Cooperative Device Cloud - Provisioning
Embedded Devices in Ubiquitous
Environments

vorgelegt von
Dipl.-Inf.

Andreas Kliem

geb. in Berlin

Von der Fakultat IV - Elektrotechnik und Informatik
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr. Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Dr. h.c. Sahin Albayrak
Gutachter: Prof. Dr. Odej Kao
Prof. Dr. Thomas Magedanz
Prof. Dr. Andreas Polze

Tag der wissenschaftlichen Aussprache: 26.05.2015

Berlin 2015

ii

Acknowledgement

I would like to take the chance to express my gratitude to all the people who helped
me making this thesis possible. First and foremost, I would like to thank my advisor
Odej Kao for giving me the possibility to enjoy the past four years as a member of his
research group, for sharing his knowledge and experience with me, and for supporting
me whenever I feared to be lost. Also, I would like to express my appreciation to Thomas
Magedanz and Andreas Polze for agreeing to review this work.

This work would not have been possible without the endless patience and support of my
family. I would like to thank my mother Marianne, who endured all my mood swings,
my father Bernhard, who spend endless hours guiding me through the sometimes rocky
road of academia and, last but not least, my sister Christine and all other members of
my small but mighty family (especially my cousin Katja who allowed me to be distracted
while renovating her house).

I would like to thank all former and current members of the CIT research group for all
the discussions and collaboration leading to numerous papers and research results being
fundamental for this thesis. I will never forget the plenty evenings we spent together
having a bear, an Ouzo or simply watching Big Bang Theory after 12 hours of thinking
and coding.

Thanks to Jana Bechstein for proofreading this thesis and helping me with so many
administrative issues.

Special thanks to Anette and Jens Ringel and all the staff from Dialysezentrum Potsdam
for being patient with me during the final steps of preparing this thesis and giving me
the chance to understand how ICT in medicine actually works.

Finally, I would like to say thank you to all my friends who, on the one hand, did not
become tired asking me about the progress of my thesis and, on the other hand, were
always around when distraction was required.

iii

iv

Abstract

Cloud Computing and the Internet of Things (IoT) are well known principles addressing
core challenges of the distributed systems the Internet is founded on. Cloud Computing
is already widely adopted in productive environments and has evolved from a “buz-
zword” to a commonly used technology. In contrast, IoT currently suffers from the
lack of foundational design principles that allow overcoming the segmentation into solu-
tions dedicated to particular IoT application domains, such as Automation, E-Health,
Smart Homes, or Smart Cities. IoT applications are often tightly coupled to challenges
like sensor integration, sensor management, semantics or, the heterogeneity of data and
technologies in general. Besides the heterogeneity, the proliferation of IoT related solu-
tions will lead to a continuously increasing amount of the sensors and devices, which are
foundational to IoT applications. This leads to the challenge of efficiently managing and
provisioning the resources provided by the devices. Looking at the Cloud Computing
domain, popular related concepts like on demand provisioning, elasticity or, resource
pooling are already available and well investigated.

This work presents the Device Cloud concept, which aims at applying these Cloud Com-
puting concepts to the IoT domain. Sensors and devices will be organized in resource
pools and dynamically provisioned to users that can benefit from the resources offered.
The Device Cloud will eliminate static bindings between sensors and users and allow
accessing any kind of physical IoT devices on demand, similar to the Pay As You Go
paradigm popular within the scope of Cloud Computing.

The core question addressed by this thesis is how a dynamic, on-demand provisioning of
the devices can be realized independently from the application domain or the technologies
a device is based on. A generic, application independent architecture model will be
introduced and discussed with respect to the participating actors, their interactions
and, security and privacy. Based on an E-Health use case, the generic model will be
applied to a specific application domain.

vi

Zusammenfassung

Cloud Computing und das Internet der Dinge (IoT) behandeln grundlegende Prinzip-
ien und adressieren zentrale Herausforderungen der Verteilten Systeme, auf denen das
Internet beruht. Cloud Computing hat bereits eine weite Verbreitung in produktiven
Umgebungen gefunden und sich von einem ”Buzzword” zu einer alltdglich eingesetzten
Technologie entwickelt. Im Gegensatz dazu, fehlt es dem IoT an grundlegenden Design
Prinzipien, welche es ermdoglichen, die bisher voneinander isoliert betrachteten Losungen
flir typische IoT Anwendungsdoménen wie Automation, E-Health, Smart Homes oder
Smart Cities zu integrieren und in ein einheitliches IoT Konzept einzubetten. Anwen-
dungen des Internet der Dinge gehen oft eng mit Herausforderungen wie Sensor Inte-
gration, Sensor Management, Semantik oder der Heterogenitit der Daten und Tech-
nologien im Allgemeinen einher. Verstirkend zum Problem Heterogenitit, wird die
fortschreitende Verbreitung des IoT zu einer kontinuierlich ansteigenden Menge an Sen-
soren und Geraten fiihren. Dies fithrt wiederum zu der Herausforderung, die durch die
Sensoren und Gerét bereitgestellte Ressourcenmenge effizient zu verwalten und Nutzern
zugénglich zu machen (provisionieren). Entsprechende Paradigmen wie das bedarfs-
gerechte Provisionieren, Elastizitdt oder das Pooling von Ressourcen sind dabei bereits
im Bereich des Cloud Computing verbreitet.

Das zentrale Ziel des durch diese Arbeit prasentierten Device Cloud Konzepts ist es, diese
Cloud Computing Paradigmen in die IoT Doméne abzubilden. Sensoren und Gerate
werden in Ressourcen-Pools organisiert und den Nutzern dynamisch und bedarfsgerecht
zugewiesen. Das Device Cloud Konzept wird die in [oT Applikationen weit verbreiteten
statischen Bindungen zwischen Nutzern und Sensoren minimieren und, d&hnlich zum Pay
As You Go Paradigma des Cloud Computing, den Zugriff auf physische IoT Geréte aller
Art nach Bedarf und Anforderungen der Nutzer ermoglichen.

Die fiir diese Arbeit zentrale Forschungsfrage ist, wie eine dynamische und bedarfs-
gerechte Zuordnung von Geraten zu Nutzern unabhéngig von der Anwendungsdoméne
oder den Basistechnologien eines Gerates realisiert werden kann. Dazu wird ein gener-
isches, von der Anwendungsdoméne unabhangiges, Architekturmodell eingefithrt und
mit Bezug zu den teilnehmenden Akteuren, deren Interaktionen sowie Fragestellungen
der Sicherheit diskutiert. Basierend auf einem Anwendungsfall aus dem E-Health Bere-
ich wird das generische Modell auf eine konkrete Anwendungsdoméne abgebildet.

vii

viii

Contents

1.

Introduction

1.1.
1.2.
1.3.

Problem Definition
Contribution
Outline of the Thesis

Background & Foundations

2.1.
2.2.

2.3.

2.4.

2.5.

Related Technologies Overview
Cloud Computing Fundamentals
2.2.1. Sensor Networks & Cloud Integration
2.2.2. Cyber-Physical Clouds & Virtual Sensor Networks
Device Integration, Management & Abstraction
2.3.1. The Standardization Problem
2.3.2. Device Integration L.
2.3.3. Device Management & Abstraction
2.3.4. Interoperability
OSGi. . . o e
2.4.1. Core Specification L0
2.4.2. Compendium Specification
Security e

2.5.1. OAuth2.0 & OpenlD Connect

Related Work

3.1.
3.2.
3.3.

IoT Architectures
IoT Applications
Sensor — Cloud Integration

Device Cloud — Overall Concept

4.1.

4.2.

4.3.

Principles of Sharing
4.1.1. Application Scenarios
Device Cloud Concept
4.2.1. List of Actors & Components
System Requirement Analysis
4.3.1. Functional Requirements . .
4.3.2. Non-functional Requirements

11
11
16
17
18
19
19
22
24
27
28
29
30
34
35

37
37
40
42

45
45
49
o1
55
58
59
60

X

4.4. Entity Model

4.4.1. General Properties & Entities
4.4.2. Device Directory Entities L.
4.4.3. User Directory Entities
4.4.4. Management Service Entities00

. Device Cloud — Security & Interactions Concept

5.1. Security Model L
5.1.1. Trusted Platform
5.1.2. Authentication and Authorization
5.1.3. Device Access Token
5.1.4. Device Access Withdrawal
5.1.5. Confidentiality of Consumer Data
5.1.6. Discussion e

5.2. Imteraction Model
5.2.1. Device State Model
5.2.2. Communication Protocols
5.2.3. Provisioning Interactions & Algorithms
5.2.4. Sharing Virtual Representations

. Device Cloud — Architecture

6.1. Backend Information System
6.1.1. Device Directoryo
6.1.2. User Directoryo o
6.1.3. Management Serviceso

6.2. Middleware e
6.2.1. Middleware Deployment
6.2.2. Device Integration & Abstraction
6.2.3. Data Aggregation

6.3. Conclusion e

. E-Health Application Scenario

7.1. E-Health Systems

7.2. The Data Dissemination Problem in E-Health
7.21. EHR Clouds i
7.2.2. Application Scenario oo

7.3. Medical Device Interoperability —x73
7.3.1. x73 Implementation

7.4. Device Cloud Deployment
7.4.1. Medical Devices e
7.4.2. Medical Device Sharing

77
7
78
79
83
85
87
88
94
94
97
101
115

117
117
118
122
126
129
131
132
139
141

7.5. Conclusion e 161

8. Conclusion 163

8.1. Future Work 164
A. List of Acronyms 167
B. List of Figures 171
Bibliography 173

xi

1. Introduction

Contents
1.1. Problem Definition 0000 ... 4
1.2. Contributiont 8
1.3. Outline of the Thesis, 9

“Ubiquitous Computing, often also referred to as Pervasive Computing, is
a vision for computer systems to infuse the physical world and human and
social environments. It is concerned with making computing more physical,
in the sense of developing a wider variety of computer devices can be usefully
deployed in more of the physical environment. [...]” - Poslad, 2009

Following the closely related Ubiquitous Computing (UC) [163] and Internet of Things
(IoT) [12] visions, connected and embedded devices like smart devices or any general
shape of sensing and actuating devices, are finding their way into more and more areas of
our everyday lives. The technologies and applications we rely on are heavily influenced
by the presence of embedded devices (i.e. embedded systems), regardless whether we are
talking about the smart phones most of us use every day, heating control in our homes,
computer-aided assistance systems in our cars or, numerous further examples. The
dissemination of connected and embedded devices is not only driven by the estimation
that the amount of such devices will grow to approximately 15 billion by 2015 and to 200
billion in 2020 [96] or the emergence of IoT related technologies in general as reported
by Gartner [28]. Additionally, another important accelerator is given, according to
Moore’s Law [137], by the increasing features and capabilities embedded devices provide.
Arising from the capability to interconnect and to collect data in an ad-hoc and mobile
(ubiquitous) fashion, new applications, such as smart grids, traffic congestion, or seamless
vital signs monitoring [101], become viable. This results in a mutual reinforcement of the
development of both connected and embedded devices and corresponding applications.
Well-known application domains with close relation to IoT technologies, for example,
are E-Health [161], Transportation, Logistics [167], Automation, and Smart Homes and
Cities [36].

Two basic assumptions build the foundation of the Ubiquitous Computing (UC) and In-
ternet of Things (IoT) visions. First, primarily introduced by Weiser’s work on UC [163],
it is assumed that users are no longer supported by a single monolithic computer system

(e.g. a PC). Rather, a set of embedded devices surrounding them constantly provides
the necessary resources and applications to fulfill their everyday needs. The term re-
sources refers to both data and infrastructure (e.g. storage). The second important
assumption introduced by the IoT is, that so called things or entities, which usually
refer to the embedded devices but can also be applied to users equipped with body area
or implanted sensors, are uniquely identifiable and are linked to virtual representations
within an information network similar to the Internet. The term virtual representation
basically constitutes that a thing is connected to an information network and that it
can be accessed through a communication protocol or an interface/service (e.g. a sensor
providing data about a user’s environment). It becomes obvious that taking advantage
of the seamless integration of these things requires a huge amount of technical infrastruc-
ture to be developed, deployed and maintained. A definition of IoT putting emphasis
on the technical components was given by the Strategic Research Agenda of the Cluster
of European Research Projects on the Internet of Things (CERP-IoT) [147]:

“Internet of Things (IoT) is an integrated part of Future Internet and could
be defined as a dynamic global network infrastructure with self configuring
capabilities based on standard and interoperable communication protocols
where physical and virtual “things” have identities, physical attributes, and
virtual personalities and use intelligent interfaces, and are seamlessly in-
tegrated into the information network. In the IoT, “things” are expected
to become active participants in business, information and social processes
where they are enabled to interact and communicate among themselves and
with the environment by exchanging data and information “sensed” about
the environment, while reacting autonomously to the “real/physical world”
events and influencing it by running processes that trigger actions and create
services with or without direct human intervention. Interfaces in the form
of services facilitate interactions with these “smart things” over the Inter-
net, query and change their state and any information associated with them,
taking into account security and privacy issues.” - CERP-IoT, 2009

J

It was emphasized, that the possibility to assign unique identifiers to the things is im-
portant, because it allows maintaining state and history, recording the information flow,
and keeping track of interactions with other things [147]. This can be recognized as a
mandatory requirement if embedded devices become regular participants in an informa-
tion network, are collaborating with other entities (users and things) and are not only
acting as proxies for users into the digital world. Moreover, unique identifiers allow es-
tablishing back-end information structures like discovery or repository services required
for monitoring purposes or as mediators for self-configuration and optimization capa-
bilities [156]. Apart from the capability of treating things like individuals by assigning
globally unique identifiers to them, a variety of supporting technologies like communi-
cation and network technologies, data processing technologies, or security and privacy

2 Chapter 1: Introduction

technologies need to be considered. However, as discussed by Uckelmann et al. [152], one
has to keep in mind that these technologies have to be distinguished from the Internet
of Things (IoT) and are not to be considered as synonyms when discussed individually.
In particular, visions and technologies like Ubiquitous Computing (UC), Embedded De-
vices, Wireless Sensor Networks (WSNs), or the Internet Protocol (IP), have a strong
relation to and partial overlap with IoT, but only considering them together as an overall
integrated technology framework covers the whole topic IoT is about. A set of embed-
ded devices connected to the Internet using IP is related or may be a part of but is not
yet a full realization of the IoT. A backend-information structure is missing here which
permits discovering and provisioning the resources (i.e. data) offered by the embedded
devices. Moreover, apart from security and privacy constraints and as usual for most of
the regular nodes on the Internet (e.g. servers), accessing the provided resources and
services should be possible for other participants and not limited to a small group (e.g.
a telecommunication provider).

This results in the assumption that sensors, embedded devices or things in general are
resources that provide knowledge (i.e. data) about an entities environment and are able
to move in space (i.e. either mobile or stationary things moved by users). The data
should be accessible by each other entity that is interested in or may benefit from them.
Basically, as shown in Figure 1.1, two options to target this data dissemination problem
exist. Both are likely to coexist depending on the application domain. Looking at an ex-
ample from the E-Health application domain yields a deeper understanding of these two
options, which can be characterized as provisioning the data and provisioning the data
sources. In E-Health, and in particular in telemedicine applications, sensors are used to
monitor the vital signs of a patient. Sensors are usually integrated using gateway devices
(e.g. smart phones) and the data collected are forwarded to the clinical information sys-
tem of the medical facility responsible for the patient’s treatment. Nowadays, especially
in case of emergencies, several medical facilities can be involved in the treatment process.
In order to get a meaningful survey of the patient’s condition, each participant needs
access to the data collected from the medical sensors. Provisioning the data refers to the
concept of Electronic Health Record (EHR) Clouds, where clinical information systems
of different medical facilities are linked in order to exchange data on the basis of a-priori
defined contracts. This is an important approach, because it allows exchanging data
about the history of a patient. However, considering the delay introduced by exchang-
ing real-time data through EHR Clouds, interoperability issues and the static nature of
how participants are interlinked (resulting from privacy constraints), provisioning the
data sources (i.e. the medical sensors) becomes reasonable. Instead of exchanging the
data by linking the clinical information systems, each clinical information system di-
rectly accesses the medical sensors a patient is equipped with. Therefore, the medical
sensors (i.e. the physical things) must be shared by the participants.

This notion of sharing embedded devices among interested users, is in line with several

Chapter 1: Introduction 3

1.1. Problem Definition

4 Provision the data
Data Cloud
110 1 110 1 110]
010 010 010
/
s
<
110
010
User Device Cloud
Provision the data sources)

Figure 1.1.: Two basic approaches for data dissemination in IoT applications - Sharing
and provisioning the data or the data sources

well established and upcoming paradigms like on-demand resource provisioning and Pay-
As-You-Go (PAYG) pricing models known from Cloud Computing [11] or the Sharing
Economy [134], which became popular due to car sharing services for instance. However,
sharing embedded devices in IoT applications not only targets efficiency and resource
utilization, it also enables new applications, like sketched above, by giving users the
possibility to share the access to physical resources (i.e. embedded devices) that move in
space. Throughout this thesis, I will present a generic architecture approach for sharing
embedded devices in various IoT application domains. General issues like interoperabil-
ity, device integration and abstraction, as well as security and access rights management
will be discussed and targeted by the specification of respective backend and middle-
ware components. Proof of concept will be given by applying the generic architecture
to a specific use case from the E-Health domain and by a discussion of related usage
scenarios.

1.1. Problem Definition

Sharing physical devices like sensors or actuators leads to a paradigm shift in how IoT
related applications can be designed. Paradigms like Infrastructure as a Service (TaaS),
On-Demand Resource Provisioning or PAYG pricing models became very popular along
with the proliferation of Cloud Computing and its applications. The success of Cloud
Computing was heavily influenced by these paradigms, because they basically constitute
and enable what we understand when referring to the term Cloud: An endless set of
resources that we can access and utilize whenever and wherever we want, without having
to think about management, availability, utilization or long term contracts.

4 Chapter 1: Introduction

1.1. Problem Definition

However, looking at IoT-related applications, a completely different picture of how these
applications are designed and work can be observed. Nowadays, IoT applications are
often built upon a gateway based approach. This can be briefly described as a single sys-
tem (e.g. a router or a smart phone) that integrates available sensors, collects data from
them and forwards the resulting data streams to application-layer components (e.g. a
compute-center hosting data analysis applications). Usually these gateways are designed
as closed boxes dedicated to a particular application domain and barely interact with
each other (e.g. one gateway integrating Smart Home devices, one gateway integrating
E-Health sensors). Due to the variety of communication protocols, devices and sensors
are often statically integrated and connected to the gateways and access is limited to
a small group of users having control over the gateway. Based on the estimation that
the integration of IoT applications, sensors, and smart devices into our everyday lives
will proceed further, the amount of resources provided by these sensors and devices will
continuously grow. But, in contradiction to Cloud Computing applications, currently
no concepts exist for the provisioning of these resources. Therefore, the Device Cloud
approach aims at broadening our understanding of the term Cloud. By introducing con-
cepts for the provisioning of sensors and embedded devices on a PAYG basis, the Cloud
turns from an endless remote resource to an overall resource surrounding us constantly.

According to the discussion of IoT in the previous section, a lot of technical components,
each inducing its own challenges, are required to set up the Device Cloud. Challenges
like device integration and abstraction, device deployment and management, resource
provisioning, security and in particular access management, or interoperability in gen-
eral, are well known and partially well investigated regarding certain research domains
(e.g. resource management and provisioning in the area of Cloud Computing, or device
integration for certain application domains like E-Health or Smart Homes). However,
the amount of research effort currently dedicated to the area of IoT, both in terms of
general understanding and architecture as well as applications, emphasises that these
challenges need to be faced with respect to the requirements of IoT applications. More-
over, new challenges arise out of the adoption and integration of technical solutions
originally developed for other application domains. Figure 1.2 gives a brief overview of
the challenges to be tackled and how they are related to each other. Throughout the
following sections, I will use the general term device when referring to any kind of sensor,
actuator or embedded system that is an element of the sharing and provisioning process
targeted by the Device Cloud.

Based on the ubiquity and mobility of devices and the assumption that gateways ded-
icated to a particular application domain are not feasible for the Device Cloud, device
integration is a twofold challenge. Basically, device integration involves establishing a
connection between a device and a gateway that is able to forward and/or (pre)process
the resulting data stream (e.g. aggregation). This abstract view introduces two major
sources of heterogeneity. First, the huge variety of devices in terms of communication

Chapter 1: Introduction 5

1.1. Problem Definition

Security Identity
Access Control
Management
Device
Privac

\ -
Device < \ — Data QEQ
Abstraction Ll Interoperability [|EE Aggregation Device Clou

\ = O
. Data [oo]
Adaptablllty E w
. Device Device i
Modularity Deployment , Provisioning Availability

Resource Device Device
Constraints Integration Heterogeneity

3

o

Figure 1.2.: Overview of the main Device Cloud challenges and their relationships

protocols, data formats or, nomenclatures needs to be considered. Second, the gate-
way devices themselves can differ regarding their specific characteristics (e.g. operating
system, offered communication interfaces, available resources) [16] and usually underlie
resource constraints. If we assume that devices are provisioned like Cloud resources,
integrating them should not be limited to a specific subset of gateway systems. Rather,
gateways used within the Device Cloud should be designed as general purpose device
integration systems not dedicated to a certain application domain. However, it appears
unrealistic to assume, that all software components required for device integration (e.g.
discovery modules, protocol and device drivers) can be packaged into one static mid-
dleware in a way, that sufficient coverage for even one application domain is given and
the middleware will be deployable on the majority of the gateway platforms. Therefore,
the Device Cloud requires a modular device integration middleware, which is deployable
on a multitude of available gateway platforms and is linked to backend information sys-
tems in order to adapt itself to the requirements of the environment (i.e. autonomously
reconfigure and reload software modules to handle the discovered devices).

Apart from integration, device abstraction is an important issue [95]. Exposing the
capabilities of a device in a vendor-neutral way reduces the risk of a vendor-lock-in and
allows for more modularity and openness of the Device Cloud. Replacement of a device
should not imply redesign of application components. Introducing a layer of abstraction
that provides the capabilities of a certain class of devices in an interface driven way, allows
application developers to focus on the application and not on device specific protocol
or controller logic. Besides application development, abstraction can also simplify the
process of device driver development and increase platform independence. Assuming that

6 Chapter 1: Introduction

1.1. Problem Definition

base drivers, responsible for integrating low level protocols such as Bluetooth, ZigBee
or, Ethernet, provide their functionalities through well defined interfaces, device specific
drivers can be developed on top of them in a platform independent way. This is an
important requirement because of the heterogeneity of gateway platforms.

The device integration, abstraction and data aggregation challenges are related to achiev-
ing interoperability among the participating entities of the Device Cloud. Standard-
ization is often promoted to be a mitigation to this problem. Although appropriate
standards for certain application domains exist (e.g. IEEE 11073 for E-Health or KNX
for home automation), one cannot expect that a widespread standardization including
all relevant application domains will be achieved in a reasonable time span [29]. New
technologies usually introduce new standards. A lot of standards allow for vendor de-
fined extensions in order to keep up with the rapidly evolving market. This often leads
to proprietary solutions. Device vendors gain flexibility in handling specific hardware
requirements, protecting innovations or optimizing their products towards their design
preferences. Additionally, market exclusivity can be achieved, which often forces cus-
tomers to be dependent on a vendor (i.e. vendor-lock-in). Instead of relying on the
assertion of a small set of standards that can cover a comprehensive set of devices, the
Device Cloud will focus on a uniform framework and on interoperability enablers like de-
vice abstraction and data transformation. Given the modularity of the middleware and
the respective backend information systems, a multitude of protocols and data formats
can coexist within the Device Cloud.

Besides interoperability and integration issues, major challenges arise from the federation
of the Device Cloud. It cannot be assumed that all devices shared among the participants
are owned by a single authority. Rather, according to what IoT is about, the Device
Cloud will heavily rely on peer to peer collaboration between its participants. Each
participant can contribute devices to the Device Cloud, regardless of whether we are
talking about a single individual owning less than five devices or a company owning
more than thousand devices. Thus, the traditional boundaries between service providers
and consumers as observed when referring, for instance, to Cloud Computing, become
indistinct. Each participant can take both roles: being a service consumer and provider
at the same time. Due to the need of cooperation between participants, security and
privacy, especially in terms of identity and access management, are important challenges,
too. Sharing devices among participants requires secure granting and withdrawal of
access tokens. Having a look at the E-Health domain again, emergency scenarios require
reliable mechanisms for taking temporary ownership of a medical device.

In summary, implementing a generic and application domain independent Device Cloud
requires a modular architecture tackling the main challenges device integration, device
abstraction, interoperability, federation, and security and privacy. It is important that

Chapter 1: Introduction 7

1.2. Contribution

each challenge is not only considered on its own, but rather put in context to the re-
quirements of the overall approach.

1.2. Contribution

The main contribution of this thesis is given by the specification of a generic Device Cloud
architecture, which is not limited to a pre-defined set of devices or application domains.
Rather, emphasis will be put on the capability to introduce new devices, protocols, or
data formats on demand without having to change parts of the overall architecture. First,
participating entities and their properties will be identified, followed by a specification
of state models and roles the entities can take within the Device Cloud. Based on the
system requirements, necessary technical components as well as their relation to each
other will be discussed. Specific implementations of the major technical Device Cloud
components, which include a device integration and data aggregation middleware and a
backend information system, will be introduced.

In general, the thesis will show the applicability of Cloud Computing paradigms to the
IoT domain by enabling the provisioning of (mobile) embedded devices on a peer to
peer basis among the participants of the Device Cloud. A modular and adaptive system
design will demonstrate that the heterogeneity challenge given by the variety of devices
can be tackled without limiting the solution to a certain application domain.

Parts of this thesis have been published in the following publications:

1. Andreas Kliem et al. “Towards self-organization of networked medical devices”. In:
Emerging Technologies Factory Automation (ETFA), 2011 IEEE 16th Conference
on. 2011, pp. 1 -8. DOI: 10.1109/ETFA.2011.6059230

2. Andreas Kliem, Matthias Hovestadt, and Odej Kao. “Security and Communication
Architecture for Networked Medical Devices in Mobility-Aware eHealth Environ-
ments”. In: Mobile Services (MS), 2012 IEEE First International Conference on.
2012, pp. 112-114. por: 10.1109/MobServ.2012.15

3. Dimo Ivanov, Andreas Kliem, and Odej Kao. “Transformation Middleware for
Heterogeneous Healthcare Data in Mobile E-health Environments”. In: Proceed-
ings of the 2013 IEEE Second International Conference on Mobile Services. MS
’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 39-46. 1SBN: 978-
0-7695-5029-9. po1: 10.1109/MS.2013.15. URL: http://dx.doi.org/10.1109/
MS.2013.15

8 Chapter 1: Introduction

http://dx.doi.org/10.1109/ETFA.2011.6059230
http://dx.doi.org/10.1109/MobServ.2012.15
http://dx.doi.org/10.1109/MS.2013.15
http://dx.doi.org/10.1109/MS.2013.15
http://dx.doi.org/10.1109/MS.2013.15

1.3. Outline of the Thesis

4. Andreas Kliem and Odej Kao. “CoSeMed - cooperative and secure medical device
cloud”. In: e-Health Networking, Applications Services (Healthcom), 2013 IEEE
15th International Conference on. 2013, pp. 260—264. DOI: 10.1109/HealthCom.
2013.6720678

5. Andreas Kliem. “CoSeMed: Cooperative and Secure Medical Device Sharing”. In:
Cloud Computing Applications for Quality Health Care Delivery. Ed. by Anasta-
sius Moumtzoglou and Anastasia N. Kastania. Hershey, PA, US: IGI Global, 2014,
pp. 201-227. poI: 10.4018/978-1-4666-6118-9.ch011

6. Andreas Kliem et al. “Self-adaptive Middleware for ubiquitous Medical Device
Integration”. In: e-Health Networking, Applications Services (Healthcom), 201}
IEEE 16th International Conference on. 2014, to appear

7. Andreas Kliem et al. “The Device Driver Engine - Cloud enabled Ubiquitous Device
Integration”. In: Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIP), 2015 IEEE 10th International Conference on. 2015, to appear

8. Andreas Kliem and Thomas Renner. “Towards On-Demand Resource Provisioning
for IoT Environments”. In: 7th Asian Conference on Intelligent Information and
Database Systems (ACIIDS), Special Session on Internet of Things, Big Data and
Cloud Computing. 2015, to appear

1.3. Outline of the Thesis

This thesis is structured as follows:
Chapter 2: Background

Chapter 2 introduces basic relevant technologies like Cloud Computing, Mobile
Grid Computing, or IoT and Future Internet architectures, and provides a the-
oretical foundation of the major challenges towards realizing the Device Cloud.
Terminologies, definitions, and building blocks, like the OSGi specification, are
introduced in order to provide a comprehensive background underlying the Device
Cloud architecture.

Chapter 3: Related Work

Chapter 3 provides a review of related research conducted in the areas of Sensor-
Cloud integration, IoT architectures, and IoT applications like E-Health or Smart
Homes.

Chapter 4: Device Cloud — Overall Concept

Chapter 1: Introduction 9

http://dx.doi.org/10.1109/HealthCom.2013.6720678
http://dx.doi.org/10.1109/HealthCom.2013.6720678
http://dx.doi.org/10.4018/978-1-4666-6118-9.ch011

1.3. Outline of the Thesis

Based on a presentation of possible Device Cloud application scenarios, the system
requirements are discussed. As a result, entities participating in the Device Cloud
and major technical components as well as their properties and relations to each
other are specified.

Chapter 5: Device Cloud — Security & Interactions Concept

Chapter 5 will derive a security and interaction model from the defined actors
and entities. Emphasis will be put on modelling the state of devices, defining
provisioning interactions as well as on authentication and authorization.

Chapter 6: Device Cloud — Architecture

Based on the concepts and the broad definition of technical components presented
in Chapter 4 and Chapter 5, a concrete architecture regarding the main building
blocks of the Device Cloud is introduced. This includes the device integration and
data aggregation middleware and the backend information system.

Chapter 7: E-Health Application Scenario

Chapter 7 will apply the Device Cloud concept to an E-Health application scenario.
Based on a set of specific medical devices (e.g. blood pressure sensors), it is
demonstrated how the Device Cloud can be deployed and how the constraints
of the application domain (e.g. the requirement to align all data streams to a
uniform, standardized data format) can be satisfied without changing the generic,
application domain independent Device Cloud architecture.

Chapter 8: Conclusion and Future Work

Finally, chapter 8 concludes the thesis and gives an outlook towards future work.

10 Chapter 1: Introduction

2. Background & Foundations

Contents
2.1. Related Technologies Overview 11
2.2. Cloud Computing Fundamentals 16
2.2.1. Sensor Networks & Cloud Integration 17
2.2.2. Cyber-Physical Clouds & Virtual Sensor Networks 18
2.3. Device Integration, Management & Abstraction 19
2.3.1. The Standardization Problem 19
2.3.2. Device Integration 00 22
2.3.3. Device Management & Abstraction 24
2.3.4. Interoperability oo 27
2.4, OSGI . . v v ittt e e e e e e e e e e e e e 28
2.4.1. Core Specification 0oL 29
2.4.2. Compendium Specification 30
2.5. Security e e e e e e 34
2.5.1. OAuth2.0 & OpenlID Connect 35

Based on the motivation and problem definition, this chapter aims at providing an
introduction to concepts that constitute the foundation of the Device Cloud approach.
General related technologies and paradigms that deal with connecting devices, data
and users over information networks will be discussed within the context of the Device
Cloud. Furthermore, specific technologies, like for instance OSGi, required to implement
mandatory Device Cloud components and capabilities will be introduced.

2.1. Related Technologies Overview

As already outlined in Chapter 1, the Device Cloud in particular and IoT in general have
a strong relationship to and partially overlap with other technologies and paradigms
known from the distributed systems and computing domain. In the following, some of
these technologies and paradigms, which contribute foundations necessary to set up the
Device Cloud approach, will be introduced and put into a contextual relationship.

11

2.1. Related Technologies Overview

Cloud Computing

Cloud Computing allows consuming large amounts of resources, like computing, storage,
or, software, over the Internet without the need for long term contracts. Users do not
have to be aware of the actual physical location or the physical system that provides the
resources. Therefore, Cloud Computing is based on virtual infrastructures that allow
sharing physical infrastructures among several users, which leads to a high degree of
resource utilization and reduces costs. According to the National Institute of Standards
and Technology (NIST) [109], one of the essential characteristics of Cloud Computing
is the ability to rapidly provision and release configurable computing resources from a
shared pool with a minimal management overhead. Characteristics and paradigms like
on-demand, shared resource pools or, elasticity, which will be discussed in more detail
in Section 2.2, build the foundation of what we understand by the term Cloud and also
distinguish it from related concepts such as Grid Computing [57] [21].

Compared to Cloud Computing, the IoT domain suffers from the huge heterogeneity
of resources. The resources are far from being organized in a shared pool from which
they can be provisioned to the users. However, since the amount of devices and ac-
cordingly the amount of resources to be managed and provisioned will continuously
grow [96], the demand for pooling these resources and reducing management overhead
is well motivated. Therefore, the Device Cloud approach strives to apply the essential
Cloud Computing characteristics to the IoT domain and allows for on-demand access to
devices.

Cyber Physical Systems

The term Cyber Physical Systems (CPS) stands for the integration of computation
with physical processes [97]. A CPS develops if embedded systems interact using a
communication infrastructure and therefore lead to environments where computational
resources (e.g. software components) and physical resources or processes (e.g. actuators)
interact with and affect each other. Typical application domains are automotive systems,
avionics, connected medical devices, assisted living or automation [130]. The main design
challenge for CPS is the complexity that arises out of the interaction with physical
processes that are not predictable. This requires these systems to be built adaptable and
robust against unexpected failures and states. Moreover, embedded systems operating
in devices we use every day (e.g. TVs or kitchen equipment) are expected to be more
reliable and robust than regular computers. Hence, the additional complexity introduced
by the Device Cloud vision of pooling, provisioning and sharing embedded systems (i.e.
devices) may not reduce the reliability of the shared device itself and therefore needs to
be designed robust and adaptable.

12 Chapter 2: Background & Foundations

2.1. Related Technologies Overview

Future Internet Architectures

Future Internet Architectures is a generic term for several research projects and ini-
tiatives, like FI-PPP [55], FIRE, FI-WARE or, FI-STAR [5] [153], that investigate in
the improvement or redesign of the aging IP based infrastructure in order to cope with
challenges like ubiquitous network access, mobility, or integrated security, that were not
foreseen during the initial development of the Internet [61]. It is assumed, that the in-
creasing amount of users and the demand for future applications require a paradigm shift
from machine-centered and packet delivery based infrastructures towards data, content
and, user-centered ones [121]. Nowadays, several hundred additional protocols on top
of IP exist in order to provide the infrastructure necessary for delivery of the services
we use today. This leads to an increasing complexity that makes the management of
the Internet infrastructure more and more difficult. Especially the mobility challenge,
emerged due to the shift from stationary, PC-based computing to mobile computing, is
a driving force for Future Internet Architectures and is related to a major Device Cloud
challenge as well. Efficient service delivery requires to hide and cope with the hetero-
geneity introduced by the different networks (e.g. IP, cellular, sensor networks, wireless)
and technical standards common to the domain of mobile computing.

Internet of Everything

Internet of Everything (IoE) is a term created by CISCO [52] that evolved out of the
Internet of Things (IoT) [23]. It is assumed, that after the second wave of internet
growth, which basically refers to the dissemination of connected mobile devices and
lead to IoT, a third wave will also connect people and data to the Internet and lead
to IoE. According to CISCO, IoE will integrate people, data, things and processes,
that manage the way people, data and things work together. Compared to IoT, which
is based on things, IoE is based on people, data, processes and things. By explicitly
putting emphasis on the data, IoE brings attention to the importance of security and
privacy and protection of personal information. Although the Device Cloud approach
is about sharing the devices instead of the data, it has to be ensured, that users that
access the shared device pool can establish secure links to the devices they allocate and
therefore protect personal information generated by things they do not own.

Machine-to-Machine Communication

Machine-to-Machine (M2M) describes the exchange of information between devices like
machines, cars, sensors or, actuators usually performed in an automated manner and
without human interaction [165] [24]. Thus, M2M is often referred to as the building

Chapter 2: Background & Foundations 13

2.1. Related Technologies Overview

block of IoT, because the virtual representations of things made available by IoT can also
be described as the service endpoints to an M2M system [32]. Hence, the application
domains of M2M systems or platforms are comparable to the ones mentioned in the
context of IoT. Examples are home automation, smart grids, object tracking or, factory
automation [146] [112].

M2M has a high relevance to the Device Cloud approach, since it deals with similar chal-
lenges like heterogeneity of devices and communication networks, device manageability
or scalability in general that altogether lead to the overall problem of device integration.
Especially the huge amount of devices to be managed by M2M platforms has recently
led to solutions called M2M Clouds or Machine-to-Cloud (M2C). These approaches
basically describe the utilization of Cloud services to expose the virtual representation
of machines (i.e. things) more efficiently and to enable for large scale management of
devices. Especially the term M2M Cloud, as often used by companies to promote their
device integration and management platforms, is related to the concept of sensor vir-
tualization discussed in Section 2.2.1. However, some M2C approaches also target the
utilization of Cloud resources for offloading of computational tasks, which is related to
the integration of sensor networks and Clouds [70].

Mobile Grid and Mobile Cloud Computing

Mobile computing evolved out of the dissemination of small, mobile and wirelessly con-
nected devices like smart phones that offer computing capabilities. The term Mobile
Grid covers both, the demand for users with mobile devices to access resources offered
by the Grid and the utilization and integration of the resources offered by the mobile
devices themselves. Thus, the Mobile Grid can be defined as an extension to the regular
Grid [58] providing capabilities to support mobile users and resources in a seamless,
transparent, and efficient way [102]. In contrast to the Mobile Grid that explicitly takes
the resources offered by the mobile devices into account, Mobile Cloud Computing is fo-
cused on the mitigation of performance constraints of mobile devices by offloading data
storage and data processing to Cloud infrastructures [42] [71]. Mobile Cloud Computing
therefore rather targets accessing Cloud infrastructures with mobile devices than provi-
sioning the resources offered by them. Hence, one could argue that the Device Cloud
approach is more related to Mobile Grid Computing. The difference is that not the
resources of a mobile device are provisioned, but rather the physical device itself.

Sensor and Actor Networks

A sensor network, often referred to as WSN, is a set of small computational nodes con-
nected through a communication network, that collect and forward information about a

14 Chapter 2: Background & Foundations

2.1. Related Technologies Overview

certain environment [127]. WSNs became popular along with applications like weather
prediction or monitoring of large environmental areas without existing information ac-
quisition infrastructures or infrastructures damaged because of disasters (e.g. earthquake
or forest fire). WSNs can be based on stationary or mobile nodes and can be organized
using base stations or in an ad-hoc manner (i.e. Mobile Ad-hoc Network (MANET)),
which has a high impact on the underlying access and routing protocols. Due to the huge
amount of interacting nodes and the unreliable communication infrastructure, WSNs of-
ten rely on protocols that offer self-organization capabilities [143]. Typically, WSNs are
based on Mesh-Networks, which means that the data is forwarded from node to node
in a multi-hop manner until the destination is reached. According to Poslad [126], the
main components of a WSN are sensor and sensor access nodes. Similar to a gateway,
the sensor access node connects external entities to the sensor network. An extension to
the concept of WSNs is given by Wireless Sensor and Actor Networks (WSANs), which
integrate actors in order to perform actions based on the observations made by the sen-
sor nodes [4] [131]. WSANSs are more challenging than WSNs, because the presence of
actor nodes introduces coordination and communication problems. Events that trigger
an actor usually need to be synchronized, coordinated and, delivered in proper ordering
and under real-time constraints, which is difficult to achieve in ad-hoc networks.

Apart from the technical details of WSN and WSAN infrastructures, accessing the col-
lected data is a key issue. Similar to M2M Clouds, approaches for Sensor-Cloud inte-
gration are discussed to simplify the management of and access to the sensors, to hide
the technical details of the WSN infrastructure and to extend the limited capabilities
regarding storage and computing resources [67] [7]. Some of these approaches allow
providing sensor access to several users based on Cloud services and therefore have a
high relevance to the Device Cloud approach. Section 2.2.1 will further discuss these
approaches.

Ubiquitous Computing

Ubiquitous Computing [163] [126], sometimes also referred to as Pervasive Comput-
ing, acts as a foundation for several of the discussed paradigms (e.g. M2M, IoE, IoT).
Ubiquitous computing was already discussed in Chapter 1. Briefly, it targets the ubiqui-
tousness of computer-aided information processing. It is based on the assumption that
after the age of mainframes and the age of Personal Computers (PCs), where each user
was assigned to a computer, a third age motivated by the proliferation of embedded
systems will constitute by assigning each user a set of networked computers embedded
into the environment. Due to this decentralized notion of computing, the management
and integration of the corresponding nodes becomes much more complex than in central-
ized, PC based environments. This is one of the challenges the Device Cloud approach

Chapter 2: Background & Foundations 15

2.2. Cloud Computing Fundamentals

tries to tackle, by applying the Cloud Computing paradigms that allow for easy and
homogeneous access to heterogeneous and geographically distributed resources, to the
Ubiquitous Computing domain.

2.2. Cloud Computing Fundamentals

Cloud Computing, as already introduced in Section 2.1, is the commercial reality of a
concept called Utility Computing [11]. Utility Computing [122] refers to techniques and
business models, where a service provider offers computing resources and infrastructure
management to its customers, usually on-demand. According to the NIST Cloud defi-
nition [109], the model behind Cloud Computing consists of deployment models, service
models and five essential characteristics. The deployment model refers to the set of
users that may access the Cloud. Private Clouds, for instance, are only provisioned
to a single organization while Public clouds like Amazon EC2 [9] are accessible by the
general public. Service models refer to the well known paradigms Infrastructure as a
Service (IaaS), Platform as a Service (PaaS) and, Software as a Service (SaaS). The
essential characteristics, which the Device Cloud aims to apply to the IoT domain can
be described as follows:

Cloud characteristics as defined by the NIST

On-demand self-service:
A consumer is enabled to allocate and access computing resources (e.g. server time
or network storage) as required without the need for human interaction with each
service provider.

Broad network access:
Computing resources are made available over a network and standard mechanisms
allow accessing these resources using heterogeneous client devices (e.g. PCs, smart
phones).

Resource pooling:
Providers pool and dynamically provision computing resources to multiple con-
sumers, which allows for better utilization. A key driver for resource pooling is
virtualization. Pooling implies that the consumer usually has no knowledge about
the location of a provided resource.

Rapid elasticity:
The illusion of an endless resource, that can be accessed from anywhere at any time,
is created by the Cloud. Resources can be elastically provisioned and released on-
demand to achieve a high degree of scalability.

Measured service:
The resource consumption can be monitored in order to provide transparency for

16 Chapter 2: Background & Foundations

2.2. Cloud Computing Fundamentals

Cloud service providers and consumers. Some Cloud services may automatically
adapt and optimize the resource consumption to fit the current requirements.

An important paradigm or business model not explicitly mentioned but resulting from
these characteristics is Pay-As-You-Go (PAYG). Based on monitoring the resource con-
sumption and the ability to elastically release resources if they are not required any more,
PAYG enables the consumer to pay only for the resources actually utilized without the
need for long term contracts. Another important characteristic, already part of the Util-
ity Computing definition, is the infrastructure management that is implicitly provided
to the consumers alongside with the computing resources. These characteristics and
paradigms address the major obstacles currently found in the IoT domain: Provisioning
resources on-demand through standard mechanisms (i.e. in a homogeneous fashion) and
hiding the complex task of infrastructure management.

2.2.1. Sensor Networks & Cloud Integration

Wireless Sensor Networks (WSNs), as introduced in Section 2.1, can consist of several
up to thousands of nodes. Usually they underlie serious resource constraints and are
often designed towards the specific requirements of the application domain. Sensor
access nodes, used to connect external entities to the WSN, hide the complexity of the
protocol stack required for (ad-hoc) networking, communication and data aggregation.
In contrast to Cloud Computing, consumers usually have to be aware of the actual
location, the resource constraints, and the infrastructure management requirements of
the sensor nodes. This often limits the set of consumers being able to access the WSN. As
a remedy, concepts like Sensor-Cloud integration [168] [7] or Sensor-Virtualization were
introduced [6]. These approaches basically aim at overcoming the resource constraints
of traditional WSN by integrating Cloud resources and providing access to the physical
sensors to multiple users. The latter one is related to the concept of M2M Clouds or M2C
by allowing to simplify the management of and access to the sensors using standard Cloud
interfaces and applications that hide the actual location and the diversity of the sensors
from the consumers (e.g. abstraction from technical details, focus on the semantics,
grouping of functional identical sensors as shown in Figure 2.1) [2]. In contrast to M2C
solutions, sensor-cloud infrastructures usually follow the public cloud deployment model
and do not limit access to a certain company or group of consumers. The term sensor-
virtualization is somehow ambiguous with the term Virtual Sensor Network (VSN), but
has to be clearly distinguished. VSNs, which will be introduced in the following section,
deal with resource sharing, logical grouping and, collaboration of physical sensors nodes,
while sensor virtualization is about provisioning the virtual representation (i.e. the Cloud
interface) of a physical sensor node. Provisioning or sharing the virtual representation

Chapter 2: Background & Foundations 17

2.2. Cloud Computing Fundamentals

- ,,,,f,\//f"'\/_\
~— = Sensor

Unified Virtualization Provider Unified

Sensor [©
API

> Sensor
API

User User

'
Virtual Space

.
’
'
.
.
.
q
.
]
.
'
.
.
.
.
.
.
'

=

Ex

&

v
1

y

cecccccccccccbeccccccaSQNCaaa,
B s

Q.

| O

o.
;- |
o

Physical Space

Figure 2.1.: Sensor virtualization as an enabler for unified access to heterogeneous phys-
ical resources.

presumes that the consumer trusts in the nodes participating in the data transmission
chain between the physical sensor node and the Cloud interface. Section 4.1 discusses
the differences between the Device Cloud approach and Sensor Virtualization or Sensor-
Cloud infrastructures, respectively.

2.2.2. Cyber-Physical Clouds & Virtual Sensor Networks

Motivated by the increasing capabilities of the nodes participating in WSNs, Cloud
characteristics like pooling and allocating a subset of the resources to certain tasks on-
demand are applied to sensor networks. Virtual Sensor Networks (VSNs) assume, that
the overall set of nodes in a WSN can be virtually grouped into subsets and dedicated
to specific applications or tasks [81] [74]. Unlike traditional WSNs, where usually all
nodes perform similar tasks, a subset of nodes can be allocated for a given time period
to perform specific tasks or react to the current environment. A sensor network deployed
in an area recovering from a disaster may, for instance, observe specific events in a certain
region. Using VSN, nodes close to that region could be grouped and further investigate
the situation by executing specific tasks.

Another related concept for further investigating the possibility of deploying virtual-

18 Chapter 2: Background & Foundations

2.3. Device Integration, Management & Abstraction

ization techniques to sensor nodes is called Cyber-Physical Cloud Computing [38] [87].
By applying lightweight virtualization capabilities to sensor nodes, sensors basically act
as servers that move in space and execute virtual sensors. Virtual sensors can migrate
between physical ones, which is referred to as cyber-mobility (i.e. moving between sen-
sor hosts). Additionally, virtual devices can move with their current sensor host (if
the sensor node is mobile), which is referred to as physical mobility. Similar to regu-
lar Cloud Computing, this allows for efficient resource utilization because virtualization
allows isolating virtual sensors possibly belonging to different consumers.

2.3. Device Integration, Management & Abstraction

The integration of sensors, actuators or in general (mobile) embedded devices involves
several steps like discovery, connection establishment, data transmission, data aggrega-
tion and processing as well as storage or visualization. All these steps in turn involve
several hardware and software components and usually depend on protocols spanning
all layers of the OSI Reference Model [172]. In general, device integration in context of
IoT or M2M applications is the challenge of achieving interoperability among a hetero-
geneous set of interacting systems. More precisely, according to Kindberg et al. [86], two
principles need to be considered when developing systems that deal with ubiquitous or
pervasive devices: physical integration and the spontaneous interoperability arising from
the integration of nomadic physical devices. The following sections will discuss some of
the ancillary challenges.

