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Abstract. We discuss the analysis of constant coefficient linear differential algebraic equations
Eẋ(t) = Ax(t) + q(t) on infinite dimensional Hilbert spaces. We give solvability criteria of these
systems which are mainly based on Laplace transformation. Furthermore, we investigate decoupling
of these systems, motivated by the decoupling of finite dimensional differential algebraic systems by
the Kronecker normal form. Applications are given by the analysis of mixed systems of ordinary
differential, partial differential and differential algebraic equations.
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1. Introduction. In today’s engineering applications, there an increasing in-
terest in partial differential algebraic equations (PDAE’s), which are mainly coupled
systems of partial differential equations (PDE’s) and differential-algebraic equations
(DAE’s). More concrete, they appear e.g. in modelling and simulation of electrical
circuits with further effects which are modelled by PDE’s. These effects can be para-
sitic like transmission lines or heat conduction [2, 14, 23] as well as they could be the
result of a more reliable modelling of complex components like semiconductor devices
[3, 29, 33]. Moreover, PDAE’s are the outcome of mathematical models of several
mechanical systems like elastic multibody systems [10] or biomechanical systems like
blood flow networks. In order to study these problems in a mathematically systematic
way, we are led to differential algebraic systems

F (ẋ(t), x(t), t) = 0 (1.1)

in an abstract setting, the so called abstract DAE’s (ADAE’s). The unknown function
x(·) is now a path in an appropriate (mostly infinite dimensional) Hilbert space, and
the Frechét derivative d

dẋF (ẋ, x, t). has a nontrivial nullspace, in general. In this
work, we focus on the linear constant coefficient case

Eẋ(t) = Ax(t) + q(t) (1.2)

and making use of that gaining additional structure. E : X → Z is now a bounded
linear operator and X,Z are some Hilbert spaces. In many practical cases, A is often
acting on some product spaces and it is a block operator containing differential and
evaluation operators, for example. Hence, it is natural to assume that it is unbounded
in general and is defined on some proper subspace D(A) ⊂ X .
The aim of this work is a step-by-step generalization of the known theory for the finite
dimensional version of (1.2), in which case we have square matrices E,A ∈ Rn×n.
The finite dimensional systems are well-studied and subject of various textbooks like
e.g. [4], [5] and [15]. The matrix pair (E,A) is said to be regular, if det(sE −A) does
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not vanish identically, i.e. det(sE−A) 6≡ 0. For regular matrix pairs, it is known that
there exist invertible matrices T,W ∈ Rn×n, such that

(WET,WAT ) =

((

N

I

)

,

(

I

Ā

))

, (1.3)

where N ∈ Rn∞×n∞ is nilpotent and Ā ∈ R(n−n∞)×(n−n∞) is an arbitrary square
matrix. The representation (1.3) is called Kronecker normal form of (E,A). Further,
the nilpotency index ν ∈ N of N , i.e. the number with Nν−1 6= 0, Nν = 0, is well-
defined by (E,A) and called the Kronecker index. Multiplying a finite dimensional
DAE of the form (1.2) from the left side with W and insert the identity I = TT−1,
we get

WET (T−1ẋ(t)) = WET (T−1x(t)) +Wq. (1.4)

If we introduce (x1 x2) = T−1x and (x1 x2) = Wq, the equivalent DAE in Kronecker
normal form is obtained, namely the following decoupled differential equations

Nẋ1(t) = x1(t) + q1(t) (1.5a)

ẋ2(t) = Āx2(t) + q2(t). (1.5b)

(1.5a) contains algebraic equations and some further hidden relations, being algebraic,
when (1.5a) is differentiated, and thus it is called the (hidden) algebraic constraints.
The second expression (1.5b) is nothing but an ordinary differential equation extracted
from the DAE (1.2) and is therefore called the inherent ODE. Altogether, solutions
of these equations are given by

x1(t) = −

ν−1
∑

k=0

Nkq
(k)
1 (t), x2(t) = eĀtx2(0) +

∫ t

0

eĀ(t−τ)q2(τ)dτ. (1.6)

In [4] and [13], for example, algorithms for the computations of T andW are presented.
Due to (1.6), it can be seen that the Kronecker index ν of (E,A) is the minimal integer
which satisfies an inequality

‖x(T )‖ ≤ cT ·

ν
∑

k=0

‖q(k)(·)‖L2([0,T ],Rn) (1.7)

for some positive constant c. L2([0, T ],R
n) denotes the Lebesque space of square

integrable functions with values in Rn.
In this work, we will perform an analysis as in (1.7) as well as we generalize the
decoupling framework to infinite dimensional descriptor systems. We will obtain a
form as follows





N 0
0 I

0 0





(

ẋ1(t)
ẋ2(t)

)

=





I K

0 U

0 R





(

x1(t)
x2(t)

)

+





q1(t)
q2(t)
q3(t)



 . (1.8)

The second two lines, i.e. the system

ẋ2(t) = Ux2 + q2(t)
0 = x2(t) + q3(t),

(1.9)
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play the role of the inherent ODE for the finite dimensional case. This type of equa-
tions is called an abstract boundary control system, since, in an abstract setting, bound-
ary controlled systems can be written in this way. After solving (1.9) for x2, we obtain
for the first component of the state vector

x1(t) = −

ν−1
∑

k=0

Nk(q
(k)
1 +Kx2(t)).

An extraordinary role is taken by the coupling term K. Due to the existence of the
Kronecker normal form, in the finite dimensional case there can be always found a
representation with K = 0. However, this is not true for infinite dimensional DAE’s.
It will turn out that K has to satisfy a certain boundedness condition in order to
guarantee that it can be eliminated. The proof of the existence of the form (1.8) is
constructive and requires some projector chain to be existent and stagnant. There, we
lean against the results of [17]. Besides that E is bounded, we will make the assump-
tion that the generalized resolvent (sE −A)−1 is bounded and analytic for s in some
complex half-plane and has there, it has at most polynomial growth in s. With the
Laplace transformation of the ADAE, we will shift the problem into some frequency
domain spaces, namely the Hardy spaces H2 and H∞. From that, we will derive
some criteria for the solvability of ADAE’s. Many examples of practical relevance,
especially coupled systems of DAE’s and PDE’s, fulfill the requirements, we make on
E and A.
We briefly resume the actual state of affairs concerning ADAE’s. [12] considers sys-
tems (1.2), where he assumes that E is indeed injective but not boundedly invertible.
Although these assumptions are almost disjoint to those, we make, the mathematical
methods for the analysis of the solvability are based on Laplace transform and hence,
they are somehow similar to our guesses. The application of that work mainly focuses
on PDE’s with spacial singularities. In the papers of Thaller et. al. (e.g. [31, 32]),
besides the boundedness E : X → Z, they additionally assume that

{x ∈ D(A) : Ax ∈ imE} ∩ kerE = {0}.

It will turn out that this assumption is equivalent to the index of the ADAE being
less than 2, in our formulation. Moreover, both assume that the spaces, we denoted
by Z and X , coincide. As we will see with the given examples, this is not reasonable
for the consideration of coupled systems. More related to this work is [17]. There,
abstract differential algebraic systems of the form

A(t)
d

dt
(D(t)x(t)) +B(t)x(t) = q(t) (1.10)

are considered and an extraction of the algebraic relations is performed. Especially,
this approach is applied and in [3, 29, 33] in modelling and simulation of analog cir-
cuits. Indeed, this approach is more general than ours since time-varying operators
are considered. On the other hand, the presented theory is close to the given practi-
cal examples and for the applicability of those results, some inspired homogenizations
have to be performed. Moreover, there is no uniform theory for the solvability of this
type of equations. Since we assume time-invariance, i.e. our operators E and A do not
depend on time, a much bigger mathematical framework is disclosed, of which we can
make use of. As an example, we can apply methods based on Laplace transformation.
Possible applications of this paper are given by the structure analysis of coupled sys-
tems. Especially, by the transformation into (1.8), we get inside into the system
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behavior. A theory which could benefit from this work is that of consistent initial-
ization of PDAE’s (see [25]). In our abstract formalism, this denotes that for a given
inhomogeneity q(·) we determine the x0, for which the abstract equation (1.2) pos-
sesses a solution with x(0) = x0. It is clear that not every initial condition is allowed
since even in the finite dimensional case, it has to fulfill the algebraic constraints and
the hidden ones. In this work, we will always assume homogeneous initial condition
and hence, we will claim some extra conditions on q(·). Another application is given
by the perturbation analysis for these systems, i.e. the sensitivity of the solution with
respect to the inhomogeneity. Outgoing from the decoupling theory of systems (1.2),
another possible application is the control and observation of PDAE systems [24]. A
generalization of the system theoretic concepts of reachability and observability to the
infinite dimensional differential algebraic case can be performed with the help of the
presented theory. For finite dimensional DAE systems, these concepts are well-known
and subject of various works like e.g. [4, 5, 9, 16]. As well, there is an advanced the-
ory about the control and observation of infinite dimensional ODE systems available.
With the decoupling of ADAE’s, we are able to link these two theories.
This work is organized as follows: In the first section, the functional analytic frame-
work is presented. The needed spaces are introduced. Thereafter, the solvability of
abstract differential algebraic systems is analyzed in Section 2. Furthermore, the con-
cept of perturbation index and its interpretation in both time and frequency domain
is treated. In section 3, we briefly repeat the decoupling theory for finite dimensional
constant coefficient differential algebraic systems under an alternative point of view
and, outgoing from that, we consider the infinite dimensional case. We introduce the
ADAE index, a generalization of the Kronecker index and deal with its comparison
to the perturbation index. Before this work is concluded, an example from analytic
circuit theory is given in the fourth section in order to illustrate the applicability of
the presented theory.

