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We report on the stability of thin liquid films overflowing single microstructures with sharp corners.
The microstructures were of rectangular and triangular shape. Their heights and widths were 0.25,
0.5 and 0.75 times the Nusselt film thickness. To observe steady, wavy and very unstable films we
performed simulations with Reynolds numbers ranging from 10 to 70. The dynamics of the liquid
film and the overflowing gas phase were described by the coupling between the Cahn—Hilliard and
Navier—Stokes equations. The resulting model forms a very tightly coupled and nonlinear system
of equations. Therefore we carefully selected the solution strategy to enable efficient and accurate
large-scale simulations. Our results showed that the formation of waves was shifted to higher
Reynolds numbers compared to the film on a smooth surface. If waves were finally formed the
microstructures led to irregular waves. Our results indicate a great influence of the microstructure’s
shape and dimension on the stability of the overflowing liquid film.
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I. INTRODUCTION

Gravity-driven liquid films overflowing a solid, structured surface appear in numerous technical applications. Ex-
amples include falling film evaporators or structured high performance packing for absorption columns. The packing
surfaces are often textured with microstructures with geometrical dimensions in the same order of the magnitude of
the film thickness. For improving the performance of these textured packings, and enable the design of new surfaces,
knowledge about the stability of the overflowing thin liquid films is crucial. For research conducted on the stability
of thin liquid films flowing on smooth and flat substrates including wave phenomena we refer to the review given
by Craster and Matar [I] and the summary in the recent review by Aksel and Schorner [2, Ch.5.1].

The influence of undulated periodic wavy surfaces on the stability of the film were experimentally and numerically
studied by a lot of groups. In Wierschem et al. [3] it was shown, that long-wave bottom undulation stabilize the
flow. For sufficiently short wavelengths of the topography D’Alessio et al. [4] found that the fluid gets destabilized.
Trifonov [5] found, that the stability strongly depends on both the surface topography and the physical properties of
the liquid. The complexity of the stability of liquid films was again recently displayed by Schorner et al. [6].

Periodical rectangular corrugations were studied experimentally and numerically by Argyriadi et al. [7] and Pak
and Hu [g], respectively. They found that the structures deformed the shape of the liquid film. The strong influence
of the amplitude of rectangular corrugations on the stability of the liquid film was reported in Tseluiko et al. [9].
In Schorner et al. [I0] is was concluded, that the specific bottom shape does not have a strong influence on the stability
for a wide range of flows and geometries.

In contrast, for single-phase flows it is well-known that sharp corners have a great influence on stability and flow
separation, see for example [ITHI4]. Surprisingly, to the best of our knowledge, only few papers discuss results on
thin liquid films and single microstructures with sharp corners and positive elevation in the size of the film itself. As
stated by Veremieiev et al. [I5], the simulation of perfectly steep sides without any smoothing is not possible with
simpler models but requires the numerical solution of the Navier-Stokes equations. Some results were documented on
the influence of smooth localized microstructures, like hemispheres (Veremieiev et al. [I5], Blyth and Pozrikidis [16]),
on the stability of liquid films. Results on trenches or single step-ups or -downs with sharp corners were described
by Veremieiev et al. [I5], Gaskell et al. [17], Veremieiev et al. [18]. However, despite their relevance in technical
applications, systematic studies of the influence of separated, sharp structures on the stability of the film are rarely
found.

In this paper we report on detailed numerical simulations of films overflowing separated microstructures with sharp
corners. The dynamics of the two-phase flow are described by the coupling between the Cahn—Hilliard (CH) and the
Navier—Stokes (NS) equations. In this way, we are able to fully resolve the sharp corners. The resulting model forms
a very tightly coupled and nonlinear system of equations. Therefore we carefully select the solution strategy to enable
efficient and accurate simulations. This includes the linearization and decoupling of the equations and preconditioned
Krylov methods for the solution of the arising linear systems. The examined microstructures are of rectangular and
triangular shape with heights and widths of 0.25, 0.5 and 0.75 compared to the particular Nusselt film thickness. The
Reynolds numbers range from 10 to 70.

