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Abstract
During the last three decades optical telecommunications industry is constantly
pushing for new data transmission capacity limits. With a nowadays paradigm
of coherent communication, one of the ways to increase the data rates is closely
related to increasing the signal transmission power. That in turns allows reach-
ing higher optical signal-to-noise ratio (OSNR). An intrinsic part of this solu-
tion will be proposing a proper management for fibre nonlinearities (NL) that
arise with the high optical power.

One of the promising techniques to mitigate NL is called digital back prop-
agation (DBP). The main assumption of DBP is that fibre propagation can
be fully described by the Manakov-polarisation mode dispersion (PMD) equa-
tions. The most popular DBP implementation is based on the split-step Fourier
(SSF) method. Its performance is limited by the accuracy of the actual imple-
mentation (signal discretization, step size) and the uncertainty of the trans-
mission link (fibre parameters, amplification map). Fundamental limitations
of DBP that are independent from implementation arise from the impact of
stochastic propagation impairments on fibre NL, such as amplified spontaneous
emission (ASE) noise and polarisation effects.

This thesis will focus on the impact of stochastic propagation effects on
DBP performance. The key limiting effects, PMD and polarisation dependent
loss (PDL), will be characterised. A supplement to the perturbation model will
be proposed to account for PMD analytically and to predict the DBP error.
Further, a low-complex and high-efficient DBP modification will be proposed.
Finally, the fundamental limits of the conventional and the proposed DBP will
be quantified.

Keywords: Nonlinear optics, coherent communications, digital back prop-
agation, polarisation mode dispersion



Zusammenfassung
In den letzten drei Jahrzehnten treibt die optische Datenübertragungsbran-

che neue Kapazitätsgrenzen voran. Mit dem heutigen Paradigma der kohä-
renten Kommunikation ist eine der Möglichkeiten, um höhere Datenraten zu
erreichen, zugleich eng mit der Erhöhung der Sendeleistung verbunden, wo-
durch wiederum ein höheres optisches Signal/Rausch-Verhältnis erreicht wer-
den kann. Ein wesentlicher Teil dieser Lösung wird darin bestehen, einen ord-
nungsgemäßen Umgang mit der Nichtlinearität in Glasfasern, die bei der hohen
optischen Leistung auftreten, vorzuschlagen.

Eine der vielversprechenden Techniken zur Minderung von Nichtlinearitäten
wird als digitale Rückwärtsausbreitung bezeichnet. Die Hauptannahme der di-
gitalen Rückwärtsausbreitung ist, dass die Wellenausbreitung in Fasern durch
die Manakov-Polarisationsmodendispersion Gleichungen vollständig beschrie-
ben werden kann.

Die Leistung der digitalen Rückwärtsausbreitung wird durch die nume-
rische Genauigkeit der tatsächlichen Implementierung (Signaldiskretisierung,
Schrittgröße) und die Unbestimmtheit der tatsächlichen Übertragungsverbin-
dung (Faserparameter, Verstärkungskarte) begrenzt. Grundsätzliche Einschrän-
kungen, die von der Implementierung unabhängig sind, ergeben sich aus den
Auswirkungen stochastischer Ausbreitungsbeeinträchtigungen auf Fasernicht-
linearitäten, wie beispielsweise verstärktes spontanes Emissionsrauschen und
Polarisationswirkungen der Doppelbrechung der Faser.

Diese Arbeit konzentriert sich auf die Auswirkungen stochastischer Ausbrei-
tungseffekte auf die Leistung der digitalen Rückwärtsausbreitung. Die wich-
tigsten einschränkenden Wirkungen, Polarisationsmodendispersion und pola-
risationsbedingter Verlust werden dabei charakterisiert. Eine Ergänzung des
Perturbationsmodells wird vorgeschlagen, um Polarisationsmodendispersion
analytisch zu berücksichtigen und den Fehler der digitalen Rückwärtsausbrei-
tung vorherzusagen. Ferner wird eine hocheffiziente Modifikation der digi-
talen Rückwärtsausbreitung mit niedriger Kapazität vorgeschlagen, um die
Nichtlinearität- Polarisationsmodendispersion-Wechselwirkungen zu verringern.
Schließlich werden die grundlegenden Grenzen der konventionellen und vorge-
schlagenen digitalen Rückwärtsausbreitung quantifiziert.

Schlagwörter: Nichtlineare Optik, kohärente Kommunikation, digitale Rück-
wärtsausbreitung, Polarisationsmodendispersion
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Chapter 1

Introduction

In this chapter we will introduce the scope of the thesis, in that we will discuss
the modern data traffic scenarios and demands, capacity crunch, and tech-
niques to increase optical fibre throughput. We motivate for the importance
of the current work and outline its possible impact. The overview of the thesis
content can be found in the end of this chapter.

1.1 Overview

In the first two decades of the XXI century we find ourselves in a continuous
and accelerating growth in different sectors of society, such as socio-economics,
habitat, healthcare, welfare, culture and education, communications and tech-
nology. All of these areas show high dependence on global communications
and, therefore, on data transfer. Since the first deployment of long-haul op-
tical cables in the middle 80s and the boosting growth of optical networks in
the late 90s and early 00s new generations have been growing up with access
to the Internet. It is nowadays a fundamental part in our lives.

An easy access to telecommunication and information is strongly incorpo-
rated in minds of the so-called Z generation. In fact this generation and the
subsequent ones are already setting the global social and political trends and
will become world-shapers in 2030-2050s. It is highly probable that the basic
demand in the Internet reality will strengthen further and will define the future
society development, mindsets and philosophy. Already now, recently emerged
applications, such as Internet of Things, automated medical diagnostic, data
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analysis and control, autonomous driving, virtual reality (VR) or artificial in-
telligence (AI) are maturing and to become a technological routine in the near
future.

Facing the future, our task as a scientific community today, is to consider
these applications with a fundamental perspective and to create a solid basis
for the Internet backbone, that is flexible, scalable, and ready to meet the
future demand on reliable and qualitative traffic flow.

As of today, optical fibres represent the only medium capable of trans-
porting over longer distances the audacity of data produced by the humanity.
Optical links provide necessary bandwidth, and their application ranges from
high-capacity Internet backbone networks to data centres and supercomputer
parallel interconnects. The traffic especially in core networks is growing from
year to year [1], mainly due to massive amounts of data produced by such
applications as YouTube, Netflix, Facebook, Instagram, iTunes, Spotify, etc.
and is associated with cloud services and content providers, such as Amazon,
Google CDN, Akamai, and Level3 Communications.

We are currently living in the third era of fibre communications technol-
ogy [2]. The first era of regenerated direct detection lasted from late 70s to
early 90s, followed by an erbium-doped fibre amplifier (EDFA) wavelength di-
vision multiplexing (WDM) era until the beginning of the new millennium,
when an era of non-dispersion managed (non-DM) coherent communication
emerged. Each time the new technological paradigm enabled a solution for
the needs of optical transmission system. The current coherent technology
gives a possibility to increase the fibre capacity by providing full access to the
optical field information. The spectral efficiency, measure of information trans-
mitted by a bandwidth unit, is increased by encoding more bits per symbol
in higher order modulation formats and by utilising digital signal processing
for restoring the signal and improving its quality. The innovations in these
two areas have a potential to bring the system performance close to the theo-
retical limit, the Shannon Bound [3]. The possible gap in the future between
the demand and the available communication rates is referred to as capacity
crunch.

Various estimations on the data traffic demands have been performed. Ac-
cording to Cisco prognoses [1], "annual global Internet protocol (IP) traffic will
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reach 3.3 Zettabytes (ZB) by 2021" (one ZB equals to 1000 Exabytes (EB),
1021 bytes), showing a compound annual growth rate (CAGR) of 24% from
2016. Particularly in Western Europe the annual IP traffic is predicted to
reach 0.45 ZB in 2021 at the CAGR of 22% from 2016. In order to get a very
rough estimation of traffic volume transmitted per second (traffic rate), one
can divide the annual value by the number of seconds in a year. Thus, in 2021
in Western Europe the Internet average traffic rate of 14.3 TB{s or 114 Tbit{s

in all the links combined can be expected.
On top of that the distribution of traffic demand throughout the day should

be taken into account. Typically for Western Europe peak hours are between
7 am and 11 pm [4], increasing the average data traffic in downstream by 50%.
This means that the network providers in 3 years (from 2018) should be able
to meet the demand on rush hour of « 170 Tbit{s downstream data speed (the
number refers to the whole network).

In the latest years united efforts of the scientific and research community are
focused on finding new technologies to increase the optical networks’ transmis-
sion rates in order to meet the traffic demand. Two major research paths can
be identified: Technologies operating in the linear and nonlinear fibre regimes.
By linear transmission the capacity limit of standard single mode fibre (SSMF)
O-L-bands (see Table 1.1) is „ 100 ´ 200 Tbit{s [5]. By transmission in non-
linear regime, the same rates can be potentially achieved without having to
utilise all fibre transmission bands. In this thesis we focus on the nonlin-
ear fibre transmission regimes. In such fibre regimes the signal experiences a
degradation during propagation, which is attributed to the fundamental non-
linear properties of the silica fibre at high optical powers. The main reason to
transmit in nonlinear regimes is a possibility to increase the signal power com-
pared to the noise power. The ratio of the two expressed in dB is traditionally
used as a signal quality measure and is referred to as OSNR. While decreasing
noise is constrained by fundamental limits, a great potential lies in increasing
the optical signal power, thus increasing the OSNR and improving the signal
quality at the receiver end.
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1.1.1 Transmission techniques roadmap

Various approaches have been proposed for avoiding the capacity crunch. A
comprehensive overview of what principally can be done is proposed by Peter
J. Winzer, for example in [6]. According to his view, there are five physical
dimensions, that can be utilized to increase fibre capacity, and three of them
are currently fully utilized: time, quadrature and polarisation. The two re-
maining physical dimensions are frequency and space. Examples of expanding
the frequency dimension would be utilising all fibre transmission O-L-bands,
summarized in Table 1.1 Examples of expanding the space dimension would
be multicore, multimode fibres and their combination.

Table 1.1: Optical fibre transmission windows.

Band Wavelength range

O 1260 – 1360 nm
E 1360 – 1460 nm
S 1460 – 1530 nm
C 1530 – 1565 nm
L 1565 – 1625 nm
U 1625 – 1675 nm

Additionally to utilising physical dimensions, the nonlinear nature of the
fibre can be addressed. Provided there is a way to mitigate the nonlinear
distortion in a fibre, the input signal power can be increased thus increasing
the OSNR, allowing usage of higher-order modulation formats and providing
longer reach distances. A strong research effort was directed to developing
mathematical tools and experimental techniques for data transmission over
the nonlinear channel in the last decade [7]. Further, innovations in digital
signal processing (DSP) and advanced forward-error correction (FEC) [8], have
a high potential to bring the performance closer to the Shannon Bound.

Nonetheless, it is worth noting that an OSNR gain would only yield a limited
fibre capacity increase due to their logarithmic relationship (see eq. (7.1) in
chapter 7), compared to frequency and space dimensions.
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1.1.2 Link scenarios

In order to support the transmission of huge volumes of data, the telecommuni-
cations industry should find ways to upgrade the Internet backbone Distortions
due to fibre NL can become a significant problem in long-haul networks. In
this thesis we will focus on long-haul transmission systems. Nowadays those
are represented by the submarine cable network, as in Figure 1.1, and by the
long-haul terrestrial links. In metro and regional applications network’s cost,
simplicity, and power consumption are the dominating concerns.

Figure 1.1: Submarine cable map, retrieved from [9].

Undersea communications have historically been one of the most challeng-
ing and innovative industries. A great number of post-deadline conference
publications are demonstrating the push towards higher capacity and longer
transmission distance. Now that the paradigm has shifted to coherent commu-
nications, long-haul submarine links are a good candidate do deploy the non-
linearity management, provided the energy efficiency and cost are balanced.
The US, Asian, and EU long-haul terrestrial links would as well benefit from
the technology, which will allow upgrading existing links and thus increasing
the network capacity without costly laying of the new fibres. A comprehensive
overview of the commercial application of the NL compensating techniques is
presented in [10].

In the current work we concentrate on the intermediate range (from 1000 km
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up to 4500 km) links and discuss which propagation effects could appear when
deploying one of the promising nonlinearity mitigation techniques, digital back
propagation (see Section 2.1).

One of the latest use cases is an undersea communication link Marea (Span-
ish for "tide"), which was developed and built late 2017 by Telxius, Facebook
and Microsoft. It is a 6.600 km link consisting of a bundle of 8 SSMFs, each
transmitting 20 Tb{s, and a total capacity of 160 Tb{s. The technologies used
include L-Band extension (see Table 1.1), 64-quadrature amplitude modula-
tion (QAM) (modulation format encoding 6 bits per symbol) and above, prob-
abilistic constellation shaping (when low-energy symbols are transmitted more
frequently than high-energy ones), hybrid EDFA/Raman amplification (based
on the gain from the effect of stimulated Raman scattering [11]), flexible sym-
bol rate, modulation and spacing allocation, and nonlinear compensation [12].

1.1.3 Techniques to reduce NL impact

Generally, the techniques to reduce the impact of Kerr NL can be divided into
those that mitigate (or pre-mitigate) the impact on the propagated signal, and
those that increase the resistance of the propagated signal towards NL. The
first include such techniques as digital back propagation (DBP) [13, 14] and
its numerous modifications, techniques based on signal conjugation: optical
phase conjugation (OPC) [15] and twin waves [16] (these are illustrated in
Figure 1.2); perturbation-based compensation [17], nonlinear equalizers, such
as maximum-likelihood sequence estimation (MLSE) and Volterra series non-
linear equalization [18]. The second class of techniques includes advanced
modulation formats (geometric [19,20] and probabilistic constellation shaping
for NL [21]), and nonlinear Fourier transform (NFT) [22].

A brief analysis of complexity and flexibility of the methods, their ability to
compensate for the NL, including in presence of polarisation mode dispersion
(PMD), is presented in Table 1.2. By the processed band the received and
processed signal is understood, by the full band – the co-propagating part
of the signal spectrum that is yet not included in NL compensation. Each of
the techniques has its benefits and challenges, so that in different scenarios
different technique (or combination of techniques) might be applied.

Perturbation and nonlinear equalization methods provide rather limited
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compensation gain and require a high computational effort. DBP although
also exhibiting a prohibitively high computational complexity, gained atten-
tion in the last decade. Numerous studies report a possibility to trade-off high
complexity for a reasonable reduction in performance. However, the computa-
tional cost of the algorithm still grows exponentially with increasing processed
bandwidth. OPC experimentally shows a good full-band performance increase,
however, puts strict requirements on the link symmetry and conjugation effec-
tiveness. Twin waves, even with proposed modifications [23], sacrifice up to a
quarter of the spectral efficiency, besides, the method allows low link flexibility
in terms of dynamic routing.

Typical power
pro�le

Typical 
dispersion map

 
NL accumulation NL mitigation

DBP

0 L 0 0 L 0

OPCOPC

coherent
superposition

digital
domain

0 L/2 L 0 L/2 L

L - link length

Twin 
waves

Ex

Ey=Ex
*

* - complex
        conjugate

0 L 0 L
E=Ex + (Ex   )

Rx Rx *

 - received
signal

Rx

α β γ

α β γ α β γ

α β γ α β γ

α β γ

α represents �bre attenuation, β represents dispersion, 
and  γ  – nonlinearities (see Chapter 2.1)

Figure 1.2: Basic illustration of signal conjugation based NL mitigation tech-
niques.



Table 1.2: DSP approaches for NL mitigation.

Processed band Full band Link Flexibility Biggest challenges NL-PMD penalty

compensation compensation mitigation

DBP ++ ´´

link is flexible,
link parameters
should be known

computational complexity,
stochastic effects

current thesis,
[24]

OPC + +
symmetric dispersion
and power maps
are required

efficient phase conjugation,
stochastic effects

no work found
PMD avoidance [25]

Twin Waves + +
symmetric dispersion
map is required

loss of 50%
of transmission bandwidth,
stochastic effects

no work found

Equalization ´ ´
does not put
constrains on link

mature technology no work found

Constellation

shaping
´ ´

does not put
constrains on link

mature technology no work found

NFT ++ ´´

link is flexible,
link parameters
should be known
no dynamical routing

computational complexity,
stochastic effects

no work found

Markers p``,`,´,´´q indicate a potential mitigation gain from full compensation, to moderate impact, to typically small,
to zero impact
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Probabilistic shaping and pulse shaping are effective approaches to increase
the signal tolerance to NL. They are reported to improve the received effective
signal-to-noise ratio (SNR) on a fraction of decibel (dB) range and can be
used complement to other NL mitigation techniques. NFT, a fundamentally
different and potentially revolutionary approach, promises high spectral effi-
ciency, but requires significant work to be done in computational complexity
reduction, incorporation in add-drop optical networks, and noise treatment.

Regarding the above information, DBP is one of the most promising and
mature techniques. Its positive aspects are that it allows for certain link flexi-
bility, compensates for both linear and nonlinear effects, has good intra-channel
effects compensation, and with the newly developed modifications it can trade-
off computational complexity for the proportion of compensated Kerr NL ef-
fects.

1.2 Motivation: fundamental limitations of DBP

1.2.1 Stochastic-nonlinear interactions

During propagation through a fibre a signal is affected by the linear and non-
linear effects, and the stochastic noise, as illustrated in Figure 1.3 (adopted
from [26]). These effects are distinct by their nature but are occurring simul-
taneously during propagation and are not independent. If one would want
to simulate the signal propagation in a fibre, accurate results would require
a simultaneous simulation of all these effects, as they are influencing each
other. From the perspective of Kerr nonlinear effects compensation, regardless
of which technique is used, it would mean that linear, nonlinear, and noise
effects should be considered simultaneously.

For the NL compensation it is important that both polarisation effects and
noise randomly change the signal amplitude profile. As Kerr nonlinearities are
proportional to the cube of optical field amplitude, the presence of those effects
will affect nonlinearities. An example of how PMD affects the propagating
optical field envelope is shown in Figure 1.4. PMD is a linear polarisation
effect, which is describing a time delay between the fibre X and Y polarisation
components arising during propagation. The strength of the effect can be
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Figure 1.3: Physical phenomena present in the optical transmission system,
adopted from [26].
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Figure 1.4: Change of the local optical field in a fibre with PMD (red curve)
compared to a fibre without PMD (grey curve) at three different distances.
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indicated by the polarisation mode dispersion coefficient (PMDc). Most of the
modern fibres will have PMDc between 0.04 and 0.1 ps{

?
km, very old ones

can have 0.2 ps{
?
km and higher.

The simulation in Figure 1.4 considers dual polarisation (DP)-16-QAM
28 GBaud signal propagating in a lumped amplified noiseless system with
80 km SSMF spans. The field is presented at three different propagation dis-
tances, corresponding to 10, 30, and 50 spans in a fibre without PMD and in a
0.1 ps{

?
km PMDc fibre. It can be seen that the PMD introduces a significant

change in the optical intensity distribution and therefore changes the impact
of the nonlinear effects.

1.2.2 Impact of stochastic-nonlinear interactions

A conventional digital Kerr-nonlinearity compensation technique, including
DBP, assumes that the signal experienced only deterministic effects, such as
Kerr NL or chromatic dispersion (CD). In reality the optical field local am-
plitudes are affected by stochastic effects as well. And therefore the signal
would experience a different impact of the NL. Thus, not the stochastic effects
themselves, but the interplay between them and NL becomes a limiting factor
of compensation techniques.

The performance of any DBP is further limited by the numerical accuracy
of the actual implementation, limited by the signal discretisation, DBP step
size, uncertainty of the actual transmission link parameters, such as fibre at-
tenuation, nonlinear index, amplification and dispersion maps. Nonetheless,
fundamental limitations of DBP are independent from implementation and
arise from the impact of stochastic propagation impairments on fibre nonlin-
earities, such as ASE noise from EDFAs and fibre birefringence effects, for
example, PMD. Not only the performance of DBP, but also of OPC as we
showed in [27], the twin waves, perturbation-based compensation, and of NFT
will be affected by stochastic effects.

1.2.3 State of the art

The numerical and analytical comparison of impact of the stochastic effects on
DBP performance has shown that PMD is of major concern in non-dispersion
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managed (non-DM) orthogonal frequency division multiplexing (OFDM) [28],
binary phase shift keying (BPSK) [29], quadrature phase shift keying (QPSK)
[30] and 16-QAM [31] modulated links. Experimental investigations of disper-
sion managed (DM) links show that the DBP performance has an equivocal
dependence on PMD and link configuration [32]. In non-DM links [33] shows
that PMD degrades the filtered DBP performance, though implementation
penalties are more significant.

In case of the future deployment of DBP in real-time coherent optical trans-
mission systems, it is worthwhile to make a comprehensive analysis of the
stochastic effects’, particularly PMD’s, impact on the nonlinear transmission.
This will allow defining new fundamental limits of DBP. Knowing the princi-
pally achievable performance limits will help to resolve the uncertainty of the
question: How good the method actually is, compared to how good it could
possibly be.

Understanding the impact of stochastic effects on NL compensation will
help to propose the modifications in the DBP algorithm, in order to make
it resistant to the PMD-induced degradation. This thesis will suggest and
investigate one of such DBP modifications. Another practically-implementable
approach, besides the one proposed in this thesis, was presented concurrently
in [24, 34, 35]. More details and the comparison of the two methods can be
found in Section 5.5. Finally, a theoretical approach to mitigate NL-PMD
interplay, relying on the fully-known information about PMD along the link,
was demonstrated in [29].

1.3 Thesis content

The purpose of this thesis is to provide a comprehensive understanding of the
fibre NL-stochastic interactions (NL-ASE, NL-PMD, and NL-PDL), of their
impact on DBP, to provide a low-complexity solution to estimate the strength
of impact, and to propose a DBP modification greatly reducing the impact of
these interactions.

The theoretical background and simulation details are reviewed in Chap-
ter 2. It will focus on key notions, briefly mentioned in the introduction, such
as DBP, PMD, ASE. As most of the results in this thesis rely on simulations,
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the chapter will also provide a detailed description of modelling concepts, such
as split-step Fourier (SSF) or coarse-step model. Different approaches to sim-
ulate the stochastic effects will be introduced as well.

In Chapter 3 we will present the statistics of the stochastic propagation
effects, such as ASE, PMD and PDL. We will show that the average differential
group delay (DGD) evolution along the link is defined by both fibre PMDc and
accumulated DGD at the end of the link. In this chapter we will also show how
the effects influence DBP performance. Finally, we will present an experiment
proving the correlation of DBP gain in linear Q factor and the DGD.

