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Abstract

Many road vehicles can be classified as bluff bodies based on their aerodynamic characteristics.
Due to their geometry, the flow separates at the back of the vehicle, leading to a large, turbulent
wake and a high drag coefficient. Active flow control (AFC) represents a promising technique
for mitigating these detrimental effects. Although this has been successfully demonstrated in
various wind tunnel experiments, most of the research has been limited to simplified, generic
vehicle shapes under low-turbulent conditions. By contrast, real vehicles experience a signifi-
cant amount of on-road turbulence, most notably when driving in gusty cross wind. This thesis
explores the potential of AFC to adapt to these changing flow conditions by using feedback
control. Here, the focus lies on ensuring an efficient drag reduction especially during cross-wind
gusts; the effects on lateral vehicle dynamics and driver behavior are considered as well. To
this end, further advantages of closed-loop AFC such as disturbance suppression are exploited
to reduce the vehicle’s cross-wind sensitivity and improve comfort and safety for the driver.
These techniques are first applied to a simple generic 2D bluff body equipped with Coanda
actuators. A multivariable robust H∞ controller is designed based on a set of black-box models
identified from experimental data. The controller adjusts the Coanda blowing rates at the two
trailing edges simultaneously and achieves an efficient drag reduction of up to 35%. Addition-
ally, it rapidly suppresses disturbances acting on the yaw moment during cross-wind conditions,
which are emulated here by a simple rotation of the bluff body in the wind tunnel.
This approach is extended to a 3D bluff body exposed to more realistic gusts in a special cross-
wind facility. A novel support system for wind-tunnel models replicates the lateral vehicle motion
during the experiments based on a real-time simulation of lateral vehicle dynamics and driver
behavior. This enables an investigation of the various transient effects resulting from unsteady
cross-wind gust response, actuated flow dynamics and lateral vehicle response.
A particular goal of this thesis lies on capturing these transient effects better than existing
techniques. This is achieved through the application of linear parameter-varying (LPV) mod-
eling and control tools. To this end, a novel approach for the identification of LPV models for
unsteady flow dynamics is developed and presented. It exploits the similarity of the nondimen-
sional transient aerodynamic characteristics for varying free-stream velocities. Furthermore, it
allows dependencies on additional parameters such as cross-wind angle to be easily taken into
account. Here, LPV models are identified for actuated flow dynamics and unsteady cross-wind
gust response of the 3D bluff body. These models describe the flow physics more accurately than
conventional linear black-box models and allow an improved LPV controller design that takes
the parameter dependency of the flow dynamics on varying free-stream velocities and cross-wind
angles directly into account. This translates into better performance than conventional robust
controllers. Additional LPV feedforward control reduces the cross-wind sensitivity further. In
wind-tunnel experiments with cross-wind gusts the controllers achieve an efficient drag reduction
of up to 15% while simultaneously improving the vehicle’s side-wind sensitivity significantly.
Last but not least, the LPV models can be scaled easily to different vehicle dimensions and driv-
ing velocities. The thesis concludes with a prediction of the dynamic characteristics of unsteady
gust response, actuated flow dynamics and controller performance for a real-sized vehicle based
on the models identified from wind-tunnel experiments.
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Kurzfassung

Straßenfahrzeuge weisen üblicherweise die aerodynamischen Eigenschaften stumpfer Körper auf.
Auf Grund ihrer Körpergeometrie löst die Strömung an den Fahrzeughinterkanten ab und bil-
det ein großes, turbulentes Nachlaufgebiet, das zu einem hohen Widerstandsbeiwert führt. Der
Einsatz aktiver Strömungsbeeinflussung stellt eine vielversprechende Möglichkeit dar, dem ent-
gegenzuwirken. Dies wurde in verschiedenen Windkanalexperimenten mit zumeist turbulenzar-
men Anströmbedingungen und einfachen, generischen Fahrzeugformen nachgewiesen. Da reale
Straßenfahrzeuge jedoch insbesondere bei Fahrten in böigem Seitenwind deutlich höheren Tur-
bulenzgraden ausgesetzt sind, wird in dieser Arbeit untersucht, wie mittels einer Regelung der
Strömung gezielt auf veränderliche Anströmbedingungen reagiert werden kann. Hierbei wird
über das Ziel einer effizienten Luftwiderstandsreduktion hinaus auch der Einfluss auf Fahrzeug-
querdynamik und Fahrerverhalten betrachtet, um durch eine Unterdrückung von Störungen den
Fahrer während Seitenwindböen zu entlasten und so Sicherheit und Fahrtkomfort zu erhöhen.
Die Methoden zur aktiven Strömungsbeeinflussung werden zunächst an einem generischen zwei-
dimensionalen stumpfen Körper angewandt, der mit Coanda-Aktuatoren entlang der Körper-
hinterkanten ausgestattet ist. Ein anhand von experimentell identifizierten Black-Box-Modellen
ausgelegter robuster H∞-Mehrgrößenregler stellt die Ausblasgeschwindigkeiten an den beiden
Aktuatoren simultan ein und erzielt eine effiziente Luftwiderstandsreduktion von bis zu 35%.
Zudem werden Störungen des Giermoments bei Schräganströmungsbedingungen schnell ausge-
regelt, die hier durch ein einfaches Verdrehen des Versuchskörpers nachgebildet werden.
Dieser Ansatz wird anschließend auf einen dreidimensionalen stumpfen Körper erweitert, der
in einem speziellen Seitenwindkanal realitätsnahen Böen ausgesetzt wird. Mittels einer Echt-
zeitsimulation der Querdynamik und des Fahrerverhaltens wird auch die Fahrzeugquerbewe-
gung berücksichtigt und durch ein neuartiges Verfahrsystem im Windkanal umgesetzt. Dies
ermöglicht eine Untersuchung der unterschiedlichen transienten Effekte, die sich aus instati-
onärer Böenantwort, Dynamik der aktuierten Strömung und Fahrzeugquerdynamik ergeben.
Ein wichtiges Ziel dieser Arbeit stellt eine im Vergleich zu herkömmlichen Verfahren verbesserte
Erfassung dieser transienten Effekte mittels linear parameter-veränderlicher (LPV) Verfahren
dar. Hierzu wird ein neuartiger Ansatz für die Identifikation von LPV-Modellen vorgestellt, der
die Ähnlichkeit der transienten Aerodynamik für variierende Anströmgeschwindigkeit ausnutzt.
Darüber hinaus können Abhängigkeiten von weiteren Parametern wie dem Schräganströmungs-
winkel leicht berücksichtigt werden. Für den 3D stumpfen Körper werden entsprechende LPV-
Modelle für die Dynamik der aktuierten Strömung und das transiente Seitenwindverhalten
identifiziert. Sie beschreiben die Strömungsphysik genauer als herkömmliche lineare Black-Box-
Modelle und erlauben einen verbesserten LPV-Reglerentwurf, der die Parameterabhängigkeiten
der Strömungsdynamik von variiender Anströmgeschwindigkeit und Schräganströmungswinkel
berücksichtigt. Im Vergleich zu konventionellen robusten Reglern wird so eine höhere Perfor-
mance erzielt, die durch eine LPV-Störgrößenaufschaltung weiter gesteigert werden kann. In
Windkanalversuchen mit Seitenwindböen wird so eine effiziente Widerstandsreduktion von bis
zu 15% bei gleichzeitiger Verbesserung der Seitenwindempfindlichzeit erzielt.
Des weiteren können die LPV-Modelle leicht auf andere Fahrzeuggrößen und Fahrtgeschwindig-
keiten skaliert werden. Dies wird abschließend anhand der in Windkanalversuchen identifizierten
Modelle für eine Abschätzung und Vorhersage der Dynamik der instationären Böenantwort, der
aktuierten Strömung und der Reglerperformance für Realfahrzeuggröße vorgenommen.
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Chapter 1

Introduction

1.1 Overview

Research and development in road vehicle aerodynamics is largely driven by the continuous
need to increase fuel efficiency. In the automobile industry this objective is mostly pursued by
reducing the aerodynamic drag through conventional methods such as shape optimization or
other passive means. However, the margin of further improvement through geometry changes
is restricted by several aspects: In the case of passenger cars in particular the design needs to
appeal to customer expectations, whereas commercial vehicles such as trucks and buses have to
provide sufficient loading capacity within a confined set of outer dimensions. This is why most
road vehicles have a shape representing a bluff body. According to Hucho [57], bluff bodies are
characterized by flow separation, which is induced by geometric properties such as a large ratio
of body width to length. This leads to a large wake behind the body and significant pressure
losses, which result in a high drag coefficient. These negative effects can be only partially alle-
viated by passive means such as boat-tailing, spoilers or vortex generators.
A promising, relatively new technology is active flow control (AFC), which uses actuation meth-
ods such as pulsed or steady blowing, synthetic jets, microjets or fluidic actuators to favourably
influence flow. In the case of bluff bodies, this is usually applied to delay flow separation or to
control the wake directly, the goal being to reduce the drag coefficient [30]. So far, however,
this has been mostly studied for relatively simple, generic vehicle shapes under well-controlled
laboratory conditions in wind tunnel experiments.
By contrast, real vehicles show more complicated flow phenomena and experience a significant
amount of on-road turbulence due to the wakes of other vehicles and natural wind gusts. Lately
there has been growing interest in understanding and modeling the influence of these unsteady
flow conditions on road vehicle aerodynamics, especially with regard to cross-wind gusts [120].
Yet the application of AFC in this context has received little attention, even though it offers
a way for adapting to changing flow conditions, in particular when used in a feedback control
loop.
This thesis seeks to extend existing approaches for closed-loop active flow control for simple
generic vehicles under low-turbulence, straight flow conditions to include more realistic vehi-
cle shapes under unsteady flow conditions. Here, the focus lies on ensuring an efficient drag
reduction, especially during cross-wind gusts. Further advantages of closed-loop AFC such as
disturbance suppression are exploited to reduce the cross-wind sensitivity of the vehicle to in-
crease safety and comfort for the driver.
These techniques are first applied to a simple generic 2D bluff body. A suitable actuation concept
and an appropriate strategy for multivariable feedback control of drag and yaw-moment coeffi-
cients is developed and presented. Here, the closed-loop controller has to suppress cross-wind
disturbances that are emulated by a simple rotation of the vehicle model in the wind tunnel.
This approach is subsequently extended to a 3D bluff body exposed to more realistic gusts in a
special cross-wind facility. Here, the effects on lateral vehicle dynamics and driver behavior are
also considered. To this end, a novel wind tunnel model support system replicates the lateral
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vehicle motion during the experiments based on a real-time simulation of the driver-vehicle sys-
tem. This setup enables the investigation of possible additional unsteady aerodynamic effects
arising from lateral vehicle motion.
A particular focus of this thesis lies on modeling the transient actuated flow characteristics and
the aerodynamic cross-wind gust response better than existing techniques. This is achieved
through the application of linear parameter-varying (LPV) modeling and control tools. A novel
and practical approach for the identification of gray-box LPV models for unsteady flow dynamics
is presented that exploits the similarity of the nondimensional transient aerodynamic charac-
teristics for varying free-stream velocities. This approach allows dependencies on additional
parameters such as cross-wind angle to be easily taken into account.
This is used to identify gray-box models for unsteady cross-wind gust responses and for actu-
ated flow dynamics, which describe the flow physics more accurately than conventional linear
black-box models. This answers some open questions in the literature regarding the relative im-
portance of various transient effects by assessing their nondimensional frequency characteristics
and evaluating their effect on the characteristics of lateral vehicle dynamics. The LPV approach
also allows for improved controller design, which achieves better performance than conventional
robust controllers by taking into account the parameter dependency of the flow dynamics on
varying free-stream velocities and cross-wind angles. This translates into a higher closed-loop
bandwidth, which helps to ensure an efficient drag reduction under unsteady flow conditions
while simultaneously improving the vehicle’s cross-wind sensitivity.
This thesis builds on and extends findings and methods from the fields of unsteady vehicle
aerodynamics, active flow control, lateral vehicle dynamics, system identification and control
design. The relevant current state of research in these disciplines is briefly summarized in the
sections below. It is followed by an overview of the open questions identified in the research and
a statement of the objectives and goals addressed by this thesis.

1.2 State of research

1.2.1 Unsteady aerodynamics of road vehicles and cross-wind sensitivity

Unsteady flow phenomena affect the aerodynamics of road vehicles in many different ways. The
effects can be classified by three different types of situations: The first are time-varying external
flow conditions such as those caused by cross-wind gusts; the second are unsteady effects created
by lateral or vertical vehicle motion; and the third are self-excited flow characteristics such as
wake instabilities. This section focuses on the first two categories; the wake characteristics and
the possibilities of controlling it by passive and active means are discussed in section 1.2.2.
External unsteady flow conditions on the road have a multitude of sources. According to the
overview article published by Sims-Williams [120], vehicles experience turbulent flow due to
natural wind, because of unsteady wakes by other vehicles and as they pass through regions of
constant cross-wind between road side obstacles. The last case is particularly important, as it
can create gusts of a significant amplitude, affecting driving comfort and safety. Gusts with a
scale of 2 to 20 vehicle lengths are the most critical, because they occur frequently at consid-
erable amplitudes. The resulting flow characteristics can differ significantly from quasi-steady
conditions, and lateral vehicle dynamics and driver behavior are particularly sensitive to distur-
bances in this frequency range [120].
Extensive measurements of the turbulent on-road flow conditions for a driving speed of 100
km/h have been carried out by Wordley and Saunders [147, 148]. Depending on the terrain and
traffic conditions, the identified turbulence intensities and length scales range widely. Driving in
smooth terrain is mostly characterized by low turbulence levels with long length scales, whereas
the wakes of other vehicles in highway traffic lead to a high vertical turbulence intensity with
very short length scales. The highest level of lateral turbulence occurs with a mean intensity of
4.7 % for driving in an environment with roadside obstacles, at an average length scale of 2.4 m
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as determined based on the von Kármán spectral fitting method. In contrast to Wordley and
Saunders [147, 148], whose focus lies on determining the average turbulent conditions to provide
guidelines for wind tunnel design, Wojciak et al. [143, 145] put an emphasis on identifying and
characterizing individual, strong cross-wind gusts from on-road measurements. Their results
show that the most frequently occurring cross-wind gusts during driving at a velocity of 140
km/h have an amplitude of 5◦ to 7◦ at a frequency of 1.0Hz to 1.5Hz. Assuming a vehicle length
of 4m, this corresponds to a gust wavelength of about 6.5 to 10 vehicle lengths, which lies in
the range stated by Sims-Williams, where unsteady aerodynamic effects can play a significant
role [120].
As pointed out by Wordley and Saunders [148], full-scale automotive wind tunnels are not capa-
ble of reproducing the turbulence characteristics experienced by vehicles in on-road conditions.
Passive techniques such as grids at the test-section inlet may be used to increase the turbulence
intensity to some degree, but these methods cannot reproduce lateral wind gusts at sufficient
amplitude. Therefore, the cross-wind sensitivity is conventionally assessed by exposing the vehi-
cle model to a series of constant cross-wind angles by rotating it on a turntable. The response to
unsteady cross-wind conditions is evaluated only later in drive-by tests on tracks equipped with
cross-wind fans [47]. At this point of the design process, however, few changes can be applied
to the vehicle, and on-track testing does not allow for a thorough investigation of the flow phe-
nomena. Thus, different test methods have been developed to study unsteady flow conditions
in wind-tunnel experiments.
According to the overview articles published by Széchényi [123] and by Sims-Williams [120],
setups in which a stationary model is exposed to a time-varying flow are best suited to represent
the on-road conditions. For this purpose, oscillating wings are often installed at the outlet of
the wind tunnel nozzle [82, 99, 114]. These facilities can generate a stochastic distribution of
the unsteady lateral velocity component with a realistic range of yaw angles and turbulence
levels. Corresponding experiments are carried out by Schröck et al. [113, 114] for different SAE
reference vehicle models. Depending on the shape of the back, the vehicle models experience
increased amplitudes of unsteady side force and yaw moment in the range 0.06 ≤ f∗ ≤ 0.12,
where the reduced frequency is defined as f∗ = fLwb/u∞ for the length of the wheelbase Lwb and
the free-stream velocity u∞. The largest amplifications are reported for a squareback geometry,
with yaw moments exceeding the quasi-steady prediction by up to 100 %. Furthermore, the
increased aerodynamic admittance of side force and yaw moment coefficients lies in a frequency
range that is relevant for the lateral vehicle dynamics and driver behavior.
Similar observations are also made for vehicle models exposed to single, large-amplitude gusts.
These can be generated in special cross-wind tunnels consisting of a blowing axial wind tunnel
and an additional cross-wind fan and shutter system along an open test section. Opening the
shutters consecutively creates a cross-wind gust that realistically convects over the wind tunnel
model and simulates a vehicle driving into a region of constant side-wind. This concept was
introduced by Dominy et al. [32, 33] and is also used by Volpe et al. [134]. The experiments
carried out by these authors with vehicle models exposed to cross-wind gusts show an over-
shoot of the transient yaw moment by up to 20% above the corresponding steady-state values
[106, 107, 133].
Oscillating models in an otherwise constant external flow have been frequently studied [38, 41,
50, 63, 83, 124, 144]. Most of these experiments were limited to a few, specific frequencies.
Especially in the case of oscillating rotation, yaw moments are often reported that significantly
exceed the quasi-steady values and those obtained with externally varying flow conditions. As
discussed by Watkins et al. [138], however, it must be pointed out that pure oscillation does
not represent flow conditions experienced on-road, where gusts convect over the vehicle. The
discrepancy between the published experimental results for oscillating models and for externally
varying flow conditions is also mentioned by Sims-Williams [120]. He concludes that further re-
search is necessary to explain these differences, since the various experiments differ significantly
in model geometry and applied test method.
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On-road measurements investigating transient aerodynamic effects are carried out by Oettle
et al. [93]. According to the authors, the pressure fluctuations in the sideglass region can be
accurately predicted over a large range of reduced frequencies from quasi-steady wind tunnel
measurements if the effects of self-excited unsteadiness are separated from the data. But their
study is focused on local flow phenomena, for which strong transient effects may not play an
important role. By contrast, the overall aerodynamic response of side force and yaw moment
as estimated from surface-pressure measurements is studied by Okada et al. [94] for sinusoidal
steering input at high-speed driving. Here, the high-speed stability and maneuverability of a
production-type mid-sized sedan vehicle is compared with and without aerodynamic add-on
parts such as side skirts, front and rear tire deflectors and an underbody cover. For the aero-
dynamically optimized vehicle the authors report smaller side-wake structures with a faster
aerodynamic response and shorter time lag. This helps increase aerodynamic dampening and
improve high-speed stability. The results are confirmed in a corresponding numerical simulation
by Tsubokura et al. [128].
As emphasized by Huemer [58] and Wagner [136], the cross-wind sensitivity of vehicles cannot be
assessed exclusively on the basis of steady and transient aerodynamic characteristics, since the
effect on lateral vehicle dynamics and on driver behavior has to be taken into account. Wagner
thus develops an empirical dynamic model for a virtual driver. This model is extended and
improved by Krantz [72] on the basis of on-road measurements under turbulent flow conditions.
The transient characteristics of unsteady aerodynamic effects are usually assessed on the basis
of admittance or transfer functions, whose frequency response is directly determined from ex-
periments via the power-spectral densities of the input and output signals [113]. Approaches to
model the measured response are rarely presented, however. Krantz [72] suggests simple transfer-
functions with first-order time lag, but the time constants are not stated and it is unclear how
they are determined. Furthermore, the model is given in dimensional time and can thus only
capture the flow dynamics at a single free-stream velocity. An interesting theoretical model for
the aerodynamic admittance of the side force and yaw moment of road vehicles is proposed by
Filippone [39]. It is based on the indicial method, which is summarized by Leishman [77] and
goes back to Theodorsen [125], Wagner [137] and Küssner [74]. These authors derived analytical
expressions for the unsteady aerodynamic response of airfoils to oscillating motion [125], impul-
sive changes in angle of attack [137] and sharp edged gusts [74], respectively. Filippone shows
that this approach can be extended to road vehicles, provided that the flow remains attached
to the sides [39], which is a valid assumption for the most commonly encountered on-road flow
conditions. The derived expressions for the aerodynamic response to sinusoidal gusts match well
with experimental results. The main parameters affecting the unsteady aerodynamic character-
istics are the mean vehicle length relative to the wave length of the gust, the traveling speed of
the sharp-edged gust and the vehicle’s streamwise elongation along the vertical cross-section.
A model for the unsteady aerodynamic loads arising from lateral and vertical vehicle motion
is presented by Kawakami et al. [63]. It is based on a quasi-steady aerodynamic assumption
that assumes that the instantaneous aerodynamic forces and moments are identical to those in
a steady flow at the same relative inflow angle. Nevertheless, a dynamic model is obtained as
the rates of change of displacement and rotation angle as well as the acceleration of the wind
tunnel model are taken into account. These terms are not considered in the other publications
about rotational oscillation cited above. This may explain the discrepancies between transient
and quasi-steady forces and moments often observed in these experiments already at very low
frequencies, since the quasi-steady prediction is commonly and mistakenly based on nominal in-
stead of relative side-wind angle. By contrast, the linear transfer functions derived by Kawakami
et al. [63] accurately approximate the transient forces and moments measured in experiments
with sinusoidal translation and rotation of a bluff body.
Methods for improving the cross-wind sensitivity of vehicles are mostly focused on form opti-
mization. A comprehensive overview of the different options is given by Hucho [56], who observes
that the problem is most pronounced for buses, vans and small trucks. This is studied in CFD-
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simulations for a double-decker bus exposed to cross-wind gusts by Hemida and Krajnović [51],
who conduct a successive shape optimization to reduce the transient aerodynamic yaw moment
[71]. Other methods for reducing the cross-wind sensitivity of road vehicles include add-on parts
such as aerodynamic separation edges or a tail fin as proposed by Schröck et al. [114]. Although
small improvements can be achieved by these passive means, their overall potential is limited
and may have other disadvantages in terms of increased aerodynamic drag under normal driving
conditions without side-wind.
Active steering or breaking systems have been developed that allow the effect of cross-wind
gusts on lateral vehicle dynamics to be reduced by feedback control. An overview of these
methods is given by Isermann [60]; examples of specific applications and methods were pub-
lished by Ackermann et al. [1, 2], Sackmann and Trächtler [108] or Schorn et al. [112]. The
importance of cross-wind sensitivity for comfort and safety of vans and small trucks is also ad-
dressed in commercially available vehicles, such as by the ”cross-wind assistant” by Daimler AG
[31]. It is based on a disturbance observer which processes sensor information from the system
for Electronic Stability Control (ESC) to estimate the aerodynamic disturbance, and creates a
counter-moment by regulating the suspension strut forces or by asymmetric breaking [9, 64].
These solutions intervene in the driving dynamics only after these have been affected by the
gust, but it is desirable to reduce the effects of unsteady cross-wind on the aerodynamics di-
rectly. Ideas based on active flow control have been proposed by Englar [34, 35] and Sumitani
and Yamada [122], and are discussed in the next section.

1.2.2 Passive and active flow control for bluff bodies

Most road vehicles exhibit aerodynamic characteristics which correspond to bluff bodies. Their
flow is dominated by separation, which is usually induced by the rear geometry of the body
[57]. This leads to large, turbulent wakes with significant pressure losses, which contribute to a
large drag coefficient of bluff bodies. These negative consequences can be mitigated by passive
or active flow control (AFC) methods.
An overview of the various techniques applied to bluff bodies is provided by Choi et al. [30].
Most of the research is conducted for generic bodies under low-turbulent, steady wind tunnel
conditions with the objective of reducing drag and explaining the related mechanisms. Earlier
studies focus predominantly on simple, two-dimensional bluff bodies. These are characterized
by a two-sided flow separation with mutually interacting shear layers. Wake instabilities lead to
large, alternating vortices that induce a low pressure on the base of the bluff body.
A relatively simple way to reduce drag is thus to prevent or delay the interaction of the two
shear layers. This can be achieved by passive means such as a splitter plate or by active base
bleed, as shown by Bearman [17, 18]. Another method involves introducing three-dimensional
disturbances that break the large-scale coherent two-dimensional flow structures and thus sup-
press alternating vortex shedding. This has been successfully demonstrated by using a wavy
trailing edge [126], by installing small tabs on the trailing edge [97], by spanwise distributed
continuous blowing and suction [67] or by spanwise distributed, pulsed suction [88, 89].
The wake instability of 2D bluff bodies can also be mitigated by enhancing the symmetry of the
wake. Periodic open-loop actuation with synthetic jets as described by Henning and King [55]
forces a synchronous vortex shedding and results in a lock-on of the wake in phase with the ac-
tuation frequency. This can also be achieved by direct opposition control through anti-cyclically
generated control forces [119, 44], or through phase control with synthetic jet actuation only on
one side, as demonstrated by Pastoor et al. [100]. These results show how the application of
feedback control strategies can contribute to more energy-efficient drag reduction.
However, most of the aforementioned mechanisms for bluff body drag reduction are only applica-
ble to two-dimensional bodies, which exhibit an unstable wake with large, alternating, coherent
vortices at characteristic frequencies. If the location of separation is not fixed by the body ge-
ometry, the drag of bluff bodies can also be significantly reduced by delaying the separation. To
this end, different passive or active means can be applied such as vortex generators [4], rotating
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cylinders on the rear edge [20], combined suction and pulsed blowing [115] or synthetic jets
with zero-net-mass-flux actuation [8, 75]. Based on the mechanism of delaying the separation,
considerable advances have recently also been made in the application of flow control to three-
dimensional bluff bodies. Most researchers focus on the Ahmed body [3] with a rear slant angle
of 25◦ or 35◦ as a generic vehicle model. Delaying the separation on the rear slant leads to a
significant drag reduction. This can be achieved by using pulsed jets [27, 46], vortex generators
[4] or steady microjets [16].
By contrast, flow control for the drag reduction of 3D bluff bodies with a square back is more
challenging, since the location of separation is fixed and their wake is highly turbulent without
large, coherent vortices. Successful applications of AFC are mostly based on steady blowing
at relatively high momentum coefficients, for example in the region of the upper rear trailing
edge [78], or along all four trailing edges, by exploiting the Coanda effect as described by Englar
[34, 35]. He also demonstrates that the aerodynamic yaw moment can be influenced by asym-
metric Coanda blowing to counter the effects of side wind. Another possibility for improving
cross-wind sensitivity is suggested by Sumitani and Yamada [122], who use blowing on the front
leeward side to trigger flow separation and reduce the yaw moment. This technique is associated
with an increase in drag, however.
Active flow control offers the potential to adapt to changing flow conditions, which is especially
important given the turbulent flow encountered by vehicles on the road. This can be achieved
through the application of closed-loop active flow control. Various methods have been developed
for this approach. An online optimization can be carried out with extremum or slope seeking
controllers, which do not require a dynamic model of the flow. A sinusoidal perturbation is
applied to the plant input to estimate the gradient of a cost functional via an adequate filtering
of the measurement variables. This approach has been successfully applied to various config-
urations, such as flow control for a backward-facing step and the suppression of combustion
instabilities [70] or a high-lift configuration [23], for which slope-seeking control yields higher
lift values than open-loop active flow control. In applications to 2D bluff bodies [53] and to the
3D Ahmed body [26] the drag is reduced by up to 13% − 15% through an optimization of the
actuation amplitude.
Although a significant speed-up can be achieved by estimating the gradient with an Extended
Kalman Filter as proposed by Henning et al. [53], slope-seeking controllers do not provide a
sufficient bandwidth to react to fast disturbances such as cross-wind gusts. For this purpose,
model-based controllers are better suited, as they offer better performance for disturbance sup-
pression and additional benefits such as reference variable tracking. To this end, robust control
strategies represent a powerful tool. They are able to handle the uncertainties arising from the
often nonlinear or parameter-dependent behavior of the actuated flow, and their design can be
carried out with standard methods, as described by Skogestad and Postlethwaite [121]. Within
the context of AFC, the required uncertain plant model is usually derived from a set of black-
box models that describe the input/output plant dynamics for the complete range of operating
conditions. Well-established system identification algorithms are available for the identification
of these models from experimental data such as the Prediction-Error-Method or the Subspace
method, see e.g. Ljung [79]. Successful applications of robust controllers for AFC of bluff bodies
are described for the 2D case by Henning and King [55] and Pastoor et al. [100], and for the
3D Ahmed body by Muminović et al. [87]. Extensions of these approaches to the multivariable
case with simultaneous control of drag or base-pressure and yaw-moment coefficient have been
published by the author prior to this thesis in Pfeiffer and King [103, 101] for 2D and 3D bluff
bodies, respectively.
An online optimization of fast processes such as turbulent flows can be achieved with model
predictive control (MPC). An overview of the different methods used for AFC is given by King
et al. [68]. For systems without saturated input or state variables, linear unconstrained MPC
can be used to control flows at very high sampling rates, as demonstrated by Gelbert et al.
[43] for the suppression of thermoacoustic instabilities and by Goldin et al. [48] for the active
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dampening of Tollmien-Schlichting waves. Active-Set-Methods allow a real-time application of
MPC in the presence of actuator saturation and have been applied to 2D and 3D bluff bodies
by Muminović et al. [87, 90, 88]. Model uncertainties can be taken into account by robust MPC
approaches [90, 89], but these methods require a relatively large computational effort.
If a nonlinear, theoretical model for flow dynamics is available, advanced nonlinear control
methods such as sliding mode control, backstepping or nonlinear MPC can be applied [5, 6].
Appropriate low-order models can be derived as Galerkin-models directly from the Navier-
Stokes-Equations or as Generalized-Mean-Field models calibrated to experimental data [80]. Of
particular interest for this thesis are linear parameter-varying (LPV) approaches, as they allow
the parameter-dependent behavior of the actuated flow for external variables such as varying
free-stream velocity to be taken into account directly. Such LPV gain-scheduling controllers are
described by Ali et al. [7] for transition control in plane Poiseuille flow or by Fitzpatrick et al.
[40] for flow control in a driven cavity. However, the application of these approaches has so far
been limited to very simple canonical configurations. This is because the required LPV models
are derived with low-order modeling methods, which are not yet applicable to more complicated
flows such as the wakes of 3D bluff bodies.
Although active flow control offers potential benefits particularly in changing flow conditions,
this has rarely been studied and most experiments have been carried out in a well-defined, low-
turbulent laboratory environment. Recent research has been increasingly turning its attention
to realistic flow conditions. For example, Müller-Vahl et al. [86] use adaptive, open-loop blow-
ing to reduce unsteady aerodynamic loads acting on wind turbines, and Troshin et al. [127]
describe a closed-loop controller to compensate for a slow performance degradation of soiled
wind turbine blades. The performance of combined feedforward and robust feedback AFC at
suppressing disturbances on the lift of a wing during longitudinal gusts is demonstrated from
wind tunnel experiments by Williams et al. [141] and Kerstens et al. [66, 65]. Last but not
least, the applicability of closed-loop AFC in real-world conditions is proven in flight tests by
King et al. [69].

1.2.3 Linear parameter-varying system identification and control theory

This section briefly summarizes publications from the field of system identification and control
theory that are relevant for the methods applied in this thesis. Here, the identification of lin-
ear dynamic models with the Prediction-Error-Method represents a well-established standard
approach, see for example Ljung [79]. A comprehensive overview of the methods for modeling
uncertainty and the corresponding design of multivariable robust H∞ controllers is given by
Skogestad and Postlethwaite [121].
The dynamics of the actuated flow and other unsteady flow characteristics such as the transient
gust response usually show a nonlinear behavior that depends on external parameters such as
free-stream velocity or cross-wind angle. A conventional approach for coping with such pa-
rameter dependencies is the use of gain-scheduling controllers, in areas such as flight control,
where the airplane dynamics depend on Mach number. Here, plant dynamics are linearized for
a range of different operating points for which individual linear controllers are designed. During
operation, an online interpolation between these controllers is carried out based on one or sev-
eral scheduling parameters. As discussed by Shamma and Athans in [116, 117, 118], however,
it is difficult or impossible to prove stability and performance of these approaches, and they
may fail in the presence of fast parameter variations. The authors thus introduce the class of
linear parameter-varying (LPV) systems [117], whose dynamics depend on external, measurable
parameters, and for which stability, robustness and performance conditions of the closed-loop
can be stated. Successful and widely used design methods for LPV H∞ gain scheduling con-
trollers are presented by Packard [95], Apkarian and Gahinet [13], Gahinet et al. [42] and Becker
et al. [22]. In these studies the control synthesis problem is formulated via linear matrix in-
equalities (LMI) that can be solved numerically with efficient algorithms [25, 42]. This yields
a fixed, parameter-independent Lyapunov function on whose basis stability and performance of
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the closed-loop can be shown. The resulting LPV controllers can achieve a higher performance
than conventional robust H∞ controllers, as their dynamics are adapted online to the plant
characteristics from measurements of the current parameter value.
According to Wu et al. [149], however, the use of a fixed Lyapunov function can still lead to
a conservative control design, as it allows for arbitrarily fast parameter variations. Wu et al.
[149] and Apkarian and Adams [11] thus propose a parameter-dependent Lyapunov function
that takes into account the maximal rates of change of the parameters. But controller synthesis
is computationally intensive, relying on a gridding of the parameter space to obtain a finite
number of LMIs.
Further extensions for mixed H2/H∞ LPV control problems allow the energy content of a signal
to be minimized over the entire frequency range [15, 28]. Prime et al. [104] use such an ap-
proach to suppress the aeroelastic vibrations of a wing exposed to vertical gusts at time-varying
free-stream velocities.
The LPV models for the controller design are often derived from physical first-order principles,
see Tóth [129] for an overview. When this is not easy to perform, LPV models can also be
identified from experimental data. Verdult et al. [130, 131, 135], Felici et al. [37] and Winger-
den and Verhaegen [142] propose subspace methods for the identification of LPV state-space
models; Boonto and Werner [24] present an approach for the closed-loop LPV identification of
input/output models. However, some of these methods are not applicable to larger data sets
as they suffer from a “curse of dimensionality” resulting in a high computational burden [132].
What is more, they are given in discrete time and a conversion to continuous time is complicated
due to the parameter dependency of the models [129]. Many LPV control synthesis algorithms
such as the one by Apkarian et al. [12, 13, 14] used in this thesis are implemented in continuous
time. Hence, a custom LPV identification algorithm for output error models is developed and
presented here. Its model structure is tailored to the typical parameter dependencies of the flow
dynamics. Details are given in sections 2.2.2 and 2.2.3.
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1.3 Problem statement and outline

The main objective of this thesis is the development of a closed-loop active flow control strategy
for road vehicles to efficiently reduce drag coefficient and cross-wind sensitivity under unsteady
flow conditions. This requires the interaction between transient aerodynamics in terms of the
unsteady gust response and the actuated flow dynamics, as well as the lateral vehicle dynamics
and the driver behavior to be taken into account. To achieve this goal, various approaches
and results from the current state of research summarized in the previous section are brought
together and extended where necessary. In particular, the following questions and objectives are
addressed:

• The characterization of the unsteady aerodynamic response to cross-wind gusts, to active
blowing and to the lateral vehicle motion;

• the identification of dynamic models for these effects in a way that takes into account their
dependence on the most relevant parameters such as the free-stream velocity;

• a derivation of their nondimensional characteristics and a prediction of the behavior at
realistic driving velocities and vehicle sizes;

• an investigation of the interaction between unsteady aerodynamics, lateral vehicle dynam-
ics and driver response, with a characterization and comparison of the relative importance
and bandwidth of the transient effects for various driving speeds;

• the development of a suitable closed-loop active flow control strategy based on the dynamic
models;

• better accounting for the parameter-dependent flow dynamics than provided by existing
robust controllers; and

• an efficient drag reduction under unsteady flow conditions while simultaneously improving
cross-wind sensitivity.

For this purpose, existing approaches for the design of LPV controllers [14], for the modeling of
the lateral vehicle dynamics [85, 108] and for the driver behavior [105, 85] are applied. These
methods are summarized in chapter 2, together with a brief overview of similarity laws in aero-
dynamics. Based on these, a novel procedure for the identification of LPV models for flow
dynamics is introduced in sections 2.2.2 and 2.2.3.

Chapter 3 describes the development of a multivariable closed-loop AFC strategy for a generic
2D bluff body. Its actuation concept with Coanda blowing is adapted from Englar [34, 35] and
is described in section 3.1 together with the experimental setup. The natural and actuated flow
characteristics are discussed in sections 3.2 and 3.3, respectively. For the model identification
and control design procedure described in sections 3.4 and 3.5 existing single-input single-output
(SISO) approaches for 2D bluff bodies [54] are extended to the multivariable case to simulta-
neously regulate drag and yaw-moment coefficients under cross-wind conditions. To this end, a
set of linear black-box models is identified from experiments to derive an uncertain model on
whose basis a robust H∞ controller is designed. In section 3.6 the closed-loop performance is
discussed for experiments in which the bluff body is rotated on a turntable. This is a simplified
way to simulate cross-wind disturbances.

