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Abstract

Since the beginning of Topology, one of the most used approaches to study a ge-
ometric object has been to triangulate it. Many invariants to distinguish between
different objects have been introduced over the years, the two most important
surely being homology and the fundamental group. However, the direct computa-
tion of the fundamental group is infeasible and even homology computations could
become computationally very expensive for triangulations with a large number of
faces without proper preprocessing. This is why methods to reduce the number of
faces of a complex, without changing its homology and homotopy type, are par-
ticularly of interest. In this thesis, we will focus on these simplification strategies
and on explicit extremal examples.

The first problem tackled is that of sphere recognition. It is known that 3-
sphere recognition lies in NP and in co-NP, and that d-sphere recognition is un-
decidable for d ≥ 5. However, the sphere recognition problem does not go away
simply because it is algorithmically intractable. To the contrary, it appears nat-
urally in the context of manifold recognition so there is a clear need to find good
heuristics to process the examples. Here, we describe an heuristic procedure and
its implementation in polymake that is able to recognize quite easily sphericity of
even fairly large simplicial complexes. At the same time we show experimentally
where the horizons for our heuristic lies, in particular for discrete Morse compu-
tations, which has implications for homology computations.

Discrete Morse theory generalizes the concept of collapsibility, but even for a
simple object like a single simplex one could get stuck during a random collapsing
process before reaching a vertex. We show that for a simplex on n vertices, n ≥ 8,
there is a collapsing sequence that gets stuck on a d-dimensional simplicial complex
on n vertices, for all d /∈ {1, n − 3, n − 2, n − 1}. In contrast, for n ≤ 7 and d
arbitrary or n arbitrary and d ∈ {1, n− 3, n− 2, n− 1} it is not possible to find a
collapsing sequence for the simplex on n vertices that gets stuck at dimension d.
Equivalently, and in the language of high-dimensional generalizations of trees, we
construct hypertrees that are anticollapsible, but not collapsible.

As for a second heuristic for space recognition, we worked on an algorithmic im-
plementation of simple-homotopy theory, introduced by Whitehead in 1939, where
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not only collapsing moves but also anticollapsing ones are allowed. This provides
an alternative to discrete Morse theory for getting rid of local obstructions. We
implement a specific simple-homotopy theory heuristic using the mathematical
software polymake. This implementation has the double advantage that we re-
main in the realm of simplicial complexes throughout the reduction; and at the
same time, theoretically, we keep the possibility to reduce any contractible com-
plex to a single point. The heuristic algorithm can be used, in particular, to study
simply-connected complexes, or, more generally, complexes whose fundamental
group has no Whitehead torsion. We shall see that in several contractible exam-
ples the heuristic works very well. The heuristic is also of interest when applied
to manifolds or complexes of arbitrary topology. Among the many test examples,
we describe an explicit 15-vertex triangulation of the Abalone, and more generally,
(14k + 1)-vertex triangulations of Bing’s houses with k rooms, k ≥ 3.

One of the classes of examples on which we run the heuristic are the 3-
dimensional lens spaces, which are known to have torsion in their first homology.
Using this examples (minus a facet), we managed to find 2-dimensional simplicial
complexes with torsion and few vertices. Studying them we constructed sequences
of complexes with huge torsion on few vertices. In particular, using Hadamard ma-
trices we were able to give a quadratic time construction of a series of 2-dimensional
simplicial complexes on 5n−1 vertices and torsion of size Θ(2n log(n)). Our explicit
series of 2-dimensional simplicial complexes improves a previous construction by
Speyer with torsion growth in Θ(2n), narrowing the gap to the highest possible
asymptotic torsion growth in Θ(2n

2
) proved by Kalai via a probabilistic argument.
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Chapter 1

Introduction

A standard task in topology is to simplify a given presentation of a topological
space. In general, this task cannot be performed algorithmically: Even the simplest
homotopic property, contractibility, is undecidable.

Its combinatorial equivalent, used in computational topology, is collapsibil-
ity, first introduced by Whitehead [Whi39]. In the setting of simplicial complexes,
collapsibility is a completely combinatorial notion. It is easy to check that collapsi-
bility implies contractibility, but the converse is not true in general. The smallest
such example is the Dunce Hat [Zee64], a 2-dimensional contractible complex with
triangulations on eight vertices which all are not collapsible. For smaller simplicial
complexes on seven of fewer vertices, a result of [BD05] shows that contractibility
and collapsibility are equivalent.

By studying contractible but not collapsible complexes in Chapter 3, we were
able to construct a family of examples of 2-dimensional simplicial complexes, called
saw blade complexes that in a certain way generalize the Dunce Hat with the
following properties:

Theorem A (Theorem 3.10). The following holds for k-bladed saw blade com-
plexes SBk:

(i) The Dunce Hat SB1 can be triangulated with 8 vertices.
(ii) SB2 can be triangulated with 9 vertices.

(iii) SBk can be triangulated with 3k vertices, for k ≥ 3.
(iv) Any triangulation of a saw blade complex is contractible, but non-collapsible.

While collapsibility and contractibility are not equivalent in general, more sub-
tly there even exist simplicial complexes which are collapsible, but for which it is
possible to choose a sequence of elementary collapses after which one gets stuck at
a nontrivial complex that is not collapsible. As a first small result in Chapter 2 we
show that this is possible even in the case that the starting complex is a Delaunay

1



Chapter 1. Introduction

triangulation, which are always collapsible [ALS19], hereby answering a question
of Edelsbrunner (private communication).

Theorem B (Theorem 2.3). There is an 8-point Delaunay triangulation in R3 that
collapses to a triangulation of the Dunce Hat with eight vertices. This example is
smallest possible with respect to its number of vertices.

Moreover, it is possible to get stuck even in the case of a single simplex. It
is easy to see that the simplex on n vertices, denoted ∆n−1, is collapsible. In-
deed, one may choose a vertex and proceed dimension-wise, from larger to smaller
dimensions, collapsing at each step the free maximal faces that do not contain
the chosen vertex. However, [BL13a, CEK+] show that there exists a sequence of
elementary collapses from the 7-simplex to a triangulation of the dunce hat, so
from there no further collapses are possible even though the 7-simplex is collapsi-
ble. Experimental results presented in Table 3.5 suggests that this phenomenon is
quite common in higher dimensions. Trying to understand it better, in Chapter 4,
we answer the following question of Lutz (private communication): Starting from
the simplex ∆n−1, what are the dimensions d in which a collapsing sequence may
get stuck?

Theorem C (Theorem 4.1). For n ≥ 8 and d /∈ {1, n − 3, n − 2, n − 1}, there
exists a collapsing sequence of the simplex on n vertices which gets stuck at a d-
dimensional complex on n vertices. In contrast, for n ≤ 7 and d arbitrary or n
arbitrary and d ∈ {1, n − 3, n − 2, n − 1} it is not possible to find a collapsing
sequence of the simplex on n vertices which gets stuck at dimension d.

In particular, we obtain the following corollary.

Theorem D (Theorem 4.2). For every n ≥ 8 and d /∈ {1, n − 3, n − 2, n − 1},
there exists a contractible d-complex on n vertices with no free faces. Moreover,
this is best possible; for n ≤ 7 or d ∈ {1, n − 3, n − 2, n − 1} every contractible
d-complex on n vertices has a free face.

Having at our disposable so many examples of contractible but not collapsible
complexes it is natural to ask about a combinatorial way to prove contractibility.
In [Whi39] Whitehead, apart from collapsibility, also introduced a discrete version
of homotopy theory, called simple-homotopy theory, where not only elementary
collapses are allowed but also their inverse moves, elementary anticollapses or ex-
pansions. Simple-homotopy is strictly stronger than collapsibility; and by a famous
result of Whitehead, having the simple-homotopy type of a point is equivalent to
being contractible [Whi39].

In Chapter 5, we propose a space recognition heuristic based on collapses in
combination with certain expansions that we call pure elementary expansion. Our
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randomized heuristic “Random Simple-Homotopy (RSHT)” has two advantages:
First, all intermediate steps are always simplicial complexes; and second, at present
we do not know of a single contractible complex for which our heuristics has
probability zero to succeed in recognizing contractibility.

Algorithm: Random Simple-Homotopy (Ch. 5, p. 64)

Input: simplicial complex K
Output: simplified simplicial complex
while dim(X) 6= 0 and i <max step do

while X has free faces do
(C): perform a random elementary collapse

if dim(X) = d 6= 0 and there are induced pure d-balls on d+ 2 vertices
then

(E): perform a random pure elementary (d+ 1)-expansion
(CC): perform an elementary collapse deleting the newly added

(d+ 1)-face and one of its d-faces that was already in X

else
(S): perform (E) + (CC) on a d-facet with d+ 1 vertices
i++

return X

Our algorithm, in low dimension, is equivalent to performing bistellar flips if
the triangulation is a d-manifold.

Theorem E (Theorem 5.8). Let X be a triangulation of a d-manifold M with
d ≤ 6. Any pure elementary (d + 1)-expansion followed by collapses (as long as
free faces are available) induces a bistellar flip on X.

This implies a sort of manifold stability of our heuristic. If we run RSHT on
a simplicial complex X and at some point we reach a simplicial complex X ′ that
triangulates a d-manifold with d ≤ 6, then from then on, whenever there are no
free faces in the further run of RSHT, the respective temporary complex X̃ is a
d-manifold as well, and X̃ is bistellarly equivalent to X ′.

The algorithm can, in particular, be used to study simply-connected complexes,
or, more generally, complexes whose fundamental group has no Whitehead torsion.
We shall see that in several contractible examples the heuristics works very well.
For example, one pure elementary 3-expansion suffices to reduce the 8-vertex tri-
angulation of the Dunce Hat from Figure 5.3a to a single vertex, and RSHT is able
to reduce the Bing’s house triangulation constructed in Chapter 5 to a point by
means of five (successive) expansions. As another list of examples of contractible
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Chapter 1. Introduction

but not collapsible complexes, we also constructed a generalization of Bing’s house
adding more rooms.

Theorem F (Theorem 5.12). For any k ≥ 3, Bing’s House with k rooms, BH(k),
can be formally deformed to a point using only six pure expansions.

We later applied the Random Simple-Homotopy algorithm to lens spaces in
order to find simplicial complexes with few vertices and huge torsion. Using these
experiments as a starting point, we were able in Chapter 6 to describe a trian-
gulation procedure. Starting from any integer matrix it is possible to construct
a simplicial complex with the given matrix as the boundary matrix of its first
homology using a bounded number of vertices.

Theorem G (Proposition 6.8). Given an (m×n)-matrix M and A = (αi) its Smith
Normal Form, there is a 2-dimensional simplicial complex K on V (K) vertices with

V (K) ≤ 2n+m+ 1 +
3

2

∑
i,j

|Mij|.

Furthermore,
H1(K) = Z/α1Z× · · · × Z/αrZ× Zn−r.

Focusing on Hadamard matrices as particular matrices, we were able to improve
the triangulation procedure used in the proof of the previous statement.

Theorem H (Theorem 6.22). For each n = 2k, k ≥ 1, there is a Q-acyclic
2-dimensional simplicial complex HMT(n) with face vector

f(HMT(n)) = (5n− 1, 3n2 + 9n− 6, 3n2 + 4n− 4)

and H∗(HMT(n)) = (Z, T (HMT(n)), 0). The torsion in first homology is given by

H1(HMT(n)) = T (HMT(n)) = (Z2)(
k
1) × (Z4)(

k
2) × · · · × (Z2k)(

k
k),

where |T (HMT(n))| = nn/2 ∈ Θ(2n logn). Furthermore, the examples HMT(n) can
be constructed algorithmically in quadratic time Θ(n2).

Our explicit series of 2-dimensional simplicial complexes with linearly many
vertices with torsion growth in Θ(2n logn) improves a previous quadratic time con-
struction by Speyer [Spe] with torsion growth in Θ(2n), narrowing the gap to the
highest possible asymptotic torsion growth in Θ(2n

2
) proved by Kalai [Kal83] via

a probabilistic argument.

In 1998, Forman introduced another way to study contractibility combinato-
rially. His discrete Morse theory [For98, For02], a variation of the more known
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smooth Morse theory, is a tool to reduce simplicial complexes using a mix of
collapses and facet deletions. The advantage is that all simplicial complexes (con-
tractible or not) can now be reduced to a vertex, possibly by using a relatively
large number of facet deletions. The drawback is that even if one starts with a
simplicial complex, the intermediate steps in the reduction sequence are typically
non-regular CW complexes, and thus harder to handle. By only focusing on the
count of facet deletions (the so-called “discrete Morse vector”) it is possible to
use randomness to produce fast implementations [BL14], but at the cost of fail-
ing to recognize many contractible complexes. The algorithm is also implemented
in polymake [GJ00] as random discrete morse. In Chapter 2, we introduce the
(revised) definition of monotone discrete Morse functions, as asked for by Adipr-
asito, Benedetti and Lutz in [ABL17] as a way to describe the acyclic matchings
obtained when using the heuristic.

Theorem I (Theorem 2.14). Let X be a simplicial complex and v the lexico-
graphically-largest among the optimal discrete Morse vectors of X. Then there
exists a monotone discrete Morse function g that has v as discrete Morse vector.

The same random discrete morse algorithm is going to be one of the main
building blocks for our sphere recognition heuristic described in Chapter 3.

Algorithm: Sphere Recognition Heuristics (Ch. 3, p. 24)

Input: Hasse diagram of combinatorial d-manifold X, where d ≥ 3
Output: Semi-Decision: Is X PL homeomorphic to Sd?

(1) compute homology
if homology not spherical then return NO
for N rounds do

(2) compute random discrete Morse vector
if discrete Morse vector is spherical then return YES

for N ′ rounds do
(3) perform random bistellar flip or edge contraction

if boundary of simplex is reached then return YES

(4) compute and simplify presentation of fundamental group π1

if presentation is found to be trivial and d 6= 4 then return YES
if presentation is found to be non-trivial then return NO
return UNDECIDED

To tell whether a given space is homeomorphic to the sphere in a given dimen-
sion is a basic problem in computational topology. However, this problem turns
out to be undecidable in dimension higher than four, lies in the complexity class
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NP for 3-spheres and is still an open problem for 4-spheres. Summing up, we do
not know of any efficient algorithms for d-sphere recognition in the relevant dimen-
sions d ≥ 3. However, the sphere recognition problem does not go away simply
because it is algorithmically intractable. To the contrary it appears naturally in
the context of manifold recognition so it is natural to try to find good heuristics to
try and treat it. We will describe a sphere recognition heuristic and its implemen-
tation in polymake. The heuristic is a combination of already known methods,
like discrete Morse theory and bistellar flips, combined together to create a sin-
gle algorithm able to detect quite easily sphericity of even fairly large simplicial
complexes.

We have run comprehensive computational experiments to show its perfor-
mance and limits. In particular, we show experimentally where the horizons for
our heuristic lies, especially for discrete Morse computations, which has impli-
cations to homology computations. Among the many experiments, we ran our
heuristic on a census of 4-manifolds, encoded as pseudo-simplicial complexes com-
prising up to six maximal cells, provided by Regina [BBP+17]. Our success rate is
99.5%, with our heuristic failing on only 1,954 of these combinatorial 4-manifolds.

Theorem J (Theorem 3.8). Among the 441, 286 combinatorial types of combi-
natorial 4-manifolds arising from up to six maximal cells 91.5% are spheres and
8.0% are non-spheres.

As I have tried to explain in the previous pages, the aim of this thesis is to
focus on simplification strategies and on explicit extremal examples of simplicial
complexes to explore the bounds and horizons of current heuristic and algorithmic
approaches, as well as introducing new heuristics and implementations to expand
our tool box for the computational study of topological spaces. It is now time to
get started.
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Chapter 2

Definitions and notations

We will explore in this chapter the concepts that are going to be central in this
thesis, trying to give an adequate but succinct explanation. In particular, we start
with some basic definitions from algebraic topology and we then move to simple-
homotopy theory and discrete Morse theory that are going to be among our main
topics of interest. Some of the definitions and explanations are taken freely from
the introductory and preliminary sections of the articles [JLLT21, LN21, BLLL21,
LL21] of which I was a co-author and that will be foundational for the following
chapters.

The first definition that we introduce will be the building block of the entire
thesis.

Definition 2.1. A simplicial complex X on the vertex set V is a family of subsets
of V (called simplices or faces of X) such that every subset of a simplex from X
is in X.

We now start with some notions from combinatorial topology, much more on
these notions can be found in a standard reference such as [Hat02]. If X is a finite
simplicial complex and τ is a face of X, the dimension of τ , denoted dim τ , is
|τ | − 1, and the dimension of X, denoted dimX, is the maximum dimension of
any face of X. An inclusion maximal face is called a facet. A complex X is said to
be pure dimensional if all of its facets are of the same dimension. The j-skeleton of
X, denoted X(j), is the subcomplex of X given by every face of X of dimension at
most j; we say that the j-skeleton of X is complete provided X(j) has all possible
j-dimensional faces on the vertices of X.

At certain points we will also need another type of complex. A CW complex
is constructed in an inductive way level by level. We start with a discrete set,
whose points are the vertices (or 0-cells) of the complex. Inductively we add the
n-dimensional cells by attaching the boundary of a new n-dimensional ball to the
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Chapter 2. Definitions and notations

(n − 1)-dimensional cells already added to the complex in the previous inductive
steps.

In particular, a 2-dimensional face of a CW complex can be attached to any
(finite) number of 1-dimensional faces, while a 2-dimensional face of a simplicial
complex is always a triangle so attached to exactly three edges.

Notation. Before going on, we introduce some notations that we use throughout
the thesis:

. We use parentheses when talking about a set of vertices V = (x0, x1, . . . , xn).

. We use square brackets when talking about a face of a simplicial complex,
e.g. σ = [x0, x2]. With a little abuse of notation, if xk /∈ σ, we will denote by
[xk, σ] the face with vertex set xk and the vertices of σ, and if τ, σ are both
faces [τ, σ] is the face with vertex set the union of the vertices of σ and τ .

. We use curly brackets to denote a simplicial complex; we will use the same no-
tation both to list all the faces or only the facets, which one we are using will
be clear from the context; e.g. X = {∅, [x0], [x1], [x0, x1]} or X = {[x0, x1]}.

2.1 Simplicial homology

We are now ready to define simplicial homology, though actually we define reduced
simplicial homology, as this makes things easier to analyze and work with in our
context. We refer again, as in the previous section, to [Hat02] for a more detailed
analysis.

To begin, we need a simplicial complexX and an abelian group of coefficients R;
most commonly R will be taken to be Z, Q, or a prime-order finite field.

For each integer i the set of i-chains, denoted Ci, is the family of formal linear
combinations of faces of X of dimension i with coefficients in R (and C−1 = R). For
each i ≥ 0, one defines the i-th boundary map to be the linear map ∂i : Ci → Ci−1

given by sending the generator [x0, . . . , xi] to
∑i

j=0(−1)i[x0, . . . , x̂j, . . . , xi], where
[x0, . . . , x̂j, . . . , xi] denotes the face obtained by deleting xj from [x0, . . . , xi]. The
i-th homology group with coefficients in R, denoted Hi(X;R), is defined to be the
abelian group given by the quotient ker(∂i)/=(∂i+1) (it is routine to check that
this quotient is well-defined). Without specifying the ring, throughout this thesis,
the i-th homology group of X, Hi(X), is assumed to be Hi(X;Z).

A standard fact about homology is that H0(X) = 0 if and only if X is path-
connected. In fact, H0(X) is the free abelian group with rank equal to the number
of connected components of X minus one. It is also clear from the definition that
homology groups vanish in dimensions larger than the dimension of X.

A complex is said to be R-acyclic if Hi(X;R) = 0 for all i ≥ 0. Regarding the
cases R = Q and R = Z, we have that if X is Z-acyclic, then it is necessarily Q-
acyclic, however the converse need not hold. A Q-acyclic complex will necessarily
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2.2. Collapsibility

have all homology groups finite, but they will not necessarily be trivial; this follows
by the standard universal coefficient theorem for homology. For 1-dimensional
complexes (i.e., for graphs), however Z-acyclic and Q-acyclic are equivalent and
hold precisely when the graph is a tree. A complex is said to have torsion in
homology in dimension d if its d-dimensional homology group has a finite part.
The most common example is the real projective plane RP 2 whose first homology
group is Z2, so it is said to have 2-torsion in dimension one.

2.2 Collapsibility

Another standard notion in computational topology is that of collapsibility, first
introduced by Whitehead [Whi39]. In the setting of simplicial complexes, col-
lapsibility is a completely combinatorial notion. For a simplicial complex X, a
nonempty face of X is said to be free provided that it is a proper subset of exactly
one other face in X. An elementary collapse of X is the process of removing a free
face and the unique face properly containing it.

Generally speaking, elementary collapses preserve many topological invariants
that one might want to compute for some simplicial complex. The strategy, from a
computational topology perspective, therefore becomes to use elementary collapses
to reduce some initial complex X to a smaller complex Y , where the relevant topo-
logical invariants may be more easily computed. The best-case scenario for such
an approach is when X is collapsible, i.e., if there exists a sequence of elementary
collapses that reduce the complex to a single vertex.

The notion of collapsibility is contrasted with the purely topological notion of
contractibility. A complex is said to be contractibe if it is homotopically equivalent
to a single point. We have already said in the introduction that collapsibility
implies contractibility, but the converse is not true in general. The smallest such
example being the Dunce Hat [Zee64], which we will discuss in more detail below,
a 2-dimensional contractible complex with triangulations on eight vertices which
all are not collapsible.

2.3 Simple-homotopy theory

As a generalization of collapsibility, Whitehead introduced a discrete version of
homotopy theory, called simple-homotopy theory [Whi39].

Recall that an elementary collapse is a deletion from a simplicial complex of
a free face and the only facet containing it. Elementary collapses are deformation
retracts and thus maintain the homotopy type; the same is true for their inverse
moves, elementary anticollapses. Two simplicial complexes are of the same simple-
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homotopy type if they can be transformed into one another via some sequence of
collapses and anticollapses, called a formal deformation [Whi39].

Equivalently, two simplicial complexes are of the same simple-homotopy type
if there exists a third complex that can be reduced to both the original ones via
suitable sequences of elementary collapses [HAM93, p. 13]. The size of the third
complex (or, using the former definition, the length of the formal deformation)
cannot be bounded a priori, because the simple-homotopy type cannot be decided
algorithmically. In fact, by a famous result of Whitehead, having the simple-
homotopy type of a point is equivalent to being contractible [Whi39] and thus
undecidable.

While collapsibility and contractibility are not equivalent in general, more sub-
tly, there even exists simplicial complexes which are collapsible, but for which it
is possible to choose a sequence of elementary collapses after which one gets stuck
at a nontrivial complex that is not collapsible. Formally, we say that a collapsing
sequence on a complex X gets stuck at a complex Y , if the collapsing sequence
reduces X to Y and Y has no free faces. More broadly, we say that a collapsing
sequence on X gets stuck at dimension d if the collapsing sequence gets stuck at
some d-dimensional complex.

2.4 Delaunay triangulation that contains a

Dunce Hat

We now give an example of an 8-point Delaunay triangulation that contains as a
subcomplex a triangulation of the Dunce Hat and moreover collapses to it. Given a
set of points P in general position in Rn, a Delaunay triangulation is a triangulation
such that no point in P is inside the circumscribed sphere of any facet of the
triangulation.

Delaunay triangulations are always collapsible [ALS19]. Edelsbrunner asked,
whether a Delaunay triangulation, possibly of small size, can be collapsed onto a
non-collapsible complex.

The famous Dunce Hat [Zee64] is known to have triangulations with eight
vertices, one of which is shown in Figure 2.1. These triangulations are contractible,
but not collapsible, since there are no free edges. Having eight vertices they are
smallest possible; cf. Bagchi and Datta [BD05]. Here, we show that one of the
Dunce Hat triangulations with eight vertices can be found as a subcomplex of a
collapsible 8-point Delaunay triangulation that collapses to it.

Benedetti and Lutz [BL13a] presented an 8-vertex triangulation of the Dunce
Hat (see Figure 2.1) that can be found as a subcomplex of the 4-polytope (of
abstract combinatorial type) S32 with eight vertices described in [GS67]. Due to

10



2.4. Delaunay triangulation that contains a Dunce Hat

Firsching [Fir17], this polytope is known to be inscribable, meaning that it can be
realized as the convex hulls of points on the unit sphere. In the table below we see
a possible explicit choice of such points in R4 from the webpage [Fir].

0 -35640/102601 -17424/102601 -91476/102601 24193/102601
1 -64/105 64/105 -16/35 -23/105
2 -1690/4519 -650/4519 -1300/4519 -3931/4519
3 -378/3247 -756/3247 2058/3247 2365/3247
4 -14700/87949 -50400/87949 70560/87949 -251/87949
5 33800/76129 -27040/76129 20800/76129 -59071/76129
6 1 0 0 0
7 10164/31309 -17424/31309 -7920/31309 22597/31309

It has been known for a long time that there is a close correlation between
inscribed polytopes and Delaunay triangulations. In particular, we are going to
use the following theorem by Gonska.

Theorem 2.2. [Gon13, Proposition 0.3.13] Let d > 1, P ⊂ Rd be a d-polytope
and V t{N} be its vertex set. Let T be the image of a vertex projection of P from
N to any (d−1)-dimensional subspace of Rd. If P is inscribed and simplicial, then
T is a Delaunay triangulation.

Using all the above information it is now easy to prove our result:

Theorem 2.3. There is an 8-point Delaunay triangulation in R3 that collapses
to a triangulation of the Dunce Hat with eight vertices. This example is smallest
possible with respect to its number of vertices.

Proof. First of all we start with the simplicial boundary complex of the above
geometric realization of S32 which gives a triangulation with vertices on the unit
sphere S3 in R4. As we already know, this triangulation contains the Dunce Hat.
The idea is now to add a ninth point very close to one of the vertices such that
it is still possible to find an 8-point triangulation of the Dunce Hat in the newly
obtained polytope as the convex hull of the nine points. If we manage to do so,
then, projecting from the only vertex not contained in the Dunce Hat triangulation
to the first three coordinates and using Theorem 2.2 we obtain the result.

We can add a point close to the North Pole N = (1, 0, 0, 0). If we choose the
point in the right direction (we have chosen the point (0.98, 0.11,−0.11,−0.11)),
we obtain that a Dunce Hat is now contained in the subcomplex of the polytope
that does not contain the North Pole. We can then use Theorem 2.2 on the set
V t{N} where V are the vertices that contains the Dunce Hat and N is the North
Pole. Applying to V the stereographic projection with respect to the North Pole
we obtain the following points in R3, where the new vertex is in position (6).

11
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Figure 2.1: Dunce Hat triangulation

0 -0.126 -0.6617 0.175
1 0.3787 -0.284 0.1361
2 -0.1047 -0.2094 -0.6331
3 0.2086 0.5677 0.6524
4 -0.491 0.6874 -0.0024
5 -0.6388 0.4914 -1.3955
6 5.5 -5.5 -5.5
7 -0.824 -0.3746 1.0687

Due to the far-away point (6), the configuration is stretched out and thus hard
to zoom in and visualize. However, using the program TetGen [Si15] on these eight
points we obtain their Delaunay triangulation with 17 tetrahedra in R3:

[0, 1, 2, 4], [0, 1, 3, 4], [0, 1, 3, 7], [0, 1, 2, 6], [0, 1, 6, 7],
[0, 2, 4, 7], [0, 2, 5, 6], [0, 2, 5, 7], [0, 3, 4, 7], [0, 5, 6, 7],
[1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 5, 6], [1, 3, 5, 6], [2, 3, 4, 5],
[2, 4, 5, 7], [1, 3, 6, 7].

