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Abstract 
 
The trend of the last years in the industry of integrated circuits has shifted more and more 
from the analog toward the digital world. Thanks to the CMOS technology an impressive 
miniaturization of the electronic active elements has been made possible, which allows for 
low cost and mass production of complex circuits on a single chip. The natural candidates for 
very large-scale integration (VLSI) technologies are digital circuits since these can be 
relatively easily scaled down with large improvements in the operating speed. On the other 
hand virtually all natural signals are of analog nature, requiring dedicated circuits converting 
these signals in the digital form, in order to process them with the digital circuitry. Such 
circuits are named analog-to-digital converters (ADC) and find wide diffusion in all devices 
dealing with natural signals like images, sound, temperature, radio signals, etc. In order to 
reduce the equipment cost the integration of the ADC on the same chip containing the digital 
circuits is highly desirable. Actually, modern highly miniaturized CMOS technologies are not 
very suitable for analog circuits, as they feature rather poor analog electrical properties. To 
cope with this, particular ADC topologies are required which are robust enough to be 
implemented in CMOS technology with a feature size in the order of 100 nanometers. One of 
the most promising architecture for CMOS processes is the continuous-time sigma-delta (Σ∆) 
modulator. This achieves very large accuracy and performance by optimally using the main 
advantage of the modern CMOS technology: high speed. In this work a study of low-power, 
high-speed continuous time Σ∆ modulators is presented. A possible application of this class of 
modulators is represented by high-speed portable communication devices of the next 
generation. The author focuses on design strategies at architectural and transistor level in 
order to keep to power consumption to a very low amount without sacrificing the modulator 
resolution.  
 
The modulator proposed in this work is based on a 0.13 µm CMOS process and achieves an 
effective resolution of 11 bits at a signal bandwidth of 12.5 MHz dissipating 11.4 mW of 
power. It is shown how to compensate for the unavoidable excess loop delay which degrades 
the performance achievable, applying this technique to a resonator-based continuous-time 
loop filter. A model is illustrated enabling the design of RC-integrators based on two-stage 
Miller compensated operational amplifiers. Furthermore a resistor-based feed-forward loop 
filter topology is implemented to reduce the power consumption of the filter. Another low-
power benefit is achieved by merging two DAC into a single DAC without altering the 
functionality of the modulator.  
 
The proposed modulator obtains a very good figure of merit according to post-layout 
simulation results when compared to the literature state-of-the-art.  

 



 

 

 

4 

 
 
 
Zusammenfassung 
 
Der Trend der letzten Jahre in der Industrie der integrierten Schaltungen hat sich immer mehr 
von der analogen zur digitalen Welt verschoben. Dank der CMOS Technologie ist eine 
beeindruckende Miniaturisierung der aktiven elektronischen Bauelemente möglich gewesen, 
welche eine Reduzierung der Herstellungskosten sowie die Massenproduktion von komplexen 
Schaltungen auf einem einzigen Chip ermöglicht. Die natürlichen Kandidaten für 
Technologien mit sehr hohem Integrationsgrad (VLSI) sind Digital-Schaltungen, da diese 
relativ einfach verkleinert werden können mit erheblicher Erhöhung der 
Betriebsgeschwindigkeit. Andererseits sind geradezu alle natürlichen Signale analog und 
benötigen dedizierte Schaltungen für deren Umwandlung in die digitale Form, um diese 
Signale mit Digital-Schaltungen weiter verarbeiten zu können. Diese Schaltungen werden 
Analog-Digital-Umwandler genannt (ADC) und finden in praktisch allen Geräten 
Anwendung, welche sich mit natürlichen Signalen wie Bildern, Ton, Temperatur, 
Radiofrequenz-Signalen, etc. befassen. Um die Kosten der Geräte zu minimieren, ist die 
Integration der ADC auf demselben Chip, welcher die Digital-Schaltungen enthält, höchst 
wünschenswert. Moderne hochminiaturisierte CMOS-Technologien sind aber nicht sehr 
geeignet für Analogschaltungen, da sie bescheidene analoge elektrische Eigenschaften 
aufweisen. Um dies zu meistern, werden besondere ADC-Topologien benötigt, welche 
genügend robust sind, um in einer CMOS-Technologie mit einer Strukturgröße von ca. 100 
Nanometern implementiert zu werden. Eine vielversprechende Architektur für CMOS-
Prozesse ist der zeitkontinuierliche Sigma-Delta-Modulator (Σ∆). Diese Architektur erzielt 
große Genauigkeit und Performance, indem der Hauptvorteil moderner CMOS-Technologien 
ausgenutzt wird: die hohe Geschwindigkeit. In dieser Arbeit wird eine Studie über 
leistungsarme zeitkontinuierliche Σ∆-Modulatoren mit hoher Geschwindigkeit präsentiert. 
Diese Klasse von Modulatoren findet eine mögliche Anwendung in tragbaren 
breitbandfähigen Mobilfunkgeräten der nächsten Generation. Der Autor konzentriert sich auf 
die Design-Strategien auf Architektur- und Transistorebene mit dem Ziel, die Verlustleistung 
des Modulators ohne Beeinträchtigung dessen Auflösung zu reduzieren.  
 
Der in dieser Arbeit präsentierte Modulator basiert auf einem 0.13 µm CMOS-Prozess und 
erzielt eine effektive Auflösung von 11 Bits bei einer Signal-Bandbreite von 12.5 MHz und 
einer Verlustleistung von 11.4 mW. Es wird gezeigt, wie das unvermeidbare Excess-Loop-
Delay, welches die erzielbare Performance verschlechtert, kompensiert werden kann. Diese 
Technik wird auf ein resonator-basiertes, zeitkontinuierliches Schleifenfilter angewendet. Ein 
Modell für das Design von RC-Integratoren, welche auf zweistufigen Miller-kompensierten 
Operationsverstärkern basieren, wird erläutert. Ferner wird eine widerstandsbasierte Feed-
Forward Filterarchitektur implementiert, um die Verlustleistung des Schleifenfilters zu 
reduzieren. Ein zusätzlicher Vorteil bezüglich der Verlustleistung ist erzielt worden, indem 
zwei verschiedene DAC-Stufen, welche Bestandteile des Modulators sind, in einem einzelnen 
DAC zusammengefasst werden ohne die Funktionalität des Modulators zu verändern.  
 
Der vorgeschlagene Modulator erzielt gemäß Post-Layout-Simulationen im Vergleich mit 
dem heutigen Stand der Technik einen sehr guten Gütefaktor.  
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Chapter 1 
 
Introduction 
 
 
 
 

1.1. Motivation 
  
The trend of the last decades clearly shows that the implementation of devices for signal 
processing in every possible field, such as telecommunications, video, audio, medical 
equipment is moving toward the digital world. This is because of the large number of 
advantages, which digital devices offer: high integration, simple size scaling, robustness 
toward noise and other sources of disturbance, programmability. Hence the famous motto “the 
world goes digital”. Nevertheless the world is analog in all its aspects, therefore devices are 
needed, which allow an interface between the analog world and the digital devices. This 
interface consists in the analog-to-digital converters and their counterpart, the digital-to-
analog converters. The domination of digital circuits in the semiconductor market has led to a 
technology optimization primarily toward this sort of circuits. Because of its good suitability 
for digital circuits the CMOS technology has nowadays the largest market share. This 
technology provides considerable advantages toward other technologies, such as MOS self-
alignment, which enables the fabrication of extremely small components and low static power 
dissipation, a precondition for the implementation of low-power devices. The most important 
aspect taken into consideration from the industry so far is the miniaturization of the 
transistors, maximizing the number of components on the same area hence minimizing the 
cost of the equipment. On the other size the continuous scaling of the dimensions of the 
transistors has led to a worsening of the analog electrical properties of these fundamental 
elements. Going into detail, we can observe that the progressive reduction of the transistor 
channel length has led to a reduction of the maximum available gain, the so called transistor 
self-gain gm/gds, i.e. the ratio of the transconductance to the output conductance. Furthermore, 
the continuous reduction of the oxide thickness has put stringent limits on the maximum 
available supply voltage. This reduces in turn the maximum available signal amplitude, hence 
limiting, considering the circuit thermal noise constant, the maximum achievable SNR. To 
counteract this trend, the thermal noise must be reduced, which is obtained increasing the 
power consumption.  
Another issue of modern sub-µm CMOS technologies is represented by the difficulty in 
reducing the threshold voltage VT at the same rate as the supply voltage [Ito08]. This is 
desirable to enable low-voltage analog circuits to generate large signal swing. A bound in the 
scaling of the threshold voltage is represented by the leakage currents of transistors which are 
supposed to be in the off-state, which rise exponentially when reducing VT, hence increasing 
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the power consumption. The trend of the most important analog parameters for different 
technology nodes is depicted in Fig. 1.1 [Pek04]. 
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Fig. 1.1. Trend of the most important analog parameters for different technology nodes [Pek04] 

 
 

1.2. Objective and outline of this work 
 
The objective of this research work is to show the feasibility of a low-voltage, low-power, 
high-speed Sigma-Delta analog-to-digital converter (ADC) for portable telecommunication 
devices. The proposed ADC could be employed in devices based on the mobile wireless 
standard WiMAX [Wim06] or for video or medical imaging. The priority is given to a low-
cost device, which should be achieved using a standard CMOS technology. This writing 
focuses on solutions at both architectural and transistor level to reduce the power consumption 
without sacrificing speed and performance.  
The work is articulated as in the following: chapter 2 introduces the basics of the A/D 
conversion and analyzes the Sigma-Delta family in particular; chapter 3 concentrates on 
system level considerations and on the high-level architecture of the proposed Σ∆ modulator; 
chapter 4 describes into detail the blocks of the proposed modulator up to the layout and 
shows the simulation results; finally chapter 5 summarizes the achieved results comparing 
them with the state of the art.  
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Chapter 2 
 
Basics of analog-to-digital conversion 
 
 
 
 

2.1. Analog-to-digital conversion 
 
The analog to digital conversion is the process of converting an analog signal into a time-
discrete, amplitude-discrete digital signal. The operation is performed in two steps: the 
sampling and the quantization. The device realizing these two operations is called analog-to-
digital converter (ADC). 
 
Consider a continuous-time signal x(t) as shown in Fig. 2.1a. This signal is sampled at 
constant time instants which are multiple of Ts. A time discrete signal is obtained x[k]=x(nTs). 
The process of ideal sampling can be mathematically seen as the product of the continuous-
time signal x(t) with a Dirac comb signal p(t) with period Ts. We obtain: 
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Transforming this signal in the frequency domain by means of the Fourier transform we find: 
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Equation (2.2) clearly shows that the spectrum Xd(ω) of the time-discrete signal is periodic. 
An important consequence of this is that, as stated by the Nyquist-Shannon sampling theorem, 
the minimum sampling frequency fs allowing a perfect reconstruction of a low-pass signal 
with a limited bandwidth fB is fs=2fB. This limitation avoids the unwanted effect of aliasing, 
namely the superposition of “replicas” of the signal in the frequency domain which would 
cause signal deterioration and information loss. In order to satisfy this condition the analog 
signal must be bandlimited by means of a so called anti-aliasing filter. 
 
Fig. 2.1a-b and Fig.2.2a-b show the process of sampling both in the time and in the frequency 
domain.  
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 Fig. 2.1. Sampling and quantization in the time domain 
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Fig. 2.2. Sampling in the frequency domain 

 
The quantization process consists in mapping the infinite possible amplitude values of the 
input signal into a finite set of discrete values (Fig. 2.2c). This is done by comparing the 
signal with a finite set of equidistant threshold values and associating the signal to the nearest 
threshold. This process is unavoidably associated with information loss, which is depending 
on the deterministic error introduced by the quantization. Assuming an N-bit quantization, 
hence 2N quantization levels and a signal with limited amplitude, such that the quantizer is not 
overloaded, the introduced quantization error εQ will be limited to: 
 

22

UU
Q

∆≤≤∆− ε  (2.3) 

 
where ∆U is the width of the quantization interval, that is the distance between two 
consecutives thresholds. This is equal to: 
 

12 −=∆
N
FSV

U  (2.4) 

 
VFS is the full-scale input signal and N again is the resolution of the quantizer in bits. Fig.2.3 
depicts the input-output static characteristic of a three-bit (eight level) quantizer and the signal 
depending quantization error. 
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Fig. 2.3. Ideal ADC characteristic (above) and quantization error (below) 

 
 

2.2. Performance metrics 
 
For the characterization of an analog-to-digital converter we can distinguish two categories of 
performance metrics: static and dynamic. 
 

2.2.1. Static metrics 
 
All static metrics can be determined by comparison of the input-output characteristic of the 
ADC under test (real ADC) with that of the ideal ADC. In the following the main static 
parameters are described. 
 
Linear errors 
 

− The offset error (Fig 2.4a), defined as the intercept of the line interpolating the input-
output characteristic with the horizontal axis. This error typically arises because of a 
shift of all reference voltages used as thresholds for the ADC, i.e. because the ground 
voltage is larger than zero. 

 
− The gain error (Fig 2.5b), given by the ratio between the slope of the line interpolating 

the input-output characteristic of the real ADC and the slope of the ideal ADC. This 
error typically arises because all reference voltages are larger (or smaller) than the 
nominal value of the same relative amount, that is, all quantization steps are larger (or 
smaller) but still identical. For instance, this is the case when the threshold voltages of 
the ADC are generated by dividing a reference voltage by means of a resistive voltage 
divider and the reference voltage is larger (or smaller) than the nominal value.  
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Non-linear errors 
 
These parameters are measured after removal of the two linear errors listed above and 
typically arise because of mismatch of the elements used in the A/D conversion, which are 
supposed to be identical (i.e. resistors or capacitors). 
 

− Differential non-linearity (DNL) (Fig 2.5c), defined for each quantization step as the 
difference between the step width of the real ADC and the ideal quantization step ∆U 
normalized to the ∆U 

 

( ) ( ) ( )
U

UnVnV
nDNL

∆
∆−−−= 1

 (2.5) 

 
DNL typically arises in presence of random mismatch of the elements used for the 
conversion and provides information about the local deviation of one step toward the 
ideal one.  

 
− Integral non-linearity (INL) (Fig 2.d) is defined as the sum of the DNL of the real 

ADC over the whole input-output characteristic.  
 

( ) ( )∑= k
kDNLnINL

1
 (2.6) 

 
INL is the accumulated mismatch of the elements used in the conversion and provides 
information about the maximum (global) deviation of the real ADC characteristic 
toward the real one. It is also interesting to note that, while the DNL has a high-
frequency spatial content, the INL has low-frequency spatial content because of the 
accumulation as in Eq. (2.6). 
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 Fig. 2.4. Static errors in the ADC characteristic: a) offset, b) gain, c) DNL, d) INL 
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2.2.2. Dynamic metrics 

 
Dynamic metrics refer to the dynamic behavior of the ADC and are determined by examining 
the output spectrum of the ADC. The most important dynamic metrics are listed in the 
following: 
 

− Signal-to-noise ratio (SNR) is the ratio of the signal power to the noise power in the 
signal band, expressed in dB 

 

N

S

P

P
SNR log10=  (2.7) 

 
− Signal-to-noise-and-distortion ratio (SNDR) is the ratio of the signal power to the 

noise power in the signal band and the power of all signal harmonics in the signal 
band, expressed in dB 
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S
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P
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+
= log10  (2.8) 

 
− Spurious free dynamic range (SFDR) is defined as the difference in dB between the 

signal amplitude and the amplitude of the largest spurious signal in the signal band 
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− Total harmonic distortion (THD) is defined has the ratio of the total power of the 

harmonics to the signal power, expressed in dB 
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Fig.2.5. ADC output spectrum. Signal, harmonics and noise floor are highlighted 
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2.3. Linearized model 
 
It is difficult to mathematically model the deterministic error introduced by the quantization 
process, since we have to cope with a nonlinear element: the quantizer. The problem can be 
simplified by making following assumptions: 
 

1) the number of quantization levels is large; 
2) the quantizer is not overloaded; 
3) the input signal changes “rapidly”, in such a way that successive output values are not 

correlated. 
 
While the first two conditions are not difficult to be satisfied, the third one is hardly realized. 
For example just consider a constant input signal: in this case also the output will be constant 
and the output values are fully correlated. Nevertheless these assumptions lead to an 
approximate but in the reality good working model which is a very powerful instrument for 
designing an ADC. It can be shown that, if all three assumptions hold, the introduced 
quantization error presents white noise properties. We can then simplify the problem by 
replacing the quantizer, a strongly nonlinear block, by a linear amplifier with gain kq and by 
adding white noise at its output (Fig. 2.6). The gain is given by the slope of the line 
interpolating the static input-output characteristic of the quantizer. 

qk

qε

IN OUT IN OUT

 
Fig. 2.6. Left: nonlinear quantizer. Right: linear model with added white noise 

 
By replacing the quantization error by quantization noise, a purely deterministic process is 
modeled as a stochastic process. To quantify the equivalent white noise we need to calculate 
its variance. If condition 3) is valid, that is, the input signal changes continuously and in a 
non-regular way, we can assume that the probability that the signal lays somewhere between 
two thresholds is uniformly distributed, i.e. the probability p(εQ) of the quantization error is 
uniformly distributed in the interval [-∆U/2; ∆U/2] (Fig. 2.7).  
 

2
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U∆

( )Qp ε

 
Fig. 2.7. Probability distribution of the quantization error 

 
If assumption 2) applies no overloading of the quantizer takes place, hence the error is 
certainly limited to the interval [-∆U/2; ∆U/2]. This means that: 
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From (2.11) and considering a uniform distribution it follows that: 
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The variance of the zero mean random variable εQ is given by: 
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that is, the variance of the quantization noise is proportional to the square of the quantization 
interval. This result agrees with the intuition: a larger ∆U means a larger quantization error, 
hence more “noise”.  
 
The power of the stochastic zero-mean variable εQ is its variance σ2. Because the quantized 
signal is also sampled (time-discrete), the whole quantization noise power will be aliased in 
the frequency range [-fs/2; fs /2] leading to a power spectral density (PSD): 
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Since the quantization noise is white, the spectral power density will be constant in the 
frequency range [-fs/2; fs /2] as depicted in Fig. 2.8. 
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Fig. 2.8. Power spectral density of the sampled quantization error 

 
The signal-to-quantization noise ratio (SQNR) is defined as the SNR of the modulator when 
the only noise present is quantization noise, that is, all other noise sources (i.e. thermal noise, 
other disturbances) are assumed to be zero. The maximum SQNR is achieved with a full scale 
input signal because the quantization noise power is, according to the linearized model, 
constant and not depending on the signal. Assuming a full-scale sine input signal 
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the signal power is  
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Hence the SQNR in dB is: 
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Eq. (2.17) shows that an SQNR improvement of 6dB is achieved by incrementing the 
resolution of the ADC of one bit.  
 
Once we know the SQNR of a certain ADC we can define its effective number of bits 
(ENOB) as the number of bits of an ideal ADC which would have the same SQNR as the 
ADC we are considering. By simply rewriting (2.17) we get: 
 

02.6

76.1−= SQNR
ENOB  (2.18) 

 
2.4. Oversampling 

 
 As previously seen, the minimal required sampling frequency in order to avoid aliasing is, 
according to the Nyquist-Shannon sampling theorem, twice the maximum signal frequency. In 
order to limit the signal bandwidth, a low-pass filter is required, called anti-aliasing filter. A 
low-pass filter has a transition frequency range between its pass-band and its stop-band, the 
width of this range depends on the order of the filter, that is, on the number of its poles. More 
precisely, the slope of the frequency response of the filter in the stop-band is equal to M·20 
dB/dec, where M is the filter order. In order to relax the requirements on the filter order it is 
useful to increase the sampling frequency fs beyond the minimum required value. As shown in 
Fig. 2.9, the greater fs, the simpler the anti-aliasing filter that can be used to limit the signal 
bandwidth. Aliasing will be negligible if the filter is designed to have large attenuation for 
larger frequencies than fs/2, while it is not of concern if the attenuation is moderate between fB 
and fs/2. 
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( )ωX
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Fig. 2.9. Amplitude response of anti-aliasing filters for fs/2=fB (left) and fs/2>fB (right) 
 
A sampling process at frequencies above the Nyquist frequency is called oversampling. Apart 
from the benefits described before, oversampling has another important advantage. To 
analyze this we will make use of the already described linear model for an ADC. Again, 
considering a clocked N-bit quantizer and modelling the quantization error as white noise, we 
get following PSD for the quantization noise: 
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As expected, the whole noise power will be aliased into the frequency range [-fs/2; fs/2] 
because of sampling. A substantial difference towards the Nyquist converter case can be 
observed: in order to calculate the SQNR of the converter we need to integrate the noise PSD 
in the signal band, that is, in the frequency interval [-fB; fB]. 
 
This leads to a noise power 
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where we defined the factor 
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This factor is called Oversampling Ratio (OSR). Note that in a Nyquist converter OSR=1 
since fs=2fB. Following SQNR is obtained. 
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Comparing equation (2.22) with the equation (2.17), valid for Nyquist converters, a 3-db 
SQNR improvement can be achieved by doubling the OSR, that is, the sampling frequency. 
Applying (2.18) this means an improvement of 0.5 bits of ENOB, hence we can achieve a 
better resolution by simply sampling faster. In other words we can trade off speed for 
accuracy. This result is particularly important when dealing with modern CMOS 
technologies: on the one side these offer, thanks to miniaturization, very high working 
frequencies, on the other size they allow only moderate precision of the analog parts. For this 
reason oversampled ADC are becoming very popular in the modern CMOS industry. 
 

2.5. Sigma-Delta ADC 
 
In order to further improve the resolution of the oversampled AD conversion architectural 
changes of the converter can be introduced. This is done by means of a Sigma-Delta 
modulator. The Sigma-Delta architecture joins the advantages of oversampling with those of 
feedback. In Fig. 2.10 we can see the general topology of such a modulator. This consists of 
three main blocks: a filter, called loop filter because of its position inside a loop; a clocked 
quantizer which is typically a comparator or an N-bit flash ADC; a Digital-to-Analog 
converter (DAC), usually a bank of switched capacitors or an array of identical current 
sources. 
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Fig. 2.10. Scheme of principle of a generic Σ∆ modulator 

 
The loop filter is constituted by one or many cascaded integrators, connected by a series of 
feed-forward and/or feedback paths. A strongly non-linear element is present, the quantizer, 
making it difficult to analyze the modulator with an exact analytical model. To understand the 
way this architecture works we can describe it by means of the linear model.  
 

2.5.1. Linear model 
 
At first we will consider the DAC as ideal, namely perfectly linear and delay-free. The filter is 
also assumed to be linear and time invariant (LTI) and can thus be modeled by means of its 
transfer function H(z). At this point we assume the filter is discrete-time (DT), typically 
realized with switched capacitor techniques, since this allows an easier mathematical 
modeling. Finally, the quantizer is replaced by a gain element followed by an adder in order 
to take the quantization noise into account. The gain kQ is the slope of the line interpolating 
the quantizer characteristic. Fig 2.11 shows the linear model of a generic Sigma-Delta 
modulator. 
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Fig. 2.11. Linear model of a generic Σ∆ modulator 

 
This linear time-invariant system has two inputs, X(z) and E(z) and one output. Assuming 
kQ=1, we can calculate two transfer functions: 
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STF is called Signal Transfer Function, NTF is the Noise Transfer Function. Equations (2.23) 
and (2.24) show that two different filter functions are obtained, depending on H(z), for the 
input signal and for the unwanted quantization noise. Using the superposition principle the 
output of the linear model is: 
 

( ) ( ) ( ) ( ) ( )zEzNTFzXzSTFzY ⋅+⋅=  (2.25) 
 
In order to see the frequency response of STF and NTF we replace the variable z as following: 
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and 
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where Ts is the sampling frequency of the system. For all frequencies where  
 

( ) 1>>sTjeH ω  (2.28) 

 
we get: 
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By inserting (2.29) in (2.25): 
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Therefore, if H(jω) is designed to have a high gain at frequencies in the signal band, the 
modulator output contains a replica of the non-attenuated input signal and largely attenuated 
quantization noise in that band.  
 
The transfer function (TF) of the loop filter can be expressed as: 
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where N(z) and D(z) are the numerator and the denominator of H(z) respectively. Both are 
polynomial functions of z. 
 
