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ABSTRACT Fungal secondary metabolites are widely used as therapeutics and are vital
components of drug discovery programs. A major challenge hindering discovery of novel
secondary metabolites is that the underlying pathways involved in their biosynthesis are
transcriptionally silent under typical laboratory growth conditions, making it difficult to
identify the transcriptional networks that they are embedded in. Furthermore, while the
genes participating in secondary metabolic pathways are typically found in contiguous
clusters on the genome, known as biosynthetic gene clusters (BGCs), this is not always
the case, especially for global and pathway-specific regulators of pathways’ activities. To
address these challenges, we used 283 genome-wide gene expression data sets of the
ascomycete cell factory Aspergillus niger generated during growth under 155 different
conditions to construct two gene coexpression networks based on Spearman’s correla-
tion coefficients (SCCs) and on mutual rank-transformed Pearson’s correlation coeffi-
cients (MR-PCCs). By mining these networks, we predicted six transcription factors,
named MjkA to MjkF, to regulate secondary metabolism in A. niger. Overexpression
of each transcription factor using the Tet-On cassette modulated the production of
multiple secondary metabolites. We found that the SCC and MR-PCC approaches
complemented each other, enabling the delineation of putative global (SCC) and
pathway-specific (MR-PCC) transcription factors. These results highlight the
potential of coexpression network approaches to identify and activate fungal sec-
ondary metabolic pathways and their products. More broadly, we argue that drug
discovery programs in fungi should move beyond the BGC paradigm and focus
on understanding the global regulatory networks in which secondary metabolic
pathways are embedded.

IMPORTANCE There is an urgent need for novel bioactive molecules in both agricul-
ture and medicine. The genomes of fungi are thought to contain vast numbers of met-
abolic pathways involved in the biosynthesis of secondary metabolites with diverse bio-
activities. Because these metabolites are biosynthesized only under specific conditions,
the vast majority of the fungal pharmacopeia awaits discovery. To discover the genetic
networks that regulate the activity of secondary metabolites, we examined the genome-
wide profiles of gene activity of the cell factory Aspergillus niger across hundreds of con-
ditions. By constructing global networks that link genes with similar activities across con-
ditions, we identified six putative global and pathway-specific regulators of secondary
metabolite biosynthesis. Our study shows that elucidating the behavior of the genetic
networks of fungi under diverse conditions harbors enormous promise for understand-
ing fungal secondary metabolism, which ultimately may lead to novel drug candidates.
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Fungal secondary metabolites (SMs) are bioactive, usually low-molecular-weight com-
pounds that have restricted taxonomic distribution and are produced at specific stages of

growth and development (1). The most well-known clinical applications of these molecules
include their use as antibiotics, cholesterol-lowering agents, and immunosuppressants (e.g.,
penicillin, statins, and cyclosporins, respectively) (2). However, they also play an important
role in drug discovery programs, with recently marketed therapeutics consisting of either
fungal SMs or their semisynthetic derivatives (3). In contrast to these contributions to human
welfare, fungal SMs also include potent carcinogenic crop contaminants (4), and the myco-
toxin-producing capacity of commonly used fungal cell factories in food or biotechnological
processes is often either unknown (5) or underestimated (6). Moreover, plant-infecting fungi
deploy numerous SMs as virulence factors that facilitate successful infection (7), ultimately
destroying enough food for 10% of the human population per year (8). Improved under-
standing of the genetic, molecular, and biochemical aspects of fungal secondary metabolism
thus promises to drive novel medical breakthroughs, while also ensuring improvements in
global food safety and security (9).

A common feature of SM-producing fungi is that the genes required for producing
a single secondary metabolite are often found in contiguous clusters on the genome,
which may facilitate both horizontal gene transfer of SMs and epigenetic regulation via
chromatin remodeling (1, 10). Biosynthetic gene clusters (BGCs) typically include a
gene encoding a core biosynthetic enzyme, most commonly a nonribosomal peptide
synthetase (NRPS), polyketide synthase (PKS), or terpene cyclase, that is responsible for
the first metabolic step in product synthesis (11). Additionally, BGCs include genes
encoding so-called “tailoring” enzymes, such as P450 monooxygenases or methyltrans-
ferases, that modify the molecule produced by the core enzyme (11, 12). Moreover,
many BGCs contain either genes encoding putative membrane transporters, which are
required for metabolite efflux from the cell in some (13) but not all (14) cases, or addi-
tional so-called “resistance” genes, which are necessary for detoxification/self-protec-
tion against the molecules produced (15).

Most BGCs are transcriptionally silent under standard laboratory and industrial culti-
vation conditions, which is a major challenge to the discovery of their cognate mole-
cules (16). Interestingly, many BGCs also contain transcription factor (TF)-encoding
genes that regulate their activity (11, 12, 17). In several instances, these TF-encoding
genes have been overexpressed to activate transcription of the respective BGC, ulti-
mately leading to the discovery of novel SMs (13, 18–21). However, this strategy cannot
be used for the approximately 40% of fungal BGCs that lack a resident TF (17).