These preliminary experiments with the 2D bluff body form a starting point for the development
of a similar control strategy for a more realistic 3D bluff body, which is presented in chapter 4.
The body geometry and actuation concept are adapted from the publications by Englar [34, 35],
but its length is reduced to correspond to a small truck or delivery van. The experimental
setup described in section 4.1 also involves a special cross-wind tunnel to create realistic gusts
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according to the approach proposed by Dominy and Ryan [33]. Furthermore, the setup features
a novel dynamic model support system for a real-time replication of the lateral vehicle motion
during the wind tunnel experiments.
The natural flow is characterized in section 4.2, with a focus on the cross-wind gust response
and its representation via a linear parameter-varying model. This method is applied here for
the first time to a gray-box modeling of unsteady flow phenomena from experimental data, and
allows dependencies on external parameters such as free-stream velocity or varying cross-wind
angle to be taken into account explicitly. In section 4.3 this LPV modeling approach is also used
to identify the actuated flow dynamics and compared with the conventional method, which is
based on identifying a set of linear black-box models at various cross-wind angles and free-stream
velocities.
The characteristics of the models for lateral dynamics [85, 108] and driver behavior [85, 105] are
discussed in section 4.5. Here, a scaling method is proposed to convert these models so that their
dynamics match wind tunnel dimensions and velocity. This is necessary to enable a real-time
simulation during the experiments, and special care has to be taken for a correct replication
of the vehicle motion in the wind tunnel. As described in section 4.5.3, this setup and the
identified LPV models for the unsteady gust response allow the interaction between transient
aerodynamics and lateral vehicle dynamics to be investigated for various driving velocities.
The design of robust and linear parameter-varying feedback controllers is presented in section
4.6, together with a dynamic reference filter that helps to reduce drag efficiently and improve
cross-wind sensitivity. Additionally, an LPV feedforward controller is proposed that provides
additional disturbance suppression during cross-wind gusts.
In section 4.7 the performance of these controllers is tested and compared in cross-wind gust
experiments with real-time replication of the lateral vehicle dynamics and driver behavior. The
proposed LPV approach is then used to estimate the closed-loop performance for a real-sized
vehicle at realistic driving velocities. Chapter 5 concludes with a summary and a brief evaluation
of the obtained results.
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Chapter 2

Fundamentals of applied methods

2.1 Linear parameter-varying H∞ control

A linear parameter-varying (LPV) system can be described in state-space form by

ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t), (2.1)

y(t) = C(θ(t))x(t) +D(θ(t))u(t). (2.2)

Its state-space matrices are functions of a vector of varying parameters θ. Following standard
notation, state, input and output vectors are denoted by x, u and y, respectively.
A conventional approach to control this class of systems is to design so-called gain-scheduling
controllers. To this end, Eq. (2.1) and (2.2) are evaluated for a range of frozen parameter values
θ to obtain a set of linear time-invariant (LTI) models. The overall control law is obtained by
interpolating between several linear controllers that are designed separately for each LTI system
corresponding to the respective operating point. However, stability or performance cannot be
guaranteed for this kind of gain-scheduling controllers unless the parameters are slowly time-
varying [14]. If the parameters can be measured or estimated online, this problem can be
circumvented by designing a time-varying controller

ẋK(t) = AK(θ(t))xK(t) +BK(θ(t))v(t), (2.3)

u(t) = CK(θ(t))xK(t) +DK(θ(t))v(t), (2.4)

whose state-space matrices depend on the same parameters as the plant [14]. Here, the vectors
xK and v denote the controller state and input variables, respectively. In a typical feedback
control configuration for tracking setpoints r, the controller inputs are chosen as v = r−y [121].

2.1.1 Control synthesis for polytopic LPV systems

The control synthesis approach summarized in the following is proposed by Apkarian et al.
[12, 13, 14]. It is implemented in the MATLAB-command ”hinfgs.m” in the Robust Control
Toolbox [84]. Proofs are omitted here and all formulations and theorems are described only for
the continuous-time case.
The derivation is based on the Bounded Real Lemma (BRL), which is valid only for linear
time-invariant (LTI) systems and is given in the following theorem.

Theorem 2.1.1 (Bounded Real Lemma [14]). Given a continuous-time transfer function
G(s) of (not necessarily minimal) realization G(s) = D +C(sI −A)−1B and a positive scalar
γ, the following statements are equivalent:

• A is stable and
∥∥D +C(sI −A)−1B

∥∥
∞ < γ

• there exists a positive definite solution X to the matrix inequality

B[A,B,C,D](X, γ) < 0, (2.5)
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with the Bounded Real Lemma (BRL) map

B[A,B,C,D](X, γ) :=

⎡
⎣ATX +XA XB CT

BTX −γI DT

C D −γI

⎤
⎦ . (2.6)

�

In [14], the authors extend the Bounded Real Lemma (BRL) to linear parameter-varying (LPV)
systems with the notion of Quadratric H∞ Performance.

Definition 2.1.1 (Quadratic H∞ Performance [14]). The LPV system (2.1, 2.2) has
quadratic H∞ performance γ if and only if there exists a single matrix X > 0 such that

B[A(θ),B(θ),C(θ),D(θ)](X , γ) < 0 (2.7)

for all admissible values of the parameter vector θ.
Then the Lyapunov function V (x) = xTXx establishes (global) stability and the L2 gain of the
input/output map is bounded by γ. That is,∥∥y∥∥

2
< γ ‖u‖2 (2.8)

along all possible parameter trajectories θ.

�

Definition 2.1.1 for Quadratic H∞ Performance implies the existence of a fixed Lyapunov func-
tion for the entire operating range [14]. Condition (2.7) is difficult to evaluate, however, since
it imposes an infinite number of constraints. This problem can be circumvented for LPV sys-
tems whose state-space matrices depend affinely on a parameter vector θ(t), which varies in a
polytope Θ

θ(t) ∈ Θ := Co{θ1, θ2, . . . , θr}. (2.9)

Here, the vertices θ1, θ2, . . . , θr correspond to the extremal parameter values. A matrix polytope
is defined as the convex hull

Co{N i : i = 1, . . . , r} :=

{
r∑

i=1

αiN i : αi ≥ 0,

r∑
i=1

αi = 1

}
(2.10)

of a finite number r of matrices N i with the same dimension. Here, the polytopic coordinates
of the convex hull are denoted by αi, with i = 1, . . . , r. Following this notation, Apkarian et
al. define “polytopic” LPV plants as state-space systems with affine dependence of the matrices
A(θ),B(θ),C(θ),D(θ) on the parameter vector θ, which ranges over a fixed polytope. This
leads to the following theorem for the Quadratic H∞ Performance of polytopic LPV systems.

Theorem 2.1.2 (Vertex Property [14]). Consider a polytopic LPV plant described in state-
space form by

ẋ = A(θ)x+B(θ)u (2.11)

y = C(θ)x+D(θ)u (2.12)

with [
A(θ) B(θ)
C(θ) D(θ)

]
∈ P := Co

{[
Ai Bi

Ci Di

]
:=

[
A(θi) B(θi)
C(θi) D(θi)

]
: i = 1, . . . , r

}
. (2.13)
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The following statements are equivalent:

• the LPV system (2.11, 2.12) is stable with Quadratic H∞ Performance γ,

• there exists a single matrix X > 0 such that for all

[
A(θ) B(θ)
C(θ) D(θ)

]
∈ P,

B[A(θ),B(θ),C(θ),D(θ)](X, γ) < 0 (2.14)

• there exists X > 0 satisfying the system of LMIs:

B[Ai,Bi,Ci,Di](X , γ) < 0, i = 1, 2, . . . , r. (2.15)

�

This theorem implies that the infinite number of constraints imposed by Eq. (2.7) can be reduced
to a finite set of LMIs in the special case of polytopic systems.
Similar to LTI plants, theH∞ control synthesis problem for polytopic LPV systems is formulated
by augmenting the plant (2.1,2.2) with adequate loopshaping weights [14]. This results in a
generalized plant description

ẋ = A(θ)x+B1(θ)w +B2(θ)u, (2.16)

z = C1(θ)x+D11(θ)w +D12(θ)u, (2.17)

v = C2(θ)x+D21(θ)w +D22(θ)u, (2.18)

with exogenous inputs w, control inputs u, weighted outputs z, measured outputs v and the
dimensions

A(θ) ∈ R
n×n,D11(θ) ∈ R

p1×m1 ,D22(θ) ∈ R
p2×m2 . (2.19)

The matrices of the generalized plant vary in a polytope⎡
⎣A(θ) B1(θ) B2(θ)
C1(θ) D11(θ) D12(θ)
C2(θ) D21(θ) D22(θ)

⎤
⎦ ∈ Co

⎧⎨
⎩
⎡
⎣Ai B1i B2i

C1i D11i D12i

C2i D21i D22i

⎤
⎦ , i = 1, 2, . . . , r

⎫⎬
⎭ . (2.20)

Here, the extremal matrices Ai, B1i . . . correspond to the values of A(θ), B1(θ), . . . at the
vertices θ = θi of the parameter polytope. The controller to be synthesized is of the form

ẋK = AK(θ)xK +BK(θ)v (2.21)

u = CK(θ)xK +DK(θ)v, (2.22)

with dimension AK(θ) ∈ R
k×k. It is denoted in the following by

Ω(θ) :=

[
AK(θ) BK(θ)
CK(θ) DK(θ)

]
. (2.23)

With xcl =
[
xT xTK

]T
, the closed-loop system can be described by state-space equations

ẋcl = Acl(θ)xcl +Bcl(θ)w, (2.24)

z = Ccl(θ)xcl +Dcl(θ)w, (2.25)

with

Acl(θ) = A0(θ) +BΩ(θ)C, Bcl(θ) = B0(θ) +BΩ(θ)D21, (2.26)

Ccl(θ) = C0(θ) +D12Ω(θ)C, Dcl(θ) = D11(θ) +D12Ω(θ)D21, (2.27)
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and

A0 =

[
A(θ) 0
0 0k×k

]
, B0 =

[
B1(θ)

0

]
, C0 =

[
C1(θ) 0

]
, (2.28)

B =

[
0 B2

Ik 0

]
, C =

[
0 Ik

C2 0

]
, D12 =

[
0 D12

]
, D21 =

[
0

D21

]
. (2.29)

For the control synthesis approach by Apkarian et al. [14] three assumptions have to be made
on the plant:

(A1) D22(θ) = 0 or equivalently D22i = 0 for i = 1, 2, . . . , r,

(A2) B2(θ),C2(θ),D12(θ),D21(θ) are parameter-independent or equivalently,

B2i = B2,C2i = C2,D12i = D12,D21i = D21, for i = 1, 2, . . . , r. (2.30)

(A3) The pairs (A(θ),B2) and (A(θ),C2) are quadratically stabilizable and quadratically de-
tectable over Θ, respectively.

If assumptions 1 or 2 are not satisfied, (A1) can often be fulfilled by redefining the plant
output, whereas assumption (A2) can be achieved by pre- or postfiltering the plant inputs or
outputs u and y, respectively, as described by Apkarian et al. [14]. This leads to parameter-free
control and measurement matrices. Assumption (A3) is sufficient and necessary for quadratic
stabilization of the polytopic LPV plant by output feedback [14]. Given these conditions, the
following theorem states the notion of an interpolating LPV controller.

Theorem 2.1.3 ([14]). Consider a continuous LPV polytopic plant and assume (A1)-(A3).
Given some positive scalar γ, the following statements are equivalent:

1. there exists a k-th order LPV controller solving the Quadratic H∞ Performance problem
with bound γ,

2. there exist some (n+k)×(n+k) positive definite matrix Xcl and k-th order LTI controllers

Ωi =

[
AKi BKi

CKi DKi

]
such that

B[Acl(θi),Bcl(θi),Ccl(θi),Dcl(θi)]
(Xcl, γ) < 0 (i = 1, 2, . . . , r), (2.31)

where θ1, . . . , θr are the vertices of the parameter polytope and Acl(θi) = A0(θi)+BΩiC, . . .
with the notation (2.26, 2.27).

If 1 or 2 is satisfied, a possible choice of LPV controller is the polytopic controller in state-space
form by

Ω(θ) :=
r∑

i=1

αiΩi =
r∑

i=1

αi

[
AKi BKi

CKi DKi

]
(2.32)

where (α1, . . . , αr) is any solution of the convex decomposition problem:

θ =

r∑
i=1

αiθi (2.33)

�
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Thus, the control synthesis problem involves computing a single Lyapunov matrix Xcl and
vertex controllers Ωi fulfilling the LMIs (2.31). The solvability conditions are as follows:

Theorem 2.1.4 (Convex Solvability Conditions [14]). Consider a continuous LPV polytopic
plant and assume (A1)-(A3). Let NR and N S denote bases of the null space of (BT

2 ,D12)
T

and (C2,D21), respectively. There exists an LPV controller guaranteeing Quadratic H∞ Per-
formance γ along all parameter trajectories in the polytope

Θ =

{
r∑

i=1

αiθi : αi ≥ 0;

r∑
i=1

αi = 1

}
(2.34)

if and only if there exist two symmetric matrices (R,S) in R
n×n satisfying the system of 2r+1

LMIs:[ NR 0

0 I

]T ⎡⎣ AiR+RAT
i RCT

1i B1i

C1iR −γI D11i

BT
1i DT

11i −γI

⎤
⎦[ NR 0

0 I

]
< 0 (i = 1, . . . , r), (2.35)

[ N S 0

0 I

]T ⎡⎣ AiS + SAT
i SB1i CT

1i

BT
1iS −γI DT

11i

C1i D11i −γI

⎤
⎦[ N S 0

0 I

]
< 0 (i = 1, . . . , r), (2.36)

[R I
I S

]
≥ 0. (2.37)

Moreover, there exist k-th order LPV controllers solving the same problem if and only if R,S
further satisfy the rank constraint

rank(I −RS) ≤ k. (2.38)

�
In the full-order case (k = n) the rank constraint (2.38) is readily satisfied and R,S are only
constrained by the LMIs (2.35 - 2.37). Minimizing γ subject to (2.35 - 2.37) and computing a
feasible solution for R,S represents a convex problem that can be solved efficiently with convex
optimization algorithms [14]. The Lyapunov matrix Xcl is constructed from R,S with the
following steps [14]:

• compute full-rank matrices M,N ∈ R
n×k such that

MN T = I −RS, (2.39)

• compute Xcl as the unique solution of the linear matrix equation Π2 = XclΠ1, where

Π2 :=

[ S I

N T 0

]
; Π1 :=

[
I R
0 MT

]
. (2.40)

Once Xcl is found, the vertex controllers Ωi =

[
AKi BKi

CKi DKi

]
can be computed by solving the

matrix inequality
B[Acl(θi),Bcl(θi),Ccl(θi),Dcl(θi)]

(Xcl, γ) < 0. (2.41)

The time-varying controller matrices are obtained by interpolation between the vertex controllers
by

Ω(θ) =
r∑

i=1

αiΩi =
r∑

i=1

αi

[
AKi BKi

CKi DKi

]
, (2.42)

with the polytopic coordinates (α1, . . . , αr) defined by the convex decomposition

θ =
r∑

i=1

αiθi : αi > 0,
r∑

i=1

αi = 1. (2.43)
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2.1.2 Implementation and discretization of LMI-synthesized LPV controllers

The control synthesis algorithm by Apkarian et al. [14] and its Matlab-implementation in the
”hinfgs.m”-function are given in continuous time. For real-time control, the controller matrices
resulting from the current measurement of the time-varying parameter θ are updated in each
sampling step by interpolation between the vertex controllers following the scheme given in Eq.
(2.42). The corresponding state-space equations of the LPV controller (2.3, 2.4) may be solved
by numerical integration on a digital signal processor (DSP).
However, the continuous-time LPV H∞ controllers synthesized with the algorithm described in
the previous section usually contain fast Eigenmodes. Due to the limited maximum sampling
rates in real-time applications on a DSP, this often leads to unstable results with the commonly
available integration schemes.
This problem may be circumvented by different control synthesis algorithms that restrict the
pole locations of the controller to the stable region [109], or by an adequate order reduction
of the LPV controller state-space equations to eliminate the fast modes, see e.g. Wood et al.
[146]. In this thesis, a different approach proposed by Apkarian in [10] is applied. It involves
discretizing the continuous-time state-space equations of the LPV controller

ẋK(t) = AK(θ(t))xK(t) +BK(θ(t))v(t), (2.44)

u(t) = CK(θ(t))xK(t) +DK(θ(t))v(t), (2.45)

via the LPV counterpart of the Tustin or bilinear transformation. Here, Apkarian [10] assumes
that the parameter and the measurement vectors on the time interval [kTs, (k + 1)Ts] can be
approximated by

θ(t) ≈ θk, v(t) ≈ vk, for kTs ≤ t < (k + 1)Ts, (2.46)

where the index k denotes the corresponding value at time kTs. The LPV trapezoidal approxi-
mation is then formalized by the following theorem:

Theorem 2.1.5 (Trapezoidal Approximation [10]). Consider the LPV controller governed by
(2.44, 2.45) and assume the sampling period is Ts. A trapezoidal approximation of the sampled
dynamics of the system can be described in state space by the following discrete time LPV system

zk+1 =

(
I − Ts

2
AK(θk)

)−1(
I +

Ts
2
AK(θk)

)
zk +

√
Ts

(
I − Ts

2
AK(θk)

)−1

BK(θk)vk, (2.47)

uk =
√
TsCK(θk)

(
I − Ts

2
AK(θk)

)−1

zk

+

(
Ts
2
CK(θk)

(
I − Ts

2
AK(θk)

)−1

BK(θk) +DK(θk)

)
vk. (2.48)

Proof: See Apkarian [10].

�

Carrying out the bilinear transformation given in theorem 2.1.5 in each sampling step k results
in a relatively large computational effort due to the required matrix inversions in Eq. (2.47,
2.48). However, Apkarian shows in [10] that an LTI controller obtained by evaluating the LPV
controller matrices at a frozen parameter value θ0 := θ(t) maintains stability and performance
in the vicinity of θ0. As a result, the update of the discrete-time LPV controller matrices in Eq.
(2.47, 2.48) may be performed at certain multiples of the sampling period, given a sufficiently
slow variation of θ(t) in the neighborhood of θ0. The associated computational benefits help the
real-time applicability of the proposed method.
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2.2 Aerodynamics

2.2.1 Nondimensional incompressible Navier-Stokes equation

The Navier-Stokes equation for an incompressible Newtonian Fluid is given in dimensional form
by

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ μ∇2u + f , (2.49)

with the velocity vector u, the density ρ and dynamic viscosity μ of the fluid, the pressure p and
the body force f , see e.g. White [140]. Introducing nondimensional scales for length, velocity
and time as described by Schlichting and Gersten in [110] results in the dimensionless variables
as given in table 2.1. For the assumption of an incompressible fluid, density ρ and viscosity μ are

Dimensional variable Scale Dimensionless variable

Location: x, y, z Reference length: L x∗ = x
L , y

∗ = y
L , z

∗ = z
L

Velocity: u, v, w Reference velocity: U u∗ = u
U , v

∗ = v
U ,w

∗ = w
U

Time: t Reference time: L
U t∗ = tU

L

Pressure: p ρU2 p∗ = p−pR
ρU2

Table 2.1: Nondimensional variables and corresponding scales for the dimensionless representa-
tion of the incompressible Navier-Stokes equation

constant, and thus no reference scales need to be introduced for these variables. Furthermore,
the pressure p only appears in derivative terms in Eq. (2.49). Therefore, the difference from a
reference pressure pR can be used in the dimensionless variable p∗.
Substituting the variables in Eq. (2.49) for their dimensionless counterparts yields the nondi-
mensional incompressible Navier-Stokes equation

∂u∗

∂t∗
+ u∗ · ∇∗u∗ = −∇∗p∗ +

1

Re
∇∗2u∗ + f

L

ρU2
. (2.50)

Here, the last term can be neglected if the body forces are small. This can be assumed in many
practical applications such as road vehicle aerodynamics [110]. In Eq. (2.50) the Reynolds
number

Re =
ρUL

μ
(2.51)

appears as an dimensionless parameter. It describes the ratio between inertial and viscous
forces [140] and is often also defined with respect to the kinematic viscosity ν = μ/ρ. Another
important nondimensional characteristic number is the Strouhal number

St =
fL

U
= f∗, (2.52)

which corresponds to a reduced frequency f∗ and is commonly used to describe the characteristics
of periodic time-varying flow phenomena such as the von Kármán Vortex street [140].
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2.2.2 LPV model for dimensional flow dynamics

In this thesis a nondimensional form of dynamic state-space models is proposed to describe the
characteristics of unsteady flow phenomena. The nondimensionalization and choice of scales is
carried out in an analogous manner as described in the previous section for the Navier-Stokes
equation. The structure of the dimensionless state-space models is chosen as

dx∗

dt∗
= A∗x∗ +B∗u∗ +E∗d∗, (2.53)

y∗ = C∗x∗ +D∗u∗ + F ∗d∗, (2.54)

with nondimensional vectors of the state variables x∗, control inputs u∗, disturbance inputs
d∗ and measurement or output variables y∗. Here, the time derivative dx∗/dt∗ is defined with
respect to nondimensional or convective time

t∗ =
t u∞
L

. (2.55)

However, all dynamic processes in the actual experiment or on-road application elapse in phys-
ical, dimensional time t. Thus, for model identification or control purposes the nondimensional
state-space model defined in equations (2.53) and (2.54) has to be converted to an at least
partially dimensional form in physical time. With the diagonal matrix

TR = diag(x1,R, x2,R, . . . xnx,R) (2.56)

of reference variables x1,R . . . xnx,R for the nx dimensional state variables in vector

x =
[
x1 . . . xnx

]T
, (2.57)

the nondimensional state vector can be expressed as

x∗ = T−1
R x. (2.58)

Expanding its derivative with respect to nondimensional time according to

dx∗

dt∗
=
dx∗

dt

dt

dt∗
, with

dx∗

dt
= T−1

R

dx

dt
, and

dt

dt∗
=

L

u∞
, (2.59)

results in
dx∗

dt∗
= T−1

R

dx

dt

L

u∞
=

L

u∞
T−1

R ẋ. (2.60)

Substituting Eq. (2.55), (2.58) and (2.60) into Eq. (2.53) and (2.54) yields

ẋ =
u∞
L

TRA
∗T−1

R︸ ︷︷ ︸
A(θ)

x +
u∞
L

TRB
∗︸ ︷︷ ︸

B(θ)

u∗+
u∞
L

TRE
∗︸ ︷︷ ︸

E(θ)

d∗, (2.61)

y∗ = C∗T−1
R︸ ︷︷ ︸

C

x + D∗︸︷︷︸
D

u∗ + F ∗︸︷︷︸
F

d∗, (2.62)

which represents a linear parameter-varying (LPV) model with one parameter θ = u∞ and the
parameter-dependent matrices A(θ), B(θ) and E(θ). A model in this partially dimensional
form allows the flow dynamics at different free-stream velocities u∞ to be described and gives
an estimate of how the frequency characteristics change with length scale L. Note that the
control and disturbance input variables u∗ and d∗ and the output variables y∗ do not have to be
converted to dimensional variables from a control systems point of view. This results in models
with varying dynamics but constant gains. These are independent of free-stream velocity u∞
and length scale L and therefore facilitate the control synthesis procedure.
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If the model (2.61,2.62) is identified from experimental data, as is the case for this thesis, the
state variables do not necessarily have a physical meaning. Thus, there is no obvious choice
for the reference state variables x1,R . . . xnx,R. Accordingly, the matrix TR is set equal to the
identity matrix here. This simplifies Eq. (2.61,2.62) to

ẋ =
u∞
L

A∗︸ ︷︷ ︸
A(θ)

x +
u∞
L

B∗︸ ︷︷ ︸
B(θ)

u∗+
u∞
L

E∗︸ ︷︷ ︸
E(θ)

d∗, for TR = I, (2.63)

y∗ = C∗︸︷︷︸
C

x + D∗︸︷︷︸
D

u∗ + F ∗︸︷︷︸
F

d∗, for TR = I, (2.64)

which is the basis of the model structure used for the LPV identification scheme presented in
the next section.

2.2.3 LPV model identification

For the identification of the LPV state-space models introduced in the previous section, a custom
algorithm is applied here. Only single-input, single-output (SISO) or multiple-input, single-
output (MISO) models are considered, as they can be easily combined into full multiple-input,
multiple-output (MIMO) models. Furthermore, the matrices D and F are set to zero, as physical
processes usually do not posess a direct feedthrough. In order to be able to account for gain
variations of the flow dynamics with respect to additional parameters θ̃2 . . . θ̃p such as cross-wind
angle, the equations (2.63) and (2.64) are expanded according to an LPV state-space model in
output error structure

ẋ =
u∞
L

A∗︸ ︷︷ ︸
A(θ)

x +
u∞
L

(
B∗

1 + θ̃2B
∗
2 . . . θ̃pB

∗
p

)
︸ ︷︷ ︸

B(θ)

u∗+
u∞
L

(
E∗

1 + θ̃2E
∗
2 . . . θ̃pE

∗
p

)
︸ ︷︷ ︸

E(θ)

d∗, (2.65)

y∗ = c∗T︸︷︷︸
cT

x+ e, (2.66)

with the output error e and the parameter vector

θ =
[
θ1 θ2 . . . θp

]T
=
[
u∞ u∞θ̃2 . . . u∞θ̃p

]T
. (2.67)

The identification of the LPV model in Eq. (2.65, 2.66) from experimental data is carried
out in several steps outlined in Fig. 2.1. The algorithm begins with the identification of an
initial linear black-box model with a suitable model order nx using the standard Prediction-
Error-Method (PEM), see e.g. Ljung [79]. This is carried out for one single data set recorded
from an identification experiment at a fixed parameter value. The input/output variables are
chosen as nondimensional coefficients to avoid dependencies of the model gains on the free-
stream velocity. In step 2, the identified initial model is converted to continuous time, followed
by the nondimensionalization in step 3. This is carried out according to Eq. (2.65) and (2.66)
to obtain the state-space matrices

A∗
init =

L

u∞
Ainit, B∗

1,init =
L

u∞
B1,init, E∗

1,init =
L

u∞
E1,init, c∗Tinit = cTinit, (2.68)

of an initial, dimensionless model in convective time. Dependency on the other parameters
θ2 . . . θp is not yet taken into account, and the corresponding matrices B∗

2,init . . .B
∗
p,init and

E∗
2,init . . .E

∗
p,init are initialized with zero. This initial model is subsequently transformed into
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Step 1: Identify linear, discrete SISO/MISO model
for one data set (PEM)

Step 2: Conversion to continuous, dimensional time

Step 3: Nondimensionalization

Step 4: Transform to observability form
→ Initial estimate ϑ0 for the LPV model coefficients

Step 5: Update LPV model with current coefficients ϑi,
simulate for all data sets, calculate quadratic error

ϑ0

ϑi

ϑopt

yes

no Optimization with
Levenberg-Marquardt algorithm

Optimum reached?

Figure 2.1: LPV model identification procedure

observable canonical form via a state transformation as described by Luenberger [81], with the
matrices

A∗
obs =

⎡
⎢⎢⎢⎢⎢⎣
0 0 . . . 0 −a∗0
1 0 . . . 0 −a∗1
0 1 . . . 0 −a∗2

. . .

0 0 . . . 1 −a∗nx−1

⎤
⎥⎥⎥⎥⎥⎦ , (2.69)

B∗
j,obs =

⎡
⎢⎢⎢⎣

b∗j0,1 b∗j0,2 . . . b∗j0,nu

b∗j1,1 b∗j1,2 . . . b∗j1,nu
...

b∗jnx−1,1
b∗jnx−1,2

. . . b∗jnx−1,nu

⎤
⎥⎥⎥⎦ , for j = 1 . . . p, (2.70)

E∗
j,obs =

⎡
⎢⎢⎢⎢⎣

e∗j0,1 e∗j0,2 . . . e∗j0,nd

e∗j1,1 e∗j1,2 . . . e∗j1,nd
...

e∗jnx−1,1
e∗jnx−1,2

. . . e∗jnx−1,nd

⎤
⎥⎥⎥⎥⎦ , for j = 1 . . . p, (2.71)

c∗Tobs =
[
0 . . . 0 1

]
. (2.72)

This corresponds to a state-space realization with a minimum number of coefficients a∗0 . . . a∗nx−1,
b∗j0,1 . . . b

∗
jnx−1,nu

, e∗j0,1 . . . e
∗
jnx−1,nd

, for j = 1 . . . p, which are gathered in a coefficient vector ϑ.

The identification of the LPV model coefficients is carried out via nonlinear least-squares min-
imization with the Levenberg-Marquardt algorithm as implemented in the MATLAB-command
”lsqnonlin.m”. Each evaluation of the cost function in step 5 involves updating the LPV
model with the current coefficient vector ϑi, simulating the model for all data sets and calcu-
lating the quadratic error between measured and simulated output variable. This process is
repeated until an optimal coefficient vector ϑopt is obtained.
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2.3 Driving dynamics

2.3.1 Single-track model for lateral vehicle dynamics

The main characteristics of lateral vehicle dynamics can be described by the single-track model,
see e.g. Mitschke and Wallentowitz [85]. Hereby, the entire undercarriage is replaced by single
wheels located at the center of the front and rear axle, respectively. Additionally, the vehicle’s
center of gravity is assumed to be located at road-level, such that vertical motion as well as rolling
and pitching can be neglected. Fig. 2.2 shows the corresponding definitions of the variables.

xCG

yCG

x0

y0

vv

β

ψ

δf

Center of gravity (m, Jz)

Fy

Mz

Cαf

Cαr

Lf

Lr

Figure 2.2: Single-track model, adapted from Mitschke and Wallentowitz [85] and Sackmann
and Trächtler [108].

The xCG-yCG-coordinate system is fixed in both origin and rotation to the body frame, whereas
the index 0 denotes the inertial reference frame.
As described by Sackmann and Trächtler [108], the standard single-track model is augmented
here by additional inputs Fy andMz for the cross-wind excitation that act on the vehicle’s center
of gravity. Assuming a planar motion in the horizontal plane, a constant driving velocity vv and
linearizing for small angles, the momentum balances for transversal and rotational motion yield
the differential equations

β̇ = a11β + a12ψ̇ + b1δ + e1Fy, (2.73)

ψ̈ = a21β + a22ψ̇ + b2δ + e2Mz, (2.74)

for the side-slip angle β and the yaw angle ψ. Here, the steering angle δ of the driver is transferred
to the turning angle δf of the front wheel via the steering gear ratio

is =
δ

δf
. (2.75)

The coefficients

a11 = −Cαr + Cαf

mvv
, a12 =

CαrLr − CαfLf

mv2v
− 1,

a21 =
CαrLr + CαfLf

Jz
, a22 = −CαrL

2
r + CαfL

2
f

Jzvv
,

b1 =
Cαf

ismvv
, b2 =

CαfLf

isJz
, e1 =

1

mvv
, e2 =

1

Jz
, (2.76)

depend on the front and rear cornering stiffnesses Cαf and Cαr, the driving speed vv, the vehicle
mass m and moment of inertia Jz, the steering gear ratio is and the distances Lf and Lr from
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the front and rear axle to the center of gravity, respectively. Assuming small angles ψ and β,
the lateral velocity vl and acceleration al in the inertial coordinate system can be calculated by

vl ≈ (ψ + β)vv, (2.77)

al ≈ (ψ̇ + β̇)vv. (2.78)

Transferring Eq. (2.73), (2.74) and (2.78) into the Laplace domain results in

al(s) = Galδ(s) δ(s) +Gald(s) d, with d =
[
Fy(s) Mz(s)

]T
, (2.79)

with the Laplace variable s. Here, Galδ(s) and Gald(s) represent the transfer functions for the
vehicle’s lateral acceleration response to the steering input δ and to the disturbance input vector
d, respectively.

2.3.2 Virtual driver model

As pointed out by Wagner [136] and Schröck [113] the behavior of the driver plays an important
role when assessing the cross-wind sensitivity of a vehicle. The single-track model described in
the previous section is augmented here by a virtual driver based on the models suggested by
Risse [105] and Mitschke and Wallentowitz [85]. Fig. 2.3 shows the corresponding driver-vehicle

-

d =
(
Fy Mz

)T

MR(s)

Md(s)

Prediction

Gald(s)

Galδ(s)
r=0 1

s
1
s

ylvlal

T 2
P /2 TP

δ

yl,pred

Driver Vehicle

Figure 2.3: Driver-vehicle control-loop for disturbance compensation, adapted from Risse [105]
and Mitschke and Wallentowitz [85]

feedback loop. The driver perceives the lateral deviation yl, velocity vl and acceleration al and
estimates a future vehicle trajectory yl,pred with a prediction time TP . For the task of pure lane
keeping under side-wind disturbances the reference variable r is zero. According to Risse [105]
the feedback part of the driver can be modeled by the transfer function

M̃R(s) = VM
1

1 + TIs
e−sτ . (2.80)

The time constant TI and the reaction time τ are largely independent of the vehicle type and the
individual driver, with values of about 0.2 s. However, the gain VM and the prediction time TP
are adapted by the driver to the vehicle characteristics in order to achieve a cross-over frequency
0.3 Hz < fc < 0.5 Hz and a phase reserve 30◦ < φr < 40◦ of the open driver-vehicle feedback
loop. The time delay is replaced by a second-order Padé approximation

e−sτ ≈ Gdelay(s) =
1− τ

2s+
τ2

12s
2

1 + τ
2s+

τ2

12s
2
, (2.81)
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to obtain a linear transfer function

MR(s) = VM
1

1 + TIs
Gdelay(s) (2.82)

for the feedback part of the driver. The prediction block can be represented by a transfer
function

Gpred(s) =
1 + TP s+

TP
2 s

2

s2
, (2.83)

with the lateral acceleration al as input variable, as described by Mitschke and Wallentowitz
[85]. Setting all external input variables r and d to zero and moving the prediction block to the
upper part of the feedback loop in Fig. 2.3, results then in the open-loop transfer function

G0(s) =MR(s) ·Galδ(s) ·Gpred(s) (2.84)

of the driver-vehicle system. For a given phase reserve φr and cross-over angular frequency
ωc = 2πfc the prediction time TP can be calculated by

TP =
1

ωc

(
− 1

A1
+

√
1

A2
1

+ 2

)
, with

A1 = tan

⎧⎨
⎩−π +

π

180◦
φr + tan−1(TIωc)− tan−1

(
Lr
vv
ωc

1− Jz
CαrLwb

ω2
c

)
+tan−1

⎛
⎝ σv

ωc
ω2
v

1− ω2
c

ω2
v

⎞
⎠+ ωcτ

⎫⎬
⎭.
(2.85)

Apart from the desired phase reserve and cross-over angular frequency, Eq. (2.85) additionally
depends on the given driver time constant TI and time delay τ , as well as several parameters of
the single-track model. The vehicle’s decay constant σv is given by

σv =
m(CαfL

2
f + CαrL

2
r) + Jz(Cαf + Cαr)

2Jzmvv
, (2.86)

and the undamped eigenfrequency ωv by

ωv =

√
CαfCαrL

2
wb +mv2v(CαrLr − CαfLf )

Jzmv2v
. (2.87)

Based on the condition
|G0(jωc)| = 1 (2.88)

for the magnitude of the open-loop driver-vehicle transfer function G0 at the cross-over frequency
ωc, the driver gain VM can be calculated by

VM =

√
1 + T 2

I ω
2
c

|Galδ(jωc)| · |Gpred(jωc)| . (2.89)

The parameters of the prediction block Gpred(s) and the feedback part MR(s) of the driver are
now fully determined.
For disturbance compensation and zero steady-state error during constant cross-wind, the virtual
driver is augmented by a feedforward part

Md(s) =
[

kδFy

1+TSs
e−sτ kδMz

1+TSs
e−sτ

]
, (2.90)

as suggested by Mitschke and Wallentowitz [85]. Again, the feedforward part of the driver is
modeled by a first-order transfer function with the same time delay τ as in the feedback part.
The parameters

kδFy = −CαrLr − CαfLf

LwbCαfCαr
is, and kδMz = − Cαr +Cαf

LwbCαfCαr
is (2.91)
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represent the gains for the steering angle δ to compensate for constant side force Fy and yaw
moment Mz, respectively. The time constant TS is usually chosen to be around 0.7 s [85].
Replacing the time delay by the second-order Padé approximation Gdelay(s) according to Eq.
2.81 results in the overall control law of the driver model

δ =
[

−VM
1+TIs

−VM
1+TIs

TP
−VM
1+TIs

T 2
P
2

]
Gdelay(s)

⎡
⎣ylvl
al

⎤
⎦+

[
kδFy

1+TSs
kδMz
1+TSs

]
Gdelay(s)

[
Fy

Mz

]
. (2.92)

For implementation and real-time simulation in the wind tunnel experiments, the overall driver-
vehicle model is converted to state-space form, see Appendix A. Furthermore, its coefficients
are scaled online to match the smaller model dimensions and the current free-stream velocity in
the wind tunnel, as described in section 4.5.2.
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Chapter 3

2D bluff body

3.1 Experimental setup

The experiments are conducted in an Eiffel-type wind tunnel with a maximum free stream
velocity of approximately 20 m/s and a maximum turbulence level of less than 0.5%. The
closed test section has a length of 2500 mm, a width of 545 mm and a height of 490 mm. A
Prandtl tube located 200 mm downstream of the test section entrance monitors the dynamic
pressure q and free stream velocity u∞. The 2D bluff body investigated here is shown in Fig. 3.1
and has the dimensions l = 181mm, h = 474mm and w = 50mm. It is mounted at a distance
of 620 mm downstream of the test section entrance and has an elliptic nose with an aspect
ratio of 1:4 to prevent laminar separation bubbles. Here, the Reynolds number Rew = u∞w/ν is
defined with respect to the body width w and the kinematic viscosity ν. Most of the experiments
are carried out in a range 30000 < Rew < 60000. The cross-wind is characterized by the yaw
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Figure 3.1: Experimental setup and cross-section of the 2D bluff body showing the definition
of cross-wind angle, forces and moments for the coordinate system as well as illustrating the
positions of pressure sensors and actuators.