2. Preliminaries. In this section, we collect some necessary fundamentals. Let
X , Z be complex Hilbert spaces throughout this work. The space of bounded linear
operators from X to Z is denoted by Lb(X,Z) and associated with the usual operator
norm ‖ · ‖Lb(X,Z). A linear operator Q with Q2 = Q is called projector onto imQ

and along kerQ. The complementary projector P = I −Q satisfies imP = kerQ and
kerP = imQ. It is known that for all subspaces X1, X2 ⊂ X with X1 ⊕ X2 = X ,
there exists a projector onto X1 and along X2. Moreover, that projector is bounded
if and only if both X1 and X2 are closed (see [27]).
Further, we introduce several function spaces needed throughout this work. More
details about the definitions can be found in [1, 8, 11, 21] and [27]. Let I be an interval
containing zero during this section. The space of distributions on I with values in X

is denoted by D′(I,X) and the Lebesque space consisting of measurable and square
integrable functions mapping from I to X is denoted by L2(I,X). Outgoing from
that, we introduce the weighted Lebesque spaces

L2
ω(I,X) = {f(·) ∈ D′(I,X) : e−ω·f(·) ∈ L2(I,X)}

associated with the norm ‖f‖2L2
ω(I,X) = ‖e−ω·f(·)‖L2(I,X).

For k ∈ N , we denote f (k) to be the k-th distributional derivative of f and define the
Sobolev space with homogeneous initial values

H k
0,ω(I,X) = {f ∈ D′(I,X) : f (k) ∈ L2

ω(I,X) and f (i)(0) = 0 for i = 0, . . . , k − 1}
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and H k
0 (I,X) = H k

0,0(I,X). The norms are given by ‖f‖
H

k
0,ω(I,X) = ‖f (k)‖L2

ω(I,X).

It can be seen that the distributional derivative

d

dt
: H k

0 (I,X) → H k−1
0 (I,X)

is an isometry. The inverse mapping is given by integration (∫ f)(t) :=
∫ t

0
f(τ)τ, and

therefore, it holds ‖ ∫ f(·)‖
H

k
0
(I,X) = ‖f(·)‖

H
k−1

0
(I,X).

This leads us to define the Sobolev spaces H−k
0,ω (I,X) with negative exponents, namely

H−k
0,ω (I,X) = {f ∈ D′(I,X) : (∫)

k
f ∈ L2

ω(I,X)}.

The norm in that Hilbert space is given by ‖f‖
H

−k
0,ω(I,X) := ‖ (∫)k f‖

H
−k+1

0,ω (I,X). For

k ∈ Z, T > 0 and f ∈ H k
0,ω([0,∞), X), it can be seen that f |[0,T ] being the restriction

of f to the interval [0, T ], we have f |[0,T ] ∈ H k
0 ([0, T ], X), where . For convenience,

we shortly write ‖f‖
H

k
0
([0,T ],X) := ‖ f |[0,T ] ‖Hk

0
([0,T ],X).

The complex half-plane consisting of numbers whose real part exceeds ω ∈ R is
denoted by C+

ω . The Hardy space H2(C
+
ω , X) consists of all holomorphic functions

f : C+
ω → X with the property

‖f‖
H2(C

+
ω ,X) := sup

γ>ω
‖f(γ + i·)‖L2(R,X) < ∞.

For k ∈ Z, we define the monomial weighted H2 space sk · H2(C
+
ω , X) associated with

the norm

‖f‖sk·H2(C
+
ω ,X) := sup

γ>ω

∥

∥

∥

∥

1

(·)k
f(·)

∥

∥

∥

∥

H2(C
+
ω ,X)

Furthermore, it can be seen that the multiplication with s defines an isometry from
sk · H2(C

+
ω , X) to sk+1 · H2(C

+
ω , X).

In the following, we address the relation between the introduced Hardy and Sobolev
spaces. The Laplace transform L(f)(s) :=

∫∞

0
f(t)e−stdt is known to be an isom-

etry from L2
ω([0,∞), X) to H2(C

+
ω , X) [34, 37]. For f ∈ V := H k

ω ([0,∞), X) ∩
L2
ω([0,∞), X), the differentiation rule of Laplace transform [11] reads

L(f (k))(s) = skL (f) (s).

Since V is dense in H k
ω ([0,∞), X), the Laplace transform extends to an isometry Lk

mapping from H k
0,ω([0,∞), X) to the space s−k ·H2(C

+
ω , X) via Lk(f) := skL

(

(∫)k f
)

.

In terms of better overview, we skip the index and write L instead of Lk if it can be
seen from the context.
In addition, the Hardy space H∞(C+

ω , X, Y ) is the space of functions with values in
Lb(X,Y ) being holomorphic and bounded on C+

ω and it is a Banach space associated
with the norm

‖F‖
H∞(C+

ω ,X,Y ) := sup
s∈C

+
ω

‖F (s)‖Lb(X,Y ).

Further, we define the monomial weighted H∞ spaces sk ·H∞(C+
ω , X, Y ) and, similar

to skH2, the norm in that space reads

‖F‖sk·H∞(C+
ω ,X,Y ) :=

∥

∥

∥

∥

1

(·)k
F (·)

∥

∥

∥

∥

H∞(C+
ω ,X,Y )

.
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An operator valued holomorphic function G ∈ H∞(C+
ω , X, Y ) defines a bounded linear

operator H2(C
+
ω , X) → H2(C

+
ω , Y ) via pointwise multiplication (Gf)(s) := G(s)f(s)

and in [37] it is shown that

‖G‖Lb(H2(C
+
ω ,X),H2(C

+
ω ,Y )) = ‖G‖

H∞(C+
ω ,X,Y ). (2.1)

Further, G defines a bounded map F from L2
ω([0,∞), X) to L2

ω([0,∞), Y ) by

x 7→ L−1 (G(·)x̂(·)) . (2.2)

The norms these operator norms equal, i.e.

‖F‖L2
ω([0,∞),X), L2

ω([0,∞),Y ) = ‖G‖
H∞(C+

ω ,X,Y ).. (2.3)

We repeat the following results from [7] and [36].
Theorem 2.1. Let G ∈ H∞(C+

ω , X, Y ) and the corresponding F be defined with
(2.2). Then, for all T > 0, y := Fx, the restriction y|[0,T ] ∈ L2([0, T ], Y ), only

depends on x|[0,T ] ∈ L2([0, T ], X). Furthermore, for some constant cT > 0, we have
an estimate

‖y‖L2([0,T ],Y ) ≤ cT ‖x‖L2([0,T ],X). (2.4)

Conversely, if F ∈ Lb(L
2
ω([0,∞), X), L2

ω([0,∞), Y )) satisfies that properties, there
exists a G ∈ H∞(C+

ω , X, Y ), such that Fx = L−1 (G(·)x̂(·)).

We can conclude that x does not depend on future values of the inhomogeneity i.e.
q(t2) has no influence on x(t1) for t1 < t2. This property is called causality.
Subsequently, we formulate a generalization of the previous statements to the mono-
mial weighted case. It can be seen that G ∈ skH∞(C+

ω , X, Y ) defines a bounded linear
operator slH2(C

+
ω , X) → sl+kH2(C

+
ω , Y ) by pointwise multiplication. Moreover, we

have

‖G‖Lb(slH2(C
+
ω ,X),sl+kH2(C

+
ω ,Y )) = ‖G‖skH∞(C+

ω ,X,Y ) for all l, k ∈ Z. (2.5)

Further, G defines map from F ∈ Lb(H
l
0,ω([0,∞), X),H l+k

0,ω ([0,∞), Y )) by

x 7→ Fx = L−1 (G(·)x̂(·)) (2.6)

and the corresponding operator norms coincide. As a conclusion of Theorem 2.1, we
formulate the following.

Corollary 2.2. Let k, l ∈ Z, G ∈ skH∞(C+
ω , X, Y ) and, furthermore, the

operator F is defined as y := Fx = L−1 (G(·)x̂(·)). Then for all T > 0, the restriction
y|[0,T ] ∈ H l+k

0 ([0, T ], Y ) only depends on x|[0,T ] ∈ H l
0([0, T ], X) and the following

inequality holds for some constant cT > 0

‖y‖
H

l+k
0

([0,T ],Y ) ≤ cT ‖x‖H l
0
([0,T ],X). (2.7)

Conversely, for F ∈ Lb(H
l
0,ω([0,∞), X),H l+k

0,ω ([0,∞), Y )) with the properties above,

there exists a G ∈ skH∞(C+
ω , X, Y ), such that

Fx = L−1 (G(·)x̂(·)) for all x ∈ H l
0,ω([0,∞), X)
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Overall, by the Laplace transform, we discovered a duality between the defined
Sobolev and Hardy spaces. Since the Laplace transform is closely related to Fourier
transform, motivated by practical examples, one often speaks of frequency domain
if Hardy spaces are meant and, correspondingly, the time domain is identified with
Sobolev (or Lebesque) spaces in literature like [37], as an example.
Further relations between the defined spaces are that, by restriction of analytic func-
tions on C+

ω2
to some smaller half-plane, we have the following dense inclusions

skH2(C
+
ω1
, X) ⊂ sk2H2(C

+
ω2
, X) for ω1 ≤ ω2

sk1H2(C
+
ω1
, X) ⊂ skH2(C

+
ω2
, X) for k1 ≤ k2 and 0 > ω1 ≤ ω2.

(2.8)

By a Laplace transform, one can obtain that analogous relations hold for the Sobolev
spaces, namely

H k
0,ω1

([0,∞), X) ⊂ H k
0,ω2

([0,∞), X) for ω1 ≤ ω2

H k1

0,ω1
([0,∞), X) ⊂ H k2

0,ω2
([0,∞), X) for k1 ≤ k2 and 0 > ω1 ≤ ω2.

(2.9)

For the H∞ spaces, there hold inclusions being analogous to (2.8), but, however, these
inclusions are not dense.

