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Abstract

Image and data processing have become increasingly important over recent years.
In particular, robust distance measures and transformation methods on large and
perturbed data sets are of growing interest. These tasks become even more chal-
lenging if the measurement locations are distributed on some manifold or if the data
itself has a manifold structure.

In this thesis, we start by examining a time discrete manifold-valued morphing
model together with a time continuous counterpart which includes a variational
inequality and is inspired by the classical metamorphosis approach. For both mod-
els, existence of minimizers is shown under the assumption that the data lies in
a finite-dimensional Hadamard manifold. Further, we prove Mosco convergence of
the time discrete model to the time continuous one.

Then, we propose to use the real-valued version of this model as variational
regularizer for inverse problems if some template image is available. As this incor-
porates additional information into the reconstruction process, such an approach
is particularly useful if the data is sparse. In cases where an even stronger regu-
larization is necessary, we propose to use a more restrictive flow of diffeomorphism
based model instead. Additionally, increased robustness to intensity differences be-
tween template and ground-truth is achieved by using a distance measure based
on normalized cross-correlation. These modifications enable us to obtain promising
reconstructions for computed tomography with a very sparse number of angles. For
both models existence, stability and convergence for vanishing noise are proven.

Besides metamorphosis and flow of diffeomorphism, we are interested in optimal
transport between images. More precisely, we investigate Sinkhorn divergences,
which interpolate between optimal transport and discrepancies. Here, we focus on
the behavior of the corresponding optimal dual potentials and establish a relation
between their limits as the regularization parameter goes to infinity and the optimal
potential of the associated discrepancy. Additionally, we compare these different
distance measures for a process called dithering.

Finally, we investigate the approximation of probability measures on compact
metric spaces and in particular on Riemannian manifolds by measures supported on
Lipschitz curves. For this purpose, the approximation quality is assessed in terms
of discrepancies as these do not suffer from the so-called curse of dimensionality.
While we also investigate the general case via the traveling salesman approach, a
strong focus lies on the push-forward of the Lebesgue measure on the unit inter-
val by Lipschitz continuous curves. Here, we utilize a result on the quadrature
error achievable by integration with respect to a measure that exactly integrates
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all eigenfunctions of the Laplace–Beltrami operator with eigenvalues smaller than
a fixed number. In particular, this enables us to provide optimal approximation
rates in terms of the curve’s length and Lipschitz constant for measures fulfilling
smoothness requirements.

All results established in this thesis are illustrated by numerical proof-of-concept
examples and comparisons. These include real-world data experiments in particular
for our flow of diffeomorphism based reconstruction model. For the necessary dis-
crepancy evaluations, recent fast Fourier transform techniques on certain manifolds
are exploited.
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Zusammenfassung

Bild- und Datenverarbeitung haben in den letzten Jahren zunehmend an Bedeutung
gewonnen. Dabei haben sich insbesondere robuste Abstandsmaße und Transforma-
tionsmethoden für große und gestörte Datensätze als wichtig erwiesen. Diese Auf-
gaben werden noch komplizierter, wenn die Messpunkte auf einer Mannigfaltigkeit
verteilt sind oder wenn die Daten selbst eine Mannigfaltigkeitsstruktur besitzen.

In dieser Arbeit untersuchen wir zunächst ein zeitdiskretes Morphing-Modell für
mannigfaltigkeitswertige Bilder zusammen mit einem zeitkontinuierlichen Pendant,
welches auf einer Variationsungleichung basiert und vom klassischen Metamorphosis
Modell inspiriert ist. Für beide Ansätze wird die Existenz von Minimierern unter
der Annahme gezeigt, dass die Daten in einer endlichdimensionalen Hadamard-
Mannigfaltigkeit liegen. Außerdem beweisen wir die Mosco-Konvergenz des zeitdis-
kreten Modells gegen das zeitkontinuierliche Modell.

Falls ein geeignetes Referenzbild verfügbar ist, wollen wir die reellwertige Ver-
sion dieses Modells als Regularisierer für das Lösen inverser Probleme verwenden.
Da hierdurch zusätzliche Information in den Rekonstruktionsprozess eingebunden
wird, ist ein solcher Ansatz insbesondere dann nützlich, wenn die Daten unvollstän-
dig sind. Ist eine noch stärkere Regularisierung erforderlich, verwenden wir statt-
dessen ein restriktiveres und auf dem Fluss des Diffeomorphismus basierendes Mo-
dell. Zusätzlich kann die Robustheit gegenüber Intensitätsunterschieden zwischen
Referenzbild und dem unbekannten Signal durch die Verwendung eines auf der nor-
malisierten Kreuzkorrelation basierenden Abstandsmaßes verbessert werden. Diese
Modifikationen ermöglichen es uns, vielversprechende Rekonstruktionen für Com-
putertomografie mit einer sehr geringen Anzahl von Winkeln zu erhalten. Für beide
Modelle werden Existenz, Stabilität und Konvergenz für verschwindendes Rauschen
gezeigt.

Neben dem Metamorphosis und dem Fluss des Diffeomorphismus Modell sind
wir auch an optimalem Transport zwischen Bildern interessiert. Genauer gesagt un-
tersuchen wir Sinkhorn-Divergenzen, die zwischen optimalem Transport und Diskre-
panzen interpolieren. In dieser Arbeit konzentrieren wir uns auf das Verhalten der
entsprechenden optimalen dualen Potentiale und stellen eine Beziehung zwischen
ihren Grenzwerten für wachsende Regularisierungsparameter und dem optimalen
Potential der zugehörigen Diskrepanz her. Zusätzlich vergleichen wir die vorgestell-
ten Abstandsmaße für einen Prozess namens “Dithering”.

Schließlich untersuchen wir die Approximation von Wahrscheinlichkeitsmaßen
auf kompakten metrischen Räumen und insbesondere auf Riemannschen Mannigfal-
tigkeiten durch Maße, deren Träger eine lipschitzstetige Kurve ist. Zu diesem Zweck
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wird die Approximationsqualität anhand von Diskrepanzen beurteilt, da diese nicht
vom sogenannten Fluch der Dimension betroffen sind. Während wir auch den allge-
meinen Fall über das Problem des Handlungsreisenden untersuchen, liegt der Fokus
auf Bildmaßen vom Lebesgue-Maß auf dem Einheitsintervall bezüglich lipschitzste-
tiger Kurven. Hierbei verwenden wir ein Ergebnis zum Quadraturfehler bezüglich
der Integration mit Maßen, welche Eigenfunktionen des Laplace–Beltrami Operators
mit Eigenwerten kleiner einer festen Zahl exakt integrieren. Insbesondere können
wir dadurch optimale Approximationsraten in Abhängigkeit der Kurvenlänge und
der Lipschitz-Konstante für Maße zeigen, die zusätzliche Glattheitseigenschaften
erfüllen.

Alle in dieser Arbeit erzielten Ergebnisse werden durch numerische Konzept-
nachweise und Vergleiche sowie Experimente mit realen Daten insbesondere für
unser auf dem Fluss des Diffeomorphismus basierenden Rekonstruktionsmodell ver-
anschaulicht. Für die notwendigen Diskrepanzberechnungen werden vor kurzem ent-
wickelte schnelle Fourier-Transformationstechniken auf ausgewählten Mannigfaltig-
keiten genutzt.
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Chapter 1
Introduction

The need for processing image data has attracted a lot attention over recent years
and the development of fast hardware has lead to many new applications. Typical
examples are deformation estimation in image sequences or medical imaging tasks
such as object reconstruction from sparse X-ray data. While such applications are
easily accessible and understandable for a broad audience, the underneath mathe-
matics is quite involved. Obviously, fast, efficient and reliable approaches for solving
such problems are vital and a lively area of research. In this thesis, we focus on
imaging models that incorporate explicit knowledge about the particular problem
into the solution process, e.g., in form of specifically designed regularization terms.
For many problems, such an approach leads to satisfactory solutions with reliable
and stable outputs.

Let us formalize our description of images. Assume that some image domain
Ω ⊂ Rn is given such as the unit square for example. On this domain, we consider
a pair of images IA, IB ∈ L2(Ω), i.e., images are interpreted as square integrable
functions. In this thesis, we are also interested in two generalizations of this image
model. First, as modern data acquisition techniques produce data that is no longer
scalar- or vector-valued, we have to deal with images in L2(Ω,H), i.e., the image
range is some finite-dimensional manifold H. Applications with manifold-valued
data include interferometric synthetic aperture radar (InSAR) [236] with data on the
unit circle, electron backscatter diffraction (EBSD) [15] with data in a quotient of
the rotation group on R3, or diffusion tensor magnetic resonance imaging (DT-MRI)
[20] with symmetric positive definite tensors of size 3 × 3 as data. An impression
of such data is given in Fig. 1.1. All mentioned applications have in common that
a treatment with classical Euclidean imaging models is impossible. The second
natural generalization is that the image domain is a manifold such as the sphere.
This naturally occurs if we take measurements distributed over the complete earth,
see Fig. 1.2 for an application in measure approximation by curves as considered in
this thesis. Clearly, there are many more applications where measurements are not
taken on flat surfaces, e.g., models for aerodynamic properties of cars.

In image processing, two particularly challenging questions are to find “good”
distance measures and “nice” transformations between images. Naturally, these

1



1. Introduction

(a) InSAR image of the
Vesuv [234]. Color en-
codes angle in [−π, π].

(b) EBSD data from mate-
rial science1. Color encodes
grain orientation.

(c) DT-MRI image of human
brain [77]. Tensors describe
the water diffusion.

Figure 1.1: Examples of manifold-valued images.

questions are strongly related as the deformation amplitude provides us with a way
of measuring distances. Possible applications related to these questions include
generative adversarial networks [96], computation of additional frames in movies as
it was done for Willow [251] or incorporation of template information into sparse
computed tomography [116, 208], where the data is limited in order to minimize
exposure time of organisms to X-radiation. Regarding the transformation of im-
ages, we want to obtain something “natural”, more precisely, the result should look
visually appealing for humans. Such a behavior is usually not obtained with a
simple pixel-wise linear interpolation between the two images IA and IB, which
corresponds to geodesics with respect to the standard geometry of the linear space
L2(Ω). Similarly, the L2(Ω) distance does not capture any geometrical information
about our images and hence more sophisticated approaches are necessary.

In the following, we aim to give a brief overview over three main topics covered
by this thesis. Exact mathematical details are then provided in the corresponding
chapters.

Deformation based models Essentially, all such models share the similarity
that the image domain is transformed in terms of a diffeomorphism, which usually
results in transformations that look more natural to humans. Starting from the
flow of diffeomorphism model [71, 95, 261], in which image pixel intensities are
transported along trajectories determined by diffeomorphism paths, a whole field of
research has emerged. As the space of diffeomorphisms φ has no natural vector space
structure, a common choice is to use a subset generated by admissible (smooth)
velocity fields v via the ordinary differential equation (ODE)

d
dt
φ(t, x) = v

(︁
t, φ(t, x)

)︁
for (t, x) ∈ [0, 1]× Ω,

φ(0, x) = x for x ∈ Ω.
(1.1)

In accordance with our informal description, we implicitly define for any t ∈ [0, 1]
a transformed version I(t, x) of the image IA via I(t, φ(t, x)) = IA(x). This formu-

1Contained in MTEX 5.6 – A Texture Calculation Toolbox.
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(a) Earth’s elevation data [134]. (b) Approximation by a curve [102].

Figure 1.2: Approximation of a measure supported on the sphere S2.

lation is usually referred to as Lagrange form of the problem. Equivalently, using
the Euler formulation, I(t, x) is given as solution of the transport equation

∂
∂t
I(t, x) + v(t, x)∇xI(t, x) = 0 for (t, x) ∈ [0, 1]× Ω,

I(0, x) = IA(x) for x ∈ Ω.
(1.2)

In the following, let us always denote the set of feasible tuples (I, v) for a partial
differential equation (PDE) by A. Optimal transformation paths between IA and
IB are then defined as minimizers of

min
(I,v)∈A

λE(v) + ∥I(1, ·)− IB∥2L2(Ω),

where the regularizer E enforces the smoothness of v. Note that this approach
can be simplified a lot by using linearized deformations and a Taylor expansion
around some initial flow field, leading to optical flow models [7, 41, 164]. We have
successfully applied such an optical flow approach for analyzing crack evolution in
a shear cutting process, see [149].

However, a transformation purely based on some deformation behavior is of-
ten not desirable, e.g., if the images have different mass or topological properties.
Therefore, the approach was later extended to the metamorphosis model by Miller,
Trouvé and Younes [202, 263, 264]. In addition to the transport of pixel intensities,
the model also allows variations of the intensities along the trajectories using a
so-called source term z, i.e., image paths are solutions of the transport equation

∂
∂t
I(t, x) + v(t, x)∇xI(t, x) = z for (t, x) ∈ [0, 1]× Ω,

I(0, x) = IA(x) for x ∈ Ω,
I(1, x) = IB(x) for x ∈ Ω.

(1.3)

3



1. Introduction

In particular, this enables the method to create or erase objects during the transfor-
mation process, adding a lot more flexibility. Note that imposing a final condition
is reasonable here as the source term z adds enough flexibility for solutions to ex-
ist. Equivalently, this problem can be also stated in Lagrange form, where (1.1) is
complemented by an (implicit) integral equation for the intensity change

I
(︁
t, φ(t, x)

)︁
= IA(x) +

∫︂ t

0

z(s, φ(s, x)) ds for (0, x) ∈ [0, 1]× Ω,

I(1, x) = IB(x) for x ∈ Ω.

For the metamorphosis approach, the optimal transformation path between IA and
IB is defined as the solution of

min
(I,v,z)∈A

λE1(v) + E2(z),

where A denotes the set of tuples (I, v, z) satisfying (1.3). Again, the regularizers
E1 and E2 enforce sufficient smoothness of v and z, respectively.

Many algorithmic approaches for both flow of diffeomorphism and metamorpho-
sis have been proposed during the last years. In this thesis, we focus on the recent
variational time discretization by Berkels, Effland and Rumpf [33] for metamor-
phosis and a Lagrangian approach for the plain flows of diffeomorphisms setting
[193]. Usually, Lagrangian approaches are more efficient for this kind of problems
as only an ODE has to be solved. Since the approaches rely on the minimization
of energy functionals, they also provide a natural way of defining distances on the
space of images. Hence, the metamorphosis model is a suitable choice for equipping
the space L2(Ω) with a new Riemannian structure. In some sense, this structure
encodes how strong the necessary deformation of the domain is and how much mass
is blended using the source term. A comprehensive overview is given in the book
[285] as well as in the review article [201]. For a historic account see also [199].

Optimal transport Subsequently, we want to discuss optimal transport for mea-
suring distances of images and transforming them. In its classical form, the problem
dates back to the 18th century, when the French mathematician Monge published
his famous work “Mémoire sur la théorie des déblais et des remblais”. The con-
sidered problem can be described as follows: Assume that soil is extracted from
the ground in certain places like clay pits and then transported to other places
like construction sites. Here, we have to keep in mind that every pit only has a
fixed capacity and every construction site has a certain demand. For this particular
setup, the locations of the pits and the construction sites are all known and the only
unknown is the “optimal” assignment. Clearly, any kind of transportation involves
costs that typically scale with the distance between source and target. Summing
up, the aim is to minimize the total cost of our transportation process, while not vi-
olating capacity and demand. From this description, it should be evident now that
optimal transport is a reasonable choice for measuring distances between images as
it is able to capture geometric information about the problem. Further, it should
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not be surprising anymore that this distance measure is sometimes also called earth
mover’s distance.

The problem remained largely open for quite some time, until it was finally
solved in a relaxed form by the Soviet mathematician Kantorovich in the 1940s.
Over the years, the problem has been greatly generalized and is nowadays a pop-
ular choice for tackling various problems in imaging sciences, graphics or machine
learning [82]. For good introductions to the topic we refer to the books [6, 243, 274],
in which the problem is described in very general settings. If some power of a dis-
tance is used as cost function, the resulting transport distance is also known as
Wasserstein metric.

In the following, we want to establish a relation to the previous paragraph using
the Benamou-Brenier formulation [27] of optimal transport with squared Euclidean
cost. This problem is given by

min
(I,v)∈A

∫︂ 1

0

∫︂
Ω

v(t, x)2I(t, x) dx dt,

where A consists of all tuples (I, v) satisfying the continuity equation
∂
∂t
I(t, x) + divx

(︁
v(t, x)I(t, x)

)︁
= 0, for (t, x) ∈ [0, 1]× Ω,

I(0, x) = IA, for x ∈ Ω,

I(1, x) = IB, for x ∈ Ω.

(1.4)

Naturally, this approach provides us with a way of computing a transformation
between IA and IB. Note that the continuity equation (1.4) is closely related to
the transport equation (1.2) as both problems lead to the same formal Lagrange
formulation for the characteristic lines. However, the approaches differ as the reg-
ularity requirements for v in the previous section are usually much stronger, i.e.,
they ensure that solutions in the Lagrange formulation (1.1) exist. In contrast, the
unrestricted model based on (1.4) allows very general transformations for which
not even continuity is enforced. This increases flexibility but often also leads to less
pleasant transformation paths.

Unfortunately, the original optimal transport problem is computationally chal-
lenging, since a large linear program has to be solved. To deal with this issue,
regularized versions of optimal transport, namely Sinkhorn distances [81], are used
as a computationally efficient replacement. Compared to the original problem,
they can be computed with matrix scaling algorithms, which are efficiently imple-
mentable on GPUs. Note that we have applied such an approach for coherent set
detection in [178]. As these distances introduce a bias, Sinkhorn divergences [108]
were recently introduced to overcome this problem. For appropriately related trans-
port cost functions and discrepancy kernels, these divergences interpolate between
optimal transport if the regularization parameter goes to zero and discrepancies if
it goes to infinity.

Discrepancies Now, we want to discuss a way of quantifying the distance between
probability densities on Ω. Naturally, this setting includes images interpreted as
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1. Introduction

densities. In order to simplify matters, assume for now that we only have access
to a finite amount of samples drawn according to the densities IA and IB. Note
that such a sampling approach is usually also used in applications. Then, informally
speaking, we want to judge the distance of the corresponding empirical distributions
by finding a test function that is large on the points from IA and small on the
points from IB. Typically, the space of test functions is chosen as the unit ball in a
reproducing kernel Hilbert space (RKHS). More precisely, the discrepancy is then
obtained by maximizing the difference between the mean function values on the
two sample sets over all test functions, i.e., a large value implies that the two input
images are different. Clearly, the chosen kernel of the RKHS has a strong effect on
the resulting discrepancy. In particular, an appropriately chosen kernel allows to
incorporate some geometrical information into the discrepancy, making it a more
reasonable choice than the total variation distance of the empirical measures. This
can be seen as follows: If the sets of samples are disjoint, the total variation distance
is 2. However, as the samples get closer and closer together, it will be increasingly
difficult to find a “smooth” test function which is large for points from IA and small
for points from IB, i.e., the discrepancy gets smaller. Coming back to our original
problem, which corresponds to the limit of infinitely many samples, the discrepancy
is obtained by maximizing the difference of the expectations EIA(f) and EIB(f) over
all test functions f . Note that this approach is closely related to the 1-Wasserstein
distance, where the set of test functions consists of all 1-Lipschitz functions.

The rates for approximating probability measures by atomic or empirical ones
with respect to Wasserstein distances depend on the dimension of the underly-
ing spaces, see [68, 177], which is often referred to as the curse of dimensionality.
In sharp contrast, approximation rates based on discrepancies can be given in-
dependently of the dimension [222]. Discrepancies are linked to a wide range of
applications, e.g., the derivation of quadrature rules [222], image dithering and
representation [102, 134, 245, 259], generative adversarial networks [96] and mul-
tivariate statistical testing [107, 137, 138]. In the last two applications, they are
better known as kernel based maximum mean discrepancies (MMDs). Finally, let
us remark that discrepancies admit a simple description in the Fourier domain such
that the fast Fourier transform can be applied for numerical purposes, leading to
excellent scalability of approaches relying on discrepancies.

Organization and contribution of the thesis

In Chapter 2, we address morphing (transformation) of manifold-valued images
based on the time discrete geodesic path model proposed by Berkels, Effland and
Rumpf [33]. For our adapted model, we show existence of a minimizing sequence
in L2(Ω,H), provided that H is a Hadamard manifold, together with a correspond-
ing minimizing sequence of admissible diffeomorphisms. To this end, we also show
that the continuous manifold-valued functions are dense in L2(Ω,H). For our nu-
merical experiments, the problem is spatially discretized using a finite difference
approach on staggered grids together with a multilevel strategy, where we focus
on the linearized elastic potential as regularizing term. The resulting problem is
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solved by alternating the computation of a deformation sequence as solution of
manifold-valued registration problems, and the computation of an image sequence
based on a fixed sequence of deformations via the solution of a system of equations
arising from the corresponding Euler-Lagrange equation. Numerical examples give
a proof-of-concept of our ideas.

In Chapter 3, we continue analyzing the model introduced in Chapter 2. More
precisely, we introduce a novel metamorphosis model for manifold-valued images.
Compared to the original Euclidean model proposed by Trouvé, Younes and cowork-
ers [202, 264], we replace the PDE constraint with a variational inequality. The
chosen approach is justified by establishing an equivalence of both models in the
Euclidean setting. Based on this novel model, we are able to show convergence of
time discrete geodesic paths to a time continuous geodesic path. In particular, this
result establishes existence of geodesic paths for our new model. For our proofs, the
joint convexity of the distance function, which characterizes Hadamard manifolds,
is a crucial ingredient. A numerical example illustrates the proven convergence
behavior.

As we demonstrate in Chapter 4, the Euclidean version of the model can be
used as variational regularizer for image reconstruction from a template image and
indirect, noisy measurements as given, for instance, in X-ray computed tomogra-
phy. To this end, we combine time discrete metamorphosis with the classical L2-TV
reconstruction model for inverse problems. For the proposed model, existence of a
minimizer, stability with respect to the data, and convergence for vanishing noise
are shown. On the numerical side, we propose two minimization procedures, which
alternate over the involved sequences of deformations and images in different ways.
The updates with respect to the image sequence exploit recent algorithms from con-
vex analysis to minimize the L2-TV functional. Similarly as before, the problem
is discretized using staggered grids together with a multilevel strategy. Numerical
results for sparse and limited angle computed tomography as well as for superreso-
lution demonstrate the usefulness of our method.

A different approach for solving inverse problems based on a template image is
presented in Chapter 5. Here, images are reconstructed from measurements by
solely deforming the given template image, i.e., no source term is incorporated. The
required registration step is directly incorporated into the model in form of a PDE
that models the registration as either mass- or intensity-preserving transport from
the template to the unknown reconstruction. As in Chapter 4, we provide theoret-
ical results for the proposed regularization. Numerically, we solve the problem by
extending existing Lagrangian methods [193] and propose a multilevel approach,
which is applicable whenever a suitable downsampling procedure for the operator
and the measured data is available. To conclude this chapter, we demonstrate the
performance of our method for image reconstruction based on some template im-
age and highly undersampled, noisy Radon transform data. Our results indicate
that reasonable reconstructions can be obtained when only few measurements are
available and demonstrate that the use of the proposed normalized cross-correlation
based distance is advantageous if the image intensities between template and un-
known image differ substantially.
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1. Introduction

In Chapter 6, we want to investigate distances for images and measures. Com-
ing from optimal transport, we are looking for computationally efficient alternatives.
Here, Sinkhorn divergences turned out to be feasible regularizations, i.e., they con-
verge to optimal transport as the regularization parameter ε approaches zero. In
the opposite direction, as ε tends to infinity, Sinkhorn divergences with appropriate
cost functions converge to discrepancies, for which a transport based interpretation
is not possible any more. Here, we are particularly interested in the behavior of
the corresponding optimal potentials appearing in the dual formulation of Sinkhorn
divergences and discrepancies, respectively. While parts of the contained results
are already known, we provide rigorous proofs for relations that cannot be found
in the known literature in this generality. At the end of this chapter, we illustrate
the limiting process by numerical examples and study the behavior of the distances
when used for the approximation of measures by point measures in a process called
dithering. Note that the computational cost for computing the distances decreases
as we increase the regularization parameter.

In Chapter 7, we solely focus on discrepancies as distance measure. In contrast
to Wasserstein distances, they do not suffer from the curse of dimensionality. Based
on this choice, we study the approximation of probability measures on compact
metric spaces and in particular on Riemannian manifolds by measures supported
on Lipschitz curves. Potential applications include 3D printing, MRI, wire sculpture
construction or Grand Tour computation on the Grassmannian G2,4. While some
results cover the general case, special attention is paid to push-forward measures of
Lebesgue measures on the unit interval by such curves. Based on a traveling sales-
man approach, we establish optimal approximation rates in terms of the curve’s
Lipschitz constant. In case the measures satisfy additional smoothness require-
ments, improved rates are given. For showing the upper bounds, we incorporate
a result on the quadrature error achievable with measures that exactly integrate
all eigenfunctions of the Laplace–Beltrami operator with eigenvalues smaller than
a fixed number. Having established the theoretical results, we are interested in
the numerical solution of the proposed model based on the Fourier formulation of
discrepancies. To this end, we present numerical examples for measures on the 2-
and 3-dimensional torus, the 2-sphere, the rotation group on R3 and the Grass-
mannian of all 2-dimensional linear subspaces of R4. Our algorithm of choice is
a conjugate gradient method on these manifolds, which incorporates second-order
information. For efficient gradient and Hessian evaluations within the algorithm,
we approximate the given measures by truncated Fourier series and use fast Fourier
transform techniques on these manifolds. Our numerical experiments confirm the
derived theoretical approximation rates.

Outlook

Working on these topics raised more questions than answers. Consequently, specific
tasks for future research are given at the end of each section. Let us just sketch
three directions that we intend to pursue in the future.

In cases where a lot of data and compute power is available, machine learn-
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ing approaches have become increasingly popular, leading to outstanding results
for instance in image classification. Actually quite a few successful learning ap-
proaches are inspired by classical imaging models and hence further research into
these directions seems promising. In particular, Lipschitz neural networks play an
important role when looking for stable methods, which are robust to adversarial
attacks. Here, we have recently introduced proximal neural networks [150], which
are averaged operators and hence also 1-Lipschitz. In this spirit, it could also be in-
teresting to further explore the usage of Wasserstein metrics and MMDs as distance
measure in neural networks, in particular for so-called invertible neural networks
[26]. Potentially, a combination of our flow of diffeomorphism based approach from
Chapter 5 with neural networks could allow to automatically choose between more
than one template image for the reconstruction process.

A second set of problems is related to dimensionality reduction in data, see
our recent line of works on principal component analysis [210, 211, 212]. As data
becomes increasingly complex and large, such approaches are crucial for efficient
workflows. In cases where the inherent data structure is more complex, approxi-
mation with curves (or more generally manifolds) instead of straight lines leads to
improved results. Our approach for approximating measures in Chapter 7 can be
interpreted in such a way, although deeper investigations are clearly necessary.

Finally, many of the transformation and motion models presented throughout
this thesis do not have counterparts for manifold-valued images so far. As such data
is becoming increasingly important, further research into this direction seems to be
necessary. For example, it is not obvious anymore how images should be transformed
by diffeomorphisms without an equivalent of the gray-value constancy assumption.
In dependence on the application, the manifold data itself may change, as it is the
case for EBSD data. Consequently, new models for the action of diffeomorphisms
on manifold-valued images are necessary. In the Euclidean setting, such questions
do not arise as scalars are rotationally invariant.
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2. Morphing of Manifold-Valued Images

Abstract

The main goal of this chapter1, published in [213], is to address morphing of
manifold-valued images based on the time discrete geodesic paths model of
Berkels, Effland and Rumpf [33]. Although for our manifold-valued setting
such an interpretation of the energy functional is not available so far, the
model is interesting on its own. We prove the existence of a minimizing se-
quence within the set of L2(Ω,H) images having values in a finite-dimensional
Hadamard manifold H together with a minimizing sequence of admissible dif-
feomorphisms. To this end, we show that the continuous manifold-valued
functions are dense in L2(Ω,H). Then, we propose a space discrete model
based on a finite difference approach on staggered grids, where we focus on
the linearized elastic potential in the regularizing term. The numerical min-
imization alternates between the computation of a deformation sequence be-
tween given images via the parallel solution of certain registration problems
for manifold-valued images, and the computation of an image sequence with
fixed first (template) and last (reference) frame based on a given sequence
of deformations via the solution of a system of equations arising from the
corresponding Euler-Lagrange equation. Numerical examples give a proof-of-
concept for our ideas.

1First published in [213] in 2018, published by the Society for Industrial and Applied Mathe-
matics (SIAM). Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2.1 Introduction

2.1 Introduction
Smooth image transition, also known as image morphing, is a frequently addressed
task in image processing and computer vision, and there are various approaches
to tackle the problem. For example, in feature based morphing only specific fea-
tures are mapped to each other and the whole deformation is then calculated by
interpolation. This was successfully applied, e.g., in the production of the movie
Willow [251]. We refer to [281, 282] for an overview of similar techniques. This
chapter is related to a special kind of image morphing, the so-called metamorpho-
sis introduced by Miller, Trouvé and Younes [202, 263, 264]. The metamorphosis
model can be considered as an extension of the flow of diffeomorphism model and its
large deformation diffeomorphic metric mapping framework [25, 71, 95, 261, 262],
in which each image pixel is transported along a trajectory determined by a dif-
feomorphism path. As an extension, the metamorphosis model allows variations
of image intensities along pixel trajectories. Solutions via shooting methods were
developed, e.g., in [162, 232], where the first reference considers a metamorphosis
regression model. A comprehensive overview over the topic is given in the book
[285] as well as in the review article [201]. For a historic account see also [199].

This chapter builds up on a time discrete geodesic paths model by Berkels,
Effland and Rumpf [33]. We mention that such a variational time discretization in
shape spaces was already used in [240, 241], see also [119]. Let Ω ⊂ Rn, n ≥ 2, be
an open, bounded, connected domain with Lipschitz boundary. The authors of [33]
define a (time) discrete geodesic connecting a template image I0 := T ∈ L2(Ω,R)
and a reference image IK := R ∈ L2(Ω,R), K ≥ 2, as a minimizing sequence
I = (I1, . . . , IK−1) ∈ L2(Ω,R)K−1 of the discrete path energy

J BER(I) :=
K∑︂
k=1

inf
φk∈A

∫︂
Ω

W (Dφk) + γ|Dmφk|2 + 1
δ
(Ik ◦ φk − Ik−1)

2 dx, (2.1)

subject to I0 = T, IK = R,

where δ, γ > 0, the function W has to satisfy certain properties, A is an admissible
set of deformations, and the higher order derivatives Dmφk, m > 1 + n

2
, guarantee

a certain smoothness of the deformation. Berkels, Effland, and Rumpf showed that
under certain constraints on W minimizers of J BER converge for K → ∞ to a
minimizer of the continuous geodesic path model of Trouvé and Younes [263, 264],
where the deformation is regularized by the dissipation density of a Newtonian
fluid, which is the linearized elastic potential applied to the time derivative of the
diffeomorphism path.

In this chapter, (2.1) is generalized to manifold-valued images in L2(Ω,H) and
proven that it is well-defined at least for finite-dimensional Hadamard manifolds H.
These are simply connected, complete Riemannian manifolds with non-positive sec-
tional curvature. Typical examples of such Hadamard manifolds are hyperbolic
spaces and symmetric positive definite matrices with the affine invariant metric. As
an important fact, we use that the distance in Hadamard spaces is jointly convex,
which implies weak lower semi-continuity of certain functionals involving the dis-
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tance function. Since we use another admissible set than in [33], all proofs are new
also for real-valued images. So far we have not established a relation of our model
to some kind of time continuous path energy model in the image space L2(Ω,H).

Dealing with digital images, we have to introduce a space discrete model. In
contrast to the finite element approach in [33], we prefer a finite difference model
on a staggered grid. We have used this discretization for gray-value images in [226].
Minimizers are computed using an alternating algorithm fixing either the deforma-
tion or the image sequence:

i) For a fixed image sequence, we have to solve certain registration problems for
manifold-valued images in parallel to get a sequence (φ1, . . . , φK) of defor-
mations. Necessary interpolations are performed via Karcher mean computa-
tions. There exists a rich literature on registration problems for images with
values in the Euclidean space, see [70, 111, 143, 147] and, for an overview, the
books of Modersitzki [204, 205].

ii) For a fixed deformation sequence, we need to find a minimizing image sequence
(I1, . . . , IK−1) of

K∑︂
k=1

d2
2(Ik ◦ φk, Ik−1) subject to I0 = T, IK = R,

where d2 denotes the distance in L2(Ω,H). In our manifold-valued setting,
this requires to evaluate geodesics between manifold-valued image pixels at
several well-defined time steps.

Outline of the chapter: We start with preliminaries on Hadamard spaces in
Subsection 2.2.1, where the focus lies on the proof that the uniformly continuous
functions mapping into locally compact Hadamard spaces H are dense in Lp(Ω,H),
p ∈ [1,∞). We have not found this result in the literature. Then, we introduce the
necessary notation in Sobolev and Hölder spaces in Subsection 2.2.2 and an admis-
sible set of deformations which differs from that in [33]. In particular, our definition
guarantees that the concatenation of an image I ∈ L2(Ω,H) with a deformation
from our admissible set I ◦ φ is again an image in L2(Ω,H). In Section 2.3, we
introduce our space continuous model for manifold-valued images and prove exis-
tence of minimizers. Although we could roughly follow the lines in [33], all proofs
are new also for the Euclidean setting H := Rd due to the different admissible set.
Moreover, the manifold-valued image setting requires a nontrivial update of the
nice regridding idea from [33, 240, 241] in Theorem 2.7. This also influences the
proof of our main result in Theorem 2.9. In Section 2.4, we present the computa-
tional approach for the space discrete model, where we propose a finite difference
scheme on a staggered grid together with a multiscale technique. Numerical exam-
ples are given in Section 2.5. Note that the numerical algorithms are not restricted
to Hadamard manifolds. We finish with conclusions in Section 2.6.
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2.2 Preliminaries

2.2 Preliminaries

Throughout this chapter, let Ω ⊂ Rn, n ≥ 2, be an open, bounded, connected
domain with Lipschitz boundary.

2.2.1 Hadamard spaces

For an overview on Hadamard spaces we refer to the books [13, 48, 169]. First, recall
that a metric space (X, d) is geodesic if every two points x, y ∈ X are connected by
a curve γx,y : [0, 1] → X, called geodesic, such that

d
(︁
γx,y(s), γx,y(t)

)︁
= |s− t|d

(︁
γx,y(0), γx,y(1)

)︁
, for every s, t ∈ [0, 1], (2.2)

and γx,y(0) = x and γx,y(1) = y. A complete metric space (H, d) is called a
Hadamard space if it is geodesic and if for every geodesic triangle △p, q, r ∈ H
and x ∈ γp,r, y ∈ γq,r we have d(x, y) ≤ |x̄ − ȳ|, where x̄, ȳ are corresponding
points in some comparison triangle △p̄, q̄, r̄ ∈ R2 having the same side lengths as
the geodesic one. By [13, Thm. 1.1.3], this is equivalent to (H, d) being a complete
metric geodesic space with

d2(x, v) + d2(y, w) ≤ d2(x,w) + d2(y, v) + 2d(x, y)d(v, w), (2.3)

for every x, y, v, w ∈ H. Inequality (2.3) implies that geodesics are uniquely de-
termined by their endpoints. Later, we restrict our attention to finite-dimensional
Hadamard manifolds, which are Hadamard spaces having additionally a Rieman-
nian manifold structure.

