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Introduction

The contents of this doctoral dissertation consists of results in two different areas of
probability theory and its applications, namely Rough path theory and theory of Loewner
evolutions. In order to describe best, we take a view on the two areas seperately and
then present the results.

Rough path theory

Rough path theory, abbreviated RPT, was introduced by Terry Lyons in a seminal pa-
per [54] in 1998 for a systematic study of continuous paths which are very irregular.
Continuous paths, whether deterministic or random, appear frequently in real world as
a mathematical model for something which evolves in time. It could be describing the
motion of a particle in an external field, it could be some time series data from financial
world, e.g. price of a financial commodity like call options or could it be the trajec-
tory of a script alphabet being written on a touchscreen interactive device like computer
tablets. In many applications, it is very essential to associate parameters to the path
which can be used to derive informations it. One seeks for a set of parameters which is
efficient and easy to implement and also should also contain relevant informations about
the path which will distinguish it from other ones. For example, given a smooth path
X : [0, T ] → Rd, length of the path

L(X) =

∫ T

0

|Ẋr|dr

is one such parameter measuring the length of the path. Other examples include winding
number of a closed complex valued (or two dimensional) path,

W (X,P ) =
1

2πi

∫
X

1

z − P
dz

which measures number of times path X turns around point P . These examples are very
useful for certain appliations but they do not cover all the aspects of the path. More
generally, in 1957, K. Chen [[7], [8]] introduced signature of a path, which is collection of
its all possible iterated integrals as a set of such parameters which would describe all the
important aspects of the path in an efficient manner.

Definition .0.1. Given a path X : [0, T ] → Rd, signature of X, denoted S(X)0,T is
defined as

S(X)0,T =

(
1,

∫
0<r1<T

dXr1 ,

∫
0<r1<r2<T

dXr1⊗dXr2 , ...,

∫
0<r1<r2<..<rn<T

dXr1⊗dXr2⊗..⊗dXrn , ...

)
given that all the integrals above are well defined, e.g. when X is a smooth path.
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Signature can be considered as the building block of Rough path theory. In 1936,
L.C. Young proved the following remarkable result.

Theorem .0.2 (Young, 1936). Let α, β ∈ (0, 1] such that α+β > 1. If X ∈ Cα([0, T ],Rd)
and Y ∈ Cβ([0, T ],Rn×d) are two Hölder regular paths. Then∫ T

0

YrdXr := lim
|P|→0

∑
[s,t]∈P

Ys(Xt −Xs)

is well defined, where P denote a partition of [0, T ] and |P| its mesh size. Furthermore,
there exist a constant C such that for all s < t,⏐⏐⏐⏐∫ t

s

YrdXr − Ys(Xt −Xs)

⏐⏐⏐⏐ ≤ C||X||α||Y ||β|t− s|α+β

Young’s result guarantees that iterated integrals in definition of signature are well
defined wheneve X is α-Hölder path for α > 1

2
. But when X is even more irregular,

it is not possible to make sense of signature of path X. The key idea of T. Lyons
leading to emergence of RPT was abstractifying the concept of signature. When the
path X is not regular enough, the integrals in the definition of signature are not well
defined. But, if one could construct an objects which mimics signature of X upto some
algebraic and analytical properties, then one could use that object in the place of signature
for practically all relevant purposes. RPT also comes with a extension theorem which
gurantees that it is only required to construct an objects which mimics signature only
upto some finitely many levels and all the higher order iterated integrals can be naturally
constructed. Let TN

1 (Rd) be the truncated tensor algebra defined by TN
1 (Rd) := 1⊕Rd⊕

{Rd}⊗2 ⊕ ..⊕ {Rd}⊗N with the multiplication g ⊗ h such that

πk(g ⊗ h) =
k∑

i=0

πi(g)⊗ πk−i(h)

where πk is the projection map πk : T
N
1 → {Rd}⊗k. GN(Rd) denote the step N nilpotent

group.

Definition .0.3. Let X ∈ Cα([0, T ],Rd) be a path and let N = [ 1
α
]. A rough path

associated to X is a path X : [0, T ] → TN
1 (Rd) such that π1(X) = X and for 1 ≤ k ≤ N ,

||πk(X)||kα := sup
s ̸=t

|πk(Xs,t)|
|t− s|kα

<∞

where Xs,t := X−1s ⊗Xt. A rough path is called a geometric rough path if it takes value
in GN(Rd) ⊂ TN

1 (Rd).

The rough path X indeed mimics the signature and it can be proved that when X is
smooth,

πk(X) =

∫
0<r1<r2<..<rk<T

dXr1 ⊗ dXr2 ⊗ ..⊗ dXrk

An another strategy for styding properties of a path is to construct calculus based on
that path, i.e. make sense of integration∫

YrdXr
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for appropriate paths Y . This strategy has proved to be very effective in many situations,
e.g. many non-trivial properties of Brownian motion sample path can be derived using
Ito stochastic calculus. The rough path X associated to X can also be used develop an
integration theory called “rough integration”. In particular, rough integration can be
used to make sense of higher order iterated integrals∫

0<r1<r2<..<rn<T

dXr1 ⊗ dXr2 ⊗ ..⊗ dXrn

for n > N , justying the fact that it is enough to construct the object X which mimics
the signature upto N levels. The key idea behind rough integration is that since X is not
regular enough to define integration, we enhance the path X via X, adding some extra
information to it and X can be used to define the (rough) integration. For example in
the case when 1

3
< α ≤ 1

2
, N = 2 and integration of one forms f(X) can be defined as

follows.

Theorem .0.4 ( Lyons, Gubinelli). For 1
3
< α ≤ 1

2
, rough path X = (1, X,X), and one

forms f(X) with f continuously twice differentiable,∫ T

0

f(X)dX := lim
|P|→0

∑
[s,t]∈P

f(Xs)Xs,t + f ′(Xs)Xs,t

exists. Moreover,⏐⏐⏐⏐∫ t

s

f(X)dX− f(Xs)Xs,t − f ′(Xs)Xs,t

⏐⏐⏐⏐ ≤ C

(
||X||3α + ||X||α||X||2α

)
|t− s|3α

where the constant C only depends on f .

In the above theorem, the pair of 1-forms (f(X), f ′(X)) can be replaced by any pair
(Y, Y ′) such that Y, Y ′ are α-Hölder path and Rs,t := Ys,t − Y ′s (Xs,t) satisfy

||R||2α := sup
s ̸=t

|Rs,t|
|t− s|2α

<∞

Such a pair (Y, Y ′) are called controlled paths and rough integration∫ T

0

Y dX

can be defined same as above for controlled paths.

Rough path theory paves way to give meaning to differential equations which were
previously ill posed. For a irregular path X, the equation

dYt = f(Yt)dXt

can be now given the meaning

Yt = Y0 +

∫ t

0

f(Yr)dXr
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and solution Y can be looked for in the space of controlled paths. These equations
are so called “rough differential equations” (RDEs) and existence and uniqueness of the
solutions Y := If (X) can be established using modified picard iteration schemes, as
carried out in [[26], [25]]. One of the most important results which follows from the
analysis of RDE’s is the “Universal limit theorem” which guarantees that the solution
map X → Y := If (X) is continuous in the appropriate rough path metric, a metric
defined on the space of rough paths. Given that path X is very irregular, such a result is
very rare and is of great impact and it finds its applications in many areas of mathematics.

One of the most important applications of RPT is in stochastic calculus. When X
is a stochastic process with semimartingale structure, e.g. Brownian motion, there is an
another probabilistic way of making sense of∫ T

0

Y dX (1)

This theory was developed by K. Ito in mid 20th century and now is known as Ito’s
stochastic calculus named after him. Here, the integrands Y are taken to be adapted left
continuous processes and the stochastic integral∫ T

0

YrdXr := lim
|P|→0

∑
[s,t]∈P

YsXs,t

where the limit is shown to exist in probability. The Ito’s stochastic calculus is a very
elegant theory and it indeed finds its appliations in many different areas. But it has
some cons too. The limit above is taken in probability which takes into account the
law of X and thus all the sample paths of X. The stochastic integral so constructed
is only defined almost surely, i.e. on a set of probability one and it is thus impossible
to decide whether the integral is defined for a given particular sample path. In many
application, e.g. mathematical finance, there is only one available time series data and
inherent law of the process is usually unknown. Considering such situations, one seeks
for a an integral calculus which is defined pathwise, i.e. for a particular given sample
path of X one should be able to define the integral (1). Note that since Brownian motion
B is only α-Hölder for α < 1

2
and no more regular, the Young’s result Theorem .0.2 falls

just short for making sense of (1) in a pathwise sense. Such a situation can perfectly be
handled by RPT as introduced above. We fix an α ∈ (1

3
, 1
2
) such that Brownian sample

paths are α-Hölder almost surely. If one could construct a rough path B associated to
B, then rough integration can be used to give meaning to pathwise integration against
Brownian motion. It can be easily proven that prescribing

Bs,t :=

∫ t

s

Bs,r ⊗ dBr

indeed defines a rough path B = (1, B,B) reaching us the goal of pathwise integration.
Rough integral in this context is also consistent with the stochastic integral. It can be
shown that rough integral so defined actually matches with the Ito integral. Such a
consistensy is of great impact. What this implies is that stochastic differential equations
(SDEs)

dYt = f(Yt)dBt
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can be now viewed as a RDE
dYt = f(Yt)dBt

In constrast to SDEs, RDEs are very well behaved in view of approximations. Note that
the solution map of a SDE Ψ : B → Y doesn’t have any nice continuity properties w.r.t
to any useful topology put on the path space C([0, T ],Rd). On the other hand, “universal
limit theorem” for RDEs gives us continuity of map Y = If (X) in the rough path metric.
Considering SDEs as a RDE, we immediately get the continuity under approximation
type results for SDE, e.g. Wong-Zakai theorem with explicit rates of convergence.
The applications of RPT in stochastic analysis goes beyond the realm of Ito calculus.
Probabilistic semimartingale structure is very crucial for the developement of Ito calcu-
lus. But there are many other stochastic models where one doesn’t have semimartingale
property and the Ito calculus fails to apply, e.g. fractional Brownian motion. On the
other hand, RPT just requires for a construction of an appropriate rough path associated
to the process X. This can be carried out for many Gaussian processes with appropriate
covariance structure. As a result, many interesting results follows, e.g. densities for RDEs
under Hörmander condition for Gaussian signals, [67].

Relevant to the content of this thesis, we mention one more application of RPT in
approximating the solution of parabolic PDEs. Consider{

∂tu(t, x) = −Lu(t, x)
u(T, x) = f(x)

with the differential operator L = V0 +
1
2
(V 2

1 + .. + V 2
d ), where the differential operator

is identified with the corresponding vector fields Vi. Using Feynman-Kac reperesentation
formula, one can can express u(t, x) = E(f(ξT−t,x)), where ξ the solution of Stratonovich
SDE {

dξt,x =
∑d

i=0 Vi(ξt,x) ◦ dX i
t

ξ0,x = x

driven by Xt = (t, Bt) where Bt is the d-dimensional Brownian motion. Interested in
fast numerical simulations for the solution u(t, x) of such parabolic PDEs, signature of
Brownian motion can be used very effectively. Stochastic taylor expansion (of order m)
allows one to approximate

u(t, x) = E[f(ξt,x)] ≈
∑

(i1,..ik)∈Am

Vi1 ..Vikf(x)E
[∫

0<t1<..<tk<t

◦dBi1
t1 .. ◦ dB

ik
tk

]

whereAm := {(i1, ..ik) ∈ {0, .., d}k|k+card{j, ij = 0} ≤ m}. One clearly sees Stratonovich
signature of B (iterated integrals w.r.t. Stratonovich integration) contributing to approx-
imate the solution u(t, x). In fact one only needs the expected value of signature and it is
very desirable to get an closed form formula for the expected signature. One can use the
analysis above to base very efficient approximation technique, e.g. Cubature methods on
wiener space [52].
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Theory of Loewner chains

The theory of Loewner chains and Loewner’s differential equation (LDE) was introduced
in early 20th century by C. Loewner in an attempt to solve Bieberbach’s conjecture in
geometric function theory. The conjecture stated that if

f(z) = z + a2z
2 + a3z

3 + ...

is an univalent conformal map on the unit disk, then for all n ≥ 2

|an| ≤ n.

Bieberbach himself proved the bound |a2| ≤ 2 and Loewner could extend it to |a3| ≤ 3
using LDE. Later in 1986, when De Branges finally resolved the conjecture, LDE was
used as an important component in the proof. A good account on the history and
developements of Bieberbach conjecture can be found in [68].

Loewner’s theory gives a one-to-one correspondence between a family of continuously
growing compact sets in a planar simply connected domain and real valued continuous
curves. For simplicity, we will restrict ourselves to the upper half plane

H = {z|z ∈ C, Im(z) > 0}

A bounded subset K ⊂ H is called a compact H-hull if K = H∩ K̄ and H\K is a simply
connected domain. For each such compact H-hull, there is a unique associated bijective
conformal map gK : H \K → H satisfying the so called hydrodynamic normalization

lim
z→∞

gK(z)− z = 0

The map gK is called the mapping out function of K. The half plane capacity of K is
defined by

hcap(K) = lim
z→∞

z(gK(z)− z)

Definition .0.5. A Loewner chain is a family {Kt}t≥0 of compact H-hulls such that
Ks ( Kt for all s < t and satisfying local growth property:

rad(Kt,t+h) → 0 as h→ 0 + uniformly on compacts in t

where Ks,t := gKs(Kt \Ks)

Given {Ut}t≥0 a continuous real valued curve with U0 = 0, for each z ∈ H̄\0, let gt(z)
denote the solution of the LDE

ġt(z) =
2

gt(z)− Ut

, g0(z) = z (2)

The solution exists upto the maximal time T (z) ∈ (0,∞] and if T (z) <∞,

lim
t→T (z)

gt(z)− Ut = 0

Define
Kt = {z ∈ H|T (z) ≤ t}
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Then the family {Kt}t≥0 is a Loewner chain with hcap(Kt) = 2t and gt is the mapping
out function of Kt. We call the chain {Kt}t≥0 is driven by {Ut}t≥0.
Conversely given a Loewner chain {Kt}t≥0 with hcap(Kt) = 2t, then there exist contin-
uous real valued curve Ut with U0 = 0 such that mapping out functions gt(z) = gKt(z)
satisfies equation (38) and {Kt}t≥0 is driven by {Ut}t≥0. Please refer to [40] and lecture
notes [3] for the details.

In a seminal article by O. Schramm in 1999, [73], correspondence above was utilized
to characterize processes in plane which are conformally invariant and satisfies domain
Markov property. Today these processes are known as Schramm-Loewner evolutions,
SLE(κ), which is a random Loewner chain obtained when Ut =

√
κBt, where Bt is the

one dimensional Brownian motion. SLEs was then proven to arise natuarally as scaling
limit of various discrete lattice models in statistical physics. See results in [76, 74, 73] for
these results.

Interesting examples of Loewner chains inlcude bubble fill of any continuous curve
γ : [0, T ] → H̄ (fill in the interior whenever γ forms a loop). In this case, the Loewner
chain is actually described by a growing curve rather than just a growing family of
compact sets. But not all Loewner chains fall in this category. There are pathological
examples like logarithmic spiral where Kt is not locally connected. Convergence results
of various statistical mechanics model to SLEs suggests that SLEs are actually random
curves in upper half plane and not just a family of growing compact sets. A natural
question then is that under what conditions the Loewner chain can be described as
bubble fill of a continuous curve in the following sense :

Definition .0.6. A chain {Kt}t≥0 is called generated by a curve γ : [0, T ] → H̄ with
γ0 = 0 if for all t ≥ 0, Ht := H \Kt is the unbounded component of H \ γ[0, t].

If a chain is generated by a curve γ, then it is the only such a curve called the trace
of chain. A necessary and sufficient condition for the existence of the trace can be found
in [71]. Denote ft(z) = g−1t (z).

Theorem .0.7 ([71]). A chain is generated by a curve if and only if

γt := lim
y→0+

ft(iy + Ut)

exists and is continuous curve. If so, curve γ is the trace.

There are many positive results known in this direction. It was proved in [62, 47]
that when the driver U is 1

2
- Holder with ||U || 1

2
< 4, then the trace exist. This is

the best possible known deteministic result and fails to apply for the SLEκ case where
Ut =

√
κBt, where Bt is standard Brownian motion. Nevertheless, proof of existence

of trace of SLE(κ), κ ̸= 8 was carried out in [71] using probabilistic techniques. The
trace also exist for SLE(8), but the proof follows indirectly from convergence of Uniform
spanning tree to SLE(8) and there is no direct proof known so far.

Complete understanding of phenomena of existence of trace is unknown. In the case
of random drivers U , probabilistic techiniques are the only available tool for proving
the existence of trace. Though these techniques works efficiently for SLEs, it doesn’t
give deterministic conditions on the driver and pathwise property of Brownian motion
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responsible for the existence of trace. Such a condition is very desirable to understand
many fine properties of SLE. One immediate corollary to such understanding would be
continuity of the Loewner map Φ : U → γ is appropriate metric and Wong-Zakai type
Theorem for SLE. In this thesis, we take a step in this direction and prove some results
on the trace of Loewner chains.

The results of this thesis

In this section, we mention the main results of this thesis. The content is divided into
following research articles.

I. Doob-Meyer Theorem for rough paths

In a recent work [57], Hairer-Pillai introduced the concept of θ-roughness for rough paths,
leading them to a deterministic Norris type lemma. Norris lemma is one of the key
ingredient in Hörmander theorem for smoothness of probability density of solutions to
Brownian SDEs. Using rough path theory and aforementioned Norris-type lemma, Hairer-
Pillai developed a Hörmander theorem for rough path driven SDEs. In this article, we
take a step back and prove a deterministic Doob-Meyer type result for rough paths.
In the semimartingale setting, Doob-Meyer Theorem states that it is not possible to
have cancellation between martingale part and bounded variation part and the both
the components are uniquely determined from semimartingale. Intuition behind is that
martingales are nothing but time changed Brownian motion and it is very irregular at
every small scales. We coin the notion of “true roughness” of rough paths which formalises
the above intuition and obtain the Doob-Meyer type results under this assumption. In
the framework of [54], let X : [0, T ] → V is a p-rough path taking value in Banach space
V and controlled by some control function ω.

Definition .0.8. For fixed s ∈ [0, T ) we call X ”rough at time s” if (convention 0/0 := 0)

(∗) : ∀v∗ ∈ V ∗\ {0} : lim sup
t↓s

|⟨v∗, Xs,t⟩|
ω (s, t)2/p

= +∞.

If X is rough on some dense set of [0, T ], we call it truely rough.

Theorem .0.9. (i) Assume X is rough at time s. Then∫ t

s

f (X) dX = O
(
ω (s, t)2/p

)
as t ↓ s =⇒ f (Xs) = 0.

(i’) As a consequence, if X is truely rough, then∫ ·
0

f (X) dX ≡ 0 on [0, T ] =⇒ f (X·) ≡ 0 on [0, T ] .

(i”) As another consequence, assume |t− s| = O(ω (s, t)2/p), satisfied e.g. when ω (s, t) ≍
t− s and p ≥ 2 (the ”rough” regime of usual interest) then∫ ·

0

f (X) dX+

∫ ·
0

g (X) dt ≡ 0 on [0, T ] =⇒ f (X·) , g (X·) ≡ 0 on [0, T ] .
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(ii) Assume Z := X ⊕ Y lifts to a rough path and set, with f̃ (z) (x, y) := f (z)x,∫
f (Z) dX :=

∫
f̃ (Z) dZ.

Then the conclusions from (i),(i’) and (i”), with g = g (Z), remain valid.

We then verify various stochastic processes to be truly rough. Examples include
Brownian motion, fractional Brownian motion and many other Gaussian processes. In
fact, the results doesn’t require finite dimensionality of state space of rough path and
can be proved in infinite dimension setting. As a result, Q-Wiener processes are also
proven to be truly rough. We close the article by mentioning an application to existence
of density for Non-Markovian systems under Hörmander condition. This is joint work
with Prof. Peter Friz published in Bulletin of the Institute of Mathematics, Academia
Sinica (New Series) [20].

II. General rough integration, Lévy rough paths and a Lévy–Kintchine type
formula

RPT as introduced above is developed under the basic assumption of X being a con-
tinuous path. The theory fails to work due to some technical reasons if we give up the
continuity and just assume that X is a cádlág (right continuous with left limits) path.
Needless to say that cádlág paths appear frequently in many situations, e.g. price of
financial commodity undergoing sudden change can be modelled using cádlág processes
like Lévy processes. In this article, we develope RPT for cádlág paths.
We first coin the definition of cádlág rough paths. Since we lack continuity, we choose
to measure the roughness of a path in p-variation metric which a priopri doesn’t imply
continuity rather than Hölder metric. We prove a variant of Lyon’s extension Theorem
in this setting and make sense of signature of a (geometric) cádlág rough path.

Theorem .0.10. Let 1 ≤ p < ∞ and N ∋ n > m := [p]. A cadlag geometric rough path
X(m) admits an extension to a path X(n) of with values G(n) ⊂ T (n), unique in the class
of G(n)-valued path starting from 1 and of finite p-variation with respect to CC metric on
G(n) subject to the additional constraint

log(n) ∆X
(n)
t = log(m) ∆X

(m)
t . (3)

Signature of X(m) is defined as

S(X(m))0,T := (1, π1(X
(1)), π2(X

(2)), .., πn(X
(n)), ...)

The construction of an appropriate extension above uses an adaptation of an idea
due to Marcus. Marcus argued that a jump is nothing but an idealisation a very fast
change happening in a very short time. Thus at each jump time, a fictious time interval
is introduced during which the jump is traversed appropriately, giving us a continuous
path. One can then use the machinery available in continuous RPT followed by removal
of the fictious time intervals in the end to obtain results about cádlág rough paths.

We next make sense of rough integration against such rough paths. For simplicity, we
stick to the case of p ∈ [2, 3).
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Theorem .0.11. Let X = (1, X,X) be a cádlág rough path and (Y, Y ′) a controlled rough
path, then ∫ T

0

Yr−dXr := lim
|P|→0

∑
[s,t]∈P

YsXs,t + Y ′sXs,t.

where the limit exist in refinement Riemann sum (RRS/net convergence) sense.

The cádlág rough integration can be used to give pathwise interpretation of gerenal
stochastic integration. For example, if X is a Lévy process, it can be naturally lifted to
a rough path by defining

Xs,t :=

∫ t

s

Xs,r− ⊗ dXr

or a geometric rough path by

XM
s,t :=

∫ t

s

Xs,r− ⊗ �dXr

where �dXr stands for Marcus integration. We verify that such specification actually
constructs a rough path associated to X and that the rough integration so obtained
matches almost surely with stochastic integration. The solutions to SDEs driven by Lévy
processes can be now seen as corresponding RDE solution. We also introduce rough path
variant of Marcus differential equations as introduced in [39]. In fact, we show that the
signature St = S(X)0,t is the solution of a Marcus type RDE

dSt = St ⊗ �dXt

given the meaning

St = 1 +

∫ t

0

Sr− ⊗ dXr +
∑
0<s≤t

Ss− ⊗ {exp(log(2)∆Xs)−∆Xs}

This allows us to compute explicitly the expected value of signature of a Lévy process.

Theorem .0.12. Let X is a Lévy process associated to Lévy triple (a, b,K) with co-
varinace matrix a, drift b and jump measure K. If the measure K1|y|≥1 has all finite
moments, then

E[S (X)0,T ] = exp

[
T

(
b+

1

2
a+

∫
(exp(y)− 1− y1|y|<1)K (dy)

)]
The above formula resembles the well known Lévy-Khintchine formula for character-

stic function of Lévy processes and thus we name it Lévy-Khintchine formula for rough
paths. It is an generalisation of the formula obtained in [13] for the expected signature of
Brownian motion. We give further generalisation of such formula for Lévy rough paths,
defined as Lie group G2(Rd) valued Lévy processes with appropriate variational regular-
ity. We also produce a partial integral differential equation (PIDE) for computing the
expected signature for Markov jump diffusions. Variants of such equations for the case
of Brownian diffusions was carried out in [66].
The contents of this work is collected together in a paper [18](submitted) jointly with
Prof. Peter Friz
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III. Loewner chains driven by semimartingales

In this article, we consider the Loewner chains driven by semimartingales in the con-
text of existence of trace. Apart from producing more interesting examples of Loewner
chains, there is another motivation for considering such models. The deep insight of Oded
Schramm leading to construction of SLE was that domain Markov property (DMP) to-
gether with conformal invariance (CI) forces the driver to have independent and stationary
increment, i.e. Brownian motion with some speed. It is possible to canonically produce
some models which fails to have DMP and CI globally, but do possess these properties
on a local scale. See construction of SLEκ,ρ in [41] for example. Such processes is of great
importance to study the symmetries like duality and reversibility of SLE. Heuristically
speaking, having DMP and CI on a local scale forces the driver to have independent and
stationary increment locally, i.e. diffusions. The main result of this article is the following
deterministic inequality well suited to obtain the existence of trace for random drivers
beyond Brownian motion. To state it, we assume that driver that U : [0, T ] → R has
finite quadratic-variation in sense of Föllmer if (along some fixed sequence of partitions
π = (πn) of [0, T ], with mesh-size going to zero)

∃ lim
n→∞

∑
[r,s]∈πn

(Us∧t − Ur∧t)
2 =: [U ]πt

and defines a continuous map t ↦→ [U ]πt ≡ [U ]t. For each fixed t > 0, define βs =
Ut − Ut−s, s ∈ [0, t] and [β]π be the corresponding quadratic variation.

Theorem .0.13. Let d[β]πs/ds ≤ κ < 2. Then there exist a path C1 path G such that Ġ
is Föllmer integrable against β and

|f ′t(iy + Ut)| ≤ exp

[
Mπ

t −
∫ t

0

Ġ2
rd(r +

1
2
[β]r)

]
where

∫ t

0
Ġrd

πβr =Mπ
t is the Föllmer type integral.

As a result, we are able to prove the following theorem on the existence of trace for
Loewner chains driven by semimartingales.

Theorem .0.14. For each κ < 2, there exist a constant α0(κ) depending only on κ such
that following holds :
Let Ut is a continuous process such that for each t ∈ [0, T ], βs = Ut − Ut−s is a semi-
martingale w.r.t. some filtration with canonical decomposition

βs = Ns + As

with local martingale part N and bounded variation part A. Assume for all s ≤ t ≤ T ,

|d[N ]s
ds

| ≤ κ

and

sup
t∈[0,T ]

E
[
exp

(
α

∫ t

0

Ȧ2
rdr

)]
<∞

for some α > α0(κ). Then the Loewner chain generated by U is generated by a trace.
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In a special case when U is a (deterministic) Cameron-Martin path, our method allows
us to prove the following uniform bound:

Theorem .0.15. If U is a Cameron-Martin path, then

|f ′t(iy + Ut)| ≤ exp

[
1

4
||U ||2H

]
(4)

where ||U ||H =

{∫ T

0
U̇2
r dr

} 1
2

is the Cameron-Martin norm.

Note that for Cameron-Martin paths U , by Cauchy-Schwarz inequality

|Ut − Us| = |
∫ t

s

U̇rdr| ≤
√
t− s

√∫ t

s

U̇2
r dr

which implies

inf
ϵ>0

sup
|t−s|<ϵ

|Ut − Us|√
t− s

= 0 < 4

and the existence of trace follows from results in [62], but it can also be seen directly
from inequality 4. Additionally, as remarked in [33], the Holder regularity of the trace γ
improves as 1

2
-Holder norm of the driver gets smaller. Since Cameron-Martin paths are

of vanishing 1
2
Holder norm, we can expect the trace to be as regular as possible. Note

that when U ≡ 0, γt = 2i
√
t, which is at best 1

2
-Holder on [0, T ], Lipchitz on time interval

[ϵ, T ] for ϵ > 0 and is of bounded variation. Bounds like 4 allows us to prove,

Theorem .0.16. If U is Cameron-Martin path, then ||γ|| 1
2
,[0,T ] < ∞ and for any ϵ > 0,

||γ||1,[ϵ,T ] < ∞. In fact under suitable time reparametrization φ, ||γ ◦ φ||1 < ∞ and thus
γ is a bounded variation path.