This complex contains as a subcomplex the above 8-vertices triangulation of
the Dunce Hat.

Moreover, using the program DiscreteMorse [BL14], we obtain that the De-
launay triangulation actually collapses to the triangulation of the Dunce Hat in
Figure 2.1, for example, through the following series of elementary collapses. Here
each pair is a matching pair in the acyclic matching, so the faces of the Dunce Hat
are exactly the ones of our Delaunay triangulation not appearing below.

([3, 5, 6], [1, 3, 5, 6]), ([1, 5, 6], [1, 2, 5, 6]), ([3, 6, 7], [1, 3, 6, 7]),

([3, 4, 7], [0, 3, 4, 7]), ([2, 5, 6], [0, 2, 5, 6]), ([0, 3, 7], [0, 1, 3, 7]),

([0, 4, 7], [0, 2, 4, 7]), ([0, 2, 4], [0, 1, 2, 4]), ([0, 1, 2], [0, 1, 2, 6]),
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([0, 1, 6], [0, 1, 6, 7]), ([0, 6, 7], [0, 5, 6, 7]), ([0, 5, 7], [0, 2, 5, 7]),
([2, 5, 7], [2, 4, 5, 7]), ([2, 4, 5], [2, 3, 4, 5]), ([2, 3, 5], [1, 2, 3, 5]),
([1, 2, 3], [1, 2, 3, 4]), ([1, 3, 4], [0, 1, 3, 4]), ([2, 3], [2, 3, 4]),
([3, 6], [1, 3, 6]), ([3, 7], [1, 3, 7]).

For the second part of the theorem, the above mentioned result of Bagchi and
Datta [BD05] states that all contractible simplicial complexes with up to seven
vertices are collapsible. Thus, at least 8-vertices are needed in our construction.

2.5 Discrete Morse theory

As another possible generalization of collapsibility, we recall here the main concepts
of Forman’s discrete Morse theory [For98, For02]. We follow the point of view of
Chari [Cha00] and the book by Kozlov [Koz08], mainly using acyclic matchings
instead of discrete Morse functions.

The Hasse diagram of a simplicial complex X is a directed graph G with one
node per face of X and a directed arc (σ, τ) if the face σ is contained in τ and
dim τ = dim σ + 1.

Let P be the poset of the faces of X and let denote by E the set of edges of G.
Given a subset M of E, we can orient all edges of G in the following way: an edge
(σ, τ) ∈ E is oriented from σ to τ if the pair does not belong to M , in the opposite
direction otherwise. Denote this oriented graph by GM .

Definition 2.4 (Acyclic matching [Cha00]). A matching on G is a subset M ⊆ E
such that every face of X appears in at most one edge of M . A matching M is
acyclic if the graph GM has no directed cycle.

Given a matching M on G, an alternating path is a directed path in GM such
that two consecutive edges of the path do not belong both to M or both to E \M .
The faces of X that do not appear in any edge of M are called critical with
respect to the matching M . The discrete Morse vector (c0, c1, . . . , cd) of an acyclic
matching counts the critical faces per dimension; and X is homotopy equivalent
to a CW complex with ci cells in dimension 0 ≤ i ≤ d as stated in the following
theorem, which is usually considered the main theorem of discrete Morse theory.

Theorem 2.5 ([For98, Cha00]). Let X be a simplicial complex, let P be its poset
of faces, and G the Hasse diagram of P . If M is an acyclic matching on G, then X
is homotopy equivalent to a CW complex XM , called the Morse complex of M , with
cells in dimension-preserving bijection with the critical cells of X. Furthermore,
if the critical cells form a subcomplex Xc of X, then there exists a sequence of
elementary collapses collapsing X to Xc.
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0 4 5 2 3 40 1 2 1 3 50 1 4 1 3 4 0 2 30 3 5 2 4 51 2 5

0 4 0 5 4 5 2 40 2 2 5 2 33 43 5 0 30 1 1 21 3 1 51 4

0 4 5 231

Figure 2.2: Acyclic matching in the Hasse diagram of RP2
6 obtained with polymake

[GJ00]. The three unmatched cells are marked.

One key application of this theorem is in computational topology. Indeed it
is often the case that discrete Morse theory gives us a way to find a homotopy
equivalence between a given simplicial complex and a much smaller CW complex
on which the homology groups are easier to compute.

Let F be some field. A discrete Morse vector is F-perfect for X if ci = βi(X;F)
for 0 ≤ i ≤ d, where βi are the Betti numbers.

Example 2.6. Figure 2.2 shows an acyclic matching for RP2
6 with three critical

cells. The corresponding discrete Morse vector (1, 1, 1) is Z2-perfect. The real
projective plane admits a CW-complex structure with one 0-cell, one 1-cell and
one 2-cell.

Finally, we recall a standard tool to construct acyclic matchings that is going
to be very useful in Chapter 4.

Theorem 2.7 (Patchwork theorem [Koz08, Theorem 11.10]). Let P be the poset
of faces of a simplicial complex X and let ϕ : P → Q be a poset map. For all
q ∈ Q, assume to have an acyclic matching Mq ⊆ E that involves only elements
of the subposet ϕ−1(q) ⊆ P . Then the union of these matchings is itself an acyclic
matching on P .

Another way to look at acyclic matchings is through the notion of collapsibility.
As already said, an elementary collapse is simply the removal of two simplices σ
and τ such that
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. dimσ = dim τ − 1,

. the only simplex containing τ is τ itself,

. the only simplices containing σ are σ and τ , in which case σ is called a
free face.

We say that a complex is collapsible if, through a series of elementary collapses,
it can be reduced to a single vertex. As a weaker notion, we say that a complex is
d-collapsible provided it can be reduced to a complex of dimension less than d by
a sequence of elementary collapses.

An elementary anticollapse [Coh12], sometimes also called expansion, is the
dual operation, i.e., the addition of two simplices σ′ and τ ′ such that

. dim τ ′ = dim σ′ + 1,

. σ′ and τ ′ are not in X,

. the only facet of τ ′ not contained in X is σ′.

If X is on n vertices, we say that it is anticollapsible if, through a series of
elementary anticollapses, it can be expanded to the simplex on n vertices. As a
weaker notion a complex is d-anticollapsible if there is a sequence of anticollapses
so that the resulting complex has complete d-skeleton. It should be noted that,
while it is always possible to perform an elementary anticollapse that adds a new
vertex, we are prohibiting these moves while talking about anticollapsibility.

The combinatorial encoding of a set of collapses is best provided by a matching
consisting of the corresponding collection of pairs of cells (σ, τ), which it is easily
seen to be an acyclic matching. In fact, a standard randomized algorithm to find
an acyclic matching is the Random Discrete Morse algorithm of Benedetti and
Lutz [BL14] which uses elementary collapses. This algorithm is also implemented
in polymake [GJ00] as random discrete morse.

The idea is to perform randomly chosen elementary collapses when possible.
If there are no free faces, then a top dimensional facet is chosen to be critical at
random and removed from the complex. This process continues until the remaining
complex is zero-dimensional. In this case, it only consists of vertices, all of which
are declared critical.

The algorithm returns the number of critical cells in each dimension; i.e., the
discrete Morse vector. A complex will have a discrete Morse vector (1, 0, . . . , 0)
with respect to some acyclic matching if and only if it is collapsible, so the
random discrete morse algorithm may be used to verify collapsibility.

In at least one particular case the random discrete morse algorithm may also
be used to verify that a complex is not collapsible. If a complex is d-dimensional
and the random discrete morse algorithm returns a Morse vector with at least
one critical cell in dimension d, then the complex is not collapsible. In fact, in
such a case the complex is not even d-collapsible. This is implied by the following
definition and lemma; cf. also [Tan16].
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Definition 2.8. A (not necessarily pure) d-dimensional simplicial complex L is
called a core provided that every (d− 1)-dimensional face of L is contained in at
least two d-dimensional faces of L.

Lemma 2.9. Let X be a d-dimensional complex. X is d-collapsible if and only if
X does not contain a d-dimensional core.

Proof. Suppose that X is not d-collapsible, then there exists some sequence of
collapses that results in a complex X ′ that is still d-dimensional, but has no further
d-collapses. In this complex every (d − 1)-dimensional face is contained in either
zero d-dimensional faces, or in at least two d-dimensional faces. Thus the pure d-
dimensional part of this complex, that is the subcomplex whose facets are exactly
the d-dimensional faces, is a core.

Conversely, suppose thatX is d-collapsible and contains a d-dimensional core Y .
Then there exists a sequence of collapses of removing pairs (σ, τ) with σ of dimen-
sion d− 1 and τ of dimension d that reduce X to a (d− 1)-dimensional complex.
Let (σ, τ) be the first such pair in the sequence with τ ∈ Y . Since Y is a subcom-
plex, σ also belongs to Y . At the moment we collapse (σ, τ), σ has degree 1 in the
current complex, and hence it has degree 1 in Y . But then by definition of a core,
σ is contained in τ ′ 6= τ so that τ ′ ∈ Y . It follows, however, that τ ′ must have
been removed from X before τ , but this contradicts the choice of τ .

If a complex is d-dimensional and the random discrete morse algorithm re-
turns a discrete Morse vector with at least one critical cell in dimension d, then
the complex contains a d-dimensional core. Indeed, this means that the random
collapsing sequence reached a point where the complex was d-dimensional but had
no free faces. By Lemma 2.9 this means the complex is not d-collapsible.

The last definition that we give here is that of a discrete Morse function, which
is how Forman originally introduced the theory in [For98].

A map f : X → R which assigns a real number to each face of X is a discrete
Morse function if for every k-face σ of X we have

# {τ ∈ X | f(τ) ≤ f(σ), σ ⊂ τ, dim τ = dim σ + 1} ≤ 1 and

# {ρ ∈ X | f(ρ) ≥ f(σ), ρ ⊂ σ, dim ρ = dim σ − 1} ≤ 1.
(2.1)

Note that only one of the sets of Equation (2.1) can be non-empty; cf. [For98].
A k-face is critical with respect to f if both sets in Equation (2.1) are empty;
the non-critical faces are regular, and they form an acyclic matching in the Hasse
diagram of X; cf. [Cha00]. In this sense the acyclic matchings form equivalence
classes of discrete Morse functions.
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2.6 Monotone discrete Morse functions

In [ABL17, Definition 3.5] monotone discrete Morse functions were introduced to
describe functions that can be obtained using the random discrete morse algo-
rithm. In the following, we give a slightly different definition and discuss resulting
properties.

Definition 2.10. A monotone discrete Morse function on a simplicial complex X
is a map f : X → Z satisfying the following six axioms:

(i) if σ ⊆ τ , then f(σ) ≤ f(τ);

(ii) the cardinality of f−1(q) is at most 2 for each q ∈ Z;

(iii) if f(σ) = f(τ), then either σ ⊆ τ or τ ⊆ σ;

(iv*) if dim σ < dim τ , then f(σ) ≤ f(τ) or there is a face τ ′ with dim τ ′ = dim τ
and f(σ) = f(τ ′);

(v) f(X) = [0,m] ∩ Z, for some m ∈ N;

(vi) for any critical face ∆ (that is, a face such that f(σ) 6= f(∆) for each face
σ 6= ∆), the complex {σ ∈ X s.t. f(σ) ≤ f(∆)} has no free (dim ∆ − 1)-
dimensional face.

Note that the set defined in condition (vi) is indeed a simplicial complex due
to (i). The conditions (i)–(iii), (v), and (vi) of Definition 2.10 coincide with the
respective conditions in [ABL17, Definition 3.5]. The original condition (iv) of
[ABL17, Definition 3.5] is contradictory if σ = σ′ = τ ′, but can be resolved by
requiring that σ ⊂ τ instead of σ ⊆ τ . However, in Definition 2.10 it is replaced
by the slightly stronger requirement (iv*).

Definition 2.10 can further be strenghtened without restricting its generality.

Definition 2.11. A normalized monotone discrete Morse function on a non-empty
simplicial complex X is a surjective map f : X → {1, . . . ,m} for some m ∈ N
satisfying the following five axioms for σ, τ ∈ X:

(i) f−1(q) ∈ {1, 2} for each q ∈ {1, . . . ,m};

(ii) if σ ⊆ τ , then f(σ) ≤ f(τ);

(iii) if f(σ) = f(τ), then either σ ⊆ τ or τ ⊆ σ;

(iv) if dim σ < dim τ , then f(σ) ≤ f(τ) or there is a face τ ′ with dim τ ′ = dim τ
and f(σ) = f(τ ′);
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(v) for any critical face ∆ (that is, a face such that f(σ) 6= f(∆) for each face
σ 6= ∆), the complex {σ ∈ X s.t. f(σ) ≤ f(∆)} has no free (dim ∆ − 1)-
dimensional face.

The definition in particular implies that the critical faces correspond to fibers
of f of cardinality one while the matching pairs correspond to the fibers of cardi-
nality two. In the following, we will always refer to normalized monotone discrete
Morse functions even if we sometimes omit the normalized for better readability.

Proposition 2.12. For any acyclic matching in the Hasse diagram of a simplicial
complex X there is a surjective function f : X → {1, . . . ,m} that induces the same
matching and in addition satisfies the first four conditions of Definition 2.11.

Proof. Given an acyclic matching for a complex X, let us consider the oriented
Hasse diagram of X, where an edge is oriented from the higher-dimensional face to
the smaller one if the pair is in the acyclic matching and in the opposite direction
otherwise.

The idea is to give a total order to the set {critical faces} ∪ {matching pairs}
and then construct f by giving to the smallest element the value 1, to the next
element the value 2, and so on. We will proceed by dimension d of the complex X.

First of all we consider the critical d-dimensional faces of X and we give them
any total order. We then consider the Hasse diagram restricted to the d- and
(d − 1)-dimensional faces that we have not yet ordered. Due to the fact that the
matching is acyclic it follows that there exists a (d− 1)-dimensional free face that
is paired in the matching with a d-dimensional face. We then impose a total order
on the matching pairs following some admissible collapsing sequence, i.e., at any
point a matching pair is chosen so that the corresponding (d − 1)-face is free in
the current complex.

The remaining not-ordered faces form a (d − 1)-dimensional complex, and we
repeat the procedure by first giving a total ordering to the critical (d−1)-faces and
then to pairs of (d− 2)- and (d− 1)-faces, and so forth. It is an easy check that a
function f contructed this way satisfies the first four axioms of Definition 2.11.

Remark 2.13. Every function that satisfies the first four conditions of Definition
2.11 is clearly a discrete Morse function. In the following we will refer to functions
that satisfy these conditions as good discrete Morse functions. The fifth condi-
tion instead is, in general, really restrictive. See Figure 2.3 for a 6-gon with a
(normalized) monotone discrete Morse function.

Adiprasito, Benedetti and Lutz asked in [ABL17, Problem 3.10] whether there
is always an optimal discrete Morse function that is monotone.
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Figure 2.3: A 6-gon with a (normalized) monotone discrete Morse function. The
critical cells are highlighted in red.

Theorem 2.14. Let X be a simplicial complex and v the lexicographically-largest
among the optimal discrete Morse vectors of X. Then there is a monotone discrete
Morse function f that has v as discrete Morse vector.

Proof. Let g : X → {1, . . . ,m}, due to Proposition 2.12, be a good discrete Morse
function on the complex X that gives rise to v as discrete Morse vector. Moreover,
let T be the set of critical faces ∆ such that the complex {σ ∈ X s.t. g(σ) ≤ g(∆)}
has at least one free (dim ∆−1)-dimensional face. If T is empty, then g satisfies also
condition (v) of Definition 2.11 and it is already a monotone function. Otherwise
let us choose g so that T has a minimal number of elements.

The idea is to modify g slightly without changing the Morse vector and at each
step getting “closer” to a monotone function. Let ∆ be the element of T with the
highest value with respect to g.

We define ρ as the highest-valued (with respect to g) free (dim ∆−1)-dimensional
face of {σ ∈ X s.t. g(σ) ≤ g(∆)}. There are two posssibilities:

. ρ is a free face of ∆;

. ρ is a free face of τ 6= ∆.
Let us first consider the second case. Given ∆, ρ, and τ as described above,

we define a new function g′ : X → {1, . . . ,m+ 1} in the following way:

g′(σ) = g(σ) + 1 if g(σ) > g(∆),

g′(σ) = g(∆) + 1 if σ = ρ or σ = τ,

g′(σ) = g(σ) otherwise.

Then g′ is still a discrete Morse function for X since we have chosen ρ as the
highest-valued free face and g was good (we just need to check on ρ and τ). Since
v is the lexicographically-largest among the optimal discrete Morse vectors of X,
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we obtain that v is also the discrete Morse vector of g′ and that g and g′ induce the
same matching. The only other option (since v is optimal) would have been that
ρ was paired before with a face of smaller dimension, but then the discrete Morse
vector of g′ would be lexicographically-larger than v. The first four conditions of
Definition 2.11 are all clearly satisfied because they were satisfied by g so g′ is still
good.

Moreover the critical faces of g′ that do not respect condition (v) of Defini-
tion 2.11 are a subset of that of g due to the fourth condition of 2.11 for g, but
since this set was minimal they must be exactly the same.

We can now repeat the same procedure and, since the number of faces of
dimension dim ∆− 1 is finite, at a certain point we will arrive at a function h and
at the first case of above, i.e., ρ is a free faces of ∆.

In this case we construct the function f as equal to h everywhere except on ρ,
where f(ρ) = h(∆). Remember that ρ was a free face of ∆ so the only options
for ρ in the acyclic matching given by h was for ρ to be critical or to be paired
below. Now instead, in the acyclic matching given by f , we have that (ρ,∆) is a
new matching pair, but this is impossible because if ρ was critical, then v was not
optimal, and if ρ was paired below, then v was not the lexicographically-largest
optimal discrete Morse vector. This implies that h must already be monotone.

2.7 Bistellar flips

To end this first chapter we put in the spotlight an additional very useful tool
to reduce the number of faces of a triangulated manifold without changing its
topological type.

The boundary ∂∆d+1 of the (d+ 1)-simplex is a d-dimensional simplicial com-
plex with d + 2 facets. A bistellar move is a local modification of a triangulated
d-manifold X in which any subcomplex of X isomorphic to the star of a face in
∂∆d+1 is replaced by its complementary facets.

To be precise, let σ be an i-face of X which is contained in exactly d − i + 1
facets τ1, . . . , τd−i+1 such that these facets cover exactly d+ 2 vertices. Identifying
those d+2 vertices with the vertices of ∆d yields (d+2)−(d−i+1) = i+1 comple-
mentary facets τd−i+2, . . . , τd+2 in the boundary ∂∆d+1. Replacing τ1, . . . , τd−i+1

by τd−i+2, . . . , τd+2 in X is a candidate bistellar move of dimension d − i, or a
candidate (d−i)-move for short. Let σ′ = ∩d+2

j=d−i+2τj be the complementary face
to σ, where σ′ is of dimension d− i. If σ′ is not already contained in X, the move
is proper. Applying an i-dimensional proper bistellar move reduces the f -vector of
X if and only if i > d/2.

Two triangulated manifolds are bistellarly equivalent if one is obtained from
the other by a finite sequence of (proper) bistellar moves.
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Chapter 3

Frontiers of sphere recognition in
practice

Sphere recognition is known to be undecidable in dimensions five and beyond, and
no polynomial time method is known in dimensions three and four. In this chapter,
we report on positive and negative computational results with the goal to explore
the limits of sphere recognition from a practical point of view. An important
ingredient are randomly constructed discrete Morse functions. The material of this
chapter is based on a joint work with Michael Joswig, Frank H. Lutz and Mimi
Tsuruga [JLLT21], which is the full version of the extended abstract [JLT14].

3.1 Overview

To tell whether a given space is homeomorphic to the sphere in a given dimension
is a basic problem in computational topology. However, this is difficult in an
essential way.

Theorem 3.1 (S. P. Novikov [VKF74]; cf. [CL06a]). Given a d-dimensional finite
simplicial complex X it is undecidable to check if X is homeomorphic to Sd for
d ≥ 5.

We will consider closed manifolds encoded as finite abstract simplicial com-
plexes—but the methods and results in this chapter also hold for more general cell
complexes with little modification. For a brief historical overview: d-sphere recog-
nition is trivial in dimensions d ≤ 2. Rubinstein [Rub95] and Thompson [Tho94]
proved that 3-sphere recognition is decidable. Subsequently, Schleimer [Sch11]
showed that 3-sphere recognition lies in the complexity class NP, and Lackenby
[Lac21] proved that this problem also lies in co-NP; see [Lac20] for a recent survey.
The complexity status of 4-sphere recognition is open. Summing up, we do not
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know of any efficient algorithm for d-sphere recognition in the relevant dimensions
d ≥ 3.

Our point of departure is that the sphere recognition problem does not go away
simply because it is algorithmically intractable. To the contrary it appears nat-
urally, e.g., in the context of manifold recognition, which is the task of deciding
whether a given simplicial complex triangulates any manifold and finding its type.
In the piecewise linear (PL) category, recognizing whether a given complex trian-
gulates some PL manifold can be reduced to PL sphere recognition since the links
of all vertices of the given complex need to be PL spheres, sometimes also called
standard PL sphere. This plays a role, e.g., for enumerating all manifolds with
few vertices or facets [BK92, Bur, Bur11, CC15, Lut99, SL09]; for detecting er-
rors in experimental topological constructions [ABL17, SK11, TL]; or for meshing
[SAZ08].

In the absence of a general sphere recognition procedure the next best thing
are certificates for sphericity and non-sphericity, respectively. A discrete Morse
function, µ, on a finite d-dimensional abstract simplicial complex, X, may be
encoded as an acyclic partial matching in the Hasse diagram of the partial ordering
of the faces of X; cf. [For98, For02] and [Cha00]. The critical faces are those
unmatched, and (c0, c1, . . . , cd) is the discrete Morse vector of µ, where ck is the
number of critical k-faces. We call such a discrete Morse vector spherical if c0 =
cd = 1 and ck = 0 otherwise. The relevance for our topic comes from the following
key result.

Theorem 3.2 (Whitehead [Whi39]; Forman [For98, For02]). A combinatorial d-
manifold is a PL d-sphere if and only if it admits some subdivision with a spherical
discrete Morse vector.

So we propose a heuristic method for sphere recognition which navigates be-
tween Theorems 3.1 and 3.2. There are a few more obstacles though. Adiprasito
and Izmestiev [AI15] showed that a sufficiently large iterated barycentric subdivi-
sion of any PL sphere is polytopal (and thus inherits a spherical discrete Morse
function from linear programming). However, in view of Theorem 3.1, there can-
not be any a priori bound on the number of barycentric subdivisions required to
attain polytopality. Second, deciding whether a discrete Morse function with at
most a fixed number k of critical cells exists is NP-hard [JP06, LLT03], intractable
in the parameter k [BLPS16], and not even a polynomial approximation is avail-
able [BR19]. Finally, there are combinatorial d-spheres that do not admit any
spherical discrete Morse function [BL13b, BZ11].

This chapter is the considerably expanded full version of the extended ab-
stract [JLT14]. It is organized as follows. As our first main contribution, in
Section 3.2, we present an implementation of a sphere recognition heuristic proce-
dure in polymake, and demonstrate its efficiency. In the polymake project, Perl
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and C++ are used as programming languages; our heuristic is implemented in C++.
It is also available through the new Julia interface layer Polymake.jl [GKT19],
which supports the current polymake Version 4.5. Section 3.3 comprises com-
prehensive computational experiments which show that there are many randomly
constructed, even fairly large, simplicial complexes for which deciding sphericity
is surprisingly easy; this agrees with previous observations [ABL17, BL14]. More-
over, on such input our new approach proves to be superior to, e.g., the 3-sphere
recognition implemented in Regina [BBP+17], which is a standard tool in compu-
tational topology. Note that Regina’s method is a full decision algorithm, while
our heuristic may be inconclusive. However, we are not aware of any triangulation
of S3 which cannot be recognized by our method. Another experiment comes from
a census of 4-manifolds provided by Regina; here our heuristics recognizes about
99.5% of the input as spheres or non-spheres. Finally, in Section 3.4, we explore
the limitations of our method. One outcome is the construction of a new family
of 2-dimensional cell complexes which are contractible, but not collapsible. These
saw blade complexes generalize the Dunce hat, and in our experiments they occur
naturally as one source of difficulty for recognizing spheres. Moreover, our com-
puter experiments show that there is a “horizon” for discrete Morse computations,
along with implications to homology computations and computational topology in
general.

3.2 A heuristic sphere recognition scheme

We describe our procedure for sphere recognition and its implementation in the
mathematical software polymake [GJ00]. This is the specification:

Input: A d-dimensional (finite abstract simplicial) complex X with n vertices and
m facets, where a facet is a face that is maximal with respect to inclusion.

Output: Yes, No, or Undecided, depending whether X has been recognized
as a (standard) PL d-sphere.

Our procedure features five steps, labeled (0) through (4). Discussing the
trivial preprocessing Step (0) in some details allows us to introduce the basic
terminology and notation. The core Steps (1), (2), (3), and (4) below together
yield Algorithm A.

(0) Preprocessing

To verify whether X is a PL d-sphere, there are three elementary combinatorial
checks that are useful to perform first. These checks are fast; their running time
is bounded by a low-degree polynomial in the parameters d, n and m. If one of
the checks fails, this will serve as the certificate that X is not a sphere.
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Algorithm A: Sphere Recognition Heuristics

Input: Hasse diagram of combinatorial d-manifold X, where d ≥ 3
Output: Semi-Decision: Is X PL homeomorphic to Sd?

(5) compute homology
if homology not spherical then return NO
for N rounds do

(6) compute random discrete Morse vector
if discrete Morse vector is spherical then return YES

for N ′ rounds do
(7) perform random bistellar flip or edge contraction

if boundary of simplex is reached then return YES

(8) compute and simplify presentation of fundamental group π1

if presentation is found to be trivial and d 6= 4 then return YES
if presentation is found to be non-trivial then return NO
return UNDECIDED

More precisely, we first check if X is pure, i.e., each facet has exactly d + 1
vertices. Second, we check if each ridge is contained in exactly two facets, where a
ridge is a face of dimension d−1. Success in these two tests will assert that X is a
weak pseudo-manifold (without boundary). Note that the 0-dimensional sphere S0

is a weak pseudo-manifold of dimension d = 0 with two isolated vertices.

Third, for d ≥ 1, we check if the 1-skeleton of X is a connected graph. A
connected weak pseudo-manifold X of dimension d = 1 is a polygon and thus
triangulates S1.

The pureness and the weak pseudo-manifold property of a simplicial complex
is inherited by all face links; cf. [BD98, Rem. 8]. A (connected) weak pseudo-
manifold is a pseudo-manifold if it is strongly connected, i.e., if any two of its
facets can be joined by a sequence of facets for which consecutive facets share a
ridge. In particular, a pseudo-manifold of dimension d = 2 is a triangulation of
a closed surface or of a closed surface with pinch points (having multiple disjoint
cycles as vertex links).

A d-dimensional pseudo-manifold X is a combinatorial d-manifold if all vertex
links of X are PL homeomorphic to the boundary of the d-simplex or, equivalently,
if for every proper i-face (with 0 ≤ i < d) of X its link is a PL (d−i−1)-sphere;
here the case i = d− 1 ensures the weak pseudo-manifold property. This recursive
nesting of PL spheres suggests an inductive check of the face links of X by dimen-
sion, starting with 1-dimensional links of (d− 2)-faces and proceeding up until the
(d− 1)-dimensional links of the vertices.