2.3.1. The Standardization Problem

Integrating devices and exchanging information requires some kind of communication,
where both the sender and the receiver need to agree on a common language (usually
based on a canonical data representation). A standard, which basically can be defined as
a set of rules that provide the necessary basis for interaction between two systems [164],
can be used as a common language. The standardization problem is a decision prob-
lem that deals with choosing the appropriate set of communication standards for an
application. Especially regarding the IoT domain, it is difficult to make this decision
because a huge variety of competing standards exist. The dissemination of a standard
usually depends on the number of authorities and systems using it, which is difficult
to estimate in advance [29]. Moreover, standards evolve, sometimes allow for vendor-
defined extensions and there are even a lot of entire proprietary solutions. Thus, it
is unlikely that the huge set of communication technologies and standards required to
achieve interoperability will converge in a way that sufficient coverage regarding device
integration can be gained by implementing a set of major standards. Rather, device

Chapter 2: Background & Foundations 19

2.3. Device Integration, Management & Abstraction

integration solutions need to be designed flexibly in terms of adaptability towards new
or evolving standards. Modularization and generic data representations, which allow
clients to request information in a desired format while hiding the complexity of the
heterogeneous landscape of communication technologies, are key factors for sustainable
device integration solutions.

The following section gives a subtotal collection of standards and technologies related to
the topic of device integration. Since different OSI layers are covered, no classification
is given and the standards are only introduced briefly.

List of standards

6LoWPAN:

ANT:

6LoWPAN is an acronym for IPv6 over Low power Wireless Personal Area Networks. It
is based on the IEEE 802.15.4 standard for Wireless Personal Area Networks (WPANSs)
and was designed in order to enable small, low power devices to use the Internet Protocol.
6LoWPAN can be used for any kind of embedded devices that require wireless internet
connectivity at low data rates while having constraints regarding available resources and
energy consumption. 6LoWPAN basically defines mechanisms, like header compression,
that allow IPv6 packets to be delivered over a IEEE 802.15.4 network. Since 6LoWPAN
operates on the network layer, an application layer protocol like CoAP is required to
achieve interoperability among communicating devices. [140] [94]

ANT is an open access protocol stack for short range, low power wireless sensor networks
developed and managed by ANT wireless, a division of Dynastream. ANT was originally
dedicated to sports, in particular devices embedded in personal fitness equipment, but
it also has applications in health, home automation or the industrial sector. In order to
provide interoperability among the devices of different vendors, ANT+ can be added to
the base ANT protocol suite. ANT+ basically is a collection of application profiles that
describe how certain devices such as heart rate monitors have to be designed in terms of
the data exchanged using ANT. [45]

Bluetooth:

Bluetooth is a protocol stack for WPANs developed by the Bluetooth Special Interest
Group (SIG) and is also related to the IEEE 802.15 WPAN working group. It allows
for connectionless and connection-oriented communication in ad-hoc or piconets. Blue-
tooth consists of a suite of layered protocols and application profiles, which, similar to
ANT+, define the communication behaviour a device has to comply in order to be inter-
operable with other Bluetooth devices. Bluetooth became popular as a replacement for
wired connections especially in the area of entertainment and input devices, but also sup-
ports applications in the area of home automation, E-Health or, industry. Since version
4.0, Bluetooth introduced a low energy protocol stack, which allows significantly reduc-
ing the energy consumption of Bluetooth devices. Due to the dissemination of personal

20

Chapter 2: Background & Foundations

2.3. Device Integration, Management & Abstraction

health devices, Bluetooth adopted the IEEE 11073 standard for its Health Device Profile
(HDP). [22]

CoAP:

As the name suggests, the Constrained Application Protocol (CoAP) is an application
level protocol dedicated to resource constrained devices and M2M or IoT applications. It
was designed according to RESTful principles [56] in order to be easily mapped to HTTP
while keeping focus on low overhead and simplicity. In contrast to web service approaches
like DPWS, CoAP uses a binary header format. Similar to DPWS, it can operate on
top of 6LoWPAN. Standardization of CoAP is managed by the Internet Engineering Task
Force (IETF). [139]

DPWS:
The Device Profile for Web Services (DPWS) is an OASIS standard to provide web ser-
vices for resource constraint devices. DPWS combines existing WS-* standards like WS-
Addressing or WS-Security and defines additional mechanisms required for dynamic dis-
covery and event-based communication. DPWS was originally developed by Microsoft
as an alternative to UPnP and therefore is available in current Windows operating sys-

tems. Micro implementations that can operate on highly resource constrained devices
using 6LoWPAN are available. [114] [98]

EnQOcean:

EnOcean is a German company that introduced a correspondent wireless technology cov-
ering the OSI layers one to three. The technology is based on energy harvesting and there-
fore allows for batteryless sensors and actuators like light switches. Common application
domains are smart homes, building automation or logistics. In order to achieve inter-
operability between products of OEM partners and push standardization, the non-profit
EnOcean Alliance was founded in 2008. Similar to the Blueetooth application profiles, the
EnOcean Alliance governs application level protocols (EnOcean Equipment Profiles) to
ensure interoperability. The layer one to three technology was ratified as an international
standard in 2012 (ISO/IEC 14543-3-10). [48]

IEEE 1451:

IEEE 1451 is a collection of standards that aims at providing uniform interfaces to inter-
act with sensors or actuators (transducer) independently of the underlying communication
technology. The core element of the standard collection is the definition of the Transducer
Electronic Data Sheet (TEDS), which contains the information required by a measure-
ment system to interact with a transducer (e.g. ID, calibration and correction data) and
therefore allows integrating the transducer in a plug and play manner. The TEDS can be
stored within the memory of the transducer or as a separate file downloadable from the
internet if legacy transducers without memory need to be integrated. Compared to other
device discovery and description technologies like UPnP, TEDS is more suitable for highly
resource constrained devices. [76]

ISO/IEEE 11073:
The ISO/IEEE 11073 family of standards is dedicated to interoperable communication of
medical devices [75]. 11073 will be further discussed in Chapter 7.

Chapter 2: Background & Foundations 21

2.3. Device Integration, Management & Abstraction

OMA DM:
OMA Device Management is a protocol for device management, sometimes also referred to
as Mobile Device Management (MDM), which will be discussed in Section 2.3.3. OMA DM
is based on a transport independent request-reply protocol and uses XML based messages.
An OMA DM server can manage several clients (i.e. devices), which, for instance, includes

fault management, device configuration or software upgrades. OMA DM is governed by
the Open Mobile Alliance (OMA). [116]

UPnP:

Universal Plug and Play (UPnP) is a set of IP based application layer protocols that
allow for vendor-independent device discovery and interaction. Using the Simple Service
Discovery Protocol (SSDP), control points can discover devices and request a XML based
description. The description contains general information like vendor or serial number and
describes a set of actions and data types for each service offered by a device. UPnP is
mostly used in residential networks and entertainment applications. It is governed by the
UPnP Forum. [82]

USB:
Universal Serial Bus (USB) is a wired serial communication bus mostly used to connect
external devices to PCs. Nowadays USB is the commonly used technology to connect
devices like mass storage, printers, web cams or input devices in general. In order to
reduce the complexity of device integration, the USB standard defines device classes that
allow using generic device drivers with devices from different vendors. [15]

ZigBee:

Similar to 6LoWPAN, ZigBee is a wireless communication technology based on TEEE
802.15.4 with applications in smart homes, automation or, sensor networks in general.
Like Bluetooth, ZigBee defines Clusters and Profiles to achieve interoperability among
devices from different vendors. A cluster operates according to the client/server principle.
The server (e.g. an OnOff cluster in case of a light device) has a set of attributes that
can be altered by a client using specific commands. Clusters and devices that implement
certain clusters are grouped into profiles dedicated to an application domain (e.g. building
automation). [171]

Besides the listed standards and specifications, further ones like FIPA Device Ontol-
ogy [59], KNX [110], SNMP [144], TR-069 [25] or, Z-Wave [63] exist. However, all these
standards just represent a subset of the technologies common for IoT or M2M applica-
tions. Thus, the importance of a modular, adaptive and technology independent device
integration solution is underlined.

2.3.2. Device Integration

Device integration can be described as the process of identifying and loading appropriate
control logic (e.g. a driver) for a device that is connected to a (usually running) system.
Connected means, that the device is plugged into the system (e.g. in case of USB)

22 Chapter 2: Background & Foundations

2.3. Device Integration, Management & Abstraction

or appears on a communication network the system is connected to. According to the
M2M Alliance [106], basically three major components can be defined when talking
about device integration:

M2M System Components

Data End Point (DEP):
The DEP (i.e. sender) refers to a device that needs to be integrated. The DEP
collects data from the device or waits for control commands. The DEP usually
refers to an embedded microprocessor linked to the device.

Data Integration Point (DIP):
The DIP (i.e. receiver) refers to a system that hosts some kind of monitoring or
control application or acts as a data aggregator. It collects data from connected
DEPs or sends control commands to them.

Machine Communication Network (MCN):
DEP and DIP exchange information using a MCN both are connected to. The
MCN can refer to a bus system (e.g. USB), an IP based network or any other type
of communication infrastructure.

Depending on the type of the device the DEP represents (e.g. actuator or sensor), both
the DEP and DIP can act as the source or sink of an information flow. In case of M2M,
some systems also allow for a direct communication between DEPs. However, in order
to establish an information flow between two interacting systems (i.e. DEP and DIP),
a sequence of basic steps, as, for instance, described by UPnP, is necessary:

e Addressing: Dependent on the MCN, an address needs to be assigned to the
DEP. This process is heavily influenced by the MCN technology used. In IP
based networks, e.g., DHCP or AutolP can be used. The address needs to be
unique among the participants of the MCN segment DEP and DIP are connected
to, since the DIP usually controls multiple DEPs.

e Discovery: Once the DEP has a valid address, it can be discovered by the DIP.
Both the DEP and the DIP can take an active or passive role. Upon connection
to the MCN and address assignment, the DEP can actively announce its presence
using broadcast messages or passively wait for search requests issued by the DIP.
A lot of discovery protocols such as the Simple Service Discovery Protocol (SSDP)
used by UPnP, the Service Discovery Protocol (SDP) used by Bluetooth or, IETF
Service Location Protocol (SLP) exist. Some rely on direct communication between
the DEP and the DIP, some use a mediator approach, where DEPs announce
offered services to a registry or a directory and allow DIPs or consumers to look
them up.

Chapter 2: Background & Foundations 23

2.3. Device Integration, Management & Abstraction

e Description: Dependent on the expressiveness of the discovery mechanism used,
an optional description step can be introduced to gain further information about
the DEP, which may be required to load appropriate control logic (i.e. a driver).
A driver basically introduces the common language required between DEP and
DIP to exchange information.

e Authentication and Authorization: Some environments require an authen-
tication and authorization step to ensure that confidence about the identities is
given and both DEP and DIP are allowed to exchange information. This step can
take place at different layers of the OSI model and can therefore appear at different
positions in the sequence of device integration steps.

e Configuration: Some protocols require that DEP and DIP enter a configuration
step and agree on certain protocol specific properties prior to start exchanging
information. The ISO/IEEE 11073 medical device interoperability protocol, for
instance, requires that communication partners agree on the data encoding used
before exchange of measurements is allowed.

e Control: Having configured a communication session, DEP and DIP can start to
exchange data. Event-driven or request/reply approaches are common. Usually,
the DIP requests data by triggering an action or service offered by the DEP or the
DEP pushes data once it is available (e.g. a new measurement was taken).

As already highlighted in the previous section, device integration in the IoT domain
is usually subject to a variety of devices and MCNs. Because the capabilities of a
single DIP are often limited to a subset of the possible MCN technologies, gateways are
introduced. A gateway acts as a bridge between two or more MCNs that may be based
on totally different protocols. In doing so, the gateway can act as a prepended DIP or
just forward data packets from one MCN to another MCN. Especially the latter case
leads to complex scenarios, since the DIP needs to be aware of the protocol used behind
the gateway. This often leads to situations where multiple drivers are involved in the
integration of a device. Similar to concepts used in operating systems, like the Windows
Plug and Play device tree [111], device drivers need to be organized in a stacked fashion
to properly represent the topology of integrated devices and reduce the complexity of
single device drivers. Therefore, a device integration solution needs to be able to flexibly
and transparently manage the composition of device control logic, which is discussed in
Section 2.4.2.

2.3.3. Device Management & Abstraction

Device management is the process of administrating or managing devices within an IT
infrastructure. With the proliferation of mobile devices and the arising need to centralize

24 Chapter 2: Background & Foundations

2.3. Device Integration, Management & Abstraction

and increase the efficiency of their management, the term Mobile Device Management
(MDM) evolved. Especially mobile devices integrated into company networks need to
be efficiently provisioned, configured, updated and fault monitored [103]. Standards
like the already mentioned OMA DM [116] or TR-069 [25] [129], which is used for
remote configuration of devices like modems, routers or, set-top boxes, were introduced
to unify MDM. Most MDM protocols provide basic primitives to discover, identify
and get and set values on a device’s object model, which describes the properties and
functions of the device. However, the variety of devices in the IoT domain requires
a uniform representation of the object models in order to be manageable by MDM
protocols. This problem is intensified, if we not only take into consideration typical
MDM devices like smart phones, tablets, routers or modems but also all the sensors and
actuators, present in many IoT applications. This leads to the requirement for device
abstraction mechanisms.

In computer science, the abstraction principle [125] is known as a recommendation to
programmes to avoid duplicity in their program code. In Java, for instance, an abstract
class can be used as a skeleton to implement logic that is required by all inheriting classes.
An interface can be used to introduce abstract definitions for different implementations
which share the same meaning. Basically, abstraction means to introduce different layers
of complexity, where each layer is hiding the complexity of the layer below. A prominent
example is the OSI model [172]. The transport layer, for instance, abstracts away the
technical details and complexity of the physical, data link, and, network layer and allows
application layer protocols to easily exchange data. In terms of device abstraction, espe-
cially the interface concept is of notable importance because it allows defining common
interfaces, sometimes also called categories or profiles, for devices of the same class with
different implementations (e.g. temperature sensors from different vendors).

Device abstraction is a crucial requirement for device integration solutions because it
allows decoupling devices from applications and enhances the portability [115]. Appli-
cation developers are enabled to focus on the logic, without having to deal with device
type or vendor specific details of the I/O protocol. Devices of the same type can be
easily exchanged and the risk of a vendor-lock-in is reduced. According to Vaughan et
al. [155], three basic levels of abstraction can be defined:

Levels of Abstraction

Character Device Model:
Originated from Multics and UNIX, this refers to the most basic level of abstraction,
where each device can be treated as a data file. The model defines access to the
devices by providing five basic operations (open, close, read, write, ioctl).

Interface(Driver) Model:
On top of the basic operations offered by the Character Device Model, the Interface

Chapter 2: Background & Foundations 25

2.3. Device Integration, Management & Abstraction

Model provides device independence by refining the basic operations with knowl-
edge about the structure and data format of a data stream. Thus, device type
related operations can be offered by the interface and application developers are no
longer required to take care of device specific protocol or control logic.

Client-Server Model:

The third level of abstraction targets the decoupling of the application (i.e. client)
and the server that manages the actual device control. Besides platform indepen-
dence (the client only has to be aware of the protocol offered by the server), this
abstraction simplifies concurrent access to devices because session and transaction
management can be realized by the server and there is no need for synchroniza-
tion between multiple applications accessing the same device. Other challenges like
access control are also easier to tackle introducing this level of abstraction.

The Character Device Model can be used to simplify the development of driver services
by providing an abstraction for different communication protocols (e.g. Bluetooth or
ZigBee). Similar to the concept of composing drivers introduced in Section 2.3.2, device
drivers can use them without knowing about the implementation details of a certain
protocol, just using the basic operations to operate on the data stream. A possible
approach to achieve this layer of abstraction is the OSGi IO Connector Service Specifi-
cation (IOCS) [119], which is based on the J2ME I/O packages. However, the Character
Device Model still requires the application to ship detailed knowledge about the structure
and format of data as well as higher level functions offered by a device. Therefore, uni-
form access to, for instance, temperature sensors from different vendors at least requires
the Interface Model to be applied. As mentioned, interfaces (i.e. device categories) allow
uniformly describing devices with different control syntax and implementation but the
same control semantics.

Providing the Client/Server Model is a challenge allied to providing device management
capabilities through defined management protocols as mentioned above (e.g. OMA DM
or SNMP). Device properties and operations shall be accessible through well defined
interfaces, while offering features like session management or access control. Because a
variety of device management standards and protocols exist, it is difficult to choose one
standard appropriate for all application domains. Instead, multiple standards and pro-
tocols should be supported without having to adopt the underlying abstraction models
or the data structures used to maintain the properties and operations of a device, which
again leads to the requirement of a uniform representation of the device object models.
Section 2.4.2 will introduce the OSGi DMT Admin Service Specification (DmtAS) [119],
which aims at providing a solution for simultaneously supporting different management
and device access protocols by introducing a generic and uniform representation for
device object models.

26 Chapter 2: Background & Foundations

2.3. Device Integration, Management & Abstraction

2.3.4. Interoperability

In general, interoperability can be defined as:

“The ability of two or more systems or components to exchange informa-
tion and to use the information that has been exchanged.” - IEEE, 1990 [72]

Achieving interoperability is one of the major challenges found in IoT application do-
mains that need to integrate a huge variety of heterogeneous devices and systems (e.g.
smart homes [124]). Although heterogeneity is often considered an obstacle for interoper-
ation of distributed systems, it can also be recognized as a feature, because heterogeneity
allows efficiently designing a systems towards the specific needs of the target environ-
ment [157]. Therefore, it is likely that the landscape of devices and systems in the IoT
domain will remain heterogeneous, which leads to the need of interoperability enablers
like middleware solutions or gateways. Different levels of interoperability have been de-
fined. A substantial classification, additionally covering the topic composability, is given
by the Levels of Conceptual Interoperability Model (LCIM) [150] [160]:

Levels of Conceptual Interoperability Model

Level 0 - No Interoperability:
A stand-alone system with no interoperability.

Level 1 - Technical Interoperability:
A communication infrastructure, that allows two or more systems to exchange data,
exists.

Level 2 - Syntactic Interoperability:
A common data format is unambiguously defined between the systems. This, for
instance, includes how much bytes are required for a certain data type or which
sequence of data types is exchanged (i.e. the structure of data).

Level 3 - Semantic Interoperability:
The interacting systems share the meaning of the data (e.g. a received number is
a temperature measurement expressed in Celsius).

Level 4 - Pragmatic Interoperability:
Pragmatic interoperability means that two interacting systems are aware of how
the exchanged data is used (i.e. the context). Pragmatic interoperability deals with
the problem that exchanged messages result in their intended effect (i.e. the actual
effect does not differ from the intended one) [13]. In other words, the system knows
how to combine and use data in order to achieve the desired effect. This means,
that, given a certain context, pragmatic interoperable systems need to know which
operations are allowed to be triggered and which grouping of data types is required.
If, for instance, two E-Health systems know that M stands for a male patient, they
have reached semantic interoperability. If these systems know, that they have to

Chapter 2: Background & Foundations 27

2.4. OSGi

include a M as the sex identifier in order to request data about all male patients,
they have reached pragmatic interoperability.

Level 5 - Dynamic Interoperability:
The behaviour of interacting systems becomes predictable. Dynamic interoperable
systems unambiguously define the effect of an exchanged message (i.e. it is defined
whether a certain message results in a change of state).

Level 6 - Conceptual Interoperability:
The highest level of interoperability in the LCIM requires a well documented con-
ceptual model, which defines data, processes and constraints of the interacting
systems. Processes refers to the behaviour and how the data changes. Constraints
refers to the assumptions that constrain the values of the data and the behaviour
of the processes.

\. J

Because the device integration solution cannot predict the behaviour of the applica-
tion actually using the devices, pragmatic interoperability is the highest level to be
reached. This level partially aligns to the Interface Model abstraction level defined in
Section 2.3.3.

Related to the semantic interoperability level, terminology management is an important
issue. A terminology (sometimes also referred to as nomenclature) defines a set of
terms and their corresponding meanings. Terms can be used to annotate exchanged
data and enhance the semantic interoperability between interacting systems. Basically
known from linguistics, terminology management is the process of organizing, extending
and keeping a terminology unambiguous. Regarding the IoT domain, this is of notable
importance because the amount of available devices and features continuously grows.
Prominent examples for terminologies and terminology management can be found in
the E-Health domain (e.g. HL7, SNOMED-CT, IEEE 11073) and will be discussed in
Chapter 7.

2.4. OSGi

OSGi is a specification of a platform-independent (Java based) framework for modular-
ized development of applications and services based on the principle of component-based
software engineering [68]. A component, sometimes also referred to as a module, is a
package of software that encapsulates related functions and data and provides these as
services to other components using well defined interfaces. A component provides the
implementation of a certain set of system processes defined by an interface, which is
accessible by other components. According to the modularity of a system, an important
capability of components is their exchangeability. OSGi allows updating or replacing a

28 Chapter 2: Background & Foundations

2.4. OSGi

0SGi Framework

Service Registry ook
ookup

register

Bundle A Bundle B

Provider Consumer

Java
Runtime

Bundle Repository
Lifecycle

Operating
System

Bundle

Figure 2.2.: Loosely coupled interaction of dynamically deployed OSGi bundles through
services.

component at runtime without breaking the system. Thus, OSGi provides a dynamic
service execution environment that is able to deploy and wire services in shape of com-
ponents at runtime.

OSGi is governed by the OSGi Alliance, formerly known as the Open Service Gateway
initiative. As the name suggests, it was originally dedicated to gateway platforms used
for device integration (e.g. routers). Its ability to dynamically wire services at runtime
based on the requirements of the environment (i.e. the devices to be integrated), makes
it a good candidate for device integration solutions. However, due to its extensive ser-
vice delivery and modularization capabilities, OSGi today is also common in enterprise
environments (e.g. as the foundation of the Eclipse platform). OSGi consists of a core
specification [120], which defines mandatory core APIs, and a compendium specifica-
tion [119], which defines additional services dedicated to certain use cases. Proprietary
as well as open-source implementations are available.

2.4.1. Core Specification

The foundation of each OSGi deployment is the framework, which provides an runtime
environment for downloadable applications called bundles. As shown in Figure 2.2, a
device hosting an OSGi framework can download, install and remove bundles on de-
mand, while the framework manages the installation, wiring with other bundles and
resolution of dependencies. Bundles refer to components and can be envisioned as OSGi
applications shipped by developers. Bundles basically are Java Archive (JAR) files with
additional OSGi meta data. The OSGi framework isolates bundles from each other,

Chapter 2: Background & Foundations 29

2.4. OSGi

by introducing a specific hierarchy of class loaders. This allows mitigating effects that
occur when different versions of the same libraries are required, sometimes also referred
to as JAR hell. Each bundle is required to specify its dependencies to other bundles (i.e.
imports) and which of its classes it will offer in return (i.e. exports). This is done using
OSGi meta data files contained in the bundle. Bundles typically provide implementa-
tions of interfaces (i.e. services) to other bundles within the OSGi framework. In order
to properly manage the deployment of bundles and their interaction with other bundles,
OSGi defines several layers:

e Module Layer: The Module Layer adds a modularization system to the standard
Java API. It defines the rules for sharing Java packages between bundles or hiding
them, respectively. This is based on the specific class loaders already mentioned
and the import and export definitions of bundles.

e Life Cycle Layer: The Life Cycle Layer defines an API for starting, stopping,
installing, updating or, uninstalling bundles. Since changes in the life cycle of a
bundle can happen at runtime, an event API is provided that allows managing and
controlling the life cycle operations of the OSGi framework.

e Service Layer: The Service Layer allows for loosely coupled applications by intro-
ducing the service- provider and consumer pattern. It enables bundles to register,
search for and bind to services only by specifying the corresponding interface.
Mechanisms like dynamic service tracking allow coping with life cycle issues of
bundles (e.g. updating or replacement of a service providing bundle).

e Security Layer: The Security Layer integrates Java 2 security into the OSGi
framework and adds capabilities for secure packaging and signing of bundles and
applying permissions to them (e.g. permissions to access the network). This is im-
portant because bundles can be downloaded and deployed from possibly untrusted
remote sources.

2.4.2. Compendium Specification

The OSGi compendium specification adds a set of higher level specifications to the core
of OSGi that can simplify the development in case of certain requirements. Examples
are:

e Declarative Services: provides mechanisms that allow for simpler and auto-
mated service wiring.

e Event Admin Service Specification: provides a publish/subscribe based event-
ing mechanism.

30 Chapter 2: Background & Foundations

2.4. OSGi

e Configuration Admin Service Specification: allows configuring deployed
bundles and alter the configuration at runtime.

e IO Connector Service Specification: integrates the Java 2 Micro Edition
(J2ME) IO packages.

e Repository Service Specification: allows managing access to external reposi-
tories that provide bundles.

Two of the compendium specification are of notable importance regarding device inte-
gration and will be discussed in more detail throughout the following sections.

OSGi Device Access Specification

The set of available devices in an IoT application is constantly changing due to mobile
or wireless devices being plugged (connected) or unplugged. The OSGi Device Access
Specification (DAS) describes basic mechanisms regarding the dynamic integration of
devices into a service platform without limiting the concepts to any specific type of
device or network technology. In particular, it targets the attachment of services to
detected devices and the handling of life-cycle issues that arise when devices are plugged
or unplugged at runtime. Moreover, it defines mechanisms to dynamically load and
attach services from external repositories if new devices appear (i.e. bundles containing
device drivers). The following core entities are defined by the DAS to model the dynamic
device integration process:

e Device: A Device Service represents any kind of device. It can refer to a single
physical device, a network (if the physical device is a gateway or any kind of
networking interface), or to a refinement of an already existing device. Refinement
means that several Device Services represent a physical device at different levels
of abstraction. A Device Service must belong to a Device Category.

e Device Category: The Device Category refers to the Interface Model abstrac-
tion level introduced in Section 2.3.3. The Device Category specifies the interface
needed to communicate with a device (i.e. the interface the Device Service ex-
poses) and properties that can be accessed to monitor the state of the device (e.g.
battery level). Additionally, properties required for matching Devices and Drivers
are defined.

e Driver: Driver Services provide the actual control logic and can attach to Device
Services to either refine an existing device or to integrate a new device (if, for
instance, the Device Service represents a network). In most cases Driver Services
will expose new Device Services that can be accessed by applications or can be

Chapter 2: Background & Foundations 31

2.4. OSGi

refined again by other Driver Services. The attachment is based on the Device
Category the Device and the Driver Service belong to.

e Device Manager: The Device Manager is a singleton that manages the attach-
ment process. It waits for Device Services being registered with the framework and
searches for suitable Driver Services. It uses the Driver Locator and Selector to
perform the matching and attachment processes. It allows only one Driver service
to attach to a Device Service.

e Driver Locator: The Driver Locator provides the bridge to external driver bundle
repositories.

e Driver Selector: The Driver Selector provides refinements to the matching algo-
rithm that attaches Driver to Device Services.

Thus, the core concept of the DAS are Device and Driver Services that are attached
to each other by the Device Manager based on Device Categories. Device Categories
introduce abstraction, since devices from different vendors belonging to the same class
usually expose the same interface as defined by the category. It is important to mention
that DAS only defines the concept of Device Categories, but does not describe any
specific category or terminology on its own.

Upon registration of a Device Service, the Device Manager can search for suitable Driver
Services based on the Device Category. The main responsibility of the Driver Service is
to provide additional control logic that allows, based on the Device Category the Driver
is attached to, further refining the device, exposing additional operations or, perform-
ing discovery (e.g. if the Category the Driver was attached to belongs to a network).
The process of attaching additional logic results in new Device Services registered by
the Driver Service, which are again related to a Category and therefore can be subject
to another round of attaching Device Drivers. This results in a flexible composition of
device integration logic that allows reflecting the actual topology in a modular way (e.g.
a Bluetooth driver refined by a Bluetooth discovery driver refined by the drivers that
represent the actual Bluetooth devices). This approach also allows for complex scenar-
ios as often found in the automation or smart home domain when bridges are used. An
Ethernet or CAN bridge can be easily mapped and CAN based devices can be inte-
grated, although they follow a different networking protocol using different addressing
schemes.

The initiation of the attachment iteration is given by so called base drivers, which register
the first Device Services present. Base drivers usually link to driver of the operating
system and represent the hardware interfaces the host of the OSGi framework provides.
The process how base drivers are deployed is not further specified by the DAS and thus,
will be discussed in Chapter 6.

32 Chapter 2: Background & Foundations

2.4. OSGi

OSGi Dmt Admin Specification

As introduced in Section 2.3.3, Mobile Device Management (MDM) is an important
feature for applications communicating with a variable set of heterogeneous devices.
Therefore, a lot of standards like OMA DM, TR-069 or SNMP exist. According to
Section 2.3.1, it is difficult to make a commitment for one protocol because this could
exclude certain classes of devices and may not be sustainable in terms of further de-
velopment of protocols and devices. Therefore, multiple protocols should be supported.
This requires a uniform representation of the device object models, which can be trans-
lated to a certain protocol based on the requirements of the environment. Moreover,
not only management protocols but additionally application layer protocols can benefit
from a uniform representation because in conjunction with Device Categories (i.e. the
Interface Model abstraction) uniform access to the capabilities of heterogeneous devices
can be gained. Therefore, the OSGi DMT Admin Service Specification (DmtAS) aims
at providing a data structure for such an uniform representation of the device object
models. DMT is an acronym for device management tree, which means that similar to
the Windows Device Management [111], a tree based data structure is used.

Based on a root device node, which usually refers to the host device (i.e. the device
that executes the OSGi framework), each integrated device is represented by a child
node. Leaf nodes can be used to represent the properties or operations offered by a
device. Applications can interact with devices by accessing the nodes of the DMT. The
DmtAS manages the access by specifying mechanisms used for sessions, transactions
and access control. Because the structure of the DMT is complex and not each client
application should have to be aware about it, it is not preferred to work directly on
the DMT. Instead, a plugin mechanism is introduced. Plugins can take responsibility
for a sub-tree of the DMT by managing access and providing interfaces to be used by
the clients. These plugins decide where and when nodes have to be manipulated and
provide a DMT view of the OSGi services represented by the nodes they are responsible
for (e.g. a Device Service). Therefore, plugins act as a proxy between the clients and
the OSGi services represented by the DMT. However, the preferred way for applications
to interact with the DMT is using protocol adapters. A protocol adapter, for example,
stands for a device management protocol and translates the uniform DMT representation
into the representation used by the protocol. Protocol adapters additionally introduce
the Client/Server Model abstraction discussed in Section 2.3.3.

The DmtAS does neither define any specific structure nor the layout or granularity of
the information stored in the tree. As mentioned, the knowledge about the structure
has to be introduced using a plugin, which decides where to add or modify nodes. The
structure has to be defined carefully, since it has an impact on the possibilities to search
for information or devices. Basically, the structure should reflect the actual topology

Chapter 2: Background & Foundations 33

2.5. Security

of the devices, which means that a Bluetooth based personal health device is added
as a child node of the device representing the Bluetooth network. This simplifies the
management of the tree in case the Bluetooth network device disappears. However,
if another ZigBee based personal health device becomes available and an application
would search for all personal health devices, the whole tree would have to be traversed.
A possible structure of the DMT is further discussed in Section 6.2.2.

2.5. Security

Securtiy and privacy are core requirements for a lot of IoT application domains (e.g.
E-Health, Smart Homes). Security can be basically classified as communication and
computer security [33]. Communication security covers attacks against communication
links while computer security deals with detection of compromised nodes and recovery
from malicious states (e.g. a compromised Data Integration Point (DIP)). The following
principles act as a common classification for communication security [107]:

Communication Security Principles

Authentication:
Authentication refers to the ability of a communication partner to proof its identity.
This principle is usually covered by using shared secrets. An attacker basically tries
to make the recipient believe that the message comes from an authentic source.

Availability:
Availability refers to the ability to communicate with a desired receiver. Especially
in case of emergencies, availability becomes a principle of secure communication.
A typical attack is denial of service.

Confidentiality:
Confidentiality means that nobody but the intended receiver of a message shall
be able to access and interpret the carried information. Eavesdropping, which can
be achieved by intercepting the communication link or accessing stored data, is a
typical attack on confidentiality. Encryption can be used to cover confidentiality.

Integrity:
Integrity means that messages transmitted are not modified or manipulated by an
attacker. Even if confidentiality is given, the integrity principle can be violated
by manipulating the data blindly. Signatures or checksums can be used to ensure
integrity.

Communication security, common threats and possible attacks have been well investi-
gated over the past years for related domains such as WSNs [123] [159] [90]. However,

34 Chapter 2: Background & Foundations

2.5. Security

Access Protected Resource

Authorization Server

Client Application

®)

7'y Resource Server

Access Token

Access Service
Authorize Access
to Protected Resources

® I:I OAuth2.0
J i 1

f— Authenticate,
[mﬂ Grant Access ——

User
(Resource Owner)

Figure 2.3.: OAuth2.0 based authorization separating the client from the resource owner
role.

IoT applications typically face a major heterogeneity especially regarding facilitated ap-
plication layer protocols, Machine Communication Networks (MCNs) and, devices. Most
of these technologies bring their own securtiy and concepts, which makes it difficult to
find an overall concept and achieve end-to-end security. A lot of research is currently
conducted in the area of IoT security [108] [162] [8]. Challenges basically arise out of
the highly distributed nature of IoT environments that connect hundreds of (mobile)
resource constrained devices using possibly vulnerable wireless links. Especially privacy
is a major issue because all these connected devices collect data about the environment
of the users or about the users themselves. Other issues are protocol and network se-
curity, identity management, trust and governance, fault tolerance or, cryptography for
resource constrained devices [133].

2.5.1. OAuth2.0 & OpenlID Connect

The authentication principle is crucial when a multitude of entities collaborate. Pro-
viding trust about the identity of a communication partner is difficult to achieve, in
particular if a lot of heterogeneous devices and users communicate with each other like
in the IoT. The most common authentication protocol used within distributed systems
is Kerberos [113]. Another upcoming approach, popular especially in the area of provid-
ing access to web based APIs, Apps or mobile devices, is OAuth2.0 in conjunction with
OpenlD Connect.

Chapter 2: Background & Foundations 35

2.5. Security

OAuth2.0 [66] is an authorization protocol that follows a particular interesting approach
with regard to the peer to peer resource sharing vision of the Device Cloud. When
using Cloud services, we often face situations where we grant access to a service to
resources hosted by another service (e.g. a social network service that integrates with an
e-mail service). This means the resource requesting client (i.e. the third party operating
the Cloud service) differs from the resource owner (i.e. the user). Thus, the resource
owner usually has to share its credentials with the third party, which introduces serious
obstacles (access cannot be revoked without revoking access of all third parties, third
party usually stores the user’s credentials, validity of access is difficult to manage). As
shown in Figure 2.3, OAuth separates the client from the resource owner and issues
different credentials to the client than the resource owner uses. Therefore, similar to
the Ticket Granting Server used in Kerberos, an authorization server is required. Often,
the authorization server and the resource server (i.e. the server providing the resources
owned by the resource owner) are operated by the same authority.

OAuth is an authorization protocol and does not provide authentication. This has lead
to several proprietary extensions. However, since version 2.0 OpenID Connect [141]
introduces an authentication layer on top of OAuth2.0. It enables the authorization
server to issue and transmit so called ID Tokens that contain information about the
identity of a user and whether the user is authenticated. The backend and methods
used by the authorization server to authenticate users (e.g. the user directory) are not
specified.

36 Chapter 2: Background & Foundations

3. Related Work

Contents
3.1. IoT Architectures oo, 37
3.2. IoT Applications v i i it 40
3.3. Sensor — Cloud Integration 42

The Internet was basically developed to allow for communication between computers
that are situated at different sites. As reported by Atzori et al. [14], this host-to-host
based communication paradigm is not likely to be suitable for hundreds of things that
will be connected to the Internet. Instead, it has to be considered that the Internet
is primarily used as an information dissemination system, where accessing data and
not a specific host becomes more and more important. Thus, IoT is an interdisciplinary
research domain that requires to tackle challenges in the areas of identification, tracking,
distributed intelligence, communication protocols, security and privacy, or information
management based on integrated approaches. Therefore, this chapter will introduce
related research on general purpose IoT architectures, middleware solutions and IoT
applications.

3.1. 1oT Architectures

One of the core components of IoT architectures are middleware solutions because the
complexity of the technical layers is hidden from the application developer, which leads
to more robust and reusable code. A Service Oriented Architecture (SOA) based mid-
dleware approach for intelligent networked embedded systems was presented by the Eu-
ropean research project HYDRA [47]. The resulting LinkSmart middleware [92] focuses
on the semantic representation of devices and the possibility to uniformly access each
device using semantic web services. A mechanism called HYDRA-enabling that allows
wrapping APIs of devices with web service extensions is provided (i.e. WSDL files ex-
tended by semantic descriptions). HYDRA both supports to integrate out-of-the-box
HYDRA-enabled devices (i.e. the semantic web service is hosted by the device) or native
devices using proxies. The implementation of the mapping from the web service to the
actual device specific API has to be provided by the service developer because HYDRA

37

3.1. IoT Architectures

supports different communication technologies (e.g. ZigBee or Bluetooth). A possible
foundation for proxies as well as HYDRA-enabled devices is introduced by the Contiki
platform [43], which is an operating system dedicated to run on resource constrained
devices in IoT applications and WSNs. Contiki incorporates support for protocols like
6LoWPAN or CoAP (see Section 2.3.1). Additionally, it was designed for the dynamic
loading and replacement of services and custom program code, which is an important
feature for networks of hundreds of resource constrained nodes that cannot be physically
collected and reprogrammed. Prasad et al. [128] presented a hybrid approach between
the HYDRA and the ASPIRE middleware, which additionally allows incorporating the
development and deployment of RFID based applications. In general, a lot of research
projects conducted in the last years or still ongoing investigate in challenges related to
IoT middleware solutions. Further examples are BRIDGE, EBBITS or SENSEI, most
of which are organized within the CERP-IoT research cluster [147].

An approach linked to the exploitation of services and web technologies was presented
by Guinard et al. [65]. A refinement of the IoT, called the Web of Things (WoT),
that aims at integrating devices not only into the Internet (i.e. the network layer), but
into the Web (i.e. the application layer), is discussed. This is achieved by embedding
web servers or, similar to HYDRA, using proxies, which are called Smart Gateways in
this case. Furthermore, it is proposed to rely on the REST architectural style and use
HTTP as the application level protocol. Because HT'TP has some drawbacks regarding
the event-driven communication pattern, which is common for sensor push interaction
(i.e. sent data as soon as it becomes available), the usage of real-time Web technologies
(e.g. HTTP server push [44]) is discussed. The feasibility of the approach is shown by
integrating the Web of Things architecture in a Smart Metering and a general fashion
WSN platform. Kovatsch et al. [93] extended the WoT approach by introducing the
Thin Server architecture. They argue that changes in the device or the application also
require to change the gateways since they carry pieces of the overall application logic.
It is proposed to move all application logic to dedicated application servers, while thin
servers embedded into the devices only act as wrappers around the sensors and actors
offered by the devices. Similar to WoT, a REST based pattern is used by the devices to
export their basic functionalities to the application servers.

In [51], Evangelos et al. first introduce three perspectives (RFID, Smart Object, Social)
to the IoT and its architectures and present, similar to Prasad et al. [128], a hybrid ap-
proach that is able to handle both RFIDs and smart objects (i.e. devices). It is argued
that smart objects, in contrast to passive RFID tags, allow deploying and executing parts
of the application logic used within IoT applications and therefore introduce additional
requirements to the architecture. A superset of objects, consisting of objects supporting
primitive functionalities (i.e. RFIDs) and objects supporting complex functionalities
(i.e. smart objects), is defined. Subsequently, a middleware consisting of three techni-
cal core layers is described. The Objects Abstraction layer is based on ontologies and

38 Chapter 3: Related Work

3.1. IoT Architectures

allows translating between services and device specific APIs. A Service Management
layer provides basic management operations like device discovery, mapping of services
to devices or, status monitoring. Finally, the Service Composition layer allows for the
composition of services made available by the Management layer using workflow and
service description languages like BPEL or WSDL.

The approaches discussed so far can be classified as things- or object-centric [142] [91],
because emphasis is put on the integration of devices with enhanced capabilities in terms
of carried application logic and their representation as accessible services. Another class
of architectures, as discussed by Gubbi et al. [64], are internet-centric approaches, that
focus on internet services while the objects deliver the data. Therefore, the authors
introduced a platform based on public and private Clouds that offers storage, which
enables sensing providers to offer their data and application developers to access and
analyze the data using provided analytic tools. An IoT API is provided, that allows
transparently accessing sensed data regardless whether they were stored intermediary in
a database or gathered on demand from the sensors. The overall approach is related to
the concept of Sensor-Cloud integration, which is further discussed in Section 3.3.

An overall problem, addressed by the IoT-A project [17], is the lack of a reference
architecture that introduces an overall understanding of the entities and their relations
within different IoT application domains. Often, devices and applications are designed
with respect to a dedicated use case or application, which limits interoperability and
leads to island solutions, which is often referred to as the Intranet of Things [173]. The
ToT-A project tries to mitigate this obstacle by defining an IoT Reference Architecture
Model (ARM) applicable to different application domains. Each specific architecture
is derived and inherits from the ARM with the possibility for own choices regarding
design issues like security or real-time requirements. The presence of the basic reference
model ensures interoperability. IoT-A describes a set of reference models (e.g. domain
model, information model, communication model), an application independent reference
architecture according to ISO/IEC/IEEE 42010 [77] and guidelines that assist in deriving
a specific architecture from the reference architecture model.

Semantics & Knowledge Management

The importance of semantics and knowledge management is underlined due to its pres-
ence as a major paradigm of the IoT as discussed by Atzori et al. [14]: internet-oriented
(middleware), things-oriented (sensors) and, semantic-oriented(knowledge). Semantic-
oriented IoT is based on the assumption that the number of things involved will increase
rapidly. Thus, technologies related to representation of information, storage, search or in-
formation organization in general are required. Therefore, semantic technologies like on-
tologies, mediation of semantically heterogeneous data, reasoning, or, context awareness

Chapter 3: Related Work 39

3.2. IoT Applications

will become increasingly important. Kjeer [88] presented an analysis of context-aware
middleware characteristics and application types and benchmarked some middleware
systems available (mostly as outcomes of research projects like Aura, CARISMA, COR-
TEX). Toma et al. [151] discussed the main challenges for the development of semantic
technologies with regard to the IoT. They concluded that the major steps required to
unleash the potential of IoT applications using semantics are:

e Providing modelling and language support in order to properly describe IoT ob-
jects.

e To allow for reasoning over data generated by the objects.

e Implement semantic execution environments and architectures that pay respect to
IoT requirements.

e Provide a scalable storing and communication infrastructure.

In [85], Katasonov et al. present a semantic middleware for the IoT used as a basis
for the UBIWARE research project, which connects an agent-based approach with se-
mantic technologies. Each resource to be connected is, according to general IoT vision
of providing virtual representations for physical entities, represented by an autonomous
software agent. The connector between the agent and the resource (e.g. a sensor) is an
adapter, which allows for semantic mediation in terms of data structuring or conversion
of semantic representations. Semantic technologies are used to describe the services de-
livered by resources and to specify the expected behaviour of a resource, which refers to
the level of dynamic interoperability discussed in Section 2.3.4.

3.2. loT Applications

As already introduced in Chapter 1, IoT applications are found in a variety of domains.
Examples are Smart Homes [39], Smart Cities [83], Smart Grids [84], Building Automa-
tion, E-Health [80] or, due to their origin from RFID based systems, in logistics or object
tracking [99]. A detailed discussion of application domains in general and applications
in particular is given by Atzori et al. [14] or the CERP-IoT research cluster [147].

Each of these applications basically employs similar architectural patterns, while differing
regarding specific technologies used. This underlines that IoT architectures can lead to
a convergence of these application domains. An example is presented by Li et al. [100].
The described Smart Community evolves from several smart homes connected to each
other, which can be imagined as an ancestor to the Smart City. A Home Domain,
referring to the private network of the smart home, a Community Domain referring
to the network of home gateways shielding each Home Domain and, a Service Domain
referring to a trusted third party offering service dispatching and emergency services are

40 Chapter 3: Related Work

3.2. Io'T Applications

defined. It is assumed that a wireless ad-hoc network exists between the home gateways
(i.e. within the Community Domain). The authors investigate in security and reliability
of the networking (e.g. routing) used within the Community Domain and discuss the
detection of home gateways with inaccurate behaviour (e.g. incorrect messages, failures
while forwarding messages). The authors also discuss the trade-off between security,
privacy, and access control, which is of notable importance when dealing with E-Health
applications and emergency scenarios. Attribute based encryption schemes are proposed
to allow for fine-grained access control to privacy-constrained data dependent on the
current situation (i.e. normal vs. emergency).

Schreiber et al. [138] presented the PerLa language and middleware which aims at bridg-
ing the gap between the various pervasive information system application domains by
providing a general fashion architecture that is able to adapt to the requirements of dif-
ferent application domains without redesign or recoding of components. Basically, the
requirements are considered as the set of necessary sensors and their corresponding data
resources (i.e. what is sensed). It is argued, that pervasive information systems usually
have to deal with two activities: data gathering (i.e. sensor integration) and data pro-
cessing. Regarding the first activity, the middleware introduces the concept of Function
Proxy Components (FPC). FPCs interact with physical devices and provide abstraction
to higher layers by masking the functional communication details and mapping them to
a uniform interaction pattern. FPCs can be created on-demand by a factory using an
XML Device Descriptor. It is assumed that devices to be integrated can provide such a
Descriptor, which results in the ability of the platform to adapt to new types of devices.
Regarding data processing a SQL-like query language is proposed. Based on the FPCs,
functional details like communication paradigms or protocols are masked and all sensors
are managed as a database. A Query Analyser is used to perform user queries based on
the instantiation of query executers that are linked to the FPCs.

Based on the smart home application domain, Cheng et al. [35] showed the applicability
of the OSGi Device Access Specification (DAS) as introduced in Section 2.4.2. The ap-
proach aims at overcoming the protocol heterogeneity by integrating multiple common
smart home protocols into a uniform service-oriented platform. Several base drivers
were developed to cover Bluetooth, ZigBee and Tmote based protocol stacks. Addi-
tionally, bundles that allow integrating DPWS and UPnP based devices were provided.
Transcoding services were used to hide the protocol heterogeneity from the application
layer. Discovery of devices is conducted automatically by the developed base driver,
which register appropriate services with the OSGi service registry upon detection of a
new device.

Chapter 3: Related Work 41

3.3. Sensor — Cloud Integration

3.3. Sensor — Cloud Integration

Sensor-Cloud infrastructures, as discussed in Section 2.2.1, are a hot topic [7] because
they apply the Cloud based service models to sensor networks. Sensor network operators
can offer sensing capabilities as a service to Cloud users and benefit from a scalable pool
of resources provided by the Cloud (e.g. for resource intensive data analysis jobs). Cloud
users can access sensors using well defined interfaces without having to care about the
technical details of the underlying sensor network infrastructure. Moreover, as discussed
by Yuriyama et al. [168], introducing virtual representations of a physical sensor allows
sharing and provisioning them among multiple users and introduces the possibility to
group sensors. Grouping can simplify the process of accessing and controlling semanti-
cally equal sensors. A virtual sensor group consists of one or more virtual sensors and
is created by clients to access sensors. Virtual sensors are created if a physical sensor
is registered, which can be done by any participant of the Sensor-Cloud infrastructure.
Templates are used to specify physical sensors, which means that users registering phys-
ical sensors have to choose a compliant template. Since a virtual sensor can be part of
multiple virtual sensor groups, the virtual sensor additionally has to avoid inconsistent
commands.

A related approach, called Cloud-assisted remote sensing (CARS), was described by Ab-
delwahab et al. [1]. CARS focuses on the underlying Cloud ecosystem and the application
of the resource sharing and PAYG pricing models. A cross domain provisioning of sensor
resources is described, which means that for instance a security camera deployed in a
mall can also be used for data analysis jobs (e.g. market studies, customer behaviour).
Therefore, a multi layer architecture with three service models, according to IaaS, PaaS
and SaaS is defined. The Sensing and Actuating Infrastructure as a Service (SAlaaS)
model offers access to physical sensors using their virtual representations (similar to the
virtual sensor concept). It requires that the physical sensor network resources can serve
multiple sensing tasks concurrently. Clients are not allowed to make changes to the
physical instances. The Sensing and Actuating Platform as a Service (SAPaaS) model
adds a set of APIs to the SAlaaS layer in order to allow for the development of sensing
and actuating applications without having to worry about the physical infrastructure
or details of the sensor network specific APIs. The Sensing Data and Analytics as a
Service (SDAaaS) model provides access to the sensed data and other information like
the context in which the data was collected or its accuracy. It is assumed, that most
applications will rely on this model, because the only requirement is access to the infor-
mation and there is no need to change the underlying physical sensors or their virtual
representations.

