
This version is available at https://doi.org/10.14279/depositonce-7069

Copyright applies. A non-exclusive, non-transferable and limited
right to use is granted. This document is intended solely for
personal, non-commercial use.

Terms of Use

The final authenticated version is available online at https://doi.org/10.1007/978-3-319-27308-2_32.

Cosenza, B. (2015). Behavioral Spherical Harmonics for Long-Range Agents’ Interaction. In Euro-Par
2015: Parallel Processing Workshops (pp. 392–404). Springer International Publishing. (Lecture Notes in
Computer Science, vol. 9523). https://doi.org/10.1007/978-3-319-27308-2_32

Cosenza, B.

Behavioral Spherical Harmonics for Long-
Range Agents’ Interaction

Accepted manuscript (Postprint)Conference paper |

Behavioral Spherical Harmonics
for Long-Range Agents’ Interaction

Biagio Cosenza

Embedded Systems Architecture (AES)
Department of Computer Engineering and Microelectronics (TIME)

Technische Universität Berlin, Germany
cosenza@tu-berlin.de

Abstract. We introduce behavioral spherical harmonic (BSH), a novel
approach to efficiently and compactly represent the directional-dependent
behavior of agent. BSH is based on spherical harmonics to project the
directional information of a group of multiple agents to a vector of few
coefficients; thus, BSH drastically reduces the complexity of the direc-
tional evaluation, as it requires only few agent-group interactions instead
of multiple agent-agent ones. We show how the BSH model can efficiently
model intricate behaviors such as long-range collision avoidance, reach-
ing interactive performance and avoiding agent congestion on challenging
multi-groups scenarios.

Furthermore, we demonstrate how both the innate parallelism and the
compact coefficient representation of the BSH model are well suited for
GPU architectures, showing performance analysis of our OpenCL imple-
mentation.

Keywords: spherical harmonics, behavioral model, agent-based simu-
lation, long-distance interaction, collision avoidance, gpgpu

1 Introduction

Agent-Based Simulations (ABSs) include a broad range of domains. Many ex-
isting ABS frameworks offer general solutions to common problems shared be-
tween different agent domains; however, most challenging problems still stick
with domain-specific solutions. An example is long-range interaction between
agents, required by many real-case scenarios, but usually solved with context-
specific solutions. In crowd simulation, where a crowd is modeled as a set of
agents, each agent attempts to reach a target position while avoiding collisions
with other agents and static obstacles in the environment. Considering the in-
teraction of all pairs of agents becomes expensive in large crowds, and typically
only neighboring agents that lie within a specified radius are take into account,
limiting the possibility of look-ahead behaviors. More complex collision avoid-
ance approaches use two algorithms: one for local collision and one for global,
long-distance collision. Continuum-based approaches for collision avoidance [16]

offer an interesting solution, but they assume that agent directionality is ho-
mogenous for agents in the same cell grid; otherwise, important directional in-
formation is lost. Therefore, similar solutions are not portable between domains:
they work only in contexts where directionality information can be lost without
consequences or at least coarsely approximated.

In this paper, we introduce behavioral spherical harmonic (BSH), a novel be-
havioral model that encodes directionality information usually expressed in an
agent’s behavior in a compact mathematical formulation. For this purpose, we
use spherical harmonics (SH): with a projection step, multiple agent directions
are projected to a small set of coefficients. SH functions have useful properties
and can be easily combined (e.g., multiplied). Once a new agent needs to cal-
culate his directional-dependent behavior, the BSH can easily reconstruct the
directionality information from previously projected agents.

The contribution of this paper are:

– A novel behavioral model (BSH) based on Spherical Harmonics that com-
pactly encodes the directional information of multiple agents

– An application of BSH to support long-range interactions
– A GPU/OpenCL implementation that exploits the natural parallelism and

the compact representation of BSH, as tested with several interactive agent
simulations on an NVIDIA GPU.

2 Background

Researchers and practitioners of agent-based simulations and modeling have for a
long time investigated the use of parallel implementations targeting a wide range
of architectures, including multi-cores [15, 17], GPUs [6, 19], and distributed
memory architectures [4, 2, 3].