Stability under approximation type results follow as corollary:

Theorem .0.17. If U is Cameron-Martin and Un is a sequence of piecewise linear ap-
proximation to U , then for any α < 1

2

||γn − γ||α → 0 as n→ ∞

The contents of this article is collected together in a paper [19] (upcoming) jointly
with Prof. Peter Friz.

IV. Slow points and trace of Loewner chains

Precise pathwise property of the driver responsible for the existence of trace is still un-
known. In this article, we seek for deterministic conditions on the Loewner driver U which
will guarantee the existence of trace and which will also relate to the case Ut =

√
κBt.

We relate the existence of slow points for the driver to the existence of the trace for
correponding Loewner chain.
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Definition .0.18. Given a curve U and a > 0, point t > 0 is called a a-slow point (from
below ) if

lim sup
h→0+

|Ut−h − Ut|√
h

≤ a

The main result of this article is the following Theorem.

Theorem .0.19. Let U be bounded variation path. For t > 0 and s ∈ [0, t], define
βs = βt

s := Ut − Ut−s and ||β||s := ||β||1−var,[0,s]. Assume for all t > 0,

lim sup
s→0+

||β||s√
s
< 2 (5)

and ∫ t

0+

1√
r
d||β||r <∞ (6)

Then the Loewner chain driven by U is generated by a simple curve.

The slow points are known to exist for Brownian motion and have been extensively
studied in the literature. We refer the following well known result due to Davis, Perkins
and Greenwood.

Theorem .0.20 (Davis, Perkins and Greenwood). For standard Brownian motion B,
almost surely

inf
t∈[0,1]

lim sup
h→0+

|Bt+h −Bt|√
h

= 1

In particular, a-slow points exists almost surely for a > 1.

Theorem .0.19 and .0.20 gives strong evidence of connection between slow points and
the trace of Loewner chains. But as required in Theorem .0.19, not all the times t are
slow points of Brownian motion. There do exist points where the Brownian motion has
unusually large growth in infinitely many small scales (such points are called fast points)
and Brownian motion falls short to satisfy conditions of Theorem .0.19. We propose
another simple direct approach to the trace which only relies on a weaker condition that
U is psuedo (a, 1

2
)-Holder for some a < 4 according to the following definition.

Definition .0.21. A continuous curve U is called (a, 1
2
)- psuedo Holder if

sup
t

lim inf
h→0+

|Ut+h − Ut|√
h

≤ a

We recall a result due to B. Davis [11] suggesting that Brownian motion paths are
psuedo Holder.

Theorem .0.22 (B. Davis). For Brownian motion B, almost surely,

sup
t

lim inf
h→0+

Bt+h −Bt√
h

= 1

Except for the missing modulus, Theorem .0.22 suggest that Brownian motion paths
are almost surely psuedo Holder. Also note that for a fixed time t, since zero set of
Brownian motion has no isolated points, almost surely,

lim inf
h→0+

|Bt+h −Bt|√
h

= 0
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Conjecture 1. Brownian motion paths are almost surely (1, 1
2
)- psuedo Holder.

For SLE(κ) process, the driver Ut =
√
κBt. Thus our approach works well for κ < 16

and potentially answers the role of Brownian motion in the existence of trace for SLE(κ),
including the unresolved case κ = 8.
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Part I

Doob-Meyer Theorem for rough
paths

1





I.1. INTRODUCTION 3

Contents of this article is collected together in a published paper [20] appearing in
Bulletin of the Institute of Mathematics, Academia Sinica (New Series), 2012.

I.1 Introduction

Hairer–Pillai [57] proposed the notion of θ-roughness of a path which leads to a deter-
ministic Norris lemma, i.e. some sort of quantitative Doob-Meyer decomposition, for
(level-2, Hölder) rough integrals in the sense of Gubinelli. It is possible to check that
this roughness condition holds for fractional Brownian motion (fBm); indeed in [57] the
author show θ-roughness for any θ > H where H denotes the Hurst parameter. (Recall
that Brownian motion corresponds to H = 1/2; in comparison, the regime H < 1/2
should be thought of as ”rougher”.) All this turns out to be a key ingredient in their
Hörmander type result for stochastic differential equations driven by fBm, any H > 1/3,
solutions of which are in general non-Markovian.

In the present note we take a step back and propose a natural ”roughness” condition
relative to a given p-rough path (of arbitrary level [p] = 1, 2, ..) in the sense of Lyons; the
aim being a Doob-Meyer result for (general) rough integrals in the sense of Lyons. The
interest in our (weaker) condition is that it is immediately verified for large classes of
Gaussian processes, also in infinite dimensions. (In essence one only needs a Khintchine
law of iterated logarithms for 1-dimensional projections.)

We conclude with an application to non-Markovian systems under Hörmander’s con-
dition, in the spirit of [23].

I.2 Truely ”rough” paths and a deterministic Doob-

Meyer result

Let V be a Banach-space. Let p ≥ 1. Assume f ∈ Lipγ (V, L (V,W )), γ > p − 1, and
X : [0, T ] → V to be a p-rough path in the sense of T. Lyons [48, 50] controlled by ω.

Recall that such a rough path consists of a underlying path X : [0, T ] → V , together
with higher order information which somewhat prescribes the iterated integrals

∫ ·
0
dXt1 ⊗

...⊗ dXtk for 1 < k ≤ [p].

Definition I.2.1. For fixed s ∈ [0, T ) we call X ”rough at time s” if (convention 0/0 :=
0)

(∗) : ∀v∗ ∈ V ∗\ {0} : lim sup
t↓s

|⟨v∗, Xs,t⟩|
ω (s, t)2/p

= +∞.

If X is rough on some dense set of [0, T ], we call it truely rough.

Theorem I.2.2. (i) Assume X is rough at time s. Then∫ t

s

f (X) dX = O
(
ω (s, t)2/p

)
as t ↓ s =⇒ f (Xs) = 0.

(i’) As a consequence, if X is truely rough, then∫ ·
0

f (X) dX ≡ 0 on [0, T ] =⇒ f (X·) ≡ 0 on [0, T ] .
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(i”) As another consequence, assume g ∈ C (V,W ) and |t− s| = O(ω (s, t)2/p), satisfied
e.g. when ω (s, t) ≍ t− s and p ≥ 2 (the ”rough” regime of usual interest) then∫ ·

0

f (X) dX+

∫ ·
0

g (X) dt ≡ 0 on [0, T ] =⇒ f (X·) , g (X·) ≡ 0 on [0, T ] .

(ii) Assume Z := X ⊕ Y lifts to a rough path and set, with f̃ (z) (x, y) := f (z)x,∫
f (Z) dX :=

∫
f̃ (Z) dZ.

Then the conclusions from (i),(i’) and (i”), with g = g (Z), remain valid.

Remark I.2.3. Solutions of rough differential equations dY = V (Y ) dX in the sense of
Lyons are understood in the integral sense, based on the integral defined in (ii) above.
This is our interest in this (immediate) extension of part (i).

Proof. (i) A basic estimate (e.g. [10]) for the W -valued rough integral is∫ t

s

f (X) dX = f (Xs)Xs,t +O
(
ω (s, t)2/p

)
.

By assumption, for fixed s ∈ [0, T ), we have

0 =
f (Xs)Xs,t

ω (s, t)2/p
+O (1) as t ↓ s

and thus, for any w∗ ∈ W ∗,

| ⟨v∗, Xs,t⟩ |
ω (s, t)2/p

:=

⏐⏐⏐⏐⏐
⟨
w∗,

f (Xs)Xs,t

ω (s, t)2/p

⟩⏐⏐⏐⏐⏐ = O (1) as t ↓ s;

where v∗ ∈ V ∗ is given by V ∋ v ↦→ ⟨w∗, f (Xs) v⟩ recalling that f (Xs) ∈ L (V,W ).
Unless v∗ = 0, the assumption (∗) implies that, along some sequence tn ↓ s, we have

the divergent behaviour |⟨v∗, Xs,tn⟩| /ω (s, tn)
2/p → ∞, which contradicts that the same

expression is O (1) as tn ↓ s. We thus conclude that v∗ = 0. In other words,

∀w∗ ∈ W ∗, v ∈ V : ⟨w∗, f (Xs) v⟩ = 0.

and this clearly implies f (Xs) = 0. (Indeed, assume otherwise i.e. ∃v : w := f (Xs) v ̸=
0. Then define ⟨w∗, λw⟩ := λ and extend, using Hahn-Banach if necessary, w∗ from
span(w) ⊂ W to the entire space, such as to obtain the contradiction ⟨w∗, f (Xs) v⟩ = 1.)

(i”) From the assumptions,
∫ t

s
g (Xr) dr ≤ |g|∞ |t− s| = O

(
ω (s, t)2/p

)
. We may thus

use (i) to conclude f (Xs) = 0 on s ∈ [0, T ). It follows that
∫ ·
0
g (Xr) dr ≡ 0 and by

differentiation, g (X·) ≡ 0 on [0, T ].
(ii) By definition of

∫
f (Z) dX and f̃ respectively,∫ t

s

f (Z) dX:=

∫ t

s

f̃ (Z) dZ

= f̃ (Zs)Zs,t +O
(
ω (s, t)2/p

)
= f (Zs)Xs,t +O

(
ω (s, t)2/p

)
and the identical proof (for (i’), then (i”)) goes through, concluding f (Zs) = 0.
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Remark I.2.4. The reader may wonder about the restriction to p ≥ 2 in (i”) for Hölder
type controls ω (s, t) ≍ t − s. Typically, when p < 2, one uses Young theory, thereby
avoiding the full body of rough path theory. That said, one can always view a path of finite
p-variation, p < 2, as rough path of finite 2-variation (iterated integrals are well-defined as
Young integrals). Moreover, by a basic consistency result, the respective integrals (Young,
rough) coincide. In the context of fBM with Hurst parameter H ∈ (1/2, 1) , for instance,
we can take p = 2 and note that in this setting fBM is truely rough (cf. below for a general
argument based on the law of iterated logarithm). By the afore-mentioned consistency,
the Doob–Meyer decomposition of (i”) then becomes a statement about Young integrals.
Such a decomposition was previously used in [6].

Remark I.2.5. The argument is immediately adapted to the Gubinelli setting of ”con-
trolled” paths and would (in that context) yield uniqueness of the derivative process.

Remark I.2.6. In definition I.2.1, one could replace the denominator ω (s, t)2/p by
ω (s, t)θ, say for 1/p < θ ≤ 2/p. Unlike [57], where 2/p − θ affects the quantitative
estimates, there seems to be no benefit of such a stronger condition in the present con-
text.

I.3 True roughness of stochastic processes

Fix ρ ∈ [1, 2) and p ∈ (2ρ, 4). We assume that the V -valued stochastic process X lifts to
a random p-rough path. We assume V ∗ separable which implies separability of the unit
sphere in V ∗ and also (by a standard theorem) separability of V . (Separability of the
dual unit sphere in the weak-∗ topology, guaranteed when V is assumed to be separable,
seems not enough for our argument below.)

The following 2 conditions should be thought of as a weak form of a LIL lower bound,
and a fairely robust form of a LIL upper bound. As will be explained below, they are
easily checked for large classes of Gaussian processes, also in infinite dimensions.

Condition 1. Set ψ (h) = h
1
2ρ (ln ln 1/h)1/2. Assume (i) there exists c > 0 such that for

every fixed dual unit vector ϕ ∈ V ∗ and s ∈ [0, T )

P
[
lim sup

t↓s
|ϕ (Xs,t)| /ψ (t− s) ≥ c

]
= 1

and (ii) for every fixed s ∈ [0, T ),

P
[
lim sup

t↓s

|Xs,t|V
ψ (t− s)

<∞
]
= 1

Theorem I.3.1. Assume X satisfies the above condition. Then X is a.s. truely rough.

Proof. Take a dense, countable set of dual unit vectors, sayK ⊂ V ∗. SinceK is countable,
the set on which condition (i) holds simultanously for all ϕ ∈ K has full measure,

P
[
∀ϕ ∈ K : lim sup

t↓s
|ϕ (Xs,t)| /ψ (t− s) ≥ c

]
= 1
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On the other hand, every unit dual vector ϕ ∈ V ∗ is the limit of some (ϕn) ⊂ K. Then

|⟨ϕn, Xs,t⟩|
ψ (t− s)

≤ |⟨ϕ,Xs,t⟩|
ψ (t− s)

+ |ϕn − ϕ|V ∗
|Xs,t|V
ψ (t− s)

so that, using lim (|a|+ |b|) ≤ lim (|a|) + lim (|b|), and restricting to the above set of full
measure,

c ≤ lim
t↓s

|⟨ϕn, Xs,t⟩|
ψ (t− s)

≤ lim
t↓s

|⟨ϕ,Xs,t⟩|
ψ (t− s)

+ |ϕn − ϕ|V ∗ lim
t↓s

|Xs,t|V
ψ (t− s)

.

Sending n→ ∞ gives, with probability one,

c ≤ lim
t↓s

|⟨ϕ,Xs,t⟩|
ψ (t− s)

.

Hence, for a.e. sampe X = X (ω) we can pick a sequence (tn) converging to s such that
|⟨ϕ,Xs,tn⟩| /ψ (tn − s) ≥ c− 1/n. On the other hand, for any θ ≥ 1/ (2ρ)

|⟨ϕ,Xs,tn (ω)⟩|
|tn − s|θ

=
|⟨ϕ,Xs,tn (ω)⟩|
ψ (tn − s)

ψ (tn − s)

|tn − s|θ

≥ (c− 1/n) |tn − s|
1
2ρ
−θ L (tn − s)

→ ∞

since c > 0 and θ ≥ 1/ (2ρ) and slowly varying L (τ) := (ln ln 1/τ)1/2 (in the extreme
case θ = 1/ (2ρ) the divergence is due to the (very slow) divergence L (τ) → ∞ as
τ = tn − s→ 0 .)

I.3.1 Gaussian processes

The conditions put forward here are typical for Gaussian process (so that the pairing
⟨ϕ,X⟩ is automatically a scalar Gaussian process). Sufficient conditions for (i), in fact,
a law of iterated logarithm, with equality and c = 1 are e.g. found in [59, Thm 7.2.15].
These conditions cover immediately - and from general principles - many Gaussian (rough
paths) examples, including fractional Brownian motion (ρ = 1/ (2H), lifted to a rough
path [10, 21]) and the stationary solution to the stochastic heat equation on the torus,
viewed as as Gaussian processes parametrized by x ∈ [0, 2π]; here ρ = 1, the fruitful lift
to a ”spatial” Gaussian rough path is due to Hairer [30].

As for condition (ii), it holds under a very general condition [21, Thm A.22]

∃η > 0 : sup
0≤s,t≤T

E exp

(
η

|Xs,t|2V
|t− s|1/ρ

)
<∞.

In presence of some scaling, this condition is immediately verfied by Fernique’s theorem.

Example 1. d-dimensional fBM is a.s. truely rough (in fact, H-rough)

In order to apply this in the context of (random) rough integration, we need to
intersect the class of truely rough Gaussian processes with the classes of Gaussian pro-
cesses which amit a rough path lift. To this end, we recall the following standard setup
[26]. Consider a continuous d-dimensional Gaussian process, say X, realized as coordi-
nate process on the (not-too abstract) Wiener space (E,H, µ) where E = C

(
[0, T ] ,Rd

)
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equipped with µ is a Gaussian measure s.t. X has zero-mean, independent components
and that Vρ-var

(
R, [0, T ]2

)
, the ρ-variation in 2D sense of the covariance R of X, is finite

for ρ ∈ [1, 2). (In the fBM case, this condition translates to H > 1/4). From [21, The-
orem 15.33] it follows that we can lift the sample paths of X to p-rough paths for any
p > 2ρ and we denote this process by X, called the enhanced Gaussian process. In this
context, modulo a deterministic time-change, condition (ii) will always be satisfied (with
the same ρ). The non-degeneracy condition (i), of course, cannot be expect to hold true
in this generality; but, as already noted, conditions are readily available [59].

Example 2. Q-Wiener processes are a.s. truely rough. More precisely, consider a sepa-
rable Hilbert space H with ONB (ek), (λk) ∈ l1, λk > 0 for all k, and a countable sequence(
βk
)
of independent standard Brownians. Then the limit

Xt :=
∞∑
k=1

λ
1/2
k βk

t ek

exists a.s. and in L2, uniformly on compacts and defines a Q-Wiener process, where
Q =

∑
λk ⟨ek, ·⟩ is symmetric, non-negative and trace-class. (Conversely, any such

operator Q on H can be written in this form and thus gives rise to a Q-Wiener process.)
By Brownian scaling and Fernique, condition (ii) is obvious. As for condition (i), let ϕ
be an arbitrary unit dual vector and note that ϕ (X·) /σϕ is standard Brownian provided
we set

σ2
ϕ :=

∑
λk ⟨ϕ, ek⟩2 > 0.

By Khintchine’s law of iterated logarithms for standard Brownian motion, for fixed ϕ and
s, with probability one,

lim sup
t↓s

|ϕ (Xs,t)| /ψ (t− s) ≥
√
2σϕ.

Since ϕ ↦→ σ2
ϕ is weakly continuous (this follows from (λ) ∈ l1 and dominated convergence)

and compactness of the unit sphere in the weak topology, c := inf σϕ > 0, and so condition
(ii) is verified.

Let us quickly note that Q-Wiener processes can be naturally enhanced to rough
paths. Indeed, it suffices to define the H ⊗H-valued ”second level” increments as

(s, t) ↦→ Xs,t :=
∑
i,j

λ
1/2
i λ

1/2
j

∫ t

s

βi
s,· ◦ dβjei ⊗ ej.

which essentially reduces the construction of the ”area-process” to the Lévy area of
a 2-dimensional standard Brownian motion. (Alternatively, one could use integration
against Q-Wiener processes.) Rough path regularity, |Xs,t|H⊗H = O

(
|t− s|2α

)
for some

α ∈ (1/3, 1/2] (in fact: any α < 1/2), is immediate from a suitable Kolmogrov-type or
GRR criterion (e.g. [16, 21]).

Variations of the scheme are possible of course, it is rather immediate to define Q-
Gaussian processes in which

(
βk
)
are replaced by

(
Xk
)
, a sequence of independent Gaus-

sian processes, continuous each with covariance uniformly of finite ρ-variation, ρ < 2.
Let us insist that the (random) rough integration against Brownian, or Q-Wiener

processes) is well-known to be consistent with Stratonovich stochastic integration (e.g.
[50, 21, 16]). In fact, one can also construct a rough path lift via Itô-integration, in this
case (random) rough integration (now against a ”non-geometric” rough path) coincides
with Itô-integration.
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I.4 An application

Let X be a continuous d-dimensional Gaussian process which admits a rough path lift
in the sense described at the end of the previous section. Assume in addition that
the Cameron-Martin space H has complementary Young regularity in the sense that H
embeds continuously in Cq-var

(
[0, T ] ,Rd

)
with 1

p
+ 1

q
> 1. Note q ≤ p for µ is supported

on the paths of finite p-variation. This is true in great generality with q = ρ whenever
ρ < 3/2 and also for fBM (and variations thereof) for all H > 1/4. Complementary
Young regularity of the Cameron-Martin space is a natural condition, in particular in
the context of Malliavin calculus and has been the basis of non-Markovian Hörmander
theory, the best results up to date were obtained in [23] (existence of density only, no
drift, general non-degenerate Gaussian driving noise) and then [57] (existence of a smooth
density, with drift, fBM H > 1/3). We give a quick proof of existence of density, with
drift, with general non-degenerate Gaussian driving noise (including fBM H > 1/4). To
this end, consider the rough differential equation

dY = V0 (Y ) dt+ V (Y ) dX

subject to a weak Hörmander condition at the starting point. (Vector fields, on Re, say
are assumed to be bounded, with bounded derivatives of all orders.) In the drift free
case, V0 = 0, conditions on the Gaussian driving signal X where given in [23] which
guarantee existence of a density. The proof (by contradiction) follows a classical pat-

tern which involves a deterministic, non-zero vector z s.t. zTJ
X(ω)
0←· (Vk (Y· (ω))) ≡ 0 on

[0,Θ(ω)),every k ∈ {1, .., d} for some a.s. positive random time Θ. (This follows from
a global non-degeneracy condition, which, for instance, rules out Brownian bridge type
behaviour, and a 0-1 law, see conditions 3,4 in [23]). From this∫ ·

0

zTJX
0←t ([V, Vk] (Yt)) dX+

∫ ·
0

zTJX
0←t ([V0, Vk] (Yt)) dt ≡ 0

on [0,Θ(ω)); here V = (V1, ..Vd) and V0 denote smooth vector fields on Re along which
the RDEs under consideration do not explode. Now we assume the driving (rough) path
to be truely rough, at least on a positive neighbourhood of 0. Since Z := (X, Y, J) can be
constructed simultanously as rough path, say Z, we conclude with Theorem I.2.2, (iii):

zTJX
0←· ([Vl, Vk] (Y·)) ≡ 0 ≡ zTJX

0←· ([V0, Vk] (Yt)) .

Usual iteration of this argument shows that z is orthogonal to V1, .., Vd and then all Lie-
brackets (also allowing V0), always at y0. Since the weak-Hörmander condition asserts
precisely that all these vector fields span the tangent space (at starting point y0) we
then find z = 0 which is the desired contradiction. We note that the true roughness
condition on the driving (rough) path replaces the support type condition put forward in
[23]. Let us also note that this argument allows a painfree handling of a drift vector field
(not including in [23]); examples include immediately fBM with H > 1/4 but we have
explained above that far more general driving signals can be treated. In fact, it transpires
true roughness of Q-Wiener processes (and then, suitables generalizations to Q-Gaussian
processes) on a seperable Hilbert space H allows to obtain a Hörmander type result where
the Q-process ”drives” countably many vectorfields given by V : Re → Lin (H,Re) .

The Norris type lemma put forward in [57] suggests that that the argument can
be made quantitative, at least in finite dimensions, thus allowing for a Hörmander type
theory (existence of smooth densities) for RDE driven by general non-degenerate Gaussian
signals. (In [57] the authors obtain this result for fBM, H > 1/3 .)
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type formula

9





II.1. MOTIVATION AND CONTRIBUTION OF THIS PAPER 11

Contents of this article is collected together in an upcoming paper [18].

II.1 Motivation and contribution of this paper

An important aspect of “general” theory of stochastic processes [35, 70, 69] is its ability to
deal with jumps. On the other hand, the (deterministic) theory of rough paths [55, 51, 29,
56, 22, 17] has been very successful in dealing with continuous stochastic processes (and
more recently random fields arising from SPDEs [31, 17]). It is a natural question to what
extent there is a “general” rough path theory which can handle jumps and ultimately
offers a (rough)pathwise view on stochastic integration against cádlág processes. In the
spirit of Marcus canonical equations (e.g. [39, 1]) related questions were first raised by
Williams [80] and we will comment in more detail in Section II.2.9 on his work and the
relation to ours. We can also mention the “pathwise” works of Mikosch–Norvaǐsa [63] and
Simon [75], although their works assumes Young regularity of sample paths (q-variation,
q < 2) and thereby does not cover the “rough” regime of interest for general processes.

Postponing the exact definition of “general” (by convention: cádlág) rough path, let
us start with a list of desirable properties and natural questions.

• An analogue of Lyons’ fundamental extension theorem (Section II.2.5 below for a
recall) should hold true. That is, any general geometric p-rough path X should
admit canonically defined higher iterated integrals, thereby yielding a group-like
element (the “signature” of X).

• A general rough path X should allow the integration of 1-forms, and more general
suitable “controlled rough paths” Y in the sense of Gubinelli [17], leading to rough
integrals of the form ∫

f
(
X−
)
dX and

∫
Y −dX.

• Every semimartingale X = X (ω) with (rough path) Itô-lift XI = XI (ω), should
give rise to a (random) rough integral that coincides under reasonable assumptions
with the Itô-integral, so that a.s.

(Itô)

∫
f
(
X−
)
dX =

∫
f (X) dXI .

• As model case for both semi-martingales and jump Markov process, what is the
precisely rough path nature of Lévy processes? In particular, it would be desirable
to have a class of “Lévy rough paths” that captures natural (but “non-canoncial”)
examples such as the pure area Poisson process or the Brownian rough path in a
magnetic field?

• To what extent can we compute the expected signature of such processes? And
what do we get from it?

In essence, we will give reasonable answers to all these points. We have not tried to
push for maximal generality. For instance, in the spirit of Friz–Hairer [17, Chapter 3-5], we
develop general rough integration only in the level 2-setting, which is what matters most
for probability. But that said, the required algebraic and geometric picture to handle the
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level N -case is still needed in this paper, notably when we discuss the extension theorem
and signatures. For the most, we have chosen to work with (both “canonically” and
“non-canonically” lifted) Lévy processes as model case for random cádlág rough paths,
this choice being similar to choosing Brownian motion over continuous semimartingales.
In the final chapter we give discuss some extensions, notably to Markov jump diffusions
and some simple Gaussian examples.

In his landmark paper [55, p.220], Lyons gave a long and visionary list of advantages
(to a probabilist) of constructing stochastic objects in a pathwise fashion: stochastic
flows, differential equations with boundary conditions, Stroock–Varadhan support theo-
rem, stochastic anlysis for non-semimartingales, numerical algorithms for SDEs, robust
stochastic filtering, stochastic PDE with spatial roughness. Many other applications have
been added to this list since. (We do not attempt to give references; an up-to-date bib-
liography with many applications of the (continuous) rough path theory can be found
e.g. in [17].) The present work lays in particular the foundation to revisit many of these
problems, but not allowing for systematic treatment of jumps. We also note that inte-
gration against general rough paths can be considered as a generalization of the Föllmer
integral [14] and, to some extent, Karandikar [38], (see also Soner et al. [77]1), but free
of implicit semimartingale features.

II.2 Preliminaries

II.2.1 “General” Young integration

[81, 12]
We briefly review Young’s integration theory. Consider a path X : [0, T ] → Rd of

finite p-variation, that is

∥X∥p-var;[0,T ] :=

⎛⎝sup
P

∑
[s,t]∈P

|Xs,t|p
⎞⎠1/p

<∞

with Xs,t = Xt − Xs and sup (here and later on) taken over all for finite partitions P
of [0, T ]. As is well-known tsuch paths are regulated in the sense of admitting left- and
right-limits. In particular, X−t := lims↑tXs is cáglád and X+

t := lims↓tXs cádlág (by
convention: X−0 ≡ X0, X

+
T ≡ XT ). Let us write X ∈ W p([0, T ]) for the space of cádlág

path of finite p-variation. A generic cáglád path of finite q-variation is then given by Y −

for Y ∈ W q([0, T ]). Any such pair (X, Y −) has no common points of discontinuity on the
same side of a point and the Young integral of Y − against X,∫ T

0

Y −dX ≡
∫ T

0

Y −r dXr ≡
∫ T

0

Ys−dXs,

is well-defined (see below) provided 1/p+ 1/q > 1 (or p < 2, in case p = q). We need

Definition II.2.1. Assume S = S (P) is defined on the partitions of [0, T ] and takes
values in some normed space.
(i) Convergence in Refinement Riemann–Stieltjes (RRS) sense: we say (RRS) lim|P|→0 S (P) =
L if for every ε > 0 there exists P0 such that for every “refinement” P ⊃ P0 one has

1There is much renewed interest in this theories from a model independent finance point of view.
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|S (P)− L| < ε.
(ii) Convergence in Mesh Riemann–Stieltjes (MRS) sense: we say (MRS) lim|P|→0 S (P) =
L if for every ε > 0 there exists δ > 0 s.t. ∀P with mesh |P| < δ, one has |S (P)− L| < ε.