Chapter 4 is dedicated to the perturbation model extended to account for
PMD. Different scenarios of DGD evolution will be discussed. It will be shown,
that with a constant DGD and span-step DGD, perturbation term calculation
can be considerably simplified. We will verify the proposed extension of the
perturbation model by comparing the results with SSF simulations. Finally,
we will present a new metric describing DBP error due to NL-PMD interaction
and will show how it depends on signal power spectral density, symbol rate
and modulation format.

The simplification proposed and verified in Chapter 4 builds a basis for
the DBP modification. In Chapter 5 we will explicitly investigate the pro-
posed method for typical long-haul transmission systems having different input
power, symbol rates and modulation formats, for single- and multichannel. We
will discuss practical aspects of the method implementation and its complex-
ity. Finally, we will compare the proposed DBP modification with the method
developed in parallel and independently from this work [35].

Some assumptions on a practical implementation of the proposed algorithm
are given in Chapter 6. Firstly, we will show how the performance of the
proposed DBP is affected when the parameters are not estimated exactly. We
will then see how a NL-PMD interaction is pronounced in a realistic DBP
implementation. At last, we will focus on one of the methods to estimate
DGD for the proposed DBP and demonstrate its accuracy.

In Chapter 7, nonlinearities polarisation mode dispersion (NL-PMD) in-
duced limits are highlighted from the information theoretical point of view. It
is shown that for a typical optical transmission systems considered in the the-
sis it is possible to define PMD-induced fundamental limits on the proportion
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of compensated NL and to define maximum achievable spectral efficiency and
reach distance.

Finally, the conclusions are drawn in Chapter 8.



Chapter 2

Simulation of stochastic effects

and digital back propagation

algorithm in fibre transmission

links with EDFAs

This chapter will explore the basis for simulating DBP and the stochastic
effects in a fibre system. It will cover the DBP principles, EDFA ASE, bire-
fringence, PMD, polarisation dependent gain (PDG) and PDL. Here we will
also introduce a notation to describe polarisation effects in a fibre. Finally, we
will give the details on how the propagation effects and DBP were simulated
in VPItransmissionMaker Optical Systems.

2.1 Digital back propagation

2.1.1 Forward propagation effects

The working principle of the DBP is centred at the idea that fibre propaga-
tion effects can be described and simulated digitally. The most important
propagation effects in SSMF are loss, CD, nonlinear and polarisation effects.

The loss depends on the length of the fibre, L, the attenuation coefficient,
α, and the optical angular frequency, ω. The modern SSMFs have α around

15
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0.2 dB{km in the 1550 nm region. It is defined as:

αpωq “
1

L
¨ 10log10

´ Pinpωq

Poutpωq

¯

, (2.1)

where Pin is the input power in the fibre and Pout is the output power.
A linearly polarised electrical field, E, propagating along the Z-axis in pos-

itive direction in a fibre at frequency ω0 can be described as [36]:

Epz, tq “ Apz, tq ¨ eipβ0z´ω0tq, (2.2)

where A is is the slowly varying envelope of the optical field, z is the prop-
agation distance, β0 is the phase propagation constant at frequency ω0, that
determines the change of phase of an initial light field, t is the time frame
moving at νg speed. νg “ Bω

Bβpωq
is the group velocity (speed of the optical field

envelope propagating at frequency ω). The phase velocity νph “ ω
βpωq

defines
the propagation speed of the field phase at a particular frequency ω.

The phase propagation constant β is frequency-dependent and can be ex-
panded into a Taylor series around the centre frequency ω0 [36]:

βpωq “ β0 ` β1∆ω `
1

2!
β2∆ω2

`
1

3!
β3∆ω3

` ..., (2.3)

βl “
´dlβ

dωl

¯

ω“ω0

; l “ 0, 1, 2... (2.4)

where ! denotes the factorial, l is the index, ∆ω “ ω ´ ω0, β1 “ 1{νg, β2

describes the frequency dependence of νg. The phenomenon is called chro-
matic dispersion (CD) or group velocity dispersion (GVD). Dispersion slope
β3 describes frequency dependence of β2. The CD is typically described with
dispersion coefficient Dc in ps

nm¨km
:

Dc “ ´
2πc

λ2
β2, (2.5)

where c is the speed of light in vacuum, λ is the wavelength. Typical for SSMF
Dc is 16 ps

nm¨km
.

Fibre Kerr nonlinearities arise from a phenomenon called Kerr effect, which
presents signal power density dependent refractive index, i.e. signal dependent
speed of light. The modified phase propagation constant can be written as:

βnl “ β ` γPs, (2.6)
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where Ps is the signal power, and γ is the nonlinear coefficient:

γ “
n2ω

cAeff
, (2.7)

n2 being the nonlinear refractive index, Aeff being the fibre effective area. In
modern SSMF n2 is typically 3 ¨ 10´20 m2{W , Aeff is 80 µm, γ is 1.37 1

W ¨km
.

2.1.2 Manakov equations in time domain

The nonlinear Schrödinger equation (NLSE), derived from Maxwell equations
using Equation (2.2) and Equation (2.3), is commonly used to describe the
light wave propagation in optical fibre accounting for attenuation, chromatic
dispersion, and Kerr nonlinearity while ignoring birefringence (see more in
Section 2.3.1) [36]:

BA

Bz
`
i

2
β2
B2A

Bt2
´
β3

6

B3A

Bt3
`
α

2
A “ iγ|A|2 A, (2.8)

where |A|2 is the signal power, and the frame is moving with group velocity.
When birefringence occurs, the two polarisation modes are not independent

from each other throughout the propagation. The equations governing evolu-
tion of the two polarisation components have been derived in [36] for linearly
birefringent fibres (i.e. the polarisation modes’ orientation stays constant along
the fibre). For the optical field polarised along the birefringence X-axis:

BAx
Bz

`
i

2
β2
B2Ax
Bt2

´
β3

6

B3Ax
Bt3

`
α

2
Ax “

iγp|Ax|2 `
2

3

∣∣Ay∣∣2qAx ` iγ

3
A˚xA

2
ye
´2i∆βz, (2.9)

where Ax and Ay are the two polarisation components’ optical fields, ∆β is the
propagation constant difference between the two modes ∆β “ βx ´ βy. The
solution for Y-polarisation component is obtained by inverting x and y.

In case of a single-mode fibre with birefringence varying faster than the
nonlinear interaction an averaging of nonlinear effects over the two polarisation
modes occurs, which reduces the strength of the NL. Propagation over such a
fibre is described mathematically by the coupled Manakov equations [37–39]:

BAx,y
Bz

`
i

2
β2
B2Ax,y
Bt2

´
β3

6

B3Ax,y
Bt3

`
α

2
Ax,y “ i

8

9
γp
∣∣Ax,y∣∣2 `∣∣Ay,x∣∣2qAx,y, (2.10)
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where on the left side the second and third addends account for CD and dis-
persion slope, fourth addend accounts for attenuation, and on the right side
the Kerr nonlinear effects are described.

2.1.3 Digital back propagation fundamentals

Digital back propagation is a DSP method that virtually reconstructs the non-
linear channel in a backward order. For that the backpropagation algorithm
solves an inverse NLSE. As a result, the deterministic effects, such as CD,
dispersion slope and NL, are compensated after backpropagation.

The Manakov equations (2.10), considering the dispersion slope negligible,
can be rewritten as

BAx,y
Bz

“ pN̂ ` D̂ ` P̂ qAx,y, (2.11)

where N̂ “ i8
9
γp
∣∣Ax,y∣∣2 ∣̀∣Ay,x∣∣2q is the nonlinear operator, P̂ “ ´α

2
is the power

correction operator, and D̂ “ ´ i
2
β2

B2

Bt2
is the linear operator. Dispersion slope

is typically omitted when the signal is narrow-band and not in the fibre zero
GVD region.

The inverse Manakov equations would be:

BAx,y
Bz

“ p´N̂ ´ D̂ ´ P̂ qAx,y, (2.12)

which is also equivalent to sending the signal through a fibre with inverse sign
parameters.

The Equation (2.12) can be solved numerically using SSF method [36] as:

Ax,ypz ` h, tq “ Ax,ypz, tqe
hp´N̂´D̂´P̂ q

«

Ax,ypz, tqe
h
2
p´D̂qe

şz`h
z p´N̂qz1dz1e

h
2
p´D̂qehp´P̂ q, (2.13)

where h is the step size. The DBP algorithm flow is illustrated in Figure 2.1.
In this DBP implementation the nonlinear compensation is performed in be-
tween the dispersion compensation. It is called Wiener-Hammerstein model or
symmetrical model. Dispersion can alternatively be compensated fully upfront
or after the linear operator.
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Figure 2.1: DBP block scheme. The received signal power is normalised,
backpropagated through all linear and nonlinear steps of DBP, between which
the signal power is adjusted.

The linear operator in frequency domain, using the property of a Fourier
transform of a second derivative (Ftd

2kpxq
dx2 u “ ´p2πfq

2 ¨KpXq, where kpxq is a
function in time domain and KpXq is that function in frequency domain), is
written as:

Ft´D̂u “ Ft
i

2
β2
B2

Bt2
`
α

2
u “ ´

i

2
β2∆ω2

`
α

2
, (2.14)

where F is the Fourier transformation, f is the optical frequency. Linear op-
erator is applied as:

Ax,ypz ` h, tq “ F´1
tFtAx,ypz, tque

´ihβ2∆ω2{2
u, (2.15)

and nonlinearities are compensated in time domain:

Ax,ypz ` h, tq “ Ax,ypz, tqe
´i 8

9
hγp|Ax,y|2 |̀Ay,x|2q. (2.16)

The signal power is updated in time domain as:

Ax,ypz ` h, tq “ Ax,ypz, tqe
phα{2q. (2.17)

2.1.4 Historical development of DBP

The concepts of backward propagation have been reported as early as 1996 [40],
where in optical domain a dispersive medium with a negative nonlinear refrac-
tive index is used for dispersion and nonlinearities compensation. In numerical
derivations [41] backward propagation was used for reversing femtosecond pulse
propagation in an optical fibre. The concept consolidated in 2006 [42, 43]. In
the digital domain, first important experimental results are obtained in 2008
with the use of coherent receivers [44,45]. 20 years after its introduction DBP
is considered a promising mathematical tool to address the nonlinearity miti-
gation, however, only if the high numerical complexity constrain is overcome.
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2.1.5 DBP modifications

Numerous DBP modifications have been proposed in the recent years in order
to reduce the prohibitively high computational complexity of the standard
algorithm. In order to support real-time DBP implementation most of the
modifications aim at increasing the DBP step size, h.

One of the earliest proposed modifications involves applying a non-uniform
step size, for example, logarithmic as proposed in [46, 47]. The idea is based
on the fact that in a link with EDFAs the power in the beginning of a span is
the highest and drops exponentially along the span. As nonlinear effects are
proportional to the optical power density, it is reasonable to perform shorter
DBP steps in the beginning of the span and less frequent steps in the rest
of the span. Interestingly, this approach was long used in simulations of the
forward propagation to save computational time, before it was also adopted
for DBP. Another example of the forward propagation simulation methods
that was adopted for DBP is a walk-off method for WDM systems [48], which
chooses a step size smaller than a characteristic walk-off length, Lw, a distance
after which the relative delay between the edge channels is comparable with
the pulse width: Lw “ τp{∆β1´2, where τp is the pulse duration, ∆β1´2 is
the difference in propagation constants of the edge channels. In this method,
dispersion slope β3 needs to be considered. A further example is a non-uniform
step size modification, maximum phase change (MaxPhCh) algorithm [49],
which makes sure that in every step the nonlinear phase rotation does not
overshoot a certain set value.

Study [50] suggests that for non-DM optical links optimisation of the linear
operator can reduce the number of steps by two, still keeping the performance
level. In this work complexity reduction as high as 85% was demonstrated for
DM-systems with residual dispersion .

Another commonly used DBP modification is called filtered DBP [51]. It
is based on the observation that after each DBP step the high-frequency in-
tensity fluctuations introduce additional noise. The problem can be overcome
by introducing a low-pass filter (LPF) after every nonlinear operator. In that
way the DBP is optimised for compensating the low-frequency intensity fluc-
tuations. The actual optimization process according to the number of steps is
a non-trivial task including fine-tuning the LPF bandwidth, fibre coefficients,
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and NL operator position relatively to the linear operator. Generally, the more
steps DBP has, the larger LPF bandwidth should be.

A very promising DBP modification was proposed in [52–54], called corre-
lated DBP. Because of the pulse broadening due to dispersion, the self-phase
modulation (SPM) impact on one symbol depends not only on that symbol
power but also on the neighbouring symbols. When calculating the nonlin-
ear phase shift the correlation between the neighbouring symbols is taken into
account by applying a weighted time-domain filter. This approach leads to
up to 80% reduction reduction in required back-propagation steps (compared
to standard DBP) without performance loss for a single channel DP-QPSK
transmission [52].

An interesting approach of optical back propagation for real-time imple-
mentation was proposed in [55] using dispersion compensating fibre (DCF) for
the linear effects compensation and highly nonlinear fibre – for nonlinear.

2.1.6 Digital back propagation used in the thesis simula-

tions

For simulations in this work we always use ideal DBP, i.e. not limited by
complexity constraints or receiver bandwidth. Our aim is to separate DBP
degradations arising from stochastic propagation effects, such as PMD, ASE
and PDL, and therefore we implement the algorithm in its most accurate
version, where DBP is performed in optical domain before the receiver (Rx)
using the same model as the one for forward propagation, only inverted. The
number of steps is comparable.

We use the symmetrical DBP model in simulations depicted in Figure 2.1.
The step size is controlled via the MaxPhCh method, where it is chosen adap-
tively during the propagation along the fibre so that in each step the nonlinear
phase of the optical field is changed by no more than a certain value in de-
grees. According to [49] 0.05˝ is chosen for all the simulations if not specified
otherwise. The step length is calculated as:

h ď
MaxPhCh

γ
∣∣Ap∣∣2 , (2.18)

where Ap is the peak value of the input optical field of the step.
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2.2 ASE noise in EDFAs

In an EDFA, the silica glass is doped with rare earth Erbium (Er) ions, which
adds an additional atom energy level to the silica energy band structure [56].
The fibre can be pumped with an appropriate wavelength laser (980 nm) to
excite electrons to the new energy level and thereby to create the so-called
electron population inversion, as in Figure 2.2. The lifetime of an electron in
the excited state, τsp, is short, after a few µs it will relax to the metastable
lower-energy level without emitting radiation. If such an electron is stimulated
with an incident photon, which energy matches the energy gap between the
metastable and the ground state, it will relax to the ground state while emitting
in the wavelength window around 1550 nm. The nature of the stimulated
emission ensures that the new photons have exactly the same properties as the
incident ones, thus amplifying the incident light.

I11/2
4

I13/2
4

I15/2
4Level 1

Level 2 metastable level τsp ~ 10ms

Level 3 τsp ~ 1μs

En
er

gy

980 nm

1480 nm

rapid transition

stimulated emission 1500-1600nm

spontaneous emission

Figure 2.2: Energy levels and principle of EDFA.

However, some of the excited electrons will relax to the ground energy level
spontaneously. Such emission is not in-phase with the incident light and can
propagate in any direction in space. A part of such photons will be emitted in
direction that falls within the numerical aperture of the fibre and will continue
propagating with the optical signal. Moreover, this spontaneous emission will
be further amplified along the EDFA. Such emission is called amplified spon-
taneous emission.

The noise performance of amplification can be measured by the noise figure
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(NF), a fraction of input and output linear OSNRs in dB [57]:

NF “ 10log10
OSNRlin,in

OSNRlin,out

rdBs, (2.19)

where OSNR is expressed in linear units:

OSNRlin “
Ps

Pn

, (2.20)

Ps and Pn are the signal and noise power respectively.

2.3 Polarisation effects in SSMF

2.3.1 Birefringence in SSMF

Light propagation in an ideal SSMF can be described with a high level of
accuracy, when the initial optical field as well as the fibre characteristics are
known. An optical wave can be represented as a linear superposition of two
orthogonally polarised HE11 modes. When a fibre is ideal these modes cannot
be distinguished from each other. However, when the fibre is produced, laid
in cable and exploited in real life conditions, the anisotropy gets lost, which
results into the two distinct polarisation modes HE11 having different fibre
propagation constants. This effect is called birefringence.

Figure 2.3: Evolution of the fast and the slow birefringence axes along the
fibre. nx “ ne, ny “ no.

A propagation constant consist of a real and imaginary parts and is de-
fined as a sum of attenuation and phase constants: α` iβ (see Section 2.1.1).
Different propagation constants of the modes mean they have each their own
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group and phase velocities, attenuation, and refractive indices. The latter are
typically denoted as no (slow) and ne (fast) for ordinary and extraordinary re-
fractive indices respectively. The bigger the refractive index is, the slower light
is propagating in the according axis, i.e. no ą ne by definition. Typical values
of ∆neff “ no ´ ne are between 10´7 and 10´5. The fast and the slow axes
in a fibre depend on the source of birefringence and are continuously changing
along the fibre, as illustrated in Figure 2.3.

2.3.2 Sources of birefringence in SSMF

Birefringence at the stage of fibre production arises from statistical changes in
the manufacturing process, like the soot chemical composition or fibre draw-
ing, which leads to fibre stress in the core or cladding, loss of core alignment,
fibre asymmetry, material imperfections and accidental doping. Besides, the
mechanical impacts on the fibre during installation, laying into the sewage
system or connecting couplers introduces extra birefringence. The mechani-
cal effects include outer pressure, bending and twisting. The material stress
caused by temperature change in the exploited fibre is also a known source of
birefringence. The above is summarised in Figure 2.4.

Due to these effects a long fibre is characterised by having a random birefrin-
gence profile in space, time and frequency dimensions. In order to work with
the birefringent properties of a fibre, statistical approach should be applied.

Birefringence giving rise to two distinct propagation modes leads to various
polarisation effects in a fibre, such as PMD, PDL and PDG.

2.3.3 PMD

PMD statistics in short-length fibres

In a short-length fibre the slow and fast axes are assumed to stay constant
along the fibre [58]. The net effect of a fibre having two propagation modes
with different group velocities is then a group delay between the polarisation
modes. The delay is known as DGD, is denoted as τ , measured typically in
ps, and can be defined as:

τ “
L

υo
´
L

υe
, (2.21)
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(a) Core asymmetry. (b) Core
misalignment.

(c) Material
imperfections.

(d) Built-in stress.

(e) Bending. (f) External pres-
sure.

(g) Twisting.

Figure 2.4: Sources of birefringence in a fibre. Internal: core asymmetry, core
misalignment, material imperfections, built-in stress, and external: bending,
external pressure, twisting.

where L is the fibre length, υo and υe are group velocities along the slow and
fast axes respectively. Reformulating the latter expression as

τ “ PMDcslow ¨ L, (2.22)

we can introduce a fibre PMD proportionality coefficient:

PMDcslow “
1

υo
´

1

υe
(2.23)

in ps{km, that characterizes the DGD arising from fibre birefringence. Exper-
imentally the value can be measured by the difference of slow and fast group
refractive indexes: PMDcslow “ ∆neff{c, where c is light speed in vacuum.

The effect of the DGD on a linearly polarised light pulse depends on its
polarisation orientation towards the polarisation axes of the fibre. The time-
domain evolution of the pulse that is 45˝ tilted to fast and slow fibre axes can
be found in the schematic in Figure 2.5. The figure shows a group of two images
at five different time snaps. The two images are depicting the pulse envelope
(Figure 2.5b, 2.5d, 2.5f, 2.5h, 2.5j) and its projection on the slow and fast axis
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separately (Figure 2.5a, 2.5c, 2.5e, 2.5g, 2.5i). In a general case the pulse can
be oriented at an angle to the fast and slow axis. The pulse then splits into two
polarisation components that propagate with different group velocities. The
mismatch between the two pulse components leads to the change of the pulse
polarisation state and shape until the DGD reaches the full pulse duration
when the two orthogonally polarised pulses split.

The above description contains a simplification that the fast and slow axes
do not rotate along the fibre. In reality they are changing the orientation and
while at certain short ranges they can be approximated as constant, at longer
ranges rotation should be taken into account. These two PMD regimes in a
fibre are called, respectively, short-length and long-length, and the fibre length
on the border between the two regimes is referred to as correlation length or
coupling length [58]. Imagining a linearly polarised light inserted in a fibre,
the correlation length lc is defined as the distance where the average power
in that initial polarisation state P} becomes comparable to the average power
that leaked to the orthogonal polarisation PK, i.e. when the average power
is equalized between the two polarisation modes. The correlation length is
strictly defined as [58]:

ă P}plcq ą ´ ă PKplcq ą“
1

e2
¨ Ps, (2.24)

ă ą denoting the averaging operator, Ps is the total signal power. According
to [59] the correlation length varies dramatically depending on the fibre ex-
ploitation conditions from less than 1 m up to more than 1 km with a typical
value of 100 m.

DGD statistics in long fibres

For the reasons discussed in Section 2.3.2 a long-length fibre experiences rota-
tion of birefringence axis. This rotation can either contribute to or counteract
the accumulation of the group delay. As a result, the average DGD, ă τ ą,
also called PMD, in long fibres accumulates in a random-walk manner and is
proportional to the square root of the fibre length (compare with the linear
length dependence for short-length fibres) [58]:

DGD “ τ, (2.25)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2.5: Time-domain effect of DGD caused by birefringence on a pulse
polarised at 45˝ to the fast and slow fibre axes. Figures in the second column
(b), (d), (f), (h), (j) depict the pulse envelope, and figures in the first column
(a), (s), (e), (g), (i) – its projection on the slow and fast axis separately.
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PMD “ă τ ą“ PMDc ¨
?
L. (2.26)

The proportionality coefficient PMDc is now defined in ps{
?
km.

The DGD in a long-length fibre has a Maxwell distribution, defined as:

Ppτq “
32τ 2

π2 ă τ ą3
¨ expp´

4τ 2

ă τ ą2
{πq, (2.27)

where P is the occurrence probability density function with

ż 8

0

Ppτqdpτq “ 1. (2.28)
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Figure 2.6: Maxwellian distribution of DGD p.d.f. (probability density func-
tion) in a long-length fibre.

