ACCELE
G

ATED SECURE

R
Ul FOR VIRTUALIZED
MOBILE HANDSETS

vorgelegt von

Dipl.-Ing.

Janis Danisevskis

geb. in Berlin

von der Fakultat IV — Elektrotechnik und Informatik
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades

Doktor

der Ingenieurwissenschaften
— Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr
Gutachter: Prof. Dr
Gutachter: Prof. Dr
Gutachter: Prof. Dr

. Sebastian Moéller, Technische Universitat Berlin

. Jean-Pierre Seifert, Technische Universitat Berlin

. Felix Freiling, Friedrich-Alexander Universitat Erlangen-Niirnberg
. Konrad Rieck, Technische Universitat Braunschweig

Tag der wissenschaftlichen Aussprache: 15. August 2017

Berlin 2017

Abstract

Mobile handsets, especially so-called smartphones, have become an indis-
pensable commodity in day-to-day life. However, their growing versatility
came at the cost of ever-increasing complexity, and this raises severe se-
curity concerns. This has come to be especially problematic for corporate
IT infrastructures, because it is increasingly hard to reconcile personal user
expectations with corporate security demands. A particular manifestation
of this quandary is the bring-your-own-device (BYOD) application, where
multiple mutually distrustful stakeholders maintain individual security in-
terests.

A technique for safeguarding these interests is virtualization. Limited
computational capabilities and battery capacity pose challenges to virtual-
ization being a nascent discipline in the embedded computing realm. Graph-
ical user interfaces of smartphones rely heavily on graphics acceleration
hardware, a fact that makes moving a contemporary smartphone operat-
ing system into a virtual machine particularly challenging.

This work sets out to explore the threats that arise by sharing the graphi-
cal user interface infrastructure of a smartphone among multiple virtual ma-
chines. These findings have led to the development of a small and strongly
compartmentalized secure graphical user interface infrastructure, which pro-
vides an identifiable and trusted path between the user and the virtual ma-
chine and which caters to the performance demands of contemporary mobile
user interfaces by allowing shared access to graphics acceleration hardware.
A thorough performance evaluation employing a series of specially tailored
evaluation tools attests that the working prototype built and described as
part of this work has outstanding performance, matching a non-virtualized

smartphone, with only little impact on the system’s load and latency.

ii

Introduction

1.1 Scope and Goals

1.2

1.3

Background

2.1 System Architecture and TCB
2.2

2.3 GPU Driver Stack

2.4 GPU Virtualization

2.5

Threat Assessment

3.1 The GPU as an Agent to Copy Memory
3.2 Unrestricted DMA through Driver Bugs
3.3 Unsafe Buffer Sharing

3.4 Summary
Secure GUI

4.1 Framebuffer Handling

4.2 Input Handling

4.3 Compartmentalized Low-Level Drivers
4.4 Routing Decision Making

4.5 TImplementation Details

4.6 Summary

Mobile GPU Para-Virtualization
5.1 Hardware Model and Programming Model

Contributions

Organization

Virtualization

Secure GUI

Contents

iv

6

5.2
5.3
5.4
5.5
5.6
5.7

Memory Management
Sharing
Scheduling
Suspend and Resume
Implementation Details

Summary

Evaluation

6.1
6.2
6.3
6.4
6.5

Methodology
Experiments

Benchmarks

Results.
TCB complexity

Conclusion

7.1

Outlook
7.2 Closing Words

Acknowledgements

CONTENTS

Listing of figures

2.2.1 Goos protocol primitives. The screen is a physical output
device, and a buffer is a memory region holding an output
image. The view, defined by its width, height and position
on the screen (x,y), denotes a region on the screen. A buffer
can be attached to a view, indication that the view’s screen
region shall show a portion of the buffer, denoted by an offset

and the view’s dimensions. 22

2.2.2 L*Linux is a Linux kernel running in the user-space of an
L4-family p-kernel, here Fiasco.OC. An L*Linux instance is a
conglomerate of Fiasco.OC’s primitives: One or more vCPUs
which can transition between a kernel-task, which is the resi-
dence of the L4Linux guest kernel, and several process tasks
confining the guest processes. A timer-tread running in the
kernel-task provides the instance with a time base, e.g., for
scheduling. 24

2.3.1 Components of a GPU driver stack found in a typical mobile
handset. 28

3.1.1 Copying a 64-byte memory region in the form of a 4 x 4 pixel
texture using OpenGL ES 2.0. The figure shows how the
input data—attributes and uniforms—propagate through the

OpenGL ES rendering pipeline. 42

3.3.1 Screenshot of an on-screen keyboard with activated letter tool

tip (see annotation). 54

vi LISTING OF FIGURES

4.1.1 Hardware involved in graphic output. The display controller
reads data from memory through its master interface, con-
verts it accordingly, and sends it to the display device (left).

The display controller is controlled through its slave interface
by another bus master, here the CPU (right). 59

4.1.2 Naive sharing of the visible framebuffer between two clients.
The visible in physical memory (bottom) is mapped in the

virtual address space of client A and client B at the same time. 60

4.1.3 Compositing approach for framebuffer interposition. The vis-
ible framebuffer is only accessible by a coordinating instance
(CI), as are the private framebuffers of the clients A and B.
Accordingly, the CI decides which output is visible by copy-
ing the private framebuffer contents. It also draws a non-

forgeable label, indicating the decision to the user. 61

4.1.4 Mapping approach for framebuffer interposition. Client A
has access to the client region of the visible framebuffer while
Client B can render only into a shadow buffer. The CI can
control the mappings and is able to swap this arrangement.
It has access to all buffers, allowing it to update the visi-
ble framebuffer upon a switch. A label is drawn by the CI
through framebuffer partitioning (see Section 4.1.3). 63

4.1.5 Referencing approach for framebuffer interposition. Clients
A and B have exclusive access to their private framebuffers.
The CI can only make one or the other framebuffer visible by
manipulating the location of the scan-out region of the display
controller. Labels are added through framebuffer partitioning
(see Section 4.1.3). 64

4.1.6 Partitioning the visible framebuffer on a page boundary into

label region and client region 65

4.1.7 Referencing approach for framebuffer interposition with hard-
ware overlay for labeling. The clients have access to their
respective framebuffers. The CI has access to a label buffer
and controls the scan-out regions of the display controller.
Label region and client region are combined by the display

controller to form the visible output. 67

LISTING OF FIGURES

4.2.1 Hardware model of the input path. A touch screen device is
connected to the SoC via a I?C bus through an I?C controller
and an interrupt line connected to the GIC. A mechanical
button is connected to an edge sensitive GPIO pin on the

pad controller of the SoC.

4.2.2 The coordinating instance (CI) of the input path, along with
input devices (left) and two clients (right). Input events enter
the CI, which forwards them to a selected client. It thereby
enforces a policy decision that it receives via a separate inter-
face from a decision-making module. The CI can emit secure
attention events on receiving special user input, which it never

forwards toa client.

4.2.3 The coordinating instance (CI) of the output path, along with
the screen (left) and two clients (right). It takes a policy
decision via a special interface from a decision-making module.
The CI enforces the policy decision that the designated client
can draw on the screen and ensures that the current policy
decision is apparent to the user by combining the output with

an unforgeable label.

5.1.1 Model of hardware components involved in graphics accelera-
tion. The CPU and the GPU share a common main memory.
Access to the main memory via the common bus interconnect
is mediated by individual MMUs.

5.2.1 The relationship between the GPU’s address space, the guest
physical address space, and the host physical address space;
and the role of the shadow page tables in the context thereof.
(This figure was published before by the author in the slides
of a talk given at MOST15 [24].)

5.6.1 The four GPU-Server protocol functions of the memory man-
agement functional group are: (a) the construction of a GPU
virtual address-space (GVA), (b) the destruction of a GVA,
(c) the mapping of memory resources into a GVA, and (d) the

releasing of memory resources from a GVA.

vii

viii LISTING OF FIGURES

5.6.2 GPU job submission protocol flow. Upon job submission re-
quest (D by a client, the server selects the corresponding page
directory @ and places both the job description and the page
directory into a job queue). Then control is returned to the
client @. The GPU server activates the corresponding page
directory and starts the job ® once the GPU is 3 or becomes
® idle and the job is marked running. When the job com-

pletes @), a notification is sent to the client asynchronously

5.6.3 From top to bottom: The GPU server exposes a session-
factory service and one session service via individual commu-
nication channels. A session management layer keeps track of
the session-specific data structure comprising page directories,
slots for pending jobs, mapping request sanitizer information,
and page-table quota information. It is complemented by a
platform management module. Drivers for the computational
cores, the per core MMUs, the L2-cache, and the power man-
agement unit (PMU) form the lowest level of the GPU server. 96

5.6.4 Bootstrapping of a new client in the context of Fiasco.OC and
L4Re. Using moe’s allocator service, ned allocates memory (D
destined to be used as graphics memory. With mali_rg’s
factory service, it creates a new GPU-server session and del-
egates the newly allocated memory to the new session @ by
means of capability a. When finally creating the new client,
it delegates both the new GPU-server session and the graphics
memory, by means of capability b and capability a, respec-
tively, to the new client @. 98

LISTING OF FIGURES ix

5.6.5 Communication channels after bootstrapping the GPU and
secure GUI (output) subsystems omitting the bootstrapper
ned. The left hand side is analogous to the outcome of Fig-
ure 5.6.4 with an instance of L*Linux as client. Capabil-
ity @ represents the main memory of the L*Linux instance,
shared with mali_rg, and ® represents the session interface
by which the client can issue requests to the GPU server.
The right hand side depicts the framebuffer infrastructure
from Chapter 4. Capability (© represents the session inter-
face by which the client can issue buffer switch requests and
receive VSYNC events. Capability @ represents the frame-
buffer shared between the client and mali_rg, just as the

main memory is by capability @. 100

6.3.1 Power measurement setup: The device under test is connected
to a Samsung Anyway Jig, allowing operating the device with-
out a battery. An ODroid Smart Power serves as both power
supply and meter. It is connected to a computer via USB for

the purpose of recording measurements. 116

6.4.1 High-level 3D benchmarks. OpenGLCube, OpenGLBlend-
ing, OpenGLFog, and FlyingTeapot are benchmarks of the
Oxbench benchmark suite [1]. The fifth benchmark is the
FOUR.DM_68 demo of QuakelIl Arena run in timedemo mode. 117

6.4.2 High-level 3D benchmarks. OpenGLCube, OpenGLBlend-
ing, OpenGLFog, and FlyingTeapot are benchmarks of the
Oxbench benchmark suit [1]. This figure shows the relative

CPU idle time during the runtime of the respective bench-
marks. ... 118

6.4.3 Visualized trace of fjug (A) copying a frame to the visible
framebuffer. It takes nearly 40ms (B) to complete, missing
two VSYNC interrupts (C) on the way. 119

LISTING OF FIGURES

6.4.4 These graphs compare the two optimizations map batching
and translation caching. Plotted is the time it takes to at-
tach (top) and release (bottom) buffers of increasing sizes
given in pages of 4 KiB to and from a graphics address space.
The measurements refer to the GPURG architecture with no
optimization (none), with map batching, with map batching
and translation caching (both). The plotted values were de-

termined as the median values of 10,000 measurements. . . . 122

6.4.5 These graphs compare three caching strategies for GPU page
tables, uncached, buffered, and cached and two page blank-
ing strategies, zero on alloc and zero on free. Plotted is the
time it takes to attach (top) and release (bottom) buffers of
increasing sizes given in pages of 4 KiB to and from a graphics
address space. All measurements where taken in the GPURG
experiment with the optimizations map batching and trans-
lation caching enabled, and all values were determined as the

median of 10,000 measurements. 123

6.4.6 These graphs compare the three experiments, GPURG, pass-
through, and native, with one another. Plotted is the time
it takes to attach (top) and release (bottom) buffers of in-
creasing sizes given in pages of 4 KiB to and from a graphics
address space. All values were determined as the median of

10,000 measurements. 124

6.4.7 These graphs compare the experiments GPURG (L4) with
native (b, ¢, and e), and two different shadow page table
population strategies (bottom right). Plotted is the time it
takes to map, touch, and unmap buffers of increasing sizes
given in pages of 4KiB. All values were determined as the

median of 10,000 measurements. 126

6.4.8 The graphs show the time it takes for a VSYNC event to
travel from the initial interrupt handler to the Android user
space system. The top graph shows this time span for the
native experiment. The bottom graph shows this time span
for the virtualized L4 experiment, split into the legs that the
VSYNC event walks when traveling through the system. . . . 128

LISTING OF FIGURES

6.4.9 The graphs show the time it takes for a buffer swap request
and its reply to travel through the system and back. The top
graphs show this time for the native experiment. The bottom
graph shows this time span for the virtualized L4 experiment,
split into the legs that the request and the reply walk when
traveling through the system.

6.4.10Che graphs show the time it takes for and input event to
travel through the system. The top graph depicts this time
span for the native experiment, and the bottom graph depicts
the L4 experiment split into legs representing the subsystems
through which the event travels.

6.4.1Visualized trace of an input event traveling through the sys-
tem. The interrupt of the touch screen registers in the kernel
and kicks off the driver (A). The driver queries the device,
issuing bus transaction on an I12C bus (Bs mark the I?C bus
controller interrupts). Eventually, the event is complete (C)
and is delivered to ijug (D), LiLinux (E), and Android’s
event hub (F).

6.4.12T'hese graphs show the instantaneous power consumption of
the device while running the high-level 3D benchmark Cube.
Three experiments are compared: The “referencing” experi-
ment denotes the final stage of the prototype. The “copying”
experiment simulates the compositing approach. The “native”
experiment is the non-virtualized experiment. The top graph
shows the raw data, whereas the bottom graph shows the raw
data filtered by a five-second wide sliding window.

6.4.13lhis graph shows the power consumption of the device while
the clock and power supply of the idle GPU is switched on

and of in five-second intervals.

xii

LISTING OF FIGURES

List of Tables

6.1.1 Cost of issuing a trace-buffer event in microseconds. The mea-
surements represent the time between two successive events
issued in a tight loop by any of the issuers in the left column.

Fach value is the mean of at least ten thousand samples. . . 107

6.4.1 Results of the job_tool benchmark. The table shows the
time it takes to submit a job to and receive a job completion
notification from the Mali MP400 GPU’s geometry proces-
sor (GP) and pixel presenter (PP) in the different experimen-
tal configurations, native, pass-through, and GPURG. 121

6.5.1 The left table shows the sizes of the modules of the underlying
runtime environment, including the kernel. They form the
common TCB. The right table shows the sizes of the modules
that constitute the prototypical implementation. The sizes
are given in source lines of code (SLOC), and were measured
using David A. Wheeler’s “SLOCCount”. Both tables were
previously published at MOST2015 [24]. 132

xiii

Xiv

LIST OF TABLES

List of acronyms

ARM Advanced RISC Machine
ASID Address Space Identifier
BYOD Bring Your Own Device

CI Coordinating Instance

CP Command Processor

CRT Cathod Ray Tube

DBG-ID Debug Identifier

DC Display Controller

EWS EROS Trusted Window System
FB Framebuffer

FRC Free Running Counter

GIC Generic Interrupt Controller
GLSL OpenGL Shading Language
GP Geometry Processor

GPIO General-purpose Input/Output
GPU Graphics Processing Unit
GPUMMU GPU Memory Management Unit

GPURG GPU Recource Governor

XV

xvi

GUI Graphical User Interface
GVA GPU Virtual Address

I2C Inter-Integrated Circuit

IPC Inter Process Communication
IRQ Interrupt Request

ISA Instruction Set Architecture
JIT Just-In-Time

KIP Kernel Information Page
MCT Multi Core Timer

MMIO Memory Mapped Input/Output
MMU Memory Management Unit
OS Operating System

PMU Power Management Unit
PP Pixel Presenter

PTE Page Table Entry

RAM Random Access Memory
RDM Routing Decision Maker
RISC Reduced Instruction Set Computer
SLOC Source Lines Of Code
SYSMMU System MMU

TCB Trusted Computing Base

TI Texas Instruments

TLB Translation Lookaside Buffer

TOCTOU Time Of Check/Time Of Use

LIST OF ACRONYMS

LIST OF ACRONYMS xvii

TTBR Translation Table Base Register
UI User Interface

UMP Unified Memory Provider

VBus Virtual Bus

VM Virtual Machine

VMM Virtal Machine Monitor

VSO Versioned Shared Object

VSYNC Vertical Syncronization

xviii LIST OF ACRONYMS

Introduction

The advent of Apple’s iPhone in 2007 and Google’s Android operating sys-
tem in 2008 represented a leap in mobile computing experience, which even-
tually brought mobile hand-held computing to the masses. At the time,
other contemporary systems appeared rather clumsy and were awkward to
operate in comparison. The discrepancy in the usability then developed into
a potential threat to the national security. Personnel in critical areas, such
as government officials, despite being obliged to use specially certified de-
vices based on older technologies, started to adopt the new devices, which
were easy to use and rich in features. But versatility comes at the price
of complexity, and complexity is prone to errors yielding security vulnera-
bilities. The history of security vulnerabilities found in the new operating

systems would prove anyone right who warned about using smartphones in
this field.

In this context, the SiMKo3 project was initiated. SiMKo is short for
“sichere mobile Kommunikation” (German for: secure mobile communica-
tion), and its goal was to devise a smartphone certified for handling classified
information and, at the same time, exhibiting the versatility and usability

of a contemporary hand-held device. This author was among a team of

2 CHAPTER 1. INTRODUCTION

researchers at Technische Universitdt Berlin, which set out to achieve this
goal using virtualization. An off-the-shelf smartphone was to be amended
with a trusted boot process aided by a secure element providing reliable
key storage for disk and communication encryption as well as facilitating
pre-boot authentication of the user. The network connectivity of the phone
was to be tightly controlled by means of a mandatory VPN tunnel into the
user’s corporate or governmental infrastructure, and its configuration was
to be outside the control of the user. In order to provide a small and cus-
tomizable trusted computing base, the phone’s software was to be based
on a small microkernel with compartmentalized runtime environment. The
high security requirements demanded a small trusted computing base for
two reasons: The consensus was that a smaller code base yields fewer pro-
gramming errors and thus less potential vulnerabilities. Moreover, it was
agreed upon that presenting the feasibility of a compartmentalized solution
with sufficiently small subsystems would pave the way for applying formal
methods to the problem in the future. In order to accommodate contem-
porary usability demands, the microkernel was to host two instances of the
Android operating system. One of the two Android instances, the secure
compartment, was to be locked down, its versatility reduced to a fixed set
of certified applications. The other, the open compartment, was to be left

customizable at the discretions of the user.

This arrangement, in which two mutually distrusting compartments with
different security classifications shared a common screen and common input
devices, posed a challenge. The increasing popularity of the new mobile oper-
ating systems gave rise to a surge of malware. Typically, malware is designed
to infect as many targets as possible, often by masquerading as legitimate
applications that the user installs voluntarily (Trojan horse). Restricting
the adaptability of the secure compartment by prohibiting the installation
of third-party applications, however, does not remove this attack surface
entirely. The open compartment is still prone to such malware, and in an
ecosystem with high-profile users, it must be assumed that the user may be
subjected to targeted attacks. An attacker could exploit the fact that the
open and secure compartment do share one screen and common input de-
vices and thus mount an impersonation attack with malware installed in the
open compartment, thereby stealing credentials that must never leave the

secure environment of the secure compartment or feeding false information

1.1. SCOPE AND GOALS 3

to the user. It has been imperative that the user must be able, at any time,
to make a well-informed decision about with which compartment he or she
is interacting.

Virtualization is a technology well established in data center and desktop
computing. Mobile embedded virtualization, however, has been a young dis-
cipline, where limited computing capabilities and energy supply posed new
challenges to the operating systems engineer. Smartphones, in particular,
were tedious to virtualize, due to the sheer number of integrated peripheral
devices. Further, even the virtualization of devices, such as the GPU, which
have been virtualized before, needed to be thought out anew under these
new constraints. A survey of existing GPU virtualization solutions yielded
that they either did not allow for sharing the resource, lacked interposition,
bloated the trusted computing base, were wasteful with CPU cycles, or ex-
hibited a combination of these drawbacks. It came without a question that
the GPU needed to be shared, while at the same time, the strong isola-
tion promised by the underlying microkernel was to be upheld. Eventually,
avoiding superfluous CPU usage by the GPU virtualization scheme was the

one requirement mostly owed to mobile computing constraints.

SCcOPE AND GOALS

This work addresses the secure user interface for multi-stakeholder mo-
bile handsets based on virtualization technologies on a system level. It
is, therefore, immediately relevant to the operating system design of secure
smartphones and tablets, but it is also relevant to other embedded applica-
tions where high assurance meets the need for well performing visualization.
Graphical design, look and feel, and user guidance are not within the scope
of this work. Where the user experience is concerned, this work addresses
it indirectly by optimizing technically measurable quantities, such as frame
rates and latency. The design was driven by the isolation requirements of
integrating high security applications and infotainment, the physical user in-
terface design of mobile handsets, and the limitations in available resources
such as energy supply and computational capabilities.

The construction of the virtualized smartphone was a team effort and
therefore posed a rare opportunity. Further, it also meant that the graphical

user interface architecture presented in this work needed to be built within

4 CHAPTER 1. INTRODUCTION

the constraints given by more general design decisions. Moreover, it was
confined to the hardware chosen to be supported by the prototype. Within
these constraints, the goal was to develop widely applicable models for a
secure and hardware accelerated graphical user interface, supporting at least
two virtual machines on a contemporary mobile handset as well as their
prototypical implementation. The design should exhibit strong isolation
with little impact on the trusted computing base. It was mandatory to
provide a trusted and identifiable path between the virtual machines and
the user. In addition, the performance was to be as close as possible to the

performance of a non-virtualized device with as little overhead as possible.

CONTRIBUTIONS

As a contribution, this work assesses the security implications of contem-
porary embedded graphics processing units (GPU) on virtualized and non-
virtualized systems. A fully functional exploit is presented, substantiat-
ing the security implication claims. Two complementary subsystems were
designed and implemented: one providing a trusted and identifiable path
between the user and the VMs, with an emphasis on efficiency and low over-
head, the other providing the VMs with an efficient and isolation-preserving
means of tapping into the computational capabilities of the embedded GPU.
The performance of the prototypical implementation was evaluated with re-
spect to throughput, latency, CPU usage, and power consumption. The
landscape of benchmarks and tools that was created for the purpose of this
evaluation poses an auxiliary contribution in itself, and it has been applied

to at least one other problem outside the scope of this work.

ORGANIZATION

This work is organized as follows: Chapter 2 provides the background to
this work. To this end, introductions are given in general system design and
TCB construction as well as virtualization, leading up to a primer on the
Fiasco.OC p-kernel, its runtime environment L4Re, and L*Linux, a rehosted
version of the Linux operating system kernel running on top of Fiasco.OC.
This is followed by adoptions of a typical mobile GPU driver architecture,
GPU virtualization techniques, and secure GUI design. After setting the

stage for the main act of this work, the potential threats to a system’s

1.3. ORGANIZATION 5

integrity are assessed and illustrated through the dissection of two mobile
GPU driver stacks in Chapter 3. With the lessons learned in the preced-
ing chapters, Chapter 4 and Chapter 5 each present the design space and,
subsequently, the prototypical implementation of two complementary and
fully compartmentalized subsystems providing a secure and well-performing
means for a trusted and identifiable user input/output path and graphics ac-
celeration, respectively. Before this work concludes with Chapter 7, the pro-
totypical implementation presented is evaluated in Chapter 6, with respect
to performance, latency, power consumption, and impact on the trusted

computing.

CHAPTER 1. INTRODUCTION

Background

The requirement of allowing a user to access classified material and at the
same time indulge in the malware-ridden delights of mobile entertainment
called for a high level of assurance. This assurance was achieved by drasti-
cally reducing the trusted computing base (TCB) and the attack surface on
critical infrastructure, using the compartmentalization achieved through vir-
tualization, where legacy operating system components were to be reused.
This work aims at providing an efficient graphical user interface architec-
ture adhering to the same principles, which warrants an introduction of the
concepts and technologies that the secure smartphone is based. First, in Sec-
tion 2.1, the concept of the TCB is introduced and illustrated by examining
some of the existing smartphone architectures designed for comparable use
cases. Section 2.2 gives a tour of the virtualization techniques and concepts
for contemporary computer architectures, with a supplement covering the
details of Fiasco.OC, L4Re, and L*Linux, which are of special importance
for understanding the prototypical implementations of this work. A typical
driver stack of a mobile graphics processing unit is covered in Section 2.3.
This is followed by a discussion of GPU virtualization techniques in Sec-

tion 2.4, using a series of examples from contemporary literature. The last

7

8 CHAPTER 2. BACKGROUND

section of this chapter, Section 2.5, covers the principles of secure graphical

user interfaces (GUISs).

SYSTEM ARCHITECTURE AND TCB

Since the advent of computer systems, operating systems have come a long
way. This work is only concerned with systems of the fourth generation as
described by Tanenbaum [61]. That is, the processor is expected to support
at least two privilege levels—user and supervisor—with well-defined entry
vectors for system calls, exceptions, and interrupts, as well as the mem-
ory protection and access control to memory-mapped resources provided by
means of a memory management unit (MMU). These primitives allow for
running a fourth-generation operating system kernel in the supervisor mode,
with other programs—processes—running in user mode isolated from the
kernel and each other by time multiplexing and address space separation.
The systems that can be built in this way exhibit great versatility and are
vastly diverse. The applications span small embedded systems, desktop com-
puters, data centers, and supercomputing clusters. The constraints exhibit
the same diversity: Web servers need to service vast amounts of requests,
and they thus need high throughput. Desktop computers have to meet low
response times and soft real-time constraints to provide a pleasant user ex-
perience. Safety-critical systems may have hard real-time constraints. All
of these constraints can be met by fourth generation architectures, but not
all implementations of such are equally well suited for each task.

Linux, for example, has been embraced by a large open source commu-
nity as well as by many commercial contributors. Found in almost all of the
aforementioned applications, it shows great performance and has extraordi-
nary driver support. However, when it comes to applications requiring a
truly high level of assurance, one is wise to shy away from the vast code
base that the Linux kernel has acquired over the years, which has recently
exceeded 20 million lines of code. Moreover, while the consumer electronics
industry cherishes the availability, versatility, and extensibility of the large
and monolithic Linux kernel, there is a consensus in the operating systems
and security research community that systems demanding high security and
assurance should be designed as compartmentalized [22, 56, 58] and with a

reduced trusted computing base.

2.1. SYSTEM ARCHITECTURE AND TCB 9

Trusted Computing Base (TCB) The totality of protection
mechanisms within a computer system—including hardware,
firmware, and software—the combination of which is respon-
sible for enforcing a security policy. A TCB consists of one
or more components that together enforce a unified security
policy over a product or system. The ability of a trusted
computing base to correctly enforce a security policy de-
pends solely on the mechanisms within the TCB and on
the correct input by system administrative personnel of pa-
rameters (e.g., a user’s clearance) related to the security

policy.

—*“The Orange Book” p. 112 [44]

In UNIX-like multiuser systems, the same user ID and set of group IDs
are usually assigned to all programs run by a given user, who is identified
when logging into the system. File accesses rights in UNIX-like system are
granted with user ID and group ID granularity, which means that all of the
programs run by the user have access to the same set of files. This provides
sufficient protection to the user’s data under the assumption that all of these
programs are trusted by the user and act solely on the behalf of the user. An
assumption not held in the wild. A typical example is ransomware, which
is malicious software encrypting all accessible files and holding them for
ransom. One of the key features of smartphones is extensibility. Nonetheless,
it is also one of their greatest problems, as not all third-party applications
are legit [67]. The smartphone operating system Android, which, running on
top of a Linux kernel, is a UNIX-like system, accounts for the mutual distrust
of applications by assigning each application an individual user ID. This is
possible under the assumption that a smartphone has only one user, the
owner. It empowers the applications to guard the persistent data stored in
a file against access by other applications. The Android middleware and the
Linux kernel still have many channels through which malicious applications
can steal or manipulate the user’s data or credentials [20].

In an attempt to mitigate the crosstalk through the Android middleware,
Cells [14] uses Linux containers and a driver namespace concept to provide
multiple runtime environments duplicating the Android user-space middle-

ware isolated by the Linux kernel. Nevertheless, as stated before, the Linux

10 CHAPTER 2. BACKGROUND

kernel is huge, and it has a large attack surface, one too large for a high

assurance application.

VMware MVP [16] goes one step further by deploying instances of An-
droid, including their underlying Linux kernel, in virtual machines (VM).
VMware MVP is a hosted hypervisor solution, also known as Type-2 hy-
pervisor, where an operating system kernel, here the Linux kernel, acts as
hypervisor. The approach has some intriguing properties, such as compati-
bility and manageability; properties that are valued by administrators in the
context of bring your own device (BYOD) applications. The idea behind
the BYOD concept is that employees should use their own personal mobile
phone, which presumably most of them have anyway, rather than being is-
sued a company phone. However, incorporating third-party devices into the
corporate IT raises a lot of questions as to the enforcement of corporate I'T
policies. To that end, the hosted hypervisor solution has some merits in
that it allows business appliances, that were provisioned in advance, to be
deployed on an employee’s personal phone. Moreover, the virtualization in-
terface reduces the attack surface on the acting hypervisor for attacks from
inside the VM. But this compatibility comes at the cost of fidelity and per-
formance. While the host operating system can tap into the full potential
of the smartphone’s hardware, the VMs are limited to the minimum essen-
tials needed for business applications. In consequence, the host exposes the
wide attack surface of the Linux kernel to the malware-ridden world of ca-
sual entertainment, while the business applications are strongly confined in
their VMs. But with the Linux kernel, which has the role of the hypervi-
sor, subverted, the protection of the VMs is penetrated from the outside.
Figuratively speaking, it is like having a bouncer check on guests coming
out of a club, rather than on those requesting admission. The TCB of the
VMs consists of the acting hypervisor, which is the Linux kernel, as well as

privileged user-level applications running on the host.

In contrast, the requirements of the secure smartphone dictated that the
so-called open world, the one that was supposed to be freely customizable by
the user with no restrictions as to which applications where allowed, was at
least as confined as any other if not the most confined one. To that end, an
architecture was chosen that was based on a small microkernel acting as hy-

pervisor. Any user-facing world, or compartment as it was regularly called,

2.2. VIRTUALIZATION 11

1 With around twenty-five thousand lines

was confined in individual VMs.
of code, the microkernel was by three orders of magnitude smaller than the
Linux kernel in the hosted hypervisor solution. Therefore, the impact of
the hypervisor on the TCB was greatly reduced. However, the microkernel,
being limited in its functionality, needs the support by user-space servers to
provide all the services that a VM requires. These servers, quite naturally,
belong to the dependent VM’s TCB as well. Above that, there are service
providers that must be attributed to the TCB of a subsystem, even if the
subsystem has no dependency, direct or indirect, on the provided service.
The device drivers that control devices with extensive DMA capabilities are
an example for such service providers [56]. Nonetheless, while any compro-
mised subsystem of a monolithic kernel such as the Linux kernel will render
all security assumptions of the whole system void due to the lack of sepa-
ration, one must carefully discriminate among servers by reviewing the se-
curity properties affected when compromised. A compromised input device
driver without DMA capabilities, for example, would be able to eavesdrop
on, block, modify, or inject user input events. Thus, the security attributes
affected would be the confidentiality, availability, and integrity of the user
input events. The driver would belong to the TCB of the subsystems relying
on these attributes. A VM’s TCB can be constructed on a fine granularity.
However, the question as to the fidelity and performance remains, and this

is one of the driving questions behind this work.

VIRTUALIZATION

The purpose of virtualization is to give users the illusion of multiple virtual
machines (VMs) on a single physical device. Virtual machines are very versa-
tile and find application in a large variety of fields. Besides the consolidation
of multiple instances on a single machine, virtualization allows abstraction
from the hardware to the extent where suspending and migrating running
VMs becomes possible, even across heterogeneous hardware configurations.
The later is an invaluable feature for efficiently managing resources in data

centers. Virtual environments can perform logging outside the reach of an

L As for the discussion in Section 2.2, “virtual machine” is a bit of a stretch for the tech-
nology used for the secure smartphone. However, the architecture suggested in this work
is equally applicable to full- or para-virtualized architectures. So the “virtual machine”
terminology is used throughout this work.

12 CHAPTER 2. BACKGROUND

attacker, thus safeguarding the logs from manipulation [19]. Alternatively,
logging can be performed to the extent that a VM can be replayed, which is
an invaluable tool for both debugging hard to trigger bugs and forensically
analyzing an attack after it happened [19, 27]. Simple versatile interfaces
resembling the machine interface promise strong and controllable isolation
between subsystems deployed in different VMs. And, the deployment of ap-
plications in a VM, along with their own operating system (OS), allows for
running legacy applications alongside newer ones or applications that where

simply written for a different OS.

Nearly as diverse as the applications of VMs is the diversity of virtualiza-
tion concepts. However, before virtualization technologies are discussed,
the introduction of some virtualization-related terminology is warranted.
“The heart of a VM system is the virtual machine monitor (VMM) software
which transforms the single machine interface into the illusion of many”’—
Goldberg [34]. The term VMM, however, is not strictly defined and is
often used interchangeably with the term hypervisor. And often enough,
the notion of “something highly privileged determining the fate of a VM”
is sufficient to describe a VMM or hypervisor. Depending on the context,
however, these two can have somewhat different meanings that are not con-
sistent throughout the literature. Agesen et al. [12] consider the VMM as
provider of mechanisms to one individual VM. An operating system kernel
underneath provides policy, such as scheduling and memory management.
The operating system kernel, together with the VMM, forms the hypervi-
sor of the corresponding VM. In contrast, Peter et al. [52] see the VMM
as the component coordinating the execution of a VM and as provider of
services beyond CPU and memory [47]. In this mindset, the hypervisor is
but a concept providing mechanisms, such as the construction of protec-
tion domains and the controlled communication across protection domain
boundaries; and its role is taken by a microkernel, which implements no

policy with the exception of scheduling in this particular case.

