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Abstract. A method is presented which aims to bridge the gap between overly simplified
momentum-based wake models and overly demanding finite volume models of wind turbine
wake evolution. The method has been developed to allow an essentially user-defined resolution
of the wake. Beyond this, all dominant field quantities are automatically resolved by the solver
including convection velocity, shear stress and turbulence intensity. Two distinct methods
of solution are presented which both have strengths and weaknesses, the choice of which
model being fidelity and application dependent. Both methods make use of multilevel spatial
integration to allow greatly improved computational efficiency. The method is here presented
for 2D flow in the symmetry plane of a vertical axis wind turbine as an initial demonstration of
the potential of the method.

1. Introduction and Physical modelling
The progression of the wind turbine industry towards higher order aerodynamic models in the
aerodynamic design of wind turbines is necessitated by the greater challenges facing modern
wind turbine designers including but not limited to: turbulent inflow, offshore turbines and
aeroelastics, the latter becoming increasingly prominent due to the general trend toward larger
turbine blades. Accurate modelling of unsteady loads due to the aforementioned factors make the
possibility of discarding lower order momentum-based methods in favour of higher order vortex
particle or filament methods increasingly attractive. A significant amount of research has already
been devoted to examining these models and the effects that they have on predicting fatigue
loading and performance of a wind turbine [1, 2]. For reasons of adaptability and amenability to
optimised and parallel programming, the work here adopts vorticity-based methods, which allow
a Lagrangian treatment of the flow field [3]. Furthermore, by specifying characteristic simulation
grid size, the user is essentially capable of tailoring the simulation fidelity for desired modelling
outcomes. These methods are also amenable to acceleration by their inherent formulation by
separating near and far-field influence. The general method of solution is to make use of the
fast-multipole method [4] to treat the far-field interactions. The work here however makes use
of the recently introduced multilevel integration method [5]. The application of this method to
such high order modelling has, to the author’s knowledge, not yet been significantly explored.
The application of vortex particle (VP) methods has been chosen here as it allows for all
important wake features to be inherently treated [6]. This includes unsteady aerodynamics,
trailing and bound vortex shedding, wake velocity self-induction, vorticity strength evolution,
vortex merging and destruction and modelling of turbulent effects [7]. The ability of such
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models to accurately predict higher order unsteady aerodynamics without incurring exorbitant
computation expense brings the treatment of inherently more difficult flow problems, such as
multiple turbine interaction, wake breakdown and wake augmentation, closer towards the design
environment and allows for improved and optimised turbine and farm design.

1.1. Equations and the Vortex Particle Method
The evolution of vorticity for an incompressible, Newtonian fluid must obey the following
equations:

∇ · ~u = 0 ,
d~ω

dt
=
∂~ω

∂t
+ (~u · ∇)~ω = (~ω · ∇)~u+ ν∇2~ω (1)

These pertain to conservation of mass (continuity equation) and conservation of momentum
(vorticity transport equation), respectively. Recalling that vortex filaments behave as material
lines for an inviscid flow [8], the field can be represented as a particle set and tracked in a
Lagrangian sense. The vorticity field is then represented as the sum of a set of vortex particle
p, each with position ~xp, vorticity ~ω and characteristic volume ∆Vp:

~ωσ(~x) =
∑
p

~ωp ∆Vp ζ(ρ) (2)

where ζ(ρ) = ζ((~x − ~xp)/σp) is a regularisation function, introduced to remove singular
behaviour from the field. This form of solution is referred to as the vortex particle (VP)
method. The velocity field ~u(~x) is computer from the vorticity field via the stream function
~ψ which satisfies the relation ∇2 ~ψ = −~ω. The Green’s function for −∇2 in an unbounded
domain is given by: G(~x) = 1/(4π|~x|), which allows for convolution over the particle field:
~ψ = G(~x) ∗ ~ω(~x) where ∗ is a convolution operator. For more details the reader is referred to
Winckelmans [9]. There now two methods which allow for the calculation of the velocity field
~u, both of which are based upon the solution of the Poisson equation for the stream function:
~u = ∇× ~ψ.