3. Solvability of Abstract Differential Algebraic Systems. The aim of
this section is to derive conditions for infinite dimensional systems

Eẋ(t) = Ax(t) + q(t) (3.1)

to be solvable for x(·) in some distributional function space with values in X . As
in the introduction, we generally assume that X,Z are some Hilbert spaces and for
the operators, we assume E ∈ Lb(X,Z) and A : D(A) ⊂ X → Z is assumed to be
densely defined. The inhomogeneity q(·) is a Z-valued of sufficient smoothness. This
will be precised throughout this section. At first, we analyze the solvability of (3.1).
In analogy to the finite dimensional case, we call the operator pair (E,A) is said to
be regular, if the resolvent set defined as

ρ(E,A) := {λ ∈ C : (λE −A)−1 ∈ Lb(Y,X) exists}

is non-empty. Moreover, it can be shown that the A with domain D(A) is closed if
(E,A) is regular. In contrast to the finite dimensional case, the regularity of (E,A)
alone does not suffice to guarantee the solvability of (3.1). This even holds if X = Z

and E is just the identity, where (3.1) stands for an abstract ordinary differential
equation. There, the question of solvability is intimately connected with the property
of A being the generator of a semigroup, a generalization of the matrix exponential
to the infinite dimensional case (see [21]).
Subsequently, we give a frequency-domain criterion for the solvability of abstract
differential algebraic systems and the smoothness of the solution x(·).

Theorem 3.1. Let ν̄ ∈ N, ω ∈ R and (sE − A)−1 ∈ sν̄ · H∞(C+
ω , Z,X) and

let q ∈ H ν
0,ω([0,∞), Z). Then, there exists a unique x(·) ∈ H ν−ν̄

0,ω (X) satisfying the
abstract differential algebraic equation (3.1). Moreover, there exist constants c, cT > 0,
such that for all T > 0 holds

‖x‖
H

ν−ν̄
0,ω ([0,∞),X) ≤ c ‖q‖

H
ν−ν̄
0,ω ([0,∞),Z) (3.2a)

‖x‖
H

ν−ν̄
0

([0,T ],X) ≤ cT ‖q‖Hν−ν̄
0

([0,T ],Z). (3.2b)
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Proof. We show that

x̄(·) = L−1
(

(sE −A)−1L(q)(s)
)

(·), (3.3)

is the unique solution of (3.1). Then, the inequalities (3.2a) and (3.2b) are satisfied
by Corollary 2.2.
At first, we show that x̄ is satisfies (3.1). Due to the assumption q ∈ H ν

0,γ([0,∞), Z),
we have L(q)(s) ∈ s−ν · H2(C

+
ω , Z) and therefore

L(x̄)(s) = (sE−A)−1L(q)(s) ∈ sν̄ ·H∞(C+
ω , Z,X)s−ν ·H2(C

+
ω , Z) ⊂ sν̄−ν ·H2(C

+
ω , X).

Then, we can deduce x̄(·) ∈ H ν−ν̄
0,ω ([0,∞), X) and we calculate

E ˙̄x =
d

dt
L−1

(

E(sE −A)−1L(q)(s)
)

= L−1
(

sE(sE −A)−1L(q)(s)
)

= L−1
(

A(sE −A)−1L(q)(s) + L(q)(s)
)

= AL−1
(

(sE −A)−1L(q)(s)
)

+ L−1 (L(q)(s))

= Ax̄+ q.

The second last equality holds due to the facts that A with domain D(A) is closed
and (sE −A)−1 maps into D(A).
Now we show that the x̄(·) chosen above is the unique solution. Let x(·) ∈ H ν−ν̄

0,ω (X)
satisfying (3.1). By a Laplace transform of (3.1), we obtain

sEL(x)(s) = AL(x)(s) + L(q)(s)

and hence L(x)(s) = (sE−A)−1L(q)(s) = L(x̄)(s). Inverse Laplace transform of this
equation yields the desired result.
The previous theorem states uniqueness of the solution x(·) ∈ H ν−ν̄

0,ω ([0,∞), X), i.e.
we require a zero initial condition x(0) = 0 for the solution trajectory. Moreover, due
to Corollary 2.2, it can be seen that (sE − A)−1 ∈ sν̄−1H∞(C+

ω , Z,X) if and only if
the solution mapping of (3.1), namely

H k−ν̄
0,ω ([0, T ], Z) −→ H k+1

0,ω ([0, T ], X)

q(·) 7→ x(·),
(3.4)

is continuous for all T > 0 and some (and hence any) k ∈ Z. Hence, due to Corollary
2.2 and the fact that point evaluation is a bounded mapping from H 1

0 ([0, T ], Z) to R,
the νp ∈ N defined as

νp = min{l ∈ Z : (sE −A)−1 ∈ sl−1H∞(C+
ω , Z,X) for some ω ∈ R}

is the minimal number for which an estimate

‖x(T )‖ ≤ cT ·

νp
∑

k=0

‖q(k)(·)‖L2([0,T ],Rn) (3.5)

holds for some positive constant cT . As in the introduction, the constant νp is said
to be the perturbation index. This concept is often used when dealing with DAE’s
and is therefore subject of various textbooks (see e.g. [4, 5, 35]). We have to notice
that these references define the perturbation index slightly different since they take
the L∞-norm instead of L2-norms, in principle. In [30], the perturbation index is
introduced in terms of Lp-spaces. We treated the special case p = 2.
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4. Decoupling of Differential Algebraic Equations.

4.1. Finite Dimensional DAE’s. We briefly present an alternative approach
for the decoupling of (finite dimensional) DAE’s by using the results of [18]. Later,
that approach is taken over to the infinite dimensional case. We define the subsequent
matrix chain from which we will derive the equivalence transforms for decoupling the
DAE (1.2).

E0 := E,

A0 := A

Qi ∈ R
n×n, Q2

i = Qi, imQi = kerEi,

i−1
∑

j=0

kerEi ⊂ kerQi = imPi

Ei+1 = Ei −AiQi,

Ai+1 = AiPi.

It has to be mentioned that our notation is slightly different to that of [18]. There, the
DAE reads Aẋ(t) + Bx(t) = q(t) and is a (A,B) regular matrix pair. Consequently,
the matrix chain was built by Ai+1 := Ai +BiQi, Bi+1 = BiPi. It is clear that both
are totally equivalent. Our notation is mainly used in control theory, like e.g. in [9].
The chain above is guaranteed to stagnate and further, the minimal ν ∈ N such that
Qν = 0 is called tractability index. The concept of tractability index has been subject
of various publications of Maerz et. al. like e.g. [15] and is also applicable to the
case of non-constant-coefficient DAE’s of the form (1.10) (see e.g. [19]).

Besides the fact that ν < n, it holds that the space NΣj :=
⊕j−1

i=0 imQi does not
depend on the particular choice of the projectorsQi ([19], Theorem 2.3). The following
matrix is known to be a projector onto NΣj

QΣj := Q0 + P0Q1 + . . .+ P0 · · ·Pj−2Qj−1.

Its complementary projector reads PΣj = P0 · · ·Pj−1. The subsequent equivalent
transforms can be performed to E and A

E = E0P0 = (E0 −A0Q0)P0 = E1P0 = E1P1P0 = (E1 −A1Q1)P1P0 (4.1a)

= E2P1P0 = · · · = EνPν−1 · · ·P0 = Eν(I −Q0 −Q1 − · · · −Qν−1) (4.1b)

A = A0P0 +A0Q0 = −(E0 −A0Q0)Q0 +A0P0 = −E1Q0 +A1 (4.1c)

= −(E1 −A1Q1)(P1Q0 +Q1) +A1P1 = −E2(P1Q0 +Q1) +A2 (4.1d)

= · · · = −Eν(Q0 + · · ·+Qν−1) +Aν . (4.1e)

Since kerEν = {0}, the inverse E−1
ν exists. Premultiplying E and A with the matrices

−Q0P1 · · ·Pν−1E
−1
ν , . . ., −Qν−2Pν−1E

−1
ν and −Qν−1E

−1
ν respectively, we obtain the

following for i = 1, . . . , ν − 1

−QiPi+1 · · ·Pν−1E
−1
ν E

= −QiPi+1 · · ·Pν−1E
−1
ν Eν(I −Q0 − · · · −Qν−1)

= Qi −QiPi+1 · · ·Pν−1 (4.2a)

−QiPi+1 · · ·Pν−1E
−1
ν A

= −QiPi+1 · · ·Pν−1E
−1
ν (−Eν(Q0 + · · ·+Qν−1) +Aν)

= QiPi+1 · · ·Pν−1(Q0 + · · ·+Qν−1)−QiPi+1 · · ·Pν−1E
−1
ν Aν

= Qi −QiPi+1 · · ·Pν−1E
−1
ν Aν . (4.2b)
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Further, we compute

P0 · · ·Pν−1E
−1
ν E

= P0 · · ·Pν−1E
−1
ν Eν(I −Q0 − · · · −Qν−1)

= P0 · · ·Pν−1(I −Q0 − · · · −Qν−1)

= P0 · · ·Pν−1 (4.2c)

P0 · · ·Pν−1E
−1
ν A

= P0 · · ·Pν−1E
−1
ν (−Eν(Q0 + · · ·+Qν−1) +Aν)

= P0 · · ·Pν−1Aν . (4.2d)

We define the vector spaces X1 := imQ0 × · · · × imQν−1, X2 = imPΣν and it can be
seen that the linear transformationsW : Rn → X1×X2 and T : X1×X2 → Rn defined
below are invertible. Let z ∈ Z, xi ∈ imQi for i = 0, . . . , ν − 1 and xP ∈ imPΣν

.
Then we declare

Wz :=





























−Q0P1 · · ·Pν−1E
−1
ν z

−Q1P2 · · ·Pν−1E
−1
ν z

...
−Qν−1E

−1
ν z











P0 · · ·Pν−1E
−1
ν z



















, T ·





























x0

x1

...
xν−1











xP



















= xP +
ν−1
∑

i=0

P0 · · ·Pi−1Qixi.

