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Abstract

A dicut in a directed graph is a cut for which all of

its edges are directed to a common side of the cut. A

famous theorem of Lucchesi and Younger states that

in every finite digraph the least size of an edge set

meeting every dicut equals the maximum number of

disjoint dicuts in that digraph. In this first paper out of

a series of two papers, we conjecture a version of this

theorem using a more structural description of this

min‐max property for finite dicuts in infinite digraphs.

We show that this conjecture can be reduced to

countable digraphs where the underlying undirected

graph is 2‐connected, and we prove several special

cases of the conjecture.
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1 | INTRODUCTION

In finite structural graph theory there are a lot of theorems which illustrate the dual nature of
certain objects by relating the maximum number of disjoint objects of a certain type in a graph with
the minimal size of an object of another type in that graph. More precisely, the size of the latter
object trivially bounds the number of disjoint objects of the first type existing in the graph.

This duality aspect of such packing and covering results is closely related to the duality of linear
programs appearing in combinatorial optimization. However, a purely graph‐theoretic interpreta-
tion requires integral solutions of both linear programs, which are hard to detect, if they even exist.

Probably the most well‐known example of such a min‐max result is Menger's theorem for
finite undirected graphs. It states that for any two vertex sets A B, in a finite graph the
maximum number of disjoint paths between A and B equals the minimum size of a vertex set
separating A from B. In fact, there is a structural reformulation of this quantitative description
of this dual nature of connectivity: for any two vertex sets A B, in a finite graph there exists a
set of disjoint paths between A and B together with a vertex set separating A from B that
consists of precisely one vertex from each of the paths.

While for finite graphs this is an easy corollary from the quantitative version, in infinite
graphs it turns out that such a structural version is much more meaningful. While Erdős
observed that a version of Menger's theorem based on the equality of infinite cardinals is quite
trivial, he conjectured that the analogue of the structural version is the better way to interpret
this dual nature of connectivity. Such a version has been established by Aharoni and Berger [2].
Their theorem restored many of the uses of connectivity duality that the trivial cardinality
version could not provide, and hence it influenced much of the development of infinite con-
nectivity theory and matching theory.

Another such min‐max theorem was established by Lucchesi and Younger [10] for directed
graphs. To state that theorem we have to give some definitions first.

In a weakly connected directed graph D we call a cut of D directed, or a dicut of D, if all of its
edges have their head in a common side of the cut. We call a set of edges a dijoin of D if it meets
every nonempty dicut of D. Now we can state the mentioned theorem.

Theorem 1.1 (Lucchesi and Younger [10]). In every weakly connected finite digraph, the
maximum number of disjoint dicuts equals the minimum size of a dijoin.

Beside the original proof of Theorem 1.1 due to Lucchesi and Younger [10], further ones
appeared. Among them are an inductive proof by Lovász [9, Theorem 2] and an algorithmic
proof of Frank [5, Section 9.7.2]. As for Menger's theorem, we now state a structural re-
formulation of Theorem 1.1, which for finite digraphs is easily seen to be equivalent.

Theorem 1.2. Let D be a finite weakly connected digraph. Then there exists a tuple F( , )
such that the following statements hold:

(i)  is a set of disjoint dicuts of D.
(ii) ⊆F E D( ) is a dijoin of D.
(iii) ⊆ ⋃F .
(iv) ∣ ∩ ∣F B = 1 for every ∈B .
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In this paper, we consider the question whether Theorem 1.2 extends to infinite digraphs.
Let us first show that a direct extension of this formulation to arbitrary infinite digraphs fails.
To do this we define a double ray to be an undirected two‐way infinite path. Now consider the
digraph depicted in Figure 1. Its underlying graph is the Cartesian product of a double ray with
an edge. Then we consistently orient all edges corresponding to one copy of the double ray in
one direction and all edges of the other copy in the different direction. Finally, we direct all
remaining edges such that they have their tail in the same copy of the double ray. This digraph
contains no finite dicut, but it does contain infinite ones. Note that every dicut of this digraph
contains at most one horizontal edge, which corresponds to an oriented one of some copy of the
double ray, and all vertical edges to the left of some vertical edge. Hence, we cannot even find
two disjoint dicuts. However, a dijoin of this digraph cannot be finite, as we can easily find a
dicut avoiding any finite set of edges by considering a horizontal edge to the left of the finite set.
So we obtain that each dijoin hits every dicut infinitely often in this digraph. Therefore, neither
the statement of Theorem 1.2 nor the statement of Theorem 1.1 remain true if we consider
arbitrary dicuts in infinite digraphs.

Another counterexample for these naive extensions is the infinite transitive tournament
with vertex set  and with an edge directed fromm to n if and only ifm is smaller than n for all

∈m n, . We leave the verification of this fact to the reader.
To overcome the problem of this example let us again consider the situation in Menger's

theorem. There, even in the infinite version, we are only considering finite paths for those
objects that we want to pack. Together with the example in Figure 1, this suggests that we
might need to restrict our attention to finite dicuts when extending Theorem 1.2 to infinite
digraphs. Hence, we make the following definitions.

In a weakly connected digraph D we call an edge set ⊆F E D( ) a finitary dijoin of D if it
intersects every nonempty finite dicut of D. Building up on this definition, we call a tuple F( , )
as in Theorem 1.2 but where F is now a finitary dijoin and  is a set of disjoint finite dicuts of
D, an optimal pair for D.

Not in contradiction to the example given above, we now state the following conjecture raised
by the second author of this article, which we call the Infinite Lucchesi–Younger conjecture.

Conjecture 1.3. Every weakly connected digraph admits an optimal pair.

Apparently, an extension of Theorem 1.1 as in Conjecture 1.3 turns out to be very similar to
a more general problem about infinite hypergraphs independently raised by Aharoni [1, Prob.
6.7]. We will discuss this connection further in Section 6.

The three mentioned proofs [10], [9, Thm. 2], and [5, Thm. 9.7.2] of Theorem 1.1 even show
a slightly stronger result. We call an optimal pair nested if the elements of  are pairwise
nested, that is, any two finite dicuts ∈E X X E Y Y( , ), ( , )1 2 1 2  satisfy one of the following
conditions: ⊆X Y1 1, ⊆Y X1 1, ⊆X Y1 2, or ⊆Y X2 1.

FIGURE 1 A counterexample to an extension of Theorem 1.2 to infinite digraphs where infinite dicuts are
considered too
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Theorem 1.4 (Lucchesi and Younger [10]). Every weakly connected finite digraph admits
a nested optimal pair.

Hence, we also make the following conjecture.

Conjecture 1.5. Every weakly connected digraph admits a nested optimal pair.

In weakly connected infinite digraphs there are indications that, in contrast to the finite case,
Conjecture 1.5 may be strictly stronger than Conjecture 1.3. In Section 3 we will illustrate examples
of digraphs with a finitary dijoin which is part of an optimal pair, but not of any nested one.

One of the main results of this paper is the reduction of Conjectures 1.3 and 1.5 to countable
digraphs with a certain separability property and whose underlying multigraphs are 2‐connected.
We call a digraph D finitely diseparable if for any two vertices ∈v w V D, ( ) there is a finite dicut of
D such that v and w lie in different sides of that finite dicut.

Theorem 1.6. If Conjecture 1.3 (or Conjecture 1.5, respectively) holds for all countable
finitely diseparable digraphs whose underlying multigraphs are 2‐connected, then
Conjecture 1.3 (or Conjecture 1.5, respectively) holds for all weakly connected digraphs.

Moreover, we verify Conjecture 1.5 for several classes of digraphs. We gather all these
results in the following theorem. Before we can state the theorem we have to give some further
definitions. We call a minimal nonempty dicut of a digraph a dibond. Furthermore, we call an
undirected one‐way infinite path a ray. We say a digraph is rayless if its underlying multigraph
does not contain a ray.