Method 1: Greens Function The velocity can be extracted by convoluting equation 1.1 above:

~u = ∇× ~ψ =
∑
p

~Ku(ρ)× ωp ∆V (3)

where ~Ku(ρ) is the well-known Biot-Savart kernel for a regularized vortex particle. Analytical
expressions are known for this kernel based on the regularisation ζ chosen [9]. The evaluation
of the velocity at a field points ~x hence amounts to a sum over the influence of each particle.
This shall be further detailed in the following section.

Method 2: Poisson Solver If the spatial distribution of ~ψ is known, then the velocity can
be directly extracted by calculating ∂ψi

∂xj
using finite differences. The solution to the Poisson

equation over a spatial domain P has been the focus of significant research and highly optimised
commercial solvers are available which make use of either spectral methods [10] or multigrid
methods [11]. In order to attain the solution, boundary conditions (BC) for ψ must be specified
over the boundary of P. The most generally applicable approach to this is to specify Dirichlet
BC’s for ~ψ on the domain of interest. This has the added advantage that P can be specified
to compactly enclose the vortical region of interest. This is a significant advantage this method
has over finite volume (FV) solvers, as only the domain of interest is required in the calculation.
This method has been successfully applied before to general 3D VP solvers [7].
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Analog to the expressions for ~Kσ,u above, there exists analytical expressions for the stream

function Kernel ~Kσ,ψ. Fast Poisson solvers require a uniform spatial grid, and hence the
disordered particle distribution must be appropriately mapped to an underlying uniform grid
[12].

1.2. Spatial Integration- Multilevel Method
Regardless of the method of solution, the particle set must be spatially integrated in order to
determine the influence at each field point. This incurs a non-negligible computational expense
which constitutes the bulk of the task. This computational expense can be massively reduced
by making use of the multilevel method, which makes use of a hierarchical spatial coarsening
to approximate particle influence in the far-field [5]. The calculation can be broken into two
segments:

Far-Field Evaluation The particle strength distribution is adjoint interpolated (anterpolated)
onto a regular spatial grid. This is then further further anterpolated onto progressively coarser
spatial grids- as illustrated diagrammatically in Figure 1. The interaction between boxes is
calculated under the assumption that at these distances the influence can be approximated
by a singular source particle (ignoring regularization). This shall be demonstrated for the
kernels of interesting in the proceeding section. The symmetry between each box-family allows
the interaction for a given volume to be pre-calculated and expressed as a simple matrix
multiplication saving significant overhead. The accuracy of the anterpolation-interpolation is
controlled by the order of the interpolation P . This factor dictates the number of points in each
spatial direction onto which the anterpolation/interpolation occurs. For the case illustrated in
Figure 1, P = 2.

Figure 1. The method of solution of the multilevel method. From left to right: Base
anterpolation: Source particle strengths are transferred to grid nodes. Anterpolation: Grid
strengths are progressively transferred to courser grids. Interaction: Interaction between grid
boxes is carried out. Interpolation: Influence is interpolated to finer grids. Base interpolation:
Influence of far-field interpolated onto source nodes / probe nodes.

Near-Field Evaluation In the near-field, where the polynomial approximation of the source is
inaccurate the receiver-source interaction is calculated directly. The size of the region around
which the near field is directly calculated is dictated by the factor H, which represents the
minimum box size. For source particles within neighboring boxes, the interaction is calculated
directly using the Green’s functions.

The method has successfully been applied to the 3D Biot-Savart Kernel Ku,3D [13, 14, 15].
In the aforementioned works the 3D Biot-Savart Kernel was accurately captured for the
determination of the convection velocity and the application of the method to higher order
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effects in 3D flows is currently under way. The work here is a step towards demonstrating the
ability of the code to capture higher order effects, including viscous effects and turbulence for
2D flow, and is now described for the two modelling approaches. It shall be assumed from this
point on, that a Gaussian type smoothing is used.