From a purely theoretical perspective, any universal Turing machine can
simulate any other Turing machine—that is, leaving the memory constraints
aside. But this goes only for the correctness of the program execution.
When timing and performance enter the picture, the equivalence of real
and virtual machine vanishes [34]. Nevertheless, the term full virtualization

is commonly used for techniques simulating a machine to the extent where

2.2. VIRTUALIZATION 13

it allows running unmodified guest code. In contrast, para-virtualization
provides interfaces with machine-equivalent functionality, which require ad-
justments in the guest’s code. Full virtualization can naturally be achieved
by full simulation of the desired machine architecture. For early stage kernel
development, the benefits of this approach outweigh the considerable per-
formance cost. But when it comes to productivity, as in the field of data
center consolidation, the incurred overhead is unacceptable. When Popek
and Goldberg set forth the “Formal Requirements for Virtualizable Third
Generation Architectures”; they explicitly required that “programs run in
this [virtual] environment show at worst only minor decreases in speed”—
[53].

Intel’s x86 architecture, which dominated the end-user computing market
over the past decades like no other, does not meet these requirements. Vir-
tualization requires the operating system kernel, which normally runs in the
privileged mode, to run non-privileged as a guest, and the x86 instruction
set architecture defines instructions that behave differently when executed
in different privilege levels. If such an instruction traps, that is, it causes
the CPU to drop into privileged mode and commence execution at a pre-
defined position, then its behavior can be emulated. This, however, does
not apply to all of these sensitive instructions of the x86 architecture, a
circumstance, which renders this architecture non-virtualizable by trap-and-
emulate [53, 55]. The technique of binary translation was introduced [11, 12]
in order to perform full virtualization on x86 with decent performance. For
this, the kernel code of the guest operating system is parsed, and sensitive
instructions are replaced with equivalent code at, or immediately before
runtime. This translation is done only once for every chunk of code, when
executing it for the first time, rather than each time it is executed, as it
would be in the case of machine simulation. This allows for the deployment
of unmodified operating systems in a VM, with the virtualization system

generating equivalent and high performing code transparently.

Another technique to overcome the non-virtualizability of CPU architec-
tures, such as x86 and ARM, is para-virtualization [15]. Here, the require-
ment to present a guest of the virtual machine with an interface identical
to that of a real machine is relaxed. The guest kernel is required to adjust
to the changes in the machine interface by replacing sensitive instructions

with equivalent code or hypercalls. Hypercalls relate to guest kernels and

14 CHAPTER 2. BACKGROUND

the VMM or the hypervisor, like system calls relate to processes and the
operating system kernel. A virtualization-aware guest kernel may use hyper-
calls to call into the underlying VMM and access machine interfaces with
equivalent functionality. The intrusiveness of these modifications can vary
strongly, from the replacement of sensitive instructions to the replacement
of sensitive operating system subsystems. VMware [18] coined the terms
shallow and deep para-virtualization for these two strategies.

Although Shapiro contends that it is not para-virtualization [58], rehost-
ing can be considered a form of deep para-virtualization. It definitely poses
one extreme in a spectrum of intrusiveness of virtualization solutions. Re-
hosting [36, 45, 46] requires modifications of the guest to the extent that
it can run on the kernel-user interface of a microkernel, providing threads,
protection domains or tasks, and inter process communication. With the
advent of the vCPUs [41] this microkernel-user interface, in fact, drew a
little closer to the machine interface. Whether or not this technique can
be considered para-virtualization, it shares with virtualization the ability to
run multiple guest operating system kernels, which in turn can run complex
setups of unmodified applications. This gives the user the impression of
a virtual machine system. Sleek, virtualization-friendly interfaces make a
good argument for this technique’s security properties, such as the memory
protection and isolation. The prototypical implementations in this work are
based on L*Linux, a Linux kernel rehosted onto the Fiasco.OC microkernel,
which in fact implements vCPUs. Section 2.2.3 gives a more thorough intro-
duction into this combination and into L4Re, Fiasco.OC’s complimentary

runtime environment.

MEMORY VIRTUALIZATION

So far, different virtualization strategies were discussed in terms of the ma-
chine interface in general and in terms of sensitive instructions in particular.
A particularly interesting and performance-relevant aspect of the machine
interface is the translation lookaside buffer (TLB), which is key to mem-
ory management and protection. The TLB allows for efficient translation
from virtual addresses to physical addresses. By controlling the allowed
translations, operating systems can implement protection domains with dif-
ferent mappings, thereby controlling whether or not memory resources can

be addressed and therefore accessed by a thread executing in a particular

2.2. VIRTUALIZATION 15

protection domain. Because the TLB is a rather small associative memory,
it can only hold but a subset of the translations of a protection domain.
It acts as a cache for the page tables, data structures residing in memory
and holding the mapping information of a protection domain. The page
tables are consulted by the page table walker should the TLB be unable to
comply with a request. The page table walker and the TLB together form
the memory management unit (MMU). 2 Due to their role in memory pro-
tection, the page tables must be thoroughly protected from unauthorized
access, which is why they are managed by the operating system kernel run-
ning in the privileged mode of the processor. When moved into a VM, the
guest operating system kernel is no longer authoritative for all of the phys-
ical memory resources. Rather it shall only access those resources assigned
to it by a higher authority, that is, the hypervisor. With respect to the page
tables, this means that it can no longer be in control of the effective page
tables, because this would allow it to create mappings to resources that are
off-limits. To run an unmodified guest regardless, the technique of shadow
paging was introduced [11], a technique whereby the guest populates its
page table with mappings from virtual addresses to physical memory, or
rather to guest physical memory, which is what the guest “perceives” as
physical. These guest page tables, however, are no longer consulted by the
MMU directly; rather, the hypervisor constructs the so-called shadow page
tables holding the actual effective mappings between guest virtual and host
physical addresses. Shadow paging concerns the proper maintenance of the
shadow page table. To perform this maintenance, the hypervisor must be-
come aware of when the active guest page table within a VM is switched; it
must be aware of the current guest-physical to host-physical mapping of the

VMs as well as changes to these mappings.

To populate the shadow page table, the hypervisor’s page fault handler
queries the guest’s active page table and uses the knowledge about the guest-
physical to host-physical mapping to create a valid shadow-page table entry.
That is, unless it does not find a valid entry in the guest page table, in which
case it injects a page fault into the VM. Accordingly, the hypervisor must
modify the shadow page table when mappings are removed from the guest

page tables. This is done by revoking the guest’s access rights to the guest

2This refers to the x86 and ARM CPU architectures discussed here. Architectures with
software loaded TLBs exist but are not considered here.

16 CHAPTER 2. BACKGROUND

page tables. Subsequent accesses to the guest page table result in a page
fault, which can be used by the hypervisor to track page table modifications.
This technique allows full compatibility with existing operating systems;
however, it is rather costly in terms of CPU cycle usage. Further, extra page
tables are needed, thus increasing memory usage. The para-virtualization
approach of the Xen hypervisor [15], also known as direct paging, relaxes the
requirements on the machine interface. The guest page table is used directly,
a technique obviating the need for extra shadow page tables. Obviously, the
guest can no longer modify its page tables at will. Rather, it registers,
through a hypercall interface, pages of memory for the use as page tables or
page directories. The guest may modify these pages only through hypercalls,
allowing the hypervisor to intercept and sanitize the mapping requests. An
elaborate page type system is required to assure the invariant that a page
either can be used as a guest page table or is writable by the guest but not
both at the same time.

If the hardware architecture supports multiple levels of translation, one
speaks of nested paging or second level address translation. With support
for nested paging, the notion of guest physical addresses becomes an archi-
tectural entity. Guest page tables can be used directly by the hardware,
and the intermediate result of the first level of translation is subjected to
a second level of translation, which is under the control of the hypervisor.
Hardware supporting nested paging also exposes a virtual page table base
register (e.g. CR3 on X86 or TTBRO/TTBR1 on ARM); page faults are
directly injected into a VM without hypervisor interaction, reducing the

performance impact on the guests.

DEVICE VIRTUALIZATION

The virtualization of CPU and memory is only one-half of the story. Com-
puters that cannot communicate with the outside world are as useful as a
brick and not even this in the case of virtual computers. Communication
with the outside world requires peripheral devices, such as network adapters,
screens, and keyboards. Other peripheral devices provide mass storage, sen-
sory information, or special purpose data processing acceleration, such as
the graphics processing unit (GPU), which is of particular interest for this
work. Once again, there are different strategies by which virtual devices can

be presented to a VM. Full virtualization of a device allows the guest to run

2.2. VIRTUALIZATION 17

an unmodified device driver. This requires a device interface identical to
the interface of the actual physical device. A memory mapped IO interface,
for example, can be emulated by intercepting virtual register accesses in the
page fault handler. This technique can be very wasteful, as shown in the fol-
lowing example: Consider a device where most registers hold configuration
data; only one register actually triggers an operation, such as data being send
on a peripheral bus, when accessed. This access is the only time the VMM
needs to be notified, while all other accesses could be held in memory until
an action is required. The granularity of the paging mechanism, however,
would not allow for selective register interception. With para-virtualization,
the device interface can be augmented with hypercalls, potentially reducing
guest VMM interaction dramatically. Naturally, this requires the installa-
tion of an appropriate device driver in the guest. Devices are very diverse
in their requirements regarding latency, bandwidth, and CPU interaction.
Occasionally, devices are abstracted to the extent that their services can
be provided via a network connection. Device virtualization is discussed in

more detail and by example of GPU virtualization in Section 2.4.

F1asco.0OC, L4RE, AND LALINUX

As hinted at before, this work is based on an operating system rehosting
solution, composed of Fiasco.OC, L4Re, and L*Linux. Fiasco.OC is a mi-
crokernel that provides the mechanisms for the construction of protection
domains, the controlled communication between them, as well as scheduling.
L4Re complements the microkernel with services for resource management
and application support libraries. L*Linux is a rehosted version of the Linux
kernel. In the following, these components are introduced and illustrated by

an example of how to bootstrap a system containing these components.

F1asco.0C

The p-kernel chosen as the basis for the virtualized smartphone is Fiasco.OC,
a member of the L4-family [29, 48] of p-kernels. Fiasco.OC abstracts from
the basic CPU functionality, the timers, the interrupt controller, and the
memory management unit. It performs scheduling and provides means for
interprocess communication, but it leaves memory management as well as

cache maintenance and device interrupt handling to the user space by expos-

18 CHAPTER 2. BACKGROUND

ing abstraction primitives accordingly. The “OC” suffix stands for object
capabilities, which is owed to the access model of Fiasco.OC. All abstrac-
tions and services are accessed through capabilities that must be held by
the accessor. Here, the capabilities are kernel-protected pointers to kernel
objects. Holding a capability constitutes sufficient proof of authority over
the referenced object. However, before discussing the primitives exposed by
Fiasco.OC, the debug features of Fiasco.OC need some attention as well,
as they are going to be used for evaluation in Chapter 6. They pose an
exception in more than one way: First off, there is a device driver for se-
rial communication built into the kernel; it is used for the output of error
messages and warnings. Further, if the extensive debug features are enabled
at compile time, then a very versatile in-kernel debugger can be accessed
through this serial line. The debug features also expose an interface to the
user space, which does not succumb to the capability-based access regime.
Another interface exposed to the user space is the kernel info page (KIP).
This page is immutable by user-space applications and holds some general
information about the platform. It is mentioned here because it also holds a
field called kclock, which will be referred to later. This field is periodically
updated, usually with a timer frequency of 1 KHz, providing a time source

to user-space applications.

Fiasco.OC exposes eight different primitives to the user. They can be
grouped as follows: Threads and tasks are the units of temporal and spatial
isolation, respectively. The inter-process communication (IPC) primitives
are IR(Q) and IPC-Gate for asynchronous and synchronous IPC, respectively.
The factory allows for the creation of instances of all of the previously men-
tioned types of kernel objects, including itself, thereby providing a means
to subject kernel memory consumption to a quota mechanism. Using the
scheduler object, scheduling parameters of a thread, such as the CPU affinity
and priority, can be manipulated. The interrupt control unit, ICU, allows
for the registering of hardware interrupts. In addition, the VLog interface
exposes the serial input and output device driven by the kernel, allowing
for output, logging, and user input. The latter three objects are singletons
and cannot be created using a factory object. Their protocol, however, can
be implemented by user-space servers to provide similar services, such as
a virtual ICU or an output multiplexer for interleaved output by multiple

applications through VLog.

2.2. VIRTUALIZATION 19

Instances of these kernel object types are exposed to the user by capa-
bilities that can be invoked through a unified interface. A thread stores
the parameters that it wishes to pass to the invoked object in its associated
user thread control block or UTCB. The UTCB is a preallocated portion of
the memory associated with each thread. It contains, among other items,
sixty-three machine word-sized message registers holding parameters before
and return values after capability invocation. Although threads invoke ca-
pabilities, they cannot own or hold capabilities. Instead, running threads
are, at any time, associated with a task.

Fiasco.OC follows a hierarchical memory model, similar to the one de-
scribed by Liedtke [48]. In Fiasco.OC, however, address spaces are rep-
resented by tasks. With the map and unmap® operations, memory and
resources can be delegated and revoked to and from a task. Tasks also rep-
resent a capability space holding references to kernel objects. Unlike the
memory model, the capability model is not hierarchical, that is, capabili-
ties can be passed to other tasks using the map operation, but they cannot
be revoked. A capability holder, however, can choose to destroy an object,
provided its capability is powerful enough. Capabilities can have different
qualities, such as the right to destroy the object that it refers to. A subset
of these qualities can be passed on to the receiver of a capability when it is
transferred, either by the above-mentioned map operation or, also possible,
by trading it via a previously established communications channel, that is,
an [PC-gate. Tasks are thus able to hold resources such as memory and ker-
nel objects, and a thread can access the memory and invoke the capabilities
held by the associated task.

To establish a communication channel, both communication partners
must be in possession of a capability referring to the same IPC-Gate. One
of the partners, the server, registers with the IPC-Gate, thereby inform-
ing the kernel that invocations of the IPC-Gate are to be forwarded to it,
the registree. This registration, again, requires the capability to have the
appropriate quality, which is not required by the client placing a request.
Communication through an IPC-Gate is synchronous, that is, the server
must be ready to receive whenever a client calls. Otherwise, the calling

client blocks until the server becomes ready or returns with a timeout error

3The unmap operation corresponds to the flush operation as of Liedtke [48]—a grant
operation does not exist.

20 CHAPTER 2. BACKGROUND

code, depending on the timeout parameter specified by the client. Servers
can provide arbitrary user-defined services through IPC-Gates. Notably, a
server can, due to the unified interface, also mimic kernel-defined objects,
such as the ICU or the VLog.

Asynchronous communication is possible through the IRQ object. Analo-
gous to the IPC Gate, both communication partners need to be in possession
of a capability to the IRQ object, and one communication partner, the one
that wishes to be notified, registers with the IRQ object. Contrary to the
IPC Gate, invocation of a valid IRQ object never blocks and always succeeds.
The receiver is notified as soon as it is or becomes ready to receive. Also,
the TRQ object is counting, which means that the receiver is guaranteed to
be notified once for every time the IRQ object is triggered. Besides being
used as a means for asynchronous communication between applications, the
IRQ object serves as transport for device interrupts. For this purpose, a
device driver registers with an ITRQ object and binds the same object to a
pin number of the ICU. In this arrangement, the IRQ object is triggered by

the interrupt handler of the kernel, thus notifying the driver of an event.

The readiness to receive is a precondition for receiving a notification or
a synchronous IPC call. Typically, a thread enters the state of readiness by
issuing a system call. There is, however, another mode of operation that
a thread can transition to, which expands the functionality of the thread—
the vCPU mode. Once transitioned to the vCPU mode, the thread can still
block and wait for IPC, but it can also indicate its readiness to receive, by
a flag in the vCPU state area, which is an amendment to the UTCB. The
flag works analogous to the interrupt flag of a physical CPU and, if set,
allows for asynchronous interruption of the vCPU’s execution. To facilitate
this asynchronous interruption, the thread also stores pointers to a handler
function and a stack in the vCPU state area. The same mechanism can
be used to reflect exceptions and page faults into the vCPU; both can be
selectively toggled on or off by flags in the vCPU state area. The vCPU
mode also allows a thread to transition to a different task, a secondary
task. As a task does not only represent an address space but also a set of
privileges in the form of capabilities, this task transition allows the vCPU
to temporarily give up its privileges. Upon an asynchronous notification, an
exception, or a page-fault, the kernel also stores the architectural state of
the vCPU to the vCPU state area and drops into the primary task, that is,

2.2. VIRTUALIZATION 21

if it happened to execute in a secondary one. Therefore, the vCPU mode
allows for user-level scheduling and the transition of privilege levels, which

strongly aids the para-virtualization of legacy operating systems.

L4RE

The eight kernel objects provided by Fiasco.OC are supplemented by a se-
ries of concepts, libraries, and user-defined protocols, which constitute Fi-
asco.OC’s complementary runtime environment, L4Re. The following intro-
duction to L4Re does not claim to be comprehensive, and it is limited to
those elements of L4Re that are vital to understanding the following elu-
cidations. It covers the principles of memory management, which, as was
mentioned earlier, is left to the user space. Further, it will cover two proto-
cols related to graphics output and user input.

The key elements of memory management in L4Re are the dataspace pro-
tocol and the region manager. A dataspace constitutes an abstract memory
object managed with a given semantic. In L4Re, memory is typically allo-
cated by requesting a dataspace from a dataspace provider. The application
then associates a part of the dataspace with a part of its virtual address
space by means of the region manager, which keeps track of the task’s vir-
tual memory layout. A memory access by the application then results in a
page fault handled by the region manager. The region manager, knowing
which dataspace corresponds to the faulting region, asks the corresponding
dataspace provider for the actual physical memory pages and, subsequently,
maps them into the application’s address space. Memory allocation is but
one typical way dataspaces and region managers interact; another is setting
up shared memory regions. A dataspace can also denote actual physical
memory, depending on the dataspace provider, which may or may not be
contiguous, or a region of memory-mapped 10 registers. Obviously, the
latter case plays an important role in granting drivers access to devices’ 10
resources, while the former finds application in allocating immovable buffers
for DMA or for the use as a framebuffer.

Another user-defined protocol of L4Re is the goos protocol. It is an in-
tegral part of L4Re’s GUI architecture. The goos protocol uses dataspaces
for passing framebuffers from a goos-server to a client. It adds meta in-

formation about the screen, views, and buffers. The relationships among

22 CHAPTER 2. BACKGROUND

(X,y) screen o@ buffer
&
= view \
=l
Q
=
width \
B stride -

Figure 2.2.1: Goos protocol primitives. The screen is a physical output device, and
a buffer is a memory region holding an output image. The view, defined by its width,
height and position on the screen (x,y), denotes a region on the screen. A buffer can
be attached to a view, indication that the view's screen region shall show a portion of
the buffer, denoted by an offset and the view's dimensions.

these primitives are depicted in Figure 2.2.1. The protocol allows the han-
dling of the physical resources, such as memory buffers, and one or more
screens; the view is an abstract construct mapping a portion of a buffer to
an equally sized portion of the screen. L4Re includes multiple implemen-
tations of the goos protocol: Fb-drv is a low-level display controller driver,
which uses the goos protocol to expose the visible framebuffer to its clients.
Mag is a window manager, exhibiting the most complete implementation of
the goos protocol known to this author. While making use of a subset of
this protocol, the purpose of this work required amendments to goos as will
be discussed in Section 4.5. The mag window manager also implements the
Event protocol, which is used to transmit input events. It uses IRQ-objects
for asynchronous signaling in conjunction with a shared memory ring-buffer
holding the event information. Events are encoded according to the Linux
input event specification.

Another important subsystem provided by L4Re is io. Evaluating a user-
supplied® configuration, it groups resources of peripherals into so-called vir-
tual buses (VBus). These VBuses can be assigned to other subsystems
through IPC-gates, effectively granting access to the resources grouped in

the corresponding VBus. Any user space driver in an L4Re-based system

“See https://www.kernel.org/doc/Documentation/input/input.txt and https://
www.kernel.org/doc/Documentation/input/event-codes.txt.
SHere, the user is in fact a system integrator.

https://www.kernel.org/doc/Documentation/input/input.txt
https://www.kernel.org/doc/Documentation/input/event-codes.txt
https://www.kernel.org/doc/Documentation/input/event-codes.txt

2.2. VIRTUALIZATION 23

acquires access rights to MMIO resources and interrupts through io.%

BOOTSTRAPPING A MINIMAL L4RE-BASED SYSTEM

When Fiasco.OC boots, it expects a certain memory layout, in which it finds
the binaries of the first two subsystems to run in its user space. One is the
root pager, and the other the root task. L4Re provides a root pager by the
name of sigmaO and a root task by the name of moe. Sigma0 owes its name
to the concept of the hierarchical address space, where address spaces are
denoted by the Greek letter o, and the index zero denotes the root of the
hierarchy [48]. The name moe is borrowed from the animated comedy series
“The Simpsons”, as are the names of other subsystems’ of L4Re. Once
the kernel has started these two subsystems, the user space takes control.
Having all the privileges that the user space of Fiasco.OC can have, that
is, the user memory by means of sigma0O, the kernel memory by means of
an unrestricted factory, and the singleton kernel objects ICU, VLOG, and
Scheduler, the root task moe runs a helping subsystem, typically the Lua
interpreter ned, to bootstrap the rest of the system. By evaluating a script
that is provided by the system’s architect and by harnessing the services
provided by moe, ned begins setting up other subsystems. In doing so, ned
ideally delegates just enough of the resources available to moe for these
subsystems to accomplish their assignments, thus adhering to the principle
of least authority. In all but the simplest “Hello World” setups, the first

server started by ned is usually the resource manager io.

LALINUX

Generally, L*Linux [36] is a modified Linux kernel running on top of an L4
p-kernel. L4Linux comes in various flavors, depending on which pu-kernel
it is running on. But, whenever there is a reference to L*Linux in this
work, the Fiasco.OC-based variant is meant. L*Linux is modified to run on
one or multiple threads in vCPU mode. The task of distributing the time
quota available to these vCPUs among the guest’s threads is left to L4Linux.

5Depending on the platform architecture and maturity of platform support, this also
goes for 10 ports (x86) and individual general purpose input and output (GPIO) pins.

A connection between the named characters and the functionality of the corresponding
subsystems, however, is not known to the author.

24 CHAPTER 2. BACKGROUND

a7 .
T .

~ o)
4 % M ﬁ
g <) E
S| s
R 1 a‘»
O = 2 =
[0}
g g 0 O
O o~ Q &
o= © O
&l a3
vCPU L =2
timer
thread i
8 | Se—
£
71\ y,
=
B
& .
Fiasco.OC
(=

Figure 2.2.2: L*Linux is a Linux kernel running in the user-space of an L4-family
pi-kernel, here Fiasco.OC. An L*Linux instance is a conglomerate of Fiasco.OC's prim-
itives: One or more vCPUs which can transition between a kernel-task, which is the
residence of the L*Linux guest kernel, and several process tasks confining the guest
processes. A timer-tread running in the kernel-task provides the instance with a time
base, e.g., for scheduling.

Address space separation between the guest kernel and the individual guest
processes is facilitated by tasks and the vCPU’s capability to transition
between them. The guest kernel resides in the primary, or kernel, task.
Guest processes are implemented using secondary tasks. The guest kernel
may instruct the vCPU to commence execution in a secondary task, and it
regains control in the event of an exception, such as a page fault or a system
call, or by an external event, such as an interrupt. These events are delivered
to the guest kernel by the vCPU’s upcall mechanism. Every transition
between the tasks, naturally, causes an address space switch, which makes
system calls and exception handling in L*Linux inherently slow. In a way,
L*Linux uses tasks as shadow page tables. In this respect, the shadow paging
approach used by L*Linux differs from the way shadow paging was explained
earlier. The guest page tables are not interpreted by the hypervisor, but
rather by L*Linux itself; shadow page table entries are made by the mapping
mechanism of the task object. For example, when a page fault occurs while
the vCPU is executing in a secondary task, a page fault is injected into
L*Linux by the upcall mechanism of the vCPU. This handler walks the
guest page table. If it finds a valid entry, it maps memory resources into the

faulting secondary task accordingly. Otherwise, it starts the regular Linux

2.3. GPU DRIVER STACK 25

page-fault handling procedure, which, if successful, forwards the mapping to
the microkernel as it resumes the execution of the faulting process. LLinux
gets its memory portion, which it treats as physical memory, in an early boot
phase by requesting it in the form of a dataspace from its assigned factory.
This seemingly trivial detail will become important in the discussion of trust
in resource management in Chapter 5.

There is basic virtual device support for L4Linux in the form of paravirtu-
alized device drivers: The shm_net driver, for example, allows point-to-point
network connections between two L*Linux instances. More related to this
work is the 14_£b driver, a framebuffer driver using the aforementioned goos
protocol as back end. This driver also provides an event interface based on
the aforementioned event protocol. The reason these two seemingly unre-
lated functions have been consolidated into one driver is that L4Re’s window
manager mag and the screen multiplexer con combine both services in one

communication channel.

GPU DRIVER STACK

Device drivers are both hardware-specific and operating system-specific. They
communicate directly with a device and provide a mostly standardized inter-
face for user applications. Thereby, device drivers abstract from the specifics
of the hardware and provide application programmers with a unified inter-
face for a certain class of device, regardless of the actual implementation of
the device.

GPU drivers are no exception, but they are exceptional in their inherent
complexity, which is required to provide the desired abstraction. OpenGL
ES [7] is the standard API for GPU access on mobile handsets. This interface
allows the application programmer to manipulate the abstract rendering
pipeline that OpenGL provides. Shader programs written by the application
programmer become part of the rendering pipeline. These programs are
supplied in a language that is agnostic to the underlying hardware, the
OpenGL ES shading language (GLSL). GPUs are designed to support an
OpenGL rendering pipeline, but they do not understand OpenGL ES or
GLSL as provided by the programmer directly. A GPU is a computing
device with its own instruction set architecture (ISA). And while the mobile
handset market is dominated by CPUs with ARM architecture, mobile GPU

26 CHAPTER 2. BACKGROUND

architectures are quite diverse (Mali, Adreno, Tegra, VideoCore, Power VR,
Vivante).

For providing the desired abstraction, a GPU driver stack provides many
functions, some of which are typical for operating systems, such as memory
management and scheduling. But some of the functions, such as compil-
ers and linkers, are more commonly found in a development rather than
a runtime environment. These compilers and linkers are needed to trans-
late the abstract operations of the rendering pipeline, along with the shader
programs, into an executable that can run on the GPU. As this executable
consists of user-supplied code, it must be considered untrusted. At the same
time, the GPU is a powerful DMA device. In order to confine the influence
of this untrusted code to the system’s memory, it must be subjected to some
form of memory management.

Memory management has the following three aspects: The first is the
accounting of physical memory. The second is the management of the vir-
tual address space. Finally, there is the protection of physical memory
resources. The systems addressed here, especially for the latter two aspects,
are very tightly coupled. This is due to the use of memory management
units (MMUs). MMUs translate bus requests issued by a bus master (e.g.,
the CPU) transparently from one address space into another by consulting a
lookup table, the translation lookaside buffer (TLB). The TLB caches trans-
lations, and if a request cannot be complied—that is, a TLB-miss occurs—a
page table that resides in the memory is consulted. ® In performing this
translation, the MMU both provides the bus masters with a virtual address
space and provides for memory protection. The latter derives from the fact
that a bus master cannot access physical resources for which no correspond-
ing virtual address exists. These capabilities, virtual address space defini-
tion and memory protection, are quite naturally passed on to the software
controlling the page tables.

Just as the CPU, the GPU in embedded devices and mobile handsets is
a bus master, and its bus accesses are mediated by an MMU. So in the
context of Android smartphones, the software controlling the page tables of
this GPUMMU is the Linux kernel, specifically, the GPU kernel driver. The

8There are implementations of software-loaded TLBs, that is, upon a TLB miss an
exception is issued, allowing a software routine to resolve the issue. The systems addressed
here, however, perform TLB-miss resolution in hardware and thus have a fixed page table
format.

2.3. GPU DRIVER STACK 27

GPU kernel driver offers a device interface that is by no means agnostic to
hardware. This interface is used by a user-level driver, e.g., a shared library,
which in turn provides the OpenGL/EGL API abstraction. It can now be
delineated where each of the aspects of memory management concerning the
GPU is situated. The physical memory is accounted for by the kernel. There
are multiple interfaces provided by the Linux kernel, some of which have
been introduced by GPU manufacturers, that allow user space applications
to allocate physical memory resources for the use with the GPU (UMP, ION,
dma_ buff, ..). Some implementations may carve out a portion of physical
memory for the sole use as graphics memory, but in principle, the user
can allocate arbitrary amounts of physical memory for this purpose. The
kernel merely tracks the ownership of the allocated resources. The user-space
part of the GPU driver is entrusted with the layout of the virtual address
space as “seen” by the GPU. But because of the entanglement of memory
protection and virtual address space layout, the user-space program cannot
be given direct control over the GPU’s page tables. Instead, the GPU kernel
driver offers an interface that allows attaching physical memory resources
to the virtual address space of the GPU, a virtual address space that is
private to the calling application. The kernel can exert memory protection
by sanitizing theses attachment requests, thereby asserting that only those
memory resources are attached that are genuinely under the control of the

calling application.

Figure 2.3.1 shows the bookkeeping of the context layout in the user-space
part of the driver. Additionally, there are the shader compilers as well as the
linker. With these functional blocks, the user-space driver is fully capable
of creating an executable with all related input data that can be executed

by the GPU autonomously.

What remains is how a job is submitted to the GPU. This is dependent on
the GPU’s architecture. The GPU needs to know where to find all the parts
of the job, such as shader programs, textures, and attribute lists, where to
write the result and in which format. As the user driver assembles all of
these bits, this information must be passed on to the kernel driver, which
can in turn configure the GPU. Some GPUs have some sort of a command
processor. In this case, all configuration data can be put into a command

stream integrated into the job executable layout. This makes it sufficient for

28 CHAPTER 2. BACKGROUND

Application
(GPU abstraction 0|
(OpenGL/EGL)
B \
— user-space
memory GPU driver
compiler | Jayout
3 ol linker and .
&} | \ control bookkeeping) |
i} : s kernel
: (Gpu dnverj/Kernel\ GPU driver
g \ i
g GPU (MMU

Figure 2.3.1: Components of a GPU driver stack found in a typical mobile handset.

the user driver to pass only the entry point of this command stream on to the
kernel driver. Once the kernel driver has all the information, it can schedule
the job to run as soon as the GPU becomes idle. It is in the responsibility
of the kernel driver to enforce proper memory isolation. Therefore, it must
assure that the correct context is active—that is, the correct page table is

configured on the GPU’s MMU—throughout the run-time of a given job.

GPU VIRTUALIZATION

GPU virtualization is often categorized into front-end and back-end virtu-
alization, depending on where the virtualization boundary is drawn. Typi-
cally, a virtualization scheme is referred to as front end if a high-level API
serves as the virtualization boundary. Conversely, it is referred to as back
end if the boundary is drawn at the device interface level. This is a very
coarse-grained classification, and a closer look at existing GPU virtualization
schemes reveals that each one has a rather unique way of placing the virtual-
ization boundary and the driver components involved. It must be noted that
none of the discussed GPU virtualization schemes address mobile-embedded

GPUs, as this has not received academic attention until now.

VMGL [42] is a classical front-end virtualization scheme, with OpenGL

2.4. GPU VIRTUALIZATION 29

as the virtualization boundary. It attempts to be independent of the un-
derlying virtual machine monitor (VMM)—implementations for Xen and
VMware exist—as well as agnostic to the underlying hardware; it supports
ATI, Nvidia, and Intel GPUs. It deploys an OpenGL abstraction library in
the guest, which marshals OpenGL commands and sends them via a net-
work transport to the host. An X-Server extension communicates window
size changes to the host; 2D output as well as user-input events are commu-
nicated using VNC [54]. One VMGL stub runs on the host for each guest
application passing the marshaled commands on to the native OpenGL soft-
ware stack. A VNC viewer interacts with this stub, composing the stub’s
3D output with the client’s 2D renditions. VMGL uses WireGL [38] as wire
protocol. WireGL performs optimizations on the command streams to re-
duce network bandwidth usage. Still, while VMGL shows reasonable frame
rates in 3D gaming benchmarks, it does so at the cost of massive CPU uti-
lization and virtual network bandwidth consumption. VMGL goes to great
length to support suspending guests. In doing so, it introduces quite some
complexity into the guests, complexity required to track the OpenGL state.
Being able to suspend a VM, however, allows the VM’s migration. This is
a great feature, but it comes at a price. To be able to migrate the VMs
across hardware platforms, both source and destination must support the
same subset of the OpenGL API. OpenGL extensions only available for one
of the platforms can therefore not be supported on either. This limits the

fidelity of the approach.

Blink [35] is a GPU virtualization scheme for Xen. Blink consists of a
server and an API called BlinkGL, which is a superset of OpenGL. The
Blink server runs as a user-space application inside a virtual machine that
has direct access to the graphics acceleration hardware. It receives seri-
alized BlinkGL commands from Blink clients via a shared memory-based
transport. The Blink server executes these commands using commercially
available OpenGL drivers corresponding to the underlying graphics hard-
ware. The Blink scheme introduces stored procedures. These sequences
of BlinkGL commands are used, e.g., to react to user interaction without
the need to switch the context back to the corresponding client. They are
translated into machine code using a Just-In-Time (JIT) compiler integrated
into the Blink server. The JIT compiler is supposed to sanitize the BlinkGL

command stream and perform global optimizations, exploiting “advanced

30 CHAPTER 2. BACKGROUND

knowledge of client behavior” [35]. Another optimization is concerned with
the transfer of high-bandwidth data, such as for textures and framebuffer
objects. Blink introduces a concept called Versioned Shared Objects (VSOs).
This concept allows passing high-bandwidth data by reference, so that they
can be “DMA’ed” directly into video memory. Using these optimizations,
Blink can achieve quite impressive performance results, which are close to
the native performance; provided that the client uses BlinkGL natively, al-
lowing for the use of stored procedures. Legacy OpenGL applications, which
are also supported by Blink, take quite a performance hit. Blink makes some
interesting choices in overcoming typical problems with API remoting, such
as the communication overhead via a wire protocol. Performance consider-
ations aside, it suffers from a massively bloated TCB, consisting of a full
GPU driver and OpenGL abstraction stack. In addition, there is the com-
plexity of the JIT compiler, which raises questions about the expressiveness
of BlinkGL and subsequently regarding the potential for an attack by inject-

ing code into the Blink server.