Theorem 1.7. Conjecture 1.5 holds for a weakly connected digraph D if it has any of the
following properties:

(i) There exists a finitary dijoin of D of finite size.
(ii) The maximal number of disjoint finite dicuts of D is finite.
(iii) The maximal number of disjoint and pairwise nested finite dicuts of D is finite.
(iv) Every edge of D lies in only finitely many finite dibonds of D.
(v) D has no infinite dibond.
(vi) D is rayless.

The structure of this paper is as follows. In Section 2, we introduce our needed notation and
prove some basic tools that we will need throughout the paper. In Section 3, we will discuss
some examples which shall illustrate the difficulties of relating Conjecture 1.3–Conjecture 1.5.
Section 4 is dedicated to the proof of Theorem 1.6. In Section 5, we shall deduce the items of
Theorem 1.7 via several lemmas by lifting Theorem 1.4 to infinite digraphs via the compactness
principle. Section 6 is dedicated to a short discussion of the connection between Conjecture 1.3
and the more general problem from Aharoni about matchings in infinite hypergraphs.

In a second paper [8] on the Infinite Lucchesi–Younger Conjecture we will extend several parts of
the algorithmic proof of Frank [5, Section 9.7.2] for Theorem 1.1 to infinite digraphs. This proof is
based on the ideas of the negative circuit method developed for more general submodular frame-
works by Fujishige [6] and Zimmermann [11]. Instead of just starting with a dijoin of minimum size,
the idea of Frank's proof is to start with any dijoin and algorithmically “improve” it with the help of
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cycles of negative cost in an auxiliary digraph whose definition depends on the dijoin. Once the dijoin
can no longer be “improved” some structural properties of the auxiliary graph help in fining the
desired set of dibonds which together with the dijoin form a nested optimal pair.

2 | BASIC NOTIONS AND TOOLS

For basic facts about finite and infinite graphs we refer the reader to [4]. Several proofs,
especially in Section 5, rely on the compactness principle in combinatorics. We omit stating it
here but refer to [4, Appendix A]. Especially for facts about directed graphs we refer to [3].

In general, we allow our digraphs to have parallel edges, but no loops unless we explicitly
mention them. Similarly, all undirected multigraphs we consider do not have loops if nothing
else is explicitly stated.

Throughout this section let D denote a digraph with vertex setV D( ) and edge set E D( ). We
view the edges of D as ordered pairs u v( , ) of vertices ∈u v V D, ( ) and shall write uv instead of
u v( , ), although this might not uniquely determine an edge. In parts where a finer distinction
becomes important we shall clarify the situation. For an edge ∈uv E D( ) we furthermore call
the vertex u as the tail of uv and v as the head of uv. We denote the underlying undirected
multigraph of D by DUn( ).

In an undirected nontrivial path we call the vertices incident with just one edge the end-
vertices of that path. For the trivial path consisting just of one vertex, we call that vertex also an
endvertex of that path. If P is an undirected path with endvertices v and w, we call P a v–w path.
For a path P containing two vertices ∈x y V P, ( ) we write xPu for the x–u subpath contained in
P. Should P additionally be a directed path where v has out‐degree 1, then we call P a
directed v–w path. We also allow to call the trivial path with endvertex v a directed v–v path. For
two vertex sets ⊆A B V D, ( ) we call an undirected path ⊆P D an A–B path if P is an a–b path
for some ∈a A and ∈b B but is disjoint from ∪A B except from its endvertices. Similarly, we
call a directed path that is an A–B path a directed A–Bpath.

We call an undirected graph a star if it is isomorphic to the complete bipartite graph K κ1, for
some cardinal κ, where the vertices of degree 1 are its leaves and the vertex of degree κ is its center.

We define a ray to be an undirected one‐way infinite path. Any subgraph of a ray R that is
itself a ray is called a tail of R. The unique vertex of R of degree 1 is the start vertex of R.

An undirected multigraph that does not contain a ray is called rayless.
A comb C with teeth U is an undirected graph C with subset ⊆U V C( ) of its vertices such

that C is the union of a ray R together with infinitely many disjoint undirected finite (possibly
trivial) U–V R( ) paths. The ray R is called the spine of C.

The following lemma is a fundamental tool in infinite graph theory. A basic version of this
lemma which does not take different infinite cardinalities into account can be found in [4,
Lemma 8.2.2]. We shall only apply this more general version for vertex sets of cardinality ℵ0
and ℵ1 in this paper.

Lemma 2.1 (Gollin and Heuer [7, Lemma 2.5]). LetG be an infinite connected undirected
multigraph and let ⊆U V G( ) be such that ∣ ∣U κ= for some infinite regular cardinal κ.
Then there exists a set ⊆U U′ with ∣ ∣ ∣ ∣U U′ = such thatG either contains a comb with teeth
U′ or a subdivided star whose set of leaves is U′.
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2.1 | Cuts and dicuts

Throughout this section let D denote a weakly connected digraph. For two vertex sets
⊆X Y V D, ( ) we define ⊆E X Y E D( , ) ( )D as the set of those edges that have their head in ⧹X Y

and their tail in ⧹Y X , or their head in ⧹Y X and their tail in ⧹X Y . Furthermore, we define
→

≔ ∈ ∣ ∈ ∈E X Y uv E X Y u X v Y( , ) { ( , ) and }.D

We will usually omit the subscript if the graph we are talking about is clear from the context.
If ∪X Y V D= ( ) and ∩ ∅X Y = , we call E X Y( , ) a cut of D and refer to X and Y as the

sides of the cut. Moreover, by writing E M N( , ) and calling it a cut of D we implicitly assume M
and N to be the sides of that cut, and by calling an edge set B a cut we implicitly assume that B
is of the form E M N( , ) for suitable sets M and N .

We call two cuts E X Y( , )1 1 and E X Y( , )2 2 of D nested if one of X Y,1 1 is⊆‐comparable with one
of X Y,2 2. Moreover, we call a set or sequence of cuts of D nested if its elements are pairwise
nested. If two cuts of D are not nested, we call them crossing (or say that they cross).

A cut is said to separate two vertices ∈v w V, if v and w lie on different sides of that cut.
A minimal nonempty cut is called a bond. Note that a cut E X Y( , ) is a bond, if and only if

the induced subdigraphs D X[ ] and D Y[ ] are weakly connected digraphs.
We call a cut E X Y( , ) directed, or briefly a dicut, if all edges of E X Y( , ) have their head in

one common side of the cut. A bond that is also a dicut is called a dibond.
We call D finitely separable if for any two different vertices ∈v w V, there exists a finite cut

of D such that v and w are separated by that cut. Note that if two vertices are separated by some
finite cut, then they are separated by some finite bond as well. If furthermore any two different
vertices ∈v w V D, ( ) can even be separated by a finite dicut, or equivalently a finite dibond, of
D, we call D finitely diseparable.

For a vertex set ⊆X V D( ) we define

• ≔
→

⧹δ X E V D X X( ) ( ( ) , )D
− , the set of in‐going edges of X ;

• ≔
→

⧹δ X E X V D X( ) ( , ( ) )D
+ , the set of out‐going edges of X ;

• ≔ ∪δ X δ X δ X( ) ( ) ( )D
− + , the set of incident edges of X .

As before, we will usually omit the subscript if the graph we are talking about is clear from
the context.

Given a dicut
→

B E X Y= ( , ) we call Y the in‐shore of B and X the out‐shore of B. We shall
also write Bin( ) for the in‐shore of the dicut B and Bout( ) for the out‐shore of B.