Method 1: Greens Function: Multilevel far-field In this case the multilevel method is used to
approximate the Biot-Savart Kernel in 2D for the convection velocity. This is given by:

Ku,2D =
1

2π

[(
x− xp
r2

)
~ex +

(
y − yp
r2

)
~ey

]
(1− e− ρ

2

2 ) (4)

One immediately observes that the function g(ρ) = 1− e− ρ
2

2 asymptotes very quickly to unity,
and the approximation g = 1 for ρ > 5 is generally acceptable. The solver for this method shall
hereafter be referred to as the Vortex Particle Multilevel (VP-ML) method.

Method 2: Poisson Solver: Multilevel far-field The expression for the stream function induced
by a 2D vortex particle is given by:

ψu,2D =
1

4π

{
log

(
ρ2

2

)
+ E1

(
ρ2

2

)}
(5)

where E1 is the exponential integral. The exponential integral decays very quickly and for

ρ > 5 its contribution can be taken as negligible. The remaining term log(ρ
2

2 ) presents
difficulties in the far-field due to the scaling with respect to the characteristic coresize σ. By
expanding out the expression, one has for the stream function in the far-field the following:
ψff = log(r2) − log(σ2) − log(2). This can be pre-calculated for a box-receiver template as
outlined earlier, however must be scaled appropriately for each higher grid level. The leading
far-field term for grid level n becomes: log(2nr2) = n log(2) + 2 log(r). The practicality of the
multilevel method can hence be fully exploited. The solver for this method shall hereafter be
referred to as the Vortex Particle- Mesh Multilevel (VPM-ML) method.

1.3. Field Quantities
The resolution of the necessary quantities shall be described.

1.4. Viscous Effects
The resolution of the Laplacian of vorticity ∇2~ω is necessary to ensure viscous effects in the flow
are captured. These are crucial for the modelling of vortex merging or destruction, important
physical processes in wake breakdown.

VP-ML Method The method of particle strength exchange (PSE) approximates the Laplacian
with an integral operator. The method has been shown to accurately capture viscous effects
provided that particle overlap is maintained [16, 9].

VPM-ML Method The Laplacian is approximated on the grid by making use of an isotropic
finite difference stencil as described in Cocle [7].
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Turbulent shear stress In the approach taken here, a large eddy simulation (LES) approach
is taken. Here the most energetic scales are resolved and the effect of sub-grid scales (SGS) is
modelled. For the purpose of it’s simple implementation, a simple hyper viscosity model is used.

dωT
dt

= − C
T0

(h2∇2)2ω (6)

where C is a coefficient and T0 a global time scale. This makes use of the Laplacian scheme
as implemented above to calculate an additional rate of change of vorticity term. Although
not displayed here, the model also automatically captures the shear stress terms of the strain
rate tensor Sij , which implies that the model could also be used for higher order turbulence
modelling, such as that detailed in Jeanmart et al. [17] or Cocle et al. [7].

2. Validation
The validation of the solver shall proceed as follows. First validation that the multilevel method
functions for the calculation of the i) Biot-Savart kernel for the VP-ML method, and ii) the
stream function kernel for the VPM-ML method is demonstrated. Following this the capturing of
important physical quantities is described including convection, viscous velocities and turbulence
parameters.

2.1. Multilevel far-field behaviour
For both bases the relative EL2 type error is given, where EL2 = L2(∆~x)/L2(~x) error is shown,
where L2(~a) = 1

n

∑
n(|~a|)2. The influence is carried out on a particle set corresponding to the

wake behind a vertical axis wind turbine (VAWT), as demonstrated in the application section.

The value of the calculated influence at each vortex particle position ~I(~xp) is compared to the

value calculated directly from the Green’s function method ~ID(~xp), from this the error metric

is calculated L2(~I(~xp)− ~ID(~xp)).