By substituting (2.31) in (2.24) we obtain: 
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This equation shows that the zeros of the NTF are the poles of the loop filter.  
 
The loop filter contains one or more integrators; the number of the integrators is called order 
of the modulator. In the following some basic topologies are shortly analyzed. 
 

2.5.2. 1st order modulator 
 
Assuming the loop filter is a forward Euler DT-integrator, that is: 
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following STF and NTF can be derived: 
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(2.34) 

 
The STF is a simple delay of one clock period, while the NTF is a differentiator. A sigma-
delta modulator using a single integrator as loop filter is called 1st order modulator. The NTF 
obtained has a zero for z=1 that is at DC (f=0) and a slope of +20dB/dec. The maximum of the 
NTF is achieved for z=−1, that is for f=fs/2 and is equal to 2 (6 dB). The frequency response of 
NTF is shown in green in Fig. 2.12. 
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Fig. 2.12. NTF of a 1st order (green) and 2nd order (red) modulator. 
 
The main advantage of the sigma-delta architecture is now evident: the quantization noise is 
frequency shaped, i.e. high-pass filtered. Therefore we expect a better resolution than that of a 
simple oversampled ADC. To calculate the SQNR of the 1st order sigma-delta modulator we 
need to calculate the output noise power PN together with the signal power PS. Assuming a 
purely delaying STF, the latter is simply equal to the signal power at the input, namely, as 
shown in section 2.3, eq. (2.16): 
 

( ) 2122
2
1

UP N
S ∆⋅= −  (2.35) 



 

 

 

23 

 
Considering an N-bit quantizer, following input noise power spectral density (PSD) is added 
by the quantizer: 
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the PSD at the output is: 
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By using Euler’s formula: 
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By integrating the PSD of the quantization noise at the modulator output in the signal band we 
obtain: 
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This result is obtained adopting the approximation: 
 

( ) ss fTfT ππ ≅sin  (2.41) 
 
which is valid for fTs<<1, that is, for frequencies which are much smaller than the sampling 
frequency. This is normally the case by oversampled ADCs. Looking at (2.40), the first term 
of the final product is the input quantization noise, the second term is a constant while the 
third one shows that the output noise power is inversely proportional to the 3rd power of the 
OSR. 
 
The SQNR of a 1st order modulator is: 
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Equation (2.42) shows that 9-dB SQNR improvement can be achieved by doubling the OSR, 
that is, an improvement of 1.5 bits of ENOB. 
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2.5.3. 2nd order modulator 

 
A 2nd order sigma-delta modulator makes use of two integrators in the loop. Since each 
integrator causes a phase shift of -90 degrees because of its pole at DC, this structure is 
unsuitable for a system with feedback because of stability issues. In this case the phase 
margin of the modulator would be zero. An additional negative zero is required in order to 
improve the phase margin. As known, a negative zero causes a phase shift of +90 degrees. 
The zero can be introduced by means of an additional feed-forward (FF) or feedback (FB) 
path.  Fig 2.13 shows for instance a 2nd order modulator with an additional feedback path. The 
1st integrator is a backward Euler non-delaying integrator and its TF is: 
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the 2nd integrator is a forward Euler delaying integrator with TF  
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The loop filter transfer function of the modulator in Fig. 2.13 is: 
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where V(z) is the quantizer input. Eq. (2.45) shows the presence of a zero zn=−1/2, which 
arises from the additional feedback path. 
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Fig. 2.13. 2nd order Σ∆ modulator with additional feedback 

 
By calculating the STF and the NTF we obtain now: 
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As in the 1st order case, the STF is simply a delay of one clock period Ts. The NTF is now a 
differentiator of 2nd order, i.e. it has two zeros at DC. Its frequency response is shown in red 
in Fig. 2.12. The slope of the curve is now +40dB/dec while the maximum of NTF is again 
for z=−1 (f=fs/2) and equals to 4 (12 dB). 
 
To calculate the SQNR we recognize that the signal power is the same as in the 1st order case, 
since we deal with a simply delaying STF. The output noise PSD is, by taking into account 
the new NTF (2.47): 
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By integrating the PSD of the quantization noise at the modulator output in the signal band we 
obtain: 
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Again, the result is approximated and valid only for f<<fs. In this case the output noise power 
is inversely proportional to the 5th power of the OSR.  
 
The SQNR of a 2nd order modulator is: 
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Equation (2.50) shows that 15-dB SQNR improvement can be achieved by doubling the OSR, 
that is, an improvement of 2.5 bits of ENOB. 
 

2.5.4. L-th order modulator 
 
A loop filter of L-th order is constituted by L cascaded integrators. By generalizing the 
calculation for a modulator of L-th order with a pure differentiating NTF in the form: 
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This NTF has L zeros at DC and a maximum of 2L for f=fs/2. By calculating the output 
quantization noise power in the signal band solving the integral: 
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we obtain, similarly to the previous cases: 
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This means a (2L+1)·3 dB SQNR increase for each doubling of the OSR, that is, an 
improvement of (2L+1)·0.5 bits of ENOB. Fig. 2.14 plots the theoretically achievable SQNR 
as a function of the OSR and the modulator order L. The number of bits of the quantizer is 
assumed to be 1. For each additional bit the plotted lines are simply shifted upwards by 6.02 
dB (eq. 2.53). 
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Fig. 2.14. Achievable SQNR with 1-bit comparator for purely differentiating NTF=(1- z-1)L 

 

As explained later, it is not possible to realize a pure differentiating NTF of arbitrary order L, 
since instability issues occur. The graph above simply plots the theoretical achievable 
resolution. 
 

2.5.5. Stability analysis 
 
Although the linear model proves very useful to estimate the achievable resolution of the 
modulator depending on the sampling frequency, the modulator order and the resolution of 
the quantizer, it gives not much information about the stability of the modulator.  
One criterion to estimate the stability is the analysis of the root locus, that is, the position of 
the filter poles on the z-plane. Even if the filter is designed to be stable, i.e. all poles are inside 
the unit circle, the modulator can get instable, depending on the amplitude of the signal at the 
quantizer input. Here we distinguish two cases: 
 

a) one-bit quantizer (i.e. a single comparator); it is not straightforward to define the gain 
of the quantizer in the linear model, as the straight lines interpolating the comparator 
characteristic are infinite (Fig. 2.15). Moreover the instantaneous gain depends on the 
amplitude of the input signal, since the output is limited to only two values ±V. 
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Fig. 2.15. Gain of a 1-bit (left) and multibit (right) quantizer 

 
As depicted in Fig. 2.15, when the input signal is bounded in the interval [-V,V] a gain 
larger than one is obtained, otherwise the gain is smaller than one (the comparator is 
overloaded). 

 
[Ris94] defines the gain of the comparator as: 
 

( )v
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σ
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This is the value which minimizes the power of the quantization error sequence 
[Sch05]. To demonstrate this, consider the linear model of the quantizer (Fig. 2.16). 
The output is: 
 

ε+= vky q  (2.55) 
 

where v is the comparator input, y its output and ε the quantization error. Assuming a 
zero-mean quantization error ε, the error power is equal to its variance, namely: 
 

( ) ( ) ( ) ( ) ( )vkyvkyvky qqq
22222 ,cov2 σσσεσ +−=−=  (2.56) 

 
Differentiating (2.56) with respect to kq the value of kq minimizing the error variance 
is found to be the same as proposed by [Ris94] in (2.54). Equation (2.54) shows that 
the gain kq can only be defined if the statistical properties of the quantizer input v are 
known. 

qk
v

ε

y

 
Fig. 2.16. Linear model of the quantizer 

 
b) multibit quantizer: in this case it is possible to define the gain as the slope of the 

straight line interpolating the input-output characteristic (Fig. 2.15). The larger the 
number of quantization levels, the better the approximation made. This model works 
correctly as long as the quantizer is not overloaded. If this happens, the output 
amplitude remains constant even when the input increases (clipping), leading to a 
reduction of the effective gain. 
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The linear model can be enhanced by taking into account a variable gain for the quantizer. We 
can define the point at which instability occurs, as the point where the closed loop poles, i.e. 
the poles of the NTF, move outside the unit circle. This can be made by plotting the closed 
loop poles for different gains of the amplifier which models the quantizer in the linear model. 
For example, Fig. 2.17 plots the root locus of a 3rd order NTF with three zeros and three poles 
against the quantizer gain kQ. By decreasing kQ the poles eventually move outside the unit 
circle, leading to instability of the modulator. This analysis is useful to get an insight, how far 
the system is from instability.  
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Fig. 2.17. Root locus of the NTF singularities as function of the quantizer gain 

 
Intuitively, a smaller kQ leads to instability and, as seen previously, this occurs if the quantizer 
input becomes too large, such that the quantizer is overloaded. Assuming a non overloaded 
multibit quantizer with unity gain as in Fig. 2.18, we can estimate the amplitude of the 
quantizer input, by calculating the TF between the input signal X(z) and the quantizer input 
V(z) and between the “quantization noise source” E(z) and V(z). Using the superposition 
principle we can express V(z) as the sum, of a signal and a noise contribution. 

 
( ) ( ) ( ) ( ) ( ) ( )zEzENTFzXSTFzVzVzV noisesignal −⋅+⋅=+=  (2.57) 
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Fig. 2.18. Linear model with unit quantizer gain 

 
Typically the STF is one in the signal band and smaller than one for higher frequencies. From 
Eq. 2.57 we can see that V(z) contains a replica of the input signal X(z) plus high-pass filtered 
quantization noise. Qualitatively, two factors contribute to saturate the quantizer: the 
amplitude of X(z) which is replicated by V(z) and the amount of high-filtered noise which is 
fed back to V(z). These considerations suggest the introduction of two parameters to get a 
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measure of the modulator stability: a) NTFMAX, the maximum of |NTF(z)|, gives information 
about the high-frequency gain of the NTF; b) the maximum stable amplitude (MSA) defines 
the maximum amplitude of the input signal, so that the modulator remains stable.   
 
An empirical criterion based on experience and observation states that a modulator is likely to 
be stable for NTFMAX <1.51 [Sch05], although this condition is neither necessary nor 
sufficient.  
From this point of view it becomes clear that higher order purely differentiating NTFs 
necessarily lead to instability, since their maximum gain increases exponentially with the 
order L (NTFMAX =2L). A countermeasure consists in deliberately reducing the maximum of 
the NTF by introducing poles in its TF [Sch05].  
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DN(z) is a polynomial in z in the form: 
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the poles of NTFD are usually chosen so that the NTF is a Chebyschev or Butterworth high-
pass maximally flat filter. The result of this operation is, as depicted in Fig. 2.19, a reduction 
of the high-frequency gain at the expense of an increased low-frequency gain, that is, an 
increase of the noise floor in the signal band. The price for a better stability is thus a worse 
noise suppression, hence a lower SQNR of the modulator. Since the numerator of NTFD is the 
same as that of the purely differentiating NTF we can calculate the increase α of the noise 
floor, assuming the NTF poles are at much higher frequencies than fB, as: 
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The assumption that the poles are at much higher frequencies than fB means a constant in-
band increase of NTF, which is evident in Fig. 2.19, where both curves are parallel in the 
lower frequency range.  
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Fig. 2.19. Example of reduction of NTFMAX  by introducing new poles for NTF 

                                                 
1 This condition is applied to modulators with binary (one-bit) comparators. Multibit modulators are more robust 
against instability and tolerate higher values of NTFMAX . 
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2.5.6. Zero spreading 

 
So far only a purely differentiating NTF was assumed, obtained with a loop filter constituted 
of one or more cascaded integrators. This kind of NTF does not ensure an optimal noise 
shaping. For a given modulator order L the optimal NTF can be found by minimizing the 
quantization noise power in the signal band, that is, by finding the minimum of the integral: 
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Once the poles are chosen based on stability considerations, the solution of the problem 
consists in finding: 
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where N(z) is the numerator of the NTF in form of a polynomial of z of order L. 
 
By solving (2.62) numerically, the frequency of the zeros which minimize the in-band noise 
and the SQNR improvement can be calculated [Nor97]. The results of the numerical 
calculations are shown in Tab. 2.1. The optimal NTF zeros are always located on the unit 
circle (|zn|=1), that is, the damping factor is zero. They are either at DC or complex-conjugate 
and cause the NTF frequency response to have a notch at the frequencies of the zeros. 
 

Order L of 
NTF 

Freq. of the zeros 
normalized to fB 

Location of the zeros on the z-
plane 

SQNR improvement (dB) 

1 0 1 0 
2 ±0.577 0.994±0.113j 3.5 
3 0, ±0.775 1, 0.988±0.152j 8 
4 ±0.34, ±0.861 0.998±0.067j, 0.986±0.168j 13 
5 0, ±0.538, ±0.906 1, 0.994±0.106j, 0,984±0.177j 18 

Tab. 2.1. Location of the NTF zeros for optimal suppression of the quantization noise (zero spreading) 
 
Complex-conjugate NTF zeros on the unit circle are obtained with a local feedback path 
across two consecutive integrators of the loop filter, forming a circuit called resonator (Fig. 
2.20) with transfer function: 
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where γ is the feedback coefficient.  
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Fig. 2.20. Resonator for generation of complex-conjugate NTF zeros (filter poles) on the unit circle. 
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Fig 2.21 shows exemplary a NTF of 5th order with (in red) and without zero spreading (in 
blue). The notches are introduced by two pairs of complex-conjugate zeros on the unit circle. 
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Fig. 2.21. Gain response of a 5th order NTF: pure differentiating  (blue) and with zero spreading (red) 

 
The zero spreading allows stronger noise suppression in the higher signal band at the expense 
of lower suppression at very low frequencies. The total in-band noise power is nevertheless 
smaller than in the purely differential NTF. 
 
 

2.6. Quasi-linear model 
 
All previous calculations of the performance of sigma-delta modulators were based on 
linearized models. Although these models are very simple and powerful, they are not exact 
and base on assumptions, which are not always true (such as the non-correlation of the input 
samples). Starting from these considerations, some authors have developed non-linear or 
quasi-linear models. These models are very complicated to apply and often become unsuitable 
for practical design implementations. For example [Ris94] models a 1-bit sigma-delta 
modulator with a technique which is known from the circuit simulation. The problem is split 
in two parts: a DC operating point and an AC model. Three approximations are made: 
 

− the input signal has zero frequency (DC). This assumption is valid if the sampling 
frequency is much higher than the signal frequency, that is, if OSR>>1 

− the mean output value of the modulator is supposed to be the same as the constant 
input signal. This assumption is correct if the loop gain of the modulator is very large 
at low frequencies, so that the output (which is fed back) can track the input. This 
constant output value can be seen as the operating point of the comparator, which 
determine its AC (small signal) parameters 

− the quantization error is modeled as noise, like in the well-known linear model. The 
comparator is replaced by a gain element which is applied only to the AC noise and 
not to the DC signal 

 
In summary the output binary flow is the sum of two components: 
 

− the mean value is a replica of the (constant) input signal of the modulator 
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− the variance, i.e. the AC power of the output, is the high-pass filtered noise according 
to the formula 
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Here NTFK denotes the NTF of the modulator as a function of the quantizer AC-gain kq: 
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where kq is the comparator gain defined as in (2.54). 
  
This quasi-linear modeling allows to get information about the stability of the modulator and 
to predict non-linear phenomena like limit cycles but will not be used in the present work.  
 

2.7. Single loop / Cascaded 
 
It was shown that the maximum of the NTF gives an indication about the stability behavior. In 
particular, larger values of NTFMAX denote a modulator which is more prone to instability. 
Apart from the technique already shown, consisting in the introduction of poles in the NTF to 
lower the maximum NTF gain at the expense of less noise suppression, another solution is 
possible. The idea is to process the quantization noise in more than one loop, making a more 
aggressive noise shaping possible without sacrificing the stability of the modulator. Fig. 2.22 
shows the main blocks of such architecture. Two ore more loops are cascaded: the first loop 
processes the input signal while the latter threat the quantization noise introduced by the first 
loop. The digital outputs of the single stages are processed by a digital block called Error 
Correction Logic (ECL). This logic block filters the digital inputs with appropriate transfer 
functions. 
 
In the following an example of a 2-2 cascaded modulator (Fig. 2.2) is explained: the 
modulator consists of two identical DT 2nd order sigma delta modulators. The digital outputs 
of the modulators are: 
 

22122

1111

ENTFESTFOUT

ENTFXSTFOUT

⋅+⋅=
⋅+⋅=

 (2.66) 

 
where STF1, STF2 are the signal transfer functions, NTF1, NTF2 the noise transfer functions 
and E1, E2 the quantization noise of the 1st and 2nd stage respectively. Digitally filtering both 
OUT1 and OUT2 and summing them, following output signal is provided by the ECL: 
 

dd NTFOUTSTFOUTOUT 1221 −=  (2.67) 
 
Substituting (2.66) in (2.67) the digital output is: 
 

21211212121 ENTFNTFENTFSTFESTFNTFXSTFSTFOUT dddd −−+=  (2.68) 
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Fig. 2.22. A 2-2 cascaded DT sigma-delta modulator 

 
By choosing: 
 

1
22

−== zSTFSTFd  (2.69) 
 
and 
 

( )21
11 1 −−== zNTFNTFd  (2.70) 

 
we obtain: 
 

( ) 2

412
21221 1 EzXzENTFNTFXSTFSTFOUT dd

−− −−=−=  (2.71) 

 
We see that the digital output is the sum of the input signal delayed by two clock periods plus 
the 4th order shaped quantization noise of the 2nd stage. The quantization noise of the 1st stage 
has been completely canceled. In general the noise contained at the output is the quantization 
noise of the last stage, the order of noise shaping is the sum of the orders of the single stages. 
The other noise terms from all other stages are cancelled by the ECL. The advantage of a 
cascaded architecture is that we can theoretically achieve a noise shaping of very large order 
by simply cascading many stages of lower order. Moreover, we can get very stable 
modulators by keeping the order of the single stages low (typically ≤2). 
 
On the other hand this architecture suffers from a major issue: mismatch between analog and 
digital part of the modulator. In fact, we need a perfect cancelling of the analog generated TF 
with the digitally generated ones. This is not possible in a real implementation of the circuit: 
while the digital filters behave ideally, the analog NTF and STF of the analog loop depend on 
circuit non-idealities like integrator gain, bandwidth, settling error, etc. and therefore deviate 
from the ideal form. In the 2-2 modulator, for example, a residuum α·E1 of the unwanted noise 
of the first stage leaks to the output worsening the modulator resolution (SQNR): 
 

212121 ENTFNTFEXSTFSTFOUT dd −+= α  (2.72) 
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For this reason seldom more than two stages are cascaded, since the leakage noise eventually 
dominates the other noise terms and further cascading would have no more benefits. 
 

2.8. Discrete time / continuous time loop filter 
 
Another important distinction in the family of sigma-delta modulators concerns the 
implementation of the loop filter. There are basically two categories of loop filers: discrete 
time (DT) and continuous time (CT) filters. 
 

2.8.1. Discrete time filter 
 
Discrete time filters are implemented by means of switched capacitor (SC) circuits. These 
circuits are constituted by operational amplifiers (opamp), capacitors and switches. 
Additionally, two clock phases are necessary to switch the capacitors. A typical SC integrator 
is depicted in Fig. 2.23.  
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Fig. 2.23. Discrete time, switched capacitor integrator 
 

We can distinguish two operation phases: a sampling phase, when φ1 is high and φ2 is low, 
where the input voltage is sampled on the capacitor CS; an integration phase when φ2 is high 
and φ1 is low, where the charge stored in CS is transferred into CI. The ideal opamp forces the 
voltage vA to stay at zero (virtual ground). The output voltage in the time domain is: 
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By z-transforming both terms of equation (2.73): 
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that is: 
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namely the TF of a forward Euler integrator. The gain coefficient of the integrator is the ratio 
CS/CI. The most important advantage of SC circuits is that sensitive circuit parameters can be 
made dependant on capacitor ratios. This peculiarity proves useful in integrated circuits were 
large process-related variations affect the absolute values of the components. In contrast to 
this, the relative variations of elements of the same type, which are physically contiguous on 
the chip are relatively small. Hence, even a large variation of the absolute value of the 
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capacitors CS and CI in (2.75) has a very small influence on the capacitor ratio. SC-based 
integrated circuits can achieve a precision of up to 0.1% despite fluctuations of the absolute 
values in the order of ±20%. 
 

2.8.1.1. Errors in the TF because of non-idealities 
 
Deviations from the ideal TF are caused by non-idealities of the analog circuit realizing the 
DT integrator: 
 

− mismatch of the capacitors CS and CI 
− finite DC-gain of the opamp 
− finite bandwidth of the opamp 
− slew rate of the opamp 

 
The effect of capacitor mismatch is straightforward and, according to (2.75), a gain error in 
the integrator TF is introduced. This error is limited, thanks to the good matching properties 
of capacitors which are contiguous on the layout and is typically on the order of 0.1%. 
 
Let us consider an opamp with finite DC-gain ADC. Now a non-zero voltage vA is present at 
the opamp inputs (Fig. 2.23): 
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Analyzing the DT-integrator in the time domain we can calculate the total charge Q in the 
capacitors according to the polarity shown in Fig. 2.24. When φ1 is high (Fig. 2.24a): 
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where n denotes the discrete time point considered. When φ2 is high (Fig. 2.24b), noting that 
capacitor CS is turned upside down because of the switching, the time-domain equation is: 
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Rearranging the terms: 
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Fig. 2.24. Switched capacitor integrator: sampling phase (a) and integration phase (b) 
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Equating (2.77) and (2.79), according to the principle of charge conservation: 
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Transforming this time-domain equation into the z-domain: 
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Hence, the TF of the integrator will be: 
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(2.82) 

 
The DC-gain of the integrator is: 
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AzH =

=1
 (2.83) 

 
which is, as expected, the same as the DC-gain of the operational amplifier used for the 
integrator. Furthermore, a pole shift can be observed by equating the denominator of (2.82) to 
zero:  
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where the last approximation holds for large values of ADC. While the pole of the ideal 
integrator is at DC (z=1), its location is shifted inside the unit circle by an amount ∆P in case 
of finite opamp gain.  
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Fig. 2.25. Bode diagram of a DT-integrator with finite DC gain. The pole is not at DC like in the ideal case 

(blue) 
 

This pole shift has directly an effect on the NTF of the modulator and hence on the 
quantization noise suppression. Remembering that the zeros of the NTF are the poles of the 
loop filter (sect. 2.5.1), we can deduce that a pole shift of the integrator causes a worsening of 
the noise suppression by shifting the zero of the NTF. 
 
Also other opamp non-idealities modify the TF of the integrator and, in turn, worsen the 
suppression of the quantization noise. The finite bandwidth of the opamp, for example, slows 
down the process of charge transfer in the integration phase, thus causing an error on the final 
voltage across the integration capacitance CI. The same happens in case of finite slew rate of 
the opamp with the important difference that the opamp does not work as a linear amplifier. 
These errors will not be examined in the present work, for an extensive explanation the reader 
can refer to [Fer06]. 
 
The non-idealities of the analog devices described so far directly affect the noise transfer 
function of the modulator introducing error terms and affecting the suppression of the 
quantization noise. In particular, cascaded modulators are very sensitive to the mismatch 
between the analog and digital TF and great attention must be paid when designing opamp for 
cascaded topologies.   
 

2.8.1.2. Switches 
 
A critical aspect of DT modulators in modern sub-µm technologies is the relatively poor 
quality of switches, which are realized with MOS transistors. The trend of the last years 
[Pek04] shows that the reduction of the threshold voltage for new technology nodes has been 
slower than that of the supply voltage. As a consequence, the overdrive voltage which can be 
applied to the switches is becoming smaller, making it difficult to bias conducting switches in 
strong inversion. This means a progressive increase in the on-resistance of the conducting 
switches, hence slower sampling and also non-linearities because of the dependence of the 
resistance on the input signal. In order to make the on-resistance less dependent on the signal, 
transmission gates can be used, realized with an nmos and a pmos transistor in parallel as 
shown in Fig. 2.26.  
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Fig. 2.26. Transmission gate schematic 

 
Ideally, when the gate is switched on, for every possible input voltage at least one transistor 
must be in the inversion region (Fig. 2.27a). This condition is satisfied if one transistor starts 
to conduct before the complementary transistor switches off, namely if: 
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 Fig. 2.27. Qualitative characteristics of the on-resistance for VDD-|Vtp|>Vtn (a) and VDD-|Vtp|<Vtn (b) 
 
This means that the supply voltage should be at least two times larger than one threshold 
voltage, which is not the case in Fig. 2.27b. In the latter case it is evident that an input voltage 
range exists, situated approximately in the middle of the characteristic, in which both switches 
are in the off-state (more correctly they work in the sub-threshold region) hence providing a 
high resistance path.  
 