The remainder of the article is structured as follows: In Section [[I} we discuss the governing equations and present
the system in nondimensional form. The numerical method is described in Section [T} Here, we give details on the
decoupling of the equations, the descretization and the preconditioner. The test case is described in Section [[V]
Finally, we present and discuss our results in Section [V} In Section [VI] we conclude our paper.

II. CAHN-HILLIARD-NAVIER-STOKES EQUATIONS

We treated the liquid film as well as the overflowing gas phase as Newtonian, isothermal, immiscible and incom-
pressible fluids. The thermodynamically consistent Cahn—Hilliard—Navier—Stokes model presented in [19] was applied.
The model combines the common incompressible, single-field Navier—Stokes (NS) equations with the convective Cahn—
Hilliard (CH) equations to describe the interface dynamics between the liquid and the gas. It is given by

pOv + ((pv + J) - V)v — div (2nDv) + Vp = —oVu + pg ,
—div(v) =0,
Op+v-Vo—bAu=0,

—oelAp + %W’(@ =pu,



and the boundary conditions

,Uplate =0 ’ (5)

v =0, (6)

,Uinlet _ ,Uoutlet (7)
Vyp=Vyu=0, (8)

with the velocity field v, the pressure field p, the phase field ¢ and the chemical potential 1. The velocity deformation
tensor and the gravitational acceleration are given by Dv := 3 (Vv + (Vv)") and g. The density function is denoted
by p(¢) and satisfies p(—1) = p1 and p(1) = po, with pa > p1 > 0 denoting the constant densities of the two involved
fluids. The viscosity function is n(y) and satisfies n(—1) = n; and n(1) = 79, with 71,12 denoting the viscosities of
the involved fluids. For this work, they were chosen as:

((m +mng) +0(m —ng)) - 9)

N | =

1
p=5 ot pg) +olor—pg)) , 1=
Equations and are the common incompressible Navier—Stokes equations with two additional terms: The
density flux J := _bgTZ Vp guarantees consistency and enhances stability if the densities of the two fluids are different.
The surface tension force is modelled by V. The parameter b stems from the diffuse interface approach in the Cahn—
Hilliard equation Equations and . It represents the mobility of the two-phase interface. The thickness of the

diffuse interface is described by e. The scaled surface tension is given by o = %aphy with the physical surface

tension o, The function W () denotes a dimensionless potential of double-well type with two strict minima at 1.
Here, we chose it as

1(1—¢?)? iffp[ <1
W =1 ise 10
() {(Is@l —1)>  otherwise. (10)

For different choices of W and a comparison we refer to [20].

The model — can be derived purely from thermodynamic principles [19]. It is postulated that the system in
the whole domain §2 can be described by the following sum of kinetic energy and Helmholtz free energy functional of
Ginzburg-Landau type [21]

1
E:§/p|v|2 dx+a/e_1W(cp)+6\ch|2 dx. (11)
Q )

Compared to sharp interface methods, the phase field method replaces the infinitely thin boundary between gas and
liquid by a transition region with finite thickness. It describes the distribution of the different fluids by a smooth
indicator function where —1 is pure gas and +1 is pure liquid. It follows, that all physical properties like density or
viscosity vary continuously across the interface. As summarized in the review by Worner [22], the Cahn—Hilliard—
Navier-Stokes (CHNS) equations can easily handle large topological changes of the interface [23] and the interface is
implicitly tracked without any prior knowledge of the position. Furthermore, one of the major advantages is that the
formulation of the surface tension force in the Navier—Stokes (NS) equation conserves both the surface tension energy
and kinetic energy. This can reduce spurious currents, which are purely artificial velocities around the interface, to
the level of the truncation error even for low Capillary numbers [24] [25].