Dowty and Sugerman [26] present another GPU virtualization scheme,
SVGA3D. At first glance, it is not obvious whether to characterize this
scheme as a front end or back end. Instead of using a wire protocol over a
virtual network, as VMGL does, it emulates a virtual PCI SVGA adapter
towards the guest. This adapter is supplemented by a new set of drawing
commands introduced by SVGA3D. In a way, SVGA3D presents a new vir-
tual GPU architecture, for which a complete driver stack is required within
the guest VMs. So, from the perspective of a VM, this scheme looks like
back-end virtualization. On the host side, however, the graphics adapter
is emulated using a full OpenGL stack, which is a characteristic of a front-
end virtualization. This makes the scheme agnostic to the API used on
the client side, as long as a driver exists that can translate the user’s API
calls into SVGA3D commands. SVGA3D deploys an elaborate mechanism
to share guest memory with the host’s 3D driver. The authors claim: “This
virtual DMA model has the potential to far outperform a pure API remot-
ing approach like VMGL [..]"—Dowty and Sugerman [26]. However, the
benchmark results they present show frame rates that are inferior to those

of VMGL when comparing native to virtualized frame rate ratios.

Smowton [60] presents Xen3D, which thrives on the merits of the Gal-

lium [4] driver stack. This driver introduces a split into three components:

2.4. GPU VIRTUALIZATION 31

A state tracker, a pipe driver, and a window system driver. The state tracker
provides an API abstraction, like OpenGL, and translates API calls into so-
called pipe commands. The pipe commands, in turn, are interpreted by
the pipe driver, which drives the underlying hardware. Xen3D conveniently
uses these commands as a virtualization boundary, for they are agnostic
to both the high-level API and the underlying hardware. It uses a shared
memory transport to communicate these commands to the host side. For
optimization, high-bandwidth data, such as textures, surfaces, and vertex
buffers, are passed by reference, using safe handles that can be checked and
translated into local pointers on the host side. The same goes for implicit
pointers, such as line strides. Xen3D does not remote a high-level API,
such as OpenGL, but rather an intermediate representation. This allows
for good portability, as the virtualization boundary is agnostic to both API
and hardware. Rather than using a full OpenGL graphics stack on the host
side, Xen3D moves the state tracker, and therefore, the code that provides
the high level API abstraction, into the guest, leaving only the pipe driver
inside the TCB. This is in contrast to the other front-end virtualization
schemes, which duplicate the API abstraction layer on the host side. An
EGL-based compositor removes the necessity for a large windowing system,
such as Xorg, on the host side, further decreasing the TCB impact. The
author does not present any performance results because allegedly no pipe
drivers for actual hardware were compatible with Xen at the time. However,
he uses the size of an existing pipe driver for Intel’s 1915 graphics chipset
and estimates the impact on the TCB by the pipe driver to be around 80,000

lines of code.

Like SVGA3D, gVirt [62] presents a graphics adapter to the VMs. But in
contrast, gVirt emulates this graphics adapter only partially. The VMs can
run an almost unmodified driver of an Intel Integrated Graphics GPU. The
emulation is partial because native GPU commands are passed on from the
guest driver to the hardware, thus avoiding emulation of the GPU rendering
engine. Tian et al. [62] identified the command buffer and the framebuffer
as the resources most critical to performance. Note that the authors use
the term “framebuffer” for not only a buffer holding a rendered image but
also, more generally, for denoting graphics-related buffers holding items such
as vertex lists, textures, and shader programs. Therefore, the VMs are

granted direct access to these resources, while MMIO register and page table

32 CHAPTER 2. BACKGROUND

accesses are emulated through trap and pass-through, and shadow paging,
respectively.

Notably, there is only one shadow page table for all guest VMs, creating a
single graphics address space. To share this address space among the guests,
while at the same time providing isolation between guests, gVirt deploys
various mechanisms: The address space is partitioned; the GPU commands
submitted by the guests are sanitized for out-of-bounds memory accesses.
These mechanisms call for a number of secondary mechanisms for perfor-
mance optimization and protection. The authors observe, for example, that
the partitioning leads to an inconsistent view of the graphics memory in the
guest with respect to the host (or how the GPU “sees” it), which would
require a mediator to translate the references in the command stream ac-
cordingly. To remove this requirement, the authors deploy memory space
ballooning to create a congruent, even if holey, view of the graphics memory
in the guests. Another measure stems from the command auditing. To pre-
vent a time of check time of use (TOCTOU) attack on the command stream,
the commands must be safeguarded against modification once the sanitizing
commences. Two mechanisms are used to provide this protection, rooting
in the way the commands were submitted. Commands can be submitted
through a special ring buffer or as batches in plain memory. In the former
case, the commands are copied into a shadow ring buffer, where they are
inaccessible by the guest; in the latter case, the corresponding memory is
made write-protected.

All of these mechanisms surely add complexity to the approach; and the
TOCTOU prevention mechanisms seem to eat away some of the performance
gains promised by having direct access to the command buffer. Eventually,
all of these mechanisms have their roots in the design decision of having a
single graphics address space, which is partitioned.

The authors make a case for having a split CPU/GPU scheduler. This
author sees no incentive for scheduling CPU and GPU in unison. But ap-

parently, they see a problem arising from this design choice:

The split scheduling mechanism leads to the requirement of con-
current accesses to the resources from both the CPU and the
GPU. For example, while the CPU is accessing the graphics mem-
ory of VM1, the GPU may be accessing the graphics memory of
VM2. —Tian et al. [62]

2.5. SECURE GUI 33

This author does not see how this is a problem if the CPU cores and the
GPU have individual MMUs. But the authors go on:

gVirt runs the native graphics driver inside a VM, which di-
rectly accesses a portion of the performance-critical resources,
with privileged operations emulated by the mediator. The split
scheduling mechanism leads to the resource partitioning design
[..]. —Tian et al. [62]

Here the author disagrees: Not the split scheduler calls for the resource
partitioning but rather the fixation on a single graphics address space.

If the authors had allowed for one shadow page table per VM, at least,
all of the various mechanism discussed above would be superfluous: The
memory space ballooning would not be needed, as consistent views of the
memory could be created by mapping the resources into the VM’s and the
GPU’s space accordingly; command auditing would not be needed because
there would be no foreign mappings in the shadow page tables, that is, any
memory accessible would belong to the VM issuing the GPU commands;
where there are no checks necessary, there can be no TOCTOU attacks. It
would be the MMU that would perform the check at the time of use.

It was mentioned in the beginning of this section that gVirt allows running
an almost unmodified device driver in the VM. In fact, the modifications
are also due to the decision of having the common but partitioned graphics
memory space, which, above all, allegedly sparked a modification in the

hardware specification of the GPU in question:

To support resource partitioning better, gVirt reserves a Memory-
Mapped I/O (MMIO) register window, called gVirt__info, to con-
vey the resource partitioning information to the VM. Note that
the location and definition of gVirt__info has been pushed to the
hardware specification as a virtualization extension, so the graph-
ics driver must handle the extension natively, and future GPU
generations must follow the specification for backward compati-
bility. —Tian et al. [62]

SECURE GUI

A graphical user interfaces (GUI) constitutes the interface between a human

user and a computer system, program, or application. GUIs are facilitated

34 CHAPTER 2. BACKGROUND

by graphical display devices for output and input devices, such as a keyboard,
mouse, or touchscreen. Through the GUI, an application provides the user
with information, such as text or imagery according to the applications
designation, and through interactive elements, such as buttons or text fields,
the user passes information to the application. But what constitutes a secure
GUI?

It is easy to imagine that the information given to the user or passed
to the application by the user is confidential. Possibly, this information is
the content of an email or credentials for a web service. A secure GUI must
ensure that this information stays confidential. Solving this goal by software,
as attempted in this work for mobile virtual machines, has its limitations.
Obviously, the information is presented on the screen to anyone who can gaze
upon it. And, not so obviously, it has been shown that a technique called
Van-Eck-Phreaking [28], by which the content of a computer screen can be
recovered from the electro-magnetic emissions over a rather large distance,
can be applied, though with limited range, to tablets [37]. Countering these
kind of attacks is clearly out of the scope of this work. There are, however,
user interface (UI) confusion attacks, such as phishing, and attacks on the
availability, such as ransomware, that can be addressed by a proper GUI

design.

Input events passing through the GUI also constitute authoritative ac-
tions, e.g., the setting and revoking of file permissions or the confirmation
of an order. A secure GUI must ensure the integrity of input events. Ensur-
ing the authenticity of physical key strokes, to the extent that the identity
of the user is always assured, is out of the scope of this work. A proper
GUI design, however, can prevent the forgery or injection of events by an
untrusted third party, e.g., a compromised open compartment in the con-
text of a virtualized secure smartphone. It can also provide the user with
a trusted path to the TCB of the system, effectively countering availability
attacks as they are performed by ransomware. Similarly, it must ensure
the integrity of application output, preventing the forgery of information
fed to the user by malware. The consequence of failing this integrity assur-
ance is almost always the user being tricked into unintended actions, such
as performing authoritative actions inadvertently, or giving away sensitive

information, such as login credentials.

To be clear about terminology: In this context, the term GUI design is

2.5. SECURE GUI 35

unrelated to the graphical design of user interfaces, which is also outside
the scope of this work. To illustrate the meaning of the term GUI design,
consider the path of a user-input event: Before an input event reaches an
application, it first registers on an input peripheral that is connected to the
computer through a bus system, such as USB? or IIC.'? A corresponding bus
controller notifies the CPU through an interrupt, whereupon the CPU runs
a driver, which, in turn, queries the controller for input data. The user input
now resides in memory and is easily accessible by the CPU, but the journey
for the input event continues through more program logic, e.g., deciding
which of the applications is the righteous recipient. It is this program logic
in conjunction with the driver constituting the input path and the output
path analogously, which is considered the GUI, the design of which is meant
by GUI design.

The X-server in conjunction with the underlying kernel is an example of
such program logic. It provides windows as abstractions of the screen and
forwards input events to any program that requests them. Shapiro et al.
criticize: “The most obvious security problem in X is the absence of policy
of any sort”—[59]. And further: “X assumes not only that applications
are cooperative, but that their actions reflect the volition of the user. In a
world of increasingly hostile applications this trust assumption has become
an unsupportable luxury”—[59].

Yee [65] formulates several principles for the input and output of secure
systems. The most relevant for this work are the principle of the trusted
path and the principle of identifiability. Regarding the trusted path, Yee
states, “The user must have an unspoofable and incorruptible channel to
any entity trusted to manipulate authorities on the user’s behalf”—[65]. As
an example, he presents the Ctrl+Alt+Del sequence of Microsoft Windows,
which unspoofably triggers the display of the login prompt. The authorita-
tive action performed by means of this trusted path is the identification of
the user. After this action, the assumption is that all input represents the
intent of the identified user and that this user is the recipient of the output.
Any program started by the user’s input is attributed to the user; therefore,
the program inherits the privileges attributed to this user, and it is assumed

that all programs share the screen gracefully and cooperatively. This is ex-

http://www.usb.org
108pecifications available at http://nxp.com

http://www.usb.org
http://nxp.com

36 CHAPTER 2. BACKGROUND

actly the kind of trust model that Shapiro et al. call an “unsupportable
luxury”. In contrast, they advocate a model by which the display server pro-
vides a trusted path to all applications, which in turn, run with individual
sets of privileges. Their EROS Trusted Window System (EWS) [59] aims
at providing a trusted path to every application. It does so by delivering
input events exclusively to the window in focus. And, mandatory window
decorations with unforgeable labeling as well as the prohibition of invisible
windows mitigate, if not prevent, GUI confusion attacks [13, 17, 49, 50]. For
the same purpose, Feske and Helmuth [31] introduce the X-ray mode into
their Nitpicker window manager. A secure attention event, which just like
the Ctrl4+Alt+Del sequence, is never delivered to a user application, toggles
the X-ray mode. When active, all but the window in focus are dimmed,
decorations are displayed, and floating labels identify the origin of each win-
dow. Lange and Liebergeld [43], who investigated usability aspects of a
secure GUI on smartphones, suggest a two-finger swipe gesture for this pur-
pose. In all cases, the unforgeable labels fulfill the principle of identifiability,
provided that a trusted boot process, in conjunction with a trusted loader,
provides the labeling information [31]. The secure GUI, by design, must

prevent applications from tempering with labels, especially their own.

In the context of the virtualized secure smartphone, the VMs and any
native application!! using the device’s display for a GUI are identified by
a trusted bootstrapping procedure using cryptographic signatures for val-
idation. = These entities are to be identified by the labeling mechanism
of a secure GUI, and to which a trusted path is to be provided. Appli-
cations inside the VMs are not under the scrutiny of this mechanism for
lack of reliable labeling information. Mechanisms for labeling Android ap-
plications, which are built into the Android middleware, however, have been
presented before [17, 30]. In a first pragmatic approach, the secure GUI of
the secure smartphone was accomplished by the window manager mag (see
Section 2.2.3). Like EWS and Nitpicker, mag features exclusive input event
routing and window labeling and is a viable implementation of a secure GUI
service provider. But, it is ill suited for the deployment on a mobile handset
in several ways. First, the concept of window management has not caught

on for mobile devices. Mobile applications nearly exclusively monopolize the

"Native applications are those that have been written for, and run directly on, the
microkernel’s interface, rather than inside a VM.

2.5. SECURE GUI 37

screen. This is not a serious problem for the functionality, as mag is flexi-
ble enough to be configured appropriately. Leaving idle the many window
management features implemented by mag, in this configuration, however,
mag was unnecessarily complex and thus bloated the TCB. Second, the com-
positing technology used by mag is very demanding in terms of CPU cycles,
to the extent that it neither achieves the required performance and fidelity

nor meets the required power efficiency.

38

CHAPTER 2. BACKGROUND

Threat Assessment

The GPU is a very powerful DM A-capable device, and it is well known that
DMA devices pose a threat to systems, the security guaranties of which de-
pend on strong memory protection domains [56]. Surely, the secure smart-
phone is such a system. Thus, if the computational powers of the GPU
shall be harnessed for the sake of GUI efficiency, the GPU’s DMA capabili-
ties must be confined carefully. In the course of this chapter, a model of the
GPU as an agent for copying memory content is presented, substantiating
the rather unspecified threat of the GPU as a DMA device. Subsequently,
this model is put to use on two bugs that existed in the GPU drivers of two
successful smartphone SoCs deployed in the field, with the result of subvert-
ing the integrity of the entire system. Finally, the more subtle failings of
one of the driver stacks are discussed, failings that potentially undermine
the secure GUI principles introduced in Section 2.5. The chapter concludes
with the lessons learned as well as the phrasing of design paradigms that
shall be adhered to in the following chapters about the architectural design

proposed in this work.

It is a well-known fact that DMA devices pose a threat to memory isola-
tion and that they must be handled with great care [56]. What does that

39

40 CHAPTER 3. THREAT ASSESSMENT

mean for the GPU being a DMA-capable device? The GPU’s memory ac-
cesses are supposed to be tamed by an MMU, which is under the control of
the kernel driver. In the course of this work, a bug was found in the GPU’s
kernel driver of a popular smartphone model, which allowed a malevolent
user to gain control over this memory access regime. In an attempt to il-
lustrate the consequences, a model of the GPU as a memory-copying agent
was devised, which consequently, led to the design of an exploit.! The
design and principle of the exploit is presented in Section 3.1. Shortly after
the GPU-based privilege escalation attack was published [25], Clark [9, 21]
published a bug in a different GPU driver that allowed the manipulation
of the GPU’s active page table with equally devastating effects on the sys-
tem’s integrity. In Section 3.2.2, Clark’s findings are presented and explored
further.

As it turned out, even if the buggy interface that allowed the first attack
was configured as intended, the potential for exploitation would only de-
grade from privilege escalation to a privacy violation in that it leaked vital
information. This is discussed in Section 3.3. The apparent fix to both the
privilege escalation and privacy violation issue was to disable the buggy fea-
ture and to use one of the buffer-handling APIs that was mentioned earlier
in Section 2.3. However, the UMP module which supplements the GPU
driver, in particular, was found to be buggy in that it had too little entropy
in the global handles used to identify buffers. This lead to a key logger that
was evaluated by Fiebig et al. [33], and which is also discussed in Section 3.3.
The chapter concludes with the statement of a threat model and the security
requirements for the architectural design that this work suggests to which
to adhere.

THE GPU ASs AN AGENT TO COPY MEMORY

For the sake of this discussion, it shall be assumed that a mobile GPU has
unrestricted access to main memory. It is understood that the GPU can
perform quite intricate computations from the realm of computer graphics
on behalf of an application. But what makes the GPU a versatile tool for

an adversary? This author aspired a model that was intuitive and simple to

!The exploit was implemented by Martha Piekarska as part of her master’s thesis, and
the design and evaluation was subsequently published in 2013 [25].

3.1. THE GPU AS AN AGENT TO COPY MEMORY 41

implement and powerful at the same time. The line of thought was simple:
If a GPU could be used to display an image, e.g. a digital photograph, on
the screen, it somehow copies the decoded color values from a region of mem-
ory to the framebuffer. If there is no transformation involved, that is, if the
parameters such as the dimensions (width and height in pixels) and the cod-
ing of the pixel’s color of the source image match those of the output region
in the framebuffer, this amounts to an exact copy operation. Given that
memory access is unrestricted, this allows an adversarial application to copy
arbitrary information between portions of the physical memory, whether or-
dinarily accessible to that application or not. This notion of identical scene
rendering is key to the adversarial power of a graphics processor. While
more versatile GPUs may be leveraged by a sufficiently skilled graphics pro-
grammer to stage more sophisticated attacks, such as, e.g., scanning for key
material, even the simplest graphics processor or bit-blitting engine capable

of rendering the identical scene can be used for the attack described.

The rendering pipeline of OpenGL ES 2.0 works as follows: The input of
a rendering program contains a grid of vertices, which constitutes the geom-
etry of the scene to be rendered, where the vertices are points of that scene,
described by a set of attributes. The semantic of an attribute is completely
user-defined. However, one of the vertex’ attributes is usually a position of
some sort. In a first step, the geometry of the scene is fed into the geom-
etry phase of the rendering pipeline. In this phase, the vertex shader, a
user-supplied program, is executed once for each vertex. By interpreting the
vertex attributes, the vertex shader program gives meaning to the attributes
and at least derives a position on a two dimensional plane from them. The
shader program may have additional output, which is stored in varyings.
The output of the geometry phase is a set of polygons, the primitives, the
corners of which are described by a position and an optional set of varyings.
In the next step, the primitives are rasterized. That is, a rectangular section
of the two-dimensional plane in which the polygons reside is sampled in a
grid-like fashion to produce fragments. Thereby, the varyings are being in-
terpolated according to the position of the fragment relative to the enclosing
polygon’s corner points. Before the result of the rendering pipeline can be
written back to the output buffer, a color for each fragment must be deter-
mined. The second programmable stage performs this task by running the

user supplied fragment shader program once for each fragment. This pro-

42 CHAPTER 3. THREAT ASSESSMENT

0,1,0
(0, 3)

0,1,0) 1,1,0) (0,1,0)
(0,3) (3.3) (0,3)

(1, 1)

(0,0,0) (1,00
(0, 0) (3,0)

(1,0,0
3.0

(0,0) | (1,0) | (2,0)
— —

Scene Geometry ————————> Primitives |[®%®| ———————» Fragments ————> Pixels
Geometry Phase 6.9 Rasterization Fragment Shading
(©,3) G.3)
Attributes Varyings Interpolated Varyings Uniforms
(0.1,00 POS © 1,0 gl_Position @mn v_tex pos u_src_tex

(0, 3) tex_pos (0, 3) v_tex _pos

(0, 0) (3, 0)

Figure 3.1.1: Copying a 64-byte memory region in the form of a 4 x 4 pixel tex-
ture using OpenGL ES 2.0. The figure shows how the input data—attributes and
uniforms—propagate through the OpenGL ES rendering pipeline.

gram receives the interpolated varyings as input. There is one more kind of
input to a rendering program, namely uniforms. Unlike attributes, which
are vertex-specific, and varyings, which are fragment-specific, uniforms are
literally uniform across all invocations of the vertex and shader programs
involved in rendering a single frame. A typical uniform is a transformation
matrix, which may be modified between two subsequent frames to change
the perspective of the scene. Textures are also uniforms, which for example,
may be sampled by the fragment shader.

To render the identical scene using OpenGL ES 2.0, one first needs a scene
geometry. This geometry shall be a rectangle congruent with the view port,
the portion of the scene that is going to be rendered. The top left diagram
in Figure 3.1.1 shows such a geometry. This is given by four vertices with
the corresponding attribute pos. The source buffer of the copy operation
is given as the texture u_src_tex. For the fragment shader to be able to
map the texture’s color values correctly to the fragments, a second attribute
tex_pos is given as input to the rendering pipeline. The second attribute
is propagated by the vertex shader as a varying v_tex_pos, interpolated
in the rasterization phase, and finally used for sampling the texture by the
fragment shader.

This rendering pipeline may produce an output that looks like the input

texture to the human eye. However, for it to perform an exact bitwise copy,

3.1. THE GPU AS AN AGENT TO COPY MEMORY 43

some additional constraints must be applied. First, the output buffer must
have the same dimensions (width and height) in pixels as the texture. After
all, the copy would not be very exact if its size is not equal to the original
number of bytes. Second, the pixel format of the texture must match the
output format. A suitable format that is widely supported is RGBA8888. A
pixel of this format is represented by a 32-bit word, every octet of which
represents one of the channels red, green, blue, and alpha. And every value
0 through 255 of each octet is a valid code. The latter is important, because
if there were unreachable bit patterns, this would not be a generic copy
mechanism. Finally, both pixel and line stride must match, and to copy a
continuous region of memory, they must be equal to the pixel width and line

width, respectively.

The copy operation that was just described can be implemented easily
using OpenGL ES. However, the OpenGL API, in conjunction with the
EGL API, provides a means to allocate buffers for textures and output,
thereby abstracting from memory handling details. In order to set the input
and output regions to the exact locations, it is necessary for an adversary to
work around these abstractions. While the identical scene rendering by itself
can be expressed very generically, working around the memory abstractions

is very implementation dependent. Here is the general problem:

Through the OpenGL/EGL API, the memory locations of buffers can only
be specified through symbolic names generated and passed to the user at the
time of their allocation. The abstraction layer, at some point, replaces the
symbolic names with actual memory addresses. Thus, even if the GPU has
unrestricted memory access, the attacker cannot simply specify the source
and destination address of the copy operation through the API. Instead, ei-
ther the attacker must acquire a symbolic name for the source or destination
address, or he must patch the program before it is submitted to the GPU.
From an isolation point of view, this is not a problem. The program is com-
piled and linked by the user-space part of the GPU driver, which means that
patching it is as simple as any other memory access. Finding the location
of machine word holding the address to be adjusted, however, may prove
cumbersome, because the internal layout of the driver’s data structures is
hidden by the implementation, especially so if the driver is provided as a
binary library, which is commonly the case. During the course of this work,

appropriately patched programs were constructed, using two different tech-

44 CHAPTER 3. THREAT ASSESSMENT

niques. For one set of experiments, an emerging open-source driver [6] was
used, which was easy to adjust appropriately. For another set of experiments,
the changing memory layout of the applications was observed through the
Linux proc file system (/proc/<pid>/maps) during GPU program construc-
tion. This gave away where location of the artifacts that would form the
GPU program within the attacker’s application address space. Using the
information about the structure of these artifacts from another open source
driver effort [3], the address to be modified could be quickly found.

UNRESTRICTED DMA THROUGH DRIVER BUGS

In the previous sections, it was established how a GPU can be used as an
agent for copying data from one memory location to another. Naturally, if
the GPU has unrestricted access to the main memory, this poses a serious
risk, even if masked by user-level API. However, as discussed in Section 2.3, it
can be assumed that the GPU’s memory accesses are mediated by an MMU
preventing illegitimate memory accesses—that is, if it is configured correctly.
As stated in Section 2.3, the responsibility for the correct configuration of
the MMU was located in the kernel driver of the GPU driver stack. These
drivers can be buggy. In this section, two bugs are presented and examined,
both prevalent in very popular smartphone models. The first one is rooted in
an unsafe memory management interface provided by the kernel driver. This
bug, which is present in the driver for the ARM Mali 400MP as found in the
devices Samsung Galaxy SII and SIII equipped with Exynos4 series SoCs,?
was found by the author. The second one is rooted in a misconfiguration
of the GPU and allowed the user to submit unsafe commands to the GPU.
It was present in the kernel driver of the Adreno GPU, which is part of
Qualcomm’s Snapdragon SoCs, found in smartphones of various vendors.
This bug was discovered by Clark [9, 21].

UNSAFE MEMORY MANAGEMENT INTERFACE

The bug discussed here is specific to a particular instance of a driver, namely,
the Linux kernel driver for the ARM Mali 400MP, as found in the devices

2Samsungs Galaxy SII and SIII phones came with a variety of different SoCs. The
outer casing being identical, the different flavors were only distinguishable by the model
number. The vulnerable models with Exynos4 SoCs are GT-19100 and GT-19300.

3.2. UNRESTRICTED DMA THROUGH DRIVER BUGS 45

Samsung Galaxy SII and SIII equipped with Exynos4 series SoCs. Through-
out the rest of this section, it will be simply referred to as “the driver”.

The driver provides its services to the user through the device node
/dev/mali. Its interface can be loosely grouped into four categories. Consid-
ered auxiliary are the API calls that allow querying version of the driver, its
API, and the underlying hardware as well as parameters such as the number
of computational cores. The category of development constitutes API calls,
such as for dumping the GPU’s page table and for querying performance
profiling information. Then, there is the scheduling category, which com-
prises calls for submitting jobs to the GPU and receiving notifications on
job completions. Finally, there is the category memory management, which
includes all API calls related to manipulating the GPU’s virtual address
space (GVA). The latter is of particular interest for this bug.

When an application opens the driver’s device node, a session is created on
behalf of the application and bound to the returned file descriptor mali_£d.
Such a session includes a private page table for the use with the GPU’s
MMU. The driver’s memory management API has three methods by which
a user can allocate physical memory recourses and attach them to the GVAS.

The latter amounts to a manipulation of the session’s page table.

mmap The first method is the invocation of the Linux system call mmap on

the file descriptor mali_fd. The prototype of mmap is as follows:

void *mmap(void *addr, size_t length, int prot,
int flags, int fd, off_t offset);

Invoking mmap performs three operations. It allocates a portion of
physical memory with the size length. It maps this physical memory
into the GVA at the location given by the offset parameter. It maps
the same memory into the calling process’ address space, the location
of this mapping being returned to the caller. Note that the caller can-
not influence the physical memory addresses, and all three operations
appear to be atomic to the user. The effect of mmap, as usual, can be

undone using munmap

UMP The Mali kernel driver is accompanied by a Linux kernel module
called universal memory provider (UMP). It provides its services through

the device node /dev/ump. Its API allows the allocation and, subse-

46 CHAPTER 3. THREAT ASSESSMENT

quently, the freeing up of physical memory resources. A thus allocated
buffer can be referred to by using a numeric identifier. Using this Iden-
tifier as offset parameter to an mmap invocation on /dev/ump, a caller
can map the buffer into its process’ address space. The Mali kernel
driver, in turn, offers an API call through the ioctl system call, which
allows attaching UMP-buffers to a session’s GVA. Again, the user has
no influence on the physical memory addresses of the supplied buffers,

as the buffers are referred to by a so-called “secure id”.

MEM_ MAP__EXT The ioctl call pair MALI_I0C_MEM_(UN)MAP_EXT of-
fered by the Mali kernel driver constitute the third method. Its pur-
pose is to allow attaching framebuffer memory for direct rendering.
The argument of the ioctl call MALI_IOC_MEM_MAP_EXT includes the
following triplet:

u32 phys_addr;
u32 size;

u32 mali_address;

It allows the mapping of a physical memory region of size size, start-
ing at the physical address phys_addr into the GVA at the virtual
address mali_address. This method is supplemented by a mecha-
nism called MEM_VALIDATION, which checks the parameter phys_addr
and size against hard-coded bounds. These bounds are to be set by

the integrator of the driver to encompass the physical framebuffer.

The driver under investigation had the MEM_VALIDATION bounds set in
such a way that it “limited” access to all of the available physical memory.
This means that the MEM_MAP_EXT method could be used to map arbitrary
regions of memory at arbitrary positions into the GVA, which amounts to
the premise of unrestricted memory access by the GPU, as postulated in
the previous sections. To show that this bug could be exploited using the
identical scene rendering technique, a privilege escalation attack was imple-
mented.® To that end, a payload (see Listing 3.1) was “rendered” into the
text section of the Linux kernel, thereby patching the reboot system call to

set the caller’s user ID 0 (root) rather than rebooting the system. A fun

3The exploit was implemented and evaluated by Marta Piekarska as part of her master’s
thesis.

3.2. UNRESTRICTED DMA THROUGH DRIVER BUGS 47

0: 0xe52de004 | push {1lr}

4: 0xe3a00000 | mov r0O, #O

8: 0xe59f1010 | 1ldr r1, [pc, #16] ; 20
c: Oxel2fff31 | Dblx ri

10: 0xeb9f100c | 1ldr ri1, [pc, #12] ; 24
14: 0xel12fff31 | Dblx ri

18: 0xe3a00000 | mov r0, #O0

lc: 0xe49df004 | pop {pc?}

20: 0xc038dc44 | prepare_kernel_cred

24: 0xc038ddd8 | commit_cred

Listing 3.1: The payload rendered into the kernel text section in hexadecimal rep-
resentation (left) and corresponding assembly language (right). It amounts to the
equivalent C code: commit_creds(prepare_kernel_cred (NULL)); (A similar ver-
sion of this listing was previously published at ICISC2013 [25]).

fact: The texture in Figure 3.1.1 shows the exact payload used by the attack,

interpreted as color codes.

UNSAFE COMMAND INTERPRETER

The second bug addressed here was found in the kernel driver of the Adreno
GPU. Having a sound memory management interface that properly sanitizes
the GPU’s page tables is important, as was demonstrated in the previous
section. But page table construction is only part of a proper MMU configura-
tion. Another one is activating the page table at the right time and keeping
it active as long as the GPU executes unprivileged code. In Section 2.3, this
responsibility was bestowed on the privileged kernel driver for good reason.
The particular driver under consideration, however, delegated this task to
the GPU itself, likely, to reduce CPU-GPU interaction. This implies that
the GPU can run in a controlled privileged mode, which is where the buggy

version of the driver failed.

48 CHAPTER 3. THREAT ASSESSMENT

ADRENO MOBILE GPU SECURITY FEATURES

The Adreno GPU* features a command processor (CP). This CP can au-
tonomously execute command streams issued to an in-memory ring buffer.
The instruction set of the CP allows for indirect branches, which direct con-
trol flow to secondary command streams outside the ring buffer. Users would
layout a GPU job in memory and then submit an indirect branch address
to the kernel driver, which in turn, appends a branch instruction to the ring
buffer accordingly.

Two security mechanism are deployed: A SYSMMU restricts memory
accesses by the GPU to the bus system—that is, access to main memory
as well as access to MMIO-resources, including that of the GPU itself, is
mediated by the MMU. A protected mode mechanism allows configuring a
set of GPU register ranges, rendering the specified registers inaccessible by
the CP while the protected mode is activ. The rationale behind this seems
to be that the CP needs to access the GPUs MMIO-resources to reconfigure
itself. However, some registers have implications on the integrity of the
system, and they must thus be safeguarded against manipulation by the
user through an unaudited CP command stream.

Naturally, for the MMU to be effective, the correct page table must be
loaded when a user-supplied job is started. Following the agenda of reducing
CPU-GPU interaction, the driver’s designers allowed the CP to perform the
MMU manipulation. That is, the branch instruction that is appended to
the ring buffer is prefixed by a series of commands performing a page table
switch. What prevents the user to issue the same set of commands and
switch to a set of page tables under the user’s control is a second, “privileged”
page table. ARM’s SYSMMUSs can handle multiple streams, each associated
with a different device, and a different effective page table. The CP can
switch the stream ID of the GPU, making the preconfigured secondary page
table the authoritative page table for the GPU. The MMU’s control registers
are only mapped in this secondary page table and are thus unreachable for
unprivileged code. The privilege transition, that is, the switch of the stream

ID, was a command that could also be issued by unprivileged code. But

4The experiments discussed here where conducted on a Samsung Galaxy S4 with a
Snapdragon 600 chipset (APQ8064T) featuring an Adreno 320 GPU. Judging from the
genericness of the driver analyzed, the author has good reason to believe that the issues
discussed here are not limited to this particular chipset; however, this was not explored
further.

3.2. UNRESTRICTED DMA THROUGH DRIVER BUGS 49

should the user issue this command inside a submitted indirect buffer, the
privileged page table, where this particular buffer is not mapped, would
become active. Consequently, the CP would not be able to fetch any further
instructions. Instead, it would cause a page-fault and hang. Legitimate
address space switches can only be performed through instructions on the
ring buffer, which is mapped into the user and the privileged page tables

alike.

ADRENO MOBILE GPU EXPLOITATION

In 2014, Clark [9, 21] reported and exploited a flaw in the security mechanism
of the Adreno GPU. Clark found out that, not only is the ring buffer mapped
in both page tables, but also a couple of other buffers, one of which—called
setstate—was writable by the GPU. He used CP commands to write code
into the setstate buffer, which would activate a new page directory, one
that was under his own control. Subsequently, he instructed the CP to
branch into the setstate buffer, so that it executed the malicious code.
Thus, memory protection was broken.