Integrating sensor infrastructures into Cloud environments leads to a huge amount of
sensors continuously producing data. This data needs to be properly processed and

42 Chapter 3: Related Work

3.3. Sensor — Cloud Integration

analyzed in order to gain benefit from Sensor-Cloud infrastructures. The resulting Big
Data problem was discussed by Zaslavsky et al. [170]. The core challenge again is
related to the topic of semantics and knowledge management. A lot of sensors produce
semantically equal data while using heterogeneous interfaces and data formats, which
requires to introduce mediation layers. Moreover, sensed data is often annotated with
context information, which has implications on the resources required to analyze them.

Chapter 3: Related Work 43

3.3. Sensor — Cloud Integration

44 Chapter 3: Related Work

4. Device Cloud — Overall Concept

Contents
4.1. Principles of Sharing 00000 45
4.1.1. Application Scenarios oL 49
4.2. Device Cloud Concept v v v v vt v v v v vt v oo 51
4.2.1. List of Actors & Components 55
4.3. System Requirement Analysis 58
4.3.1. Functional Requirements 59
4.3.2. Non-functional Requirements 60
4.4. Entity Model i e e 62
4.4.1. General Properties & Entities 62
4.4.2. Device Directory Entities 65
4.4.3. User Directory Entities 71
4.4.4. Management Service Entities L. 73

This chapter is intended to provide an overall understanding of the Device Cloud and its
fundamental concepts. Based on a review of possible application scenarios, the system
requirements will be discussed. As a result, the actors and their virtual representations,
which are required to formulate the Device Cloud concepts, will be presented.

4.1. Principles of Sharing

From the perspective of a user device provisioning can be envisioned as a sharing process.
Along with the term Sharing Economy, sometimes also referred to as Shareconomy,
sharing enabled by internet platforms became very popular [134]. Rising with services
like sharing files or other digital contents, the trend evolved towards sharing physical
things in recent years [26]. Examples are car sharing, apartment sharing or sharing
of other ordinary things like tools. The major concept behind the Device Cloud is also
sharing the devices. It is related to, but has to be differentiated from, infrastructures like
sensor virtualization solutions, which are about sharing the virtual representation (i.e.
access to the data). Sharing is basically motivated by the ability to increase utilization

45

4.1. Principles of Sharing

and therefore save money. Things owned are often only used for a short period of time.
Sharing these things can enable the owner to increase the utilization and earn money
and allow the user to save money because borrowing is usually significantly cheaper than
buying the thing.

From a technical point of view, the Device Cloud deals with provisioning access to
exclusive and non-exclusive resources. Usually, most devices are exclusive resources
because there is an exclusive communication link between the device and the system
(e.g. a gateway) integrating it. However, some devices may allow multiple systems to
communicate with them. These device are non-exclusive resources. Again, we have to
distinguish from approaches like sensor virtualization discussed in Section 2.2.1. If the
integrating system allows multiple users to access the device through a service interface,
then we talk about sharing the virtual representation, not the device itself. For some use
cases sharing the virtual representation fits well. Sharing only the virtual representations
means that we keep the bindings between the device and the integrating system and just
provision access to the integrating system or some other higher level service that exposes
the device as an interface. Each sensing device would become a non-exclusive resource in
this case. However, there are serious constraints with this approach, especially regarding
security and privacy:

e Security: Integrating systems are more vulnerable to attacks because they provide
an operating system and allow executing custom code. Some environments may not
permit communicating or further integrating with such systems. If, for instance,
a patient is monitored by medical devices and these devices are integrated by the
patient’s smart phone, a hospital may not allow communicating with the devices
through the patient’s private smart phone.

e Privacy: Provisioning access only to the integrating system relies on trusting the
entity having control over the integrating system and each node participating in
the transmission chain between the device and the integrating system. Moreover,
as the virtual representation would be shared, which basically means the data is
shared and not the device, legal issues could be faced.

e Device Mobility: Since some devices move in space, it cannot be guaranteed that
the corresponding integrating system is always in range or moves with the device.
For instance, a patient may be carried to a hospital in an emergency and his smart
phone may not be taken along with him, but the medical sensors monitoring him
may still operate.

e Real Time: Accessing the device through its virtual representation may involve
several systems (e.g. if the representation is exposed using a backend server sys-
tem). The resulting delay and loss of control over the participating nodes may not
be suitable for all application scenarios.

46 Chapter 4: Device Cloud — Overall Concept

4.1. Principles of Sharing

Device Operator
Device Owner

Device Operator Device Operator
Device Owner Device Owner

Device Consumer Device Consumer

& Device Cloud

Health

) Blood Pressure
Insurance {y‘:‘\ Sensor ~

& S

Patient A Patient B
Device Consumer Device Consumer
Device Target Device Target

Device Cloud

Blood Pressure ha Heart Rate
Sensor Monitor
onitor

Patient A
Device Target

(a) Two Consumers requesting ac- (b) Two Consumers sharing on a peer to peer basis
cess from one Device Owner - Device Target differs Consumer

Figure 4.1.: E-Health use cases that illustrate different principles of sharing devices and
the different roles the participating entities can hold.

Thus, the Device Cloud is about sharing the devices (i.e. the data sources) and not their
virtual representations (i.e. the data). It will be assumed that the integrating systems
always belong to an entity and are not shared. However, the concept of sharing the
virtual representations can be introduced to the Device Cloud as an additional feature
with minimal overhead. This is briefly discussed in Section 5.2.4.

Following the concept of mutual exclusion known from concurrent programming [41],
the Device Cloud needs to provide locking mechanisms in order to synchronize access
to the devices. Similar to read-locks and write-locks one could distinguish between
sensing and actuating devices by introducing functional device classes like Exclusive
Sensing Device, Non-Exclusive Sensing Device, Exclusive Actuating Device and so on.
However, according to the concept of device categories discussed in Section 2.4.2, a more
generic classification based on the device categories can be defined. This results in three
functional device classes to be considered:

Functional Device Classes

Exclusive Transducer Device:
The cardinality between the device and the integrating system is 1:1. Only one
integrating system can consume the device based on its category. An exclusive lock
is applied.

Non-Exclusive Transducer Device:
The cardinality between the device and integrating systems is 1:N. Based on the
category, multiple integrating systems can consume the device simultaneously. A
shared lock is applied.

Chapter 4: Device Cloud — Overall Concept 47

4.1. Principles of Sharing

Composite Transducer Device:
A generalization of Non-Exclusive Transducer Devices. Composite devices can offer
multiple categories (e.g. due to multiple sensing devices embedded into one physical
device), which can be grouped to sets of one or more categories. Each set either
refers to an Exclusive Transducer Device or a Non-Exclusive Transducer Device.

In general, the process of device provisioning or sharing can be defined as an owning
entity granting a device access lock to a consuming entity. However, since we deal with
physical things that can move in space, sharing can have multiple shapes, as shown in
Figure 4.1. For the purpose of an overall sharing definition, we have to consider at least
three more roles than the already given owner and consumer. The following general roles
are defined to describe the device sharing process between participating entities:

General Device Cloud Roles

Device Owner:
An entity that owns a device holds this role for the particular device.

Device Consumer:
An entity requesting access for the pupose of reading data from the device or
controlling it holds the consumer role.

Device Integrator:
The entity that integrates the device (i.e. has established a communication link to
the device).

Device Target:
In most cases this role is similar to the entity that refers to the thing, the being or
the environment sensed by the device.

Device Operator:
If an entity exists that operates or manages the device provisioning in charge of the
Device Owner, it holds this role.

The ordinary case just involves the Device Consumer that requests access from the
Device Owner, while the Device Target is the same as, belongs to, or is visible to the
Device Consumer without violating any legal regulations. The Device Integrator role
is also held by the Device Consumer. More complex scenarios involve a Device Target
or a Device Integrator that does not belong to the Device Consumer and are likely to
include a Device Operator. In general, all scenarios require the Device Consumer, upon
requesting a certain Device, to establish a relation between the Device and the Device
Target. Otherwise the recorded data would miss necessary contextual information and
could be useless for most of the use cases. The following application scenarios will
illustrate the relationships between the roles involved in the sharing process.

48 Chapter 4: Device Cloud — Overall Concept

4.1. Principles of Sharing

4.1.1. Application Scenarios

Based on the assumptions, discussed in Chapter 1, that the amount of devices surround-
ing is constantly growing and that each device can be considered as a resource providing
data about the user’s environment, the need for on-demand provisioning these resources
is well motivated from a technical point of view. Having a look at what the term device
provisioning can be referred to from the user’s perspective and what kind of applica-
tions this technical capability will make possible, allows understanding the framework
conditions to be considered during concept and architecture design.

E-Health - Sharing Medical Sensors

E-Health is a promising application domain for the Device Cloud because often several
medical devices are used to monitor the condition of a patient and several Care Delivery
Operators (CDOs) are involved in the patient’s treatment process (e.g. a home doctor
and a hospital). If we assume that a patient is already equipped with medical sensors,
for instance, due to participation in a telemedicine program, and is being transferred
to a hospital due to an emergency, the hospital’s physicians can benefit from directly
accessing the medical sensors. This use case includes Device Consumer A and B, where
A refers to the organization being responsible for the telemedicine program (e.g. the
patient’s home doctor or a health insurance) and B refers to the hospital. Furthermore,
A usually takes the role of the Device Owner and Device Operator, too. The Device
Target is the patient. Upon discovery of the medical sensors, B will request access to
the sensors from A. It is presumed that each sensor (i.e. device) has a globally unique
identifier and that a backend information system exists that allows B to identify the
specific type of each medical sensor as well as the corresponding Device Owner A. Upon
request, A has to decide whether B is allowed to access the medical sensors monitoring
the given Device Target (i.e. the patient). The E-Health scenario will be discussed in
more detail in Chapter 7.

Smart Home - Sharing in Living Communities

When referring to the term Smart Home, we often think of applications like automated
heating or light control, securing our environment with cameras or motion detectors,
monitoring the state of our kitchen devices or managing our entertainment devices,
for instance. Sharing can be used to improve many of these applications. In most of
the Smart Homes several individuals coexist, regardless whether we are talking about
families, visitors or apartment sharing communities, where each individual brings devices
that are used by the whole community. Two simple sharing use cases are found when

Chapter 4: Device Cloud — Overall Concept 49

4.1. Principles of Sharing

thinking of visitors or entertainment devices. Each visitor usually has its own preferences
regarding room temperature and light control. For the period of his stay the visitor
could be allowed to access the respective sensors and actuators in his guest room and
use his own smart phone and already stored preferences to control their behaviour. The
second simple use case is given by all the screen devices available in the Smart Home.
Each resident can temporarily take control over a screen and use it to display preferred
contents (e.g. a movie or video game streamed by his smart phone). More complex
scenarios evolve out of the interaction of multiple Smart Homes or a Smart Home and
devices in the public domain, which the term Smart City refers to.

Smart Cities - Sharing in the Public Domain

The term Smart City has a high relevance to the term IoT [169]. The foundation is given
by ICT enabled infrastructures that provide a continuous flow of information helping the
city and its citizens to optimize and improve the quality of life [18]. Nowadays, it is often
stated, that the Smart City is about collecting the data from the sensors, managing the
data using Cloud infrastructures and delivering services on top of the data to improve
and optimize the citizens’ life [136]. However, the Device Cloud approach can broaden
this view by allowing citizens to directly interact with the sensors deployed in the public
domain. Following the light control example given for a Smart Home, a citizen could
take control over the lanterns placed in front of his home when he leaves or an incident
is detected by the security system of his Smart Home. In general, sharing in the context
of a Smart City is about provisioning access to devices that are placed in public areas
and are available to multiple independent individuals (i.e. Device Consumers). The role
of the Device Owner can be taken by any public authority, a company offering services
or even a single individual offering sensing capabilities to other citizens. The Device
Target is likely to refer to a thing or an environment in a public area, but can, in case
of interacting Smart Homes, also refer to beings or to private things.

Sharing devices deployed in public areas can be illustrated by two simple use cases. The
first use case involves devices deployed by public authorities, which can be found, for
instance, in museums or art galleries. Installations exhibited in museums these days
often include audio, video and light systems. Basically, the visitor is guided through the
museum by an audio guide, and each installation follows a fixed-schedule arrangement of
the audio, video and light show. Instead, the Device Cloud approach could allow every
visitor to directly interact with audio, video and light devices and therefore interactively
participate in the installation, or just replay interesting parts without having to wait for
the next turn in the schedule. The second use case concerns devices offered by companies
like treadmills or bicycle ergometers found in a fitness center. A customer is enabled to
link each device he is using to his smart phone, which can allow for loading personalized

50 Chapter 4: Device Cloud — Overall Concept

4.2. Device Cloud Concept

training plans or analysing the data after the training. Moreover, from a technical
point of view, the customer allocates the resource treadmill on demand and, similar
to a Cloud Computing provider, the fitness center could offer Pay-As-You-Go (PAYG)
pricing models.

4.2. Device Cloud Concept

Based on the fundamental definitions and principles of sharing given in Section 4.1, this
section will describe the participants (i.e. actors) of the Device Cloud, how they interact
and how the basic roles Device Qwner, Device Consumer, Device Integrator, Device
Target and Device Operator can be mapped to them. In order to provide a holistic
model of actors and interactions, the major technical components required to describe
the interactions are introduced. As a result, a reference list containing all major Device
Cloud actors and technical components will be given and a consistent naming convention
used throughout the rest of the thesis will be established.

Figure 4.2 gives an overview of the main interactions necessary to enable the device pro-
visioning. The interactions result in the forming of a Federated Device Pool. Similar
to the notion of the Cloud, this can be transparently accessed by Consumers in order to
request and use device resources. Related to the concept of Cloud Federation [34], the
Federated Device Pool can be envisioned as the sum of all devices offered by the different
participants of the Device Cloud. According to the IoT definition given in Chapter 1,
it is assumed that each device in the pool has a globally unique identifier. In order to
properly manage the devices and the provisioning process, each interaction between the
participants needs to be tagged with such an ID. The ID has to be assigned to a device
by the Device Vendor, which usually is the first participant announcing a device to the
Device Cloud, since the lifecycle of a device starts with its deployment.

The deployment of a device is usually initiated by a Device Vendor selling a device to
a customer. Devices can be sold to any actor that can hold the Device Owner role (e.g.
the Consumer). Selling a device presumes that the customer is able to integrate and
use it. One of the major requirements given in Chapter 1 was, that the Device Cloud is
not limited to a pre-defined set of devices or application domains. Moreover, due to the
standardization problem discussed is Section 2.3.1, vendors are not forced to comply to
any certain standard or pre-defined data format. Hence, if a vendor releases a new device
type, a mechanism to automatically announce and integrate the device control logic is
necessary. Therefore, the Device Cloud introduces the concept of a device knowledge
base, which is called the Device Directory. The Device Directory can be envisioned
as a directory service managing devices instead of users like LDAP-based services [158]
do. Besides general device related information like descriptions of the device type or the

Chapter 4: Device Cloud — Overall Concept 51

4.2. Device Cloud Concept

Device Vendor

Device
Node

Provide Knowledge

erator

User Global Device
Directory Directory
Device Knowledge Base

Request Knowledge
Consumer User Local Device

Operator A Directory Directory

Location
Provider Negotiate Sharing

Management Device Pool
Services Device Device
Node Node

Provision

System Integrator

Application Developer

Domain Operator

Local Device | User Consumer
Directory Directory Operator B

Location
Provider

Device Pool Management
Device Device Services
Node Node

Operate

7

s

“‘ Do Device
evice Node
Node

" Federated Device
Device N Node
o WY Device Pool ©
R

)
Request/Use

Device Cloud
Middleware

Device Cloud
Middleware

Aggregation Node Aggregation Node

Consumer A_1 Consumer A_2

Figure 4.2.: Overview of the actors, their relations to each other and the major technical

Device Cloud
Middleware

Aggregation Node

Consumer B

components building the foundation of the Device Cloud.

Sell

52 Chapter 4: Device Cloud — Overall Concept

4.2. Device Cloud Concept

device capabilities, the directory maintains a record for each concrete device instance,
which basically includes the ID mentioned above. Furthermore, a set of software mod-
ules, that allow integrating and handling a device is stored (e.g. device drivers, discovery
modules). A set of dependencies allows the knowledge base to express which software
module is applicable for which device. Thus, if the Device Vendor sells a new device,
it has to register the device by announcing its ID and the corresponding device type to
the directory. If the vendor releases a new device type, it has to provide the necessary
description as well as the software modules required to handle the device (at least a de-
vice driver). However, some application scenarios may require using devices that are not
registered by their vendors or that do not provide an interoperable data format. In this
case System Integrators can participate in the Device Cloud, register and describe
the device in charge of the vendor or provide additional software modules (e.g. data
transformation modules or custom device drivers). In general, besides managing the
device knowledge base, the Device Directory acts as a marketplace for software modules,
which can be used by the Device Cloud participants to offer or consume these modules
based on their requirements.

Since device management in terms of the Device Cloud not only includes managing the
device knowledge base, but must also offer services for accounting, user management or
device provisioning, it is not feasible to rely just on one single authority that provides all
these services globally. This is underlined by the increasing amount of devices that needs
to be managed. Therefore, the Device Cloud distinguishes between managing the device
knowledge base and offering services related to device provisioning by introducing two
Operator participants. An Operator provides the backend information system required
to set up core functionalities of the Device Cloud. Multiple Operators can coexist,
whereas, according to the separation of concerns, two kinds of Operators have to be
distinguished. A Domain Operator is a trusted authority that operates a Device
Directory (i.e. device knowledge base) and a User Directory. The aim of the User
Directory is to provide Identity and Access Management (IAM) capabilities that allow
authenticating each principal known within the domain of the Operator and authorize
access to the resources offered by the Device Directory. Principal can refer to each other
participant of the Device Cloud (e.g. Device Vendor, Consumer, Consumer Operator).
The Device Directory served by the Domain Operator basically represents the pool of
devices that can be provisioned (i.e. that become part of the Federated Device Pool).
Within the overall Device Cloud infrastructure, one Root Domain Operator hosting the
Global Device Directory exists. The Root Domain Operator does usually not participate
in the device provisioning process. Instead, it just operates the global device knowledge
base used by Device Vendors or System Integrators to announce knowledge. Regular
Domain Operators serve a Local Device Directory, that acts as a partial mirror to the
global instance, while only devices the Operator is responsible for or the Operator has
requested from other Operators are represented. Maintaining a local mirror is necessary

Chapter 4: Device Cloud — Overall Concept 53

4.2. Device Cloud Concept

because additional meta data required to describe the current state of a device within
the provisioning process must be maintained. The global instance is used to synchronize
general, stateless information about the devices between the Operators and allows each
Operator to determine, which Operator is responsible for which device. Moreover, since
it cannot be assumed that a relationship between each Operator and Vendor exists, the
global Device Directory simplifies the process of knowledge dissemination and ensures
that each Operator can gain access to all records of the device knowledge base.

The process of provisioning a device involves several steps and management services like
accounting or decision making. In order to hide this complexity from the end users (i.e.
Consumers), the second Operator type, called Consumer Operator, is introduced.
A Consumer Operator can act under one or more Domain Operators. Accordingly, a
Domain Operator can serve multiple Consumer Operators. However, for the sake of
simplicity, it is assumed in this thesis that the Consumer Operator is bound to one
Domain Operator. From the perspective of the Domain Operator, the Consumer Oper-
ator is a client accessing the resources of the Device Directory. Similar to an Internet
Service Provider (ISP), the Consumer Operator provides its customers access to the
Device Cloud infrastructure (i.e. associated Consumers). Consumer Operators provide
the Management Services required to interact with the Device Cloud and provision de-
vices (e.g. decision policies, device locking algorithms or modules for accounting). The
Consumer Operator refers to the Device Operator role.

The actual provisioning of a device is triggered by the participant Consumer that
refers to the role Device Consumer. A Consumer can be a single individual using Smart
Home or E-Health services at home or a company that participates in the Device Cloud
to optimize the management of their device resources among their employees. From a
technical point of view, each Consumer is represented by one or more instances of the
Device Cloud Middleware which can be deployed, for instance, on smart phones,
routers, or regular PCs. The Device Cloud Middleware offers device integration, device
abstraction and data aggregation capabilities and can be defined as a modular execution
environment for software modules provided by the Device Directory. Device provisioning
is triggered upon discovery of a device that is of interest for the corresponding Consumer
and basically involves the following steps:

1. Consumer — discover and identify

a) discover device and extract device ID
b) request device type description and details from the associated Operator using the
device ID

2. Operator — synchronize local device knowledge base

a) check whether the device is already known, if not request details from Global Device
Directory using the device ID
b) update Local Device Directory

54 Chapter 4: Device Cloud — Overall Concept

4.2. Device Cloud Concept

¢) return results to Consumer

3. Consumer — request device access

a) check local device allocation policy if device is of interest
b) if device is of interest, try to allocate it from Operator (i.e. request a device lock)

4. Operator — provision device

a) if device does not belong to own Device Pool, determine responsible Operator and
try to allocate device

b) if device can be provisioned to Consumer (i.e. a lock can be granted to the requesting
Consumer), create or modify an existing lock

c¢) return device access token (i.e. lock) to Consumer

5. Consumer — integrate device

a) if device allocation has succeeded, load required software modules from the Operator’s
device knowledge base
b) deploy software modules to Device Cloud Middleware and integrate device

In summary, the Device Cloud concept is based on a modular Device Cloud Middleware
that is able to deploy software modules provided by the distributed device knowledge
base at runtime, in order to adapt itself to the requirements of the environment. The
device knowledge base and other backend information services (i.e. the Device Cloud
infrastructure) are managed by a set of cooperating Operators that virtually combine
their local Device Pools to an overall pool (i.e. Federated Device Pool) containing all
devices available. Apart from the general concept design, an entity may take several roles
and act as multiple participants. The Consumer Operator and the Domain Operator
could be hosted by the same legal entity. A Consumer Operator could operate an own
set of devices and therefore additionally take the Consumer role.

4.2.1. List of Actors & Components

Following reference lists will summarize all major actors and components of the Device
Cloud. In order to properly distinguish actors and the roles they can take, roles, as
defined in Section 4.1, are typed in italic letters.

Device Cloud Actors

Device Vendor:
The Device Vendor manufactures and sells the devices provisioned within the Device
Cloud. The vendor provides device descriptions and software modules to the global
device knowledge base operated by the Root Domain Operator and is responsible
for registering each sold device with the Global Device Directory.

Possible Roles: Device Owner

Chapter 4: Device Cloud — Overall Concept 55

4.2. Device Cloud Concept

System Integrator:
The System Integrator provides custom knowledge (i.e. software modules) for de-
vices and device types already registered with the Global Device Directory (e.g.
data transformation modules). Each participant acting as the Device Consumer
role can utilize these modules.

Possible Roles: None

Application Developer:
The Application Developer is an optional actor that can offer applications based
on the Device Cloud infrastructure. This actor is only mentioned for the sake of
completeness and will not be further discussed.

Possible Roles: None

Domain Operator:
The Domain Operator serves a Device Directory and a User Directory offering
TAM services for all clients known within the context of the Domain Operator.
Basically, the Domain Operator protects access to the resources offered by its Device
Directory. Multiple domains are supported by the Device Cloud to simplify TAM
processes. Similar to the concept of Kerberos realms, cross-domain interactions are
possible (see Chapter 5).

Possible Roles: None

Consumer Operator:

The Consumer Operator provides the backend information systems required to
manage the devices, the consumers, the provisioning process, and, other services
like accounting. The Operator can have a set of customers using its services to
access the Device Cloud (i.e. a set of Consumers). Operators can either manage the
devices in charge of their customers, own and provision a set of devices themselves,
or follow a hybrid approach (i.e. also hold the Device Owner role). Operators can
also act as Device Consumers if they request devices from the pool (i.e. from other
Operators) in charge of their customers.

Possible Roles: Device Operator, Device Qwner, Device Consumer

Consumer:
The Consumer uses one or more instances of the Device Cloud Middleware to inter-
act with Consumer Operators and allocate devices. If the Consumer owns devices
(i.e. holds the Device Owner role) and wishes to offer them to other Consumers,
a Consumer Operator has to be mandated to act as the Device Operator for this
particular set of devices.

Possible Roles: Device Owner, Device Target, Device Consumer, Device Integrator

56 Chapter 4: Device Cloud — Overall Concept

4.2. Device Cloud Concept

Device Cloud Node Types

Device Node:
Device Nodes are the physical devices shared by the Consumers (i.e. devices in
the pool). These nodes sense the environment, are highly resource constrained and
usually do not allow for custom components.

Composite Device Node:
A composite Device Node can have several Device Nodes embedded into one phys-
ical node (e.g. a display with an embedded web cam). It can, but does not have to
be possible to provision the embedded nodes independently.

Aggregation Node:
Aggregation Nodes host the Device Cloud Middleware used by the Consumers to
share, integrate and collect data from Device Nodes (e.g. smart phones, routers,
PCs). Aggregation nodes are not shared and therefore do not become part of the
Device Pool.

Composite Aggregation Node:
Similar to composite Device Nodes, composite Aggregation Nodes can have several
embedded Device Nodes, which, in contrast to the Aggregation Node itself, can
become part of the Device Pool (e.g. a smart phone with a camera device).

Backend Node:
Backend Nodes (i.e. dedicated servers) are used by Operators to provide the back-
end information system. These nodes host components like the Device Directory
or the Management Services.

J

Device Directory:
The Device Directory hosts the device knowledge base and acts as a directory
service for devices. Besides device type information, corresponding configurations
or dependent software modules, the Directory knows every device in the pool by
maintaining their respective IDs.

e Global Device Directory: The Global Device Directory is used to synchronize
the local instances hosted by each Domain Operator. It maintains all stateless
information and software modules available in the Device Cloud and allows
determining which Operator is responsible for which device.

e Local Device Directory: Local Directories are a partial mirror of the global in-
stance reflecting all devices a Domain Operator is responsible for. In contrast
to the global instance, Local Device Directories usually also maintain state-
ful or private information like the provisioning state of a device or security

Device Cloud Components

Chapter 4: Device Cloud — Overall Concept

57

4.3. System Requirement Analysis

credentials required to connect to a device.

User Directory:
Similar to LDAP based directory services, the User Directory maintains all users
known to a Domain Operator (i.e. other actors like Consumers or Consumer Oper-
ators). It allows for authentication and authorization. Usually the User Directory
will be implemented as an interface or wrapper around an existing directory service
of the Operator.

Location Provider:

Each Consumer Operator may optionally act as a Location Provider. Location is
an important property for provisioning decisions. Usually the location of a device
can be easily determined by an Aggregation Node with a GPS sensor (e.g. a smart
phone). However, some scenarios may require a different approach to determine the
location and the distance between devices and Consumers (e.g. inside buildings,
where the shortest euclidean distance is not always equal to the shortest distance
between a Consumer and a device) [149].

Management Services:
Management Service is a generic term for services a Consumer Operator has to
provide in order to implement the provisioning process (e.g. decision policies, ac-
counting, device locking algorithms, device access negotiation between Operators).
In order to enhance modularity, the overall concept separates these services from
the directories.

Device Cloud Middleware:
The Device Cloud Middleware is deployed on Aggregation Nodes and can be envi-
sioned as an execution environment for software modules provided by the Device
Directory. The Device Cloud Middleware is the Consumer’s interface to its cor-
responding Operator. Upon discovery of a device, the device access tokens and
necessary integration knowledge is requested from the Operator and deployed at
runtime in order to properly integrate and handle the device. The entity having
control over a middleware instance that currently integrates a certain device (e.g.
a user with a smart phone), acts as the Device Integrator for this particular device.

4.3. System Requirement Analysis

The following section will give a brief overview of the main functional and non-functional
requirements of the Device Cloud. Many of the IoT architecture approaches presented
in Section 3.1 already discuss challenges and requirements like the demand for Quality

58 Chapter 4: Device Cloud — Overall Concept

4.3. System Requirement Analysis

Consumer
Operator B

Consumer
Operator A

ent
Went Offer Integration 5
Services Services
(0»
Devicel
Node
Offer Integration discovered Offer Integration

bound to
) |
iddleware iddleware

3

Aggregation Node Aggregation Node

Consumer A Consumer B

Figure 4.3.: Integration offer triggered by discovery of a device already bound to a Con-
sumer.

of Service (QoS) or Service Level Agreements (SLAs). However, since a comprehensive
discussion of these requirements would go beyond the scope of this thesis, emphasis will
be put on the topics device pooling and sharing.

4.3.1. Functional Requirements

On-demand Device Access:
Each Consumer shall have the possibility to request access to each device in the
Federated Device Pool on demand. The Device Owner or the Device Operator
managing the device in charge of the owner shall have the possibility to eval-
uate and accept or decline each request. No need for legal contracts or direct
relationships between the Device Consumer and the Device Owner shall exist.
Pay-As-You-Go (PAYG) accounting policies shall be supported.

Reliable Granting and Withdrawal:
The Device Cloud shall ensure that no Consumer (i.e. Device Integrator) is able to
integrate a device without holding a valid device lock. The locking decision made
by the Device Owner or Device Operator must respect the definition of functional
device classes given in Section 4.1 (e.g. exclusive or non-exclusive devices). The
lease granted to a Device Consumer can be constrained by different levels of service
quality. In case of an emergency, for instance, the Device Operator can decide to
force a disconnect and grant the device to another Device Consumer. The Device
Cloud needs to ensure that the withdrawal, either scheduled or unscheduled, is

Chapter 4: Device Cloud — Overall Concept 59

4.3. System Requirement Analysis

reliable (i.e. it is ensured that the device can be provisioned to another Consumer
and there is no further connection to the previous Consumer).

Integration Offer and Integration Request:
Besides requesting devices that are of interest, Consumers shall have the possi-
bility to offer the integration to the Device Owner or the Device Consumer as a
service. This can be useful if a device is out of range of the currently leasing Device
Consumer and becomes visible to another Consumer, that offers to integrate the
device in charge as shown in Figure 4.3 (i.e. the roles Device Consumer and Device
Integrator are taken by different entities).

Multi-Operator Environment:
A Consumer shall have the possibility to interact with different Consumer Oper-
ators (i.e. the Consumer is a customer of different Operators). Each Consumer
Operator is permitted to request and offer each device in the Federated Device
Pool to its customers. This allows Operators to provide services crossing different
application domains without owning the necessary devices.

Consumer based Device Sharing:
Each Consumer shall be able to share private devices with other consumers by
facilitating the device management services offered by its corresponding Consumer
Operator(s). This also includes the definition of accounting policies, if supported
by the chosen Operator.

Device Access Management:
A Device Owner shall be able to define device access policies for its devices. The
Device Owner can define which other entities or groups of entities have the per-
mission to act as a Device Consumer for its devices.

4.3.2. Non-functional Requirements

Plug and Play and Automated Deployment:
Device integration shall take place with minimal deployment and management
overhead. Given the presence of a required communication technology, each Device
Cloud Middleware instance shall be able to integrate each device as well as search
for and deploy the required software modules autonomously and on demand.

Technology and Protocol Agnostic:
The Device Cloud infrastructure shall be designed in a technology and protocol
independent manner. Based on modularity features, knowledge required to inte-
grate and handle newly developed devices shall be injectable at runtime without

60 Chapter 4: Device Cloud — Overall Concept

4.3. System Requirement Analysis

the requirement to manually change or adapt core components of the infrastruc-
ture. This is important due to the decreased time to market of new technologies,
protocols and devices. There must be a mechanism to introduce new knowledge
to the Device Cloud infrastructure.

Adaptability and Openness:

The infrastructure, in particular the Device Cloud Middleware, shall be able to
autonomously adapt itself to the requirements of the current environment. This
means that the Device Cloud Middleware acts as a general device integrator, not
statically related to any pre-defined set of devices, application domains or vendors.
The Middleware is able to load and unload integration knowledge on demand and
thus optimize its resource utilization. Well defined interfaces allow different actors
(e.g. system integrators, application developers) to participate in the Device Cloud
and provide integration knowledge. The global device knowledge base (i.e. Global
Device Directory) is accessible by each participant and provides knowledge in an
open and common format.

Platform Independence:

The Device Cloud Middleware has to ensure platform independence. Each soft-
ware module provided by the knowledge base needs to be compliant with the Device
Cloud Middleware specifications and is therefore executable on each instance, re-
gardless of the underlying platform. Restrictions are only given by the availability
of a certain communication technology, which can differ between middleware in-
stances, and by issues arising from mutual exclusion of software modules or their
dependencies.

Unique Identifiers:

A unique identifier needs to be assigned to each actor and especially to the devices.
This is required due to the synchronization between the Device Directory instances
and due to the federated device pooling. Additionally, unique IDs allow identifying
the initiator of a certain action (e.g. a device integration request) or, the owner
of a device or a certain record in the device knowledge base. They are fundamen-
tal for security features like code signing or authentication. A restriction to this
requirement is given for Consumers, which just have to be unambiguous within
the domain of their corresponding operator. Otherwise, the identity management
would not be scalable.

Peer to Peer Collaboration:
Because of the federated shape of the device pool and the possibly huge amount of
participating actors that can hold the Device OQwner role, a peer to peer style of
interaction is required. This aligns with the basic motivation of the Device Cloud,
which constitutes on Consumers that request direct access to devices owned by

Chapter 4: Device Cloud — Overall Concept 61

4.4. Entity Model

other participants. Operators can act as proxies for their corresponding Con-
sumers, if devices from different local pools are requested. The Global Device
Directory acts as a registry for devices, but negotiation of device access and provi-
sioning always happens on a peer to peer basis between the involved participants.

Security and Privacy:

The Device Cloud Infrastructure shall provide necessary security and privacy fea-
tures. This can include code signing mechanisms to ensure the integrity of software
modules, mechanisms to ensure integrity and confidentiality for exchanged data,
authentication and authorization mechanisms or, anonymization techniques, if,
for instance, the Device Consumer role differs from the Device Integrator role.
Consumers shall have the possibility to define different levels of confidentiality or
integrity when searching for appropriate devices or software modules, since dif-
ferent application domains have different security and privacy constraints (e.g.
entertainment versus E-Health).

4.4. Entity Model

Entities are virtual representations of the actors and roles and usually refer to records
stored in the Device or the User Directory. The following sections discuss the entities
required to model the actors and their relationships as introduced in Section 4.2. Starting
with general properties and abstract definitions common to several entities, each specific
entity required will be defined.

4.4.1. General Properties & Entities

Table 4.1 lists general properties common to all entities. The properties EntityOuwner
and FEntity Version are important in terms of access to entities and synchronization be-
tween the Device Directories. Each request to a Device Directory must be issued within
an authenticated session, which means the requesting principal was authenticated and
has furnished proof about its identity. Details about an authenticated session and au-
thorization are discussed in Section 5.1.

Along with the EntityOwner and Entity Version properties, the EntityDomain is impor-
tant for the purpose of synchronization between the Device Directories (note that User
Directories usually do not synchronize among each other). Synchronization is impor-
tant for knowledge dissemination within the Device Cloud. Moreover, a synchronization
protocol, as discussed in Section 5.2.2, ensures that different participants always have
a consistent view on the entities through their corresponding Local Device Directories.
This is important because each interaction in general and the device provisioning in

62 Chapter 4: Device Cloud — Overall Concept

4.4. Entity Model

Table 4.1.: Properties common to all entities

Property

Description

Entity Type
EntityID

EntityDomain

Entity Version

The type of the entity (e.g. device instance, device type, platform module).
The identifier of the entity. Concatenated with the EntityType, an entity
must be unambiguously identifiable among all entities of a Domain Opera-
tor. Some entities are even required to be unique among the whole Device
Cloud (e.g. entities representing devices or Operators).

Refers to the domain (i.e. Domain Operator) the entity originates from.
EntityOwner, EntityOperator and EntityID may be only valid within the
domain.

The version of the entity. The version is a comparable property based on
the format used by the Apache Maven project. It allows verifying whether a
local copy of an entity managed by another Device Directory is up to date.

EntityOwner

EntityOperator

The owner of the entity. Needs to be a principal entity managed by a User
Directory.

Refers to an optional entity that manages the entity in charge of the owner
(e.g. a Consumer Operator as described in Section 4.2). Similar to the
EntityOwner, the EntityOperator needs to be a principal entity.

PrivateEntity

PermissionSet

A flag denoting whether the entity is private or not. A private entity is not
publicly accessible and not synchronized with other Device Directories.

An optional property allowing to specify read or write access to properties
of an entity more precisely.

Chapter 4: Device Cloud — Overall Concept 63

4.4. Entity Model

particular are based on creating, accessing or modifying entities protected by the Device
Directory. The EntityVersion property is usually automatically updated by the Device
Directory in order to avoid undefined behaviour during synchronization. The EntityDo-
main property allows identifying the original source of an entity. If a Device Directory
granted write access for an entity managed by another Device Directory, the EntityDo-
main property allows propagating the changes back. Hence, if a local copy of an entity
is created by a Device Directory due to synchronization, the EntityOwner, EntityOp-
erator, EntityDomain, EntityVersion properties remain unchanged. This ensures that
the synchronization protocol is always able to identify the responsible originator and the
current version and will not accidentally override global information. In general, only
the EntityOwner or a mandated EntityOperator of an entity are able to modify it, while
only the EntityOwner can grant respective access permissions.

However, some Operators may also want to achieve custom behavior for certain software
modules or device configurations or even add software modules that are private to their
organization. In this case, entities having the PrivateEntity flag set can be added to a
Device Directory. In order to avoid unregulated knowledge dissemination, entities added
to entities corresponding to another EntityOwner remain private by default (e.g. private
configuration entries).

Since devices used within the Device Cloud are not restricted to any certain type, tech-
nology, or standard, and each Consumer or Operator may have different requirements
regarding their deployment, it is difficult to define a uniform format of descriptions or
configurations. Therefore, two abstract entities are defined, that allow attaching user
defined knowledge to each entity. Additionally, abstract entities to describe the mobility
and movement as well as the requirement to authenticate certain entities are defined:

Abstract Device Cloud Entities

Attachment Entity:
An attachment refers to any kind of resource usually stored on the file system (e.g.
a picture or a binary). Attachment Entities can have several attachments. An ID,
unique within the context of the entity, is assigned to each attachment. Typical
use cases are software modules that correspond to an OSGi bundle (i.e. a jar file)
or certificates used for the purpose of asymmetric cryptography.

Configurable Entity:
A configurable entity holds a set of configuration entries expressed as Java proper-
ties (e.g. key-value pairs). Each entry again is backed by the global entity definition
and can therefore be defined as private. This means, that each local copy of an
entity can have two virtual sets of configuration entries. One global set managed
by the EntityOwner and one local set managed by the entity controlling the local
copy (usually an Operator). In most cases, the global set is managed by the Global

64 Chapter 4: Device Cloud — Overall Concept

4.4. Entity Model

Device Directory.

Location Tagged Entity:
An entity whose location can be monitored. This can be an important parameter
when having to decide about competing device access requests or requests to devices
that are already provisioned. Because a lot of devices are mobile, this entity defines
a mobility property:

o MobileEntity: Devices or Aggregators can either be mobile or stationary.
Stationary does not mean that the entity cannot be moved manually.

Principal Entity:

A Principal Entity is an entity that can be authenticated by the User Directory us-
ing its EntityID and some kind of security credentials (e.g. certificate or password).
Examples are Consumer Operators or Consumers. The Device Cloud requires that
a public-private key pair exists for each Principal Entity. Thus, Principal Entities
are managed by the Domain Operator’s User Directory. Except from all other en-
tities, Principle Entities usually do not have the EntityOwner property set because
often the principle itself is the owner and setting this property in each case can
lead to infinite loops.

4.4.2. Device Directory Entities

Several entities are defined to model the physical devices of the Device Cloud. Basically,
a physical device is represented by a Device Instance that corresponds to a certain Device
Type, complies to a certain Device Class and requires a set of software modules to be
integrated and handled. The relation between instance, type and class can be exemplary
envisioned as a vendor that sells a blood pressure monitor (class) which has a product
number or model code (type) and a serial number (instance) that identifies the concrete
physical instance.

Device Directory Entities

Device Instance:

Inherits from: Attachment Entity, Configurable Entity, Location Tagged Entity
EntityOwner: Principal Entity being the Device Quwner
EntityOperator: Consumer Operator mandated by the Device OQuwner

The Device Instance represents a concrete physical device that is part of the
Device Pool and can be provisioned to Consumers. It is described by a serial

Chapter 4: Device Cloud — Overall Concept 65

4.4. Entity Model

number and a Device Type it corresponds to. As a configurable and attachment
entity, it can hold information that only applies to the concrete physical instance
it represents (e.g. security credentials such as a Bluetooth pin required to connect
to the device). Following additional properties are defined:

o DevicelnstanceState: The current state of the represented device (e.g. provi-
sioned or idle). This property has the following sub-entries:

1. CategoryStates — According to the CategorySets property of the linked
Device Type entity, this is a set of tuples. Each tuple {ID, state} rep-
resents the state of the corresponding CategorySet entry. The Catego-
ryStates property is basically introduced to model composite devices.
The entries of CategoryStates remain disabled until the RootState has
transitioned to a state that allows the device to be provisioned.

2. RootState — The RootState is considered as long as the device is not in a
provisionable state.

o PublicKey: The public key of the Device Instance. Keys are important during
the provisioning process and allow proving if a Device Lock is valid.

e PrivateKey: The private key of the Device Instance which is only accessible
by the EntityOwner of the Device Instance.

o (lategorySets: This property can be used to overwrite the corresponding De-
vice Type property, in case a Device OQwner wants the locking policy to differ
from the global one defined by the Device Type.

Device Type:

Inherits from: Attachment Entity, Configurable Entity
EntityOwner: Principal Entity usually referring to the Device Vendor
EntityOperator: Usually the Root Domain Operator

The Device Type refers to a type of devices, which means a set of devices from
a certain vendor that complies to the same specifications (i.e. have the same
model or product number). It stores information that are applicable to all
Device Instances of that type (e.g. vendor name, description). Each Device Type
corresponds to at least one Device Category and maintains a set of dependencies
on Platform Modules. According to the initial definition of functional device
classes, the Device Type entity defines the following property:

o CategorySets: Contains a set of triples composed of an identifier, an integer
value and a set of Device Category identifiers, which have to match the Device
Categories linked to the Device Type. The integer value defines the amount
of locks that can exist simultaneously for the set (i.e. group) of categories (1
stands for exclusive, >1 stands for non-exclusive, 0 stands for disabled and,
-1 stands for an unlimited amount).

66 Chapter 4: Device Cloud — Overall Concept

4.4. Entity Model

Device Category:

Inherits from: Attachment Entity, Configurable Entity

EntityOwner: Principal Entity usually referring to the Device Vendor or a
standardization authority

EntityOperator: Usually the Root Domain Operator

As already discussed in Section 2.4.2, the Device Category is the core enabler
for abstraction and interoperability. Each device compliant to a certain category
agrees on the interface defined by the category. Thus, the Device Category
specifies how to communicate with a device of the corresponding class in a vendor
and technology independent way. The Device Category consists of an interface,
specifying the available methods to interact with the device, a set of OSGi related
service properties including, for instance, model name or serial number and a set
of match values, which are used to attach devices and corresponding drivers as
introduced in Section 2.4.2. Device Categories can be subject to a hierarchy of
inheritance (e.g. a dimmable light device refines a light device), which is discussed
in Section 6.2.2. The following property is defined:

o PlatformModuleSet: Besides analysing the Platform Modules linked to a De-
vice Type, this set allows searching for Platform Modules that belong to this
category. If this category can be the result of a discovery process, this prop-
erty must be defined.

Platform Module:

Inherits from: Attachment Entity, Configurable Entity
EntityOwner: Principal referring to the developer, usually the Device Vendor
EntityOperator: Usually the Root Domain Operator

Platform Modules refer to the software modules provided by the Device Directory
and executed by the Device Cloud Middleware in order to integrate or handle
devices. Examples are device drivers, discovery modules, data transformation or
utilization modules or, core modules of the Device Cloud Middleware itself. Each
Platform Module must have at least one attachment, that refers to the OSGi
bundle deployable to the Device Cloud Middleware. Each bundle must comply to
the interfaces defined by the Device Cloud Middleware as described in Section 6.2.
Four additional properties are defined:

e Dependencies: A set of dependencies on other Platform Modules (given the
identifier and a version range).

e Fuzclusions: An optional set of exclusions (e.g. two discovery modules using
the same port).

e InputFormat: A set of input data formats accepted by the Platform Module.
This is primarily related to aggregation layer modules such as data trans-

Chapter 4: Device Cloud — Overall Concept

67

4.4. Entity Model

formation modules. Device integration layer modules (e.g. discovery, device
driver) are likely to have the Raw (in case of base drivers) or the Device
Category format set.

e QOutputFormat: Similar to InputFormat.

Device Lock:

Inherits from: Attachment Entity, Configurable Entity
EntityOwner: Usually equal to EntityOperator
EntityOperator: Consumer Operator Entity mandated by the Device Owner

The Device Lock represents stateful information about the provisioning of a de-
vice. A valid lock means, that the Device Instance it corresponds to is currently
provisioned to a Consumer or another Consumer Operator (which acts as a Device
Consumer in this case). With respect to the functional device classes defined
in Section 4.1, multiple Device Locks can exist for one Device Instance. Each
Device Lock has a mandatory access token attachment, which can be used by
other entities involved in the provisioning to prove the validity of the lock. This is
discussed in detail in Section 5.1. Six additional properties are defined:

Validity: Usually a time span denoting how long the lock is valid.

e LockingEntity: A Principal entity the lock was granted to.

o Aggregator: A flag denoting if and which Aggregator currently integrates the
corresponding device.

e OperatorLock: Indicates whether the lock was granted to an Consumer Op-
erator or to a Consumer.

e CategorySet: Defines the group of Device Categories the lock belongs to (ac-
cording to the CategorySets property of the Device Type).

e Revoked: A flag denoting whether the lock was temporarily revoked (e.g. in

case of an emergency integration by another Consumer).

Aggregator Instance:

Inherits from: Device Instance Entity
EntityOwner: Principal Entity being the Device Quwner
EntityOperator: Consumer Operator mandated by the Device OQwner

The Aggregator Instance is a specialization of the Device Instance. Although
Aggregators are not shared or provisioned, they need to be represented by
the Device Directory in order to have a consistent model of device integration
as discussed in Section 6.2.2. The Root Domain Operator must reserve an
appropriate range of IDs for Aggregators, because the overall ID range is shared
with the Device Instances. Aggregator Instances can but do not have to maintain
the DevicelnstanceState property. This is only required if the Aggregator is a

68 Chapter 4: Device Cloud — Overall Concept

4.4. Entity Model

Device Category
Webcam

Device Lock

(W)

Consumer

CategorySet =1 Device Instance Device Category
Display

DevicelnstanceState:

- RootState: Provisionable

- CategoryStates:

-{1, Provisioned}

Attached to|

Device Lock

ce lyp
U ble e
CategorySe 2 {2 ovisiona } Devi T
| CategorySets:
{1/11 D Splay}

Represented By Defined By (21, Web }
-{2,-1, Webcam

Device Lock

Composite
Device Node

(™

Consumer

CategorySet=2

Figure 4.4.: Relationship of functional device classes, category groups and device locks.

Composite Aggregation Node and is willing to add its embedded devices to the
Device Cloud. The CategorySets property of the corresponding device type does
not allow for provisioning of embedded devices by default. Thus, this feature has
to be explicitly activated by overriding the global CategorySets property using the
respective Device Instance property.

J

The Device Lock is the representative of the core capability of the Device Cloud. It allows
provisioning devices to Device Consumers, which can refer to Consumers or Consumer
Operators (i.e. Intra-Operator provisioning). The Consumer Operator managing the de-
vice can grant the lock to its own Consumers or to other Consumer Operators. In case
the lock is granted to another Operator, the device will usually be further provisioned to
Customers of that Operator. It is important to note, that there is a one to one relation
between a Device Lock and an Aggregator. In case of devices offering non-exclusive
locks, this results in the requirement to create multiple locks for each requesting Con-
sumer. Accordingly, in case of Intra-Operator provisioning, the consuming Operator has
to request one lock for each Consumer the device is provisioned to. Figure 4.4 depicts
the relationship between the functional device classes and the CategorySets and Dewvi-
celnstanceState properties. In case of exclusive transducer devices, CategorySets will
contain exactly one entry with a lock-amount of 1. In case of non-exclusive transducer
devices, CategorySets will contain one entry with a lock-amount of -1 or >1. Composite
transducer devices are modelled using multiple CategorySets entries.

A Consumer Operator acting as the Device Consumer for a particular device is not

Chapter 4: Device Cloud — Overall Concept 69

4.4. Entity Model

allowed further provisioning the device to other Operators. This restriction is made
due to the requirement of withdrawing a valid device lock (see Section 4.3). Otherwise,
the Operator holding the Device Operator role would have no knowledge about the
consuming Operator and a withdrawal request would be subject to a cascaded operation.
Moreover, because the provisioning negotiation is based on peer to peer interaction
between Operators, the managing Operator would not be involved in the provisioning
decision and policies could be violated (e.g. a device could be granted to an Operator
blacklisted by the managing Operator).

