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Abstract

In this thesis a systematic derivation and analysis of phase-field models with pa-
rameters based on molecular-dynamical simulations is developed. Applications of
our models describe the anisotropic growth of solid-liquid interfaces during crystal-
lization from a melt. We focus here on silicon, while other materials with different
anisotropies and material parameters are also possible. We combine molecular dy-
namic simulations with phase-field modelling to yield quantitatively accurate models
that are amenable to large scale simulations. We show how to determine the model
parameters consistently with atomistic and experimental results.

For silicon, where experiments on grain growth exhibit {111} and {100} facets [103],
we show how to obtain the interfacial energy to a given shape and thus obtain an
appropriate anisotropic surface function. The comparison to experimental equilib-
rium shapes and Wulff shapes allows for finding accurate ratios between the surface
energies for different crystallographic orientations, but not directly their magnitude.
We find the latter by using classical nucleation theory in combination with molecu-
lar dynamical simulations of the critical nucleation radius. From that we gain the
interface energy for three distinct crystallographic orientations. For realistic simu-
lation of 3D surfaces a four-fold anisotropic function of sixth order is required to
provide the necessary three degrees of freedom for the interface energy.

Further experiments on silicon grain growth show that the growth velocity has a
Vogel-Fulcher type temperature dependence [89]. In addition, this velocity depends
on the crystallographic orientation [13]. The incorporation of an anisotropic and
temperature dependent interface velocity into a phase-field model then leads to an
anisotropic and temperature-dependent mobility.

In order to make quantitative predictions that are at the scale of experimental
results one has to tackle the constraints on the computational efficiency of the phase-
field approach. By using matched asymptotic expansions we derive free boundary
problems for our systems that yield correction terms on the mobility and allow for a
higher-order validity in the interface thickness. In our case, the double-well potential
is non-symmetric and hence dictates highly complex solvability conditions. The
complications in the asymptotic analysis arise in particular from the temperature
dependence of the anisotropic mobility, which is necessary in order to reproduce a
Vogel-Fulcher type interface velocity. In addition, this velocity is anisotropic, which
has to be taken into account within the asymptotics.
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We enable the dependence of mobility on the interface thickness by assuming that
it can be described as an asymptotic expansion. Finally, we show that our matched
asymptotic derivation to higher order results in a closed expression for the mobility,
where the interface velocity from molecular dynamics simulations as well as the
interface thickness can be directly incorporated. Hence, a variation of the interface
thickness is possible without adapting the mobility. The interface thickness dictates
the number of necessary gridpoints in an equidistant grid and hence the speed of the
simulation, so that with this mobility computational time can be greatly reduced.
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Zusammenfassung

In dieser Arbeit wird eine systematische Herleitung und Analyse von Phasenfeld-
modellen mit Parametern, die auf molekulardynamischen Simulationen basieren, en-
twickelt. Anwendungen unserer Modelle beschreiben das anisotrope Wachstum von
Fest-Flüssig-Grenzflächen während der Kristallisation aus einer Schmelze. Dabei
konzentrieren wir uns auf Silizium, wobei auch Materialien mit anderen Anisotropien
und Materialparametern angewendet werden können. Wir kombinieren molekular-
dynamische Simulationen mit Phasenfeldmodellierung, um quantitative Modelle zu
erhalten, die für Simulationen großer Skalen geeignet sind. Wir zeigen, wie man
die Modellparameter konsistent mit atomistischen und experimentellen Ergebnissen
bestimmt.

Für Silizium, dessen Experimente zum Kornwachstum {111} und {100} Facetten
[103] aufzeigen, zeigen wir, wie man die Grenzflächenenergie zu einer gegebenen
Form und damit eine geeignete anisotrope Oberflächenfunktion erhält. Wir en-
twickeln ein Verfahren, um die Grenzflächenenergie an eine vorgegebene Form anzu-
passen und so eine geeignete anisotrope Oberflächenfunktion zu erhalten. Der Ver-
gleich zwischen experimentellen Gleichgewichtsformen und Wulff-Formen ermöglicht
es, genaue Verhältnisse zwischen den Oberflächenenergien für verschiedene kristal-
lografische Orientierungen zu finden, aber nicht direkt deren Größen. Letztere
finden wir unter Verwendung der klassischen Keimbildungstheorie in Kombination
mit molekulardynamischen Simulationen des kritischen Keimbildungsradius. Da-
raus gewinnen wir die Grenzflächenenergie für drei verschiedene kristallographische
Orientierungen. Für realistische Simulationen von 3D-Oberflächen ist eine vierfache
anisotrope Funktion der sechsten Ordnung erforderlich, die die notwendigen drei
Freiheitsgrade für die Grenzflächenenergie bietet.

Weitere Experimente zum Siliziumkornwachstum zeigen, dass die Geschwindigkeit
des Wachstums eine Temperaturabhängigkeit vom Typ Vogel-Fulcher aufweist [89].
Darüber hinaus hängt diese Geschwindigkeit von der kristallographischen Orien-
tierung ab [13]. Die Integration einer anisotropen und temperaturabhängigen Gren-
zflächengeschwindigkeit in ein Phasenfeldmodell führt dann zu einer anisotropen
und temperaturabhängigen Mobilität.

Um quantitative, korrekte Vorhersagen zu treffen, die sich im Bereich der experi-
mentellen Skalen befinden, muss man sich mit den Einschränkungen der rechner-
ischen Effizienz des Phasenfeldansatzes befassen. Durch die Verwendung der Meth-
ode Matched Asymptotic Expansions leiten wir für unsere Systeme freie Randwert-
probleme her, die Korrekturterme der Mobilität liefern und eine Gültigkeit höherer
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Ordnung in der Interface-Dicke ermöglichen. In unserem Fall ist das Doppelmulden-
potenzial unsymmetrisch und liefert daher hochkomplexe Lösungsbedingungen. Die
Schwierigkeiten bei der asymptotischen Analysis ergeben sich insbesondere aus der
Temperaturabängigkeit der anisotropen Mobilität, die notwendig ist, um eine Interface-
Geschwindigkeit vom Typ Vogel-Fulcher zu reproduzieren. Darüber hinaus ist diese
Geschwindigkeit anisotrop, was bei der Asymptotik zu berücksichtigen ist.

Wir setzen eine Abhängigkeit der Mobilität von der Interface-Dicke um, indem wir
sie als asymptotische Entwicklung beschreiben. Schließlich zeigen wir, dass un-
sere asymptotische Herleitung auf höhere Ordnung eine geschlossene Formel für die
Mobilität liefert, wobei sowohl die Interfacegeschwindigkeit aus den molekulardy-
namischen Simulationen als auch die Grenzflächendicke direkt einbezogen werden.
Somit ist eine Variation der Interface-Dicke ohne Anpassung der Mobilität möglich.
Die Interface-Dicke bestimmt die Anzahl der notwendigen Gitterpunkte in einem
äquidistanten Gitter und damit die Geschwindigkeit der Simulation, sodass mit
dieser Mobilität die Rechenzeit stark reduziert werden kann.
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1. Introduction

1.1. A quantitative phase-field model for the

crystallization from a melt

The subject of this dissertation concerns the systematic derivation, analysis and nu-
merical solution of phase-field models with parameters based on molecular-dynamical
simulations. They model the anisotropic growth of solid-liquid interfaces during
crystallization from a melt, which is a fundamental physical process with inumerable
applications in technology, such as in the semiconductor sector, the photovoltaics in-
dustry, pharmaceutical industry and various nanotechnological applications as well
as in nature itself [36, 37, 45, 48, 75, 92, 97]. Despite the large body of literature, it
is still a challenge to quantitatively describe and predict phenomena on a continuum
macroscopic scale, without a detailed knowledge of the underlying microstructure
down to the atomistic level.

On the macroscopic scale, cellular automata and geometric models are most efficient,
but lack physical details. Atomistic molecular dynamics simulations have been suc-
cessfully applied to simulate solidification and thus offer a route for revealing details
of the growth kinetics [18, 19, 81]. Because of the enormous computational effort,
however, these models are restricted to relatively small system sizes of typically not
more than a couple of million atoms. This is why for modelling phenomena on the
microscopic scale, phase field models have emerged as a powerful tool for simulating
free boundary problems with complex morphological evolution. Since the transport
equation for heat and the phase field are solved simultaneously, the effects of surface
tension, nonequilibrium, and anisotropy can be directly included.

In the context of silicon grain growth, which is the focus of this study, phase field
models face, however, several challenges. The large anisotropy of interface energies
and directional dependent mobilities determine in a delicate way the combination
of occurring facets. A technical drawback of phase-field models lies in the fact
that the minimum mesh size has to be smaller than the interface thickness, while a
realistic interface thickness is only on the order of the capillary length, approximately
several Ångstroms. The large body of literature on phase-field models for transitions
between liquid and solid phases has been reviewed, for example in Garcke et al. [40],
Boettinger et al. [14], Wheeler et al. [98], Nestler et al. [76], Singer et al. [87],
Moelans et al. [74] and more recently in Barrett et al. [9], Plapp [79] and in the
context of solidification and dendritic growth by Steinbach [88].
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1. Introduction

However, in existing studies dealing with silicon mostly qualitative assumptions on
free energy densities, anisotropic interface energies and mobilities were used. On the
other hand, detailed information on melting points, interface velocity and formation
of defects during crystal growth are in principle available from molecular dynamics
simulations and can directly be used. It is the aim here to combine both modelling
approaches to yield quantitative accurate models and that are amenable to large
scale simulations. This has been the concern of a number of studies in recent years,
where it has been shown how atomistic molecular dynamics computations can be
used to obtain quantitative information for kinetic and thermodynamic properties
to correctly predict the dynamics of the corresponding multi-phase systems using
phase-field models.

In the context of dendritic solidification, for example, Hoyt et al. [51] developed
a method for extracting anisotropic interface energies from atomistic molecular
dynamics simulations and used them in in a phase-field description with weak
anisotropy of the solid-liquid interface. Similarly, Bragard et al. [16], derived phase-
field parameters for predicting the dendrite growth velocity as a function of under-
cooling in pure Ni. A more detailed overview on these problems can be found in
Hoyt et al. [52] and more recently in Karma et al. [57]. For the solidification of
the alloy systems of NiZr, Danilov et al. [29] and Guerdane et al. [45] addressed
the more fundamental question if molecular dynamics simulations and the phase-
field approach can give quantitative equivalent results. At least for these specific
alloy systems they found good agreement in quantities such as the melting rates by
comparing their numerical results.

Interestingly, our study [13] is the first study in which the thermodynamic param-
eters of a phase-field model for solidification of silicon are extracted from atomistic
simulations, although some relevant data have already been available in the liter-
ature [10, 17, 34, 44]. Thus, the focus of this study was to establish a phase-field
model, where the complete set of necessary parameters was derived from molecu-
lar dynamics simulations based on the Stillinger-Weber interatomic potential for Si
[90]. In particular, we incorporated a consistent description of the Vogel-Fulcher-
type temperature dependence of the interface velocity of Si [39, 89, 95]. In order to
establish the necessary phase-field parameters we investigated three distinct planar
interface orientations.

We then show how to determine phase-field parameters consistently with atomisti-
cal and experimental results and use concrete data for silicon. Surprisingly, our
analysis reveal that values on the interfacial free energies that are typically used in
the literature yield equilibrium shapes for silicon grains embedded in a melt that
contradict experimental results. An example is shown in figure 1.1.

2



1.2. Thin-interface limit: Asymptotic analysis

Fig. 1.1.: 3D Simulations and comparisons to experiment:
Left: Numerical simulation: Cut trough the {110} plane of a grain in an undercooled melt
at time τ = 2200 with interface energies γ111 = 2.12eV/nm2, γ100 = 2.6eV/nm2, γ110 =
2.18eV/nm2, as given in the literature [6].
Right: Numerical simulation: Cut trough the {110} plane of a grain in an under-
cooled melt at time τ = 2200 with interface energies γ110 = 1.986eV/nm2, γ111 =
1.752eV/nm2, γ100 = 1.869eV/nm2, as used in our model. For computational details see
Chap. 6.
Middle: Experiment by Yang et al. [103]. The image is shown here with kind permission
of Xinbo Yang (KAUST Solar Center).

Note, the interface energies used from the literature, see Figure 1.1, imply γ111 <
γ110 < γ100 while those we obtain in our analysis yield the ordering γ111 < γ100 <
γ110.

If only {111} facets are modelled, then a 3D grain in a melt will look like an oc-
tahedron. The authors Karma and Rappel presented in their work [56] a three
dimensional model system for quantitative simulations of a pure material in a melt.
They incorporated surface anisotropy and also kinetic anisotropy in order to control
the tip velocity of dendrites with respect to the crystallographic orientation. Their
anisotropic functions have the order of four, which is a well-known modeling ansatz
for the simulation of fcc structures, where the {111} facet is preferred. However, as
soon as also other facets arise, higher orders of anisotropy are needed [99]. Exper-
iments on grain growth show [103], silicon exhibits {111} and {100} facets, which
is a result of our analysis of the ordering of the three interfacial energies γ that has
been mentioned above. Hence, for realistic 3D surfaces a four-fold anisotropic func-
tion of sixth order [51, 7, 99] is required and provides the necessary three degrees of
freedom.

1.2. Thin-interface limit: Asymptotic analysis

In order to make quantitative correct predictions that are near or at the scale of
experimental results one has to tackle the constraints on the computational efficiency
of the phase-field approach: the grid spacing has to chose at least as small as the
interface width in order to converge. Furthermore, one has to tackle the stiffness
problem that goes along with the diffuse interface region [55, 56, 96, 98].

3



1. Introduction

Since the pioneering papers by Caginalp, Fife and Pego [21, 20, 77] on the derivation
of the sharp-interface limit for some of the of the simplest model systems, a large
number of article appeared that included systems that take account of anisotropy of
various kinds, as well as non-constant and even anisotropic mobilities [70, 91, 40].
Models with a constant mobility alowed also for rigorous asymptotic convergence to
the corresponding sharp-interface limit [2, 3]. While models with degenerate mobil-
ities have recently been solved by systematic asymptotic analysis [67] the rigorous
theory is still an open problem or existing analysis do not account for essential
structural properties of the solution, see e.g. [1, 28, 33, 66]. Apart from these devel-
opments, higher-order matched asymptotic expansions has been pursued by Karma
and Rappel [56] and is conventionally denoted as thin-interface limit and is by design
more accurate for larger values of the interface thickness.

By using matched asymptotic expansions we derive free boundary problems for our
systems that yield correction terms on the mobility and allow for a higher-order
validity in the interface thickness.

For a problem in thin film growth the authors Meca et al. [72] considered a phase-
field model coupled with an anisotropic conservation equation and a symmetric
double-well potential, which allowed for great simplification of the solvability condi-
tion in the second order of the asymptotic derivation. In our case, the double-well
potential is non-symmetric and hence dictates highly complex solvability conditions.
Our model distinguishes itself from studies with other applications, for example
[30, 32], essentially in two aspects that arise from the application: first, for the
application on silicon, we show that the temperature dependence of the anisotropic
mobility is necessary in order to reproduce a Vogel-Fulcher type interface velocity.
Second, this velocity distinguishes between different crystallographic orientations.
In other words: it is anisotropic, which has to be taken into account within the
asymptotics.

Our model allows for the dependence of the mobility on the interface thickness,
which we assume to have an asymptotic expansion. In addition, we show that our
matched asymptotic derivation to higher order yields a closed form expression for
the mobility.

We note that the interface velocity from molecular dynamics simulations as well as
the interface thickness can be directly incorporated into the closed form expression
of the mobility that we get from matched asymptotics. Hence, a variation of the
interface thickness is possible without adapting the mobility. The interface thickness
dictates the number of necessary gridpoints in an equidistant grid and hence the
speed of the simulation, so that with this mobility computational time can be greatly
reduced.
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1.3. Overview

1.3. Overview

The anisotropic interface energy for our atomistically consistent phase-field model is
determined in Chap. 2. In doing so, we develop a procedure to obtain the interfacial
energy to a given shape and thus obtain an appropriate anisotropic surface func-
tion. The comparison to experimental equilibrium shapes and Wulff shapes, allows
for finding accurate ratios between the surface energies for different crystallographic
orientations, but not directly their magnitude. We find the latter by using classi-
cal nucleation theory in combination with molecular dynamical simulations of the
critical nucleation radius.

In Chapter 3, we extend the results that we reported in [13], regarding the derivation
and simulation of a 1D phase-field model where the parameters are chosen to be
compatible with molecular-dynamics simulations, which make use of the Stillinger-
Weber interatomic potential for Si [90]. The incorporation of an anisotropic Vogel-
Fulcher type temperature dependent interface velocity leads to an anisotropic and
temperature-dependent mobility. With numerical methods we confirm that the final
model reproduces the interface velocities.

By using matched asymptotic expansions we derive in Chap. 4 a free boundary
problem as well a correction terms on the mobility to make this asymptotic limit
valid to a higher order in the interface thickness. In many applications, it is crucial to
understand the role of curvature in the sharp interface limit, and that is achieved also
by matched asymptotic expansions of 2D models. Nevertheless, we are interested in
the limit of the 1D model in order to study higher-order approximations and also to
obtain a closed form expression for the mobility in dependence on interface thickness.
A validation of the asymptotics via numerical methods confirms our procedure.

In Chap. 5, we introduce a 2D anisotropic phase-field model where we incorporate
the results from our modelling work regarding the interface energy in Chap. 2 and
the free energy density, the surface energy and the mobility from Chap. 3. The
surface energy and the mobility are anisotropic and hence depend on different crys-
tallographic orientations. In 2D different crystallographic orientations coexist and
hence the surface energy and the mobility are functions of the local orientation of the
solid-liquid interface. Since the mobility is in addition temperature-dependent, we
get an anisotropic and temperature dependent function Mapp. We perform matched
asymptotic expansions taking into account different anisotropic parameters. In do-
ing so, we assume that the mobility is an unknown, orientation function Mmae, which
depends on the orientation and the interface thickness. From that we get a closed
form expression for Mmae dependent on the local curvature of the interface. Finally,
we compare Mmae with Mapp. We see below, that both functions match when the
surface energy anisotropy is weak, such that no missing orientations occur.

In Chap. 6, we introduce a 3D anisotropic phase-field model where we incorporate
the results from our modelling work regarding the interface energy in Chap. 2
and the free energy density and the surface energy from Chap. 3. As in the 2D

5



1. Introduction

case in Chap. 5, the mobility and surface energy are anisotropic and hence depend
on different crystallographic orientations. Unlike in 2D, we incorporate the four-
fold anisotropy of order six. We incorporate the mobility from our 1D asymptotic
derivations of Sec. 4.1 including the third order corrections. Numerical comparisons
with Yang’s experiment [103] regarding the equilibrium crystal shape are performed
using Fourier spectral method. We introduce the numerical method for the case of
one grain in a melt and also with the possibility of rotation of the grain. In Chap.
7 we show an ansatz for multiple grains, laying the basis for numerical simulation
of quantitative grain growth.
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2. Interface Energy for a Grain of
Pure Silicon in a Melt

In a two and three dimensional phase field simulation of a grain of pure silicon in a
melt, proper surface energies are essential to reproduce the typical facets that the
shape of a silicon grain during the growth develops. The excess energy γhkl of the
surface varies with the crystallographic directions {hkl} of such an anisotropic grain.
The most stable facets are with the lowest surface energy, since energy is minimized
in a closed thermodynamic system.

Surface energies are also known as interfacial energies, since the interface is the thin
area between the melted material, where the atoms are disordered, and the crystal,
where the atoms are arranged on a lattice. Physical interface thicknesses are usually
araound 1 nm [24].

Values of the interfacial free energies γ can be found on the literature. Apte and Zeng
[6] computed the values of γ100, γ110 and γ111 at the melting point, through molecular
dynamics simulations that use the Stillinger-Weber potential [90]. For each of the
three considered crystallographic orientations, they provided a narrow interval for
the mentioned values. The mean values, which we denote as γA100, γ

A
110, γ

A
111 are given

in Tab. 2.1. We have developed a phase-field model consistent to molecular dynam-
ical calculations with the Stillinger-Weber potential, where we incorporated these
mean values [13]. It is well understood that for this three directions the most densely
packed {111} orientation has the lowest interfacial energy [12, 50, 100], which is also
confirmed in Apte and Zengs study. Nevertheless their γA110 exhibits nearly the same
excess energy as γA111 and is even smaller than γA100. This is obviously at odds with
the equilibrium shape of Si grains embedded in a melt, which show only {111} and
{100} facets [50, 103] and hence predict the relations γ110 > γ100 > γ111. Since the
purpose of the [13] study was to derive model parameters that allow phase field and
molecular dynamics simulations to be directly combined, we investigated the effect
of incorporating Apte and Zengs values into our parameterization. In this chapter
we show with a four-fold anisotropic surface function of sixth order that the values
γA100, γ

A
110, γ

A
111 give the wrong equilibrium shape of the crystal. Furthermore, we

develop a procedure to fit the interfacial energy to a given shape and thus obtain
an appropriate anisotropic surface function. We compare the equilibrium shape of
the crystal resulting from the four-fold anisotropic surface function of sixth order
with the experimental equilibrium shape found by Yang et al. [103], who used sil-
icon wavers with two different upper orientations: < 112 > and < 110 >. With

7



2. Interface Energy for a Grain of Pure Silicon in a Melt

the comparison of the equilibrium shapes, it is possible to extract the accurate ra-
tios between the surface energies for different crystallographic orientations, but not
directly their magnitude. The latter can be found by in principal using classical nu-
cleation theory in combination with molecular dynamical simulations of the critical
nucleation radius. By using this procedure we derive consistent interfacial energies
in this chapter.

Orientation {100} {110} {111}

γA(Tm) in eV/nm2 2.6 2.18 2.12

Tab. 2.1.: The crystal-melt interface free energies γ at the melting point Tm for the orientations
{100}, {110} and {111} calculated by Apte and Zeng [6].

⇒

⇒

Fig. 2.1.: A sketch of an octahedron (top left) and of an octahedron with cutted vertices parallel to
{100} planes (bottom left). On the right hand side, we show the cut through the (002)
plane from top view.

2.1. Anisotropic surface functions for phase-field

models

The phase-field variable p that we consider in this work models the state of aggre-
gation of silicon, such that p = 0 in the liquid and p = 1 in the solid material. The
variable p transitions smoothly between both phases, in a region that we refer to as
the interface from now on.

If we consider a special system where the solid grows with a flat interface in the
< hkl > direction, the system can be thought of as one-dimensional. In that case,

8



2.1. Anisotropic surface functions for phase-field models

⇒

⇒

Fig. 2.2.: A sketch of an octahedron (top left) and of an octahedron with cutted vertices parallel to
{100} planes (bottom left). On the right hand side, we show the cut through the (1̄10)
plane head-on.

the total free energy of the system has the form

F(p, T ) =

∫
F (p, T ) +

σ2
hkl

2
(∂xp)

2 dx. (2.1.1)

The function F models the bulk phases, where F has two minima, which represent
the free energy density of the liquid phase f0, where p = 0 and of the solid phase f1,
where p = 1. When the system is undercooled, f1 is the global minimum of F such
that the system gets an inducement to solidify. For an overheated system f0 is the
global minimum such that solid material melts. The other summand in Eq. (2.1.1)
models the interface. The constant σhkl incorporates the surface energy γhkl and the
interface thickness λhkl. All parameters are introduced in detail in Chap. 3. In this
chapter, an intuitive understanding of the total free energy is sufficient.

In 2D and 3D, the need to consider different crystallographic orientations at the
same time requires that σ is a function of the local orientation of the solid-liquid
interface. In the commonly studied case of smooth anisotropy, the term multiplying
the gradient term can be a function of the angle between the normal vector to the
interface (pointing outwards, i.e. into the melt) and a reference axis [61, 70, 32, 47]
or of the normal vector itself [56, 85]. That is not the only way to approach the
problem. See [41] for a study on the validity of the smooth anisotropy approximation.
In this work, we consider smooth anisotropy functions, which depend on the normal
n. Then, the total free energy for 2D and 3D has the form

F(p, T ) =

∫

A

F (p, T ) +
s(n)

2
|∇p|2 dA, (2.1.2)
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2. Interface Energy for a Grain of Pure Silicon in a Melt

⇒

⇒

Fig. 2.3.: A sketch of an octahedron (top left) and of an octahedron with cutted vertices parallel to
{100} planes (bottom left). On the right hand side, we show the cut through the (11̄2)
plane head-on.

F(p, T ) =

∫

V

F (p, T ) +
S(n)

2
|∇p|2 dV, (2.1.3)

respectively. In the next two subsections, we introduce s and S.

Four-fold anisotropic surface functions of fourth order

Many phase-field models based on the Allen-Cahn equation use a similar four-fold
smooth anisotropic surface energy function [61, 32, 70, 41]. In terms of the normal
vector n = (n1, ..., nd), this function has the following form

s(n) = s0

(
1 + δs

d∑
i=1

n4
i

)
. (2.1.4)

It is the simplest non-trivial function dependent on n that has the four fold symme-
try. We will use the function in 2D phase-field simulations in Chap. 5. For the rest
of this chapter, we consider a 3D setting where d = 3.

Let σ2
hkl be the gradient coefficient in the free energy of an Allen-Cahn equation like

(2.1.1). The assumption that σ111, σ110, σ100 are known implies that the system is
overdetermined with the two unknowns s0 and δs. We have then three possibilities
to compute these values depending on the directions that we choose to find them.
For instance, using σ111 and σ100, we have that

s((1, 1, 1)/
√
3) = σ111 and s((100)) = σ100. (2.1.5)

10



2.1. Anisotropic surface functions for phase-field models

We can compute then s0 and δs for every combination of directions:




s(1) : {110} ∧ {100} ⇒ s
(1)
0 = 2σ110 − σ100, δ

(1)
s = −2σ110−σ100

s0s(1)

s(2) : {100} ∧ {111} ⇒ s
(2)
0 = 1

2
(3σ111 − σ100), δ

(2)
s = 3

2
σ100−σ111

s
(2)
0

s(3) : {110} ∧ {111} ⇒ s
(3)
0 = 3σ111 − 2σ110, δ

(3)
s = 6σ110−σ111

s
(3)
0



. (2.1.6)

Since σhkl is proportional to the surface energy γhkl (see Sec. 3.1 below), and the
proportionality factor is independent of the orientation, we can rewrite δs as fol-
lows:

δ(1)
s = −2

γ110 − γ100

2γ110 − γ100

, δ(2)
s = 3

γ100 − γ111

3γ111 − γ100

, δ(3)
s = 6

γ110 − γ111

3γ111 − 2γ110

. (2.1.7)

Three dimensional four-fold anisotropic surface function of
sixth order

A fourth order function has two degrees of freedom, hence only two different interfa-
cial energies γhkl can be incorporated. This is applicable if only one facet is present,
since the direction with the greatest energy defines the direction where no facets
develop. And with only two values of σ (resp. γ), there is only one value that is
more favourable (the lowest) than the unfavourable (the greatest of both). Hence,
one need at least three degree of freedom to be able to model more than one kind
of facet. If only {111} facets are modelled, then a 3D grain in a melt will look like
an octagon, as sketched in Figs. 2.1, 2.2 and 2.3. As experiments show [103], silicon
also exhibits {100} facets, also sketched in the mentioned figures. Hence, we need a
four-fold anisotropic function of sixth order [51, 7, 99], which provides the necessary
three degrees of freedom:

S(n) = S0

(
1 + δ1

3∑
i=1

n4
i + δ2

3∏
i=1

n2
i

)
. (2.1.8)

We determined the constants S0, δ1S and δ2S such that S reproduces the surface
energy σhkl of the phase field for the corresponding normal vector n of the grain.
With the choice

S0 = 2σ110 − σ100, δ1 = 2
σ100 − σ110

2σ110 − σ100

, δ2 = 9
3σ111 − 4σ110 + σ100

2σ110 − σ100

(2.1.9)

the anisotropic function S fulfils

S((1, 0, 0)) = σ100, S((1, 1, 0)/
√

2) = σ110, S((1, 1, 1)/
√

3) = σ111. (2.1.10)
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2. Interface Energy for a Grain of Pure Silicon in a Melt

Similarly to the fourth order case s, parameters δ1 and δ2 can equivalently be written
in the following form

δ1 = 2
γ100 − γ110

2γ110 − γ100

, δ2 = 9
3γ111 − 4γ110 + γ100

2γ110 − γ100

. (2.1.11)

Note that the magnitude of the constant S0 is not relevant for the Wulff shape. We
specify it in Chap. 6 for the phase-field simulation.

2.2. Three dimensional Wulff construction

The Wulff construction is a procedure that, from an orientation-dependent surface
energy function, reproduces the equilibrium shape of a crystal [101]. Below it is
proven that a parametrization such as the one introduced in the last section with
the values given by [6] does not reproduce the shapes observed in experiments [103].
It is also shown how to find the right parameters for a given shape, which will give
us different ratios between γ100, γ110 and γ111.

The Wulff construction in three dimensions refers to the inner envelope of a col-
lection of planes. Starting with a spherical plot of the surface energy, each plane
is constructed in such a way that the plane passing through a point of the surface
energy plot is perpendicular to the line joining that point and the origin. The in-
ner envelope of the collection of planes, which in general is a portion of the pedal
surface, gives the equilibrium shape of the crystal for the corresponding surface en-
ergy. In order to visualize it, it is useful to show slices of a three dimensional Wulff
construction, since the planes would otherwise block the view of the inscribed sur-
face. For this slices, it is not enough to reduce the surface energy to two dimensions
and construct the Wulff shape with orthogonal lines to the two-dimensional surface
energy. In three dimensions, the planes of the neighbourhood also have an impact
on the inner envelope. Hence, we need to construct the full three-dimensional Wulff
shape and project the cuts of it to two dimensions.

We first show how the mentioned projection can be performed for different crystal-
lographic planes. Then we compare the projections with experimental equilibrium
shapes of a silicon grain in a melt. For the comparison, we first use γAhkl from Tab.
2.1, and then we adapt the values such that the Wulff shape produces the experi-
mental equilibrium shapes in [103].

Projection to two dimensions

Let (a, b, c) denote an arbitrary point on the spherical plot of the anisotropic surface
energy. For clarity, we sketch a 2D slice of that plot that passes through (a, b, c)
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2.2. Three dimensional Wulff construction

and the origin in Fig. 2.4. We use polar coordinates in order to express (a, b, c).
Therefore, we define two angles ξ ∈ [0, 2π), θ ∈ [0, π). Then

a = sin(θ) cos(ξ) S̃(sin(θ) cos(ξ), sin(θ) sin(ξ), cos(θ)),

b = sin(θ) sin(ξ) S̃(sin(θ) cos(ξ), sin(θ) sin(ξ), cos(θ)),

c = cos(θ) S̃(sin(θ) cos(ξ), sin(θ) sin(ξ), cos(θ)).

(2.2.1)

The Wulff plane that is orthogonal to the the vector (a, b, c) has the following

(a, b, c)

(0, 0, 0)

Fig. 2.4.: Two-dimensional cut of the three-dimensional anisotropic energy through the origin. For
the construction of the Wulff planes we denote the points of the energy with (a, b, c).

equation

W : ((a, b, c)− x) · (a, b, c)T = 0 ⇐⇒ ax1 + bx2 + cx3 = a2 + b2 + c2. (2.2.2)

We now turn to cuts for special crystallographic planes.

Plane {100}

Given the geometry of the spherical plot of the surface energy, one possible plane
from the family {100} is x3 = 0, as sketched in Fig. 2.1. Then, the Wulff shape can
be visualized as the internal envelope of all the lines corresponding to the intersection
of x3 = 0 and the Wulff plane W that goes through the point (a, b, c) on the surface
energy plot:

x2 = −a
b
x1 +

a2 + b2 + c2

b
, (2.2.3)

for all values of (a, b, c). Note that x1 and x2 are similar to the two-dimensional coor-
dinate system of the projection in this case. For cuts through other crystallographic
planes, we need to introduce new coordinates for the projection plane.

Plane {110}

The plane that we visualize in Fig. 2.2 and Fig. 2.5, is given by the equation
x1− x2 = 0. That can be seen considering the plane generating vectors (0, 0, 1) and

13



2. Interface Energy for a Grain of Pure Silicon in a Melt

(1, 1, 0). Hence, on this plane we define the coordinates x̄1 and x̄2 as follows

x̄1 =
√
2x1 =

√
2x2, x̄2 = x3, (2.2.4)

such that there is no distortion of the shape. For the intersection with W , we
substitute x1 = x2 and the new coordinates into W (2.2.2). That gives

x̄2 =
1

c

(
a2 + b2 + c2 − 1√

2
(a+ b)x̄1

)
, (2.2.5)

for all points (a, b, c) on the spherical plot of the anisotropic surface energy.

x1

x2

x3

x2
x̄2

x̄1

Fig. 2.5.: Viaualization of the change of the coordinate system for the two-dimensional projection
of a {110} cut of the Wulff-shape.

