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Abstract. Low rank perturbations of right eigenvalues of quaternion matrices are considered.
For real and complex matrices it is well known that under a generic rank-k perturbation the k largest
Jordan blocks of a given eigenvalue will disappear while additional smaller Jordan blocks will remain.
In this paper, it is shown that the same is true for real eigenvalues of quaternion matrices, but for
complex nonreal eigenvalues the situation is different: not only the largest k, but the largest 2k
Jordan blocks of a given eigenvalue will disappear under generic quaternion perturbations of rank
k. Special emphasis is also given to Hermitian and skew-Hermitian quaternion matrices and generic
low rank perturbations that are structure-preserving.

1. Introduction. In this paper we will consider an n× n matrix A with entries
from the skew-field H of the quaternions. Recall from [20] that a number λ ∈ H is
called a right eigenvalue if there is a vector x ∈ Hn \{0} such that Ax = xλ. Since for
every α ∈ H we have A(xα) = (xα)(α−1λα), we see that together with λ also every
similar number α−1λα is a right eigenvalue. Restricting oneself to one representative
of each equivalence class of similar right eigenvalues, one can assume without loss of
generality that the right eigenvalues are in fact complex numbers with nonnegative
imaginary part. This concept then allows the computation of a Jordan canonical form
for the matrix A, to be precise: there exists an invertible quaternion matrix S such
that

S−1AS = Jm1
(λ1)⊕ · · · ⊕ Jmp(λp),

with λ1, . . . , λp ∈ C having nonnegative imaginary part for j = 1, . . . , p. Here,
λ1, . . . , λp are not necessarily pairwise distinct and Jm(λ) stands for the upper trian-
gular complex Jordan block of size m×m associated with the eigenvalue λ ∈ C.

The question we will consider is the following: what happens to the Jordan canon-
ical form of A when we apply a generic additive perturbation of rank k, i.e., when we
consider the matrix A+UV T for some (U, V ) from a generic set Ω ⊆ Hn×Hn ∼= H2n.
For the complex case this problem was studied in [12], and later in [19, 21, 22]. An
alternative treatment for the complex case was given in [14], and also the real case has
been studied, see [16]. Furthermore, also the case of complex matrix pencils has been
studied in [9, 8] for the regular case and in [6] for the singular case, while the case
of regular matrix polynomials was treated in [7]. The related questions for matrices
with a symmetry structure have been addressed in a series of papers starting with
[14] and continued in [15, 16, 17, 18] and [13, 11] for many different classes of struc-
tures and the case of structure-preserving rank-one perturbation. A generalization
to the case of structure-preserving rank-k perturbations was then given in [5]. Also,
structure-preserving low-rank perturbations of regular matrix pencils with symmetry
structures have been considered, see [1, 2, 3, 4] for special perturbations of rank one
or two and [10] for the general case.

To be precise about the nature of the term ”generic”, we introduce the isomor-
phism χ : Hn → R4n as a particular standard representation of Hn seen as a real
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vector space as follows: If (1, i, j, k) is the canonical basis for H over R, we define

χ(u) =


u0
u1
u2
u3


for a vector u = u0 + u1i + u2j + u3k ∈ Hn, with ui ∈ Rn, i = 0, 1, 2, 3. Then a
set Ω ⊆ Hn is said to be generic (or more precisely generic with respect to the real
components) if the set χ(Ω) is a generic set in R4n, i.e., its complement is contained
in a proper algebraic subset of R4n. (Recall that a subset A ⊆ R4n is called algebraic
if it is the set of common zeros of finitely many real polynomials in 4n variables, and
it is called proper if it is not the full space R4n.) Similarly, a set Ω ⊆ Cn is said to
be generic (or more precisely generic with respect to the real and imaginary parts) if
it is generic when viewed as the canonical subspace of R2n. It is easy to see that if
Ω ⊆ Fn is generic and S ∈ Fn,n is invertible, then the sets SΩ and ΩS are generic as
well, where F ∈ {C,H}.

A general result on rank-k perturbations of complex matrices says that the geo-
metric multiplicity of a fixed eigenvalue can change at most by k if any (not necessarily
being generic) rank-k perturbation is applied, see, e.g., [19] or [14], and the question
arises if this remains true for quaternion matrices. As a first example, consider the
quaternion matrices

A =

[
1 0
0 1

]
, B =

[
1 −k
k 1

]
, and A+B =

[
2 −k
k 2

]
.

Then A is actually a real matrix with eigenvalue 1 with algebraic and geometric
multiplicity two and B is a quaternion matrix of rank one. Then one easily checks
that

(A+B)

[
1
k

]
=

[
1
k

]
3, and (A+B)

[
1
−k

]
=

[
1
−k

]
1,

so that the eigenvalues of A + B are 3 and 1. This shows that for this example the
geometric multiplicity of the eigenvalue 1 does change by only one from two to one as
the reader may have expected.

Surprisingly, however, it needs no longer be the case for quaternion matrices that
a rank-k perturbation can change the geometric multiplicity by at most k. To see
this, consider the example

C :=

[
i 0
0 i

]
, B =

[
1 −k
k 1

]
,

where B is the same rank-one matrix as above. Then setting

S :=

[
−1 + 2j 1− k

2 + j −i− j− k

]
a straight forward calculation shows that[

1 + i −k
k 1 + i

]
S =

[
−1 + 2j 2j− k

2 + j 2− i− k

]
= S

[
1 1
0 1

]
,
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or equivalently S−1(C +B)S = J2(1), so the perturbed matrix C +B has the eigen-
value 1 with geometric multiplicity one and algebraic multiplicity two which means
that the geometric multiplicity of the eigenvalue i of the original matrix C has changed
by 2 from two to zero. Although we will see below that the perturbation B does not
show the generic behaviour as it generates a Jordan block of size two of the newly
created eigenvalue 1, this example shows that the effect of quaternion rank one per-
turbations of quaternion matrices may be significantly different from the analogous
effect observed for complex rank-one perturbations of complex matrices.