Permissions constraining the provisioning process can be added by Device Owners as
configuration entries to the Device Instance Entity. If the Device OQwner wants to prevent
the Dewvice Operator from modifying these permissions, the EntityOperator property
of the configuration entry can be left blank. Permissions applicable to the interaction
between Operators or constraining the provisioning of a whole class of devices (i.e. Device
Category), which usually spans devices of several Device Owners, can be managed by
each Consumer Operator. The actual mechanisms to implement such global permission
sets or to implement features like role based access control (i.e. grouping of Consumers)
are out of scope of this work.

Besides permissions, information regarding the Device Target can be added to the con-
figuration of a Device Instance. The Device Target role is not explicitly modelled by an
entity, because of the huge variety of possible targets. As defined in Section 4.1, a target
may belong to a human being, a physical thing or, even an area or an environment.
However, Operators may require Consumers to specify a valid target upon request to a
device and include this information in their provisioning decisions. A Consumer Opera-
tor could, for instance, apply a policy that each request for a medical device contains a
valid patient identifier. In general, if no target is specified, the Device Consumer request-
ing access will be treated as the target. In case of a non-exclusive or composite device
and support for multiple Device Targets, the information can be additionally added to
the Device Lock and overwrite the corresponding Device Instance entry. Whether the
Device Target entry is kept private or is accessible by all Device Cloud participants
depends on the privacy requirements of the application domain.

The Platform Modules available can be basically classified into core modules, device
integration modules and aggregation modules:

General Platform Module Classification

Core Platform Module:
Core modules provide the core functionality of the Device Cloud Middleware and
belong to the Device Cloud infrastructure itself. These modules are usually not
added by vendors or system integrators. However, they are stored in the Device
Directory for the purpose of simplifying and customizing the Device Cloud Middle-

70 Chapter 4: Device Cloud — Overall Concept

4.4. Entity Model

ware deployment (i.e. bootstrapping) process, which is described in Section 6.2.

Device Integration Platform Module:
Device integration modules refer to discovery or device driver modules. These
modules are usually tightly coupled to device types based on the Device Category.

Aggregation Platform Module:

The third class refers to modules that perform manipulation on the data received
from a device and are executed by a separate part of the middleware. Examples
include data transformation modules or aggregation modules. Processing of a data
stream often involves several aggregation, manipulation and transformation steps.
Therefore, Platform Modules of this class define input and output data formats
(e.g. ISO/IEEE 11073 or HL7 for medical applications) to simplify the process
of module composition. A Consumer profile is used to specify the set of modules
required for a certain device or application as well as their composition. This has
to be done manually and is described in Section 6.1.2. However, the specified
input and output formats allow automatically injecting transformation modules, if
necessary. The input and output format properties are usually ignored in case of
modules belonging to the other classes.

4.4.3. User Directory Entities

Entities maintained by the User Directory are basically introduced to model authenti-
cation, access control and accounting. Hence, these entities inherit from the Principal
Entity. The identity of a User Directory entity is only valid within the scope of the
corresponding domain (i.e. Domain Operator). An entity spanning multiple domains,
needs to be registered with the Root Domain. An example are Operators that can nego-
tiate a device provisioning between domains. Note that User Directory entities need to
have a representation in the Device Directory. Otherwise setting the EntityOwner and
EntityOperator properties would be impossible.

User Directory Entities

Aggregator:

Inherits from: Attachment Entity, Configurable Entity, Principal Entity, Loca-
tion Tagged Entity

The Aggregator entity is used to authenticate an Aggregator within the context of
a domain.

Consumer:

Chapter 4: Device Cloud — Overall Concept 71

4.4. Entity Model

Inherits from: Attachment Entity, Configurable Entity, Principal Entity, Loca-
tion Tagged Entity

The Consumer entity is used to authenticate the Consumers within the context of
a domain and link additional information such as the Consumer Profile.

Consumer Profile:

Inherits from: Attachment Entity, Configurable Entity

The Consumer profile describes the set of devices required by the Consumer and
the set of aggregation layer modules required by the Consumer’s applications to
process the data recorded from the devices. It consists of entries that specify
a particular Device Category as an input and attach a set of Platform Module
compositions. Device integration modules like device drivers are not part of the
profile because they are deployed automatically. Entries in the Consumer Profile
are usually added manually or automatically by applications that require certain
inputs. A physician, for example, could add an entry to the profile of his patient
that specifies to integrate a blood pressure sensor and apply a transformation to
the HL7 data format in order to be interpretable by its clinical information system.
However, this assumes that the physician can gain access to the Consumer Profile
resource.

Operator:

Inherits from: Attachment Entity, Configurable Entity, Principal Entity

The Operator entity is used to authenticate an Operator and store contact infor-
mation. The following properties are defined:

e ProtocolURI: Defines the URI of the communication protocols used to interact
with the Operator.

o DomainOperator: Flag indicating whether the entity refers to Domain or a
Consumer Operator.

Vendor:

Inherits from: Attachment Entity, Configurable Entity, Principal Entity

The Vendor entity is representing knowledge contributing entities being able to be
authenticated by the TAM service of a Domain Operator. Examples are Device
Vendors or System Integrators.

Linking the Consumer Profile to the User Directory (i.e. the Domain Operator) ensures

72 Chapter 4: Device Cloud — Overall Concept

4.4. Entity Model

that only one profile exists within one domain, even if multiple Consumer Operators
serve a single Consumer. Thus, synchronization is simplified. The disadvantage of this
approach is, that the Domain Operator has to maintain knowledge that goes beyond
authentication and protecting access to resources. If a Consumer participates in several
domains and hence has several Consumer Profiles, the synchronization between them is
not defined. The PermissionSet property is used to define which Consumer Operators
can gain access to a Consumer’s Profile.

Operator Entities and Vendor Entities are usually managed by the Root Domain Opera-
tor because they interact with the root domain. In contrast to Consumer and Aggregator
Entities, which are only valid within the context of a certain domain, Operator and Ven-
dor Entities are valid within the context of the whole Device Cloud. Managing Consumer
and Aggregator Entities is partitioned and carried out by Domain Operators because a
central, overall IAM instance would not be scalable and the amount of Operator and
Vendor entities is far below the amount of Consumers and Aggregators.

4.4.4. Management Service Entities

Entities maintained by the Management Services of a Consumer Operator are used to
model, monitor and supervise the device provisioning process.

Management Service Entities

Aggregator Agent:

Inherits from: Attachment Entity, Configurable Entity
Maintained by: Aggregator

EntityOwner: Principal referring to an Aggregator
EntityOperator: Consumer or Consumer Operator Entity

The Aggregator Agent is the virtual representation of an Aggregator. It is used by
the Device Cloud Middleware to interact with its Domain Operator and a set of
Consumer Operators.

e Bound: Indicates whether the Aggregator is statically bound to one Consumer
or can serve multiple Consumers.

Consumer Agent:

Inherits from: Attachment Entity, Configurable Entity
Maintained by: Consumer Operator Management Services
EntityOwner: Consumer Entity

EntityOperator: Consumer Operator Entity

Chapter 4: Device Cloud — Overall Concept 73

4.4. Entity Model

The Consumer Agent Entity is the virtual representation of a Consumer and its
Consumer Profile in scope of a Consumer Operator. Thus, several Consumer Agent
entities corresponding with the same Consumer Entity can exist. Synchronization
is achieved through transactional access to the singleton Consumer Profile Entity
provided by the Domain Operator.

Operator Agent:

Inherits from: Attachment Entity, Configurable Entity
Maintained by: Consumer Operator Management Services
EntityOwner: Consumer Operator Entity
EntityOperator: Consumer Operator Entity

Similar to the Consumer Agent, the Operator Agent is the virtual representation
of a Consumer Operator. An Operator Agent is used in case the provisioning
and the resulting integration has to be supervised by the Device Owner or Device
Operator, which is discussed in Section 5.1.

J

The Consumer Agent is involved in each device provisioning process, regardless whether
the Aggregator is performing a device integration request or a device integration offer.
Operator Agents are only used in case the provisioning requires supervision (e.g. a forced
withdrawal due to an emergency is possible). Details about the behaviour of Consumer
Agents, Operator Agents and Aggregators during the device integration process are
discussed in Section 5.1 and Section 5.2.

The Management Services of a Consumer Operator may internally maintain a repre-
sentative of an Aggregator Agent for management purposes. It could be used to define
the bootstrap configuration (i.e. which core modules of the middleware are to be de-
ployed) and to monitor which devices and which Consumers are currently linked to an
Aggregator. However, it is not defined how a Consumer Operator may implement such
measures. The EntityOperator property of an Aggregator Agent defines, which Principal
legally owns and therefore operates the Aggregator. If the EntityOperator refers to a
Consumer (i.e. the Aggregator is owned by an end-user), the Bound property must be
true.

Aggregator Classification

Bound Aggregator:
A bound Aggregator statically serves one Consumer. The corresponding Consumer
Profile is linked to the Aggregator Agent by connecting to the Consumer Agent
hosted by the Consumer Operator. However, if the Aggregator device is owned by
the consumer (i.e. a private device) and the Consumer interacts with several Con-

74 Chapter 4: Device Cloud — Overall Concept

4.4. Entity Model

sumer Operators, the Aggregator Agent has to interact with multiple Consumer
Agents. Thus, the Consumer has to define a priority ordering, which allows the
Aggregator Agent to chose a Consumer Agent upon discovery of a device. Aggre-
gator agents may provide a rule engine or a negotiation mechanisms that allows
choosing a Consumer Operator based on the conditions (e.g. price) or QoS offered,
but this is out of scope of this thesis. Bound Aggregators can be used to establish a
relation between a device and the Device Target because they are usually physically
operated by a Consumer.

Unbound Aggregator:

An unbound Aggregator is always owned by a Consumer Operator and can serve
multiple Consumers. Similar to the bound Aggregator, this results in multiple
Consumer Agents being linked to the Aggregator Agent. Hence, a priority flag has
to define the order in which each Consumer Agent is notified about the presence
of the device. The process of determining the priority depends on the application
scenario and is not further specified here. A simple approach would be to use FIFO
ordering.

J

The EntitylD property of the Agents is equal to the EntitylD property of the correspond-
ing Principal Entity. For example, an Aggregator Agent will have the same EntitylD as

the corresponding Aggregator Entity stored in the User Directory.

Chapter 4: Device Cloud — Overall Concept

75

4.4. Entity Model

76 Chapter 4: Device Cloud — Overall Concept

5. Device Cloud — Security & Interactions Concept

Contents
5.1. Security Model e s
5.1.1. Trusted Platform 78
5.1.2. Authentication and Authorization 79
5.1.3. Device Access Token 83
5.1.4. Device Access Withdrawal 85
5.1.5. Confidentiality of Consumer Data 87
5.1.6. Discussion e 88
5.2. Interaction Model, 94
5.2.1. Device State Model, 94
5.2.2. Communication Protocols 97
5.2.3. Provisioning Interactions & Algorithms 101
5.2.4. Sharing Virtual Representations 115

Based on the Entity Model, this chapter will discuss the security requirements arising
out of the Domain based entity distribution and introduce a security model allowing
for authentic interactions between the Device Cloud actors. An interactions model will
depict communication protocols, message flows and states required to accomplish the
provisioning of devices.

5.1. Security Model

Apart from the general issues discussed in Section 2.5, the Device Cloud concept leads
to five major security and privacy requirements:

1. Interacting participants need to be able to proof their identity. The source of a
triggered interaction needs to be authentic and unambiguous in order to ensure
the validity of the data maintained by the Device Directories.

2. Device access tokens need to be authentic. Only an actor holding the Device Owner
role or a delegate (e.g. the Device Operator) shall be able to create a valid access
token.

7

5.1. Security Model

3. Private knowledge about devices (e.g. security credentials like Bluetooth PINSs)
needs to be kept confidential. Neither a Device Consumer nor an intermediary
Operator shall be able to access or modify private knowledge.

4. As discussed in Section 4.3, the Device Owner or the Device Operator need to be
able to withdraw a valid device access token in order to re-provision the device in
case of emergency.

5. Integrity and confidentiality of Consumer related device data (i.e. data generated
by a device currently provisioned to a Consumer) need to be ensured if required
by the Consumer.

5.1.1. Trusted Platform

Solution approaches to these requirements are based on the foundational assumption that
the Device Cloud Middleware hosted on the Aggregators as well as the Domain Operators
are trusted participants and offer a trusted platform. In case of Domain Operators, which
perform operations similar to those of an authentication server in Kerberos, trust is a
necessary precondition. In case of the Device Cloud Middleware, trust can be achieved by
mechanisms described in the context of OSGi security. Basically, the middleware consists
of a set of core Platform Modules as introduced in Section 4.4.2. These core modules
provide the execution environment for all other Platform Modules and are managed and
delivered by the Root Domain Operator. It is assumed that all core modules are signed by
the authority operating the Root Domain. Thus, the Device Cloud Middleware is able to
authenticate the signer and to ensure, that a core module has not been modified. Regular
Platform Modules need to be signed, too. Either the Root Domain Operator signs a
Platform Module in charge of the originator (i.e. delegation model) or the modules are
signed by the participating Device Vendors and System Integrators themselves. The
first approach requires the Root Domain Operator to manually check and release each
module, while it simplifies the permission management to be employed by the Device
Cloud Middleware. The second approach allows for more fine grained permission sets,
based on the actual originators of Platform Modules. However, Consumer Operators are
required to manually define the permission sets for their belonging Aggregators, which
may not be feasible due to the huge amount of Device Vendors and System Integrators
possibly participating in the Device Cloud. As a remedy, a hybrid approach using
certification chains and trusted Device Vendors could be used. In general, it has to
be ensured that only properly signed and trusted core modules are deployed and that
the Device Cloud Middleware is able to authenticate a Platform Module and apply
permissions based on its origin.

78 Chapter 5: Device Cloud — Security & Interactions Concept

5.1. Security Model

Regardless of the signing approach used, OSGi provides the Conditional Permission
Admin Service [120] to manage the permission of a bundle (i.e. core or Platform Module).
Conditions are used to decide whether a certain set of permissions is applicable to a
bundle, which can include the signer of a bundle or user-defined conditions, like the type
of a Platform Module (e.g. device drivers may require different permissions than data
transformation modules). A permission, for instance, covers the ability to access file or
network resources or to manage other services within the middleware. Thus, constraining
Platform Modules to a minimal set of necessary permissions (e.g. a device driver cannot
open network sockets to hosts outside of the local subnet or data transformation modules
cannot access the network at all) further mitigates the possibility of potential malicious
bundles performing unintended operations.

5.1.2. Authentication and Authorization

Based on the Identity and Access Management (IAM) capabilities offered by the User
Directories, the Device Cloud performs authentication and authorization of its Principal
Entities. The User Directory of a domain can be envisioned as a Kerberos Realm. It is
important to mention that this does not imply that the Kerberos protocol is used for au-
thentication within the Device Cloud. However, similar to Kerberos a trust relationship
between the domains (or at least the root and its child domains) needs to exist because
provisioning interactions can span domains.

As mentioned, Principal Entities either have a globally valid identity (Operators) or an
identity only valid in the context of a domain (Consumer, Aggregator). Principals with
globally valid identities employ interactions that cross domains and therefore need to be
authenticated not only within their domain. Thus, these entities are managed by the
User Directory of the Root Domain Operator. The Root Domain needs to be trusted
by other domains to allow Operators to be authenticated by regular domains and access
their Device Directory or communicate with other Consumer Operators. This is required
in case of Intra-Operator provisioning (i.e. a device is provisioned to another Operator).
Staying with the Kerberos terminology, the User Directory stands for the Authentication
Server (AS) and the Device Directory for the Ticket Granting Server (TGS).

An even more appropriate terminology, fitting the general entity properties defined in
Table 4.1, is given by the OAuth2.0 authorization protocol (see Section 2.5.1). OAuth2.0
defines the roles resource owner, resource server, client and authorization server. A client
willing to access a resource protected by the resource server needs to present a valid access
token. Only the resource owner can issue the token. Therefore, the authorization server
has to authenticate the resource owner and issue, on behalf of the resource owner and
respecting its policy, an access token to the client. As shown in Figure 5.1, this model
can be easily mapped to the Device Cloud and the process of provisioning. In simplified

Chapter 5: Device Cloud — Security & Interactions Concept 79

5.1. Security Model

i o

Requests Access

Consumer
Operator A

Consumer

Operator B @

Consumer B

Device Node

7))

—

Owned By
/t Grants Access
Resource Owner

Consumer A

Figure 5.1.: Consumer Operators require permission of the Device Owner to provision
devices.

terms, provisioning a device requires that the Consumer Operator, being responsible
for provisioning and granting access locks, gets access to a Device Instance entity and
modifies its state. As mentioned, all device related entities are maintained by the Device
Directory and each entity has an EntityOwner property. Hence, the Device Directory is
a resource server that protects access to device related entities based on the EntityOQwner
property. Before being able to modify the state, the Consumer Operator (i.e. the client)
needs to be authorized by the EntityOwner to access a Device Instance. Therefore,
the EntityOwner has to instruct the User Directory (authorization server) to issue an
access token for the Consumer Operator. Issuing an access token can be twofold: either
the EntityOwner grants a temporally limited access token like defined by OAuth2.0 or
unlimited access is granted by utilizing the EntityOperator property. It is assumed,
that both the EntityOwner and the Consumer Operator have been authenticated in
advance.

Authentication means to employ proper mechanisms to prove the identity a principal
claims to have. A principal must be characterized through well-defined properties in
order to allow for an unambiguous identification [46]. Most authentication protocols
are based on knowledge like shared secrets (e.g. passwords). The Device Cloud secu-
rity concept is based on asymmetric encryption (i.e. a public and a private key for
each Principal entity). This technique can be used along with several authentication
concepts (e.g. Challenge-Response methods) and specific protocols (OpenID Connect)
and additionally allows ensuring integrity (i.e. using signatures) and confidentiality (i.e.

80 Chapter 5: Device Cloud — Security & Interactions Concept

5.1. Security Model

using encryption). The public key is stored by the trusted Domain Operator which is
responsible for the Principal while the private key remains private to the Principal.

In order to obtain a key pair, a Principal Entity is required to register with a Domain
Operator. It is assumed that a Root Domain exists and that each Principal knowns
the authentic public key of the corresponding Operator. The registration of Operators
and Vendors is not further specified because in contrast to Consumers or Aggregators,
this process is conducted rarely, usually involves legal contracts and does not need to
be automated. However, an Operator or Vendor registration must result in the creation
of the respective Principal Entity, which is, together with the generated public key,
maintained by the Root Domain Operator. The following behaviour is defined for the
remaining Principal Entities:

Principal Registration

Aggregator:

An Aggregator device becomes a Device Cloud Aggregator entity by deploying the
Device Cloud Middleware to it. The bootstrap process, described in Section 6.2.1,
is basically initiated by instantiating a bootstrap core module to the Aggregator
device (i.e. the Aggregator Agent). Before loading the Core Platform Modules, the
Aggregator Agent has to register itself with the Domain Operator. An appropriate
request (within an encrypted session - e.g. using TLS) to the User Directory has to
contain the public key generated by the Aggregator Agent and the ID corresponding
to the EntityOperator. The User Directory assigns an ID, creates the Aggregator
entity and sets the EntityOperator property (the ID needs to be obtained from the
Root Domain because it belongs to the same range as the Device Instance ID — see
Section 4.4.2). As a result, the ID is returned and the Aggregator Agent can start
communicating with other participants (usually the first step will be to load the core
modules from the Device Directory). Additionally, the User Directory takes care of
registering the Aggregator Instance with the Device Directory. Registration of an
Aggregator Agent presumes that the principal corresponding to the EntityOperator
is known by the User Directory. Note that in case of Aggregator entities, the
EntityOperator property usually refers to the owner of the respective Aggregation
Node device.

Consumer:
Similar to the Aggregator, the Consumer has to register with the User Directory
(e.g. using a web based registration form). How and where the Consumer stores
its private key is not defined here, because Consumers can utilize several Aggre-
gators and even the Consumer Agents can concurrently exist at several locations.
Moreover, Consumer Agents are hosted by Consumer Operators and hence are not
appropriate for managing the private key.

J

Section 5.1.6 will discuss further details of the principal authentication. Once a principal
has been authenticated, its permission to access an entity is modelled by the general

Chapter 5: Device Cloud — Security & Interactions Concept 81

5.1. Security Model

properties of the entity itself. Thus, the Device Directory establishes a dynamic access
control matrix with M; : S; x O — 2%, Following access modes r € R are defined:

Read-Only: read access to an entity

Read-Write: read and write access to an entity

Append: permission to append objects (i.e. other entities) to an entity
Control: permission to grant and revoke permissions for an entity
Create: permission to create an entity of a particular type

Delete: permission to delete an entity

The objects 0 € Oy refer to the entities (and each corresponding property) maintained
by the Directory at time t. The subjects s € S; refer to the principals known to the User
Directory. Unless specified otherwise by the PermissionSet property, the global access
policy according to the definition of general entity properties (see Section 4.4.1) is:

Global Entity Access Policy

Given o € O; and s € S;, while s refers to an entity:

If s = o.EntityOwner:

e Read-Write — except for the o.EntityType and o.EntitylD, which are immutable
after initial assignment (Read-Only in this case)

Append

Control — i.e. setting o.EntityOwner, o.EntityOperator and, o.PermissionSet

e Delete

If s = o.EntityOperator:

e Read-Only — for all general properties except the o.FEntity Version

o Read- Write — for the o.EntityVersion and all other properties not belonging to the
group of general ones

o Append — (e.g. a Device Lock attached to a Device Instance)

If s # o.EntityOwner N\ s # o.EntityOperator:

o Read-Only — if o.PrivateEntity is false
e Append — the PrivateEntity property of the attached entity must be true

Regarding the Create permission, the following policy is applied based on the
entity type:

e Device Instance, Device Type, Device Category, Aggregator Instance —s = Domain
Operator or Vendor

Device Lock —s = Consumer Operator

Platform Module — s = Domain Operator, Consumer Operator or, Vendor
Aggregator, Consumer, Operator, Vendor — s = Domain Operator

Consumer Profile —s = Consumer or Consumer Operator

82

Chapter 5: Device Cloud — Security & Interactions Concept

5.1. Security Model

Root Domain Operator

>
Domain Operator Wbevice -
D

cal Device Directory
Consumer Operator Directory

A

Services

Consumer
Agent

evice
Node
Public Key

Domain Operator,

al Device
Directory

Device
Node
Private Key

Consumer
Operator B

Operator Access

Operator Access Token

Token

Aggregator i
Attached peyice Validate and Integrate
Agent Consumer Node ¢

Access Token Public Key
Device Cloud Middleware

Device
nsumer A
CETEITE Node Consumer B

Figure 5.2.: Access token used to validate the Consumer’s permission to integrate a
device.

Protect
Access|

The following entity types define additional permissions:

e o.EntityType = Device Instance:

— o.PublicKey: — Read-Only for all s # o.EntityOwner
— o.PrivateKey: — Read-Write if s = o.EntityOwner and Read-Only if s =
o. EntityOperator, no access otherwise

e o.FEntityType = Device Lock:
— o0.Aggregator: — Read- Write if 0. OperatorLock is true and s = o. LockingEntity

Device Cloud implementations may further refine this policy. An E-Health use case may
for instance require a more restrictive policy. As already mentioned, the authentica-
tion and authorization protocol (e.g. OAuth2) may introduce access tokens that take
precedence over the policy specified by the Device Directory.

5.1.3. Device Access Token

As shown in Figure 5.2, device access tokens are used to validate that a Consumer is
allowed to integrate a device. In other words, using the device access token, the Device

Chapter 5: Device Cloud — Security & Interactions Concept 83

5.1. Security Model

Table 5.1.: Device access token properties

Property Description

DevicelD The EntityID of the Device Instance the token belongs to.

LockID The EntityID of the Device Lock the token belongs to.

Issuer The EntityID of the Operator issuing the token.

Validity Refers to the validity property of the Device Lock entity.

CategorySet The set of Device Categories this lock is valid for (e.g. if a device offers

multiple categories).

OperatorManaged A flag denoting whether the device integration has to be supervised by
the issuing Operator. This property is important for withdrawal of access
tokens and distribution of private knowledge.

OperatorToken Indicates whether this token was issued to a Consumer Operator or a
Consumer (i.e. Operator Token or Consumer Token). If OperatorToken is
true, the properties PublicKey and Embedded Token become mandatory.

PublicKey Mandatory in case of an OperatorToken. Refers to the public key of the
Consumer Operator this token was granted to.
AttachedToken Mandatory in case of an OperatorToken. Used by an intermediary Con-

sumer Operator to further re-provision the device to its Consumers (i.e.
further specify the validity). The attached token is added by the inter-
mediary Operator and therefore not part of the signature.

Cloud Middleware is able to determine that a device was provisioned to the Dewvice
Consumer by the Device Owner or an entity authorized to do so (e.g the Device Operator
mandated by the Device Owner). Therefore, additionally to Principal Entities, there is
a private and a public key for each Device Instance. The public key is stored by the
Global Device Directory (i.e. Root Domain) and is thus accessible by all Device Cloud
Participants. The private key is stored by the Domain Operator the device corresponds
to and is only accessible by the Device Owner. The Device Owner can authorize a Device
Operator to access the private key. Thus, it is ensured, that a device access token signed
with the private key of the corresponding Device Instance was issued by the responsible
Device Operator or Device Qwner.

Table 5.1 lists the properties of an access token. It has to be distinguished between
access tokens issued to a Consumer Operator and access tokens directly issued to a
Consumer. If an intermediary Consumer Operator is involved in the provisioning of a
device, the validity of the token usually needs to be modified after creation of the initial
token. Otherwise, re-provisioning the device to several of its customers would not be
possible for the intermediary Operator. Hence, the capability of attaching another token
to an existing one is given. However, the Device Cloud Middleware still needs to be able
to verify the authenticity of the token (i.e. only the Device OQwner or Device Operator

84 Chapter 5: Device Cloud — Security & Interactions Concept

5.1. Security Model

can be the issuer). Therefore, in case an Operator token is issued, the possibility to
include the public key of the Consumer Operator that further provisions the device to
its Consumers, is given. The public key can be used by the Device Cloud Middleware to
verify the attached token. The validity property of the embedded token must not violate
the original validity. Only one token can be attached. Otherwise, the constraint, that
an Operator having requested an access token from another Operator cannot further
provision the device to other Operators, could be violated (see Section 4.4.2).

Besides issuing the token, a Device Lock entity is created. Device Lock entities are
subject to immediate synchronization between Device Directories. In case an Opera-
tor Token is issued between different domains, the issuing Operator has to propagate
the corresponding Device Lock to the respective domain. In return, the intermediary
Operator, that requested the access token, has to propagate changes back to the origin
(i.e. the domain of the issuing Operator). If the intermediary Operator re-provisions
the device, it must modify the Aggregator property of the Device Lock. This is required
for the provisioning interactions described in Section 5.2. As discussed, the Domain
Operator of the intermediary Consumer Operator ensures, based on the access policy of
the Device Directory that only the desired intermediary Operator is able to modify this

property.

5.1.4. Device Access Withdrawal

Reliable withdrawal of an access token requires that the issuing Consumer Operator is
able to instruct the Device Cloud Middleware to release the device, even if the token is
still valid. The challenge is, that the issuing Operator usually does not has control over
the Device Cloud Middleware if the intermediary Consumer Operator scenario is con-
sidered. Using the intermediary Consumer Operator as a proxy to issue the withdrawal
request, requires its consent and can introduce delay, which might be inappropriate for
emergency cases like given in the E-Health domain. Therefore, device provisionings
classified to allow forced withdrawals require that the Operator managing the device
supervises the integration. Additionally, since it is assumed that the Device Cloud Mid-
dleware is a trusted platform and all its core modules are signed by the Root Domain,
the behaviour, in contrast to the Management Service implementation of the Consumer
Operator, is predictable. The requirement to supervise a device integration must be
acknowledged by the Consumer (or its Consumer Operator) before the provisioning is
conducted. Besides withdrawing tokens, supervisioning a device integration also allows
fulfilling requirement no. 3 mentioned above (confidentiality of private data required for
the integration - e.g. a Bluetooth PIN).

The OperatorManaged property of the access token indicates that integrating the device
must be supervised. If the Aggregator Agent receives such a token, it must establish an

Chapter 5: Device Cloud — Security & Interactions Concept 85

5.1. Security Model

p
Domain Operator Domain Operator
P oeuice roevice
nsumer rator i . iy i
Consumer Operatol Directory Synchronize Directory
; P 0e:
ervices Directo Op
. 7 - Verify
ggregator -
Consumer e Signature
Agent Public Key
Op 0
Validate
1 Aggregator ID|
I Aggregator [Operator Access K Connect

|
Agent Token [Aggregator
Agent
Private Key
Device Cloud Middleware
Consumer A

Figure 5.3.: Cross-domain Aggregator Agent authentication conducted by Operator
Agent.

encrypted session to the issuing Consumer Operator (i.e. the respective Operator Agent)
using the Issuer property of the token, as shown in Figure 5.3. This operation can cross
domains. However, the Operator Agent needs to prove that the Aggregator Agent is
authentic and was mandated by its Operator to integrate the device. After having
authenticated (e.g. using the protocol discussed in Section 5.1.6), the Aggregator Agent
resubmits the access token to the Operator Agent in order to verify that it is permitted
to integrate the device. Based on the token, the Operator Agent is able to identify the
corresponding Device Lock and can check, whether the declared Aggregator property
matches the requesting one. As mentioned in the previous section, the Device Lock
is immediately synchronized and an intermediary Operator is required to modify the
Aggregator property if it re-provisions the device to one of its Consumers.

After the authenticity and the permission of the Aggregator Agent to integrate the device
has been proved by the Operator Agent, the Aggregator is allowed to request private
data required for device integration. Based on an application specific withdrawal policy,
the Aggregator Agent has to keep the connection alive in order to allow for immediate
withdrawals or poll the Operator Agent using a pre-defined interval. Once the token
becomes invalid, the private data received must be deleted immediately.

86 Chapter 5: Device Cloud — Security & Interactions Concept

5.1. Security Model

5.1.5. Confidentiality of Consumer Data

Employing appropriate mechanisms to ensure confidentiality and integrity of Consumer
data as introduced by requirement no. 5, presumes understanding the possible data flows
as well as the placement of the data sinks (i.e. applications). The Device Cloud defines
two types of applications: Aggregation Platform Modules which are hosted by the Device
Cloud Middleware and applications that are hosted externally. The latter class can refer
to any generic type of data sink (e.g. a database or a Cloud service). Regardless of the
application type, data streams will never be routed through the Device Cloud backend
infrastructure. Thus, only the Device Cloud Middleware is involved in the processing of
Consumer data flows.

In case of external applications, data flows have to be routed towards sinks outside of the
Device Cloud infrastructure. The actual mechanisms used for this purpose (e.g. publish-
subscribe systems) are not defined. However, in general, applications willing to receive
data from devices integrated by the Device Cloud have to register with the Consumer’s
profile, which basically means that the Consumer authenticates with its Domain Oper-
ator and adds appropriate entries to its profile as shown in Figure 5.4. Such an entry
has to contain an output module, which belongs to the class of Aggregation Platform
Modules. The output module links the data streams to the external application. Hence
the output module is responsible to conduct proper integrity and confidentiality mea-
sures. Since only the Consumer has knowledge about the supported security protocols of
the application, the Consumer has to define these measures by choosing a fitting output
module and providing required configuration parameters to the module.

In case of internal applications, it has to be considered that, as discussed above, the
Device Cloud Middleware is assumed to be a trusted platform. However, due to the
possibility of adding private Platform Modules to a Local Directory, malicious code
could be injected. Since this code is not properly signed, the Device Cloud Middleware
has to be configured to accept and execute such modules. Moreover, the permission
system can be used to restrict the permissions of such a module as much as possible.
In general, using signatures and encryption within the Device Cloud Middleware would
introduce major obstacles regarding efficiency and resource consumption while providing
minor benefits. As the middleware is deployed on one single Java Virtual Machine, each
Aggregation Platform Module would have to decrypt, sign and encrypt the data again,
after it has been modified. Therefore, encryption and signatures within the middleware
would not offer enhanced security. If isolation of Consumer data is required by an
application scenario, a Device Cloud Middleware instance would have to be statically
allocated to a single Consumer. Isolation techniques like sandboxes or virtualization, as
introduced in Section 2.2.1, could be used to deploy several middleware instances on one
Aggregator device.

Chapter 5: Device Cloud — Security & Interactions Concept 87

5.1. Security Model

Domain Operator
Define

Consumer Operator A
User of
ent Directory Directory

Services
Consumer

Platform
Modules

Consumer

Profile
Consumer

Agent

Aggregator - .
Agent : Device Data Output
A Driver Transformation Module
Node Device Cloud Middleware
g
Consumer A

i

Application

Figure 5.4.: Application integration through a data flow defined by the Consumer Profile.

5.1.6. Discussion

In order to evaluate the feasibility of the domain based public key infrastructure in terms
of authentication, the following principals (according to Section 4.4.3 and Section 5.1.2)
are defined with respect to the communication links possible (according to Section 5.2):

e R: the principal referring to the Root Domain Operator
— R — D: Synchronization with a Local Domain (i.e. Local Device Directory)

e D: a principal referring to a Domain Operator (public key is known to/maintained
by R)

— D — R: Synchronization with the Root Domain (i.e. Global Device Direc-
tory), accessing the IAM services of the Root Domain

— D — D: Synchronization with another Local Domain (i.e. Local Device
Directory)

e B: a principal referring to a Consumer Operator (public key is known to/main-
tained by R)

— B — B: Intra-Operator provisioning, i.e. requesting access to a device man-
aged by another Consumer Operator

— B — D: Accessing the Device Directory, accessing the IAM services of the
Local Domain

— B — R: Accessing the TAM services of the Root Domain

88 Chapter 5: Device Cloud — Security & Interactions Concept

5.1. Security Model

e A: a principal maintained by D (i.e. Aggregators and Consumers whose public
key is known to/maintained by D)

— A — B: Accessing the Consumer Operator services
— A — D: Accessing the IAM services of the Local Domain, accessing the
Consumer Profile (in case A refers to a Consumer)

As already discussed, it is encouraged that an implementation of the Device Cloud relies
on a mature protocol for authentication and authorization (e.g. Open-ID Connect).
However, in order to prove the general applicability of the domain and public key based
approach, the following authentication protocol is defined on the basis of Kerberos.
A correct authentication protocol should ensure that the participating principals are
convinced to interact with each other and not with an attacker. The Burrows-Abadi-
Needham (BAN) Logic [27] will be used to conduct a basic protocol analysis.

Authentication Protocol

(1) A— D:{{A, B}Kgl}KD
Request is signed with A’s private key and encrypted with D’s public key
(2) D— R:{{A, B}KEI}KR
D checks authenticity and forwards request
(3) R—D: {{TR, Kap, B}Kgl}KD, {{TR, Kap, A, DomainA}Kgl}KB
R returns the generated session key and a ticket to D
(4) D— A: {{TR, Kag, B}KBI}KA, {{TR, Kap, A, DomainA}Kgl }KB
D returns the session key and ticket to A
(5) A— B:{{Tr,Kap,A, DomainA}K;}KB, {Ta, A} Kas
A presents the ticket to B and tries to open a session
(6) B — A:{Ty+1}Kas
B verifies the ticket — i.e. issued by R

The shown protocol covers the most complex scenario, where A has to establish a secure
communication link with B. Similar protocol(steps) can be defined for the other possible
communication links. In case of, for instance B — B, the steps 2 and 3 can be omitted.

Since A and B can belong to different domains (e.g. an Intra-Operator provisioning
crossing domains), the protocol needs to ensure, that B can determine whether A is
authentic or not, even if A is not known within the domain of B. However, it is important
to mention that the protocol does not provide any knowledge regarding the authorization
of A in this case. Communication between A and B crossing domains is only given by an
Operator supervised provisioning (i.e. an Aggregator connects to a Consumer Operator)
(see Section 5.1.4 for further details about the authorization in this case).

Chapter 5: Device Cloud — Security & Interactions Concept 89

5.1. Security Model

In order to apply BAN rules to the protocol, it has to be transformed to an idealized
representation. This, for instance, includes, that all plaintext messages are removed
and that all keys transferred within messages are treated as shared keys (e.g. a session
key shared between A and B). It has to be noted, that the BAN logic is restricted to
statements regarding mutual beliefs of the participants and does not provide statements
about the confidentiality of messages.

BAN — Idealized Authentication Protocol

(1) A— D:{B}a

(2) D— R:{B}*o

(3) R— D:{{Tr, A" BYKx' }Kp {{Th, A" B}KR' Kb
(4) D= A:{{Tp, A A" B}Es' YK {{Tg, A "4° B}K=' K>
(5) A— B:{{Tg,A"A” BYKr"VKs (T, A"AP p}Kas

(6) B— A:{T4, A4 B}Kas

Based on the idealized protocol, a set of assumptions is required. The assumptions
describe the beliefs the participating principals possess before the protocol is initiated
(e.g. K4 is the public key of A). Accordingly, the security characteristics to be ensured
after completion of the protocol have to be defined as a set of assertions (e.g. Kap is
a secret session key shared between A and B). Using a set of rules offered by the BAN
logic, the assertions have to be deducted from the assumptions and the protocol steps.
The following assumptions and assertions are defined:

BAN — Authentication Protocol Assumptions and Assertions

Assumption 1 - Public Keys:
Assumption A targets the beliefs of the principals regarding the distribution of
public keys. The first statement, for instance, declares: R beliefs that Kp is the
public key of D (i.e. R knows the public key of D).

RI=%D DI=f%R B|=R¢R A=%D
R|I=%¥B D= A

Assumption 2 - Key Generation and Trust:
R is convinced in its capability to generate shared keys used by A and B. D and B
trust in R’s capability.

R=A&B DI=R|=A&B BI=R|=48B

Moreover, A trusts D, which means that A beliefs that D has the authority to prove
the validity of a key generated by R.

90 Chapter 5: Device Cloud — Security & Interactions Concept

5.1. Security Model

A=D|=A8& B

Assumption 3 - Freshness:
D and B are convinced of the freshness of time stamp Tr. A and B are additionally
convinced in the freshness of Tp and T4 respectively.

D|=4(Tr) BI=4(Tr) Al|=4(Tp) BI[=#(Ta)

Assertions:
Both A and B are convinced to use a shared and secret session key. Moreover, A
and B are convinced that the respective partner is convinced that K 4p is a shared

key.
1): Al=A"4"B
2): Bl=A®&"B
(3): Al=B|=A"4"B
(4): Bl=A|l=A"4"B

J

In order to show assertion one (A |= A Fap B), the BAN rules can be applied to
message 4 ({{Tp, A Fap B}KI_)I}KA) from the idealized protocol.

(1) . A|EI><—éA,A<1{{TD,AKéBB}I;Bl }KA
AT, A“AP BYED

Since A knows its own private key, it can see (decrypt) the message. Subsequently, the
message meaning rule and assumption one can be applied to deduct that A beliefs that
the message was sent by D.

(2): AI="8 D, As{Tp,A 4P B <D
A|l=D|~Tp,A“AE By

Afterwards, the freshness and the nonce verification rule can be applied to deduct that A
is convinced of the freshness of the message and furthermore is convinced that D beliefs
in the message.

(3): — A=)
Al=H{Tp,A BB}
) : Al=4{Tp, A AP BY, A|=D|~{Tp,A AP B}
A|=D|={Tp,A AP B}

Chapter 5: Device Cloud — Security & Interactions Concept 91

5.1. Security Model

Using the belief rule, it can be deducted, that A believes, that also D believes that K4p
is a fresh and secret key shared between A and B.

(5) : Al=D|={Tp,A A5 B}
AlED|EAKéBB

Finally, the jurisdiction rule and assumption two can be applied to deduct the initial
assertion one.

(6) : Al=D|=>AE B A|=D|=A"AB B
A=A"AP B

Assertion two can be shown similarly using message five of the idealized protocol:

(1) : B|E@B7B<{{TR,AKéBB}f;’~1}KB
Ba{Tr,A"AP BYER)
2) : B|="8R,Ba{Tr, A" AB BYSR
B|zR|~%TR,AKéBB}
Tr

3) - Bl=4(
) Bl=t{Tr,A A B

(4) B|zﬁ{TR,AKé>BB},B\EIEJN{TR,AKQBB}
B|=R|={Tr,A &P B}
(5) : B|=R|={Tr,A &5 B}
BI=R|=A"APB
(6) - Bl=R|=A% B, B|=R|=A"APB
Bj=A"APB

Since B now believes in K4p, it can decrypt part two of message five. Hence, the
message meaning and the nonce verification rule can be used to deduct assertion four

(Bl= A|= A" B).

(1) : B|=A"4P B Ba{T4,A AP BYKan
B|=A|~{Ta, A AP B
(2) : B|Eﬁ(7;?)
B|=t{T4,A &P B}
3) B|=4{Tu, A AP BY BI=A|~ (T4, A AP BY
Bl=A|={T4,A"45 B}
Bl=A|={T1,A 5B}
B|EA\EAKABB

92 Chapter 5: Device Cloud — Security & Interactions Concept

5.1. Security Model

Finally, assertion three can be deducted using message 6. Note, that since A generated
Ty, it is implied that A beliefs that T)y is fresh.

(1) : Al=A"AP B AT, A"AP BYE AR
A|=B|~{Ta, A A8 BY
@) Al=#{T1,A"AP B}, A|=B|~{T4,A AP B}
A|=B|={T4,A 4P B}
(3) A\EB|E{TA,I€K@BB}
A|=B|=A APB

Open Issues

The security model discussed covers principals and components belonging to the Device
Cloud infrastructure. Providing an overall security model would require to adapt the
protocols used by the devices (i.e. the protocols used to establish a communication
link between a device and an Aggregator), which is not feasible. Hence, the Device
Cloud has to rely on the security measures offered by the devices themselves. The
individual measures conducted by each protocol are subject to a huge heterogeneity and
sometimes do not even exist. Therefore, the Device Cloud cannot ensure a higher level
of confidentiality or integrity as provided by the protocol the integrated device is based
on.

A related issue is given by missing mechanisms to ensure the authenticity of devices
and the generated data. If an attacker is able to guess a valid Device Instance ID, the
corresponding device could be simulated, which can result in malicious data inferred to
the Device Cloud. This issue can be mitigated by relying on devices with appropriate
security measures in case of application domains with high security requirements. Addi-
tionally, the Device Cloud could monitor, if a Device Instance is discovered while already
being integrated and active at the same time (in case of non-exclusive devices this policy
requires that a device is discovered twice by the same Aggregator). The issue of data
authenticity for mobile sensors is further discussed by Gilbert et al. [62].

Another issue is given by the Aggregator device hosting the Device Cloud Middleware.
Although the Middleware itself is assumed to be trusted, the Aggregator device is not.
The individual controlling the device could try to dump the memory and thus gain
access to private Device Instance data (see Section 5.1.4) or the private key of the
Aggregator principal. Using the private key, a compromised Consumer Operator could,
for instance, make another Consumer Operator believe that he is integrating a device and
thus directly gain access to private Device instance data. Additionally, the individual
controlling the device could modify the time. An accurate time is not only important
for authentication protocols, it is also required to determine the validity of device access

Chapter 5: Device Cloud — Security & Interactions Concept 93

5.2. Interaction Model

tokens. As a remedy, the Device Cloud Middleware could rely on an external source
(e.g. a NTP server) and avoid to determine the time using system calls.

Besides private data required to establish a session to a device, the data generated by a
device could be accessed. In order to mitigate arising privacy issues, the Device Cloud
Middleware needs to properly clean up data generated due to a device session. This not
only includes data cached by Platform Modules, but additionally targets data cached
by the device itself (i.e. an internal history). Thus, Device Driver Platform Modules
need to ensure that an internal device cache is cleaned up, if possible. This approach
is not feasible in case a device needs to maintain data internally (e.g. Holter ECGs) or
a session is disconnected unexpectedly. As a solution, the Device Cloud could enforce
drivers to reset the internal cache if the Device Target (i.e. a patient in case of E-Health
applications) changes.

5.2. Interaction Model

The following sections will discuss the interactions between the different entities that
are required to model the device deployment and provisioning processes. Basically, an
interaction is either triggered by adding a new device to the Device Cloud or by an
Aggregator discovering a device. The latter either leads to a device integration request
or to a device integration offer. An integration request is triggered, when a Consumer,
that is interested in the device, is bound to an Aggregator. A device integration offer is
triggered if no such Consumer is bound. Before describing the interactions, the device
state model as well as general communication links and protocols offered by the entities
will be illustrated.

5.2.1. Device State Model

Provisioning of a device is based on the current state of the device. Figure 5.5 shows
the possible states and transitions.

Device Instance States

Manufactured:

A virtual state indicating that a new Device Instance was manufactured by a ven-
dor.

Announced:
The vendor has announced the Device Instance to the Device Cloud by adding
it to the knowledge base of the Global Device Directory. This includes assigning
a unique identifier and attaching the Device Instance to the corresponding Device

94 Chapter 5: Device Cloud — Security & Interactions Concept

5.2. Interaction Model

Manufactured

Owned

Owned by Consumer

Consumer Bound
Device is provisioned
to a Consumer

Aggregator Bound

Device is provisioned to a
Consumer and integrated

Announced

Operated

Idle

Deviceis not
provisioned

Disabled

Deleted

Removed from Device Cloud

Figure 5.5.: Device Instance state machine diagram.

Type. Until this state, the Entity Owner of the Device Instance refers to the Vendor.

Owned:
Ensures: EntityOwner is defined
Afterwards, the device is usually sold to a Consumer or an Operator running a
set of own devices. This refers to the Device Deployment Interaction discussed in
Section 5.2.3. Transitioning to the Owned state means that a valid Device OQwner
was defined (i.e. the EntityOwner property was set).

Operated:
Ensures: EntityOperator is defined
Before the Device Instance can be added to the Federated Device Pool and provi-
sioned, the Device Operator needs to be elected (i.e. the EntityOperator property
is set), which results in a transition to the Operated state.

Idle:
Ensures: Device was added to the device pool — i.e. ready to be provisioned
While the Device Instance stays in the Operated state, it can only be used by the
Dewvice Owner. In order to be added to the device pool and provisioned, the Dewvice
Owner has to notify the Device Operator, which leads to a transition to one of the
Pooled states. The Pooled state contains three sub-states. As long as the Device
Instance is not being provisioned to Consumers, it remains in the Idle state.

Consumer Bound:
Ensures: Device Lock was created
If a Consumer successfully requested access to the device, the corresponding Device
Instance transitions to the Consumer Bound state. This means that a Device Lock
was created, whose Aggregator property was not defined yet. Since devices can

Chapter 5: Device Cloud — Security & Interactions Concept 95

5.2. Interaction Model

be mobile and the lock can span an unspecified period of time, multiple Aggrega-
tors can be involved in the integration process of a device bound to a Consumer.
Therefore, locking and integration are separated from each other.

Aggregator Bound:

Ensures: Aggregator property of the Device Lock is defined

If the device is integrated by an Aggregator, the Device Instance transitions to
the Aggregator Bound state and the Aggregator property of the Device Lock is
set. This means that the Device Instance is finally provisioned and integrated
and all mandatory roles defined in Section 4.1 are assigned (Device Owner, Device
Integrator, Device Operator, Device Consumer). As mentioned in Section 4.4.2,
definition of the Dewvice Target role remains optional.

Disabled:
If a device has to be removed from the Device Cloud (e.g. due to being broken), it
can transition to the Disabled state. This results in all attached roles, except the
Device Owner, being removed from the Device Instance. Additionally, the device is
removed from the device pool. This state can also be used to define a new owner.

Deleted:
The Disabled state allows transitioning to the Deleted state, which means that the
device and its corresponding Device Instance entity are completely removed from
the Device Cloud.

As already discussed in Section 5.1, provisioning a device is based on accessing and
modifying its state (i.e. the DevicelnstanceState property of the Device Instance). Ac-
cording to the general access policy, the property can be modified by the EntityOwner
and, in case it is defined, the EntityOperator. If several copies of the Device Instance
were propagated to Local Device Directories, inconsistencies may occur. Disseminating
state updates immediately among all local copies of a Device Instance would introduce
unnecessary additional overhead, because only the home domain of the Device Instance
(i.e. the domain equal to the EntityDomain property) needs to inspect the state and
is allowed to make device provisioning decisions. Thus, it is claimed, that the domain
referring to the EntityDomain property of the Device Instance must have consistent
knowledge about the DevicelnstanceState of the Device Instance. This is straightforward
in case of exclusive devices, as defined in Section 4.1. However, in case of non-exclusive
or composite devices, multiple Device Locks can exist. The following rules apply to the
entries of the DevicelnstanceState property, if the Device Instance is pooled:

The CategoryState properties are only activated, if the RootState property of the Device
Instance has transitioned to the Idle state (see Section 4.4.2).