Fig. 2.28 shows the simulated on-resistance of the nmos ron, that of the pmos rop and the total 
resistance Rtot of a typical transmission gate in the UMC 0.13µm CMOS process used in our 
work. The total resistance Rtot is larger in the middle of the range increasing the charging time 
for voltages in that range. Moreover, the dependency of Rtot on the input voltage Vin= Vout 
causes non linear errors since the time constant τ=Rtot(Vin)·C is signal dependant. 
Bootstrap techniques mitigate these issues by biasing the transistor gates at voltages higher 
than VDD and by keeping the gate-source voltage of the switching transistors constant. This 
can be accomplished by using switched capacitors [Abo99]. On the other hand the required 
additional circuit increases the power consumption and the area requirement of the circuit. 
This problem is not present in CT modulators, since they do not use sampling switches, 
except in front of the quantizer. However, in this case the sampling switches are located inside 
the loop, where all non-idealities are strongly shaped by the preceding integrators, thus 
relaxing the requirements on the linearity and conductance of the switches. 
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Fig. 2.28. Simulated on-resistance of a transmission gate in UMC 0.13µm CMOS. Transistor sizing: 

Wp=6µm, Wn=2µm, Lp=Ln=Lmin=120nm. Vgn=1.2 V, Vgp=0 V 
 
 

2.8.2. Continuous time filter 
 
It was shown that DT modulators suffer from poor quality of the switches in low-voltage 
CMOS sub-µm technologies. Another peculiar aspect is the settling behavior of SC filters 
used in DT modulators. Since these are clocked systems, they must handle a charge packet in 
a defined time window, typically in half the clock period. As clearly visible in a time-domain 
analysis, the voltages of the circuit nodes change abruptly when a switching operation takes 
place. These “staircase” signals require fast and power-hungry active circuits, which are able 
to manage fast and short signal changes. An alternative to SC filters is represented by 
continuous time modulators. A generic modulator with a CT filter is depicted in Fig. 2.29.  
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Fig. 2.29. Generic continuous-time sigma-delta modulator  

 
The input signal x(t) is processed by the CT loop filter H(s) and is sampled only just before 
the quantizer. Hence, smooth internal signals without abrupt amplitude variations are obtained 
with positive effects on the speed requirements of the analog blocks. On the other hand, all 
signals processed are allowed to contain only a small error all the time, that is, the whole 
waveform is important. An additional advantage is given by the location of the sampler after 
the loop filter: all errors introduced by the sampler, such as settling error and nonlinearities, 
are suppressed by the gain of the preceding filter. CT filters are constituted by opamps, 
resistors and capacitors.  
 
The basic block of a CT filter is the integrator, realizing a transfer function k/s. Many 
implementation ways are possible: 
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− gm/C integrator: a voltage controlled current produced by a transistor is fed into a 
capacitor (Fig. 2.30a). This type of integrator allows low-power operation as no 
opamp is required and provides good adjustability of the integrator gain by calibration 
of the transistor transconductance gm. Nevertheless the linearity is poor, as no 
feedback regulation is provided. 

− Active gm/C integrator: the current is generated by a transistor and fed to a capacitor, 
which is located in the feedback path of an opamp (Fig. 2.30b). The advantage is a 
better linearity, while the current is fed into the virtual ground of an opamp, i.e. to a 
node with constant potential. An additional advantage of the active topology is the 
suppression of the parasitic capacitance at the output of the V/I converter (transistor), 
since the voltage across it is constant. However some non-linearity persists, as the 
current is generated by an active element with non-linear V/I characteristic, i.e. a MOS 
transistor.  

− Active RC-integrator: this topology provides the best linearity, as the V/I conversion is 
done by a resistor located between the input and the virtual ground of an opamp (Fig. 
2.30c). Assuming the opamp as ideal, the transfer function of the active RC-integrator 
is: 
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Fig. 2.30. CT integrators, schematic diagram: a) gm/C, b) active gm/C, c) active RC, d) active RC with 

non-idealities 
 

where kI is the integrator gain. The most significant problem of CT integrators is here evident: 
the gain coefficient is the product of a capacitor value with a resistor value. The accuracy of 
this product is poor when the integrator is realized with integrated components, since it 
depends on the value of two different components (R and C) which underlie large process 
variations. In a typical CMOS process the RC time constants have a variation of ±30%. This 
large variability can be counteracted with specific calibration circuits: after chip fabrication 
the RC time constant of the integrator is measured and the value of the resistor or of the 
capacitor is corrected. A possible way of on-chip measurement and calibration is described in 
sec. 4.3.1.1. Despite this drawback this solution was chosen for the proposed work thanks to 
the very good linearity achievable. 
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2.8.2.1. Errors in the TF because of non-idealities 
 
This section analyzes the effect of the non-idealities of the opamp on an active RC-integrator. 
A more realistic model for the opamp is that of a one-pole system with finite DC gain ADC and 
includes the parasitic capacitance CP at the virtual ground node (Fig 2.30d). The opamp 
transfer function is modeled as: 
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By applying Kirchhoff’s current law at node A in Fig 2.30d we obtain: 
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where VA is the opamp input voltage, namely: 
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Inserting (2.91) in (2.90) and solving for VOUT/VIN: 
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By inserting the opamp transfer function A(s) with one pole (2.89) into (2.92) the integrator 
TF becomes: 
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Fig. 2.31. TF of an ideal integrator (blue), an integrator with finite DC-gain and GBW (green) and an 

integrator with finite DC-gain, GBW and parasitic capacitance CP. 
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Eq. 2.93 shows that the DC gain of the integrator is ADC and the presence of two poles. Fig. 
2.31 compares the ideal TF with those including the finite opamp gain and GBW with and 
without the parasitic capacitance CP. 

 
By assuming that the gain-bandwidth product of the opamp GBW=sp·ADC is much larger than 
1/RC the TF can be simplified: 
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A generic low-pass TF of 2nd order is: 
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Assuming 21 pp ss <<  and equating the denominator of (2.95) with that of (2.93) the poles of 

the RC-integrator can be estimated: 
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Hence, a smaller DC-gain shifts the dominant pole away from DC toward larger frequencies 
while a smaller GBW of the opamp as well as a larger CP shift the non-dominant pole toward 
lower frequencies. The location of sp1 and sp2 influences the TF of the filter and consequently 
the NTF of the modulator which is based on this filter. Furthermore, the non-dominant pole 
sp2 worsen the phase margin of the filter because of an additional phase shift of −90 degrees. 
Its position is fundamental to avoid instability of the whole modulator. 
 

2.8.3. DT-CT equivalence 
 
For historical reasons, most of the sigma-delta modulators found in the literature are discrete 
time. Only in recent years the advantages of CT solutions (in particular, the high speed 
achievable) toward DT are starting to overwhelm the disadvantages. To facilitate a 
comparison of the achievable performance of CT and DT modulators, some mathematical 
instruments are needed. The objective of these instruments is to transform a continuous-time 
modulator into a discrete-time equivalent and back, both having the same dynamic behavior. 
For simulation purposes it is also convenient to transform a CT modulator in the equivalent 
DT, saving much computing power as DT simulations are much faster. Moreover, the 
analytical modeling of a DT modulator is easier and simpler than that of a CT one, since the 
latter is a mixed system CT/DT. Last but not least, the modulator design is facilitated by 
reiterated CT-to-DT transformations and vice versa. For instance, it is usual to start the design 
with a given NTF, which is a discrete time TF, calculating the relative DT loop filter and then 
transforming it into a CT equivalent. The non-idealities of the CT are then added and their 
effect is simulated by transforming the modulator back to a DT equivalent.  
 
One instrument for a CT-to-DT transformation and back is the Impulse Invariant 
Transformation (IIT). This transformation is based on following definition: two modulators 
are equivalent if they provide the same output samples for the same input signals [Che02]. 
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This is the case if both quantizer inputs are identical at all sampling instants, that is: 
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s

=
=

 (2.97) 

 
where vct denotes the quantizer input of the CT modulator and vdt the discrete time one. Fig. 
2.32. shows the scheme of a generic CT and that of a DT modulator. 
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 Fig. 2.32. Continuous-time sigma-delta modulator, b) discrete-time sigma-delta modulator 
 
We can redraw both modulators as depicted in Fig. 2.33 [Tao99], namely by moving the filter 
and the sampler of the CT modulator or just the filter of the DT modulator to a different 
location. The so obtained systems are totally equivalent to the original systems in Fig. 2.32, 
that is, for the same input they provide exactly the same output of the original modulators. 
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 Fig. 2.33. Different representation of the same modulators as in Fig. 2.32 
 
The advantage of this representation is that both blocks A and B, as illustrated in Fig. 2.33, 
have discrete-time inputs and outputs making it possible to find a condition that makes both 
parts equivalent.  
By setting the input signal to zero, opening the loops and eliminating the quantizers we obtain 
the schematics in Fig. 2.34. The outputs of these sub-circuits are the quantizer inputs of the 
respective modulators. The discrete time DAC can be eliminated, since this ideally does not 
modify the signal; it must simply provide an analog representation of its input at constant time 
intervals nTs. The continuous-time DAC on the contrary can not be eliminated: its output 
waveform must be exactly known because it directly affects the internal signals of the CT 
modulators.  
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Fig. 2.34. Subcircuits of the CT and DT modulators, to be equalized by means of the IIT 
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The two sub-circuits in Fig. 2.34 are equivalent if (2.97) applies. This is the case if the 
sampled impulse responses of both circuits (CT and DT) are identical: 
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where hDAC(t), hf,ct(t) and hdt[n] are the impulse responses of the CT DAC, the CT filter and 
the DT filter respectively and ⊗ is the convolution operator. 
If (2.98) holds both blocks A and B in Fig. 2.33 have the same input-output behavior, i.e. the 
same transfer function, although they are internally different. Applying the linear model: 
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where Y(z), G(z), Ydt(z) and Gdt(z) are the z-transformed of y[n], g[n], ydt[n] and gdt[n] 
respectively (Fig. 2.33).  
This means that both modulators have the same NTF if (2.98) applies. In fact, they have 
identical outputs when the input is zero, that is, when only quantization noise circulates 
through the loops.  
Nevertheless they have different STF. Looking at Fig. 2.33 it becomes clear that the input 
signal is processed differently: the CT modulator first filters x(t) with H(s), than samples it 
and finally filters it again with the TF of block A (Fig. 2.33a); the DT modulator at first 
samples the signal, then filters it with H(z) and finally processes it with block B (Fig. 2.33b). 
The fundamental difference consists in the position of the sampler in the modified schemas: 
the CT samples the signal after low-pass filtering it, that is, an intrinsic anti-aliasing filtering 
is provided, without additional costs. This is one of the main advantages of CT modulators 
over DT ones, enabling low-power applications, since often no additional power-hungry anti-
aliasing filters are required.  

 
Again, applying the linear model to the modified modulator of Fig. 2.33b, the STF of the DT 
modulator is: 
 

( ) ( ) ( )zNTFzHzSTFdt =  (2.100) 
 
The STF of the CT modulator can not be expressed in the z or s-domain since the system 
realizing this function is mixed CT/DT. Therefore, according to [Sho95] only the frequency 
response will be given. This is:  
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that is, the product of the TF of the CT loop filter H(s), a Ts/2 delay term, a sinc-function and 
the DT NTF. The delay term and the sinc filtering are originated by the sampling operation 
after the CT filtering. This can be better understood by looking at the differently drawn CT 
modulator in Fig. 2.33a.  
It is also possible to convert a CT modulator to a DT equivalent and back with other 
mathematical instruments, such as the modified z-Transformation ([Jur64], [Gao97]) or using 
the state-space time-domain representation. These techniques will not be covered in the 
present work.  
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2.8.4. Circuit noise 

 
The SNR achievable by a modulator is significantly affected by the noise of the electronic 
components of the circuit, typically thermal white noise of resistors and MOS transistors and 
Flicker (1/f) noise of MOS transistors. The most sensitive nodes are situated at the input of the 
modulator: while disturbances such as noise or non-linearities inside the modulator loop are 
suppressed by the gain of the preceding blocks (noise shaping) and can thus mostly be 
neglected, this is not the case of disturbances at the modulator input. In the following the most 
important noise sources at the input of a CT and DT modulator are briefly analyzed. 
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Fig. 2.35. Main circuit noise sources of a Sigma-Delta modulator: a) CT, b) DT. The phase φ1=1 is shown 

 
 

2.8.4.1. Circuit noise in CT modulators 
 
Basically three circuit noise sources are present at the input of a CT modulator: the input 
resistor noise, the DAC thermal noise and the opamp input referred noise (Fig. 2.35a). 
 
The PSD of the resistor thermal noise, expressed in V2/Hz, is: 
 

( ) kTRfS Rv 4, =  (2.102) 

 

where k is the Boltzmann constant, T the absolute temperature and R the resistor value.  
 
A multibit CT-DAC is a bank of n identical unit current sources connected in parallel, which 
can be switched on and off. The current sources are made by MOS transistors biased in 
saturation with a reference gate voltage. The noise of each source is essentially thermal noise 
generated in the transistor channel and Flicker noise caused by random trapping of electrons 
at the oxide-silicon interface [Raz99]. The noise spectral density of one unit current source 
expressed in A2/Hz is: 
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where Cox is the specific oxide capacitance, W, L and gmDAC the width, length and 
transconductance of the transistor, f the frequency, kf a technology depending constant and γ is 
about 2/3 for long channel transistors or larger for short channel transistors. The latter term of 
(2.103), accounting for Flicker noise, can be reduced by choosing a large area for the DAC 
current sources. Assuming all noise sources are uncorrelated, the total DAC noise is the sum 
of all single noise contributions: 
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where n is the number of current sources in the DAC, that is, the number of quantization 
levels used in the modulator. To calculate the DAC noise the switches were eliminated, that 
is, the DAC is assumed to be always connected. Actually, not all DAC elements are switched 
on during a clock period since the switches are controlled by the bit sequence coming from 
the quantizer; hence this evaluation is a rather pessimistic estimation. 
 
The opamp input-referred noise is calculated assuming a CMOS differential topology. Fig. 
2.36 depicts a typical input stage of a low-voltage opamp. The noise of possible further stages 
can be neglected if the gain of the input stage is large. Moreover, the equivalent input noise 
current is neglected, since this is significant only at high frequencies.  
Using the small-signal equivalent circuit the total input-referred noise PSD, expressed in 
V2/Hz, is obtained: 
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where the subscripts in and load refer to the input and load transistors respectively. The first 
term accounts for the white thermal noise, the latter for Flicker noise. 
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Fig. 2.36. Input stage of a typical low-voltage CMOS opamp 
 

The total circuit noise PSD referred to the input of the modulator is then (Fig. 2.35a): 
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In order to calculate the SNR due to circuit noise, (2.106) must be integrated in the signal 
band:  
 

( )∫
=

Bf

inv

s
noisecircuit

dffS

P
SNR

0

log10

,

 
(2.107) 



 

 

 

47 

 
where Ps is the signal power. 
 

2.8.4.2. Circuit noise in DT modulators 
 
The input sampling capacitor of a multi-bit DT modulator is a bank of n identical unit 
capacitors Cu connected in parallel. These capacitors sample the input signal and the DAC 
voltage by means of noisy switches (Fig. 2.35b), realized by means of MOS transistors biased 
in the triode region. The main noise source is the thermal noise generated in the channel of the 
switching transistors, which is sampled by the capacitor, causing a charge error. Modeling the 
closed switches with the on-resistance Ron of the transistor, the noise power is, for each unit 
capacitor, that of a RC member [Nor97]: 
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This power is aliased in the frequency band [0, fs/2], where fs is the sampling frequency of the 
switches, leading to the one-sided PSD: 
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Considering two sampling per clock cycle (two phases φ1 and φ2) two random uncorrelated 
charge errors are given, hence the noise power density is doubled: 
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The total noise power introduced by all n switches is then: 
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The other noise source is the input-referred opamp noise of (2.105) as depicted in Fig. 2.35b. 
The total opamp noise power is: 
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 (2.112) 

 

where Bn is the noise bandwidth of the opamp [Nor97]. This power is aliased in the signal 
band [0, fs/2] because of sampling, leading to the one-sided PSD: 
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In conclusion, the total in-band noise power is: 
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A more detailed description of the circuit noise of a DT integrator can be found in [Fer04]. 
 

2.8.5.  Jitter error 
 
Jitter error is caused by an uncertainty ∆t in the sampling time, that is the time at which the 
clock edge occurs. This uncertainty is caused by noise in the circuitry for clock generation, 
i.e. phase noise of the PLL and thermal noise. The most jitter-sensitive points of a sigma-delta 
modulator are the output of the DAC and, only in DT modulators, the input sample-and-hold 
circuit. This is because all other internal nodes where sampling occurs are located inside the 
loop where all errors are suppressed by the high gain of the preceding blocks in the loop 
[Tao99]. In the following the effect of the clock jitter in both CT and DT DAC will be 
described. The DAC converts the digital output of the quantizer into an electrical analog 
signal (a current in CT modulators or a charge in a capacitor in DT modulators, Fig. 2.37) and 
feeds it back to the the 1st integrator of the loop filter. 
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Fig. 2.37. Conceptual scheme of a DAC in a sigma-delta modulator. Left: continuous-time, right: discrete 

time 
 
The qualitative current waveforms of both DAC types are depicted in Fig. 2.38. 
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Fig. 2.38. Qualitative waveforms of DAC currents. a) NRZ continuous-time, b) RZ continuous-time, c) SC 

discrete time 
 
 

2.8.5.1. NRZ DAC jitter 
 
Fig. 2.38a shows a jittered, rectangular, non-return-to-zero (NRZ) DAC current, typical for 
continuous-time modulators. Since the DAC output will be integrated by the 1st integrator of 
the loop filter, the uncertainty in the sampling time introduces a charge error Qj: 
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where Ts is the nominal sampling time, ∆IDAC the difference between the actual DAC current 
and the current at the previous clock cycle (Fig. 2.38a) and ∆t the time error because of clock 
jitter. In multibit modulators the current variation ∆IDAC is an integer multiple k of the unit 
current ILSB: 
 

LSBDAC kII ±=∆  (2.116) 
 
The unit current ILSB is equal to the full-scale DAC current IFS divided by 2N:  
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where N is the DAC resolution in bits.  Inserting (2.117) in (2.116) we obtain: 

N
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In case of an NRZ DAC with rectangular pulse form the integral (2.115) can be simplified, 
since ∆IDAC is constant within a clock period. We obtain: 
 

t
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 (2.119) 

 
∆t is a stochastic variable, usually with Gaussian PSD, zero mean and standard deviation 
σ(∆t). According to (2.119) the charge error introduced by the same time uncertainty ∆t is 
halved for each additional bit. It follows that multibit modulators are less sensitive to jitter 
noise.  
 
Furthermore it should be noted that the amplitude of the DAC current variation, ∆IDAC, 
depends on the output signal of the modulator, which drives the DAC. For example, if the 
modulator output is constant no charge error is introduced, even if clock jitter is present, since 
the DAC output does not change, that is k=0 in (2.119). On the other hand if the DAC is 
driven by a sigma-delta modulated digital signal transitions of up to two or three times the 
unit current ILSB are possible, as confirmed by simulations. This is due to the large high-
frequency content of sigma-delta modulated signals because of the high-pass filtered 
quantization noise and is reflected in fast transitions in the time domain. Since the amplitude 
of the DAC current variation at each clock cycle is not known a priory, we can model this by 
means of its standard deviation σ(∆IDAC). Therefore, we can calculate the standard deviation 
of the jitter noise current, namely the charge error over one clock period as follows: 
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Assuming the jitter noise is white, the whole noise power will be aliased in the frequency 
range [-fs/2, fs/2], fs denoting the clock frequency of the modulator. Hence the PSD of the jitter 
noise current is: 
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The total in-band jitter noise power is: 
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and the SNR for a modulator affected only by jitter noise is: 
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(2.123) 

where PS is the signal power and Pj is the jitter power. Since the SNR is dimensionless, the 
signal power must also be expressed as squared current. The input signal power is obtained 
assuming a sine signal with amplitude VIN applied to the input resistor R of the modulator.  
 
Alternatively, the standard deviation of the jitter current can be expressed as [Ris94]: 
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where an empirical signal activity factor AF was introduced, which accounts for the average 
number of signal transitions per clock cycle, based on simulations. Hence we can also express 
the jitter caused SNR as: 
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(2.125) 

 
2.8.5.2. RZ DAC jitter 

 
Another common DAC pulse in CT modulators is the return-to-zero (RZ) pulse (Fig. 2.38b). 
The DAC current is nonzero only in a time interval, which is shorter than a clock period. 
Usually the time at which the signal is active is 50% of Ts. In order to provide the same 
charge as a NRZ-DAC in half the time, the current value must be doubled.  
RZ DAC are very sensitive to jitter noise. Assuming a non-zero signal, the RZ-DAC output 
has always two edges per clock period, while the NRZ DAC has zero (constant signal) or one 
edge per clock (if the signal changes) 
Additionally, while the NRZ current typically changes of one or two steps, the RZ current 
must be zeroed at each clock period, hence, the current variation is large increasing the charge 
error (2.115). Also consider that the current doubling to compensate for the reduced activity 
time further doubles the charge error induced by jitter.  
Because of their considerable jitter sensitivity, RZ-DAC are seldom employed as main DAC 
in sigma-delta modulators. Nevertheless they prove useful as auxiliary DAC for stability 
improvement, as shown later in this work. 
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2.8.5.3. SC DAC jitter 
 
Switched-capacitor DAC are typically employed in DT modulators. Capacitors are charged by 
means of switches to a reference voltage, hence the current waveforms changes exponentially 
in time with time constant τ=RonC, where Ron is the on-resistance of the switches and C the 
charged capacitor (Fig. 2.38c).  
The current waveform has its maximum value at the beginning of the pulse and a very small 
value at its end (Fig. 2.38c). The edge uncertainty at the beginning of the pulse is not 
problematic, since this simply represents a (small) time shift of the pulse. The charge error 
occurs at the end of the pulse where the current is very low, therefore the error is negligible if 
τ <<Ts.  By a timing error ∆t the charge error is: 
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Because of their robustness against jitter error some attempts have been made to employ SC 
DAC in CT modulators [Ort02]. Nevertheless SC DAC suffer from a major problem: the 
current value at the beginning of the pulse is very large and very fast opamps are required to 
integrate it. The consequence is a large power dissipation of the 1st integrator of the 
modulator.  
 

2.8.6. Excess Loop Delay 
 
Excess loop delay (ELD) is defined as the delay which elapses between the time when the 
quantizer output changes and the actual change in the DAC output. This delay occurs in CT 
modulators because of the nonzero response time of the DAC plus the delay caused by 
parasitic resistances and capacitances of the metal interconnections. Fig. 2.39a shows an ideal 
rectangular DAC waveform and its delayed version.  
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Fig. 2.39. Ideal DAC waveforms (black) and delayed DAC waveforms (red). Left: CT, right: DT 
 
 
ELD is detrimental for CT modulators, as it reduces the stability margin of the loop and 
eventually leads to instability. DT modulators are affected by ELD only in a limited amount. 
In fact, a DT DAC consists in a reference voltage applied to one or more capacitors by means 
of switches, which are controlled by the quantizer output. Fig. 2.39b shows the current of a 
DT DAC charging a capacitor characterized by an exponential waveform. At the instants n·Ts 
the DAC is disconnected from the capacitors. ELD simply shifts the starting point of the 
capacitor charging process by an amount td causing a small error because of incomplete 
settling. Since the current is relatively small at the end of the pulse (the capacitor is almost 
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completely charged), the error is usually negligible, similarly to the jitter error in DT 
modulators.  
In order to quantify the effects of ELD on CT modulators the impulse-invariant 
transformation (IIT) proves very useful [Che02]. In order to obtain a certain NTF a DT 
prototype loop filter is designed. After defining the impulse response of the CT DAC to be 
used, the DT filter is transformed into an equivalent CT with the IIF. An additional delay td 
placed before the DAC shifts the impulse response of the CT system composed of the DAC in 
series with the loop filter (Fig. 2.40). Here hdac(t) and h(t) denote the impulse response of the 
DAC and of the loop filter respectively.  