Then, by the matrix calculations (4.2a) and (4.2c), we yield

WET =





NQ 0

0 PΣν



 , (4.3)

and NQ : X1 → X1 reads

NQ =

























0 Q0Q1 Q0P1Q2 Q0P1P2Q3 · · · Q0P1 · · ·Pν−2Qν−1

. . . Q1Q2 Q1P2Q3

...
. . .

. . .
. . .

...
. . .

. . . Qν−3Pν−2Qν−1

. . . Qν−2Qν−1

0

























.

Moreover, we obtain by (4.2b) and (4.2d)

WAT =

























Q0

. . .

Qν−1






−











Q0P1 · · ·Pν−1E
−1
ν Aν

Q1P2 · · ·Pν−1E
−1
ν Aν

...
Qν−1E

−1
ν Aν











0 P0 · · ·Pν−1E
−1
ν Aν



















. (4.4)
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It can be seen that NQ is nilpotent and its nilpotency index does not exceed ν. The
fact that it even equals ν can be made clear as follows. We argument that Nν−1

Q is
not the zero matrix. We calculate

Nν−1
Q =













0 · · · 0 Q0 · · ·Qν−1

. . . 0
. . .

...
0













6= 0.

Now assume that Q0 · · ·Qν−1x = 0. Hence, it holds Q1 · · ·Qν−1x ∈ kerQ0 ∩ imQ1.

From that, we calculate

0 = E1Q1 · · ·Qν−1x = (E0 −A0Q0)Q1 · · ·Qν−1x = E0Q1 · · ·Qν−1x.

This implies Q1 · · ·Qν−1x ∈ kerE0 = imQ0. Together with the assumption that
Q1 · · ·Qν−1x is in kerQ0, we get Q1 · · ·Qν−1x = 0. Iterating this argumentation,
we get Qν−1x = 0 and thus kerQ0 · · ·Qν−1 = kerQν−1 6= {0} and hence, both
Q0 · · ·Qν−1 and NQ are non-zero matrices.
By a construction of bijective transformations T1, T2 with T1 : X1 → Rn∞ and T2 :
X2 → Rn−n∞ , we get

(

T1

T2

)

WET

(

T1

T2

)−1

=

(

N 0
0 I

)

(4.5a)

(

T1

T2

)

WAT

(

T1

T2

)−1

=

(

I K

0 Ã

)

. (4.5b)

We observe that the system not yet in Kronecker normal form since a possibly non-
vanishing coupling term K ∈ R

n∞×(n−n∞) appears. We will call such a representation
a decoupling form during this work. A solution of a differential algebraic equation in
that form, i.e.

(

N

I

)(

ẋ1(t)
ẋ2(t)

)

=

(

I K

Ā

)(

x1(t)
x2(t)

)

+

(

q1(t)
q2(t)

)

can be obtained by backsubstitution, namely

x1(t) = −

ν−1
∑

k=0

Nk
(

Kx
(k)
2 (t) + q

(k)
1 (t)

)

, where x2(t) =

∫ t

0

eĀ(t−s)q2(s)ds. (4.6)

In order to get a Kronecker normal form with the technique based of matrix chains,
the projectors Qi have to be chosen in a way such that

Qj = −QjPj+1 · · ·Pν−1E
−1
ν Aj

for j = 0, . . . , ν − 1. Then the terms Qj = −QjPj+1 · · ·Pν−1E
−
ν Aν vanish and we

get a decoupling form with K = 0. Then, a transformation of the kind (4.5a), (4.5b)
yields a Kronecker normal form. These projectors are called canonical and the work
[18] deals with their computation. We will deal with canonical projectors in Section
4.3.
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4.2. Decoupling in Infinite Dimensions. Here, we develop decoupling forms
(4.5a), (4.5b) for the infinite dimensional case. Since projectors are available in infinite
dimensional spaces as well, the approach of the previous subsection is useful for that.
The following theorem represents the main result concerning decoupling of abstract
differential algebraic systems.

Theorem 4.1. Let X,Z be Hilbert spaces and let (E,A) be a regular operator pair
with E : X → Z be bounded and A : D(A) ⊂ X → Z be densely defined. Moreover,
let the operator chain

E0 := E,

A0 := A

Qi ∈ Lb(X) ∩ Lb(D(A)), Q2
i = Qi, imQi = Ni,

i−1
∑

j=0

kerEi ⊂ kerQi = imPi

Ni = kerEi

Wi ∈ Lb(Z), W 2
i = Wi, kerWi = imEi,

Ei+1 = Ei −AiQi,

Ai+1 = AiPi,

be existent and stagnant, i.e. there exists a ν, such that Nν = {0}. Further, let

imE +A

(

ν−1
∑

k=0

Nk

)

(4.7)

be closed. Then, there exist Hilbert spaces X1, X2, X3 and mappings W ∈ Lb(Z,X1 ×
X2×X3), T ∈ Lb(X1×X2, X), where T is bijective and W is injective and has dense
range, i.e. imW = X1 ×X2 ×X3, such that

WET =





N 0
0 I

0 0



 : X1 ×X2 −→ X1 ×X2 ×X3, (4.8a)

WAT =





I K

0 U

0 R



 : X1 ×D(K) ∩D(U) ∩D(R) −→ X1 ×X2 ×X3, (4.8b)

and, in particular, we have that N ∈ Lb(X1) is a nilpotent operator whose nilpotency
order is ν.
The number ν is called ADAE index. This concept was first published in [17] as a
generalization of the tractability index to infinite dimensions. Further, that theory is
applied and further refined in [29], [3] and [33].
We show the result of Theorem 4.1 constructively and similar to the computations
(4.3) and (4.4) for matrix pairs. Here, the main difference to that case is that the
injectivity of Eν only implies the existence of a left inverse E−

ν , i.e. E−
ν Eν = I due to

the infinite dimensionality of X and Z. The fact that this left inverse can be chosen
such that it is bounded is shown in Appendix A. For that, we need the technical
condition that the space (4.7) is closed. Although there is a freedom in the choice

of the Qi, it holds that
∑ν−1

k=0 Nk = imQΣν is an invariant of the pair (E,A) (see
[19]), and hence, we have no redundancies in our requirements. In the known cases
of practical relevance, the existence of the projector chain as the closedness of (4.7)
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is guaranteed. It remains to be an open question if the regularity of (E,A) and the
closedness of the range of E suffices to imply E−

ν ∈ Lb(Z,X).

Proof. [Theorem 4.1] Let E−
ν ∈ Lb(Z,X) be chosen in a way that E−

ν Eν = I and
EνE

−
ν = I −Wν . By means of the projectors, we define the Hilbert spaces X1, X2

and X3 by X1 := imQ0 × · · · × imQν−1, X2 := imP0 · · ·Pν−1 and X3 := imWν and
the transformations W ∈ Lb(X1 ×X2 ×X3, Z), T ∈ Lb(X1 ×X2, X) by

Wz =

































−Q0P1 · · ·Pν−1E
−
ν z

−Q1P2 · · ·Pν−1E
−
ν z

...
−Qν−1E

−
ν z











P0 · · ·Pν−1E
−
ν z

Wνz























, T ·





























x0

x1

...
xν−1











xP



















= xP +

ν−1
∑

i=0

P0 · · ·Pi−1Qixi.

It can be seen that T is bijective andW is injective. The relation imW = X1×X2×X3

is implied by the fact imE−
ν = X .

Now we determine the products WET and WAT . It can be seen that the following
expressions read as in (4.3) and (4.4)





























−Q0P1 · · ·Pν−1E
−
ν

−Q1P2 · · ·Pν−1E
−
ν

...
−Qν−1E

−
ν











P0 · · ·Pν−1E
−
ν



















E T,





























−Q0P1 · · ·Pν−1E
−
ν

−Q1P2 · · ·Pν−1E
−
ν

...
−Qν−1E

−
ν











P0 · · ·Pν−1E
−
ν



















A T.

For the remaining part, by using the relations (4.1b) and (4.1e), which hold here as
well, we observe

WνE = WνEνPν−1 · · ·P0 = 0

WνA = Wν(−Eν(Pν−1 · · ·P1Q0 + · · ·+ Pν−1Qν−2 +Qν−1) +Aν) = WνAν

Therefore, we obtain

WνET =
(

0 · · · 0 0
)

,

WνAT =
(

0 · · · 0 WνAν

)

.

Altogether, we get the form (4.8a), (4.8b), and in particular

N =

























0 Q0Q1 Q0P1Q2 Q0P1P2Q3 · · · Q0P1 · · ·Pν−2Qν−1

. . . Q1Q2 Q1P2Q3

...
. . .

. . .
. . .

...
. . .

. . . Qν−3Pν−2Qν−1

. . . Qν−2Qν−1

0

























, (4.9a)
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K = −











Q0P1 · · ·Pν−1E
−
ν Aν

Q1P2 · · ·Pν−1E
−
ν Aν

...
Qν−1E

−
ν Aν











, (4.9b)

U = P0 · · ·Pν−1E
−
ν Aν (4.9c)

R = WνAν . (4.9d)

We can show analogously to the argumentation in the finite dimensional case that ν
coincides with the nilpotency index of N .

The result of Theorem 4.1 leads to the analysis of systems of the type (1.8). In
the projector computations above, we see that the additional relation 0 = Rx2 + q3
on the space X3 is a consequence of the range defect of Eν . Due to the dimension for-
mula, X3 is trivial in the finite dimensional case. Hence we get the abstract boundary
control system

ẋ2(t) = Ux2(t) + q2(t)
0 = Rx2(t) + q3(t).

