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Abstract

The spiking activity of single neurons can be well described by a nonlinear integrate-and-fire

model that includes somatic adaptation. When exposed to fluctuating inputs sparsely cou-

pled populations of these model neurons exhibit stochastic collective dynamics that can be

effectively characterized using the Fokker-Planck equation. This approach, however, leads

to a model with an infinite-dimensional state space and non-standard boundary conditions.

Here we derive from that description four simple models for the spike rate dynamics in terms

of low-dimensional ordinary differential equations using two different reduction techniques:

one uses the spectral decomposition of the Fokker-Planck operator, the other is based on a

cascade of two linear filters and a nonlinearity, which are determined from the Fokker-

Planck equation and semi-analytically approximated. We evaluate the reduced models for

a wide range of biologically plausible input statistics and find that both approximation

approaches lead to spike rate models that accurately reproduce the spiking behavior of the

underlying adaptive integrate-and-fire population. Particularly the cascade-based models

are overall most accurate and robust, especially in the sensitive region of rapidly changing

input. For the mean-driven regime, when input fluctuations are not too strong and fast,

however, the best performing model is based on the spectral decomposition. The low-

dimensional models also well reproduce stable oscillatory spike rate dynamics that are gen-

erated either by recurrent synaptic excitation and neuronal adaptation or through delayed

inhibitory synaptic feedback. The computational demands of the reduced models are very

low but the implementation complexity differs between the different model variants. There-

fore we have made available implementations that allow to numerically integrate the low-

dimensional spike rate models as well as the Fokker-Planck partial differential equation in

efficient ways for arbitrary model parametrizations as open source software. The derived

spike rate descriptions retain a direct link to the properties of single neurons, allow for conve-

nient mathematical analyses of network states, and are well suited for application in neural

mass/mean-field based brain network models.
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Author summary

Characterizing the dynamics of biophysically modeled, large neuronal networks usually

involves extensive numerical simulations. As an alternative to this expensive procedure

we propose efficient models that describe the network activity in terms of a few ordinary

differential equations. These systems are simple to solve and allow for convenient investi-

gations of asynchronous, oscillatory or chaotic network states because linear stability anal-

yses and powerful related methods are readily applicable. We build upon two research

lines on which substantial efforts have been exerted in the last two decades: (i) the devel-

opment of single neuron models of reduced complexity that can accurately reproduce a

large repertoire of observed neuronal behavior, and (ii) different approaches to approxi-

mate the Fokker-Planck equation that represents the collective dynamics of large neuronal

networks. We combine these advances and extend recent approximation methods of the

latter kind to obtain spike rate models that surprisingly well reproduce the macroscopic

dynamics of the underlying neuronal network. At the same time the microscopic proper-

ties are retained through the single neuron model parameters. To enable a fast adoption

we have released an efficient Python implementation as open source software under a free

license.

Introduction

There is prominent evidence that information in the brain, about a particular stimulus for

example, is contained in the collective neuronal spiking activity averaged over populations of

neurons with similar properties (population spike rate code) [1, 2]. Although these populations

can comprise a large number of neurons [3], they often exhibit low-dimensional collective

spiking dynamics [4] that can be measured using neural mass signals such as the local field

potential or electroencephalography.

The behavior of cortical networks at that level is often studied computationally by employ-

ing simulations of multiple (realistically large or subsampled) populations of synaptically cou-

pled individual spiking model neurons. A popular choice of single cell description for this

purpose are two-variable integrate-and-fire models [5, 6] which describe the evolution of the

fast (somatic) membrane voltage and an adaptation variable that represents a slowly-decaying

potassium current. These models are computationally efficient and can be successfully cali-

brated using electrophysiological recordings of real cortical neurons and standard stimulation

protocols [5, 7–10] to accurately reproduce their subthreshold and spiking activity. The choice

of such (simple) neuron models, however, does not imply reasonable (short enough) simula-

tion durations for a recurrent network, especially when large numbers of neurons and synaptic

connections between them are considered.

A fast and mathematically tractable alternative to simulations of large networks are popula-

tion activity models in terms of low-dimensional ordinary differential equations (i.e., which

consist of only a few variables) that typically describe the evolution of the spike rate. These

reduced models can be rapidly solved and allow for convenient analyses of the dynamical net-

work states using well-known methods that are simple to implement. A popular example are

the Wilson-Cowan equations [11], which were also extended to account for (slow) neuronal

adaptation [12] and short-term synaptic depression [13]. Models of this type have been suc-

cessfully applied to qualitatively characterize the possible dynamical states of coupled neuronal
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populations using phase space analyses [11–13], yet a direct link to more biophysically

described networks of (calibrated) spiking neurons in terms of model parameters is missing.

Recently, derived population activity models have been proposed that bridge the gap

between single neuron properties and mesoscopic network dynamics. These models are

described by integral equations [14, 15] or partial differential equations [16, 17]

Here we derive simple models in terms of low-dimensional ordinary differential equations

(ODEs) for the spike rate dynamics of sparsely coupled adaptive nonlinear integrate-and-fire

neurons that are exposed to noisy synaptic input. The derivations are based on a Fokker-

Planck equation that describes the neuronal population activity in the mean-field limit of large

networks. We develop reduced models using recent methodological advances on two different

approaches: the first is based on a spectral decomposition of the Fokker-Planck operator

under two different slowness assumptions [18–20]. In the second approach we consider a

cascade of linear temporal filters and a nonlinear function which are determined from the Fok-

ker-Planck equation and semi-analytically approximated, building upon [21]. Both approaches

are extended for an adaptation current, a nonlinear spike generating current and recurrent

coupling with distributed synaptic delays.

We evaluate the developed low-dimensional spike rate models quantitatively in terms of

reproduction accuracy in a systematic manner over a wide range of biologically plausible

parameter values. In addition, we provide numerical implementations for the different reduc-

tion methods as well as the Fokker-Planck equation under a free license as open source

project.

For the derived models in this contribution we use the adaptive exponential integrate-and-

fire (aEIF) model [5] to describe individual neurons, which is similar to the model proposed

by Izhikevich [6] but includes biophysically meaningful parameters and a refined description

of spike initiation. However, the presented derivations are equally applicable when using the

Izhikevich model instead (requiring only a small number of simple substitutions in the code).

Through their parameters the derived models retain a direct, quantitative link to the under-

lying spiking model neurons, and they are described in a well-established, convenient form

(ODEs) that can be rapidly solved and analyzed. Therefore, these models are well suited (i) for

mathematical analyses of dynamical states at the population level, e.g., linear stability analyses

of attractors, and (ii) for application in multi-population brain network models. Apart from a

specific network setting, the derived models are also appropriate as a spike rate description of

individual neurons under noisy input conditions.

The structure of this article contains mildly redundant model specifications allowing the

readers who are not interested in the methodological foundation to directly read the self-

contained Sect. Results.

Results

Model reduction

The quantity of our interest is the population-averaged number of spikes emitted by a large

homogeneous network of N sparsely coupled aEIF model neurons per small time interval, i.e.,

the spike rate rN(t). The state of neuron i at time t is described by the membrane voltage Vi(t)
and adaptation current wi(t), which evolve piecewise continuously in response to overall syn-

aptic current Isyn,i = Iext,i(t) + Irec,i(t). This input current consists of fluctuating network-

external drive Iext,i = C[μext(t) + σext(t)ξext,i(t)] with membrane capacitance C, time-varying

moments μext, s2
ext and unit Gaussian white noise process ξext,i as well as recurrent input Irec,i.

The latter causes delayed postsynaptic potentials (i.e., deflections of Vi) of small amplitude J
triggered by the spikes of K presynaptic neurons (see Sect. Methods for details).
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Here we present two approaches of how the spike rate dynamics of the large, stochastic

delay-differential equation system for the 2N states (Vi, wi) can be described by simple models

in terms of low-dimensional ODEs. Both approaches (i) take into account adaptation current

dynamics that are sufficiently slow, allowing to replace the individual adaptation current wi by

its population-average hwi, governed by

dhwi
dt
¼

aðhVi1 � EwÞ � hwi
tw

þ b rðtÞ; ð1Þ

where a, Ew, b, τw are the adaptation current model parameters (subthreshold conductance,

reversal potential, spike-triggered increment, time constant, respectively), hVi1 is the steady-

state membrane voltage averaged across the population (which can vary over time, see below),

and r is the spike rate of the respective low-dimensional model. Furthermore, both approaches

(ii) are based on the observation that the collective dynamics of a large, sparsely coupled

(and noise driven) network of integrate-and-fire type neurons can be well described by a Fok-

ker-Planck equation. In this intermediate Fokker-Planck (FP) model the overall synaptic input

is approximated by a mean part with additive white Gaussian fluctuations, Isyn,i/C� μsyn(t, rd)

+ σsyn(t, rd)ξi(t), that are uncorrelated between neurons. The moments of the overall synaptic

input,

msyn ¼ mextðtÞ þ JKrdðtÞ; s2

syn ¼ s2

extðtÞ þ J2KrdðtÞ; ð2Þ

depend on time via the moments of the external input and, due to recurrent coupling, on the

delayed spike rate rd. The latter is governed by

drd

dt
¼

r � rd

td
; ð3Þ

which corresponds to individual propagation delays drawn from an exponentially distributed

random variable with mean τd. The FP model involves solving a partial differential equation

(PDE) to obtain the time-varying membrane voltage distribution p(V, t) and the spike rate r(t).
The first reduction approach is based on the spectral decomposition of the Fokker-Planck

operator L and leads to the following two low-dimensional models: the “basic” model variant

(spec1) is given by a complex-valued differential equation describing the spike rate evolution

in its real part,

d~r
dt
¼ l1ð~r � r1Þ; rðtÞ ¼ Ref~rg; ð4Þ

where λ1(μtot, σtot) is the dominant eigenvalue of L and r1(μtot, σtot) is the steady-state spike

rate. Its parameters λ1, r1, and hVi1 (cf. Eq (1)) depend on the total input moments given by

μtot(t) = μsyn − hwi/C and s2
totðtÞ ¼ s2

syn which closes the model (Eqs (1)–(4)). The other,

“advanced” spectral model variant (spec2) is given by a real-valued second order differential

equation for the spike rate,

b2 €r þ b1 _r þ b0 r ¼ r1 � r � bc; ð5Þ

where the dots denote time derivatives. Its parameters β2, β1, β0, βc, r1 and hVi1 depend on

the total input moments (μtot, s2
tot) as follows: the latter two parameters explicitly as in the basic

model above, the former four indirectly via the first two dominant eigenvalues λ1, λ2 and via

additional quantities obtained from the (stationary and the first two nonstationary) eigenfunc-

tions of L and its adjoint L�. Furthermore, the parameter βc depends explicitly on the
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population-averaged adaptation current hwi, the delayed spike rate rd, and on the first and sec-

ond order time derivatives of the external moments μext and s2
ext.

The second approach is based on a Linear-Nonlinear (LN) cascade, in which the population

spike rate is generated by applying to the time-varying mean and standard deviation of the

overall synaptic input, μsyn and σsyn, separately a linear temporal filter, followed by a common

nonlinear function. These three components–two linear filters and a nonlinearity–are

extracted from the Fokker-Planck equation. Approximating the linear filters using exponen-

tials and damped oscillating functions yields two model variants: In the basic “exponential”

(LNexp) model the filtered mean μf and standard deviation σf of the overall synaptic input are

given by

dmf

dt
¼

msyn � mf

tm

;
dsf

dt
¼

ssyn � sf

ts

; ð6Þ

where the time constants τμ(μeff, σeff), τσ(μeff, σeff) depend on the effective (filtered) input mean

μeff(t) = μf − hwi/C and standard deviation σeff(t) = σf. The “damped oscillator” (LNdos) model

variant, on the other hand, describes the filtered input moments by

€m f þ
2

t
_m f þ

2

t2
þ o2

� �

mf ¼
1þ t2o2

t

msyn

t
þ _msyn

� �
; ð7Þ

dsf

dt
¼

ssyn � sf

ts

; ð8Þ

where the time constants τ(μtot, σtot), τσ(μtot, σtot) and the angular frequency ω(μtot, σtot) depend

on the total input moments defined above. In both LN model variants the spike rate is

obtained by the nonlinear transformation of the effective input moments through the steady-

state spike rate,

rðtÞ ¼ r1ðmeff ; seffÞ; ð9Þ

and the steady-state mean membrane voltage hVi1 (cf. Eq (1)) is also evaluated at (μeff, σeff).

These four models (spec1, spec2, LNexp, LNdos) from both reduction approaches involve a

number of parameters that depend on the strengths of synaptic input and adaptation current

only via the total or effective input moments. We refer to these parameters as quantities below

to distinguish them from fixed (independent) parameters. The computational complexity

when numerically solving the models forward in time (for different parametrizations) can be

greatly reduced by precomputing those quantities for a range of values for the total/effective
input moments and using look-up tables during time integration. Changing any parameter

value of the external input, the recurrent coupling or the adaptation current does not require

renewed precomputations, enabling rapid explorations of parameter space and efficient (lin-

ear) stability analyses of network states.

The full specification of the “ground truth” system (network of aEIF neurons), the deriva-

tions of the intermediate description (FP model) and the low-dimensional spike rate models

complemented by concrete numerical implementations are provided in Sect. Methods (that is

complemented by the supporting material S1 Text). In Fig 1 we visualize the outputs of the dif-

ferent models using an example excitatory aEIF network exposed to external input with vary-

ing mean μext(t) and standard deviation σext(t).
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Performance for variations of the mean input

Here, and in the subsequent two sections, we assess the accuracy of the four low-dimensional

models to reproduce the spike rate dynamics of the underlying aEIF population. The interme-
diate FP model is included for reference. The derived models generate population activity in

response to overall synaptic input moments μsyn and s2
syn. These depend on time via the exter-

nal moments μext(t) and s2
extðtÞ, and the delayed spike rate rd(t). Therefore, it is instrumental to

first consider an uncoupled population and suitable variations of external input moments that

effectively mimic a range of biologically plausible presynaptic spike rate dynamics. This allows

us to systematically compare the reproduction performance of the different models over a

Fig 1. Example of aEIF network response and output of derived models for varying input. From top to bottom: Mean input μext (black)

together with input standard deviation σext (gray, visualized for one neuron by sampling the respective white noise process ξext,i). 2nd row:

Membrane voltage V of one neuron (gray, with spike times highlighted by black dots) and membrane voltage statistics from the excitatory

coupled aEIF population of 50,000 neurons (red) and from the FP model (blue dashed): mean ± standard deviation over time, as well as

voltage histograms (gray) and probability densities p(V, t) (blue dashed) at three indicated time points. 3rd row: Adaptation current w of one

neuron (gray) and mean adaptation currents of all models ± standard deviation for the aEIF network (shaded area). Note that differences in

the mean adaptation currents of the different models are hardly recognizable. 4th row: Spike times of a subset of 25 neurons randomly

chosen from the network. Below: Spike rate r of the LN cascade based models (LNexp, LNdos) and the spectral models (spec1, spec2) in

comparison to the FP model and the aEIF network (rN). The values of the coupling parameters were J = 0.05 mV, K = 100, τd = 3 ms.

https://doi.org/10.1371/journal.pcbi.1005545.g001

Derived low-dimensional spike rate models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005545 June 23, 2017 6 / 46

https://doi.org/10.1371/journal.pcbi.1005545.g001
https://doi.org/10.1371/journal.pcbi.1005545


manageable parameter space (without K, J, τd), yet it provides useful information on the accu-

racy for recurrent networks.

