
This version is available at https://doi.org/10.14279/depositonce-7088

Copyright applies. A non-exclusive, non-transferable and limited
right to use is granted. This document is intended solely for
personal, non-commercial use.

Terms of Use

© ACM 2017. This is the author's version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in SCOPES '17 Proceedings of the 20th
International Workshop on Software and Compilers for Embedded Systems
http://dx.doi.org/10.1145/3078659.3078672

Juurlink, B., Lucas, J., Mammeri, N., Bliss, M., Keramidas, G., Kokkala, C., & Richards, A. (2017). The
LPGPU2 Project. In Proceedings of the 20th International Workshop on Software and Compilers for
Embedded Systems - SCOPES ’17. ACM Press. https://doi.org/10.1145/3078659.3078672

Juurlink, B.; Lucas, J.; Mammeri, N.; Bliss, M.; Keramidas, G.; Kokkala,
C.; Richards, A.

The LPGPU2 Project: Low-Power Parallel
Computing on GPUs

Accepted manuscript (Postprint)Conference paper |

The LPGPU2 Project - Low-Power Parallel Computing on GPUs
Extended Abstract

Ben Juurlink
TU Berlin

Einsteinufer 17

Berlin, Germany 10587

b.juurlink@tu-berlin.de

Jan Lucas
TU Berlin

Einsteinufer 17

Berlin, Germany 10587

j.lucas@tu-berlin.de

Nadjib Mammeri
TU Berlin

Einsteinufer 17

Berlin, Germany 10587

mammeri@tu-berlin.de

Martyn Bliss
Samsung Electronics

Communications House

Staines, UK

martyn.bliss@samsung.com

Georgios Keramidas
Think Silicon

Patras Science Park

Rion Achaias, Greece 26504

g.keramidas@think-silicon.com

Chrysa Kokkala
Think Silicon

Patras Science Park

Rion Achaias, Greece 26504

c.kokkala@think-silicon.com

Andrew Richards
Codeplay

Argyle House

Edinburgh, Scotland

andrew@codeplay.com

ABSTRACT

The LPGPU2 project is a 30-month-project (Innovation Action)

funded by the European Union. Its overall goal is to develop an

analysis and visualization framework that enables GPU application

developers to improve the performance and power consumption of

their applications. To achieve this overall goal, several key objec-

tives need to be achieved. First, several applications (use cases) need

to be developed for or ported to low-power GPUs. Thereafter, these

applications need to be optimized using the tooling framework.

In addition, power measurement devices and power models need

to be developed that are 10x more accurate than the state of the

art. The project consortium actively promotes open vendor-neutral

standards via the Khronos group. This paper briefly reports on the

achievements made in the first half of the project, and focuses on

the progress made in applications; in power measurement, esti-

mation, and modelling; and in the analysis and visualization tool

suite.

1 INTRODUCTION

Consumers today expect to be able to carry a supercomputer

around with them, that has detailed graphical displays, is easy to

use and lasts for more than a day on a single battery charge. Not

only that, but now users expect their devices to see, listen and

understand the world around them. This applies to devices from

smartphones that can understand human spoken requests to all the

way to cars that can drive themselves. To deliver on this

capability requires very power efficient graphics processors

("GPUs").

Power consumption is important to processing, smart power

management algorithms such as dynamic voltage frequency scaling

(DVFS) are used as a mitigation for high power consumption but

this usually results in a less compelling user experience as the CPU

and GPU are clocked down to conserve power resulting in less raw

processing power. The strict power limitations means that these

demands cannot be met through hardware improvements alone, the

software must better exploit the available resources. Unfortunately,

programmers are hindered when creating low-power GPU software

by the quality of current performance analysis tools. As software

becomes more complex it becomes increasingly unmanageable for

programmers to optimize the software for low-power devices.