A connected 2-dimensional weak pseudo-manifold X whose vertex links are
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single cycles is a combinatorial 2-manifold and triangulates a closed surface. If,
additionally, the Euler characteristic of X equals two, then X is S2.

If one of the checks on the links of the overall complex X fails, then X cannot
be a standard PL sphere, if one of the checks is left undecided this leaves X
undecided.

After this preprocessing and an inductive check of the vertex-links we may
assume that our input looks as follows:

Input (modified): Let X be a d-dimensional combinatorial manifold, for d ≥ 3.

The subsequent four steps form the core of our sphere recognition procedure.

(1) Homology computation

Computing the simplicial homology modules of a finite simplicial complex is a
standard procedure, which is implemented, e.g., in CHomP [M+a], RedHom [M+b]
or polymake [GJ00]. The homology with field coefficients can be determined via
applying Gaussian elimination to the (simplicial) boundary matrices. For finite
fields of prime order or the rationals this can be achieved in polynomial time (in the
size of the boundary matrices); cf. [Edm67]. Similarly, over the integers, a homol-
ogy computation can be reduced to computing Smith normal forms; cf. [Mun84,
Ch. 11]. Kannan and Bachem [KB79] gave the first polynomial time Smith normal
form algorithm, employing modular arithmetic; see also [Ili89].

Here we employ integer coefficients throughout. A necessary condition for X
to be a sphere (PL or not) is Hd(K) ∼= Z, and all other (reduced) homology groups
vanish. In this case we say that X has spherical homology.

We recall that the Hasse diagram of a simplicial complex X is a directed graph
with one node per face of X and a directed arc (σ, τ) if the face σ is contained in
τ and dim τ = dim σ + 1.

While the modular approach of [KB79] and [Ili89] is valid for matrices with
arbitrary integer coefficients, simplicial boundary matrices have entries 1, −1, and
0 only. As a consequence, in an arbitrary simplicial boundary matrix it is always
possible to perform at least a few Gauss elimination steps. Moreover, a typical
boundary matrix is sparse. If the matrix happens to stay sparse during the elimi-
nation and if, additionally, one does not run out of unit coefficients too soon (such
that it is possible to continue with elimination steps), an elimination based Smith
normal form algorithm can outperform the more sophisticated modular methods.
This is why for computations of (simplicial) homology elimination algorithms are
often preferred; cf. Dumas et al. [DHSW03] for a survey.

A (partial) matching in an arbitrary graph is a subset of the edges such that
each node is covered at most once. In the Hasse diagram of X a matching cor-
responds to a set of non-zero coefficients in some boundary matrices. Such a
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∂2 01 02 03 04 05 12 13 14 15 23 24 25 34 35 45

012 1 −1 1

014 1 -1 1

023 1 −1 1

035 1 −1 1

045 1 -1 1

125 1 -1 1

134 1 -1 1

135 1 −1 1

234 1 -1 1

245 1 -1 1

(∂1)tr 01 02 03 04 05 12 13 14 15 23 24 25 34 35 45

0 -1 −1 −1 −1 −1

1 1 -1 −1 −1 −1

2 1 1 -1 −1 −1

3 1 1 −1 -1 −1

4 1 1 1 −1 1

5 1 1 1 1 1

Figure 3.1: Boundary matrices of RP2
6 with coefficients marked that correspond to the

acyclic matching of Figure 2.2; cf. Example 3.3.

matching, µ, is called acyclic if reversing all arcs in µ (and keeping the arcs not
in µ) still gives an acyclic graph. It is easy to see that an acyclic matching in
the Hasse diagram of X yields a sequence of Gauss elimination steps that can
be performed in any order without destroying the (unit) pivots required for the
subsequent elimination steps.

Example 3.3. As we have already seen in Example 2.6, Figure 2.2 shows an
acyclic matching, µ, in the Hasse diagram for X = RP2

6, which is the six-vertex
triangulation of the real projective plane. Figure 3.1 shows the corresponding
boundary matrices. The pivots corresponding to µ are marked. Using these pivots
in an arbitrary order yields an elimination strategy for the computation of the
homology modules:

H̃0(RP2
6) = 0 , H1(RP2

6) ∼= Z/2Z , H2(RP2
6) = 0.

(2) Random discrete Morse functions

We have defined in 2.5, given any simplicial complex X, its set of discrete Morse
functions and discrete Morse vectors (c0, c1, . . . , cd). We recall that X is homotopy
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equivalent to a CW complex with ci cells in dimension 0 ≤ i ≤ d.

Moreover, let F be some field, a discrete Morse vector is F-perfect for X if ci =
βi(K;F) for 0 ≤ i ≤ d. A perfect discrete Morse vector of a sphere, which reads
(1, 0, 0, . . . , 0, 1), is also called spherical. Theorem 3.2 implies that a combinatorial
d-manifold X that becomes collapsible after the removal of one facet is a PL d-
sphere. In 1992, Brehm and Kühnel [BK92] used that fact to show that some
8-dimensional simplicial complex with 15 vertices is a combinatorial 8-manifold (a
triangulation of the quarternionic projective plane [Gor19]).

By Theorem 3.2, the existence of an acyclic matching whose discrete Morse
vector is spherical is a sufficient criterion for X to be a sphere. This gives rise
to the following simple strategy: generate discrete Morse functions (or acyclic
matchings) at random and check if one of them is spherical; cf. [BL14].

The random discrete morse function implemented in polymake has three dif-
ferent random strategies which we call random-random, random-lex-first, and
random-lex-last. We will give a short outline and describe the differences among
the three strategies and further differences to the original approach from [BL14].

Let X be an arbitrary d-dimensional simplicial complex, which is not necessar-
ily a manifold. A free face of X is an (i−1)-dimensional face that is contained in
exactly one i-face, 0 < i ≤ d. To save memory, our three strategies are destructive
in the sense that they keep changing the complex X. In each step we pick one of
the free faces of codimension one and delete it from X together with the unique
d-face containing it. This is an elementary collapse, and the two removed faces
form a regular pair, which is a matching edge in the Hasse diagram. The three
strategies only differ in how they pick the free face. If we run out of free faces, we
pick some facet (of maximal dimension), declare it critical and remove it. After
removing a regular pair the dimension of the resulting complex, K ′, may drop to
d − 1. This process continues until K ′ is zero-dimensional. In this case, K ′ only
consists of vertices, all of which are declared critical.

For the random-random strategy, we first find all the free faces of X and collect
them in a linked list. If this list is not empty, choose a free face uniformly at
random. Taking the uniform distribution means that each free face has a fair
chance of being taken, but this comes at a price since the sampling itself takes
time if there are many free faces to choose from. The reason is that we do not
have random access to the free faces, as they are kept in a linked list. Picking a
random element in a linked list takes linear time in the length of that list. If we
run out of free faces, the choice of the critical d-face is again uniformly at random.

The strategy random-random is somehow the obvious one, but there is a much
cheaper way which maintains a certain amount of randomness. Here the price
is that it seems to be difficult to say something about the resulting probability
distribution. The idea is to randomly relabel the vertices of X once, at the be-
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ginning, and then to pick the free and critical faces in a deterministic way (which
depends on the random labeling). Whenever we want to choose a free or crit-
ical face, rather than selecting one at random, we pick the first (in the case of
random-lex-first) or the last one (in the case of random-lex-last) of the linked
list. The random-lex-last strategy was called “random-revlex” in [BL14]. We
changed the name here to random-lex-last to avoid confusion with the reverse
lexicographic (term) ordering, which is different.

The cost of being fair is quite significant, with our current implementation,
when dealing with large complexes. For example, running the random-lex-first

and random-lex-last strategies on the fourth barycentric subdivision of ∂∆4

took less than three minutes per run whereas the random-random strategy took
approximately two hours per run; see Section 3.4.4. It is conceivable that there is
some room for improvement here by employing a faster data structure for random
sampling; we leave such an implementation for a future version of polymake.

Remark 3.4. In Algorithm A, the Steps (1) and (2) can also be intertwined
as finding an acyclic matching results in a partial strategy for computing the
homology. To this end it is most natural to process the Hasse diagram from top
to bottom level by level.

(3) Random bistellar flips

If the previous tests are inconclusive, we can use a local search strategy to deter-
mine the PL type; cf. [BL00]. The boundary ∂∆d+1 of the (d + 1)-simplex is a
d-dimensional simplicial complex with d+2 facets. We recall that a bistellar move
is a local modification of a combinatorial d-manifold X in which any subcomplex
of X isomorphic to the star of a face in ∂∆d+1 is replaced by its complementary
facets.

Two simplicial complexes are bistellarly equivalent if one is obtained from the
other by a finite sequence of (proper) bistellar moves. The following result is
essential for the third step in the heuristic.

Theorem 3.5 (Pachner [Pac87]). A d-dimensional simplicial complex is a PL
d-sphere if and only if it is bistellarly equivalent to ∂∆d+1.

This is closely related to Theorem 3.2 in the following sense: Adiprasito and Iz-
mestiev [AI15] showed that iterated barycentric subdivisions make any PL sphere
polytopal; and barycentric subdivisions can be expressed as sequences of stel-
lar subdivisions (which, by Theorem 3.5, are connected via sequences of bistellar
moves). Moreover, barycentric subdivisions of polytopal spheres are polytopal,
and polytopal spheres admit spherical discrete Morse vectors.
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We now discuss the polymake implementation of the simulated annealing strat-
egy from [BL00]. The function bistellar simplification randomly applies bis-
tellar moves to an input of type SimplicialComplex (required to be a combina-
torial d-manifold) with the goal to lower the f -vector as much as possible. In this
way the algorithm prefers moves that reduce the f -vector; this is called “cooling”.
It lies in the nature of the sphere recognition problem that we may end up in a
local minimum, i.e., when there are no moves to further lower the f -vector. At
that point, we deliberately make moves that increase the f -vector for some num-
ber of rounds (this is called “heating”). Then we cool again, hoping that this will
help jiggle us out of that local minimum. For 0 ≤ i < d

2
a corresponding i-move

will increase the f -vector of a triangulation, while in even dimensions the f -vector
is not altered by d

2
-moves. So in a heating phase we would add vertices via 0-

moves, edges via 1-moves, etc., and “randomize” the triangulation by performing
a (possibly large) number of d

2
-moves, before returning to cooling. As with all

simulated annealing approaches, adjusting the parameters for the annealing relies
on experimentation. For example, we initially may not add vertices in the heating
phases via 0-moves, as this might successively increase the size of the intermediate
complexes, but in case we remain in a local minimum, first adding some percentage
of vertices before performing 1-moves etc. helps in some cases.

Our procedure determines all candidates for bistellar moves of X and sorts
them by descending dimension. During a cooling period we first pick random d-
moves, if one exists. Otherwise, we pick random candidate (d − 1)-moves until
we find one which is proper. If this does not exist either, we continue further to
dimensions d−2, d−3, etc., down to dimension bd/2c+1. Any proper move found
in this way is applied immediately. Note that a bistellar move is a local operation,
which is why we refrain from copying the entire complex when we apply a bistellar
move. Instead, we perform the operation in place and store the reverse move
in a list such that it can be undone later. Cooling continues until we get stuck
with a lexicographically locally minimal f -vector. This ordering of the f -vectors
is imposed indirectly by preferring higher-dimensional moves.

During a heating period, the story is slightly different. One heating strat-
egy is to choose the dimension of the heating move at random with respect to a
heuristically determined distribution. That distribution is encoded as a heat vector
(h0, . . . , hbd/2c) of integers, and we set h := h0 + · · · + hbd/2c. This means, in each
round of the heating period we pick the dimension k with probability hk/h, and in
that dimension we pick a random proper bistellar move. For example, the default
heat vector in polymake for d = 4 is (10, 10, 1). This generalizes to the default
heat vector (10, 10, . . . , 10, 1) in higher (even) dimensions d, while for odd d the
pivot dimension k is picked uniformly at random.

Various other parameters control the precise heating behavior; and some of
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them are adjusted dynamically. For instance, it is useful to heat up for more
rounds if the complex is larger. Sometimes it pays off to experiment with several
distributions or to use other heating schemes. E.g., as mentioned above, first add
some (percentage of) or no vertices via 0-moves, then edges via 1-moves, etc.

Remark 3.6. As a speed-up for large input triangulations, we can first apply edge
contractions (with admissible edges for a contraction chosen at random) as long
as possible. As experienced for 3-manifold triangulations [CL06b], this eventually
leads to a saturation with many edges that block further contractions. Once
there is no remaining admissible edge for a contraction, we run bistellar flips to
reduce the number of edges and then continue with edge contractions again. Edge
contractions are useful only in an initial phase. Once a local minimum is reached
for the size of the triangulation, then bistellar flips are employed to leave the local
minimum.

(4) Fundamental group

A non-trivial fundamental group π1(K) is a certificate for not being a sphere (PL
or otherwise). Conversely, there is the solution to the (PL) Poincaré Conjecture
in dimensions other than four.

Theorem 3.7 (Smale [Sma61]; Perelman [Per02]). Let X be a simply connected
combinatorial d-manifold, d 6= 4, with spherical homology. Then X is a PL sphere.

Freedman proved that a simply connected 4-manifold with trivial intersection
form is homeomorphic to the 4-sphere [Fre82]. But his result does not say whether
this also holds in the PL category. In fact, it is a major open problem whether or
not “exotic” 4-spheres exist.

In [ST34, Chapter 7] Seifert and Threlfall describe how to obtain a finite pre-
sentation of π1(K) from any spanning tree in the 1-skeleton (with the remaining
edges as generators) and all the 2-faces (as relators). However, checking if a finitely
presented group is trivial is known to be undecidable [Nov55]. Discussing heuristic
approaches to simplifying group presentations is beyond the scope of this chapter.
In practice we rely on GAP [GAP19] which employs Tietze transformations.

Algorithm A displays our strategy in a concise form; for computational results
see Sections 3.3 and 3.4 below. Notice that the ordering of the Steps (1) through
(3) is arbitrary, while the “YES” answer in Step (4) is inconclusive without Step
(1). Yet, there is a benefit from combining Steps (1) and (2); cf. Remark 3.4. In
practice, for a complex X we suspect to be not a sphere, we would start with (1),
while if we think that X is a PL sphere, we first try (2) as a fast routine. If we
are not successful with (2), we switch to (3), which is slower but can still recognize
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spheres that do not have perfect discrete Morse functions; see the discussion in
Section 3.4.

If, in the case d 6= 4, Step (1) gives us a spherical homology vector and Step (4) a
trivial presentation of the fundamental group, then the overall output is “YES”, by
Theorem 3.7. In the case of spherical homology a presentation of the fundamental
group with only one generator is not possible, but balanced presentations of the
trivial group with two generators and two relators can already be hard to detect;
see Section 3.4.2.

Clearly, when our method gives up with “UNDECIDED” this does not need
to be the end of the story. For instance, in the 3-dimensional case we can feed the
data into the 3-sphere recognition procedure of Regina [BBP+17]. This features
a variation of the exact algorithm of Rubinstein [Rub95] and Thompson [Tho94],
where, for instance, the crushing procedure (the key step of the algorithm) is
dramatically simplified [Bur14]. In this way Regina can provide certificates for X
not being spherical based on normal surface theory. However, we are not aware of
a single triangulation of the 3-sphere for which our procedure fails.

3.3 Experiments and runtime comparisons

To find challenging input for Algorithm A is not entirely trivial. Most explicit
constructions of (standard) PL spheres found in the literature are rather small
and can be recognized instantaneously. All timings were taken on an AMD Phe-
nom(tm) II X6 1090T Processor CPU (3.2 GHz, 6422 bogomips) and 8 GB RAM
with openSUSE Leap 15.0 (Linux 5.1.9-5).

3.3.1 Recognizing random 3-spheres with polymake and
Regina

A natural class of PL d-spheres are the boundaries of (d + 1)-polytopes obtained
as the convex hulls of n points chosen uniformly at random on the unit d-sphere
in Rd+1. These have been studied, e.g., in the context of the average case analysis
of the simplex method of linear programming [Bor87]. Such examples can be
generated with the rand sphere command of polymake. Table 3.1 lists polymake
and Regina experiments on 3-spheres with up to 100,000 vertices. For more than
15,000 vertices the convex hull computation (necessary only to construct the input)
becomes a bottleneck, which is why for the larger examples (marked “*”) we used
connected sums of smaller random spheres.

In all cases, the spheres were successfully recognized by each method. However,
we truncated the time spent on each input to about one CPU hour, such that longer
running times are omitted. The fastest method is polymake’s random search for a
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Table 3.1: Running times (in seconds) on random polytopal 3-spheres on n vertices.

polymake Regina

n Morse bistellar contr.+bist. isThreeSphere

100 0.01 0.37 0.03 0.03
200 0.01 1.23 0.07 0.15
300 0.02 2.87 0.11 0.35
400 0.03 3.23 0.17 0.64
500 0.04 4.94 0.20 1.09
600 0.05 7.31 0.26 1.60
700 0.07 10.24 0.31 2.22
800 0.08 13.10 0.37 3.07
900 0.09 17.92 0.44 4.16

1000 0.10 23.03 0.49 5.23
2000 0.38 107.85 1.25 28.22
3000 0.78 281.17 2.29 74.27
4000 1.31 551.62 3.41 141.65
5000 2.26 918.09 4.82 237.42

10000 8.71 4608.71 16.48 1100.26
15000 22.11 / 39.77 2647.71

*30000 145.90 / 191.22 /
*50000 470.26 / 515.46 /

*100000 1586.41 / 2064.28 /

spherical discrete Morse function; cf. Step (2) of Algorithm A. Nearly competitive
is polymake’s procedure of applying edge contractions, combined with random
bistellar moves; cf. Step (3) of Algorithm A and Remark 3.6.

Usually, Regina takes 1-vertex pseudo-simplicial triangulations as input, but
can also handle (abstract) simplicial complexes. In the latter case, contracting a
spanning tree in the 1-skeleton yields a 1-vertex pseudo-simplicial triangulation.
Conversely, the second barycentric subdivision of a pseudo-simplicial complex is a
simplicial complex. In this sense these two encodings of combinatorial manifolds
are similar.

Regina’s recognition algorithm isThreeSphere runs, as a preprocessing step,
the program IntelligentSimplify that transforms the complex into a 1-vertex
triangulation and uses bistellar moves to further reduce it, similar to Step (3) of our
Algorithm A. Afterwards the 3-sphere recognition procedure is employed. In this
way, Regina is able to also find certificates for non-sphericity—which polymake

is incapable of, beyond checking the homology. We should also point out that
IntelligentSimplify is a heuristic designed to be an out-of-the-box first attempt
to simplify a triangulation with a polynomial running time, and Regina’s bistellar
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Table 3.2: Census of 4-manifolds with up to six pentachora.

two pentachora four pentachora six pentachora

# sign. percentage # sign. percentage # sign. percentage

Total: 8 100.0% 784 100.0% 440,494 100.0%
Spheres: 6 75.0% 642 81.9% 403,240 91.5%

Non-spheres: 2 25.0% 137 17.5% 35,305 8.0%
Unknown: 0 0.0% 5 0.6% 1,949 0.5%

move interface is meant to be interactive. This means that with a bit of work to
build a custom-made simplification routine, the times in Regina could probably
be improved.

The largest simplicial complex in Table 3.1, with 100,000 vertices, has 673,274
tetrahedra. The largest one successfully handled within one hour by Regina has
15,000 vertices and 101,088 tetrahedra.

Each row of the Tables 3.1, 3.3 and 3.4 corresponds to a single instance only.
However, it is known that there is little variation of, e.g., the number of facets of
the convex hull of random points on the unit sphere; cf. Reitzner [Rei05, Sec. 4].
This can also be observed experimentally; cf. [AGH+17, Sec. 3.5 and Fig. 6] for
a closely related setup. Note that, in fixed dimension d, the expected number of
facets of a random simplicial (d + 1)-polytope depends linearly on the number of
vertices [Bor87].

3.3.2 Processing a census of 4-manifolds

We ran our heuristics on a census of 4-manifolds provided by Regina [BBP+17].
These 4-manifolds are encoded as pseudo-simplicial complexes comprising up to
six maximal cells; the 4-simplices are called pentachora in Regina for they have
five facets (and five vertices). In combined form, the tricensus command of
Regina generates possible facet pairings, then for each such pairing determines all
possible gluing permutations, and (on the fly) reduces all gluings to isomorphism
signatures that uniquely encode triangulations up to combinatorial isomorphism
[Bur]. For the examples with two, four, and six pentachora there are 3, 26, and
639 facet pairings. And this yields 8, 784, and 440,494 resulting combinatorial
types, respectively. Note that there are no facet pairings for an odd number of
maximal cells in even dimensions. We let Regina expand each of these into a
(proper abstract) simplicial complex via the second barycentric subdivision and
pass it on to polymake. The simplicial complexes resulting from six pentachora
have around 4,600 vertices and 86,400 facets.

Using our heuristic we found the results in Table 3.2. Each positive or negative

33



Chapter 3. Frontiers of sphere recognition in practice

certificate was obtained in less than four minutes and in 90 seconds on the average.
In all the cases the positive certificates arise from discrete Morse functions, while
the negative certificates are provided by non-spherical homology. Taking row sums
in Table 3.2 we summarize our findings as follows.

Theorem 3.8. Among the 441, 286 combinatorial types of combinatorial 4-mani-
folds arising from up to six pentachora 91.5% are spheres, and 8.0% are non-
spheres.

Thus, our success rate is 99.5%, with our heuristic failing on only 1,954 of
these combinatorial 4-manifolds. All of these have spherical homology; to deter-
mine whether they are standard PL 4-spheres or proper combinatorial homology
4-spheres (combinatorial 4-manifolds with spherical homology, but not PL ho-
meomorphic to the standard PL 4-sphere) is an interesting question, yet beyond
the scope of this chapter. Our classification, as a list of Regina’s isomorphism
signatures of the complexes can be found at [Lof21c].

3.3.3 Higher-dimensional random spheres

polymake can easily recognize random polytopal spheres with up to 10,000 vertices
in dimension four, 1,000 vertices in dimension five, and 500 vertices in dimension
six; cf. Tables 3.3 and 3.4. Again the input is constructed via uniform random
sampling on the unit sphere and taking convex hulls.

Regina provides no heuristic for sphere recognition in dimension four or be-
yond. Yet, Regina can simplify a given triangulation of a 4-dimensional combina-
torial manifold via contractions and bistellar moves, returning a smaller pseudo-
simplicial complex. It is not immediate how to check for sphericity from that
output. That implementation is deterministic; thus in each run on a fixed input
it gives the same output. The running times are given in the penultimate column
of Table 3.3. The last column contains the number of simplices remaining after
simplification.

3.3.4 A collapsible 5-manifold which is not a ball

We consider the 5-dimensional simplicial complex C with face vector

f(C) = (5013, 72300, 290944, 495912, 383136, 110880)

constructed in [ABL17, Sec. 4]; there C is called contractible non 5 ball. This
is the first explicit example of a non-PL triangulation of a collapsible (and thus
contractible) 5-manifold, other than the 5-ball. By construction, C is a manifold
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Table 3.3: Running times (in seconds) on random polytopal 4-spheres on n vertices.

polymake Regina

n Morse bistellar contr.+bist. Simplify number of facets

100 0.04 8.22 0.46 1.52 26
200 0.13 33.50 1.28 8.44 8
300 0.30 76.62 2.63 24.97 42
400 0.54 136.85 4.77 54.51 78
500 0.82 224.67 6.17 92.25 60
600 1.21 418.50 8.06 121.24 120
700 1.64 639.45 10.95 184.11 98
800 2.28 842.94 15.38 303.16 180
900 2.88 1109.43 16.74 370.85 144

1000 3.51 1418.25 22.20 474.72 170
2000 10.86 / 40.93 2427.81 562
3000 26.40 / 219.44 / /
5000 121.90 / 714.92 / /

10000 594.46 / 2633.70 / /

with boundary. To check the remaining topological properties computationally
poses an interesting challenge.

First, the perfect Morse vector (1, 0, 0, 0, 0, 0) for C was originally obtained in a
single random discrete Morse vector search over 82 hours with a GAP implementa-
tion. The current implementation in polymake produces the same result (in most
runs) in only 9 seconds with the random-lex-first and random-lex-last strate-
gies and in about 10 minutes with the random-random strategy. This certifies that
C is collapsible.

Second, the boundary complex ∂C with face vector

f(∂C) = (5010, 65520, 212000, 252480, 100992)

was investigated; it was called contractible non 5 ball boundary in [ABL17].
Checking all face links for spherical discrete Morse vectors confirmed that ∂C is a
combinatorial 4-manifold. For each face link a single random try sufficed. In total,
the recognition of all face links took about 7.5 hours. Checking the homology
reveals that ∂C is a homology 4-sphere. Finally, GAP identifies the fundamental
group π1(∂C) as the binary icosahedral group.
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Table 3.4: Running times (in seconds) on random polytopal 5- and 6-spheres.

polymake, d = 5 polymake, d = 6

n Morse contr.+bist. Morse contr.+bist.

100 0.33 10.29 10.01 301.62
200 1.86 40.52 86.78 2634.24
300 5.78 102.32 387.90 /
400 11.49 169.86 967.55 /
500 21.95 340.08 1788.44 /
600 35.31 515.86 / /
700 55.55 820.34 / /
800 78.48 1120.07 / /
900 104.28 1441.08 / /

1000 133.34 2016.53 / /

3.4 Limitations

In the previous section we saw that many, even fairly large, simplicial spheres can
be recognized easily, despite Theorem 3.1. Here we explore the limitations of our
heuristic. The combination of our (positive and negative) experiments may serve
as a description of a “horizon” within which we can hope for effective recognition
results.

3.4.1 General remarks

We refrain from a detailed comparison of simplicial homology computations. How-
ever, standard implementations, as CHomP [M+a], RedHom [M+b], Perseus [MN13],
and polymake [GJ00], employ elimination schemes for computing the integer ho-
mology, which are equivalent to finding discrete Morse functions with few critical
cells. In this sense, the horizon within which we can compute the simplicial homol-
ogy is essentially the same as the horizon for the discrete Morse Step (2). There
are more software systems to compute simplicial homology, but many, including,
e.g., Dionysus [Mor] and PHAT [BKR], are restricted to Z2-coefficients. Finding
an optimal discrete Morse function is NP-hard; cf. [JP06, LLT03]. Recently Bauer
and Rathod established that we may not even hope for polynomial approximability
[BR19].

In the subsequent we will exhibit several scenarios in which finding a spherical
discrete Morse function for a simplicial sphere may fail in practice. An obvious
impediment is the lack of any spherical discrete Morse function. The smallest
known example is an 18-vertex triangulation of S3, constructed from a triple trefoil
knot supported on three edges [BL13b].
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Table 3.5: Collapsing the d-simplex.

d Rounds Non-perfect Percentage

7 1010 0 0.0%
8 109 12 0.0000012%
9 108 2 0.000002%

10 107 3 0.00003%
11 107 12 0.00012%
12 106 4 0.0004%
13 106 6 0.0006%
14 105 4 0.004%
15 105 8 0.008%
16 104 4 0.04%
17 104 10 0.10%
18 103 2 0.2%
19 103 6 0.6%
20 103 13 1.3%
21 103 62 6.2%
22 103 153 15.3%
23 102 35 35%
24 102 67 67%
25 5 · 101 46 92%

In dimension three, the known recognition algorithms for the 3-sphere make use
of normal surface theory. As a consequence of Theorem 3.7, a trivial fundamental
group suffices to show that a 3-manifold is, in fact, the 3-sphere.