Plane {112}

We intersect all the Wulff planes with the {112} plane

x3 = −0.5(x1 + x2), (2.2.6)

see Fig. 2.6. We project the coordinates x = (x1, x2, x3) of the cubic domain to
the coordinates (x̄1, x̄2) of the two-dimensional projection plane. For convenience,
we define the length of the cube edges as 2 units of length. Then x̄1 is simply the
scalar product of the vector (1,−1, 0) (which is the difference of (1, 0,−0.5) and
(0, 1,−0.5)) and x. We proceed similarly for x̄2 and substitute (2.2.6) in order to
cancel x3. That yields

x̄1 = x1 − x2,

x̄2 = −3

2
(x1 + x2).

(2.2.7)

Finally, we solve these equations for x1 and x2 and substitute them together with
(2.2.6) to (2.2.2) and obtain

x̄2 =
3

−a− b+ c

(
a− b

2
x̄1 + a2 + b2 + c2

)
. (2.2.8)
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2.2. Three dimensional Wulff construction

(−1,−1, 1)

(1, 1,−1)

(−1, 1, 0)

(1,−1, 0)

(−1, 0, 0.5)

(0,−1, 0.5)

(1, 0,−0.5)

(0, 1,−0.5)
x̄1

x̄2

(−1, 0, 0.5) (0,−1, 0.5)

(1, 0,−0.5)(0, 1,−0.5)

Fig. 2.6.: Left: the {112} plane (2.2.6) located in a cube, right: the top view of the {112} plane.

Comparison with experiments and fitting

As a first step, we define S in (2.1.8) and (2.1.11) with the mean values γA
hkl from

Apte and Zeng [6], which we listed in Tab. 2.1. Fig. 2.7 shows the spherical plot
of S with these values. The bulges on the sides, top and bottom arise from the
energy value γA

100, which is the greatest in [6] and hence the least favorable energy
for facet formation. As it has been mentioned before, this is in contradiction with
the experimental behaviour of a Silicon grain in a melt [103]. The small sink between
three of this bulges results from the smallest value γA

111, which leads to {111} facet
formation. The value γA

110 is only slightly greater than γA
111. Hence, there are also

sinks between every two neighbouring bulges.

Fig. 2.7.: Spherical plot of the four-fold surface energy function of order six (2.1.8) based on the
values from Apte and Zeng [6].
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2. Interface Energy for a Grain of Pure Silicon in a Melt

Since γA110 and γA111 are almost equal in comparison with γA100, the spherical plot in
Fig. 2.7 is very similar to the four-fold surface energy that one would obtain using
s based on γA110 or γA111 combined with γA100. The combination of γ110 and γ111 for s
leads to an almost perfect spherical surface energy plot, since both values are almost
equal. All three possible combinations are shown in Fig. 2.8. The exact formulation
of s for the different combinations of γhkl is discussed in Sec. 2.1.

Fig. 2.8.: Spherical plots of four-fold surface energy functions of order four s. In the left and the
middle plot we constructed s using γA110, γA100 and γA111, γA100, respectively. Since γA110
and γA111 are almost equal, both plots look similar to each other and to the spherical
plot of the sixth order function in Fig. 2.7. On the right, the forth order function s is
constructed using γA111 and γA110. Both values are almost equal, hence the surface has the
shape of an almost perfect sphere.

Let us turn back to the sixth order anisotropic function 2.1.8. The (11̄2) and (1̄10)
cuts of its Wulff shapes constructed using the γAhkl are shown in Fig. 2.9. A vi-
sualization of the corresponding cuts on a 3D grain is portrayed in Figs. 2.3 and
2.2, respectively. Yang et al. [103] observed in situ the silicon crystal growth shape
and equilibrium crystal shape in a melt by using a special furnace and microscope.
To that end they prepared two silicon wafers, one oriented perpendicular to the
< 112 > another one oriented perpendicular to the < 110 > direction (see Figs. 2.2,
2.3, respectively) and placed them in a melt. We extracted the equilibrium growth
shapes from that experiment for both orientations (Figs. 2(h) and 4(f) in [103]) and
plot them in Fig. 2.9 as red line.

As discussed before, the surface anisotropy of the sixth order function with the
Apte-values γAhkl has a similar spherical plot than the fourth order surface energy.
This implies that the equilibrium shape of the crystal has only one kind of facet. In
our case, it reproduces the smoothed out shape of an octahedron, which is a grain
with only {111} facets. The (1̄10) cut of such a grain has the form of a rhombus,
as we sketched in the upper part of Fig. 2.2. If a grain has also {100} facets, as in
the lower part of the same figure, the (1̄10) cut looks like an irregular hexagon, as
in the experiments.
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2.2. Three dimensional Wulff construction

Fig. 2.9.: The three dimensional Wulff shape cut through the (11̄2) (left) and through the (1̄10)
(right) plane, for S constructed using the surface energy values determined by Apte and
Zeng in [6]. The red lines show the experimental results of the equilibrium shape of the
corresponding plane from Yang et al. [103].

Since the Wulff shapes in Fig. 2.9 do not agree with the experiments, we vary the
γhkl until they match, as we show in Fig. 2.10. From that we fitted

γ̃1 :=
γ110

γ111

= 1.1333, γ̃2 :=
γ110

γ100

= 1.0625. (2.2.9)

The final magnitude of the values γhkl can not be found by the fitting to the Wulff-
shape, since the domain of the cube as in Fig. 2.6 can be chosen arbitrarily.

Comparing the ratios (2.2.9) with γAhkl, it is clear that γ̃A2 ≈ 0.84 is very different
from our result, since the relation γA100 > γA110 is the other way around in our case.
However, γ̃A1 ≈ 1.0283 is more close to γ̃1 in (2.2.9).

The spherical plot of the sixth order surface energy with the fitted values is shown
in Fig. 2.11. The bulges to the sides and diagonals show the high energy for
the < 110 > direction. The dips at the sides (between three bulges) show the
comparatively small energy for < 111 >, which is hence the favourable energy for
facets formation. A small, but noticeable dip is also visible for < 100 >, for example
on the top. These sinks enable {100} facet-formation.

In order to find the specific magnitude of γhkl for the three orientations considered,
we make use of nucleation theory in the next section.
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2. Interface Energy for a Grain of Pure Silicon in a Melt

Fig. 2.10.: The three dimensional Wulff shape cut along the (11̄2) (left) and the (1̄10) (right)
planes, for S constructed using the surface energy values which fulfill (2.2.9). The red
lines show the experimental results of the equilibrium shape of the corresponding plane
from Yang et al. [103].

2.3. Critical nucleation radius

In the last section, we determined the ratios between γ111, γ110 and γ100 given in
(2.2.9). Hence, if we manage to specify one of the three values, the other two are
known as well. We determine γ110 via the critical nucleation radius 1.5025nm at
1400K, which was found via molecular dynamical modelling. The simulations were
performed by our collaborator Daniel Barragan form the physics department of the
University of Luxembourg and a summery of the procedure and the results obtained
can be found in Sec. A.1.

The critical nucleation radius rcrit(T ) indicates the threshold for the radius of a
nucleus, at which a nuclei in an undercooled melt starts to grow [64, 46]. It depends
on the surface energy γ, and on the free energy density f0, f1 of the liquid and the
solid phase, respectively. We derived f0 and f1 in [13] and fit their difference in Sec.
3.1 to f0(T ) − f1(T ) ≈ H(T ) := LTm−T

Tm
, where L and Tm are given in Tab. 3.2 in

the mentioned section. Then, the formula for the critical nucleation radius is given
by

rcrit(T ) =
2γ

H(T )
. (2.3.1)

Going back to the total free energy (2.1.1)-(2.1.3) for phase-field simulations of a
grain in a melt, the critical radius results from the relation between the bulk and
the surface energy. If the grain is very small and has a high surface in relation to
the volume, it is more favourable for the system to minimize the surface energy even
if the minimum of the bulk energy predicts growth. For growth, the bulk energy
has to be of the same order than surface energy, such that the nucleus has to be
greater. Hence, there will be a critical radius on which the total free energy will
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2.3. Critical nucleation radius

Fig. 2.11.: Surface energy function (2.1.8) computed using the ratios (2.2.9).

be a maximum, and for radius larger than this critical radius the total energy of
the system will decrease when the nucleus grows. Since we know a critical radius
from Daniel Barragan’s simulations, we can find the highest energy value by solving
(2.3.1) for γ:

γ110 =
1

2
rcrit(T )H(T ). (2.3.2)

Finally, from (2.2.9) we can calculate the surface energy values for our three consid-
ered orientations. They are listed in Tab. 2.2.

Orientation {hkl} {100} {110} {111}

γhkl in eV/nm2 1.869 1.986 1.752

Tab. 2.2.: Interface energy values calculated from the ratios (2.2.9) and the critical nucleation
radius.
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3. One-Dimensional, Atomistically
Consistent Phase-Field Model

In this chapter we derive and extend the results that we reported in [13], regarding
the derivation and simulation of a phase-field model. In the study [13] we chose the
parameters to be compatible with molecular dynamics simulations such as the ones
reported by Apte and Zeng [6], which make use of the Stillinger-Weber interatomic
potential for Si [90] and have been discussed in the previous chapter. In that work,
we made use of molecular dynamics simulations for three distinct planar interface
orientations in order to derive the phase field parameters, and we incorporated
consistently an orientation-dependent Vogel-Fulcher temperature dependence of the
interface velocity [89, 39, 95]. Here, we describe the derivation of a phase-field model
similar to [13], but with significant improvements, which we summarize below.

The model and its improvements are introduced in Sec. 3.1. In Sec. 3.2 we solve
the model numerically and give some remarks for the scaling of the model.

3.1. Atomistically informed Allen-Cahn equation

In solidification modelling, a phase-field variable is used to distinguish between the
solid and the liquid phase. The area between this two phases is the interface, which
has in diffuse interface descriptions like the Allen-Cahn equation, a non-zero width.
The phase-field variable p(x, t) is a function of space and time that varies between
two values, representing the two bulk phases (liquid and solid). In our case, it varies
from p(x, t) = 0 in the liquid to p(x, t) = 1 in the solid. The diffuse interface region
is modelled with a small but smooth transition between the two bulk phases. Its
width λhkl is assumed to vary with the crystallographic orientation {hkl}. (See Fig.
3.1).

In agreement with thermodynamic considerations [14], a possible free energy func-
tional has the following form

F(p, T ) =

∫

V

F (p, T ) +
σ2

2
|∇ p|2 dV. (3.1.1)

Here, the free energy density F (p, T ) depends not only on p but also on the temper-
ature T . As sketched in Fig. 3.2, the free energy density F is conventionally chosen
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3. One-Dimensional, Atomistically Consistent Phase-Field Model

x

p

1

0

λhkl

ICrystal Liquid

Fig. 3.1.: The phase-field variable p models the bulk phases solid and liquid, and the transition
region in between. The variable varies smoothly in that region, which has an orientation-
dependent width λhkl. For the crystalline phase, we define p = 1 and for the liquid phase
p = 0. Since the interface, which is the transition area (orange), has a small width λhkl
in relation to to the bulk phases, the gradient, especially around p = 1

2 , is steep.

as a double-well potential with minima f0(T ) at p = 0 for the liquid and f1(T ) at
p = 1 for the crystalline phase and with a maximum in between, the height of which
is related with the kinetic barrier Bkin. We choose a fourth order polynomial in p
with temperature-dependent coefficients. The temperature-dependent minima f0(T )
and f1(T ) correspond to the free energies of the liquid and solid phase, respectively.
We calculated them from atomistic simulations by thermodynamic integration; for
details see Sec. 3.2 in [13].

In (3.1.1), the coefficient of the gradient term σ is related to the width of the tran-
sition from the liquid to the solid phase. In Chaps. 5 and 6, we consider 2D and
3D models, respectively, where the gradient term depends on the crystallographic
orientation, which means that it depends on the normal to the interface or its orien-
tation, as shown in [61, 70]. This is the basis of our modelling of anisotropy. Since
we consider a 1D model in this chapter, different σ parameters are chosen depending
on the given interface orientation {hkl}, denoted by σhkl.

In a closed thermodynamic system, the total free energy F is minimized. The
variational derivative of (3.1.1) represents the driving force of the system. The
resulting Allen-Cahn equation for p(x, t) then has the form

∂tp = mhkl(T )
(
σ2

hkl∂
2
xp− ∂pF (p, T )

)
, (3.1.2)

where mhkl denotes the kinetic mobility parameter of the phase field describing the
relaxation dynamics of the interface. It depends on temperature and also on the
crystallographic orientation {hkl}.

In Sec. 3.4 in [13], we measure with a molecular dynamical simulation the normal
velocity

v = MH (3.1.3)

of a moving flat interface. The driving force H = f1−f0 is the free energy difference
of the liquid and solid phase, which we already mentioned above. From that, one can
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3.1. Atomistically informed Allen-Cahn equation

directly directly determine the orientation-dependent mobility M of a solid-liquid
interface. However, the thermodynamic mobility M obtained in such a manner
cannot be used as parameter in a phase-field model. The reason is that the mobility
mhkl in the phase-field model depends on the choice of the phase-field model itself, for
example the form of the double-well potential and the specific temperature coupling.

Fig. 3.2.: Example of the bulk free energy density F and its kinetic barrier Bkin at temperature
1400K (less than Tm). Bkin is the kinetic barrier that has to be overcome to pass from
one phase into the other.

The second term of the integrand in Eq. (3.1.1) describes the crystal-melt interfacial
energy, which scales with the coefficient σhkl. For a given interfacial energy γhkl and
a fixed interface width λhkl, the constant σhkl is given. Below, we follow the classic
derivation of σ as described in [4, 22]. The formula for σ then depends on the form
of the symmetric part of the double well potential F . In our case, the relations
between σhkl, B

Tm
kin, λhkl and γhkl are

BTm
kin =

3γhkl

4λhkl

, σhkl =

√
3

2
γhklλhkl, (3.1.4)

which we derived below. Hence, the parameter σ is not freely adjustable. Thus, for a
given interface energy, rescaling the σ parameter for numerical reasons is equivalent
to rescaling the interface width, which in turn means that the parameter mhkl needs
to be readjusted, shall the interface energy remain unaffected.

In our previous work [13], we chose λ{111} = 1nm as the width of the interface for the
{111} growth plane. We took the interfacial energies from [6] together with interface
velocities and free energy densities obtained from molecular dynamics simulations.
As we found in the previous chapter, these interface energies do not reproduce the
equilibrium shape of a silicon grain in a melt. Hence, as opposed to [13], we work
with the values listed in Tab. 3.1.
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Furthermore, in [13] we fitted our molecular-dynamical experiments for grain bound-
ary motion to the Vogel-Fulcher-type temperature dependence of the interface ve-
locity of Si [89, 39, 95] as follows:

vMD
100 (T ) = 0.3646 (Tm − T ) exp

(
− 1102

T − 800

)
,

vMD
110 (T ) = 0.4409 (Tm − T ) exp

(
− 1347

T − 799

)
,

vMD
111 (T ) = 3.0042 (Tm − T ) exp

(
− 5833

T − 167.8

)
,

(3.1.5)

with dimensions m s−1. Below, the remaining parameter of the phase-field model, the
mobility m, is then obtained by a shooting method applied to the non-dimensionalized
variant of the phase field Eq. (3.1.2) in 1D. Thus, we achieve that the crystallization
velocity of the phase-field simulation agrees with the growth velocity calculated by
means of molecular dynamics (MD), which we prove numerically in Sec. 3.2.

Summarized, in comparison to [13] the derivation of the phase-field model shown in
the following subsections has the following improvements:

• We derive all model parameters from the interface values found in Chap. 2.

• The interfacial magnitudes are connected to our double well potential sup-
plemented by a squared gradient term, as it was originally derived by Cahn
[22].

• We couple the model with a heat equation in order to describe the heat flux
in the system. This coupling will be of importance in Chap. 4, 5 and 6.

• We introduce a non-dimensionalization for the system, which is easily appli-
cable to the 2D and 3D extension of the model, which is reported in Chaps. 5
and 6, respectively.

• Using the non-dimensional version, we again implement a shooting method in
order to find the right value of the mobility for the model. We solve numerically
the phase-field model in Sec. 3.2, also using the non-dimensional version of it.

Atomistically determined free energy density

The free energy density F (p, T ), which has the form of a double-well potential in p,
can be approximated by a polynomial of fourth degree. Here, the coefficients may
depend on the temperature, which leads to the expression

F (p, T ) = a0(T ) + a1(T )p+ a2(T )p2 + a3(T )p3 + a4(T )p4.

Since the equilibrium states for the bulk free energy density are represented by the
two minima of the double-well polynomial, we choose the coefficients a0, . . . , a4, such
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3.1. Atomistically informed Allen-Cahn equation

Fig. 3.3.: The double-well potential at different temperatures. At the melting point Tm, the two
minima of the bulk free energy density have the same value.

that (0, F (0, T )) and (1, F (1, T )) are the minima of F . The value of this free energy
at 0 and 1 is connected to the MD simulations by imposing that the value of F at the
minima is given by f0(T ) and f1(T ). They represent the equilibrium values of the
atomistic free energy for the liquid and the solid phase, respectively. For detailed
derivation of f0 and f1 see Sec. 3.2 in [13]. Then, our double-well potential has the
form

F (p, T ) = f0(T ) + a(T )p2 − 2(a(T ) + 2H(T ))p3

+(a(T ) + 3H(T ))p4,
(3.1.6)

where H(T ) = f0(T ) − f1(T ). Note here that H(T < Tm) > 0. For the remaining
degree of freedom a(T ) in (3.1.6) follows:

a(T ) >

{
0 T ∈ [0, Tm]
−6H(T ) T > Tm.

(3.1.7)

Furthermore, the maximum point of F is (µ(T ), F (µ(T ), T )) with

µ(T ) =
a(T )

2a(T ) + 6H(T )
∈ (0, 1). (3.1.8)

Hence, as we indicated in the introduction of this section, for the line g(p) which is
tangent to both of the minima of F , the energy barrier Bkin is the difference of the
function values of the maximum F (µ) and g(µ). At the melting point Tm, the two
minima of F have the same value and thus Bkin(Tm) is the difference of the value at
the maximum of F and the value at the minima. Since the values at the minima are
then f0(Tm) = f1(Tm), with Eq. (3.1.8) the maximum point at Tm has the simple
expression

(µ(Tm), F (µ(Tm))) = (1/2, f0(Tm) + a(Tm)/16).
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3. One-Dimensional, Atomistically Consistent Phase-Field Model

Hence, the kinetic barrier at the melting point has the form

BTm
kin = Bkin(Tm) =

a(Tm)

16
. (3.1.9)

Finally, F can be split into a symmetric part

Fsym(p) = p(x, t)2(1− p(x, t))2 (3.1.10)

and a non-symmetric part
Fas(p) = p3(4− 3p), (3.1.11)

such that F has the form

F (p, T ) = 16BTm
kinFsym(p) + f0(T )−H(T )Fas(p). (3.1.12)

The temperature dependence of F is then incorporated via the function H(T ) =
f0(T ) − f1(T ), which denotes the difference of the free energy between the liquid
and the solid phases.

Relations between the interfacial magnitudes and the model
free energy

The kinetic barrier BTm
kin is closely related to the interface energy γhkl and the interface

width λhkl, and both in turn are related to the gradient coefficient σhkl. We derive
here theses relations following [22].

In order to derive the surface energy, we consider the steady state of (3.1.2) with
the potential (3.1.12). Since the interface does not move, there is no free-energy
difference between the phases and hence, only the symmetric part of the double-well
potential needs to be considered. Hence, the free energy functional becomes

F(p) =

∫ +∞

−∞
16BTm

kinFsym(p) +
σ2

hkl

2
(∂xp)

2 dx (3.1.13)

and is equivalent to the surface energy γhkl in our present setting. For a non-zero
mobility, the steady state equation with the energy (3.1.13) has the form

σ2
hkl∂

2
xp = 16BTm

kinF
′
sym(p) (3.1.14)

with the boundary conditions

p(−∞) = 1, p(∞) = 0, ∂nxp(±∞) = 0, n = 1, 2, ... (3.1.15)
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3.1. Atomistically informed Allen-Cahn equation

as sketched in Fig. 3.1. By multiplying (3.1.14) by ∂xp and integrating, we have

σ2
hkl

2
(∂xp)

2 = 16BTm
kinFsym(p). (3.1.16)

Since the slope of the interface is negative in our setting, we have to take into account
that the left-hand side needs a negative sign, such that the square-root of (3.1.16)
is given by

−σhkl√
2
∂xp = 4

√
BTm
kinFsym(p). (3.1.17)

Using this equation in order to simplify the free energy (3.1.13), we get

γhkl = 4

√
2BTm

kinσhkl

∫ 1

0

√
Fsym(p) dx =

2

3

√
2BTm

kinσhkl. (3.1.18)

In order to find the relation of the interface width with the mentioned parameters,
we use the geometrical interpretation of the interface as described in [22]. There,
the interface width λhkl is the horizontal distance of the points where the tangent
in p = 0.5 meets the p = 0 and p = 1 lines. Let xi be the position where p = 0.5.
Then the tangent line at p = 0.5 is given by g(x) = ∂xp(xi)(x− xi) + p(xi). Hence,
the horizontal distance between both line intersections is

λhkl = −1/∂xp(xi). (3.1.19)

Evaluating the square root of (3.1.16) in xi gives

−∂xp(xi) =

√
2BTm

kin

σhkl

. (3.1.20)

Substitution of (3.1.18) and (3.1.19) gives

σhkl =

√
3

2
γhklλhkl, BTm

kin =
3γhkl

4λhkl

. (3.1.21)

Finally, the phase-field Eq. (3.1.2) becomes

∂tp = mhkl(T )

(
3

2
γhklλhkl ∂

2
xp− 12

γhkl

λhkl

F ′sym(p) +H(T )F ′as(p)

)
. (3.1.22)

With γhkl from Chap. 2. By defining the interface width for one orientation (in our
case {111}), the interface width for the other orientations and the kinetic barrier
BTm
kin are calculated as follows

1. BTm
kin =

3γ111

4λ111

, 2. λ110 =
3γ110

4BTm
kin

, 3. λ100 =
3γ100

4BTm
kin

. (3.1.23)
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3. One-Dimensional, Atomistically Consistent Phase-Field Model

In Tab. 3.1, we listed BTm
kin, λhkl and the corresponding γhkl, where we defined

λ111 = 1nm since this can be considered as a physical interface thickness that we
also used in [13].

Orientation {100} {110} {111}

γhkl in eV/nm2 1.869 1.986 1.752

λhkl in nm 1.067 1.134 1

BTm
kin in eV/nm3 1.314

Tab. 3.1.: The values for the kinetic barrier BTm

kin, the interface width λhkl and the interface energy
γhkl. We defined λ111 = 1nm since this can be considered as a physical interface thickness
that we also used in [13].

Remark 3.1.1
In absence on further data for γ, by this procedure we can only determine the kinetic

barrier at the melting point (at equilibrium). We denote BTm
kin = Bkin(Tm). That does

not mean, that the kinetic barrier of the double-well potential (3.1.12) is constant.
As shown in Fig. 3.2, the kinetic barrier for the potential is the distance between the
maximum of F and the line g (shown in black in the figure) which is tangent to F
near its two minima. Both the maximum and the minima changes with temperature
because of H. Hence, the kinetic barrier Bkin of (3.1.12) does also change with
temperature. It can be seen more easily if one directly calculates the barrier, as it is
visualized in Fig. 3.2. The line g is defined as

g(p, T ) = F ′(pg(T ), T )(p− pg(T )) + F (pg(T ), T ) (3.1.24)

where pg is the point where g is tangent to F close to (or at Tm equal to) the point
(0, f0):

pg(T ) =
128(BTm

kin)2 + 40BTm
kinH(T ) + 3H(T )2

(16BTm
kin + 3H(T ))2

+

√
64(BTm

kin)2 + 24BTm
kinH(T ) + 3H(T )2

16BTm
kin + 3H(T )

.

(3.1.25)

This is the solution of the nonlinear system of equations

F ′(pg, T ) = F ′(pg2 , T ),

F (pg2 , T ) = g(pg2 , T ) = F ′(pg, T )(pg2 − pg) + F (pg, T ),
(3.1.26)

where (pg2(T ), g(pg2(T ))) is the second point where g is tangent to F . Then, the
temperature-dependent kinetic barrier of F is

Bkin(T ) = F (µ(T ), T )− g(µ(T ), T ) (3.1.27)
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3.1. Atomistically informed Allen-Cahn equation

with

µ(T ) =
8BTm

kin

16BTm
kin + 3H(T )

. (3.1.28)

We show the function 3.1.27 in Fig. 3.4.

Fig. 3.4.: The resulting kinetic barrier Bkin of F in dependence on temperature. It fulfills
Bkin(Tm) = BTm

kin.

Remark 3.1.2
With increasing interface thickness, one have to ensure that the condition

16BTm
kin > −6H(T ), T > Tm (3.1.29)

on the double well potential is fulfilled. This condition is necessary to guarantee
that (0, f0) and (1, f1) are minima of F (see Eqs. (3.1.7) and (3.1.9)). Since H is
negative for T > Tm, the condition is not naturally fulfilled, and BTm

kin decreases with
increasing interface thickness (see (3.1.23)). If (3.1.29) does not hold, the points
(0, f0) and (1, f1) turn to maxima and limp→±∞ F (p)→ −∞, which unstabilizes the
system. Hence, for arbitrary interface width, our double-well potential only works for
undercoolings and very low overheatings (how low exactly depends on the interface
thickness).

In order to stabilize the system for any case, one would have to add either i) a
temperature dependence on BTm

kin, or ii) an interface-thickness dependence on H, such
that (3.1.29) is always fulfilled. For the latter option, a dependence on the interface
thickness in H would invalidate our MD investigations for the minima of the free
energy density. A temperature dependent BTm

kin means that the interface energy γ
depends on temperature, which is the case in the real world and hence option i) is
physically reasonable. In the absence on data of the change of γ with temperature, we
only found in Chap. 2 the values for the equilibrium crystal shape for temperatures
almost at the melting point. If one day data for γ in T are available, it would be
interesting to prove if (3.1.29) is also fulfilled for greater interface thicknesses.
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3. One-Dimensional, Atomistically Consistent Phase-Field Model

Option i) and simultaneously (3.1.29) can also simply realized by setting Bkin(T ) =
BTm
kin− 6

16
H(T ) for T > Tm. Then Bkin should be regularized in such a way that Bkin

is smooth in a neighbourhood of Tm and fulfils Bkin > 0 for T ≥ Tm, since this is
equivalent to the first condition in (3.1.7).

Model with heat dynamics

In addition to (3.1.22), we introduce a heat equation

Cp ∂tT = K ∂2
xT + L ∂tp (3.1.30)

with the bulk heat capacity Cp, the thermal conductivity K and the latent heat of
fusion per unit volume L. The values of this parameters result from our fits to exper-
iments in appendix A.2. There, L and K are functions dependent on temperature
and Cp is dependent on temperature and on phase-field. We fitted these functions
for a temperature range of T ∈ [1000K, 2000K], the methodology is discussed in the
appendix, with the results of the fit reported in Eq. (A.2.14). We evaluate these
function at T = Tm and p = 1/2 and use these values for Eq. (3.1.30), as listed in
Tab. 3.2.

Tm in K Cp in eV/(K nm3) K in eV/(K nm ns) L in eV/nm3

1697.12 7.542 10−3 134.047 15.1

Tab. 3.2.: Melting point Tm, bulk heat capacity Cp, thermal conductivity K and latent heat of
fusion per unit volume L.

The value of latent heat of fusion L at the melting point results from the linear fit
of H,

H(T ) = L
Tm − T
Tm

. (3.1.31)

This fit is very accurate in the neighbourhood of the melting point, and it is only near
the glass transition where the approximation fails. In this work we do not deal with
such high undercoolings, we do not consider temperatures lower than 1000K > Tg.
We show in Fig. 3.5 the agreement for T > Tg between the approximation and the
original H.

We derive a non-dimensional form of the model:

∂tp = mhkl(T )

(
3

2
γhkl λhkl ∂

2
xp− 12

γhkl

λhkl

F ′sym(p) +H(T )F ′as(p)

)
,

Cp ∂tT = K ∂2
xT + L ∂tp

(3.1.32)
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3.1. Atomistically informed Allen-Cahn equation

Fig. 3.5.: Difference of solid and liquid equilibrium free energy density and its linear fit for T ∈
[Tg, 2000K]. The absolute value of the slope L = 15.1 is latent heat of fusion at the
melting point.

with
F ′sym(p) = 2p(1− p)(1− 2p),

F ′as(p) = 12p2(1− p).
(3.1.33)

In the following we neglect the dependencies on the orientation {hkl}.

Using as a characteristic length the critical radius of nucleation r̂ := rcrit(Tm−1K) ≈
450nm (see Sec. 2.3, Eq. (2.3.1)) for a small undercooling of 1K, we define

u =
Cp
L

(T − Tm), x̃ =
1

r̂
x, τ =

K

r̂2Cp
t, ε =

3λ

2r̂

H̃(u) =
r̂H(L/Cp u+ Tm)

γ
, m̃(u) =

3λγCp
2K

m(L/Cp u+ Tm).

(3.1.34)

Then, the system (3.1.32) turns into the non-dimensional model

ε2 ∂τp = m̃(u)
(
ε2 ∂2

x̃p− 18F ′sym(p) + εH̃(u)F ′as(p)
)
,

∂τu = ∂2
x̃u+ ∂τp,

(3.1.35)

where we multiplied the phase-field equation with ε2. The polynomials Fsym and
Fas are dimensionless by construction, since they only depend on the phase-field
variable which has no dimensions.

Note here that the non-dimensionalized melting point is um = 0, and hence u < 0
for undercoolings and u > 0 for overheatings. Furthermore, with the substitutions
(3.1.34), the non-dimensionalized interface velocity of the system (3.1.35) has the
form

ṽ(u) =
r̂Cp
K

v(L/Cp u+ Tm). (3.1.36)
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3. One-Dimensional, Atomistically Consistent Phase-Field Model

The temperature-dependent velocities (3.1.5) fitted to the MD data are shown in
a non-dimensionalized version in Fig. 3.6. We define the domain for the non-
dimensionalized temperature as

Ω := [−0.425, 0.15], (3.1.37)

which is the region where MD velocity measurements are available. In dimensions,
Ω encompasses [Tm − 850K, . . . , Tm + 300K].

Fig. 3.6.: The non-dimensional version of the fits (3.1.5) to the interface velocities calculated via
MD. u ∈ Ω := [−0.425, 0.15] is the region where MD velocity measurements are available.

Remark 3.1.3
As we already mentioned in remark 3.1.2, for temperatures above the melting point,

the parameter BTm
kin of the dimensional double-well potential has to fulfil a restriction

3.1.29 in order to guarantee a minimum at p = 1. Since BTm
kin depends on λ and the

non-dimenaional parameter ε depends in turn on λ, the non-dimensional version of
3.1.2 imposes a restriction on ε, namely

ε < − 3

H̃(u)
. (3.1.38)

Hence, the choice of ε is limited for overheatings.

Mobility with proper interface energies

In this Section, we calculate the mobility parameter m̃hkl(T ) of the phase-field model
(3.1.2), such that the model reproduces the atomistic velocities ṽMD

hkl (T ). We work
with the non-dimensional phase-field equation derived in the previous section. The
derivation of the mobility is performed in an isothermal setting, since the MD cal-
culations were realized under isothermal conditions as well.
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3.1. Atomistically informed Allen-Cahn equation

In our previous work [13], we used the interface energy values γA found by Apte
and Zeng [6] in order to derive a one-dimensional phase-field model consistent with
MD results, which were in turn computed using the Stillinger-Weber potential. As
we showed in Chap. 2, these values do not reproduce the equilibrium shape which
is found in experiments [103]. Hence, we apply our method to derive the mobility
again, this time using the values in Tab. 3.1.

In a phase field model, the interface velocity is not a parameter which can be directly
incorporated like the interface energy γhkl or the free energy minima H. In order to
ensure that the correct velocity of the interface is recovered for a given temperature
and orientation, we find numerically the value of m̃hkl by using a shooting method.
This procedure is repeated for all three considered directions {100}, {110} and
{111}, and for different dimensionless undercoolings and overheatings u ∈ Ω in
steps of 0.025. We did not apply this procedure to u = 0, because the velocity is
zero at the melting point and hence the shooting method is not applicable.

For the shooting method, we first define boundary values for the phase-field equation
in (3.1.35) for p(x̃, τ) : [a, b]× [0,∞) 7→ [0, 1], such that we simulate crystal material
on the left boundary, and liquid material on the right as we sketched in Fig. 3.1:

0 = m̃(u)
(
ε2 ∂2

x̃p− 18F ′sym(p) + ε H̃(u)F ′as(p)
)
− ε2∂τp

p(a, τ) = 1,
p(b, τ) = 0.

(3.1.39)

We now fix the temperature and the orientation arbitrarily. Hence, m̃, H̃ and also
the velocity ṽ are constants. The latter means that we can seek solutions of the
travelling wave type:

p(x̃, τ) = φ(x̃− ṽτ) =: φ(ζ).

Substitution of φ in (3.1.39) leads to the following boundary value problem:

0 = m̃
(
ε2φ′′ − 18F ′sym(φ) + εH̃F ′as(φ)

)
+ ṽε2φ′,

φ(ζa) = 1,
φ(ζb) = 0,

(3.1.40)

where φ′ = dζφ.

