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Abstract

Colloidal CdSe nanorods are nanoparticles synthesized in solution. The synthesis
allows the growth of CdSe nanorods with well defined diameters and aspect ratios.
They have many potential applications in the field of optoelectronics and biotech-
nology. The nanorods can be epitaxially covered with a graded CdS/ZnS shell of a
few monolayers in thickness. The shell leads to an increased quantum efficiency and
improved photostability of the nanorods. However, the lattice mismatch between
the nanorod core material and the shell material introduces strain into the core lat-
tice.

In this work Raman spectroscopy, accompanied by ab-initio calculations, is used to
determine the amount of this strain, the exciton-phonon coupling strength in the
nanorods and to investigate confinement effects.

The longitudinal optical phonons in a nanorod are confined to the nanorod volume.
The confinement of a phonon wavefunction leads to a neutralization of the q = 0
rule and the phonon frequency is found to depend on the nanorod diameter. The
coupling strength between longitudinal optical phonons and excitons is investigated.
It also depends on the nanorod diameter. The total coupling strength is much lower
than in bulk material due to a decrease of the influence of the Coulomb interaction
in nanoparticles. However, the coupling strength is found to rise for decreasing di-
ameters. This is due to the increasing contributions of higher frequency phonons for
smaller nanoparticle sizes.

A radial breathing mode with a diameter dependent frequency is deduced from
ab-initio calculations and its existence in nanorods is verified experimentally. The
diameter-dependence of the modes’ frequency can be used to estimate the nanorod
diameter from a Raman measurement.

In core-shell structures, the coverage of a CdSe nanorod with a ZnS shell leads to
a compressive strain of the CdSe core due to the smaller lattice parameter of ZnS
compared to CdSe. Ab-initio calculations show that all bonds of the CdSe core are
shortened. The bonds in the lateral direction are much more strongly compressed
than the bonds parallel to the c-axis. The amount of strain is estimated from the
Raman spectra. The compressive nature of the shell decreases for thicker nanorods.
The exciton wave function changes with the modified boundary from air to ZnS. This
is reflected in a altered exciton-phonon coupling strength and can be monitored in
the Raman spectra.



Zusammenfassung

CdSe Nanorods sind Nanopartikel, die in einer kolloidalen Losung synthetisiert wer-
den. Fiir diese existieren viele mogliche Anwendungen im Bereich der Optoelek-
tronik und der Biotechnologie. Der Durchmesser und die Lange der Nanorods lasst
sich durch die Syntheseparameter festlegen. Die Nanorods konnen in eine epitaktis-
che Hiille aus einem Halbleitermaterial mit einer grofieren Bandliicke, ZnS, einge-
bettet werden. Diese Hiille verbessert die optischen Eigenschaften und erméglicht
eine weitere Funktionalisierung der Oberflache. Der Unterschied der Gitterparame-
ter zwischen ZnS und CdSe fiihrt jedoch zu Verspannungen im CdSe Kern.

In dieser Arbeit werden der Einfluss der ZnS Hiille auf den CdSe Kern und die
Schwingungseigenschaften von CdSe Nanorods mit Ramanspektroskopie und ab-
initio Berechnungen untersucht. Mit Ramanspektroskopie wird gezeigt, dass die
Frequenzen der longitudinal-optischen Phononen vom Durchmesser der Nanorods
bestimmt werden. Dies liegt daran, dass die Wellenfunktion der Phononen im
Nanokristall eingeschlossen ist. Dadurch wird die q = 0-Regel aufgehoben. Die
Kopplung der longitudinal-optischen Phononen an Exzitonen hangt ebenfalls vom
Durchmesser ab. Die Kopplungsstarke in Nanorods ist viel kleiner als im Volumen-
material, nimmt jedoch fiir abnehmende Durchmesser zu. Dies hingt mit einem
stark verminderten Einfluss der Coulomb-Wechselwirkung gegeniiber Volumenma-
terial und einer steigenden Kopplung an hochfrequente Phononen fiir abnehmende
Durchmesser zusammen.

Als dritten durchmesserabhangigen Effekt gibt es eine radiale “Atmungsmode” in
den Nanorods. Die Frequenz dieser Schwingungsmode héngt stark vom Nanorod-
Durchmesser ab, und die Messung der Frequenz erlaubt die Bestimmung des Durch-
messers mittels Ramanspektroskopie.

Die durch die Hiille verursachten Verpannungen werden mit ab-initio-Berechnungen
untersucht. Bindungen entlang der c-Achse sind kaum verspannt, die lateralen
Bindungen sind homogen verspannt. Die Grofle der Verspannungen kann quanti-
tativ mit Ramanspektroskopie bestimmt werden. Der Einflus der Hiille schwindet
fiir groflere Nanorod-Durchmesser. Das durch die Hiille geanderte Nanorod-Umfeld,
ZnS statt Luft, fiihrt zu einer Anderung der Exziton-Wellenfunktion und dadurch
zu einer stark abnehmenden Exziton-Phonon-Kopplung.
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Chapter 1

Introduction

Colloidal nanocrystals are inorganic structures from particles of a few hundred atoms
up to almost um sized structures, which are synthesized in solution. They can be
grown from many different materials and can be cheaply produced in fairly large
amounts and with a high homogeneity in size and shape[l]. The possibility to
tune the dimensional regime of the nanocrystals is an important achievement in
materials science, since at the nanoscale both the size and the shape dictate the
chemical and physical (such as catalytic and optical) properties of the material[2—
4]. Because of their intrinsic robustness and their potential ease of integration with
existing technologies, colloidal nanocrystals have been intensively developed and in-
vestigated during the last years. Besides potential technological applications, they
are a versatile model system for fundamental research, e.g. to investigate size- and
shape-dependent confinement effects. Spheres[5], cubes|6], rods|7], disks[8], wires[9]
and other non-trivial shapes like tetrapods[10] or arrows[11] can be prepared from
a wide variety of materials.

Of these, nanorods of the direct band-gap II-VI semiconductor CdSe are especially
interesting. The correct choice of the growth parameters results in CdSe nanorods
with well defined diameters and aspect ratios, while the amount of nanorods cre-
ated is highly scalable[12]. CdSe nanorods with defined diameters down to 2 nm
and aspect ratios up to 30:1 can be achieved in large scales and with narrow size
distributions[13]. They have a size-dependent photoluminescence that covers the
whole visible spectrum [14, 15].

Their unique optical and electronic properties offer a huge potential for applications
in the field of optoelectronics. For example, hybrid solar cells can be constructed
from CdSe nanorods embedded in polymers[16]. In a prototype, the control of the
nanorod length allows to change the distance on which electrons are transported
through the device. Tuning the diameter of the nanorod and the associated band
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gap then allows the optimization of the absorption spectrum to the solar emission
spectrum. Another suggested application is to electronically contact and couple
quantum dot based photonic devices by using CdSe nanorods. Quantum dots and
nanorods can be connected via tunable potential barriers and arranged in three-
dimensional space[17]. CdSe nanorods can also form a liquid crystalline phase with
an orientational order. They have much higher elastic constants than the common
organic liquid crystal molecules. The orientation of these liquid crystals is very
sensitive to an external field[18]. Because CdSe nanorods show a linearly polarized
photoluminescence[19] the nanorods in liquid phase have potential applications as
functional components in electrooptical devices such as displays and electrooptic
modulators.

The nanorods can be coated with an epitaxially, graded CdS/ZnS shell of one to
six monolayers in thickness[11]. The coated nanorods have an increased quantum
efficiency, are more stable in air and under visible or UV excitation[20] and they can
be optically excited for a polarized stimulated emission[21]. The ZnS shell enables
further surface functionalization, allows water solubility and the embedment in bio-
logical systems[22]. This gives raise to applications in the field of biotechnology. For
example, CdSe-ZnS core-shell nanocrystals in phospholipid block-copolymer micelles
can be used for both, in vitro and in vivo imaging. When conjugated to DNA| these
nanocrystal-micelles act as fluorescent probes to hybridize to specific complemen-
tary sequences. When e.g. injected into Xenopus embryos, the nanocrystal-micelles
are stable, nontoxic, and cell autonomous. The nanocrystals’ fluorescence can be
followed, allowing lineage-tracing experiments in embryogenesis[23]. Bioconjugated
core-shell nanoparticles are also suitable for targeting and imaging of human cancer
cells in living tissue. This class of nanoparticle conjugates contains targeting-ligands
for tumor antigen recognition. Both passive tumor targeting (due to enhanced per-
meation and retention of the nanoparticles at tumor sites) and active tumor tar-
geting (due to rapid nanoparticle-antibody binding to tumor-specific antigens) can
be achieved. This opens new possibilities for sensitive and simultaneous imaging of
multiple biomarkers involved in cancer metastasis and invasion[24].

However, many properties of these new structures are still unknown. The small sizes
of the nanorods make a systematic investigation difficult. The sizes of the nanocrys-
tals requires specialized techniques for a characterization.

In this work Raman spectroscopy, accompanied by ab-initio calculations, is applied
to characterize the vibrational properties of the nanorods and to investigate size-
dependent effects. Longitudinal optical phonons in the nanorods are found to be
confined and the dependencies are investigated. The coupling strength between lon-
gitudinal optical phonons and excitons does depend on the nanorod geometry. In
core-shell structures, the signal stemming from the shell can be well separated from
the core related Raman signal. Changes in the nanorod core due to the addition
of the shell can be monitored by observing the changes in the core related Raman




signal. The ZnS shell leads to an uniaxial compression of the CdSe core, the amount
of strain is estimated from the Raman spectra. The exciton wave function changes
with the changed boundary. This is reflected in a changed exciton-phonon coupling
strength and can also be monitored in the Raman spectra.
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CdSe nanorods

2.1 Cadmium selenide

Cadmium selenide (CdSe) is a solid binary compound of cadmium (Cd) and se-
lenium (Se). CdSe can be present in three cristaline phases: hexagonal wurtzite,
cubic zincblende and cubic rock-salt. The phase of CdSe that is stable at am-
bient conditions belongs to the wurtzite type and occurs in form of the mineral
cadmoselite[25] (see Figure 2.1). Zincblende-type CdSe is metastable at ambient
conditions. Mechanical grinding of wurtzite-type CdSe can induce the formation of
the zincblende-type arrangement[26]. Under increasing pressure, the wurtzite struc-
ture transforms to the rocksalt structure[27].

Wurtzite CdSe crystallizes in space group P63mc with the lattice parameters a =
4.302 A and ¢ = 7.014 A. CdSe in the wurtzite crystal structure is a direct band-
gap II-VI semiconductor. The exciton binding energy is 13.2 meV and the energy of
the excitonic transition is 1.82 eV[28]. II-VI semiconductors can usually be doped
either n or p type, but not both. CdSe in particular is a good n-type conductor,
while hard to dope p-type[29]. However, p-type doping with rather small hole con-
centrations (=~ 107 cm™3) can, for example, be achieved using nitrogen as dopant
in a molecular beam epitaxy growth set-up[30]. The problem of doping can be dealt
with when integrating CdSe nanostructures in heterostructures with materials that
can be doped oppositional e.g. silicon[31].

5
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Figure 2.1: Wurtzite crystal structure. Cd and Se atoms both occupy Wyckoff position
2(b)1/3, 2/3, z with z = 0 and z = 0.37596(4), respectively.

2.2 Colloidal nanorod growth

CdSe nanorods are synthesized via the most widely used approach for the synthesis
of colloidal nanocrystals[2, 7, 13, 32]. A typical synthesis system consists of three
components: precursors, organic surfactants and solvents. In a frequently used set-
up, the surfactant is in solution in a three-neck flask and heated in an Ar atmosphere.
The temperature is measured with a thermometer in the solution and the solution
is mixed with a stirrer. The precursors are then quickly injected with a syringe.
Upon heating the reaction medium to a sufficiently high temperature, the precur-
sors chemically transform into active atomic or molecular species (monomers); these
then form nanocrystals whose subsequent growth is greatly affected by the presence
of surfactant molecules.

The formation of the nanocrystals involves two steps: nucleation of an initial seed
and growth. In the nucleation step, precursors decompose or react at a relatively
high temperature to form a supersaturation of monomers followed by a nucleation
of nanocrystals. These nuclei then grow by incorporating additional monomers still
present in the reaction medium. This only generates nanoparticles that will be crys-
talline solids if the constituent atoms can rearrange and anneal during the growth.
The temperature for the growth has to be hot enough to allow the rearrangement
of the atoms and the annealing within a growing nanocrystal over the course of
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the synthesis. The precursors need to rapidly decompose or react at the required
growth temperature to yield reactive atomic or molecular species (the monomers),
which then cause nanocrystal nucleation and growth. The energy with which surfac-
tant molecules present in the growth medium adhere to the surfaces of the growing
nanocrystals needs to be such that it allows a dynamic solvation at the growth
temperature. The surfactant needs to be able to exchange on and off the grow-
ing crystals, so that regions of the nanocrystal surface are transiently accessible for
growth, yet entire crystals are, on average, monolayer-protected to block aggrega-
tion.

The surfactant molecules do not only bind to the growing nanocrystal surface, but
also form a complex with the reactive monomer species. The stability and diffusion
rate of these complexes, as well as the binding strength of the surfactant molecules
to the growing nanocrystal surface, are all strongly temperature dependent. Increas-
ing the temperature greatly decreases the stability of the intermediate complexes
formed in solution and the binding of the surfactants to the nanocrystal surface,
while increasing the diffusion rates of the complexes. This favors the nucleation and
growth of the nanocrystals. However, too high temperatures lead to an uncontrolled
growth so that it is impossible to exploit kinetic effects to achieve precise control
over the size and the size distribution of the nanocrystals. Choosing an appropri-
ate temperature range is one of the key steps in obtaining control over colloidal
nanocrystal growth.

To produce nanocrystals with a relatively narrow size distribution the concept of
size-distribution focusing is used, which is based on the fact that small crystals will
grow more rapidly than larger ones, if the monomer concentrations are sufficiently
high. Very small crystals are unstable owing to their large fraction of active surface
atoms. Larger crystals with a smaller surface-to-volume ratio are stable and grow.
There exists a critical size, where nanocrystals neither grow nor shrink. Such a
critical size exists at any given monomer concentration. At a high monomer con-
centration, the critical size is small so that all the particles grow. In this situation,
smaller particles grow faster than the larger ones, and as a result, the size distri-
bution can be focused down to one that is nearly monodisperse. If the monomer
concentration is below a critical threshold, small nanocrystals are depleted as larger
ones grow and the size distribution broadens, or defocuses. Thus, when the monomer
concentration is depleted owing to growth, the critical size becomes larger than the
average size present, and the distribution broadens. This means that nucleation
must occur on a short time scale. This is achieved by rapidly injecting suitable pre-
cursors into the solvent at high temperature to generate transient supersaturation
in monomers and induce a nucleation burst. A rapid and intense nucleation burst
will lower the monomer concentration below the nucleation threshold, so monomers
remaining in solution will only add to the existing nuclei.