96 Chapter 5: Device Cloud — Security & Interactions Concept

5.2. Interaction Model

Algorithm 5.2.1 DevicelnstanceState

Require: RootState = Idle
DT <+ Devicelnstance.DeviceType
Locks < {z|x € DeviceInstance.locks A x.active = true}
for all cs € DeviceInstanceState.CategoryStates do
id < CategoryStates.CategoryGroupl D
activeCategoryLocks < |{l|l € Locks N 1.CategorySet = id}|
if DT.getGategorySet(id).possibleLocks > activeCategoryLocks then
cs.state < Idle
else if DT.getGategorySet(id).possibleLocks = activeCategoryLocks) A J{l €
activeCategoryLocks N 1. Aggregator = unde fined} then
cs.state < Consumer Bound
else
cs.state + Aggregator Bound
end if
end for

5.2.2. Communication Protocols

Figure 5.6 depicts the major communication protocols used between the entities. Com-
munication only takes place among Principal Entities. Before entering the operational
state of a communication protocol, the Auth Protocol must have been completed in
order to ensure that a principal is authentic and allowed to access the resources offered
by a protocol. In order to reduce complexity, the links between the participants are only
shown conceptionally. Possible links established between the principals are described
below:

Device Cloud Communication Protocols

Auth Protocol:

Offered by: Domain Operator — User Directory
Used by: Aggregator Agent, Consumer, Consumer Operator, Domain Operator

The Auth Protocol must be completed prior to any other protocol. It aims at
authenticating a Principal Entity and providing a token, giving proof about the
resources the entity is allowed to access. Each of the subsequent protocols is
based on sessions and requires that a valid token is presented before entering the
operational state. Based on the actual technology used to implement the protocol,
a principal opening a session to a particular protocol endpoint, can either interact
with its User Directory to obtain a token or generate a custom, protocol defined
token and sign it using its private key. The latter case would require the protocol
offering principal to validate the token by connecting to the User Directory. The

Chapter 5: Device Cloud — Security & Interactions Concept 97

5.2. Interaction Model

Root Domain Operator

-
| User

Device Vendor al Device

Directory
System Integrator DD Access Protocol | [e e e

Directory

i
Domain Operator DD Sync Domain Operator
Consumer Operator p Protocol -
al Device ocal Device
mnt Services Directory Directory Directory
Consumer Operator DD Access 1
Agent Agent Protocol Consumer Operator
Aggregator
Management anagement
Protocol Provisioning| Services
Protocol Auth
(” Protocol
I Aggregator Agent ser =~
Consumen LA L]4Y
Device Cloud Middleware Profil Auth
rotile Protocol o .
Consumer A Protocol Principal Entity

Figure 5.6.: Overview of the major communication protocols used by the entities.

first case, for instance, could be implemented based on OAuth2.0 and OpenlD
Connect.

DD Access Protocol:

Offered by: Domain Operator — Device Directory
Used by: Aggregator Agent, Consumer, Consumer Operator, Domain Operator

The Device Directory Access Protocol is used to add, modify or remove information
stored in the device knowledge base (e.g. add or modify Device Types, Device
Categories, etc.). In order to enter the operational state, a principal must have
been authenticated by the User Directory of the Domain Operator (i.e. the Auth
Protocol). The authorization to access resources offered by the Device Directory
is modelled by the general entity properties EntityOwner, EntityOperator and,
PermissionSet as well as the general access policy defined in Section 4.4.1.

DD Sync Protocol:

Offered by: Domain Operator — Device Directory
Used by: Domain Operator — Device Directory

98 Chapter 5: Device Cloud — Security & Interactions Concept

5.2. Interaction Model

The Device Directory Synchronization Protocol is used to synchronize the knowl-
edge bases of the Device Cloud domains (i.e. Device Directories). This protocol is
only applicable between Device Directories (i.e. only Domain Operator principals
can invoke it).

Provisioning Protocol:

Offered by: Consumer Operator — Management Services
Used by: Consumer, Consumer Operator

The Provisioning Protocol is used to negotiate access to a device. It involves an
entity acting as a Device Operator and an entity acting as a Device Consumer,
while the latter one can refer, according to the concept, to a regular Consumer
or to a Consumer Operator. It is basically used to decide about integration
requests and integration offers, which means it is used to access or modify stateful
information about a device. The protocol will either lead to a Device Lock being
created or to a reject of the integration request.

Consumer Profile Protocol:

Offered by: Domain Operator — User Directory
Used by: Consumer, Consumer Operator — Consumer Agent

The Consumer Profile Protocol is an extension of the Auth Protocol because it
is used to access the Consumer Profile maintained by the User Directory. This
protocol can be invoked by Consumers and Consumer Operators that are allowed
to access the protocol of a particular Consumer.

Aggregator Management Protocol:

Offered by: Consumer Agent, Operator Agent, Aggregator Agent — in case of
incorporated Aggregator management capabilities

Used by: Aggregator Agent, Operator Agent — in case of incorporated Aggregator
management capabilities

The Aggregator Management Protocol is used by the Aggregator Agent to access
the Consumer or Operator Agents of a Consumer Operator. This protocol
is used to trigger integration requests or integration offers. Additionally, an
implementation can embed Aggregator management capabilities.

Chapter 5: Device Cloud — Security & Interactions Concept 99

5.2. Interaction Model

Synchronization Protocol

The DD Sync Protocol is fundamental to the provisioning capabilities of the Device
Cloud. It ensures that each participant can access knowledge required to integrate and
handle devices. Sometimes also referred to as replication', the synchronization protocol
ensures that the data of the device knowledge base is properly disseminated among
the Domains (i.e. the Device Directories). The consistency model used by the Device
Directories is, similar to DNS, Eventual Consistency [148]. This means that a relatively
high degree of inconsistency is tolerated, and it is only ensured, that updates will be
propagated to all replicas, but not immediately. Moreover, there is only a small group
of processes performing updates on entities and the design of the Device Cloud nearly
eliminates write-write conflicts. The following types of entity-replicas are defined:

Entity Replica Types

e Master Copy: The EntityDomain property is equal to the Domain of the Device
Directory. Thus, only one master copy can exist.

e Local Copy: The EntityDomain property is not equal to the Domain of the Device
Directory.

According to Section 5.1.2, Read-Write access is very restrictive. In most cases, only
the principals referring to the EntityOwner and EntityOperator property are allowed
to modify the entity. Moreover, these principals usually only interact with the Device
Directory of the Domain they belong to. Hence, only one replica (i.e. the Master Copy)
will be written. Thus, no write-write conflicts arise because the Device Directory can
employ concurrency control mechanisms (e.g. locks).

However, in general it is allowed to write Master and Local Copies. The following policy
is applied to the synchronization protocol:

Synchronization Protocol Policy

e Local Copies are only created upon request.
e Updates of the Master Copy are only propagated upon request.

— A callback mechanism similar to the Andrew File System [69] can, but does
not have to be used to propagate the changes (if not, Device Directories have
to poll for changes if required).

— The EntityVersion property can be used to check if a Local Copy is up-to-
date.

! Although replication and synchronization are often used as synonyms, replication means that there are
two or more copies of all data, while synchronization is about keeping two or more copies up-to-date
without requiring that each copy contains all data

100 Chapter 5: Device Cloud — Security & Interactions Concept

5.2. Interaction Model

— It must be ensured that no concurrent access to the Master Copy is possible
(e.g. using locks).

e Only the Master Copy can be deleted. Deletion of a local copy means that no
further synchronization with the corresponding peer takes place.

e Before a Local Copy can be written, the Synchronization Protocol has to obtain a
lock from the Master Copy. The modification must be propagated to the Master
Copy immediately.

e Entities marked as private will never be propagated.

This policy ensures a consistent view on the state of a device if an Intra-Operator pro-
visioning, crossing domains, is conducted. A Device Lock created will be immediately
synchronized to the domain of the consuming Operator. If the consuming Operator
further provisions the device to a Consumer and defines an Aggregator, it modifies the
Aggregator property. Due to the policy, the local Device Lock copy is immediately syn-
chronized with the master copy maintained by the domain the device belongs to. Since
a one to one relation between Device Locks and Aggregators exists (see Section 4.4.2),
only one such Local Copy of a Device Lock can exist. Thus, the overall performance
is not significantly reduced by acquiring remote locks. If multiple Device Locks exist
(e.g. in case of a non-exclusive device) and the corresponding Local Copies are modified
concurrently, the state of the corresponding Device Instance is kept consistent using
Algorithm 5.2.1.

Nevertheless, the synchronization protocol in particular and all other protocols that span
multiple participants and lead to modification or creation of entities (e.g. Provisioning
Protocol), must provide means for safe transactions. A Read-Write operation on a
Local Copy of a Device Lock, for instance, can be based on primary two-phase locking
(2PL) [148]. The transaction scheduler resides on the machine of the Device Directory
that is accessed. Because a Local Copy is written, the scheduler has to acquire a lock
from the lock manager associated with the Device Directory maintaining the Master
Copy.

5.2.3. Provisioning Interactions & Algorithms

Based on the communication protocols, the following sections will describe the core
interactions necessary to provision devices to Consumers. Four core interactions are

defined:

Chapter 5: Device Cloud — Security & Interactions Concept 101

5.2. Interaction Model

[J [J [J [J
Vedor Operator Operator
|
authe nticate————P»|
opt J

-addRelatedEntites(DT, DC[], PM[]
addRelatedEntites
[DeviceType |

| |
| |
| |
| |
unknown] I I
| | |
| |
| |
| |
| |
|

addDevicelnstance(ID, secret, addDevicelnstance
setEntityOwner
setSecret

sell(secret})

authentica

requestOwnership(ID, secret,

|
|
|
|
| authenticate

generate private
and publickey

announceOwnership(ID,
secret, public key,
domain, consumer)

checkSecret
setEntityOwner
setEntityOperator
| Domain changed
mandateOperatol

Figure 5.7.: Simplified overview of the Device Deployment interaction.

Device Cloud Interactions

Device Deployment:
Deploy (i.e. announce) a device to the Device Cloud — results in the creation of
appropriate Device Directory entities.

Device Ildentification:
Dissemination of device related knowledge among the Domains (i.e. Device Direc-
tories).

Integration Request:
Request access to a device of interest.

Integration Offer:
Offer integration of a device that was discovered but is not of interest.

Device Deployment

The Device Deployment interaction, summarized in Table 5.2 is used to announce a
device to the Device Cloud and define its Device Qwner and Device Operator. Basically,

102 Chapter 5: Device Cloud — Security & Interactions Concept

5.2. Interaction Model

Table 5.2.: Device Deployment interaction summary

Trigger: Device manufactured by Vendor

Result: Device Instance created and EntityOwner, EntityDomain, and, Entity-
Operator defined

Involved: Consumer, Domain Operator, Device Vendor

Protocols: Auth Protocol, DD Access Protocol

it can be divided into two steps: device announcement and definition of the device owner
and operator.

Device Vendor — Root Domain Operator

The announcement of a device results in the creation of a Device Instance entity and
optionally includes the creation of a Device Type entity, a set of Device Category entities
and a set of Platform Module entities. This is the case, if the device corresponds to a new
class or model of devices. In each case, the vendor initially becomes the EntityOuwner of
the created entities. Besides assigning the unique ID to the Device Instance, a secret has
to be attached in order to allow another entity to take the Device Owner role and become
the EntityOwner. The secret can be added as an configuration entry or an attachment to
the Device Instance. By default, a principal being able to present the secret is granted
the permission to modify the properties EntityOwner and EntityDomain. As a result of
the registration by the Device Vendor, the Device Instance has transitioned to the state
Announced.

Device Vendor — Consumer
The device is sold and the secret is revealed to the Consumer.

Consumer — Domain Operator
After a Consumer has purchased the corresponding device, it can instruct its Domain
Operator to take ownership. Therefore, the Domain Operator presents the secret, sets
EntityDomain and the EntityOwner properties, creates the public and private keys and
attaches the public key. This results in a degradation of the initial Master Copy to a Local
Copy, while the new Master Copy is maintained by the Consumer’s domain. Additionally,
the Device Instance has transitioned to the state Owned.

In order to allow the device to be provisioned, the Consumer has to mandate a Consumer
Operator, by setting the EntityOperator property. The corresponding Consumer Operator
has gained the permission to access and modify required properties of the Device Instance,
create Device Locks and is thus able to provision the device. As a result, the Device
instance has transitioned to the Operated state.

In summary, the Device Deployment interaction, as illustrated in Figure 5.7, includes
announcing a device and creating required entities within the Global Device Directory,
defining the EntityOwner, EntityDomain, and EntityOperator properties, and attaching
a public-private key pair to the created Device Instance. Exceptions can occur if any of

Chapter 5: Device Cloud — Security & Interactions Concept 103

5.2. Interaction Model

the participating entities was not properly authenticated or the presented secret is not
valid (i.e. the Consumer is not allowed to take ownership). Additionally, the Consumer
has to mandate a Consumer Operator belonging to the same domain.

Device ldentification

Table 5.3.: Device Identification interaction summary

Trigger: Any kind of request containing an unknown Device Instance EntitylD,
usually discovery of an unknown device.

Result: Knowledge about the device was replicated to the domain of the re-
questing entity and the Device Instance is known.

Involved: Aggregator Agent, Consumer Operator, Domain Operator

Protocols: Auth Protocol, DD Access Protocol, DD Sync Protocol

The Device Identification interaction, as summarized in Table 5.3, is a simple interaction
that covers the dissemination of publicly available device related knowledge between the
different Device Cloud participants, based on the DD Sync Protocol (usually Local and
Global Device Directories). It presumes that there is a Device Instance corresponding
to the device, not being in the states manufactured or deleted. No state transitions are
triggered by this interaction. The interaction is triggered when an Aggregator discovers
a device.

Aggregator Agent — Domain Operator
As discussed, the Device Cloud concept assumes that the discovery process can extract
the EntitylD of the Device Instance corresponding to the device. Given the ID, the
Aggregator is able to request knowledge about the device from its corresponding Domain
Operator. Using the DD Access Protocol, the Local Device Directory is queried for the
Device Instance, the Device Type, the Device Category and possibly the corresponding
Platform Module instances.

Domain Operator — Root Domain Operator
If the Local Device Directory does not know the given EntitylD, the Global Device Di-
rectory is queried. This results in the creation of a local copy of the Device Instance and
related entries. Thus, device related knowledge always originates from and is propagated
by the Global Device Directory. The EntityVersion property is used to determine if an
already existing local copy is up to date.

Domain Operator — Domain Operator (optional)
The EntityDomain property of the queried Device Instance is utilized to determine the
Domain Operator responsible for the device. This optional step is necessary if the Device
Instance belongs to a different domain. Hence, the master copy could have been updated

104 Chapter 5: Device Cloud — Security & Interactions Concept

5.2. Interaction Model

without propagating the changes back to the Root Domain. The responsible Domain Op-
erator can be queried to check if the Device Instance replicated from the Root Domain is up
to date. Moreover, the Consumer Operator being the EntityOperator can be determined.

If the discovered device is of interest, the Aggregator Agent can decide to request access.
Exceptions can occur if a participating entity failed to authenticate. Note, that some
knowledge included in the Entities may not be publicly available and is excluded by
the Device Directory (usually a local one) before transmitting the results. This for
instance refers to attachments or configuration entries that are marked as private (e.g.
a Bluetooth PIN required to communicate with the device).

Integration Request

Table 5.4.: Integration Request interaction summary

Trigger: Discovery of a device.

Result: Provisioning of the device — Device Instance switched to Aggregator
Bound state and Device Lock was created.

Involved: Aggregator Agent, Consumer Agent, Consumer Operator, Domain Op-

erator, Operator Agent(optional)
Protocols: All defined protocols

The Integration Request interaction covers the core device provisioning capability of the
Device Cloud. It is triggered by an Aggregator that has discovered a device. Before
an Integration Request can be triggered, the Device Identification interaction has to
be completed successfully. Therefore, it is assumed that the Aggregator has requested
all relevant device related knowledge from its corresponding Local Device Directory
(i.e. Domain Operator). This includes the Device Instance entity, the corresponding
Device Type entity, the set of corresponding Device Category entities and optionally, the
set of required Platform Module entities. Since the transmission of Platform Modules
usually requires more bandwidth, Platform Modules may be requested delayed after the
successful completion of the Device Integration interaction. The interaction consists
of three steps: checking if a Consumer bound to the Aggregator is interested in the
device, identifying the Operator responsible for the device, and requesting access to the
device.

Depending on the characteristics of the request (e.g. Intra-Operator, cross-domain),
several Device Cloud participants can be involved. The description given below, will
cover the most complex case involving an Intra-Operator provisioning crossing domains.
The following participants are defined:

Chapter 5: Device Cloud — Security & Interactions Concept 105

5.2. Interaction Model

e Aggregator Agent: The Aggregator having discovered the device and issuing the request.

o Consumer Agent: The Consumer Agent linked to the Aggregator.

o Consuming Domain Operator: The Domain Operator managing the domain the request
originated from (i.e. being responsible for the Aggregator and Consumer that issued the
request).

o Ouwning Domain Operator: The Domain Operator managing the device which is subject
of the request.

o Consuming Consumer Operator: The Consumer Operator managing the Consumer Agent
(i.e. the source of the request).

o Ouwning Consumer Operator: The Consumer Operator managing the device.

e Operator Agent: The Operator Agent representing the Owning Consumer Operator.

After discovering a device, the Aggregator Agent has to check if a Consumer linked to it
is interested in the device. Therefore, a Consumer Agent has to be elected according to
the definition of bound and unbound Aggregators given in Section 4.4.4. If no Consumer
is linked to the Aggregator, an Integration Offer, as discussed in the next section, can
be issued instead of the Integration Request.

Aggregator Agent — Consumer Agent
The Aggregator notifies the elected Consumer Agent that a device was discovered using
its representing Device Instance, Device Type and Device Category entities.

Consumer Agent — Consuming Domain Operator (optional)
The Consumer Agent may optionally request the Consumer Profile from the User Direc-
tory if multiple Consumer Agents corresponding to the same Consumer entity exist and
synchronization is required.

Consumer Agent — Consuming Consumer Operator
If the Consumer Profile was evaluated and the Consumer Agent decides, that the device
is of interest, it triggers an access request. The request contains the Device Instance ID
and additional parameters like the desired usage time or which capabilities of the device
are requested (i.e. CategorySets). The request is issued to the Management Services of
the Consuming Consumer Operator using the Provisioning Protocol.

Consuming Consumer Operator — Consuming Domain Operator (optional)
Using the EntityOperator and EntityDomain properties, the Owning Consumer Operator
has to be identified. This step can become unnecessary in case of protocol optimization
(e.g. caching of the previously issued Device Identification request). The following steps
are only necessary in case of Intra-Operator and cross-domain provisioning.

Consuming Consumer Operator — Owning Consumer Operator (optional)
The Consuming Consumer Operator requests a device provisioning from the Owning Con-
sumer Operator. From the perspective of the Owning Consumer Operator, it acts like a
regular Consumer requesting a device access token.

Owning Consumer Operator — Owning Domain Operator (optional)
The Device Directory of the Owning Domain Operator is queried in order to check whether
the device is currently provisionable given the request parameters (e.g. desired lock time).

106 Chapter 5: Device Cloud — Security & Interactions Concept

5.2. Interaction Model

If true, the involved Consumer Operators may enter a negotiation phase to determine
the conditions of the provisioning (e.g. price, lock time, Operator supervised, forced
withdrawal allowed). If the Owning Consumer Operator decides to provision the device, a
Device Lock entity is created and the DevicelnstanceState property is updated according
to the definitions given in Section 5.2.1. The Device Lock entity is immediately replicated
to the Consuming Domain Operator.

Owning Consumer Operator — Consuming Consumer Operator (optional)
The Owning Consumer Operator creates a device access token as described in Section 5.1.3
and returns it to the Consuming Consumer Operator, which now holds a valid lock for the
device.

Consuming Consumer Operator — Consuming Domain Operator (optional)
The device can be re-provisioned to the initially requesting Consumer Agent. Therefore,
a new token has to be attached to the initial one and the Device Lock entity has to be
updated by defining the Aggregator property. As discussed in Section 5.2.2, the Device
Lock is immediately synchronized with its master copy maintained by the Owning Domain
Operator.

Consuming Consumer Operator — Consumer Agent, Aggregator Agent
The device access token is returned to the Consumer Agent. The Consumer Agent will
usually update the Consumer Profile (mark the corresponding device entry as integrated)
and forward the token to the Aggregator Agent, which has to validate it.

Aggregator Agent — Operator Agent (optional)
If the token defines that the provisioning has to be supervised by the Owning Consumer
Operator, the Aggregator Agent establishes a session to the corresponding Operator Agent
as described in Section 5.1.4.

Aggregator Agent — Consumer Agent
The Consumer Agent is notified about the successful completion of the device integration.
If an exception occurs, the whole operation has to be rolled back.

Aggregator Agent — Consumer Agent
Upon release of the device connection, the Aggregator Agent must notify the Consumer
Agent (regardless whether the connection was released due to an expired token, an inter-
ruption of the connection or on demand of the Consumer himself). In order to simplify
protocol design with respect to transactions, this notification can also be used if an error
during the initial integration happened.

Figure 5.8 gives a simplified overview of the interaction. The provisioning decision,
made by the Owning Consumer Operator, basically depends on the DewvicelnstanceState
property and the request parameters (i.e. which category was requested in case of non-
exclusive or composite devices). The following policy is applied:

Chapter 5: Device Cloud — Security & Interactions Concept 107

5.2. Interaction Model

o o o °
Aggregator Consumer Consumer
Ant Ant Oertor A Oertor B

—1 |
Device Identification
completed notify Consumer Agent(ID

ch

eck interest

request device(ID) identify responsible

|

|

|

|

|

Operator |
|
) |
request device(ID check device status
create/update lock

issue access token (token
attach consumer

access token
create/update lock

grant lock(token

validate token
integrate device

present token(tok en)—:
|
|
|

Figure 5.8.: Simplified overview of the Integration Request interaction.

108 Chapter 5: Device Cloud — Security & Interactions Concept

5.2. Interaction Model

Integration Request evaluation based on the Device Instance State

Manufactured, Announced, Owned, Disabled, Deleted:
The device cannot be provisioned.

Operated:
The device can be provisioned if the requesting Consumer refers to the Entity Owner
of the Device Instance.

Idle:
The device can be provisioned.

Consumer Bound:
The device can be provisioned if a Device Lock exists, that has no Aggregator
defined and belongs to the requesting Consumer (i.e. the EntityOwner of the
Consumer Agent and the LockingEntity property of the Device Lock are equal).
The Consumer Operator will modify the Aggregator property of the Device Lock
in this case.

Aggregator Bound:
The current Device Lock can be extended or renewed if a Device Lock exists that
belongs to the requesting Consumer. The Aggregator and LockingEntity properties
of the Device Lock must match the requesting Aggregator Agent and Consumer
Agent.

J

A Device Instance being in the Consumer Bound state can additionally lead to an In-
tegration Offer issued by the Operator, which is discussed in the next section. Other
exceptional and special cases, like releasing a Device Lock in an emergency case as intro-
duced in Section 4.3, are discussed in Section 5.2.3. Exceptions besides authentication
or authorization failures can occur if the device is not provisionable given the request
parameters, if the token could not be validated or, if a required Operator supervision
failed (e.g. the Operator Agent failed to validate the Aggregator Agent).

Integration Offer

Table 5.5.: Integration Offer interaction summary

Trigger: Discovery of a device.

Result: Provisioning of the device — Device Instance switched to Aggregator
Bound state and Device Lock was created.

Involved: Aggregator Agent, Consumer Agent, Consumer Operator, Domain Op-

erator, Operator Agent(optional)
Protocols: All defined protocols.

Chapter 5: Device Cloud — Security & Interactions Concept 109

5.2. Interaction Model

As the name suggests, the Integration Offer interaction, summarized in Table 5.5, can
be envisioned as a reverse Integration Request. It is either triggered by an Aggregator
that has discovered a device, but is not linked to a Consumer Agent interested in the
device, or due to a rejected Integration Request. An Integration Offer can result from
an Integration Request, if the owning Consumer Operator cannot provision a device
because the permitted limit of simultaneously active locks is reached and the Operator
is not willing to release an active lock. However, one of the active locks may be only
bound to a Consumer (i.e. the Aggregator property is not set), which could lead to an
Integration Request by the Operator. This Request is similar to an Integration Offer
triggered by the initially requesting Aggregator (i.e. the Aggregator just offers its device
integration capabilities).

The Integration Offer is illustrated using a scenario that involves three Consumer Op-
erators: The Operator the integration was initially offered to, the Operator holding the
Device Operator role and an Operator holding the Device Consumer role. For the sake
of simplicity, it is assumed that all Consumer Operators belong to the same domain and
that no Operator supervision is required. If different domains are involved, the scenario
would involve further Device Directory synchronization steps.The following participants
are defined:

e Aggregator Agent: The Aggregator having discovered the device and offering the integra-
tion.

o Offering Consumer Agent: The Consumer Agent representing the Consumer Operator the
integration is initially offered to (i.e. the Consumer Operator managing the Aggregator
device).

o Offering Consumer Operator: The Consumer Operator the integration was initially offered
to.

e Ouwning Consumer Operator: The Consumer Operator equal to the EntityOperator prop-
erty of the Device Instance.

o Consuming Consumer Operator: The Consumer Operator currently holding an active lock
for the device.

o Consuming Consumer Agent: The Consumer Agent corresponding to the LockingEntity
property of the active device lock.

Before triggering the offer, the Aggregator Agent has to determine the responsible Of-
fering Consumer Operator based on the type of the Aggregator:

e Unbound Aggregator: Unbound Aggregators always belong to a Consumer Opera-
tor and are usually owned by them.

e Bound Aggregator: Bound Aggregators usually imply that the bound Consumer
agrees to the Integration Offer because resources are consumed and some appli-
cation scenarios may have strict privacy requirements. Regarding the responsible
Consumer Operator, two cases have to be considered:

110 Chapter 5: Device Cloud — Security & Interactions Concept

5.2. Interaction Model

— Private Aggregator: The Aggregator is a device owned by the Consumer (i.e. the
Device Cloud Middleware was just installed to the device). The Consumer has to
decide which Consumer Operator, if multiple ones are used, becomes the default one
and is used by the Aggregator to perform Integration Offers.

— Operator Aggregator: The Aggregator is owned by and belongs to one Operator (e.g.
a router that was handed to a Consumer by an ISP due to a contract)

Aggregator Agent — Offering Consumer Agent — Offering Consumer Operator
Offer the integration using the FEntitylD of the device. Either the Offering Consumer
Operator is holding an active lock for this device itself, or it has to forward the offer to
the Owning Consumer Operator. In the first case the Offering and Consuming Consumer
Operators are equal and the offer can be evaluated immediately. However, in case of
non-exclusive devices, the Offering Consumer Operator can decide to forward the offer
anyway.

Offering Consumer Operator — Owning Consumer Operator
Based on the state of the Device Instance, the Owning Consumer Operator must decide
how to further process the offer. Note that an offer does not contain a Device Category
parameter, which means that all entries in CategorySets as well as all active locks have
to be considered. If the Owning Consumer Operator forwards the offer to Consuming
Consumer Operators, it has to reply the IDs of the Operators the offer was forwarded to
(besides possibly accepting the offer itself).

o Manufactured, Announced, Owned, Disabled, Deleted: The Integration offer cannot
be accepted.

e Operated: The Integration Offer can be accepted, if the Owning Consumer Operator
is equal to the EntityOwner property of the Device Instance because according to
Section 5.2.1, only the Device Owner is allowed integrating a device that is not
pooled.

e Jdle: In general, the Integration Offer can be accepted. However, no Consumer is
bound, which most likely means that the Owning Consumer Operator will not benefit
from agreeing to the offer. In case of a non-exclusive device, active locks that are just
bound to a Consumer can be considered, too. If the Consumer refers to a Consumer
Operator (i.e. Consuming Consumer Operator), the offer can be forwarded.

e (Consumer Bound: The limit of simultaneously active locks has been reached. The
Integration Offer can be accepted, if locks exist, that are bound to a Consumer
belonging to the Owning Consumer Operator. Additionally, each lock referring to a
Consuming Consumer Operator can be considered by forwarding the offer.

o Aggregator Bound: The device can only be provisioned, if one of the current bindings
to an Aggregator is released in advance. This can include forwarding the offer to any
other Consuming Consumer Operator.

Owning Consumer Operator — Consuming Consumer Operator
The Owning Consumer Operator forwards the offer to possibly interested Consuming Con-
sumer Operators.

Chapter 5: Device Cloud — Security & Interactions Concept 111

5.2. Interaction Model

Consuming Consumer Operator <> Offering Consumer Operator

If a Consuming Consumer Operator is interested in the offer, it can either be accepted
directly or a negotiation phase has to be entered. The negotiation phase basically includes
evaluating and adapting the conditions (e.g. price) of the offer using the Offering Consumer
Agent and the Consuming Consumer Agent. If the integration is accepted, an access
token is issued. This does not necessarily require interaction with the Owning Consumer
Operator because the Consuming Consumer Operator already possesses an valid access
token and can attach another one as described in Section 5.1.3.

Offering Consumer Operator — Aggregator Agent
The access token is transmitted to the Aggregator Agent and the device can be integrated,
which includes deploying the Platform Module orchestration as defined by the remote
Consumer Profile (i.e. the Consuming Consumer Agent). Only the Consumer Profile
entry corresponding to the integrated device is deployed. The Aggregator Agent will not
consider the newly linked Consuming Consumer Agent for Integration Requests.

For the purpose of sharing the virtual representations of a device, as discussed in Sec-
tion 5.2.4, the Owning Consumer Operator will most likely accept Integration Offers,
even if the Device Instance is in Idle state.

Decision Policies

Some application scenarios can require an adaptation of the standard, state based provi-
sioning behaviour described by the Integration Request interaction. An example, intro-
duced in Section 4.1.1, is given by medical sensors used to monitor a patient. Usually,
the sensors will be integrated by an Aggregator belonging to the patient (e.g. a smart
phone) for the purpose of remote monitoring (i.e. telemedicine). In case of an emergency,
the patient’s smart phone may not be available while the sensors are still operating and
the patient is transported to a hospital. Thus, an Aggregator within the ambulance and
an Aggregator at the hospital may successively request access to the sensors while they
are still locked by another Aggregator. This results in the requirement to implement
handover mechanisms. Basically, two handover types have to be considered:

Device Handover Classification

Aggregator Handover
The Aggregator (i.e. Device Integrator) is changed while the Device Consumer
remains. Hence, an active Device Lock granted to the requesting Consumer must
already exist.

Consumer Handover
The Consumer is changed. Usually, the Aggregator is changed too, but may also
remain. No active Device Lock granted to the requesting Consumer exists.

112 Chapter 5: Device Cloud — Security & Interactions Concept

5.2. Interaction Model

The E-Health scenario sketched above refers to a Consumer Handover. Both Consumer
and Aggregator change while an optionally defined binding to the Device Target (i.e.
the patient) remains. Algorithm 5.2.2 shows the basic steps of evaluating an Integration
Request. Note that for simplification not all boundary conditions are shown. It is
assumed, that the given Consumer and Aggregator do not already hold an active lock.

Algorithm 5.2.2 Evaluation of a Device Integration Request

function EVALINTEGRATIONREQUEST(Principal consumer, Aggregator agg, Devicelnstance
device, DeviceCategory rC)

cID « device.DeviceType.getCategorySetI D(rC')

RootState < device. DevicelnstanceState. RootState

cState + device.DeviceInstanceState.getCategoryState(cID)

if RootState = Operated then
if device. EntityOwner = consumer then
return true
end if
else if RootState = Idle then
if c¢State = Idle then
return true
else if cState = ConsumerBound V cState = Aggregator Bound then
activeLock < &
for all x € device.get Active Locks() do
if x.LockingEntity = consumer then activeLock < x
end if
end for
if activeLock # @& then
if activeLock.Aggregator = & then
return true
else
returnEVALRELEASELOCK (consumer, agg, device)
end if
else
returnEVALRELEASELOCK((consumer, agg, device)
end if
end if
end if

return false

end function

The behaviour of the function FvalReleaseLock(Principal consumer, Aggregator agg, De-
viceInstance device) is not defined because it depends on the requirements of the use
case and may differ from Operator to Operator. An important parameter is given by the

Chapter 5: Device Cloud — Security & Interactions Concept 113

5.2. Interaction Model

location of the device. If a device is in the state Aggregator Bound, but was discovered
at a location out of range of the locking Aggregator, a handover is likely to be reasonable.
Additionally, Operators may monitor the activity of a device and provide an assessment
regarding the connection status of a device. However, the E-Health scenario described
above can involve situations, where decisions based on the location or the activity are not
sufficient. If the patient enters the emergency ward, the Aggregator of the ambulance
might still be in range, which means the Operator has to decide between two or more
overlapping sensor access points. As not all communication protocols used by the sensors
provide mechanisms to assess the quality of a connection like mobile telecommunication
networks do, traditional handover approaches are difficult to apply. A possible solution
would be to introduce classes of Device Consumers and assign priorities to them. Hos-
pitals or other authorities providing emergency or safety-critical services could belong to
a preferred class. In general, this problem is related to the definition of Quality of Ser-
vice (QoS) policies for shared resources (e.g. networks). Each application domain must
define a set of contextual data items required to implement sufficient decision policies.

From a formal point of view, making a decision is related to the problem of pre-emptive
multitasking or scheduling. In case of a Consumer Handover, there are two processes (i.e.
Consumers) A and B that compete for the exclusive device resource D. Furthermore, a
scheduler C (i.e. Consumer Operator) has to decide, whether A can continue consuming
D or A has to be interrupted for the purpose of assigning D to B. Similar to priority-
based scheduling, C has to dynamically compute a priority given the contextual data
provided by A and B. The priority reflects the benefit the Device OQwner of D gains by
either assigning A or B to D (i.e. the goal of C — the Consumer Operator — is to optimize
the benefit of the Device Owner). Thus, the EvalReleaseLock(...) function first has to
select the active Device Lock with the lowest priority and subsequently compare it to
the priority calculated from the contextual data provided by B. The set of contextual
data applicable for a particular device resource D and a function mapping a numerical
value to each data item could be defined by the Device Categories. Possible contextual
data items are:

Device Handover Indicators

Price:
The price A and B are willing to offer to the Device Owner. In case of an Integration
Request the highest offer will win the competition while in case of an Integration
Offer, the lowest one will be preferred.

Proximity:
The proximity of D to A and B.

Aggregator Capabilities:
Aggregators involved in the provisioning can be rated regarding their mobility,

114 Chapter 5: Device Cloud — Security & Interactions Concept

5.2. Interaction Model

privacy (e.g. Bound or Unbound Aggregators), available resource (i.e. possible
Aggregation Platform Modules) or, reliability.

Device Target:
An unchanged Device Target may take precedence (e.g. the binding to a patient
is kept). Composite devices may be able to serve multiple Consumers but only
monitor one Device Target simultaneously. Thus, a request including a Device
Target differing from the current one would lead to a revocation of other existing
Device Locks.

Consumer Priority:
As mentioned, some use cases (e.g. E-Health) will likely define static priorities
for the Consumers (e.g. the emergency ward of a hospital takes precedence over a
home doctor).

J

Advanced decision policies are likely to additionally take the Idle state into consideration.
Even if, for instance, a device is ready to be provisioned, the policy may reject an
allocation attempt if it can be estimated that the benefit will be higher due to a high
probability of a subsequent allocation attempt with better conditions. The problem
is, that provisioning or allocation strategies known from the Cloud- or Grid Computing
domain are difficult to apply because the unit of resource is not a virtual machine, it is the
host (i.e. the device). Moreover, the set of hosts is highly heterogeneous (i.e. the type of
a host is given by the Device Category) and, for instance, compared to Grid Computing
the proximity between the host and the Consumer has to be considered (i.e. a model for
hosts that move in space is required). However, if mobility is not considered, tools like
GridSim [30] or CloudSim [31] can be used to estimate the performance of a decision
policy with regard to criteria like Device OQwner benefit or overall device utilization.
Basically, the procedure would be to model devices as hosts and Integration Requests
as VMs or Jobs consuming exactly all resources of one host for the whole provisioning
period. If two devices belong to different Device Categories, they must be represented
by different host types. Moreover, only one VM or job can be allocated to one host in
parallel. Subsequently, each host just provides one single core CPU and a space shared
allocation policy has to be used.

5.2.4. Sharing Virtual Representations

Although the Device Cloud is about sharing physical devices, Sensor Virtualization and
the associated concept of sharing virtual representations, as introduced in Section 2.2.1,
are important topics in the area of Sensor-Cloud integration. Therefore, the Sensor
Virtualization approach can be easily added to the Device Cloud concept as an additional
feature. It is based on the Integration Offer interaction. An Operator, willing to offer

Chapter 5: Device Cloud — Security & Interactions Concept 115

5.2. Interaction Model

Consumer Operator Customer

gement rtualization
Services Service

f“‘.

Cons;mer ;Agent - .
perator X

WA Device Category

Blood pressure

N L
‘ . Aggregator Agent Output
ALl Device Category Module
Blood pressure
. Dri
Device Cloud e

Middleware

Aggregation Node

Figure 5.9.: Sensor virtualization based on the Device Cloud infrastructure.

services for virtualized sensors, can accept each Integration Offer depending on the
requirements of its Customers. Regardless, whether the Operator uses own devices or
devices provisioned by other Operators, it acts as the Device Consumer. As shown in
Figure 5.9, the Consumer Operator offers a Sensor Virtualization service, that exposes
a virtual representation of the integrated device to its customers. From the perspective
of the Device Cloud Middleware, the virtualization service is an application. Hence,
the Operator needs to deploy a Consumer Agent linking to its own profile. The profile
defines output modules for each sensor that shall be virtualized. The output modules
act as a bridge between the physical device and its virtual representation offered by the
virtualization service. The Device Agent shown usually aligns to the interface defined by
the Device Category corresponding to the device. Thus, methods invoked on the Device
Agent can simply be forwarded to the device driver integrating the physical device using
remote procedure calls directed to the output module.

116 Chapter 5: Device Cloud — Security & Interactions Concept

6. Device Cloud — Architecture

Contents
6.1. Backend Information System 117
6.1.1. Device Directory 118
6.1.2. User Directory 122
6.1.3. Management Services. 126
6.2. Middleware i i i it ittt 129
6.2.1. Middleware Deployment 131
6.2.2. Device Integration & Abstraction 132
6.2.3. Data Aggregation oo 139
6.3. Conclusion 0 v i i i i e e e e e e 141

This chapter describes the architecture of the main building blocks of the Device Cloud
infrastructure. According to the Device Cloud concept, this includes the Device Cloud
Middleware and the Backend Information System offered by Domain and Consumer Op-
erators. The presented architecture is an exemplary approach. Other solutions compliant
with the concept requirements can exist.

6.1. Backend Information System

The Backend Information Systems are used to maintain and provide access to the entities
described in Section 4.4 (presuming proper authorization). The Device and the User Di-
rectory are provided by Domain Operators while the Management Services are provided
by Consumer Operators. The Directories act as resource servers (i.e. data bases) that
are capable of protecting their resources from unauthorized access. The Management
Services basically provide the logic required to negotiate the on-demand provisioning of
devices.

117

6.1. Backend Information System

W Operator

/Domain Operator

Consumer Operator A

| Management

DD Access DD Sync
. Protocol Protocol
Services
Session Layer
Session Context - User
(Principal) Directory

Aggregator

Agent

Device Cloud Middleware Persistence Layer

it

Device
Platform
Node Modul
odules
2
AN

Consumer A

Device
Type

Figure 6.1.: High level Device Directory architecture.

6.1.1. Device Directory

The implementation of the Device Directory is generic, which means that no distinction
is made between the Global and Local instances. Instead, the Global Instance can be
elected and it is simply deployed without configuring a parent. As shown in Figure 6.1,
the prototype of the Device Directory basically consists of a session and a persistence
layer.

The session layer provides the implementations of the DD Access and DD Sync Proto-
col. Currently, a WebSocket based approach is used [54]. As discussed in Section 5.2.2,
the Directories use a custom token format to authenticate the principal opening a ses-
sion. However, OAuth2.0 and Openld Connect can be integrated easily. After successful
authentication, the Device Directory creates a session context, which identifies the prin-
cipal and defines the scope of the session (i.e. DD Sync or DD Access protocol). The
context is used to authorize access to an entity maintained by the Device Directory. As
discussed in the previous chapter, access is guarded by the EntityOwner and EntityOp-
erator properties of each entity.

The persistence layer provides access to the device knowledge base. Common for di-
rectory services, the knowledge base is organized using a tree based approach (see Fig-
ure 6.2). The Device Directory facilitates a hybrid approach by using a relational data
base for storing entities and a file system repository for storing their attachments, which
also includes Platform Modules. The object-relational mapping framework Hibernate is

118 Chapter 6: Device Cloud — Architecture

6.1. Backend Information System

used to translate the entities between their object-oriented and relational representation.
Moreover, Hibernate [19] allows using several data base implementations (e.g. MySQL,
PostgreSQL) without adapting the implementation of the Device Directory. The file
system repository is organized similarly to an Apache Maven[10] repository. This is ba-
sically motivated by the format of the EntitylD property of Platform Modules, which is
similar to the identifiers used by Maven artifacts. In order to keep consistency between
the Device Directories, proper management of the Entity Version property is important.
The version is always managed by the master copy and is usually incremented automat-
ically in case of modifications.

Besides maintaining entities that describe a device (e.g. Device Instance, Device Type,
Device Category), one of the core functionalities is to provide the Platform Modules used
by the Device Cloud Middleware to integrate and handle devices. Refining the classifi-
cation of Platform Modules given in Section 4.4.2, the following types are defined:

Platform Module Types

Core Platform Modules:
The class of Core Platform Modules is not further refined.

Discovery Modules:
Class: Device Integration Platform Module
The Device Cloud separates the integration from the discovery process. Although
even the discovery processes are subject to a huge heterogeneity, discovery modules
usually can be implemented much more generally than device drivers. Separating
discovery from driver logic leads to a more efficient resource utilization.

Device Driver Modules:
Class: Device Integration Platform Module
Device Driver Modules implement the device control logic. According to the con-
cept of Device Categories, Device Driver Modules provide the implementation to
communicate with a device using its category definition.

Device Category Modules:
Class: Device Integration Platform Module
As defined in Section 4.4.2; Device Category Modules provide the category defini-
tion, which usually refers to an Interface.

Input Modules:

Class: Aggregation Platform Module

Input Modules are used by the aggregation layer of the Device Cloud Middleware.
Based on the Device Category, they attach to one or more Device Drivers and
translate between the category based interaction model of the device integration
layer and the event based model of the aggregation layer. Thus, an Input Module
polls the sensing operations offered by a Device Driver (based on its configuration)
and wraps the result into a container-based generic data representation used by the
aggregation layer.

Chapter 6: Device Cloud — Architecture 119

6.1. Backend Information System

Utilization Modules:
Class: Aggregation Platform Module
Utilization Modules refer to any kind of Device Cloud internal applications that
take data streams emitted by the Input Modules and perform analysis, aggregation,
or visualization, if the Aggregator device hosting the Device Cloud Middleware is
capable of displaying user interfaces.

Transformation Modules:

Class: Aggregation Platform Module

Transformation Modules are a specialization of Utilization Modules and act as an
enabler for syntactic and semantic interoperability. They are used to transform the
payload of the container representation from an input to an output format. Trans-
formation Modules are distinguished from Utilization Modules because they can
be injected automatically, based on the requirements of the module composition.
This is related to the InputFormat and OutputFormat properties of the Platform
Module entity.

Output Modules:
Class: Aggregation Platform Module
Output Modules act as residential gateways transmitting the data streams to ap-
plications hosted outside of the Device Cloud. Similar to Input Modules, Output
Modules can attach to Device Drivers in order to forward control commands based
on the Device Category. This is required if an application needs to interact with a
device offering actuating capabilities.

\. J

The InputFormat and OutputFormat properties of Platform Modules only apply to Ag-
gregation Platform Modules. They describe the format of the payload contained in the
generic container format. In case of Core Platform Modules, these properties are not
defined. In case of Device Integration Layer Modules, these properties are statically de-
fined as CATEGORY_BASED because drivers expose a service defined by an interface,
which belongs to a Device Category. Moreover, the generic container format is only
used by Aggregation Platform Modules, which can be based on any kind of application
dependent data format (e.g. HL7, IEEE 11073). Successive modules participating in
the processing of a data flow need to have matching output and input formats. Other-
wise, the Device Cloud can try to automatically inject a Transformation Module. If this
fails, the Aggregation Module composition is invalid and cannot be deployed. In gen-
eral, Input Modules act as a mediator between the CATEGORY_BASED format used
by Device Integration modules and the container-based format used by the Aggregation
Modules.

This is also related to the general permission policy applied to Platform Modules based
on their type and class:

e Core Platform Modules: Core modules provide system services and get all necessary

120 Chapter 6: Device Cloud — Architecture

6.1. Backend Information System

permissions (e.g. installing other bundles, managing the lifecycle of other services, access-
ing network or file resources). Moreover, most system services are protected from direct
access of non-core modules (e.g. a Device Driver cannot access and trigger action of the
Aggregator Agent).

e Device Driver Modules: Device Driver modules are allowed to register Device and
Driver services. Additionally, drivers can access network resources within the local subnet
of the Aggregator device and may make use of the Java Native Interface (JNI) to interface
with OS dependent stacks, as is required for Bluetooth.

e Discovery Modules: Discovery Modules can register discovery services and are allowed
to consume Device Services and generate events upon discovery of a device.

e Device Category Modules: Device Category modules are API-bundles providing the
interfaces of Device Categories. Hence, specific permissions are not required.

e Input Modules: All Aggregation Platform Modules can register services. Input Modules
are allowed to access Device Services.

e Utilization and Transformation Modules: No specific permissions are applied to
these modules. Input data streams are pushed by system services and output streams are
forwarded using events.

e Output Modules: Similar to Input Modules, Output Modules are allowed to access
Device Services. Additionally, output modules can consume network resources.

In addition to this policy, each module gets the permissions necessary for normal op-
eration like accessing its private bundle storage area (i.e. permissions implied by the
OSGi specification [120]). Another important property regarding the set of permissions
is given by the signature of a bundle, which is discussed in Section 5.1.1. The current
architecture approach assumes, that at least Core modules are signed by the Root Do-
main. If configured appropriately, the Device Cloud Middleware may accept deploying
Device Integration and Aggregation Modules signed by other authorities.

Replication of device knowledge between directories is subject to traversing the device
knowledge tree, which is shown in Figure 6.2. The tree basically contains one Device
Instance, one Device Type entity, several Device Category entities, and several Platform
Module entities. An initial replication is triggered by requesting the knowledge tree with
the EntitylD property of the Device Instance. This results in a list containing triples
of the shape { Entity Type; EntitylD;Entity Version}, which can be used by the request-
ing Device Directory to identify the missing and outdated entities (entities like Device
Categories or Platform Modules may have been already replicated due to a previous
request). A replication request aiming at updating an existing Device Instance already
contains the result of traversing the local knowledge tree. After replicating the knowl-
edge tree, a Device Directory can check the EntityDomain property of the replicated
entities. Basically, the Device Cloud encourages the Global Device Directory (i.e. the
Root Domain Operator) to maintain all master copies of the knowledge tree (except the
Device Instance). However, it is not forbidden that Local Device Directories maintain
master copies, too. Thus, if a Platform Module for instance is not managed by the

Chapter 6: Device Cloud — Architecture 121

6.1. Backend Information System

DD Sync
Protocol

Session Layer

Dev.ce L Persistence Layer
Node b

Domain Operator

Device
Instance

\ 4

A\ 2 ¥

Attachments

Device
Type

3

v v v v ¥ R

Configuration

Private Device Device Platform Platform Configuration
Entries Category A Category B Module A Module B g

' v R

‘ Platform

Platform

Configuration Module C

Attach t:
Module D genments

Figure 6.2.: Simplified example of a knowledge tree representing a device.

Global Device Directory, the corresponding local copy may not be up to date and the
managing domain has to be queried for the master copy. As discussed in Section 4.4.1,
knowledge marked as private will not be replicated.

Replication and any other read access to entities stored by a Device Directory presumes
that the entity is not locked due to a write access. The locking mechanism used by
the Device Directory is based on the Java Read WriteLock specification. Multiple simul-
taneous read locks may exist, while the write lock is exclusive. Moreover, the Device
Directory must provide the possibility to lock a Device Instance while a provisioning is
negotiated. This can be achieved by simply requesting a write lock and releasing the
lock again if the negotiation failed.

