, no additional statesare introdued into the system. However, in this ase, LI-utsets may our that mayresult in the inreasing of the index. To avoid this, we replae the nonlinear apaitorsand resistors by ontrolled voltage soures. Unfortunately, this introdue additional statesinto the DAE system. Furthermore, the replaement of the nonlinear resistors by voltagesoures may lead to the appearane of CV -loops that may again inrease the index ofthe extrated linear DAE system. To overome this diÆulty, we propose to replae thenonlinear resistors by an equivalent iruit onsisting of two serial linear resistors and oneontrolled urrent soure onneted parallel to one of the resistors as shown in Figure 2.This introdues additional nodes, but neither additional CV -loops nor LI-utsets ourin the deoupled subiruit meaning that the index remains unhanged. The suggestedreplaements are exemplary demonstrated in Figure 3, where we present two iruits beforeand after replaements.Note that all replaements desribed above and deoupling the linear subiruit from thenonlinear iruit an easily be arried out on the netlist level. In the following theorem,we perform this deoupling on the equation level.
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Figure 2: Replaements for nonlinear iruit elementsPSfrag replaements
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Figure 3: Exemplary replaementsTheorem 3.4 Let A1eR 2 f0; 1gn�;neR and A2eR 2 f�1; 0gn�;neR satisfy A1eR +A2eR = A eR , andlet G1; G2 2 RneR ;neR be given suh that G1, G2 and � = G1 + G2 are symmetri, positivede�nite. Assume that u eC 2 RneC and {z 2 RneR satisfyu eC = ATeC �; (4a){z = �G�11 eg(ATeR �)�G2ATeR �: (4b)Then system (1) together with the relations{ eC = eC (u eC ) ddtu eC ; (5a)�z = ��1(G1(A1eR )T� �G2(A2eR )T� � {z) (5b)8



for the additional unknowns �z 2 RneR and { eC 2 RneC is state equivalent to the systemeL ({ eL ) ddt { eL = ATeL � (6)oupled with the linear DAE systemE ddtx` = Ax` +Bu`; (7a)y` = BTx`; (7b)where xT̀ = � �T �Tz {T�L {T
V
{TeC �, uT̀ = � {TI {Tz {TeL uT

V
uTeC � andE=24ACCATC 0 00 L 00 0 035; A=24�ARGATR �AL �AVATL 0 0ATV 0 0 35; B=24�AI 00 00 �I35; (7)with E;A 2 Rn` ;n`, B 2 Rn` ;m` and the inidene and element matriesAC = �A �C0 � ; AR = "A �R A1eR A2eR0 �I I # ; AL = �A �L0 � ; (7d)AV = �AV A eC0 0 � ; AI = "AI A2eR A eL0 I 0 # ; (7e)G = 24 �G 0 00 G1 00 0 G2 35 ; C = �C ; L = �L : (7f)Proof. We show that � xT �Tz {TeC �T solves (1) and (5) if and only if � xT̀ {TeL �T solves(6) and (7). First note that these vetors are idential up to a permutation. Using (1f), (4a)and the voltage-urrent relation (5a) for the nonlinear apaitors, we an rewrite system(1a), (1)-(1f) asA �C �C AT�C ddt� =�A �R �G AT�R ��A �L { �L �AV {V �A eC { eC �AI{I�A eR eg(ATeR �)� A eL { eL ; (8a)�L ddt { �L = AT�L �; (8b)eL ({ eL ) ddt { eL = ATeL �; (8)0 = AT