Compared with equilibrium nanocrystals with nearly round shapes, nanocrystals

7
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with highly anisotropic shapes, such as nanorods, have larger surface areas, which
renders them metastable. The formation of these metastable nanocrystals thus re-
quires a kinetic growth regime, whereas equilibrium nanocrystals with low aspect
ratios are obtained in the slow growth limit under thermodynamic control. At low
growth rate, nearly round nanocrystals are formed with a broad size distribution.
At higher growth rate, focusing is observed. When the growth rate is increased just
beyond the focusing regime, nanorods can be obtained. The equilibrium shape of
inorganic nanocrystals, although faceted, has a low aspect ratio both because this
minimizes the surface area and because the surface energy of the low-energy facets
of the crystal are relatively close to each other in energy. However, the growth
rate of a crystal facet depends exponentially on the surface energy, so that at high
growth rates, in a kinetically controlled growth regime, high-energy facets grow more
quickly than low-energy facets, as schematically displayed in Figure 2.2 (I). Such a
facet may form transiently during the growth of the high-energy facet. Once such
a facet forms, it will persist, replacing the initial high-energy facet. This new in-
termediate energy facet will still grow more quickly than the initial slow-growing
one, so that the shape will evolve in a complex pattern during growth. The onset
of kinetic shape control can be adjusted using selective adhesion (2.2 (II)). Organic
surfactants exchange on the nanocrystal’s surface during growth. In a faceted crys-
tal, the exchange rate on the different facets need not be the same. The introduction
of an organic molecule that selectively adheres to a particular crystal facet can be
used to effectively lower the energy and slow the growth rate of that facet relative
to others. For CdSe, for example, Puzder et al. calculated the binding energy of
various organic ligands to the facets of an initial CdSe nanocrystal seed[33]. The
surfactants bind more strongly to the facets along the c-axis than to the other facets.
A proper choice of the ligands thus facilitates the nanorod growth and this growth
then occurs on the Cd-dominated (0001h) facet.

When the desired shape and size has developped, the synthesis is stopped by lower-
ing the reaction temperature. Then a surfactant coating layer around the nanorods
remains tightly bound to their surface and provides their full solubility in a variety
of solvents.

The synthesis of the nanorods investigated in this work is performed by Mikhail
Artemyev!. To grow the standard CdSe nanorods, dimethylcadmium is used as Cd
precursor and trioctylphosphine selenide as Se precursor. Both are injected quickly
in the reaction mixture. Trioctylphosphine oxide is the solvent, heated to 300 °C
and hexadecylphosphonic acid is acting as surface growth modifier. The nanorods
grow at high temperatures and the reaction is stopped by fast cooling.

The extra-thin nanorods for the strain-investigation in Chapter 7 are synthesized

!Present affiliation: Institute for Physico-Chemical Problems of Belorussian State University,
Minsk, Belarus.
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Figure 2.2: Kinetic shape control at high growth rate (I). The high-energy facets grow
more quickly than low-energy facets in a kinetic regime. Kinetic shape control through
selective adhesion (II). The introduction of an organic molecule that selectively adheres
to a particular crystal facet can be used to slow the growth of that side relative to others,
leading to the formation of rod-shaped nanocrystals.

from cadmium acetate that is mixed with dodecylphosphonic acid and trioctylphos-
phine oxide. Elemental Se is dissolved in trioctylphosphine in an inert atmosphere
and the resultant solution is injected quickly to the reaction mixture at 260 °C.
The developing CdSe core nanorods are then allowed to grow at slightly lower tem-
peratures than the standard nanorods, 240 °C, and the reaction is stopped by fast
cooling below 180 °C. The sizes of these small nanorods are not characterized by
electron microscopy, but by absorption and photoluminescence measurements. The
mean diameter can be estimated by these methods. The exact diameter distribu-
tion, however, is not known.

All nanorod samples can be isolated from the reaction mixture and then redispersed
in a variety of solvents.

The size and shape of the nanorods is mainly controlled by the relative amount of
the base materials and the reaction time. To allow a systematic investigation of
size-dependend effects, nanorods of different diameters with multiple aspect-ratios
are grown.
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2.2.1 TEM analysis

The sizes, size distributions and crystalline structure of the nanorods can be inves-
tigated with transmission electron microscopy (TEM). All TEM micrographs are
courtesy of Tore Niermann?. Figure 2.3 displays an exemplary TEM micrograph of
a CdSe nanorod sample of nanorods with 6 nm diameter and 35 nm length. Like
in this example, all investigated nanorod samples are homogeneous and feature a
narrow size distribution.

Figure 2.3: TEM micrograph of an exemplary CdSe nanorod ensemble.

No contaminations with diverse shaped crystals are present. The nanorods are of
uniform size und randomly orientated. Depending on the density of the nanorod
solution, the nanorods tend to form clusters.

2Present affiliation: Institut fiir Optik und Atomare Physik, Technische Universitit Berlin.
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A high resolution transmission electron microscope (HR-TEM) micrograph of a
cutout of the sample displayed in Figure 2.3 is shown in Figure 2.4.

Figure 2.4: HR-TEM micrograph of CdSe nanorods.

According to the HR-TEM analysis, the nanorods grow along the CdSe c-axis and
retain the symmetry of the wurtzite lattice, which renders them a hexagonal cross-
shape. The nanorods tend to have some stacking faults along the growth direction.
The shape of the nanorods seems to be not completely cylindrical. A HR-TEM
micrograph of a single nanorod is displayed in Figure 2.5.

The diameter of the nanorod varies along its length. Fluctuations of the nanorod
diameter between the extreme values from 4 — 7 nm around the mean diameter of
6 nm can be observed along the nanorod. Most of the investigated nanorod samples
show this behavior, the average diameter of the nanorods is still uniform throughout
the samples. This is of importance for the properties of excitons in CdSe nanorods.
Effectively, the excitons do not extend over the whole nanorod length but are weakly
confined between diameter constrictions. This results in the excitonic fine structure
being mostly determined by the diameter of the nanorod while being almost in-
dependent of the nanorod length[14]. For phonons, the diameter fluctuations are
expected to lead to a broadening of diameter dependent quantities.

11
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Figure 2.5: HR-TEM micrograph of a single CdSe nanorod. The nanorods’ shape is
highlighted.

12



2.3  Core-shell nanorods

2.3 Core-shell nanorods

The nanorods can be coated with an epitaxial shell. To synthesize such nanocrys-
tals made of more than one material, the formation of a large interface between the
two materials can be achieved when the lattice constants of the two components do
not differ significantly, this is the case with CdSe and ZnS, and when the control
of the synthesis parameters keeps the interfacial energy. These prerequisites lead
to the formation of core-shell type hybrid nanocrystals, in which the symmetry of
the inner nanocrystal core is retained upon coverage by a layer of another material.
The preparation technique aims to obtain selective heterogeneous nucleation of the
shell onto preformed nanocrystal cores while suppressing the formation of separate
nanocrystals of the second material. This requires a rather slow addition of the shell
molecular precursors to the cores at relatively low temperatures.

The shell growth can be accomplished by several methods: by co-reacting all the
necessary molecular precursors or by alternating deposition of monolayers of each
atomic species that will compose the shell material, by replacement redox processes,
in which the outermost layer of the core is converted into the shell material upon
reaction with suitable reagents and by thermally-induced annealing of an initially
amorphous or discontinuous shell. The different growth processes are visualized in
Figure 2.6.

a .
I annealing
——-
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oo ® o ° °
. b
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e L e redox-
. reaction
° ——-
° ° ° °
'Y L]

Figure 2.6: Shell growth schemes. The precursors co-react and form the shell or are
deposited as alternating monolayers (I). The shell is either crystalline (I b) or amorphous
and can be annealed to create a crystalline shell (I a). A redox process forms the shell out
of the outermost core layer and precursors (II).

13
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The shell-growth process can be repeated with different precursors to create further
shells of different materials, effectively onion-like multishell structures[34, 35] or even
more sophisticated heterostructures[13, 17]. The shell can usually not grow thicker
than a few monolayers without developing structural defects. To prevent this, buffer
layers are grown. This strategy is used to coat the CdSe nanorods, where the growth
of a CdS-ZnS shell of graded or mixed composition allows the strain to be released
gradually.

The core-shell nanorods that are discussed in Chapter 7 consist of a CdSe nanorod
core and a ZnS shell. The shell is synthesized by co-reacting diethylzinc as Zn
precursor and thiourea as S precursor in a hexadecylamine/trioctylphosphine oxide
reaction mixture at (180 °C). The thickness of the shell is controlled by the amount
of added precursors.

To investigate the influence of the shell various core-shell nanorods are prepared.
For each sample a fraction of bare nanorods is retained to allow a comparison of
the Raman signal from core-shell nanorods with the Raman signal from the bare
counterpart. The shell can hardly be resolved in HR-TEM measurements. The
limited contrast in TEM between CdSe and ZnS makes a distinction between the core
and the shell difficult. The core-shell nanorods appear mostly just thicker in the HR-
TEM micrographs. TEM is used to neglect the formation of individual nanocrystals
from the shell precursors and the energy dispersive X-ray spectrum (EDX) can be
used for a rough characterization. Figure 2.7 displays an EDX spectrum from core-
shell nanorods.

Full scale = 12 cps Cursor: 6.5275 ke¥

C

u
¢ Cd
i p Z Se ¢
“ [ L........m ML .58 ., ... ...
2 4 3 10 12 14 16 18 20
keV

Figure 2.7: EDX spectrum of a CdSe-ZnS core-shell nanorod ensemble. EDX measurement
by Tore Niermann.

Cd and Se are present in equal amounts. Zn and S are present in lower amounts,
their relative amounts are as expected from the growth parameters. The C,P and
Cu signals can be attributed to the supporting TEM-grid.
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2.3  Core-shell nanorods

2.3.1 Luminescence properties

The optical properties of core-shell CdSe-ZnS nanorods can be investigated by low-
temperature photoluminescence (PL) spectroscopy. Le Thomas et al. performed
such measurements[36]. Figure 2.8 displays an emission spectrum of a single-nanorod
with a 2-3 monolayer ZnS shell.

PL Intensity (arb. units)

212 214 2.16
Energy (eV)

Figure 2.8: PL spectrum of a single CdSe nanorod with 5 nm diameter and 25 nm length
at T'= 10 K. Taken from reference [37].

The PL spectrum is composed of a main peak, with a low-energy shoulder, and a
redshifted peak by 28.4 meV with respect to the main peak. The main peak and its
low-energy shoulder can be attributed to the fourfold degenerate “light hole” exciton
ground state. It is splitted into a degenerate state with total angular momentum
projection along the rod axis +1, these constitute the low-energy shoulder and two
other states with total angular momenta projection 0, that form the main peak. The
energy of the redshifted peak corresponds to the energy of the main peak reduced by
the LO-phonon energy in bulk CdSe. This peak is thus the first LO-phonon replica
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of the exciton|[36].

The ZnS shell has a significant impact on the photoluminescence from CdSe nanorods.
Mokari and Banin synthesized CdSe nanorods with increasing shell sizes and mea-
sured their photoluminescence[20]. Figure 2.9 display absorption and PL spectra of
(CdSe nanorods with 4 nm diameter and 22 nm length and different shell sizes.

\V)

Photoluminesce Intensity
'eouec'yosq\&

Energy(ev)

Figure 2.9: Absorption (solid lines) and photoluminescence (dashed lines) for increasing
shell sizes (spectrum I corresponds to the core nanorod, IV is a 2 monolayer shell). Taken
from reference [20].

Upon shell growth the peak position of the PL shifts slightly to lower wavelengths.
The quantum yield is increased from 3% of the bare nanorods to 28% after adding
a ZnS shell of 2 monolayer thickness.

The quantum yield increases and reaches a level of 28%, an order of magnitude
increase compared with the bare nanorods. Bryant and Jaskolski explain this by
surface states[38]. They have used a tight-binding approach to study the effect
of surface states on capped and uncapped nanocrystals. They find a broad band
of mixed surface/internal states above the conduction band edge when the surface
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Figure 2.10: Quantum yield (QY) as a function of the shell thickness (ST). The QY
increases for increasing ST until a critical thickness is reached, where strain leads to a
reduction of the QY. Image taken from reference [20].

is unpassivated. This effects can be eliminated by capping the nanocrystal with a
higher band gap shell. When a few monolayer cap is used, the effect of surface states
decreases but is still significant. A thicker shell then fully suppresses the effects of
the surface states on the internally confined states and the maximum quantum yield
can be achieved|38].

A Further shell growth after reaching the maximum quantum yield leads to reduc-
tion of the quantum yield. Mokari and Banin attribute this to the large lattice
mismatch of 11% between the core and the shell materials. In a thin shell the
strain is accommodated. Further shell growth then leads to defect formation[20].
This can be seen in Figure 2.10, where the dependence of the quantum yield on the
shell thickness is displayed. A similar trend can also be observed for other material
systems like CdSe covered with ZnSe[39].
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Methods

Direct band-gap semiconductor nanocrystals like CdSe nanorods are investigated
intensely by photoluminescence measurements[40-43]. This is due to the fact that
their optical properties are crucial for many applications. For example, time-resolved
photoluminescence spectroscopy can be used to study the electronic energy trans-
fer in close-packed CdSe nanocrystal ensembles. The quenching of the lumines-
cence lifetime with decreasing size accompanied by an enhancement of the lumi-
nescence for large crystals can be observed this way[44]. Photoluminescence exci-
tation and fluorescence line narrowing spectroscopies can be used to examine the
exciton fine structure[45]. Magnetophotoluminescence spectroscopy is applied to
examine the influence of the nanocrystal asymmetry on the emission of single three-
dimensionally confined biexcitons, where the impact of electron-hole exchange in-
teraction on the fine structure and the polarization properties of optical transitions
can be revealed[46].

The structural properties of colloidal nanocrystals are mostly examined by HR-TEM
and related methods. However, CdSe nanorods and especially core-shell nanorods
are very challenging to investigate by HR-TEM, as mentioned in Chapter 2.
Details about the structural and vibrational properties of semiconductor nanostruc-
tures are often obtained from X-ray scattering experiments like X-ray crystallogra-
phy, small angle X-ray scattering and inelastic X-ray scattering. However, X-ray
scattering experiments usually require sufficiently large volumes of ordered crystals,
bulk single crystals or ordered arrays of nanocrystals. Otherwise the diffraction pat-
terns are too blurred to extract the crystallographic data. Thus, structural informa-
tion from CdSe nanorods can not easily be obtained from X-ray diffraction measure-
ments, as these structures can not be synthesized into sufficiently ordered arrays.
Recently, there have been impressive advances in the exploitation of self-ordering
processes in order to create large, ordered arrays of colloidal nanocrystals[47, 48].
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However, the crystal axes are still not sufficiently aligned to extract the lattice
parameters from the X-ray diffraction patterns with adequate accuracy to gain in-
formation on strain etc.

Another popular method to determine the structural characteristics from crystalline
solids, neutron scattering, is also not possible. The strong neutron absorbing nature
of Cd forbids such experiments. The phonon dispersion of bulk CdSe was measured
by inelastic neutron scattering on the very weakly neutron absorbing isotope '*Cd
and natural selenium[49]. But creating precursors with sufficient amounts of this
CdSe isotope is extremely complex.

Raman spectroscopy and concomitant ab-initio calculations allow to gain access to
structural information that is difficult to obtain with other methods. As the col-
loidal nanocrystals can be grown in very homogeneous ensembles with narrow size
distributions and neglectable contamination with other particles, ensemble rather
than single-nanocrystal measurements can be applied.

3.1 Phonons in crystalline semiconductors

Phonons are important for many physical properties of crystalline solids. They e.g.
govern the thermal[50] and electrical conductivities[51] and they affect the optical
properties due to interactions with excited charge carriers.