Multilevel Treatment of Biot-Savart Kernel This kernel is applied when using the VP-ML
method. As seen in Figure 2, the behaviour of the multilevel method is well predicted and
generally it can be seen that the error due to the multilevel far-field approximation is seen to
generally decrease with increasing minimum box-size H, this is intuitive as the larger H, the
larger region is directly calculated. It can also be observed that the error plateaus beyond a
certain polynomial approximation order P , this is the point at which the error incurred by the
far-field approximation cannot be recovered. The choice of H and P is then hence a matter of
desired accuracy. It can also be observed that, provided H has been adequately chosen, P scales
logarithmically, and therefore each increase in P reduces the error by a factor of 10.

Multilevel Treatment of Stream Function Kernel This kernel is applied when using the VPM-
ML method. Figure 2 shows the error as a function of polynomial order. Similar behaviour is
observed for the stream function kernel as was seen for the Biot-Savart kernel. An initially linear
behaviour, followed by a plateu. This is fundamentally of interest, as the logarithmic function
in the stream function kernel is monotone increasing, as opposed to monotone decreasing for
the 1/r2 factor in the Biot-Savart kernel. This implies that the total contribution to the stream
function from far-field points may contribute more to the total influence. The behavior of the
velocity field however is in fact dependent on the gradients of the stream function ∇ψz. The
stream function in the 3D case has again a far-field behaviour similar to the Biot-Savart kernel.
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Figure 2. Relative error EL2 as a function of polynomial order P for the 2D Biot-Savart kernel
(left) and the 2D stream function kernel (right).

2.2. Convection Velocities
In order to validate that the calculation of the convection velocities, an inviscid test case has
been chosen which furthermore is aimed at capturing important dynamics of vortex set evolution.
This is the case of an initially elliptical vortex distribution, as detailed in Koumoutsakos [18],
where the equivalent VP simulation has been carried out however with the use of a multipole
method. It should be noted that in that work the results were also compared to experiments in
pure electron plasmas of Driscoll & Fine [19], which can be shown to mimic the field equations
of an inviscid fluid. The particle set parameters such as coresize σ, grid size H (overlap) are
as defined in the comparison paper. A Gaussian regularisation ζ(ρ) has been used. To ensure
particle overlap the particle set is remeshed every five timesteps with the M ′4 scheme [12]. The
polynomial order P = 4 and minimum grid size for the multilevel solver was set to H = 10σ.
The particle motion has been integrated with a second-order leapfrog scheme with a timestep
of ∆ t = 2.5 · 10−4s.

Figure 3 illustrates a number of important flow features. The first is the filamentation of
the vortex captured by the solver. The second is the slow axysymmetrisation of the elliptical
distribution over time. The resolution of these processes along with a qualitative comparison to
the essentially identical evolution in [18] demonstrates accuracy of both solvers. A quantitative
comparison is carried out in Figure 4. Here one can see the filamentation process and core
narrowing of the vortex.

2.3. Laplacian: Viscous Quantities
Here comparison is made to the viscous case described in Buntine & Pullin [20] of two
equally signed Gaussian vortices merging into a stable Burgers vortex configuration. The grid
parameters have been chosen as follows: σ = 0.085m, H = 10σ, P = 4. As with the inviscid
case, remeshing also occurs every five timesteps. For this method the leapfrog method was used
to evolve the particle position and a second-order Adams-Bashforth method was used to evolve
particle vorticity ωz, identical to the scheme used in Cocle et al. [7].

The evolution of the vortex set is visualised in Figure 5. The merging of the vortices is clearly
captured and the progression towards a stable vortex, precisely as shown in Buntine & Pullin
[20] is displayed. Vorticity contours are again identical to those in the given reference, implying



The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 052070

IOP Publishing

doi:10.1088/1742-6596/1618/5/052070

7

−2 −1 0 1 2
−2

−1

0

1

2

t = 1 s

−2 −1 0 1 2
−2

−1

0

1

2

t = 4 s

Figure 3. Evolution of the vorticity field of an initially elliptical vorticity distribution. The
time evolution of the ellipse is demonstrated for both solvers here. The colour contour plots
correspond to the VP-ML solver, contours correspond to the VPM-ML solver. Agreement is
seen to be excellent. Contours correspond to |ωz| = 0.25, 2 : 4 : 20.
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Figure 4. Distribution of ω along the x axis. Comparison to the data of Koumoutsakos [18]
shows excellent quantitative agreement in terms of both contraction of the central region of
vorticity and filamentation at the vortex perimeter.