An alternative approach to engineering SM-overproducing isolates has been to
identify and genetically target global regulators of multiple BGCs. These include epige-
netic regulators, notably components of the heterotrimeric velvet complex, which links
development, light responses, and SM production in ascomycetes (22). Alternatively,
globally acting TFs that coordinate SM biosynthesis with differentiation (e.g., BrlA/
StuA) and responses to environmental stimuli, such as pH (PacC) or nitrogen availabil-
ity (AreA), can be activated using molecular approaches for elevated natural product
biosynthesis (1, 17, 23). A limitation to these strategies, however, is that all global regu-
lators discovered to date activate only a fraction of the predicted BGCs in a single ge-
nome. For example, deletion of genes predicted to encode the methyltransferase
LaeA, which is thought to silence BGC expression by the formation of transcriptionally
silent heterochromatin, increased the expression of 7 of 17 BGCs in the biomass-
degrading fungus Trichoderma reesei and 13 of 22 BGCs analyzed in the human-infect-
ing mould Aspergillus fumigatus (24, 25).

A final confounding factor in understanding and functionally analyzing fungal BGCs
and their products is that there is considerable variation in the degrees to which core,
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tailoring, transport, and regulatory genes are contiguously clustered in fungal genomes (10).
This includes so-called “partial” clusters in which some genes encoding biosynthetic
enzymes and transporters are not physically linked with other clustered genes (26, 27),
“superclusters” in which two or more NRPS-/PKS-encoding genes reside in close
physical proximity (28, 29), and SM-biosynthetic genes that are not contiguously
clustered (30).

Consequently, innovative strategies are required both to discover novel transcrip-
tional activators of BGCs and to accurately delineate their boundaries. Over the past
several years, an approach that has gained considerable interest has been the utiliza-
tion of coexpression networks to analyze BGCs, for example, during laboratory culture
of industrial isolates (29, 31) or during infectious growth of plant-infecting fungi (32). A
limitation to these studies, however, was the relatively small number of conditions
tested (up to several dozen), which resulted in the inability to detect the transcriptional
activity of numerous BGCs. To overcome this limitation, we recently conducted a meta-
analysis of 283 microarray data sets covering 155 different cultivation conditions for
the biotechnologically exploited cell factory Aspergillus niger. This data collection cov-
ers a diverse range of environmental conditions and genetic perturbations and was
used to construct a global gene coexpression network based on Spearman’s correla-
tion coefficient (SCC) (33). We found that 53 of the 81 predicted BGC core genes in A.
niger are expressed under at least 1 of the 155 conditions, and we were able to delin-
eate the boundaries of numerous BGCs, including, for example, the partial cluster
required for biosynthesis of the siderophore triacetylfusarinine C.

Our analysis also suggested that only a minority of BGCs are coexpressed with their
resident TF; specifically, from the 25 of the 53 expressed BGCs that contained a TF, only
8 BGCs were coexpressed with their respective TF. However, we were able to use this
network to successfully predict TFs that, independent of their physical location on the
genome, regulate multiple BGCs. This relied on the so-called “guilt-by-association”
principle, whereby genes that are part of similar (or the same) biosynthetic pathways
or genetic networks tend to have highly comparable patterns of gene expression. We
functionally analyzed two of these coexpressed TFs (MjkA and MjkB) (Table 1) by gen-
erating loss-of-function and gain-of-function A. niger mutants and could indeed dem-
onstrate that their overexpression modulated (either indirectly or directly) the tran-
scriptional activity of 45 (MjkA) and 43 (MjkB) BGC core genes (33).

Despite the utility of coexpression network analyses, there are several possible limi-
tations to the construction of transcriptional networks based on correlation coefficients

TABLE 1 Selected list of transcription factors analyzed in this study that are coexpressed with BGCs in A. niger

Transcription
factor ORF Protein domain

No. of coexpressed
BGC core genes
based on:

Clustered in
a BGC

Tet-On-based
overexpression
phenotype on solid
growth mediumSCC MR-PCC

MjkA An07g07370 Myb-like DNA-binding
domain

14 No Red pigment formation,
reduced growth,
irregular sclerotia
formation

MjkB An12g07690 Fungal Zn2-Cys6 binuclear
cluster domain

13 No Red pigment formation

MjkC An01g14020 Fungal Zn2-Cys6 binuclear
cluster domain

17 No Yellow pigment formation,
reduced growth

MjkD An07g02880 Fungal-specific
transcription factor
domain

10 No Yellow pigment formation

MjkE An08g11000 Fungal Zn2-Cys6 binuclear
cluster domain

13 1 Yes (BGC 34) Brown pigment formation

MjkF An08g10880 Fungal Zn2-Cys6 binuclear
cluster domain

15 1 Yes (BGC 34) Reduced growth, frequent
reversions
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like Spearman’s or Pearson’s. In these networks, correlation coefficients are used as
weighted edges to connect genes (nodes). One major challenge when constructing
these networks is determining the edge weight threshold below which correlation
coefficients are excluded from the network, with the goal being to remove nonbiologi-
cally relevant gene associations. We have previously used in silico data randomization
experiments to test the likely threshold of biologically meaningful coexpression based
on Spearman (33); however, it is still likely that for many BGCs, the correlation coeffi-
cient cutoff chosen (r $ j0.5j) may be unnecessarily stringent, resulting in false-nega-
tive coexpression relationships for BGCs. Additionally, average correlation coefficients
can vary by gene function and input data (34). Importantly, in the case of BGC genes
that are only expressed under a few or only one specific environmental condition, it is
likely that the expression vector for a given BGC gene will be sparse and, therefore,
more likely to artificially correlate with other rarely expressed genes rather than with
genes with a functional link.