In response to Clark’s exploit, a patch was released that made two modifi-
cations to the kernel driver: The setstate buffer was made non-writable to
the GPU; and the MMIO-resources for switching the GPU’s stream ID were
subjected to the protected mode mechanism. The first measure effectively
prevents Clark’s approach. But in an effort to break the patched version of
the driver again, two techniques were devised by the author to enable the
exploit, even without the extra setstate buffer. These techniques will now
be presented, even though no method has yet been found to circumvent the
second measure introduced by the patch.

The first attempt started on the premise that the user cannot issue the
command sequence required to switch the stream ID and subsequently mod-
ify the SYSMMU'’s translation table base register (TTBR) without causing
a page-fault. So an alternative for the setstate buffer was required. But as
for the patch, there were no writable buffers left to exploit. After all, there
was still the ring buffer that was mapped in both page tables, and above all,
it already contained the code for switching address spaces. The only prob-
lem was that the physical base address of the page directory that it would
switch to was hard-coded into the command stream on the ring buffer; it

was not writable by the user. So instead of changing the hard-coded base

50 CHAPTER 3. THREAT ASSESSMENT

address on the ring buffer, which proved impossible, the attempt was made

to bring the memory that it pointed to under the control of the user.

Assuming the user creates a context, issues a rendering job, and subse-
quently destroys the context; then a sequence on the ring buffer that acti-
vates the page table corresponds to the context the user created. But the
context has been destroyed, and the physical memory backing the page di-
rectory of the context has been freed. This means that it has returned to
the pool of unassigned memory pages. Subsequent memory allocations may
yield the exact page. Once the page directory is under the user’s control,
the user can issue a job instructing the CP to indirectly branch to the old
command sequence still lingering on the ring buffer, thereby activating the
malicious page table. Two questions remain: How does the user get to know
the physical address of the lingering page directory? How does the user know
where to on the ring buffer to jump, exactly? The answer to both question
lies with the identical scene copying technique. The ring buffer must be read-
able by the GPU; otherwise, it would not be able to execute the commands
in it. ® Thus, by patching an identical scene program to read from the ring
buffer, the content of the ring buffer can be copied to a location accessible
by the user applications. The application can then analyze the content of
the ring buffer and find both candidates for lingering page directories and
the corresponding jump offset on the ring buffer. Experiments® that showed
the feasibility of the approach were performed with increasing success rate

until an alternative approach was found.

The second approach was much less elaborate. Yet, it was only possible
after learning more about the CP and its command set. Apparently, the
CP had a command prefetcher, and indirect branches to user-supplied code
would disable this command prefetcher. By performing a second indirect
branch using a command that enables the prefetcher, it was possible to issue
user code that would toggle the stream ID, thereby enabling the privileged
page table, and then execute just enough prefetched commands without
triggering a page-fault to modify the SYSMMU’s TTBR and switch back to

the now malicious page table.

Both techniques still relied on the ability to toggle the effective page table.

5Technically, executability does not imply readability, but the hardware under discus-
sion does not make this distinction.
5The experiments were conducted by Felizitas Hetzelt.

3.3. UNSAFE BUFFER SHARING 51

However, this function was put under the reign of the so-called protected
mode by the patch mentioned earlier. While the protected mode could be
toggled by the CP with a command that, in principle, could be issued by a
user, this command is only meaningful if the CP is not executing an indirect
buffer. Experiments showed that as soon as the CP jumped into an indirect
buffer, the command toggling the protected mode became a no-op, and
subsequent attempts to access registers marked as protected would result in
a protected mode violation and fail. User supplied code, however, is always
executed as though supplied as an indirect buffer, and this even applies to
the case where the user instructs the CP to jump back into the ring buffer.

Thus, the deployment of the protected mode, in conjunction with the
indirect branch mechanism and the privileged page table, amounts to a
privileged mode of execution, which was postulated as a requirement for del-
egating MMU configuration to the GPU. This protected mode mechanism
separates the MMIO registers of the Adreno GPU into those that are critical
to the integrity of the system and those that are not. The weakness discov-
ered by Clark was due to a single register that was misjudged with respect
to its criticality. The Adreno GPU, however, has many MMIO registers.
Thus, for an outsider who has no access to the GPU’s exact specifications, a
moment of doubt remains as to whether the privileged mode of the GPU’s
command processor is now sound, or more misjudged registers lurk to be dis-
covered by security researchers or, worse yet, attackers. The wary designer
of systems may choose to treat the GPU as a computing resource running
untrusted code and ensure that only rendering-related buffers are accessible
to the GPU when it is executing autonomously. In this case, MMU access
would be kept solely under the control of a trusted entity running on the
application processor, where security mechanisms are well understood, and

documentation is publicly available.

UNSAFE BUFFER SHARING

One of the main concerns of this work is the mobile GPU. It is key to
rendering appealing GUIs and game content efficiently. But the GPU is
not the only device involved in providing a pleasing user experience. Video
decoders and cameras produce high-bandwidth video material, and there

would be no GUI without the display controller sending video material to

52 CHAPTER 3. THREAT ASSESSMENT

the screen. To the user space, all of these peripherals are individual devices.
If two of them are to interact, buffers must be shared between the involved
parties, e.g., when the display controller shall display a frame rendered by the
GPU, or when one interacts with the user space, e.g., an application takes a
snapshot from the camera. In Linux based systems, multiple interfaces” exist
allowing the allocation of such buffers as well as their attachment to various
devices and the user space. Special attention was given to two mechanisms
already mentioned in Section 3.2.1, the MAP_EXT_MEM mechanism and the
UMP interface.

Before revisiting the MAP_EXT_MEM, one of Android’s permissions is intro-
duced. In order to prevent applications from spying on other applications,
the Android middleware entertains a permission called READ_FRAMEBUFFER.
This permission is not available to third-party applications with good rea-
son: It allows for taking screen shots, and thereby it exposes other applica-
tions’ user output to the holder of the permission. The Android middleware,
therefore, sets the access permissions to the framebuffer’s device node (e.g.,
/dev/£b0) facilitating direct but very restrictive access to the framebuffer,
in the belief that mediating access to the device node is mediating access
to the framebuffer’s content. But this is not so with the GPU driver in-
vestigated in Section 3.2.1. Considering the MEM_VALIDATION mechanism
from Section 3.2.1, and assuming it was deployed as intended, that is, with
proper range checking in place, an adversary application can still use the
MEM_MAP_EXT interface. Clearly, the adversarial application does not have
the luxury of unrestricted memory access any more. But it can still map
the framebuffer into its GVA, even without proper permissions to the frame-
buffer’s interface. In fact, checking mapping requests for legitimate ranges
guides the adversary to the physical position of the framebuffer, which would
be hard to guess otherwise. Once the framebuffer is successfully mapped,
the technique introduced in Section 3.1 can be used to copy the framebuffer
content into memory that is accessible by the adversary for further evalua-
tion. Instead of merely copying the content, hypothetically, it could apply
GPU-accelerated feature extraction on the way. This completely defeats

the purpose of the READ_FRAMEBUFFER permission; user output can easily be

"OEMs tended to introduce their own frameworks: NVMAP (NVidia), CMEM (TI),
PMEM (Qualcomm), and UMP (ARM). After consolidation, two frameworks prevailed:
ION [66] and DMABUF [57].

3.3. UNSAFE BUFFER SHARING 53

acquired by malicious applications running on the same device. The implica-
tions are even more dire. By means of the GPU, any adversarial application
has unrestricted access to the framebuffer. This means not only can any
application read and modify the framebuffer content unchecked, but two
applications can also set up a high-bandwidth communication channel. And
if this was not bad enough, it further defeats the secure image-based trusted
visual path mechanisms [17, 30], by which a user-chosen image provides

proof of an application’s trustworthiness.

The UMP mechanism was similarly flawed. The framebuffer itself is not
the only buffer that holds user output. Textures, attributes, uniforms, and
intermediate rendering artifacts must be stored somewhere in memory. And
they must be accessible to the GPU; however, if these artifacts fall into the
wrong hands, much can be inferred from them. Therefore, an application
might expect to be provided with a mechanism that provides it with buffers
solely accessible by itself and mappable into its GVA. For this purpose, and
for buffer sharing, as discussed earlier, the Mali GPU’s user-space driver
used the UMP mechanism. This allows the allocation of buffers just as re-
quired, with the exception that the buffers are accessible to any application,
being aware of a numeric handle generated upon allocation—the “secure ID”.
This would be sufficient if the secure ID was chosen from a large range and
with an adequate source of entropy. Where the assessed implementation is

224 clements, and worse

concerned, the ID was chosen from a range of only
yet—always the smallest unassigned ID was selected. Experiments showed
that the IDs hardly ever exceed a value of 30. It was very easy to skim the
ID space for valid entries and access the corresponding buffers. An applica-
tion of this side channel was a key-logger. It was based on that, Android’s
on-screen keyboard typically draws the invoked letter on the screen as shown
in Figure 3.3.1. This letter was placed into a separate buffer before further
compositing. The key-logger sampled the ID space periodically. The appear-
ance of a buffer with appropriate size in the ID space signaled a key press,
and its content gave away the pressed key. Naturally, this method can also
be used to spy on text documents or photos, in case they are held in buffers
thus allocated. There are implementations that make the framebuffer driver
UMP-aware and export the framebuffer by a UMP ID. While this was not
verified experimentally, it is conceivable that in those cases, applications can

circumvent the READ_FRAMEBUFFER permission discussed earlier by guessing

54 CHAPTER 3. THREAT ASSESSMENT

4 5 €
r ty BN 8 Tooltip placed into
— separateUMP buffer for
a s d f g) k | subsequent compositing.

4 Z X cvhbnmaea

om T ol

Figure 3.3.1: Screenshot of an on-screen keyboard with activated letter tool tip (see
annotation).

the UMP ID of the framebuffer. And just as with the MAP_EXT_MEM mech-
anism, these buffers pose unchecked implicit shared memory regions. Only
this time, no detour through elaborate GPU programming is required; only

using the plain kernel interface suffices.

SUMMARY

The driver deficiencies discussed in this chapter are by no means architec-
tural flaws inherent to mobile GPU driver stacks. All can be fixed, even
if the fix requires a thorough overhaul of the driver stack on some occa-
sions. Nevertheless, the lesson that can be taken away from this discussion
is: Graphics drivers are complex. Interfaces are only as secure as the model
they represent. If the model does not account for spatial isolation, or if func-
tionally is carelessly added while not abiding by the model, e.g., for the sake
of smooth integration, then the resulting interface is flawed with respect to
security. It no longer provides the primitives required by higher layers to
enforce a security policy.

Therefore, the following guidelines are framed and shall be adhered to

throughout the following design chapters of this work.

Simple device model: To achieve the goals set for the secure smartphone,
namely fidelity and high performance without compromising the iso-

lation between the VMs, a device model is required, which is simple

3.4. SUMMARY 55

enough to reason about implications of memory isolation. The pre-
ferred model is that of an unprivileged computing device, much like
the CPU when run in user mode, memory accesses of which are medi-
ated by an MMU. From a software perspective, the mechanism enforc-
ing the memory access protection boils down to the administration of

page tables, which is well understood.

Minimal functionality: The kernel user split of the GPU driver stack
already reduces the amount of complexity introduced to the kernel.
In the context of the secure smartphone, however, some functionality,
such as the dynamic buffer allocation, is not required to be part of the

TCB. In consequence, the functionality can be reduced even further.

No redundant interfaces: To keep the complexity of the TCB at a mini-
mum, the functionality implemented by the TCB shall be exposed by

a single and redundancy-free interface.

No implicitly shared memory: Where shared memory regions are to be
established, they must adhere to a higher-level policy. Two cases are
of special interest: One, an untrusted party shall get access to a buffer
that it does not yet control. This can only happen at the discretion
of the policy-enforcing code of the TCB. Two, the TCB shall access
a buffer on behalf of an untrusted party. In this case, the untrusted
party must present some form of evidence of ownership, proving that

it is already in control of the memory in question.

56

CHAPTER 3. THREAT ASSESSMENT

Secure GUI

The system protects me from being fooled.

—Yee [65] summarizing trusted path and identifiability.

A secure GUI provides a reliable means of communication between an ap-
plication and a user, undisturbed by third subsystems outside the TCB.
In Section 2.5, the principles of the trusted path and identifiability were
introduced, and implementation examples were given. Furthermore, these
principles were put into the context of mobile handset computing, and the
existing implementation of the secure smartphone was introduced and crit-
icized for lacking performance, fidelity, and power efficiency. This chapter
develops a secure and compartmentalized input and output system design.
First, the output and input path are separately discussed in Section 4.1 and
Section 4.2, respectively. It follows an intermission on compartmentalized
low-level drivers in Section 4.3, and on separated policy decision-making
code in Section 4.4. Before this chapter concludes with a summary, the

prototypical implementation is presented in Section 4.5.

o7

58 CHAPTER 4. SECURE GUI

FRAMEBUFFER HANDLING

One goal of this work was to replace the ponderous and overly complex
framebuffer compositing of the window manager mag (see Section 2.2.3 page
21 and Section 2.5) with a lightweight and well-performing solution. This
cannot be said without so much as a smirk, as where it comes to window
managers, mag is pretty small. But it is what it is, a window manager;
therefore, it provides more functionality than needed in this context. Nev-
ertheless, the security properties of mag were to be upheld. As such, there
must be no crosstalk in the output path leaking output between clients.
Excessive CPU cycles consumption, due to spurious copying of framebuffer
content, was to be avoided at all cost—short of sacrificing security proper-
ties. The following section will serve as an introduction to the underlying
hardware model assumed, upon which the suggested architecture is to be
built. In the course of discussing the output path security in Section 4.1.2,
the framebuffer interposition techniques, compositing, mapping, and refer-
encing, are introduced and their pros and cons are discussed. The section
concludes with a discussion of how unforgeable labeling can be integrated
into the approaches. The implications of the interposition techniques on the
performance optimizations double buffering and hardware compositing are

discussed in Section 4.1.4.

HARDWARE MODEL

The hardware components involved in the output path are depicted in Fig-
ure 4.1.1. These are the central processing unit (CPU), the display controller
(DC), and the main memory, which is random access memory (RAM). A bus
interconnect allows the bus masters, here the CPU and the DC, to access
memory mapped resources, such as the RAM and the DC’s control registers,
through a unified address space, the physical address space. The CPU’s bus
access is mediated by an MMU. Moreover, a generic interrupt controller
(GIC) receives asynchronous notifications and interrupts the CPU’s execu-
tion. The display controller is of particular interest. It periodically reads a
region of the RAM, the content of which it interprets as a matrix of color
values, which it, in turn, sends to a connected display device. Thereby, it
makes the digital representation of an image visible to a human user. The

display controller itself has a memory-mapped interface through which an-

4.1. FRAMEBUFFER HANDLING 59

display aic | cpu
.controller .
t — master
scan-out region T
RGB data control register o
: : MMU
master slave master
1 1 bus 1
interconnect
slave
memory RAM
controller

Figure 4.1.1: Hardware involved in graphic output. The display controller reads data
from memory through its master interface, converts it accordingly, and sends it to the
display device (left). The display controller is controlled through its slave interface by
another bus master, here the CPU (right).

other agent, such as the CPU, can control its operation. This model assumes
that, through this interface, the region of memory that is periodically read
by the DC—the scan-out region—can be freely chosen. Moreover, it is as-
sumed that the display controller can have more than one scan-out region,
the content of which it can combine to produce output on the display device.
Each scan-out region may need to be continuous in physical memory, a re-
quirement that can be relaxed if memory access is mediated by an optional
MMU.

OUTPUT PATH SECURITY

In the previous section, the scan-out-region was already introduced. Before
exploring the design space of the output path, a couple of terms and concepts
need to be introduced: the framebuffer, what it means if the framebuffer is
visible, as well as the on-screen buffer. To facilitate a GUI, applications need
to render meaningful graphical output. One such rendition is called a frame,
and a memory buffer storing such a frame is called framebuffer. If the phys-
ical memory backing such a framebuffer coincides with the scan-out region
of the display controller, the framebuffer is considered wisible. In contrast,
the on-screen buffer is thought of as holding the output of an application,

which—or the content of which—may be made visible eventually, either by

60 CHAPTER 4. SECURE GUI

client address spaces
clientB

) client A |

Legend

“address space visible framebuffer

mapping

physical memory

Figure 4.1.2: Naive sharing of the visible framebuffer between two clients. The vis-
ible in physical memory (bottom) is mapped in the virtual address space of client A
and client B at the same time.

changing the scan-out region of the display controller, thereby making an
on-screen buffer a visible framebuffer, or by copying its content into the
actual visible framebuffer.

The most naive approach of sharing the visible framebuffer among several
VMs is to give all VMs access to it by mapping it into the VMs’ address
spaces, as depicted in Figure 4.1.2. Clearly, this allows each VM to violate all
of the security requirements postulated for a secure GUI in Section 2.5. The
parties could spy on each other’s output, as well as arbitrarily overwrite it,
violating the confidentiality and integrity requirement. There is no way for
the user to tell which party is responsible for the output, which is a deficiency
undermining the identifiability principle. Leaving all security concerns aside,
this would only work if all parties would cooperate, gracefully agreeing on
the assignment of the framebuffer resource.

The given constraints of this work, however, dictate that the clients are
mutually distrusting and potentially hostile. Therefore, some form of co-
ordinating instance (CI) is required to orchestrate the usage of the visible
framebuffer by multiple tenants. There are multiple strategies for the CI to

accomplish this task:

COMPOSITING

In the compositing scheme, every client, e.g. a VM, has its own private

on-screen buffer. This buffer is only accessible to the corresponding client

4.1. FRAMEBUFFER HANDLING 61

client address spaces

draw label COPY content CI clientB

/
I I [..

. client A

visible framebuffer client buffer A client buffer B

ﬁhysical memory

Figure 4.1.3: Compositing approach for framebuffer interposition. The visible frame-
buffer is only accessible by a coordinating instance (Cl), as are the private frame-
buffers of the clients A and B. Accordingly, the Cl decides which output is visible

by copying the private framebuffer contents. It also draws a non-forgeable label, indi-
cating the decision to the user.

and the CI as depicted in Figure 4.1.3. The CI may now choose to copy
the content of an on-screen buffer into the visible framebuffer. Thereby,
the CI can decide which client’s output is currently visible. This method
gives the CI a lot of freedom where to place the clients output on the screen,
possibly scaling, or otherwise transforming, the content. The drawback of
this method is, however, that a large amount of data needs to be copied
by the CI. In addition, every change in the on-screen buffer needs to be
reported to the CI. If the clients are virtual machines, the consequences of
the latter differ depending on the mode of operation that the VM assumes.
If, supposedly, the framebuffer were thought of as being visible, then every
write to the framebuffer would have an immediate effect. No further actions
would be required in the non-virtualized case; the driver might not even be
aware that the framebuffer has changed. If moved to a VM, the same driver
would need to report these occasions to the CI. But it cannot, because it
is oblivious of them. Consequently, the CI would need to copy the client’s
buffer periodically, which leads to spurious CPU and bus activity whenever
no actual updates have occurred. A modification of the client VM’s user
space, to that it reports updated regions of the on-screen buffer, could re-
duce the copying overhead; but it requires the client’s cooperation. The
compositing approach is performed by mag in the original implementation
of the virtualized secure smartphone. Moreover, the most modern window
servers use compositing, usually GPU-accelerated; this, however, requires
an OpenGL stack in the TCB, thus bloating the TCB drastically.

62 CHAPTER 4. SECURE GUI

MAPPING

Besides copying framebuffer content, it is possible to give the clients exclu-
sive, but temporary, access to the visible framebuffer [23] through the mem-
ory protection mechanism, the MMU. Here, the on-screen buffer can coin-
cide with the visible framebuffer. This does away with copying and obviates
the need for reporting updates. Transforming the client’s content, however,
is no longer possible. The implications of the complexity of implementing
such a scheme depend on the encompassing system—especially when vir-
tual machines are involved. Access restrictions in this scheme are eventually
enforced through page tables. When revoking access to the visual frame-
buffer, the CI must remove all entries that refer to this framebuffer memory
from the client’s page table(s) as well as invalidate the corresponding TLB
entries. In the context of virtual machines, this requires two different oper-
ations, depending on the hardware’s support for virtual guest memory. If
nested paging is supported, it suffices to remove the entries referencing the
framebuffer memory from the client’s host page table, the one translating
from guest physical to host physical addresses. If shadow paging is used
instead, the framebuffer memory mappings need to be tracked and removed
from all of the client’s shadow page tables upon revocation. To assign the vis-
ible framebuffer to a different client, the CI reinstates the formerly removed
page table entries, or it lazily modifies memory management structures and
lets a page fault handler do the work. While a client would most certainly
notice that access has been revoked—because it would receive page faults
upon its framebuffer access attempts—it needs to be notified when access

to the visible framebuffer has been restored.

Notably, after the switch, the visible framebuffer still contains content
drawn by the previous owner. To prevent the leakage of information, mul-
tiple strategies are conceivable. The visible framebuffer could be blanked
before assigning it to the new owner. This leaves the screen blank until the
new owner chooses to redraw the screen; triggering a redraw requires the
client’s cooperation. A slight modification makes this scheme transparent to
the clients and prevents information leakage. Instead of revoking access to
the visible framebuffer, access can be switched over to a shadow framebuffer,
which is private to the client. Figure 4.1.4 depicts this scheme. The client

can thus keep rendering, even though its renditions are not being displayed.

4.1. FRAMEBUFFER HANDLING 63

“client A client B

exclusive access .o ..

to client region

physical memory

visible framebuffer | shadow buffer A shadow buffer B |

CI

Figure 4.1.4: Mapping approach for framebuffer interposition. Client A has ac-
cess to the client region of the visible framebuffer while Client B can render only
into a shadow buffer. The ClI can control the mappings and is able to swap this ar-
rangement. It has access to all buffers, allowing it to update the visible framebuffer
upon a switch. A label is drawn by the CI through framebuffer partitioning (see Sec-
tion 4.1.3).

To prevent information leakage, the visible framebuffer can be overwritten
with the content of the shadow buffer, which holds the latest output of the
client being switched to. This strategy is used by Cells [23], where it revokes

and remaps the framebuffers to alternating domains.

REFERENCING

In the previous schemes, the visible framebuffer resides at a static physical
location. If this premise is relaxed and if every client has a private frame-
buffer, the CI can simply make a client’s framebuffer visible by reconfiguring
the scan-out region of the display controller (see Figure 4.1.5). For a private
buffer to be made visible, however, it must be backed by a continuous mem-
ory; that is, unless the display controller’s memory accesses are mediated
by an MMU, which would allow for scattered buffers as well. Neither does
this scheme incur any copying overhead, nor does it suffer the complexity
that comes with revoking and reassigning memory access rights. Still, it is
completely transparent to the clients. Implicitly shared memory, if time-
multiplexed, as the visual framebuffer is in the mapping approach, where it
needs special handling such as blanking, is not required. Another notewor-
thy observation is that the CI is not required to have access to the private
framebuffers. Thus, in a way, a separation into control and data plane

is achieved. This means that it can no longer violate the confidentiality

64 CHAPTER 4. SECURE GUI

client B
client A
physical memory | ctient buffer o T
visible not visible
| AN
scan-out region
contro]m controls
display controller o

Figure 4.1.5: Referencing approach for framebuffer interposition. Clients A and B
have exclusive access to their private framebuffers. The Cl can only make one or
the other framebuffer visible by manipulating the location of the scan-out region of
the display controller. Labels are added through framebuffer partitioning (see Sec-
tion 4.1.3).

requirement if compromised. It could, however, still violate the integrity re-
quirement, e.g., by switching the scan-out region to a buffer accessible to the
CI. A further separation of the CI into a low-level driver and a policy enforc-
ing subsystem—a framebuffer switcher as it will be called later—could even
mitigate this risk by further reducing the complexity of the low-level driver,
which, in turn, restricts the space from which the framebuffer switcher can

choose the visible framebuffer.

LABELING

So far, this section’s concern was only with the confidentiality and integrity
of the output path. However, an integral part of a secure GUI is the identi-
fiability concept. To that end, the origin of the frames currently visible on
the screen must be indicated to the user. As discussed earlier, it is assumed
that the screen is used exclusively by one tenant at a given time. So this
indication may be performed with specialized hardware. For example, a
secondary device, such as a 7-segment display or a multicolor LED, could
serve the purpose for a small number of tenants. If no such device is avail-
able, or if the number of tenants is extensive or very dynamic, the indicator
must be drawn on the screen. In this case, care must be taken that the
indicator cannot be forged by a tenant that can also modify screen content.
Two established methods exist: The label can be displayed at a given and

immutable position on the screen where no tenant is allowed to draw. Or,

4.1. FRAMEBUFFER HANDLING 65

label regi‘on client region
/

eee 7 eee

| visible framebuffer
/.

vV

page boundaries

Figure 4.1.6: Partitioning the visible framebuffer on a page boundary into label re-
gion and client region

the label is displayed at a given time chosen by the user and is unpredictable
by a tenant. ! In any case, the label drawn must reflect the state of the
output routing. This means that the label must be drawn either by the CI
or by a trusted third using the CI to enforce an output routing decision. In
the following, it will be discussed how a label can be drawn efficiently by

the CI for the designs discussed in the previous section.

Drawing a label in the compositing approach is straightforward. During
the copying of the client’s screen content, the CI can simply alter a portion of
the screen to display a label indicating the content’s origin. It is not so easy
in the context of the mapping scheme, where the CI can no longer reliably
draw a label of origin onto the client’s rendition. If it tried to alter the screen
content, there would be a race between the client’s framebuffer modification
and the CI’s label drawing. The “finish line” of this race is the scanning
of the visible framebuffer by the display controller. While the odds can be
changed in favor of the CI by syncing drawing to the end of the vertical sync
gap,? there remains an uncertainty. This uncertainty may lead to flickering,
if not to forgery; of which the latter is a plain violation of the secure GUI
requirements. In the context of this technique, the said uncertainty can
be removed by partitioning the visible framebuffer into a label region and a
client region. The buffer must be aligned in memory so that the boundary of

the partitions coincides with a page boundary® as depicted in Figure 4.1.6.

!Compare X-ray mode [31].

2Historically, the vertical sync gap is the period of time in which the electron beam of a
cathode ray tube (CRT) is reset vertically to the beginning of the screen, e.g., from bottom
to top. The vertical sync gap still exists because screen content is still read and presented
sequentially, and it marks the time span between reading and transmitting two successive
frames to the screen. The subject of VSYNC will be taken up again in Section 4.1.4.

66 CHAPTER 4. SECURE GUI

Exclusive access can now be delegated to the client’s region alone (see
Figure 4.1.4), rather than to the full buffer removing the possibility of a

drawing race and thus preventing flickering and, more importantly, forgery.

This method of drawing a label restricts the position and shape of the
label. While using compositing, the label could be positioned anywhere on
the screen. It is now restricted to being bar-shaped at one of the screens

edges: top, bottom, left, or right, depending on the framebuffer’s geometry.

The referencing scheme raises the same challenge to labeling the output
as the mapping approach. Once the display controller’s scan-out region is
configured to scan the client’s framebuffer, there is no more intermediation
by the CI. Any attempt to add a label to the visible framebuffer yields
the same race as in the previously discussed mapping approach. The same
framebuffer partitioning technique can solve this problem; but in contrast,
each private framebuffer must be partitioned in this way. This yields the
positive side effect that the label needs to be drawn only once, rather than
on every switch with the cost of slightly increased memory consumption
(compare Figure 4.1.4 and Figure 4.1.5). The same restrictions apply for
the shape and position of the label.

It was already mentioned that a system MMU, mediating the display con-
troller’s memory access, allows framebuffers scattered in physical memory.
It would make the framebuffer partitioning more flexible because it would
allow combining private framebuffers with a single label buffer. The page
boundary alignment requirement remains, however, and with that the shape
and position restrictions. If the display controller supports multiple scan-
out regions (or overlays), as suggested in Section 4.1.1, the label drawing
becomes more flexible. Depending on the capabilities of the display con-
troller’s overlay feature, the label’s form and position can be chosen more
freely. Support for an alpha mask or channel, which holds the opacity level
of every single pixel of a frame, allows for arbitrarily shaped labels at arbi-
trary positions on the screen. Also, the buffer holding the label’s bitmap
can be chosen independently from any other framebuffer, as depicted in Fig-
ure 4.1.7, which lifts any possible alignment constraints, such as the one

imposed by the framebuffer partitioning technique.

3Rumor has it that at least one version of the screen multiplexer con, which is a module
of L4Re, has used this framebuffer partitioning technique.

4.1. FRAMEBUFFER HANDLING 67

client B
_c]ient A "

physical memory

client buffer A client buffer B

not visible visible

oo eee controls [scan-out region | Scan-out region 2
e vee | control register control register

CI display controller

Figure 4.1.7: Referencing approach for framebuffer interposition with hardware over-
lay for labeling. The clients have access to their respective framebuffers. The CI has
access to a label buffer and controls the scan-out regions of the display controller. La-
bel region and client region are combined by the display controller to form the visible
output.

PERFORMANCE OPTIMIZATION

In the previous section, the design space of the output path was discussed
with an emphasis on security and identifiability. The driving forces in this
exploration, however, were performance and versatility. This section ad-
dresses the performance optimizations already existing and commonly used
in contemporary smartphones. In order to build a competitive design, these
optimizations must also be discussed in the context of the aforementioned
design space. The first technique covered is double buffering, which, as can
be seen later, has quite an impact on the prototypical implementation. The
second technique is the use of framebuffer overlaying as a form of hardware
support for framebuffer compositing.

Double buffering is a technique used to prevent rendering artifacts. Ren-
dering artifacts occur when the display controller reads an image from the
framebuffer, which the renderer has not finished rendering. A typical arti-
fact is “tearing”, which looks like a tear across the screen.* It occurs when
the part on one side of the tear has already been updated while the other still
holds an older rendition. To prevent these artifacts, the renderer could sync

itself to the vertical sync (vsync) gap. This gap is the period that begins

4There can be other artifacts, depending on the workings of the render. If, e.g., the
renderer is tile-based, such as the GPU discussed in the next chapter, the rendering
artifacts may assume a checkerboard pattern.

68 CHAPTER 4. SECURE GUI

after the display controller has finished reading one frame and ends when it
starts reading the next. However, double buffering is commonly deployed if
the duration of rendering is too long or unpredictable, in other words, when
it cannot be guaranteed that rendering finishes before the vsync gap ends.
As the name implies, double buffering makes use of two® buffers. One is
an on-screen buffer; the other is a back buffer. Rendering is only ever per-
formed into the back buffer, while the on-screen buffer can be scanned by the
display controller. Once rendering into the back buffer has completed, the
display controller is notified and instructed to scan the back buffer, which
thereby becomes the on-screen buffer. Some display controllers support this
technique, in that they allow two buffers to be configured; the active one—
the one that is being scanned—is to be selected by setting a bit or an index
in a control register. Hypothetically, if this change in configuration were
to take effect immediately, it would quite naturally result in tearing arti-
facts, which were supposed to be avoided. Thus either the display controller
is smart enough to postpone the effect until after the next vsync gap, or
the controlling software must synchronize the reconfiguration of the display
controller to the next vsync. In any case, there must be a back channel,
by which the renderer can be notified that the back-buffer /on-screen buffer
switch has completed. Otherwise, the renderer might start clobbering a

framebuffer that is still actively scanned, causing visible artifacts.

The double buffering technique can be applied in all of the schemes dis-
cussed earlier. Similarly, the back channel requirement applies to all of
them, even to the compositing scheme, where the CI assumes the role of a
virtual display controller scanning the client’s framebuffer. As a side effect,
the compositing CI can use the buffer-swapping request as an indicator that
updates have occurred, which in any case must quite naturally be forwarded
to the CI; this allows the CI to avoid spurious copying. In the framebuffer-
remapping scheme, what has been discussed earlier simply applies to two

framebuffers that are visible alternatingly. The referencing scheme, in fact,

5There are other variants with more than two buffers, such as triple buffering. These
variants also avoid rendering artifacts, but they also serve a different purpose. It allows
the renderer to render into alternating back-buffers as fast as possible. As a result, when
the next vsync gap ends, the most recent rendition can be selected. This improves gaming
experience by reducing the latency between the game’s world model and its rendered rep-
resentation. It is, however, a wasteful technique in that resources are spent on renditions
that are never viewed by a user. In the mobile computing realm, such waste of GPU cycles
and thus of power is out of the question.

4.1. FRAMEBUFFER HANDLING 69

can be considered a special form of multi-buffering. Whether the CI switches
to the back buffer of its current client or to a buffer of a different client, it
yields the same operation at the display controller driver level of the CI.

In the course of this research, the main designated client system, Android,
has evolved quite a bit. One evolutionary development was the ever-stronger
dependency on graphics acceleration, which is addressed in the next chap-
ter. Another was the utilization of hardware features such as the display
controller’s overlay capabilities to offload simple composing tasks off the
CPU as well off as the GPU. This feature, if supported by a device, is ex-
posed to the user space, e.g., through the framebuffer interface (/dev/fb),
and abstracted from by the hardware composer library, which is part of An-
droid’s hardware abstraction layer. This is an example of device capabilities
reaching into the user-space, despite the abstraction efforts of the kernel.
Essentially, it allows the higher levels of the Android middleware to render
into separate framebuffers, which are then combined into a single screen
output, e.g., combining the status bar with the output of an application.
To remain compatible with this hardware abstraction layer when changing
the guest kernel driver and the architecture below, the composition features
must be implemented at some level below the framebuffer interface. This
could be in the guest kernel driver or in the CI. But composition in software
is expensive, and before doing it in on the CPU, it should rather be offloaded
to the GPU. Using the GPU in the lower layers of the stack, however, was
ruled out earlier in order to avoid TCB bloating. A viable solution is to have
the CI use the overlay capabilities of the display controller to perform the
compositing on the client’s behalf. It is but a matter of protocol definition
to have the CI expose this feature to the clients. However, there is a catch:
If the overlay feature is used by the CI for drawing the label, the number of

overlay regions available to the clients is obviously reduced by one.

SUMMARY

The virtualized secure smartphone with trusted and identifiable paths to
identifiable entities, here VMs, requires an output path that must fulfill the
integrity and confidentiality requirement. Through individual and private
framebuffers, both can be achieved. A separation of control and data plane
can further strengthen the security argument of the secure GUI architecture.