Figure 2.6 illustrates that in a long-length fibre with a certain PMDc, the
output DGD can take a wide range of values. For example, the probability of
τ falling into the interval between 0.5 to 1.5 ă τ ą is equal to approximately
75%. Regarding the system outage, the most harmful consequence of statistical
nature of DGD is that there is a non-zero probability of exceeding the PMD
value more than 3-4 times. Such probability is generally defined as:

Ppτq

ˇ

ˇ

ˇ

ˇ

τě
`

S¨ăτą
˘

“

ż 8

S¨ăτą

Ppτq ¨ dpτq, (2.29)

where S is the ratio of DGD to PMD, also called safety factor:

S “ τ{ ă τ ą . (2.30)



29

The calculated probabilities and corresponding duration per year are sum-
marized in Table 2.1.

Table 2.1: The probability of τ being at least S times larger than the ă τ ą.

S P Duration per year

2.0 1.4e-2 5.4 days

2.5 8.5e-4 7.5 h

3.0 3.8e-5 20 min

3.5 7.5e-7 23 sec

4.0 5.6e-9 less than 1 sec

Probability of DGD being in a certain interval is defined as:

Ppτq

ˇ

ˇ

ˇ

ˇ

τ1ďτďτ2

“

ż τ2

τ1

Ppτq ¨ dpτq, (2.31)

where τ1 and τ2 are the lower and upper interval borders.

2.3.4 PDL and PDG

Attenuation of the propagated light in passive optical components can vary
depending on the input polarisation states. PDL is defined as the ratio of
the peak-to-minimum transmission intensity given all possible input states of
polarisation in logarithmic scale:

PDL “ 10log10
Γmax
Γmin

rdBs, (2.32)

where Γmax and Γmin are the maximum and minimum light transmission coef-
ficients through the fibre or another passive optical component.

PDL of a fibre link has a Rayleigh distribution, which transforms into a
Maxwell distribution in presence of PMD [60–62]. The Rayleigh distribution
is defined as:

PpPDLq “
PDL

ă PDL ą2
expp´

PDL2

2 ă PDL ą2
q, (2.33)

where PDL is in dB, ă PDL ą is the average PDL in dB, and P is the
probability density function.

The combination of PMD and PDL effects can have a bigger impact a system
than each of those separately. In the presence of PDL the signal states of
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polarisation lose their orthogonality during propagation [63], as schematically
explained in Figure 2.7.

Y

X

yx

Figure 2.7: Loss of orthogonality between signal’s x and y polarisations by
PDL (here shown for a relative loss along the Y axis only).

PDG is defined similarly to PDL. It is observed in optical amplifiers (in
semiconductor optical amplifiers (SOAs) and EDFAs). PDG is defined as
a ratio of maximum Gmax and minimum Gmin gain over all possible input
polarisations in logarithmic scale:

PDG “ 10log10
Gmax

Gmin

rdBs. (2.34)

2.3.5 PSP notation in Stokes space

The principal state of polarisation (PSP) is usually defined in Stokes space as
four parameters combined into a Stokes vector [64]:

S “

¨

˚

˚

˚

˚

˚

˝

S0

S1

S2

S3

˛

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

S0

S0cosp2φq

S0sinp2φqcospζq

S0sinp2φqsinpζq

˛

‹

‹

‹

‹

‹

‚

, (2.35)

where S0 corresponds to light intensity and S1´3 describe the polarisation state
of the electromagnetic light wave, as in Figure 2.8 and Figure 2.9.

Considering PMD, the PSP axes correspond to the slow and the fast propa-
gation axes. The time difference in propagation along the PSP is called DGD,
as introduced in Section 2.3.3.



31

S3

S1 S2

ζ

2φ

Figure 2.8: Azimuth ζ and elevation 2φ visualization on the Poincare sphere.

S3

S2

S1

Figure 2.9: Poincare sphere for polarisation state visualization.
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2.3.6 Principal States model and Jones notation

The principal state model proposes that a fibre without PDL in the linear
regime can be represented as a frequency-dependent channel transfer matrix,
called Jones matrix [64,65]:

Hpωq “ eαpωq

»

–

u1pωq u2pωq

´u˚2pωq u˚1pωq

fi

fl , (2.36)

where αpωq, u1pωq and u2pωq are complex quantities and |u1|2 `|u2|2 “ 1, ω is
the signal angular frequency. The complex optical field at the output of the
fibre is then:

Eout
pωq “ HpωqEin

pωq, (2.37)

where Ein,out “ rEin,out
x,y , Ein,out

x,y sT .
The principal states model is based on the observation that for every Hpωq

written as in Equation (2.36) at every frequency there is a pair of orthogonal
polarisation states, such that if the input signal is aligned with one of those
states, the output is invariant to changes in frequency to the first order. Light
launched in a fibre in such polarisations will maintain its polarisation at the
output to the first order in frequency. These states of polarisation are called
principal states of polarisation (PSPs).

In [66,67] it was shown that Equation (2.36) can describe the fibre channel
cross-coupling between both polarisations, including dispersion, Dpωq, PDL
Kpωq and PMD Upωq effects:

Hpωq “ DpωqUpωqKpωq, (2.38)

where
Dpωq “ e´iLβ2ω2{2, (2.39)

β2 being the group velocity dispersion, L fibre length;

Upωq “ R´1
1 pωq

¨

˝

eiωτpωq{2 0

0 e´iωτpωq{2

˛

‚R1pωq. (2.40)

The central matrix describes the group delay between the PSPs, τ , in the
so-called Jones notation [64]. R1pωq is a unitary matrix rotating signal x and
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y polarisations into X and Y PSP axes in Stokes space (detailed description
can be found in Appendix A):

R1pωq “

¨

˝

cos ζpωq ´e´iφpωq sin ζpωq

eiφpωq sin ζpωq cos ζpωq

˛

‚, (2.41)

where ζ and 2φ are the azimuth and elevation rotation angles (see Figure 2.10).

S3

S1 S2

ζ

2φ

Figure 2.10: Poincare sphere for visualizing a signal state of polarisation.

Finally,

Kpωq “ R´1
2 pωq

¨

˝

a

Γmaxpωq 0

0
a

Γminpωq

˛

‚R2pωq, (2.42)

where Γmax and Γmin are the maximum and minimum transmission coefficients
and R2pωq is a unitary matrix, similar to Equation (2.41), rotating signal x
and y polarisations into PDL eigen modes.

2.3.7 Vectorial notation in Stokes space

To describe the PSP, PDL and the DGD in a fibre, it is convenient to introduce
the vectorial notation. The PMD vector is:

Opωq “ τpωq ¨ qpωq, (2.43)
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where qpωq is a unit Stokes vector, aligned with the slow PSP, τpωq is a scalar,
the PMD vector length.

The PDL vector is less commonly used and is defined as:

Gpωq “
Γmax
Γmin

¨ ppωq, (2.44)

where Γmax and Γmin are the maximum and minimum transmission coeffi-
cients (scalar) and ppωq is a unit vector, aligned with maximum transmission
direction.

Introducing the PMD vector allows describing higher order PMD, when the
PMD vector depends on the frequency. (2.43) can be expanded in the Taylor
series as in [65]:

Opωq “ Opω0 `∆ωq « Opω0q `
BOpω0q

Bω
∆ω `

1

2

BpOpω0qq
2

B2ω
∆ω2

` ..., (2.45)

where ∆ω “ ω ´ ω0, and ω0 is the centre frequency, PMD vector is defined at
frequency ω.

Opω0q “ τpω0q ¨ qpω0q (2.46)

is the first-order PMD vector and

BOpω0q

Bω
“ PCD ¨ qpω0q ` PSD ¨ qKpω0q (2.47)

is the second order PMD vector, with polarisation-dependent chromatic dis-
persion (PCD) and polarisation state depolarisation (PSD). qpω0q is the unit
Stokes vector pointing in the direction of the PMD vector at the reference
frequency and qKpω0q is the orthogonal unit Stokes vector. The second-order
PMD magnitude is then described by

?
PCD2 ` PSD2.

The frequency dependence of signal states of polarisation S is described
as [68]

BSpωq
Bω

“ Opωq ˆ Spωq. (2.48)

In the Stokes space the PMD vector offers a clear graphical interpretation
of the PMD effect on a signal, depicted in Figure 2.11. In case of first-order
PMD this results in the signal Stokes vector precession around the PMD vector.
When higher order PMD is taken into account, the PMD vector itself starts a
complex movement in Stokes space.
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(a) First-order PMD. (b) Higher-order PMD.

Figure 2.11: Visual representation of a signal polarisation state change over
frequency under effect of PMD.

2.4 Simulation of stochastic effects

2.4.1 ASE noise simulation

The amplifier used in the simulations is an ideal model of an EDFA: It is gain-
controlled to match the span loss exactly. Such effects as gain saturation, gain
frequency profile, gain power-dependence are not considered. The amplifier
model serves for two functions – exact compensation for the power loss and
introduction of ASE noise. The ASE noise is modelled by a unpolarised Gaus-
sian distributed noise added independently to both polarisation components.
For PMD and PDL simulations, ASE-NL interactions are excluded: EDFAs
are noiseless, noise is loaded right before the receiver.

2.4.2 PMD simulation

Coarse-step model

The most common way to simulate optical fibre polarisation resolved signal
propagation is to solve a system of two coupled Manakov equations for both
orthogonal polarisations using the SSF [69]. The default method to simulate
the polarisation effects in a fibre is the coarse-step approximation [70] illus-
trated in Figure 2.12 (the model is also referred to as waveplate model). The
fibre in the model is divided into sections of constant birefringence with a
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length chosen randomly from a normal distribution, that are alternated with
polarisation scramblers. The length of each section should be longer than the
fibre correlation length (see Equation (2.24)). The coupled Manakov equation
is solved for each section, which introduces a DGD τi. The length of the sec-
tions needs to be chosen randomly out of a Gaussian distribution to provide
an accurate statistical PMD distribution to the first and second order, close
to the one measured experimentally [71]. The multiplication of the signal at
different frequencies with a fixed DGD would induces a periodicity in its au-
tocorrelation function, and the PMD characteristics in the frequency domain
would therefore repeat in long simulations.

τ1 τ2 τ3 τ4 τi

Figure 2.12: Coarse-step PMD simulation method schematic.

If the number of coarse-step sections is finite, only a certain set of DGDs
can appear (resulting from the combination of the waveplates’ delays). The
occurrence ratio of the DGD, especially high values of DGD, should then be
weighted with the Treloar formula [72]:

Ppτ,Nc´sq “
2τ

π

ż 8

0

σ ¨ sinpστq ¨

Nc´s
ź

i“1

sincpστiq ¨ dσ, (2.49)

where Nc´s is the number of coarse-step sections, τi is the DGD of the i-th
section,

ś

denotes product operator, sinc is the sine cardinal function, and
σ is the frequency of the Fourier transform of the DGD probability density
function:

FtPpτqu “
ż 8

0

4πτ 2Ppτq ¨ eiστdσ. (2.50)

Importance sampling

In stochastic simulations it can be extremely time-consuming to encounter
cases with a high value of DGD or PDL because these are not probable (See
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Section 2.3.5). High numerical values, however, have the largest impact on the
system performance and can cause system outage. For optical long-haul links
typically allowed outage probability is below 10´5, corresponding to 99.999%
(’five nines’) in system availability [73]. In time it corresponds to 5 minutes
per year.

In order to increase the probability of getting high DGD and PSP values
in a simulation, importance sampling (IS) can be used. One way of applying
IS to simulate PMD is to modify the way the polarisation scrambling is done
in the coarse-step model. The angle of the new polarisation can be chosen
randomly, or alternatively – aligned, so that the direction of the new PMD
vector is close to the previous value [74]. The aligned PMD vectors tend to
result in higher DGD values and therefore allow saving time compared to the
brute-force random simulations. The idea is illustrated in Figure 2.13.

Nc-s

(a) Unbiased case.

Nc-s

(b) Biased polarisation rota-
tion angle between the PMD
sections.

Figure 2.13: Visual representation of the resulting PMD vector ONc´s in the
coarse-step model.

The resulting PMD vector after concatenation of Nc´s course-steps sections
can be written as:

ONc´s “ ∆ONc´s `Rc´sONc´s´1, (2.51)

where ∆ONc´s is the contribution of the current section, ONc´s´1 is the con-
catenated PMD vector of the previous sections, and Rc´s is the rotation matrix
(polarisation scrambler) before the current section. The length of the ONc´s
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depends on the alignment of ∆ONc´s and Rc´sONc´s´1, or strictly, on the cos ψ
of the ψ angle between them. In the unbiased case cos ψ takes equally proba-
ble values between -1 and 1. Using importance sampling technique, it can be
biased to have the following distribution:

cos ψ “ 2ξ1´Ξ
´ 1, (2.52)

where ξ is a random number between 0 and 1, and Ξ is the bias parameter
between 0 and 1. The closer is Ξ to 1, the closer would PMD vectors of the
consecutive sections align.

With IS the probability of the PMD becomes biased and has to be weighted
using the weighting factor K [75]:

Kpcos ψq “
Ppcos ψq

P˚pcos ψq
“ 0.5{

´ 1

2p1´ Ξq

`cos ψ ` 1

2

˘
Ξ

1´Ξ

¯

, (2.53)

where Ppcos ψq is the unbiased, and P˚pcos ψq is the biased probability of
cos ψ.

Preselection

When simulating links operating in highly-nonlinear regime, each transmission
simulation can take considerable time. It gets even longer with growing signal
power, provided the accuracy is fixed. Besides, the probability to encounter a
fibre configuration with high value of DGD or PDL is low.

In order to minimise the total simulation time, one can preselect the fibre
birefringence profiles (combination of coarse-step section length and polarisa-
tion scramblers’ angles) that result in high DGD or PDL. The simulation of
the fibre polarisation effects can be done disregarding dispersion or Kerr ef-
fects. Therefore the time of such estimation is short. The estimation can be
done using low-power optical impulses propagating in orthogonal polarisations
that will provide the Jones matrix (channel transfer matrix) of the fibre, from
which PDL, PDG, PMD, PSP and DGD parameters can be extracted [66,67].
Finally, when the fibres are preselected, the precise simulations can be per-
formed. In the thesis we combine both IS and preselection for coarse and fine
selection of birefringence profiles respectively.
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Figure 2.14: Frequency dependence of DGD.

Polarisation effects are wavelength-dependent, but when the signal band-
width is relatively small, in a coarse approximation, the frequency-independent
DGD can be considered. However, it should always be checked if second-order
PMD modelling is required. Figure 2.14 illustrates the frequency dependence
of DGD spectra overlaid with 28, 56 and 112 GHz signal spectra for three ran-
domly chosen 2400 km SSMF 0.1 ps

?
km fibre birefringence realizations and

central frequency of 193.0985 THz. PMD was simulated using a coarse-step
model with an average of 100 m long waveplates.

2.4.3 PDL simulation

In order to achieve large PDL or PDG values, similar techniques as for PMD
can be used. By performing IS, the angle between the channel and PDL or
PDG-device polarisation states can be adjusted [76]. This angle biased to zero
would lead to the largest performance penalties. Bearing in mind the two
main sources of PDL and PDG, fibre-intrinsic and from the link components,
we simulate them accordingly in two ways, as explained in Figure 2.15.

In the first approach, the fibre’s slow and fast axes are having different
attenuation coefficients, Figure 2.15a and Figure 2.15b. In Figure 2.15b a
signal power profile of a 80 km SSMF span is illustrated, the signal input power
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(a) First approach: Fibre’s propagation
axes have different attenuation coeff-
cient.

0 20 40 60 80
Distance, km

0

1

2

3

4

5

6

7

W
m ,re

wo
P

Total power profile 
Total power profile   
Power profile in X
Power profile in Y

(b) First approach: Example of power profiles in a span with
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uation coefficients in X and Y axes.
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(c) Second approach: PDG in EDFAs.

Figure 2.15: Illustration of intrinsic PDL and component PDG simulation
approaches.
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is 8 dBm. The case where both polarisations have 0.2 dB{km attenuation
coefficient is compared with the case, where αx “ 0.176 dB{km and αy “

0.25 dB{km The attenuation coefficients are adjusted so that the total power
along the span has the same shape as if the attenuation coefficients were equal.
The second approach in Figure 2.15c investigates PDG in optical components,
namely in the EDFAs, as a combination of a random polarisation scrambler
(implemented as a random polarisation axes rotation) and attenuation of one
of the polarisation components. In the result, one of the randomly scattered
polarisation components is amplified more strongly than the other.

2.5 Conclusions

In this chapter, we covered the background knowledge on fibre birefringence
and polarisation effects, and the DBP algorithm. Further, the basis for simu-
lating polarisation effects and their impact on the DBP was introduced.
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Chapter 3

Statistics of stochastic effects and

their impact on DBP

This chapter will give an overview of the statistics of the stochastic effects
simulated in a fibre and EDFAs, namely, ASE, PMD, and PDL, which were
performed in VPItransmissionMaker Optical Systems. The impact of these
effects on DBP gain will then be discussed. Finally, experimental results on
the PMD-induced DBP limit will be presented.

3.1 Statistics of stochastic effects

3.1.1 EDFA ASE noise statistics

Unlike PMD, ASE noise is much less sensitive to practically observed variations
in the operation conditions. Provided the temperate and pumping of an EDFA
stays constant, the amount of produced ASE noise in short time scales has a
low statistical variation.

Figure 3.1 presents the output ASE noise power in dBm of 2400 and 4800 km

links with EDFAs between the spans of 80 km (30 and 60 EDFAs per link re-
spectively). The EDFAs ideally compensate for the fibre span loss of 16 dB.
EDFA’s NF vary from 3 to 8 dB with a step of 1 dB and the power gain is
16 dB (ideal span loss compensation). The signal bandwidth is 28 GHz and
the central frequency is 193.0985 THz The results show low deviation from
the average. They are in good, although not perfect, conjunction with the

43
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Figure 3.1: Noise power generated by an EDFA. Theoretical vs simulated
curves.

theoretical formula giving an estimation on the ASE power [77]:

PASE “ NFlin ¨ Glin ¨ �f ¨B ¨Nspans, (3.1)

where NFlin is the linear scale NF, Glin is the linear scale amplifier gain, B is
the signal bandwidth, � is Plank’s constant in J ¨ s and f is central frequency
in Hz.

The mismatch of the theoretical and simulated curves is due to theoretical
formula assumptions that, firstly, no ASE noise amplification occurs along the
link, which could explain why simulated values are higher than theoretical for
low NFs. Secondly, for higher NFs, the mismatch could be due to G being
frequency-independent in the theoretical formula, whereas in the simulations
a typical frequency-dependent EDFA gain spectrum was used.

3.1.2 PMD statistics

In this section we simulate only PMD independent of any other fibre propaga-
tion effects. The PMD statistics is simulated using the coarse-step model. An
example of statistical PMD simulation is depicted in Figure 3.2 for a 2400 km

system and three different SSMF with PMD coefficient, PMDc, of 0.04, 0.1
and 0.3 ps{

?
km, based on 105 fibre birefringence realizations. A birefringence
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profile realization describes a specific combination of the parameters of the
coarse-step model, like sections’ lengths and polarisation scramblers’ matri-
ces. The simulation of DGD statistics is shown with bars and is compared to
the theoretical Maxwellian distribution shown with solid line. The fibre PMD
value is shown with the vertical dashed line. The means of the distributions in
Figure 3.2 coincide with the empirical Equation (2.26). The DGD values very
much higher or lower than the average PMD have a low occurrence probability.
In the example in Figure 3.2 for a 0.3 ps{

?
km PMDc fibre the probability of

DGD being 0 ´ 1 ps is 0.057%, 9 ´ 10 ps is 6.2%, 12 ´ 13 ps is 6.8%, and
34´ 35 ps is 0.038%, calculated as:

P∆τ1ă∆τă∆τ2 “

ż ∆τ2

∆τ1

P p∆τq ¨ dp∆τq ¨ 100%, (3.2)

Figure 3.2: Simulated DGD distribution of a 2400 km fibre with PMDc 0.04,
0.1 and 0.3 ps{

?
km.

If one wanted to describe the differential group delay evolution (DGDev)
along the fibre, one would need to have exact information about the DGD and
PSP at each point in the fibre. While the PSP along the fibre are impossible
to predict empirically, some speculations can be done about the values of the
DGD: Equation (2.26) describes the average DGD value in a fibre of any length.

In Figure 3.3 three DGD values are chosen from the 0.3 ps{
?
km distribution

and 100 fibre realizations are simulated and averaged for each of the three
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Figure 3.3: Average and standard deviation of DGDev along the link in three
probability regions. 0 ´ 1 ps very low probability, 9 ´ 10 ps high probability,
34´ 35 ps very low probability. Each case averages 100 fibre realizations with
PMDc 0.3 ps{

?
km.

chosen points. The mean DGDev that results in 9´10 ps DGD in pink colour
follows the empirical formula with a square root length dependence. However,
in order to achieve improbable high values of 34´ 35 ps in blue, DGD follows
the linear growth. In order to drop to improbable low values of 0 ´ 1 ps in
black, DGDev grows up to a certain point and then reduces again, following
a bow shape. We further refer to these cases as square root, straight and bow
evolutions.

Figure 3.4 illustrates two different fibres and two intervals from the DGD
statistics, based on 100 fibre realizations for each case. As in Figure 3.4a, the
evolution follows either the straight line if the final DGD value is improbably
high for the fibre or the square root line if the final DGD is close to fibre PMD.
In Figure 3.4b the bow and square root evolutions of different fibres but same
final DGD are compared. Notice that these evolutions will also have a different
probability of occurrence.

Figure 3.3 and 3.4 show that the DGDev is fully characterized by neither the
fibre PMDc, nor DGD value alone. The combination of those two values gives
more valuable information. The fibre PMDc defines the DGD distribution and
the final DGD, in turn, defines, which pattern the DGDev follows. Although
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(a) Comparison of square root and straight evolutions.

(b) Comparison of square root and bow evolutions.

Figure 3.4: Difference in the average DGDev with a fixed final DGD and
variable fibre PMDc in a 2400 km link.
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50 spans
40 spans
30 spans

(a) 30, 40, and 50 span links with a fibre PMDc 0.04 ps{
?
km.

50 spans
40 spans
30 spans

(b) 30, 40, and 50 span links with a fibre PMDc 0.1 ps{
?
km.

Figure 3.5: Statistic distribution of DGD depending on the link length.
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the actual evolution still remains stochastic, the proposed way of considering
PMD minimizes the prediction error.

In the simulations of the PMD impact on nonlinear mitigation techniques
such as DBP, the way the DGD evolves along the fibre should be considered.
Whether the PMDc is fixed and the investigated DGD values are preselected
or whether the PMDc varies and the most probable DGD values are simu-
lated, the evaluated impact of PMD will be different (please find details in
Appendix B).