angle βw between the free-stream velocity u∞ and the driving direction x. As common in vehicle
aerodynamics, the forces and moments are measured in the body-fixed coordinate system, which
is located here at the center of the body’s mean section, 90.5 mm behind the nose. The drag
force D faces in negative x-direction, the side force S in positive y-direction and the yaw moment
N is defined around the upward facing z-axis. The corresponding nondimensional coefficients
are given by

cD =
D

qhw
, cS =

S

qhw
, cN =

N

qhwl
, (3.1)
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for drag, side-force and yaw-moment coefficients, respectively. Pressurized air can be blown
through actuator slots located along both trailing edges. The slot exits are parallel to the
body’s side walls and have a width of 0.3 mm. Rounded surfaces adjacent to the slots redirect
the actuator jets towards the base of the bluff body by means of the Coanda effect [34, 35]
and allow for an efficient control of the bluff body’s wake. The supply pressures pa,1 and pa,2
of the actuators are adjusted for each trailing edge separately using Piezo pressure regulators
(Hoerbiger, Tecno Basic PRE-U). Fast solenoid switching valves (Festo, MHE4) installed on
either side between the pressure regulators and the actuator slots allow steady blowing or pulsed
blowing at different frequencies. During the experiments, the actuators are driven by the system
shown in Fig. 3.2. The desired nondimensional blowing rates u∗a,des are converted to dimensional

u∗a,des × /
Pressure regulators,

Look-upLook-up
tabletable

u∞u∞
ua,des p

des
tubing,

Coanda actuators

p
act

ua,jet u∗a,jet

Figure 3.2: Schematic sketch of the actuator system.

velocities ua,des based on the mean free-stream velocity u∞. A set of look-up tables, determined
from flow meter readings in a series of steady-state measurements, is used to calculate the
corresponding setpoints p

des
for the piezo pressure regulators. The instantaneous pressures p

act
are monitored by transducers installed inside the actuator ducts from which the instantaneous
blowing velocities ua,jet can be determined via a second set of look-up tables. The actuation
amplitude is characterized in terms of the momentum coefficient

cμ,i =
Aa,iu

2
a,i

hwu2∞
, for j = 1, 2 , (3.2)

where Aa,i denotes the cross-sectional area of all actuator slots on side i, and ua,i stands for
the corresponding blowing velocity at the slot exit. The drag force and yaw moment acting on
the bluff body are measured using a six component force/torque balance (ATI, FTD-Gamma
SI-32-2.5, absolute measurement accuracy better than 1% of full scale span) that is sufficiently
stiff to capture transient forces and moments. 24 miniature pressure sensors (Sensortechnics,
HCLA12X5B, measurement uncertainty due to hysteresis and nonlinearity less than 0.25% of
full scale span) along the mean section of the bluff body monitor the pressure distribution. The
pressure coefficients

cpj =
pj − ps
q

, for j = 1 . . . 24, (3.3)

are calculated from the corresponding pressure reading pj at each position j. Here, ps and
q denote the static and dynamic pressures as measured by the Prandtl probe. The pressure
coefficient cp,b at the body’s base is obtained by averaging the readings of sensors 12, 13 and
14. A turntable driven by a stepper motor is used to rotate the body around its vertical axis,
thus enabling measurements at different cross-wind angles. The setup also allows transient
cross-wind angles to be studied. However, it is not capable of accurately reflecting the unsteady
aerodynamics of a real car driving into a cross-wind gust, since a side-wind gust simulated by
turning the body acts simultaneously on the whole body. Furthermore, the drag and yaw-
moment measurements will include inertial forces. In spite of these limitations, the setup offers
the possibility of testing the control performance under well-defined, reproducible disturbances.
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3.2 Natural flow characteristics

The flow characteristics of the wind-tunnel model correspond to a typical two-dimensional bluff
body. Due to the trip tapes installed on either side of the elliptic front of the body, the transition
to a turbulent boundary layer is fixed to a location 11 mm downstream of the nose. For the
range of small to medium cross-wind angles −5◦ < βw < 5◦ investigated here, the flow stays
attached along the sides of body and separates at the trailing edges. A smoke wire visualization
of the wake for the natural flow at βw = 0◦ is shown in the upper picture of Figure 3.3. The

cp14

cp14

cp13

cp13

cp12

cp12

Figure 3.3: Smoke wire flow visualization of the wake behind the 2D bluff body for natural
(upper photo) and symmetrically actuated flow (lower photo) at Rew = 15000 and βw = 0◦.

two shear layers roll up towards the base of the bluff body, interact mutually and form large,
alternating vortices. The flow is governed by a global wake instability that results in the typical
von Kármán vortex street observed behind two-dimensional bluff bodies [59]. The vortices
induce a low pressure in the near wake of the bluff body. This leads to a low time-averaged
base-pressure coefficient of cp,b ≈ −0.62 and a high time-averaged drag coefficient of cD ≈ 0.57.
These results agree well with the values reported for the base-pressure coefficient of similar 2D
bluff bodies [17, 18, 19, 96, 97, 126].
Furthermore, the alternating shedding of the vortices lead to large, periodic pressure fluctuations
on the base of the bluff body. Their power spectral densities for the three sensor positions 12, 13
and 14 are shown in Fig. 3.4. The spectra coincide well for all investigated Reynolds numbers
in the range 3 · 104 ≤ Rew ≤ 6 · 104, with stronger fluctuations at the lowest Reynolds number
Rew = 3·104. Sensors 12 and 14, located near the trailing edges on the base, show a distinct peak
at a Strouhal number Stw = fw/u∞ ≈ 0.29, representing the characteristic reduced frequency
of the von Kármán vortex street. For all three sensor positions a second, wider peak at a higher
frequency is visible in the power spectral density, with a maximum at about twice the vortex
shedding frequency. These observations correspond well to the results of Henning et al. [54],
Pastoor et al. [100] and Muminović et al. [88, 89], who conducted experiments with similar 2D
bluff bodies. However, they report slightly lower characteristic frequencies of the wake pressure
fluctuations in the range 0.23 ≤ Stw ≤ 0.25, and significantly higher drag coefficients in the
range 0.91 ≤ cD ≤ 0.98, compared with a value of cD ≈ 0.57 of the bluff body presented in this
thesis. The differences are likely due to its more streamlined elliptic nose. The front of the bluff
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Figure 3.4: Power spectral density of pressure coefficient fluctuations on the base of the bluff
body for the natural flow at 3 · 104 ≤ Rew ≤ 6 · 104 at zero yaw angle.

bodies used in [54, 88, 89, 100] has a blunter shape with a fairly small rounding radius of the
leading edges. This leads to laminar separation bubbles on the sides and a higher contribution
of the frontal body part to the overall drag. Furthermore, thicker boundary layers develop
along the sides of the body due to its blunter shape, which explains the lower characteristic
frequencies reported in [54, 88, 89, 100]. Also, the flow visualization in Fig. 3.3 suggests that,
even without actuation, the Coanda surfaces installed at the base lead to an effect similar to
parallel extension plates [62]. This reduces the wake width and pushes the formation of the
vortices further downstream, thus reducing their negative impact on the base pressure.
Tombazis and Bearman [126] and Park et al. [97] report that the drag coefficient for simple,
streamlined 2D bluff bodies with blunt trailing edges can be approximated by cD ≈ −cp,b.
This is also the case for the 2D bluff body investigated here. However, this is only true for
nominally straight flow conditions, as can be seen from the steady-state maps in Fig. 3.5. At
a zero degree yaw angle, the bluff body has a drag coefficient of cD ≈ 0.57 and a base-pressure
coefficient cp,b ≈ −0.62, as seen in Fig. 3.5 (a) and (f). For increasing cross-wind angles βw, the
drag coefficient decreases more and more, whereas the base pressure remains almost unaffected.
However, the pressure coefficients cp1 at the center of the nose and cp2 and cp24 at the frontal
sides change significantly, which reflects a shift of the stagnation point to the windward side and
a suction peak on the leeward side. Together with the elliptical shape of the frontal part of the
body, this leads to a decrease in drag with raising yaw angle. The pressure coefficients cp11 and
cp15 at the rear wind- and leeward sides are also affected by cross-wind, but less than the frontal
pressure distributions. This leads to an almost linear increase in side-force and yaw-moment
coefficients, as can be seen in Fig. 3.3 (b) and (c).
Here, the goal of the application of AFC with Coanda actuation is to reduce the detrimental
effects of cross-wind on the flow around the bluff body while maintaining an efficient reduction
of the drag coefficient. The corresponding characteristics of the actuated flow are discussed in
the next section.
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Figure 3.5: Steady-state maps for drag, side-force and yaw-moment coefficients, as well as
selected pressure coefficients for the natural flow at cross-wind angles 0◦ ≤ βw ≤ 5◦ and Rew =
4 · 104.

3.3 Actuated flow characteristics

As presented in section 1.2.2, the application of passive and active control for the drag reduction
of 2D bluff bodies has been extensively studied for many years. The various methods can be
classified by the physical mechanism of the wake manipulation:

• Delay of separation: For bodies without a fixed separation point, such as cylinders or
bluff bodies with rounded trailing edges, the base pressure can be increased by keeping
the flow attached for a longer distance at the rear end of the body. This can be achieved
by increasing the mixing of the shear layer with higher momentum fluid by passive means
such as vortex generators or by active means such as rotating cylinders at the trailing edge
[20], combined suction and pulsed blowing [115] or synthetic jets with zero-net-mass-flux
actuation [8, 75].

• Prevention of the interaction of the shear layers: Installing splitter plates [17] or applying
active base bleed [18] stabilizes the near wake by delaying the interaction of top and bottom
shear layers. This attenuates the vortex strength close to the body and increases the base
pressure.

• Breaking of large-scale coherent 2D flow structures by 3D disturbances: Spanwise dis-
tributed forcing can be used to generate three-dimensional disturbances that break up the
large, alternating two-dimensional vortex shedding responsible for the high drag coefficient
of many 2D bluff bodies. This can be achieved by passive means such as a wavy trailing
edge [126] or installing small tabs on the trailing edges [97]. Active methods include span-
wise distributed continuous blowing and suction [67], spanwise distributed, pulsed suction
[88, 89] or energized shear layers to attenuate the formation of large-scale 2D vortices by
high-frequency forcing [29].
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• Enhancing the symmetry of the wake: Forcing a synchronous shedding of smaller vortices
from both trailing edges leads to a base-pressure increase relative to the uncontrolled case
characterized by large, alternating vortices. This can be achieved via open-loop periodic
actuation with synthetic jets, because the wake locks on in phase to the forcing frequency
[55]. A more energy efficient drag reduction can be achieved via direct opposition control
by generating anti-cyclic control forces [119, 44] or phase control by feedback active flow
control with synthetic jet actuation only on one side [100].

Many of the aforementioned control methods are only applicable to 2D bluff bodies since they
build on an attenuation or elimination of the alternating, two-dimensional vortex shedding.
However, the goal of the 2D bluff body experiments presented in this thesis is to provide a
starting point and a set of guidelines for a successive application of AFC to 3D bluff bodies as
the one presented in section 4. Hence, steady blowing using the Coanda effect is chosen here as an
active flow control method. Geropp and Odenthal [45] apply this control strategy to a simplified
2D car model and achieve a significant base-pressure increase of almost 50 %, which leads to a
drag reduction of about 10 % in their experiment. Although large blowing rates in the range of
the free-stream velocity are required, the authors achieve overall net power savings even if the
compressor power needed for generating the actuator jets is taken into account. Furthermore,
Coanda blowing is also applicable for the drag reduction of cars and trucks with blunt backs
as demonstrated in experiments by Englar [34, 35]. He also points out the potential for yaw-
moment reduction under side-wind conditions. In view of these results, blowing with Coanda jets
represents a well-suited actuation method for developing a multivariable closed-loop active flow
strategy with the goal of reducing cross-wind sensitivity while providing efficient drag reduction.
In the following sections the most relevant flow phenomena are discussed to gain insight into the
steady and transient characteristics of the actuated flow. This forms the basis for identifying a
dynamic model that is suitable for the control design.

3.3.1 Symmetric actuation by continuous blowing

Steady blowing through the Coanda actuators at the trailing edges leads to deflection of the
jets towards the base of the bluff body [45]. This also accelerates the boundary layer upstream
of the actuators and reduces the velocity deficit in the two shear layers. These effects cause a
deflection of high momentum free-stream fluid into the near wake behind the body as shown in
the flow visualization in the lower picture of Fig. 3.3. The circulation bubble is significantly
reduced compared with the natural flow, and a free stagnation point forms closely behind the
bluff body. This shields the base from the large, alternating vortices that form further down-
stream. Thus, the effect of Coanda blowing on the wake arises from a combination of several
physical mechanisms: The flow stays attached to the rounded Coanda surfaces, thus delaying
the separation and deflecting high-momentum fluid towards the base. Furthermore, the jets
defer the interaction of the shear layers resulting in a symmetrization of the near wake.
All of these effects combined lead to a substantial base-pressure increase of Δcp,b ≈ 0.2 and to a
drag reduction of ΔcD ≈ 0.2 or by more than 35 %, as shown in the steady-state maps in Fig.
3.6. The coefficients for drag and base pressure slightly depend on the Reynolds number, but the
overall characteristics coincide well. For small momentum coefficients cμ ≤ 0.018 only a small
drag reduction is achieved. Increasing the momentum coefficient in the range 0.018 ≤ cμ ≤ 0.038
leads to significant base pressure recovery and a large drag reduction. For larger momentum
coefficients the drag coefficient reaches a saturation.
These characteristics qualitatively match the results reported by Henning et al. [54, 52], Pastoor
et al. [100], and Muminović et al. [89, 88, 90], but the momentum coefficients required for a
significant drag reduction by Coanda blowing are about one order of magnitude higher than
those in the cited experiments. In [54, 52, 100] zero-net-mass-flux actuation by Synthetic Jets
is applied at an outward facing angle of 45◦ to the main flow direction, whereas Muminović
et al. use pulsed suction at the same angle [89, 88, 90]. In particular the latter experiments
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Figure 3.6: Steady-state maps for the drag coefficient cD, base-pressure coefficient cp,b and time-
averaged, normalized power savings ΔP/P 0 for symmetric actuation with steady Coanda jets
at 3 · 104 ≤ Rew ≤ 6 · 104 and βw = 0◦.

suggest that the suction part of periodic actuation is effective at modifying the wake at very
low momentum coefficients. However, steady or pulsed suction is hard to generate and would
require a significant amount of power in a real vehicle application. By contrast, steady blowing
with Coanda jets can be applied easily by using pressurized air from a compressor [34, 35]. Fur-
thermore, the achieved drag reduction is with up to 35 % much larger than the ones achieved by
Synthetic Jet actuation or pulsed suction. This suggests that the mechanism of base-pressure
recovery by Coanda blowing is not only related to the suppression of the influence of the alter-
nating vortex shedding on the near wake, but also has a significant effect on the mean base flow.
In order to rate the efficiency of the AFC strategy by Coanda blowing, the normalized net power
savings are calculated here with a method proposed by Krentel et al. [73]. At driving veloc-
ity u∞ the powers P0 and Pafc needed to overcome the drag D0 and Dafc of the natural and
controlled flow, respectively, are given by

P0 = D0u∞ =
ρ

2
AbcD0u

3
∞ , (3.4)

Pafc = Dafcu∞ =
ρ

2
AbcDafc

u3∞ , (3.5)

where cD0 and cDafc
denote the baseline and the actuated drag coefficient, respectively. The

power of the air blown through the actuator slot i can be calculated by

Pa,i =
ρ

2
Aa,iu

3
a,i, for i = 1, 2, (3.6)

and has to be subtracted from the power saved due to the drag reduction. This results in the
equation

ΔP

P0
=
P0 − Pafc − Pa,1 − Pa,2

P0
=
cD0 − cDafc

cD0

− cμ,1ua,1
cD0u∞

− cμ,2ua,2
cD0u∞

(3.7)
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for overall net power savings. As shown in the lower left plot of Fig. 3.6, normalized net power
savings of up 25% can be achieved by Coanda blowing. The obtained maximum values vary
slightly, mostly because the baseline drag coefficient used for normalization changes with the
Reynolds number.
As pointed out by Geropp and Odenthal [45], the ratio u∗a = ua/u∞ of Coanda jet velocity to
free-stream velocity has to be in the range 1.5 ≤ u∗a ≤ 2.5 to achieve an effective drag reduction.
This is shown in the right column of Fig. 3.6. The drag coefficient is reduced significantly only
when the blowing velocity exceeds the free-stream velocity by more than 20 %. This suggests that
the velocity deficit in the shear layer has to be refilled by Coanda blowing, before a significant
effect on the wake is obtained. The largest net power savings are achieved for a blowing ratio
u∗a ≈ 1.8, which agrees well with the effective range published by Geropp and Odenthal [45].
The effect of Coanda blowing with different momentum coefficients on the power spectral density
of fluctuations of the pressure coefficients on the base is depicted in Fig. 3.7. For the pressure
sensors 12 and 14 located near the trailing edges on the base, a large peak at Stw ≈ 0.29 is
visible for the natural flow. This corresponds to the characteristic reduced frequency of the von
Kármán vortex street. Actuation at the threshold of cμ = 0.018, where Coanda blowing starts
to become effective, slightly increases both the magnitude and the characteristic frequency. For
increasing momentum coefficients, the peaks are pushed towards higher frequencies and become
smaller and smaller, until they almost disappear for actuation with cμ = 0.042 in the fully
saturated range of the drag reduction. For the fluctuation c′p13 of the pressure coefficient in the
center of the base, no significant differences are visible between natural and actuated flow. This
shift to higher Strouhal numbers of the vortex shedding is also reported by Bearman [18], who
applied base bleed to a 2D bluff body. He concluded that the base pressure is directly related
to the distance lf of vortex formation behind the base. The latter is in turn a function of the
angle γ between the shear layers and of the ratio θ/w between shear layer thickness θ and the
spacing of the shear layers, which here equals the body width w. Coanda blowing reduces the
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thickness of the shear layers and also deflects them inwards. This results in the formation of
smaller vortices further downstream, which explains the shift to higher Strouhal numbers and
smaller amplitudes of base pressure fluctuations when the flow is fully actuated.
Examples of the transient evolution of the selected pressure coefficients on the base are shown
in Fig. 3.8. For the natural flow, see plots (a-c), the base-pressure coefficient changes at long,
seemingly random time intervals between a state with a lower mean level of about cp,b,min ≈ −0.7
and a higher mean level around cp,b,max ≈ −0.6. A close-up view of the pressure coefficients
cp12 and cp14 located towards the sides of the base shows large oscillations with a phase shift
of about 180◦ when the wake is in the first state, as shown in Fig. 3.8 (b). Smaller, almost
synchronized fluctuations occur when the wake is in the second state, see Fig. 3.8 (c). This
indicates that the distance at which the shear layers interact varies randomly in the longitudinal
direction. Actuation at a medium cμ-level of 0.03, shown in the middle row of Fig. 3.8, increases
the mean base pressure. The switching between alternating and synchronized vortex shedding
in the near wake still occurs, but the magnitude of the anti-cyclical oscillations is much smaller.
For the fully actuated flow with cμ = 0.042 shown in plots (g-f) the near wake spends almost
its entire time in the synchronized state, and almost no alternating vortex shedding is detected
by pressure sensors 12 and 14.
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3.3.2 Symmetric actuation by pulsed blowing

In the experiments by Henning et al. [54, 52] and Pastoor et al. [100] periodic actuation with
synthetic jets is applied at the rear edges of a D-shaped two-dimensional bluff body. By contrast,
Muminović et al. [89, 88, 90] use pulsed suction for a smaller bluff body of the same shape. The
authors obtain a substantial base-pressure recovery for periodic actuation at Strouhal numbers
Sta = 0.15 and Sta = 0.17 for the first and second experiment, respectively. In both cases, the
most effective drag reduction is obtained for reduced actuation frequencies about 20 % to 40 %
below the characteristic frequency of the natural flow instability.
Although the physical mechanism of drag reduction by Coanda blowing is different to the afore-
mentioned actuation methods, a series of experiments was conducted to test if a more efficient
drag reduction can be obtained for pulsed instead of continuous Coanda blowing. Here, the
pulsed actuation is carried out with fast switching solenoid valves, as described in section 3.1.
Before the experiments, look-up tables of the effective blowing velocity were determined via hot-
wire anemometry at the Coanda slot exits for a large range of supply pressures and actuation
frequencies 10Hz ≤ fa ≤ 200Hz.
Based on these look-up tables the momentum coefficient can be kept constant while testing
various actuation frequencies. The results of these measurements are given in Fig. 3.9, which
shows the time-averaged, normalized drag coefficient cD/cD0 for pulsed actuation at a momen-
tum coefficient cμ = 0.04 with reduced frequencies in the range 0.05 ≤ Sta,w ≤ 1.2 at several
Reynolds numbers. Similar to the experiments cited above, a large drag reduction by about 30
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% is obtained for pulsed actuation at Sta,w ≈ 0.21, below the frequency Stw ≈ 0.29 of the von
Kármán vortex street. Several peaks are visible in the steady-state maps, indicating the less
effective or detrimental forcing frequencies. This is the case for actuation at the same frequency
as the natural wake instability – and even more so at twice this frequency. For significantly
larger pulsation frequencies Sta,w the actuation appears to have a quasi-steady effect on the
wake. In this regime, a similar drag reduction of about 40% is achieved both for pulsed and
steady blowing at the same momentum coefficient.
This suggests that open-loop pulsed actuation with Coanda jets is not more effective than steady
blowing for this body geometry. Thus, only continuous Coanda blowing is considered here fur-
ther for actuation of the flow around the 2D bluff body.

34



3.3.3 Boundary layer profiles for natural and actuated flow

Coanda blowing at the trailing edges not only increases the pressure in the near wake of the
bluff body; it also accelerates the boundary layer close to the actuators. This is shown in Fig.
3.10 for symmetric and asymmetric Coanda blowing relative to the natural flow at Rew = 4 ·104.
Here, the velocities u(y) were measured with a hot-wire at the rear edge of the bluff body, next
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Figure 3.10: Boundary layer profiles for natural and actuated flows at Rew = 4 ·104 and βw = 0◦

at the rear edge of the bluff body (x = −l/2, z = h/2 and Δy = y − w/2). The time-averaged
hot-wire measurements for the velocities u(y) are normalized with the mean reference velocity
uref measured outside the natural boundary layer.

to the slot exit of actuator 1. The distance Δy from the surface of the bluff body is defined
as Δy = y − w/2. The profiles are nondimensionalized for the time-averaged reference velocity
uref measured outside the natural boundary layer at Δy/w = 0.4. Due to blockage effects in the
closed test section, this velocity is higher than the free-stream velocity, with uref ≈ 1.17 u∞.
The shape of the velocity profile measured for natural flow corresponds to a turbulent boundary
layer. A boundary layer thickness of δ99/w = 0.0693 is obtained for the natural flow, and the
corresponding momentum thickness is determined to be δ2/w = 5.6 · 10−3. These values are less
than half of those reported by Henning [52] and Muminović [90], who studied D-shaped two-
dimensional bluff bodies with a blunter front and much thicker boundary layers. This effect is
circumvented by the elliptic nose of the bluff body studied here. Similar to the results published
by these authors [52, 90], the velocity profile for the natural flow in Fig. 3.10 shows a region with
u(y)/uref > 1 for 0.07 ≤ Δy/w ≤ 0.35. According to Becker [21] and Leder [76] this is due to
the acceleration of the mean external flow along the boundary of the time-averaged dead-water
zone behind the bluff body.
As discussed in section 3.3.1, symmetric actuation with u∗a,1 = u∗a,2 = 1.8 leads to the most
efficient drag reduction under straight flow conditions. This results in a thinner boundary layer
with higher velocities relative to the natural flow, as can be seen in Fig. 3.10. When strong
one-sided blowing with u∗a,1 = 3 and u∗a,2 = 0 is applied, the boundary layer acceleration is even
faster. This also increases the velocity further away from the bluff body and leads to lower
surface-pressures upstream of the actuators. For one-sided Coanda actuation on the opposite
trailing edge with u∗a,1 = 0 and u∗a,2 = 3, the boundary layer slows and the pressure increases.
These well-known effects have been extensively studied in the context of circulation control to
modify drag, lift and pitching moment of thick airfoils, see e.g. [61, 36, 92, 139]. Here, they are
used to change the pressure distribution around the bluff body to reduce yaw moment under
cross-wind conditions. The related flow characteristics are discussed in the next section.
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3.3.4 Asymmetric actuation by continuous blowing

As discussed for the natural flow characteristics in section 3.2, cross-wind conditions have a
strong influence on the pressure distribution around the front of the 2D bluff body. Asymmetric
actuation with Coanda blowing at the rear edges can counteract these changes to some degree.
Figure 3.11 shows the corresponding steady-state maps of the actuated flow for a cross-wind
angle βw = 5◦. Here, the nondimensional blowing rates u∗a,1 and u∗a,2 at the lee- and windward

(a) (b)

(c) (d)

(e)

u∗
a,1u∗

a,1

u∗
a,1

u∗
a,1u∗

a,1

u∗
a,2u∗

a,2

u∗
a,2

u∗
a,2u∗

a,2

c p
2
(f
ro
n
t
le
e)

c p
1
1
(r
ea
r
le
e)

c p
1
5
(r
ea
r
w
in
d
w
a
rd
)

c p
2
4
(f
ro
n
t
w
in
d
w
a
rd
)

c p
,b
(b
a
se
)

-0.2

-0.3

-0.4

-0.4

-0.4

-0.5

-0.6

-0.6

-0.6

-0.8

-0.8
-1

-1.2
-1.4
-1.6

0.6

0.8

0 00 0

0 0

0 00 0

1 11 1

1 1

1 11 1

2 22 2

2 2

2 22 2

3 33 3

3 3

3 33 3

Figure 3.11: Steady-state maps of selected pressure coefficients for asymmetric actuation under
cross-wind conditions at βw = 5◦ and Rew = 4 · 104.

side, respectively, are varied independently. The largest increase in base pressure is obtained
for symmetric blowing, but one-sided actuation also has a positive effect, as shown in Fig. 3.11
(e). Furthermore, Coanda blowing accelerates the boundary layer upstream of the actuator slots,
which decreases the pressure coefficient in the rear region close to the actuators. This can be seen
from the steady-state map in plot (d) with blowing u∗a,1 at the leeward side alone. Furthermore,
the jet from one-sided actuation also obstructs the shear layer on the opposite side. This
increases the pressure coefficient there, as shown in Fig. 3.11 (b). A pressure difference between
the rear lee- and windward sides can thus be generated by asymmetric actuation, reducing yaw
moment under cross-wind conditions. However, the local effects of Coanda blowing on the flow
around the rear part of the bluff body carry on upstream and change the pressure distribution
around the nose significantly. This reduces the control authority for the yaw moment slightly.
Furthermore, side force and yaw moment can only be modified in opposite directions for the
given actuator location.
The overall time-averaged effect of asymmetric actuation on the force and moment coefficients is
depicted in Fig. 3.12. For straight oncoming flow, see plots (a-c), the map of the drag coefficient
is symmetric but nonlinear with respect to the amplitude of the input variables. By contrast,
the maps of side-force and yaw-moment coefficients are almost linear when the threshold of
u∗a,1 > 1.2 and u∗a,2 > 1.2 is exceeded. This falls in line with observations made for symmetric
blowing, which has to be at least 20 % faster than the free-stream velocity to be effective.
When the cross-wind angle is increased to βw = 5◦ the maps for side-force and yaw-moment
coefficients do not change their shape significantly . Rather, they are shifted by a constant bias.
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By contrast, the map for the drag coefficient becomes asymmetric, as seen in Fig. 3.12 (d). This
parameter-dependent behavior is mostly due to changed pressure distribution around the nose
under side-wind conditions, whereas the characteristics of the wake and base pressure are not
significantly affected by small to moderate cross-wind angles. As discussed for the natural flow
characteristics, the stagnation point moves to the windward side and a suction peak forms on
the leeward side of the nose. One-sided blowing u∗a,1 on the rear leeward side accelerates the
flow and increases the suction peak. This explains the higher effectiveness of this actuator at
drag reduction for positive cross-wind angles.
These nonlinear, parameter-dependent characteristics have to be taken into account during the
model identification and control design.

3.3.5 Transient response of the actuated flow

In this section the transient response of the pressure distribution around the bluff body to
stepwise changes in Coanda blowing amplitude is briefly discussed. This helps develop an un-
derstanding of the plant dynamics and lays the foundation for identifying suitable models.
In order to evaluate actuator and flow dynamics separately, the instantaneous blowing veloc-
ity u∗a,jet at the actuator exit slots must be known. This velocity is determined from pressure
readings inside the actuator ducts with the method described in section 3.1. Fig. 3.13 shows
the transient response Δcp,b of the base-pressure coefficient to stepwise changes in actuation
amplitude for symmetric, continuous Coanda blowing.
In all cases, the instantaneous dimensionless jet velocity u∗a,jet rises after a short time delay of
about 7 ms, overshoots and settles quickly to the desired value u∗a,des. For step inputs in the
range 1.3 ≤ u∗a,des ≤ 2.0 where the largest drag reduction is achieved, the base-pressure coeffi-
cient shows slow transient characteristics, see plots (a) and (c). The response becomes faster
with increasing free-stream velocity. This suggests that the dynamics in this range of actua-
tion amplitudes are dominated by slow fluid-dynamic processes related to the suppression of the
large, alternating vortices of the wake instability. For higher blowing velocities 2.0 ≤ u∗a,des ≤ 2.7
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Figure 3.13: Phase-averaged response of the base-pressure coefficient to symmetric actuation at
different amplitudes and at different Reynolds numbers 30000 ≤ Rew ≤ 50000
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the response is significantly faster and changes almost immediately with the instantaneous jet
velocity.
Similar characteristics are observed for one-sided actuation at large amplitudes, as can be seen
in Fig. 3.14. Here, the pressure coefficients cp11 , cp15 and cp,b, all located on the rear part of
the bluff body, also show a very fast response. This can be explained from their proximity to
the Coanda jets, so that changes in instantaneous blowing velocity almost immediately translate
into changes in local pressure distribution. By contrast, the pressure coefficients cp24 and cp2 at
the nose of the body respond significantly slower. Furthermore, their response time varies with
free-stream velocity, which again indicates dominant fluid-dynamic processes. These dependen-
cies can be accurately described by linear parameter-varying models, as applied for actuated
flow dynamics of the 3D bluff body in section 4.4. To stress again, however, the dynamics of the
wake of the 2D bluff body show significantly more nonlinear behavior with time constants that
change with actuation amplitude. Therefore, LPV modeling for the 2D bluff body is not carried
out here. Instead, the dynamics of the actuated flow are described by a set of linear black-box
models as discussed in the following section.

3.4 Model identification

The investigation of the actuated flow characteristics in the previous section indicates a nonlin-
ear plant behavior that has to be taken into account in the design of the feedback controller for
drag and yaw-moment coefficients. One way proven to be successful in many other applications
of closed-loop active flow control, see e.g. [54, 88, 73], is to design a linear H∞ controller that
is robust for a set of linear models identified at different operating points.
An overview of the model structure for the 2D bluff body and the successive steps in deriving a
plant model with a suitable uncertainty description are shown in Fig. 3.15. Here, the actuator
and actuated flow dynamics are identified and modeled separately. The actuators behave similar
under all operating conditions and can be accurately approximated by single linear models. By
contrast, the flow dynamics are nonlinear and parameter-dependent. The steady-state part of the
nonlinearities can be partly represented by a nonlinear map located at the input of the model for
the flow dynamics. Remaining unmodeled dynamic nonlinearities and parameter-dependencies
are taken into account by identifying a set of linear black-box models for the flow dynamics at
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u∗a,des u∗a,jet

Ga Gflow
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Figure 3.15: Schematic model structure for the actuators and the actuated flow dynamics.
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a range of different operating points that comprise several cross-wind angles −5◦ ≤ βw ≤ 5◦,
Reynolds numbers 40000 ≤ Rew ≤ 60000 and different actuation amplitudes. This approach is
applied in a similar way by Henning and King [54].
From a physical point of view, the static nonlinear map f(u∗a,jet) should depend on the instanta-
neous jet velocities u∗a,jet at the actuator exits, see Fig. 3.15 (a). Modeling the plant in this way,
however, would make it impossible to compensate for the static nonlinearities via an inverted
nonlinear map at the plant input. To circumvent this problem, the nonlinear map f(u) is placed
here at the plant input and depends on the control input u = u∗a,des as shown in Fig. 3.15 (b).
The compensation is carried out prior to the identification of the linear dynamic models. To
this end, fictitious compensated desired and instantaneous blowing rates ũ∗a,des = f(u∗a,des) and
ũ∗a,jet = f(u∗a,jet) are calculated based on the static nonlinear map. The actuator model Ga is
then identified for inputs ũ∗a,des and outputs ũ∗a,jet. The errors arising from this approach are
negligible, as the plant spends most of its time in a regime where f(u) is linear. Most impor-
tantly, this approach allows the nonlinearity to be pre-compensated by its inverse as shown in
Fig. 3.15 (b). The compensation results in a family of linear plant models that describe the dy-
namic response of y to the compensated input variable ũ. This set of linear models Gp can then
be approximated by a nominal model Gn with an unstructured multiplicative input uncertainty
as shown in Fig. 3.15 (c). The individual steps of the model identification are described in the
following sections.

3.4.1 Actuator dynamics

The actuator models describe the dynamic response of the instantaneous, compensated blowing
rates ũ∗a,1,jet and ũ∗a,2,jet to changes in the desired, compensated blowing rates ũ∗a,1,des and ũ∗a,2,des.
To this end, individual black-box models Ga1 and Ga2 are identified for actuators 1 and 2 from
experiments in which the input variables are varied with pseudo-random binary signals. The
structure of the models is chosen as discrete-time state-space models

x(k + 1) = Ax(k) + b u(k − n0), x(0) = x0, (3.8)

y(k) = cTx(k), (3.9)

with u = ũ∗a,i,des, y = ũ∗a,i,jet for i = 1, 2, respectively. The order of each model is set to 2,

i.e. x ∈ R
2, and an input delay of n0 = 6 is chosen for a sampling time Ts = 1ms. The

identification is carried out with the Prediction-Error-Method (PEM) as implemented in the
“System Identification Toolbox” in MATLAB [84], and the actuator dynamics are well described by
the identified linear models over the entire operating range. Transferring the resulting state-space
models into the frequency domain yields discrete-time transfer functions Ga1(z) and Ga2(z).
Their frequency responses for z = ejωTs are shown in Fig. 3.16. The magnitude response of both
models indicates a fast actuator bandwidth larger than 50 Hz, with slightly faster characteristics
of the first actuator. The phase response is dominated by the input time-delay, which leads to
a large phase shift at higher frequencies.
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Figure 3.16: Magnitude (a) and phase (b) response of the identified actuator models.

3.4.2 Compensation of static nonlinearities

As discussed with regard to the actuated flow characteristics in section 3.3, the blowing velocity
at the actuator exit slot has to exceed the free-stream velocity by about 20 % to have a significant
effect on the flow around the 2D bluff body. Therefore, the steady-state maps of drag, side-force
and yaw-moment coefficients show a partially similar nonlinear behavior with respect to the
nondimensional Coanda blowing rates u∗a,1 and u∗a,2 of the two actuators, respectively. This can
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Figure 3.17: Look-up table for the static input nonlinearity (a) of the actuated flow model and
the inverted map (b) used for compensation.

be modeled by the nonlinear map shown in Fig. 3.17. Here, the same map f(u∗a,i) is used for
both actuator channels to obtain the compensated input variables

ũ∗a =
[
f(u∗a,1) f(u∗a,2)

]T
= f(u∗a). (3.10)

In the lower range of blowing ratios 0 ≤ u∗a ≤ 1.3 the map is derived from the steady-state
characteristics of the side-fore coefficient for one-sided actuation, followed by a linear increase
with a unity slope for u∗a ≥ 1.3. The inverse

f−1(ũ∗a) =
[
f−1(ũ∗a,1) f−1(ũ∗a,2)

]T
(3.11)

is used for compensating these static nonlinearities, as indicated in Fig. 3.17 (b). A comparison
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∗
a,2ũ
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Figure 3.18: Original (upper row) and compensated (lower row) steady-state maps of drag,
side-force and yaw-moment coefficients for asymmetric Coanda blowing at Rew = 4 · 104 and
βw = 0◦.

of the original maps of the force and moment coefficients with the compensated ones is shown
in Fig. 3.18 for a cross-wind angle βw = 0 at Rew = 40000. As can be seen from maps
(e) and (f), the time-averaged characteristics of side-force and yaw-moment coefficients are
almost perfectly linear for the compensated input variables ũ∗a,1 and ũ∗a,2. The compensation
also significantly reduces the nonlinearities in the steady-state map of the drag coefficient. This
lowers the uncertainty of the overall dynamic model for control design.