The output path must not only meet the security requirements, but also the

70 CHAPTER 4. SECURE GUI

identifiability criterion. To that end, labels may be drawn to inform the
user about the current renderer’s identity, which must be provided through
a trusted bootstrapping procedure. However, implementation details can
have significant implications on the runtime performance and implementa-
tion complexity, which have potential user-space compatibility implications.
Further, the design space covered in this section provides the foundation for
the design decisions made in the prototypical implementation. The discus-
sion of the prototypical implementation also puts the proposed architecture
into the context of the underlying virtualization and compartmentalization
technology. Before the prototypical implementation can be discussed, how-

ever, the equally important input path needs some attention.

INPUT HANDLING

The requirements regarding integrity and confidentiality apply to the input
path, just as they did to the output path of the secure GUI. However, the
nature of input data is fundamentally different from the output data. While
graphics output is a rather high-bandwidth channel, the bandwidth require-
ments of the input channel is considerably lower. Further, to achieve a good
user experience, the latency by which input events are delivered must be
as small as possible. Moreover, the typical device model of input devices is
fundamentally different to that of a display controller, as will be discussed
in Section 4.2.1.

HARDWARE MODEL

The hardware model of the input path depicted in Figure 4.2.1 is much more
heterogeneous than that of the output path. A typical mobile handset has a
touch screen and a varying number of mechanical buttons. The number of
mechanical buttons can range from a very small set, such as power button,
home and volume, to a full mechanical keyboard. The way these input
peripherals are connected to the handset’s SoC is just as diverse. Three
options are introduced at this point, all of which were actually present in
the implementation of the secure smartphone. The first option is a typical
capacitive touch panel, connected to the SoC via a peripheral bus such as
IIC (also I?C) or SPI, and a dedicated interrupt line. Upon a recognized

touch event, the panel raises an interrupt, and a driver on the CPU uses

4.2. INPUT HANDLING 71

scree
o e GIC | CPU
‘“ — master
I2’C mwr = 7
PC bus controller M]ﬁ\/IU
slave master
'l' bus +
interconnect
slave INT[—
pad (GPIO)
controller

Figure 4.2.1: Hardware model of the input path. A touch screen device is connected
to the SoC via a I2C bus through an I2C controller and an interrupt line connected to
the GIC. A mechanical button is connected to an edge sensitive GPIO pin on the pad
controller of the SoC.

the peripheral bus controller to fetch the data from the touch panel. The
second option, typically used for simple mechanical buttons, is the use of
edge-sensitive general-purpose 10 (GPIO) pins. When a button is pressed
or released, a switch is closed or opened, causing an edge signal on the 10
pin, which causes the GPIO controller to raise an interrupt. A driver on
the CPU can then read the level on the input pin to determine whether
the button is pressed or not. The third option is a somewhat makeshift
solution, which however, is quite commonly used. In this case, an input
peripheral® with a peripheral bus interface is connected to GPIO pins of the
SoC, rather than to a peripheral bus controller of the SoC. Like in the first
case, the device raises an interrupt, notifying a driver on the CPU. However,
the driver must then simulate the bus protocol by controlling the level of
the corresponding GPIO pins through the GPIO controller. This technique
is commonly known as bitbanging, and it adds considerable complexity to
the driver, drastically increasing the interaction between the CPU and the
GPIO controller. 7

5Tn case of the secure smartphone platform, a capacitive button group surrounding the
mechanical home button is connected to the SoC in this way.

"For example, transmitting a single bit over an I2C bus using bitbanging requires no
less than three MMIO accesses, that is, one for asserting the correct level on the data line
and two more for generating two edges on the clock line.

72 CHAPTER 4. SECURE GUI
INPUT PATH SECURITY

Before discussing the input path of the secure GUI, a recap of the output
path is warranted. Taking a close look at the naive approach, the composit-
ing approach, and even the mapping approach, reveals that there is in fact no
device interaction necessary. All of these approaches assume a static visible
framebuffer, which for example, could have been set up at an early stage dur-
ing boot time by, say, a bootloader stage. Only in the referencing approach
and when double buffering or hardware compositing comes into the picture,
is limited device interaction necessary, that is, toggling the scan-out region
as well as configuring, acknowledging, and handling the VSYNC-interrupt.
Because of the hardware model of the input path, a driverless configuration
such as this is not possible. Giving a driver inside a client VM a direct
and exclusive access to the input hardware would be the closest equivalent
to the framebuffer mapping approach. And, it would definitively fulfill the

confidentiality and integrity requirement.

However, it is impractical for multiple reasons. Revoking and reassigning
access is cumbersome, due to the state space that the device may assume,
and which the individual client drivers may need to handle, or from which
to recover. While this can in principle be overcome by an engineering effort,
MMU-based IO access granting hits a brick wall when faced with devices
that are accessible through GPIO pins. Page sizes are simply of too coarse
a granularity to pass control over a small set of pins to a client; in fact, it is
more likely that they share a single word of MMIO resources with other pins
designated for completely unrelated functions. Other methods of interposing
GPIO access could be applied, which will be discussed later in the context

of the prototypical implementation.

Besides the practical implications of the exclusive access remapping ap-
proach, there are very serious implications on the availability of not only the
input path of the secure GUI. If the input path is exclusively controlled by
one tenant, how can the user reliably express to the TCB the intention to
toggle input and output routing to a different tenant? A misbehaving tenant
can naturally refrain from giving up the input path. As long as the label-
ing mechanism properly reflects the state of the input and output routing,
such behavior does not imply a threat as regards to the secure GUI’s threat

model; however, it renders other tenants inaccessible. Interposition in the

4.2. INPUT HANDLING 73

ot Cl ,y-cllient‘A
uttons |__'|_/_ receives input
]ﬂz' o—

touchscreen A
emits ¥ receive receives no input

attention event selection notification

Figure 4.2.2: The coordinating instance (Cl) of the input path, along with input de-
vices (left) and two clients (right). Input events enter the Cl, which forwards them to
a selected client. It thereby enforces a policy decision that it receives via a separate
interface from a decision-making module. The CI can emit secure attention events on
receiving special user input, which it never forwards to a client.

CI label
A

[¢]

/ client A
_— output visibl
screen - D= P

e \
receiveT client B

selection notification output not visible

Figure 4.2.3: The coordinating instance (Cl) of the output path, along with the
screen (left) and two clients (right). It takes a policy decision via a special interface
from a decision-making module. The Cl enforces the policy decision that the desig-
nated client can draw on the screen and ensures that the current policy decision is
apparent to the user by combining the output with an unforgeable label.

input path, which implies the capability of detecting a secure attention event
within the TCB, therefore, becomes a matter of availability rather than a

security requirement.

Once more, the concept of the coordinating instance (CI) is stressed as
depicted in Figure 4.2.2. Events from the input devices enter the CI; the
CI filters the input for a secure attention event, which it emits via a dedi-
cated communication channel; all other events are forwarded exclusively to
a selected client. Provided that the encompassing system facilitates con-
fidentiality preserving channels, trusted paths can be established between
the user and the clients. This implies the existence of a driver component
that drives the input devices and forwards all input events to the CI. But
the question remains unanswered as to the architecture of the input device
drivers and their role as part of the TCB. In fact, the same goes for the

framebuffer driver.

74 CHAPTER 4. SECURE GUI
COMPARTMENTALIZED LOW-LEVEL DRIVERS

In the previous section, the question arose as to the role of the input and
output drivers as part of the TCB. In a monolithic kernel, such as the Linux
kernel, the answer to this question is straightforward. Naturally, the drivers
are part of the kernel, where they have access to all of the hardware re-
sources; they must be considered part of the TCB without any limitations.
But when attempting to build a compartmentalized system architecture,
questions arise as to where to draw meaningful boundaries, and how to en-
force them, given a certain hardware architecture. The design paradigm
followed in this work was to provide servers, each abstracting from a single
device and providing this abstraction as a service to higher layers. Adhering
to the principle of least authority, this driver server shall only have access
to the single device from which it abstracts. Especially the latter require-
ment is easier to abide by for some devices than it is for others. Whether or
not the principle of least authority can be upheld efficiently by using hard-
ware capabilities depends on the interaction model between the device and
the SoC. In the previous section, some of these models have already been
discussed. Now, a more systematic view is warranted. Many devices are
accessible through MMIO. In mobile chip sets, this is typically true for de-
vices that have been integrated into the SoC. With paging enabled, a driver
running on the CPU can only access these devices when the corresponding
MMIO region is mapped into the address space of the driver. While this is
equally true for a monolithic kernel where all drivers share a common vir-
tual address space, this mechanism can be used to give compartmentalized
drivers access to a single device, that is, as long as the MMIO regions of un-
related devices are aligned to the granularity at which virtual address spaces
can be constructed, e.g., the minimal page size. Unfortunately, violations
to this rule are not unheard of.® In such case, devices are not separable
by the memory protection mechanism. But it is not the only arrangement
where hardware mechanisms fail to provide adequate abstractions for com-
partmentalized drivers. Peripheral devices connected to the SoC through
peripheral buses pose their own challenges. Supposing a device is connected

to a peripheral bus mastered by a controller integrated into the SoC, then

8For example, the Allwinner Technology A10 SoC has the MMIO regions of many
integrated devices mapped with 1024-byte alignment, whereas the page size is 4096 bytes.

4.4. ROUTING DECISION MAKING 75

the combination of device and peripheral controller can be thought of as
a single device; and the corresponding driver can drive the bus as well as
the connected device. If, however, a second device is connected to the same
bus, the same dilemma is encountered; that is, the devices are inseparable
by hardware mechanisms. A particularly nasty instance of this problem is
the case of GPIO-connected peripherals. When device access is inseparable
by hardware, software must deal with the issue. One way to deal with this
issue is to declare the driver component “trusted enough” to be granted
more privileges than required to drive the device in question. This option is
most efficient at the cost of watering down the principle of least authority.
The second option is to intercept and filter the MMIO access, presenting a
fully virtualized hardware to the driver. The third option is to introduce
more levels of abstraction. As an illustration, IIC bitbanging through GPIO
pins shall be considered. A driver driving the GPIO controller can abstract
from the MMIO interface and provide a service allowing a client to control
a selected group of pins. The client can then perform bitbanging and drive
a device on the IIC bus. Other than placing a boundary between the GPIO
driver and the bitbanging code, a boundary can also be placed between the
bitbanging code and the device driver or both.

The drivers thus compartmentalized are then no longer unconditionally
part of the system TCB. They must instead be characterized by the service
they provide and by the side effects the driven device can have on the system,
to determine whether it belongs to the TCB of a subsystem or not. Also,
it can be expected that the additional protection domain boundaries induce
a communication overhead in the system. Both effects will be discussed in

Chapter 6 by the example of the prototypical implementation.

ROUTING DECISION MAKING

Figure 4.2.2 and Figure 4.2.3 imply a yet unspecified communication part-
ner, one that is to be notified of the secure attention event and that emits
selection notifications. As of this work, this communication partner will
remain largely unspecified, and its design shall be left to the system integra-
tor. However, this component, which will be called routing decision maker
(RDM), is critical to the integrity of the secure GUI, which is why some

requirements need to be specified. Because of the compartmentalized na-

76 CHAPTER 4. SECURE GUI

ture of the architecture, the Cls of the input path and of the output path
are disjunct and cannot communicate with each other. Therefore, it is the
responsibility of the RDM to keep the routing of both paths in sync. This
requirement implies the existence of two possibly disjunct namespaces for
the clients, shared between the RDM and the individual Cls, as well as
the knowledge about which client goes by which name in which namespace,
present in the RDM.

The simplest implementation of a RDM might simply toggle through the
available clients in a round-robin fashion upon a secure attention event. A
more sophisticated one may be a client to the secure GUI in its own right,
directing the input/output routing to itself upon a secure attention event
and presenting a dialog allowing the user to select one of the other avail-
able clients. Additionally, the RDM may also receive notifications from
unprivileged clients expressing the wish to give up the input/output focus

voluntarily.

IMPLEMENTATION DETAILS

This section covers the prototypical implementation of the improved and
compartmentalized secure GUI of the secure smartphone. It starts with the
rationales for choosing a particular design from the design space discussed
previously. And, before the actual implementation is discussed, the relevant
details of the underlying hardware platform are introduced. The actual im-
plementation was done in the context of Fiasco.OC, L4Re, and L*Linux,
which means that a good understanding of the terms and concepts intro-
duced in Section 2.2.3 is helpful to follow in the following presentation. The
implementation details will be presented as a series of incremental steps,
starting from the original solution based on mag.

The output path of the mag-based solution followed the compositing scheme.
As stated above, it fulfilled all the security requirements; it had private
framebuffers preventing eavesdropping, as well as reliable labels allowing for
identifiability. In terms of performance, however, this approach was less
than ideal. Update requests were implemented using synchronous IPC, thus
blocking until the update was performed. This had a devastating effect on
the clients’ response time. But regardless of the request notification method,

copying the framebuffer content induced considerable load on the CPU, pro-

4.5. IMPLEMENTATION DETAILS 77

hibiting acceptable frame rates, as can be seen in Chapter 6. The remain-
ing solutions, mapping and referencing, do not have this copying overhead.
Eventually, the choice was made in favor of the referencing approach, in
conjunction with the overlay labeling method, for its flexibility and low im-
plementation complexity. The full architecture of the output path consisted
of a display controller driver and a output switching component, which was
also responsible for drawing the label residing in individual protection do-
mains. For the input path, the author intended a very similar solution based
on a driver and a switcher component. However, for pragmatic reasons, two
deviating solution saw the light of day. One was small, but it had input
driver and switcher integrated into one protection domain. The other one
was large, because it reused a Linux driver running inside an instance of
L*Linux and providing input events as a service. But it was compartmental-
ized, as the driver and the switcher resided in disjunct protection domains.
In sum, both exhibited all the intended aspects.

The prototype was built upon two very similar smartphone platforms,
the Samsung Galaxy SII GT-19100 and the Samsung Galaxy SIII GT-19300.
These platforms have the following hardware details relevant to the secure
GUI architecture. Where deviant, the specifications for the older GT-19100
are given in parentheses: The platform is based on an Samsung Electronics
Exynos 4412 SOC (Exynos 4210) featuring four (two) Cortex A9 ARM CPU
cores running at a maximum of 1.4 GHz (1.2 GHz) and a Samsung Electron-
ics FIMD? display controller. The SoC is paired with 1 GB of main memory.
As input devices, the platform has a Melfas mms-100 (Atmel mx224) se-
ries capacitive touchscreen connected via IIC bus to the SoC, a Cypress
CapSense touchkey (Melfas touchkey)-based module with two buttons con-
nected via a IIC bus (bitbanging in the case of SII), and four GPIO based
mechanical buttons, which were the power and home buttons, and the two
rocker switch positions volume up and volume down.

The input and output paths were implemented separately. The first im-
pulse for this decision, in fact, was pure pragmatism, pragmatism that was
necessary because the object capability model [63] of Fiasco.OC/L4Re did

not account for the diamond problem!® of multiple inheritance. As in-

9Fully Interactive Mobile Display

10A class D inheriting from two base classes, B and C, which both in turn inherit from a
common-base class A. The resulting inheritance graph is diamond shaped, thus the name
“diamond problem”.

78 CHAPTER 4. SECURE GUI

troduced in Section 2.2.3, there are but a few real object types known to
the Fiasco.OC microkernel. Many more types are expressed through user-
defined protocols, and access control is exerted through the IPC-gate object,
which constitutes a communication channel with guaranteed endpoints. To
some extent, L4Re also supported the concept of inheritance by facilitating,
for example, the simple combination of shared memory with ICU seman-
tics, which constitutes L4Re’s event protocol used for communicating input
events. Essentially, it means that two or more protocols are conveyed across
a single communication channel—here an IPC-gate. Screen multiplexers,
such as con and mag, went one step further and combined the event pro-
tocol with the goos protocol, consolidating the input and output path on a
single channel. This worked well until the requirement for VSYNC interrupt
delivery arose. The goos protocol needed to be amended with ICU seman-
tics, which, considering that the event protocol already had ICU semantics,
led to an instance of the diamond problem. While many workarounds would
have been thinkable, this dilemma sparked the idea of not only splitting the
input and output path back into separate communication channels, but to
take the concept of compartmentalization even further and have the input
and output path serviced by mutually isolated servers. The task of routing
input and output, formally taken on by mag, was moved into two new com-
ponents: fjug!!, servicing the output path and ijug'?, servicing the input
path. To account for the new split, the paravirtualized framebuffer driver of
L4Linux, 14fb, needed to be adjusted so that it would expect to receive the
input events and the framebuffer service via two distinct channels, rather
than via a combined one. Further, support for receiving VSYNC events was
added to 14fb. On the opposite end of the output path was the L4Re server
fb-drv. As it was, it set up a visible framebuffer and exported it to a client—
here mag—via a very basic implementation of the goos protocol. This driver
server needs multiple amendments. First, support for requesting VSYNC
notifications was built in, which, as discussed above, sparked the amend-
ment of the goos protocol. In order to support private buffers, the second
amendment allowed the dynamic creation of multiple rather than one buffer.
The third amendment allowed the abstraction from overlay windows as pro-

vided by the display controller and their export as views (Figure 2.2.1). The

HShort for framebuffer juggler
12Short for input juggler

4.5. IMPLEMENTATION DETAILS 79

latter two amendments were kept flexible enough to allow for the arbitrary
association of buffers with views.

Naturally, fjug, the framebuffer switcher, was the new client to this en-
hanced service. Through this new service, fjug was able to provide its
clients with private framebuffers as well as to allocate a framebuffer on its
own behalf for the purpose of label drawing, which it then attached to a view
covering the label region. The latter operation was executed by the fb-drv
server through setting the scan-out region of the corresponding overlay win-
dow to the designated label buffer. Analogously, fjug toggled the output
routing by attaching the private framebuffer of the selected client to a view
covering the client region on the screen. Double buffering was realized by
allocating private framebuffers of twice the size needed to back the screen.
The clients were then allowed to select either the top or the bottom half of
the buffer for being made visible. This request was forwarded by fjug to
fb-drv, and vice versa, VSYNC events were forwarded from fb-drv to the
currently active client.

As mentioned earlier, the input path was implemented in two different
ways. On the guest side, the event driver, which was part of the 14fb driver,
was used indifferently in both of the cases. The variations were on the
opposite end of the stack. The first variant was an input driver input-drv,'3
which ran as a native Fiasco.OC application and contained not only the
drivers for the three different types of input devices, but also the ijug'
module. The drivers were derived from Linux driver code that had found
its way into the mag component earlier. The difficulties mentioned earlier of
abiding by the principle of least authority, which came with trying to grant
access on a per GPIO pin granularity, were solved by a GPIO service!® built
into the resource server io. With the amendment of this protocol, it was
possible to construct a VBus that comprised the MMIO resources of the I1C
controller connected to the touch screen as well as the GPIO pins connected
to the capacitive button element and the mechanical buttons. When later
the architecture was ported to the Samsung Galaxy SIII, ' the ijug module
moved into its own protection domain while a headless L*Linux instance

took the role of the input driver.

13The original input-drv was built by Jan Nordholz

14 Jon Tapsel implemented the ijug module according to the author’s instructions.
15This service was designed and built into io by Alexander Warg.

16This porting effort was done be the company Trust2Core GmbH founded in 2012.

80 CHAPTER 4. SECURE GUI

In summary, the secure GUI architecture consisted of the driver servers,
driving the display controller and the input devices, and the two switchers
fjug and ijug enforcing the routing of framebuffer output and input events
as well as displaying the routing decision to the user and detecting the
secure attention event. A vital aspect of the implementation has still not
been discussed. It is the matter of belief that all of the components are
actually communicating with whom they think they are and the trust that
no untrusted third party can eavesdrop on these communication channels.
This also relates to the correctness of the RDM’s model of the setup. The
responsibility for a sane setup lies with the bootstrapping procedure. As
introduced in Section 2.2.3, L4Re based systems are bootstrapped by a Lua
interpreter called ned. It may be assumed that the boot process is trusted.
That is, the integrity of the TCB running, which includes the kernel, the
root task, the root pager, ned, and the script it is executing, as well as the
integrity of the to-be-loaded binaries belonging to the secure GUI, has been
asserted appropriately. There are two typical ways in which ned establishes
a communication between two subsystems: In the first, it creates a new
IPC-gate and assigns it to one capability slot for each of the communication
partners, where typically one offers a service used by another. In the second,
it assigns the newly created IPC-gate to a server; however, it then expects
the server to offer a factory service. This service is then used by ned to create
one or more sessions, represented by IPC-gates that the server creates on

ned’s behalf and which it then assigns to one or more clients.

Setting up the secure GUI, ned connected the drivers to the io server in
the first manner. By these connections, the drivers were now able to request
the resources required to drive the corresponding device, where the VBus
definitions (see Section 2.2.3) supplied by the system’s architect restricted
resource access accordingly. The same mechanism was used to connect the
fb-drv server with fjug and, where applicable, the input driver with ijug.
Both ijug and fjug offered a factory service, which ned used to create the
client sessions for the VMs. In making these connections, ned gathered all
the information required by the RDM, that is, the information matching the

ijug and fjug sessions to the corresponding VMs.

4.6. SUMMARY 81

SUMMARY

In this chapter, the security of the input and output paths of the secure
GUI was discussed. It was done under the premise of hardware architectures
found in contemporary smartphones. The discussion was supplemented by
an exploration of compartmentalized drivers and the intricacies one faces try-
ing to uphold their isolation. The resulting compartmentalized architecture
was focused on providing mechanisms only, mechanisms that allow for an
efficient implementation of a trusted and identifiable path between clients—
here VMs—and the user, and the enforcement of a security policy. Policy,
however, was excluded from the architecture, and a routing decision-making
(RDM) module was postulated as being home to a policy. Eventually, the
developed concepts were put to use in the presentation of the prototypical
implementation.

The implementation of the prototype was described as is. In retrospect,
the principle of least authority could have been abided by more strictly.
For example, the fb-drv server was still allocating the resources for the
framebuffers; it did so on behalf of the fjug server by exposing the alloca-
tion as a service. But strictly speaking, it did not even need the authority
to allocate memory at all. Instead, all that it required was a description
of the framebuffers, by physical address ranges, and possibly, a symbolic
name for the framebuffers, so that it can offer a service allowing the ac-
tivation of the buffers. The resources might as well have been allocated
by the bootstrapping process, which is omnipotent anyway. Consequently,
the bootstrapper—here ned—could have, in order to set up a session, allo-
cated the framebuffer, allowed the corresponding VM to access the memory,
passed a symbolic name to £ jug, and passed the same symbolic name along
with the physical address range to fb-drv. Going even further, the allo-
cation of framebuffers could have been left to the VMs using a portion of
their allotted main memory quota. This could have been done by means
of the mechanisms used in the context of GPU virtualization, which will
be discussed in the following chapter. These modifications would only alter
the setup phase, which is why it may be assumed that, for evaluating the

runtime behavior and performance, the prototype is good enough.

82

CHAPTER 4. SECURE GUI

Mobile GPU Para-Virtualization

The purpose of graphics acceleration hardware is to provide
higher performance than would be possible using software alone.

—Dowty and Sugerman [26]

Agreeable as this quote might be, it is not good enough for a virtualized
secure smartphone. Not only must an accelerator, that is a GPU, provide
good performance, it must also relieve the CPU of the burden of costly com-
putations. As discussed in Section 2.4, many GPU virtualization schemes
achieve good performance, but at the cost of high CPU load. This chapter
develops a GPU-server architecture that facilitates graphics acceleration in
the VMs of a secure smartphone. In order to cater to the limited power
supply inherent to mobile devices, it does so without introducing signifi-
cant CPU load. Besides the performance requirements, the design of this
architecture was driven by the paradigms framed in Chapter 3, that is, a sim-
ple device model shall be assumed, the implementation of which shall have
minimal functionality and a non-redundant interface, and it shall prohibit
implicit memory sharing. To that end, this chapter starts with the assumed

general hardware and programming model of a mobile GPU, resulting in a

83

84 CHAPTER 5. MOBILE GPU PARA-VIRTUALIZATION

cpu " GIC | CPU

mjiter slave master
slave A INT Fp slave

MMUT o 11 MMU

master |slave B master
bus
interconnect
slave
memory R AM
controller

Figure 5.1.1: Model of hardware components involved in graphics acceleration. The
CPU and the GPU share a common main memory. Access to the main memory via
the common bus interconnect is mediated by individual MMUs.

discussion of actual functionality required in the TCB. The possible design
space of this functionality is then discussed in Section 5.2 and Section 5.3.
Eventually, the implementation details of the prototypical implementations
are presented, and its integration with the secure GUI infrastructure is de-

scribed.

HARDWARE MODEL AND PROGRAMMING MODEL

The hardware components involved in graphics acceleration are the CPU,
the GPU, and the main memory, as depicted in Figure 5.1.1. A bus inter-
connect allows for the communication between these components. Accesses
by the bus masters, here the CPU and the GPU, are mediated by individual
MMUs. The GPU as well as the GPU’s MMU also act as slaves, which
allow the CPU to control these devices through an MMIO interface. Both
the GPU and the GPU’s MMU may raise interrupts on the CPU’s generic
interrupt controller (GIC), notifying the CPU of actions required. As a bus
master, the GPU is expected to access the main memory, e.g., in order to

read commands and data, such as shader programs, textures, and attribute

5.2. MEMORY MANAGEMENT 85

lists, or to render into framebuffers. But this model shall also cover the
possibility of the GPU accessing the MMIO resources of itself, its MMU,
or other devices connected to the bus interconnect, that is, if its MMU is
configured—or misconfigured—accordingly.

The programming model of the GPU is assumed job oriented. That is, a
client using the GPU creates a rendering job, which it lays out in memory,
then submits it to the GPU and expects a notification upon completion.
Notably, by this model, GPU jobs cannot be preempted and resumed later.
Further, it is assumed that the submitted job is executed by the GPU as
is; that is, jobs are not modified by driver code. Consequently, the code
executed by the GPU must be considered untrusted. So in order to uphold
spatial isolation, the memory made accessible to the GPU must be a subset
of the memory already controlled by the client. Here, the suggested GPU
server therefore implements and exposes two basic mechanisms. It controls
the GPU’s MMU and exposes a memory management interface, sanitizing
all requests with respect to the memory subset requirement. To cater to
multiple isolated clients, it controls the GPU and exposes a job submission

interface, scheduling jobs and activating the corresponding address space.

MEMORY MANAGEMENT

The architecture of a mobile GPU driver stack, as it is typically found in
Android-based devices, was introduced in Section 2.3. Special attention was
given to three aspects of memory management, and the locations of these
aspects’ representations in the GPU driver stack were identified. Recalling
from Section 2.3, it was the responsibility of the kernel to account for phys-
ical resources and to exert proper memory protection. The third aspect,
accounting of the virtual addresses and the virtual address space layout was
performed by a user space agent. This proved sufficient to isolate multiple
processes that make use of one another’s services of the GPU—that is, of
course, unless there are bugs in the driver. The consequences of such bugs,
discussed in Chapter 3, are the same consequences on a system’s integrity,
as suffered by a virtualizing system if this software stack moves into a vir-
tual machine unaltered. Even if the driver in the virtual machine is sound,
it gives the guest kernel the power to evade memory isolation by means of

the GPU. These concerns are valid, even if the guest kernel is well behaved

86 CHAPTER 5. MOBILE GPU PARA-VIRTUALIZATION

and its integrity is intact, because the integrity of a system hosting virtual
machines must not depend on the integrity of the guest operating systems.
Consequently, the memory protection aspect of the GPU driver’s memory
management, with respect to the whole system, cannot reside within a po-
tentially hostile VM. The matter of memory protection must be moved out
of the VM. It can be incorporated into the hypervisor, into the kernel, or
into a specially privileged and trustworthy VM. In the spirit of building a
minimal and compartmentalized TCB, the choice here was to place this mat-
ter into a server running natively on the underlying microkernel—the GPU
resource governor (GPURG). To meet its responsibilities, GPURG had to
perform similar tasks as a hypervisor, providing the guest with virtual mem-
ory. Notably, the GPURG component did not account for physical resources,
however. In the following, the concepts of shadow paging and nested paging,
which were introduced in Section 2.2.1, are discussed in the context of the
GPURG component and GPU virtualization.

GPU address space
N\

N\ GPU job
- N\ \\\\}\%

]

]
1
1

1

VM1 VM3
host physical address space

Figure 5.2.1: The relationship between the GPU’s address space, the guest physical
address space, and the host physical address space; and the role of the shadow page
tables in the context thereof. (This figure was published before by the author in the
slides of a talk given at MOST15 [24].)

5.2. MEMORY MANAGEMENT 87

SHADOW PAGING

The principles of shadow paging have been introduced in Section 2.2.1. And
it is assumed that the GPU driver follows the same model as described in
Section 2.3. However, the driver is now running as part of a guest operating
system kernel inside a VM. Therefore, when it creates page tables expressing
a GPU address space on behalf of its processes, these page tables map onto
guest physical memory rather than actual physical memory as depicted in
Figure 5.2.1. To perform shadow paging, GPURG needs access to the client’s
guest memory, and it must employ some form of page table base register
through which it can be informed by the client about the active page table.
To make sense of the client’s GPU page tables, GPURG must also have
knowledge about the client’s guest-to-host mappings. It is assumed, unless
stated otherwise, that the guest-to-host mappings remain static throughout
the lifetime of a VM—that is, from the time of boot to the time of shutdown.

With these facilities, the GPU server can construct a shadow page table
on the fly. When the GPU’s MMU issues a page fault, the GPU server
queries the corresponding guest’s active GPU page table and uses the guest-
to-host mapping of the particular VM to create a valid shadow page table
entry. This, however, does not reflect the programming model of the GPU,
by which the interaction between the CPU and the GPU shall be kept to a
minimum, as it produces page faults with high frequency and thwarts the

performance and offloading efficiency of the GPU.

To better cater to the GPU’s programming model, the changes to the
GPU address space can be pushed to the GPU server as they are issued by
the client’s applications. This requires a modification in the guest’s kernel
driver. Now, the shadow page tables are constructed when the correspond-
ing GPU’s page table is set up, which happens before a rendering task is
started. The downside of this approach is that now every GPU page table
is duplicated in the GPU server, and so is the page table memory consump-
tion. Note, however, that the shadow page tables are still transient, and
they can be reproduced from the guest page tables; keeping duplicates is
only a performance optimization.

In a next step the guest’s GPU page tables can be dropped altogether;

this reduces the memory consumption in the guest VMs. The run time

complexity involved in page table management is removed from the guest’s

88 CHAPTER 5. MOBILE GPU PARA-VIRTUALIZATION

driver. But now the shadow page tables are not transient anymore: Mind
that if the GPU server discards its page tables, the information about the
GPU address spaces is lost; therefore, it is not stateless anymore. In conse-
quence, the GPU server must allow for the creation of one shadow page table
per client session. While this has only positive implications on the runtime
performance, there are some drawbacks in terms of memory consumption,
which are discussed in Section 5.2.3, and on manageability, which are dis-

cussed in Section 5.5 in the context of suspending VMs.

NESTED PAGING

It is becoming increasingly common that system MMUs (SYSMMUs) are
deployed in smartphone SoCs. If a SYSMMU mediates memory accesses
of a GPU that already has its own MMU (GPUMMU), then nested paging
can be performed for the GPU. For this to work, the GPU server needs to
control both the SYSMMU and the GPUMMU. Consider, though, that in
this model, no virtual page table base register exists as it does in CPUs
with support for nested paging; it must be emulated or provided by a para-
virtualization API, just as in the shadow paging approach discussed earlier.
Through the emulated page table base register, the GPU server gets in-
formed about the active guest GPU page table. It still has knowledge about
the guest physical-to-host physical mapping as postulated earlier; and it
uses this knowledge to set up a SYSMMU page table reflecting this map-
ping. When the GPU server schedules a rendering job on a client’s behalf, it
activates the client’s GPU page table as well as the corresponding SYSMMU
page table.

RESOURCE MANAGEMENT

Constructing page tables on a client’s behalf consumes memory. This sec-
ondary memory consumption must be attributed to the corresponding client,
or the system is at the risk to be forced into a denial of service situation by
a misbehaving client. In the case of shadow paging, the secondary memory
consumption is bounded by the memory needed for one fully populated page
directory. When considering the paravirtualized nontransient scheme, the
secondary memory consumption becomes unbounded, because the client can

request the creation of an arbitrary amount of page tables. In this case, a

5.3. SHARING 89

per client quota is required to prevent crosstalk between the clients as well

as denial of service.

SHARING

The previous section addressed how memory protection between VMs can be
expanded to the GPU by means of a GPU server as a trusted system compo-
nent. To recap, the GPU server exerts memory protection on the virtualizing
system’s behalf using the GPU’s MMU or a combination of GPUMMU and
SYSMMU using shadow paging or nested paging respectively. The system
can let a guest run arbitrary rendering tasks on the GPU most assuredly
that the GPU can only ever accesses memory already under that guest’s
control. But to allow sharing the GPU resource it must be addressed how
guests can submit tasks to the GPU and how guests are notified about the
completion of a job.

Following the driver model discussed in Section 2.3, a user space driver
lays out the rendering job’s executable in memory; a description of the job,
which may at best be only an entry point, is passed on by the kernel driver
to the GPU. Upon completion, the GPU signals the CPU with an inter-
rupt; the kernel driver handling the interrupt in turn notifies the user space
application about the completion. This narrow interface makes for an excel-
lent virtualization boundary: Running inside a VM, the guest kernel GPU
driver passes this job description on to the GPU server. It does this through
an emulated set of MMIO registers or a para-virtualization interface. The
GPU server can then schedule the job on the client’s behalf, and when the
job completes, notify the client, whereby it relies on a signaling mechanism
provided by the underlying hypervisor or microkernel.

With such an interface and a memory protection mechanism in place, the
GPU server is ready to accept job requests from arbitrary clients or guests;
it can run these jobs safely while incurring no overhead from either copying
high-bandwidth data or auditing submitted jobs.