Figure 3.5 shows the statistical distribution of DGD for three different link
lengths with 30, 40 and 50 spans, 80 km SSMF each, in two different fibre
types, 0.04 and 0.1 ps{

?
km PMDc. For each of the fibres the three distri-

butions have only a moderate difference. The purpose of the pictures is to
demonstrate typical DGD values in practical links.

3.1.3 PDL and PDG statistics

As described in Section 2.4.3, we consider distributed PDL and lumped PDG
for simulation. The statistical investigations, performed in other works, con-
clude that the PDL is following a Maxwellian, a combination of Rayleigh and
Maxwellian distributions, or neither of those [60–62], which is consistent with
the following presented results.

Distributed PDL

For distributed fibre PDL, statistics is collected for a 2400 km system based
on 105 fibre realizations. The simulated pairs of αx and αy and ∆α “ αy ´ αx

are summarized in Table 3.1.

Table 3.1: Pairs of αx and αy for simulating distributed PDL while keeping
the total power profile unchanged (from the one with αx “ αy “ 0.2 dB{km).

αx, dB{km αy, dB{km ∆α, dB{km

0.1764 0.2500 0.0736
0.1913 0.2100 0.0187
0.1976 0.2050 0.0074
0.1980 0.2005 0.0025
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Figure 3.6: Statistic distribution of a distributed PDL depending on PMD and
birefringence.
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When PMD in the system is negligible, and no birefringence is present,
even a slight difference of the slow and fast axes attenuation coefficient causes
a considerable PDL, as shown in Figure 3.6a. Note the scaling factor for the X
axis. This can be explained by a strong impact of the attenuation coefficient
difference not smoothed by polarisation rotation. Generally, distributed PDL
should not be investigated independently of polarisation rotation and PMD, as
the nature of these effects lies in the same physical phenomena of birefringence
[78].

Figure 3.6b and 3.6c show the same system, firstly, without PMD but with
random birefringence, and secondly, with both PMD (0.1 ps{

?
km PMDc) and

birefringence. Random polarisation rotation averages out the effect, and the
resulting PDL is considerably smaller. Adding the PMD barely changes the
resulting PDL statistic.

Lumped PDG

We continue investigating PDL statistics as a lumped gain at EDFAs in Fig-
ure 3.7. Here we do not consider PMD in a fibre, and polarisation rotation
is ensured by random polarisation scrambling before each EDFA (see Fig-
ure 2.15c). Each amplifier has either 0.1 or 0.3 dB insertion loss in one of the
polarisations, so that one of the polarisations has 16 dB and the other 16.1
or 16.3 dB gain respectively. The setup ensures that the total power does
not change, which is important for investigating Kerr nonlinear effects. There-
fore, the X-axis represents link PDL, as defined in Equation (2.32), rather than
EDFA PDG. The resulting probability distribution follows neither Maxwellian,
nor Rayleigh distributions.

3.2 Impact of stochastic effects on DBP

3.2.1 Simulations

Simulation setup

In order to investigate the impact of stochastic effects on DBP, we use different
modulation formats and symbol rates. We consider the transmission of single-
channel 28 GBaud DP-QPSK, 56 GBaud DP-QPSK and 28 GBaud DP-16-
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QAM with non-return-to-zero (NRZ) encoder. The transmitter output signals
have 5 dBm power per transmission and are sent into the non-DM transmission
link, which is schematically shown in Figure 3.8. The link consists of 20 spans
of 80 km SSMF with one EDFA per span to compensate for the fibre loss. The
EDFAs are noiseless, which means they are not introducing any ASE noise.

The signal is detected by an ideal shot-noise limited coherent receiver: Phase
noise of the transmitter laser and local oscillator (LO) are neglected in order
to focus on the impact of fibre nonlinearities. The receiver has a filter matched
to the signal spectrum (30 or 58 GHz respectively) followed by a DSP unit. In
case of PMD- and PDL-impact investigation, noise loading is performed after
the DBP to separate the effects and to be able to control the OSNR. DBP is
performed using the 0.05˝ MaxPhCh implementation, using the inverse Man-
akov equations (see Section 2.1.3). Linear polarisation effects are mitigated
using a 15-taps multiple-input multiple-output (MIMO) equalizer, which was
optimized using the constant modulus algorithm (CMA) for QPSK and mul-
tiple modulus algorithm (MMA) for 16-QAM [79] (also see Appendix C). For
each configuration 217 Gray mapped symbols are transmitted.

Impact of ASE on DBP

The impact of EDFA-induced ASE noise has been investigated in [80,81]. The
authors came to the conclusion that the DBP degradation becomes signifi-
cant in long-haul links (> 4800 km) and high input powers (> 8 dBm). As
will be seen in the next sections, PMD and PDL/PDG start inducing DBP
degradation at considerably lower distances and powers, thus being the main
performance limiting effects.

Impact of PMD on DBP

First we concentrate on a 28 GBaud DP-QPSK signal transmission in fibres
with five values of the PMDc (0.1, 0.3, 0.5, 1.0 and 2 ps{

?
km). A hundred

different random fibre birefringence profiles are simulated for each configura-
tion.

We plot the statistics of the received bit error ratio (BER) in Figure 3.9a.
The distribution of the BER ranges from 10´4.5 up to 10´2. But what does it
depend on? Why does in some cases the system performs better than in others?
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In order to see that, we plot the same results versus the DGD in Figure 3.9b.
It becomes clear now that there is a correlation between DGD and BER. The
system with DBP experiences considerable performance degradations for DGD
values ą30% of the symbol duration Ts. However, note that the degradation
occurs at any value of DGD, even ă30% of Ts, but its "visibility" is defined
by the noise level. In this particular example 16 dB linear OSNR "hides" any
PMD degradation below BER 10´4. Compare the performance of exactly the
same setup with 50 dB linear OSNR (calculated with respect to the ASE noise
not considering nonlinear noise.) in Figure 3.9c. The optical noise is no longer
hiding the PMD-induced degradation.

Figure 3.10 and 3.11 show the BER mean and standard deviation of the
28 GBaud DP-QPSK system with and without DBP, compared with results for
56 GBaud DP-QPSK and 28 GBaud DP-16-QAM signal. The linear OSNRs
were optimized to reach similar BER values for all considered cases in back-
to-back propagation. The results clearly show that BER degradations due to
PMD correlate with the DGD of the link.

Figure 3.10 could possibly imply that doubling the symbol rate is worse
than doubling the number of bits per symbol. This could be explained by
the importance of DGD value relative to the symbol duration. Whereas using
higher modulation levels keeps the symbol interval unchanged, increasing the
symbol rate proportionally decreases the symbol time interval. However, as
will be shown in Section 4.3.4 and Section 5.3.2, the different results are rather
due to different OSNRs. The importance of these figures is to show that the
DBP performance correlates with DGD.

From Figure 3.11 we can conclude that the system performance standard
deviation increases with the DGD value. Here the high probability DGD cases
for each fibre’s PMDc were simulated, which means that the system perfor-
mance standard deviation grows rather with the fibre PMDc. Recalling the
DGD statistical distributions, for example, in Figure 3.4, we can notice that
fibres with larger PMDc have bigger variation in DGD evolutions. Therefore,
bigger variations of DBP performance will be observed. In Appendix B it is
shown that when the PMDc of the fibre is fixed, the results differ considerably,
particularly the performance variation does not depend on the value of the
DGD.
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(a) Satistical distribution of the BER logarythm of a
28 GBaud DP-QPSK 20x80 km system and 16 dB linear
OSNR.

(b) BER as a function of DGD. Signal has 16 dB linear
OSNR.
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(c) Impact of noise on the NL-PMD interaction visibility. Signal has 50 dB linear OSNR.

Figure 3.9: Difference in BER statistics with introduction of DGD as a new
performance criterion in a 2400 km system with a 28 GBaud DP-QPSK
signal.
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no DBP

Figure 3.10: Average BER as a function of the link DGD for three investigated
systems. OSNR is linear (only ASE noise considered).

no DBP

Figure 3.11: Variation of BER as a function of the link DGD for three inves-
tigated systems. OSNR is linear (only ASE noise considered).
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Impact of PDL on DBP

The impact of PDL on DBP was investigated for two different scenarios,
lumped PDG and distributed PDL as specified in Section 2.4.3.

In the lumped PDG case, the gain difference between the X and Y polar-
isations at each of the EDFAs was 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, and 0.7 dB.
These values were chosen to cover typical connector losses. Fifty statistical
fibre birefringence realizations for each of the values were simulated.

In the distributed PDL case the simulated difference between the fibre or-
thogonal modes’ attenuation coefficients ∆α comprised 2.5 ¨ 10´3, 7.4 ¨ 10´3,
1.9 ¨ 10´2, and 7.4 ¨ 10´2 dB{km along the whole link (see Table 3.1). The ac-
tual attenuation coefficients for each axis were selected to keep the total power
profile similar to the case when both modes’ attenuation coefficients are equal.

PDL, dB
0.5 50 1 1.5 2 3 4

Q
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(a) DBP degradation by lumped PDG.
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0
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(b) DBP degradation by distributed PDL.

Figure 3.12: DBP system performance correlation with the PDL at the re-
ceiver.

As shown in Figure 3.12, the Q factor is plotted versus the PDL of the link.
Q factor and BER are related as:

Q “ 1{2 ¨ erfcpBER{
?
2q, (3.3)

where erfctu is a complementary error function. We switch here from BER
to this metric to be able to plot average and standard deviation of the DBP
performance in one figure. More information on the Q factor can be found in
Appendix D.

The dramatic drop in DBP performance when the PDL is growing can be
clearly seen in Figure 3.12. Interestingly, when PDL is up to 0.2 dB, the
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performance of the lumped case is considerably better than the performance
of the distributed case. This can be explained by the high sensibility of the
DBP efficiency to the correctness of the power profile, as we have seen in [82]
for Raman amplified links. The standard deviation of performance is, however,
higher for the lumped than for the distributed case, which could be connected
to the polarisation rotation averaging in the latter case.

3.2.2 Experiment

The experiment of the DBP degradation in presence of PMD was performed in
the facilities of "High-speed optical transmission laboratory" of Acreo Swedish
ICT (now RISE Acreo). The author is heartily thankful to Oskars Ozolins,
Xiaodan Pang, Suhail Al-Awis, Richard Schatz, Anders Djupsjöbacka, Gunnar
Jacobsen and Sergei Popov for common working on the experiment, discussions
and for granting access to previously created DSP library.

Experimental setup

The experimental setup to characterize the impact of PMD on the performance
of DBP is illustrated in Figure 3.13.

DSPLink 521 km

ECL IQ modulator

DAC

I Q
t

PRBS

LO

Coh. Rx

PMD 
emulator

DBP

Resampling

MMA

BPS

PMD
emulator

PMD 
emulator

Pre-amp.

Figure 3.13: Experimental transmission system.

The transmitter consists of an external cavity laser (ECL) with less than
100 kHz linewidth, a pulse pattern generator (PPG), a 2-bit digital to analog
converter (DAC) and an optical IQ modulator. The output 28 GBaud 4-
pulse-amplitude modulation (PAM) signals are decorrelated and then fed into
an optical IQ modulator with a bandwidth of 25 GHz. The output of the IQ
modulator is mapped to x- and delayed y-polarisations to produce a single-
channel 28 GBaud DP-16-QAM signal, which is sent through a non-DM link.
The link consists of 6 spans of 80 to 93 km of SSMF with one lumped EDFA
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per span. The DGD of the link is estimated to be 2.8 ˘ 1.66 ps (mean ˘
standard deviation), which corresponds to a PMD coefficient of 0.12 ps{

?
km.

Additional PMD is introduced by one of the two emulators, each one being a
passive device formed by random splices of polarisation maintaining fibre [83].
Such emulators have fixed root-mean-square differential group delay (PMD)
and varying second-order PMD.

The first PMD emulator has a DGD of 14.4 ˘ 1.9 ps, and the second one
21.2˘ 2.9 ps standard deviation. Each of the PMD emulators is placed at the
end of the link to consider the worst possible scenario for DBP. In such case the
error between the actual and back-propagated link is maximised, leading to the
highest PMD-induced penalty. Although, such experimental setup excludes
the PMD-nonlinear interaction, that are present in practical DBP, it introduces
a difference between the forward and backpropagated fields. That difference
is the source of the DBP error. The idea is illustrated in Figure 3.14, in
conventional DBP the DGD is accumulating along the link, in the experiment
it is added in the end of the link in a bulk.

distance

D
G

D

DBP

forward DGD
accumulation

(a) Conventional DBP.

distance

D
G

D

DBP

fibre DGD

emulator 
DGD

(b) Experiment.

Figure 3.14: Comparison of the PMD emulator and intrinsic fibre PMD impact
on DBP.

In comparison to the simulations, performed in this work, the experimen-
tal results demonstrate DBP error coming purely from the uncompensated
DGD. This error persist even if the linear PMD is compensated after DBP.
The simulations will investigate the cases, where DBP error comes from either
uncompensated DGD and PMD-nonlinear interaction (linear PMD is compen-
sated after DBP, see Figure 3.15a) or pure PMD-nonlinear interaction (linear
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PMD is compensated before DBP, see Figure 3.15b).
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(a) Linear PMD is compensated after DBP.
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(b) Linear PMD is compensated before DBP.

Figure 3.15: Comparison of the impact of two positions for linear PMD com-
pensation on DBP.

The transmission in the experiment is considered for two regimes: linear
case (2 dBm transmitter output power) and highly nonlinear case (8 dBm),
resulting into 30 and 25.1 dB OSNR before the DSP respectively. At the re-
ceiver, the signal is preamplified to 0 dBm and detected by a coherent receiver
with 73 GHz bandwidth and with a less than 100 kHz LO linewidth. Digital
post-processing includes DBP realized by a 0.05˝ MaxPhCh algorithm [49] fol-
lowed by resampling to 2 samples per symbol. MMA equalizer [84] is applied
to compensate for linear polarisation effects followed by a blind phase search
(BPS) for carrier frequency and phase recovery, and error counting.

Impact of PMD on DBP performance

Figure 3.16 depicts the measured BER dependence on the DGD of the link.
Each point corresponds to an average of 50 configurations with low, medium
or high DGD. Those are the three transmission cases: without any PMD em-
ulators, with the first emulator, and with the second emulator. The standard
deviation of BER is shown within the horizontal coloured areas. The stan-
dard deviation of the PMD emulators and the link is depicted with vertical
greenish-coloured areas.

In Figure 3.16 the linear link (2 dBm input power), depicted with green
diamond marks, shows that linear polarisation effects are fully compensated
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Figure 3.16: Dependence of the experimentally measured BER on the DGD of
the link.

by the MMA equalizer. The orange circle marks for the DBP case (8 dBm

input power) show that the penalty induced by PMD grows with DGD and
can achieve one order of magnitude of BER degradation in highly nonlinear
and high-PMD scenarios. It can also be observed that the standard deviation
of the DBP performance grows with the PMD emulators’ DGD.

3.3 Conclusions

In this chapter we showed the statistics of a typical EDFA ASE noise and PDG,
and SSMF PMD and PDL simulations. We demonstrated that the majority
of DGD and PDL values in modern fibre links in normal operating conditions
will be relatively small. However, there is a non-zero probability of reaching
high values, which significantly impacts the performance of DBP.

Using simulations of typical transmission systems, we characterised the
PMD-, PDG- and PDL-induced DBP performance degradation. We showed,
that the noise level plays a crucial role in the "visibility" of the NL-PMD limit.
Furthermore, we presented the experimental demonstration of DBP degrada-
tion due to the group delay between x and y signal components.
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Chapter 4

Perturbation analysis of PMD

The purpose of this chapter is to show how DGD can be introduced to the
perturbation model. The next step is a simplification of the proposed modi-
fication to the analytical solution, enabled by an assumption on the DGDev
shape. Finally, the chapter presents simulations of optical field propagation
using the perturbation model and the SSF, verifying the proposed model and
simplifications. First method is implemented in MathWorks MATLAB, the
second one in VPItransmissionMaker Optical Systems.

4.1 Perturbation approach

4.1.1 Perturbation approach foundations

In Section 2.1.2 we showed that the propagation of light over single-mode fibre
can be described by a set of the coupled Manakov equations [37–39]:

BAx,y
Bz

`
i

2
β2pzq

B2Ax,y
Bt2

´
β3

6

B3Ax,y
Bt3

`
αpzq

2
Ax,y “ i

8

9
γpzqp

∣∣Ax,y∣∣2 `∣∣Ay,x∣∣q2Ax,y.
(4.1)

The coupled Manakov equations in time domain have an analytical solution
for Ax and Ay in a limited set of cases. In all other systems, interesting for
simulating currently deployed optical fibres, approximative numerical solutions
can be found. It is possible to reduce the computational complexity by solving
the equations numerically in the frequency domain. As will be seen further
on, loss and chromatic dispersion can be described by a simple attenuation

63
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and phase rotation. The impact of Kerr nonlinearities can be described by
a single additional term. The CD slope, β3, is neglected because its effect is
small compared to the chromatic dispersion (unless the propagation is near
the zero-dispersion wavelength). By taking the Fourier-transform of Ax,y in
(4.1) we obtain then:

Ax,ypω, zq “ FtAx,ypt, zqu “

8
ż

´8

Ax,ypt, zqexpp´iωtqdt. (4.2)

Here we simplify the writing of ∆ω “ ω ´ ω0 to simply ω. Further,

BAx,ypω, zq

Bz
“
i

2
ω2β2pzqAx,ypω, zq ´

αpzq

2
Ax,ypω, zq`

i
8

9
γpzq

ĳ

´

Ax,ypω1, zqA
˚
x,ypω2, zq`Ay,xpω1, zqA

˚
y,xpω2, zq

¯

Ax,ypω´ω1`ω2, zqdω1dω2,

(4.3)

where ˚ denotes complex conjugation.
It is convenient to introduce accumulated gain G and dispersion D profiles:

Gpzq “

L
ż

0

´

´ αpzq `
ÿ

j

gjδpz ´ zjq
¯

dz, (4.4)

gj is the j-th EDFA amplifier gain and δ is the Dirac function, zj is the position
of j-th EDFA, L is the link length.

Dpzq “

L
ż

0

β2pzqdz. (4.5)

Rewriting

Ax,ypω, zq “ Ux,ypω, zq expp
´Gpzq ` iω2Dpzq

2
q, (4.6)

so that the Ux,y is only affected by NL, from (4.3) we get [85]:

BUx,ypω, zq

Bz
“ i

ĳ

8

9
γpzq exppGpzq ´ i∆ΩDpzqq¨

´

Ux,ypω1, zqU
˚
x,ypω2, zq ` Uy,xpω1, zqU

˚
y,xpω2, zq

¯

Ux,ypω ´ ω1 ` ω2, zqdω1dω2,

(4.7)



65

where ∆Ω “ pω ´ ω1qpω ´ ω2q.

To find the perturbation solution of equation (4.7) let UUx,ypω, zq be ex-
panded in Volterra series, where U pkqx denotes the kth order solution (namely,
the kth order Volterra kernel [86] multiplied with the corresponding signal
term):

UUx,ypω, zq «
8
ÿ

k“0

U
pkq
Ux,y
pω, zq, (4.8)

From equations (4.7) and (4.8) we get

B

Bz
pU p0qx,ypω, zq ` U

p1q
x,ypω, zq ` U

p2q
x,ypω, zq ` ...q “

i

ĳ

8

9
γpzq exppGpzq ´ i∆ΩDpzqq¨

´

pU p0qx,ypω1, zq`U
p1q
x,ypω1, zq` ...qpU

˚,p0q
x,y pω2, zq`U

˚,p1q
x,y pω2, zq`U

˚,p2q
x,y pω2, zq` ...q`

pU p0qy,xpω1, zq`U
p1q
y,xpω1, zq` ...qpU

˚,p0q
y,x pω2, zq`U

˚,p1q
y,x pω2, zq`U

˚,p2q
y,x pω2, zq` ...q

¯

¨

pU p0qx,ypω´ω1`ω2, zq`U
p1q
x,ypω´ω1`ω2, zq`U

p2q
x,ypω´ω1`ω2, zq` ...qdω1dω2.

(4.9)

By equating the terms for each addend separately we get [85]:

BU
p0q
x,ypω, zq

Bz
“ 0, (4.10)

U p0qx,ypω, zq “ Ux,ypω, 0q, (4.11)

and

BU
p1q
x,ypω, zq

Bz
“ i

ĳ

8

9
γpzq exppGpzq ´ i∆ΩDpzqq¨

´

U p0qx,ypω1, zqU
˚,p0q
x,y pω2, zq`U

p0q
y,xpω1, zqU

˚,p0q
y,x pω2, zq

¯

U p0qx,ypω´ω1`ω2, zqdω1dω2.

(4.12)

Following [85], we further limit the solution to first-order perturbation ap-
proximation, so that U pkqx,y pω, zq “ 0 for k ą 1, assuming low NL and constant
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signal spectrum:

Ux,ypω, zq “ U p0qx,y`U
p1q
x,y “ Ux,ypω, 0q`i

ĳ

´

L
ż

0

8

9
γpzq exppGpzq´i∆ΩDpzqqdz

¯

¨

´

Ux,ypω1, 0qU
˚
x,ypω2, 0q ` Uy,xpω1, 0qU

˚
y,xpω2, 0q

¯

Ux,ypω ´ ω1 ` ω2, 0qdω1dω2.

(4.13)

We further define a complex link nonlinear transfer function η as:

ηp∆Ωq “

L
ż

0

8

9
γpzq exppGpzq ´ i∆ΩDpzqqdz. (4.14)

The Sx,y term, related to the input optical signal, can be written as:

Sx,ypω, ω1, ω2q “
´

Ax,ypω1, 0qA
˚
x,ypω2, 0q ` Ay,xpω1, 0qA

˚
y,xpω2, 0q

¯

Ax,ypω ´ ω1 ` ω2, 0qdω1dω2.

(4.15)

Notice that Ux,ypω, 0q “ Axpω, 0q. We then can rewrite (4.13) as

Ux,ypω, zq “ Ux,ypω, 0q ` i

ĳ

ηp∆ΩqSx,ypω, ω1, ω2qdω1dω2. (4.16)

Further introducing δnl_x,y as a first-order perturbative term describing the
impact of NL:

δnl_x,ypω, zq “ i

ĳ

ηp∆ΩqSx,ypω, ω1, ω2qdω1dω2, (4.17)

we finally get

Ux,ypω, zq “ Ux,ypω, 0q ` δnl_x,ypω, zq. (4.18)

Note that δnl_x,y would be different for x and y components.