The observant reader may suspect at this moment that the different behavior
of the matrices A and C under a perturbation with B may be caused by the given
symmetry-structure and its preservation or non-preservation, respectively. Indeed, the
matrices A and B are Hermitian while C is skew-Hermitian, so the perturbation with
B is structure-preserving for A, but not for C. However, the surprising effect in the
second example remains true even for perturbations preserving the skew-Hermitian
structure as our third example with the matrices

C =

[
i 0
0 i

]
and D :=

[
j −1
1 j

]
will show. Here, D is skew-Hermitian and has rank one. When we consider

C +D =

[
i + j −1

1 i + j

]
,

then a straightforward computation shows that

(C +D)

[
1 +
√

2 + k

−(1 +
√

2)i− j

]
=

[
1 +
√

2 + k

−(1 +
√

2)i− j

]
(1 +

√
2)i,

(C +D)

[
−(1 +

√
2)i− j

1 +
√

2 + k

]
=

[
−(1 +

√
2)i− j

1 +
√

2 + k

]
(
√

2− 1)i.

This shows that the geometric multiplicity of the eigenvalue i of C drops from two to
zero even under a structure-preserving rank-one perturbation.

In this paper we will show that the different behavior observed in the examples
above is due to the nature of the occurring eigenvalues. Indeed, real eigenvalues behave
differently than complex eigenvalues: if a generic rank-k perturbation is applied to a
square quaternion matrix, then the largest k Jordan blocks associated with any real
eigenvalue will disappear from the Jordan canonical form while additional smaller
Jordan blocks will remain. For a given complex eigenvalue, however, it will now be the
corresponding largest 2k Jordan blocks that disappear while again additional smaller
ones will remain. This effect can be observed for both generic rank-one perturbations
of general quaternion matrices as well as for generic structure-preserving rank-one
perturbations of Hermitian or skew-Hermitian quaternion matrices.

The remainder of the paper is organized as follows. In the next section, we present
one of the main tools in our investigations by reviewing the well-known connection
between quaternion matrices and a subclass of complex matrices with a special sym-
metry structure. This class will be denoted by Qn,n, where the symbol Q has been
chosen as a reminder of the quaternions. In Section 3, we generalize some results on
low-rank perturbations from the literature so that they can be applied to structure-
preserving low rank perturbations inQn,n. In Section 4, we then discuss the changes in
the Jordan structure under generic structure-preserving rank-k perturbations within
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Qn,n and translate this result in Section 5 to quaternion matrices. In Section 6 and 7,
we investigate structure-preserving quaternion rank-k perturbations of Hermitian and
skew-Hermitian, respectively, and show that the same behavior as under generic per-
turbations that ignore the structure can be observed.

2. Reduction to a structured matrix problem. It is well known that the
map ω : H→ ω(H) ⊆ C2,2 with

ω(α1 + iα2 + jα3 + kα4) 7→
[

α1 + iα2 α3 + iα4

−α3 + iα4 α1 − iα2

]
for αi ∈ R, i = 1, 2, 3, 4, is a skew-field isomorphism. Its extension (also denoted by
ω) to matrices will be an important tool in this paper: given a quaternion matrix
A ∈ Hn,m, we can write A = A1 +A2j, where A1 and A2 are complex matrices. Then

ω(A) =

[
A1 A2

−A2 A1

]

and by [20, Theorem 5.7.1], the Jordan form of the quaternion matrix A is given by

Jm1(λ1)⊕ · · · ⊕ Jmp(λp),

if and only if the Jordan form of ω(A) is given by[
Jm1(λ1) 0

0 Jm1
(λ1)

]
⊕ · · · ⊕

[
Jmp(λp) 0

0 Jmp(λp)

]
. (2.1)

Note that the eigenvalues in (2.1) are allowed to be real. In particular, it follows that
each real eigenvalue has even algebraic and geometric multiplicity, and all partial
multiplicities occur an even number of times. In the following it will be useful to use
a slight variant of (2.1) that is itself in the range of ω. Applying a block permutation
the matrix in (2.1) is easily seen to be similar to[

J 0
0 J

]
with J = Jm1(λ1)⊕ · · · ⊕ Jmp(λp).

The map ω mapping quaternion matrices to complex matrices has the properties
that it is linear (with respect to real scalars), multiplicative, and respects the transpose
operation [20, Section 3.4]. In particular, we have

ω(A+ UV T ) = ω(A) + ω(U)ω(V )T (2.2)

for A ∈ Hn,n and U, V ∈ Hn,k. Thus, to study the effect of rank-k perturbations on
the quaternion matrix A we can study the effect of structure-preserving perturbations
of ω(A). However, if U = U1 + U2j and V = V1 + V2j with Ui, Vi ∈ Cn,k have rank k,
then it follows by [20, Proposition 3.2.5(e)] and the properties of ω that

ω(U) =

[
U1 U2

−U2 U1

]
and ω(V ) =

[
V1 V2

−V2 V1

]

have rank 2k. Thus, rank-k perturbations of quaternion matrices lead to rank-2k
perturbations of complex matrices that are structured as in the range of ω.
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In the following it will be useful to use an alternative characterization of this par-
ticular class of structured complex matrices. For this, we will introduce the following
notation.

Definition 2.1. Let n, k ∈ N and

J := J2n :=

[
0 In
−In 0

]
,

Then we define

Qn,k =
{
X ∈ C2n,2k

∣∣ J2nX = XJ2k
}
.

It is straightforward to check that a 2n× 2k matrix X is in the range of ω if and
only if X ∈ Qn,k. In the following, we will sometimes switch between the sets Hn,m
and Qn,m, and in order to make it easier for the reader to keep track in which set
we currently are, we adopt the convention to use “hatted” symbols for matrices in
Qn,m. Thus, if A ∈ Hn,m then we denote Â = ω(A) and similarly, if B̂ ∈ Qn,m, then

B = ω−1(B̂) ∈ Hn,m.

The next proposition shows that the formula in (2.2) gives a parametrization of
matrices in Qn,n that have rank 2k so that we are able to identify and describe generic
sets of such matrices.

Proposition 2.2. Let B̂ ∈ Qn,n be a matrix of rank 2k. Then there exist two

matrices Û , V̂ ∈ Qn,k of full rank 2k such that B̂ = Û V̂ T .

Proof. Since B̂ is in the range of ω, there exists a quaternion matrix B ∈ Hn,n
such that B̂ = ω(B), and by the properties of ω B must have rank k. But then
there exists matrices U, V ∈ Hn,k of rank k such that B = UV T by [20, Proposition

3.2.5(e)], and hence we obtain B̂ = Û V̂ T with Û = ω(U), V̂ = ω(V ) ∈ Qn,k having
rank 2k. �

As a side-note, observe that matrices in the class Qn,n can never have odd rank,
so the smallest rank perturbation of matrices in that class is a perturbation of rank
two.