A. Nondimensionalization

We scale the coupled CHNS system Equations to with:

tL Un .

. . . R R U,
t=g, v=L&, v=Ud, p=Upip, p=—"-t, p=ploitpy), n=nilm+mn), 9="79, (12)
and apply the following nondimensional groups:
UL U — — LU
Re =2 , Ca= = , A, = PL—Pg A, = MmNy oy = & , Pe.= ekl (13)
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where L = §,,, and U = v,,, are the Nusselt film height and the mean film velocity, respectively. Both are calculated
for a specific Reynolds number Re and the inclination angle « measured from the plate to the horizontal with:

/ 2
(Sn'u, = ¥ 237’[7& 9 (14)
pl gz SN &

52 sin v
Upu = 7nupl§;l . (15)
In this way the physical system is characterized by the
e Reynolds number Re (inertial over viscous forces in the film),
e Capillary number Ca (viscous drag in the film over surface tension forces between film and gas),

e and Atwood numbers A, and A,, (density and viscosity ratios between film and gas).

The Cahn number Cn and the Peclet number Pe. stem from the Cahn—Hilliard approach and describe the dynamics
of the diffuse interface.
We obtain the following nondimensionalized CHNS system:

pdyv + ((pv + J) - V)v — Re™ ' div (2nDv) + Vp = — Re ' oVu+ Ca ' Re ! pg , (16)
—div(v) =0,, (17)
dp+v-Vo—CaCnPe' Au=0,, (18)
—Cn?Ap+W'(p)= CaCnp,, (19)
with J := — Ca Cn Pe_* (%Vu and
1 1
p=5 (4o, n=:(1+ed,) (20)

For better readability we have omitted the -~ above all scaled variables and operators. If not otherwise noted, starting
from Equation all variables are scaled and dimensionless.

IIT. NUMERICAL METHOD

A. Discretization

For a practical implementation in a finite element scheme a time grid 0 =t <t < ... <tp_1 <ty < ... <tpy =T
on I = [0,7T] with non-equidistant time step size t,, — t;,—1 = 7™ > 0 for m = 1,..., M is introduced. Further, a
triangulation 7 of the domain into cells T; is introduced such that T, = vazl T; covers the domain. The specific
meshing is discussed in Section [[V] On 7, we introduced piecewise linear Lagrange finite elements Vi = Py for ¢,
upn and pp and the triangular/tetrahedral Mini element Vi; = Py @ By 44, denoting the space of linear polynomials
enriched by a cubic bubble function, for vj. For the derivation of the weak form as well as the proof of energy stability
and thermodynamic consistency we refer to [20]. Note, that we omit the notation of vectors as bold symbols for better
readability from now on.

Given ™t € V;, u™ ' € Vi, and v™ ! € Vy, find et e Vi, ppt € Vi, ppt € Vi and vyt € Vyy, such that for all
weVy,qeVy, ®eVp,and ¥ € V; the following equations hold:

L pm+pm71vm7 m—1, m—1 w
™ 2 h ’

+a(pm o™ 4 gl e w) 4 (Re” ! 2™ Dol Dw) — (divaw, pjt)

+(Re L™ IV w) — Ca™ Re Y (gp™ 1, w) =0, (21)
—(divey’, q) =0, (22)
1 _ e e _om m—1|2 .
7_7(90;? — ™ 1a‘1’) - (80 v laV‘I’) + (Re ! pfn_1|v:uh 7V‘I’>
+(Ca Cn Pe;* V', V) = 0, (23)

(Cn® Vi, V) + (W (") + Swpp — ™), ®) — (Ca Cn ', @) = 0, (24)
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with J™~1:= — Pe_! (%((pm_l)Vum_l, P L= p(p™m~1), and n™ L i= (™). We decoupled the Navier—Stokes
equation and the Cahn—Hilliard equation by using an augmented velocity field in Equation , see 26l 27]. In this
way, one can first solve Equations and and thereafter Equations and . Furthermore, for W’ a
stabilized linear scheme was applied, where Sy, is a suitable stabilization parameter. Note that this decoupled and
linearized scheme is also energy stable and thermodynamically consistent, see [20] 28].