A phonon is a quantized mode of vibration of the crystal lattice. The ions of
the crystal displace from their equilibrium position R in the Bravais lattice. The
displacements from the equilibrium positions are usually small compared to the
interionic spacing. The basic theory describing the dynamic behavior of lattice
vibrations is called harmonic approximation. The position of each ion at the mean
position R is r (R) = R+ u (R), where the deviation from the mean position u (R)
can be time-dependent. A pair of atoms separated by r contributes an amount ¢ (r)
to the potential energy of the crystal. The total potential energy of the crystal is

U= 33 6r(R) - r(R) =S 6R-R4u(®) -u(®R). (1)

RR/ RR/
The dynamical problem is then governed by the Hamiltonian
P(R)’
H= —— 4+ U. 3.2

where P (R) is the momentum of the atom at the equilibrium position R, and M
the atomic mass.
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3.1 Phonons in crystalline semiconductors

For the harmonic approximation one expects the deviations from the equilibrium
positions to be small. One can then use the three-dimensional form of the Taylor
theorem to expand the potential energy U about its equilibrium value. When re-
taining only the first nonvanishing correction to the equilibrium potential energy,
the potential energy is written as

U = U 4 yharm, (3.3)

where U is the equilibrium potential energy and

gram = 3% aw Dt (R) = i (R)] G (R = R) [y (R) = pay (R)]
Gu (1) = grgbc;:,,
Z (3.4)

Usually the equilibrium potential is ignored, as it is just a constant. The harmonic
potentials are then treated as the total potential energy.
In a matrix notation (see ref.[52]) the harmonic potential can be written as

harm 1 I I
gharm — 5Zu(R)D(R—R)u(R). (3.5)
RR/
By considering the independence of the order of differentiation for the potential
energy, the inversion symmetry of the Bravais lattice and by applying Born-von
Karman periodic boundary conditions and plane waves Ee!&¢RB=%% a5 eigenfunctions,
the corresponding 3N equations of motion (IV is the number of ions) reduce to the

eigenvalue problem[52]

Muw*€ = D(k)E. (3.6)

£ is an eigenvector that describes the direction in which the ions move and D(k) is
the dynamical matrix

D(k) = Y D(R)e ** (3.7)

Applying fundamental matrix algebra results in the polarizations vectors £ (k) and
frequencies wg(k). For each value of k there are 3p normal modes. p is the number
of ions in the basis. The frequencies ws(k) (s = 1,---,3p) are all functions of k,
with the periodicity of the crystal lattice. Three of the 3p branches are acoustic,
they describe vibrations that vanish in the long-wavelength limit. The other modes
are optical. In case of polar materials, like CdSe, they correspond to a mode of
vibration where positive and negative ions vibrate against each other. This can
create an electrical dipole moment, effectively allowing the coupling to an electric
field, e.g. light.

In analogy with the quantum theory of the electromagnetic field, where photons are
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the quanta of the radiation field, the vibrational modes can be described as phonons.
The mode of a branch s with wave vector k in its nx th excited state can be written
as nygs phonons of type s.

A more detailed discussion of the formalism presented above can be found in ref.
[52].

Optical phonons can be treated numerically by ab-initio calculations and, especially
in polar materials, accessed experimentally via Raman spectroscopy. These methods
will be presented below.

3.2 Density functional theory, ab-initio calcula-
tions

The Density Functional Theory (DFT) is an alternative approach to the use of wave
functions in the theory of electronic structure. The calculations are called ab-initio,
or first-principles calculations if only fundamental constants of physics rather than
fit results are utilized. The theory and the first computational implementations were
mainly developed by Walter Kohn and John Pople and awarded with the Nobel price
in Chemistry in 1998. Walter Kohn “for his development of the density-functional
theory” and John Pople “for his development of computational methods in quantum
chemistry”[53, 54].

The foundation of the theory of electronic structure of matter is the nonrelativistic
Schrodinger equation for the many-electron wave function W,

{ Z V- Z |rZi€Rl Z \7’] 7 } T = 0. (3.8)

r; are the positions of the electrons, R; and Z; are the positions and atomic numbers
of the nuclei. The wave function ¥ depends on the positions and spins of the N
electrons. The electronic properties depend parametrically on R; and in particular
the electronic density n(r) and total energy F, implying the Born-Oppenheimer ap-
proximation, in which the electrons are considered to follow the movement of the
heavy nuclei instantaneously. For a system of atoms with a total of N interact-
ing electrons, with the influence of symmetries and spin ignored, the number M
of parameters required to find the many-electron wave function is M = p*", were
3 < p <10 is an approximated number of parameters per variable needed for an
accurate result. For N = 100 electrons this would require a quantity in a space of
M ~ 10" dimensions to be minimized. This is impossible with current computer
systems. Real, physical crystals contain more than 102! electrons, which makes a
closed-form solution practically impossible.
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3.2 Density functional theory, ab-initio calculations

The approach of DFT is to focus on quantities in the real, three-dimensional coor-
dinate space. Mainly, on the electron density n(r).

In 1964 Hohenberg and Kohn demonstrated that the ground-state density n(r) of
a bound system of interacting electrons in an external potential v(r) determines
this potential uniquely. This is mathematically rigorous. Following the Hohenberg-
Kohn variational principle, the energy of the electron ground state can be obtained
by minimizing

E = ming,) { / o(r)a(r)dr + F [ﬁ(r)]} , (3.9)

where F [a(r)] = min, [\I/g(r), (T + U)\Il%“(r)] n

Us ) the class of trial functions with this 7i(r). (I"+ U) is the sum of the kinetic
and the interaction energy.

The problem of finding the minimum of (\I/, H, \If) with respect to the 3/N-dimensional
trial function ¥ in wave functions has been transformed into the problem of finding
the minimum of E, [n(r)] with respect to the three-dimensional trial function 7(r).

(r) is a trial electronic density and

In 1965 Kohn and Shan formulated an alternative expression for F'[n(r)] for inter-
acting electrons[55], namely

Flna(r)] = Ts [n(r)] + E / Mdrdr’ + By [n(r)], (3.10)

2 |r — /|

where Tg[n(r)] is the kinetic energy functional for noninteracting electrons and
E..[n(r)] is the exchange-correlation energy functional, where E,.[n(r)] is generally
not known and has to be defined by a suitable approximation.

Minimizing the density n(r) is then performed by solving the equation

(—%VQ + e (1) = ej) pi(r) =0, (3.11)

with

n(r) = Y Iy, (312)

Vess = 0(r) +/

with the local exchange-correlation potential v,.. ¢;(r) are called Kohn-Sham wave
functions. The ground state energy is given by

n(r’)
dr’ 1
P "+ vge(r), (3.13)

B =Y+ Bucln(r)] - / Une(F)n(r)dv — %% (3.14)
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In principle, with the exact E,. and v,., all many-body effects would be included.

The practical usefulness of ground-state DFT depends entirely on whether approx-
imations for the functional E,.[n(r)] can be found which are at the same time
sufficiently simple and sufficiently accurate. A frequently used approximation for
E..[n(r)] is the so-called local-density approximation (LDA).

Eﬁf’A = eze (n(r)) n(r)dr, (3.15)

with e,. as exchange-correlation energy per particle of a uniform electron gas of
density n[53]. The exchange part is elementary and given, in atomic units, by

0.458
ey = , (3.16)

Ts

where ry, is the radius of a sphere containing one electron. The correlation part is

0.44

€ = L (3.17)
LDA usually gives ionization energies of atoms, dissociation energies of molecules
and cohesive energies with only a fair accuracy compared to the experimental values
of typically 10 —20%. However the LDA gives bond lengths and thus the geometries
typically with a reasonable accuracy of 1%. LDA is the underlying basis of many
approximations in use in DFT. Technical details vary depending on the problem and
the computational framework.

3.2.1 SIESTA

The STIESTA method, acronym for Spanish Initiative for the Electronic Simulations
of Thousands of Atoms, is an implementation of the density functional theory[56].
An accessible introduction to SIESTA and its usage can be found in reference [57].
SIESTA implements a fully selfconsistent DFT, based on a flexible linear combi-
nation of atomic orbitals (LCAQO) as basis set. That means the required computer
resources grow linearly when increasing the number N of atoms in a simulation box.
It allows fast, converged simulations using minimal basis sets and accurate calcula-
tions with complete multiple zeta and polarized bases, depending on the required
accuracy and available computational power. Various methods are implemented
in the SIESTA code to generate these numerical basis sets. The approximations
concern the treatment of exchange and correlation, and the use of pseudopoten-
tials. With the SIESTA method, exchange and correlation are treated within the
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3.2 Density functional theory, ab-initio calculations

Kohn-Sham DFT. It allows for both the local (spin) density approximation and the
generalized gradient approximation. Standard norm-conserving pseudopotentials
are used in their fully nonlocal form. SIESTA reads the norm-conserving pseu-
dopotentials in a semilocal form (a different radial potential V;(r) for each angular
momentum /) from a data file that users can fill with their preferred choice. Gener-
ally the Troullier-Martins parametrization is used.

The numerical parameters must be converged to the desired accuracy before the
actual calculation can be performed. During a calculation the Hamiltonian and
overlap matrices are built and stored, and the Kohn-Sham equations are solved by a
self-consistent loop. The starting point is an electron density obtained from the sum
of all atomic electronic densities. Then the Hamiltonian is built and diagonalized and
a new density is found. This process is repeated until the change in density is lower
than a certain threshold. In a standard calculation the total energy per unit cell is
obtained, as well as the forces on all atoms, the stress, pressure, etc. The program
also allows to calculate phonon frequencies. There are other calculation modalities
implemented, which yield for example the band structure (Kohn-Sham eigenvalues),
wave functions (eigenvectors), or relax the geometry with a conjugate-gradients
algorithm. The geometry relaxation may be restricted, to impose certain positions
or coordinates, or with more complex constraints. It is also possible to perform a
variety of molecular dynamics simulations, at constant energy or temperature, and
at constant volume or pressure.

3.2.2 Ab-initio calculations of bulk CdSe and CdSe nanorods

To estimate the properties of CdSe nanorods and to allow a better understanding
of the experimental findings, the results from ab-initio calculations are used. All
calculation results and images are courtesy of Marcel Mohr![58, 59].

CdSe phonon dispersion

The phonon dispersion of bulk CdSe is not available from experiments with suffi-
cient accuracy for an exertion in numerical models that e.g. treat confined phonons
or heat transfer. For the direction I' — A ab initio calculations, a shell-model and
inelastic neutron scattering data are available[49]. The inelastic neutron scattering
measurements were performed with a crystal containing the weak neutron absorbing

'Present affiliation: Institut fiir Festkérperphysik, Technische Universitéit Berlin.
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Figure 3.1: Phonon dispersion of CdSe. Calculations by Marcel Mohr[58].

isotope 1Cd. But no experimental data on the phonon dispersion is available for
wave vectors ¢ in the basal plane. The complete phonon dispersion of CdSe can be
calculated with a DFT-based linear response approach, which is implemented in the
ABINIT package[60]. A calculated CdSe phonon dispersion by Mohr and Thomsen
can be found in reference [58]. The authors use the exchange correlation functionals
of Perdew and Wang in the local-density approximation[61]. The resulting phonon
dispersion is displayed in Figure 3.1. All calculated frequencies are multiplied by a
constant factor in order to match the experimental bulk longitudinal optical phonon
(LO) frequency at the I'-point. The shape of the dispersion along I' = K and I' — M
will become of importance when treating confined phonons with a zone-folding ap-
proach as done in Chapter 4. When the phonons become confined, phonons close
to the I'-point also contribute to the Raman spectrum. The slope near the I'-point
then determines the direction and amount of the shift of the phonon frequency with
changing crystal dimensions.
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3.2 Density functional theory, ab-initio calculations

CdSe nanorods

Many properties of CdSe nanorods can be calculated with the STESTA code. Mohr
et al. performed such calculations[58, 59].

Mohr et al. use the local density approximation of the density functional theory with
atom-centered confined numerical basis functions as implemented in the STESTA
code. The nanorod geometries for the SIESTA framework are created on the basis
of wurtzite-structured CdSe nanocrystals with a cylindrical shape. As the aspect
ratios of the physical nanorods are large, they can be approximated as wires of in-
finite length. For the investigation of the effects of an epitaxial ZnS shell a Zn and
S atom can initially be placed on the Cd and Se sites, respectively.

Mohr et al. generate norm-conserving pseudopotentials with the Troullier Martins
scheme. In their calculations, the valence electrons are described by a double-( basis
set plus an additional polarizing orbital. The nanorods are relaxed until all forces
are below 0.02 eV/ A.

The calculations are validated with a comparison between calculated and experi-
mental values of constants: Values of 55.5 and 80.2 GPa for the bulk modulus are
obtained from the calculations for CdSe and ZnS, respectively, in agreement with the
experimental values of 53.4 and 76.0 GPa [62]. The lattice parameters for wurtzite
CdSe a = 4.34 Aand ¢ = 7.09 A are also in good agreement with experimental
values[28].

Symmetry considerations allow the reduction of the calculation time: Finite-diffe-
rences phonon calculations usually scale by the order of 4 with the number of atoms
in the unit cell. However, all one-dimensional systems can be described in terms of
line groups, a one-dimensional analogon to space groups. In contrast to the latter
line groups allow the application of arbitrary rotations. The force constants can
then be calculated for the irreducible part of the unit cell. For the remaining atoms,
the force constants can be determined by symmetry. Symmetry considerations also
help to reduce the internal stress in the unit cell that can occur in large systems
during the relaxation process. Most routines only regard atomic forces during re-
laxation, however stresses may appear by cancelling out of two or more forces. To
prevent this a symmetry based, iterative relaxation method can be applied: After
a nanorod structure is relaxed, the whole structure is generated again by applying
symmetry operations to the irreducible part of the unit cell. This symmetry gen-
erated unit cell is then relaxed again. With this method better results than with a
simple relaxation can be achieved: For example, the frequencies of phonons belong-
ing to more-dimensional representations (that should have degenerate frequencies)
are separated less. The size of the calculated nanorods is limited by their computa-
tional costs. The largest calculated nanorod takes about three weeks on a common
four-unit cluster for the initial relaxation and two weeks for further relaxations con-
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Figure 3.2: Cross sections of the CdSe NRs (a). The following color code is used: Cd
(magenta), Se (cyan), Zn (black), S (yellow). Bond length deviations compared to bulk
CdSe (b). Black corresponds to bonds parallel to the c-axis, green to all other bonds.
Image courtesy of Marcel Mohr.

sidering symmetry. This nanorod has a diameter that is at the lower diameter
limit of the available synthesized CdSe nanorods, which allows a direct comparison.
Smaller structures are then calculated to estimate trends. Shells of various sizes are
also included in the calculations.

The relaxed cross sections of the calculated CdSe nanorods are displayed in Figure
3.2 a). For a systematic study calculations on a bare CdSe nanorod (rod I) and two
corresponding core-shell CdSe-ZnS nanorods (rod III and rod IV) are performed.
To distinguish between the effects of the ZnS shell and size dependent effects, a
larger bare CdSe NR (rod II) is calculated. It is of the same size than the core-shell
nanorod with a single monolayer ZnS shell, rod III.

The bond lengths in the CdSe nanorods differ from the bond lengths in bulk CdSe.
The bond lengths of the relaxed nanorods projected on the plane perpendicular to
the c-axis are presented in Figure 3.2 b). The bonds are centered in the middle of
the atoms they connect. The radius of the circles is proportional to the deviation
from the bulk CdSe bond length. Black circles correspond to bonds parallel to the
c-axis, green circles correspond to all other bonds. For the bare CdSe nanorods,
the most dramatic changes in the atomic structure happen in the outermost layer:
the Cd-atoms rotate into the surface to lower the energy at the surface. This effect
does not vanish if the surface is passivated with e.g. organic ligands. In concommi-
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tant calculations with a passivating hydrogen layer at the boundary no qualitative
changes of this reconstruction are found[59]. This kind of surface reconstruction
was first reported in Ref. [63]. When the diameter of the nanorod is increased, the
strain due to the surface reconstruction decreases for the inner parts of the nanorod.
In total, larger nanorods are less strained.