3. Localization results. In this section, we establish a result that allows us
to determine the behavior of a possibly structured complex matrix under generic
structure-preserving low-rank perturbations by studying the effect of perturbations
that locally perturb an arbitrary, but fixed eigenvalue of the matrix. The main theo-
rem is a generalization of [5, Theorem 2.6] and in fact contains that result as a special
case. A key ingredient for its proof is the following lemma which is a generalization
of [17, Lemma 8.1]. We highlight that although the lines of the proofs of the results
in this section follow the lines of the proofs of the previously obtained results, they
are not immediate. Therefore, a careful revision of each single step in the proof is
necessary to obtain the full generality in the main theorem presented here. In this
way, the result will not only be applicable in the remainder of this paper, but also
for any class of structured matrices and corresponding structure-preserving low-rank
perturbations that can be parameterized by polynomial functions.

The next lemma is needed for the proof of the main result and states that newly
created eigenvalues of perturbed matrices will generically have multiplicities that are
as small as possible.
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Lemma 3.1. Let A ∈ Cn,n have the pairwise distinct eigenvalues λ1, . . . , λm ∈ C
with algebraic multiplicities a1, . . . , am, and let ε > 0 be such that the discs

Dj :=
{
µ ∈ C

∣∣ |λj − µ| < ε2/n
}
, j = 1, . . . ,m

are pairwise disjoint. Furthermore, let B : Rm → Cn,n be an analytic function with
B(0) = A such that the following conditions are satisfied:

1) For all u ∈ Rm, the algebraic multiplicity of any eigenvalue of B(u) is always
a multiple of ` ∈ N \ {0}.

2) There exists a generic set Ω ⊆ Rm such that for all u ∈ Ω the matrix B(u)
has the eigenvalues λ1, . . . , λm with algebraic multiplicities ã1, . . . , ãm, where
ãj ≤ aj for j = 1, . . . ,m. (Here, we allow ãj = 0 in the case that λj no
longer is an eigenvalue of B(u).)

3) For each j = 1, . . . ,m there exists uj ∈ Rm with ‖uj‖ < ε such that the matrix
B(u) has exactly (aj− ãj)/` pairwise distinct eigenvalues in Dj different from
λj and each with algebraic multiplicity exactly `.

Then there exists a generic set Ω0 ⊆ Rm such that for all u ∈ Ω0 the eigenvalues of
B(u) that are different from those of A have algebraic multiplicity exactly `.

Proof. First observe that there exists a constant K only depending on A such that
for any u ∈ Rm with ‖u‖ < K ·min{1, ε} the matrix B(u) has exactly aj eigenvalues
in the disc Dj . Indeed, this follows from the continuity of B and well-known results
on matching distance of eigenvalues of nearby matrices, see, e.g., [23, Section IV.1]
and references therein. In the following, we denote ε′ = K ·min{1, ε}.

Next, we fix λj and denote by χ(λj , u) the characteristic polynomial (in the
independent variable t) of the restriction of B(u) to the spectral invariant subspace
corresponding to the eigenvalues of B(u) within Dj . Then the coefficients of χ(λj , u)
are analytic functions of the components of u, see, e.g., [14, Lemma 2.5] for more
details.

Let q(λj , u) be the number of distinct eigenvalues of B(u) in the disk Dj . Fur-
thermore, denote by S(p1, p2) the Sylvester resultant matrix of the two polynomials
p1(t), p2(t) and recall that S(p1, p2) is a square matrix of size deg (p1) + deg (p2) and
that the rank deficiency of S(p1, p2) coincides with the degree of the greatest common
divisor of the polynomials p1(t) and p2(t). We have

q(λj , u) =
1

`

(
rank S

(
χ(λj , u),

∂`χ(λj , u)

(∂t)`

)
− aj

)
+ 1.

The entries of S
(
χ(λj , u),

∂`χ(λj ,u)
(∂t)`

)
are scalar multiples (which are independent of u)

of the coefficients of χ(λj , u), and therefore the set Q(λj) of all u ∈ Rm, ‖u‖ < ε′, for
which q(λj , u) is maximal is the complement of the set of zeros of an analytic function
of the entries of u. (In fact, this analytic function can be chosen to be the product
of minors of that order that is equal to the maximal value of q(λj , u).) In particular,
Q(λj) is open and dense in {

u ∈ Rm
∣∣ ‖u‖ < ε′

}
.

By hypothesis, there exists uj ∈ Rm such that B(uj) has exactly 1
` (aj−ãj) eigenvalues

with algebraic multiplicity exactly ` in Dj different from λj . If uj happens not to
be in Ω, then we may slightly perturb uj to obtain a new u′j ∈ Ω such that B(u′j)

has the eigenvalues λ1, . . . , λm with algebraic multiplicities ã1, . . . , ãm and 1
` (aj − ãj)
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eigenvalues with algebraic multiplicity exactly ` in Dj different from λj . Such choice
of u′j is possible because Ω is generic, the property of eigenvalues having algebraic
multiplicity exactly ` persists under small perturbations of B(uj) by assumption 1),
and the total number of eigenvalues of B(u) within Dj , counted with multiplicities, is
equal to aj , for every u ∈ Rm with ‖u‖ < ε′. Since Ω is open, clearly there exists δ > 0
such that for all u ∈ Rm with ‖u − uj‖ < δ the matrix B(uj) has the eigenvalues
λ1, . . . , λm with algebraic multiplicities ã1, . . . , ãm and 1

` (aj − ãj) eigenvalues with
algebraic multiplicity exactly ` in Dj different from λj . Since the set of all such
vectors u is open in Rm, it follows from the properties of the set Q(λj) established
above that in fact we have

q(λj , u) =
1

`
(aj − ãj), for all u ∈ Rm, ‖u− uj‖ < δ.

So for the open set

Ωj := Q(λj) ∩ Ω

which is dense in
{
u ∈ Rm

∣∣ ‖u‖ < ε′
}

, we have that all eigenvalues of B(u) within
Dj different from λj have algebraic multiplicity exactly `. Now let

Ω′ =

m⋂
j=1

Ωj ⊆ Ω.