To obtain an initial-value problem, we integrate the ordinary differential equa-
tion in (3.1.40) with the left boundary φ(ζa) = 1, which holds as our first initial
condition. We compute then numerically the value of the function at s, an un-
specified new spatial variable for the shooting method. Furthermore, we define
F̂ ′(s) := 18F ′sym(φ(s)) − εH̃F ′as(φ(s)), which enables us to integrate the derivative
of the potential F in s. For the calculation of the integral we introduce a further
initial condition φ′(ζa) = 0. Both initial conditions φ(ζa) = 1 and φ′(ζa) = 0 guar-
antee, that we have crystal material at the left boundary. Applying all described
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3. One-Dimensional, Atomistically Consistent Phase-Field Model

conditions, we obtain

0 = m̃ε2

∫ s

ζa

φ′′ dζ − m̃

∫ s

ζa

F̂ ′(ζ) dζ + ṽε2

∫ s

ζa

φ′ dζ (3.1.41)

0 = m̃ε2(φ′(s)− 0)− m̃(F̂ (s)− F̂ (ζa)) + ṽε2(φ(s)− 1). (3.1.42)

By choosing F̂ (ζa) = 0 as a further condition, our initial value problem has the
form: (

F̂ ′(s)
φ′(s)

)
=

(
18F ′sym(φ(s))− εH̃F ′as(φ(s))

ṽ
m̃

(1− φ(s)) + 1
ε2
F̂ (s)

)
,

F̂ (ζa) = 0.

φ(ζa) = 1,

(3.1.43)

We calculate the mobility m̃ via a bisection method. Therefore we vary m̃ until
the right boundary condition φ(ζb) = 0 is fulfilled, where we solve the ordinary
differential equation with an explicit Runge-Kutta (4,5) method on the interval
[ζa, ζb] = [0, 1] which is in dimensions 450nm in length. The choice of ε = 1

300
lead

to an interface thickness λ = 1nm. We apply this method for each of the three
orientations {100}, {110} and {111}. Our results are shown in Fig. 3.7. Note, that
in this case BTm

kin is for {110} and {100} different than in Tab. 3.2, since we chose
the same interface thickness for all orientations, for ε to remain unchanged.

Fig. 3.7.: The extracted mobilities of the phase-field model derived via a shooting method for
ε = 1

300 , which leads to an interface thickness λ = 1nm. The concrete values of the
mobilities are listed in appendix A.3 in Tab. A.1.

3.2. Simulation and velocity measurements

In this subsection we validate the shooting computed mobility of the previous sub-
section. In that end we solve the phase-field equation in (3.1.35) numerically at fixed
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3.2. Simulation and velocity measurements

temperatures u ∈ [−0.325, 0.15] ⊂ Ω for the three crystallographic orientations. The
calculations are isothermal as that was the setting of the MD simulations in [13].
In the numerical simulation, we keep track of the velocity of the interface locating
where p = 0.5 by interpolation. We see below that, in fact, the model reproduces
the non-dimesionalized velocities ṽMD

hkl (u) in Fig. 3.6 from MD. In order to remain
consistent with the shooting procedure, we set ε = 1

300
.

In direct correspondence with the MD simulations in [13], we use periodic boundary
conditions for p(x̃, τ). This allows for the easy numerical simulation of the phase-field
equation in (3.1.35) by using a Fourier spectral method. We simulate the growth
of a crystalline grain surrounded by the melt, as sketched in Fig. 3.8. In order
to secure an accurate solution, we have a time-step of 10−4 and our equidistant
grid guarantees that at least 16 grid points are located on the interface. With a
domain length of 1, the initial length of the solid phase is greater than two times
the non-dimensionalized critical radius of the considered temperatures.

x

p

1

0

growthgrowth

shrinkage

I1 I2Crystal LiquidLiquid

Fig. 3.8.: Sketched simulation setting of the phase-field for periodic boundary conditions. Depend-
ing on the temperature of the simulation, the crystal area expands or melts. In other
words: the grain growths or shrinks. The movement of the two interfaces is mirrored and
hence it is sufficient to track one of both interfaces to measure the velocity.

As initial condition we simply define a jump function for p, such that we set p
equal to zero close to the boundaries and one in between. In order to extract the
velocity of the interface during the simulation one has to ensure that the solution has
evolved into a travelling wave before the measurements start. For the measurements
we define the interface positions at different time points. Therefore, at fixed time
points, we collect all points where p > 0.1 and p < 0.9, and interpolate linearly
the position where p = 0.5. Finally we calculate the spatial difference from the
last measured interface position and relate it to the passed time. These values
vary slightly at the different time-points, which is a matter of the numerical grid
resolution. The mean values of these measurement are the data that we compare
with the velocities from MD.
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3. One-Dimensional, Atomistically Consistent Phase-Field Model

Numerical method

In order to perform the phase-field simulation with periodic boundary conditions,
we introduce the Fourier spectral method. The goal of this section is to give the op-
portunity for a fast implementation. In Sec. A.4 we summarise all parameters which
are needed in the simulations performed and the definition of the wave-vector.

We realize the time discretization as a simple Euler scheme

∂τp =
pj+1 − pj
τstep

, (3.2.1)

where τstep is the time step size and within the numerical calculations, pi and the
corresponding Fourier coefficient cpi are vectors.

As pseudocode for the fast Fourier transformation we use ftt and for the inverse
ifft. For an introduction of the Fourier spectral method, we refer to [15, 25].

Beneath (A.4.2), one has to chose the considered crystallographic orientation {hkl} ∈
{{100}, {110}, {111}}, one has to define the parameter ε and choose the correspond-
ing mobility mhkl(u).

Together with (3.1.31), (3.1.34) one defines

Hhkl(u) = −r̂L2 u

CpTmγhkl

. (3.2.2)

The Fourier coefficients of the second derivative of p with respect to x are −k2cp,
where the multiplications and squares are pointwise.

The solution of the phase field model in Eq. (3.1.32) can be realized semi-implicit.
First of all, one has to initialize the vector p0, which represents a jump function
as described above, with the interfaces at a + (b − a)/12 and b − (b − a)/12. For
undercoolings, we locate the liquid phase at the boundaries of [a, b] and the solid
phase in between. For overheatings, we initialize the solid phase at the boundaries
and the liquid phase in between. Hence, the interfaces move towards the middle of
the interval for both cases.

We solve the equation for different constant values of u, set ε = 1
300

and choose the
corresponding mobility from the shooting method (see Tab. A.1 in Sec. A.3). The
domain that we choose has unit length.

Since we perform this simulation for different temperatures, the equilibrium state
(there, where p is constant) is reached at different time points. Hence, we consider
the number of time steps depending on vMD(u). In detail, we define the time-step
number as 3

|vMD(u)|τstep . With this choice, the equilibrium state is not reached and

the velocity can be measured till the last time step.
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After chosing a constant value of the temperature u and the corresponding constant
mobility m(u), the algorithm has the following form:

1. Calculation of initial Fourier coefficients:

• Fourier coefficients of the initial condition p0: cp0 = fft(p0)

• Fourier coefficients of F ′(p0): cdF0 = fft(−18F ′sym(p0) + εHhkl(u)F ′as(p0))

2. repeat for each time step

a) cpj+1 =
cpj+ 1

ε2
τstepmhkl(u)cdFj

τstepmhkl(u)k2+1

b) pj+1 = Re(ifft(cpj+1))

c) cdFj+1 = fft(−18F ′sym(pj+1) + εHhkl(u)F ′as(pj+1)),

where all products and powers are pointwise.

Results

The numerically computed velocity matches closely the results from MD simulations.
On the left-hand side of Fig. 3.9, the velocities from the numerical simulation of
model (3.1.35) are located directly on the line of the non-dimensionalized Vogel-
Fulcher fit of the MD data in Fig. 3.6 . For a better comparison, we calculate the
relative error, which is

Rhkl(u) =

∣∣∣∣
ṽMD

hkl (u)− ṽPF
hkl(u)

ṽMD
hkl (u)

∣∣∣∣ . (3.2.3)

The relative error is shown on the right-hand side of Fig. 3.9. We observe, that the
maximal relative error is smaller than 0.0009. In other words: The interface velocity
of the phase-field simulation deviates less than 0.09% from the fitted MD interface
velocity.

Remarks on scales

When considering the actual physical dimensions, the simulations of the two previous
subsections are performed for a domain length of a few hundred nano meters. But
a comparison with other simulations or experiments requires larger domains. The
limitations of the numerics make it inevitable to increase the interface thickness λ.
That means for the non-dimensional model that ε has to be increased, since the
non-dimensional interface width is according to (3.1.34) defined as λ

r̂crit
= 2

3
ε. If one

simply increases the domain length, then the interface thickness decreases in reverse
proportion. This indeed has no effect on the growth, but, in an equidistant grid, in
order to resolve the interface, the number of grid points grows proportionally to an
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3. One-Dimensional, Atomistically Consistent Phase-Field Model

Fig. 3.9.: Left: velocity of the interface for different values of the undercooling and overheating.
Symbols represent measured velocities from the numerical solution of Eq. (3.1.35), which
incorporates the mobility computed through the shooting method. Lines represent the
non-dimensional fits to the MD velocities. Right: Relative errors in the velcity as a
function of u for different orientations. Only relative errors smaller than 0.0009 can be
observed.

increase of the domain length. It is well known, that an arbitrary variation of the
inteface thickness leads to a change of the interface velocity [56]. The consequence
is that for each change of ε, one has to repeat the shooting method.

Fig. 3.10 shows the scenario, where we simulate the velocity with a Fourier-spectral
method for different ε, but let the mobility unchanged and use the values from the
shooting in Sec. 3.1 for ε = 1

300
. As an example, we choose u = −0.1.

Since the simulated velocity decreases in relation with the MD-velocity while ε
increases, it is clear that the mobility has to increase following ε. We repeated
the shooting method of the previous section for the same values of ε, for the same
temperature and orientation as in Fig. 3.10 in order to get an impression how the
mobility changes (see Fig. 3.11).

In the next chapter we study how the mobility depends on the phase-field parame-
ters, by using matched asymptotic expansions.
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3.2. Simulation and velocity measurements

Fig. 3.10.: On the left hand side, we show the simulated velocity for different values of ε; the non-
dimensionalized MD-velocity is represented by the dashed gray line. Here we assume
an ε-independent mobility and use the shot mobility for ε = 1

300 . We take u = −0.1
and orientation {111}. On the right hand side, we show the corresponding relative error
between MD-velocity and simulated velocity. The simulation shows that it is necessary
to adapt the mobility to ε in order to reproduce the non-dimensionalized velocity from
MD.

Fig. 3.11.: The shooting method shows that the mobility is dependent on the choice of ε and hence
on the interface thickness. We performed the shooting for orientation {111} at the
undercooling u = −0.1.
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4. Thin Interface Limit in One
Dimensions

In this chapter we derive the sharp and thin interface limit of the phase field model
that we developed in Chap. 3. The model consists of an Allen-Cahn-type equation
coupled with a heat equation with an additional source term. In its non-dimensional
form it reads

ε2 ∂τp = m(u)
(
ε2 ∂2

xp− 18F ′sym(p) + εH(u)F ′as(p)
)
,

∂τu = ∂2
xu+ ∂τp,

(4.0.1)

where the tildes denoting non-dimensional variables have been dropped, since from
now on we only consider non-dimensional magnitudes.

The first derivation of the sharp interface limit of a similar, more simple system in
2D was performed by Caginalp and Fife [21], see also [20]. Within about one decade,
other authors also derived the sharp interface limit for anisotropic phase-field models
[70, 91] and made use of higher order asymptotics, as for example Karma and Rappel
[56]. The higher order matched asymptotic expansions is conventionally denoted as
thin interface limit, since the convergence to the sharp interface limit is faster, thus
making the model more accurate for larger values of the interface thickness.

Especially challenging in the derivation of the thin interface limit of (4.0.1) is the
non-symmetric double-well potential. A symmetry in the potential enables an ad-
vantageous simplification of the solvability condition in the second order.

By using matched asymptotic expansions we derive in Sec. 4.1 a free boundary
problem as well a correction terms on the mobility to make this asymptotic limit
valid to a higher order in the interface thickness. In many applications, it is crucial
to understand the role of curvature in the sharp interface limit, and that is achieved
also by matched asymptotic expansions of 2D models. We determine the limit of
our 2D anisotropic model in Sec. 5.2. Nevertheless, we are interested in the limit
of the 1D model in order to study higher-order approximations and also to obtain a
closed form expression for the mobility in dependence on interface thickness.

In Sec. 4.2 we validate the results of our asymptotic procedure. On that end
we compare the mobilities obtained from the shooting method with the mobilities
obtained at successive orders of the asymptotic procedure. We study the range of
values of ε where the discrepancy between the shooting and the asymptotic mobility
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4. Thin Interface Limit in One Dimensions

is lower than 5%. We also derive a travelling wave solution of the free boundary
problem and simulate the phase field model in the case in which this travelling-wave
solution is expected to move at constant speed.

4.1. Matched asymptotics to higher order

Before proceeding with the analysis, we introduce two modifications in the model
(4.0.1). The first one concerns the mobility: In Sec. 3.2, we noted that a variation
of the interface width changes the interface velocity if the mobility has not been
adapted. Therefore, the mobility has to be dependent on ε. Hence we approximate
the mobility as asymptotic expansion in ε:

m(u) = m0(u) + εm1(u) + ε2m2(u) + ε3m3(u) +O(ε4). (4.1.1)

The second modulation is the incorporation of the term ε3ξ(u) ∂xp ∂xu to the phase-
field equation, where the parameter ξ will be determined in the matched asymptotics.
It is necessary to cancel higher-order thin interface terms. The new term has no
impact on the shooting results, since it vanishes in isothermal calculations. As the
mobility, we treat ξ as well as an asymptotic expansion. Thus, Eq. (4.0.1) become

ε2 ∂τp = (m0(u) + εm1(u) + ε2m2(u) + ε3m3(u))
(
ε2 ∂2

xp− 18F ′sym(p)

+ εH(u)F ′as(p) + ε3(ξ0(u) + εξ1(u)) ∂xp ∂xu
)
,

∂τu = ∂2
xu+ ∂τp,

(4.1.2)

with
F ′sym(p) = 2p(1− p)(1− 2p),

F ′as(p) = 12p2(1− p).
(4.1.3)

As it is usual for matched asymptotic expansions, we divide the domain of the
solutions p and u into three parts as sketched in Fig. 3.1: The two outer domains
of the bulk phases crystalline and liquid, and the inner region, which represents
the interface. Then the growth takes place if the wave travels to the right, as it is
shown for I2 in Fig. 3.8. This means, the crystalline phase is located at the left
hand side of the interface. Negative velocities (i.e. a left-travelling wave) imply
a receding crystal interface. In the subdomains, the solutions are constructed as
asymptotic expansions, where the summands have different orders in ε similar to
the mentioned expansion of the mobility. The matching then combines the solutions
of the subdomains and gives a single approximation that is valid for the whole range.
The higher the order of the approximation, the more exact the solution is, as shown
in Sec. 4.2. For a detailed introduction to matched asymptotics, we refer to Holmes
[49], Van Dyke [94] and for multiple scales to Kevorkian et al. [58].

We start considering the outer region and then turn to the inner region. After
deriving the leading-order of the approximation the higher order terms are derived
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4.1. Matched asymptotics to higher order

by using the following procedure: 1. Derivation of the phase-field equation of the
current order, which has a trivial solution. Hence the Fredholm alternative theorem
[42] can be applied to obtain the solvability condition that defines the corresponding
order of m, 2. Derivation of the heat equation of the current order in order to get
a heat flux boundary condition via matching, 3. Explicit calculation of Φ of the
current order, which is needed in the next order. This part of the procedure is not
needed in previous approaches, because of the symmetry properties of the potential.
Since our double-well potential is non-symmetric, we need to perform this calculation
explicitly for every order.

Outer solution

As mentioned above, we consider p and u as asymptotic expansions within the
subdomains. For the outer region we define:

p(x, τ ; ε) = φ0(x, τt) + εφ1(x, τ) + ε2φ2(x, τ) + ε3φ3(x, τ) +O(ε4)

u(x, τ ; ε) = u0(x, τt) + εu1(x, τ) + ε2u2(x, τ) + ε3u3(x, τ) +O(ε4).
(4.1.4)

With the help of Taylor expansion, the mobility and the double-well potential can
be expressed as

Tm(u0 + εu1 + . . . ;u0) = m0(u0) + ε(m′0(u0)u1 + m1(u0))

+ ε2

(
m′0(u0)u2 +

1

2
m′′0(u0)u2

1 + m′1(u0)u1 + m2(u0)

)

+ ε3

(
+m′0(u0)u3 + m′′0(u0)u1u2 +

1

6
m′′′0 (u0)u3

1

+ m′1(u0)u2 +
1

2
m′′0(u0)u2

1 + m′2(u0)u1 + m3(u0)

)
+O(ε4),

T (−18F ′sym(φ0 + . . . ) + εH(u0 + . . . )F ′as(φ0 + . . . ))(φ0, u0) =

− 18F ′sym(φ0) + ε(−18F ′′sym(φ0)φ1 +H(u0)F ′as(φ0))

+ ε2
(
−18F ′′sym(φ0)φ2 − 9F ′′′sym(φ0)φ2

1 +H ′(u0)u1F
′
as(φ0)

+H(u0)F ′′as(φ0)φ1

)
+ ε3

(
−18F ′′sym(φ0)φ3 − 18F ′′′sym(φ0)φ1φ2

− 72φ3
1 +H(u0)

(
F ′′as(φ0)φ2 +

1

2
F ′′′as(φ0)φ2

1

)

+H ′(u0) (u1F
′′
as(φ0)φ1 + u2F

′
as(φ0)) +

1

2
H ′′(u0)u2

1F
′
as(φ0)

)
+O(ε4),

(4.1.5)

where the prime of m and H denotes the derivative with respect to u, the prime of
Fas and Fsym the derivative with respect to φ.

The leading order and the three following orders of the outer phase-field equation

43



4. Thin Interface Limit in One Dimensions

read

O(ε0) : 0 = F ′sym(φ0)

O(ε1) : 0 = −18F ′′sym(φ0)φ1 +H(u0)F ′as(φ0)

O(ε2) : 0 = −18F ′′sym(φ0)φ2 − 9F ′′′sym(φ0)φ2
1

+H ′(u0)u1F
′
as(φ0) +H(u0)F ′′as(φ0)φ1

O(ε3) : 0 = −18F ′′sym(φ0)φ3 − 18F ′′′sym(φ0)φ1φ2

− 72φ3
1 +H(u0)

(
F ′′as(φ0)φ2 +

1

2
F ′′′as(φ0)φ2

1

)

+H ′(u0) (u1F
′′
as(φ0)φ1 + u2F

′
as(φ0)) +

1

2
H ′′(u0)u2

1F
′
as(φ0)

(4.1.6)

where we used the equation of the prior order to simplify the current order equation
and we assumed that m(u0) 6= 0. The leading order imposes that φ is equal to 0
or 1, depending on the phase liquid or solid, respectively. We discuss the neglected
third root φ0 = 1/2 of F ′sym in remark 4.1.1. It follows for the other orders, that
φ1 = φ2 = 0. In fact, all higher-order terms are zero, because in each order the term
that is multiplied with the current expansion element is the only non-zero term.

Remark 4.1.1
With φ0 = 1

2
it follows that

φ1 = − 1

12
H(u0), φ2 =

1

72

(
H(u0)2 − 6H ′(u0)u1

)
, (4.1.7)

which leads to a non-trivial outer solution. This solution cannot be assigned to a
solid or a liquid phase, hence it is physically irrelevant.

It follows that the time derivative of φ vanishes in the temperature equation and
hence it has the same form for each order, namely

∂τuk = ∂2
xuk, k = 0, . . . . (4.1.8)

Inner solution up to third order

Formulation of the inner problem and matching conditions

In the inner region we define the inner variable

η =
x− vτ
ε

, (4.1.9)

in terms of the velocity v. In this ”stretched” variable, the limit ε→ ±0 corresponds
to η → ±∞, and hence the inner solution will meet the outer solution at infinity,
which is the matching procedure that we will discuss in more detail below.
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Note that the model parameters - including the velocity v - are orientation depen-
dent. The velocity is furthermore temperature dependent. The velocity is an outer
magnitude, otherwise the previous transformation is not well defined. This means
that this dependence of the velocity on the temperature corresponds to a dependence
on the outer temperature. Below it is shown explicitly how is this achieved.

We express our model variables in terms of the inner variable η as follows:

Φ(η, τ) := φ(x, τ), U(η, τ) := u(x, τ). (4.1.10)

Substituting them into the non-dimensionalized and time-scaled model Eqs. (4.1.2)
leads to

ε2∂τΦ− εv ∂ηΦ
= (m0(U) + εm1(U) + ε2m2(U) + ε3m3(U))

(
∂2
ηΦ− 18F ′sym(Φ)

+ εH(U)F ′as(Φ) + ε(ξ0(U) + εξ1(U)) ∂ηΦ ∂ηU
)
,

ε2∂τU − εv ∂ηU
= ∂2

ηU + ε2 ∂τΦ− εv ∂ηΦ.

(4.1.11)

We then expand Φ and U as follows:

Φ(η, τ, ε) = Φ0(η, τ) + εΦ1(η, τ) + ε2Φ2(η, τ) + ε3Φ3(η, τ) +O(ε4)

U(η, τ, ε) = U0(η, τ) + εU1(η, τ) + ε2U2(η, τ) + ε3U3(η, τ) +O(ε4).
(4.1.12)

In order to derive the matching conditions, we expand the outer solution w ∈ {φ, u}
in the inner variable η:

T (w0 + εw1 + ε2w2 +O(ε3)) ((εη + vτ, τ); (vτ, τ))

= w0(vτ, τ) + ε (η ∂xw0(vτ, τ) + w1(vτ, τ))

+ ε2

(
1

2
η2∂2

xw0(vτ, τ) + η ∂xw1(vτ, τ) + w2(vτ, τ)

)

+ ε3

(
1

6
η3∂3

xw0(vτ, τ) +
1

2
η2∂2

xw1(vτ, τ) + η ∂xw2(vτ, τ) + w3(vτ, τ)

)

+O(ε4),

(4.1.13)

and we match this expansion order by order to (4.1.12) for ε → ±0 (i.e. for η →
±∞):

lim
η→±∞

W0(η, τ) = w±0 (vτ, τ), (4.1.14a)

lim
η→±∞

(
W1(η, τ)− η ∂xw±0 (vτ, τ)

)
= w±1 (vτ, τ), (4.1.14b)

lim
η→±∞

(
W2(η, τ)−

(
1

2
η2∂2

xw
±
0 (vτ, τ) + η ∂xw

±
1 (vτ, τ)

))
= w±2 (vτ, τ), (4.1.14c)
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4. Thin Interface Limit in One Dimensions

where W ∈ {Φ, U} and w± denotes the value of w on the interface depending on
the limit direction ε→ ±0.

We will also make use of the derived matching conditions

lim
η→±∞

∂ηW1(η, τ) = ∂xw
±
0 (vτ, τ), (4.1.15a)

lim
η→±∞

(∂ηW2(η, τ)− η ∂2
xw
±
0 (vτ, τ)) = ∂xw

±
1 (vτ, τ), (4.1.15b)

lim
η→±∞

∂2
ηW2(η, τ)) = ∂2

xw
±
0 (vτ, τ), (4.1.15c)

lim
η→±∞

(
∂ηW3(η, τ)− 1

2
η2∂3

xw
±
0 (vτ, τ)− η ∂2

xw
±
1 (vτ, τ)

)
= ∂xw

±
2 (vτ, τ) (4.1.15d)

lim
η→±∞

(
∂2
ηW3(η, τ)− η ∂3

xw
±
0 (vτ, τ)

)
= ∂2

xw
±
1 (vτ, τ) (4.1.15e)

lim
η→±∞

∂3
ηW3(η, τ) = ∂3

xw
±
0 (vτ, τ) (4.1.15f)

Leading order of the inner problem

With the expansions (4.1.12), the leading order inner equation of the phase-field
equation in (4.1.11) reads

0 = ∂2
ηΦ0 − 18F ′sym(Φ0). (4.1.16)

Multiplying with ∂ηΦ0 and integrating leads to

1

2
(∂ηΦ0)2 − 18Fsym(Φ0) = c. (4.1.17)

We find the integration constant c with the derived matching condition (4.1.14a)
(where the right-hand side is zero):

lim
η→±∞

(
1

2
(∂ηΦ0)2 − 18Fsym(Φ0)

)
= 0. (4.1.18)

It follows from the limit of the leading order inner equation that c = 0 and thus

1

2
(∂ηΦ0)2 = 18Fsym(Φ0), (4.1.19)

and hence
∂ηΦ0 = −6Φ0(1− Φ0), (4.1.20)

where +6Φ0(1−Φ0) is also a possible solution. In order to reproduce the setting of
I2 in Fig. 3.8, we take the negative sign. In order to find the solution of (4.1.16), we
choose a boundary condition for the inner problem, that forces the interface to be
located at Φ(0) = 1

2
. Since this boundary condition is independent on ε, it follows
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4.1. Matched asymptotics to higher order

that Φ0(0) = 1
2

and Φj(0) = 0 for j = 1, 2, 3... . Then we obtain from (4.1.20) via
integration

η(Φ0) =
1

3
artanh(1− 2Φ0). (4.1.21)

The inverse then is the solution of (4.1.16):

Φ0(η) =
1

2
(1− tanh (3η)) , (4.1.22)

Note that η(Φ0) and Φ0 are independent on the time τ .

We get for the leading order of the temperature field

0 = ∂2
ηU0, (4.1.23)

which gives, together with the matching condition (4.1.14a), that U0 is independent
on η.

Order O(ε) of the inner problem

For the phase-field equation the next order O(ε1) has the form

−∂2
ηΦ1 + 18F ′′sym(Φ0)Φ1 =

v

m0(U0)
∂ηΦ0 +H(U0)F ′as(Φ0) (4.1.24)

We now express (4.1.24) as LΦ1 = B1, with the self-adjoint operator L = −∂2
η +

18F ′′sym(Φ0) and the right-hand side B1. It is easy to see that Φhom
1 = ∂ηΦ0 in (4.1.20)

is a solution of the homogeneous problem LΦ1 = 0. The Fredholm alternative
theorem [42] claims for our conditions that either (4.1.24) has a solution, or that the
right-hand side multiplied with the homogeneous solution does not vanish. Hence,
the condition for the solvability of (4.1.24) is (B1, ∂ηΦ0)L2 = 0, which gives the
following equation:

0 =
v

m0(U0)

∫ +∞

−∞
(∂ηΦ0)2 dη +H(U0)

∫ +∞

−∞
F ′as(Φ0) ∂ηΦ0 dη. (4.1.25)

Using the leading order result (4.1.20) and (4.1.22) gives immediately the limits
Φ0(η) → 0 for η → ∞ and Φ0(η) → 1 for η → −∞. Using these, and after a
simple change of variable, the integrals in the solvability condition can be easily
calculated: ∫ +∞

−∞
(∂ηΦ0)2 dη = 6

∫ 1

0

Φ0(1− Φ0) dΦ0 = 1

∫ +∞

−∞
F ′as(Φ0) ∂ηΦ0 dη = −

∫ 1

0

F ′as(Φ0) dΦ0 = −1

(4.1.26)
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4. Thin Interface Limit in One Dimensions

Hence, the solvability condition 4.1.25 reduces to

m0(U0) =
v

H(U0)
. (4.1.27)

We derive the heat flux boundary condition for the outer solution with the help of
the matching condition (4.1.15a). Therefore, we need to calculate U1, which is easily
done by integrating the thermal equation for the current order

∂2
ηU1 − v ∂ηΦ0 = 0. (4.1.28)

It has this simple form because U0 is independent on η, as we found with (4.1.23)
via matching. Integrating (4.1.28) two times yields

U1(η) = β1 + α1η + v

∫ η

0

Φ0(η̂) dη̂, (4.1.29)

where β and α1 are integration constants, which may depend on time. The matching
condition (4.1.15a) then gives

∂xu
−
0 = lim

η→−∞
∂ηU1 = lim

η→−∞
(α1 + vΦ0(η)) = α1 + v

∂xu
+
0 = lim

η→+∞
∂ηU1 = lim

η→+∞
(α1 + vΦ0(η)) = α1.

(4.1.30)

From the previous relations we obtain directly the heat flux boundary condition

[∂xu0]∓ = v. (4.1.31)

Calculation of Φ1

In order to calculate m1 in the next order, we need an explicit expression for Φ1 as
a solution of (4.1.24). At first, we solve the homogeneous problem LΦhom

1 = 0:

−∂2
ηΦ

hom
1 + 18F ′′sym(Φ0)Φhom

1 = 0. (4.1.32)

It is easy to prove that L ∂ηΦ0 = 0 and hence, with (4.1.20), the function

Φhom
1(1) (Φ0) = −6Φ0(1− Φ0) (4.1.33)

is a solution of (4.1.32) and represents the first element of the fundamental system.
We find the second element Φhom

1(2) of the fundamental system with the standard
reduction of order technique. Hence we substitute

Φhom
1(2) (Φ0) = −6Φ0(1− Φ0)G(Φ0) (4.1.34)
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4.1. Matched asymptotics to higher order

in (4.1.32), which yields

18 ∂ηΦ0

(
3F ′sym(Φ0)G′(Φ0) + 2Fsym(Φ0)G′′(Φ0)

)
= 0. (4.1.35)

Integrating the terms within the brackets two times leads to

G(Φ0) = k̃0 + k1

∫ Φ0

k0

Fsym(Φ̃0)−
3
2 dΦ̃0, (4.1.36)

where k0, k1 and k̃0 are constants and k0 can be chosen, such that k̃0 = 0. A common
solution of (4.1.32) is then given by:

Φhom
1 (Φ0) = −6Φ0(1− Φ0)

(
k2 + k1

∫ Φ0

k0

Fsym(Φ̃0)−
3
2 dΦ̃0

)
, (4.1.37)

where we have

∫ Φ0

1
2

Fsym(Φ̃0)−
3
2 dΦ̃0 =

∫ Φ0

1
2

1

Φ̃3
0(1− Φ̃0)3

dΦ̃0

=
(1− 2Φ0)(6Φ2

0 − 6Φ0 − 1)

2Φ2
0(1− Φ0)2

− 12 artanh(1− 2Φ0).

(4.1.38)

Before we determine a particular solution of the inhomogeneous equation (4.1.24),
we substitute m0 from (4.1.27) into the right-hand side of (4.1.24), which we denote
as B1, and obtain

B1 = H(U0)(∂ηΦ0 + F ′as(Φ0)). (4.1.39)

This right-hand side, together with the Wronskian

W = Φhom
1(1) (Φ0) ∂ηΦ

hom
1(2) (Φ0)− Φhom

1(2) (Φ0) ∂ηΦ
hom
1(1) (Φ0) = −216, (4.1.40)

allows us to find the particular solution Φ1(p) via the method of variation of param-
eters:

Φ1(p) = Φhom
1(1)

∫
Φhom

1(2) B1

W
dη − Φhom

1(2)

∫
Φhom

1(1) B1

W
dη

= −H(U0)

24
Φ0(1− Φ0)(1 + 4 artanh(1− 2Φ0)).

(4.1.41)

And hence, the complete solution of LΦ1 = B1 reads

Φ1(Φ0, U0) = −H(U0)

24
Φ0(1− Φ0)(1 + 4 artanh(1− 2Φ0))

− 6Φ0(1− Φ0)

(
k2 + k1

(1− 2Φ0)(6Φ2
0 − 6Φ0 − 1)

2Φ2
0(1− Φ0)2

− 12k1 artanh(1− 2Φ0)

)
.

(4.1.42)
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In order to find a proper k1, we match Φ1 with the outer solution by using (4.1.14b).
From (4.1.6) we know that the outer solution φ0 is constant. Hence its derivative in
(4.1.14b) is zero, such that

lim
η→±∞

Φ1(η) = lim
Φ0→{0,1}

Φ1(Φ0) = φ1 = 0. (4.1.43)

Thus, the matching requires that (4.1.42) converges for Φ0 → {0, 1} to zero. Let us
therefore consider the relevant terms in (4.1.42) for the limit. In doing so, we apply
L’Hôpital’s rule as many times as necessary. The limit

lim
Φ0→{0,1}

Φ0(1− Φ0) artanh(1− 2Φ0) = lim
Φ0→{0,1}

Φ0(1− Φ0)

2(1− 2Φ0)
= 0 (4.1.44)

shows that the first summand in (4.1.42) converges, but for the second line of
(4.1.42), the limit

lim
Φ0→{0,1}

(1− 2Φ0)(6Φ2
0 − 6Φ0 − 1)

2Φ0(1− Φ0)
(4.1.45)

obviously diverges. This leads to the unique choice k1 = 0. The constant k2 is
specified with the boundary condition Φ(0) = 1

2
, which gives Φ0(0) = 1

2
. Hence,

Φ1(Φ0 = 1
2
) has to be zero, which delivers

k2 = −H(U0)

144
. (4.1.46)

Finally, the solution has the form

Φ1(Φ0, U0) = −1

6
Φ0(1− Φ0) H(U0) artanh(1− 2Φ0). (4.1.47)

Order O(ε2) of the inner problem

Using the leading order phase-field equation (4.1.16) and the equation of the previous
order (4.1.24), we get the phase-field equation for order O(ε2):

− ∂2
ηΦ2 + 18F ′′sym(Φ0)Φ2 = −(m′0(U0)U1 + m1(U0))

v

m0(U0)2
∂ηΦ0

− 9F ′′′sym(Φ0)Φ2
1 +H ′(U0)U1F

′
as(Φ0) +H(U0)F ′′as(Φ0)Φ1

+ ξ0(U0) ∂ηΦ0 ∂ηU1 +
1

m0(U0)

(
−∂τΦ0 + v ∂ηΦ1

)
.