Collision avoidance algorithms have been investigated by several ABS sys-
tems, where the motion of each agent is typically governed by some high-level
formulation and local interaction rules (e.g., collision avoidance). ClearPath [12]
presents a local collision avoidance algorithm that formulates the conditions for
collision-free navigation as a quadratic optimization problem. PLEdestrians [11]
introduces a bio-mechanically, energy-efficient trajectory for each individual in a
multi-agent simulation. Local collision avoidance algorithms in crowd simulation
often ignore agents beyond a neighborhood of a certain size. However, this cutoff
can result in sharp changes in trajectory when large groups of agents enter or
exit these neighborhoods. Such long-range interaction requires more computa-
tion than local collision avoidance, even for distributed and parallel simulation.
HybridCrowd [7] performs approximate, long-range collision avoidance via two
approaches: low-density crowds are modeled with discrete methods, while high-
density crowds exploit continuum methods.

Spherical harmonics (SH) is a frequency-space basis for representing func-
tions defined over the sphere. SH has been used in various problems, such as the
heat equation, electrical fields, gravitational fields, and modeling the quantum
angular momentum of electrons. SH has also been used in computer graphics

applications: Cabral et al. [1] first used SH to estimate the integral of the BRDF
by expanding the bidirectional reflection coefficient in SH. More recently, Ka-
planyan and Dachsbacher [13] used a lattice of harmonical functions to propagate
indirect illumination in real-time.

Our approach is similar to a continuum approach where agents’ positions
and velocities are accumulated in a background grid [16]. However, in our case,
velocities are encoded as SH, to eliminate difficulties such as the sensitivity to
the number of agent goals [22] or overcrowding in highly dense crowds [16].

3 Behavioral Spherical Harmonics

Traditional agent models such as Reynold’s boid model represent an agent with
a position and a direction vector. However, cases such as those involving long-
range interaction approaches require a way to represent this information for a
group of agents (e.g., in a grid-based continuum approach, a group is represented
by all agents inside a cell). While agents’ positions can be easily approximated by
exploiting their locality, directionality information is very hard to approximate:
in fact, many existing long-range approaches lose any directionality information.

-2 0 2 4 6

0

2

4

6

x

y

s1(−2, 1, 0), d1(0.45, 0.89, 0)
s2(−1,−1, 0), d2(0.45, 0.89, 0)
s3(−1, 1, 0), d3(0.89, 0.45, 0)
s4(0, 0, 0), d4(0.62, 0.78, 0)
s5(−2, 0.5, 0), d5(0.78, 0.62, 0)
s6(1, 0.5, 0), d6(0.64, 0.77, 0)

→

d1(0.45, 0.89, 0)
d2(0.45, 0.89, 0)
d3(0.89, 0.45, 0)
d4(0.62, 0.78, 0)
d5(0.78, 0.62, 0)
d6(0.64, 0.77, 0)

→ c(1.69, 2.15, 0.0, 1.87,
2.91, 0.0,−1.89, 0.0,−0.42)

(a) (b) (c)
Table 1. A two-dimensional example of BSH: only original agent directions (a) are
projected into SH basis (b) to calculate a vector of coefficients (c).

In this work, we replace the directionality information of a group of agents
with a set of coefficients that represents a spherical function (Table 1). We in-
troduce behavioral spherical harmonics (BSH), a novel approach to represent
the directionality information of a group of agents in a compact and efficient
way. This section introduces the mathematical background of spherical harmon-
ics, how directions are projected into coefficients and reconstructed from them,
and the most interesting properties of BSH. Our use of SH is similar to related
work in rendering [9, 20] (e.g., we use real-value basis), therefore adopt a similar
notation.

3.1 Spherical Harmonics

The spherical harmonics (SH) is a mathematical system analogous to the Fourier
transform but defined across the surface of a sphere. SH is the angular portion
of the solution to Laplace’s equation in spherical coordinates and defines an
orthonormal basis over the sphere. In general, SH functions are based on imag-
inary numbers, but we are only interested in approximating real functions over
the sphere (i.e., agent directions). Reference to SH functions are synonymous
with references to real spherical harmonic functions.