Note that Ω′ is nonempty as the intersection of finitely many sets that are open dense
in
{
u ∈ Rm

∣∣ ‖u‖ < ε′
}

.
Finally, let χ(u) denote the characteristic polynomial (in the independent variable

t) of B(u). Then the number of distinct roots of χ(u) is given by

rankS

(
χ(u),

∂χ(u)

∂t

)
− n+ 1

and therefore, the set of all u ∈ Ω on which the number of distinct roots of χ(u)
is maximal, is a generic set. Since Ω′ constructed above is nonempty, this maximal
number is equal to

∑m
j=1

1
` (aj − ãj), i.e., generically all eigenvalues of B(u) that are

different from λ1, . . . , λm have algebraic multiplicity exactly `. �

Next, we consider the analogue of Theorem 2.6 of [5] which describes the possible
changes in the Jordan structure of a fixed eigenvalue λ of a matrix from Qn,k under
low rank perturbations, and also presents conditions when a generic behavior can be
observed.

Theorem 3.2. Let A ∈ Cn,n and let the Jordan canonical form of A be given by

Jn1
(λ)⊕ · · · ⊕ Jnm(λ)⊕ J̃ ,

with n1 ≥ · · · ≥ nm and λ 6∈ σ(J̃ ). Furthermore, let P ∈ Rn,n[t1, . . . , tr] be a matrix
whose entries are polynomials in the independent indeterminate variables t1, . . . , tr.
Assume that for all u = (u1, . . . , ur) ∈ Rr we have

(i) rankP (u) ≤ κ;
(ii) the algebraic multiplicity of any eigenvalue of A + P (u) is always a multiple

of ` ∈ N \ {0}.
Then the following statements hold:
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1. For each (u1, . . . , ur) ∈ Rr there exist integers η1 ≥ · · · ≥ η` such that
(a) the Jordan canonical form of A+ P (u1, . . . , ur) is given by

Jη1(λ)⊕ · · · ⊕ Jη`(λ)⊕ J̌ ,

where λ 6∈ σ(J̌ ),
(b) (η1, . . . , η`) dominates (nκ+1, . . . , nm); that is, we have l ≥ m − κ and

ηj ≥ nj+κ for j = 1, . . . ,m− κ.
2. Assume that for all u = (u1, . . . , ur) ∈ R the algebraic multiplicity au of λ as

an eigenvalue of A + P (u) satisfies au ≥ a for some a ∈ N. If there exists
u0 ∈ Rr such that au0

= a, then the set

Ω = {u ∈ Rr | au = a}

is a generic set.
3. Assume that for any ε > 0 there exists u0 ∈ Rr with ‖u0‖ < ε such that the

Jordan form of A+ P (u0) is described by
(a) Jnκ+1

(λ)⊕ · · · ⊕ Jnm(λ)⊕ J̌ , λ 6∈ σ(J̌ ),
(b) all eigenvalues that are not eigenvalues of A have multiplicity ` precisely.

Then there exists a generic set Ω ⊆ Rr such that the Jordan canonical form
of A+ P (u) is described by (a) and (b) for all u ∈ Ω.

Proof. Part (1) is a direct consequence of [9, Lemma 2.1] using the fact that the
rank of P (u) is at most κ for any u ∈ Rr.

For part (2), let Y (u) = (A + P (u) − λIn)n. Then the hypothesis tells us that
rankY (u0) = n − a for some u0 ∈ Rr. Thus we can apply [14, Lemma 2.1] (or [5,
Lemma 2.2]) to see that the set

Ω := {u ∈ Rr | rankY (u) ≥ n− a}

is a generic set. Note that the condition rankY (u) ≥ n−a is equivalent to au ≤ a, and
since the reverse inequality au ≥ a holds by assumption it is equivalent to au = a0.
Hence, Ω is the desired generic set.

Concerning part (3) observe that by part (1) of the theorem, the list of par-
tial multiplicities of A + P (u) corresponding to the eigenvalue λ dominates the list
(nκ+1, . . . , nm). Hence, the algebraic multiplicity au of A + P (u) at λ is at least
a := nκ+1 + · · · + nm. By the hypothesis there exists a particular u0 ∈ Rr such
that au0

= nκ+1 + · · · + nm = a. Then by part (2) the set Ω1 of all u ∈ Rr with
au = a is generic. Since the only list of partial multiplicities that both dominates
(nκ+1, . . . , nm) and has au = a0 is the list (nκ+1, . . . , nm) itself, this shows that the
Jordan form described in part (a) is attained by all matrices in Ω1. Moreover, since
P is analytic and u0 can be chosen arbitrarily small with A + P (u0) satisfying the
condition in (b), it follows by Lemma 3.1 that the set Ω2 of all u ∈ Rr satisfying (b)
is also generic. Then the set Ω = Ω1 ∩ Ω2 is the desired generic set. �

4. Even rank perturbations within Qn,n. We are now ready to state the first

main result of this paper, which basically says that for each eigenvalue of a matrix Â
in Qn,n under generic perturbations with matrices of rank 2k in Qn,n the largest 2k
partial multiplicities disappear while the others remain, and that the eigenvalues of
Â+ Û V̂ T which are not already eigenvalues of Â are all simple and non-real.
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Theorem 4.1. Let Â ∈ Qn,n, and let the Jordan canonical form of Â be given
by A1 ⊕A1, where

A1 =

(
r1⊕
i=1

Jni,1(λ1)

)
⊕ · · · ⊕

(
rp⊕
i=1

Jni,p(λp)

)

⊕

(
rp+1⊕
i=1

Jni,p+1(λp+1)

)
⊕ · · · ⊕

(
rm⊕
i=1

Jni,m(λm)

)
where the eigenvalues λ1, . . . , λm are pairwise distinct with λ1, . . . , λp being real and
λp+1, . . . , λm having positive imaginary part, and where the partial multiplicities are
ordered in decreasing order: n1,j ≥ · · · ≥ nrj ,j for all j = 1, . . . ,m.

Then, there exists a generic set Ω ⊆ Qn,k ×Qn,k such that for all (Û , V̂ ) ∈ Ω the

Jordan form of Â+ Û V̂ T is given by C1 ⊕ C1, where

C1 =

(
r1⊕

i=k+1

Jni,1(λ1)

)
⊕ · · · ⊕

(
rp⊕

i=k+1

Jni,p(λp)

)

⊕

(
rp+1⊕

i=2k+1

Jni,p+1(λp+1)

)
⊕ · · · ⊕

(
rm⊕

i=2k+1

Jni,m(λm)

)
⊕ J̃ ,

where J̃ has simple nonreal eigenvalues with positive imaginary part that are different
from any of the eigenvalues of A.