(4.1.48)

As in the previous order, Eq. (4.1.48) has the form LΦ2 = B2, with the same
self-adjoint operator L = −∂2

η + 18F ′′sym(Φ0). Hence, we apply again the Fredholm
alternative theorem. Taking into account that Φ0 is independent on τ and using the
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4.1. Matched asymptotics to higher order

integrals (4.1.26), the solvability condition for the current order reads

0 =
6 v

m0(U0)

∫ 1

0

∂Φ0Φ1(Φ0, U0) Φ0(1− Φ0) dΦ0

+ 9

∫ 1

0

F ′′′sym(Φ0) Φ1(Φ0, U0)2 dΦ0

+H ′(U0)

∫ +∞

−∞
U1(η) F ′as(Φ0) ∂ηΦ0 dη

−H(U0)

∫ 1

0

F ′′as(Φ0) Φ1(Φ0, U0) dΦ0 + ξ0(U0)

∫ +∞

−∞
∂ηU1(∂ηΦ0)2 dη

− v

m0(U0)2

(
m1(U0) + m′0(U0)

∫ +∞

−∞
U1(η) (∂ηΦ0)2 dη

)
,

(4.1.49)

where we used the leading order result (4.1.20). The integrals that do not include
U1 can be easily calculated with the specific form of Φ1 in (4.1.47):

∫ 1

0

∂Φ0Φ1(Φ0, U0) Φ0(1− Φ0) dΦ0 =
H(U0)

144
,

∫ 1

0

F ′′′sym(Φ0) Φ1(Φ0, U0)2 dΦ0 = 0,

∫ 1

0

F ′′as(Φ0) Φ1(Φ0, U0) dΦ0 = −H(U0)

24
.

(4.1.50)

The remaining integrals of the solvability condition (4.1.49) include U1, Eq. (4.1.29).
In order to derive the remaining integrals, we use

∫ ∞
−∞

η(∂ηΦ0)2 = −2

∫ 1

0

artanh(1− 2Φ0) Φ0(1− Φ0) dΦ0 = 0, (4.1.51)

which follows from (4.1.20) and (4.1.21). Then we have

∫ ∞
−∞

U1(η) (∂ηΦ0)2 dη = β1 − v
5− 6 ln(2)

36∫ ∞
−∞

F ′as(Φ0) U1(η) ∂ηΦ0 dη = −β1 +
6α1 + v(13− 12 ln(2))

72
,

∫ +∞

−∞
∂ηU1(∂ηΦ0)2 dη =

1

2
(2α1 + v).

(4.1.52)

Hence, the solvability condition reduces to

0 =
H(U0)2(−24m1(U0) + 2v) + v(2α1 + v)(H ′(U0) + 12ξ0(U0))

24v
(4.1.53)
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4. Thin Interface Limit in One Dimensions

where we used the leading order result for m0 in (4.1.27) and its derivative

m′0(U) = −vH
′(U)

H(U0)2
. (4.1.54)

The unknown α1 in (4.1.53) can not be determined via matching. In order to get
rid of it, we define the free parameter ξ0, such that α1 vanishes:

ξ0(U0) = −H
′(U0)

12
. (4.1.55)

Then, solving (4.1.53) for m1 we obtain

m1(U0) =
v

12
. (4.1.56)

Tanking into account that Φ0 is independent on τ , the expansion of the diffusion
equation reads

∂τU0 − v ∂ηU1 = ∂2
ηU2 − v ∂ηΦ1 (4.1.57)

where we have used that Φ0 is independent on τ . As for U1, we simply have to
integrate the previous equation two times:

∂ηU2(η) = α2 + ∂τU0 η + v (Φ1(Φ0, U0)− U1(η))

U2(η) = β2 + α2η +
∂τU0

2
η2 + v

∫ η

0

(Φ1(Φ0(η̃), U0)− U1(η̃)) dη̃
(4.1.58)

where U1 is defined in (4.1.47).

We now calculate the heat-flux boundary condition (4.1.31) of the outer solution up
to the current order, i.e. ∂xu

±
0 + ε∂xu

±
1 . Hence we need to calculate the derivative

∂xu
±
1 . To that end we calculate ∂2

xu
±
0 with matching condition (4.1.15c), such that we

can solve the limit in matching condition (4.1.15b). Condition (4.1.15c) delivers

∂2
xu

+
0 = lim

η→+∞
∂2
ηU2 = lim

η→+∞
(∂τU0 − v ∂ηU1 + v ∂ηΦ1)

=∂τU0 − α1v

∂2
xu
−
0 = lim

η→−∞
∂2
ηU2 =∂τU0 − v(α1 + v).

(4.1.59)

Then, condition (4.1.15b) yields

∂xu
+
1 = lim

η→+∞
(∂ηU2 − η(∂τU0 − α1v)) = α2 − β1v −

v ln(2)

6

= lim
η→−∞

(∂ηU2 − η(∂τU0 − v(α1 + v))) = ∂xu
−
1 ,

(4.1.60)

which implies that the heat flux boundary condition of the previous order (4.1.31)
holds also for this order:

[∂x[u0 + εu1]]∓ = v. (4.1.61)
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4.1. Matched asymptotics to higher order

Calculation of Φ2

In order to find Φ2, we solve (4.1.48). The homogeneous equation is similar to
(4.1.32). Hence the solution of the homogeneous equation is given by Φhom

2 (Φ0) =
Φhom

1 (Φ0), see (4.1.37). Then, also the Wronskian is known with (4.1.40). Hence,
we only need to calculate the particular solution, which is

Φ2(p)(η) = Φhom
1(1)

∫
Φhom

1(2) B2

W
dη − Φhom

1(2)

∫
Φhom

1(1) B2

W
dη, (4.1.62)

where B2 is the right-hand side of Eq. (4.1.48). We calculate (4.1.62) with the help
of Mathematica and obtain

Φ2(Φ0, U0) = −Φ0(1− Φ0)

864

(
−H ′(U0)π2v − 12H ′(U0)v Li

(
−e−6 η(Φ0)

)

+ 108η(Φ0)2
(
2α1H

′(U0) +H(U0)2(2Φ0 − 1) + 2H ′(U0)v
)

+ 18η(Φ0)
(
24β1H

′(U0)−H(U0)2 + 4H ′(U0)v ln(1 + e−6η(Φ0))

+ 2H ′(U0)v ln(4Φ0(1− Φ0))
))
,

(4.1.63)

where Li denotes the dilogarithm. We have used Eq. (4.1.21) and the definition of
Φhom

2 (4.1.37). The corresponding constants are found using the same arguments as
before. They have the following values:

k1 = 0, k2 = −H
′(U0)π2v

5184
. (4.1.64)

Order O(ε3) of the inner problem

For the phase-field equation of this order we neglected the second derivative of H,
since we fitted it as a linear function. It follows that ξ0 (4.1.55) is a constant and
therefore its derivative vanishes. We make use again of relations derived in the
previous orders in order to simplify the result. Having this in mind, the third order
phase-field equation takes the form
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4. Thin Interface Limit in One Dimensions

− ∂2
ηΦ3 + 18F ′′sym(Φ0)Φ3 = −∂τΦ1 +

v

m0(U0)
∂ηΦ2 − 18F ′′′sym(Φ0)Φ1Φ2

− 72Φ3
1 +H(U0)

(
F ′′as(Φ0)Φ2 +

1

2
F ′′′as(Φ0)Φ2

1

)

+H ′(U0) (U2F
′
as(Φ0) + U1F

′′
as(Φ0)Φ1)

+ ξ0(U0) (∂ηΦ1 ∂ηU1 + ∂ηΦ0 ∂ηU2) + ξ1(U0) ∂ηΦ0 ∂ηU1

− v

m0(U0)2
∂ηΦ0

(
m2(U0) + m′1(U0)U1 + m′0(U0)U2 +

1

2
m′′0(U0)U2

1

)

+ v
m1(U0) + m′0(U0)U1

m0(U0)3
((m1(U0) + m′0(U0)U1) ∂ηΦ0 −m0(U0) ∂ηΦ1) .

(4.1.65)

As in the previous orders, the non-trivial kernel of the self-adjoint operator L =
−∂2

η + 18F ′′sym(Φ0) enables us to find an additional term in the expansion of the
mobility through a solvability condition. Together with (4.1.20), (4.1.26), (4.1.52),
(4.1.50) and the fact that we can write Φ1 and Φ2 as function of Φ0, the solvability
condition reads

0 = −
∫ +∞

−∞
∂τΦ1(Φ0, U0) ∂ηΦ0 dη

+
6v

m0(U0)

∫ 1

0

∂Φ0Φ2(Φ0, U0) Φ0(1− Φ0) dΦ0

+ 18

∫ 1

0

F ′′′sym(Φ0)Φ1(Φ0, U0)Φ2(Φ0, U0) dΦ0 + 72

∫ 1

0

Φ1(Φ0, U0)3 dΦ0

−H(U0)

∫ 1

0

(
F ′′as(Φ0) Φ2(Φ0, U0) +

1

2
F ′′′as(Φ0) Φ1(Φ0, U0)2

)
dΦ0

+H ′(Φ0)

∫ +∞

−∞
(U2(η) F ′as(Φ0) + U1(η) F ′′as(Φ0) Φ1(Φ0, U0))∂ηΦ0 dη

+ ξ0(U0)

∫ +∞

−∞
(∂ηΦ1(Φ0, U0) ∂ηU1(η) + ∂ηΦ0 ∂ηU2(η))∂ηΦ0 dη

+
1

2
ξ1(U0)(2α1 + v) +

v

m0(U0)3
(m1(U0)2 −m0(U0)m2(U0))

+
v

m0(U0)3
(2m′0(U0)m1(U0)−m0(U0)m′1(U0))

(
β1 − v

5− 6 ln(2)

36

)

− v m′0(U0)

m0(U0)2

∫ +∞

−∞
U2(η) (∂ηΦ0)2 dη

+
v

2m0(U0)3
(2m′0(U0)2 −m0(U0)m′′0(U0))

∫ +∞

−∞
U1(η)2(∂ηΦ0)2 dη

−H(U0)v
m1(U0)

24 m0(U0)2
− v m′0(U0)

m0(U0)2

∫ ∞
−∞

U1(η) ∂ηΦ1(Φ0, U0) ∂ηΦ0 dη

(4.1.66)
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4.1. Matched asymptotics to higher order

We only discuss the first integral in Eq. (4.1.66) and list the solutions of the other
integrals in appendix A.5. Since Φ1 depends on U0, which may depend on τ , the
term ∂τΦ1 is non-trivial. It reads

∂τΦ1(Φ0, U0) = −1

6
Φ0(1− Φ0) artanh(1− 2Φ0)H ′(U0) ∂τU0, (4.1.67)

which allows us to write the first integral and prove that it vanishes:

∫ +∞

−∞
∂τΦ1(Φ0, U0) ∂ηΦ0 dη

=
1

6
H ′(U0) ∂τU0

∫ 1

0

Φ0(1− Φ0) artanh(1− 2Φ0) dΦ0 = 0.

(4.1.68)

Then, solving (4.1.66) for m2 gives

m2(U0) =− vH(U0)

288
− v (2α1 + v)(H(U0)H ′(U0)− 72ξ1(U0))

144H(U0)2
, (4.1.69)

which depends again on the unspecified constant α1. If we define

ξ1(U0) =
H ′(U0)H(U0)

72
, (4.1.70)

Eq. (4.1.69) reduces then to

m2(U0) = −vH(U0)

288
. (4.1.71)

The formula for the mobility finally reads

m(U) ≈ m0(U) + εm1(U) + ε2m2(U)

= v

(
1

H(U)
+ ε

1

12
− ε2H(U)

288

)
.

(4.1.72)

We now turn to the heat flux boundary condition. The heat equation to this order
has the form

∂τU1 − v ∂ηU2 = ∂2
ηU3 + ∂τΦ1 − v ∂ηΦ2. (4.1.73)

Following Eq. (4.1.29), U1 may depend on τ via the constants α1 and β1. Hence,
we can write the first term in (4.1.73) as

∂τU1 = ∂τβ1 + ∂τα1η. (4.1.74)

In order to calculate ∂xu
±
2 for the heat flux boundary condition, we need to apply the

matching condition (4.1.15d) for U3. Therefore, we first apply matching conditions
(4.1.15f) and (4.1.15e) to get all necessary information for the limit in (4.1.15d).
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4. Thin Interface Limit in One Dimensions

From Eq. (4.1.73), we get

∂3
ηU3 = ∂τα1 + v(∂2

ηΦ2 − ∂2
ηU2)− ∂η∂τΦ1

∂2
ηU3 = ∂τβ1 + ∂τα1η + v(∂ηΦ2 − ∂ηU2)− ∂τΦ1

∂ηU3 = α3 + ∂τβ1η +
∂τα1

2
η2 + v(Φ2 − U2)−

∫ η

0

∂τΦ1(Φ0(η̂), U0) dη̂,

(4.1.75)

where ∂τΦ1 is determined in (4.1.67). Then, matching condition (4.1.15f) gives

∂3
xu

+
0 = lim

η→+∞
∂3
ηU3 = ∂τα1 − v ∂τU0 + α1v

2

∂3
xu
−
0 = lim

η→−∞
∂3
ηU3 = ∂τα1 − v ∂τU0 + v2(α1 + v)

(4.1.76)

Hence, Eq. (4.1.15e) yields

∂2
xu
±
1 = lim

η→±∞

(
∂2
ηU3 − η∂3

xu
±
0

)
= ∂τβ1 + v(−α2 + β1v) +

v3 ln(2)

6
, (4.1.77)

which we calculated with the help of Mathematica. The right-hand side shows, that
the limit is equal for both directions. It follows that (4.1.15d) gives the same limit
in both directions, namely

∂xu
±
2 = lim

η→±∞

(
∂ηU3 −

1

2
η2∂3

xu
±
0 − η ∂2

xu
±
1

)

= α3 − β2v +
1

72
(H ′(U0) ∂τU0 +H(U0)v2) ln(2).

(4.1.78)

Finally, we have that the heat flux boundary condition remains the same as in the
first order, such that together with (4.1.61) it holds

[∂x[u0 + εu1 + ε2u2]]∓ = v. (4.1.79)

4.2. Validation of the matched asymptotics

results

In this section we validate our matched asymptotic analysis in two ways. First, in
Sec. 4.2 we perform a comparison of the shot mobilities with the mobility of the
sharp interface limit and also with the mobilities from the thin interface deriva-
tions. We establish the range of values of ε where the discrepancy between shot and
asymptotic mobility is lower than 5%.

The previous approach is only valid for isothermal systems. In order to validate
the asymptotics including the heat dynamics, we apply a different approach. We
calculate the stationary solution of the sharp interface model and compare it with the
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4.2. Validation of the matched asymptotics results

numerical solution of the complete model. In order to derive the analytic solution,
we summarize here the sharp-interface limit. From the analysis (see Eq. (4.1.8)),
we know that the outer temperature fulfils the heat equation in the liquid (+) and
solid (-) phases

∂τu± = ∂2
xu±. (4.2.1)

For the interface, we know from (4.1.27) and (4.1.79) that

v = m0(u)H(u), (4.2.2)

∂xu− − ∂xu+ = v. (4.2.3)

The stationary solution has been calculated before e.g. by Karma and Rappel [56]
and by Plapp [78], but in Sec. 4.2 we also consider the case of overheatings, where
the interface velocity is negative.

In Sec. 4.2, we finally implement the stationary solution as initial condition for the
heat equation and solve the complete system

ε2 ∂τp = m(u)
(
ε2 ∂2

xp− 18F ′sym(p) + εH(u)F ′as(p) + ε3ξ(u) ∂xp ∂xu
)
,

∂τu = ∂2
xu+ ∂τp.

(4.2.4)

We compare the numerical results against Eq. (4.2.2), and obtain a very good
agreement.

Asymptotic mobility vs. shot mobility

From our asymptotic analysis, we found the mobility for the sharp interface model
(4.1.27) as well as thin interface corrections (4.1.56) and (4.1.71). Using the non-
dimensionalized grain boundary velocity form molecular dynamics:

vMD
100 (u) = − r̂L

K
u exp(−1.009) exp

(
− 1102

L
Cp
u+ Tm − 800

)
,

vMD
110 (u) = − r̂L

K
u exp(−0.819) exp

(
− 1347

L
Cp
u+ Tm − 799

)
,

vMD
111 (u) = − r̂L

K
u exp(1.1) exp

(
− 5833

L
Cp
u+ Tm − 167.8

)
,

(4.2.5)

which we introduced in Chap. 3, we can define an orientation-dependent asymptotic
mobility. We denote it as follows for the different orders in ε:
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4. Thin Interface Limit in One Dimensions

m
(0)
hkl(u) = vMD

hkl (u)
1

H(u)
,

m
(1)
hkl(u) = vMD

hkl (u)

(
1

H(u)
+ ε

1

12

)
,

m
(2)
hkl(u) = vMD

hkl (u)

(
1

H(u)
+ ε

1

12
− ε2H(u)

288

)
.

(4.2.6)

In this section, we compare these mobility formulas with the mobilities obtained
through the shooting method (from now on referred to as the shot mobilities mshoot

hkl ),
where the shooting method is already described in Sec. 3.1. To that end we evaluate
the mobilities using this method for different values of ε for an isothermal system
at undercoolings u = −0.2 (see Figs. 4.1- 4.3) and overheatings (see Figs. 4.3(b)-
4.4(b)).

In the figures we also show the relative errors of the mobilities, defined as

R
(i)
hkl(u) =

∣∣∣∣∣
mshoot

hkl (u)−m
(i)
hkl(u)

mshoot
hkl (u)

∣∣∣∣∣ , i = 0, 1, 2. (4.2.7)

A line represents a 5% relative error, which we consider to be the upper limit of
validity of the approximation. Below we see that m(2) gives a better result than m(1)

and that the latter gives a better result than the mobilities from the sharp interface
m(0).

Furthermore we see that the closer the temperature is to the melting point u = 0,
the greater can ε be chosen to achieve a maximal discrepancy of 5% between the
shot and the asymptotic mobilities. For example, at a temperature of u = −0.2,
ε = 0.0086 is the first value where m

(2)
111 exceeds the 5% threshold. For u = −0.002,

the value ε = 0.84 gives for m
(2)
111 a relative error lower than 5%. This behaviour can

be observed for overheatings as well. In that case, we have to be aware that the
value of ε is restricted as we mentioned in remark 3.1.3. We have to ensure that

ε <
3

H(u)
(4.2.8)

in order to guarantee that the double well potential has a minimum in p = 1.
Hence, we cannot increase ε in every case until the 5% threshold is reached. In the
mentioned figures for the overheatings we also show the boundary 3

H(u)
for ε as a

black vertical line.

We present a summary of the results in Tab. 4.1. The bounds reported for ε
correspond to the largest of the tested values of ε that give a maximum relative
error of 5% for the mobility. That value corresponds to the minimum value for the
three orientations studied, which corresponds in all case to {111}.
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4.2. Validation of the matched asymptotics results

Undercooling u = −0.2

{111} {110} {100}

(a) For ε ≤ 0.0084 the relative error is less than 0.05 for m
(2)
hkl.

Undercooling u = −0.15

{111} {110} {100}

(b) For ε ≤ 0.011 the relative error is less than 0.05 for m
(2)
hkl.

Fig. 4.1.: Comparison of the shot mobility with the asymptotic mobility (4.2.6) as a function of
ε for undercoolings (a) u = −0.2 and (b) u = −0.15. The first row in (a) and (b)
shows the mobilities and the second row the corresponding relative errors between the
three mobilities from asymptotics and the shot mobility. The gray horizontal line in the
graphs of the second row show a relative error threshold of 0.05.
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4. Thin Interface Limit in One Dimensions

Undercooling u = −0.1

{111} {110} {100}

(a) For ε ≤ 0.0165 the relative error is less than 0.05 for m
(2)
hkl.

Undercooling u = −0.05

{111} {110} {100}

(b) For ε ≤ 0.033 the relative error is less than 0.05 for m
(2)
hkl.

Fig. 4.2.: Comparison of the shot mobility with the asymptotic mobility (4.2.6) as a function of
ε for undercoolings (a) u = −0.1 and (b) u = −0.05. The first row in (a) and (b)
shows the mobilities and the second row the corresponding relative errors between the
three mobilities from asymptotics and the shot mobility. The gray horizontal line in the
graphs of the second row show a relative error threshold of 0.05.
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4.2. Validation of the matched asymptotics results

Overheating u = −0.002

{111} {110} {100}

(a) For ε ≤ 0.84 the relative error is less than 0.01 for m
(2)
hkl.

Overheating u = 0.05

{111} {110} {100}

(b) For ε ≤ 0.0131 the relative error is less than 0.017 for m
(2)
hkl.

Fig. 4.3.: Comparison of the shot mobility with the asymptotic mobility (4.2.6) as function of ε
for (a) the undercooling u = −0.002 and (b) the overheating u = 0.05. The first row
of (a) and (b) shows the mobilities and the second row the corresponding relative errors
between the three mobilities from asymptotics and the shot mobility. The gray horizontal
line in the graphs of the second row show a relative error threshold of 0.05. The vertical
line in (b) represents the limiting value for ε for overheatings given in Eq. (4.2.8). For

m
(2)
hkl this boundary prevents us from increasing ε until a relative error of 0.05 is reached.

61



4. Thin Interface Limit in One Dimensions

Overheating u = 0.1

{111} {110} {100}

(a) For ε < 0.0066 the relative error is less than 0.017 for m
(2)
hkl.

Overheating u = 0.15

{111} {110} {100}

(b) For ε < 0.0044 the relative error is less than 0.017 for m
(2)
hkl.

Fig. 4.4.: Comparison of the shot mobility with the asymptotic mobility (4.2.6) as a function of
ε for overheatings (a) u = 0.1 and (b) u = 0.15. The first row of (a) and (b) shows
the mobilities and the second row the corresponding relative errors between the three
mobilities from asymptotics and the shot mobility. The gray horizontal line in the graphs
of the second row show a relative error threshold of 0.05. The vertical black line represents

the limiting value of ε for overheatings given in Eq. (4.2.8). For m
(2)
hkl this boundary

prevents us from increasing ε until a relative error of 0.05 is reached.
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4.2. Validation of the matched asymptotics results

Temperature u ε for m
(0)
hkl(u) ε for m

(1)
hkl(u) ε for m

(2)
hkl(u)

−0.2 ε ≤ 0.0006 ε ≤ 0.0056 ε ≤ 0.0084

−0.15 ε ≤ 0.0005 ε ≤ 0.0075 ε ≤ 0.011

−0.1 ε ≤ 0.001 ε ≤ 0.0115 ε ≤ 0.0165

−0.05 ε ≤ 0.002 ε ≤ 0.023 ε ≤ 0.033

−0.002 ε ≤ 0.06 ε ≤ 0.56 ε ≤ 0.84

0.05 ε ≤ 0.002 ε ≤ 0.012 ε < 0.0131 (< 1.7%)

0.1 ε ≤ 0.0012 ε ≤ 0.006 ε < 0.0066 (< 1.7%)

0.15 ε ≤ 0.0008 ε ≤ 0.004 ε < 0.0044 (< 1.7%)

Tab. 4.1.: Summary of the results of the comparison between the shot mobility and the asymptotic
mobility (4.2.6). The bounds of ε are the largest of the tested values which give a
maximal discrepancy of 5% for orientation {111}. These values are slightly greater for
{110} and {100}. For overheatings, where ε is bounded due to the double-well potential
(4.2.8) such that ε cannot be increased to reach a relative error of 5%, we indicate the
bound of the restriction (4.2.8) and the corresponding relative error within the table.

Stationary solution of the sharp interface model

In this section we calculate the stationary solution of (4.2.1)-(4.2.3). In the previ-
ous section, we showed that for sufficient small ε the mobilities from the asymptotic
analysis (4.2.6) are a proper approximation to the ones obtained by the shooting
method. To that end we assumed the interface velocity as known and the mobility
as unknown. If now we consider the mobility as a known parameter and the velocity
as unknown, Eq. (4.2.6) can be reformulated in order to obtain Eq. (4.2.3).

Remark 4.2.1
In order to derive the stationary solution, we assume continuity of the undercooling
and overheating, which implies u+

i = u−i . This assumption is true for u±0 and u±1 ,
which we prove below. But for u±2 we find a small jump.

u±0 : With (4.1.23) we found that U0 is constant in η, so the matching condition
(4.1.14a) automatically returns u+

0 = u−0 .

u±1 : In order to prove the continuity in u1 we use the matching condition (4.1.14b).
Together with the definition of U1 (4.1.29) and ∂2

xu
±
0 (4.1.30) we have

u±1 = lim
η→±∞

(
U1 − η ∂xu±0 )

)
= β1 +

v ln(2)

6
. (4.2.9)

Since the right-hand side is independent on the limit direction, we have u+
1 =

u−1 .
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4. Thin Interface Limit in One Dimensions

u±2 : Matching condition (4.1.14c) requires the definition of U2 (4.1.58), ∂2
xu
±
0 (4.1.59)

and ∂2
xu
±
1 (4.1.77) and yields

u+
2 = lim

η→+∞

(
U2 −

1

2
η2∂2

xu
+
0 − η∂xu+

1

)
= β2 −

ln(2)vH

72

u−2 = lim
η→−∞

(
U2 −

1

2
η2∂2

xu
−
0 − η∂xu−1

)
= β2 −

ln(2)vH

72
− π2v2

216
.

(4.2.10)

Hence, for u 6= 0, which implies v 6= 0 is u+
2 − u−2 = v2π2

216
6= 0.

Similar to Sec. 3.1, we set u(x, τ) = Ū(x−vτ) =: Ū(ζ) in order to look for a solution
which has a constant boundary velocity. Then, (4.2.1) turns to

Ū ′′±(ζ) + vŪ ′±(ζ) = 0, (4.2.11)

where the primes denote the derivatives with respect to ζ. For a positive interface
velocity, the liquid material has to be undercooled and for a negative velocity, the
solid has to be overheated. Hence, the boundary condition

v > 0 : v < 0 :

Ū+(ζ →∞) =: U∞ < 0 Ū−(ζ → −∞) =: U−∞ > 0
(4.2.12)

is reasonable.

On the interface, Eqs. (4.2.2) and (4.2.3) become

v = m0(Ū±)H(Ū±), (4.2.13)

Ū ′−(ζ)− Ū ′+(ζ) = v. (4.2.14)

In the case where the interface velocity v is zero, Eq. (4.2.13) leads to Ū ≡ 0, which
is the non-dimensionalized melting point. Let us now consider the case v 6= 0. The
fundamental system of (4.2.11) has the form

Ū±(ζ) = c±e
−vζ + C±. (4.2.15)

Since the temperature must be bounded for ζ → ±∞, we already know that c− = 0
in the case of growth (v > 0) and c+ = 0 in the case of melting (v < 0). From
(4.2.14) and (4.2.15) we get

v < 0 : v > 0 :

v = (Ū ′−(ζ)− Ū ′+(ζ))|ζ=0 = vc+ v = (Ū ′−(ζ)− Ū ′+(ζ))|ζ=0 = −vc−
⇒ c+ = 1, ⇒ c− = −1,

U∞ := lim
ζ→∞

Ū+(ζ) = C+ U−∞ := lim
ζ→−∞

Ū−(ζ) = C−.

(4.2.16)
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4.2. Validation of the matched asymptotics results

Setting ζ = 0 we get for (4.2.15)

v > 0 : v < 0 :

Ū+|ζ=0 = 1 + U∞ Ū+|ζ=0 = C+

Ū−|ζ=0 = C− Ū−|ζ=0 = −1 + U−∞,

(4.2.17)

where we have from the continuity of temperature, that C− = 1 +U∞ for v > 0 and
C+ = −1 +U−∞ for v < 0. Finally, the steady solution of the sharp interface model
is given by

v > 0 : v < 0 :

Ū(ζ) =

{
e−vζ + U∞, ζ ≥ 0

1 + U∞, ζ < 0
, Ū(ζ) =

{
−1 + U−∞, ζ ≥ 0

−e−vζ + U−∞, ζ < 0
.

(4.2.18)

Validation of the asymptotics including heat dynamics

In this section, we validate the results from the asymptotics numerically with the
help of the stationary solution (4.2.18) as an initial condition for the temperature
field. We solve the system

ε2 ∂τp = m(u)
(
ε2 ∂2

xp− 18F ′sym(p) + εH(u)F ′as(p) + ε3ξ(u) ∂xp ∂xu
)
,

∂τu = ∂2
xu+ ∂τp,

(4.2.19)

with the different orders of the mobility and ξ, both determined in the asymptotic
analysis in Sec. 4.1. To that end we use for the mobility the non-dimensionalized
velocity from MD as in Sec. 4.2. Hence, considering the different orders in ε, the
mobility and corresponding ξ have the form

m
(0)
hkl(u) = vMD

hkl (u)
1

H(u)

ξ(0) = 0

m
(1)
hkl(u) = vMD

hkl (u)

(
1

H(u)
+ ε

1

12

)

ξ(1)(u) = −H
′(u)

12

m
(2)
hkl(u) = vMD

hkl (u)

(
1

H(u)
+ ε

1

12
− ε2H(u)

288

)

ξ(2)(u) = −H
′(u)

12
+ ε

H ′(u)H(u)

72
,

(4.2.20)

where we discuss the negligibility of ξ below. As in Sec. 3.2, we use a Fourier spectral
method in order to solve numerically the equations. We measure the velocity of
the interface and compare it with the right-hand side of Eq. (4.2.2) at the initial
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4. Thin Interface Limit in One Dimensions

temperature of the interface uinitI . Since we use within the simulation the mobilities
in (4.2.20), the right-hand-side of (4.2.2) is with m0 = m(0) equivalent to the non-
dimensionalized velocity from MD. Hence we compare the simulated velocity with
vMD

hkl (uinitI ). We determine the simulated velocity as follows: At ten time points,
equidistantly distributed over the time domain, we measure the position of the
interface as described in Sec. 3.2. Out from the saved interface positions and their
corresponding time-points, we get nine values for the interface velocity and take the
mean value. In the following we describe in detail the numerical method and discuss
the results afterwards.

Numerical Method

In order to perform the phase-field simulation with periodic boundary conditions, we
introduce the Fourier spectral method applied to our model. The goal of this section
is to give the opportunity for a fast reproduction of the results reported below. In
Sec. A.4 we summarise all parameters which are needed in the simulations performed
and the definition of the wave-vector.

We realize the time discretization as a simple Euler scheme

∂τp =
pj+1 − pj
τstep

, ∂τu =
uj+1 − uj
τstep

, (4.2.21)

where τstep is the time step size and within the numerical calculations, pi and ui are
vectors. The same holds for their corresponding Fourier coefficients. As pseudocode
for the fast Fourier transformation we use ftt and for the inverse ifft. For an
introduction of the Fourier spectral method, we refer to [15, 25].

Beneath (A.4.2), one has to chose the considered crystallographic orientation {hkl} ∈
{{100}, {110}, {111}}, one has to define the parameter ε and choose the correspond-
ing mobility mhkl(u). For a proper choice of ε, see Tab. 4.1 in Sec. 4.2. Together
with (3.1.31), (3.1.34) one then defines

Hhkl(u) = −r̂L2 u

CpTmγhkl

. (4.2.22)

Let us denote cp and cu the vector of Fourier coefficients of the vectors p and u,
respectively. The Fourier coefficients of the second derivative of u and p with respect
to x are −k2cp and −k2cu, where the multiplications and squares are pointwise.

For the validation of the asymptotics, we initialize p as a function which is smooth
in the interface region, inspired by the leading order solution Φ0 in (4.1.22):

p0(x) =

{
1
2

(
1− tanh

(
5
ε

(
−x− b−a

4

)))
, x ≤ a+b

2
1
2

(
1− tanh

(
5
ε

(
x− b−a

4

)))
, x > a+b

2
,

(4.2.23)
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4.2. Validation of the matched asymptotics results

where we choose a = −1 and b = 1.

Remark 4.2.2
If one take the factor 3

ε
instead of 5

ε
in the tanh function of p0, one has exactly the

geometrical interpretation of the interface width as it is defined in [22]. Within our
simulations we recognized, that p0 is more close to the form of the wave if one use
the factor 5

ε
.