(4.10)

These systems are well-studied in a system theoretic framework (see e.g. [28, 8]). In
[28] it is shown that (4.10) can be transformed into a system

ẋ2(t) = Āx2(t) + q2(t) + B̄q3(t), (4.11)

where Ā is a restriction of U to the space D(Ā) = kerR ∩D(U) and B̄ is an operator
having its range on some larger space containingX3, namely the dual of D(A∗), where
A∗ is the adjoint of A.
Hence the dynamics of the system are mainly determined by the properties of Ā.
For the solvability of (4.10) and (4.11), Ā has to generate a semigroup TĀ. By the
Hille-Yosida Theorem [21], Ā is the generator of a strongly continuous semigroup if
there exist constants M > 0, γ ∈ R such that

‖(λI − Ā)−k‖ ≤
M

(λ− γ)k
for all k ∈ N, λ > γ.

If this is fulfilled, a solution of (1.8) can be found by first solving for x2 by using the
variation of constants formula (see [21]) and then, by inserting this solution, the first
component x1 can be obtained. Analogously to (4.6), we get

x1(t) = −

ν−1
∑

k=0

Nk
(

Kx
(k)
2 (t) + q

(k)
1 (t)

)

, (4.12a)

where x2(t) =

∫ t

0

TĀ(t− s)(q2(s) + B̄q3(s)). (4.12b)

In order to analyze the property of Ā being a generator of a strongly continuous
semigroup, we have to take a closer look at the generalized resolvent. For λ ∈ ρ(E,A),
we have




λN − I −K

0 λI − U

0 −R





−1

=

(

(λN − I)−1N −(λN − I)−1K (λI − U)−1
∣

∣

kerR
(λN − I)−1K R−1

∣

∣

ker(λI−U)

0 (λI − U)−1
∣

∣

kerR
− R−1

∣

∣

ker(λI−U)

)

,
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whereas z1 = (λI − U)−1
∣

∣

kerR
x1 and z2 = R−1

∣

∣

λI−U
x2 are defined to be the solu-

tions of the equations

(λI − U)z1 = x

Rz1 = 0
(λI − U)z2 = 0

Rz2 = x2.

It can be seen that the unique solvability of these equations is a result of the initial
requirement that the operator pair (E,A) is regular. Alternatively, we can express
according to (4.12b)

(λI − U)−1
∣

∣

kerR
= (λI − Ā)−1

R−1
∣

∣

ker(λI−U)
= (λI − Ā)−1B̄,

and hence, we have ρ(E,A) = ρ(Ā). The property (sE−A)−1 ∈ sνp ·H∞ is necessary
for Ā generating a strongly continuous semigroup. The sufficiency is not guaranteed,
it can only be shown that Ā fulfills ‖(λI − Ā)−1‖ ≤ M(γ − λ)ν̃ for some ν̃ < νp,
M,γ > 0 and all λ > γ. Operators having this property generate a so-called integrated
semigroup, or also called distributive semigroup. These semigroups are not continuous
functions but distributions of highest order ν̃ with values in TĀ. Integrated semigroups
are treated in [20], as an example. They are not subject of this paper.
Since (sN − I)−1 is a polynomial with operators as coefficients and has the degree
ν − 1, we have

ν ≤ min{l ∈ Z : (sE −A)−1 ∈ sl−1H∞(C+
ω , Z,X) for some ω ∈ R}

Hence ν ≤ νp, i.e. the ADAE index does not exceed the perturbation index. In con-
trast to the finite dimensional case, this inequality is strict in general.
Trivially, as for finite dimensional DAE’s, the decoupling form is not unique. In the
following we expose, how two such forms differ. Further, the question arises, if the
property of Ā generating a strongly continuous semigroup depends on the particular
choice of the decoupling form. Indeed, it can be shown that this property is an in-
variant of the pair (E,A). This will be a conclusion of the subsequent result. From
that, we will obtain some useful consequences for the inherent abstract ODE

Theorem 4.2. Let (W1ET1,W1AT1) = (Ẽ1, Ã1) and (W2ET2,W2AT2) = (Ẽ2, Ã2)
be two decoupling forms of the pair (E,A), where W1 ∈ Lb(Z,X11 × X12 × X13),
W2 ∈ Lb(Z,X21 × X22 × X23), T1 ∈ Lb(X11 × X12, X) and T2 ∈ Lb(X21 ×X22, X)
are some transformations. In particular, let

Ẽ1 :=





N1 0
0 I

0 0



 , Ã1 :=





I K1

0 U1

0 R1



 , Ẽ2 :=





N2 0
0 I

0 0



 , Ã2 :=





I K2

0 U2

0 R2



 .

Then, N1 and N2 are similar, i.e. there exists a bounded and boundedly invertible
TN ∈ Lb(X11, X21) with T−1

N ∈ Lb(X21, X11) such that N1 = T−1
N N2TN . Addition-

ally, the operators Ā1 and Ā2 to be the restrictions of U1 to the space kerR1 and U2

to kerR2 are similar.

Proof. Let T̃ := T−1
1 T2 and W̃ := W2W

−1
1 be partitioned as

T̃ =

(

T11 T12

T21 T22

)

, W̃ =





W11 W12 W13

W21 W22 W23

W31 W32 W33



 .
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For λ ∈ ρ(E,A), consider

(λẼ1 − Ã1)
−1Ẽ1 =

(

(λN1 − I)−1N1 −(λN1 − I)−1K1(λI − Ā1)
−1

0 (λI − Ā1)
−1

)

,

and, analogously (λẼ2 − Ã2)
−1Ẽ2. Since T̃−1(λẼ1 − Ã1)

−1Ẽ1T̃ = (λẼ2 − Ã2)
−1Ẽ2,

we have the identity
(

0 T11K2∗ + T12(λI − Ā2)
−ν

0 T21K2∗ + T22(λI − Ā2)
−ν

)

= T̃
(

(λẼ2 − Ã2)
−1Ẽ2

)ν

=
(

(λẼ1 − Ã1)
−1Ẽ1

)ν

T̃

=

(

K1∗T21 K1∗T22

(λI − Ā1)
−νT21 (λI − Ā1)

−νT22

)

for some operators K1∗,K2∗. Hence, we can conclude T21 = 0. By an analogous
argumentation, it is clear that T̄−1 has the same block structure as T̄ and thus, both
T11 and T22 are boundedly invertible. Moreover, the equality A2 = W̄A1T̄ implies





I K2

0 U2

0 R2



 =





W11T11 W11(T12 +K2T22) +W12U2T22 +W13R2T22

W21T11 W21(T12 +K2T22) +W22U2T22 +W23R2T22

W31T11 W31(T12 +K2T22) +W32U2T22 +W33R2T22



 ,

and therefore W21 = 0, W31 = 0 and W11 = T−1
11 . By making use of that and the

relation E2 = W̄E1T̄ , we obtain




N2 0
0 I

0 0



 =





W11N1T11 W11N1T12 +W12T22

0 W22T22

0 W32T22



 ,

and this implies W32 = 0, W22 = T−1
22 .

Since N2 = T−1
11 N1T11, N1 and N2 are similar. In addition, we have

U2 = T−1
22 U1T22 +W23R1T22

and R2 = W33R1T22. Hence, Ā2 is the restriction of T−1
22 U1T22 + W23R1T22 to the

space kerW33R1T22, and therefore, it is the restriction of T−1
22 U1T22 to the space

kerR1T22. From that, we get Ā2 = T−1
22 Ā1T22, which completes the proof.

Corollary 4.3. Let the same preliminaries hold as in Theorem 4.2. Then, if
Ā1 generates a strongly continuous semigroup, the same holds for Ā2.

Proof. This statement is immediately concluded by Theorem 4.2 since Ā2 =
T−1
22 Ā1T22 for some bounded and boundedly invertible operator T22 and therefore the

semigroup TĀ2
(·) generated by Ā2 is given by T−1

22 TĀ1
(·)T22, where TĀ1

(·) is the semi-
group generated by Ā1.

We will call the semigroups TĀ1
(·) and TĀ2

(·) inherent semigroups of E and A. From
the proof above, we can conclude that all inherent semigroups of E and A are similar.
In the following, we give some a priori criteria on E and A possessing a strongly
continuous inherent semigroup.

Theorem 4.4. Let a system Eẋ = Ax+ q with ADAE index ν be given. Further,
let Qi : i = 0, . . . , ν − 1 be the projector chain as in the proof of Theorem 4.1 and
PΣν

= P0 · · ·Pν−1. Then, the following three statements are equivalent:
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(i) There exists a decoupling form with a strongly continuous inherent semigroup
(ii) All decoupling forms have a strongly continuous inherent semigroup
(iii) There exist M,γ > 0, such that for all k ∈ N, λ > γ holds

‖PΣν
((λE −A)−1E)kPΣν

‖ ≤
M

(λ− γ)k
. (4.13)

Proof. We only have to prove the equivalence between (i) and (ii) was already
shown in Corollary 4.3. Let (E,A) be given and let W,T be transformations, such that

(WET,WAT ) is in decoupling form (4.8a) and (4.8b). Since
∑ν−1

i=0 imQi = kerPΣν

does not depend on the particular choice of the projectors, we can conclude that

PΣν = T

(

0 H

0 I

)

T−1

for some H ∈ Lb(X1, X2). Thus, for λ ∈ ρ(E,A) we compute

PΣν((λE −A)−1E)kPΣν

= T

(

0 H

0 I

)(

(λN − I)N (λN − I)NK(λI − Ā)−1

0 (λI − Ā)−1

)k (
0 H

0 I

)

T−1

= T

(

0 0
0 (λI − Ā)−k

)

T−1.