Proof. Without loss of generality we can assume that A is already equal to its
Jordan canonical form A1 ⊕ A1. We then aim to apply Theorem 3.2 for the case
κ = 2k and ` = 1, and for the function P̂ = Û V̂ T which is interpreted as a function
of the r = 8nk real and imaginary parts of the entries of U1, U2, V1 and V2, where

Û =

[
U1 U2

−U2 U1

]
and V̂ =

[
V1 V2

−V2 V1

]
.

Hence, it remains to find for each eigenvalue λj and any ε̃ > 0 a particular choice

of matrices Û0, V̂0 ∈ Qn,k with ‖Û0‖, ‖V̂0‖ < ε̃ such that Â + Û0V̂
T
0 satisfies parts

3a) and 3b) of Theorem 3.2. Then Theorem 3.2 yields the existence of a generic
set Ωj ⊆ Qn,k × Qn,k (canonically identified with a subset of R8nk) such that for

all (Û , V̂ ) ∈ Ωj the parts 3a) and 3b) of Theorem 3.2 are satisfied. Taking then
the intersection Ω = Ω1 ∩ · · · ∩ Ωm yields the desired generic set. Concerning the
matrix J̃ , note that since Â+ Û V̂ T is in Qn,n, the set of the new simple eigenvalues

that are not eigenvalues of Â does not contain real eigenvalues (as those would have
even multiplicity) and is necessarily symmetric with respect to the real line. We can
thus order the new eigenvalues in the Jordan canonical form in such a way that all
eigenvalues with positive imaginary part are collected in J̃ . In the following we will
consider two cases.

Case 1: k = 1. We first consider the subcase that λj is real, that is j ∈ {1, . . . , p}.
Let B1 ∈ Cn,n be the matrix that has zero entries everywhere, except for the position
(aj+n1,j , aj+1) where the entry ε ·eiϕ. Here, ε is a sufficiently small positive number,
ϕ satisfies 0 < ϕ < π

n1,j
, and we have

aj =

j−1∑
s=1

rs∑
i=1

ni,s.
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Thus, in A1 + B1 only a single Jordan block of partial multiplicity n1,j associated
with the eigenvalue λj of A1 is perturbed by the rank-one perturbation B1 as

λj 1

λj
. . .

. . . 1
ε · eiϕ λj

 .
The characteristic polynomial χ of this block in the independent variable t is given
by (t − λj)n1,j − ε · eiϕ and thus its roots are the vertices of a regular polygon on
a circle of radius ε1/n1,j with center λj . Since 0 < ϕ < π

n1,j
the set of roots of χ

is conjugate-free. In particular, all roots of χ are nonreal. Furthermore, choosing ε
small enough guarantees that all roots of χ are distinct from each of the eigenvalues
of A.

Now let B̂ = B1 ⊕B1. Then B̂ ∈ Qn,n has rank two, so by Proposition 2.2 there

exist rank two matrices Û0, V̂0 ∈ Qn,1 such that B̂ = Û0V̂
T
0 . Then it is easy to check

that the Jordan canonical form of Â+Û0V̂
T
0 = (A1+B1)⊕(A1+B1) corresponding to

λj is as desired. In particular, by the choice of ε and ϕ above and since the eigenvalues

of A1 + B1 are the conjugates of those of A1 + B1, all eigenvalues of Â+ B̂ that are
not eigenvalues of Â are simple and nonreal.

Next, consider an eigenvalue λj with j ≥ p. If there is just one Jordan block
associated with λj , then we can proceed as for real eigenvalues, where here we can
choose ϕ = 0. Then λj will not be an eigenvalue of the perturbed matrix. If the
geometric multiplicity of λj is at least 2, then consider the submatrix

S :=


Jn1,j

(λj) 0 0 0
0 Jn2,j

(λj) 0 0

0 0 Jn1,j
(λj) 0

0 0 0 Jn2,j
(λj)

 .
We aim to find a rank two perturbation of S such that all eigenvalues of the perturbed
matrix are simple and nonreal. To achieve this, we use an idea from pole-placement
in control theory. Consider the submatrix

S1 =

[
Jn1,j (λj) 0

0 Jn2,j
(λj)

]
of S. Since λj is nonreal, this matrix is nonderogatory and thus similar to the com-
panion form of its characteristic polynomial, i.e., there exists a nonsingular T such
that

S1 = T


0 −β0

1
. . .

...
. . . 0 −βν−2

1 −βν−1

T−1,
where β0, . . . , βν−1 are the coefficients of the polynomial

χ = (t− λj)n1,j (t− λj)n2,j = tν + βν−1t
ν−1 + · · ·+ β1t+ β0,

10



and where we used the abbreviation ν = n1,j + n2,j . Now choose ν values µ1, . . . , µν
such that n1,j of them are close to λj and the remaining n2,j = ν − n1,j are close
to λj , and such that the set {µ1, . . . , µν} is conjugate-free and does not intersect the
spectrum of A. Let γ0, . . . , γν−1 be the coefficients of the polynomial

ν∏
i=1

(t− µi) = tν + γν−1t
ν−1 + · · ·+ γ1t+ γ0.

Then setting

B̃ :=

[
B11 B12

B21 B22

]
:= T


0 β0 − γ0

0
. . .

...
. . . 0 βν−2 − γν−2

0 βν−1 − γν−1

T−1

with Bik ∈ Cni,j ,nk,j , i, k ∈ {1, 2}, we obtain that S1 + B̃ has exactly the eigenvalues

µ1, . . . , µν ∈ C+. In particular, the eigenvalues of S1 + B̃ are conjugate-free (and
nonreal). Thus, setting

B̂ =


B11 0 0 B12

0 B22 B21 0
0 B12 B11 0
B21 0 0 B22

 ,
we find that B̂ ∈ Qν,ν has rank two and the eigenvalues of S + B̂ are given by

µ1, . . . , µν , µ1, . . . , µν . In particular, the eigenvalues of S + B̂ are all simple. By
choosing the values µ1, . . . , µν sufficiently close to the values λj and λj , respectively,
we can guarantee that the coefficients γi can be chosen to be arbitrarily close to the
coefficients βi for i = 1, . . . , ν, and thus, B̂ can be chosen to be of arbitrarily small
norm.

