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Retention time prediction using neural networks
increases identifications in crosslinking mass
spectrometry
Sven H. Giese 1,2,3,5, Ludwig R. Sinn 1,5, Fritz Wegner 1 & Juri Rappsilber 1,4✉

Crosslinking mass spectrometry has developed into a robust technique that is increasingly

used to investigate the interactomes of organelles and cells. However, the incomplete and

noisy information in the mass spectra of crosslinked peptides limits the numbers of

protein–protein interactions that can be confidently identified. Here, we leverage chroma-

tographic retention time information to aid the identification of crosslinked peptides from

mass spectra. Our Siamese machine learning model xiRT achieves highly accurate retention

time predictions of crosslinked peptides in a multi-dimensional separation of crosslinked E.

coli lysate. Importantly, supplementing the search engine score with retention time features

leads to a substantial increase in protein–protein interactions without affecting confidence.

This approach is not limited to cell lysates and multi-dimensional separation but also

improves considerably the analysis of crosslinked multiprotein complexes with a single

chromatographic dimension. Retention times are a powerful complement to mass spectro-

metric information to increase the sensitivity of crosslinking mass spectrometry analyses.
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Crosslinking mass spectrometry (crosslinking MS) reveals
the topology of proteins, protein complexes, and
protein–protein interactions1. Fueled by experimental and

computational improvements, the field is moving towards the
analyses of interactomes of organelles and cells1–3. The identifi-
cation of crosslinked peptides poses three major challenges. First,
the low abundance of crosslinked peptides compared to linear
peptides decreases their chance for mass spectrometric observa-
tion. Second, the unequal fragmentation of the two peptides leads
to a biased total crosslinked peptide spectrum match (CSM)
score4,5. Third, the combinatorial complexity from searching all
the possible peptide pairs in a sample increases the chance for
random matches. These challenges increase from the analysis of
individual proteins to organelles and cells.

To address the challenge of low abundance, Crosslinking MS
studies routinely rely on chromatographic methods to enrich and
fractionate crosslinked peptides1,2,6. Essentially all analyses con-
tain at least one chromatographic step, by directly coupling
reversed-phase (RP) chromatography separation to the mass
spectrometer (LC–MS). Additional separation is frequently
employed when more complex systems are being analyzed. Strong
cation exchange chromatography (SCX)7,8 was used for the
analysis of HeLa cell lysate9 or murine mitochondria10. Size-
exclusion chromatography (SEC)11 was used to fractionate
crosslinked HeLa cell lysate12 and Drosophila melanogaster
embryos extracts13. Multi-dimensional peptide pre-fractionation
was used for the analysis of crosslinked human mitochondria
(SCX-SEC)14 and M. pneumoniae (SCX-hSAX)15. Such multi-
dimensional chromatography workflows can yield in the order of
10,000 CSM at a 1–5% false discovery rate (FDR)14–17.

The identification of cross-linked peptides from spectra is
however still challenged by the uneven fragmentation of the two
peptides and the large search space that increase the odds of
random matches. This is especially the case for heteromeric
crosslinks as the size of their search space exceeds that of self-
links, i.e., links falling within a protein or homomer16. Typically,
database search tools use the precursor mass and fragmentation
spectrum for the identification of peptides to compute a single
final score for each CSM. For linear peptides, post-search meth-
ods such as Percolator18 have been developed that train a
machine learning predictor to discriminate correct from incorrect
peptide identification. Percolator uses additional spectral infor-
mation (features) such as charge, length, and other enzymatic
descriptors of the peptide19 to compute a final support vector
machine (SVM) score. Similarly, the crosslink search engine
Kojak20 supports the use of PeptideProphet21,22 and XlinkX23

supports Percolator18, while pLink224 and ProteinProspector4

have a built-in SVM classifier to re-rank CSMs. Although RT data
are readily available, none of these tools use the, often multi-
dimensional, RT information for improved identification in
crosslinking studies. A prerequisite for this would be that reten-
tion times could be predicted reliably.

For linear peptides, RT prediction has been implemented
under various chromatographic conditions25–31. In contrast, RTs
of crosslinked peptides have not been predicted yet. A suitable
machine learning approach for this could be deep learning32.
Deep neural networks have been successfully applied in pro-
teomics, for example for de novo sequencing33 or for the pre-
diction of retention times29,34 and fragment ion intensities35.
Deep learning allows encoding peptide sequences very elegantly
through, for example, recurrent neural network (RNN) layers.
These layers are especially suited for sequential data and are
common in natural language processing32. RNNs use the order of
amino acids in a peptide to generate predictions without addi-
tional feature engineering. However, it is unclear how to encode
the two peptides of a crosslink.

Moreover, it is also unclear whether the knowledge of RTs
could improve the identification of cross-linked peptides. A
common scenario for an identified crosslink is that one of its
peptides was matched with high sequence coverage, while the
other was matched with poorer sequence coverage4. Such CSMs,
unfortunately, resemble matches where one peptide is correct and
the other is false (i.e., a target-decoy match or a true target and
false target match). Another consequence of coverage gaps is the
misidentification of noncovalently associated peptides as
crosslinks36. The severity of this coverage issue depends on the
applied acquisition strategy37, crosslinker chemistry38, and the
details of the implemented scoring in the search engine. Never-
theless, assuming RT predominantly depends on both peptides of
a crosslink, it could complement mass spectrometric information
and thus improve existing scoring routines and lead to more
crosslinks at the same confidence (i.e., constant FDR).

In this study, we prove that analytical separation behavior
carries valuable information about both crosslinked peptides and
can improve the identification of crosslinks. For this we build a
multi-dimensional RT predictor for crosslinked peptides based on
a proteome-wide crosslinking experiment comprising 144
acquisitions on an Orbitrap mass spectrometer from extensively
fractionated peptides of the soluble high-molecular-weight pro-
teome of E. coli. We then investigate the benefits of incorporating
the derived RT predictions into the identification process. In
addition, we demonstrate the value of RT prediction for a purified
multiprotein complex using the reversed-phase chromatography
dimension only.

Results and discussion
This section covers (1) a description of the experimental work-
flow and the motivation, (2) the evaluation of the developed
retention time predictor, (3) an interpretability analysis of the
deep neural network, (4) an analysis of the RT features and their
importance for rescoring, (5) the evaluation of the rescoring
results from an E. coli lysate, and (6) the evaluation of the
rescoring results from a routine crosslinking MS experiment, i.e.,
the analysis of a multiprotein complex (FA-complex).