Since we want to measure the velocity of the grain boundary at the beginning of
the simulation, that means when p acts almost like a travelling wave, we depend
the number of time steps on the velocity. We observe, that for uinitI = −0.2, a
maximal time-step number of 0.04/τstep delivers good results. But for uinitI = −0.1,
we change the time-step number for {100} to 0.02/τstep and for {110} to 0.026/τstep.
For uinitI = 0.1, we take 0.02/τstep for all three orientations.

As for the isothermal simulations, we save the grain-boundary position at 10 time
points equidistantly distributed over the time interval, in order to measure the ve-
locity.

For the heat equation it is easy to realize an implicit solver. Since in the phase-field
equation, the mobility exhibits a nonlinear coupling with the temperature, we solve
it explicit:

1. Calculation of initial Fourier coefficients:

• Fourier coefficients of the initial condition p0: cp0 = fft(p0)

• Fourier coefficients of the initial condition u0: cu0 = fft(u0)

2. Calculation of the spacial derivatives of the initial conditions p0 and u0:

• ∂2
xp0 = Re(ifft(−k2cp))

• ∂xp0 ∂xu0 = Re(ifft(−k2cp0c
u
0))

3. repeat for each time step

a) pj+1 = τstepm(uj)
(
∂2
xpj − 1

ε2
(18F ′sym(pj)− εHhkl(uj)F

′
as(pj)) + εξ(uj) ∂xpj ∂xuj

)
+

pj

b) cpj+1 = fft(pj+1)

c) cuj+1 =
cpj+1−c

p
j+cuj

1+τstepk2

d) uj+1 = Re(ifft(cuj+1))

e) ∂2
xpj+1 = Re(ifft(−k2cpj+1))

f) ∂xpj+1 ∂xuj+1 = Re(ifft(−k2cpj+1c
u
j+1)),

where all products and powers are pointwise.
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4. Thin Interface Limit in One Dimensions

Results

We perform simulations for undercoolings (Fig. 4.7) and for an overheating (Fig.
4.8), each for different values of ε. We select the initial condition for the temperature
field from Eq. (4.2.18) depending on the sign of the velocity. Positive velocities
imply a far-field undercooling and negative velocities a far-field overheating. In
Figs. 4.5 and 4.6 we show the initial condition and the development in time of p
and u, for an undercooling and an overheating, respectively. A peak develops at the
interface because of the latent-heat buildup due to the finiteness of the system. Our
measurements for the velocity take place before a clearly visible heat peak at the
interface is developed.

We define the relative error as in Sec. 3.2 and in addition we distinguish between
the three kinds of mobility in formula (4.2.6) used in the simulation. We denote

v
(i)
hkl as the simulated grain-boundary velocity when using the mobility m

(i)
hkl and, if

indicated, the corresponding ξ(i), for i = 0, 1, 2. With the same indexing for the
relative error we define

R
(i)
hkl(u) =

∣∣∣∣∣
vMD

hkl (u)− v(i)
hkl(u)

v
(i)
hkl(u)

∣∣∣∣∣ . (4.2.24)

The velocities simulated with the three different mobilities are presented in one plot
which also contains the corresponding relative errors (Figs 4.7 and 4.8). The three
columns of the figures show the results for the three different orientations. The
upper row of respective subfigures (a) and (b) shows graphs presenting the velocity
measured during the simulations with data points. The orange horizontal line is
the corresponding non-dimensionalized velocity from MD (4.2.5) at the initialized
temperature on the interface.

As one would expect, using the mobilities with the correction terms gives a better
approximation of the simulated velocity to vMD

hkl than using the mobility of the sharp
interface limit. The velocity depends on temperature, which changes during the
simulation. Since we compare the simulated velocity with the fixed MD velocity
for the initial interface temperature, changes with respect to Tab. 4.1 are to be
expected.

For example, uinitI = −0.2 yields ε = 0.0078 as the largest value that does not ex-

ceed R
(2)
111 = 0.05, where in the table we have a slightly larger bound of ε ≤ 0.0084

for m(2). For uinitI = −0.1 we have ε = 0.0135 as the largest value which does not

exceed R
(1)
111 = 0.05 and in the corresponding table entry there is the slightly smaller

bound ε ≤ 0.0115. In any case, the main conclusion of the analysis performed is the
validation of the asymptotic mobilities and the sharp interface limit (4.2.2).

We also observed that the ξ-term is very costly in numerical simulations, especially
for overheatings. We assume that the reason is the double-well potential, which is
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4.2. Validation of the matched asymptotics results

already prone to numerical instabilities for overheatings, because it is flatter in that
case (see Fig. 3.3 in Sec. 3.1), which implies that the numerical solution p has a
higher tendency to leave the interval [0, 1]. Hence, we examine the effect of the ξ
term by comparing the relative errors of simulations with and without ξ in Fig. 4.9.
We find that the simulations where we neglect ξ give only a slightly worse result
for high undercoolings, but for lower undercollings, where F is already flatter, the
result is much better. Hence we show in Figs. 4.7 and 4.8 the simulations with
ξ ≡ 0. irrespective of ξ, we confirm Eq. (4.2.2) numerically and hence validate our
analysis.

Fig. 4.5.: Numerical simulation of the system (4.2.19) for an undercooling with ε = 0.005 and m(2)

for four points in time. In each value of τ the upper graph represents the phase-field
whereas the lower graph represents the temperature field. The first plot shows the initial
condition. For the solid area we chose an undercooling of uinitI = −0.2, where the left
hand-hand side of (4.2.18) defines the initial condition for the temperature field. In
the other time points, temperature increases because of latent-heat buildup due to the
finiteness of the system. In the last plot, the melting point is almost reached over the
whole interval.
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4. Thin Interface Limit in One Dimensions

Fig. 4.6.: Numerical simulation of the system (4.2.19) for an overheating with ε = 0.005 and m(2)

at four points in time. For each value in τ the upper graph represents the phase-field
whereas the lower graph represents the temperature field. The first plot shows the initial
condition. For the liquid area we chose an overheating of uinitI = 0.1, where the right
hand-hand side of (4.2.18) defines the initial condition for the temperature field. In the
other time points, temperature increases because of latent-heat absorption due to the
finiteness of the system. In the last plot, the melting point is alsmost reached over the
whole interval.
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4.2. Validation of the matched asymptotics results

Undercooling uinitI = −0.2

{111} {110} {100}

(a) For the solid we initialized an undercooling of uinit
I = −0.2 (see Figure 4.5).

Undercooling uinitI = −0.1

{111} {110} {100}

(b) For the solid we initialized an undercooling of uinit
I = −0.1 (see Figure 4.5).

Fig. 4.7.: Numerical validation of Eq. (4.2.2) through the comparison of the velocity from MD at
uinitI with the simulated velocity, including heat flux, as a function of ε for (a) uinitI = −0.2
and (b) uinitI = −0.1. The first row of (a) and (b) portrays the velocities from simulations
using the three mobilities from asymptotics in Eq. (4.2.6). The horizontal orange line
represents vMD

hkl (uinitI ). The second row of (a) and (b) shows the respective relative error
beteween vMD

hkl (uinitI ) and the simulated velocities. The gray horizontal line in the graphs
of the second row show a relative error threshold of 0.05.
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Overheating uinitI = 0.1

{111} {110} {100}

Fig. 4.8.: Numerical validation of Eq. (4.2.2) through the comparison of the velocity from MD
at uinitI = 0.1 with the simulated velocity, including heat flux, as a function of ε for an
overheating. The first row of portrays the velocities from simulations using the three mo-
bilities from asymptotics in Eq. (4.2.6). The horizontal orange line represents vMD

hkl (uinitI ).
The second row shows the respective relative error beteween vMD

hkl (uinitI ) and the simu-
lated velocities. The gray horizontal line in the graphs of the second row show a relative
error threshold of 0.05. The vertical line visualizes the limiting value of ε for overheatings
given in Eq. (4.2.8).
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4.2. Validation of the matched asymptotics results

Comparison of the simulations with and without ξ

u = −0.2

{111} {110} {100}

u = −0.1

{111} {110} {100}

Fig. 4.9.: Comparison of the relative error (4.2.24) of the simulation of the model (4.2.19) with ξ
as defined in (4.2.20) and the relative error of the same model but with ξ = 0 for all
orders. The upper row shows the comparison for uinitI = −0.2 and and the lower row
the comparison for uinitI = −0.1. The first one shows a slighlty better result for the
simulation with ξ as defined in (4.2.20). This is to be expected, since the asymptotics are
only complete with that definition of ξ. But as it has already been mentioned, ξ brings
in numerical instabilites. For lower undercoolings as in the second row, the absence of
the ξ-term gives a better result.
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5. Matched Asymptotics for an
Anisotropic Phase-Field Model
with Anisotropic Mobility

In this chapter, we introduce a 2D anisotropic phase-field model where we incor-
porate the results from our modelling work regarding the interface energy in Chap.
2 and the free energy density and the surface energy from Chap. 3. The surface
energy and, as we found in Chap. 3, the mobility are anisotropic and hence depend
on different crystallographic orientations. In 2D different crystallographic orienta-
tions coexist and hence the surface energy and the mobility are functions of the
local orientation of the solid-liquid interface. We introduced in Chap. 2 different
possibilities to realize this orientation dependence.

In this chapter, the anisotropy is realized as dependence on the normal vector n.
In doing so, the mobility can be constructed in the same way as the surface energy
in Chap. 2, namely as a four-fold function Mapp with two free parameters, as it is
introduced in the work of Karma and Rappel [56]. One possibility is to incorporate
the 1D mobility derived via the shooting method into Mapp. In this chapter, we use
instead the mobility obtained from the 1D asymptotic analysis performed in Chap.
4.1.

In Sec. 5.1 we derive the 2D model and study the choice of the anisotropy pa-
rameters. Furthermore, we non-dimensionalize the model. Afterwards, we per-
form matched asymptotic expansions in Sec. 5.2 taking into account the different
anisotropic parameters. In doing so, we assume that the mobility is an unknown
function Mmae, which depends on the orientation and the interface thickness. From
that we get a closed form expression for Mmae dependent on the local curvature
of the interface. Finally, we compare Mmae with Mapp in Sec. 5.3. We see below,
that both functions match when the surface energy anisotropy is weak, such that
no missing orientations occur.
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5. Matched Asymptotics for an Anisotropic Phase-Field Model with Anisotropic
Mobility

5.1. Two-dimensional anisotropic phase-field

model for one grain

We discuss here the anisotropic growth of one crystalline silicon nucleus within
the melt. The phase state of the crystalline and liquid silicon is described by a
phase-field variable p(x, t), where x = (x1, x2) ∈ R2. As in 1D, the function p
characterizes the two phases with the value p(x, t) = 1 in the solid and p(x, t) = 0
in the liquid. Within the interface region, p varies continuously and monotonously
in x between 1 and 0. Unlike in 1D, where we solve the equations for one special
crystallographic orientation, we have to take into account different crystallographic
directions simultaneously for an anisotropic simulation. Hence, the mobility M and
the surface energy s, are introduced in 2D as functions that depend on the normal
vector, which is constructed from p as follows

n =
∇p
|∇p|

. (5.1.1)

The total free energy then has the form

F(p, T ) =

∫

A

F (p, T ) +
s(n)2

2
|∇ p|2 dA. (5.1.2)

Performing the variational derivative and coupling the 2D version of the heat equa-
tion introduced in Sec. 3.1, the model reads

∂tp = M(n, T )

(
∇ · (s(n)2∇p) +

2∑
i=1

∂xi

(
|∇p|2s(n)

∂s(n)

∂(∂xip)

)
− ∂pF (p, T )

)
,

Cp ∂tT = K ∆T + L ∂tp,
(5.1.3)

The double well potential F (p, T ) remains the same as in 1D (3.1.12), since the
codomain of p and T does not change in higher dimensions. The four-fold anisotropy
function s of order four was defined in Sec. 2.1 as

s(n) = s0

(
1 + δs

d∑
i=1

n4
i

)
. (5.1.4)

In general, for a 3D grain we would also have a sixth order term in the anisotropic
surface function (see also Chap. 2):

S(n) = S0

(
1 + δ1S

3∑
i=1

n4
i + δ2S

3∏
i=1

n2
i

)
. (5.1.5)

But for the equatorial plane of a silicon grain such as the one depicted in Fig. 2.1,
the sixth order term vanishes, since n3 is zero. The anisotropy functions s has two
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5.1. Two-dimensional anisotropic phase-field model for one grain

degrees of freedom: s0 and δs. Hence we can incorporate only surface information
σhkl for two different directions, where with (3.1.21)

σhkl =

√
3

2
γhklλhkl =

3γhkl

2
√

2BTm
kin

. (5.1.6)

That means, s is able to reproduce the shape of a simplified silicon grain, which only
has one kind of facets. Considering a grain with only {111} facets, the corresponding
(002) cut through a 3D grain then has the form of a smoothed out rhombus, as
sketched in Fig. 5.1. This is a more realistic scenario then a grain that only has e.g.
{100} facets, since γ111 is with γ111 < γ100 the more favourable excess energy than
γ100. The choice

s(n) = S(n)|n3=0 = (2σ110 − σ100)

(
1 + 2

σ100 − σ110

2σ110 − σ100

(n4
1 + n4

2)

)
(5.1.7)

fulfils that
s((1, 0)) = σ100, s((1, 1)/

√
2) = σ110. (5.1.8)

But its Wulff shape, depicted in the left-hand side of Fig. 5.2, does not deliver the
expected shape of a rhombus. It reproduces the afore mentioned scenario where the
grain only has {100} facets. It is caused by the fact that the surface energies on
the equatorial plane are defined by γ100 and γ110, where γ100 is smaller. In order to
have a rhombus, this two values would need to have the relation γ110 < γ100 as we
sketched in Fig. 5.1, which is a contradiction with our results in 2. Nevertheless

γ100

γ110

Fig. 5.1.: A cut through the (002) plane of a three-dimensional silicon grain in a melt, which only
has {111} facets. In order to get such a shape without using γ111, the value γ100 has to
be greater than γ110, which is a contradiction with our results from Chap. 2.

there are still other options, even if only the forth order anisotropic function s is
available. Instead of choosing the free parameters s0 and δs as in (5.1.7), where
the surface energies γ100 and γ110 are incorporated, we can also incorporate the free
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energy for {100} and {111}, or {110} and {111}. In summary we have





s(1) : {110} ∧ {100} ⇒ s0 = 2σ110 − σ100, δs = −2σ110−σ100
s0

s(2) : {100} ∧ {111} ⇒ s0 = 1
2
(3σ111 − σ100), δs = 3

2
σ100−σ111

s0

s(3) : {110} ∧ {111} ⇒ s0 = 3σ111 − 2σ110, δs = 6σ110−σ111
s0





(5.1.9)

In Fig. 5.2 we present the Wulff shapes for all three variations for s. On the left had
side, we show s(1). As already discussed, its Wulff shape shows {100} facets, unlike
s(2) (in the middle of Fig. 5.2) and s(3) (on the right), which show the shape of
an smoothed out rhombus. The reason is that for s(2) and s(3) the most favourable
energy, namely γ111, is incorporated, such that the shape reminds on the (002) cut
of an smoothed out octahedron (see Fig. 2.1), or in other words: a grain with only
{111} facets.

Fig. 5.2.: The Wulff shape of three different two dimensional four-fold anisotropic functions s de-
fined in Eq. (5.1.9). On the left: s(1) with γ100, γ110, in the middle: s(2) with γ100, γ111
and on the right: s(3) with γ110, γ111.

The title of the single figures in 5.2 show the corresponding value of the constant
δs in the definition of the anisotropic function (5.1.4). The constant δs define the
strength of anisotropy. Sekerka found that for −2

9
< δs <

1
3

no missing orientations
occur [85], which is fulfilled for s(1) and s(2). Only s(3) seem to have an unfavourable
δs, since it works with the two most different values γ111 and γ110.

For the realization of the asymptotics we give the following remark:

Remark 5.1.1
For the possible choices in (5.1.9), the following inequality holds

1 + δs(n
4
1 + n4

2) > 0. (5.1.10)

Proof
The relation is obvious for δs > 0. But for s(1) we have −1 < δs < 0. Making use of
the definition of the normal vector (5.1.1), we rewrite

n4
1 + n4

2 =
|∇p|44
|∇p|42

, (5.1.11)
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where ∇p ∈ R2 and |.|q are the standard vector norms in Rn, which are equivalent.
The 2- and 4-norm fulfils,

|z|4 ≤ |z|2 ∀z ∈ Rn, (5.1.12)

which follows from the definition of the norm. (Simply divide the inequality with
|z|4, such that z is normed on the left-hand side and |zi| ≤ 1 and hence |zi|4 ≤ |zi|2.)
Then, n4

1 + n4
2 ≤ 1, such that, for δs > −1, the positivity of s̃ in (5.1.10) is fulfilled.

2

Similarly to (5.1.4) and (5.1.9), the mobility can approximately be defined as

M(n, T ) = m0(T )
(
1 + δm(T )(n4

1 + n4
2)
)
. (5.1.13)

where




M (1) : {110} ∧ {100} ⇒m0(T ) = 2m110(T )−m100(T ),

δm(T ) = −2m110(T )−m100(T )
m0(T )

M (2) : {100} ∧ {111} ⇒m0(T ) = 1
2
(3m111(T )−m100(T )),

δm(T ) = 3
2
m100(T )−m111(T )

m0(T )

M (3) : {110} ∧ {111} ⇒m0(T ) = 3m111(T )− 2m110(T ),

δm(T ) = 6m110(T )−m111(T )
m0(T )

.





(5.1.14)

Remark 5.1.2
The choice of the mobility has no influence on the critical nucleation radius, because
the critical radius is the result of the relation between interface energy and bulk
energy. Or in other words: the relation between the gradient term and the potential.
If a grain is small (less then the critical radius) in an undercooled melt, then the
energy of the gradient term is high in relation to that of the potential. Since we
minimize the energy, the surface shrinks. If the grain is large enough, the relation
between interface-energy and bulk-energy is balanced, such that the grain is able to
grow. The mobility has no effect on the energy balance, a static process, and it
only affects the dynamics of the phase transition, and hence it is unrelated with the
energetic stability of the grain.

One major task of this chapter is to find out how to estimate mhkl in (5.1.14).
On the one hand, one could do a shooting method in 1D as we did in the former
two chapters and incorporate the shooting results. But this results are isothermal.
On the other hand, one could estimate mhkl from our asymptotic analysis of the
last chapter, where we derived the 1D mobility as a smooth function dependent on
temperature. Furthermore, we managed to derive higher order terms such that the
mobility functions from asymptotics are valid for greater interface thicknesses, which
enables simulations on greater domains. In order to be able to estimate whether
the approximation (5.1.14) agrees with two dimensional asymptotic analysis, we
perform the method of matched asymptotic expansions in Sec. 5.2. In doing so, we
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consider the mobility as an asymptotic expansion with an unknown form. Finally,
we compare the resulting formula for the mobility with the approximation 5.1.14.

In order to do the asymptotics, we reformulate the phase-field equation in (5.1.3).
Therefore we denote ∇n as the gradient with respect to the elements of the normal
vector and the tangential vector as n⊥ = (−n2, n1). Then we have for s:

∇ns(n) = 4s0δs(n
3
1,n

3
2), (5.1.15)

and define
ŝ(n) = ∇ns(n) · nT⊥ (5.1.16)

such that

2∑
i=1

∂xi

[
|∇p|2s(n)

∂s(n)

∂(∂xip)

]
= −∂x1 [s(n) ŝ(n) ∂x2p] + ∂x2 [s(n) ŝ(n) ∂x1p] . (5.1.17)

Hence, (5.1.3) is equal to

∂tp = M(n, T )
(
∇ · (s(n)2∇p)− ∂x1 [s(n) ŝ(n) ∂x2p] + ∂x2 [s(n) ŝ(n) ∂x1p]

− 12
γ111

λ111

F ′sym(p) +H(T )F ′as(p)
)
,

Cp ∂tT = K ∆T + L ∂tp

(5.1.18)

With this formulation, it is easier to perform comparisons with models of the same
type, where the anisotropic functions depend on the normal angle instead of the
normal vectors e.g. as in [72]. These models are usually formulated in this way, where
instead of the hat-functions we have the derivatives of the anisotropic functions with
respect to the angle. Before we turn to the matched asymptotic expansions, we non-
diemensionalize the model.

For the non-dimensionalization we consider at first the parameters of the anisotropic
function s in (5.1.9). The parameter δs is already dimensionless. Substituting for-
mula (5.1.6) for σ and using that BTm

kin = 3γhkl
4εhkl

remains the same for each orientation

(see e.g. (3.1.23)), we find the simplification

δs = cδ
1− γ̃
s̃0

, (5.1.19)

where




s(1) : γa = γ110 ∧ γb = γ100⇒ s̃0 = 2− γ̃, cδ = −2

s(2) : γa = γ100 ∧ γb = γ111⇒ s̃0 = 3
2
γ̃ − 1

2
, cδ = 3

2

s(3) : γa = γ110 ∧ γb = γ111⇒ s̃0 = 3γ̃ − 2, cδ = 6





(5.1.20)

and γ̃ = γb
γa

.
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In order to non-dimensionionalze s, we have to non-dimensionalize s0. Therefore we
use the relation

s0 =

√
3

2
λaγa s̃0 (5.1.21)

which again arises from (5.1.6) and the fact that BTm
kin = 3γhkl

4λhkl
for each hkl (see e.g.

(3.1.23)). Note here, that s̃ is always positive, as we showed in remark 5.1.1.

For the non-dimensionalization of (5.1.18), we define the length scale r̂ as in 1D,
where r̂ = rcrit(T − 1K) ≈ 450nm is the critical nucleation radius of a small under-
cooling. Furthermore we set

u =
Cp
L

(T − Tm), s̃(n, u) =
s(n, L/Cp u+ Tm)√

3
2
λaγa

, x̃ =
1

r̂
x,

M̃(n, u) =
3γaλaCp

2K
M(n, L/Cp u+ Tm), τ =

K

r̂2Cp
t,

H̃(u) =
r̂H(L/Cp u+ Tm)

γa
, ε =

3λa
2r̂

,

(5.1.22)

After substituting the definitions (5.1.22) and multiplication with ε, (5.1.18) be-
comes

ε2∂τp = M̃(n, u)

(
ε2∇̃ · (s̃(n)2∇̃p)− ε2∂x̃1

[
s̃(n) ˆ̃s(n) ∂x̃2p

]

+ ε2∂x̃2

[
s̃(n) ˆ̃s(n) ∂x̃1p

]
− 18F ′sym(p) + εH̃(u)F ′as(p)

)
,

∂τu = ∆̃u+ ∂τp,

(5.1.23)

where
F ′sym(p) = 2p(1− p)(1− 2p),

F ′as(p) = 12p2(1− p).
(5.1.24)

Note that with this scaling and definitions, the non-dimensionalized grain boundary
velocity has the form

ṽ =
r̂Cp
K

v (5.1.25)

and hence for the velocity (3.1.5) from molecular dynamics holds

ṽMD
100 (u) = −0.3646

r̂L

K
u exp

(
− 1102

L
Cp
u+ Tm − 800

)
,

ṽMD
110 (u) = −0.4409

r̂L

K
u exp

(
− 1347

L
Cp
u+ Tm − 799

)
,

ṽMD
111 (u) = −3.0042

r̂L

K
u exp

(
− 5833

L
Cp
u+ Tm − 167.8

)
.

(5.1.26)
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Remark 5.1.3
Apart from the normal vector dependencies and the isotropic definition of ε and

H̃, the non-dimensionalized model (5.1.23) is the same as the non-dimensionalized
model in 1D (3.1.35). Furthermore, the restriction on the double-well potential for
overheatings holds naturally also in 2D; see remark 3.1.3.

5.2. Matched asymptotic expansions

As it has been mentioned in Sec. 5.1, for the anisotropic and temperature-dependent
approximation Mapp (5.1.13) to the mobility we can either choose the shooting results
for a special choice of ε (as in Fig. 3.7 for ε = 1

300
) or the ε-dependent results from

1D asymptotics (4.1.72) in order to determine the parameters (5.1.14). In order to
evaluate whether this is an appropriate approximation for a the two-dimensional
mobility function, we investigate in this chapter matched asymptotic expansions
for the two-dimensional model and compare the result with the mobility function
(5.1.13). In doing so, we work with the non-dimensional Eqs. (5.1.23) and drop the
tildes for convenience.

One of the earliest works of matched asymptotic expansion of the Allen-Cahn equa-
tion coupled with a heat equation is the work of Caginalp and Fife [21]. They
considered a 2D isotropic phase-field equation and calculated the limit up to O(ε2).
Four years later Wheeler et al. [98] considered an isotropic Allen-Cahn equation for
an isothermal two component system in 2D. They coupled the phase-field equation
with an equation that models the concentration of the components and performed
the limit up to order O(ε). One year later the work [70] by McFadden et al. ap-
plied matched asymptotics to an anisotropic Allen-Cahn equations coupled with a
heat equation, whose parameters depended on temperature and the heat capacity
depended in addition on the phase-field. Matched asymptotics was performed up
to order O(ε). The inverse mobility was considered to be anisotropic as well but
not as dependent on temperature. A similar model but with constant heat param-
eters was introduced by Karma and Rappel [56] and appeared five years later. The
authors performed matched asymptotics up to order O(ε2). The authors Meca-
Álvarez, Shenoy and Lowengrub performed also the second order [72] for a model
with anisotropic inverse mobility and surface energy. They considered the inverse
mobility as an asymptotic expansion and hence consider the mobility to be depen-
dent on interface thickness. In order to estimate thin film growth, their model con-
sisted of a phase-field equation coupled with an anisotropic conservation equation.
The used double-well potential was symmetric. This symmetry had an significant
advantage in the second order: It simplified the solvability condition. Let us note the
innovative calculation of the boundary condition for the conservation equation: The
authors expressed the outer equation in inner variables and subtracted it from the
integrated inner equation of the current order. The limit of the resulting equation
was easy to derive and solve for the resulting boundary condition.

82



5.2. Matched asymptotic expansions

Apart from the mentioned works, there are many other inspiring pubilcations for
asymptotitic analysis of phase-field models with different applications, for example
[30, 32, 71]. These and the previously referred works have two essential differences
to our model. First, for the application on silicon, we already showed in the previous
chapters that the temperature dependence of the anisotropic mobility is necessary
in order to reproduce a Vogel-Fulcher type interface velocity. Second, the velocity
vMD

hkl (u) from molecular dynamics distinguishes between different crystallographic
orientations. In other words: it is anisotropic, which has to be taken into account
within the asymptotics. Furthermore, our non-symmetric double-well potential re-
sults in complex solvability conditions.

In order to derive a free boundary problem, we undertake two modulations on the
model (5.1.23). The first one concerns the mobility: Instead of using the approxi-
mation (5.1.13) for M , we assume the form of M unknown within the asymptocia
analysis. Hence, similarly to our 1D asymptotics, we consider the mobility as asymp-
totic expansion, where in 2D we take into account the normal-vector dependence:

M(n, u; ε) = M0(n, u) + εM1(n, u) + ε2M2(n, u) +O(ε3). (5.2.1)

The second variation is the incorporation of the term ε3ξ(u) ∇p · ∇u to the phase
field equation. It is the 2D version of the term that was necessary in 1D (see Eq.
(4.1.2)) in order to cancel thin interface terms in higher order. Together with the
expanded mobility and after dropping the tildes, our model (5.1.23) becomes

ε2∂τp = (M0(n, u) + εM1(n, u) + ε2M2(n, u))

(
ε2∇ · (s(n)2∇p)

− ε2∂x1 [s(n) ŝ(n) ∂x2p] + ε2∂x2 [s(n) ŝ(n) ∂x1p]

+ ε3ξ(u) ∇p · ∇u− 18F ′sym(p) + εH(u)F ′as(p)

)
,

∂τu = ∆u+ ∂τp.

(5.2.2)

In matched asymptotic expansions for solidification models, one divides the domain
of the solutions p and u in three parts: The two outer domains of the bulk phases
crystalline and liquid, and the inner region, which represents the interface. Then
the growth takes place if the interface travels towards the liquid bulk phase. We
also consider melting, which means that for negative velocities the grain shrinks and
the wave travels towards the solid material. In the subdomains, the solutions are
constructed as asymptotic expansions, where the summands have different orders
in ε similar to the expansion of the mobility. The matching then combines the
solutions of the subdomains and gives a single approximation that is valid for the
whole range. For a detailed introduction to matched asymptotics, we refer to Holmes
[49], Van Dyke [94] and for multiple scales to Kevorkian et al. [58]. We start with
the consideration of the outer region and then turn to the inner solution.
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Outer expansion

As mentioned above, we express the phase-field variable p and the temperature field
u as asymptotic expansion:

p(x, τ ; ε) = φ0 + εφ1 + ε2φ2 +O(ε3),

u(x, τ ; ε) = u0 + εu1 + ε2u2 +O(ε3).
(5.2.3)

Also the mobility is considered as an asymptotic expansion (5.2.1). Its dependence
on the expansion of u (5.2.3) can be expressed with the Taylor-series:

M(n, u) = M0(n, u0) + ε(∂uM0(n, u0)u1 +M1(n, u0))

+ ε2

(
∂uM1(n, u0)u1 + ∂uM0(n, u0)u2

+
1

2
∂2
uM0(n, u0)u2

1 +M2(n, u0)

)
+O(ε3).

(5.2.4)

Furthermore, we perform a Taylor expansion on ε in order to compute the different
orders of the potential

−18F ′sym(p) + εH(u)F ′as(p)

= −18F ′sym(φ0) + ε
(
H(u0)F ′as(φ0)− 18F ′′sym(φ0)φ1

)

+ ε2

(
H(u0)F ′′as(φ0)φ1 +H ′(u0)F ′as(φ0)u1

− 18F ′′sym(φ0)φ2 − 9F ′′′sym(φ0)φ2
1

)
+O(ε3).

(5.2.5)

With these expansions, the leading order O(1) of the non-dimensionalized phase-field
equation in (5.1.23) reads

0 = F ′sym(φ0). (5.2.6)

The solutions of this equation are simply the roots of F ′sym:

φ0 ∈ {0, 1}, (5.2.7)

where we neglected the third root φ0 = 1/2 which is invalid as in the one-dimensional
case, see remark 4.1.1. The first order O(ε) then delivers the equation

18F ′′sym(φ0)φ1 = H(u0)F ′as(φ0) (5.2.8)

where we already used that φ0 is constant. And since F ′as(0) = F ′as(1) = 0, we have
φ1 = 0.
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The second order O(ε2) delivers the equation

∂τφ0 = M0(n, u)

(
∇ · (s(n)2∇φ0)− ∂x1

[
s(n) ˆ̃s(n) ∂x2φ0

]

+ ∂x2 [s(n) ŝ(n) ∂x1φ0] +H(u0)F ′′as(φ0)φ1

+H ′(u0)F ′as(φ0)u1 − 18F ′′sym(φ0)φ2 − 9F ′′′sym(φ0)φ2
1

)
,

(5.2.9)

where we already used the equations of the previous orders. The only non-zero term
is F ′′sym(φ0)φ2 and hence φ2 = 0. For the following orders, the new element of the
expansion sequence φn is multiplied with a polynomial of φ0, which is non-zero for
φ0 ∈ {0, 1} and all other terms are multiplied with φ1, φ2, ..., φn−2 or φn−1, which
are zero. Hence φn has to be zero.

Since the solutions of the phase-field expansion elements are independent on time,
the diffusion equation has for each order the same form:

∂τuk = ∆uk, ∀k = 0, 1, ... (5.2.10)

Inner expansion and matching

Model equations in curvilinear coordinates

We parametrize the sharp interface as a curve with coordinates

b = (X(s, τ), Y (s, τ)), (5.2.11)

where s is the arclength. Then, the spatial variable x can be expressed as x = b+rν.
The normal vector ν and the tangent vector θ to the interface are defined as

ν = (Y ′,−X ′), (5.2.12)

θ = (X ′, Y ′). (5.2.13)

Then, the following relation holds

X ′′X ′ + Y ′′Y ′ = 0 (5.2.14)

where the primes denote derivatives with respect to s. The curvature has the ex-
pression

κ = X ′Y ′′ − Y ′X ′′. (5.2.15)

From these definitions follows directly

κθ = ∂sν, κν = −∂sθ. (5.2.16)
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We now substitute the phase-field variable p(x, τ) and the temperature-field variable
u(x, τ) with a quantity Φ(r, s, τ) and U(r, s, τ), respectively. Therefore, we need to
find the time and space derivatives for this quantities. This is the same procedure
for both variables. Hence we introduce the notation w ∈ {p, u} and W ∈ {Φ, U}.
Then, the following relations for the derivatives hold:

∂rW = Y ′ ∂x1w −X ′ ∂x2w
∂sW = (X ′ + rY ′′) ∂x1w + (Y ′ − rX ′′) ∂x2w
h ∂x1w = (Y ′ − rX ′′) ∂rW +X ′ ∂sW

h ∂x2w = −(X ′ + rY ′′) ∂rW + Y ′ ∂sW

(5.2.17)

with
h = 1 + rκ. (5.2.18)

Thus, the gradient and Laplacian of w have the form [30, 70, 72]:

∇w = ∂rW ν +
1

h
∂sW θ

∆w =
1

h
∂r[h ∂rW ] +

1

h
∂s

[
1

h
∂sW

]
.