For undirected multigraphs cuts, bonds, sides, the notion of being nested and the notion of
separating two vertices are analogously defined. Hence, we call an undirected multigraph
finitely separable if any two vertices can be separated by a finite cut of the multigraph. Fur-
thermore, in an undirected multigraph G with ⊆X Y V G, ( ) we write E X Y( , ) for the set of
those edges of G that have one endvertex in ⧹X Y and the other in ⧹Y X .

Given a set ∣ ∈B i I= { }i of dicuts of D, we write

• ⋀ ≔ ⋂ ∣ ∈δ B B( { in( ) })−  , or simply ⋀B B1 2 for⋀ B B{ , }1 2 ; and
• ⋁ ≔ ⋃ ∣ ∈δ B B( { in( ) })−  , or simply ⋁B B1 2 for⋁ B B{ , }1 2 .

Note that since D is weakly connected,⋀ is empty if and only if⋂ ∣ ∈B B{ in( ) } is empty,
and⋁ is empty if and only if⋃ ∣ ∈B B{ in( ) } equals V D( ).
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Remark 2.2. Let  be a set of dicuts of D.

(1) ⋀ is a (possibly empty) dicut of D.
(2) ⋁ is a (possibly empty) dicut of D.

Note that ⋀ and ⋁ might be infinite dicuts of D, even if each ∈B  is finite. Fur-
thermore, note that if B1 and B2 are dibonds then ⋀B B1 2 does not need to be a dibond, even if it
is nonempty. A simple double‐counting argument yields the following.

Remark 2.3. Let B1 and B2 be dicuts of D, and let ⊆F E D( ). Then

(1) ∩ ∪ ∩ ⋀ ∩ ∪ ⋁ ∩B F B F B B F B B F( ) ( ) = (( ) ) (( ) )1 2 1 2 1 2 ; and
(2) ∣ ∩ ∣ ∣ ∩ ∣ ∣ ⋀ ∩ ∣ ∣ ⋁ ∩ ∣B F B F B B F B B F+ = ( ) + ( )1 2 1 2 1 2 .

Moreover, if B1 and B2 are disjoint, then ⋀B B1 2 and ⋁B B1 2 are disjoint as well.

Let B be a dicut. We call a set ∣ ∈B i I= { }i a decomposition of B if for each ∈i j I,

• ⊆B Bi is a (possibly empty) dicut;
• ∩ ∅B B =i j for ≠i j;
• ⋃ ∈ B B=k I k .

We write ⊕B =  if  is a decomposition of B.

2.2 | Dijoins and optimal pairs for classes of finite dibonds

Throughout this section let D denote a weakly connected digraph. We call an edge set
⊆F E D( ) a dijoin of D if ∩ ≠ ∅F B holds for every dicut B of D. Similarly, we call an edge set
⊆F E D( ) a finitary dijoin of D if ∩ ≠ ∅F B holds for every finite dicut B of D. Note that an

edge set ⊆F E D( ) is already a (finitary) dijoin if ∩ ≠ ∅F B holds for every (finite) dibond of D
since every (finite) dicut is a disjoint union of (finite) dibonds.

LetB be a class of finite dibonds of D. Then we call an edge set ⊆F E D( ) aB‐dijoin of D if
∩ ≠ ∅F B holds for every ∈B B. Note that for the class finB of all finite dibonds of D we

immediately get that the finitary dijoins of D are precisely the finB ‐dijoins of D.
We call a tuple F( , ) a B‐optimal pair for D if

(1) ⊆F E D( ) is a B‐dijoin of D;
(2) ⊆ B is a set of disjoint dibonds in B;
(3) ⊆ ⋃F ; and
(4) ∣ ∩ ∣F B = 1 for every ∈B .

We call a B‐optimal pair F( , ) for D nested if the elements of  are pairwise nested.
Note that the (nested) optimal pairs as defined in the introduction are precisely the (nested)

finB ‐optimal pairs.
Using the introduced notation we state the following question, which is the general main

topic of our studies in this paper and the second paper [8] of this series.
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Question 2.4. Which weakly connected digraphs and classesB of finite dibonds admit
a (nested) B‐optimal pair?

Note that this question is more general and flexible than Conjecture 1.3 or Conjecture 1.5
but encompasses them by setting = finB B .

LetB be a class of dicuts of D. Then let ⊕B denote the class of dicuts B of D which have a
partition ⊕B =  for some ⊆ B .

We say B is finitely corner‐closed if

(1) If ∈B B,1 2 B then ⋀ ∈ ⊕B B1 2 B .
(2) If ∈B B,1 2 B then ⋁ ∈ ⊕B B1 2  .

Note that ⊕ ⊕ ⊕( ) =B B .
Throughout this paper we will mostly consider classes of finite dibonds of D which are

finitely corner‐closed, for example, finB , the class of finite dibonds of D.

2.3 | Finitely separable multigraphs

In this section, we prove certain size‐related properties of finitely separable multigraphs using
Lemma 2.1.

For a multigraph G we call a subgraph ⊆X G a 2‐block of G if X is a maximal connected
subgraph without a cutvertex. Hence a 2‐block of a connected multigraph either consists of a
set of pairwise parallel edges inG or is a maximal 2‐connected subgraph ofG. In a digraph D we
call a subdigraph X a 2‐block of D if XUn( ) is a 2‐block of DUn( ).

One tool we will use in this paper is the 2‐block‐cutvertex‐tree (cf. [4, Lemma 3.1.4]). Let 
denote the set of all 2‐blocks inG, and C the set of all cutvertices inG. Then the bipartite graph
with vertex set ∪ C with edge set ∣ ∈ ∈ ∈cX c C X c X{ , , } is a tree, the 2‐block‐cutvertex‐tree.

We immediately get the following remark.

Remark 2.5. Let G be a multigraph or a digraph.

(i) Every bond of G is contained in a unique 2‐block.
(ii) Bonds of G that are contained in different 2‐blocks are nested.

Lemma 2.6.

(i) Every 2‐block of a finitely separable multigraph or digraph is countable.
(ii) Every 2‐block of a finitely separable rayless multigraph or digraph is finite.

Proof. LetG be a finitely separable multigraph and let X be a 2‐block ofG. Assume for a
contradiction that either X is infinite and rayless, or X is uncountable. LetU be a subset
of V X( ) with ∣ ∣ ∣ ∣U X= min{ , ℵ }1 . Applying Lemma 2.1 toU in X , we obtain a subdivided
star S1 in X whose set of leaves L1 satisfies ∣ ∣ ∣ ∣L U=1 . Let c1 be the center of S1. Using that
X is 2‐connected, we now apply Lemma 2.1 to L1 in G c− 1, which is still connected.
Hence, we obtain a subdivided star S2 inG c− 1 whose set of leaves L2 satisfies ∣ ∣ ∣ ∣L L=2 1

and ⊆L L2 1. Let c2 denote the center of S2. Now we get a contradiction toG being finitely
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separable because S1 and S2 have infinitely many common leaves in L2. So
∪G V S V S[ ( ) ( )]1 2 contains infinitely many internally disjoint c1–c2 paths, witnessing

that c1 and c2 cannot be separated by a finite cut of G.
To complete the proof we still need to consider for a contradiction a 2‐block X of G

whose vertex set is countable (in Case (i)) or finite (in Case (ii)) but whose edge set is
uncountable (in Case (i)) or infinite (in Case (ii)). A contradiction to the fact that X is
finitely separable arises by an easy application of the pigeonhole principle to the two‐
element subsets of V X( ). □

Together with Remark 2.5 we obtain the following immediate corollary.

Corollary 2.7. A finitely separable rayless multigraph has no infinite bond.