A substantial fraction of crosslinks below the confidence
threshold are correct. Crosslinked peptides belonging to the
high-molecular-weight E. coli proteome were deep-fractionated
along three chromatographic dimensions (hSAX, SCX, and RP).
This 3D fractionation approach led to 144 LC–MS runs as some
of the 90 fractions contained enough material for repeated ana-
lysis. The resulting data were searched with an entrapment
database approach (Fig. 1a) leading to 11,196 CSMs (11072 TT,
87 TD, 37 DD, Supplementary Fig. 3) at 1% CSM-FDR, separ-
ating self and heteromeric CSMs16,39,40. The human entrapment
database allows to assess error, independently of the target-decoy
approach. This will play a critical role here as E. coli decoys will
be used for the machine learning-based rescoring (but not for the
RT prediction). Judged by a set of peptide characteristic metrics
(e.g., peptide length, pI, GRAVY) the human entrapment data-
base resembles the properties of the E. coli target database
(Supplementary Fig. 4).

Before attempting RT prediction and subsequent complemen-
tation of search scores, we investigated the extent of false
negatives, approximated here by PPIs present in STRING41 or
APID42 database. At 1% CSM-FDR, 110 such “validated” (val)
protein–protein interactions were identified. 10%, 30%, and 50%
CSM-FDR returned 226, 278, and 418 validated PPIs, respectively
(Fig. 1b). When raising the CSM-FDR from 1% to 50% we thus
saw a nearly 4-fold increase in the detectable number of validated
PPIs. In contrast, using a pessimistic approach of semi-randomly

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23441-0

2 NATURE COMMUNICATIONS |         (2021) 12:3237 | https://doi.org/10.1038/s41467-021-23441-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


drawing pairs of E. coli proteins from the STRING/APID (first
protein) and the search database (second protein) yielded purely
by chance 10, 22, 44, and 91 overlapping PPIs with STRING or
APID for 1%, 10%, 30%, and 50% CSM-FDR cutoffs, respectively.
While this shows that loosening the FDR threshold increases
validated PPIs also by chance, the actual observed number is
much higher (418 versus 91 at 50% CSM-FDR). This means that
there is a substantial number of valid PPIs with insufficient match
confidence.

The underlying scoring challenge is essential to the identifica-
tion of peptides in general. The plethora of search engines for
linear43 and crosslinked peptides44 use spectral characteristics
differently for their scoring. In xiSEARCH, the final score is a
composite that incorporates spectral metrics such as explained
intensity and matched number of fragments. Empirically, we
observe a fast decrease in the search engine score (Fig. 1c) with
increasing FDR. This indicates that at higher FDRs spectral
matching metrics might be suboptimal. Poor spectral quality,
inefficient peptide fragmentation, or random fragment matching
all influence the search engine score negatively. RT information
could complement MS information but this would require
accurate RT prediction of cross-linked peptides.

Accurate multi-dimensional retention time prediction for
crosslinked peptides. RT prediction for crosslinked peptides has
not yet been achieved. One reason for this is the challenge of
encoding a crosslinked pair of peptides for machine learning. We
overcame this here using a Siamese neural network as part of a
new machine learning application, xiRT (Fig. 1d), which allowed
the incorporation of RTs into a rescoring workflow (Fig. 1e). The
Siamese part of the network (embedding layer and recurrent
layer) shares the same weights for both peptides. Practically, the

sharing of weights leads to consistent predictions, independent of
the peptide order. After the recurrent layer, the two outputs are
combined and passed to three subnetworks consisting of dense
layers with individual prediction layers (details on the archi-
tecture are available in Supplementary Fig. 1). In this multi-task
learning setup, the network simultaneously learns to predict the
hSAX, SCX and RP RT through a single training step. Multi-task
learning can improve the overall performance of predictors by
forcing the network to learn a robust representation of the input
data45.

The training and evaluation of xiRT followed a cross-validation
(CV) strategy that avoided the simultaneous learning and
prediction on overlapping parts of the data (see “Methods”
section, Fig. 2a). We used a 3-fold CV strategy where two folds
were used for training (excluding 10% for the validation
throughout the training epochs) and one fold for testing/
prediction. All CSMs with an FDR < 1% were used during the
CV. For the remaining CSMs, the best predictor (with the lowest
total loss) was used to predict the RTs.

To achieve the best possible prediction performance, hyper-
parameters of the network were optimized. Since extensive hyper-
parameter optimization on a small data set can lead to overfitting,
we initially optimized a large part of hyper-parameters using
20,802 unique linear peptide identifications at 1% FDR. The final
parameters for the Siamese network architecture for crosslinks
were obtained by a small grid-search (6453 unique peptide-pairs
at 1% CSM-FDR; Supplementary Fig. 5).

Using these parameters, we evaluated the learning behavior
during the training time (epochs) across the CV folds. The
training behavior on the three CV folds was similar and reached a
stable trajectory after approximately 15 epochs (Fig. 2b). Based
on very similar error trends on validation and training sets, we

Fig. 1 Workflow overview. a Experimental and data analysis workflow. The soluble high-molecular-weight proteome of E. coli lysate was crosslinked and
the digest sequentially fractionated by strong-cation exchange chromatography (SCX) (9 fractions collected), hydrophilic strong-anion exchange
chromatography (hSAX) (10 pools collected), and finally by reversed-phase chromatography (RP) coupled to the MS. The protein database for the
crosslink search was created by a linear peptide search with Comet and a sequence-based filter using BLAST. For each E. coli protein in the final database
(green) a human protein was added as a control (pale orange). b Potential for false-negative PPI identifications. Verified PPIs are estimated from matches
to the STRING/APID databases. PPIs are computed based on CSM-level FDR. Estimated random hits correspond to the average number of semi-randomly
drawn pairs (first protein was randomly selected from the STRING/APID database and the second protein was drawn from the FASTA file). Gained PPIs
accentuate the additional information that is available in the data at higher FDR. c Decrease of heteromeric CSM scores based on spectral evidence with
increasing CSM-FDR. Boxenplot shows the median and 50% of the data in the central boxes while each successive level outward represents half of the
remaining data. The sample size for each FDR category is given below the boxes. d xiRT network architecture to predict multi-dimensional retention times.
A crosslinked peptide is represented as two individual inputs to xiRT. xiRT uses a Siamese network architecture that shares the weights of the embedding
and recurrent layers. Individual layers for the prediction tasks are added with custom activation functions (sigmoid/linear functions for fractionation/
regression tasks, respectively). e Rescoring workflow. The predictions from xiRT are combined with xiSCORE’s output to rescore CSMs using a linear
support vector machine (SVM), consequently leading to more matches at constant confidence. Source data are provided as a Source Data file.
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concluded to have reached a state where neither overfitting nor
underfitting occurred. The overall performance across the
prediction folds was comparable in terms of accuracy (hSAX:
61% ± 1.1, SCX: 47% ± 1.7) and MSE (RP: 11.58 ± 2.0) (Fig. 2c).
Comparing single-task and multi-task configurations of xiRT
revealed no significant differences in the prediction accuracy but
greatly reduced run times (Supplementary Figs. 6 and 7). Note
that we estimated the theoretical boundaries given the ambiguous
elution behavior (i.e., peptide elution across multiple chromato-
graphic fractions) for SCX at 65% accuracy and for hSAX at 73%
accuracy (Supplementary Table 4 and Supplementary Fig. 8).
Most of the predictions showed only a small error, and thus a
high relaxed accuracy: for hSAX 94% ± 0.0 and for SCX 87% ±
1.15 of the predictions were within a range of ± 1 fraction
(Fig. 2d, e). The overall R2