V
� � uV ; (8d)0 = ATeC � � u eC : (8e)
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It follows from (4b) that eg(ATeR �) = G1��1{z + �12ATeR � with �12 as in (2b). Substitutingthis eg(ATeR �) in (8a) and inserting the relation (5b) for the variable vetor �z, we haveA �C �C AT�C ddt� = �(A �R �G AT�R + A eR �12ATeR )� � A �L { �L � AV {V � A eC { eC (9a)�AI{I � A eR G1��1{z � A eL { eL0 = (G1(A1eR )T �G2(A2eR )T )� � ��z � {z; (9b)�L ddt { �L = AT�L �; (9)eL ({ eL ) ddt { eL = ATeL �; (9d)0 = AT
V
� � uV ; (9e)0 = ATeC � � u eC : (9f)Finally, multiplying (9b) by �(A1eR G1 � A2eR G2)��1 and adding up the resulting equationto (9a), we obtain using Lemma 3.1 the systemA �C �C AT�C ddt� = ��A �R �G AT�R + A1eR G1(A1eR )T + A2eR G2(A2eR )T �� (10a)+�A1eR GT1 � A2eR GT2 ��z � A �L { �L � AV {V � A eC { eC�AI{I � A2eR {z � A eL { eL ;0 = (G1(A1eR )T �G2(A2eR )T )� � ��z � {z; (10b)�L ddt { �L = AT�L �; (10)eL ({ eL ) ddt { eL = ATeL �; (10d)0 = AT
V
� � uV ; (10e)0 = ATeC � � u eC : (10f)Thus, equations (10), (1b) are state equivalent to the DAE system (6), (7).Note that the system matries in the deoupled linear system (7) are in the MNA formwith AC 2 Rn�� ;nC , AL 2 Rn�� ;nL, AR 2 Rn�� ;nR, AV 2 Rn�� ;nV , AI 2 Rn�� ;nI and G 2 RnR ; nR,C 2 RnC ; nC , L 2 RnL ; nL, where n�� = n� + n eR , nC = n �C , nL = n �L , nR = n �R + 2n eR ,nV = nV + n eC and nI = nI + n eR + n eL . System (7) has the state spae dimensionn` = n�� + nL + nV and the input spae dimension m` = nI + nV . It should also benoted that the state equivalene in Theorem 3.4 is independent of the hoie of the matri-es G1 and G2 satisfying the assumptions in the theorem. The substitution of nonlinearresistors with equivalent iruits as desribed above implies that these matries are diago-nal and their diagonal elements are ondutanes of the �rst and the seond linear resistors,respetively, in the replaement iruits. The following example demonstrates that theseondutanes an indeed be hosen arbitrarily.Example 3.5 Consider a simple RCV iruit shown in Figure 4a. Suh a iruit an be10
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Figure 4: Simple RCV iruitdesribed by the MNA equations in the form24 �C 0 00 0 00 0 0 3524 ddt�1ddt�2ddt {V 35 = 24 0 0 00 0 10 �1 0 3524 �1�2{V 35+24 �eg(�1 � �2)eg(�1 � �2)0 35+24 00�1 35uV ; (11a)y = � 0 0 �1 �24 �1�2{V 35 : (11b)The inidene matries are given byA �C = � 10 � ; A eR = � 1�1 � ; AV = � 0�1 � ;and, hene, A1eR = � 10 � ; A2eR = � 0�1 � :Aording to the developed replaement strategy, we introdue the new node 3 with thepotential �3, two linear resistors with ondutanes G1 and G2 and the urrent soure{z = �G�11 eg(�1 � �2)�G2(�1 � �2) (12)with � = G1 + G2. The new iruit is shown in Figure 4b. It is desribed by the MNAsystem26664 �C 0 0 00 0 0 00 0 0 00 0 0 0
3777526664 ddt�1ddt�2ddt�3ddt {V

37775=26664 �G1 0 G1 00 �G2 G2 1G1 G2 �� 00 �1 0 0
3777526664 �1�2�3{V

37775+26664 0 01 0�1 00 �1
37775� {zuV �; (13a)