A function f : H → R is called convex if for every x, y ∈ H the function f ◦ γx,y
is convex, i.e., if

f ◦ γx,y(t) ≤ (1− t)f ◦ γx,y(0) + tf ◦ γx,y(1),

for each t ∈ [0, 1]. An important property of Hadamard spaces, which is also fulfilled
in more general Busemann spaces, is that the distance is jointly convex, see [13,
Prop. 1.1.5], i.e., for two geodesics γx1,x2 , γy1,y2 and t ∈ [0, 1] it holds

d
(︁
γx1,x2(t), γy1,y2(t)

)︁
≤ (1− t)d(x1, y1) + td(x2, y2). (2.4)

For a bounded sequence {xn}n∈N of points xn ∈ H, the function w : H → [0,+∞)
defined by

w
(︁
x; {xn}n∈N

)︁
:= lim sup

n→∞
d2(x, xn)

has a unique minimizer, which is called the asymptotic center of {xn}n∈N, see [13,
p. 58]. A sequence {xn}n∈N converges weakly to a point x ∈ H if it is bounded and
x is the asymptotic center of each subsequence of {xn}n∈N, see [13, p. 103]. The
definition of proper and (weakly) lower semi-continuous (lsc) functions carries over
from the Hilbert space setting.
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The space H is equipped with the Borel σ-algebra B. A function f : Ω → H is
(Lebesgue) measurable if {ω ∈ Ω : f(ω) ∈ B} is a (Lebesgue) measurable set for
all B ∈ B. In the following, we only consider the Lebesgue measure µ on Ω ⊂ Rn.
A measurable map f : Ω → H belongs to Lp(Ω,H), p ∈ [1,∞], if

dp(f, a) <∞,

for any constant mapping ω ↦→ a to a fixed a ∈ H, where dp is defined for two
measurable maps f and g by

dp(f, g) :=

⎧⎨⎩
(︂∫︁

Ω
dp
(︁
f(ω), g(ω)

)︁
dω
)︂ 1

p
p ∈ [1,∞),

ess supω∈Ω d
(︁
f(ω), g(ω)

)︁
p = ∞.

Using the equivalence relation f ∼ g if dp(f, g) = 0, the resulting quotient space
Lp(Ω,H) := Lp(Ω,H)/ ∼ equipped with dp becomes a complete metric space. For
p = 2 it is again a Hadamard space, see [13, Prop. 1.2.18].

By C(Ω,H) we denote the space of continuous maps from Ω to H. Next, we show
that C(Ω,H) is dense in Lp(Ω,H). More precisely, also the uniformly continuous
functions are dense. We start by defining simple functions (step functions). A
function g ∈ Lp(Ω,H) is called a simple function if there exists a finite partition
Ω =

⋃︁
i∈I Ai into disjoint measurable sets Ai such that g|Ai

= ai for all i ∈ I. There
exists a Hopf-Rinow-like theorem for Hadamard spaces, which states that in locally
compact Hadamard spaces closed and bounded sets are compact, see [48, p. 35].

Lemma 2.1. Let (H, d) be a locally compact Hadamard space. Then the simple
functions are dense in Lp(Ω,H), p ∈ [1,∞).

Proof. Let f ∈ Lp(Ω,H). Then we have for a fixed reference point a ∈ H that

IN :=

∫︂
{d(f(ω),a)>N}

dp(f(ω), a) dω → 0

as N → ∞. For an arbitrary ε > 0, we choose N = N(ε) such that IN < ε
2

and set

A0 :=
{︁
x ∈ H : d(x, a) > N

}︁
and A0 :=

{︁
ω ∈ Ω : f(ω) ∈ A0

}︁
.

Next, we cover the compact set

A :=
{︁
x ∈ H : d(x, a) ≤ N

}︁
.

with open balls of radius rpε :=
ε

2p+1µ(Ω)
. Since A is compact, this covering contains

a finite subcovering which can be restricted to A and made disjoint such that
A = ∪̇Mi=1Ai for some M ∈ N. Fixing any ai ∈ Ai, we have d(x, ai) ≤ 2rε for all
x ∈ Ai. Since Ai ∈ B and f is measurable, the sets Ai := {ω ∈ Ω : f(ω) ∈ Ai} are
measurable. Thus, we obtain a finite disjoint partition Ω = ∪̇Mi=0Ai into measurable
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Ai

Bi

aiKi

Aj

Bj

Kja0

(a) Illustration for the construction of the
Bi and Ki.

1
2

1
4

0

)

[

h4h2

g̃

dist(w,Bc
i )

(b) Illustration for the construction of the
uniformly continuous approximation hk.

Figure 2.1: Illustrations to the proof of Theorem 2.2.

sets. Defining the simple function g : Ω → H by g|Ai
:= ai, i = 0, . . . ,M , where

a0 := a, we conclude∫︂
Ω

dp(f, g) dω =

∫︂
A0

dp (f(ω), a0) dω +
M∑︂
i=1

∫︂
Ai

dp (f(ω), ai) dω

≤ ε

2
+

ε

2µ(Ω)

M∑︂
i=1

µ(Ai) ≤ ε.

Theorem 2.2. Let (H, d) be a locally compact Hadamard space. Then the set
of uniformly continuous functions mapping from Ω to H is dense in Lp(Ω,H),
p ∈ [1,∞).

Proof. By Lemma 2.1, it suffices to show that simple functions can be well approx-
imated by uniformly continuous functions.

Let g : Ω → H be a simple function determined by Ai and corresponding ai ∈ H,
i ∈ I from a finite index set I ⊂ N. Set C := maxi,j∈I dp(ai, aj) and let ε > 0 be
arbitrary small. Since the Lebesgue measure is regular, there exist compact sets
Ki ⊆ Ai such that

µ(Ai\Ki) ≤
(︂ε
2

)︂p 1

C |I| .

Since the Ki are disjoint and compact, there exists δ > 0 such that dist(Ki,Kj) > δ
and dist(Ki, ∂Ω) > δ for all i, j ∈ I, where dist is the distance function with respect
to the Euclidean norm in Rn. Then, the open sets

Bi = Bδ/4(Ki) := {ω ∈ Ω : dist(ω,Ki) < δ/4}, i ∈ I,

are disjoint. Let B0 := Ω\ ∪i∈I Bi and a0 := a1. We define a simple function
g̃ : Ω → H by g̃|Bi

:= ai, i ∈ {0} ∪ I. For an illustration see Fig. 2.1a. It is related
to the original step function g by

dpp(g, g̃) =

∫︂
Ω\⋃︁i∈I Ki

dp(g, g̃) dω ≤ C
∑︂
i∈I

µ(Ai\Ki) ≤
(︂ε
2

)︂p
. (2.5)
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2. Morphing of Manifold-Valued Images

Next, we approximate g̃ by a sequence of uniformly continuous functions. Let γa,b
denote the unique geodesic joining a, b ∈ H, where γa,b(0) = a and γa,b(1) = b. For
k ∈ N, define hk : Ω → H by hk|B0

:= a0 and for i ∈ I,

hk(ω) := γa0,ai
(︁
min{1, kdist(Bc

i , ω)}
)︁
, ω ∈ Bi,

see Fig. 2.1b. Since γ is a geodesic, hk is by construction continuous on every Bi,
i ∈ I. Further, hk|∂Bi

= a0 and for any sequence {ωj}j∈N converging to some
ω̂ ∈ ∂Bi, we have that hk(ωj) converges to a0 = hk(ω̂). Hence, hk is continuous on
Ω and by construction constant outside of the compact set ∪i∈IBi. This implies
that hk is even uniformly continuous on Ω. Let

max
i,j∈I

sup
x∈γa0,ai

dp(x, aj) ≤ D.

Then, we get dp (g̃(ω), hk(ω)) ≤ D for all k ∈ N, ω ∈ Ω, so that D is an integrable
bound of dp(g̃, hk) and limk→∞ d (g̃(ω), hk(ω))

p → 0 pointwise as k → ∞. By
Lebesgue’s convergence theorem this implies that

lim
k→∞

dp(g̃, hk) = 0.

Finally, choosing k ∈ N such that dp(g̃, hk) <
ε
2

we obtain with (2.5) that

dp(g, hk) ≤ dp(g, g̃) + dp(g̃, hk) < ε.

This concludes the proof.

In Hadamard spaces we have no zero element so that a notion of “compact sup-
port” is not available. However, the previous proof shows that we can approximate
a function in Lp(Ω,H) arbitrarily well by a function which is constant outside of
a compact set, which can be seen as an equivalent. The previous theorem can be
applied to prove the next corollary.

Corollary 2.3. Let (H, d) be a locally compact Hadamard space, f ∈ Lp(Ω,H), p ∈
[1,∞), and {φj}j∈N be diffeomorphisms on Ω such that limj→∞ ∥φj − φ̂∥L∞(Ω)n = 0
and | detDφj|−1 ≤ C for all j ∈ N. Then lim supj→∞ dp(f ◦ φj, f ◦ φ̂) = 0.

Proof. For f ∈ Lp(Ω,H), we can construct by Theorem 2.2 a sequence {fk}k∈N of
uniformly continuous functions with dp(f, fk) <

1
k
. Then, we conclude

dp(f ◦ φj, f ◦ φ̂) ≤ dp(f ◦ φj, fk ◦ φj) + dp(fk ◦ φj, fk ◦ φ̂) + dp(fk ◦ φ̂, f ◦ φ̂)
≤ Cdp(f, fk) + dp(fk ◦ φj, fk ◦ φ̂) + Cdp(fk, f).

By construction, the first and the last term can be made arbitrary small as k → ∞.
Now, let k ∈ N be fixed. Since φj converges uniformly to φ̂, we can use the uniform
continuity of fk in order to conclude that fk ◦ φj converges uniformly to fk ◦ φ̂.
Boundedness of Ω implies that the middle term converges to zero as j → ∞.
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In the rest of this chapter, we restrict our considerations to finite-dimensional
Hadamard manifolds (H, d), i.e., H has an additional Riemannian manifold struc-
ture. Clearly, finite-dimensional Hadamard manifolds are locally compact. By TxH
we denote the tangential space of H at x ∈ H. Then, the geodesics γx,v are deter-
mined by their starting point x ∈ H and their tangential v ∈ TxH at this point.
Further, we need the exponential map expx : TxH → H defined by expx v := γx,v(1),
and the inverse of the exponential map logx := exp−1

x : H → TxH.

2.2.2 Sobolev spaces and admissible mappings

Let Ck,α(Ω), k ∈ N0, denote the Hölder space of functions f ∈ Ck(Ω) for which

∥f∥Ck,α(Ω) :=
∑︂
|β|≤k

∥Dβf∥C(Ω) +
∑︂
|β|=k

sup
x,y∈Ω
x ̸=y

|Dβf(x)−Dβf(y)|
|x− y|α

is finite. With this norm Ck,α(Ω) is a Banach space.
By Wm,p(Ω), m ∈ N, 1 ≤ p < ∞, we denote the Sobolev space of functions

having weak derivatives up to order m in Lp(Ω) with norm

∥f∥pWm,p(Ω)
:=

∫︂
Ω

∑︂
|α|≤m

|Dαf |p dx.

We apply the usual abbreviation |Dmf |p :=∑︁|α|=m|Dαf |p. For F = (fν)
n
ν=1, we

set |DmF |p =
∑︁n

ν=1|Dmfν |p. In particular, we are interested in Wm,2(Ω) with
m > 1 + n

2
. In this case, Wm,2(Ω) is compactly embedded into C1,α(Ω) for all

α ∈ (0,m− 1− n
2
) [4, p. 350, Th. 8.13] and consequently Wm,2(Ω) ↪→ W 1,p(Ω) for

all p ≥ 1.
For m > 1 + n

2
, we consider the set

A :=
{︁
φ ∈ Wm,2(Ω)

n
: detDφ > 0 a.e. in Ω, φ(x) = x for x ∈ ∂Ω

}︁
,

which was used as admissible set of deformations in [33]. By the results of Ball [19],
we know that φ(Ω) = Ω and φ is injective a.e. By the last property and since Ω is
bounded, it follows immediately for all φ ∈ A that

∥φ∥L∞(Ω)n ≤ C, ∥φ∥L2(Ω)n ≤ C, (2.6)

with constants depending only on Ω. We have φ ∈ C1,α(Ω)
n and by the inverse map-

ping theorem φ−1 exits locally around a.e. x ∈ Ω and is continuously differentiable
on the corresponding neighborhood. However, to guarantee that φ−1 is continuous
(or, even more, continuously differentiable) further assumptions are required, see
[19, Thm. 2]. Take for example the function φ(x) := x3 on Ω := (−1, 1) which
is in A , but φ−1(x) = sgn(x)|x| 13 is not continuously differentiable. Furthermore,
I ∈ L2(Ω,H) and φ ∈ A do not guarantee that I ◦ φ ∈ L2(Ω,H), as the example
I(x) := x−

1
4 in L2([0, 1]) and φ(x) := x2 shows.
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2. Morphing of Manifold-Valued Images

Therefore, we introduce, for small fixed ϵ > 0, the admissible set

Aϵ :=
{︁
φ ∈ Wm,2(Ω)

n
: detDφ ≥ ϵ, φ(x) = x for x ∈ ∂Ω

}︁
⊂ A .

Later, in Theorem 2.7, we have to solve a system of equations with entries depending
on detDφ. For stability reasons, we do not want that the determinant becomes
arbitrary small. This can be avoided by introducing ϵ. Moreover, by the inverse
mapping theorem, φ ∈ Aϵ is a diffeomorphism, although in general φ−1 /∈ Aϵ.
Further, I ∈ L2(Ω,H) and φ ∈ Aϵ imply I ◦ φ ∈ L2(Ω,H). We mention that the
space of images L∞(Ω,R) was discussed in the thesis [97]. However, working in
the Hadamard space L2(Ω,H) simplifies the proofs. In particular, we can use the
concept of weak convergence in these spaces.

2.3 Minimizers of the space continuous model
Let H be a finite-dimensional Hadamard manifold. Due to our application, we
call the functions from L2(Ω,H) images. Mappings φ ∈ Aϵ can act on images
I ∈ L2(Ω,H) via

φ · I = I ◦ φ, φ ∈ Aϵ.

Inspired by the time discrete geodesic paths model for images with values in Rn,
see [33], we introduce a general morphing model for manifold-valued images and
prove existence of minimizers for this model in the next subsection. Although we
can basically follow the lines in [33], all proofs are new even for the Euclidean setting
due to the different admissible set. Moreover, the manifold-valued setting requires
some care when minimizing over the image sequence. Then, in Subsection 2.3.2, we
specify the model by choosing the linearized elastic potential as regularizer.

2.3.1 Space continuous model

Let W : Rn,n → R≥0 be a lsc mapping, γ > 0, m > 1 + n
2

and K ≥ 2 be an integer.
Given a template image and a reference image

I0 = T ∈ L2(Ω,H), IK = R ∈ L2(Ω,H),

respectively, we are searching for an image sequence

I := (I1, . . . , IK−1) ∈ L2(Ω,H)K−1,

see Fig. 2.2, which minimizes the energy

J (I) :=
K∑︂
k=1

inf
φk∈Aϵ

∫︂
Ω

W (Dφk) + γ|Dmφk|2 dx+ d2
2(Ik−1 ◦ φk, Ik) (2.7)

= inf
φ∈AK

ϵ

K∑︂
k=1

∫︂
Ω

W (Dφk) + γ|Dmφk|2 dx+ d2
2(Ik−1 ◦ φk, Ik)

= inf
φ∈AK

ϵ

J (I,φ),
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2.3 Minimizers of the space continuous model

I0
ϕ1

I1 . . .
Ik−1

ϕk
Ik . . .

IK−1

ϕK
IK

Figure 2.2: Illustration of the image and the diffeomorphism path

where φ := (φ1, . . . , φK) and

J (I,φ) :=
K∑︂
k=1

∫︂
Ω

W (Dφk) + γ|Dmφk|2 dx+ d2
2(Ik−1 ◦ φk, Ik).

Note that for simplicity of notation we moved the parameter 1
δ

of the squared
distance term to W , see (2.18), and used a shift in the φk.

A typical strategy for minimizing such a functional is alternating minimization
over I and φ. In the following, we show that the corresponding subproblems have a
minimizer. This can then be used to show that the whole functional has a minimizer.

First, we fix the image sequence I ∈ L2(Ω,H)K−1 and show that J (I, ·) has a
minimizer φ ∈ A K . It suffices to prove that each of the registration problems

R(φk; Ik−1, Ik) :=

∫︂
Ω

W (Dφk) + γ|Dmφk|2 dx+ d2
2(Ik−1 ◦ φk, Ik)

has a minimizer in Aϵ, k = 1, . . . , K. Note that we can show the more general result
for φ ∈ A for this functional. If we restrict ourselves to φ ∈ Aϵ, the proof can be
simplified, see Corollary 2.5.

Theorem 2.4. Let W : Rn,n → R≤0 be a lsc mapping with

W (A) = ∞ if detA ≤ 0. (2.8)

Further, let T,R ∈ L2(Ω,H) be given. Then there exists φ̂ ∈ A minimizing

R(φ;T,R) =

∫︂
Ω

W (Dφ) + γ|Dmφ|2 + d2(T ◦ φ,R) dx

over all φ ∈ A .

Proof. 1. Let {φj}j∈N, φj ∈ A , be a minimizing sequence of R. Then, we
have R(φj;T,R) ≤ C for all j ∈ N. This implies that {φj}j∈N has uniformly
bounded Wm,2(Ω)n-seminorm, and by (2.6) the sequence is also uniformly bounded
in L2(Ω)n. Now, we apply the Gagliardo–Nirenberg inequality, see Theorem 2.12
and Remark 2.13, which states that for all 0 ≤ i < m it holds

∥Diφj∥L2(Ω) ≤ C1∥Dmφj∥L2(Ω) + C2∥φj∥L2(Ω).

All terms on the right hand side are uniformly bounded. Hence, the Wm,2(Ω)n

norm of {φj}j∈N is uniformly bounded. Since Wm,2(Ω) is reflexive, there exists a
subsequence {φjl}l∈N that converges weakly to some function φ̂ in Wm,2(Ω)n. By
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2. Morphing of Manifold-Valued Images

the compact embedding Wm,2(Ω) ↪→ C1,α(Ω), α ∈ (0,m− 1− n
2
), this subsequence

converges strongly to φ̂ in C1,α(Ω)
n. We again denote this subsequence by {φj}j∈N.

2. Next, we show that φ̂ is in the set A. By the first part, Dφj converges
uniformly to Dφ̂. Since W is lsc, this implies

W (Dφ̂)(x) ≤ lim inf
j→∞

W (Dφj)(x)

for all x ∈ Ω and since W is non-negative, we obtain by Fatou’s lemma∫︂
Ω

W (Dφ̂) dx ≤ lim inf
j→∞

∫︂
Ω

W (Dφj) dx ≤ C.

By (2.8) this implies detDφ̂ > 0 a.e. Further, the boundary condition is fulfilled so
that φ̂ ∈ A . It remains to show that limj→∞R(φj;T,R) = R(φ̂;T,R).

3. We prove that

d2
2(T ◦ φ̂, R) ≤ lim inf

j→∞
d2
2

(︁
T ◦ φj, R

)︁
.

Assume d2
2(T ◦ φ̂, R) > lim infj→∞ d2

2(T ◦ φj, R) and for the moment also that
d2
2(T ◦ φ̂, R) is finite. Then, we can find an δ > 0 such that

d2
2(T ◦ φ̂, R)− δ = lim inf

j→∞
d2
2(T ◦ φj, R).

The sets {x ∈ Ω : detDφj = 0, j ∈ N} and {x ∈ Ω : detDφ̂ = 0} have both
measure zero. Let Ω+ be their complementary set, which is open since the φj are
convergent. By the inverse mapping theorem, we know that φ−1

j and φ̂−1 are con-
tinuously differentiable on Ω+. Since Ω+ is open, we can use monotone convergence
to find a compact set K such that K ⊂ Ω+ and

d2
2(T ◦ φ̂, R) ≤

∫︂
K
d2(T ◦ φ̂, R) dx+ δ

2
.

Using that the integrands are non-negative, we get

lim inf
j→∞

∫︂
K
d2(T ◦ φj, R) dx <

∫︂
K
d2(T ◦ φ̂, R) dx. (2.9)

For the case d2
2(T ◦ φ̂, R) = ∞ we obtain the same inequality, since the left-hand

side is less than some finite constant C independent of K. However, K can be chosen
such that the right-hand side gets arbitrary large using monotone convergence. Note
that it will be still finite due to the change of variables formula [239, Thm. 7.26].

Now, for the set K, we obtain⃓⃓⃓ ∫︂
K
d2(T ◦ φj, R)− d2(T ◦ φ̂, R) dx

⃓⃓⃓
≤
∫︂
K

(︁
d(T ◦ φj, R) + d(T ◦ φ̂, R)

)︁⃓⃓
d(T ◦ φj, R)− d(T ◦ φ̂, R)

⃓⃓
dx

≤
∫︂
K

(︁
d(T ◦ φj, R) + d(T ◦ φ̂, R)

)︁
d
(︁
T ◦ φj, T ◦ φ̂

)︁
dx

≤C1

(︃∫︂
K
d2(T ◦ φj, T ◦ φ̂) dx

)︃1
2

(2.10)
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with

C1 :=

(︃∫︂
K
d2(T ◦ φj, R) dx

)︃1
2

+

(︃∫︂
K
d2(T ◦ φ̂, R) dx

)︃1
2

<∞.

This constant is finite as the first term is uniformly bounded by construction and
the second term is bounded by construction of K. Now, Corollary 2.3 implies that
the term ∫︂

K
d2(T ◦ φj, T ◦ φ̂) dx

in (2.10) converges to zero. This yields a contradiction to (2.9).
4. By the previous steps, we have that the three summands in R are (weakly)

lower semi-continuous. Hence, we get

R(φ̂;T,R) ≤ lim inf
j→∞

∫︂
Ω

W (Dφj) + γ|Dmφj|2 + d2(T ◦ φj, R) dx = inf
φ∈A

R(φ),

which proves the claim.

Following the lines of the previous theorem, we can prove its analogue for Aϵ.

Corollary 2.5. Let W : Rn,n → R+ be a lsc mapping. Further, let T,R ∈ L2(Ω,H)
be given. Then there exists φ̂ ∈ Aϵ minimizing

R(φ;T,R) :=

∫︂
Ω

W (Dφ) + γ|Dmφ|2 + d2(T ◦ φ,R) dx

over all φ ∈ Aϵ.

Proof. The proof is similar to the previous one, but simplifies as all integrals are
defined over Ω and the approximation with compact sets is not necessary.

Next, we fix the sequence of admissible mappings φ ∈ AK
ϵ and look for a mini-

mizer of

Jφ(I) :=
K∑︂
k=1

d2
2(Ik−1 ◦ φk, Ik) subject to I0 = T, IK = R.

Note that we consider admissible functions in Aϵ now, since the composition I ◦ φ
of a deformation φ and an image I ∈ L2(Ω,H) should be again in L2(Ω,H).

Lemma 2.6. For fixed φ ∈ AK
ϵ , there exists a sequence Î ∈ L2(Ω,H)K−1 minimiz-

ing Jφ.

Proof. Let {I(j)}j∈N be a minimizing sequence of Jφ, i.e., limj→∞ Jφ(I
(j)) = Ĵ , where

Ĵ is the infimum of Jφ. Clearly, there exists C ≥ 0 such that Jφ(I(j)) ≤ C for all
j ∈ N. By the triangle inequality, we obtain for some fixed a ∈ H that

d2

(︁
I
(j)
k+1, a

)︁
≤ d2

(︁
I
(j)
k ◦ φk+1, I

(j)
k+1

)︁
+ d2

(︁
I
(j)
k ◦ φk+1, a

)︁
≤ C + d2

(︁
I
(j)
k ◦ φk+1, a

)︁
.
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2. Morphing of Manifold-Valued Images

Thus, since detDφk ≥ ϵ a.e. on Ω for k = 1, . . . , K,

d2

(︁
I
(j)
1 , a

)︁
≤ C + d2(T ◦ φ1, a)

d2

(︁
I
(j)
2 , a

)︁
≤ C + d2

(︁
I
(j)
1 ◦ φ2, a

)︁
= C +

(︃∫︂
Ω

d2
(︁
I
(j)
1 ◦ φ2, a

)︁
dx

)︃ 1
2

= C +

(︃∫︂
Ω

d2
(︁
I
(j)
1 , a

)︁ ⃓⃓
det
(︁
Dφ2 ◦ φ−1

2

)︁⃓⃓−1
dx

)︃ 1
2

≤ C + ϵ−
1
2d2

(︁
I
(j)
1 , a

)︁
≤ C + ϵ−

1
2

(︁
C + d2(T ◦ φ1, a)

)︁
.

Continuing this successively, we see that {I(j)}j∈N is bounded in L2(Ω,H)K−1.
From [13, Prop. 3.1.2] we know that a bounded sequence in a Hadamard space
has a weakly convergent subsequence {I(jk)}k∈N. Let Î ∈ L2(Ω,H)K−1 be its weak
limit point. Now d2(·, ·) is a continuous convex function and the same holds true
for Jφ. Then, by [13, Lem. 3.2.3], the function Jφ is weakly lsc, which means that

Ĵ = lim
j→∞

Jφ
(︁
I(j)
)︁
= lim

k→∞
Jφ
(︁
I(jk)

)︁
≥ Jφ(Î),

so that Î is a minimizer of the functional.

Theorem 2.7. For fixed φ ∈ AK
ϵ , there exists a unique sequence of intermediate

images I ∈ L2(Ω,H)K−1 minimizing Jφ.

Proof. By Lemma 2.6, there exists a minimizer of Jφ. Setting

ψK := Id,
ψk := φk+1 ◦ ψk+1 = φk+1 ◦ . . . ◦ φK , k = K − 1, . . . , 0, (2.11)

and substituting x := ψk(y) in the k-th summand of Jφ, we obtain

Jφ(I) =
K∑︂
k=1

∫︂
Ω

d2
(︁
Ik ◦ ψk, Ik−1 ◦ ψk−1

)︁
| detDψk| dy.

Using FK := IK = R, Fk := Ik ◦ ψk, and wk := | detDψk| > 0, we are concerned
with the minimization of

K∑︂
k=1

∫︂
Ω

wk d
2(Fk, Fk−1) dx subject to F0 = T ◦ ψ0, FK = R.

Each image Ik, resp. Fk, appears only in two summands∫︂
Ω

wk d
2(Fk, Fk−1) + wk+1 d

2(Fk+1, Fk) dx.

By the Euler-Lagrange equation and since the Riemannian gradient of the squared
distance function is ∇d2(·, a)(b) = −2 logb a, we obtain

wk logFk
Fk−1 + wk+1 logFk

Fk+1 = 0, k = 1, . . . , K − 1. (2.12)
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2.3 Minimizers of the space continuous model

F0 F3

F1

F2
s1

s2 s3

w2δ w1δ
w3δ̃ w2δ̃

Figure 2.3: Illustration of relation (2.14) for the geodesic (2.13) with K = 3,
where δ, δ̃ are constants canceling out in the fraction.

If K = 2, we have only one equation

w1 logF1
F0 + w2 logF1

F2 = 0,

which implies that F1 has to be on the geodesic γF0,F2(t), t ∈ [0, 1]. Since

w1| logF1
F0| = w2| logF1

F2|,

we obtain
F1 = γF0,F2

(︁
w2

w1+w2

)︁
.

For general K ≥ 3, the system of equations (2.12) can only be fulfilled if three
consecutive points always lie on a geodesic. This is only possible if all points are
on the same geodesic γF0,FK

(t), t ∈ [0, 1]. More precisely,

Fk = γF0,FK
(tk), k = 1, . . . , K − 1, (2.13)

where by (2.12), the tk are related via

sk
sk+1

=
wk+1

wk
, sk := tk − tk−1, k = 1, . . . , K − 1, (2.14)

see Fig. 2.3 for an illustration. It is easy to check that these conditions are fulfilled
by

sk :=
αk∑︁K−1
k=1 αk

, αk :=
K∏︂
i=1
i ̸=k

wi, k = 1, . . . , K − 1,

so that

tk =
k∑︂
i=1

si =

∑︁k
i=1w

−1
i∑︁K

i=1w
−1
i

.

The geodesics between F0 and FK are unique, so that the resulting points Fk,
k = 1, . . . , K − 1, are unique as well. As we know that φk are diffeomorphisms, the
functions ψk, k = 1, . . . , K − 1, are diffeomorphisms as well. By (2.13), convexity
of d2, and F0, R ∈ L2(Ω,H), we see that Fk ∈ L2(Ω,H) and thus Ik ∈ L2(Ω,H),
k = 1, . . . , K − 1.

For proving the next theorem, we need the following corollary.
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2. Morphing of Manifold-Valued Images

Corollary 2.8. Let {φ(j)}j∈N with φ(j) ∈ AK
ϵ be a sequence that converges in

C1,α(Ω)nK. For each j ∈ N, let I(j) ∈ L2(Ω,H)K−1 be the minimizer of Jφ(j). Then
the sequence {I(j)}j∈N converges in L2(Ω,H)K−1.

Proof. The proof follows the path of the previous theorem. Similarly as in (2.11),
we define

ψK := Id, ψ
(j)
k := φ

(j)
k+1 ◦ ψ

(j)
k+1, F

(j)
k := I

(j)
k ◦ ψ(j)

k , k = 0, . . . , K − 1,

where I(j)0 = T and F
(j)
K = R. Clearly, the convergence of {φ(j)}j∈N in C1,α(Ω)

n

implies the convergence of {ψ(j)
k }j∈N to ψ̂k in C1,α(Ω)

n for all k = 0, . . . , K − 1.
Hence, for all k = 0, . . . , K − 1,

w
(j)
k :=

⃓⃓
detDψ

(j)
k

⃓⃓
is uniformly convergent on Ω. By construction, w(j)

k ≥ ϵ̃ > 0 such that

t
(j)
k :=

∑︁k
i=1

(︁
w

(j)
i

)︁−1∑︁K
i=1

(︁
w

(j)
i

)︁−1

converges pointwise on Ω as j → ∞. We denote the limit by t̂k and set

F̂ 0 := T ◦ ψ̂0,

F̂ k(x) := γF̂ 0(x),R(x) ◦ t̂k(x), k = 1, . . . , K − 1.

Recall that it holds
F

(j)
k (x) = γ

F
(j)
0 (x),R(x)

◦ t(j)k (x).

Using Corollary 2.3, we see that F (j)
0 = T ◦ψ(j)

0 converges in L2(Ω,H) to F̂ 0 = T ◦ψ̂0.
For k = 1, . . . , K − 1, we obtain

d2

(︁
F

(j)
k , F̂ k

)︁
≤ d2

(︂
F

(j)
k , γF̂ 0(x),R(x) ◦ t

(j)
k

)︂
+ d2

(︂
γF̂ 0(x),R(x) ◦ t

(j)
k , F̂ k

)︂
=

(︃∫︂
Ω

d2
(︂
γ
F

(j)
0 (x),R(x)

◦ t(j)k (x), γF̂ 0(x),R(x) ◦ t
(j)
k (x)

)︂
dx

)︃ 1
2

+

(︃∫︂
Ω

d2
(︂
γF̂ 0(x),R(x) ◦ t

(j)
k (x), γF̂ 0(x),R(x) ◦ t̂k(x)

)︂
dx

)︃ 1
2

.

Since the distance d is jointly convex, we estimate by (2.4) that

d2
(︂
γ
F

(j)
0 (x),R(x)

◦ t(j)k (x), γF̂ 0(x),R(x) ◦ t
(j)
k (x)

)︂
≤
(︁
1− t

(j)
k (x)

)︁2
d2
(︁
F

(j)
0 (x), F̂ 0(x)

)︁
.

Using this inequality, property (2.2) of geodesics and that 0 < t
(j)
k < 1, we conclude

d2

(︁
F

(j)
k , F̂ k

)︁
≤
(︃∫︂

Ω

d2
(︁
F

(j)
0 , F̂ 0

)︁(︁
1− t

(j)
k

)︁2
dx

)︃ 1
2

+

(︃∫︂
Ω

d2(F̂ 0, R)
⃓⃓
t
(j)
k − t̂k

⃓⃓2
dx

)︃ 1
2

≤
(︃∫︂

Ω

d2
(︁
F

(j)
0 , F̂ 0

)︁
dx

)︃ 1
2

+

(︃∫︂
Ω

d2(F̂ 0, R)
⃓⃓
t
(j)
k − t̂k

⃓⃓2
dx

)︃ 1
2

.
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2.3 Minimizers of the space continuous model

Since the second factor in the last integral converges pointwise to zero as t(j)k → t̂k
in C0,α(Ω) and d2(F̂ 0, R)|t(j)k − t̂k|2 has the integrable upper bound 4d2(F̂ 0, R), the
dominated convergence theorem implies that F (j)

k converges in L2(Ω,H) to F̂ k,
k = 1, . . . , K − 1.

Finally, setting Îk := F̂ k ◦ ψ̂
−1

k , k = 1, . . . , K − 1, we obtain

d2

(︁
I
(j)
k , Îk

)︁
≤ d2

(︁
I
(j)
k , F̂ k ◦ (ψ(j)

k )−1
)︁
+ d2

(︁
F̂ k ◦ (ψ(j)

k )−1, F̂ k ◦ ψ̂
−1

k

)︁
and since {ψ(j)

k }j∈N converges in C1,α(Ω)
n further

d2

(︁
I
(j)
k , Îk

)︁
≤C(ϵ)

(︂
d2

(︁
F

(j)
k , F̂ k) + d2

(︁
F̂ k, F̂ k ◦ ψ̂

−1

k ◦ ψ(j)
k

)︁)︂
.

As F (j)
k converges in L2(Ω,H) to F̂ k and ψ(j)

k converges uniformly to ψ̂k as j → ∞,
we obtain together with Corollary 2.3 that the right-hand side becomes arbitrary
small for j large enough. This concludes the proof.

Up to now, we have shown that for a given image sequence I0 = T, I1, . . . , IK−1,
IK = R ∈ L2(Ω,H) the problem

min
φ∈AK

ϵ

J (I,φ)

has a minimizer and that for given φ ∈ AK
ϵ the problem

min
I∈L2(Ω,H)K−1

J (I,φ) subject to I0 = T, IK = R

has a unique solution. Using these two results, we can prove that a minimizer of J
in (2.7) exists.

Theorem 2.9. Let T,R ∈ L2(Ω,H) and K ≥ 2. Then there exists a sequence
Î ∈ L2(Ω,H)K−1 minimizing J .