Theorem II.2.2 (Young). If X ∈ W p and Y ∈ W q with 1
p
+ 1

q
> 1 , then the Young

integral is given by∫ T

0

Y −dX := lim
|P|→0

∑
[s,t]∈P

Y −s Xs,t = lim
|P|→0

∑
[s,t]∈P

YsXs,t (7)

where both limit exist in (RRS) sense. Moreover, Young’s inequality holds in either form⏐⏐⏐⏐∫ t

s

Y −dX − Y −s Xs,t

⏐⏐⏐⏐ .
Y −

q-var;[s,t]
∥X∥p-var;[s,t] , (8)⏐⏐⏐⏐∫ t

s

Y −dX − YsXs,t

⏐⏐⏐⏐ . ∥Y ∥q-var;[s,t] ∥X∥p-var;[s,t] . (9)

At last, if X, Y are continuous (so that in particular Y − ≡ Y ), the defining limit of the
Young integral exists in (MRS) sense.

Everything is well-known here, although we could not find the equality of the limits in
(7) pointed out explicitly in the literature. The reader can find the proof in Proposition
II.5.1 below.

II.2.2 “General” Itô stochastic integration

[35, 70, 69]
Subject to the usual conditions, any semimartingale X = X (ω) may (and will) be

taken with cádlág sample paths. A classical result of Monroe allows to write any (real-
valued) martingale as a time-change of Brownian motion. As an easy consequence, semi-
martingales inherit a.s. finite 2+ variation of sample paths from Brownian sample paths.
See [45] for much more in this direction, notably a quantification of ∥X∥p-var;[0,T ] for any
p > 2 in terms of a BDG inequality. Let now Y be another (cádlág) semimartingale, so
that Y − is previsible. The Itô integral of Y − against X is then well-defined, and one has
the following classical Riemann–Stieltjes type description,

Theorem II.2.3 (Itô). The Itô integral of Y − against X has the presentation, with
tni = i T

2n
, ∫ T

0

Y −dX = lim
n

∑
i

Y −tni−1
Xtni−1,t

n
i
= lim

n

∑
i

Ytni−1
Xtni−1,t

n
i

(10)

where the limits exists in probability, uniformly in T over compacts.

Again, this is well-known but perhaps the equality of the limits in (10) which the
reader can find in Protter [69, Chapter 2, Theorem 21].

II.2.3 Marcus canonical integration

[60, 61, 39, 1] Real (classical) particles do not jump, but may move at extreme speed.
In this spirit, transform X ∈ W p ([0, T ]) into X̃ ∈ Cp-var([0, T̃ ]), by ”streching” time
whenever

Xt −Xt− ≡ ∆tX ̸= 0,
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followed by replacing the jump by a straight line connecting Xs− with Xs, say

[0, 1] ∋ θ ↦→ Xt− + θ∆tX.

Implemented in a (cádlág) semimartingale context , this leads to Marcus integration∫ T

0

f (X) � dX :=

∫ T

0

f (Xt−) dXt +
1

2

∫ T

0

Df (Xt−) d[X,X]ct

+
∑

t∈(0,T ]

∆tX

{∫ 1

0

f (Xt− + θ∆tX)− f (Xt−)

}
dθ.

(A Young canonical integral, providied p < 2 and f ∈ C1, is defined similarly, it suffices
to omit the continuous quadratic variation term.) A useful consequence, for f ∈ C3(Rd),
say, is the chain-rule ∫ t

0

∂if(X) �X i = f(Xt)− f(X0).

It is also possible to implement this idea in the context of SDE’s,

dZt = f(Zt) � dXt (11)

for f : Rd → Rd×k where X is a semi-martingale, [39]. The precise meaning of this
Marcus canoncial equation is given by

Zt =Z0 +

∫ t

0

f(Zs−)dXs +
1

2

∫ t

0

f ′f(Zs)d[X,X]cs

+
∑
0<s≤t

{φ(f∆Xs, Zs−)− Zs− − f(Zs−)∆Xs}

= Z0 +

∫ t

0

f(Zs−)dXs +
1

2

∫ t

0

f ′f(Zs)d[X,X]s

+
∑
0<s≤t

{φ(f∆Xs, Zs−)− Zs− − f(Zs−)∆Xs − f ′f(Zs)
1

2
(∆Xs)

⊗2}

where φ(g, x) is the time 1 solution to ẏ = g(y), y(0) = x. As one would expected fromt
the afore-mentioned (first order) chain-rule, such SDEs respect the geometry.

Theorem II.2.4 ([39]). If X is a cádlág semi-martingale and f and f ′f are globally
Lipchitz, then solution to the Marcus canoncial SDE (11) exists uniquely and it is a
cádlág semimartingale. Also, if M is manifold without boundary embedded in Rd and
{fi(x) : x ∈M}1≤i≤k are vector fields on M , then

P(Z0 ∈M) = 1 =⇒ P(Zt ∈M ∀t ≥ 0) = 1.

II.2.4 “Continuous” rough integration

[55, 29, 17]
Young integration of (continuous) paths has been the inspiration for the (continuous)

rough integration, elements of which we now recall. Consider p ∈ [2, 3) and X = (X,X) ∈
Cp-var([0, T ]) which in notation of [17] means validity of Chen’s relation

Xs,u = Xs,t + Xt,u +Xs,t ⊗Xt,u (12)
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and ∥X∥p-var := ∥X∥p-var + ∥X∥1/2p/2-var <∞, where

∥X∥p/2-var :=

⎛⎝sup
P

∑
[s,t]∈P

|Xs,t|p/2
⎞⎠2/p

.

For nice enough F (e.g. F ∈ C2 ), both Ys := F (Xs) and Y
′ := DF (Xs) are in Cp-var

and we have

∥R∥p/2-var =

⎛⎝sup
P

∑
[s,t]∈P

|Rs,t|p/2
⎞⎠2/p

<∞ where Rs,t := Ys,t − Y ′sXs,t. (13)

Theorem II.2.5 (Lyons, Gubinelli). Write P for finite partitions of [0, T ]. Then

∃ lim
|P|→0

∑
[s,t]∈P

YsXs,t + Y ′sXs,t =:

∫ T

0

Y dX

where the limit exists in (MRS) sense, cf. Definition II.2.1.

Rough integration extends immediately to the integration of so-called controlled rough
paths, that is, pairs (Y, Y ′) subject to (13). This gives meaning to a rough differential
equation (RDE)

dY = f (Y ) dX

provided f ∈ C2, say: A solution is simply as a path Y such that (Y, Y ′) := (Y, f(Y ))
satisfies (13) and such that the above RDE is satisfied in the (well-defined!) integral
sense, i.e. for all t ∈ [0, T ],

Yt − Y0 =

∫ t

0

f (Y ) dX.

II.2.5 Geometric rough paths and signatures

[55, 51, 56, 22]
A geometric rough path X =(X,X) is rough path with Sym (Xs,t) =

1
2
Xs,t⊗Xs,t ; and

we write X = (X,X) ∈ Cp-var
g ([0, T ]) accordingly. We work with generalized increments of

the form Xs,t = (Xs,t,Xs,t) where we write Xs,t = Xt −Xs for the path increment, while
second order increments Xs,t are determined from (X0,t) by Chen’s relation

X0,s +X0,s ⊗Xs,t + Xs,t = X0,t.

Behind all this is the picture that X0,t := (1, X0,t,X0,t) takes values in a Lie group

T
(2)
1

(
Rd
)
≡ {1}⊕Rd ⊕Rd×d, embedded in the (truncated) tensor algebra T (2)

(
Rd
)
, and

Xs,t = X−10,s ⊗ X0,t. From the usual power series in this tensor algebra one defines, for
a+ b ∈ Rd ⊕ Rd×d,

log (1 + a+ b) = a+ b− 1

2
a⊗ a,

exp (a+ b) = 1 + a+ b+
1

2
a⊗ a.



16

The linear space g(2)(Rd) = Rd ⊕ so (d) is a Lie algebra under

[a+ b, a′ + b′] = a⊗ a′ − a′ ⊗ a;

its exponential image G(2)(Rd) := exp
(
g(2)(Rd)

)
is then a Lie (sub) group under

(1, a, b)⊗ (1, a′, b′) = (1, a+ a′, b+ a⊗ a′ + b′) .

At last we recall that G(2)(Rd) admits a so-called Carnot–Caratheodory norm (abbrevi-
ated as CC norm henceforth), with infimum taken over all curves γ : [0, 1] → Rd of finite
length L,

∥1 + a+ b∥CC : = inf

(
L (γ) : γ1 − γ0 = a,

∫ 1

0

(γt − γ0)⊗ dγt = b

)
≍ |a|+ |b|1/2

≍ |a|+ |Anti (b)|1/2 .

A left-invariant distance is induced by the group structure,

dCC (g, h) =
g−1 ⊗ h


CC

which turns G(2)(Rd) into a Polish space. Geometric rough paths with roughness param-
eter p ∈ [2, 3) are precisely classical paths of finite p-variation with values in this metric
space.

Proposition II.2.6. X = (X,X) ∈ Cp-var
g ([0, T ]) iffX = (1, X,X) ∈ Cp-var

(
[0, T ] , G(2)(Rd)

)
.

Moreover,

∥X∥p-var ≍

⎛⎝sup
P

∑
[s,t]∈P

∥Xs,t∥pCC

⎞⎠1/p

.

The theory of geometric rough paths extends to all p ≥ 1, and a geometric p-rough
path is a path with values in G([p])

(
Rd
)
, the step-[p] nilpotent Lie group with d generators,

embedded in T ([p])
(
Rd
)
, where

T (m)
(
Rd
)
= ⊕m

k=0

(
Rd
)⊗k ⊂ ⊕∞k=0

(
Rd
)⊗k ⊂ T ((Rd))

(the last inclusion is strict, think polyomials versus power-series) and again of finite p-
variation with respect to the Carnot–Caratheodory distance (now defined on G([p])).

Theorem II.2.7 (Lyons’ extension). Let 1 ≤ m := [p] ≤ p ≤ N < ∞. A (continuous)
geometric rough path X(m) ∈ Cp-var

(
[0, T ] , G(m)

)
admits an extension to a path X(N) with

values G(N) ⊂ T (N), unique in the class of G(N)-valued path starting from 1 and of finite
p-variation with respect to CC metric on G(N). In fact,X(N)


p-var;[s,t]

.
X(m)


p-var;[s,t]

.

Remark II.2.8. In view of this theorem, any X ∈ Cp-var
(
[0, T ] , G(m)

)
may be regarded

as X ∈ Cp-var
(
[0, T ] , G(N)

)
, any N ≥ m, and there is no ambiguity in this notation.
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Definition II.2.9. Write π(N) resp. πM for the projection T ((Rd)) → T (N)
(
Rd
)
resp.(

Rd
)⊗M

. Call g ∈ T ((Rd)) group-like, if π(N) (g) ∈ G(N) for all N . Consider a geometric

rough path X ∈ Cp-var
(
[0, T ] , G[p]

)
. Then, thanks to the extension theorem,

S (X)0,T := (1, π1 (X) , .., πm (X) , πm+1 (X) , ..) ∈ T ((Rd))

defines a group-like element, called the signature of X.

The signature solves a rough differential equation (RDE, ODE if p = 1) in the tensor-
algebra,

dS = S ⊗ dX, S0 = 1. (14)

To a significant extent, the signature determines the underlying path X, if of bounded
variation, cf. [32]. (The rough path case was recently obtained in [5]). A basic, yet
immensely useful fact is that multiplication in T ((Rd)), if restricted to group-like elements,
can be linearized.

Proposition II.2.10. (Shuffle product formula) Consider two multiindices v = (i1, .., im) , w =
(j1, .., jn)

XvXw =
∑

Xz

where the (finite) sum runs over all shuffles z of v, w.

II.2.6 Checking p-variation

[43, 27, 58]
(i) As in whenever γ > p− 1 > 0, with tnk = k2−nT , one has

∥X∥pp-var;[0,T ] .
∞∑
n=1

nγ

2n∑
k=1

⏐⏐⏐Xtnk
−Xtnk−1

⏐⏐⏐p . (15)

This estimate has been used [43] to verify finite (sample path) p-variation, simply by
taking expectation, e.g. for the case of Brownian motion by using that E [|Bs,t|p] =
|t− s|1+ϵ for ϵ > 0, provided p > 2. Unfortunately, this argument does not work for jump
processes. Even for the standard Poisson process one only has E [|Ns,t|p] ∼ Cp |t− s|
as t − s → 0, so that the expected value of the right-hande side of (15) is infinity. An
extension of (15) to rough path is

∥X∥pp-var;[0,T ] .
∞∑
n=1

nγ

2n∑
k=1

{⏐⏐⏐Xtnk−1,t
n
k

⏐⏐⏐p + ⏐⏐⏐Xtnk−1,t
n
k

⏐⏐⏐p/2}
and we note that for a geometric rough path X =(X,X), i.e. when Sym (Xs,t) =
1
2
Xs,t ⊗ Xs,t, we may replace X on the right-hand side by the area A = Anti (X). This

has been used in [51], again by taking expecations, to show that Brownian motion B
enhanced with Bs,t :=

∫ t

s
Bs,r ⊗◦dBr constitutes a.s. an element in the rough path space

Cp-var([0, T ], G(2)), for p ∈ (2, 3).
(ii) In [27] an embedding result W δ,q ↪→ Cp-var is shown, more precisely

∥X∥qp-var;[0,T ] .
∫ T

0

∫ T

0

|Xt −Xs|q

|t− s|1+δq
dsdt,
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provided 1 < p < q <∞ with δ = 1/p ∈ (0, 1). The extension to rough paths reads

∥X∥qp-var;[0,T ] .
∫ T

0

∫ T

0

{
|Xs,t|q

|t− s|1+δq
+

|Xs,t|q/2

|t− s|1+δq

}
dsdt.

Since elements in W δ,q are also α-Hölder, with α = δ − 1/q > 0, these embeddings are
not suitable for non-continuous paths.

(iii) In case of a strong Markov process X with values in some Polish space (E, d), a
powerful criterion has been established by Manstavicius [58]. Define

α (h, a) := sup {P (d (Xs,x
t , x) ≥ a)}

with sup taken over all x ∈ E, and s < t in[0, T ] with t− s ≤ h. Under the assumption

α (h, a) .
hβ

aγ
,

uniformly for h, a in a right neighbourhood of zero, the process X has finite p-variation for
any p > γ/β. In the above Poisson example, noting E [|Ns,t|] = O (h) whenever t−s ≤ h,
Chebychev inequality immediately gives α (h, a) ≤ h/a, and we find finite p-variation,
any p > 1. (Of course p = 1 here, but one should not expect this borderline case from a
general criterion.) The Manstavicius criterion will play an important role for us.

II.2.7 Expected signatures

[13, 32, 42, 9]

Recall that for a smooth path X : [0, T ] → Rd, its signature S = S (X) is given by
the group-like element(

1,

∫
0<t1<T

dXr1 ,

∫
0<t1<t2<T

dXr1 ⊗ dXr2 , ..

)
∈ T ((Rd)).

The signature solves an ODE in the tensor-algebra,

dS = S⊗ dX, S0 = 1. (16)

Generalizations to semimartingales are immediate, by interpretation of (16) as Itô, Stratonovich
or Marcus stochastic differential equation. In the same spirit X can be replaced by a
generic (continuous) geometric rough path with the according interpretation of (16) as
(linear) rough differential equation.

Whenever X = X (ω), or X = X (ω) is granted sufficient integrability, we may con-
sider the expected signature, that is

EST ∈ T ((Rd))

defined in the obvious componentwise fashion. To a significant extent, this object behaves
like a moment generating function. In a recent work [9], it is shown that under some mild
condition, the expected signature determines the law of the ST (ω).
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II.2.8 Lévy Processes

[72, 4, 1, 34]
Recall that a d-dimensional Lévy process (Xt) is a stochastically continuous process

such that (i) for all 0 < s < t < ∞, the law of Xt − Xs depends only on t − s; (ii) for
all t1, .., tk such that 0 < t1 < .. < tk the random variables Xti+1

−Xti are independent.
Lévy process can (and will) be taken with cádlág sample paths and are characterized by
the Lévy triplet (a, b,K), where a = (ai,j) is a positive semidefinite symmetric matrix,
b = (bi) a vector and K(dx) a Lévy measure on Rd (no mass at 0, integrates min(|x|2, 1))
so that

E
[
ei⟨u,Xt⟩

]
= exp

(
−1

2
⟨u, au⟩+ i ⟨u, b⟩+

∫
Rd

(eiu y − 1− iu y1{|y|<1})K (dy)

)
. (17)

The Itô–Lévy decomposition asserts that any such Lévy process may be written as,

Xt = σBt + bt+

∫
(0,t]×{|y|<1}

yÑ (ds, dy) +

∫
(0,t]×{|y|≥1}

yN (ds, dy) (18)

where B is a d-dimensional Browbian motion, σσT = a, and N (resp. Ñ) is the Pois-
son random meausre (resp. compensated PRM) with intensity dsK (dy). A Markovian
description of a Lévy process is given in terms of its generator

(Lf) (x) = 1

2

d∑
i,j=1

ai,j∂i∂jf+
d∑

i=1

bi∂if+

∫
Rd

(
f (x+ y)− f (x)− 1{|y|<1}

d∑
i=1

yi∂if

)
K (dy) .

(19)
By a classical result of Hunt [34], this characterization extends to Lévy process with
values in a Lie group G, defined as above, but with Xt − Xs replaced by X−1s Xt. Let
{u1, .., um} be a basis of the Lie algebra g, thought of a left-invariant first order differential
operators. In the special case of exponential Lie groups, meaning that exp : g → G is an
analytical diffeomorphism (so that g = exp (xiui) for all g ∈ G, with canonical coordinates
xi = xi (g) of the first kind) the generator reads

(Lf) (x) = 1

2

m∑
v,w=1

av,wuvuwf+
m∑
v=1

bvuvf+

∫
G

(
f (xy)− f (x)− 1{|y|<1}

m∑
v=1

yvuvf

)
K (dy) .

(20)
As before the Lévy triplet (a, b,K) consists of (av,w) positive semidefinite symmetric,
b = (bv) and K(dx) a Lévy measure on G (no mass at the unit element, integrates
min(|x|2, 1), with |x|2 :=

∑m
i=v (x

v)2.)

II.2.9 The work of D. Williams

[80]
Williams first considers the Young regime p ∈ [1, 2) and shows that every X ∈

W p ([0, T ]) may be turned into X̃ ∈ Cp-var([0, T̃ ]), by replacing jumps by segments
of straight lines (in the spirit of Marcus canonical equations, via some time change
[0, T ] → [0, T̃ ]) Crucially, this can be done with a uniform estimate ||X̃||p-var . ||X||p-var.
In the rough regime p ≥ 2, Williams considers a generic d-dimensional Lévy process X
enhanced with stochastic area

As,t := Anti

∫
(s,t]

(X−r −Xs)⊗ dXr
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where the stochastic integration is understood in Itô-sense. On a technical level his main
results [80, p310-320] are summarized in

Theorem II.2.11 (Williams). Assume X is a d-dimensional Lévy process X with triplet
(a, b,K).
(i) Assume K has compact support. Then

E
[
|As,t|2

]
. |t− s|2 .

(ii) For any p > 2, with sup taken over all partitions of [0, T ] ,

sup
P

∑
[s,t]∈P

|As,t|p/2 <∞ a.s.

Clearly, (X,A) (ω) is all the information one needs to have a (in our terminology)
cadlag geometric p-rough path X = X (ω), any p ∈ (2, 3). However, Williams does not
discuss rough integration, nor does he give meaning (in the sense of an integral equation)
to a rough differential equations driven by cadlag p-rough paths. Instead he constructs,
again in the spirit of Marcus, X̃ ∈ Cp-var([0, T̃ ]), and then goes on to define a solution Y
to an RDE driven by X (ω) as reverse-time change of a (classical) RDE solution driven
by the (continuous) geometric p-rough path X̃. While this construction is of appealing
simplicity, the time-change depends in a complicated way on the jumps of X (ω) and the
absence of quantitative estimates, makes any local analysis of so-defined RDE solution
difficult (starting with the identification of Y as solution to the corresponding Marcus
canonical equation). We shall not rely on any of Williams’ result, although his ideas will
be visible at various places in this paper. A simplified proof of Theorem II.2.11 will be
given below.

II.3 General rough paths: definition and first exam-

ples

The following definitions are fundamental.

Definition II.3.1. Fix p ∈ [2, 3). We say that X = (X,X) is a general (cádlág) rough
path over Rd if

(i) Chen’s relation holds, i.e. for all s ≤ u ≤ t, Xs,t − Xs,u − Xu,t = Xs,u ⊗Xu,t;

(ii) the following map

[0, T ] ∋ t ↦→ X0,t = (X0,t,X0,t) ∈ Rd ⊕ Rd×d

is cádlág;

(iii) p-variation regularity in rough path sense holds, that is

∥X∥p-var;[0,T ] + ∥X∥1/2p/2-var;[0,T ] <∞.

We then write
X ∈ Wp = Wp

(
[0, T ] ,Rd

)
.
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Definition II.3.2. We call X ∈ Wp geometric if it takes values in G(2)(Rd), in symbols
X ∈ Wp

g . If, in addition,

(∆tX,∆tA) := log∆tX ∈ Rd ⊕ {0} ⊂ g(2)(Rd)

we call X Marcus-like, in symbols X ∈ Wp
M.

As in the case of (continuous) rough paths, cf. Section II.2.5,

Wp
g := Wp

g

(
[0, T ] ,Rd

)
= W p

(
[0, T ], G(2)(Rd)

)
so that general geometric p-rough paths are precisely paths of finite p-variation inG(2)(Rd)
equipped with CC metric. We can generalize the definition to general p ∈ [1,∞) at the
price of working in the step-[p] free nilpotent group,

Wp
g = W p

(
[0, T ] , G([p])

)
.

As a special case of Lyons’ extension theorem (Theorem II.2.7), for a given continuous
path X ∈ W p for p ∈ [1, 2), there is a unique rough path X = (X,X) ∈ Wp. (Uniqueness
is lost when p ≥ 2, as seen by the perturbation X̄s,t = Xs,t + a (t− s), for some matrix
a.)

The situation is different in presence of jumps and Lyons’ First Theorem fails, even
when p = 1. Essentially, this is due to the fact that there are non-trivial pure jump paths
of finite q-variation with q < 1.

Proposition II.3.3 (Canonical lifts of paths in Young regime). Let X ∈ W p
(
[0, T ] ,Rd

)
be a cádlág path of finite p-variation for p ∈ [1, 2). (i) It is lifted to a (in general,
non-geometric) rough path X = (X,X) ∈ Wp by enhancing X with

Xs,t = (Young)

∫
(s,t]

Xs,r− ⊗ dXr

(ii) It is lifted to a Marcus-like cádlág rough path XM =
(
X,XM

)
∈ Wp

M by enhancing X
with

XM
s,t = Xs,t +

1

2

∑
r∈(s,t]

(∆rX)⊗ (∆rX) .

Proof. As an application of Young’s inequality, it is easy to see that

|Xs,t| . ||X||2p-var;[s,t]

Note that ω(s, t) := ||X||pp-var;[s,t] is superadditive, i.e. for all s < u < t, ω(s, u)+ω(u, t) ≤
ω(s, t), so that ∑

[s,t]∈P

|Xs,t|
p
2 .

∑
[s,t]∈P

||X||pp-var;[s,t] . ||X||pp-var;[0,T ]

Taking sup over P , X has p
2
variation. We then note that⎛⎝∑

r∈(s,t]

(∆rX)⊗ (∆rX)

⎞⎠
p
2

≤

⎛⎝∑
r∈(s,t]

|∆rX|2
⎞⎠

p
2

≤
∑
r∈(s,t]

|∆rX|p
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Since the jumps of X are p-summable, we immediately conclude that XM also is of
finite p

2
variation.

Also, from “integration by parts formula for sums”, it can be easily checked that
Sym(XM

s,t) =
1
2
Xs,t ⊗Xs,t. The fact that

(
X,XM

)
forms a Marcus-like rough path comes

from the underlying idea of the Marcus integral replaces jumps by straight lines which
do not create area. Precisely,

lim
s↑t

XM
s,t =: ∆tXM =

1

2
(∆tX)⊗2

which is symmetric. Thus ∆tA = Anti(∆tXM) = 0.

Clearly, in the continuous case every geometric rough path is Marcus-like and so there
is need to distinguish them. The situation is different with jumps and there are large
classes of Marcus-like as well as non-Marcus-like geometric rough paths. We give some
examples.

Example 3 (Pure area jump rough path). Consider a so (d)-valued path (At) of
finite 1-variation, started at A0 = 0. Then

X0,t := exp (At)

defines a geometric rough path, for any p ≥ 2, i.e. X (ω)∈ Wp
g but, unless A is continu-

ous,

X (ω) /∈Wp
M.

It is not hard to randomize the above non-Marcus M rough path example.

Example 4 (Pure area Poisson process). Consider an i.i.d. sequence of a so (d)-
valued r.v. (an (ω)) and a standard Poisson process Nt with rate λ > 0. Then, with
probability one,

X0,t (ω) := exp

(
Nt∑
n=1

an (ω)

)
yields a geometric, non-Marcus like cádlág rough path for any p ≥ 2.

It is instructive to compare the last examples with the following two classical examples
from (continuous) rough path theory.

Example 5 (Pure area rough path). Fix a ∈ so (d). Then

X0,t := exp (a t) ,

yields a geometric rough path, X ∈ Cp
g

(
[0, T ] ,Rd

)
, above the trivial path X ≡ 0, for any

p ∈ [2, 3).

Example 6 (Brownian rough path in magnetic field). Write

BS
s,t =

(
Bs,t,

∫ t

s

Bs,r ⊗ ◦dBr

)
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for the Brownian rough path based on iterated Stratonovich integration. If one considers
the (zero-mass) limit of a physical Brownian particle, with non-zero charge, in a constant
magnetic field [24] one finds the (non-canonical) Brownian rough path

Bm
0,t := BS

0,t + (0, a t) ,

for some a ∈ so(d). This yields a continuous, non-canonical geometric rough path lift of
Brownian motion. More precisely, Bm ∈ Cp

g

(
[0, T ] ,Rd

)
a.s, for any p ∈ (2, 3).

As is well-known in rough path theory, it is not trivial to construct suitable X given
some (irregular) path X, and most interesting constructions are of stochastic nature. At
the same time, X does not determine X, as was seen in the above examples. That said,
once in possession of a (cádlág) rough path, there are immediate ways to obtain further
rough paths, of which we mention in particular perturbation of X by increments of some
p/2-variation path, and, secondly, subordination of (X,X) by some increasing (cádlág)
path. For instance, in a stochastic setting, any time change of the (canonical) Brownian
rough path, by some Lévy subordinator for instance, will yield a general random rough
path, corresponding to the (cádlág) rough path associated to a specific semimartingale.