The LPGPU2 consortium has come together to work as a diverse
team on delivering low-power GPUs from all the range of angles

1

Figure 1: General diagram of the LPGPU2 framework

required. The consortium combines commercial tools, applications,

platform and GPU designers with academic researchers to analyse

GPU power and performance, define standard interfaces to reliably

measure the power and performance, and create a tool chain to

provide clear information and insights to software developers. The

companies in the consortium are world leaders in power-efficient

GPU design (Think Silicon), GPU and compute tools (Codeplay),

graphics standards and applications (Samsung), video codecs and

media players (Spin Digital), and the university in the consortium

(Technical University of Berlin TUB) has leading experts on parallel

applications and multi-core architectures.

This project proposes to aid the programmer in creating software

for low-power GPUs by building on the results of the first LPGPU

project [2] to provide a complete performance analysis process for

programmers. It will address all aspects of performance analysis,

from hardware power and performance counters, to a tool chain

that processes and visualizes information from these counters. The

main objectives of this project are:

1. To help programmers to improve the energy efficiency of

their applications, the LPGPU2 tool chain will provide hints and

suggestions to GPU programmers showing ways to reduce power.

2. To enable programmers to be able to write their software

once and run it on a variety of different low-power GPUs. The

LPGPU2 project will work on standardizing power analysis and

power-efficient programming models.

3. To increase the productivity in GPU software development,

we propose an approach in which there are layers of technologies,

that all work together via open standards, or open source software.

4. To bring technologies to market in a commercializable form,

including productizing and commercializing the technologies de-

veloped in the previous LPGPU project [2]. This includes bringing

the SYCL™ standard into real-world AI applications and putting

the LPGPU video decoders into commercial video systems.

2 APPLICATIONS

As part of LPGPU2 several applications are being developed and

ported to low-power GPU environments. These applications com-

bine graphics and compute parts, and require the use of existing

and emerging APIs such as OpenGL ES™ [4], OpenCL™ [7, 11],

and Vulkan™ [13], in order to deliver the required performance

and functionality. These applications will be used as benchmarks

for the power and performance analysis tool being developed as

part of the project. Figure 1 illustrates the role of the applications

in LPGPU2 .

The applications under consideration are important commer-

cial applications for individual partners in the area of their core

businesses:

• Spin Digital develops video codecs for the next generation

of ultra high quality media. In LPGPU2 Spin Digital is de-

veloping a media player based on the H.265 video codec.

The main contribution has been the development of a high

performance and high quality multi-API video rendering

engine. When combined together with the H.265 video de-

coder, the new video rendering engine allows the creation

of state-of-the art media playback applications in areas

such as UHD TV, Virtual Reality (VR), and large screen

display.

• Samsung graphics team in the UK is responsible for android

mobile graphics in their platform. Their applications are

related to Virtual Reality (VR), Augmented Reality (AR)

and font rendering. Any output from this work will help

in improving Samsungs’ mobile graphics platform where

their mobile phones could be used for VR using GearVR,

their mobile camera can used for AR and their mobile

phone screen could be used for displaying text using font

rendering.

• To realize the possibilities of computational photography,

applications must access the hardware at low level. This

would allow to control individual ISP blocks, as well as

send and receive detailed information from the hardware,

including exposure settings, flash, focus point, timestamps,

and raw image sensor data. Using the GPU for post-camera

processing is a promising direction since the bulk of the

memory traffic can be eliminated. Think Silicon has built

three different implementations of a set of ISP algorithms

(in C, in NEMA|gfx, and in Vulkan). An ISP demonstrator

based on NEMA|gfx [10], a proprietary low-level graphics

API of Think Silicon, was developed and presented at in-

dustrial exhibitions with the goal of exploiting commercial

opportunities of executing ISP and post-camera processing

algorithms on embedded GPUs.

• TensorFlow™[1], is an artificial intelligence framework

that can be used for executingmachine learning algorithms.

While a computation expressed using TensorFlow can be

executed across heterogeneous systems, support has so

far been limited to NVIDIA® processors using CUDA® [6].