( )thDAC

( )ky ( )ku
( )th

Sf

Dt

 
Fig. 2.40. Subcircuit with ELD of the CT modulator which must be equivalent to the DT prototype 

 
As a result the sampled impulse response is now different from that of the prototype 
modulator. Transforming the sampled delayed impulse response back into the z-domain a new 
H(z) is obtained, which is different from the original one. In particular, according to [Che02]:  
 

− A delay which shifts the DAC pulse without exceeding the clock period Ts, typical for 
RZ DAC with pulse length of 50% of the clock period, causes a variation of the 
coefficients of the equivalent H(z) and hence of NTF(z). Therefore, the noise 
performance is degraded, since the new equivalent NTF is not optimal. This 
degradation can be compensated by adjusting the filter coefficients in order to restore 
the original H(z). 

− A shift of the DAC pulse beyond Ts causes not only noise degradation but also 
possible instability of the loop. When this case occurs, the order of the DT equivalent 
modulator is increased by one. This is always the case when using NRZ DAC, as the 
pulse length is equal to a full clock period. Intuitively, a rectangular DAC pulse h(t)  
exceeding Ts can be seen as the sum of two rectangular pulses h1(t) and h2(t) (Fig. 
2.41): one pulse inside the time window between 0 and Ts, the second one inside the 
next time window from Ts to 2Ts. Since the second pulse starts at Ts it can be regarded 
as a rectangular pulse delayed by one clock period. This delayed pulse generates a z-1 
term in the DT equivalent modulator, obtained with the IIT, and is responsible for the 
order increase of the equivalent modulator. In order to compensate for ELD in such a 
case an additional feedback branch must be provided to the CT filter to gain one more 
degree of freedom [Che99]. 

 
2.8.7. Summary of pros and cons of CT and DT modulators 

 
In the following pros and cons of CT and DT are summarized: 
 

− Mismatch sensitivity: DT modulators are very robust against process-related 
variations because they rely on precise capacitor ratios. CT modulators underlie large 
variations of the filter coefficients and need additional calibration circuitry 

− Speed: DT filters work with fast changing, abrupt signals, putting stringent 
requirements on the speed of the operational amplifiers. CT modulators process 
smooth, relatively slow changing signals, enabling the use of slower, low-power 
opamps. 
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Fig. 2.41. Decomposition of a delayed NRZ DAC pulse in two components 
 
− Anti-aliasing: DT modulators require an anti-aliasing (A/A) filter directly at the input 

increasing the total power consumption. In CT modulators the sample-and-hold block 
is located after the loop filter. Since this has already a low-pass behavior, no A/A filter 
is usually required, enabling low-power solutions.  

− Sample-and-hold (S/H). This circuit is located directly at the input of DT modulators, 
that is, on the most sensitive location of the modulator. This means that the S/H must 
feature very good linearity properties and limited errors. On the contrary, CT 
modulators perform the sampling just before the quantizer, that is, after the loop filter, 
largely relaxing the requirement on the S/H circuit. 

− Circuit noise: the overall circuit noise of a DT modulator is contributed in large part 
by the thermal noise of the input switches, which is sampled on the input capacitors. 
This puts a limit on the minimum size of these capacitors. This limitation is not 
present in CT modulators, as sampling occurs solely before the quantizer, where any 
noise contribution is largely suppressed. Furthermore, the white noise terms are 
aliased because of sampling in DT modulators, while in a CT modulator this takes 
place only after filtering. Hence, CT modulators are expected to exhibit less noise.   

− Jitter noise: CT modulators are more sensitive to jitter noise than DT modulators 
because of rectangular instead of exponential DAC waveforms. Nevertheless, this 
error source can be strongly attenuated by increasing the number of quantization 
levels. 

− Excess Loop Delay: DT modulators are, in a similar manner as for jitter error, very 
robust against ELD because of the exponential waveforms of the DAC. CT modulators 
are instead sensitive to ELD. Compensation is required to avoid performance drop 
and/or instability issues.  

 
 
2.9. Single-Bit / Multibit  

 
The resolution achievable with a sigma-delta modulator was calculated in (2.53). We can 
simply enhance the resolution by one bit, that is, we can improve the SNR of 6 dB, by adding 
one bit to the quantizer. When increasing the number of quantizer bits also the DAC 
resolution must be increased of the same factor. These architectural enhancement have pros 
and cons, which will be examined in the following: 
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− Power consumption: each additional bit of the quantizer, typically a flash-ADC, 
means a doubling of the circuitry for the A/D conversion, basically comparators and 
latches for synchronization. The total power consumption of the quantizer therefore 
approximately doubles for each additional bit. 

− Chip area: for the same reason also the quantizer area doubles for each additional bit. 
− Jitter sensitivity: as seen previously, the jitter error is proportional to the amplitude of 

the DAC output variation. Each additional bit halves the amplitude of a step of this 
electrical signal, hence halving the charge error introduced by the jitter. 

− Slew rate: Each additional bit halves the amplitude of a step of the output DAC, 
therefore reducing the required slew-rate of the opamp of the 1st integrator.  

− DAC linearity : a one-bit DAC is intrinsically linear because of its two-level input-
output characteristic, that is, it can only be affected by gain error or offset. On the 
other hand multi-bit DAC suffer from non-linearities because of mismatch of the DAC 
elements (usually capacitors in the DT case, current sources or resistors in the CT 
case). 

− Modulator stability : multibit modulators are more robust toward instability. Each 
additional bit halves the quantization interval ∆U, that is, the quantization noise power 
circulating in the loop is also halved. Thanks to this, a more aggressive noise shaping 
with higher values of NTFMAX  can be tolerated when using more bits. 

 
The most important pros and cons are summarized in the following table. 
 
 Single-bit modulator Multibit modulator 
Power consumption low high 
Chip area low high 
Jitter sensitivity high low 
Slew rate required high low 
DAC linearity required low high 
Stability low high 

Tab. 2.2. Pro and cons of single-bit and multibit modulators 
 

The choice of the most appropriate architecture for the proposed work is discussed in the 
following chapter. 
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Chapter 3 
 
Low-power high-speed CT Σ∆ modulator: system 
level design 
 
 
 
 
This chapter illustrates the system specifications of the modulator and the high level approach 
in order to define the circuit properties fulfilling the specifications. Target of this work is the 
realization of a high-speed, low-power Sigma-Delta (Σ∆) modulator. The modulator is 
intended to be used in high-speed portable broadband communication devices, such as mobile 
telephony of the next generation, enabling data rates up to some tenth of Megabit per second. 
In order to reduce fabrication costs, a mainstream standard CMOS process is used. 
 

3.1. Specifications  
 
The table below summarizes the specifications of the modulator: 
 

Resolution (ENOB) 11 bit 
Signal Bandwidth 12.5 MHz  
Power dissipation < 15 mW 

Technology CMOS 
Tab 3.1. Modulator specifications 

 
Hence, the modulator should provide a resolution of 11-bit at high sampling rate when 
converting an input signal with a bandwidth of 12.5 MHz. The total power dissipation should 
not exceed 15 mW, which is a fairly stringent specification for the required bandwidth and 
resolution. The very low power requirement should enable the employment of the modulator 
in portable devices. The bandwidth and speed requirements are compatible with the 
specifications of the wireless broadband WiMAX standard [Wim06], which uses a scalable 
channel width from 1.25 MHz to 20 MHz [Kim09]. 
 

3.2. Architecture choice and loop filter synthesis 
 
The first decision to be taken concerns the modulator family: CT or DT? As the total power 
consumption must be kept as low as 15 mW CT modulators appear to be the natural choice. 
As explained in chapter 2 this family of modulators is very promising in the low-power field, 
enabling the use of slower operational amplifiers in the loop filter. Therefore, a CT modulator 
was chosen. 
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The second step concerns the choice of a single-loop or multi-loop (cascaded) architecture. 
The only publication to date known to the author implementing an on-chip CT cascaded 
modulator is [Bre04]. Cascading requires good matching between the analog transfer function 
of the loop filters and that of the digital error correction logic in order to avoid quantization 
noise leakage from the first stage. This technique is thus more convenient in DT modulators, 
where the integrator coefficients depend on capacitor ratios and allow therefore good 
accuracy. On the contrary, CT filter coefficients rely on RC time constants which are subject 
to large variations due to process variations. According to this, we decided to employ a single-
loop architecture. 
Starting from a generic CT single-loop modulator and taking into account the speed and 
resolution specifications, we have some degrees of freedom regarding the modulator 
architecture. In particular three parameters still need to be defined: the modulator order, the 
oversampling ratio (OSR) and the number of bits of the quantizer. In fact, more solutions exist 
satisfying the specifications.  
 
Obviously these parameters can not be increased arbitrarily. The maximum OSR is limited by 
the transit frequency of the transistors of the available technology and by the power 
consumption of the circuit blocks. Increasing n, the quantizer bits, improves the stability and 
also reduces the necessary slew-rate of the opamps (the width of a single DAC step halves for 
each additional bit); nevertheless, each additional bit doubles the quantizer area and its power 
consumption. Furthermore a larger n impacts the complexity of the DAC and that of the 
circuit appointed for the DAC linearization. For this reason most of the CT modulators 
published so far do not exceed 5 bit in the quantizer. A one-bit solution was excluded because 
of the poor resolution achievable.  Finally, increasing the order L of the modulator reduces the 
stability of the loop and increases linearly the power consumption of the loop filter. In 
practice, more than 5 integrators are seldom used, as the reduced stability must be 
compensated at expense of a less aggressive noise shaping (s. Sect. 2.5.5), so that the 
resolution improvement because of the order increase vanishes.  
 
With these considerations in mind following parameter set was chosen:  
 

− Modulator order L=3 
− Oversampling ratio OSR=16 
− Number of bits of the quantizer n=4.  

 
The OSR selected implies, assuming a signal band fB=12.5 MHz, a clock frequency of the 
modulator of: 
 

MHz4002 =⋅⋅= Bs fOSRf  (3.1) 
 

This clock frequency is adequate for the 0.13 µm CMOS technology at our disposal.  
 
The optimal NTF is calculated with the aid of the Schreier’s algorithm [Sch05, chapter 8].  
This algorithm places the zeros of the NTF according to Tab. 2.1 in chapter 2, in order to 
minimize the quantization noise power in the signal band. Moreover, the location of the poles 
of the NTF is determined iteratively in order to limit the maximum of the NTF (NTFmax) to a 
value selected by the user. Since a multibit quantizer with n=4 was chosen, a more aggressive 
noise shaping with larger NTFmax is allowed. For the proposed modulator 
NTFmax=3.1623=10dB was selected. The transfer function of the prototype NTF calculated by 
the algorithm is: 
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where ω0 is the resonating frequency (notch) of NTF(z) normalized to fs. The notch frequency 
fn is thus located at: 
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The Bode diagram and the location of the poles and zeros on the complex z-plane are plotted 
in Fig. 3.1. The TF has one zero at DC and two complex-conjugate zeros on the unit circle, 
realizing a notch in the frequency response, one real pole and two complex conjugate poles. 
The expected resolution is, according the formula of the linear model with the selected 
parameters: 
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where the term ZS accounts for the SQNR improvement with zero spreading (Tab. 2.1, 
chapter 2). 
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Fig. 3.1. Bode diagram and pole-zero diagram of the NTF of the DT prototype modulator 

 
3.3. High level simulations of the prototype DT modulator 

 
The subsequent design steps include: 
 

− generation of a prototype DT modulator with the calculated NTF 
− high-level simulations of the DT modulator 
− generation of the equivalent CT loop filter by means of the IIT 

 
The discrete-time loop filter realizing the proposed NTF is, rewriting (eq. 2.24): 
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Substituting (3.2) in (3.5) we obtain: 
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As expected, the poles of the filter are the zeros of the NTF in (3.2) The Bode diagram of the 
TF of the DT prototype filter is plotted in Fig. 3.2 
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Fig. 3.2. Bode diagram of the DT prototype filter 

 
So far a prototype NTF and the relative DT loop filter H(z) were calculated by means of 
considerations which are based on the linear model. In order to get more realistic simulation 
results a high-level numerical simulation of the modulator is required. This was done by 
means of the simulation tool Simulink® included in the software Matlab®. The simulation 
bench for the DT 3rd order modulator is depicted in Fig. 3.3 and includes: an input sine signal, 
a zero order hold, the DT loop filter modeled with its TF and a 4-bit quantizer. A Matlab® 
function calculates the FFT and the SNR of the digital output flow.  
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Fig. 3.3. High-level simulation bench of DT prototype modulator 

 
The maximum stable amplitude (MSA) of the input signal is at about -1 dBFS (one dB below 
the full-scale input) and the maximum achievable SQNR amounts to 91 dB, namely 14.8 bit. 
This result is in good accordance with the value foreseen by the linear model (3.4), which was 
calculated for a full scale input signal. For an input signal of -1 dBFS 95 dB are expected from 
the linear analysis. Although the SNR specification amounts to 11 bit, a large margin is 
needed, since circuit noise and other circuit non-idealities significantly lower the achievable 
SNR. Fig. 3.4 plots the SQNR of the DT prototype modulator versus the input signal 
amplitude in dBFS. 
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Fig. 3.4. SQNR of the DT prototype modulator against input signal amplitude 

 
 

3.4. Calculation of the transfer function of the CT filter with the IIT 
 
The next step consists in transforming the DT prototype into a CT equivalent loop filter. The 
mathematical instrument used for the equivalence is the Impulse Invariance Transformation 
(IIT). The DT filter TF is expanded in partial fractions and then each term is transformed in 
the CT equivalent on the basis of conversion tables found in the literature ([Che02],[Sho94]).  
A generic DT transfer function H(z) has i zeros and j poles with i≤j because of causality and 
physical realizability. The numerator and denominator polynomials can be factorized: 
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where zni and zpj are respectively the zeros and the poles of the DT loop filter and can be real 
or complex. 
 
The partial expansion consists in rewriting (3.7) in the form: 
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Rj are called residues and are real or complex numbers, the direct term k(z) is nonzero only if 
i=j. 
 
The partial fractions in (3.8) are converted through the impulse invariant transformation (IIT) 
into CT equivalent terms, considering the CT DAC pulse form. For the proposed CT 
modulator a NRZ-DAC is chosen, due to its low jitter sensitivity and lower slew rate 
requirements on the 1st integrator.  
 
For NRZ pulse forms the equivalence for the partial fractions is [Che02]: 
 

s

R
f

z

R i
s

i ⇔
−1

 (3.9) 



 

 

 

60 

 
if zpi =1 (that is, the pole is at DC), otherwise 
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where fs is the clock frequency of the modulator, in our case fs=400 MHz. The IIT maps the 
complex-conjugate DT poles located on the unit circle into purely imaginary poles located on 
on the jω-axis according to the relation: 
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where ωdt and ωct are the DT and CT frequency respectively. 
 
The CT equivalent loop filter is the sum of all partial fractions in the s-domain. The prototype 
function H(z) has one pole in DC and a pair of complex-conjugate poles. Expanding (3.6) in 
partial fractions we obtain: 
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Where (*) denotes the complex conjugate operation. The residues and the poles of (3.12) are 
indicated in Tab. 3.2. 
 

R1 19.7182 
R2 −8.8382 − j 4.4329 
R2

* −8.8382 + j 4.4329 
zp 0.9885 +  j 0.1512 
zp

* 0.9885 −  j 0.1512 
Tab 3.2 Residues and poles of the partial fraction expansion of the prototype filter 

 
When using a NRZ-DAC the TF of the CT equivalent filter is: 
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Replacing the coefficients in Tab. 3.2 and adding up the partial fractions we get: 
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Fig. 3.5 plots the Bode diagram and the step response of the DT prototype and CT equivalent 
filter. The step response instead of the impulse response is shown for convenience, as it is 
difficult to simulate an ideal pulse generator. The plots show that the sampled step response of 
the DT filter and that of the system composed by the series of a NRZ-DAC and the equivalent 
CT filter are identical.  
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Fig. 3.5. Left: Bode diagram of the DT filter and of the CT equivalent filter. Right: step response of the 

DT filter and of the NRZ-DAC+CT filter system. 
 
The filter stability margins are plotted in Fig. 3.6 together with the location of the singularities 
(poles and zeros) on the s-plane. The poles of the prototype DT filter are located on the unit 
circle and mapped by the IIT. The CT filter has, according to (3.9) and (3.11) one pole at DC 
and two purely imaginary poles. Furthermore, two complex-conjugate zeros guarantee the 
stability improving the phase margin (PM) of the loop filter.  
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Fig. 3.6. Equivalent CT loop filter. Left: stability margins, right: singularities on the s-plane 
 

The main filter parameters are described in Tab 3.3. 
 

Phase margin (PM) 56.2° 
Gain margin (GM) 11.6 dB 

Unity gain frequency 91.7 MHz 
Pole frequencies 0, 9.66 MHz (double) 
Zero frequencies 36.2 MHz (double) 
Tab 3.3. Main parameters of the CT loop filters 

 
3.5. CT loop filter architecture 
 

3.5.1. CIFF and CIFB topologies 
 
The next step of the modulator synthesis consists in the implementation of the CT filter with 
an appropriate architecture. At this point the filter is described at high level as a system 
composed of L integrators, where L is the filter order (L=3 in our case) connected together by 
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means of feed-forward (FF) and feedback (FB) paths. Basically two main filter topologies 
exist: 
 

− Chain of integrators with feed-forward paths (CIFF). Fig. 3.7 shows a modulator 
with a CIFF loop filter. The filter is characterized by only one feedback path and L-1 
FF paths, which converge in an adder block located after the last integrator. The filter 
transfer function is: 
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where L is the filter order, Ai are the integrator coefficients and ki the FF coefficients. 
Eq. (3.15) shows that this filter has L poles at DC and L-1 zeros. The zeros are needed 
to ensure the stability of the loop, increasing the phase margin. To estimate the 
frequency response of the STF of the modulator we can remove the sampler and the 
quantizer, replace them with a short and calculate the closed loop TF of the filter: 
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this filter has the disadvantage that the closed loop frequency response has a peaking 
at high frequencies because of the zeros in the signal path (cp. [Phi04]). In some cases 
pre-filtering of the input signal could be required. Nevertheless CIFF filters are the 
best solution when implementing low-power modulators. At first, only one feedback 
path is provided, that is, only one DAC is theoretically required to convert the 
quantizer output to an analog signal. Secondly, if the loop gain is large, only the 
quantization noise flows through the integrators because of the subtraction X(s)-Y(s) at 
the very input of the filter. In fact, the output Y(s) contains both the quantization noise 
and the input signal; the latter component is cancelled out by the subtractor at the 
modulator input. As the quantization noise power is typically much smaller than the 
signal power, larger integrator coefficients can be selected without saturation of the 
integrator outputs. This allows the use of smaller, power saving integrator capacitors. 
Because of its low-power advantages this solution with some major modifications was 
preferred for this work.  

 
− Chain of integrators with feedback paths (CIFB). Fig. 3.8 shows a modulator with 

a CIFB loop filter. The filter exhibits L feedback paths and no FF paths. Two filter 
transfer functions can be defined, one for the signal and one for the output of the 
modulator which is fed back: 
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Again, the frequency response of the STF can be estimated by replacing sampler and 
quantizer with a short. The closed loop TF of the filter is, considering the input X(s): 
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The frequency response of HCIFB,CL(s) is monotonic and has no frequency peaking 
since no zeros exist in the signal path. The main disadvantage is that a scaled replica 
of the input signal appears at each integrator output. To understand this let us assume 
that all integrators have large gain in the signal band, that is, at low frequencies. Each 
adder of the filter has two inputs, the first one is the output of the preceding integrator, 
the second one is a scaled version of the quantizer output. The large loop gain will 
force both inputs to be nearly the same at low frequencies, that is each integrator 
output provides a signal vi(t)≅kiy(t) ≅kix(t), where vi(t), y(t), x(t) and ki are the output of 
the i-th integrator, the quantizer output, the input signal and the coefficient feedback 
respectively. Since all loop integrator must provide large amplitude signals, larger 
integration capacitors are needed to prevent saturation of the integrator outputs, 
increasing the power consumption. Moreover, each feedback path requires an 
additional DAC. For this reason we discarded the CIFB as not suitable for low-power 
solutions. 
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Fig. 3.8. Generic CIFB modulator 

 
Both topologies in Fig. 3.7 and 3.8 can be modified by adding a direct feed-forward path from 
the modulator input X(s) to the quantizer input V(s). This is particularly useful in the case of a 
CIFB modulator, as the additional FF-path avoids that the input signal is processed by all the 
integrators but the last one, hence relaxing their operation. On the other hand an all-pass, unit 
STF without filtering is obtained2, which is detrimental if high-frequency interferers are 
present at the input of the modulator. 

                                                 
2 This can be easily verified with the help of the linear model. With the additional FF-path STF=1 is obtained. 
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3.5.2. Adder removal  
 

As explained in the previous section CIFF loop filters are superior in terms of low power 
consumption. One issue of this technology is the presence of an adder after the last integrator. 
This adder can be implemented with a summing amplifier, that is, an opamp with input 
resistors and a feedback resistor which converts the signals from the FF paths in currents, sum 
them up, and converts them again to a voltage [Red08]. This choice is unavoidably associated 
with additional power consumption (because of the opamp) and delay, thus worsening the 
stability behavior of the loop. In the literature also solutions exist with current mode 
quantizers ([Dör04], [Pat04], [Phi04], [Yan04]). The disadvantage of this solution is the high 
linearity required in the transconductance amplifiers converting the integrator output voltages 
into currents. A third possibility consists in reusing the virtual ground node of the last 
integrator to implement the addition, saving the additional summing amplifier [Sch04]. Since 
the feedback impedance of the last opamp is a capacitor, the integrator output voltages must 
be converted into currents by means of FF capacitors in order to get a frequency independent 
coefficient (Fig. 3.9). Considering an ideal opamp, the output voltage of the last integrator is 
then: 
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where Cfi are the capacitors in the FF paths, Voi is the output of the i-th integrator and AL is the 
coefficient of the last integrator. Hence, all terms in the sum of Eq. (3.20) except the last one 
implement the frequency-independent FF-coefficients while the last term, obtained with the 
resistor RL, realizes the integration coefficient of the last integrator. This architecture provides 
also a good linearity, as the voltage-to-current conversion is done through passive, linear 
capacitances. Thanks to its advantages in terms of linearity and low-power consumption, an 
adder-free solution was chosen for the proposed modulator. The final implementation will 
make use of resistors instead of capacitors for the signal FF paths, as explained later in this 
work.  
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Fig. 3.9. Sum of the FF-paths through feed-forward capacitors 

 
3.5.3. Resonator for zero spreading and architectural modification 

 
In order to improve the modulator resolution we need to introduce complex-conjugate zeros in 
the NTF, which are located on the unit circle (zero spreading). As previously shown, this 
results in purely imaginary poles in the CT equivalent loop filter. These poles are generated 
by means of resonators. Limiting the analysis to a 3rd order modulator the local feedback path 
required for the resonator can be placed either across the last two integrators (Fig. 3.10a) or 
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across the first two (Fig. 3.10b). At this point it should be noted that the schematic diagrams 
in Fig. 3.10 are high-level representations of the filter blocks in the voltage domain. 
Therefore, the adder located after the last integrator is merely symbolic, as the addition is 
actually performed in the current domain at its virtual ground node. Hence, in the real circuit 
the integrator output voltage can only be tapped at the node V(s), i.e. after the adder in Fig. 
3.10.  
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Fig. 3.10. Filter type a) and b) 

 
The transfer functions of filter of type a) and b) are, respectively: 
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Fig. 3.11. Filter type c) [Dig10] 
 
Filter of type a) has a damping factor in the denominator because of the non-zero coefficient 
of the s-term. The reason for this is that the proportional path k2 starts and ends inside the 
feedback loop. This topology will be discarded, since it realizes poles which are not purely 
imaginary, associated with less effective noise suppression. Topology b) enables the 
generation of purely imaginary poles. On the other hand the feedback path γ, typically 
realized with a large resistor, directly affects the input-referred thermal noise. Furthermore the 
large capacitance associated with the resistive feedback path γ loads the virtual ground node 
of the 1st integrator, affecting its transfer function. Because of its position at the modulator 
input, the 1st integrator must have a possibly ideal behavior regarding noise, frequency 
response and linearity. We prefer therefore to put the feedback path across the last two 
integrators. In order to get an ideal resonator without damping factor an architectural change 
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is needed. The architecture chosen is shown in Fig. 3.11 and has no FF paths which start 
inside the resonating loop [Dig10]. The FF path k2 feeds the output of the 1st integrator to the 
output of the 2nd integrator. The coefficient k3 was incorporated in the integrator gain A3. 
 