For Brownian motion, as for (general) semimartingales, there are two “canoncial”
candidates for X, obtained by Itô- and Marcus canonical (=Stratonovich in absence of
jumps) integration, respectively. We have

Proposition II.3.4. Consider a d-dimensional (cádlág) semimartingale X and let p ∈
(2, 3). Then the following three statements are equivalent.
(i) XI (ω) ∈ Wp a.s where XI = (X,XI) and

XI
s,t :=

∫ t

s

Xs,r− ⊗ dXr (Itô)

(ii) XM (ω) ∈ Wp
M (⊂ Wp

g ) a.s. where XM = (X,XM) and

XM
s,t :=

∫ t

s

Xs,r− � ⊗dXr (Marcus).

(iii) The stochastic area (identical for both Itô- and Marcus lift)

As,t := Anti
(
XI

s,t

)
= Anti

(
XM

s,t

)
has a.s. finite p/2-variation.

Proof. Clearly

Sym(XM
s,t) =

1́

2
Xs,t ⊗Xs,t

is of finite p/2-variation, a consequence of X ∈ W p a.s., for any p > 2. Note that XM−XI

is symmetric,

(XM
s,t)

i,j − (XI
s,t)

i,j =
1

2
[X i, Xj]cs,t +

1

2

∑
r∈(s,t]

∆rX
i∆rX

j.

and is of finite p
2
variation as [X i, Xj]c is of bounded variation, while⏐⏐⏐⏐⏐⏐

∑
r∈(s,t]

∆rX
i∆rX

j

⏐⏐⏐⏐⏐⏐
p
2

≤

⏐⏐⏐⏐⏐⏐12
∑
r∈(s,t]

|∆rX|2
⏐⏐⏐⏐⏐⏐
p
2

.
∑
r∈(s,t]

|∆rX|p <∞ a.s.

because jumps of semimartingale is square summable and thus p ≥ 2 summable.



24

We now given an elegant criterion which allows to check finite 2+-variation of G(2)-
valued processes.

Proposition II.3.5. Consider a G(2)(Rd)-valued strong Markov process Xs,t := X−1s ⊗
Xt = exp (Xs,t,As,t). Assume

E |Xs,t|2 . |t− s| ,
E |As,t|2 . |t− s|2 ,

uniformly in s, t ∈ [0, T ]. Then, for any p > 2,

∥X∥p-var + ∥A∥p/2-var <∞ a.s.

Equivalently, ||X||p-var <∞ a.s.

Proof. Consider s, t ∈ [0, T ] with |t− s| ≤ h. Then

P (|Xs,t| ≥ a) ≤ 1

a2
E |Xs,t|2 .

h

a2
,

P
(
|As,t|1/2 ≥ a

)
= P

(
|As,t| ≥ a2

)
≤ 1

a2
E |As,t|

≤ 1

a2
(
E |As,t|2

)1/2
=

h

a2
.

From properties of the Carnot–Caratheodory metric dCC(Xs,Xt) ≍ |Xs,t|+ |As,t|1/2 and
the above estimates yield

P (d(Xs,Xt) ≥ a) .
h

a2
.

Applying the result of Manstavicius (cf. Section II.2.6) with β = 1, γ = 2 we obtain
a.s. finite p-variation of X, any p > γ/β = 2, with respect to dCC and the statement
follows.

As will be detailed in Section II.9.1 below, this criterion, combined with the ex-
pected signature of a d-dimensional Lévy process, provides an immediate way to recover
Williams’ rough path regularity result on Lévy process (Theorem II.2.11) and then sig-
nificantly larger classes of jump diffusions. With the confidence that there exists large
classes of random cádlág rough paths, we continue to developt the deterministic theory.

II.4 The minimal jump extension of cadlag rough

paths

In view of Theorem II.2.7, it is natural to ask for such extension theorem for cádlág
rough paths. (For continuous paths in Young regime, extension is uniquely given by
n-fold iterated young integrals.) However, in presence of jumps the uniqueness part of
Lyons’ extension theorem fails, as already seen by elementary examples of finite variation
paths.
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Example 7. Let p = 1, N = 2 and consider the trivial path X ≡ 0 ∈ W 1
(
[0, 1],Rd

)
,

identified with X ≡ (1, 0) ∈ W 1
(
[0, 1], G(1)

)
. Consider a non-trivial so (d)-valued cadlag

path a(t), of pure finite jump type, i.e.

a0,t =
∑
s∈(0,t]
(finite)

∆as.

Then two possible lifts of X are given by

X(2) ≡ (1, 0, 0) , X̃
(2)
t ≡ (1, 0, at − a0) ∈ W1-var

g = W 1
(
[0, 1], G(2)

)
.

We can generalize this example as follows.

Example 8. Again p = 1, N = 2 and consider X ∈ W 1-var. Then

X
(2)
t :=

(
1, Xt,XM

t

)
∈ W1-var

g

and another choice is given by

X̃
(2)
t ≡

(
1, Xt,XM

t + at − a0
)
∈ W1-var

g ,

whenever, at ∈ so(d) is piecewise constant, with finitely many jumps ∆at ̸= 0.

Note that, among all such lifts X̃
(2)
t , the X

(2)
t is minimal in the sense that log(2) ∆X

(2)
t

has no 2-tensor component, and in fact,

log(2)∆X
(2)
t = ∆Xt.

We have the following far-reaching extension of this example. Note that we consider
gn ⊃ gm in the obvious way whenever n ≥ m.

Theorem II.4.1 (Minimal jump extension). Let 1 ≤ p < ∞ and N ∋ n > m := [p]. A
cadlag rough path X(m) ∈ Wp

g = W p
(
[0, T ] , G(m)

)
admits an extension to a path X(n) of

with values G(n) ⊂ T (n), unique in the class of G(n)-valued path starting from 1 and of
finite p-variation with respect to CC metric on G(n) subject to the additional constraint

log(n)∆X
(n)
t = log(m) ∆X

(m)
t . (21)

For the proof, we will adopt the Marcus / Willliams idea of introducing an artificial
additional time interval at each jump times of Xm, during which the jump will be suitably
traversed. Since Xm has countably infinite many jumps, we number the jumps as follows.
Let t1 is such that

||∆t1X
(m)||CC = sup

t∈[0,T ]

{||∆tX
(m)||CC}

Similarly, define t2 with

||∆t2X
(m)||CC = sup

t∈[0,T ],t ̸=t1

{||∆tX
(m)||CC}
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and so on. Note that the suprema are always attained and if ||∆tX
(m)||CC ̸= 0, then

t = tk for some k. Indeed, it readily follows from the cádlág (or regulated) property that
for any ϵ > 0, there are only finitely many jumps with ||∆tX

(m)||CC > ϵ.
Choose any sequence δk > 0 such that

∑
k δk < ∞. Starting from t1, we recursively

introduce an interval of length δk at tn, during which the jump ∆tkX
(m) is traversed

suitably, to get a continuous curve X̃(m) on the (finite) interval [0, T̃ ] where

T̃ = T +
∞∑
k=1

δk <∞.

Taking motivation from simple examples, in order to get minimal jump extensions, we
choose the “best possible” curve traversing the jump, so that it doesn’t create additional
terms in log(n) ∆X

(n)
t . If [a, a+ δk] ⊂ [0, T̃ ], is the jump segment corresponding to the kth

jump, define

γkt = exp(m)

(
a+ δk − t

δk
log(m) X

(m)
tk− +

t− a

δk
log(m) X

(m)
tk

)
Lemma II.4.2. γk : [a, a + δk] → G(m) is a continuous path of finite p variation w.r.t.
the CC metric and we have the bound

||γk||pp-var;[a,a+δk]
. ||∆tkX

(m)||p. (22)

Proof. Omit k. W.l.o.g. we can assume that γt = exp(m)((1 − t) log(m) x + t log(m) y)
for t ∈ [0, 1] for some x, y ∈ G(m). Also, as an application of Campbell-Baker-Hausdorff
formula,

exp(m)(log(m) x)⊗ exp(m)(t log(m)(x−1 ⊗ y)) = exp(m)((1− t) log(m) x+ t log(m) y)

so that we can assume x = 1. At this point, we have

γs,t = exp(m)((t− s) log(m) y)

Also, since p ≥ m, it is easy to check that for z ∈ gm and λ ∈ [0, 1],

|| exp(m)(λx)||p . λ|| exp(m)(z)||p

So,
||γs,t||p . (t− s)||y||p

which finishes the claim.

Lemma II.4.3. The curve X̃(m) : [0, T̃ ] → G(m) constructed as above from X(m) ∈
W p

(
[0, T ] , G(m)

)
is a continuous path of finite p variation w.r.t. the CC metric and we

have the bound
||X̃(m)||p-var;[0,T̃ ] . ||X(m)||p-var;[0,T ] (23)

Proof. For simpler notation, omit m and write X̃,X. The curve X̃ is continuous by
construction. To see the estimate, introduce ω(s, t) = ||X||pp−var,[s,t] with the notation

ω(s, t−) := ||X||pp-var,[s,t). Note that ω(s, t) is superadditive. Call t′ the preimage of

t ∈ [0, T̃ ] under the time change from [0, T ] → [0, T̃ ]. Note that [0, T̃ ] contains (possibly
countably many) jump segements In of the form [a, a + δk). Let us agree that point in
these jump segments are “red” and all remaining points are “blue”. Note that jump
segements correspond to one point in the pre-image. For 0 ≤ s < t ≤ T̃ , there are
following possiblities;
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• Both s, t are blue, in which case ||X̃s,t||p = ||Xs′,t′ ||p ≤ ||X||pp-var,[s′,t′] = ω(s′, t′)

• Both s, t are red and in same jump segment [a, a+ δk), in which case

||X̃s,t||p ≤ ||γ||pp-var;[a,a+δk]

• Both s, t are red but in different jump segment s ∈ [a, a+ δk) and t ∈ [b, b+ δl), in
which case s′ = (a+ δk)

′, t′ = (b+ δl)
′ and

X̃s,t

p ≤ 3p−1
(X̃s,a+δk

p + X̃a+δk,b

p + X̃b,t

p) .
≤ 3p−1

(
||γk||pp-var;[a,a+δk]

+ ||Xs′,t′−||p + ||γl||pp-var,[b,b+δl]

)
≤ 3p−1

(
||γk||pp-var;[a,a+δk]

+ ω(s′, t′−) + ||γl||pp-var,[b,b+δl]

)
• s is blue and t ∈ [a, a+ δk) is red, in which caseX̃s,t

p ≤ 2p−1
(X̃s,a

p + X̃a,t

p)
≤ 2p−1

(
ω(s′, t′−) + ||γk||pp-var;[a,a+δk]

)
• s ∈ [a, a+ δk) is red and t is blue, then

X̃s,t

p ≤ 2p−1
(X̃s,a+δk

p + X̃a+δk,t

p)
≤ 2p−1

(
||γk||pp-var;[a,a+δk]

+ ω(s′, t′)
)

In any case, by using Lemma II.4.2, we see thatX̃s,t

p . ω(s′, t′) + ||∆s′X||p + ||∆t′X||p

which implies for any partition P of [0, T̃ ],∑
[s,t]∈P

X̃s,t

p .
∑
[s′,t′]

ω(s′, t′) + ||∆s′X||p + ||∆t′X||p

. ω(0, T ) +
∑

0<s≤T

||∆sX||p

Finally, note that ∑
0<s≤T

||∆sX||p ≤ ||X||pp-var;[0,T ]

which proves the claim.
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Proof of Theorem II.4.1. Since X̃(m) is continuous path of finite p-variation on [0, T̃ ],
from Theorem II.2.7, it admits an extension X̃(n) taking values in G(n) starting from 1
for all n > m. We emphasize that S = X̃(n) can be obtained as linear RDE solution to

dS = S ⊗ dX(m), S0 = 1 ∈ T (n). (24)

We claim that for each jump segment [a, a+ δk],

X̃
(n)
a,a+δk

= exp(n)(log(m)(∆tkX
(m)))

which amounts to proving that if γt = exp(m)((1− t) log(m) x+ t log(m) y) for t ∈ [0, 1] for
some x, y ∈ G(m), then its extension γ(n) to G(n) satisfies

γ
(n)
0,1 = exp(n)(log(m)(x−1 ⊗ y))

By Campbell-Baker-Hausdorff formula,

exp(m)(log(m) x)⊗ exp(m)(t log(m)(x−1 ⊗ y)) = exp(m)((1− t) log(m) x+ t log(m) y)

Thus,

γs,t = expm((t− s) logm(x−1 ⊗ y))

Here we have used our crucial construction that log(m) γt is linear in t. Now by guessing
and uniqueness of Theorem II.2.7,

γ
(n)
s,t = exp(n)((t− s) log(m)(x−1 ⊗ y))

which proves that claim and defining X
(n)
t′ = X̃

(n)
t finishes the existence part of Theorem

II.4.1.

For uniqueness, w.l.o.g., assume n = m+1. Let Z
(n)
t = X

(m)
t +Mt andY

(n)
t = X

(m)
t +Nt

are two extension of X
(m)
t as prescribed of Theorem II.4.1, where Mt, Nt ∈ (Rd)⊗n.

Consider

St = Z
(n)
t ⊗ {Y(n)

t }−1 = (X
(m)
t +Mt)⊗ (X

(m)
t +Nt)

−1 = 1 +Mt −Nt

where the last equality is due to truncation in the (truncated) tensor product. This in
particular implies St is in centre of the group G(n) (actually group T n

1 ) and thus so is
S−1s ⊗ St. So, by using symmetry and subadditivity of CC norm,

||S−1s ⊗ St|| = ||Y(n)
s ⊗ Z

(n)
s,t ⊗ {Y(n)

t }−1|| = ||Z(n)
s,t ⊗ {Y(n)

s,t }−1|| ≤ ||Z(n)
s,t ||+ ||Y(n)

s,t ||

which implies St is of finite p-variation. Also,

∆tS = Y
(n)
t− ⊗∆tZ

(n) ⊗Y
(n)
t

Since ∆tZ
(n) = ∆tY

(n), we see that log(n)∆tS = 0, i.e. St is continuous. Thus,M−N is a
continuous path in (Rd)⊗n with finite p

n
< 1 variation, which implies Mt = Nt concluding

the proof.
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Remark II.4.4. In the proof of uniqueness of minimal jump extension, we didn’t use the
structure of group G(n). The fact that the minimal jump extension takes value in G(n)

follows by construction. That said, if Z(n) and Y(n) are two extensions of X(m) taking
values in T (n)(Rd), of finite p-variation w.r.t. norm

||1 + g|| := |g1|+ |g2|
1
2 + ..+ |gn|

1
n

and
∆tZ

(n) = ∆tY
(n) = exp(n)(log(m)(∆tX

(m)))

then same argument asw above implies

Z
(n)
t = Y

(n)
t

Definition II.4.5 (Signature of a cadlag rough path). Given X ∈ W p
(
[0, T ] , G([p])

)
call

X(n) constructed above the step-n signature of X. The T ((Rd))-valued projective limit of

X
(n)
0,T as n→ ∞ is called signature of X over [0, T ].

II.5 Rough integration with jumps

In this section, we will define rough integration for cádlág rough paths in the spirit of
[81, 29] and apply this for pathwise understanding of stochastic integral. We restrict
ourselves to case p < 3. For p ∈ [1, 2), Young integration theory is well established and
interesting case is for p ∈ [2, 3). Recall the meaning of convergence in (RRS) sense, cf.
Definition II.2.1. In order to cause no confusion between following two choices of Riemann
sum approximation

S(P) :=
∑

[s,t]∈P

YsXs,t

and
S ′(P) :=

∑
[s,t]∈P

Ys−Xs,t

we add that, if X and Y are regulated paths of finite p-variation for p < 2, then

C := (RRS) lim
|P|→0

∑
[s,t]∈P

YsXs,t

exist if either Y is cádlág or Y is cáglád (left continuous with right limit) and X is cádlág.
This can be easily verified by carefully reviewing the proof of existence of Young

integral as in [12]. Note that we have restricted ourselves to left point evaluation in
Riemann sums. Thus if Y is a cádlág path then,

C1 := (RRS) lim
|P|→0

∑
[s,t]∈P

YsXs,t

and
C2 := (RRS) lim

|P|→0

∑
[s,t]∈P

Ys−Xs,t

both exists. But it doesn’t cause any ambiguity because in fact they are equal.
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Proposition II.5.1. If X and Y are cádlág paths of finite p-variation for p < 2, then
C1 = C2.

Proof. For each ϵ > 0,

S(P) :=
∑

[s,t]∈P

∆YsXs,t =
∑

[s,t]∈P

∆Ys1|∆Ys|>ϵXs,t +
∑

[s,t]∈P

∆Ys1|∆Ys|≤ϵXs,t

Since there are finitely many jumps of size bigger than ϵ and X is right continuous,

lim
|P|→0

∑
[s,t]∈P

∆Ys1|∆Ys|>ϵXs,t = 0

On the other hand,⏐⏐⏐⏐⏐⏐
∑

[s,t]∈P

∆Ys1|∆Ys|≤ϵXs,t

⏐⏐⏐⏐⏐⏐
2

≤
∑

[s,t]∈P

(|∆Ys|2 1|∆Ys|≤ϵ)
∑

[s,t]∈P

|Xs,t|2

≤ ε2−p
∑

[s,t]∈P

|∆Ys|p
∑

[s,t]∈P

|Xs,t|2

≤ ε2−p ∥Y ∥pp-var ∥X∥22-var

where we used p < 2 in the step. It thus follows that

lim
ϵ→0

lim
|P|→0

∑
[s,t]∈P

∆Ys1|∆Ys|≤ϵXs,t = 0

which proves the claim.

One fundamental difference between continuous and cádlág cases is absence of uniform
continuity which implies small oscillation of a path in small time interval. This becomes
crucial in the construction of integral, as also can be seen in construction of Young
integral (see [12]) when the integrator and integrand are assumed to have no common
discontinuity on the same side of a point. This guarantees at least one of them to have
small oscillation on small time intervals.

Definition II.5.2. A pair of functions (Xs,t, Ys,t) defined for {0 ≤ s ≤ t ≤ T} is called
compatible if for all ϵ > 0, there exist a partition τ = {0 = t0 < t1 · · · < tn = T} such
that for all 0 ≤ i ≤ n− 1,

Osc(X, [ti, ti+1]) ≤ ϵ OR Osc(Y, [ti, ti+1]) ≤ ϵ

where Osc(Z, [s, t]) := sup{|Zu,v|
⏐⏐s ≤ u ≤ v ≤ t}.

Proposition II.5.3. If X is a cádlág path and Y is cáglád path, then (X, Y ) is a com-
patible pair.

Proof. See [12]
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Ler X = (X,X) be cádlág rough path in the sense of Definition II.3.1. For the purpose
of rough integration we will use a different enhancement

X̃s,t = Xs,t +∆sX ⊗Xs,t

Note clearly that X̃ is also of finite p
2
variation, X̃0,t is cádlág path and for s ≤ u ≤ t,

X̃s,t − X̃s,u − X̃u,t = X−s,u ⊗Xu,t (25)

where X−t := Xt−, X
−
0 = X0 = 0.

Lemma II.5.4. For any ϵ > 0, there exist a partition τ = {0 = t0 < t1 · · · < tn = T}
such that for all 0 ≤ i ≤ n− 1,

Osc(X̃, (ti, ti+1)) ≤ ϵ

Proof. Since X̃0,t is cádlág, from (25), it follows that for each y ∈ (0, T ), there exist a
δy > 0 such that

Osc(X̃, (y − δy, y)) ≤ ϵ and Osc(X̃, (y, y + δy)) ≤ ϵ

Similarly there exist δ0 and δT such that Osc(X̃, (0, δ0)) ≤ ϵ and Osc(X̃, (T − δT , T )) ≤ ϵ.
Now family of open sets

[0, δ0), (y − δy, y + δy), ..., (T − δT , T ]

form a open cover of interval [0, T ], so it has a finite subcover [0, δ0), (y1 − δy1 , y1 +
δy1), .., (yn − δyn , yn + δyn), (T − δT , T ]. Without loss of generality, we can assume that
each interval in the finite subcover is the first interval that intersects its previous one and
the claim follows by choosing

t0 = 0, t1 ∈ (y1 − δy1 , δ0), t2 = y1, t3 ∈ (y2 − δy2 , y1 + δy1), ..., t2n+1 = T

Lemma II.5.5. For any cáglád path Y , the pair (Y, X̃) is a compatible pair.

Proof. Choose a partition τ such that for all [s, t] ∈ τ ,

Osc(Z, (s, t)) ≤ ϵ

for Z = Y,X,X−, X̃. We refine the partition τ by adding a common continuity point of
Yt, Xt, X

−
t and X̃0,t in each interval (s, t). Note that such common continuity points will

exist because a regulated paths can have only countably many discontinuities. With this
choice of partition, we observe that on every odd numbered [s, t] ∈ τ ,

Osc(X̃, [s, t]) ≤ ϵ

and on every even numbered [s, t] ∈ τ ,

Osc(Y, [s, t]) ≤ ϵ
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Definition II.5.6. Given X ∈ W p, a pair of cádlág paths (Y, Y ′) of finite p-variation is
called controlled rough path if Rs,t = Ys,t − Y ′sXs,t has finite

p
2
-variation, in the sense

||R|| p
2
:= sup

P

{ ∑
[s,t]∈P

|Rs,t|
p
2

} 2
p<∞.

It is easy to see that 1-forms (Yt, Y
′
t ) := (f(Xt), f

′(Xt)) for f ∈ C2 is a controlled
rough path. Also

R̃s,t := Y −s,t − Y ′s−X
−
s,t

is also of finite p
2
-variation and pair (R̃,X) is a compatible pair.

Theorem II.5.7. Let X = (X,X) be a cádlág rough path and (Y, Y ′) a controlled rough
path, then ∫ T

0

Yr−dXr := lim
|P|→0

S(P) = lim
|P|→0

S ′(P)

where both limits exist in (RRS) sense, as introduced in Definition II.2.1 and

S(P) :=
∑

[s,t]∈P

Ys−Xs,t + Y ′s−X̃s,t =
∑

[s,t]∈P

Ys−Xs,t + Y ′s−(Xs,t +∆sX ⊗Xs,t)

S ′(P) =
∑

[s,t]∈P

YsXs,t + Y ′sXs,t.

Furthermore, we have the following rough path estimates: there exist a constant C de-
pending only on p such that⏐⏐⏐⏐∫ t

s

Yr−dXr − Ys−Xs,t − Y ′s−X̃s,t

⏐⏐⏐⏐ ≤ C
(
||R̃|| p

2
,[s,t]||X||p,[s,t] + ||Y ′−||p,[s,t]||X̃|| p

2
,[s,t]

)
(26)

⏐⏐⏐⏐∫ t

s

Yr−dXr − YsXs,t − Y ′sXs,t

⏐⏐⏐⏐ ≤ C
(
||R|| p

2
,[s,t]||X||p,[s,t] + ||Y ′||p,[s,t]||X|| p

2
,[s,t]

)
.(27)

Proof. We first consider the approximations given by S(P). We first note that if ω is a
superadditive function defined on intervals, i.e. for all s ≤ u ≤ t

ω[s, u] + ω[u, t] ≤ ω[s, t]

then, for any partition P of [s, t] into r ≥ 2 intervals, there exist intervals [u−, u] and
[u, u+] such that

ω[u−, u+] ≤
2

r − 1
ω[s, t] (28)

Also, we can immediately verify that for Z of finite p-variation,

ω[s, t] := ||Z||pp,[s,t]

defines and superadditive function and if ω1 and ω2 are two positive superaddtive func-
tions, then for α, β ≥ 0, α+ β ≥ 1,

ω := ωα
1ω

β
2
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is also a superadditive function.
Now, it is enough to prove that for any ϵ > 0, there exist a partition τ (to be chosen
properly) such that for all refinement partition P of τ ,

|S(P)− S(τ)| ≤ ϵ

Choose p < p′ < 3 and let [s, t] ∈ τ and Ps,t be the partition of [s, t] by refinement points
of P . Note that

ω[s, t] := ||R̃||
p′
3
p′
2
,[s,t]

||X||
p′
3

p′,[s,t] + ||Y ′−||
p′
3

p′,[s,t]||X̃||
p′
3
p′
2
,[s,t]

is a superadditive and there exist u− < u < u+ ∈ Ps,t such that (28) holds. Using (25)

|S(Ps,t)− S(Ps,t \ u)| =|R̃u−,uXu,u+ + Y
′−
u−,uX̃u,u+ |

≤ ||R̃|| p′
2
,[u−,u+]

||X||p′,[u−,u+] + ||Y ′−||p′,[u−,u+]||X̃|| p′
2
,[u−,u+]

≤ (||R̃||
p′
3
p′
2
,[u−,u+]

||X||
p′
3

p′,[u−,u+] + ||Y ′−||
p′
3

p′,[u−,u+]||X̃||
p′
3
p′
2
,[u−,u+]

)
3
p′

≤ C

(r − 1)
3
p′
(||R̃||

p′
3
p′
2
,[s,t]

||X||
p′
3

p′,[s,t] + ||Y ′−||
p′
3

p′,[s,t]||X̃||
p′
3
p′
2
,[s,t]

)
3
p′

≤ C

(r − 1)
3
p′
(||R̃|| p′

2
,[s,t]

||X||p′,[s,t] + ||Y ′−||p′,[s,t]||X̃|| p′
2
,[s,t]

)

where C is a generic constant. Iterating this, since p′ < 3, we get that

|S(Ps,t)− Ys−Xs,t + Y ′s−X̃s,t| ≤ C(||R̃|| p′
2
,[s,t]

||X||p′,[s,t] + ||Y ′−||p′,[s,t]||X̃|| p′
2
,[s,t]

)

Thus,

|S(P)− S(τ)| ≤ C
∑
[s,t]∈τ

||R̃|| p′
2
,[s,t]

||X||p′,[s,t] + ||Y ′−||p′,[s,t]||X̃|| p′
2
,[s,t]

Note that (R̃,X) and (Y
′−, X̃) are compatible pairs. Properly choosing τ ,

|S(P)− S(τ)| ≤ Cϵ
∑
[s,t]∈τ

||R̃||
p
p′
p
2
,[s,t]

||X||
p
p′

p,[s,t] + ||Y ′−||
p
p′

p,[s,t]||X̃||
p
p′
p
2
,[s,t]

Finally, the term under summation sign is superadditive which thereby implies

|S(P)− S(τ)| ≤ Cϵ

Also, the estimate (26) follows immediately as a by product of the analysis above.
At last, let us deal with the case of Riemann sum approximations

S ′(P) =
∑

[s,t]∈P

YsXs,t + Y ′sXs,t.

It suffices to consider the difference

S ′(P)− S(P) =
∑

[s,t]∈P

Rs−,sXs,t +∆Y ′sXs,t

and then use arguments similar as those in the proof of proposition II.5.1 to see tgat

(RRS) lim
|P|→0

(S ′(P)− S(P)) = 0.

The rest is then clear.
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As an immediate corollary of (26) and (27), we have

Corollary II.5.8. For a controlled rough path (Y, Y ′),

(Zt, Z
′
t) :=

(∫ t

0

Yr−dXr, Yt

)
is also a controlled rough path.

Corollary II.5.9. If (Y, Y ′) is a controlled rough path and Zt =
∫ t

0
Yr−dXr, then

∆tZ = lim
s↑t

∫ t

s

Yr−dXr = Yt−∆tX + Y ′t−∆tX

where ∆tX = lim
s↑t

Xs,t.

Though we avoid to write down the long expression for the bounds of ||Z||p, ||Z ′||p
and ||RZ || p

2
, it can be easily derived from (27). The important point here is that we can

again, for Z taking value in suitable spaces, readily define∫ t

0

Zr−dXr

The rough integral defined above is also compatible with Young integral. If X is a finite
p-variation path for p < 2, we can construct cádlág rough path X by

Xs,t :=

∫ t

s

(Xr− −Xs)⊗ dXr

where right hand side is understood as a Young integral.