In order to enable developers to access a wider range of

processors, we are working to bring support for OpenCL

devices to the TensorFlow framework using SYCL. OpenCL

is a framework for writing programs that execute across

heterogeneous platforms, and SYCL is a royalty-free, cross-

platform C++ abstraction layer that builds on the underly-

ing concepts, portability and efficiency of OpenCL, while

adding the ease-of-use and flexibility ofmodern C++14. Par-

allelization is also important from a processing and power

management perspective. Since tensors are n-dimensional

2

Figure 2: LPGPU2 power measurement testbed

vectors, having access to parallelization of the TensorFlow

code is important not just at the training stage, but also

when performing inference on new data sets and this could

well be happening on embedded hardware with low power

requirements.

3 POWER MEASUREMENT, ESTIMATION &

MODELING

Another large area of the project is themeasurement, estimation and

modeling of the power consumption of embedded low power GPUs,

as well as the SoCs that employ these GPUs. A main activity of

the LPGPU2 project is the development of a highly-accurate power

models for embedded GPUs. These power models will be integrated

in the LPGPU2 toolchain and will act as a valuable means to locate

the most power consuming parts of the executed applications.

3.1 LPGPU2 Power Measurement Testbed

In order to verify and calibrate our power models the LPGPU2

project also developed its own power measurement testbed for

embedded SoCs. The first LPGPU project also used a power mea-

surement testbed, but relied on a CotS USB DAQ and custom signal

processing circuits. While this setup worked, it was cumbersome

to use due to several issues: Closed source drivers prevented the

use of regular up to date Linux distributions, sample rate and res-

olution could be improved and the wiring between custom signal

conditioning was prone to loose contacts. The LPGPU2 power mea-

surement testbed, shown in Figure 2, improves upon the old testbed:

The complete circuit, firmware and host software was designed

within the project, sample rate and resolution was improved and

new software was written to support measurements of embedded

Android based platforms.

3.2 Data-Dependent Power Consumption

The switching activity of CMOS circuits depends on the processed

data. As CMOS dynamic power depends on the switching activ-

ity this also influences the energy consumption. Our initial ex-

periments showed a large influence of data values on the energy

consumption of commercial GPUs. In one experiment the power

consumption increased by 65%, when changing the processed data

without changing the number of executed instructions or memory

accesses patterns. Conventional architectural power models for

Application
under Test

Data
Collector ADB ADB Alignment Power

Estimator
Power

Estimation

Coefficients
Power
Testbed

Power
Receiver

Device

Host PC

Figure 3: Overview of the Power Model and Evaluation Plat-

form

GPUs do not consider the influence of data on power. The LPGPU2

project developed a novel power model for GPU ALUs, that takes

the data-dependence into account [5]. By considering data depen-

dent metrics such as hamming distances, the power consumption

of the data path could be predicted with 85.6% smaller errors than

previous models.

3.3 Android Power Model & Microbenchmarks

One result of the project is the development of a flexible power

model for Android based systems. The power model collects perfor-

mance counters suitable for power estimation. A set of microbench-

marks is executed on the device to discover the influence of the

different performance counters on the power consumption. This is

used to calibrate the power model. After the calibration has been

performed for a platform, power consumption can be predicted

from the performance counters without requiring extra measure-

ment hardware. An overview over this setup is shown in Figure 3.

Android Debug Bridge (ADB) is used as communication channel

between a lightweight performance counter collection software

running device and the power model running on a host PC. A

special alignment procedure is used to ensure that performance

counter data and measured power data is synchronized.

3.4 GPU Power Model Verified at Netlist-level

While the previous power model relied on microbenchmarks and

public architectural information. We also wanted to discover how

accurate a power model can be, if full knowledge of the architecture

is knowen as well as access to the hardware description is available.

To this end, a fully parameterized power model is created and a

methodology for selecting the suitable set of hardware performance

counters is developed. The proposed methodology attempts to re-

duce the set of required hardware counters for a given upper bound

or maximum error in estimating the power consumption of embed-

ded GPUs. The outcome of this activity is validated in Think Silicon

GPUs and in particular in the 3D Nema|t GPU (multi-threaded and

multi-core) [9] assuming various hardware configurations (altering

the number of GPU hardware threads, the number of cores), tech-

nology nodes (two process technologies; TSMC and FDSOI), and

operating configurations (two voltage/frequency levels).