Given the standard parametrization into spherical coordinates of points on
the surface of a unit sphere, the Cartesian coordinates of the point (x, y, z) can
be expressed in spherical coordinates using the variables θ and ϕ:

(x, y, z)→ (sin θ cosϕ, sin θ sinϕ, cos θ)

The SH function is traditionally represented by the symbol y

yml (θ, ϕ) =

√

2Km
l cos(mϕ)Pm

l (cos θ), m > 0√
2Km

l sin(−mϕ)P−ml (cos θ), m < 0

K0
l P

0
l cos(θ), m = 0

where P is the associated Legendre polynomial andKm
l the scaling normalization

constants defined as

Km
l =

√
(2l + 1)(l − |m|)!

4π(l + |m|)!

l and m are integer constant indexes, also called the order or band (l), and the
degree (m), respectively. To generate all the SH orthonormal basis functions, the
parameters l and m are defined slightly differently from the Legendre polynomi-
als: l is still a positive integer starting from 0, but m takes signed integer values
from −l to l. It is possible to think of the SH functions occurring in a specific
order so that we can use a simpler one-dimensional vector:

yml (θ, ϕ) = yi(θ, ϕ) where i = l(l + 1) +m

In this paper, we use 3rd-order SH representation, therefore using only 9
basis functions as shown in Table 2; a list of the first 5 SH bands are available
in [20].

3.2 Projection and Reconstruction

Let f be the spherical function we want to project to SH coefficients (we will
show later how f will represent directional information of multiple agents). To
calculate a single coefficient for a specific band, we integrate the product of the
function f(d), where d is the direction, with the SH basis function y:

cml =

∫
f(d)yml (s)ds

1

0.5

0

-1

-0.5

0

0.5

1

-0.5

-1 -1

-0.5

0

0.5

1

y0
0 = y0

1

0

-1

-0.5

0.5

0.5

1

0

-0.5

-1 -1

-0.5

0

0.5

1

1

0.5

-1

-0.5

0

0

0.5

1

-0.5

-1 -1

-0.5

0

0.5

1

0.5

0

-0.5

0

0.5

-0.5

-1

-0.5

0

0.5

1

y−1
1 = y1 y0

1 = y2 y1
1 = y3

0.5

1

-1

-0.5

0

1

0.5

0

-0.5

-1 -1
-0.5

0
0.5

1

-0.5

0

0.5

0.5

0

-0.5

-1

-0.5

0

0.5

1

0

0.5

1

-1

-0.5

1

0

0.5

-0.5

-1 -1

-0.5

0

0.5

1

0

0.5

-0.5

0

0.5

-0.5

-1

-0.5

0

0.5

1

1

-1

-0.5

0

0.5

0

0.5

1

-0.5

-1 -1

0

1

y−2
2 = y4 y1

2 = y5 y0
2 = y6 y1

2 = y7 y2
2 = y8

Table 2. Spherical harmonic basis functions for the first three bands.

To reconstruct the function f at a given direction d, we define f̂(d) by per-
forming the reverse process and summing scaled copies of the corresponding SH
functions:

f̂(d) =

n∑
l=0

l∑
m=−l

cml y
m
l (d) =

n2∑
i=0

ciyi(d)

which is increasingly accurate as the number of bands n increases 1. Note that
the projection to nth order SH generates n2 coefficients.

Evaluating the approximate function f̂ at direction d simply requires the dot
product between the n2 coefficients and the vector of evaluated basis functions
yi(d). The first coefficient (i = 0), called DC term, represents the average value
of the function over the sphere.

Properties SH functions have many interesting properties. SH bases are orthog-
onal, which means that the inner product of any two distinct basis functions is
zero. An integration performed over the product of two SH functions is the same
as a dot product of their coefficients as a result of the SH basis functions’ othonor-
mality. To project a scalar function f(s) defined over a sphere S against the basis
function of the SH requires a simple integration over S: cml =

∫
f(s)yml (s)ds. SH

functions are also rotationally invariant. Other properties such as the double and
triple product integral and the double product projection are covered by [20].