To control the time step size we used a simple and straightforward strategy. After every time step iteration we
calculated the minimal time step based on two distinct Courant numbers Co, and Co,. The minimal time step 7,
was calculated following the well-known Courant relation, see [29]. Furthermore, to include the movement of the
interface into the time step consideration, we follow [30] and replaced the velocity v™~! with the phase field velocity

m—1 _ , _m—2

Orp P @
V| 7m=1|[Vpm—1

(25)

to obtain o' The next time step 7™ was chosen as the minimum of 7, and T, as well as T,,ar = le — 4 to restrict

the time step size to reasonable values especially at the beginning of the simulations:
. . . ) . Co, h Co, T 2h|Vpm~1
7™ = min(min(7,"), min(7;"), Tmas) = min (mln <|vmv_1> ,max ( |Zm_1 — |(pm<p_2| | s Tmaz | - (26)
B. Solver

We implemented the solution scheme given in Section [[ITA] in Python3 using the finite element library FEniCS
2019.1.0 [31, B2]. For the solution of the arising linear systems and subsystems the software suite PETSc 3.8.4 [33}
35] was applied. At each time step we first solved the CH system and thereafter the NS systems. The CH system
was solved using the direct linear solver MUMPS 5.1.1 [36, B7]. Note that the naive usage of a Krylov method for
unsymmetric systems, e.g., GMRES, preconditioned by a simple Gauss-Seidel or successive over relaxation method
to solve the CH system results in a lot of outer iterations. We refer to [38] [39] for efficient preconditioners for the CH
system.

For the NS system we had to solve at every time step a linear system with the linear operator G:

o % (p"'b'*‘ignflvﬁ,w) +a(pmtom Tt g o w) + (Re™* 2™~ 1D, Dw) —(divw, p}*)
NS =
—(divop, q) 0

_ (g BOT) . (27)

Solving this large-scale saddle point system is computationally very expensive. Furthermore, large meshes forbid the
usage of direct linear solvers. Therefore, we applied PETSc’s GMRES method preconditioned from the right. As
preconditioner an upper triangular block preconditioner for Oseen type problems was used:

Prg = (g‘ f;) . (28)

Here, S is an approximation of the Schur complement given by the pressure-convection-diffusion (PCD) preconditioner
-1 -1 -1 -1
ST =R+ M, (I+KyA,"). (29)

For details about this preconditioner we refer to [40H42]. Recently, this preconditioner was generalized to two-phase
flows [43]. In this work, we used the following expressions for the matrices occurring in Equation (29):

Re , .
Mp = Um_l (ph 7Q) ’ (30)
Re -1, ,m— m— m
K, = nmila(pm Lym=t o gm=t pm g, (31)
A, =(Vp,Vq), (32)
R, = B (diag(M,)) ' BT, (33)

=

1 pm pmfl
== (TP ) 34
- ( 5 vy, w) (34)



where M,,, M,, are scaled pressure and velocity mass matrices, respectively, K, is a scaled pressure convection matrix,
and A, is the pressure Laplacian.

For details on the implementation of the preconditioner we refer to the documentation of FENaPACK https:
//fenapack.readthedocs.io. Besides the default options in FENaPACK and PETSc the Richardson method was
applied together with algebraic multigrid provided by Hypre as preconditioner for the inversion of A, R, and A,. For
the inversion of M,, the preconditioned Chebyshev iterative method together with a Jacobi preconditioner was used.