Proof. Let {I(j)}j∈N with I(j) ∈ L2(Ω,H)K−1 be a minimizing sequence of J . Then
J (I(j)) ≤ C for all j ∈ N. By Corollary 2.5, we find for each I(j) a sequence of
diffeomorphisms φ(j) such that

J
(︁
I(j),φ(j)

)︁
≤ J

(︁
I(j),φ

)︁
for all φ ∈ AK

ϵ . We know that ∥Dmφ
(j)
k ∥2L2(Ω) < C/γ for all j ∈ N and k = 1, . . . , K.

As in the first part of the proof of Theorem 2.4, we conclude that {φ(j)
k }j∈N is

bounded in Wm,2(Ω)n and hence there exists a subsequence {φ(jl)
k }l∈N converging

weakly in Wm,2(Ω)n and strongly in C1,α(Ω)
n, 0 < α < m − 1 − n

2
, to φ̂k. Let us

denote the whole subsequence again by {φ(j)}j∈N.
Using Lemma 2.6, we can replace {I(j)}j∈N by the image sequence {Î(j)}j∈N,

Î
(j) ∈ L2(Ω,H)K−1, minimizing Jφ(j) so that the energy J does not increase. From
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2. Morphing of Manifold-Valued Images

Corollary 2.8, we know that the sequence {Î(j)}j∈N converges in L2(Ω,H)K−1 to Î.
Thus,

lim
j→∞

K∑︂
k=1

d2
2

(︁
Î
(j)

k−1 ◦ φ(j)
k , Î

(j)

k

)︁
=

K∑︂
k=1

d2
2(Îk−1 ◦ φ̂k, Îk). (2.15)

By definition of J we have

J (Î) ≤ J (Î, φ̂).

Further, by (2.15), as W is lsc (see Part 4 of the proof of Theorem 2.4), and by
construction of Î

(j)
, we obtain

J (Î) ≤ lim inf
j→∞

J
(︁
Î
(j)
,φ(j)

)︁
≤ lim inf

j→∞
J
(︁
I(j),φ(j)

)︁
= lim inf

j→∞
J
(︁
I(j)
)︁
.

Thus, Î is a minimizer of J .

2.3.2 Model specification

To find an image sequence I = (I1, . . . , IK−1) minimizing J , we use an alternating
minimization scheme. Starting with I(0), the deformation sequence φ(j) is computed
by

φ(j) := argmin
φ∈A K

ϵ

J
(︁
I(j−1),φ

)︁
=

(︃
argmin
φk∈A ϵ

R
(︁
φk; I

(j−1)
k−1 , I

(j−1)
k

)︁)︃K
k=1

. (2.16)

To obtain the image sequence I(j), we compute

I(j) := argmin
I∈L2(Ω,H)K−1

J
(︁
I,φ(j)

)︁
= argmin

I∈L2(Ω,H)K−1

K∑︂
k=1

d22(Ik−1 ◦ φk, Ik) subject to I0 = T, IK = R. (2.17)

While in (2.16) each of the K minimization problems can be tackled separately,
(2.17) is a coupled system that can be solved using the approach in the proof of
Theorem 2.7.

For computational purposes, we have to specify W in R(φ) = R(φ;T,R). Here,
we propose to use the linearized elastic potential, see [204, p. 99],

W (Dφ) := µ trace
(︁
(Dφsym − 1)2

)︁
+ λ

2
trace(Dφsym − 1)2, (2.18)

where 1 denotes the identity matrix. For this choice, we can reformulate the problem
as finding a displacement vector field v = (v1, v2)

T : Ω ↦→ R2 minimizing

R(v) := S(v) +
∫︂
Ω

γ|Dmv(x)|2 + d2
(︁
T (x− v(x)) , R(x)

)︁
dx, (2.19)
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2.3 Minimizers of the space continuous model

where

S(v) :=
∫︂
Ω

µ trace
(︁
DvTsymDvsym

)︁
+ λ

2
trace (Dvsym)

2 + η∥v∥22 dx. (2.20)

For Ω ⊂ R2, we have for example

Dvsym =

(︃
∂xv1

1
2
(∂yv1 + ∂xv2)

1
2
(∂yv1 + ∂xv2) ∂yv2

)︃
,

which is also known as the (Cauchy) strain tensor of the displacement v. As the
meaning is clear from the context, we use the same notation R when addressing φ
and v. To get the deformation, we set φ(x) := x− v(x).

The term (2.19) is a usual regularizer in the context of registration, see [143,
204, 226]. However, after solving K registration problems separately, the resulting
deformations are coupled in the subsequent step to find an optimal image sequence
for these deformations. Using η > 0 in (2.20) together with some conditions on the
distance of subsequent images Ik, we can handle the condition detDφ ≥ ϵ as the
following remark shows.

Remark 2.10. 1. Assume γ, η > 0. Clearly, it holds

min
φ∈A ϵ

R(φ;T,R) ≤ R(id;T,R) = d2
2(T,R). (2.21)

In a similar way as in the proof of Theorem 2.4, we can use the Gagliardo–Nirenberg
inequality together with the compact embedding of Wm,2(Ω) into C1,α(Ω) to conclude

∥φ− id ∥C1,α(Ω) ≤ C∥φ− id ∥Wm,2(Ω) ≤ C
(︁
∥φ− id ∥L2(Ω) + ∥Dm(φ− id)∥L2(Ω)

)︁
.

Thus, with the regularization (2.20), the optimal solution φ̂ of (2.21) must fulfill

∥φ̂− id ∥C1,α(Ω) ≤ Cd2(T,R),

where the constant C is independent of T and R. Consequently, we obtain that
∥Dφ̂−1∥L∞(Ω)n,n ≤ Cd2(T,R). If d2(T,R) ≤ Cdet is sufficiently small, this implies
together with the continuity of the determinant that | detDφ̂| ≥ ϵ.

2. Now, the argument needs to be extended to the whole problem

min
φ∈A K

ϵ , I∈L2(Ω,H)K−1

K∑︂
k=1

R(φk; Ik−1, Ik)

with given template image I0 = T and reference image IK = R. For this problem,
we use the initialization Ĩk = γT,R(

k
K
) with the geodesic γT,R and conclude

min
φ∈A K

ϵ , I∈L2(Ω,H)K−1

K∑︂
k=1

R(φk; Ik−1, Ik) ≤
K∑︂
k=1

R
(︁
id; Ĩk−1, Ĩk

)︁
= 1

K
d22(T,R).

For every summand it holds R(φk; Ik−1, Ik) ≤ 1
K
d22(T,R) which is smaller than Cdet

if d2(T,R) ≤ Cdet
√
K. Hence, the optimal deformations satisfy |detDφ̂k| ≥ ϵ if we

use enough images in between.
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(1, 5)

(1, 1)

(7, 5)

(7, 1)

Grid points of G
Grid points of G1

Grid points of G2

Figure 2.4: Illustration of the staggered grid, where empty boxes mean zero move-
ment

2.4 Minimization of the space discrete model
In practice, we have to work in a spatially discrete setting. Dealing with digital
images, we propose a finite difference model. We have already used such a model as
basis of a face colorization method in [226]. In the rest of this chapter, we restrict
our attention to two-dimensional images T,R : G → H defined on the (primal)
image grid G := {1, . . . , n1} × {1, . . . , n2}. The integrals appearing in our space
continuous functionals on the integration domain Ω := [1

2
, n1 +

1
2
] × [1

2
, n2 +

1
2
] are

discretized by the midpoint quadrature rule, i.e., with pixel values defined on G.

2.4.1 Computation of the deformation sequence

For discretizing the operators in (2.20), we work as usual on staggered grids. For
an application of mimetic grid techniques in optical flow computation see also [286].
Let

Gd :=
{︁

3
2
, . . . , n1 − 1

2

}︁
×
{︁

3
2
, . . . , n2 − 1

2

}︁
be the (inner) dual grid, i.e., G shifted by 1

2
in each direction, and

G1 :=
{︁

3
2
, . . . , n1 − 1

2

}︁
× {1, . . . , n2}, G2 := {1, . . . , n1} ×

{︁
3
2
, . . . , n2 − 1

2

}︁
.

Further, we consider v = (v1, v2)
T with v1 : G1 → R and v2 : G2 → R. In contrast

to φ = Id on ∂Ω, we allow flow along the boundary, i.e., ⟨v(x), n(x)⟩2 = 0 for the
outer normal n(x) at x ∈ ∂G. In many applications features intersect with the
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2.4 Minimization of the space discrete model

boundary, see for example the green stripe in Fig. 2.5 or the top part of Fig. 2.8.
Here, movement along the boundary is reasonable even though the theorems from
Section 2.3 do not necessarily hold true. To circumvent the gap to the theory, we
could embed the images into a larger domain by extending them with a constant
value. After the computation the extension could be removed. However, this leads
to a higher computational effort as larger images have to be processed and the
artificial boundary might influence the original image parts.

Henceforth, we use ⟨v(x), n(x)⟩2 = 0. Regarding the staggered grid, the bound-
ary conditions read

v1
(︁
3
2
, x2
)︁
= v1

(︁
n1 − 1

2
, x2
)︁
= 0, x2 ∈ {1, . . . , n2},

v2
(︁
x1,

3
2

)︁
= v2

(︁
x1, n2 − 1

2

)︁
= 0, x1 ∈ {1, . . . , n1}.

See Fig. 2.4 for an illustration. We approximate ∂xv1 for x = (x1, x2)
T ∈ G by

D1,x1v1(x) :=

⎧⎨⎩
0 x1 = 1,
v1
(︁
x1 +

1
2
, x2
)︁
− v1

(︁
x1 − 1

2
, x2
)︁

x1 = 2, . . . , n1 − 1,
0 x1 = n1,

and ∂yv1 for x1 ∈ {1, . . . n1 − 1}, x2 ∈ {1, . . . , n2 − 1} by

D1,x2v1
(︁
x+ 1

2

)︁
= v1

(︁
x1 +

1
2
, x2 + 1

)︁
− v1

(︁
x1 +

1
2
, x2
)︁
,

and similarly the derivatives of v2. Finally, we obtain

S(v) =
∑︂
x∈G

µ
(︁
(D1,x1v1)

2(x) + (D2,x1v2)
2(x)

)︁
+ λ

2

(︁
D1,x1v1(x) +D2,x2v2(x)

)︁2
+ µ

2

∑︂
x∈Gd

(︁
D1,x2v1(x) +D2,x1v2(x)

)︁2
.

As the deformations v are living on grids, it is convenient to use matrix-vector
notation. Let us first rewrite S(v). Using v1 := (v1(x1 +

1
2
, x2))

n1−1,n2

x1,x2=1 ∈ Rn1−1,n2 ,
v2 := (v1(x1, x2 +

1
2
))n1,n2−1
x1,x2=1 ∈ Rn1,n2−1 together with the matrices

D1,x1 :=

⎛⎜⎜⎜⎜⎜⎝
0 0
−1 1

. . .
0 0 −1 1
0 0 0

⎞⎟⎟⎟⎟⎟⎠ ∈ Rn1,n1−1,

D1,x2 :=

⎛⎜⎜⎜⎜⎜⎝
−1 1 0
0 −1 1

. . .
−1 1 0

0 0 −1 1

⎞⎟⎟⎟⎟⎟⎠ ∈ Rn2−1,n2 ,
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2. Morphing of Manifold-Valued Images

and similarly D2,x1 ∈ Rn1−1,n1 and D2,x2 ∈ Rn2,n2−1, we obtain

S(v) = µ
(︁
∥D1,x1v1∥2F + ∥v2DT

2,x2
∥2F + 1

2
∥v1DT

1,x2
+D2,x1v2∥2F

)︁
+ λ

2
∥D1,x1v1 + v2D

T
2,x2

∥2F + η∥v1∥2F + η∥v2∥2F ,

where ∥ · ∥F denotes the Frobenius norm of matrices. Reshaping v1, v2 columnwise
into vectors v1 ∈ R(n1−1)n2 and v2 ∈ Rn1(n2−1) (where we keep the notation) and
using corresponding Kronecker products ⊗ of the matrices above

D1,x1 := 1n2 ⊗D1,x1 , D2,x1 := 1n2−1 ⊗D2,x1 ,

D1,x2 := D1,x2 ⊗ 1n1−1, D2,x2 := D2,x2 ⊗ 1n1 ,
(2.22)

the regularizing term can be rewritten as

S(v) = ∥Sv∥22 , S :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
µD1,x1 0
0

√
µD2,x2√︁

µ
2
D1,x2

√︁
µ
2
D2,x1√︂

λ
2
D1,x1

√︂
λ
2
D2,x2√

η 1(n1−1)n2 0
0

√
η 1n1(n2−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, v =

(︃
v1

v2

)︃
. (2.23)

For the discretization of the higher order term

|Dmv|2=
∑︂
|α|=m

∥Dα
1v1∥22 + ∥Dα

2v2∥22,

we use finite difference matrices Dα
1 , Dα

2 similar to (2.22). Setting Dm
1 := (Dα

1 )|α|=m
and Dm

2 := (Dα
2 )|α|=m, we extend S from (2.23) such that all regularization terms

are included

S :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
µD1,x1 0
0

√
µD2,x2√︁

µ
2
D1,x2

√︁
µ
2
D2,x1√︂

λ
2
D1,x1

√︂
λ
2
D2,x2√

η 1(n1−1)n2 0
0

√
η 1n1(n2−1)√

γDm
1 0

0
√
γDm

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

To discretize the data term in (2.19), we need to approximate T (x− v(x)).
Since v is not defined on G, we use bilinear interpolation of v at the grid points
instead, i.e., the averaged version Pv = (P1v1, P2v2) := G → R2 given by

P1v1(x1, x2) :=

⎧⎨⎩
0, x1 = 1,
1
2

(︁
v1(x1 − 1

2
, x2) + v1(x1 +

1
2
, x2)

)︁
, x1 = 2, . . . , n1 − 1,

0, x1 = n1,
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2.4 Minimization of the space discrete model

and similarly for P2v2 in x2-direction. In matrix-vector notation the averaging
operator P can be written as Pv = (PT

n1
v1, v2Pn2) using

Pn =
1

2

⎛⎜⎝1 1 0
. . .

0 0 1 1

⎞⎟⎠ ∈ Rn−1,n, n ∈ N.

For the vectorized displacement v this becomes

Pv := (P1v1,P2v2) :=
(︁
(1n2 ⊗ PT

n1
)v1, (P

T
n2

⊗ 1n1)v2

)︁
.

In general, x − Pv(x) ̸∈ G and consequently the discrete image T has to be in-
terpolated. To this end, we use a counterpart of bilinear interpolation on man-
ifolds that is based on a reinterpretation of the real valued case as follows. Let
f00, f01, f10, f11 ∈ R be the values at vertices of the unit cell. Then, the bilinear
interpolation f(x) at x = (x1, x2)

T ∈ [0, 1]2 is given by

f(x) = (1− x1)(1− x2)f00 + (1− x1)x2f01 + x1(1− x2)f10 + x1x2f11

= argmin
f∈R

{︁
(1− x1)(1− x2)(f − f00)

2 + (1− x1)x2(f − f01)
2

+ x1(1− x2)(f − f10)
2 + x1x2(f − f11)

2
}︁
.

The latter formulation, which expresses bilinear interpolation as mean, was applied
in [225] to generalize bi- and trilinear interpolation of data f00, f01, f10, f11 ∈ H
using the Karcher mean with appropriate weights

f(x) = argmin
f∈H

{︁
(1− x1)(1− x2)d

2(f, f00) + (1− x1)x2d
2(f, f01)

+ x1(1− x2)d
2(f, f10) + x1x2d

2(f, f11)
}︁
.

(2.24)

In [1], it was shown that this bilinear interpolation leads to C0(Ω,H) images, which
are C1(Ω,H) at points x = (x1, x2)

T with neither x1 ∈ Z nor x2 ∈ Z. In the
following, we write T (x) ∈ H for the interpolated values of T : G → H.

In summary, the spatially discrete registration functional is given by

R(v) := ∥Sv∥22 +
∑︂
x∈G

d2
(︁
T (x− Pv(x)), R(x)

)︁
.

For minimization of this functional, we want to apply a quasi-Newton method.
To this end, we need the chain rule for the differential of two concatenated functions
F : H1 → H2 and G : H0 → H1, see [184, Chap. 4], which states

D(F ◦G)(x)[η] := DF
(︁
G(x)

)︁[︁
DG(x)[η]

]︁
,

and further the Riemannian gradient of a function F : H → R, which is given by

⟨∇F (x), η⟩x := DF (x)[η] for all η ∈ TxH,
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2. Morphing of Manifold-Valued Images

where ⟨·, ·⟩x denotes the Riemannian metric on the tangent space TxH. We start
with the gradient of T . Let ⌈z⌉ be the smallest integer larger than z, and ⌊z⌋
the largest integer smaller or equal than z. The derivative ∇x1T (x) : R2 → TH is
approximated by

∇x1T (x) =
1

⌈x1⌉ − x1
logT (x) T (⌈x1⌉, x2). (2.25)

Note that for T (⌈x1⌉, x2) the minimization (2.24) reduces to solving

0 = (x2 − ⌊x2⌋) logf T (⌈x1⌉, ⌈x2⌉) + (x2 − ⌈x2⌉) logf T (⌈x1⌉, ⌊x2⌋)

The solution f = T (⌈x1⌉, x2) is given analogously to (2.13) by

T (⌈x1⌉, x2) = expT (⌈x1⌉,⌊x2⌋)
(︁
(x2 − ⌊x2⌋) logT (⌈x1⌉,⌊x2⌋) T (⌈x1⌉, ⌈x2⌉)

)︁
.

Similarly, we obtain the derivative in x2-direction.
Assuming T ∈ C1(Ω,H), we can calculate the gradient of R as

∇vR(v) = 2STSv +

(︃
G1(v)
G2(v)

)︃
, (2.26)

where
Gi(v) = ∇vi

(︂∑︂
x∈G

d2
(︁
T (x− Pv(x)), R(x)

)︁)︂
(v).

Next, applying the chain rule to Gi(v) results in

Gi(v) = −PT
i

(︂
∇vid

2
(︁
T (x+ v), R(x)

)︁
(−Pv(x))

)︂
x∈G

, (2.27)

where (·)x∈G denotes the vectorized version of the data. Using again the chain rule,
the “inner” derivatives are given for x ∈ G, v ∈ R2, and η ∈ R by

Dvi

(︂
d2
(︁
T (x+ ·), R(x)

)︁)︂
(v)[η]

=
⟨︂
∇d2

(︁
·, R(x)

)︁(︁
T (x+ v)

)︁
, DviT (x+ ·)(v)[η]

⟩︂
T (x+v)

=
⟨︂
∇d2

(︁
·, R(x)

)︁(︁
T (x+ v)

)︁
, η∇xiT (x+ v)

⟩︂
T (x+v)

=− 2η
⟨︁
logT (x+v)R(x),∇xiT (x+ v)

⟩︁
T (x+v)

=η∇vid
2
(︁
T (x+ ·), R(x)

)︁
(v).

Plugging this into (2.27), we obtain

Gi(v) = 2PT
i

(︂⟨︁
logT (x−Pv(x))R(x),∇xiT (x− Pv(x))

⟩︁
T (x−Pv(x))

)︂
x∈G

.

Using the gradient (2.26), we could solve the registration problems by a gradient
descent algorithm with step size τ chosen by line search

v(l+1) = v(l) − τ∇vR
(︁
v(l)
)︁
.
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2.4 Minimization of the space discrete model

As R is not convex, we only get convergence of a subsequence to a critical point. The
result depends on the starting value, whose choice is described in Subsection 2.4.3.
Since Gradient descent algorithms are known to have bad convergence rates, we
employ a quasi-Newton method. In such methods, the decent direction is given by

D(v) = −H−1
(︁
v(l)
)︁
∇vR

(︁
v(l)
)︁
,

where H(v) is an approximation of the Hessian of R. For the actual minimization
of R, we iterate

v(l+1) = v(l) + τD
(︁
v(l)
)︁
,

with τ chosen by line search. The Hessian is approximated by

H(v) = 2STS+ J(v)TJ(v),

where J(v) ∈ R(n1−1)n2+n1(n2−1) is the Jacobian of the data term, i.e.,

J(v) =
(︁
G1(v)

T G2(v)
T
)︁
.

2.4.2 Computation of the image sequence

Given a displacement sequence V = (v1, . . . ,vK)
T, we can minimize Jφ = J1−V us-

ing the construction given in the proof of Theorem 2.7, in particular formula (2.13).
For this purpose, we need to evaluate geodesics between the initial image T and final
image R to obtain the minimizing image sequence. In particular, for each x ∈ G the
geodesic γT◦ψ0(x),R(x) ⊂ H has to be evaluated at the points tk(x), k = 1, . . . , K− 1.
Here, the grids ψk : G → Ω, k = 0, . . . , K, are given by

ψK(x) = x, ψk(x) = ψk+1(x)− Pvk+1

(︁
ψk+1(x)

)︁
,

where Pvk+1(ψk+1(x)) is obtained via bilinear interpolation on R2. The Jacobian
of φk = 1− vk required for the computation is calculated using forward differences
and evaluated at the grid points ψk(x) via bilinear interpolation. For each x ∈ G
and k = 1, . . . , K − 1, we compute Ik ◦ ψk(x) by evaluating the geodesics. Note
that the intermediate images are calculated at scattered points in Ω, which are in
general not on the grid. Finally, the desired values Ik(x) ∈ H, x ∈ G, are obtained
by linear scattered data interpolation of manifold-valued data.

In the following remark, we detail convergence properties of the alternating
minimization scheme (2.16) and (2.17) in the discrete setting.

Remark 2.11 (Convergence of the alternating minimization).

Deformation sequence: The computation of the deformations is performed by
a quasi-Newton method with appropriate step size. Hence, the deformations
converge to a critical point of the functional and guarantee that the value of
the functional does not increase.
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2. Morphing of Manifold-Valued Images

Image sequence: The computation of the image sequence is based on the proof
of Theorem 2.7, which relies on continuous integrals. For the discrete set-
ting, we have no proof that the functional value decreases, which would imply
a decrease of the whole functional J and the existence of a weakly conver-
gent subsequence of images I(jl) in (Hn1,n2)K+1. However, in our numerical
examples, we observed a decrease for non-degenerated deformation fields.

2.4.3 Multiscale minimization scheme

Neither the energy J (I,φ) nor the registration functional R(v) is convex. Hence, an
initialization close to the optimal solution is desirable. As usual in optical flow and
image registration, we apply a coarse-to-fine strategy. First, we iteratively smooth
our given images by convolution with a truncated Gaussian and downsample using
bilinear interpolation. On the coarsest level we perform a single registration to
obtain a deformation. Then, we apply bilinear interpolation to construct an initial
deformation on the finer level. Next, we construct K̃ − 1, K̃ < K, corresponding
intermediate images by

Ik(x) = expT (x)

(︂
k
K̃
logT (x)R ◦ φ−1

(︁
x− k

K̃
Pv(x)

)︁)︂
, φ(x) = x− Pv(x), (2.28)

where T,R are the start and end images at the finer level. The inversion of φ : G → Ω
is realized by linear scattered interpolation of the identity

φ−1
(︁
φ1(x1, x2), φ1(x1, x2)

)︁
= (x1, x2).

Starting with this initial image sequence, we perform alternating minimization to
obtain better deformations and intermediate images. After going to the next finer
level by bilinear interpolation of the deformations and images, we construct more
intermediate images by interpolating between neighboring ones similar to (2.28).

This procedure is repeated until we reach the maximal number K of images and
the finest level. Note that going to a finer level may increase the distance between
subsequent images. To keep the determinants of the optimal solution φ̂ bounded
away from zero, we can adjust the number of intermediate images according to
Remark 2.10. The described multilevel strategy is sketched in Algorithm 2.1.

2.5 Numerical examples
In this section, we present various proof-of-concept examples. While the mini-
mization of (2.16) and (2.17) as well as the multigrid scheme are implemented in
MATLAB 2017a, the manifold-valued image processing functions, like filtering, bi-
linear interpolation, and interpolation of scattered data, are implemented as part of
the „Manifold-valued Image Restoration Toolbox“(MVIRT)2 by Ronny Bergmann
and Johannes Persch. The toolbox uses C++ implementations of the basic manifold

2open source, available at https://ronnybergmann.net/mvirt/
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2.5 Numerical examples

Algorithm 2.1 Morphing Algorithm (informal)
1: T0 := T,R0 := R,G0 := G
2: create image stack (Tl)

lev
l=0, (Rl)

lev
l=0 on (Gl)levl=0 by smoothing and downsampling

3: solve (2.4.1) for Tlev, Rlev to get ṽ
4: l → lev−1
5: use bilinear interpolation to get v on Gl from ṽ
6: obtain K̃ l images I

(0)
l from Tl, Rl, v by (2.28)

7: while l ≥ 0 do
8: find images Ĩl and deformations ṽl minimizing (2.9) with initialization I

(0)
l

9: l → l − 1
10: if l > 0 then
11: use bilinear interpolation to get Il and vl on Gl
12: for k = 1, . . . , K̃ l do
13: compute K̃ l images connecting Il,k−1, Il,k using (2.28) with vl,k
14: I := I0

functions, like logarithmic and exponential maps, as well as the Karcher means,
which are imported into MATLAB using Mex-interfaces.

In all examples, we set m := 3 and µ = λ = γ =: α. The determinants of Dφk
in our numerical experiments stayed positive even if using η = 0.

2.5.1 Images in different color spaces

First, we are interested in the morphing path of color images in different color spaces
having a nonlinear structure that is not a Hadamard one. We compare

i) the linear RGB color space:

the image path is calculated using lev = 7, where the image size is
decreased to 75% per level, α = 0.00025, and K̃6 = 3, K̃5 = 2, K̃4 =
1, K̃ l = 0, l = 1, 2, 3, i.e., we decrease the number of new intermediate
images while going to finer levels;

ii) the hue-saturation-value (HSV) color space, where the hue is phase valued,
i.e., in S1:

the image path is calculated using lev = 5, where the image size is
decreased to 60% per level, α = 0.1, and K̃5 = 3, K̃4 = 2, K̃3 = 1, K̃ l =
0, l = 1, 2;

iii) the chromaticity-brightness (CB) color space, with S2-valued chromaticity:

the image path is calculated using lev = 8, where the image size is
decreased to 75% per level, α = 0.00025, and K̃7 = 3, K̃6 = 2, K̃5 =
1, K̃ l = 0, l = 1, . . . , 4.
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2. Morphing of Manifold-Valued Images

RGB color model

HSV color model with hue in the second row

CB color model with chromaticity in second row

Figure 2.5: Image path between two images of a sponge, using different color
models.

In Fig. 2.5 we see the image paths between two images of sponges. We calculated
the image paths with 25 images, but only Ik, k = 0, 4, 9, 14, 19, 24, are shown. The
intermediate images are blurred due to the bilinear interpolation, which could be
improved for real-valued images, but the computational cost would be very high for
manifold-valued images.

The morphing for the HSV model looks strange when looking at the color image,
but is reasonable when considering the hue. In the hue channel the large yellow area
is moving, while the green stripe is merging into and emerging out of the boundary.
Here, we work on the manifold S1× [0, 1]2 ⊂ S1×R2 with the usual product metric.
Since the distances in S1 are larger than in the interval [0, 1], the hue dominates the
morphing. Changing the metric, i.e., the weights for the product metric, could lead
to different results with more pleasant color images. Here, we stick to the usual
choice to emphasize the importance of the metric. The image path of the CB model
is very similar to the RGB path for this image. Looking at the chromaticity, we see
that on the right part of the image a small portion of the green color vanishes and
appears again close by. This effect could be reduced by lowering λ and µ, but then
the deformations become close to irregular. However, on the left side the movement
of the green stripe looks smooth, while the background changes as expected.

2.5.2 Symmetric positive definite matrices P(n)

Next, we consider images with values in the manifold of symmetric positive definite
n× n matrices P(n) with the affine invariant metric [225].
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2.5 Numerical examples

(a) Morphing path between two P(3) images with rectangular structures.

(b) Morphing path between two P(3) images with smooth rectangular structures.

Figure 2.6: Comparison of the morphing of sharp and smooth edges using the
same set of parameters.

Moving P(3) rectangle

We start by computing a minimizing discrete path between simple synthetic images
to see how edges are preserved. The template and reference images in Fig. 2.6a
consist of 3I3 matrices in the background and a rectangular part consisting of either
the matrix

AT =

⎛⎝3 2 1
2 4 −1
1 −1 2

⎞⎠ , or AR = exp3I3(2 log3I3 AT),

which is moved downwards. The matrices are depicted as ellipsoids defined by their
eigenvalues and eigenvectors. For this image of size 21 × 33, we used lev = 2,
where the image size is decreased to 50% per level, and α = 1. We calculated 5
intermediate images between existing images on the new level to obtain 7 images in
total. The image path looks reasonable except for the smoothing of the rectangle
in vertical morphing direction and at its right boundary. The smoothing in the
movement direction originates from the bilinear image interpolation model used
to obtain the intermediate images and the “smoothness” of the deformations. It
is possible to incorporate more sophisticated interpolation methods on manifolds,
but this involves higher computational cost. The smoothing on the right side of the
rectangle is an effect of the forward differences used in the calculation of the discrete
deformations (2.25). This effect could also be reduced by a different discretization of
the derivatives. However, for the images with slightly smoothed edges in Fig. 2.6b,
our model performs well and does not produce visible artifacts.
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2. Morphing of Manifold-Valued Images

Figure 2.7: Morphing path between two artificial P(2) images with whirl struc-
tures.

Whirl P(2) image

In Fig. 2.7 we compute the discrete path between two P(2) images, where the final
one is constructed by deforming the start image and pushing its values further away
from the identity. The artificial deformation is more complicated as in the previous
example. For this image of size 64 × 64, we used lev = 4, where the image size is
decreased to 75% per level, α = 0.005, K̃3 = 3, K̃2 = 2, K̃1 = 1. Even though the
deformation is more complicated than before, the path shows a reasonable transition
from the starting to the final image.

DT-MRI

The morphing path between two slices of the Camino3 [77] is shown in Fig. 2.8.
As a preprocessing we inpainted the holes and slightly smoothed the slices using a
ℓ2 − TV regularization with the Douglas-Rachford algorithm [31]. The image path
is calculated using lev = 5, where the image size is decreased to 80% per level,
α = 0.025, and K̃4 = 2, K̃3 = K̃2 = 1, K̃1 = 0, i.e., we decrease the number of new
intermediate images while going to finer levels. Several interesting effects occur on
the path, e.g., the spot of large tensors on the right blends into the background as
there is no similar structure in the target. Further, the stripe in the center moves
a bit to the bottom left. While big structures on the top merge together, a small

3http://camino.cs.ucl.ac.uk
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2.6 Conclusions

structure at the left boundary separates. As our implementation involves many
means, the images on the morphing path are rather smooth. Hence, a comparison
with the original Camino slice between template and target image is not reasonable.

2.6 Conclusions
In this chapter, we have shown how the time discrete geodesic path model from [33]
can be generalized to manifold-valued images. Indeed, we have used a modified
setting and have shown that at least for finite-dimensional Hadamard manifolds
minimizers of the space continuous model exist.

We outlined computational details for the smooth transition of discrete images
with values on a manifold, where the computations work for more general manifolds
than Hadamard ones. It is left to clarify if the solution of the system of equations
from the space continuous setting still leads to a decrease of the corresponding dis-
crete functional. In all our numerical examples this seemed true. For more examples
of manifold-valued images, see [29]. A generalization of Theorem 2.7 to manifolds
with arbitrary curvature seems possible if the images live in compact and convex
subsets of the manifold. Compactness ensures existence of a minimizer in L2(Ω,H).
Convexity is used for the uniqueness of shortest geodesics. Unfortunately, it seems
questionable if further theoretical parts can be generalized to other manifolds.

Finally, the most interesting question is if the model converges for K → ∞ to
some meaningful functional such that it can be interpreted as time discretization
of some geodesic path in the space of manifold-valued images. Note that we have
dealt with the Mosco convergence in Hadamard spaces in [22].

Gagliardo–Nirenberg inequality
Theorem 2.12 (Gagliardo–Nirenberg [220]). Let Ω ⊂ Rn be a bounded domain
satisfying the cone property. For 1 ≤ q, r ≤ ∞, suppose that f belongs to Lq(Ω)
and its derivatives of order m to Lr(Ω). Then for the derivatives Djf , 0 ≤ j < m,
the following inequalities hold true with constants C1, C2 independent of f :

∥Djf∥Lp(Ω) ≤ C1∥Dmf∥aLr(Ω)∥f∥1−aLq(Ω) + C2∥f∥Lq(Ω),

where 1
p
= j

n
+ a
(︁
1
r
− m

n

)︁
+(1− a)1

q
for all a ∈ [ j

m
, 1], except for the case 1 < r <∞

and m− j − n
r

is a non-negative integer, in which the inequality only holds true for
a ∈ [ j

m
, 1).

Remark 2.13. For p = q = r = 2 the inequality simplifies to

∥Djf∥L2(Ω) ≤ C1∥Dmf∥
j
m

L2(Ω)∥f∥
1− j

m

L2(Ω) + C2∥f∥L2(Ω)

≤ C1∥Dmf∥L2(Ω) +
(︁
C1 + C2

)︁
∥f∥L2(Ω),

where the second inequality follows by estimating the product with the maximum of
both factors.
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2. Morphing of Manifold-Valued Images

Figure 2.8: Morphing path between a part of the YZ-slices 49 and 51 of the
Camino dataset.
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3. Convergence of the Time Discrete Metamorphosis Model

Abstract

Note that this chapter1 is published in [98]. Continuous image morphing is
a classical task in image processing. The metamorphosis model proposed by
Trouvé, Younes and coworkers [202, 264] casts this problem in the frame of
Riemannian geometry and geodesic paths between images. The associated
metric in the space of images incorporates dissipation caused by a viscous
flow transporting image intensities and its variations along motion paths. In
many applications, images are maps from the image domain into a manifold
as, e.g., for diffusion tensor imaging (DTI) into the manifold of symmetric
positive definite matrices with a suitable Riemannian metric. In this chapter,
we propose a generalized metamorphosis model for manifold-valued images,
where the image range is a finite-dimensional Hadamard manifold. A corre-
sponding time discrete version was presented in [213] based on the general
variational time discretization proposed in [33]. Here, we prove the Mosco
convergence of the time discrete metamorphosis functional to the proposed
manifold-valued metamorphosis model, which implies the convergence of time
discrete geodesic paths to a geodesic path in the (time continuous) metamor-
phosis model. In particular, the existence of geodesic paths is established. In
fact, images as maps into Hadamard manifold are not only relevant in appli-
cations, but it is also shown that the joint convexity of the distance function –
which characterizes Hadamard manifolds – is a crucial ingredient to establish
existence of the metamorphosis model.

1First published in [98] in 2020, published by the Society for Industrial and Applied Mathe-
matics (SIAM). Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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3.1 Introduction

3.1 Introduction
Image morphing amounts to computing a visually appealing transition of two images
such that image features in the reference image are mapped to corresponding image
features in the target image whenever possible.