3.3 Behavioral Spherical Harmonics

We apply SH functions to a group of agents whose directions will be replaced
by an approximated function f̂(d). In a simulation using grid-based space sub-
division, SH is applied for each cell, whose agent directions will be replaced by

1 We use n for the number of bands and N for the number of agents.

a vector of coefficients. Expressing directionality as per-cell spherical functions
has different advantages. First, a single SH function replaces all agent direc-
tions contained in the cell, thus requiring far fewer interaction evaluations: once
the agent directions are encoded into coefficients, successive evaluations are in-
dependent of the number of agents. Second, SH functions are more expressive
than other representations, as they effectively approximate all directional infor-
mation for the projected directions. For example, SH can distinguish different
agent orientations, as depicted in Figure 1:

-2 0 2 4 6

0

2

4

6

x

y

-0.5 0 0.5 1

-0.5

0

0.5

1

x

y

-2 -1 0 1 2 3 4

-2

-1

0

1

2

3

x

y

Fig. 1. Three different agent group orientations resulting in different SH functions.

Long-Range Collision Avoidance Earlier agent models such as Reynolds’ boid
model have no long range collision avoidance: collision is local as it reacts to
boids (agents) within a limited neighborhood. In this paper we introduce a be-
havioral model (BSH) that also uses agent’s direction (i.e., velocity) to implement
long-range agent interactions. BSH is calculated by summing the local collision-
avoidance model plus an avoidance direction that expresses a long-range repul-
sion force. This force depends on the distance between the agent and the cell,
the angle between agent’s direction and the cell, and the precalculated cell’s
directional information. As we will show later, the directional contribution is
critical to avoid congestion in long-range, multi-group scenarios (see Figures 3,
4 and 5).

Collision Avoidance with Static Obstacles BSH is also able to model obstacles, in
the same way we express agent directionality in grid cells. This work uses a simple
approach: to project obstacle information within the SH if each cell contains an
obstacle. For each obstacle, depending on its shape and how agents should avoid
it, a number of directional avoidance forces are projected to the SH function. For
simplicity, the obstacle is placed in the center of the cell. As obstacles are static
their contributions to their cells’ respective SH are precalculated. Evaluating the
avoidance force also takes in account of the (square of the) distance between the
agent and the cell.

4 Implementation

We have implemented our agent-based simulation based on BSH in OpenCL [14]
and tested on a GPU. It comprises 8 steps:

1. Calculate each agent’s grid position;

2. Calculate each agent’s grid hash and index;
3. Sort key-value pair (grid hash, index);
4. Reorder position and velocity vectors by sorted index and store the cell start

and end indices;
5. Project velocity vectors into SH representation for each cell;
6. Simulate pairwise agent interaction;
7. Evaluate SH in the direction of agent and reconstruct velocity;
8. Draw agents (optional, requires OpenGL binding).

Steps 1–4 and 6 are common in many GPU-based agent simulations that use
spatial hashing (grid) and are briefly discussed in the next section. Our approach
introduces two new steps, 5 and 7, discussed in Section 4.2 and 4.3. Step 8 is
straightforward and required only when visualization is enabled.

4.1 Spatial Subdivision with Grid

Näıve implementations compute the pairwise interaction between all agents,
which has a complexity of O(N2) for N agents. A more efficient approach uses
spatial subdivision such as the three-dimensional uniform grid, which divides
the simulation space in uniformly sized, non-overlapping cells. Each agent is as-
signed to exactly one cell, depending on its position. The cell position is then
hashed to give it a unique, sortable, consecutively-numbered value and stored a
key-value pair with the agent’s id as key and the cell position hash as value. This
approach has been largely used in literature [5, 6, 18, 8]. Our implementation of
the spatial grid is similar to the NVIDIA particle simulation implementation
[10]: steps 1–4 and 6 are essentially the same. The pairwise interaction between
agents in step 6, as for related work, happens only if they are at close range:
each agent looks at other agents in its own cell and the 26 surrounding cells
(steps 5 and 7 take long-range interaction into account). The sorted index of the
agents is used to reorder position and velocity data. To quickly locate the agents
in a cell, two additional buffers containing the reordered agent’s start and end
indices, respectively, are needed. Additional details can be found in [10].

Agent movement is restricted to the simulation space limited by a bounding
box. A negative force is used to keep agents from moving out of the box by
keeping them away from the borders.

4.2 Projection of Directionality into SH Coefficients

The first additional kernel is the projection of each agent direction into a SH
representation. For this purpose, we used the 3rd-order, numerical evaluation
code from Sloan [21], which produces 9 coefficients. The coefficient from band 0
is a constant value and is not actually stored in the output vector. The evaluation
returns an OpenCL float8 with the coefficients for a specific point on the sphere.