The model and the solution scheme as well as our implementation has been extensively validated. We obtained
accurate results against the well-known rising bubble benchmark by Hysing et al. [44], see [20]. Flows involving
moving contact lines were validated against analytical solutions of spreading and pinned droplets in [45]. Again we
accomplished a very good agreement. We obtained an almost perfect accordance with the analytical Nusselt film
solution in [46]. For a validation involving film flows over corrugations, we matched our results with the experiments
reported by [47] and the simulations by [48], see Appendix

IV. SIMULATION CASE AND MESH

In Figure [1] the simulation domain is illustrated. Exemplary, a triangular obstacle with base length and height of
h = 0.75 is shown. Due to the nondimensionalization, see Section [[TA] & is always given relative to the film height.
The geometries of the two examined microstructures are depicted in Figure [2l We chose triangular and rectangular
as representative structures as they are the most simple forms with sharp corners. The solid surface was tilted to the
horizontal with angle . The flow entered the simulation domain from the left and emitted at the right. The flow
was purely driven by gravity with the gravitational acceleration constant g. On the bottom wall and the top opening
no-slip and infinite slip boundary conditions, respectively, were used, see Section [[Il To avoid the negative influence
of in- and outflow boundary conditions, we applied periodic boundary conditions on the left and right side of the
domain. To reduce the computational effort, the size of the symmetric domain was 8L x 4L. Note, that due to the
periodic domain, we never simulated a single structure but periodic arrays of structures. However, we verified our
assumption by comparing the shape of the interfaces for two different domain lengths, see Appendix [Bl We found,
that a distance of 7L between the simulated microstructure and the subsequent microstructure already is sufficient to
approach a single structure. Note however, that due to the periodicity, we might be missing some instability modes.

= microstructure
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FIG. 2. Illustration of the microstructures.

Figure [3]displays the mesh used in the simulations. The two-dimensional, unstructured, triangular, periodic meshes
were generated using Gmsh [49]. The background cell diameter was of size hyyter = 32 Cn /5. The area around the
interface was resolved with hinterface = 4 Cn /5, which resulted in around five cells over the interfacial thickness. It
was found by [50] that this is sufficient to accurately capture the dynamics of the interface. The film was resolved
with Afim = 2Rinterface- In this way, the mesh consisted of 1594 vertices and 3075 elements. Using the scheme
from Section [[ITA] and Cn = 0.04 the meshing resulted in around 16,000 and 55,000 degrees of freedom for the CH
and the NS system, respectively.
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FIG. 3. Two-dimensional, unstructured, periodic, triangular mesh used in the simulations of the rectangular microstructures.
It has three refinement zones: interface, film and obstacle. The size of the bounding box is 8L x 4L. This mesh consists of
around 1594 vertices and 3075 elements.

V. FILM FLOW OVER MICROSTRUCTURES
A. Setup

To compare the stability of the liquid films, we performed simulations with Reynolds numbers Re between 10 and 70.
Following [48] we assume, that two-dimensional structures can be represented with infinite depth normal to the main
flow direction in a two-dimensional simulation. We initialized the simulation for a specific value of Re with a smooth
film of height dp, calculated from Equation . The remaining nondimensional parameters where calculated from
the corresponding Re and Nusselt film quantities, and truncated (see Table [I). Due to the scaling of the simulation
domain, the Cahn number Cn remained constant. The initial velocity of the film and the overflowing gas phase was
zero, i.e., the liquid film as well as the gas phase were at rest. This corresponds to an initial inclination angle o = 0°.
At the very beginning of the simulation the plate was flipped to an inclination of o = 8°. The simulations were
performed until a final time of T' = 2s or until a steady-state was reached. In Appendix [B] we verify, that this final
time is sufficient to approximate time periodic results.