y`= � 0 1 �1 00 0 0 �1 �2664 �1�2�3{V 3775 : (13b)11



We now show that system (11a) together with the equation�3 = ��1(G1�1 +G2�2 � {z) (14)is equivalent to (13a) independent of the hoie of G1 and G2. Indeed, the third equationin (13a) yields (14). Substituting �3 in the �rst and the seond equations in (13a) andtaking into aount (12), we obtain264 �C 0 00 0 00 0 0 37524 ddt�1ddt�2ddt {V 35=24 �G1�1 +G1��1(G1�1 +G2�2 � {z)�G2�2 +G2��1(G1�1 +G2�2 � {z) + {z + {V��2 � uV 35=24 �eg(�1 � �2)eg(�1 � �2) + {V��2 � uV 35 :The reverse statement an be proved analogously. /The following theorem establishes the well-posedness of the deoupled linear system (7)under onditions that the original iruit does not ontain eCV -loops (loops onsisting ofnonlinear resistors and/or voltage soures) and eLI-utsets (utsets onsisting of nonlinearindutors and/or urrent soures). eCV -loops and eLI-utsets in the original iruit (1)would lead after the replaement of the nonlinear apaitors and nonlinear indutors byvoltage soures and urrent soures, respetively, to V -loops and I-utsets in the deouplediruit (7) that would violate its well-posedness.Theorem 3.6 Let a nonlinear iruit satisfy assumptions (A1)-(A4). Additionally, as-sume that it ontains neither eCV -loops nor eLI-utsets. Then the linear DAE system (7)modeling the extrated linear subiruit is well-posed in the sense that1. the matrix AV has full olumn rank,2. the matrix � AC AL AR AV � has full row rank,3. the matries C, L and G are symmetri and positive de�nite.Proof. The third property immediately follows from assumptions (A3), (A4) and thediagonal struture of G1 and G2. If the iruit does not ontain eCV -loops, then the matrix� AV A eC � has full olumn rank. Hene, AV in (7e) has also full olumn rank. Theabsene of eLI-utsets implies that the matrix � A �C A eC A �L A �R A eR AV � has fullrow rank. Then it follows fromrank(� AC AL AR AV �) = rank(" A �C A �L A �R A1eR A2eR AV A eC0 0 0 �I I 0 0 #)= rank(� A �C A eC A �L A �R A eR AV 00 0 0 0 0 0 I �)12



that the matrix � AC AL AR AV � has also full row rank.We now show that the slightly stronger index one ondition for the nonlinear iruit gua-rantees that the deoupled linear DAE system (7) is well-posed and, in addition, has indexat most one.Theorem 3.7 Let a nonlinear iruit satisfy assumptions (A1)-(A4). If this iruit on-tains neither CV -loops exept for �C-loops with linear apaitors nor LI-utsets, then thelinear DAE system (7) modeling the extrated linear subiruit is well-posed and is of indexat most one.Proof. Sine the iruit does not have LI-utsets and CV -loops exept for �C-loops,Theorem 3.6 implies that system (7) is well-posed. Moreover, from Remark 2.2 we haverank(� A �C A eC AV �) = rank(A �C ) + n eC + nV ;rank(� A �C A eC A �R A eR AV �) = n�:Therefore,rank(� AC AV �) = rank(� A �C AV A eC �) = rank(A �C ) + (nV + n eC ) = rank(AC) + nV ;rank[AC ; AR; AV ℄ = rank(� A �C A �R A eR A
V

A eC 00 0 0 0 0 I �) = n� + n eR = n��:Note that n�� = n� +n eR is the number of nodes in (7). Thus, from Lemma 2.1 we get thatthe system (7) is of index at most one.Note that the index one ondition for system (7) implies that its transfer funtion is proper,i.e., it is bounded at in�nity. The approximation of suh systems is muh easier than thatof systems with an improper transfer funtion [21℄.3.2 Balaning-related model redution of linear iruitsWe now aim to approximate the deoupled linear DAE system (7) by a redued-ordermodel Ê ddt x̂` = Â x̂` + B̂ u;ŷ` = Ĉ x̂`; (15)where Ê, Â 2 Rr` ;r`, B̂ 2 Rr` ;m`, Ĉ 2 Rm` ;r`, and r` is muh smaller than the state spaedimension n` of system (7). Suh a model an be omputed via the PABTEC algorithm [17℄based on balaned trunation. In general, balaned trunation model redution methodsrely on the transformation of the dynamial system into a balaned form whose ontrolla-bility and observability Gramians are both equal to a diagonal matrix. Then a redued-order model is determined by the trunation of the states orresponding to small diagonalelements of the balaned Gramians. Depending on system properties, different types of13