The calibration and validation of the power model is done using

fine-grain, netlist-level power measurements using the IC power

compiler tools of Synopsis [12] (version VCS-MX K-2015.09). Fig-

ure 4 depicts a high level overview of the derived methodology. The

3

Figure 4: Power model methodology LPGPU2 framework

inputs of the power model are: i) the GPU configuration, ii) the re-

quested accuracy of the power model, and iii) the training suite (the

testbench suite of the company is used). The outputs of the model

are: i) the model parameters (i.e., the weight factors of a parameter-

ized equation which takes also as input the performance counter

values), ii) the minimal set of required performance counters for

the input accuracy. The heart of the power model is a statistical

correlation model based on a least square linear regression (LSQR)

algorithm [8].

The development of the power model is divided into two main

phases: the training phase and the validation phase. During the

training phase, the initial power model is created using the test-

benches and the netlist-level power measurements as input. The

validation phase includes an iterative phase in which the number of

selected hardware performance counters is progressively reduced

based on a try-and-error algorithm until the predefined input accu-

racy is achieved. The experimental results of the validation phase

are illustrated in Figure 5 in which a set of ISP and post-camera

processing computation kernels is used (developed also as part of

the LPGPU2 project). As Figure 5 indicates, the average error when

the full set of performance counters is utilized is well below 1.5% for

all studied GPU configurations. Obviously, the error will increase

when a meager set of performance counter is used.

Figure 5: Accuracy of the power model when the full set of

the performance counters is used

Figure 6: CodeXL displaying data captured from Think Sili-

con’s Nema

4 TOOL SUITE

The tool suite provides the infrastructure and mechanisms to al-

low the visualization of collected API traces along with hardware

counters (performance & power) that are collected in parallel with

the API traces. Figure 6 shows a representative example of the data

collected being displayed. The tool suite consists of:

• CodeXL

LPGPU2 created a fork of the open source CodeXL [3]

tool from AMD and has extended this to provide the visual-

ization and processing capabilities required by the project.

These include the addition of OpenGL ES trace processing,

simultaneous timeline and counter views, extending the

database schema to support additional types of data, etc.

• DC API (Data Collection API)

DC API is a graphics and hardware counter vendor neu-

tral API. It was designed to sit between higher level API’s

such as OpenGL ES, EGL, Vulkan, etc and the modules that

interface with hardware counters.

By exposing a data driven API, DC API has proven itself

flexible enough to support Samsung mobile devices, Think

Silicon’s Nema system and other android devices without

deviating from the initial API definition.

• Interposer (Shim)

The Shim is a c++ module that is automatically gen-

erated from Khronos (or other compliant) API definitions

in XML format. Additional boiler plate code is added as

part of the build process resulting in an entity that can be

used to hook all function calls in a single or multiple API

and then perform various actions such as: tracing function

names, execution times, monitoring state etc.

• Collector

The collector is a python module that is responsible

for installing the shim, starting and stopping data collec-

tion, hosting the DC API module, converting data collected

on the target into a form that CodeXL can process and

allowing reliable and simple configuration of hardware

counters.

4

The tool suite has been used by Samsung extensively when

testing the applications to be delivered as part of the project, and

due to the multi-platform capabilities of the tool on Think Silicon’s

Nema system as well. Support for a third platform will also be

achieved by the end of the project.

5 CONCLUSION AND FUTURE WORK
GPUs are becoming mainstream in accelerating many applications,

thanks to their parallel processing capabilities. However, power

consumption remains a concern especially for applications where

there are strict power limitations.

The LPGPU2 project aims to deliver low power efficient GPU
processing not by hardware improvements alone but by leveraging

enhancements at the software level. LPGPU2 aims to enable GPU
programmers with a framework that allows them to improve the

performance and power consumption of their applications. In this

paper, we showed how the LPGPU2 project addresses the problem
from different perspectives; from power models and tool develop-

ment to applications and algorithm optimizations.