2.4 | Quotients

Throughout this section let G denote a digraph or a multigraph. For a set ⊆N E G( ) let ∕G N

denote the contraction minor ofG which is obtained by contracting insideG all edges of N and
deleting all loops that might occur. Similarly, we define ≔ ∕ ⧹G N G E G N. ( ( ) ). For a vertex
∈v V G( ) and any contraction minor G N. with ⊆N E G( ) let v̇ denote the vertex in G N.

which corresponds to the contracted, possibly trivial, (weak) component ofG N− containing v.
We state the following basic lemma without proof.

Lemma 2.8. Let ⊆B N E G, ( ) with ⊆B N and let ∈v w V G, ( ). Then B is a cut (or
dicut/bond/dibond, respectively) of G that separates v and w if and only if B is a cut (or
dicut/bond/dibond, respectively) of G N. that separates v̇ and ẇ. Moreover, two cuts

⊆B B N,1 2 are nested as cuts of G if and only if they are nested as cuts of G N. .

Given a set  of cuts ofG, we define an equivalence relation on V G( ) by setting ≡v w if and
only if we cannot separate v from w by a cut in. It is easy to check that≡ is indeed an equivalence
relation. For ∈v V G( ) we shall write ≡v[ ]  for the equivalence class with respect to≡ containing v.

Let ∕≡G  denote the digraph or multigraph, respectively, which is obtained from G by
identifying the vertices in the same equivalence class of≡ and deleting loops. Furthermore, let
≔ ∣ ∈≡X x x Xˆ {[ ] }

 for every set ⊆X V D( ), as well as ≔ ∈ ∣ ∈X y x x X˜ { } for every
set ⊆ ∕≡X V G( ) B.

Proposition 2.9. LetG be a digraph or a multigraph and let  be a set of cuts ofG. Then
the following statements hold:

(i) ∕≡G  is (weakly) connected if G is (weakly) connected.
(ii) Every cut (or dicut/bond/dibond, respectively) ∈E X Y( , )  ofG is also a cut (or dicut/

bond/dibond, respectively) of ∕≡G , and E X Y E X Y( , ) = ( ˆ , ˆ ).
(iii) Every cut (or dicut, respectively) E X Y( , ) of ∕≡G  is also a cut (or dicut, respectively) of

G, and E X Y E X Y( , ) = ( ˜ , ˜ ).
(iv) Two cuts in  are nested as cuts of G if and only if they are nested as cuts of ∕≡G  .
(v) ∕≡G  is ‐separable.

GOLLIN AND HEUER | 9



Proof. For the sake of readability we will phrase the proof just for cuts and bonds. The
arguments for dicuts and dibonds are analogous.

Note that if G X[ ] is (weakly) connected for some ⊆X V G( ), then ∕ ≡G X[ ˆ ] is
(weakly) connected as well. Hence Statement (i) is immediate.

If ∈E X Y( , ) , then for every ∈x X all vertices in ≡x[ ]  are contained in X by
definition of ≡. Analogously, all vertices in ≡y[ ]  lie in Y for each ∈y Y . Hence,
E X Y E X Y( ˆ , ˆ ) = ( , ) and is a cut of ∕≡D . If E X Y( , ) is a bond ofG, then so it is as a bond
of ∕≡G  by the observation on connectivity of the sides from above. This proves
Statement (ii).

For Statement (iii) let E X Y( , ) be a cut of ∕≡G . By definition of ≡ we obtain that
E X Y( , ) is a cut of D as well as M X= ˜ and N Y= ˜ yielding E X Y E X Y( , ) = ( ˜ , ˜ ).

For any subsets ⊆X Y V G, ( ) if ⊆X Y , then ⊆X Yˆ ˆ . For any subsets
⊆ ∕≡X Y V G, ( )  if ⊆X Y , then ⊆X Y˜ ˜ . With these observations, Statement (iv) is

immediate.
To show Statement (v), let ≡v[ ]  and ≡w[ ]

 be two different vertices of ∕≡V G( ) .
Since v and w are not contained in the same equivalence class, there must exist a cut

∈E X Y( , )  separating them. By Statement (ii) we get that E X Y( ˜ , ˜ ) is a cut of ∕≡G  and
it separates ≡v[ ]  from ≡w[ ]

 by definition of ≡. □

We will apply this proposition mostly with the set of all finite bonds of a multigraph G, or
the set finB of all finite dibonds of a digraph D, yielding a multigraph which is finitely separable
or a digraph which is finitely diseparable.

Let D be a weakly connected digraph and let finB be the set of finite dibonds of D. For ease
of notation let ~ denote the relation ≡

finB .
Next we characterize the relation v w~ for any two vertices v w, . An edge setW is a witness

for v w~ , if it meets every finite cut that separates v and w in both directions, that
is, ∩

→
≠ ∅ ≠ ∩

→
W E X Y W E Y X( , ) ( , ). Hence the existence of a witness for v w~ is an obvious

obstruction for the existence of a finite dicut separating v and w. The whole edge set is trivially
a witness for v w~ . Note that there exists always an inclusion‐minimal witness for v w~ by
Zorn's Lemma.

The following lemmas tell us that given a minimal witnessW for v w~ , all vertices incident
with an edge ofW are also equivalent to v with respect to ~.

Lemma 2.10. Let v w~ for two vertices ∈v w V D, ( ). Then a minimal witness W for
v w~ also witnesses v y~ for any ∈y V D W( [ ]).

Proof. Let W be a minimal witness for v w~ . Now suppose for a contradiction that
there is a ∈y V D W( [ ]) which is separated from v by a finite cut B E X Y= ( , ) of D with
∈y Y which W only meets in at most one direction. We consider the case that
∩
→

∅W E X Y( , ) = , the other case is analogous. SinceW witnesses v w~ , both vertices v
and w have to lie on the same side of B, namely X . We claim that ≔ ∩W W E D X′ ( [ ])

also witnesses v w~ . This would be a contradiction to the minimality of W as y is
incident with an edge of ⧹W W ′.

Let E M N( , ) be a finite cut of D separating v and w, say with ∈v M and ∈w N . Since
∩ ∪E X M Y N( , ) is a finite cut separating v and w but ∩

→
∩ ∅W E X M Y( , ) = , we

obtain ∩
→

≠ ∅W E M N′ ( , ) . Similarly, ∩ ∪E X N Y M( , ) is a finite cut separating v and w
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but ∩
→

∩ ∅W E X N Y( , ) = , and hence ∩
→

≠ ∅W E N M′ ( , ) . ThusW ′ meets E M N( , ) in
both directions, as desired. □

Corollary 2.11. Let D be a weakly connected and finitely separable digraph and let v and
w be two distinct vertices of D such that v w~ . IfW is a finite minimal witness for v w~ ,
then D W[ ] induces a strongly connected digraph.

Proof. Since v and w are distinct and D is finitely separable, we know thatW is not the
empty set. Assume for a contradiction that there is a dicut

→
E X Y( , )W W of D W[ ] separating

some vertices ∈w w W,1 2 . SinceW is finite and D is finitely separable, there exists a finite
cut E X Y( , ) of D such that ⊆X XW and ⊆Y YW . By Lemma 2.10,W is also a witness for
w w~1 2. Hence,

→
∩ ≠ ∅E Y X W( , ) , contradicting that

→
E X Y( , )W W is a dicut of D W[ ]. □

We close this section with the following corollary of Proposition 2.9 and Lemma 2.6(i).

Corollary 2.12. If  is a set of finite cuts of G, then each 2‐block of ∕≡G  is countable.

2.5 | Quotients of rayless digraphs

Throughout this section let D be a weakly connected digraph, let finB be the set of finite
dibonds of D, and let *finB be the set of finite bonds of D. As in the previous section, we denote
for the sake of readability the relation ≡

finB by ~. Moreover, we denote the relation ≡ *
finB
by ≈.