For many network settings the dominant effect of synaptic coupling is on the mean input

(cf. Eq (2)). Therefore, we consider first in detail time-varying mean but constant variance of

the input. Specifically, to account for a wide range of oscillation frequencies for presynaptic

spike rates, μext is described by an Ornstein-Uhlenbeck (OU) process

_mext ¼
�m � mext

tm
ou

þ

ffiffiffiffiffiffi
2

tm
ou

s

WmxðtÞ; ð10Þ

where tm
ou denotes the correlation time, �m and ϑμ are the mean and standard deviation of the

stationary normal distribution, i.e., lim t!1mextðtÞ � N ð�m; W2

m
Þ, and ξ is a unit Gaussian white

noise process. Sample time series generated from the OU process are filtered using a Gaussian

kernel with a small standard deviation σt to obtain sufficiently differentiable time series ~mext

(due to the requirements of the spec2 model and the LNdos model). The filtered realization

~mextðtÞ is then used for all models to allow for a quantitative comparison of the different spike

rate responses to the same input. The value of σt we use in this study effectively removes very

large oscillation frequencies which are rarely observed, while lower frequencies [22] are

passed.

The parameter space we explore covers large and small correlation times tm
ou, strong and

weak input mean �m and standard deviation σext, and for each of these combinations we con-

sider an interval from small to large variation magnitudes ϑμ. The values of tm
ou and ϑμ deter-

mine how rapid and intense μext(t) fluctuates.

We apply two performance measures, as in [21]. One is given by Pearson’s correlation coef-

ficient,

rðrN ; rÞ≔
PM

k¼1
ðrNðtkÞ � �rNÞðrðtkÞ � �rÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM

k¼1
ðrNðtkÞ � �rNÞ

2 PM
k¼1
ðrðtkÞ � �rÞ2

q ; ð11Þ

between the (discretely given) spike rates of the aEIF population and each derived model with

time averages �rN ¼ 1=M
PM

k¼1
rNðtkÞ and �r ¼ 1=M

PM
k¼1

rðtkÞ over a time interval of length

tM − t1. For comparison, we also include the correlation coefficient between the aEIF popula-

tion spike rate and the time-varying mean input, ρ(rN, μext). In addition, to assess absolute dif-

ferences we calculate the root mean square (RMS) distance,

dRMSðrN ; rÞ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM

k¼1

ðrNðtkÞ � rðtkÞÞ
2

s

; ð12Þ

where M denotes the number of elements of the respective time series (rN, r).
We find that three of the four low-dimensional spike rate models (spec2, LNexp, LNdos) very

well reproduce the spike rate rN of the aEIF neurons: for the LNexp model ρ> 0.95 and for the

spec2 and LNdos models ρ ≳ 0.8 (each) over the explored parameter space, see Fig 2. Only the

basic spectral model (spec1) is substantially less accurate. Among the best models, the simplest

(LNexp) overall outperforms spec2 and LNdos, in particular for fast and strong mean input vari-

ations. However, in the strongly mean-driven regime the best performing model is spec2.

We observe that the performance of any of the spike rate models decreases (with model-

specific slope) with (i) increasing variation strength ϑμ larger than a certain (small) value, and

with (ii) smaller tm
ou, i.e., faster changes of μext. For small values of ϑμ fluctuations of rN, which

are caused by the finite aEIF population size N and do not depend on the fluctuations of μext,
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Fig 2. Reproduction accuracy of the reduced models for variations of the mean input. Pearson correlation coefficient (ρ) and root

mean square distance (dRMS) between the spike rate time series rN(t) of the aEIF population and r(t) of each derived model (FP, spec1,

spec2, LNexp, LNdos) for different strengths of baseline mean input �m, input standard deviation σext, mean input variation Wμ and for a large

value of time constant tm
ou (A, moderately fast variations) as well as a smaller value (B, rapid variations). The input-output correlation

(between μext and rN) is included as a reference (black dashed lines), and mean ± standard deviation of the population spike rate rN are

indicated (gray dashed lines, shaded areas). For each parametrization, activity time series of 60 s duration were generated (from 50,000

aEIF neurons and each derived model), from which the first second was omitted (each) to exclude transients, since the initial conditions of

Derived low-dimensional spike rate models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005545 June 23, 2017 8 / 46

https://doi.org/10.1371/journal.pcbi.1005545


deteriorate the performance measured by ρ (see also [21], p.13 right). This explains why ρ does

not increase as ϑμ decreases (towards zero) for any of the models. Naturally, the FP model is

the by far most accurate spike rate description in terms of both measures, correlation coeffi-

cient ρ and RMS distance. This is not surprising because the four low-dimensional models are

derived from that (infinite-dimensional) representation. Thus, the performance of the FP sys-

tem defines an upper bound on the correlation coefficient ρ and a lower bound on the RMS

distance for the low-dimensional models.

In detail: for moderately fast changing mean input (large tm
ou) the three models spec2, LNexp

and LNdos exhibit excellent reproduction performance with ρ> 0.95, and spec1 shows correla-

tion coefficients of at least ρ = 0.9 (Fig 2A), which is substantially better than ρ(rN, μext). The

small differences between the three top models can be better assessed from the RMS distance

measure. For large input variance s2
ext the two LN models perform best (cf. Fig 2A, top, and for

an example, 2C). For weak input variance and large mean (small σext, large �m) the spec2 model

outperforms the LN models, unless the variation magnitude ϑμ is very large. For small mean �m,

where transient activity is interleaved with periods of quiescence, the LNexp model performs

best, except for weak variations ϑμ, where LNdos is slightly better (see Fig 2A, bottom).

Stronger differences in performance emerge when considering faster changes of the mean

input μext(t) (i.e., for small tm
ou), see Fig 2B, and for examples, Fig 2C. The spec1 model again

performs worst with ρ values even below the input/output correlation baseline ρ(rN, μext) for

large mean input �m (cf. Fig 2B, left). The spec1 spike rate typically decays too slowly (cf. Fig

2C). The three better performing models differ as follows: for large input variance and mean

(large σext and �m), where the spike rate response to the input is rather fast (cf. increased ρ(rN,

μext)), the performance of all three models in terms of ρ is very high, but the RMS distance

measure indicates that LNexp is the most accurate model (cf. Fig 2B, top). For weak mean input

LNexp is once again the top model while LNdos and, especially noticeable, spec2 show a perfor-

mance decline (see example in Fig 2C). For weak input variance (Fig 2A, bottom), where sig-

nificant (oscillatory) excursions of the spike rates in response to changes in the mean input

can be observed (see also Fig 1), we obtain the following benchmark contrast: for large mean

drive �m the spec2 model performs best, except for large variation amplitudes ϑμ, at which LNexp

is more accurate. Smaller mean input on the other hand corresponds to the most sensitive

regime where periods of quiescence alternate with rapidly increasing and decaying spike rates.

The LNexp model shows the most robust and accurate spike rate reproduction in this setting,

while LNdos and spec2 each exhibit decreased correlation and larger RMS distances–spec2 even

for moderate input variation intensities ϑμ. The slowness approximation underlying the spec2

model likely induces an error due to the fast external input changes in comparison with the

rather slow intrinsic time scale by the dominant eigenvalue, tm
ou ¼ 5ms vs. 1/|Re{λ1}|� 15 ms

(cf. visualization of the spectrum in Sect. Spectral models). Note that for these weak inputs the

distribution of the spike rate is rather asymmetric (cf. Fig 2B). Interestingly the LNdos model

performs worse than LNexp for large mean input variations (i.e., large ϑμ) in general, and only

slightly better for small input variance and mean input variations that are not too large and

fast.

We would like to note that decreasing the Gaussian filter width σt to smaller values, e.g.,

fractions of a millisecond, can lead to a strong performance decline for the spec2 model

the models were not matched. Representative time series examples are shown on the right side with parameter values indicated (C), where

empty and filled symbols correspond to large and small correlation time tm
ou, respectively, relating the examples to the panels A and B. The

adaptation current traces were excluded in all but the first example to allow for a larger number of parameter points.

https://doi.org/10.1371/journal.pcbi.1005545.g002
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because of its explicit dependence on first and second order time derivatives of the mean

input.

Furthermore, we show how the adaptation parameters affect the reproduction performance

of the different models in Fig 3. The adaptation time constant τw and spike-triggered adapta-

tion increment b are varied simultaneously (keeping their product constant) such that the

average spike rate and adaptation current, and thus the spiking regime, remain comparable for

all parametrizations. As expected, the accuracy of the derived models decreases for faster adap-

tation current dynamics, due to the adiabatic approximation that relies on sufficiently slow

adaptation (cf. Sect. Methods). Interestingly however, the performance of all reduced models

(except spec1) declines only slightly as the adaptation time constant decreases to the value of

the membrane time constant (which means the assumption of separated time scales underly-

ing the adiabatic approximation is clearly violated). This kind of robustness is particularly pro-

nounced for input with large baseline mean �m and small noise amplitude σext, cf. Fig 3B.

Performance for variations of the input variance

For perfectly balanced excitatory and inhibitory synaptic coupling the contribution of presyn-

aptic activity to the mean input μsyn is zero by definition, but the input variance s2
syn is always

positively (linearly) affected by a presynaptic spike rate–even for a negative synaptic efficacy J
(cf. Eq (2)). To assess the performance of the derived models in this scenario, but within the

reference setting of an uncoupled population, we consider constant external mean drive μext

and let the variance s2
extðtÞ evolve according to a filtered OU process (such as that used for the

mean input μext in the previous section) with parameters s2 and ϑσ2 of the stationary normal

distribution N ðs2; W
2

s2Þ, correlation time ts2

ou and Gaussian filter standard deviation σt as

before.

The results of two input parametrizations are shown in Fig 4. For large input mean μext and

rapidly varying variance s2
extðtÞ the spike rate response of the aEIF population is very well

reproduced by the FP model and, to a large extent, by the spec2 model (cf. Fig 4A). This may

be attributed to the fact that the latter model depends on the first two time derivatives of the

input variance s2
ext. The LN models cannot well reproduce the rapid spike rate excursions in

Fig 3. Effect of adaptation current timescale on reproduction accuracy. Performance measures and population spike rate statistics

(cf. Fig 2A and 2B) as a function of the adaptation time constant τw, that takes values between 20 ms (equal to the membrane time constant)

and 200 ms (used throughout the rest of the study). The spike-triggered adaptation increment b was co-varied (antiproportional to τw) such

that the product τw b = 8 pAs is fixed for all shown parametrizations. The input mean μext(t) fluctuates with timescale tm
ou ¼ 50ms and strength

Wμ = 0.54 mV/ms (same value as for examples in Fig 2C) around a smaller (A) and a larger (B) baseline mean �m, while the input deviation

σext is constant. Note that the rightmost parametrization of A corresponds to Fig 2C (top example) and is contained in Fig 2A (bottom right)

while that of B is shown in Fig 2A (bottom left).

https://doi.org/10.1371/journal.pcbi.1005545.g003

Derived low-dimensional spike rate models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005545 June 23, 2017 10 / 46

https://doi.org/10.1371/journal.pcbi.1005545.g003
https://doi.org/10.1371/journal.pcbi.1005545


this setting, and the spec1 model performs worst, exhibiting time-lagged spike rate dynamics

compared to rN(t) which leads to a very small value of correlation coefficient ρ (below the

input/output correlation baseline rðrN ; s
2
extÞ). For smaller mean input μext and moderately fast

varying variance s2
extðtÞ (larger correlation time ts2

ou) the fluctuating aEIF population spike rate

is again nicely reproduced by the FP model while the rate response of the spec2 model exhibits

over-sensitive behavior to changes in the input variance, as indicated by the large RMS dis-

tance (see Fig 4B). This effect is even stronger for faster variations, i.e., smaller ts2

ou (cf. supple-

mentary visualization S1 Fig). The LN models perform better in this setting, and the spec1

model (again) performs worst in terms of correlation coefficient ρ due to its time-lagged spike

rate response.

It should be noted that the lowest possible value of the input standard deviation, i.e., σext

(plus a nonnegative number in case of recurrent input) cannot be chosen completely freely but

must be large enough (≳ 0:5mV=
ffiffiffiffiffiffi
ms
p

) for our parametrization. This is due to theoretical rea-

sons (Fokker-Planck formalism) and practical reasons (numerics for Fokker-Planck solution

and for calculation of the derived quantities, such as r1).

Oscillations in a recurrent network

To demonstrate the applicability of the low-dimensional models for network analyses we con-

sider a recurrently coupled population of aEIF neurons that produces self-sustained network

oscillations by the interplay of strong excitatory feedback and spike-triggered adaptation or,

alternatively, by delayed recurrent synaptic inhibition [16, 23]. The former oscillation type is

quite sensitive to changes in input, adaptation and especially coupling parameters for the cur-

rent-based type of synaptic coupling considered here and due to lack of (synaptic) inhibition

and refractoriness. For example, a small increase in coupling strength can lead to a dramatic

(unphysiologic) increase in oscillation amplitude because of strong recurrent excitation.

Fig 4. Performance for variations of the input variance. Time series of population spike rate and mean adaptation current from the

different models in response to varying s2
ext for large mean input and rapid variations, μext = 4 mV/ms, ts2

ou ¼ 5ms (A) and for small mean

input and moderately fast variations, μext = 1.5 mV/ms, ts2

ou ¼ 50ms (B). The values for the remaining input parameters were

�s2
ext ¼ 9mV2

=ms, Wσ2 = 2 mV2/ms. For the aEIF population hwi± standard deviation are visualized (red shaded areas). Note that the mean

adaptation time series of all models as well as the spike rates of the cascade based models are on top of each other. The indicated Pearson

correlation coefficients (with dashed input-output correlation) and root mean square distances were calculated from simulated spike rate

time series of 60 s duration from which the first second was excluded, as the initial conditions of the models were not matched. In A the

correlation ρ (but not the distance dRMS) between the spike rates of the model spec1 and the aEIF population) is strongly decreased due to a

small time lag between the two time series which is difficult to see in the figure.

https://doi.org/10.1371/journal.pcbi.1005545.g004

Derived low-dimensional spike rate models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005545 June 23, 2017 11 / 46

https://doi.org/10.1371/journal.pcbi.1005545.g004
https://doi.org/10.1371/journal.pcbi.1005545


Hence we consider a difficult setting here to evaluate the reduced spike rate models–in particu-

lar, when the network operates close to a bifurcation.