Proposition II.5.10. If X, Y are cádlág path of finite p and q variation respectively with
1
p
+ 1

q
> 1, then for any θ > 0 with 1

p
+ 1

q
≥ 1

θ
,

Zs,t :=

∫ t

s

(Yr− − Ys)dXr

has finite θ variation. In particular, X has finite p
2
variation.

Proof. From Young’s inequality,

|Zs,t|θ ≤ C||X||θp,[s,t]||Y ||θq,[s,t]

If 1
p
+ 1

q
≥ 1

θ
, right hand side is superaddtive, which implies ||Z||θ <∞

Theorem II.5.11. If X, Y are cádlág paths of of finite p-variation for p < 2, then∫ t

0

Yr−dXr =

∫ t

0

Yr−dXr
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Proof. The difference between Riemann sum approximation of corresponding integrals
can be written as

S(P) =
∑

[s,t]∈P

Y ′s−X̃s,t

Choose p < p′ < 2. From Young’s inequality,

|X̃s,t| = |
∫ t

s

(Xr− −Xs−)⊗ dXr| ≤ C||X−||p′,[s,t]||X||p′,[s,t]

(X−, X) is a compatible pair, which implies for properly chosen P ,

|S(P)| ≤ Cϵ
∑

[s,t]∈P

||X−||
p
p′

p,[s,t]||X||
p
p′

p,[s,t]

Noting again that the term under summation sign is superadditive,

(RRS) lim
|P|→0

S(P) = 0

II.6 Rough differential equations with jumps

In the case of continuous RDEs the difference between non-geometric (Itô-type) and
geometric situations, is entirely captured in one’s choice of the second order information
X, so that both cases are handled with the same notion of (continuous) RDE solution.
In the jump setting, the situation is different and a geometric notion of RDE solution
requires additional terms in the equation in the spirit of Marcus’ canonical (stochastic)
equations [60, 61, 39, 1]. We now define both solution concepts for RDEs with jumps, or
course they coincide in absence of jumps, (∆Xs,∆Xs) ≡ (0, 0).

Definition II.6.1. (i) For suitable f and a cádlág geometric p-rough path X = (X,X) ∈
Wp

g , call a path Z (or better: controlled rough path (Z, f(Z))) solution to the rough
canonical equation

dZt = f (Zt) � dXt

if, by definition,

Zt = Z0+

∫ t

0

f(Zs−)dXs+
∑
0<s≤t

φ

(
f∆Xs +

1

2
[f, f ] ∆Xs;Zs−

)
−Zs−−f(Zs−)∆Xs−f ′f (Zs−)∆Xs}

where, as in Section II.2.3, φ(g, x) is the time 1 solution to ẏ = g(y), y(0) = x. When
X is Marcus like, i.e. X ∈ Wp

M so that ∆Xs = (∆Xs)
⊗2 /2, this becomes

Zt = Z0+

∫ t

0

f(Zs−)dXs+
∑
0<s≤t

{φ(f∆Xs, Zs−)−Zs−−f(Zs−)∆Xs−f ′f (Zs−)
1

2
(∆Xs)

⊗2}.

(ii) For suitable f and a cádlág p-rough path call a path Z (or better: controlled rough
path (Z, f(Z))) solution to the (general) rough differential equation

dZt = f (Zt−) dXt

if, by definition,

Zt = Z0 +

∫ t

0

f(Zs−)dXs.
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We shall not consider the solution type (ii) further here.

Theorem II.6.2. Fix initial data Z0. Then Z is a solution to dZt = f (Zt) � dXt if and
only if Z̃ is a solution to the (continuous) RDE

dZ̃t = f
(
Z̃t

)
dX̃t

where X̃ ∈ Cp
g is constructed from X ∈ Wp

g as in Theorem II.4.1.

Proof. We illustrate the idea by considering X of finite 1-variation, with one jump at
τ ∈ [0, T ]. This jump time becomes an interval Ĩ = [a, a+ δ] ⊂ [0, T̃ ] = [0, T + δ] in the
stretched time scale. Now

Z̃0,T̃ ≈
∑

[s,t]∈P

f
(
Z̃s

)
X̃ s,t

in the sense of (MRS) convergence, as |P| → 0. In particular, noting that X̃ s,t =
(t−s)

δ
∆Xτ whenever [s, t] ⊂ [a, a+ δ]

Z̃a,a+δ = lim
|P̃|→0

∑
[s,t]∈P̃

f
(
Z̃s

)
X̃ s,t =

1

δ

∫ a+δ

a

f
(
Z̃r

)
∆Xτdr

=⇒ Z̃a,a+δ = φ(f∆Xτ , Z̃a)− Z̃a

On the other hand, by refinement of P , we may insist that the end-point of Ĩ are contained
in P which thus has the form

P = P1 ∪ P̃ ∪ P2

and so

Z̃0,T̃ ≈
∑

[s,t]∈P1

f
(
Z̃s

)
X̃ s,t +

∑
[s,t]∈P̃

f
(
Z̃s

)
X̃ s,t +

∑
[s,t]∈P2

f
(
Z̃s

)
X̃ s,t

from which we learn, by sending
⏐⏐⏐P̃⏐⏐⏐→ 0, that

Z̃0,T̃ ≈
∑

[s,t]∈P1

f
(
Z̃s

)
X̃ s,t + φ(f∆Xτ , Z̃a)− Z̃a +

∑
[s,t]∈P2

f
(
Z̃s

)
X̃ s,t.

We now switch back to the original time scale. Of course, Z ≡ Z̃ on [0, τ) while Zt = Z̃t+δ

on [τ, T ] and in particular

Z0,T = Z̃0,T̃

Zτ− = Z̃a

Zτ = Z̃a+δ.

But then, with P ′1 and P ′2 partitions of [0, τ ] and [τ, T ], respectively,

Z0,T ≈
∑

[s′,t′]∈P ′
1

t′<τ

f (Zs′)X s′,t′ +
∑

[s′,t′]∈P ′
2

f (Zs′)X s′,t′ + φ(f∆Xτ , Zτ−)− Zτ−

≈
∑

[s′,t′]∈P ′

f (Zs′)X s′,t′ + φ(f∆Xτ , Z̃a) + {φ(f∆Xτ , Zτ−)− Zτ− − f (Zτ−)∆Xτ}
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since f (Zs′)X s′,τ → f (Zτ−)∆Xτ as |P ′| → 0, with [s′, τ ] ∈ P ′. By passing to the (RRS)
limit, find

Z0,T =

∫ T

0

f
(
Z−s
)
dX + {φ(f∆Xτ , Zτ−)− Zτ− − f (Zτ−)∆Xτ} .

This argument extends to countable many jumps. We want to show that

ZT = Z0 +

∫ T

0

f(Zs−)dXs +
∑

0<s≤T

{...}

= Z0 + (RRS) lim
|P|→0

∑
[s,t]∈P

f(Zs)Xs,t + lim
η↓0

∑
s∈(0,t]:
|∆Xs|>η

{...} .

What we know is (MRS)-convergence of the time-changed problem. That is, given ε > 0,
there exists δ s.t. |P| < δ implies

Z̃0,T̃ ≈ε

∑
[s,t]∈P

f
(
Z̃s

)
X̃ s,t

where a ≈ε b means |a− b| ≤ ε. For fixed η > 0, include all (but only finitely many, say

N) points s ∈ (0, t] : |∆Xs| > η in P , giving rise to
(
P̃j : 1 ≤ j ≤ N

)
. Sending the mesh

of these to zero gives, as before,

Z0,T ≈ε

∑
[s′,t′]∈P ′

f (Zs′)X s′,t′ +
∑

s∈(0,t]:
|∆Xs|>η

{φ(f∆Xs, Zs−)− Zs− − f (Zs−)∆Xs}

In fact, due to summability of
∑

s∈(0,t] {...}, we can pick η > 0 such that

Z0,T ≈2ε

∑
[s′,t′]∈P ′

f (Zs′)X s′,t′ +
∑

s∈(0,t]:

{φ(f∆Xs, Zs−)− Zs− − f (Zs−)∆Xs}

and this is good enough to take the (RRS) lim as |P ′| → 0. Going from finite variation
X to the rough case, is just more notational effort. After all, the rough integral is a sort
of (abstract) Riemann integral.

We will need to the following corollary.

Corollary II.6.3. For a cádlág rough path X = 1 + X + X = exp (X + A) ∈ Wp
g

for p ∈ [2, 3), the minimal jump extenstion X(n) taking values in G(n)(Rd) satisfies the
Marcus-type differential equation

X
(n)
t = 1 +

∫ t

0

X
(n)
r− ⊗ dXr +

∑
0<s≤t

X
(n)
s− ⊗ {exp(n)(log(2) ∆Xs)−∆Xs} (29)

where the integral is understood as a rough integral and summation term is well defined
as absolutely summable series.

Proof. This follows from (24).
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II.7 Rough path stability

We briefly discuss stability of rough integration and rough differential equations. In the
context of cadlag rough integration, Section II.5, it is a natural to estimate Z1 − Z2, in
p-variation norm, where

Zi =

∫
0

Y idXi for i = 1, 2.

Now, the analysis presented in Section II.5 adapts without difficulties to this situation.
For instance, when Y i = F (X i), one easily find⏐⏐Z1 − Z2

⏐⏐
p-var

≤ CF,M(
⏐⏐X1

0 −X2
0

⏐⏐+ X1 −X2

p-var

+
X1−X2


p-var

)

provided F ∈ C2 and |X i
0|+ ∥X i∥p-var + ∥Xi∥p-var ≤M . (The situation can be compared

with [17, Sec 4.4] where analogous estimate in the α-Hölder setting.)
The situation is somewhat different in the case of Marcus type RDEs, dY i

t = f (Y i
t ) �

dXi
t. The observation here, quite possibly already contained implicitly in the works of

Williams [80], is simply that the difference Y 1 − Y 2, in p-variation norm, is controlled,
as above uniformly on bounded sets, byX̃1 − X̃2


p-var

+
X̃1−X̃2


p-var

where X̃i = (X̃ i, X̃i) ∈ Cp
g is constructed from Xi ∈ Wp

g as in Theorem II.4.1. (It should
be possible to rederive the convergence results of [39] within this framework.)

II.8 Rough versus stochastic integration

Consider a d-dimensiona Lévy process Xt enhanced with

Xs,t := (Itô)

∫
(s,t]

(Xr− −Xs)⊗ dXr.

We show that rough integration against the Itô lift actually yields standard stochastic
integral in Itô sense. An immediate benefit, say when taking Y = f (X) with f ∈ C2,
is the universality of the resulting stochastic integral, defined on a set of full measure
simultanously for all such integrands.

Theorem II.8.1. Let X be a d-dimensional Lévy process, and consider adapted processes
Y and Y ′ such that (Y, Y ′) is controlled rough path. Then Itô- and rough integral coincide,∫

(0,T ]

Ys−dXs =

∫ T

0

Ys−dXs a.s.

Proof of Theorem II.8.1. By Theorem II.5.7, there exist partitions Pn with

|S(Pn)−
∫ T

0

Ys−dXs| ≤
1

n

where
S(Pn) :=

∑
[s,t]∈Pn

YsXs,t + Y ′sXs,t.
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Let Xt = Mt + Vt be the Lévy Ito decomposition with martingale M and bounded
variation part V . Since (V −, V ), (V −,M), (M−, V ) are compatible pairs we can choose
the corresponding τn for ϵ = 1

n
from their compatibility. W.l.o.g., we can assume Pn−1 ∪

τn ∪Dn ⊂ Pn, where Dn is the n-th dyadic partition. We know from general stochastic
integration theory that, possibly along some subsequence, almost surely,

S ′(Pn) =
∑

[s,t]∈Pn

YsXs,t →
∫
(0,T ]

Ys−dXs as n→ ∞

Thus it suffices to prove that almost surely, along some subsequence,

S
′′
(Pn) =

∑
[s,t]∈Pn

Y ′sXs,t → 0

Now,

Xs,t = Ms,t + Vs,t +

∫
(s,t]

(Mr− −Ms)⊗ dVr +

∫
(s,t]

(Vr− − Vs)⊗ dMr

Using a similar argument as in Theorem II.5.11,∑
[s,t]∈Pn

Y ′s

(
Vs,t +

∫
(s,t]

(Mr− −Ms)⊗ dVr +

∫
(s,t]

(Vr− − Vs)⊗ dMr

)
→ 0

We are left to show that ∑
[s,t]∈Pn

Y ′sMs,t → 0

By the very nature of Itô lift

Sym (Ms,t) =
1

2
Ms,t ⊗Ms,t −

1

2
[M,M ]s,t

and it follows from standard (convergence to) quadratic variation results for semimartin-
gale (due to Föllmer [14]) that one is left with∑

[s,t]∈Pn

Y ′sAs,t → 0

where As,t = Anti (Ms,t). At this point, let us first assume that |Y ′|∞ ≤ K uniformly in
ω. We know from Theorem II.2.11 (or Corollary II.9.2 below)

E[|As,t|2] ≤ C|t− s|2 (30)

and using standard martingale argument (orthogonal increment property),

E[|
∑

[s,t]∈Pn

Y ′sAs,t|2] =
∑

[s,t]∈Pn

E[|Y ′sAs,t|2] ≤ K2C
∑

[s,t]∈Pn

|t− s|2 = O(|Pn|)

which implies, along some subsequence, almost surely,∑
[s,t]∈Pn

Y ′sAs,t → 0 (31)



40

Finally, for unbounded Y ′, introduce stopping times

TK = inf{t ∈ [0, T ] : sup
s∈[0,t]

|Y ′s | ≥ K}

Similarly as in the previous case,

E[|
∑

[s,t]∈Pn,s≤TK

Y ′sAs,t|2] = O(Pn)

Thus almost surely on the event {TK > T}∑
[s,t]∈Pn

Y ′sAs,t → 0

and sending K → ∞ concludes the proof.

We remark that the identification of rough with stochastic integrals is by no means
restricted to Lévy processes, and the method of proof here obviously applies to semi-
martingale situation. As a preliminary remark, one can always drop the bounded vari-
ation part (and thereby gain integrability). Then, with finite p-variation rough path
regularity, for some p < 3, of (Itô -, by Proposition II.3.4 equivalently: Stratonovich) lift,
see Section II.10.2, the proof proceeds along the same lines until the moment where one
shows (31). For the argument then to go through, one only needs∑

[s,t]∈P

E[|As,t|2] → 0 as |P| → 0,

which follows from (30), an estimate which will be extended to general classes of Markov
jump processes in Section II.10.1. That said, we note that much less than (30) is necessary
and clearly this has to exploited in a general semimartingale context.

II.9 Lévy processes and expected signature

II.9.1 A Lévy–Khintchine formula and rough path regularity

In this section, we assume (Xt) is a d-dimensional Lévy process with triplet (a, b,K).
The main insight of section is that the expected signature is well-suited to study rough
path regularity. More precisely, we consider the Marcus canoncial signature S = S (X),
given as solution to

dS = S ⊗ �dX
S0 = (1, 0, 0..) ∈ T ((Rd)).

With Ss,t = S−1s ⊗ St as usual this givens random group-like elements

Ss,t =
(
1,X1

s,t,X
2
s,t, ..

)
=
(
1, Xs,t,XM

s,t, ..
)

and then the step-n signature of X|[s,t] by projection,

X
(n)
s,t =

(
1,X1

s,t, ..,X
n
s,t

)
∈ G(N)

(
Rd
)
.
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The expected signature is obtained by taking component-wise expectation and exists
under a natural assumption on the tail behaviour of the Lévy measure K = K (dy). In
fact, it takes “Lévy–Kintchine” form as detailed in the followig theorem. We stress that
fact that expected signature contains significant information about the process (Xt : 0 ≤
t ≤ T ), where a classical moment generating function of XT only carries information
about the random variable XT .

Theorem II.9.1 (Lévy–Kintchine formula). If the measure K1|y|≥1 has moments up to
order N , then

E[X(N)
0,T ] = exp(CT )

with tensor algebra valued exponent

C =

(
0, b+

∫
|y|≥1

yK (dy) ,
a

2
+

∫
y⊗2

2!
K (dy) , ..,

∫
y⊗N

N !
K (dy)

)
∈ T (N)

(
Rd
)
.

In particular, if KI|y|≥1 has finite moments of all orders, the expected signature is given
by

E[S (X)0,T ] = exp

[
T

(
b+

1

2
a+

∫
(exp(y)− 1− y1|y|<1)K (dy)

)]
∈ T ((Rd)).

The proof is based on the Marcus SDE dS = S⊗�dX in T (N)
(
Rd
)
, so that X

(n)
0,T = S

and will be given in detail below. We note that Fawcett’s formula [13, 53, 2] for the
expected value of iterated Stratonovich integrals of of d-dimensional Brownian motion
(with covariance matrix a = I in the afore-mentioned references)

E[S (B)0,T ] = E
[(

1,

∫
0<s<T

◦dB,
∫
0<s<t<T

◦dB ⊗ ◦dB, ..
)]

= exp

[
T

2
a

]
is a special case of the above formula. Let us in fact give a (novel) elementary argument for
the validity of Fawcett’s formula. The form E[S (B)0,T ] = exp (TC) for some C ∈ T ((Rd))
is actually an easy consequence of independent increments of Brownian motion. But
Brownian scaling implies the kth tensor level of S(B)0,T scales as T k/2, which alreay
implies that C must be a pure 2-tensor. The identification C = a/2 is then an immediate
computation. Another instructive case which allows for an elementary proof is the case of
when If X is a compound Poisson process, i.e. Xt =

∑Nt

i=1 Ji for some i.i.d. d-dimensional
random variables Ji and Nt a Poisson process with intensity λ. In Lévy terminology, one
has triplet (0, 0, K) where K is λ times the law of Ji. Since jumps are to be traversed
along straight lines, Chen’s rule implies

E[SN(X)0,1|N1 = n] = E[exp(J1)⊗ ..⊗ exp(Jn)] = E[exp(J1)]⊗n

and thus
E[SN(X)0,1] = exp[(λ(E exp(J)− 1)]

which gives, with all integrations over Rd,

C =

∫
(exp(y)− 1)K(dy).

Before turning to the proof of Theorem II.9.1 we give the following application. It
relies on the fact that the expected signature allows to extract easily information about
stochastic area.
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Corollary II.9.2. Let X be a d-dimensional Lévy process. Then, for any p > 2, a.s.(
X,XM

)
∈ Wp

M

(
[0, T ] ,Rd

)
a.s.

We call the resulting Marcus like (geometric) rough path the Marcus lift of X.

Proof. W.l.o.g. all jumps have size less than 1. (This amounts to drop a bounded
variation term in the Itô-Lévy decomposition. This does not affect the p-variation sample
path properties ofX, nor - in view of basic Young (actually Riemann–Stieltjes) estimates -
those of XM). We establish the desired rough path regularity as application of Proposition
II.3.5 which requires as to show

E |Xs,t|2 . |t− s|
E |As,t|2 . |t− s|2 .

While the first estimate is immediate from the L2-isometry of stochastic integrals against
Poisson random measures (drift and Brownian component obviously pose no problem),
the second one is more subtle in nature and indeed fails - in presence of jumps - when A
is replaced by the full second level XM. (To see this take, d = 1 so that XM

s,t = X2
s,t/2 and

note that even for standard Poisson process E |Xs,t|4 . |t− s| but not |t− s|2 .)
It is clearly enough to consider Ai,j

s,t for indices i ̸= j. It is enough to work with
S4 (X) =: X. Using the geometric nature of X, by using shuffle product formula,

(
Ai,j

s,t

)2
=

1

4

(
Xi,j

s,t − Xj,i
s,t

) (
Xi,j

s,t − Xj,i
s,t

)
= Xiijj

s,t −Xijji
s,t −Xjiij

s,t +Xjjii
s,t

On the other hand,

EXs,t = exp [(t− s)C] = 1 + (t− s)C +O (t− s)2

so that it is enough to check that Ciijj − Cijji − Cjiij + Cjjii = 0. But this is obvious
from the symmetry of

π4C =
1

4!

∫
y⊗4K (dy) .

We now given the proof of the Lévy–Kintchine formula for the expected signature of
Lévy–processes. We first state some lemmas required.

The following lemma, a generalization of [69, Ch. 1, Thm. 38], is surely well-known
but since we could not find a precise reference we include the short proof.

Lemma II.9.3. Let Fs be a cáglád adapted process with sup0<s≤t E[|Fs|] <∞ and g be a
measurable function with |g(x)| ≤ C|x|k for some C > 0, k ≥ 2 and g ∈ L1(K). Then

E[
∑
0<s≤t

Fsg(∆Xs)] =

∫ t

0

E[Fs]ds

∫
Rd

g(x)K(dx)
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Proof. At first we prove the following,

E[
∑
0<s≤t

|Fs||g(∆Xs)|] ≤ t||g||1 sup
0<s≤t

E[|Fs|] (32)

To this end, w.l.o.g, we can assume g vanishes in a neighbourhood of zero. The general
case follows by an application of Fatou’s lemma. Also, it is easy to check the inequality
when Fs is a simple predictable process. For general Fs, we choose a sequence of simple
predictable process F n

s → Fs pointwise. Since there are only finitely many jumps away
from zero, we see that∑

0<s≤t

|F n
s ||g(∆Xs)| →

∑
0<s≤t

|Fs||g(∆Xs)| a.s.

and the claim follows again by Fatou’s lemma.
Now, define ḡ =

∫
Rd\0 g(x)K(dx) and Mt =

∑
0<s≤t g(∆Xs) − tḡ. Then it is easy to

check that Mt is a martingale. Also,

Nt :=

∫
(0,t]

FsdMs =
∑
0<s≤t

Fsg(∆Xs)− ḡ

∫ t

0

Fsds

is a local martingale. From (32), E[sup0<s≤t |Ns|] < ∞. So, Nt is a martingale, which
thereby implies that E[Nt] = 0 finishing the proof.

Lemma II.9.4. If the measure KI|y|≥1 has moments upto order N then with St =
SN(X)0,t,

E[ sup
0<s≤t

|Ss|] <∞

Proof. We will prove it by induction on N . For N = 1, St = 1 + Xt, and the claim
follows from the classical result that E[sup0<s≤t |Xs|] < ∞ iff KI|y|≥1 has finite first
moment. Now, note that

St = 1+

∫ t

0

πN,N−1(Sr−)⊗dXr+
1

2

∫ t

0

πN,N−1(Sr)⊗adr+
∑
0<s≤t

πN,N−1(Sr−)⊗{e∆Xs−∆Xs−1}

where πN,N−1 : TN
1 (Rd) → TN−1

1 (Rd) is the projection map. From induction hypothesis
and lemma (II.9.3), last two terms on right hand side has finite expectation in supremum
norm. Using Lévy-Ito decomposition,∫ t

0

πN,N−1(Sr−)⊗ dXr =

∫ t

0

πN,N−1(Sr−)⊗ dMr+

∫ t

0

πN,N−1(Sr−)⊗ bdr

+
∑
0<s≤t

πN,N−1(Sr−)⊗∆Xs1|∆Xs|≥1

where M is the martingale. Again by induction hypothesis and Lemma II.9.3, last
two terms are of finite expectation in supremum norm. Finally,

Lt =

∫ t

0

πN,N−1(Sr−)⊗ dMr
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is a local martingale. By Burkholder-Davis-Gundy inequality and noting that

[M ]t = at+
∑
0<s≤t

(∆Xs)
21|∆Xs|<1

we see that

E[ sup
0<s≤t

|Ls|] .E[
{∫ t

0

|πN,N−1(Sr−)|2d[M ]r

} 1
2

]

.E[
{∫ t

0

|πN,N−1(Sr−)|2dr
} 1

2

] + E[
{ ∑

0<r≤t

|πN,N−1(Sr−)|2|∆Xr|21|∆Xr|<1

} 1
2

]

.E[sup
r≤t

|πN,N−1(Sr−)|] + E[
{
sup
r≤t

|πN,N−1(Sr−|
} 1

2
{∑

0<r≤t

|πN,N−1(Sr−)||∆Xr|21|∆Xr|<1

} 1
2

]

.E[sup
r≤t

|πN,N−1(Sr−)|] + E[sup
r≤t

|πN,N−1(Sr−|] + E[
∑
0<r≤t

|πN,N−1(Sr−)||∆Xr|21|∆Xr|<1]

where in the last line, we have used
√
ab . a + b. Again by induction hypothesis and

(II.9.3), we conclude that
E[ sup

0<s≤t
|Ls|] <∞

finishing the proof.

Proof. (Theorem II.9.1) As before,

St = 1 +

∫ t

0

Sr− ⊗ dMr +

∫ t

0

Sr ⊗ (b+
a

2
)dr +

∑
0<s≤t

Ss− ⊗ {e∆Xs −∆Xs1|∆Xs|<1 − 1}

By Lemma II.9.4 below
∫ t

0
Sr− ⊗ dMr is indeed a martingale. Also note that St has a

jump iff Xt has a jump, so that almost surely St− = St. Thanks to Lemma II.9.3 below

ESt = 1 +

∫ t

0

ESr ⊗ (b+
a

2
)dr +

∫ t

0

ESrdr ⊗
∫
(ey − y1|y|<1 − 1)K(dy)

and solving this linear ODE in TN
1 (Rd) completes the proof.

II.9.2 Lévy rough paths

Corollary II.9.2 tells us that the Marcus lift of some d-dimensional Lévy process X has
sample paths of finite p-variation with respect to the CC norm on G(2), that is

XM := (1, X,XM) ∈ W p
g

(
[0, T ] , G(2)

(
Rd
))
.

It is clear from the nature of Marcus integration thatXM
s,t is σ (Xr : r < s ≤ t)-measurable.

It easily follows that XM is a Lie group valued Lévy process, with values in the Lie group
G(2)

(
Rd
)
, and in fact a Lévy rough path in the following sense

Definition II.9.5. Let p ∈ [2, 3). A G(2)(Rd)-valued process (X) with (cádlág) rough
sample paths X (ω) ∈ W p

g a.s. (on any finite time horizon) is called Lévy p-rough path
iff it has stationary independent left-increments (given by Xs,t (ω) = X−1s ⊗Xt).
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Not every Lévy rough path arises as Marcus lift of some d-dimensional Lévy process.
For instance, the pure area Poisson process from Example 5 and then the non-canonical
Brownian rough path (“Brownian motion in a magnetic field”) from Example 6 plainly
do not arise from iterated Marcus integration.

Given any Lévy rough path X = (1, X,X), it is clear that its projection X = π1 (X) is
a classical Lévy process on Rd which then admits, thanks to Corollary II.9.2, a Lévy rough
path lift XM. This suggests the following terminology. We say that X is a canoncial
Lévy rough path if X and XM are indistinguisable, call X a non-canonical Lévy
rough path otherwise.

Let us also note that there are G(2)(Rd)-valued Lévy processes which are not Lévy p-
rough path in the sense of the above definition, for the may fail to have finite p-variation
for p ∈ [2, 3) (and thereby missing the in rough path theory crucial link between regularity
and level of nilpotency, [p] = 2.) To wit, area-valued Brownian motion

Xt := exp(2) (Bt[e1, e2]) ∈ G(2)(Rd)

is plainly a G(2)(Rd)-valued Lévy processes, but

sup
P

∑
[s,t]∈P

||Xs,t||pCC ∼ sup
P

∑
[s,t]∈P

|Bs,t|p/2 <∞

if and only if p > 4.

Remark II.9.6. One could define G4(Rd)-valued Lévy rough paths, with p-variation reg-
ularity where p ∈ [4, 5), an example of which is given by area-valued Brownian motion.
But then again not every G4(Rd)-valued Lévy process will be a G4(Rd)-valued Lévy rough
path and so on. In what follows we remain in the step-2 setting of Definition II.9.5.