Note that since v w~ implies that ≈v w for all ∈v w V D, ( ), we obtain that ~ induces an
equivalence relation on ∕≈V D( ). Since moreover the set of finite dibonds of ∕≈D equals the set
of finite dibonds of D by Proposition 2.9, we obtain the following remark.

Remark 2.13. ∕≈ ∕ ∕D D( ) ~ = ~

The aim of this section is to show that if D is rayless, then so is ∕D ~. The analogous
statement for the relation ≈ is proven by an easy construction.

Remark 2.14. If D is rayless, then ∕≈D is rayless as well.

Proof. Suppose for a contradiction that D is rayless but ≈ ≈R v v= [ ] [ ] …0 1 is a ray in ∕≈D .
For each ∈i  let ∈ ≈v v′ [ ]i i and ∈ ≈v v″ [ ]i i+1 +1 be the endvertices of the edge ≈ ≈v v[ ] [ ]i i+1 of
R seen in D. To arrive at a contradiction, we will construct a ray in D inductively. Let P0
be the trivial path containing just v′0. Assume for i > 0 that there is a ≥j i such that Pi is a

≈ ≈v v[ ] ‐[ ]j0 ‐path which contains Pi−1 and is internally disjoint to ≈v[ ]k for all ≥k j. Let v‴j
be the endvertex of Pi in ≈v[ ]j . By the definition of ≈ and Menger's Theorem there exist
infinitely many edge‐disjoint v‴j –v′j paths if ≠v v‴ ′j j. Every ≈v[ ]k for ≠k j intersects only
finitely many of these paths as otherwise ≈v vj k. Hence, we can find a vj

′′′–V ′j path
P which is disjoint from Pi, unless v v‴ = ′j j where we set P to be the trivial path. If P is
disjoint from ≈v[ ]k for all k j> , then let Pi+1 be the concatenation of the paths Pi, P and
the edge v v′ ″j j+1. Otherwise let w be the first vertex of P in ≈v[ ]k for some k j> and let Pi+1
be the concatenation of Pi with v Pw‴j . In both cases Pi+1 satisfies the desired properties
and⋃∈ Pi i is the desired ray in D. □
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Before we can prove the analogue regarding the relation ~, we have to prepare some
lemmas. The first is about inclusion‐minimal edge sets witnessing the equivalence of two
vertices with respect to ~ in digraphs whose underlying multigraph is rayless.

Lemma 2.15. Let v and w be two distinct vertices of D with v w~ . If D is rayless and
finitely separable, then any minimal edge set of D witnessing v w~ is finite and nonempty.

Proof. Let ⊆W E D( ) be an inclusion‐minimal witness for v w~ . Note that since D is
finitely separable,W is nonempty. Let us consider the 2‐block‐cut vertex tree T of D. Let
P denote the finite path inT whose end vertices are the 2‐blocks of D containing v and w,
respectively. By Remark 2.5, each bond of D separating v and w is a bond of the finitely
many 2‐blocks corresponding to the vertices of P. This implies that all edges in W are
contained in the finitely many 2‐blocks which correspond to vertices of P. However, each
2‐block of D is finite since D is finitely separable and rayless and such multigraphs do not
have infinite 2‐blocks by Lemma 2.6(ii). SoW is contained in a finite set and thus finite
itself. □

Proposition 2.16. If D is rayless, then so is ∕D ~.

Proof. By Remarks 2.13 and 2.14 we may assume without loss of generality that D is
finitely separable. Suppose for a contradiction that D is rayless but R v v= [ ]~ [ ]~…0 1 is a
ray in ∕D ~. For each ∈i  let ∈v v′ [ ]~i i and ∈v v″ [ ]~i i+1 +1 be the end vertices of the edge

∈v v E R[ ]~ [ ]~ ( )i i+1 seen in D. Furthermore, letWi be an inclusion‐minimal witness for
v v″ ~ ′i i+1 for every ∈i  with ≥i 1. We know by Lemma 2.10 that eachWi is completely
contained in v[ ]~i . By Lemma 2.15 and Corollary 2.11 each Wi is finite, nonempty, and
strongly connected. Since each Wi is completely contained in v[ ]~i , we get that
∩ ∅W W =i j holds for all ∈i j,  with ≠i j. Let Pi be a directed v″i –v′i+1 path that is

contained inWi for every ∈i  with ≥i 1. Now the union of these paths together with
the edges between v′i and v″i+1 is a ray in D, a contradiction. □

3 | COMPARING CONJECTURE 1.3 WITH
CONJECTURE 1.5

In this section we shall compare Conjecture 1.3 with Conjecture 1.5 more closely by looking at
two examples. In both examples we will see an indication why Conjecture 1.5 might be
properly stronger than Conjecture 1.3. To put it straight, both examples show the following:

There exist finitary dijoins that are part of an optimal pair, but of no nested optimal pair.

This is severely different from finite digraphs. There, we could always keep the dijoin F of
any optimal pair F( , ) and just iteratively “uncross” all dicuts of , yielding a set ′ of nested
disjoint dicuts such that F( , ′) is a nested optimal pair. We illustrate this uncrossing process in
the proof of Lemma 5.1.

Let us now describe the first example.
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Example 1. Consider the infinite weakly connected digraph D1 depicted twice in
Figure 2. Before we analyse D1 in detail, let us define D1 properly.

Let ∣ ∈A a i= { }i  and ∣ ∈B b i= { }i  be two disjoint countably infinite sets.
Additionally, let r be some set which is neither contained in A nor in B. Now we set

≔ ∪ ∪V D A B r( ) { }.1

Next we define the sets ≔ ∣ ∈E a b i{ }i i1  , ≔ ∣ ∈E a b i{ }i i2 +1  and ≔ ∣ ∈E b r i{ }i3  .
We complete the definition of D1 by setting

≔ ∪ ∪E D E E E( ) .1 1 2 3

Next consider the set E2 of grey edges in the left instance of D1 depicted in Figure 2,
call it FL. It is easy to check that FL forms a finitary dijoin of D1. Furthermore, we can
easily find a nested optimal pair for D1 in which FL features. Hence, D1 is not a
counterexample to Conjecture 1.5.

In the right instance of D1 depicted in Figure 2, the set of grey edges ∪E b r{ }1 0 , call it
FR, also forms a finitary dijoin. And again we can easily find an optimal pair for D1 in
which FR features. However, no matter which finite dicut we choose which contains the
grey edge adjacent to r , it cannot be nested with all the finite dicuts we choose for all the
other edges of FR. Therefore, FR does not feature in any nested optimal pair for D1.
Let us now consider another example, witnessing the same behavior of finitary dijoins as

Example 1 does. However, the structure of the digraph D2 in the following example is rather
different from D1. In particular, D2 is a locally finite digraph, that is, every vertex is incident
with only finitely many edges.

Example 2. Consider the infinite weakly connected digraph D2 depicted in Figure 3.
We first define vertex set of D2 as

FIGURE 2 Two instances of the digraph D1. All edges are meant to be directed from left to right. The grey
edges in the left instance of D1 form a finitary dijoin featuring in a nested optimal pair for D1. The grey edges in
the right instance form a finitary dijoin featuring in an optimal pair for D1, but not in any nested optimal pair
for D1
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≔ ∈ ≤V D x y
x

y( ) ( , ) ×
2
− 1 .2  ⎧⎨⎩

⎫⎬⎭
Note that for each ∈x y V D( , ) ( )2 both x y( , + 1) and x y( − 1, ) are inV D( )2 as well. We

define ≔ ∣ ∈E x y x y x y V D{( , + 1)( , ) ( , ) ( )}1 2 and ≔ ∣ ∈E x y x y x y V D{( − 1, )( , ) ( , ) ( )}2 2 .
Finally, we define the edge set of D2 by

≔ ∪E D E E( ) .2 1 2

Now consider the set of dashed grey edges in Figure 3,

≔F x y x y
x

y( , + 1)( , )
2
− = 1 .d

⎧⎨⎩
⎫⎬⎭

It is an easy exercise to check that Fd forms a finitary dijoin of D2 which also features
in a nested optimal pair for D2. Therefore, the digraph D2 is also no counterexample to
Conjecture 1.5.