In Fig 5A we present two example parametrizations from a region (in parameter space) that

is characterized by stable oscillations. This means the network exhibits oscillatory spike rate

dynamics for constant external input moments μext and s2
ext. The derived models reproduce

the limit cycle behavior of the aEIF network surprisingly well, except for small frequency and

amplitude deviations (FP, spec2, LNdos, LNexp) and larger frequency mismatch (spec1), see

Fig 5A, top. For weaker input moments and increased spike-triggered adaptation strength the

network is closer to a Hopf bifurcation [16, 23]. It is, therefore, not surprising that the differ-

ences in oscillation period and amplitude are more prominent (cf. Fig 5A, bottom). The

Fig 5. Network-generated oscillations. Oscillatory population spike rate and mean adaptation current of 50,000 excitatory coupled aEIF

neurons and each of the derived models (for constant external input moments) generated by the interplay of recurrent excitation/adaptation

current (A) and by delayed recurrent inhibition (B). In addition, the limit cycle of the LNexp model is shown in terms of the (quantity) steady-

state spike rate r1 as a function of effective input moments μeff, s2
eff (A, top) and for the spec2 model in dependence of the total input

moments (μtot, s2
tot (A, bottom). The phase of the cycle is visualized by grayscale color code (increasing phase from black to white). The

values for the input, adaptation and coupling parameters were μext = 1.5 mV/ms, sext ¼ 2mV=
ffiffiffiffiffiffiffi
ms
p

, a = 3 nS, b = 30 pA (A, top), μext = 1.275

mV/ms, sext ¼ 1:5mV=
ffiffiffiffiffiffiffi
ms
p

, a = 3 nS, b = 60 pA (A, bottom), K = 1000, J = 0.03 mV, τd = 3 ms (A, both). In B adaptation was removed

(a = b = 0) and delays were identical dij = d; input and coupling parameter values were μext = 1.5 mV/ms, sext ¼ 1:5mV=
ffiffiffiffiffiffiffi
ms
p

, K = 1000, J =

−0.0357 mV, d = 10 ms (top) and μext = 3 mV/ms, sext ¼ 2mV=
ffiffiffiffiffiffiffi
ms
p

, K = 1000, J = −0.087 mV, d = 5 ms (bottom).

https://doi.org/10.1371/journal.pcbi.1005545.g005
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bifurcation point of the LNexp model is slightly shifted, shown by the slowly damped oscillatory

convergence to a fixed point. This suggests that the bifurcation parameter value of each of the

derived models is not far from the true critical parameter value of the aEIF network but can

quantitatively differ (slightly) in a model-dependent way.

The second type of oscillation is generated by delayed synaptic inhibition [22] and does

not depend on the (neuronal) inhibition that is provided by an adaptation current. To

demonstrate this independence the adaptation current was disabled (by setting the parameters

a = b = 0) for the two respective examples that are shown in Fig 5B. Similarly as for the previ-

ous oscillation type, the low-dimensional models (except spec1) reproduce the spike rate limit

cycle of the aEIF network surprisingly well, in particular for weak external input (see Fig 5B,

top). For larger external input and stronger inhibition with shorter delay the network operates

close to a Hopf bifurcation, leading to larger differences in oscillation amplitude and frequency

in a model-dependent way (Fig 5B, bottom). Note that the intermediate (Fokker-Planck)

model very well reproduces the inhibition-based type of oscillation which demonstrates the

applicability of the underlying mean-field approximation. We would also like to note that

enabling the adaptation current dynamics (only) leads to decreased average spike rates but

does not affect the reproduction accuracy.

We would like to emphasize that the previous comprehensive evaluations for an uncoupled

population provide a deeper insight on the reproduction performance–also for a recurrent net-

work–than the four examples shown here, as explained in the Sect. Performance for variations
of the mean input. For example, the (improved) reproduction performance for increased input

variance in the uncoupled setting (cf. Fig 2) informs about the reproduction performance for

networks of excitatory and inhibitory neurons that are roughly balanced, i.e., where the overall

input mean is rather small compared to the input standard deviation.

Implementation and computational complexity

We have developed efficient implementations of the derived models using the Python pro-

gramming language and by employing the library Numba for low-level machine acceleration

[24]. These include: (i) the numerical integration of the Fokker-Planck model using an accu-

rate finite volume scheme with implicit time discretization (cf. Sect. Methods), (ii) the paralle-

lized precalculation of the quantities required by the low-dimensional spike rate models and

(iii) the time integration of the latter models, as well as example scripts demonstrating (i)–(iii).

The code is available as open source software under a free license at GitHub: https://github.

com/neuromethods/fokker-planck-based-spike-rate-models

With regards to computational cost, summarizing the results of several aEIF network

parametrizations, the duration to generate population activity time series for the low-

dimensional spike rate models is usually several orders of magnitude smaller compared to

numerical simulation of the original aEIF network and a few orders of magnitude smaller in

comparison to the numerical solution of the FP model. For example, considering a population

of 50,000 coupled neurons with 2% connection probability, a single simulation run of 5 s

and the same integration time step across the models, the computation times amounted to

1.1–3.6 s for the low-dimensional models (with order–fast to slow–LNexp, spec1, LNdos,

spec2), about 100 s for the FP model and roughly 1500 s for the aEIF network simulation on a

dual-core laptop computer. The time difference to the network simulation substantially

increases with the numbers of neurons and connections, and with spiking activity within the

network due to the extensive propagation of synaptic events. Note that the speedup becomes

even more pronounced with increasing number of populations, where the runtimes of the FP

model and the aEIF network simulation scale linearly and the low-dimensional models show
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a sublinear runtime increase due to vectorization of the state variables representing the differ-

ent populations.

The derived low-dimensional (ODE) spike rate models are very efficient to integrate given

that the required input-dependent parameters are available as precalulated look-up quantities.

For the grids used in this contribution, the precomputation time was 40 min. for the cascade

(LNexp, LNdos) models and 120 min. for the spectral (spec1, spec2) models, both on a hexa-core

desktop computer. The longer calculation time for the spectral models was due to the finer

internal grid for the mean input (see S1 Text).

Note that while the time integration of the spec2 model is on the same order as for the other

low-dimensional models its implementation complexity is larger because of the many quanti-

ties it depends on, cf. Eqs (63)–(66).

Discussion

In this contribution we have developed four low-dimensional models that approximate the

spike rate dynamics of coupled aEIF neurons and retain all parameters of the underlying

model neurons. These simple spike rate models were derived in two different ways from a Fok-

ker-Planck PDE that describes the evolving membrane voltage distribution in the mean-field

limit of large networks, and is complemented by an ODE for the population-averaged slow

adaptation current. Two of the reduced spike rate models (spec1 and spec2) were obtained by a

truncated spectral decomposition of the Fokker-Planck operator assuming vanishingly slow

(for spec1) or moderately slow (for spec2) changes of the input moments. The other two

reduced models (LNexp and LNdos) are described by a cascade of linear filters (one for the

input mean and another for its standard deviation) and a nonlinearity which were derived

from the Fokker-Planck equation, and subsequently the filters were semi-analytically approxi-

mated. Our approaches build upon [18–20] as well as [21], and extend those methods for adap-

tive nonlinear integrate-and-fire neurons that are sparsely coupled with distributed delays (cf.

Sect. Methods).

We have compared the different spike rate representations for a range of biologically plausi-

ble input statistics and found that three of the reduced models (spec2, LNexp and LNdos) accu-

rately reproduce the spiking activity of the underlying aEIF population while one model

(spec1) shows the least accuracy. Among the best models, the simplest (LNexp) was the most

robust and (somewhat surprisingly) overall outperformed spec2 and LNdos–especially in the

sensitive regime of rapidly changing sub- and suprathreshold mean drive and in general for

rapid and strong input variations. The LNexp model did not exhibit exaggerated deflections in

that regime as compared to the other two models. This result is likely due to the importance of

the quantitatively correct decay time of the filter for the mean input in the LNexp model, while

the violations of the slowness assumptions for the spec2 and LNdos models seem more harmful

in this regime. In the strongly mean-driven regime, however, the best performing model was

spec2 for variations both in the mean drive (as long as those variations are not too strong and

fast) and for variations of the input variance.

We have also demonstrated that the low-dimensional models well reproduce the dynamics

of recurrently coupled aEIF populations in terms of asynchronous states (see Fig 1) and spike

rate oscillations (cf. Fig 5), where mild deviations at critical (bifurcation) parameter values are

expected due to the approximative nature of the model reduction.

The computational demands of the low-dimensional models are very modest in compari-

son to the aEIF network and also to the integration of the Fokker-Planck PDE, for which we

have developed a novel finite volume discretization scheme. We would like to emphasize that

any change of a parameter value for input, coupling or adaptation current does not require

Derived low-dimensional spike rate models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005545 June 23, 2017 14 / 46

https://doi.org/10.1371/journal.pcbi.1005545


renewed precomputations. To facilitate the application of the presented models we have made

available implementations that precompute all required quantities and numerically integrate

the derived low-dimensional spike rate models as well as the Fokker-Planck equation, together

with example (Python) scripts, as open source software.

Since the derived models are formulated in terms of simple ODEs, they allow to conve-

niently perform linear stability analyses, e.g., based on the eigenvalues of the Jacobian matrix

of the respective vector field. In this way network states can be rapidly characterized by quanti-

fying the bifurcation structure of the population dynamics–including regions of the parameter

space where multiple fixed points and/or limit cycle attractors co-exist. For a characterization

of stable network states by numerical continuation and an assessment of their controllability

through neuromodulators using the LNexp model see [23] ch. 4.2 and [25]. Furthermore, the

low-dimensional models are well suited to be employed in large neuronal networks of multiple

populations for efficient simulations of population-averaged activity time series. Overall, the

LNexp model seems a good candidate for that purpose considering its accuracy and robustness,

as well as its computational and implementational simplicity.

Extensions

Heterogeneity. We considered a homogeneous population of neurons in the sense that

the parameter values across model neurons are identical except those for synaptic input.

Thereby we assume that neurons with similar dynamical properties can be grouped into popu-

lations [3]. Heterogeneity is incorporated by distributed synaptic delays, by sparse random

coupling, and by fluctuating external inputs for each neuron. The (reduced) population mod-

els further allow for heterogeneous synaptic strengths that are sampled from a Gaussian distri-

bution and can be included in a straightforward way [16, 26] (see also Sect. Methods).

Distributed values for other parameters (of the isolated model neurons within the same popu-

lation) are currently not supported.

Multiple populations. The presented mean-field network model can be easily adjusted

for multiple populations. In this case we obtain a low-dimensional ODE for each population

and the overall synaptic moments for population k become

msyn;k ¼ mext;kðtÞ þ
X

l

JklKklrd;klðtÞ; s2

syn;k ¼ s2

ext;kðtÞ þ
X

l

J2

klKklrd;klðtÞ; ð13Þ

where Jkl is the synaptic strength for the Kkl neurons from population l targeting neurons

from population k and rd,kl is the delayed spike rate of population l affecting population k (cf.

Eq (2)). For each pair of coupled populations we may consider identical or distributed delays

(using distributions from the exponential family) as well as identical or distributed synaptic

strengths (sampled from a Gaussian distribution).

Synaptic coupling. Here we described synaptic interaction by delayed (delta) current

pulses with delays sampled from an exponential distribution. This description leads to a fluctu-

ating overall synaptic input current with white noise characteristics. Interestingly, for the

mean-field dynamics this setting is very similar to considering exponentially decaying synaptic

currents with a decay constant that matches that of the delay distribution, although the overall

synaptic input current is a colored noise process in that case, see [27] and, for an intuitive

explanation [28].

A conductance-based model of synaptic coupling can also be considered in principle

[16, 29], which results in a multiplicative noise process for the overall synaptic input. This,

however, would in general impede the beneficial concept of precalculated “look-up” quantities

that are unaffected by the input and coupling parameters.
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It should be noted that most current- or conductance-based models of synaptic coupling

(including the one considered here) can produce unphysiologically large amounts of synaptic

current in case of high presynaptic activity, unless the coupling parameters are carefully tuned.

This problem can be solved, for example, by considering a (more realistic) model of synaptic

coupling based on [30], from which activity-dependent coupling terms can be derived for the

mean-field and reduced population models [23] ch. 4.2. Using that description ensures robust

simulation of population activity time series without having to fine-tune the coupling parame-

ter values, which is particularly useful for multi-population network models. In this contribu-

tion though we used for simplicity a basic synaptic coupling model that has frequently been

applied in the mean-field literature.

Input noise process. The Gaussian stochastic process driving the individual neurons

could also be substituted by colored noise, which would lead to a Fokker-Planck model with

increased dimensionality [31]. However, this would require more complex and computation-

ally expensive numerical schemes not only to solve that model but also for the different dimen-

sion reduction approaches.

Slow adaptation. To derive low-dimensional models of population activity we approxi-

mated the adaptation current by its population average, justified by its slow dynamics com-

pared to the other time scales of the system. This approximation is equivalent to a first order

moment closure method [17]. In case of a faster adaptation time scale the approximation may

be improved by considering second and higher order moments [17, 32].

Population size. The mean-field models presented here can well reproduce the dynamics

of population-averaged state variables (that is, spike rate, mean membrane voltage, and mean

adaptation current) for large populations (N!1 in the derivation). Fluctuations of those

average variables due to the finite size of neuronal populations, however, are not captured.

Hence, it would be interesting to extend the mean-field models so as to reproduce these (so-

called) finite size effects, for example, by incorporating an appropriate stochastic process [18]

or using concepts from [15].

Cascade approach. For uncoupled EIF populations (without an adaptation current) and

constant input standard deviation it has been shown that the LN cascade approximation per-

forms well for physiological ranges of amplitude and time scale for mean input variations [21].

Our results for the cascade models are consistent with [21], but the performance is substan-

tially improved for the sensitive low (baseline) input regime (LNexp and LNdos, also in absence

of adaptation), and damped oscillatory behavior (including over- and undershoots) is

accounted for by the LNdos model.

To achieve these improvements we semi-analytically fit the linear filters derived from the

Fokker-Planck equation using exponential and damped oscillator functions considering a

range of input frequencies. The approximation can be further improved by using more com-

plex functions, such as a damped oscillator with two time scales. That, however, can lead to

less robustness (i.e., undesired model behavior) for rapid and strong changes of the input

moments (cf. Sect. Methods).

LN cascade models are frequently applied in neuroscience to describe population activity,

and the model components are often determined from electrophysiological recordings using

established techniques. The methodology presented here contributes to establishing quantita-

tive links between networks of spiking neurons, a mesoscopic description of population activ-

ity and recordings at the population level.

Spectral approach. Here we provide a new numerical solver for the eigenvalue problem

of the Fokker-Planck operator and its adjoint. This allows to compute the full spectrum

together with associated eigenfunctions and is applicable to nonlinear integrate-and-fire mod-

els, extending [18, 19, 33].
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Using that solver the spec2 model, which is based on two eigenvalues, can be further

improved by interpolating its coefficients, Eqs (63)–(66), around the double eigenvalues at the

spectrum’s real-to-complex transition. This interpolation would effectively smooth the quanti-

ties—e.g., preventing the jumps and kinks that are present in the visualization of Sect. Spectral
models—and is expected to increase the spike rate reproduction accuracy (particularly for

weak mean input) beyond what was reported in this contribution.

The spec2 model can also be extended to yield a third order ODE with everywhere smooth

coefficients by considering an additional eigenvalue (cf. Sect. Remarks on the spectrum).

Moreover, the spec2 model, and more generally the whole spectral decomposition

approach, can be extended to account for a refractory period in the presence of time-varying

total input moments, e.g., by building upon previous attempts [18, 34, 35].

Furthermore, it could be beneficial to explicitly quantify the approximation error due to the

slowness assumption that underlies the spec2 model by integration of the (original) spectral

representation of the Fokker-Planck model.

Both reduced spectral models allow for a refined description of the mean adaptation cur-

rent dynamics, cf. Eq (1), by replacing the mean membrane voltage hVi with its steady-state

value hVi1, using that the membrane voltage distribution is available through the eigenfunc-

tions of the Fokker-Planck operator.

The numerical eigenvalue solver can be extended in a straightforward way to yield quanti-

ties that are required by the original spectral representation of the Fokker-Planck model and

by the corresponding stochastic equation for finite population size [18].