RP of 0.94 ± 0.01 also showed a
predictable relationship for the RP dimension (Fig. 2f). The
consistent accuracy and R2 results across CV folds demonstrate
reproducible training and prediction behavior which reduces
unwanted biases from the different CV folds. In conclusion, RTs
of crosslinked peptides can robustly be learned within a data set,
making them available as features in a CSM rescoring framework.

It was difficult to compare our RT predictions to other studies
which used SCX46 or hSAX29 for multiple reasons: (1) there is
currently no other model that predicts the RT of crosslinked
peptides, (2) the recent SSRCalc46 study (SCX) for linear peptides
used a much larger data set of 34,454 unique peptides and the
fractionation was much more fine-grained (30–50 fractions).
Similarly, the hSAX29 study on linear peptides used a much finer
fractionation (30 fractions) and a different methodology to
encode the loss function during the machine learning. (3) Applied
gradients and liquid chromatography conditions can change the
elution behavior quite drastically. In our study, the number of

observations was neither for hSAX nor for SCX equally
distributed but varied between ~200 and ~2000 CSMs per
fraction (Supplementary Fig. 3). Since we employed a partially
exponential gradient during the chromatographic fractionation,
the degree of peptide separation varied for earlier and later
fractions.

Given that we had less data to train on than recent RT
predictions of linear peptides, we evaluated how the numbers of
observations influenced the prediction accuracy (R2

RP þ Acchsaxþ
Accscx; Fig. 2g). The learning curve showed two important
characteristics: first, the prediction performance over CV folds
was very reproducible. This means that predictions were robust
even with very moderate data quantity. Second, the maximal
performance was achieved with ~70–100% of the data points
(100% corresponding to 6453 total CSMs, 3871 for training, 431
for validation, 2151 for prediction). Given that a first plateau was
reached with 30% of the data, it is unclear if the final prediction
accuracy constitutes another local optimum or the limit of the
prediction accuracy. The individual task metrics showed that the
RP behavior seemed to be easier for the model to learn than the
ordinal regression tasks (SCX, hSAX, Supplementary Fig. 9). The
RP behavior could be accurately predicted from ~60% of the data
points, while the maximum accuracy for hSAX and SCX
dimensions was only achieved by using 80–100% of the data. In
other words, while using even fewer CSMs might be possible
when predicting RP RTs, one would expect a reduced accuracy in
the hSAX/SCX dimensions.

An approach to reduce the number of required CSMs would be
to leverage the abundantly available data on linear peptides
for transfer learning. Indeed, a recent study showed that transfer
learning across different peptide identification results works
well for linear peptides34. We also implemented the option to
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Fig. 2 Cross-validation of retention time prediction. a Applied cross-validation (CV) strategy in xiRT. To predict the retention times of CSMs excluded
from training, the best CV classifier is used. b xiRT performance over training epochs for strong-cation exchange chromatography (SCX, blue), hydrophilic
strong-anion exchange chromatography (hSAX, purple), and reversed-phase chromatography (RP, red) prediction with k= 3 CV-folds. Shaded areas show
the estimated 95% confidence interval with the dashed/solid line representing the mean for the validation/training data, respectively. c xiRT performance
across different metrics (error bars show standard deviation with the mean as center) for k= 3 CV folds. Prediction for the “unvalidated” data was only
performed once. d–f Prediction results from a representative CV iteration for SCX, hSAX, and RP at 1% CSM-FDR. The achieved R2, accuracy (acc) and
relaxed accuracy (racc) are given at the top. g Learning curve with increasing number of CSMs, e.g., 10% (645 total CSMs, 387 for training, 43 for
validation, 215 for prediction), 50% (3226, 1935, 216, 1075), 100% (6453, 3871, 431, 2151); bars indicate standard deviation with the line representing the
mean for the training (red), prediction (green), and validation (blue) data. Source data are provided as a Source Data file.
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pre-train on linear data in xiRT. However, a robust and accurate
RT prediction could be achieved on a multiprotein complex
crosslinking study (FA-complex, see below) when first training on
the E. coli CSMs (Supplementary Fig. 10). Another possibility to
increase the training data size and robustness during CV is to
increase the number of folds, e.g., 5- or 10-fold, at the cost of
runtime. Increasing the expedience of xiRT, we also implemented
transfer learning for cases when the number of fractions differs
between the initial model and the new prediction task.

Explainable deep learning reveals amino acid contributions.
Using the SHAP package, we set out to explain predictions made
by xiRT. For instance, when a specific crosslinked peptide was
analyzed, residue-specific contributions towards the predicted RT
could be computed (Supplementary Fig. 11). The residues D, E, Y,
and F displayed high SHAP values indicating a stronger retention
during hSAX separation in a randomly chosen peptide. Looking
at a specific crosslinked peptide in SCX (Supplementary Fig. 12),
the SHAP values highlighted that K and R were the most
important residues contributing towards later peptide elution. As
one might expect, crosslinked K residues contributed much less
towards later elution times than the stronger charged, unmodified
K residues. Investigating the SHAP values for a collection of
CSMs revealed additional contributions from W for hSAX and H
for SCX while returning hydrophobic residues Y, F, W, I, L, V,
and M for RP (Supplementary Fig. 13), revealing residue con-
tributions in crosslinked peptides as seen in the respective ana-
lyses of linear peptides29,46,47. In summary, the SHAP values were
good estimates for the individual RT contributions of the amino
acid residues.