In contrast to this, let us now consider the set of uninterruptedly grey edges in
Figure 3,

≔F x y x y
x

y
x

y( − 1, )( , )
2
− =

1

2
or

2
− = 1 .s

⎧⎨⎩
⎫⎬⎭

Again it is easy to check that Fs forms a finitary dijoin of D2. However, Fs is not part of
any nested optimal pair for D2. This is not difficult to prove using the fact that Fd is a
finitary dijoin of D2 as well. We leave this proof to the reader.

4 | REDUCTIONS FOR THE INFINITE
LUCCHESI–YOUNGER CONJECTURE

In this section we prove some reductions for Conjecture 1.3 and Conjecture 1.5 in the sense that
it suffices to solve these conjectures on a smaller class of digraphs. We begin by reducing these
conjectures to finitely diseparable digraphs via the following lemma.

FIGURE 3 The digraph D2. The edges are meant to be directed from left to right and from top to bottom.
The dashed grey edges form a finitary dijoin featuring in a nested optimal pair for D2. The solid grey edges form
a finitary dijoin featuring in an optimal pair for D2, but not in any nested optimal pair for D2
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Lemma 4.1. Let D be a weakly connected digraph andB be a class of dibonds of D. Then
F( , ) is a (nested) B‐optimal pair for D if and only if it is a (nested) B‐optimal pair
for ∕≡D B.

Proof. Note first that by Proposition 2.9, ∕≡D B is weakly connected and thatB is also a
set of dibonds of ∕≡D B.

Suppose F( , ) is a (nested)B‐optimal pair for D. Then F is still a subset of ∕≡E D( )B
since each edge of F lies on some dibond ∈ ⊆B B . Hence, F is still a B‐dijoin of
∕≡D B, and F( , ) is indeed a (nested)B‐optimal pair for ∕≡D B, again by Proposition 2.9.
Similarly, if F( , ) is a (nested)B‐optimal pair for ∕≡D B, then so it is for D, again by

Proposition 2.9. □

The next reduction of Conjecture 1.3 and Conjecture 1.5 tells us that we can restrict our
attention also to digraphs whose underlying multigraph is 2‐connected.

Lemma 4.2. Let D be a weakly connected digraph andB be a class of dibonds of D. Let
 denote the set of all 2‐blocks of D. Then the following statements are true.

(i) For each ∈X  the set ≔ ∈ ∣ ⊆B B E X{ ( )}XB B is a class of dibonds of X and
⋃ ∈= ˙

X XB B . Moreover, if B is finitely corner‐closed, then so is XB .
(ii) If F( , ) is a (nested)B‐optimal pair for D, then F( , )X X is a (nested) XB ‐optimal pair

for every ∈X  , where ≔ ∩F F E X( )X and ≔ ∈ ∣ ⊆B B E X{ ( )}X  .
(iii) If F( , )X X is a (nested) XB ‐optimal pair for every ∈X  , then F( , ) is a (nested)

B‐optimal pair for D, where ≔ ⋃ ∈F FX X and ≔ ⋃ ∈X X  .

Proof. Let X be a 2‐block of D. By Remark 2.5 every dibond ∈B B is either contained
in E X( ) and hence a dibond of X , or disjoint to E X( ). Vice versa, every dibond of X is a
dibond of D as well. Statement (i) is now easy to check.

For statement (ii), let ∈X  and let F( , ) be a (nested)B‐optimal pair for D. Then by
just translating the definitions we obtain that ∩F E X( ( ), )X is a (nested) XB ‐optimal
pair for D, as well as for X .
Now we show that statement (iii) is true. So let us assume that F( , )X X is a (nested)

XB ‐optimal pair for every ∈X  . With statement (i) (and Remark 2.5(ii)) we immediately
get that with F( , ) is a (nested) B‐optimal pair for D. □

We can now close this section by proving Theorem 1.6. To do this we basically only need to
combine Lemma 4.1 and Lemma 4.2. Let us restate the theorem.

Theorem 4.3. If Conjecture 1.3 (or Conjecture 1.5, respectively) holds for all countable
finitely diseparable digraphs whose underlying multigraph is 2‐connected, then Conjecture
1.3 (or Conjecture 1.5, respectively) holds for all weakly connected digraphs.

Proof. Let D be any weakly connected digraph and let finB the set of finite dibonds of D.
We know by Proposition 2.9 that ∕≡D

finB is a weakly connected and finitely diseparable
digraph, and so is every 2‐block of it. Furthermore, Corollary 2.12 yields that each 2‐block
of ∕≡D

finB is countable. By our assumption we know that Conjecture 1.3 (or Conjecture
1.5, respectively) holds for every countable 2‐block of ∕≡D

finB . So using Lemma 4.2 we
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obtain a (nested) optimal pair for ∕≡D
finB . Then we also obtain an optimal pair for D by

Lemma 4.1. □

5 | SPECIAL CASES

In this section, we prove some special cases of Conjecture 1.5, or more precisely cases of
Question 2.4.

5.1 | Finite parameters

Let D be a weakly connected digraph. LetB be a class of finite dibonds of D. Before we come to
the first special case, we state a basic observation.

Lemma 5.1. The following statements are equivalent:

(i) D admits a B‐dijoin of finite size.
(ii) The maximal number of disjoint dibonds in B is finite.

If B is finitely corner‐closed, then (i) and (ii) are also equivalent with the following
statement:

(iii) The maximal number of disjoint and pairwise nested dibonds in B is finite.

Proof. We start by proving the implication from (i) to (ii). Let F be a B‐dijoin of D of
finite size. Then, by definition, we can find at most ∣ ∣F many disjoint dibonds in B.

For the implication (ii) to (i) note that for any inclusion‐wise maximal set  of disjoint
dibonds in B the set ≔ ⋃F  is a finite B‐dijoin of D.

The implication from (ii) to (iii) is immediate, even if B is not finitely corner‐closed.
Finally, we assume statement (iii) and that B is finitely corner‐closed, and we prove

statement (i).
Suppose that for some finite set ⊆ B of pairwise disjoint and pairwise nested finite

dibonds which is of maximum size there is some dibond ∈A B which is disjoint to each
dibond in . Without loss of generality, let  and A be chosen such that the set of
dibonds in  that cross A is of minimum size among all possible choices.

Let ∈B  be chosen such that A and B cross and either Bin( ) (first case) or Bout( )

(second case) is inclusion‐minimal among all sides of the elements of  that cross A.
In the first case we consider the dicut ⋀ ∈ ⊕A B B . Note that since both A and B are

dibonds, the out‐shore of ⋀A B induces a weakly connected digraph. Hence an easy case
analysis shows that any dibond in its decomposition into dibonds in B is nested with
every dibond in  as well as with each other. In particular, ⋀A B is a dibond inB, since
otherwise it would contradict the maximality of . Moreover, let A′ be any dibond
appearing in the decomposition of ⋁A B into dibonds inB. As before, we can show that
A′ is nested with ⋀A B, as well as with any dibond in  which is nested with A. And
since ≔ ⧹ ∪ ⋀B A B′ ( { }) { }  is a set of pairwise disjoint dibonds in B and A′ crosses
strictly fewer dicuts in ′ than A crosses in , the pair ′ and A′ contradicts the choice of
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 and A. In the second case the same argument works with the roles of ⋀A B and ⋁A B

reversed.
In any case, this contradicts the existence of such a set  and such a dibond A.