a qualitative agreement in the evolution of the simulation. A quantitative comparison is shown
in Figure 6 where the results are shown along the axes x = 0 and y = 0 for a range of time
values. The vorticity is seen to agree excellently for a range of time values and the progression
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Figure 5. The merging of two initially Guassian vortex distributions. The vortex asymptotes
to a stable Burgers’ vortex after approximately t = 0.6 s.

of the solution towards that of a stable Burgers vortex is observed.
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Figure 6. Evolution of vorticity along the axes y = 0 (left) and x = 0 (right).

2.4. Hyperviscosity operator
As the hyperviscosity operator (at least for the simplifed SGS approach taken here) is simply
calculated by a further calculation using the Laplacian operator, the validation only really
requires showing that the Laplacian operator function, this was carried out in the previous
section.

3. Application
As the purpose of the work here is an preliminary application of the method to a 2D flow prior
to application to a fully 3D flow, a suitable test case must be found. A fitting application is the
symmetry plane of the wake of a VAWT as this displays a quasi-2D flow and contains a number
of the important flow features which would also occur in the wake of a standard horizontal axis
wind turbine.
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Generation of vorticity
A simple lifting vortex assumption is made which places the lifting vortex at the quarter chord
point of the airfoil. The lift coefficient Cl is extracted from a polar generated with XFoil [21]
for the corresponding Reynolds number Re corresponding to the maximum relative velocity Urel
seen by the airfoil in undisturbed inflow. The lift from this Cl value is compared to that from
the Kutta-Joukowksi theorem and the circulation of the airfoil Γ can be derived. No unsteady
effects are considered through for example an unsteady lift model such as the Beddoes-Leishman
model [22], as this lies outside of the scope of this work. Kelvin’s theorem is then applied to
ensure that the change in airfoil vorticity is shed into the wake, this is done at the trailing edge
of the airfoil. For the turbine here a NACA0012 profile has been chosen.

Turbine parameters
A three-bladed (B = 3) turbine has been taken with a radius R = 1m, chord length c = 0.1m.
The freestream inflow U∞ was set to 1ms−1 in positive x direction. Rotational speed Ω of the
turbine is set based on the tip speed ratio λ = RΩ/|U∞|, here set to λ = 6.

Simulation parameters
A fully viscous simulation with viscous interaction and turbulence generation has been simulated
with the VPM-ML method. Although the equivalent is technically possible for the VP-ML solver,
the necessity to resolve the viscous terms implies that the solver requires the generation of a
number of dummy nodes around regions of interest, this has been left for future work. The
kinematic viscosity ν was set to that of room temperature air. The grid spacing was set to
Hgrid = 0.02m. This allows specification of the particle characteristic coresize σ as detailed in
Cocle et al. [7]. The multilevel parameters were taken as H = 10σ, P = 4. The specification of
the grid spacing Hgrid is the single parameter which requires specification here. Choosing this
parameter largely automatically specifies all other important vorticity field parameters, as such
the fidelity of the simulation is a user input. A choice of increasingly fine Hgrid leads eventually
to a fully resolved simulation of the wake.

Discussion
Observation of Figure 7 shows that deceleration caused by the blade is clearly captured by the
model. Shear layers in the wake are also captured with a region of underspeed behind the
rotor and slight overspeed around the rotor. Wake recovery is seen to be occuring at a distance
approximately 2D downstream of the rotor, however this should only qualitatively be assessed
as the thrust and lift coefficients were not accurately validated against an experimental turbine.
Visualisation acts only to serve a qualitative purpose. The hyperviscosity operator, necessary
for the calculation of the turbulent effects on the evolution of particle strength is visualised also
in Figure 7. It is seen that the regions of greatest turbulent action are indeed in the ridges where
from inspection of the velocity profile the velocity gradients are strongest. It should be noted
that it is expected that the inclusion of this turbulent strength fluctuation should provide the
necessary mechanism to correctly capture true wake breakdown in modelling.