__kernel void SHEval3(float4* vel_in, float8* SHCoeff)
{

float4 vel = vel_in[get_global_id(0)];
float8 pSH;
float fC0,fC1,fS0,fS1,fTmpA,fTmpB,fTmpC;

float fZ2 = vel.z*vel.z;
pSH.s1 = 0.4886025119029199f*vel.z;
pSH.s5 = 0.9461746957575601f*fZ2 + -0.3153915652525201f;
fC0 = vel.x;
fS0 = vel.y;
fTmpA = -0.48860251190292f;
pSH.s2 = fTmpA*fC0;
pSH.s0 = fTmpA*fS0;
fTmpB = -1.092548430592079f*vel.z;
pSH.s6 = fTmpB*fC0;
pSH.s4 = fTmpB*fS0;
fC1 = vel.x*fC0 - vel.y*fS0;
fS1 = vel.x*fS0 + vel.y*fC0;
fTmpC = 0.5462742152960395f;
pSH.s7 = fTmpC*fC1;
pSH.s3 = fTmpC*fS1;
SHCoeff[get_global_id(0)] = pSH;

}

The result vector with the coefficients from the evaluation is then weighted by
the scalar values of each component of an agent’s direction vector. The weighted
SH is summed up per cell using an optimized reduction kernel.

4.3 Reconstruction of the Avoidance Direction

BSH calculates the final avoidance force by evaluating the contribution of all cell
coefficients along with those of other factors. The reconstruction kernel loads
the SH coefficients for each cell; to improve performance, all agents in the same
OpenCL workgroup move the coefficients into the fast local memory (i.e., loop
blocking).

The avoidance force also accounts for the distance from the agent to the
cell position (i.e., the center of the cell), and the direction of the agent itself.
This calculation is performed on the SH coefficients and exploits some of the SH
properties we have seen before. First, the contribution of ccell is weighted to be
inversely proportional to the distance from a to c with a scalar-vector product

cd =
1

‖pa − pcell‖
ccell

where pa and pc are, respectively, the position of a and c.
Successively, the resulting coefficients cd are multiplied by a harmonical rep-

resentation of the agent’s direction vector (i.e., the avoidance force is stronger
when the cell is in front of the agent and zero when behind it). Let ca be the
coefficients of agent directional SH functions. We recall that the product of two
SH functions is equal to the dot product of the two coefficient vectors; therefore
our avoidance force for agent a and cell c is

Ra↔c = f̂(da↔c) =

n∑
i=0

ca(i) · cd(i)yi(da↔c)

For each agent a, the final long-distance avoidance force is calculated by
summing up the contributions for all cells c in C:

Ra =

c∈C∑
Ra↔c

and is added to the other agent rules (e.g., local collision avoidance).

5 Results

We tested our BSH implementation on a machine equipped with an AMD FX-
6300 3.5Ghz processor and an NVIDIA GTX 960 GPU. The OpenCL code has
been executed on the GPU, together with the OpenGL rendering code com-
prising vertex, fragment and geometry shaders. We tested different agent boid
scenarios where our long-distance BSH-based model replaced the classical local-
only Reynold’s model. Test benchmarks focused on two aspects: performance
and model evaluation. For performance, we investigated the scalability of the
approach, comparing alternative bruteforce non-local approaches and analyzing
the per-kernel runtime. For model evaluation, we compared BSH with a local
model in known test scenarios where the lack of long-distance interaction leads
to agent congestion.

0

50

100

150

200

250

4096 8192 16384 32768 65536

R
u

n
n

in
g

ti
m

e
(m

s)

Number of agents

SH projection boid simulation SH reconstruction

0

5

10

15

20

25

30

35

40

Two groups
(z lock)

Two groups dif.
size (z lock)

Two groups
(3D)

Four groups
 (z lock)

Four groups
 (3D)

Ti
m

e
to

 r
ea

ch
 t

h
e

go
al

 (
se

c)

Without long-range BSH

Fig. 2. Per-kernel runtime for the two-group z-lock scenario (left) and simulation run-
time time for five tested scenarios (right).