Case 2: k > 1. By using the result for the already proved case 1, we can find a
sequence of k matrices ÛiV̂

>
i with Ûi, V̂i ∈ Qn,1 being of arbitrarily small norm such

that in

Â+ Û1V̂
>
1 + · · ·+ ÛkV̂

>
k

the change in the Jordan canonical form with respect to the eigenvalue λ from the
matrix Â+ Û1V̂

>
1 + · · ·+ Ûi−1V̂

>
i−1 to Â+ Û1V̂

>
1 + · · ·+ ÛiV̂

>
i is that the largest two

Jordan block associated with λ disappear from the Jordan canonical form while all
smaller ones remain (or λ is no longer an eigenvalue if there were at most two Jordan
blocks left in the previous step), and all newly generated eigenvalues are simple. In

particular, Â + Û1V̂
>
1 + · · · + ÛkV̂

>
k then has the Jordan canonical form as claimed

in the theorem. If

Ûi =

[
ui1 ui2
−ui2 ui1

]
and V̂i =

[
vi1 vi2
−vi2 vi1

]
then choosing

Û =

[
u11 · · · uk1 u12 . . . uk2
−u12 · · · −uk2 u11 · · · uk1

]
∈ Qn,k

11



and

V̂ =

[
v11 · · · vk1 v12 . . . vk2
−v12 · · · −vk2 v11 · · · vk1

]
∈ Qn,k

gives the desired example, because Û V̂ > = Û1V̂
>
1 + · · · + ÛkV̂

>
k as one can easily

check. �

5. Rank one perturbations of quaternion matrices. As a direct application
of the main theorem in the previous section, we immediately obtain the following the-
orem that describes the generic change in the Jordan structure of a given quaternion
matrix under a generic rank-k perturbation.

Theorem 5.1. Let A be an n×n quaternion matrix, and let its Jordan canonical
form be given by (

r1⊕
i=1

Jni,1(λ1)

)
⊕ · · · ⊕

(
rp⊕
i=1

Jni,p(λp)

)

⊕

(
rp+1⊕
i=1

Jni,p+1(λp+1)

)
⊕ · · · ⊕

(
rm⊕
i=1

Jni,m(λm)

)

where λ1, . . . , λp are real, and λp+1, . . . , λm are non-real and in the open upper half
plane, and where for each j = 1, . . . ,m the partial multiplicities are ordered in de-
creasing order: n1,j ≥ · · · ≥ nrj ,j.

Then there exists a generic set Ω ⊆ Hn,k × Hn,k such that for each (U, V ) ∈ Ω
the Jordan canonical form of A+ UV T is given by(

r1⊕
i=k+1

Jni,1(λ1)

)
⊕ · · · ⊕

(
rp⊕

i=k+1

Jni,p(λp)

)

⊕

(
rp+1⊕

i=2k+1

Jni,p+1(λp+1)

)
⊕ · · · ⊕

(
rm⊕

i=2k+1

Jni,m(λm)

)
⊕ J̃ ,

where J̃ has simple non-real eigenvalues not equal to any of the eigenvalues of A.
Proof. The proof is based on reduction to the complex structured case treated in

the previous section. The matrix ω(A) is in the class Qn,n and for U, V ∈ Hn,k we
have ω(U), ω(V ) ∈ Qn,k. Moreover, genericity of subsets Hn,k ×Hn,k with respect to
the four real components of each matrix pair means exactly the same as genericity of
the corresponding subset Qn,k ×Qn,k with respect to the real and imaginary parts of
each matrix pair. Also, we have ω(A+ UV T ) = ω(A) + ω(U)ω(V )T by (2.2).

Observe that the Jordan canonical form given in this theorem leads to the Jordan
canonical form of the matrix ω(A) as given in Theorem 4.1. Applying the results of
that theorem, and translating back via ω−1 we see that for a non-real eigenvalue λ of
A the partial multiplicities of A+UV T corresponding to λ are given by the (2k+1)st
and following partial multiplicities of A corresponding to λ (if any), while for a real
eigenvalue λ of A the partial multiplicities of A+ UV T corresponding to λ are given
by the (k + 1)st and following partial multiplicities of A corresponding to λ (if any).
So non-real eigenvalues lose the largest 2k partial multiplicities, but real eigenvalues
only the largest k ones. In addition, eigenvalues of A+UV T which are not eigenvalues
of A are simple and non-real. �
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6. Rank-k perturbations of Hermitian quaternion matrices. In this sec-
tion, we will focus on Hermitian quaternion matrices, i.e., matrices A ∈ Hn,n satisfying
A∗ = A. In that case, the corresponding matrix ω(A) ∈ Qn,n is a complex Hermitian
matrix, and consequently all its eigenvalues are real, and all its partial multiplicities
are equal to one. Since it is a matrix in Qn,n, the geometric multiplicity of each
eigenvalue of ω(A) is even.

While the result on the generic behavior of Hermitian matrices in Hn,n under
arbitrary perturbations still follows from Theorem 5.1, it is a natural question to ask
whether this remains true under structure-preserving transformations. Observe that
a rank-k Hermitian quaternion perturbation of A takes the form A+B with B ∈ Hn,n
being Hermitian and of rank k. Thus, in Qn,n we should be considering ω(A) +ω(B)
with ω(B) being Hermitian of rank 2k.

Note that a-priori this is a restriction on the type of rank-2k Hermitian pertur-
bations we are allowed to make to ω(A), because our perturbation matrix does not
only have to be Hermitian, but also to be in the range of ω. Indeed, for a 2n × 2n
Hermitian matrix of rank 2k it is possible that the number of positive (or the number
of negative) eigenvalues is odd, but a matrix in Qn,n always has eigenvalues with even
geometric multiplicities. We therefore start our investigation by characterizing the set
of Hermitian matrices of rank 2k that are in the range of ω. We do this by using the
following results that generalize the well-known results on the spectral decomposition
and Sylvester’s Law of Inertia to the case of Hermitian quaternion matrices.

Proposition 6.1 ([20, Theorem 5.3.6.(c) and Theorem 4.1.6.(a)]).
Let A ∈ Hn,n be Hermitian. Then the following statements hold.

1. There exists a unitary matrix Q ∈ Hn,n such that

Q∗AQ = diag(α1, . . . , αn),

where α1, . . . , αn ∈ R.
2. There exists an invertible matrix S ∈ Hn,n and uniquely defined integers π, ν

such that

S∗AS =

 Iπ 0 0
0 −Iν 0
0 0 0

 . (6.1)

Note that 1) confirms our observation at the beginning of this section that the
eigenvalues of a Hermitian quaternion matrix are all real and semisimple. Part 2)
immediately yields a characterization of Hermitian quaternion matrices of rank k.