Alternative derived models

In addition to the work we build upon [18–21] (cf. Sect. Methods) there are a few other

approaches to derive spike rate models from populations of spiking neurons. Some methods

also result in an ODE system, taking into account (slow) neuronal adaptation [17, 26, 36–38]

or disregarding it [39]. The settings differ from the work presented here in that (i) the intrinsic

neuronal dynamics are adiabatically neglected [17, 26, 36, 37], (ii) only uncoupled populations

[38] or all-to-all connected networks [17, 36, 39] are assumed in contrast to sparse connectiv-

ity, and (iii) (fixed) heterogeneous instead of fluctuating input is considered [39]. Notably,

these previous methods yield rather qualitative agreements with the underlying spiking neuron

population activity except for [39] where an excellent quantitative reproduction for (non-

adaptive) quadratic integrate-and-fire oscillators with quenched input randomness is

reported.

Other approaches yield mesoscopic representations of population activity in terms of

model classes that are substantially less efficient to simulate and more complicated to analyze

than low-dimensional ODEs [14–17, 40–42]. The spike rate dynamics in these models has

been described (i) by a rather complex ODE system that depends on a stochastic jump process

derived for integrate-and-fire neurons without adaptation [40], (ii) by PDEs for recurrently

connected aEIF [16] or Izhikevich [17] neurons, (iii) by an integro-PDE with displacement for

non-adaptive neurons [42] or (iv) by integral equations that represent the (mean) activity of

coupled phenomenological spiking neurons without [41] and with adaptation [14, 15].

Furthermore, the stationary condition of a noise-driven population of adaptive EIF neurons

[32, 43, 44] and the first order spike rate response to weak input modulations [43, 44] have

been analyzed using the Fokker-Planck equation. Ref. [32] also considered a refined approxi-

mation of the (purely spike-triggered) adaptation current including higher order moments.

It may be interesting for future studies to explore ways to extend the presented methods

and relax some of the underlying assumptions, in particular, considering (i) the diffusion
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approximation (via shot noise input, e.g., [45, 46]), (ii) the Poisson assumption (e.g., using the

concept from [47] in combination with results from [48]) and (iii) (noise) correlations (see,

e.g., [49]).

Methods

Here we present all models in detail—the aEIF network (ground truth), the mean-field FP sys-

tem (intermediate model) and the low-dimensional models: spec1, spec2, LNexp, LNdos—includ-

ing step-by-step derivations and essential information on the respective numerical solution

methods. An implementation of these models using Python is made available at GitHub:

https://github.com/neuromethods/fokker-planck-based-spike-rate-models

Network model

We consider a large (homogeneous) population of N synaptically coupled aEIF model neurons

[5]. Specifically, for each neuron (i = 1, . . ., N), the dynamics of the membrane voltage Vi is

described by

C
dVi

dt
¼ ILðViÞ þ IexpðViÞ � wi þ Isyn;iðtÞ; ð14Þ

where the capacitive current through the membrane with capacitance C equals the sum of

three ionic currents and the synaptic current Isyn,i. The ionic currents consist of a linear leak

current IL(Vi) = −gL(Vi − EL) with conductance gL and reversal potential EL, a nonlinear term

Iexp(Vi) = gL ΔT exp((Vi − VT)/ΔT) that approximates the rapidly increasing Na+ current at

spike initiation with threshold slope factor ΔT and effective threshold voltage VT, and the adap-

tation current wi which reflects a slowly deactivating K+ current. The adaptation current

evolves according to

tw
dwi

dt
¼ aðVi � EwÞ � wi; ð15Þ

with adaptation time constant τw. Its strength depends on the subthreshold membrane voltage

via conductance a. Ew denotes its reversal potential. When Vi increases beyond VT, it diverges

to infinity in finite time due to the exponentially increasing current Iexp(Vi), which defines a

spike. In practice, however, the spike is said to occur when Vi reaches a given value Vs—the

spike voltage. The downswing of the spike is not explicitly modeled; instead, when Vi� Vs, the

membrane voltage Vi is instantaneously reset to a lower value Vr. At the same time, the adapta-

tion current wi is incremented by a value of parameter b, which implements suprathreshold

(spike-dependent) activation of the adaptation current.

Immediately after the reset, Vi and wi are clamped (i.e., remain constant) for a short refrac-

tory period Tref, and subsequently governed again by Eqs (14) and (15). At the end of the

Methods section we describe how (optionally) a spike shape can be included in the aEIF

model, together with the associated small changes for the models derived from it.

To complete the network model the synaptic current in Eq (14) needs to be specified: for

each cell it is given by the sum of recurrent and external input, Isyn,i = Irec,i(t) + Iext,i(t). Recur-

rent synaptic input is received from K other neurons of the network, that are connected in a

sparse (K� N) and uniformly random way, and is modeled by

Irec;i ¼ C
X

j

Jij
X

tj

dðt � tj � dijÞ; ð16Þ

where δ denotes the Dirac delta function. Every spike by one of the K presynaptic neurons
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with indices j and spike times tj causes a postsynaptic membrane voltage jump of size Jij. The

coupling strength is positive (negative) for excitation (inhibition) and of small magnitude.

Here it is chosen to be constant, i.e., Jij = J. Each of these membrane voltage deflections occur

after a time delay dij that takes into account (axonal and dendritic) spike propagation times

and is sampled (independently) from a probability distribution pd. In this work we use expo-

nentially distributed delays, i.e., pd(τ) = exp(−τ/τd)/τd (for τ� 0) with mean delay τd.

The second type of synaptic input is a fluctuating current generated from network-external

neurons,

Iext;i ¼ C½mextðtÞ þ sextðtÞxext;iðtÞ�; ð17Þ

with time-varying moments μext and s2
ext, and unit Gaussian white noise process ξext,i. The lat-

ter is uncorrelated with that of other neurons j 6¼ i, i.e., hξext,i(t)ξext,j(t + τ)i = δ(τ)δij, where h�i

denotes expectation (w.r.t. the joint ensemble of noise realizations at times t and t + τ) and δij
is the Kronecker delta. This external current, for example, accurately approximates the input

generated from a large number of independent Poisson neurons that produce instantaneous

postsynaptic potentials of small magnitude, cf. [48].

The spike rate rN of the network is defined as the population-averaged number of emitted

spikes per time interval [t, t + ΔT],

rNðtÞ ¼
1

N

XN

i¼1

1

DT

Z tþDT

t

X

ti

dðs � tiÞds; ð18Þ

where the interval size ΔT is practically chosen small enough to capture the dynamical struc-

ture and large enough to yield a comparably smooth time evolution for a finite network, i.e.,

N<1.

We chose values for the neuron model parameters to describe cortical pyramidal cells,

which exhibit “regular spiking” behavior and spike frequency adaptation [7, 50, 51]. For the

complete parameter specification see Table 1.

All network simulations were performed using the Python software BRIAN2 [52, 53] with

C++ code generation enabled for efficiency. The aEIF model Eqs (14) and (15) were discre-

tized using the Euler-Maruyama method with equidistant time step Δt and initialized with

wi(0) = 0 and Vi(0) that is (independently) sampled from a Gaussian initial distribution p0(V)

with mean Vr − δV and standard deviation δV/2 where δV = VT − Vr. Note that the models

derived in the following Sects. do not depend on this particular initial density shape but allow

for an arbitrary (density) function p0.

Fokker-Planck system

Adiabatic approximation. The time scales of (slow) K+ channel kinetics which are effec-

tively described by the adaptation current wi, cf. Eq (15), are typically much larger than the

faster membrane voltage dynamics modeled by Eq (14), i.e., τw� C/gL [54–57]. This observa-

tion justifies to replace the individual adaptation current wi in Eq (14) by its average across the

population, hwiN ¼ 1=N
PN

i¼1
wiðtÞ, in order to reduce computational demands and enable

further analysis. The mean adaptation current is then governed by [16, 26, 48, 58]

dhwiN
dt
¼

aðhViN � EwÞ � hwiN
tw

þ b rNðtÞ; ð19Þ

where hViN denotes the time-varying population average of the membrane voltage of non-

refractory neurons.
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The dynamics of the population-averaged adaptation current reflecting the non-refractory

proportion of neurons are well captured by Eq (19) as long as Tref is small compared to τw. In

this (physiologically plausible) case hwiN from Eq (19) can be considered equal to the average

adaptation current over the refractory proportion of neurons [16, 48].

Mean field limit. For large networks (N!1) the recurrent input can be approximated

by a mean part with additive fluctuations, Irec;i=C � JKrdðtÞ þ J
ffiffiffiffiffiffiffiffiffiffiffiffi
KrdðtÞ

p
xrec;iðtÞ with delayed

spike rate

rd ¼ r � pd; ð20Þ

i.e., the spike rate convolved with the delay distribution, and unit white Gaussian noise process

ξrec,i that is uncorrelated to that of any other neuron [16, 18, 26, 34].

Table 1. Parameter values used throughout the study.

Name Symbol Value

Network model

Number of neurons N 50,000

Membrane capacitance C 200 pF

Leak conductance gL 10 nS

Leak reversal potential EL −65 mV

Threshold slope factor ΔT 1.5 mV

Threshold voltage VT −50 mV

Spike voltage Vs −40 mV

Reset voltage Vr −70 mV

Subthreshold adaptation conductance1 a 4 nS

Spike-triggered adaptation increment1 b 40 pA

Adaptation reversal potential Ew −80 mV

Adaptation time constant τw 200 ms

Refractory period2 Tref 0 ms

Gaussian filter width for external input σt 1 ms

Discretization time step Δt 0.05 ms

Spike rate estimation bin width ΔT 1 ms

Fokker-Planck model

Membrane voltage lower bound Vlb −200 mV

Finite-volume membrane voltage spacing ΔV 0.028 mV

Discretization time step Δt 0.05 ms

Low-dimensional models

Discretization time step Δt 0.01 ms

Membrane voltage spacing3 ΔV 0.01 mV

Spacing of mean input3 Δμ 0.025 mV/ms

Spacing of input standard deviation3 Δσ 0:1mV=
ffiffiffiffiffiffiffi
ms
p

1If not specified otherwise.
2A nonzero refractory period is not supported by the spec2 model.
3Parameters for precalculation of model quantities (before simulation).

The values of coupling parameters (K, J, τd) are specified in the captions of Figs 1 and 5, the values of

parameters for the external input, μext or (�m, tm
ou, Wμ), and σext or (s2 , ts2

ou, Wσ2), are provided in each figure

(caption).

https://doi.org/10.1371/journal.pcbi.1005545.t001
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The step is valid under the assumptions of (i) sufficiently many incoming synaptic connec-

tions (K� 1) with small enough weights |Jij| in comparison with VT − Vr and sufficient pre-

synaptic activity (diffusion approximation) (ii) that neuronal spike trains can be approximated

by independent Poisson processes (Poisson assumption) and (iii) that the correlations between

the fluctuations of synaptic inputs for different neurons vanish (mean-field limit). The latter

assumption is fulfilled by sparse and uniformly random synaptic connectivity, but also when

synaptic strengths Jij and delays dij are independently distributed (in case of less sparse or ran-

dom connections) [18].

This approximation of the recurrent input allows to replace the overall synaptic current in

Eq (14) by Isyn,i = C[μsyn(t, rd) + σsyn(t, rd)ξi(t)] with overall synaptic moments

msyn ¼ mextðtÞ þ JKrdðtÞ; s2

syn ¼ s2

extðtÞ þ J2KrdðtÞ; ð21Þ

and (overall) unit Gaussian white noise ξi that is uncorrelated to that of any other neuron.

Here we have used that external Iext,i and recurrent synaptic current Irec,i are independent

from each other.

The resulting mean-field dynamics of the membrane voltage is given by

dVi

dt
¼

ILðViÞ þ IexpðViÞ � hwi
C

þ msynðt; rdÞ þ ssynðt; rdÞxiðtÞ; ð22Þ

and corresponds to a McKean-Vlasov type of equation with distributed delays [59] and discon-

tinuity due to the reset mechanism [60] that complements the dynamics of Vi as before. The

population-averaged adaptation current hwi = limN! 1hwiN is governed by

dhwi
dt
¼

aðhVi � Ew Þ � hwi
tw

þ b rðtÞ; ð23Þ

with mean membrane voltage (of non-refractory neurons), hVi = limN!1hViN, and spike rate

r = limN!1,Δt!0 rN(t).
Remarks: Instead of exponentially distributed synaptic delays we may also consider

other continuous densities pd, identical delays, pd(τ) = δ(τ − d) with d> 0, or no delays at all,

pd(τ) = δ(τ). Instead of identical synaptic strengths one may also consider strengths Jij that are

drawn independently from a normal distribution with mean Jm and variance Jv instead, in

which case the overall synaptic moments become μsyn = μext(t) + JmKrd(t) and

s2
syn ¼ s2

extðtÞ þ ðJ
2
m þ JvÞKrdðtÞ, cf. [16, 26].

Continuity equation. In the membrane voltage evolution, Eq (22), individual neurons

are exchangeable as they are described by the same stochastic equations and are coupled to

each other exclusively through the (delayed) spike rate via the overall synaptic moments μsyn

and s2
syn. Therefore, the adiabatic and mean-field approximations allow us to represent the

collective dynamics of a large network by a (1+1-dimensional) Fokker-Planck equation

[16, 18, 26, 34],

@

@t
pðV; tÞ þ

@

@V
qpðV; tÞ ¼ 0 for V 2 ð� 1;Vs�; t > 0; ð24Þ

which describes the evolution of the probability density p(V, t) to find a neuron in state V at

time t (in continuity form). The probability flux is given by

qpðV; tÞ ¼
ILðVÞ þ IexpðVÞ

C
þ mtotðtÞ

� �

pðV; tÞ �
s2

totðtÞ
2

@

@V
pðV; tÞ; ð25Þ
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with total input mean and standard deviation,

mtotðtÞ ¼ msynðmextðtÞ; rdðtÞÞ � hwiðtÞ=C ð26Þ

stotðtÞ ¼ ssynðsextðtÞ; rdðtÞÞ: ð27Þ

Note that the mean adaptation current (simply) subtracts from the synaptic mean in the drift

term, cf. Eq (22).

The mean adaptation current evolves according to Eq (23) with time-dependent mean

membrane voltage (of the non-refractory neurons)

hVi ¼
R Vs
� 1

vpðv; tÞdv
R Vs
� 1

pðv; tÞdv
: ð28Þ

The spike rate r is obtained by the probability flux through Vs,

rðtÞ ¼ qpðVs; tÞ: ð29Þ

To account for the reset condition of the aEIF neuron dynamics and ensuring that probability

mass is conserved, Eq (24) is complemented by the reinjection condition,

qpðV
þ

r ; tÞ � qpðV
�

r ; tÞ ¼ qpðVs; t � TrefÞ; ð30Þ

where qpðVþr Þ≔ lim V&Vr
qpðVÞ and qpðV �r Þ≔ lim V%Vr

qpðVÞ, an absorbing boundary at Vs,

pðVs; tÞ ¼ 0; ð31Þ

and a natural (reflecting) boundary condition,

lim
V!� 1

qpðV; tÞ ¼ 0: ð32Þ

Together with the initial membrane voltage distribution p(V, 0) = p0(V) and mean adaptation

current hwi(0) = 0 the Fokker-Planck mean-field model is now completely specified.