To overcome these challenges, in this study, we reanalyzed the existing A. niger
transcriptome data set with a specific focus on A. niger BGCs. First, we generated gene
expression modules based on a mutual rank approach, which can capture functional
relationships for rarely expressed secondary metabolism genes (34, 35), as we have
previously shown in analyses of secondary metabolism in plants (36). We compared
this mutual rank strategy with our existing Spearman coexpression data sets and, by
integrating both approaches, generated a short list of six TF-encoding genes (including
mjkA and mjkB) that we hypothesized may regulate multiple BGCs. Functional analyses
of these genes by overexpression using the Tet-On gene switch revealed that they play
multiple roles in the growth, development, and pigment formation of A. niger as assayed
by standard growth tests on agar plates and in shake flasks. Moreover, metabolomic profil-
ing revealed a change in the metabolite patterns of the overexpression strains analyzed.
Finally, by in silico analysis, we generated a list of predicted molecules and associated them
with putative BGCs. The methods and resources developed in this study will thus enable
the efficient activation of fungal SMs for novel drug discovery programs and other studies.
More broadly, our general approach holds potential for deciphering the global regulatory
network governing BGCs and secondary metabolic pathways in fungi.

RESULTS
Mining coexpression networks to identify biosynthetic and regulatory modules.

Using the SCC approach, we previously estimated the global transcriptional activities
of A. niger BGCs among the 283 microarray experiments by assessing the gene expression of
the predicted core enzymes (33). These data highlighted that BGC expression varies consider-
ably, with genes encoding core enzymes transcriptionally deployed frequently (several dozen
experiments), rarely (.5 experiments), or not at all (which was the case for 28 core genes)
(33). We reasoned that this microarray meta-analysis was also a promising resource for further
interrogation of BGCs using a mutual rank-transformed Pearson’s correlation coefficient (MR-
PCC) approach (34, 36). Transforming PCCs into mutual ranks has been shown to improve the
recovery of known pathways as discrete subgraphs (i.e., modules) in global coexpression net-
works (35). We constructed three MR-PCC networks (NET25, NET10, and NET05), each using a
different coexpression threshold for assigning edge weights (i.e., associations) between nodes
(i.e., genes) in the network. We then used the graph-clustering method ClusterONE (37) to dis-
cover modules of coexpressed genes within the global networks. ClusterONE is unusual
among graph clustering methods, e.g., Markov clustering (MCL) (38), due to its ability to assign
genes to multiple overlapping modules, which is more reflective of complex biological net-
works. Networks were ordered on size (i.e., total number of edges between nodes) such that
NET25, the most relaxed coexpression threshold, represents the largest network with the larg-
est modules, whereas NET05, the most stringent threshold, represents the smallest network
with the smallest modules.

In total, 2,041 modules were recovered from the NET25 network, 2,944 modules from the
NET10 network, and 2,999 modules from the NET05 network (Table S1A in the supplemental
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material). The median module sizes for the NET25, NET10, and NET05 networks were 11, 7,
and 5 genes, respectively. Of the 78 predicted BGCs comprising, in total, 81 core genes in the
A. niger genome, 43 predicted BGCs had one or more genes recovered within a single mod-
ule (Table S1B). These 43 BGCs had various levels of coexpression, which we define here as
being assigned to at least one shared module. For some BGCs, such as the fumonisin-produc-
ing BGC, most genes in the gene cluster are coexpressed at high levels (Fig. 1A). For others,

FIG 1 Heatmaps depicting the Pearson’s correlations of coexpression of genes within three canonical BGCs. Across panels A-C,
gene ids within the canonical cluster are bolded in the heatmap and the corresponding gene arrow is colored red in the
accompanying depiction of the chromosome segment. Two flanking genes are included on either side and corresponding
arrows are colored gray. Gene ids have been abbreviated. (A) A significant fraction of genes within the fumonisin metabolic
gene cluster are coexpressed. (B) Coexpression of predicted BGC 34, which contains two transcription factors. Both gene ids
are colored green in the heatmap, and other clustered gene ids recovered in the metamodule are colored pink. (C) A small
fraction of genes within predicted BGC 38 are coexpressed. Genes ids are color coded in the heatmap as in panel A; gene ids
recovered in a metamodule are colored orange. (D) Network map of transcription factor metamodule containing all genes
coexpressed with both transcription factors across all three network analyses. Nodes in the map represent genes, and edges
connecting two genes represent the weight (transformed MR score) for the association. Transcription factors are colored
green. Other genes present in BGC 34 are colored pink. Genes present in BGC 38 are colored orange. All other genes are
colored gray.
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either a small subset of the genes in the BGC were not coexpressed (e.g., BGC 34) (Fig. 1B) or
only a small fraction of genes was coexpressed (e.g., BGC 38, where only 6 of 22 genes in the
BGC were coexpressed) (Fig. 1C). During our analysis, we noticed that the two putative TF
genes in BGC 34 were assigned to multiple overlapping modules due to the nature of the
ClusterONE approach. Many of these modules also included genes from BGC 38. We col-
lapsed all modules that contained these two predicted TF-encoding genes into one nonover-
lapping metamodule that, notably, contained 7 genes from BGC 38 and 10 genes from BGC
34 (Fig. 1D). This metamodule consisted of 50 genes in total, including 1 core gene (fatty acid
synthase [FAS]), 2 TFs from BGC 34 and 2 core genes (PKS and NRPS) from BGC 38.
Concordantly, we could also identify coexpression between BGC 34 and BGC 38 cluster mem-
bers via the SCC approach. Notably, MultiGeneBlast showed that BGC 34 and 38 are con-
served in black aspergilli (Fig. S1). Both clusters belong to a large SCC subnetwork comprised
of 1,804 genes (Fig. 2), which is the largest gene coexpression subnetwork with BGC genes
based on the Spearman rank coefficient r $ j0.5j. This subnetwork included many TFs that
are not physically located inside BGCs or are coexpressed with nonresident BGC genes.