3.4.3 Surrogate output variables for force and moment coefficients based on
surface-pressure measurements

When applying closed-loop AFC to a real vehicle, the actual force and moment coefficients
are hard to measure. Instead, adequate surrogate output variables can be determined from a
weighted sum of pressure coefficients. To this end, the bluff body is subjected to a range of
asymmetric and symmetric, constant actuation amplitudes at different cross-wind angles and
free-stream velocities. The weighting coefficients for the individual pressure coefficients are
determined from these steady-state measurements via a linear least squares optimization, see
Appendix B for more details.
The surrogate variable ĉD for the drag coefficient is calculated from a weighted sum of the
base-pressure coefficient cp,b and the front respective wind- and leeward pressure coefficients,
cp24 and cp2 . As indicated by the investigation of the actuated flow characteristics, see section
3.3, asymmetric actuation changes not only the base-pressure coefficient, but also the pressure
distribution around the rear sides and the front of the bluff body. Furthermore, changes in cross-
wind angle also have a significant impact on the flow around the nose. Thus, the frontal pressure
distribution must also be taken into account in the calculation of the surrogate variable for the
drag coefficient. In a similar way, the surrogate side-force and yaw-moment coefficients ĉS and
ĉN can be determined by a weighted sum of the front wind- and leeward pressure coefficients
cp24 and cp2 and the rear luv- and leeward pressure coefficients cp15 and cp11 . For more details,
see Appendix B.
A comparison of drag, side-force and yaw-moment coefficients with their surrogate variables is
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blowing ratios are varied with a pseudo-random binary signal at Rew = 40000 and βw = 5◦.

given in Fig. 3.19. Although the weighting coefficients are determined from a series of steady-
state measurements, the surrogate variables ĉD, ĉS and ĉN capture the transient evolution very
well. Furthermore, the actual force and moment coefficients as determined from the balance
readings are superimposed by large oscillations due to the limited stiffness of the model support
and the force/torque sensor. This makes the surrogate variables more suitable as output variables
for the control design, since they capture the flow behavior at a higher bandwidth without being
superimposed by disturbances from mechanical oscillations.
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3.4.4 Linear black-box model identification for the actuated flow

For the actuated flow around the bluff body, individual linear black-box models are identified for
several operating points covering the Reynolds number range 40000 ≤ Rew ≤ 60000, cross-wind
angles −5◦ ≤ βw ≤ 5◦ and different actuation amplitudes. To this end, the desired Coanda
blowing rates u∗a,des are varied with pseudo-random binary signals (PRBS). The maximal PRBS
frequency covers a range 30Hz ≤ fPRBS ≤ 45Hz and is adjusted proportionally to the Reynolds
number of the respective experiment. This ensures that a similar range of nondimensional
frequencies is excited in each identification experiment of the actuated flow dynamics. The
structure of the models is chosen as discrete-time MIMO models in state-space form

x(k + 1) = Ax(k) +B u(k), x(0) = x0, (3.12)

y(k) = Cx(k), (3.13)

with x ∈ R
6 and a sampling time Ts = 1ms. Here, the compensated nondimensional instan-

taneous Coanda blowing rates are chosen as input variables u = ũ∗a,jet. The output variable
vector

y =
[
ĉD ĉN

]T
(3.14)

consists of the surrogate variables for drag and yaw-moment coefficients as calculated from a
weighted sum of pressure coefficients. In total, 54 black-box models are identified from the
experiments using the Prediction-Error-Method from the ”System Identification Toolbox” in
Matlab [84].
Transferring these models into the Laplace domain results in matrices of transfer functions
Gflow, which describe the dynamics of the actuated flow at the range of operating points covered
by the identification experiments. Pre-multiplying these transfer functions with the actuator
model Ga yields models for the overall plant. A comparison of the nondimensional frequency
characteristics is shown in Fig. 3.20. Here, only the SISO submodels for actuation at the first
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input are evaluated. The submodels for the second actuator channel have similar characteristics
and are therefore not included in the plots.
The transfer function Gflow,11 describes the response of the drag coefficient to inputs in terms
of the compensated instantaneous blowing rate at actuator slot exit 1, whereas the product
Gflow,11Ga1 relates to the overall plant including actuator dynamics. The magnitude response
of these transfer functions, see Fig. 3.20 (a), coincides up to the actuator bandwidth, which
lies in the range of reduced frequencies 0.2 < f∗ < 0.3 depending on the free-stream velocity
of the respective experiment. At low frequencies the actuated flow dynamics Gflow,11 exhibit a
large gain variation. This is related to the parameter-dependent behavior of the actuated flow
for cross-wind conditions, which is also observed in the steady-state maps of the drag coefficient
for asymmetric actuation as discussed in section 3.3.4. For reduced frequencies f∗ > 0.03 the
magnitude response of the drag coefficient starts to fall off. The nondimensional bandwidth
coincides well with the results for a similar bluff body as published by Henning [52]. However,
for the Coanda actuation applied here, the amplitude response rolls off much slower. Thus, the
range in which the drag coefficient can be influenced extends to a reduced frequency f∗ ≈ 0.3, at
which point the limited actuator bandwidth starts to have an impact. The phase response shown
in Fig. 3.20 (c) varies at low frequencies between −180◦ and 0◦, indicating that, under certain
conditions with strong cross-wind, the drag coefficient is increased because of the actuation. At
higher frequencies the phase response of the overall plant is dominated by a large lag due to the
input time-delay of the actuators.
Much smaller variations are observed with the frequency response of the transfer function Gflow,21

for the yaw-moment coefficient, as shown in Fig. 3.20 (b). At a reduced frequency f∗ ≈ 0.007
the magnitude response starts to rise slightly and has a higher gain in the range 0.02 ≤ f∗ < 0.2.
This is related to the fact that the pressure distribution around the rear sides of the bluff body
can be influenced at a higher bandwidth than the frontal pressure distribution. Furthermore, a
clear peak at a reduced frequency f∗ ≈ 0.3 is visible, indicating that one-sided actuation amplifies
and triggers the natural wake-instability under certain conditions. This is then registered by the
pressure sensors on the rear sides and expressed in the magnitude response of the yaw-moment
coefficient transfer function.
The transfer functions Gflow,11 and Gflow,21 for the actuated flow dynamics of drag and yaw-
moment coefficients show a relatively large variation of the magnitude response for reduced
frequencies above the characteristic vortex-shedding frequency of the natural flow. A more
sophisticated modeling and identification approach would be necessary for this higher frequency
range. This could be accomplished with more advanced models capable of tracing individual
vortex footprints, as presented by Pastoor et al. [100]. Since the actuator bandwidth is limited
to reduced frequencies f∗ ≤ 0.3 anyway, this is not necessary for the robust control approach
chosen here. Nevertheless the variation of frequency response over the set of models due to
nonlinearities and parameter-dependencies must be taken into account and modeled adequately.
This is addressed in the next section.
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3.4.5 Overall plant model and uncertainty description

A set of models for the overall plant is obtained by pre-multiplying the black-box models Gflow

for the flow dynamics with the actuator models Ga and adding the nonlinear map f(u) at the
input. This results in nonlinear Hammerstein models as shown by the dashed box in Fig. 3.15
(b). Each of them describes the dynamic response of the output variable vector y =

[
ĉD ĉN

]
to the input variables u =

[
u∗a,1,des u∗a,2,des

]T
at a specific operating point. A comparison of

the simulated output for one of these models with the measured output from the experiment is
shown in Fig. 3.21. Here, very high fits are achieved for the data from the original identification
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Figure 3.21: Comparison of the measured and the simulated outputs of one of the models
identified for the overall plant dynamics at Rew = 50000 and βw = 5◦. The left column
corresponds to the data from the identification experiment itself, whereas the right column
shows a cross-validation experiment at the same Reynolds number and cross-wind angle.

experiment as well as for a cross-validation experiment, see left and right columns of Fig. 3.21,
respectively.
As a basis for the robust control design, these nonlinear models for the overall plant dynamics
are pre-compensated with the inverse f−1(ũ) of the nonlinear static input map. This yields a
set of linear plant models with inputs ũ and outputs y that can be approximated by a nominal
model Gn and an uncertainty description as shown in Fig. 3.15 (c). Here, one of the identified
plant models that yields a small uncertainty is chosen as the nominal model. It corresponds to
the plant characteristics at Rew = 50000 at a cross-wind angle βw = 0. Hence, its operating
point lies in the middle of the range covered by the identification experiments, which helps
ensure a “symmetric” performance of the controller for negative and positive cross-wind angles.
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Figure 3.22: Maximal (a) and minimal (b) singular values of the set of models Gp and of the
nominal model Gn; multiplicative input uncertainty lI(ω) with the amplitude response of its
upper bound wI(jω) (c).

The maximal and minimal singular values, which describe the largest and smallest gain of the
plant at a given frequency, are shown in Fig. 3.22 (a) and (b) for the complete set of identified
models and for the nominal plant. A model family ΠI can then be defined by

ΠI : Gp = Gn(I +EI), EI = wIΔI , ‖ΔI‖∞ ≤ 1, (3.15)

where Gp denotes the uncertain plant model. As discussed by Skogestad and Postlethwaite
[121], uncertainties of multivariable plants with strong directional behavior resulting in large
condition numbers γ(G) = σmax(G)/σmin(G) can be better approximated by a multiplicative
uncertainty at the plant input instead of the output. As this is the case for the 2D bluff body,
an input uncertainty EI is used here, with a normalized uncertainty ΔI and a scalar weight wI .
It places an upper bound on the unstructured multiplicative input uncertainty

lI(ω) = max
Gp∈ΠI

σ
(
G−1

n (Gp −Gn)
)
, |wI(jω)| ≥ lI(ω),∀ω, (3.16)

which represents the maximal deviation from the nominal plant Gn for each angular frequency
ω. For more information on this standard approach, see e.g. Skogestad and Postlethwaite [121].
Here, the scalar weight for the input uncertainty is chosen as a 3rd order transfer function

wI(s) = 0.96

1
ω3
I,1
s3 + 2

ω2
I,1
s2 + 2

ωI,1
s+ 1

1
ω3
I,2
s3 + 2

ω2
I,2
s2 + 2

ωI,2
s+ 1

, (3.17)

with ωI,1 = 40 · 2π rad
s and ωI,2 = 73 · 2π rad

s . Its magnitude response is shown in Fig. 3.22 (c)
together with the multiplicative input uncertainty lI(ω). As discussed in the next section, the
design of the robust controller is carried out such that robust stability is guaranteed for the
uncertain plant model of the 2D bluff body.
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3.5 Control design

The multivariable feedback controller for the 2D bluff body is designed via the standard mixed-
sensitivity H∞ approach as described by Skogestad and Postlethwaite [121]. Figure 3.23 (a)
shows the controller architecture with the uncertain plant Gp identified in the previous section
for the actuated flow and actuator dynamics of the 2D bluff body. In the nominal case the
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Figure 3.23: Controller architecture with the uncertain plant Gp (a) and generalized plant (b)
with weights W S , WU and W T for the mixed sensitivity H∞ control design.

output of the controlled plant is given by

y = Tr + Sd− Tn, (3.18)

with the complementary sensitivity

T = (I +GnK)−1 GnK, (3.19)

representing the closed-loop transfer function from the reference variables r and from measure-
ment noise n to the outputs. The performance at suppressing disturbances d acting on the
output of the controlled plant is described by the sensitivity function

S = (I +GnK)−1 , (3.20)

and the necessary control effort is characterized by the product KS. Requirements for these
closed-loop transfer functions can be specified by augmenting the nominal plantGn with frequency-
dependent weights W S, W U and W T to obtain the generalized plant P as shown in Fig. 3.23
(b). Here, the weight for sensitivity is chosen as a diagonal matrix of transfer functions

W S(s) =

[
1 0
0 1

]
wS(s), with wS(s) =

1
MS

s+ ωS

s+ASωS
, (3.21)

with MS = 2, AS = 1 · 10−3 to suppress disturbances up to a desired bandwidth ωS = 6 · 2π rad
s .

The allowed control effort is limited by the weight

WU (s) =

[
1 0
0 1

]
wu(s), with wu(s) = 0.05

s+ ωu

Aus+ ωu
, (3.22)

with Au = 1 · 10−3 and ωu = 50 · 2π rad
s to avoid control input at high frequencies beyond the

actuator bandwidth. For the complementary sensitivity a weighting function

W T (s) =

[
1 0
0 1

]
wT (s), with wT (s) =

⎛
⎝ s+ ωT

M
1/n
T

A
1/n
T s+ ωT

⎞
⎠n

, (3.23)
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is selected with MT = 1, AT = 1 · 10−3 and ωT = 45 · 2π rad
s . Here, a high order n = 10

is necessary to ensure a step roll-off of T at high frequencies so that robust stability can be
achieved. This will be discussed below.
All weighting functions are converted to discrete-time transfer functions so that the controller
can be synthesized in discrete time. This facilitates the handling of the time delays at the inputs
of the plant model. The controller is obtained by minimizing

min
K

‖N(K)‖∞ , with N (K) =

⎡
⎣ W SS
W UKS
W TT

⎤
⎦ , (3.24)

with the control synthesis algorithm implemented in the Matlab-command ”mixsyn.m” [84]. The
frequency responses of the resulting closed-loop transfer functions are shown in Fig. 3.24 (a-c)
together with those of the chosen weights. Here, a nominal bandwidth of ωbw ≈ 7.4 · 2π rad/s
is obtained with respect to the suppression of disturbances acting on the controlled output

y =
[
ĉD ĉN

]T
. The time delay of 6ms at the input of the actuators causes a Waterbed-effect,

which results in a small amplification of disturbances in the frequency range 10Hz < f < 70Hz.
This and the uncertainty arising from the nonlinear, parameter-dependent dynamics of the
actuated flow limit the achievable closed-loop performance. However, the controller guarantees
robust stability for the entire set of identified models. The necessary criterion

‖wIT I‖∞ < 1, with T I = K (I +GnK)−1Gn (3.25)

for scalar weights and multiplicative input uncertainty [121] is fulfilled for the controlled plant,
as can be seen in Fig. 3.24 (d).
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Figure 3.24: Maximal and minimal singular values of the sensitivity S (a), the control effort
KS (b) and the complementary sensitivity T (c), as well as the frequency response of the
corresponding weight used in the mixed-sensitivity H∞ control design. The criterion for robust
stability for unstructured multiplicative input uncertainty is shown in plot (d).
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Reference variable calculation and controller implementation

The robust H∞ controller is implemented on a digital signal processor for real-time testing in
wind tunnel experiments. Figure 3.25 shows the implemented controller architecture. In order
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Figure 3.25: Implemented architecture of the robust H∞ controller for the 2D bluff body.

to account for actuator saturation due to limited supply pressure, the controller is augmented
by a dynamic anti-reset windup compensator M according to the method proposed by Park
and Choi [98]. The calculated control input ũ is converted via the inverted map f−1(ũ) to

the desired nondimensional blowing ratios u =
[
u∗a,1,des u∗a,2,des

]T
, which are applied to the

nonlinear plant model of the 2D bluff body indicated by the dashed box in Fig. 3.25. Based

on a weighted sum of pressure coefficients, the surrogate output variables y =
[
ĉD ĉN

]T
for

drag and yaw-moment coefficients are measured, fed back and compared with their setpoints r
to form the control error e. Here, suitable values for the reference variables are calculated based
on the current cross-wind angle βw. Full suppression of disturbances acting on the yaw moment
requires large control inputs, which would make an efficient drag reduction under cross-wind
conditions impossible. Therefore, the setpoint r2 is calculated via a low-pass filter F (s) by

r2 =
k

Ts+ 1︸ ︷︷ ︸
F (s)

βw, with k =
∂ĉN
∂βw

= 7.44 · 10−2 and T = 0.2 s. (3.26)

Its gain k is chosen equal to the steady-state derivative of the natural yaw-moment coefficient
with respect to the cross-wind angle βw. A rather long time constant T = 0.2 s is selected,
such that the reference value r2 is slowly increased to the value of the natural steady-state gust
response, whereas fast variations are to be suppressed by the controller. This requires smaller
control inputs under constant cross-wind conditions. Suitable reference values for the most
efficient drag coefficient are calculated by means of a look-up table. It is derived from a series
of steady-state measurements under various constant side-wind conditions in which the setpoint
r1(βw) yielding the largest net power savings is determined. As can be seen from Fig. 3.26 (a),
a significant drag reduction can be achieved for the range of cross-wind angles investigated here.
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3.6 Experimental results for the controlled flow

The performance of the designed multivariable robust H∞ controller is tested in wind tunnel
experiments in which cross-wind gusts are simulated by turning the bluff body. The phase-
averaged results for ten experiments carried out under equivalent conditions for natural and
controlled flow are shown in Fig. 3.27. Here, the goal is to control the drag and yaw-moment
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Figure 3.27: Phase-averaged results for ten experiments under equivalent conditions for the
natural and the controlled flow at Rew = 5 ·104 for a simulated cross-wind gust with a maximum
angle βw = 3◦.

coefficients y1 and y2 as closely as possible to their reference variables, both under straight-flow
conditions as well as during the simulated gust. The controller shows very good performance
in reference tracking and disturbance suppression. Only during fast variations of the cross-
wind angle at the beginning and the end of the gust are small deviations visible, most notably
for the controlled drag coefficient y1 around t = 1.2 s, when the control input u2 cannot be
decreased below zero. Nevertheless, the controller ensures a significant drag reduction at all
times and suppresses fast variations of the yaw-moment coefficient successfully. The closed-loop
AFC strategy developed here thus represents a good starting point for the design of a similar
controller that can handle the more complicated flow around the 3D bluff body. This is the
subject of the next chapter.
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Chapter 4

3D bluff body

4.1 Experimental setup

4.1.1 Cross-wind tunnel

The experiments are conducted in a special cross-wind tunnel whose concept is partially adapted
from the setup used by Dominy and Ryan [33]. Fig. 4.1 shows a schematic view of the test
bench used at TU Berlin. It consists of a standard axial blowing wind tunnel and an additional
cross-wind tunnel with a lower and an upper outlet equipped with a shutter system. Before
creating a gust, the shutters in the upper section are open to prevent the cross-wind tunnel fan
from stalling. In order to create a side-wind gust within the test section, the shutters at the
lower outlet are opened consecutively by means of pneumatic cylinders driven by solenoid valves.
A microprocessor is used to trigger each shutter with a time delay matching the axial velocity
component of the wind tunnel jet in order to simulate a car driving into a region of cross-wind.
The nozzle exit of the axial wind tunnel has a dimension of 700mm × 500mm, whereas the

Axial wind tunnel
Bluff body

Cross-wind tunnel

Shutter
System

Figure 4.1: Cross-wind facility at TU Berlin

lower and upper outlets of the cross-wind tunnel extend over a length of 1900mm. A splitter
plate 50mm above the test-section floor is used to reduce the wind tunnel boundary layer as
a simple way to approximately simulate on-road boundary layer conditions. Furthermore, the
test section is equipped with a roof plate to separate the two cross-wind tunnel outlets. The
vehicle is installed at the intersection of the axes of the main and the cross-wind tunnel at a
distance of 0.64 times the vehicle length behind the beginning of the raised floor. A 5-hole probe
(Aeroprobe, PC5-TIP-2-5-C240-152-025, absolute accuracy better than 0.4◦) located at the test
section ceiling above the front of the model monitors the cross-wind angle βw, as well as the
static and dynamic pressures ps and q.
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4.1.2 Bluff body

The 3D bluff body examined here is depicted in Fig. 4.2. Its geometry and actuation concept are
partially adapted from Englar [34, 35], but the vehicle length was reduced to represent a generic
model of a small truck or delivery van. The dimensions of the model are L = 406.5mm, W =
115mm and H = 160mm, with a wheelbase Lwb = 260mm and a wheel diameter dw = 44mm.
Here, the Reynolds number ReL = u∞L/ν is defined for the vehicle length L and kinematic
viscosity ν. The wind tunnel experiments are carried out in a range 3 · 105 ≤ ReL ≤ 6 · 105,
which corresponds to a free-stream velocity 11.4m/s ≤ u∞ ≤ 22.8m/s. Trip tapes ensure

Actuator duct

Actuator jet

Actuators

Trip tape

Force/Torque sensor
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Figure 4.2: Schematic view of the bluff body (left) with a cross-section (right) depicting the
coordinate system, the location of the pressure sensors, as well as a close-up view of the Coanda
actuator geometry.

a transition from laminar to turbulent boundary layer at a fixed location 10mm behind the
front of the model. The coordinate system is defined with respect to the body frame and is
located at the center between front and rear axles. The pressure distribution around the bluff
body is monitored by 24 sensors (Sensortechnics, HCLA02X5B, measurement uncertainty due
to hysteresis and nonlinearity less than 0.25% of full scale span) located at a cross-section 72
mm above the floor. The pressure coefficient at each location j is calculated by

cpj =
pj − ps
q

, (4.1)

where ps and q denote the mean static and dynamic pressures under nominal, straight-flow
conditions as measured by the 5-hole probe. The base pressure coefficient cp,b is calculated
from a spatial average over the readings of 7 sensors located on the base of the bluff body,
as shown in Fig. 4.2. Forces and moments acting on the bluff body are measured using a 6-
component-balance (ATI, FTD-Gamma SI-32-2.5, absolute measurement accuracy better than
1% of full scale span), which is installed inside the model. The aerodynamic drag D always faces
opposite to the driving direction x, whereas the side force S is defined in the positive y-direction
and the yaw moment N is measured around the upward pointing z-axis. The corresponding
non-dimensional coefficients are defined by

cD =
D

qAB
, cS =

S

qAB
, cN =

N

qABLwb
, (4.2)

respectively, where AB denotes the cross-sectional surface of the bluff body.
Pneumatic AFC actuators are installed along all four rear edges of the vehicle. A close-up view
of their geometry is shown in Fig. 4.2. The blown air is accelerated via an actuator duct with
a slot width of ws = 0.3mm at the exit. The actuator jet stays attached to a rounded surface
with a radius of 6mm by means of the Coanda effect. This deviates the blown air towards the
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base of the bluff body. The supply pressures of the actuators are controlled by three fast Piezo
pressure regulators (Hoerbiger, tecno basic PRE-U ). To this end, the right and left actuator
supply pressures pa,r and pa,l are regulated separately, whereas the upper and lower actuators
are supplied with the same pressure pa,ul. Pulsed blowing can be performed with the help of fast
solenoid switching valves (Festo, MHE4 ). Under steady-state conditions the mean jet velocities
ur, ul and uul at the actuator slot exits can be computed from the flow rate measured by flow
meters (Festo, SFAB-200U, accuracy ±3% of mean value + 0.3% of full span). The actuation
amplitude at each actuator i is characterized by the nondimensional momentum coefficient

cμ,i =
Aa,iu

2
a,i

ABu2∞
. (4.3)

Here, Aa,i and ua,i represent the cross-sectional slot exit surface and the effective jet velocity
at the corresponding actuator i, respectively. To enable a time-resolved assessment of the jet
velocities, each actuator is equipped with a piezo pressure transducer inside the actuator duct
(Sensortechnics, HCLA12X5B, measurement uncertainty due to hysteresis and nonlinearity less
then 0.25% of full scale span). Correlating the pressure readings with the steady-state flow rate
measurements for various supply pressures yields a look-up table for the jet velocity of each
actuator. This allows for estimating the actuator dynamics separately from the flow dynamics
in the model identification, as described in section 4.4. A digital signal processor (dSpace, DS
1005 PPC ) running at a sampling frequency of 1 kHz is used for data acquisition and control
of the actuators.

4.1.3 Dynamic model support system for lateral dynamics replication

Apart from the possibility of creating realistic cross-wind gusts, the experimental setup also
features a novel model suspension enabling the real-time investigation of additional unsteady
aerodynamic effects due to lateral vehicle dynamics. To this end, the model can be traversed
and rotated dynamically by a pair of electromagnetic linear servo motors (Linmot, PS01-
37x120/180x260 ). The slot in the raised wind tunnel floor, see Fig. 4.2, is covered by a telescopic
sliding mechanism to minimize interference with the underbody flow. Furthermore, the bluff
body is supported by a slender hollow beam through which the actuator pressure supply tubes
and the sensor cables enter the model. When yawing or traversing the model dynamically in
the running wind tunnel, the forces and moments measured by the 6-component balance include
the model’s inertia. In order to separate inertial effects from the external transient aerodynamic
forces and moments, two 3-axis accelerometers (Pololu, MMA7361L, nonlinearity less than ±1%
of full scale output, cross-axis sensitivity less than ±5%) are installed inside the model at the
front and rear axle locations. They monitor the model’s angular and lateral acceleration in
order to compensate the balance readings for the inertial forces and moments during dynamic
movements. The model’s mass and moment of inertia necessary for converting the accelerometer
readings to inertial forces and moments are determined beforehand from identification experi-
ments in which the model is moved laterally and rotated in the switched-off wind tunnel.
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4.2 Natural flow characteristics

4.2.1 Steady-state flow characteristics

The vehicle model investigated here represents a typical 3D bluff body. At zero yaw the flow
separates at the trailing edges and forms a large, three-dimensional wake. This leads to a low
time-averaged base-pressure coefficient cp,b ≈ −0.12 and a high time-averaged drag coefficient
of about cD ≈ 0.43 at ReL = 4 · 105. Exposing the bluff body to cross-wind increases the drag
coefficient further, as can be seen from the steady-state maps in Fig. 4.3. Here, the focus lies on
small to medium side-wind angles 0◦ < βw < 10◦, since this is the most common range found
in on-road conditions at larger driving speeds [114, 113]. The asymmetric flow conditions lead
to significant pressure changes around the front of vehicle, as can be seen from the steady-state
maps for the pressure coefficients cp11 and cp17 for sensor locations at the front wind- and leeward
side, respectively. By contrast, the pressure coefficients cp4 and cp24 at the rear luv and lee sides
of the bluff body vary only very little. These changes in the pressure distribution result in an
almost linear increase of side-force and yaw-moment coefficient with cross-wind angle.
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Figure 4.3: Steady-state maps for drag, side-force and yaw-moment coefficients, as well as
selected pressure coefficients for natural flow at cross-wind angles 0◦ ≤ βw ≤ 10◦ and ReL =
4 · 105.

4.2.2 Transient cross-wind gust response

Fig. 4.4 shows the transient aerodynamic characteristics for a cross-wind gust with a maximum
cross-wind angle βw ≈ 11◦. The blue and green lines correspond to the measured variables in
terms of force and moment coefficients (a, c, e), selected pressure coefficients (b, d, f), cross-
wind angle (g) and total pressure fluctuation (h) as measured by the 5-hole probe. The red lines
correspond to surrogate variables. These are explained further down.
The depicted time series are phase-averaged over 10 identical experiments. At t∗ = t u∞/L = 0
the gust reaches the front of the model, followed by an increase in normalized total pressure
fluctuation p′t/pt, see Fig. 4.4 (h). Here, the time-varying total pressure

pt(t) = pt + p′t(t) (4.4)

is decomposed into an unsteady component p′t(t) and a steady mean component pt, which corre-
sponds to nominal, straight-flow conditions. The unsteady total pressure reaches a maximum at
a convective time t∗ ≈ 3, when the cross-wind angle βw starts to increase. The drag coefficient
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cD, see Fig. 4.4 (a), is superimposed by fluctuations caused by mechanical oscillations due to
the limited stiffness of the force/torque balance. However, its transient evolution correlates very
well with the base-pressure coefficient as can be seen in Fig. 4.4 (b), indicating that the change
in drag is mostly caused by a modification of the wake during the gust. After the beginning of
the gust, the base-pressure coefficient cp,b starts to decrease with a delay of about 1 convective
time unit after the increase in unsteady total pressure. This is probably due to the longitudinal
pressure gradient caused by the change in flow speed during the gust, which elongates the wake
in the longitudinal direction and causes the base pressure to drop. This results in a first peak
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Figure 4.4: Phase-averaged time series of transient force and moment coefficients (left column)
and of selected pressure coefficients (right column) for a gust with a maximum cross-wind angle
βw ≈ 11◦ at ReL = 4 · 105. Measurement variables are plotted in blue and green; surrogate
variables calculated from surface-pressure measurement are depicted in red.

in the transient evolution of the drag coefficient, followed by an even larger increase in drag and
decrease in base pressure in response to the increasing cross-wind angle βw. All in all, the wake
response is characterized by significant time delays and relatively slow dynamics.
By contrast, the side-force coefficient and even more so the yaw-moment coefficient react sig-
nificantly faster to the gust compared with the drag coefficient. As already discussed for the
steady-state cross-wind characteristics, the flow along the bluff body’s sides is dominated by
pressure changes in the frontal region. Here, the pressure coefficients cp11 and cp17 on the wind-
and leeward side, respectively, change almost instantaneously with the cross-wind angle βw. In
comparison, the response of the pressure readings cp4 and cp24 at the rear sides is significantly
smaller and is delayed by approximately 1 convective time unit. This causes a small delay in
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the build-up of the side-force coefficient during the gust and an overshoot of the yaw-moment
coefficient relative to the cross-wind angle.
In an application of closed-loop active flow control to a real vehicle, the force and moment co-
efficients would not be available as on-road measurement variables. However, the steady-state
and transient characteristics shown in Fig. 4.3 and 4.4 (b, d, f) indicate that the main effects
can be estimated from surface-pressure measurements. To this end, the surrogate measurement
variables ĉD, ĉS and ĉN are calculated from a weighted sum of the base-pressure coefficient cp,b,
the front wind- and leeward pressure coefficients cp11 and cp17 and the rear wind- and leeward
pressure coefficients cp4 and cp24 , respectively. The corresponding parameters for the respective
weights were determined by linear regression from a series of steady-state measurements for sev-
eral Reynolds numbers, cross-wind angles and actuation amplitudes. Similar to the surrogate
variables for force and moment coefficients, an estimate β̂ for the cross-wind angle β is obtained
based on the nondimensional pressure difference cp13 − cp15 at the front of the vehicle model,
whereas the total pressure estimate p̂t is calculated from the sum of the dimensional pressure
readings p13 + p15. More details about the determination of the surrogate variables are given in
the Appendix C.
As can be seen from Fig. 4.4 the surrogate variables (plotted in red) match the transient evo-
lution of the measurement variables (plotted in blue) very well. Apart from the availability for
online measurement in an on-road application, using surrogate input and output variables based
on surface-pressure measurements avoids potential problems during model identification arising
from different sensor dynamics. All pressure sensors inside the bluff body are connected to the
pressure taps with a short piece of flexible tubing with an identical length of 2 cm, respectively.
This ensures that all sensor readings possess the same frequency characteristics at a bandwidth
as high as possible. As shown in Fig. 4.4 (g) and (h), changes in cross-wind angle β̂w and nor-
malized total pressure p̂′t/p̂t are significantly faster detected from surface-pressure measurements
(red lines) when compared with the values βw and p′t/pt measured by the 5-hole probe (blue
lines). Furthermore, the surrogate output variable ĉD for the drag coefficient remains largely
unaffected by mechanical oscillations relative to the balance readings cD. Most importantly,
filtering all input and output variables through the same sensor transfer function forms the
basis for a reliable identification of models for transient aerodynamic phenomena. The related
procedure is described in the following section.

4.2.3 Model identification for the transient aerodynamic cross-wind gust re-
sponse

The cross-wind tunnel allows the effects of side-wind gusts on the vehicle model to be studied at
different Reynolds numbers 3·105 ≤ ReL ≤ 6·105. Adjusting the speeds of the axial and the cross-
wind fan such that similar gust amplitudes are achieved for each flow speed, and matching the
time delay at which the shutters are opened with the current free-stream velocity creates a similar
nondimensional evolution of cross-wind angle and total pressure fluctuation. Also, the resulting
transient responses of the surrogate variables for drag, side-force and yaw-moment coefficients
to these identical gusts at different flow speeds match very well when plotted against convective
time, as seen in Fig. 4.5. Hence a model for the transient cross-wind aerodynamics should be
in nondimensional form, too. The nondimensional state-space model introduced in section 2.2.2
yields a linear parameter-varying model when converted to dimensional time. This forms the
basis for a novel model identification procedure for unsteady aerodynamic phenomena, which is
described in section 2.2.3. Here, separate multiple-input single-output (MISO) LPV models are
identified for the dynamics of drag, side-force and yaw-moment coefficients, respectively.
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ĉ S

Δ
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Figure 4.5: Dimensionless transient characteristics of estimated drag (a), side-force (b) and yaw-
moment (c) coefficients for similar cross-wind gusts at several Reynolds numbers 3 ·105 ≤ ReL ≤
6 · 105

Drag and wake dynamics

The surrogate variable ĉD is exclusively calculated from the base-pressure coefficient cp,b as
outlined in appendix C. The transient characteristics of the estimated drag coefficient ĉD are
thus equivalent to the dynamics of the wake response to cross-wind gusts.
As already discussed in the previous section 4.2.2, changes in cross-wind angle βw as well as
total pressure fluctuations p′t have a significant influence on base pressure. The disturbance
input variables are thus chosen as

d∗ =
[
β̂w p̂′t/p̂t

]T
. (4.5)

Following the steps outlined in section 2.2.3, the model identification procedure is initialized by
estimating a linear, discrete-time model from an experimental data set at a single Reynolds num-
ber ReL = 3 · 105, corresponding to a free-stream velocity u∞ = 11.4m/s. Here, the cross-wind
angle βw was varied with a pseudo-random binary signal (PRBS) with a maximum frequency of
15 Hz. This means that a time-shifted version of the same PRBS sequence is applied consecu-
tively to open and close each shutter. The opening time of each shutter determines the frequency
of the cross-wind angle variation and thus the individual length of each gust, whereas the time
delay between each shutter is adjusted according to the free-stream velocity of each experiment.
This creates realistic cross-wind gusts that convect over the bluff body at free-stream velocity
but vary in length scale.
A model order of nx = 2 is sufficient to provide a good fit of the experimental data. Considering
an input delay of T ∗

0 ≈ 1 in convective time improves the fit significantly. This corresponds to
the time it takes for a cross-wind disturbance to convect one vehicle length L downstream and
affect the wake after it has been registered by the pressure sensors at the vehicle’s front. Based
on the LPV structure proposed in section 2.2.2 the LPV model for the dynamics of the drag
coefficient is chosen as

ẋ(t) =
u∞(t)

L
A∗︸ ︷︷ ︸

A(θ)

x(t) +
u∞(t)

L
E∗︸ ︷︷ ︸

E(θ)

d∗(t− T ∗
0L/u∞(t)︸ ︷︷ ︸
T0(1/θ)

), (4.6)

y∗(t) = c∗T︸︷︷︸
cT

x(t), (4.7)

θ(t) = u∞(t). (4.8)

Its coefficients are initialized based on the identified linear model and then optimized over four
data sets recorded at different Reynolds numbers 3 · 105 ≤ ReL ≤ 6 · 105, with the algorithm
outlined in section 2.2.3. Here, the matrices A(θ) and E(θ) depend on the parameter θ = u∞,
whereas the dimensional time-delay T0 depends on (1/θ). This dependency on the inverse of
the parameter would increase of the complexity of the LPV control design and can be avoided
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by approximating the nondimensional time-delay with an all-pass transfer function such as the
Padé-approximation. This additional step is omitted, however, because the model for the gust
response of the drag coefficient is not used for control design in this thesis. The feedforward
LPV control design presented in section 4.6.4 takes into account only the models for side-force
and yaw-moment coefficients.
Fig. 4.6 shows the simulated output of the identified LPV model in comparison with the output
of the initial model and the response of the drag coefficient for cross-validation experiments
with cross-wind gusts at two different Reynolds numbers. For ReL = 3 · 105, at which the linear
model was identified, both models yield approximately the same fit of the measured surrogate
drag coefficient. At the larger Reynolds number ReL = 6 · 105, however, the linear model’s
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Figure 4.6: Simulated output of the identified linear and LPV models for the drag coefficient in
comparison with the measured response for a cross-validation experiment with cross-wind gusts
at ReL = 3 · 105 (left column) and ReL = 6 · 105 (right column).

dynamics are too slow to accurately capture the wake dynamics, whereas the LPV model is still
able to provide a similar fit to that at the lower free-stream velocity.
The dimensional frequency and step responses of the LPV model to changes in cross-wind
angle and normalized total pressure are plotted in Fig. 4.7. One can clearly see how the
frequency response changes to faster dynamics as the Reynolds number increases. The response
to excitation by changes in cross-wind angle corresponds to a low-pass behavior with a small
overshoot of the drag coefficient, as shown by Fig. 4.7 (a) and (c). Changes in total pressure
affect the drag coefficient mostly in a medium frequency range, see Fig. 4.7 (b) and (e), which
results in a step response that settles almost back to zero.
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Side-force and yaw-moment dynamics

Like the model for the drag coefficient, separate MISO models are identified for the dynamics
of side-force and yaw-moment coefficients. Again, a model order nx = 2 is sufficient to capture
the main characteristics, but no time delay is necessary, since the gust affects the sides of the
bluff body almost immediately. Therefore, the structure of the LPV models is chosen as

ẋ(t) =
u∞(t)

L
A∗︸ ︷︷ ︸

A(θ)

x(t) +
u∞(t)

L
E∗︸ ︷︷ ︸

E(θ)

d∗(t), (4.9)

y∗(t) = c∗T︸︷︷︸
cT

x(t), (4.10)

θ(t) = u∞(t), (4.11)

respectively. Fig. 4.8 shows the simulated output of the initial linear models for the surrogate
side-force coefficient ĉS and for the yaw-moment coefficient ĉN in comparison with the output
of corresponding LPV models and the measured cross-wind gust response. As already observed
for the wake response, the LPV models are able to provide a very good fit for the entire range
of Reynolds numbers, whereas the linear models can only capture the dynamics well at a single
operating condition, in this case ReL = 3 · 105.
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Nondimensional frequency and step response of the identified LPV models

Since the coefficients of the LPVmodels are identified in nondimensional form, they allow a direct
evaluation of the transient characteristics of the respective dimensionless state-space models

dx∗

dt∗
= A∗x∗ +E∗d∗, (4.12)

y∗ = c∗Tx∗, (4.13)

which describe the dynamics of the gust response in convective time. Converting these state-
space models to the frequency domain results in dimensionless transfer functions denoted by
G∗(jω∗) in the following, with the nondimensional radial frequency ω∗ = 2πf∗ = 2πfL/u∞. The
corresponding nondimensional bode plots for the drag, side-force and yaw-moment coefficients
are shown in Fig. 4.9. Here, the frequency response of the drag coefficient, see Fig. 4.9 (a),
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Figure 4.9: Nondimensional frequency response of drag, side-force and yaw-moment coefficients
to changes in cross-wind angle βw and to normalized total pressure fluctuations p′t/pt.

shows a roll-off of the amplitude at rather slow frequencies f∗ ≈ 0.2. Its phase response, plotted
in Fig. 4.9 (d), is dominated by the large convective time-delay T ∗

0 = 1.
By contrast, the amplitudes of side-force and yaw-moment coefficients shown in Fig. 4.9 (b) and
(c), start to roll off only at significantly higher frequencies f∗ ≈ 0.7. Additionally, the frequency
response of the yaw moment indicates a resonance peak for frequencies around f∗ ≈ 0.4.
In order to facilitate an easy comparison of the different time scales and transient characteristics
of drag, side-force and yaw-moment coefficients, their nondimensional step responses σ(t∗) to
changes in cross-wind angle βw are depicted in Fig. 4.10. The amplitude is normalized by
the respective steady-state value ys. The drag coefficient starts to increase after a convective
time-delay T ∗

0 = 1 with rather slow dynamics. It overshoots by about 20% and settles to its
steady-state value only very late, at t∗ ≈ 7.
By contrast, the side-force step response is characterized by a time constant in the order of
t∗ ≈ 1, which equals the time it takes for the entire vehicle to enter the gust. The non-minimum
phase behavior at the beginning of the simulated step response is probably due to an unmodeled
time-delay. This may arise from the fact that the first pressure sensor used for the side-force
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Figure 4.10: Normalized step response to cross-wind excitation of the identified nondimensional
models for drag, side-force and yaw-moment coefficients.

calculation is located at a small distance downstream from the vehicle’s front.
The yaw moment shows an even faster step response than the side force, with a significant
overshoot by roughly 40%. This can easily be explained since pressure changes around the
front, where the vehicle enters the gust first, increase the yaw moment, while the later pressure
changes around the back of the vehicle decrease the yaw moment again when the gust has
convected downstream.
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4.3 Actuated flow characteristics

4.3.1 Symmetric actuation by continuous blowing

As already published in previous studies with the same bluff body [103, 102], the most efficient
drag reduction at zero yaw is achieved with symmetric actuation with the same jet velocity at
all four actuation slots for an overall momentum coefficient of cμ ≈ 0.02. Due to the Coanda
effect the blown air stays attached to the rounded surfaces at the actuator exit slots and deflects
high-momentum free-stream fluid towards the base. This increases the base-pressure coefficient
and therefore reduces drag, as can be seen from the steady-state maps in Fig. 4.11. The maps
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slightly depend on the Reynolds number, but the difference between actuated and natural flow
is similar for all investigated flow speeds. Small to medium actuation amplitudes yield the most
significant drag reduction. Increasing the momentum coefficient beyond 0.04 provides only small
further savings, mostly due to the thrust of the actuation jets. Since this effect would also be
present in an application to a real vehicle, the AFC efficiency is rated here by calculating the
net power savings ΔP/P0, as suggested by Krentel et al. [73]. For the baseline case without
actuation the power

P0 = D0u∞ =
ρ

2
cD0ABu

3
∞ (4.14)

is necessary to overcome the aerodynamic drag D0 at driving speed u∞. Here, cD0 denotes the
drag coefficient for the natural flow. The power of each actuator jet i

Pa,i =
1

2
ṁa,iu

2
a,i =

ρ

2
Aact,iu

3
a,i (4.15)

has to be subtracted from the power savings due to the drag reduction ΔcD achieved by AFC.
This yields the overall normalized net power savings

ΔP

P0
=

ΔcD
cD0

− Pa,r

P0
− Pa,l

P0
− Pa,ul

P0
, (4.16)
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with the baseline drag coefficient cD0 and the powers Pa,r, Pa,l and Pa,ul of the right, left, upper
and lower actuator jets, respectively. In the experiments in the cross-wind tunnel with an open
test section the most efficient mean drag reduction is about ΔcD ≈ 0.06 or 15% under straight
flow conditions, which corresponds to maximum normalized net power savings of about 8%, as
is shown in the graph at the bottom of Fig. 4.11. Earlier experiments (not shown here) in an
Eiffel-type wind tunnel with a closed test section indicate larger possible net power savings of up
to 15% [103]. These differences suggest that a higher free-stream turbulence adversely influences
the achievable drag reduction and AFC efficiency.