Gramians may be introdued. For passivity-preserving model redution, the Gramians arede�ned as unique stabilizing solutions of the projeted Riati equationsEX �AT + �AXET + EX �CT �CXET + Pl �B �BTP Tl = 0; X = PrXP Tr ; (16)ETY �A + �ATY E + ETY �B �BTY E + P Tr �CT �CPr = 0; Y = P Tl Y Pl; (17)where �A = A� BBT � 2PlB(I �MT0 M0)�1MT0 BTPr;�B = p2BJ�1o ; �C = p2J�1 BT ;JTo Jo = I �MT0 M0; JJT = I �M0MT0 ;M0 = I � lims!1BT (sE � A+BBT )�1B;and Pr and Pl are the spetral projetors onto the right and left deating subspaes of thepenil �E � (A� BBT ) orresponding to the �nite eigenvalues.Let RX and RY be the Cholesky fators of the Gramians X = RXRTX and Y = RYRTY ,respetively. Compute the singular value deompositionRTYERX = [U1; U2 ℄ � �1 00 �2 � [V1; V2 ℄T ;where [U1; U2 ℄ and [V1; V2 ℄ have orthonormal olumns,�1 = diag(�1; : : : ; �r); �2 = diag(�r+1; : : : ; �q)with �1 � : : : � �r > �r+1 � : : : � �q. The values �j are alled the harateristi valuesof system (7). They determine the important state variables of the balaned system. Theredued-order model (15) an be omputed by projetion onto the left and right subspaesorresponding to the dominant harateristi values. Suh a model is given byÊ = � Ir 00 0 � ; Â = 12 � 2W TAT p2W TBC1�p2B1BT T 2 I � B1C1� ;B̂ = � W TB�B1=p2 � ; Ĉ = � BT T C1=p2 � ; (18)where W = LU1��1=21 , T = RV1��1=21 , and the matries B1 and C1 are hosen suhthat I �M0 = C1B1. One an show that the redued-order system (15), (18) is passive,reiproal and its index does not exeed the index of (7), see [17℄. LetG(s) = BT (sE � A)�1B; Ĝ(s) = Ĉ(sÊ � Â)�1B̂be the transfer funtions of systems (7) and (15), respetively. Then we an estimate theH1 -norm of the error de�ned askĜ�GkH1 = sup!2R kĜ(i!)�G(i!)k;14



where k � k denotes the spetral matrix norm. If kI +GkH1 (�r+1 + : : :+ �q) < 2, then wehave the following error boundkĜ�GkH1 � 2kI +Gk2H1 (�r+1 + : : :+ �q); (19)see [16℄. In the time domain, the error in the output an be bounded askŷ` � y`kL2 � kĜ�GkH1kukL2 : (20)By exploiting the struture of iruit equations, this model redution proedure an bemade more eÆient and aurate. Sine the MNA matries in (7) satisfyET = SintE Sint; AT = SintASint; BT = SextBT Sint;where Sint = diag(In�� ;�InL ;�InV ) and Sext = diag(InI ;�InV ), we �nd thatPl = Sint P Tr Sint; Ymin = SintXmin Sint = SintRXRTXSTint = RYRTY :Thus, for the linear iruit equations (7), it is enough to ompute one projetor and solveone projeted Riati equation only. Another projetor and also the solution of the dualRiati equation are given for free. Furthermore, we an show that RTYERX = RTXSintERXis symmetri. Then the harateristi values �j an be omputed from an eigenvaluedeomposition of RTXSintERX instead of a more expensive singular value deomposition.If �j are eigenvalues of RTXSintERX , then �j = j�jj. Finally, using the symmetry of thematrix (I �M0)Sext, we an determine B1 and C1 from the eigenvalue deomposition of(I �M0)Sext. The resulting model redution method is summarized in Algorithm 3.2.Note that for RC and RL iruits, also the passivity-preserving balaned trunation modelredution approah based on projeted Lyapunov equations [18℄ an be applied to omputethe redued-order model (15).3.3 Redued-order nonlinear iruitWe now apply the PABTEC method to the linear desriptor system (7). As a result weobtain a redued-order model (15). In partiular, this model has the formÊ ddt x̂` = Âx̂` + � B̂1 B̂2 B̂3 B̂4 B̂5 �266664 {I{z{ eLuVu eC
377775 ; (21a)2666664 ŷ`1ŷ`2ŷ`3ŷ`4ŷ`5