Corollary 6.2. Let A ∈ Hn,n be a Hermitian quaternion matrix of rank k.
Then there exists an integer π and a matrix U ∈ Hn,k of full rank such that

A = UΣU∗, where Σ =

[
Iπ 0
0 −Ik−π

]
. (6.2)

Proof. This follows immediately from part 2) of Proposition 6.1 by noting that A
is of rank k if and only if π + ν = k in (6.1). The result then follows from letting U
be the part of S∗ that consists of its first k columns. �

Corollary 6.3. Let Â ∈ Qn,n be Hermitian and of rank 2k. Then there exists a

matrix Û ∈ Qn,k of full rank 2k and a diagonal matrix Σ̂ ∈ Qn,n satisfying Σ̂2 = I2n
such that Â = Û Σ̂Û∗.

13



Proof. The result follows immediately by using Corollary 6.2 on A := ω−1(Â) to
obtain a decomposition A = UΣU∗ as in (6.2). Then applying ω yields the desired

decomposition with Û = ω(U) and Σ̂ = ω(Σ) = Σ⊕ Σ. �
We now obtain the following result on generic rank-2k perturbations of Hermitian

matrices in Qn,n.

Theorem 6.4. Let Â ∈ Qn,n be Hermitian, and let λ1, . . . , λp be the pairwise

distinct (necessarily real) eigenvalues of Â, with multiplicities 2r1, . . . , 2rp (where nec-
essarily the algebraic multiplicities coincide with the geometric multiplicities). Fur-

thermore, let Σ̂ ∈ Qk,k be diagonal such that Σ̂2 = I2k. Then there exists a generic

set Ω ⊆ Qn,k such that for all Û ∈ Ω the following statements hold:

1. For all j ∈ {1, . . . , p} the eigenvalue λj of Â+ Û Σ̂Û∗ has multiplicity 2rj−2k

if rj > k, and if rj ≤ k, then λj is not an eigenvalue of Â+ Û Σ̂Û∗.

2. All eigenvalues of Â+ Û Σ̂Û∗ which are not eigenvalues of Â have multiplicity
precisely two.

Proof. We will apply Theorem 3.2 for the case κ = 2k and ` = 2, and for the
function P = Û Σ̂Û∗ which is a polynomial in the 4nk real and imaginary part of the
entries of U1, U2 ∈ Cn,k when we write

Û =

[
U1 U2

−U2 U1

]
.

Note that we are indeed in the case ` = 2, because each eigenvalue of a Hermitian
matrix in Qn,k has even multiplicity. Thus, it remains to find for each eigenvalue λj
a particular matrix Û0 ∈ Qn,k such that Â + Û0Σ̂Û∗0 satisfies parts 3a) and 3b) of

Theorem 3.2 and such that the norm of Û0 can be chosen to be arbitrarily small.

To this end we may assume that k = 1, because as in the proof of Theorem 4.1 an
example in the case k > 1 can be constructed via k consecutive rank-2 perturbations
from Qn,k. Furthermore, we may assume without loss of generality that Â has the
form

Â = diag(α1, . . . , αn, α1, . . . , αn),

where α1 = λj . Then choosing the value c ∈ R \ {0} such that α1 + c and α1 − c
are different from all the other eigenvalues of Â, setting u0 := ce1 + cen+1 ∈ Qn,1,

and considering Â+ u0Σ̂u∗0 = Â± u0u∗0 yields the desired example as c can clearly be
chosen such that ‖u0‖ has arbitrarily small norm. �

An immediate consequence is the following result on rank-k perturbations of Her-
mitian quaternion matrices which will be proved completely analogously to Theo-
rem 5.1.

Theorem 6.5. Let A ∈ Hn,n be a Hermitian and let λ1, . . . , λp its pairwise
distinct (necessarily real) eigenvalues with multiplicities r1, . . . , rp (where algebraic
and geometric multiplicities coincide). Furthermore, let Σ = Iπ ⊕ (−Ik−π). Then
there exists a generic set Ω ⊆ Hn,k such that for all U ∈ Ω the following statements
hold:

1. For all j ∈ {1, . . . , p} the eigenvalue λj of A+ UΣU∗ has multiplicity rj − k
if rj > k, and if rj ≤ k, then λj is not an eigenvalue of A+ UΣU∗.

2. All eigenvalues of A+ UΣU∗ which are not eigenvalues of Â are simple.
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7. Rank-k perturbations of skew-Hermitian quaternion matrices. In
this section, we will focus on skew-Hermitian quaternion matrices, i.e., quaternion ma-
trices A ∈ Hn,n satisfying A∗ = −A. Again, the corresponding matrix ω(A) ∈ Qn,n
will have the corresponding structure, i.e., it will be skew-Hermitian. It is important to
note that a common trick that is used in complex matrix algebra is no longer available
when dealing with the quaternions: while a complex Hermitian matrix becomes skew-
Hermitian when it is multiplied by the imaginary unit i and vice versa, this need not
be the case for a Hermitian matrix A ∈ Hn,n, because we obtain (iA)∗ = A∗i∗ = −Ai
and the matrix Ai may be different from iA as the following example shows.

Example 7.1. Consider the matrix

A =

[
1 j
−j 1

]
.

Then A∗ = A is Hermitian, but iA is not skew-Hermitian as

(iA)∗ =

[
i k
−k i

]∗
=

[
−i k
−k −i

]
6=
[
−i −k
k −i

]
= −iA.

When Theorem 6.1 is adapted to the skew-Hermitian case one should have in
mind that by the previous example the transition from Hermitian matrices to skew-
Hermitian matrices is not a trivial task. Nevertheless, observe that part (a) in the
following theorem looks exactly like the corresponding results on complex matrices
that can be obtained from the corresponding result on Hermitian matrices via the
“multiplying with i”-trick. On the other hand, comparing the parts (b) we see that
in the skew-Hermitian case “Sylvester’s Law of Inertia” turns out to be substantially
different from the corresponding result in the case of Hermitian quaternion matrices.

Proposition 7.2 ([20, Theorem 5.3.6.(d) and Theorem 4.1.6.(b)]).
Let A ∈ Hn,n be skew-Hermitian. Then the following statements hold.

1. There exists a unitary matrix Q ∈ Hn,n such that

Q∗AQ = diag(iα1, . . . , iαn),

where α1, . . . , αn ∈ R.
2. There exists an invertible matrix S ∈ Hn,n and a uniquely defined integer r

such that

S∗AS =

[
iIr 0
0 0

]
. (7.1)

As a corollary of Theorem 7.2, we immediately obtain the following characteriza-
tions of skew-Hermitian matrices of rank k in Hn,n or rank 2k in Qn,n.