Next, we investigated the network architecture and the learned
feature representations more closely (Supplementary Note 4). As
first analysis, the dimensionality reduced embedding space across
the network was analyzed (Supplementary Fig. 14). This revealed
that the shared sequence-specific layer already captured the RP
properties quite well, while the hSAX and SCX properties were
not as clearly captured. As expected, the separation of CSMs
according to RT increased the further the features propagated
through the network. In the last layer, the RP and hSAX sub-
networks reached a very good separation, while in the SCX
subtask CSMs remained moderately separated in two dimensions.

RT characteristics for unsupervised separation of true and false
CSMs. Now that we established the RT prediction of crosslinked
peptides, we computed a set of chromatographic features to
explore their ability to separate true from false CSMs (Supple-
mentary Table 3). Dimensionality reduction was computed for
RP only (13 chromatographic features) and for SCX-hSAX-RP
(43 chromatographic features) predictions (Fig. 3a, b). Both
chromatographic feature sets revealed good separation possibi-
lities for confident TT (99% true, given 1% CSM-FDR) and TD
(100% false) identifications in two-dimensional space. For the RP
analysis, the TD E. coli CSMs and TT Mix/TD Mix CSMs were
enriched in one area of the plot (the lower right part, Fig. 3a). In
contrast, the subset of confident TT E. coli CSMs were distributed
outside this area. As one would expect for two sets of random
matches, the CSMs from the entrapment database (TT Mix, TD
Mix) closely followed the distribution of TD E. coli CSMs. The
areas populated by the known false matches were also populated
by an equal number of presumably false TT matches. When the
features of all three RT dimensions were considered, the
separation of true and false CSMs further improved (Fig. 3b).
Again, the distributions of TD E. coli CSMs and entrapment
CSMs behaved similarly. Interestingly, few CSMs that passed the
1% FDR threshold were located in regions dominated by false

identifications. This might identify them as part of the expectable
fraction of 1% false-positive identifications. Importantly, the
described separation was achieved unsupervised on RT features
alone, i.e., without a search engine score or target-decoy labels.

To test the transferability of our findings, we also ran xiRT with
unfiltered pLink2 results (Supplementary Note 4 and Supple-
mentary Fig. 15). The prediction performance from Q-value-
filtered CSMs was similar to the results with xiSEARCH
(Supplementary Fig. 15a–c). A two-sided t-test between hSAX,
SCX, and RP errors for TT and TDs revealed significant
differences in the respective error distributions using pLink2
identifications for the RT predictions (Supplementary Fig. 15d).
Importantly, the separation of true and false matches in two-
dimensional space was also possible with pLink2 identifications
(Supplementary Fig. 15e). In summary, xiRT can learn retention
times irrespective of the used search engine and the learned
chromatographic features alone carry substantial information to
separate true from false matches.

To investigate the relevance of multi-dimensional RT predic-
tions for the identification of cross-linked peptides, we first
supplemented each CSM with RT features. Then, we performed a
semi-supervised rescoring and evaluated the trained SVM model
using the SHAP framework. We chose to analyze SHAP values
for the 15 most important retention times features for TT
observations (FDR > 1%) that were predicted to be a correct TT
identification (Fig. 3c). This analysis revealed a similar magnitude
for all 15 SHAP values implying that a single feature alone is
insufficient to recognize false matches. Notably, the top 5 features
contained features from RP, hSAX, and SCX predictions which
indicates that each chromatographic dimension carried relevant
information for the rescoring. Because 11 of the 15 features were
predictions considering only one of the two peptides and not
directly derived from peptide-pairs, the predicted RTs displayed a
larger error. This analysis suggests that an RT prediction model
for linear peptides can add valuable information for crosslink
analyses. In general, the model learned mostly that low errors in
the RT dimensions indicate true positive identifications. Thus, the
model implicitly learned that the RT of a crosslinked peptide
should differ from the RT of the individual peptides. This might
become useful especially for distinguishing consecutive48 from
crosslinked peptides or when dealing with gas-phase associated
peptides36.

Rescoring crosslinked peptides enhances their identification.
Before computing a combined score, we compared the CSM scores
based on mass spectrometric information (xiSCORE) and RT
features (SVM score, Fig. 4a). Both scores largely agreed. Het-
eromeric CSMs passing 1% CSM-FDR yielded high SVM scores.
Also, most target-decoy CSMs achieved a low SVM score (Fig. 4a,
right) and a low xiSCORE (Fig. 4a, top). The SVM score dis-
tribution of the TDs matched closely the distribution of TTs in the
low scoring area, which indicated that they still modeled random
TT matches and that overfitting was avoided. Interestingly, the
TTs were overrepresented in the low scoring area for the xiSCORE
but not for the SVM score, suggesting that true TTs remained
hidden among the random matches when using xiSCORE alone.
The broad SVM score distribution of TTs indicated that the
rescoring process could be optimized. In conclusion, neither of the
mass spectrometric information (xiSCORE) nor the RT infor-
mation (SVM score) seem to reveal all true CSMs.

As a combination of both approaches should yield better
results than either alone, we combined the SVM score with the
xiSCORE. We evaluated the impact of rescoring CSMs on the
number and quality of identified PPIs, as PPIs are typically the
objective of large-scale cross-linking MS experiments.
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Heteromeric CSMs increased 1.7-fold and heteromeric PPIs
increased 1.4-fold (Fig. 4b). Self-links increased only marginally
in agreement with their smaller search space and accordingly
lower random match frequency. Essentially, nearly all self-links
were identified exhaustively based on mass spectrometric data
alone. In contrast, RT information substantially improved the
identification of heteromeric CSMs. Further gains might be
possible by directly combining RT features with mass spectro-
metric features (and possibly also other) for supervised scoring.

Likely, the benefits of RT predictions for the rescoring depend
on the data set and applied chromatographic separations. On the
E. coli data, we, therefore, performed additional analyses where
we limited the rescoring to only use a subset of the chromato-
graphic dimensions (Supplementary Table 5). The number of
identified CSMs for heteromeric links increased from 724 in the
reference to 902 (RP only), 977 (SCX-RP), 1092 (hSAX-RP), and
1199 (SCX-hSAX-RP). Likewise, PPIs increased from 109 to 135,
131, 157, 152, respectively (Supplementary Table 5). As observed
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above, gains can be expected from each chromatographic
dimension. When having to choose one ion chromatography,
the hSAX dimension seemed more useful than the SCX
dimension which could arise from the better prediction
performance or more complex separation mechanisms. Impor-
tantly, even using RP RT alone already led to a marked gain in
heteromeric PPIs (see also next section).