The propagation of a signal in a fibre, considering Equation (4.6), is then
approximated by:

Ax,ypω, zq “
´

Ux,ypω, 0q ` δnl_x,ypω, zq
¯

expp
´Gpzq ` iω2Dpzq

2
q “

Alin_x,ypω, zq ` δ
1

nl_x,ypω, zq, (4.19)
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where Alin_x,y is the linear solution and the nonlinearities are described by a
single perturbative term δ

1

nl_x,y:

δ
1

nl_x,y “ δnl_x,y ¨ expp
´Gpzq ` iω2Dpzq

2
q. (4.20)

Such signal nonlinearity description can be mapped to a propagation model
sketched in Figure 4.1. Fibre propagation effects are calculated for every dz

step, and DGD is not yet considered.

dz

dz: Attenuation, Dispersion, NL

Figure 4.1: Sketch of the perturbation model propagation.

4.1.2 Link nonlinear transfer function

The link nonlinear transfer function ηp∆Ωq can be considerably simplified for
certain links. When all the spans in a system are identical, for instance, the
function can be analytically integrated over z.

We assume that such a nonlinear transfer function for a SSMF non-DM link
of length L with ideal EDFA loss compensation, and α, γ, and β2 not changing
along the span, is:

ηp∆Ωq “

L
ż

0

8

9
γpzq exppGpzq ´ i∆ΩDpzqqdz, (4.21)

Gpzq “ ´αz ` g ¨ δpz ´ j ¨ Lspanq, Dpzq “ β2z, γpzq “ γ, (4.22)

where j “ ceiltz{Lspanu, j is the current span, ceiltu is a function rounding
towards positive integer.

ηp∆Ωq “

L
ż

0

8

9
γ expp´αz ` g ¨ δpz ´ j ¨ Lspanq ´ iβ2∆Ωzqdz. (4.23)
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For a single-span with span length Lspan and without EDFA amplification
in the end:

η1p∆Ωq “

Lspan
ż

0

8

9
γ expp´α ´ iβ2∆Ωqzdz “

8

9
γ

1´ exppp´α ´ iβ2∆ΩqLspanq

α ` iβ2∆Ω
. (4.24)

For a multi-span system, where all spans are identical, it can then be written
as [85]:

ηNp∆Ωq “

N ¨Lspan
ż

0

8

9
γ expp´αz ` g ¨ δpz ´ j ¨ Lspanq ´ iβ2∆Ωzqdz “

N
ÿ

j“1

Lspan
ż

0

8

9
γ expp´αz ´ ipβ2z `Djq∆Ωqdz, (4.25)

where N is the number of spans and Dj “ β2pj ´ 1qLspan is the accumulated
CD at the beginning of jth span. Further,

ηNp∆Ωq “
N
ÿ

j“1

Lspan
ż

0

8

9
γ expp´αz ´ ipβ2z ` β2pj ´ 1qLspanq∆Ωqdz “

η1p∆Ωq
N
ÿ

j“1

exppβ2pj ´ 1qLspan∆Ωq “

η1p∆Ωq
expp´i∆Ωβ2LspanNq ´ 1

expp´i∆Ωβ2Lspanq ´ 1
“

8

9
γ

1´ exppp´α ´ iβ2∆ΩqLspanq

α ` iβ2∆Ω

expp´i∆Ωβ2LspanNq ´ 1

expp´i∆Ωβ2Lspanq ´ 1
. (4.26)

The mapping of such a description is presented in Figure 4.2. All effects
are calculated at once for the whole link. The only difference from Figure 4.1
is the simplified nonlinear transfer function thanks to assuming a multi-span
system consisting of identical spans and having constant dispersion, nonlinear,
and attenuation coefficients along the spans.
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Attenuation, Dispersion, NL

z

Figure 4.2: Sketch of the perturbation model propagation with simplified non-
linear transfer function.

4.1.3 Graphical representation of the nonlinear transfer

function

An example of a link transfer function for a system consisting of 30 spans,
80 km each, with EDFAs exactly compensating for the span loss, is depicted
in Figure 4.3.
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Figure 4.3: Normalised magnitude of the link nonlinear transfer function in
dB scale. The red line depicts the integration region of a 28 GHz bandwidth
signal.

The ηNp∆Ωq function itself is complex and Figure 4.3 shows its normalized
magnitude in dB:

10 ¨ log10p
|ηNp∆Ωq|

maxt|ηNp∆Ωq|u
q rdBs, (4.27)

where maxtu denotes maximum value. ηNp∆Ωq was calculated from Equa-
tion (4.26) for SSMF. The red curve depicts the integration region for calculat-
ing the δnlpω, zq for a 28 GHz signal as in Equation (4.17). SSMF parameters
are summarised in Table 4.1. ∆Ω was chosen in the order of a few kHz to
provide good resolution to Figure 4.3.
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Table 4.1: SSMF parameters.

Parameter Value

Reference frequency 193.1 THz
CD 16 ps{nm{km

Fibre attenuation coefficient 0.2 dB{km
Nonlinear coefficient 1.37 1{mW {m

Core area 80 µm2

Span length 80 km
Number of spans 30

4.2 DGD in the perturbation model

4.2.1 Introduction of DGD

In this section, we want to introduce a way to take PMD into account in the
perturbative model. PMD can be seen as a time delay between the fibre PSP
components. We further make a simplification in that we assume signal po-
larisations stay aligned with the fibre PSP during propagation. This happens,
when the signal is launched in the PSPs. Then the time delay between the
signal x and y components will account for the DGD.

A group delay τ between the two polarisation states in time domain corre-
sponds to a multiplication with an exponential term exppiτωq in the frequency
domain. Only the relative delay is important, no difference is made between
positive or negative τ . DGD as a delay of the y component can be described
by an exponential term for Ay and A˚y , as in Equation (4.15):

Aypω1, 0q “ Aypω1, 0q e
iτpzqω1 ,

A˚ypω2, 0q “ Aypω1, 0q e
´iτpzqω2 ,

Aypω ´ ω1 ` ω2, 0q “ Aypω ´ ω1 ` ω2, 0q e
iτpzqpω´ω1`ω2q ,

(4.28)

where Ax,y is the delayed signal Ax,y component, τpzq is the accumulated DGD
of the link at a distance z, a single value in seconds. The key modification is
highlighted with blue colour. Here τpzq is not frequency dependent.
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For the S terms we then get the following coefficients:

Aypω1, 0q ¨ A˚ypω2, 0q ¨ Axpω ´ ω1 ` ω2, 0q “

Aypω1, 0q ¨ A
˚
ypω2, 0q ¨ Axpω ´ ω1 ` ω2, 0q e

iτpzqpω1´ω2q . (4.29)

Axpω1, 0q ¨ A
˚
xpω2, 0q ¨ Aypω ´ ω1 ` ω2, 0q “

Axpω1, 0q ¨ A
˚
xpω2, 0q ¨ Aypω ´ ω1 ` ω2, 0q e

iτpzqpω´ω1`ω2q , (4.30)

Aypω1, 0q ¨ A˚ypω2, 0q ¨ Aypω ´ ω1 ` ω2, 0q “

Aypω1, 0q ¨ A
˚
ypω2, 0q ¨ Aypω ´ ω1 ` ω2, 0q e

iτpzqω . (4.31)

In Equation (4.28) the delay is applied to one component only for simplicity.
It can, however, be split between the x and y components:

Axpω1, zq “ Axe
iτpzqω1{2,

A˚xpω2, zq “ Axe
´iτpzqω2{2,

Axpω ´ ω1 ` ω2, zq “ Axe
iτpzqpω´ω1`ω2q{2;

(4.32)

and

Aypω1, zq “ Aye
´iτpzqω1{2,

A˚ypω2, zq “ Aye
iτpzqω2{2,

Aypω ´ ω1 ` ω2, zq “ Aye
´iτpzqpω´ω1`ω2q{2.

(4.33)

Further we describe the group delay only in the y component.

The perturbation term for the x signal component for the whole link can
be written uniting Equation (4.15), (4.17), (4.23), and (4.29):

δnl_xpω, zq “ i
8

9
γ

ĳ

´

L
ż

0

expp´αz`g¨δpz´j¨Lspanq´iβ2∆Ωzqdz
¯

¨

´

Axpω1, 0qA
˚
xpω2, 0q`

eiτpzqpω1´ω2q Aypω1, 0qA
˚
ypω2, 0q

¯

Axpω ´ ω1 ` ω2, 0qdω1dω2 (4.34)

It is convenient to split δnl_x from Equation (4.34) into two addends, where
one is independent of DGD:
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δnl_xpω, zq “ i
8

9
γ

ĳ

´

L
ż

0

expp´αz ` g ¨ δpz ´ j ¨ Lspanq ´ iβ2∆Ωzqdz
¯

¨

Axpω1, 0qA
˚
xpω2, 0qq ¨ Axpω ´ ω1 ` ω2, 0qdω1dω2`

i
8

9
γ

ĳ

´

L
ż

0

expp´αz ` g ¨ δpz ´ j ¨ Lspanq ´ iβ2∆Ωzq ¨ eiτpzqpω1´ω2q dz
¯

¨

Aypω1, 0qA
˚
ypω2, 0qAxpω ´ ω1 ` ω2, 0qdω1dω2. (4.35)

For a multi-span system consisting of identical spans the first addend can
be integrated as in Equation (4.26). The possibility to simplify the second
addend depends on the form of the DGD evolution τpzq. In the general case
the evolution follows a random walk-off process and cannot be analytically
integrated over z.

For the y signal component both addends depend on DGD:

δnl_ypω, zq “ i
8

9
γ

ĳ

´

L
ż

0

expp´αz` g ¨ δpz´ j ¨Lspanq ´ iβ2∆Ωzq eiτpzqω dz
¯

¨

Aypω1, 0qA
˚
ypω2, 0qq ¨ Aypω ´ ω1 ` ω2, 0qdω1dω2`

i
8

9
γ

ĳ

´

L
ż

0

expp´αz ` g ¨ δpz ´ j ¨ Lspanq ´ iβ2∆Ωzq eiτpzqpω´ω1`ω2q dz
¯

¨

Axpω1, 0qA
˚
xpω2, 0qAypω ´ ω1 ` ω2, 0qdω1dω2. (4.36)

dz

DGD

dz: Attenuation, Dispersion, NL, DGD

τ(z1)
τ(z2)

τ(zn)
DGDev from 
waveplate model

Figure 4.4: Sketch of the perturbation model propagation accounting for DGD.

This general case perturbation model can be mapped to a sketch depicted
in Figure 4.4. In comparison to Figure 4.1 nonlinear propagation effects are
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still recalculated every dz step, but additionally the DGD is included. For
the purpose of modelling, the actual DGD values can be extracted from the
coarse-step model simulations. In Figure 4.4 the dz step of the perturbation
model is much larger than the one of the waveplate model.

4.2.2 Constant DGD evolution

Equation (4.35) can be considerably simplified if there is a way to integrate η
over z. A possible scenario for that could be a one-step τpzq evolution: when
DGD is added at the beginning of the link and is constant along the whole
link (dτpzq{dz “ 0). This case corresponds to a backpropagation of a received
signal with uncompensated linear DGD. The perturbative term δnl_xpω, zq

according to Equation (4.35) is then transformed to:

δnl_x_τ constpω, zq “

i

ĳ

ηNp∆Ωq ¨ pAxpω1, 0qA
˚
xpω2, 0qAxpω ´ ω1 ` ω2, 0qdω1dω2`

i eiτpω1´ω2q

ĳ

ηNp∆Ωq ¨ pAypω1, 0qA
˚
ypω2, 0qAxpω ´ ω1 ` ω2, 0qdω1dω2. (4.37)

The nonlinear transfer function can be integrated over z as in Equation (4.26).
For the y component:

δnl_y_τ constpω, zq “

i eiτpω´ω1`ω2q

ĳ

ηNp∆Ωq ¨ pAxpω1, 0qA
˚
xpω2, 0qAypω ´ ω1 ` ω2, 0qdω1dω2`

i eiτω
ĳ

ηNp∆Ωq ¨ pAypω1, 0qA
˚
ypω2, 0qAypω ´ ω1 ` ω2, 0qdω1dω2. (4.38)

The corresponding map of the model would be as in Figure 4.5.

4.2.3 DGD evolution as a span-step function

In order to consider a more realistic DGDev, we propose to set τpzq to a
staircase (or span-step) function, i.e. it stays constant inside each span and
rapidly grows between the spans on a τstep value, so that the final DGD is
achieved at the last span as in Figure 4.6 and can be written as:

τpzq “ pj ´ 1qτstep, j “ ceiltz{Lspanu, (4.39)
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dz

DGD

dz: Attenuation, Dispersion, NL, DGD

DGDev from 
waveplate modelτ=const

z

Figure 4.5: Sketch of the perturbation model propagation accounting for con-
stant DGD. The case could describe conventional DBP of a signal with un-
compensated DGD.

where j is the current span, ceiltu is a function rounding toward positive
integer.

Figure 4.6: Approximation of a real DGDev with a span-step function.

From Equation (4.35) we can then write:

δnl_x_τ steppω, zq “ i
8

9
γ

ĳ

´

L
ż

0

expp´αz ` g ¨ δpz ´ j ¨ Lspanq ´ iβ2∆Ωzqdz
¯

¨

Axpω1, 0qA
˚
xpω2, 0qq ¨ Axpω ´ ω1 ` ω2, 0qdω1dω2`

i
8

9
γ

ĳ

´

L
ż

0

expp´αz ` g ¨ δpz ´ j ¨ Lspanq ´ iβ2∆Ωzq ¨ eipj´1qτsteppω1´ω2q dz
¯

¨

Aypω1, 0qA
˚
ypω2, 0qAxpω ´ ω1 ` ω2, 0qdω1dω2. (4.40)
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We want to simplify the expression for the link nonlinear transfer function
η:

ητ stepp∆Ωq “
8

9
γ
´

L
ż

0

expp´αz`g¨δpz´j¨Lspanq´iβ2∆Ωzq¨ eipj´1qτsteppω1´ω2q dz
¯

.

(4.41)
For a single span system the nonlinear transfer function η can be analytically

integrated over z using Equation (4.24) (without amplification at the end of
the span):

η1_τ stepp∆Ωq “
8

9
γ

Lspan
ż

0

expp´αz ´ iβ2z∆Ωq eiτsteppω1´ω2q dz “

8

9
γ

1´ exppp´α ´ iβ2∆ΩqLspanq

α ` iβ2∆Ω
eiτsteppω1´ω2q “

η1p∆Ωq eiτsteppω1´ω2q . (4.42)

For multi-spans with exact span loss EDFA compensation, and all spans
being identical, analogously to Equation (4.26) we get:

ηN_τ stepp∆Ωq “
N
ÿ

j“1

Lspan
ż

0

8

9
γ ¨ expp´αz ´ ipβ2z ` β2pj ´ 1qLspanq∆Ωq¨

eipj´1qτsteppω1´ω2q dz “

η1p∆Ωq
N
ÿ

j“1

expp´iβ2pj ´ 1qLspan∆Ω` ipj ´ 1qτsteppω1 ´ ω2qq “

η1p∆Ωq
exppp´i∆Ωβ2Lspan ` iτsteppω1 ´ ω2qqN q ´ 1

expp´i∆Ωβ2Lspan ` iτsteppω1 ´ ω2q q ´ 1
. (4.43)

We can then write the expression for δnl for the x signal component:

δnl_x_τ steppω, zq “

i

ĳ

ηNp∆Ωq ¨ Axpω1, 0qA
˚
xpω2, 0qq ¨ Axpω ´ ω1 ` ω2, 0qdω1dω2`

i

ĳ

η1p∆Ωq
exppp´i∆Ωβ2Lspan ` iτsteppω1 ´ ω2qqN q ´ 1

expp´i∆Ωβ2Lspan ` iτsteppω1 ´ ω2q q ´ 1
¨

Aypω1, 0qA
˚
ypω2, 0qAxpω ´ ω1 ` ω2, 0qdω1dω2. (4.44)
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The difference between the nonlinear transfer function ηN without DGD and
ηN_τ step with staircase DGDev is shown in Figure 4.7b. For convenience the
example from Section 4.1.3 Figure 4.3 is repeated in Figure 4.7a. The system
is as before consisting of 30 spans SSMF, 80 km each. All the parameters are
summarised in Table 4.1.

Figure 4.7b depicts the magnitude of the difference between ηN p∆Ωq (as in
Equation (4.26)) and ηN_τ step p∆Ωq (as in Equation (4.43)). In the latter case
DGD accumulates to 25 ps (0.7 symbol periods, Ts). The magnitude of the
difference is further normalized to the maximum value of the ηN magnitude
and expressed in percent:∣∣ηNp∆Ωq ´ ηN_τ stepp∆Ωq

∣∣
maxt|ηN |u

¨ 100%. (4.45)

The red line depicts the integration region assuming a uniform signal spec-
trum of 28 GHz. Later δnl as in Equation (4.44) can be obtained by integration
over this region.

For the y polarisation component the perturbative term with a staircase
DGDev looks slightly different:

δnl_y_τ steppω, zq “

i
8

9
γ

ĳ

η1p∆Ωq ¨
exppp´i∆Ωβ2L` iτstepωqN q ´ 1

expp´i∆Ωβ2L` iτstepω q ´ 1
¨

Aypω1, 0qA
˚
ypω2, 0qq ¨ Aypω ´ ω1 ` ω2, 0qdω1dω2`

i
8

9
γ

ĳ

η1p∆Ωq ¨
exppp´i∆ΩNβ2L` iτsteppω ´ ω1 ` ω2qqN q ´ 1

expp´i∆Ωβ2L` iτsteppω ´ ω1 ` ω2qq ´ 1
¨

Axpω1, 0qA
˚
xpω2, 0qAypω ´ ω1 ` ω2, 0qdω1dω2. (4.46)

The corresponding map of the model can be found in Figure 4.8.

4.3 Simulation results

In this section we will be using two simulation approaches: perturbation and
SSF method. In both methods we will simulate the forward propagation of
the signal in a fibre with PMD and then ideally compensate for attenuation,
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(a) Magnitude of the link nonlinear transfer function without
PMD, |ηN p∆Ωq|, normalized to its maximum on a dB scale.
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ηN_τ stepp∆Ωq is the magnitude of the link nonlinear transfer
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Figure 4.7: Graphical representation of the DGD impact on the nonlinear
transfer function.
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dz

DGD

dz: Attenuation, Dispersion, NL, DGD

τ_span

DGDev from 
waveplate model2·τ_span

one span

z

Figure 4.8: Sketch of the perturbation model propagation accounting for span-
step DGD.

chromatic dispersion, nonlinearities, and linear PMD. We will then compare
the reconstructed optical field with the originally sent. The difference between
the two will be purely due to NL-PMD interaction.

4.3.1 Simulation environment

In the perturbation approach signal propagation is simulated by calculating the
nonlinear perturbative term δnl,τ with PMD and adding it to the signal optical
field, as in Equation (4.19). Attenuation, CD and NL compensation is done
by calculating the δnl without PMD and subtracting it from the propagated
optical field. Linear PMD (the group delay itself) is compensated by shifting
back the delayed polarisation component.

The perturbation modelling is done in frequency domain, whereas the signal
is created and analysed in time domain using fast Fourier transform (FFT)
and inverse fast Fourier transform (IFFT). The setup is schematically drawn
in Figure 4.9, where one can also imagine an example of the generated and
propagated signal.

The transmitter creates a signal similar to a QAM signal by combining
random sinc pulses and transforming the result into frequency domain. The
mean signal power is 8 dBm. The nonlinear perturbative term is calculated for
a link consisting of 30 identical SSMF spans of 80 km with noiseless EDFAs
with ideal power loss compensation. Fibre parameters can be found in Ta-
ble 4.1. Other simulation parameters are summarised in Table 4.2, the values
are rounded.

In the SSF attenuation, CD, NL are compensated using an ideal DBP (not
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Figure 4.9: Sketch of the simulation setup with examples of the generated and
propagated signal.
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Table 4.2: Simulation environment parameters:

Parameter Value 28 GBaud example

Simulation bandwidth, BW 8¨symbol rate 224 GHz
Time resolution, dt 8 samples per Ts 4.46 ps

Number of symbols, Ns 64 64
Time window, T 8¨Ns ¨ dt 2.28 ns

Frequency resolution, f 1{T 0.44 GHz
Signal power 8 dBm 8 dBm

limited by computational complexity), linear PMD is compensated with a
MIMO MMA algorithm (after DBP). More information on the simulation pa-
rameters can be found in Section 3.2.1. In all the following cases 28 GHz

DP-16-QAM signal was used.

4.3.2 Used metric

We introduce a metric to compare reconstructed field with the originally sent
one. We will be using the optical fields correlation coefficient ρ as such metric:

ρpA0, Arq “
1

Ns ´ 1

Ns
ÿ

i“1

A0piq ´ µA0

σA0

Arpiq ´ µAr

σAr

¨ 100%, (4.47)

where A0 is the originally sent field, Ar is the reconstructed field, Ns is the
total number of samples, µA0 , µAr and σA0 , σAr are the mean and standard
deviation of A0 and Ar, respectively.

Precisely, we will be looking at the correlation coefficient between the field
propagated through the fibre with and without PMD, provided linear and
nonlinear effects are compensated. The difference in the two fields is purely
due to NL-PMD interactions.

The strength of NL-PMD interaction will reveal itself in the correlation
coefficient. The correlation coefficient ρ can be helpful for predicting what
part of NL will be compensated in the DBP. ρ deducted from 100% therefore
will show the propagated field difference with and without PMD in the link
and it will be further referred to as DBP error. In Section 7.1.2 Figure 7.3 an
example is given on how the DBP error relates to the part of NL compensated
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by DBP.

4.3.3 Model verification

In this section, we verify the proposed DGD extension of the nonlinear per-
turbation model. This will be performed in several steps. All the possible
models and implementations for comparison are summarised in Figure 4.10
and 4.11. Note the mixed order of the columns, which was chosen for visual
clarity reasons.

SSF

Perturbation Fig 4.12a

Fi
g 

4.
12

bFig 4.13

Model II Model I Model III

Fig 4.11a

Fi
g 

4.
11

b

Figure 4.10: Sketch of the SSF simulations and perturbation modelling equiv-
alence.

There are two implementations used: SSF simulation and perturbation
model. In the first case for each comparison we ran 1100 simulations, us-
ing 11 different fibre PMDcs: 0.04, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0, 1.2,
and 1.5 ps{

?
km, so that the DGDevs follow the square root shape (for each

PMDc, 100 random fibre birefringence profiles were simulated). For each case
in the perturbation model 550 simulations were performed. The DGDevs were
extracted from PMD coarse-step model simulations.