A particular model for image morphing known as image metamorphosis was
proposed by Miller, Trouvé, and Younes [202, 264, 263]. It is based on the flow
of diffeomorphism model and the large deformation diffeomorphic metric mapping
(LDDMM), which dates back to the work of Arnold, Dupuis, Grenander and cowork-
ers [9, 10, 95, 25, 168, 199, 273, 272]. From the perspective of the flow of diffeo-
morphism model, each point of the reference image is transported to the target
image in an energetically optimal way such that the image intensity is preserved
along the trajectories of the pixels. The metamorphosis model additionally allows
for image intensity modulations along the trajectories by incorporating the mag-
nitude of these modulations, which is reflected by the integrated squared material
derivative of the image trajectories as a penalization term in the energy functional.
Recently, metamorphosis has been extended to images in reproducing kernel Hilbert
spaces [232], to functional shapes [59], and to discrete measures [231]. For a more
detailed exposition of these models we refer to [285, 201] and the references therein.

A variational time discretization of the metamorphosis model for images in
L2(Ω,Rm) was proposed in [33]. Furthermore, existence of discrete geodesic paths
and the Mosco convergence of the time discrete to the time continuous metamor-
phosis model was proven. The time discrete metamorphosis model has successfully
been applied to a variety of imaging applications like image extrapolation [99],
Bézier interpolation [100], color transfer [226] or image interpolation in a medical
context [32].

Throughout the past years, manifold-valued images have received increased at-
tention, see [21, 72, 186, 277, 30]. Some prominent applications are linked to
Hadamard manifold-valued images:

– Diffusion tensor magnetic resonance imaging is an image acquisition method
that incorporates in vivo magnetic resonance images of biological tissues
driven by local molecular diffusion. The range space of the resulting im-
ages is frequently the space of symmetric and positive definite matrices [20,
63, 112, 267].

– Retina data is commonly modeled as images with values in the manifold of
univariate non-degenerate Gaussian probability distributions endowed with
the Fisher metric [8, 31]. This space is isometric to a hyperbolic space, which
can be exploited numerically.

This motivates a generalization of the metamorphosis model as a Riemannian model
for spaces of images. In [213], the time discrete metamorphosis model was extended
to the set of image L2(Ω,H), where H denotes a finite-dimensional Hadamard man-
ifold. Recall that Hadamard manifolds are Hadamard spaces with a special Rie-
mannian structure having non-positive sectional curvature, details are given below.
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3. Convergence of the Time Discrete Metamorphosis Model

In [13], it is revealed that many concepts of Banach spaces can be generalized to
Hadamard spaces, which are therefore a proper choice for the analytical treatment
of algorithms for manifold-valued images. In particular, the distance in Hadamard
spaces is jointly convex, which implies weak lower semi-continuity of certain func-
tionals involving the distance function. Moreover, several analytic properties of
Hadamard manifolds presented in Section 3.2, which are crucial for the Mosco con-
vergence, cease to be valid for general manifolds.

In this chapter, we prove the Mosco convergence of the manifold-valued time dis-
crete metamorphosis energy functional originally proposed in [213] to a novel (time
continuous) metamorphosis energy functional on Hadamard manifolds. Moreover,
we establish the convergence of manifold-valued time discrete geodesic paths to
geodesic paths in the proposed manifold-valued metamorphosis model, which co-
incides with the original metamorphosis energy functional in the Euclidean space.
The proof of Mosco convergence in [33] incorporates as an essential ingredient a
representation formula for images via integration of the weak material derivative
along motion paths for the time continuous metamorphosis model in the Euclidean
setting. Here, we no longer make use of such a representation formula. Indeed, our
Mosco convergence result can thus be considered as a stronger result even in the
case of images as pointwise maps into a Euclidean space.

Outline The chapter is organized as follows. We start with a collection of required
notation and symbols in the next paragraph, including the definition of Mosco con-
vergence. In Section 3.2, we discuss the concept of Hadamard spaces and manifolds
with an emphasis on important properties of the distance map. Furthermore, we
review the classical flow of diffeomorphism and metamorphosis model. Here, we al-
ready prove some continuity results on the Lagrange maps associated with a motion
field. Finally, we pick up the time discrete metamorphosis model presented in [213].
Section 3.3 is devoted to the presentation of the manifold-valued metamorphosis
model. Here, the key point is the suitable definition of a material derivative quan-
tity, which is finally obtained using a variational inequality. We show that the new
model for manifold-valued images coincides with the previous model in the Eu-
clidean case. Section 3.4 introduces a method to extend time discrete image paths
to time continuous ones as natural prerequisite to prove convergence of the en-
ergy functionals on discrete paths to a limit energy functional on continuous paths.
Then, in Section 3.5, the main result of this chapter on Mosco convergence is stated
and proved. In detail, we show the required liminf-inequality in Theorem 3.12 and
the existence of recovery sequences in Theorem 3.14. This finally implies the con-
vergence of discrete geodesic paths in Theorem 3.15 and the existence of a geodesic
path for the time continuous metamorphosis model. The proofs generally follow
the guideline from [33] for the classical metamorphosis model with conceptual and
technical modifications in order to deal with the setup of manifold-valued images.

Notation Throughout this chapter, we assume that the image domain Ω ⊂ Rn is
bounded with Lipschitz boundary. Henceforth, we denote time continuous operators
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by calligraphic letters and time discrete operators by normal letters. We denote the
space of continuous functions and k-times continuously differentiable functions on
the image domain Ω by C0(Ω) and Ck(Ω), respectively. Hölder spaces of order k
with exponent α are denoted by Ck,α(Ω).

Furthermore, we use the standard notation for Lebesgue and Sobolev spaces,
i.e., Lp(Ω) and Hm(Ω) = Wm,2(Ω). The associated norms are denoted by ∥ · ∥Lp(Ω)

and ∥ · ∥Hm(Ω), respectively, and the seminorm in Hm(Ω) is given by | · |Hm(Ω). The
Sobolev (semi-)norm is defined as

|f |Hm(Ω) = ∥Dmf∥L2(Ω), ∥f∥Hm(Ω) =

(︃ m∑︂
j=0

|f |2Hj(Ω)

)︃ 1
2

.

The space Hm
0 (Ω) is the closure of C∞

c (Ω) with respect to ∥ · ∥Hm(Ω). Derivatives
are always in the strong sense, if they exist, or in the weak sense otherwise. The
symmetric part of a matrix A ∈ Rl,l is denoted by Asym := 1

2
(A+A⊤). We denote by

GL+(n) the elements of GL(n) with positive determinant, by 1 the identity matrix,
and by Id the identity map.

Mosco convergence We conclude this section with a brief review of Mosco con-
vergence, which can be seen as a generalization of Γ-convergence. For further details
we refer the reader to [84, 206].

Definition 3.1 (Mosco convergence). Let (X, d) be a metric space and let {Jk}k∈N
and J be functionals mapping from X to R. Then the sequence Jk is said to converge
to J in the sense of Mosco w.r.t. the topology induced by d if

1. For every sequence {xk}k∈N ⊂ X with xk ⇀ x ∈ X it holds that

J(x) ≤ lim inf
k→∞

Jk(xk).

2. For every x ∈ X there exists a recovery sequence {xk}k∈N ⊂ X such that
xk → x ∈ X and

J(x) ≥ lim sup
k→∞

Jk(xk).

If in 1 the strong convergence of xk to x in the topology induced by d is required,
then Jk is said to Γ-converge to J w.r.t. the topology induced by d.

3.2 Review and preliminaries

In this section, we briefly present some preliminaries of Hadamard manifolds, a
short introduction to the metamorphosis model in the Euclidean setting [33], and
the manifold-valued time discrete metamorphosis model [213].
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p̄

x̄

r̄

ȳ

q̄

Euclidean space R2

x̄ = p̄+ s(r̄ − p̄), ȳ = p̄+ s(q̄ − p̄)

p

x

r

y

q

Hadamard manifold
x = γp,r(s), y = γp,q(s)

Figure 3.1: Comparison triangle in the Euclidean space R2 and geodesic triangle
on a Hadamard manifold, in which d(x, y) ≤ ∥x̄ − ȳ∥ is satisfied (Figure adapted
from [13, Fig. 1.1]).

3.2.1 Hadamard manifolds

In what follows, a short introduction of Hadamard manifolds is provided and the
space of Hölder continuous functions on Hadamard manifolds is analyzed. For
further details, we refer the reader to the books [13, 48, 169].

Hadamard manifolds A metric space (X, d) is geodesic if every two points x, y ∈
X are connected by a shortest geodesic curve γx,y : [0, 1] → X that is arclength
parametrized, i.e., for every s, t ∈ [0, 1] we have

d
(︁
γx,y(s), γx,y(t)

)︁
= |s− t|d

(︁
γx,y(0), γx,y(1)

)︁
(3.1)

with endpoints γx,y(0) = x and γx,y(1) = y. A geodesic triangle △(p, q, r) in a
geodesic space (X, d) is composed of the vertices p, q, r ∈ X and three geodesics join-
ing these points. The corresponding comparison triangle △(p̄, q̄, r̄) – which is unique
up to isometries – is a triangle in the Euclidean space R2 with vertices p̄, q̄, r̄ ∈ R2

such that the three line segments have the same side lengths as the corresponding
geodesics of △(p, q, r), i.e.,

d(p, q) = ∥p̄− q̄∥, d(p, r) = ∥p̄− r̄∥, d(r, q) = ∥r̄ − q̄∥.

A complete geodesic space (H, d) is called a Hadamard space if for every geodesic
triangle △(p, q, r) ∈ H and x ∈ γp,r, y ∈ γq,r we have d(x, y) ≤ ∥x̄ − ȳ∥, where
x̄ and ȳ are the corresponding points in the comparison triangle △(p̄, q̄, r̄) ∈ R2,
see Fig. 3.1. Geodesic spaces satisfying the latter property are also called CAT(0)
spaces. By [13, Prop. 1.1.3, Cor. 1.2.5], the geometric CAT(0) condition is equiva-
lent to (H, d) being a complete geodesic space with

d2(x, v) + d2(y, w) ≤ d2(x,w) + d2(y, v) + 2d(x, y)d(v, w)
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for every x, y, v, w ∈ H. The most prominent examples of Hadamard spaces are
Hilbert spaces and Hadamard manifolds, which are defined as complete simply con-
nected Riemannian manifolds with non-positive sectional curvature. Hyperbolic
spaces and the manifold of positive definite matrices with the affine invariant metric
are examples of Hadamard manifolds. Throughout this chapter, we exclusively con-
sider finite-dimensional Hadamard manifolds, which ensure the existence of unique
geodesic curves joining two arbitrary points. Recall that the Hopf–Rinow Theorem
ceases to be true for general infinite-dimensional manifolds [176].

A function f : H → R is convex if for every x, y ∈ H the function f ◦ γx,y is
convex, i.e.,

f ◦ γx,y(t) ≤ (1− t)f ◦ γx,y(0) + tf ◦ γx,y(1)
for all t ∈ [0, 1]. In Hadamard spaces the distance is jointly convex [13, Prop. 1.1.5],
i.e., for two geodesics γx1,x2 , γy1,y2 and t ∈ [0, 1] the relation

d
(︁
γx1,x2(t), γy1,y2(t)

)︁
≤ (1− t)d(x1, y1) + td(x2, y2)

holds true. Thus, geodesics are uniquely determined by their endpoints. For a
bounded sequence {xn}n∈N ⊂ H, the function w : H → [0,+∞) defined by

w
(︁
x; {xn}n∈N

)︁
:= lim sup

n→∞
d2(x, xn) (3.2)

has a unique minimizer, which is called the asymptotic center of {xn}n∈N, cf. [13,
p. 58]. A sequence {xn}n∈N is said to converge weakly to a point x ∈ H if it is
bounded and x is the asymptotic center of each subsequence of {xn}n∈N, cf. [13,
p. 103]. Then, the notion of proper and (weakly) lower semi-continuous functions
is analogous to Hilbert spaces.

Next, we consider the Borel σ-algebra B on H and on the open and bounded
set Ω ⊂ Rn. A measurable map f : Ω → H belongs to Lp(Ω,H), p ∈ [1,∞], if

dp(f, fa) <∞

for any constant mapping fa(ω) = a with a ∈ H, where dp is defined for two
measurable maps f and g by

dp(f, g) :=

⎧⎪⎨⎪⎩
(︃∫︂

Ω

dp
(︁
f(ω), g(ω)

)︁
dω

)︃ 1
p

, p ∈ [1,∞),

ess supω∈Ω d
(︁
f(ω), g(ω)

)︁
, p = ∞.

Using the equivalence relation f ∼ g if dp(f, g) = 0, the resulting quotient space
Lp(Ω,H) := Lp(Ω,H)/ ∼ equipped with dp is a complete metric space and again
a Hadamard space if p = 2, cf. [13, Prop. 1.2.18]. Finally, for f, g in the weighted
Bochner space L2((0, 1), L2(Ω,H), w) with some weight w ∈ C0([0, 1] × Ω, [c1, c2]),
0 < c1 < c2, the metric is given by

d2(f, g) =

(︃∫︂ 1

0

∫︂
Ω

d
(︁
f(t, x), g(t, x)

)︁2
w(t, x) dx dt

)︃1
2

.
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3. Convergence of the Time Discrete Metamorphosis Model

In our proposed model, we observe Hölder continuity of paths in time, which enables
pointwise evaluations in time, in particular for t = 0 and t = 1. Another classical
property of Lebesgue spaces also transfers to the Hadamard setting.

Lemma 3.2. Let fk ∈ L2((0, 1), L2(Ω,H), w) be a convergent sequence with limit f .
Then there exists a subsequence which converges a.e. in time as k → ∞.

Proof. Since the Chebyshev inequality implies the convergence in measure, we can
apply [192, Thm. 5.2.7(i)].

Next, we define subsets of Hölder continuous functions with fixed parameters
α ∈ (0, 1] and L > 0 by

Aα,L,w :=
{︂
f ∈ L2

(︁
(0, 1), L2(Ω,H), w

)︁
: d2

(︁
f(s), f(t)

)︁
≤ L|t− s|α ∀t, s ∈ [0, 1]

}︂
.

Theorem 3.3. The set Aα,L,w is closed and convex. In particular, Aα,L,w is weakly
closed.

Proof. Closedness : Let {fk}k∈N ⊂ Aα,L,w be a convergent sequence with limit f . By
Lemma 3.2, we get an a.e. convergent subsequence denoted with the same indices.
Assume there exists t ∈ [0, 1] such that this sequence does not converge. Then, we
can choose s ∈ [0, 1] arbitrarily close to t with d2(fk(s), f(s)) → 0 as k → ∞, which
implies

d2

(︁
fk(t), fl(t)

)︁
≤ 2L|t− s|α + d2

(︁
fk(s), fl(s)

)︁
for all k, l ∈ N sufficiently large. Hence, the sequence converges pointwise for every
t ∈ [0, 1]. Now, the required Hölder continuity of f follows from

d2

(︁
f(s), f(t)

)︁
= lim

k→∞
d2

(︁
fk(s), fk(t)

)︁
≤ L|t− s|α.

Convexity : Given f1, f2 ∈ Aα,L,w we define a family of geodesics r ↦→ γf1(s),f2(s)(r)
for s ∈ [0, 1]. Then, we obtain by the joint convexity of the Hadamard metric

d2

(︁
γf1(s),f2(s)(r), γf1(t),f2(t)(r)

)︁
≤(1− r)d2

(︁
f1(s), f1(t)

)︁
+ rd2

(︁
f2(s), f2(t)

)︁
≤L|t− s|α,

where we used that geodesics γf1(s),f2(s) can be computed pointwise for any s ∈ [0, 1].
Finally, weak closedness in the Bochner space follows by [13, Lem. 3.2.1].

The following lemma is exploited in the proof of Mosco convergence.

Lemma 3.4. Let (H, d) be a locally compact Hadamard space. For fixed p ∈ [1,∞)
let f ∈ Lp(Ω,H) and {Yj}j∈N ⊂ C1(Ω,Ω) be a sequence of diffeomorphisms such
that |det(DYj)|−1 ≤ C for all j ∈ N, which converges to a diffeomorphism Y in
L∞(Ω)n. Then,

lim sup
j→∞

dp(f ◦ Yj, f ◦ Y ) = 0.

If in addition Yj → Y in C1,α(Ω)
n, then lim supj→∞ dp(f ◦ (Yj)−1, f ◦ Y −1) = 0.
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Proof. See [213, Cor. 3] and [214, Lem. 2.2.2].

The generalization of this result to the space L2((0, 1), L2(Ω,H)) is straightfor-
ward.

Corollary 3.5. Let {fj}j∈N ⊂ Lp(Ω,H), p ∈ [1,∞), be a sequence that converges
to f in Lp(Ω,H). Under the assumptions from Lemma 3.4, it holds

lim sup
j→∞

dp
(︁
fj ◦ Yj, f ◦ Y

)︁
= 0 and lim sup

j→∞
dp
(︁
fj ◦ (Yj)−1, f ◦ Y −1

)︁
= 0.

Proof. We prove the first equation only. Using the triangle inequality, it holds that

lim sup
j→∞

dp(fj ◦ Yj, f ◦ Y ) ≤ lim sup
j→∞

Cdp(fj, f) + lim sup
j→∞

dp(f ◦ Yj, f ◦ Y ) = 0.

Again, the result directly generalizes to L2((0, 1), L2(Ω,H)). For a more detailed
review on Bochner spaces we refer the reader to [165].

3.2.2 Metamorphosis model in Euclidean case

In this subsection, we briefly introduce the space of images I : Ω → R equipped
with a Riemannian structure from the perspective of the flow of diffeomorphism
model and the metamorphosis model. For further details, we refer the reader to the
literature mentioned in Section 3.1.

Flow of diffeomorphism In the flow of diffeomorphism model, the temporal
evolution of each pixel of the reference image along a trajectory is determined by
a family of diffeomorphisms (Y (t))t∈[0,1] : Ω → Rn such that the brightness is pre-
served. The brightness constancy assumption, which is equivalent to the assertion
that t ↦→ I(t, Y (t, x)) is constant for a.e x ∈ Ω, is mathematically reflected by a
vanishing material derivative D

∂t
I = İ+v ·DI along a motion path (I(t))t∈[0,1] in the

space of images, where v(t) = Ẏ (t) ◦ Y −1(t) denotes the time dependent Eulerian
velocity. Then, we define for a specific operator L given below the metric and the
path energy associated with this family of diffeomorphisms as follows

gY (t)

(︁
Ẏ (t), Ẏ (t)

)︁
=

∫︂
Ω

L[v(t), v(t)] dx, E
(︁
(Y (t))t∈[0,1]

)︁
=

∫︂ 1

0

gY (t)

(︁
Ẏ (t), Ẏ (t)

)︁
dt.

Throughout this chapter, we consider the higher order operator

L[v(t), v(t)] = λ
2
(tr ε[v])2 + µ tr

(︁
ε[v]2

)︁
+ γ|Dmv|2, (3.3)

where ε[v] = (Dv)sym refers to the symmetrized part of the Jacobian and m > 1+ n
2

as well as λ, µ, γ > 0 are fixed constants. This particular choice of the operator L
originates from fluid mechanics, where the metric gY (t) refers to a viscous dissipation
in a multipolar fluid model as described in [216, 136, 135].
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If YA and YB are diffeomorphisms and the energy E is finite for a general path
(Y (t))t∈[0,1] with Y (0) = YA and Y (1) = YB, then using the Hm(Ω)-coerciveness
of the metric gY (t) (discussed in [28, 95]) the path is already a family of diffeo-
morphisms. In addition, following [95], an energy minimizing velocity field v ex-
ists such that d

dt
Y (t, ·) = v(t, Y (t, ·)) for every t ∈ [0, 1]. Furthermore, the cor-

responding path I for two input images IA, IB ∈ L2(Ω) has the particular form
I(t, ·) = IA ◦ Y −1(t, ·).

In what follows, we investigate diffeomorphisms induced by velocity fields in the
space

V := Hm(Ω,Rn) ∩H1
0 (Ω,R

n).

The following theorem relates the norm of the induced flow to the integrated norm
of the associated velocity field.

Theorem 3.6. Let v ∈ L2((0, 1),V) be a velocity field. Then, there exists a global
flow Y ∈ C0([0, 1], Hm(Ω)n) such that

Ẏ (t, x) = v(t, Y (t, x)),
Y (0, x) = x,

(3.4)

for all x ∈ Ω and a.e. t ∈ [0, 1]. In particular, Y (t, ·) is a diffeomorphism for all
t ∈ [0, 1]. Further, for α ∈ [0,m− 1− n

2
) the following estimate holds

∥Y ∥C0([0,1],C1,α(Ω)) + ∥Y −1∥C0([0,1],C1,α(Ω)) ≤ G

(︃∫︂ 1

0

∥v(s, ·)∥C1,α(Ω) ds

)︃
(3.5)

for a continuous function G(x) := C(x + 1) exp(Cx). The solution operator from
L2((0, 1),V) to C0([0, 1], Hm(Ω)n) assigning a flow Y to every velocity field v is
continuous w.r.t. the weak topology in L2((0, 1),V) and the C0([0, 1] × Ω)-topology
for Y .

Proof. Existence follows from [49, Thm. 4.4] and weak continuity by [263, Thm. 9].
Although the first result is stated only for Rn, it is still valid in our setting due to
the existence of a linear and continuous extension operator from Hm(Ω) to Hm(Rn),
which is implied by Stein’s extension theorem [254].

The estimate for the first term in (3.5) follows from [263, Lem. 7] and relies
on Grönwall’s inequality. Let i ∈ {1, . . . , n}, t ∈ [0, 1] and x, y ∈ Ω. Taking into
account [263, Lem. 7], we obtain

∥Y ∥C0([0,1],C1(Ω)) ≤ C exp(C

∫︂ 1

0

∥v(s, ·)∥C1,α(Ω) ds).

Applying the triangle inequality and estimating the result using the Hölder conti-
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nuity of Dv and Y yields

|∂iY (t, x)− ∂iY (t, y)|

≤
∫︂ t

0

⃓⃓
Dv(s, Y (s, x)) · ∂iY (s, x)−Dv(s, Y (s, y)) · ∂iY (s, y)

⃓⃓
ds

≤
∫︂ t

0

⃓⃓
Dv(s, Y (s, x))−Dv(s, Y (s, y))

⃓⃓
|∂iY (s, x)|

+
⃓⃓
Dv(t, Y (s, y))

⃓⃓
|∂iY (s, x)− ∂iY (s, y)| ds

≤
∫︂ t

0

∥v(s, ·)∥C1,α(Ω)∥Y (s, ·)∥1+α
C1(Ω)

|x− y|α + ∥v(s, ·)∥C1(Ω)|∂iY (s, x)− ∂iY (s, y)| ds

≤ G

(︃∫︂ 1

0

∥v(s, ·)∥C1,α(Ω) ds

)︃
|x− y|α +

∫︂ t

0

∥v(s, ·)∥C1(Ω)|∂iY (s, x)− ∂iY (s, y)| ds.

By adapting the constant C in the function G, Grönwall’s inequality implies

|∂iY (t, x)− ∂iY (t, y)| ≤ G

(︃∫︂ 1

0

∥v(s, ·)∥C1,α(Ω) ds

)︃
|x− y|α,

and hence G bounds the first term in (3.5). The second term is estimated similarly
by noting that Y −1(t, ·) is the flow associated with the (backward) motion field
−v(1 − t, ·). This proof can be further generalized to C0([0, 1], Ck,α(Ω))-norms
provided that m is sufficiently large.

Remark 3.7. Existence results and bounds analogous to those in Theorem 3.6 hold
when replacing V by C1,α(Ω) with zero boundary condition [285, Chap. 8]. Further-
more, the mapping v → Y v is Lipschitz continuous in v, i.e.,

∥Y v(t, ·)− Y ṽ(t, ·)∥C0(Ω) ≤
(︁
1 + C exp(C)

)︁ ∫︂ t

0

∥v(s, ·)− ṽ(s, ·)∥C0(Ω) ds,

where C =
∫︁ t
0
∥v(s, ·)∥C1(Ω) ds, see [285, Eq. (8.16)].

Metamorphosis The metamorphosis model can be regarded as a generalization
of the flow of diffeomorphism model, in which the brightness constancy assumption
is replaced by a quadratic penalization of the material derivative, which in particular
allows for intensity modulations along the trajectories. Thus, as a first attempt, the
metric and the path energy in the metamorphosis model associated with the family
of images (I(t))t∈[0,1] : Ω → Rn and a penalization parameter δ > 0 are defined as
follows

g
(︁
İ , İ
)︁
= min

v : Ω→Rn

∫︂
Ω

L[v, v] + 1
δ

(︁
D
∂t
I
)︁2

dx, E(I) =
∫︂ 1

0

g
(︁
İ , İ
)︁
dt. (3.6)

Consequently, the flow of diffeomorphism model is formally the limiting case of the
metamorphosis model for δ → 0.
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However, there are two major problems related to (3.6). In general, paths in
the space of images do not exhibit any smoothness properties (neither in space nor
in time). Thus, the evaluation of the material derivative (D

∂t
I)2 is not well-defined.

Moreover, since different pairs of velocity fields v and material derivatives D
∂t
I can

imply the same time derivative of the image path İ, the restriction to equivalence
classes of pairs (v, D

∂t
I) is required, where two pairs are equivalent if and only if they

induce the same temporal change of the image path İ.
To tackle both problems, Trouvé and Younes [263] proposed a nonlinear geo-

metric structure in the space of images L2(Ω) := L2(Ω,R). In detail, for a given
velocity field v ∈ L2((0, 1),V) and an image path I ∈ L2((0, 1), L2(Ω)) the mate-
rial derivative is replaced by the function Z ∈ L2((0, 1), L2(Ω)) known as the weak
material derivative, which is uniquely determined by∫︂ 1

0

∫︂
Ω

ηZ dx dt = −
∫︂ 1

0

∫︂
Ω

(︁
∂tη + div(vη)

)︁
I dx dt (3.7)

for η ∈ C∞
c ((0, 1) × Ω). Moreover, for all I ∈ L2(Ω) the associated tangent space

TIL
2(Ω) is defined as TIL2(Ω) = {I} ×W/NI , where W = V × L2(Ω) and

NI =
{︂
w = (v, Z) ∈ W :

∫︂
Ω

Zη + I div(ηv) dx = 0 ∀η ∈ C∞
c (Ω)

}︂
.

As usual, the associated tangent bundle is given by TL2(Ω) =
⋃︁
I∈L2(Ω) TIL

2(Ω).
Then, following Trouvé and Younes, a regular path in the space of images, de-

noted by I ∈ H1([0, 1], L2(Ω)), is a curve I ∈ C0([0, 1], L2(Ω)) such that there
exists a measurable path γ : [0, 1] → TL2(Ω) with bounded L2-norm in space and
time and π(γ) = I, where π(I, (v, Z)) = I refers to the projection onto the image
manifold and (I, (v, Z)) denotes the equivalence class such that (3.7) holds for all
η ∈ C∞

c ((0, 1)×Ω). In this chapter, we use the Lagrange formulation of this equa-
tion. Let Y be the coordinate transform given by (3.4). Then, according to [263],
the weak material derivative is equivalently determined by

I(t, Y (t, ·))− I(s, Y (s, ·)) =
∫︂ s

t

Z(r, Y (r, ·)) dr

for all s, t ∈ [0, 1], which can be considered as a Lagrangian version of the classical
material derivative. Finally, if we assume the V-coercivity of the operator L, then
the metamorphosis path energy for a regular path I ∈ H1([0, 1], L2(Ω)) is defined
as

E(I) =
∫︂ 1

0

inf
(v,Z)∈TI(t)L2(Ω)

∫︂
Ω

L[v, v] + 1
δ
Z2 dx dt. (3.8)

The existence of energy minimizing paths in the space of images (known as geodesic
curves), i.e., solutions of the boundary value problem

min
{︁
E(Ĩ) : Ĩ ∈ H1

(︁
[0, 1], L2(Ω)

)︁
, Ĩ(0) = IA, Ĩ(1) = IB

}︁
for fixed images IA, IB ∈ L2(Ω), is proven in [263]. In addition, one can prove the
existence of minimizing (v, Z) ∈ TI(t)L

2(Ω).
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3.2 Review and preliminaries

Note that all results in this section can be easily generalized to the space of
multichannel or color images L2(Ω,RC) for C ≥ 2 color channels with minor modi-
fications.

3.2.3 Manifold-valued time discrete metamorphosis model

Now, we pick up the time discrete metamorphosis model for manifold-valued images,
for which the Mosco convergence is studied in this chapter. The model itself was
thoroughly analyzed in [213] and extends the variational time discretization of the
classical metamorphosis model proposed in [33].

Fix γ, δ, ε > 0 and m > 1 + n
2
, and let H be any finite-dimensional Hadamard

manifold. For two manifold-valued images I, Ĩ ∈ L2(Ω,H) and an admissible defor-
mation

φ ∈ Aε =
{︁
φ ∈ Hm(Ω,Ω) : detDφ > ε in Ω, φ = Id on ∂Ω

}︁
,

the time discrete energy for pairs of images is defined as

R(I, Ĩ) = inf
φ∈Aε

R(I, Ĩ, φ),

where
R(I, Ĩ, φ) =

∫︂
Ω

W(Dφ) + γ∥Dmφ∥2 dx+ 1
δ
d2
2(I, Ĩ ◦ φ) (3.9)

for an elastic energy density W. Here, d2
2(·, ·) replaces the squared L2-norm in the

time discrete metamorphosis model. The energy R can be considered as a numeri-
cally feasible approximation of the squared Riemannian distance in the underlying
image space [241]. Throughout this chapter, we assume that W satisfies the follow-
ing conditions:

(W1) W ∈ C4(GL+(n),R+
0 ) is polyconvex.

(W2) There exist constants CW,1, CW,2, rW > 0 such that for all A ∈ GL+(n) the
following growth estimates hold true:

W(A) ≥ CW,1∥Asym − 1∥2, if ∥A− 1∥ < rW, (3.10)
W(A) ≥ CW,2, if ∥A− 1∥ ≥ rW. (3.11)

(W3) The energy density admits the following representation at 1:

W(1) = 0, DW(1) = 0, (3.12)
1

2
D2W(1)(A,A) =

λ

2
(trA)2 + µ tr

(︁
(Asym)2

)︁
. (3.13)

The assumption (W1) is required for the lower semi-continuity of the energy func-
tional. Furthermore, (W2) enforces the convergence of the optimal deformations to
the identity in the limit K → ∞, where K denotes the number of time steps of our
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3. Convergence of the Time Discrete Metamorphosis Model

time discrete model to be defined in (3.14). Finally, (W3) ensures the compatibility
of W with the elliptic operator L, cf. (3.3). Note that (W1) and (W3) are identical
to [33, (W1) and (W3)]. We recall that in [33, (W2)] a growth estimate of the form

W(A) ≥ C(detA)−s − C

for s > n − 1 and a positive constant C instead of (W2) is assumed. This modifi-
cation additionally requires essentially bounded images in order to ensure that the
deformations are homeomorphic. However, in order to use the Hadamard space of
square-integrable images, we have to use (W2) instead, which in particular results
in diffeomorphic deformations.

The time discrete path energy for K+1 images I = (I0, . . . , IK) ∈ L2(Ω,H)K+1,
K ≥ 2, is defined as the weighted sum of the discrete energies R evaluated at
consecutive images, i.e.,

JK(I) := inf
φ:=(φ1,...,φK)∈AK

ε

{︃
JK(I,φ) := K

K∑︂
k=1

R(Ik−1, Ik, φk)

}︃
. (3.14)

The scaling factor K in (3.14) is a natural choice in time discrete geodesic cal-
culus. Indeed, if we sample a continuous path y : [0, 1] → M on a Riemannian
manifold (M, g) at tK,k = k

K
for k = 0, . . . , K, we obtain from Jensen’s inequality

K∑︂
k=1

d
(︁
y(tK,k−1), y(tK,k)

)︁2 ≤ K∑︂
k=1

1

K

∫︂ tK,k

tK,k−1

gy(t)
(︁
ẏ(t), ẏ(t)

)︁
dt

=
1

K

∫︂ 1

0

gy(t)
(︁
ẏ(t), ẏ(t)

)︁
dt.

A more rigorous justification is given in [241].
For two fixed images IA = I0 and IB = IK in L2(Ω,H), any (K + 1)-tuple

I = (I0, . . . , IK) ∈ L2(Ω,H)K+1 is called a discrete geodesic curve if

JK(I) ≤ JK

(︁
(I0, Ĩ1, . . . , ĨK−1, IK)

)︁
for all (Ĩ1, . . . , ĨK−1) ∈ L2(Ω,H)K−1. The existence of discrete geodesic curves has
been shown in [213, Sec. 3] using (W1) and the properties of the deformation set
AK
ε . Note that in general neither the discrete geodesic curve nor the associated

set of deformations is uniquely determined. The Mosco convergence of a temporal
extension of JK to E in the Euclidean case was proven in [33].

Fig. 3.3 shows different discrete geodesic paths for K = 4, 8, 16 connecting two
synthesized input images of symmetric and positive definite matrices in R2 visual-
ized in Fig. 3.2. Here, the colors quantify the geodesic anisotropy index and the
eigenvectors of the matrices correspond to the principle axes of the ellipses. Further
details concerning the visualization can be found in [203]. For all computations, a
finite difference discretization on staggered grids as proposed in [213] was used. In
particular, we experimentally observe an indication of convergence for increasing K.
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3.3 Manifold-valued metamorphosis model

Figure 3.2: The synthesized input images used in all computations, where the dif-
fusion tensors are visualized as ellipsoids color-coded with respect to the geometric
anisotropy.

3.3 Manifold-valued metamorphosis model

In this section, we propose a (time continuous) metamorphosis energy functional J
for manifold-valued images in L2(Ω,H), where H is a finite-dimensional Hadamard
manifold. This functional substantially differs from the straightforward generaliza-
tion

inf
(v,Z)∈C(I)

∫︂ 1

0

∫︂
Ω

L[v, v] + 1
δ
gHI (Z,Z) dx dt

of the classical metamorphosis functional in (3.6), where gHI is the Hadamard met-
ric at position I on H. Indeed, a generalization of the weak notion of the material
derivative as a tangent vector Z(x) ∈ TI(x)H on the Hadamard manifold via a
defining equation in the context of a corresponding weak formulation is technically
involved. For a given image curve t ↦→ I(t, Y (t, ·)), the associated tangential vectors
at different times are in general contained in different tangent spaces and compact-
ness of the metric gHI in the base point on the Hadamard manifold is not to be
expected for sequences of paths in L2(Ω,H). Hence, we propose a relaxation via an
inequality relating distances between images along the motion path and an associ-
ated scalar material derivative z, where z = ∥Z∥ in the Euclidean case of images
in L2(Ω,RC). Most important, this relaxed definition of the material derivative
via the variational inequality (3.17) avoids the described technical difficulty in the
definition. Furthermore, this formulation will turn out to be suitable for lower semi-
continuity considerations that are needed to identify this energy in Section 3.5 as
the Mosco limit of the above time discrete path energy and to establish existence of
geodesic paths for the novel metamorphosis model. Finally, we prove equivalence of
this novel energy functional with the classical metamorphosis model for RC-valued
images.