To systematically evaluate the additionally identified PPIs from
all three RT dimensions, we compared them to the originally
identified PPIs based exclusively on xiSCORE. In addition, the
STRING/APID databases and a set of PPIs from a larger study16

served as extra references for validation. Almost all PPIs found in
the original dataset by xiSCORE were also contained in the
rescored data set (91%). 85% of the newly identified PPIs were
either found in the data set from Lenz et al., in STRING/APID or
both. Among the eight PPIs unique to the rescored data set, only
one involved a human protein from the entrapment database
(Fig. 4c), which we could manually resolve and match to E. coli
(Supplementary Table 6). The remaining seven PPIs might
constitute genuine PPIs. Note that the overall percentage of PPIs
involving human proteins was reduced by rescoring. Since all
human target proteins were included in the positive training data,
this is an important indicator of a well-behaved model.
Deepening trust further, almost all novel PPIs were identified
with multiple CSMs (Fig. 4d). Finally, we selected the subnetwork
of the RNA polymerase to investigate the additionally identified
PPIs in a well-characterized interaction landscape (Fig. 4e).
Indeed, all interactions added by RT-based rescoring were already
reported in APID. In summary, all our evidence points at the
successful complementation of MS information by RT, at least for
a proteome-wide crosslinking analysis. It remained to be seen,
however, if this could also be leveraged in more routine
multiprotein complex analyses.

Multiprotein complex studies also benefit from the RT pre-
diction. Many cross-linking MS studies investigate multiprotein
complexes and rely on only a few chromatographic dimensions.
We, therefore, evaluated the benefit of predicted RTs for the
analysis of the FA-complex, an eight-membered multiprotein
complex that was crosslinked using BS3. Here, the search engine
score was supplemented exclusively with RP RT predictions
during the rescoring. By using transfer learning, the small number
of CSMs (692 unique CSMs, without considering charge states)
found in this multiprotein complex analysis were sufficient to
achieve accurate RP predictions (Supplementary Fig. 10). The
resulting crosslinks at 1% residue-pair FDR (lower levels set to
5%) showed an increase of 36 (+10%) self- and 53 (+70%)
heteromeric residue-pairs. Importantly, the rescored links showed
no indication of increased hits to the entrapment database
(Fig. 5a) indicating that no overfitting occurred during the
rescoring. At the same time, heteromeric PPIs already identified
before rescoring received additional support. For example, the
number and sequence coverage of links increased between
FAAP100 (100) and FANCB (B), FANCA (A) and FANCB, and
FANCA and FANCG (G). Overall, the heteromeric links
increased 1.7-fold with an even higher proportional increase in
“verified” links, i.e., fitting the available structure, by 1.9-fold
(Fig. 5b). The derived distance distribution of newly identified
links is dissimilar from a random distribution and shows no
indications of reduced quality (Fig. 5c). Applying this “structural
validation” on its own might be optimistic49, however, in sum-
mary, our rigorous quality control ensures trustworthy results. It
is currently unclear how far even smaller data sets could benefit
from xiRT. Generally, to improve prediction performance, pre-
training on larger data sets will lead to better generalization

abilities of the predictor. Subsequently, also smaller data sets can
be used for accurate RT prediction. To additionally benefit from
sample-specific information, increasing the cross-validation splits
will utilize larger parts of the data during training. In any case,
our successful analysis of a multiprotein complex supplemented
with only RP features highlights the broad applicability of xiRT.

Using a Siamese network architecture, we succeeded in
bringing RT prediction into the Crosslinking MS field, indepen-
dent of separation setup and search software. Our open-source
application xiRT introduces the concept of multi-task learning to
achieve multi-dimensional chromatographic retention time pre-
diction and may use any peptide sequence-dependent measure
including for example collision cross-section or isoelectric point.
The black-box character of the neural network was reduced by
means of interpretable machine learning that revealed individual
amino acid contributions towards the separation behavior. The
RT predictions—even when using only the RP dimension—
complement mass spectrometric information to enhance the
identification of heteromeric crosslinks in multiprotein complex
and proteome-wide studies. Overfitting does not account for this
gain as known false target matches from an entrapment database
did not increase. Leveraging additional information sources may
help to address the mass-spectrometric identification challenge of
heteromeric crosslinks.