The transfer function of the 3rd order filter in Fig. 3.11 is: 
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This topology allows the generation of purely imaginary poles and has reduced input noise 
compared to Hb(s), since the feedback path is moved after the 1st integrator. The value of the 
filter coefficients, Ai, ki, γ in (3.23) can be obtained equating them to the CT filter TF obtained 
with the IIT (3.14): 
 

( ) ( )152

251728

1069.3

1091.21082.11061.5

⋅+
⋅+⋅+⋅=

ss

ss
sH  (3.24) 

 

A linear equation system with 4 equations and 6 unknown is obtained: 
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As the system is over-determined, we select the values of the FF coefficients arbitrarily as: 
 

121 == kk  (3.26) 
 

With this choice all other unknown Ai and γ can be determined: 
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3.6. Excess Loop Delay compensation 

 
As explained in section 2.8.6, CT modulators suffer from excess loop delay (ELD) which 
influences the dynamic behavior and the stability of the modulator. In the case of a NRZ DAC 
with constant delay td the rectangular DAC impulse response will start at the time td and end 
at Ts+td.  
In order to quantify and compensate the effects of ELD the CT modulator with delayed NRZ 
DAC is transformed back in the DT domain by means of the IIT.  Assuming that the 
coefficients ki are one, the CT transfer function (3.23) can be simplified: 
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Expanding H1(s) in partial fractions and transforming the terms taking into account the 
delayed NRZ DAC waveform, an equivalent DT HNRZ(z) with the same sampled impulse 
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response is obtained [Che02]. For the calculation the reader can refer to Appendix A. The DT 
equivalent filter of the CT modulator affected by ELD has the form: 
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where N(z, τd) is a polynomial in z whose coefficients are function of the normalized delay 
τd=td/Ts. Comparing (3.29) with the prototype (3.6) it can be noted that the numerator of the 
equivalent TF is affected by τd: this means that the zeros of the DT equivalent loop filter are 
shifted because of the delay, which affects the loop stability [Gao97]. On the contrary the pole 
location is the same as in the ideal case apart from the introduction of the term z in the 
denominator, i.e., a delay of one clock period. This delay arises because the NRZ DAC pulse 
is partially shifted after Ts due to the excess loop delay, as described in Sec. 2.8.6. To fully 
compensate the effects of ELD, the CT filter coefficients must be adjusted in order to make 
the transfer function HNRZ(z) identical with the prototype DT filter H(z) (3.6). Since the 
delayed NRZ DAC ends after Ts, not only coefficient mismatch toward the ideal prototype DT 
filter results but also the order of the equivalent DT filter is increased [Che02]. Hence a 3rd 
order CT filter with NRZ DAC and excess loop delay leads to a 4th order DT equivalent filter 
(3.29).  
Although ELD-caused coefficient mismatch can be simply cancelled by correcting the CT 
filter coefficients, the elimination of the order increase of the DT equivalent filter requires an 
additional half-return-to-zero (HRZ) DAC for the CT modulator [Ben97]. An HRZ-DAC is 
characterized by a pulse form starting at Ts/2 and ending at Ts. It is advantageous to insert the 
additional path at the back-end of the filter, where the large gain of the preceding integrators 
relaxes the requirements on the DAC linearity. Some solutions exist, adding the DAC current 
directly at the quantizer input ([Red08], [Ben97]), yet this would require an active adder after 
the filter, increasing the power consumption. An addition in the current domain was thus 
preferred, feeding the DAC current to the virtual ground node of the last integrator. A similar 
approach can be found in [Mit06] with the difference, that here the compensation is obtained 
by moving the DAC from the quantizer input to the input of the last integrator by digitally 
differentiating the output data flow of the modulator. This is not completely correct: since the 
last integrator is located in a resonator loop, the TF from the integrator input to the resonator 
output deviates from a pure integration, this causing a slight error. The approach of this work 
was the analytical calculation of all coefficients of the modified modulator in Fig. 3.12 in 
order to make its sampled impulse response the same as that of the prototype DT modulator.  
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Fig. 3.12. Additional HRZ DAC for ELD compensation (in red) 
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A description of the symbolic calculation of the coefficients, performed with the aid of the 
software Maple®, can be found in Appendix A. A new set of coefficients Ai and γ, different 
from those in (3.27), are found, which together with the additional HRZ DAC fully 
compensate for the ELD.   
To simplify the mathematical calculation both DAC currents are represented by their 
equivalent voltages. Using the superposition principle the impulse response of the system in 
Fig. 3.12 can be calculated by superposing the impulse responses of the filter at the node V(s) 
for each DAC pulse. The transfer function HNRZ(z,τd) of the DT equivalent filter for the system 
composed by the main NRZ DAC and the loop filter is given in Appendix A (Eq. A.14). 
Concerning the auxiliary HRZ DAC (Fig. 3.12), the CT filter transfer function to be 
considered is: 
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where kHRZ is the gain factor of the auxiliary HRZ DAC. Decomposing HHRZ(s) in partial 
fractions the equivalent discrete time filter is obtained with the IIT. The calculation is 
explained in Appendix A. Following DT transfer function is obtained: 
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Hence, the TF of the equivalent DT filter for the CT modulator affected by ELD with both 
DAC (Fig. 3.12) is: 
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Fig. 3.13. Left: impulse response of the delayed NRZ DAC+filter (blue) and DT equivalent (red). Right: 

impulse response of the delayed HRZ DAC+filter (blue) and DT equivalent (red) 
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The ELD is completely compensated if the coefficients are chosen in order to make (3.32) 
identical to the prototype DT filter (3.6). Since the denominators of both TF are the same 
except for a factor z, both TF are identical if. 
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(3.33) was solved numerically for a given τd with the aid of the symbolic software Maple®. A 
fixed τd=0.5 was chosen, that is, an excess loop delay of half a clock period is assumed. This 
can be easily realized by latching the quantizer output with a constant delay of Ts/2. Equating 
the coefficients of NH with the polynomial z·num{H(z)} results in a linear system of 4 
equations in 4 unknown. A 5th equation fixes the filter resonating frequency: 
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Following results were obtained: 

 

A1 A2 A3 γ k1 k2 kHRZ 
3.73·fs 0.33·fs 0.36·fs 0.189 1 1 9.37 

Tab 3.4. Coefficients for compensation of an ELD td=Ts/2 
 

3.7. Coefficient scaling 
 
The coefficient set in Tab. 3.4 fully compensates for ELD. Nevertheless the 1st integrator 
coefficient A1 is one order of magnitude larger than A2 and A3. Large integrator gains are 
associated with saturation of the integrator output; hence distortion term and clipping are 
unavoidable in a transistor level realization. Furthermore the coefficient of the HRZ DAC is 
nearly 10 times larger than that of the main DAC (kNRZ=1), meaning that a large current must 
be provided by the secondary DAC. To cope with these issues coefficient scaling was 
accomplished. The scaling does not alter the transfer function of the circuit: it is performed in 
such a way that consecutive blocks are respectively multiplied and divided by the same scalar, 
keeping the product of the both TF constant. 
 
The scaled filter is shown in Fig. 3.14, following coefficient scaling was performed: 
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The new obtained values are indicated in Tab. 3.5. 
 

A1
* A2

* A3
* γ

* k1
* k2

* kHRZ
* 

0.746·fs 0.418·fs 1.456·fs 0.0378 5 5/4 2.342 
Tab 3.5. Scaled coefficients for compensation of an ELD td=Ts/2 
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Fig. 3.14. Modulator filter with scaled coefficients for compensation of an ELD td=Ts/2 (conceptual 

drawing) 
 
 
3.8. Circuit implementation 

 
This section describes the implementation of the loop filter, based on the conceptual drawing 
in Fig. 3.14, by means of following electrical components: resistors, capacitors and 
operational amplifiers (opamps). The objective is the realization of a circuit, whose transfer 
function is identical with that of the conceptual drawing. The single-ended circuit used to 
realize the loop filter is depicted in Fig. 3.15. It should be noted, that while the conceptual 
drawing in Fig. 3.14 shows the relation between nodes, which are exclusively in the voltage 
domain, the real circuit in Fig. 3.15 is based on successive transformations from the voltage to 
the current domain (V-I) and viceversa (I-V). The first occur from the modulator input or the 
low-ohmic opamp output or the DAC inputs to the virtual ground nodes of the integrators. 
The latter occur from the virtual ground nodes to the integrator outputs by means of the 
integration capacitors.  
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DAC HRZ
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Fig. 3.15. Single-ended schema of the circuit implementation of the loop filter 

 
Assuming at this point all opamps as ideal (i.e. infinite gain and bandwidth), the dimensioning 
of the passive components (resistors and capacitors) is done by comparing the transfer 
functions of all signal paths in the conceptual drawing with those of the circuit in Fig. 3.15.  
 

1. Integrator sizing. At first the three integrator blocks are realized with an active RC 
topology, leading to following equivalences:  
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2. Local feedback path. Concerning the local feedback path of the resonator γ*, this 

multiplies Vo3, the output voltage of the 3rd integrator, by γ* and feeds it back to the 
input of the 2nd integrator. This in turn integrates the voltage γ

*Vo3 providing: 
 

s

A
VV oo

*
2

3
*'

2 γ−=  (3.37) 

 
The voltage Vo2’  in (3.37) is the contribution of the feedback path to the voltage at the 
output of the 2nd integrator. By looking at the equivalent circuit in Fig. 3.15, the 
contribution of the feedback path, implemented with the negative resistor –Rr is: 
 

sCR

V
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o
o

2
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2

1⋅−=  (3.38) 

 
where the result is obtained3 by integrating the current –Vo3/Rr by means of the 
integration capacitance C2. By equating (3.37) with (3.38) we get: 
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that is: 
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C
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where the value A2

*=1/(R2C2) as found in (3.36) was inserted. 
 

3. NRZ DAC and HRZ DAC . Both DAC are modeled as voltage DAC in the 
conceptual drawing. To simplify the treatment they are represented as resistors driven 
by voltage sources in the schematic of Fig. 3.15. In the real implementation they are 
replaced by fast switched current sources. Nevertheless the ratio between the driving 
voltage of the DAC and the value of the resistors used to represent the DAC contains 
the information about the current to be provided by the DAC. Concerning the main 
NRZ DAC at very input of the modulator, as the feedback coefficient is one, the same 
current as the that generated by the input signal must be provided. Furthermore, a sign 
variation is needed, as the feedback must be negative. Hence, a negative resistor –R1 is 
used to model the main DAC. Concering the auxiliary HRZ DAC for ELD 
compensation, this is depicted in Fig. 3.14 as a feedback path with gain factor kHRZ

*. 
The contribution of the feedback path for ELD to the output voltage of the 3rd 
integrator is then: 

 

( ) ( )
s

A
sksXV HRZHRZo

*
3*'

3 ⋅⋅=  (3.41) 

                                                 
3 The negative resistor is implemented in the final fully-differential circuit by simply cross-coupling the two 
differential outputs of the 3rd integrator. 
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while from the circuit in Fig. 3.15 following is obtained: 
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Equating both equations we can find out the value of Rh: 
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that is: 
 

*
3

*
3

*
3
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R

AkC
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where the last term is obtained by inserting A3

*=1/(R3C3s) as in (3.36). 
 
4. Feed-forward paths. The feed-forward paths k1

* and k2
* can be realized either with 

capacitors or with resistors. The latter solution is the best choice for low-voltage, 
low-power applications. The reason for this is that, since no Cascode structures are 
allowed in low-voltage circuits, all opamps are implemented as two-stage, Miller 
compensated amplifiers. This topology, when associated with short channel output 
transistors, has a relatively low Rout. Hence, the resistive loading of the opamps 
because of the resistive FF-paths causes only a negligible DC-gain drop. On the 
contrary, capacitive FF-paths would load the preceding opamps, reducing the 
bandwidth and/or increasing the current required in their output stage. To understand 
this, we can briefly analyze the AC behavior of Miller-compensated two-stage 
opamps. The two dominant poles, located at the output of the 1st and 2nd stage 
respectively, are split away by the compensation capacitance. The capacitive load due 
to the capacitive FF-paths tends to shift the output pole of the 2nd stage, which is at 
high frequency because of the Miller capacitor, toward lower frequencies, hence 
reducing the stability phase margin. This can be counteracted by increasing the 
transconductance of the output stage, i.e. the power consumption. This is highly 
undesirable in low-power applications. On the other hand the resistive FF-paths 
increase the circuit noise of the modulator. However, their contribution is negligible 
since they feed their noise current in the virtual ground of the 3rd integrator.  From this 
node the noise currents flow into C3 where they are integrated. When referring the 
output noise voltage of the 3rd integrator to the modulator input, this must be divided 
by the gain of the preceding integrators. Hence, the input referred noise of the FF 
resistors in very small. In addition the FF resistors values are kept small to further 
reduce their thermal noise. In [Mit06] one resistive FF-path in the CT loop filter is 
also implemented with resistors but no explanation of this choice was published. 
 
The contribution of the FF-paths k1

* and k2
* in the conceptual scheme (Fig. 3.14) to the 

output voltage of the 3rd integrator is: 
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The two FF paths k1

* and k2
* are implemented with the resistors Rf1, –Rf1 and Rf2. Their 

contribution to the output voltage of the 3rd integrator of the circuit implementation 
(Fig. 3.15) is: 
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Collecting (3.46) with respect to the common terms we obtain: 
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Equating (3.45) and (3.47), i.e. equating the coefficients of the 1/s and 1/s2 terms, 
following is obtained: 
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Replacing the coefficients A1

* and A3
*, which are already known from (3.36), we get: 
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The feed-forward resistor –Rf1 provides the signal XNRZ(s) to the virtual ground of the 
3rd integrator. In the real implementation it should be replaced by a third current DAC 
(see Sect. 3.9). 

  
3.8.1. Thermal noise considerations 

 
As the integrator coefficients specify only the RiCi products, i.e. the integrator time constants, 
one additional degree of freedom is given in the choice of the resistor and capacitor value. 
These values are selected according to two criteria: the maximum resistor value is limited by 
thermal noise, the minimum capacitance by the parasitic capacitances which limit its 
controllability. In particular the resistor R1 is placed directly at the input of the modulator and 
contributes in large part to the overall noise budget. Reminding the calculation in Chap. 2, 
Sect. 2.8.4.1, the input-referred rms noise voltage of R1 in the signal band fB is: 
 

BnR fkTRv 1
2

1 42 ⋅=  (3.50) 

 
where the factor two accounts for a differential implementation. For a signal band of 
12.5MHz both input resistors R1 produce an rms noise voltage of 35.2µV if their value is 3kΩ. 
To estimate the limits on the achievable SNR some assumptions have to be made on the 
power of the input signal. Assuming a supply voltage of 1.2V the input signal will have a DC 
level of VDD/2=0.6V. Even if an input amplitude of 0.6V is theoretically allowed (VFS=VDD/2), 
this is not possible in practice. The reason for this is twofold: the input signal of the modulator 
is provided by the output stage of a voltage buffer, whose transistors must be operated in the 
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saturation region; furthermore, the input signal of the quantizer (after the loop filter) contains 
the input signal as well as shaped quantization noise. The sum of both components can easily 
saturate the output of the last integrator of the loop filter. For this reason a full-scale signal 
amplitude VFS=0.325V was chosen which gives a margin of 0.275V. The single-ended input 
signal at both input terminals as well as the differential input signal are plotted in Fig. 3.16.  

VVFS 325.0=
VVDD 6.02/ =

( )tV

VVDD 2.1=

( )tVin
+

( )tVin
−

( ) ( ) ( )tVtVtV inindiffin
−+ −=,t

V275.0margin=

V65.0−

 
Fig. 3.16. Graphical representation of the single-ended and differential input signals 

 
Assuming the differential input signal is a sine wave with amplitude 2VFS, the squared rms 
value of the signal is:  
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the SNR with the only thermal noise of R1 will be then: 
 

2
1
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Rth

v

P
SNR =  (3.52) 

 
For the given bandwidth of 12.5 MHz and an R1 value of 3 kΩ an SNR of 82.3 dB is obtained, 
corresponding to an ENOB of 13.4 bits. The value of C1 is then fixed since the reciprocal of 
the R1C1 product is given by the integrator gain A1

*. The thermal noise of the main DAC and 
of the 1st integrator will be examined in the next chapter. The thermal noise of the other 
resistors in the circuit is not problematic, since their noise contribution is suppressed by the 
large gain of the preceding amplifiers. Hence, the resistors R2 and R3 are dimensioned as large 
as possible, in order to reduce the loading of the preceding stage and to keep the integration 
capacitors C2 and C3 small. A lower limit of 150 fF for each capacitor was selected in order to 
make them much larger than the parasitic capacitances.  
The selected values of the passive components of the CT loop filter are indicated in Tab. 3.6. 

 
R1 C1 R2 C2 R3 C3 Rf1 Rf2 Rr

 Rh
4 

3 kΩ 1.12 pF 20 kΩ 300 fF 9.4 kΩ 183 fF 3.7 kΩ 7.5 kΩ 529 kΩ 4.01 kΩ 
Tab 3.6. Values of the passive components of the CT loop filter 

 
The fully differential circuit implementation of the loop filter is depicted in Fig. 3.17, feed-
forward paths are in blue, feedback paths in red. The six resistors circled in the figure are 
actually implemented with three differential current steering DAC.  

 

                                                 
4 This resistor and the resistors −R1 and –Rf1 are actually implemented with switched current sources.  
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Fig. 3.17. Loop filter: fully differential circuit implementation. FF paths are depicted in blue, FB paths in 

red. The circled resistors are actually implemented as current steering differential DAC.  
 

 
3.9. DAC current dimensioning, DAC merging  

 
As already mentioned, the DAC are realized by means of switched current sources. In order to 
track the input signal, the main DAC must be able to provide a maximum current: 
 

µA
R

V
I FS

NRZ 33.108
1

max, ±=±=  (3.53) 

 
where VFS=0.325V is the full scale amplitude of the input signal. Similarly, the HRZ DAC 
must be capable to provide the current: 
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Finally, an additional NRZ DAC is required to realize the FF-path indicated with the negative 
resistor −Rf1 in Fig. 3.17. The current fed by the second NRZ DAC is: 
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FS
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As visible in Fig. 3.17 the current generated by the HRZ DAC (resistor Rh) and that of the 
NRZ DAC realizing the FF-path k1 (resistor −Rf1) are injected in the same virtual ground node 
of the 3rd integrator with opposite polarities. In addition, both currents have nearly the same 
absolute value (Eq. (3.54) and (3.55)). We can express the sum of both DAC currents, as 
plotted in Fig. 3.18, as the sum of two components: 
 

( ) ( ) ( ) ( )titititi RZHRZNRZ ε+=+2  (3.56) 
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The first component iRZ(t) is a RZ data-depending current (Fig. 3.18d) with the same 
amplitude of iNRZ2(t). Its maximum value amounts to 88.56µA. The second part is a relatively 
small HRZ data-depending current (Fig. 3.18e) with maximum value 7.52µA. Since these 
currents are injected in the virtual ground of the last integrator, a 2nd order noise shaping is 
obtained referring the signals at this node to the input (there are two integrators between the 
input and this node). The error introduced by replacing the latter current with a zero value is 
therefore negligible as confirmed by simulation results. For a coarse estimation, considering 
the current error as a DC current, its input referred value is: 
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where ADC1 and ADC2 are the DC gain of the 1st and 2nd integrator respectively. Assuming a 
DC gain of 200 for each integrator an input-referred DC amplitude of merely 0.18 nA is 
obtained. The full-scale input signal current is: 
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The latter is 6·105 times larger then the error, hence the error introduced is far smaller than an 
LSB by 11 bit resolution. Hence, the combination of the HRZ DAC and the second NRZ 
DAC realizing the k1 FF-path is replaced by a single RZ DAC, saving power and circuit 
complexity.  
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Fig. 3.18. a) NRZ current waveform at the input of the 3rd integrator; b) HRZ current waveform for ELD 
compensation; c) sum of both currents; d) RZ component of the sum; e) HRZ component of the sum 
 

3.10. High-level simulations 
 

3.10.1. Finite opamp gain 
 
The fully differential CT modulator was simulated at high level with the software suite 
Cadence® to confirm the architectural approach. The simulated filter topology is that of Fig. 
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3.17 with the difference that the DAC resistors are implemented with ideal switched current 
sources. Moreover, all passive elements are assumed to be ideal. The three filter opamps are 
modeled at this level as differential voltage controlled voltage sources, with frequency 
independent gain in order to simulate SNR degradation due to non-infinite DC-gain (Fig. 
3.19). The quantizer is modeled with a bank of 13 delay-free ideal comparators, that is, only a 
14-level quantizer is used instead of a 4-bit, 16 level one. This was done to further save power 
consumption as simulations show that the first and the last comparator were never used. In the 
real quantizer implementation a signal-depending delay is unavoidable (s. Chapter 4) which 
has similar implications as jitter noise. To prevent this, a latch is placed after the quantizer, 
fixing the delay between the quantizer clock and the time at which its output changes to Ts/2.  
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−
inV
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Fig. 3.19. Simple model of a fully differential opamp with DC-gain ADC 

 

The input signal used for this simulation is a sine with a frequency of 1.5625 MHz, its single 
ended amplitude is VA=250mV corresponding to 0.77·VFS. The SQNR curve as function of the 
opamp DC gain is plotted in Fig. 3.20. It is deducible that the proposed architecture is 
adequate for modern sub-µm technology, thanks to its good performance by low gain opamp. 
The modulator gets eventually unstable for a gain smaller than 30 dB. For the 0.13 µm CMOS 
technology used an intrinsic gain of about 15 per stage was simulated. Hence, a two-stage 
opamp can achieve a DC-gain of approximately 45-50 dB, which does not significantly affect 
the obtainable resolution.  
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Fig. 3.20. SQNR as function of the opamp DC-gain. fin=1.5625 MHz, VA=0.77 VFS 

 

The histograms in Fig. 3.21 plot the distribution of the amplitude of the integrator outputs 
normalized to the full-scale voltage VFS=0.325 V. The gain of the 1st integrator was sized with 
the objective of keeping the output signal small, i.e. inside an interval ±0.2VFS. This allows a 
very good linearity of the 1st integrator, as the output transistors are never driven close to the 
triode region. On the other hand, large amplitudes are allowed at the output of the 2nd and 3rd 



 

 

 

78 

integrators, as their non-linearities are respectively 1st and 2nd order shaped when referred to 
the modulator input. The high-level simulation shows that these vary in an interval ±1.1VFS.  
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Fig. 3.21. Distribution of the integrator outputs, f in=1.5625 MHz, VA=0.77 VFS 

 

 
3.10.2. DAC jitter 

 
The CT modulator with the filter described in the previous section including the additional 
path for excess loop delay compensation was simulated at high-level with Simulink® to 
define the maximum tolerable jitter noise. The jitter is assumed to be white with Gaussian 
distribution [Oli98] and is modeled with a variable delay element, whose value is defined at 
each clock period by a random number generator (Fig. 3.22), resulting into a data flow from 
the quantizer output with random varying rising and falling edges. The random number has a 
normal distribution with mean value Ts/2, which models the delay introduced by the latched 
quantizer and standard deviation σ(∆t), which models the jitter noise. This kind of simulation 
is very time consuming, as the maximum simulation step must be of the same order of 
magnitude of the jitter standard deviation.  
A real-life jitter spectrum is not white since it is related to the phase noise of the PLL 
generating the clock signal [Dad02]. This is usually dominated by the VCO phase noise and 
depends on the PLL transfer function. As no information was provided about the PLL, the 
spectral density of the jitter was assumed to be white. Nevertheless this assumption gives a 
perception of the jitter sensitivity of the proposed modulator.  