4.3.2 Symmetric actuation by pulsed blowing

Many authors report that unsteady actuation is more efficient than steady blowing in AFC appli-
cations due to the fact that this enables the amplification or suppression of natural instabilities
in the flow. This is mostly the case for:

• Separated shear layers: Amplifying natural instabilities by pulsed or unsteady actuation,
which increases mixing of the shear layer with high-momentum free-stream fluid. This can
be used to reattach separated flows to airfoils at high angles of attack, see e.g. [49], or to
the rear slant of vehicle models such as the Ahmed body, see e.g. [27, 73, 46]. However,
this requires a suitable body shape with a surface that the flow can be reattached to. This
is not case for 3D bluff bodies with a square back, unless a reattachment surface is added
via extensions at the back such as boat tails or flaps [111].

• Two-dimensional bluff body wakes: Cylinders or 2D bluff bodies exhibit strong wake insta-
bilities which form the well-known von Kármán vortex street. Open-loop pulsed actuation
at certain frequencies or closed-loop control with phase-matched unsteady actuation is
effective at suppressing these large-scale, alternating vortices and thus at synchronizing
the wake [100].

In order to test if there exist actuation frequencies that are more beneficial than steady blowing
for drag reduction of the 3D bluff body, a wide range of actuation amplitudes and frequencies
was tested under straight flow conditions. Here, pulsed blowing is performed by solenoid valves
with a maximum frequency of 200 Hz, see also section 4.1. Since the flow resistance of the valves
changes with switching frequency, a look-up table for the effective blowing velocity for pulsed
actuation was determined from hot-wire measurements at the exit of the actuator slots. This
allows for adjusting the supply pressure such that a constant momentum coefficient is achieved
for varying actuation frequencies.
Fig. 4.12 shows the results of a parameter study carried out for a variation of the actuation
frequency, which is nondimensionalized here in terms of the actuation Strouhal number Sta,W
based on the vehicle’s width W . The momentum coefficient was kept constant at cμ = 0.02,
which results in the most efficient drag reduction for steady blowing, as discussed in the previous
section. The steady-state maps in Fig. 4.12 for the normalized drag coefficient cD/cD0 show
the same trend for the Reynolds numbers 3 · 105 ≤ ReL ≤ 5 · 105. Small to medium actuation
frequencies Sta,W < 0.25 lead to a drag reduction of only about 5%, which is significantly smaller
than the reduction of about 15% achieved by steady blowing. Pulsed actuation with Sta,W ≈ 0.38
results in a drag increase indicating the excitation of wake instabilities in this frequency range.
Increasing actuation frequency further decreases the drag coefficient significantly. For very high
Strouhal numbers Sta,W > 1 its value slowly approaches the one achieved by steady blowing.
However, no case was found within the studied parameter range in which pulsed actuation is
more efficient than steady blowing for the given bluff body shape and actuation system. Hence,
continuous blowing is used throughout the remaining investigations presented in this thesis.
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4.3.3 Asymmetric actuation by continuous blowing

As stated already in an earlier publication [103], steady blowing through the Coanda actuators
accelerates the flow along the rear sides of the bluff body, which leads to lower pressure in this re-
gion. This means that asymmetric actuation can be used to create a pressure difference between
the rear wind- and leeward sides to influence not only drag or base pressure, but also side force
and yaw moment. This is depicted in Fig. 4.13 for straight flow conditions and a cross-wind
angle of βw = 10◦. Here, the normalized blowing velocities u∗a,r = ua,r/u∞ and u∗a,l = ua,l/u∞
are varied at the right (windward) and left (leeward) actuators, respectively. This choice of input
variables reduces the nonlinearities in the steady-state maps relative to using the momentum
coefficients for nondimensionalization.
Side-force and yaw-moment coefficient depend almost linearly on the actuation amplitude.
Exposing the bluff body to cross-wind only shifts the maps upwards, but does not affect their
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behavior with respect to the actuation. Note that side-force and yaw-moment coefficients change
in adverse directions, however. This is due to the pressure difference created between the wind-
and leeward rear sides of the bluff body by asymmetric actuation. Reducing the yaw moment
under cross-wind conditions requires a higher blowing velocity u∗a,l at the leeward (i.e. left)
actuator, as can be seen in Fig. 4.13 (f). However, this slightly increases the side force acting
on the bluff body as shown in Fig. 4.13 (e), and does not reduce the drag coefficient, see Fig.
4.13 (d). In contrast to side-force and yaw-moment coefficients, the map of the drag coefficient
shows a significant number of nonlinearities. The degree of base-pressure increase and thus drag
decrease not only depends on the ratio of the actuation amplitudes to each other, but also on
the cross-wind angle. Whereas symmetric actuation leads to the largest base-pressure recovery
for straight oncoming flow, it is more efficient to use stronger blowing at the right, windward
actuator under side-wind conditions.
The boundary layer profiles measured with a hot-wire at the actuation slot exits on the wind-
and leeward sides give some insight into the reasons for these characteristics. Fig. 4.14 (a) shows
a comparison between the natural and symmetrically actuated flow with u∗a,r = u∗a,l = u∗a,ul = 1.5
at zero yaw. One can clearly see how the Coanda jets accelerate the flow in proximity to the wall
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which helps to deflect high-momentum fluid towards the wake and thus increase base pressure.
In the cross-wind case the natural boundary layer on the leeward side is slightly thicker than on
the windward side, as can be seen in Fig. 4.14 (b) and (c). Again, symmetric actuation leads to
an acceleration of the boundary layer on both sides, providing an efficient drag reduction without
affecting side force or yaw moment significantly. Switching the right, windward actuator off and
increasing the blowing velocity at the left, leeward actuator to u∗a,l = 2.3 accelerates the leeward
boundary layer and decelerates the windward flow. The higher velocity at the rear lee side leads
to a lower pressure in this region, and vice versa at the rear luv side. This creates a counter
moment around the z-axis that reduces the yaw moment created mainly by the asymmetric
pressure distribution around the vehicle’s front under cross-wind conditions. However, the lower
pressure on the rear leeward side due to the asymmetric actuation also results in a small increase
in side force. This is the effect mentioned above in the discussion of the steady-state maps in
Fig. 4.13 (e) and (f).
All of these partly opposing dependencies have to be taken into account in the control design to
provide an efficient drag reduction in changing flow conditions while simultaneously improving
the vehicle’s cross-wind sensitivity.
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4.4 Actuated flow dynamics

Designing a feedback controller requires a dynamic plant model. The identification experiments
are carried out for a range of Reynolds numbers 3 · 105 ≤ ReL ≤ 6 · 105 and constant cross-wind
angles 0◦ < βw < 10◦ by applying multiple input pseudo-random binary signals (PRBS) for the
desired normalized blowing velocity u∗a,des to the actuators. The PRBS bandwidth is adjusted
within a range of 15Hz < fPRBS < 30Hz proportional to the Reynolds number, since larger
free-stream velocities correspond to faster flow dynamics and thus require excitation at suffi-
ciently high frequencies. Furthermore, several different actuation amplitudes are applied at each
Reynolds number and cross-wind angle, so that the expected closed-loop operating regime is suf-
ficiently covered. Each identification experiment is repeated 10 times with identical parameters.
All measured variables are phase-averaged to reduce the influence of random disturbances and
to improve the signal-to-noise ratio. From the measured data, separate models are identified for
the dynamics of the actuators and the actuated flow, as depicted in Figure 4.15. The desired

u∗a,des · /
Pressure regulators,

Look-upLook-up
tabletable

Actuator model

u∞u∞
ua,des p

des
tubing,

Coanda actuators

p
act

ua,jet u∗a,jet

(u∞, βw)

Actuated

flow model

y∗
afc

Figure 4.15: Schematic model structure for the actuators and the actuated flow dynamics.

normalized blowing velocities

u∗a,des =
[
ua1,des/u∞ ua2,des/u∞ ua3,des/u∞

]T
(4.17)

are chosen as the input vector for the actuator submodel. Here, actuators 1 and 2 correspond
to the right and left Coanda slots, whereas index 3 designates the upper and lower slots, which
are driven as a single actuator. The vector

u∗a,jet =
[
ua1,jet/u∞ ua2,jet/u∞ ua3,jet/u∞

]T
(4.18)

consists of the actual instantaneous nondimensional blowing velocities at the actuator slot exits
and serves as the output vector of the actuator submodel. During the experiments the blowing
velocities are normalized for u∞ = u∞,j, with the mean free-stream velocity u∞,j at the current
operating point j.
In the wind-tunnel implementation, the desired, dimensional blowing velocities ua,des are con-
verted via a set of look-up tables to the corresponding pressure setpoints p

des
, which are then

commanded to the pressure regulators. As described in section 4.1.2, piezo pressure transducers
are installed near the outlet of each Coanda actuator duct. Another set of look-up tables is gen-
erated from a series of steady-state measurements for each actuator by mapping the measured
pressures p

act
inside the ducts to the blowing velocities as determined by the respective flow

meters. These look-up tables allow for a time-resolved assessment of the instantaneous blowing
velocity uai,jet at each actuator slot i. All of these conversions are lumped together with the
dynamics of the pressure regulators, the tubing and the coanda ducts in an overall linear MIMO
actuator model, whose structure and identification are described in the next section 4.4.1.
The actuated flow model describes the response of the output variables

y∗
afc

=
[
ĉD ĉS ĉN

]T
(4.19)

to changes in nondimensional jet velocities u∗a,jet at the actuator exits. Here, the same kind of
pressure transducers are used to measure the output variables ĉD, ĉS and ĉN and the input vari-
ables u∗a,jet. This avoids potential errors in the identification of the aerodynamic part of the plant
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model, which could arise from varying sensor dynamics when measuring the input/output vari-
ables. For the identification of the actuated flow models, two different approaches are presented.
One is based on a set of linear black-box models, which describe the dynamics at individual
operating points. Thus, all nonlinearities and parameter-dependencies have to be subsequently
modeled via an uncertainty description. The second approach is based on a linear parameter-
varying model structure to capture the parameter-dependent behavior of the actuated flow with
respect to free-stream velocity u∞ and cross-wind angle βw. The identification of these models
is discussed in sections 4.4.2 and 4.4.3, respectively.

4.4.1 Actuator dynamics

The actuator models describe the dynamic input/output relationship between the desired and
the actual nondimensional blowing velocities u∗ai,des(t) and u∗ai,jet(t) for each actuator i. Static
nonlinearities are compensated prior to the identification via look-up tables, as described in the
previous section. Furthermore, the recorded data sets suggest that the dynamics of the pressure
regulators and tubing system do not change significantly over the relevant operating regime.
Therefore, all identification experiments are merged into a single data set, from which linear
discrete-time SISO models are identified separately for each of the three actuators with the
Prediction-Error-Method (PEM) implemented in MATLAB [84]. These models have the structure

x(k + 1) = Ax(k) + bu(k − n0), (4.20)

y(k) = cTx(k), (4.21)

with x ∈ R
3 at a sampling time Ts = 1ms. Here, a model order of nx = 3 and an input delay

of n0 = 7 samples is chosen.
The resulting linear models Gai describe the dynamics between desired and actual nondimen-
sional blowing velocities u∗ai,des and u∗ai,jet for the three actuators i = 1 . . . 3 with sufficient
accuracy over the entire range of operating points. The corresponding frequency responses are
shown in Fig. 4.16. All three actuators have a similar bandwidth of about fbw,−3dB ≈ 20Hz,
above which their magnitude response rolls off with 20dB/decade. The phase response is dom-
inated by the input time-delay of 7ms, which causes important limitations for the achievable
closed-loop bandwidth, as discussed in section 4.6.
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Figure 4.16: Magnitude (a) and phase (b) response of the identified actuator models.
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For use in combination with the linear black-box models of the actuated flow, the actuator
models are kept in discrete time and merged into a MIMO model. By contrast, the linear
parameter-varying model is identified in continuous time. The identified actuator models must
thus be converted to continuous time. This is carried out here with Tustin’s method via a bilinear
approximation of the derivative as described in the Matlab-documentation for the command d2c

[84]. The respective models are subsequently reduced to the 5th order by balanced truncation
as implemented in the Matlab-command balred [84]. This helps keep the order of the overall
LPV plant model low, thus reducing the computational effort during the LPV control synthesis.

4.4.2 Linear black-box model identification of the actuated flow

A standard approach to capture the dynamics of the actuated flow consists of identifying a set of
linear black-box models from experimental data. It has been used successfully in many previous
applications of closed-loop AFC, e.g. Pastoor et al. [100] or Pfeiffer and King [103, 101]. Here,
the input variables are chosen as

u∗afc = u∗a,jet =
[
u∗a1,jet u∗a2,jet u∗a3,jet

]T
, (4.22)

where u∗ai,jet = uai,jet/u∞ denotes the instantaneous nondimensional blowing velocity at the exit
of actuator i. The output variable vector

y∗
afc

=
[
ĉD ĉS ĉN

]T
(4.23)

consists of the surrogate output variables for drag, side-force and yaw-moment coefficients,
which are calculated from a weighted sum of pressure coefficients as described in Appendix
C. Using nondimensional input/output variables mostly compensates for dependencies of the
steady-state model gain on free-stream velocity. The remaining nonlinearities and parameter
dependencies are taken into account by identifying individual models at each operating point, in
this case at various Reynolds numbers, cross-wind angles and actuation amplitudes. The MIMO
steady-state maps shown in Fig. 4.13 indicate an almost linear relationship between normalized
blowing velocities and side-force and yaw-moment coefficients, signifying independence of cross-
wind angle. However, during cross-wind the drag coefficient is more sensitive to actuation at
the windward side than at the leeward side. Thus, for positive cross-wind angles blowing at the
right, windward actuator leads to a large drag reduction, whereas the left, leeward actuator has
little or no effect. Accordingly, for negative cross-wind angles the left actuator, which is now on
the windward side, is expected to have a stronger effect on the drag coefficient. Although the
experimental setup only allows side wind to be generated from one direction, the closed-loop
control strategy has to work for an entire range from negative to positive cross-wind angles.
Thus, the described characteristics of the drag coefficient have to be taken into account during
the model identification. In order to mimic the effect of negative cross-wind angles, additional
data sets were created from those recorded at positive angles by switching the right and left
actuator input channels for the identification of the drag coefficient, but not for the side-force
and yaw-moment coefficients since they have linear characteristics that do not depend on the
cross-wind angle.
In total, a set of 181 models was identified using the Prediction-Error-Method. For more infor-
mation on this standard approach, see e.g. Ljung [79]. All models have the same structure in
discrete state-space form

x(k + 1) = Ax(k) +Bu∗afc(k), (4.24)

y∗
afc

(k) = Cx(k), (4.25)

with x ∈ R
4, u∗afc ∈ R

3 and y∗
afc

∈ R
3 at a sampling time Ts = 1ms. A model order nx =

4 is sufficient to capture the dynamics of the actuated flow with satisfactory accuracy. The
characteristics of the identified models are discussed in the next section compared with those of
linear parameter-varying models.
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4.4.3 Linear parameter-varying model identification of the actuated flow

Similar to the models identified for the transient aerodynamic cross-wind gust response presented
in section 4.2.3, a linear parameter-varying model structure lends itself well to capture the
parameter-dependencies of the actuated flow dynamics. Again, separate multiple-input single-
output (MISO) LPV models in continuous time are identified for the dynamics of drag, side-force
and yaw-moment coefficients, respectively. The nondimensional input vector

u∗(t) = u∗a,jet =
[
u∗a1,jet u∗a2,jet u∗a3,jet

]T
(4.26)

is the same as for the identification of the linear black-box models. It corresponds to the
instantaneous normalized blowing velocities at the exits of the three actuators, respectively. For
each model, the same LPV structure

ẋ(t) = u∞(t)
1

L
A∗

1︸ ︷︷ ︸
A(θ)

x(t) + u∞(t)
1

L

(
B∗

1 + β̂w(t)B
∗
2

)
︸ ︷︷ ︸

B(θ)

u∗(t), (4.27)

y∗(t) = c∗T︸︷︷︸
cT

x(t), (4.28)

θ(t) =
[
u∞(t) u∞(t)β̂w(t)

]T
, (4.29)

where y∗(t) denotes the output variable of the respective MISO model for ĉD, ĉS and ĉN . For
the actuated flow dynamics a dependency on two parameters is considered.
Analogous to the models for the transient cross-wind gust response, the first parameter θ1(t) =
u∞(t) is used to describe how the dynamics of the respective output variable scales with free-
stream velocity. In the wind tunnel experiments for identification and control, the nominal, mean
free-stream velocity u∞,i of experiment i is used instead of the instantaneous free-stream velocity
u∞(t). This is equivalent to using the driving speed of the vehicle as the scaling parameter for
the actuated flow dynamics. Variations of the flow speed due to wind gusts or wakes of other
cars or trucks are interpreted as disturbances at the nominal operating point defined by the
current cruising speed of the vehicle. The second parameter θ2(t) = u∞(t)β̂w(t) is introduced
here to model the varying sensitivities of the drag coefficient to wind- and leeward actuation
under side-wind conditions, as discussed below.

Drag coefficient

The steady-state maps for the actuated flow of the drag coefficient indicate a nonlinear, parameter-
dependent behavior as shown in Fig. 4.13 in section 4.3.3. A change in the slope of the steady-
state map corresponds to a gain variation of the LPV state-space model. The actuated flow
can only respond to changes in the actual instantaneous blowing velocity at the actuator exits
and not to changes in desired blowing velocities commanded to the actuators. This gain depen-
dency is thus modeled here by a parameter-dependent input matrix B∗(θ) = B∗

1 + β̂wB
∗
2 in the

nondimensional model for the aerodynamic part of the actuated flow, see also section 2.2.2 for
more details. Converting to the LPV model in Eq. (4.27-4.29) in dimensional time results in
the second parameter θ2(t) = u∞(t)β̂w(t) with mixed dependency on free-stream velocity and
cross-wind angle.
Apart from the change in sensitivity, the identification experiments do not indicate a variation
of the frequency response of the actuated flow for changing cross-wind angles. Hence, only de-
pendencies of the state matrix A(θ) on one parameter θ1 = u∞ are considered in Eq. (4.27).
This also helps keep the number of model coefficients low.
A model order nx = 2 was found sufficient to capture the dynamics of the drag coefficient. The
identification is carried out based on the algorithm for LPV identification introduced in section
2.2.3. The coefficients are initialized based on an initial linear black-box model identified with
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the standard Prediction-Error-Method from a single experiment. Subsequently, the coefficients
of the LPV model are obtained by nonlinear optimization over the entire set of experiments, as
used for the linear black-box model identification described in the previous section. These ex-
periments comprise a range of Reynolds numbers 3 ·105 ≤ ReL ≤ 6 ·105 and constant cross-wind
angles 0◦ ≤ βw ≤ 10◦. Again, additional “virtual” data sets are generated by switching the left
and right actuator channels to take the effect of negative cross-wind angles into account. The
state-space matrices of the identified LPV model for the drag coefficient are listed in appendix
C.2.2.
In contrast to the individual linear black-box models, which capture only the local plant be-
havior at the respective operating point, the LPV model has to represent the actuated flow
dynamics for the entire operating regime as closely as possible. Fig. 4.17 shows the frequency
response of the LPV model for the drag coefficient in comparison with the entire set of identified
linear black-box models. Evaluating the LPV model at frozen parameter values θ1 = u∞,i and
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Figure 4.17: Frequency response of the LPV model for the drag coefficient to blowing at the
right, left and upper/lower actuators (from left to right), evaluated at frozen parameter values
for u∞ and βw covering the entire operating regime. The frequency response of the entire set of
identified linear black-box models is shown in gray for comparison.

θ2 = u∞,iβw,i yields local linear models G11(s), G12(s) and G13(s), which describe the response
of the drag coefficient at the operating point of experiment i to actuation at the right, left and
upper/lower slots, respectively. This allows for an easy comparison with the respective linear
black-box model. As can be seen from Fig. 4.17 (a) and (b) the LPV models represents the
magnitude variation in dependency of the cross-wind angle βw for the wind- and leeward actu-
ators very well. At low frequencies the phase response for these actuator channels, Fig. 4.17
(d) and (e), switches from −180◦ to 0◦ when a certain positive or negative cross-wind angle is
exceeded. Representing this behavior by the LPV model is crucial to reduce uncertainty and
achieve an improvement in LPV control performance over conventional robust controllers.
Additionally, the LPV model captures the dependency of the frequency response to changes in
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free-stream velocity very well. This suggests that the identified LPV model represents the un-
derlying nondimensional flow characteristics correctly. Thus, scaling to different flow speeds and
realistic vehicle dimensions should give at least a qualitatively correct estimate of the expected
frequency response.
However, the variation of the amplitude response to actuation at the upper and lower Coanda
slots is not represented by the LPV model, as seen in Fig. 4.17 (c). This is attributed to un-
modeled nonlinearities. Attempts with different model structures not shown here indicate that
the gain for the upper and lower actuator input channel increases with stronger actuation on
the lee- and windward sides. This leads to a bilinear model structure that can be recast into
a so-called Quasi-LPV model in which state or input variables are used as pseudo-parameters.
However, stability or performance cannot be guaranteed for these models with the LPV control
synthesis algorithms employed here. Hence, this modeling approach is not pursued further here,
although it better approximates actuated flow dynamics.

Side-force and yaw-moment coefficient

For the dynamics of side-force and yaw-moment coefficients, the same LPV model structure as
for the drag coefficient is chosen, see Eq. (4.27-4.29). However, their steady-state maps shown
in Fig. 4.13 indicate an almost perfectly linear, parameter-independent response to constant
actuation. Therefore, the input matrix B∗

2 in Eq. (4.27) is set to zero for the identification
of their dynamics. Only the dependency of the frequency characteristics on changes in free-
stream velocity is considered. Nevertheless, the same model structure as in the identification for
the drag coefficient is kept to facilitate the formulation of the overall MIMO LPV model from
the individual MISO LPV models. The identification procedure follows the same procedure
as discussed for the drag coefficient in the previous section. Again, a model order of nx = 2
was found to be sufficient to capture the dynamics of side-force and yaw-moment coefficients
with satisfactory accuracy, respectively. The values identified for the state-matrices of the LPV
models are given in appendix C.2.2.
Figure 4.18 shows a comparison of the frequency response of the LPV models evaluated at frozen
parameter values for u∞ with the set of linear black-box models. Here, only the response to
wind- and leeward actuation is plotted, since the influence of upper/lower actuation on side-
force and yaw-moment coefficients is negligible. The amplitude response variation for different
free-stream velocities is captured reasonably well by the respective LPV models for side-force
and yaw-moment coefficients, as shown in Fig. 4.18 (a) and (b). However, the roll-off at higher
frequencies for the LPV model does not match that for the linear models. This is likely due to
the fact that the frequency response of the linear SISO submodels shown here is derived from
linear black-box MIMO models with an overall model order nx = 4. The order of the linear
SISO submodels appears to be too low to accurately represent the system behavior at higher
frequencies. By contrast, the three LPV MISO submodels have a model order of nx = 2 each,
resulting in an overall model order of 6. A cross-validation of the LPV models also yields better
fits than the linear models, which suggests a superior approximation of the frequency response
for the actuated flow.
The phase responses shown in Fig. 4.18 (c) and (d) indicate that side force and yaw moment
react to actuation at right and left actuators in adverse directions. For instance, leeward blowing
reduces the yaw moment during cross-wind but increases the side force. As a consequence, these
two coefficients cannot be controlled independently for the given actuator configuration. Since
both have an impact on lateral vehicle dynamics, a suitable surrogate variable is composed by
a weighted sum of both coefficients. The approach is presented in more detail in section 4.5.4
after discussing the characteristics of the lateral vehicle dynamics.
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Figure 4.18: Frequency response of the LPV models for side-force and yaw-moment coefficients
to wind- and leeward blowing, evaluated at four frozen parameter values for the free-stream
velocity in the range 11.4m/s ≤ u∞ ≤ 22.8m/s. The frequency response of the set of identified
linear black-box models is shown in gray for comparison.

Cross-validation of the identified LPV models

Figure 4.19 shows two cross-validation experiments for the identified models of the actuated
flow. The left column results from a Reynolds number ReL = 3 · 105 for straight oncoming flow,
whereas the experiment in the right column is conducted at ReL = 6 · 105 at a mean cross-
wind angle of βw = 10◦. The normalized jet velocities at the three actuators were varied with a
different MIMO pseudo-random binary signal than the one used for the model identification. For
each experiment, the measured surrogate output variables for drag, side-force and yaw-moment
coefficients are compared with the simulated outputs of a linear MIMO model and of the LPV
model, which consists of the three MISO submodels described in the previous sections. Only
the deviations ΔĉD, ΔĉS and ΔĉN from the corresponding steady-state values of the respective
operating point are plotted.
The linear model was identified at ReL = 3·105 and βw = 0◦ at the operating point corresponding
to the left column of Fig. 4.19. Both the linear and the LPV model replicate the measured output
data for this Reynolds number and cross-wind angle with similar accuracy. Due to unmodeled
nonlinearities for the dynamics of the drag coefficient, the corresponding fits achieved by both
models with regards to Variance Accounted For (VAF) are rather low, as seen in Fig. 4.19 (a).
The models for side-force coefficient, Fig. 4.19 (c), and yaw-moment coefficient, Fig. 4.19 (e),
are more accurate, with slightly better fits with the LPV model due to its higher order.
At the higher Reynolds number ReL = 6·105 the actuated flow has a significantly faster response
to the actuation input. This is captured well by the LPV model, especially for side-force and
yaw-moment coefficients, as can be seen in Fig. 4.19 (d) and (f). By contrast, the transient
response of the linear model is considerably too slow and is unable to represent the gain variation
of the drag coefficient under cross-wind conditions, see Fig. 4.19 (b), whereas the LPV model
achieves a very high fit of 67.7%.
All in all, these results suggest that the identified LPV model is well suited to describe the

75



parameter dependency of the actuated flow dynamics over a large range of free-stream velocities
and cross-wind angles. Capturing these effects by a set of linear black-box models which cover the
entire operating range only allows all nonlinearities and parameter-dependencies to be lumped
under an uncertainty description. Though some uncertainties due to nonlinear effects remain
for the LPV approach as well, it shows increased model accuracy and an ability to capture and
explain the flow physics to a greater degree than the linear black-box setting. In particular, this
allows predictions to be made for differently scaled vehicles and higher free-stream velocities.
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Nondimensional frequency response of the actuated flow model

Combining the three individual MISO models for the dynamics of drag, side-force and yaw-
moment coefficients into an overall MIMO LPV model and converting it to convective time
yields

dx∗(t∗)
dt∗

= A∗
1x

∗(t∗) +
(
B∗

1 + β̂w(t
∗)B∗

2

)
︸ ︷︷ ︸

B∗(θ∗(t∗))

u∗(t∗), (4.30)

y∗(t∗) = C∗x∗(t∗), (4.31)

with the nondimensional input/output vectors

u∗(t∗) =
[
u∗a1,jet(t

∗) u∗a2,jet(t
∗) u∗a3,jet(t

∗)
]T
, y∗(t∗) =

[
ĉD(t

∗) ĉS(t
∗) ĉN (t∗)

]T
. (4.32)

Since the dependency of the dynamics on free-stream velocity u∞ is eliminated for the represen-
tation in convective time, this model depends only on one parameter θ∗(t∗) = βw(t

∗). Evaluating
the LPV state-space equations (4.30,4.31) at different frozen parameter values results in linear,
nondimensional models that are valid at their corresponding operating point characterized by
constant cross-wind angles β̂w. Transferring each of these models to the nondimensional fre-
quency domain results in

y∗(s∗) =

⎡
⎣G∗

11(s
∗) G∗

12(s
∗) G∗

13(s
∗)

G∗
21(s

∗) G∗
22(s

∗) G∗
23(s

∗)
G∗

31(s
∗) G∗

32(s
∗) G∗

33(s
∗)

⎤
⎦u∗(s∗), (4.33)

with a matrix of dimensionless transfer functions. Their frequency responses are shown in Fig.
4.20. Here, the amplitude and phase responses of G∗

11 and G∗
12 change with cross-wind angle
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Figure 4.20: Nondimensional frequency response of the LPV model for the actuated flow dy-
namics of the drag coefficient (a,b), side-force coefficient (c,d) and yaw-moment coefficient (e,f).
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βw according to the varying sensitivity of the drag coefficient to wind- and leeward actuation.
The corresponding range is marked by the dashed lines in Fig. 4.20 (a) and (b), whereas the
colored lines denote their frequency response for straight flow conditions. The third actuator,
corresponding to blowing at the upper/lower slots, has a significant, but parameter-independent
influence on the drag coefficient, as seen in the frequency response of G∗

13 in Fig. 4.20 (a, b).
The nondimensional dynamics of side-force and yaw-moment coefficients are shown in Fig. 4.20
(c-f). They do not vary with cross-wind angle βw. The impact of the third actuator is negligible
and is therefore not shown. As mentioned before, actuators 1 and 2 on the right and left sides
have an opposing influence on ĉS and ĉN , as shown in the phase responses in Fig. 4.20 (d, f).
All magnitude responses start to roll off for frequencies f∗ > 1. The drag coefficient shows the
aforementioned gain variation at low frequencies, whereas the side-force coefficient has the fastest
dynamics. The frequency response of the yaw-moment coefficient indicates a small resonance
peak for frequencies f∗ ≈ 0.8.
Comparing these results with the nondimensional cross-wind gust response identified in section
4.2.3, see Fig. 4.9, reveals a significantly faster response of the actuated flow, especially for yaw-
moment and drag coefficients. This is attributed to the fact that the actuation has the largest
impact on the pressure distribution in the nearby regions along the rear sides and on the base
of the vehicle, which results in a relatively fast response of the output variables. In comparison,
it takes longer for the entire vehicle to enter the cross-wind gust. This indicates that it is in
principle possible to suppress disturbances caused by cross-wind gusts with a feedforward or
feedback active flow control system. However, additional limitations of the actuation system
need to be taken into account. These are addressed in the following section.

Influence of actuator dynamics

The overall plant model for the control design consists of the submodels for the actuator and the
actuated flow dynamics. The corresponding state-space equations for the LPV case are given
in appendix C.2.2. Figure 4.21 shows a comparison of the dimensional frequency response of
the actuator models, plots (a) and (c), with the actuated flow LPV model and the overall LPV
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Figure 4.21: Dimensional frequency response of the actuator models (a, c) and of the LPV model
for the drag coefficient to windward blowing with and without actuator dynamics (b, d).
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model for a range of free-stream velocities 11.4m/s ≤ u∞ ≤ 22.8m/s and cross-wind angles
−10◦ ≤ βw ≤ 10◦, see plots (b) and (d). Here, only the response of the drag coefficient to
blowing with actuator 1 on the rear right side is given. Whereas the LPV submodel of the
actuated flow captures the variation with free-stream velocity at higher frequencies very well,
the limited actuator bandwidth leads to roll-off at significantly lower frequencies. Furthermore,
the input time-delay of the actuator models results in a large phase shift. Together, these effects
limit the achievable closed-loop bandwidth in the wind tunnel experiment.
However, scaling of the aerodynamic part of the model suggests significantly slower actuated
flow dynamics for a real-sized vehicle at realistic driving speeds, whereas similar or even faster
dimensional actuator dynamics are likely to be achieved. The ratio of actuator bandwidth to fluid
dynamic response time thus improves. Since also the transient cross-wind gust characteristics
are shifted to lower frequencies as well, a better controller performance can be expected when
applied to a real vehicle.