Note that p(V, t) only reflects the proportion of neurons which are not refractory at time t,
given by PðtÞ ¼

R Vs
� 1

pðv; tÞdv ¼ 1 �
R t

t� Tref
rðsÞds (<1 for Tref > 0 and r(t)> 0). The total

probability density that the membrane voltage is V at time t is given by p(V, t) + pref(V, t) with

refractory density pref(V, t) = (1 − P(t)) δ(V − Vr). At the end of the Methods section we

describe how an (optional) spike shape extension for the aEIF model changes the calculation

of pref and hVi.
In practice we consider a finite reflecting lower barrier Vlb instead of negative infinite for

the numerical solution (next section) and for the low-dimensional approximations of the Fok-

ker-Planck PDE (cf. sections below). Vlb is chosen sufficiently small in order to not distort the

free diffusion of the membrane voltage for values below the reset, i.e., Vlb� Vr. The density

p(V, t) is then supported on [Vlb, Vs] for each time t, and in all expressions above V! −1 is

replaced by Vlb.

Finite volume discretization. In this work we focus on low-dimensional approximations

of the FP model. To obtain a reference for the reduced models it is, however, valuable to solve

the (full) FP system, Eqs (24)–(32). Here we outline an accurate and robust method of solution

that exploits the linear form of the FP model in contrast to previously described numerical

schemes [61, 62] which both require rather small time steps due to the steeply increasing expo-

nential current Iexp in the flux qp close to the spike voltage Vs.
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We first discretize the (finite) domain [Vlb, Vs] into NV equidistant grid cells Vm� 1
2
;Vmþ1

2

h i

with centers Vm (m = 1, . . ., NV) that satisfy V1 < V2 < � � �< VNV
, where V1

2
¼ Vlb and VNVþ

1
2
¼

Vs are the outmost cell borders. Within each cell the numerical approximation of p(V, t) is

assumed to be constant and corresponds to the average value denoted by p(Vm, t). Integrating

Eq (24) combined with Eq (30) over the volume of cell m, and applying the divergence theo-

rem, yields

@

@t
pðVm; tÞ ¼

qpðVm� 1
2
; tÞ � qpðVmþ1

2
; tÞ

DV
þ dmmr

1

DV
qpðVNVþ

1
2
; t � TrefÞ; ð33Þ

where ΔV is the grid spacing and mr corresponds to the index of the cell that contains the reset

voltage Vr. To solve Eq (33) forward in time the fluxes at the borders of each cell need to be

approximated. Since the Fokker-Planck PDE belongs to the class of drift-diffusion equations

this can be accurately achieved by the first order Scharfetter-Gummel flux [63, 64],

qp Vmþ1
2
; t

� �
¼ vmþ1

2

pðVm; tÞ � pðVmþ1; tÞ exp � vmþ1
2
DV=D

� �

1 � exp � vmþ1
2
DV=D

� � ; ð34Þ

where vmþ1
2
ðtÞ ¼ IL Vmþ1

2

� �
þ Iexp Vmþ1

2

� �h i
=C þ mtotðt; rdðtÞ; hwiðtÞÞ and DðtÞ ¼ 1

2
s2

totðt; rdðtÞÞ

denote the drift and diffusion coefficients, respectively (cf. Eq (25)). This exponentially fitted

scheme [64] is globally first order convergent [65] and yields for large drifts, jvmþ1
2
jDV � D,

the upwind flux, sharing its stability properties. For vanishing drifts, on the other hand, the

centered difference method is recovered [64], leading to more accurate solutions than the

upwind scheme in regimes of strong diffusion.

For the time discretization we rewrite Eq (33) (with Eq (34)) in vectorized form and

approximate the involved time derivative as first order backward difference to ensure numeri-

cal stability. This yields in each time step of length Δt a linear system for the values pn+1 of the

(discretized) probability density at tn+1, given the values pn at the previous time step tn, and the

spike rate at the time tn+1−nref
for which the refractory period has just passed,

I �
Dt
DV

Gn

� �

pnþ1 ¼ pn þ gnþ1� nref ; ð35Þ

with vector elements pn
m ¼ pðVm; tnÞ, m = 1, . . ., NV, and gnþ1� nref

m ¼ dmmr
Dt
DV rðtnþ1� nref

Þ. The

refractory period in time steps is given by nref = dTref/Δte, where the brackets denote the ceiling

function, and I is the identity matrix. This linear equation can be efficiently solved with run-

time complexity OðNVÞ due to the tridiagonal structure of Gn 2 RNV�NV which contains the

discretization of the membrane voltage (cf. Eqs (33) and (34)), including the absorbing and

reflecting boundary conditions (Eqs (31) and (32)). For details we refer to S1 Text.

The spike rate, Eq (29), in this representation is obtained by evaluating the Scharfetter-

Gummel flux, Eq (34), at the spike voltage Vs, taking into account the absorbing boundary

condition, Eq (31), and introducing an auxiliary ghost cell [66], with center VNV+1, which

yields

rðtnþ1Þ ¼ qp VNVþ
1
2
; tnþ1

� �
¼ vNVþ

1
2

1þ exp ð� vNVþ
1
2
DV=DÞ

1 � exp ð� vNVþ
1
2
DV=DÞ

pnþ1

NV
; ð36Þ

where the drift and diffusion coefficients, vNVþ
1
2

and D, are evaluated at tn. The mean
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membrane voltage (of non-refractory neurons), Eq (28), used for the dynamics of the mean

adaptation current, Eq (23), is calculated by hViðtnÞ ¼
PNV

m¼1
Vmpn

m=
PNV

m¼1
pn

m.

Practically, we use the initialization p0
m ¼ p0ðVmÞ and solve in each time step the linear sys-

tem, Eq (35), using the function banded_solve from the Python library SciPy [67]. Note

that (for a recurrent network or time-varying external input) the tridiagonal matrix Gn has to

be constructed in each time step tn, which can be time consuming–especially for small ΔV
and/or small Δt. Therefore, we employ low-level virtual machine acceleration for this task

through the Python package Numba [24] which yields an efficient implementation.

Remark: for a vanishing refractory period Tref = 0 the matrix Gn would lose its tridiagonal

structure due to the instantaneous reinjection, cf. Eq (36). In this case we enforce a minimal

refractory period of one time step, Tref = Δt, which is an excellent approximation if the

time step is chosen sufficiently small and the spike rate does not exceed biologically plausible

values.

Low-dimensional approximations

In the following sections we present two approaches of how simple spike rate models can be

derived from the Fokker-Planck mean-field model described in the previous section, cf. Eqs

(20), (21) and (23)–(32).

The derived models are described by low-dimensional ordinary differential equations

(ODEs) which depend on a number of quantities defined in the plane of (generic) input mean

and standard deviation (μ, σ). To explain this concept more clearly we consider, as an example,

the steady-state spike rate, which is a quantity required by all reduced models. The steady-state

spike rate as a function of μ and σ,

r1ðm; sÞ≔ lim
t!1

rðt; mtot¼m; stot¼sÞ; ð37Þ

denotes the stationary value of Eq (29) under replacement of the (time-varying) total moments

μtot and s2
tot in the probability flux qp, Eq (25), by (constants) μ and σ2, respectively. Thus the

steady-state spike rate r1 effectively corresponds to that of an uncoupled EIF population

whose membrane voltage is governed by dVi/dt = [IL(Vi) + Iexp(Vi)]/C + μ + σξi(t) plus reset

condition, i.e., adaptation and synaptic current dynamics are detached. For a visualization of

r1(μ, σ) see Fig 6.

When simulating the reduced models these quantities need to be evaluated for each discrete

time point t at a certain value of (μ, σ) which depends on the overall synaptic moments μsyn(t),
s2

synðtÞ and on the mean adaptation current hwi(t) in a model-specific way (as described in the

following Sects.). An example trajectory of r1 in the (μ, σ) space for a network showing stable

spike rate oscillations is shown in Fig 5.

Importantly, these quantities depend on the parameters of synaptic input (J, K, τd, μext, σext)

and adaptation current (a, b, τw, Ew) only through their arguments (μ, σ). Therefore, for given

parameter values of the EIF model (C, gL, EL, ΔT, VT, Vr, Tref) we precalculate those quantities

on a (reasonably large and sufficiently dense) grid of μ and σ values, and access them during

time integration by interpolating the quantity values stored in a table. This greatly reduces the

computational complexity and enables rapid numerical simulations.

The derived low-dimensional models describe the spike rate dynamics and generally do not

express the evolution of the entire membrane voltage distribution. Therefore, the mean adap-

tation dynamics, which depends on the density p(V, t) (via hVi, cf. Eq (23)) is adjusted through

approximating the mean membrane voltage hVi by the expectation over the steady-state
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distribution,

hVi
1
¼

R Vs
� 1

vp1ðvÞdv
R Vs
� 1

p1ðvÞdv
; ð38Þ

which is valid for sufficiently slow adaptation current dynamics [48, 58]. The steady-state dis-

tribution is defined as p1(V) = limt! 1 p(V, t; μtot = μ, σtot = σ), representing the stationary

membrane voltages of an uncoupled EIF population for generic input mean μ and standard

Fig 6. Steady-state spike rate and mean membrane voltage for a population of EIF neurons. r1 and hVi1 for an uncoupled population

of EIF neurons (aEIF with a = b = 0) as a function of (generic) input mean μ and standard deviation σ, calculated from the (steady-state)

Fokker-Planck equation, shown in two different representations (left and right, each).

https://doi.org/10.1371/journal.pcbi.1005545.g006
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deviation σ. The mean adaptation current in all reduced models is thus governed by

dhwi
dt
¼

aðhVi1 � EwÞ � hwi
tw

þ b rðtÞ; ð39Þ

where the evaluation of quantity hVi1 in terms of particular values for μ and σ at a given time

t is model-specific (cf. following Sects.). Note again that the calculation of hVi1 slightly

changes when considering an (optional) spike shape extension for the aEIF model, as

described at the end of the Methods section.

The Fokker-Planck model does not restrict the form of the delay distribution pd, except that

the convolution with the spike rate r, Eq (20), has to be well defined. Here, however, we aim at

specifying the complete network dynamics in terms of a low-dimensional ODE system.

Exploiting the exponential form of the delay distribution pd we obtain a simple ordinary differ-

ential equation for the delayed spike rate,

drd

dt
¼

r � rd

td
; ð40Þ

which is equivalent to the convolution rd = r � pd.

Note that more generally any delay distribution from the exponential family allows to rep-

resent the delayed spike rate rd by an equivalent ODE instead of a convolution integral [68].

Identical delays, rd(t) = r(t − d), are also possible but lead to delay differential equations. Natu-

rally, in case of no delays, we simply have rd(t) = r(t).
To simulate the reduced models standard explicit time discretization schemes can be

applied–directly to the first order equations of the LNexp model, and for the other models

(LNdos, spec1, spec2)–to the respective equivalent (real) first order systems. We would like to

note that when using the explicit Euler method to integrate any of the latter three low-dimen-

sional models a sufficiently small integration time step Δt is required to prevent oscillatory arti-

facts. Although the explicit Euler method works well for the parameter values used in this

contribution, we have additionally implemented the method of Heun, i.e., the explicit trapezoi-

dal rule, which is second order accurate.

Spectral models

Eigendecomposition of the Fokker-Planck operator. Following and extending [18] we

can specify the Fokker-Planck operator L

Lðm; sÞ½p� ¼ �
@

@V
ILðVÞ þ IexpðVÞ

C
þ m

� �

p
� �

þ
s2

2

@
2p

@V2
; ð41Þ

for an uncoupled EIF population receiving (constant) input (μ, σ), cf. Sect. Low-dimensional
approximations. This operator allows to rearrange the FP dynamics of the recurrent aEIF net-

work, Eq (24), as

@p
@t
¼ LðmtotðtÞ; stotðtÞÞ½p� ð42Þ

which depends on the (time-varying) total input moments μtot(t, rd, hwi) and s2
totðt; rdÞ, cf. Eqs

(26) and (27), in the drift and diffusion coefficients, respectively.

For each value of (μ, σ) the operator L possesses an infinite, discrete set of eigenvalues λn in

the left complex half-plane including zero [18], i.e., Re{λn}� 0, and associated eigenfunctions
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ϕn(V) (n = 0, 1, 2, . . .) satisfying

L½�n� ¼ ln�n: ð43Þ

Furthermore, the boundary conditions, Eqs (30)–(32) have to be fulfilled for each eigenfunc-

tion ϕn separately, i.e., the absorbing boundary at the spike voltage,

�nðVsÞ ¼ 0; ð44Þ

and the reflecting barrier at the (finite) lower bound voltage,

q�n
ðVlbÞ ¼ 0; ð45Þ

must hold. The eigenflux is given by

q�n
ðVÞ ¼

ILðVÞ þ IexpðVÞ
C

þ m

� �

�nðVÞ �
s2

2

@

@V
�nðVÞ; ð46Þ

i.e., the flux qp of Eq (25) with eigenfunction ϕn and (constant) generic input moments (μ, σ2)

instead of density p and (time-varying) total input moments, respectively. Moreover, the

eigenflux qϕn
has to be reinjected into the reset voltage, cf. Eq (30),

q�n
ðVþr Þ � q�n

ðV �r Þ ¼ q�n
ðVsÞ; ð47Þ

where we have neglected the refractory period, i.e., Tref = 0. Note that incorporating a refrac-

tory period Tref > 0 is straightforward only for the simplified case of vanishing total input

moment variations, _mtot � _s2
tot � 0, which is described in the following section and is not cap-

tured here in general.

The spectrum of L is shown in Fig 7A and further discussed in Sect. Remarks on the
spectrum.

Defining the non-conjugated [69] inner product hc; �i ¼
R Vs

Vlb
cðvÞ�ðvÞdv yields the corre-

sponding adjoint operator L�ðm; sÞ given by [18]

L� ¼
ILðVÞ þ IexpðVÞ

C
þ m

� �
@

@V
þ

s2

2

@
2

@V2
; ð48Þ

which satisfies hc;L�i ¼ hL�c; �i for any complex-valued functions ψ and ϕ that are suffi-

ciently smooth on [Vlb, Vs]. L
�

has the same set of eigenvalues λn as L but distinct associated

eigenfunctions ψn(V), i.e.,

L�½cn� ¼ lncn; ð49Þ

which have to satisfy three boundary conditions,

cnðVsÞ ¼ cnðVrÞ; ð50Þ

@cn

@V
ðVlbÞ ¼ 0; ð51Þ

@cn

@V
ðVþr Þ ¼

@cn

@V
ðV �r Þ ð52Þ

that are determined by integrating hcn;L½�n�i by parts and equalling with hL�½cn�; �ni using

the conditions of L, Eqs (44)–(47). Note that the last condition, Eq (52), ensures a continuous
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Fig 7. Spectrum of the Fokker-Planck operator L and related quantities. A: regular eigenvalues of L (blue) and diffusive ones (red) with

real and imaginary part (top and bottom, respectively) as a function of the mean input μ for small noise intensity σ (left) and larger input

fluctuations (right). The first two dominant eigenvalues λ1, λ2 are indicated together with discontinuities in the real (λ2) and imaginary part (λ1

and λ2), respectively. The stationary eigenvalue λ0 = 0 is shown in gray. Note that the value of the mean input μ at which the eigenvalue λn

changes from real to complex values depends on the noise amplitude σ and the eigenvalue index n which is difficult to see in the figure. The

narrow winding curves attached to the left side of the respective spectra represent the lower bound flux q(Vlb) for μmin = −1.5 mV/ms as a

function of (real) eigenvalue candidate λ. The flux axis has a logarithmic scale between the large ticks (absolute values between 10−10 and

10−2 kHz) and is linear around the dashed zero value. The open circles denote the eigenvalues, i.e., those λ that satisfy q(Vlb) = 0. Note that

q(Vlb) ranges over several orders of magnitude. B: stationary eigenfunction ϕ0 = p1 (gray) and nonstationary eigenfunctions ϕ1 of L andψ1

of L� corresponding to the first dominant eigenvalue λ1 for three different input parameter values indicated by the triangle and circles in A

(same units of μ and σ as therein). The eigenfunctions are biorthonormalized, but (only) for visualization truncated at V = −100 mV and

furthermore individually scaled to absolutely range within the unit interval of arbitrary units [a.u.]. C: first and second dominant eigenvalues

λ1, λ2 with real and imaginary part (that are also indicated in A), as well as additional (real-valued) quantities of the model spec2 (M, S, Fμ,

Fσ2) as a function of input mean μ and noise strength σ in steps of 0:2mV=
ffiffiffiffiffiffiffi
ms
p

from small values (black) to larger ones (green). The dots

indicate identical parameter values to the spectra of A and the eigenfunctions of B (darker: s ¼ 1:5mV=
ffiffiffiffiffiffiffi
ms
p

, brighter green:

s ¼ 3:5mV=
ffiffiffiffiffiffiffi
ms
p

).

https://doi.org/10.1371/journal.pcbi.1005545.g007
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derivative of ψn at Vr in contrast to the eigenfunctions ϕn of L, that have a kink at the reset due

to reinjection condition, Eq (47), as shown in Fig 7B.