Hence, if Ā generates a strongly continuous semigroup, there exist constants m > 0
and γ ∈ R, such that ‖(λI − Ā)−k‖ ≤ m

(γ−λ)k for all k ∈ N and λ > γ. Thus, for

M = m‖T ‖‖T−1‖, the relation (4.13) is valid.
Conversely, if statement (iii) is fulfilled, we have ‖(λI − Ā)−k‖ ≤ m

(γ−λ)k
for the con-

stant m := M‖T ‖‖T−1‖ and for all k ∈ N, γ > λ and therefore, by the Hille-Yosida
Theorem, Ā generates a strongly continuous semigroup.

4.3. Complete Decouplings. For regular matrix pairs (E,A) it is well-known,
that there exists transformation matrices W,T , such that (WET,WAT ) reads as in
(1.3), i.e. we can always find transformations, such that the coupling term K vanishes,
which we call now a complete decoupling. Now, one may ask if this is also possible
in the infinite dimensional case. In fact, there are practically motivated examples of
ADAE’s, where a complete decoupling is not possible, which we will confirm with
an example at the end of this section. The following theorem states whether such a
complete decoupling is possible.

Theorem 4.5. Let (E,A) be an operator pair. Then, there exist transformations
W1, T1, such that

(W1ET1,W1AT1) =









N1 0
0 I

0 0



 ,





I 0
0 U1

0 R1







 (4.14)

if and only if transformations W,T exist such that (WET,WAT ) has the decoupling
form (1.8), and, additionally KUk ∈ Lb(X2, X1) for k = 0, . . . , ν − 1.

For the proof, we use the projector approach as in the proof of Theorem 4.1 as well.
In order to achieve a complete decoupling, especially, we have to choose the kernels
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of the decoupling projectors Qi in a particular way, namely canonical. Our approach
is inspired by the work [18], where these complete decouplings of matrix pairs are
realized for matrix pairs. The presented method was based on an iteration method
leading to the canonical projectors in finitely many steps. The problem in generalizing
this to the infinite dimensional case is that one to pay attention for possible unbound-
ednesses. This is the reason for the additional assumption KUk ∈ Lb(X2, X1) for
k = 0, . . . , ν − 1. Before we state the proof, the following useful lemma is presented.
The proof of that Lemma is extensive and left to Appendix B.

Lemma 4.6. Let an operator pair (E,A) be decoupled with the projectors Q0, . . . , Qν−1,
with

K = −

























Q0P1 · · ·Pν−1E
−
ν Aν

Q1P2 · · ·Pν−1E
−
ν Aν

...
QiPi+1 · · ·Pν−1E

−
ν Aν

0
...
0

























, U = PΣνE
−
ν Aν (4.15)

such that K(PΣνE
−
ν Aν)

l ∈ Lb(X) for l = 0, . . . , k.
Then, a decoupling with the projectors Q̄j := −QjPj+1 · · ·Pν−1E

−
ν Aj leads to decou-

pling of (E,A), namely









N̄ 0
0 I

0 0



 ,





I K̄

0 Ū

0 R̄







 .

Especially K̄ reads

K̄ = −

























Q̄0P̄1 · · · P̄ν−1Ē
−
ν Āν

Q̄1P̄2 · · · P̄ν−1Ē
−
ν Āν

...
Q̄i−1P̄i · · · P̄ν−1Ē

−
ν Āν

0
...
0

























, Ū = P̄ΣνĒ
−
ν Āν . (4.16)

Moreover, we have K̄Ūl ∈ Lb(X) for l = 0, . . . , k − 1.

The constructed Q̄i are indeed projectors, since

(−QjPj+1 · · ·Pν−1E
−
ν Aj)

2 = QjPj+1 · · ·Pν−1E
−
ν AjQjPj+1 · · ·Pν−1E

−
ν Aj

= −QjPj+1 · · ·Pν−1E
−
ν EνQjPj+1 · · ·Pν−1E

−
ν Aj

= −QjPj+1 · · ·Pν−1E
−
ν Aj .

Their boundedness of is a consequence of Q̄j = Qj − QjPj+1 · · ·Pν−1E
−
ν Aν , which

holds due to the relation (4.2b) and the boundedness of QjPj+1 · · ·Pν−1E
−
ν Aν . Now

we show Theorem 4.5.
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Proof. Since the zero operator is obviously bounded, the existence of a form (4.14)
clairly implies the second assertion. In opposition to that, the converse implication is
more exertive to prove. Let an operator pair

(E,A) =









N 0
0 I

0 0



 ,





I K

0 U

0 R









be given with E,A mapping from their domains in X1 × X2 × X3 to X1 × X2 and
assume that KUl is bounded for l = 0, . . . , ν − 1. The decoupling procedure can be
performed with projectors of the form

Qi =

(

Q̂i 0
0 0

)

,

Then, we get

QΣν =

(

I 0
0 0

)

E−
ν =

(

(N − I)−1 0 0
0 I 0

)

,

Aν =





PΣj K

0 U

0 R



 , PΣνE
−
ν Aν =

(

0 0

0 Â

)

,

we obtain K as in (4.9b) with

QiPi+1 · · ·Pν−1E
−
ν Aν =

(

0 Q̂iP̂i+1 · · · P̂ν−1(N − I)−1K

0 0

)

and hence QiPi+1 · · ·Pν−1E
−
ν Aν(PΣνE

−
ν Aν)

l is bounded for l = 0, . . . , ν − 1.
Now, successively using Lemma 4.6, in the nu− 1-th iteration, we get a bounded

K̄ =











Q̄0P̄1 · · · P̄ν−1Ē
−
ν Aν

0
...
0











,

which can be further eliminated by a new construction of the Q̄i and we finally get a
representation, where the coupling term K̄ vanishes.

For operator pairs consisting of bounded E and A which possess a decoupling form,
the condition that KUl is bounded for all l ∈ N is trivially fulfilled and hence, the
complete decoupling is possible in any case. Therefore, Theorem 4.5 goes with the
case of regular matrix pairs (E,A) ∈ (Rn×n)2, where, as a matter of course, both E

and A are bounded.
As an example, where the canonical projectors do not exist, we present the following.
Let E : X → Z, E : D(A) ⊂ X → Z be given by

E =









0 0 0
1 0 0
0 0 I

0 0 0









, A =









1 0 −C1

0 1 0
0 0 − ∂

∂x

0 0 C0









.
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Cp denotes the evaluation operator which maps a function f to its value at h ∈ [0, 1],
i.e. Cpf = f(p). The spaces Z,X and D(A) are

Z = R
3 × L2([0, 1],R)× R, X = R

3 × L2([0, 1],R), D(A) = R
3 ×H 1([0, 1],R),

where H 1[0, 1] denotes the Sobolev space [1]

H 1([0, 1],R) :=

{

f ∈ L2([0, 1],R),
∂

∂x
f ∈ L2([0, 1],R)

}

.

The operator pair (E,A) is regular, and the generalized inverse reads

(sE −A)−1









x1

x2

f

x3









=





e−sx3 +
∫ 1

0
e−s(1−y)f(y)dy

se−sx3 + s
∫ 1

0 e−s(1−y)f(y)dy − x2

e−sxx3 +
∫ x

0
e−s(x−y)f(y)dy





for all s ∈ C. It can be seen that this generalized resolvent is located in the space
H∞(C+

ω , Z,X) for all ω < 0. Moreover, the system is already in decoupling form, the
ADAE index reads ν = 2 and projectors are given by

Q0 =





0 0 0
0 1 0
0 0 0



 and Q1 =





1 0 0
1 0 0
0 0 0



 .

If we now construct Q̄0, Q̄1 according to Lemma 4.6, we get

Q̄1 = −Q1E
−

2 A1 =





1 0 C1

1 0 C1

0 0 0



 .

Since Q̄1 contains some evaluation operators, it is not a bounded projector anymore.
Therefore a complete decoupling of this pair is not possible with the presented method.
We can even show that a complete decoupling does not exist. Assume that there exists
a complete decoupling, i.e. transformations W,T , such that

(WET,WAT ) =









N 0
0 I

0 0



 ,





I 0
0 U

0 R







 .

The relations between W and T bringing one decoupling form into another have been
investigated in the proof of Theorem 4.2, and hence, we get

W =





T−1
11 W12 W13

0 T−1
22 W23

0 0 W33



 , T =

(

T11 T12

0 T22

)

,

where T,W are partitioned according to the block structure of (WET,WAT ) and
(E,A). Therefore, we can derive

(

sI − U

−R

)−1

=

(

sI − T−1
22

∂
∂x

T22 +W23C0T22

W33C0T22

)−1

= T−1
22

(

sI − ∂
∂x

C0

)−1(
T22 −W23W

−1
33

0 W−1
33

)

.
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From that and the fact

(

sI − ∂
∂x

C0

)−1

∈ H∞(C+
ω , L

2([0, 1],R), L2([0, 1],R)× R),

it can be conclude that

(

sI − U

−R

)−1

∈ H∞(C+
ω , X2, X2 ×X3).

Especially, for

F =





0
1
0



 , H =
(

1 0 0
)

,

we obtain F (sE −A)−1H = se−s.
Now, let

WH =





H1

H2

H3



 , FT =
(

F1 F2

)

be partitioned according to the block structure of WET and WAT . Then, we obtain

se−s = F (sE −A)−1H = FT (sWET −WAT )−1WH

=
(

F1 F2

)





sN − I 0
0 sI − U

0 −R





−1



H1

H2

H3





= F1(−sN − I)H1 + F2

(

sI − U

−R

)−1(
H2

H3

)

Thus we can express the function se−s as a sum of the polynomial F1(−sN − I)H1

and the function

F2

(

sI − U

−R

)−1(
H2

H3

)

∈ H∞(R,R),

but this is a contradiction, since se−s has a pole of infinite order at ∞. This argu-
mentation yields that a complete decoupling is not possible in that case.