The manifold-valued metamorphosis energy J : L2((0, 1) × Ω,H) → [0,∞] is
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3. Convergence of the Time Discrete Metamorphosis Model

I4,0 I4,1 I4,2 I4,3 I4,4

I8,0 I8,1 I8,2 I8,3 I8,4

I8,5 I8,6 I8,7 I8,8

I16,1 I16,2 I16,3 I16,4 I16,5

I16,6 I16,7 I16,8 I16,9 I16,10

I16,11 I16,12 I16,13 I16,14 I16,15

Figure 3.3: Time discrete geodesic paths for K = 4, 8, 16 (the input images for
K = 16 are not depicted). Note that the images I4,i, I8,2i and I16,4i reflect the
increasing similarity expected for larger K in correspondence to the convergence
result stated in this chapter.

defined as follows

J (I) := inf
(v,z)∈C(I)

∫︂ 1

0

∫︂
Ω

L[v, v] + 1
δ
z2 dx dt. (3.15)

Here, C(I) is the set of pairs (v, z) ∈ L2((0, 1),V)× L2((0, 1), L2(Ω)) such that the
flow Y defined by

Ẏ (t, x) = v(t, Y (t, x)) for (t, x) ∈ [0, 1]× Ω,
Y (0, x) = x for x ∈ Ω

(3.16)
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3.3 Manifold-valued metamorphosis model

satisfies for all t < s ∈ [0, 1] the inequality

d
(︁
I(t, Y (t, ·)), I(s, Y (s, ·))

)︁
≤
∫︂ s

t

z(r, Y (r, ·)) dr. (3.17)

Let us verify the equivalence of this new relaxed model with the classical metamor-
phosis model for RC-valued images. In the classical model, the (C-dimensional)
material derivative Z is defined via the equation

I(t, Y (t, ·))− I(s, Y (s, ·)) =
∫︂ s

t

Z(r, Y (r, ·)) dr (3.18)

for all t < s ∈ [0, 1], whereas the scalar material derivative z obeys the inequality

∥I(t, Y (t, ·))− I(s, Y (s, ·))∥ ≤
∫︂ s

t

z(r, Y (r, ·)) dr. (3.19)

In fact, the equivalence is already implied by the following proposition, which in
particular proves that the manifold-valued metamorphosis energy (3.15) coincides
with the metamorphosis energy functional (3.8) in the case of RC-valued images.

Proposition 3.8. For every z fulfilling (3.19), there exists a Z fulfilling (3.18) with
z ≥ ∥Z∥. Vice versa, for every Z fulfilling (3.18), there exists a z fulfilling (3.19)
with z = ∥Z∥.
Proof. For given Z, the result follows using the triangle inequality by choosing
z = ∥Z∥. To prove the converse, let z solve (3.19). Taking the L2-norm on both
sides implies

∥I(t, Y (t, ·))− I(s, Y (s, ·))∥L2(Ω) ≤
∫︂ t

s

∥z(r, Y (r, ·))∥L2(Ω) dr,

i.e., the function t ↦→ I(t, Y (t, x)) is AC2([0, 1], L2(Ω)) in the sense of [6, Def. 1.1.1].
From [6, Rem. 1.1.3], we can additionally infer the a.e. differentiability with deriva-
tive ˆ︁Z ∈ L2((0, 1), L2(Ω)) such that

I(t, Y (t, x))− I(0, Y (0, x)) =

∫︂ t

0

ˆ︁Z(r, x) dr = ∫︂ t

0

Z(r, Y (r, x)) dr

with Z(r, x) := ˆ︁Z(r,X(r, x)). Here, X(r, ·) is the spatial inverse of Y (r, ·), which
exists due to Theorem 3.6. Now, set

B =
{︁
(r, x) ∈ [0, 1]× Ω : z(r, Y (r, x)) < ∥Z(r, Y (r, x))∥

}︁
and assume that the Lebesgue measure of B is strictly positive. Note that B can
be approximated with finite unions of disjoint semi-open cuboids [255, Thm. 1.4].
Taking into account [6, Thm. 1.1.2, Rem. 1.1.3], we get for every such cuboid
[t1, t2)×D ⊂ [0, 1]× Ω that∫︂ t2

t1

∫︂
D

∥Z(t, Y (t, x))∥2 dx dt ≤
∫︂ t2

t1

∫︂
D

z(t, Y (t, x))2 dx dt.
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3. Convergence of the Time Discrete Metamorphosis Model

Combining this estimate with the dominated convergence theorem, we conclude∫︂
B

∥Z(t, Y (t, x))∥2 dx dt ≤
∫︂
B

z(t, Y (t, x))2 dx dt.

This yields a contradiction to the definition of the set B. Hence, z ≥ ∥Z∥ a.e.

3.4 Temporal extension operators
In this section, temporal extensions of all relevant quantities required for the conver-
gence proof of time discrete metamorphosis are proposed, which in particular allows
an explicit solution to the optimality conditions (3.16) and (3.17). We remark that
the subsequent construction is similar to [33] with two major modifications, namely
the definitions of the interpolated image sequence (3.21) and the weak material
derivative (3.24), which are both related to the manifold structure.

For fixed K ∈ N, let a discrete image path IK = (IK,0, . . . , IK,K) ∈ L2(Ω,H)K+1

be given. In [213, Sec. 3], existence of corresponding optimal deformations φK =
(φK,1, . . . , φK,K) ∈ AK

ε satisfying (3.14) is shown. We refer to τ = K−1 as the time
step size and the image IK,k is associated with the time step tK,k = kτ , k = 0, . . . , K.
For k = 1, . . . , K, we define the discrete transport map yK,k : [tK,k−1, tK,k]× Ω → Ω
as

yK,k(t, x) := x+ (t− tK,k−1)K(φK,k(x)− x).

If
max

k=1,...,K
∥φK,k − Id∥C1,α(Ω) < 1, (3.20)

we can use [73, Thm. 5.5-1, Thm. 5.5-2] to infer that det(DyK,k(t, ·)) > 0 holds and
that yK,k(t, ·) is invertible with inverse xK,k(t, ·). The validity of this assumption is
proven below and is tacitly assumed for all further considerations.

Next, the extension operator IextK : L2(Ω,H)K+1 × AK
ε → L2([0, 1], L2(Ω,H)) is

defined for t ∈ [tK,k−1, tK,k) and a.e. x ∈ Ω by

IextK (IK ,φK)(t, x) := γIK,k−1◦xK,k(t,x),IK,k◦φK,k◦xK,k(t,x)(K(t− tK,k−1)), (3.21)

i.e., by a point on the geodesic connecting IK,k−1◦xK,k(t, x) and IK,k◦φK,k◦xK,k(t, x)
on the manifold H. Thus, IextK describes for given IK and φK a blending in geodesic
sense along the transport path governed by yK,k.

In what follows, we set wK,k = K(φK,k − Id) and define the piecewise constant
(in time) velocity wK = wK(φK) ∈ L2((0, 1),V) as

wK(φK)
⃓⃓
[tK,k−1,tK,k)

:= wK,k.

Furthermore, we define the discrete velocity field vK : VK → L2((0, 1), C1,α(Ω)),

vK(φK)(t, x) := K
(︁
φK,k ◦ xK,k(t, x)− xK,k(t, x)

)︁
for t ∈ [tK,k−1, tK,k) and a.e. x ∈ Ω, which is constant along time discrete paths.
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3.4 Temporal extension operators

Note that the extension operator vK merely admits a C1,α-regularity. To see
this, we note that the composition of f ∈ C1,α(Ω) and g ∈ C1,α(Ω,Ω) is in C1,α(Ω)
and the estimate

∥f ◦g∥C1,α(Ω) ≤ ∥f∥C1(Ω)

(︁
1+∥g∥C1(Ω)

)︁
+[Df ◦g Dg]α ≤ C∥f∥C1,α(Ω)

(︁
1+∥g∥C1,α(Ω)

)︁2
,

follows from [110, Props. 1.2.4 and 1.2.7], where [·]α denotes the Hölder constant.
Taking into account [35, Thm. 2.1], we infer that xK,k(t, ·) ∈ C1,α(Ω) and

DxK,k(t, ·) = K−1Inv
(︁
K−11+ (t− tK,k−1)(DφK,k(xK,k(t, ·))− 1)

)︁
,

where Inv : GL(n) → GL(n) denotes the smooth inversion operator. Since Ω is
bounded and xK,k(t, ·) is a diffeomorphism, we get

∥xK,k(t, ·)∥C1,α(Ω) ≤ C+∥DxK,k(t, ·)∥C0,α(Ω) ≤ C
(︁
1+K−1 max

k=1,...,K
∥φK,k−Id∥C1,α(Ω)

)︁
,

(3.22)
where the mean value theorem is applied to xK,k. This implies vK(t, ·) ∈ C1,α(Ω)
and

∥vK(t, ·)∥C1,α(Ω) ≤ C∥wK(t, ·)∥C1,α(Ω)

(︁
1 +K−1∥wK(t, ·)∥C1,α(Ω)

)︁2
. (3.23)

As a last preparatory step, we define the discrete path YK : [0, 1]×Ω → Ω as the
concatenation of all small diffeomorphisms yK,k along the motion path. In detail,
the mapping is defined for t ∈ [0, tK,1] by YK(t, x) := yK,1(t, x) and then recursively
for k = 2, . . . , K and t ∈ (tK,k−1, tK,k] by

YK(t, x) := yK,k(t, YK(tK,k−1, x))

for all x ∈ Ω. The spatial inverse of YK is denoted by XK . Finally, we define the
material derivative zK ∈ L2((0, 1), L2(Ω)) for t ∈ [tK,k−1, tK,k) as

zK(t, x) := Kd
(︁
IK,k−1 ◦ xK,k(t, x), IK,k ◦ φK,k ◦ xK,k(t, x)

)︁
. (3.24)

In the following proposition, we prove that the temporal extensions of the im-
ages, the velocities, the material derivatives and the discrete paths are indeed an
admissible point for the problem, i.e., they satisfy (3.16) and (3.17).

Proposition 3.9 (Admissible extension). For IK ∈ L2(Ω,H)K+1 and deformations
φK ∈ AK

ε satisfying (3.20), the tuple (IextK (IK ,φK), vK(φK), YK , zK) is a solution
to (3.16) and (3.17).

Proof. By definition, we obtain YK(0, x) = x for all x ∈ Ω. For t ∈ [tK,k−1, tK,k] and
x ∈ Ω we get

Ẏ K(t, x) = ∂tyK,k(t, YK(tK,k−1, x)) = K
(︁
φK,k ◦ YK(tK,k−1, x)− YK(tK,k−1, x)

)︁
= vK(φK)(t, YK(t, x)).
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3. Convergence of the Time Discrete Metamorphosis Model

Therefore, YK is a solution of (3.16) in weak sense according to Remark 3.7. A
short computation shows for s ≤ t ∈ [tK,k−1, tK,k] that

d
(︁
IextK (IK ,φK)(t, YK(t, x)), I

ext
K (IK ,φK)(s, YK(s, x))

)︁
=d
(︁
γIK,k−1,IK,k◦φK,k

(K(t− tK,k−1)) ◦ YK(tK,k−1, x),

γIK,k−1,IK,k◦φK,k
(K(s− tK,k−1)) ◦ YK(tK,k−1, x)

)︁
=K(t− s)d

(︁
IK,k−1 ◦ YK(tK,k−1, x), IK,k ◦ φK,k ◦ YK(tK,k−1, x)

)︁
≤
∫︂ t

s

zK(r, YK(r, x)) dr.

The first equation follows from the definition of the extension operator (3.21) and
for the second equation we exploit the geodesic property (3.1). Finally, the last
inequality is implied by the definition of the weak material derivative (3.24). If s
and t are not in the same interval, we can use the triangle inequality multiple times,
which concludes the proof.

The next lemma allows us to bound the Hm(Ω)-norm of the displacements by
a function solely depending on the energy R.

Lemma 3.10. Under the assumptions (W1) and (W2), there exists a continuous
and monotonically increasing function θ : R+

0 → R+
0 with θ(0) = 0 such that

∥φ− Id∥Hm(Ω) ≤ θ
(︁
R(I, Ĩ, φ)

)︁
for all I, Ĩ ∈ L2(Ω,H) and all φ ∈ Aε. Furthermore, θ(x) ≤ C(x + x2)

1
2 for some

constant C > 0.

Proof. Set R = R(I, Ĩ, φ), which is defined in (3.9). The Gagliardo–Nirenberg
inequality [220] implies

∥φ− Id∥Hm(Ω) ≤ C
(︁
∥φ− Id∥L2(Ω) + |φ− Id|Hm(Ω)

)︁
. (3.25)

By definition of R, the Hm(Ω)-seminorm of the displacement can be controlled as
follows

|φ− Id|Hm(Ω) = |φ|Hm(Ω) ≤
√︂

R
γ
. (3.26)

Since φ ∈ Hm(Ω,Ω) implies ∥φ − Id∥L2(Ω) ≤ 2diam(Ω), this already shows for
α ∈ (0,m− 1− n

2
) that

∥φ− Id∥C1,α(Ω) ≤ C∥φ− Id∥Hm(Ω) ≤ C + C
√︁

R. (3.27)

To control the lower order term appearing on the right-hand side of (3.25), we first
define the set Ω′ = {x ∈ Ω : ∥Dφ(x)−Id∥ < rW}. Then, by using (3.10) and (3.11),
we obtain

|Ω\Ω′|CW,2 ≤
∫︂
Ω

W(Dφ) dx ≤ R,
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3.5 Mosco convergence of time discrete geodesic paths

which implies |Ω\Ω′| ≤ R
CW,2

. Hence, by taking into account (3.27), we deduce∫︂
Ω

∥(Dφ)sym − 1∥2 dx =

∫︂
Ω′
∥(Dφ)sym − 1∥2 dx+

∫︂
Ω\Ω′

∥(Dφ)sym − 1∥2 dx

≤
∫︂
Ω

W(Dφ)

CW,1

dx+ |Ω\Ω′|
(︂
C + C

√︁
R
)︂2

≤ R

CW,1

+
R

CW,2

(︁
C + CR

)︁
. (3.28)

Thus, the lemma follows from (3.25), where the first term is estimated by combining
Korn’s inequality with (3.28), and the second term is estimated using (3.26).

3.5 Mosco convergence of time discrete geodesic
paths

In this section, we prove the Mosco convergence of JK to J as defined in (3.15) and
the convergence of time discrete geodesic paths to a time continuous minimizer of
J . The general procedure follows the Mosco convergence proof in the Euclidean set-
ting [33]. Nevertheless we give a comprehensive proof of the convergence result and
work out the substantial differences due to the manifold setting. These differences
are highlighted throughout the proof. In what follows, we pass to subsequences sev-
eral times and to increase readability, we frequently avoid relabeling subsequences
if obvious. As a first step, the discrete functional JK : L2(Ω,H)K+1 ×AK

ε → [0,∞]
is extended to a functional J K : L2([0, 1], L2(Ω,H)) → [0,∞] by

J K(I) =

⎧⎪⎨⎪⎩
inf

φK∈AK
ε

{︁
JK(IK ,φK) : I

ext
K (IK ,φK) = I

}︁
, if there exist (IK ,φK)

with I = IextK (IK ,φK),

+∞, else.
(3.29)

The condition IextK (IK ,φK) = I has to hold pointwise for every t ∈ [0, 1] as the
involved expressions are continuous in time. In fact, this is only finite for image
paths I such that a discrete image path IK ∈ L2(Ω,H)K+1 and a vector of deforma-
tions φK ∈ AK

ε with I = IextK (IK ,φK) exist. Then, the extended energy coincides
with the infimum with respect to the deformation vector for fixed IK . The following
lemma guarantees that the infimum is actually attained.

Lemma 3.11. If for a given path I ∈ L2([0, 1], L2(Ω,H)) a discrete image path
IK ∈ L2(Ω,H)K+1 and a vector of deformations φK ∈ AK

ε with I = IextK (IK ,φK)
exist, then the infimum with respect to the vector of deformations in (3.29) is at-
tained for some φK ∈ AK

ε .

Proof. Let {φj
K}j∈N ⊂ AK

ε be a minimizing sequence for φK ↦→ JK(IK ,φK) that
satisfies the equality constraint IextK (IK ,φ

j
K) = I for every j ∈ N. Due to reflexivity

of Hm(Ω,Ω)K , a subsequence (not relabeled) exists with φj
K ⇀ φK in Hm(Ω,Ω)K .
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The weak lower semi-continuity and the coercivity of φK ↦→ JK(IK ,φK) are shown
in [213, Thm. 4]. Hence, it remains to prove weak closedness of the equality con-
straint I = IextK (IK ,φK). Since Hm(Ω,Ω)K ↪→ C1,α(Ω,Ω)K , we can infer strong
convergence of φj

K → φK in C1,α(Ω,Ω)K . Using Corollary 3.5, we conclude for
every t ∈ [0, 1] and a.e. x ∈ Ω that

IextK (IK ,φK)(t, x) = lim
j→∞

IextK

(︁
IK ,φ

j
K

)︁
(t, x) = I(t, x)

holds true.

In what follows, we always use the symbol φK for the minimizing set of defor-
mations for given IK . The requirements for Mosco convergence (Definition 3.1) are
the liminf-inequality (Theorem 3.12) and the limsup-inequality (Theorem 3.14).

Theorem 3.12 (liminf-inequality). Under the assumptions (W1), (W2) and (W3),
the time discrete path energy J K satisfies the liminf-inequality for J with respect
to the L2([0, 1], L2(Ω,H))-topology.

Proof. First, let us give a brief outline of the structure of this proof to facilitate
reading. Indeed, the different steps of the proof are as follows:

1. Identification of the image and deformation families. In the first step, we
retrieve IK and φK from the path IK .

2. Lower semi-continuity of the weak material derivative. The convergence of
the discrete material derivative zK to a limiting weak material derivative z is
shown and lower semi-continuity∫︂ 1

0

∫︂
Ω

z2 dx dt ≤ lim inf
K→∞

K

K∑︂
k=1

∫︂
Ω

d(IK,k−1, IK,k ◦ φK,k)2 dx

is verified.

3. Lower semi-continuity of the viscous dissipation. Uniform boundedness of the
velocity field wK = wK(φK) in K is proven, which readily implies wK ⇀ v in
L2((0, 1),V). Then, the relation

∫︂ 1

0

∫︂
Ω

L[v, v] dx dt ≤ lim inf
K→∞

K

K∑︂
k=1

∫︂
Ω

W(DφK,k) + γ∥DmφK,k∥2 dx

is shown.

4. Verifying admissibility of the limit. In the final step, we prove that (I, v, Y, z)
is a solution of (3.16) and (3.17), where Y is the flow associated with v and I
is the limit image path.
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1. Identification of the image and deformation vectors. Choose a sequence
IK ∈ L2([0, 1], L2(Ω,H)) that converges weakly to a path I ∈ L2([0, 1], L2(Ω,H)).
If we exclude the trivial case lim infK→∞J K(IK) = ∞ and eventually pass to a
subsequence (without relabeling), we may assume

J K(IK) ≤ J <∞
for all K ∈ N. By definition of J K , this directly implies IK = IextK (IK ,φK)
with IK = (IK,0, . . . , IK,K) ∈ L2(Ω,H)K+1 and corresponding optimal deforma-
tions φK = (φK,1, . . . , φK,K) ∈ AK

ε in (3.29), see Lemma 3.11. In particular, by
incorporating Lemma 3.10, we deduce

max
k=1,...,K

∥φK,k − Id∥C1,α(Ω) ≤ C max
k=1,...,K

∥φK,k − Id∥Hm(Ω) ≤ Cθ
(︁
JK−1

)︁
≤ CK− 1

2 .

(3.30)
We denote by YK , XK , vK and zK the discrete quantities associated with φK defined
in Section 3.4, which exist for K sufficiently large.

2. Lower semi-continuity of the weak material derivative. Let us remark
that this step resembles the first step of the proof in the Euclidean setting replacing
the squared L2-norm by the squared distance in the Hadamard manifold.

A straightforward computation shows∫︂ 1

0

∫︂
Ω

z2K dx dt =
K∑︂
k=1

∫︂ tK,k

tK,k−1

∫︂
Ω

K2d
(︁
IK,k−1 ◦ xK,k, IK,k ◦ φK,k ◦ xK,k

)︁2
dx dt

=
K∑︂
k=1

∫︂ tK,k

tK,k−1

∫︂
Ω

K2d(IK,k−1, IK,k ◦ φK,k)2 detDyK,k dx dt. (3.31)

Next, we want to bound the difference of detDyK,k and 1 in the L∞-norm. Thus,
we have

DyK,k(t, x) = 1+K(t− tK,k−1)(DφK,k(x)− 1).

Then, the Lipschitz continuity of the determinant on the ball Br(1) with associated
radius r = supK maxk=1,...,K ∥φK,k − Id∥Hm(Ω) <∞ implies

∥ detDyK,k − 1∥L∞([tK,k−1,tK,k)×Ω) ≤ C∥φK,k − Id∥C1,α(Ω).

Hence, we can deduce from (3.30) and tK,k − tK,k−1 = K−1 that⃓⃓⃓⃓ K∑︂
k=1

K2

∫︂ tK,k

tK,k−1

∫︂
Ω

d(IK,k−1, IK,k ◦ φK,k)2(detDyK,k − 1) dx dt

⃓⃓⃓⃓
≤δJC max

k=1,...,K
∥φK,k − Id∥C1,α(Ω) ≤ δJCK− 1

2 .

Taking into account the definition of zK in (3.24), this ultimately leads to

lim
K→∞

∫︂ 1

0

∫︂
Ω

z2K dx dt = lim
K→∞

K
K∑︂
k=1

∫︂
Ω

d(IK,k−1, IK,k ◦ φK,k)2 dx.
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3. Convergence of the Time Discrete Metamorphosis Model

This also shows the uniform boundedness of zK ∈ L2((0, 1), L2(Ω)), which implies
the existence of a weakly convergent subsequence with limit z ∈ L2((0, 1), L2(Ω)).
Hence, using the weak lower semi-continuity of the norm, we get∫︂ 1

0

∫︂
Ω

z2 dx dt ≤ lim inf
K→∞

∫︂ 1

0

∫︂
Ω

z2K dx dt = lim inf
K→∞

K
K∑︂
k=1

∫︂
Ω

d(IK,k−1, IK,k ◦ φK,k)2 dx.

3. Lower semi-continuity of the viscous dissipation. We highlight that this
step differs from the corresponding step appearing in [33] due to the modification
of the assumption (W2), where the overall structure persists.

Note that the velocity fields vK = vK(φK) are not necessarily in L2((0, 1),V).
First, we show that the sequence wK = wK(φK) ∈ L2((0, 1),V) is uniformly
bounded in L2((0, 1),V). To see this, we assume that K is large enough such
that maxk=1,...,K ∥DφK,k − 1∥C0(Ω) < rW, see (W2), which is possible due to (3.30).
Then, using Korn’s inequality, the Poincaré inequality as well as (W2), we obtain∫︂ 1

0

∫︂
Ω

∥wK∥2 dx dt ≤ C
K∑︂
k=1

∫︂ tK,k

tK,k−1

∫︂
Ω

K2∥(DφK,k)sym − 1∥2 dx dt

≤ CK
K∑︂
k=1

∫︂
Ω

W(DφK,k)

CW,1

dx ≤ CJ
CW,1

,

∫︂ 1

0

∫︂
Ω

∥DmwK∥2 dx dt =
K∑︂
k=1

∫︂ tK,k

tK,k−1

∫︂
Ω

K2∥Dm(φK,k − Id)∥2 dx dt

=
K∑︂
k=1

K

∫︂
Ω

∥DmφK,k∥2 dx ≤ J
γ
.

The Gagliardo–Nirenberg inequality implies that the sequence wK is uniformly
bounded in L2((0, 1),V). By passing to a subsequence (again labeled in the same
way), we can deduce wK ⇀ v ∈ L2((0, 1),V) for K → ∞.

It remains to verify the lower semi-continuity of the sum of the approximate
Riemannian distances in (3.14), i.e.,∫︂ 1

0

∫︂
Ω

L[v, v] dx dt ≤ lim inf
K→∞

K

K∑︂
k=1

∫︂
Ω

W(DφK,k) + γ∥DmφK,k∥2 dx.

The second order Taylor expansion around tK,k−1 of t ↦→ W(1+ (t− tK,k−1)DwK,k)
evaluated at t = tK,k yields

W(DφK,k) =W(1) +K−1DW(1)(DwK,k) +
1

2K2
D2W(1)(DwK,k, DwK,k) + rK,k

=K−2
(︁
λ
2
tr(ε[wK,k])

2 + µ tr(ε[wK,k]
2)
)︁
+ rK,k, (3.32)

where rK,k denotes a remainder. Here, the lower order terms vanish due to (3.12)
and the last equality follows from (3.13). By Taylor’s theorem, the definition
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3.5 Mosco convergence of time discrete geodesic paths

of wK,k = K(φK,k − Id) and the growth estimate given in (3.30), it follows that
the remainder satisfies ∥rK,k∥ ≤ CK−3∥DwK,k∥3. Then,

K
K∑︂
k=1

∫︂
Ω

W(DφK,k) + γ∥DmφK,k∥2 dx

=K−1

K∑︂
k=1

∫︂
Ω

λ
2
tr(ε[wK,k])

2 + µ tr(ε[wK,k]
2) + γ∥DmwK,k∥2 dx+K

K∑︂
k=1

∫︂
Ω

rK,k dx,

and the remainder is of order K− 1
2 . To see this, we apply (3.30), Lemma 3.10 and

the uniform bound on the energy to deduce

K

K∑︂
k=1

∫︂
Ω

∥rK,k∥ dx ≤ CK
K∑︂
k=1

∫︂
Ω

K−3∥DwK,k∥3 dx

≤ CK max
k=1,...,K

∥φK,k − Id∥C1(Ω)

K∑︂
k=1

∥φK,k − Id∥2Hm(Ω)

≤ CKθ
(︁
JK−1

)︁ K∑︂
k=1

θ
(︁
R(IK,k−1, IK,k, φK,k)

)︁2
≤ CK

1
2

K∑︂
k=1

R(IK,k−1, IK,k, φK,k) ≤ CJK− 1
2 .

Finally, a standard weak lower semi-continuity argument [83, Thm. 3.20] shows

lim inf
K→∞

K
K∑︂
k=1

∫︂
Ω

W(DφK,k) + γ∥DmφK,k∥2 dx

= lim inf
K→∞

∫︂ 1

0

∫︂
Ω

λ
2
tr(ε[wK ])

2 + µ tr(ε[wK ]
2) + γ∥DmwK∥2 dx dt

≥
∫︂ 1

0

∫︂
Ω

λ
2
tr(ε[v])2 + µ tr(ε[v]2) + γ∥Dmv∥2 dx dt,

which implies weak lower semi-continuity of the path energy for {IK}K∈N.

4. Verifying admissibility of the limit. Finally, it remains to verify that
(I, v, Y, z) for a suitable Y is a solution of (3.16) and (3.17). We have already
pointed out that the manifold-valued metamorphosis energy functional necessitates
a variational inequality, which results in significant modifications of this step com-
pared to [33].

Let Ỹ denote the solution of

d
dt
Ỹ (t, x) = v(t, Ỹ (t, x)) for (t, x) ∈ [0, 1]× Ω,

Ỹ (0, x) = x for x ∈ Ω,
(3.33)
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which exists due to Theorem 3.6. Furthermore, (3.23) and the uniform bound-
edness of wK ∈ L2((0, 1),V) imply that the sequence vK is uniformly bounded
in L2((0, 1), C1,α(Ω)). Incorporating Remark 3.7, we infer that YK is uniformly
bounded in C0([0, 1], C1,α(Ω)), and by exploiting Hölder’s inequality we can even
show that the sequence is uniformly bounded in C0,1/2([0, 1], C1,α(Ω)). Hence, by
using the compact embedding of Hölder spaces, the sequence YK converges strongly
to some Y in C0,β([0, 1], C1,β(Ω)) for β = 1

2
min(1

2
, α).

It remains to verify that Ỹ = Y . To this end, the solutions of (3.33) correspond-
ing to wK are denoted by Ỹ K . Then,⃦⃦
Y −Ỹ

⃦⃦
C0([0,1]×Ω)

≤ ∥Y −YK∥C0([0,1]×Ω)+
⃦⃦
YK−Ỹ K

⃦⃦
C0([0,1]×Ω)

+
⃦⃦
Ỹ K−Ỹ

⃦⃦
C0([0,1]×Ω)

.

Here, the first term converges to zero as shown above and the last term converges to
zero by the continuous dependence of Ỹ K on wK discussed in Theorem 3.6. Then,
we can estimate as follows

∥YK − Ỹ K∥C0([0,1]×Ω) ≤ C
K∑︂
k=1

∫︂ tK,k

tK,k−1

∥wK,k(s, xK,k(s, ·))− wK,k(s, ·)∥C0(Ω) ds

≤ C
K∑︂
k=1

∫︂ tK,k

tK,k−1

∥wK,k(s, ·)∥Hm(Ω)∥yK,k(s, ·)− Id∥C0(Ω) ds

≤ C∥wK∥L2((0,1),Hm(Ω)) max
k=1,...,K

∥φK,k − Id∥C0(Ω).

Here, the first inequality is deduced from Remark 3.7. Further, to derive the second
inequality, we exploit Lipschitz continuity of x ↦→ wK,k(s, xK,k(s, x)) − wK,k(s, x),
where the Lipschitz constant is bounded by C∥wK,k(s, ·)∥Hm(Ω), and apply the coor-
dinate transform yK,k(s, ·). The uniform control of wK and (3.30) imply Y = Ỹ and
by Hölder’s inequality Y ∈ C0,1/2([0, 1], C1,α(Ω)). Finally, XK is uniformly bounded
in C0,1/2([0, 1], C1,α(Ω)) due to Remark 3.7. Thus, (3.16) is fulfilled.

Next, note that for s, t ∈ [0, 1] we obtain∫︂
Ω

d
(︁
IK(t, YK(t, x)), IK(s, YK(s, x))

)︁2
dx ≤

∫︂
Ω

(︂∫︂ s

t

zK(r, YK(r, x)) dr
)︂2

dx

≤ |s− t|
⃓⃓⃓∫︂

Ω

∫︂ s

t

zK(r, YK(r, x))
2 dr dx

⃓⃓⃓
.

By uniform boundedness of zK in L2((0, 1), L2(Ω)), we get IK ◦YK ∈ A 1
2
,L,| detDY | for

some appropriate L. Next, we show weak convergence of a subsequence of IK ◦ YK
to I ◦ Y ∈ A 1

2
,L,| detDY |. To this end, we observe

lim sup
K→∞

d2(IK , I)
2 = lim sup

K→∞

∫︂ 1

0

∫︂
Ω

d
(︁
IK(t, YK(t, x)), I(t, YK(t, x))

)︁2| detDYK | dx dt
= lim sup

K→∞

∫︂ 1

0

∫︂
Ω

d
(︁
IK(t, YK(t, x)), I(t, Y (t, x))

)︁2| detDY | dx dt.
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For the first equality, we incorporate the transformation formula, the second equality
follows from the uniform convergence of DYK , the metric triangle inequality and
the convergence of I(t, YK(t, x)) to I(t, Y (t, x)), see Lemma 3.4. To sum up, this
proves weak convergence of IK ◦ YK according to (3.2), and by Theorem 3.3, the
limit is also contained in A 1

2
,L,|detDY |.

Finally, it remains to verify (3.17). Assume there exist s < t ∈ [0, 1] such that
the set

B :=
{︂
x ∈ Ω: d

(︁
I(s, Y (s, x)), I(t, Y (t, x))

)︁
>

∫︂ t

s

z(r, Y (r, x)) dr
}︂

has positive Lebesgue measure. From the joint convexity of the metric d(·, ·) and the
continuity of point evaluation in time, we infer that I ↦→

∫︁
B
d(I(s, x), I(t, x)) dx is

continuous and convex on A 1
2
,L,|detDY |. Now, this implies weak lower semi-continuity

of the mapping, see [13, Lem. 3.2.3], and we obtain∫︂
B

d
(︁
I(s, Y (s, x)), I(t, Y (t, x))

)︁
dx

≤ lim inf
K→∞

∫︂
B

d
(︁
IK(s, YK(s, x)), IK(t, YK(t, x))

)︁
dx

≤ lim inf
K→∞

∫︂
B

∫︂ t

s

zK(r, YK(r, x)) dr dx =

∫︂
B

∫︂ t

s

z(r, Y (r, x)) dr dx,

where the last equality follows from the weak convergence of zK combined with the
strong convergence of YK , which also implies the weak convergence of zK ◦YK . This
yields a contradiction and concludes the proof of the liminf-inequality.

In what follows, we prove existence of a recovery sequence and thus establish
Mosco convergence. As a preparation, we prove that the infimum in (3.15) is actu-
ally attained, where we exploit some results of the proof of Theorem 3.12.

Proposition 3.13. For I ∈ L2([0, 1], L2(Ω,H)) with J (I) < ∞, the infimum in
(3.15) is attained, i.e., there exists a tuple (v, z) ∈ C(I) satisfying (3.16) and (3.17).

Proof. We first observe that the functional (v, z) ↦→
∫︁ 1

0

∫︁
Ω
L[v, v] + 1

δ
z2 dx dt is

weakly lower semi-continuous and coercive on C(I), cf. [28]. Since C(I) is a subset
of a reflexive Banach space, it suffices to prove weak closedness of C(I) to obtain
existence of an optimal tuple (v, z) ∈ C(I).

Let {(vk, zk)}k∈N ∈ C(I) be a weakly convergent sequence with limit (v, z). Due
to Theorem 3.6, the corresponding flows Yk and Y given by (3.16) exist and Yk → Y
in C0([0, 1]× Ω). Further, weak convergence of vk implies uniform boundedness of
{vk}k∈N in L2((0, 1), C1,α(Ω)). Thus, the reasoning in the paragraph following (3.33)
implies that a subsequence of {Yk}k∈N converges strongly to Y in C0,β([0, 1], C1,β(Ω))
for β = 1

2
min(1

2
, α).

Finally, Lemma 3.4 implies I(t, Yk(t, x)) → I(t, Y (t, x)) in L2([0, 1], L2(Ω,H))
and the last part of the proof of Theorem 3.12 shows that (I, Y, z) is a solution
of (3.17).
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Theorem 3.14 (Recovery sequence). Let IA, IB ∈ L2(Ω,H) be fixed input images
and let I ∈ L2([0, 1], L2(Ω,H)) be an image path with I(0) = IA and I(1) = IB.
Then there exists a recovery sequence {IK}K∈N with IK(0) = IA and IK(1) = IB
for all K ∈ N such that the limsup-inequality in Definition 3.1 with respect to the
L2([0, 1], L2(Ω,H))-topology is valid.