The coverage of a CdSe NR with a ZnS shell leads to a compressive strain of the
CdSe core due to the small lattice parameter of ZnS compared to CdSe. The diam-
eter d of rod IIT is & 5 % smaller than that of rod II. All bonds of the CdSe core are
shortened. The bonds in the lateral direction are much more strongly compressed
than the bonds parallel to the c-axis. For the lateral bonds the average decrease is
3.5 %, while it is 1.5 % for the bonds parallel to ¢. The maximal decrease is 4.5 %
and 3.6 % for lateral and parallel bonds, respectively. The bonds parallel to the
c-axis show the trend of being less compressed when lying closer to the surface.
In contrast, the lateral bonds are homogeneously compressed throughout the CdSe
core. This homogeneous compression can be approximated as uniaxial strain and is
used te experimentally investigate strain in core-shell nanorods in Chapter 7.
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3.3 Raman spectroscopy

Raman scattering is a non-destructive experimental method. It was first observed
by Sir Chandrasekhara Venkata Raman and published in 192864, 65]. The great
importance of this method for material science was soon recognized and Sir Venkata
Raman was awarded the Nobel price in 1930 “for his work on the scattering of light
and for the discovery of the effect named after him”.

Raman spectroscopy is a very universal kind of spectroscopy. The light does not
need to be absorbed by the sample (as it is for example necessary in fluorescence
and photoluminescence spectroscopy) and its non-invasive nature and many possi-
ble combinations with different types of microscopies (confocal, etc) makes it quite
versatile.

The Raman effect is the scattering of photons by matter, this can be molecules,
crystalline solids or else, with a change of frequency.

The interaction between electromagnetic radiation and a crystal in full generality
is very complex. In Raman scattering, however, the wavelength of the incident and
scattered radiation is much greater than the size of the atoms and the interaction
Hamiltonian can thus be written in terms of the polarizability P. For an incident
photon of energy hwy, momentum kg, a scattered photon of energy hw,, and mo-
mentum kg, the crystals’ initial state energy E; and the finals state energy E, the
propability of the scattering can derived from second order perturbation theory as

2
w="p(wy) [H ko, : o, I 6(Fwo + By — hw, - Ey), (3.18)
where p(w;) is the density of state of the photons, which is given by
1\°w?
s)dw,dQ) = | — | —Zdw,dSQ. 3.19
O L (3.19)

d§2 is an element of solid angle. The interaction between the photons and the crystal
is specified by the Hamiltonian H. The interaction Hamiltonian is

H = Pag(koi : kof ) Ea(0) Eg(s), (3.20)
af
where E(0) and E(s) are the electric fields at the incident and scattered light and «
and 3 denote the Cartesian cooridnates. The electric field can be written in terms of
photon creation and destruction operators. The intensity of the Raman scattering
from state 7 to state f of the crystal then becomes

4

w
f ; )
[dQdw; = D D ays Pap(koi : ks f) Ps(koi : ks f) - - (3:21)

. EQ(O)EW(O)&Tﬁ(S)é(;(S)(S(Ei + hu}o — Ef — ﬁws)
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The total Raman scattering intensity can then be obtained by averaging over the
states of the crystal and weighting them by thermodynamic factors. This leads to

2(;:};3 Z Eoz(0)Ew(0)56(8)65(8)1a575. (3‘22)
afBvyd

[dQdw; =

I,py5 is the Raman tensor.

Usually, the frequency of the incident photon is much greater than the frequency
transfer. Raman scattering then occurs at the frequencies of the phonons whose
wavevectors are equal to the wavevector transfer. As the incident light has a much
longer wavelength than the interatomic distances and the available momentum trans-
fer is much smaller than the momentum of the phonons, |Q| = 0 applies for the
scattering. Q is the momentum transfer.

The incident light excites a virtual electron-hole pair, which either creates or absorbs
a phonon und then recombines emitting the scattered photon.

E

incident scattered incident scattered
photon photon photon Y photon

Figure 3.3: Scheme of a Stokes (I) and an anti-Stokes (II) Raman scattering process:
An incident photon is absorbed, the excited carrier exchanges energy with the lattice by
creating (I) or annihilating (II) a phonon and a photon is with changed energy is emitted;
Solid lines represent real states, dashed lines correspond to virtual states.

In Figure 3.3, a scheme of the two fundamental Raman scattering processes is dis-
played. After an incident photon with the frequency wy, is absorbed, the virtual
electron-hole pair creates or annihilates a phonon with the frequency w,, (Figure
3.3 I and II respectively) and recombines, emitting a new photon with the frequency
ws. The energy difference between the incident and scattered photon h (wy, £ wpp)
can be measured.

The Raman tensor in equation 3.22 has the full point symmetry of the crystal and is
a fourth rank tensor. Following group theory, a phonon will only contribute to the
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Raman scattering if it belongs to one of the irreducible representations present in
the reduction of the Raman tensor. This leads to certain phonons being not Raman
active and a dependence of the Raman scattering intensity on the polarization of
the incident light and the orientation of the crystal.

Surface effects can contribute to the Raman scattering, in case of resonances greatly
enhancing the Raman signal intensity. This can be exploited in nanoscience. For
example, optical detection and spectroscopy of single molecules and single nanopar-
ticles can be achieved with the use of surface-enhanced Raman scattering. Individual
colloidal nanoparticles can be screened for size-dependent properties and then used
to amplify the spectroscopic signatures of adsorbed molecules[66]. A fine metal tip
brought to within a few nanometers of a molecular film gives a strong enhance-
ment of Raman scattered light. This can be used for molecular analysis with the
spatial resolution of an atomic force microscopy, as only limited by the tip size and
shape.When scanning the tip over the sample surface, topographic information is ob-
tained simultaneously and can be directly correlated with the spectroscopic data[67].

3.3.1 Raman spectroscopy of CdSe nanorods

There are several experimental requirements that have to be fulfilled for the Raman
spectroscopy of solids. The Raman scattered light has a very low intensity relative
to the intensity of the incident light. Thus a bright light source is required. It
also has to be monochromatic with a narrow linewidth. Otherwise the elastically,
Rayleigh scattered light outshines the Raman scattered light. The relative intensity
of the Rayleigh scattered light is usually more than hundred times larger than Ra-
man scattered light. A narrow-line continuous-wave laser fullfills these requirements.
An Art-laser is used as excitation source. To measure the Raman signal a sensitive
detector is required and the Rayleigh scattered light has to be suppressed. This can
be accomplished by a charge coupled device camera (CCD) and two monochroma-
tors in subtractive mode, that function as a bandpass for the Raman signal. The
experimental set-up for the measurements presented here is displayed in Figure 3.4.

Ar™ has various transitions that allow a stimulated emission. Of these, the transi-
tion in the green part of the visible spectrum at 514.5308 nm is the most intense.
There is no difference between the normalized Raman spectra of CdSe nanorods
that are excited with blue Ar+4-lines and green Ar™-lines, so the 514.5308 nm-line is
used for all presented measurements. A small monochromator works as bandpass.
Ar" plasma-lines, which are not resonantly amplified, can be present in the laser
spectrum. These have wavelengths close to the laser line and can disturb the Raman

32



3.3 Raman spectroscopy

Art -laser
| ————— -
|
liquid nitrogel I
cooled CCD\\\ |
spectrometer S— #relmonoch romator

A |

: -

changabl¢|
grating |
v

~| -~
Y
-
/

premonochromators

Figure 3.4: Raman spectroscopy set-up. Plasma lines are absorbed in the pre-
monochromator, the sample area is illuminated in a confocal beam path and a Dylor-XY
triple-monochromator system with a CCD camera is used to analyze the scattered light.

spectrum. The premonochromator can be tuned to the laser wavelength and cuts
of possible plasma lines. It can be replaced by a dielectric band-pass filter, which
works just for a single wavelength, but more efficiently and disturbs the beam pro-
file less. A Dylor-XY triple-monochromator system is used as Raman system. The
laser light enters the system and illuminates the sample in a confocal, macroscopic
optical path via a prism. The spot size is approx. 1 mm? and the laser power is kept
below 10 mW to avoid laser heating and ensure constant sample temperatures. The
sample area is large enough to e.g. host a cryostat for low temperature measure-
ments and specific gaseous atmospheres as surrounding media. The scattered light
re-enters the Raman system and two premonochromators act as band-pass for the
Raman part of the scattered light. The third monochromator is the spectrometer
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Figure 3.5: Raman spectrum of CdSe nanorods with 7 nm diameter and 35 nm length
with underlying Lorentzian functions and resulting fit.

and images the Raman spectrum on a nitrogen-cooled CCD, which is used to acquire
the spectra.

For the Raman measurements, the CdSe nanorods are solved in chloroform or
toluene. The nanorod solution is then dripped on 5 x 5 mm? Si-wafers and left
until the solvent has evaporated. The nanorod density on the Si surface is approx.
101 mm™2. Multiple wafers can be hosted in a micro-cryostat. All Raman measure-
ments are performed in a commercial Oxford cryostat at liquid helium temperatures.

Figure 3.5 displays a Raman spectrum in the Stokes-regime of CdSe nanorods with
7 nm diameter and 35 nm length at low temperature, acquired with this set-up.

The fundamental, first-order, Raman band is located around 200 cm~!. The band
has an asymmetric shape, which is common for low-dimensional CdSe structures[68,
69] and similar materials[70]. The fundamental Raman band is assembled from two
bands, each with different origin. The two contributions can each be fitted with
a Lorentzian function and the sum of both describes the shape of the band very
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3.3 Raman spectroscopy

well. Of these two peaks, the more pronounced peak, which is mainly responsible
for the position and intensity of the band can be attributed to the CdSe LO. The
second feature is related to surface optical phonons (SO) and is located at the low-
energy shoulder of the LO peak and is responsible for the asymmetry of the Raman
band. The frequency and intensity of the surface optical phonons is very sensitive
to the surrounding of the nanorod. Gupta et al. performed Raman measurements
of GaP nanowires, which are similar to the CdSe nanorods, in various dielectric
surroundings and were able to verify the nature of the low-frequency shoulder and
demonstrate the dependence on the surrounding[70]. The two contributions and
their dependencies will be discussed in detail in Chapter 4.

At larger wavenumbers, around 400 cm ™!, the second-order Raman band can be ob-
served. The relative intensity of the second-order band to the fundamental Raman
band depends on the coupling strength between the phonons and excited charge car-
riers. This dependence will be exploited in Chapter 5, when discussion the exciton-
phonon coupling strength.
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Chapter 4

Geometry dependence of the
phonon modes in CdSe nanorods

In Chapter 2 the CdSe nanorod growth and the size-tunability by the variation of the
growth parameters were presented. The fundamental Raman band of CdSe nanorods
and its two main contributions were briefly discussed in Chapter 3. In this chapter
the size-tunability of the nanorods is exploited to systemmatically study confinement
effects on these two contributions.

4.1 Size-dependent Raman spectra

To investigate the dependencies of the contributions to the fundamental Raman
band on the nanorod size, nanorods of different dimensions are measured. The
Raman spectrum of nanorods with 7 nm diameter and 35 nm length is displayed in
Figure 4.1. As mentioned in Chapter 3, the Raman band has an asymmetric shape.
It is composed of the LO and SO.

In Figure 4.2 the Raman spectrum of nanorods with 8 nm diameter and 80 nm
length is displayed. These nanorods only have a slightly larger diameter than the
7 x 35 nm? nanorods, while the aspect ratio is much larger. It is twice the aspect
ratio of the 7 x 35 nm? nanorods. The LO frequency is slightly different between the
two nanorods. It is shifted down by about one wavenumber between the 7 x 35 nm?
and 8 x 80 nm? nanorods. The frequency of the SO related band changes more
drastically and its frequency is increased by 5 cm™!. The sum of both changes
results in a slightly different position and a quite different shape of the fundamental

Raman band.
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Figure 4.1: Raman spectrum of CdSe nanorods with 7 nm diameter and 35 nm length.

The Raman spectrum of thinner nanorods is displayed in Figure 4.3. It shows the
Raman spectrum of nanorods with 4 nm diameter and 30 nm length. Here, strong
deviations of the LO frequency from the two thicker nanorods can be observed, while
the SO related peak is shifted less than in the previous example. This results in a
quiet symmetric band at a different position.

The two contributions to the fundamental Raman band obviously depend on the
nanorod geometry. As diameter and aspect ratio changes affect the SO and LO
frequency each in different ways, the two contributions seem to have different de-
pendencies on the nanorod geometry. Exploiting the size-tunability and measuring
several nanorod samples of different sizes allows a systematic investigation. The LO
and SO frequencies for five exemplary geometries are summarized in Table 4.1.

The LO frequency of two nanorod samples with the same diameter (4 nm), but
different lengths (25 nm and 30 nm) is experimentally not separable, the frequency
can thus be considered to be mostly independent of the nanorod length. The second
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Figure 4.2: Raman spectrum of CdSe nanorods with 8 nm diameter and 80 nm length.

contribution to the fundamental Raman band, the SO, behaves quite differently.
While the frequency of the LO is mostly diameter dependent, the SO frequency also
depends on the nanorod length. The SO frequency is different for two nanorods of the
same diameter, but with different lengths. However, a pure length dependence can
be excluded. The SO frequency of nanorods with 8 nm diameter and 80 nm length
differs only by 1.5 cm™! from the SO frequency of nanorods with 4 nm diameter and
30 nm length. However, it differs by 3.7 cm™! between nanorods with 4 nm diameter
and 30nm length and nanorods with 7nm diameter and 35nm length, where the
absolute and relative differences in length are much smaller. Thus, the combination
of the diameter and length must be relevant.

The influence of the nanorod geometry on the LO and SO frequency will be treated
separately and explained within established theory for phonon confinement and
surface optical phonons in the following sections.
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Figure 4.3: Raman spectrum of CdSe nanorods with 4 nm diameter and 30 nm length.

Table 4.1: Frequencies of the LO and SO, wr,o and wso, for different nanorod geometries.

sample dimesions wro (em™!)  wgo (em™!)
3.0nm x 20nm  209.2+0.6 206.4+1.2
4 nm X 25 nm 2100 £0.6 207.6+1.0
4 nm x 30 nm 210.1£0.5 208.7£0.9
7nm X 35 nm 214.0x£0.5 205.0£0.9
8 nm x 80 nm 2152+£0.5 210.2+1.0
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4.2 Phonon confinement

4.2 Phonon confinement

In semiconductor nanostructures like CdSe nanorods, the phonon wavefunction is re-
stricted to the volume of the nanocrystal. This leads to the relaxation of the conser-
vation of crystal momentum in the creation and decay of phonons in the nanocrystal.
A general model for confined phonons was initially developed by Richter et al. and
applied for low-dimensional silicon structures[71]. Campbell and Fauchet further
generalized the model[72].