The eigenfunctions of L and L� are pairwise orthogonal and in the following (without loss

of generality) assumed to be scaled according to the biorthonormality condition,

hcn; �mi ¼ dnm: ð53Þ

The membrane voltage probability density can now be expanded onto the (moving) eigen-

basis of L [18, 70],

pðV; tÞ ¼
X1

n¼0

anðtÞ�nðVÞ; ð54Þ

where each eigenfunction ϕn depends on time via the total input moments μ = μtot(t, rd, hwi),
s2 ¼ s2

totðt; rdÞ, and the projection coefficients are given by αn = hψn, pi and particularly α0 = 1

[18]. Deriving αn with respect to time (for n = 1, 2, . . .) and using the expansion, Eq (54), the

Fokker-Planck Eq (42) as well as the definition of the adjoint operator yields an infinite-

dimensional equation for the complex-valued projection coefficients α(t) = (α1(t), α2(t), . . .)T,

_α ¼ ðΛþ Cm _mtot þ Cs2
_s2

totÞα þ cm _mtot þ cs2
_s2

tot: ð55Þ

This dynamics is initialized by αn(0) = hψn, p0i, and is complemented by (i) an expression for

the spike rate,

rðtÞ ¼ r1 þ f � α; ð56Þ

that is obtained from Eq (29) (using Eq (54)), and (ii) by the mean adaptation and delayed

spike rate dynamics, Eqs (39) and (40). The dots in Eqs (55) and (56) denote time derivatives

(e.g., _s2
tot ¼ ds2

tot=dt) and a non-conjugated scalar product of complex vectors (i.e.,

f � α ¼
P1

n¼1
fnan), respectively. The matrix Λ = diag(λ1, λ2, . . .) contains the eigenvalues of L,

the matrices Cμ and Cσ2 have elements (Cx)n,m = h@xψn, ϕmi for x 2 {μ, σ2} and n, m 2 N with

partial derivative @x = @/@x, the vectors cμ and cσ2 consist of components cx
n ¼ h@xcn; �0i. The

steady-state spike rate is given by r1 = qϕ0
(Vs), i.e., the flux of the eigenfunction ϕ0 = p1 that

represents the stationary membrane voltage distribution p1 and corresponds to the (station-

ary) eigenvalue λ0 = 0 [18]. The vector f contains the (nonstationary) eigenfluxes evaluated at

the spike voltage, fn = qϕn
(Vs).

Note that the quantities (Λ, Cμ, Cσ2, cμ, cσ2, r1, f, hVi1) all depend on time in Eqs (55), (56)

and (39) via the total input moments (μtot, s2
tot). Particularly, at time t the (biorthonormal)

solution of the eigenvalue problems for L and its adjoint L�, Eqs (43)–(47) and (49)–(52) with

n 2 N0, is required for μ = μtot(t, rd, hwi), σ = σtot(t, rd). Because L is a real operator its spec-

trum contains only real eigenvalues and/or complex conjugated pairs depending on (μ, σ).

This property carries over to the eigenfunctions and therefore also to the components of all

quantities above implying for example that the scalar product f � α is always real-valued.

Although the spectral representation, Eqs (55) and (56), is fully equivalent to the original

(partial differential) Fokker-Planck equation without refractory period and while it contains

only time derivatives it is still an infinite-dimensional and furthermore generally an implicit

model. Therefore, to derive an explicit low-dimensional ordinary differential model for the

spike rate r(t), it is not sufficient to truncate the expansion in Eq (54) after, e.g., two terms but

additional assumptions have to be considered.

Basic model: One eigenvalue, negligible input variations. The first and simpler, derived

spectral model is based on [19] and requires the strong assumption of vanishing changes of the
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total input moments, _mtot � 0, _s2
tot � 0. Under this approximation the projection coefficient

dynamics, Eq (55), simplifies to

_an ¼ lnan ð57Þ

for n 2 N. Considering only the dominant (nonzero) eigenvalue

l1 ¼ argminfjReflngj : ln 6¼ 0g; ð58Þ

i.e., the “slowest mode”, we obtain from Eqs (56) and (57) that r(t) = r1 + m1 Re{f1α1} with

m1 = 1 if l1 2 R and m1 = 2 if l1 2 C n R. Here we have included for a complex eigenvalue λ1

also its complex conjugate l
1

that has the projection coefficient a1ðtÞ. They jointly yield a zero

imaginary part in the scalar product of Eq (56). Defining ~rðtÞ ¼ r1 þm1f1a1 yields the com-

plex first order equation for the spike rate [19],

_~r ¼ l1ð~r � r1Þ; rðtÞ ¼ Ref~rg: ð59Þ

While this derivation is based on neglecting changes of the total input moments, their time-

variation is effectively reintroduced in the two quantities (dominant eigenvalue and steady-

state rate), i.e., λ1(μtot, σtot) and r1(μtot, σtot) with μtot(t) and σtot(t) according to Eqs (26) and

(27). Therefore, the spike rate evolution, Eq (59), is complemented with the dynamics of mean

adaptation current hwi and delayed spike rate rd, Eqs (39) and (40), where the former involves

the third (μtot, σtot)-dependent quantity hVi1. See Figs 6 and 7C for the involved quantities

depending on (generic) input μ, σ.

We call this first derived low-dimensional spike rate model, i.e., Eqs (59), (39) and (40),

spec1. It is very simple in comparison with the full Fokker-Planck system in the spectral repre-

sentation, Eqs (55)–(56), (39) and (40), in the sense that it does not depend on “nonstationary”

quantities of L or its adjoint L� except for the dominant eigenvalue λ1.

Note that under the assumption of vanishing input moment variations the dynamics of the

expansion coefficients αn, Eq (55), is simply exponentially decaying in time, cf. Eq (57). This

allows to incorporate a refractory period Tref > 0 into the spectral decomposition framework

by inserting the eigenbasis expansion of the membrane voltage distribution, Eq (54), into the

reinjection condition of the Fokker-Planck model, Eq (30), using αn(t) = αn(0) exp(λnt) and

the absorbing boundary, Eq (44). This generalizes the reinjection condition for the eigenfunc-

tions ϕn of L from Eq (47) to

q�n
ðVþr Þ � q�n

ðV �r Þ ¼ q�n
ðVsÞ exp ð� lnTrefÞ; ð60Þ

which was applied in [19], and the corresponding boundary condition for the adjoint opera-

tor’s eigenfunctions ψn from Eq (50) to

cnðVsÞ ¼ cnðVrÞ exp ð� lnTrefÞ: ð61Þ

Advanced model: Two eigenvalues, slow input moment variations. Another possibility

to derive a low-dimensional spike rate model is based on ongoing work of Maurizio Mattia.

He has recognized that under the weaker (compared to the basic spec1 model above) assump-

tion of small but not vanishing input moment changes a real-valued second order ordinary dif-

ferential equation for the spike rate r(t) can be consistently derived [20]. Here we extend this

approach to account for neuronal adaptation, time-varying external input moments and delay

distributions.
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The steps in a nutshell (for the detailed derivation see S1 Text) are (i) taking the derivative

of Eq (55) (once) and of (56) (twice) w.r.t. time, (ii) considering only the first two dominant

eigenvalues λ1 and λ2, i.e., neglecting all (faster) eigenmodes that correspond to eigenvalues

with larger absolute real part (“modal approximation”), (iii) assuming slowly changing input

moments, i.e., small _mtot and _s2
tot that allow to consider projections coefficients of that order,

i.e., an ¼ Oð _mtotÞ and an ¼ Oð _s2
totÞ for n = 1, 2, and therefore to consider only linear occur-

ences of _mtot, _s2
tot, α1, α2, and neglect terms of second and higher order. The slowness approxi-

mation implies that neither the external moments μext(t), s2
extðtÞ nor the (delayed) spike rate

rd(t) nor the population-averaged adaptation current hwi(t) should change very fast (cf.

Eqs (26), (27) and (21). Note that the dynamics of hwi is assumed to be slow already, cf. Sect.

Fokker-Planck system.

Under these approximations we obtain for the spike rate dynamics the following real sec-

ond order ODE,

b2 €r þ b1 _r þ b0 r ¼ r1 � r � bc; ð62Þ

that is complemented with the mean adaptation current and delayed spike rate dynamics, Eqs

(39) and (40), and we call the model spec2. The coefficients

b2 ¼ D; ð63Þ

b1 ¼ � T þ DM
b
C
�

R
td
; ð64Þ

b0 ¼ � DM
b

twC
�

b
C

Hm þ
1

td
KJHm þ KJ2Hs2

� �
þ

R
t2

d
; ð65Þ

bc ¼ rd �
1

td
KJHm þ KJ2Hs2

� �
�

R
t2

d

� �

� €mext þ
aðhVi

1
� EwÞ � hwi
t2

wC

� �

DM � €s2
extDS

þ _mext �
aðhVi

1
� EwÞ � hwi
twC

� �

Hm þ
_s2

extHs2 ;

ð66Þ

depend on the (lumped) quantities D = 1/λ1 � 1/λ2, T = 1/λ1 + 1/λ2, M = @μr1 + f � cμ, S = @σ2r1
+ f � cσ2, R = DMKJ + DSKJ2, Hμ = TM + DMa@μhVi1/(τwC) − DFμ, Hσ2 = TS + DMa@σ2hVi1/

(τwC) − DFσ2, Fμ = f � Λ cμ and Fσ2 = f � Λ cσ2. Here the diagonal eigenvalue matrix Λ = diag(λ1,

λ2) and the vectors f = (f1, f2)T, cm ¼ ðc
m
1; c

m
2Þ

T
, cs2 ¼ ðcs2

1
; cs2

2
Þ
T

are two-dimensional in contrast

to infinite as in the original dynamics, Eqs (55) and (56). These individual quantities, that also

include hVi1 (cf. Eq (39)), r1 and derivatives of both w.r.t. generic mean μ and variance σ2,

are evaluated at the total input moments μ = μtot(t, rd, hwi), s2 ¼ s2
totðt; rdÞ. A relevant subset of

individual and lumped quantities is shown in Figs 6 and 7C.

The four coefficients, Eqs (63)–(66), are real-valued because we define λ2 as the second

dominant eigenvalue conditioned that (λ1, λ2) compose either a real or a complex conjugated

eigenvalue pair, i.e.,

l2 ¼ argminfjReflngj : ln 6¼ l1 s:t: ln 6¼ 0; l1 þ ln 2 Rg; ð67Þ

where λ1 is obtained as for the (basic) spec1 model, cf. Eq (58). This condition ensures that all

related complex quantities occur in vectors of two complex conjugate components (for
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example, f1 ¼ f2) implying that the scalar products above are real-valued (e.g., f � cm 2 R) and

therefore all (nine) lumped quantities, too. Note that this specific definition of λ2 is required

only for integrate-and-fire neuron models that have a lower bound different from the reset,

i.e., Vlb < Vr, as discussed in the following section.

The coefficients of the spec2 model require–in addition to eigenvalues λn and steady-state

rate r1 (cf. basic spec1 model, Eq (59))–quantities that involve the first and second eigenfunc-

tions of the Fokker-Planck operator L and its adjoint L�. Additionally, β1, β0 and βc contain

the parameters of membrane voltage (C) and mean adaptation current dynamics (a, b, τw, Ew)

as well as of the recurrent coupling (K, J, τd) and, importantly, explicit dependencies on the

population-averaged adaptation current hwi and the delayed spike rate rd (that is in addition

to implicitly via μtot and σtot). Furthermore βc depends on the first two time derivatives of the

external input moments μext(t) and s2
extðtÞ. This explicit occurence of neuronal and coupling

parameters, state variables and input moment derivatives in the coefficients is not expressed in

the basic spectral model (spec1), Eq (59). A consequence is that for the (advanced) model spec2

the external moments have to be provided twice differentiable or in case of non-smooth time

series to be filtered (e.g., see Sect. Performance for variations of the mean input).
The particular coefficients, Eqs (63)–(66), are specific for the choice of an exponential delay

distribution, as indicated by the occurrence of the mean delay τd in β1, β0 and βc. Other choices

such as identical delays or no delays are described in the supplementary material S1 Text.

Note that the original (infinite-dimensional) spectral dynamics, Eqs (55) and (56), assumes

for the refractory period a value of Tref = 0 which carries over to the same choice for the spec2

model, whereas Tref > 0 is not supported (yet).

The spike rate is by definition nonnegative, however, the model spec2, Eq (62), can yield

negative rates r(t), especially for small total mean input μtot and fast (external) input changes,

e.g., when _mext is large. We explicitly avoid that behaviour by setting both the spike rate of this

model, r, and its derivative, _r , to zero whenever r(t)<0 and continue the integration of the dif-

ferential equation afterwards.

Remarks on the spectrum. In the previous two sections we have developed two spike rate

models based on approximations of the Fokker-Planck system’s spectral representation, Eqs

(55) and (56) under different slowness assumptions. In the derivation of the (simple) model

spec1, cf. Eq (59), temporal variations of the total input moments are completely neglected

while the (advanced) model spec2, cf. Eq (62), incorporates (slow) changes of the total input

moments through linear terms (proportional to _mtot or _s2
tot) and neglects (faster) quadratic and

higher order ones.

Both slowness approximations imply that the eigenvalue matrix Λ is the dominant term in

the homogeneous part of Eq (55). Therefore the eigenvalues approximately correspond to

decay time constants 1/|Re{λn}| in their real part and in case of complex eigenvalues they con-

tribute damped oscillatory components with frequency |Im{λn}|/(2π) through their imaginary

part to the dynamics. How the spectrum of the Fokker-Planck operator L depends on the

input moments therefore gives insights into the behavior of the derived spike rate models

spec1 and spec2, and of the FP model with slow adaptation in general.