6.1.2. User Directory

The User Directory, as shown in Figure 6.3, is likely to be implemented as a wrapper
around an existing Identity and Access Management (IAM) solution (e.g. an LDAP-
based directory service), translating between Auth Protocol requests and the internal
Identity and Access Management (IAM) representation of principals. If the User Di-
rectory is not wrapped around an existing IAM solution, a database which is able to
maintain the Principal entities and their corresponding public keys is required.

122 Chapter 6: Device Cloud — Architecture

6.1. Backend Information System

A
- =
De
) O
Consumer Profile Auth
Protocol Protocol
o
0 Op 0 5 5
Consumer
o DAP Directc
Prinipals
Consumer Consumer
Profiles
Domain Operator er Directo Y,

Figure 6.3.: High level User Directory architecture.

Besides the Auth Protocol, the User Directory offers the Consumer Profile Protocol and
provides access to the device integration profile of a Consumer. Therefore, the User
Directory provides a session and a persistence layer similar to the Device Directory. The
Consumer Profile contains a set of entries that allow the Consumer Agent to evaluate
whether a particular device is of interest. An entry can be envisioned as a directed
acyclic graph which defines the processing of a data stream. The Consumer Profile, as
depicted exemplary in Figure 6.4, must comply to the following format:

Consumer Profile

Aggregation Platform Modules:

A set of Aggregation Platform Modules used to process the incoming data. A node ID,
unique within the scope of the profile, must be assigned to each module. A configuration
can be attached to each module. In order to support data aggregation of several devices,
the modules are defined within the scope of the overall profile (i.e. a using the node ID,
the same module can appear in several entries).

Each entry must comply to following format:

1. Entry State: The state of the entry (e.g. is a — or possibly multiple — fitting device
integrated and linked to the Consumer). The state may also include information
about the Device Target.

2. Device Category: The Device Category this entry is applicable for (e.g. a blood
pressure monitor). The category is matched against the CategorySets property of

Chapter 6: Device Cloud — Architecture 123

6.1. Backend Information System

the Device Type corresponding to the device being evaluated.

3. Guard Condition: A generic condition being able to be evaluated by the Con-
sumer Agents. Basically, the condition has to return true or false in case a device
of the given Category was discovered. The evaluation can include all contextual
information available to the Consumer Agent. Examples are:

e the costs or the offered duration of the provisioning
e the current state of the entry — i.e. integrate multiple devices

e the constraints of the provisioning — are forced withdrawals allowed; is the
integration allowed to be supervised by another Consumer Operator

e an integration schedule — e.g. a medical sensor is required to successfully
monitor a patient’s condition three times per day (i.e. must be integrated
three times a day and transmit a complete measurement each time)

e a static binding to a particular Device Instance by specifying the EntitylD
e a required DeviceTarget

4. Module Paths: A set of module paths defining the processing graph — i.e. a set
of node ID concatenations. Additional, path-specific, configurations can be defined
for the Aggregation Platform Modules. Each path must comply to the following
rules:

e If the path includes Utilization Modules, an Input Module is required. Ad-
ditionally, if the QutputFormat property of the Output Module is not equal
to the CATEGORY_BASED format, an Input Module is required because a
Transformation Module, which expects input in the generic container based
format, probably needs to be deployed.

e Each path must be terminated by an Output Module or a Utilization Module
that produces no output (e.g. a visualization).

e Each module must fit the output format of its predecessor.

e Input Modules and Output Modules using the CATEGORY_BASED input
format, must define a set of compliant Device Categories.

e If multiple Input and Output Modules accessing the device directly are de-
ployed, no guarantee is given that the same data is delivered to each path.

Similar to the Device Directory, access to the Consumer Profile is protected by the Enti-
tyOwner property. As discussed in Section 5.1.5, the Consumer has to create appropriate
entries in its profile, based on the applications he is willing to use. This process can be
automated up to a certain degree, by either mandating a Consumer Operator to take
care of the profile management (i.e. setting the EntityOperator property of the Con-
sumer Profile) or by granting access to the profile to a set of application providers using
the PermissionSet property. However, the latter approach may not be feasible because
it requires TAM services of the Domain Operator to additionally manage principals rep-

124 Chapter 6: Device Cloud — Architecture

6.1. Backend Information System

éonsumer Profile

l DC: Blood

pressure

Input Module
NodelD: 3
Input: DC Blood Pressure

Output: [EEE 11073

Utilization Module
NodelD: 6
Input: IEEE 11073

Output: IEEE 11073 /

Output Module Output Module

NodelD: 1 NodelD: 2

Input: DC Blood Pressure Input: HL7

Output: DC Blood Pressure Output: HL7

Utilization Module Utilization Module

NodelD: 4 NodelD: 5

Input: IEEE 11073 Input: IEEE 11073

Output: none Output: IEEE 11073
Transformation

4 A) \ External
Device Device Module Application
Node (7)) Service Input: IEEE 11073
ﬁ Output: HL7

Device Cloud ; ’t|
Middleware Internal GUI

Figure 6.4.: Representation of a Consumer Profile. The deployment view shows an au-
tomatically injected Transformation Module.

Paths:
1; 3-4-2; 3-5-2; 3-6

resenting application providers. The first approach would basically require Consumer
Operators to provide an appropriate service that links applications to the Device Cloud
(e.g. as part of an app store). Regardless of the employed mechanism, Output Modules
are the connectors between applications and the Device Cloud.

Fach defined Consumer profile entry, has to be validated according to the rules described
above. If Aggregation Platform Modules with non matching input and output formats
are linked to each other, it has to be checked, whether an appropriate Transformation
Module is available. Otherwise the whole entry, or at least the concerned module path,
has to be rejected.

A challenge regarding the given integration profile (i.e. Consumer Profile) definition is
given by gateway devices, that belong to the class of Device Nodes (i.e. no Device Cloud
Middleware can be deployed). Gateway devices usually do not directly provide sensing
or actuating capabilities a Consumer or one of its applications benefit from (nor can
they be considered composite devices). Instead, they offer a bridge to another Machine
Communication Network (MCN) (e.g. KNX or EnOcean). However, integration is
required in order to access the devices connected by the network that is bridged. Adding
respective entries to the Consumer Profile is not feasible because there is no knowledge
about the devices made available by a gateway. On the contrary, the Device Category
abstraction tries to hide the technical details from the Consumer and focuses on the

Chapter 6: Device Cloud — Architecture 125

6.1. Backend Information System

functional capabilities and not the technical details of a device integration process. As
a mitigation to this problem, the following assumptions are made:

1. Gateway devices can be envisioned as external dongles increasing the technical
capabilities of an Aggregation Node and therefore should be integrated whenever
possible.

2. Exceptions from this behaviour are given if an Aggregator is not configured to
serve Integration Offers or is currently not linked to Consumer Agents that have
unaccomplished entries in their corresponding Consumer Profiles.

3. Gateway devices are mostly stationary, often used in application domains like
smart homes or automation. Hence, the Aggregator integrating them will be most
likely stationary, too, which means an unlimited access token can be issued and
the amount of gateway provisionings is reduced.

In summary, the User Directory provides capabilities similar to a RADIUS-Server [132]
commonly used in Triple-A systems (authentication, authorization, accounting) [3]. The
User Directory allows services (i.e. Consumer Operators) to authenticate principals and
provides a central repository for parameters necessary for efficient service delivery (i.e.
the Consumer Profile). As discussed in the following section, accounting is managed by
the Consumer Operators themselves.

6.1.3. Management Services

Management Services, provided by Consumer Operators, represent the functional back-
end infrastructure required to implement the device provisioning. As shown in Figure 6.5,
a session layer, core services, and a set of supporting services are defined. Similar to the
Directories, the session layer is used, upon request to an offered protocol, to authenti-
cate a principal and create a session context. According to Section 5.2.2, two protocols
are offered by a Consumer Operator: the Aggregator Management and the Provisioning
Protocol.

The basic interactions have already been discussed in Section 5.2.3. However, upon dis-
covery of a device, the Aggregator Agent uses the Management Protocol to connect to a
Consumer Operator and evaluates whether the device is of interest or not, using the core
services. If the Aggregator Agent is linked to a Consumer Agent with an appropriate
entry in its Profile, an Integrations Request is triggered. Otherwise, it connects to a
Consumer Agent representing the Consumer Operator itself and an Integration Offer
can be triggered. This Consumer Agent does not necessarily require a Consumer Profile
because the Consumer Operator can provide an internal policy to decide about Integra-
tion Offers. Both cases lead to an invocation of the Provisioning Service, which contains
the logic required to negotiate a provisioning or possibly revoke an existing one. This

126 Chapter 6: Device Cloud — Architecture

6.1. Backend Information System

Consumer Operator

Management Services

Supporting
Services

Application
Connector Service

Internal Consumer
Database

Management,
Monitoring and
Accounting Services

User
Directory Agent Operator

Domain Operator

Core Services {

Consumer Agent Container Provisioning Service
Consumer Consumer Operator Decisi
Agent A Agent B Agent Metrics
] ot

Hi__i ‘Session Context
‘L (Principal)

Session Layer
Aggregator
Management Protocol

Provisioning
Protocol

Device
Aggregator Consumer Directory

Consumer Operator

Consumer Aggregator Agent

Figure 6.5.: High level Consumer Operator Management Services architecture.

Chapter 6: Device Cloud — Architecture 127

6.1. Backend Information System

basically includes considering the device state information provided by the Device Direc-
tory. As discussed in Section 5.2.3, additional information like the context (e.g. location
of the device and Consumer, priority of the Consumer) or quality parameters (price,
QoS) may be considered based on the application domain. If the device is operated
by the Consumer Operator, the Provisioning Service is not required to further interact
with other Operators. Otherwise, a negotiation phase is initiated using the Provisioning
Protocol. An offer made by the remote Consumer Operator is subsequently forwarded
to the involved Consumer Agent. In case of Integration Requests, the offer is matched
against the Guard Condition of a respective Consumer Profile entry. Otherwise, an in-
ternal decision policy used by the Consumer Agent representing the Consumer Operator
is applied. In general, the Consumer Agent is required to evaluate the offer. If the offer
cannot be accepted, it either has to be rejected or a counteroffer has to be made (which
can be based on a SLA framework [145]).

Additionally, Consumer Operators can provide a Provisioning Protocol client to their
Consumers in order to involve them during a device access negotiation, which can be
required if a Consumer has requirements beyond the scope of the expressiveness of the
Guard Condition. It has to be considered that this feature introduces manual inter-
action and can introduce significant delay to the provisioning process. Regardless of
the outcome of a negotiation, the Consumer Operator can decide, usually based on the
application domain, whether or not the corresponding Device Instance entity will be
locked until the negotiation is completed successfully. Even if the negotiation was suc-
cessful, the latter case can result in a rejection of the request (e.g. if another request
was processed in parallel).

As discussed in the previous section, a Guard Condition may also contain information
about an integration schedule, or possibly about the amount of sensed data. This requires
the Aggregator Agent to monitor the integrated device and collect respective meta data.
Although the meta data will usually not contain data directly generated by the integrated
devices, and thus transmitting this data to the Consumer Operator does not violate
the security constraints discussed in Section 5.1.5, privacy needs to be considered (e.g.
a Consumer may not want his Operator to know when a measurement was taken).
Therefore, a Consumer willing to integrate a device has to agree on the collection of
meta data, which in turn can be expressed using the Guard Condition. From a technical
point of view, the Device Driver Module to be monitored has to provide appropriate
functionality (i.e. generating meta data events). The terminology required to define and
interpret these events is not further specified.

The Operator Agent is used in case of provisionings that require supervision by the
Consumer Operator that has granted the access token (see Section 5.1.4). Basically, the
Operator Agent can utilize the Provisioning Service to access private data attached to

128 Chapter 6: Device Cloud — Architecture

6.2. Middleware

a Device Instance and to verify if the requesting Aggregator Agent is allowed to access
this information.

Besides the core services, the Management Services can provide a set of supporting ser-
vices, used to support the Consumer Operator in its decision making and other processes
required along with the provisioning of devices:

e Application Connector Service: This service can be used in case a Consumer has
granted a Consumer Operator access to its Consumer Profile by setting the EntityOperator
property. The service could maintain a set of application providers and define which
provider is allowed to access which Consumer’s profile. Additionally, a callback mechanism
can be introduced to notify application providers about state changes of entries they have
added to the profile.

e Internal Consumer Database: All principals of a domain are managed by the User
Directory. However, a Consumer Operator needs to maintain an internal user database in
order to define which Consumers actually have a customer relationship to the Operator.
This is required as an enabler for accounting and billing processes.

e Management, Monitoring and Accounting Services: A database used to monitor
the infrastructure a Consumer Operator is responsible for (e.g. which Aggregator Agent is
linked to which Consumer Agent, which devices are integrated by which Aggregator Agent,
meta data about an integrated device). Although status information like the binding
between Aggregator Agents and devices can be gathered from the Device Directory, an
internal cache can improve the overall performance. Monitoring services can additionally
be used to provide contextual information considered during provisioning decisions.

6.2. Middleware

The Device Cloud Middleware is an execution engine for Platform Modules. According
to the classification of the modules, the middleware consists of two major parts: the
Device Layer Engine (DLE) and the Aggregation Layer Engine (ALE). Outside of the
scope of the Device Cloud, both parts can be deployed independently (e.g. an ALE as
an external aggregation application deployed on a dedicated server to execute resource
intensive tasks). However, within the scope of the Device Cloud, both parts are required
to properly link the DLE to applications and vice versa.

As shown in Figure 6.6, several core services, i.e Aggregator Agent Services, are required
to manage the overall operation of the Device Cloud Middleware:

Device Cloud Middleware Core Services

Aggregator Agent:
The Aggregator Agent itself acts as the bridge to the Device Cloud infrastructure
by providing client implementations of the required communication protocols (Ag-

Chapter 6: Device Cloud — Architecture 129

6.2. Middleware

0

omain Operator Consumer er evice

Device Device

Operator Directory Directory

N
Aggregator Agent Services
Aggregator Device Monitoring Profile Module
Manager \ELET-(-T Manager Manager

Core Modules Core Modules

Input Data
Module Transformation

Aggregation Layer Engine

Output
Module

Application

Device Cloud Middleware J

Driver

~

Device Layer Engine

Figure 6.6.: Overview of the Device Cloud Middleware architecture.

gregator Management, DD Access Protocol). It maintains the private key of the
Aggregator Principal and ensures that each request of its sub services is properly
mapped to the protocols and authenticated. The Aggregator Agent is contained
in a separate bundle because this bundle becomes the admin for managing OSGi
permissions.

Device Manager:

The Device Manager lists the set of physical devices and Device Categories currently
offered by the DLE of the Aggregator. The set of Categories can be greater than
the actual set of physical devices integrated because one device may be described
using several Device Categories or can refer to the composite class.

Monitoring Manager:

The Monitoring Manager is used to collect meta data and status information about
integrated devices as discussed with regard to the Guard Condition in the previous
section. Therefore, the Monitoring Manager subscribes for meta data events using
the OSGi Event Admin Service.

Profile Manager:

The Profile Manager maintains the Consumer Agents linked to the Aggregator
Agent, whereas the internal representation only contains the entitylD of the Con-
sumer Agent and a subset of the entries contained in the corresponding Consumer
Profile. Regarding linked Consumer Agents, two sets are defined: local consumers
and remote consumers. Local consumers refer to Consumer Agents that are directly
linked to the Aggregator and are considered for Integration Requests (i.e. Con-
sumers belonging to the Consumer Operator responsible for the Aggregator, or a

130

Chapter 6: Device Cloud — Architecture

6.2. Middleware

Consumer owning the Aggregator device — Bound Aggregator). Remote consumers
refer to Consumer Agents that were linked due to an Integration Offer, which
means they are not considered for Integration Requests, and only the particular
profile entry corresponding to the Integration Offer is stored. For each Consumer
Agent linked, the corresponding access tokens are maintained. Additionally, in case
of an Operator supervised integration, the Profile Manager maintains private data
which are possibly required .

Module Manager:

The Module Manager controls the lifecycle of the deployed Platform Modules. It
maintains status information about each already deployed module, can resolve de-
pendencies if new modules shall be deployed, and is able to uninstall modules in
case of resource bottlenecks. If the Aggregator Agent has decided to install a Plat-
form Module, it forwards the corresponding Platform Module entity to the Module
Manager, which takes care of downloading the attachments (i.e. bundles) an de-
pendencies (if necessary) and installs the bundle. Additionally, the signature of a
bundle is verified. Thus, similar to the Aggregator Agent, the Module Manager is
also contained in a separate bundle because it is granted the permission to manage
permissions of other bundles.

6.2.1. Middleware Deployment

Deployment means that the Device Cloud Middleware is installed to an appropriate
Aggregation Node as discussed in Section 5.1.2. It is presumed that the Aggregation
Node provides a Java Virtual Machine (JVM). The bootstrap package contains an
implementation of the OSGi platform (including all required dependencies), a bootstrap
module, and additional resources like a configuration file or the public key of the Domain
Operator the Agent shall register with. The bootstrap module will scan the configuration
and download the publicly available Aggregator Agent core module from the Device
Directory specified in the configuration file. The Aggregator Agent then employs the
following steps to set up the middleware:

1. Scan the OSGi runtime for any existing services that conflict with core modules of
the middleware.

2. Identify the Device Type of the Aggregator (e.g. using an entry in the configuration
file or scanning the system with a Discovery Bootstrap Module).

3. Perform Aggregator registration as defined in Section 5.1.2. This can include user
interaction (e.g. in case the Aggregation Node is a private Aggregator owned by a
Consumer).

4. The Module Manager bundle is loaded and admin permissions are granted.

Chapter 6: Device Cloud — Architecture 131

6.2. Middleware

Application
Aggregator[| i

— Device Category
=)
Device B I)—{

LightSwitch
: I
. EnOcean Gateway Ethernet
.| Device category DLV N Light Switch
LightSwitch

""""" Device C Device D Device ...

Figure 6.7.: Device integration use case based on two networking protocols.

5. The Module Manager is instructed to load the other core modules (DLE, ALE,
and other Aggregator Agent Services) and properly initialize them.

6. After setting up all core modules, a Discovery Bootstrap Module is deployed (if not
already done due to system identification). The Discovery Bootstrap Module aims
at moving the DLE into the operational state by triggering the internal discovery
and device integration processes.

7. If the Aggregation Node is a composite one, the Aggregator Agent can modify the
CategorySets property, if it is willing to add its embedded devices to the device
pool.

6.2.2. Device Integration & Abstraction

The Device Layer Engine (DLE) is based on the OSGi Device Access Specification (DAS)
introduced in Section 2.4.2. Its main capability is to dynamically compose device control
logic based on Device Categories (i.e. the interface abstraction model). Figure 6.7
illustrates a typical example, found in many application scenarios, which underlines
the requirement to represent device control logic in a modular fashion while providing
different levels of abstraction. Device B (light switch) is connected to the Aggregator
based on two different networks that follow different protocols with respect to the OSI
layers. However, a light switch will usually have the same control semantics regardless
of whether it is attached using Ethernet or another networking technology. Thus, an
application should only recognize the presence of a device compliant to a certain Device
Category. Moreover, the application is usually not interested in the technical details
of the integration and the underlying protocols used. However, the challenging issue
raised by the use case consists in the fact that a gateway device can introduce a whole
network which may follow completely different addressing schemes than the network the

132 Chapter 6: Device Cloud — Architecture

6.2. Middleware

——— e >[Aggregator Agent Services]

DC: BP

Monitor
oo DC: Light

Switch

Device Layer Engine

Bootstrap Discovery

Discovery Module Manager Device

Record
Device
Category

Device
Service

Devices

DC: BP
Montior

%9

Discovery
Module

Device Device

Record Service

DC: Light Category Category

Ny

Driver
Service

Device
Category

Driver Manager

-

Figure 6.8.: Device Layer Engine (DLE) architecture based on the OSGi Device Access
Specification (DAS).

Aggregator is attached to. In order to represent such kinds of topologies, a mechanism
is required which is able to compose several device and protocol drivers in a transparent
way. Given an ideal scenario, one single driver could possibly be used to integrate both
light switches. However, this requires that the underlying protocol drivers (EnOcean,
Ethernet) abstract the transport medium in an appropriate way. If this cannot be
reached (e.g. due to protocol characteristics that cannot be abstracted), then at least the
compliance with the Device Categories will guarantee the necessary level of abstraction
required for interoperability at the application level.

As introduced in Section 2.4.2, the DAS models the composition of device control logic
by establishing a relationship between Driver Services and Device Services based on the
Device Category. If a new Device Service is registered, the Driver Manager can attach
a suitable Driver Service, which in turn can register new Device Services. Driver and
Device Services must specify the Device Category they belong to. Only one Driver
Service can be attached to a Device Service. The first Device Service in the system
appears as a result of the Discovery Bootstrap Module discussed in the previous section.
In general, the DLE architecture is based on the DAS and extends it where necessary.
As shown in Figure 6.8, the following components are defined:

Device Layer Engine Components

Bootstrap Discovery Module:
The initial Discovery Module delivered along with the deployment. Upon deploy-
ment it can scan the Aggregator and determine the physical host system (identify

Chapter 6: Device Cloud — Architecture 133

6.2. Middleware

the Device Type) if required. After the set up process has finished, it creates a De-
vice Record corresponding to a Device Category, which represents the host system
(e.g. Android smart phone xy). Based on the level of granularity given by the Cat-
egories, this can but does not have to already reflect the Operating System (OS).
It is preferred to provide separate Categories in case of frequent OS updates.

Device Record:

A Device Record is the result of a discovery process conducted by a Discovery
Module. It is an extension to the DAS, which defines how base drivers are deployed
to the DLE. It must at least contain the Device Instance ID, the Category of the
discovered device, and the Category of the parent device used during discovery
(this does not apply for the bootstrap Device Record). Additionally, it can contain
properties that describe how to connect to the discovered device (e.g. an IP address
in case of Ethernet based devices). Which properties are mandatory and how they
have to be represented, must be defined by the Category. A Discovery Module is
not allowed to hold an open connection to the device because usually no access
token exists during the discovery process. For instance, the first Discovery Record,
describing the host system, does not require any properties. This is because the
base driver, corresponding to the host system Category, knows that it has to identify
the OS, and this is possible without additional discovery properties.

Base Driver Service:

Device and Driver Services are registered by Device Driver Platform Modules. As
discussed in the DAS, base drivers cannot be deployed using the standard Device
Manager attachment process, because no initial Device Service exists, the Driver
Service could be attached to. Thus, a base driver refers to the first piece of device
control logic interacting with a newly discovered physical device. Given the Cat-
egory defined by the Device Record, a base driver can be located either using the
PlatformModuleSet property of the Device Category or by inspecting the Platform
Modules linked to the Device Type entity.

Device Service:

A Device Service represents the implementation of a Device Category. It can either
be further refined by attaching another Device Driver or it can be consumed by ALE
Aggregation Platform Modules. Additionally, it can allow to be consumed by Dis-
covery Platform Modules, which must be indicated using a flag, a service property,
or an interface. However, if multiple service consumers are bound (e.g. one Driver
Service, multiple Discovery Modules, and multiple Aggregation Platform Modules),
the Device Service must provide appropriate synchronization mechanisms. Driver
and Device Services must maintain a service property representing the list of par-
ents. Figure 6.9 illustrates a composition of Device Services, Driver Services and
Discovery Modules.

Driver Service:

A Driver Service according to the DAS. Regular Driver Services can be attached
using the Device Manager and the mechanism specified by the DAS.

134

Chapter 6: Device Cloud — Architecture

6.2. Middleware

Discovery Module:
Platform Discovery Modules that can be attached to Device Services using the
Discovery Manager.

Discovery Manager:
Manages the process of attaching Discovery Modules to Device Services.

Discovery Module Locator:
Similar to the Driver Locator, the Discovery Modules Locator locates Discovery
Modules appropriate for the Device Services present.

Driver Manager:

Specified by the DAS, the Driver Manager manages the process of attaching Driver
to Device Services. Upon registration of a Device Service, the Driver Manager tries
to attach Driver Services based on a matching algorithm, which basically utilizes
the match values defined in the Device Category to judge which Driver Service
is most appropriate. The decision can be refined using the Driver Selector. The
Driver Locator is used to load Device Driver Modules from an external repository
(i.e. the Device Directory).

Driver Selector:
The implementation of the Driver Manager is provided by a DAS implementation.
If a further refinement of the matching process is required, the Driver Selector can
be used to introduce possibly application domain dependent logic.

Driver Locator:
Specified by the DAS, the Driver Locator locates Device Driver Modules appropri-
ate for the Device Services present. Only modules contained in the PlatformMod-
uleSet property of the Device Category will be considered. Other potential drivers
are already present due to the action of the Module Manager which has inspected
the Platform Modules linked to the Device Type in advance.

The DLE is mostly based on events (i.e. using the OSGi Event Admin Service). Creation
of a Device Record is announced using an event the Device Manager listens for. The
Device Instance ID is used to trigger a Device Identification Interaction (through the
Aggregator Agent). The result is stored by the Device Manager, which maintains records
for each Device Instance known to the Aggregator. By inspecting the Consumer Agents
linked using the Profile Manager, the Aggregator Agent now has to decide whether an
Integration Request or Offer is triggered. An integration is triggered, if either a Request
or an Offer resulted in a device access token being transmitted to the Aggregator Agent.
The token is always bound to a Consumer and thus maintained by the Profile Manager.
Upon registration of a new token, the Profile Manager generates an event indicating
that a device with the given Device Instance ID has to be integrated (if the token was
not issued due to a renew operation and the device is already integrated). The Module
Manager inspects the Device Type corresponding to the Device Instance (using the

Chapter 6: Device Cloud — Architecture 135

6.2. Middleware

Discovery
Platform Module

Device Driver Device Driver Platform Module

Platform Module

Device Record
DC: Android
Device XY

Device Driver
Platform Module

Device Service

Driver Device Service

Device Service
DC: Bluetooth

\ J

Bootstrap
Discovery Module

DC: Android
0S XY

(Base) Driver
Service

Device Service Device Service

Driver
Service

DC: further

DC: Ethernet
refinement

Device Record Discovery

Module

DC: Generic
Bluetooth
Device

Discovery
Platform Module

"“ Application f“"

Device Driver
Platform Module

Device Service

DC: Bloodpressure
Monitor

Driver
Service

Figure 6.9.: Illustration of device control logic orchestration based on Device Categories.

Device Manager) and loads and deploys the Device Integration Platform Modules linked
(if not already present).

In order to integrate the device, a base driver has to be initialized with the Device
Record. Thus, after receiving the device integration event, the Device Manager has to
identify the base driver required, using the following policy:

e Check the Platform Modules linked to the Device Type for Device Driver Modules
compliant with the Device Category of the Device Record. If several exist, use the
set of matching values to select the most appropriate one.

e If no such Device Driver Module exists, scan the PlatformModuleSet property of
the Device Category. It must be verified that there is at least one path to the
Device Driver Modules specified by the Device Type. Otherwise, an exception has
to be thrown. An example where this fallback can become necessary is given by
a Bluetooth Health Device Profile (HDP) blood pressure monitor. The Device
Type only specifies a HDP-based driver, while the discovery has lead to a generic
Bluetooth device, as shown in Figure 6.9. Hence, a generic Category must first be
refined to an HDP-based Category.

After the appropriate base driver was selected, the Device Record is passed and the device
is integrated. This triggers the device refinement and driver attachment mechanisms
defined by the DAS. The Driver Manager listens for registrations of Device Services. If
a new service has registered, it tries to attach a Driver Service. The Driver Locator is
used to search for appropriate ones. The locator operates similar to the identification of

136 Chapter 6: Device Cloud — Architecture

6.2. Middleware

the base driver and triggers the Module Manager to load required modules. If multiple
Driver Services are suitable for a Device Service, the Driver Selector is triggered. The
Selector basically prefers modules linked to the Device Type, or validates that at least
one path to the modules linked to the Device Type exist (which is a shortest path
problem). Since each Device Service defines its parents, the relationship to the initial
Device Record and thus the physical device is always given. This is also exploited by the
Device Manager, in order to maintain its list of Device Categories currently bound to a
Device Instance. Therefore, the Device Manager just listens for registrations of Device
Services and updates its list.

Besides the Driver Manager, the Discovery Manager also listens for registrations of De-
vice Services. If a Device Service tagged as suitable for attachment of Discovery Modules
is found, the Discovery Module Locator is used to search for suitable Discovery Platform
Modules. In turn, either the PlatformModuleSet property of the Device Category or the
Platform Modules linked to the Device Type can be considered.

If the access token expires or the device integration was cancelled by the Consumer or due
to an Operator supervised integration, an event is triggered either by the Profile Manager
or the Aggregator Agent. The Device Manager receives the event and disconnects the
base driver from the device.

Device Management

As introduced in Section 2.4.2, device management can be used to introduce a uniform
representation of the device object models. Instead of linking the Aggregation Platform
Modules directly to the Device Services, a management layer could introduce a uniform
data structure to access the available device. However, this approach is only concep-
tional, because currently no Open Source implementation of the DmtAS is available.

The Device information base maintained by the Device Management Tree (DMT) is
managed by the Tree Manager. The Tree Manager listens for device integration events
and registration of Device Services. Therefore, the Tree Manager is notified every time
a Device Service appears or disappears and gets access to the service reference of the
respective Device Service. Based on the Device Category and the service property denot-
ing the parent of the Device Service, the Tree Manager is able to modify the DMT data
structure properly (i.e. adding, removing, or modifying nodes based on the operations
and properties of the Device Category). As mentioned in Section 2.4.2; the structure
of the DMT has an impact on the capabilities of how information can be accessed (e.g.
searching for specific devices, or for all devices compliant with a certain category). The
structure is not defined by the DMT Admin Service Specification (DmtAS) and is man-
aged by plugins. The Tree Manager registers such a plugin that takes responsibility

Chapter 6: Device Cloud — Architecture 137

6.2. Middleware

P Root Y
Category

Root

Device | _ e Cat
-7 nstance ategory

Recc.)rd \l Adiala |05 Category Light Switch
Device 4 Category NIC
Instance 0 Linux 0

Category
Instance Enocean Light
NIC Switch

Instance
NIC

Category Operation Operation Property
NIC Open() close() Buffersize
I'ree Manager Devi

 Plugin

Figure 6.10.: Overview of the Device Management Tree structure.

for all device related subtrees of the DMT. Two subtrees are maintained by the plugin:
a device-related subtree that reflects the actual topology of integrated devices and a
category-related subtree that allows grouping and searching for devices based on Device
Categories. An example is illustrated in Figure 6.10. Operations and properties of a
device are represented by leaf nodes. The Tree Manager plugin is able to create these
nodes based on the Device Category interface corresponding to Device Records and In-
stances. Whether a node refers to an operation (i.e. is executable) or to a readable
and/or writable property can be defined using meta nodes. Additionally, meta nodes
can be used to store extended knowledge (e.g. node descriptions), provide information
about the data types of a node or offer validation information to verify constraints on
the node values. The Tree Manager plugin is responsible for mapping the nodes to
the corresponding Device Category implementation offered by the Device Driver that
created the respective Device Service.

The category-related subtree reflects an important capability with regard to device ab-
straction. Categories are allowed to inherit from other categories. For example, a special-
ization of a light switch, additionally offering a dimmable feature, will still be compliant
to the base light switch category and can thus be accessed by each application able to
interact with regular light switches. A Device Service exposing a category that inherits
from a base category is required to implement the methods offered by the base category,
too. This is similar to the concept of interface inheritance used in many programming

138 Chapter 6: Device Cloud — Architecture

6.2. Middleware

f Aggregator Agent Services
Profile
Manager
— i FeoTTomomemeseeIIeeess
Device b v

Service

Data
Transformatiol

Output

Module —
g Application

DC: .. Aggregation
N) Layer Englne)/

i Input
DC: Ligth
Switch Device Module J

Service l

DC: BP 110
Device Monitor 101

Utilization
Module

Routing Service

n

Service

Figure 6.11.: Aggregation Layer Engine architecture.

languages.

6.2.3. Data Aggregation

The Aggregation Layer Engine (ALE) is the execution environment for Aggregation Plat-
form Modules. The only additional core module introduced by the ALE is a Routing
Service, which is responsible to properly route the data containers through the Aggre-
gation Platform Modules.

As discussed, the device integration is triggered if the Profile Manager receives a valid
access token. Besides triggering the integration, the Profile Manager uses the Mod-
ule Manager to load all Aggregation Platform Modules required. Aggregation Platform
Modules must support multiple sessions (i.e. processing of multiple data flows in paral-
lel). As discussed in Section 6.1.2, each entry in a Consumer Profile consists of one or
more paths. Each path must start with an Aggregation Platform Module that expects
a certain Device Category as its input. The Profile Manager is notified by the Device
Manager each time a new Category becomes available for an integrated Device Instance.
The Profile Manager checks whether the Category matches the input requirements of
one of the path entries. Additionally, in order to avoid “stealing” Categories introduced
by devices granted to other Consumers, it is verified that one of the access tokens be-
longing to the Consumers matches the originating Device Instance. If the path entry is
covered by the corresponding device access token (i.e. the CategorySet property), the
Profile Manager links the Device Instance to the first Aggregation Platform Module in
the path (either an Input or an Output Module) and notifies the Routing Service that
the path was activated. Additionally, an empty session is initialized and linked to the

Chapter 6: Device Cloud — Architecture 139

6.2. Middleware

ID of the path. This is required because Aggregation Platform Modules can process
multiple paths simultaneously, but each session may involve a different configuration. If
the path has already been active, the Guard Condition decides, whether an additional
session is created (i.e. the path is then applicable for multiple simultaneously integrated
devices).

If an Input Module initiates the path, it translates the category based format to the
generic container based format introduced in Section 6.1.1. Besides the payload, each
container includes the path ID, a sequence ID, the ID of the module it has passed, and a
references to the Device Instance the data originated from and the Consumer Profile the
path originated from. Each module uses an event, to emit data containers. The event
is received by the Routing Service, which determines the next Aggregation Platform
Module in the path. Processing of a path is always terminated by an Output Module,
which can forward the data to sinks outside of the Device Cloud.

Data Transformation

Transformation modules allow us to achieve semantic interoperability at the application
layer. The ALE is able to dynamically load required transformation modules from the
Device Directory. The approach behind the transformation modules can be referred
to as template mapping [135]. Template mapping is an approach for data transforma-
tion between a source and a target model in order to achieve semantic interoperability.
Template mapping assumes that two model instances, a source and a target instance,
exist (e.g. specific medical device specializations). The predefined target instance then
acts as a template, which is filled with dynamic values from the source instance (e.g.
measurements). An example would be a blood pressure monitor, using a proprietary
protocol which is translated to IEEE 11073. The Transformation Module is aware of the
data formats used by the proprietary as well as 11073 protocol. 11073 defines a set of
device type related object models. The Transformation Module knows this object model
(i.e. the template) and can appropriately insert the values, upon the transmission of a
measurement.

Compared to ontology-mapping approaches, template mapping requires providing mul-
tiple pairs of templates and their mappings. However, the approach is more lightweight
and allows for better modularity, and it fits into the Platform Module-based device in-
tegration model. If a device driver module is provided by a vendor, a mapping module
can be added easily. Ontology mapping would be the preferred approach if an openly
disclosed and well documented abstract meta-model for each incoming data stream (pro-
prietary or standard based) would exist, which is not the case for every vendor. More-
over, the adoption of required technologies like the Web Ontology Language [20] or the
Resource Description Framework [89] is only partially supported or does not exist for

140 Chapter 6: Device Cloud — Architecture

6.3. Conclusion

mobile and embedded systems since considerable resources are required. Thus, the tem-
plate mapping approach fits to the general system model because it allows splitting the
overall problem into several of lightweight modules, which can be deployed on demand.

6.3.

Conclusion

In order to take the generic Device Cloud building blocks to operation, the following
components need to be defined and provided:

The Device Categories necessary to describe the interfaces offered by the devices.
Based on the application domain, Device Categories can be derived from standard-
ization activities (e.g. ISO/IEEE 11073 for medical devices).

The Platform Modules necessary to integrate devices and pre-process the data
streams.

The Device Cloud assumes that a globally unique device ID can be reconstructed
during the device discovery process. However, not all vendors will provide such
capabilities. It may be necessary to provide mapping tables that translate from
properties like vendor, product number, and serial number to the ID range used
by the Device Cloud.

The decision policies used by the Provisioning Service of a Consumer Operator
must be defined. Multiple decision policies may coexist and can be applied, based
on the application domain a device belongs to.

As discussed in Section 6.1.3, additional monitoring parameters can be defined.
These parameters can be used to refine the provisioning decisions or to enhance
the expressiveness of the Guard Condition. As discussed in Section 5.2.3, the basic
parameters like device location or device status may not always be sufficient for
proper provisioning decisions.

Tools that allow Consumers to create and update their Consumer Profiles need to
be provided.

Chapter 6: Device Cloud — Architecture 141

6.3. Conclusion

142 Chapter 6: Device Cloud — Architecture

7. E-Health Application Scenario

Contents
7.1. E-Health Systems 143
7.2. The Data Dissemination Problem in E-Health 144
721. EHRClouds. 146
7.2.2. Application Scenario 147
7.3. Medical Device Interoperability — x73 150
7.3.1. x73 Implementation 152
7.4. Device Cloud Deployment 154
7.4.1. Medical Devices 154
7.4.2. Medical Device Sharing 156
7.5. Conclusion o0 v i it i e e e e 161

“e-health is an emerging field in the intersection of medical informatics,
public health and business, referring to health services and information de-
livered or enhanced through the Internet and related technologies. In a
broader sense, the term characterizes not only a technical development, but
also a state-of-mind, a way of thinking, an attitude, and a commitment for
networked, global thinking, to improve health care locally, regionally, and
worldwide by using information and communication technology.” - Eysen-
bach, 2001 [53]

7.1. E-Health Systems

Sufficient health coverage and health service delivery are crucial social and economic
requirements for the evolution of a country’s population and the improvement of liv-
ing conditions. Leading industrial nations like the United States of America or Ger-
many allocate about 19% of their governmental resources to the health care sector [118].
Therefore, it is important that the health service providing systems (i.e. health sys-
tems) properly distribute and utilize the available resources in view of the needs of the
society. Key requirements of effective health systems, as defined by the World Health

143

7.2. The Data Dissemination Problem in E-Health

Organization (WHO) [117], are to improve the health status and to defend the popula-
tion against health risks, to protect people against financial consequences of ill-health,
and to provide access to people-centred care. While health care basically can be de-
fined as the diagnosis, treatment, and prevention of diseases, people-centered care puts
emphasis on the health requirements of people and communities instead of focusing on
the diseases themselves. This is related to an upcoming change of paradigm in patient
treatment, where modern Information and Communications Technology (ICT) systems
like telemedicine applications allow transforming the hospital-centered way of treatment
to a more patient-centered one. This change is driven by challenges raised from social
issues like the ageing society and urbanization, and by economic aspects like increasing
costs. Health systems will have to adapt to these challenges in order to efficiently deliver
quality health services in a way that preserves the quality of life and the independence
of the patients.

One building block to boost effectiveness and quality of health service delivery is to
introduce ICT systems that allow an efficient distribution and delivery of health infor-
mation to the places where it is needed. This can be referred to as E-Health. Besides
employing ICT systems to boost efficiency and productivity in the delivery of healthcare
services, E-Health solutions are expected to provide and enhance [49]:

e interaction between patients and health-service providers
e institution-to-institution transmission of data
e peer-to-peer communication between patients and/or health professionals

Examples of E-health systems are health information networks in general, Electronic
Health Records (EHRs), telemedicine services, and mobile and wearable personal health
system (sometimes also referred to as mHealth) [49]. Although the Device Cloud basi-
cally deals with the integration and provisioning of medical devices and thus has a high
relation to telemedicine and mHealth systems, all areas of E-Health are covered. From a
general point of view, the Device Cloud covers the integration of ICT-based data sources
(i.e. medical devices) into health information networks, regardless of whether the source
is mobile or stationary, or refers to a device used in hospitals or in the scope of personal
health systems.

7.2. The Data Dissemination Problem in E-Health

The evolution of ICT in the healthcare domain is heavily influenced by upcoming dis-
tributed architectures that integrate and facilitate medical sensors in a ubiquitous fash-
ion [154]. Streams of medical data emitted by integrated medical devices can support
physicians in their decision-making process. However, a large variety of heterogeneous

144 Chapter 7: E-Health Application Scenario

7.2. The Data Dissemination Problem in E-Health

Home Doctor

*

Heart Rate
Monitor

S
Patient n

Heart Rate
Monitor
Blood Pressure
Sensor
Pattint

Heart Rate
@ Monitor
Patient

Add/Remove Devices
Medical
Device
Device Cloud
Medical
Device

Medical
Device
Medical
Device

Contribute devices

Contribute devices

Figure 7.1.: Patient monitored by a set of devices dynamically provisioned from the
Device Cloud based on the requirements

sensors has to be considered in order to get a meaningful survey of a patient’s condi-
tion. Moreover, treatment decisions often have to be made under time constraints, which
requires an aggregated view of the available data streams. Thus, besides the device in-
tegration challenge, data availability has to be considered with respect to the E-Health
domain.

Treatment processes usually include several steps and institutions (i.e. CDOs), ranging
from monitoring at home (i.e. telemedicine) to emergency transportation or different
hospitals, where each location might be managed by a different authority. According to
the brief introduction of the E-Health application scenario given in Section 4.1.1, patients
can be already equipped with a set of wearable medical devices which are organized in a
Body Area Network (BAN). Real time access to the emitted data streams could provide
better knowledge to physicians. As shown in Figure 7.1, the BAN can grow or shrink
at each location (i.e. new medical devices are integrated), in order to fit the set of
medical devices to the current treatment situation. However, to prevent reattachment
or replacement of the already given medical devices, it is required that the data streams
can be accessed by each CDO that is involved in the treatment process. Providing access
using sensors-virtualization or other Cloud-based services may not be feasible according
to the constraints (e.g. real-time, privacy) discussed in Section 4.1. The capabilities
offered by the Device Cloud allow CDOs to directly access the physical sensors and
temporarily take control. This can be referred to as sharing the data sources instead of
the data.

Chapter 7: E-Health Application Scenario 145

7.2. The Data Dissemination Problem in E-Health

However, physical sensors do usually not provide persistent memory to store the recorded
measurements. Thus, no history can be provided when relying only on the Device Cloud.
As a result, a hybrid approach is required including systems that provide access to the
treatment history of a patient and the Device Cloud, which provides real time data
reflecting the current condition. The history of a patient can be maintained by EHRs.
Currently, Cloud Computing approaches are investigated to solve the problem of effi-
ciently and securely distributing EHRs among CDOs involved in a treatment process.

7.2.1. EHR Clouds

The adoption of Cloud Computing concepts for the e-Health domain both raises oppor-
tunities and challenges. Governmental initiatives and research funding for Cloud based
e-Health services [50] show that Cloud Computing already found its way into the health-
care domain and is not just a concept under discussion any more. EHR-Clouds try to
solve the data dissemination problem by increasing the data availability while paying
respect to the serious privacy and security issues related to sharing health records in
clouds [104].

Patient treatment nowadays is organized in a multi-tenant fashion, where multiple CDOs
have to collaborate. Each participant in the treatment process must take knowledge
about the patient’s history and past treatments into consideration, while making own
decisions. Knowledge about a patient is stored in patient records, where according to the
HIMSS definitions [60], one has to distinguish between Personal Health Records (PHRs),
Electronic Medical Records (EMRs) and Electronic Health Records (EHRs). A PHR
should provide a complete summary of the health status and the medical history by
gathering information from various sources, like EMRs or EHRs. These records are
usually maintained by an individual (i.e. the patient) and allow making the health
status information available for those who are involved in the treatment process. EMRs
are maintained by CDOs and are used to represent and document the health care services
delivered to a patient by the maintaining CDO. In most cases each CDO hosts its own
database to store EMRs. In order to share this knowledge between CDOs involved
in a treatment process, EHRs can be used. An EHR is a subset of the knowledge
maintained by EMRs of the involved CDOs. This means that an EHR is used to provide
the knowledge required for present and future health care decisions and to exchange
this knowledge between participating CDOs. Based on the EHR definition, the primary
purpose of an EHR Cloud Application is to obtain relevant knowledge from the EMRs
located at different CDOs and to distribute it among involved health care providers.
Therefore, the main challenges for EHR Cloud Applications are related to security and
privacy [105].

146 Chapter 7: E-Health Application Scenario

7.2. The Data Dissemination Problem in E-Health

As the content of an EHR is usually collected from several EMRs, it has to be defined how
the access to EMRs by an EHR application can be managed. In the matter of privacy, it
has to be considered that a patient might only want to make parts of the EHR available
to physicians, who, for instance, are only involved in a specific subset of the overall
healthcare services delivered during the treatment process. Another crucial requirement
is the authenticity of the data represented by EHRs. It has to be ensured that the
author (i.e. a physician or a CDO) can be verified, which basically refers to the process
of data authentication [40]. Treatment decisions based on altered or non-authentic data
can cause serious damage to the health of a patient. Seen from a physician’s point of
view, the capability to collect data from multiple EMR/EHR repositories in a scalable
and secure way is important, since a physician might have to treat patients whose data
originate in different EMR systems. This is related to the EMR access management
challenge. Moreover, gathering access to patient data stored by multiple CDOs requires
an access control model that involves multiple entities because both the patient’s and
the respective CDQO’s authorization are required. Finally, ensuring the data integrity is
important, since undesired changes to the data or any loss of information have to be
avoided. This is a critical issue when considering multiple CDOs that are updating an
EHR, as knowledge might get lost or lose accuracy if update processes are not properly
managed.

7.2.2. Application Scenario

In order to extend the EHR Cloud capabilities with access to real time data, the device
Cloud needs to link the EMRs with the moving medical devices. Medical devices are
treated as resources of patient-related data. In general, a data resource can be considered
as required if it becomes visible to the network of a CDO involved in the treatment of a
patient. Thus, the patient takes the role of the Device Target while the Device Consumer
role, based on the treatment process, is transferred between the participating CDOs and
the patient himself (i.e. devices are linked to EMRs or to a PHR). The required data
resource can be booked and integrated, based on the Pay-as-you-go usage model offered
by the Device Cloud. Based on the type of the deployment, each hospital or other
large medical facilities can become Consumer Operators. The Domain Operator could
be given by an independent third party (e.g. a health ministry or a governing body of
CDOs). Regular domains could be organized on the basis of federal states, while the
Root Domain could refer to the country.

According to Section 4.1, two medical device-sharing principles can be distinguished
based on the Device Target (i.e. the patient).

Chapter 7: E-Health Application Scenario 147

7.2. The Data Dissemination Problem in E-Health

Medical Device Sharing Principles

Optimizing Device Utilization:

Based on the Device Cloud provisioning capabilities, a medical institution (or even
a single individual) can optimize the utilization of owned medical devices. It is
assumed that a pool of devices exist and that each device can be provisioned dy-
namically based on the demands of the patients. A hospital could efficiently pool
the medical devices even among several sites. This sharing principle is based on a
changing Device Target (i.e. medical devices are provisioned to multiple patients
based on their requirements).

Optimizing Data Availability:

In contrast to optimizing the utilization, optimizing the data availability is based on
an unchanged Device Target. This principle is reflected by the application scenario
introduced in Section 4.1.1. A patient, already bound to a set of medical devices,
is moving between several CDOs involved in the treatment process. As shown in
Figure 7.2, the patient holds the Device Target role, while each CDO is acting as
a Device Consumer. Device Owner and Device Operator can refer to each CDO,
the patient himself (at least the Device Owner) or even a third party (e.g. a health
insurance or a telemedicine provider). The initial binding of the devices to the
patient can be due to participation in a telemedicine program or because of any
other type or treatment (e.g. a patient is transferred from a general hospital to a
specialized clinic while the devices remain attached).

J

Accordingly, the definition of a valid Device Target is of crucial importance for E-Health
application scenarios. Without a Dewvice Target defined for a Device Instance, a CDO
would not be able to link an integrated device to a patient or its corresponding EMR.
Hence, the data would be useless. If only one CDO is involved in the treatment, the
mapping from devices to patients could be maintained externally (e.g. the clinical in-
formation system). However, as soon as multiple CDOs are involved, the mapping has
to be maintained by the Device Cloud. As discussed in Section 4.4.2, the Device Target
can be attached in form of configuration entries to the Device Instance or the Device
Locks. For the sake of simplicity, it is assumed that the information is attached to the
Device Instance because usually most medical devices refer to the functional device class
of Exclusive Transducer Devices. The Device Target must be expressed as an identifier
common to all participating CDOs (e.g. health insurance number or identity card ID).