SCHEDULING

A GPU scheduler should strike a balance between utilization, fairness, fi-
delity, and covert channel freedom. It must do so under a number of con-

straints: A target frame rate imposes periodic deadlines on the schedule; the

90 CHAPTER 5. MOBILE GPU PARA-VIRTUALIZATION

execution model is job-oriented without the possibility of preemption; and

the programming model allows for unbounded jobs.

A first-come-first-serve scheduler can easily keep the CPU busy, ensuring
good utilization, but it is easy for one misbehaving client to starve others. In
fact, due to the lack of preemption and the unboundedness of the jobs, this
goes for any scheduling strategy. Therefore, a mechanism must be put in
place “to determine when a shader program has run for an intolerably long
time and abort processing”—Smowton [60]. Assuming such a mechanism
exists, a round-robin scheduler can at least assure that every client makes
progress. While a round-robin scheduler assures that each client is scheduled
equally often, fairness is not established because the time available to each
client depends on the runtime of the jobs issued by the clients. If two
clients are involved that are subject to a strict security policy prohibiting
information flow between them, then this yields a new risk: One client,
the sensing client, could issue, with high frequeny, jobs that have a short
runtime, the duration of which is known in advance. Knowing that the
scheduler will interleave the jobs of other clients it can now measure its own
jobs’ latencies and thereby infer the runtime of the other clients’ jobs. This
is a side channel leaking state information of the other clients [20], and if
shader programs with content sensitive runtime are involved, it may leak
content [40]. A cooperating client may even actively modulate a signal onto

the jobs’ runtimes, establishing a covert channel with the sensing client.

A measure for countering covert channels is the use of slotted execution.
Slotted execution assigns each tenant a fixed time quantum, effectively dis-
tributing the available time among the clients. But it also confines the
runtime of the each tenant’s job to an immovable time slice, or slot. The
former quality establishes fairness. The latter quality is required for the
absence of covert channels because deviations from the time slot boundaries
can be measured and can therefore carry information. One downside of slot-
ted execution is that the time allotted to but not used by one tenant is lost
and cannot be assigned to another, thus slotted execution impairs utiliza-
tion. Another downside manifests in conjunction with the assumed execu-
tion model of the GPU, where jobs can only be canceled but not preempted
for later resumption: The slot duration restricts the maximum job length;
longer running jobs fail. And, the target frame rate dictates a scheduling

period within which all tenants must have been scheduled. For example: A

5.5. SUSPEND AND RESUME 91

target frame rate of f yields a slot duration of J%N, where N is the number
of tenants. Consequently, when the number of tenants N rises, the slotted
execution scheduler can choose to degrade the frame rate f, or reduce the
scheduling period and therefore the maximum job length. Either way, the
fidelity of the system suffers.

The secure GUI architecture discussed in the previous chapter favors ex-
clusive usage of the screen. Therefore, it was considered to give the client in
focus also exclusive access to the GPU, a strategy unfair but faithful, and
obviating covert channel countermeasures. However, it clashed with the ex-
pectation of the VMs, or rather with the expectations of the Android middle
ware inside the VMs. Not servicing the rendering request of a background
VM caused repeated timeouts, which prompted Android to adopt desperate
measures, that is, restarting the whole service layer.

Under the given constraints, it is far from trivial to balance the four re-
quirements stated earlier. It is up to the system’s designer to choose one
feature over the other, and occasionally intrusive changes to the guests may
be required. Eventually, a round-robin scheduler made it into the prototyp-
ical implementation, thereby choosing fidelity over covert channel freedom
and avoiding the guests’ desperation. Cold comfort can be drawn from that
the underlying virtualizing system was not free from covert channels after
all [51].

SUSPEND AND RESUME

L4Linux is not known for its ability to suspend or even migrate a running
VM. Nevertheless, it is worth exploring the possibility of suspending a client
to this GPU virtualization scheme. The only state held in the GPU server
concerning a client is the corresponding job-queue and GPU’s address spaces.
The job-queue, consisting at most of one job per client and per processing
core, can be flushed; the GPU server can refuse to take on more jobs from
a client that is suspending. Thereby, an invariant of an empty job queue
for suspended clients is created. If the page tables corresponding to the
client’s contexts are transient, as was discussed earlier in Section 5.2.1, they
can simply be discarded; upon resume, they can be reconstructed from the
guest’s page tables. Otherwise, they must be transformed into a format that

takes into account the guest physical layout and be stored as an amendment

92 CHAPTER 5. MOBILE GPU PARA-VIRTUALIZATION

to the VM’s state.

The fact that the entire state of an OpenGL rendering pipeline is stored
in guest memory makes suspending GPU server clients very easy, compared
to API remoting schemes. Migration across different platforms is a different
story though. The hardware dependency is fused into the guest clients’
applications by means of the GPU dependent user level drivers, which makes
it next to impossible to migrate the VM to a different GPU.

IMPLEMENTATION DETAILS

The base system of the prototypical implementation is already known from
Section 4.5 where the implementation details of the secure GUI were pre-
sented. In addition to what was presented earlier, both SoCs of the employed
smartphones feature an ARM Malid00 MP4 GPU. It has one geometry pro-
cessor (GP) and four pixel processors (PPs). Each of these processing cores
has its own MMU; the MMUs share one commonly used second-level cache
with the processing cores.

The prototypical implementation comprises a GPU server and a paravir-
tualization interface that defines the communication between the clients.
The clients, here instances of L*Linux, were adjusted to use this paravirtu-
alization interface instead of driving the GPU directly, that is, through the
GPU’s MMIO interface. This modification was restricted to the lower end
of the Linux kernel’s GPU driver, leaving the kernel user interface unaltered.
As a result, the GPU-specific user level drivers were deployed unaltered. The
rest of the section covers the paravirtualization interface, the internal GPU-
server structure, and the bootstrapping phase of the system that is essential
for establishing assurance. Eventually, the integration with the secure GUI

architecture is discussed.

PARAVIRTUALIZATION INTERFACE

The para-virtualization interface between the GPU server and the guest
kernel driver is composed of two functional groups: One functional group
is concerned with creating, destroying, and populating GPU address spaces.
The other is concerned with submitting jobs to and receiving job completion

notifications from the GPU server.

5.6. IMPLEMENTATION DETAILS 93

GPU-Server GPU-Server
(©) |, [Session0, @ 'AS [0) |, [Session0
Client 0 —— 1 | At a1 Client 0 — | NH &4
o asT| |EHek: g Bl
@ Sc:sion 1 Session 1
A B e e ‘¢ ASO
Client IW—‘ E{ﬁoi E%
(a) GVA construction. (b) GVA destruction.
Trusted '
rd A
3" party
A Y"@& \ %’*f% GPU-Server
@%& Session
@ <AS ID><target><offset> <AS ID>

Cllent < - | |<phys—addr>
@ <target> @

(c) GVA mapping.

GPU-Server

Session

@ <AS ID><target> <AS ID>

0
<target> @

Figure 5.6.1: The four GPU-Server protocol functions of the memory management
functional group are: (a) the construction of a GPU virtual address-space (GVA), (b)
the destruction of a GVA, (c) the mapping of memory resources into a GVA, and (d)
the releasing of memory resources from a GVA.

Y

Client —_

(d) GVA unmapping.

The first group comprises four functions: two for creating and destroying
an address space and two for creating and deleting a mapping. To cre-
ate a new address space, as depicted in Figure 5.6.1a, the client invokes
the corresponding function . The GPU server, in turn, allocates a new
page directory and assigns a new address space ID @ and—upon success—
returns a the symbolic identifier Q). Internally, the GPU server administers
one session data structure per client. These sessions are identified through
the communication channel by which the function was invoked. Each of the
sessions and therefore each client, has its own namespace of address space

identifiers; consider the example of Figure 5.6.1a where in Step ® the ad-

94 CHAPTER 5. MOBILE GPU PARA-VIRTUALIZATION

dress space identifier 0 is assigned in Session 1, although Session 0 already
has an address space ID of 0. Figure 5.6.1b depicts the destruction of an
address space. Here the client invokes the destruction function and specifies
the address space to be destroyed by using the previously assigned identifier
D. Subsequently, the GPU server destroys the given address space @ and
returns control to the client @). The unforgeablility of the communication
channels and their identifiability are essential for the GPU server to provide
isolation between the clients.

The address space identifiers are not the only entities with session-local
namespaces. The same principle applies to the physical memory resources
used by the clients as well. In order to make a mapping request, as depicted
in Figure 5.6.1c, the client issues a triplet comprising an address space iden-
tifier (AS ID), a target address, and an offset. The client’s session is again
denoted by the channel used. Within the session, the address space identifier
denotes the page directory to be modified. The target address denotes the
index of the entry to be modified. The content of the new entry, however,
must be sanitized very rigorously because failing to do so leads to evasion
of isolation, as was established in Chapter 3. To that end, the physical
address to be mapped is specified by the offset field. The offset specifies a
chunk of physical memory within an abstract range of physical memory as-
signed to the client,! but it is not a physical address. The GPU server must
use a trusted service (Figure 5.6.1¢@) to translate the offset into an actual
physical address @. The trusted service may respond with an error code
if the given offset does not yield a valid pysical address. And, for a given
client, the translation can only yield physical addresses that are already un-
der the control of that client. The assurance of the latter requirement will
be covered later in Section 5.6.3 when the bootstrapping of the prototype
is discussed. After translating the offset into a physical address, the entry
can finally be made @, and control can be returned to the client ®. If
eventually, the client decides to remove a mapping from an address space,
it invokes the function depicted in Figure 5.6.1d. Here, it suffices to specify
the address space identifier and the target address (D. The latter is used by
the GPU server to invalidate the page-table entry @ of the address space
specified by the former. After that, control is returned to the client.

This first functional group is rather generic and can be used for any GPU

'See also “dataspace” in Section 2.2.3

5.6. IMPLEMENTATION DETAILS 95

that has its access to the main memory mediated by an MMU. In fact, this
applies to any DMA-capable peripheral device with an MMU. The second

functional group is concerned with the submission of rendering jobs. This

GPU-Server

Session

O 1 %j
Client _ N o
@ @ Job—q)ueue/_\ @

@ ____________________ . job running - G%J MMU

Figure 5.6.2: GPU job submission protocol flow. Upon job submission request @ by
a client, the server selects the corresponding page directory @ and places both the
job description and the page directory into a job queue @). Then control is returned
to the client @. The GPU server activates the corresponding page directory and
starts the job ® once the GPU is @ or becomes ® idle and the job is marked run-
ning. When the job completes ®, a notification is sent to the client asynchronously

@.

function is depicted in Figure 5.6.2. To submit a rendering job to the GPU
server, the client specifies a job description and an address space identifier D.
As discussed before, the job description is but an entry point to an executable
residing in memory, or a small set of parameters for the GPU; it varies with
the GPU architecture. The address space identifier selects a page directory
@ from the session’s set of page directories, where the session is selected,
once more, through the communication channel by which the operation was
invoked. The tuple of address space and the job description is appended to
the job-queue Q. If the GPU is busy, the client-server interaction ends here,
and control is returned to the client @. Otherwise, the page directory is
activated on the GPU’s MMU, and the job is started on the GPU & while
the job is marked running before control is returned to the client @. Once
the GPU completes the job, it raises an interrupt and notifies the GPU
server . The GPU server, in turn, checks the job-queue for subsequent job
requests and starts the next one if present. In any case, it notifies the client
(@ about the job completion before it blocks and waits for further client

requests and GPU interrupts.
The MMU may raise an interrupt in the event of a page fault. This

96 CHAPTER 5. MOBILE GPU PARA-VIRTUALIZATION

condition, however, is considered a mistake in preparation of a rendering
job and thus an unrecoverable failure. In such a case, the GPU server resets
the GPU and reports a failure to render the job to the client. If the GPU has
a command processor, the principle client-GPU-server interaction remains
the same. The program flow of the GPU server and the amount of CPU-
GPU interaction differ, however. For example, Step ® could be concurrently

performed by the command processor of the GPU.

GPU SERVER

GPU-server interface
[Session-interface]|
SedeSiOIl pending/running job slots Platform
. address - = - = Mapping
S cssion SPAC I|<GP-jo:tSi::c)riplion>I|I <PP—jobA :els]:ﬁplion> request management
management sanitizer/ Power/Clock
|page-table memory quota] translation service stub
cache MMIO/Interrupt
initialization
GP-job queue PP-job queue |
GP-core | MMU PP-core | MMU L2-cache PMU
driver |driver drlver driver driver driver

Figure 5.6.3: From top to bottom: The GPU server exposes a session-factory service
and one session service via individual communication channels. A session manage-
ment layer keeps track of the session-specific data structure comprising page direc-
tories, slots for pending jobs, mapping request sanitizer information, and page-table
quota information. It is complemented by a platform management module. Drivers
for the computational cores, the per core MMUs, the L2-cache, and the power man-
agement unit (PMU) form the lowest level of the GPU server.

While the GPU server interface discussed in the previous section is still
generic, the architecture of the prototypical GPU server implementation
is less so. This is owed to the architectural distinctiveness of the mobile
GPUs and the runtime environment, which is here Fiasco.OC with L4Re.
A glance at Figure 5.6.3 reveals that the GPU server exposes, typical for
an L4Re server, a session-factory service and one session interface for ev-
ery created session. The latter expose an interface adhering to the protocol

discussed in the preceding section, and each of these services is exposed

5.6. IMPLEMENTATION DETAILS 97

via an individual IPC-gate serving as unforgeable communication channel.
Above that, sessions implement the ICU protocol to allow a client to register
IRQ-objects for asynchronous job completion notifications. A shared mem-
ory buffer is established between the client and the server to accommodate
batches of mapping requests, job descriptions, and a status field. The latter
is a back channel to report the success or the failure of a rendering job to
the client. The session-management layer administers one session data struc-
ture per session. Each may hold a set of page directories as requested by
the client. Because the page directories can grow indefinitely at the whim of
the client, page directory—and page-table—allocation is governed by a per
session quota mechanism. Otherwise, the resource consumption of the GPU
server is only linear with the number of session, which is not under the con-
trol of a client but rather of a trusted third. To that end, the GPU server
has a constant number of pending job slots per session—here, one job to
be queued or running per computational core. The information required to
sanitize mapping request is supplied at session creation time by the trusted
third, as indicated by the symbol A’ in Figure 5.6.1c. The trusted third
will be discussed in more detail in Section 5.6.3. The session-management
module is complemented by a platform management module. The platform
management module allows the GPU server to request the power supply
and the clock signal of the GPU to be switched on demand. With this fa-
cility, the prototype can power down the GPU when it is idle, reducing the
power consumption by roughly 10 mW (see Section 6.4.5). The same module
also initializes the GPU server by requesting the required MMIO resources
and interrupts. Drivers for the computational cores, their corresponding
MMUs, the shared L2-cache, and the power management unit (PMU) form
the lowest layer of the GPU server, interfacing with the hardware through
the GPU’s MMIO interface. Notably, the core and MMU drivers are instan-
tiated once for each physical core, and so are the corresponding job queues,
which can hold one job per session; this corresponds to the number of job

slots available per session.

BOOTSTRAPPING

In the preceding sections, there were occasional references to a trusted third

as an essential player in the game of sanitizing mapping requests. In this sec-

98 CHAPTER 5. MOBILE GPU PARA-VIRTUALIZATION

. [session-Tactory Ol ned O allocator |
mali_rg moe

. | session—factorz O ned O allocator |
mali_rg moe

@_/ gatasﬁace |

mali rq Cesonfcon] %@O_\M moe
—9 [ai Session —@\p §atas§ace|

server | |trusted 3*°

offered servicel e L
IPC-gate \Otdbk-bdpablmy @
-

capability-delegation

() capability e
legend @ @
O

()
. |session—factorz 1 l n Tocat
mall_rg : C ent aocaorl moe
Iai session dataspace |

Figure 5.6.4: Bootstrapping of a new client in the context of Fiasco.OC and L4Re.
Using moe's allocator service, ned allocates memory (D destined to be used as graph-
ics memory. With mali_rg's factory service, it creates a new GPU-server session and
delegates the newly allocated memory to the new session 2 by means of capability a.
When finally creating the new client, it delegates both the new GPU-server session
and the graphics memory, by means of capability b and capability a, respectively, to
the new client).

tion, the trusted third is introduced as it appears in an L4Re-based system.
To that end, a closer look at the bootstrapping procedure of a new GPU
client is warranted. A minimal L4Re-based system has already been dis-
cussed in Section 2.2.3 on Page 23. Starting from here, it shall be assumed
that ned started an additional server, the GPU server mali_rg. Further,
ned shall have access to the session-factory service of mali_rg. This situ-
ation is depicted at the top of Figure 5.6.4. First, ned allocates a region
of memory, which shall be usable for rendering related operations . This
memory is represented by a new instance of a dataspace service exposed by
means of an IPC-gate capability @. In Step @, the bootstrapper invokes
the session factory and creates a new session ®. While doing so, it delegates
the previously acquired capability @ to the GPU server, which associates

it with the new session. Finally, in Step @), ned creates the new client and

5.6. IMPLEMENTATION DETAILS 99

delegates both the new dataspace service and the new session to it. The
client can now use the memory represented by @ and issue a request to
map the memory into a GPU address space using ®. Physical memory
resources are specified in terms of dataspace offsets, and the GPU server
can translate those into host physical addresses by means of the capability
@. The contract that ned made with mali_rg in Step @ can be stated
as follows: If a mapping request received via 0 can be translated into a
physical address using the service behind @), then the request is legitimate.
This is sufficient proof that the client was already in control of the physical
memory resources affected. The bootstrapper ned and the root task moe

vouch for this contract and thus constitute the trusted third.

In the prototypical implementation, L4Linux was patched to receive all
of its memory assignment through the bootstrapper, rather than requesting
it from the root task on its own behalf. This enabled the L*Linux instances
to use all of its memory for rendering with the GPU. As a side effect, the
GPU server was given access to all of the client’s memory. This, however,
is not an elevation of privileges, as the GPU server, by means of the DMA
capabilities of the GPU, can already access all of the physical memory. It is
already trusted with upholding the spatial isolation of the clients from one

another as well as that of any other subsystem from its clients.

INTEGRATION WITH SECURE GUI

The same mechanism that was introduced in the previous section was used
to associate the private framebuffers of the clients to the corresponding client
session of the GPU server. Consider Capability @ in Figure 5.6.5. It repre-
sents the private framebuffer of the client. With this capability, the client
and the mali_rg server had a common namespace for the framebuffer re-
source. Consequently, clients were enabled to map their framebuffers into
the GPU’s address space, which allowed for seamless direct rendering. The
fb-drv server, in this case, acted as dataspace provider. With two datas-
paces associated with a client’s session, the dataspace offset was no longer
unique. Therefore, the otherwise unused lower bits of the dataspace offset

were used for disambiguation in mapping requests issued by the client.

100 CHAPTER 5. MOBILE GPU PARA-VIRTUALIZATION

rver TCB . v
offered sjviel © UIES= /Gl) L4Llnux fj ug
Oy | legend (® Mati arv)
capability
owner

(driver module) mal 1_rg } fb-drv
a)(d)session dataspace| [goos

Figure 5.6.5: Communication channels after bootstrapping the GPU and secure GUI
(output) subsystems omitting the bootstrapper ned. The left hand side is analogous
to the outcome of Figure 5.6.4 with an instance of L*Linux as client. Capability @
represents the main memory of the L*Linux instance, shared with mali_rg, and ®
represents the session interface by which the client can issue requests to the GPU
server. The right hand side depicts the framebuffer infrastructure from Chapter 4.
Capability (© represents the session interface by which the client can issue buffer
switch requests and receive VSYNC events. Capability @ represents the framebuffer
shared between the client and mali_rg, just as the main memory is by capability @.

SUMMARY

In this chapter, a very compact GPU server design was presented that up-
holds memory isolation among GPU clients as well as between GPU clients
and the TCB, that is, the system services and the underlying kernel. By
concentrating on the most essential feature required to confine a DMA de-
vice, that is, memory isolation, and by placing the virtualization boundary
at a very low level, the GPU server design became small, and at the same
time, it exhibited great versatility and fidelity. Notably the GPU server
waives memory allocation and assignment, services that are typically found
in kernel GPU drivers. Instead, whenever clients wish to have memory re-
sources accessed by the GPU, the GPU server requires a proof of ownership,
here provided by a namespace for memory resources that is local to the
GPU server, the corresponding clients, and a trusted system service, and
that only includes the memory resources that the corresponding client can
control. In this makeup, the GPU server makes heavy use of an MMU me-
diating the GPU’s memory access and otherwise stays out of the way of any

high-bandwidth memory transfers.

Evaluation

Whoever has tried to play video games inside a VM on their desktop com-
puter knows that it is no fun. It is either slow and laggy or, if not both, the
cooling system screams indicating hig heat development and therefore high
power consumption due to the high system load. Mobile systems can afford
neither. Therefore, the development of the secure GUI and GPU virtualiza-
tion architecture was accompanied by a thorough performance evaluation,
which led to various optimizations. The organization of this chapter is as
follows: In Section 6.1, the methodology for this evaluation is presented,
followed by a description of the experiments under evaluation in Section 6.2.
The benchmarks used, some of which were specially devised, are described
in Section 6.3. Subsequently, their results are discussed in Section 6.4. In
the context of the results, the evolution of the prototypical implementation
is discussed, with occasional excursions into performance implications of the
underlying virtualizing system, that is, Fiasco.OC, L4Re, and L*Linux. To
top up this chapter, there is a discussion of the architecture’s impact on the
TCB and an assessment of the implications on the system’s security if either

of the subsystems is compromised in Section 6.5.

101

102 CHAPTER 6. EVALUATION

METHODOLOGY

For evaluating the runtime behavior of the prototype, off-the-shelf high-level
benchmarks were used, as well as a series of custom-made microbenchmarks.
The results of the former are presented “as is”, with some exception discussed
in the corresponding section. For the custom benchmarks, the infrastructure
provided by the underlying device and software was used. This, however,
needed some adjustments to reduce the measurement overhead and increase
accuracy. This section discusses the facilities used and the modifications

made.

ENHANCED TIMER ACCESS

All of the custom benchmarks described in this chapter use the system
call gettimeofday for generating time stamps, that is, where they do not
evaluate trace buffer events, which will be discussed in Section 6.1.2. The
default implementation of L*Linux uses the kclock field of the KIP!. The
kclock field is updated upon each timer tick, typically every millisecond.
This granularity was to coarse for the purpose of evaluation. Instead, the
free running counter (FRC) was used, which is part of the SoC’s multi-
core timer (MCT) functional block. It runs at 24 MHz clock frequency and
therefore provides sub microsecond granularity. First, the FRC was exposed
to the user space through an extension of the Fisaco.OC’s debug interface.
But, because this caused gettimeofday to incur an additional round trip
to the Fiasco.OC kernel, the MCT’s MMIO resources were exposed to the
user space directly. The implementation of gettimeofday could thus read
the FRC directly, with slightly reduced latency. Eventually, the runtime of
a gettimeofday was determined to be .6 us in the native case and 3.8 us on
L*Linux. Exposing the MCT interface is, however, potentially dangerous

and should not be done in a production system.

THE F1asco.OC TRACE BUFFER

Among the set of debugging tools with which the Fiasco.OC is equipped, is
the trace buffer. The trace buffer is a region of pinned memory designated

to hold events recorded with low latency. Trace-buffer events have a fixed

'See Section 2.2.3 on Page 18.

6.1. METHODOLOGY 103

size of 64 octets; the first 34 contain the event’s header including, among
other items, the type of the event, a time stamp, and the registering CPU.
The remaining 30 octets are the payload of the event, of which the layout
depends on the event’s type. Fiasco.OC supports a variety of event types,
of which the recording can be activated through the kernel’s debug interface.
The event-recording feature is highly optimized; notably the activation of
event recording is done through binary patching to spare the cost of an
additional conditional branch.

The trace buffer was used for three different purposes: First, for gaining
insight into the runtime behavior of the evaluated system. For this purpose,
a tool for visualizing the trace-buffer was developed. Second, trace-buffer
events were used as measuring points whenever the start and end of a du-
ration were not within the same protection domain. For example: When
measuring the duration between an interrupt registering in the kernel and
a corresponding action taking place in a user-space application, both occur-
rences were instrumented to emit a trace-buffer event for later evaluation.
Third, the trace buffer was used for discriminating measurements with re-
spect to system mnoise sources, such as the occurrence of context switches

within the measurement period.

VISUALIZATION

For visualization of the trace-buffer, two event types were the most impor-
tant: Context switch events and vCPU events. The context switch event,
if enabled, marks the occurrence of a context switch; it is emitted by the
Fiasco.OC kernel. The vCPU events can also be enabled selectively and,
if enabled, are emitted by the Fiasco.OC kernel. They mark five different
conditions related to a vCPU’s operation (Note that the numbers in the fol-
lowing enumeration where not chosen arbitrarily, but reflect the numerical
representation internal to Fiasco.OC and thus the coding in the visualiza-

tions.):

0. Resume: This event is emitted immediately before the vCPU enters
user space after the vCPU has invoked the resume operation. The re-
sume operation is invoked when the vCPU wishes to resume execution
in a secondary task. Furthermore, the vCPU may change its architec-

tural state atomically. In the context of L*Linux, this event marks the

104

CHAPTER 6. EVALUATION

point when the vCPU transitions from executing in the guest kernel

to executing in a guest process.

. Asynchronous IPC (IRQ-object trigger): This event is emitted

if an TRQ object that was registered with the vCPU was triggered, and
the vCPU has interrupts enabled. When the vCPU resumes execution,

it does so in the primary (or kernel) task at a predefined entry vector.

. Exception: This event is emitted immediately before the vCPU is

entered after an exception occurred while the vCPU was running with
exceptions enabled. The vCPU resumes execution in the primary task
at a predefined entry vector. In the context of L*Linux, most of the
time, this event type marks system calls issued by guest’s user pro-
cesses. But it can also mark other exceptions, such as the occurrence

of an undefined instruction.

. Page fault: This event is emitted immediately before the vCPU is

entered after a page fault has occurred while the vCPU was running
with page faults enabled. The vCPU resumes execution in the primary
task at a predefined entry vector. In the context of L*Linux, this means
a page fault occurred while executing in a guest process, which is then

reflected into the guest kernel for handling.

. Synchronous IPC (IPC-gate invocation): This event is emitted

if an IPC-gate that was registered with the vCPU, was invoked and
the vCPU was ready to receive. This mode of operation has no cor-
respondence in a physical CPU interface. In the context of L*Linux,
this only occurs if the instance is acting as an L4Re server, e.g., offer-
ing driver services, such as driving the input devices, as discussed in
Chapter 4.

With the context switch events, one graph per CPU was drawn over time,

showing the currently executing context. A second graph was drawn showing

the active protection domain (task/page table). Using the vCPU events, the

second graph was extended to show switches to secondary tasks, which in

this case represent switches to and from user level processes inside the VMs.

These secondary task switches were annotated using the numbers described

above. As a rule of thumb, a ‘0’ can be read as a switch to a secondary

task, whereas any other number indicates a switch back to the primary task

6.1. METHODOLOGY 105

with the reason encoded in the number. These two graphs give a good
understanding about what is going on in the system. To reason about why
the system behaved in a certain way, the graphs where augmented with
other events, such as IRQ object triggers, IPC gate invocations, timer ticks,
and a variety of custom events. With this augmentation, the communication
between the subsystems could be observed; also, it allowed reasoning about

scheduling decisions.

MODIFICATION

Fiasco.OC used the kclock for time stamping of trace-buffer events. Once
again, the inherent precision of this method was to coarse for the intended
measurements. Therefore, the free running counter (FRC) of the SoC’s
multi core timer (MCT) was used instead. The FRC was configured to run
at 24 MHz, providing a sub microsecond granularity.

Another more subtle detail about trace-buffer events was the way in which
numeric type identifiers were assigned. As Fiasco.OC advanced, its devel-
opers chose to use a dynamic assignment scheme for more and more event
types. In consequence, the identifiers for a specific event could vary from
build to build. This being unacceptable for offline analysis and visualization,

static predefined identifiers for most event types were reintroduced.

TRACEBUFFER EXTENSION

To extract trace-buffer information, a driver by the name 14_ktrace was
built into L*Linux that exposed the trace buffer to the guest’s user space.
A complementary tool (dktrace) was created, which could read the trace
buffer from the guest kernel and dump it into a file. To generate a meaningful—
that is, consistent as well as human readable—visualization, however, some
extensions were needed, exposing meta-information about the traced objects.
The traced objects, contexts, and tasks appear in the trace buffer either by
their debug identifier (DBG-ID) or by a pointer. Both are not easy to map
to specific applications by the user. Above this, pointers may refer to dif-
ferent objects over time. This happens when an object is destroyed and
its resources are reused. Therefore, an extension was built into Fiasco.OC
to expose a list of objects mapping DBG-ID and pointer to a human read-

able string identifying the resource. However, by the time a trace-buffer

106 CHAPTER 6. EVALUATION

was dumped, objects that appear within the trace may have been destroyed;
they would therefore not show up in this object list. Therefore, special events
carrying the missing information were inserted into the trace upon object de-
struction. From these additional events and the object list, a lookup-table
was generated off-line, mapping either DBG-ID or pointer in conjunction

with the time of occurrence in the trace to a specific object.

TRACING IN NATIVE LINUX

To provide comparable measurements on a native Linux, a similar tracing
mechanism was built into Linux as a kernel module. The module allocated
a trace buffer and a structure holding the position-independent geometry of
the buffer as well as the current write pointer. Both were exposed to the
user in a read-only fashion through the invocation of the mmap mechanism
on the device node /dev/jd_trace. An IOCTL interface allowed the user to

emit custom events comprising a short string and three word-sized integers.

MEASUREMENT OVERHEAD

Trace-buffer events, although much cheaper than formatted output instru-
mentations, are not without cost in terms of the runtime overhead incurred.
Moreover, the cost differs depending on from where the context trace events
are being issued. Five contexts were evaluated: the Fiasco.OC kernel, the
LALinux guest kernel, the L*Linux user-space process, the native Linux ker-
nel, and the native Linux user-space process. An event emitted by the kernel
amounts to a memory access, whereas an event emitted from user space must
first transition into the kernel. The cost was measured by issuing multiple
events in a tight loop and by evaluating the advance of the events’ times-
tamps. For events issued from the user space, this was straightforward. In
order to perform the same experiment for the respective kernels and guest
kernels, the event emitting loop was built into them, and a trigger was
exposed to the their respective user spaces through interfaces as follows: Fi-
asco.OC was amended with a new extension to the debug interface allowing
to trigger a burst of trace buffer entries. The L4Linux driver 14_ktrace was
amended with an IOCTL call forwarding the request from its user space to
the underlying p-kernel. Similar IOCTL calls were added to jd_trace and

14_ktrace to trigger event bursts in the native Linux kernel and L*Linux

6.2. EXPERIMENTS 107

Issuer of trace buffer event ‘ Linux Fiasco.OC
kernel [us] | 0.85 1.2
user space / guest kernel [us] | 1.5 1.3
guest user space [us] | NA 5.6

Table 6.1.1: Cost of issuing a trace-buffer event in microseconds. The measure-
ments represent the time between two successive events issued in a tight loop by

any of the issuers in the left column. Each value is the mean of at least ten thousand
samples.

respectively. The outcome of this experiment is presented in Table 6.1.1.

FINE GRAINED CPU TIME ACCOUNTING

For accounting CPU time, Fiasco.OC uses the kclock with a typical gran-
ularity of one millisecond. This granularity is too coarse to capture short
IO-prone workloads. In consequence, IO-prone loads, such as driver threads,
were often not accounted for. More often, the idle thread was accounted for
the CPU time in such cases. An off-line evaluation of the trace-buffer, us-
ing both the coarse-grained method of the Fiasco.OC kernel and a more
finely grained method, showed that the discrepancies in the measured sys-
tem load accumulated to between two and five percentage points, with the
coarse-grained method favoring the idle thread.

Measuring a lower-than-true system load naturally skews the comparison
unfairly. Furthermore, power management can hypothetically benefit from
measurements that are more precise, because it can react quicker to a be-
ginning user interaction and scale up CPU speed. Therefore, Fiasco.OC
was patched with a more fine-grained CPU time accounting, using the FRC

instead of kclock.

EXPERIMENTS

The prototype as described in Chapter 4 and Chapter 5 was compared
against a native setup of Cyanogenmod 10.2 and two intermediate stages
of prototypical implementation: Namely pass-through and copying. In the
pass-through scenario, the GPU is driven directly by a LALinux compart-
ment. That is, the MMIO-resources were passed through to the unmodified

Linux driver, and the corresponding interrupts were delivered through IRQ-

108 CHAPTER 6. EVALUATION

objects. This is inherently insecure because the corresponding guest kernel
can easily evade isolation by means of the GPU with the techniques de-
scribed in Chapter 3. However, it makes for a good performance evaluation
vehicle because it incurs the CPU virtualization overhead, such as system
call, shadow paging, and notification overhead, without the expected over-
head incurred by gaining GPU interposition through GPURG. The second
intermediate scenario, copying, uses the compositing approach in the frame-

buffer output path as described in Section 4.1.2.

The GPURG scenario underwent a series of evolutionary steps in the
course of its development and evaluation. In the beginning, mapping re-
quests issued by the user were broken down into the individual pages, and
one request per page was forwarded to the GPU server at a time. The GPU
server, in turn, issued one translation request to the corresponding datas-
pace provider to learn the corresponding host physical address and sanitize
the request at the same time. Both steps induced massive overhead, and
so the guest-physical to host-physical translations were cached by the GPU
server and mapping requests were accumulated and sent to the GPU server
in batches. The batch buffer was flushed when full or before control returned
to the user so as to exhibit a behavior consistent with the user’s expecta-
tions. Besides these optimizations, several cache policies were investigated
for handling page-table memory in the GPU server. However, at this point,
the evaluation uncovered that the largest portion of the overhead incurred
during context population was not to be found in the GPURG architecture,
but rather in the way L*Linux populates process address spaces. All of these
measures lead to enhancements in GPU context building speed, which influ-
ences the time that an application requires to load, or for a game to change
a scene. And even though it was somewhat out of the scope of this work,
attempts were made to lower the process population overhead. The context
building overhead was measured with the map_tool benchmark discussed in

Section 6.3.3, with its results presented in Section 6.4.3.