Methods
Sample preparation and multidimensional fractionation. Biomass was produced
from a single clone of Escherichia coli K12 strain (BW25113 purchased from
DSMZ, Germany; https://www.dsmz.de/) by fermentation in a Biostat A plus
bioreactor (Sartorius, Göttingen, Germany) in LB medium with 0.5% (w/v) glucose
at 37 °C while monitoring and adjusting pH and dissolved oxygen by the addition
of sodium hydroxide/phosphoric acid or stir speed control, respectively. When the
culture grew to an optical density600 of 10 it was harvested by centrifugation at
5000×g, 4 °C for 15 min, then washed with 1× PBS, aliquoted, snap-frozen in liquid
nitrogen, and stored at −80 °C. Cell pellets were resuspended in lysis buffer (50
mM Hepes pH 7.2 at RT, 50 mM KCl, 10 mM NaCl, 1.5 mM MgCl2, 5% (v/v)
glycerol, 1 mM dithiothreitol (DTT), spatula tip of chicken egg white lysozyme
(Sigma, St. Louis, MO, USA)) and lysed by sonication. Prior to sonication, cOm-
plete EDTA-free protease-inhibitors (Roche, Basel, Switzerland) were added
according to the manufacturer’s instructions. Then, Benzonase (Merck, Darmstadt,
Germany) was added and the lysate cleared from cellular debris by centrifugation
for 15 min at 4 °C and 15.000×g. Fresh DTT was supplied to 2 mM. The obtained
supernatant was treated further by ultracentrifugation using a 70 Ti fixed-angle
rotor for 1 h at 106,000×g and 4 °C. Subsequently, the protein solution was con-
centrated using Amicon spin filters (15 kDa molecular weight cut-off; Merck,
Darmstadt, Germany) to reach a total protein concentration of 10 mg/ml, as judged
by microBCA assay (ThermoFisher Scientific, Waltham, MA, USA) and aggregates
removed by centrifugation for 5 min at 16,900×g and 4 °C. Then, 2 mg of this
soluble high molecular weight proteome was separated on a BioSep SEC-S4000
column (600 × 7.8 mm, pore size 500 Å, particle size 5 µm, Phenomenex, CA, USA)
at 200 µl/min flow rate and 4 °C with fraction collection of 200 µl over the
separation range from ~3 MDa to 150 kDa (as judged by Gel filtration calibration
kit (HMW), GE Healthcare) to give 44 fractions. The proteins of each fraction were
crosslinked using 0.75 mM disuccinimidyl suberate (DSS; Sigma, St. Louis, MO,
USA). The cross-linked samples were pooled and precipitated using acetone. Upon
resuspending in 6 M urea, 2 M thiourea, 100 mM ammonium bicarbonate (ABC),
the samples were derivatized by incubating 30 minutes at room temperature with
10 mM dithiothreitol followed by 20 mM iodoacetamide in the dark. Proteolysis
was accomplished using LysC protease (1:100 protease-to-substrate mass ratio;
Pierce Biotechnology, Rockford, IL, USA) for 4.5 h at 37 °C, followed by 1:5
dilution with 100 mM ABC and additional digestion with and Trypsin (1:25
protease-to-substrate mass ratio; Pierce Biotechnology, Rockford, IL, USA).
Digestions were quenched by adding trifluoroacetic acid (TFA) and cleaned up
using Stage-tips. The sample was fractionated in the first dimension on a Poly-
Sulfoethyl A strong cation exchange chromatography (SCX) column (100 × 2.1
mm, 300 Å, 3 µm) equipped with a guard column of identical stationary phase (10
× 2.0 mm) (PolyLC, Columbia, MD, USA) running at 0.2 ml/min on an Äkta pure
system (GE Healthcare, Chicago, IL, USA) at 21 °C. Mobile phase A was 10 mM
monopotassium phosphate pH 3.0, 30% acetonitrile; mobile phase B additionally
contained 1M potassium chloride (KCl). About 0.4 mg peptides dissolved in
mobile phase A were loaded and eluted isocratically over 2 min, followed by an
exponential gradient up to 700 mM KCl with the following steps: 12 min to 12.7%,
followed by 1-min steps to 14.5, 16.3, 18.8, 23.0, 30.0, 40.0, 70.0% B. We collected
nine high-salt fractions of 0.2 ml size during several replica SCX runs. Identical
fractions were pooled and desalted using Stage-tips followed by separation in the
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second chromatographic dimension by hydrophilic strong anion exchange chro-
matography (hSAX). Here, we used a Dionex IonPac AS-24 hSAX column (250 ×
2.0 mm) with an AG-24 guard column (Thermo Fisher Scientific, Dreieich, Ger-
many) running at 0.15 ml/min on an Äkta pure system (see above) and at 15 °C.
Mobile phases A and B were 20 mM Tris*HCl pH 8.0 with B additionally con-
taining 1 M sodium chloride. Samples were loaded in mobile phase A and sepa-
rated under isocratic conditions for 3 min, followed by elution using an exponential
gradient: 1.8, 3.5, 5.3, 7.1, 9.1, 11.2, 13.5, 16.3, 19.7, 24.1, 30.2, 38.8, 51.5, 70.6, 100%
B, each step lasting for one minute. Fractions of 0.15 ml size were collected along
the gradient. Ten pools were prepared (fractions 3-6/7-14/15-17/18-19/20-21/22-
23/24-25/26-27/29-29/30-35) and desalted using Stage-tips.

LC-MS for crosslink identification. Analysis of crosslinked peptides by LC-MS
was conducted on a Q Exactive HF mass spectrometer (ThermoFisher Scientific,
Bremen, Germany) coupled to an Ultimate 3000 RSLC nano system (Dionex,
Thermo Fisher Scientific, Sunnyvale, USA), operated under Tune 2.11, SII for
Xcalibur 1.5 and Xcalibur 4.2. Solvents A and B were 0.1% (v/v) formic acid and
80% (v/v) acetonitrile, 0.1% (v/v) formic acid, respectively. Peptide fractions were
dissolved and loaded in 1.6% acetonitrile, 0.1% formic acid onto an Easy-Spray
column (C18, 50 cm, 75 µm ID, 2 µm particle size, 100 Å pore size) operated at 300
nl/min flow and 45 °C. Peptide elution used the following gradient: 2 to 7.5% buffer
B within 5 min, from 7.5 to 42.5% over 80 min, to 50% B over 2.5 min, and then to
95% buffer B within 2.5 min and flushed for another 5 min before re-equilibration
at 2% B. Survey scans were acquired at a resolution of 120,000, automated gain
control of 3*106, maximum injection time of 50 ms while scanning from 400–1450
m/z in profile mode. The top 10 intense precursor ions with z= 3-6 and passing
the peptide match filter (preferred) were isolated using a 1.4m/z window and
fragmented by higher-energy collisional dissociation using stepped normalized
collision energies of 24, 30, and 36. Fragment ion scans were recorded at a reso-
lution of 60,000, with automated gain control set to 5*104, maximum injection
time of 120 ms, underfill ratio of 1%, and scanning from 200–2000m/z. Dynamic
exclusion for previously fragmented precursors and their isotopes was enabled for
30 s. To minimize the non-covalent gas-phase association of peptides, in-source-
CID was enabled at 15 eV36. Each LC-MS run lasted for 120 min.