3.4.2 Akbulut–Kirby spheres

A family of standard PL S4-triangulations, AK(r), for r ≥ 3, of the Akbulut–Kirby
spheres [AK85] has been constructed in [TL]. In fact, Akbulut and Kirby [AK85]
gave handlebody decompositions of a family of 4-manifolds, in the hope of obtain-
ing exotic 4-spheres. Yet, later Gompf [Gom91] and Akbulut [Akb10] showed that
these manifolds are PL homeomorphic to the standard 4-sphere S4. We have

f(AK(r)) = (176 + 64r, 2390 + 1120r, 7820 + 3840r, 9340 + 4640r, 3736 + 1856r).

The triangulated Akbulut–Kirby spheres AK(r) so far constitute the single explicit
family of simplicial spheres that we could not recognize easily by our heuristic.
More precisely, Step (2) failed on all complexes AK(r) for all r ≥ 3. Step (3)
worked for r = 3, but failed for r ≥ 4. Steps (2) and (3) are particularly relevant
in dimension four—in all other dimensions, as a consequence of Theorem 3.7, they
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can conceptually be replaced by the combination of Steps (1) and (4). We do not
know if the spheres AK(r) admit perfect discrete Morse vectors. E.g., the smallest
one we found for r = 5 is (1, 2, 4, 2, 1), possibly reflecting that we used two winded
up 1-handles in the construction.

What makes the PL 4-spheres AK(r) difficult to recognize is that the original
handlebody decomposition of Akbulut and Kirby [AK85] is based on the non-trivial
presentation

G(r) = 〈 x, y | xyx = yxy; xr = yr−1 〉

of the trivial group built in as the fundamental group, i.e., π1(S4), of AK(r). In 100
out of 450 runs we found GAP to be able to identify π1(AK(4)) as the trivial group.
However, in dimension four (and knowing that the homology is spherical) this only
shows that the input is a topological 4-sphere, without yielding any information on
the PL type. In one run with r = 5 we obtained the initial presentations G(r) as
the output of GAP’s simplification procedure. For r ≥ 4, none of the Steps (1)–(4)
was conclusive to determine that AK(r) is the standard PL 4-sphere S4.

3.4.3 Contractible but non-collapsible subcomplexes

A simplicial sphereX admits a perfect discrete Morse function (respectively vector)
if and only if there is a facet σ of X such that X − σ is a collapsible ball. In this
way a key difficulty in finding a perfect discrete Morse vector for X − σ stems
from subcomplexes that are contractible, but not collapsible. The most prominent
such example is the 2-dimensional dunce hat which can be obtained from a single
triangle by identifying its three boundary edges in a non-coherent way [Zee64].

Crowley et al. [CEK+] showed that the 7-simplex with 8 vertices contains in its
2-skeleton an 8-vertex triangulation of the dunce hat onto which it collapses. (This
result can easily be verified by running the random discrete Morse Step (2) on the
7-simplex, but not allowing the triangles of an 8-vertex triangulation of the dunce
hat be used as free faces.) While the dunce hat has triangulations with 8 ver-
tices [BL13a], every contractible complex with fewer vertices is collapsible [BD05].

This leads us to our next experiment, where we compute random discrete Morse
vectors for d-simplices, 7 ≤ d ≤ 25; cf. Table 3.5. For instance, in dimension seven
every one of the 1010 runs that we tried gave a perfect discrete Morse function,
i.e., a collapsing sequence. With increasing dimension that success rate drops
slowly until d = 20, where we get stuck with a discrete Morse vector which is
not perfect in 1.3% of all tries. Going to even higher dimensions shows a rapid
decline of the probability to find a perfect discrete Morse vector. From this we
conclude that dimension 25 marks a “horizon” for Step (2), even for a single
simplex. Note also that the implementation of the algorithm requires to store
the entire Hasse diagram, which is memory expensive; e.g., the Hasse diagram
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Table 3.6: Discrete Morse vectors for 109 runs on the 8-simplex.

Discrete Morse vector Count

(1 0 0 0 0 0 0 0 0) 999999988
(1 1 1 0 0 0 0 0 0) 4
(1 0 1 1 0 0 0 0 0) 7
(1 0 0 1 1 0 0 0 0) 1
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Figure 3.2: The simplicial complexes D, SB2
a, SB3

b and SQ (clockwise from top left)

of the 25-simplex needs around 200 GB of RAM. The data structure underlying
the Hasse diagram is optimized for speed with respect to enumerating all faces of
a simplicial complex (and the covering relations of the inclusion poset) from the
facets. That algorithm, which is linear in the size of the output, builds on a very
general method of Ganter [Gan87] for closure systems, and the implementation
details in polymake are discussed in [HJS19].

It is instructive to look at the subcomplexes which arise from non-perfect dis-
crete Morse vectors in our experiments for a d-simplex. For d = 8, we found four
examples of 2-dimensional contractible and non-collapsible complexes on nine ver-
tices which we call D, SB2

a, SB3
b , and SQ; cf. Figure 3.2 and (the second line of)

Table 3.6. The first one, D, is a triangulation of the dunce hat. The following
concept is derived from scrutinizing the complexes in Figure 3.2.

Definition 3.9. The k-bladed saw blade complex SBk is the 2-dimensional CW
complex obtained from a polygonal disk with 3k edges

a1, a
−1
1 , a1, a2, a

−1
2 , a2, . . . , ak, a

−1
k , ak
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Figure 3.3: The sawblade complex SB3

by identifying a1, a
−1
1 , a1 as well a2, a

−1
2 , a2 and so on until ak, a

−1
k , ak, for k ≥ 1.

In particular, for k = 1 we obtain a triangle whose three edges are identified
in the order a1, a

−1
1 , a1, i.e., SB1 is the dunce hat. More generally, SBk consists of

k vertices, k edges, and a single disk; so the Euler characteristic equals one; cf.
Figure 3.3, which explains the name. We use notation like SBk

x and SBk
y to denote

specific triangulations.

Theorem 3.10. The following holds for k-bladed saw blade complexes SBk:

(i) The dunce hat SB1 can be triangulated with 8 vertices.

(ii) SB2 can be triangulated with 9 vertices.

(iii) SBk can be triangulated with 3k vertices, for k ≥ 3.

(iv) Any triangulation of a saw blade complex is contractible, but non-collapsible.

Proof: We first prove (iii): For k ≥ 3, assume that the identified boundary
of the polygonal disk reads 1–2–1–2–3–2–3–4–3–4–. . . –k–1–k–1; see Figure 3.3 in
the case k = 3. In the interior of the disk we place a cycle with 2k vertices and
connect the cycle vertices with the boundary cycle vertices. More precisely, we
connect every other cycle vertex to the beginning vertex of a blade and its two
neighbors, and we connect the remaining cycle vertices to the two middle vertices
of a blade. Finally, the interior 2k-gon can be triangulated arbitrarily without
additional vertices.

(ii)+(i): In the case of two blades, we start with 1–2–1–2–3–1–3–2–3–1 as the
identified boundary cycle. The extra vertex, say 3, is needed to avoid unwanted
additional identifications. In the interior we then place a hexagon and connect
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Table 3.7: Discrete Morse vectors for 103 runs on the 20-simplex.

Discrete Morse vector Count

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 987
(1, 0, 0, 0, 6, 26, 59, 87, 61, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1, 0, 3, 30, 111, 158, 132, 82, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1, 0, 1, 8, 34, 80, 126, 155, 126, 61, 27, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1, 0, 1, 14, 27, 24, 13, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1, 0, 1, 30, 117, 278, 409, 393, 213, 39, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1, 0, 2, 25, 110, 236, 305, 175, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1, 3, 5, 9, 34, 85, 134, 109, 33, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1, 0, 1, 19, 82, 150, 161, 90, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1, 0, 3, 18, 51, 118, 196, 264, 207, 57, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1, 0, 1, 11, 107, 243, 366, 463, 450, 261, 54, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1, 0, 1, 5, 30, 95, 160, 163, 124, 72, 27, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1, 0, 6, 48, 182, 377, 657, 876, 801, 493, 170, 22, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1
(1, 0, 0, 0, 0, 0, 0, 8, 14, 13, 14, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0) 1

its vertices similar to before. For an 8-vertex triangulation of the dunce hat SB1

see [BL13a].

(iv): The dunce hat SB1 is contractible, and none of its triangulations is col-
lapsible [Zee64]. For k ≥ 2, the saw blade complex SBk has k vertices that (by
labeling appropriately) appear in order 1–2–1–2–3–2–3–4–3–4–. . . –k–1–k–1 on the
boundary of the original 3k-gon. We cut the 3k-gon along an interior arc into
two polygonal disks with identifications on the boundary, 1–2–1–2–(interior arc)
and the remainder 2–3–2–3–4–3–4–. . . –k–1–k–1–(interior arc). Both parts are con-
tractible CW complexes (that retract to the paths 1–2 and 2–3–4–. . . –k–1) glued
along a contractible subcomplex (the interior arc). We conclude that their union
SBk is contractible; cf. Hachimori [Hac08] for a similar decomposition of a con-
tractible 2-complex.

Now we consider any triangulation X of the saw blade complex SBk, for k ≥ 1.
There is no free 2-face as all edges in such a triangulation either have degree two
or three. It follows that X is non-collapsible. �

Saw blade triangulations with different numbers of blades are combinatori-
ally non-isomorphic. These simplicial complexes and their quotients provide 2-
dimensional contractible, but non-collapsible simplicial complexes on which we
can get stuck when trying to randomly collapse a simplex. For instance, the sim-
plicial complex SQ from Figure 3.2 is obtained as a quotient from identifying two
vertices in some triangulation of SB3. Similar examples and higher-dimensional
analogs exist in abundance.

41



Chapter 3. Frontiers of sphere recognition in practice

Tables 3.6 and 3.7 give the actual discrete Morse vectors found for the 8-sim-
plex and the 20-simplex, respectively. We observe that we can get stuck (i.e.,
run out of free faces) in different dimensions; see [LN21] for an analysis of this
phenomenon.

While in the case of the 8-simplex at most two extra critical cells are picked
up (see Table 3.6), the discrete Morse vector

(1, 0, 6, 48, 182, 377, 657, 876, 801, 493, 170, 22, 0, 0, 0, 0, 0, 0, 0, 0, 0)

for the 20-simplex in Table 3.7 contains 3, 632 extra critical cells. Thus, in higher
dimensions, not only do we get stuck with non-collapsible, contractible subcom-
plexes more often, but when we get stuck, the resulting discrete Morse vectors will
also be larger. This may be seen as empirical evidence for the non-approximability
of perfect Morse function; cf. [BR19].

3.4.4 Iterated barycentric subdivisions

As already seen in Section 3.3, it is sometimes rather easy to find perfect dis-
crete Morse vectors, even in fairly large simplicial complexes, provided that the
complexes are nicely structured; cf. also [BL14]. Adiprasito and Izmestiev [AI15]
showed that sufficiently large iterated barycentric subdivisions of any PL sphere
admit spherical discrete Morse functions. Yet, the average number of critical cells
for random discrete Morse vectors grows exponentially with the number of bary-
centric subdivisions [ABL17]. Here we try our sphere recognition heuristic on
higher barycentric subdivisions of boundaries of simplices.

For the third barycentric subdivision sd3 ∂∆4 of the boundary of the 4-simplex
with face vector (12600, 81720, 138240, 69120) the perfect discrete Morse vector
(1, 0, 0, 1) was found in 994 out of 1000 runs of the random-lex-last version
(cf. [ABL17] and Section (8)) of the random discrete Morse search; see Table 3.8.
For sd4 ∂∆4 with face vector (301680, 1960560, 3317760, 1658880) the (same) per-
fect discrete Morse vector was found in only 844 out of 1000 runs. This suggests
that the 4th barycentric subdivision is still within the “horizon” for computations
with the version random-lex-last, while the 5th barycentric subdivision was too
large to fit into the main memory of the machine we used for the experiments.
The random-lex-first strategy behaved slightly better than random-lex-last;
the strategy random-random was always successful.

3.4.5 Other input

Except for the Akbulut–Kirby spheres all the examples studied so far arise from
easy to understand procedures. Searching for entirely different triangulations
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Table 3.8: Discrete Morse vectors for iterated barycentric subdivisions of the 3-sphere
∂∆4.

random-random random-lex-first random-lex-last

sd3 ∂∆4 with f = (12600, 81720, 138240, 69120)

(1,0,0,1): 1000 (1,0,0,1): 999 (1,0,0,1): 994
(1, 1, 1, 1): 1 (1, 1, 1, 1): 6

sd4 ∂∆4 with f = (301680, 1960560, 3317760, 1658880)

(1,0,0,1): 100 (1,0,0,1): 829 (1,0,0,1): 844
(1, 1, 1, 1): 143 (1, 1, 1, 1): 107
(1, 2, 2, 1): 19 (1, 2, 2, 1): 30
(2, 3, 2, 1): 3 (1, 3, 3, 1): 9
(2, 5, 4, 1): 2 (1, 4, 4, 1): 4
(1, 3, 3, 1): 2 (2, 5, 4, 1): 2
(1, 4, 4, 1): 1 (1, 5, 5, 1): 2
(1, 5, 5, 1): 1 (2, 3, 2, 1): 1

(2, 7, 6, 1): 1

of S3, we started out with ∂∆4 with five vertices. Then we added 525 ver-
tices via random 0-moves, followed by 50,000 random 1-moves, followed by an-
other 106 rounds of random bistellar moves where we allowed both 1- and 2-
moves. This resulted in a “random” triangulation of the 3-sphere with face vector
f = (530, 50474, 99888, 49944), which we fed into our heuristic. The smallest dis-
crete Morse vector found was (1, 2192, 2192, 1)—far away from the perfect vector
(1, 0, 0, 1). This means that Step (2) fails on such input. Yet, applying bistellar
moves again quickly gives back the initial ∂∆4. We also used GAP to actually find
a trivial presentation for the fundamental group of the example, which took 16
hours for the simplification. It could be interesting to further investigate this or
similar classes of examples.
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Chapter 4

The worst way to collapse a
simplex

In general, a contractible simplicial complex need not be collapsible. Moreover,
there exist complexes which are collapsible but even so admit a collapsing sequence
where one “gets stuck”, that is one can choose the collapses in such a way that
one arrives at a nontrivial complex which admits no collapsing moves as we have
already seen in Table 3.5. Here we examine this phenomenon in the case of a sim-
plex. In particular we characterize all values of n and d so that the n-simplex may
collapse to a d-complex from which no further collapses are possible. Equivalently,
and in the language of high-dimensional generalizations of trees, we construct hy-
pertrees that are anticollapsible, but not collapsible. The material of this chapter
is based on a joint work with Andrew Newman [LN21].

4.1 Overview

Collapsibility and contractibility are not equivalent in general, more subtlety there
even exists simplicial complexes which are collapsible, but for which it is possible to
choose a sequence of elementary collapses after which one gets stuck at a nontrivial
complex that is not collapsible, as we have already seen in Example 2.4. Formally,
we say that a collapsing sequence on a complex X gets stuck at a complex Y , if
the collapsing sequence reduces X to Y and Y has no free faces. More broadly,
we say that a collapsing sequence on X gets stuck at dimension d if the collapsing
sequence gets stuck at some d-dimensional complex.

There are examples of this even in the case of a simplex. Recall that the simplex
on n vertices, denoted ∆n−1 is the simplicial complex on ground set {1, . . . , n}
where every subset of {1, . . . , n} is a face. It is easy to see that ∆n−1 is collapsible.
Indeed one may choose a vertex and proceed dimension-wise, collapsing at each

45



Chapter 4. The worst way to collapse a simplex

step the free maximal faces that do not contain the chosen vertex. However,
[BL13a] shows that there exists a sequence of elementary collapses from the 7-
simplex to a triangulation of the Dunce Hat, so from there no further collapses
are possible even though the 7-simplex is collapsible. This notion is central in the
implicit question in the title of this chapter, what is the worst way to collapse a
simplex? That is starting from the simplex ∆n−1 what is the maximal dimension
d in which a collapsing sequence may get stuck? We answer this question with the
following theorem:

Theorem 4.1. For n ≥ 8 and d /∈ {1, n− 3, n− 2, n− 1}, there exists a collapsing
sequence of the simplex on n vertices which gets stuck at a d-dimensional complex
on n vertices. In contrast, for n ≤ 7 and d arbitrary or n arbitrary and d ∈
{1, n− 3, n− 2, n− 1} it is not possible to find a collapsing sequence of the simplex
on n vertices which gets stuck at dimension d.

Theorem 4.1 implies the following corollary.

Corollary 4.2. For every n ≥ 8 and d /∈ {1, n − 3, n − 2, n − 1}, there exists
a contractible d-complex on n vertices with no free faces. Moreover this is best
possible, for n ≤ 7 or d ∈ {1, n− 3, n− 2, n− 1} every contractible d-complex on
n vertices has a free face.

Strictly speaking only the first part of Corollary 4.2 is implied by Theorem 4.1
and not the second part. However our proof of the second part of Theorem 4.1
proceeds by showing that for n arbitrary and d ∈ {1, n − 3, n − 2, n − 1} every
contractible complex on n vertices of dimension d has a free face and for n ≤ 7 we
cite the previously mentioned result of [BD05].

Another way to state Theorem 4.1 is in terms of anticollapsibility. An elemen-
tary anticollapse is the reverse of an elementary collapse, we defined this formally
in Section 2.5, and we say that a complex X on n vertices is anticollapsible provided
that there exists a sequence of anticollapsing moves from X to ∆n−1. Equivalently,
there is a standard notion of Alexander duality for simplicial complexes, which we
also discuss below, and X is anticollapsible if and only if its Alexander dual is
collapsible. In terms of anticollapsibility, Theorem 4.1 tells us that for n ≥ 8 and
d /∈ {1, n − 3, n − 2, n − 1}, there exists a d-dimensional simplicial complex on n
vertices which is anticollapsible, but has no free faces.

Within this framework of constructing complexes which satisfy some speci-
fied nonempty subset of the conditions of contractibility, collapsibility, and an-
ticollapsibility, we are really considering properties of higher-dimensional gen-
eralizations of trees. For 1-dimensional complexes contractibility, collapsiblity,
and anticollapsiblity are all equivalent and hold exactly for trees. Each of these
properties may be generalized to higher dimensions to describe high-dimensional
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trees, but the properties are no longer equivalent. In general either collapsibil-
ity or anticollapsiblity will imply contractibility, but no other implications hold.
High-dimensional trees have been studied from various viewpoints by, for exam-
ple [LP19, Kal83, DKM09, KSS84, ABL17, BL00, KLNP18]. In Section 4.2.2 we
overview some of the literature on this topic, but for now we point out that our
results in particular characterize values of n and d so that there are d-dimensional
trees on n vertices which are anticollapsible but not collapsible.

4.2 Preliminaries

4.2.1 Alexander duality and the top dimensions

Given a simplicial complex X, there is a natural way to define an Alexander dual
X∗. Here we give the definition and main theorem for this duality as described in
[BT09].

Let X be a simplicial complex having vertex set V . Given a subset σ ⊆ V let
σc = V \ σ denote the complementary vertex set.

Definition 4.3. The Alexander dual of X on V is the simplicial complex defined
by

X∗ := {σ ⊆ V | σc /∈ X}.

It is easy to see that X∗∗ = X. Furthermore, for simplicial complexes we
have the following notion of combinatorial Alexander duality similar to classic
Alexander duality for more general topological spaces.

Theorem 4.4 (Combinatorial Alexander duality [Kal83]). Let X be a simplicial
complex on n vertices. Then

Hi(X) ∼= Hn−i−3(X∗).

where Hn−i−3(X∗) is the (n− i− 3)rd cohomology group of X.

We don’t formally define (reduced) cohomology here, but it suffices for our
purposes to just mention that if X is acyclic then all its cohomology groups vanish
and that H0(X) = 0 if and only if X is connected.

The Alexander dual behaves exceptionally well with respect to collapsibility,
indeed the dual of an elementary collapse in X is an elementary anticollapse in
X∗. This is standard to check, but we prove it in Proposition 4.5.

Proposition 4.5. If X collapses to Y then X∗ anticollapses to Y ∗. In particular
if X is collapsible then X∗ is anticollapsible.
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Proof. Let X be a simplicial complex on the ground set V with |V | = n. We show
that an elementary collapse on X corresponds to an elementary anticollapse on X∗.
Suppose that τ = [x0, . . . , xk] is free in X with unique coface τ ′ = [x0, . . . , xk, xk+1]
and we perform the elementary collapse removing τ and τ ′ to arrive at X ′. We
show that (X ′)∗ is obtained from X∗ by an elementary anticollapse. The claim
will then follow by induction.

Since X ′ = X \ {τ, τ ′}, we have that (X ′)∗ = {σ ⊆ V | σc /∈ X} ∪ {τ c, (τ ′)c} =
X∗ ∪ {τ c, (τ ′)c}. Thus (X ′)∗ is obtained from X∗ by adding τ c = V \ [x0, . . . , xk]
and (τ ′)c = V \ [x0, . . . , xk+1]. Therefore (τ ′)c is an (n− k − 3)-simplex and τ c is
an (n − k − 2)-simplex with (τ ′)c ⊆ τ c. Moreover since τ, τ ′ ∈ X, we have that
(τ ′)c, τ c do not belong to X∗. Thus we only have to check that all of the facets of
τ c different from (τ ′)c are contained in X∗. Let σ ⊆ τ c and suppose that σ /∈ X∗,
then σc ∈ X and τ ⊆ σc, but since τ is free we have that σc = τ ′. Thus (X ′)∗ is
obtained from X∗ by an elementary collapse.

Remark 4.6. To be completely precise when discussing duality and collapsibility
we have to allow for the trivial collapse of the empty set as a free face of a sim-
plicial complex with only one vertex. Typically, this case is not considered when
discussing collapsible complexes, but observe that the dual of the simplex on n
vertices is the empty simplicial complex on ground set [n] = {1, . . . , n}. Nonethe-
less, even if we do not allow the trivial collapse the second part of Proposition 4.5
remains true as the dual of a complex on the ground set [n] with only one vertex
is the boundary of the simplex on n vertices with a single (n− 2)-dimensional face
removed, and this anticollapses in one step to the simplex, with this step dual to
the trivial collapse.

As an application of Alexander duality we see the following proof which is a
simple generalization of what was done in [BD05] in the case of 7 vertices.

Proposition 4.7. Any contractible simplicial complex on n vertices of dimension
larger or equal to n− 3 must have at least one free face.

Proof. The only simplicial complex of dimension n−1 on n vertices is the (n−1)-
simplex, which clearly has every one of its (n− 2)-dimensional faces free. And of
course there are no complexes of dimension bigger than n− 1 on n vertices.

Let us assume that X is a contractible simplicial complex on n vertices and
of dimension n− 2. Then any (n− 3)-dimensional face has n− 2 vertices, so can
be contained only in 0, 1 or 2 (n − 2)-dimensional faces of X. If all the (n − 3)-
dimensional faces are contained in 0 or 2 (n− 2)-dimensional faces then the union
of all the (n− 2)-dimensional faces yields a cycle in the degree (n− 2) homology
group with Z/2Z-coefficients which is impossible since the complex is contractible.
Then we have at least one free (n− 3)-dimensional face.
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The remaining case is when the complex X is (n − 3)-dimensional. In this
case we can look at the Alexander dual X∗ of X. By Combinatorial Alexander
duality 4.4, X∗ will be a connected complex on n vertices since X is contractible.
Moreover, since X is (n−3)-dimensional, some edges of X∗ is missing. Thus there
exists vertices x, y, and z in X∗ so that [x, z], [y, z] ∈ X∗, but [x, y] /∈ X∗. But
this implies that the simplex [x, y, z]c is a free (n− 4)-dimensional face of X.

Corollary 4.8. Given a simplicial complex X on n vertices there does not exist a
collapsing sequence which gets stuck at dimension at least n− 3.

4.2.2 Hypertrees

In the 1-dimensional case, a tree is characterized as a graph which is connected
and has no cycles. Thus in the language of homology, a graph G is a tree if and
only if H1(G) = H0(G) = 0. This definition was extended by Kalai in [Kal83]
to the higher-dimensional notion of a Q-acyclic complex; a Q-acyclic complex X,
also called a hypertree, is a simplicial complex so that Hi(X;Q) = 0 for all i ≥ 0.

We point out that in Kalai’s original formulation a d-dimensional Q-acyclic
complex was defined to have complete (d− 1)-skeleton. This will not be a require-
ment for our complexes, though in many of our constructions it will hold and gives
an easy way to check that homology vanishes in degrees below d− 1.

One way in which d-dimensional hypertrees are more interesting that 1-dimen-
sional trees is in the ways that certain equivalent properties for trees generalize to
nonequivalent properties for hypertrees.

One such property, non-evasiveness, which we have not yet defined, was first
described in [KSS84], and, among other definitions, has the following nice inductive
one:

. A single vertex is non-evasive.

. X is non-evasive if and only if there exists a vertex v of X so that both
link(v,X) and del(v,X) are non-evasive, where

link(v,X) = {σ ∈ X | v /∈ σ, [v, σ] ∈ X},
del(v,X) = {σ ∈ X | v /∈ σ}.

In particular there is the following chain of implications for properties of a
hypertree X.
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X is non-evasive

X is collapsible and anticollapsible

X is collapsible X is anticollapsible

X is contractible

X is Z-acyclic

X is Q-acyclic

The inductive definition of non-evasiveness may be used to show the first im-
plication and the others are obvious. Moreover, any tree is non-evasive as any one
of its leaves has single vertex link and in the d = 1 case a Q-acyclic complex is a
tree. So it is clear that all the above properties are equivalent for d = 1 and hold
exactly for trees.

On the other hand, for d ≥ 2, none of the implications are reversible in general.
For the bottom implication in the chain, recall by the universal coefficient theorem
that a complex is Z-acyclic if and only if it is Q-acyclic and Z/qZ acyclic simulta-
neously for every prime q. Thus, for example, any triangulation of the projective
plane is Q-acyclic but not Z/2Z-acyclic, so hence not Z-acyclic. The standard such
triangulation is given by identifying antipodal faces of the icosahedron to produce
a triangulation of the projective plane with 6 vertices, 15 edges, and 10 triangles.

Continuing from bottom to top, [BL00] gives an example of a Z-acyclic complex
which is not contractible. Any triangulation of the Dunce Hat gives an example
of a contractible, but not collapsible 2-complex. Such triangulations are given
by [BL13a, Zee64]. The dual of a triangulated Dunce Hat gives an example of a
contractible, but not anticollapsible complex. The example of [BL13a], that one
can get stuck in dimension 2 when collapsing the 7-simplex, gives an example of
an anticollapsible complex which is not collapsible. The dual of such a complex
shows also that there are collapsible complexes that are not anticollapsible. Fi-
nally, [ABL17] gives an example of a complex which is evasive, but is nonetheless
anticollapsible and collapsible.
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4.3 Constructions

4.3.1 Explicit constructions for n = 8

Probably the best known example of a contractible but non-collapsible complex
is the Dunce Hat [Zee64], which is known to have triangulations with 8 vertices.
Benedetti and Lutz [BL13a] presented an 8-vertex triangulation of the Dunce Hat,
see Figure 2.1, that can be found as a subcomplex of, and anticollapses to, a non-
evasive ball with 8 vertices. This in particular implies that this triangulation is
anticollapsible.