4.5 Lateral dynamics and virtual driver

The single-track and virtual driver model described in sections 2.3.1 and 2.3.2 form the basis for
a real-time simulation of the lateral vehicle dynamics during the cross-wind gust experiments.
This approach allows the lateral motion of arbitrary vehicles at any desired, user-defined driving
velocity to be studied and replicated in the wind tunnel. Figure 4.22 shows a sketch of the single-
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Figure 4.22: Single-track model (left) and driver-vehicle control loop for disturbance compensa-
tion (right), adapted from Risse [105] and Mitschke and Wallentowitz [85].

track model and the definitions of the various parameters. The measured aerodynamic side force
S and yaw moment N serve as input variables for the simulation of the driver-vehicle model.
Since they are defined for the x-y-coordinate system located at the geometric center of the
wheelbase as is common in vehicle aerodynamics [56], they have to be transformed to the xCG-
yCG-coordinate system used in lateral vehicle dynamics. It is located at the vehicle’s center of
gravity, at a position x = dCG away from the center of the wheelbase. This yields the side force
Fy = S and yaw moment Mz = N − dCGS acting on the center of gravity.
For a correct real-time replication of the lateral vehicle motion, the coefficients of vehicle and
driver models have to be scaled to wind tunnel dimensions and free-stream velocity. Additionally,
the measured side force and yaw moment have to be compensated for inertial forces arising from
the model motion. Care must also be taken that the resulting effective cross-wind angle seen
by the vehicle matches as closely as possible between on-road driving and the wind tunnel
experiment. The approaches applied here for scaling, inertial compensation and correct vehicle
motion replication are described in more detail in the following sections.
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4.5.1 Replication of the lateral vehicle motion in the wind tunnel

In order to correctly replicate the lateral vehicle motion in the wind tunnel, the various velocity
components of the oncoming flow experienced by the vehicle have to be taken into account.
Fig. 4.23 shows a comparison of the differing cases for the approaching flow on-road and in the
wind tunnel. Without any cross-wind the real car sees an oncoming flow v−v in the opposite

x0

y0

x0

y0

vv
vres

vres

v−v

vwvw

β

β
βw,res βw,m

ψ
ψ

ψm

ψm

v−l

u∞

[
u∞ vw

]T
Road Wind tunnel

Figure 4.23: Comparison of the on-road flow conditions during cross-wind (left) with those in
the wind tunnel (right).

direction of its driving velocity vector vv. It is inclined by the side-slip angle β relative to the
longitudinal vehicle axis and turns with the vehicle when the latter is rotated by the yaw angle
ψ. Subjecting the vehicle to a cross-wind vw facing in y0-direction results in an overall vector
vres of the oncoming flow. The effective cross-wind angle βw,res experienced by the vehicle can
be calculated by

βw,res = ψ + tan−1

(
vw − sin(ψ + β)vv

cos(ψ + β)vv

)
, with vv = |vv| = |v−v |. (4.34)

It corresponds to the angle between the flow vector vres and the longitudinal vehicle axis. Here
βw,res is defined in clockwise direction such that a positive angle results during cross-wind.
In the wind-tunnel situation the free-stream velocity u∞ for nominal, straight flow conditions
faces in a negative x0-direction, whereas the cross-wind component vw points in a positive y0-
direction. Superimposing these velocities with the component v−l due to lateral vehicle motion
yields the flow vector vres. Thus, the wind tunnel model experiences an effective cross-wind
angle

βw,m = ψm + tan−1

(
vw − v−l

u∞

)
, (4.35)

when exposed to side-wind gusts with combined lateral vehicle motion. Differences between
the arc tangent terms in Eq. 4.34 and 4.35 are negligible, considering that the lateral vehicle
velocity is calculated by

vl = sin(ψ + β)vv , (4.36)

and that the free-stream velocity u∞ is approximately equal to

u∞ ≈ cos(ψ + β)vv, (4.37)

for small angles ψ and β. This means that the model must be rotated during gusts by the angle

ψm = ψ, (4.38)

so that the effective cross-wind angles βw,res and βw,m become approximately equal for on-road
and wind tunnel flow conditions.
As already pointed out in the description of the experimental setup in section 4.1.3, the tran-
sient forces and moments measured by the 6-component balance during vehicle motion have to
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be compensated for the model’s inertia. This is done via two 3-axial accelerometers that are
installed at the front and rear axle location to monitor the model’s angular and lateral accel-
eration. The necessary coefficients for converting the accelerometer readings to inertial forces
and moments are determined from identification experiments in the switched-off wind tunnel,
see also section 4.1.3.
Fig. 4.24 shows the raw, uncompensated side-force and yaw-moment coefficients cS,raw and
cN,raw during a cross-wind gust with simultaneous lateral vehicle motion in comparison with
their compensated values. Additionally, the plot includes the surrogate variables ĉS and ĉN cal-
culated entirely from surface-pressure measurements as described in section 4.2.2. The transient
evolution of the compensated values from the direct force and moment measurements coincides
well with that of the surrogate variables. This suggests that both methods yield a correct es-
timate of the external transient aerodynamic forces and moments during gusts, even during
dynamic model motion.
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4.5.2 Scaling to wind tunnel dimensions

The cross-wind gust experiments are carried out for a range of Reynolds numbers 3·105 ≤ ReL ≤
6 · 105 as listed in Table 4.1. The values of the coefficients for single-track model and virtual
driver are given in Table 4.2. They describe a typical delivery van of the European 3.5t-class with

Wind tunnel
ReL 3 · 105 4 · 105 5 · 105 6 · 105
vv = u∞ [m/s] 11.4 15.2 19.0 22.8

Real vehicle vv,real [km/h] 90 120 150 180

Table 4.1: Driving speeds and wind tunnel free-stream velocities applied for the scaling of
single-track and virtual driver coefficients.

medium load, which is similar in shape and dimensions to the generic 3D bluff body studied in
this thesis. In order to match the smaller model dimensions and the current free-stream velocity
in the wind tunnel, these coefficients have to be scaled. This is done according to their respective
units such that nondimensional time t∗ = trealvv,real/Lreal = tvv/L and nondimensional length
x∗ = xreal/Lreal = x/L remain equal for the real van and the model vehicle. Here, the simulated
driving speed vv of the wind tunnel model corresponds to the mean axial free-stream velocity
u∞ in the test section. The resulting scaling factors for the coefficients of the single-track model
and the virtual driver are given in Table 4.2, along with their respective values for the real
vehicle and the wind tunnel model. In principle, the scaling approach allows the lateral vehicle
dynamics to be simulated and replicated for arbitrary driving velocities, even at a fixed wind
tunnel free-stream velocity. However, in the cross-wind experiments the simulated driving speed
vv of the model vehicle is changed proportionally to the actual free-stream velocity u∞ in the
wind tunnel, as listed in Table 4.1. Thus, the closed-loop control strategy has to be able to
cope with simultaneously changing frequency characteristics of vehicle dynamics and transient
aerodynamics as would be the case in a real on-road application. This also means that the ratio
between simulated, unscaled driving speed vv,real and free-stream velocity u∞ in the test section
remains constant throughout all experiments, as do the scaled values for the coefficients of the
driver-vehicle simulation given in the right column of Table 4.2.
For the implementation in the wind tunnel the scaled driver-vehicle system is represented by a
state-space model[

ẋv
ẋdrv

]
=

[
Av BvCdrv

BdrvCdrv Adrv +BdrvDvCdrv

]
︸ ︷︷ ︸

Avd

[
xv
xdrv

]
+

[
Ev

BdrvF v +Edrv

]
︸ ︷︷ ︸

Evd

dvd, (4.39)

y
vd

=
[
Cv DvCdrv

]︸ ︷︷ ︸
Cvd

[
xv
xdrv

]
+ F v︸︷︷︸

F vd

dvd, (4.40)

which is described more detailed in Appendix A. Equations (4.39, 4.40) describe the response

y
vd

=
[
yl vl al

]T
of the driver-vehicle feedback loop to disturbance inputs dvd =

[
Fy Mz

]T
.

The measured aerodynamic side force S and yaw moment N have to be transformed from the
geometric center of the wheelbase to the vehicle’s center of gravity via

Fy = S and Mz = N − dCGS, (4.41)

as explained above. This results in the disturbance input vector

dvd =

[
Fy

Mz

]
=

[
1 0

−dCG 1

] [
S
N

]
, (4.42)

which is equivalent to the equations implemented on the digital signal processor in the wind
tunnel application.
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Description Unit Scaling factor Variables Real value Scaled value

Length [m] L
Lreal

L 5.6 0.4065
V
eh

ic
le

Lwb 3.2 0.232

Lf 1.71 0.124

Lr 1.49 0.108

dCG -0.107 -0.0077

Mass [kg] L3

L3
real

m 3000 1.148

Inertial moment [kgm2] L5

L5
real

Jz 7300 0.0147

Stiffness [N/m] L2v2v
L2
realv

2
v,real

Cαf 157500 172.57

Cαr 302500 331.47

Steering ratio [-] 1 is 17.5 17.5

D
ri
ve
r

Time [s] L
Lreal

vv,real
vv

τ 0.2 0.032

TI 0.2 0.032

TS 0.7 0.111

Frequency [Hz] Lreal
L

vv
vv,real

fc 0.35 2.2

Angle [◦] 1 φr 35 35

Table 4.2: Scaling factors from real-sized vehicle to wind tunnel model dimensions for the
coefficients of single-track model and virtual driver.

The effect of scaling to wind tunnel dimensions on the frequency response of the driver-vehicle
system can be depicted by calculating the transfer function Galβw(s), which describes the re-
sponse of the lateral vehicle acceleration al to changes in cross-wind angle βw. Hereby, S and
N are replaced by their non-dimensional coefficients using

S =
ρ

2
u2∞ABcS and N =

ρ

2
u2∞ABLwbcN . (4.43)

Assuming quasi-steady aerodynamics and linearizing, cS and cN can be approximated by

cS ≈ ∂cS
∂βw

∣∣∣∣
S

βw and cN ≈ ∂cN
∂βw

∣∣∣∣
S

βw. (4.44)

Note that the partial derivatives with respect to the cross-wind angle βw correspond to the
steady-state gains of the model identified in section 4.2.3 for the transient aerodynamic cross-
wind gust response of the 3D bluff body. The dynamic part of this model is neglected here for
now, but its impact on the driver-vehicle system for varying driving velocities is discussed later
in section 4.5.3. Replacing the disturbance vector dvd by

dvd,quasi-steady =
ρ

2
u2∞AB

⎡
⎣ ∂cS

∂βw

∣∣∣
S

−dCG
∂cS
∂βw

∣∣∣
S
+ Lwb

∂cN
∂βw

∣∣∣
S

⎤
⎦ βw, (4.45)

assuming quasi-steady aerodynamics, and transferring Eq. (4.39) and (4.40) for the third output
variable al into the Laplace domain yields the transfer function Galβw(s).
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Figure 4.25: Comparison of the magnitude and phase response of the lateral vehicle acceleration
al for the single-track model with and without driver in the unscaled and scaled cases, assuming
a quasi-steady aerodynamic response to changes in cross-wind angle βw. Plots (a) and (c) show
the frequency response for the unscaled driver-vehicle model for real dimensions at a driving
speed vv,real = 120 km/h ≈ 33.3m/s, whereas plots (b) and (d) correspond to the model scaled
to wind tunnel dimensions at a mean free-stream velocity u∞ = vv = 15.2m/s.

Its frequency response is shown in Fig. 4.25 for the unscaled case of the real vehicle (a and c)
and scaled case of the wind tunnel model (b and d). For comparison, the plots also include the
frequency response of the vehicle model without driver. As can be seen from Fig. 4.25 (a) for
the original, unscaled driver-vehicle model, the driver regulates slow disturbances of the lateral
acceleration due to cross-wind gusts to zero. However, disturbances at frequencies f > 0.2Hz are
amplified by the driver relative to the frequency response of the uncontrolled vehicle without
driver. This is due to the so-called “waterbed effect”, a well-known consequence of feedback
control for plants with time-delays or positive zeros, see e.g. Skogestad and Postlethwaite [121].
The scaling of the driver-vehicle model to the smaller wind tunnel dimensions and slower speed
results in a shift to higher frequencies by a factor of about 6.3 and a larger amplitude of the
acceleration response, as can be seen in Fig. 4.25 (b) and (d).

4.5.3 Interaction of transient aerodynamics and vehicle motion for various
driving velocities

In automotive driving dynamics the aerodynamic forces and moments arising from cross-wind
are usually taken into account via a quasi-steady approach [85]. This is done by determining the
derivatives of side-force and yaw-moment coefficients cS and cN with respect to cross-wind angle
βw from a series of steady-state measurements in which the vehicle is installed on a turntable
to evaluate the forces and moments at several, constant yaw angles [56].
However, this approach completely neglects all transient effects that may arise from the unsteady
aerodynamic gust response itself and from possible effects of lateral vehicle motion on unsteady
aerodynamics. The relative importance of these phenomena is discussed in the following sections.
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Influence of the transient aerodynamic gust response on lateral vehicle dynamics

The dynamic models identified in section 4.2.2, Eq. (4.9) and (4.10), permit an analysis of how
the transient aerodynamic cross-wind gust response affects lateral vehicle dynamics. In order to
do so, the separate LPV models for cS and cN are combined into one LPV state-space model

ẋcScN (t) =
u∞(t)

L
A∗

cScN︸ ︷︷ ︸
AcScN

(θ1)

xcScN (t) +
u∞(t)

L
E∗

cScN︸ ︷︷ ︸
EcScN

(θ1)

dcScN (t), (4.46)

y
cScN

(t) = C∗
cScN︸ ︷︷ ︸

CcScN

xcScN (t), (4.47)

with θ1 = u∞, dcScN = β̂w and y
cScN

=
[
ĉS ĉN

]T
. Here only the input channel for disturbances

from cross-wind angle changes is taken into account, whereas the influence of the total pressure

fluctuation during gusts is neglected. Note that the quasi-steady aerodynamic derivatives ∂cS
∂βw

∣∣∣
S

and ∂cN
∂βw

∣∣∣
S
in Eq. 4.45 correspond to the steady-state gains of the unsteady aerodynamic model

from Eq. 4.46 and 4.47.
Evaluating the LPV model at various frozen parameter values p = u∞,i for i = 1 . . . 4, according
to Table 4.1, yields individual linear models GcScN ,βw(jω,u∞,i) for the four driving speeds in-
vestigated here. The output vector y

cScN
(t) is used to replace the input disturbance vector dvd

of the driver-vehicle model given by Eq. (4.39, 4.40) by the unsteady aerodynamic disturbance
vector

dvd,unsteady(t) =
ρ

2
u2∞AB

[
1 0

−dCG Lwb

]
y
cScN

(t). (4.48)

The scaled coefficients of driver and vehicle models are constant for the chosen fixed ratio be-
tween simulated unscaled driving velocity v and wind tunnel free-stream velocity u∞, see Table
4.2. However, the state-space equations of the single-track model and those of the overall driver-
vehicle model depend on the driving velocity v, as can be seen from Eq. (A.7, A.8) and (A.14,
A.15) in Appendix A. Evaluating the scaled driver-vehicle model at the scaled driving speeds
vm according to Table 4.1 yields a set of four models for the lateral vehicle dynamics. Combin-
ing them with the unsteady aerodynamic input disturbance vector given in Eq. 4.48 and with
the corresponding transient aerodynamic models, results in a set of models Galβw(jω,u∞,i).
They describe the lateral vehicle acceleration response to cross-wind angle disturbances βw at
the driving speeds vm,i = u∞,i, ∀i = 1 . . . 4 when taking unsteady aerodynamics into account.
Figure 4.26 (a) and (b) shows their frequency responses in comparison with those of driver-
vehicle models obtained based on the quasi-steady aerodynamic assumption in Eq. (4.45). In
the lower plots (c) and (d) of Fig. 4.26 the magnitude and phase of the individual unsteady
aerodynamic disturbance models for side-force coefficient GcSβw(jω,u∞,i) and yaw-moment co-
efficient GcNβw(jω,u∞,i) are given.
The bode plot of the quasi-steady models indicates that increasing driving speed mostly leads
to a larger acceleration response to gusts with the same magnitude of cross-wind angle distur-
bances, whereas the frequency characteristics and the relevant bandwidth of the driver-vehicle
model changes very little, since the driver adapts to the changing vehicle behavior. When taking
transient aerodynamic disturbances into account, significant differences in magnitude and phase
response arise. This is particularly the case for slow driving speeds. Whereas the frequency
response of the driver-vehicle system changes very little, the frequency above which transient
aerodynamic effects start to be relevant decreases more and more as free-stream velocity drops.
Here the yaw-moment coefficient has the most significant impact. As shown in Fig. 4.26 (c), its
frequency response is characterized by a peak in magnitude at relatively low frequencies. There-
fore, the lateral vehicle acceleration response to unsteady aerodynamic disturbances exceeds the
simplified case for quasi-steady aerodynamics in the range of about 5 to 10 Hz, as can be seen
from the dashed and straight lines in Fig. 4.26 (a).
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Figure 4.26: Influence of unsteady aerodynamics on the frequency response of lateral vehicle
acceleration al to cross-wind disturbances βw (a and b), evaluated for the scaled driver-vehicle
model at increasing mean free-stream velocities u∞,1 . . . u∞,4. The frequency response of the
corresponding unsteady aerodynamic models for side-force and yaw-moment coefficients is given
in the lower plots (c and d).

However, these differences are only significant at slow to medium driving velocities, at which
the magnitude response of lateral vehicle dynamics is relatively insensitive to cross-wind distur-
bances. Therefore, the simple quasi-steady aerodynamic approach appears to be sufficient for
the vehicle design process, at least for the vehicle type investigated here.

Influence of the lateral vehicle motion on transient aerodynamic characteristics

As discussed in the previous section, the unsteady aerodynamic characteristics of side-force
and yaw-moment coefficients do have a measurable influence on the lateral vehicle dynamics.
This poses the question whether the lateral vehicle motion itself has a “feedback” influence on
transient aerodynamic forces and moments.
During wind tunnel experiments the unsteady aerodynamic response of side-force and yaw-
moment coefficients to the gust is always present, since their real-time measurements are used
as input variables for the driver-vehicle simulation. By contrast, the replication of the lateral
vehicle motion in the wind tunnel test section can be switched on and off, thus allowing an easy
qualitative test of its influence. Figure 4.27 shows the measured transient force and moment
coefficients and the resulting lateral vehicle response from an experiment with pure driver-vehicle
simulation without wind tunnel model motion, and compares them with those obtained for full
real-time motion replication. These results also serve as an example for a typical lateral vehicle
response to cross-wind gusts.
When the vehicle front enters the gust with a maximum cross-wind angle βw ≈ 11◦, as in Fig.
4.27 (g), the side-force coefficient (a) and especially the yaw-moment coefficient (d) increase
rapidly. This results in a large lateral deviation yl (b), and significant peaks in lateral velocity
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Figure 4.27: Comparison of experimental results without (blue) and with (red) model motion.
Depicted are the phase-averaged time series of transient force and moment coefficients (left
column) and of the simulated lateral vehicle and driver response (middle and right column) for
similar gusts with a maximum cross-wind angle βw ≈ 11◦ at ReL = 4 · 105.

vl (e), acceleration al (h), yaw angle ψ (c) and side-slip angle β (f). The driver reacts by turning
the steering wheel very far with a peak angle δ ≈ −19◦ in an effort to compensate for the
disturbance. It takes more than 0.7 s until the driver-vehicle system reaches its new steady-
value. During constant cross-wind the lateral deviation, velocity and acceleration, as well as the
yaw angle return to zero, while the steering wheel angle and the side-slip angle remain at values
δ ≈ −7◦ and β ≈ 0.17◦ for this specific gust such that the tires generate the necessary forces
and moments to counter the influence of the gust.
The results obtained with and without model motion coincide very well and produce only minor
differences. These may be due to insufficient compensation for the inertial forces and moments
during the model motion, as can be seen by the small peaks in the side-force coefficient plotted
in red in Fig. 4.27 (a). All in all, these results suggest that the feedback influence of the lateral
vehicle motion on the transient aerodynamics is negligible.
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4.5.4 Surrogate output variable for control synthesis

The lateral vehicle response is affected by two input disturbance variables, cS and cN . In
order to suppress the impact of cross-wind gusts entirely, it would be desirable to regulate both
variables to zero by closed-loop active flow control. However, as discussed in section 4.3, the side-
force and yaw-moment coefficients cannot be controlled independently with the given actuator
configuration. Asymmetric actuation with stronger blowing on the rear leeward side leads to
flow acceleration in this region, which reduces the yaw moment significantly but increases the
side force slightly.
For this reason a surrogate output variable is used that represents the combined effect of cS
and cN on lateral vehicle dynamics by weighting both variables adequately. Transferring the
state-space equations of the driver-vehicle system (4.39, 4.40) with the unsteady aerodynamic
disturbance vector dvd,unsteady from Eq. (4.48) into the Laplace domain yields

al(s) = GalcS(s)cS(s) +GalcN (s)cN (s) (4.49)

for the response of lateral vehicle acceleration to disturbances in terms of side-force and yaw-
moment coefficient variations. Fig. 4.28 (a) shows the amplitude response of these two transfer
functions GalcS(s) and GalcN (s) for the scaled driver-vehicle system at a free-stream velocity
u∞ = 15.2m/s. The surrogate variable ywcScN

should mimic the effect of both disturbance
variables on the lateral vehicle response as closely as possible. Thus, demanding

al(s) = GalcS(s) cS(s) +GalcN (s) cN (s)
!
= (GalcS(s) +GalcN (s)) ywcScN

(s), (4.50)

and solving for ywcScN
results in

ywcScN

!
= (GalcS (s) +GalcN (s))

−1GalcS (s)︸ ︷︷ ︸
WcS

(s)

cS(s) + (GalcS(s) +GalcN (s))
−1GalcN (s)︸ ︷︷ ︸

WcN
(s)

cN (s).

(4.51)
Here WcS(s) and WcN (s) can be interpreted as frequency-dependent weighting factors for the
effect of cS and cN on the lateral vehicle acceleration. Fig. 4.28 (b) shows their respective
amplitude responses. Up to a frequency of approximately f < 7Hz the weighting factors remain
almost constant, with the yaw-moment coefficient providing the dominant influence. For larger
frequencies the side-force coefficient gains more and more importance, since its transfer function
has a direct feedthrough part on lateral acceleration. However, the transfer function Galβw(jω)
for the lateral vehicle response to side-wind gusts is relatively insensitive to cross-wind angle
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Figure 4.28: Frequency response of the transfer functions GalcS (s) and GalcN (s) for the lateral
vehicle acceleration due to changes in side-force and yaw-moment coefficients (a), frequency
dependent weighting factors WcS(s) and WcN (s) for the relative effect of cS and cN on lateral
acceleration al (b), and the actual lateral acceleration response Galβw(s) to changes in cross-wind
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changes at frequencies f > 7Hz, as in Fig. 4.28 (c). For simplicity’s sake the side-force and
yaw-moment coefficients are weighted with constant factors in the equation

ywcScN
(t) = wcScS(t) + wcN cN (t), with wcS =WcS(0)=0.156, and wcN =WcN (0)=0.844.

(4.52)
The factors represent the steady-state gains of WcS(s) and WcN (s). Thus, the acceleration
response to cross-wind gusts is approximated by

al(s) ≈ (GalcS(s) +GalcN (s))
[
wcS wcN

] [GcSβw(s)
GcNβw(s)

]
︸ ︷︷ ︸

G̃alβw
(s)

βw(s). (4.53)

The error arising from this simplified weighting approach can be evaluated by calculating the
amplitude response of the transfer function G̃alβw(s), as shown by the dashed line in Fig. 4.28
(c). As expected, it coincides very well with the frequency response of the actual transfer
function Galβw(s) for frequencies f < 7Hz. As will be discussed in the following section, this
is slightly above the bandwidth that can be achieved by closed-loop control for the actuated
flow in this specific problem. Therefore, the simplified weighting approach applied here yields a
sufficient degree of accuracy for the calculation of the surrogate output variable ywcScN

(t).

4.6 Control design

An efficient active flow control strategy must be designed in a way such that it is able to
cope with the unsteady on-road flow conditions typically experienced by the vehicle. Here, the
principal control objective is to ensure an efficient drag reduction not only for low-turbulent,
straight oncoming flow, but also during cross-wind gusts. Additionally, the effects of side-wind
disturbances on the lateral vehicle dynamics should ideally be suppressed to increase safety and
comfort for the passengers. These goals can be achieved by a suitable MIMO control design.
Two different approaches are presented and compared in the following sections. The first one
is based on a robust feedback controller, which is synthesized in section 4.6.1 for the set of
identified linear black-box models. The second approach is presented in section 4.6.2 and uses
linear parameter-varying modeling and control synthesis methods in an effort to better take the
parameter-dependent dynamics of the actuated flow into account.
Figure 4.29 shows the general controller architecture that applies to both approaches. During
side-wind gusts, the changing cross-wind angle βw and total pressure fluctuation p′t/pt create un-
steady aerodynamic disturbances, which deviate drag, side-force and yaw-moment coefficients,
cD, cS and cN , from their respective nominal values. These effects are captured by the LPV
model for the transient aerodynamic cross-wind gust response, whose identification is discussed
in section 4.2.3. From a control theory point of view they correspond to a disturbance model,
as indicated by the gray box in Fig. 4.29.
The measured side-force and yaw-moment coefficients cS and cN are converted to force Fy and
moment Mz, which act on the center of gravity of the vehicle. They serve as input variables for
the real-time simulation of the driver-vehicle model, which is scaled to wind tunnel dimensions
and free-stream velocity as described in section 4.5. The calculated lateral motion is replicated
via the pair of linear servo-actuators. The motion of the 3D bluff body in turn influences the
unsteady aerodynamic response, as indicated by the dashed line. Although this effect is present
in the wind tunnel experiments, its influence is found to be small for the relevant range of lat-
eral vehicle motions, as discussed in section 4.5.3. It is thus omitted from the disturbance LPV
model presented here.
The plant model, consisting of submodels for the actuators and for the actuated flow dynam-
ics, forms the basis for the feedback control design. Here, the drag, side-force, and yaw-moment
coefficients, cD, cS , and cN , enter a block for the output calculation. This corresponds to weight-
ing side-force and yaw-moment coefficients by their relative importance for the lateral vehicle
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Figure 4.29: Controller architecture for the 3D bluff body. The models used for the control
design and for the real-time driver-vehicle simulation are indicated by the gray boxes.

response to cross-wind gusts, as described in section 4.5.4. The output vector y is fed back and
compared with the reference vector r, which is determined via a reference filter to achieve an ef-
ficient drag reduction under all flow conditions. Its design is presented in section 4.6.3. The task
of the feedback controller is thus to achieve good reference tracking and disturbance suppression
by adjusting the values for the desired blowing velocity ratios u∗a,des, which are commanded to
the actuators. The corresponding design of the robust H∞ controller is discussed in the next
section; it is followed by the synthesis of the LPV feedback controller in section 4.6.2. Addition-
ally, in section 4.6.4 an LPV feedforward controller is presented that uses measurements of the
instantaneous cross-wind angle to further improve the bandwidth for disturbance suppression.

4.6.1 Robust H∞ control

Nominal model and uncertainty description

The design of the robust H∞ controller is carried out based on the actuator models and the set
of black-box models of the actuated flow identified in section 4.4.2. To form the plant model for
control design the three actuator models are connected in series with the inputs of each of the
black-box models for actuated flow dynamics. This yields a set of 181 linear models with the
same structure in discrete state-space form

x(k + 1) = Ax(k) +Bu(k − n0), (4.54)

y(k) = Cx(k), (4.55)

with an input delay of n0 = 7 time steps at each of the inputs at a sampling time Ts = 1ms.
Here, the input vector

u =
[
u∗a1,des u∗a2,des u∗a3,des

]T
(4.56)

corresponds to the desired blowing ratios at the three actuators, whereas the output vector

y =
[
ĉD wcS ĉS + wcN ĉN

]T
(4.57)

consists of the surrogate variable for the drag coefficient and the weighted sum of estimated
side-force and yaw-moment coefficients. All force and moment coefficients are estimated based
on surface-pressure measurements. The weighting factors wcS and wcN are used here to form the
second output variable, which approximates the combined effect of side-force and yaw-moment
coefficients on the lateral dynamic vehicle response, as described in section 4.5.4. The identified
MIMO state-space models are transferred into matrices of discrete transfer functions Gp(z).
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Figure 4.30: Maximal (a) and minimal (b) singular values of the set of models Gp and of the
nominal model Gn, and multiplicative output uncertainty lo(ω) with the amplitude response of
its upper bound wo(jω) (c).

Setting z = ejωTs yields the frequency response of a discrete transfer function at a given angular
frequency ω = 2πf . This is shown in Fig. 4.30 (a) and (b) for the entire set of models Gp

in terms of their maximum and minimum singular values σmax and σmin, which represent the
largest and smallest gain of a MIMO model, respectively. For the synthesis of an H∞ controller
a nominal model Gn is necessary. However, there is no formal way of determining a suitable
nominal model [121]. The primary goal is to achieve a small uncertainty, which is calculated
here in in terms of the multiplicative output uncertainty

lo(ω) = max
Gp∈Πo

σ
((

Gp(e
jωTs)−Gn(e

jωTs)
)
G−1

n (ejωTs)
)
. (4.58)

It describes the maximal deviation of the frequency responses of all models Gp from the one
of the nominal plant model Gn. Additionally, the nominal model should have a low order and
describe the real plant behavior well enough at the most common operating points.
As a starting point one of the identified models was chosen that yields an uncertainty lo(ω) < 1
for a large as possible frequency range. This model corresponds to the plant behavior at ReL =
4 · 105 at a steady cross-wind angle βw = 5◦. However, selecting this model as the nominal
one would not be ideal, because it would result in an asymmetrical deterioration of the control
performance at off-design conditions. This would particularly be the case for negative cross-wind
angles, since the gains for the drag coefficient with respect to the right and left actuators change
under side-wind conditions.
Therefore, the larger gain of the windward actuator is mirrored to the leeward actuator channel
to obtain the nominal model. Although this model does not exactly capture the actual plant
behavior at any of the individual operating conditions, it represents a good approximation of
its average characteristics and ensures symmetric control performance for negative and positive
cross-wind angles. As can be seen from Fig. 4.30 (c), the multiplicative output uncertainty
resulting for this nominal model is below unity for all frequencies f . An upper bound for the
uncertainty is chosen here as a scalar transfer function

wo(s) = 0.95

1
ωo2

s+ 1

1
ωo1

s+ 1
, (4.59)

with ωo1 = 0.95 · 2π rad
s and ωo2 = 1.11 · 2π rad

s , such that

|wo(jω)| ≥ lo(ω), ∀ω. (4.60)
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Based on an unstructured multiplicative output uncertainty Eo with a normalized uncertainty
Δo, the complete set of models Πo can be described by

Πo : Gp = (I +Eo)Gn, Eo = woΔo, ‖Δo‖∞ ≤ 1. (4.61)

More information concerning this approach is provided by Skogestad and Postlethwaite [121].

Control synthesis

The H∞ controller K is designed based on the nominal model with an uncertainty description.
This guarantees robust stability for the entire set of models. The output of the controlled plant
in the nominal, unsaturated case is given by

y = T r + Sd− Tn. (4.62)

The complementary sensitivity

T = (I +GnK)−1GnK (4.63)

represents the closed-loop transfer function with respect to the reference variable r and mea-
surement noise n, whereas the sensitivity

S = (I +GnK)−1 (4.64)

relates to the performance at suppressing disturbances d acting on the output y, such as devi-
ations in drag, side-force and yaw-moment coefficients during cross-wind gusts. Requirements
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Figure 4.31: Controller architecture with the uncertain plant Gp and weights WS , WU and WT

for the mixed sensitivity H∞ control design (a) and generalized plant P (b) mapping the input
signals uΔ, w = r and u to the output signals y

Δ
, z and v = e.

for these closed-loop transfer functions and for the control effort KS are specified via adequate
frequency-dependent weights [121]. Fig. 4.31 (a) shows the architecture of the controlled un-
certain plant Gp augmented with the weights WS , WU and WT . Here, a diagonal matrix of
transfer functions

WS(s) =

[
1 0
0 1

]
wS(s), with wS(s) =

1
MS

s+ ωS

s+ ωSAS
, (4.65)

and MS = 2, ωS = 7 · 2π rad
s and AS = 1 · 10−4 is used to shape the sensitivity S such that

disturbances are suppressed at low frequencies. The weight

WU =

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦wu(s), with wu(s) = 0.03

s+ ωu

0.01s + ωu
, (4.66)
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Figure 4.32: Maximum and minimum singular values of the sensitivity S (a), the control effort
KS (b) and the complementary sensitivity function T (c) together with the magnitude of
the inverse of the corresponding scalar weights used for the mixed-sensitivity synthesis of the
H∞ controller. The criteria for nominal performance (NP), robust stability (RS) and robust
performance (RP) are shown in plot (d).

is chosen with ωu = 50 · 2π rad
s to limit the control effort KS at high frequencies. Finally, a

loopshaping weight

WT =

[
1 0
0 1

]
wo(s) (4.67)

is used for the complementary sensitivity function T with the scalar transfer function wo(s)
representing an upper bound for the model uncertainty lo. All loopshaping weights are converted
to discrete-time transfer functions to facilitate the handling of the time delays at the inputs of
the identified model. The controller is obtained by finding

min
K

‖N(K)‖∞ , with N (K) =

⎡
⎣ W SS
W UKS
W TT

⎤
⎦ . (4.68)

For more details on the design of robust H∞ controllers see [121]. Fig. 4.32 shows the result
of the mixed-sensitivity controller synthesis with the frequency response of the chosen weights.
With regard to disturbance suppression a nominal bandwidth of ωy1 ≈ 5.6Hz is obtained for the
drag coefficient and ωy2 ≈ 6.4Hz for the weighted sum of side-force and yaw-moment coefficients.
The H∞ controller guarantees robust stability for the entire set of identified models, because
the corresponding criterion

||woT ||∞ < 1 (4.69)

for a scalar bound of the multiplicative output uncertainty according to [121] is fulfilled. This
can be seen in Fig. 4.32 (c), since the maximal singular value σmax(T ) of the complementary
sensitivity is smaller than the magnitude of the inverse of the upper bound |1/wo| for the
uncertainty lo at all frequencies.
Another way to evaluate whether the specifications for performance and stability of the closed
control loop are met uses the structured singular value μ. A detailed discussion of the relevant
theory is given by Skogestad and Postlethwaite in [121]; here the main idea is only briefly
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outlined. Pulling out the uncertainty Δo and the controller K as in Fig. 4.31 (b) results in
the generalized plant P . It maps the input signals uΔ, w = r and u to the output signals y

Δ
,

z =
[
z1 z2 z3

]T
and v and can be partitioned as[

y
Δ
z

]
= P 11

[
uΔ
w

]
+ P 12u, (4.70)

v = P 21

[
uΔ
w

]
+ P 22u. (4.71)

Using u = Kv to close a lower loop around P results in[
y
Δ
z

]
=
(
P 11 +P 12K(I − P 22K)−1P 21

)︸ ︷︷ ︸
N=Fl(P ,K)

[
uΔ
w

]
=

[
N 11 N 12

N 21 N 22

]
︸ ︷︷ ︸

N

[
uΔ
w

]
. (4.72)

The nominal system N shown in Fig. 4.33 (a) is thus related to P and K by a lower linear
fractional transformation (LFT) Fl(P ,K). Similarly, the uncertain closed-loop transfer function
from w to z is obtained by an upper LFT

F = Fu(N ,Δ) = N 22 +N 21Δ(I −N 11Δ)−1N 12. (4.73)

Setting external signals to zero yields the MΔ-structure with M = N11, as shown in Fig. 4.33
(b). For unstructured uncertainties ||Δ||∞ ≤ 1 robust stability is achieved if ||M ||∞ < 1, or
equivalently

σmax (M(jω)) < 1,∀ω. (4.74)

Robust performance is achieved if the closed-loop transfer function of the uncertain system
shown in Fig. 4.33 (a) satisfies

||Fu(N ,Δ)||∞ < 1. (4.75)

This condition cannot be easily evaluated as it would involve testing for all possible uncertainties
||Δ||∞ ≤ 1. Instead, it is reformulated based on a fictitious feedback loop with a fictitious
unstructured uncertainty ΔP as in Fig. 4.33 (c). Combining ΔP and Δ into a single matrix
yields the NΔ̂-system shown in Fig. 4.33 (d) with a block-diagonal, structured uncertainty
matrix Δ̂. As discussed by Skogestad and Postlethwaite in [121], the controlled uncertain
plant Fu(N ,Δ) achieves robust performance if the NΔ̂-system is robustly stable for the block-
diagonal, structured uncertainty Δ̂. This can be tested via the structured singular value μ. In
contrast to the maximum singular value σmax, μ also takes the structure of the uncertainty into
account. It can also be used to test for nominal performance and robust stability of the closed
control loop. This is shown in Figure 4.32 (d) for the 3D bluff body for the criteria

Nominal performance (NP) ↔ σmax(N 22) = μΔP
(N 22) < 1, ∀ω, (4.76)

Robust stability (RS) ↔ μΔ(N 11) < 1, ∀ω, (4.77)

Robust performance (RP) ↔ μΔ̂(N ) < 1, ∀ω, (4.78)
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derived by Skogestad and Postlethwaite in [121]. Whereas nominal performance (NP) and robust
stability (RS) are guaranteed by the H∞ controller K, robust performance (RP) is not achieved
for the controlled uncertain plant. This means that disturbances acting on the controlled plant
at certain off-design operating conditions cannot be suppressed with the same performance as
in the nominal case.
The performance of the robust controller K was also tested in wind tunnel experiments. To
account for actuator saturation, the control loop was augmented by a dynamic anti-reset windup
compensator following the method proposed by Park and Choi [98]. Figure 4.34 shows sample
results for the controlled flow in comparison with the natural flow for similar gusts with a
maximum cross-wind angle βw ≈ 10◦ at ReL = 4 · 105. The trajectories of the reference
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Figure 4.34: Experimental results obtained with the robust H∞ controller in comparison with
the natural flow for similar gusts with a maximum cross-wind angle βw ≈ 10◦ at ReL = 4 · 105.

variables are calculated online based on measurements of the instantaneous cross-wind angle
β̂w(t) as estimated from pressure readings at the vehicle’s front. A look-up table is used for
the setpoint r1 to achieve an efficient reduction of the drag coefficient shown in plot (a). A
dynamic reference filter is applied for r2 – see plot (c) – such that y2 is slowly increased to the
steady-state value of the natural flow, giving the driver enough time to react to the cross-wind
gust. The setpoint calculation and the dynamic reference filter are described in more detail in
section 4.6.3.
Fig. 4.34 (b) shows the actuating variables. All three of them are adjusted simultaneously by
the robust H∞ controller to regulate y1 and y2 to their desired time-varying reference values.
Although a significant peak occurs in the controlled drag coefficient at the beginning of the gust,
as in plot (a), the controller achieves a satisfactory overall performance in setpoint tracking and
disturbance suppression. In section 4.7 this performance is compared with that of LPV feedback
and feedforward control. Also included is a discussion of the effects of closed-loop AFC on the
lateral vehicle response to cross-wind gusts.
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4.6.2 LPV feedback control

LPV plant model

The LPV models identified in section 4.4.3 capture the actuated flow dynamics of drag, side-
force and yaw-moment coefficients. Connecting these models in series with the linear actuator
models yields an overall LPV plant model

ẋafc = (Aafc,0 + θ1Aafc,1 + θ2Aafc,2)︸ ︷︷ ︸
Aafc(θ)

xafc +Bafcu
∗, (4.79)

y∗
afc

= Cafc xafc, (4.80)

with

u∗ =

⎡
⎣u∗a1,desu∗a2,des
u∗a3,des

⎤
⎦ =

⎡
⎣ua1,des/u∞ua2,des/u∞
ua3,des/u∞

⎤
⎦ , y∗

afc
=

[
ĉD

wcS ĉS + wcN ĉN

]
, θ =

[
u∞
βwu∞

]
. (4.81)

Here, the constant matrix Bafc corresponds to the input matrices of the actuator models. The
dynamics of the actuators, as well as the parameter-dependent dynamics of drag, side-force and
yaw-moment coefficients are captured by the varying state-matrix Aafc(θ).
The output variable vector y∗

afc
is calculated from the state variables via the constant output

matrix Cafc and consists of the drag coefficient and the weighted sum of side-force and yaw-
moment coefficients. All values of the LPV state-space matrices are given in Appendix C.2.2.