Spectra and peptide spectrum match processing. All raw spectra were con-
verted to Mascot generic format (MGF) using msConvert50 (3.0.20175.cbf82d022).
The database search with Comet51 (v. 2019010) was done with the following set-
tings: peptide mass tolerance 3 ppm; isotope_error 3; fragment bin 0.02; fragment
offset 0.0; decoy_search 1; fixed modification on C (carbamidomethylation,
+57.021 Da); variable modifications on M (oxidation, +15.99 Da). False discovery
rate (FDR) estimation was performed for each acquisition. First, the highest-
scoring PSM for a modified peptide sequence was selected, then the FDR was
computed based on Comet’s e-value. Spectra were searched using xiSEARCH (v.
1.6.753)12, after recalibration of precursor and fragment m/z values, with the fol-
lowing settings: precursor tolerance, 3 ppm; fragment tolerance, 5 ppm; missed
cleavages, 2; missed monoisotopic peaks52, 2; minimum peptide length, 7; variable
modifications: oxidation on M, mono-links for linear peptides on K, S, T, Y, fixed
modifications: carbamidomethylated C. The specificity of the crosslinker DSS was
configured to link K, S, T, Y, and the protein N terminus with a mass of 138.06807
Da. The searches were run with the workflow system snakemake53. The FDR on
CSM-level was defined as FDR= TD − DD/TT40, where TD indicates the number
of target-decoy matches, DD the number of decoy–decoy matches, and TT the

number of target-target matches. Crosslinked peptide spectrum matches (CSMs)
with non-consecutive peptide sequences were kept for processing48. PPI level FDR
computation was done using xiFDR40 (v. 2.1.3 and 2.1.5 for writing mzIdentML) to
an estimated PPI-FDR of 1%, disabling the boosting and filtering options. CSM,
peptide, and residue-level FDR were fixed at 5%, protein group FDR was set to
100%. FDR estimations for self and heteromeric links were done separately. In
xiFDR a unique CSM is defined as a combination of the two peptide sequences
including modifications, link sites, and precursor charge state. For the assessment
of identified CSMs an entrapment database (described in the next section), as well
as decoy identifications, were used on both, CSM and PPI levels. PPI results were
also compared against the APID42 and STRING41 databases (v11, minimal com-
bined confidence of 0.15).

Database creation. The database of potentially true crosslinks was defined as
Escherichia coli proteome (reviewed entries from Uniprot release 2019-08). This
database was filtered further to proteins identified with at least a single linear
peptide at a q-value54 threshold of 0.01, qðtÞ ¼ mins≤ tFDRðsÞ, with the threshold t
and score s. This resulted in 2850 proteins. In addition to the FDR estimation
through a decoy database, we used an entrapment database. The proteins from the
entrapment database represent the search space of false-positive CSMs indepen-
dent of E. coli decoys and were sampled from human proteins (UP000005640,
retrieved 2019-05). E. coli decoys might fail in this task after machine learning if
overfitting should have taken place. So, entrapment targets allow control for
overfitting. For this, human target peptides were treated as targets and human
decoy peptides as decoys. To avoid complications through false spectrum matches
due to homology, we used blastp55 (BLAST 2.9.0+, blastp-short mode, word size 2,
e-value cutoff 100) and aligned all E. coli tryptic peptides (1 missed cleavage,
maximum length 100) to the human reference. All proteins that showed peptide
alignments with a sequence identity of 100% were removed from the human
database. Only the remaining 9990 sequences were used as candidates in the
entrapment database. For each of the 2850 E. coli proteins, a human protein was
added to the database. To reduce search space biases from protein length and thus
different number of peptides for the two organisms, we followed a special sampling
strategy. The human proteins were selected by a greedy nearest neighbor approach
based on the K/R counts and the sequence length. The final number of proteins in
the combined database (E. coli and human) was 5700 (2850*2).

Fanconi anemia monoubiquitin ligase complex data processing. The publicly
available raw files from an analysis of the BS3-crosslinked Fanconi anemia
monoubiquitin ligase complex56 (FA-Complex) were downloaded from PRIDE
together with the original FASTA file (PXD014282). The raw files were processed
as described for the E. coli data (m/z recalibration and searched with xiSEARCH),
followed by an initial 80% CSM-FDR filter for further processing. Due to the much
smaller FASTA database (8 proteins), the entrapment database was constructed
more conservative than for the proteome-wide E. coli experiment, i.e., for each of
the target proteins, the amino acid composition was used to retrieve the nearest
neighbor in an E. coli database. The FDR settings to evaluate the rescoring were set
to 5% CSM- and peptide-pair level FDR, 1% residue-pair- and 100% PPI-FDR
using xiFDR without boosting or additional filters. The resulting links were
visualized (circular view) and mapped to an available 3D structure (final refine-
ment model “sm.pdb”)57,58 using xiVIEW59. To ease the comparison of identified
and random distances, a random Euclidean distance distribution was derived in
three steps: first, all possible cross-linkable residue-pair distances in the 3D
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structure were computed. Second, 300 random “bootstrap” samples with n dis-
tances were drawn (n = the number of identified residue-pairs at a given FDR) and
third, the mean per distance bin was computed across all 300 samples.

xiRT—3D Retention Time Prediction. The machine learning workflow was
implemented in python (v. >3.7) and is freely available from https://github.com/
Rappsilber-Laboratory/xiRT. xiRT is the successor of DePART29, which was
developed for the retention time (RT) prediction of hSAX fractionated peptides
based on pre-computed features. xiRT makes use of modern neural network
architectures and does not require feature engineering. We used the popular
python packages sklearn60 (0.24.1) and TensorFlow61 (v. 1.15 and >2) for pro-
cessing (Supplementary Note 1 for more details). xiRT consists of five components
(Fig. 1d and Supplementary Fig. 1, Supplementary Note 1): (1) The input for xiRT
are amino acid sequences with arbitrary modifications in text format (e.g., Mox for
oxidized Methionine). xiRT uses a similar architecture for linear and crosslinked
peptide RT prediction. Before the sequences can be used as input for the network,
the sequences are label encoded by replacing every amino acid by an integer and
further 0-padded to guarantee that all input sequences have the same length.
Modified amino acids, as well as crosslinked residues, are encoded differently than
their unmodified counterparts. (2) The padded sequences were then forwarded into
an embedding layer that was trained to find a continuous vector representation for
the input. (3) To account for the sequential structure of the input sequences, a
recurrent layer was used (either GRU or LSTM). Optionally, the GRU/LSTM layers
were followed by batch normalization layers. For cross-linked peptide input, the
respective outputs from the recurrent layers were then combined through an
additive layer (default setting). (4) Task-wise subnetworks were added for hSAX,
SCX, and RP retention time prediction. All three subnetworks had the same
architecture: three fully connected layers, with dropout and batch normalization
layers between them. The shape of the subnetworks is pyramid-like, i.e., the size of
the layers decreased with network depth. (5) Each subnetwork had its own acti-
vation function. For the RP prediction, a linear activation function was used and
mean squared error (MSE) as loss function. For the prediction of SCX and hSAX
fractions, we followed a different approach. The fraction variables were encoded for
ordinal regression in neural networks62. For example, in a three-fraction setup, the
fractions (f ) were encoded as f 1 ¼ 0; 0; 0½ �; f 2 ¼ 1; 0; 0½ � andf 3 ¼ 1; 1; 0½ �: Subse-
quently, we chose sigmoid activation functions for the prediction layers and
defined binary cross-entropy (BC) as loss function. To convert predictions from the
neural network back to fractions, the index of the first entry with a predicted
probability of <0.5 was chosen as the predicted fraction. The overall loss was
computed by a weighted sum of the MSERP, BCSCX, and BChSAX. The weight
parameters are only necessary when xiRT is used to predict multiple RT dimen-
sions at the same time (multi-task). To predict a single dimension (single-task, e.g.,
RP only), the weight can be set to 1. The number of neurons, dropout rate,
intermediate activation functions, the weights for the combined loss, number of
epochs, and other parameters in xiRT were optimized on linear peptide identifi-
cation data. Reasonable default values are provided within the xiRT package. For
optimal performance, further optimization might be necessary for a given task.