Corollary 7.3. Let A ∈ Hn,n be a skew-Hermitian quaternion matrix of rank
k. Then there exists a matrix U ∈ Hn,k of full rank such that A = U(iIk)U∗.

Corollary 7.4. Let Â ∈ Qn,n be a skew-Hermitian quaternion matrix of rank
2k. Then there exists a matrix Û ∈ Qn,k of full rank 2k such that

Â = Ûω(iIk)Û∗ = Û

[
iIk 0
0 −iIk

]
Û∗.
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It is easily seen that the “multiplying with i”-trick will also not work in the set
Qn,n as this set is only closed under scalar multiplication with real numbers. We
therefore need an analogue of Theorem 6.4 for the case of skew-Hermitian matrices.

Theorem 7.5. Let Â ∈ Qn,n be skew-Hermitian, and let λ1, . . . , λp be the

pairwise distinct (necessarily purely imaginary) eigenvalues of Â, with multiplicities
r1, . . . , rp (where necessarily the algebraic multiplicities coincide with the geometric
multiplicities, and rj is even if λj = 0). Then there exists a generic set Ω ⊆ Qn,k
such that for all Û ∈ Ω the following statements hold for all j ∈ {1, . . . , p}:

1. If λj 6= 0, then λj is an eigenvalue of Â+ Û(iIk)Û∗ with multiplicity rj − 2k

if rj > k, and if rj ≤ k, then λj is not an eigenvalue of Â+ Û(iIk)Û∗.

2. If λj = 0, then λj is an eigenvalue of Â + Û(iIk)Û∗ with (necessarily even)
multiplicity rj − 2k if rj > 2k, and if rj ≤ 2k, then λj is not an eigenvalue

of Â+ Û(iIk)Û∗.

3. All eigenvalues of Â+ Û(iIk)Û∗ which are not eigenvalues of Â are nonzero
and simple.

Proof. We will apply Theorem 3.2 for the case κ = 2k and ` = 1, and for the
function P = Û(iIk)Û∗ which is a polynomial in the 4nk real and imaginary part of
the entries of U1, U2 ∈ Cn,k when we write

Û =

[
U1 U2

−U2 U1

]
.

Indeed, note that in contrast to the Hermitian case we have ` = 1 instead of ` = 2.
The remainder of the proof uses the same strategy as the proof of Theorem 6.4. Thus,
we may again assume that k = 1 and that A is diagonal, i.e.,

A = diag(iα1, . . . , iαn,−iα1, . . . ,−iαn),

where iα1 = · · · = iαrj = λj if λj 6= 0, or iα1 = · · · = iαrj/2 = 0 if λj = 0. It remains to

find one particular matrix Û ∈ Qn,1 such that its norm can be chosen to be arbitrarily
small and such that 3a) and 3b) of Theorem 3.2 are satisfied. Constructing such an
example is the part where the proof of this theorem will differ substantially from the
corresponding part of the proof of Theorem 6.4. We will distinguish two cases.

Case 1: λj = 0. In this case, let

Û =

[
ce1 ice1
ice1 ce1

]
∈ Qn,1,

where c ∈ R. Then we obtain

P̂ := Û

[
i 0
0 −i

]
Û∗ =

[
0 2c2e1e

T
1

−2c2e1e
T
1 0

]
,

and the eigenvalues of Â+ P̂ are given by the values ±iα2, . . . ,±iαn and in addition
by the eigenvalues of [

0 2c2

−2c2 0

]
which are ±i2c2. Thus, if the sufficiently small c is chosen such that 2c2 is differ-
ent from ±α2, . . . ,±αn then we have found our example such that 3a) and 3b) of
Theorem 3.2 are satisfied.
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Case 2: λj 6= 0. If rj = 1, then choosing the same perturbation as above will pro-

duce a perturbed matrix with the eigenvalues ±iα2, . . . , iαn and ±i
√
α2
1 + 4c4 which

shows that λj is not an eigenvalue of the perturbed matrix. Furthermore, choosing c
appropriately guarantees that the newly generated eigenvalues are all simple. Thus,
let rj > 1 which implies iα2 = λj . Now choose c > 0 sufficiently small such that in
particular we have α2

1 − c2 > 0 and set

P̂ =

[
ice1 −ice2 ce2 ce1
−ce2 −ce1 −ice1 ice2

]
.

Then we have P̂ ∈ Qn,n and in addition P̂ is skew-Hermitian and of rank 2. Note

that in Â + P̂ only the 4 × 4 submatrix is perturbed that consists of the rows and
columns with indices 1, 2, n+ 1, n+ 2 and which is given by

i(α1 + c) 0 0 c
0 i(α1 − c) c 0
0 −c −i(α1 + c) 0
−c 0 0 −i(α1 − c)

 .
Since the eigenvalues of this submatrix are the four pairwise distinct complex numbers
ic±

√
α2
1 − c2 and −ic±

√
α2
1 − c2 which are clearly also mutually distinct from the

values ±iα3, . . . ,±iαn if c had been chosen sufficiently small, we have constructed our
desired example that can also be constructed to be of arbitrarily small norm.

Note that the additional statement that the newly generated eigenvalues are
nonzero is implied by their simplicity, since the eigenvalue zero must have even mul-
tiplicity as a real eigenvalue. �

As a direct consequence of Theorem 7.5, we obtain the following analogue of
Theorem 6.5 and its proof is again analogous to the one of Theorem 5.1.

Theorem 7.6. Let A ∈ Hn,n be a skew-Hermitian quaternion matrix and let
λ1, . . . , λp its pairwise distinct (necessarily purely imaginary) eigenvalues with multi-
plicities r1, . . . , rp. Then there exists a generic set Ω ⊆ Hn,k such that for all U ∈ Ω
the following statements hold for all j ∈ {1, . . . , p}:

1. If λj 6= 0, then λj is an eigenvalue of A+ U(iIk)U∗ with multiplicity rj − 2k
if rj > 2k, and if rj ≤ 2k, then λj is not an eigenvalue of A+ U(iIk)U∗.

2. If λj = 0, then λj is an eigenvalue of A + U(iIk)U∗ with multiplicity rj − k
if rj > k, and if rj ≤ k, then λj is not an eigenvalue of A+ U(iIk)U∗.

3. All eigenvalues of A+ U(iIk)U∗ which are not eigenvalues of Â are nonzero
and simple.
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