Variable
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Triggered
random number

Clock

inDATA

outDATA

 
Fig. 3.22. Block schema of the high-level jitter generator 

 
The simulated SNR of the modulator with the jitter generator in Fig. 3.22 is plotted in red in 
Fig. 3.23 against the jitter standard deviation. The simulations were performed with a sine 
input signal with half full-scale amplitude and a frequency of 1.5625 MHz.  
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Fig. 3.23. Calculated (blue) and simulated (red) SNR of the modulator against normalized jitter standard 

deviation 
 
To evaluate the correctness of the results, these were compared with the analytical formula 
(2.123), reported here for convenience: 
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(3.59) 

 
Since the main DAC is modeled in Simulink® as a voltage DAC, (3.59) is rewritten as ratio 
of squared voltages: 
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(3.60) 

 

∆VDAC is a discrete-time, discrete-amplitude signal which represents the variation of the DAC 
output at every clock cycle, expressed in volt. It is a measure of the DAC signal activity. A 
qualitative plot of a generic multibit sigma-delta modulated signal y[n] together with the 
corresponding ∆VDAC[n] is depicted in Fig. 3.24. 
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Fig. 3.24. Multibit sigma-delta modulated signal (above) and signal ∆VDAC (below) 

 
In order to characterize statistically the DAC activity the jitter-free CT modulator presented 
before was simulated with a sine input signal of 0.5VFS with a frequency of 1.5625 MHz.  
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The signal ∆VDAC[n] was obtained by calculating the finite difference:  
 

]1[][][ −−=∆ nynynVDAC
 (3.61) 

 
where y[n] is the output of the simulated modulator.  
 
Fig. 3.25 depicts the first 1000 simulated samples of ∆VDAC[n], normalized to the unit step 
height ∆VLSB. The variation signal is limited to a maximum of ±3 steps and has a variance 
σ

2(∆VDAC)=1.53(∆VLSB)
2.  

 

Normalized Time (t/Ts)

N
or

m
al

iz
ed

 s
te

p 
va

ria
tio

n 
(∆

)

100 200 300 400 500 600 700 800 900 1000
-3

-2

-1

0

1

2

3

 Fig. 3.25. Normalized DAC variations as function of time (simulated) 
 
 
The SNR values according to eq. (3.60) are plotted in blue in Fig. 3.23. Both simulated and 
expected curves show good accordance. The discrepancy at very low jitter is due to the 
rounding error caused by the discrete simulation step. Reducing this step allows the 
simulation of very low jitter at costs of longer simulation time. Both the analytical formula 
and the simulation results show that for a jitter standard deviation of 2·10-3Ts, i.e. 5ps, a SNR 
of 72.7 dB, namely 11.8 bits, is achieved, which fulfill the modulator specifications.   
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Chapter 4 
 
Low-power high-speed CT Σ∆ modulator: integrated 
circuit design 
 
 
 
 
This chapter deals with the design of the integrated circuit realizing the modulator proposed in 
the previous chapter. After an introduction about the technology used it focuses on the 
implementation of the main blocks of the modulator: the opamp of the loop filter, the 
quantizer, the two DAC and the clock generator. 
 

4.1. Used technology and supply voltage 
 
The integrated circuit in this work is based on a UMC CMOS 0.13 µm technology [UMC]. 
This technology features eight copper metal layers and one polysilicon layer. Nmos and pmos 
transistors are provided with three different options: high-speed, standard performance and 
low-leakage. All transistors used in the proposed modulator are of the high-speed type 
because of their low threshold voltage, which eases low-voltage circuit design. Metal-metal 
capacitors (MIM) are available with a capacitance density of 1ff/µm2 as well as high ohmic 
resistors. All modulator parts are supplied with an operating voltage of 1.2V. The main 
technology parameters are synthesized in the table below. 
 
Technology CMOS 0.13 µm 
Transistor options high-speed std performance low-leakage 
Threshold voltage (VTn/VTp) 0.38 / -0.33 0.47/-0.42 0.58/-0.52 
Layers 1P 8M copper 
High ohmic resistor (Ω/square) 984 
Metal-metal capacitor (fF/µm2) 1 
Operating voltage 1.2 / 3.3 
Metal thickness M1/M2/M3/M4/M5/M6/M7/M8 0.32 / 0.4 / 0.4 / 0.4 / 0.4 / 0.4 / 0.8 / 0.8 

Tab 4.1. Main technological parameters 
 

4.2. Loop filter operational amplifiers 
 

The following section describes the design steps for the circuit implementation of the 
operational amplifiers used in the loop filter. 
Because of the low supply voltage available of only 1.2V transistor stacking such as in 
Cascode amplifiers is not allowed, as this would drive the transistors in the triode region. 
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Folded Cascode should also be avoided when dealing with low VDD, since at least four 
transistors are stacked. A good solution for low-voltage applications is the use of multi-stage 
amplifiers to achieve sufficient gain. The first stage is a differential amplifier with tail 
transistor, the following stages are common source stages with active loads. This choice keeps 
the number of stacked transistors to a maximum of three. On the other hand, multistage 
opamps suffer from stability issues and compensation is often difficult and requires particular 
techniques. In our design we decided for a two-stage CMOS fully differential opamp which is 
the active part of the active RC-integrators of the loop filter (Fig. 3.17). Pmos transistors are 
used as input transistors thanks to their superior performance in terms of Flicker noise [Jak96, 
Raz99]. An additional advantage of pmos transistors is that these can be placed in a separate 
n-well avoiding body effect, hence allowing low-VT operation.  
 

+
outV

−
outV

+
in

V
−

in
V

BV

2BV

CC

CC

 
Fig. 4.1. Two stage opamp. Common-mode feedback and bias circuit not shown for simplicity 

 
The proposed architecture has following advantages: same dc level of the input and output 
voltages; suitability for resistive loads because of the relatively low output resistance; rail-to-
rail output swing; low-voltage compliance since no transistor stacking is used. 
Our design goal is to design a high performance integrator without increasing the power 
consumption. To get rid of this problem a good solution is the exact modelling of the opamp 
in order to get the optimal sizing of the components. 
 

4.2.1. Standard design approach 
 
The standard design approach of an RC-Integrator based on the two-stage opamp of Fig. 4.1 
is shortly illustrated in this section. The simplified small-signal equivalent circuit is depicted 
in Fig. 4.2. 
 

INm Vg 1 1R 1C
Bm Vg 2 LR

LC

CC
BV OUTV

 
Fig. 4.2. Standard design approach: small-signal equivalent circuit of the loaded opamp 

 
Typically the load capacitance CL includes also the feedback capacitor of the RC-integrator 
and is relatively large. Assuming that gm1, the transconductance of the input transistors, is of 
the same order of the gm of the load transistors of the 1st stage and neglecting the noise 
contribution of the 2nd stage5, we can estimate the total input-referred thermal noise of the 
opamp as (see also section 2.8.4.1):  

                                                 
5 The noise of the 2nd stage can be neglected if the gain of the 1st stage is much larger than one. 
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where the factor 4 accounts for the four transistors in the differential input stage. If these 
assumptions apply, gm1 is sized in order to fulfill the noise specifications of the integrator. The 
compensation capacitors CC are placed across the input and the output of the 2nd stage, i.e., 
working as Miller capacitances.  
The capacitors CC are dimensioned in order to fulfill the bandwidth requirement of the 
opamp: 
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m
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g
GBW 1≅  (4.2) 

 
Eq. (4.2) is valid if the opamp is compensated so that the non-dominant poles are located 
beyond the unity-gain frequency.  
 
After compensation the dominant pole of the opamp is: 
 

21
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s −≅  (4.3) 

 
where R1 is the output resistance of the 1st stage and Av2=gm2RL the voltage gain of the 2nd 
stage. The output capacitance C1 of the 1st stage was neglected, since this is usually much 
smaller than the Miller-magnified CC. 
The non dominant pole [Gra01] is approximately located at: 
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After compensation |sp2| is much larger than |sp1| (pole splitting). To guarantee sufficient phase 
margin the frequency of sp2 must be larger than the unity-gain frequency of the opamp. 
Typically |sp2|=2GBW≈2gm1/Cc is selected, giving approximately 63° of phase margin. 
Replacing this value of |sp2| in (4.4) we obtain: 
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The positive zero which arises because of the feedback path through CC is usually eliminated 
either by means of a zero-nulling resistor in series with CC or with a voltage or current buffer. 
The function of the buffer is to make the path across the compensation capacitor uni-
directional, i.e. the FF direction is blocked, while the feedback is maintained. The method 
described so far does not lead to the optimal solution, since it causes over-designing of the 
operational amplifier, as we guarantee stability for all kinds of passive feedback networks 
although the opamp feedback is merely capacitive. Moreover, the load capacitance is typically 
assumed to include also the integrator feedback capacitance, further increasing the required 
gm2. In fact, assuming a constant overdrive voltage, the bias current required in the output 
stage is proportional to the required gm2. Another issue of the standard method is represented 
by the introduction of an additional zero when using the opamp as RC-integrator. This zero 
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arises from the external feed-forward path through the integration capacitance C and must be 
taken into account in order to avoid instable behaviour.  
 

4.2.2. New design approach 
 
To overcome the issues with the standard approach an alternative solution is proposed in this 
section. This consists in designing the whole integrator without separating the opamp from the 
rest of the integrator. The small-signal equivalent circuit of the RC-Integrator is depicted in 
Fig. 4.3.  
 

R

C

Am Vg 1 1R 1C
Bm Vg 2 LR

LC

OUT

INV

2gdC CC +

opamp
AV

BV

 
Fig. 4.3. Small-signal equivalent circuit of the active RC-integrator with a 2-stage opamp 

 
Applying the Norton equivalence at the input the circuit in Fig. 4.4 is obtained.  

R

C

Am Vg 1
1R 1C

Bm Vg 2 LR
LC

OUT

RVIN /

2gdC CC +

opamp
AV

BV

{ { {
1st stage 2nd stage 3rd stage  

Fig. 4.4. Norton equivalent small-signal circuit of the active RC-integrator with a 2-stage opamp 
 
R is the input resistor, C the integration capacitance, gm1, R1, C1 and gm2, RL, CL are the 
transconductance, the output resistance and the output capacitance of the first and second 
stage respectively. CC is the opamp compensation capacitor and Cgd2 the gate-drain 
capacitance of the amplifying transistor of the second stage. Both can be joined together into 
CC’ , since they are in parallel. It should be noted that CL does not include the feedback 
capacitor C but only the capacitive load of the integrator. CL of the 1st and 2nd integrator used 
in the filter topology proposed in this work is small, as only resistive components load the 
integrators. On the other hand the load capacitance of the 3rd integrator is relatively large, 
since this drives the input capacitance of the quantizer.  
 
Interestingly this circuit can be seen as a “three-stage amplifier”, where the 1st stage of the 
new amplifier is the Norton equivalent of the signal source and the input resistor and has unit 
gain. This representation simplifies the analysis of the circuit, since we can make use of the 
available literature about three-stage amplifiers and their compensation. In particular we can 
consider the integration capacitor C as the compensation capacitance of the outermost loop of 
a nested Miller-compensated amplifier. The compensation technique used in this work is that 
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proposed in [Leu99], which employs a common zero-nulling resistor to eliminate the positive 
zero arising from the FF paths through C and CC. 
 
With the aid of the symbolic math software Maple® we calculate the transfer function of the 
small-signal equivalent circuit of the RC-integrator: 
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The third order denominator has following coefficients: 
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 (4.7) 

 
Dominant pole. Since the dominant pole sp1 arises at the input node because of the Miller-
magnified integration capacitance C and is located at a very low frequency, we can make the 
assumption |sp1|<<|sp2|, |sp3|. This leads to following: 
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where ADC is the DC gain of the opamp. The dominant pole sp1 is due to the integration 
capacitance, which appears at the virtual ground node magnified by the opamp DC-gain 
(Miller effect). Eq. (4.8) shows the frequency shift of sp1 because of CC

’ from the theoretical 
value 1/(RCADC). This directly causes a gain error of the integrator, as the 20-dB-slope range, 
in which the circuit works as an integrator, starts at an earlier frequency as required. To 
minimize the pole shift because of CC

’ following condition must be fulfilled: 
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By writing the reciprocals of both size of (4.9) we get: 
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Eq. (4.10) states that the unity-gain frequency ωu of the opamp must be much larger than the 
corner frequency ωI of the integrator. 
 
Non-dominant poles. Two other poles are located at higher frequencies. With the dominant 
pole approximation they are the solutions of the equation: 
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If (4.10) applies and we replace the ki coefficients according to (4.7) equation (4.11) becomes: 
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The non-dominant poles can be real or complex-conjugate, depending on the circuit 
parameters. In order to get a stable system all poles must have negative real parts. This is 
accomplished if: 
 

122 0 mm ggk >⇒>  (4.13) 
 

Another important aspect is that these poles do not depend, at a first order approximation, on 
the output resistance of the individual stages. The poles sp2 and sp3 can be real and distinct or 
complex-conjugate depending on the discriminant ∆ of the quadratic equation (4.12). The 
transconductance of the output stage gm2 should be large enough to shift the non-dominant 
poles sp2, sp3 at frequencies, where the integrator gain is much lower than one, that is, beyond 
its corner frequency. This is required to preserve the integrator transfer function, i.e. 90 
degree phase shift and an amplitude slope of -20 dB/dec up to the corner frequency. 
 
Zeros. Analyzing the numerator we recognize two zeros. These are the roots of the equation: 
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Eq. (4.14) has two positive and one negative coefficient. According to Descartes' rule of signs 
one solution is negative and one is positive. A positive zero has the same phase behavior as a 
pole, leading to a worsening of the phase margin. An additional measure against this problem 
must be taken. Zeros arise from feed-forward paths, possible solutions to eliminate these 
include: path interruption via current buffers [Ahu83] or voltage buffers [Tsi76]; additional 
feed-forward transconductance paths [You97]; insertion of zero nulling resistors [Leu99]. The 
last technique was preferred because of its higher linearity and lower power consumption. 
This technique includes a common resistor among the two feed-forward paths of the multi-
stage amplifier (Fig. 4.5). 
The new transfer function becomes quite complex and has the form: 
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Fig. 4.5. Small-signal equivalent circuit of the active RC-integrator with a 2-stage opamp and zero-nulling 

resistor 
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indicating the presence of three zeros and four poles. The third zero is introduced by the new 
FF-path after the insertion of RC, since Cgd2 is not in parallel with CC anymore.  
Making following assumptions: gm1R1, gm2RL>>1 (i.e. high stage gain), RC<<R,R1,RL and 
Cgd2<<C1,CL,CC the numerator and denominator coefficients can be calculated, again, with the 
aid of the symbolic software Maple®: 
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where, again, CC

’ is the sum of CC and Cgd2. The denominator coefficients k1, k2 and k3 are the 
same as in the case without RC if RC is “small”. At first it will be assumed that the poles are 
largely spaced, except for sp2 and sp3: 
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This assumption states6 that the integrator has one dominant pole sp1, two “middle frequency” 
poles sp2, sp3 and one high-frequency pole sp4. Hence, we can calculate the poles as following: 
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The location of sp1 is the same as in (4.8), hence it is independent of RC. The middle-
frequency poles sp2 and sp3 of the integrator are the roots of the equation: 
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Since the coefficients k1, k2 and k3 of (4.16) are the same as in (4.7) the location of sp2 and sp3 

remains, at first order, unchanged after the insertion of a low-ohmic RC.  
 

The high-frequency pole sp4 is given by: 
 

( )
( )LgdgdLCC

CLLC
p CCCCCCCR

CCCCCC

k

k
s

2121

'
1

'
1

4

3
4 ++

++
=−≅  (4.21) 

                                                 
6 The assumption is valid for realistic values of gmi, Ri, Ci and under the previous assumptions (i.e. large stage-
gain, RC and Cgd2 “small”). Transistor level simulations of the proposed integrator confirm the correctness of the 
reasoning. 
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sp4 goes toward infinity if RC is zero. For realistic, small RC values, this pole can be neglected. 
 
The zeros of the integrator are the roots of the polynomial: 
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Replacing the ni coefficients the nominator is: 
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The three roots of (4.23) are the zeros of the integrator. The sign of the zeros can be 
determined with the aid of the Decartes’ rule stating that the number of positive roots is equal 
to the number of sign differences between consecutive coefficients. 
 
Following table summarizes the sign of the coefficients and the sign of the zeros for different 
values of RC: 
 

Sign of the coefficients RC value 
s3 s2 s1 s0 

Sign of the zeros 

RC=0 0 + + − 
one positive, one 

negative 
0<RC<CC

’/[gm2(C+CC)] + + + − 
CC

’/[gm2(C+CC)]<RC<(C1+CC
’)/(gm2CC) + + − − 

RC>(C1+CC
’)/(gm2CC) + − − − 

one positive, two 
negative 

Tab 4.2. Sign of the zeros as function of RC 
 
Clearly the number of sign variations is always one meaning that one positive zero is always 
present and cannot be eliminated. Still, it can be shifted to higher frequencies, where it is not 
an issue for the integrator frequency response. The root locus of the zeros as function of RC is 
shown in the next section for concrete values of the capacitances and transconductances of the 
integrator.  
 
The sizing of the circuit was performed in four steps:  
 

1) R and gm1 are given by noise specs, since they give the predominant contribution to the 
input thermal noise of the integrator. Once R is obtained, the integration capacitance is 
set by the integrator corner frequency ωI=1/RC. 

2) CC is sized according to (4.10).  
3)  The transconductance gm2 of the output stage is chosen in order to locate the non-

dominant poles sp2, sp3 far beyond the corner frequency of the integrator ωI=1/RC. 
This preserves the frequency response of the integrator. An upper limit of gm2 is 
determined by the power consumption of the output stage. A good compromise 
consists in placing sp2, sp3 at frequencies which are ten times larger than ωI. 

4) The last step is the choice of RC in order to maximize the phase margin of the 
integrator by shifting one positive zero toward infinity. 

 
 
 
 



 

 

 

89 

4.2.3. Dimensioning of the 1st integrator 
 

In the following the dimensioning of the components of the 1st integrator is explained. As 
described in Tab. 3.6, for the 1st integrator following values were chosen: 

 
pFCkR 12.1,3 =Ω=  (4.24) 

 
where R is the input resistor and C the feedback capacitor of the integrator. The noise 
contribution of the input resistor was calculated in section 3.52. The transconductance gm1 of 
the input p-mos transistors is chosen according to thermal noise considerations. The input-
referred opamp thermal noise is, neglecting the Flicker noise: 
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where the factor 2 accounts for the differential implementation, fB is the signal bandwidth and 
gmn is the transconductance of the load current sources of the opamp input stage. Eq. (4.25) is 
an approximate formula valid for long channel transistors; nevertheless it is sufficient for an 
estimation of the noise. Assuming gm1≅gmn=1.2mS and a signal bandwidth of 12.5 MHz, the 
resulting input-referred rms noise voltage amounts to 21.4µV.  
The maximum SNR due to the opamp thermal noise is, when an input sine signal with a 
single-ended amplitude VFS=0.325V is applied:  
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Eq. (4.26) shows that the thermal noise introduced by the opamp with the selected gm1 is very 
small for the intended modulator resolution of 11 bit. This choice is dictated in order to let 
some margin for other noise contributors. In particular, a large contribution to the overall 
input-referred circuit is produced by the current sources of the main DAC as explained later. 
A further contribution is given by the Flicker noise of the active elements. 
 
The compensation capacitor is dimensioned according to (4.10) so that the unity-gain 
frequency of the opamp is a factor 10 larger than the corner frequency of the integrator:  
 

10
1RCg

C m
C =  (4.27) 

 
Eq. (4.27) leads to a compensation capacitor of approximately 400 fF. 
 
The transconductance of the opamp output stage gm2 is chosen so that the poles sp2, sp3 are 
larger than the unity-gain frequency of the opamp ωu (i.e., at least ten times larger than ωI) 
and exhibit only moderate peaking. Fig. 4.6 shows the root locus of the non-dominant poles as 
function of gm2 according to (4.12).  
 
The capacitances needed for the estimation of the location of the non-dominant poles (C1, CL, 
Cgd2) were estimated according to technology data of the oxide capacitance (11 fF/µm2) and 
considering the dimension of the transistors required for a given gm. gm1 was fixed to 1.2 mS 
according to thermal noise requirements as previously explained.  
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The values of R1, RL are not required for the estimation of the zero and pole location, since 
these terms do not appear in the formulas of the analytical model. The DC-gain of the 
integrator was assumed to be 225 (47 dB), which is a realistic value for a two-stage amplifier 
in 0.13 µm CMOS. This value is needed for the determination of the dominant pole sp1. The 
Bode diagram of the integrator according to the proposed model (4.6) as function of gm2 is 
plotted in Fig. 4.6. A gm2 value of 2.4 mS was chosen, this being a good compromise between 
low frequency-peaking (larger gm reduces peaking and increases the frequency of sp2, sp3) and 
low-power (larger gm means more power consumption).  
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Fig. 4.6. Left: Root locus of sp2, sp3 as function of gm2, right: Bode diagram of the integrator as function of 

gm2 according to (4.6).  
 
The last step consists in dimensioning the zero-nulling resistor RC. Fig. 4.7 shows the zero-
locus depending on RC according to (4.23). While the negative zero sn1 remains nearly 
constant, increasing RC the positive zero sn2 is shifted toward higher frequencies, thus 
increasing the phase margin. Also sn3 is shifted, still its effect remains negligible as long as RC 
is small enough (high frequency zero). 
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Fig. 4.7. Root locus of the zeros as function of RC  

 
Fig 4.8 plots the Bode diagram of the 1st integrator for different values of RC. A value of 300 
Ω guarantees a maximally flat phase response, hence a phase margin of 90° as in the ideal 
integrator.  
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Fig. 4.8. Left: Bode diagram of the TF of the 1st integrator as function of RC. Right: zoom-in  

 
Model verification. An RC-integrator was implemented as depicted in Fig. (4.9) and 
simulated at transistor level. The input resistor R and the integrating capacitance C are 
highlighted in blue. The opamp consists in a two-stage topology without stacked transistors 
for low-voltage compatibility. Input p-mos transistors were chosen in order to minimize 
Flicker noise [Raz99]. The output stage works in class A in order to guarantee maximum 
linearity. A common-mode feedback (CMFB) circuit is included, based on a differential 
amplifier with diode connected loads ([Gra01], p. 824). The common-mode output voltage is 
sensed by means of two relatively large resistors Rcm=30kΩ and compared with a reference 
voltage VREF=VDD/2=0.6V. Two small capacitors Ccm (50 fF) are included for improvement of 
the phase margin of the CM-loop. The nmos transistors loading the input stage are split in two 
identical parts. One part is biased with a constant gate voltage VB2, the other is controlled by 
the output voltage Vctrl of the CMFB amplifier (dashed rectangle in Fig. 4.9). This reduces the 
load capacitance of the CMFB amplifier, thus improving the phase margin of the CMFB loop. 
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 Fig. 4.9. RC-integrator based on a two stage opamp with common-mode feedback (CMFB) 
 

Table (4.3) summarizes the transconductance of the amplifying transistors of the 1st and the 
2nd stage together with the dimension of the passive components, Table (4.4) indicates the 
dimension of the main opamp transistors and Fig (4.10) depicts the Bode diagram of the 
approximated transfer function of the integrator together with the transistor level simulation 
results. Good accordance between the model and the simulation is obtained up to high 
frequencies. The deviation of the simulation results from the model at high frequencies is due 
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to the effect of parasitic capacitances which were not included in the model. The 1st integrator 
consumes 786 µW draining a total current of 655 µA including bias and CMFB.  
 