It has been speculated over recent decades that BGC-resident TFs may coregulate
gene expression at more than one BGC (1, 17). Both coexpression network approaches
supported this hypothesis for A. niger, as evidenced by the coexpression of two TFs
residing in BGC 34 (open reading frames [ORFs] An08g11000 and An08g10880, chro-
mosome 1) with multiple genes in BGC 38 (chromosome 8), including the predicted
NRPS (Fig. 3). This was especially interesting given that (i) BGC 38 does not contain a
predicted TF, (ii) both these BGCs are present in 22 (BGC 34) or 24 (BGC 38) of 83 ana-
lyzed genomes of the genus Aspergillus, and (iii) BGC 38 is in close proximity to the
functionally characterized BGC 39 that is necessary for azanigerone production (39).

Interestingly, our analysis demonstrates that the SCC approach primarily carves out
coexpression of frequently expressed genes, whereas the strength of the MR-PCC
approach is the identification of coexpression relationships among rarely expressed
genes. We thus decided to study the impact of six putative TF-encoding genes on A. ni-
ger secondary metabolism in more depth. Four were predicted by the SCC approach to
be coexpressed with at least 10 BGC core genes and are unclustered (MjkA to MjkD),
whereas the remaining 2 were predicted by the MR-PCC approach to be coexpressed

FIG 2 The largest Spearman subnetwork containing predicted BGC core and tailoring genes
(highlighted in pink), as well as transcription factors (highlighted in blue). The six transcription factors
studied by molecular analyses in this study (MjkA to -F) are indicated in green.
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with both BGC 34 and BGC 38 and are clustered with BGC 34 (MjkE and MjkF) (Table 1
and Fig. 3).

Overexpression of predicted transcription factors MjkA to -F modulates A. niger
pigmentation and development. Prior to conducting gene functional analysis experi-
ments, we assessed the gene expression profiles for mjkA to mjkF across our 155 cultivation
conditions. While both mjkE and mjkF, which reside in BGC 34, were rarely expressed, the
four genesmjkA tomjkD encoding unclustered TFs were transcribed under numerous condi-
tions, with mjkA notably expressed to 90% of the level of A. niger actin under several condi-
tions (Fig. 4).

To assess the role of these TFs in modulating BGC expression, we generated condi-
tional expression isolates in which a Tet-On gene switch was placed upstream from the
open reading frame as previously described for the genes mjkA and mjkB (33) (Fig. S2
presents cloning information and Southern blot confirmation). The Tet-On gene switch
has undetectable levels of basal expression in the absence of induction, and the addi-
tion of 10 mg/ml doxycycline (DOX) enables expression above that of the A. niger glu-
coamylase gene, whose promoter is often used for overexpression studies (33, 40, 41).
Conditional expression isolates previously constructed for genes mjkA and mjkB were
also analyzed in this study to further assess their role in A. niger secondary metabolism
and development (Table S1C).

Standard growth assays on solid and in liquid media clearly identified differences in
medium pigmentation in overexpression isolates compared to the progenitor control (Fig. 5
and Fig. S3), suggesting a role of these genes in A. niger development and/or secondary me-
tabolism. The MjkA, MjkD, and MjkF conditional expression strains also displayed reduced
growth on solid agar under overexpression conditions (Fig. S3). Intriguingly, mjkA overex-
pression resulted in the infrequent formation of sclerotia (Fig. 5 and Fig. S3), which are an
important prerequisite for sexual development in Aspergillus (42, 43). The observed putative
sclerotia were highly similar in size, structure, and color to those recently characterized
from A. niger (44). However, A. niger sensu stricto has not been reported to have a sexual
cycle. Additionally, A. niger rarely produces sclerotia under specific growth conditions, which
is paralleled by the production of many secondary metabolites, including indolterpenes of
the aflavinine type (42). We thus reanalyzed transcriptomic data that were available for this
isolate and for the MjkB overexpression strain from bioreactor cultivation (33) to screen for
differential expression of developmental regulators following conditional MjkA and/or MjkB

FIG 3 Schematic representation of BGC 34 and BGC 38 as predicted by antiSMASH. Based on sequence similarity and
gene functional prediction, BGC 34 corresponds to the alkyl citrate-producing cluster identified in parallel to this study
in A. niger NRRL3 (54). BGC 38 is positioned next to the azanigerone cluster (39).
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expression. Strikingly, the expression of 36 and 27 regulators and TFs was affected when
mjkA or mjkB, respectively, was up- or downregulated (Fig. 6). Notably, the overexpression
of mjkA resulted in downregulation of genes encoding transcription factors known to con-
trol primary metabolism (creA, areB, xlnR, amyR, prtT, pacC, crzA, hapX, farA, farB, and acuB)
(45) and asexual development (brlA, abaA, stuA, flbA, flbB, and flbC) (45), as well as chroma-
tin structure (laeA, velB, vipC, mtfA, and hdaA) (45), in Aspergillus (Fig. 6). Deletion of mjkA
caused strong upregulation of the regulator-encoding genes areA, cpcA, msnA, csnE, flbD,
and vosA (Table S1D), with functions in primary metabolism and development (45), imply-
ing that MjkA is a regulator of multiple A. niger BGCs, differentiation, and development.
Note that the MjkA-encoding gene can be found in 61 of 83 sequenced Aspergillus
genomes as identified by BLAST analyses (Table S2).