By Proposition 4.7 we know that any contractible simplicial complex on 8
vertices in dimension bigger than four has at least one free face. For d = 3 and
d = 4 we considered the dual problem. We looked for 3-dimensional hypertrees and
2-dimensional hypertrees which are collapsible but have no anticollapsing moves
possible and found the following examples given as a list of facets.

Y 2
8 := { [ 1, 2, 3 ], [ 1, 3, 4 ], [ 1, 4, 5 ], [ 1, 5, 6 ], [ 1, 3, 8 ], [ 1, 6, 8 ],

[ 1, 7, 8 ], [ 2, 3, 7 ], [ 3, 4, 6 ], [ 2, 4, 6 ], [ 2, 5, 8 ], [ 2, 6, 7 ], [ 2, 7, 8 ],

[ 3, 4, 7 ], [ 3, 5, 7 ], [ 3, 5, 8 ], [ 4, 5, 8 ], [ 4, 6, 8 ], [ 4, 7, 8 ], [ 5, 6, 7 ],

[ 1, 2, 6 ] };

Y 3
8 := { [ 4, 6, 7, 8 ], [ 2, 5, 7, 8 ], [ 1, 5, 7, 8 ], [ 3, 4, 7, 8 ], [ 2, 4, 7, 8 ],

[ 2, 3, 7, 8 ], [ 1, 3, 7, 8 ], [ 2, 5, 6, 8 ], [ 3, 4, 6, 8 ], [ 1, 4, 6, 8 ], [ 2, 3, 6, 8 ],

[ 1, 3, 6, 8 ], [ 3, 4, 5, 8 ], [ 2, 4, 5, 8 ], [ 1, 3, 5, 8 ], [ 1, 2, 5, 8 ], [ 2, 3, 4, 8 ],

[ 1, 2, 4, 8 ], [ 4, 5, 6, 7 ], [ 3, 5, 6, 7 ], [ 2, 5, 6, 7 ], [ 1, 4, 6, 7 ], [ 1, 3, 6, 7 ],

[ 1, 2, 6, 7 ], [ 1, 4, 5, 7 ], [ 1, 3, 4, 7 ], [ 1, 2, 4, 7 ], [ 3, 4, 5, 6 ], [ 1, 4, 5, 6 ],

[ 2, 3, 5, 6 ], [ 2, 3, 4, 6 ], [ 1, 2, 4, 6 ], [ 1, 3, 4, 5 ], [ 1, 2, 3, 5 ], [ 1, 2, 3, 4 ] };

Figure 4.1: An intermediate step in the construction of Y 8
2 .
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The example Y 2
8 was constructed by hand. For Y 3

8 we implemented the follow-
ing generalization of Kruskal’s algorithm to generate d-dimensional hypertrees on
n vertices and checked collapsiblitiy and d-anticollapsiblity:

1. Begin with the complete (d− 1)-dimensional complex on n vertices.

2. While there are fewer than
(
n−1
d

)
faces do:

(a) Pick σ uniformly at random from among all d-dimensional faces in ∆n−1

not yet considered. If σ does not complete a cycle in the top homology
group with Q-coefficients of the complex so far, add it to the complex.

(b) Otherwise, do not add σ to the complex.

3. Return the complex.

This algorithm is the higher-dimensional analogue of Kruskal’s algorithm for
finding a minimal-weight spanning tree in an Erdős–Rényi random graph process
with weights indexing the random order in which the edges are added. Even though
Kruskal’s algorithm classically refers to an algorithm for finding a spanning tree,
here it makes sense to consider it as an algorithm for generating a random tree. It
is important to note that this algorithm in general will, even in the 1-dimensional
case, not return a uniform spanning hypertree.

The complex Y 3
8 was found by running 10,000 trials of Kruskal’s algorithm. It

was one of two examples generated which was collapsible but not anticollapsible.
A later attempt using Kruskal’s algorithm with 100,000 runs with n = 8 and

d = 2 also yielded an example of a collapsible but not anticollapsible hypertree
which could be used for the base case in place of Y 2

8 .
The collapsibility of Y 2

8 can be proved by hand. The simplicial complex in
Figure 4.1 is a subcomplex of Y 2

8 and is clearly collapsible since the edge [3, 6] is
free and after we enter the square we can easily collapse away all the triangles.
The only thing left to check is that Y 2

8 collapse to this complex but this can also
easily be done in only six collapsing steps. We leave the details to the reader.

Alternatively, the reader may use, for example, the Random Discrete Morse
algorithm implementation in polymake [GJ00] to verify that Y 2

8 and Y 3
8 are col-

lapsible, but are dual to non-collapsible complexes, in particular not a single anti-
collapsing move is possible.

The duals of these two examples and the triangulation of the Dunce Hat in
Figure 2.1 gives us a proof of the following:

Proposition 4.9. There exist simplicial complexes with 8 vertices in dimension
2, 3 and 4 that are anticollapsible, and so in particular are contractible, but with
no free faces.
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∪

Figure 4.2: Construction of Definition 4.10 applied to the Dunce Hat trian-
gulation of Figure 2.1 with 0 as the special vertex.

4.3.2 Induction

We now want to prove the inductive step. That is, given a d-dimensional on n
vertices simplicial complex X, which is anticollapsible and non-collapsible, we want
to construct X ′ which is (d + 1)-dimensional on (n + 1) vertices while still being
anticollapsible and non-collapsible. To do so we need the following construction.

Definition 4.10. Let X be a simplicial complex of dimension d on n vertices
(x1, . . . , xn) and let x := xi be one of them. Given a label a we will denote by Xx,a

the simplicial complex X where the vertex x is labeled by a. We then define:

X1
x = {[a]} ∗Xx,b ∪ {[b]} ∗Xx,a (4.1)

Where ∗ is the join of two complexes. The faces of the join are the union of a face
of the first complex and a face of the second one.

X1
x is a simplicial complex on n + 1 vertices (a, b, x1, . . . , xi−1, xi+1, . . . , xn) of

dimension d+ 1.

This construction has also a nice presentation in the Alexander dual, in partic-
ular there is a bijection between the facets of X∗ and the facets of X1∗

x , where a cell
σ is sent to itself if it does not contain x, otherwise if it is of the form σ = [x, σ′]
it is sent to [a, b, σ′].

We are now going to show that many interesting properties are preserved while
going from X to X1

x, especially those we are interested in: contractibility, non-
collapsibility, and anticollapsibility.

Lemma 4.11. Let X be a d-dimensional simplicial complex with no free faces,
then for any vertex x of X, we have that X1

x has no free faces.

Proof. Let τ be a d-dimensional face of X1
x. There are then three possible cases:
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. a ∈ τ , then τ = [a, τ ′] and τ ′ is a (d − 1)-dimensional face of Xx,b, in
particular it is contained in at least two facets σ and σ′, which implies that
τ is contained in [a, σ] and [a, σ′].

. b ∈ τ , which is exactly the same as above.

. a, b /∈ τ , but this clearly implies that τ is contained in [a, τ ] and [b, τ ], so is
not a free face.

We turn now to discrete Morse theory and, given an acyclic matching on a
simplicial complex X, we would like to lift it to X1

x. We will do this in two steps.
First, recall that, by definition, we have that link(a,X1

x) = Xx,b. Then, since Xx,b

is combinatorially isomorphic to X, we start by lifting the entire matching to the
cells that contain a; i.e. given a matching pair (σ, τ) in Xx,b we add the pair
([a, σ], [a, τ ]) to our newly defined matching in X1

x. We could now be tempted to
do the same with respect to b, but it can be easily seen that in this way we will
obtain something not well defined. Instead what we do is to look at the restriction
of the initial matching to del(x,X) and lift it to the cells that do not contain a.
We describe this construction formally below.

Construction of a matching on X1
x. Given an acyclic matching M on X and

a vertex x, we will call by Mb the same matching on Xx,b. We then construct a
matching M1

x on X1
x in the following way.

Let (σ, τ) ∈Mb be a matching pair with σ ⊂ τ , then:

. ([a, σ], [a, τ ]) ∈M1
x ,

. If b /∈ σ then (σ, τ) ∈M1
x ,

. If b /∈ τ then ([b, σ], [b, τ ]) ∈M1
x .

Lemma 4.12. The matching defined above is acyclic and, if the critical cells of the
matching on X forms a subcomplex Y then, the critical cells of the lifted matching
on X1

x are exactly the cells of Y 1
x .

Proof. First of all, by construction, we immediately obtain that the collection of
edges defined above is a matching.

The fact that it is acyclic follows from the Patchwork Theorem 2.7 where
Q = {0, 1} and the poset map is the map that sends a cell to 1 if it contains a
and to 0 otherwise. This is clearly a well-defined poset map and the matching can
be restricted to the fibers, so proving that our matching is acyclic is equivalent
to proving that the matching restricted to each fiber is acyclic. The matching on
the fiber of 1 is clearly acyclic because it is equivalent to the starting matching on
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X. We need now to check that the matching on the fiber of 0, i.e. the matching
restricted to the cells that do not contain a, is acyclic. We are going to prove this
by contradiction.

Let τ0 ↘ σ0 ↗ τ1 ↘ σ1 · · · ↗ τk = τ0 be a cycle in the directed Hasse diagram
of X1

x, i.e. for each i, (σi, τi) is a pair in the matching while (σi, τi+1) is not a pair
in the matching, but σi is a face of τi+1.

Let τ ′i and σ′i be the restrictions of these cells to the vertices different from b.
By construction we obtain that for each i the pair (σ′i, τ

′
i) is a matched pair in X

or σ′i = τ ′i and equivalently σ′i is a face of τ ′i+1 and is not paired with it or the two
cells are equal.

Then the restriction is still a cycle in X. But since the matching on X is acyclic
we must have that all the restrictions are equal to τ ′0 which is impossible.

Let us now suppose that the critical cells of the matching on X forms a sub-
complex Y .

Let σ be a cell of X1
x, we will show that σ is critical if and only if it belongs to

Y 1
x . To do so we need to analyze various cases separately.

. a ∈ σ. Let us then write σ = [a, σ′]. The following chain of implications is
true:

σ is critical in M1
x ⇔ σ′ is critical in Mb ⇔ σ′ ∈ Yx,b ⇔ σ ∈ Y 1

x .

. a /∈ σ, b ∈ σ. As before let us write σ = [b, σ′] and we obtain the exact same
chain:

σ is critical in M1
x ⇔ σ′ is critical in Mb ⇔ σ′ ∈ Yx,b ⇔ σ ∈ Y 1

x .

. a, b /∈ σ. This last case again follow from a simple chain of implications:
σ is critical in M1

x ⇔ σ is critical in Mb ⇔ σ ∈ Yx,b ⇔ σ ∈ Y 1
x .

We should notice that, while lifting the matching, we do not really need for x
to be a vertex of X or Y . In the case x /∈ Y by Y 1

x we mean, with a slight abuse
of notation, the double cone over Y on the new vertices a and b, and the same
if x /∈ Y . This can be observed if we recall that Y 1

x is a union of {a} ∗ Yx,b and
{b} ∗ Yx,a where Yx,a is the labeled complex resulting from relabeling vertex x as
a, and likewise for Yx,b. The previous lemma is still true in these special cases.

Using this newly constructed matching and simple homotopy theory we are
now able to show that our construction preserves contractibility.

Corollary 4.13. Given a contractible simplicial complex X and any x ∈ X we
have that X1

x is contractible.
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Proof. By [Thm. 21 [Whi39]] any contractible simplicial complex can be reduced
to a point by a sequence of elementary collapses and anticollapses. Let X = X0 ↓
Y1 ↑ X1 ↓ . . . ↓ Yk = {v} be one of such sequences where by Xi−1 ↓ Yi we mean
that Xi−1 collapses to Yi, while by Yi ↑ Xi that Yi anticollapses to Xi. Each step
of these sequences is in particular an acyclic matching on a Xi. We can then use
the lifting of the matching defined above and obtain that for any x ∈ X, X1

x is
homotopy equivalent to (Yk)

1
x. If v = x then (Yk)

1
x is a segment; otherwise, with

the same abuse of notation already discussed, (Yk)
1
x is the union of two segments

attached at one vertex. In both cases (Yk)
1
x is contractible, which means that X1

x

is contractible.

Remark 4.14. It can be shown that for any nonempty complex X, the complex
X1
x satisfies for all i ≥ 0, Hi+1(X1

x) = Hi(X) and H0(X1
x) = 0. Recall that

X1
x = {[a]} ∗ Xx,b ∪ {[b]} ∗ Xx,a. Therefore X1

x is a union of two contractible
complexes whose intersection is del(x,X)∪({a, b}∗link(x,X)). From this a routine
Mayer–Vietoris argument may be applied to show the shift in homology from X
to X1

x. We omit the proof as it isn’t necessary to the discussion of contractible
complexes.

Many other properties of X are also preserved by X1
x, for example non-eva-

siveness. We do not prove it here, but it is easy to check.

Lemma 4.15. Let X be a simplicial complex on n vertices of dimension d without
free faces. If X anticollapses to ∆n−1, then for any vertex x ∈ X, X1

x is a simplicial
complex on n+ 1 vertices of dimension d+ 1 without free faces that anticollapses
to the simplex ∆n.

Proof. The statement follows immediately from the previous lemmas. Notice that,
for any n ∈ N, and any vertex x ∈ ∆n−1, (∆n−1)1

x is combinatorially isomorphic
to ∆n.

Lemma 4.15 is the main inductive tool to prove Theorem 4.1. Namely, Lemma
4.15 tells use that if Theorem 4.1 holds for (n, d) then it holds for (n+ 1, d+ 1).

We almost have the full proof of Theorem 4.1. To finish the proof we will show
that if the theorem holds for (n, 2) then it holds also for (n + 1, 2). Fortunately
this can be easily accomplished by the following proposition.

Proposition 4.16. If X is a simplicial complex on n vertices of dimension d
without free faces that anticollapses to the simplex ∆n−1, then Y obtained from X
by deleting a facet and adding the cone over its boundary is anticollapsible to the
simplex ∆n and has no free faces.

Proof. It is obvious that the complex Y still has no free faces.
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We now check anticollapsiblity. Let v be the new vertex of Y and σ the facet
of X that we have deleted. By construction we can perform the elementary an-
ticollapse ([σ], [v, σ]) and call Y ′ the new complex obtained. We now have that
del(v, Y ′) = X, and since X anticollapses to ∆n−1 we can perform the same anti-
collapsing moves to Y ′ obtaining a new complex Y ′′. Now del(v, Y ′′) = ∆n−1 and
link(v, Y ′′) = σ which are both non-evasive. In particular Y ′′ is non-evasive and
therefore anticollapsible.

From this we immediately obtain Theorem 4.1 as Proposition 4.16 implies that
if Theorem 4.1 holds for (n, 2) then it holds (n + 1, 2), and the Dunce Hat on 8
vertices gives the base case to this induction, and the other cases have already
been proved.

Remark 4.17. The change to a complex described in the proof of Proposition
4.16 is called a bistellar-0 flip or a stacking move. Moves of this type are described
in [Pac87, Pac91].

4.4 Conclusions

A motivation to consider the topic discussed here comes from computational ex-
periments of the previous chapter. Where, examining a random collapse procedure
on simplices of increasing dimension and quite surprisingly it seems, at least em-
pirically, that the probability to get stuck increases exponentially as n→∞. For
example the experiments in table 3.5 showed that in only 12 out of one billion
attempts did a random collapsing sequence fail to reach a single vertex on the 8-
simplex, but on the 16-simplex 4 trials out of 10,000 failed to reach a single vertex.
In the largest example, 46 out of 50 collapsing sequences on the 25-simplex failed.
Here we characterize where a collapsing sequence can get stuck, but the expected
behavior of a random collapsing procedure remains unclear.

Questions about random collapses of the simplex are also related to the ques-
tions about hypertree enumeration. Rather than analyzing random collapses, one
could take a uniform distribution over all d-complexes that the n-simplex can col-
lapse to and ask how many are collapsible. This is a special case of the problem
of enumerating different types of hypertrees. Questions of this type appear to
be quite difficult. For d = 1, there is the well known enumeration commonly
called Cayley’s formula that show that there are nn−2 labeled trees on n vertices.
However, for larger values of d it is not even known how many d-dimensional hy-
pertrees on n vertices there are. The closest we have to an enumeration formula
is the following classic result of Kalai giving a weighted enumeration formula.

Theorem 4.18 (Kalai [Kal83]). For n, d ≥ 1 let Tn,d denote the collection of
d-dimensional Q-acyclic complexes on n vertices with complete (d − 1)-skeleton,
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then ∑
X∈Tn,d

|Hd−1(X)|2 = n(n−2
d ).

This weighted enumeration formula was later extended by Duval, Klivans, and
Martin [DKM09] to the case where the (d − 1)-skeleton need not be complete
in analogy to how Kirchhoff’s Matrix Tree theorem generalizes Cayley’s formula.
Unweighted enumeration remains an open problem, with the best known bounds
given by Linial and Peled [LP19]. In [LP19] the authors conjecture that almost
all d-dimensional hypertrees, with complete (d− 1)-skeleton, are not d-collapsible
for d ≥ 2. Similar conjectures could be made for other properties of hypertrees.
For instance is it true that almost all collapsible d-dimensional hypertrees fail to
be anticollapsible for d ≥ 2?

Our constructions give examples of complexes that are anticollapsible but not
collapsible. Naturally, one could ask for contractible complexes that are neither
anticollapsible nor collapsible. The example C8

3 below is such a complex. This
example was found by using Kruskal’s algorithm to generate 500,000 examples
of 3-dimensional hypertrees on 8 vertices. We point out that for d ≥ 3 any
d-dimensional Z-acyclic hypertree with complete 2-skeleton is necessarily con-
tractible by the Whitehead theorem. In our 500,000 runs C8

3 was one of three
examples that was neither 3-collapsible nor 3-anticollapsible.

C8
3 := { [ 1, 5, 7, 8 ], [ 3, 4, 5, 8 ], [ 1, 2, 6, 7 ], [ 1, 2, 3, 5 ], [ 1, 3, 4, 6 ],

[ 2, 4, 7, 8 ], [ 4, 5, 6, 7 ], [ 2, 3, 7, 8 ], [ 1, 3, 5, 6 ], [ 2, 4, 5, 8 ],
[ 1, 3, 4, 8 ], [ 2, 3, 4, 5 ], [ 1, 2, 4, 6 ], [ 2, 4, 6, 7 ], [ 2, 4, 5, 7 ],
[ 1, 3, 5, 7 ], [ 1, 3, 4, 5 ], [ 2, 3, 6, 7 ], [ 3, 5, 7, 8 ], [ 3, 4, 5, 7 ],
[ 1, 3, 4, 7 ], [ 2, 3, 6, 8 ], [ 2, 3, 4, 6 ], [ 1, 3, 7, 8 ], [ 1, 5, 6, 7 ],
[ 2, 5, 6, 8 ], [ 4, 6, 7, 8 ], [ 1, 5, 6, 8 ], [ 2, 3, 5, 6 ], [ 1, 2, 3, 8 ],
[ 3, 4, 6, 8 ], [ 1, 2, 5, 7 ], [ 1, 2, 4, 8 ], [ 5, 6, 7, 8 ], [ 3, 4, 6, 7 ] }
Non-collapsibility and non-anticollapsiblity for this complex may be verified

using the implementation of the Random Discrete Morse algorithm in polymake.
For both C8

3 and (C8
3)∗ the Random Discrete Morse algorithm returns a Morse

vector with a critical cell in the top dimension.
Even without this example, one can establish that contractible complexes which

are neither collapsible nor anticollapsible must exist. Indeed all possible collapsi-
ble sequences from a complex on n vertices are finite, but deciding if a complex
is contractible is undecidable as it requires deciding if the complex has trivial
fundamental group [Tan16].

While C8
3 was one of only three examples out of 500,000 randomly generated

3-dimensional trees to be contractible but neither anticollapsible nor collapsible,
we suspect that for large n almost all contractible complexes are neither collapsible
nor anticollapsible.
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Random simple-homotopy theory

After having spent some time in the previous chapter on theoretical facts about col-
lapsibility, we now go back to computational aspects. In particular, we implement
an algorithm, RSHT (Random Simple-Homotopy) to study the simple-homotopy
types of simplicial complexes, with a special focus on contractible spaces and on
finding substructures in higher-dimensional complexes. The algorithm combines
elementary simplicial collapses with pure elementary expansions. For triangulated
d-manifolds with d ≤ 6, we show that RSHT reduces to (random) bistellar flips.

Among the many examples on which we test RSHT, we describe an explicit
15-vertex triangulation of the Abalone, and more generally, (14k + 1)-vertex tri-
angulations of Bing’s houses with k rooms, k ≥ 3, which all can be deformed to
a point using only six pure elementary expansions. The material of this chapter
is based on a joint work with Bruno Benedetti, Crystal Lai and Frank H. Lutz
[BLLL21]

5.1 Overview

We propose a simple randomized algorithm to modify triangulations while keeping
the simple-homotopy type of a space. The algorithm can be used as a heuristic
to study simply-connected complexes, or, more generally, complexes whose funda-
mental group has no Whitehead torsion. We shall see that in several contractible
examples the heuristics works very well. The algorithm is also of interest when
applied to manifolds or complexes of arbitrary topology, as we discuss below.

Our work builds on that of Whitehead, who in 1939 introduced a discrete ver-
sion of homotopy theory, called simple-homotopy theory [Whi39]. We recall that
an elementary collapse is a deletion from a simplicial complex of a free face, along
with the face it is contained in. Elementary collapses are deformation retracts, and
thus maintain the homotopy type; the same is true for their inverse moves, ele-
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mentary anticollapses. Two simplicial complexes are of the same simple-homotopy
type if they can be transformed into one another via some sequence of collapses
and anticollapses, called a formal deformation [Whi39]. By a famous result of
Whitehead, having the simple-homotopy type of a point is equivalent to being
contractible [Whi39] and thus undecidable.

In contrast, it is possible to decide algorithmically whether a given complex is
collapsible, even if this decision problem is NP-complete [Tan16]. The advantage of
the collapsibility notion is that all intermediate steps in the reduction are simplicial
complexes of smaller and smaller size, hence very easy to encode and work with.
The drawback is that collapsibility is strictly stronger than contractibility: Many
“elementary” contractible complexes, like the Dunce Hat [Zee64] or Bing’s House
with two rooms [Bin64], are not collapsible.

In 1998, Forman introduced a second way to study contractibility combina-
torially. His Discrete Morse theory [For98, For02] is a tool to reduce simplicial
complexes using a mix of collapses and facet deletions. The advantage is that all
simplicial complexes (contractible or not) can now be reduced to a vertex, possibly
by using a relatively large number of facet deletions. The drawback is that even
if one starts with a simplicial complex, the intermediate steps in the reduction
sequence are typically non-regular CW complexes, and thus harder to handle. By
only focusing on the count of facet deletions (the so-called “discrete Morse vector”)
it is possible to use randomness to produce fast implementations [BL14], but at
the cost of failing to recognize many contractible complexes.

In this chapter, we go back to Whitehead’s original idea, and propose a third
simplification method based on collapses in combination with certain expansions.
Our randomized heuristic Random Simple-Homotopy (RSHT ; see Section 5.3) has
two advantages: First, all intermediate steps are indeed simplicial complexes; and
second, at the moment we do not know of a single contractible complex for which
our heuristics has probability zero to succeed in recognizing contractibility.

Here is the idea. We perform elementary collapses until we get stuck. Then we
select a top dimensional face % uniformly at random, and for all d-faces %′ adjacent
to % via a (d − 1)-dimensional ridge, we check if the subcomplex induced on the
d + 2 vertices of % ∪ %′ is a pure d-dimensional ball. This test is very fast. If for
some %′ the answer is positive, we glue onto our complex the full (d+ 1)-simplex σ
on the vertices of %∪ %′. If for several %′s the answer is positive, we simply choose
one uniformly at random.

This glueing step is called a pure elementary (d + 1)-expansion, and it is also
classical from the topological perspective, compare [HAM93, Chapter I]. After this
step, we may collapse away the newly introduced (d+ 1)-simplex σ together with
any d-face τ of it. To avoid undoing the pure elementary expansion, we must
select a τ that was already present in the complex we got stuck at before the pure

60



5.1. Overview

elementary expansion. This first elementary collapse after the pure elementary
expansion is called “(CC) step” below (see Section 5.3). The combination “pure
elementary expansion + (CC) step”, known in the topological literature as “tran-
sient move” [HAM93], maintains both the dimension and the simple-homotopy
type: In fact, any pure elementary expansion can be viewed as a composition of
back-to-back elementary anticollapses.

Whitehead proved that for every contractible complex there is a formal defor-
mation that reduces it to a single point [Whi39]. It is not known if there is also a
formal deformation to a point in which one performs anticollapses or expansions
“only when stuck”, i.e., only to intermediate complexes without free faces. If this
is true, then indeed any contractible complex would have a positive probability
to be recognized by our heuristics. Of course, we cannot in any case expect any
universal upper bound on the number of elementary anticollapses needed, or else
we would have found an algorithm that recognizes contractibility.

However, we shall see in Sections 5.5 and 5.6 that in many key examples the
number of pure elementary expansions needed is relatively low. As a benchmark
series, we build Bing’s house with k rooms, a one-parameter generalization of the
aforementioned Bing’s house with two rooms. For all k ≥ 3, we prove that Bing’s
house with k rooms can be collapsed by adding only six further tetrahedra, cleverly
chosen (Theorem 5.12). Of course, since our algorithm is randomized, there is
no guarantee that precisely those tetrahedra will be selected as expansions. But
even with a quick attempt consisting of 104 runs, our algorithm is able to reduce
Bing’s house with seven rooms (which is a 2-complex on 99 vertices) to a point by
adding only 41 tetrahedra; see Table 5.1.

Random Simple-Homotopy (RSHT) works with simplicial complexes of arbi-
trary dimension, but it is of particular interest when applied to triangulations of
low-dimensional manifolds. When d ≤ 6, we show (in Theorem 5.8) that on
any (closed) d-manifold RSHT has basically the same effect of performing bistellar
flips, also known as Pachner moves, which are the standard ergodic moves that
allow to transform into one another any two PL homeomorphic triangulations of
the same manifold [Pac87].

In Section 5.6, we discuss how RSHT can be used to reach interesting small
(or even vertex-minimal) triangulations and subcomplexes “hidden” inside trian-
gulated manifolds. For the sake of applications, one should declare right away that
RSHT is designed to focus on the (simple-)homotopy, and not the homeomorphism
type. So in case we start with a collection of points in 10-space, say, which all lie
“approximately” on a Möbius strip, the effect of performing RSHT on the Čech
complex of the point set would be to detect an S1, and not a Möbius strip. Yet,
RSHT is capable of detecting, for example, closed surfaces or higher-dimensional
closed manifolds in data, beyond just determining their homologies.

It takes considerable effort to build examples of contractible complexes for

61



Chapter 5. Random simple-homotopy theory

which RSHT does not practically succeed in revealing contractibility, if interrupted
after a million steps, say. Respective examples, showcased in the last Section 5.6.4
of this chapter, are based on the Akbulut–Kirby 4-spheres [AK85] and triangula-
tions thereof [TL] already used in previous chapters. The homeomorphism type of
these “tangled” triangulations of S4 is notoriously difficult to recognize.