According to Richter et al. the wavefunction of a phonon with the wavevector qg
can be written as

® (qo, 1) = u(qo,r)e "™, (4.1)

where u (qo,r) has the periodicity of the crystal lattice. Richter et al. treated the
problem of localized phonons by the simplest possible manner and assumed the
crystal to be spherical. The wavefunction is expected to be localized in the form of
a Gauss-distribution. This can be treated by replacing the wavefunction ® with a
wavefunction ¥ according to

V(qo,r) = W(qo,r)®(qo,r)
A-exp (= (r?2/2) / (L/2)*) @ (qo) , (4.2)
= V' (qo,r) u(qo,T)

with [¥| = A%exp (—r2/(L/2)?). W (qo,r) is the weighting function and L is the
diameter of the sphere.
To calculate the effect on the Raman spectrum, ¥’ is expanded in a Fourier series

¥ (qo,r) = / d*qC (qo,q) €17, (4.3)

with the Fourier coefficients determined by

C(qo,q) = /d3r U (qo,r) e a7, (4.4)

(2m)”

The phonon wavefunction is a superposition of eigenfunctions with wavevector q,
centered at qo. When scale factors are neglected and qg = 0 is assumed for one-
phonon processes, the Fourier coefficients for a spherical crystal become

C (0, q|* = e/, (4.5)

The first order Raman spectrum can then be calculated from

[ @dc.a)P
T /kw—wm»?+wwm” 0
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where w (q) is the phonon dispersion and I'y is the natural linewidth.

Campbell and Fauchet argued that there is no real physical reason for W (qo,r) to
be a Gaussian, exp (—r%/ ([//2)2)7 with a phonon amplitude of 1/e at the boundary
of the nanocrystal, as chosen by Richter et al. This pure Gaussian ansatz yields
satisfying results for certain material systems like the Si spheres discussed by Richter
et al., but fails for other structures like the GaAs spheres that Campbell and Fauchet
presented|[72]. To reflect the specialties of the system under investigation one can
modify the form of the confinement function along with the phonon wavefunction
amplitude at the crystal boundary. Furthermore one can consider the effect of the
nanocrystals’ shape and include confinement in multiple dimensions. For a column
and a Gaussian confinement this results in the Fourier coefficients

1 —erf
(\/ 327

where Ly is the length of the cylindric column, L; the diameter. The variable con-
finement parameter « is introduced to allow a “tuning” of the actual strength of the
confinement in order to reflect the available experimental data[72].

To numerically calculate the Raman spectrum of confined phonons one integrates
equation 4.6 with a fixed frequency w over the whole Brillouin zone and then step-
wise varies the frequency.

For the CdSe nanorods with their large aspect ratios, the length can be considered
to be infinite and the Lo-terms in equation 4.7 can be neglected. This is justified by
the length-independence of the LO frequency in the experimental data. The inte-
gration over the Brillouin zone can be performed by a numerical integration over the
available directions of the phonon dispersion and an averaging. The phonon disper-
sion calculated by Mohr et al., presented in Chapter 3, is used for the integration.
To treat phonon confinement in nanorods with the model presented above, one has
to estimate the confinement parameter o in equation 4.7 for the given geometry.
It can be estimated by adjusting a calculated spectrum with a fixed diameter to
an available experimental Raman spectrum of nanorods with the same diameter.
First, a Raman spectrum is calculated for a fixed diameter, e.g. d = 4 nm without
an initial modification of the confinement parameter, that means o = 1. After the
calculation, a Lorentzian function can be fitted to the calculated spectrum. An
exemplary outcome for nanorods with a diameter of 4 nm is displayed in Figure 4.4.

2
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The position and width of the fitted Lorentzian function can then be compared to the
position and width of the LO band in the Raman spectrum of CdSe nanorods with
the same diameter. The confinement parameter is then varied in an iterative process
until the agreement between the calculated and the measured LO Raman band is
maximized. For the CdSe nanorods, only small deviations from the Gaussian form
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Figure 4.4: Calculated Raman spectrum for a CdSe nanorod with 4 nm diameter without
an adjusted confinement parameter (dots) and fitted Lorentzian function (solid line) .

of confinement proposed by Campbell and Fauchet are obtained. The confinement
parameter a = 1.1 yields a good agreement of the calculated LO Raman band with
the experimental data.

By using this as fixed confinement parameter and varying the diameter, the influence
of the confinement on the LO frequencies can be investigated. The LO frequencies for
different diameters can be calculated. Figure 4.5 displays the frequencies obtained
from the confinement model.

The LO frequencies from the confinement model decrease for decreasing nanorod di-
ameter. The shape of the phonon dispersion curve close to the I-point is responsible
for this. A cutout of the applied disperion ist displayed in Figure 4.6.

The stronger the confinement the more phonons far from the I'-point contribute to
the Raman scattering. The CdSe bulk phonon dispersion shows an overbending near
the I'-point, which can be found in other hexagonal lattices as well[73, 74]. This
leads to the observed downshift behavior.

Included in Figure 4.5 are the LO frequencies obtained from the Raman measure-
ments. The model for confined phonons describes the influence of the decreasing
diameter on the frequency of the longitudinal phonon correctly. A saturation for
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Figure 4.6: Ab-initio calculated longitudinal optical phonon dispersion.
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4.2 Phonon confinement

very small diameters is found in the model and agrees with the experimental data.
For diameters above 7nm, the model indicates a stronger saturation of the frequency
shift than found in the experimental data. In summary, the phonon confinement
model accounts for the observed variations in the frequency of the LO of CdSe
nanorods. Other effects like deviations from the cylindrical shape or surface ef-
fects are not considered by the model and could e.g. lead to a weaker saturation
of the confinement influence. The quantitative agreement between the calculations
and the measurements indicates, however, that the relaxation of the wave vector
selection rule is most relevant for the LO frequency in CdSe nanorods. The good
agreement between theory and experiment furthermore shows, that longitudinal op-
tical phonons are, in average, not strongly influenced by the diameter fluctuations
mentioned in Chapter 2.
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4.3 Surface optical phonons

The size-dependence of the LO frequency discussed above can be explained in terms
of phonon confinement. The different size-dependence of the SO frequency can
be understood when calculating the SO frequencies with a quantum mechanical
continuum approach.

A theoretical treatment of SO modes in nanocrystals was established by Comas
et al.[69, 75]. They investigate polar optical vibrations in small-size crystals by
applying a dielectric continuum approach, based on established theory[76]. In this
approach, both bulk-like oscillations and surface modes are included in the study of
the vibrations of finite crystals. The quantum version of such oscillatory modes are
the longitudinal optical phonons, transverse optical phonons and the corresponding
surface optical phonons.

The Born-Huang equation of motion applies

O = —wiw + Mw%E, (4.8)

47

with the electric field E, the transverse limit bulk frequency wr and the static and
high frequency dielectric constants of the poloar material ¢y and €.

For the relative displacement u between a pair of ions of reduced mass p in a polar
crystal of concentration N (the reciprocal of the unit-cell volume) the polarization
P is given by

(€0 — €x0) €0 — 1
47

P = wiw + E, (4.9)

with w = /N uu.

The Lyddane-Sachs-Teller relation w? /w2 = ¢/€s applies[69].

The electric field has to satisfy the quasi-static Maxwell equations. This requires
the induction field D = € (w) E = E + 47P to fulfill the Gauss equation V- D = 0.
The relation £ — V¢ then leads to the main equation of the dielectric approach:

€ (W) Vo = 0. (4.10)

The harmonic time dependence is implicit, the frequency-dependent dielectric func-

tion is thus
(w? —wi)

(W =)
The relevant potentials for the SO all satisfy the Laplace equation V¢ = 0. The
boundary condition then requires the normal component of D to be continuous at

the interface between the nanocrystal and its surrounding medium. The geometry
of the nanorod can be described in spheroidal coordinates. The equation

€(w) = €x (4.11)

¢ = & = constant
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describes an ellipsoid of revolution where the z-axis (revolution axis) is taken along
the major ellipsoid axis. For such a geometry in spheroidal coordinates the Laplace
equation is separable and leads to the eigenfrequencies wy, for the SO:

Wi, €0 —€enfih, (&)

w% B €00 — EszI;, (fo)‘

(4.12)

&p is the dielectric constant of the surrounding material. The universal parameters

1 (&) are defined as
J 1
prautit ) : (4.13)
50) (df &o

The functions R} () and Q7' (£) are given in terms of the hypergeometric function
as

d
fl]; (50) = %Z) = (d—gan}”

R () =

(20)1 (€2 — 1) gl [m—l m-l+11 1]’ 1)

201 (1 — m)! 2 7 2 2 g
and
2" (1 —m)IT (1/2) (€2 — )™

0= |

l+m+1 1+m+2 l 31
> 2 Ty 5_2}
(4.15)
The universal parameters fI (&) are independent of the nature of the constituent
materials. They do, however, depend on the nanocrystals dimensions via &. Within
the framework of the prolate spheroidal coordinates, the ratio between the semiaxes
can be identified as the aspect ratio of a nanorod, which is then given by r =
&/+/&3 — 1. The definition of the prolate spheroidal coordinates allows the aspect
ratio r to be varied in an interval between 2 and 10.
The frequency of the SO then depends on the nanorod material, the hosting material,
which are CdSe and air, the nanorods’ aspect ratio and the choice of the quantum
numbers [, m. From the possible set of quantum numbers, only a few are relevant for
Raman measurements. In Raman backscattering experiments, some of the SO are
not visible because their transition amplitudes are zero from the Raman selection
rules. Only SO with m = 0 and | = even are allowed. The SO related to the
quantum numbers (I = 2,m = 0) is expected to be most prominent in the Raman
spectra. Figure 4.7 displays the related SO frequency versus the aspect ratio. The
required dielectric constants and the transverse optical phonon frequency are from
ref. [28].

The SO frequency increases for increasing aspect ratios and shows a saturation for
aspect ratios above 10.
The measured frequencies of the SO also have a dependence on the nanorods’ aspect
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Figure 4.7: SO frequency versus nanorod aspect ratio for the quantum numbers
(l=2,m=0).

ratio. In Figure 4.8 the measured frequencies of the SO, wgo for various aspect
ratios are displayed. Included in the figure is the calculated course for the quantum
numbers (I = 2,m = 0). As in the model, the SO frequency decreases for decreasing
aspect ratios and shows a saturating behavior for large aspect ratios.

The shape of the calculated SO frequency versus aspect ratio dependence is similar
to the course of the measured values. However, it only gives the general trend of
the shift with changing aspect ratio. The strength of the shift for a changing aspect
ratio seems to be underestimated by the model. Other effects that strengthen the
effect must be relevant. Possible explanations for this could be contributions from
other (I, m)-combinations that have a steeper slope. Furthermore, deviations from
the perfect axially symmetrical rod-shape could also result in changed dependencies.
This can, however, not be treated within the model as it has strict conditions for
the prolate spheroidal coordinates. A third explanation could be organic surfactants
remaining around the nanorods after the synthesis. This could result in an effec-
tive dielectric constant of the nanorod surrounding different from 1. The influence
of this can be investigated by varying the dielectric constant of the surrounding.
Trioctylphosphine oxide, that is often used to saturate the nanorod surfaces, for
example has a dielectric constant of ep = 2.1[77]. The SO frequency versus aspect
ratio dependence for dielectric constants of the surrounding is displayed Figure 4.9.

The increase of the dielectric constant of the surrounding medium results not only
in different frequencies for a fixed geometry, but also in a different aspect-ratio-
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Figure 4.8: Measured SO frequency versus nanorod aspect ratio and model for the quantum
numbers (I = 2, m = 0).

dependence for a static surrounding.

In this chapter, the geometry-dependence of the LO and SO frequencies were in-
vestigated. The LO frequency changes due to phonon confinement and is purely
diameter dependent. The SO frequency depends on the nanorods’ aspect-ratio. The
theoretical model, however, underestimates the influence of the nanorods’ shape on
the SO frequency.

In the next chapters the size tunability of the nanorods is further utilized to in-
vestigate the geometry-dependence of other effects that are accessible by Raman
spectroscopy.
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Chapter 5

Exciton-LO-phonon coupling in
CdSe nanorods

In polar materials like CdSe, the optical phonons couple to electronic excitations.
The coupling between vibrational and electronic excitations has an influence on
many optical and electrical properties, like the transport and energy relaxation rate
of excited carriers. The coupling strength can be obtained from the Raman spectra.
In this chapter, the Huang-Rhys parameter, which is a quantity for the exciton-
phonon coupling strength, of CdSe nanorods is estimated and compared to bulk
CdSe. Then, the size-tunability of the nanorods is used to investigate the influence
of the nanorod geometry on the coupling strength.

5.1 The Huang-Rhys parameter

In polar materials the dominant coupling between electronic charge and crystal
vibrations is the Frohlich interaction between the field induced by the vibrational
motion and the electronic charge density. According to Frohlich, the forces on
the ions depend exclusively on the macroscopic electric field and the relative ion
displacements[78]. This model leads to pure transverse and longitudinal modes and
is most valid for optical waves in which the positive and negative ions vibrate out of
phase. For optical phonons in the polar material CdSe this is a suitable description.
Huang and Rhys first treated an equivalent problem within a general discussion of
light absorption and non-radiative transitions in F-centres[79]. There, the coupling
between electronic excitations and crystal vibrations is treated on the basis of the
Franck-Condon principle. The crystal is considered as a dielectric continuum and
the electronic excitation as a static charge distribution. The state of the system
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is specified by two quantum numbers: u for the electronic excitation and n for
the vibrational states of the crystal lattice. The energy of a state is £,,,. In this
notation, the Franck-Condon principle is written as

(ML) = (4 [ X () X (X) dX. (5.1)

(u'|eX]|p”) is the matrix element of the electric moment of the electronic excitation
between the two electronic states y/ and p”. X are general coordinates, specifying
the lattice configurations and X,,» and X,,»,,» are the vibrational wave functions of
the lattice for the electronic excitation in each state.

The lattice configuration is specified by the displacement vector u (r) of the positive
ions relative to the negative ions for all positions r in the crystal. The total potential
energy relative to the position u (r) = 0 in the presence of an external electric field

£y (r) is given by
M o[, _ dv Mo/1 1\
u / (i -+t + i o} - [47% (;%)} / wEydv.  (5.2)

w, (r) and u, (r) are the irrotational and solenoidal parts of u (r), €y and e, are the
static and high frequency dielectric constants, M is the reduced mass of the ions,
Vg is the volume of the unit cell and w;, = (€y/es0)"’* wo. The solenoidal part of u (r)
gives raise to transverse waves and does not couple to the electronic excitations and
can thus be neglected in the discussion. Huang and Rhys discuss the problem in
a finite volume satisfying the Born-von Karman boundary conditions. The volume
integrations in equation 5.2 are restricted to a volume containing L x L x L = N
unit cells. Due to the irrotational character, u; (r) can be resolved into longitudinal
waves. One can then write

Vi, ) = (ﬁ) Q) /v e Prive] 53)

with .
Qy) = 7 (g1 +igy) = —Q" (-y). (5.4)
The Born-von Karman boundary conditions restrict the values of y by
y = L7" (h'by 4+ h*by + h’b3) , (5.5)

with |h?| = integer < %L and b; as the reciprocal basis vectors of the lattice. When
performing the volume integration of equation 5.2 one obtains

_ % SN (@2 + i) Z AL gy, (5.6)

A=1,2 y
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where

A= (2= )] T oD & @) cos2my -rav,

oo

A Sy PR N R

€oo

(5.7)

When performing the summation over y the combination of the terms arising from
Q (y) and @ (—y) results in only one pair of y, —y being counted. The sum over
yA can then be replaced by a single index j and the Hamiltonian can be written as

1 . 1
H = 5 Z (qJ2 + wlzqf-) — \/_N ;A;qj. (5.8)

J

In the absence of an electronic excitation, the linear term in equation 5.8 drops
out. The Hamiltonian then describes a system of independent oscillators of the
same frequency. ¢; are then lattice coordinates and the corresponding modes are
longitudinal waves. Huang and Rhys introduce the following coordinates for the
presence of an electronic excitation in the state p':

4 =q; — IN (5.9)

['his leads to
H 1 2 : <12 2 12 1 ;2
2 ( J 4 ) 2N

J

(5.10)

—5
]

The Hamiltonian is composed of the lattice vibration energy and the energy of the
state p' of the electronic excitation. ¢} is the canonical conjugate of ¢ and the
vibrational Hamiltonian of the lattice is

1 2 82 2 12
Hyp, = 3 ; (—h o7 + wi'qj (5.11)

J

The wavefunctions are the products of oscillator wave functions
/
1T X (4]) (5.12)
J

with the quantum number n; for the oscillator j. The overlap integrals between the
vibrational wave functions [ X Xff,_} dq; (the superscript is the order of derivative)
J

vanishes if |n; — nj| > s. Transitions were the change of the quantum numbers is
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greater than one can be ignored[79]. The overlap integrals are then

J X (¢7) X a1 (¢f) day

= [A§ J X0 (a5) X (45) da; + A7 [ Xy (45) Xy () d%’] +0y, etc.
(5.13)
The energy for a transition between the electronic states u” and p' is Eu”u’ with

the corresponding frequency hv = En,y + hw; Zj Angj, where An; = n —n’. For

transitions in which no An; is greater than one, the square of the overlap 1ntegral

can be written as
2
XXX = { L [0 )X () [}

X 2 nj+1 z” 12 n), \4k -1 \Yg k
X{HZU l<q>/Xl (?MqJ}{HkUX” p <q>dqy}.
| Xoy (a7) Xo (q)) dan |/ Xy qk)Xnk (q})) da|”

(5.14)

The summations over [ and k£ are both extended over all lattice oscillators. For the
indices y and A, the summations can be replaced by integrations. When taking into
account only terms below order \F one obtains

N
H‘ [ X @) %0 (@) |
J

with

00 )t

Z

t=

S, :S{Zgzﬂ , (5.16)

=exp[— (S +S-)], (5.15)

the thermal average of the vibrational quantum number 7 (T) = (exp (hw;/kT) — 1)
and the constant integral

hv,
2:3 S / (A7, AL dy. (5.17)
l

Y

The coupling constant S was later named Huang-Rhys parameter.