LPV control synthesis

For the synthesis of the LPV controller the LPV plant model (4.79, 4.80), denoted here by G(θ),
is augmented by frequency-dependent weights WS(s) and WU (s) as shown in Fig. 4.35 (a). For
the sensitivity S(θ) of the controlled LPV plant, the same diagonal matrix of transfer functions

WS(s) =

[
1 0
0 1

]
wS(s), with wS(s) =

1
MS

s+ ωS

s+ ωSAS
, (4.82)

and MS = 2, ωS = 7 · 2π rad
s and AS = 1 · 10−4 is used as in the linear H∞ controller synthesis.

By contrast, the weighting function for the LPV control effort is specified slightly differently
from the linear case, with

WU =

⎡
⎣1 0 0
0 1 0
0 0 1.4

⎤
⎦wu(s), (4.83)

and a scalar transfer function

wu(s) = 0.02
s+ ωu

0.01s + ωu
, (4.84)

with ωu = 50 · 2π rad
s . Since two output variables are to be controlled with three input variables,

there is an additional degree of freedom when regulating the plant to given reference values, i.e.
the same drag coefficient can be achieved with different combinations of control input amplitudes.
Therefore, the relative usage of the three actuators has to be adjusted via adequate weights for
the control effort. Compared with the robust control design, a larger penalty is applied for the
weighting of the third control input in the LPV design, but a smaller penalty for the overall
LPV control effort. This is due to the different gains of the LPV model for the drag coefficient
relative to the linear nominal model. The chosen values were obtained by tuning the weights
experimentally so that all three control inputs are used at approximately equal amplitudes when
controlling the drag coefficient under nominally straight flow conditions. This corresponds to
the most efficient actuation determined in open-loop experiments, see section 4.3.
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Figure 4.35: Generalized plant for LPV feedback control synthesis (a) and parameter polytope (b)

Augmenting the LPV plant (4.79, 4.80) with the weights WS(s) andWU (s) yields the generalized
plant P (θ) as shown in Fig. 4.35 (a). In the state-space form given by Eq. (2.16 - 2.18) it
becomes

P (θ) :=

⎧⎨
⎩
⎡
⎣ẋz
y

⎤
⎦ =

⎡
⎣A(θ) B1 B2

C1 D11 D12

C2 D21 0

⎤
⎦
⎡
⎣xw
u

⎤
⎦ , (4.85)

with the exogenous and the control inputs

w =

[
r1
r2

]
, and u =

⎡
⎣ua1,des/u∞ua2,des/u∞
ua3,des/u∞

⎤
⎦ , (4.86)

respectively, and the weighted and the measured outputs

z =
[
z1 z2

]T
=
[
ze1 ze2 zu1 zu2 zu3

]T
, and y =

[
ĉD

wcS ĉS + wcN ĉN

]
, (4.87)

respectively. Here, only the state matrix A(θ) depends on the parameter θ, and the LPV
plant does not have a direct feedthrough from u to y. Furthermore, the pairs (A(θ),B2) and
(A(θ),C2) are quadratically stabilizable and detectable for all admissible parameter trajectories
Θ, respectively. Thus, the assumptions (A1) - (A3) in section 2.1.1 are fulfilled and an LPV
controller can be synthesized with the algorithm by Apkarian et al. [14].
To this end, the generalized plant P (θ) is subsequently converted to polytopic form

P := Co

⎧⎨
⎩
⎡
⎣Ai B1 B2

C1 D11 D12

C2 D21 0

⎤
⎦ , i = 1 . . . 4

⎫⎬
⎭ . (4.88)

Here, Ai denotes the values of A(θ) at the vertices v1 . . . v4 of the parameter polytope Θ
shown in Fig. 4.35 (b). In the LPV synthesis approach, usually a rectangular parameter
box is applied, with corners ṽ1 . . . ṽ4 corresponding to the extremal values of the parame-

ter vector θ =
[
u∞ u∞βw

]T
. Here this would result in an overbounding of the parameter

space, since a correct LPV representation of the actuated flow dynamics requires a second
parameter θ2 = u∞βw with mixed dependency on two independent physical variables. How-
ever, the corners ṽ1 and ṽ3 cannot be reached by the physical plant, since they correspond to

ṽ1 =
[
u∞,min u∞,maxβw,min

]T
and ṽ3 =

[
u∞,min u∞,maxβw,max

]T
. This would introduce un-

necessary conservatism in the design of the LPV controller.
The actual upper and lower limits due to the coupling between θ1 and θ2 are marked by the
dashed lines in Fig. 4.35 (b). Together with admissible range u∞,min < θ1 < u∞,max, this results
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in a trapezoidal polytope Θ with corners v1 . . . v4. Using these vertices in the polytopic plant
description (4.88) helps narrow the conservatism in the LPV control design. However, as pointed
out by Apkarian et al. [14], it is still somewhat conservative, since the LMI conditions guarantee
quadratic stability and performance for infinitely fast parameter variations. This assumption
certainly does not apply to the 3D bluff body, as the free-stream velocity, corresponding to the
driving velocity, changes only at a limited rate. Taking the variation rates into account as well
would require more advanced control synthesis methods, such as those proposed by Apkarian et
al. in [11]. This approach is not examined further in this thesis, but it represents an interesting
possibility for extending the presented work.
Here, the control synthesis is carried out with the algorithm by Apkarian et al. [14] as im-
plemented in the MATLAB-command ”hinfgs.m”. For all possible parameter trajectories, the
resulting controller K(θ) guarantees global stability of the closed-loop LPV system and limits
the L2-gain of the input/output map between w and z by

‖z‖2 < γ ‖w‖2 . (4.89)

Here, a value of γ = 1.17 is achieved. The frequency response in terms of the minimal and
maximal singular values of the closed-loop transfer functions at the polytope corners is shown
together with the weighting transfer functions in Fig. 4.36. Only vertices 3 and 4 are evaluated
in this plot, since the controlled plant has symmetric characteristics at negative cross-angles
that correspond to vertices 1 and 2. The specifications for sensitivity and control effort are
fulfilled satisfactorily, with a slightly better performance at higher free-stream velocities due to
the faster response of the actuated flow, as can be seen in Fig. 4.36 (d-f).
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Figure 4.36: Frequency response of the weighting filters with the upper and lower singular
values of the closed-loop LPV transfer functions for sensitivity, control effort and complementary
sensitivity at vertices 3 (plots a-c) and 4 (plots e-f), respectively.
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Implementation

Several steps are involved in implementing the synthesized LPV controller on the digital sig-
nal processor (DSP) for the real-time application in the wind tunnel experiments. First, the
instantaneous controller matrices of K(θ) resulting from the measured parameter vector θ are
calculated by interpolating online between the vertex controllers by

K(θ) =

4∑
i=1

αiKi, with Ki =

[
AKi BKi

CKi DKi

]
, i = 1 . . . 4, (4.90)

with the polytopic coordinates αi as defined by the polytope

Θ = Co

{
4∑

i=1

αivi : αi ≥ 0;

4∑
i=1

αi = 1

}
. (4.91)

Due to fast controller modes the continuous-time state-space equations of the LPV controller

ẋK(t) = AK(θ(t))xK(t) +BK(θ(t))e(t), (4.92)

u(t) = CK(θ(t))xK(t) +DK(θ(t))e(t), (4.93)

cannot be solved directly by numerical integration on the DSP, as this would result in an unstable
behavior at the chosen sampling rate of 1 kHz. Therefore, the controller state-space equations are
discretized online via the LPV counterpart of the bilinear transformation proposed by Apkarian
[10]. More details on this approach are given in section 2.1.2. The trapezoidal approximation
scheme preserves the stability of the original continuous-time state-space system. However, the
bilinear transformation involves a computationally costly matrix inversion. Hence, following the
proposition by Apkarian [10], the update of the discrete-time controller matrices on the DSP is
carried out only every second sampling step to enable a real-time application in the wind tunnel
experiment.
Experimental results for a typical cross-wind gust with LPV feedback control are shown in
Fig. 4.37 in comparison with the natural, uncontrolled gust response. The reference values
are calculated based on a look-up table for r1 and a dynamic reference filter for r2. The exact
approach is presented and discussed in the following section 4.6.3. The LPV feedback controller
is able to regulate y1 and y2 very close to their respective reference trajectories by adjusting the
three actuating variables simultaneously, as can be seen in plot (e). This ensures an efficient
drag reduction relative to the natural flow, as in Fig. 4.37 (a). Fast variations of y2 due to
cross-wind gust disturbances are successfully suppressed. The relative contribution of the four
vertex controllers is shown in Fig. 4.37 (f) for the polytopic coordinates αi, i = 1 . . . 4. A
comparison of the LPV feedback control performance with robust H∞ control and a discussion
of the resulting lateral vehicle response are given in section 4.7.
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Figure 4.37: Experimental results obtained with the LPV feedback controller in comparison with
the natural flow for similar gusts with a maximum cross-wind angle of βw ≈ 10◦ at ReL = 4 ·105.

4.6.3 Setpoint calculation and dynamic reference filter

For closed-loop control of the flow around the 3D bluff body, adequate reference values r1 and
r2 must be chosen to achieve an efficient reduction of the drag coefficient while improving the
vehicle’s cross-wind sensitivity. To this end, two different alternatives are studied.
The first version corresponds to regulating the second output variable y2 to zero in an effort
to completely suppress the influence of cross-wind gusts on the lateral dynamics. In order to
create a look-up table with suitable values for the setpoint r1, the bluff body was subjected to
a range of constant cross-wind angles 0◦ ≤ βw ≤ 7◦. At each angle, the flow was controlled to
several drag coefficients while keeping y2 at zero. Evaluating the net power savings ΔP/P0 for
each of these steady-state experiments yields a map for the most efficient setpoint r1 = f(βw)
as a function of cross-wind angle.
Figure 4.38 shows the resulting look-up tables for the reference values. Only for small cross-wind
angles can the drag coefficient be efficiently reduced to values below those of the natural flow, see
plot (a). The output variable y2 corresponds to the weighted sum of side-force and yaw-moment
coefficients. Regulating it to zero under side-wind conditions means reducing the yaw-moment
coefficient to values below zero to compensate for the effect of the side force increase on the
lateral vehicle response. As already discussed in section 4.3.3 for the actuated flow character-
istics, this requires large blowing velocities at the right, windward actuator, which leads to an
additional increase in drag coefficient, see the steady-state map (d) in Fig. 4.13. Therefore, the
complete suppression of the steady-state effect of larger cross-wind angles on the lateral vehicle
response comes at the price of increasing the overall power consumption of the vehicle.
To circumvent this drawback, a second version of the setpoint calculation is applied. A human
driver can easily compensate for slow variations of the cross-wind angle by turning the steering
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wheel. For the driver-vehicle system considered here, this corresponds to a closed-loop band-
width of fbw ≈ 0.2Hz for the real-sized case, and fbw,m ≈ 1.5Hz for the case scaled to wind
tunnel dimensions, as in section 4.5, Fig. 4.25. Thus, the closed-loop active flow control strategy
only has to suppress disturbances acting on lateral vehicle dynamics at frequencies above the
bandwidth already achieved by the driver.
Therefore, the calculation of the reference value r2 is carried out via a first-order dynamic
reference filter

r2 = F (s)βw =
k

T1s+ 1
βw, with T1 =

1

ωF
. (4.94)

The angular roll-off frequency is set to ωF = 1.2 · 2π rad
s for the wind-tunnel case, such that

frequencies above 1.2 Hz are to be suppressed by feedback AFC, whereas slower disturbances
are compensated for by the driver. The chosen gain is equal to the steady-state derivative of y2
with respect to βw of the natural flow, i.e.

k =
∂y2
∂βw

∣∣∣∣
S

, (4.95)

so that the vehicle response to constant cross-wind disturbances remains unaffected by AFC.
Figure 4.39 shows the frequency response of the reference filter F (s) in comparison with the
response of the disturbance transfer function from βw to y2, which is evaluated here for three
different cases. For the natural flow, the transient aerodynamic gust response of side-force
and yaw-moment coefficients to changes in cross-wind angle βw is described by the MISO LPV
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models identified in section 4.2.3. Combining them into a single model with disturbance input
variable dcScN = βw yields the LPV state-space equations

ẋcScN =
u∞
L

A∗
cScN︸ ︷︷ ︸

AcScN
(θ1)

xcScN +
u∞
L

E∗
cScN︸ ︷︷ ︸

EcScN
(θ1)

dcScN , (4.96)

y
cScN

= C∗
cScN︸ ︷︷ ︸

CcScN

xcScN =

[
0 1 0 0
0 0 0 1

]
xcScN , (4.97)

with θ1 = u∞, dcScN = βw and y
cScN

=
[
ĉS ĉN

]T
. An LPV model for the weighted sum

y2 = ywcScN
= wcScS + wcN cN is then simply obtained from Eq. (4.97) by

y2 =
[
wcS wcN

] [cS
cN

]
=

1

L

[
0 wcS 0 wcN

]
xcScN , (4.98)

with state variable xcScN governed by Eq. (4.96). Evaluating these LPV state-space equations
for a frozen parameter value θ1 = 15.2m/s corresponding to ReL = 4 · 105 and transferring
them into the Laplace domain yields the disturbance transfer function Gd(s, θ1) for the natural,
uncontrolled flow.
Similarly, the sensitivity of the closed-loop to output disturbances is given by

S(s, θ) =

[
S11(s, θ) S12(s, θ)
S21(s, θ) S22(s, θ)

]
= (I +G(s, θ)K(s, θ))−1 , (4.99)

and the complementary sensitivity for reference tracking by

T (s, θ) =

[
T11(s, θ) T12(s, θ)
T21(s, θ) T22(s, θ)

]
= (I +G(s, θ)K(s, θ))−1G(s, θ)K(s, θ), (4.100)

where G(s, θ) and K(s, θ) denote the transfer functions of the LPV plant Eq. (4.79, 4.79)

and LPV feedback controller Eq. (4.92, 4.93) at frozen parameter values θ =
[
u∞ βwu∞

]T
=[

15.2m/s 0
]T

, respectively. The response of y2 to disturbances d = βw of the feedback loop
without reference filter is thus given by

y2 = S22(s, θ)Gd(s, θ)d. (4.101)

Extending Eq. (4.101) by the dynamic reference filter F (s) yields

y2 = (S22(s, θ)Gd(s, θ) + T22(s, θ)F (s)) d. (4.102)

As depicted in Fig. 4.39, the LPV feedback controller suppresses all disturbances acting on y2
due to changes is cross-wind angle βw up to a bandwidth of approximately 7 Hz. Because of a
waterbed effect arising from the input time-delays of the actuators, disturbances above 10 Hz
are slightly amplified relative to the natural flow.
The reference filter relaxes the disturbance suppression at low frequencies f < 1.2Hz, where the
driver has effective control over the vehicle. Due to the additional transfer function T22(s, θ)
related to reference tracking of the controller, disturbances in the range 2Hz < f < 7Hz are
suppressed more strongly by the feedback controller with the reference filter than by the one
without.
Of course, these frequency characteristics could also be directly achieved by specifying different
loopshaping weights during control synthesis. However, the approach followed here gives more
freedom in the design process from a practical point of view. First, the feedback controller is
designed to provide a maximum bandwidth at disturbance suppression and reference tracking. In
a second step, the steady-state side-wind sensitivity of the vehicle and the cross-over bandwidth
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between closed-loop active flow control and driver can be adjusted via the parameters of the
reference filter F (s), independent of the synthesized feedback controller.
The disturbance suppression range 1.2Hz < f < 7Hz of the combined feedback AFC strategy
with reference filter coincides well with the range of frequencies 1Hz < f < 10Hz at which lateral
vehicle dynamics are sensitive to cross-wind gusts, see Fig. 4.26 in section 4.5.3. However, a
better suppression at higher frequencies f > 7Hz would be desirable to further improve the
vehicle’s cross-wind sensitivity by AFC. This can be achieved by an additional feedforward
controller, whose synthesis is discussed in the following section.

4.6.4 LPV feedforward control

As presented in section 4.2.2 for the transient gust response, the time-varying cross-wind angle
βw(t) can be estimated from instantaneous pressure measurements with two sensors located at
the vehicle’s front. Based on the LPV disturbance model Gd(θ) with input d = βw and an
LPV plant model G̃(θ), a feedforward LPV controller Kd(θ) can be designed to improve the
performance of the AFC strategy. The synthesis is carried out with the same methods as the
LPV H∞ feedback control design described in sections 2.1.1 and 4.6.2.
Figure 4.40 (a) shows the feedforward control architecture. Changes in cross-wind angle d = βw
cause disturbances acting on the output y2 with parameter-dependent dynamics represented
by Gd(θ). The feedforward controller Kd(θ) counteracts these disturbances by adjusting the

reduced actuating variable ũ =
[
u1 u2

]T
based on measurements of the disturbance input

variable d = βw. Since the LPV control synthesis algorithm by Apkarian et al. [14] requires
parameter-independent feedthrough matrices of the generalized LPV plant, a fast prefilter Gf (s)
is added at the plant input. A preliminary feedforward LPV controller K ′

d(θ) is then designed
based on the augmented LPV plant P̃ (θ) shown in Fig. 4.40 (b).
The objective is to further reduce the cross-wind sensitivity of the vehicle by suppressing distur-
bances acting on y2 in a frequency range where LPV feedback is no longer effective. The focus

ũ ũ
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d

dũ′ ũ′y2 y2y2,p
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Figure 4.40: Feedforward controller architecture (a) and generalized plant for feedforward LPV
H∞ control synthesis (b).

lies on improving the lateral vehicle response, whereas a large bandwidth for control of the drag
coefficient is of minor importance for the overall power consumption. Of course, the design could
be extended to a “full” feedforward controller to suppress disturbances acting on the drag coef-
ficient as well, based on measurements of the entire disturbance input vector d =

[
βw p′t/pt

]
.

Here, the feedforward design is carried out based on submodels for disturbance and plant to
keep the controller order low. This reduces the computational effort for real-time control. The
SISO model Gd(θ) introduced in the previous section describes the gust response of the weighted
sum y2 = wcScS + wcN cN to changes in cross-wind angle d = βw. It corresponds to the LPV
disturbance model for the feedforward design. The influence of the total pressure fluctuation
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p′t/pt during gusts is neglected here, since it mostly affects the wake, not so much the side-force
and yaw-moment coefficients.
Similarly, a submodel G̃(θ) is derived from the overall LPV plant model G(θ) by taking into
account only the input and state variables that affect the output variable y2. As discussed with
respect to the LPV identification of actuated flow dynamics, see section 4.4.3, only wind- and
leeward actuation influence side-force and yaw-moment coefficients. Hence, the third input vari-
able u3 and the corresponding actuator state variables have been removed from the submodel
G̃(θ). Furthermore, all states corresponding to the dynamics of the drag coefficient are omitted
here. This yields a DISO LPV plant model G̃(θ) with 14 states, instead of the original 2 × 3
MIMO LPV model of order nx = 21.
The generalized structure of the augmented plant is shown in Fig. 4.40 (b). Specifications for
the feedforward performance and control effort are taken into account via the weights w̃Sd

(s)
and W̃U(θ), respectively. The disturbance sensitivity Sd(θ) of the feedforward controlled plant
is given by

y2 =
(
Gd(θ) + G̃(θ)Kd(θ)

)
︸ ︷︷ ︸

Sd(θ)

d, (4.103)

and the corresponding weight is specified as a first order transfer function

w̃Sd
(s) =

1

k

s+ ωSd

ASd
s+ ωSd

. (4.104)

The frequency response of its inverse 1/w̃Sd
(s) is shown in Fig. 4.41 (a) and (c). The coefficients

k, ωSd
and ASd

are adjusted such that the feedforward controller only provides supplementary
disturbance suppression and does not interfere with the feedback LPV controller. To this end,
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Figure 4.41: Frequency response of the weighting filters and of the LPV transfer functions for
disturbance sensitivity and control effort of the feedforward controlled plant at vertices 3 (a, b)
and 4 (c, d), respectively.
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the frequency ωSd
= 1 · 2π rad

s is chosen such that the feedforward controller is active in a
frequency range above the cut-off frequency of the reference filter F (s). Disturbances at lower
frequencies are to be passed through to the plant output with the same gain

k =
∂y2
∂βw

∣∣∣∣
S

(4.105)

as that of the disturbance model Gd(θ) for the natural, uncontrolled flow, whereas the coefficient
ASd

= 0.5 specifies the desired disturbance suppression at higher frequencies. An upper limit is
put on the control effort via a parameter-dependent weight

W̃U (θ) =
4∑

i=1

αiW̃U,vi , with W̃U,vi =

[
AW̃U,vi

BW̃U,vi

CW̃U,vi
DW̃U,vi

]
, i = 1 . . . 4, (4.106)

and polytopic coordinates αi as defined by the polytope

Θ =

{
4∑

i=1

αivi : αi ≥ 0;
4∑

i=1

αi = 1

}
. (4.107)

Here, the same vertices are used as for the feedback controller design described in section 4.6.2.
The LTI systems W̃u,vi at the vertices v1 . . . v4 correspond to the state-space representation of
the frequency dependent matrices

W̃U,v1(s) =

[
wu1,v1(s) 0

0 wu2,v1(s)

]
=

[
0.5 0
0 1

]
w̃u(s), (4.108)

W̃U,v2(s) =

[
wu1,v2(s) 0

0 wu2,v2(s)

]
=

[
0.5 0
0 1

]
w̃u(s), (4.109)

W̃U,v3(s) =

[
wu1,v3(s) 0

0 wu2,v3(s)

]
=

[
1 0
0 0.5

]
w̃u(s), (4.110)

W̃U,v4(s) =

[
wu1,v4(s) 0

0 wu2,v4(s)

]
=

[
1 0
0 0.5

]
w̃u(s), (4.111)

with w̃u(s) =
1

M1
s+ ω1

s + ω1A1
· s+

1
M2
ω2

A2s+ ω2
, (4.112)

and ω1 = 4 · 2π rad
s , ω2 = 200 · 2π rad

s , M1 = M2 = 1, A1 = A2 = 1 · 10−3. The coefficients
of the scalar transfer function w̃u(s) are chosen here such that control input is only allowed in
the medium frequency range of 4Hz < f < 200Hz. This penalizes the control effort at low
frequencies and forces the steady-state response of the feedforward disturbance sensitivity Sd(θ)
to be equal to the gain k of the natural disturbance transfer function Gd(θ).
Identical weighting matrices W̃U,v1(s) = W̃U,v2(s) are specified at the corners 1 and 2 of the poly-
tope Θ that correspond to negative cross-wind angles. Here, a lower penalty is put on u1. Con-
versely, u2 is penalized less for positive cross-wind angles via the weights W̃U,v3(s) = W̃U,v4(s).
This way, the feedforward controller always applies an asymmetrically larger control input on the
leeward side, which helps avoid actuator saturation when the vehicle enters a sharp edged gust.
At βw = 0 both actuators u1 and u2 are used to the same extent, because the asymmetric vertex
controllers contribute equal amounts. Figure 4.41 (b) and (d) show the frequency response of the
inverse weights for the control effort at vertices 3 and 4, corresponding to a positive cross-wind
angle βw = 10◦ at minimum and maximum free-stream velocity, respectively.
One of the prerequisites for the applicability of the LPV H∞ control synthesis algorithm by
Apkarian et al. [14] is a parameter-independent feedthrough matrix D21 from control input u
to weighted output z. Therefore, a fast prefilter

ũ =

[
1 0
0 1

]
1

Ts+ 1︸ ︷︷ ︸
Gf (s)

ũ′, with T = 0.001 s, (4.113)

105



is added at input of the plant G̃(θ). The generalized plant P̃ (θ) is obtained in a similar way as in
the LPV feedback control design. Here, it maps the external input d and the control input ũ′ to
the weighted outputs z and measured outputs d. A preliminary controller K ′

d(θ) is synthesized
by solving the LMIs (2.35 - 2.37) as implemented in the MATLAB-function ”hinfgs.m”, such that
the upper limit of the L2 gain γ in

‖z‖2 < γ ‖d‖2 (4.114)

is minimized. Here, a value of γ = 1.69 is achieved. The output of the preliminary controller
K ′

d(θ) is multiplied with the low-pass filter Gf (s) to obtain the final controller

Kd(θ) = Gf (s)K
′
d(θ). (4.115)

Fig. 4.41 shows the result of the feedforward control design in terms of the frequency response of
the disturbance sensitivity Sd(θ) and the control effort Kd(θ) in comparison with their weights,
the natural disturbance transfer function Gd(θ) and the reference filter F (s). At vertex 3, which
corresponds to the lowest free-stream velocity u∞ = 11.4m/s and a cross-wind angle βw = 10◦,
all specifications are fulfilled, see Fig. 4.41 (a) and (b). The lower row, plots (c) and (d), shows
the frequency responses at vertex 4, for u∞ = 22.8m/s and βw = 10◦. Due to faster disturbance
dynamics, but limited actuator bandwidth, the specifications are harder to meet and slightly
exceeded for higher frequencies. Vertices 1 and 2 are not shown here, as they correspond to the
same free-stream velocities at a negative cross-wind angle βw = −10◦. There the feedforward
controlled plant has the same characteristics as at vertices 3 and 4; only the control channels
corresponding to u1 and u2 are switched. All in all, a good disturbance suppression by -6 dB at
a reasonable control effort is achieved for the feedforward control design.
The final controller Kd(θ) is implemented on the DSP with the same online interpolation and
trapezoidal LPV discretization technique as applied in the LPV feedback controller, see sections
2.1.2 and 4.6.2.
Figure 4.42 shows an example of a cross-wind gust experiment with feedforward control in
comparison with the natural gust response. Here, the control input is calculated by

u(t) =
[
u1(t) u2(t) u3(t)

]T
=
[
u1 + ũ1(t) u2 + ũ2(t) 0

]T
(4.116)

with a constant offset of u1 = u2 = 1.8. The contribution of the feedforward controller to
the actuating variables corresponds to ũ1(t) and ũ2(t). At t ≈ 0.6 s the cross-wind gust with
a peak angle of βw ≈ 10◦ reaches the front of the bluff body, see Fig. 4.42 (d). For the
natural, uncontrolled flow, this results in a large increase in both output variables y1 and y2,
corresponding to drag coefficient and weighted sum of side-force and yaw-moment coefficients
shown in plots (a) and (c), respectively. As intended by the choice of parameter-dependent
weights for the control effort, the feedforward controller uses mostly the leeward actuating
variable u2 to counteract the disturbances acting on y2, see Fig. 4.42 (e). This reduces the
peak of y2 at the beginning of the cross-wind gust significantly. Plot (f) shows the relative
contribution of the four vertex controllers in terms of the polytopic coordinates αi for i = 1 . . . 4.
The drag coefficient is only slightly reduced by the feedforward controller. This could also be
achieved by a suitable MIMO feedforward control design, but this is not the objective here, since
this task is already fulfilled satisfactorily by the feedback LPV loop.
The impact of feedforward control on the lateral vehicle dynamics during cross-wind gusts, as
well as a comparison with the performance of the LPV feedback controller, is discussed in the
next section.
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Figure 4.42: Experimental results obtained with LPV feedforward control (LPV FF) in compar-
ison with the natural flow (Nat.) for similar gusts with a maximum cross-wind angle βw ≈ 10◦

at ReL = 4 · 105.

4.7 Results and discussion

4.7.1 Control performance and lateral vehicle response

The performance of the various controllers and their effect on the lateral vehicle response are
evaluated in cross-wind gust experiments. Here, the lateral vehicle motion is replicated in the
wind tunnel in real-time with the method described in section 4.5. A sample result obtained
with combined feedback and feedforward LPV control is shown in Fig. 4.43. For comparison,
the response of the natural flow is also depicted for a similar cross-wind gust with a maximum
cross-wind angle βw ≈ 10◦ at the same Reynolds number ReL = 4 · 105.
The reference values r1 and r2 are calculated online from the current estimated cross-wind angle
β̂w with the method presented in section 4.6.3. It relies on a look-up table to determine the
current setpoint r1 for the drag coefficient, which yields the most efficient drag reduction at
a given cross-wind angle. For the weighted sum y2 of side-force and yaw-moment coefficients
a dynamic reference filter is applied, which slowly increases the setpoint r2 to a value that
corresponds to the natural flow.
As can be seen in Fig. 4.43 (a) and (b) the combined feedback and feedforward LPV controller
successfully regulates the outputs y so that they follow their setpoint trajectories r. This provides
a significant drag reduction relative to the natural, uncontrolled flow. Only at the beginning of
the gust is a larger deviation of y1 from its setpoint r1 visible. As discussed with regard to the
LPV control design in section 4.6, the bandwidth of the closed loop is limited to frequencies f <
7Hz. Due to a waterbed effect arising from the input time-delay of the actuators, disturbances
at higher frequencies are slightly amplified by the feedback loop. This may explain the overshoot
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Figure 4.43: Experimental results obtained with combined feedback and feedforward LPV active
flow control in comparison with the natural flow for similar gusts with a maximum cross-wind
angle βw ≈ 10◦ at ReL = 4 · 105. The resulting lateral vehicle response is simulated online and
replicated in the wind tunnel during the experiment, with scaled parameters corresponding to
a driving speed v = 120km/h of a full-sized vehicle.

observed for the drag coefficient y1.
For the second output variable y2, the LPV controller performs better in reference tracking and
disturbance suppression. This is partially due to the additional feedforward control applied for
this output channel. Control of y2 is also easier because of the almost perfectly linear dynamics
of side-force and yaw-moment coefficients, which only vary with free-stream velocity as discussed
in section 4.4.3 with regard to LPV model identification.
The slow increase of the controlled output variable y2 has several benefits. First of all, only fast
variations are suppressed by the controller. This effectively gives the driver enough time to react
to a gust and he can easily compensate for the remaining constant and slowly varying effects
of cross-wind on lateral vehicle dynamics. Second, a larger control input is only needed during
fast changes of the cross-wind angle βw, as in plot (i). This enables an efficient drag reduction
even during cross-wind gusts.
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As pointed out earlier, the surrogate variable y2 represents the weighted sum of side-force and
yaw-moment coefficients and approximates their combined effect on the lateral vehicle response.
Controlling y2 to its reference trajectory r2 results in a small increase in side force during the
cross-wind transient, see plot (e). By contrast, the yaw moment shown in Fig. 4.43 (g) is first
reduced to negative values to compensate for the effect of the side force increase on the lateral
vehicle response. When the cross-wind angle βw approaches a steady value, both the side-force
and yaw-moment coefficients reach values similar to those from the natural flow.
Thus, the controller suppresses disturbances acting on y2 only in a frequency range where the
driver is not able to react. This results in a significantly smaller lateral deviation yl of the
vehicle and in a larger reduction of the peaks in lateral acceleration al and yaw rate ψ̇, see Fig.
4.43 (b), (d) and (f), respectively. The driver thus needs less steering effort to compensate for
the remaining effect of the cross-wind on lateral vehicle dynamics.

4.7.2 Performance of LPV versus robust feedback control

As discussed in section 4.4, the actuated flow dynamics exhibit a nonlinear, parameter-dependent
behavior. For the robust control design, these characteristics are taken into account by iden-
tifying a large set of linear black-box models at several operating points for different cross-
wind angles, free-stream velocities and actuation amplitudes. All nonlinearities and parameter-
dependencies are described by an uncertainty model that encompasses all possible deviations of
the plant dynamics from a nominal model. The uncertainty description is taken into account
via adequate weights in the mixed-sensitivity design of the robust feedback controller presented
in section 4.6.1. Whereas robust stability of the closed-loop is guaranteed with regard to the
chosen unstructured multiplicative output certainty, robust performance is not achieved by the
robust H∞ controller, see section 4.6.1, Fig. 4.32 (d).
By contrast, the LPV feedback control design takes the parameter-dependent plant character-
istics explicitly into account. The dynamics of the actuated flow vary proportionally with the
free-stream velocity. Additionally, the gain of the drag coefficient with respect to wind- and
leeward actuation depends on the current cross-wind angle to which the vehicle is exposed. Of
course, some nonlinearities of the actuated flow are not captured, but the LPV models identified
in section 4.4.3 describe the flow characteristics over the entire operating regime significantly
better than linear models.
In order to assess the advantages achieved by LPV control over robustH∞ control, the worst case
sensitivities Sp,H∞ and SLPV for each controller are determined by evaluating the closed-loop
transfer functions based on the LPV model for the range of free-stream velocities 11.4m/s ≤
u∞ ≤ 22.8m/s and cross-wind angles −10◦ ≤ βw ≤ 10◦. The maximum singular values of the
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worst case sensitivities are shown in Fig. 4.44 in comparison with the magnitude |1/wS | of the
inverse of the sensitivity weight. Here, the LPV controller fulfills the specification very well
and achieves a worst case bandwidth of about 5.5 Hz. The upper bound for the sensitivity is
only slightly exceeded in the range 10Hz < f < 20Hz. Compared with the LPV controller, an
inferior performance of the robust controller is to be expected, with a worst case bandwidth of
about 4.6 Hz and large peak of the sensitivity at higher frequencies.
The performance of both feedback controllers is tested in the cross-wind gust experiments shown
in Fig. 4.45. For the experiment with the robust H∞ controller, a large peak followed by an
undershoot occurs in the drag coefficient at the beginning of the gust, see plot (a). As expected
from the evaluation of the worst case sensitivity, the LPV controller performs better, especially
in terms of suppressing disturbances acting on the drag coefficient. This is attributed to the fact
that the LPV controller takes the gain variation of the actuated flow under side-wind conditions
explicitly into account. Furthermore, the LPV feedback controller tracks the reference variable
r2 slightly better than the robust H∞ controller. This results in a smaller lateral deviation yl
and in reduced oscillations of the lateral acceleration al and of the steering angle δ.
These results show the advantages of the LPV approach for active flow control, although the
performance gains are not large when compared with robust control. However, the time and
effort for identifying an LPV model and synthesizing an LPV controller are comparable to the
robust approach, which requires extensive experiments to identify a large enough set of mod-
els to capture all nonlinearities and parameter-dependencies within the uncertainty description.
Furthermore, the LPV “gray-box” approach gives more insight by modeling the underlying
nondimensional flow physics more accurately. This makes predictions for other free-stream ve-
locities and vehicle dimensions possible.
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Figure 4.45: Experimental results obtained with robust H∞ and LPV feedback control in com-
parison with the natural cross-wind gust response at ReL = 4 · 105.
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4.7.3 Performance of LPV feedback versus LPV feedforward control

Feedback control generally offers the benefit of suppressing unmodeled disturbances and of be-
ing able to compensate for inaccuracies between plant model and actual process. However, this
usually comes at the price of amplifying disturbances in a certain frequency range, especially if
time delays or positive zeros are present in the plant transfer function [121], as it is the case
here for the actuated flow dynamics. This drawback can be partially alleviated by an additional
feedforward control component.
The feedforward LPV controller presented in section 4.6.4 is designed to suppress disturbances
acting on y2 such that it supports the LPV feedback controller in a frequency range where the
latter is not effective or may even amplify disturbances. In the following, the performance of
LPV feedback control, LPV feedforward control and combined LPV control is evaluated by their
closed-loop frequency response and by their effect on the lateral vehicle response in cross-wind
gust experiments.
Fig. 4.46 (a) shows the frequency response of y2 to cross-wind disturbances βw for the three
different cases of controlled flow in comparison with the natural flow characteristics. The corre-
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Figure 4.46: Comparison of the natural and the controlled frequency response of the output
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gusts βw at ReL = 4 · 105.

sponding frequency response of the lateral vehicle dynamics is shown in Fig. 4.46 (b) and (c).
When only LPV feedback control is applied in combination with the dynamic reference filter
disturbances are well suppressed in the frequency range 1Hz < f < 7Hz. However, a waterbed
effect occurs due to the input time-delays of the actuators, resulting in a disturbance amplifica-
tion for the frequencies f > 10Hz. In the case of exclusive LPV feedforward control a slightly
smaller disturbance suppression is achieved than with LPV feedback control, but over a signif-
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icantly larger frequency range. What is more, the disturbances are not amplified. However,
feedforward control can suppress only disturbances that are detected based on the measured
changes of the cross-wind angle βw. The combined feedforward and feedback LPV control strat-
egy shows good disturbance suppression over the entire frequency range. The feedforward part
reduces the frequency response to disturbances in the range where feedback control is no longer
effective, thus decreasing the waterbed effect.
These advantages are also clearly visible in the frequency response of the lateral deviation yl
and of the lateral acceleration al to cross-wind gusts βw, see Fig. 4.46 (b, c). However, the
weighting approach for the surrogate variable y2 approximates the effect of cS and cN on lateral
vehicle response only for a frequency range up to about 7 Hz as discussed in section 4.5.4. This
leads to an inaccurate suppression of disturbances at higher frequencies, less than optimal for
the lateral vehicle response. For this reason the frequency characteristics of the driver-vehicle
system with AFC exhibit a slightly worse performance than what would be expected from the
disturbance transfer functions shown in Fig. 4.46 (a). This drawback from the relatively simple
weighting approach for y2 could be potentially circumvented by a more sophisticated LPV H∞
control synthesis that includes the driver-vehicle system in the generalized plant.
A comparison of the transient response for the three cases with feedback, feedforward and com-
bined LPV control is shown in Fig. 4.47 for similar cross-wind gust experiments at ReL = 4·105.
The feedforward controller alone performs quite well at reducing the peak in y2 at the beginning
of the gust, see plot (c). This results in a smaller lateral vehicle response relative to the uncon-
trolled case, as shown in the right column of Fig. 4.47. However, the feedforward controller is
only designed for suppressing disturbances acting on y2. Only a small drag reduction is thus
achieved. By contrast, LPV feedback control provides the benefit of reference tracking and
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Figure 4.47: Experimental results obtained with feedforward (FF), feedback (FB) and combined
FF & FB LPV control, in comparison with the natural cross-wind gust response at ReL = 4·105.
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disturbance suppression for both output variables, even for unmodeled disturbances. As shown
in Fig. 4.47 (a) and (c), the drag coefficient y1 and the weighted sum y2 of the side-force and
yaw-moment coefficients follow their reference trajectories well, with a better performance with
regard to the second output variable. In terms of the response of the driver-vehicle system, the
lateral deviation yl during the gust is smaller than in the case with pure feedforward control.
The lateral acceleration al is reduced in amplitude when compared with the uncontrolled case,
but less than by feedforward control. Furthermore, the oscillations in al are shifted to a higher
frequency by feedback control due to the waterbed effect. These observations coincide with the
projected frequency response shown in Fig. 4.46 (b) and (c).
Applying additional feedforward control in the combined strategy improves reference tracking
and disturbance suppression of y2, which also translates into a further reduction of the lateral
vehicle deviation yl and especially of the lateral acceleration al, see Fig. 4.47 (b) and (d). As
expected, the transient response of the drag coefficient is almost identical for the cases with pure
feedback LPV control and combined LPV control, since the additional feedforward controller is
only designed to suppress disturbances acting on y2.
These results demonstrate that LPV feedback control alone already performs very well with
AFC for bluff bodies. If fewer sensors are available and no reference tracking with zero steady-
state error is required, feedforward control alone may yield sufficient performance. However, the
combined LPV control strategy yields the benefits of both approaches, and their respective con-
tribution to the overall control performance can be easily adjusted via the weights applied during
the LPV H∞ control synthesis. This way, drawbacks of feedback control - such as disturbance
amplification at higher frequencies - can be alleviated by additional feedforward control.