We now characterize Lévy rough paths among G(2)(Rd)-valued Lévy processes, them-
selves characterized by Hunt’s theory of Lie group valued Lévy porcesses, cf. Section
II.2.8. To this end, let us recall G(2)

(
Rd
)
= exp

(
g2
(
Rd
))
, where

g(2)
(
Rd
)
= Rd ⊕ so (d) .

For g ∈ G(2)
(
Rd
)
, let |g| be the Euclidean norm of log g ∈ g(2)

(
Rd
)
. With respect to

the canoncial basis, any element in g(2)
(
Rd
)
can be written as in coordinates as (xv)v∈J

where
J := {i : 1 ≤ i ≤ d} ∪ {jk : 1 ≤ j < k ≤ d}.

Write also
I := {i : 1 ≤ i ≤ d}.

Theorem II.9.7. Every G(2)
(
Rd
)
-valued Lévy process (X) is characterized by a triplet

(a,b,K) with

a = (av,w : v, w ∈ J) ,

b = (bv : v ∈ J) ,

K ∈ M
(
G(2)

(
Rd
))

:

∫
G(2)(Rd)

(
|g|2 ∧ 1

)
K (dg) .

The projection X := π1 (X) is a standard d-dimensional Lévy process, with triplet

(a, b,K) :=
((
ai,j : i, j ∈ I

)
,
(
bk : k ∈ I

)
, (π1)∗K

)
where K is the pushforward of K under the projection map. Call (a,b,K) enhanced
Lévy triplet, and X enhanced Lévy process.
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Proof. This is really a special case of Hunt’s theory. Let us detail, however, an explicit
construction which we will be useful later on: every G(2)

(
Rd
)
-valued Lévy process X

(started at 1) can be written as in terms of a g(2)
(
Rd
)
-valued (standard) Lévy process

(X,Z), started at 0, as
Xt = exp (Xt,At + Zt)

where At = A0,t is the stochastic area associated to X. Indeed, for v, w ∈ J , write
x = (xv) for a generic element in g(2) and then

((av,w) , (bv) ,K)

for the Lévy-triplet of (X,Z). Of course, X and Z are also (Rd- and so (d)-valued) Lévy
process with triplets ((

ai,j
)
,
(
bi
)
, K
)
and

((
ajk,lm

)
,
(
bjk
)
,K
)
,

respectively, where K and K are the image measures of K under the obvious projection
maps, onto Rd and so (d), respectively. Define also the image measure under exp, that
is K =exp∗ K. It is then easy to see that X is a Lévy process in the sense of Hunt
(cf. Section II.2.8) with triplet (a,b,K). Conversely, given (a,b,K), one constructs a
g(2)

(
Rd
)
-valued Lévy process (X,Z) with triplet ((av,w) , (bv) , log∗K) and easily checks

that the exp (X,A+ Z) is the desired G(2)-valued Lévy process.

Recall that definition of the Carnot–Caratheodory (short: CC) norm onG(2)
(
Rd
)
from

Section II.2.5. The definition below should be compared with the classical definition of
Blumenthal–Getoor (short: BG) index.

Definition II.9.8. Given a Lévy measure K on the Lie group G(2)
(
Rd
)
, call

β := inf

{
q > 0 :

∫
G(2)(Rd)

(||g||qCC ∧ 1 )K (dg)

}
the Carnot–Caratheodory Blumenthal–Getoor (short: CCBG) index.

Unlike the classical BG index, the CCBG index is not restricted to [0, 2].

Lemma II.9.9. The CCBG index takes values in [0, 4].

Proof. Set log (g) = x+ a ∈ Rd ⊕ so (d). Then

||g||qCC ≍
∑
i

⏐⏐xi⏐⏐q +∑
j<k

⏐⏐ajk⏐⏐q/2 .
By the very nature of K, it integrates |xi|2 and

⏐⏐ajk⏐⏐2 and hence β ≤ 4. (The definition of

CC Blumenthal–Getoor extends immediately to G(N)
(
Rd
)
, in which case β ≤ 2N .)

Theorem II.9.10. Consider a G(2)
(
Rd
)
-valued Lévy process X with enhanced triplet

(a,b,K). Assume
(i) the sub-ellipticity condition

av,w ≡ 0 unless v, w ∈ I = {i : 1 ≤ i ≤ d} ;

(ii) the following bound on the CCBG index

β < 3.

Let p ∈ (2, 3). Then a.s. X is a Lévy p-rough path if p > β and this condition is sharp.
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Proof. Set log (g) = x+ a ∈ Rd ⊕ so (d). Then

||g||2ρCC ≍
∑
i

⏐⏐xi⏐⏐2ρ +∑
j<k

⏐⏐ajk⏐⏐ρ .
Let K denote the image measure of K under the projection map g ↦→ x ∈ Rd. Let also
K denote the image measure under the map g ↦→ a ∈ so (d). Since K is a Lévy measure
on G(2)(Rd), we know that ∫

so(d)

(|a|ρ ∧ 1)K (da) <∞. (33)

whenever β < 2ρ < 3. We now show that X enjoys p-variation. We have seen in the
proof of Theorem II.9.7 that any such Lévy process can be written as

logX = (X,A+ Z)

where X is a d-dimensional Lévy process with triplet((
ai,j
)
,
(
bi
)
, K
)

with so (d)-valued area A = As,t and a so (d)-valued Lévy process Z with triplet(
0,
(
bjk
)
,K
)
.

We know that E[ |Xs,t|2] . |t− s| and E[ |As,t|2] . |t− s|2 and so, for |t− s| ≤ h,

P (|Xs,t| > a) ≤ h

a2

P( |As,t|1/2 > a) ≤ h

a2
.

On the other hand,

P( |Zs,t|1/2 > a) ≤ 1

a2ρ
E (|Zs,t|ρ) ∼

h

a2ρ

∫
so(d)

(|a|ρ ∧ 1)K (da)

and so

P
(
||Xs,t||CC > a

)
.

h

a2ρ∨2
.

It then follows from Manstavicius’ criterion, cf. Section II.2.6, applied with β = 1, γ =
2ρ∨ 2, that X has indeed p-variation, for any p > 2ρ∨ 2, and by taking the infimum, for
all p > β ∨ 2.

It remains to see that the conditions are sharp. Indeed, if the sup-ellipticity condition
is violated, say if av,w ̸= 0 for some v = jk, say, this means (Brownian) diffusity (and
hence finite 2+- but not 2-variation) in direction [ej, ek] ∈ so (d). As a consequence,
X has 4+-variation (but not 4-variation), in particular, it fails to have p-variation for
some p ∈ [2, 3). Similarly, if one considers an α-stable process in direction [ej, ek], with
well-known finite α+- but not α-variation, we see that the condition p > β cannot be
weakened.
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II.9.3 Expected signatures for Lévy rough paths

Let us return to the Theorem II.9.1, where we computed, subject to suitable integrability
assumptions of the Lévy measure, the expected signature of a Lévy process, lifted by
means of “Marcus” iterated integrals. There we found that the expected signature over
[0, T ] takes Lévy–Kintchine form

E[X0,T ] = exp
{
T
(
b+

a

2
+

∫
Rd

(exp(y)− 1− yI|y|<1)K(dy)
)}

for some symmetric, positive semidefinite matrix a, a vector b and a Lévy measure K,
provided KI|y|≥1 has moments of all orders. In absence of a drift b and jumps, the formula
degenerate to Fawcett’s form, that is

exp(T
a

2
)

for a symmetric 2-tensor a. Let us present two examples of Lévy rough paths, for which
the expected signature is computable and different from the above form.

Example 9. We return to the non-canonical Brownian rough path Bm, the zero-mass
limit of physcial Brownain motion in a magnetic field, as discucssed in Example 6. The
signature S = Sm is then given by Lyons’ extension theorem applied to Bm, or equiva-
lently, by solving the following rough differential equation

dSt = St ⊗ dBm
t (ω) , S0 = 1

In [24] it was noted that the expected signature takes the Fawcett form,

E[Sm
0,T ] = exp

{
T
ã

2

}
but now for a not necessarily symmetric 2-tensor ã, the antisymmetric part of which
depends on the charge of the particle and the strength of the magnetic field.

Example 10. Consider the pure area Poisson process from Example 4. Fix some a ∈
so (d) and let (Nt) be standard Poisson process, rate λ > 0. We set

Xt := ⊗Nt
i=1 exp

(2) (a ) ∈ G(2)(Rd);

noting that the underlying path is trivial, X = π1 (X) ≡ 0 and clearly X is a non-Marcus
Lévy p-rough path, any p ≥ 2. The signature of X is by definition the minimal jump
extension of X as provided by Theorem II.4.1. We leave it as easy exercise to the reader
to see that the signature S is given by

St = ⊗Nt
i=1 exp (a ) ∈ T ((Rd)).

With due attention to the fact that computations take places in the (non-commutative)
tensor algebra, we then compute explicitly

EST =
∑
k≥0

eake−λT (λT )k /k!

= e−λT
∑
k≥0

(λTea)k /k!

= exp[λT (ea − 1)].

Note that the jump is not described by a Lévy-measure on Rd but rather by a Dirac
measure on G(2), assigning unit mass to exp a ∈ G(2).
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We now give a general result that covers all these examples. Indeed, Example 9 is
precisely the case of ã = a + 2b with antisymmetric b = (bj,k) ̸= 0, and symmetric
a = (ai,j). As for example (ii), everything is trivial but K, which assigns unit mass to
the element exp a.)

Theorem II.9.11. Consider a Lévy rough path X with enhanced triplet (a,b,K). As-
sume that K1{|g|>1} integrates all powers of |g| := |log g|Rd⊕so(d). Them the signature of
X, by definition the minimal jump extension of X as provided by Theorem II.4.1, is given
by

ES0,T = exp

[
T

(
1

2

d∑
i,j=1

ai,jei ⊗ ej +
d∑

i=1

biei +
∑
j<k

bj,k [ej, ek] +

∫
G(2)

{exp(log(2) g)− g1{|g|<1}}K (dg)

)]
(34)

Proof. We saw in Corollary II.6.3 that S solves

St = 1 +

∫ t

0

Ss− ⊗ dXs+
∑
0<s≤t

Ss− ⊗ {exp(log(2)∆Xs)−∆Xs}.

With notation as in the proof of Theorem II.9.10,

Xs,t = π2 exp (Xs,t + As,t + Zt − Zs) =
1

2
Xs,t ⊗Xs,t + As,t + Zs,t

XI
s,t =

1

2

(
Xs,t ⊗Xs,t − [X,X]s,t

)
+ Zs,t

where we recall that (X,Z) is a Rd ⊕ so (d) valued Lévy process. With Zs,t = Zt − Zs,
we note additivity of Ξ := X− XI given by

Ξs,t : =
1

2
[X,X]s,t + Zs,t

=
1

2
a (t− s) +

1

2

∑
r∈(s,t]

|∆Xr|⊗2 + Zs,t.

But then ∫ t

0

Ss− ⊗ dXs =

∫ t

0

Ss− ⊗ dXI
s +

∫ t

0

Ss− ⊗ dΞ

and so, thanks to Theorem II.8.1 on consistency of Itô- with rough integration, we can
express S as solution to a proper Itô integral equation,

St = 1 +

∫ t

0

Ss− ⊗ dXs+

∫ t

0

Ss− ⊗ dΞ +
∑
0<s≤t

Ss− ⊗ {exp(log(2) ∆Xs)−∆Xs}

≡ 1 + (1) + (2) + (3).

Let MX be the martingale part in the Itô–Lévy decomposition of X, write also NK for
the Poisson random measure with intensity dsK (dy). Then, with b ≡

∑
j<k b

jk [ej, ek],

Xt = MX
t + bt+

∫
(0,t]×{|y|+|a|≥1}

yNK (ds, d (y, a)) ∈ Rd

Zt = MZ
t + bt+

∫
(0,t]×{|y|+|a|≥1}

aNK (ds, d (y, a)) ∈ so (d)

Ξt =
1

2
at+

1

2

∫
(0,t]×{|y|≥1}

y⊗2NK (ds, d (y, a)) + Zt ∈
(
Rd
)⊗2

.
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Check (inductively) integrability of St and note that
∫
Ss−dMs has zero mean, for either

martingale choice. It follows that

Φt = 1 +

∫ t

0

Φs ⊗ (C1 + C2 + C3)ds where

C1 = b+

∫
g2(Rd)

y1{|y|+|a|>1}K (y, a) ,

C2 =
1

2
a+

1

2

∫
g2(Rd)

y⊗21{|y|+|a|>1}K (y, a) + b+

∫
g2(Rd)

a1{|y|+|a|>1}K (y, a) ,

C3 =

∫
G(2)(Rd)

{exp(log(2)g)− g}K (dg) .

Recall K = log(2)∗ K so that the sum of the three integrals over g2(Rd) is exactly∫
G(2)

g1{|g|≥1}}K (dg)

where |g| = |log g| = |y|+ |a|. And it follows that

C1 + C2 + C3 =
1

2
a+ b+ b+

∫
G(2)(Rd)

{exp(log(2) g)− g1{|g|<1}}K (dg)

which concludes our proof.

II.9.4 The moment problem for random signatures

Any Lévy rough path X (ω) over some fixed time horizon [0, T ] determines, via minimal
jump exension theorem, a random group-like element, say S0,T (ω) ∈ T ((Rd)). What
information does the expected signature really carry? This was first investigated by
Fawcett [13], and more recently by Chevyrev [9]. Using his criterion we can show

Theorem II.9.12. The law of S0,T (ω) is uniquely determined from its expected signature
whenever

∀λ > 0 :

∫
y∈G(2):|y|>1

exp (λ |y|)K (dy) <∞.

Proof. As in [9], we need to show that exp (C), equivalently C = (C0, C1, C2, ...) ∈
T ((Rd)), has sufficiently fast decay as the tensor levels grow. In particular, only the the
jumps matter. More precisely, by a criterion put forward in [9] we need to show that∑

λmCm <∞

where (for m ≥ 3),

Cm = πm

(∫
G(2)

(
e
log(2) g

(n) − g
)
K (dg)

)
∈
(
Rd
)⊗m

.

We leave it as elementary exercise to see that this is implied by the exponential moment
condition on K.
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II.10 Further classes of stochastic processes

II.10.1 Markov jump diffusions

Consider a d-dimensional strong Markov with generator

(Lf) (x) =
1

2

∑
i,j∈I

ai,j (x) ∂i∂jf +
∑
i∈I

bi (x) ∂if

+

∫
Rd

{f (x+ y)− f (x)− 1{y≤1}
∑
i∈I

yi∂if}K (x, dy) .

Throughout, assume a = σσT and σ, b bounded Lipschitz, K (x, ·) a Lévy measure, with
uniformly integrable tails. Such a process can be constructed as jump diffusion [35], the
martingale problem is discussed in Stroock [78]. As was seen, even in the Lévy case,
with (constant) Lévy triplet (a, b,K), showing finite p-variation in rough path sense is
non-trivial, the difficulty of course being the stochastic area

As,t (ω) = Anti

∫
(s,t]

(X−r −Xs)⊗ dX ∈ so (d) ;

where stochastic integration is understood in Itô sense. In this section we will prove

Theorem II.10.1. With probability one, X (ω) lifts to a G(2)-valued path, with incre-
ments given by

Xs,t := exp(2) (Xs,t + As,t) = X−1s ⊗Xt

and X is a cádlág Marcus like, geometric p-rough path, for any p > 2.

Note the immediate consequences of this theorem: the minimal jump extension of
the geometeric rough

(
X,XM

)
can be identified with the Marcus lift, stochastic integrals

and differential equations driven by X can be understood deterministically as function of
X (ω) and are identified with corresponding rough integrals and canonical equations. As
in the Lévy case discussed earlier, we base the proof on the expected signature and point
out some Markovian aspects of independent interest. Namely, we exhibit the step-N
Marcus lift as G(N)-valued Markov process and compute its generator. To this end, recall
(e.g. [22, Remark 7.43]) the generating vector fields Ui (g) = g ⊗ ei on G(N), with the
property that

Lie (U1, .., Ud) |g = TgG
(N).

Proposition II.10.2. Consider a d-dimensional Markov process (X) with generator as
above and the Marcus canonical equation dS = S ⊗ �dX, started from

1 ≡ (1, 0, .., 0) ∈ G(N)
(
Rd
)
⊂ T (N)

(
Rd
)
.

Then S takes values in G(N)
(
Rd
)
and is Markov with generator, for f ∈ C2

c ,

(Lf)(x) = (L(N)f) (x) =
1

2

∑
i,j∈I

ai,j (π1 (x))UiUjf +
∑
i∈I

bi (π1 (x))Uif

+

∫
Rd

{f (x⊗ Y )− f (x)− 1{y≤1}
∑
i∈I

yiUif}K (x, dy) ,

with Y ≡ exp(n) (y) .
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Proof. (Sketch) Similar to the proof of Theorem II.9.1. Write X = M + V for the
semimartingale decomposition of X. We have

dS = S ⊗ �dX =
∑
i∈I

Ui (S) � dX i

and easily deduce an evolution equation for f (St) = f (1). Taking the expected value
leads to the form (Lf).

Since N was arbitrary, this leads to the expected signature. We note that in the
(Lévy) case of x-independent characteristics, Φ does not depend on x in which case
the PIDE reduces to the ODE ∂tΦ = C ⊗ Φ which leads to the Lévy–Kinthchine form
Φ(t) = exp(Ct) obtained previously. We also that the solution Φ = (1,Φ1,Φ2, ..) to the
PIDE system given in the next theorem can be iteratively constructed. In absence of
jumps this systems reduces to a system of PDEs derived by Ni Hao [66, 49].

Theorem II.10.3 (PIDE for expected signature). Assume uniformly bounded jumps, σ, b
bounded and Lipschitz, a = σσT , the expected signautre Φ (x, t) = ExS0,t exists. Set

C (x) :=
∑
i∈I

bi (x) ei +
1

2

∑
i,j∈I

ai,j (x) ei ⊗ ej +

∫
Rd

(
Y − 1− I{y≤1}

∑
i∈I

yiei

)
K (x, dy)

with Y = exp (y) ∈ T ((Rd)).

Then Φ (x, t) solves⎧⎨⎩
∂tΦ = C ⊗ Φ + LΦ +

∑
i,j∈I a

i,j (∂jΦ) (x) ei
+
∫
Rd (Y − 1)⊗ (Φ (x⊗ Y )− Φ (x))K (x, dy)

Φ (x, 0) = 1.

Proof. It is enough to establish this in T (N)
(
Rd
)
, for arbitrary integer N . We can see

that
ExX

(N)
t =: u (x, t) ,

for x ∈ G(N)
(
Rd
)
⊂ T (N)

(
Rd
)
is well-defined, in view of the boundedness assumptions

made on the coefficients, and then a (vector-valued, unique linear growth) solution to the
backward equation

∂tu = Lu,
u (x, 0) = x ∈ T (N)

(
Rd
)
.

It is then clear that
ExX

(N)
0,t = x−1 ⊗ u (x, t) =: Φ (x, t)

also satisfies a PDE. Indeed, noting the product rule for second order partial-integro
operators,

(L [fg]) (x) = ((L [f ]) g) (x) + (fL [g]) (x) + Γ(f, g),

Γ(f, g) =
∑
i,j∈I

ai,j (UifUjg) (x) +

∫
G(2)

(f (x⊗ Y )− f (x)) (g (x⊗ Y )− g (x))K (dy)
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and also noting the action of Uv on f (x) ≡ x, namely Uif = x⊗ ev, we have

Lx = x⊗ C := x⊗

{∑
v∈J

bv ⊗ ev +
1

2

∑
i,j∈I

ai,jei ⊗ ej +

∫
G(2)

(
Y − 1− I{y≤1}

∑
v∈J

Y v ⊗ ev

)
K (dy)

}
,

Γ(x, g) = x⊗

{∑
i,j∈I

ai,j (Ujg) (x) ei +

∫
G(2)

(Y − 1) (g (x⊗ Y )− g (x))K (dy)

}
.

As a consequence,

x⊗ ∂tΦ = ∂tu = Lu = L (x⊗ Φ) = (Lx)⊗ Φ + x⊗ L [Φ] + Γ(x,Φ)

and hence

∂tΦ = C⊗Φ+

{
L [Φ] +

∑
i,j∈I

ai,j (UjΦ) (x) ei +

∫
G(2)

(Y − 1) (Φ (x⊗ Y )− Φ (x))K (dy)

}
.

(35)

We can now show rough path regularity for general jump diffusions.

Proof. (Theorem II.10.1) Only p-variation statement requires a proof. The key remark
is that the above PIDE implies

Φt = 1 + (∂t|t=0φ) t+O
(
t2
)
= 1 + Ct+O

(
t2
)

where our assumptions on a, b,K guarantee uniformity of the O-term in x. We can then
argue exactly as in the proof of Corollary II.9.2.

II.10.2 Semimartingales

In [45] Lépingle established finite p-variation of general semimartingales, any p > 2,
together with powerful Burkholder–Davis–Gundy type estimates. For continuous semi-
martingales the extension to the (Stratonovich=Marcus) rough path lift was obtained in
[28], see also [22, Chapter 14], but so far the general (discontinuous) case eluded us. (By
Proposition II.3.4 it does not matter if one establishes finite p-variation in rough path
sense for the Itô- or Marcus lift.)

As it is easy to explain, let us just point to the difficulty in extending Lépingle in the
first place: he crucially relies on Monroe’s result [64], stating that every (scalar!) cádlág
semimartingale can be written as a time-changed scalar Brownian motion for a (cádlág)
family of stopping times (on a suitably extended probability space). This, however, fails
to hold true in higher dimensions and not every (Marcus or Itô) lifted general semimartin-
gale2 will be a (cádlág) time-change of some enhanced Brownian motion [22, Chapter 13],
in which case the finite p-variation would be an immediate consequence of known facts
about the enhanced Brownian motion (a.k.a. Brownian rough path) and invariance of
p-variation under reparametrization.

A large class of general semimartingales for which finite p-variation (in rough path
sense, any p > 2) can easily be seen, consists of those with summable jumps. Following

2... and certainly not every Markov jump diffusion as considered in the last section ....
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Kurtz et al. [39, p. 368], the Marcus version” of such a s semimartingale, i.e. with
jump replaced by straight lines over stretched time, may be interpreted as continuous
semimartingale. One can then apply [28, 22] and again appeal to invariance of p-variation
under reparametrization, to see that such (enhanced) semimartingales have a.s. p-rough
sample paths, any p > 2.

Another class of general semimartingales for which finite p-variation can easily be seen,
consists of time-changed Lévy processes (a popular class of processes used in mathematical
finance). Indeed, appealing once more to invariance of p-variation under reparametriza-
tion, the statement readily follows from the corresponding p-variation regularity of Lévy
rough paths.

II.10.3 Gaussian processes

We start with a brief review of some aspects of the work of Jain–Monrad [36]. Given a
(for the moment, scalar) zero-mean, separable Gaussian process on [0, T ], set σ2 (s, t) =
EX2

s,t = |Xt−Xs|2L2 .We regard the process X as Banach space valued path [0, T ] → H =
L2 (P ) and assume finite 2ρ-variation, in the sense of Jain–Monrad’s condition

F (T ) := sup
P

∑
[u,v]∈P

|σ2 (u, v) |ρ = sup
P

∑
[u,v]∈P

|Xt −Xs|2ρL2 <∞ (36)

with partitions P of [0, T ]. It is elementary to see that p-variation paths can always be
written as time-changed Hölder continuous paths with exponent 1/p (see e.g. Lemma
4.3. in [12]). Applied to our setting, with α∗ = 1/(2ρ), X̃ ∈ Cα∗-Höl ([0, F (T )], H) so
that

X̃ ◦ F = X ∈ W 2ρ ([0, T ] , H) .

Now in view of the classical Kolmogorov criterion, and equivalence of moments for Gaus-
sian random variables, knowing⏐⏐⏐X̃t − X̃s

⏐⏐⏐
L2

≤ C |t− s|α
∗

implies that X̃ (or a modification thereof) has a.s. α-Hölder samples paths, any α < α∗.
But then, trivialy, X̃ has a.s. finite p-variation sampe paths, any p > 1/α = 2ρ, and
so does X by invariance of p-variation under reparametrization. (I should be noted that
such X has only discontinuities at deterministic times, inherited from the jumps of F .)
In a nutshell, this is one of the main results of Jain–Monrad [36], as summarized in by
Dudley–Norvaǐsa in [12, Thm 5.3]. We have the following extension to Gaussian rough
paths.

Theorem II.10.4. Consider a d-dimensional zero-mean, separabale Gaussian process
(X) with independent components. Let ρ ∈ [1, 3/2) and assume

sup
P,P ′

∑
[s,t]∈P
[u,v]∈P ′

|E(Xs,t ⊗Xu,v)|ρ <∞ (37)

Then X has a cádlág modification, denoted by the same letter, which lifts a.s. to a random
geometric cádlág rough path, with A = Anti (X) given as L2-limit of Riemann–Stieltjes
approximations.
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Proof. In a setting of continuous Gaussian processes, condition (37), i.e. finite ρ-variation
of the covariance, is well-known [22, 17]. It plainly implies the Jain–Monrad condition
(36), for each component (X i). With F (t) :=

∑d
i=1 F

i (t) we can then write

X̃ ◦ F = X

for some d-dimensional, zero mean, (by Kolmogorov criterion: continuous) Gaussian
process X̃, whose covariance also enjoys finite ρ-variation. We can now emply standard
(continuous) Gaussian rough path theory [22, 17] and construct a canoncial geometric
rough path lift of X̃. That is,

X̃ = (X̃, X̃) ∈ Cρ

with probability 1. The desired geometric cádlág rough path lift is then given by.

(X,X) = X := X̃ ◦ F.

The statement about L2-convergence of Riemann–Stieltjes approximations follows imme-
diately for the corresponding statements for Anti(X̃), as found in [17, Ch. 10.2].
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Loewner chains driven by
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Contents of this article is collected together in an upcoming paper [19].

III.1 Introduction

The theory of Loewner chains and Loewner’s differential equation (LDE) was introduced
in early 20th century by C. Loewner in an attempt to solve Bieberbach’s conjecture in
geometric function theory. The conjecture stated that if

f(z) = z + a2z
2 + a3z

3 + ...

is an univalent conformal map on the unit disk, then for all n ≥ 2

|an| ≤ n.

Bieberbach himself proved the bound |a2| ≤ 2 and Loewner could extend it to |a3| ≤ 3
using LDE. Later in 1986, when De Branges finally resolved the conjecture, LDE was
used as an important component in the proof. A good account on the history and
developements of Bieberbach conjecture can be found in [68].

Loewner’s theory gives a one-to-one correspondence between a family of continuously
growing compact sets in a planar simply connected domain and continuous curves running
on the boundary of the domain. For simplicity, we will restrict ourselves to the upper
half plane

H = {z|z ∈ C, Im(z) > 0}

A bounded subset K ⊂ H is called a compact H-hull if K = H∩ K̄ and H\K is a simply
connected domain. For each such compact H-hull, there is a unique associated bijective
conformal map gK : H \K → H satisfying the so called hydrodynamic normalization

lim
z→∞

gK(z)− z = 0

The map gK is called the mapping out function of K. The half plane capacity of K is
defined by

hcap(K) = lim
z→∞

z(gK(z)− z)

Definition III.1.1. A Loewner chain is a family {Kt}t≥0 of compact H-hulls such that
Ks ( Kt for all s < t and satisfying local growth property:

rad(Kt,t+h) → 0 as h→ 0 + uniformly on compacts in t

where Ks,t := gKs(Kt \Ks)

Given {Ut}t≥0 a continuous real valued curve with U0 = 0, for each z ∈ H̄\0, let gt(z)
denote the solution of the LDE

ġt(z) =
2

gt(z)− Ut

, g0(z) = z (38)

The solution exists upto the maximal time T (z) ∈ (0,∞] and if T (z) <∞,

lim
t→T (z)

gt(z)− Ut = 0



60

Define
Kt = {z ∈ H|T (z) ≤ t}

Then the family {Kt}t≥0 is a Loewner chain with hcap(Kt) = 2t and gt is the mapping
out function of Kt. We call the chain {Kt}t≥0 is driven by {Ut}t≥0.
Conversely given a Loewner chain {Kt}t≥0 with hcap(Kt) = 2t, then there exist contin-
uous real valued curve Ut with U0 = 0 such that mapping out functions gt(z) = gKt(z)
satisfies equation (38) and {Kt}t≥0 is driven by {Ut}t≥0. Please refer to [40] and lecture
notes [3] for the details.