We further analyzed strains overexpressing genes mjkA to -F in shake flask cultures
following induction with DOX by quantitative PCR (qPCR) (Table S1E). All genes dis-
played elevated transcription following the addition of DOX to the growth medium,
with the exception of the mjkD overexpression strain, which we hypothesize could
potentially be due to an autoregulation phenomenon (Table S1E) (46). Notably, qPCR
analysis revealed that the overexpression of several putative TFs modified the expres-
sion of various known or predicted secondary metabolite-regulating genes, including
brlA, pacC, and mjkC in the isolate overexpressing mjkA, and mjkE and mjkF in the iso-
late overexpressing mjkC (Table S1E). Furthermore, overexpression of mjkF caused
marked upregulation of predicted core genes in cluster 34 (An08g10930 and An08g10860)
and cluster 38 (An09g01690), suggesting that the mjkF-encoded protein may indeed regu-
late the expression of these clusters. Taken together, qPCR experimentation supported
microarray-based coexpression analyses suggesting that genes mjkA, -B, -C, -E, and -F may
regulate the expression of secondary metabolite gene expression.

Overexpression of predicted transcription factors MjkA to -F modulates the
secondary metabolite profile of A. niger. To understand the effects of the MjkA to -F
TFs on the secondary metabolite profile of A. niger, we next conducted untargeted
metabolome analysis of the progenitor strain and mjkA to mjkF conditional expression
strains after 2, 4, or 10 days of incubation on minimal agar plates supplemented with
10 mg/ml DOX (Fig. S3). For each overexpression strain, a single time point was
selected for metabolome analysis. Time points were chosen when the greatest devia-
tion in either medium pigmentation or growth relative to that of the control strain was
observed (Fig. S3). Since culture samples were harvested at both the center and the
outer edges of the growing colonies and pooled for analysis, the results obtained com-
prise metabolites from both old and young mycelia. This analysis detected a total of

FIG 4 Expression levels for all 6 TFs under 155 expression conditions. Note the different scales. mjkE (An08g11000) and mjkF
(An08g10880) expression levels are notably elevated during maltose-limited bioreactor growth in a DflbA mutant (77).

Kwon et al.

Volume 9 Issue 2 e00898-21 MicrobiolSpectrum.asm.org 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

11
 J

an
ua

ry
 2

02
2 

by
 9

2.
19

5.
8.

55
.

https://www.MicrobiolSpectrum.asm.org


2,063 compounds, of which 1,835 were annotated. Metabolic pathway visualization of
the identified metabolites using iPATH showed that intermediates from various biosyn-
thetic routes toward SMs (Fig. S5, S6, and S7) were covered (47–49). Statistical analysis
(t test) identified numerous metabolites that were significantly different (P # 0.05 and
log2 ratio greater than 1 or21) for the genotypes and time points compared (Fig. 7A).

Generally, overexpression of mjkC and mjkF (2 days) and of mjkA and mjkD (4 days)
each affected more than 140 metabolites compared to the levels in the control strain
at the respective time point (Fig. 7B). Interestingly, only overexpression of mjkC led to
an upregulation of more than half of the affected metabolites, whereas overexpression
of mjkA, mjkD, and mjkF led to downregulation relative to the levels in the control
(Fig. 7B). In comparison, overexpression of mjkB and mjkE (10 days) apparently affected
fewer metabolites (66 and 43, respectively), which might also be due to a reduced
overall metabolic activity of the cultures after prolonged cultivation.

Among the significantly affected metabolites, several known SMs of A. niger and related
species (50) could be putatively identified by means of liquid chromatography-quadrupole
time of flight high-resolution mass spectrometry (LC-QTOF-HRMS), based on mass and
retention time (Fig. 7C and Fig. S5 to S7). These compounds comprise naphtho-g-pyrones
(aurasperones, isonigerone, fonsecin, and carbonarins), bicoumarins (bicoumanigrin, kota-
nin, desmethylkotanin, and funalenone), and fumonisins. Moreover, overexpression of the
putative TFs affected meroterpenoids (1-hydroxyyanuthone A) and benzoquinone-type
pigments (atromentin and cycloleucomelone), as well as different types of alkaloids, such
as pyranonigrins, pyrophens (aspernigrin A, carbonarone A, and nygerone A), nigragillins
(nigragillin and nigerazine B), and tensidols. Not found among the significantly affected
compounds were some known SMs of A. niger that have already been linked to their corre-
sponding BGCs, such as azanigerone (39), TAN-1612 (51), and ochratoxin (52).