In case of the E-Health application scenario, the Device Cloud requires that each Inte-
gration Request, resulting in a state transition from Idle to Consumer Bound, contains a
definition of the Device Target. This basically covers the utilization sharing principle. In
case of the availability sharing principle, where the medical devices are moved between
CDOs but are still bound to the patient, an Integration Request presumes that the De-
vice Instance is already in the Consumer Bound state. Note, that the Device Consumer
role differs from the patient (i.e. the Device Target) in this case. This can be envisioned

148 Chapter 7: E-Health Application Scenario

7.2. The Data Dissemination Problem in E-Health

=
F
@ ||

Device Lock B
Patient

Heart Rate " 4
H
H
H

Patient

@ @ Device Lock A

Home
PHR Application I

Telemedicine
Provider

Heart Rate "4 E
Sv

Monitor Monitor

:
Interest? |
:

=,

EMR Application

Home Doctor

Figure 7.2.: Optimizing data availability sharing principle — fixed Device Target and
changing Consumer

as follows:

e A set of devices is bound to a patient for a certain period of time by requesting
a device lock and defining the Device Target. The initial Device Consumer could
be the patient himself (i.e. its PHR application), a home doctor or a telemedicine
provider.

e A CDO involved in the patient’s treatment discovers devices that are either in
Consumer or Aggregator Bound state and are linked to the patient through the
Device Target.

e An access request would lead to a temporary revoke of the initial device lock (based
on the Device Operator’s decision policies). Subsequently, a new lock is issued to
the CDO, which becomes the Device Consumer.

e The E-Health use case requires that the decision policies of the Device Operator
remember the initial device lock that was revoked. If the CDO releases its lock,
the Device Operator has to restore the initial lock.

The definition of the Device Target can be established automatically, semi-automatically
or manually, which depends on the Aggregator and the medical device involved. If the
Device Type describing the medical device denotes that the device is capable of providing
a patient identifier, definition of the Device Target is not mandatory. ISO/IEEE 11073
based devices provide an appropriate entry within their object model. However, the
implementation of this entry is optional. If not defined by the device itself, the Device
Target needs to be defined during the provisioning process. Bound Aggregators (i.e.

Chapter 7: E-Health Application Scenario 149

7.3. Medical Device Interoperability — x73

Aggregators bound to one Consumer — see Section 4.4.4) belonging to the patient, can
establish the binding in a semi-automated fashion. Manual interaction is required if
multiple devices of the same type are in close proximity to the patient (i.e. it has to
be ensured that the patient actually uses the device that was provisioned to him). In
case of unbound Aggregators (e.g. in hospitals), the definition of the Device Target has
to be established manually. Therefore, an unbound Aggregator must be configured to
display a Device Target dialogue upon the discovery of an Idle Device Instance (either
using an integrated display or another control panel). This is basically triggered during
evaluation of the Guard Condition by the Consumer Agent (after the provisioning has
been negotiated successfully).

7.3. Medical Device Interoperability — x73

The development of the ISO/IEEE 11073 family of standards (x73) started in 1982 in
order to provide interoperability and Plug-and-Play functionality for medical devices.
The main application domains of the first versions were hospital and clinical environ-
ments. Due to the dissemination of mobile and wearable medical devices, effort was
made on improving the original standard towards telemedicine and Personal Health
Devices (PHDs) environments [166]. Currently, x73 is promoted by a huge industry
consortium (Continua Health Alliance [37]) to become the major standard in the area of
personal health devices and has also been elected as the basis for the Bluetooth Health
Device Profile (HDP). Out of the x73 standard family, the following parts are important
for this approach:

e 11073-10101 Nomenclature: A basic nomenclature to enhance semantic interoper-
ability by providing a common meaning of numeric values throughout components
in the system [78].

e 11073-10201 Domain Information Model (DIM): Describes an object-oriented self-
descriptive approach to model medical devices, their configuration and, capabili-
ties [79].

e 11073-20601 Optimized Exchange Protocol: Defines the transformation of an x73-
DIM to an interoperable transmission format optimized for PHD environments [75].

e 11073-104zz: Device specializations composed of a subset of available classes and
services in the DIM (e.g. blood pressure monitor, weighing scale). These special-
izations can act as the foundation for the definition of Device Categories. If a
proprietary device is not covered by the existing specializations, a new one has to
be defined.

In terms of x73, medical devices are called agents, and devices in the aggregation layer
(e.g. a smart phone) are called managers. As shown in Figure 7.3, the basic concept

150 Chapter 7: E-Health Application Scenario

7.3. Medical Device Interoperability — x73

Weighing-Scale Agent
Object-oriented model (DIM)

Communication/Service - Model
Agent/Manager I0-Loop

Manager

Known Agents

Weighing-Scale Agent

Object Handle
Dev-Configuration-Id
System-Type

System-Model

Association start
Confiugration phase
Operating phase

Association release

Object Handle local DIM copy
Unit-Code

Weight

Blood-pressure

Agent Agent XYZ

Figure 7.3.: Overview of the x73-20601 protocol between an Agent (Device Node) and a
Manager (Aggregation Node)

of medical data exchange is to establish a connection between an agent and a manager
and to create a local copy of the agent’s DIM at manager side by using a service and
communication model. The invocation of defined services allows the manager to keep
its local copy up-to-date when new measurements are provided by the agent. The man-
ager provides the recorded data to higher application layers (e.g. GUI components).
In terms of the Device Cloud, a manager is represented by a Device Driver Platform
Module, which provides an implementation of a Device Category corresponding to the
respective 11073-104xx specialization. Besides integrating an x73-compliant device, two
possibilities to integrate proprietary devices using x73 and the Device Cloud exist:

Mapping between proprietary devices and x73 representations

DLE based:
A refining Device Driver Module can be attached to the Device Service integrating
the proprietary device. In case of, for instance, a blood pressure monitor this
basically results in a transformation of the basic BP monitor category to a x73 BP
monitor category.

ALE based:
An ALE execution path containing a Transformation Module must be defined. The
Transformation Module basically translates between the proprietary input format
of the device and x73.

J

Implementing the DLE-based approach is usually more complex because a complete x73
based manager needs to be provided. It has the advantage that the exposed Device
Category is aligned to x73 and thus allows triggering control commands defined in the
specification (e.g. through an Output Module). The second approach is more lightweight
and easier to implement. It has the disadvantage that only the control commands

Chapter 7: E-Health Application Scenario 151

7.3. Medical Device Interoperability — x73

provided by the Base Category can be used because transformation to x73 only applies
to the payload of the corresponding data stream within the ALE.

The nomenclature defined in x73-10101 (i.e. medical data information base (MDIB))
provides a common data dictionary applicable to a broad range of vital signs ranging
from intensive care (e.g. ECG) over laboratory to common parameters, like weight or
blood pressure. In x73, the nomenclature is primarily used to specify attributes that
can appear in data streams (i.e. protocol data units) and are not statically defined.
This allows communication partners to obtain a common semantic understanding of the
exchanged data. An entry (i.e. term) in the nomenclature basically consists of a term
code and a human readable reference identifier. For efficiency reasons, all nomenclature
terms are organized in partitions (e.g. dimensions), where each partition has a set of
private term codes that allow for vendor specific extensions. Using terminology man-
agement concepts like the Rosetta Terminology Management project [73], started by the
Integrating the Healthcare Enterprise (IHE), allows one to extend the nomenclature in
case of proprietary devices that are not completely covered.

Besides the nomenclature, x73 defines a DIM, which consists of several classes and at-
tributes that are used to model medical devices in an object-oriented fashion. Each class
and attribute is referenced using nomenclature codes, thus interoperability is ensured
through preserving the same semantic meaning among different implementations. A
model of a medical device (i.e. agent) is composed of a set of objects that refer to the
data sources accessible by manager device drivers. The set of objects and the corre-
sponding attributes are usually defined by device specializations each of which correlate
to a specific medical device (e.g. blood pressure monitor). Each specialization picks out
a defined subset of objects and attributes available in the DIM to define its intended
functionality. In terms of the template mapping approach used by ALE Transformation
Modules it is important, that specializations define a static (e.g. system type) and dy-
namic (e.g. measurement value) set of attributes. It is assumed that a Transformation
Module has predefined knowledge about the DIM of a specialization (i.e. the template)
based on the Device Category. In case of proprietary medical devices, only the dynamic
attributes are exchanged and can be merged into the existing static part of the DIM (i.e.
the template). Therefore, each incoming proprietary data stream to be transformed has
to be matched against a device specialization available in x73, or to be added to the
system subsequently.

7.3.1. x73 Implementation

I order to easily support the DLE and ALE-based device integration approaches, a Java
based x73-20601 implementation was developed. The implementation covers the whole
x73-20601 standard and allows for a quick integration of x73 device specializations.

152 Chapter 7: E-Health Application Scenario

7.3. Medical Device Interoperability — x73

Agent

Agent-Library W p—
Agent Service Model bjects/ c°"m::':;"°"
Attributes

Core-Library
ASN1 Types
MDER (de)encoding
DIM
DataFlowManager

-U0]1821UNWIWIOY)

Communication
-Module

Manager-Library
Manager Service Model

Manager

Figure 7.4.: Overview of the Device Cloud x73-20601 implementation

Moreover, the definition of own specializations in order to cover device types which are
not already part of x73 is supported by plugging together existing DIM types. As shown
in Figure 7.4, a set of libraries provide the necessary functionality to compose a x73
compliant manager (i.e. Device Driver Module).

e Core-library: implements all ASN.1 based data types, the Medical Device Encoding
Rules (MDER), the entire DIM and interfaces and modules to execute services on
the data contained in the DIM

e Agent-library: implements the agent-side functionality defined in the x73-20601
service model, the agent state machine, and some utility methods to quickly create
agents and manage their communication

o Manager-library: implements the manager-side functionality defined in the service
model, the manager state machine, and utility methods to store configurations of
already known agents, manage agent discovery and the communication

e Communication-library: this library implements communication modules that can
easily be bound to either agent or manager, allowing them to communicate over
Sockets or Web Services (based on DPWS).

The Agent and Manager libraries provide a set of services used to access or modify
the DIM and an execution environment for these services. Basically, the DIM, repre-
senting the object model of a medical device, is linked to an execution environment.
Upon receiving a control command defined by x73, the appropriate service is selected
and executed on top of the DIM. In order to test extensions made to the x73-104xx
device specializations, an agent and a manager simulator were developed. As shown in
Figure 7.5, the simulator allows triggering control commands and inspecting the DIM
and the current state of an agent to manager association.

Chapter 7: E-Health Application Scenario 153

7.4. Device Cloud Deployment

|5 AgentGui r ——- — gy B e — = | B ||
[Agent(ID:234567) - Stat E Atribute-ID Aftribute-Type Details
¢ [Config: 700 : MDC_ATTR_ID_MODEL ASN1SystemModel Systemblodel members(2): [[ASN1Type: Octet . |«
[uos [MDC_ATTR_DEV_CONFIG_ID ASN1Configld Configld: 700
’ :[MDC_ATTR_ID_HANDLE ASN1Handle HANDLE: 0 L
§ [Wetrics |MOC_ATTR_SYS_TYPE_SPEC_LIST ASNATypeVerList TypeVerList size(1) memberType(Typever): [Ty..|
[} MDC_MOC_| : [MDC_ATTR_MDS_TIME_INFO ASN1MdsTimelnfo WdsTimelnfo members(6). [MdsTimeCapStat.. ||
D MDC_MOC_| {|[MDC ATTR SYS ID ASN1OctetStringVar ASN1Type: OctetString Var MDERType: OCTE... | ™
D Scanner o | attribute details
D PM-Stores ‘| systemModel members(2): [ASN1Type: OctetString_Var MDERType: OCTET_STRINGIASN1Type: OctetString_Var MDERType: OCTET_STRING]]

E data requests

i Request-ID | Mode \ time to run | startime \ endtime \
il 61440 [time no limit -1 1424192310923 - |

| oblect services
: Senvice-D

[l T [*]:
Edit Attributes

Reconnect

standard.out

17:58:30.843 [INFO] - Switched to communication state: ASSOCIATED_CONFIGURING_SENDING_CONF - [de tu_berlin.cit. x73.communication.ioengine.lOEngine:610] (Threa| =
17:58:30.844 [INFO] - Switched to communication state: ASSOCIATED_CONFIGURING_WAITING_APPROVAL - [de tu_berlin cit jx73 communication.icengine IOEngine:810] (Tl
17:58:30.845 [DEBUG] - Outgoing message (ID: 2) enqueued. Detail: ApduType choice(59136): PrstApdu[DataApdu choice(257) members(2): [[InvokelDType: 1)[EventReportArg
17:58:30.910 [DEBUG] - Incoming message (ID: 2) dispatched. Detail: ApduType choice(59136). PrstApdu[DataApdu choice(513) members(2): [InvokelDType: 1)[EventReportR
17:58:30.913 [DEBUG] - Received confirmation for service DIMAgentConfigurationService - [de tu_berlin cit jx73 agent services DIMAgentConfigurationService:176] (Thread: poo|
17:58:30.913 [DEBUG] - Manager accepted configuration. - [de.tu_berlin.citjx7 3.agent. services DIMAgentConfigurationService:185] (Thread: pool-1-thread-1)

17:58:30.923 [INFO] - Switched to communication state: ASSOCIATED_OPERATING - [de tu_berlin_cit x73.communication.ioengine.|OEngine:610] (Thread: Thread-6)

[a] Il] [¥]

Figure 7.5.: x73 Agent (medical device) simulator

7.4. Device Cloud Deployment

This section will discuss the steps required to take the Device Cloud into operation in line
with the conclusion in Section 6.3. As discussed in Section 7.2.2, it is assumed that larger
medical institutions (e.g. hospitals) act as Consumer Operators while an independent
third party acts as the Domain Operator (e.g. a governing body of CDOs). All other
participants (patients, home doctors) act as regular Consumers. CDOs will usually
install unbound Aggregators because multiple patients are served. Rather, patients
themselves can be equipped with bound Aggregators (e.g. smart phones) to monitor
their vital signs. The sink of the data streams is defined by the Consumer Profile, while
the profile either belongs to the patient himself or a CDO having requested access to the
medical devices. Unbound Aggregators (i.e. Aggregators used by CDOs) will usually
forward the data to a sink within the scope of the CDO they belong to (e.g. the clinical
information system or the EMR system). Bound Aggregators will forward the data to a
sink defined by the patient (e.g. a PHR application hosted by a telemedicine provider).

7.4.1. Medical Devices

Based on the requirements of the research projects the present Device Cloud concept
evolved from (in particular Smart Senior, Forschungscampus Connected Living, Rehaln-

154 Chapter 7: E-Health Application Scenario

7.4. Device Cloud Deployment

teract), several devices have been integrated. Due to the ongoing progress in developing
the Device Cloud concept, not all implemented device drivers align already strictly to

the current specification. The following ones are related to E-Health use cases:

e Blood Pressure Monitor: A Bluetooth 2.0 based blood pressure monitor manufac-
tured by Boso. A proprietary protocol is used to transmit measurements. The

listing 7.1 shows a simplified Device Category for blood pressure monitors.

e Weighing Scale: A weighing scale compliant to the ISO/TEEE 11073-10415 weigh-
ing scale device specialization. The Bluetooth Health Device Profile (HDP) is used
to transmit measurements.

e Position and Pressure Sensors: Within the scope of the Rehalnteract project,
which targets the support of rehabilitation processes using medicals sensors em-
bedded in training devices, position and pressure sensors were integrated (e.g. a
prototype of a shoe embedding both sensor types).

}

public
public
public
public

public

}

static
static
static
static

Listing 7.1: Blood Pressure Monitor Device Category

public interface BaseCategory{
public String getSerialNumber ();
public String getModelNumber ();
public String getVendor ();

public interface BP_Category extends BaseCategory{
//match values used by DLE (DAS) driver attachment

int MATCH DEVICE.CLASS = 1;
int MATCHDEVICEVENDOR = 2;
int MATCHDEVICE MODEL = 3;
int MATCH DEVICE MODEL REVISION = 4:

BPMeasurement getBloodPressure ();

//either MDCDIMMMHG or MDC_-DIM_KILO_-PASCAL
public int getUnitCode ();

//push new measurements to handler

public void registerCallbackHandler (BP_InputModule im);

public interface BP _Pulse_Category extends BP_Category{
//unit fized to MDC_DIM_BEAT_PER _MIN
public double getPulseRate ();

Chapter 7: E-Health Application Scenario

155

7.4. Device Cloud Deployment

}

public class BPMeasurement{
double MDC_PRESS_ BLD_NONINV_SYS;
double MDC_PRESS BLD NONINV_DIA ;
double MDC_PRESS_BLD NONINV_MEAN;
Calendar MDC_ATTR.TIME STAMP_ABS;

J

The Category definition in 7.1 is based on the assumption that each blood pressure
monitor can deliver a systolic, diastolic and mean value. According to the ISO/IEEE
11073-10407 specialization, some devices may optionally provide the pulse rate. Hence,
an extended Category can be defined.

The proprietary devices were integrated and aligned to x73 using the ALE-based ap-
proach introduced in Section 7.3. Thus, Data Transformation Modules were provided.
Since x73 does not define a specialization for position or pressure sensors, the proprietary
payload was aligned to x73 by adding appropriate terms to the private section of the
x73 nomenclature. Therefore, the Transformation Module uses a static x73 template for
each sensor type and maps the dynamic measurements into it, using the added nomen-
clature terms as semantic identifiers. The actual values are mapped to x73 data types
already existing in the 20601 specification. Hence, standard x73 data (de)encoders can
be used to process the data after transmission. For most sensor types the data types
already provided by x73 will be sufficient and only nomenclature terms have to be added.
Basically, x73-20601 defines all kinds of primitive types (bit strings, signed and unsigned
floats/integers, octet strings) as well as compound and list structures required to express
numerical, wave form, or textual measurements.

7.4.2. Medical Device Sharing

Based on the defined Device Categories, added Platform Modules, and created device
descriptions (Device Type, Device Instances), the Consumer Operators have to define
the decision policies as introduced in Section 5.2.3 (i.e. provide an implementation of
the Provisioning Service discussed in Section 6.1.3). Before the policies can be applied
due to an Integration Request, a CDO (i.e. Consumer) has to evaluate its Consumer
Profile and decide whether it is interested in a device.

In case of the E-Health application scenario, the evaluation must include the Device
Target (i.e. the CDO has to decide whether it participates in the treatment process of

156 Chapter 7: E-Health Application Scenario

7.4. Device Cloud Deployment

the patient). The challenge is given by the fact that an unbound Aggregator discovering
a device does not have any knowledge whether the device itself, the device type, or the
patient represented by the device are of interest. Moreover, the discovery process will
usually not provide sufficient knowledge that allows mapping the device to a patient.
Hence, the Device Target has to be identified using the Device Identification Interaction.
The E-Health application scenario presumes that all CDOs registered as Consumers are
allowed to access the respective property, which is protected by the Device Directory. If
the Device Target cannot be accessed, is not defined or cannot be interpreted, the device
can only be integrated if it is in Idle state. Having identified the device and its Device
Target, the Aggregator hands over the results to its corresponding Consumer Agent (i.e.
the Agent representing the CDO).

According to the general definitions, the Consumer Agent will evaluate its Consumer
Profile before triggering an Integration Request. A naive approach to cover devices of a
particular patient would be to access the patient’s Consumer Profile and copy all entries
related to medical devices. This is not feasible because the entries in the patient’s Profile
may be aligned to different requirements (e.g. Transformation and Output Modules)
or may contain devices that are not applicable in general (e.g. because the clinical
information system of the CDO cannot process the data). Therefore, the Consumer
Profile of a CDO needs to contain default entries for all suitable medical devices. The
Guard Condition can be used to express that multiple devices per entry are accepted.
Each default entry contains the definition of Aggregation Platform Modules and Module
Paths required to properly forward the recorded data to the clinical information system
in the desired format. However, the Guard Condition has to additionally evaluate the
Device Target (i.e. patient identifier), which is only possible by linking to the clinical
information system of the CDO. The Device Cloud itself is not designed to maintain any
patient specific knowledge and thus cannot determine whether or not a CDO is involved
in the treatment of a patient.

If the patient and the device are of interest, the Consumer Agent will trigger an In-
tegration Request. The decision policies employed within the scope of the E-Health
scenario can be based on a simple priority mechanism. Therefore, the following basic
classification of Aggregators is proposed:

Classification of Aggregators

1. Normal Operation: The Aggregator is bound to the patient. The data is for-
warded as specified by the patient’s Consumer Profile (e.g. telemedicine provider).

2. Priority Operation: An Aggregator belonging to a medical institution visited by
the patient due to non-critical issues (e.g. a medical practice).

3. Critical: An Aggregator belonging to a preferred medical institution (e.g. a hos-
pital), but not deployed in an emergency area/ward.

Chapter 7: E-Health Application Scenario 157

7.4. Device Cloud Deployment

4. Emergency: Aggregators deployed in an emergency area/ward. The Emergency
priority may have several levels. A vehicle (e.g. ambulance, helicopter), used to
carry a patient to an emergency ward may have a lower level than the emergency
ward itself.

The priorities can be further refined based on a classification of medical institutions
or even wards within one hospital. If a patient was admitted by a CDO due to an
emergency and is subsequently moved to a ward with lower priority (i.e. the installed
Aggregators have the Critical or the Priority Operation priority assigned), a handover
is still possible because the Consumer is not changed. However, some exceptional cases
have to be considered regarding the priority-based decision policy.

Medical Device Sharing - Exceptional Cases

Non-involved CDO:
Judging the interest in a device by the CDO itself is of notable importance. This
cannot be achieved by simply checking whether the patient is known to the clinical
information system but must additionally consider if an active participation in the
current treatment is required. Otherwise, conflicts may arise if two CDOs reside
at the same location (i.e. building) or a patient is just walking by a CDO knowing
him due to a previous treatment.

Unexpected/Emergency admission of patient:

Judging the interest is challenging in case of emergencies like accidents or disasters.
The patient may not be known to a CDO at all. Furthermore, in case of several
patients involved in an accident, the Aggregator of an emergency physician may not
be able to determine the set of devices the physician is interested in because several
devices belonging to different patients may be in close proximity. The unexpected
admission of a patient can be treated as a specialization of the non-involved CDO
case.

Paired devices:
Some device types, especially Bluetooth based devices, cannot be discovered while
already being paired with an Aggregator. Thus, if a patient moves to a CDO while
his Aggregator is still active, the CDO may not be able to notice the device.

\. J

A possible solution to these exceptional cases can be realized based on Near Field Com-
munication (NFC) enabled marker devices, such as RFIDs. As shown in Figure 7.6,
these marker devices stay discoverable and allow identifying the Device Target (i.e. the
patient). Similar to solutions like micro-payment, knowledge of the patient identifier,
gathered due to the close range to the patient, in conjunction with the priority of the
CDO could be treated as an authorization to access the medical devices of a patient
and simultaneously validate the interest of the CDO. Searching the Device Cloud in-
frastructure for medical devices bound to the identified Device Target can be employed

158 Chapter 7: E-Health Application Scenario

7.4. Device Cloud Deployment

ECG

Device Cloud

Identify Target Infrastructure

Heart Rate
Monitor

Identify Devices

A

Heart Rate
Monitor

ice Cloud
Middleware

;‘%{8‘

EMR Application

o Emergency
cm Physician
Device
Emergency Patient B)

Figure 7.6.: Device Target identification using NFC enabled marker devices

to check for paired/non-discoverable devices (either by accessing the Consumer Profile
of the patient or using a separate Device Target to device mapping service). Marker de-
vices can additionally help to mitigate the problem of manually defined Device Targets
as discussed in Section 7.2.2.

Finally, Figure 7.7 shows a simple decision policy derived from the priority based Con-
sumer classification. In case an Operator serves several application domains, the ap-
propriate decision policy can be selected based on the Device Category. For simplicity
reasons, the shown decision tree assumes, that access to an exclusive device is requested
and that the device is already locked. If the Consumer does not already hold the lock,
the Device Target is evaluated. In case the Target remains, the Optimizing Data Avail-
ability sharing principle is applied and the priorities of the existing lock and the request
are compared. Otherwise, the request is only accepted, if the requesting Consumer is
equal to the Device Owner and hence always preferred. As discussed in Section 7.2.2,
the Optimizing Device Utilization principle is based on a single Consumer provisioning
its devices to several Targets (i.e. a hospital provisioning its devices to several patients).
Thus, this principle is covered by simply switching the Aggregator or extending the
Device Lock as shown by the right hand side of the decision tree.

Chapter 7: E-Health Application Scenario 159

7.4. Device Cloud Deployment

Medical Device . Select other Decision
Category? Policy

Medical Device
Decision Policy

Device.RootState ==
Idle?

YES

Request.Consumer
holds active lock?

NO

Request.DeviceTarget ==
Device.DeviceTarget?

Request.Aggregator ==
Lock.Aggregator?

Request.Consumer ==
Device.DeviceOwner?

Request.Priority >
Lock.Priority

Accept Request
(Extend current Lock)

Figure 7.7.: Priority based medical device decision policy

160 Chapter 7: E-Health Application Scenario

7.5. Conclusion

7.5. Conclusion

This chapter demonstrated the application of the generic Device Cloud approach to a
specific use case, which was chosen from the E-Health domain. As a refinement of the
general sharing principles discussed in Section 4.1, the Optimizing Data Availability and
the Optimizing Device Utilization strategies were discussed. Basically, the strategies
cover the handling of the Device Target (remaining Target — Optimizing Data Availabil-
ity; altered Target — Optimizing Device Utilization).

Taking the Device Cloud into operation requires specifying and developing Device Cat-
egories and Platform Modules for the medical devices to be deployed. Furthermore, a
decision policy used to resolve access conflicts must be defined. Similar to scheduling
mechanisms, an approach based on static priorities was proposed. Moreover, it was
pointed out that judging the interest in a device and specifying the binding between a
device and a Device Target (i.e. patient) is of crucial importance for the E-Health use
case. A solution based on NFC enabled marked devices was proposed in order to cope
with situations like the emergency admission of a patient or competing Consumers in
close proximity.

Chapter 7: E-Health Application Scenario 161

7.5. Conclusion

162 Chapter 7: E-Health Application Scenario

8. Conclusion

Contents
8.1. Future Work i i i e e e e e e e e e e e e e e 164

Following the Ubiquitous Computing vision, the basic IoT assumption is that people are
no longer supported by a single monolithic computing system, such as a PC, but rather
use all the small embedded systems surrounding them to fulfill their needs (e.g. sensors,
actuators, smart devices). Currently, most of these smart devices act like closed “boxes”
and barely interconnect or collaborate with each other. Moreover, usually an application
domain oriented segmentation of IoT related solutions can be observed (i.e. one box for
entertainment, one box for smart home control, one box for e-health services). Justified
by the proliferation of IoT solutions, the increasing amount of devices, and the increasing
capabilities offered by them, appropriate measures to dynamically manage and provision
these IoT resources in an application domain independent manner are required.

On demand allocation and provisioning of resources are key capabilities offered by the
Cloud Computing domain. Users can consume resources on demand on a Pay-As-You-
Go (PAYG) basis without having to worry about the details of the underlying physical
infrastructure.

This thesis contributes to the field of IoT research by describing a framework and archi-
tecture for on demand provisioning of physical devices to users, called the Device Cloud.
The Device Cloud mitigates the problem of static, application domain dependent bind-
ings between users and devices by applying Cloud Computing paradigms to the IoT
domain. Devices are considered as resources that should be provisioned to users based
on their requirements. Based on a discussion of related approaches, such as sensor virtu-
alization, and possible application scenarios, a theoretical foundation enabling the pro-
visioning and sharing of physical devices between users was presented. This includes the
fundamental principles of sharing physical devices as well as an Entity-, an Interaction-,
and a Security model. The Entity Model aims at providing a uniform description of
knowledge required to establish an ad-hoc collaboration between the participants of the
Device Cloud without having any pre-defined knowledge about a communication part-
ner. The Security Model discusses specific issues that arise when physical devices from
different owners are organized in a federated resource pool and provisioned among users
that are most likely not known to each other. Based on the Entity- and Security Model,

163

8.1. Future Work

the Interaction Model defines basic interactions required to provision devices from the
pool (e.g. Integration Offer or Integration Request).

A generic, application domain independent Device Cloud architecture, consisting of a
backend information system and a Device Cloud Middleware, was derived from the mod-
els. By employing modularity, abstraction, and spontaneous interoperability features,
the middleware was designed in a technology and protocol agnostic manner, being able
to adapt to the requirements of the environment at runtime.

Finally, the applicability of the Device Cloud approach was demonstrated using a specific
use case from the E-Health domain.

8.1. Future Work

Similar to the requirement analysis, future work can be generally classified into functional
and non-functional enhancements of the Device Cloud infrastructure.

By exploiting the Device Cloud ability to provision physical device on demand, the in-
tegration of Mobile Grid concepts into IoT environments can be achieved. So far, the
device Cloud treats physical devices as resources of data and just provides basic data pro-
cessing capabilities. Applications are considered to be hosted by external infrastructures
(e.g. PaaS Clouds). Based on the assumption that further development of embedded
systems hardware will lead to increasing resources, physical devices could be additionally
considered as compute- and storage resources. Based on the capabilities of Aggregation
Nodes, the Device Cloud Middleware could be extended with a service execution envi-
ronment more comprehensive than given by the ALE. Compute- and storage resources
could be provisioned to the users, similar to the devices themselves. Applications could
be deployed close to the data sources and migrated between instance of the Device Cloud
Middleware, which leads to a distributed middleware platform as conceptually shown in
Figure 8.1.

Another functional enhancement is related to the orchestration of Aggregation Platform
Modules. Except for Transformation Modules, the orchestration of Aggregation Plat-
form Modules currently has to be specified manually. Giving the pre-specified input and
output formats, a directed graph can be created from the Platform Module specifica-
tion. Hence, existing paths between the Category based output format of devices and
Output Modules could be identified automatically. A related issue is given by devices,
that consume data streams of other devices as an input. In general, such kind of data
dispatching can be managed by applications, which may use Output Modules to forward
data streams to other devices (similar to the process of controlling actuator devices).
However, if both, providing and consuming device, are integrated by the same Device

164 Chapter 8: Conclusion

8.1. Future Work

Applications

User, User,

Services

Social Space
Data
Management

Resources Shared Resource Pool Resources
Layer

AN Runtime AN Runtime
(ANR) (ANR)

Directories
Device Cloud Middleware Resources

AN Runtime
(ANR)

Monitoring

Security
Privacy

Backend‘
Nodes (BN)

Figure 8.1.: Overall sharing of compute-, storage-, and data-resources based on a dis-
tributed Aggregation Node Middleware platform.

Chapter 8: Conclusion 165

8.1. Future Work

Cloud Middleware instance, internal handling would be more efficient. Although the
general design of Output Modules allows for bridging between two integrated devices,
dedicated Bridging Platform Modules could be introduced to tackle this issue in a more
convenient way.

Further functional enhancements may cover a more sophisticated and user-friendly appli-
cation integration with regard to modifications of the Consumer Profile or tackle decision
making processes regarding the device interest. For instance, recommender systems that
support Consumers in areas with a large amount of available devices or the integration
of Big Data engines to handle the large amount of data generated by the Device Cloud
could be examined.

The priority objective for non-functional enhancements are measures supporting appli-
cation domains with high QoS or real time (RT) requirements. Preliminary performance
investigations within the scope of the Rehalnteract project have shown that the delay in-
troduced by the ALE preprocessing is suitable for sensors with transmission rates around
25Hz (introduced delay around 10ms given three integrated position sensors). However,
safety-critical application domains may require more specific measures to specify RT
requirements or achieve reliability. Due to the application domain independent design
of the Device Cloud, several devices with different RT requirements are allowed to be
integrated by the same Device Cloud Middleware. Thus, the resources of the respective
Aggregation Node device can be considered as shared, which means the Platform Mod-
ules need to be properly scheduled with respect to the requirements of the linked device
and application. Moreover, the utilization of an Aggregation Node could be used as an
indicator for the device integration decision policies.

Accordingly, another challenge to be tackled is generalizing the decision policies and
respective evaluation metrics. As discussed, existing resource allocation strategies usu-
ally do not take the mobility of the resources and the required proximity to the users
into account. Providing a formal model will help to assess and to improve the decision
policies used by Consumer Operators. Another important aspect related to the decision
policies are nomenclatures that allow describing the contextual data used for decision
making, especially the Device Target property, in a machine processable manner. In
case of large Device Cloud deployments with a majority of devices deployed in public
areas, the decision policies can be further enhanced by introducing reputation systems
that allow dynamically ranking the trustworthiness of a formerly unknown Consumer.

166 Chapter 8: Conclusion

A. List of Acronyms

ALE Aggregation Layer Engine

BAN Body Area Network

CoAP Constrained Application Protocol
CDO Care Delivery Operator

CPS Cyber Physical Systems

DAS Device Access Specification

DEP Data End Point

DIM Domain Information Model

DIP Data Integration Point

DLE Device Layer Engine

DMT Device Management Tree
DmtAS DMT Admin Service Specification
DPWS Device Profile for Web Services
EHR Electronic Health Record

EMR Electronic Medical Record

HDP Bluetooth Health Device Profile

TaaS Infrastructure as a Service
IAM Identity and Access Management
ICT Information and Communications Technology

IETF Internet Engineering Task Force
IHE Integrating the Healthcare Enterprise

I0CS IO Connector Service Specification

167

IoE

Internet of Everything

IoT Internet of Things

P Internet Protocol

ISP Internet Service Provider

JNI Java Native Interface

JVM Java Virtual Machine

LCIM Levels of Conceptual Interoperability Model
M2C Machine-to-Cloud

M2M Machine-to-Machine

MANET Mobile Ad-hoc Network

MCN Machine Communication Network

MDER Medical Device Encoding Rules

MDM Mobile Device Management

NFC Near Field Communication

NIST National Institute of Standards and Technology
OS Operating System

PaaS Platform as a Service

PAYG Pay-As-You-Go

PC Personal Computer

PHD Personal Health Device

PHR Personal Health Record

QoS Quality of Service

SaaS Software as a Service

SLA Service Level Agreement

SOA Service Oriented Architecture

ucC Ubiquitous Computing

UPnP Universal Plug and Play

168 Chapter A: List of Acronyms

USB Universal Serial Bus

VSN Virtual Sensor Network

WHO World Health Organization
WPAN Wireless Personal Area Network
WSN Wireless Sensor Network

WSAN Wireless Sensor and Actor Network

Chapter A: List of Acronyms 169

170 Chapter A: List of Acronyms

B. List of Figures

1.1.

1.2.

2.1.

2.2.

2.3.

4.1.

4.2.

4.3.

4.4.

5.1.

5.2.

5.3.

5.4.
5.9.
5.6.
5.7.
5.8.
5.9.

6.1.
6.2.

Two basic approaches for data dissemination in IoT applications - Sharing
and provisioning the data or the data sources 4
Overview of the main Device Cloud challenges and their relationships . . 6

Sensor virtualization as an enabler for unified access to heterogeneous

physical resources. oL 18
Loosely coupled interaction of dynamically deployed OSGi bundles through
SEIVICES. © « v v v v v e e e e e e e e e e e e e e e e 29
OAuth2.0 based authorization separating the client from the resource
owner role. 35

E-Health use cases that illustrate different principles of sharing devices

and the different roles the participating entities can hold. 47
Overview of the actors, their relations to each other and the major tech-
nical components building the foundation of the Device Cloud. 52
Integration offer triggered by discovery of a device already bound to a
COonSUIMET. o ot e e e 59

Relationship of functional device classes, category groups and device locks. 69

Consumer Operators require permission of the Device Owner to provision

devices. e 80
Access token used to validate the Consumer’s permission to integrate a

device. e e 83
Cross-domain Aggregator Agent authentication conducted by Operator

Agent. e 86
Application integration through a data flow defined by the Consumer Profile. 88
Device Instance state machine diagram. 95
Overview of the major communication protocols used by the entities. . . . 98
Simplified overview of the Device Deployment interaction. 102
Simplified overview of the Integration Request interaction. 108
Sensor virtualization based on the Device Cloud infrastructure. 116
High level Device Directory architecture. 118
Simplified example of a knowledge tree representing a device. 122

171

6.3. High level User Directory architecture. 123
6.4. Representation of a Consumer Profile. The deployment view shows an
automatically injected Transformation Module. 125
6.5. High level Consumer Operator Management Services architecture. 127
6.6. Overview of the Device Cloud Middleware architecture. 130
6.7. Device integration use case based on two networking protocols. 132
6.8. Device Layer Engine (DLE) architecture based on the OSGi Device Access
Specification (DAS). 133
6.9. Illustration of device control logic orchestration based on Device Categories.136
6.10. Overview of the Device Management Tree structure. 138
6.11. Aggregation Layer Engine architecture. 139
7.1. Patient monitored by a set of devices dynamically provisioned from the
Device Cloud based on the requirements 145
7.2. Optimizing data availability sharing principle — fixed Device Target and
changing Consumer L o 149
7.3. Overview of the x73-20601 protocol between an Agent (Device Node) and
a Manager (Aggregation Node) 151
7.4. Overview of the Device Cloud x73-20601 implementation 153
7.5. x73 Agent (medical device) simulator 154
7.6. Device Target identification using NFC enabled marker devices 159
7.7. Priority based medical device decision policy 160
8.1. Overall sharing of compute-, storage-, and data-resources based on a dis-
tributed Aggregation Node Middleware platform. 165
172 Chapter B: List of Figures

Bibliography

References

[1]

S. Abdelwahab et al. “Enabling Smart Cloud Services Through Remote Sensing:
An Internet of Everything Enabler”. In: Internet of Things Journal, IEEE 1.3
(2014), pp. 276-288. 1SSN: 2327-4662. DOL: 10.1109/JI0T.2014.2325071.

Karl Aberer, Manfred Hauswirth, and Ali Salehi. “A Middleware for Fast and
Flexible Sensor Network Deployment”. In: Proceedings of the 32Nd International
Conference on Very Large Data Bases. VLDB ’06. Seoul, Korea: VLDB Endow-
ment, 2006, pp. 1199-1202. URL: http://dl . acm. org/citation.cfm?id=
1182635.1164243.

Bernard Aboba and Jonathan Wood. RFC 3539 — Authentication, Authorization
and Accounting (AAA) Transport Profile. https://tools . ietf . org/html/
rfc3539. [Online; accessed 17-February-2015]. 2003.

Ian F Akyildiz and Ismail H Kasimoglu. “Wireless sensor and actor networks:
research challenges”. In: Ad hoc networks 2.4 (2004), pp. 351-367. 1sSN: 1570-
8705. por: 10.1016/j.adhoc.2004.04.003. URL: http://www.sciencedirect.
com/science/article/pii/S1570870504000319.

Y. Al-Hazmi et al. “An automated health monitoring solution for future Internet
infrastructure marketplaces”. In: Teletraffic Congress (ITC), 2014 26th Interna-
tional. 2014, pp. 1-6. DOL: 10.1109/ITC.2014.6932979.

S. Alam, M.M.R. Chowdhury, and J. Noll. “SenaaS: An event-driven sensor virtu-
alization approach for Internet of Things cloud”. In: Networked Embedded Systems
for Enterprise Applications (NESEA), 2010 IEEE International Conference on.
2010, pp. 1-6. DOI: 10.1109/NESEA.2010.5678060.

Atif Alamri et al. “A survey on sensor-cloud: architecture, applications, and ap-
proaches”. In: International Journal of Distributed Sensor Networks 2013 (2013).
DOI: 10.1155/2013/917923.

Cristina Alcaraz et al. “Wireless sensor networks and the internet of things: Do
we need a complete integration?” In: I1st International Workshop on the Security
of the Internet of Things (SecloT’10). IEEE, 2010.

173

http://dx.doi.org/10.1109/JIOT.2014.2325071
http://dl.acm.org/citation.cfm?id=1182635.1164243
http://dl.acm.org/citation.cfm?id=1182635.1164243
https://tools.ietf.org/html/rfc3539
https://tools.ietf.org/html/rfc3539
http://dx.doi.org/10.1016/j.adhoc.2004.04.003
http://www.sciencedirect.com/science/article/pii/S1570870504000319
http://www.sciencedirect.com/science/article/pii/S1570870504000319
http://dx.doi.org/10.1109/ITC.2014.6932979
http://dx.doi.org/10.1109/NESEA.2010.5678060
http://dx.doi.org/10.1155/2013/917923

References

[14]

[19]

[20]

EC Amazon. Amazon elastic compute cloud (Amazon EC2). http://aws.amazon.
com/de/ec2/. [Online; accessed 26-December-2014]. 2010.

Apache Maven Project. Apache Maven Project — Welcome to Apache Maven.
http://maven . apache . org/index . html. [Online; accessed 02-March-2015].
2015.

Michael Armbrust et al. “Above the clouds: A Berkeley view of cloud computing”.
In: Communications of the ACM 53.4 (2010), pp. 50-58.

Kevin Ashton. “That “internet of things” thing”. In: RFiD Journal 22.7 (2009),
pp. 97-114.

CamlonH. Asuncion and MartenJ. van Sinderen. “Pragmatic Interoperability:
A Systematic Review of Published Definitions”. English. In: Enterprise Architec-
ture, Integration and Interoperability. Ed. by Peter Bernus, Guy Doumeingts, and
Mark Fox. Vol. 326. IFIP Advances in Information and Communication Technol-
ogy. Springer Berlin Heidelberg, 2010, pp. 164-175. 1SBN: 978-3-642-15508-6. DOI:
10.1007/978-3-642-15509-3_15. URL: http://dx.doi.org/10.1007/978-3-
642-15509-3_15.

Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The Internet of Things: A
survey”. In: Computer Networks 54.15 (2010), pp. 2787 —2805. 1SSN: 1389-1286.
DOI: http://dx.doi.org/10.1016/j . comnet .2010.05.010. URL: http:
//www.sciencedirect.com/science/article/pii/S1389128610001568.

Jan Axelson. USB complete: everything you need to develop custom USB periph-
erals. 2005. 1SBN: 978-0965081955.

Soma Bandyopadhyay et al. “Role of middleware for internet of things: A study”.
In: International Journal of Computer Science & Engineering Survey (IJCSES)
2.3 (2011), pp. 94-105.

Alessandro Bassi et al. Enabling Things to Talk. Springer Berlin Heidelberg, 2013.
ISBN: 978-3-642-40402-3. DOI: 10.1007/978-3-642-40403-0.

M. Batty et al. “Smart cities of the future”. English. In: The Furopean Physical
Journal Special Topics 214.1 (2012), pp. 481-518. 1sSN: 1951-6355. DOI: 10.1140/
epjst/e2012-01703-3. URL: http://dx.doi.org/10.1140/epjst/e2012-
01703-3.

Christian Bauer and Gavin King. Java Persistance with Hibernate. 2006. 1SBN:
978-1932394887.

Sean Bechhofer. “OWL: Web Ontology Language”. English. In: Encyclopedia of
Database Systems. Ed. by LING LIU and M. TAMER OZSU. Springer US, 2009,
pp. 2008-2009. 1SBN: 978-0-387-35544-3. DOI: 10 . 1007 /978 - 0 - 387 - 39940 -
9_1073. URL: http://dx.doi.org/10.1007/978-0-387-39940-9_1073.

174

Bibliography

http://aws.amazon.com/de/ec2/
http://aws.amazon.com/de/ec2/
http://maven.apache.org/index.html
http://dx.doi.org/10.1007/978-3-642-15509-3_15
http://dx.doi.org/10.1007/978-3-642-15509-3_15
http://dx.doi.org/10.1007/978-3-642-15509-3_15
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://www.sciencedirect.com/science/article/pii/S1389128610001568
http://www.sciencedirect.com/science/article/pii/S1389128610001568
http://dx.doi.org/10.1007/978-3-642-40403-0
http://dx.doi.org/10.1140/epjst/e2012-01703-3
http://dx.doi.org/10.1140/epjst/e2012-01703-3
http://dx.doi.org/10.1140/epjst/e2012-01703-3
http://dx.doi.org/10.1140/epjst/e2012-01703-3
http://dx.doi.org/10.1007/978-0-387-39940-9_1073
http://dx.doi.org/10.1007/978-0-387-39940-9_1073
http://dx.doi.org/10.1007/978-0-387-39940-9_1073

References

[27]

[28]

[29]

[30]

[32]

Fran Berman, Geoffrey Fox, and Anthony JG Hey. Grid Computing: Making the
Global Infrastructure a Reality. Vol. 2. John Wiley & Sons, 2003. 1SBN: 978-0-470-
85319-1.

Bluetooth SIG. Enabling wireless communication between devices. https://www.
bluetooth.org/en-us/training-resources/technology. [Online; accessed
30-December-2014]. 2014.

I. Bojanova, G. Hurlburt, and J. Voas. “Imagineering an Internet of Anything”.
In: Computer 47.6 (2014), pp. 72-77. 1SSN: 0018-9162. pOI: 10.1109/MC.2014.
150.

David Boswarthick, Omar Elloumi, and Olivier Hersent. M2M communications:
a systems approach. John Wiley & Sons, 2012. 1SBN: 978-1-119-99475-6.

Broadband Forum. TR-069 CPE WAN Management Protocol. Tech. rep. [Online;
accessed 8-January-2015]. 2014.

Bundesverband Informationswirtschaft, Telekommunikation und neue Medien e.V.
Das Internet schafft eine Kultur des Teilens. http://www.bitkom . org/de/
presse/78284_75237.aspx. [Online; accessed 13-December-2014]. 2013.

Michael Burrows, Martin Abadi, and Roger Needham. “A Logic of Authentica-
tion”. In: ACM Trans. Comput. Syst. 8.1 (1990), pp. 18-36. 1SsN: 0734-2071. DOI:
10.1145/77648.77649. URL: http://doi.acm.org/10.1145/77648.77649.

Betsy Burton and David A. Willis. “Gartner’s Hype Cycle Special Report for
20147. In: (2014).

Peter Buxmann et al. “The Standardization Problem — An Economic Analysis of
Standards in Information Systems”. In: Proceedings of the 1st IEEE Conference
on Standardization and Innovation in Information Technology SIIT 99. 1999,
pp- 157-162.

Rajkumar Buyya and Manzur Murshed. “GridSim: a toolkit for the modeling
and simulation of distributed resource management and scheduling for Grid com-
puting”. In: Concurrency and Computation: Practice and Experience 14.13-15
(2002), pp. 1175-1220. 18SN: 1532-0634. DOI: 10.1002/cpe . 710. URL: http:
//dx.doi.org/10.1002/cpe.710.

Rodrigo N. Calheiros et al. “CloudSim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource provisioning algo-
rithms”. In: Software: Practice and Experience 41.1 (2011), pp. 23-50. 1SSN: 1097-
024X. DOI: 10.1002/spe.995. URL: http://dx.doi.org/10.1002/spe.995.

M. Castro, A.J. Jara, and A.F. Skarmeta. “An Analysis of M2M Platforms: Chal-
lenges and Opportunities for the Internet of Things”. In: Innovative Mobile and

Internet Services in Ubiquitous Computing (IMIS), 2012 Sizth International Con-
ference on. 2012, pp. 757-762. DOI: 10.1109/IMIS.2012.184.

Bibliography 175

https://www.bluetooth.org/en-us/training-resources/technology
https://www.bluetooth.org/en-us/training-resources/technology
http://dx.doi.org/10.1109/MC.2014.150
http://dx.doi.org/10.1109/MC.2014.150
http://www.bitkom.org/de/presse/78284_75237.aspx
http://www.bitkom.org/de/presse/78284_75237.aspx
http://dx.doi.org/10.1145/77648.77649
http://doi.acm.org/10.1145/77648.77649
http://dx.doi.org/10.1002/cpe.710
http://dx.doi.org/10.1002/cpe.710
http://dx.doi.org/10.1002/cpe.710
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1109/IMIS.2012.184

References

[33]

[34]

[35]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Erdal Cayirci and Chunming Rong. Security in wireless ad hoc and sensor net-
works. John Wiley & Sons Ltd, 2009. 1SBN: 978-0-470-02748-6.

A. Celesti et al. “How to Enhance Cloud Architectures to Enable Cross-Federation”.
In: Cloud Computing (CLOUD), 2010 IEEE S3rd International Conference on.
2010, pp. 337-345. DOIL: 10.1109/CLOUD.2010. 46.

Sheng-Tzong Cheng, Chi-Hsuan Wang, and Gwo-Jiun Horng. “OSGi-based smart
home architecture for heterogeneous network”. In: Ezpert Systems with Applica-
tions 39.16 (2012), pp. 12418 —12429. 1SSN: 0957-4174. DOI: http://dx.doi.
org/10.1016/j.eswa.2012.04.077. URL: http://www.sciencedirect.com/
science/article/pii/S0957417412006744.