Re Ca A A, Cn Pec 0py/mm

10 0.04 107 1.44
20 0.07 169 1.81
30 0.09 222 2.07
40 0.11 0.99 0.99 0.04 269 2.28
50 0.13 313 245
60 0.15 353 2.61
70 0.16 391 275

TABLE I. Nondimensional parameters used in the film flow simulations. For comparison the corresponding Nusselt film
thickness for an air and Basildon-BC10cs silicone oil system with o, = 18.87mNm™!, p; = 924.3kgm ™3, n, = 10.721 88 mPas,
pg = 1.2kgm™3, n, = 0.018 mPas

is displayed.

To decide if a steady-state was reached, we looked at the change of the key variables velocity v and phase field ¢
over one time step [30]:

m _ ,m—1 m _ ,,m—1
PN e PN i i Y (35)
0 Tm @ 0 Tm

Exemplarily, in Figure [4] the steady state criteria for two rectangular structures with 2 = 0.75 and h = 0.5 are plotted
over time (left). Furthermore, we show the corresponding amplitude spectra measured at = 3 for 1 to 2s. It is
clearly evident, that the large rectangular microstructure with h = 0.75 led to very small changes from one time step
to another in the first 0.5s (gray lines). The steady-state was reached very quickly, no waves were formed and the
corresponding amplitude spectrum (bottom right panel in Figure [4]) is zero. In contrast, the waves for h = 0.5 and
Re = 70 completely prevented a steady-state (black lines in Figure [4)
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FIG. 4. Development of the steady state criteria and the corresponding amplitude spectra at x = 3 for 1 to 2s.

B. Results

We observed a completely steady film for low Re and an onset of waves for intermediate Re. For larger Re we
even saw a highly distorted film with irregular waves, see below or Figure [f] and Figure [f] In our case, the critical
Reynolds number for a flat surface is calculated to Re. = 5/4cot8° ~ 8.8. Note, that we did not apply any forced
perturbations to the film flow, i.e., all instabilities occur naturally. Therefore, we decided qualitatively that a film is
unstable if any waves were formed at all after at most 2s. Even in the flat surface case we would therefore expect the
formation of instabilities for longer time spans. A second criteria is that the amplitude spectrum is low without any
pronounced peaks. In this way, we do not take a single, stagnant bump due to retaining as a sign for an unstable film
(for example, we consider the films in the fourth column from Figure [5| as stable).

In Figure 5| the film surface obtained for two microstructures (rectangular and triangular) with height and width
h=w=0.75, h = w = 0.50 and h = w = 0.25§ are displayed for Reynolds numbers Re ranging from 10 to 70. For
comparison the film over a smooth surface is shown in the first column. The film surfaces (depicted as solid black
lines) were extracted from the simulation data as the isolines where ¢ = 0. The microstructures are illustrated as gray
insets in Figure[5] To gain more insight into the waves Figure [f]shows amplitude spectra for a choice of configurations.
The amplitudes were calculated using a discrete Fourier transformation (DFT). The data for the DFT was extracted
from the isolines, see Figure |5}, at « = 3 (right before the microstructures) for 1 to 2s.

The film over the smooth surface did not show any deformation for low numbers of Re. Waves started to form for
Re > 30, which got more and more pronounced with increasing Re. However, even for Re = 70, the waves stayed
regular with a narrow frequency range. The amplitude spectra showed a pronounced, sharp peak for all Re, which is
a strong sign for regular waves.

We observed, that all microstructures retained the film flow and greatly altered the film surface even for low
Reynolds numbers. However, this retaining before the microstructures led to a single, large hump or ridge already
observed for example by [9, [T6, 5I]. Compared to the film on the smooth plate, all three rectangular structures
inhibited the formation of waves. This is apparent from the first row in Figure [ where all the amplitudes are almost
zero except for a sharp peak obtained for the smooth surface. The onset of the formation of waves was shifted to
higher Reynolds numbers. Furthermore, we observed, that the larger the structure compared to the film thickness,
the stronger the inhibition (for example compare column 1 and 3 from Figure [5)). This was already observed by [6] for
higher Reynolds numbers. Finally, if waves were formed for a critical Re, the waves were much more irregular than
in the smooth case (compare for example line 5 and 6 in column 3 from Figure [5)). The dynamics of the waves can
be observed in Figure |ﬂ Here, the interfaces are displayed for the small and medium rectangular structure (h = 0.25
and h = 0.5) at six instances in time between 1.5s and 2.0s.