Notably, the list of previously identified SMs of A. niger is almost exclusively comprised
of polyketide products (Fig. S6). Thus, even though the peptide-forming NRPS from BGC
38 (An09g01690) is present in a mutual rank metamodule with MjkE and MjkF, the biosyn-
thetic product of BGC 38 is unlikely to be one of the compounds identified in the current
study. Based on an in silico assembly line prediction using antiSMASH, An09g01690 enco-
des a bimodular NRPS that cannot be classified yet into a linear or iterative assembly type,
and its product is thus not predictable. Since it is coexpressed with two putative fatty acid
synthase-encoding genes (An09g01740 and An09g01750) in BGC 38 (Fig. 1 and 3), the

FIG 5 Tet-On-based overexpression of mjkA modifies A. niger development. Overexpression of mjkA
induced by the addition of 10 mg/ml doxycycline leads to irregular formation of putative sclerotia on
agar plates, an example of which is shown. Strains were grown on MM or CM for 144 h at 30°C in
the dark. Colony sectoring observed in this isolate is not due to formation of unstable heterokaryons,
as evidenced by PCR and Southern blot confirmation of homokaryotic strains. Estimated scale bar
indicates approximately 1 mm.
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encoded peptide presumably features a fatty acid moiety of various lengths based on the
available fatty acid pool of A. niger. Similar patterns have been observed for other nonribo-
somally synthesized lipopeptides, such as daptomycin (53).

In parallel to this study, BGC 34 (Fig. 3) was recently demonstrated to be responsible
for alkyl citrate production in A. niger strain NRRL3 (54). For this SM class, a range of
bioactivities has been reported, including antiparasitic (55), antifungal (56), antibacte-
rial (57), and plant root growth promotion effects (58). Other complex alkyl citrates
(zaragozic acids, also called squalestatins) have been shown to be among the most
potent natural squalene synthase inhibitors (59, 60). Notably, the metabolome analysis
in this study showed that several alkyl citrates, such as hexylaconitic acid A, hexylita-
conic acid J, and tensyuic acids C and E, were also differentially produced at different
time points upon TF overexpression (Fig. 7C and Fig. S5 to S7).

DISCUSSION

This study has demonstrated that gene coexpression analysis enables the identifica-
tion of fungal transcriptional networks in which secondary metabolite genes are em-
bedded. By comparing mutual rank and Spearman-derived coexpression networks, we
have identified, respectively, both BGC-resident and, additionally, unclustered TFs, a
finding that is broadly consistent with the existence of SM regulatory genes that reside
outside predicted BGC loci (17). However, there is a growing body of evidence to sug-
gest that, at least in some instances, there has been an overreliance on physical cluster-
ing for the prediction of SM pathway genes and their cognate transporters/regulators.
Indeed, with several notable exceptions (61, 62), it is still relatively rare that genes
required for the biosynthesis of an entire fungal SM are, first, experimentally verified
and, second, fully contiguously clustered. Thus, the true extent of SM pathway gene
clustering in fungi remains unclear. This is further complicated by divergence in the
degrees to which the BGCs are intact across fungal genomes, which is even true for

FIG 6 Differential gene expression of transcription factors following overexpression of mjkA and mjkB
genes during controlled bioreactor batch cultivations of A. niger performed in our previous study
(33). Note that overexpression of MjkA strongly affects expression of predicted regulators during both
growth phases, whereas the effect of MjkB is limited to the post-exponential growth phase. ORF
names are given.
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“gold standard” BGCs, such as those necessary for epipolythiodioxopiperazine synthe-
sis (e.g., gliotoxin/sirodesmin) (61). Hence, experimental approaches to activate and
functionally analyze the full fungal SM repertoire cannot exclusively rely on in silico
genomics approaches.

Given that coexpression approaches have only recently been applied to define fun-
gal BGC boundaries and their transcriptional networks (29, 31, 33, 63), in this study, we
examined the potential utility of two different approaches for constructing coexpres-
sion networks, namely, mutual rank and Spearman approaches. Our results suggest
that both approaches enable the delineation and refinement of contiguous BGC boun-
daries. However, whereas the Spearman approach was better suited for the identifica-
tion of global TFs, the mutual rank approach was better suited for the identification of
pathway-specific TFs. This work should therefore guide future coexpression analyses of
other fungal transcriptional data sets based on the requirements of the end user (i.e.,
global or pathway-specific studies). Regarding the minimal number of transcriptomic
data sets necessary to generate useful coexpression resources, we argue that, given

FIG 7 Overexpression of mjkA to mjkF genes affects numerous metabolites in A. niger. (A) Annotated metabolites were
plotted by significance (P value) versus fold change (log2 ratio). Metabolites reaching a P value of ,0.05 are marked
orange. Metabolites with a P value of ,0.05 and a log2 ratio greater than 1 or 21 were considered significant. (B)
Numbers of significantly affected metabolites (P value of ,0.05 and log2 ratio greater than 1 or 21) in comparison to
their expression in the control strain. (C) Exemplary visualization of tensyuic acid C (alkyl citrate) and fumonisin B4
abundances during cultivation of overexpression and control strains of A. niger on agar plates at different time points
(biological duplicates).
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the variation between BGC expression levels between fungi, such estimations are not
currently possible. However, we advocate that, ideally, interested users should (i) utilize a
maximum amount of transcriptomic data from high-quality public databases, (ii) select
and generate transcriptomic data from conditions known or predicted to activate BGC
expression for the BGC of interest, or (iii) use a combination of these approaches.

Overexpression of six TF-encoding genes (mjkA to -F) predicted from coexpression
networks to be involved in A. niger SM regulation enabled the modification of A. niger
secondary metabolite profiles, which included the production of SMs that were not
detected in the progenitor control (Fig. S7). Thus, wholesale modulation of fungal SMs in
standard laboratory culture is possible using hypotheses derived from both Spearman and
mutual rank network approaches. The simplicity of the culture conditions is an attractive
aspect of the discovery pipeline in this work, which may be preferable to more complex
experimental setups, such as cocultivation experiments or isolation of novel metabolites
from the complex fungal niche (e.g., soil) or marine environments (64).