Here we summarize the main properties of the eigenvalues λn(μ, σ) for the (uncoupled,

nonadaptive) EIF neuron model as a function of generic input mean μ and standard deviation

σ (cf. Sect. Low-dimensional approximations) that are shown in Fig 7A. Note that at time t the

total input determines the particularly effective eigenvalue, λn(μtot(t), σtot(t)), in dependence of

external input moments, (delayed) spike rate and adaptation current, cf. Eqs (26), (27) and

(21. We thereby extend the findings of [18] concerning the perfect integrate-and-fire neuron

with reflecting lower barrier at the reset voltage (PIFb), i.e., dVi/dt = μ + σξi(t) with Vlb = Vr.
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1. The eigenvalue λ0 = 0 exists for all (generic) input moments μ, σ2 with stationary membrane

voltage distribution as corresponding eigenfunction, ϕ0 = p1 (see Fig 7A and 7B), the

respective adjoint eigenfunction is constant, ψ0 = 1, cf. [18]. The other, nonstationary eigen-

values λn with n� 1 have negative real parts for all (μ, σ) which yields stability of the sta-

tionary distribution for constant total input moments. For sufficiently small mean input

μmin the eigenvalues λn(μmin, σ) are real-valued for all n and σ, i.e., no (damped) oscillatory

spike rate transient in that regime are present (consistent with [18]), cf. Fig 7A.

2. Two classes of modes can be distinguished: eigenvalues of the first kind occur in couples

which are real-valued at μmin but merge for increasing mean input μ to become a complex

conjugated pair of decreasing absolute real part and almost linearly increasing imaginary

part (see Fig 7A). Thus they correspond in this situation to damped oscillatory dynamics

with increased frequency |Im{λn}|/(2π) and decay time constant 1/|Re{λn}| for stronger

mean input. Note that there is no single critical parameter for the real-to-complex transi-

tion, instead that depends on the input mean μ and standard deviation σ as well as on the

eigenvalue index n in contrast to the PIFb neuron where μ = 0 (alone) induces the transition

[18]. We call this type of eigenvalue regular because it is observed also for very simple

integrate-and-fire models (such as PIFb).

The second type of eigenvalue is real for the whole input parameter space of (μ, σ). The cor-

responding decay time constant is large if noise dominates while for stronger mean input

the respective dynamics is negligibly fast. Note that by setting the lower bound Vlb equal to

the reset voltage, this eigenvalue class is completely removed for the EIFb model, which is

the EIF membrane voltage description with Vlb = Vr (not used here). This explains why this

new type of eigenvalue has not been described in [18], and suggests a relationship to the dif-

fusion of the membrane voltage for hyperpolarized neuronal states. The latter correspon-

dence is further supported from the significant values of the respective eigenfunction ϕn

below the reset voltage Vr in contrast to the eigenfunctions of regular eigenvalues (cf.

Fig 7B). Therefore we label this second type of eigenvalue diffusive.

3. The input noise intensity σ controls the spectrum’s mixture of the two eigenvalue classes as

follows: weak noise favors regular modes, i.e., the dominant two eigenvalues are pairs of

real (for smaller mean input μ) or complex conjugated eigenvalues (for larger μ) while the

diffusive modes are irrelevantly fast in this regime (cf. Fig 7A, left). Increased input fluctua-

tions, i.e., a larger σ, on the other hand leads to a spectrum with dominant (“slowest” eigen-

value λ1) of the diffusive kind for small mean input μ while for larger μ the dominant mode

is from the regular class (being real or complex depending on μ, σ, n), see Fig 7A, right. Fur-

thermore an increased noise strength σ leads to a smaller decay time constant 1/|Re{λn}| for

regular modes, i.e., their respective contribution to the spike rate dynamics is faster in the

fluctuation-dominated regime than in the drift-dominated one, whereas for diffusive

modes the opposite holds true.

The specific definition of the second dominant eigenvalue λ2, Eq (67), is necessary to ensure

real coefficients in the spec2 model, Eqs (63)–(66), for regions in (μ, σ)-space where the first

dominant eigenvalue λ1 is of the (real) diffusive type and the second is part of a complex conju-

gate couple (for an example see Fig 7A, right).

Extracting the required dominant eigenvalues λ1 (for both spectral models: spec1, spec2)

and λ2 (for spec2 model only) according to Eqs (58) and (67) in the (μ, σ)-plane leads to points

of instantaneous changes in the imaginary part (λ1 and λ2) and the real part (only λ2) due to

transitions from a dominant diffusive mode for small mean input μ to a regular eigenvalue (or

pair) becoming dominant for larger μ (see Fig 7A and 7C and the last property above). These
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discontinuities (which lie on a one-dimensional curve μ(σ)) could be avoided by either restrict-

ing to Vlb = Vr (no diffusive modes) or by deriving a third spectral model based on three eigen-

values: the dominant regular pair together with the dominant diffusive eigenvalue. Making the

latter extension is straightforward by using the same steps and slowness approximation as for

the model spec2 and would yield a 3rd order ODE for the spike rate r(t) with smooth coeffi-

cients and is expected to show increased reproduction accuracy (especially for small mean

input) compared to the model spec2.

The properties above imply for the low-dimensional models spec1 and spec2, that both

enable damped oscillatory spike rates for mean-dominated input (for large μ) since then the

first two dominant eigenvalues (λ1 and λ2) have nonzero imaginary parts and are complex

conjugates of each other (see Fig 7C). Furthermore in this case the effective time constant,

1/|Re{λ1}| = 1/|Re{λ2}|, is large (especially for small input standard deviation σ). For noise-

dominated input, i.e., when σ (and not μ) is large, on the other hand, the corresponding spike

rate dynamics is fast and does not contain an oscillatory component.

Numerical solver. Here we present a numerical solution method of the Fokker-Planck

boundary eigenvalue problem (BEVP) for the operator Lðm; sÞ, Eqs (43)–(47), and its adjoint

L�ðm; sÞ, Eqs (49)–(52). The solution of the two BEVPs in terms of eigenvalues λn and associ-

ated (biorthonormal) eigenfunctions (ϕn(V), ψn(V)) as well as quantities that are derived from

those and are required by the models spec1 and spec2, is obtained for a rectangle of the input

mean μ and standard deviation σ (see Sect. Low-dimensional Approximations). Note that the

numerical method is not restricted to the EIF neuron model and supports other integrate-and-

fire models as well (e.g., perfect, leaky or quadratic).

The eigenequation Lðm; sÞ½�� ¼ l�, i.e., Eq (43) (omitting the eigenvalue index n), repre-

sents a second order ODE (cf. Eq (41)), that is equivalent to the following first order system for

the eigenflux qϕ(V) and the eigenfunction ϕ(V),

�
d

dV
q�
�

 !

¼

0 l

2

s2
� 2

gðVÞ þ m

s2

0

@

1

A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼A

q�
�

 !

ð68Þ

with coefficient matrix A(V) that has a nonlinear component through g(V) = [IL(V) + Iexp(V)]/

C that contains leak and exponential (membrane) currents. Here it was used the form of

the eigenflux qϕ (cf. Eq (46)), and that Lðm; sÞ½�� ¼ � @Vq� for generic input moments μ and

σ2 (cf. Eq (41)).

Basically a direct discretization, e.g., by a finite difference approximation, of the membrane

voltage derivatives in the System (68) can be applied. In combination with the boundary

conds., Eqs (44)–(47), this leads to a (sparse) matrix eigenvalue problem that allows for appli-

cation of standard (Arnoldi iteration based) numerical solvers. However, the convergence

properties of this approach are very poor in the sense that extremely small voltage steps ΔV
have to be chosen for the finite differences. Thus, the technique is inefficient as huge systems

appear or even inaccurate due to amplified round-off errors by ill-conditioned matrices.

Here we propose an alternative solution procedure which is based on a reformulation of the

System (68) with corresponding boundary conditions, Eqs (44)–(47), as a complex-valued

algebraic root finding problem

l 7! q�ðVlb; lÞ¼
!

0 ð69Þ

whose solutions are the eigenvalues λn. To evaluate the nonlinear function (the left hand side
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of this equation) for an arbitrary l 2 C (not necessary an eigenvalue) Eq (68) is integrated

backward starting from the spike voltage Vs (initializing one component to satisfy the absorb-

ing boundary cond., Eq (44), i.e., ϕ(Vs) = 0, and another component that can be chosen arbi-

trarily, q�ðVsÞ 2 C n f0g, due to the linearity of the problem) via the reset Vr (where the

reinjection cond., Eq (47), is enforced, i.e., q�ðV �r Þ ¼ q�ðVþr Þ � q�ðVsÞ, which induces a dis-

continuity in qϕ at the reset voltage) finally to the lower bound voltage Vlb. There, a nonzero

value of q�ðVlbÞ 2 C indicates that λ is not an eigenvalue since in this case ϕ(V) violates the

reflecting boundary condition, Eq (45). qϕ(Vlb) = 0 on the other hand shows that λ is an eigen-

value with corresponding eigenfunction ϕ(V) and eigenflux qϕ(V). Note that when considering

a nonzero refractory period the generalized version of the reinjection cond., Eq (60), i.e.,

q�ðV �r Þ ¼ q�ðVþr Þ � q�ðVsÞe� lTref , is enforced instead of the expression above. The latter is

only valid for the spec1 model, Eq (59) (see Sect. Basic model: one eigenvalue, negligible input
variations) and makes the Fokker-Planck eigenvalue problem nonlinear due to the exponentia-

tion of λ in Eq (60).

The (complex-valued) root finding problem, Eq (69) can be solved numerically to yield a

target eigenvalue λn using an iterative procedure (for example a variant of Newton’s method)

given that a sufficiently close initial approximation ~ln 2 C is available. In our Python imple-

mentation we apply Powell’s hybrid method as implemented in MINPACK wrapped through

SciPy [67] to the equivalent real system of the two variables Re{λ} and Im{λ}.

Appropriate initial approximations ~ln can be achieved (i) by exploiting that for sufficiently

small generic mean input μmin all eigenvalues have zero imaginary part (see Sect. Remarks on
the spectrum). In that case the eigenvalues are given by the roots {λ0, λ1, . . .} of q(Vlb; λ)–the

one-dimensional function of the real-valued eigenvalue candidate λ 2 (−1, 0]–which are

obtained, for example, by (dense) evaluation of that function in a sufficiently large (sub)inter-

val below zero. Furthermore (ii) all eigenvalues depend continuously on the (input) parame-

ters μ and σ (cf. Fig 7A), i.e., for a small step in the respective parameter space the solution λn

of Eq (69) for the last parametrization is a very good initial value ~ln for the current parametri-

zation. With this initialization the solution of Eq (69) is typically found in a few steps of the

chosen Newton-like method (see S1 Text for details).

To efficiently and accurately evaluate qϕ(Vlb; λ) in each iteration (of the root finding algo-

rithm), we perform an exponential (backward) integration of the System (68). The resulting

scheme is based on truncating the Magnus expansion of the exact solution after one term [71].

Here matrix exponential function evaluations of the form exp[A(V)ΔV] occur that are calcu-

lated using an analytic expression [72]. Note that ODE solvers that either do not exploit the lin-

ear structure of Eq (68) at all (such as the explicit Euler method but also higher order Runge-

Kutta methods) or utilize linearity only in one variable (e.g., [73]) have poor convergence

behaviour and thus require very small step sizes ΔV due to the strong nonlinearity g(V) as a

consequence of the large value of the current Iexp close to Vs and significantly large absolute

eigenvalues |λn|, respectively.

For more information on the numerical solver we refer to S1 Text, where details regarding

the adjoint operator, the exponential integration, the initial eigenvalue determination and the

(parallelized) treatment of the input parameters are included.

Cascade models

Linear-Nonlinear (LN) cascade models of neuronal activity are often applied in neuroscience,

because they are simple and efficient, and the model components can be estimated using estab-

lished experimental procedures [21, 74, 75]. Here we use the LN cascade as an ansatz to
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develop a low-dimensional model and we determine its components from the underlying

Fokker-Planck model. This section builds upon [21] and extends that approach for recurrently

coupled aEIF neurons; specifically, by taking into account an adaptation current and variations

of the input variance. Furthermore, we consider an improved approximation of the derived

linear filters and include an (optional) explicit description of the spike shape, cf. [23] (ch 4.2).

The cascade models considered here produce spike rate output by applying to the time-

varying mean μsyn and standard deviation σsyn of the (overall) synaptic input, cf. Eq (21), sepa-

rately a linear temporal filter, Dμ and Dσ, followed by a common nonlinear function F. That is,

rðtÞ ¼ F ðmf ; sf ; hwiÞ; ð70Þ

mfðtÞ ¼ Dm � msynðtÞ; ð71Þ

sfðtÞ ¼ Ds � ssynðtÞ; ð72Þ

where μf and σf denote the filtered mean and filtered standard deviation of the input, respec-

tively. Dm � msynðtÞ ¼
R1

0
DmðtÞmsynðt � tÞdt is the convolution between Dμ and μsyn. The filters

Dμ, Dσ are adaptive in the sense that they depend on the mean adaptation current hwi and on

the (arbitrary) baseline input in terms of baseline mean m0
syn and standard deviation s0

syn. For

improved readability these dependencies are not explicitly indicated in Eqs (71) and (72).

Note, that the nonlinearity F also depends on hwi, which is governed by Eq (23). Since the

mean adaptation current depends on the mean membrane voltage hVi we also consider a non-

linear mapping H for that population output quantity,

hViðtÞ ¼ H ðmf ; sf ; hwiÞ: ð73Þ

For the derivation below it is instructive to first consider an uncoupled population, i.e., the

input moments do not depend on rd for now. In particular, the input statistics are described by

msynðtÞ ¼ m0
syn þ m1

synðtÞ and ssynðtÞ ¼ s0
syn þ s1

synðtÞ. In the following, we derive the components

F, Dμ and Dσ from the Fokker-Planck model for small amplitude variations m1
syn, s1

syn and for a

slowly varying adaptation current (as already assumed). We then approximate the derived lin-

ear filter components using suitable functions such that the convolutions can be expressed in

terms of simple ODEs. Finally, we account for time-varying baseline input (m0
synðtÞ, s0

synðtÞ) and

for recurrent coupling in the resulting low-dimensional spike rate models.

Deriving the components of the cascade. We first expand F in Eq (70) around the base-

line mf ¼ m0
syn, sf ¼ s0

syn, hwi = hwi0 to linear order, assuming that the amplitudes of m1
syn and

s1
syn are small, and the mean adaptation current varies slowly compared to the input moments,

to obtain the approximation for Eq (70),

rðtÞ � Fðm0
syn; s

0
syn; hwiÞ þ Dm � m1

synðtÞ
@

@m
Fðm0

syn; s
0

syn; hwiÞ

þ Ds � s1
synðtÞ

@

@s
Fðm0

syn; s
0

syn; hwiÞ:
ð74Þ

Due to slow adaptation (hwi(t) = hwi0 + hwi1(t) with vanishing hwi1) we have neglected

the expansion term in the direction of hwi and replaced hwi0 = hwi in the approximation

above. Note also that, without loss of generality, we have assumed normalized filters,
R1

0
DmðtÞdt ¼

R1
0

DsðtÞdt ¼ 1. Under the same assumptions the output from the Fokker-
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Planck model (Eqs (23)–(32)) can be approximated as

rðtÞ � r1ðm
0

tot; s
0

totÞ þ Rm � m1

synðtÞ þ Rs � s1

synðtÞ; ð75Þ

dhwi
dt
�

aðhVi
1
� EwÞ � hwi
tw

þ b rðtÞ; ð76Þ

m0

totðtÞ ¼ m0

syn � hwi=C; s0

tot ¼ s0

syn; ð77Þ

where r1 and hVi1 are the steady-state spike rate and mean membrane voltage of a popula-

tion of EIF neurons in response to an input of total mean m0
tot plus Gaussian white noise with

standard deviation s0
tot. In particular, hVi1 reflects the mean over all nonrefractory neurons,

cf. Eq (38). Rμ and Rσ are the so-called linear rate response functions of the population for

weak modulations of the input mean and standard deviation around m0
tot and s0

tot, respectively

[21, 73, 76]. Comparing Eqs (74) and (75) we obtain for the nonlinearity F and the linear filters

Dμ, Dσ,

Fðm;s; hwiÞ ¼ r1 ðm � hwi=C; sÞ; ð78Þ

DmðtÞ ¼
RmðtÞ

@

@m
r1 m0

tot; s
0
tot

� � ; ð79Þ

DsðtÞ ¼
RsðtÞ

@

@s
r1 m0

tot; s
0
tot

� � : ð80Þ

Furthermore, the function H in Eq (73) is given by

Hðm; s; hwiÞ ¼ hVi
1
ðm � hwi=C; sÞ; ð81Þ

ensuring that the mean membrane voltage corresponds with the instantaneous spike rate esti-

mate of the model (in every time step). Note that Rμ and Rσ depend on m0
tot and s0

tot (which is

again not explicitly indicated for improved readability).