(5.2.19)

The norm of the gradient reduces with (5.2.16) to

h2|∇p|2 = ((Y ′ − rX ′′)∂rΦ +X ′∂sΦ)
2

+ (−(X ′ + rY ′′)∂rΦ + Y ′∂sΦ)
2

= (∂sΦ)2 + h2(∂rΦ)2.
(5.2.20)

Then the normal vector (i.e. the one computed using the phase-field function) has
the form

n =
∇p
|∇p|

=
∂rΦ ν + 1

h
∂sΦ θ√

1
h2

(∂sΦ)2 + (∂rΦ)2
. (5.2.21)

For the gradient terms of p in (5.2.2) we have to take into account the normal vector
dependent functions s and ŝ in order to transform these terms to a dependence on
the function Φ. Therefore we make use of (5.2.17) and (5.2.16) in order to get

h
(
∇ · [s(n)2 ∇p]− ∂x1 [s(n) ŝ(n) ∂x2p] + ∂x2 [s(n) ŝ(n) ∂x1p]

)

= ∂r[h s(n)2∂rΦ] + ∂s

[
1

h
s(n)2∂sΦ

]
− ∂r[s(n) ŝ(n) ∂sΦ]

+ ∂s[s(n) ŝ(n) ∂rΦ].

(5.2.22)

The gradient term in the phase-field equation (5.2.2), that is multiplied with ξ
becomes with (5.2.17):

∇p · ∇u = ∂rΦ ∂rU +
1

h2
∂sΦ ∂sU. (5.2.23)
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For the time derivative we have

∂τw = ∂τW − v(n)∂rW − v(t)∂sW + r
v(n)′

h
∂sΦ, (5.2.24)

with the normal and tangential interface velocities

v(n) = Y ′Ẋ −X ′Ẏ , (5.2.25)

v(t) = X ′Ẋ + Y ′Ẏ . (5.2.26)

We know the normal velocity from molecular dynamics (see Fig. 3.6), which is
temperature and orientation dependent. The change of variables is in terms of the
sharp interface magnitudes, and hence v dpends on ν. We realize the orientation
dependence of the normal velocity similarly the surface energy (5.1.9). This means
that we have three variations, for example, if we choose s(1) in (5.1.9), we have

v(n)(ν) = (2vMD
110 − vMD

100 )

(
1 + 2

vMD
100 − vMD

110

2vMD
110 − vMD

100

(ν4
1 + ν4

2)

)
, (5.2.27)

where vMD
hkl are specified in (5.1.26).

Using the Eqs. (5.2.22), (5.2.23), (5.2.24) and the expansions of the normal velocity
and the mobility, the model (5.1.23) changes to

ε2

(
∂τΦ− v(n)(ν) ∂rΦ− v(t)(ν) ∂sΦ + r

(v(n)(ν))′

h
∂sΦ

)

= (M0(n, U) + εM1(n, U) + ε2M2(n, U))

(
ε2

h

(
∂r[h s(n)2 ∂rΦ]

+ ∂s

[
1

h
s(n)2 ∂sΦ

]
+ ∂s[s(n) ŝ(n)] ∂rΦ− ∂r[s(n) ŝ(n)] ∂sΦ

)

+ ε3ξ(U)

(
∂rΦ ∂rU +

1

h2
∂sΦ ∂sU

)
− 18F ′sym(Φ) + εH(U)F ′as(Φ)

)
,

∂τU − v(n)(ν) ∂rU − v(t)(ν) ∂sU + r
(v(n)(ν))′

h
∂sU

=
1

h
∂r[h∂rU ] +

1

h
∂s

[
1

h
∂sU

]

+ ∂τΦ− v(n)(ν) ∂rΦ− v(t)(ν) ∂sΦ + r
(v(n)(ν))′

h
∂sΦ.

(5.2.28)
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We now stretch the normal distance variable r and introduce the variable η = r/ε:

− εv(n)(ν) ∂ηΦ + ε2(∂τΦ− v(t)(ν) ∂sΦ)

= (M0(n, U) + εM1(n, U) + ε2M2(n, U))

(
1

h

(
∂η[h s(n)2 ∂ηΦ]

+ ε2∂s

[
1

h
s(n)2 ∂sΦ

]
+ ε∂s[s(n) ŝ(n)] ∂ηΦ− ε∂η[s(n) ŝ(n)] ∂sΦ

)

+ ξ(U)

(
ε ∂ηΦ ∂ηU +

ε3

h2
∂sΦ ∂sU

)
− 18F ′sym(Φ) + εH(u)F ′as(Φ)

)
,

− 1

ε
v(n)(ν) ∂ηU + ∂τU − v(t)(ν) ∂sU

=
1

ε2h
∂η[h ∂ηU ] +

1

h
∂s

[
1

h
∂sU

]
− 1

ε
v(n)(ν) ∂ηΦ + ∂τΦ− v(t)(ν) ∂sΦ.

(5.2.29)

Furthermore, with
1

h
≈ 1− εηκ+ ε2η2κ2, (5.2.30)

we finally get

− εv(n)(ν) ∂ηΦ + ε2(∂τΦ− v(t)(ν) ∂sΦ)

=
(
M0(n, U) + εM1(n, U) + ε2M2(n, U)

)(
∂η[s(n)2 ∂ηΦ]

+ ε
(
κs(n)2 ∂ηΦ + ∂s[s(n)ŝ(n)] ∂ηΦ− ∂η[s(n)ŝ(n)] ∂sΦ

+ ξ(U) ∂ηΦ ∂ηU
)

+ ε2
(
−ηκ2s(n)2 ∂ηΦ + ∂s[s(n)2 ∂sΦ]

+ ηκ(∂η[s(n)ŝ(n)] ∂sΦ− ∂s[s(n)ŝ(n)] ∂ηΦ
)

− 18F ′sym(Φ) + εH(U)F ′as(Φ)

)
,

− εv(n)(ν) ∂ηU + ε2(∂τU − v(t)(ν) ∂sU)

= ∂2
ηU + ε(κ ∂ηU + v(n)(ν) ∂ηΦ)

+ ε2(−ηκ2∂ηU + ∂2
sU − ∂τΦ + v(t)(ν)∂sΦ),

(5.2.31)

where we multiplied the thermal equation with ε2.
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Expansions of the normal vector, the anisotropic functions and the fields

With η = r/ε and (5.2.30), the normal vector (5.2.21) has the form

n =
∂ηΦ ν + ε

h
∂sΦ θ√

ε2

h2
(∂sΦ)2 + (∂ηΦ)2

= ν + ε
∂sΦ

∂ηΦ
θ − ε2

(
1

2

(
∂sΦ

∂ηΦ

)2

ν + κη
∂sΦ

∂ηΦ
θ

) (5.2.32)

where we expanded in ε around 0. Then, s can be expressed in terms of the inner
variables as follows:

s(n) = s(ν) + ε ŝ(ν)
∂sΦ

∂ηΦ
+ ε2 1

2

(
ˆ̂s(ν)

(
∂sΦ

∂ηΦ

)2

− 2κηŝ(ν)
∂sΦ

∂ηΦ

)
+O(ε3), (5.2.33)

where
ŝ(ν) = ∇ns(ν) · θT ,
ˆ̂s(ν) := θ ·Hns(ν) · θT −∇ns(ν) · νT .

(5.2.34)

Thus, the expansion for ŝ has the form

ŝ(n) = ŝ(ν) + ε ˆ̂s(ν)
∂sΦ

∂ηΦ
+O(ε2). (5.2.35)

Note here that
∂s[s(ν)] = κŝ(ν), ∂s[ŝ(ν)] = κˆ̂s(ν), (5.2.36)

and hence
∂s[s(ν)ŝ(ν)] = κ(ŝ(ν)2 + s(ν)ˆ̂s(ν)). (5.2.37)

The mobility functions M0(n, U) and M1(n, U) are expanded with respect to the
normal vector n in the same way as s. Then, for the mobility holds

M0(n, U) + εM1(n, U) + ε2M2(n, U)

= M0(ν, U) + ε

(
M̂0(ν, U)

∂sΦ

∂ηΦ
+M1(ν, U)

)

+ ε2

(
1

2
ˆ̂
M0(ν, U)

∂sΦ

∂ηΦ
− κηM̂0(ν, U) + M̂1(ν, U)

)
∂sΦ

∂ηΦ

+ ε2M2(ν, U) +O(ε3),

(5.2.38)

with
M̂i(ν, U) := ∇nMi(ν, U) · θT , i = 0, 1

ˆ̂
M0(ν, U) := θ ·HnM0(ν, U) · θT −∇nM0(ν, U) · νT .

(5.2.39)
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We now transform the dependence on n to ν of the gradient terms of the phase-field
equation in (5.2.31) with the help of the expansions (5.2.33) and (5.2.35):

∂η[s(n)2 ∂ηΦ] + ε
(
κs(n)2 ∂ηΦ + ∂s[s(n)ŝ(n)] ∂ηΦ

− ∂η[s(n)ŝ(n)] ∂sΦ
)

+ ε2
(
−ηκ2s(n)2 ∂ηΦ + ∂s[s(n)2 ∂sΦ]

+ ηκ(∂η[s(n)ŝ(n)] ∂sΦ− ∂s[s(n)ŝ(n)] ∂ηΦ
)

= s(ν)2∂2
ηΦ + ε

(
2s(ν)ŝ(ν) ∂η∂sΦ + κ(s(ν)2 + ŝ(ν)2 + s(ν)ˆ̂s(ν)) ∂ηΦ

)

+ ε2
(
∂s[(ξ(ν)2 + ŝ(ν)2 + s(ν)ˆ̂s(ν))∂sΦ]− 2κηs(ν)ŝ(ν) ∂η∂sΦ

− ηκ2(s(ν)2 + ŝ(ν)2 + s(ν)ˆ̂s(ν)) ∂ηΦ
)
,

(5.2.40)

where we used (5.2.37) and that

∂η

[
(∂sΦ)2

∂ηΦ

]
+ ∂s

[
∂sΦ

∂ηΦ

]
∂ηΦ− ∂η

[
∂sΦ

∂ηΦ

]
∂sΦ = ∂2

sΦ. (5.2.41)

Putting together (5.2.38) and (5.2.40), the model (5.2.31) changes to

− εv(n)(ν) ∂ηΦ + ε2(∂τΦ− v(t)(ν) ∂sΦ)

= M0(ν, U)(s(ν)2∂2
ηΦ− 18F ′sym(Φ))

+ ε

(
M0(ν, U)

(
2s(ν)ŝ(ν) ∂η∂sΦ + κ(s(ν)2 + ŝ(ν)2 + s(ν)ˆ̂s(ν)) ∂ηΦ

+ ξ(U) ∂ηΦ ∂ηU +H(U)F ′as(Φ)
)

+
(
M̂0(ν, U)

∂sΦ

∂ηΦ
+M1(ν, U)

)
· (s(ν)2∂2

ηΦ− 18F ′sym(Φ))

)

+ ε2

(
M0(ν, U)

(
∂s[(s(ν)2 + ŝ(ν)2 + s(ν)ˆ̂s(ν))∂sΦ]

− 2κηs(ν)ŝ(ν) ∂η∂sΦ− ηκ2(s(ν)2 + ŝ(ν)2 + s(ν)ˆ̂s(ν)) ∂ηΦ
)

+
(
M2(ν, U) +

∂sΦ

∂ηΦ

(1

2
ˆ̂
M0(ν, U)

∂sΦ

∂ηΦ
− κηM̂0(ν, U) + M̂1(ν, U)

))

×
(
s(ν)2∂2

ηΦ− 18F ′sym(Φ)
)

+
(
M̂0(ν, U)

∂sΦ

∂ηΦ
+M1(ν, U)

)(
2s(ν)ŝ(ν) ∂η∂sΦ

+ κ(s(ν)2 + ŝ(ν)2 + s(ν)ˆ̂s(ν))∂ηΦ + ξ(U) ∂ηΦ ∂ηU +H(U)F ′as(Φ)
))
,

− εv(n)(ν) ∂ηU + ε2
(
∂τU − v(t)(ν)∂sU

)

= ∂2
ηU + ε(κ ∂ηU − v(n)(ν) ∂ηΦ)

+ ε2
(
−ηκ2∂ηU + ∂2

sU + ∂τΦ− v(t)(ν) ∂sΦ
)

(5.2.42)
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We expand the field variables as follows

Φ(r, s, τ) = Φ0 + εΦ1 + ε2Φ2 +O(ε3),

U(r, s, τ) = U0 + εU1 + ε2U2 +O(ε3),
(5.2.43)

and substitute them into (5.2.42) to consider the different orders for the model
equations in the following sections. In doing so, we expand the functions, which
depend on the field variables using a Taylor expansion in the same way as Eqs.
(5.2.4) and (5.2.5) for the outer solution.

Matching conditions

In order to match the inner solutions of the following sections with the outer solu-
tion, we expand the outer asymptotic phase-field sequences {φi}∞i=0 and temperature
sequence {ui}∞i=0 to inner coordinates. Since this procedure is equivalent for both,
we refer collectively to these outer sequences {wi}∞i=0 and use {Wi}∞i=0 for the corre-
sponding inner sequences. The expansion of the outer solution in inner coordinates
reads

T (w0 + εw1 +O(ε2)) ((τ,b + εην), (τ,b))

= w0(τ,b) + ε (w1(τ,b) + η ν · ∇w0(τ,b))

ε2

(
w2(τ,b) + η ν · ∇w1(τ,b) +

1

2
η2 ν ·Hw0(τ,b) · νT

)
+O(ε3).

(5.2.44)

Taking the limit of W0, W1 and W2 for ε→ ±0 leads to

lim
η→±∞

W0(τ,ν, η) = w±0 (τ,ν), (5.2.45a)

lim
η→±∞

(
W1(τ,ν, η)− η ν · ∇w±0 (τ,b)

)
= w±1 (τ,b), (5.2.45b)

lim
η→±∞

(
W2(τ,ν, η)−

(
η ν · ∇w±1 (τ,b)

+
1

2
η2 ν ·Hw±0 (τ,b) · νT

))
= w±2 (τ,b),

(5.2.45c)

where the +(-) sign of the outer solution denotes a value on the right (respectively
left) of the interface. In the future, we will also need limits of the derivatives of the
inner quantities. Using (5.2.16) gives

lim
η→±∞

∂ηW0(τ,ν, η) = 0, (5.2.46a)

lim
η→±∞

∂ηW1(τ,ν, η) = ν · ∇w±0 (τ,b), (5.2.46b)

lim
η→±∞

(
∂ηW2(τ,ν, η)− η ν ·Hw±0 (τ,b) · νT

)
= ν · ∇w±1 (τ,b). (5.2.46c)
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Note here, that with (5.2.19)

ν · ∇wk(τ,b) = ∂rwk. (5.2.47)

Equivalently we find

ν ·Hwk(τ,b) · νT = ∂2
rwk, κ θ · ∇wk + ν ·Hwk · θT = ∂r∂swk. (5.2.48)

Hence, (5.2.45) and (5.2.46) can be rewritten as

lim
η→±∞

W0(τ,ν, η) = w±0 , (5.2.49a)

lim
η→±∞

(
W1(τ,ν, η)− η ∂rw±0

)
= w±1 , (5.2.49b)

lim
η→±∞

(
W2(τ,ν, η)−

(
η ∂rw

±
1 +

1

2
η2 ∂2

rw
±
0

))
= w±2 (5.2.49c)

and

lim
η→±∞

∂ηW0(τ,ν, η) = 0, (5.2.50a)

lim
η→±∞

∂ηW1(τ,ν, η) = ∂rw
±
0 , (5.2.50b)

lim
η→±∞

(
∂ηW2(τ,ν, η)− η ∂2

rw
±
0

)
= ∂rw

±
1 . (5.2.50c)

Leading order of the inner expansion

The leading order O(ε0) of the phase-field model (5.2.42) with the expansion (5.2.43)
is

0 = s(ν)2∂2
ηΦ0 − 18F ′sym(Φ0), (5.2.51)

where we already divided by M0(ν, U0) which is assumed to be nonzero. Multiplying
with ∂ηΦ0 and integrating leads to

c =
1

2
s(ν)2(∂ηΦ0)2 − 18Fsym(Φ0). (5.2.52)

The constant of integration c can be determined by matching with the outer solution.
Taking the limit of (5.2.52) for η → ±∞ and using condition (5.2.45a) we get
c = 0:

lim
η→±∞

(
1

2
s(ν)2(∂ηΦ0)2 − 18Fsym(Φ0)

)
= 0. (5.2.53)

From the vanishing left-hand side in (5.2.52), we obtain

∂ηΦ0 = ±6Φ0(1− Φ0)

s(ν)
, ∂2

ηΦ0 =
18

s(ν)2
F ′sym(Φ0). (5.2.54)
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From here on we take the negative sign. Then we obtain from the integration of
∂2
ηΦ0

η =
s(ν)

3
artanh(1− 2Φ0). (5.2.55)

The solution of (5.2.51) is the inverse

Φ0(η) =
1

2

(
1− tanh

(
3η

s(ν)

))
, (5.2.56)

We remind at this point, that s is positive, as we found in Remark 5.1.1. Hence,
∂ηΦ0 is negative with the choice of the negative sign, and the sign of the argument
of the hyperbolic tangent function in Φ0 is dictated by η.

With the additional boundary condition, that the interface is located at Φ(0) = 1
2
,

we have

η = −
∫ Φ0(η)

1
2

s(ν)

6Φ(1− Φ)
dΦ (5.2.57)

We differentiate (5.2.57) with respect to s, such that the left-hand side becomes zero
and apply the Leibniz integral rule. From that we obtain

∂sΦ0 = −ηκ ŝ(ν)

s(ν)
∂ηΦ0 ⇒ ∂η∂sΦ0 = −κ ŝ(ν)

s(ν)
(∂ηΦ0 + η ∂2

ηΦ0), (5.2.58)

or with (5.2.54) and (5.2.55) equivalently:

∂sΦ0 = 2κ
ŝ(ν)

s(ν)
Φ0(1− Φ0) artanh(1− 2Φ0),

∂η∂sΦ0 = 6κ
ŝ(ν)

s(ν)2

(
Φ0(1− Φ0)− F ′sym(Φ0) artanh(1− 2Φ0)

)
,

(5.2.59)

which is of importance for the following higher orders. Let us now turn to the
leading order of the thermal equation:

0 = ∂2
ηU0. (5.2.60)

The matching condition (5.2.45a) for the temperature field imposes, that U0 is in-
dependent on η.

Order O(ε) of the inner expansion

From this order on, we have to be carefully take into account the expansions of all
functions that depend on the fields, such that we work with the Taylor expansion
of M as in (5.2.4) and with the expansion of F as in (5.2.5). For the order O(ε),
the terms ∂uM(ν, U0), M̂0(ν, U0) and M1(ν, U0) are multiplied with s(ν)2∂2

ηΦ0 −
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18F ′sym(Φ0). The latter term becomes zero since we found for the leading order
(5.2.51). Finally we get

− s(ν)2∂2
ηΦ1 + 18F ′′sym(Φ0)Φ1

=
v(n)(ν)

M0(ν, U0)
∂ηΦ0 + 2s(ν)ŝ(ν) ∂η∂sΦ0

+ κ(s(ν)2 + ŝ(ν)2 + s(ν)ˆ̂s(ν)) ∂ηΦ0 +H(U0)F ′as(Φ0).

(5.2.61)

Before we apply the Fredholm alternative theorem, we prepare the right-hand side
of (5.2.61), denoted as B1, in order to simplify the solvability condition. To that
end we use (5.2.54) and (5.2.59) and get

B1 = −
(

v(n)(ν)

M0(ν, U0)
+ κ

(
s(ν)2 − ŝ(ν)2 + s(ν)ˆ̂s(ν)

)) 6Φ0(1− Φ0)

s(ν)

− 12κ
ŝ(ν)2

s(ν)
artanh(1− 2Φ0)F ′sym(Φ0) +H(U0)F ′as(Φ0).

(5.2.62)

Eq. (5.2.61) has the form LΦ1 = B1 with the self-adjoint operator L = −s(ν)2∂η +
18F ′′sym(Φ0). The homogeneous problem LΦ1 = 0 has the solution Φ1 = ∂ηΦ0. The
Fredholm alternative theorem [42] claims for our conditions that either (5.2.61) has a
solution, or that the right-hand side multiplied with the homogeneous solution does
not vanish. Hence, the condition for the solvability of (5.2.61) is (B1, ∂ηΦ0)L2 = 0,
which gives the solvability condition 0 =

∫∞
−∞ B1 ∂ηΦ0 dη and reads in detail:

0 =

(
v(n)(ν)

M0(ν, U0)
+ κ

(
s(ν)2 − ŝ(ν)2 + s(ν)ˆ̂s(ν)

))

× 6

s(ν)

∫ 1

0

Φ0(1− Φ0) dΦ0 −H(U0)

∫ 1

0

F ′as(Φ0) dΦ0

+ 12κ
ŝ(ν)2

s(ν)

∫ 1

0

artanh(1− 2Φ0)F ′sym(Φ0) dΦ0,

(5.2.63)

where we used that Φ0(η) → 0 for η → ∞ and Φ0(η) → 1 for η → −∞ when
changing the variable of integration. The integrals in the solvability condition are
easy to calculate:

∫ 1

0

Φ0(1− Φ0) dΦ0 =
1

6
,

∫ 1

0

artanh(1− 2Φ0)F ′sym(Φ0) dΦ0 =
1

12
,

∫ 1

0

F ′as(Φ0) dΦ0 = 1.

(5.2.64)
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Finally, we have a formula for the first element of the mobility:

M0(ν, U0) =
v(n)(ν)

s(ν)
(
H(U0)− κ(s(ν) + ˆ̂s(ν))

) . (5.2.65)

Now we turn to the derivation of the heat flux boundary condition from the heat
equation. Since U0 is independent on η, we obtain for the heat equation

∂2
ηU1 − v(n)(ν) ∂ηΦ0 = 0, (5.2.66)

which has the same structure as the one dimensional equation (4.1.28). We have to
take into account that, other than on τ , the integration variables may here depend
additionally on the arclength s. Integrating (5.2.66) two times yields

U1(s, η) = β(s) + α(s)η + v(n)(ν)

∫ η

0

Φ0(η̂) dη̂, (5.2.67)

where β(s) = U1(s, 0) and α(s) are integration constants. The matching condition
(5.2.50b) delivers

∂ru
−
0 = lim

η→−∞
∂ηU1 = lim

η→−∞

(
α + v(n)(ν)Φ0(η)

)
= α + v(n)(ν),

∂ru
+
0 = lim

η→+∞
∂ηU1 = lim

η→+∞

(
α + v(n)(ν)Φ0(η)

)
= α,

(5.2.68)

In order to find the-heat flux boundary condition, we subtract both limits in (5.2.68):

∂ru
−
0 − ∂ru+

0 = v(n)(ν), (5.2.69)

which is with (5.2.47) equivalent to

[ν · ∇u0]∓ = v(n)(ν) (5.2.70)

and hence it is the 2D version of the 1D heat flux boundary condition (4.1.31) of
the same order. In the next order we prove that this relation remains the same.

Calculation of Φ1

In order to calculate M1 in the next order, we derive Φ1 as a solution of (5.2.61).
At first, we solve the homogeneous problem LΦhom

1 = 0:

−s(ν)2∂2
ηΦ

hom
1 + 18F ′′sym(Φ0)Φhom

1 = 0. (5.2.71)
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It is easy to prove that L ∂ηΦ0 = 0 and hence, with (5.2.54), the function

Φhom
1(1) (Φ0) = −6

Φ0(1− Φ0)

s(ν)
(5.2.72)

is a solution of (5.2.71) and represents the first element of the fundamental system.
We find the second element Φhom

1(2) of the fundamental system with substitution of

Φhom
1(2) (Φ0) = −6

Φ0(1− Φ0)

s(ν)
G(Φ0) (5.2.73)

in (5.2.71), which yields

18 ∂ηΦ0

(
3F ′sym(Φ0)G′(Φ0) + 2Fsym(Φ0)G′′(Φ0)

)
= 0. (5.2.74)

Integrating the terms within the brackets two times leads to

G(Φ0) = k̃0 + k1

∫ Φ0

k0

Fsym(Φ̃0)−
3
2 dΦ̃0, (5.2.75)

where k0, k1 and k̃0 are constants and k0 can be chosen, such that k̃0 = 0. A common
solution of (5.2.71) is then given by:

Φhom
1 (Φ0) = −6

Φ0(1− Φ0)

s(ν)

(
k2 + k1

∫ Φ0

k0

Fsym(Φ̃0)−
3
2 dΦ̃0

)
, (5.2.76)

where we have

∫ Φ0

1
2

Fsym(Φ̃0)−
3
2 dΦ̃0 =

∫ Φ0

1
2

1

Φ̃3
0(1− Φ̃0)3

dΦ̃0

=
(1− 2Φ0)(6Φ2

0 − 6Φ0 − 1)

2Φ2
0(1− Φ0)2

− 12 artanh(1− 2Φ0).

(5.2.77)

Before we determine a particular solution of the inhomogeneous equation (5.2.61),
we substitute M0 (5.2.65) into B1 in (5.2.62) and obtain

B1 =

(
κ
ŝ(ν)2

s(ν)
−H(U0)

)
6Φ0(1− Φ0)

− 12κ
ŝ(ν)2

s(ν)
artanh(1− 2Φ0)F ′sym(Φ0) +H(U0)F ′as(Φ0).

(5.2.78)

Together with the Wronskian

W = Φhom
1(1) (Φ0) ∂ηΦ

hom
1(2) (Φ0)− Φhom

1(2) (Φ0) ∂ηΦ
hom
1(1) (Φ0) = − 216

s(ν)3
, (5.2.79)
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the particular solution Φ1(p) can be calculated via the method of variation of param-
eters:

Φ1(p) = Φhom
1(1)

∫
Φhom

1(2) B1

s(ν)2 W
dη − Φhom

1(2)

∫
Φhom

1(1) B1

s(ν)2 W
dη

= −Φ0(1− Φ0)

24s(ν)

(
8κŝ(ν)2artanh(1− 2Φ0)2

+H(U0)s(ν)(1 + 4 artanh(1− 2Φ0))
)
.

(5.2.80)

And hence, the complete solution of LΦ1 = B1 reads

Φ1(Φ0, U0) = −Φ0(1− Φ0)

24s(ν)

(
8κŝ(ν)2artanh(1− 2Φ0)2

+H(U0)s(ν)(1 + 4 artanh(1− 2Φ0))
)

− 6
Φ0(1− Φ0)

s(ν)

(
k2 + k1

(1− 2Φ0)(6Φ2
0 − 6Φ0 − 1)

2Φ2
0(1− Φ0)2

− 12k1 artanh(1− 2Φ0)

)
.

(5.2.81)

In order to find a proper k1, we match Φ1 with the outer solution by using (5.2.45b).
From (5.2.7) we know that the outer solution φ0 is constant. Hence its derivative in
(5.2.45b) is zero, such that

lim
η→±∞

Φ1(η) = lim
Φ0→{0,1}

Φ1(Φ0) = φ1. (5.2.82)

Thus, the matching requires that (5.2.81) converges for Φ0 → {0, 1} to zero. Let us
therefore consider the relevant terms in (5.2.81) for the limit. In doing so, we apply
the L’Hôpital’s rule as often as necessary. The two limits

lim
Φ0→{0,1}

Φ0(1− Φ0) artanh(1− 2Φ0)2 = lim
Φ0→{0,1}

Φ0(1− Φ0)

2(1− 2Φ0 + 2Φ2
0)

= 0 (5.2.83)

lim
Φ0→{0,1}

Φ0(1− Φ0) artanh(1− 2Φ0) = lim
Φ0→{0,1}

Φ0(1− Φ0)

2(1− 2Φ0)
= 0 (5.2.84)

show that the first summand in (5.2.81) converges, but for the second line of (5.2.81),
the limit

lim
Φ0→{0,1}

(1− 2Φ0)(6Φ2
0 − 6Φ0 − 1)

2Φ0(1− Φ0)
(5.2.85)

obviously diverges. This leads to the unique choice k1 = 0. The constant k2 is
specified with the definition, that the interface is located at Φ(0) = 1

2
, which is

already fulfilled with Φ0, since Φ0(0) = 1
2
. Hence, Φ1(Φ0 = 1

2
) has to be zero, which

delivers

k2 = −H(U0)

144
s(ν). (5.2.86)
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Finally, the solution has the form

Φ1(Φ0, U0) =− Φ0(1− Φ0)

6s(ν)
artanh(1− 2Φ0)

(
H(U0)s(ν)

+ 2κŝ(ν)2 artanh(1− 2Φ0)
)
.

(5.2.87)

Order O(ε2) of the inner expansion

In the phase-field equation of this order, we find two times the term

s(ν)2∂2
ηΦ1 − 18F ′′sym(Φ0)Φ1 + 2s(ν)ŝ(ν) ∂η∂sΦ0

+ κ(s(ν)2 + ŝ(ν)2 + s(ν)ˆ̂s(ν)) ∂ηΦ0 +H(U0)F ′as(Φ0),
(5.2.88)

which reduces with (5.2.61) to

− v(n)(ν)

M0(ν, U0)
∂ηΦ0. (5.2.89)

Then, our second order equation reads

− s(ν)2∂2
ηΦ2 + 18F ′′sym(Φ0)Φ2

=
1

M0(ν)

(
v(n)(ν) ∂ηΦ1 − ∂τΦ0 + v(t)(ν) ∂sΦ0

)

− v(n)(ν)

M0(ν, U0)2

(
∂uM0(ν, U0) U1 ∂ηΦ0 + M̂0(ν, U0) ∂sΦ0

+M1(ν, U0) ∂ηΦ0

)
+ κ(s(ν)2 + ŝ(ν)2 + s(ν)ˆ̂s(ν)) ∂ηΦ1

+ 2s(ν)ŝ(ν) ∂η∂sΦ1 + ξ ∂ηΦ0 ∂ηU1 +H(U0)F ′′as(Φ0)Φ1

+H ′(U0)F ′as(Φ0)U1 + ∂s[(s(ν)2 + ŝ(ν)2 + s(ν)ˆ̂s(ν))∂sΦ0]

− 2κηs(ν)ŝ(ν) ∂η∂sΦ0 − ηκ2(s(ν)2 + ŝ(ν)2 + s(ν)ˆ̂s(ν)) ∂ηΦ0

− 9F ′′′sym(Φ0)Φ2
1

(5.2.90)

where, as in the previous order the equation can be expressed as LΦ2 = B2. Hence,
the right-hand side has to be orthogonal to ∂ηΦ0, such that we can apply the Fred-
holm alternative theorem. In order to be able to calculate the solvability condition,
we first calculate some simple expressions and integrals. With (5.2.37), (5.2.54),
(5.2.55), (5.2.58), (5.2.65) and
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∂ηΦ1 = ∂Φ0Φ1(Φ0, U0) ∂ηΦ0 (5.2.91a)

∂η∂sΦ1 = −κ ŝ(ν)

s(ν)

(
η ∂2

Φ0
Φ1(Φ0, U0) (∂ηΦ0)2

+ ∂Φ0Φ1(Φ0, U0)(∂ηΦ0 + η ∂2
ηΦ0)

) (5.2.91b)

∂2
sΦ0 = −

(
κ ∂s

[
ŝ(ν)

s(ν)

]
+ ∂sκ

ŝ(ν)

s(ν)
− κ2 ŝ(ν)2

s(ν)2

)
η ∂ηΦ0

+ κ2 ŝ(ν)2

s(ν)2
η2 ∂2

ηΦ0

(5.2.91c)

∂τΦ0 = ∂τs(ν) ∂sΦ0 =
∂τs(ν)

s(ν)
η ∂ηΦ0 (5.2.91d)

∫ ∞
−∞

η (∂ηΦ0)2 dη = 0 (5.2.91e)

∫ ∞
−∞

η2 ∂2
ηΦ0 ∂ηΦ0 dη =

[
η2 1

2
(∂ηΦ0)2

]+∞

−∞
−
∫ ∞
−∞

η (∂ηΦ0)2 dη = 0 (5.2.91f)

∫ ∞
−∞

∂sΦ0 ∂ηΦ0 dη = −κ ŝ(ν)

s(ν)

∫ ∞
−∞

η (∂ηΦ0)2 dη = 0 (5.2.91g)

∫ ∞
−∞

η ∂η∂sΦ0 ∂ηΦ0 dη = 0 (5.2.91h)

the solvability condition reduces to:

0 =
6

s

(
v(n)(ν)

M0(ν, U0)
+ κ(s2 − ŝ2 + sˆ̂s)

)∫ 1

0

∂Φ0Φ1(Φ0, U0) Φ0(1− Φ0) dΦ0

− v(n)(ν)

M0(ν, U0)2
∂uM0(ν, U0)

∫ ∞
−∞

U1(η) (∂ηΦ0)2 dη

+ ξ(U0)

∫ ∞
−∞

∂ηU1 (∂ηΦ0)2 dη +H ′(U0)

∫ ∞
−∞

F ′as(Φ0) U1(η) ∂ηΦ0 dη

+ 9

∫ 1

0

F ′′′sym(Φ0) Φ1(Φ0, U0)2 dΦ0

+ 12κ
ŝ2

s

∫ 1

0

artanh(1− 2Φ0)
(
2Fsym(Φ0) ∂2

Φ0
Φ1(Φ0, U0)

+ F ′sym(Φ0) ∂Φ0Φ1(Φ0, U0)
)

dΦ0 −
v(n)(ν)M1(ν, U0)

sM0(ν, U0)2

−H(U0)

∫ 1

0

F ′′as(Φ0) Φ1(Φ0, U0) dΦ0,

(5.2.92)

where we do not show the dependence of s on ν in order to simplify the notation.
With the positivity of s (see remark 5.1.1) and with (5.2.55), (5.2.64) and (5.2.67)
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the second, third and fourth integral in (5.2.92) read:

∫ ∞
−∞

U1(η) (∂ηΦ0)2 dη =
β(s)

s(ν)
− v(n)

36
(5− 6 ln(2)),

∫ ∞
−∞

∂ηU1(∂ηΦ0)2 dη =
2α + v(n)(ν)

2 s(ν)
,

∫ ∞
−∞

F ′as(Φ0)U1(η) ∂ηΦ0 dη = −β(s) + s(ν)
6α + v(n)(ν)(13− 12 ln(2))

72
.