 

Circuit parameter Size Circuit parameter Size 
gm1 1.2 mS CC 400 fF 
gm2 2.4 mS CL 100 fF 
R 3 kΩ External RL 5 kΩ 
RC 300 Ω Cgd2 (simulated) 22 fF 
C 1.12 pF C1 (simulated) 160 fF 

Tab 4.3. Main circuit parameters of the 1st integrator 
 

 
1st stage 

input pmos 
1st stage 

nmos loads 

1st  stage 
pmos 

current tail 

2nd stage 
input nmos 

2nd stage 
pmos loads 

CMFB 
input pmos 

CMFB 
nmos loads 

CMFB 
pmos 

current tail 
W 80 µm 40 µm 40 µm 24 µm 40 µm 40 µm 20µm 20 µm 
L 0.24 µm 0.6 µm 1 µm 0.24 µm 1 µm 0.24 µm 0.6 µm 1 µm 

Tab 4.4. Size of the main transistors of the opamp in the 1st integrator 
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Fig. 4.10. Gain Magnitude (left) and phase of the simulated 1st integrator compared with the analytical 

model 
 

To confirm the noise estimation the input referred noise of the opamp input stage was 
simulated. The PSD is plotted in Fig. 4.11. From a frequency of about 1 MHz the thermal 
noise of the input and load transistors dominates over the Flicker noise. The rms input noise 
integrated in the signal band of 12.5 MHz amounts to 20 µV, i.e. a SNR due to circuit noise of 
87.2 dB is achieved, which is in accordance with the analytical estimation (4.26).  
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Fig. 4.11. Simulated input referred noise PSD of the opamp input stage (1st integrator) 
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4.2.4. Dimensioning of the 2nd integrator 
 
The 2nd integrator is realized with the same architecture as the 1st integrator. The integrator 
circuit noise is shaped by the previous integrator; hence, a larger input resistor R can be 
chosen for this integrator. To realize the integrator coefficient A2=0.418·fs following values of 
the input resistor and the integrating capacitor were used: R=20kΩ, C= 300fF. 
In order to reduce design and layout time the same identical active elements are used for the 
1st and the 2nd integrator. The only differences are the values of the compensation capacitance 
and of the zero-nulling resistor. Tab. 4.5 synthesizes the component and transconductance 
values, while Fig. 4.12 compares the Bode diagram of the analytical model with the results of 
the transistor level simulation. The power consumption of the 2nd integrator amounts, as in the 
1st integrator, to 786 mW.  
 

Circuit parameter Size Circuit parameter Size 
gm1 1.2 mS CC 300 fF 
gm2 2.4 mS CL 100 fF 
R 20 kΩ External RL 5 kΩ 
RC 700 Ω Cgd2 (simulated) 22 fF 
C 300 fF C1 (simulated) 160 fF 

Tab 4.5. Main circuit parameters of the 2nd integrator 
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Fig. 4.12. Gain Magnitude (left) and phase of the simulated 1st integrator compared with the analytical 

model 
 

4.2.5. Dimensioning of the 3rd integrator 
 
The 3rd integrator of the loop filter has different requirements when compared to the 
preceding integrators. On the one hand the linearity requirements are relaxed because of its 
position at the end of the loop. On the other hand it must provide good slewing properties 
since it is fed by a RZ-DAC. In fact, a RZ-DAC is characterized by large current variations 
from zero to the data-depending current value. Furthermore, all FF paths of the loop filter are 
connected to the virtual ground of the opamp, feeding a relatively large amount of current. 
The optimal solution for such demands is a class AB push-pull output stage which joins low 
quiescent currents with large maximum output currents. The required level shift between the 
gates of the output transistors for class AB biasing is realized with a transistor coupled feed-
forward control [Mon86], which has good quiescent current regulation, low chip area 
requirements, low-voltage suitability and good high-frequency behavior [Hog96]. The 
simplified schematic of the opamp used in the 3rd integrator is shown in Fig. 4.13. The 
function of the level shifter stage is to keep the DC voltage difference between the gates of the 
output transistors constant. This works as following: if the gate voltage of the output nmos 
rises, the VGS of the nmos transistor of the level shifter drops, together with its drain current. 
Since the level shifter is biased with a constant current IB, a larger portion of this current will 
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flow through the pmos of the level shifter. This causes its source voltage to rise, thus rising 
the gate voltage of the output pmos transistor. Hence, the difference of the gate voltages of the 
output transistors remains approximately constant.  
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Fig. 4.13. Opamp of the 3rd integrator with class AB output stage [Mon86]. CMFB and compensation 

capacitors not shown for simplicity 
 
The input stage current is sized so that no slewing occurs according to high-level simulations 
of the modulator. Concerning the ac behavior of the integrator, no zero-nulling resistor is 
required, since the output gm of this opamp is large. The 3rd integrator drains a total current of 
1.34 mA in the quiescent state, corresponding to a power consumption of 1.61 mW. 
 

Circuit parameter Size 
gm1 1.6 mS 

gm2 (quiescent)* 9.8 mS 
R 3.7 kΩ 
C 300 fF 

CCn 150 fF 
CCp 150 fF 
CL 800 fF 

*sum of gm of both output transistors 
Tab 4.6. Main circuit parameters of the 3rd integrator 

 
4.3. Loop filter passive components 

 
The following section describes the implementation of the integrated resistors and capacitors 
used in the loop filter. 

 
 

4.3.1. Capacitors 
 
All capacitors are metal-metal capacitors (MIM) with a specific capacitance of 1 fF/µm2. This 
ensures high-linearity and low voltage and temperature sensitivity. Since the CT integrator 
coefficients are given by RC time constants, they are largely inaccurate because of the large 
process variations of the absolute values of integrated capacitors and resistors in the order of 
±30%. To cope with this all integration capacitors are realized as switchable, binary weighted 
capacitor banks in parallel with a fixed capacitor. The implementation of the integration 
capacitors of the 1st integrator is depicted in Fig. 4.14. The wanted capacitance value can be 
tuned by means of a digital calibration word and is equal to: 
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where Cu is the unit capacitance. A 4-bit array is used for the integration capacitance of the 1st 
integrator, 3-bit are used for the 2nd integrator, 2-bit for the 3rd integrator. The values of the 
unit and fixed capacitors for all three integrators are given in Tab. 4.7. 
 

Integration capacitance of Cfix Cu 
1st integrator 700 fF 40 fF x 30 
2nd integrator 75 fF 17 fF x 14 
3rd integrator 39 fF 17 fF x 6 

Tab 4.7. Composition of the integration capacitances 
 

u
C2

u
C4

u
C8

u
C

1
6

fix
C

0b 1b 2b 3b

AC
u

C2

u
C4

u
C8

u
C

1
6

fix
C

0b 1b 2b 3b

BC

 
Fig. 4.14. Digitally tunable integrated capacitor of the 1st integrator 

 
A fully symmetrical, common-centroid layout of the unit capacitors in the bank minimizes the 
systematic mismatch between the binary weighted capacitors. Fig. 4.15 depicts the layout of 
the variable part of the two integration capacitors (differential implementation) of the 1st 
integrator. The number denotes the weight of the capacitance to whom the unit capacitors 
belong, the indexes a and b denote the integration capacitance of the differential circuit to 
whom they belong (cp. Fig. 4.14). 
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Fig. 4.15. Layout of the tunable capacitors of the 1st integrator 

 
4.3.1.1. RC-calibration circuit (not implemented) 

 
A possible way for automatic calibration of the RC time constants of the integrators is 
depicted in Fig. 4.16. The circuit works as in the following: one plate of the capacitor under 
test is separated from the integrator and connected to ground by means of a commuting switch 
S1. A constant voltage VR1 is applied to the so obtained RC member; at the same time a 
clocked counter is triggered. The voltage VC across the capacitor rises according to: 
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where C is the capacitance composed by the fixed capacitor Cfix and the additional binary 
weighted capacitors which are currently switched on. 
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Fig. 4.16. A possible automatic circuit for calibration of the RC products 

 
VC(t) is compared with a reference voltage VR2 by means of a comparator which toggles as 
soon as VC reaches VR2. At this point the counter is stopped by the rising voltage at the pin E. 
The time required by the capacitor to be charged to the reference voltage VR2 is proportional 
to the RC product: 
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The value stored in the counter at the end of the charge process is the number of clock cycles 
required by the capacitor to be charged, hence, according to (4.30) is proportional to the RC 
product. A digital comparator can switch additional capacitors on/off depending on the 
difference between the digital word in the comparator and a reference word TREF which 
represents the charging time for a nominal RC-constant. The so obtained new capacitance is 
reset with the switch S2 and charged again. The calibration procedure terminates when the 
difference between the charge time (represented in the counter at the end of every charge 
process) and the nominal time TREF is smaller than a minimum value.  
 
A different calibration circuit, which charges the capacitor with a constant reference current is 
shown in [Mit06].  
 

4.3.2. Resistors 
 
The integrated resistors are implemented with polysilicon non-salicided resistors in two 
flavors: high-resistance for the large feedback resistors of 529 kΩ to save chip area and 
reduce the parasitic capacitance, normal type for all other resistors.  
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4.4. Quantizer 
 
A 14-level flash ADC is used as a quantizer. This consists of a resistor ladder for the 
generation of the reference voltages and 13 sampled comparators. Each comparator is 
composed of a switched capacitor sampler, a preamplifier, a cross-coupled bistable element 
and a D-flip-flop for output synchronization (Fig. 4.17). 
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Fig. 4.17.  Schematic of the 14-level flash ADC used as quantizer 

 
The offset requirements are not very stringent because of 3rd order noise shaping. Behavioral 
simulations show that an offset of up to 20 mV is tolerable to achieve the required resolution 
of the modulator. On the other hand glitches at the comparators’ inputs are problematic. These 
can be reduced by means of a low-ohmic resistor ladder, which nevertheless leads to larger 
static current consumption. To keep the resistor size at a reasonable level additional pre-
amplifiers are used, which work as buffers between the inputs and the cross-coupled latches 
of the comparators. Each preamplifier consists of a differential pair with current tail 
transistors and low-ohmic passive loads (Fig. 4.18). A current of 30 µA flows in each branch 
of the differential amplifier. The value of the load resistors RL=20kΩ is chosen according to a 
trade-off between speed (lower values enhance the cut-off frequency), gain (larger RL means 
more gain, i.e., more suppression of mismatch and glitches of the latch stage) and DC output 
level (the gates of the following stages must be biased in strong inversion). The main preamp 
parameters are listed in Tab. 4.8. An additional advantage when using a preamp is the 
reduction of the input offset of the quantizer. In fact, the input offset of the cross-coupled 
element (latch) is usually large, as the area of its transistors must be kept small to reduce the 
dynamic power consumption; on the contrary, larger low-offset transistors can be used in the 
differential pair of the preamp. In this case the preamp gain reduces the contribution of the 
latch input offset to the total offset. The offset voltage of the preamp was estimated 
considering only the mismatch of the VT of the input transistors. According to [Pel89]: 
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where AVT is a technology constant, AVT=5.2 mV·µm in the used technology and W1, L1 are the 
width and the length of the preamp input transistors respectively. The calculated input offset 
VOS amounts to 3.4 mV for each pre-amplifier.  
 

Gain IDC W/Lin f3dB VOS RL 

19.7 dB 60 µA 10µm / 0.24 µm 1.17 GHz 4.7 mV 20 kΩ 

Tab 4.8. Main parameters of the pre-amplifier 
 
In order to allow nearly rail-to-rail input signals and reference voltages of the comparator, a 
switched capacitor (SC) input network is provided (Fig. 4.18), which makes the bias voltage 
of the input transistors of the preamplifiers independent on the signal and reference amplitude; 
otherwise these would be completely turned off for input signals (or references) approaching 
the negative supply rail if of n-mos type (positive rail for p-mos inputs) making pre-
amplification possible only in a reduced input range. Non-overlapping phases φ1 and φ2 (Fig. 
4.19) are used for the sampling of the reference voltage difference and of the input signal 
difference respectively. Channel charge injection from switched off transistors is minimized 
by using half-sided dummy transistors with opposite control phases connected to the sensitive 
nodes. The sampling capacitances Cs are sized according to a trade-off: larger capacitances 
decrease the signal attenuation at the input because of the capacitive divider Cs−Cin (Fig. 4.18) 
and reduce KT/C noise; smaller capacitances are charged faster and reduce loading of the 
preceding integrator. A value of 60 fF was chosen for Cs. 
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Fig. 4.18. Comparators’ input stage: SC network and pre-amplifier 
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Fig. 4.19. Non-overlapping sampling phases (1φ  and 2φ ) and reset phase. The decision starts at tdec. 
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After sampling, the output voltages of the preamp are converted into currents by the common 
source (CS) transistors M2 (Fig. 4.20), which are biased by a current of 2.5µA each. The CS 
transistors M2 work as a buffer between the latch and the preamp, reducing the capacitive 
coupling, therefore the kick-back noise at the comparator input. The current difference from 
the CS transistors is injected into a cross coupled latch which performs the comparator 
decision. To reduce hysteresis a reset switch controlled by the phase res is provided. When 
res is high the reset switch is switched on (reset phase) and both outputs of the cross coupled 
latch are at approximately half the supply voltage. At the high-low transition of res the reset 
switch is switched off and the decision phase occurs. After a short time the latch toggles to a 
stable state, where one output reaches VDD and the other one is close to ground. Hence the 
maximum voltage variation at the output is limited to VDD/2 (instead of VDD), further reducing 
kick-back noise at the comparator input. CMOS inverters with asymmetrical dimensioning of 
the n-mos and p-mos transistors are used for regeneration of the logic output level. Finally a 
D-Flip-Flop completes the comparator to avoid signal depending decision time of the 
comparator. The D-FF is clocked in order to generate a constant delay of Ts/2 between the 
decision time and the time at which the comparator output is updated. Power-off switches are 
included, saving power by deactivating currently not used circuit parts. 
 

1M

1oM
2oM

nM

pMpinvM , pinvM ,

ninvM , ninvM ,

1M

2M
2M

BV
BV

res

 
Fig. 4.20. Schematic of the comparator 

 
 
The table below shows the size of the active components used in the comparator. The 
comparator layout is depicted in Fig. 4.21. 
 
Transistor M1 Mo1 M2 Mo2 Mn Mp Minv,n Minv,p Switch 
Width (µm) 10 60 0.6 5 0.6 1 0.5 2 4 
Length (µm) 0.24 0.36 0.12 0.36 0.12 0.12 0.12 0.12 0.12 

Tab 4.9. Transistor size of the comparator 
 

 
Fig. 4.21.  Layout of the comparator 
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The reference voltages required for the comparator are generated by a resistor ladder which 
divides the supply voltage. The ladder is composed by 12 resistors of 80 Ω and two 
terminating resistors of 480 Ω between the largest reference and VDD and between the smallest 
reference and ground. All 80 Ω-resistors are realized with two 160 Ω-resistors in parallel to 
increase the layout area in order to reduce the relative variations due to process mismatch.  
The resistor ladder drains a total static current of 625 µA and the 13 equally spaced thresholds 
are between 0.3 and 0.9 V with a spacing of 50 mV. The total power consumption of the 
quantizer, including bias circuit and resistor ladder amounts to 3.7 mW.  
 

4.5. Main DAC 
 

The main NRZ DAC is an 11-bit-accuracy, differential DAC implemented with 13 identical 
Cascode current sources Iu (Fig. 4.22a). The i-th current is switched to the left or to the right 
branch according to the sign of the quantizer data Di, providing fully differential operation. 
The current summation takes place at the virtual ground node of the 1st integrator. In order to 
provide bi-directionality, a constant, half full scale current 13·Iu/2 feeds current to the virtual 
ground. This fixed current source consists of a pMOS regulated Cascode with large output 
resistance. A single-ended schema of the differential implementation together with the 1st 
integrator is shown in Fig. 4.22b. The current steering topology was chosen due to its 
advantages in term of fast response time. In fact, any delay in the feedback loop of the 
modulator increases the excess loop delay, worsening the resolution and eventually leading to 
instability. As explained in section 3.9 the NRZ DAC must be able to provide a current in the 
range [-108.33µA; +108.33µA]. After insertion of a fixed current source, which continuously 
feeds 108.33 µA, the multibit DAC must be able to drain a current in the range [0; 
+216.66µA]. This is accomplished with a bank of 13 switchable unit currents of: 
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R

V6.0

uI
2

13

uI

INV

uI uI

C

1D 2D 13D

iD iD

p
o
u

t
I

, n
o
u

t
I

,

(a) (b)

1BV

2BV

1M

2M

 
Fig. 4.22. a) Schematic of the unit current source, b) single-ended schematic of the DAC location 

 
4.5.1. Mismatch 

 
The matching of the unit current sources is of great importance for the linearity of the 
modulator. Because of the DAC location in front of the loop, the DAC non-idealities are not 
suppressed when referred to the modulator input. Any non-linearity in the DAC will have a 
direct effect on the SNDR and SFDR of the modulator, limiting its accuracy. In particular, 
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any mismatch in the theoretically identical Iu modifies in a random way the height of a current 
step in the static DAC characteristic, introducing an integral non-linearity (INL). To quantify 
the mismatch between the current sources we use the model for the current mismatch of two 
closely spaced MOS-transistors [Kin96]: 
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where W1 and L1 are the width and the length of the common source (CS) transistor M1 
implementing the unit current source (Fig. 4.22a), VOV1 its overdrive voltage and Aβ and AVT 
the technology parameters accounting for the random variation of the current factor 
β=µnCoxW1/L1 and the threshold voltage VT respectively. At this point it should be noted that 
the contribution of the common-gate (CG) transistors M2 to the current mismatch can be 
neglected if the output resistance of the CS transistors is large.  
Eq. (4.33) shows that the variance of the relative current mismatch of two adjacent MOS 
transistor can be minimized by enlarging the area of M1 and/or by increasing the overdrive 
voltage VOV1. While the first condition increases the chip area (i.e. the chip cost), the upper 
value of the latter is limited by the fact that M1 must operate in saturation (VDS1>VOV1). A 
value of 0.4 V for VOV1 was chosen as trade-off between low mismatch and operation of M1 in 
the saturation region. 
 Assuming the switches as ideal, i.e. the voltage drop across them is negligible, a total voltage 
of VDD/2=0.6 V is available for the VDS of both the CS and the CG transistors. The larger part 
of this voltage, 0.45 V, was allocated for the drain-source voltage of the CS transistor. This is 
required to guarantee a large output resistance of the current source. The residual 0.15 V are 
used by the CG transistor. The drain-source voltages of M1 and M2, VDS1 and VDS2, are 
selected by biasing the gates with an appropriate voltage. M2 was dimensioned so that the unit 
current defined in (4.32) and the VDS2 of 0.15 V bias the transistor with an overdrive voltage 
VOV2=0.1V, that is, in saturation. This further enhances the output resistance of the current 
source. The operating point of the DAC transistor is summed up in Tab. 4.10. 
 

Transistor VOV VDS IDS 
M1 0.4 V 0.45 V 16.66µA 
M2 0.1 V 0.15 V 16.66µA 

Tab 4.10. Biasing voltages and currents of the transistors of the current source 
 
The overdrive voltage of 0.4 V for transistor M1 is small enough to neglect the contribution of 
the β factor to the current mismatch in (4.33). According to (4.33), for a transistor area 
A1=W1L1 of 1250 µm2 and assuming AVT=5.2 mV·µm a relative standard deviation of the unit 
current Iu of 0.073% results. For the technology used, under the bias conditions in Tab. 4.10, a 
W/L ratio of 0.5 is need for transistor M1 to provide the required unit current, resulting in 
following dimensioning of the CS transistor (M1): W1=25µm L1=50µm. 
 
Since the current mismatch leads to an INL which varies randomly, a model is needed to 
estimate the yield of the DAC, defined as the percentage of the DAC fulfilling a given INL 
specification. By N-bit accuracy the maximum tolerable INL is: 
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Analytical models exist in the literature for the estimation of the yield ([Van00], [Lak86], 
[Lak88]). However, these models provide only an approximate result of the yield and are not 
sufficiently accurate. A better way for yield estimation is represented by Monte Carlo 
simulations. MATLAB® code was written to perform 10.000 simulations for each random 
generated vector composed of 13 unit current sources. Each current sources has a threshold 
voltage:  
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where VT0 is the nominal threshold voltage (0.22 V for large transistors according to 
simulations), ∆VT,rand the random component of VT and randn is a normally distributed 
random number with zero mean and unit standard deviation. The unit current together with its 
random variation was calculated with the current equation in saturation: 
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The W1/L1 ratio was set to 0.5 according to the required current and overdrive voltage, the 
product µnCox was obtained after transistor level simulations of the transistor M1 under the 
biasing conditions given in Tab. 4.10. 
The Monte Carlo simulation shows a yield of 80% for the required accuracy of 11.5 bit. In 
other words, 80% of the 10.000 random generated DAC exhibit an INL, which is better than 
LSB/2, where LSB=1/211.5. 
 

4.5.2. Signal depending DAC non-linearity 
 
A systematic INL error is caused by the signal-depending output resistance of the DAC. The 
signal-depending INL is, expressed in LSB [Raz95]: 
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where n=13 is the total number of unit current sources, RL the DAC load resistance seen at the 
integrator virtual ground, r0 the output resistance of a unit current source and N the required 
accuracy of the DAC. The demonstration of (4.37) is reported in Appendix B.  
 
The available voltage of only 600 mV for the Cascode current sources is nevertheless 
sufficient to bias both the CS and CG transistors in saturation, ensuring an output resistance r0 
of 2 MΩ, which is large enough to suppress any non-linearities due to code-depending output 
resistance. By substituting a simulated RL of 13.3 Ω, a value of 0.08 LSB for a required 
accuracy of 12-bit is obtained.  
 

4.5.3. Dynamic behavior of the DAC 
 
Dynamic errors such as glitches are also of great importance, as these are directly added at the 
modulator input. These errors are generated by capacitive coupling of the switching square-
wave to the output through parasitic capacitance of the switches as well as by low crossing 
point of the switching scheme [Fal99]. The first issue can be reduced by means of low swing 
control signals of the DAC switches, generated by an appropriate driver. The latter by 
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synchronizing the switching signals, so that the steering switches are never simultaneously 
off. The driver circuit used is an all-p-mos driver [Fal99], which allows a relatively process-
independent crossing point of the control signals (Fig. 4.23). Thirteen driver stages as that in 
Fig. 4.23 drive the gates of the switching transistors of the main DAC unit current sources.   
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Fig. 4.23. Left: all p-mos driver, right: data and driving signals waveforms 

 
In our implementation all pmos have the same size, hence the crossing point is roughly in the 
middle between Vlow=0.6V and Vhigh=1V, that is, at approximately 0.8 V. This voltage is 
sufficient to keep both switches of the current source in the on state at the transition point. 
Transistors P1–P4 are used to avoid capacitive coupling of the full-swing digital signal to the 
driver output.  
Switches. To improve the dynamic behavior of the DAC the size of the switches is of primary 
importance. The length is chosen to be minimal in order to reduce the on-resistance and the 
parasitic capacitance of the switches. In particular, the gate-drain capacitance of the switches 
is responsible of capacitive coupling of the switching control signal to the DAC output and 
must be kept as low as possible [Bas98]. The width is selected according to a trade-off: a 
larger width reduces the on-resistance but increases the parasitic capacitance. Hence, the DAC 
switches were sized as in the following: W=10µm, L=0.12µm. 
Common-gate transistors. The CG transistor M2 (Fig. 4.22a) is sized according to the 
required DC-working point (Tab. 4.10) and taking into account the frequency of the pole 
generated at the drain node of the CS transistor:  
 

2

2
2

gs

m
p C

g
s ≅  (4.38) 

 
where gm2 is the transconductance and Cgs2 the gate-source capacitance of the transistor M2. If 
the CG transistor works in saturation, neglecting the channel-length modulation and the body-
effect, the W/L ratio is known once its current and overdrive voltage VOV2 are defined (Tab. 
4.10): 
 

const
VCµ

I

L

W

OVoxn

D =≅
2

22

2 2
 (4.39) 

 
Clearly, if W2 is increased also L2 must grow proportionally, causing a quadratic growth of the 
parasitic capacitance Cgs2 with detrimental effect on sp2: 
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2
2222 WLWCgs ∝∝  (4.40) 

 
 On the other hand gm2 remains constant: 
 

const
L

W
V
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V

I
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D
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∂
∂

=
2

2
22 2

 (4.41) 

 
Shortly, the frequency of the pole sp2 is maximized if W2 (and L2) are minimized. A lower 
limit for the CG transistor width and length is put by matching considerations. Following 
values were chosen: W2=1.5µm, L2=0.36µm. 
 