Proof. We proceed in three steps, which follow the usual general guideline to show
existence of recovery sequences in the context of Γ-convergence:

1. Construction of the recovery sequence.

2. Verification of the limsup-inequality.

3. Identification of the recovery sequence limit.

1. Construction of the recovery sequence. Compared to [33], our construc-
tion avoids the approximation of v and defines the deformations directly. Due to
Proposition 3.13, there exist optimal (v, Y, z) corresponding to I satisfying (3.16)
and (3.17). Incorporating the flow Y , we define for given K ∈ N a vector of diffeo-
morphisms φK = (φK,1, . . . , φK,K) ∈ Hm(Ω,Rn)K by

φK,k = YtK,k−1
(tK,k, ·),

where Ya(b, ·) := Y (b, Y −1(a, ·)) ∈ Hm(Ω)K with a, b ∈ [0, 1]. This expression
coincides with the evaluation at t = 1 of the flow corresponding to the velocity field
va,b(t, x) := (b− a)v(a+ (b− a)t, x), i.e., the solution of

Ẏ a,b(t, x) = va,b(t, Ya,b(t, x)) for (t, x) ∈ [0, 1]× Ω,

Ya,b(0, x) = x for x ∈ Ω.

Here, v is the velocity field whose existence is postulated in Proposition 3.13. Next,
we bound the C1(Ω)-norm of the displacements as follows

max
k∈{1,...,K}

∥φK,k − Id∥C1(Ω)

≤ sup
s,t∈[0,1]

|t−s|≤K−1

∥Ys(t, ·)− Id∥C1(Ω) ≤ sup
s,t∈[0,1]

|t−s|≤K−1

C

∫︂ 1

0

∥vs,t(r, Ys,t(r, ·))∥Hm(Ω) dr

≤ sup
s,t∈[0,1]

|t−s|≤K−1

C
⃓⃓⃓∫︂ t

s

∥v(r, ·)∥Hm(Ω) dr
⃓⃓⃓
≤ CK− 1

2 sup
s,t∈[0,1]

|t−s|≤K−1

⃓⃓⃓∫︂ t

s

∥v(r, ·)∥2Hm(Ω) dr
⃓⃓⃓ 1
2
.

(3.34)

For the third inequality, we exploit the estimate

∥v(t, Y (t, ·))∥Hm(Ω) ≤ C∥v(t, ·)∥Hm(Ω), (3.35)
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which follows from [49, Lem. 3.5] and an extension argument as shown in Theo-
rem 3.6, and use the transformation formula. The last inequality is implied by the
Cauchy–Schwarz inequality.

Choosing K sufficiently large ensures φK ∈ AK
ε and consequently we can apply

the temporal extension from Section 3.4. Finally, the recovery sequence is defined
as IK = IextK (IK ,φK), where

IK = (IK,0, IK,1, . . . , IK,K) =
(︁
I(tK,0, ·), . . . , I(tK,K , ·)

)︁
.

2. Verification of the limsup-inequality. Note that this step shares some sim-
ilarities with the corresponding step in [33] with modifications necessitated by the
manifold structure and the different construction. In the following, all terms in the
discrete energy JK(IK ,φK) are estimated separately. For any k = 1, . . . , K, we
infer using (3.17), Jensen’s inequality and (3.34) that∫︂

Ω

d
(︁
IK,k−1, IK,k ◦ φK,k

)︁2
dx

=

∫︂
Ω

d
(︁
IK,k−1 ◦ Y (tK,k−1, x), IK,k ◦ Y (tK,k, x)

)︁2
det
(︁
DY (tK,k−1, x)

)︁
dx

≤
∫︂
Ω

(︃∫︂ tK,k

tK,k−1

z(s, Y (s, x)) ds

)︃2

det
(︁
DY (tK,k−1, x)

)︁
dx

≤K−1

∫︂ tK,k

tK,k−1

∫︂
Ω

z2(s, x) det
(︁
DYs(tK,k−1, x)

)︁
dx ds

≤K−1
(︁
1 + CK− 1

2

)︁ ∫︂ tK,k

tK,k−1

∫︂
Ω

z2 dx ds. (3.36)

Recall that wK,k = K(φK,k − Id). Now, the same Taylor argument as in (3.32)
implies∫︂

Ω

W(DφK,k) + γ∥DmφK,k∥2 dx ≤ K−2

∫︂
Ω

L[wK,k, wK,k] dx+ CK−3

∫︂
Ω

∥DwK,k∥3 dx.
(3.37)

Summing over the second term on the right hand side and taking into account (3.34),
we obtain

K∑︂
k=1

∫︂
Ω

∥DwK,k∥3 dx ≤ CK3

K∑︂
k=1

∥φK,k − Id∥3
C1(Ω)

≤ CK
3
2 .

A direct application of Jensen’s inequality shows that the lower order term satisfies∫︂
Ω

L[wK,k, wK,k] dx

=

∫︂
Ω

L

[︃
K

∫︂ tK,k

tK,k−1

v(t, YtK,k−1
(t, x)) dt,K

∫︂ tK,k

tK,k−1

v(t, YtK,k−1
(t, x)) dt

]︃
dx

≤
∫︂
Ω

K

∫︂ tK,k

tK,k−1

L
[︁
v(t, YtK,k−1

(t, x)), v(t, YtK,k−1
(t, x))

]︁
dt dx.
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3. Convergence of the Time Discrete Metamorphosis Model

By using (3.34) and | tr(AB)| ≤ | tr(A)|+ | tr(A(B − 1))| for A,B ∈ Rn×n multiple
times, we can estimate the part corresponding to the first summand of L, see (3.3),
as follows∫︂

Ω

∫︂ tK,k

tK,k−1

tr
(︂
D
(︁
v(t, YtK,k−1

(t, x))
)︁)︂2

dt dx

=

∫︂
Ω

∫︂ tK,k

tK,k−1

tr
(︁
Dv(t, YtK,k−1

(t, x))DYtK,k−1
(t, x)

)︁2
dt dx

≤
∫︂
Ω

∫︂ tK,k

tK,k−1

tr
(︁
Dv(t, YtK,k−1

(t, x))
)︁2

+ tr
(︁
Dv(t, YtK,k−1

(t, x))(1−DYtK,k−1
(t, x))

)︁2
+ 2

⃓⃓
tr
(︁
Dv(t, YtK,k−1

(t, x))
)︁
tr
(︁
Dv(t, YtK,k−1

(t, x))(1−DYtK,k−1
(t, x))

)︁⃓⃓
dt dx

≤
∫︂
Ω

∫︂ tK,k

tK,k−1

tr
(︁
Dv(t, YtK,k−1

(t, x))
)︁2

+ C
(︁
1 + ∥v(t, ·)∥3Hm(Ω)

)︁
K− 1

2 dt dx

≤
∫︂
Ω

∫︂ tK,k

tK,k−1

tr(ε[v])2 + C
(︁
1 + ∥v(t, ·)∥3Hm(Ω)

)︁
K− 1

2 dt dx.

For the last inequality, we additionally used the transformation formula and (3.34).
The second term in L is estimated analogously∫︂

Ω

∫︂ tK,k

tK,k−1

tr
(︁
ε
[︁
v(t, YtK,k−1

(t, x))
]︁2)︁

dt dx

≤
∫︂
Ω

∫︂ tK,k

tK,k−1

tr(ε[v]2) + C
(︁
1 + ∥v(t, ·)∥3Hm(Ω)

)︁
K− 1

2 dt dx.

It remains to bound the higher order term appearing in the definition of L. To
this end, we use (3.35) and the bound ∥fg∥Hm̃ ≤ C∥f∥Hm∥g∥Hm̃ for f ∈ Hm(Ω),
g ∈ Hm̃(Ω) and any 0 ≤ m̃ ≤ m, see [166, Lem. 2.3], which results in the following
estimates

|v(t, YtK,k−1
(t, ·))|Hm(Ω)

≤ |Dv(t, YtK,k−1
(t, ·))|Hm−1(Ω) + ∥Dv(t, YtK,k−1

(t, ·))D(YtK,k−1
(t, ·)− Id)∥Hm−1(Ω)

≤ |Dv(t, YtK,k−1
(t, ·))|Hm−1(Ω) + C

⃦⃦
v(t, ·)∥Hm(Ω)

⃦⃦
YtK,k−1

(t, ·)− Id∥Hm(Ω)

≤ |Dv(t, YtK,k−1
(t, ·))|Hm−1(Ω) + C

⃦⃦
v(t, ·)∥Hm(Ω)K

− 1
2 .

Iterating this argument and applying a change of variables, we obtain for the last
term of L∫︂ tK,k

tK,k−1

|v(t, YtK,k−1
(t, ·))|2Hm(Ω) dt ≤

∫︂ tK,k

tK,k−1

|v(t, ·)|2Hm(Ω) + C
⃦⃦
v(t, ·)∥2Hm(Ω)K

− 1
2 dt.

(3.38)
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3.5 Mosco convergence of time discrete geodesic paths

By combining the estimate (3.36) with (3.37)–(3.38) for the second inequality below,
we get

JK(IK) ≤ K

K∑︂
k=1

∫︂
Ω

W(DφK,k) + γ|DmφK,k|2 + 1
δ
d
(︁
IK,k−1, IK,k ◦ φK,k

)︁2
dx

≤
K∑︂
k=1

(︃∫︂ tK,k

tK,k−1

∫︂
Ω

L[v, v] + CK−1|DwK,k|3 + 1
δ

(︁
1 + CK− 1

2

)︁
z2 dx dt

)︃
≤
∫︂ 1

0

∫︂
Ω

L[v, v] + 1
δ
z2 dx dt+ CK− 1

2 + C 1
δ
K− 1

2 = J (I) +O(K− 1
2 ),

which readily implies the limsup-inequality.

3. Identification of the recovery sequence limit. It remains to verify the
convergence IK → I in L2([0, 1], L2(Ω,H)) as K → ∞. To see this we estimate∫︂ 1

0

∫︂
Ω

d
(︁
I(s, Y (s, x)), IextK (IK ,φK)(s, YK(s, x))

)︁2
dx ds

=
K∑︂
k=1

∫︂ tK,k

tK,k−1

∫︂
Ω

d
(︁
I(s, Y (s, x)), IextK (IK ,φK)(s, YK(s, x))

)︁2
dx ds

≤C
K∑︂
k=1

(︃∫︂ tK,k

tK,k−1

∫︂
Ω

K−2z2(s, Y (s, x)) dx ds

+

∫︂ tK,k

tK,k−1

∫︂
Ω

d
(︁
IK,k−1(Y (tK,k−1, x)), I

ext
K (IK ,φK)(s, YK(s, x))

)︁2
dx ds

)︃
≤CK−2∥z(t, Y (t, x))∥2L2((0,1)×Ω).

Here, we combined (3.17) with the Cauchy–Schwarz inequality to obtain an es-
timate for the term d(I(s, Y (s, x)), IK,k(Y (tK,k−1, x))) in the first inequality and
used the definition of IextK , see (3.21), together with (3.1), (3.17) and the Cauchy–
Schwarz inequality in the second inequality. Due to the convergence of YK to Y and
Corollary 3.5, this readily implies the claimed convergence IextK (IK ,φK) → I.

We conclude this section with the desired convergence statement for discrete
geodesic paths.

Theorem 3.15 (Convergence of discrete geodesic paths). Let IA, IB ∈ L2(Ω,H)
and suppose that the assumptions (W1), (W2) and (W3) hold true. For every
K ∈ N let IK be a minimizer of J K subject to IK(0) = IA and IK(1) = IB. Then,
a subsequence of {IK}K∈N converges weakly in L2([0, 1], L2(Ω,H)) to a minimizer
of the continuous path energy J as K → ∞, and the associated sequence of discrete
energies converges to the minimal continuous path energy.

Proof. Using a comparison argument with v ≡ 0 and z(t, x) = d2(IA(x), IB(x)), we
deduce that the path energy J K is bounded by J = 1

δ
d2(IA, IB)

2. For optimal
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3. Convergence of the Time Discrete Metamorphosis Model

vectors of images IK and deformations φK in the definition of J K , see (3.29),
we apply the temporal extension construction from Section 3.4. In particular,
JK(IK ,φK) ≤ J for all K ∈ N. Using (3.22) and (3.31), we conclude that zK
is uniformly bounded in L2((0, 1)×Ω). Next, Remark 3.7 together with (3.23) and
(3.30) imply uniform boundedness of YK , XK in C0([0, 1], C1,α(Ω)). Incorporating
(3.17), we obtain for fa(x) = a with a ∈ H that

d2(IK(t, ·), fa) ≤ C
(︁
d2

(︁
IK(t, YK(t, ·)), IA

)︁
+ d2(IA, fa)

)︁
≤ C

(︁
∥zK∥L2((0,1)×Ω) + 1

)︁
.

Therefore, {IK}K∈N is uniformly bounded in L∞([0, 1], L2(Ω,H)) and a subsequence
converges weakly to some I ∈ L2([0, 1], L2(Ω,H)) in L2([0, 1], L2(Ω,H)).

Now, we follow the usual argument and assume that there exists an image path
Ĩ ∈ L2([0, 1], L2(Ω,H)) with corresponding optimal tuple (Ĩ , ṽ, Ỹ , z), which exists
due to Proposition 3.13, satisfying (3.16) and (3.17) such that

J [Ĩ] < J [I]. (3.39)

By Theorem 3.14, we get existence of a sequence {ĨK}K∈N ⊂ L2((0, 1), L2(Ω,H))
satisfying lim supK→∞J K [ĨK ] ≤ J [Ĩ]. Thus, we obtain applying Theorem 3.12
that

J [I] ≤ lim inf
K→∞

J K [IK ] ≤ lim sup
K→∞

J K [ĨK ] ≤ J [Ĩ], (3.40)

which contradicts (3.39). Hence, I minimizes the continuous path energy over all
admissible image paths. Finally, the discrete path energies converge to the limiting
path energy along a subsequence, i.e., limK→∞J K [IK ] = J [I], which again follows
from (3.40) by using Ĩ = I.

3.6 Conclusion
In this chapter, we have introduced a novel metamorphosis functional for manifold-
valued images. We specifically considered the case of images as maps into Hadamard
manifolds. This choice is at first motivated by applications like DT-MRI images,
which are also depicted as examples here. On the other hand, Hadamard manifolds
come with the joint convexity of the distance functional. An important aspect of
the generalized metamorphosis model for manifold-valued images is the inequal-
ity (3.17), which replaces the defining equation for the material derivative in the
standard metamorphosis model. As it is shown here, it is in particular the joint
convexity of the distance function that allows us to establish this inequality as
the limiting constraint for our discrete approximation. Thus, Hadamard manifolds
naturally arise in applications and appear to be the proper setup for which the
existence and convergence analysis is still possible. Indeed, we picked up a natural
time discretization for this model and proved the Mosco convergence to this novel
time continuous metamorphosis model. This in particular establishes the existence
of solutions for this model, not following or using the approach by Trouvé and
Younes in [263]. Also numerically, the joint convexity of the distance on Hadamard
manifolds is of importance for the convergence of the alternating descent scheme
presented in [213].
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4. Regularization of Inverse Problems via Time Discrete Geodesics

Abstract

This chapter1, which is published in [214], addresses the solution of inverse
problems in imaging given an additional reference image. We combine a mod-
ification of the discrete geodesic path model for image metamorphosis with a
variational model, actually the L2-TV model, for image reconstruction. We
prove that the space continuous model has a minimizer that depends in a sta-
ble way from the input data. Two minimization procedures, which alternate
over the involved sequences of deformations and images in different ways, are
proposed. The updates with respect to the image sequence exploit recent
algorithms from convex analysis to minimize the L2-TV functional. For the
numerical computation, we apply a finite difference approach on staggered
grids together with a multilevel strategy. We present proof-of-concept numer-
ical results for sparse and limited angle computed tomography as well as for
superresolution demonstrating the power of the method.

1This is an author-created, un-copyedited version of an article accepted for publication/pub-
lished in Inverse Problems. IOP Publishing Ltd is not responsible for any errors or omissions in
this version of the manuscript or any version derived from it. The Version of Record is available
online at DOI: 10.1088/1361-6420/ab038a.
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4.1 Introduction

4.1 Introduction

In certain applications it makes sense to account for qualitative prior image infor-
mation to improve the image reconstruction. Typical examples are image super-
resolution and computed tomography (CT) with sparsely or limited angle sampled
sinogram data. Earlier approaches to incorporate prior knowledge about the image
into CT include phase field methods [159, 217], the application of level set tech-
niques, in particular when combining registration with segmentation [258], as well
as the utilization of local (shape) descriptors [221, 283]. Recently, a mathematical
classification of artifacts from arbitrary incomplete X-ray tomography data using
classical filtered backprojection was given in [39]. For earlier papers on this topic
the reader may also consult [117, 118, 172, 218].

In this chapter, we incorporate a whole reference image into the reconstruc-
tion process and take its deformation towards the image of interest, which is only
indirectly given by measurements, into account. Recent work in this direction
shows promising results. Schumacher, Modersitzki and Fischer [247] have dealt
with combined reconstruction and motion correction in SPECT imaging. Karls-
son and Ringh [171] coupled the optimal transport model with inverse problems.
Chen and Öktem [64] tackled hard inverse problems with shape priors under the
name indirect image registration within the large deformation diffeomorphic metric
mapping (LDDMM) framework and in an earlier work [223] via linearized defor-
mations. The authors use ODE constrained problem formulations, where the reg-
ularization of the deformations exploits reproducing kernel Hilbert spaces. As a
drawback, the LDDMM [25, 71, 95, 261, 262] based methods can only deal with im-
ages having the same intensities. The metamorphosis model of Miller, Trouvé and
Younes [202, 263, 264] is an extension of the LDDMM approach allowing variation
of the image intensities along trajectories of the pixels. A comprehensive overview
over the topic is given in the book [285] as well as in the review article [201]. For a
historic account see also [199]. Recently, Gris, Chen and Öktem [139] have enlarged
the ideas in [64, 223] to the metamorphosis setting.

Here, we also follow the metamorphosis idea, but in a completely different way
than in [139]. We built up on the time discrete geodesic calculus proposed for
shape spaces by Rumpf and Wirth [240, 241] and for images by Berkels, Effland and
Rumpf [33]. For convergence of the time discrete path model to the metamorphosis
one, we refer to these papers. Here, deformations are modeled via a smoothness
term and the linearized elastic potential, which is also a usual choice in registration
problems. We combine this model with a “usual” variational image reconstruc-
tion model, actually the L2-TV model, which originated from [238]. Inspired by
compressive sensing [55, 93], such variational image reconstruction techniques with
sparsity-exploiting priors have achieved impressive reductions in sampling require-
ments. Besides TV priors, wavelet, shearlet- and curvelet representations [75, 116]
were exploited in CT reconstructions with incomplete data.

Let X ,Y be Hilbert spaces and A ∈ L(X ,Y) a linear, continuous operator. A
typical choice for X is the space of square integrable function L2(Ω) defined over
some image domain Ω ⊂ R2. We want to reconstruct an unknown image Iorig ∈ X
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I0
ϕ−1
0

I1 . . .
Ik

ϕ−1
k

Ik+1
. . .

IK−1

ϕ−1
K−1

IK

Figure 4.1: Illustration of the image and diffeomorphism path, where Ik+1(x) ≈
Ik(φ

−1
k (x)), k = 0, . . . , K − 1.

having the following information available:

I1) an image B = AIorig + η ∈ Y , where η denotes some small error, e.g., due to
noise;

I2) a reference image R that is similar to the original image.

A usual variational model to approximate Iorig from B using only I1) is given by

argmin
I∈X

E(I;B) := D(I;B) + αP(I), α ≥ 0, (4.1)

where D is a data term and P a prior or regularizer. A model for edge-preserving
image reconstruction is the L2-TV model, which will be our model of choice.

To incorporate the reference image R, we want to combine model (4.1) with a
modified version of the time discrete geodesic model for image metamorphosis [33].
Given a template image I0 = T and a reference image IK = R, this model aims to
find a chain of smooth deformations (φ0, . . . , φK−1) from an appropriately defined
admissible set A together with a sequence of images (I1, . . . , IK−1) such that the
sum of the quadratic distances

K−1∑︂
k=0

⃦⃦
Ik ◦ φ−1

k − Ik+1

⃦⃦2
X (4.2)

together with a prior

K−1∑︂
k=0

∫︂
Ω

ν|Dmφk|2 +W (Dφk) dx, ν > 0,

on the deformations becomes small, see Fig. 4.1. The first part of the deformation
regularization enforces the smoothness of the mappings, while the second term,
circumscribed by W , will be chosen as linearized elastic potential. By (4.2), the
image sequence (T, I1, . . . , R) possibly differs from the deformed image sequence
(T, T ◦ φ−1

0 , . . . , T ◦ φ−1
0 ◦ . . . ◦ φ−1

K−1), which makes the model flexible for intensity
changes.

For the numerical solution of our model, we propose two different procedures,
namely proximal alternating linearized minimization (PALM) [36] and an alternat-
ing minimization approach related to [33, 213]. For the later one, recent primal-dual
minimization algorithms from convex analysis are merged with a Quasi-Newton ap-
proach from image registration.
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4.2 Preliminaries

Outline of the chapter: In Section 4.2, the necessary preliminaries concerning
the spaces of deformations and images are introduced. In particular, we highlight
properties of the concatenations of admissible deformations and square integrable
images. This motivates the modification of the time discrete path model [33] and
also of our generalized model for manifold-valued images in [213]. In Section 4.3,
our space continuous reconstruction model is established. Since it combines time
discrete morphing with inverse problems we call it TDM-INV. We prove that the
functional has a minimizer and that minimizers depend stably on the input data.
Further, a convergence result for decreasing noise is provided. Section 4.4 deals with
two minimization procedures. For minimizing the image sequence, we incorporate
primal-dual algorithms from convex analysis. Further, we explain computational
issues in the space discrete setting. The numerical examples in Section 4.5 demon-
strate the performance of our approach. We finish with conclusions in Section 4.6.

4.2 Preliminaries
In the rest of this chapter, let Ω ⊂ Rn be a nonempty, open, connected, and bounded
set with Lipschitz boundary. In this section, we introduce admissible sets A of
deformations and consider the concatenation of deformations φ ∈ A with images
I ∈ L2(Ω). Note that I ◦ φ considered in [33] is in general not in L2(Ω), while we
will see that I ◦ φ−1 ∈ L2(Ω). Therefore, we prefer to modify the time discrete
geodesic path model by using the later concatenation. Moreover, this fits better
to the original metamorphosis setting of Trouvé and Younes. In [97], the image
space L∞(Ω) is proposed instead and in [213] the computations are considerably
simplified by using a set Aϵ with deformations fulfilling detDφ ≥ ε for some fixed
ε > 0.

4.2.1 Admissible deformations

First, we introduce the smoothness spaces of our deformation mappings. Let
Ck,α(Ω), k ∈ N0, denote the Hölder space of functions f ∈ Ck(Ω) for which

∥f∥Ck,α(Ω) :=
∑︂
|β|≤k

∥Dβf∥C(Ω) +
∑︂
|β|=k

sup
x,y∈Ω
x ̸=y

⃓⃓
Dβf(x)−Dβf(y)

⃓⃓
|x− y|α

is finite. Equipped with this norm Ck,α(Ω) is a Banach space.
By Wm,p(Ω), m ∈ N, 1 ≤ p < ∞, we denote the Sobolev space of functions

having weak derivatives up to order m in Lp(Ω) with norm

∥f∥pWm,p(Ω)
:=
∑︂
|α|≤m

∫︂
Ω

|Dαf |p dx

and seminorm |Dmf |p := ∑︁|α|=m|Dαf |p. For vector valued F = (fν)
n
ν=1, the com-

ponent wise norm |DmF |p :=
∑︁n

ν=1|Dmfν |p is used. The space Wm,2(Ω) with
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m > 1 + n
2

is of particular interest as it is compactly embedded in C1,α(Ω) for all
α ∈ (0,m− 1− n

2
), see [4, Thm. 8.13], and consequently also Wm,2(Ω) ↪→ W 1,p(Ω)

for all p ≥ 1.
It is assumed that the deformations φ are elements of the following admissible

set

A :=
{︁
φ ∈ Wm,2(Ω)

n
: detDφ > 0 a.e. in Ω, φ(x) = x for x ∈ ∂Ω

}︁
,

where m > 1+ n
2
. Then, by a result of Ball [19], φ has the following useful properties

i) φ(Ω) = Ω.

ii) φ maps measurable sets in Ω to measurable sets in Ω and the change of
variables formula ∫︂

B

I ◦ φ detDφ dx =

∫︂
φ(B)

I dy

holds for any measurable set B ⊂ Ω and any measurable function I : Ω → R
provided that one of the above integrals exists.

iii) φ is injective a.e., i.e., the set

S :=
{︁
x ∈ Ω: φ−1(x) has more than one element

}︁
has Lebesgue measure zero.

By property i) and since Ω is bounded, it follows immediately for all φ ∈ A that

∥φ∥L∞(Ω)n ≤ C, ∥φ∥L2(Ω)n ≤ C, (4.3)

with constants depending only on Ω. By the embedding properties of Sobolev
spaces, it holds φ ∈ C1,α(Ω)

n. Further, by the inverse mapping theorem, φ−1 exists
locally around a.e. x ∈ Ω and is continuously differentiable on the corresponding
neighborhood. However, to guarantee that φ−1 is continuous (or, even more, con-
tinuously differentiable) on Ω, further assumptions are required, see [19, Thm. 2].
A possible counterexample is the function φ(x) := x3 on Ω := (−1, 1), which is in
A but φ−1 = sgn(x)|x| 13 is not continuously differentiable.

4.2.2 Space of images

In this chapter, we consider images as functions in X = L2(Ω). Unfortunately, the
concatenation of I ∈ L2(Ω) with φ ∈ A can result in a function

I ◦ φ ̸∈ L2(Ω),

as the example I(x) := x−
1
4 in L2((0, 1)) and φ(x) := x2 shows. However, this can

be avoided by using
φ · I := I ◦ φ−1 ∈ L2(Ω), (4.4)
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where the function needs to be defined properly. To this end, let N be a Borel
null set containing S from iii). Then B := Ω\N is a Borel set with µ(B) = µ(Ω).
Note that φ−1(B) is itself a Borel set since φ ∈ Wm,2(Ω)n is measurable. Consider
φ−1 : B → φ−1(B) and let B ⊆ φ−1(B) be a Borel set. Then, by ii), we see that
(φ−1)−1(B) = φ(B) is a Borel set, so that φ−1 is a measurable function on B. For
I ∈ L2(Ω) and φ−1 as above, the concatenation I ◦ φ−1 : B → R is measurable if
defined as follows

I ◦ φ−1(x) :=

{︃
I ◦ φ−1(x) x ∈ B,
0 otherwise.

Then, (4.4) can be verified by∫︂
Ω

⃓⃓
I ◦ φ−1

⃓⃓2
dx =

∫︂
B

⃓⃓
I ◦ φ−1

⃓⃓2
dx =

∫︂
φ−1(B)

|I|2 detDφ dy,

which is finite since Dφ has components in C0,α(Ω). The same argument can be
used to show that I ◦ φ−1 ∈ Lp(Ω), p ∈ [1,∞), if I ∈ Lp(Ω). Further, the following
lemma on the image of null sets under deformations φ and φ−1 is useful.

Lemma 4.1. For φ ∈ A, both φ and its pre-image deformation φ−1 map null sets
to null sets.

Proof. As φ is Lipschitz continuous, it maps null sets to null sets [279, Thm. 3.33 and
it’s proof]. Now, assume that there exists a Borel null set N with µ(φ−1(N )) > 0.
Using the characteristic function 1N on N , we get the contradiction

0 =

∫︂
N
1N dx =

∫︂
φ−1(N )

1N ◦ φ detDφ dy =

∫︂
φ−1(N )

detDφ dy > 0.

Finally, we prove a continuity result for the Lp(Ω) norm with respect to mappings
φ ∈ A .

Lemma 4.2. Let I ∈ Lp(Ω), p ∈ [1,∞), and {φj}j∈N be a sequence of deformations
φj ∈ A with limj→∞ ∥φj − φ̂∥C1,α(Ω)n = 0 for some φ̂ ∈ A. Then it holds

lim
j→∞

⃦⃦
I ◦ φ−1

j − I ◦ φ̂−1
⃦⃦
Lp(Ω)

= 0.

Proof. Since I◦φ̂−1 ∈ Lp(Ω), there exits a sequence {Ik}k∈N of uniformly continuous
functions with ∥I ◦ φ̂−1 − Ik∥Lp(Ω) ≤ 1

k
. Using the fact that φ−1 maps null sets on

null sets, we conclude⃦⃦
I ◦ φ−1

j − I ◦ φ̂−1
⃦⃦
Lp(Ω)

=
⃦⃦
I ◦ φ−1

j − Ik ◦ φ̂ ◦ φ−1
j + Ik ◦ φ̂ ◦ φ−1

j − Ik + Ik − I ◦ φ̂−1
⃦⃦
Lp(Ω)

≤
(︃∫︂

Ω

|I − Ik ◦ φ̂|p detDφj dx
)︃ 1

p

+

(︃∫︂
Ω

|Ik ◦ φ̂− Ik ◦ φj|p detDφj dx
)︃ 1

p

+
1

k
.
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Due to the convergence of φj, there exists a constant C such that detDφj ≤ C for
all j ∈ N. Thus,⃦⃦

I ◦ φ−1
j − I ◦ φ̂−1

⃦⃦
Lp(Ω)

≤
(︃∫︂

Ω

|I − Ik ◦ φ̂|p detDφj dx
)︃ 1

p

+ C

(︃∫︂
Ω

|Ik ◦ φ̂− Ik ◦ φj|p dx
)︃ 1

p

+
1

k
.

The last term converges to zero as k → ∞. Now, fix k ∈ N. Since φj converges
uniformly to φ̂, the uniform continuity of Ik can be used to conclude that Ik ◦ φj
converges uniformly to Ik ◦ φ̂. Then, boundedness of Ω implies that the second term
converges to zero as j → ∞. For the first term, the uniform continuity of Ik implies
that for every ϵ > 0 there exits j ∈ N large enough such that(︃∫︂

Ω

|I − Ik ◦ φ̂|p detDφj dx
)︃ 1

p

≤
(︃∫︂

Ω

|I − Ik ◦ φ̂|p detDφ̂ dx

)︃ 1
p

+ ϵ

=

(︃∫︂
Ω

⃓⃓
I ◦ φ̂−1 − Ik

⃓⃓p
dx

)︃ 1
p

+ ϵ ≤ 1

k
+ ϵ.

This concludes the proof.

4.3 Space continuous model
In this section, we establish our space continuous model, which takes the infor-
mation I1) and I2) into account and prove existence of minimizers, stability and
convergence for vanishing noise. These three properties are necessary for a well-
defined regularization method.

4.3.1 Model

Starting with the information I1), we are interested in the reconstruction of a two-
dimensional image from its measurements based on the variational approach (4.1).
In this chapter, the main focus lies on the total variation seminorm as regularizer P .
More precisely, recall that the space of functions of bounded variation BV (Ω) con-
sists of those functions I ∈ L1

loc(Ω) having weak first order derivatives that are finite
Radon measures. For I ∈ L1(Ω), it holds that I ∈ BV (Ω) if and only if

TV(I) := sup

{︃∫︂
Ω

Idiv(η) dx : η ∈ C∞
0 (Ω)

n
, |η| ≤ 1

}︃
< +∞.

Equipped with the norm ∥I∥BV := ∥I∥L1(Ω) + TV(I), the space BV (Ω) becomes a
Banach space. For Ω ⊂ R2, i.e., two-dimensional domains, BV (Ω) can be continu-
ously embedded into L2(Ω), see [5, Thm. 3.47]. Therefore, we can define

P(I) :=

{︃
TV(I) for I ∈ BV (Ω),
+∞ for I ∈ L2(Ω)\BV (Ω).

(4.5)
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It is well-known that P in (4.5) is a proper, convex and lower semi-continuous (lsc)
functional on L2(Ω), see [244, Prop. 10.8].

Let A : L2(Ω) → Y be a continuous linear operator into a Hilbert space Y that
does not vanish on constant functions and B ∈ Y . In case of the Radon transform,
it holds Y = L2(S1, (−1, 1)). Then, we define the variational reconstruction model

E(I;B) := 1
2
∥AI −B∥2Y + αTV(I), α > 0.

Note that E(I;B) is jointly weakly lsc in I and B.
Having a reference image R ∈ L2(Ω) available, we want to add information I2)

to the model. To this end, let W : R2,2 → R≥0 be a lsc mapping and ν > 0, m > 2.
Throughout the chapter, it is assumed that K ≥ 1 is an integer. For a sequence
I := (I0, . . . , IK−1) of images in L2(Ω) and a sequence of admissible deformations
φ := (φ0, . . . , φK−1), we consider the time discrete geodesic path model

F(I,φ) :=
K−1∑︂
k=0

∫︂
Ω

W (Dφk) + ν|Dmφk|2 +
⃓⃓
Ik ◦ φ−1

k − Ik+1

⃓⃓2
dx, (4.6)

where IK := R ∈ L2(Ω) is a given reference image. Then, our whole model reads

J (I,φ) := E(I0;B) + βF(I,φ) subject to IK = R, (4.7)

where β > 0. We call this model TDM-INV model referring to ’time discrete
morphing - inverse’ problems.

Remark 4.3. The linearized elastic potential is our choice for W in (4.6). More
precisely, rewriting the deformation as φ(x) = x+v(x) and introducing the notation
of the (Cauchy) strain tensor of the displacement vector field v = (v1, v2)

T : Ω ↦→ R2

as
Dvsym :=

(︃
∂xv1

1
2
(∂yv1 + ∂xv2)

1
2
(∂yv1 + ∂xv2) ∂yv2

)︃
,

we apply

S(v) :=
∫︂
Ω

µ trace
(︁
DvTsymDvsym

)︁
+
λ

2
trace (Dvsym)

2 dx, ν > 0.

Note that the linearized elastic potential is a usual regularizer in the context of
registration, see [143, 204, 226].

4.3.2 Existence, stability and convergence

In this section, we prove that there exists a minimizer of J in (4.7). Based on
this, we show its stability with respect to the input data B and the convergence of
an image sequence {I(j)0 }j∈N obtained from minimizing the functionals with input
data Bj fulfilling ∥AI0 − Bj∥2Y ≤ δj for a zero sequence {δj}j∈N and corresponding
parameters αj, βj decaying faster than δj to the limit I0.
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The existence proof is the hardest part. As usual for functionals in two variables,
it is based on three pillars: First, it is shown that a minimizer exists if one of the
variables is fixed. In a second step the results are merged to get the overall existence.

Fixing the image sequence I leads to single registration problems. The proof of
Lemma 4.4 follows similar ideas as in [33, 213]. However, since the setting in those
papers is different, we prefer to carefully follow the lines and make the necessary
modifications to make the chapter self-contained. Fixing φ, it is necessary to deal
with the additional term E and the proof of Lemma 4.5 is different from those
in [33, 213], in particular it relies on nested weighted L2 spaces. Except for the
first step, the existence proof of Theorem 4.7 requires completely new estimates
compared to [33, 213].

To begin with, we fix an image sequence I ∈ L2(Ω)K and show that J(I, ·) has
a minimizer φ ∈ A K . Then, the consideration can be restricted to F(I, ·) and it
suffices to prove that each of the summands

R(φk; Ik, Ik+1) :=

∫︂
Ω

W (Dφk) + ν|Dmφk|2 dx,+
⃓⃓
Ik ◦ φ−1

k − Ik+1

⃓⃓2
dx,

k = 0, . . . , K − 1, has a minimizer in A .