5.2 Exciton-phonon coupling in Raman spectra

The coupling between phonons and excited carriers is reflected in the relative inten-
sities of the overtones to the fundamental Raman band. The correlation between
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Raman spectra and the exciton-phonon coupling can be deduced from works from
Tannor and Heller[80], Albrecht[81] and others[82, 83]. The Kramer-Heisenberg-
Dirac theory is valid for Franck-Condon displacements. For Raman scattering, the
relevant part of the Kramer-Heisenberg-Dirac formula arises from second-order per-
turbation theory and is written as

Ocur L xen) Ohn [0 X 16)
D B B
h(wii +wr — wen — iL'%) (5.18)

Ol il xn) On 18X 1)
h(wyi + ws — wpn — i)’

with 1 = D -e. The sum over k£ and n represents a sum over all Born-Oppenheimer
electronic states and vibrational levels. Y, then refers to all intermediate vibrational
states that can be excited. xi; and X are the initial and final vibrational states of
the ground electronic state. hw;; is the energy of the ground electronic state, Awy, is
the energy of the intermediate state, hw; is the energy of the incident radiation and
hws the energy of the scattered radiation. I'j, is a phenomenological lifetime factor.
The intensity I~/ into a particular mode f is proportional to w;w? | fl-\Q.

For a single electronic state |¢;) = p|x1:), |¢f) = plx1s) and W = wy; + wy can be
written and equation 5.18 has the simpler form

¢f|Xn Xn|¢z>
F (o — wn +2Fk) (5.19)

This expression can be transformed to the time domain, where harmonic potentials
can be treated analyticly[80] and then reads as

l

o= [ e (i - D)0 (5.20)

with |x;(t)) = exp (—iH.,t/h) |x;) and the excited electronic state Hamiltonian H.,.
The displacement of the excited-state equilibrium relative to the ground-state equi-
librium can be written as A. One can then calculate the overlap between a moving
wave packet and the final state of interest and obtain the Raman amplitude.

L = (¢n]do(t))

= exp{—AZ%/2[1 — exp (—iwt)] —iwt/2} [1 — exp (—iwt)]" - (5.21)
(=D"A” :
W - exp (—Zu}t)
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When comparing this expression with equation 5.15 one finds that S = %A2 applies.
Based on this time-dependend overlap integral, the integrated Raman intensities
can be calculated. According to Albrecht, the Raman scattering cross section for an
order-n phonon process can be written in the form

o0
(n|m) (m|[0)

n 2 _ 4

(5.22)

m=0

[81]. In this notation Aw is the the incident photon energy, the excited state energy
is written as Ejj;, the electronic transition dipole moment is p, the homogeneous
linewidth is I' and m is the intermediate state. The Franck-Condon overlap is

(nlm) = (%)%exp (—%AQ) APTLET (AP (5.23)

with the Laguerre polynomial L. The ratio of two different cross sections (Equa-
tion 5.22) yields, together with Equation 5.23, an expression that depends on the
integrated Raman intensities and A. Measuring the fundamental Raman band and
an overtone or two different overtones of the system of interest then allows the nu-
merical estimation of A and S. It is adjuvant to measure the two bands in a single
spectrum, as this makes the normalization easier. For practical reasons one usually
measures the fundamental Raman band and its first overtone, because they are most
intense.
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5.3 Huang-Rhys parameter of CdSe nanorods

The Frohlich interaction between the longitudinal optical phonons and an exciton
can be approximated by the interaction of the longitudinal optical phonon with
a static charge distribution and then discussed within the framework presented
above[83]. Figure 5.1 displays a Raman spectrum of CdSe nanorods with 4 nm
diameter and 25 nm length with fundamental Raman band and first overtone. The
contributions to the spectrum were discussed in Chapter 4. Relevant for the exciton-
phonon coupling are the LO related bands. As presented in Chapter 4, the contri-
butions from the LO can be fitted with a Lorentzian function and separated from
the complete Raman spectrum.

The Raman cross sections required to evaluate equation 5.22 are the areas of the
corresponding Lorentzian functions. The ratio of equation 5.22 for n =2 and n =1
is an equation for A that can be evaluated numerically for large numbers of interme-
diate states m. The required constants are the exciting photon frequency, which are
514.5 nm-photons, the LO frequency, which is taken as the position of the Lorentzian
fit to the LO Raman band, the exciton energy and the corresponding phenomenolog-
ical linewidth. The values for the excitonic transition can be obtained from spectral
hole burning measurements on the CdSe nanorods[14]. The exciton resonance is
located at Aoy = 590 nm and the linewidth ranges between I' = 10 — 20 peV. Krauss
and Wise investigated exciton-phonon coupling in PbS nanocrystals[84]. They sys-
tematically varied the linewidth in a numerical model and monitored the influence
on the coupling strength. They found the influence of I' on S to be small. As
their discussion is general, these findings also apply to CdSe nanostructures. Thus,
' = 20 peV is used. Figure 5.2 displays the Huang-Rhys parameter versus the ratio
of the first overtone to the fundamental Raman band.

The Huang-Rhys parameter scales with the ratio and is almost linear up to a ratio
of 1. Using the measured ratio of the Raman cross sections and the parameters
mentioned above results in S = 0.038 for CdSe nanorods of 4 nm diameter and
25 nm length.

The Huang-Rhys parameter for an exciton in bulk material can be deduced from
the exciton-phonon-matrix element by using a hydrogen-like wave function for the
exciton. Nomura and Kobayashi explicitly calculate the coupling strength for a
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1 « measurement
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Figure 5.1: Raman spectrum of CdSe nanorods with 4 nm diameter and 25 nm length
with underlying LO bands.
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Figure 5.2: Huang-Rhys parameter versus ratio of the integrated intensities of second
order and fundamental Raman band.

Wannier exciton in bulk CdSe. It reads as[85]

_ fo = 2
S - 27_[_2 (thO)Q fO dk|y(k)|
e (5.24)
327T2CLB (hu)Lo)Q

(mt —m3)? (5mi2 + 14mrm} + 5m3?)

mimj (m} +mj)?

fo is the Frohlich interaction coupling constant, mj and mj are the effective masses
of an electron and a hole. S strongly depends on the choice of the effective masses.
Reasonable choices of mj for CdSe result in S = 0.38 or S = 0.79. These are by
more than one order of magnitude larger than the measured value for the 4 nm
diameter and 25 nm length CdSe nanorods.

The interaction of excitons with longitudinal optical phonons differs between nanocrys-
tals and bulk material. In nanocrystals all relevant states are discrete. In bulk
material there is a continuum state as a final state. In nanocrystals there is no such
final state and scattering can only occur in first order when the energy separations
of the discrete states coincide with the LO energy. Furthermore, the exciton-LO in-
teraction is quenched in nanocrystals[85, 86]. The exciton-phonon coupling constant
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Table 5.1: Longitudinal optical phonon and overtone data for different geometries.
sample dimesion nm? | 8 x 80 7x35 6x25 4x25 3.5x20

2LO area (arb. units) | 4.51 2.95 4.25 5.35 12.0
LO area (arb. units) | 11.76  7.55 109  11.76 14.3
2LO/LO 0.38 0.39 0.41 0.45 0.83

S 0.024 0.025 0.029 0.038 0.053

depends on the difference of the wave functions between an electron and a hole and
quenching changes the wave functions differently [85]. In bulk material, the excitons
do not experience any confinement and the coupling is dominated by the Coulomb
interaction. For decreasing crystal size, the Coulomb interaction becomes less and
less important and the difference in the effective masses of the electron and hole
become smaller due to the confinement of the corresponding wave functions. This
results in a decrease of the Huang-Rhys parameter.

The nanorod size-dependence on the exciton-phonon coupling strength can be inves-
tigated by evaluating the overtone-to-fundamental ratios for various nanorod geome-
tries. The size-tunability of the nanorods then allows a systematic investigation.

Figure 5.3 displays an exemplary Raman spectrum of a different nanorod geometry,
CdSe nanorods of 7 nm diameter and 35 nm length with fundamental Raman band
and first overtone. The ratio of the integrated intensities of the first overtone to the
fundamental Raman band differs from the nanorods of 4 nm diameter and 25 nm
length. The overtone intensity is much smaller while the fundamental LO Raman
band is of similar shape. Due to the quasi-linear dependence on the overtone to
fundamental ratio, this results in a reduced Huang-Rhys parameter of S = 0.025.
Even though the diameter of the nanorod is increased compared to the 4 nm diam-
eter nanorod, the Huang-Rhys parameter further differs from the bulk value. This
behavior is systematic. The integrated intensities of the relevant Raman bands and
the Huang-Rhys parameter for various nanorod geometries are summarized in table
5.1.

The coupling strength increases for decreasing nanorod dimesions. This behavior
seems to depend mostly on the nanorod diameter. Two nanorods with the same
length, but different diameters, nanorods of 4 nm diameter and 25 nm length and
nanorods of 6 nm diameter and 25 nm length have a very different Huang-Rhys
parameter, while nanorods with a similar diameter but different lengths, nanorods
of 7 nm diameter and 35 nm length and nanorods of 8 nm diameter and 80 nm
length have almost the same Huang-Rhys parameter. Thus, a diameter dependence
seems probable. The Huang-Rhys parameter versus the nanorod diameter is plotted
in Figure 5.4
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Figure 5.3: Raman spectrum of CdSe nanorods with 7 nm diameter and 35 nm length at
liquid helium temperatures with underlying LO bands. The LO bands from nanorods of
4 nm diameter and 25 nm length are included for comparison
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Figure 5.4: Diameter dependent Huang-Rhys parameter. The solid line is a guide to the
eye.

The diameter dependent behavior is similar to results for CdSe nanocrystals of
2 — 3 nm diameter reported by Scamario et al. [87]. There, the coupling strength
also increases with decreasing diameter in a very similar way as the measurements
on the nanorods show. Even the largest Huang-Rhys parameter for the smallest
structures, however, is much smaller than the Huang-Rhys parameter in bulk mate-
rial. This indicates the influence of two autonomous effects. One that results in an
overall reduced coupling strength for small crystals and one that slightly increases
the coupling strength for decreasing radii in nanocrystals. Nomura and Kobayashi
calculate the dependence of the Huang-Rhys parameter on the diameter of CdSe and
GaAs microcrystallites by applying “free-standing” and “rigid” boundary conditions
and considering valence-band mixing[85]. As in the experimental results, they find a
reduced coupling strength relative to bulk, but an increase in the coupling strength
for decreasing diameters. A diagram of their results is shown in Figure 5.5.

The course of the coupling strength versus diameter dependence starting from bulk
decreases for decreasing diameters, has a minimum value for a certain diameter and
then rises again for further decreasing diameters, around 70 A for CdSe spheres. The
latter effect is due to an increase in couplings to higher frequency phonons with the
reduction of the nanocrystal diameter. The former effect is related to a decrease of
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Figure 5.5: Calculated size dependence of the Huang-Rhys parameter for (s, S35 exciton
states of CdSe with the inverse averaged effective hole masses v;* =1.0 (i), 0.68 (ii) and
045 (iii). Taken from reference [85].

the influence of the Coulomb interaction, as mentioned above. The observed similar-
ity between the Huang-Rhys parameter of CdSe nanorods and spherical nanocrystals
can be explained by fluctuations in the confinement potential along the nanorod axis.
The diameter of the nanorods varies slightly along the nanorod length, as shown in
Chapter 2. The nanorod excitons then become weakly localized in these thickness
fluctuations and experience a rather anisotropic then ideal 1D-confinement, i.e. are
effectively of the same dimensions as excitons in spherical structures. As for the lu-
minescent properties (see Chapter 2), the nanorod diameter is the most important
geometrical parameter for the excitons. A futher increase of the diameter should
lead to an increase of the coupling strength. Then, the length should also contribute
to the size-dependence, as the excitons become less localized.

In this chapter the geometry dependence of the exciton-phonon coupling strength
was investigated. The nanorods behave like spherical particles. This is due to the
confinement of the excitons between diameter fluctuations of the nanorod. As for
the spherical particles, the coupling strength is much lower than in bulk material
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because of a decrease of the influence of the Coulomb interaction in small particles.
The coupling strength rises for decreasing diameters due to an increase in couplings
to higher frequency phonons.
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Chapter 6

The Radial breathing mode in
CdSe nanorods

The influence of the nanorod dimensions on the fundamental Raman band was
investigated in Chapter 4 and a diameter- and an aspect ratio dependence was
found for the two main contributions. A diameter dependence was also found for the
Huang-Rhys parameter, presented in Chapter 5. In this chapter another diameter
dependent Raman active mode is presented. A fully symmetrical, breathing-like
vibrational mode, whose frequency is highly diameter sensitive, is present in the
nanorods. The measurement of this mode can be used to estimate the nanorod
diameter and diameter fluctuations.

6.1 Motivation

As seen in the previous chapters, Raman spectroscopy is a versatile method to gain
information on various properties of CdSe nanorods. As it is non-destructive it
can easily be combined with other methods. In another low-dimensional system,
the carbon nanotubes, Raman spectroscopy is frequently used to gain structural
information. There, the radial breathing mode (RBM) corresponds to the atomic
vibration of the carbon atoms in-phase in the radial direction, as if the tube was
breathing. Figure 6.1 displays a displacement pattern of such a mode.