5.2 Pure elementary expansions

Any two simple-homotopy equivalent complexes are homotopy equivalent. The
converse is true for complexes whose fundamental group has trivial Whitehead
group (see [Coh12] or [Mne14] for the definition), but false in general: Coun-
terexamples in dimension two can be obtained by triangulating the cell complexes
in [Lus91], while counterexamples in dimension three or higher had been known
to exist long before [Mil66].

It is an easy consequence of the theory of Gaussian elimination for integer
matrices that the Whitehead group of the trivial group is trivial. Therefore, any
two homotopy-equivalent simply-connected complexes are also simple-homotopy
equivalent. More generally, it is known that the Whitehead group of a group G is
trivial if G is

. Z [Hig40], Z ⊕ Z [BHS64], and more generally, any free Abelian group
[BHS64],

. any of the cyclic groups Z2, Z3, Z4, Z6 [Coh12],

. any subgroup of the braid group Bn [FR00], or of any Artin group of type
An, Dn, F4, G2, I2(p), Ãn, B̃n, C̃n, or G(de, e, r) (d, r ≥ 2) [Rou20];

. any free product of groups listed above, so in particular Z ∗ Z or any free
group [Sta65];

. and further cases [GB07]; in fact, the Farrell–Jones conjecture implies that
any torsion-free group should appear in the present list [LRRV17].

Any two homotopy-equivalent complexes whose fundamental group appears in
the list above are of the same simple-homotopy type.

Whitehead’s work allows us to be more specific on the dimension (although
not on the number) of the intermediate complexes involved in the definition of
simple-homotopy equivalence, as follows. An elementary collapse is called an i-
collapse if the dimension of the two faces removed are i − 1 and i. Similarly, an
i-anticollapse is one that adds a pair of faces of dimension i−1 and i. The order of
a formal deformation will be the maximum i for which i-collapses or i-anticollapses
are involved in the sequence.

Theorem 5.1 (Whitehead [Whi39, Theorems 20 & 21]). Let X and Y be two
homotopy-equivalent simplicial complexes. If the Whitehead group of their funda-
mental group is trivial, then there is a formal deformation from X to Y whose
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order does not exceed max{dimX, dimY }+ 2. If, in addition, Y is a deformation
retract of X, and dimX > 2, then there is a formal deformation from X to Y
whose order does not exceed dimX + 1.

The conjecture that the last statement of the previous theorem might hold
also for the case dimX = 2 goes under the name of “Generalized Andrews–Curtis
conjecture”, and represents a major open problem in combinatorial topology. It
is, however, generally believed to be false [HAM93].

Based on Whitehead’s work, we would now like to perform “random anticol-
lapses”. Yet, if we wish to add a (d+ 1)-dimensional face σ to X in an elementary
anticollapse, then all d-faces of σ need to be present in X already, except for a
single d-face τ . However, it is not difficult to construct contractible d-complexes
X that do not allow any (d + 1)-anticollapses; cf. [LN21]. In these cases, lower-
dimensional faces need to be added first. Computationally, this brings an extra
difficulty to the introduction of a random model. To bypass this difficulty, we
adopt a different set of moves.

Definition 5.2. Let X be a d-dimensional complex. A pure elementary (d + 1)-
expansion is the gluing of a (d+1)-dimensional simplex σ to X in case σ intersects
X in a d-ball.

A pure elementary (d + 1)-expansion combines together in a single move one
(d+ 1)-anticollapse plus all the lower-dimensional anticollapses that have to be
performed first. Hence a sequence of pure elementary expansions and elementary
collapses can be rewritten as a formal deformation. Whenever we run out of
collapsing steps, we perform exactly one pure elementary (d + 1)-expansion, and
then switch back to elementary collapses. When the complex is reduced to a point,
we stop.

5.3 Implementation of random simple-homotopy

Algorithm RSHT provides a description of the Random Simple-Homotopy pro-
cedure in pseudocode. The actual implementation can be found on GitHub at
[Lof21b] as a polymake [GJ00] extension. It is based on the two different types of
basic operations: random collapses (C) and random pure elementary expansions
(E) plus collapsing steps (CC) that ensure that a pure elementary expansion is not
undone immediately by the next regular collapsing step (C). The step (S) allows
facet subdivisions in case no other pure elementary expansions are available.

Random collapses (C) are discussed as part of Random Discrete Morse Theory
in [BL14]. A fast implementation of random collapses in polymake is described
in [JLLT21]. Hence, it remains to implement random pure elementary expan-
sions (E).
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Algorithm RSHT A: Random Simple-Homotopy

Input: simplicial complex X
Output: simplified simplicial complex
while dim(X) 6= 0 and i <max step do

while X has free faces do
(C): perform a random elementary collapse

if dim(X) = d 6= 0 and there are induced pure d-balls on d+ 2 vertices
then

(E): perform a random pure elementary (d+ 1)-expansion
(CC): perform an elementary collapse deleting the newly added

(d+ 1)-face and one of its d-faces that was already in X

else
(S): perform (E) + (CC) on a d-facet with d+ 1 vertices
i++

return X

While collapses in polymake can be carried out fast in the Hasse diagram of X,
there is no explicit implementation in polymake to expand the Hasse diagram of X
to include the faces of a (d + 1)-simplex σ that is added in a pure elementary
expansion. Thus, for every pure expansion we recompute the Hasse diagram for
X+σ and then proceed with random collapses in the new Hasse diagram of X+σ.
For various input examples of non-collapsible, contractible complexes, relatively
few pure expansions are needed (see Sections 5.5 and 5.6); thus the extra cost for
recomputing Hasse diagrams stays low.

Remark 5.3. Pure elementary expansions are not the only operations to modify
a given complex X by expanding it. Another more general possibility would be to
glue additional (d+1)-simplices to X along induced contractible subcomplexes (of
mixed dimension). This provides more options to modify X, but at the price of
having to check subcomplexes for contractibility. As we experienced after running
various experiments, this seems expensive without any advantage. We therefore
decided to stick to pure elementary expansions. In fact, checking whether an
induced subcomplex on d + 2 vertices is a pure d-ball is very fast: It can be
achieved by a lookup in the Hasse diagram.

Remark 5.4. By Whitehead’s Theorem 5.1, we might be forced to first go up
by two dimensions (and not just by one as we do in Algorithm RSHT) to find a
formal deformation from a complex X to some homotopy equivalent complex L.
This could be incorporated in the algorithm by performing not only single pure
elementary (d + 1)-expansions followed immediately by collapses, but by allow-
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Figure 5.1: Expansions as bistellar flips.

ing sequences of pure elementary (d + 1)-expansions followed by pure elementary
(d+2)-expansions before switching back to collapses. In principle, this generalized
procedure could be set up in a simulated annealing fashion, in a completely anal-
ogous way to what we do here; but for the examples we study in the subsequent
Sections 5.5 and 5.6, we shall restrict ourselves to the basic algorithm RSHT, as
this already works well.

5.4 Bistellar flips and artefacts

Pure elementary (d+1)-expansions have (at least for d-manifolds in low dimensions
d ≤ 6) a clear interpretation in terms of bistellar flips. In fact, let X be a d-
complex. In a pure elementary (d+ 1)-expansion, some (d+ 1)-simplex σ is glued
to X along a d-ball consisting of 1 ≤ k ≤ d + 1 of the d-faces of σ; let r be the
intersection of these k faces. If r is contained in no further d-face of X, then
after adding σ, collapsing it away with one of the k d-faces, and collapsing further
lower-dimensional faces, we are left with a complex X ′ that is obtained from X
via a bistellar move; cf. [BL00]. If instead r is contained in more than k d-faces of
X, then in passing from X to X ′ the facet degree of r is decreased by one.

Example 5.5. If we glue a tetrahedron σ to a 2-complex X along a 2-disk in ∂σ,
the disk can either consist of 1, 2, or 3 triangles. In the first case, the complex
X ′ resulting after the collapses is a subdivision of X. (The triangle τ of X is
subdivided using the unique vertex of σ not in X; see Figure 5.1, left.) In the
second case, if r is the edge common to the two triangles of ∂σ in which σ intersects
X and r is contained in exactly these two triangles of X, then r is flipped to yield
X ′; see Figure 5.1. In the third case, the transition from X to X ′ “undoes” a
subdivision.

Example 5.6. Let X be 2-dimensional and let σ be a tetrahedron glued to X
along two triangles whose intersection is r, and suppose that this r is contained in
exactly three triangles of X. Then after the addition of σ and its removal, r will
be contained in two of the triangles of X ′; see Figure 5.2.

If, in a pure elementary 3-expansion, some tetrahedron is glued on top of two
adjacent triangles %1, %2 of a triangulated 2-manifold, then, after collapsing away
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Figure 5.2: Reduction of the face degree.

the tetrahedron together with %1, the resulting triangulation will still contain %2

and (as a free face) the edge e = %1 ∩ %2. This edge e is thus the only free (1-)face;
hence, it will be selected in the incoming (C) step of RSHT. As a result, the
combination (E) + (CC) + (C) is a proper bistellar flip—and the diagonal of the
two initial triangles gets flipped. In the case of a subdivision, the combination
(E) + (CC) is a proper bistellar flip as well. Thus, it remains to inspect the case
when a subdivision is undone. After the addition of a tetrahedron (E) and the
deletion of one of the initial three triangles along with the tetrahedron in the (CC)
step, the other two initial triangles remain, and we have (two) free edges for two
further (C) steps. In contrast to the previous cases, after the two (C) steps, the
resulting triangulation is not a surface yet—as we still have the intersection vertex
of the three initial triangles as a free vertex that is connected to the modified
triangulated surface by an edge. That is, the result of (E) + (CC) + (C) + (C)
is a triangulated surface with an additional edge sticking out. This edge is then
collapsed away in another (C) step.

This situation generalizes as follows:

Lemma 5.7. Let X be a triangulation (without free faces) of a d-manifold M and
suppose that the (d+ 1)-simplex σ = [0, 1, . . . , d+ 1] intersects X in a pure d-ball
B with 1 ≤ k ≤ d + 1 d-facets on the d + 2 vertices 0, 1, . . . , d + 1 of σ so that
(w.l.o.g.) B = [0, 1, . . . , d− k + 1] ∗ ∂[d − k + 2, d − k + 1, . . . , d + 1]. We add σ
(and its faces) to X and, by step (CC) of RSHT, ban those facets of σ as free faces
that do not contain [0, 1, . . . , d− k + 1].

. If k ≤ 7, then running RSHT on X∪σ until no further free faces are available
yields a triangulation X ′ = X − B +B′ of M with

B′ = ∂[0, 1, . . . , d− k + 1] ∗ [d− k + 2, d− k + 1, . . . , d+ 1],

i.e., X ′ is obtained from X by a bistellar flip.
. If k > 7 (which can occur for d > 6 only), then running RSHT on X∪σ until

no further free faces are available might terminate in a non-pure simplicial
complex X ′′ that is the union of a triangulation of M with a contractible, but
non-collapsible lower-dimensional complex on the vertices d− k + 2, d− k +
1, . . . , d+ 1.
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Proof. Step (CC) of RSHT implies that our first collapsing move will remove a facet
ofB along with the added (d+1)-simplex σ. At any consecutive collapsing step (C),
the faces involved in the collapses will be of the form [0, 1, . . . , d−k+ 1]∗ τ , where
τ ∈ ∂[d− k + 2, d− k + 1, . . . , d+ 1] (because our starting complex X had no free
faces). The restriction of the collapsing sequence to ∂[d−k+2, d−k+1, . . . , d+1]
gives us a valid collapsing sequence of the simplex [d− k+ 2, d− k+ 1, . . . , d+ 1],
where the first collapsing move is induced by the initial step (CC). Now:

. If k ≤ 7, the simplex [d − k + 2, d − k + 1, . . . , d + 1] has at most seven
vertices; and by [BD05] every contractible simplicial complex with k ≤ 7
vertices is collapsible, i.e., the collapsing sequence induced by RSHT on
[d − k + 2, d − k + 1, . . . , d + 1] will terminate at a single point. It follows
that X ′ = X − B +B′.

. If k > 7, then the collapsing sequence on [d−k+2, d−k+1, . . . , d+1] might
get stuck on a contractible, but non-collapsible subcomplex of dimension at
least two [CEK+, LN21], and thus the resulting complex X ′′ need not be
pure.

Note that in the special case when d = 7 and k = 8 we might get stuck on
a subcomplex [0] ∗ D ⊆ [0] ∗ ∂[1, . . . , 8], with D an 8-vertex triangulation of the
Dunce Hat; cf. [BL13a]. The resulting complex X ′ = X − B + B′ + [0] ∗D then
deviates from the modification via a bistellar flip, X − B + B′, by the additional
cone [0] ∗D with apex [0] over the (contractible) Dunce Hat D in the 2-skeleton
of ∂[1, . . . , 8]. The complex X ′ = X − B + B′ + [0] ∗ D deformation retracts to
X − B +B′, but has no free faces.

Theorem 5.8 (Reduction of pure elementary (d+1)-expansions to bistellar flips).
Let X be a triangulation of a d-manifold M with d ≤ 6. Any pure elementary
(d+ 1)-expansion followed by collapses (as long as free faces are available) induces
a bistellar flip on X.

Proof. The statement follows from Lemma 5.7 and the fact that the maximum
number of facets of a pure d-ball on d+ 2 vertices is d+ 1.

Corollary 5.9 (Manifold stability). Let X be a (not necessarily pure) simplicial
complex. If we run RSHT on X and at some point reach a simplicial complex X ′

that triangulates a d-manifold with d ≤ 6, then from then on, whenever there are
no free faces in the further run of RSHT, the respective temporary complex X̃ is a
d-manifold as well, and X̃ is bistellarly equivalent to X ′.

To avoid lower-dimensional artefacts [0, 1, . . . , d − k + 1] ∗ N ⊆ [0, 1, . . . , d −
k + 1] ∗ ∂[d− k + 2, d− k + 1, . . . , d + 1] in the modification X ′ = X − B + B′ +
[0, 1, . . . , d − k + 1] ∗ N of a triangulated manifold X, involving a contractible,
non-collapsible complex N for d ≥ 7 and k ≥ 8, we should switch to bistellar flips
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X ′ = X − B + B′ once we know that X is a manifold. Quite often, this is not
clear a priori—in fact, testing whether X is a manifold is an undecidable problem
for d ≥ 6; cf. [JLLT21].

In practice [JLLT21], on a 7-simplex it is nearly impossible to get stuck with
random collapses. On the 8-simplex, only about 0.0000012% of the runs of random
collapses get stuck. But in higher dimensions, the situation changes dramatically:
For example, for the 25-simplex, contractible but non-collapsible substructures are
encountered in 92% of the runs.

Another option to deal with the artefacts would be to run RSHT on lower-
dimensional parts to “melt away” the artefacts. However, in our experiments in
Sections 5.5 and 5.6 we only focus on top-dimensional pure elementary expansions,
since the terminal triangulations of the examples we consider are all of dimension
d ≤ 6.

In case a general complex X has no free faces and is not a manifold, then a
sequence (E) + (CC) + (C) + . . . + (C) until no further collapses are possible
might reduce X in dimension or can reduce (or increase) the degree of a face in
X, as we have seen in Example 5.6 and Figure 5.2. In the latter case, we can
regard the sequence as a generalized bistellar flip. These generalized operations
give flexibility in the modification of a given complex X.

5.4.1 Selection of expansions and simplification of com-
plexes

We next discuss in more detail how the pure elementary expansions are selected
and why Algorithm RSHT has a tendency to simplify simplicial complexes to yield
small or even vertex-minimal triangulations. First, we note that RSHT, apart from
temporarily adding (d+ 1)-faces in the pure elementary expansion steps (E), never
increases the dimension of the complex.

As outlined in the introduction, for any d-facet of a d-dimensional complex X,
chosen uniformly at random, we can check for all neighboring d-facets whether the
induced subcomplexes on the combined d+2 vertices are pure d-dimensional. From
the collection of all available such pure induced d-balls on d + 2 vertices, we pick
one uniformly at random for a pure elementary d-expansion step (E). However, in
general, such pure induced d-balls on d + 2 vertices need not exist. For example,
in the case of neighborly triangulations of surfaces, the induced subcomplexes on
the four vertices of two adjacent triangles are the two triangles plus the opposite
diagonal edge; such subcomplexes are not contractible. In such a case, the only
possible pure elementary expansion is by picking a facet (uniformly at random)
as a pure d-ball and initiating a subdivision (S). An example of a triangulated
3-sphere on 16 vertices that allows no bistellar flips (apart from subdivisions of
tetrahedra) is given in [DFM04].
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Lemma 5.10. Let X be a triangulated circle S1 with n > 3 vertices. Then X is
reduced by Algorithm RSHT to the boundary of a triangle in n−3 pure elementary
expansion steps (E), each followed by two collapsing steps (CC) + (C).

In the case of triangulations of S2 with n > 4 vertices, there always are admis-
sible edge flips, and thus Algorithm RSHT never adds a vertex in a subdivision
step (S). A vertex can get removed in the reversal of a subdivision once the current
triangulation has a vertex of degree 3. However, the boundary of the octahedron
has all of its vertices of degree 4; in fact, there are infinitely many triangulations
of S2 with all vertex degrees at least four. In any such example, the removal of a
vertex is not immediately possible. But after a suitably long sequence of random
edge flips, eventually vertices of degree 3 show up, and the three incident triangles
to such a vertex have the chance to get chosen for an induced pure 2-ball to remove
the vertex of degree 3.

Similarly, general complexes X are simplified and reduced in size by collaps-
ing away collapsible parts and by reversing subdivisions to reduce the number
of vertices—but without a universal guarantee for success (as contractibility is
undecidable).

5.5 Classical examples

In this section, we test how the Algorithm RSHT performs on the Dunce Hat, on
Bing’s House with two rooms, and on similar, “classical” examples of contractible
complexes. It turns out that the number of pure elementary expansions needed to
reduce these complexes to a single vertex is conveniently low: one pure elementary
expansion suffices for an 8-vertex triangulation of the Dunce Hat; five pure ele-
mentary expansions suffice for a simplicial version of Bing’s house with two rooms;
and in general, six tetrahedra are sufficient to collapse Bing’s house with k rooms
(Theorem 5.12). Triangulations of these examples can be found online at the
“Library of Triangulations” [BL21].

5.5.1 The Dunce Hat

The Dunce Hat [Zee64] is the most famous example of a contractible, but non-
collapsible complex; compare [BL13a]. It is obtained by glueing together the three
edges of a single triangle in a non-coherent way. The Dunce Hat can be triangulated
as a simplicial complex with eight vertices (see Figure 5.3a); and eight vertices
is fewest possible, as every contractible simplicial complex on seven vertices is
collapsible [BD05]. No triangulation of the Dunce Hat is collapsible, since there
are no free edges to start with.
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(a) An 8-vertex triangulation
of the Dunce Hat

(b) Anticollapsing the tetra-
hedron 1367.

(c) Collapsing away the tetra-
hedron 1367.

Figure 5.3: A formal deformation of the Dunce Hat.

The Dunce Hat of Figure 5.3a admits two anticollapsing moves, the addition
of the tetrahedron 1245 or alternatively the addition of the tetrahedron 1367. In
Figure 5.3b we added 1367. All of the triangles in 1367 are free, since this is now
the only tetrahedron present. If we collapse away the triangle 367, we recover
the initial complex of Figure 5.3a. If instead we choose to delete the free triangle
136, we obtain the triangulation displayed in Figure 5.3c. This triangulation has
a free edge, 16, that allows us to get rid of the triangle 167. After this elementary
collapse, the edge 17 becomes free, allowing us to remove the triangle 137. But
now the edge 13 is free, and it can easily be seen that the deletion of the triangle
138 paves the way to a full collapse down to a single vertex.

Lemma 5.11. One pure elementary 3-expansion suffices to reduce to a vertex the
8-vertex triangulation of the Dunce Hat from Figure 5.3a.

In 104 runs, RSHT used on average 2.4145 pure elementary 3-expansions to
reduce the 8-vertex Dunce Hat to a point; see Section 5.6.1 and Table 5.1.

5.5.2 The Abalone

The Abalone [HAM93], sometimes called Bing’s House with one room, is another
example of a contractible but non-collapsible complex. We are not aware of any
triangulation of this space in the literature, so we present one, Abalone, with 15
vertices:

1 2 7 1 2 9 1 3 8 1 3 9 1 4 7 1 4 8 1 4 9 2 3 7
2 3 15 2 9 15 3 7 8 3 9 14 3 14 15 4 5 7 4 5 8 4 6 7
4 6 9 5 6 9 5 6 10 5 7 10 5 8 9 6 7 11 6 10 11 7 8 10
7 8 11 8 9 12 8 9 13 8 10 12 8 11 13 8 12 13 9 12 14 9 13 15
10 11 12 11 12 13 12 13 14 13 14 15.
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Figure 5.4: Triangulations Abalone of the Abalone (left) and BH of Bing’s
house with two rooms (right).

Figure 5.4 displays this triangulation, although some diagonals have been omit-
ted for reasons of pictorial clarity. Essentially, the triangulation consists of a mem-
brane (in dark) from which two prismatic tunnels (in light) originate at the two
empty triangles 1 2 3 and 4 5 6; and the tunnels are separated by the highlighted
triangle 8 12 13. The Abalone is contractible as can be seen by filling in the two
tunnels.

RSHT can reduce the Abalone to a point using only three expansions. One way
to do so is to free the edge 8 9 of Figure 5.4 by first adding the three tetrahedra
8 9 12 13, 9 12 13 14, and 9 13 14 15, in this order, as anticollapsing moves. The
resulting complex is then collapsible. This can either be verified by hand, or
via the random discrete morse algorithm implemented in polymake [BL14]: The
three tetrahedra fill in the prism between the triangle 8 12 13 and the (formerly
empty) triangle 9 14 15. By collapsing away this prism, the edge 8 9 becomes free
so that the (dark) membrane around the empty triangle 4 5 6 can be collapsed
away, which frees the tunnel originating at this empty triangle. Its removal then
allows to collapse the remaining disk.

We can interpret the anticollapsing moves followed by collapses as operations
that move the walls of the tunnel so that eventually the obstruction to collapsibility
vanishes.
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5.5.3 Bing’s House with two rooms

Bing’s House with two rooms [Bin64] is an early example of a contractible space
no triangulation of which is collapsible. For our purposes, we triangulate Bing’s
House as a triangular prism with two floors, two tunnels to reach the floors, and
all rectangular walls subdivided into two triangles each. Figure 5.4 displays the
following (small) triangulation BH with f = (19, 65, 47) (with the list of facets
also available online as example BH at [BL21]):

1 2 5 1 2 7 1 3 4 1 3 9 1 4 5 1 7 9 2 3 6
2 3 8 2 5 6 2 7 8 3 4 6 3 4 13 3 8 9 3 9 13
4 5 10 4 6 13 4 10 13 4 12 13 5 6 10 6 10 12 6 12 13
7 8 11 7 8 15 7 9 13 7 9 14 7 10 11 7 10 13 7 14 15
8 9 12 8 9 16 8 11 12 8 11 15 8 15 16 9 12 13 9 14 16
10 11 17 10 12 17 11 12 18 11 15 18 11 17 18 12 17 19 12 18 19
14 15 17 14 16 19 14 17 19 15 16 18 15 17 18 16 18 19.

RSHT is able to reduce Bing’s house to a point by means of five (successive)
expansions (in the upper room, each followed by collapses so that the outer walls
of Bing’s house are moved towards the upper tunnel). Here is a possible strategy.
By successively adding five tetrahedra in the upper room of our Bing’s House tri-
angulation, we fill in a cubical prism between the horizontal square 7–8–11–10 of
the medium floor and the square 14–15–18–17 of the ceiling. The first two tetra-
hedra 7 8 11 15 and 11 15 17 18 can be added independently, and their addition are
proper anticollapsing steps. The third tetrahedron 7 11 15 17 is a pure expansion,
and the addition of the two final tetrahedra 7 10 11 17 and 7 14 15 17 are again an-
ticollapsing steps. The newly introduced cubical prism connects the outer vertical
square 7–8–15–14 with the vertical square 10–11–18–17 of the upper tunnel. The
resulting complex is collapsible; an explicit collapsing sequence proving this claim
is detailed below.

We start from the outside, by perforating the back square 7–8–15–14. Then
we entirely remove the interior of the cubical prism along with the two triangles
7 8 15 and 7 14 15 of the back square and the two triangles 14 15 17 and 15 17 18 of
the top square. The result is an indented Bing’s House triangulation with two new
side triangles 7 10 17 and 7 14 17. But now the edge 1 7 18 has been freed, and we
can use it to collapse away the subdivided squares of the triangulation one by one.
First the square 10–11–18–17 is collapsed away, which frees the edge 10 11. This
edge in turn can be used to remove the horizontal square 7–8–11–10, thus freeing
the edge 78. Next, we remove the squares 1–2–8–7, 2–3–9–8, 1–3–9–7, the vertical
wall 3–4–13–9, then all triangles of the lower floor, then the lower tunnel, to end
up with the indented upper room with empty triangle 10 12 13. This remaining
complex is a triangulated disc and thus collapsible.
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Figure 5.5: Ground floor (left) and room R2 (right) of Bing’s House BH(3)
with three rooms.

5.5.4 Bing’s House with k rooms

A recent example of a non-collapsible, contractible complex is Bing’s House with
three rooms (and thin walls) by Tancer [Tan16]. He introduced the example as
a gadget to prove that the problem of recognizing collapsible complexes is NP-
complete. The basic layout of the example can be found in [Tan16]. Here, we give
an explicit triangulation BH(3); and extend this construction to k rooms, BH(k),
k ≥ 3.

The starting point for the construction of BH(3) is to have a ground floor
with three triangular holes as depicted in Figure 5.5. The floor has the following
triangles:

1 2 5 1 2 15 1 4 6 1 4 10 1 5 7 1 6 7 1 9 11 1 9 14
1 10 12 1 11 12 1 14 16 1 15 16 2 3 5 2 13 15 3 4 6 3 5 6
4 8 10 8 9 11 8 10 11 9 13 14 13 14 15.

Onto the ground floor, we glue three rooms in a coherent way. Room R1 is
glued onto the two regions A and B and uses nine additional vertices from 17 to
25. Room R2, depicted in Figure 5.5, is glued onto the regions B and C and uses
the nine vertices from 26 to 34. Finally, room R3 is glued onto the regions C and
A with further nine vertices ranging from 35 to 43. The rooms R2 and R3 are
cyclic copies of the room R1, where 9 and 18 are added to the vertex-labels 17 to
25 of room R1, respectively. Concretely, the triangles of room R1 are
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1 2 17 1 9 17 2 3 18 2 5 18 2 17 18 3 4 19 3 18 19
4 8 20 4 19 20 5 6 21 5 7 21 5 18 21 6 7 22 6 21 22
7 21 23 7 22 23 8 9 24 8 20 24 9 17 25 9 24 25 17 18 21
17 20 22 17 20 24 17 21 23 17 21 23 17 24 25 18 19 21 19 20 22
19 21 22.