Therefore, for any finite set ⊆ B of pairwise disjoint and pairwise nested finite dibonds
which is of maximum size the set⋃ is a finite B‐dijoin. □

Given an edge set ⊆N E D( ), let ↾NB denote the set ∈ ∣ ⊆B B N{ }B . Note that ↾NB is a
class of finite dibonds of the contraction minor D N. and ifB is finitely corner‐closed, then so is
↾NB . The following lemma uses a standard compactness argument to show the existence of a

(nested) optimal pair for D based on the existence of (nested) optimal pairs of bounded size for
its finite contraction minors.

Lemma 5.2. Let ∈n . If for every finite ⊆N E D( ) there is a (nested) ↾NB ‐optimal pair
F( , )N N for D N. with ∣ ∣ ≤F nN , then there is a (nested) B‐optimal pair F( , ) for D.

Proof. Let  be a maximal (nested) set of disjoint dicuts in B. Note that ∣ ∣ ≤ n , since
otherwise a subset ⊆′  of size n + 1 would contradict the assumption for ⋃N = ′ .

Let ⊆N E D( ) be a finite set of edges such that⋃ ⊆ N holds. Since D N. is a finite
weakly connected digraph, there exists a (nested) ↾NB ‐optimal pair F( , )N N for D N. by
assumption. By the choice of N and Lemma 2.8 we know that each element of  is also a
finite dicut of D N. . Furthermore, each finite dicut in D N. is also one in D and, thus, N
is a set of disjoint finite dicuts in D. Hence, ∣ ∣ ∣ ∣ ∣ ∣F= =N N  . Using that the elements in
 are pairwise disjoint (and nested) finite dicuts, we get that F( , )N  is a (nested) ↾NB ‐
optimal pair for D N. as well. Given a finite edge set ⊇M N with a (nested) ↾MB ‐
optimal pair F( , )M M for D M. we obtain that F( , )M  is also a nested optimal pair for
D N. .

Note that for any finite edge set ⊆N E D( ) satisfying⋃ ⊆ N there are only finitely
many possible edge sets ⊆ ⋃FN  such that F( , )N  is a (nested) ↾NB ‐optimal pair for
D N. . Hence, we get via the compactness principle an edge set ⊆ ⋃F  with ∣ ∩ ∣F B = 1

for every ∈B  such that F( , ) is a (nested) ↾MB ‐optimal pair for D M. for every finite
edge set ⊆M E D( ) satisfying⋃ ⊆ M .

We claim that F( , ) is a (nested)B‐optimal pair for D. We already know by definition
that  is a (nested) set of disjoint finite dicuts inB and that ⊆ ⋃F  with ∣ ∩ ∣F B = 1 for
every ∈B . It remains to check that F is a B‐dijoin of D. So let ∈B′ B. Then the set
≔ ∪ ⋃N B′ ′  is also finite and B′ is a finite dicut of D N. ′. Since F( , ) is also a nested

optimal pair for D N. ′, we know that ∩ ≠ ∅F B′ holds, which proves that F is aB‐dijoin
of D. □

Hence, Lemmas 5.1 and 5.2 together with Theorem 1.4 yield Theorem 1.7 (i), (ii), and (iii).

5.2 | Every edge lies in only finitely many dibonds and reductions to
this case

We continue with verifying another special case of Question 2.4. The proof is also based on a
compactness argument. However, we need to choose the setup for the argument more carefully.
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Lemma 5.3. Conjecture 1.5 holds for weakly connected digraphs in which every edge lies
in only finitely many finite dibonds.

Proof. Let D be a weakly connected digraph, where every edge lies in only finitely many
finite dibonds. For an edge ∈e E D( ) let e denote the set of finite dibonds of D that
contain e. Our assumption on D implies that e is a finite set. For a finite set  of finite
dibonds of D we define ⋃ ∣ ∈ ⋃eˆ = { }e   . Again our assumption on D implies that ̂ is
finite. Note that ⊆ ˆ  holds. Given a finite set  of finite dibonds of D, we call F( , ′)

a nested preoptimal pair for  if the following hold:

(1) F intersects every element of ,
(2) ⊆′ ˆ ,
(3) the elements of ′ are pairwise nested and disjoint,
(4) ⊆ ⋃F  , and
(5) ∣ ∩ ∣F B′ = 1 for every ∈B′ ′ .

Now let 1 and 2 be two finite sets of finite dibonds of D with ⊆1 2  , and let
F( , ′)22

 be a nested pre‐optimal pair for 2 . Then it is easy to check that

↾ ≔ ∩ ⋃ ∈ ∣ ∣ ∩ ∩ ⋃ ∣F F B B F( , ′) ( , { ′ ( ) =1})2 1 1 2 12 2 2
      

is a nested preoptimal pair for 1 .
We know that for every finite set  of finite dibonds of D there exists a nested

preoptimal pair for , since for a nested optimal pair F( , ′)ˆ  for ⋃D. ( ˆ ) , which exists
by Theorem 1.4, we have that ↾F( , ′)  is a nested preoptimal pair for . However,
there can only be finitely many nested preoptimal pairs for  as both⋃ and ̂ are finite.

Now we get by the compactness principle an edge set ⊆F E D′ ( )D and a set D of finite
dibonds of D such that for every finite set  of finite dibonds of D, we have that

↾F( ′ , )D D  is a nested pre‐optimal pair for . Furthermore, let FD be the subset of F′D
consisting of all elements of F′D that lie on a finite dibond of D. Note that for every finite
set  of finite dibonds of D the pair ↾F( , )D D  is still a nested preoptimal pair for . We
claim that F( , )D D is a nested optimal pair for D.

First we verify that FD is a finitary dijoin of D. Let B be any finite dibond of D. Then FD
meets B, because ↾F B( , ) { }D D is a nested preoptimal pair for B{ }. So FD is a finitary dijoin
of D.

Next consider any element ∈e FD. By definition of FD we know that ∈e Be holds for
some finite dibond Be of D. Using again that ↾F B( , ) { }D D e is a nested preoptimal pair for
B{ }e , we get that ∈ ⋃e D . So the inclusion ⊆ ⋃FD D is valid.

Given any ∈BD D we know that ↾F B( , ) { }D D D is a nested preoptimal pair for B{ }D .
Hence, ∣ ∩ ∣F B = 1D holds for every ∈B D . Finally, let us consider two arbitrary but
different elements B1 and B2 of D . We know that ↾F B B( , ) { , }D D 1 2 is a nested preoptimal
pair for B B{ , }1 2 . Therefore, B1 and B2 are disjoint and nested. This shows that F( , )D D is a
nested optimal pair for D and completes the proof of this lemma. □

The next lemma can be used together with Lemma 5.3 to deduce that Conjecture 1.5 holds
for weakly connected digraphs without infinite dibonds.
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Lemma 5.4. In a weakly connected digraph D where some edge e lies in infinitely many
finite dibonds of D there is an infinite dibond containing e.

Proof. We construct with a compactness argument a dibond containing e vw= : that is
distinct from every finite dibond.