Gao Chong, Ling Zhihao, and Yuan Yifeng. “The research and implement of
smart home system based on Internet of Things”. In: (2011), pp. 2944-2947. DOIL:
10.1109/ICECC.2011.6066672.

Continua Health Alliance. About Continua. http://www.continuaalliance.
org/about-continua. [Online; accessed 17-February-2015]. 2015.

Silviu S Craciunas et al. “Information-acquisition-as-a-service for cyber-physical
cloud computing”. In: Proceedings of the 2nd USENIX conference on Hot topics
in cloud computing. USENIX Association. 2010, pp. 14-14.

M. Darianian and M.P. Michael. “Smart Home Mobile RFID-Based Internet-of-
Things Systems and Services”. In: Advanced Computer Theory and Engineering,
2008. ICACTE °08. International Conference on. 2008, pp. 116-120. DOI: 10.
1109/ICACTE.2008. 180.

Premkumar Devanbu et al. “Authentic Third-Party Data Publication”. English.
In: Data and Application Security. Ed. by Bhavani Thuraisingham et al. Vol. 73.
IFIP International Federation for Information Processing. Springer US, 2001,
pp. 101-112. 1SBN: 978-0-7923-7514-2. DOI: 10.1007/0-306-47008-X_9. URL:
http://dx.doi.org/10.1007/0-306-47008-X_9.

E. W. Dijkstra. “Solution of a Problem in Concurrent Programming Control”.
In: Commun. ACM 8.9 (Sept. 1965), pp. 569—. 1ssN: 0001-0782. DOI: 10.1145/
365559.365617. URL: http://doi.acm.org/10.1145/365559.365617.

Hoang T. Dinh et al. “A survey of mobile cloud computing: architecture, appli-
cations, and approaches”. In: Wireless Communications and Mobile Computing
13.18 (2013), pp. 1587-1611. 1sSN: 1530-8677. DOI: 10.1002/wcm . 1203. URL:
http://dx.doi.org/10.1002/wcm. 1203.

A. Dunkels, B. Gronvall, and T. Voigt. “Contiki - a lightweight and flexible op-
erating system for tiny networked sensors”. In: Local Computer Networks, 2004.
29th Annual IEEE International Conference on. 2004, pp. 455—462. DOI: 10.
1109/LCN.2004. 38.

176

Bibliography

http://dx.doi.org/10.1109/CLOUD.2010.46
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2012.04.077
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2012.04.077
http://www.sciencedirect.com/science/article/pii/S0957417412006744
http://www.sciencedirect.com/science/article/pii/S0957417412006744
http://dx.doi.org/10.1109/ICECC.2011.6066672
http://www.continuaalliance.org/about-continua
http://www.continuaalliance.org/about-continua
http://dx.doi.org/10.1109/ICACTE.2008.180
http://dx.doi.org/10.1109/ICACTE.2008.180
http://dx.doi.org/10.1007/0-306-47008-X_9
http://dx.doi.org/10.1007/0-306-47008-X_9
http://dx.doi.org/10.1145/365559.365617
http://dx.doi.org/10.1145/365559.365617
http://doi.acm.org/10.1145/365559.365617
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1109/LCN.2004.38
http://dx.doi.org/10.1109/LCN.2004.38

References

[44]

[48]

[49]

S. Duquennoy, G. Grimaud, and J.-J. Vandewalle. “Consistency and scalability
in event notification for embedded Web applications”. In: Web Systems FEvolution
(WSE), 2009 11th IEEE International Symposium on. 2009, pp. 89-98. DOI: 10.
1109/WSE.2009.5631249.

Dynastream Innovations Inc. What is ANT+. http://www.thisisant . com/
consumer/ant-101/what-is-ant/. [Online; accessed 30-December-2014]. 2014.

Claudia Eckert. IT-Sicherheit: Konzepte-Verfahren-Protokolle. Oldenbourg Ver-
lag, 2008. 1SBN: 978-3-486-58270-3.

Markus Eisenhauer, Peter Rosengren, and Pablo Antolin. “HYDRA: A Develop-
ment Platform for Integrating Wireless Devices and Sensors into Ambient Intelli-
gence Systems”. English. In: The Internet of Things. Ed. by Daniel Giusto et al.
Springer New York, 2010, pp. 367-373. 1SBN: 978-1-4419-1673-0. pOI: 10.1007/
978-1-4419-1674-7_36. URL: http://dx.doi.org/10.1007/978-1-4419-
1674-7_36.

EnOcean GmbH. EnOcean Wireless Standard. https://www.enocean.com/en/
enocean-wireless-standard/. [Online; accessed 6-January-2015]. 2015.

European Commission. eHealth Action Plan 2012-2020 — Innovative healthcare for
the 21st century. https://ec.europa.eu/digital-agenda/en/news/ehealth-
action-plan-2012-2020-innovative-healthcare-21st-century. [Online;
accessed 24-Feburary-2015]. 2012.

European Commission. Living Healthy, Ageing Well. http://ec.europa.eu/
digital-agenda/en/life-and-work/living-healthy-ageing-well. [Online;
accessed 17-February-2015]. 2013.

Kosmatos Evangelos A, Tselikas Nikolaos D, and Boucouvalas Anthony C. “Inte-
grating RFIDs and Smart Objects into a Unified Internet of Things Architecture”.
In: Advances in Internet of Things 2011 (2011). DOI: 10.4236/ait.2011.11002.

Dave Evans. The Internet of Everything - How More Relevant and Valuable Con-
nections Will Change the World. https://wuw.cisco.com/web/about/ac79/
docs/innov/IoE.pdf. [Online; accessed 25-December-2014]. 2012.

Gunther Eysenbach. “What is e-health?” In: Journal of medical Internet research
3.2 (2001). [Online; accessed 01-April-2015].

Tan Fette and Alexey Melnikov. RFC 6455-The WebSocket Protocol. Tech. rep.
[Online; accessed 9-Feburary-2015]. The Internet Engineering Task Force (IETF),
2011.

FI-PPP - Future Internet Public-Private Partnership. Internet-Enabled Innova-
tion in Furope. http://www.fi-ppp.eu/about/. [Online; accessed 25-December-
2014]. 2013.

Bibliography 177

http://dx.doi.org/10.1109/WSE.2009.5631249
http://dx.doi.org/10.1109/WSE.2009.5631249
http://www.thisisant.com/consumer/ant-101/what-is-ant/
http://www.thisisant.com/consumer/ant-101/what-is-ant/
http://dx.doi.org/10.1007/978-1-4419-1674-7_36
http://dx.doi.org/10.1007/978-1-4419-1674-7_36
http://dx.doi.org/10.1007/978-1-4419-1674-7_36
http://dx.doi.org/10.1007/978-1-4419-1674-7_36
https://www.enocean.com/en/enocean-wireless-standard/
https://www.enocean.com/en/enocean-wireless-standard/
https://ec.europa.eu/digital-agenda/en/news/ehealth-action-plan-2012-2020-innovative-healthcare-21st-century
https://ec.europa.eu/digital-agenda/en/news/ehealth-action-plan-2012-2020-innovative-healthcare-21st-century
http://ec.europa.eu/digital-agenda/en/life-and-work/living-healthy-ageing-well
http://ec.europa.eu/digital-agenda/en/life-and-work/living-healthy-ageing-well
http://dx.doi.org/10.4236/ait.2011.11002
https://www.cisco.com/web/about/ac79/docs/innov/IoE.pdf
https://www.cisco.com/web/about/ac79/docs/innov/IoE.pdf
http://www.fi-ppp.eu/about/

References

[56]

[65]

[66]

Roy T. Fielding and Richard N. Taylor. “Principled Design of the Modern Web
Architecture”. In: ACM Trans. Internet Technol. 2.2 (May 2002), pp. 115-150.
ISSN: 1533-5399. DOI: 10.1145/514183.514185. URL: http://doi.acm.org/10.
1145/514183.514185.

I. Foster et al. “Cloud Computing and Grid Computing 360-Degree Compared”.
In: Grid Computing Environments Workshop, 2008. GCE ’08. 2008, pp. 1-10.
DOI: 10.1109/GCE.2008.4738445.

Tan Foster and Carl Kesselman. “What is the Grid? A Three Point Checklist”.
In: (2002).

Foundation for Intelligent Physical Agents (FIPA). FIPA Device Ontology Spec-
ification. http://www.fipa.org/specs/fipa00091/SI00091E . html. [Online;
accessed 17-February-2015]. 2002.

Dave Garets and Mike Davis. “Electronic medical records vs. electronic health
records: yes, there is a difference”. In: Policy white paper. HIMSS Analytics
(2006).

Anastasius Gavras et al. “Future Internet Research and Experimentation: The
FIRE Initiative”. In: SIGCOMM Comput. Commun. Rev. 37.3 (July 2007), pp. 89—
92. 1SSN: 0146-4833. DOI: 10.1145/1273445.1273460. URL: http://doi.acm.
org/10.1145/1273445.1273460.

Peter Gilbert et al. “YouProve: Authenticity and Fidelity in Mobile Sensing”. In:
Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems.
SenSys '11. Seattle, Washington: ACM, 2011, pp. 176-189. 1SBN: 978-1-4503-0718-
5. DOI: 10.1145/2070942.2070961. URL: http://doi.acm.org/10.1145/
2070942.2070961.

Carles Gomez and Josep Paradells. “Wireless home automation networks: A sur-
vey of architectures and technologies”. In: IEEE Communications Magazine 48.6
(2010), pp. 92-101.

Jayavardhana Gubbi et al. “Internet of Things (IoT): A vision, architectural
elements, and future directions”. In: Future Generation Computer Systems 29.7
(2013), pp. 1645-1660. por: 10.1016/j.future.2013.01.010.

D. Guinard, V. Trifa, and E. Wilde. “A resource oriented architecture for the
Web of Things”. In: Internet of Things (I0T), 2010. 2010, pp. 1-8. DOI: 10.
1109/I0T.2010.5678452.

D. Hardt. REC 6749-The OAuth 2.0 Authorization Framework. Tech. rep. [On-
line; accessed 9-January-2015]. The Internet Engineering Task Force (IETF),
2012.

178

Bibliography

http://dx.doi.org/10.1145/514183.514185
http://doi.acm.org/10.1145/514183.514185
http://doi.acm.org/10.1145/514183.514185
http://dx.doi.org/10.1109/GCE.2008.4738445
http://www.fipa.org/specs/fipa00091/SI00091E.html
http://dx.doi.org/10.1145/1273445.1273460
http://doi.acm.org/10.1145/1273445.1273460
http://doi.acm.org/10.1145/1273445.1273460
http://dx.doi.org/10.1145/2070942.2070961
http://doi.acm.org/10.1145/2070942.2070961
http://doi.acm.org/10.1145/2070942.2070961
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/IOT.2010.5678452
http://dx.doi.org/10.1109/IOT.2010.5678452

References

Mohammad Mehedi Hassan, Biao Song, and Eui-Nam Huh. “A Framework of
Sensor-cloud Integration Opportunities and Challenges”. In: Proceedings of the
3rd International Conference on Ubiquitous Information Management and Com-
munication. ICUIMC ’09. Suwon, Korea: ACM, 2009, pp. 618-626. I1SBN: 978-1-
60558-405-8. DOI: 10.1145/1516241.1516350. URL: http://doi.acm.org/10.
1145/1516241.1516350.

George T. Heineman and William T. Councill, eds. Component-based Software
Engineering: Putting the Pieces Together. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2001. 1SBN: 0-201-70485-4.

John H Howard. An overview of the andrew file system. Carnegie Mellon Univer-
sity, Information Technology Center, 1988.

Guogqgiang Hu, Wee Peng Tay, and Yonggang Wen. “Cloud robotics: architecture,
challenges and applications”. In: Network, IEEE 26.3 (2012), pp. 21-28. ISSN:
0890-8044. po1: 10.1109/MNET.2012.6201212.

Dijiang Huang et al. “Mobile cloud computing”. In: IEEE COMSOC Multimedia
Communications Technical Committee (MMTC) E-Letter 6.10 (2011), pp. 27-31.

“IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Com-
puter Glossaries”. In: IEEFE Std 610 (1991), pp. 1-217. por: 10.1109/IEEESTD.
1991.106963.

Integrating the Healthcare Enterprise (IHE). PCD Profile Rosetta Terminology
Mapping. http://wiki.ihe.net/index.php?title=PCD_Profile_Rosetta_
Terminology_Mapping. [Online; accessed 17-February-2015]. 2011.

Md Motaharul Islam et al. “A survey on virtualization of wireless sensor net-
works”. In: Sensors 12.2 (2012), pp. 2175-2207.

“ISO/IEC/IEEE Health informatics—Personal health device communication—Part
20601: Application profile-Optimized exchange protocol”. In: ISO/IEEE 11073-
20601:2010(E) (2010), pp. 1-208. por: 10.1109/IEEESTD.2010.5703195.

“ISO/IEC/IEEE Information technology — Smart transducer interface for sensors
and actuators — Common functions, communication protocols, and Transducer
Electronic Data Sheet (TEDS) formats”. In: ISO/IEC/IEEFE 21450:2010(E) (2010),
pp- 1-350. DoI: 10.1109/IEEESTD.2010.5668466.

“ISO/IEC/IEEE Systems and software engineering — Architecture description”.
In: ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE
Std 1471-2000) (2011), pp. 1-46. DOI: 10.1109/IEEESTD.2011.6129467.

“ISO/IEEE Health Informatics - Point-Of-Care Medical Device Communication
- Part 10101: Nomenclature”. In: ISO/IEEE 11073-10101:2004(E) (2004), pp. 1-
492. por: 10.1109/IEEESTD.2004.95741.

Bibliography 179

http://dx.doi.org/10.1145/1516241.1516350
http://doi.acm.org/10.1145/1516241.1516350
http://doi.acm.org/10.1145/1516241.1516350
http://dx.doi.org/10.1109/MNET.2012.6201212
http://dx.doi.org/10.1109/IEEESTD.1991.106963
http://dx.doi.org/10.1109/IEEESTD.1991.106963
http://wiki.ihe.net/index.php?title=PCD_Profile_Rosetta_Terminology_Mapping
http://wiki.ihe.net/index.php?title=PCD_Profile_Rosetta_Terminology_Mapping
http://dx.doi.org/10.1109/IEEESTD.2010.5703195
http://dx.doi.org/10.1109/IEEESTD.2010.5668466
http://dx.doi.org/10.1109/IEEESTD.2011.6129467
http://dx.doi.org/10.1109/IEEESTD.2004.95741

References

[79]

“ISO/IEEE Health Informatics - Point-Of-Care Medical Device Communication
- Part 10201: Domain Information Model”. In: ISO/IEEE 11073-10201:2004(E)
(2004), pp. 1-169. DOI: 10.1109/IEEESTD.2004 . 95742.

A.J. Jara, M.A. Zamora, and A.F.G. Skarmeta. “An Architecture Based on In-
ternet of Things to Support Mobility and Security in Medical Environments”.
In: Consumer Communications and Networking Conference (CCNC), 2010 7th
IEEE. 2010, pp. 1-5. DOI: 10.1109/CCNC.2010.5421661

A.P. Jayasumana, Qi Han, and T.H. Illangasekare. “Virtual Sensor Networks -
A Resource Efficient Approach for Concurrent Applications”. In: Information
Technology, 2007. ITNG ’07. Fourth International Conference on. 2007, pp. 111—
115. por: 10.1109/ITNG.2007.206.

Michael Jeronimo and Jack Weast. UPnP design by example: a software devel-
oper’s guide to universal plug and play. Intel Press, 2003. 1SBN: 978-0971786110.

Jiong Jin et al. “An Information Framework for Creating a Smart City Through
Internet of Things”. In: Internet of Things Journal, IEEE 1.2 (2014), pp. 112—
121. 18sN: 2327-4662. DOI: 10.1109/JI0T.2013.2296516.

Stamatis Karnouskos. “The cooperative internet of things enabled smart grid”. In:
Proceedings of the 14th IEEFE international symposium on consumer electronics

(ISCE2010), June. 2010, pp. 07-10.

Artem Katasonov et al. “Smart Semantic Middleware for the Internet of Things.”
In: ICINCO-ICSO 8 (2008), pp. 169-178.

T. Kindberg and A. Fox. “System software for ubiquitous computing”. In: Per-
vasive Computing, IEEE 1.1 (2002), pp. 70-81. 1SsN: 1536-1268. poI: 10.1109/
MPRV.2002.993146.

C. Kirsch et al. “Cyber-physical cloud computing: The binding and migration
problem”. In: Design, Automation Test in Europe Conference Exhibition (DATE),
2012. 2012, pp. 1425-1428. DOL: 10.1109/DATE.2012.6176587.

Kristian Ellebaek Kjeer. “A survey of context-aware middleware”. In: Proceedings
of the 25th conference on IASTED International Multi-Conference: Software En-
gineering. ACTA Press. 2007, pp. 148-155.

Graham Klyne and Jeremy J Carroll. Resource description framework (RDF):
Concepts and abstract syntax. http : //www . w3 . org/ TR/ 2004 /REC - rdf -
concepts-20040210/. [Online; accessed 17-February-2015]. 2004.

JeongGil Ko et al. “Wireless Sensor Networks for Healthcare”. In: Proceedings of
the IEEE 98.11 (2010), pp. 1947-1960. 1ssN: 0018-9219. por: 10.1109/ JPROC.
2010.2065210.

180

Bibliography

http://dx.doi.org/10.1109/IEEESTD.2004.95742
http://dx.doi.org/10.1109/CCNC.2010.5421661
http://dx.doi.org/10.1109/ITNG.2007.206
http://dx.doi.org/10.1109/JIOT.2013.2296516
http://dx.doi.org/10.1109/MPRV.2002.993146
http://dx.doi.org/10.1109/MPRV.2002.993146
http://dx.doi.org/10.1109/DATE.2012.6176587
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://dx.doi.org/10.1109/JPROC.2010.2065210
http://dx.doi.org/10.1109/JPROC.2010.2065210

References

[91] G. Kortuem et al. “Smart objects as building blocks for the Internet of things”.
In: Internet Computing, IEEE 14.1 (2010), pp. 44-51. 1SsN: 1089-7801. DOI: 10.
1109/MIC.2009.143.

[92] Peter Kostelnik, Martin Sarnovsk, and Karol Furdik. “The semantic middleware
for networked embedded systems applied in the Internet of Things and Services

domain”. In: Scalable Computing: Practice and FEzperience 12.3 (2011). I1SSN:
1895-1767.

[93] Matthias Kovatsch, Simon Mayer, and Benedikt Ostermaier. “Moving Applica-
tion Logic from the Firmware to the Cloud: Towards the Thin Server Architecture
for the Internet of Things”. In: Proceedings of the 2012 Sixth International Con-
ference on Innovative Mobile and Internet Services in Ubiquitous Computing.
IMIS ’12. Washington, DC, USA: IEEE Computer Society, 2012, pp. 751-756.
ISBN: 978-0-7695-4684-1. DOI: 10.1109/IMIS.2012.104. URL: http://dx.doi.
org/10.1109/IMIS.2012.104.

[94] Nandakishore Kushalnagar, Gabriel Montenegro, C Schumacher, et al. “IPv6 over
low-power wireless personal area networks (6LoWPANSs): overview, assumptions,
problem statement, and goals”. In: RFC4919, August 10 (2007).

[95] Teemu Laukkarinen, Jukka Suhonen, and Marko Hannikéinen. “A survey of wire-
less sensor network abstraction for application development”. In: International
Journal of Distributed Sensor Networks 2012 (2012).

[96] Iva Lazarova. Ewvolving trends in cyber-physical systems. http://ec.europa.eu/
digital-agenda/futurium/en/content/evolving-trends-cyber-physical-
systems. [Online; accessed 15-August-2014]. 2013.

[97] E.A. Lee. “Cyber Physical Systems: Design Challenges”. In: Object Oriented Real-
Time Distributed Computing (ISORC), 2008 11th IEEFE International Symposium
on. 2008, pp. 363-369. DOI: 10.1109/ISORC.2008. 25.

[98] C. Lerche et al. “Implementing powerful Web Services for highly resource-constrained
devices”. In: Pervasive Computing and Communications Workshops (PERCOM
Workshops), 2011 IEEE International Conference on. 2011, pp. 332-335. DOI:
10.1109/PERCOMW.2011.5766899.

[99] Minbo Li and Hua Li. “Research on RFID integration middleware for enterprise
information system”. In: Journal of Software 6.2 (2011), pp. 167-174.

[100] Xu Li et al. “Smart community: an internet of things application”. In: Communi-
cations Magazine, IEEE 49.11 (2011), pp. 68-75. 1ssN: 0163-6804. DO1: 10.1109/
MCOM.2011.6069711.

Bibliography 181

http://dx.doi.org/10.1109/MIC.2009.143
http://dx.doi.org/10.1109/MIC.2009.143
http://dx.doi.org/10.1109/IMIS.2012.104
http://dx.doi.org/10.1109/IMIS.2012.104
http://dx.doi.org/10.1109/IMIS.2012.104
http://ec.europa.eu/digital-agenda/futurium/en/content/evolving-trends-cyber-physical-systems
http://ec.europa.eu/digital-agenda/futurium/en/content/evolving-trends-cyber-physical-systems
http://ec.europa.eu/digital-agenda/futurium/en/content/evolving-trends-cyber-physical-systems
http://dx.doi.org/10.1109/ISORC.2008.25
http://dx.doi.org/10.1109/PERCOMW.2011.5766899
http://dx.doi.org/10.1109/MCOM.2011.6069711
http://dx.doi.org/10.1109/MCOM.2011.6069711

References

[101]

[102]

103]

[104]

105

[106]

[107)

108]

109

[110]

Libelium Comunicaciones Distribuidas S.L. Top 50 Internet of Things Applica-
tions - 50 Sensor Applications for a Smarter World. http://www.libelium.com/
top_50_iot_sensor_applications_ranking/. [Online; accessed 21-November-
2014]. 2014.

Antonios Litke, Dimitrios Skoutas, and Theodora Varvarigou. “Mobile grid com-
puting: Changes and challenges of resource management in a mobile grid envi-
ronment”. In: 5th International Conference on Practical Aspects of Knowledge
Management (PAKM 2004). 2004.

L. Liu, R. Moulic, and D. Shea. “Cloud Service Portal for Mobile Device Man-
agement”. In: e-Business Engineering (ICEBE), 2010 IEEE 7th International
Conference on. 2010, pp. 474-478. por: 10.1109/ICEBE.2010.102.

Hans Lohr, Ahmad-Reza Sadeghi, and Marcel Winandy. “Securing the e-Health
Cloud”. In: Proceedings of the 1st ACM International Health Informatics Sympo-
stum. THI "10. Arlington, Virginia, USA: ACM, 2010, pp. 220-229. 1SBN: 978-1-
4503-0030-8. DOI: 10.1145/1882992.1883024. URL: http://doi.acm.org/10.
1145/1882992.1883024.

A. Lounis et al. “Secure and Scalable Cloud-Based Architecture for e-Health
Wireless Sensor Networks”. In: Computer Communications and Networks (IC-
CCN), 2012 21st International Conference on. 2012, pp. 1-7. poI: 10.1109/
ICCCN.2012.6289252.

M2M Alliance e.V. Machine-to-Machine (M2M) - Whitepaper. http://wuw.m2m-
alliance.de/uploads/media/Whitepaper.pdf. [Online; accessed 26-December-
2014]. 2007.

R. Marti, J. Delgado, and X. Perramon. “Security specification and implementa-
tion for mobile e-health services”. In: e-Technology, e-Commerce and e-Service,
2004. EEE °04. 2004 IEEFE International Conference on. 2004, pp. 241-248. DOI:
10.1109/EEE.2004.1287316.

CarloMaria Medaglia and Alexandru Serbanati. “An Overview of Privacy and
Security Issues in the Internet of Things”. English. In: The Internet of Things.
Ed. by Daniel Giusto et al. Springer New York, 2010, pp. 389-395. 1SBN: 978-1-
4419-1673-0. pOIL: 10.1007/978-1-4419-1674-7_38. URL: http://dx.doi.org/
10.1007/978-1-4419-1674-7_38.

Peter Mell and Tim Grance. “The NIST definition of cloud computing”. In:
(2011).

Hermann Merz, Thomas Hansemann, and Christof Hiibner. Building Automation:
Communication Systems with EIB/KNX, LON and BACnet. Springer Science &
Business Media, 2009. 1SBN: 978-3540888284.

182

Bibliography

http://www.libelium.com/top_50_iot_sensor_applications_ranking/
http://www.libelium.com/top_50_iot_sensor_applications_ranking/
http://dx.doi.org/10.1109/ICEBE.2010.102
http://dx.doi.org/10.1145/1882992.1883024
http://doi.acm.org/10.1145/1882992.1883024
http://doi.acm.org/10.1145/1882992.1883024
http://dx.doi.org/10.1109/ICCCN.2012.6289252
http://dx.doi.org/10.1109/ICCCN.2012.6289252
http://www.m2m-alliance.de/uploads/media/Whitepaper.pdf
http://www.m2m-alliance.de/uploads/media/Whitepaper.pdf
http://dx.doi.org/10.1109/EEE.2004.1287316
http://dx.doi.org/10.1007/978-1-4419-1674-7_38
http://dx.doi.org/10.1007/978-1-4419-1674-7_38
http://dx.doi.org/10.1007/978-1-4419-1674-7_38

References

[111]

[112]

[113]

[114]

[115]

[116]

[117]
118
[119]
[120]

[121]

[122]

Microsoft Corporation. Device nodes and device stacks. http://msdn.microsoft.
com/en-us/library/windows/hardware/f£554721 (v=vs.85) .aspx. [Online;
accessed 7-January-2015]. 2014.

Nationaler IT Gipfel - Projektgruppe M2M AG2. M2M - Querschnittstechnologie
fiir die vernetzte Gesellschaft. http://wuw.m2m-alliance . com/fileadmin/
user_upload/pdf/it-gipfel-2014-ag-2-strategiepapier-m2m_property_
pdf _bereich_itgipfel _sprache _de_rwb_true.pdf. [Online; accessed 26-
December-2014]. 2014.

C. Neuman et al. RFC 4120-The Kerberos network authentication service (V5).
Tech. rep. [Online; accessed 9-January-2015]. The Internet Engineering Task
Force (IETF), 2005.

OASIS. Device Profile for Web Services (DPWS). http://docs.oasis-open.
org/ws-dd/ns/dpws/2009/01. [Online; accessed 31-December-2014]. 2014.

Jan Ohlenburg, Wolfgang Broll, and Irma Lindt. “DEVAL — A Device Abstraction
Layer for VR/AR”. English. In: Universal Acess in Human Computer Interaction.
Coping with Diversity. Ed. by Constantine Stephanidis. Vol. 4554. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2007, pp. 497-506. 1SBN: 978-
3-540-73278-5. DOI: 10.1007/978-3-540-73279-2_56. URL: http://dx.doi.
org/10.1007/978-3-540-73279-2_56.

Open Mobile Alliance. OMA Device Management V2.0. http://technical .
openmobilealliance . org/ Technical / technical - information/release -
program/current-releases/oma-device-management-v2-0. [Online; accessed
6-January-2015]. 2015.

World Health Organization. Key components of a well functioning health system.
2010.

World Health Organization. WHO Global Health Ezxpenditure Atlas. Tech. rep.
2012. URL: http://www.who.int/nha/en/.

OSGi Alliance. OSGi Compendium Release 5. Tech. rep. [Online; accessed 9-
January-2015]. 2013.

OSGi Alliance. OSGi Core Release 5. Tech. rep. [Online; accessed 9-January-
2015]. 2012.

J. Pan, S. Paul, and R. Jain. “A survey of the research on future internet ar-
chitectures”. In: Communications Magazine, IEEE 49.7 (2011), pp. 26-36. ISSN:
0163-6804. por: 10.1109/MCOM.2011.5936152.

D.F. Parkhill. The Challenge of the Computer Utility. The Challenge of the
Computer Utility S. 246. Addison-Wesley Publishing Company, 1966. 1SBN: 978-
0201057201.

Bibliography 183

http://msdn.microsoft.com/en-us/library/windows/hardware/ff554721(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff554721(v=vs.85).aspx
http://www.m2m-alliance.com/fileadmin/user_upload/pdf/it-gipfel-2014-ag-2-strategiepapier-m2m_property_pdf_bereich_itgipfel_sprache_de_rwb_true.pdf
http://www.m2m-alliance.com/fileadmin/user_upload/pdf/it-gipfel-2014-ag-2-strategiepapier-m2m_property_pdf_bereich_itgipfel_sprache_de_rwb_true.pdf
http://www.m2m-alliance.com/fileadmin/user_upload/pdf/it-gipfel-2014-ag-2-strategiepapier-m2m_property_pdf_bereich_itgipfel_sprache_de_rwb_true.pdf
http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
http://dx.doi.org/10.1007/978-3-540-73279-2_56
http://dx.doi.org/10.1007/978-3-540-73279-2_56
http://dx.doi.org/10.1007/978-3-540-73279-2_56
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-device-management-v2-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-device-management-v2-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-device-management-v2-0
http://www.who.int/nha/en/
http://dx.doi.org/10.1109/MCOM.2011.5936152

References

[123] Adrian Perrig, John Stankovic, and David Wagner. “Security in Wireless Sensor
Networks”. In: Commun. ACM 47.6 (June 2004), pp. 53-57. 1ssN: 0001-0782. DOTI:
10.1145/990680.990707. URL: http://doi.acm.org/10.1145/990680.990707.

[124] Thinagaran Perumal et al. “Interoperability Among Heterogeneous Systems in
Smart Home Environment”. English. In: Web-Based Information Technologies
and Distributed Systems. Vol. 2. Atlantis Ambient and Pervasive Intelligence.
Atlantis Press, 2010, pp. 141-157. DOI: 10.2991/978-94-91216-32-9_7. URL:
http://dx.doi.org/10.2991/978-94-91216-32-9_7.

[125] Benjamin C Pierce. Types and programming languages. MIT press, 2002. ISBN:
978-0262162098.

[126] Stefan Poslad. Ubiquitous Computing: Smart Devices, Environments and Inter-
actions. John Wiley & Sons, 2009. 1sBN: 978-0-470-03560-3. DOI: 10 . 1002/
9780470779446 . fmatter.

[127] G. J. Pottie and W. J. Kaiser. “Wireless Integrated Network Sensors”. In: Com-
mun. ACM 43.5 (May 2000), pp. 51-58. 1sSN: 0001-0782. DOI: 10.1145/332833.
332838. URL: http://doi.acm.org/10.1145/332833.332838.

[128] N. R. Prasad et al. “Open Source Middleware for Networked Embedded Systems
towards Future Internet of Things”. In: Vision and Challenges for Realising the
Internet of Things, CERP-IoT cluster. Ed. by H Sundmaeker et al. EUR-OP,
2010, pp. 153-164.

[129] H. Rachidi and A. Karmouch. “A framework for self-configuring devices using
TR-069”. In: Multimedia Computing and Systems (ICMCS), 2011 International
Conference on. 2011, pp. 1-6. DOI: 10.1109/ICMCS.2011.5945613.

[130] R. Rajkumar et al. “Cyber-physical systems: The next computing revolution”. In:
Design Automation Conference (DAC), 2010 47th ACM/IEEE. 2010, pp. 731—
736.

[131] Abdelmounaam Rezgui and Mohamed Eltoweissy. “Service-oriented Sensor-actuator
Networks: Promises, Challenges, and the Road Ahead”. In: Comput. Commun.
30.13 (Sept. 2007), pp. 2627-2648. 1ssN: 0140-3664. po1: 10.1016/j . comcom.
2007.05.036. URL: http://dx.doi.org/10.1016/j.comcom.2007.05.036

[132] C. Rigney et al. RFC 2865-Remote Authentication Dial In User Service (RA-
DIUS). Tech. rep. [Online; accessed 17-February-2015]. The Internet Engineering
Task Force (IETF), 2000.

[133] R. Roman, P. Najera, and J. Lopez. “Securing the Internet of Things”. In: Com-
puter 44.9 (2011), pp. 51-58. 1sSN: 0018-9162. por: 10.1109/MC.2011.291.

184 Bibliography

http://dx.doi.org/10.1145/990680.990707
http://doi.acm.org/10.1145/990680.990707
http://dx.doi.org/10.2991/978-94-91216-32-9_7
http://dx.doi.org/10.2991/978-94-91216-32-9_7
http://dx.doi.org/10.1002/9780470779446.fmatter
http://dx.doi.org/10.1002/9780470779446.fmatter
http://dx.doi.org/10.1145/332833.332838
http://dx.doi.org/10.1145/332833.332838
http://doi.acm.org/10.1145/332833.332838
http://dx.doi.org/10.1109/ICMCS.2011.5945613
http://dx.doi.org/10.1016/j.comcom.2007.05.036
http://dx.doi.org/10.1016/j.comcom.2007.05.036
http://dx.doi.org/10.1016/j.comcom.2007.05.036
http://dx.doi.org/10.1109/MC.2011.291

References

[134]

[135]

136

[137]

138

[139]
[140]
[141]

[142]

[143]

[144]

[145]

Danielle Sacks. “THE SHARING ECONOMY.” In: Fast Company 155 (2011).
[Online; accessed 26-November-2014], pp. 88 —131. 1sSN: 10859241. URL: http:
//search.ebscohost.com/login.aspx?direct=true&db=bth&AN=60036724&
site=ehost-1live.

Asmiza A Sani, Fiona Polack, and Richard Paige. “Generating Formal Model
Transformation Specification Using a Template-based Approach”. In: Scope of
the Symposium. 2010, p. 3.

Hans Schaffers et al. “Smart Cities and the Future Internet: Towards Cooperation
Frameworks for Open Innovation”. English. In: The Future Internet. Ed. by John
Domingue et al. Vol. 6656. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, pp. 431-446. 1SBN: 978-3-642-20897-3. DOI: 10.1007/978-3-
642-20898-0_31. URL: http://dx.doi.org/10.1007/978-3-642-20898-0_31.

R.R. Schaller. “Moore’s law: past, present and future”. In: Spectrum, IEEE 34.6
(1997), pp. 52-59. 1SsN: 0018-9235.

F.A. Schreiber et al. “PerLa: A Language and Middleware Architecture for Data
Management and Integration in Pervasive Information Systems”. In: Software
Engineering, IEEE Transactions on 38.2 (2012), pp. 478-496. 1SsN: 0098-5589.
DOI: 10.1109/TSE.2011.25.

Z Shelby et al. “Constrained Application Protocol (CoAP), draft-ietf-core-coap-
13”. In: Orlando: The Internet Engineering Task Force—IETF, Dec (2012).

Zach Shelby and Carsten Bormann. 6Lo WPAN: The wireless embedded Internet.
Vol. 43. John Wiley & Sons, 2011.

N. Skimura et al. OpenID Connect Core 1.0 incorporating errata set 1. Tech. rep.
[Online; accessed 9-January-2015]. 2014.

Tomaés Sédnchez Lépez et al. “Adding sense to the Internet of Things”. English. In:
Personal and Ubiquitous Computing 16.3 (2012), pp. 291-308. 1sSN: 1617-4909.
DOI: 10.1007/s00779-011-0399-8. URL: http://dx.doi.org/10.1007/
s00779-011-0399-8.

K. Sohrabi et al. “Protocols for self-organization of a wireless sensor network”.
In: Personal Communications, IEEE 7.5 (2000), pp. 16-27. 1ssN: 1070-9916. DoOT:
10.1109/98.878532.

William Stallings. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Addison-
Wesley Longman Publishing Co., Inc., 1998. 1SBN: 978-0201485349.

Alexander Stanik, Fridtjof Sander, and Odej Kao. “Autonomous Agreement-
Mediation based on WS-Agreement for improving Cloud SLAs”. In: Cloud Com-
puting Technology and Science (CloudCom), Proceedings of the 2014 IEEE 6th
International Conference on. Vol. 1. IEEE Computer Society, 2014, pp. 583-590.
ISBN: 978-1-4799-4093-6. DOI: 10.1109/CloudCom.2014.25.

Bibliography 185

http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=60036724&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=60036724&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=60036724&site=ehost-live
http://dx.doi.org/10.1007/978-3-642-20898-0_31
http://dx.doi.org/10.1007/978-3-642-20898-0_31
http://dx.doi.org/10.1007/978-3-642-20898-0_31
http://dx.doi.org/10.1109/TSE.2011.25
http://dx.doi.org/10.1007/s00779-011-0399-8
http://dx.doi.org/10.1007/s00779-011-0399-8
http://dx.doi.org/10.1007/s00779-011-0399-8
http://dx.doi.org/10.1109/98.878532
http://dx.doi.org/10.1109/CloudCom.2014.25

References

[146]

[147]
[148]

[149]

[150]

[151]

[152]

153

[154]

(155

[156]

M. Starsinic. “System architecture challenges in the home M2M network”. In:
Applications and Technology Conference (LISAT), 2010 Long Island Systems.
2010, pp. 1-7. DOL: 10.1109/LISAT.2010.5478336.

H Sundmaeker et al. Vision and Challenges for Realising the Internet of Things,
CERP-IoT cluster. 2010.

Andrew Tanenbaum and Maarten Van Steen. Distributed systems. Pearson Pren-
tice Hall, 2006. 1SBN: 978-0136135531.

Marvin M Theimer et al. Method for granting a user request having locational
and contextual attributes consistent with user policies for devices having locational
attributes consistent with the user request. US Patent 5,555,376. 1996.

A. Tolk, D Saikou, and T Charles. “Applying the levels of conceptual interop-
erability model in support of integratability, interoperability, and composability
for system-of-systems engineering”. In: Journal of Systemics, Cybernetics and
Informatics (2007).

I. Toma, E. Simperl, and G. Hench. “A joint roadmap for Semantic technolo-
gies and the Internet of Things”. In: Proceedings of the Third STI Roadmapping
Workshop, Crete, Greece. 2009.

Dieter Uckelmann, Mark Harrison, and Florian Michahelles. “An Architectural
Approach Towards the Future Internet of Things”. English. In: Architecting the
Internet of Things. Ed. by Dieter Uckelmann, Mark Harrison, and Florian Micha-
helles. Springer Berlin Heidelberg, 2011, pp. 1-24. 1SBN: 978-3-642-19156-5. DOI:
10.1007/978-3-642-19157-2_1. URL: http://dx.doi.org/10.1007/978-3-
642-19157-2_1.

Thomas Uslander et al. “The Future Internet Enablement of the Environment
Information Space”. English. In: Environmental Software Systems. Fostering In-
formation Sharing. Ed. by Jit{ Hfebicek et al. Vol. 413. IFIP Advances in Informa-
tion and Communication Technology. Springer Berlin Heidelberg, 2013, pp. 109—
120. 18BN: 978-3-642-41150-2. por: 10.1007/978-3-642-41151-9_11. URL:
http://dx.doi.org/10.1007/978-3-642-41151-9_11.

Upkar Varshney. “Pervasive Healthcare and Wireless Health Monitoring”. In:
Mob. Netw. Appl. 12.2-3 (2007), pp. 113-127. 1ssN: 1383-469X. po1: 10.1007/
$11036-007-0017-1. URL: http://dx.doi.org/10.1007/s11036-007-0017-1.

R.T. Vaughan, B.P. Gerkey, and A Howard. “On device abstractions for portable,
reusable robot code”. In: Intelligent Robots and Systems, 2003. (IROS 2003).
Proceedings. 2003 IEEE/RSJ International Conference on. Vol. 3. 2003, 2421—
2427 vol.3. por: 10.1109/IR0S.2003.1249233.

Ovidiu Vermesan et al. “Internet of Things Strategic Research Roadmap”. In:
Internet of Things-Global Technological and Societal Trends (2011), pp. 9-52.

186

Bibliography

http://dx.doi.org/10.1109/LISAT.2010.5478336
http://dx.doi.org/10.1007/978-3-642-19157-2_1
http://dx.doi.org/10.1007/978-3-642-19157-2_1
http://dx.doi.org/10.1007/978-3-642-19157-2_1
http://dx.doi.org/10.1007/978-3-642-41151-9_11
http://dx.doi.org/10.1007/978-3-642-41151-9_11
http://dx.doi.org/10.1007/s11036-007-0017-1
http://dx.doi.org/10.1007/s11036-007-0017-1
http://dx.doi.org/10.1007/s11036-007-0017-1
http://dx.doi.org/10.1109/IROS.2003.1249233

References

157]

[158]
[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

Pepijn RS Visser et al. “An analysis of ontology mismatches; heterogeneity versus
interoperability”. In: AAAT 1997 Spring Symposium on Ontological Engineering,
Stanford CA., USA. 1997, pp. 164-72.

Mark Wahl, Tim Howes, and Steve Kille. “Lightweight directory access protocol
(v3)”. In: (1997). [Online; accessed 18-December-2014].

John Paul Walters et al. “Wireless sensor network security: A survey”. In: Security
in distributed, grid, mobile, and pervasive computing 1 (2007), p. 367.

Wenguang Wang, Andreas Tolk, and Weiping Wang. “The Levels of Conceptual
Interoperability Model: Applying Systems Engineering Principles to M&S”. In:
Proceedings of the 2009 Spring Simulation Multiconference. SpringSim ’09. San
Diego, California: Society for Computer Simulation International, 2009, 168:1—
168:9. URL: http://dl.acm.org/citation.cfm?id=1639809.1655398.

Yan-Wei Wang, Hui-Li Yu, and Ya Li. “Notice of Retraction Internet of things
technology applied in medical information”. In: (2011), pp. 430-433. DoOI: 10.
1109/CECNET.2011.5768647.

Rolf H Weber. “Internet of Things—New security and privacy challenges”. In:
Computer Law & Security Review 26.1 (2010), pp. 23-30. DOI: 10.1016/j.clsr.
2009.11.008.

Mark Weiser. “The Computer for the 21st Century”. In: SIGMOBILE Mob. Com-
put. Commun. Rev. 3.3 (July 1999), pp. 3—11. 1SsN: 1559-1662. po1: 10.1145/
329124.329126. URL: http://doi.acm.org/10.1145/329124.329126.

Falk v Westarp et al. “Information technology standards and standardization: A
global perspective”. In: (2000). Ed. by Kai Jakobs, pp. 168-185. por: 10.4018/
978-1-878289-70-4.ch011.

Geng Wu et al. “M2M: From mobile to embedded internet”. In: Communications
Magazine, IEEE 49.4 (2011), pp. 36-43. 1SSN: 0163-6804. por: 10.1109/MCOM.
2011.5741144.

Jianchu Yao and Steve Warren. “Applying the ISO/IEEE 11073 Standards to
Wearable Home Health Monitoring Systems”. English. In: Journal of Clinical
Monitoring and Computing 19.6 (2005), pp. 427-436. 1sSN: 1387-1307. DOI: 10.
1007/s10877-005-2033-7. URL: http://dx.doi.org/10.1007/s10877-005-
2033-7.

Chen Yuqgiang, Guo Jianlan, and Hu Xuanzi. “The Research of Internet of Things’
Supporting Technologies Which Face the Logistics Industry”. In: (2010), pp. 659—
663. DOI: 10.1109/CIS.2010.148.

Bibliography 187

http://dl.acm.org/citation.cfm?id=1639809.1655398
http://dx.doi.org/10.1109/CECNET.2011.5768647
http://dx.doi.org/10.1109/CECNET.2011.5768647
http://dx.doi.org/10.1016/j.clsr.2009.11.008
http://dx.doi.org/10.1016/j.clsr.2009.11.008
http://dx.doi.org/10.1145/329124.329126
http://dx.doi.org/10.1145/329124.329126
http://doi.acm.org/10.1145/329124.329126
http://dx.doi.org/10.4018/978-1-878289-70-4.ch011
http://dx.doi.org/10.4018/978-1-878289-70-4.ch011
http://dx.doi.org/10.1109/MCOM.2011.5741144
http://dx.doi.org/10.1109/MCOM.2011.5741144
http://dx.doi.org/10.1007/s10877-005-2033-7
http://dx.doi.org/10.1007/s10877-005-2033-7
http://dx.doi.org/10.1007/s10877-005-2033-7
http://dx.doi.org/10.1007/s10877-005-2033-7
http://dx.doi.org/10.1109/CIS.2010.148

References

168

[169]

[170]
[171]

[172]

[173]

M. Yuriyama and T. Kushida. “Sensor-Cloud Infrastructure - Physical Sensor
Management with Virtualized Sensors on Cloud Computing”. In: Network-Based
Information Systems (NBiS), 2010 15th International Conference on. 2010, pp. 1—
8. DOI: 10.1109/NBiS.2010.32.

A. Zanella et al. “Internet of Things for Smart Cities”. In: Internet of Things
Journal, IEEE 1.1 (2014), pp. 22-32. I1SSN: 2327-4662. pDOI: 10.1109/JIOT.
2014.2306328.

Arkady Zaslavsky, Charith Perera, and Dimitrios Georgakopoulos. “Sensing as a
service and big data”. In: arXiv preprint arXiv:1301.0159 (2013).

ZigBee Alliance. What is ZigBee? http://zigbee . org/what-is-zigbee/.
[Online; accessed 6-January-2015]. 2014.

H. Zimmermann. “OSI Reference Model-The ISO Model of Architecture for
Open Systems Interconnection”. In: Communications, IEEE Transactions on 28.4
(1980), pp. 425-432. 1sSN: 0090-6778. DOI: 10.1109/TCOM. 1980.1094702.

M. Zorzi et al. “From today’s INTRAnet of things to a future INTERnet of things:
a wireless- and mobility-related view”. In: Wireless Communications, IEEE 17.6
(2010), pp. 44-51. 15SN: 1536-1284. DOT: 10.1109/MWC.2010.5675777.

188

Bibliography

http://dx.doi.org/10.1109/NBiS.2010.32
http://dx.doi.org/10.1109/JIOT.2014.2306328
http://dx.doi.org/10.1109/JIOT.2014.2306328
http://zigbee.org/what-is-zigbee/
http://dx.doi.org/10.1109/TCOM.1980.1094702
http://dx.doi.org/10.1109/MWC.2010.5675777

	Title
	Acknowledgement
	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Problem Definition
	1.2 Contribution
	1.3 Outline of the Thesis

	2 Background & Foundations
	2.1 Related Technologies Overview
	2.2 Cloud Computing Fundamentals
	2.2.1 Sensor Networks & Cloud Integration
	2.2.2 Cyber-Physical Clouds & Virtual Sensor Networks

	2.3 Device Integration, Management & Abstraction
	2.3.1 The Standardization Problem
	2.3.2 Device Integration
	2.3.3 Device Management & Abstraction
	2.3.4 Interoperability

	2.4 OSGi
	2.4.1 Core Specification
	2.4.2 Compendium Specification

	2.5 Security
	2.5.1 OAuth2.0 & OpenID Connect

	3 Related Work
	3.1 IoT Architectures
	3.2 IoT Applications
	3.3 Sensor – Cloud Integration

	4 Device Cloud – Overall Concept
	4.1 Principles of Sharing
	4.1.1 Application Scenarios

	4.2 Device Cloud Concept
	4.2.1 List of Actors & Components

	4.3 System Requirement Analysis
	4.3.1 Functional Requirements
	4.3.2 Non-functional Requirements

	4.4 Entity Model
	4.4.1 General Properties & Entities
	4.4.2 Device Directory Entities
	4.4.3 User Directory Entities
	4.4.4 Management Service Entities

	5 Device Cloud – Security & Interactions Concept
	5.1 Security Model
	5.1.1 Trusted Platform
	5.1.2 Authentication and Authorization
	5.1.3 Device Access Token
	5.1.4 Device Access Withdrawal
	5.1.5 Confidentiality of Consumer Data
	5.1.6 Discussion

	5.2 Interaction Model
	5.2.1 Device State Model
	5.2.2 Communication Protocols
	5.2.3 Provisioning Interactions & Algorithms
	5.2.4 Sharing Virtual Representations

	6 Device Cloud – Architecture
	6.1 Backend Information System
	6.1.1 Device Directory
	6.1.2 User Directory
	6.1.3 Management Services

	6.2 Middleware
	6.2.1 Middleware Deployment
	6.2.2 Device Integration & Abstraction
	6.2.3 Data Aggregation

	6.3 Conclusion

	7 E-Health Application Scenario
	7.1 E-Health Systems
	7.2 The Data Dissemination Problem in E-Health
	7.2.1 EHR Clouds
	7.2.2 Application Scenario

	7.3 Medical Device Interoperability – x73
	7.3.1 x73 Implementation

	7.4 Device Cloud Deployment
	7.4.1 Medical Devices
	7.4.2 Medical Device Sharing

	7.5 Conclusion

	8 Conclusion
	8.1 Future Work

	A List of Acronyms
	B List of Figures
	Bibliography