3777775 = 2666664 Ĉ1Ĉ2Ĉ3Ĉ4Ĉ5
3777775 x̂`; (21b)
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Algorithm 1 Passivity-preserving balaned trunation for eletrial iruits (PABTEC).Given (E; A; B; BT ) as in (7), ompute a redued-order model (Ê; Â; B̂; Ĉ).1. Compute the Cholesky fator RX of X = RXRTX that is the stabilizing solution ofthe projeted Riati equation (16).2. Compute the eigenvalue deompositionRTXSintERX = [U1; U2 ℄ � �1 00 �2 � [U1; U2 ℄T ;where [U1; U2℄ is orthogonal, �1 = diag(�1; : : : ; �r) and �2 = diag(�r+1; : : : ; �q).3. Compute the eigenvalue deomposition (I �M0)Sext = U0�0UT0 , where U0 is ortho-gonal and �0 = diag(�̂1; : : : ; �̂m`).4. Compute the redued-order system (18), whereB1 = S0j�0j1=2UT0 Sext; C1 = U0j�0j1=2; S0 = sign(�0);W = LU1j�1j�1=2; T = SintLU1S1j�1j�1=2; S1 = sign(�1);j�0j = diag(j�̂1j; : : : ; j�̂m`j); j�1j = diag(j�1j; : : : ; j�rj):where ŷ`j = Ĉjx̂`, j = 1; : : : ; 5, approximate the orresponding omponents of the outputy` in (7a). Therefore, we have �(A2eR )T� � �z � Ĉ2x̂`; (22a)�ATeL � � Ĉ3x̂`; (22b)�{ eC � Ĉ5x̂`: (22)Then the nonlinear systems (5a) and (6) are approximated byeC (û eC ) ddt û eC = �Ĉ5x̂` (23)and eL (̂{ eL ) ddt {̂ eL = �Ĉ3x̂`; (24)respetively. Here, û eC and {̂ eL form approximations to u eC and { eL , respetively. Furthermore,for �z de�ned in (5b) and {z de�ned in (4b), we have�(A2eR )T� � �z = �(A2eR )T� � ��1�G1(A1eR )T �G2(A2eR )T �� + ��1{z= �(A2eR )T� � ��1G1(A1eR + A2eR )T� + (A2eR )T� + ��1{z= ���1G1ATeR � + ��1{z= ���1G1ATeR � +G�11 eg(ATeR �)� ��1G2ATeR �= �ATeR � +G�11 eg(ATeR �):16



Taking into aount (22a), the vetor u eR = ATeR � an be approximated by û eR satisfying0 = �G1Ĉ2x̂` �G1û eR + eg(û eR ): (25)Combining (21), (23), (24), (25) and iz � �G�11 eg(û eR )�G2û eR , we obtain the DAE systemÊ ddt x̂` = Âx̂` + B̂3 {̂ eL + B̂5û eC � B̂2G2û eR + B̂2�G�11 eg(û eR ) + B̂1{I + B̂4uV ;eL (̂{ eL ) ddt {̂ eL = �Ĉ3x̂`;eC (û eC ) ddt û eC = �Ĉ5x̂`;0 = �G1Ĉ2x̂` �G1û eR + eg(û eR ):Finally, multiplying the last equation by �B̂2�G�11 and adding up the resulting equationto the �rst one, we obtain the redued-order nonlinear modelÊ(x̂) ddt x̂ = Â x̂ + f̂(x̂) + B̂ u;ŷ = Ĉ x̂; (26a)where x̂T = h x̂T̀ {̂TL ûTC ûTeR i, uT = � {TI uT
V

� andÊ(x̂) = 2664 Ê 0 0 00 eL (̂{ eL ) 0 00 0 eC (û eC ) 00 0 0 0 3775 ; Â = 26664 Â+ B̂2�Ĉ2 B̂3 B̂5 B̂2G1�Ĉ3 0 0 0�Ĉ5 0 0 0�G1Ĉ2 0 0 �G1
37775 ; (26b)

f̂(x̂) = 2664 000eg(û eR ) 3775 ; B̂ = 2664 B̂1 B̂40 00 00 0 3775 ; Ĉ = � Ĉ1 0 0 0Ĉ4 0 0 0 � : (26)This model represents a nonlinear approximation to the nonlinear DAE system (1). Itan now be used for further investigations in steady-state analysis, transient analysis orsensitivity analysis of eletroni iruits. Note that the error bounds (19), (20) for theredued-order linear subsystem (21) an be used to estimate the error in the output ofthe redued-order nonlinear system (26), see [9℄ for suh estimates for a speial lass ofnonlinear iruits. Error bounds for general iruits remain for future work.4 Numerial ExperimentsIn this setion, we present some results of numerial experiments for two di�erent nonlineariruits. The omputations were done with MATLAB.17