In a seminal paper by O. Schramm in 1999, [73], the above correspondence between
Loewner chains and real valued curves was utilized to characterize processes in plane
which satisfy conformal invariance and domain Markov property. Today these processes
are known as Schramm-Loewner evolutions, SLE(κ), which is a random Loewner chain
obtained when Ut =

√
κBt, where Bt is the one dimensional Brownian motion. SLE’s

was then proven to arise natuarally as scaling limit of various discrete lattice models in
statistical physics. See [76, 74, 73] for such results.

These convergence results suggests that SLE’s are not only a family of growing com-
pact sets, but also a growing curve. This motivates to find conditions on driver {Ut}t≥0
which guarantees that {K}t≥0 is generated by a curve in the following sense:

Definition III.1.2. A chain {Kt}t≥0 is called generated by a curve γ : [0, T ] → H̄ with
γ0 = 0 if for all t ≥ 0, Ht := H \Kt is the unbounded component of H \ γ[0, t].

If a chain is generated by a curve γ, then it is the only such curve called the trace of
chain. A necessary and sufficient condition for the existence of the trace can be found in
[71]. Denote ft(z) = g−1t (z).

Theorem III.1.3 ([71]). A chain is generated by a curve if and only if

γt := lim
y→0+

ft(iy + Ut)

exists and is continuous curve. If so, curve γ is the trace.

It was proved in [62, 47] that when the driver is 1
2
- Holder with ||U || 1

2
< 4, then the

trace exist. This is the best possible known deteministic result and fails to apply for
Ut =

√
κBt. Nevertheless, proof of existence of trace of SLE(κ), κ ̸= 8 was carried out in

[71] using probabilistic techniques. The trace also exists for SLE(8), but the proof follows
indirectly from convergence of Uniform spanning tree to SLE(8) and there is no direct
proof known so far.

Phenomena of existence of trace for Loewner chains is not completely well under-
stood. For random drivers, probabilistic techniques seems to be the only efficient tool
and it doesn’t give understanding of pathwise properties of driver responsible for the
trace. Having more examples to this phenomena will lead us to better understanding and
thus we consider Loewner chains driven by semimartingales. There is another motivation
for considering such models. The deep insight of Oded Schramm leading to construction
of SLE was that domain Markov property (DMP) together with conformal invariance (CI)
forces the driver to have independent and stationary increment, i.e. Brownian motion
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with some speed. It is possible to canonically produce some models which fails to have
DMP and CI globally, but do possess these properties on a local scale. See construction of
SLEκ,ρ in [41] for example. Such processes is of great importance to study the symmetries
like duality and reversibility of SLE. Heuristically speaking, having DMP and CI on a local
scale will force the driver to have independent and stationary increment locally, i.e. diffu-
sions. This motivates to consider Loewner chains driven by diffusions/semimartingales.
The main contribution of this article is the following Theorem:

Theorem III.1.4. For each κ < 2, there exist a constant α0(κ) depending only on κ
such that following holds :
Let Ut is a continuous process such that for each t ∈ [0, T ], βs = Ut − Ut−s is a semi-
martingale w.r.t. some filtration with canonical decomposition

βs = Ns + As

with local martingale part N and bounded variation part A. Assume for all s ≤ t ≤ T ,

|d[N ]s
ds

| ≤ κ

and

sup
t∈[0,T ]

E
[
exp

(
α

∫ t

0

Ȧ2
rdr

)]
<∞

for some α > α0(κ). Then the Loewner chain driven by U is generated by a curve.

In a special case when U is a (deterministic) Cameron-Martin path, our method allows
us to prove the following uniform bound:

Theorem III.1.5. If U is a Cameron-Martin path, then

|f ′t(iy + Ut)| ≤ exp

[
1

4
||U ||2H

]
(39)

where ||U ||H =

{∫ T

0
U̇2
r dr

} 1
2

is the Cameron-Martin norm.

Note that for Cameron-Martin paths U , by Cauchy-Schwarz inequality

|Ut − Us| = |
∫ t

s

U̇rdr| ≤
√
t− s

√∫ t

s

U̇2
r dr

which implies

inf
ϵ>0

sup
|t−s|<ϵ

|Ut − Us|√
t− s

= 0 < 4

and the existence of trace follows from results in [62]. But it can also be seen directly
from Theorem III.1.5. Additionally, as remarked in [33], the Holder regularity of the trace
γ improves as 1

2
-Holder norm of the driver gets smaller. Since Cameron-Martin paths are

of vanishing 1
2
Holder norm, we can expect the trace to be as regular as possible. Note

that when U ≡ 0, γt = 2i
√
t, which is at best 1

2
-Holder on [0, T ], Lipchitz on time interval

[ϵ, T ] for ϵ > 0 and is of bounded variation. Bounds like 39 allows us to prove,
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Theorem III.1.6. If U is Cameron-Martin path, then ||γ|| 1
2
,[0,T ] <∞ and for any ϵ > 0,

||γ||1,[ϵ,T ] < ∞. In fact under suitable time reparametrization φ, ||γ ◦ φ||1 < ∞ and thus
γ is a bounded variation path.

Stability under approximation type results follow as corollary:

Theorem III.1.7. If U is Cameron-Martin and Un is a sequence of piecewise linear
approximation to U , then for any α < 1

2

||γn − γ||α → 0 as n→ ∞

III.2 Proof of Theorem III.1.4

The proof of the Theorem III.1.4 will be based on Theorem III.1.3. Thus, achieving some
uniform in t upper bound on |f ′t(iy + Ut)| would imply existence and continuity of

γt = lim
y→0+

ft(iy + Ut)

This is made precise in the following lemma.

Lemma III.2.1. Suppose there exist a θ < 1 and y0 > 0 such that for all y ∈ (0, y0]

sup
t∈[0,T ]

|f ′t(iy + Ut)| ≤ y−θ (40)

then the trace exists.

Proof. Note that for y1 < y2 < y0,

|ft(iy2 + ut)− ft(iy1 + Ut)| = |
∫ y2

y1

f ′t(ir + Ut)dr| ≤
∫ y2

y1

r−θdr =
1

1− θ
(y1−θ2 − y1−θ1 )

which implies that ft(iy + Ut) is Cauchy in y and thus

γt = lim
y→0+

ft(iy + Ut)

exists. For continuity of γ, observe that

|γt − ft(iy + Ut)| ≤
y1−θ

1− θ

Now,

|γt − γs| ≤ |γt − ft(iy + Ut)|+ |γs − fs(iy + Us)|+ |ft(iy + Ut)− fs(iy + Us)|
. y1−θ + |ft(iy + Ut)− fs(iy + Us)|

It is easy to see that for y > 0,

lim
s→t

|ft(iy + Ut)− fs(iy + Us)| = 0

and since y was arbitrary, this concludes the proof.
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In the case of random Loewner chains, e.g. SLE(κ) when Ut =
√
κBt, it is usually

difficult to prove (40) using pathwise techniques. But it becomes feasible via probabilistic
techniques. Before stating next lemma, we recall following definitions,

Definition III.2.2. A subpower function is a continuous non-decreasing function φ :
[0,∞) → (0,∞) such that for all constants c > 0

lim
x→∞

x−cφ(x) = 0

Definition III.2.3. We say a curve U : [0, T ] → R is weakly 1
2
-Holder if there exist a

subpower function φ such that

|Ut − Us| ≤
√

|t− s|φ( 1

|t− s|
)

Lemma III.2.4. If U is weakly 1
2
-Holder and there exist constant b > 2, θ < 1 and

C <∞ such that for all t ∈ [0, T ] and y > 0

P[|f ′t(iy + Ut)| ≥ y−θ] ≤ Cyb

then the trace exists.

Proof. By using of Borel-Cantelli lemma, it is easy that almost surely for n large enough,

|f ′k2−2n(i2−n + Uk2−2n)| ≤ 2nθ

for all k = 0, 1, .., 22n − 1. Now applying results in section 3 of [37] ( Lemma 3.7 and
distortion Theorem in particular ) completes the proof.

For proving the conditions in Lemma III.2.1 and III.2.4, we first get a representation
formula of |f ′t(iy + Ut)|.

Lemma III.2.5. For each fixed t ≥ 0 and s ∈ [0, t], define βs = Ut − Ut−s. Then

log |f ′t(z + Ut)| =
∫ t

0

2(X2
r − Y 2

r )

(X2
r + Y 2

r )
2
dr (41)

where z = x+ iy and (Xs, Ys), s ∈ [0, t] is the solution of the ODE

dXs = dβs −
2Xs

X2
s + Y 2

s

ds, X0 = x

dYs =
2Ys

X2
s + Y 2

s

ds, Y0 = y

Proof. For each z ∈ H, the path gt−s(ft(z)) joins z to ft(z) as s varies from 0 to t. It is
then easy to see that

ft(z + Ut) = Pt(z) + Ut

where Ps(z) for s ∈ [0, t] is the solution of ODE

Ṗs(z) =
−2

Ps(z) + βs
, P0(z) = z
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Writing in polar form, P ′s = rse
iθs , we see that

Re(
|P ′s|
P ′s

∂sP
′
s) = Re(e−iθs(eiθs∂srs + irse

iθs∂sθs)) = ∂srs

So it follows that,

∂slog|P ′s| = Re(
1

P ′s
∂sP

′
s)

Noting that ∂sP
′
s = (∂sPs)

′,

∂slog|P ′s| = Re(
1

P ′s
(

−2

Ps + βs
)′) = 2Re((Ps + βs)

−2)

=⇒ log|P ′s| = 2

∫ s

0

Re((Pr + βr)
−2)dr

and the claim follows.

A naive approximation to the RHS of (41)∫ t

0

2(X2
r − Y 2

r )

(X2
r + Y 2

r )
2
dr =

∫ t

0

(X2
r − Y 2

r )

(X2
r + Y 2

r )
d log Yr ≤ log(

Yt
y
)

Also, it is easy to see that

Ys ≤
√
y2 + 4s

implying

|f ′t(iy + Ut)| . y−1

which as per Lemma III.2.1 is just not enough for existence of trace. We thus need to
improve upon these naive approximation.

The key step in the proof of Theorem III.1.4 is the following deterministic estimate
on |f ′t(iy + Ut)| which eventually can be used to give an estimate of form |f ′t(iy + Ut)| ≤
y−θ, θ < 1. To state it, we would need that there is some calculus based on path β so
that integration of appropriate paths against β is well defined. This can be achieved if β
is α-Hölder for some α ∈ (1

3
, 1
2
] (or β is of finite p-variation with p ∈ [2, 3)) and β can be

lifted to a α-rough path (or p-rough path). Since β is one dimensional, one can naturally
associate a geometric rough path to β by assigning βs,t = (1, βt − βs,

1
2
(βt − βs)

2). Please
see [25] for details. Denote Gs = βs − Xs. Note that even if β is very irregular, G is
always a C1 curve and

Ġs =
2Xs

X2
s + Y 2

s

In fact it can be easily checked that Ġ is a controlled path in the sense of Gubinelli with
the Gubinelli derivate Ġ′ = Ẏ

Y
− Ġ2 and the rough integral

Ms :=

∫ s

0

Ġrdβr = lim
|π|→0

∑
[u,v]∈π

Ġu(βv − βu) +
1

2
Ġ′u(βv − βu)

2,
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where π is a partition of [0, t], is well defined. We will also assume that β has finite
quadratic variation in the sense of Föllmer [15]. We say that β : [0, T ] → R has finite
quadratic-variation in sense of Föllmer if (along some fixed sequence of partitions π = (πn)
of [0, t], with mesh-size going to zero)

∃ lim
n→∞

∑
[r,s]∈πn

(βs∧t − βr∧t)
2 =: [β]πt

and defines a continuous map t ↦→ [β]πt ≡ [β]t. A function V on [0, t] is called Föllmer-Itô
integrable (against β, along π) if

∃ lim
n→∞

∑
[r,s]∈πn

Vs(βs∧t − βr∧t) =:

∫ t

0

V dπβ.

(Föllmer [15] shows that integrands of gradient form are integrable in this sense and
so defines pathwise integrals of the form

∫
∇F (β)dπβ.) If the bracket is furthermore

Lipschitz, in the sense that

sup
0≤s<t≤T

[β]t − [β]s
t− s

≤ κ <∞, (42)

write β ∈ Qπ,κ
T . Also note that X naturally inherits the calculus from β because they

differ by a C1 path G. Such freedom to be able to define integrals against β allows one to
write log |f ′t(iy + Ut)| as sum of two parts, one which is singular and blows up as y → 0+
and another part which remains (more or less) bounded.

Proposition III.2.6. Let β ∈ Cα with α ∈ (1/3, 1/2]. With G as above,

log |f ′t(z + Ut)| =Mt −
∫ t

0

Ġ2
rdr + log(

Yt
y
)− log(

X2
t + Y 2

t

x2 + y2
) (43)

If in addition, β has continuous finite quadratic-variation in sense of Föllmer (along
π) then

log |f ′t(z + Ut)| =Mπ
t +

1

2

∫ t

0

Ġ′sd[β]
π
s −

∫ t

0

Ġ2
rdr + log(

Yt
y
)− log(

X2
t + Y 2

t

x2 + y2
) (44)

with (deterministic) Föllmer–Itô integral

Mπ
t = lim

n

∑
[u,v]∈πn

Ġu(βv − βu) =:

∫ t

0

Ġdπβ. (45)

Proof. Consider first the case of β in C1. Then

Ġrdβr −
1

2
Ġ2

rdr +
YrdYr
X2

r + Y 2
r

− 2XrdXr + 2YrdYr
X2

r + Y 2
r

=
2Xr

X2
r + Y 2

r

dβr −
2X2

r

(X2
r + Y 2

r )
2
dr − 2XrdXr

X2
r + Y 2

r

− YrdYr
X2

r + Y 2
r

=
2Xr

X2
r + Y 2

r

d(βr −Xr)−
2X2

r

(X2
r + Y 2

r )
2
dr − 2Y 2

r

(X2
r + Y 2

r )
2
dr

=
4X2

r

(X2
r + Y 2

r )
2
dr − 2X2

r

(X2
r + Y 2

r )
2
dr − 2Y 2

r

(X2
r + Y 2

r )
2
dr

=
2(X2

r − Y 2
r )

(X2
r + Y 2

r )
2
dr
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Next note that
1

2
Ġ2

rdr +
1

2
Ẏ 2
r dr =

Ẏr
Yr
dr

and
YrdYr
X2

r + Y 2
r

=
1

2
Ẏ 2
r dr =

Ẏr
Yr
dr − 1

2
Ġ2

rdr

Putting all together, we get

2(X2
r − Y 2

r )

(X2
r + Y 2

r )
2
dr = Ġrdβr − Ġ2

rdr +
Ẏr
Yr
dr − 2XrdXr + 2YrdYr

X2
r + Y 2

r

and integrating both side, the claim follows with Mt =
∫ t

0
Ġsdβs. In the case of rough

driver, meaning β in Cα with α > 1/3, let βn be piecewise linear approximations to β
on partition πn with |πn| → 0 and let Gn be the one corresponding to βn. As a result of
continuity of rough integrals in rough path metric (universal limit theorem, see [25] for
details), one can observe that∫ s

0

Ġn
rdβ

n
r → (rough)

∫ s

0

Ġrdβr

as n → ∞ and equation 43 is then evident. Finally if β has finite quadratic variation,
then ∑

[u,v]∈πn

Ġ′u(βv − βu)
2 →

∫ s

0

Ġ′rd[β]
π
r

which finishes the proof.

Let us apply Proposition (III.2.6) to specific situation. We consider first the case when
U (or equivalently β) is a Cameron-Martin path. In this case β is bounded variation path
and thus [β] ≡ 0. We easily get following proposition:

Proposition III.2.7. If U is a Cameron-Martin path, then

|f ′t(z + Ut)| ≤
y

Yt
(1 +

x2

y2
) exp

[
1

4

∫ t

0

U̇2
r dr

]
In particular,

|f ′t(iy + Ut)| ≤
y

Yt
exp

[
1

4

∫ t

0

U̇2
r dr

]
≤ exp

[
1

4

∫ t

0

U̇2
r dr

]
and the trace exists.

Proof. Note that

Mt =

∫ t

0

Ġrdβr =

∫ t

0

Ġrβ̇rdr

≤
∫ t

0

Ġ2
rdr +

1

4

∫ t

0

β̇2
rdr

Thus form Proposition III.2.6,
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log |f ′t(z + Ut)| =Mt −
∫ t

0

Ġ2
rdr + log(

Yt
y
)− log(

X2
t + Y 2

t

x2 + y2
)

≤ 1

4

∫ t

0

β̇2
rdr + log(

Yt
y
)− log(

X2
t + Y 2

t

x2 + y2
)

≤ 1

4

∫ t

0

β̇2
rdr + log(

Yt
y
)− log(

Y 2
t

x2 + y2
)

=
1

4

∫ t

0

β̇2
rdr + log(

y

Yt
) + log(1 +

x2

y2
)

and the claim follows. Finally the existence of trace follows from Lemma III.2.1

We can also apply Proposition III.2.6 to other situations where [β] is not necessarily
zero.

Proposition III.2.8. In the context of Proposition III.2.6, with continuous finite quadratic-
variation in sense of Föllmer so that d[β]πs/ds ≤ κ < 2 one has the following estimate

|f ′t(iy + Ut)| ≤ exp

[
Mπ

t −
∫ t

0

Ġ2
rd(r +

1
2
[β]r)

]
where

∫ t

0
Ġrd

πβr =Mπ
t is the Itô-Föllmer type integral introduced in (45).

Proof. From (44) and by Ġ′ = Ẏ
Y
− Ġ2, taking z = iy (i.e. x = 0),

log |f ′t(iy + Ut)| =
∫ t

0

Ġrdβr −
∫ t

0

Ġ2
rdr −

1

2

∫ t

0

Ġ2
rd[β]r

+ log(
Yt
y
)− log(

X2
t + Y 2

t

y2
) +

1

2

∫ t

0

Ẏr
Yr
d[β]r

Using positivity of Ẏr/Yr,

log(
Yt
y
)− log(

X2
t + Y 2

t

y2
) +

1

2

∫ t

0

Ẏr
Yr
d[β]r

≤ log(
Yt
y
)− 2 log(

Yt
y
) +

κ

2

∫ t

0

Ẏr
Yr
dr

= (
κ

2
− 1) log(

Yt
y
)

≤ 0.

and the desired estimate follows.

We are now ready to prove Theorem III.1.4. For each fixed t, let βs = Ut − Ut−s
for s ∈ [0, t] is a semimartingale with respect to some filtration ( and thus w.r.t its
own filtration). Standard martingale argument implies that for any nested sequence of
partition πn with |πn| → 0, a.s.

lim
n→∞

∑
[r,s]∈πn

(βs∧t − βr∧t)
2 = [β]t

where [β] is the quadratic variation process of semimartingale β.
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Proof of Theorem III.1.4. Under the assumptions of Theorem III.1.4, it is easy to verify
that U is weakly 1

2
-Holder. Thus by Lemma III.2.4 and Chebyshev’s inequality, it is

enough to exhibit constant b > 2 and C <∞ such that for all t and y > 0,

E[|f ′t(iy + Ut)|b] ≤ C

The constant b is chosen as follows. Since κ < 2, we can find p, q > 1 with p−1+q−1 = 1
and ϵ ∈ (0, 1) small enough such that

b :=
1

p

(
1 +

2(1− ϵ)

κ

)
> 2

Now, since βs = Ns + As with A of bounded variation, [β]s = [N ]s. Also since β is
semimartingale, the Föllmer integral Mπ

t can be identified with the Ito intgral
∫ t

0
Ġrdβr.

Thus by Proposition III.2.8,

log |f ′t(iy + Ut)| ≤
∫ t

0

ĠrdNr +

∫ t

0

ĠrdAr −
∫ t

0

Ġ2
rd(r +

1
2
[N ]r)

Note firstly ∫ t

0

ĠrdAr =

∫ t

0

ĠrȦrdr

≤ ϵ

∫ t

0

Ġ2
rdr +

1

4ϵ

∫ t

0

Ȧ2
rdr

Secondly, ∫ t

0

Ġ2
rdr ≥

1

κ

∫ t

0

Ġ2
rd[N ]r

Putting all together, we get

log |f ′t(iy + Ut)| ≤
∫ t

0

ĠrdNr −
(
1

2
+

1− ϵ

κ

)∫ t

0

Ġ2
rd[N ]r +

1

4ϵ

∫ t

0

Ȧ2
rdr

Thus by Holder’s inequality,

E[|f ′t(iy + Ut)|b] ≤ E
[
exp

(
b

∫ t

0

ĠrdNr −
pb2

2

∫ t

0

Ġ2
rd[N ]r

)
exp

(
b

4ϵ

∫ t

0

Ȧ2
rdr

)]
≤ E

[
exp

(
pb

∫ t

0

ĠrdNr −
p2b2

2

∫ t

0

Ġ2
rd[N ]r

)] 1
p

E
[
exp

(
qb

4ϵ

∫ t

0

Ȧ2
rdr

)] 1
q

Finally note that Ġ is adapted to filtration of N (or β) and∫ s

0

ĠrdNr

is a local martingale. Thus

exp

(
pb

∫ s

0

ĠrdNr −
p2b2

2

∫ s

0

Ġ2
rd[N ]r

)
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is a positive local martingale. Since positive local martingales are super-martingale, we
conclude that

E
[
exp

(
pb

∫ t

0

ĠrdNr −
p2b2

2

∫ t

0

Ġ2
rd[N ]r

)]
≤ 1

implying

E[|f ′t(iy + Ut)|b] ≤ E
[
exp

(
qb

4ϵ

∫ t

0

Ȧ2
rdr

)] 1
q

Note that for α large enough (only depending on κ), it possible to find such p, ϵ with

qb

4ϵ
= α

and thus

sup
y>0

sup
t∈[0,T ]

E[|f ′t(iy + Ut)|b] <∞

which concludes the proof.

Remark III.2.9. We cannot make a semimartingale asumption for the Loewner driver
U since the time-reversal of a semimartingales can fail to be a semimartingale. That said,
time-reversal of diffusion was studied by a number of authors including Millet, Nualart,
Sanz, Pardoux ... and sufficient conditions on “diffusion Loewner drivers” could be given
by tapping into this literature.

III.3 Reverse Brownian filtration and diffusion driven

Loewner chains

In this section we apply Theorem III.1.4 to the class of diffusion processes. To appreciate
better, we restrict to the processes of form Ut = F (t, Bt) for nice enough (say smooth)
functions F . The general diffusions can be handled similarly but is technically more
involved. For a fixed time t > 0, the process βs = βt

s = Ut − Ut−s is the time reversal of
U . Note that Ws = Bt − Bt−s is another Brownian motion and a martingale w.r.t. to
its natural completed filtration Fs satisfying usual hypothesis. We recall the following
classical result on expansion of filtration. See [[69], Chapter 6] for details.

Theorem III.3.1 ([69]). Brownian motion W remains a semimartingale w.r.t. expanded
filtration F̃s := Fs ∨ σ(Wt) = Fs ∨ σ(Bt). Moreover,

Ws = W̃s +

∫ s

0

Wt −Wr

t− r
dr

where W̃ is a Brownian motion adapted to the filtration F̃ .

We prove here that βs is a semimartingale w.r.t. to filtration F̃ and provide its explicit
decomposition into martingale and bounded variation part.
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Lemma III.3.2. The process β is a semimartingale w.r.t. F̃ with the decompostion

βs =

∫ s

0

F ′(t− r, Bt−r)dWr +

∫ s

0

(
Ḟ (t− r, Bt−r)−

1

2
F

′′
(t− r, Bt−r)

)
dr

=

∫ s

0

F ′(t− r, Bt−r)dW̃r

+

∫ s

0

(
Ḟ (t− r, Bt−r)−

1

2
F

′′
(t− r, Bt−r) + F ′(t− r, Bt−r)

Bt−r

t− r

)
dr

Proof. By Ito’s formula,

βs =

∫ t

t−s
F ′(r, Br)dBr +

∫ s

0

(
Ḟ (t− r, Bt−r) +

1

2
F

′′
(t− r, Bt−r)

)
dr

Note that by computing the difference between forward (Ito) and backward stochastic
integral, ∫ t

t−s
F ′(r, Br)dBr =

∫ s

0

F ′(t− r, Bt−r)dWr −
∫ s

0

F
′′
(t− r, Bt−r)dr

which completes the proof.

Corollary III.3.3. If |F ′(t, x)| ≤
√
κ <

√
2 and for α > α0(κ)

E
[
exp

(
α

∫ T

0

{
Ḟ (r, Br)−

1

2
F

′′
(r, Br) + F ′(r, Br)

Br

r

}2

dr

)]
<∞ (46)

Then Loewner chain driven by Ut = F (t, Bt) is generated by a curve on [0, T ].

To note down an interesting example of Corollary III.3.3, we first recall a classical
result on integrability of Wiener chaos of Gaussian measures.

Theorem III.3.4 ([44]). Let (E, ||.||) be a real separable Banach space equipped with
Borel σ-algebra B and µ be a centered Gaussian measure on E. Then for an element Ψ
in the d-th (homogenous) Wiener chaos, there exist η0 > 0 such that,

E
[
exp

(
η||Ψ||

2
d

)]
<∞ ⇐⇒ η < η0

In fact, the constant η0 can be given an explicit formula in terms of Ψ. See [[44],
Chapter 5] for a proof and further details.

Corollary III.3.5. For p > 0, Ut = tpBt generates a trace almost surely on [0, T ] for T
(deterministic) small enough.

Proof. With F (t, x) = tpx, |F ′(t, x)| ≤ 1 for T small enough. For checking condition 46,
note that ∫ T

0

(B2
r − r)r2p−2dr

lies in the second Wiener chaos of Brownian motion and use of Theorem III.3.4 completes
the proof.
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Remark III.3.6. If function F ′(t, x) is not space depedent, e.g. F (t, x) = tpx or
F (t, x) =

√
κx, we can apply the formula∫ t

t−s
F ′(r)dBr =

∫ s

0

F ′(t− r)dWr

Note that RHS is indeed a martingale w.r.t. the filtration F and we do not have to work
with expanded filtration F̃ . In this case the canonical decomposition of β is given by

βs =

∫ s

0

F ′(t− r)dWr +

∫ s

0

Ḟ (t− r, Bt−r)dr

and Theorem III.1.4 again can be applied considering β as a semimartingale w.r.t. the
filtration F .

Remark III.3.7. It is possible to give an intuitive explanation to the existence of trace
for Ut = tpBt on [0, T ], T small enough. If T is small enough, fluctuations of U will be
dominated by that of

√
κBt, κ large enough, for which the trace exists. However, to the

authors best knowledge, there is no such comparison principle known. In fact, there is a
counter example, which appeared in [46], to a similar question posed by Omer Angel:
If U generates a trace, it is true that for r < 1, rU generates a trace ?