PMD is described in three different ways. In the first one PMD is defined by
the waveplate model along with propagation. We refer to this case as Model
I. This is the most realistic, but also the most complex PMD simulation.
Second case, called further Model II, deals with the fibre split into relatively
small (but bigger than coarse-steps) equal-length pieces, for which DGD is
predefined. These values are extracted from the waveplate model. In that case
no polarisation rotation between the dz steps is considered (signal polarisations
are aligned with PSPs). A DGD of one step Model II is an average of all
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corresponding DGD values in waveplate model. For example, if the DGD is
updated on average every 100 m in the waveplate model, a DGD for the Model
II step dz (4 km) is an arithmetic mean of 40 DGD values.

Finally, the third case, Model III, again deals with the fibre split into equal-
length pieces, this time having span length, for which DGD is span-step ap-
proximated. DGD of a span is calculated by dividing the final accumulated
DGD by the number of spans. These three PMDModels are applied along with
the SSF or the perturbation term calculation as summarized in Figure 4.11.
Model I with waveplate PMD is not considered for perturbation approach.
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Figure 4.11: Sketch of the PMD models for the SSF and perturbation simula-
tions.

The step sizes for the models are summarised in Table 4.3.
Proceeding with the verification, first of all, we will check, how reasonable
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Table 4.3: Step size parameters for SSF and perturbation approach.

Model II Model I Model III

SSF DBP step 1 cm – 2 m 1 cm – 2 m 1 cm – 2 m

PMD model step 4 km 100 m 80 km

Perturbation Pert. term step 4 km 4 km

PMD model step 4 km 80 km

is it to substitute a waveplate PMD model (Model I) with a fibre with a fixed
DGD (Model II) using SSF. As the actual DGD values here are extracted from
the waveplate model, the error here is appearing from the DGDev quantiza-
tion. The resulting correlation coefficient of the originally transmitted and
backpropagated optical field, deducted from 100%, is plotted in Figure 4.12a.
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(a) Comparison of Model I and II in SSF
simulation.
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(b) Comparison of PMD Model II im-
plemented in perturbation model and
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Figure 4.12: From the most accurate SSF simulation to halfway perturbation
simplification.

The two cases are not in good agreement, we can conclude that very detailed
DGDev information is required for accurate simulations. However, we do not
cast this model aside for now, as it will become a bridge to comparing the
SSF and perturbation implementations. When the number of DGD updates is
decreased even further to once per span, it will surprisingly show much better
agreement (see Figure 4.14).

In the next step, we would like to compare the Model II implementation
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using SSF and the perturbation model. As seen in Figure 4.12b, the first-order
perturbation approach is closer to the SSF simulations Model I, though the
approximation is still bad. That means that the error due to propagation step
size is smaller than the error due to PMD model step size. Nonetheless, in a
hope to trade accuracy for model simplicity, we decrease PMD model step size
further as in Model III.

PMD Model III is similar to Model II but it further approximates the DGD
evolution with a staircase function. This move allows us an analytical inte-
gration of the nonlinear link transfer function in the perturbation model and
helps reaching satisfying level of computational complexity. In Figure 4.13a
we compare the perturbation implementation of Model II and III, which show
good consistency. The dependence between the DBP error and DGD resembles
the DGDev shape: span-step approximation case grows linearly with increas-
ing DGD, compared to the square-root growth of the waveplate model case.
As a double-check we put together Model III implemented with SSF and in
perturbation approach in Figure 4.13b. Due to the DGDev simplifications,
both implementations show similar results.
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(a) Comparison of PMD Model II and III
in perturbative implemention.
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(b) Comparison of PMD Model III im-
plemented with SSF and perturbation
model.

Figure 4.13: Second halfway simplifications.

The final overall accuracy trade-off for the simplicity can be estimated from
Figure 4.14, where the most realistic SSF Model I is compared with the pro-
posed perturbative simplified Model III. The simplification somewhat under-
estimates the DBP error for PMD below one symbol period and has a more
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significant error for DGD higher than one symbol period.
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Figure 4.14: Comparison between SSF simulations (most accurate) and pro-
posed simplified perturbation model. PMD Model I is compared here with
PMD Model III in perturbative modelling.

4.3.4 Symbol rate investigation

The effect of the linear uncompensated DGD, i.e. a group delay between the x
and y components, depends on the proportion of DGD to the pulse duration.
For example, a DGD of 8 ps would have the same effect on a 28 GBaud

signal, as 4 ps on a 56 GBaud signal (symbol periods approximately 36 ps and
18 ps respectively). This does not prove to be true for NL-PMD interactions,
as we show further. We present DP-16-QAM 8 dBm signal simulations for
three different symbol rates, 28, 56 and 112 GBaud of SSF PMD Model I in
Figure 4.15a and perturbative Model III in Figure 4.15b.

The mean DBP error grows with the DGD and decreases with growing
symbol rate. However, it does not mean that higher symbol rates are less
vulnerable to NL-PMD interactions. The crucial role is played by the power
spectral density. While the power was kept constant to 8 dBm the power spec-
tral density decreased two and four times for 56 and 112 GBaud respectively
compared to 28 GBaud.

To check the assumption we also simulate 28, 56, and 112 GBaud SSF
PMD Model I, all having the same power spectral density of 0.225 mW {GHz
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(a) PMD Model I simulated as SSF.
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(b) PMD Model III realized as perturba-
tion.

Figure 4.15: Investigation of how the symbol rate influences the NL-PMD
interaction in signals with same power.
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Figure 4.16: Investigation of how the symbol rate influences the NL-PMD
interaction in signals with same power spectral density. Simulations are per-
formed using SSF method.
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(or 8{28 dBm{GHz) or the same energy per bit. As plotted in Figure 4.16,
for DGD up to approximately one third of a symbol period the introduced
field error is the same for all symbol rates. The saturation level is, however,
different. For DGD bigger than 0.3 Ts higher symbol rates will suffer larger
optical field deformation.

The fact that the DBP error for different symbol rates overlap with each
other neither in case of constant power, nor in case of constant spectral effi-
ciency (nor when the X axis is expressed in DGD in ps), shows that it has a
complex dependence on both, the signal bandwidth and power. Comparing
Figure 4.15a and 4.16, we conclude that power spectral density has a bigger
impact on DBP error than signal symbol rate.

4.3.5 Modulation format investigation

In order to see if the modulation format makes a difference for the NL-PMD in-
teraction, we simulate DP-16-, 64- and 256-QAM signals of 28 GBaud, 8 dBm,
using PMD Model I and plot the results in Figure 4.17.
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Figure 4.17: Investigation of how the QAM signal modulation level influences
the NL-PMD interaction.

The DBP error due to PMD is independent of the modulation format.
Higher-order modulation formats, however, are more vulnerable to the errors
than the lower-order ones. When the impact on BER, symbol-error rate (SER),
Q factor or similar metrics is estimated, the different modulation formats will
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show clearly different performance in a link with the same accumulated DGD.

4.4 Conclusions

We showed how the perturbation model can be extended to account for DGD.
We suggested an analytical simplification for the model under the assumption
that the DGD follows a staircase step evolution along the link. We verified
the model by comparing the optical field propagation results with the SSF
simulations. The two implementations showed a fairly good match regarding
the numerous simplifications and assumptions.

We introduced a metric, DBP error, defined as cross-correlation of the back-
propagated field with and without DGD deducted from 100% (100% results
for equal fields). The investigations showed that the DBP error has a complex
dependence on both, signal bandwidth and power spectral density, the latter
having a larger effect. Further we showed that the DBP error is modulation
format independent.



Chapter 5

Mitigation of PMD-induced

degradation

This chapter describes a novel PMD-tolerant DBP modification, based on the
PMD model from Section 4.2.3. All the necessary steps are described, and
the complexity is discussed. The performance of the method is tested in a
number of typical long-haul optical transmission systems of different length,
fibre PMDc and different symbol rates, modulation formats, and signal power
levels. Multichannel implementation is demonstrated. The chapter is con-
cluded by comparing the scope and performance of the proposed method with
alternatives found in the literature.

5.1 Mitigation basis

Even though PMD is stochastic by nature, it can be described with a certain
accuracy by measurable link characteristics such as the PMDc, total DGD, fi-
bre PSP (Section 3.1.2). Though the knowledge of such metrics is not sufficient
to describe the exact evolution of the local birefringence along the link, it can
be used to limit the mismatch between the actual and virtual back-propagated
links.

As was shown in Section 3.1.2, the knowledge of fibre PMDc and DGD can
give a good approximation of the evolution of the DGD along the link. The
cases with improbable high DGD are of particular interest as they cause the
most damage on the DBP gain. Such cases are likely to be best approximated

89
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by a straight-line evolution. In parallel, in Section 4.3.3 we showed that the
NL-PMD interaction can be described in a simple and fairly accurate way if
the stair-case DGDev is assumed.

Combining these two observations we come up with an idea to approximate
the DGDev in the link while performing DBP. Just as the DBP algorithm
digitally inverts dispersion and nonlinearities, the group delay between PSP
components can be inverted too. Assuming accumulated DGD, τ , is known at
the receiver, we suggest correcting for the delay during DBP one time per span
on a fixed value τstep “ τ{N , where N is the number of spans (comparable with
Model III in Section 4.3.3).

In forward propagation the delay was "applied" in the fibre PSPs rather
than in signal logical x and y components, therefore we suggest that the PSP
approximation is also needed. Further, we assume the whole link PSP can
be approximated by the final PSP measured at the receiver. This approach
empirically proved to give the best results among the other approaches to
randomly chose PSP and keep it constant along the link or to change PSP
randomly while backpropagation.
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Figure 5.1: Block scheme of DGDev in forward link, conventional DBP (DGD
is ignored) and proposed DBP modification (DGDev is approximated with a
span-step function).

Figure 5.1 illustrates the proposed modification of the DBP algorithm. The
red line depicts the forward link DGDev (in fibre PSP), the orange line shows
that original DBP does not account for DGD and the blue triangle-marked
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curve shows the proposed approximation of the DGDev in the link. Intuitively
the DBP error can be connected with the difference between the actual PMD
evolution and the one used in DBP. As clearly visible, the approximation comes
closer to the actual DGDev, and therefore DBP has a potential to perform
better.

5.2 DBP modification description

The steps of the modified DBP algorithm are described in Figure 5.2. The
signal propagates from the left to the right.

1-span

Figure 5.2: Proposed DBP modification block scheme. Orange DBP block
depicts conventional DBP, τspan is the DGD that corresponds to one step of
the DGDev approximation function.

First, the signal needs to be converted to frequency domain through FFT.
Then the signal in X and Y receiver axes, lRx,x and lRx,y, needs to be rotated
to the PSP, lPSP,slow and lPSP,fast:

»

–

lPSP,slow

lPSP,fast

fi

fl “

¨

˝

cos ζpωq ´e´iφpωq sin ζpωq

eiφpωq sin ζpωq cos ζpωq

˛

‚

»

–

lRx,x

lRx,y

fi

fl , (5.1)

here ζ and 2φ are the azimuth and elevation rotation angles on the Poincare
sphere (see Figure 2.10). Details on how the rotation is performed can be
found in Appendix A.

Next the delay between the x and y signal components, Ax and Ay, is
adjusted by an exponential term exppiωτspanq in frequency domain (see Sec-
tion 4.2.1):

»

–

Ax

Ay

fi

fl “

»

–

e´iωτspan{2 0

0 eiωτspan{2

fi

fl

»

–

Ax

Ay

fi

fl , (5.2)
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Here, half of the delay is applied to the x component, half to the y component.
The whole delay might also be applied to one component:

»

–

Ax

Ay

fi

fl “

»

–

e´iωτspan 0

0 1

fi

fl

»

–

Ax

Ay

fi

fl , (5.3)

The conventional backpropagation of one span is then performed. Before
backpropagating the next span the DGD is adjusted again.

The method described above will be further referred to as modified digital
back propagation (DBPmod), proposed DBP or modified DBP.

5.3 Method performance

5.3.1 Simulation link scenarios

In this section we describe the types of systems that have been considered
for numerical simulations. An 8 dBm launch power, DP signal is propagated
over 30 non-DM spans, each consisting of an 80 km SSMF (see Table 4.1)
and one noiseless EDFA (to exclude nonlinear signal-noise interactions) ide-
ally compensating for 16 dB link loss. For all the cases the power of 8 dBm

is chosen as being the optimum for the considered link with DBP compensa-
tion (i.e. giving the lowest SER for a system with 28 GBaud DP-16-QAM
signal propagating through a link with negligible PMD). The complete setup
is summarized in Figure 5.3.

Simulations consider Gray coded modulations of 16- and 64-QAM, symbol
rates of 28 GBaud and 112 GBaud, and fibre PMDc of 0.1 and 0.04 ps{

?
km.

Particularly, we simulate 16-QAM 28 GBaud, 64-QAM 28 GBaud, 16-QAM
112 GBaud signals over currently deployed fibres with a typical 0.1 ps{

?
km

PMDc, and 16-QAM 28 GBaud and 16-QAM 112 GBaud signal over modern
fibres with a typical 0.04 ps{

?
km PMDc. The transmitter and local oscillator

linewidths are set to zero. PMD is ideally compensated by measuring the
Jones matrix of a fibre-link realization in the linear regime (with a few kHz

resolution) and by applying its inverse in front of the shot-noise limited receiver
with a matched filter and with a bandwidth twice as large as the one of the
signal. Chromatic dispersion and nonlinearities are compensated with a SSF-
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Figure 5.3: Simulation setup.
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based DBP where the step size is controlled by a 0.05 ˝ MaxPhCh algorithm
[49]. The number of steps in such implementation is comparable with the one
used in SSF model for the signal forward propagation. The amount of loaded
noise corresponds to 4 dB noise figure EDFAs with 16 dB gain: ´19.7 dBm, so
that the resulting linear OSNR is 27.7 dB. The noise is split equally between
the two polarisations. Resampling to 1 sample per symbol and compensation
of residual polarisation effects in the DSP is performed by a 15 taps MMA
MIMO equalizer (see details in Appendix C). The number of taps is chosen to
give the best performance by direct search.

5.3.2 Simulation results

Single channel

In Figures 5.4-5.7 each point corresponds to an averaged result of 20 to 55
different fibre birefringence profiles for a given interval of the DGD. Note that
these profiles were preselected from a pool of 105 birefringence profiles, and
probabilities of certain DGD intervals were estimated based on these statistics
using Equation (2.31).

Linear Q factor was calculated from BER as in Appendix D. For conve-
nience, we summarize in Table 5.1 some of the Q and corresponding BER
values, values are rounded.

Table 5.1: table

BER Q linear Q, dB

2 ¨ 10´2 2 3.1
1 ¨ 10´3 3 4.9
3 ¨ 10´5 4 6
2 ¨ 10´7 5 7
9 ¨ 10´10 6 7.8
1 ¨ 10´12 7 8.4

The red dots mark the linear Q factor without DBP, orange circles – with
conventional DBP (as in Section 2.1.3) and blue triangles – with the proposed
DBP (as in Section 5.2). The standard deviation with respect to the mean
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value is shown with the thin lines. The probability of the DGD to appear in
certain intervals is indicated in the figures with vertical coloured stripes, the
expectation EpQq of the linear Q factor (probability weighted sum of simulated
results for a particular case) is printed to the right of the curves.
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Figure 5.4: 0.1 ps{
?
km PMDc fibre, DP-16-QAM, 8 dBm, 28 GBaud,

27.7 dB linear OSNR. Ts is the symbol period. "Probability" indicates the
probability of accumulated DGD to appear in a certain interval, according to
Equation (2.31) (shown with coloured vertical columns). EpQq is the expec-
tation of the linear Q factor, i.e. probability weighted sum of the results for a
particular simulation case).

It is visible in Figure 5.4 that growing DGD, τ , degrades the DBP perfor-
mance. The proposed algorithm modification keeps the performance stable at
the level when DGD is low. For the considered system, the expectation of the
linear Q factor, EpQq, can be increased by up to 1.

Similar tendency is observed for higher data rates as in Figure 5.5. In
faded colours we additionally plot the 16-QAM 112 GBaud system with four
times lower noise loading, ´25.7 dBm, resulting in 33.7 dB linear OSNR.
Practically such OSNR can only be realised in considerably shorter links (for
example, 8 spans with NF 4 dB), but in this case it is used to illustrate the
following point: We found that with increased OSNR, and thus lower impact of
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Figure 5.5: 0.1 ps{
?
km PMDc fibre, DP-16-QAM, 8 dBm, 112 GBaud, at

linear OSNRs of 27.7 dB and 33.7 dB.

noise, PMD-induced degradations become more significant and consequently,
the benefit of the proposed DBP modification increases. Although the results
for 33.7 dB linear OSNR in Figure 5.5 might look similar to 27.7 dB linear
OSNR in Figure 5.4, the similarity is random and does not hold for other
investigated cases. Note, that the fibre configurations are the same in two cases
(only the signals are different), which explains the resemblance of performance
variation. Also note the different scales of the two X axes (which, however,
become identical if results are plotted against DGD value in ps).

Similarly to QPSK and 16-QAM, DBP of any higher-order modulated signal
is affected by PMD, as, for example, shown in Figure 5.6 for 28 GBaud DP-
64-QAM 8 dBm signal.

Figure 5.7 shows the performance of DP-16-QAM 28 and 112 GBaud signal
transmission in a fibre with 0.04 ps{

?
km PMDc (note different X axes, the

ticks correspond to the same value of DGD in ps but to a different part of the
symbol period). Depending on the data rate the limiting factor is either noise
or PMD.

Generally, when identifying the system limiting factor, two situations are
possible. If the system has a large OSNR margin, the PMD will significantly
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decrease the performance of DBP. However, if the system is already operating
at the highest tolerable noise levels, the PMD impact will be only marginal.

Gains achieved for single channel DBPmod in high-DGD links

Hereby we investigate in detail the extreme cases of high DGD, 12 to 17 ps

with 0.016% probability for 0.1 ps{
?
km PMDc fibres, and 5 to 6 ps with

0.023% probability for 0.04 ps{
?
km PMDc fibres. Table 5.2 shows the linear

gain of the proposed DBP modification. In other words, it shows the difference
between the linear Q factor of the conventional and the proposed DBP. The
cases when conventional DBP performance would be considered as outage are
printed in bold. The system outage is defined by Q factor lower than 2.67 (lin-
ear), corresponding to 3.8 ¨10´3 BER [87]. If the value is not printed, the DBP
and the DBPmod both failed to provide the minimum required performance
(due to PMD).

Table 5.2: DBPmod gains (regarding linear Q) compared to conventional DBP
for typical transmission systems. Those cases, where BER after conventional
DBP will be higher than 3.8 ¨ 10´3, are highlighted in bold. Those are the
cases, where DBPmod is required to satisfy the today’s hard-decision FEC
performance criteria.

30 spans 50 spans
16-QAM 64-QAM 16-QAM

PMDc, ps{
?
km 0.04 0.1 0.04 0.1 0.04 0.1

Signal

28 GBaud, 8 dBm 1.66 3.5 0.86 1.72 1.76 2.88
112 GBaud, 8 dBm 0.26 2.86 0.28

112 GBaud, 14 dBm 3.42 2.18

The table considers four different links, differing by length and the fibre
PMDc: links of 30x80 km and 50x80 km, and 0.1 and 0.04 ps{

?
km PMDc

fibres. Two signal symbol rates are considered, 28 and 112 GBaud along with
two modulation formats, 16-QAM and 64-QAM. Further, different powers are
chosen for 112 GBaud signal in order to match either the optical power or
power spectral density of the 28 GBaud signal. For 30 loops for cases of
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8 dBm and 14 dBm signal powers the linear OSNRs are 27.7 dB and 33.7 dB

respectively, for 50 loops – 25.5 dB and 31.5 dB respectively.

The gain of DBPmod depends on how pronounced the PMD effect on DBP
is. In Table 5.2 we see that the gains for links with higher PMDc are always
larger. Also the cases with higher OSNR will show higher gains.

For some systems, such as 30 loops deploying 28 GBaud 64-QAM or 50
loops deploying 112 GBaud 16-QAM signal, DBPmod allows avoiding system
outage in the simulated cases. Further, for 0.1 ps{

?
km systems at high DGD

regimes, typical linear gains of approximately 2 can be expected.

Multichannel

In order to test the implementation of the modified DBP for the WDM prop-
agation, we consider the single channel setup in Figure 3.8 with slight modi-
fications. Firstly, the signal now consists of six 28 GBaud 16-QAM channels,
placed on a grid of 33 GHz with a central frequency of 193.1 THz. Each chan-
nel has a raised-cosine pulse shaping with 0.01 roll-off factor. Each channel
has an optimum 2 dBm optical power (defined by the power that results into
lowest BER for the 4th channel after conventional DBP and without PMD in
the link).

The algorithm performance is estimated on the 4th channel (chosen ran-
domly) at frequency 193.1 THz ` 16.5 GHz. The conventional DBP is per-
formed on the whole optical field, so that both inter- and intrachannel ef-
fects are compensated. The receiver has a matched filter (raised-cosine with
0.01 roll-off factor) at the frequency of the 4th channel. The DBP is still per-
formed full-field as it is done before the receiver. Practical implementation of
such setup is not considered here.

There are two possibilities considered for the DBPmod. First one, called
further frequency-independent, performs DGD correction with the data (PSP
and DGD) measured at the central frequency. Second option, called respec-
tively frequency-dependent, uses data measured for each of the 6 channels’
central frequencies. The principles are illustrated in Figure 5.8. The results of
the transmission simulation of the 4th channel are plotted in Figure 5.9. Note
that the three curves converge to one point at zero DGD. However, points with
close-to-zero DGD have low probability and were not specially simulated and
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are therefore not plotted.

The conventional DBP performance of one 28 GBaud channel in a multi-
channel 198 GBaud transmission declines faster than the DBP performance of
a single-channel with bandwidth of 112 GBaud (see Figure 5.5). The strength
of decline is rather similar to the single channel transmission of 28 GHz band-
width, as in Figure 5.4. The proposed DBP in the frequency-independent
implementation provides some gain. However, the frequency dependence is
crucial for considerable performance gain. Especially in the high DGD regimes,
effect on each channel’s performance strongly depends on the frequency and
varies significantly from channel to channel. In order to fully compensate for
the PMD effect, denser DGD and PSP measurement discretization might be
required.

5.4 Practical aspects of modified DBP imple-

mentation

5.4.1 PSP and DGD measurement

In order to perform the steps described above it is necessary to know two
physical values, DGD and the PSP vector components. We found at least two
approaches in the literature to extract the values: to analyse the response of
the adaptive MIMO filter [66, 67] or to introduce additional polarised train-
ing sequences and perform a polarisation analysis [88–90]. We will further
comment on both methods one after another.