For h = 0.25, all films displayed very similar behavior for all Re, see the columns 2 and 5 in Figure 5} The specific
effect of a small triangular compared to a small rectangular microstructure is negligible. For Re < 30 only a slight
retaining of the film could be observed and no waves, besides from the retaining of the film, occurred. For Re > 40
this picture suddenly changed and very irregular waves emerged for both structures. Interestingly, the structure of
the waves did not really change with even higher Re, see the second and third column in Figure [6]
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FIG. 5. Shape of the liquid film interface at ¢t = 2's for different values of Re. The domain is compressed and cut off at a height
of 2.0. All dimensions are normalized with the respective film thickness 4.

C. Discussion

The findings from Figure [5] and Figure [6] are summarized in the instability diagrams in Figure[8 Here, we plot the
height of the microstructures against the Reynolds numbers. The stable films are depicted by the circular markers,
whereas the unstable films are marked as filled black dots. For h = 0 we show the results obtained from the smooth
plate in both diagrams.

We clearly observe in Figure [5] that, compared to the film on the smooth plate, all structures shift the formation
of waves to higher Re. This is in accordance to existing studies over rectangular periodic structures, e.g., [8, 52} 53].
Despite being small compared to the film height, the structures with h = 0.25 have a quite extreme effect on the
liquid film. They stabilize the film for smaller Re but greatly destabilize the film for larger Re. Furthermore, the
inhibiting effect of larger structures compared to smaller structures is visible too. In general, our data indicates, that
the stabilizing effect, and the inhibition of waves, of the rectangular structures compared to the triangular structures
is similar in accordance with [I0]. However, we observe a slightly larger inhibition of the rectangular structures. Up
to specific values of h and Re rectangular microstructures can prolong the formation of waves to higher Re compared
to the smooth plate (see rectangular, h = 0.5, Re < 50) or even completely suppress any waves and instabilities (see
rectangular, b = 0.75, all Re). An explanation for this stabilizing effect is the greater dissipation in films overflowing
sharp corners. In case of the triangular and rectangular structure the liquid film has to overflow one two sharp corners,
respectively. The dissipated energy is missing from the film to form waves. Furthermore, every structure must be
bypassed by the liquid film and recirculation zones are formed before and after the structures. All these factors might
be contributing to the stabilization of the liquid film by microstructures with sharp corners.
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FIG. 6. Amplitude spectra for some liquid films calculated using a discrete Fourier transformation. Stable films with zero
amplitude spectra are omitted. The data for the DFT was extracted from the isolines, see Figure 5| at = 3 (right before the
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FIG. 7. Shape of the liquid film interface over rectangular microstructures at different instances of time for Re = 70. The

domain is compressed and cut off at a height of 2.0. All dimensions are normalized with the respective film thickness §.
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FIG. 8. Instability diagrams for the rectangular (left) and the triangular structure, each for 3 different sizes and 7 Reynolds
numbers. The results obtained for the smooth plate are added at h = 0.

VI. CONCLUSIONS

In the presented research, we reported on the stability of thin liquid films overflowing single microstructures with
sharp corners. The heights of the microstructures were comparable to the film thickness. The dynamics of the two-
phase flow were described by the coupling between the Cahn—Hilliard and the Navier—Stokes equations. The selected
solution strategy guaranteed efficient and accurate simulations. We validated our implementation against well-known
experimental results.