The project devised a toolchain encompassing a GUI interface,

APIs, interposer and data collectors. The toolchain equips develop-

ers with the infrastructure and mechanisms allowing the visualiza-

tion an interaction with the collected data (API traces along with

hardware counters) for the sake of improving the performance and

power consumption of their applications.

Counter-based power models, that can be calibrated to different

hardware platforms, were developed and will be integrated within

the LPGPU2 toolchain. These models will be used in estimating
power consumption of the running applications based on the col-

lected counter data. Initial results show that average error is well

below 1.5% when a full set of performance counters is used.

Several applications combining graphics and compute parts were

developed. These applications will be used as benchmarks for the

power and performance analysis tool being developed as part of the

project. A wide range of applications were developed showcasing

font rendering, augmented reality, virtual reality, ISP algorithms,

deep learning using the Tensorflow framework as well as an H.265

codec [14] and a new high-performance video rendering engine.

ACKNOWLEDGMENT

This work has received funding from the European Union’s Horizon

2020 research and innovation programme under grant agreement

No 688759.

REFERENCES
[1] M. et al. Abadi. 2015. TensorFlow: Large-Scale Machine Learning on Heteroge-

neous Systems. (2015). http://tensorflow.org/ Software available from tensor-
flow.org.

[2] Ben Juurlink et al. 2012. LPGPU: Low Power Parallel Computing on GPUs. (2012).
http://lpgpu.org/wp/reports/reports-lpgpu1/ FP7 STREP project co-financed by
the EU under the 7th Framework Programme Grant Agreement No.288653.

[3] Advanced Micro Devices Inc. 2016. CodeXL: A comprehensive tool suite that
enables developers to harness the benefits of CPUs, GPUs and APUs. (2016).
https://github.com/GPUOpen-Tools/CodeXL

[4] John Kessenich, Dave Baldwin, and Randi Rost. 2010. The OpenGL ® Shading
Language. Language 1 (2010), 1–29. http://www.opengl.org/documentation/
specs/

[5] Jan Lucas and Ben Juurlink. 2016. ALUPower: Data Dependent Power Consump-
tion in GPUs. In 2016 IEEE 24th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS). 95–104.
https://doi.org/10.1109/MASCOTS.2016.21

[6] NVIDIA. 2015. NVIDIA CUDA C Programming Guide v7.5. http://docs.nvidia.
com/cuda/pdf/CUDA_C_Programming_Guide.pdf. (Sep. 2015).

[7] Khronos Opencl. 2009. OpenCL Specification. (2009). https://www.khronos.org/
opencl/

[8] Peter Rousseeuw. 1984. Least Median of Squares Regression. J. Amer. Statist.
Assoc. 79, 388 (1984), 871–880. https://doi.org/10.1080/01621459.1984.10477105

[9] Think Silicon. 2016. 3D Nema|t GPU. (2016). http://think-silicon.com/products/
hardware/nema-tiny/

[10] Think Silicon. 2016. Nema|gfx API. (2016). http://think-silicon.com/products/
software/nemagfx-api/

[11] John E. Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A parallel
programming standard for heterogeneous computing systems. Computing in
Science and Engineering 12, 3 (2010), 66–72. https://doi.org/10.1109/MCSE.2010.69

[12] Synopsys. 2015. IC Power Compiler. (2015). https://www.synopsys.com/
implementation-and-signoff/rtl-synthesis-test/power-compiler.html

[13] Khronos Vulkan. 2016. Vulkan Specification. (2016). https://www.khronos.org/
registry/vulkan/specs/1.0/html/vkspec.html

[14] B. Wang, D. F. de Souza, M. Alvarez-Mesa, C. C. Chi, B. Juurlink, A. Ilic, N. Roma,
and L. Sousa. 2017. GPU Parallelization of HEVC In-Loop Filters. International
Journal of Parallel Programming (Jan 2017), 1–21.

5