Monitoring adaptive MIMO filter taps

According to Equation (2.38) derived in Section 2.3.6 the linear propagation
characteristics of a fibre can be represented as a frequency-dependent channel
transfer matrix, called Jones matrix [64], consisting of dispersion Dpωq, PDL
Kpωq and PMD Upωq elements:

Hpωq “ DpωqUpωqKpωq. (5.4)
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Once the MIMO algorithm converges a matrix is produced as:

Mpωq « H´1
pωq “

˜

DFT

ˆ

»

–

hxxpmq hxypmq

hyxpmq hyypmq

fi

fl

˙

¸´1

, (5.5)

hppmq “ rhp,0pmq, hp,1pmq, ..., hp,Ntaps´1pmqs
T , (5.6)

where DFT denotes discrete Fourier transform (implemented, for example,
employing FFT), hp are the tap coefficients for the mth signal sample, and
p takes values of xx, xy, yx, yy. Thus, each signal frequency sample has four
weighting coefficients (xx, xy, yx, yy) for each of the Ntaps taps. More infor-
mation can be found in Appendix C.

An example of how the filter coefficients look like is given in Figure 5.10 for
low and high DGD. While by low DGDs there is little mixing between the x
and y signal components and neighbouring taps, at high DGDs, neighbouring
taps and mixing in polarisations need to be considered.
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(a) MIMO taps to compensate low DGD.
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(b) MIMO taps to compensate high DGD.

Figure 5.10: Example of MIMO filter coefficients.

Finally, following [66, 67] and Section 2.3.6 Equation (2.38), and assuming
there is no PDL, Mpωq provides a basis to extract DGD and PSP:

Mpω `∆ωqMpωq´1
“ DpωqR´1

1 pωq

»

–

ei∆ωτ{2 0

0 e´i∆ωτ{2

fi

flR1pωq, (5.7)

where Dpωq is a term defining the chromatic dispersion matrix. R1 is a
rotation matrix as in Section 2.3.6 Equation (2.41) and τ is the DGD. The
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DGD at frequency ω can then be estimated with the help of eigenvalues of
matrix Mpω `∆ωqMpωq´1, ρ1 and ρ2:

τ “

∣∣∣∣∣argpρ1

ρ2
q

∆ω

∣∣∣∣∣ . (5.8)

The PSP components at frequency ω correspond to the eigenvectors of ma-
trix Mpω `∆ωqMpωq´1, tslow,fast:

tslow “ rsx, sys, (5.9)

the slow Stokes PSP vector Sslow in Stokes space (see Section 2.3.5) is then:

Sslow “ r1, sxs˚x ´ sys˚y , sxs˚y ` sys˚x, ipsxs˚y ´ sys˚xqs. (5.10)

Data-aided monitoring

The measurement of PSP and DGD was demonstrated experimentally in [88]
by measuring the difference between fibre output polarisation states of two
random input polarisations with an electro-optic polarimeter.

Another data-aided PSP and DGD measurement method proposed in [89]
suggests sending a monochromatic linearly polarised optical field in a fibre and
receiving the X and Y components separately at different receiver polarisations.
The interference map allows retrieving the DGD by its amplitude. The angle
between the PSP and the polarisation beam splitter (PBS) axis is retrieved
from the phase distribution of the interference map.

Finally, the MIMO filter taps can be considered for DGD and PSP extrac-
tion in the same way as described in the previous section but with a predefined
sequence. As in [90], a constant-amplitude zero-autocorrelation (CAZAC) se-
quence might be used, especially effective with a guard interval of 25% of the
training sequence length. With as low as 16 training symbols and receiver-side
sampling of 2 samples per symbol it was shown that DGD can be estimated
with a standard deviation of 7.7 ps at mean 25 ps.



104

5.4.2 Computational complexity

The computational complexity of the method is determined by the effort to
perform a single signal rotation to a new coordinate system, a single com-
plex multiplication per span for the DGD compensation, and calculation or
measurement of DGD and PSP.

If the DGD and PSP are measured through the MIMO taps analysis, the
complexity can be summarized as in Table 5.3 with the help of Big-O notation
[91,92]. For the Big-O complexities chart see Appendix E. In the Table Ntaps is
the number of MIMO taps, n refers to the calculation precision, Nfft is the FFT
size, Nspans is the number of spans. The highest complexity of the algorithm
is Opn2q. For the DGD and PSP values high precision is not required, which
results in an extreme low-complexity of the algorithm.

5.5 Comparison with other existing methods

Generally, the impact of PMD on DBP can be compensated in a straight-
forward way if the information about the DGD and polarisation states along
the fibre is fully available as, for example, demonstrated in simulation [29]. In
that case the signal polarisation components during DBP should be rotated
and delayed "backward" at each step following the local birefringence profile
of the fibre. The technique was simulated in [29] by tracking the polarisation
state with Jones matrices on a span-by-span basis. Such approach, however, is
extremely challenging to realize in practice, as the measurement data are not
available.

A feasible approach, besides the one proposed in this thesis and developed
parallel to it, was presented recently [24]. Both are based on the approximation
of the DGDev along the link and are using this approximation while performing
DBP. In the method presented here (see [27], Chapter 5) the DGD evolution
is predicted based on a measurement of DGD and PSP at the receiver at the
central channels’ frequencies. In the other method [24] DGDs are measured at
the receiver for each of the transmission channels’, and an inverse channel PMD
Jones matrix is constructed iteratively, optimizing PMD sections’ polarisation
scramblers and retardation plates.

The two methods use a different approach for predicting the PSP evolution.



Table 5.3: Complexity of the proposed DBP modification.
Mult stands for multiplication, impl. – for implementation.

Operation Times Complexity Notes

Calculations

from MIMO taps

Preparations
for one sample:

DFT 4 Opnlogpnqq
radix 2 impl.
n “ Ntaps

matrix inversion 2{3Ntaps Opn3q n = 2
eigenvectors 2{3Ntaps Opn3q n = 2

DGD 6 scalar mult 1 Opn2q

Using Gauss’
complex
mult algorithm
n “ Ndigits

1 scalar division 1 Opn2q n “ Ndigits

PSP 4 scalar mult 1 Opn2q n “ Ndigits

Periodicity
factor

reduces complexity
by the factor
of necessary periodicity
of renewing DGD
and PSP values

DBP modification τ step 1 scalar division 1 Opn2q n “ Ndigits

Axes rotation 8 scalar mult 1 Opn2q n “ Ndigits

DGD correction 2 scalar mult Nfft ¨Nspans Opn2q n “ Ndigits
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While in this work estimated PSPs are assumed constant along the link, in
the other case the PSP evolution is constructed in a way that it "results" into
the measured DGD. However, such evolution does not coincide with the actual
PSP evolution and can have a very different shape.

Regarding the implementation constrains, in this thesis the PSP should
be measured at the receiver, for example, by adding a training sequence to
the data header [88–90] that is analysed by a polarimeter or by extracting
the Stokes vector from the MIMO digital filter taps [66, 67]. In the other
proposed method, DGD also has to be estimated but not the PSP, those are
reconstructed, and the construction of the Jones Matrix puts computational
load on the system.

A recent development of the method [24] has tried to reduce the computa-
tional complexity [34,35]. It proposed to extract the link PMD Jones matrices
for each of the transmitted frequencies (corresponding to Fourier frequencies
of the inverse Jones matrix) from the time-domain complex-valued finite im-
pulse response (FIR) filter. Next step, in order to get the partial PMD Jones
matrices corresponding to the part of the link, the link PMD Jones matrix for
each frequency is expanded into a Taylor series around the central frequency.
It then goes through a cascade of approximations. As the result, a partial
correction matrix is obtained. It is applied in two steps: partially during DBP
and partially after DBP. Finally, after DBP a correction matrix is applied to
compensate for the tight reference to the central frequency, which is important
for large bandwidths. Additionally, the following equalizer feeds the estimated
Jones matrix of residual PMD at a specific frequency back to the DBP in a
feedback loop. The frequency interval for the PMD Jones matrices calculation
is estimated at frequencies defined by the equalizer taps and sampling rate.
Note, for the description in [34, 35], the method for f0 central frequency be-
haves as conventional DBP with PMD compensated already after DBP. This,
however, might only be the descriptive, not the implementation issue.

The PMD is corrected in two steps in [34, 35]. We would like to introduce
a point for discussion about the way the first PMD correction term is applied.
The part that is applied after DBP is the same for all frequencies and is namely
the link Jones matrix at the central frequency. The part applied during DBP
accounts for the frequency dependence of the partial Jones matrices. The
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idea of compensating for PMD between the series of DBP steps implies that
the optical field is corrected accordingly. Even if the correction terms have
a common multiplier, it cannot be "taken out of the brackets", because it
will affect the optical field and, therefore, DBP performance. Although not
proving the concept, we imply that the method performance could possibly be
improved if the correction terms are slightly modified. Using the notation in
[34,35] Figure 1, the first PMD operator before DBP would become Jnew1 pfq “

Jpf0q
1{NPMD ¨ expp pf´f0qJ´1pf0qJ

1
pf0q

NPMD
q and the second PMD operator after DBP

Jnew2 pfq “ Jcpfq. Here NPMD is the number of PMD corrections, J is the
inverse Jones matrix. Such approach would also solve inconsistency of the
method for the central frequency f0. As described in [34,35], the algorithm at
f0 would not compensate for the PMD along the link, but would perform all
the compensation after DBP.

Another interesting point for discussion would be if the the partial PMD
Jones matrix can be constructed without reference to the central frequency. As
the total Jones matrix is measured by the equalizer at every frequency f , the
partial matrix could be constructed as Jpartpfq “ Jpfq1{NPMD , so that when the
operator is applied NPMD times, it results into Jpfq, the estimated link PMD
Jones matrix. In light of these ideas we suggest that the methods proposed
in this thesis can also be further simplified. An open question remains if such
approach would reduce the complexity and if so, to what extend.

The major difference of the two methods, the one discussed above and pre-
sented in this thesis, is the way to approximate the reverse PMD evolution.
While the earlier work of the group [24, 34] differed only in the PSP predic-
tion evolution, the later work [35] differs in both DGD and PSP prediction.
Because the Jones matrix is no longer decomposed to rotation and time de-
lay components, the whole matrix gets approximated, without regard of what
happens to its components. Further, the approximation is tightly bonded to
the central frequency.

The consequence of the approximation process is the methods’ complexities.
The one in this thesis involves channel transfer matrix measurement at cen-
tral frequency and its decomposition, and PMD correction terms application.
The other one requires channel transfer matrix measurement for a range of
transmission frequencies, PMD correction terms calculations and applications.
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The latter method requires considerable computational resources, challenging
to realise in real-time DSP.

We finally notice that the manner of approximating PMD evolution in both
cases allows performing DBP at the receiver only.

The two methods comparison is summarized in Table 5.4.



Table 5.4: Comparison of DBP proposed in this thesis and in [35].

DBP modification in this thesis DBP modification in [35]

Source of DGD Inverse channel Jones matrix Constructed partial Jones matrices

Source of PSP Inverse channel Jones matrix Constructed partial Jones matrices

Values extracted from

FIR filter taps
DGD, PSP –

Computational steps
Find eigenvalue and eigenvector
of the inverse channel Jones matrix
for central frequency

Construct an inverse PMD Jones matrix
for central frequency, expand it in Taylor series
and simplify to obtain two partial correction terms.

Application of DGD

correction term

Multiplication of signal samples
with an exponential term
once per span

Multiplication of signal samples with the
correction matrix once per span, multiplication
with two correction matrices after DBP

Performance

50 GBaud channel

(See Section 5.5.1)

Similar

Performance

350 GBaud channel

(See Section 5.5.2)
Further investigation is required
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5.5.1 Single-channel performance comparison

In this section we compare the performance of the DBP modification presented
in this thesis and the one described in [35]. The comparison will be made for
Figure 5a from [35], plotted for the same transmission system.

The investigated system consists of 10x100km SSMF spans, one per span
amplifier with 4.5 dB NF, ideally compensating for loss, fibre PMDc takes val-
ues 0.01, 0.04, 0.07, 0.1, 0.15, 0.25, 0.35, 0.5, 1.0, 1.5 ps{

?
km (see Appendix B

and Figure B.1a particularly). For each case we perform 100 simulations of
random fibre birefringence. The signal is DP-16-QAM 50 GBaud shaped us-
ing a root-raised cosine with roll-off factor 0.01. For each fibre PMDc the
optimum power is chosen (resulting in lowest BER), which ranges from 14 to
8 dBm. PMD correction is performed once per span, i.e. 10 times during
DBP. The SNR value was calculated from the measured error vector magni-
tude (EVM) (described in Appendix F). The simulation results are plotted in
Figure 5.11 for DBPmod presented in this thesis (Figure 5.11b) and proposed
in [35] (retrieved in Figure 5.11a).

(a) Results from Fig. 5. (a) [35].
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(b) DBP proposed in this thesis.

Figure 5.11: Optimum SNR and SNR gain versus the fibre PMDc at the opti-
mum input power. Each point is an average of results for 100 fibre realisations.
DP-16-QAM signal 50 GBaud.

The results for the modified DBP gain are to a great extent similar. The
zero PMD case as a starting point for the curves has an approximately 3 dB

difference in SNR. This might be due to better adjusted matched filtering
and time synchronisation parameters. We also perform DBP in the optical
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domain, and compensate for PMD ideally using the inverse Jones matrix, which
might give better results. Nonetheless, the gain values are only slightly better
than the ones in [35], which is probably also a statistical issue (specific fibre
birefringence realisations). The maximum gain is achieved at 0.25 ps{

?
km

PMDc in both cases and is 1.37 dB for DBP proposed in this thesis, and
1.22 dB in [35].

The comparison above proves that for the single-channel and the systems
with variable fibre PMDc (see Appendix B), both methods show similar results.

5.5.2 Multi-channel performance comparison

Here we will compare the performance of the multichannel DBP modification
presented in this thesis and the one described in [35]. The comparison will be
made for Fig. 3. (b) from [35], plotted for the same transmission system.

The investigated system consists of 10x100 km SSMF spans, one per span
amplifier with NF 4.5 dB, ideally compensating for loss, fibre PMDc takes
value of 0.1 ps{

?
km. For each case we perform 100 simulations of random fibre

birefringence. The signal consists of 7 DP-16-QAM 50 GBaud signals, each
shaped using a root-raised cosine with roll-off factor 0.01. The 4th channel is
at the central frequency of 193.1 THz. Channel spacing is 50.1 GHz. Optical
input power per channel ranges between 0 and 10 dBm with a step of 2 dBm.
PMD correction is performed once per span, i.e. 10 times during DBP. DBP
is performed on the full 350.7 GHz bandwidth, which might not be practically
implementable but serves here for the method performance evaluation.

The simulation results in Figure 5.12b are compared to the respective data
from [35] Figure 5.12a. The performance of all three cases, propagation without
PMD, with DBP, and with DBPmod, shows lower SNRs. This might be the
reason for the lower DBPmod gains: 0.92 dB for 6 dBm and 1 dB for 8 dBm

for this work compared to 1.1 dB for 6 dBm and approximately 2.1 dB for
8 dBm for [35]. More investigation at similar SNR levels is required.

5.6 Conclusions

In this chapter a modification of the conventional DBP based on a single
measurement of the DGD and PSP at the receiver was proposed. The im-
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(a) Results from Fig. 3. (b) [35]. The orig-
inal picture was modified in that the irrele-
vant curves were bleached, and the legend was
added.

0 2 4 6 8 10
Input power per channel, dBm

12

14

16

18

20

22

24

SN
R

, d
B

conventional full-field DBP
proposed full-field DBP
conventional full-field DBP without PMD

(b) DBP proposed in this thesis.

Figure 5.12: Average SNR of the 4th channel of 7-channels transmission de-
pending on the input power. The channel is DP-16-QAM 50 GBaud propa-
gating over a 1000 km link.
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plementation process, including multichannel, and the complexity of the new
algorithm were discussed. The new algorithm keeps the performance at "no
PMD" levels, which was verified by simulations on a number of typical trans-
mission systems. In high DGD regimes typical gains of the linear Q factor of
approximately 2 can be expected (corresponds to 5.8 dB). The impact of the
noise on the "visibility" of the NL-PMD limit was confirmed.

The proposed algorithm was compared with a DBP modification suggested
recently and developed independently from this work [35]. The algorithm
proposed in this thesis shows similar performance improvement and has lower
complexity.

In the method proposed in this thesis we assume exact knowledge of DGD
and PSP, which in reality might be measured with error. The next chapter
will investigate this question. Note, however, that method [35] will be affected
by the accuracy of the channel transfer matrix measurement as well.



114



Chapter 6

Required accuracy for modified

DBP

In this section we investigate what accuracy of the measured DGD and PSP is
required for the effective performance of the modified DBP. In the simulations
in Section 5.3 we assumed the exact knowledge of the values. We will also
show how the DBP implementation affects the performance of the proposed
method.

6.1 Measurement accuracy

In order to investigate how tolerant the DBPmod is to the measurement in-
accuracy, we artificially introduce a mismatch in DGD and PSP parameters.
Both experience 2 to 40% under- and overestimation with a 5% step. For
example, 25 % overestimation means that the measured value is 0.25 times
bigger than the real one. The PSP estimation error is considered in azimuth
and ellipticity on the Poincare sphere.

Figure 6.1 shows Q factor estimation of a 28 GBaud 16-QAM 0.1 ps{
?
km

PMDc 2400 km system for a high DGD interval of 13 ´ 17 ps or 0.36 ´ 0.47

symbol periods (see Figure 5.4 blue curve). Inaccuracies of up to 2% do not
change the performance, inaccuracies of up to 10% decrease the linear Q factor
by less than 0.2. The method is most tolerant to estimation error of PSP
ellipticity, followed by DGD and then PSP azimuth.

115
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Figure 6.1: Average Q factor depending on the DGD and PSP estimation error
for a transmission system as in Figure 5.4.

6.2 DBP implementation accuracy

As shown in Figure 5.5 and 5.7, the significance of the PMD impact on the DBP
performance depends on the system noise level. We investigate the penalty that
occurs in a DBP with realistic number of steps per span.
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Figure 6.2: Original and modified DBP performance with average 8 steps per
span and no noise loading, transmission system as in Figure 5.4. DGD is
adjusted 1 time per span in proposed DBP.

DBPs in Figure 5.4 and 6.2 differ by the number of DBP steps and noise
loading. While in Figure 5.4 DBP with hundreds of steps (tolerated MaxPhCh
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of 0.05˝) is investigated, the DBP in Figure 6.2 uses an average of 8 steps per
span (tolerated MaxPhCh of 5˝). Additionally, the DBP in Figure 6.2 has
neither noise loading before the Rx (as in the setup scheme in Figure 5.3), nor
EDFA-added ASE noise. This is to allow the system having reasonable OSNR
(OSNR is different from case in Figure 5.4). Would the noise be simulated,
the system would show outage. In case of non-ideal DBP the uncompensated
nonlinear noise defines the system limits, although the PMD effect is still
present.

6.3 MIMO DGD measurement accuracy

6.3.1 MIMO filter requirements

We investigate here one of the methods to measure the DGD by analysing
the digital MIMO coefficients (see Appendix C). To ensure sufficient MIMO
accuracy the signal has to be oversampled and the MIMO needs to have a
sufficiently large number of taps. An oversampling factor of Sr samples per
symbol leads to a MIMO resolution of:

r “
Ts
Sr
, (6.1)

in time domain, where Ts is the symbol duration and r in seconds defines
the minimal available accuracy of DGD measurement. The MIMO memory
(in time domain), or the maximum DGD that can be measured, is defined by
the number of taps Ntaps:

∆τmax “ Ntaps ¨ r
!
ą ∆τ (6.2)

Higher sampling rates and number of taps are beneficial for the DGD and
PSP estimation. There are minimum MIMO taps requirements for specific
transmission systems. For example, a 112 GBaud signal, sampled with 8
samples per symbol will allow a MIMO resolution of 1.1 ps, according to
Equation (6.1). This, however, results into an unrealistically high receiver
required sampling rate. A 28 GBaud signal would require an oversampling
factor of 32 samples per symbol for the same accuracy. In currently deployed
fibres of length 2400 – 4000 km with a PMDc“ 0.1 ps{

?
km the comprised
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DGD ranges from 0 to approximately 15 ps and in modern fibre with PMDc
0.04 ps{

?
km – from 0 to 6 ps (see Figure 3.5). In order to cover these

ranges the MIMO filters need to have a channel memory that is long enough.
Having a resolution of 1.1 ps will require 15 taps or 7 taps respectively. These
requirements are summarised in Figure 6.3.

Note that the estimation of DGD and PSP in a multichannel system still
holds on the Equation (6.1) and (6.2).
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Figure 6.3: Influence of DBP and MIMO implementation on the modified DBP
performance.
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6.3.2 Emulation of DGD estimation

In order to check how accurate the DGD can be extracted from the MIMO taps
we emulate a 28 GBaud signal with 8 samples per symbol sampling. Following
the waveplate model (Section 2.4.2), PMD was emulated using 40 plates per
link and random polarisation scrambling between them. The section’s DGD is
chosen from a normal distribution with a mean of ă ∆τ ą {Nc´s and standard
deviation of 20%. The DGD is estimated from the constructed PMD Jones ma-
trix. The MIMO FFT size is 1024 samples, the number of MIMO taps is swept
from 3 to 65; the MIMO resolution according to Equation (6.1) is then 4.4 ps.
The estimated deviation comes exclusively from the MIMO architecture, no
receiver noise and no additional propagation effects are assumed.
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Figure 6.4: Mean of the DGD estimated digitally from MIMO taps. The
number of taps is from 3 to 65.

In Figure 6.4 and 6.5 each of the 10 resulting points represents an average of
500 coarse step model realisations. In Figure 6.4 the DGD estimation bias was
corrected (see [67]), which was slightly underestimated and which explains why
the estimated DGD is always slightly smaller than the real DGD. The results
show that when the bias is taken into account the mean of the estimated DGD
can be predicted fairly well even for low number of taps. In Figure 6.5a-
Figure 6.5b the standard deviation grows steadily with the actual DGD value,
however, having more MIMO taps is not beneficial for low actual DGD values.
Figure 6.5b shows the results in Figure 6.5a expressed as percentage of the real
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Figure 6.5: DGD estimation accuracy for a 28 GBaud signal 8 samples per
symbol.
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DGD, which shows that the average error up to 14.5% can be expected.
The calculation above is, however, performed for an impractically high over-

sampling rate. Recalculated for a signal with 2 samples per symbol as in Fig-
ure 6.6, MIMO taps analysis still gives a good estimation of the mean DGD.
The standard deviation of approximately 44% of the actual DGD value, on
the contrary is quite high. In practice, invention of other methods or upgrades
of existing methods are required for more accurate estimation of DGD, as
discussed in Section 5.4.1.