We conducted simulations for Reynolds numbers Re between 10 and 70. The rectangular and triangular microstruc-
tures were of heights and widths of 0.25, 0.5, and 0.75 compared to the particular Nusselt film thickness. In addition,
simulations over a smooth surface were performed for comparison. Our results show some very interesting stabilizing
and destabilized effects. Compared to the smooth plate, all structures shift the onset of waves to higher Reynolds
numbers. The specific effect of a small triangular compared to a small rectangular microstructure (h = 0.25) is
negligible. Despite being small compared to the film height, the smaller microstructures greatly destabilized the film
for higher Re. Furthermore, the larger the structure compared to the film thickness, the stronger the effect of the
inhibition of the formation of waves. Finally, if waves are formed for a critical Re, the waves seem to be much more
irregular than in the smooth case. In general, the inhibition of waves is stronger in the rectangular case compared to
the triangular structure. In these cases the microstructures act as stabilizer for the liquid film.

Our research indicates a strong influence of the size as well as the geometrical shape of the microstructures on the
stability of the liquid film. As known from single-phase flows, one stabilizing effect might be the dissipation of energy
in the film while flowing over these sharp corners. Furthermore, the width of the structure might have an impact too.
In future research, we will investigate these questions in more detail.

Appendix A: Validation against Wierschem et al. [47]

We validated our model and implementation by comparing our results with the experiments reported by [47].
Following the recent work by Dietze [48] as well as the review by [2] the used test case is well established. In
the experiments a film of silicone oil overflowed a deep sinusoidal corrugation. The surface was inclined at 8° to
the horizontal. Similar to [48] the Reynolds numbers Re = 16.1 and Re = 47.95 were simulated. Table [I] lists
the parameters used in the simulations. Our simulation results are shown in Figure [0] They correspond to the
experimental results in Wierschem et al. [47] Figure 3(b,d). The solid and dashed lines represent the gas-liquid
interface and the stream line which separates the recirculation zone from the overflowing film. Our results are very
similar to both the experimental results by Wierschem et al. [47] and numerical results by Dietze [48] (see Figure
14 therein). The surface shape of the films including the positions of the minimum are accurately predicted. In the
corrugation through separation eddies are formed in similar sizes as in the experiment and the simulation.

Case Re Ca A Cn Pec dinit
A 16.1 0.063 0.99 0.04 147 0.00244
B 47.95 0.130 0.99 0.04 304 0.00297

TABLE II. Parameters used in the validation case. dini: represents the initial film height taken from [4§].
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FIG. 9. Liquid film flowing over a deep sinusoidal corrugation. Corresponds to the experimental results in Wierschem et al. [47]
Figure 3(b,d). The solid and dashed line represent the gas-liquid interface and the stream lines which separates the recirculation
zone from the overflowing film.

Appendix B: Verification of Domain Length and Time Duration

We verified our assumption of a periodic domain of length 8L by comparing our results to selected simulations with
a periodic domain of length 16L. Exemplary, we display the results for the triangular microstructure with h = 0.5
and Re = 70 in Figure |10] at different points in time. In the vicinity of the microstructure, we observe only a small
difference between the shapes of the liquid films for the different domain lengths. We conclude, that in our case 8L
is sufficient and our assumption of a single microstructure is well represented.

In addition, we verified our assumption, that a total time of 2s already approximates time periodic results. Ex-
emplary, we display the height of the film in Figure at two different position along the plate over time. Again,
we used the triangular microstructure with A = 0.5 and Re = 70. It is clearly visible, that well before 2s the film
oscillations become almost periodic.

tri, h = 0.5, Re = 70

FIG. 10. Comparison of the shape of the liquid film interface over a triangular microstructure for a domain length of 8L (solid
line) and 16L (dashed line). The domain is cut off at a height of y = 3. All dimensions are normalized with the respective film
thickness 6.
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FIG. 11. Height the liquid film over time for a triangular microstructure at « = 3 and « = 6. The domain is compressed and
cut out at the height between 0.5 and 1.75. All dimensions are normalized with the respective film thickness §.
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