From a methodological perspective, our data support the notion that TF overex-
pression using an inducible gene switch is an effective strategy for SM activation and is
probably preferable to conventional gene deletion approaches (33). It should be noted,
however, that this study was clearly not able to activate all A. niger SMs, as we only an-
alyzed SM profiles from a single growth stage/time point for each mutant. Therefore,
we speculate that activation of other metabolites will be observed under different cul-
ture conditions or at different growth phases. Consequently, the full exploration of the
SM repertoire of A. niger MjkA to -F isolates will be conducted in follow-up studies. It
should be noted that it is currently unclear whether the mjkA to -F genes will enable
the activation of BGCs at levels comparable to the levels induced by existing regula-
tors, such as laeA, pacC, areA, creA, stuA, or brlA. Where conservation of MjkA to -F is
observed in other fungal genomes, the functional analysis (i.e., overexpression) of such
orthologues to activate and discover other SM molecules appears feasible.

An exciting observation during this study was the irregular formation of putative
sclerotia due to overexpression of MjkA, which can be viewed as a preliminary (and
tentative) step toward laboratory-controlled sex, opening up the possibility of classical
genetics in this species (65). Such developmental jackpots may be viewed as an addi-
tional benefit to wholesale analysis of fungal SMs using coexpression networks.

In this work, we also conducted significant in silico and mass spectrometry-based
characterization of differential SM production profiles and attempted to link empiri-
cally observed SMs to specific BGCs. Despite recent advances in publicly available tools
for such experiments, including the prediction of putative SM structures based on the
analysis of PKS/NRPS domains (66), coupling BGCs to their products is still challenging.
In this respect, linking BGCs among multiple differentially produced SMs between con-
trol and experimental cohorts remains a significant bottleneck in discovery pipelines
and requires experimental validation of putative BGC metabolite candidates, e.g., by
means of core gene knockout or overexpression.

In summary, this study has generated novel coexpression resources and methods
for the microbial cell factory A. niger. Overexpression strains MjkA to -F are promising
tools for metabolite discovery and will be used in future to reverse engineer the tran-
scriptional networks to which they belong. Our data clearly support the well-estab-
lished prevalence of BGCs in filamentous fungal genomes but suggest a refinement to
this paradigm, whereby for activation and functional analysis experiments of SMs, it
may be safer to consider that the necessary genes for a fungal SM of interest (including
core genes, tailoring genes, transporters, detoxifiers, and regulators) may be unclus-
tered but can be identified by means of both SCC and MR-PCC coexpression analyses.
Such shifts in experimental thinking may help facilitate the full exploitation and com-
prehensive understanding of SMs among the fungal kingdom.

MATERIALS ANDMETHODS
Calculating mutual rank for microarray experiments. A. nigermicroarray data sets obtained across

a range of experimental conditions and genetic backgrounds (33) were analyzed in R using the affy,
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simpleaffy, and makecdfenv packages (67–69). Raw data from each of the 283 individual microarrays
were normalized using the robust multiarray average (RMA) expression method as implemented in the
affy package (67). To enable cross-experiment comparisons, expression values were normalized by scal-
ing to the cross-experiment trimmed mean (excluding the top and bottom 5% of expression values).
Pearson’s correlation coefficient was calculated between every pair of genes across all conditions. An or-
dered list of all genes from most to least correlated was generated for each gene. For every pair of
genes, the mutual rank was calculated by taking the geometric mean of the rank of each gene in the
other gene’s ordered list. The mutual rank (MR) of two genes A and B is the geometric mean of each
gene’s correlation rank and is given by the following formula:

MutualRankA;B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RankAðBÞ � RankBðAÞ

q

where RankA(B) is the rank of gene B in an ordered list of the correlation coefficients of all genes with
respect to gene A ranked from most to least correlated (34). MR scores were transformed to network edge
weights using the exponential decay function e2(MR 2 1/x); three different networks were constructed with x
set to 5, 10, and 25, respectively. Edges with a Pearson’s correlation coefficient of ,0.3 or an edge weight
of ,0.1 were excluded from the global network, which was then visualized in Cytoscape (70). Modules of
coexpressed genes were inferred using ClusterONE with default parameters (37). Modules were analyzed
for the presence of transcription factors and for SM backbone genes based on protein domains found
within these genes and from gene annotations predicted by antiSMASH (71). For two transcription factor
genes (mjkE and mjkF), the results from all coexpression networks were combined by collapsing all mod-
ules containing these genes of interest into a metamodule of nonoverlapping genes. For identification of
shared clusters in Aspergillus species (Table S2), MultiGeneBlast (72) was used with 83 available representa-
tive genome assemblies available on NCBI Assembly as the search database (Table S1F).

Strains and molecular techniques. The A. niger strains used in this study are summarized in Table
S1C. Medium compositions and the methods for transformation of A. niger, strain purification, and fun-
gal chromosomal DNA isolation were as previously described (73). Standard PCR and cloning procedures
were used for the generation of all constructs (74), and all cloned fragments were confirmed by DNA
sequencing. Correct integrations of constructs in A. niger were verified by Southern blot analysis (74).
For overexpressing mjkC, mjkD, MjkE, and mjkF, the respective open reading frames were cloned into the
Tet-On vector pVG2.2 (40) and the resulting plasmids integrated as single or multiple copies at the pyrG
locus of strain MA169.4. The expression of the respective Tet-On-controlled gene was measured 24 h af-
ter DOX induction in all overexpression mutants, using qPCR (Table S1E). Details on cloning protocols,
primers used, and Southern blot results are available upon request from the authors.