Example 4.1 First, we onsider a nonlinear iruit shown in Figure 5. It ontains 1501 li-near apaitors, 1500 linear resistors, 1 voltage soure and 1 diode. Suh a iruit isdesribed by the DAE system (1) of the state spae dimension n = 1503. We simulate thissystem on the time interval I= [0s; 0:07s℄ with a �xed stepsize 10�5s using the BDF methodof order 2. The voltage soure is given by uV (t) = 10 sin(100�t)4V, see Figure 6. The linearresistors have the same resistane R = 2k
, the linear apaitors have the same apaitaneC = 0:02�F and the diode has a harateristi urve g(u eR ) = 10�14(exp(40 1VueR )� 1)A.PSfrag replaements R R R RC C C C CuV eg(�)
Figure 5: Nonlinear RC iruit
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Figure 6: Voltage soure for the RC iruitThe dimension r` of the redued-order linear system (15) was determined as r` = r + r0,where r0 = rank(I�M0) and r satis�es the ondition (�r+1+: : :+�q) < tol with a presribedtolerane tol. For omparison, we ompute the redued-order linear models for the di�erenttoleranes tol = 10�2, 10�3; 10�4; 10�5. The numerial results are given in Figure 7. Inthe upper plot of eah sub�gure, we present the omputed outputs y(t) = �{V (t) and ŷ(t)of the original and redued-order nonlinear systems, respetively, whereas the lower plotshows the error jŷ(t)� y(t)j.Table 1 demonstrates the eÆieny of the proposed model redution method. One ansee that for the dereasing tolerane, the dimension of the redued-order system inreaseswhile the error in the output dereases. The speedup is de�ned as the simulation timefor the original system divided by the simulation time for the redued-order model. Forexample, a speedup of 219 in simulation of the redued-order model of dimension n̂ = 13with the error kŷ � ykL2(I) = 6:2 � 10�7 was ahieved ompared to the simulation of theoriginal system. /18



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0

2

4

6
x 10

−4 Output: negative current of the voltage source

 

 

original system
reduced system

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

2

4

6

8
x 10

−5 Error in the output for tolerance 10−2PSfrag replaements y(t)=�{ V(t);^y(t)
j^y(t)�y(t)j t

t
a)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0

2

4

6
x 10

−4 Output: negative current of the voltage source

 

 

original system
reduced system

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.5

1

x 10
−5 Error in the output for tolerance 10−3PSfrag replaements y(t)=�{ V(t);^y(t)

j^y(t)�y(t)j t
t

b)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0

2

4

6
x 10

−4 Output: negative current of the voltage source

 

 

original system
reduced system

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

1

2

3

4
x 10

−6 Error in the output for tolerance 10−4PSfrag replaements y(t)=�{ V(t);^y(t)
j^y(t)�y(t)j t

t
)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

0

2

4

6
x 10

−4 Output: negative current of the voltage source

 

 

original system
reduced system

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

2

4

x 10
−6 Error in the output for tolerance 10−5PSfrag replaements y(t)=�{ V(t);^y(t)

j^y(t)�y(t)j t
t

d)Figure 7: Outputs of the original and the redued-order nonlinear systems and the errorsin the output for the di�erent toleranes a) 10�2, b) 10�3, ) 10�4, d) 10�5.dimension of the original nonlinear system, n 1503 1503 1503 1503simulation time for the original system, tsim 24012s 24012s 24012s 24012stolerane for model redution of the linear sub-system, tol 1e-02 1e-03 1e-04 1e-05time for model redution, tmor 15s 24s 42s 61sdimension of the redued nonlinear system, n̂ 10 13 16 19simulation time for the redued system, t̂sim 82s 110s 122s 155serror in the output, kŷ � ykL2(I) 7.0e-06 6.2e-07 2.0e-07 4.2e-07speedup, tsim=t̂sim 294.0 219.0 197.4 155.0Table 1: Statistis for the RC iruit19