Lemma 4.4. Let W : Rn,n → R≥0 be a lsc mapping with the property

W (M) = ∞ if detM ≤ 0. (4.8)

Further, let T,R ∈ L2(Ω) be given. Then there exists a minimizer φ̂ ∈ A of

R(φ;T,R) :=

∫︂
Ω

W (Dφ) + ν|Dmφ|2 +
⃓⃓
T ◦ φ−1 −R

⃓⃓2
dx

over all φ ∈ A .

Proof. 1. Let {φj}j∈N, φj ∈ A , be a minimizing sequence of R. Then it holds
that R(φj;T,R) ≤ C for all j ∈ N. This implies that {φj}j∈N has uniformly
bounded Wm,2(Ω)n-seminorm, and by (4.3) the sequence is also uniformly bounded
in L2 (Ω)n. Now, we apply the Gagliardo–Nirenberg inequality, see Remark 4.13,
which states that for all 0 ≤ i < m it holds

∥Diφj∥L2(Ω) ≤ C1∥Dmφj∥L2(Ω) + C2∥φj∥L2(Ω).

All terms on the right-hand side are uniformly bounded. Hence, the Wm,2(Ω)n

norm of {φj}j∈N is uniformly bounded. Since Wm,2(Ω) is reflexive, there exists
a subsequence that converges weakly to some function φ̂ in Wm,2(Ω)n. By the
compact embedding Wm,2(Ω) ↪→ C1,α(Ω), α ∈ (0,m − 1 − n

2
), this subsequence,

which is again denoted by {φj}j∈N, converges strongly to φ̂ in C1,α(Ω)
n and hence

Dφj converges uniformly to Dφ̂.
2. Next, we show that φ̂ is in the set A. Since W is lsc, we conclude

lim inf
j→∞

W (Dφj)(x) ≥ W (Dφ̂)(x)
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for all x ∈ Ω and as W is non-negative Fatou’s lemma implies∫︂
Ω

W (Dφ̂) dx ≤ lim inf
j→∞

∫︂
Ω

W (Dφj) dx ≤ C.

By incorporating (4.8), this implies detDφ̂ > 0 a.e. Further, the boundary condi-
tion is fulfilled so that φ̂ ∈ A .

3. It remains to show that φ̂ is a minimizer of R(φ;T,R). By Lemma 4.2, it
holds ∥T ◦φ−1

j −T ◦ φ̂−1∥L2(Ω) → 0 as j → ∞ so that by the continuity of the norm⃦⃦
T ◦ φ̂−1 −R

⃦⃦
L2(Ω)

= lim
j→∞

⃦⃦
T ◦ φ−1

j −R
⃦⃦
L2(Ω)

.

This together with the previous steps of the proof implies that the three summands
in R are (weakly) lsc. Hence, we obtain

R(φ̂;T,R) ≤ lim inf
j→∞

∫︂
Ω

W
(︁
Dφj

)︁
+ ν|Dmφj|2 +

⃓⃓
T ◦ φ−1

j −R
⃓⃓2

dx

= inf
φ∈A

R(φ;T,R),

which proves the claim.

Next, we fix a sequence of mappings φ ∈ A K and ask for a minimizer of J (·,φ).

Lemma 4.5. Let A : L2(Ω) → Y be a continuous linear operator into a Hilbert space
Y that does not vanish on constant functions, B ∈ Y and R ∈ L2(Ω). For fixed
φ ∈ A K, there exists a unique image sequence I ∈ L2(Ω)K minimizing J (·,φ).

Proof. We prove lower semi-continuity, coercivity and strict convexity of the func-
tional. Neglecting the constant terms and by changing the indexing of the sum, it
suffices to consider

J(I) := β
K∑︂
k=1

∫︂
Ω

⃓⃓
Ik−1 ◦ φ−1

k−1 − Ik
⃓⃓2
dx+ E(I0;B) subject to IK = R. (4.9)

Setting

ψ0 := Id,
ψk := φk−1 ◦ ψk−1 = φk−1 ◦ . . . ◦ φ0, k = 1, . . . , K,

and substituting x := ψk(y) in the k-th summand of (4.9), the functional transforms
to

J(I) = β

K∑︂
k=1

∫︂
Ω

|Ik ◦ ψk − Ik−1 ◦ ψk−1|2 detDψk dy + E(I0;B).
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Using F := (F0, . . . , FK−1), where F0 := I0, Fk := Ik ◦ ψk, and wk := detDψk, we
are concerned with the minimization of

J̃(F) := β
K∑︂
k=1

∫︂
Ω

|Fk − Fk−1|2 wk dx+ E(F0;B)

subject to FK = R ◦ ψK .
(4.10)

Note that by 0 < wk ≤ C a.e. and wk = wk−1 det(Dφk−1 ◦ ψk−1), the weighted L2

spaces are nested

L2(Ω) = L2
w0
(Ω) ⊆ L2

w1
(Ω) ⊆ . . . ⊆ L2

wK
(Ω), (4.11)

in particular FK ∈ L2
wK

(Ω) if R ∈ L2(Ω). Further, any minimizer must satisfy
F0 ∈ BV (Ω) ⊂ L2(Ω), and by successively considering the integrals in (4.10) we get
Fk ∈ L2

wk
(Ω). In the following, we set β := 1 and ∥ · ∥wk

:= ∥ · ∥L2
wk

(Ω) to simplify
the notation. Since g : RK → R defined by

g(f0, . . . , fK−1) :=
K∑︂
k=1

(fk − fk−1)
2wk

with wk > 0 and fK fixed is strictly convex, the same holds for the sum of integrals
in J̃ . Clearly, this sum can be rewritten as

∑︁K−1
k=1 ∥Fk−Fk−1∥2wk

+∥R◦ψK−FK−1∥2wK
,

which is continuous. As E(F0;B) is proper, convex and lsc, the same holds true for
J̃ over L2

w0
(Ω)× . . .× L2

wK−1
(Ω). Thus, J̃ is also weakly lsc [244, Lem. 10.4].

Next, we show that J̃ is coercive. Conversely, assume
∑︁K−1

k=0 ∥F (j)
k ∥wk

→ ∞
with J̃(F(j)) being bounded. Using the assumptions on A, it holds that E(F0;B) is
coercive, see [46, Thm. 6.115]. Consequently, ∥F (j)

0 ∥1 is bounded and by (4.11) also
∥F (j)

0 ∥w1 is bounded. Considering successively the integrals in (4.10), this implies
that ∥F (j)

k ∥wk
, k = 1, . . . , K − 1, is bounded, which contradicts our assumption.

Thus, J̃ is coercive and as it is weakly lsc and strictly convex, the functional
has a unique minimizer F. By definition of F, the unique minimizer of J is given
by I with Ik = Fk ◦ ψ−1

k ∈ L2(Ω).

For our computations, the following corollary on the minimizer of J̃ in (4.10)
with fixed F0 is useful.

Corollary 4.6. Let K ≥ 2 be an integer. Further, let wk ∈ C0,α(Ω), k = 1, . . . , K,
fulfill wk > 0 a.e. on Ω and wk+1/wk ≤ C, k = 1, . . . , K − 1. For given F0 ∈ L2(Ω)
and FK ∈ L2

wK
(Ω), the solution of

argmin
Fk∈L2

wk
(Ω)

K∑︂
k=1

∫︂
Ω

|Fk − Fk−1|2 wk dx

is given by

Fk = tkF0 + (1− tk)FK , tk :=

∑︁k
i=1w

−1
i∑︁K

i=1w
−1
i

. (4.12)
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Proof. Setting the first derivative of the functional to zero, we obtain a.e. on Ω that

wk(Fk − Fk−1) + wk+1(Fk − Fk+1) = 0, k = 1, . . . , K − 1.

This can be rewritten as linear system of equations

tridiag(−wk, wk + wk+1,−wk+1)
K−1
k=1 (F1, . . . , FK−1)

T = (w1F0, 0, . . . , 0, wKFK)
T.

Since the tridiagonal matrix is irreducible diagonal dominant, the system has a
unique solution. Straightforward computation shows that the solution is given by
(4.12).

Now, we are able to prove the three main results of this section, beginning with
existence of minimizers.

Theorem 4.7 (Existence). Let R ∈ L2(Ω) and B ∈ Y . Then there exists a
minimizer (Î, φ̂) ∈ L2(Ω)K × A K of J .

Proof. The outline of the proof is as follows. First, we take a minimizing sequence
of J and show that the deformations and the intermediate images have a weakly
convergent subsequence. Then, we prove that their concatenation is also weakly
convergent and use this to get the weak lower semi-continuity of the functional.

1. Let {(I(j),ϕ(j))}j∈N be a minimizing sequence of J . Then J (I(j),ϕ(j)) ≤ C
for all j ∈ N. By Lemma 4.4, we get for each I(j) a sequence of diffeomorphisms φ(j)

such that
J
(︁
I(j),φ(j)

)︁
≤ J

(︁
I(j),φ

)︁
for all φ ∈ AK . Hence, we conclude ∥Dmφ

(j)
k ∥2L2(Ω) < C/ν for all j ∈ N and

k = 0, . . . , K − 1. As in the first part of the proof of Lemma 4.4, we conclude
that {φ(j)

k }j∈N is bounded in Wm,2(Ω)n. Consequently, there exists a subsequence
converging weakly in Wm,2(Ω)n and strongly in C1,α(Ω)

n to φ̂k. Set φ̂ := (φ̂k)
K−1
k=0 ,

denote the subsequence again by {φ(j)
k }j∈N and define φ(j) := (φ

(j)
k )K−1

k=0 .
2. Since J (I(j),φ(j)) ≤ C for all j ∈ N, coercivity of E implies that ∥I(j)0 ∥L2(Ω)

is bounded. Additionally, we conclude for k = 0, . . . , K − 2 that⃦⃦
I
(j)
k+1

⃦⃦
L2(Ω)

≤
⃦⃦
I
(j)
k ◦ (φ(j)

k )−1 − I
(j)
k+1

⃦⃦
L2(Ω)

+
⃦⃦
I
(j)
k ◦ (φ(j)

k )−1
⃦⃦
L2(Ω)

≤ C
1
2 +

⃦⃦
I
(j)
k ◦ (φ(j)

k )−1
⃦⃦
L2(Ω)

.

Further, φ(j)
k is convergent in C1,α(Ω)

n and consequently detDφ
(j)
k ≤ C̃ on Ω for

k = 0, . . . , K − 1. Then, it holds⃦⃦
I
(j)
1

⃦⃦
L2(Ω)

≤ C
1
2 +

⃦⃦
I
(j)
0 ◦ (φ(j)

0 )−1
⃦⃦
L2(Ω)⃦⃦

I
(j)
2

⃦⃦
L2(Ω)

≤ C
1
2 +

⃦⃦
I
(j)
1 ◦ (φ(j)

1 )−1
⃦⃦
L2(Ω)

= C
1
2 +

(︃∫︂
Ω

⃓⃓
I
(j)
1

⃓⃓2
detDφ

(j)
1 dx

)︃ 1
2

≤ C
1
2 + C̃

1
2
⃦⃦
I
(j)
1

⃦⃦
L2(Ω)

.
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Successive continuation shows that the sequence {I(j)}j∈N is bounded in L2(Ω)K .
Hence, there exists a weakly convergent subsequence, also denoted by {I(j)}j∈N,
that converges to Î ∈ L2(Ω)K .

3. Next, we show weak convergence of I(j)k ◦(φ(j)
k )−1 to Îk ◦ φ̂−1

k . As the sequence
is bounded, it suffices to test with g ∈ C∞

c (Ω). It holds∫︂
Ω

(︂
I
(j)
k ◦

(︁
φ
(j)
k

)︁−1 − Îk ◦ φ̂−1
k

)︂
g dx = I(j)

1 + I(j)
2

with

I(j)
1 :=

∫︂
Ω

(︂
I
(j)
k ◦

(︁
φ
(j)
k

)︁−1 − I
(j)
k ◦ φ̂−1

k

)︂
g dx,

I(j)
2 :=

∫︂
Ω

(︂
I
(j)
k ◦ φ̂−1

k − Îk ◦ φ̂−1
k

)︂
g dx.

Using the change of variables formula, we obtain

I(j)
2 =

∫︂
Ω

(︁
I
(j)
k − Îk

)︁
g ◦ φ̂k detDφ̂k dx.

Since g ◦ φ̂k detDφ̂k ∈ L2(Ω), the weak convergence of I(j)k to Îk implies that I(j)
2

converges to zero as j → ∞. Using the change of variables formula again, I(j)
1 can

be estimated by

I(j)
1 =

∫︂
Ω

I
(j)
k

(︂
g ◦ φ(j)

k detDφ
(j)
k − g ◦ φ̂k detDφ̂k

)︂
dx

≤
⃦⃦
I
(j)
k

⃦⃦
L2(Ω)

⃦⃦
g ◦ φ(j)

k detDφ
(j)
k − g ◦ φ̂k detDφ̂k

⃦⃦
L2(Ω)

.

As {I(j)k }j∈N is bounded, it suffices to show convergence of the second factor. With
g
(j)
k := g ◦ φ(j)

k and ĝk := g ◦ φ̂k it follows that⃦⃦
g
(j)
k detDφ

(j)
k − ĝk detDφ̂k

⃦⃦
L2(Ω)

≤
⃦⃦
g
(j)
k detDφ

(j)
k − g

(j)
k detDφ̂k

⃦⃦
L2(Ω)

+
⃦⃦
g
(j)
k detDφ̂k − ĝk detDφ̂k

⃦⃦
L2(Ω)

≤ C
⃦⃦
detDφ

(j)
k − detDφ̂k

⃦⃦
C0(Ω)

+ C
⃦⃦
g
(j)
k − ĝk

⃦⃦
L2(Ω)

.

The first term converges to zero since Dφ(j)
k is convergent. Uniform convergence of

φ
(j)
k together with uniform continuity of g implies that g(j)k converges uniformly to

ĝk. Then, boundedness of Ω implies that the second term converges to zero.
4. It remains to show that (Î, φ̂) is a minimizer of J (I,ϕ) = E(I0;B)+βF(I,φ).

It holds

lim inf
j→∞

F
(︁
I(j),φ(j)

)︁
≥

K−1∑︂
k=0

lim inf
j→∞

∫︂
Ω

W
(︁
Dφ

(j)
k

)︁
dx+ ν lim inf

j→∞

∫︂
Ω

⃓⃓
Dmφ

(j)
k

⃓⃓2
dx

+ lim inf
j→∞

⃦⃦
I
(j)
k ◦

(︁
φ
(j)
k

)︁−1 − I
(j)
k+1

⃦⃦2
L2(Ω)

.
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4.3 Space continuous model

The components of φ(j)
k converge weakly in Wm,2(Ω), those of Dφ(j)

k converge in
C0(Ω), and I(j)k , I(j)k ◦ (φ(j)

k )−1 converges weakly in L2(Ω). We use this together with
the facts that the first summand is lsc, the second one weakly lsc and ∥f − g∥2L2(Ω)

is weakly lsc (convex and lsc) in both arguments to conclude

lim inf
j→∞

F
(︁
I(j),φ(j)

)︁
≥ F(Î, φ̂).

As E(I0;B) is weakly lsc in I0, we obtain

inf
I,ϕ

J (I,ϕ) = lim inf
j→∞

J
(︁
I(j),ϕ(j)

)︁
≥ lim inf

j→∞
J
(︁
I(j),φ(j)

)︁
≥ J (Î, φ̂).

Next, we prove that the minimizers of J depend stably on the input data B.
To emphasize the dependence of J on B, we use the notation JB instead of J .

Theorem 4.8 (Stability). Let R ∈ L2(Ω). Further, let {Bj}j∈N be a sequence in
Y converging to B ∈ Y. For each j ∈ N, we choose a minimizer (I(j),φ(j)) of
JBj

. Then, there exists a subsequence of {(I(j),φ(j))}j∈N that converges weakly to a
minimizer (Î, φ̂) of JB.

Proof. 1. Due to the convergence of {Bj}j∈N, it holds for every I0 ∈ L2(Ω) that

E(I0;Bj) =
1
2
∥AI0 −Bj∥2Y + αTV(I0) → E(I0, B).

Hence, there exists C > 0 with JBj
(I(j),φ(j)) ≤ JBj

(I(1),φ(1)) ≤ C for all j ∈ N. By
definition of JBj

, we get for j ∈ N and k = 0, . . . , K− 1 that ∥Dmφ
(j)
k ∥2L2(Ω) < C/ν.

As in the first part of the proof of Lemma 4.4, we conclude that there exists a
subsequence converging weakly in Wm,2(Ω)n and strongly in C1,α(Ω)

n to φ̂k. Set
φ̂ := (φ̂k)

K−1
k=0 . Then, let us denote the subsequence again by {φ(j)

k }j∈N and further
define φ(j) := (φ

(j)
k )K−1

k=0 .
2. Next, we estimate

C ≥ E
(︁
I
(j)
0 ;Bj

)︁
≥ 1

2

(︁⃦⃦
AI

(j)
0 −B

⃦⃦
Y − ∥B −Bj∥Y

)︁2
+ αTV

(︁
I
(j)
0

)︁
,

so that the coercivity of 1
2
∥AI0 −B∥2Y + αTV(I0) in I0 implies the boundedness of

{I(j)0 }j∈N. Now, we can reproduce Steps 2 and 3 from Theorem 4.7 to see that there
exists a weakly convergent subsequence, also denoted by {I(j)}j∈N, that converges to
Î ∈ L2(Ω)K . Additionally, the sequence I(j)k ◦ (φ(j)

k )−1 converges weakly to Îk ◦ φ̂−1
k .

3. It remains to show that (Î, φ̂) minimizes JB. We can use the lower semi-
continuity argument for F from Theorem 4.7 together with the fact that E(I;B) is
jointly lsc to obtain for any (I,φ) that

JB(Î, φ̂) ≤ lim inf
j→∞

JBj

(︁
I(j),φ(j)

)︁
≤ lim inf

j→∞
JBj

(I,φ) = JB(I,φ).

The last equality follows from the convergence of Bj together with continuity of E
in B. Hence, (Î, φ̂) is a minimizer of JB.
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4. Regularization of Inverse Problems via Time Discrete Geodesics

This section concludes with a convergence result for vanishing noise. Here, we
additionally need the dependence of J on the parameter α (for simplicity we choose
α = β) and hence we write Jα,B.

Theorem 4.9 (Convergence). Let R ∈ L2(Ω) and B ∈ Y, and suppose that
there exists (Ĩ, φ̃) such that AI0̃ = B and J1,B(Ĩ, φ̃) < ∞. Further, assume that
α : R>0 → R>0 satisfies α(δ) → 0 and δ/α(δ) → 0 as δ → 0. Assume that {δj}j∈N
is a sequence of positive numbers converging to 0 and {Bj}j∈N is a sequence in Y
satisfying ∥B−Bj∥2Y ≤ δj for each j. Let (I(j),φ(j)) be a minimizer of Jαj ,Bj

, where
αj := α(δj). Then there exists a subsequence of {I(j)0 }j∈N that converges weakly to
an image Î0 satisfying AÎ0 = B.

Proof. For every j ∈ N, it holds⃦⃦
I
(j)
0

⃦⃦2
L2(Ω)

≤ C TV
(︁
I
(j)
0

)︁
≤ C

αj
Jαj ,Bj

(︁
I(j),φ(j)

)︁
≤ C

αj
Jαj ,Bj

(Ĩ, φ̃)

=
C

2αj
∥B −Bj∥2Y + C TV(Ĩ) + CF(Ĩ, φ̃)

≤ Cδj
2αj

+ CJ1,B(Ĩ, φ̃).

From the assumptions on α and δ we deduce that ∥I(j)0 ∥2L2(Ω) is bounded. Thus,
there is a weakly convergent subsequence with limit Î0. Additionally, it holds that
∥AÎ0 −B∥2Y ≤ lim infj→∞ ∥AI(j)0 −Bj∥2Y . Now, we can estimate⃦⃦
AI

(j)
0 −Bj

⃦⃦2
Y ≤ Jαj ,Bj

(︁
I(j),φ(j)

)︁
≤ Jαj ,Bj

(Ĩ, φ̃) = αjJ1,B(Ĩ, φ̃) +
1
2
∥B −Bj∥2Y .

Since the two rightmost terms converge to zero, this implies AÎ0 = B.

4.4 Minimization approaches
In this section, we propose two different alternating minimization schemes. The
first one is known as PALM and updates in each step the deformations and im-
ages via proximal computations. Convergence of the whole iteration sequence to a
critical point is ensured. The second one just alternates the minimization of the
deformations and the images.

Note that solving the coupled problem in (I,φ), e.g., with a gradient scheme is
very time and memory consuming, since all Ik and φk are treated at the same time.
Moreover, the coupling I(j)k ◦ φ−1

k is non-convex and hence it is difficult to provide
convergence results for general schemes.

We start with the spatial discretization of J in (4.7).

4.4.1 Spatial discretization

Dealing with rectangular digital images, we propose a finite difference approach,
where we work on staggered grids, see Fig. 4.2. In the following, the spatial dis-
cretization is briefly sketched. The domain of the images I is the (primal) grid
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4.4 Minimization approaches

Figure 4.2: Illustration of the staggered grid, where empty boxes mean zero move-
ment.

G := {1, . . . , n1} × {1, . . . , n2}. All integrals are approximated on the integration
domain Ω := [1

2
, n1 +

1
2
] × [1

2
, n2 +

1
2
] by the midpoint quadrature rule, i.e., with

pixel values defined on G. Further, it is assumed that for the operator A a discrete
version A : G → Y is known, where Y is some finite-dimensional Hilbert space.

First, we discuss the discretization of F . As regularizer W (Dφ) we propose the
linearized elastic potential S(v) from Remark 4.3 with the variable transformation
v = (v1, v2)

T = φ− id. Using the 1
2
-shifted grids

G1 := {3
2
, . . . , n1 − 1

2
} × {1, . . . , n2}, G2 := {1, . . . , n1} × {3

2
, . . . , n2 − 1

2
},

we consider v = (v1, v2)
T with v1 : G1 → R and v2 : G2 → R. Then, the spatially

discrete version of S reads

S(v) = µ
(︂
∥D1,x1v1∥2F +

⃦⃦
v2D

T
2,x2

⃦⃦2
F
+ 1

2

⃦⃦
v1D

T
1,x2

+D2,x1v2
⃦⃦2
F

)︂
+ λ

2

⃦⃦
D1,x1v1 + v2D

T
2,x2

⃦⃦2
F
,

where ∥ · ∥F is the Frobenius norm of matrices and Di,xj denotes the forward differ-
ences operator (matrix) for vi in xj-direction. The higher order term

∫︁
Ω
|Dmφ|2 dx

with m = 3 is discretized by

D3(v) :=
3∑︂
i=0

⃦⃦
Di

1,x1
v1D

3−i
1,x2

⃦⃦2
F
+
⃦⃦
Di

2,x1
v2D

3−i
2,x2

⃦⃦2
F
+ η
(︁
∥v1∥2F + ∥v2∥2F

)︁
,

where central differences operators are used for the partial derivatives of order two
and three. Note that we added the squared Frobenius norm of the vi, i = 1, 2, for a
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4. Regularization of Inverse Problems via Time Discrete Geodesics

better control of the displacement value. To cope with the remaining deformation
term in (4.6), we approximate φ−1 ≈ id− v such that the data term simplifies to∫︂

Ω

⃓⃓
I
(j)
k

(︁
x− v(x)

)︁
− I

(j)
k+1(x)

⃓⃓2
dx.

This integral is evaluated using the midpoint quadrature rule. Since vi is only
defined on Gi, i = 1, 2, the averaged version Pv = (P1v1, P2v2)

T : G → R2 is used.
In general x− Pv(x) ̸∈ G, so that the image Ik (x− Pv(x)) has to be interpolated
from its values on G. For this purpose linear interpolation with an interpolation
matrix PI is used. Note that also interpolation matrices with higher space regularity
or splines can be used. Summarizing, the discrete version of (4.6) reads

F(v; I) :=
K∑︂
k=1

S(vk) + νD3(vk) +
∑︂
x∈G

⃓⃓
PI
(︁
x− Pvk

)︁
Ik − PI(x)Ik+1

⃓⃓2
.

It remains to discretize E , which is done by using the midpoint rule for the data
term. For the TV-term, forward differences Dxi in xi, i = 1, 2, direction are used

TV(I) :=
⃦⃦⃦√︂

(Dx1I)
2 + (IDT

x2
)2
⃦⃦⃦
1
,

where the square and the square root are meant componentwise, and ∥ · ∥1 is the
sum of the entries of the matrix. Then, the discrete functional reads

E(I;B) = 1
2
∥AI −B∥2F + α

⃦⃦⃦√︂
(Dx1I)

2 + (IDT
x2
)2
⃦⃦⃦
1
.

4.4.2 Proximal alternating linearized minimization (PALM)

Our first approach for the minimization of J is based on PALM [36, 230]. This
algorithm aims to minimize a functional

argmin
x1∈E1,x2∈E2

{︁
H(x1, x2) +G1(x1) +G2(x2)

}︁
(4.13)

by iterating

x
(j+1)
1 = proxτG1

(︂
x
(j)
1 − 1

τ
∇x1H

(︁
x
(j)
1 , x

(j)
2

)︁)︂
, (4.14)

x
(j+1)
2 = proxσG2

(︂
x
(j)
2 − 1

σ
∇x2H

(︁
x
(j+1)
1 , x

(j)
2

)︁)︂
,

where τ, σ > 0 and proxτf (x) := argminy
1
2
∥x − y∥22 + τf(y) denotes the proximal

mapping of f , which is uniquely determined for proper, convex and lsc functions f .
The convergence result is stated in the following theorem from [36, Thm. 1]. Note
that in the theorem the proximal map is also defined for non-convex functions.
However, the involved functions in our application are convex, so that no further
details on this topic are provided.
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4.4 Minimization approaches

Theorem 4.10. Let E1, E2 be Euclidean spaces and H : E1 × E2 → R ∪ {+∞},
Gi : Ei → R ∪ {+∞}, i = 1, 2, be proper, lsc functions. Assume that H is
continuously differentiable with locally Lipschitz continuous gradient and that both
xi ↦→ ∇xiH(x1, x2) are globally Lipschitz, where the constants L1(x2), L2(x1) pos-
sibly depend on the fixed variable. Let G1 + G2 + H in (4.13) fulfill the Kur-
dyka–Łojasiewicz (KL) property. Further, assume τ > L1(x

(j)
2 ) and σ > L2(x

(j)
1 )

for all j ∈ N. If the sequence generated by (4.14) is bounded, then it converges to a
critical point.

For our problem we choose the splitting

G1(I) = αTV(I0) +
1
2
∥AI0 −B∥2F ,

G2(v) = 0,

H(I,v) = β

(︄
K−1∑︂
k=0

∑︂
x∈G

⃓⃓
PI
(︁
x− Pvvk(x)

)︁
Ik − PI(x)Ik+1

⃓⃓2
+ αS(vk) + νD3(vk)

)︄
.

Then, the iteration (4.14) reads

I(j+1) = proxτG1

(︂
I(j) − 1

τ
∇IH

(︁
I(j),v(j)

)︁)︂
,

v(j+1) = v(j) − 1
σ
∇vH

(︁
I(j+1),v(j)

)︁
.

From the structure of H we deduce that the vk, k = 0, . . . , K− 1, can be computed
separately. Note that the second term in G1 can also be added to H, but this
only makes sense if ∥ATA∥ is small as otherwise the Lipschitz constant gets too
large. The Ik, k = 1, . . . , K, can also be updated separately [36, Sec. 3.6], which
possibly improves the Lipschitz constants. If the interpolation matrix PI originates
from smooth piecewise polynomial basis functions and τ, σ are chosen accordingly,
all conditions of Theorem 4.10 are satisfied. The proximal map proxτG1

can be
computed efficiently by primal-dual algorithms from convex analysis as for example
by the Chambolle–Pock algorithm [57, 229]. Indeed there is a vast literature how
to solve problems of this kind, see [53, 58] for an overview.

4.4.3 Alternating minimization approach

The computation of proxτG1
with a primal-dual algorithm requires an inner iteration

for every step of PALM. If the evaluation of A is computationally expensive, this
can result in high computational effort due to many operator evaluations. Our
numerical experiments indicated that PALM needs relatively many outer iterations
and hence also many evaluations of the operator. Therefore, we want to present a
second alternating scheme to minimize J (I,φ), which needed fewer outer iterations
in our experiments.

Starting with I(0), φ(0) we iterate for j = 0, . . .:
1. For k = 0, 1, . . . , K − 1, we compute

φ
(j)
k = argmin

φk∈A

{︃∫︂
Ω

W (Dφk) + ν|Dmφk|2 +
⃓⃓
I
(j)
k ◦ φ−1

k − I
(j)
k+1

⃓⃓2
dx

}︃
.
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2. For given A ∈ L(L2(Ω),Y), B ∈ Y and R ∈ L2(Ω), we solve

I(j) = argmin
I∈(L2(Ω))K

{︃
β
K−1∑︂
k=0

⃦⃦
Ik ◦ (φ(j)

k )−1 − Ik+1

⃦⃦2
L2(Ω)

+ 1
2
∥AI0 −B∥2Y + αTV(I0)

}︃
.

(4.15)

For the first step the discretization from Section 4.4.1 is applied, resulting in the
minimization of

R
(︁
vk; I

(j)
k , I

(j)
k+1

)︁
:= S(vk) + νD3(vk) +

∑︂
x∈G

⃓⃓
PI
(︁
x− Pvk

)︁
Ik − PI(x)Ik+1

⃓⃓2
, (4.16)

for k = 0, . . . , K − 1. This problem can be solved by a Quasi-Newton method,
details can be found in [213, 226].

For the computation of the image sequence in the second step of the algorithm,
we use the substitution from the proof of Lemma 4.5. Setting ψk := φk−1 ◦ . . . ◦φ0,
wk := detDψk and F0 := I0, Fk := Ik ◦ ψk, we can transform (4.15) to

argmin
F

{︄
β
K−1∑︂
k=0

⃦⃦
(Fk − Fk+1)

√
wk+1

⃦⃦2
L2(Ω)

+ 1
2
∥AF0 −B∥2Y + αTV(F0)

}︄
. (4.17)

The functional is discretized on G, using the approach from Section 4.4.1. We
propose to solve the discrete version of (4.17) with a block-coordinate descent that
fixes alternately F0 and F̄ := (F1, . . . , FK−1). For block-coordinate descent the
following convergence result was proven in [23, Thm. 14.9, Thm. 14.15], see also [24].

Theorem 4.11. Let E1, E2 be Euclidean spaces and G : E1 × E2 → R ∪ {+∞},
Gi : Ei → R∪{+∞}, i = 1, 2, be proper, convex lsc functions. Assume further that
G is continuously differentiable and that the level sets of G+G1 +G2 are bounded.
Then the minimization problem

argmin
x1∈E1,x2∈E2

{︁
G(x1, x2) +G1(x1) +G2(x2)

}︁
can be solved by alternating minimization in x1 and x2, i.e., every accumulation
point of the generated iteration sequence is a minimizer. The convergence rate for
the functional values is O( 1

k
).

For our specific discretized problem (4.17) with

G(F0, F̄) := β
∑︂
x∈G

|F0(x)− F1(x)|2w1(x),

G1(F̄) := β

K−1∑︂
k=0

∑︂
x∈G

|Fk(x)− Fk+1(x)|2wk+1(x),

G2(F0) :=
1
2
∥AF0 −B∥2Y + αTV(F0),
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the conditions of the theorem are obviously fulfilled. If F0 is fixed, Corollary 4.6
implies that the minimizer of G(F0, F̄) +G1(F̄) is given analytically. In the second
step of the algorithm we have to minimize, for fixed F̄, the functional

G(F0, F̄)+G2(F0) = β
∑︂
x∈G

|F0(x)−F1(x)|2w1(x)+
1
2
∥AF0−B∥2+αTV(F0). (4.18)

This can be done efficiently by primal-dual algorithms from convex analysis, see
Section 4.4.2 for a discussion. Finally, we use scattered interpolation to obtain the
images I at grid points from F.

4.4.4 Multilevel strategy

As usual in optical flow and image registration, we apply a coarse-to-fine strategy
with lev ∈ N levels if a downsampling procedure for the data and the operator is
known. This is the case for our numerical experiments, but clearly it is also possible
to use only a single level if no downsampling procedure is known. First, we itera-
tively smooth our given template image by convolution with a truncated Gaussian
and downsampling using bilinear interpolation. Here, special care is necessary for
the operator A, as well as for the downsampling procedure of the data B, which is
dependent on the operator choice. Both procedures are described in the respective
numerical examples.

In order to obtain a deformation on the coarsest level, a single registration is
performed with the solution of the L2-TV problem, i.e.,

I0,lev = argmin
I : Glev→R

{︁
1
2
∥AlevI −Blev∥2 + αTV(I)

}︁
, α > 0, (4.19)

where lev ∈ N is number of levels. For better results, the regularization parameters
for v are decreased successively as recommended by Modersitzki [205].

After computing a solution on every level, bilinear interpolation is applied to
construct an initial deformation on the next finer level. The sequence of K̃ − 1,
K̃ < K, intermediate finer level images is initialized from the end

Ik(x) = R
(︁
x+ k

K̃
Pv(x)

)︁
, (4.20)

where R is the template image at the current level. Using this, we obtain an
initial image sequence on this level. The complete multilevel strategy is sketched in
Algorithm 4.1 for the alternating minimization scheme presented in Section 4.4.3.

4.5 Numerical examples
In this section, numerical examples demonstrating the potential of the method are
presented. The proposed Algorithm 4.1 is implemented using MATLAB. We also
implemented the minimization of the TDM-INV model using PALM, but observed
higher computation times due to many operator evaluations. For the Radon trans-
form, the computation roughly needed two times as long (about 5-10 minutes). As
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Algorithm 4.1 TDM-INV Algorithm (informal)
1: R0 := R,B0 := B,G0 := G
2: create image stack (Rl)

lev
l=0, (Bl)

lev
l=0 on (Gl)levl=0 by downsampling

3: solve (4.19) for Blev

4: solve (4.16) for Rlev, I0,lev to get ṽ
5: l → lev−1
6: use bilinear interpolation to get v on Gl from ṽ
7: obtain K̃ l images I

(0)
l from Rl, v by (4.20)

8: while l ≥ 0 do
9: repeat(Alternating outer iteration)

10: find deformations ṽ
(i+1)
l minimizing (4.16) for every pair from I

(i)
l

11: initialize F(0) = I
(i)
l

12: repeat(Alternating inner iteration)
13: given F (j)

0 , compute F (j+1)
1 , . . . , F

(j+1)
K−1 according to Corollary 4.6

14: compute F (j+1)
0 as solution of (4.18) using a PD-method using F (j+1)

1

15: j → j + 1
16: until convergence criterion is reached
17: compute I

(i)
l from F (j) using scattered interpolation

18: i→ i+ 1
19: until convergence criterion is reached
20: l → l − 1
21: if l > 0 then
22: use bilinear interpolation to get Il and vl on Gl
23: for k = 1, . . . , K̃ l do
24: compute K̃ l images connecting Il,k−1, Il,k using (4.20) with vl,k
25: I := I0

comparison a result using PALM is added in the first example. The qualitative
differences between the two results are very small and therefore only the results of
Algorithm 4.1 are shown in the remaining experiments. Note that PALM might be
more favorable if the operator A is simple to evaluate, e.g., if it is sparse.