Per-kernel analysis and agent scalability. We first tested the per-kernel per-
formance of our implementation on a crowd-like, two-group agent scene where
agents were constrained to move only on the xy plane (z lock). Agents are ini-
tially positioned randomly in two spheres in the simulation space. Every agent
has an assigned goal position at the opposite side of the simulation space and
tries to move toward it. The initial directions (velocities) of all agents are set at
a fixed value and aligned in the direction of the goal.

The spatial subdivision works better if the agent density is uniformly dis-
tributed over the uniform grid. In our test cases, density is higher at the posi-
tion of the initial and final placement therefore performance degrades at these
points. The reconstruction kernel performance is limited by the global memory
access, an aspect greatly improved by our local memory cell-prefetching strat-
egy. From this analysis, we conclude that there is still space for improvement,
e.g., by changing the spatial subdivision and handling empty cells, which do not
contribute to the result but are currently loaded into the memory.

Figure 2 (left) shows the time spent in SH construction and evaluation
with different sizes. BSH long-range interaction complexity is O(kN) instead
of O(N2), where N is the number of agents and k the number of cells.

Fig. 3. Two-groups scenario without long-range interaction. t = 3s, 10s and 20s.

Behavioral comparison with local models. We tried to replicate the same test
benchmark of Golas et al. [7], where diametrically opposed groups try to move
in opposite directions in space. Early detection of distant groups, combined with
knowledge of agent direction, enable them to avoid the congestion in the center
of the space. Tests were performed in both 3D and 2D (z axis locked) space,
as the latter is both common in crowd simulations and more challenging for
congestion because of agents’ lack of freedom. We repeated the same test with
two and four groups; runtimes to reach the goal (simulation times) are shown in
Figure 2 (right).

Figure 3 shows that, in the two-group scenario without long-range interac-
tion, a congestion happens at time t = 10s. Figure 4, instead, shows respectively
two equally sized (top) and different sized (bottom) groups that diametrically
try to move in opposite directions using the BSH model. By enabling our BSH-
based long-range interaction, each group reaches the target point in 15s and no
congestion happen.

Fig. 4. BSH-based long-distance collision avoidance with two groups (z-lock). Equally
sized (top) and unequal groups (bottom) are shown.

In the more challenging four-group scenario, shown in Figure 5: four groups
of agents in a circular position try to reach the opposite position. Early, long-
distance obstacle detection avoids the congestion so that each group rotates
around the center instead of having a congestion there. We obtained interactive

Fig. 5. BSH-based long-distance collision avoidance with four groups (z-lock).

performance and reproduced the behavior modeled in [7] with a much simpler
method than the original study’s mixed approach, which used both continuum
and discrete methods.

BSH is also quite flexible and can adapt to various obstacle-avoidance sce-
narios. We implemented two experimental scenarios where obstacle avoidance,
typically based on vector fields, was replaced with few SH functions. Figure 6
illustrates the two examples discussed here. The advantages with respect of ap-
proaches based on vector fields is that they require few coefficients to describe
an obstacle. For examples, the column from Figure 6(left) spans exactly one cell
on the xz plane and 10 cells on the y axis; therefore, this scenario needs only 10
SH functions to simulate a repulsive, avoidance force for the three columns. The
tunnel is modeled with directional SH repulsing only agents from one direction.

Fig. 6. Two obstacle avoidance scenarios: (left) two groups of agents avoiding three
columns and (right) two one-way tunnels where agents are allowed to enter only the
tunnel on their respective right side.

6 Conclusion

Behavioral spherical harmonics (BSH) is a novel approach for representing directional-
dependent agent behaviors. BSH exploits the use of spherical harmonics to model
the directional contribution of multiple agents with an approximated spherical
function, which only requires a small coefficient vector. The approach is effective
in drastically reducing the complexity of the directional evaluation, as it requires
only a few agent-cell interactions instead of multiple interactions between agents.

We tested our BSH model on a long-range collision detection scenario. Our
GPU parallel implementation reached interactive performance and replicated
the test benchmark of state-of-the art approaches using a 3rd-order BSH that
replaced all directional per-cell information with only 9 coefficients. BSH are also
flexible enough to simulate more advanced obstacle collision avoidance scenarios
(instead of classical vector fields-based solutions) and can be easily implemented
on existing distributed and parallel simulation frameworks.