Example 4.2 We onsider now the nonlinear iruit shown in Figure 8. It ontains 1000repetitions of subiruits onsisting of 1 indutor, 2 apaitors and 2 resistors. Fur-thermore, at the beginning and at the end of the hain, we have a voltage soure withuV (t) = sin(100�t)10V as in Figure 9 and an additional linear indutor, respetively. Inthe 1st, 101st, 201st, et., subiruits, a linear resistor is replaed by a diode, and in the100th, 200th, 300th, et., subiruits, a linear indutor is replaed by a nonlinear indu-tor. The resulting nonlinear iruit ontains 1 voltage soure, 1990 linear resistors withR1 = 20
 and R2 = 1
, 991 linear indutors with L = 0:01H, 2000 linear apaitors withC = 1�F, 10 diodes with eg(u eR ) = 10�14(exp(40 1VueR ) � 1)A, and 10 nonlinear indutorswith eL({ eL ) = Lmin + (Lmax � Lmin) exp(�{2eL Lsl);where Lmin = 0:001H, Lmax = 0:002H and Lsl = 104 1A . The state spae dimension of theresulting DAE system is n = 4003.
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Figure 9: Voltage soure for RLC iruitThe numerial simulation is done on the time interval I= [0s; 0:05s℄ using the BDF methodof order 2 with a �xed stepsize of length 5�10�5s. In Figure 10, we again present the outputsy(t) = �{V (t) and ŷ(t) of the original and redued-order nonlinear systems, respetively,as well as the error jŷ(t)� y(t)j for the di�erent toleranes tol = 10�2, 10�3, 10�4, 10�5 formodel redution of the deoupled linear subiruit. Table 2 demonstrates the eÆieny ofthe model redution method. As in the example above, also here one an see that if the20



tolerane dereases, the dimension of the redued-order system inreases while the errorin the output beomes smaller. In partiular, for the approximate model of dimensionn̂ = 189 with the error jjŷ � yjjL2(I) = 4:10 � 10�5, the simulation time is only 57 seondsinstead of 1 hour and 13 minutes for the original system that implies a speedup of 76.8.
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d)Figure 10: The outputs of the original and the redued-order nonlinear systems and theerrors in the output for the di�erent toleranes a) 10�2, b) 10�3, ) 10�4, d) 10�5. /5 ConlusionIn this paper, we developed a model order redution method for large-sale nonlinear DAEsystems arising in iruit simulation. This method is based on deoupling the eletroniiruit into linear and nonlinear subiruits followed by model redution of the linear21



dimension of the original nonlinear system, n 4003 4003 4003 4003simulation time for the original system tsim 4390s 4390s 4390s 4390stolerane for model redution of the linear sub-system, tol 1e-02 1e-03 1e-04 1e-05time for the model redution, tmor 2574s 2598s 2655s 2668sdimension of the redued nonlinear system, n̂ 127 152 189 218simulation time for the redued system, t̂sim 33s 42s 57s 74serror in the output, kŷ � ykL2(I) 2.73e-03 1.67e-04 4.10e-05 4.09e-05speedup, tsim=t̂sim 132.0 104.1 76.8 59.1Table 2: Statistis for the RLC iruitpart using a passivity-preserving balaning-related tehnique. Afterwards, the redued-order linear model is reoupled with the unhanged nonlinear subsystem to obtain theredued-order nonlinear model. We also analyzed the deoupling e�ets on the propertiesof the extrated linear subsystem. The eÆeny and appliability of the onsidered modelredution approah was demonstrated on two numerial examples.Referenes[1℄ P. Benner and A. Shneider. Model order and terminal redution approahes via ma-trix deomposition and low rank approximation. In J. Roos and L.R.J. Costa, editors,Sienti� Computing in Eletrial Engineering SCEE 2008, volume 14 ofMathematisin Industry, pages 523{530. Springer-Verlag, Berlin, Heidelberg, 2010.[2℄ K.E. Brenan, S.L. Campbell, and L.R. Petzold. The Numerial Solution of Initial-Value Problems in Di�erential-Algebrai Equations. Classis in Applied Mathematis,14. SIAM, Philadelphia, PA, 1996.[3℄ D. Est�evez Shwarz and C. Tishendorf. Strutural analysis for eletri iruits andonsequenes for MNA. Int. J. Cir. Theor. Appl., 28:131{162, 2000.[4℄ P. Feldmann and F. Liu. Sparse and eÆient redued order modeling of linear subir-uits with large number of terminals. In Proeedings of the 2004 IEEE/ACM Interna-tional Conferene on Computer-Aided Design (ICCAD'04), pages 88{92, Washington,DC, 2004.[5℄ R.W. Freund. Redued-order modeling tehniques based on Krylov subspaes andtheir use in iruit simulation. In B.N. Datta, editor, Applied and ComputationalControl, Signals, and Ciruits, volume 1, pages 435{498. Birkh�auser, Boston, 1999.
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