Those of room R2 are

1 2 26 1 4 26 2 13 33 2 26 34 2 33 34 4 8 27 4 10 27
4 26 27 8 9 28 8 27 28 9 13 29 9 28 29 10 11 30 10 12 30
10 27 30 11 12 31 11 30 31 12 30 32 12 31 32 13 29 33 26 27 30
26 29 31 26 29 33 26 30 32 26 31 32 26 33 34 27 28 30 28 29 31
28 30 31,

and those of room R3 are

1 4 35 1 9 35 2 3 38 2 13 37 2 37 38 3 4 42 3 38 42
4 35 43 4 42 43 9 13 36 9 14 36 9 35 36 13 36 37 14 15 39
14 16 39 14 36 39 15 16 40 15 39 40 16 39 41 16 40 41 35 36 39
35 38 40 35 38 42 35 39 41 35 40 41 35 42 43 36 37 39 37 38 40
37 39 40.

The three rooms R1, R2, and R3 are then all glued to the upper side of the
ground floor. Since the vertices of the upper layer of a room are distinct from the
vertices of the upper layers of the other two rooms, there is no conflict for the
chosen gluing to the same side. To enter the interior of a room, one has to first
pass through the tunnel from above of the room to the left, before the room itself
can be entered from below through the lower left empty triangle.

The previous construction can be generalized to create Bing’s Houses BH(k)
with k rooms, k ≥ 3. Instead of just three regions, start with k regions that have
a triangular hole each, cyclically arranged around a central vertex 1 on the ground
floor, and attach to it k rooms, R1, . . . , Rk, in a coherent way, as before. The
resulting triangulation has face vector

f = (14k + 1, 50k, 36k).

A C++-implementation BH k.cc to generate the examples BH(k) along with
explicit triangulations BH 3, BH 4, and BH 5 can be found online at [BL21].

Our next result highlights that in terms of simple-homotopy theory, BH(k) is
easy to understand.

Theorem 5.12. For any k ≥ 3, Bing’s House with k rooms, BH(k), can be
formally deformed to a point using only six pure expansions.

Proof. Since the rooms R1, . . . , Rk are all identical, we extend to BH(k) the la-
belling scheme that we used for the ground floor and the rooms of BH(3). First
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we do all the expansions in room R1. By adding the following six tetrahedra

2 3 5 18, 3 5 18 19, 5 18 19 21, 3 5 6 19, 5 6 19 21, 6 19 21 22

we fill in the cubical prism between the horizontal square on the vertices 2–3–6–5 of
the main floor and the horizontal square on the vertices 18–19–22–21 of room R1’s
ceiling. We may now start the collapsing sequence from the outside. We perforate
the back square 2–3–19–18 and then remove the whole interior of the prism, along
with the back square 2–3–19–18 and the horizontal square 18–19–22–21 of the
ceiling. Now the edge 21 22 is free. Thus, we can proceed exactly as for Bing’s
House with two rooms: We collapse away the squares 5–6–22–21 and 2–3–5–6, in
this order. But now the edge 23 is free; so we can use it to collapse away room
Rk. By induction, we can thus collapse all the rooms one by one.

How does this compare with the experimental results? In 104 runs, RSHT
was always able to reduce Bing’s house with three rooms, BH(3), to a point,
using on average about 148 additional tetrahedra. In the “best run”, only 12
additional tetrahedra were used. For Bing’s house with k rooms, BH(k), 4 ≤
k ≤ 7, in 104 runs, even in the best case, RSHT tends to perform a growing
number of expansions; see Table 5.1. This growing number of used tetrahedra is
not surprising, due to the probabilistic model that we used: When selecting from
more rooms, the number of options for possible expansions gets larger. So if we
keep the number of rounds fixed, the chances to pick the cleverest sequence of pure
expansions will get thinner.

5.6 Experiments on various topologies and sub-

structures

In this section, we explore how our algorithm RSHT performs for further interest-
ing simplicial complexes, whether contractible or not. All timings were taken on
an Intel(R) Core(TM) i7-4720HQ CPU with 2.60 GHz and 16 GB RAM.

5.6.1 Contractible, non-collapsible complexes

Table 5.1 lists the number of expansions used for the Dunce Hat and Bing’s
Houses described in the previous section, as well as for the contractible complex
two optima of [ABL17] and for some knotted balls [Lut04, BL13b]. Furch’s knot-
ted 3-ball is the only example in this set for which the runtime is not negligible.
In fact, due to the large number of expansions required, it took an average of 85
seconds to complete one round of the algorithm for this 3-ball.
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Table 5.1: RSHT run for a selection of contractible, non-collapsible complexes from
[BL21].

complex f -vector rounds # expansions # expansions
(minimum) (mean)

Dunce hat (8, 24, 17) 104 1 2.4145

Abalone (15, 50, 36) 104 3 32.4156
Bing’s House (19, 65, 47) 104 5 58.0964

Bing’s House 3 rooms, BH(3) (43, 150, 108) 104 12 147.9727
BH(4) (57, 200, 144) 104 15 167.7727
BH(5) (71, 250, 180) 104 27 195.8890
BH(6) (85, 300, 216) 104 34 221.2596
BH(7) (99, 350, 252) 104 41 244.5763

two optima (106, 596, 1064, 573) 103 1 7.050

Knotted balls

Furch’s knotted ball (380, 1929, 2722, 1172) 103 1459 1949.950
double trefoil ball (15, 93, 145, 66) 103 1 29.600
triple trefoil arc (17, 127, 208, 97) 103 6 94.678

The explanation of Table 5.2 is as follows. If one starts with a single d-simplex,
with 8 ≤ d ≤ 15, and one tries to collapse it down to a point, sometimes one gets
stuck in contractible, non-collapsible complexes of intermediate dimension [LN21].
For each initial d-simplex we recorded 10 such examples, and on each one of these
10 examples we let RSHT run for 103 rounds. In each of the rounds, RSHT was
able to reduce the respective examples to a point: In columns three and four of
Table 5.2, we recorded the minimal and average numbers of expansions used. With
the increase of the dimension, the runtime started to become an issue. For the
largest examples, with d = 15, it took on average around 25 seconds to complete
one round.

5.6.2 Submanifolds and non-manifold substructures in
manifolds

If we remove a facet from a triangulation of the d-dimensional sphere Sd, the
resulting simplicial complex is a triangulated d-ball, and thus has the simple-
homotopy type of a point by Whitehead’s Theorem 5.1. In case the initial d-
manifold Md is not a sphere, the removal of a simplex from a triangulation yields
a simplicial complex that, depending on Md, may deform to a submanifold or to
a non-manifold substructure in Md. Table 5.3 provides results for some classical
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Table 5.2: RSHT run for contractible, non-collapsible complexes obtained when trying
to collapse a d-simplex.

d # examples × # rounds # expansions # expansions
(minimum) (mean)

8 10× 103 1.0 1.9310
9 10× 103 1.0 3.6845

10 10× 103 1.0 8.4502
11 10× 103 1.1 7.6552
12 10× 103 2.5 29.4564
13 10× 103 1.2 38.3988
14 10× 103 7.9 174.7835
15 10× 103 36.3 205.1362

Table 5.3: RSHT run for manifold triangulations minus a facet.

initial complex initial f -vector resulting complex resulting f -vector

RP 3 [Wal70] (11, 51, 80, 40) RP 2 (6, 15, 10)
RP 4 [Lut99, Ch. 3] (16, 120, 330, 375, 150) RP 3 (11, 51, 80, 40)
CP 2 [KB83] (9, 36, 84, 90, 36) S2 (4, 6, 4)
HP 2 [BK92] (15, 105, 455, 1365, 3003, S4 (6, 15, 20, 15, 6)

4515, 4230, 2205, 490)

Poincaré 3-sphere [BL00] (16, 106, 180, 90) Z-acyclic 2-complex (10, 40, 31)

examples: Starting with the vertex-minimal triangulation of RP 3 with 11 vertices,
and removing a facet, in 104 runs of RSHT it took on average 25.2510 expansions
to reach the 6-vertex triangulation of RP 2. From RP 4 to RP 3 it took 885.5957
expansions. From CP 2 to S2 no expansions were used around half of the times;
the average number of expansions needed was 2.3543. Finally, it took 30.0784
expansions to reach S4 from HP 2. For the Poincaré homology 3-sphere [BL00],
the RSHT algorithm found a 2-dimensional Z-acyclic 2-complex on 10 vertices (the
boundary of the identified dodecahedron) using 2031.732 expansions in less than
two minutes per run.

The 3-dimensional lens spaces L(p, q), introduced by Tietze [Tie08], are well-
known topological spaces with torsion in homology. Starting from triangulations
of the 3-manifolds L(p, 1) [BS93, Lut03a] for p ≥ 3, we aimed for small triangu-
lations of 2-dimensional simplicial complexes that still have p-torsion. (The case
p = 2 has been already considered, since L(2, 1) = RP 3.) The table in the top
left of Figure 5.6 gives the f -vectors of these smaller complexes; Figure 5.6 (a)–
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torsion f -vector
Z3 (8, 24, 17)
Z4 (8, 26, 19)
Z5 (9, 32, 24)
Z6 (9, 33, 25)
Z7 (9, 34, 26)
Z8 (9, 35, 27)
Z9 (9, 36, 28)
Z10 (9, 36, 28)
Z11 (10, 42, 33)
Z12 (10, 42, 33)
Z13 (10, 43, 34)
Z14 (11, 50, 40)
Z15 (11, 50, 40)

(a) Complex d2 n8 3torsion with 3-torsion.

(b) Complex d2 n8 4torsion with 4-torsion.

(c) Complex d2 n8 5torsion with 5-torsion.

Figure 5.6: Small substructures with p-torsion of the lens spaces L(p, 1).

(c) shows resulting small triangulations d2 n8 3torsion, d2 n8 4torsion, and
d2 n8 5torsion (with facets lists available at [BL21]) with torsion Z3, Z4, and
Z5, respectively. The example d2 n8 3torsion has the combinatorial symmetry
(2, 3)(4, 8)(6, 7); the example d2 n8 4torsion has symmetry (1, 2)(4, 6)(7, 8). In
(b), the obtained complex is the union of an 8-vertex triangulation of the pro-
jective plane and a Möbius band. The complex d2 n8 5torsion origins from a
triangulated disk by identifications highlighted in blue and red.

The following natural problem is open for p ≥ 3:

Question 5.13. What is the minimal number of vertices nmin(p) for a simplicial
2-complex with p-torsion?

An earlier construction of a 2-dimensional simplicial complex with 3-torsion as
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Table 5.4: RSHT run for triangulations of sphere products minus a facet.

initial complex initial f -vector resulting complex size of the resulting complex

S2 × S1 (12, 48, 72, 36) S2 ∨ S1 ∂∆3 ∪X1(3.5382)
S3 × S1 (15, 75, 150, 150, 60) S3 ∨ S1 ∂∆4 ∪X1(7.7617)
S2 × S2 (16, 84, 216, 240, 96) S2 ∨ S2 ∂∆3 ∪ ∂∆3

S3 × S2 (20, 130, 420, 710, 600, 200) S3 ∨ S2 ∂∆4 ∪X2(11.5460)

a sum complex on eight vertices is by Linial, Meshulam and Rosenthal [LMR10].
Their example is based on the following collection of subsets of Z8:

X{0,1,3} = {σ ⊂ Z8 : |σ| = 3,
∑
x∈σ

x ≡ 0, 1 or 3 (mod 8) }.

This complex has complete 1-skeleton and face vector f = (8, 28, 21). Three edges
of the complex are free, and after collapsing the respective triangles we reach a
2-complex with f = (8, 25, 18), which still has one triangle and one edge more than
the example d2 n8 3torsion. By runninng RSHT on the triangulation with 18
triangles repeatedly, we again reach d2 n8 3torsion—or a second non-isomorphic
triangulation with the same f -vector that is obtained from d2 n8 3torsion by
flipping the edge 1–5.

Conjecture 5.14. The examples d2 n8 3torsion and d2 n8 4torsion have com-
ponentwise minimal f -vectors for complexes with 3- and 4-torsion, respectively.

In the description of the torus S1×S1 as a square with opposite edges identified,
the removal of the interior of the identified square yields the wedge product S1∨S1

of two circles S1 that are glued together at a point. In general, if we remove a facet
from a triangulation of a sphere product, the resulting complex is simple-homotopy
equivalent to the wedge product of the constituting spheres. In the case of S2×S1,
the wedge product S2 ∨ S1 is of mixed dimension. Since in the implementation
of RSHT our focus is on the top-dimensional faces, RSHT is not further touching
lower-dimensional parts once these are reached via collapses. Thus, the resulting
triangulations of S2∨S1 are of the form ∂∆3∪X1, consisting of the vertex-minimal
triangulation of S2 as the boundary complex ∂∆3 of a 3-simplex ∆3 union a 1-di-
mensional complex X1.

Depending on the intersection of X1 with ∂∆3, X1 either is a path (a 1-dimen-
sional ball) or a loop (a 1-sphere S1). For a unified description in Table 5.4, we
write X1(4.5382) to point out that X1 has (in 104 runs of RSHT) on average 4.5382
edges. Table 5.4 gives results for further sphere products, where for the lower-
dimensional parts the average number of facets are listed. The initial triangulations
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Table 5.5: RSHT run for triangulations of products of surfaces.

initial complex initial f -vector resulting complex resulting smallest
f -vector

T × I (77, 511, 854, 420) T (7, 21, 14)
g2 × I (121, 929, 1586, 780) g2 (9, 32, 24)
g5 × I (253, 2183, 3782, 1860) g5 (12, 60, 40)
g6 × I (297, 2601, 4514, 2220) g6 (13, 69, 46)
g10 × I (473, 4273, 7442, 3660) g10 (18, 108, 72)
g50 × I (2233, 20993, 36722, 18060) g50 (51, 683, 534)

of the sphere products in Table 5.4 are produced via product triangulations of
boundaries of simplices [Lut03b].

In a separate experiment, we started with a triangulation of S1 with 10 ver-
tices and with a triangulation of S2 with 100 vertices as the boundary com-
plex of a random simplicial 3-polytope, for which 100 points on the round 2-
dimensional sphere were chosen randomly via the rand sphere client of the soft-
ware system polymake [GJ00]). The initial triangulation of S2 × S1 has face-
vector f = (1000, 6880, 11760, 5880). It took RSHT an average of 1108.23 expan-
sions, in 102 runs, to reduce the triangulation (minus a facet) to a triangulation
∂∆3∪X1(21.76) of the wedge product S2∨S1. We repeated the same experiment,
but this time applying 200, 000 preliminary random bistellar edge flips to the 100-
vertex triangulation of S2, before taking the sphere product. The results of this
experiment are similar to the one before (though with a slightly higher average
number of expansions). This suggests that RSHT may be reliable even for larger
complexes.

5.6.3 Dimensionality reduction

“Finding meaningful low-dimensional structures hidden in their high-dimensional
observations” [TDSL00] is a major theme in analyzing higher-dimensional data
of various origins. Usually, the data is given as a finite set of points in some
Euclidean or metric space and is then often transformed to (higher-dimensional)
simplicial complexes via taking Čech complexes or Vietoris–Rips complexes. Here,
we did not start with explicit data sets, but instead “hid” a (closed) surface in a
higher-dimensional product as another model to test RSHT on.

Starting with the standard 7-vertex triangulation T of the torus, we first took
connected sums of T to create surfaces of higher genus gk, k ≥ 2. Then we took
the cross product gk × I of gk with an interval (subdivided into 10 edges on 11
vertices), and reduced the resulting triangulation of the cross product with RSHT.
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In every single one out of 102 runs, the product gk × I gets reduced back to a
small or even vertex-minimal triangulation of the original surface of genus gk, as
displayed in Table 5.5. In a second experiment, we performed 200, 000 random
edge flips to “randomize” the surfaces gk; then, we took cross products with the
10-edge interval I. Again, in 102 runs of RSHT, we always achieved the respective
f -vectors of Table 5.5.

In a final experiment, we started with the triangulation of the surface g50

from before, but this time we added 100 vertices in subdivision steps before per-
forming the 200, 000 random edge flips. We then took again the cross prod-
uct with the interval I to get a randomized triangulation of g50 × I with f =
(2728, 24278, 42212, 20760). We then took another cross product of this 3-manifold
with boundary with the 4-simplex ∆4. The resulting complex is 7-dimensional with
around 34 million faces and face vector

f = (13420, 386630, 2446620, 6910210, 10432052, 8786210, 3909060, 718200).

In less than an hour and by using a few thousand expansions, in each out of 102

runs of RSHT, we were able to reduce this complex back to a triangulation of
the 2-dimensional orientable surface of genus 50 with fewer than 60 vertices. In
some cases we were even able to reach the same f -vector with 51 vertices as in
Table 5.6c. Due to memory constraints that come from the computation of the
Hasse diagram of the starting complex (requiring around 10 GB of RAM for this
example), this was the largest complex that we were able to study.

5.6.4 Akbulut–Kirby 4-spheres

As stated early on, contractibility is, in general, undecidable. However, it takes
considerable effort to pose challenges to RSHT. A notoriously hard series of com-
plexes is given by the triangulations of the Akbulut–Kirby 4-dimensional spheres
[TL]. These PL-triangulated standard 4-dimensional spheres are built in an in-
tricate way via non-trivial presentations of the trivial group as their fundamental
group [AK85]. By Pachner’s theorem, these examples are bistellarly equivalent to
the boundary of the 5-simplex, and by Whitehead’s theorem, the examples minus
a facet are simple-homotopy equivalent to a single vertex. However, establishing
connecting sequences of bistellar flips failed in [TL], beyond the first easy exam-
ples of the series. Indeed, here RSHT made no progress either, even when we set
max step = 1,000,000 and waited for a total runtime of 60 hours.
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Chapter 6

Hadamard matrix torsion

In this chapter, we construct in quadratic time Θ(n2) a series HMT(n) of

2-dimensional simplicial complexes with torsion H1(HMT(n)) = (Z2)(
k
1)×(Z4)(

k
2)×

· · · × (Z2k)(
k
k), |H1(HMT(n))| = |det(H(n))| = nn/2 ∈ Θ(2n logn), where the con-

struction is based on the Hadamard matrices H(n) for n ≥ 2 a power of 2, i.e.,
n = 2k, k ≥ 1. The examples have linearly many vertices, their face vector is
f(HMT(n)) = (5n− 1, 3n2 + 9n− 6, 3n2 + 4n− 4).

Our explicit series with torsion growth in Θ(2n logn) improves a previous con-
struction by Speyer [Spe] with torsion growth in Θ(2n), narrowing the gap to the
highest possible asymptotic torsion growth in Θ(2n

2
) proved by Kalai [Kal83] via

a probabilistic argument. The material of this chapter is based on a joint work
with Frank H. Lutz [LL21].

6.1 Overview

The most elementary way to build a two-dimensional CW complex with torsion
Zr in the first integer homology starts out with a single polygonal disc with r
edges, r ≥ 2, that are all oriented in the same direction and jointly identified. The
resulting CW complex has one vertex, one edge, and one two-dimensional face—it
has homology H∗ = (Z,Zr, 0).

Definition 6.1 (Matrix Disc Complexes). Let M = (Mij) be an (m× n)-matrix
with integer entries. Let the set of two-dimensional matrix disc complexes
DC(M) associated with M comprise the CW complexes constructed level-wise in
the following way:

. Every complex in DC(M) has a single 0-cell (with label 0 in the following).

. The 1-skeleton of a complex in DC(M) has an edge cycle aj for every column
index j ∈ {1, . . . , n} of the matrix M .
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Chapter 6. Hadamard matrix torsion

Figure 6.1: Klein bottle on the left and a pinched RP 2 on the right, both obtained
from the matrix M = (2 2).

. Every row i of M with row sum si = |Mi1| + . . . + |Min|, i ∈ {1, . . . ,m},
contributes a polygonal disc with si edges. For every positive entry Mij, Mij

edges of the disc are oriented coherently and are assigned with the label aj.
In the case of a negative entry, the direction of the corresponding edges is
reversed; in the case of a zero-entry, the respective edge does not occur.

Example 6.2. The (1×1)-matrix M = (r) yields a single disk with the r identified
edges all oriented in the same direction—the elementary construction from above.

Example 6.3. Let us now consider M = (2 2) with one row. The examples in
DC(M) have two cycles, a1 and a2, and a single disc with edges 2a1 + 2a2. There
are two choices for the edge sequences of the disc, either a1a1a2a2 or a1a2a1a2.
In the first case, the resulting CW complex is the Klein bottle (Figure 6.1, left),
in the second case, we obtain a pinched real projective plane RP 2 (Figure 6.1,
right). While the Klein bottle is a manifold, the latter example is not—thus the
two examples in DC(M) are not homeomorphic to each other.

Lemma 6.4. The examples in DC(M) all have the same integer homology H∗.

Proof. The examples DC(M) all have a single vertex only and therefore are con-
nected, respectively. For every representative C ∈ DC(M) it thus follows that
H0(C) = Z. Each edge of C is a cycle, i.e., the first homology group H1(C) of C
is determined by the n rows of M as relations, and therefore H1 coincides for all
the examples in DC(M). Further, the second homology H2 of any representative
C is simply the kernel of the matrix M .

Example 6.5 (Projective plane). For the (2 × 2)-matrix H(2) =

(
1 1
1 −1

)
we

have two discs with edges a1a2 and a1a
−1
2 , as in Figure 6.2 on the left. If we glue

together the two discs along the common edge a2, as in Figure 6.2 on the right,
we obtain a single disc with two (identified) edges a1a1, the standard scheme for
the real projective plane RP 2 with homology H∗ = (Z,Z2, 0).
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6.2. Preliminaries

Figure 6.2: RP 2 as a CW complex with two disks.

A simple consequence of the proof of Lemma 6.4 is that if M is a square matrix
with det(M) 6= 0, then |H1(C)| = |det(M)| for any example C ∈ DC(M). Our
goal in the following is to construct triangulations of CW-complexes C ∈ DC(M)
as abstract simplicial complexes with few vertices, in particular, for square matrices
M with large determinant, yielding simplicial complexes with huge torsion.

Kalai proved in [Kal83] that, asymptotically, there are Q-acyclic simplicial com-
plexes on n vertices with torsion growth in Θ(2n

2
), and that this is the maximal

possible growth. Recently, Newman [New19] showed, via a randomized construc-
tion, that any abelian group G can be obtained as torsion of a simplicial complex
with Θ(log(|G|) 1

2 ) vertices. Explicit classes of Q-acyclic simplicial complexes were
provided by Linial, Meshulam and Rosenthal [LMR10], called sum complexes,
however, without control on the torsion growth.

The overall approach in this chapter is inspired by a construction of Speyer
[Spe] of 2-dimensional Q-acyclic simplicial complexes on Θ(n) vertices with ex-
ponential torsion growth Θ(2n), corresponding to particular square matrices M
of size Θ(n)×Θ(n); see Section 6.2.2. For general matrices M , a first (elemen-
tary) triangulation approach for associated complexes C ∈ DC(M) is given in
Section 6.2.1.

Starting with Hadamard matrices H(n), we give an explicit construction in
quadratic time Θ(n2) that achieves torsion growth Θ(2n logn); see Section 6.3.

6.2 Preliminaries

In this section, we first give a (straight-forward) procedure to triangulate a general
complex C ∈ DC(M) for some given integer (m × n)-matrix M = (Mij). After-
wards, we discuss basic facts about Hadamard matrices H(n) that will be used in
the main Section 6.3, where we introduce an improved triangulation scheme for
the complexes corresponding to these square matrices to obtain our torsion growth
bound Θ(2n logn).
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Chapter 6. Hadamard matrix torsion

6.2.1 A first triangulation procedure

Given some (m × n)-matrix M = (Mij), i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, the
complexes C ∈ DC(M) are 2-dimensional CW complexes with a single vertex
(with label 0), m cycles aj, j ∈ {1, . . . , n}, corresponding to the column indices,
and a disc for every non-zero row of M . In the following, we assume that M
has no zero columns and rows. (In case rows appear multiple times, we saw by
Example 6.3 that different choices for the edge sequences can yield different gluings
of the discs.)

When we subdivide a CW complex C to obtain a triangulation of it as an
abstract simplicial complex K, we have to ensure that K has no loops and no
parallel edges:

. The only vertex 0 of C is kept as vertex 0 in K.

. Each cycle aj, j ∈ {1, . . . , n}, is triangulated by using two extra vertices,
v1
j and v2

j .

. We next triangulate the m discs corresponding to the m rows of M . For each
row i ∈ {1, . . . ,m}, the respective disc is an si-gons for si = |Mi1|+. . .+|Min|.

Into each si-gon we place a d3
2
sie-gon using d3

2
sie new vertices cki , k ∈

{1, . . . , d3
2
sie}. The inside of the d3

2
sie-gon can be triangulated arbitrarily

by consecutively adding diagonals. The annulus between the inner d3
2
sie-gon

and the outer si-gon is triangulated by connecting any inner vertex with
three consecutive vertices of the si-gon, creating a cone, and then filling the
remaining gaps with triangles. In particular, we choose a starting vertex on
the si-gon and a direction, and we connect c1

i with the starting vertex and
the two consecutive ones. Next, we connect c2

i with the last vertex to which
we connected c1

i and then to the consecutive two vertices. We continue like
this till we reach the last vertex of the d3

2
sie-gon which will be connected

with the starting vertex again (be careful, this last vertex could be connected
with only two vertices of the outer si-gon instead of three). See Figure 6.3
for an example on how to fill the inside.

Remark 6.6. In many examples, we could actually triangulate the polygonal discs
with fewer vertices than according to the above procedure. However, improvements
will depend on the concrete entries of the given matrix.

Since all the polygonal discs are triangulated in a way such that no two discs
share an interior edge we have that the homology of the constructed simplicial
complex K is the same as that of the original CW complex C.
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6.2. Preliminaries

In the following proposition on triangulations of matrix disc complexes we use
the Smith Normal Form of a matrix M , so before the proposition, let us remember
the definition.

Definition 6.7. (Smith [Smi61]) Let M be a nonzero (m × n)-matrix over a
principal ideal domain. There exist invertible (m × m)- and (n × n)-matrices S
and T , respectively, such that M = SAT and

A =



α1 0 . . . 0
0 α2 0 . . . 0
... 0

. . . 0 . . . 0
...

... 0 αr
0

. . .

0 0 . . . 0


,

where αi |αi+1 for all 1 ≤ i < r. A is called the Smith Normal Form of M .

Proposition 6.8. Given an (m × n)-matrix M and A = (αi) its Smith Normal
Form, there is a 2-dimensional simplicial complex K on V (K) vertices with

V (K) ≤ 2n+m+ 1 +
3

2

∑
i,j

|Mij|.

Furthermore,
H1(K) = Z/α1Z× · · · × Z/αrZ× Zn−r.

Proof. Let M be an (m × n)-matrix, C ∈ DC(M), K a triangulation of C as
described above, and si = |Mi1|+ · · ·+ |Min|. We easily see that

m∑
i=1

⌈
3

2
si

⌉
≤ m+

3

2

∑
i,j

|Mij|.

For the number of vertices V (K) of K we obtain the bound

V (K) = 1 + 2n+
m∑
i=1

⌈
3

2
si

⌉
≤ 2n+m+ 1 +

3

2

∑
i,j

|Mij|,

with 1 vertex for the original vertex of C, 2n vertices to triangulate the n cycles,
and

∑m
i=1

⌈
3
2
si
⌉

interior vertices in the m discs. Since M is the boundary matrix
for the homology of K, the homology of K is represented by the Smith Normal
Form A of M .

Remark 6.9. Given a square matrix M with det(M) 6= 0, it follows by Proposi-
tion 6.8 that for the simplicial complex K associated with M , |H1(K)| = |det(M)|.
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6.2.2 Speyer’s construction

Speyer [Spe] provided a construction to produce 2-dimensional Q-acyclic simplicial
complexes for which the size of the torsion grows exponentially in the number of
vertices.