The source code is available under the BSD simplified license2.

References

1. Cabral, B., Max, N., Springmeyer, R.: Bidirectional reflection functions from sur-
face bump maps. In: Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques. pp. 273–281. SIGGRAPH ’87 (1987)

2. Cordasco, G., Chiara, R.D., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo, C.:
A framework for distributing agent-based simulations. In: Euro-Par 2011: Parallel
Processing Workshops. pp. 460–470 (2011)

2 http://bcosenza.github.io/bsh

3. Cordasco, G., Milone, F., Spagnuolo, C., Vicidomini, L.: Exploiting d-mason on
parallel platforms: A novel communication strategy. In: Euro-Par 2014: Parallel
Processing Workshops. pp. 407–417 (2014)

4. Cosenza, B., Cordasco, G., Chiara, R.D., Scarano, V.: Distributed load balancing
for parallel agent-based simulations. In: 19th International Euromicro Conference
on Parallel, Distributed and Network-based Processing (PDP). pp. 62–69 (2011)

5. Erra, U., Frola, B., Scarano, V.: Behavert: A gpu-based library for autonomous
characters. In: Proceedings of the Third International Conference on Motion in
Games. pp. 194–205. MIG’10, Springer-Verlag, Berlin, Heidelberg (2010)

6. Erra, U., Frola, B., Scarano, V., Couzin, I.: An efficient GPU implementation for
large scale individual-based simulation of collective behavior. In: Int. Workshop on
High Performance Computational Systems Biology (HIBI). pp. 51–58 (2009)

7. Golas, A., Narain, R., Curtis, S., Lin, M.C.: Hybrid long-range collision avoidance
for crowd simulation. IEEE Trans. on Visualization and Computer Graphics 20(7),
1022–1034 (2014)

8. Grasso, I., Ritter, M., Cosenza, B., Benger, W., Hofstetter, G., Fahringer, T.: Point
distribution tensor computation on heterogeneous systems. Procedia Computer
Science (ICCS) 51, 160–169 (2015)

9. Green, R.: Spherical harmonic lighting: The gritty details. In: GDC. vol. 56 (2003)
10. Green, S.: Particle simulation using cuda. Tech. rep., NVIDIA (2010)
11. Guy, S.J., Chhugani, J., Curtis, S., Dubey, P., Lin, M., Manocha, D.: Pledestrians:

a least-effort approach to crowd simulation. In: ACM SIGGRAPH/EG Symposium
on Computer Animation. pp. 119–128 (2010)

12. Guy, S.J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., Dubey, P.:
Clearpath: Highly parallel collision avoidance for multi-agent simulation. In: ACM
SIGGRAPH/EG Symposium on Computer Animation. pp. 177–187. SCA (2009)

13. Kaplanyan, A., Dachsbacher, C.: Cascaded light propagation volumes for real-
time indirect illumination. In: ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games. pp. 99–107. I3D (2010)

14. Khronos Group: Khronos Group. The OpenCL 2.0 specification (2014)
15. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: A multiagent

simulation environment. Simulation 81(7), 517–527 (2005)
16. Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd

simulation. In: ACM SIGGRAPH Asia. pp. 122:1–122:8 (2009)
17. North, M.J., Collier, N.T., Vos, J.R.: Experiences creating three implementations

of the repast agent modeling toolkit. ACM Trans. Model. Comput. Simul. 16(1),
1–25 (2006)

18. Passos, E.B., Joselli, M., Zamith, M., Clua, E.W.G., Montenegro, A., Conci, A.,
Feijo, B.: A bidimensional data structure and spatial optimization for supermassive
crowd simulation on gpu. Comput. Entertain. 7(4), 60:1–60:15 (2010)

19. Richmond, P., Walker, D.C., Coakley, S., Romano, D.M.: High performance cellular
level agent-based simulation with FLAME for the GPU. Briefings in Bioinformatics
11(3), 334–347 (2010)

20. Sloan, P.P.: Stupid Spherical Harmonics (SH) Tricks (2008)
21. Sloan, P.P.: Efficient spherical harmonic evaluation. Journal of Computer Graphics

Techniques (JCGT) 2(2), 84–83 (2013)
22. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Trans. Graph. 25(3),

1160–1168 (2006)