5. Example: An Electrical Circuit with a Transmission Line. We present
a simple practical example to demonstrate the reliability of the discussed decoupling
theory. Consider an electrical circuit containing a transmission line as below. The
voltage and current courses V (x, t), I(x, t) along the transmission line, which is as-
sumed to have length one, satisfy the telegraph equations (see [26])

CT

∂

∂t
V (x, t) = −GT I(x, t)−

∂

∂x
V (x, t)

LT

∂

∂t
I(x, t) = −

∂

∂x
I(x, t) −RTV (x, t),
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Transmission Line

iC(t)

uV (t) uC(t)

iV (t)

C

I(0, t)

V (0, t) V (1, t)

Fig. 5.1. Electrical circuit with transmission line

for some constants GT , RT ≥ 0, CT , LT > 0. Further, due to element relations and
the Kirchhoff laws [6], we get the equations

Cu̇C(t) = iC(t)

0 = uC(t)− uV (t)

0 = −iV (t)− iC(t) + I(0, t)

0 = −uC(t) + V (0, t)

0 = I(1, t).

Equivalently, we model that system with an abstract differential algebraic system
Eẋ(t) = Ax(t) + q(t). The state x and the inhomogeneity q are chosen to be

x(t) =













uC(t)
iC(t)
uV (t)
V (t)
I(t)













∈ X := R
3×(L2[0, 1])2, q(t) =





















0
−uV (t)

0
0
0
0
0





















∈ Z := R
5×(L2[0, 1])2.

V (t), I(t) are the spacial distributions of the voltage and current along the transmis-
sion line, i.e. (V (t))(x) := V (x, t) and (I(t))(x) := I(x, t). The operators E and A

are given by

E =





















C 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 CT 0
0 0 0 0 LT





















, A =





















0 1 0 0 0
1 0 0 0 0
0 −1 −1 0 C0

−1 0 0 C0 0
0 0 0 0 C1

0 0 0 −GT − ∂
∂x

0 0 0 − ∂
∂x

−RT





















,

and the domain of A readsD(A) = R5×(H [0, 1])2. C0 and C1 are evaluation operators
like in the previous section. It will turn out that this system has index 2 and operators
of the operator chain in Theorem 4.1 read

Q0 =













0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0













,
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E1 =





















C −1 0 0 0
0 0 0 0 0
0 1 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 CT 0
0 0 0 0 LT





















, A1 =





















0 0 0 0 0
1 0 0 0 0
0 0 0 0 C0

−1 0 0 C0 0
0 0 0 0 C1

0 0 0 −GT − ∂
∂x

0 0 0 − ∂
∂x

−RT





















,

Q1 =













1 0 0 0 0
C 0 0 0 0
−C 0 0 0 0
0 0 0 0 0
0 0 0 0 0













,

E2 =





















C 1 0 0 0
−1 0 0 0 0
0 1 1 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 CT 0
0 0 0 0 LT





















, A2 =





















0 0 0 0 0
0 0 0 0 0
0 0 0 0 C0

0 0 0 C0 0
0 0 0 0 C1

0 0 0 −GT − ∂
∂x

0 0 0 − ∂
∂x

−RT





















,

.

It can be seen that E1, E2 are defined anywhere and for the domains of Ai, for
i ∈ {1, 2} holds D(A) = D(A1) = D(A2). A left inverse of E2 and, consequently, the
projector W2 = I − E2E

−

2 is given by

E−

2 =













0 −1 0 0 0 0 0
1 C 0 0 0 0 0
−1 −C 1 0 0 0 0
0 0 0 0 0 C−1

T 0
0 0 0 0 0 0 L−1

T













, W2 =





















0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





















.

Hence, the inherent abstract ordinary differential equation on the subspace imP0P1 =
{0} × (L2[0, 1])2 with boundary control 0 = W2A2x(t) = W2q(t) is the following

d

dt













0
0
0

V (t)
I(t)













=













0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −GT

CT
− 1

CT

∂
∂x

0 0 0 − 1
LT

∂
∂x

−RT

LT

























0
0
0

V (t)
I(t)

































0
0
0
0
0
0
0





















=





















0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 C0 0
0 0 0 0 C1

0 0 0 0 0
0 0 0 0 0

































0
0
0

V (t)
I(t)













+





















0
0
0

−uV (t)
0
0
0





















.

It can be shown that the operator AT being a restriction of

UT =

(

−GT

CT
− 1

CT

∂
∂x

− 1
LT

∂
∂x

−RT

LT

)
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to the space

D(AT ) =

{(

f1
f2

)

∈ L2[0, 1]2 :

(

∂
∂x

f1
∂
∂x

f2

)

∈ L2[0, 1]2 and 0 = V (0) = I(1)

}

⊂ L2[0, 1]2

generates a strongly continuous semigroup TT (·). For the proof, we refer to [23, 25].
The computation of TT (·) can e.g. be performed by an inverse Laplace transform of
the resolvent (sI −AT )

−1 (see [11]). Hence, P0P1E
−

2 A2 with domain

D(A) ∩ kerW2A2 ∩ imP0P1 = {0} ×D(AT )

is a generator of a strongly continuous semigroup on the space imP0P1. With the
method of [28], we get according to formula (4.12b)

(

V (t)
I(t)

)

=

∫ t

0

TT (t− s)

(

δ0
0

)

uV (s)ds,

where δ0 ∈ D′([0, 1],R) is the Dirac delta distribution.
The (hidden) algebraic relations Q0Q1ẋ(t) = Q0x + Q0P1E

−

2 A2x(t) − Q0P1E
−

2 q(t)
and 0 = Q1x(t)−Q1E

−

2 A2x(t) −Q1E
−

2 q(t) read













0
Cu̇C(t)
−Cu̇C(t)

0
0













=













0
iC(t)
iV (t)
0
0













−













0
0

C0I(t)
0
0













(5.1a)













0
0
0
0
0













=













uC(t)
−CuC(t)
CuC(t)

0
0













−













uV (t)
−CuV (t)
CuV (t)

0
0













. (5.1b)

The formula (5.1b) implies uC(t) = uV (t). Plugging that into (5.1a), we get

iC(t) = Cu̇V (t)

iV (t) = −Cu̇V (t) + I(0, t) = −Cu̇V (t) +
(

0 C0

)

∫ t

0

TT (t− s)

(

δ0
0

)

uV (s)ds.

Hence, the decoupling of the abstract differential algebraic system which modelled
the given circuit was helpful for the determination of the solution trajectory. However,
although by a more inspired way in writing down the circuit equations, a solution can
be obtained without the decoupling procedure in this case. Nevertheless, for more
complicated examples, the decoupling seems to be a reasonable method for getting
inside the solvability of ADAE’s and the structure of its solution. The ADAE index
turned out to be 2. The perturbation index also equals 2 and it can be shown that
the resolvent fulfills

(sE −A)−1 ∈ s · H∞(C+
ω , Z,X) for all ω < 0.

Further, it can be seen that we cannot achieve a complete decoupling with the pro-
posed method in this example since, here, the coupling term K contains some point
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evaluation and thus, the preliminaries of Theorem 4.5 are not fulfilled.
The example consisted of a PDE whose boundaries where coupled with some finite
dimensional DAE’s. This is the reason why Ei and Ai for i = 0, 1, 2 have some block
structure with matrices of the upper left part, which are mainly responsible for the
kernels of the Ei. Due to that fact, the projectors Qi can be obtained by numerical
computations, in principle.

6. Conclusions. In this work, we have developed a framework for analyzing
linear constant coefficient abstract differential algebraic systems. Solvability criteria
which are mainly based on Laplace transform methods have been presented. Mo-
tivated by the famous Kronecker normal form, we educed a method for decoupling
of infinite dimensional differential algebraic systems. It turned out that a complete
decoupling, i.e. a representation of the system, where the (hidden) algebraic and the
differential conditions are completely independent, is not possible in each case of
practical relevance. We established criteria for systems possessing such a complete
decoupling. Another difference to the finite dimensional case is the appearance of a
third relation, which has been interpreted as a boundary term. The advantage of a
decoupling is that one can filter out an inherent abstract ordinary differential equa-
tion and the computation of a solution of the abstract differential algebraic system
is led back to the determination of the semigroup, which the operator appearing in
the inherent ODE generates. We exposed that this inherent semigroup is - up to sim-
ilarity - an invariant of the system. Especially, the strong continuity of an inherent
semigroup is a property of the system and not of the particular decoupling form, we
choose. The main intention of the authors for developing this theory is to deal with
coupled systems of partial differential and differential algebraic equations and analyze
their properties.

Appendix A. Here, we complete the proof of Theorem 4.1 by showing that Eν

possesses a bounded left inverse. We give a characterization whether such a bounded
left inverse of E−

ν exists. Afterwards, we will show that the preliminaries of the
following Lemma are fulfilled by the assumptions made in Theorem 4.1.

Theorem 6.1. Let Eν be injective and let imEν be closed. Then, there exists a
bounded projector Wν along imEν and a bounded Eν ∈ Lb(Z,X) satisfying EνE

−
ν =

I −Wν and E−
ν Eν = I.

Proof. The existence of the projectorWν ∈ Lb(Z) with kerWν = imEν is obvious,
if imEν is closed and clearly, we have that Z = kerWν ⊕ imEν . Furthermore, due to
its injectivity, Eν is a bijection from X onto im I −Wi and both spaces X , im I −Wi

are complete. Hence, by the Inverse Mapping Theorem [27], there exists a bounded
inverse E−

ν : im I − Wν → X . For arbitrary z ∈ Z, we set E−
ν z := E−

ν (I − Wν)z
and therefore, E−

ν has been boundedly extended to the whole space Z. Then for all
x ∈ X , z ∈ Z, we have

E−
ν Eνx = E−

ν Eνx = x

EνE
−
ν z = EνE

−

i (I −Wν)z = (I −Wν)z.

From the previous result, it suffices to show that imEν is closed. This is done below.