(5.2.93)

The remaining integrals in (5.2.92) are calculated with Mathematica:

∫ 1

0

∂Φ0Φ1(Φ0, U0)Φ0(1− Φ0) dΦ0 =
H(U0)

144
,

∫ 1

0

F ′′′sym(Φ0) Φ1(Φ0, U0)2 dΦ0 = κH(U0)ŝ(ν)2 15− 2π2

1080 s(ν)
,

∫ 1

0

(
artanh(1− 2Φ0) (2Fsym(Φ0) ∂2

Φ0
Φ1(Φ0, U0)

+ F ′sym(Φ0) ∂Φ0Φ1(Φ0, U0))
)

dΦ0 =
π2H(u0)

1080
,

∫ 1

0

F ′′as(Φ0) Φ1(Φ0, U0) dΦ0 = −H(U0)

24
− ŝ(ν)2κ(−15 + π2)

180s(ν)
.

(5.2.94)

We substitute the formula of M0 (5.2.65) and its derivative

∂uM0 = − H ′(U0)v(n)(ν)

s(ν)
(
H(U0)− κ(s(ν) + ˆ̂s(ν))

)2 (5.2.95)

into the solvability condition and chose ξ such that the unknown α vanishes:

ξ = −H
′(U0)s(ν)2

12
. (5.2.96)

Finally, we solve the solvability condition for M1:

M1(ν, U0) =
H(U0)2v(n)(ν)

12s(ν)
(
H(U0)− κ(s(ν) + ˆ̂s(ν))

)2 . (5.2.97)

The diffusion equation to this order has the form

−∂2
ηU2 = −∂τU0 + v(n)(ν) ∂ηU1 + v(t)(ν) ∂sU0κ ∂ηU1 + ∂2

sU0

+ ∂τΦ0 − v(n)(ν) ∂ηΦ1 − v(t)(ν) ∂sΦ0,
(5.2.98)

where we have already taken into account that ∂ηU0 = 0. We now derive the heat
flux boundary condition for this order. Therefore we need to calculate the derivative
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∂ru
±
1 . We follow [72] and start with the integration of (5.2.98), express the outer

diffusion equation in the interface frame and finally take the limit and solve the
resulting equation for ∂ru

±
1 .

Integration of (5.2.98) gives

c1(s) = ∂ηU2 + η
(
−∂τU0 + v(t)(ν) ∂sU0 + ∂2

sU0

)
+ (κ+ v(n)(ν))U1

− v(n)(ν)Φ1 +
∂τs(ν) + v(t)(ν) κŝ(ν)

s(ν)

∫ η

0

η̂ ∂ηΦ0 dη̂,
(5.2.99)

where we used (5.2.58), (5.2.91d); c1(s) is an integration constant. In order to get
∂ru

±
1 from this equation, we apply (5.2.19) and (5.2.24) to express (5.2.10) in the

interface frame. Afterwards, we take the limit r → ±0 and get

∂τu
±
0 − v(n)∂ru

±
0 − v(t)(ν) ∂su

±
0 = ∂2

ru
±
0 + κ ∂ru

±
0 + ∂2

su
±
0 , (5.2.100)

Multiplication with η gives

0 = η ∂2
ru
±
0 + η(−∂τu±0 + v(t)(ν) ∂su

±
0 + ∂2

su
±
0 ) + (κ+ v(n))η ∂ru

±
0 . (5.2.101)

Subtracting from (5.2.99) and taking the limit η → ±∞ gives

c1(s) = ∂ru
±
1 + (κ+ v(n))u±1 −

ln(2)

6
(∂τs(ν) + v(t)(ν) κŝ(ν)), (5.2.102)

where we used (5.2.49b), (5.2.50c) and that

∫ −∞
0

η̂ ∂ηΦ0 dη̂ =

∫ ∞
0

η̂ ∂ηΦ0 dη̂ = −s(ν)

6
ln(2). (5.2.103)

With (5.2.49b) we calculate u±1 using (5.2.67) and (5.2.68):

u−1 = lim
η→−∞

(
β(s) + v(n)

∫ η

0

(Φ0(η̂)− 1) dη̂

)
= β(s) + ln(2)

s(ν)v(n)

6

= lim
η→+∞

(
β(s) + v(n)

∫ η

0

Φ0(η̂) dη̂

)
= u+

1 .

(5.2.104)

Hence ∂ru
−
1 − ∂ru

+
1 = 0, such that together with (5.2.47) and (5.2.70) we finally

have
[ν · ∇(u0 + εu1)]∓ = v(n)(ν). (5.2.105)

This result is similar to the heat flux boundary condition in one dimension (4.1.79).
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5.3. The two-dimensional anisotropic mobility

We compare in this section our mobility from the asymptotic analysis up to order
O(ε2) of the previous section with the approximated mobility

Mapp(n, u) = m0(u)
(
1 + δm(u)(n4

1 + n4
2)
)
, (5.3.1)

which we introduced in Sec. 5.1. The parameters m0 and δm can be determined
by using the three possible couples of {m100,m110,m111}, see (5.1.14). In order to
compare Mapp with our results from 2D asymptotics of order O(ε2), we incorporate
in m0 and δm the result from 1D asymptotics of the same order:

mhkl(u) = vMD
hkl (u)

(
1

H1D(u)
+ ε1D 1

12

)
, (5.3.2)

where vMD
hkl are defined in (5.1.26).

We perform the comparison with the three possible couples of our orientations {100},
{110} and {111}, for which we know the grain boundary velocity vMD

hkl (u).

Incorporating (5.3.2) to (5.3.1), one has to take into account the different scaling
of the 1D and 2D model (compare (3.1.34) and (5.1.22)). In 2D one does not have
the same freddom to do scalings as one has in 1D, which leads to a necessarily more
complex parametrization. That regards the mobility itself, but also the parameters
with the superscript 1D in (5.3.2). One way to start is the consideration of the
dimensional form of (5.3.2) and (5.3.1). After the incorporation one then non-
dimensionalizes (5.3.1) exactly as it is done in the 2D case. Summarized for all
three couples of orientations, we have with γ̃ = γb

γa
:

M (i)
app(n, u) =

(
1

γ̃2
cbmb(u)− cama(u)

)

·
(

1 + cδ
γ̃2ma(u)−mb(u)

cbmb(u)− γ̃2cama(u)
(n4

1 + n4
2)

) (5.3.3)

where




i = 1 : γa = γ110 ∧ γb = γ100 ⇒ ca = −2, cb = −1, cδ = −2

i = 2 : γa = γ100 ∧ γb = γ111 ⇒ ca = 1
2
, cb = 3

2
, cδ = 3

2

i = 3 : γa = γ110 ∧ γb = γ111 ⇒ ca = 2, cb = 3, cδ = 6





(5.3.4)

and

ma(u) = vMD
a (u)

(
1

H(u)
+ ε

1

12

)

mb(u) = γ̃ vMD
b (u)

(
1

H(u)
+ ε

1

12

)
,

(5.3.5)
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with the parameters ε and H defined for the 2D model (5.1.22).

Substitution of the non-dimensionalized velocity from molecular dynamics in the 2D
asymptotic mobility Mmae gives

M (i)
mae(n, u) =

v(i)(n, u)

s(i)(n)
(
H(u)− κ(s(i)(n) + ˆ̂s(i)(n))

)

+ ε
H(u)2v(i)(n, u)

12s(i)(n)
(
H(u)− κ(s(i)(n) + ˆ̂s(i)(n))

)2

(5.3.6)

with the corresponding

v(i)(n, u) =
(
cbv

MD
b (u)− cavMD

a (u)
)

·
(

1 + cδ
vMD
a (u)− vMD

b (u)

cbvMD
b (u)− cavMD

a (u)
(n4

1 + n4
2)

)
,

s(i)(n) = (γ̃cb − ca)
(

1 + cδ
1− γ̃
γ̃cb − ca

(n4
1 + n4

2)

)
,

(5.3.7)

where the constants ca, cb, cδ are specified in (5.3.4).

We perform the first set of comparisons between Mmae and Mapp on the unit circle,
such that n1 = cos(θ), n2 = sin(θ) for θ ∈ [0, 2π]. It follows that κ = 1. We observe,
that the choice of ε has only a slightly impact on the exactness of the solution. In
Figs. 5.3, 5.4, 5.5 we show for different ε and high undercoolings and overheatings
u (far away from the melting point) the comparison for i = 1, i = 2, and i = 3,
respectively.

The first thing to be notice is that Mmae and Mapp match very closely for i = 1

and i = 2. On the other hand the approximation M
(3)
app is too large, which might be

caused by missing orientations, as mentioned in Sec. 5.1: The function s(1) and s(2)

fulfil the restriction found by Sekerka, such that no missing orientations occur, but
δs ≈ 1.09 in s(3) is far away from the boundary δs <

1
3

[85].

The negative mobility in Figs. 5.3, 5.4, 5.5 for u = 0.1 and ε = 0.1 is traced back to
the restriction on ε for overheatings, see remark 3.1.3 in Sec. 3.1. This restriction
is not fulfiled in this case.

In a second set of comparisons, we observed that for very small undercoolings, the
curvature has to decrease in order to get a good agreement of Mmae and Mapp.
The fact that the radius of the circle must increase the closer the temperature
is to the melting point is at first glance consistent to classical nucleation theory.
Nevertheless, the radius has to be taken about 40 times larger than the critical
radius. For example, for u = −0.002 with ε = 0.8, the radius of the circle should be
about 5 in order to guarantee a maximal discrepancy smaller than 5%, although the
critical radius is about 0.25. If one increases the radius further, the result becomes
better. Generally, we expected to see a difference of the comparison between Mmae
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and Mapp if we change the curvature, since curvature is only incorporated to Mmae.
Note that a greater radius for the cases that we considered in Figs. 5.3-5.5 gives
also a correction and hence a better agreement of the curves Mmae and Mapp. We
visualize the observations for u = −0.002 and ε = 0.8 in Fig. 5.6, where the columns
represent different radii and the rows i = 1, 2, 3..

In Tab. 5.1 we show the curvature and the radius for M (1) and M (2), such that
the maximal relative error between M

(j)
app and M

(j)
mae is equal to 0.05. We calculate κ

using a bisection method for different values of u and ε, where r is simply the inverse
of κ. The choice of u and ε is inspired by Tab. 4.1, which summarizes the results of
Sec. 4.2, where we compared the shot mobilities with the mobility of the matched
asymptotic expansions and also accepted a maximal relative error of 5%. Choosing
a greater radius than the ones given in Tab. 5.1, means that the approximation
M

(j)
app for j = 1, 2 has a lower relative error than 5% with M

(j)
mae.

104
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ε = 0.0001 ε = 0.1

u = −0.2

u = −0.1

u = −0.05

u = 0.1

Fig. 5.3.: Comparison between M
(1)
app and M

(1)
mae on an unit circle for different u and ε. The negative

mobility for u = 0.1, ε = 0.1 is traced back to the restiriction on ε for overheatings, see
remark 3.1.3 in Sec. 3.1. With ε = 0.1, this restriction is not fulfilled for u = 0.1.
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ε = 0.0001 ε = 0.1

u = −0.2

u = −0.1

u = −0.05

u = 0.1

Fig. 5.4.: Comparison between M
(2)
app and M

(2)
mae on an unit circle for different u and ε. The negative

mobility for u = 0.1, ε = 0.1 is traced back to the restiriction on ε for overheatings, see
remark 3.1.3 in Sec. 3.1. With ε = 0.1, this restriction is not fulfilled for u = 0.1.
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ε = 0.0001 ε = 0.1

u = −0.2

u = −0.1

u = −0.05

u = 0.1

Fig. 5.5.: Comparison between M
(3)
app and M

(3)
mae on an unit circle for different u and ε. The too

great amplitude of Mapp may be caused by missing orientations of the surface-energy
s. The negative mobility for u = 0.1, ε = 0.1 is traced back to the restiriction on ε for
overheatings, see remark 3.1.3 in Sec. 3.1. With ε = 0.1, this restriction is not fulfilled
for u = 0.1.
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r = 10 r = 100

i = 1

i = 2

i = 3

Fig. 5.6.: Comparison between M
(i)
app and M

(i)
mae with u = −0.002 and ε = 0.8 on a circle with a

radius r = 10 in the left column and r = 100 in the right column. The rows correspont
to the three different kinds of anisotropy as defined in (5.3.3)-(5.3.7). The greater the

radius is chosen, the better the agreement between M
(i)
app and M

(i)
mae is. This is traced

back to the coupling of curvature only in Mmae.
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M (1) M (2)

u ε κ r κ r

−0.2 0.0006 27.51 0.036 24.44 0.041

0.0056 22.49 0.045 19.83 0.05

0.0084 21.07 0.046 18.56 0.054

−0.15 0.0005 20.92 0.048 18.95 0.053

0.0075 16.86 0.06 15.14 0.066

0.011 15.85 0.063 14.22 0.070

−0.1 0.001 13.84 0.072 12.96 0.077

0.0115 11.2 0.089 10.40 0.096

0.0165 10.57 0.095 9.81 0.102

−0.05 0.002 6.92 0.145 6.73 0.149

0.023 5.6 0.177 5.40 0.185

0.033 5.28 0.189 5.09 0.196

−0.002 0.06 0.28 3.635 0.28 3.612

0.56 0.22 4.446 0.22 4.451

0.84 0.21 4.745 0.21 4.755

0.05 0.002 7.4 0.135 9.08 0.11

0.012 9.51 0.105 11.95 0.084

0.0131 9.89 0.101 12.48 0.08

0.1 0.0012 14.91 0.067 17.79 0.056

0.006 19.02 0.053 23.22 0.043

0.0066 19.85 0.05 24.35 0.041

0.15 0.0008 22.37 0.045 25.98 0.039

0.004 28.54 0.035 33.91 0.03

0.0044 29.78 0.034 35.57 0.028

Tab. 5.1.: Curvature and radius for M (j), j = 1, 2, calculated via a bisection method, such that the

relative error between M
(j)
app and M

(j)
mae is equal to 5%. The choice of u and ε is inspired

by Tab. 4.1, which summarizes the results of Sec. 4.2, where we compared the shot
mobilities with the mobility of the matched asymptotic expansions and also accepted a
maximal relative error of 5%.
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6. Three-Dimensional Extension
and Comparison to
Experiments

[...] es schien eine der Tendenzen des Geistes zu sein, alles so zu sehen
und darzustellen, als ob es flach wäre und nur zwei Dimensionen hätte.

Hermann Hesse - Narziß und Goldmund

In this chapter, we introduce a 3D anisotropic phase-field model. We incorporate
the results from our work regarding the interface energy in Chap. 2 and the free
energy density and the surface energy on a phase-field model as discussed in Chap.
3. As in the 2D case in Chap. 5, the mobility and surface energy are anisotropic
and hence depend on the different crystallographic orientations. Unlike in 2D, we
incorporate the four-fold anisotropy of order six, which we introduced in Sec. 2.1.
Furthermore, we incorporate the mobility from our 1D asymptotic analysis of Sec.
4.1 including the third order corrections.

The authors Karma and Rappel presented a 3D model system for quantitative sim-
ulations of a pure material in a melt [56]. They incorporated surface anisotropy and
also kinetic anisotropy in order to control the tip velocity of dendrites with respect to
the crystallographic orientation. Their anisotropic functions have the order of four,
which is a well-known modeling ansatz for the simulation of cubic crystal growth.
However, as soon as also other facetts arise, higher orders of anisotropy are needed.
Wu, Lin and Karma presented a Ginzburg-Landau theory for the same model but
with anisotropy functions of sixth order [99]. Furthermore, they incorporated into
their model Molecular Dynamics (MD) simulation data for fcc Ni and compared the
phase-field simulation with MD simulations, comparing e.g. the magnitude of the
interfacial energy and the latent heat of fusion.

Many applications and extensions of Karma and Rappel 3D phase-field model can
be found in literature [54, 68, 35, 47, 59]. The simulations at low undercooling are
very challenging, since the critical radius increases with decreasing undercooling and
hence the domain has to be large. Provatas et al. performed 2D and 3D simulations
for low undercooling and examined fourth order anisotropic mobility and surface
energy applied on dendritic growth [82]. Their phase-field model is coupled with
a heat equation, such that the undercooling decreases in time. Jeong et al. also
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6. Three-Dimensional Extension and Comparison to Experiments

applied a comparable model to dendritic growth with fluid flow at low undercooling.
They determined dendrite tip parameters and compared them with experiments
[53].

In Sec. 6.1, we derive the 3D phase-field model coupled with a heat equation. We
present the non-dimensionalization and how the results from 1D asymptotics are
incorporated. In Sec. 6.2 we solve the model numerically at a low undercooling. In
doing so, we use our findings from Chap. 4 regarding the choice of ε for a given
undercooling. Finally, we solve the 3D system and compare the simulation with the
experiments by Yang et al. [103] in Sec. 6.2.

6.1. Model Formulation

As in the 1D and 2D case, the phase-field variable p models the state of aggregation
of silicon: p = 1 for the crystalline material and p = 0 in the liquid. As in 2D, the
total free energy can be expressed as

F(p, T ) =

∫

V

F (p, T ) +
S(n)2

2
|∇ p|2 dV. (6.1.1)

The difference with the 2D total free energy (5.1.2) is that we have a volume in-
tegral instead of a surface integral. Furthermore, we consider a sixth order four-
fold anisotropy function, which is dependent on a tree-dimensional normal vector
n = (n1, n2, n3) as follows

S(n) = S0

(
1 + δS1

3∑
i=1

n4
i + δS2

3∏
i=1

n2
i

)
(6.1.2)

with the parameters

S0 = 2σ110 − σ100, δ1S = 2
σ100 − σ110

2σ110 − σ100

, δ2S = 9
3σ111 − 4σ110 + σ100

2σ110 − σ100

, (6.1.3)

as we derived it in Chap. 2. This function then fulfils

S((100)) = σ100, S((110)/
√

2) = σ110, S((111)/
√

3) = σ111, (6.1.4)

where σhkl is defined with surface energy values γhkl:

σhkl =

√
3

2
γhklλhkl, (6.1.5)

We derived γhkl in Chap. 2 such that the Wulff shape of S reproduces the experi-
mental observed surface shape of a silicon grain in a melt.
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6.1. Model Formulation

The function F in (6.1.1) is a double-well potential that we have defined in Sec. 3.1
as

F (p, T ) = 16BTm
kinFsym(p) + f0(T )−H(T )Fas(p), (6.1.6)

with a symmetric part in p

Fsym(p) = p(x, t)2(1− p(x, t))2 (6.1.7)

and a non-symmetric part
Fas(p) = p3(4− 3p). (6.1.8)

The function H(T ) = f0(T )− f1(T ) denotes the free energy difference between the
liquid (f0) and the solid phase (f1). The parameter BTm

kin denotes the kinetic barrier
of F at the melting point Tm. It is defined as BTm

kin = 3γhkl
4λhkl

, where γhkl and λhkl denote
the surface energy for a special orientation and the corresponding interface width,
respectively. Because of this definition BTm

kin is independent on the orientation, since
λhkl varies in the same way with orientation than γhkl.

The variational derivative of (6.1.1) yields

∂tp = M(n, T )

(
∇ · (S(n)2∇p) +

3∑
i=1

∂xi

[
|∇p|2S(n)

∂S(n)

∂(∂xip)

]

− 16BTm
kinF

′
sym(p) +H(T )F ′as(p)

)
,

Cp ∂tT = K ∆T + L ∂tp,

(6.1.9)

where we couple a heat equation similar to our 1D and 2D model. The latent heat
L, heat capacity Cp and thermal conductivity K are chosen as we derived them in
Sec. 3.1.

In the last chapter, we compared a 2D mobility approximation, which was formulated
equivalently to the surface energy, with the mobility from 2D matched asymptotic
expansions. We found that in general they are in a good agreement. Hence, for our
3D model, we also use an approximation for the mobility M, which is formulated
equivalently to the sixth order surface energy function:

M(n, T ) = M0(T )

(
1 + δM1(T )

3∑
i=1

n4
i + δM2(T )

3∏
i=1

n2
i

)
, (6.1.10)

with the parameters

M0(T ) = 2m110(T )−m100(T ),

δM1(T ) = 2
m100(T )−m110(T )

2m110(T )−m100(T )
,

δM2(T ) = 9
3m111(T )− 4m110(T ) + m100(T )

2m110(T )−m100(T )
.

(6.1.11)

113



6. Three-Dimensional Extension and Comparison to Experiments

The mobilities mhkl along a crystallographic direction < hkl > can be chosen through
a shooting procedure or by matched asymptotic expansions of the 1D model, see
Sec. 4.1.

In order to non-dimensionalize the model, let us at first consider the surface anisotropy
function (6.1.2). The parameters δS1 and δS2 are already dimensionless, hence the
non-dimensionalization of S involves only the parameter S0. Together with (6.1.5)
and with a similar time and space scaling as in 2D, we define

u =
Cp
L

(T − Tm), S̃(n, u) =
S(n, L/Cp u+ Tm)√

3
2
λ110γ110

, x̃ =
1

r̂
x,

M̃(n, u) =
3γ110λ110Cp

2K
M(n, L/Cp u+ Tm), τ =

K

r̂2Cp
t,

H̃(u) =
r̂H(L/Cp u+ Tm)

γ110

, ε =
3λ110

2r̂
, γ̃ =

γ100

γ110

.

(6.1.12)

Then, the 3D system (6.1.9) changes to

ε2 ∂τp = M̃(n, u)

(
ε2∇̃ · (S̃(n)2∇̃p) + ε2

3∑
i=1

∂x̃i

[
|∇̃p|2S̃(n)

∂S̃(n)

∂(∂x̃ip)

]

− 18F ′sym(p) + εH̃(u)F ′as(p)

)
,

∂τu = ∆̃u+ ∂τp.

(6.1.13)

As we already mentioned, the parameters mhkl in (6.1.11) can either be based on
the shooting method or the asymptotical formula (4.1.72). In any case, m is the
product of 1D modelling. Taking into account the non-dimensionalization of the 1D
model, the parameters (6.1.11) of the 3D mobility change to

M̃0(u) = 2m̃110(u)− 1

γ̃2
m̃100(u),

δ̃M1(u) = 2
m̃100(u)− γ̃2m̃110(u)

2γ̃2m̃110(u)− m̃100(u)
,

δ̃M2(u) = 9
3
γ2100
γ2111

m̃111(u)− 4γ̃2m̃110(u) + m̃100(u)

2γ̃2m̃110(u)− m̃100(u)
.

(6.1.14)

such that

M̃(n, u) = M̃0(u)

(
1 + δ̃1M(u)

3∑
i=1

n4
i + δ̃2M(u)

3∏
i=1

n2
i

)
. (6.1.15)

In the case where the parameters are based on 1D asymptotics, we have with (4.2.6)
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6.2. Simulation and comparison to experiments

and the 1D non-dimensionalization (3.1.34):

m̃100(u, ε) = γ̃ ṽMD
100 (u)

(
1

H̃(u)
+ ε

1

12
− ε2 H̃(u)

288

)
,

m̃110(u, ε) = ṽMD
110 (u)

(
1

H̃(u)
+ ε

1

12
− ε2 H̃(u)

288

)
,

m̃111(u, ε) =
γ111

γ110

ṽMD
111 (u)

(
1

H̃(u)
+ ε

1

12
− ε2 H̃(u)

288

)
,

(6.1.16)

where the non-dimensionalized velocity functions from molecular dynamics vMD
hkl are

with (3.1.5) and (3.1.34) defined as

ṽMD
100 (u) = −0.3646

r̂L

K
u exp

(
− 1102

L
Cp
u+ Tm − 800

)
,

ṽMD
110 (u) = −0.4409

r̂L

K
u exp

(
− 1347

L
Cp
u+ Tm − 799

)
,

ṽMD
111 (u) = −3.0042

r̂L

K
u exp

(
− 5833

L
Cp
u+ Tm − 167.8

)
.

(6.1.17)

6.2. Simulation and comparison to experiments

Yang et al. observed the silicon crystal growth shape and equilibrium crystal shape
in a melt. To that end they prepared two silicon wafers, one with an upper orienta-
tion < 112 > another one with an upper orientation < 110 > and placed them in a
melt [103].

In this section we solve the system (6.1.13) with a comparable undercooling as in
the described experiments. Instead of placing a silicon wafer in a undercooled melt,
we initialize a sphere of crystalline silicon in a undercooled melt and compare plane
slices of the growing grain with the associated wafer of the experiment. We choose
r = 5 as the initial radius for the grain, where the domain size is 203.

The indicated undercooling in [103] was smaller than 5K. For our simulation we
initialized a constant undercooling of uinit ≡ −0.002, which corresponds to T ≈
Tm − 4K. In Sec. 4.2 we showed that for this undercooling the parameter ε can be
chosen as high as 0.84 in order to obtain a relative error smaller than 5% between
the shot and the asymptotic mobility. For our simulation we choose ε = 0.8.
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6. Three-Dimensional Extension and Comparison to Experiments

Numerical method

In order to perform the phase-field simulation with periodic boundary conditions,
we introduce the Fourier spectral method applied to our models. The goal of this
section is to give the opportunity for a fast implementation of the 3D model. In Sec.
A.4 we summarise all parameters which are needed in the simulations performed
and the definition of the wave-vector.

Furthermore we show how to realize an arbitrary rotation of the grain, which we use
for the two-grain simulation in Sec. 7.1. Simulations of the 2D-model can be easily
implemented by reducing the formulas for the 3D model.

We realize the time discretization as a simple Euler scheme

∂τp =
pj+1 − pj
τstep

, ∂τu =
uj+1 − uj
τstep

, (6.2.1)

where τstep is the time step size and within the numerical calculations, pi and ui
are matrices. The same holds for their corresponding Fourier coefficients. As pseu-
docode for the fast Fourier transformation we use ftt and for the inverse ifft. For
an introduction of the Fourier spectral method, we refer to [15, 25]. Furthermore,
for 3D simulations of other phenomena as e.g. dewetting, see [8]. An overview of
solving methods for pahse-field models is given in [31].

Apart from the needed parameters summarized in Sec. A.4, one has to define

γ̃ =
γ100

γ110

. (6.2.2)

Furthermore one has to choose an appropriate value for ε, which represents in the
3D setting the scaled interface width of orientation {110} (see (6.1.12)). For the
choice of ε see Tab. 4.1 in Sec. 4.2. The parameters (A.4.3), (6.1.14), (6.1.16)
and

H(u) =
r̂H(L/Cp u+ Tm)

γ110

(6.2.3)

need to be defined within the loop, since the simulation is not isothermal.

We solve the phase-field equation in (6.1.13) explicitly and the heat equation in
(6.1.13) implicitly. Thereby we denote the wave vectors as kxl for l = 1, 2, 3. The
gradient term of the phase-field equation in (6.1.13)

G(p,∇p) =
3∑
l=1

∂xi

[
|∇p|2S(n)

∂S(n)

∂(∂xlp)

]
+∇ · (S(n)2∇p), (6.2.4)

demands a more complex implementation than in 1D. We consider it in the following
separately. To that end we distinguish between non-rotated and rotated grains. The

116



6.2. Simulation and comparison to experiments

outer normal vector of the phase-field variable p ∈ [0, 1] is defined as

(n1, n2, n3) = n = − ∇p
|∇p|

= − (∂x1p, ∂x2p, ∂x3p)√
∂x1p

2 + ∂x2p
2 + ∂x3p

2
. (6.2.5)

with ∂xlp = Re(ifft(ikxlc
p)), l = 1, 2, 3 and i as complex number. Especially for

the bulk phases where p is nearly constant, the normal vector must be regularized
in the numerical simulation. Therefore we add a small number to the numerator:
|∇p|+ 10−3. For the regularization of strong anisotropic functions, see [105], [93].

The non-dimensionalized surface anisotropy function is as follows

S(n) = 1 + δ1S

3∑
l=1

n4
l + δ2S

3∏
l=1

n2
l (6.2.6)

with

δ1S = 2
γ100 − γ110

2γ110 − γ100

, δ2S = 9
3γ111 − 4γ110 + γ100

2γ110 − γ100

. (6.2.7)

Gradient term without rotation

Let us at first consider single expressions of the gradient term (6.2.4) in order to
clarify the notation. Within the sum we have the expression

∂S(n)

∂(∂xlp)
= ∇nS(n) ·

(
∇∂xlp

n
)T
, (6.2.8)

where ∇n denotes the gradient with respect to the variables n1, n2, n3, and ∂∂xipn
denotes the component-wise derivative of the normal vector, which has the form

(
∇∂xlp

n
)T

=
1

|∇p|

(
eTl −

∂xlp

|∇p|2
(∇p)T

)

=
1

|∇p|
(
eTl − nl nT

)
,

(6.2.9)

where el is a vector with 1 at the lth position and zeros at the remaining positions.
Then, (6.2.4) changes to

3∑
l=1

∂xl
[
S(n)|∇p|

(
∇nS(n) · (eTl − nl nT ) + S(n)nl

)]
(6.2.10)

The derivative ∂xl [...] within the sum is realized with

Re(ifft(ikxlfft(...))). (6.2.11)
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6. Three-Dimensional Extension and Comparison to Experiments

Gradient term including grain rotation

The normal vector has to be redefined with a rotation matrix R, which can be chosen
for example as the product of rotation matrices around single axes:

R(θx1 , θx2 , θx3) =




1 0 0
0 cos(θx1) − sin(θx1)
0 sin(θx1) cos(θx1)






cos(θx2) 0 sin(θx2)
0 1 0

− sin(θx2) 0 cos(θx2)







cos(θx3) − sin(θx3) 0
sin(θx3) cos(θx3) 0

0 0 1




(6.2.12)

with θx1 , θx2 , θx3 ∈ [0, 2π). The rotated normal vector is then

(nR1 , n
R
2 , n

R
3 ) = nR = R · n, (6.2.13)

with the normal vector n as it is defined in (6.2.5). Let us consider the gradient
term of the phase-field equation with the rotated normal vector in more detail. The
derivative of S with respect to ∂xlp is more complicated than in the unrotated
case, because now every element of the normal vector depends on all three variables
∂x1p, ∂x2p, ∂x3p:

∂S(nR)

∂(∂xlp)
= ∇nS(nR) ·

(
∂∂xlpn

R
)T
, (6.2.14)

where ∇n denotes in this case (∂nR
1
, ∂nR

2
, ∂nR

3
). The vector ∂∂xlpn

R is the componen-
twise derivative of the elements of the rotated normal vector and has the form

(
∂∂xlpn

R
)T

=
1

|∇p|


− ∂xlp

|∇p|2
(R · ∇p)T +



r1l

r2l

r3l






=
1

|∇p|


−nl

(
nR
)T

+



r1l

r2l

r3l




 ,

(6.2.15)

where rkl are the elements of the rotation matrix R and nl is defined as introduced
in (6.2.5). Then, the gradient term (6.2.4) can be expressed as

3∑
l=1

∂xl

[
|∇p|S(nR)

(
|∇p|∂S(nR)

∂(∂xlp)
+ S(nR)

∂xlp

|∇p|

)]

=
3∑
l=1

∂xl

[
|∇p|S(nR)

(
∇nS(nR) ·


−nl

(
nR
)T

+



r1l

r2l

r3l






+ S(nR)nl

)]
.

(6.2.16)
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6.2. Simulation and comparison to experiments

The derivative ∂xl [...] within the sum is realized as in (6.2.11).

Initial condition and algorithm

We introduce two different initial conditions. The first one is the 3D version of
(4.2.23). Let a be the center of a sphere with a radius of r, where p0 ≈ 1 applies
within the sphere and p0 ≈ 0 applies outside the sphere. Between them, p has a
smooth transition. Then the 3D version of (4.2.23) with an arbitrary center has the
form

p0(x) =
1

2

(
1− tanh

(
5

ε
(|x− a| − r)

))
. (6.2.17)

In order to initialize a spherical domain with p ≡ 1 and a smooth transition to p ≡ 0
we need to define two radii:

• The radius r1 which belongs to the sphere where p ≡ 1,

• the radius r2 = r1 + 2
3
ε which belongs to the sphere including the smooth

transition; or in other words: the radius of the domain where p > 0,

where 2
3
ε is the non-dimensional interface width λ110

r̂
, see (6.1.12).