4. Conclusion
The treatment of the far-field interaction of a vortex particle method has been demonstrated for
a set of 2D flow cases. Important effects such as convection velocity, viscous effects and turbulent
modelling parameters are captured. The preliminary application to a 2D application of the wake
behind a VAWT is shown to capture important flow quantities in the wake evolution. These
results were achieved with the specification of a single field parameter, the grid size Hgrid, this
implies that the fidelity of the simulation is completely user-specified. The task of validation for
a 3D flow remains and is currently underway.
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Figure 7. Flow in the wake of an idealized three-bladed VAWT operating at tip speed ratio
λ = 3. Left: Velocity in x direction. This is extracted directly from application of the Biot-
Savart kernel on the instantaneous vorticity field. Right: Normalized vorticity hyperviscosity
operator (h2∇2)2ωz. This parameter is necessary for inclusion of turbulent shear stress terms
using the SGS model.

References
[1] Perez-Becker S, Papi F, Saverin J, Marten D, Bianchini A and Paschereit C O 2020 Wind Energ. Sci. Discuss.

In review URL https://doi.org/10.5194/wes-2019-70

[2] Boormsa K, Hartvelt M and Orsi L 2016 J. Phys. Conf. Ser. 753
[3] Branlard E 2017 Wind Turbine Aerodynamics and Vorticity-Based Methods (Springer International

Publishing)
[4] Greengard L, Carrier J and Rokhlin V 1988 SIAM J. Sci. and Stat. Comput. 669–86
[5] van Garrel A 2017 Proc. AIAA SciTech Forum (Grapevine, Texas, USA)
[6] Winckelmans G 1989 Topics in Vortex methods for the Computation of two- and three-dimensional

incompressible unsteady flows Ph.D. thesis California Institute of Technology
[7] Cocle R, Winckelmans G and Daeninck G 2008 J. Comp. Phy. 9091–120
[8] Batchelor G 1967 An Introduction to Fluid Mechanics (Cambridge University Press)
[9] Winckelmans G and Leonard A 1993 J. Comp. Phys 109 247–73

[10] Canuto C, Hussaini M, Quarteroni A and Zang T 2006 Spectral Methods: Fundamentals in Single Domains
(Springer)

[11] Briggs W, Henson V and McCormick S 2000 A Multigrid Tutorial (Society for Industrial and Applied
Mathematics)

[12] Cottet G and Koumoutsakos P 2000 Vortex Methods: Theory and Practice (Cambridge University Press)
[13] Saverin J, Marten D, Pechlivanoglou G, Nayeri C and Paschereit C 2018 Proc. AIAA SciTech Forum



The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 052070

IOP Publishing

doi:10.1088/1742-6596/1618/5/052070

11

(Kissimee, Florida, USA)
[14] Saverin J, van Garrel A, Pechlivanoglou G, Nayeri C and Paschereit C 2018 ASME Turbo Expo 2018
[15] Saverin J, Persico G, Marten D, Holst D, Pechlivanoglou G, Paschereit C and Dossena V 2018 J. Eng. Gas

Turbines Power
[16] Degond S and Mas-Gallic P 1989 Math. Comp. 53 485–507
[17] Jeanmart H W G 2007 Phys. Fl. 5 055110
[18] Koumoutsakos P 1997 J. Comp. Phys. 821–857 cP975749
[19] Driscoll C and Fine K 1990 Phys. Fl. 6
[20] Buntine JD P D 1989 J. Fl. Mech. 263–95
[21] Drela M and Youngren H 1989 Conf. Notre Dame (Notre Dame, Ind (USA))
[22] Leishman J G and Beddoes T S 1989 Journal of the American Helicopter Society 34 3–17