4.5.4. Bias circuit 
 
The DAC currents must be matched to the input resistor of the modulator R1 to avoid gain 
errors in the A/D conversion. To suppress temperature drifts and mismatches the DAC 
currents were generated by means of a regulated circuit providing a current proportional to a 
reference resistance RREF (Fig. 4.24). The opamp is a simple differential pair with input nmos 
and pmos loads and single-ended output. The resistor RREF has a value of 30 kΩ and is laid 
out with the input resistor of the modulator in an interdigitated way to maximize the matching 
and the guarantee the same temperature. The current generated by the biasing circuit is: 
 

REF

REF
OUT R

V
I =  (4.42) 

 
The required DAC currents are obtained by mirroring IOUT. A Miller capacitor CC of 1 pF was 
used to guarantee sufficient phase margin of the two stage amplifier in feedback 
configuration. The second stage of the amplifier is the pMOS transistor in series with RREF. 

REFV

REFR

OUTICC

1
RMatching

resistors

 
Fig. 4.24. Bias circuit for the generation of the DAC currents 

 
4.5.5. Layout 

 
In order to suppress systematic errors due to the large layout area, such as doping, temperature 
and stress gradients, a common-centroid structure is used. Each unit current source is split 
into four parts and laid out with central symmetry (Fig. 4.25). The array of current sources is 
surrounded by dummy transistors to avoid edge effects. No additional area is needed for the 
interconnect lines, as these are laid out directly above the current source transistors (Fig 4.26). 
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Fig. 4.25. Layout of the current sources of the main DAC. B=Bias current source, D=dummy transistor, 

numbers denote current sources 
 

 
Fig. 4.26. Layout of the main DAC 

 
 

4.5.6. DAC circuit noise 
 
The DAC circuit noise is added directly at the modulator input without shaping and is thus a 
large contributor to the total circuit noise of the modulator. The Flicker noise contribution can 
be neglected, since the area of the common-source transistors is very large. Considering only 
the thermal noise of the channel, the total DAC output rms noise current is: 
 

mCSBnDAC kTgfni
3

82 ⋅=  (4.43) 

 
where n is the number of unit current sources, fB the signal bandwidth and gmCS the 
transconductance of the common-source transistors generating the DAC unit currents. 
Replacing n=13, fB=12.5MHz and the simulated gmCS=71.7µS, an rms output noise current of 
11.3nA is obtained. Referring this rms current to the modulator input the thermal SNR, when 
only the DAC thermal noise is present, is: 
 

22

2

,

2
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Ri

V
SNR

nDAC

FS
DACth

⋅
=  (4.44) 

 
where R is the 3kΩ input resistor of the modulator and VFS the amplitude of the full-scale 
single-ended input signal. Substituting VFS=0.325 a thermal SNR of 82.6 dB, i.e. 13.4 bit is 
obtained. This value is much lower than the aimed modulator resolution and can therefore be 
neglected. Also the constant current sources, which are used to get a bi-directional DAC 
characteristic, contribute to the thermal noise budget. The output noise current is: 
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mFIXBnFIX kTgfi
3

8
22 =  (4.45) 

 
where the factor two accounts for the differential implementation and gmFIX of the 
transconductance of the CS transistors generating the constant currents. For a simulated 
gmFIX=1.45 mS an rms noise current of 20nA is obtained. Again, referring the noise current to 
the modulator input the thermal SNR is calculated: 
 

22

22
log10

Ri

V
SNR

nFIX

FS
thFIX

⋅
=  (4.46) 

 
According to (4.46) a thermal SNR of 77.7 dB, i.e. a resolution of 12.6 bit, due to the fixed 
current sources of the main DAC is achieved.  
 

4.6. Secondary RZ-DAC 
 
The linearity and dynamic requirements of the secondary RZ-DAC are relaxed in comparison 
with the main DAC. In fact, all errors introduced by the secondary DAC are 2nd order shaped 
by the first two integrators of the loop filter. This allows saving area, since the tolerable 
mismatch is some orders of magnitude larger than that of the main DAC, and complexity, as 
simple CS transistor without cascoding are sufficient to guarantee the required linearity. 
Furthermore, since the glitches are 2nd order shaped as well, no driver circuit for the 
generation of the switching signals was provided. The schematic of the secondary RZ-DAC is 
depicted in Fig. 4.27 together with the timing diagram for a given datum Di from the 
quantizer. NOR gates are used for the generation of the RZ switching control signals Spi and 
Sni. Two fixed current sources feed a constant current of 13/2 times the unit current in order to 
ensure a bidirectional DAC characteristic. When the clock signal is high no current is drained 
by the unit current sources; nevertheless these are never switched off to avoid peaking and 
long rise and fall time of the current output waveform. The unit currents are instead redirected 
to a constant potential VCM=VDD/2. To ensure a zero output current in this phase a constant 
current equal to 13/2·Iu is drained by two additional current sources, which equalizes the 
current fed by the constant sources. 
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Fig. 4.27. Secondary RZ-DAC: a) timing diagram, b) control logic and DAC schematic 
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The current source transistors have a width of 6.5µm and a length of 13 µm, drain a unit 
current of 13.6µA and are biased with an overdrive voltage of 0.36V. No Cascode transistors 
were used for the unit current sources.  
 

4.7. Clock generation 
 
Eight different phases of the main clock are generated with the circuit shown in Fig. 4.28. The 
non-overlapping phases φ1 and φ2 with their inverted replicas are used in the switched 
capacitor network of the quantizer.  
 

res

res

2φ
2φ

1φ

1φ

CLK

Latch

Latch

dtDelay

 
 

Fig. 4.28. Circuit for clock generation 
 
The quantizer decision is performed when the res phase is low. The res waveform has a duty-
cycle which is larger than 50%. This was obtained by delaying the falling edge of the res 
signal without shifting the rising edge (Fig. 4.29). The reason for this is the following: since 
the implemented loop filter shows a delay when compared with the ideal filter because of its 
parasitic capacitances, the decision time (falling edge) was postponed of td=500 ps. The time 
shift was estimated by simulating the step response of the loop filter with extracted parasitic 
capacitances. In contrast, the reset time of the cross-coupled latch (rising edge) and the time at 
which the output D-flip flops provide the quantizer output were not shifted. The res waveform 
with delayed falling edge was realized with the cross-coupled circuit in Fig. 4.28 where the 
delay element consists of eight inverters with different transistor lengths.  
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idres

res

t

t

dt  
Fig. 4.29. Waveform of the quantizer reset phase: a) ideal phase, b) modified phase with delayed falling 

edge 
 

Large buffers were used as final stages of the eight clock phases to ensure steep edges of the 
clock signals and reduce delays.  
 
 

4.8. Modulator layout 
 
The modulator layout measures 500x470 µm2 without pads and is depicted in Fig. 4.30. The 
layout was designed with particular attention to the delay issues. At a clock frequency of 400 
MHz the clock period is only Ts = 2.5 ns. Hence, a delay of just 250 ps because of parasitic 
resistances and capacitances of the metal interconnections causes already an excess loop delay 
of 10% of the clock period, jeopardizing the stability of the modulator. This issue is 
particularly severe in the path between the quantizer output and the inputs of the main and 
secondary DAC. In order to cope with this, following approach was adopted: reduction of the 
parasitic capacitance of the long metal paths by using the top level metal layer; use of large 
buffers at the output of the quantizer to drive these paths; anticipation of the clock phase of 
the latches after the comparator to compensate the parasitic induced delay. Furthermore clock 
skew of the latches at the quantizer output is of primary importance, since this causes signal 
depending delay. This effect was reduced by using metal interconnections of equalized length 
for the clock lines.  
All differential components (transistors, capacitors and resistors) were split in two or more 
subparts and laid out using the common-centroid technique to minimize the systematic 
mismatch. All sensitive components were surrounded by dummy replicas to minimize edge 
effects.  
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Fig. 4.30.  Modulator layout. The main blocks are highlighted. 

 
4.9. Post-layout simulation results 

 
This section summarizes the post-layout simulation results. The parasitic capacitors were 
extracted from the layout with the Assura® RCX Extraction tool. To reduce the number of the 
extracted capacitors, i.e. to keep the simulation time to an acceptable level, the filtering option 
MinC=0.1fF was activated, which suppress all capacitors smaller then 0.1fF. This is a very 
small value and has a negligible impact on the simulation results.  
The modulator was simulated with a differential input sine signal with a frequency of 1.5625 
MHz, a single-ended amplitude of 0.25 V, i.e. -2.3dBFS, and a DC level of 0.6 V. The output 
spectrum, obtained by means of the FFT of 32768 output samples, is plotted in Fig. 4.31. An 
SNDR of 70.4 dB (i.e. en ENOB of 11.4 bits) is achieved in the signal bandwidth of 12.5 
MHz.  
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Fig. 4.31. Output spectrum for Vin=-2.3dBFS @ 1.5625 MHz according to post-layout simulations 

 
Fig. 4.32 plots the SNR and SNDR against the amplitude of the input signal in dBFS. A 
dynamic range of 71.8 dB is obtained. 
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Fig. 4.32. SNR and SNDR as function of the input signal amplitude. The input signal is a sine waveform 

with a frequency of 1.5625 MHz (post-layout simulation) 
 
The main modulator parameters and post-layout simulation results are summarized in Tab. 
4.11. 
 

Parameter Value 
Signal bandwidth (fB) 12.5 MHz 

Sampling frequency (fS) 400 MHz 
Oversampling Ratio (OSR) 16 

Total power consumption (P) 11.3 mW 
Signal-to-noise-and-distortion ratio (SNDR) 70.4 dB 

Signal-to-noise ratio (SNR) 70.9 dB 
Effective Number Of Bits (ENOB) 11.4 bits 

Dynamic range (DR) 71.8 dB 
Maximum stable amplitude (MSA) -2.3 dBFS 

Process technology 0.13 µm CMOS 
Chip area 500 x 470 µm2 

Tab 4.11. Main parameters of the modulator 
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4.10. Corner simulations 
 
Corner post-layout simulations were performed in order to analyze the modulator behavior in 
presence of variation of the temperature and the supply voltage. The results are depicted in 
Tab. 4.12. An ENOB of at least 11.5 bits is achieved in the whole temperature range when 
using a supply voltage of 1.3V or more. At 1.2V the ENOB is 10.5 bits at a temperature of 
80°C. At 1.1V the modulator gets unstable at high operating temperatures and can therefore 
not be used at this low supply voltage. 
 
 VDD=1.1V VDD=1.2V VDD=1.3V VDD=1.4V 

Temp. SNR SNDR SNR SNDR SNR SNDR SNR SNDR 
-40°C 66.7 66.3 75.6 74.8 76.3 76.1 75.1 74.9 
27°C 63.1 61.2 70.9 70.4 75.1 74.3 75.8 75.0 
80°C 38.0 35.0 66.5 65.1 71.5 70.9 76.0 75.1 

Tab 4.12. Corner post-layout simulations 
 

4.11. Estimated total circuit noise 
 
The total circuit noise was estimated by considering the four main contributors to the overall 
noise: the input resistors, the 1st opamp, the main DAC and the constant current sources of the 
main DAC. The singular values were calculated previously. Assuming all noise sources are 
uncorrelated, following total noise results: 
 

( ) 2
1

2222

22
10

nOTAnRnFIXnDAC

FS
totth

vvRii

V
SNR

+++
= log,  (4.47) 

 
Replacing the input-referred noise sources of the four main contributors as in (4.43), (4.45), 
(3.50) and (4.25) a total thermal SNR of 71.8 dB is obtained, that is, a thermal ENOB of 12.2 
bit. This value is about one bit higher than the resolution achieved after post-layout 
simulations. Hence, no significant worsening of the output spectrum in Fig. 4.31 because of 
thermal noise is expected.  
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Chapter 5 
 
Conclusions and future work 
 
 
 
 

5.1. FOM and comparison with state of the art 
 
In order to compare the result of this work with the state of the art present in the literature we 
introduce following figure of merit (FOM): 
 

B
ENOB f

P
FOM

22
=  (5.1) 

 
 
where P is the power consumption, ENOB the effective number of bits and fB the signal 
bandwidth. Smaller values of FOM mean a better figure of merit.  
 
Inserting the values for the proposed modulators: fB=12.5 MHz, ENOB=11.4 bit, P=11.3 mW, 
an excellent FOM of 0.17 pJ per conversion step is obtained, second only to [Mit06]. 
 
Tab. 5.1 compares the main parameters, such as clock frequency, signal bandwidth, 
resolution, power and the FOM of recent wideband continuous-time modulators with a signal 
bandwidth of at least 2 MHz. It should be highlighted that, while the other modulators in the 
comparison provide measurement results (except for [Sch05]), post-layout simulation results 
are used for the proposed modulator. Nevertheless we do not expect a significant worsening 
of the performance after chip fabrication; firstly, the noisy circuit elements were dimensioned 
to keep the thermal noise under the quantization noise floor of the simulated spectrum as 
explained in section 4.11; secondly, the mismatch-caused DAC non-linearity is expected to be 
lower than the achieved resolutions, as the DAC was dimensioned to fulfill this specification. 
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Paper fS 
(MHz) 

fB 
(MHz) 

SNDR 
(dB) 

SNR 
(dB) 

DR 
(dB) 

Power 
(mW) 

FOM 
(pJ/step) 

CMOS 
process 

[Mit06] 640 20 74 76 80 20 0.12 130nm 
[Shu08] 256 8 70 76 81 50 1.21 65nm 
[Str08] 950 10/20 72/67 86/75 N/A 40 0.61/0.55 130nm 

[Wen08] 640 10 82 84 87 100 0.49 180nm 
[Dha09] 250 20 60 62 68 10.5 0.32 65nm 
[Par09] 900 20 78.1 81.2 80 87 0.33 130nm 
[Kim09] 250 10 65 68 71 18 0.62 130nm 
[Bre07] 340 20 69 71 77 56 0.61 90nm 
[Bre04] 160 10 55 63 67 68 7.4 180nm 
[Pat04] 300 15 63.7 64.6 67 70 1.85 130nm 
[Van02] 154 2 68 70 70 11.5 1.4 180nm 
[Dör05] 104 2 71 72 N/A 3 0.26 130nm 
[Cal06] 100/200 10/20 57/49 58/50 61/55 87 7.5/9.4 180nm 
[Yag05] 276 23 69 70 72.5 46 0.43 180nm 
[Sch07] 640 10 66 N/A 72 7.5 0.23 180nm 
[Sch05]7 1000 8 63.4 63.5 N/A 10 0.54 90nm 

This 
work8 

400 12.5 70.4 70.9 71.8 11.4 0.17 130nm 

Tab 5.1. Main performance parameters of CT high-bandwidth, low-power Σ∆ modulators 
 
A graphical representation of the FOM against the signal bandwidth, the SNDR and the power 
consumption is plotted in Fig. 5.1 for the modulators of Tab. 5.1.  
 

0 50 100
0

1

2

3

4

5

6

7

8

Power (mW)

F
O

M
 (

pJ
/s

te
p)

This work

better

0 10 20 30
0

1

2

3

4

5

6

7

8

Signal Bandwidth (MHz)

F
O

M
 (

pJ
/s

te
p)

50 60 70 80 90
0

1

2

3

4

5

6

7

8

SNDR (dB)

F
O

M
 (

pJ
/s

te
p)

This work This work

better better

 
Fig. 5.1. FOM of the modulators in Tab. 5.1 against power, signal bandwidth and SNDR  

 
5.2. Future work: DEM or DAC analog calibration 

 
To reduce the chip area and/or improve the DAC linearity additional circuits could be 
implemented in the future. Digital Element Matching (DEM) techniques such as Data 
Weighted Averaging (DWA) or pseudo DWA [Ham04] are usually used for the dynamic 
selection of the mismatching DAC elements according to special algorithms (rotation of the 
selected elements or similar). These circuits largely improve the DAC linearity by suppressing 
the harmonics generated by the DAC INL. The main drawback of such circuits is the 

                                                 
7 ELDOTM simulation results 
8 Spectre® Post-layout simulation results 
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additional delay introduced in the path between the quantizer output and the DAC, because of 
the latency of the switching network selecting the DAC elements. In high speed solutions, 
such as the modulator proposed in this work, this could lead to system instability; furthermore 
DEM circuits lose effectiveness at low OSR. 
A good alternative to DEM is represented by analog calibration circuits ([Gro89], [Yan04]). 
They work according to the following principle: each current source is separated from the 
DAC after a defined time and calibrated with the aid of a reference current. By adding one 
spare current source to the DAC the calibration can be performed without interruption of the 
DAC operation, since the current source under calibration is replaced by the additional current 
source. This type of calibration do not cause additional delay, as the calibration takes place 
outside the feedback loop of the modulator, and is the ideal solution for high speed, ELD-
prone modulators. 
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Appendix A 
 
Calculation of the DT equivalent transfer function 
with the aid of the IIT 
 
 
 
 
In the following the discrete-time equivalent filter of a 3rd order continuous-time filter with a 
resonator together with an NRZ DAC and a HRZ DAC (Fig. A.1) is calculated against the 
excess loop delay (ELD), which is normalized to the clock period: 
 

s

d
d T

t
=τ  (A.1) 

 
Since the CT filter is linear time-invariant the superposition principle can be applied. Hence, 
the overall impulse response of the system is the sum of two terms: 
 

( ) ( ) ( )ththth HRZNRZ +=  (A.2) 
 

where hNRZ(t) is the impulse response of the system when the HRZ DAC is removed, while 
hHRZ(t) is the impulse response of the system when the NRZ DAC is removed.  
 
Transforming in the Laplace domain we get: 
 

( ) ( ) ( )sHsHsH HRZNRZ +=  (A.3) 
 

where 
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The functions HNRZ,DAC(s) and HHRZ,DAC(s) in (A.3) and (A.4) are the Laplace transformations 
of the impulse responses of the main and the auxiliary DAC respectively. The transfer 
function of the equivalent DT filter will be calculated by converting (A.3) and (A.4) into the 
DT equivalents by means of the impulse invariant transformation (IIT) and then summing the 
discrete-time transfer functions obtained. 
To simplify the treatment the integrator coefficients will be normalized to the clock frequency 
of the modulator. Following substitutions are made: 
 

sss f
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f
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f

A
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3
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1

1 ,, →→→  (A.5) 

 
All calculations in the following sections assume that the integrator coefficients are 
normalized to the clock frequency. 
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Fig. A.1. CT filter with main DAC and auxiliary DAC  for compensation of ELD 
 

A.1 Main DAC 
 
The filter transfer function from the input XNRZ(s) to the output V(s) is: 
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where 32

2
0 AAγω =  is the resonance frequency of the resonator.  Expanding H1(s) in partial 

fractions it can be written in the form: 
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The coefficients of the partial fractions are: 
 

( )
2
0

32
101 ω

AA
AssHA

s
=⋅=

=  (A.8) 

 



 

 

 

117 

( ) ( ) ( )
( )

102
0

03
2
0321

0

3203
2
0

0

1
01 220

jCC
jAAAA

j

AAjA

j

A
jssHB

js
−=

−
−−

=
−

+−−
−

=+⋅=
−= ω

ωω
ω

ωω
ω

ω ω
 (A.9) 

 

( ) ( ) ( )
( )

102
0

03
2
0321

0

3203
2
0

0

1
01

*

220
jCC

jAAAA

j

AAjA

j

A
jssHB

js
+=

−
+−

=
++−

=−⋅=
+= ω

ωω
ω
ωω

ω
ω

ω
 (A.10) 

 
B and B* are complex and conjugate, C0 represents their real part ±C1 their imaginary part. 
With the aid of the table in [Che02] we can calculate the DT terms having the same sampled 
impulse response as the partial fractions in (A.7) together with a NRZ DAC with normalized 
delay τd. The delayed NRZ DAC waveform can be conceived as the sum of two pulses: one 
pulse starts at t/Ts=τd and ends at t/Ts=1; the second pulse starts at 1 and ends at 1+τd (Fig. 
A.2a) 
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Fig. A.2. Decomposition of the DAC waveforms in two components 
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The equivalent discrete time TF for the NRZ input is then: 
 

( ) ( ) ( ) ( )dNRZdNRZdNRZdNRZ zHzHzHzH ττττ ,,,, ,3,2,1 ++=  (A.14) 
 

As H1,NRZ(z,τd), H2,NRZ(z,τd) and H3,NRZ(z,τd) do not exhibit the delay term τd in the 
denominator, the same can be stated for HNRZ(z,τd), which is the sum of (A.11), (A.12) and 
(A.13). 
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A.2 Auxiliary DAC 
 
The filter TF from the input XHRZ(s) to the output V(s) is: 
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Expanding H2(s) in partial fractions it can be written in the form: 
 

( )
0

2

0

1
2 ωω js

C

js

C
sH

−
+

+
=  (A.16) 

 
The coefficients of the partial fractions are: 
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Both residues are identical and were renamed as C. The delayed HRZ DAC is decomposed in 
two pulses: one pulse starts at t/Ts=0.5+τd and ends at t/Ts=1; the second pulse starts at 1 and 
ends at 1+τd (Fig. A.2b). The DT equivalents of the partial fractions are: 
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Finally, the DT equivalent of the HRZ DAC and the filter is: 
 

( ) ( ) ( )dHRZdHRZdHRZ zHzHzH τττ ,,, ,2,1 +=  (A.21) 
 

Adding (A.19) with (A.20) and using Euler’s trigonometric formulas following result is 
obtained: 
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As in the case of HNRZ(z,τd) also HHRZ(z,τd) does not contain any delay term in the 
denominator, since the discrete-time equivalent transfer functions of the partial fractions have 
τd-independent denominators. 
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A.3 DT equivalent  
 
The transfer function of the discrete-time equivalent of the system in Fig. A.1 is: 
 

( ) ( ) ( )dHRZdNRZdd zHzHzH τττ ,,, +=  (A.23) 
 

Since the delay term τd has no effect on the denominator except for a delay term z, also 
Hd(z,τd) will have the form: 
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The effect of ELD on the system in Fig. A.1 can thus be summarized as follows: coefficient 
mismatch in the numerator and increase of the order of the equivalent DT filter because of the 
z term in the denominator. 
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Appendix B 
 
Calculation of the INL of the DAC 
 
 
 
 
A systematic INL error is due to the signal-depending output resistance of a current-mode 
DAC [Raz95]: 
 

OUT

L

R

nR
INL

4
=  (B.1) 

 
where n is the total number of unit current sources, RL the DAC load resistance and ROUT the 
DAC output resistance. To demonstrate this we model each current source with its small-
signal equivalent circuit (Fig. B.1). 
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Fig. B.1. Small-signal equivalent circuit of a multi-bit current DAC 

 
The actual value of the DAC output resistance depends on the number of current sources 
which are switched on (Fig. B.1). The maximum current that can be provided by the DAC to 
the load is obtained when all sources are switched on: 
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To calculate the INL we need to plot the output current against the number of sources which 
are currently switched on. This problem can be analyzed more easily if we consider this 
number not as discrete but continuously varying between zero and n. For this purpose we 
introduce an index x, bounded between zero and one, so that the number of switched sources 
is equal to n·x. The current flowing across the load is then: 
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Eq. (B.3) shows a non-linear dependence of the load current from the number nx of unit 
currents, which are actually switched on and describes the curve of the non-linear DAC 
characteristic (Fig. B.2).  Replacing (B.2) in (B.3) we obtain: 
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The ideal, linear output current is the straight line connecting the origin to IOUT,max: 
 

( ) max,, OUTidOUT IxxI ⋅=  (B.5) 
 

Hence, the non linear error is: 
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The INL is the maximum of Iε(x) normalized to IOUT,max and expressed in LSB. Differentiating 
(B.6) and equating to zero we get: 
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where the approximation holds if 
n
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Fig. B.2. Ideal and non-linear static characteristic of a DAC 
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Replacing the value x=1/2 in (B.6) we obtain: 
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By normalizing (B.8) to the maximum current and expressing it in LSB the INL is obtained: 
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