Let k ≥ 2 be an integer and k = γm2m + γm−12m−1 + . . . + γ020 be its bi-
nary expansion, with leading coefficient γm = 1 and otherwise γi ∈ {0, 1} for all
0 ≤ i ≤ m− 1. An ((m+1)×(m+1))-matrix M(k) is constructed in the following
way:

. The first row contains the entries (−1)iγm−i for i ∈ {0, . . . ,m}.

. The lower part of the matrix M(k) is an (m × (m + 1))-matrix with 1’s on
the first diagonal followed by 2’s on the diagonal to the right, and all other
entries equal to zero. It is then easy to see that det(M(k)) = k.

Using Proposition 6.8, there is a 2-dimensional simplicial complex K on V (K) ≤
3(m+ 1) + 1 + 3

2
(3m+ (m+ 1)) ≤ 9m+ 6 vertices corresponding to M(k) that has

torsion of size k. Since the number of vertices is linear in m, the torsion k grows
exponentially in the size n = m+ 1 of the matrix, i.e., k ∈ Θ(2n).

Example 6.10. For an explicit example, we consider k = 11 = 8 + 2 + 1 with

M(11) =


1 0 1 −1
1 2 0 0
0 1 2 0
0 0 1 2

 .

Figure 6.3 displays a triangulation K(11) of a representative C ∈ DC(M(11)) with
29 vertices that has torsion Z11.

Remark 6.11. In case k is prime, the torsion of complexes corresponding to the
matrix M(k) is cyclic, but in general it is a product of the factors in the Smith
Normal Form of M(k).

As already pointed out in Remark 6.6, also in this particular example K(11) we
could save on the number of vertices necessary for the triangulation of the interiors
of the polygonal discs. However, it is open what the minimum number of vertices
is for a re-triangulation of K(11).

6.2.3 Hadamard matrices

In our quest to construct 2-dimensional simplicial complexes with few vertices but
high torsion via matrices, Hadamard matrices are of particular interest. In fact,
Hadamard matrices were used earlier in geometry for extremal constructions; see
for example [HKL96] and [Zie00].
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6.2. Preliminaries

Figure 6.3: The four subdivided triangles of the complex K(11) of Example 6.10. In
the upper left part of K(11) we highlighted the five cones of inner vertices with respect
to the subsequences of three boundary vertices.

Definition 6.12. A Hadamard matrix H is a square (n×n)-matrix whose entries
are either +1 or −1 and whose rows are mutually orthogonal.

Hadamard matrices H have in common that their determinants attain the
Hadamard bound, |det(H)| = n

n
2 . In general, |det(M)| ≤ n

n
2 for any integer

(n × n)-matrix M = (Mij) with |Mij| ≤ 1, and a matrix M attains the bound if
and only if it is a Hadamard matrix [Had93].

It is known that the order of a Hadamard matrix must be 1, 2, or a multiple of
4, but it is open whether Hadamard matrices exist for all multiples of 4. However,
a very nice construction of Sylvester [Syl67] tells us that if H is a Hadamard matrix

of order n, then the matrix

(
H H
H −H

)
is a Hadamard matrix of order 2n.

The following sequence of matrices H(n), n = 2k, k ≥ 1, also called Walsh
matrices [Wal23], are Hadamard matrices:
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H(1) =
(
1
)
,

H(2k) =

(
H(2k−1) H(2k−1)
H(2k−1) −H(2k−1)

)
, for k ≥ 1.

In the following, we will always refer to this sequence when we talk about Hadamard
matrices. The matrix H(2) was discussed before in Example 6.5 above.

Lemma 6.13. Let n = 2k, k ≥ 0, and let A = (αi) be the Smith Normal Form of
H(n), with H(n) = SAT for integral invertible matrices S and T .

Then diag(A) = (αi) = (20, 21, . . . , 21, . . . , 2j, . . . , 2j, . . . , 2k−1, . . . , 2k−1, 2k),
where each 2j appears

(
k
j

)
times.

Proof. We prove the statement by induction, where the base case for n = 1 is
clear, since H(1) = (1).

Let A = S−1H(n)T−1 be the Smith Normal Form of H(n). For the following

two invertible matrices S̃ =

(
S−1 0
S−1 −S−1

)
and T̃ =

(
T−1 −T−1

0 T−1

)
we have:

S̃H(2n)T̃ =

(
S−1 0
S−1 −S−1

)(
H(n) H(n)
H(n) −H(n)

)(
T−1 −T−1

0 T−1

)
=

(
S−1H(n) S−1H(n)

0 2S−1H(n)

)(
T−1 −T−1

0 T−1

)
=

(
S−1H(n)T−1 0

0 2S−1H(n)T−1

)
=

(
A 0
0 2A

)
.

The resulting matrix is the Smith Normal Form of H(2n)—after a suitable
reordering of the diagonal elements to ensure that αi|αi+1 for all 1 ≤ i ≤ 2n − 1.
The lemma then follows from the known relation

(
k+1
j

)
=
(
k
j−1

)
+
(
k
j

)
of Pascal’s

triangle.

6.3 An improved triangulation procedure

Using Proposition 6.8, we can triangulate a complex C ∈ DC(H(n)) with Θ(n2)
vertices to produce torsion of size n

n
2 ∈ Θ(2n logn). Asymptotically, this is a worse

bound than what can be achieved by considering the Speyer matrices M(k) of Sec-
tion 6.2.2 that yield triangulations with Θ(n) vertices and torsion of size Θ(2n).
The inferior torsion growth is due to using linearly many additional vertices inside
each of the n discs for the examples C ∈ DC(H(n)), compared to the constant
number of vertices needed for the discs associated with the rows of the lower part
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of the Speyer matrices M(k). Our aim in this section is to provide a modified con-
struction for complexes associated with the Hadamard matrices H(n) that requires
in total only linearly many vertices, 5n− 1, but still yields torsion of size n

n
2 .

6.3.1 A modified CW disc construction

Instead of triangulating complexes C ∈ DC(H(n)) in the way outlined in Section

6.2.1, in the following we consider CW complexes C̃ that are derived from the
matrices H(n) in a modified way, yet keeping the homotopy type, i.e. C̃ ' C. Our
goal is to use exactly one interior vertex for each of the polygonal discs (see the
square discs in the upper part of Figure 6.5).

The vertex 0 appears n times along the boundary of each of the polygonal
discs and therefore has to be shielded off when we triangulate the interiors of the
discs—to avoid unwanted identifications of interior edges of the discs.

The easiest way to shield off the special vertex 0 is by connecting its two
neighbors, at every occurence along the boundary of the discs, by a diagonal.
However, we have to ensure that each such diagonal is used only once for all of the
discs. To meet this requirement, we modify our CW disc construction:

. A complex associated with H(n) has a single 0-cell only.

. To each column j of H(n) we associate two different edge cycles a+
j and a−j .

. To each row i of H(n) we associate a polygonal disc, as before in Definition
6.1. In addition we consider n discs that each connect the two cycles a+

j

and a−j .

For every complex C ∈ DC(H(n)), we then define an augmented complex C̃, so
that in each disc of C we revert negatively oriented edges by using the connecting
digon pieces; see Figure 6.4.

The boundaries of the polygonal discs still represent the defining rows of the
matrix H(n), and since the digon connectors are homotopy equivalent to single

cycles, it follows that C̃ ' C for the modified complexes.
Towards the interior of the discs, we have positively oriented edges only—which

will allow (see Section 6.3.2) to choose an ordering of the cycles on the boundary
of each polygonal disc so that each diagonal that shields the vertex 0 occurs only
once in C̃.

Remark 6.14. An augmented complex C̃ has a straight-forward representation
by an augmented (2n× 2n)-matrix H̃(n) so that C̃ ∈ DC(H̃(n)). Here, we obtain

H̃(n) from H(n) by splitting every column into two columns, where the first copy
contains the positive entries of the original column and the second copy contains
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Figure 6.4: A polygonal disc in the construction of C̃.

the absolute values of the negative entries of the original column. We further add
n new rows that represent the inserted digons.

E.g., the matrix H(2) =

(
1 1
1 −1

)
is augmented to

H̃(2) =


1 0 1 0
1 0 0 1
1 1 0 0
0 0 1 1

 ,

where the positive entries of H(2) are listed in the blue columns, whereas the
green columns represent the negative entries of H(2). The connecting digons are
highlighted in red. By subtracting the second column from the first one and the

fourth column from the third, we obtain the matrix


1 0 1 0
1 0 −1 1
0 1 0 0
0 0 0 1

. In particular,

it follows that |det(H̃(2))| = |det(H(2)|.

6.3.2 Valid sequences

To avoid identified diagonals, we next choose suitable orderings of the edge bound-
aries of the discs to select representatives C̃(n) ∈ DC(H̃(n)) that can be triangu-
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lated with linearly many vertices. In particular, we ensure that two consecutive
cycles occur exactly once along the boundaries of the discs.

Definition 6.15. Let M = (Mij) be an (n × n)-matrix with ±1-entries. A valid
sequence (τ ji ) is a sequence of orderings of the positively oriented n boundary edges
a±j , j ∈ {1, . . . , n}, of the first n discs, i ∈ {1, . . . , n}, of an augmented complex

C̃ ∈ DC(M̃), associated with M that satisfy:

1. For each disc i ∈ {i, . . . , n}, (τ ∗i ) is a permutation of the numbers {1, . . . , n},
always starting with 1,

2. For all distinct disc indices i1, i2 and all edge indices j1, j2 such that if two
consecutive edge labels coincide, τ j1i1 = τ j2i2 and τ j1+1

i1
= τ j2+1

i2
, then at least

one pair of corresponding matrix entries differs in sign, M
i1,τ

j1
i1

6= M
i2,τ

j2
i2

or

M
i1,τ

j1+1
i1

6= M
i2,τ

j2+1
i2

. It is assumed that if j1 is equal to n, then j1 + 1 is

equal to 1, and the same for j2.

Example 6.16. The sequences ((1)) and ((1, 2), (1, 2)) are the unique valid se-
quences for H(1) and H(2), respectively.

Example 6.17. The sequence

(τ ji ) = ((1, 3, 2, 4), (1, 2, 4, 3), (1, 3, 2, 4), (1, 4, 3, 2))

is a valid sequence for the Hadamard matrix

H(4) =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

The first permutation (1,3,2,4) gives the ordering of the edges of the first disc that
is associated to the first row of the matrix H(4). As all entries of this first row are
positive, we have all corresponding edges of the first disc with forward orientation.

In this example, the first and the third permutation are identical. In partic-
ular, the first parts (1,3) of the two permutations coincide, but H(4)13 6= H(4)33.
Another consecutive pair that appears in the second and the fourth permutation
is (4,3), but H(4)24 6= H(4)44 and H(4)23 6= H(4)43. If we compare all further con-
secutive edge pairs, we can easily check that the given sequence of permutations
is a valid sequence.

Using the inductive definition

H(2n) =

(
H(n) H(n)
H(n) −H(n)

)
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for the Hadamard matrices H(n), with the above sequence for H(1) as the base
for the induction, we next provide a procedure to obtain a valid sequence (τ̃ ji ) for
H(2n) from any valid sequence (τ ji ) for H(n).

For any fixed i ∈ {1, . . . , n}, we create two permutations of the numbers
{1, . . . , 2n} for H(2n), starting from the permutation τ ∗i of H(n):

β∗i =(τ 1
i , . . . , τ

n
i ; τ 1

i + n, . . . , τni + n),

γ∗i =(τ 1
i , τ

2
i + n, τ 3

i , τ
4
i + n, . . . , τni + n; τ 1

i + n, τ 2
i , τ

3
i + n, τ 4

i , . . . , τ
n
i ),

i.e., β∗i is obtained from τ ∗i by first taking a copy of τ ∗i followed by another copy
of τ ∗i , where n is added to each entry of the second copy; and γ∗i is obtained by
adding n to all even positions of a copy of τ ∗i followed by doing so for all odd
positions of a second copy of τ ∗i .

Proposition 6.18. Given a valid sequence (τ ji ) for H(n), the sequence (τ̃ ji ), in-
ductively defined by

τ̃ ji =

{
βji , if i ≤ n,

γji−n, if i > n,
for i, j ∈ {1, . . . , 2n},

is a valid sequence for H(2n).

In the definition of τ̃ ji in Proposition 6.18, we first take all n permutations βji
of length 2n and then (after a shift of the row index by n) all n permutations γji
of length 2n (in the given order, respectively).

Example 6.19. Starting with the valid sequence for H(2) from Example 6.16,
by the construction of Proposition 6.18 we obtain the following valid sequence for
H(4):

(τ̃ ji ) =((1, 2, 3, 4), (1, 2, 3, 4), (1, 4, 3, 2), (1, 4, 3, 2)),

which is different from the sequence of Example 6.17, showing that valid sequences
are not necessarily unique.

Example 6.20. Starting with the valid sequence for H(4) from Example 6.19, we
obtain the following valid sequence (τ̃ ji ) for H(8):

((1, 2, 3, 4, 5, 6, 7, 8), (1, 2, 3, 4, 5, 6, 7, 8), (1, 4, 3, 2, 5, 8, 7, 6), (1, 4, 3, 2, 5, 8, 7, 6),

(1, 6, 3, 8, 5, 2, 7, 4), (1, 6, 3, 8, 5, 2, 7, 4), (1, 8, 3, 6, 5, 4, 7, 2), (1, 8, 3, 6, 5, 4, 7, 2)).

Proof of Proposition 6.18. It is clear from the construction that for every i, τ̃ ∗i is a
permutation of the numbers {1, . . . , 2n} starting with 1, so we only need to check
the second condition to prove that (τ̃ ji ) is a valid sequence for H(2n).
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The sequence (τ̃ ji ) for H(2n) is obtained from the valid sequence (τ ji ) for H(n)
in an inductive way. Let i1, i2, j1, j2 ∈ {1, . . . , 2n}, i1 6= i2, be such that τ̃ j1i1 = τ̃ j2i2
and τ̃ j1+1

i1
= τ̃ j2+1

i2
, i.e., in the permutations corresponding to the two different

discs i1, i2 two consecutive edge labels are the same. Let î1 = i1 for 1 ≤ i1 ≤ n
and î1 = i1 − n for n + 1 ≤ i1 ≤ 2n be the original disc indices in the initial
valid sequence (τ ji ) . Same for î2 and analogously for ĵ1, ĵ2. It then follows by

construction that τ ĵ1
î1

= τ ĵ2
î2

and τ ĵ1+1

î1
= τ ĵ2+1

î2
, as in the transition from (τ ji ) to

(τ̃ ji ) either n was added to the entries or not. There are then four different cases
to consider, where we compare pairs of β- and γ-permutations:

. [β–β] i1, i2 ≤ n: In this case H(2n)
i1,τ̃

j1
i1

= H(n)
î1,τ

ĵ1
î1

, and the same correla-

tion holds for the other three matrix entries that appear in the definition of

a valid sequence. By assumption, (τ ĵ
î
) is a valid sequence for H(n), which

implies H(n)
î1,τ

ĵ1
î1

6= H(n)
î2,τ

ĵ2
î2

or H(n)
î1,τ

ĵ1+1

î1

6= H(n)
î2,τ

ĵ2+1

î2

. By the correla-

tion between the entries of H(n) and H(2n) as written before, it follows that
H(2n)

i1,τ
j1
i1

6= H(2n)
i2,τ

j2
i2

or H(2n)
i1,τ

j1+1
i1

6= H(2n)
i2,τ

j2+1
i2

.

. [γ–γ] i1, i2 > n: This time H(2n)
i1,τ̃

j1
i1

= ±H(n)
î1,τ

ĵ1
î1

with “+” for column

indices 1 ≤ τ̃ j1i1 ≤ n and “−” otherwise. But this does not change anything,

since τ̃ j1i1 = τ̃ j2i2 . Thus both H(2n)
i1,τ̃

j1
i1

and H(2n)
i2,τ̃

j2
i2

will keep the sign or

change it, so we can use the same argument as before saying that since (τ ĵ
î
)

was a valid sequence for H(n), we have a pair of matrix entries that are not
equal.

. [β–γ] i1 ≤ n and i2 > n: As in the definition of β∗i and γ∗i for some permu-
tation τ ∗i , the number n was added to all entries of the second half to obtain
β∗i , but added in an alternating fashion to the entries for obtaining γ∗i , only
the following boundary cases are possible for which consecutive edge labels
τ̃ j1i1 = τ̃ j2i2 and τ̃ j1+1

i1
= τ̃ j2+1

i2
can agree: positions j1 = n or j1 = 2n in β∗i or

j2 = n or j2 = 2n in γ∗i . If j1 = n, then τ̃ j1+1
i1

= n+ τ 1
î1

= n+ 1 = n+ τ 1
î2

=

τ̃n+1
i2

. In this case, the only possibility is that j2 = n, but by construction,

we have that τ̃ j1i1 6= τ̃ j2i2 . The same argument can be used in the three other
cases.

. [γ–β] i1 > n and i2 ≤ n: This case is analogous to the previous one.

In all four cases we showed that the second condition for having a valid sequence
is satisfied, so we proved that (τ̃ ji ) is a valid sequence for H(2n).

95



Chapter 6. Hadamard matrix torsion

As a consequence of Proposition 6.18 and the Examples 6.16 and 6.17 we have
that for every n = 2k, k ≥ 2, there is a (not necessarily unique) valid sequence for
the Hadamard matrix H(n).

Via the recursive procedure of Proposition 6.18, it takes quadratic time to

obtain a valid sequence for H(n) from a valid sequence for H(n
2
), as the

(
n
2

)2

numbers in the valid sequence for H(n
2
) have to be read and copied in modified

form four times. This gives us a recursive formula, t(n) = cn2 + t(n
2
), for the

total number of steps t(n) to obtain a valid sequence for H(n) from the unique
valid sequence for H(1). It follows that for n = 2k, t(n) ∈ O(

∑k
i=0(2i)2), where∑k

i=0(2i)2 = 22k
∑k

i=0(2−i)2 gives us that t(n) ∈ O(n2).

6.3.3 Triangulations HMT(n) of the Hadamard examples
H(n)

Let (τ ji ) be the valid sequence for the (n×n)-Hadamard matrix H(n) = (Hij) that
is derived from the unique valid sequence of H(1) by the above procedure.

From now on, we assume n ≥ 2, as for n = 1 there is only one disc, which
can easily be triangulated as a single triangle (hereby subdividing the boundary

loop). Further, we will work with the augmented CW complex C̃(n) ∈ DC(H̃(n))
as defined earlier, i.e., in the polygonal disc corresponding to the row i the order
of the edges is given by τ ∗i . In the following, we will construct a triangulation

HMT(n) of the complex C̃(n):

. For each column j of H(n) we subdivide the two corresponding cycles a+
j and

a−j by using two additional vertices each, in particular, the subdivision of a+
j

will be of the form 0–v1
j–v

2
j–0 and the subdivision of a−j will be of the form

0–w1
j–w

2
j–0, using a total of 4n + 1 vertices for the 2n cycles and the initial

vertex 0.

. For each row i, we triangulate the interior of the corresponding disc (that has
only positively oriented edges). Each copy of the special vertex 0 is shielded
off by a triangle that contains the respective copy and its two adjacent ver-
tices, which together uses n triangles. Then a single additional vertex ci is
placed at the center of the disc and connected to the 2n subdivision vertices
of the loops using 2n triangles. In total, this gives 3n triangles and a single
additional vertex to triangulate one of the discs.

. We triangulate each of the n digons between the loops a+
j and a−j using the

following four triangles:

{{0, v1
j , w

2
j}, {v1

j , v
2
j , w

2
j}, {v2

j , w
1
j , w

2
j}, {0, v2

j , w
1
j}}, for j ∈ {1, . . . , n}.
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Figure 6.5: The simplicial complex HMT(4) associated with the Hadamard matrix
H(4).

The triangulation corresponding to the valid sequence described in Exam-
ple 6.19 for H(4) is drawn in Figure 6.5.

By the definition of a valid sequence, we easily see that the interiors of the
n-gons do not share a single edge. This implies that H̃(n) is the boundary matrix
of the first homology of our newly constructed simplicial complex.

Remark 6.21. We actually never use the (negative) cycle a−1 in the construction
of the n-gons, since for every n, the first column of H(n) has only +1’s. We
therefore delete from our construction the digon a+

1 a
−
1 (marked in grey in Figure

6.5) and save two vertices, w1
1 and w2

1, without modifying the homotopy type of
our complex. In total, we then need 5n− 1 vertices in our construction.
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Since in Section 6.3.2 we showed the existence of valid sequences and given that
we know the determinant and the Smith Normal Form of the Hadamard matrices
H(n), thanks to Lemma 6.13, we obtain the following:

Theorem 6.22. For each n = 2k, k ≥ 1, there is a Q-acyclic 2-dimensional
simplicial complex HMT(n) with face vector

f(HMT(n)) = (5n− 1, 3n2 + 9n− 6, 3n2 + 4n− 4)

and H∗(HMT(n)) = (Z, T (HMT(n)), 0). The torsion in first homology is given by

H1(HMT(n)) = T (HMT(n)) = (Z2)(
k
1) × (Z4)(

k
2) × · · · × (Z2k)(

k
k),

where |T (HMT(n))| = nn/2 ∈ Θ(2n logn). Furthermore, the examples HMT(n) can
be constructed algorithmically in quadratic time Θ(n2).

Proof. For any k ≥ 1, due to Proposition 6.18, we have a valid sequence for H(n),
where n = 2k. By Remark 6.21, HMT(n) has 5n − 1 vertices. For the edges, we
have that each of the 2n− 1 cycles (not 2n, because one is not used according to
Remark 6.21) has three distinct edges. By construction we are adding exactly 3n
distinct edges in the interior of each of the n polygonal discs and three additional
edges for each of the n− 1 digons, yielding a total of 3n2 + 9n− 6 edges. Again by
construction, we are triangulating each of the n polygonal discs with 3n triangles
and each of the n− 1 digons with four additional triangles, which gives a total of
3n2 + 4n− 4 triangles.

The simplicial complex HMT(n) is clearly connected, so H0(HMT(n)) = Z, and
the statement about H1(HMT(n)) follows by Lemma 6.13 on the Smith Normal
Form of the Hadamard matrices H(n). The Euler characteristic of the simplicial
complex HMT(n) is 1 and we do not have a free part in the first homology, so we
immediately obtain that H2(HMT(n)) = 0.

Our construction of a valid sequence for H(n) takes quadratic time in n. Given
the valid sequence, building the triangulation HMT(n) takes linear time (in the
size of the valid sequence), i.e., quadratic time in n to output the triangulation
with 3n2 + 4n− 4 triangles. Thus, in total, the examples HMT(n) are constructed
in quadratic time Θ(n2).

An implementation HMT.py of our construction in python is available on GitHub
at [Lof21a]. Triangulations of the examples HMT(2k), 2 ≤ k ≤ 5, can be found
online at the “Library of Triangulations” [BL21].

Remark 6.23. The construction above is not necessarily producing vertex-minimal
triangulations of the disc complexes associated with the Hadamard matrices. For
example, with the Random Simple Homotopy heuristic RSHT from [BLLL21] we
were able to reduce the examples HMT(2), HMT(4), and HMT(8) to smaller tri-
angulations with 6, 11, and 34 vertices, respectively.
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A general strategy for a possible asymptotic reduction of the number of vertices
needed is by Newman [New19] via the pattern complex for a given complex. In
particular, Newman used a revisited and randomized Speyer’s construction that
yields linearly many edges in the number of vertices for complexes associated
with a given abelian group G as their torsion group to obtain pattern complexes
with Θ(log(|G|) 1

2 ) vertices—thus achieving Kalai’s asymptotic growth Θ(2n
2
) via

a randomized construction. In our construction, however, the number of edges is
quadratic in the number of vertices, and therefore the effect of taking the pattern
complex gives at most a linear improvement, which is not changing the asymptotic
growth Θ(2n logn) of the torsion size for our series of triangulations.

Remark 6.24. We have been made aware (by an anonymous reviewer of an earlier
conference submission of this chapter as a self-standing article) of another folklore,
but unpublished approach to achieve torsion that is exponential in n2. The idea
of that construction is to use Steiner systems S(2, 6, n). Such a system consists
of a family of 6-element subsets (called blocks) of an n-element set, with the
property that every pair of vertices is contained in exactly one block. On every
block, one can construct a 6-vertex triangulation of RP 2. This gives a complex

with Θ(n2) edge-disjoint RP 2’s whose torsion is therefore ZΘ(n2)
2 . The existence of

such systems has recently been proved by Keevash in [Kee18], though in a non-
constructive way. A deterministic construction that asymptotically yields high
torsion can still be obtained, using the fact that it is enough to build on a partial
system containing Θ(n2) 6-element blocks where each pair is contained in at most
one block. These can be generated via a polynomial-time derandomization of
Rodl’s Nibble [Gra96], though the procedure seems to be impractical and we are
not aware of an implementation.
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Chapter 7

Conclusion and outlook

To wrap things up, we have seen in the previous four chapters different approaches
to the problem of topological spaces’ simplifications and type recognition. How-
ever, the problem in its generality is far from being solved and there are still many
open questions that need to be addressed. I will give here a very brief overview of
some of the open problems that have arisen in these years and that, unfortunately,
we have not been able to solve yet.

In Chapter 3, we applied random collapses to a single simplex; cf. Table 3.5.
The results strongly suggest that a simplex is nearly never randomly collapsible
while going up in dimension. A theoretical proof of this however, is still missing—
it would be a very nice addition and would greatly contribute to our understanding
of the horizon for collapsibility. I must admit that I have spent quite a considerable
amount of time in trying to find one but some small detail was always lacking.
Hopefully someone will come soon and show me a nice and clean solution so that
I can finally sleep better.

Another interesting challenge arising in the same chapter is how to implement
computational topology tools to show that the Abkulut–Kirby spheres are indeed
standard PL spheres. As we already said, this has been proved in the PL setting
but till now all our heuristics and, as far as we know, every sphere recognition
heuristic fails on these examples.

Finally in Section 3.3.2 we analysed the census of 4-dimensional complexes with
up to six pentachora. In doing so we divided the census in three parts, spheres,
non-spheres, and unknown examples. We believe that both the lists of non-spheres
and of unknown examples could be a very useful library of interesting to recognise
4-dimensional manifolds; we encourage everyone to try their hands on them. The
lists can be found on GitHub at [Lof21c].

In the following Chapter 4, we looked at contractible complexes that are not
collapsible. We focused on finding explicit examples but of course another very
interesting question would be to ask what is the probability of a contractible
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complex to be collapsible for a large number of vertices n. We suspect that for
large n almost all contractible complexes are neither collapsible nor anticollapsible
but we don’t have any proof of it.

The Random-Simple-Homotopy heuristic of Chapter 5, while performing in-
credibly well, is also still open for improvement and is far from being perfect
especially on the technical side. In the future, we hope it would actually become
a useful tool as a prepocessing step in homology computations.

Finally, as already said in Chapter 6, our explicit series of examples with high
torsion in homology is still far from the upper bound by Kalai. Thus, would be
very interesting to see concrete series that reach the bound.

We feel that the field of combinatorial and computational topology is in demand
of more interesting examples and explicit constructions. I have tried in this thesis
to provide some, but of course more are very welcome.

The above are only some of the uncountable open problems that are still present
in the field and that hopefully will be solved in the upcoming years.
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