Growth assays. All A. niger isolates were routinely cultured in the dark at 30°C in either minimal me-
dium (MM) (75) or complete medium (CM), which consisted of MM supplemented with 0.5% Casamino
Acids and 1% yeast extract as described previously (75). Doxycycline (DOX) was added to either solid or
liquid medium where indicated to a final concentration of 10mg/ml. For growth assays on solid medium,
105 spores were inoculated on CM or MM with or without DOX and grown for up to 144 h. For A. niger
cultivations in liquid medium, spores were inoculated into 50 ml of MM at a concentration of 106/ml.
Cultures were incubated at 30°C and 200 rpm. DOX was added 16 h after inoculation, which approxi-
mates the exponential growth phase. DOX was then added every 24 h until a maximum period of 92 h.
Strain MJK17.25 served as the control strain for all growth assays (Table S1C). For qPCR, 50 ml Aspergillus
minimal medium supplemented with 0.1% yeast extract to enhance spore germination was inoculated
at a concentration of 5 � 106 spores/ml into 250-ml shake flasks. Technical duplicates were prepared for
all overexpression strains, and a quadruplicate cultivation was performed for the parental strain. Flasks
were shaken at 250 rpm and 30°C for 12 h to allow spore germination before the addition of 20 mg/ml
doxycycline to induce the expression of genes under the control of the Tet-On system. The parental
strain was treated identically. Samples for qPCR were taken 24 h after induction by separating broth and
mycelium via vacuum filtration, briefly washing with Milli-Q water, and sampling 100 to 200 mg myce-
lium into screw-cap tubes with sterile glass beads and 1 ml TRIzol reagent. Until total RNA extraction,
samples were stored at280°C.

RNA isolation and qPCR. For isolation of total RNA, samples were thawed and homogenized using
a FastPrep 120 (Thermo Fisher Savant) and processed further using a Direct-zol RNA miniprep kit (Zymo
Research). Total RNA was quantified using a BioSpectrometer (Eppendorf), and 2 mg of total RNA was
used for reverse transcription in a 20-ml reaction mixture with random hexameric primers following the
instructions of the RevertAid H minus first-strand cDNA synthesis kit (Thermo Fisher). Reverse transcrip-
tion reaction mixtures were diluted 12-fold with nuclease-free water, and 2 ml of the dilution was used
as the input for a 10-ml SYBR-based qPCR (Blue S9Green qPCR kit; Biozym Scientific) on an AriaMx real-
time PCR system (Agilent). Primers are listed in Table S1E. For each sample, technical duplicates for each
target gene were measured. Raw threshold cycle (CT) data were exported to MS Excel and the D(CT) val-
ues from technical replicates (shake flasks and reaction replicates) were averaged before calculating the
DD(CT) values according to the method in reference 76, assuming an amplification efficiency of one.
Actin (An15g00560) was used as the reference gene.

Metabolome profiling. Metabolites were extracted from colonies of A. niger MJK17.25 grown on
agar plates (independent biological duplicates) by Metabolon (Potsdam, Germany). In brief, three agar
plugs (outer edge to plate, center of colony, and outer edge adjacent to next colony) were collected at
different time points from a colony cultivated for 2 to 10 days on minimal agar medium and pooled in
one reaction tube. Each sample was extracted in a concentration of 0.5 g/ml with isopropanol:ethyl
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acetate (1:3, vol/vol) by ultrasound for 60 min and centrifuged at 4°C at 13,500 rpm for 20 min. The su-
pernatant was sterile filtrated (0.22 mm; Carl Roth) and transferred into a new Eppendorf tube. All subse-
quent steps were carried out at Metabolon (Potsdam, Germany). Metabolites were identified in compari-
son to Metabolon’s database entries of authentic standards. The LC separation was performed using
hydrophilic interaction chromatography with an iHILIC-Fusion, 150- by 2.1-mm, 5-mm, 200-Å column
(Hilicon, Umeå Sweden), operated by an Agilent 1290 ultraperformance liquid chromatography (UPLC)
system (Agilent, Santa Clara, CA, USA).

The LC mobile phase A was 10 mM ammonium acetate (Sigma-Aldrich, USA) in water (Thermo
Fisher, USA) with 95% acetonitrile (pH 6; Thermo Fisher, USA), and mobile phase B was acetonitrile with
5% 10 mM ammonium acetate in 95% water. The LC mobile phase was a linear gradient from 95% to
65% acetonitrile over 8.5 min, followed by a linear gradient from 65% to 5% acetonitrile over 1 min and
then a 2.5-min wash with 5% and a 3-min reequilibration with 95% acetonitrile (flow rate, 400 ml/min).
Mass spectrometry was performed using a high-resolution 6540 QTOF/MS detector (Agilent, Santa Clara,
CA, USA). Spectra were recorded in a mass range from 50 m/z to 1,700 m/z in positive and negative ioni-
zation mode. The measured metabolite concentration was normalized to the internal standard.
Significant concentration changes of metabolites in different samples were analyzed by appropriate sta-
tistical test procedures (Student test, Welch test, and Mann-Whitney test). A P value of,0.05 was consid-
ered significant.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
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