Let ⊆W V D( ) be finite with ∈v w W, . Consider the set W consisting of those
bipartitions A B( , ) ofW with ∈v A and ∈w B such that

→
E B A( , ) is empty, but

→
E A B( , )

contains no finite dibond of D. Obviously, W is finite. For any dibond
→
E X Y( , )

containing e that is not contained in E D W( [ ]) the bipartition ∩ ∩X W Y W( , ) is in W .
And since e lies in infinitely many dibonds, such a dibond always exists. Moreover, for
⊆W W ′ and ∈A B( , )

′W
 we have ∩ ∩ ∈A W B W( , ) W . Hence by compactness

there is a bipartition A B( , ) of V D( ) such that ∩ ∩ ∈A W B W( , ) W for every
finite ⊆W V D( ) with ∈v w W, . Now

→
E A B( , ) is a dicut of D which does not contain

any finite dibond of D, since these properties would already be witnessed for some finite
⊆W V D( ). Therefore,

→
E A B( , ) is an infinite dicut of D containing only infinite dibonds

of D. □

As noted before, we obtain the following corollary.

Corollary 5.5. Conjecture 1.5 holds for weakly connected digraphs without infinite
dibonds.

We close this section with a last special case for which we can verify Conjecture 1.5.

Corollary 5.6. Conjecture 1.5 holds for rayless weakly connected digraphs.

Proof. Let D be a rayless weakly connected digraph. We know by Proposition 2.16 that
∕≡D

finB is rayless as well, and by Proposition 2.9 that ∕≡D
finB is weakly connected and

finitely diseparable. So we obtain from Corollary 2.7 that ∕≡D
finB has no infinite dibond.

Now Corollary 5.5 implies that Conjecture 1.5 is true in the digraph ∕≡D
finB . Using again

that ∕≡D
finB is finitely diseparable, any nested optimal pair for ∕≡D

finB directly translates
to one for D by Lemma 4.1. Hence, Conjecture 1.5 is true for D as well. □

6 | A MATCHING PROBLEM ABOUT INFINITE
HYPERGRAPHS

In this section, we discuss how Conjecture 1.3 is related to more general questions about
infinite hypergraphs, where the initial one was posed by Aharoni. We shall give an example,
which then negatively answers Aharoni's original question. However, we leave a modified
version as a conjecture which then is still open. Then we shall strengthen the latter conjecture
to obtain a new one, which is closely related to Conjecture 1.3 and the infinite version of
Menger's Theorem. Before we can do this we have to give some definitions and set notation.

Let us fix a hypergraph = ( , )   . We call  simple, if no hyperedge is contained in
another one. Given a set ⊆F  , we shall write F[ ] for the hypergraph ⋃F F( , ) and call it a
subhypergraph of . Moreover, a subhypergraph  of  is called finite, if there exists some
finite ⊆F  such that F= [ ]  . Note that  might have infinitely many vertices since a

GOLLIN AND HEUER | 19



hyperedge can contain infinitely many vertices. We call  locally finite if each vertex of  lies
in only finitely many hyperedges. Furthermore, we say that  has finite character if no hy-
peredge of  contains infinitely many vertices.

A set of hyperedges ⊆  is called a matching of  if any two hyperedges in  are
pairwise disjoint. A set of vertices ⊆A  is called a cover of if every hyperedge of contains
a vertex from A. Now the hypergraph is said to have the König property if a pair A( , ) exists
such that the following statements hold:

(1)  is a matching of .
(2) A is a cover of .
(3) ⊆ ⋃A .
(4) ∣ ∩ ∣M A = 1 for every ∈M .

We call such a pair A( , ) an optimal pair for .
Now we are able to state the original problem on infinite hypergraphs posted by Aharoni.

Problem 6.1 (Aharoni [1, Prob. 6.7]). Let  be a hypergraph and suppose that every
finite subhypergraph of has the König property. Does then have the König property?

We shall now point out that, in full generality, this problem has a negative answer by stating
a certain infinite hypergraph . For this, consider the digraph in Figure 1, call it D. Let 
denote the set of all dicuts of D. We now define the hypergraph = ( , )   by setting E D= ( )
and = . As discussed in the introduction,  does not have the König property, since we
cannot even find two disjoint hyperedges, but we need infinitely many vertices of  to cover all
hyperedges. However, for every nonempty finite subset F of  we can find one vertex of 
covering all hyperedges of F( , ) .

As noticed in the introduction, does not have any finite hyperedges. This motivates us to
modify Problem 6.1 to include only hypergraphs of finite character.

Conjecture 6.2. Let  be a hypergraph of finite character and suppose that every finite
subhypergraph of  has the König property. Then  has the König property.

Variations of Problem 6.1, particularly Conjecture 6.2, are very general problems about
infinite hypergraphs and probably difficult to answer. Not much is known about them, not even
partial answers. However, relaxed questions involving fractional matchings and covers have
more successfully been studied, see [1, Section 6] for a brief survey on such results.

Now we modify Conjecture 6.2 even further yielding the following stronger conjecture.

Conjecture 6.3. Let = ( , )   be a hypergraph of finite character and suppose that for
every finite ⊆F  there exists some finite set ⊆F′  such that ⊆F F′ and F( , ′) has the
König property. Then  has the König property.

Although even stronger than Conjecture 6.2, this conjecture is very important, because it is
closely related to the infinite version of Menger's theorem and Conjecture 1.3. In case
Conjecture 6.3 is verified, this would not only give another proof of the infinite version of Menger's
theorem proved by Aharoni and Berger [2] but also imply Conjecture 1.3. The deductions are very
similar in both of these cases; namely by defining a suitable auxiliary hypergraph.
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For Menger's theorem where an infinite graph G V E= ( , ) is given as well as vertex sets
⊆A B V, , we define an auxiliary hypergraph = ( , )A B,   as follows. The vertex set  of 

consists precisely of those vertices of G that lie on at least one A–B path in G. Now a subset
⊆F  forms a hyperedge of if and only if F is the vertex set of an A B− path inG. For every

finite set F of A–B paths consider the finite subgraph GF induced by the vertex set spanned by
the paths in F . Let F′ be the set of all A–B paths inGF . Note that F′ is a finite superset of F , for
which by Menger's Theorem F( , ′) has the König property. Hence, verifying Conjecture 6.3
would imply the infinite version of Menger's Theorem.

With respect to the Infinite Lucchesi–Younger Conjecture, consider an infinite weakly
connected digraph D V E= ( , ). We define an auxiliary hypergraph = ( , )D   as follows. We
set E= . Furthermore, a set ⊆B E forms a hyperedge of D if and only if B is a dibond of D.
Given a finite set F of dibonds of D we set F′ to be the minimal finitely corner‐closed set of
dibonds containing F . Note that F′ is still a finite set. Now by Theorem 1.1, respectively
Theorem 1.2, F( , ′) has the König property. So a positive answer to Conjecture 6.3 would
imply Conjecture 1.3.

Now we conclude this section by translating some results based on compactness arguments
of the previous section to yield also verified affirmative answers for special cases of Conjecture
6.3. Note first that a corresponding version of Lemma 5.1 is true for hypergraphs as well:

Lemma 6.4. Let be a hypergraph of finite character. Then the following statements are
equivalent:

(i)  has a finite cover.
(ii) The maximal size matching of  can have is finite.

Using Lemma 6.4 we can verify the following special case via the same compactness ar-
gument as used for Lemma 5.2.

Lemma 6.5. Let  be a hypergraph of finite character satisfying the premise of
Conjecture 6.3. Furthermore, let  satisfy one of the following conditions:

(i)  has a finite cover.
(ii) There is a finite maximal size a matching of  can have.

Then  has the König property.

The other result from Section 5 we can lift to hypergraphs is Lemma 5.3. Again the proof
depends on a compactness argument which can immediately be translated into the setting for
hypergraphs.

Lemma 6.6. Let be a locally finite hypergraph of finite character satisfying the premise
of Conjecture 6.3. Then  has the König property.
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