Theorem 6.2. Let the preliminaries of Theorem 4.1 be given. Then imEν is
closed.
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Proof. By induction on i, we show that

imEi = imE +A

(

i−1
∑

k=0

Nk

)

for i = 0, . . . , ν.

By the assumption that imE +A
(

∑ν−1
k=0 Nk

)

is closed, we get that imEν is closed.

Since imE = imE +A
(

∑−1
k=0 Ni

)

the induction start holds trivially.

Further, for i > 0, we obtain

Eix = Ei(Pi−1x+Qi−1x) = Ei−1Pi−1x+Ai−1Qi−1x,

and hence, we get

imEi = imEi−1 + imAQi−1

= imEi−1 +ANi−1

= imE +A

(

i−2
∑

k=0

Nk

)

+ANi−1

= imE +A

(

i−1
∑

k=0

Nk

)

.

Appendix B. Before Lemma 4.6 is shown, we present three Lemmas which are
essential for that proof. The first and the last lemma are proven in [18] for matrices.
Since the proofs only involve symbolic matrix calculations, the results also covers the
case of bounded operators and hence, we refer to that reference for the proof.

Lemma 6.3 ([18],Lemma A.1). Let

Q̄j = −QjPj+1 · · ·Pν−1E
−
ν Aj , j = 0, . . . , ν − 1

be valid. Then the chain Q̄0, . . . , Q̄ν−1 is an appropriate operator chain for (E,A).
Defining Let Ē0 = E, Ā0 = A, Ēi := Ēi−1 − Āi−1Q̄i, Āi := Āi−1P̄i. Then the
projectors Q̄j are an appropriate chain for decoupling the pair (E,A), i.e. im Q̄i =
ker Ēi, Q̄iQ̄j = 0 for i > j. Moreover, for j = 0, · · · , ν − 1, we have

Ēj = EjFj ,

for Fj := I + Q̄0P0 + · · ·+ Q̄j−1Pj−1.

Furthermore, it holds

F−1
j := I − Q̄0P0 − · · · − Q̄j−1Pj−1 (6.1)

Q̄iQ̄j = QiQ̄j for all i < j. (6.2)

Lemma 6.4. Let Q0, . . . , Qν−1 be a decoupling chain for the operator pair (E,A)
and let QjPj+1 · · ·Pν−1E

−
ν Aν = 0 for i = k, . . . , ν − 1. Then it holds

Qj = −QjPj+1 · · ·Pν−1E
−
ν Aj for i = k, . . . , ν − 1.
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Proof. For j = ν − 1, it holds

0 = Qν−1E
−
ν Aν = Q̄ν−1Pν−1

and thus ker Q̄ν−1 = kerQν−1, which implies Q̄ν−1 = Qν−1. Assuming that Q̄j = Qj

for j > k and QkPk+1 · · ·Pν−1E
−
ν Aν = 0, we get

0 = Q̄kPkPk+1 · · ·Pν−1

= Q̄kPkP̄k+1 · · · P̄ν−1

= Q̄kPk − Q̄k(PkQ̄k+1 + PkP̄k+1Q̄k+2 + · · ·+ PkP̄k+1 · · · P̄ν−1Q̄ν−1)

= Q̄kPk − Q̄k(P̄kQ̄k+1 + P̄kP̄k+1Q̄k+2 + · · ·+ P̄kP̄k+1 · · · P̄ν−1Q̄ν−1)

= Q̄kPk,

and by the same argumentation as above, we get Q̄k = Qk. The second last equality
holds due to the relation (6.2).

Lemma 6.5 ([18],Lemma A.2). For j = k, . . . , ν − 1, let

Qj = −QjPj+1 · · ·Pν−1E
−
ν Aj .

Then we have

Qj = Q̄j = −Q̄jP̄j+1 · · · P̄ν−1Ē
−
ν Āj for j = k, . . . , ν − 1,

and, additionally

Q̄k−1 = −Q̄k−1P̄k · · · P̄ν−1Ē
−
ν Āk−1.

This section concludes with the proof of Lemma 4.6.
Proof. [Lemma 4.6]

Since, by Lemma 6.3, the equality between Ēν and EνFν holds, we choose a left
inverse

Ē−
ν = F−1

ν E−
ν = (I − Q̄0P0 − · · · − Q̄ν−1Pν−1)E

−
ν

and then, we calculate

P̄ΣνĒ
−
ν = P̄Σν(I − Q̄0P0 − · · · − Q̄ν−1Pν−1)E

−
ν = P̄ΣνE

−
ν .

Due to [19], Theorem 2.3, we have

imQΣν =
ν−1
⊕

i=0

imQi =
ν−1
⊕

i=0

im Q̄i = im Q̄Σν .

and thus, the relations Q̄ΣνQΣν = QΣν , QΣνQ̄Σν = Q̄Σν , PΣν P̄Σν = PΣν and
P̄ΣνPΣν = P̄Σν are valid. Hence,

P̄ΣνĒ
−
ν Āν = P̄ΣνF

−1
ν E−

ν AP̄Σν

= P̄Σν(I − Q̄0P0 − · · · − Q̄j−1Pj−1)E
−
ν AP̄Σν

= P̄ΣνE
−
ν AP̄Σν

= P̄Σν(PΣνE
−
ν A)P̄Σν

= P̄Σν(PΣνE
−
ν Aν)P̄Σν .
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The last equality was already shown in (4.2d). Using the relations above, we can
write

(P̄Σν Ē
−
ν Āν)

l = P̄Σν(PΣνE
−
ν Aν)

lP̄Σν

for l ∈ N.
Now we show that K̄(P̄Σν Ē

−
ν Āν)

l is bounded for l = 0, . . . , k − 1.
Using the relations QiQ̄j = 0 for i > j and QiQ̄j = Q̄iQ̄j for i < j from Lemma 6.5.
Furthermore, we need the equality (4.2b) being

QiPΣνE
−
ν A = Qi −QiPi+1 · · ·Pν−1E

−
ν APΣν .

Then, we compute

−Q̄iP̄i+1 · · · P̄ν−1Ē
−
ν Āν

= −Q̄iP̄ΣνĒ
−
ν Āν

= QiPΣνE
−
ν AiP̄ΣνĒ

−
ν Āν

= QiPΣνE
−
ν AP0 · · ·Pi−1P̄ΣνĒ

−
ν Āν

= (Qi −QiPi+1 · · ·Pν−1E
−
ν APΣν)P0 · · ·Pi−1P̄ΣνĒ

−
ν Āν

= QiP0 · · ·Pi−1P̄ΣνĒ
−
ν Āν −QiPi+1 · · ·Pν−1E

−
ν APΣνP0 · · ·Pi−1P̄ΣνĒ

−
ν Āν

= QiP̄ΣνĒ
−
ν Āν −QiPi+1 · · ·Pν−1E

−
ν APΣν P̄ΣνĒ

−
ν Āν

= Q̄iP̄i+1 · · · P̄ν−1Ē
−
ν Āν −QiPi+1 · · ·Pν−1E

−
ν APΣν P̄ΣνĒ

−
ν Āν .

Hence , we have the equation

2Q̄iP̄i+1 · · · P̄ν−1Ē
−
ν Āν = QiPi+1 · · ·Pν−1E

−
ν APΣν P̄ΣνĒ

−
ν Āν .

Using that, we get

2Q̄iP̄i+1 · · · P̄ν−1Ē
−
ν Āν(P̄ΣνĒ

−
ν Āν)

l−1

= QiPi+1 · · ·Pν−1E
−
ν APΣν P̄ΣνĒ

−
ν Āν(P̄ΣνĒ

−
ν Āν)

l−1

= QiPi+1 · · ·Pν−1E
−
ν APΣν(P̄ΣνĒ

−
ν Āν)

l

= QiPi+1 · · ·Pν−1E
−
ν APΣν P̄Σν(PΣνE

−
ν Aν)

lP̄Σν

= QiPi+1 · · ·Pν−1E
−
ν Aν(PΣνE

−
ν Aν)

lP̄Σν .

By assumption, QiPi+1 · · ·Pν−1E
−
ν Aν(PΣνE

−
ν Aν)

l is bounded for l = 0, . . . , k. This
implies the boundedness of Q̄iP̄i+1 · · · P̄ν−1Ē

−
ν Āν(P̄ΣνĒ

−
ν Āν)

l for l = 0, . . . , k − 1.

Having K as in (4.15), we derive that K̄ equals

−

























Q̄0P̄1 · · · P̄ν−1Ē
−
ν Āν

Q̄1P̄2 · · · P̄ν−1Ē
−
ν Āν

...
Q̄iP̄i+1 · · · P̄ν−1Ē

−
ν Āν

Q̄i+1P̄i+2 · · · P̄ν−1Ē
−
ν Āν

...
Q̄ν−1Ē

−
ν Āν

























= −

























Q̄0P̄1 · · · P̄ν−1Ē
−
ν Āν

Q̄1P̄2 · · · P̄ν−1Ē
−
ν Āν

...
Q̄iP̄i+1 · · · P̄ν−1Ē

−
ν Āν

Qi+1Pi+1 · · ·Pν−1

...
Qν−1Pν−1

























= −

























Q̄0P̄1 · · · P̄ν−1Ē
−
ν Āν

Q̄1P̄2 · · · P̄ν−1Ē
−
ν Āν

...
Q̄iP̄i+1 · · · P̄ν−1Ē

−
ν Āν

0
...
0

























.

The first equality holds, since, by Lemma 6.4, we get Q̄j = Qj for j = i, . . . , ν − 1
whereas the second is trivial. Then, Lemma 6.5 implies Q̄i = Q̄iP̄i+1 · · · P̄ν−1Ē

−
ν Āi,
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and hence Q̄iP̄i+1 · · · P̄ν−1Ē
−
ν Āν = 0. Therefore, we conclude that equation (4.16)

holds and the proof is complete.
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