The frequency of the RBM follows a 1/d diameter dependence and the diameter of
carbon nanotubes is determined by their chiral indices. The dependence of the RBM
frequency on the nanotube diameter is frequently used to determine the tube diame-
ters and the diameter distribution in a nanotube sample from Raman scattering[88].
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Figure 6.1: Displacement pattern of the RBM of a carbon nanotube. The arrows show
the phonon eigenvector. The RBM leads to a periodic increase and decrease of the tube
diameter as shown by the wire model of the tube. Image courtesy of Maria Machon.

The chiral indices can be estimated by resonant measurements of the RBM. The
Raman signal intensity increases strongly when the excitation energy approaches an
allowed optical transition. If the incoming or scattered light matches the transition
energy, this is called a resonance, and the intensity is at maximum. Measuring the
Raman intensity as a function of the incident photon energy allows the determina-
tion of the transition energies in carbon nanotubes. The chiral indices can then be
retrieved with the resonance energy and the RBM frequency by using the so-called
Kataura plot[88].

The CdSe nanorods have, connatural to the nanotubes, an axially symmetric geom-
etry and are of comparable size.
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6.2 Linear elasticity theory

In principle, a nanorod can be approximated as a solid cylinder with the length
[ and the radius R. In case of [ beeing much larger than R, the frequency of a
breathing-like vibration can be deduced from linear elasticity theory[89, 90]. Linear
elasticity implies the continuum hypothesis. The fundamental assumptions of linear
elasticity are: infinitesimal strains and linear relationships between stress and strain.
In linear elasticity, the radial displacement of a solid cylinder has the form

U, = Wpy, (1) €xp (—iwppt) (6.1)
with
W, (1) =u(r) T, (6.2)

where u () is the radial displacement of the nanorod, T the unit vector in the readial
direction. The governing equation for the radial displacement is
>  ldu wu

L 4R = .
dr2+rdr r2+ u=0 (6.3)

h:me\/p(1g(yl)£1y—) 2v) (6.4)

with

E' is the Young’s modulus, p the density and v the Poisson’s ratio of the nanorod.
Following the approach by Hu et al.[89], the stress is considered zero at the surface
of the nanorod. This leads to the boundary condition

[du vou

—_— - = 0. 6.5
dr 1—UTLR (6.5)

Solving equation 6.2 subject to the boundary condition equation 6.5 yields
u(r) = —=~. 6.6
="k (6:6)

The resonant frequencies are

n _ Tn E(1-v)
i = E\/pu ) (1 =20) (6.7)

where 7, is the n-th root of the eigenvalue equation

1—2v
T Ji (7). (6.8)

TJo (T) =
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The square root in equation 6.7 depends only on the material properties.
Thonhauser and Mahan find a similar dependence for Si[111] nanowires treated with
a Stillinger-Weber-type model for isotropic elasticity theory[91]. There, the radial
breathing mode frequency is

w=—=1/—", (6.9)

with r = , the longitudinal speed of sound v, and the elastic constants (\, p).

Both models result in a 1/d diameter dependence for the radial breathing mode
frequency, but with different material dependent constant factors. Using literature
values for the constant factors in equation 6.7 results in C' = 82.8cm ™! nm for the
wrpM = C/d-dependence of the radial breathing mode frequency[28, 92].

6.3 Ab-initio calculations

The linear elasticity model treats the nanorods as axially symmetric cylinders. The
wurtzite CdSe nanorods have a hexagonal cross-section. To account for this and
to take into account the microscopic structure, microscopic ab-initio calculations of
CdSe nanorods rather linear elasticity approximations are appropriate. The frame-
work for the calculations were presented in Chapter 3. By using programs imple-
mented in STESTA, the phonons can be calculated. Beyond the transverse and
longitudinal phonons, there are numerous other vibrational modes with different
symmetries present in the nanorods. Some of them exist only in a fraction of the
calculated geometries. One prominent mode can be found in all calculated nanorods.
In this vibration, the atoms move almost radially. This mode is fully symmetric.
An exemplary displacement pattern of a 1.4 nm diameter nanorod is displayed in
Figure 6.2.

This mode is the atomic counterpart to the radial breathing mode of a solid cylinder
treated above with linear elasticity. When calculating larger nanorods the frequency
of this radial breathing mode decreases. The obtained RBM frequencies range from
40 — 160 cm™! for the calculated diameter range of 2.6 — 0.6 nm. As in linear
elasticity, the frequencies show a 1/d dependence on the diameter. The frequency
versus nanorod diameter dependence can be fitted with a const./d-function. The
constant factor, however, is larger than the one obtained from elasticity theory.
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Figure 6.2: Displacement pattern of the radial breathing mode of a 1.4 nm diameter CdSe
nanorod.

6.4 Raman measurement of the radial breathing
mode

Following the linear elasticity and ab-initio calculations, the radial breathing mode
has to fullfill two criteria: its frequency has to depend on the nanorod diameter and
follow a 1/d diameter dependence and it has to independent of the nanorod length.
The size tunability of the nanorods allows a systematic investigation of such a mode.
Nanorods with different diameters can be grown to monitor the diameter dependence
of the RBM and nanorods with the same diameter but different lengths can be
synthesized to verify the pure radial dependence of the mode. An approximation
of the RBM frequency for a given nanorod diameter can be obtained by entering
the diameter in the linear elasticity model (equation 6.7), or by taking the const./d-
function fitted to the frequencies from the ab-initio calculations and entering the
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diameter there. For example, the radial breathing mode frequency of a nanorod
of 4 nm diameter is expected to be around 20 cm~!. For many common Raman
set-ups, this is almost too close to the laser line. This frequency range is accessible
with the set-up presented in Chapter 3, when making certain modifications. In the
disordered nanorod conglamorates, the Raman part of the scattered light is scattered
in all directions. The Rayleigh scattered light of the flat Si substrate, which is the
main part of the Rayleigh scattered light, obeys the law of reflection. The angle at
which the incident light falls on the surface equals the angle at which it is reflected.
When the sample is tilted one can avoid this part of the scattered light to be collected
by the imaging optics. The pre-monochromators can be used the shadow parts of
the CCD area. This can be used to further suppress the Rayleigh scattered light at
the cost of a reduced spectral window. In Figure 6.3 a Raman spectrum acquired
this way is shown. It displays the low-frequency regime of the Raman spectrum of
CdSe nanorods with 4 nm diameter and 25 nm length.

Intensity (arb. units)

4 |
40 80 120 160
Raman shift (cm'l)

Figure 6.3: Raman spectrum from CdSe nanorods of 4 nm diameter and 25 nm length in
the low-frequency regime.

1

The spectrum still has a strong background in the regime between 20 cm™ and
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Figure 6.4: Raman spectra from CdSe nanorods of 4 nm diameter at liquid helium tem-
perature.

100 cm~!. This is due to elastically scattered laser light of the 514 nm-line of the
ArT-laser. The backround can be fitted with a cubic polynomial. The most promi-
nent feature in the spectrum is the fundamental Raman band around 200 cm~!. A
further Raman band can be identified at lower frequencies around 20 cm~!. This
is the expected RBM frequency for nanorods of this diameter. This mode can be
fitted with a single Lorentzian function.

In case of this mode beeing the RBM, its frequency is independent of the nanorod
length. The low-frequency spectrum of a second sample, CdSe nanorods of 4 nm
diameter and 30 nm length is displayed in Figure 6.4.

Included in the figure is the spectrum from the nanorod sample of the same diameter
but with 25 nm length. The frequency of the RBM is, within the experimental
error, the same for both samples, a length dependence of the modes’ frequency can
be excluded.

The RBM frequency is expected to be diameter dependent. Spectra from two further
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Figure 6.5: Raman spectra from CdSe at liquid helium temperature. The laser-related
background is subtracted.

nanorod samples with different diameters are displayed in Figure 6.5.

The mode shows a dependence on the nanorod diameter. The frequency increases
for a decreasing nanorod diameter. The measured RBM frequency versus diameter
dependence can be described by a const./d-function. The RBM frequencies are
close to the expected frequencies from the linear elasticity and ab-initio models.
The measured and ab-initio-calculated frequencies are summarized in Figure 6.6.

To estimate the nanorod diameter from a Raman measurement of the RBM, the
constant factor for the 1/d-dependence is needed. It can be obtained by fitting
const./d to all values, measured and calculated. The validity of the constant fac-
tor can be improved by weightening the individual data points according to their
relative accuracy resulting from the experimental error, the fit correctness and the
approximated accuracy of the calculations. The resulting dependence for the RBM
frequency is wrpym (d) = 91.0 cm ™ nm/d.

For small nanorods, this mode can be used to estimate the nanorod diameter from a
Raman measurement. For nanorods with diameters above 6 nm, the radial breath-
ing modes is at very low frequencies. This makes a Raman measurement difficult.
The mode can hardly be separated from the increasingly strong laser-related back-
ground. The radial breathing mode from nanorods of 8 nm diameter can not be
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Figure 6.6: Measured and calculated radial breathing mode frequencies versus nanorod
diameter.

detected with the used Raman set-up. Low-wavenumber Raman measurements are
limited by the bandwidth of the filter system applied to suppress the Rayleigh line.
Metal vapors with very narrow absorption lines can be applied as filters. Instead of
using monochromators or dielectric filters to suppress the Rayleigh scattered light,
the wavelength of a narrow-band tunable laser can be tuned to the narrow absorp-
tion lines of metal vapors, which then work as filters[93]. The inaccessible area
around the Rayleigh line can then be reduced to less than 1 cm™!. The width of the
absorption band can be changed by the conditions of the vapor cell. This is however
not appropriate for the size determination of CdSe nanorods, as it would require an
additional set-up just for the low-frequency measurements of the larger nanorods,
while TEM becomes more powerful with increasing nanorod size. For small dia-
meters the RBM can be useful to determine the nanorod diameter simultaneously
with other Raman experiments. It can furthermore be used to estimate diameter
distributions in nanorod ensembles. In spherical particles of similar composition,
the line-shape of the spherical equivalent to the RBM can be used to estimate the
size distribution of the investigated particles[94]. There, the agreement between the
distributions from the Raman spectra and TEM measurements is quite good.

In this chapter a diameter dependent radial breathing mode was presented and its
existence in nanorods was demonstrated by Raman spectroscopy. The diameter de-
pendence of the RBM frequency can be used to determine the nanorod diameter by
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a Raman measurement.
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Chapter 7

Core-shell nanorods

As presented in Chapter 2, the nanorods can be coated with an epitaxial shell.
The shell has an influence on the optical properties of the nanorod core, e.g. the
photostability, exciton lifetime and other photoluminscent properties[11, 20]. The
shell is crucial for many application, as it enables a further functionalization of
the surface and for example water solubility or the embedding of the nanorods in
polymers. The lattice mismatch between the nanorod core material, CdSe, and the
shell material, ZnS, introduces strain into the lattice of the CdSe nanorod and the
ZnS shell is strained itself. This means that not only the boundary of the nanorod is
changed by the addition of the shell, but also the nanorod core. For example, it has
been shown that the band alignments in the core-shell heterostructures are highly
affected by strain. Depending on the thickness of the shell and core, heterostructures
of type I and type II can be created[95]. As shown in Chapter 3 the bonds in the
lateral direction of the CdSe core are homogeneously compressed. In this chapter,
Raman spectroscopy is applied in order to estimate the amount of strain in the
physical nanorods. The influence of the shell on the properties and effects that were
presented in the previous chapters is discussed.

7.1 Influence of the shell on the Raman spectra

To investigate the influence of the ZnS shell, Raman spectra of bare nanorods and
core-shell nanorods are compared. The Raman spectrum of CdSe nanorods is sig-
nificantly changed when an epitaxial ZnS shell is added to the CdSe nanorods. The
Raman spectrum of CdSe nanorods with 8 nm diameter and 80 nm length, capped
with a 2 — 3 monolayer ZnS shell is displayed in Figure 7.1. Included in the figure
is the fit to a spectrum of the corresponding bare nanorods. The band at 520 cm ™!
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in the spectra is not related to the nanorods. It stems from the Si-wafer on which
the samples are deposited.

When comparing the fits to the two spectra one finds the following changes that
happen with the addition of the shell: The LO related band is shifted to higher
wavenumbers, the SO frequency is highly influenced by the shell and a new Raman
band appears around 280 cm~!. The ZnS LO is not observed in the Raman spectra,
propably due to the small shell thickness of only a few monolayers. In investigations
of spherical CdSe nanocrystals with ZnS shells, the ZnS LO can only be well sep-
arated from the CdSe related features for shell thicknesses above 3 monolayers[68].
A further increase in shell thickness then leads to an increase of the ZnS LO bands
integral intensity, which is roughly proportional to the ZnS volume. This should
also be valid for nanorods.

The shift of the LO frequency due to a decreased phonon confinement because of its
(partial) propagation into the shell is not likely because the LO phonon dispersion
curves of bulk CdSe and ZnS are not overlapping, and the ZnS shell is thus not
expected to support the CdSe-like LO vibrations[96]. The shift of the LO frequency
can explained by compressive strain. The changed bonding lengths due to strain in
the CdSe core result in changed phonon frequencies. The estimation of the frequency
shift allows to estimate the amount of compressive strain in the nanorod core. This
will be used later.

Following the discussion in Chapter 4, the surrounding of the nanorod is crucial for
the SO frequency. The ZnS shell has a different dielectric constant than air and is
thus responsible for the large changes in the observed SO frequencies.

The Raman band at 280 cm™! can have different origins. It could be attributed
to the ZnS transverse optical phonon[28]. Otherwise, the ZnS shell deposition
could be accompanied by core-shell material interdiffusion and the formation of
an intermixed interface layer, manifesting itself in the Raman spectra as a peak
at 280 — 290 cm™'[96]. Dzhagan et al. investigated the influence of different shell
parameters on phonons in spherical CdSe core-shell nanoparticles. There, the peak
at 280 cm~! was observed for both CdS and ZnS shells. The authors of reference
[96] attribute it thus to the Cd-S vibration in an interface layer.

7.2 Strain in core-shell nanorods

The quasi-uniaxial compression of the lateral bonds in the CdSe core as shown in
Chapter 3 can be experimentally investigated by Raman spectroscopy. The effect of
an uniaxial strain on the frequency of the crystal vibrations can be discussed within
the theory established by Eduard Griineisen. In 1912 and 1918 Griineisen published
articles on the thermal expansion of crystalline solids[97, 98]. Even without the
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Figure 7.1: Raman spectrum from CdSe nanorods of 8nm diameter and 80nm length with

a 2 — 3 monolayer ZnS shell

77



Chapter 7. Core-shell nanorods

knowledge of quantum mechanics and the nature of the forces between atoms, his
discussion is still valid. Griineisen assumes the thermal vibrations of atoms to
be undamped harmonic oscillations. He then evaluates the influence of a single
moved atom on its neighboring atoms by considering attracting and repelling forces

a
(phenomenological at that time), which scale with —— + —+ Next he investigates
rroor

the change of the atomic vibrations with increasing pressure and temperature. This
_omy . _VOVIOD), o, f a single oscillat
m = T @viopy O is the energy of a single oscillator. ~
is a material dependent constant and was later named Griineisen parameter. w is
the frequency of the crystal vibration and V is the crystal volume. For constant
temperatures, uniaxial strain and within the current understanding of phonons in
crystals, the Griineisen parameter can be used to relate changes of the phonon
frequencies to strain. The Griineisen parameter for longitudinal optical phonons in
CdSe was determined by experiments and is approximately 1.1[99]. The relative

shift of the LO frequency is related to strain by [100]

A Aa\ "
Aw (1+3—a> —1, (7.1)
w a

results in 7 =

where a is the lateral lattice parameter. Measuring the difference of the LO frequency
relative to unstrained bulk material then allows a direct calculation of the strain
within the crystal lattice.