With the auxiliary function

h(x) =
x2 − r2

2

r2
1 − r2

2

. (6.2.18)

the initial condition for the phase field can be defined as

p0(x) =





3 h(|x− a|)2 − 2 h(|x− a|)3 r1 ≤ |x− a| ≤ r2,

0 |x− a| > r2,

1 |x− a| < r1.

(6.2.19)

We initialize for the simulations in this chapter the latter version, since we observe,
that it leads to a more stable simulation.

The solving algorithm is

1. Calculation of initial Fourier coefficients:

• Fourier coefficients of the initial condition p0: cp0 = fft(p0)

• Fourier coefficients of the initial condition u0: cu0 = fft(u0)

2. repeat for each time step

a) define n (6.2.5) and if needed nR (6.2.13)

b) Calculate G(p,∇p) (6.2.10) or if rotation is considered (6.2.16)

c) Calculate M as a function of uj and n or if rotation is considered depen-
dent on nR
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d) pj+1 = pj + τstep M (G(p,∇p)− 1
ε2

(18F ′sym(pj)− εH(uj)F
′
as(pj)))

e) cpj+1 = fft(pj+1)

f) cuj+1 =
cpj+1−c

p
j+cuj

1+τstep(k2
x1

+k2
x2

+k2
x3

)

g) uj+1 = Re(ifft(cuj+1)),

where all products and powers are pointwise.

Results

Fig. 6.1 shows in the left column the initial condition and in the right column the
status of the simulation at τ = 2200. The first three rows show the grain and
its cuts, where the bright blue area in the cuts represents the interface, the yellow
area the crystalline and the dark blue area the liquid material. The {111} and
{100} facets are clearly visible. Last row shows a plot of the undercooling along
a (002) cut. The evolution of the crystal the one that could be anticipated: the
temperature increases next to the interface because of latent-heat buildup, and the
overall temperature increases due to the finiteness of the system. (compare Fig.
4.5).

Fig. 6.2 presents cuts of the grain along two planes for the same simulation at a
later time point: τ = 104. The red lines represent the experimental equilibrium
crystal shape of the corresponding wafers found by Yang et al. [103]. They are in
good agreement to our simulation.

In addition to the experiments, Yang et al. also calculated the angles of the crystal
shape according to classical crystallography. The surfaces shown in Fig. 6.2 repro-
duce these angles by neglecting the rounding of the edges. The black lines in Fig.
6.2 connect the vertices of the shapes. The angles formed by the sides of the polygon
correspond to those of classical crystallography.
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τ = 0 τ = 2200

Cut through the (1̄10) plane

Cut through the (11̄2) plane

Undercooling cut through the (002) plane

Fig. 6.1.: Simulation of a silicon grain initialized as a sphere with radius r = 5 in an undercooled
melt. The initial undercooling is constant with u = −0.002, which is comparable with
the undercooling used in the experiments [103]. The left column shows the inital condi-
tions and the right column the simulation at τ = 2200. The first three rows show the
development of the silicon grain and the last row the undercooling along a cut through
the (002) plane. We choose ε = 0.8.
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Cut through the (1̄10) plane at τ = 104

Cut through the (11̄2) plane at τ = 104

Fig. 6.2.: The simulation which is shown in Fig. 6.1, at a later time point: τ = 104. A silicon
grain is initialized as a sphere with radius r = 5 in an undercooled melt. The initial
undercooling is constant with u = −0.002, which is comparable with the undercooling
used in the experiments [103]. The red line represents the equilibrium crystal shape found
in [103]. The black lines connect the vertices of the shapes. The angles formed by the
sides of the polygon correspond to those of classical crystallography, calculated in [103].
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7. Discussion and Outlook

In this thesis we developed a quantitative approach that yielded atomistically con-
sistent phase-field models. While here our focus was on the material properties of
silicon, our approach is general and can be applied to other materials as long as
data on (i) solid-liquid interface velocities, (ii) free energy minima, and (iii) sur-
face/interfacial energies are available. Specifically, this entails:

(i) Solid-liquid interface velocity The inteface velocity depends on tempera-
ture T . Experiments (in this study for silicon) showed a Vogel-Fulcher-type tem-
perature dependence of the interface velocities v [89]:

v(T ) = c1(Tm − T ) exp

(
− c2

T − c3

)
,

where c1, c2, c3 are constants and Tm is the melting point. This can be shown using
molecular dynamical simulations, where the velocities also depends on the crystallo-
graphic orientations. In our study, for silicon, we investigated three distinct planar
interface orientations.

(ii) Free energy minima In solidification, one distinguishes the free energy of
the solid and the liquid phase. Both are temperature dependent and their respective
minima can be derived using MD simulations.

(iii) Surface/interfacial energy The surface energy in context of solidification is
the energy of the surface of the crystalline material, which is embedded in the melt.
Hence, it is also known as interfacial energy. It varies i.a. with crystallographic
orientation and is difficult to measure directly. But in order to get a realistic grain
shape, it is inevitable to derive them as exact as possible. In this work we introduced
a method for deriving them using experimental growth shapes of a Si grain in a melt
[103], critical nucleation theory and MD simulations.

For the resulting model we showed how to use higher-order matched asymptotic ex-
pansions to obtain a thin-interface model that accounts for anisotropic, temperature
and interface-width dependent mobility in one, two and three dimensions.

For the higher dimensions we discussed the choice of anisotropic surface functions
and showed that, even if proper values for the surface energy are available, the
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choice has to be treated carefully since it is neither unique nor trivial. We showed
how to use the approximations of the surface energy to yield approximations for the
mobility. With matched asymptotic expansions up to order O(ε2) we discussed the
validity of the mobility approximation.

In addition, an important point when extending the model to three dimensions is
that one needs to use four-fold functions of order six for the surface energy and
the mobility. Alltogether, our analysis allowed numerical comparisons with the
fundamental experimental work by Yang et al. [103] regarding the equilibrium
crystal shape were performed using Fourier spectral method. It lays the basis for
large scale and quantitative correct numerical simulations of grain growth for silicon
and in particular for processes such as Liquid Phase Crystallization [5, 11, 63, 84,
86, 104].

An important open problem in the literature that is also relevant for this work is to
derive for which parameters the anisotropic surface function of order six generates
missing orientations. For anisotropic surface function of order four this is well-known
since the work by Sekerka [85] who showed geometrically under which circumstances
missing orientations occur in three-dimensions.

7.1. Model formulation for multiple grains

An important extension for future work is the formulation of our model for multiple
grains, in particular since questions on the prediction of the exact shapes of the
interacting grains are still not completely settled [27, 23, 73].

Here, we sketch how to proceed with our approach in the case of two grains. We
expand the 3D model (6.1.13) for the simulation of two grains in a melt, which are
represented by the phase-field variables p1 and p2. As in the one-grain case, the
domain where pj = 1 is the solid phase of grain type j. But differently, pj = 0 does
not automatically imply that the liquid phase is present. Here, also the other solid
phase pk (k 6= j) could be present. We have the liquid phase only in the domain
where p1 = p2 = 0. Then, the system can be established such that the phase-field
equation in (6.1.9) is solved for both p1 and p2.

In order to guarantee that both solid phases notice each other when they meet, one
has to couple the phase-field equation for p1 and p2 with each other. Chen and
Yang presented a free energy density functional for an arbitrary number or phase-
field variables, where all phase-field variables are coupled [26]. With a coupling
factor one can control the strength of the coupling. If the coupling is too weak,
the grains grow into each other. If the coupling is too strong, a liquid phase occurs
between all solid phases, independently from undercooling. In order to prevent such
phenomena, an extra phase-field variable for the liquid phase p0 (liquid phase then
exists where p0 = 1) has to be introduced such that the sum over all phase-field
variables is always equal to one, see for example [38, 41]. Then the existence of
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two solid phases at the same position is impossible. In order to incorporate this
constraint to the minimization of the total free energy

F =

∫

V

E(p0, p1, p2,∇p0,∇p1,∇p2, u) dV (7.1.1)

the method of Lagrange multipliers can be applied and leads to

δF
δpi

∣∣∣∣
p0+p1+p2=1

=
δF
δpi
− 1

3

2∑
j=0

δF
δpj

. (7.1.2)

With the introduction of p0, an additional free energy density function is needed for
the liquid phase Fl. Then, the free energy density F3 of the system is the sum of
the energy density F of the solid phases (as we determined it in Section 3.1) and of
the liquid phase Fl(p0, u) = F (1− p0, u):

F3(p0, p1, p2, u) = Fl(p0, u) + F (p1, u) + F (p2, u). (7.1.3)

For the variational derivative we need to differentiate F3 with respect to the single
phase-field variables. Having (7.1.2) in mind, the formulation for the free energy
density in the variational derivative leads to the expression

∂pjF3(p0, p1, p2, u)|p0+p1+p2=1 = ∂pjF3(p0, p1, p2, u)

− 1

3

2∑
i=0

∂piF3(p0, p1, p2, u).
(7.1.4)

We now rewrite F3 for our case, where we only allocate solid phases to phase-field
variables. Hence, with p0 = 1 − p1 − p2 the right hand side of (7.1.4) is equivalent
to

∂pF (pj, u)− 1

3
(∂pF (p1, u) + ∂pF (p2, u)− ∂pF (1− p0, u))

= ∂pF (pj, u)− 1

3
(∂pF (p1, u) + ∂pF (p2, u)− ∂pF (p1 + p2, u)) ,

(7.1.5)

where j = 1, 2. The potential for the two-grain model then has the form

F2(p1, p2, u) = F (p1, u) + F (p2, u) + F (p1 + p2, u), (7.1.6)

with F defined in (6.1.6). In Section 3.1, we determined F such that (p = 0, f0(u))
and (p = 1, f1(u)) are the minima of F , where f0 and f1 where determined with
molecular dynamics and depend on temperature. It is easy to show that F2 fulfils
F2(0, 1, u) = F2(1, 0, u) = f1(u) and F2(0, 0, u) = f0(u) and that (p1, p2) = (0, 1),
(1, 0) and (0, 0) are minimum points. Figure 7.1 shows the triple well potential for
an undercooling u = −0.1 and ε = 0.01. It can be seen that no minima exists at
(p1, p2) = (1, 1). Hence coexisting solid phases at the same point is impossible. The
minima at (0, 1), (1, 0) and (0, 0) are visible in the red area.

125



7. Discussion and Outlook

Fig. 7.1.: Triple well potential for an undercooling u = −0.1 and for ε = 0.01.

Finally, the model formulation of a two grain system for j = 1, 2 reads

ε2∂τpj = M(nj, u)

(
ε2∇ · (S(nj)

2∇pj)

+ ε2

3∑
i=1

∂xi

(
|∇pj|2S(nj)

∂S(nj)

∂(∂xipj)

)

− ∂pF (pj, u) +
1

3
(∂pF (p1, u) + ∂pF (p2, u)− ∂pF (p1 + p2, u))

)
,

∂τu = ∆u− ∂τ [p1 + p2],

(7.1.7)

with nj =
∇pj
|∇pj | . Figure 7.2 shows a simulation of the model. We initialize a

grain with radius 0.02 and one with radius 0.05. The latter grain is rotated with
θx1 = θx2 = π

8
and θx3 = 0. As initial constant undercooling we choose u = −0.1.
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τ = 0 τ = 0.58

Cut through the (002) plane

Cut through the (1̄10) plane

Fig. 7.2.: 3D simulation of two grains in an undercooled melt. The radius of the greater grain is
0.05 and that of the smaller is 0.02. The grater grain is rotated with θx1 = θx2 = π

8
and θx3 = 0. The undercooling is initialized as constant: uinit ≡ −0.1 and we choose
ε = 0.016.
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7.2. Notes on existence theory for our model

equations

For the isotropic case, existence and uniqueness of weak solutions for Allen-Cahn
type equations is already proven even for multi-grain systems in three dimensions, see
in particular the work by Korzec and Wu [62]. However, the anisotropic functions in
our model complicate the analysis on existence in a fundamental way. Considering
the 3D energy (6.1.1) for our 3D model, it is easy to establish that the Hessian
matrix of 1

2
S(n)2|∇p|2 has positive and negative eigenvalues in ∇p. Hence it is an

open problem how to properly classify the equation.

For example, if we assume that the (two-dimensional) equation

ε2∂τp = M(n, u)

(
ε2∇ · (s(n)2∇p)− ε2∂x1 [s(n) ŝ(n) ∂x2p]

+ ε2∂x2 [s(n) ŝ(n) ∂x1p]− 18F ′sym(p) + εH(u)F ′as(p)

)
,

(7.2.1)

has positive definiteness for the corresponding Hessian, then the equation can be
classified as quasilinear parabolic equation of second order and one could in principle
proceed from there.

However, in any case, the anisotropic surface function does not continuously depend
on ∇p, since the normal vector is defined as n = ∇p

|∇p| . Strong existence theory
demand at least Hölder condition on p, which is not given in our case. Even for
existence theory of weak solutions one needs at first to prove that 1

2
s(n)2|∇p|2 is

convex in ∇p.

We conclude that existence theory for our model does not allow for generic extensions
of current existence theories for anisotropic Allen-Cahn equations and needs a new
approach, which we reserve for future work.
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A. Appendix

A.1. Calculation of the critical nucleation raidus

for silicon with molecular dynamcis using

the Stillinger-Weber interatomic potential

The author of Sec. A.1 is Daniel Barragan-Yani (physics department of the Univer-
sity of Luxembourg), including the Figs. A.1 and A.2 referenced in this section.

Computational details

Molecular dynamics calculations are carried in the widely used LAMMPS code [80]
and using the Stillinger-Weber (SW) interatomic potential for silicon [90]. Such
potential provides a realistic description of the structure of the molten phase of this
material, and correctly reproduces its experimental melting point [60, 65, 69, 83]. In
order to calculate the critical nucleation radius for crystal growth from the melt, we
create with a cubic simulation box of about 8.7nm on each direction, which satisfies
periodic boundaries conditions in all three directions and contains 32768 atoms of
silicon in its crystalline phase. Furthermore, in all our simulations we use a Nosé-
Hoover thermo- and barostat, we let the box dimensions vary independently of each
other and we use a timestep of 1fs.

We start our simulation by heating up the sample from room temperature up to
2500K for 10ps. After the desired temperature is reached, the sample is equilibrated
at 2500K during 40ps in order to have an homogeneous melt phase. At this point
we cool down and equilibrate the box at 1500K, in a process that last 160ps, such
that we end up with an undercooled melt in which the crystallization process can
be studied.

Results

In order to determine the critical nucleation radius of silicon when studied with
the SW potential (SW-CNR) we start by choosing a set of trial radii. Then we
try out whether corresponding spherical crystal nuclei with the chosen radii grow
or disappear when immersed in an undercooled melt. Fortunately, based on the
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interfacial energies calculated by Apte and Zeng [6] we can calculate an educated
initial estimate of the SW-CNR for silicon, r = 1.46nm. Therefore, we expect the
actual SW-CNR to be between 14 and 1.5nm and, consequently, the set of trial radii
we initially studied is {1.4nm, 1.42nm, 1.44nm, 1.46nm, 1.48nm, 1.5nm}.

The actual creation of the crystal nuclei starts by eliminating the atoms in the
equilibrated undercooled and melted sample which are located inside of a spherical
region with radius equal to one of the trial SW-CNRs mentioned above and with the
same center as the cube. Then, the same spherical region is filled with silicon in the
crystalline phase and the whole simulation box, now containing the crystal nucleus,
is kept at 1500K during 2ns in order to analyse the growth or disappearance of the
crystalline nucleus.

Surprisingly, for all initially tried radii we observed that the nuclei disappeared. In
Fig. A.1 we show the case of a nucleus with radius equal to 1.5nm, which according
to the prediction of the SW-CNR from the Apte and Zeng results should grow.
However, after about 200ps this nucleus disappears meaning that the SW-CNR
should be larger than the already tried radii. Our approach then was to try radii in
the set {1.52nm, 1.54nm, 1.56nm, ...} until nucleus growth was seen. Interestingly,
already when the nucleus has a SW-CNR of r = 1.52nm crystallization is achieved.
Thus, the SW-CNR should belong to the interval (1.5nm, 1.52nm) and in order to
find out a more accurate approximate value for it we use the bisection method.
We start by trying a nucleus with r = 1.51nm, for which crystallization is also
observed, allowing us to conclude that the WS-CNR should belong to the interval
(1.5nm, 1.51nm). In the next step we tried with a nucleus with r = 1.505nm, which
due to the discrete nature of the atomistic model we use, is the limit of our resolution.
In this case, crystallization is also evident after 900ps as can be seen in Fig. A.2.
Due to the fact that crystallization is also seen for r = 1.505nm and that further
bisections cannot be applied, we conclude that a more precise value for the WS-CNR
would be r = 1.5025nm.
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A.1. Calculation of the critical nucleation raidus for silicon with molecular
dynamcis using the Stillinger-Weber interatomic potential

(a) Equilibrated silicon melt. (b) Initial nucleus (r = 1.5nm). (c) Time = 100ps.

(d) Time = 180ps. (e) Time = 200ps. (f) Time = 210ps.

Fig. A.1.: Transversal cut of the simulation box in order to analyse the interior of the melt. (a)
Equilibrated silicon melt before the insertion of the crystal nucleus, (b) initial structure
of the crystal nucleus with r = 1.5nm, (c)-(f) show the structure of the nucleus after
100ps, 180ps, 200ps and 210ps of being created, respectively. As we can see there after
around 200ps the nucleus has already disappeared. The color coding marks the local
environment of each atom and, therefore, points out the local crystal structure. Gray
atoms correspond to amorphous phase, dark blue correspond to a bulk diamond struc-
ture, light blue and green mark atoms whose first or second nearest neighbours have a
diamond lattice ordering.

(a) Initial nucleus (r = 1.505nm). (b) Time = 100ps. (c) Time = 300ps.

(d) Time = 600ps. (e) Time = 900ps. (f) Time = 2ns.

Fig. A.2.: Transversal cut of the simulation box in order to analyse the interior of the melt (the
equilibrated silicon melt can be seen in previous figure). (a) Initial structure of the
crystal nucleus with r = 1.505nm, (b)-(f) show the structure of the nucleus after
100ps, 300ps, 600ps, 900ps and 2ns of being created, respectively. As we can see, the
nucleus already stared to grow after 100ps. The color coding marks the local environ-
ment of each atom and, therefore, points out the local crystal structure. Colors present
in the this figure have the same meaning as before and yellow/orange atoms correspond
to atoms whose surroundings correspond to an hexagonal diamond structure.
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A.2. Thermal equation with nonconstant

parameters

Instead of the simple heat equation with constant parameters (3.1.30) we now con-
sider

Cp(p, T ) ∂tT = ∂x[K(T ) ∂xT ] + L(T )F ′as(p) ∂tp. (A.2.1)

For the thermodynamical derivation of this equation we refer to [70]. The function
Cp represents heat capacity per unit volume, K the thermal conductivity and the
latent heat of fusion per unit volume is L(Tm). As described in [70], the function
L is defined by the difference of internal energy density of the solid e1 and of the
liquid phase e0:

L(T ) = e1(T )− e0(T ). (A.2.2)

The index 0 and 1 refer to the value of the phase-field variable within the corre-
sponding phase. That holds also for other variables and functions in this section.
The specific heat then has the form

Cp(p, T ) = (1− Fas(p))e′0(T ) + Fas(p)e
′
1(T ), (A.2.3)

where we remind that Fas(0) = 0 and Fas(1) = 1, and the prime at e denotes the
derivative with respect to T . In order to find e′0 and e′1, we fit experimental data
of thermal conductivity K and thermal diffusivity A. Since we work with densities,
specific heat can simply be determined with the formula

Cp =
K

A
. (A.2.4)

In doing so, we distinguish for A between solid and liquid, such that with (A.2.3)
we gain:

e′0(T ) =
K(T )

A0(T )
, e′1(T ) =

K(T )

A1(T )
. (A.2.5)

Let us start with the determination of K. We fit the values of the thermal con-
ductivity K in Tab. 1 of Glassbrenner et al. [43]. The authors provide data for
T ∈ [200, 1681]. Since we do not work with very high undercoolings, we fit these
data for temperatures T ≥ 1000K . We assume that K has the form c1/(T −c2)+ c3

and apply the method of least squares. That means, for measured data Ki at Ti,
we calculate the three constants c1, c2, c3, such that the function

N(c1, c2, c3) =

∣∣∣∣
c1

(T )ni=1 − c2

+ c3 − (Ki)
n
i=1

∣∣∣∣
2

(A.2.6)

is minimized. Therefore, we calculate the partial derivatives of N and set them
equal to zero. That leads to a system of nonlinear equations:
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c1

n∑
i=1

1

(Ti − c2)2
+ c3

n∑
i=1

1

Ti − c2

−
n∑
i=1

Ki

Ti − c2

= 0,

c1

n∑
i=1

1

(Ti − c2)3
+ c3

n∑
i=1

1

(Ti − c2)2
−

n∑
i=1

Ki

(Ti − c2)2
= 0,

c1

n∑
i=1

1

Ti − c2

+ c3n−
n∑
i=1

Ki = 0.

(A.2.7)

We solve the system with the command fsolve in Matlab . As initial parameters
we use c1 = 200, c2 = 100, c3 = 0.09 and get

K(T ) =
98.5587

T − 411.5728
+ 0.1381, (A.2.8)

which has a deviation lower than 4% for each value (T ≥ 1000K), which is lower
than the by the authors pronounced deviation of the measurements (5%) . The unit
of K is W K−1 cm−1. We show the agreement with the experiments in Fig. A.3a.

Yamamoto et al. [102] measured the thermal diffusivity of crystalline and liquid
silicon. We fit their datas for solid material from Fig. 1 in [102] for temperatures
T ≥ 1000 with the same procedure as for K and find

A1(T ) =
24.0483

T − 472.8776
+ 0.0988, (A.2.9)

which has the unit cm2 s−1.

The authors Yamamoto et al. [102] also derived thermal diffusivity of liquid material
A0 for temperatures T ∈ (1670, 1730), which varies negligible low in temperature.
Hence, we calculate the mean value of their measurements, which is about A0 =
0.23cm2 s−1. Then, with (A.2.5) we have that

e′0(T ) =
428.516

T − 411.5728
+ 0.6

e′1(T ) =
(98.5587 + 0.1381(T − 411.5728))(T − 472.8776)

(T − 411.5728)(24.0483 + 0.0988(T − 472.8776))
,

(A.2.10)

with the unit J K−1 cm−3. With that functions we finally derived the specific heat
in (A.2.3). They are visualized in Fig. A.3b.

The latent heat of fusion LTm := L(Tm) results from the linear approximation of the
function H:

H(T ) =
Tm − T
Tm

LTm . (A.2.11)
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Then, with (A.2.2), the function L can be determined as

L(T ) =

∫
(e′1(T )− e′0(T )) dT

= 993.1684 ln(0.0988 T − 22.6720)− 764.3502 ln(T − 411.5728)

+ 0.7973 T + 0.01.

(A.2.12)

The last term on the right-hand side is the integration constant, which we determine
as 0.01, in order that L(Tm) = LTm = 2421.1 J cm−3 is fulfilled. We observe, that
this function is almost a line in the considered temperature interval, hence we fit it
to the linear function

L(T ) = 0.8728T + 939.8771 J cm−3. (A.2.13)

We compare both variants of L (A.2.12) and (A.2.13) in Fig. A.3c.

(a) Comparison of our fit of thermal
conductivity with the experimen-
tal data of Glassbrenner et al.
[43]

(b) The fits for the specific heat of
pure liquid and pure solid silicon.

(c) Comparison of our linear fit of L
with the difference of fitted inter-
nal energies.

Fig. A.3.: The fits of thermal parameter functions: a) Thermal conductivity K, b) specific heat Cp
per unit volume and c) latent heat of fusion per unit volume.
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Summarizing, for the units that we use in this work, our thermal-parameter functions
are:

K(T ) =

(
98.5587

T − 411.5728
+ 0.1381

)
624.1509 eV ns−1 nm−1 K−1,

Cp(T, p) = ((1− Fas(p))e′0(T ) + Fas(p)e
′
1(T ))6.241509 10−3 eV K−1 nm−3,

L(T ) = 5.4474 10−3T + 5.9 eV nm−3,
(A.2.14)

where e′0 and e′1 are specified in (A.2.10).

A.3. Results of the shooting method

Tab. A.1 listed the shooting results shown in Fig. 3.7.

Temperature u Mobility mshoot
100 Mobility mshoot

110 Mobility mshoot
111

-0.425 2.6987 10−13 3.153 10−15 8.8562 10−6

-0.4 6.4333 10−8 7.3829 10−9 1.5743 10−5

-0.375 3.1786 10−6 8.0348 10−7 2.5924 10−5

-0.35 2.1328 10−5 8.0393 10−6 4.0094 10−5

-0.325 6.5584 10−5 3.1467 10−5 5.886 10−5

-0.3 1.3717 10−4 7.7356 10−5 8.2703 10−5

-0.275 2.3053 10−4 1.4599 10−4 1.1196 10−4

-0.25 3.3812 10−4 2.3364 10−4 1.4679 10−4

-0.225 4.5295 10−4 3.3506 10−4 1.8721 104−

-0.2 5.6943 10−4 4.4495 10−4 2.3307 10−4

-0.175 6.8345 10−4 5.5866 10−4 2.8406 10−4

-0.15 7.9213 10−4 6.7243 10−4 3.3974 10−4

-0.125 8.9352 10−4 7.8333 10−4 3.9956 10−4

-0.1 9.8638 10−4 8.8917 10−4 4.6284 10−4

-0.075 1.0699 10−3 9.8832 10−4 5.2883 10−4

-0.05 1.1437 10−3 1.0796 10−3 5.9667 10−4

-0.025 1.2076 10−3 1.1623 10−3 6.6543 10−4

0. 025 1.3054 10−3 1.2995 10−3 8.017 10−4

0.05 1.3394 10−3 1.3533 10−3 8.6701 10−4

0.075 1.3634 10−3 1.3971 10−3 9.2885 10−4

0.1 1.3776 10−3 1.4306 10−3 9.8592 10−4

0.125 1.3819 10−3 1.4536 10−3 1.0368 10−3

0.15 1.3761 10−3 1.4659 10−3 1.08 10−3

Tab. A.1.: The calculated mobilities via a shooting method for orientations {100} {110} and {111}
for ε = 1

300 . They are shown in Fig. 3.7.
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A.4. Summery of the parameters needed in all

simulations

Dependent on the internal definition of the Fourier series in the used programming
language, the order of the wave vector elements is not necessarily obvious. For
example, because of the indexing of the Fourier series in Matlab , the wave-vector
k needs to be defined as follows

k = 2π(b− a)
(

0, 1, ...,
nx
2
,−nx

2
+ 1, ...,−2,−1

)
, (A.4.1)

where nx denote an even number of grid-pints for the non-dimesionalized interval
[a, b] on axis x. In 2D and 3D, the wave numbers for the other spacial variables are
defined equivalently.

In order to guarantee at least 10 grit points at the interface, which has the length
2ε/3, and an even and quadratic number of domain grit points nx, we calculate nx as
follows: Starting with

√
nx = 0, we repeat

√
nx =

√
nx + 2 while εnx/15 < b− a.

From Tab. 3.2 in Sec. 3.1 and Tab. 2.2 in Sec. 2.3 we have the following parameters
that need to be defined:

γ110 = 1.986

γ111 = 1.752

γ100 = 1.869

Tm = 1697.12

Cp = 7.542× 10−3

K = 134.047

L = 15.1

r̂ = 450,

(A.4.2)

where we neglected the units. Furthermore, the non-dimensionalized grain-boundary
velocity calculated via molecular dynamics in [13] reads

vMD
100 (u) = −0.3646

r̂L

K
u exp

(
− 1102

L
Cp
u+ Tm − 800

)
,

vMD
110 (u) = −0.4409

r̂L

K
u exp

(
− 1347

L
Cp
u+ Tm − 799

)
,

vMD
111 (u) = −3.0042

r̂L

K
u exp

(
− 5833

L
Cp
u+ Tm − 167.8

)
.

(A.4.3)

viii



A.5. Integrals in the solvability condition (4.1.66) of order O(ε3)

A.5. Integrals in the solvability condition (4.1.66)

of order O(ε3)

∫ 1

0

∂Φ0Φ2(Φ0, U0) Φ0(1− Φ0) dΦ0

=
1

864

(
6β1H

′(U0)− 1

60
H(U0)2(15 + 2π2) +

1

6
H ′(U0)v(−5 + ln(64))

) (A.5.1)

∫ 1

0

F ′′′sym(Φ0) Φ1(Φ0, U0) Φ2(Φ0, U0) dΦ0

= −H
′(U0)H(U0)(−15 + 2π2)(2α1 + v)

51840

(A.5.2)

∫ 1

0

Φ1(Φ0, U0)3 dΦ0 = 0 (A.5.3)

∫ 1

0

(
F ′′as(Φ0) Φ2(Φ0, U0) +

1

2
F ′′′as(Φ0) Φ1(Φ0, U0)2

)
dΦ0

=
1

8640

(
H(U0)2(45− 2π2)− 4α1H

′(U0)(−15 + π2)

− 2H ′(U0)(180β1 + v(−40 + 30 ln(2) + π2))
)

(A.5.4)

∫ +∞

−∞
(U2(η) F ′as(Φ0) + U1(η) F ′′as(Φ0) Φ1(η))∂ηΦ0 dη

=
1

8640

(
720α2 − 8640β2 − 120(α1 − 3β1)H(U0)− 40∂τU0(−6 + π2)

+ 8α1(H(U0)π2 + 5(−6 + π2)v)

− v(720β1 +H(U0)(195− 4π2 − 180 ln(2)) + 20v(1 + ln(64)− 2π2))

)
(A.5.5)

∫ +∞

−∞
(∂ηΦ1 ∂ηU1 + ∂ηΦ0 ∂ηU2)∂ηΦ0 dη = α2 +

1

144

(
6α1H(U0)

+ v(−144β1 + 3H(U0)− 4v(ln(64)− 5))
) (A.5.6)

∫ +∞

−∞
U2(η) (∂ηΦ0)2 dη =

1

864

(
864β2 + 4 ∂τU0(−6 + π2)

− v(4α1(−6 + π2) + 4(−3 + π2)v +H(U0)(ln(4096)− 7))
) (A.5.7)

∫ +∞

−∞
U1(η)2(∂ηΦ0)2 dη =

1

648

(
648β2

1 + 6α2
1(−6 + π2)

+ 6α1(−6 + π2)v − v2(−19− 6 ln(2)(ln(8)− 5)) + 36β1v(ln(64)− 5)
) (A.5.8)
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∫ ∞
−∞

U1(η) ∂ηΦ1 ∂ηΦ0 dη = H(U0)
72β1 + v(−7 + ln(4096))

1728
(A.5.9)
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B. Notations

b = (X,Y ) Parametrization of the interface
B Right-hand side of the phase-field equation of order O(ε), O(ε2)

Bkin Kinetic barrier of the double-well potential in eV
nm3

c, c0, c1 Integration constants
cu, cp, cdF Fourier coefficients of u, p and ∂pF (p, u), respectively

Cp Heat capacity in eV
Knm3

f0, f1 Temperature dependent minima of F for liquid and solid, resp.
F, Fsym, Fas Double well potential and its symmetric and asymmetric part, resp.
F Total free energy
h Variable for the parametrization of the interface: h = 1 + rκ
hkl Crystallographic orientation
H The temperature dependent difference of f0 and f1

k Wave vector

K Thermal conductivity in eV
Knm ns

L Latent heat of fusion per unit volume in eV
nm3

L Left-hand side operator of the phase-field equation of O(ε) and O(ε2)
mhkl Temperature dependent 1D mobility value of orientation {hkl}
M Normal-vector and temperature dependent 2D mobility
M Normal-vector and temperature dependent 3D mobility
n = (n1, n2, n3) Normal vector of the interface in the phase-field equation
nR = (n1, n2, n3) Rotated Normal vector of the interface in the phase-field equation
p Phase-field variable
r Inner variable
s Arclength
θ Tangential vector for the parametrization of the interface
s Anisotropic surface energy function of forth order
S Anisotropic surface energy function of sixth order
t Time in ns
T Temperature in K
u Non-dimensional temperature field variable
U Non-dimensional temperature field variable of the inner region

v(n), v(t) Normal and tangential interface velocity
x = (x1, x2, x3) Space vector

γhkl Values of the surface energy of orientation {hkl} in eV
nm2

λhkl Interface width of the orientation {hkl} in nm
ε Non-dimensionalized and scaled interface width
κ Interface curvature
η Inner variable for the parametrization of the interface
ν Normal vector for the parametrization of the interface
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σhkl Values of the surface energy function s of orientation {hkl} in eV
nm2

τ Non-dimensionalized time
φ Phase-field variable of the outer region
Φ Phase-field variable of the inner region
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