Cross-validation and prediction strategy. Cross-validation (CV) is a technique
to estimate the generalization ability of a machine learning predictor63 and is often
used for hyper-parameter optimization. We performed a 3-fold CV for the hyper-
parameter optimization on the linear peptide identification data from xiSEARCH,
excluding all identifications to the entrapment database (Supplementary Note 2
and Supplementary Fig. 2 for details). We defined a coarse grid of parameters
(Supplementary Table 1) and chose the best performing parameters based on the
average total (unweighted) loss, R2

RP and accuracy across the CV folds. Further, we
define the relaxed accuracy (racc) to measure how many predictions show a lower
prediction error than |1| fraction. We then repeated the process with an adapted set
of parameters (Supplementary Table 2). In addition to the standard CV strategy,
we used a small adjustment: per default, in k-fold cross-validation, the training split
consists of k− 1 parts of the data (folds) and a single testing fold. However, we
additionally used a fraction (10%) from the training folds as extra validation set
during training. The validation set was used to select the best performing classifier
over all epochs. The model assessment was strictly limited to the testing folds. This
separation into training, validation, and testing was also used for the semi-
supervised learning and prediction of RTs, i.e., when xiRT was used to generate
features to rescore CSMs previously identified from mass spectrometric informa-
tion. In this scenario, the CV strategy was employed to avoid the training and
prediction on the same set of CSMs. In xiRT, a unique CSM is defined as a
combination of the two peptide sequences, ignoring link sites and precursor charge.

Supervised peptide spectrum match rescoring. To assess the benefits of RT
predictions, we used a semi-supervised support vector (SVM) machine model. The
implementation is based on the python package scikit-learn60 in which optimal
parameters are determined via cross-validation. The input features were based on
the initial search score (for FA-complex only) and differences between predicted
and observed RTs. For each cross-linked peptide, three predictions were made per
chromatographic dimension: for the crosslinked peptide, for the alpha peptide, and
the beta peptide. Additional features were engineered depending on the number of

chromatographic dimensions and included the summed, absolute, or squared
values of the initial features (Supplementary Table 3 for all features). For example,
for three RT dimensions, the total number of features was 43. The data for the training
included all CSMs that passed the 1% CSM-FDR cutoff (self, heteromeric/TT, TD,
DDs) and TD/DD identifications that did not pass this cutoff. TTs were labeled as
positive training examples, TD and DDs (DXs) were labeled as negative training
examples.

To stratify the k-folds during CV, the CSMs were binned into k xiSCORE
percentiles. Afterward, they were sampled such that each score range was equally
represented across all CV folds. When the positive class was limited to the TT
identifications at 1% CSM-FDR, the number of negative observations was usually
larger than the number of positive observations. To circumvent this, for each CV
split, a synthetic minority over-sampling technique (SMOTE)64 was used to
generate a balanced number of positive and negative training samples (here only
used for the FA-complex data). SMOTE was applied within each CV fold to avoid
information leakage. A 3-fold CV was performed for the rescoring. In each
iteration during the CV, two folds were used for the training of the classifier, and
the third fold was used to compute an SVM score. During this CV step, a total of
three classifiers were trained. The scores for all TT-CSMs that did not pass the
initial FDR cutoff were computed by averaging the score predictions from the three
predictors. For all CSMs passing the initial FDR cutoff, rescoring was performed
when the CSM occurred in the test set during the CV. The final score was defined
as: xirescored ¼ xiSCORE þ xiSCORE ´ SVMscore, where SVMscore was the output from
the SVM classifier and xiSCORE the initial search engine score.

Feature analysis. The KernelExplainer from SHAP65 (Shapley Additive exPla-
nations, v.0.36.0) was used to analyze the importance of features derived from the
SVM classifier. SHAP estimates the importance of a feature by setting its value to
“missing” for an observation in the testing set while monitoring the prediction
outcome. We used a background distribution of 200 samples (100 TT, 100 TD)
from the training data to simulate the “missing” status for a feature. SHAP values
were then computed for 200 randomly selected TT (predicted to be TT) that were
not used during the SVM training. SHAP values allow to directly estimate the
contributions of individual features towards a prediction, i.e., the expected value
plus the SHAP values for a single CSM sums to the predicted outcome. For a
selected CSM, a positive SHAP value contributes towards a true match prediction.
For the interpretability analysis (SHAP) of the learned features in xiRT, the Dee-
pExplainer was used (Supplementary Note 3).

In addition, we performed dimensionality reduction using UMAP66 on the RT
feature space for visualization purposes (excluding the search engine score). UMAP
was run with default parameters (n_neighbors= 15, min_dist= 0.1) on the
standardized feature values. The list of used features for the multi-task learning
setup is available in Supplementary Table 3.

Statistical analysis. Significance tests were computed using a two-sided inde-
pendent t-test with Bonferroni correction. The significance level α was set to 5%.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium (http://proteomecentral.proteomexchange.org) via the jPOST partner
repository67 with the data set identifier PXD020407 and at https://doi.org/10.6019/
PXD020407. Raw data of the FA-Complex are available via the previously published
PRIDE identifier PXD014282. Additional files and intermediate results are available via
Zenodo at https://doi.org/10.5281/zenodo.4270323. PPI data were retrieved from
STRING (https://string-db.org/, v11) and APID (http://cicblade.dep.usal.es:8080/APID/
init.action, downloaded 09/2019). Source data are provided with this paper.

Code availability
The developed python package is available on the python package index, on GitHub
(https://github.com/Rappsilber-Laboratory/xiRT) and via Zenodo (https://doi.org/
10.5281/zenodo.4270323).
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