A Raman spectrum of thin, bare CdSe nanorod with 2.5 nm diameter and 15 nm
length is displayed in Figure 7.2. Due to confinement effects the luminescence of
the nanorods is at lower wavelengths than for bulk material. This is why a slight
luminescent background is present in the Raman spectra. It can be fitted with a
quadratic polynominal. As presented in Chapter 4, the fundamental Raman band
has an asymmetric shape. The measured longitudinal optical phonon frequency
deviates from the bulk CdSe LO frequency. Two effects contribute to the frequency
shift: the previously discussed phonon confinement and compressive strain caused
by the surface reconstruction.

To estimate the amount of strain caused by the surface reconstruction, the deviation
of the measured longitudinal optical phonon frequency from the frequency of an
unstrained nanorod of the same diameter has to be evaluated. Due to phonon
confinement, the frequency of unstrained CdSe nanorods differs from the bulk CdSe
LO frequency and is, according to the phonon confinement model, at w = 210 cm ™!
for nanorods of 2.5 nm diameter. The measured LO frequency of the bare nanorods
is w = 211.3 ecm™!, which corresponds to a surface reconstruction related strain
of Aa/a = —0.2%. This is within the expectations from the ab-initio calculation
results, which result in Aa/a = —0.64% for much thinner nanorods with a diameter
of 1.4nm. As in the calculations, the influence of the surface reconstruction vanishes
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Figure 7.2: Raman spectrum of bare CdSe nanorods with 2.5 nm diameter.

for increasing diameters. The relative difference of the measured LO frequency from
the expected LO frequency from the confinement model is below the experimental
error of ~ 0.4cm~! for nanorods with a diameter of 4 nm and 8 nm. The influence
of the surface reconstruction can be neglected for nanorods with diameters clearly
above 2.5 nm.

To investigate the strain caused by an added ZnS shell, spectra from bare CdSe
nanorods and corresponding spectra from core-shell nanorods are compared. A
Raman spectrum from nanorods of 2.5 nm diameter covered with one monolayer
ZnS shell is displayed in Figure 7.3. As mentioned in Chapter 2, the luminescence
efficiency of the core-shell nanorods is larger than that of the bare nanorods. This
leads to an increased luminescent background. The LO frequency of the nanorod
covered with a single monolayer of ZnS is at w = 212.4 cm~!. This corresponds to a
compressive strain of Aa/a = —0.5%. A second ZnS monolayer increases this effect.
The LO frequency is further shifted to 212.0 cm™!. This is due to a total strain
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Figure 7.3: Raman spectrum of CdSe nanorods with 2.5nm diameter with a one monolayer
ZnS shell. The LO band from the corresponding bare nanorod is included for comparison.

of Aa/a = —0.7%. These values are within the expectations from the ab-initio
calculations in Chapter 3.

The influence of the shell is expected to decrease for increasing nanorod core di-
ameter. To examine the size-dependence of the shells’ influence, measurements on
core/core-shell pairs of thicker nanorods are performed. Raman spectra of CdSe
nanorods with 4 nm diameter and 25 nm length, with and without a two-monolayer
ZnS shell, are displayed in Figure 7.4.

Due to a changed confinement, the luminescence wavelength of the nanorods differs
from the smaller 2.5nm diameter nanorods. A luminescent background is not present
in the spectra. The background can be fitted with a constant. The LO frequency of
the 4 nm diameter nanorods is shifted from w = 210.0 cm™! to w = 210.9 cm™! be-
tween the bare and the core-shell nanorods, which results from a compressive strain
of Aa/a = —0.2% in the core-shell nanorods. For the third, largest nanorod sample
pair, nanorods with 8 nm diameter, the LO frequency shifts from w = 215.2cm™! to
w = 217.1cm™!. Compressive strain due to the shell growth is almost not present in
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Figure 7.4: Raman spectra of bare CdSe nanorods with 4 nm diameter and of CdSe-ZnS
core-shell nanorods with the same diameter.

such structures. It calculates to Aa/a = —0.1%. The strain values for the different
nanorod geometries are summarized in Table 7.1.

The geometries with a length of oo are the calculation results. The qualitative
agreement between experiment and theory shows that strain in core-shell nanorods
can be treated as uniaxial compression and estimated with the CdSe bulk Griineisen
parameter. The strain values are also in qualitative agreement with experiments on
CdSe/ZnSe nanocrystals. Lee et al. investigated the lattice distortion and lumines-
cence of spherical CdSe-ZnSe core-shell nanocrystals with approx. 3 nm diameter
by X-ray diffraction and photoluminescence spectroscopy[39]. The authors find a
decrease of 1.234% and 1.511% for the parameters a and ¢, respectively. The
nanocrystals they investigate are spherical, which explains the similarity in the de-
crease of a and ¢, in contrast to the cylindrically shaped nanorods, where the change
in ¢ can be neglected.

The strain in the nanorods increases for increasing shell-sizes. However, the shells’
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Table 7.1: Relative strain values of the investigated CdSe nanorod samples and calculated

values.

sample type Aa/a
1.4 nm X oo —0.64%
2.2 nm X 0o —-0.31%
1.4 nm x oo w. 1 ML ZnS -1.75%
1.4 nm x co w. 2 ML ZnS —2.29%
2.5nm x 15 nm 0.2%

2.5nm x 15 nm w. 1 ML ZnS | —0.4%
25nm x 15nm w. 2 ML ZnS | —0.7%
4 nm X 25 nm -
4nm x 25nm w. 2 ML ZnS | —0.2%
8 nm x 80 nm -
8nm x 80 nm w. 2 ML ZnS | —0.1%

crystal structure also improves with increasing shell dimensions. As shown in Chap-
ter 2, the improved surface passivation and reduced leakage of the exciton wave
function leads to an improved quantum yield until, at a certain shell-size, the strain-
induced stacking faults lead to a reduction of the quantum yield. Concerning the
shell thickness for optical applications, there is a trade-off between strain and strain-
induced defects and the improved exciton localization and surface passivation.

7.3 Surface optical phonons in core-shell nanorods

As mentioned at the beginning of this chapter, the surface optical phonons are
strongly affected by the changed nanorod surrounding due to the shell growth. Us-
ing the dielectric constant of ZnS, ep = 9.6[28], for the host material for equation
4.12 results in changed surface optical phonon frequencies. The direction of the SO
frequency shift is the same for experiment and theory. However, these frequencies
are shifted much stronger in theory than the experimentally observed ones. The
calculation of the SO frequency involves the dielectric constant of the surrounding
medium, which is a macroscopic parameter. This is obviously not suitable for 2-3
monolayers of ZnS. To reflect the nature of the shell, an effective dielectric constant
can be used. When the dielectric constant of the host material is used as fit pa-
rameter ¢/p = 2.9 is obtained as effective dielectric constant. This is much smaller
than the bulk dielectric constant of ZnS and could indicate a partial coverage of the
nanorod, a not purely epitaxial shell, or reflect the thin nature of the shell and a
resulting “mixed” dielectric constant of air and ZnS. However, this only explains the
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trends of the observations. The model for surface optical phonons does not allow to
deduce shell parameters from this effective dielectric constant.

7.4 Shell-influence on the exciton-phonon coupling

The ratio of integrated intensities of the LO-overtone to LO-fundamental Raman
band is significantly reduced for the nanorods coated with a ZnS shell. This means
that the Huang-Rhys parameter decreases for the core-shell nanorods. The Huang-
Rhys parameter is reduced by 18 % for the nanorods with diameters of 7 nm and
above and reduced by more than 40 % for CdSe nanorods with diameters below
5 nm when a ZnS shell is added.

Due to the compressive strain, the diameter of the CdSe core-shell nanorods is re-
duced compared to the corresponding bare nanorods. According the models and
experiments presented in Chapter 5, the Huang-Rhys parameter increases for a de-
creasing diameter, opposite to the observations. Even if the shell is accounted for
by an increase in the total diameter, which would then result in a reduced Huang-
Rhys parameter, the observed changes are much larger than one would expect from
the diameter dependence. From extrapolating the trend of the diameter dependent
measurements, the increase in diameter due to the additional shell would lead to
changes less than 2 %. Furthermore, the shell has a much greater impact on the
small nanorods than on the larger structures, which is also not reflected by the
diameter dependence. The Huang-Rhys parameter of the bare small nanorods is
larger than that of the larger nanorods. For the coated nanorods, however, this is
reversed. The Huang-Rhys parameter of small core-shell nanorods is smaller than
that of the coated larger nanorods.

The difference in S observed between nanorods with and without ZnS shell can be
explained by a different confinement of the electron and hole wave function. An
increase in the confining potential well as the result of the changed dielectric con-
finement due to the ZnS shell growth results in a reduced polarity of the exciton
wave function and thus a reduction of the coupling. Another reason for the de-
creased coupling which might strengthen the effect of the confinement could be the
reduced Frohlich coupling in inferface regions with mixed fractions of Cd and Zn.
Zheng et al. did a theoretical investigation of exciton-LO-phonon interactions in
zinc compounds and discovered a reduced electron-LO-phonon interaction in mixed
Zn,Cd;_,Se-compounds with rising Zn content[101]. This would be an explana-
tion for the large deviation in the shift of the Huang-Rhys factor between small
and large nanorods. The surface-to-volume ratio scales with 1/r, which means that
small nanorods are subject much stronger to surface effects than the larger nanorods,
and the amount of mixed ZnCd-compounds comparative to the nanorod volume is
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increased. An estimation of the relative contributions of the two effects to the re-
duced coupling is not possible on the available experimental data. Dzhagan et al.,
however, included a discussion of the exciton-LO-phonon coupling in their investiga-
tion of the influence of different shell parameters on the phonons in spherical CdSe
core-shell particles[96]. By comparing CdS and ZnS capped particles. The authors
were able to monitor effects of the shell size and the dimensions of the intermixed
region sperately and found the effect of the changed confinement of electron and hole
to be more important for the changed coupling strength than the reduced Frohlich
coupling in the intermixed regions. Their discussion is general and this should also
apply to the nanorods.

7.5 The RBM in core-shell nanorods

The radial breathing mode that was discussed in Chapter 6 is also present in the
ab-initio calculated core-shell nanorods. A displacement pattern of the RBM in a
core-shell nanorod with a two-monolayer ZnS shell is displayed in Figure 7.5.

Figure 7.5: Displacement pattern of the radial breathing mode of a a 1.4 nm diameter
core-shell CdSe-ZnS nanorod. Image courtesy of Marcel Mohr.
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The RBM extends to the shell. The RBM frequency is increased by 7 — 15 cm ™!
compared to the bare counterpart. The thicker the shell, the larger the increase in
frequency. This is due to the shortened bonding lengths in the CdSe core with the
addition of the ZnS shell. The same effect can also be observed experimentally. The
RBM frequency of a CdSe nanorod with a diameter of 2.8 nm and a length of 22 nm
covered with a 2-3 monolayer ZnS shell is at 52 cm™!. This is 20 cm™! higher than
expected for a bare nanorod of this diameter. This increase of the RBM frequency is
larger than for the calculated nanorods because the shell of the measured nanorods
is thicker compared to the shells of the calculated nanorods.
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Summary and outlook

In this work Raman spectroscopy was utilized to determine the formation of com-
pressive strain in CdSe-ZnS core-shell nanorods, the exciton-phonon coupling strength
and to investigate confinement effects.

The fundamental Raman band of CdSe nanorods consists of contributions from lon-
gitudinal optical phonons and surface optical phonons. The size-tunability of the
nanorods was used to investigate the geometry-dependence of both contributions.
The longitudinal optical phonons are confined to the small nanorod volume. This
leads to a neutralization of the q = 0 rule and a shift of the longitudinal optical
phonon frequency. The large aspect ratio of the nanorods results in a pure diame-
ter dependence of this shift whereas the surface optical phonon frequency depends
on the nanorods’ aspect ratio. The sum of both effects leads to different positions
and shapes of the fundamental Raman band with a change of the nanorod geometry.
From this it follows that the size of the nanorods has always to be taken into account
when discussing effects, where the absolute frequencies of the two contributions are
relevant.

The coupling strength of the excitons to longitudinal optical phonons is accessible
from the Raman spectra and was investigated experimentally. In all nanorods, it
is about one order of magnitude smaller than the exciton-phonon coupling strength
in bulk material. A decrease of the influence of the Coulomb interaction due to
confinement effects is the origin of this. The size-tunability of the nanorods was
utilized to investigate the size-dependence of the coupling-strength. The coupling
strength rises for very small diameters because of an increased influence of higher
frequency phonons with decreasing diameter.

The size tunability of the nanorods was also used to investigate a third size-dependent
effect: A radial breathing mode was deduced from ab-initio calculations and exper-
imentally characterized with Raman spectroscopy. The frequency of this mode is
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diameter dependent and it thus allows the determination of the nanorod diameter
by a Raman measurement alone.

The influence of an epitaxial coating around the nanorods was then investigated
with Raman spectroscopy. Adding a ZnS shell around a CdSe nanorod strains the
nanorod core because of the lattice mismatch between the core and shell mate-
rial. The strain is mostly uniaxial on the lateral bonds and Raman spectroscopy
yields strain values in agreement with ab-initio calculated values. The influence
of the shell on the previously discussed effects in bare nanorods was investigated.
The exciton-phonon coupling strength is smaller in core-shell nanorods than in bare
nanorods due to a different confinement of the electron and the hole wavefunction
and the radial breathing mode is also present in core-shell nanorods, but with an
increased frequency due to the shortened bonds of the core. In conclusion, Raman
spectroscopy is a versatile, non-destructive method to gain information on colloidal
nanorods. With the results presented in this work Raman spectroscopy can now be
used to estimate the exciton-phonon coupling strength, observe phonon confinement
and determine the diameter of colloidal CdSe nanorods.

Recently, ordered structures of colloidal nanoparticles gained much attention[47,
102, 103]. The assembly of small nanoparticles into macroscopic structures is an im-
portant topic in chemistry and and materials science. The combination of nanoparti-
cles of different materials into a nanoparticle superlattice can result in a large variety
of materials (metamaterials) with controlled chemical composition. The possibility
to control the nanoparticle size, shape and composition, as provided by the colloidal
nanoparticle synthesis, allows the tuning of the electronic, optical and magnetic
properties of these building blocks[103, 104]. Lattice-mismatch strains can control
nanoscale pattern formation and semiconductor-metal superlattices can be created
through partial cation exchange of colloidal nanocrystals. Strain induces then the
spontaneous formation of periodic structures[102].

Raman spectroscopy could be used to investigate certain aspects in these emerging
materials. The vibrations of the superlattice are expected to give insight into the
quality of the order in the superlattice and the strength of the coupling between the
particles. In mixed semiconductor-metal ensembles, surface effects as presented in
Chapter 3 can be used to characterize contacts, contact distances, relative particle
distributions etc.. The presence and nature of coherent acoustic phonons, nanoa-
coustic waves, could also be investigated with Raman spectroscopy. A low density
of carriers, created with a laser pulse, in the superlattices is expected to lead to a
screening of the piezoelectric field due to the spatial separation of the electrons and
holes between the different particles. This space-charge screening field can cause the
strain within the semiconductor particles to change as a function of time and lead
to nanoacoustic waves. These waves could be usefull for several applications and
are expected to be measurable in an adjusted Raman set-up[105].

Raman spectroscopy will be a useful addition to PL and TEM investigations of

88



new colloidal nanoparticle heterostructures and help in the characterization and
optimization of these structures regarding applications.
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