4.7.4 LPV control performance and lateral vehicle response for various free-
stream velocities

In this section the performance of the combined LPV control strategy is discussed for various
free-stream velocities corresponding to different simulated driving speeds in the model for lat-
eral vehicle dynamics. Again, both the predicted frequency characteristics and the transient
response to cross-wind gusts in wind tunnel experiments are considered here.
The LPV models identified in sections 4.2.3 and 4.4.3 take into account the parameter-dependent
dynamics of the cross-wind gust response and of the actuated flow characteristics with regard
to varying free-stream velocity. The corresponding LPV feedback and feedforward control de-
sign guarantees stability and performance for a range of free-stream velocities 11.4m/s ≤ u∞ ≤
22.8m/s, corresponding to Reynolds numbers 3 · 105 ≤ ReL ≤ 6 · 105. To evaluate the effect
of LPV control on the lateral vehicle response, the driving speed of the real-time simulation of
the driver-vehicle model is coupled proportionally to free-stream velocity. This corresponds to
a simulated range of driving velocities 90 km/h ≤ vv ≤ 180 km/h of the real vehicle.
Figure 4.48 shows the frequency response of the output variable y2, which corresponds to the
weighted sum of side-force and yaw-moment coefficients, as well as of the lateral deviation
yl and of the acceleration al to changes in cross-wind angle βw for three Reynolds numbers
ReL,1 = 3 · 105, ReL,2 = 4 · 105 and ReL,3 = 5 · 105. To this end, the LPV model and controllers
are evaluated at frozen parameter values in terms of a nominal cross-wind angle βw = 0◦ and
free-stream velocities u∞,1 = 11.4m/s, u∞,2 = 15.2m/s and u∞,3 = 19.0m/s. The frequency
responses shown in Fig. 4.48 (a-c) suggest a good suppression of disturbances acting on y2 by
the combined LPV control strategy over the entire range of free-stream velocities. Also, the lat-
eral displacement and acceleration are reduced significantly by closed-loop AFC at all examined
driving speeds, but improvements are only achieved for frequencies up to ≈ 7Hz. In the case of
the lateral vehicle displacement this does not represent a disadvantage, since its frequency re-
sponse rolls off in this range anyway. However, the acceleration response is slightly increased for
f > 7Hz when compared with the natural flow. This behavior is not observed to the same degree
in the frequency response of the controlled output y2 to cross-wind gusts. Further improvements
may be achieved by a more advanced control design, such as by integrating the driver-vehicle
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Figure 4.48: Frequency response of the output variable y2 (a-c), the lateral displacement yl
(d-f) and the lateral acceleration al (g-i) for cross-wind gusts βw at three Reynolds numbers
ReL,1 = 3 · 105, ReL,2 = 4 · 105 and ReL,3 = 5 · 105. The colored lines correspond to the flow
controlled by the combined feedback and forward LPV strategy; the gray lines indicate the
natural gust response.

model in the augmented LPV plant used for control synthesis. This would better capture the
effect of AFC on lateral vehicle dynamics than the fixed weighting approach of side-force and
yaw-moment coefficients in the calculation of the surrogate variable y2.
As expected from the frequency response of the disturbance transfer functions for the controlled
flow, the combined feedback and feedforward LPV control strategy achieves a good performance
in wind tunnel experiments with cross-wind gusts at varying free-stream velocities. The cor-
responding results are shown in Fig. 4.49. At all three Reynolds numbers studied here, the
LPV controller is able to regulate the output variables very well to their reference trajectories.
Only the peaks observed in the drag coefficient at the beginning of the gust become larger with
increasing free-stream velocities, see plots (a-c). Since the cross-wind gust also elapses faster as
shown in Fig. 4.49 (p-r), the disturbances also occur in a higher frequency range. Thus, they are
harder to suppress by the feedback part of the LPV controller, whose bandwidth is limited by
a waterbed effect caused by the input time-delay of the actuators. The performance in terms of
disturbance suppression for the drag coefficient could also be improved by an additional feedfor-
ward part, similar to the design carried out for the second output variable y2. Here, an almost
perfect tracking of the reference trajectories r2 is achieved by the combined LPV controller, as
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shown in Fig. 4.49 (d-f). At all three free-stream velocities studied here, this results in a signif-
icantly improved lateral vehicle response in terms of reduced lateral displacement (g-i), smaller
lateral acceleration (j-l) and less steering effort for the driver (m-o) when compared with the
natural, uncontrolled case without AFC.
As mentioned above, improvements on the presented control strategy may be achieved by in-
tegrating the driver-vehicle model into the generalized plant to avoid the drawbacks associated
with the fixed weighting approach of side-force and yaw-moment coefficients. Furthermore, the
presented calculation of the reference values for the drag coefficient is based on a look-up table
with setpoints that are only optimal under steady-state conditions with constant side wind.
This does not represent the most energy-efficient possibility under the influence of transient,
time-varying gusts. To improve on this point, an AFC strategy based on economic model pre-
dictive control could be applied to calculate optimal control inputs that minimize the overall
power consumption of the vehicle under the presence of cross-wind disturbances. However, the
required computational effort may be prohibitive for its real-time application to AFC. Instead,
a mixed H2/H∞-LPV control approach may be applied, and could be designed in such a way
that the H2-norm of the transfer function from cross-wind disturbances to the overall power
consumption of the vehicle is minimized while taking H∞-constraints into account to guarantee
performance of the closed-loop in disturbance suppression, reference tracking and control effort.
All in all, the experimental results demonstrate that the cross-wind sensitivity can be signifi-
cantly improved by closed-loop AFC while efficiently reducing the drag coefficient, even under
unsteady flow conditions. The presented LPV modeling and control methods are well suited
to take into account the parameter-dependencies of the actuated flow. This results in a better
performance than that of robust control methods. Furthermore, the LPV approach provides
the possibility of predicting the performance and frequency characteristics for other vehicle di-
mensions and free-stream velocities than the ones used in the wind tunnel experiments. This
is carried out and discussed in the following section for a full-sized vehicle at realistic driving
speeds velocities.

4.7.5 Estimated transient aerodynamic characteristics and closed-loop LPV
control performance for a full-sized vehicle

The LPV structure of the identified models for the unsteady cross-wind gust response and for
the actuated flow dynamics – see sections 4.2.3 and 4.4.3, respectively – provides the possibility
of estimating the expected transient aerodynamic characteristics and control performance for a
full-sized vehicle at realistic driving velocities.
To this end, the corresponding LPV models are evaluated for a vehicle length l = 5.6m and a
range of free-stream velocities 20m/s ≤ u∞ ≤ 50m/s and cross-wind angles −10◦ ≤ βw ≤ 10◦,
whereas the dynamics of the actuator system are assumed to remain identical to those of the
experimental setup. This supposition is realistic, since the same or smaller tube length should
be applicable in a real vehicle, and the utilized pressure regulators can provide enough mass flow
for the full-sized vehicle.
The frequency responses of these models are shown in the left column of Fig. 4.50 for a sample
driving speed of 120 km/h and a nominal cross-wind angle βw = 0◦. As can be seen from plot
(a), the unsteady response of the drag coefficient cD to cross-wind angle disturbances βw starts
to roll off at very low frequencies around f ≈ 1Hz. By contrast, the dynamics of the coefficients
for side force and yaw moment are significantly faster, with cut-off frequencies around 20Hz and
4Hz, respectively. In particular, the magnitude response of the yaw moment coefficient shows
a small amplification peak for disturbances in the range 1Hz ≤ f ≤ 3Hz. These character-
istics lead to a transient overshoot of the yaw moment, as reported in many publications, see
e.g. [120, 106, 114, 133]. Furthermore, the peak in the magnitude response overlaps with the
range of frequencies 1.0Hz ≤ f ≤ 1.5Hz in which a significant amount of lateral turbulence
is present for high-way driving in gusty cross-wind conditions, as described by Wojciak [145].
Hence, transient effects should be taken into account when assessing the characteristics of drag
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Figure 4.50: Predicted frequency responses for a full-sized vehicle with length Lreal = 5.6m
at a driving speed vv,real = 120 km/h and a nominal cross-wind angle βw = 0◦, based on the
identified LPV models for the unsteady aerodynamic cross-wind gust response (a), the actuated
flow dynamics (c) and the linear actuator dynamics (e). The right column shows the sensitivity
with LPV feedback control (b), and the magnitude responses of the transfer functions for cross-
wind angle disturbances βw to output variable y2 (d) and to the lateral vehicle acceleration al (f)
for the baseline case relative to feedback LPV control and to combined feedback and feedforward
LPV control, respectively.

and yaw-moment coefficients, whereas the side-force coefficient may well be approximated by a
quasi-steady approach.
The frequency characteristics of the force and moment coefficients for the actuated flow are shown
in Fig. 4.50 (c). Here, only the response to the instantaneous jet blowing ratio u∗a1jet = ua1jet/u∞
for a nominal cross-wind angle βw = 0◦ is given, since the characteristics for the other actuator
channels are similar. With the exception of the side-force coefficient, the magnitude responses
indicate that the dynamics of the actuated flow are faster than the transient effects associated
with the unsteady cross-wind gust response. Provided that the bandwidth of the actuator sys-
tem is sufficient, estimated here to be approximately 20 Hz, this makes possible an effective
suppression of the unsteady aerodynamic effects by closed-loop AFC.
To this end, LPV feedback and feedforward controllers are designed here with the methods
described in section 4.6. For the LPV controller synthesis for the full-sized vehicle, the same
structure of the weights for sensitivity and the control effort is applied as for the wind tunnel
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model, but their time constants are chosen five times longer to account for the slower dynamics
of the upscaled LPV models. The result of the LPV H∞ control design is shown in Fig. 4.50
(b) for the maximum and minimum singular values of the closed-loop sensitivity for a driving
velocity vv,real = 120 km/h at a nominal cross-wind angle βw = 0◦. For these conditions, a
bandwidth of approximately 1.6Hz is achieved by LPV closed-loop AFC. This is sufficient to
ensure an efficient reduction of the drag coefficient whose response to cross-wind disturbances
rolls off for frequencies f ≥ 1Hz as shown in plot (a). However, the sensitivity of the closed-
loop shows a waterbed effect with a small amplification of disturbances in the frequency range
2Hz ≤ f ≤ 20Hz. Analogous to the wind-tunnel case, this stems from the time delay at the
input of the pressure regulators in the actuator system.
The combined effect of side-force and yaw-moment coefficients on lateral vehicle dynamics is
approximated by the second output variable y2. Its frequency response to cross-wind angle dis-
turbances is depicted in Fig. 4.50 (d) for the baseline case in comparison with LPV feedback
control (FB AFC) and combined LPV feedback and feedforward control (FB & FF AFC). Fol-
lowing the design presented in section 4.6.3, a dynamic reference filter is taken into account,
which lets slow disturbances at frequencies f < 0.2Hz pass through, as these can be easily
compensated for by the driver. Above this frequency, feedback LPV AFC provides an effective
suppression of disturbances up to the closed-loop bandwidth of about 1.6Hz. In the higher fre-
quency range, the disturbance response can be improved by additional feedforward LPV control.
As can be seen from Fig. 4.50 (f), combined feedback and feedforward LPV control results in
a significantly reduced lateral vehicle acceleration response to cross-wind when compared with
the baseline case. However, the performance obtained for the output variable y2 is not achieved
to the same degree for lateral vehicle acceleration. As mentioned in the previous section, this
is due to the fixed weighting of side-force and yaw-moment coefficients and may be improved
by integrating the driver-vehicle model in the generalized plant for LPV control synthesis. Nev-
ertheless, the LPV controller presented here provides a significant improvement in the overall
cross-wind sensitivity and a sufficient bandwidth for an efficient drag reduction in unsteady flow
conditions.
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Chapter 5

Conclusion

Road vehicles encounter various unsteady flow conditions, of which transient cross-wind has
an especially large impact not only on driving safety, but also on fuel consumption due to an
increased drag coefficient. Here, Active Flow Control technology can provide a substantial im-
provement, as it is able to adapt to changing flow conditions. This can be achieved via a suitable
multivariable closed-loop flow control strategy, as demonstrated by the experimental results pre-
sented in this thesis.
Coanda blowing as proposed by Englar [34, 35] represents an effective and robust way to actu-
ate the bluff body wake. In the case of the 2D and 3D bluff bodies investigated here, the drag
coefficient can be efficiently reduced by 35 % and by 15 %, respectively. Although this requires
rather high momentum coefficients with blowing velocities above the free-stream velocity, overall
net power savings of up to 25 % and 8 % are achieved for the 2D and 3D bluff bodies, respec-
tively. Furthermore, side-force and yaw-moment coefficients can be manipulated by asymmetric
Coanda blowing to counter cross-wind effects.
The design of a corresponding closed-loop AFC strategy requires a model of the actuated flow.
Its typically nonlinear dynamics can be captured with well-established approaches based on a set
of linear black-box models identified from experiments at different operating points. Based on
these models, a linear robust controller can be designed that provides a satisfactory performance
in the multivariable case for AFC in cross-wind conditions, as shown by the wind tunnel results
obtained with the 2D and 3D bluff bodies.
Yet unsteady aerodynamic phenomena usually show a parameter-dependent behavior, with dy-
namics that vary with free-stream velocity and other parameters such as cross-wind angle. These
dependencies can be better captured by linear parameter-varying (LPV) models than by linear
black-box models. To this end, this thesis proposes and applies a novel, practical way to identify
gray-box LPV models from experimental data. This also allows for the design of LPV H∞ gain-
scheduling controllers whose dynamics are adjusted online according to the current parameter
value. LPV control thus delivers a superior performance relative to linear robust control, as is
shown for the 3D bluff body studied here.
The same LPV identification approach can be applied to model the transient cross-wind gust
response. This captures the dependency of unsteady aerodynamic characteristics on free-stream
velocity, allowing an investigation of its interaction with the lateral vehicle response for various
driving speeds. Here, this is carried out for the cross-wind gust response of the 3D bluff body and
for a single-track and virtual driver model with coefficients corresponding to a typical delivery
van. Mostly due to the transient overshoot of the yaw moment, the overall frequency response
of the lateral vehicle dynamics is significantly different from that of a quasi-steady approach.
This is most pronounced at low to medium driving velocities up to about 120 km/h, though the
magnitude response of the lateral vehicle acceleration is fairly small at these driving velocities.
At higher speeds, the cross-wind sensitivity increases, but unsteady aerodynamic effects have a
negligible influence.
However, the dynamic lateral response of the vehicle and the driver behavior should always be
taken into account when assessing cross-wind sensitivity. To this end, the novel dynamic model
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support system presented in this thesis permits an experimental investigation of the interaction
between unsteady aerodynamics and lateral vehicle motion. The measured transient side force
and yaw moment serve as input variables for a real-time simulation of a single-track model and
a virtual driver, on whose basis the wind tunnel model is moved in the test section. This way,
the lateral dynamics of arbitrary vehicles can be replicated and all transient aerodynamic effects
are realistically captured during the experiment. The results confirm that the transient char-
acteristics of the aerodynamic cross-wind gust response do have an important influence on the
lateral vehicle response, whereas unsteady effects from the lateral motion on the aerodynamics
are negligible.
The developed LPV controller for feedback AFC suppresses disturbances acting on side-force
and yaw-moment coefficients during cross-wind gusts in a way which is beneficial for the lat-
eral vehicle response. The corresponding requirements for the closed-loop transfer functions are
specified via adequate frequency-dependent weights for sensitivity and control effort. In combi-
nation with a suitably designed dynamic reference filter, the closed control loop lets disturbances
at low frequencies pass through. These can be easily compensated for by the driver, but the
feedback controller suppresses them in a frequency range where the driver cannot react. This
minimizes the required control effort and helps achieve an efficient drag reduction in unsteady
flow conditions while simultaneously improving cross-wind sensitivity. The sensitivity of the
closed loop can be further reduced by an additional feedforward LPV controller. It is designed
based on the identified LPV disturbance models for the unsteady cross-wind gust response and
takes parameter variations of free-stream velocity and cross-wind angle into account. The cross-
wind gust experiments with online replication of the lateral vehicle dynamics demonstrate the
effectiveness of the combined feedback and feedforward LPV controller. To this end, the lateral
vehicle displacement during gusts is reduced by more than 50 % relative to the baseline case
without AFC.
All in all, the results show how closed-loop AFC can be used to efficiently reduce the aero-
dynamic drag in realistic, unsteady flow conditions. Furthermore, additional benefits such as
reduced cross-wind sensitivity make the application of this technology attractive, as it can also
help increase driving safety and comfort for passengers.
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[71] Krajnović, S., H. E. Hafsteinsson, E. Helgason, and B. Basara: Shape optimization of a
bus for crosswind stability. In Euromech Colloquium 509: Vehicle Aerodynamics, pages
162–173, Berlin, 2009.

[72] Krantz, W.: An Advanced Approach for Predicting and Assessing the Driver’s Response
to Natural Crosswind. PhD thesis, Universität Stuttgart, 2011.
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[89] Muminović, R., N. Werner, J. Pfeiffer, and R. King: Drag reduction of two 2D bluff bodies
in a tandem arrangment through robust model predictice control. In 5th AIAA Flow Control
Conference, AIAA 2010-4835, Chicago, Illinois, USA, 2010.
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Appendix A

State-space equations of the driver-
vehicle model

Single-track model

The single-track model presented in section 2.3.1 consists of two differential equations

β̇ = a11β + a12ψ̇ + b1δ + e1Fy, (A.1)

ψ̈ = a21β + a22ψ̇ + b2δ + e2Mz, (A.2)

for the side-slip angle β and the yaw angle ψ, with the coefficients

a11 = −Cαr + Cαf

mvv
, a12 =

CαrLr − CαfLf

mv2v
− 1,

a21 =
CαrLr + CαfLf

Jz
, a22 = −CαrL

2
r + CαfL

2
f

Jzvv
,

b1 =
Cαf

ismvv
, b2 =

CαfLf

isJz
, e1 =

1

mvv
, e2 =

1

Jz
. (A.3)

For small angles ψ and β, lateral velocity vl and acceleration al can be approximated by

vl ≈ (ψ + β)vv , (A.4)

al ≈ (ψ̇ + ψ̇)vv. (A.5)

Transferring Eq. (A.1,A.2,A.4,A.5) into the state-space domain using

xv =
[
β ψ ψ̇ y

]T
, uv = δ, dv =

[
Fy Mz

]T
, y

v
=
[
yl vl al

]T
, (A.6)

results in

ẋv =

⎡
⎢⎢⎣
a11 0 a12 0
0 0 1 0
a21 0 a22 0
vv vv 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
Av

xv +

⎡
⎢⎢⎣
b1
0
b2
0

⎤
⎥⎥⎦

︸ ︷︷ ︸
Bv

uv +

⎡
⎢⎢⎣
e1 0
0 0
0 e2
0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
Ev

dv, (A.7)

y
v
=

⎡
⎣ 0 0 0 1

vv vv 0 0
a11vv 0 (a12 + 1)vv 0

⎤
⎦

︸ ︷︷ ︸
Cv

xv +

⎡
⎣ 0

0
b1vv

⎤
⎦

︸ ︷︷ ︸
Dv

uv +

⎡
⎣ 0 0

0 0
e1vv 0

⎤
⎦

︸ ︷︷ ︸
F v

dv, (A.8)

for the lateral motion y
v
of the vehicle in response to steering input uv and cross-wind distur-

bance input dv.
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Virtual driver model

As described in section 2.3.2, the control law of the virtual driver model proposed by Risse [105]
and Mitschke and Wallentowitz [85] is given by

δ =
[

−VM
1+TIs

−VM
1+TIs

TP
−VM
1+TIs

T 2
P
2

]
Gdelay(s)

⎡
⎣ylvl
al

⎤
⎦+

[
kδFy

1+TSs
kδMz
1+TSs

]
Gdelay(s)

[
Fy

Mz

]
, (A.9)

with

Gdelay(s) =
1− τ

2s+
τ2

12s
2

1 + τ
2s+

τ2

12s
2
. (A.10)

Transferring Eq. A.9 and A.10 into the state-space domain with state vector xdrv and input,
disturbance and output vectors

udrv = y
v
=
[
yl vl al

]T
, ddrv = dv =

[
Fy Mz

]T
, ydrv = uv = δ, (A.11)

respectively, results in the state-space model

ẋdrv =

⎡
⎢⎢⎣

0 1 0 0
− 12

τ2
− 6

τ 1 1
0 0 − 1

TS
0

0 0 0 − 1
TI

⎤
⎥⎥⎦

︸ ︷︷ ︸
Adrv

xdrv +

⎡
⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

−VM
TI

−VMTP
TI

−VMT 2
P

2TI

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Bdrv

udrv +

⎡
⎢⎢⎢⎣

0 0
0 0

kδFy

TS

kδMz
TS

0 0

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Edrv

ddrv,

(A.12)

ydrv =
[
0 −12

τ 1 1
]︸ ︷︷ ︸

Cdrv

xdrv +
[
0 0 0

]︸ ︷︷ ︸
Ddrv

udrv +
[
0 0

]︸ ︷︷ ︸
F drv

ddrv, (A.13)

for the virtual driver’s steering response to inputs udrv, which correspond to changes in lateral
displacement, velocity and acceleration of the vehicle, as well as to disturbance inputs ddrv due
to cross-wind.

Driver-vehicle model

Combining Eq. A.7 and A.8 for the lateral vehicle dynamics and Eq. A.12 and A.13 for the
virtual driver dynamics into a single set of state-space equations results in the overall model[

ẋv
ẋdrv

]
=

[
Av BvCdrv

BdCdrv Adrv +BdrvDvCdrv

]
︸ ︷︷ ︸

Avd

[
xv
xdrv

]
+

[
Ev

BdrvF v +Edrv

]
︸ ︷︷ ︸

Evd

dvd, (A.14)

y
vd

=
[
Cv DvCdrv

]︸ ︷︷ ︸
Cvd

[
xv
xdrv

]
+ F v︸︷︷︸

F vd

dvd, (A.15)

which describes the response y
vd

=
[
yl vl al

]T
of the driver-vehicle feedback loop to distur-

bance inputs dvd =
[
Fy Mz

]T
.
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Appendix B

2D bluff body

B.1 Estimation of force and moment coefficients from surface-

pressure measurements

As described in section 3.4.3, the coefficients for drag, side force and yaw moment of the 2D bluff
body can be estimated from a weighted sum of pressure coefficients. The corresponding weighting
parameters ϑcD , ϑcS and ϑcN are determined from a series of steady-state measurements at
various free-stream velocities, cross-wind angles and actuation amplitudes via the standard linear
least squares optimization as described by Nelles [91]. Here, the drag coefficient can be estimated
by

ĉD =
[
cp2 cp24 cp,b 1

]
ϑcD , with ϑcD =

⎡
⎢⎢⎣

0.3295 ± 4.99 · 10−3

0.3370 ± 6.49 · 10−3

−0.5957 ± 6.61 · 10−3

0.1226 ± 3.10 · 10−3

⎤
⎥⎥⎦ , (B.1)

with a relative standard deviation of the estimation error of σe,cD/max(cD) = 3.31%. The
weighting parameters for the side-force coefficient are determined as

ĉS =
[
cp2 cp11 cp15 cp24

]
ϑcS , with ϑcS =

⎡
⎢⎢⎣
−1.0229 ± 9.31 · 10−3

−2.9837 ± 1.35 · 10−2

3.2546 ± 1.47 · 10−2

0.6081 ± 9.58 · 10−3

⎤
⎥⎥⎦ , (B.2)

and for the yaw-moment coefficient as

ĉN =
[
cp2 cp11 cp15 cp24

]
ϑcN , with ϑcN =

⎡
⎢⎢⎣
−0.3231 ± 2.11 · 10−3

0.8181 ± 3.07 · 10−3

−0.8844 ± 3.33 · 10−3

0.3304 ± 2.17 · 10−3

⎤
⎥⎥⎦ , (B.3)

with σe,cS/max(cS) = 1.63% and σe,cN/max(cN ) = 2.72%, respectively. A comparison of
measured and estimated coefficients is shown in Fig. B.1.
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Figure B.1: Comparison of the measured coefficients for drag cD (a), side force cS (b) and
yaw moment cN (c), respectively, with their surrogate values ĉD, ĉS , ĉN as estimated from
surface-pressure measurements. Plots (d-f) show the relative errors and the confidence interval
expressed in terms of the double relative standard deviation.
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Appendix C

3D bluff body

C.1 Estimation of cross-wind angle, total pressure and force and

moment coefficients from surface-pressure measurements

The cross-wind angle βw, the total pressure pt and the coefficients for drag, side force and yaw
moment of the 3D bluff body, cD, cS and cN , respectively, can be estimated from surface-pressure
measurements as described in Sec. 4.2.2. To this end, the 3D bluff body was subjected to various
constant cross-wind angles, free-stream velocities and actuation amplitudes. The corresponding
weighting parameters ϑβw

, ϑpt, ϑcD , ϑcS and ϑcN are determined with the method for linear
least squares optimization as described by Nelles [91]. The total pressure is estimated by

p̂t = (p13 + p15)ϑpt , with ϑpt = 0.5852 ± 2.9 · 10−4, (C.1)

with a relative standard deviation of the estimation error σe,pt/max(pt) = 1.01%. The cross-
wind angle can be approximated by

β̂ =
[
(cp13 − cp15) 1

]
ϑβw

, with ϑβw
=

[
31.927 ± 5.2 · 10−2

0.585 ± 8.7 · 10−3

]
(C.2)

with σe,βw/max(βw) = 1.16%. Estimates for the force and moment coefficients are given by

ĉD =
[
cp,b 1

]
ϑcp,b , with ϑcD =

[−0.7148 ± 1.04 · 10−2

0.3575 ± 1.54 · 10−3

]
, (C.3)

ĉS =
[
cp4 cp11 cp17 cp24

]
ϑcS , with ϑcS =

⎡
⎢⎢⎣

1.2716 ± 8.01 · 10−3

1.2281 ± 2.90 · 10−3

−1.1297 ± 2.89 · 10−3

−1.2355 ± 7.73 · 10−3

⎤
⎥⎥⎦ , and (C.4)

ĉN =
[
cp4 cp11 cp17 cp24

]
ϑcN , with ϑcN =

⎡
⎢⎢⎣
−0.9991 ± 6.36 · 10−3

0.2773 ± 2.30 · 10−3

−0.3316 ± 2.29 · 10−3

0.9664 ± 6.13 · 10−3

⎤
⎥⎥⎦ , (C.5)

with σe,cD/max(cD) = 2.29%, σe,cS/max(cS) = 0.93% and σe,cN/max(cN ) = 2.36%. A com-
parison of the measured and estimated values is shown in Fig. C.1 and C.2, respectively.
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Figure C.1: Comparison of the cross-wind angle βw (a) and the total pressure pt (c) as measured
by the five-hole probe with their respective surrogate values β̂w and p̂t as estimated from surface-
pressure measurements. Plots (c-d) show the relative errors and the confidence interval expressed
in terms of the double relative standard deviation.
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C.2 Linear parameter-varying unsteady aerodynamic models

C.2.1 LPV models for the cross-wind gust response

Section 4.2.3 describes the identification of linear parameter-varying models for the cross-wind
gust response of the force and moment coefficients of the 3D bluff body. The disturbance input
vector

d∗(t) =
[
βw(t) p′t(t)/pt

]T
(C.6)

consists of the time-varying cross-wind angle βw(t) and the normalized total pressure fluctuation
p′t(t)/pt. For reasons of consistency the parameter vector

θ(t) =
[
u∞(t) u∞(t)βw(t)

]T
(C.7)

is the same as that for the LPV models for the actuated flow, although no dependency on
cross-wind angle was determined for the gust response.

Drag coefficient

For the dynamics of the drag coefficient the LPV state-space model

ẋcD,cwg(t) = u∞(t)
1

L
A∗

cD,cwg,1︸ ︷︷ ︸
AcD,cwg(θ)

xcD,cwg(t) + u∞(t)
1

L
E∗

cD,cwg,1︸ ︷︷ ︸
EcD,cwg(θ)

d∗
(
t− L

u∞(t)
T ∗
0

)
, (C.8)

y∗cD,cwg(t) = c∗TcD,cwgxcD,cwg(t), (C.9)

is identified, with the matrices

A∗
cD,cwg,1 =

[
0 −0.9918
1 −1.0084

]
, E∗

cD,cwg,1 =

[
0.0055 −0.0353
0.0017 0.6770

]
, c∗TcD,cwg =

[
0 1

]
, (C.10)

and a nondimensional input time-delay T ∗
0 = 1.

Side-force coefficient

The transient cross-wind gust response of the side-force coefficient is described by

ẋcS ,cwg(t) = u∞(t)
1

L
A∗

cS ,cwg,1︸ ︷︷ ︸
AcS,cwg(θ)

xcS ,cwg(t) + u∞(t)
1

L
B∗

cS ,cwg,1︸ ︷︷ ︸
EcS,cwg(θ)

d∗(t), (C.11)

y∗cS,cwg(t) = c∗TcS ,cwgxcS ,cwg(t), (C.12)

with the dimensionless state-space matrices

A∗
cS ,cwg,1 =

[
0 −34.1234
1 −15.624

]
, E∗

cS ,cwg,1 =

[
3.5823 −12.6537

−0.9940 −9.1167

]
, c∗TcS ,cwg =

[
0 1

]
. (C.13)

Yaw-moment coefficient

The LPV model for the response of the yaw-moment coefficient to cross-wind gusts has the
structure

ẋcN ,cwg(t) = u∞(t)
1

L
A∗

cN ,cwg,1︸ ︷︷ ︸
AcN ,cwg(θ)

xcN ,cwg(t) + u∞(t)
1

L
B∗

cN ,cwg,1︸ ︷︷ ︸
EcN ,cwg(θ)

d∗(t), (C.14)

y∗cN ,cwg(t) = c∗TcN ,cwgxcN ,cwg(t), (C.15)

with the nondimensional state-space matrices

A∗
cN ,cwg,1 =

[
0 −6.4628
1 −1.4282

]
, E∗

cN ,cwg,1 =

[
0.1038 0.2000
0.0094 −1.3027

]
, c∗TcN ,cwg =

[
0 1

]
. (C.16)
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C.2.2 LPV models for the actuated flow dynamics

The identification of the LPV models for the actuated flow dynamics is described in section
4.4.3. For these models the input vector

u∗afc = u∗a,jet(t) =
[
ua1,jet/u∞ ua2,jet/u∞ ua3,jet/u∞

]T
(C.17)

corresponds to the nondimensional instantaneous blowing velocities at the outlets of the three
Coanda actuators. The parameter vector is set at

θ(t) =
[
u∞(t) u∞(t)βw(t)

]T
. (C.18)

Drag coefficient

The response of the drag coefficient to Coanda blowing u∗afc = u∗a,jet is captured by the LPV
state-space model

ẋcD,afc(t) = u∞(t)
1

L
A∗

cD,afc,1︸ ︷︷ ︸
AcD,afc(θ)

xcD,afc(t) + u∞(t)
1

L

(
B∗

cD,afc,1 + βw(t)B
∗
cD,afc,2

)
︸ ︷︷ ︸

BcD,afc(θ)

u∗afc(t), (C.19)

y∗cD,afc(t) = c∗TcD,afc xcD,afc(t), (C.20)

with the nondimensional matrices

A∗
cD ,afc,1 =

[
0 −5.0708
1 −7.9656

]
, (C.21)

B∗
cD ,afc,1 =

[−0.0661 −0.0715 −0.1314
−0.2739 −0.2759 −0.3564

]
,B∗

cD,afc,2 =

[−0.0146 0.0146 0
−0.0019 0.0019 0

]
, (C.22)

c∗TcD,afc =
[
0 1

]
. (C.23)

Side-force coefficient

For the actuated flow dynamics of the side-force coefficient to input u∗afc = u∗a,jet an LPV state-
model

ẋcS ,afc(t) = u∞(t)
1

L
A∗

cS ,afc,1︸ ︷︷ ︸
AcS,afc(θ)

xcS ,afc(t) + u∞(t)
1

L
B∗

cS ,afc,1︸ ︷︷ ︸
BcS,afc(θ)

u∗afc(t), (C.24)

y∗cS,afc(t) = c∗TcS ,afc xcS ,afc(t), (C.25)

is identified, with the nondimensional matrices

A∗
cS ,afc,1

=

[
0 −78.1260
1 −12.1596

]
, B∗

cS ,afc,1
=

[−11.8633 −11.4598 −0.0158
−0.2464 −0.0079 −0.1891

]
, c∗TcS ,afc =

[
0 1

]
.

(C.26)

Yaw-moment coefficient

The dynamics of the yaw-moment coefficient for inputs u∗afc = u∗a,jet(t) in terms of Coanda
blowing at the trailing edges of the 3D bluff body are described by the LPV state-space model

ẋcN ,afc(t) = u∞(t)
1

L
A∗

cN ,afc,1︸ ︷︷ ︸
AcN ,afc(θ)

xcN ,afc(t) + u∞(t)
1

L
B∗

cN ,afc,1︸ ︷︷ ︸
BcN ,afc(θ)

u∗afc, (C.27)

y∗cN ,afc(t) = c∗TcN ,afc xcN ,afc(t), (C.28)
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for which the dimensionless matrices

A∗
cN ,afc,1 =

[
0 −27.5612
1 −5.1489

]
, B∗

cN ,afc,1 =

[
3.0172 −2.8125 0.0313
0.3563 −0.2693 0.0575

]
, c∗TcN ,afc =

[
0 1

]
,

(C.29)
are identified.

Overall LPV plant model for the 3D bluff body

An overall plant model for the response of the aerodynamic coefficients of the 3D bluff body
to Coanda actuation is obtained by combining the individual models for drag, side-force and
yaw-moment coefficients and for the actuator dynamics in a MIMO LPV state-space model.
The actuator dynamics are identified in section 4.4.1 and are described by a linear state-space
model

ẋa = Aaxa +Bau
∗
a, (C.30)

y∗
a
= Caxa, (C.31)

with

u∗a = u∗a,des =
[
ua1,des/u∞ ua2,des/u∞ ua3,des/u∞

]T
, (C.32)

y∗
a
= u∗a,jet =

[
ua1,jet/u∞ ua2,jet/u∞ ua3,jet/u∞

]T
. (C.33)

The overall LPV plant model has the structure

ẋafc = (Aafc,0 + θ1Aafc,1 + θ2Aafc,2)︸ ︷︷ ︸
Aafc(θ)

xafc +Bafcu
∗
a, (C.34)

y∗
afc

= Cafcxafc, (C.35)

with the input, state, output and parameter vectors

u∗a =

⎡
⎣ua1,des/u∞ua2,des/u∞
ua3,des/u∞

⎤
⎦ , xafc =

⎡
⎢⎢⎣
xcD ,afc

xcS ,afc
xcN ,afc

xa

⎤
⎥⎥⎦ , y∗

afc
=

[
ĉD

wcS ĉS + wcN ĉN

]
, θ =

[
u∞
βwu∞

]
, (C.36)

respectively. The corresponding LPV state-space matrices are

Aafc,0 =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Aa

⎤
⎥⎥⎦ , (C.37)

Aafc,1 =

⎡
⎢⎢⎣

1
LA

∗
cD,afc,1 0 0 1

LB
∗
cD,afc,1Ca

0 1
LA

∗
cS ,afc,1

0 1
LB

∗
cS ,afc,1

Ca

0 0 1
LA

∗
cN ,afc,1

1
LB

∗
cN ,afc,1Ca

0 0 0 0

⎤
⎥⎥⎦ , (C.38)

Aafc,2 =

⎡
⎢⎢⎣
0 0 0 1

LB
∗
cD,afc,2Ca

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , (C.39)

Bafc =

⎡
⎢⎢⎣

0
0
0
Ba

⎤
⎥⎥⎦ , and Cafc =

[
c∗TcD,afc 0 0 0

0 wcSc
∗T
cS ,afc

wcN c
∗T
cN ,afc 0

]
. (C.40)
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