6.4 Conclusions

In this chapter we investigated how the proposed DBP algorithm could be
implemented in practice. Deviation of DGD or PSP estimation error up to 15%
decreases the linear Q factor by less than 0.2. Current DBP implementation
limits by far overweight any NL-PMD interactions.

Further, new solutions for accurate DGD and PSP estimation should be
developed. With the existing methods, the proposed DBP will have a certain
loss in performance due to inaccuracy in the measurement of these parameters.
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Chapter 7

PMD-induced fundamental limits

of DBP

This chapter suggest a method on how to define the fundamental limits of a
long-haul lumped amplified system’s spectral efficiency (SE) and reach distance
(RD) that employs DBP and is limited by NL-PMD interactions. The limits
are derived and the method is demonstrated for an exemplary system for both
the conventional DBP and the proposed DBPmod.

7.1 Shannon Capacity theory

The channel capacity defines the maximum rate of error-free information trans-
mission through the channel. According to the Shannon-Hartley theorem [3],
the information rate R in bits{s is less or equal to the channel capacity C in
bits{s, so that there is an upper bound on the maximum possible transmitted
error-free information in a channel with a fixed bandwidth B and added white
Gaussian noise:

R ď C “ B log2p1`
Ps
Pn
q. (7.1)

where Ps and Pn are the signal input power and noise power, respectively.
Equation (7.1) predicts the maximum rate at which information can be trans-
mitted over a memoryless communication channel of a specified bandwidth in
the presence of additive white Gaussian noise (AWGN) . Equation (7.1) can
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be rewritten to set the upper bound on the channel spectral efficiency Se in
bits{s{Hz:

Se “
C

B
“ log2p1`

Ps
Pn
q. (7.2)

In a nonlinear channel the sources of noise are ASE-noise with power PASE,
receiver and transmitter noise, and nonlinear noise with power PNL. Nonlinear
noise is not white Gaussian, but as shown in the Gaussian noise (GN) model it
is assumed to be so [93] (in fact, according to the enhanced GN (EGN) model,
for the systems considered in this thesis, nonlinear noise possesses statistical
properties of Gaussian noise after propagating approximately 2 spans [94]).
Considering the channel only, independent of the receiver and transmitter we
get:

Se “ log2p1`
Ps

PASE ` PNL
q. (7.3)

While the ASE noise power can be estimated as in Section 3.1.1 Equa-
tion (3.1), we assume that the NL compensation techniques are compensating
for the PNL with a coefficient κ. If κ is 0, all NL are ideally compensated, if
κ is 1 none are compensated. Choosing different values for κ we can see how
the spectral efficiency evolves relative to PNL and PASE:

Se “ log2p1`
Ps

PASE ` κPNL
q. (7.4)

7.1.1 Investigated system and metrics

We take as example a single channel 28 GBaud system with 30 SSMF spans
and 4 dB NF EDFAs with ideal power loss compensation (16 dB gain). The
signal input power Ps varies from -10 to 10 dBm with 1 dB step. κ varies from
0 to 1 with 0.05 step. PASE is estimated from Equation (3.1), PNL is derived
from the simplified GN model Section VI.C of [93]. We then calculate the Se
as in Equation (7.4), changing the NL compensation coefficient. The optimum
power value is always selected with lowest BER as a criterion. The results are
plotted in Figure 7.1.

Alternatively, the system maximum reach distance can be estimated. The
ROSNR at the receiver is chosen as a reach distance estimation criterion. It is
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Figure 7.1: Maximum SE of a 30 spans, EDFA 4 dB NF amplified system,
28 GBaud signal.
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Figure 7.2: Maximum reach distance of a EDFA 4 dB NF amplified system,
28 GBaud signal. Reach distance is defined by required optical signal-to-noise
ratio (ROSNR) of 16.2 dB (modulation-format independent).
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defined as the OSNR of a reference system (modulation-format independent)
at the end of 30th span with zero PMD, optimum input power of ´2 dBm, and
no NL compensation. This OSNR equals 16.2 dB for DP-16-QAM-modulated
signal. Choosing the optimum input power in each case and sweeping the part
of the nonlinear effects that would be compensated we get Figure 7.2.

Note that in both Figures the SE or the reach distance do not grow to
infinity but have a finite endpoint, which is not plotted to keep the scale
reasonable. Principally, if all the NL are compensated, and no other sources
of noise are present, the power can continue increasing until the fibre melting
point (approx. 33 dBm for SSMF). However, as was noted in Section 3.2.1
the nonlinearities amplified spontaneous emission (NL-ASE) noise interactions
start limiting DBP performance at distances of order of 60 spans.

7.1.2 Estimation of how much NL can be compensated

In Section 4.3.2 we introduced a metric to estimate the impact of PMD on
DBP. This was the cross-correlation of the optical field propagated forward
and then backward with and without PMD. In this section we want to connect
this metric with the proportion of NL that can be compensated. Further, we
can use it to estimate the SE and maximum RD as in Figure 7.1 and 7.2.
Clearly, the more the NL-PMD interactions affect the optical field, the worse
standard DBP would perform, and the lower % of NL will be compensated
(higher κ).

The procedure to estimate the proportion of compensated NL starts with
propagating the signal forward and backward with and without PMD (without
ASE). The signal EVM is then estimated. Further EVM is converted to SNR
[95] and OSNR [26] (see Appendix F). Finally, knowing OSNR and signal
power, the total noise is estimated, ASE noise is deducted which leaves us
with pure NL noise. We estimate this for a system with PMD and without
PMD by comparing the residual PNL and therefore find out which part of NL
is not compensated due to PMD.

We present the simulation results for the DP-16-QAM 8 dBm 28 GBaud
signal, propagating in a 0.1 ps{

?
km fibre PMDc system, consisting of 30x80

km spans, each with one noiseless EDFA ideally compensating for span loss
(full setup in Figure 5.3 in Section 5.3.1). The dependence between the cross-
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7.1.3 Conventional DBP PMD-induced limits

The connection explored in the previous section allows to leap from the DGD
value to the SE and RD. The transition is schematically pictured in Figure 7.4

DGD

 DBP error

 % of compensated NL

 spectral e�ciency
 reach distance

Figure 7.4: Scheme of transition to connect the DGD with SE and RD.

We start from the simulated dependence of the correlation metric (DBP
error) on the DGD (ex. see Figure 4.15a in Section 4.3.4). Then by a simple
value matching we move from DBP error to percentage of compensated NL
(see, for example, Figure 7.3) and finally we get the desired Shannon metrics
(see Figure 7.1, Figure 7.2). The results for conventional DBP are summarised
in Figure 7.5.

Both figures show the average lower limit that PMD sets on the NL com-
pensation. For instance, when the link has 0.1 symbol periods DGD, 98%
of NL will be compensated by conventional DBP. For the considered single-
channel system it allows to increase SE from 5.4 bits{s{Hz (without DBP) to
7.3 bits{s{Hz (with conventional DBP). When the DGD grows up to 0.5 sym-
bol periods, 91% of NL are compensated and the SE grows up to 6.5 bits{s{Hz.

Reaching longer distances is a less challenging task, even by DGD of 1.5
symbol periods and 74% of compensated NL, the system RD doubles. Note
that even though ASE-noise keeps growing, here we assume that we can keep
increasing the optical power and compensate the required % of NL (NL-ASE
interactions are not considered). Summing up, DBP is potentially a good
candidate technique for increasing RD but will not be a game-changer for
increasing SE. Adding to that, feasible amounts of PMD that are reached in
modern fibres, do not seem to affect DBP ability to increase system length.
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7.1.4 Proposed DBP PMD-induced limits
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Figure 7.6: Investigation of how the signal symbol rates influence the PMD-
nonlinear interaction in the proposed DBP modification.

In the previous section we investigated how much standard DBP imple-
mentation would underperform in presence of PMD. Here we present the same
investigation with the DBP proposed in Chapter 5.

For the procedure we still lack the cross-correlation metric estimation, which
is described in Section 4.3.3 as SSF PMD Model I. All simulation parameters
are summarized in Section 4.3. Filling the gap we perform the simulations
for DBPmod, results are presented in Figure 7.6. Figures compare between
different baud rates, 28, 56, and 112 GBaud, having the same power of 8 dBm

or the same power spectral density of 0.223 mW {GHz. As compared to the
conventional DBP (see Figure 4.15 in Section 4.3.4), the field error is around
twice as small.

Finally, the SE and RD can be estimated, as in Figure 7.7. Proposed DBP
has a considerably better capability to compensate for NL. At DGD of 0.5
symbol periods it removes 97% of NL compared with 91% by conventional
DBP. At a DGD of one full symbol period the difference is 11%. Figure 7.7b
shows that feasible amounts of PMD will not affect DBP RD increase potential.
Even a DGD of 1.5 symbol periods will allow 89% of compensated NL and will
theoretically triple the system length.
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Figure 7.7: PMD-induced limitations of proposed DBP for a DP-16-QAM 28
GBaud signal with variable input power propagating in a 30x80 km SSMF
link with variable fibre PMDc. Each span has a 4 dB NF EDFA.
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Note that the results presented in Figure 7.5 and in Figure 7.7 are dependent
on the receiver DSP. Further, here we assumed perfect estimation of DGD and
PSP for the DBPmod.

7.2 Conclusions

In this chapter we demonstrated that for a long-haul optical transmission sys-
tem it is possible to define the fundamental limits of conventional and proposed
DBP (Section 5.2). DBP is a very useful technique to increase the RD. Practi-
cally observed DGDs will not have any significant effect on it. Rather, systems
will be limited by NL-ASE interactions at long distances. However, it is by far
more challenging to use DBP to increase system SE because of the NL-PMD
interactions.



Chapter 8

Conclusions

The main objective of this thesis was to provide a comprehensive understanding
of how stochastic effects in a fibre interact with NL and how they affect DBP.
The analysis was performed for non-DM EDFA amplified long-haul links.

Firstly, we identified the stochastic effects in a fibre and showed their statis-
tical distributions. We pointed out that PDL and PMD are by far the major
limiting effect. We showed that the DBP performance can be greatly degraded
in presence of PMD and that it can be well characterised by the DGD value at
the receiver. The DGDs that have improbable but high values are the ones re-
sponsible for the largest system degradation and outage. In such cases DGDev
grows linearly with distance, in comparison to the most probable DGDevs that
follow the distance square root rule.

Another important conclusion was that the simulation results of PMD-
induced DBP degradation are dependent on the way PMD was simulated.
Fibre PMDcs can be swept, then the most probable DGD cases are simulated.
Or it can be fixed, then the pre-selection of fibre birefringence profiles that lead
to improbable DGD values is required. While the first way is easier to perform
and is dominating in current research, the second one reflects real systems in
a better way.

In order to develop an analytical model to estimate the PMD-induced DBP
error, we considered the perturbation model. We showed how under certain as-
sumptions PMD can be accounted for. Furthermore, we suggested and verified
a simplification in order to get an analytical solution for the perturbation term.
This can be done when the DGDev is approximated by a staircase span-step
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function. We compared the proposed supplement with the SSF simulations
and found a good consistency level. Using the supplemented perturbation
model and SSF simulations we showed that the DBP error is independent on
the modulation format, but is affected by both signal bandwidth and signal
power density.

Using the facts that the best approximation for DGDevs with high final
DGD is a straight line, which can even further be digitised to a staircase span-
step function, we suggested a modification of conventional DBP. It is based on
the knowledge of DGD and PSP for the central signal frequency at the receiver.
The DGDev is then approximated during DBP to minimise the mismatch with
the forward propagation. We discussed the low-complexity of the method and
rather high tolerance to measurement errors of the data feed. We also pointed
out that new methods for accurate DGD and PSP estimation are required.
The proposed algorithm nearly fully mitigates the PMD-induced performance
degradation and "returns" it to the no-PMD-levels.

Throughout the thesis it was shown that the linear noise remains the largest
system limitation factor. It by far overweights NL-PMD interaction effects. So
that the NL-PMD management is necessary to increase the already acceptably
high OSNR. If the system has low OSNR, the NL-PMD effect will not be
visible.

Finally, we identified the NL-PMD induced fundamental limits of DBP. For
a long-haul optical transmission system it is possible to tell which percentage
of NL on average can be compensated, provided DGD reached a certain value.
We showed, that in modern fibre systems PMD will not affect the ability of
DBP to increase the reach distance, but will greatly limit the gain of spectral
efficiency.



Appendix A

Signal rotation to a new

coordinate system

The signal coordinates rotation to a new coordinate system, for example, to
the PSP can be performed in frequency domain. The known Stokes parameters
are used to construct the Mueller and then the Jones rotation matrices. The
rotation should be done in Jones calculus, rather than in Mueller notation, as
it works with the electric field, rather than with the light intensity.

We assume that the Stokes parameters of the fast polarisation axis are
known:

Sfast “

¨

˚

˚

˝

S1

S2

S3

˛

‹

‹

‚

, (A.1)

In the Mueller rotation matrix the first column, m1, is constructed from the
fast PSP Stokes parameters Sfast. The second column m2 specifies the PSD
vector. In case of first order PMD, the PSD vector is not specified and the
second column Mueller matrix is constructed from Sfast:

• if S1 “ S3 “ 0 then m2 “ p0, 1, 0q,

• otherwise, m2 “ p0,´S3, S2q.

This ensures the second column vector is orthogonal to Sfast. The third or-
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thogonal vector m3 “ m1 ˆm2 and is specified as

m3 “

¨

˚

˚

˝

m1,2m2,3 ´m1,3m2,2

m1,3m2,1 ´m1,1m2,3

m1,1m2,2 ´m1,2m2,1

˛

‹

‹

‚

. (A.2)

Finally, Mueller rotation matrix can be constructed:

M “

»

—

—

—

—

—

–

1 0 0 0

0 S1 m2,1 m3,1

0 S2 m2,2 m3,2

0 S3 m2,3 m3,3

fi

ffi

ffi

ffi

ffi

ffi

fl

. (A.3)

Now the Jones rotation Matrix can be constructed as in [96]:

H “

»

–

H11 H12

H21 H22

fi

fl , (A.4)

Hkl “ |Hkl| ¨ eiψkl , (A.5)

H11 “
a

pM00 `M01 `M10 `M11q{2, (A.6)

H12 “
a

pM00 ´M01 `M10 ´M11q{2, (A.7)

H21 “
a

pM00 `M01 ´M10 ´M11q{2, (A.8)

H22 “
a

pM00 ´M01 ´M10 `M11q{2. (A.9)

cospψ11 ´ ψ12q “
M02 `M12

a

pM00 `M10q
2 ´ pM01 `M11q

2
, (A.10)

sinpψ11 ´ ψ12q “
M03 `M13

a

pM00 `M10q
2 ´ pM01 `M11q

2
, (A.11)

cospψ21 ´ ψ11q “
M20 `M21

a

pM00 `M01q
2 ´ pM10 `M11q

2
, (A.12)
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sinpψ21 ´ ψ11q “
M30 `M31

a

pM00 `M01q
2 ´ pM10 `M11q

2
, (A.13)

cospψ22 ´ ψ11q “
M22 `M33

a

pM00 `M11q
2 ´ pM10 `M01q

2
, (A.14)

sinpψ22 ´ ψ11q “
M32 `M23

a

pM00 `M11q
2 ´ pM10 `M01q

2
. (A.15)

It is principally impossible to extract all phases from the Mueller matrix.
The differences between the phases ψ11, .., ψ22 are important. Practically ψ11 “

0 can be assumed. Finally, when the H matrix is constructed, the signal
multiplied with it will be rotated to the new coordinate system.
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Appendix B

Impact of PMD statistics on the

simulation results

In order to demonstrate how the choice of PMD statistics influences the simu-
lation results of the PMD impact on DBP, we simulated the system described
in Section 5.3.2 using two different approaches. The first one and most com-
monly used one is to vary the fibre PMDc and to simulate the most probable
DGD cases for each fibre. The second approach keeps the fibre PMDc fixed
and uses pre-selection to manually choose low-probable DGD values from one
distribution. In the simulations the fibre PMDc runs through the values 0.04,
0.1, 0.15, 0.2, 0.25, 0.3 ps{

?
km in the first case and is fixed to 0.1 ps{

?
km in

the second. Here we present the results for a 28 GBaud 16-QAM modulated
signal.

The results in Figure B.1 show that depending on the PMD statistics, both
the DBP and the modified DBP (see Chapter 5) will be affected differently.
The orange line marked with circles illustrates the conventional DBP method.
The curves have different starting points. While in the first case the low DGD
scenarios follow the square root evolution, in the second case the DGD has a
bow evolution, similar to Figure 3.3 in Section 3.1.2. Although both of the
evolutions finish at the same value, the one that accumulated higher DGD
during propagation will affect the DBP more (covering a larger area under the
line, as in Figure 3.4b). Note also that the curves in Figure B.1 have different
slopes. At high DGD values the first case evolves like a square root and the
second case as a straight line, similar to Figure 3.4a). The average straight
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Figure B.1: Comparison between two different approaches of PMD simulation.

line evolution now has a lower cumulative DGD and therefore shows better
performance. The variance in performance is slightly larger in the first case as
the higher PMDc implying a larger variety of DGD evolutions.

The DBPmod method performance, illustrated with blue triangle marked
curve, differs significantly depending on the way PMD is simulated. While in
the second case in Figure B.1b performance is stable and is equivalent to low
DGD levels, in the first case in Figure B.1a its efficiency drops, however, still
performing better than conventional DBP . The performance of the DBPmod
cannot be better than the low DGD case for a particular PMDc. The growing
PMDc in Figure B.1a therefore pulls the modified DBP gain down. We also
remark here, that the DBPmod performance in Figure B.1a can be improved
if a square-root DGD distribution is used for approximation (instead of linear
distribution).



Appendix C

Basic principles of MIMO

equalizer

In optical fibre coherent transmission the name MIMO refers to the equaliser
that reconstructs the sent logical xr and yr signal polarisations from the re-
ceived components xRx and yRx (which constitute a mixture of xr and yr).
Functionally, a MIMO reconstructs the inverse Jones matrix H of a channel.
The general principle of the equalizer is depicted in Figure C.1.

hxx

hxy

hyx

hyy

xRx

yRx

+

+

xr

yr

Figure C.1: Working principle of a MIMO equalizer.

The reconstructed signal is described as [79, 97]:

xrpmq “ hxxpmq ¨ xRx, blockpmq ` hxypmq ¨ yRx, blockpmq,

yrpmq “ hyxpmq ¨ xRx, blockpmq ` hyypmq ¨ yRx, blockpmq,
(C.1)

where xRx, block and yRx, block are the sliding blocks of Ntaps samples, to which
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the filter is applied:

xRx, blockpmq “ rxRxpmq, xRxpm´ 1q, ...xRxpm´Ntapsqs,

yRx, blockpmq “ ryRxpmq, yRxpm´ 1q, ...yRxpm´Ntapsqs,
(C.2)

hp (p takes values of xx, xy, yx, yy) are the components of the inverse Jones
matrix H, namely vectors of length Ntaps containing filter taps weights:

hppmq “ rhp,0pmq, hp,1pmq, ..., hp,Ntaps´1pmqs
T , (C.3)

m is the signal sample.
The MIMO coefficients hp are adapted to minimize the so-called cost func-

tion, determining the distance between the reconstructed point and the con-
stellation amplitude circle:

εxpmq “ Λ2
´ |xrpmq|

2,

εypmq “ Λ2
´ |yrpmq|

2,
(C.4)

For example, for a QPSK signal Λ “ 1 (CMA), for a 16-QAM signal Λ “

r1{
?

5, 1, 3{
?

5s (MMA). The equalizer weights are updated as following:

hxx “ hxx ` µεxxRxx
˚
r ,

hxy “ hxy ` µεxyRxx
˚
r ,

hyx “ hyx ` µεyxRxy
˚
r ,

hyy “ hyy ` µεyyRxy
˚
r ,

(C.5)

where µ is a convergence factor.



Appendix D

Q factor metric

The Quality factor or Q factor is a metric that is useful for estimating the
performance of an optical link. In this thesis we chose it to be able to plot
the mean along with the standard deviation of the performance results in one
figure.

As defined in [87], the Q factor and BER relate as

Q “ 1{2 ¨ erfcpBER{
?
2q, (D.1)

where erfctu is a complementary error function.
The relation between the two metrics is plotted in Figure D.1.
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Figure D.1: Relationship between Q factor and BER.
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Appendix E

Big-O notation

Big-O notation is a metric used to describe the complexity of algorithms and
functions. It describes the behaviour of a function when its argument tends
towards a particular value or infinity. Namely, it answers the question of how
fast the number of operations grows depending on the number of elements, n,
(also called problem size). This growth can be constant, Op1q, linear Opnq,
logarithmic Oplogpnqq, exponential Opχnq, polynomial Opnχq, where χ is a
constant. The term of a function with the highest growth rate defines its
Big-O. Some examples of the Big-O notations are summarized in Figure E.1

Elements, n
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Very bad
Bad
Fair
Good
Very good

O (nlog(n))
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O (log(n)) O (1)

O (n  )2

O (2  )n

O (n!)

Figure E.1: Big-O Complexity Types Comparison. Adopted from [98].
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Appendix F

Relation between EVM, SNR, and

OSNR

The metric EVM is a measure of a received signal’s constellation diagram
quality. It compares the ideal and the received demodulated signals and can
be calculated as a relative constellation root-mean-square error:

EVM “

g

f

f

f

f

f

e

Nc
ř

i“1

|bi ´ ai|2

Nc
ř

i“1

|ai|2
, (F.1)

where Nc is the number of constellation points (transmitted symbols) and i is
the symbol count, ai is the vector of reference constellation points, bi is the
vector of received constellation points.

According to derivations in [95], there is an approximate analytical connec-
tion between EVM and SNR, provided the noise has Gaussian distribution,
and number of received constellation points is much larger than the number
of unique symbols in the constellation:

SNR «
1

EVM 2
. (F.2)

The SNR itself, independent of the receiver parameters and recalculated for
a given bandwidth (commonly 0.1 nm), can be further matched to the OSNR,
as in [26]:

OSNR “ SNR ¨
B

12.5 ¨ 109
¨
Npol

2
, (F.3)
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where B is the signal bandwidth and Npol is the number of signal polarisations.
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