Fortunately, the quantities r1, hVi1, Rμ, and Rσ can be calculated from the Fokker-Planck

equation using an efficient numerical method [73]. In particular, for r1 and hVi1 we need to

solve a linear boundary value problem (BVP), and Rμ(t), Rσ(t) are calculated in the Fourier

domain, where we need to solve two linear BVPs to obtain R̂mðf Þ, R̂sðf Þ for each frequency f. It

is worth noting that the refractory period is included in a straightforward way and does not

increase the complexity of the BVPs to be solved, see [23, 73] (and our provided code).

Approximating the filter components. To express the LN model with adaptation,

Eqs (70)–(73), (23) and (78)–(81), in terms of a low-dimensional ODE system we next approx-

imate the linear filters Dμ and Dσ using suitable functions. The shapes of the true filters (pro-

portional to Rμ and Rσ, cf. Eqs (79) and (80)) for different input parameter values (m ¼ m0
tot,

s ¼ s0
tot) are shown in Fig 8A and 8B.

We first consider the linear filter Dμ (Eq (79)) and apply the approximation

DmðtÞ � Am exp ð� t=tmÞ; ð82Þ

motivated by the exponential decay exhibited by Rμ, particularly for large input variance com-

pared to its mean. Note that Dμ depends on m0
tot, s0

tot and therefore the scaling parameter Aμ

and the time constant τμ both depend on m0
tot, s0

tot, which is not explicitly indicated. Aμ and τμ
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may be determined analytically using asymptotic results for the Fourier transform R̂m of the

linear rate response for vanishing and very large frequencies, respectively [21, 76],

lim
f!0

R̂mðf Þ ¼
@

@m
r1 ðm

0

tot; s
0

totÞ; lim
f!1

R̂mðf Þ ¼
r1 ðm0

tot; s
0
totÞ

i2pf DT
: ð83Þ

To guarantee that these asymptotics are matched by the Fourier transform Aμτμ/(1 + i2πfτμ) of

the exponential, taking into account the scaling factor in Eq (79), we obtain

Am ¼
1

tm

; tm ¼
DT

r1 ðm0
tot; s

0
totÞ

@

@m
r1 ðm

0

tot; s
0

totÞ: ð84Þ

Note that matching the zero frequency limit in the Fourier domain is equivalent to the natural

Fig 8. Linear rate response functions and quantities for the cascade models. Linear rate response functions of EIF neurons subject to

white noise input for modulations of the input mean around μwith constant σ: Rμ(t; μ, σ) in kHz/V (A, gray) and for modulations of the input

standard deviation around σwith constant μ: Rσ(t; μ, σ) in kHz=ðV �
ffiffiffiffiffiffiffi
ms
p

) (B, gray). These functions are calculated in the Fourier domain for

a range of modulation frequencies [R̂mðf; m;sÞ in 1/V and R̂sðf; m;sÞ in 1=ðV �
ffiffiffiffiffiffiffi
ms
p

)] (insets, gray; absolute values are shown), and fit using an

exponential function exploiting asymptotic results for R̂m (A, red dashed), as well as considering a range of frequencies (A and B, red solid).

In addition, R̂m is fit using a damped oscillator function (A, violet). The details of the fitting procedures are described in the text. C: quantities

(τμ, τσ, τ andω) from the linear filter approximations (cf. A, B), required for the LNexp and LNdos model variants (Eqs (85), (87) and (89)), as a

function of μ and σ.

https://doi.org/10.1371/journal.pcbi.1005545.g008
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requirement that the time integral
R1

0
DmðtÞdt of the linear filter is reproduced exactly, that is,

the approximation is normalized appropriately. An advantage of this approximation is that it

is no longer required to calculate the linear rate response function Rμ explicitly. On the other

hand, as only the limit f!1 is used for fitting in addition to the normalization constraint,

the approximation of the linear filter can be poor for a range of intermediate frequencies (in

the Fourier domain), in particular for small input mean and standard deviation (see Fig 8A

here, and Fig. 4B,C in [21]). To improve the approximation for intermediate frequencies we

use the same normalization condition, which fixes the parameter Aμ = 1/τμ, and we determine

τμ by a least-squares fit of D̂m over the range of frequencies f 2 [0, 1] kHz. In both cases, using

the approximation Eq (82) the filtered mean input μf(t) = Dμ � μsyn(t) can be equivalently

obtained by solving the simple scalar ODE,

dmf

dt
¼

msyn � mf

tm

: ð85Þ

Recall that τμ depends on m0
tot, s0

tot. This exponentially decaying filter is part of the LNexp cas-

cade model variant.

A shortcoming of the approximation Eqs (82) and (85) above is that it cannot reproduce

damped oscillations exhibited by the true linear filter, in particular, for large input mean and

small variance (see Fig 8A). Therefore, we introduce an alternative approximation using a

damped oscillator function,

DmðtÞ � Bm exp ð� t=tÞ cos ðotÞ: ð86Þ

Note that here Bμ, τ and ω depend on m0
tot, s0

tot, which is not explicitly indicated. We fix the scal-

ing parameter Bμ by (again) requiring that the approximation is normalized to reproduce the

time integral of the true linear filter Dμ, which yields Bμ = (1 + (τ2 ω2))/τ. The remaining two

parameters τ and ω are determined such that the dominant oscillation frequency is reproduced.

Specifically, the approximation should match D̂m at the frequencies fR ¼ argmaxf j RefD̂mðf Þg j

and fI ¼ argmaxf j ImfD̂mðf Þg j in the Fourier domain as close as possible. We would like to

note that using the method of least-squares over a range of frequencies instead can generate

approximated filters which decay to zero instantly, particularly for large input mean and small

variance (not shown). For such inputs a damped oscillator with a single decay time constant is

too simple to fit the complete, rather complex linear filter shape. With Eq (86) the filtered mean

input can be obtained by solving the second order ODE

€mf þ
2

t
_mf þ

2

t2
þ o2

� �

mf ¼
1þ t2o2

t

msyn

t
þ _msyn

� �
: ð87Þ

Using this damped oscillator filter gives rise to the LNdos cascade model variant.

Considering the linear filter Dσ (Eq (80)) we use the approximation Dσ(t)� Aσ exp(−t/τσ),

with Aσ = 1/τσ and τσ determined by a least-squares fit of D̂s for frequencies f 2 [0, 1] kHz, as

long as @

@s
r1 m0

tot; s
0
tot

� �
> 0. When this condition is not fulfilled, which occurs for large input

mean and small variance, the full linear filter cannot be properly fit by an exponential function.

This may be seen by the asymptotic behavior [77]

lim
f!1

R̂sðf Þ ¼
s0

totr1 ðm
0
tot; s

0
totÞ

i2pf D
2

T

; ð88Þ

which implies negative lim f!1D̂sðf Þ (cf. Eq (80)) that cannot be approximated for
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nonnegative τσ. In this case we use τσ! 0 which effectively yields Dσ(t)� δ(t), justified by the

observation that the full filter rapidly relaxes to zero (see Fig 8B). The linear filter application

can be implemented by solving

dsf

dt
¼

ssyn � sf

ts

; ð89Þ

where σf(t) = Dσ � σsyn(t) is the filtered input standard deviation. This filter is used in both

model variants (LNexp and LNdos). Note (again) that τσ depends on m0
tot, s0

tot.

Extension for changing input baseline and recurrent coupling. In the derivation above

we considered that the synaptic input mean and standard deviation, μsyn(t) and σsyn(t), vary

around m0
syn and s0

syn with small magnitudes. To extend the LN cascade model(s) to inputs that

show large deviations from their baseline values we let the linear filters adjust to a changing

input baseline in the following way: using the exponentially decaying mean input filter (LNexp

model) the filter parameters τμ and τσ are evaluated at

meffðtÞ ¼ mf � hwiðtÞ=C; seffðtÞ ¼ sf ð90Þ

in every time step, i.e., these parameters adapt to the effective input moments. Using the

damped oscillating mean input filter (LNdos model), on the other hand, the filter parameters τ,

ω and τσ are evaluated at μtot(t), σtot(t) given by Eqs (26) and (27), i.e., these parameters adapt

directly to the total input moments, assuming that these moments do not fluctuate too vigor-

ously. Note that because of these adjustments we do not need to consider a (particular) input

baseline. Two remarks are in place: (i) the parameters of the damped oscillator cannot be

adapted to a changing input baseline using the effective input mean (with μf given by Eq (87)),

because this can lead to stable oscillations (for an uncoupled population) and thus decreased

reproduction performance (not shown); (ii) for input moments that change very rapidly the

reproduction performance of the LNdos model variant may be improved by alternatively evalu-

ating the parameters τ, ω and τσ at maðtÞ ¼ ma
f � hwi=C, σeff(t), with ma

f governed by Eq (85)

(combining LNexp and LNdos), cf. [23] (ch. 4.2).

Finally, recurrent coupling within the population is included (in both model variants) by

the dependence of the synaptic input moments on the delayed spike rate, μsyn(t, rd), s2
synðt; rdÞ,

with rd given by Eq (40). For the LNdos model we can then replace _msyn in Eq (87) by

_msyn ¼ _mext þ JK _rd ¼ _mext þ JK
r � rd

td
: ð91Þ

In case of identical (constant) propagation delays within the population this term would be

_msyn ¼ _mext þ JK _rðt � dÞ and in case of recurrent coupling without delays we would have

_msyn ¼ _mext þ JK
@ r1
@m

_mf �
aðhVi1 � EwÞ � hwi

Ctw
þ

b r
C

� �

þ
@ r1
@s

ssyn � sf

ts

� �

: ð92Þ

To summarize both LN cascade models, the population spike rate and mean membrane

voltage are described by Eqs (70) and (73), using Eqs (78), (81) and (23), respectively. For the

LNexp model input filtering is governed by Eqs (85) and (89), where the filter parameters are

evaluated at μeff(t), σeff(t) (Eq (90)). For the LNdos model input filtering is described by Eqs

(87) and (89), where the filter parameters are evaluated at μtot(t), σtot(t) given by Eqs (26) and

(27). The system for the recurrent network under consideration is closed by Eqs (21) and (40)

which relate population spike rate output and overall synaptic input moments. Note that

both LN systems here are fully equivalent to the respective ones specified in the Sect. Model
reduction.
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Further remarks. In order to efficiently simulate the derived cascade rate models it is

highly recommended to precalculate the quantities which are needed in each time step on a

(μ, σ)-rectangle (see Sect. Low-Dimensional Approximations above). For the LNexp model these

quantities are the filter time constants τμ, τσ, and for the LNdos model we need the quantities

τ, ω and τσ (all displayed in Fig 8C). Both models additionally require the steady-state quanti-

ties r1 and hVi1 shown in Fig 6. An efficient implementation to obtain these quantities using

Python with the package Numba for low-level virtual machine acceleration is available. Recall,

that changing any parameter value of the external input, the recurrent synaptic input or the

adaptation current does not require renewed precomputations.

If desired, it is also possible to obtain initial values for the variables of the cascade models

(LNexp and LNdos variants) that correspond to a given initial distribution of membrane voltage

and adaptation current values {Vi(0)}, {wi(0)} of a population of N aEIF neurons. We can cal-

culate hwi(0) = 1/N∑i wi(0) and determine μf(0), σf(0) by requiring that the initial membrane

voltage distribution of the respective LN model p1(V; μf(0) − hwi(0)/C, σf(0)) matches the ini-

tial voltage distribution from the aEIF population as close as possible (e.g., using the

Kolmogorov–Smirnov statistic). For the LNdos model we additionally set _mfð0Þ ¼ 0. This

means we assume vanishing changes in the input history which underlies the initial membrane

voltage distribution and filter parameters in the LN models (i.e., _msyn � 0, _ssyn � 0 for a suffi-

ciently long time interval prior to t = 0).

The components of the LN model are derived in the limit of small amplitude variations of

μsyn and σsyn. However, the approximation also provides an exact description of the population

dynamics for very slow variations of μsyn and σsyn, where the spike rate, mean membrane volt-

age and adaptation current are well approximated by their steady-state values in each time

step.

Here we approximated the derived linear filters using exponential and damped oscillator

functions. We would like to note that, for a given baseline input (m0
tot, s0

tot) the filter application

using the latter function (Eq (86)) can be equivalently described by a complex-valued ODE

[23] (ch. 4.2). Furthermore, the true linear filters Dμ and Dσ can be substantially better approxi-

mated by a damped oscillator function with two time scales (i.e., two exponentials) each. In

these three cases, however, the ODE representation for the filter application can lead to

decreased reproduction performance when the baseline input changes very rapidly (due to

increased sensitivity to variations of the filter parameters).

Spike shape extension (optional)

In this contribution the membrane voltage spike shape has been neglected (typical for IF type

neuron models) by clamping Vi and wi during the refractory period, justified by the observa-

tion that it is rather stereotyped and its duration is very brief. Furthermore, the spike shape is

believed to contain little information compared to the time at which the spike occurs. Never-

theless, it can be incorporated in the aEIF model in a straightforward way using the following

reset condition, as suggested in [43]: When Vi reaches the spike voltage Vs from below we let

Vi decrease linearly from Vs to Vr during the refractory period and increment the adaptation

current wi wi + b at the onset of that period. That is, Vi and wi are not clamped during the

refractory period, instead, Vi has a fixed time course and wi is incremented by b and then gov-

erned again by Eq (15). This modification implies that the average membrane voltage in

Eq (23) needs to be calculated over all neurons (and not only the nonrefractory ones), that is,

hVi is calculated with respect to p + pref, where prefðV; tÞ ¼
R Tref

0
rðt � sÞdðV � VspðsÞÞds with

spike trajectory Vsp(t) = Vs + (Vr − Vs)t/Tref, cf. [43]. The same applies to the steady-state mean
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membrane potential in Eqs (1), (39) and (76), i.e., hVi1 is then given by

hVi
1
¼

Z Vs

� 1

vp1ðvÞdv þ 1 �

Z Vs

� 1

p1ðvÞdv
� �

Vr þ Vs

2
; ð93Þ

instead of Eq (38). Notably, the accuracy of the adiabatic approximation (Eq (15)) does not

depend on the refractory period Tref in this case. That type of spike shape can therefore be con-

sidered in the FP model and the low-dimensional models in a straightforward way without sig-

nificant additional computational demand. Note, however, that for the spec2 model a nonzero

refractory period is not supported (see above). For an evaluation of the spike shape extension

in terms of reproduction accuracy of the LN models see [23] (Fig. 4.15 in [23]).

Supporting information

S1 Text. Supplementary methods. A) Numerical integration of the time-dependent Fokker-
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(PDF)
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