III.4 Regularity and stability under approximation

of the trace

In this section, we study the regularity and stability under approximation of the trace,
specially in the case when U is Cameron-Martin path. Bound obtained in Proposition
III.2.7 is the key to following results.

Theorem III.4.1. If U is a Cameron-Martin path, then,

1. The trace γ is 1
2
-Holder with

||γ|| 1
2
≤ g(||U ||H)

for some continuous function g : [0,∞) → (0,∞).

2. For each ϵ > 0, γ is Lipchitz on [ϵ, T ]. Moreover the map t → γ(t2) is Lipchitz on
[0, T ]. In particular, γ is bounded variation curve on [0, T ].

Remark III.4.2. The form of function g can be explicitly seen in the proof below and in
fact it suffices to take

g(x) = Cecx
2

Proof. • Proof of Part 1 Define

v(t, y) :=

∫ y

0

|f ′t(ir + Ut)|dr

Note that,
|γ(t)− ft(iy + Ut)| ≤ v(t, y)
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and by an application of Koebe’s one-quater Theorem,

v(t, y) ≥ y

4
|f ′t(iy + Ut)| (47)

In the proof below, we will choose y =
√
t− s. Now,

|γ(t)− γ(s)| ≤|γ(t)− ft(Ut + iy)|
+ |γ(s)− fs(Us + iy)|
+ |ft(Us + iy)− fs(Us + iy)|
+ |ft(Ut + iy)− ft(Us + iy)|

The first two terms are bounded by v(t, y) and v(s, y) respectively. For the third
term, Lemma 3.5 in [37] and 47 implies,

|ft(Us + iy)− fs(Us + iy)| ≤ Cv(s, y)

For the fourth term,

|ft(Ut + iy)− ft(Us + iy)| ≤ |Ut − Us| sup
r∈[0,1]

|f ′t(rUt + (1− r)Us + iy)|

Note that

|Ut − Us| ≤ y||U || 1
2

and By Lemma 3.6 (Koebe’s distortion Theorem) in [37], there exist constant C
and α such that

|f ′t(rUt + (1− r)Us + iy)| ≤ Cmax

{
1,

(
|Ut − Us|

y

)α}
|f ′t(iy + Ut)|

≤ Cmax

{
1, ||U ||α1

2

}
|f ′t(iy + Ut)|

and using 47 again,

|ft(Ut + iy)− ft(Us + iy)| ≤ C||U || 1
2
max

{
1, ||U ||α1

2

}
v(t, y)

Finally, from Proposition III.2.7

v(t, y) ≤ y exp

{
1

4
||U ||2H

}
||U || 1

2
≤ ||U ||H

giving us

|γt − γs| ≤ yg(||U ||H)

completing the proof.
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• Proof of part 2. We will use the results from [33] for the proof of this part. In
particular, we recall from [33] that if ||U || 1

2
< 4 (which we can assume without loss

of generality since U is a Cameron-Martin path), then there exist a σ, c > 0 such
that for all y > 0,

σ
√
t ≤ Im(ft(iy + Ut)) ≤

√
y2 + 4t

and
|Re(ft(iy + Ut))| ≤ c

√
t

so that trace γ lies inside a cone at 0 and |ft(i
√
t+ Ut)| ≤ c

√
t. From the proof of

part 1, we have
|γt − γs| . v(t,

√
t− s) + v(s,

√
t− s)

If s, t ≥ ϵ, using Proposition III.2.7,

v(t,
√
t− s) + v(s,

√
t− s) . (

1

Yt
+

1

Ys
)(t− s) .

1√
ϵ
(t− s)

which implies γ is Lipchitz on [ϵ, T ]. For proving |γt2 − γs2| . |t− s|, note that we
can assume s = 0, for otherwise we can consider the image of γ under conformal
map gs2 −Us2 whose derivative of the inverse f

′(.+Us2) remains bounded in a cone.
Finally again using Proposition III.2.7,

|γt2 | ≤ |γt2 − ft2(it+ Ut2)|+ |ft2(it+ Ut2)|
. v(t2, t) + t

.
t2

Yt2
+ t

. t

which completes the proof.

Theorem III.4.3. If Un is a sequence of Cameron-Martin paths with ||Un − U ||∞ → 0
and

sup
n

||Un||H + ||U ||H <∞

then
||γn − γ||∞ → 0

In fact, for any α < 1
2
,

||γn − γ||α → 0

Proof. We have,

|γn(t)− γ(t)| ≤|γn(t)− fn
t (iy + Un

t )|
+ |ft(iy + Ut)− γ(t)|
+ |fn

t (iy + Un
t )− ft(iy + Ut)|

Note that for fixed y > 0,

lim
n→∞

|fn
t (iy + Un

t )− ft(iy + Ut)| = 0
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uniformly in t on compacts. From Proposition III.2.7,

|γn(t)− fn
t (iy + Un

t )|+ |ft(iy + Ut)− γ(t)| ≤ vn(t, y) + v(t, y)

≤ y

(
exp

{
1

4
||Un||2H

}
+ exp

{
1

4
||U ||2H

})
Thus,

lim
y→0+

|γn(t)− fn
t (iy + Un

t )|+ |ft(iy + Ut)− γ(t)| = 0

uniformly in n and t. Since y can be chosen arbitrarily small,

lim
n→∞

||γn − γ||∞ = 0

Finally note that from Theorem III.4.1

sup
n

||γn|| 1
2
<∞

and standard interpolation argument concludes the proof.

Remark III.4.4. Variant of Theorem III.4.1 and III.4.3 also holds in the case when U
is semimartingale. As a by product of the proof of Theorem III.1.4, we have the bound

|f ′t(iy + Ut)| ≤ y−θ (48)

for some θ < 1. We can also optimise on the value of θ by optimising the choice of
p, ϵ so that α = qb

4ϵ
is as small as possible for given κ ( this amounts to solve some

quadratic inequalities). As shown in [37], Holder regularity of the trace can be derived
from 48 and smaller the value of θ we can choose, better is the Holder regularity. Thus
applying the same method as in [37], we can find an Holder exponent for trace driven by
semimartingales.
As for stability under approximation, bound 48 again allows us to apply the deterministic
result obtained in [79] which guarantees the convergence in the uniform topology of square
root or straight line interpolation schemes. See [79] for details.
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IV.1 Introduction

Phenomena of existence of trace for Loewner chains is very subtle and complicated.
There is very little known about it from a deterministic point of view. It was proven in
[62, 47] that the trace exist if the driver U is 1

2
-Hölder with ||U || 1

2
< 4. Even though

this deterministic result fails to apply to SLE(κ), the trace still exist for SLE(κ). In
the random situations, the proofs are based on probabilistic techiniques and it gives no
understanding of pathwise properties of the driver responsible for the trace. In this article
we provide deterministic conditions on driver responsible for the trace with an aim to
understand the random situations better. We will using the notations from Part III. The
main result of this article is the following Theorem relating trace to the slow points of
the driver. We first recall the definition of slow points.

Definition IV.1.1. A point t > 0 is called α-slow point (from below) for U if

lim sup
s→0+

|Ut − Ut−s|√
s

≤ α

Theorem IV.1.2. Let U be bounded variation path. For t > 0 and s ∈ [0, t], define
βs = βt

s := Ut − Ut−s and ||β||s := ||β||1−var,[0,s]. Assume for all t > 0,

lim sup
s→0+

||β||s√
s
< 2 (49)

and ∫ t

0+

1√
r
d||β||r <∞ (50)

Then the Loewner chain driven by U is generated by a simple curve.

If U = U1 − U2 is the difference of monotonic increasing path U1 and U2, then the
condition 49 is precisely saying that all t > 0 is a slow point for U1 + U2.
The slow points are known to exist for Brownian motion for any α > 1, see [65] for details.
Thus Theorem IV.1.2 relates to the existence of trace for SLE(κ) from a deterministic
point of view, at least for small κ. In fact we believe that the restriction to the small κ is
only due to some technicalities. We propose an another direct approach to the trace, again
involving slow points of the driver, which possibly explains the trace of SLE(κ), κ < 16.

IV.2 Proof of Theorem IV.1.2

We will be using Theorem III.1.3 for the proof of Theorem IV.1.2. Classically, as one
can see in [71], [19], [33], the approach is to verify the conditions of Theorem III.1.3 by
obtaining a constant θ < 1 such that for all t ∈ [0, T ] and y > 0 small enough,

|f ′t(iy + Ut)| ≤ y−θ (51)

In the case of U with ||U || 1
2
< 4, inequality 51 was proved in [33] by obtaining a crucial

lower bound
Im(ft(iy + Ut)) ≥ σ

√
t (52)

for some constant σ uniformly for y > 0.
In the case of random drivers, inequality like 52 is hard to obtain (and unlikely to
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be true), but 51 can still be proved by obtaining first appropriate moment bounds on
|f ′t(iy+Ut)| and then applying Borel-Cantelli lemma. This approach works elegantly for
all SLE(κ), κ ̸= 8 and fails for κ = 8 due to some technical reasons . Please see [71] for
details.

For the proof of Theorem IV.1.2, we will verify the conditions of Theorem III.1.3
directly as follows without relying on the inequality 51. We will assume the conditions
put forward in Theorem IV.1.2 throughout the proof.
We split the proof into two parts. The first part will be dedicated to prove the existence
of the limit

γt = lim
y→0+

ft(iy + Ut) (53)

and second part will prove the continuity of curve t→ γt.

IV.2.1 Existence of the limit 53

In this subsection, we will keep the time index t > 0 fixed. Define βt
s = Ut−Ut−s, s ∈ [0, t].

As an abuse of notation, we will write βs to mean βt
s. The dynamics of ft(iy + Ut) can

be easily obtained by following the reverse flow of the Loewner differential equation as
what following lemma gives.

Lemma IV.2.1. For each fixed t ∈ (0, T ] and z ∈ H,

ft(z + Ut) = ht(z)

where hs(z)s∈[0,t] is given by the solution of the differential equation

dhs(z) = dβs +
−2

hs(z)
ds, h0(z) = z (54)

Proof. Note that gt−s(ft(z)) for s ∈ [0, t] is curve from z to ft(z). Note that g.(ft(z)) is
solution to differential equation 38. Then plugging z + Ut is the place of z followed by
easy manipulations completes the proof.

In view of Lemma IV.2.1, we need to analyse solution h(iy) as y → 0+. It becomes
beneficial to look at the curves φs(−y2) = hs(iy)

2. Note that for y > 0, hs(iy) ∈ H and
thus φs(−y2) ∈ C \ [0,∞). It can be easily seen that

dφs(iy) = 2hs(iy)dβs − 4ds = 2
√
φs(iy)dβs − 4ds, φ0(−y2) = −y2

where
√
z : C \ [0,∞) → H is a bijective holomorphic map. In fact, it follows easily from

the existence and uniqueness of equation 54 that

dφs(z0) = 2
√
φs(z0)dβs − 4ds, φs(z0) = z0 (55)

admits a well defined (i.e. φs(z0) ∈ C \ [0,∞)) unique solution φ(z0) whenever z0 ∈
C \ [0,∞). We want to consider equation 55 for z0 = 0. We will need some definitions
for that purpose.

Definition IV.2.2. For a continuous curve X : [0, T ] → C, a branch square roof of X
is a measurable map A : [0, T ] → H̄ such that for all t, A2

t = Xt.
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Lemma IV.2.3. For any continuous curve X, there exist a branch square root.

Proof. If Xt /∈ [0,∞), define At =
√
Xt. If Xt ∈ [0,∞), define At =

√
|Xt|. It can be

easily checked that this constructs a branch square root of X and the verification is left
to the reader.

In fact, X can have more than one branch square roots in general. With an abuse
of notation, we will denote all branch square roots (or a particular one) by symbol At =√
Xt

b
. Note that for any such branch |

√
Xt

b| =
√

|Xt|, which is continuous.

Lemma IV.2.4. If a continuous curve v : [0, t] → C with a branch square root
√
v
b

satisfies |Re(√vsb)| ≤ ||β||s and

vs = 2

∫ s

0

√
vr

b
dβr − 4s

for all s ∈ [0, t], then for all s > 0, vs ∈ C \ [0,∞) and thus
√
vs

b =
√
vs.

Proof. Note that

lim sup
s→0+

2

s

∫ s

0

|Re(
√
vr

b
)|d||β||r ≤ lim sup

s→0+

1

s
||β||2s < 4

so that

lim sup
s→0+

Re(vs)

s
< 0

At this point, there exist a s0 > 0 such that for all s ∈ (0, s0],

Re(vs) < 0

which implies vs ∈ C \ [0,∞) for s ∈ (0, s0]. Since solution of equation 55 remains in
C \ [0,∞) once the starting point z0 ∈ C \ [0,∞), we conclude that vs ∈ C \ [0,∞) for
all time s ∈ (0, t].

Lemma IV.2.4 tells us that considering equation

dφs(0) = 2
√
φs(0)

b
dβs − 4ds, φ0(0) = 0

with some branch
√
φs(0)

b
is same as considering

dφs(0) = 2
√
φs(0)dβs − 4ds, φ0(0) = 0

with the condition that φs(0) ∈ C \ [0,∞) for all s > 0. In the next lemma, we establish
the uniqueness of solution to such equations.

Lemma IV.2.5. If φi for i = 1, 2 satisfy |Re(
√
φi
s)| ≤ ||β||s, φi

s ∈ C\ [0,∞) for all s > 0
and

φi
s = 2

∫ s

0

√
φi
rdβr − 4s

then φ1 = φ2.
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Proof. Define ψi
s = φi

s + 4s. From the proof of lemma IV.2.4,

lim sup
s→0+

Re(ψi
s)

s
< 4

for i = 1, 2. Thus there exist s0 > 0 and δ > 0 such that for i = 1, 2,

sup
0<s≤s0

Re

(
ψi
s

s
− 4

)
≤ −δ

so that for 0 < s ≤ s0 ⏐⏐⏐⏐
√
ψ1
s

s
− 4 +

√
ψ2
s

s
− 4

⏐⏐⏐⏐ ≥ √
2δ

Now,

|ψ1
s − ψ2

s | =
⏐⏐⏐⏐2 ∫ s

0

(
√
ψ1
r − 4r −

√
ψ2
r − 4r)dβr

⏐⏐⏐⏐
=

⏐⏐⏐⏐2 ∫ s

0

√
r

(√
ψ1
r

r
− 4−

√
ψ2
r

r
− 4

)
dβr

⏐⏐⏐⏐
≤ 2√

2δ

∫ s

0

√
r

(
|ψ1

r − ψ2
r |

r

)
d||β||r

=
2√
2δ

∫ s

0

|ψ1
r − ψ2

r |√
r

d||β||r

=
2√
2δ

∫ s

0

|ψ1
r − ψ2

r |µ(dr)

where the measure µ(a, b] =
∫ b

a
1√
r
d||β||r < ∞. Applying Gronwall’s lemma in measure

form, we see that φ1
s = φ2

s for all s ≤ s0. Finally note that φ1
s0

= φ2
s0

∈ C \ [0,∞) and
uniqueness of solution to equation 55 for starting point z0 ∈ C \ [0,∞) implies φ1

s = φ2
s

for all s ∈ [0, t].

Having established the uniqueness of solutions for equation 55 with z0 = 0, we now
show the existence of a solution. First we note down a lemma used for proving the
existence.

Lemma IV.2.6. Let Xn, X : [0, T ] → C are continuous curves with X0 = 0, Xn
0 ∈

C \ (0,∞) and Xn
t ∈ C \ [0,∞) for all n and t > 0. If Xn converges uniformly to X,

then there exist a branch square root
√
X

b
of X and a subsequence Xnk such that

√
Xnk

converges uniformly to
√
X

b
. In particular,

√
X

b
is continuous.

Proof. Note that family of curves {
√
Xn} is well defined and uniformly bounded. We

will prove that this family is equicontinuous, which implies, using Arzela-Ascoli Theorem,
there exist a subsequence

√
Xnk converging uniformly to a continuous curve A. It can

be easily checked that A is a branch square root of X. For proving the equicontinuity of
{
√
Xn} , let ϵ > 0. We need to exhibit a δ such that if |t− s| ≤ δ, then |

√
Xn

t −
√
Xn

s | ≤
ϵ for all n. W.l.o.g. we can assume |Xn

s | ≥ ϵ2

4
. Since family Xn is equicontinuous,

choose δ such that for all n, |Xn
t − Xn

s | ≤ ϵ2

16
and thus |Xn

t | ≥ ϵ2

8
. We claim that
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|
√
Xn

s +
√
Xn

t | ≥ cϵ for some c > 0. If either Re(Xn
s ) ≤ ϵ2

16
or Re(Xn

t ) ≤ ϵ2

16
, then

Im(
√
Xn

s +
√
Xn

t ) ≥ cϵ. On the other hand, if Re(Xn
s ) ≥ ϵ2

16
, Re(Xn

t ) ≥ ϵ2

16
, sign of

Im(Xn
s ) and sign of Im(Xn

t ) are the same (since curve Xn doesn’t intersect the positive
real axis) and thus |Re(

√
Xn

s +
√
Xn

t )| ≥ cϵ . Finally

|
√
Xn

t −
√
Xn

s | =
|Xn

t −Xn
s |

|
√
Xn

t +
√
Xn

s |
≤ cϵ

for some c > 0, concluding the proof.

We also recall a standard result from analysis which we will not prove here.

Lemma IV.2.7. Let xn is a sequence in a metric space such that for any subsequence
xnk

, there is further subsequence xnkl
which converges to a fixed element x, then sequence

xn converges to x.

Theorem IV.2.8. There is a unique continuous curve φs = φs(0) with |Re(
√
φs)| ≤

||β||s, φs ∈ C \ [0,∞) for s > 0 and

φs = 2

∫ s

0

√
φrdβr − 4s

Proof. Uniqueness is already settled in lemma IV.2.5. For the existence of a solution, note
that curves φ(−y2), y > 0 is a uniformly bounded equicontinuous family. Thus by Arzela-
Ascoli Theorem and lemma IV.2.6, there is a sequence φ(−y2n) converging uniformly to a

continuous curve φ and
√
φ(−y2n) converging uniformly to some branch square root

√
φ
b

as yn → 0+. Then it follows that

φs = 2

∫ s

0

√
φr

b
dβr − 4s

Also it follows easily from ODE 54 that if Xs + iYs = hs(iy) =
√
φs(−y2), then

Xs = βs −
1

Ys

∫ s

0

βrdYr

In particular, |Re(
√
φs(−y2))| ≤ ||β||s and thus |Re(

√
φs

b
)| ≤ ||β||s. Finally using lemma

IV.2.4, φs ∈ C \ [0,∞) for all s > 0 and
√
φ
b
=

√
φ.

As an immediate corollary, we have the existence of the limit 53.

Corollary IV.2.9. Solution φ(z0) of equation 55 with z0 ∈ C\[0,∞) converges uniformly
to φ(0) as z0 → 0. In particular ft(iy + Ut) = ht(iy) =

√
φt(−y2) converges to

√
φt(0)

as y → 0+.

Proof. As in the proof of Theorem IV.2.8, φ(zn0 ) converges uniformly to φ(0) along some
subsequence zn0 → 0. By using the uniqueness of solution φ(0) and lemma IV.2.7, we
conclude φ(z0) conveges to φ(0) as z0 → 0. Finally note that φt(0) ∈ C \ [0,∞) and thus√
φt(z0) →

√
φt(0) as z0 → 0.
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IV.2.2 Continuity of map t→ γt

In this subsection, we prove the continuity of γ defined by equation 53. At this point we
denote the solution constructed in Theorem IV.2.8 as φt

s = φt
s(0) for s ∈ [0, t]. As seen

in corollary IV.2.9,

γt =
√
φt
t

Proposition IV.2.10. The map t → φt
t is continuous. In particular, γ is a continuous

curve. Also γ is a simple curve.

Proof. Note that for s ∈ [0, t],

φt
s = 2

∫ s

0

√
φt
rdβ

t
r − 4s

Since family of curves φt are uniformly bounded, we see that

|φt
t| . ||βt||1−var,[0,t] + 4t

implying continuity at t = 0

lim
t→0+

φt
t = 0

For continuity on (0, T ], fix a time t0 > 0. Then for t ∈ (t0, 2t0), define α
t
s = φt

t
t0

s
for

s ∈ [0, t0]. Note that |Re(
√
αt
s)| ≤ ||βt|| t

t0
s and

αt
s = 2

∫ s

0

√
αt
rdβ

t
t
t0

r − 4
t

t0
s

Again it is easy to check that family of curves αt is uniformly bounded and equicontinuous.
Thus again using Arzela Ascoli Theorem and lemma IV.2.6, along some subsequence
tn ↓ t0, αtn converges uniformly to some continuous curve φ′ and

√
αtn converges uniformly

to some branch square root
√
φ′

b
with |Re(

√
φ′s

b
)| ≤ ||βt0||s on [0, t0]. As an application

of Portmanteau Theorem, we easily see that

φ′s = 2

∫ s

0

√
φ′r

b
dβt0

r − 4s

and again by lemma IV.2.4 and IV.2.5, we conclude φ′s = φt0
s . Finally lemma IV.2.7

implies that αt converges uniformly to φt0 as t ↓ t0. In particular φt
t = αt

t0
→ φt0

t0 , implying
the right continuity. Similarly as above, φt

t is also left continuous. Finally note that
φt
t ∈ C \ [0,∞) for all t > 0 and thus γt =

√
φt
t is also a continuous curve. For simpleness

for γ, suppose on the contrary γs = γs′ for s < s′. Note that chain K̃t := gs(Kt+s\Ks)−Us

is driven by Ũt = Ut+s − Us, which again by above argument is generated by a curve γ̃
with γ̃t ∈ H. But since γs = γs′ , γ̃s′ ∈ R which is a contradiction.

IV.3 Further discussions

Though Theorem IV.1.2 applies only to bounded variation path, it gives us good under-
standing of relation between slow points and the trace of Loewner chains. For example,
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if one could make an absurd assumption that Brownian motion paths are monotonic,
Theorem IV.1.2 suggests the existence of a simple trace for SLE(κ) given that

lim sup
s→0+

|Bt −Bt−s|√
s

<
2√
κ

(56)

Note that equation 56 holds true whenever k < 4 and t is a 2√
κ
-slow point for Brownian

motion. Such slow points exists and form a dense subset of [0, T ], suggesting a simple
trace if κ < 4. This is in accordance with the fact that SLE(κ) is indeed a simple curve
iff κ ≤ 4.

We give below an another supporting result for slow points and trace if one is only
interested in the existence of the limit 53 for a fixed time t.

Proposition IV.3.1. For a continuous curve U and time t > 0, if either

lim sup
s→0+

|βt
s|√
s
< 1 (57)

or

lim
s→0+

sup
u,v∈[0,s]

|βt
u − βt

v|√
|u− v|

< 2, (58)

then limit 53 exists at time t and γt ∈ H.

Proof. We use a representation formula for |f ′t(iy + Ut)| from [71],

|f ′t(iy + Ut)| = exp

[∫ t

0

X2
r − Y 2

r

X2
r +X2

r

d log(Yr)

]
,

where Xs+ iYs = hs(iy) is the solution of ODE 54. We use an estimate obtained in [[33],
lemma 2.1] that |Xs| ≤ sup{|βr−βs|, r ∈ [0, s]}. Thus if either 57 or 58 holds, there exist
a σ < 2 and s0 > 0 such that |Xs| ≤ σ

√
s for s ∈ [0, s0]. If follows from [[33], lemma 3.2]

that there exist a constant L > 0 such that

Ys ≥ L
√
s

for all s ∈ [0, s0] uniformly in y > 0. This implies that there exist θ < 1 such that for all
y > 0 and s ∈ [0, t],

X2
s − Y 2

s

X2
s +X2

s

≤ θ,

so that
|f ′t(iy + Ut)| . y−θ,

which implies the existence of limit 53. Also since Ys0 ≥ L
√
s0 for all y > 0, we conclude

that γt ∈ H.

We can also use Proposition IV.3.1 to reflect in the reverse direction. Since we know
that SLE(κ) is a simple curve iff κ ≤ 4, it suggests the following sample path property
of Brownian motion.

Conjecture 2. For Brownian motion B,

P[inf
t

lim
ϵ→0+

sup
u,v∈[t,t+ϵ]

|Bu −Bv|√
|u− v|

= 1] = 1
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Actually the relation between the slow points and the trace is not restricted to κ < 4
regime. In view of analysing the solution h(iy) of equation 54 as y → 0+, we propose
following approximating scheme to the solution h(iy).
Recall that the

√
z : C \ [0,∞) → H is a bijective holomorphic map.

Consider a partition P = {0 = s0 < s1 < s2.. < sk = t} of the interval [0, t]. For y > 0,
starting from zs0 = iy, define iteratively

zsj+1
=
βsj+1

− βsj
2

+

√
(zsj +

βsj+1
− βsj
2

)2 − 4(sj+1 − sj) (59)

Note that Im(zsj) is increasing with j. For s ∈ [sj, sj+1], define

zs =

√
z2sj +

s− sj
sj+1 − sj

(z2sj+1
− z2sj) (60)

It is easy to check that the curves zPs (iy) is well defined (at least for small |P| de-
pending on y) with the above chosen branch of complex square root function. For each
partition P ,

dzPs (iy) = dβPs +
−2

zPs (iy)
ds, zP0 (iy) = iy (61)

for some continuous curves βP with ||βP −β||∞ → 0 as |P| → 0. Actually even though β
is real valued, the curves βP will be complex valued. Allowing βP to take complex values
makes it for feasible to solve equation 61 explicitly and which helps us to come up with
the recursion 59 in the first place. It then follows for each y > 0,

lim
|P|→0

||zP(iy)− h(iy)||∞ = 0

Thus, in the limit |P| → 0, the curves zP(iy) and h(iy) are the same. The key remark
here is that even though it is impossible to make sense of ODE 54 with y = 0, it is
possible to make sense zP(0).

Proposition IV.3.2. If the first point s1 of the partition P is such that

|βt
s1
| < 4

√
s1

then recursion zPsj(0) is well defined. In particular if

lim sup
s→0+

|βt
s|√
s
< 4, (62)

then recursion zPsj(0) is well defined for all partition P with |P| small enough.

Proof. Note that starting from z0 = 0,

zs1 =
βs1
2

+

√
β2
s1

4
− 4s1

Since
β2
s1

4
−4s1 < 0, square root in well defined and zs1 ∈ H. Since Im(zPsj(0)) is increasing

in j, the whole recursion remains well defined.



IV.3. FURTHER DISCUSSIONS 85

The equation 62 is satisfied in particular when ||U || 1
2
< 4. It also holds if Ut =

√
κBt

if κ < 16 and t is a 4√
κ
-slow point of B.

Conjecture 3. If equation 62 holds, there exist a continuous curve h(0) such that

lim
|P|→0

||zP(0)− h(0)||∞ = 0 (63)

Equation 63 gives us a natural limit h(0) of h(iy) as y → 0+. One can also deal with
point t which are not slow points if we are willing to pass to subsequential limit |Pn| → 0
in 63. Note that for y > 0, all the subsequential limit are the same and converge to h(iy).
A related result in the literature on slow points is the following result due to B. Davis
[11],

P[sup
t

lim inf
h→0+

Bt+h −Bt√
h

= 1] = 1

We conjecture the following stronger statement:

Conjecture 4.

P[sup
t

lim inf
h→0+

|Bt+h −Bt|√
h

= 1] = 1

Conjecture 4 allows one to define zPn
s (0) along some subsequence Pn for all time t if

κ < 16. Again limn→∞ z
Pn(0) will be the natural limit of limy→0+ h(iy) and in particular

of limy→0+ ft(iy + Ut).



86



Bibliography
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