It was expected that the GPURG interposition also induces a cost in
the GPU job submission and the completion notification mechanisms. To
quantify this cost, a very short-running rendering job was devised, which was
precompiled and run many times to gather samples of the quantities desired.
Measurements were taken in the native, pass-through, and GPURG scenar-

ios where applicable. The job_tool benchmark discussed in Section 6.3.2

6.3. BENCHMARKS 109

generated the corresponding results, which are presented in Section 6.4.2.

Besides the GPU interposition cost, the cost incurred on the input event
path and in framebuffer handling needed to be taken into account as well.
The input path was evaluated with respect to the input event latency. The
output path was evaluated with respect to the VSYNC notification latency
and the cost of a buffer-swapping request. All three were evaluated in the
context of the native and the GPURG scenarios. The path-through sce-
nario does not differ from the GPURG scenario with respect to the input
and output interposition and therefore is not considered here. The input
and framebuffer interposition costs were measured using the inputer and
vsyncer benchmarks, respectively. The former is presented in Section 6.3.5,
and its results are discussed in Section 6.4.4; the latter is presented in Sec-
tion 6.3.4, and its results are discussed in Section 6.4.4.

The design of the secure GUI was driven by security requirements. But
as the window manager mag already met these security requirements, the
motivation for the architecture presented here was performance and power
efficiency. It remains to be shown that this architecture not only performs
better in terms of achievable frame rate, but also in terms of power con-
sumption. Therefore, in Section 6.3.6 an experimental setup for measuring
the power consumption of the secure smartphone is presented; and, in Sec-

tion 6.4.5, the results are discussed.

BENCHMARKS

In the previous section, the experiments evaluated were introduced, and
their rationales were discussed. In this section, the details of the benchmark
tools used to evaluate the experiments are presented.

High-level 3D benchmarks were used to gain a general impression of the
graphics performance that the prototype was capable of; the microbench-
mark job_tool was devised to measure the extra load induced on the CPU
by measuring job submission and notification delay; the microbenchmark
map_tool measures the overhead incurred due to the GPU shadow paging
scheme; the microbenchmark vsyncer measures the latency incurred by the
VSYNC notification and the buffer swapping request, and the microbench-
mark inputer measures the latency incurred on the input path. Eventually,

an experiment was set up for measuring the power consumption of the smart-

110 CHAPTER 6. EVALUATION

phone.

HIGHLEVEL 3D BENCHMARKS

The benchmarks OpenGLCube, OpenGLBlending, OpenGLFog, and Flying Teapot
are part of the benchmark suite Oxbench [1]. All four are written in Java,
and they use Android’s OpenGL ES Java API. The Oxbench benchmark
suite was modified to measure the system’s utilization during each bench-
mark. To that end, Linux’s /proc/stat interface was evaluated for CPU
idle time. In order to capture the global system’s CPU idle time in the
virtualized case, this interface was amended with the idle time as measured

by Fiasco.OC.

In addition, the popular first-person shooter Quake III Arena was used
for benchmarking. To that end, the demo FOUR.DM_68 was run in timedemo
mode. It was run on QIII4A [8], the Android port of the joquake3 [5] engine.
Two modification were applied to the engine, the source code of which is
publicly available. It was modified to always run in timedemo mode and to
use the Android logging API for printing messages, including the benchmark

results.

MICROBENCHMARK JOB_TOOL

The job_tool benchmark issues a short-running program to the GPU. This
program was precompiled and linked to cut the CPU-bound load out of the
measurement. The benchmark operates under the assumption that this job
always completes in same period of time because the GPU hardware is the
same and fixed to the same clock frequency in all scenarios. The jobs are
issued by a user-space application either running on the Linux kernel (in
the native case) or running on the L*Linux guest kernel (in all other sce-
narios). To issue the jobs, the user-space application calls the ioctl calls
MALI_IOC_GP2_START JOB and MALI_IOC_PP_START_JOB to start the GP
and PP jobs, respectively.? It then calls MALI_I0C_WAIT_FOR_NOTIFICATION
to wait until the corresponding job has finished. This measures the corre-
sponding cost when taking timestamps before and after the job submission.

For measuring the notification cost, the trace buffer was evaluated after

2The ARM Mali GPU evaluated here has special computational cores for vertex shading
(GP) and fragment shading (PP). The structure of the GPU was introduced in Section 5.6.

6.3. BENCHMARKS 111

MALI_TIOC_WAIT_FOR_NOTIFICATION returned. The IRQ-object trigger event
served as a starting point for the measurement; in addition, the top-half in-
terrupt handler of the guest kernel’s GPU stub driver was instrumented to
emit a trace-buffer event, which served as the endpoint. As the top-half han-
dler is the first point at which this interrupt registers in the native Linux
kernel, this measurement has no counterpart in the native scenario.

The trace-buffer also served as a source of information for reasoning about
outliers. With the trace-buffer, measurements were discriminated with re-
spect to the number of context switches occurring during the measurement
period. This gave a good indication of whether the measurement had been

skewed by system noise.

MICROBENCHMARK MAP_TOOL

The map_tool benchmark performs a sequence of five operations, which are
related to populating a GPU context with memory, and further measures
their cost. After allocating a physical memory buffer, it (a) attaches it to
the GPU address space, (b) attaches it to its own process address space, (c)
touches every page by writing to the first word of that page, (d) releases it
from the GPU context, and (e) releases it from the process address space.
The cost of two of these operations, (a) and (d), is significantly influenced
by the interposition of the GPU server. The others (b), (c), and (e) are not
influenced by this interposition; however, they illustrate the impact of the
para-virtualization of L*Linux.

In the following, every operation is broken down into steps illustrating
where the individual experiments differ. This information is vital to under-
standing the results discussed in Section 6.4.3 below and may be used as a

reference.

a) Attach to GPU address space: The map_tool application uses the
ioctl call MALTI_I0C_MEM_ATTACH_UMP of the Mali user-kernel interface.
In turn, the unmodified kernel driver—this applies to the scenarios “na-
tive” and “pass-through”—allocates page tables for the GPU’s MMU
as needed and creates the page table entries accordingly. In the para-
virtualized case with GPU server interposition, the guest kernel driver
breaks the request down into pages; each page’s base address is then

translated into a dataspace offset, which, together with the mapping

112 CHAPTER 6. EVALUATION

target and address space identifier, is sent to the GPU server; which
allocates the page tables on the client’s behalf and creates the page
table entries after translating the dataspace offsets into host physical

addresses.

b) Attach to process address space: Themap_tool application calls mmap
on the UMP user-kernel interface to map the allocated buffer into its
process address space. In turn, the (guest) kernel driver uses the Linux-
API call remap_pfn_range to map the already allocated physical tiles
into the process address space eagerly. There are subtle differences
between the implementations of the native and the virtualized experi-
ments. Both implementations modify their page-tables directly, how-
ever, only the native case cleans the cache line using DCCMVAC? on the
new page table entry. This cache maintenance operation is not neces-
sary in the virtualized case because the guest’s page tables are never
walked by MMU hardware, but rather by a software page-table walker.
Furthermore, the ARM flavor of the Linux kernel maintains duplicated
page tables. One duplicate is for the MMU hardware to walk, whereas
the other accommodates additional flags, which the memory manage-
ment subsystem of Linux needs but which cannot be absorbed by the

architectural page tables. L*Linux dropped the former.

c) Touch pages: In this phase, the application performs a single write ac-
cess on every page of the attached buffer. While in the native case the
effective page tables are already populated at this point, the shadow
page tables in the virtualized cases are not. This means that in the
native case this access amounts to a TLB miss followed by a page-table
lookup and a subsequent cache line allocation. In the virtualized cases,
however, a page fault occurs which is reflected into the guest kernel,
causing a task switch; the guest kernel resolves the page fault by walk-
ing its page table corresponding to the current process and resumes the
process, causing another task switch; in resuming the process it passes
the result of the page fault resolution down to the hypervisor, which
updates its shadow page table accordingly. Now that the effective
page table is populated, the remainder of the operation commences as

in the native case.

3See ARM Architecture Reference manual Section B4.2.1 for more details [2].

6.3. BENCHMARKS 113

d) Release from GPU address space: To release the memory from the
GPU address space, the application calls the ioctl MALI_I0OC_MEM_RELEASE_UMP.
The unmodified kernel driver removes the corresponding mappings
from the GPU MMU’s page tables and frees unused page tables ac-
cordingly. In the para-virtualized case with GPU server interposition,
the guest kernel driver again breaks the release request down into
pages; each page is specified by its mapping target, that is, its GPU
virtual address, and the address space identifier; the GPU server re-
moves the specified entries from the corresponding page tables and

frees the unused page tables accordingly.

e) Release from process address space: The application calls munmap
on the UMP user-kernel interface to release the memory from the
process address space. There is no special implementation of munmap
provided by the UMP driver; instead, the default implementation of
the Linux kernel is executed. This implementation differs in the vir-
tualized case from the native case only at the lowest level. Where the
native Linux code would remove an entry from its page table, followed
by appropriate cache and TLB maintenance operations, the L*Linux
code updates its own page table and issues an appropriate request to
the hypervisor, which in turn updates the shadow page tables and

performs the cache and TLB maintenance accordingly.

MICROBENCHMARK VSYNCER

The vsyncer application measures the latency of the vertical synchroniza-
tion (VSYNC) notification event as it builds up traveling through the sys-
tem. It does so by periodically evaluating the trace-buffer, which is filled
with events recorded as the VSYNC notification passes through the various
subsystems. In the virtualized case, this path is as follows: The begin-
ning of the VSYNC-notification path is denoted by the IRQ-object trigger
event recorded by the Fiasco.OC kernel. The next waypoint is the display
controller driver, which forwards the event to the framebuffer switch fjug.
After recording, an event from the framebuffer switch notifies the currently
active client, the interrupt handler of which records yet another time stamp.
The last event is recorded by an Android service, and it denotes the moment

the VSYNC event finally reaches the user space. In the native case, only the

114 CHAPTER 6. EVALUATION

interrupt handler of Linux, which is the closest equivalent to the IRQ-object
trigger event in Fiasco.OC, and the Android service are instrumented.
Another quantity that the vsyncer application measures is the cost of
swapping the visible framebuffer with the back-buffer. To that end, the
components involved in this operation were instrumented, thus emitting
tracebuffer events. Then, while the vsyncer tool gathered samples, buffer
swaps were provoked by running graphics benchmarks and through user
interactions. In the different experiments, the paths are composed as follows:
The native Linux driver accesses the display controller directly. It recon-
figures the display controller to scan the back-buffer, instead of the visible
framebuffer, as soon as it starts scanning the buffer the next time. Thereby,
the back-buffer becomes the new visible framebuffer and vice versa. In the
virtualized experiments, the panning request is forwarded first to the frame-
buffer switch fjug and then to the display controller driver £b-drv, which
performs the display controller access on the clients’ behalf. There is a
subtle difference in how the display controller is manipulated. The display
controller has shadow registers for preconfiguring up to three scan-out re-
gions per overlay. The native driver uses two of these, one for each of the
possible buffers. Causing a swap of the preconfigured buffer amounts to
a mere flip of a bit in a different control register, indicating that the re-
spective other buffer shall be scanned. In the virtualized case, there is an
indefinite number of possible buffers, depending on the number of existing
clients. Here, the framebuffer switch decides which framebuffer to display
next. Consequently, the display controller configures an inactive scan-out
region slot with the next visible framebuffer before arming the device for the
framebuffer switch. In the “copying” scenario, the panning request is used as
a signal to copy the content of the client’s framebuffer into the visible frame-
buffer, which is never changed. The copying is performed by the framebuffer
switch, and no further communication with the display controller driver is

necessary.

MICROBENCHMARK INPUTER

Just like the VSYNC notification and the swap buffer request, input events
travel through multiple subsystems. As input events visit the various sta-
tions, they accumulate latency. To measure these latencies, the subsystems

involved were instrumented to emit the tracebuffer events. And analogous

6.3. BENCHMARKS 115

to the vsyncer tool, the inputer benchmark periodically collects samples
by evaluating the tracebuffer.

Only events generated by the touch screen were evaluated. The first
station on the path of an input event, as can be reflected by the tracebuffer,
is when an interrupt registers in the respective kernel (input_kernel). In
the native case, only Android’s EventHub was instrumented, marking the
moment when the event finally reaches the user space. In the virtualized
case, the kernel then notifies the input driver, which fetches the input event
from the device via an I?C bus. Once the event has been processed, the
input switch (ijug) is notified, which is when the second event (input_drv)
is emitted. The third event (input_ijug) occurs once the destination for the
event was determined, and the guest is being notified. When a virtual input
interrupt is processed by the guest kernel, a fourth event (input_141x) is
written to the tracebuffer. Finally, the EventHub of the Android middleware
emits an event (input_hub) whenever it is notified of an input event.

When the inputer benchmark awakes, it evaluates the immediate past
as it is recorded in the tracebuffer, seeking events that where issued by the
EventHub. Once such an event was found, it keeps searching backwards
in time until it finds the corresponding input_141x event and then the
corresponding input_ijug, input_drv, and input_kernel events. It only
records the sample path if the tracebuffer is in a sane state, that is: No
wraparound has occurred during sampling, and the same path has not been

sampled in an earlier round.

POWER MEASUREMENT SETUP

The experimental setup for the power consumption measurement is depicted
in Figure 6.3.1. The power consumption was measured with a Hardkernel*
ODROID Smart Power device and a Samsung Anyway S101 Jig, which con-
nects to a Samsung Galaxy SIII by a special test cable. At a first glance
the cable’s connector looks like a normal micro USB connector; however,
it has six extra pins. Through this special connector, the Anyway Jig can
simulate a battery, which allows the SIII to be operated without a bat-
tery installed. Thus, all power consumed by the SIII device is supplied by

the ODROID Smart Power, which at the same time, measures the power

4ywww.hardkernel . com

www.hardkernel.com

116 CHAPTER 6. EVALUATION

USB data
(transfers readings

to a computer) ODroid Smart Power
¥ (power supply and meter)
: Samsung Anyway Jig
(simulates a battery)

12V DC
supply

UART

/
Y
Samsung Galaxy SIII

(powered by Jig with
no battery installed)

[

Figure 6.3.1: Power measurement setup: The device under test is connected to a
Samsung Anyway Jig, allowing operating the device without a battery. An ODroid
Smart Power serves as both power supply and meter. It is connected to a computer
via USB for the purpose of recording measurements.

consumption. The ODROID Smart Power sends readings to a connected
computer at 100 ms intervals, or with a 10 Hz frequency. However, the IC
that takes the readings inside the ODROID Smart Power—a Texas Instru-
ments INA231—is configured to produce a sample only every 263.8 ms. It
produces samples that are averaged over 16 internal samples at a little under
4 Hz.

RESULTS

In the previous sections, the foundations were laid for the evaluation results
presented in this section. The benchmark results are presented in the same
order that the benchmarks were introduced. So without further ado, here
are the results of the high-level 3D benchmarks:

6.4. RESULTS 117

Il native [GPURG
Il pass-through I GPURG fjug copy
60.1
OpenGLCube 2857 E
64.4
OpenGLBlending 2256 E
64.3
OpenGLFog 222 E
60.6
FlyingTeapot 283 1
59.5
QuakelllArena 88'38 E

0.0 0.2 0.4 0.6 0.8 1.0

framerate normalized with respect to 'native’
(absolute frame rates (fps) behind the bars)

Figure 6.4.1: High-level 3D benchmarks. OpenGLCube, OpenGLBlending,
OpenGLFog, and FlyingTeapot are benchmarks of the Oxbench benchmark suite [1].
The fifth benchmark is the FOUR.DM_68 demo of Quakelll Arena run in timedemo
mode.

HiGH-LEVEL 3D BENCHMARKS

The results of the high-level 3D benchmarks are presented in Figure 6.4.1.
Leaving the copying experiment aside, all virtualized scenarios achieve na-
tive performance in all benchmarks. Satisfying as this may be, this result
does not characterize the expected virtualization and interposition overhead
very well. The benchmarks are synchronized with the display controller’s
refresh rate of 60 Hz. More interesting was the investment in terms of CPU
cycles needed to achieve this. To that end, the system utilization during
the benchmarks was measured. Figure 6.4.2 depicts these results in terms

of relative idle time,

27]:[;01 At;bile (61)
N Aty

where IV is the number of CPUs in the system, and At is the increase in

idle time of the CPU n in the elapsed wall clock time period Aty.. The bench-

marks all induce different CPU utilizations in the system. OpenGLCube and

17 =

118 CHAPTER 6. EVALUATION

Il native [GPURG
Il pass-through Il GPURG fjug copy

0.95

OpenGLCube

OpenGLBlending

OpenGLFog

0.933
FlyingTeapot

0.765

0.0 0.2 0.4 0.6 0.8 1.0
relative idle time (1.0 = fully idle 0.0 = fully loaded)

Figure 6.4.2: High-level 3D benchmarks. OpenGLCube, OpenGLBlending,
OpenGLFog, and FlyingTeapot are benchmarks of the Oxbench benchmark suit [1].
This figure shows the relative CPU idle time during the runtime of the respective
benchmarks.

Flying Teapot leave the system mostly idle, while OpenGLBlending and
OpenGLFog drive the equivalent of one CPU® into saturation. The com-
parison between the experiments, native and pass-through, nicely illustrates
the CPU virtualization overhead, whereas the comparison of pass-through
and GPURG shows the additional cost of GPU interposition. It can be seen
that the bulk of the cost is to be found in the former with only a little extra
cost due to the GPU interposition.

These results in themselves represent the success of achieving the set goal
of providing a secure GUI with graphics acceleration to the virtualized secure
smartphone, wasting as few CPU cycles as possible. However, when taking
into account the copying experiment that mimics the compositing approach
of mag, it becomes apparent how large the improvement is, with respect

to from where this work started. The achievable frame rate with software

5The system discussed here has four CPU cores, that is, one saturated core amounts
to 256% CPU utilization.

6.4. RESULTS 119

Timer CPU 3
Timer CPU 2

surfaceflinge

i

3
s#ldlx.cpud

dilabcpu3 i
d#lal timer
selaliopuz

Figure 6.4.3: Visualized trace of fjug (A) copying a frame to the visible frame-
buffer. It takes nearly 40 ms (B) to complete, missing two VSYNC interrupts (C) on
the way.

compositing is a third of the target rate of 60 Hz, that is, the refresh rate
of the display controller, at a greatly increased system load. Figure 6.4.3
illustrates this by visualizing a trace of the fjug server copying a single
frame for nearly 40 milliseconds, missing two VSYNC interrupts on the way.
Here, the copying is single-threaded. It is certainly conceivable to increase
the achievable frame rate by parallelizing the copying. But, provided one
does no sooner run into bus contention, this would only drive up the load

on the system.

120 CHAPTER 6. EVALUATION

MICROBENCHMARK JOB_TOOL

Table 6.4.1 shows the results of the job tool benchmark. Notably, the sub-
mission times of the PP are considerably higher than of the GP in all of the
experiments. This can be explained by the makeup of the corresponding job
descriptions. For starting a PP job, more registers need to be configured,
and consequently, their values need to be propagated through the driver
stack. Directing the attention to the job submission time differences across
the experiments, one can see, unsurprisingly, that the cost increases with the
introduction of virtualization (pass-through) and again with the introduc-
tion of GPU interposition (GPURG). The former introduces roughly 40 %
overhead, a little more for GP and a little less for PP jobs, and the latter
nearly triples the native toll. Looking only at the ratios, these numbers look
terrifying. But did not the high-level benchmarks tell a very different story?
Indeed, one must put the absolute numbers into context. Considering a
target frame rate of 60 Hz there is 16.6 ms time to render a frame. Of this
time, 32.3 us (42.3 us) is lost to GPU interposition in the submission of a
GP (PP) job. Under the assumption that one frame can be rendered with
one set of jobs, where a set of jobs comprises one GP and four PP jobs, the
overhead amounts to 1.2 % of the available time. The notification overhead
adds another 1.5 % totaling an increase in system utilization of 2.7 %, which
suddenly does not look so bad after all. This overhead, of course, scales with
the number of jobs issued, that is, the smaller the number of jobs, the less
the impact on the performance due to GPU interposition. This is well in
line with the Mali GPU optimization guide [10], which advises to keep the
number of draw calls—which translate into job submissions—at a minimum

(see [10] Section 10.1).

MICROBENCHMARK MAP_TOOL

In this section, the results of the map_tool benchmark are presented and
discussed with respect to each of the steps (a) through (e) as described in
Section 6.3.3. A brief survey of usage patterns, including web browsing, 3D
benchmarking, and video gaming, showed that typical mapping sizes range
from 30 to 1,800 pages, with a median of 900 pages. With the map_tool
benchmark, measurements were taken for 100 through 2,200 pages at incre-

ments of 100. Each of the plotted data points represents the median of ten

6.4. RESULTS 121

experiment GP PP
native submit [us] | 15.0 25.2
pass-through submit [us] | 22.1 34.9
notify [us] | 3.6 3.2
GPURG submit [us] | 47.3 67.5
notify [us] | 52.8 49.7

Table 6.4.1: Results of the job_tool benchmark. The table shows the time it takes
to submit a job to and receive a job completion notification from the Mali MP400
GPU's geometry processor (GP) and pixel presenter (PP) in the different experimen-
tal configurations, native, pass-through, and GPURG.

thousand measurements.

GPU INTERPOSITION

Figure 6.4.4 shows two evolutionary steps the architecture underwent. It
shows the attach Step (a) of the context building procedure, measured with
different optimizations enabled. The first attempts were terribly slow (none).
Batching the mapping requests improved the performance enormously (map
batching). Additionally caching the guest-to-host physical address transla-
tion in the GPU server improves the performance by yet another order of
magnitude (both). The release operation is not influenced by either op-
timization. This is due to that for the release operation, only the GPU
address range needs to be specified. Neither is guest to host translation re-
quired, which would benefit from caching, nor are the regions to be released
scattered in the GPU address space, which would benefit from batching.

A more subtle matter is the choice of the right cache policy for the memory
designated for the use as GPU page tables. The cache attributes of the
corresponding memory regions must be thoroughly coordinated with the
cache maintenance operations. Moreover, this is highly dependent on the
SoC’s implementation. In the system discussed here, the GPU and the CPU
share solely the main memory (L3). Higher levels of caches (L1 and L2) are
neither shared nor snooped. This means that all modifications performed
by one of these agents need to affect L3 before the other may observe it.
Likewise, any cache of the latter agent needs to be invalidated so as not
to augment the view on L3. The GPU’s MMUs, being part of the GPU’s

functional block, succumb to the same regime, or more specifically, their

122 CHAPTER 6. EVALUATION

160000
140000
120000
100000
80000
60000
40000

0 - d e e S e — —- S
1500 2000 2500

duration in ps

500 1000
number of pages attached

150
140 -
130
120
110
100 -
90 |-
80

0

duration in us

i i i i
500 1000 1500 2000 2500

number of pages released

|H none <+—< map batching > both|

Figure 6.4.4: These graphs compare the two optimizations map batching and trans-
lation caching. Plotted is the time it takes to attach (top) and release (bottom)
buffers of increasing sizes given in pages of 4 KiB to and from a graphics address
space. The measurements refer to the GPURG architecture with no optimization
(none), with map batching, with map batching and translation caching (both). The
plotted values were determined as the median values of 10,000 measurements.

page tables do.

To choose a suitable cache policy for the memory pages destined to serve
as page tables and page directories of the GPU, three experiments were
implemented and tried. The three strategies were: Uncached, Buffered, and
Cached. The Uncached strategy causes the CPU to stall until a memory
access (read or write) has taken effect in L3; this strategy requires no further
maintenance on the CPU side.

The Buffered strategy allows the CPU to use the store buffers of the
underlying caches, which allows the CPU to proceed as long as the store
buffers can accommodate any write access. As no cache lines are allocated,
read access propagates all the way to L3. The store buffers are constantly
drained;® so modifications propagate to L3 in a timely manner regardless of
the maintenance steps taken. However, to be certain that a modification has
taken effect at a given time, a synchronizing operation must be performed.

This is done through a data sync barrier (dsb) instruction for L1, and a cache

5The Technical Reference Manual of the ARM L.2C-310 [39] specifies nine circumstances
that cause the store buffer to drain. The ninth reason is that a store buffer slot ages beyond
256 cycles. Other circumstances are strictly ordered memory access and hazards, such as
a cacheable read at an address matching the address of the data in the store buffer.

6.4. RESULTS 123

2500
4 2000
< 1500}
C
o
2 1000
3 500f

0 a— | 1 1 1
0 500 1000 1500 2000 2500
number of pages attached
1200

duration in ps
[=)]
o
o
T

400 |
200+
0 l L Il Il Il
0 500 1000 1500 2000 2500
number of pages released
e—e cached (zero on alloc) »—> uncached (zero on alloc) v—v buffered (zero on alloc)
<+— cached (zero on free) a—a uncached (zero on free) buffered (zero on free)

Figure 6.4.5: These graphs compare three caching strategies for GPU page tables,
uncached, buffered, and cached and two page blanking strategies, zero on alloc and
zero on free. Plotted is the time it takes to attach (top) and release (bottom) buffers
of increasing sizes given in pages of 4 KiB to and from a graphics address space. All
measurements where taken in the GPURG experiment with the optimizations map
batching and translation caching enabled, and all values were determined as the me-
dian of 10,000 measurements.

sync operation for L2, which is initiated through the MMIO interface of the
L2-cache (here ARM L2C-310 [39]). Consider though that these operations
do not necessarily trigger the draining; rather they stall the CPU until the
draining has completed.

The Cached strategy allows the CPU to make use of the cache RAM, with
cache lines being allocated upon read or write access; therefore, modifica-
tions can linger in the caches indefinitely. To propagate modifications to L3,
the dirty cache lines need to be cleared and thus written back to the lower
levels.

Figure 6.4.5 illustrates the cost of the different strategies. The slowest of
the strategies is clearly Uncached followed by Buffered. The Cached strategy
beats both by far, for allocations of 300 and more pages. However, it may
induce secondary cost by evicting other tasks’ working sets from the cache.

Another matter, which is illustrated in Figure 6.4.5, concerns when page
table pages are zeroed. Two strategies were implemented: zero-on-allocation

and zero-on-free. By the former, pages destined for the use as page tables

124 CHAPTER 6. EVALUATION

=

o

o

o
T

duration in ps
()]
o
o
T

h I I I
0 500 1000 1500 2000 2500
number of pages attached

4 120}

duration in
[=)]
o

o]
o
T T T T T T T

o

f ! ! !
500 1000 1500 2000 2500
number of pages released

|H GPURG <+ pass-through > native|

Figure 6.4.6: These graphs compare the three experiments, GPURG, pass-through,
and native, with one another. Plotted is the time it takes to attach (top) and release
(bottom) buffers of increasing sizes given in pages of 4 KiB to and from a graphics
address space. All values were determined as the median of 10,000 measurements.

were zeroed when fetched from the page pool. By the latter, zeroing was
performed upon freeing a page so that the page pool holds only zeroed pages
invariably. The choice that is inherent to this design decision is whether the
cost of zeroing a page table page is incurred at load time of an application
or when it is torn down. This cost can be made out clearly in the Uncached
strategy. However, for the Buffered and Cached strategies, it turned out to
be insignificant.

Comparing the experiments, “native” and “pass-through”, with “GPURG”,
with respect to the attach operation (a) cost, yields some interesting results.
First, the GPURG architecture yields an overhead of about 30 % versus the
“native” experiment. Interestingly, the pass-through experiment performed
even better than the native one. An investigation of this matter yielded
that the L2 sync operation discussed earlier was simply not implemented
in L4Linux. At this point, it must be interposed that the original GPU
driver uses the Buffered strategy for GPU page table access. Thus, hypo-
thetically, there was a race between the page table manipulation and the
page-table walk of the GPU’s MMU. In practice, however, this race never
manifested; probably, this was because the grace period between the page
table manipulation and the activation of the GPU was generally to long.

Out of curiosity, an experiment was conducted during which the conclud-

6.4. RESULTS 125

ing L2 sync operation was left out in the GPU Server. While this showed
no sign of malfunction, no perceivable gain in performance was measured
as well. This was odd because a significant speedup was expected. The
solution to this quandary was that the original driver very aggressively per-
formed cache sync operations after modifying each page table entry. In
an experiment—modifying the original driver—that postponed the cache
sync operation until after the last modification of a bunch yielded roughly
the same performance as the pass-through experiment, without, however,
exhibiting the hypothetical race discussed earlier.

So inadvertently, the original driver was improved, increasing the gap
between the performance of the GPURG and the native architecture. How-
ever, considering context building, being a rather infrequent operation, the
results were still very satisfactory; spending one or the other millisecond
on context creation occasionally is more than bearable. To find the by far
larger portion of the context building cost, one must take a close look at
the shadow paging scheme of LLinux on Fiasco.OC, which is done in the

following section.

CPU INTERPOSITION

The operations map (b), touch (c), and unmap (e) measured by the map_tool
benchmark are indifferent with respect to the GPU interposition. They shed
some light, however, on the shadow paging of L*Linux.

The first thing that strikes one as odd, looking at Figure 6.4.7, is that
L*Linux apparently outperforms native Linux in the map operation. In
both cases, the page tables are manipulated immediately. However, in the
native case, those page tables are walked by the CPU’s MMU, which, to
be able to observe the modification, requires the corresponding L1 cache
line to be flushed after a page table entry (PTE) was modified. In the para-
virtualized case, this is not necessary because the guest page tables are never
walked by the MMU hardware, but rather by the CPU itself. Pinpointing
the cost to the cache maintenance operation happened somewhat anecdotal
at first. It was observed that the mapping cost in the native case seemed
to oscillate, and sometimes it was almost as low as in the virtualized case.
As it turned out, the cost was low if only one of the CPUs was on-line and
high if more than one was on-line. Experiments showed that the cost for

the cache maintenance operation in question increased tenfold (from ~30ns

126 CHAPTER 6. EVALUATION
1400 ‘b) map‘ 100000 F) touch
w 1200} L o) |
2. 1000 |- ? 80000
‘S BOO ‘= 60000}
2 288 - £ 40000
e S o
3 200} ‘ 3 20000 S N ‘
0 I 1 1 0 PPPPPPPRPRE R D e n o
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
number of pages mmaped number of pages touched
eager vs. Ia_zy
16000 e) unmap 100000 shaQow paging
2 15000] 4 80000 - ‘ ‘
£20000 < 60000] -
S 8000 - 5
S 6000} [AT — = 40000 -
S 40001 e g 20000 O e
© 2000 ¢ M - © W
0 Il Il 0 A Il L
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

number of pages unmaped

|._. L4

< native |

number of pages

| > L4 lazy touch

a—a L4 eager map |

Figure 6.4.7: These graphs compare the experiments GPURG (L4) with native (b, c,
and e), and two different shadow page table population strategies (bottom right).
Plotted is the time it takes to map, touch, and unmap buffers of increasing sizes
given in pages of 4 KiB. All values were determined as the median of 10,000 mea-
surements.

to ~300ns) when more than one CPU was online. Another speedup stems
from that Linux—on the ARM architecture—keeps duplicated page table
records: One for the hardware, and one to accommodate additional status
flags, which the architectural page tables cannot absorb. The former is not
needed by L4Linux.

Whatever head start L4Linux gained in the mapping phase, it cannot
make up for the terrible performance it shows when actually using these
mappings by accessing the corresponding memory. Figure 6.4.7 ¢) shows
that in L*Linux, the cost of lazily populating the process address space
through page faults is about 18 times as high as in the native case. Worse
yet, in the native case, most of the cost can be avoided with the following
little tweak. Indeed, in the native case, the page tables are modified during
the map operation, and the page faults only occur because they are mapped
read-only. This is done to keep track of whether or not the page is dirty and
must be saved when swapped out to disk, either by the paging mechanism or
due to the file cache mechanism. For mappings that are not backed by a file,
however, Android does not perform swapping; rather, processes are being

killed instead, whenever the system runs low on memory. Also, memory

6.4. RESULTS 127

used by the GPU should be available as soon as a GPU job is started, to
avoid GPU page-faults, let alone major’ faults. Thus, if it is agreed upon
that it is futile to flag a page of this particular mapping as dirty only on a
write access, then it can be flagged dirty immediately and mapped writable,
avoiding the subsequent write-page-fault. This reduces the cost of a write
access by an order of magnitude, e.g., from ~5ms to less than ~0.5ms for
2,000 pages. This little tweak, however, does not work with L*Linux because
only the guest page tables are populated eagerly. And whether or not they
are marked writable, a page fault occurs upon any kind of access, because
the shadow page tables are not populated due to the map operation. While
optimizing shadow paging mechanisms is out of the scope of this work, a
naive attempt was made to reduce the cost of eager mappings, that is, the
ones under discussion. During the mapping phase, the shadow pages were
updated immediately, yielding two privilege level transitions per PTE rather
than four privilege level transitions and two address space switches, which
is the cost of a page-fault in L*Linux. This pushed most of the cost into the
mapping phase, yielding a reduction in cumulated mapping and accessing
overhead of nearly an order of magnitude, as can be seen in the lower right
graph of Figure 6.4.7, in which the cost of touching with lazy population
is plotted together with the cost of mapping with eager population. This
rather clumsy experiment indicates that there is room for optimization in the
Fiasco.OC/L*Linux shadow-paging scheme, in certain corner cases at least.
Moreover, significant performance gains can be expected from hardware with
support for nested paging, which is gaining traction in the market for ARM
based embedded systems.

FRAMEBUFFER OVERHEAD

In this section, the results of the vsyncer benchmark are discussed. The
measurement was performed by gathering ten thousand samples through
periodic evaluation of the trace buffer, as described in Section 6.3.4, while
operating the device. Figure 6.4.8 shows the latency of the VSYNC event
as it builds up traveling through the system on native Linux as well as
on Fiasco.OC. It shows that in the para-virtualized setup, there is a 16%

overhead when compared to the native case. In absolute numbers, however,

"Faults that involve copying data in from slow mass storage

128 CHAPTER 6. EVALUATION

H RQ->fb_drv E fjug->L4Linux I IRQ->Android
I fb_drv->fjug E L4Linux->Android

native

0 10 20 30 40 50 60 70
latency in ps

Figure 6.4.8: The graphs show the time it takes for a VSYNC event to travel from
the initial interrupt handler to the Android user space system. The top graph shows
this time span for the native experiment. The bottom graph shows this time span for
the virtualized L4 experiment, split into the legs that the VSYNC event walks when
traveling through the system.

Il Android->L4Linux EE fb-drv->fjug @ L4Linux->Android
B L4Linux->fjug I fjug->L4Linux I roundtrip
I fjug->fb-drv

native

L4

0 10 20 30 40 50 60 70 80
latency in ps

Figure 6.4.9: The graphs show the time it takes for a buffer swap request and its
reply to travel through the system and back. The top graphs show this time for the
native experiment. The bottom graph shows this time span for the virtualized L4
experiment, split into the legs that the request and the reply walk when traveling
through the system.

this is mere 10 us of extra CPU time spent, which, at a target frame rate of
60 Hz, amounts to less than a thousandth of the CPU cycles available—on
one of the CPUs, that is.

The second value that the vsyncer application measured is the buffer
swapping overhead. Figure 6.4.9 depicts the time spent passing the request
and its reply from subsystem to subsystem. A 125% overhead or 40 us
in absolute numbers can be seen, which amounts to 0.24 % of extra CPU

utilization given a target frame rate of 60 Hz.

6.4. RESULTS 129

Il IRQ->L4Linux(driver) I L4Linux(user)->Android
I L4Linux(driver)->ijug I IRQ(Linux)->Android
B ijug->L4Linux(user)

native

L4

0 100 200 300 400 500 600 700 800
latency in us

Figure 6.4.10: The graphs show the time it takes for and input event to travel
through the system. The top graph depicts this time span for the native experiment,
and the bottom graph depicts the L4 experiment split into legs representing the sub-
systems through which the event travels.

INPUT LATENCY

Analogous to how the VSYNC latency was measured, the inputer bench-
mark evaluates the trace buffer periodically and thereby while the device is
being operated, gathers samples. The touch screen, when operated, produces
samples at a rate of 100 Hz, that is, every ten milliseconds. It is connected
to the SoC via an IC bus and an interrupt line. The considerably large
latency of ~500 us, which can be seen in Figure 6.4.10 and is present in
both experiments, is due to the transfer of the touch event data via I?C and
the protocol between the device and the SoC. What follows is the transfer
of the event data through the input path, gathering more latency on the
way. The input path’s protocol is a little bit more elaborate than the simple
notification passing, which happens in the VSYNC case. First, the event
source notifies the sink of pending events. The sink subsequently fetches the
events from the source. With an added 126 us, or an overhead of 22%, this
amounts to 1.25% of extra CPU utilization and, therefore, yields the largest
optimization potential of the secure GUI infrastructure. During this work,

however, input latency was not subject to performance optimization.

POWER CONSUMPTION

Figure 6.4.12 shows three sequences of readings, “referencing”, “copying”,

and “native”. The top graph shows the raw data, whereas the bottom graph

130 CHAPTER 6. EVALUATION

Figure 6.4.11: Visualized trace of an input event traveling through the system. The
interrupt of the touch screen registers in the kernel and kicks off the driver (A). The
driver queries the device, issuing bus transaction on an 12C bus (Bs mark the I2C bus
controller interrupts). Eventually, the event is complete (C) and is delivered to ijug
(D), L*Linux (E), and Android’s event hub (F).

shows the raw data smoothed with a five-second (50-samples) wide slid-
ing window. They show the power consumption of the device during three
subsequent runs of the high-level 3D benchmark Cube. The referencing ex-
periment represents the final stage of the prototypical implementation. The
copying experiment simulates the compositing approach of mag. The na-
tive experiment is the non-virtualized Cyanogenmod installation that was
used for comparison throughout this chapter. One can see clearly that with
the copying experiment, the benchmark takes almost three times as long to
complete as with the other two, which is consistent with the lower frame
rate measured earlier. And due to the higher CPU utilization, the instan-
taneous power consumption is higher by roughly 300 milliwatts. This is a
great improvement over the initial implementation of the secure virtualized
smartphone. Comparing the power consumption of the final stage with the
native experiment indicates that the former is almost on par with the latter.
The fact that the ~200 milliwatts gap between the plots also exists in the
idle phase (starting around second 60), leads to the hypothesis that there
exists a consumer that is not handled by the virtualized smartphone’s power
management, a consumer unrelated to the secure GUI and GPU and, there-

fore, out of the scope of this work. The only power management that is, in

6.4. RESULTS 131

3.0

2,50

2.0} 4

15K Wkl IO e

0.5 | i
0

in watts

power consumption

I I L L I
20 40 60 80 100 120 140 160
timeins

2.5
20k NN e e,

in watts

1.0}/

power consumption

05 ‘ ‘ i ; ‘ ‘ ‘
0 20 40 60 80 100 120 140 160

| — referencing (watts) — copying (watts) — native (watts)|

Figure 6.4.12: These graphs show the instantaneous power consumption of the de-
vice while running the high-level 3D benchmark Cube. Three experiments are com-
pared: The “referencing” experiment denotes the final stage of the prototype. The
“copying” experiment simulates the compositing approach. The “native” experiment
is the non-virtualized experiment. The top graph shows the raw data, whereas the
bottom graph shows the raw data filtered by a five-second wide sliding window.

fact, done by the GPU server is the power control of the GPU, which saves
roughly 5 milliwatts when idle. This can be seen in Figure 6.4.13, which de-
picts the power consumption of the device while the clock and power supply

of the idle GPU are switched on an off in 5 second intervals.

- 0.694
g'm 0.690 rnnrmnnn A IR 4
€ 80,686 | T [LT S
S 2 06841 |t p
o 0.682 4
g 0.680 UHA ey L E
e 0.678 i i

0 30 40 60

timeins
— GPU idle on/off (watts)

Figure 6.4.13: This graph shows the power consumption of the device while the
clock and power supply of the idle GPU is switched on and of in five-second intervals.

132 CHAPTER 6. EVALUATION

TCB COMPLEXITY

Module SLOC Module SLOC
Fiasco.OC | 28,943 GPU server 2,679
moe 4,044 display driver 2,382
ned® 16,078 frame-buffer switch 548
sigma0 1,023 input driver 710
io 12,864 input switch 539
total 62,952 total 6,858
(a) Runtime environment (b) Secure GUI modules

Table 6.5.1: The left table shows the sizes of the modules of the underlying run-
time environment, including the kernel. They form the common TCB. The right table
shows the sizes of the modules that constitute the prototypical implementation. The
sizes are given in source lines of code (SLOC), and were measured using David A.
Wheeler's “SLOCCount”. Both tables were previously published at MOST2015 [24].

One of the key design principles of the secure smartphone was to keep the
trusted computing base (TCB) small. This principle was driving the decision
for choosing the p-kernel Fiasco.OC and it was driving the design of the
compartmentalized architecture described here. Table 6.5.1b shows the size
of the modules making up the prototypical implementation. With less than
7,000 lines of code, this prototype of a secure GUI architecture, including
graphics acceleration, is outright minuscule, especially when compared with
front-end GPU virtualization schemes, such as Xen3D? [60], which adds
around 80,000 lines of code to the TCB, and is larger than the combined
complexities of the runtime environment (see Table 6.5.1a) and secure GUI
of the secure smartphone.

While code lines added to, e.g., a monolithic kernel all add to the “same”
TCB, in a decomposed system, such as the prototype under discussion, each
subsystem, when compromised, has its individual set of implications on the
security attributes of the system. These implications naturally depend on
the privileges that a subsystem is pooling, that is, the memory that it can
access, the services of other subsystems that it is allowed to use, the commu-

nication channels that it maintains with other, possibly dependent, parties,

8With 14,124 SLOC, the bulk of the code that makes up the bootstrapper ned is
contributed by a lua interpreter.

9Xen3D is chosen here for comparison, because it is one GPU virtualization scheme
that aims at TCB reduction.

6.5. TCB COMPLEXITY 133

and not to forget, the 10 resources that it can access. The latter, as can
be seen in Chapter 3, is particularly interesting. Access to 10 resources
means control over one or more of the systems peripheral devices, which
have their own implications on the security properties of the system. In a
way, these devices can be modeled as subsystems offering services to the
subsystem under consideration; the distinction between hardware and soft-
ware subsystems diminishes. The individuality of the security implications
of the subsystems have the effect that higher-level subsystems can choose
whether a subsystem belongs to their TCB or not, depending on the security
requirements that they have. Therefore, a discussion of these implications

for the secure GUI modules is warranted.

GPU SERVER AND GPU

The privileges of the GPU Server are few. It maintains communication
channels with its clients, with the IO server, with dataspace providers, with
a service allowing controlling the clock and power of the GPU, and through
MMIOQ, it controls the GPU and its MMU. The latter ones, that is, all but
the clients, can be considered trusted and belong to the GPU server’s TCB;
the clients do not, and they must be considered untrusted. In Chapter 3,
it was established that with the assumed hardware model, control over the
GPU and its MMU is equivalent to full physical memory access. This means
that a compromised GPU server voids all isolation guarantees of the system;
therefore, it must unconditionally be considered part of the TCB of all

subsystems.

DISPLAY DRIVER, DISPLAY CONTROLLER, AND FJUG

The privileges of the display driver are very similar to those of the GPU
server. It maintains communication channels to its client, to the 10 server,
to a dataspace provider, to power and clock service, and it controls the
display controller through MMIO. Here the client is the output switcher,
which need not be considered inherently hostile for now. For the sake of
discussion, it can be assumed that the display controller, being a DMA
capable device, is only able to read from a configurable memory location
and send it to a screen. This means, the corresponding driver cannot “learn”

what the device read and therefore cannot exfiltrate it. It is conceivable that

134 CHAPTER 6. EVALUATION

exfiltration can be done by an attacker from observing the screen, which
implies physical access to the device, or at least proximity. The implications

of a compromised display controller driver are therefore:

¢ Availability of graphical output
The display driver can inhibit graphical output.

o Integrity of graphical output
The display driver can replace or modify the graphical output of its

clients.

o Confidentiality
The display driver can, in a limited way, exfiltrate arbitrary data from

physical memory through the screen.

It can be argued that the display driver belongs to the TCB only condition-
ally because the security implications, if it is subverted, are constrained. In
other words, the display driver is only part of the TCB of those subsystems
that rely on the attributes enumerated above. For example, data integrity
can be upheld even if the display driver is compromised.

The switcher module fjug, as it is currently implemented, has similar
capabilities as the driver. It can influence the availability and integrity
of graphical output; but because it cannot arbitrarily program the display
controller, impairment of confidentiality is limited to the graphics
output of its clients. A tweak, which was briefly hinted at in Section 4.6,
can remove even this security implication. If the framebuffers were allocated
by a trusted third and fjug was only allowed to refer to the buffers using
symbolic names, there would be no way by which fjug, if compromised,

could learn about the content of its client’s framebuffers.

INPUT DRIVER AND IJUG

As are the drivers discussed before, the input driver is embedded into the
system by a web of communication channels. It provides a client with input
events and receives 10O resources from the 10 server. The input devices may
be accessed in various ways as discussed in Section 4.5. But regardless of
the method of device access, it may be assumed, for the sake of argument,!?

that unlike with the GPU and display controller, the input devices may not

6.5. TCB COMPLEXITY 135

be used as agents for accessing out-of-bounds memory resources. Therefore,
subverting the input driver has implications on the system, analogous to the
driver’s facilities. It can block input events, thus influencing the availability
of the service; it can modify or inject events, thus challenging the integrity
of the service. The driver could record input events, thus threatening their
confidentiality. Exfiltration of these records, however, is all but straight-
forward. It cannot access mass storage or open a network connection, and
therefore, it would need the cooperation of a subsystem with which it main-
tains a communication channel, in order to make for a viable key logger.
Moreover, the driver is ignorant of the client to which it currently sends
events, which is problematic for an attacker in two ways. First, it makes
this channel unreliable for exfiltration, e.g., if one of the clients would be
cooperative. Second, it increases the state space that the the attacker needs
to track, for example, if the attacker whants to make inferences on the state
of the screen, which is needed for interpreting touch events. The switcher
ijug does not have this last limitation. Anyway, the components of the
input path can impair the availability and integrity of input events.
In addition, the confidentiality of input events could be compromised if
a reliable exfiltration method is found. All other guarantees that the system

provides remain intact.

OFor clarification: As discussed in Section 4.5 there were two implementations of the
input path. One was decomposed and had an L*Linux instance driving the input devices.
This one was used in the performance evaluation. But the assumptions made here do not
hold for this implementation. The other implementation had a small input driver that
was combined with the switcher, and it thus lacked decomposition. The argumentation in
this section is conducted as though the input path comprised the switcher and the driver
as small, decomposed components, as it was intended by the author, although it was never
implemented in this way.

136 CHAPTER 6. EVALUATION

Conclusion

This work was performed in context of the SIMKo3 project, which had the
goal of designing and implementing a secure smartphone catering to the
security interests of multiple stakeholders; this goal was to be achieved using
virtualization. It addresses the intricacies that arise when providing multiple
strongly isolated VMs on a mobile handset with a means to present a secure
and snappy graphical user interface to the user. The architecture presented
here provides a trusted and identifiable path between the VMs and the
user and allows for the use of graphics acceleration while preserving a high

standard of isolation.

For the sake of reduced complexity in both runtime and implementation,
the hardware abstraction, often expected from device virtualization, was
dropped. As a result, the hardware specifics reached high up into the VMs
and even into their application layers. But the price is small, considering
that this is typical for a smartphone firmware, which is tightly coupled to
each device. The resulting small and customizable trusted computing base
in conjunction with the low runtime overhead of the architecture presented
here, is predestined for the application in a wide variety of fields where

embedded computing, high assurance, and the need for visualization meet.

137

138 Acknowledgements

Besides the field of mobile hand-held computing, automotive infotainment
and visual assistance systems come into mind. The prototype presented
here used rehosting, a very intrusive form of paravirtualization, for reusing
legacy operating system components. Moreover, the secure GUI and GPU
virtualization architecture presented here can be combined with a whole
range of system types, from specially tailored, compartmentalized multi-

server systems to virtualizing separation kernel-based systems.

OUTLOOK

A controversial subject to which this work might give a new twist, is enabling
graphics acceleration in ARM TrustZone. Secure applications deployed in
such a secure runtime environment are used to store and apply—without
leakage—key material for certification. But without a reliable means to
track the user’s intent as to when and how this material shall be used, these
applications are useless in many fields, such as payment and cryptographic
signatures. A user interface is required, and the industry demands it be
snappy. But graphics acceleration is generally put on a level with large
API frameworks such as OpenGL and is dismissed for bloating the TCB. By
acknowledging the sensibleness of dropping the hardware abstraction in a
tightly integrated firmware, it is conceivable that a secure runtime environ-
ment’s GUI could be enhanced by using a small GPU server, such as the
one presented here, in conjunction with a small set of precompiled rendering
programs, thereby cutting down on the TCB bloat of a full OpenGL API

stack.

CLOSING WORDS

In his inspiring Ph.D. thesis on securing graphical user interfaces, Norman
Feske postulated, “that an achievable low complexity of the trusted [GPU]
driver portion lies in the order of 5,000 to 10,000 SLOC”—Feske [32]. As it

appears, he was close.

ACKNOWLEDGEMENTS

I would like to thank my Professor, Jean-Pierre Seifert, for his guidance. I

would like to thank my committee members Felix Freiling, Konrad Rieck,

Acknowledgements 139

and Sebastian Moller. I would like to thank the people who contributed to
the SiMKo3 project, without whom this work would have been hardly possi-
ble. Among them were: Dirk Jansen, Adam Lackorzynski, Matthias Lange,
Steffen Liebergeld, Christian Ludwig, Jan Nordholz, Matthias Petschick,
John Tapsell, Julian Vetter, Michael Voigt, Alexander Warg, Jean Wolter,
and many more. I thank Felicitas Hetzelt and Marta Piekarska, who worked
with me on exploring GPU vulnerabilities. I thank Tobias Fiebig and Bhar-
gava Shastry, who worked with me on the Nemesys project, for many in-
spiring discussions. A special thanks goes to Michael Peter who was also
a member of the SiMKo3 team, but more than that, I call him my men-
tor and a friend. Thank you, Michael, for your constant motivation, sup-
port, criticism, and inspiration. I would like to thank my mother, Marianne
Danisevskis, who taught me the satisfaction that comes with accomplishing
something through hard work; the thought of her instilled strenght in me
when I felt exhausted. And I would like to thank my father, Peteris Dani-
sevskis, who taught me that all the hard work is meaningless, if one does not
live once in a while. You are the best parents one could wish for. I would
like to thank my sister, Friederike Danisevskis, who, to me, is a paragon of
confidence and independence. Finally, I thank my wife, Sandra Vastag, and
my son for their love, support, and most importantly, patience. Time is lost
forever, so I will never be able to repay you for all the weekends I spent

working — nevertheless, I will try.

[9]

[10]

[11]

References

Oxbench. https://code.google.com/p/Oxbench/.

Arm architecture reference manual (armv7-a and armv7-r edition).
Available at http://infocenter.arm.com/help/index.jsp as of
November, 29", 2015.

Freedreno project. https://freedreno.github.io/.

Gallium3d technical overview. Available at https://wuw.freedesktop.
org/wiki/Software/gallium as of February, 25", 2016.

ioquake3. http://ioquake3.org/.
Lima driver project. http://limadriver.org.

Opengl es the standard for embedded accelerated 3d graphics. Available
at https://www.khronos.org/opengles/ as of November, 30", 2015.

Qiiida. https://play.google.com/store/apps/details?id=com.
nOn3m4.QIIT4A&hl=de.

Cve-2014-0972. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2014-0972, 01 1014.

Arm mali gpu opengl es application optimization guide, 2011.
Available at http://malideveloper.arm.com/downloads/Mali_
Optimization_Guide_3.0.pdf as of March, 2", 2016.

Keith Adams and Ole Agesen. A comparison of software and hardware
techniques for x86 virtualization. In John Paul Shen and Margaret
Martonosi, editors, Proceedings of the 12th International Conference

on Architectural Support for Programming Languages and Operating

https://code.google.com/p/0xbench/
http://infocenter.arm.com/help/index.jsp
https://www.freedesktop.org/wiki/Software/gallium
https://www.freedesktop.org/wiki/Software/gallium
http://ioquake3.org/
http://limadriver.org
https://www.khronos.org/opengles/
https://play.google.com/store/apps/details?id=com.n0n3m4.QIII4A&hl=de
https://play.google.com/store/apps/details?id=com.n0n3m4.QIII4A&hl=de
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0972
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0972
http://malideveloper.arm.com/downloads/Mali_Optimization_Guide_3.0.pdf
http://malideveloper.arm.com/downloads/Mali_Optimization_Guide_3.0.pdf

ii

Acknowledgements

[13]

[14]

[15]

[17]

Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006,
pages 2-13. ACM, 2006.

Ole Agesen, Alex Garthwaite, Jeffrey Sheldon, and Pratap Subrah-
manyam. The evolution of an x86 virtual machine monitor. Operating
Systems Review, 44(4):3-18, 2010.

Chaitrali Amrutkar, Kapil Singh, Arunabh Verma, and Patrick Traynor.
On the disparity of display security in mobile and traditional web
browsers. 2011.

Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan,
and Jason Nieh. Cells: a virtual mobile smartphone architecture. In
Wobber and Druschel [64], pages 173-187.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Timothy L.
Harris, Alex Ho, Rolf Neugebauer, lan Pratt, and Andrew Warfield.
Xen and the art of virtualization. In Michael L. Scott and Larry L.
Peterson, editors, Proceedings of the 19th ACM Symposium on Operat-
ing Systems Principles 2003, SOSP 2003, Bolton Landing, NY, USA,
October 19-22, 2003, pages 164-177. ACM, 2003.

Kenneth C. Barr, Prashanth P. Bungale, Stephen Deasy, Viktor Gyuris,
Perry Hung, Craig Newell, Harvey Tuch, and Bruno Zoppis. The
vmware mobile virtualization platform: is that a hypervisor in your
pocket? Operating Systems Review, 44(4):124-135, 2010.

Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratanto-
nio, Christopher Kruegel, and Giovanni Vigna. What the app is that?
deception and countermeasures in the android user interface. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015, pages 931-948. IEEE Computer Society, 2015.

Prashanth Bungale. Arm virtualization: Cpu & mmu issues, 2010.
Available at https://labs.vmware.com/download/68/ as of August
10", 2015.

Peter M. Chen and Brian D. Noble. When virtual is better than real. In
Proceedings of HotOS-VIII: §th Workshop on Hot Topics in Operating

https://labs.vmware.com/download/68/

Acknowledgements iii

[26]

Systems, May 20-23, 2001, Elmau/Oberbayern, Germany, pages 133—
138. IEEE Computer Society, 2001.

Qi Alfred Chen, Zhiyun Qian, and Zhuoqing Morley Mao. Peeking
into your app without actually seeing it: UI state inference and novel
android attacks. In Kevin Fu and Jaeyeon Jung, editors, Proceedings of
the 23rd USENIX Security Symposium, San Diego, CA, USA, August
20-22, 2014., pages 1037-1052. USENIX Association, 2014.

Rob Clark. Kilroy. https://github.com/robclark/kilroy.

Patrick Colp, Mihir Nanavati, Jun Zhu, William Aiello, George Coker,
Tim Deegan, Peter Loscocco, and Andrew Warfield. Breaking up is
hard to do: security and functionality in a commodity hypervisor. In
Wobber and Druschel [64], pages 189-202.

Christoffer Dall, Jeremy Andrus, Alexander Van’t Hof, Oren Laadan,
and Jason Nieh. The design, implementation, and evaluation of cells: A
virtual smartphone architecture. ACM Trans. Comput. Syst., 30(3):9,
2012.

Janis Danisevskis, Michael Peter, Jan Nordholz, Matthias Petschick,
and Julian Vetter. Graphical user interface for virtualized mo-
bile handsets. 2015. Paper available at http://ieee-security.
org/TC/SPW2015/MoST/papers/slpl.pdf and slides available at
http://ieee-security.org/TC/SPW2015/MoST/slides/s1pl.pdf as
of Sebtember, 24" 2015.

Janis Danisevskis, Marta Piekarska, and Jean-Pierre Seifert. Dark side
of the shader: Mobile gpu-aided malware delivery. In Hyang-Sook Lee
and Dong-Guk Han, editors, Information Security and Cryptology -
ICISC 2013 - 16th International Conference, Seoul, Korea, November
27-29, 2013, Revised Selected Papers, volume 8565 of Lecture Notes in
Computer Science, pages 483-495. Springer, 2013.

Micah Dowty and Jeremy Sugerman. Gpu virtualization on vmware’s
hosted i/o architecture. In first USENIX Workshop on I/0 Virtualiza-
tion, 2008.

https://github.com/robclark/kilroy
http://ieee-security.org/TC/SPW2015/MoST/papers/s1p1.pdf
http://ieee-security.org/TC/SPW2015/MoST/papers/s1p1.pdf
http://ieee-security.org/TC/SPW2015/MoST/slides/s1p1.pdf

iv

Acknowledgements

[27]

28]

[31]

[32]

33]

[34]

[35]

George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai,
and Peter M. Chen. Revirt: Enabling intrusion analysis through virtual-
machine logging and replay. SIGOPS Oper. Syst. Rev., 36(S1):211-224,
December 2002.

Wim Van Eck and Neher Laborato. Electromagnetic radiation from
video display units: An eavesdropping risk? Computers € Security,
4:269-286, 1985.

Kevin Elphinstone and Gernot Heiser. From 13 to sel4 what have we
learnt in 20 years of 14 microkernels? In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, SOSP 13,
pages 133-150, New York, NY, USA, 2013. ACM.

Earlence Fernandes, Qi Alfred Chen, Georg Essl, J Alex Halderman,
Z Morley Mao, and Atul Prakash. Tivos: Trusted visual i/o paths for
android. University of Michigan CSE Technical Report CSE-TR-586-14,
2014.

N Feske and C Helmuth. A nitpicker’s guide to a minimal-complexity
secure GUI. In Proceedings of the 21st Annual Computer Security Ap-
plications Conference, pages 85-94, 2005.

Norman Feske. Securing graphical user interfaces. PhD thesis, Technis-
che Universitat Dresden, 2009.

Tobias Fiebig, Janis Danisevskis, and Marta Piekarska. A metric for the
evaluation and comparison of keylogger performance. In Chris Kanich
and Patrick Lardieri, editors, 7th Workshop on Cyber Security Fxperi-
mentation and Test, CSET ’1/4, San Diego, CA, USA, August 18, 201}.
USENIX Association, 2014.

Robert P. Goldberg. Survey of virtual machine research. Computer,
7(6):34-45, June 1974.

Jacob Gorm Hansen. Blink: Advanced display multiplexing for virtual-
ized applications. In Proceedings of the 17th International workshop on
Network and Operating Systems support for Digital Audio and Video,
2007.

Acknowledgements v

[36]

[37]

Hermann Hértig, Michael Hohmuth, Jochen Liedtke, Sebastian Schén-
berg, and Jean Wolter. The performance of pkernel-based systems. In
Michel Banéatre, Henry M. Levy, and William M. Waite, editors, Pro-
ceedings of the Sixteenth ACM Symposium on Operating System Prin-
ciples, SOSP 1997, St. Malo, France, October 5-8, 1997, pages 66-77.
ACM, 1997.

Yuichi Hayashi, Naofumi Homma, Mamoru Miura, Takafumi Aoki, and
Hideaki Sone. A threat for tablet pcs in public space: Remote visualiza-
tion of screen images using em emanation. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
CCS 14, pages 954-965, New York, NY, USA, 2014. ACM.

Greg Humphreys, Matthew Eldridge, Ian Buck, Gordan Stoll, Matthew
Everett, and Pat Hanrahan. Wiregl: A scalable graphics system for
clusters. In Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 01, pages 129-140,
New York, NY, USA, 2001. ACM.

ARM Inc. Corelink level 2 cache controller 12¢-310. Website.
Available at http://infocenter.arm.com/help/topic/com.arm.doc.
ddi0246h/DDI0246H_12c310_r3p3_trm.pdf as of July 16, 2015.

Robert Kotcher, Yutong Pei, Pranjal Jumde, and Collin Jackson.
Cross-origin pixel stealing: timing attacks using CSS filters. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, 2013
ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS’13, Berlin, Germany, November 4-8, 2013, pages 1055-1062.
ACM, 2013.

Adam Lackorzynski, Alexander Warg, and Michael Peter. Virtual pro-
cessors as kernel interface. In Twelfth Real-Time Linux Workshop, 2010.

H. Andrés Lagar-cavilla, M. Satyanarayanan, Niraj Tolia, and Eyal
de Lara. Vmm-independent graphics acceleration. In Proceedings of
VEE 2007. ACM Press, 2007.

Matthias Lange and Steffen Liebergeld. Crossover: secure and usable

user interface for mobile devices with multiple isolated OS personalities.

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0246h/DDI0246H_l2c310_r3p3_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0246h/DDI0246H_l2c310_r3p3_trm.pdf

vi

Acknowledgements

[44]

[45]

[46]

[48]

In Charles N. Payne Jr., editor, Annual Computer Security Applications
Conference, ACSAC ’13, New Orleans, LA, USA, December 9-13, 2013,
pages 249-257. ACM, 2013.

Donald C. Latham. Department of Defense Trusted Computer System

FEvaluation Criteria. Department of Defense, Dec 1985.

Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Goétz. Un-
modified device driver reuse and improved system dependability via
virtual machines. In Eric A. Brewer and Peter Chen, editors, 6th
Symposium on Operating System Design and Implementation (OSDI
2004), San Francisco, California, USA, December 6-8, 2004, pages 17—
30. USENIX Association, 2004.

Joshua LeVasseur, Volkmar Uhlig, Yaowei Yang, Matthew Chapman,
Peter Chubb, Ben Leslie, and Gernot Heiser. Pre-virtualization: Soft
layering for virtual machines. In 13th Asia-Pacific Computer Systems
Architecture Conference, ACSAC 2008, Hsinchu, China, August 4-0,
2008, pages 1-9. IEEE, 2008.

Steffen Liebergeld, Michael Peter, and Adam Lackorzynski. Towards
modular security-conscious virtual machines. In Proceedings of the
Twelfth Real-Time Linux Workshop, Nairobi, 2010.

Jochen Liedtke. On microkernel construction. In Proceedings of the 15th
ACM Symposium on Operating System Principles (SOSP-15), Copper
Mountain Resort, CO, December 1995.

Tongbo Lua, Xing Jin, Ajai Anathanarayanan, and Wenliang Du.
Touchjacking attacks on web in android, ios, and windows phone. In
Foundations and Practice of Security, pages 227-243. Springer Berlin
Heidelberg, 1012.

Marcus Niemietz and Jorg Schwenk. Ui redressing attacks on android
devices. Black Hat Abu Dhabi, 2012.

M. Peter, M. Petschick, J. Vetter, J. Nordholz, J. Danisevskis, and J.-P.
Seifert. Undermining isolation through covert channels in the fiasco.oc
microkernel. In Omer H. Abdelrahman, Erol Gelenbe, Gokce Gorbil,

and Ricardo Lent, editors, Information Sciences and Systems 2015,

Acknowledgements vii

[52]

[53]

[56]

[57]

[58]

[60]

volume 363 of Lecture Notes in FElectrical Engineering, pages 147-156.
Springer International Publishing, 2016.

Michael Peter, Henning Schild, Adam Lackorzynski, and Alexander
Warg. Virtual machines jailed. In Proceedings of the 1st EuroSys Work-

shop on Virtualization Technology for Dependable Systems, pages 18-23,
20009.

Gerald J. Popek and Robert P. Goldberg. Formal requirements for
virtualizable third generation architectures. Commun. ACM, 17(7):412—
421, July 1974.

Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and
Andy Hopper. Virtual network computing. IEEE Internet Computing,
2(1):33-38, 1998.

John Scott Robin and Cynthia E. Irvine. Analysis of the intel pen-
tium’s ability to support a secure virtual machine monitor. In Steven M.
Bellovin and Greg Rose, editors, 9th USENIX Security Symposium,
Denver, Colorado, USA, August 14-17, 2000. USENIX Association,
2000.

John M. Rushby. Design and verification of secure systems. In SOSP,
pages 12-21, 1981.

Sumit Semwal. Dma buffer sharing api guide. Available at https:
//www.kernel.org/doc/Documentation/dma-buf-sharing.txt as of
November, 9", 2015.

Jonathan Shapiro. Debunking linus’s latest, 2006. Available at http:

//www.coyotos.org/docs/misc/linus-rebuttal.html as of August
110 2015.

Jonathan S. Shapiro, John Vanderburgh, Eric Northup, and David Chiz-
madia. Design of the eros trusted window system. In USENIX Security
Symposium, pages 165—-178, 2004.

Christopher Smowton. Secure 3d graphics for virtual machines. In
Proceedings of the Second Furopean Workshop on System Security, EU-
ROSEC ’09, pages 36-43, New York, NY, USA, 2009. ACM.

https://www.kernel.org/doc/Documentation/dma-buf-sharing.txt
https://www.kernel.org/doc/Documentation/dma-buf-sharing.txt
http://www.coyotos.org/docs/misc/linus-rebuttal.html
http://www.coyotos.org/docs/misc/linus-rebuttal.html

viii

Acknowledgements

[61]

[62]

[63]

[64]

[66]

Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems.
Prentice Hall Press, Upper Saddle River, NJ, USA, 4th edition, 2014.

Kun Tian, Yaozu Dong, and David Cowperthwaite. A full GPU virtu-
alization solution with mediated pass-through. In Garth Gibson and
Nickolai Zeldovich, editors, 201/ USENIX Annual Technical Confer-
ence, USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 201/.,
pages 121-132. USENIX Association, 2014.

Alexander Warg and Adam Lackorzynski. Rounding pointers: Type
safe capabilities with c4++ meta programming. In Proceedings of the 6th
Workshop on Programming Languages and Operating Systems, PLOS
11, pages 3:1-3:5, New York, NY, USA, 2011. ACM.

Ted Wobber and Peter Druschel, editors. Proceedings of the 23rd ACM
Symposium on Operating Systems Principles 2011, SOSP 2011, Cascais,
Portugal, October 23-26, 2011. ACM, 2011.

Ka-Ping Yee. User interaction design for secure systems. In Robert H.
Deng, Sihan Qing, Feng Bao, and Jianying Zhou, editors, Information
and Communications Security, 4th International Conference, 1CICS
2002, Singapore, December 9-12, 2002, Proceedings, volume 2513 of
Lecture Notes in Computer Science, pages 278-290. Springer, 2002.

Thomas M. Zeng. The android ion memory allocator, February 2012.
Available at https://lwn.net/Articles/480055/ as of November, 9"
2015.

Yajin Zhou and Xuxian Jiang. Dissecting android malware: Charac-
terization and evolution. In 2012 IEEE Symposium on Security and
Privacy, pages 95-109, 5 2012.

https://lwn.net/Articles/480055/

	Title Page
	Abstract
	Contents
	Listing of figures
	List of Tables
	List of acronyms
	Introduction
	Scope and Goals
	Contributions
	Organization

	Background
	System Architecture and TCB
	Virtualization
	GPU Driver Stack
	GPU Virtualization
	Secure GUI

	Threat Assessment
	The GPU as an Agent to Copy Memory
	Unrestricted DMA through Driver Bugs
	Unsafe Buffer Sharing
	Summary

	Secure GUI
	Framebuffer Handling
	Input Handling
	Compartmentalized Low-Level Drivers
	Routing Decision Making
	Implementation Details
	Summary

	Mobile GPU Para-Virtualization
	Hardware Model and Programming Model
	Memory Management
	Sharing
	Scheduling
	Suspend and Resume
	Implementation Details
	Summary

	Evaluation
	Methodology
	Experiments
	Benchmarks
	Results
	TCB complexity

	Conclusion
	Outlook
	Closing Words

	Acknowledgements