For representing our images on a grid during the registration step, we applied the
Mex interface of the spline library by E. Bertolazzi2 with Akima splines. In order
to reduce the number of involved parameters in (4.16), we use λ = µ = ν = 100η
in all our experiments. Typical choices for the increments K̃ are K̃ lev−1 = 2,
K̃ lev−2 = 1 and K̃i = 0 for the remaining levels. The other parameters α, β and
λ are optimized with respect to SSIM via a gridsearch. For the comparisons, the
algorithm parameters are SSIM optimized, too. A GPU implementation is applied
for solving the appearing linear systems of equations in the Quasi-Newton method.

In the first part of our experiments, the Radon transform is considered as oper-
ator. Among the vast literature on the topic, we refer to the books [154, 179, 208]
for a general introduction to CT including some reconstruction methods from in-

2https://github.com/ebertolazzi/Splines
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complete data and for limited angle tomography to [86, 155, 190]. The second part
deals with superresolution, which does not have a continuous counterpart.

4.5.1 Limited angle and sparse CT

We are given a reference image R ∈ [0, 1]256,256 and sinogram data of a target image
Iorig ∈ [0, 1]256,256, which we want to reconstruct. For the numerical implementation
of the (discrete) Radon transform the Astra toolbox [224, 268, 269] is used, which
allows more flexibility compared to the built-in MATLAB function.

In our first example, the reference image consists of 6 triangular shaped ob-
jects, which are deformed to stars in the target image, see Fig. 4.33. The sinogram
is obtained by the Radon transform using 10 measurement directions equally dis-
tributed (with steps of 9 degrees) from 0 to 81 degrees, i.e., the measurement angle
is limited to less than the half domain. The sinogram is additionally corrupted
with 5 percent Gaussian noise. Our goal is to reconstruct the target from the given
sinogram data. In the proposed multi grid approach a down-sampling by a factor
of 0.5 is used. For the down-sampling of the sinogram, two neighboring rays are
averaged and rescaled to the correct intensity. Note that this is easily possible if
the number of rays is chosen for example to be 1.5 times the number of pixels per
direction. The result of our TDM-INV algorithm is shown in Fig. 4.3c, where the
parameters lev = 4, λ = 0.07, α = 0.05 and β = 0.1 are used. Compared to the
reconstruction using the L2-TV model (with λTV = 0.05) in Fig. 4.3f, our method
is able to better deal with the missing data from 81 to 180 degrees. Visually, the
result is almost perfect and also the SSIM value is very good. In Fig. 4.3d the
numerical result using PALM is shown. The SSIM and PSNR values are similar
to Fig. 4.3c and almost no difference is visible. The difference of both results is
depicted in Fig. 4.3e and lies within the color range [−0.07, 0.06].

In the second example a more structured image is treated. The given refer-
ence image depicts an artificial brain image, and the target can be considered as
a deformed version, see Fig. 4.44. The sinogram of the target is created using the
Radon transform with 20 measurements equally distributed from 0 to 180 degrees
and by adding 5 percent Gaussian noise. For the multi grid approach the procedure
from the previous example is used. The result of TDM-INV is shown in Fig. 4.4c
and was calculated with the parameters lev = 5, λ = 0.08, α = 0.025 and β = 0.5.
Since our model incorporates the reference information as compensation for the
sparse data, the reconstruction is better than the one with the L2-TV model (with
λTV = 0.1) in Fig. 4.4d.

4.5.2 Superresolution

Here, we are given a reference image R ∈ [0, 1]256,256 and a low resolution image
B ∈ [0, 1]64,64 obtained by down-sampling of a target image Iorig ∈ [0, 1]256,256 with

3The images in Fig. 4.3(a) and (b) are taken from the paper [64] and were provided by Barbara
Gris and Ozan Öktem.

4Available at http://bigwww.epfl.ch/algorithms/mriphantom/, see also [141].
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4. Regularization of Inverse Problems via Time Discrete Geodesics

(a) Reference image. (b) Target image.

(c) Result by TDM-INV.
(SSIM .9815, PSNR 30.31)

(d) Result by TDM-INV using
PALM.
(SSIM .9815, PSNR 30.40)

(e) Difference of the results
with range [−0.07, 0.06].

(f) Result by L2-TV.
(SSIM .9377, PSNR 24.89)

Figure 4.3: Image reconstruction from sparse, limited angle CT measurements
from 0 to 81 degrees with 10 angles.
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(a) Reference image. (b) Target image.

(c) Result by TDM-INV.
(SSIM .7542, PSNR 26.47)

(d) Result by L2-TV.
(SSIM .6819, PSNR 24.20)

Figure 4.4: Image reconstruction from sparse CT measurements using 20 angles
from 0 to 180 degrees.
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(a) Reference image. (b) Target image. (c) Low resolution image.
(SSIM .7681, PSNR 24.02)

(d) Result by TDM-INV.
(SSIM .8767, PSNR 27.46)

(e) Result by He/Siu [153].
(SSIM .7823, PSNR 24.25)

(f) Result by MATLAB SR.
(SSIM .8111, PSNR 25.76)

(g) Result by L2-TV.
(SSIM .8075, PSNR 24.75)

Figure 4.5: Superresolution from 64× 64 pixels to 256× 256 for brain image.
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the down-sampling operator P4 ∈ R256,64 given by

P4 =
1

4

⎛⎜⎜⎜⎝
1 1 1 1 0 0
0 0 0 0 1 1 1 1 0 0

. . . . . .
0 0 1 1 1 1

⎞⎟⎟⎟⎠ ∈ R256,64 .

In other words, B = P4IorigP
T
4 . For the multi grid approach a downscaling with

factor 0.5 is applied such that the given image B can be used for the first three levels,
i.e., B0 = B1 = B2 ∈ R64,64. The matrix P4 ∈ R256,64 is adapted to P2 ∈ R128,64 for
the second level and the identity matrix of corresponding size is used for all higher
levels.

In our third example the same reference and target images as in the second
example are used, see Fig. 4.5. The result of TDM-INV is shown in Fig. 4.5d, where
the parameters are lev = 4, λ = 0.01, α = 0.001 and β = 2. First, our method
is compared with the single image superresolution method of He and Siu [153],
which is based on a self-similarity assumption of the high and low resolution image
together with a Gaussian process regression. In contrast to the result obtained
by this method in Fig. 4.5e, our result does not have artifacts around the bright
features. Using the MATLAB function imresize, the best reconstruction is obtained
with the “lanczos3” kernel, see Fig. 4.5f, which is still affected by a strong blur. For
this example, the L2-TV (parameter λTV = 0.001) reconstruction yields the result
shown in Fig. 4.5g. Comparing all methods, we see that our method is best at
recovering the fine details as well as the overall structure.

In our last example, the template image is not only deformed and scaled, but
also a new detail is included in the image. As mass can be created on the image
path, our method is able to reconstruct also the small detail, cf. Fig. 4.65, where
the parameters are chosen as lev = 4, λ = 0.01, α = 0.001 and β = 2. For this
simpler image, our method leads to the best result in SSIM and PSNR. The result
produced by [153] in Fig. 4.6e yields almost the same SSIM, but visually the method
recovers a lot of background noise. Here, the best result of MATLAB’s imresize
is given by “bilinear” interpolation, which is still affected by a strong blur. The
L2-TV approach (parameter λTV = 0.001) works better for this simple image than
for the previous example, but is still not able to match our result. Especially the
overlapping part in the center of the phantom is only recovered by TDM-INV.

4.6 Conclusions
This chapter merges the edge-preserving L2-TV variational model for solving inverse
image reconstruction problems with a metamorphosis-inspired approach to utilize
information from a reference image. The approach, called TDM-INV, can handle
intensity changes between the reference image and the target image that we want
to reconstruct. The method gives very good results for artificial images so that

5The images used in Fig. 4.6 are based on the ones in [139].
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(a) Reference image. (b) Target image. (c) Low resolution image.
(SSIM .7284, PSNR 25.47)

(d) Result by TDM-INV.
(SSIM .9345, PSNR 28.98)

(e) Result by He/Siu [153].
(SSIM .9288, PSNR 28.00)

(f) Result by bilinear inter-
polation (MATLAB).
(SSIM .8474, PSNR 26.38)

(g) Result by L2-TV.
(SSIM .9226, PSNR 27.49)

Figure 4.6: Superresolution from 64 × 64 pixels to 256 × 256 for Shepp-Logan
phantom.
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we are looking forward to real-world applications in material sciences or medical
imaging, e.g., motion models for organs [103, 126]. Several extensions of the model
are possible. Due to the finite difference approach and the design of the method,
more sophisticated regularizers than the TV-term can be simply incorporated. An-
other possible modification would be to apply different transport models, see [191].
Further, the usage of multiple reference images can be taken into account.

Gagliardo–Nirenberg inequality
Theorem 4.12 (Gagliardo–Nirenberg [220]). Let Ω ⊂ Rn be a bounded domain
satisfying the cone property. For 1 ≤ q, r ≤ ∞, suppose that f belongs to Lq(Ω)
and its derivatives of order m to Lr(Ω). Then for the derivatives Djf , 0 ≤ j < m,
the following inequalities hold true with constants C1, C2 independent of f :

∥Djf∥Lp(Ω) ≤ C1∥Dmf∥aLr(Ω)∥f∥1−aLq(Ω) + C2∥f∥Lq(Ω),

where 1
p
= j

n
+ a
(︁
1
r
− m

n

)︁
+(1− a)1

q
for all a ∈ [ j

m
, 1], except for the case 1 < r <∞

and m− j − n
r

is a non-negative integer, in which the inequality only holds true for
a ∈ [ j

m
, 1).

Remark 4.13. For p = q = r = 2 the inequality simplifies to

∥Djf∥L2(Ω) ≤ C1∥Dmf∥
j
m

L2(Ω)∥f∥
1− j

m

L2(Ω) + C2∥f∥L2(Ω)

≤ C1∥Dmf∥L2(Ω) +
(︁
C1 + C2

)︁
∥f∥L2(Ω),

where the second inequality follows by estimating the product with the maximum of
both factors.
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5. Template-Based Image Reconstruction

Abstract

In this chapter1, which is published in [181], we propose a variational regu-
larization approach for the problem of template-based image reconstruction
from indirect, noisy measurements as given, for instance, in X-ray computed
tomography. An image is reconstructed from such measurements by deform-
ing a given template image. The image registration is directly incorporated
into the variational regularization approach in form of a partial differential
equation that models the registration as either mass- or intensity-preserving
transport from the template to the unknown reconstruction. We provide the-
oretical results for the proposed variational regularization in both cases. In
particular, we prove existence of a minimizer, stability with respect to the
data, and convergence for vanishing noise when either of the abovementioned
equations is imposed and more general distance functions are used. Numer-
ically, we solve the problem by extending existing Lagrangian methods and
propose a multilevel approach that is applicable whenever a suitable down-
sampling procedure for the operator and the measured data can be provided.
Finally, we demonstrate the performance of our method for template-based
image reconstruction from highly undersampled and noisy Radon transform
data. We compare results for mass- and intensity-preserving image registra-
tion, various regularization functionals, and different distance functions. Our
results show that very reasonable reconstructions can be obtained when only
few measurements are available and demonstrate that the use of a normalized
cross-correlation based distance is advantageous in case the image intensities
between the template and the unknown image differ substantially.

1This is a post-peer-review, pre-copyedit version of an article published in Applied Mathemat-
ics and Optimization. The final authenticated version is available online at DOI: 10.1007/s00245-
019-09573-2. The article is distributed under the terms of the Creative Commons Attribution 4.0
International License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, distribution, and reproduction in any medium, provided you give appropriate credit to the
original authors and the source, provide a link to the Creative Commons license, and indicate if
changes were made.
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5.1 Introduction

5.1 Introduction

In medical imaging, an image can typically not be observed directly but only
through indirect and potentially noisy measurements, as it is the case, for exam-
ple, in computed tomography (CT) [208]. Due to the severe ill-posedness of the
problem, reconstructing an image from measurements is rendered particularly chal-
lenging when only few or partial measurements are available. This is, for instance,
the case in limited-angle computed tomography [116, 208], where limited-angle data
is acquired in order to minimize exposure time of organisms to X-radiation. There-
fore, it can be beneficial to impose a priori information on the reconstruction, for
instance, in the form of a template image. However, typically neither its exact
position nor its exact shape is known.

In image registration, the goal is to find a reasonable deformation of a given tem-
plate image so that it matches a given target image as closely as possible according to
a predefined similarity measure, see [205, 204] for an introduction. When the target
image is unknown and only given through indirect measurements, it is referred to as
indirect image registration and has been explored only recently [64, 139, 160, 223].
As a result, a deformation together with a transformed template can be computed
from tomographic data. The prescribed template acts as a prior for the reconstruc-
tion and, when chosen reasonably close in a deformation sense, gives outstanding
reconstructions in situations where only few measurements are available and com-
peting methods such as filtered backprojection [208] or total variation regulariza-
tion [238] fail, see [64, Sec. 10].

In our setting, deformations are maps from the image domain Ω ⊂ Rn, n ∈ N, to
itself together with an action that specifies exactly how such a map deforms elements
in the shape space, which in this work is the space L2(Ω,R) of gray-scale images
supported in the image domain. Natural problems are to characterize admissible
deformations and to compute these numerically in an efficient manner.

One possible approach is diffeomorphic image registration, where the set of
admissible deformations is restricted to diffeomorphisms in order to preserve the
topology of structures within an image [285]. One can, for instance, consider the
group of diffeomorphisms together with the composition as group operation. El-
ements in this group act on gray-scale images by means of the group action and
thereby allow for a rich set of non-rigid deformations, as required in many applica-
tions. For instance, the geometric group action transforms gray-scale images in a
way such that its intensity values are preserved, whereas the mass-preserving group
action ensures that, when the image is regarded as a density, the integral over the
density is preserved.

A computational challenge in using the above group formalism is that it lacks
a natural vector space structure, which is typically desired for the numerical real-
ization of the scheme. Hence, it is convenient to further restrict the set of admis-
sible deformations. One way to obtain diffeomorphic deformations is to perturb
the identity map with a displacement vector field. Provided that the vector field
is reasonably small and sufficiently regular, the resulting map is invertible [285,
Prop. 8.6]. For indirect image registration this idea was pursued in [223].

107



5. Template-Based Image Reconstruction

The basic idea of the large deformation diffeomorphic metric mapping (LD-
DMM) [25, 95, 200, 201, 262, 265, 285] framework is to generate large deformations
by considering flows of diffeomorphisms that arise as the solution of an ordinary
differential equation (ODE), the so-called flow equation, with velocity fields that
stem from a reproducing kernel Hilbert space. In order to ensure that the flow
equation admits a unique solution, one typically chooses this vector space so that it
can be continuously embedded into C1(Ω,Rn), allowing the application of existence
and uniqueness results from Cauchy–Lipschitz theory for ODEs, see [79, Chap. 1]
for a brief introduction. In [64], the LDDMM framework is adapted for indirect
image registration and the authors prove existence, stability, and convergence of
solutions for their variational formulation. Numerically, the problem is solved by
gradient descent.

The variational problem associated with LDDMM is typically formulated as
an ODE-constrained optimization problem. As the flow equation can be directly
related to hyperbolic partial differential equations (PDE) via the method of char-
acteristics [106, Chap. 3.2], the problem can equivalently be rephrased as a PDE-
constrained optimization problem [162]. The resulting PDE is determined by the
chosen group action, see [64, Sec. 6.1.1] for a brief discussion. For instance, the geo-
metric group action is associated with the transport (or advection) equation, while
the mass-preserving group action is associated with the continuity equation. It is
important to highlight that the PDE constraint implements both the flow equation
and the chosen diffeomorphic group action.

Such an optimal control approach was also pursued for motion estimation and
image interpolation [7, 40, 41, 52, 65, 148, 219]. In the terminology of optimal
control, the PDE represents the state equation, the velocity field the control, and the
transformed image the resulting state. We refer to the books [42, 88, 142, 161] and
to the article [157] for a general introduction to PDE-constrained optimization and
suitable numerical methods. Let us mention that other methods, such as geodesic
shooting [11, 200, 248, 272], exist and constitute particularly efficient numerical
approaches. In particular, this direction has recently been combined with machine
learning methods [284].

A particularly challenging scenario for diffeomorphic image registration occurs
when the target image is not contained in the orbit of the template image under
abovementioned group action of diffeomorphisms. For instance, this could happen
in the case of the geometric group action due to the appearance of new structures
in the target image or due to a discrepancy between the image intensities of the
template and the target image. A possible solution is provided by the metamorpho-
sis framework [202, 232, 263, 264], which is an extension to LDDMM that allows
for modulations of the image intensities along characteristics of the flow. The im-
age intensities change according to an additional flow equation with an unknown
source. See [285, Chap. 13] for a general introduction and, for instance, [162] for
an application to magnetic resonance imaging. Let us also mention [214], which
adopts a discrete geodesic path model for the purpose of image reconstruction, and
[191], in which the metamorphosis model is combined with optimal transport.

In [139], the metamorphosis framework is adapted for indirect image registration.
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The authors prove that their formulation constitutes a well-defined regularization
method by showing existence, stability, and convergence of solutions. However, in
the setting where only few measurements, e.g., a few directions in CT, are available,
reconstruction of appearing or disappearing structures seems very challenging.

Therefore, in order to obtain robustness with respect to differences in the in-
tensities between the transformed template and the sought target image, we follow
a different approach. We consider not only the standard sum-of-squared differ-
ences (SSD) but also a distance that is based on the normalized cross-correlation
(NCC) [205, Chap. 7.2], as it is invariant with respect to a scaling of the image
intensities.

While image registration itself is already an ill-posed inverse problem that re-
quires regularization [105], the indirect setting as described above is intrinsically
more challenging. It can be phrased as an inverse problem, where measurements
(or observations) g ∈ Y are related to an unknown quantity f ∈ X via the operator
equation

K ◦ f = g + nδ. (5.1)

Here, K : X → Y is a (not necessarily linear) operator that models the data ac-
quisition, often by means of a physical process, nδ are measurement errors such as
noise, and X and Y are Banach spaces. When f constitutes an image and g are to-
mographic measurements, solving (5.1) is often referred to as image reconstruction.

We use a variational scheme [244] to solve the inverse problem of indirect image
registration, which can be formulated as a PDE-constrained optimization prob-
lem [64, Sec. 6.1.1]. It is given by

min
v∈V

Jγ,g(v),

s.t. C(v),
(5.2)

where Jγ,g : V → [0,+∞] is the functional

v ↦→ D
(︁
K ◦ fv(T, ·), g

)︁
+ γ∥v∥2V . (5.3)

Here, V is an admissible vector space with norm ∥ · ∥V , D : Y × Y → R≥0 is a data
fidelity term that quantifies the misfit of the solution against the measurements,
and γ > 0 is a regularization parameter. Moreover, fv(T, ·) : Ω → R denotes the
evaluation at time T > 0 of the (weak) solution of C(v), which is either the Cauchy
problem

C(v) =

{︄
∂
∂t
f(t, x) + v(t, x)∇xf(t, x) = 0, for (t, x) ∈ [0, T ]× Ω,

f(0, x) = f0(x), for x ∈ Ω,

governed by the transport equation, or

C(v) =

{︄
∂
∂t
f(t, x) + divx

(︁
v(t, x)f(t, x)

)︁
= 0, for (t, x) ∈ [0, T ]× Ω,

f(0, x) = f0(x), for x ∈ Ω,
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involving the continuity equation. Here, f0 ∈ L2(Ω,R) denotes an initial condition,
which in our case is the template image.

The main goals of this article are the following. First, to study variational and
regularizing properties of problem (5.2), and to develop efficient numerical methods
for solving it. Second, to investigate alternative choices of distance functionsD, such
as the abovementioned NCC-based distance. Third, to demonstrate experimentally
that excellent reconstructions can be computed from highly undersampled and noisy
Radon transform data.

Our numerical approach is based on the Lagrangian methods developed in [193],
called LagLDDMM. In contrast to most existing approaches, which are mainly first-
order methods (see [193] for a brief classification and discussion), LagLDDMM uses
a Gauss–Newton–Krylov method paired with Lagrangian solvers for the hyperbolic
PDEs listed above. The characteristics associated with these PDEs are computed
with an explicit Runge–Kutta method. One of the main advantages of this approach
is that Lagrangian methods are unconditionally stable with regard to the admissible
step size. Furthermore, the approach limits numerical diffusion and, in order to
evaluate the gradient or the Hessian required for optimization, does not require the
storage of multiple space-time vector fields or images at intermediate time instants.
The scheme can also be implemented matrix-free.

In comparison to abovementioned existing methods for indirect image registra-
tion, such as [64, 139, 160, 223], our method is conceptually different in several
ways. The first difference concerns the discretization. While [64, 139, 223] are
mainly based on small deformations and use reproducing kernel Hilbert spaces, our
method relies on nonparametric registration. The main advantages are that it di-
rectly allows for a multilevel approach and no kernel parameters need to be chosen.
Moreover, due to the flexibility of the underlying framework it is straightforward
to extend our method to parametric registration. Second, our approach relies on
second-order methods for optimization by using a Gauss–Newton method paired
with line search, while the other methods mainly rely on gradient descent. This
allows for a fast decrease of the objective within only few iterations. Third, our
method allows to easily exchange the underlying PDE solver. Essentially, any solver
can be used as long as it can be differentiated efficiently. The used explicit Runge–
Kutta method has the advantage that it does not require the storage of multiple
images or repeated interpolation of the template, which can potentially lead to a
blurred solution. Finally, let us mention that [160] is conceptually different since
both a deformation and a template image are computed. Our main focus, however,
are applications where only very few and noisy measurements are available and the
problem of estimating an additional template seems highly underdetermined in such
situations.

Contributions The contributions of this article are as follows. First, we provide
the necessary theoretical background on (weak) solutions of the continuity and the
transport equation, and recapitulate existence and uniqueness theory for character-
istic curves for the associated ODE. In contrast to the results derived in [64], where
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the template image is assumed to be contained in the space SBV (Ω,R)∩L∞(Ω,R)
of essentially bounded functions with special bounded variation, our results only
require L2(Ω,R) regularity. In addition, by using results from [92], we are able to
consider the transport equation in the setting with H1 regularity of vector fields
in space as well as in time and with bounded divergence. Moreover, we show the
existence of a minimizer of the problem (5.2), stability with respect to the data,
and convergence for vanishing noise.

Second, in order to solve the problem numerically, we follow a discretize-then-
optimize approach and extend the LagLDDMM framework [193] to the indirect
setting. The library itself is an extension of FAIR [205] and, as a result, our im-
plementation provides great flexibility regarding the selected PDE, and can easily
be extended to other distances as well as to other regularization functionals. The
source code of our MATLAB implementation is available online.2

Finally, we present numerical results for the abovementioned distances and
PDEs. To the best of our knowledge, the results obtained for indirect image recon-
struction based on the continuity equation are entirely novel. Moreover, we propose
to use the NCC-based distance instead of SSD whenever the image intensities of the
template and the unknown target are far apart, and show its numerical feasibility.

5.2 Theoretical results on the transport and
continuity equation

In this section, we review the necessary theoretical background, and state results
on the existence and stability of weak solutions of the transport and the continuity
equation. Compared to [64], our results are stronger since we do not require space
regularity of the template image.

5.2.1 Continuity equation

In what follows, we consider well-posedness of the continuity equation, which arises
in the LDDMM framework using the mass-preserving group action via the method
of characteristics. The regularity assumptions on v are such that we can apply the
theory from [263].

Let Ω ⊂ Rn be a bounded, open, convex domain with Lipschitz boundary and
let T > 0. In the following, we examine the continuity equation{︄

∂
∂t
f(t, x) + divx

(︁
v(t, x)f(t, x)

)︁
= 0 for (t, x) ∈ [0, T ]× Ω,

f(0, x) = f0(x) for x ∈ Ω,
(5.4)

with coefficients v ∈ L2([0, T ],V) and initial condition f0 ∈ L2(Ω,R), where V is a
Banach space that is continuously embedded into C1,α

0 (Ω,Rn) for some α > 0. Here,
C1,α

0 (Ω,Rn) denotes the closure of C∞
c (Ω,Rn) under the C1,α norm. Note that such

2https://doi.org/10.5281/zenodo.2598138
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velocity fields can be continuously extended to the boundary. Clearly, (5.4) has to
be understood in a weak sense, i.e., a function f ∈ C0([0, T ], L2(Ω,R)) is said to be
a weak solution of (5.4) if∫︂ T

0

∫︂
Ω

f(t, x)
(︁
v(t, x)∇xη(t, x) +

∂
∂t
η(t, x)

)︁
dx dt+

∫︂
Ω

f0(x)η(0, x) dx = 0 (5.5)

holds for all η ∈ C∞
c ([0, T )× Ω). The corresponding characteristic ODE is{︄

d
dt
X(t, s, x) = v

(︁
t,X(t, s, x)

)︁
for (t, s, x) ∈ [0, T ]2 × Ω,

X(s, s, x) = x for x ∈ Ω.
(5.6)

In this notation, the first argument of X is the time dependence, the second the
initial time, and the third the initial space coordinate. The following theorem is a
reformulation of [263, Thms. 1 and 9] and characterizes solutions of (5.6).

Theorem 5.1. Let v ∈ L2([0, T ],V) and s ∈ [0, T ] be given. There exists a unique
global solution X(·, s, ·) ∈ C0([0, T ], C1(Ω,Rn)) such that X(s, s, x) = x for all
x ∈ Ω and

d
dt
X(t, s, x) = v

(︁
t,X(t, s, x)

)︁
in weak sense. The solution operator Xv : L

2([0, T ],V) → C0([0, T ]×Ω,Rn) assign-
ing a flow Xv to every velocity field v is continuous with respect to the weak topology
in L2([0, T ],V).

As X(0, t, X(t, 0, x)) = x, we can directly conclude that X(t, 0, ·) is a diffeo-
morphism for every t ∈ [0, T ]. Now, the diffeomorphism X(0, t, x) can be used to
characterize solutions of (5.4) as follows.

Proposition 5.2. If v ∈ L2([0, T ],V), then the unique weak solution of (5.4), as
defined in (5.5), is given by f(t, x) = det(DxX(0, t, x))f0(X(0, t, x)), where DxX
denotes the Jacobian of X.

Proof. The proof is divided in three steps. First, we show that f satisfies the
regularity conditions of weak solutions. For this purpose, the first step is to show
X(0, ·, ·) ∈ C0([0, T ], C0(Ω,Rn)), i.e., that the flow is continuous in the initial values.
Clearly, X(0, t, ·) ∈ C0(Ω,Rn) for every t ∈ [0, T ]. For an arbitrary sequence ti → t
we get

∥X(0, ti, ·)−X(0, t, ·)∥C0(Ω) ≤ ∥DxX(0, ti, ·)∥C0(Ω)∥Id −X(ti, t, ·)∥C0(Ω) → 0,

where the first factor is bounded due to [263, Lem. 9]. Next, using the sequence
Xi(·) = X(0, ti, ·), it follows f0(X(0, ·, ·)) ∈ C0([0, T ], L2(Ω,R)), where the continu-
ity in time follows from [213, Cor. 3]. Then, by differentiating X(0, t, X(t, 0, x)) = x
and rearranging the terms we obtain

det
(︁
DxX(0, ·, ·)

)︁
= det

(︁
DxX(·, 0, ·)

)︁−1
(X(0, ·, ·)) ∈ C0([0, T ]× Ω),
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5.2 Theoretical results on the transport and continuity equation

since all expressions are continuous. Finally, we conclude f ∈ C0([0, T ], L2(Ω,R)),
which follows from

∥f(t, ·)− f(ti, ·)∥L2(Ω)

≤
⃦⃦
det
(︁
DxX(0, t, x)

)︁
− det

(︁
DxX(0, ti, x)

)︁⃦⃦
C0(Ω)

⃦⃦
f0 ◦X(0, t, x)

⃦⃦
L2(Ω)

+
⃦⃦
det
(︁
DxX(0, ti, x)

)︁⃦⃦
C0(Ω)

⃦⃦
f0 ◦X(0, t, x)− f0 ◦X(0, ti, x)

⃦⃦
L2(Ω)

,

since both summands converge to zero.
The second step is to show that (5.5) is satisfied. Note that X(·, 0, x) is differ-

entiable in t for a.e. t ∈ [0, T ], since it is absolutely continuous by definition. By
inserting f into (5.5) and using the transformation formula, we get∫︂ T

0

∫︂
Ω

f(t, x)
(︁
v(t, x)∇xη(t, x) +

∂
∂t
η(t, x)

)︁
dx dt+

∫︂
Ω

f0(x)η(0, x) dx

=

∫︂ T

0

∫︂
Ω

det
(︁
DxX(t, 0, x)

)︁
f
(︁
t,X(t, 0, x)

)︁
d
dt
η
(︁
t,X(t, 0, x)

)︁
dx dt+

∫︂
Ω

f0(x)η(0, x) dx

=

∫︂ T

0

∫︂
Ω

f0(x)
d
dt
η
(︁
t,X(t, 0, x)

)︁
dx dt+

∫︂
Ω

f0(x)η(0, x) dx = 0.

For the last equality we used that η(t,X(t, 0, x)) is absolutely continuous.
The last step is to prove uniqueness of weak solutions, i.e., that every solution

has the given form. Let f1, f2 be two different solutions, then we can find a t such
that ∥f1(t, ·)− f2(t, ·)∥L2(Ω) > 0. By continuity in time we can find an interval I of
length δ > 0 that contains t, and a constant c > 0 such that

∥f1(s, ·)− f2(s, ·)∥L2(Ω) ≥ c

for all s ∈ I. However, weak solutions are unique in L∞([0, T ], L2(Ω,R)), see
[92, Cor. II.1], where we used the embedding of V into C1

0(Ω,R
n). This yields a

contradiction.

Additionally, we can state and prove the following stability result for solutions
of (5.4).

Proposition 5.3 (Stability). Let vi ⇀ v in L2([0, T ],V) and fi denote the weak
solution of (5.4) corresponding to vi. Then for every t ∈ [0, T ], there exists a
subsequence, also denoted with fi, such that fi(t, ·) → f(t, ·) in L2(Ω,R).

Proof. The solution of (5.6) corresponding to vi is denoted by Xi. Fix an arbitrary
t ∈ [0, T ]. From Theorem 5.1 we conclude ∥Xi(0, t, ·)−X(0, t, ·)∥C0(Ω) → 0. Further,
[97, Thm. 3.1.10] implies that Xi(0, t, ·) is uniformly bounded for all i ∈ N in
C1,α(Ω), implying f0 ◦Xi(0, t, ·) → f0 ◦X(0, t, ·) in L2(Ω,R) by [213, Cor. 3].

It is left to show that a subsequence, also denoted by Xi, exists such that
Xi(0, t, ·) → X(0, t, ·) in C1(Ω,Rn). This concludes the proof since it also implies the
convergence of det(DxXi(0, t, ·)) → det(DxX(0, t, ·)) in C0(Ω). However, Xi(0, t, ·)
is uniformly bounded in C1,α(Ω,Rn) and it follows that DxXi(0, t, ·) is uniformly
bounded in C0,α(Ω,Rn×n). By using the compact embedding of C0,α(Ω,Rn×n) into
C0(Ω,Rn×n), see [127, Lem. 6.33], there exists a subsequence of Xi(0, t, ·) that
converges to X(0, t, ·) in C1(Ω,Rn).

113



5. Template-Based Image Reconstruction

5.2.2 Transport equation with H1 regularity

Here, we prove well-posedness of the transport equation, which arises in the LD-
DMM framework using the geometric group action. Compared to the previous
section, the space regularity assumptions on v are weaker and fit the setting in [92].

The transport equation reads as{︄
∂
∂t
f(t, x) + v(t, x)∇xf(t, x) = 0 for (t, x) ∈ [0, T ]× Ω,

f(0, x) = f0(x) for x ∈ Ω,
(5.7)

with coefficients

v ∈ A :=
{︁
v ∈ H1([0, T ]× Ω)n ∩ L2

(︁
[0, T ], H1

0 (Ω)
n
)︁
: ∥ divx v∥L∞([0,T ]×Ω) ≤ C

}︁
for some fixed constant C and initial value f0 ∈ L2(Ω,R). The admissible set A
consists of all H1 functions that are zero on the boundary of the spatial domain
and have bounded divergence in L∞ norm.

Note that the set A is a subset of H1([0, T ] × Ω)n, which is closed and convex
so that it is a weakly closed subset of a reflexive Banach space. In the following,
we only check that A is closed. Let vi be a convergent sequence in A with limit
v. Since the two involved spaces are Banach spaces, we only have to check that
v satisfies the constraint. Assume that ∥ divx v∥L∞([0,T ]×Ω) > C, then there exists
a set B with positive measure and an ϵ > 0 such that for all x ∈ B we have
| divx v(x)| ≥ C + ϵ. Hence, we get ∥ divx vi − divx v∥L2([0,T ]×Ω) ≥

√︁
µ(B)ϵ, which

contradicts the convergence in H1.
Again, (5.7) has to be understood in weak sense so that f ∈ C0([0, T ], L2(Ω,R))

is said to be a solution of (5.7) if it satisfies∫︂ T

0

∫︂
Ω

f(t, x)
(︁
divx

(︁
v(t, x)η(t, x)

)︁
+ ∂

∂t
η(t, x)

)︁
dx dt+

∫︂
Ω

f0(x)η(0, x) dx = 0

for all η ∈ C∞
c ([0, T ) × Ω). The next theorem is an existence and stability result,

see [92, Cors. II.1 and II.2, Thm. II.5].

Theorem 5.4 (Existence & Stability). For every v ∈ A there exists a unique
weak solution f ∈ C0([0, T ], L2(Ω,R)) of (5.7). If vi ∈ A converges to v ∈ A in
the norm of L2([0, T ] × Ω,Rn), then the corresponding sequence of weak solutions
fi ∈ C0([0, T ], L2(Ω,R)) converges to f in C0([0, T ], L2(Ω,R)).

Proof. The existence and uniqueness of weak solutions follows from [92, Corrs. II.1
and II.2]. Note that these solutions are also renormalized due to [92, Thm. II.3].

We recast the second part of the theorem such that it has the exact form of [92,
Thm. II.5]. First, note that both the velocity fields and the initial condition can
be extended to Rn by zero outside of Ω due to boundary condition of A. Due to
the conditions on v, the weak formulation is equivalent to the one for the extension
in the Rn setting. The uniform boundedness condition on fi is satisfied since Ω is
bounded.
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5.3 Regularizing properties of template-based image reconstruction

Corollary 5.5. Let vi ⇀ v ∈ A with the inner product of H1([0, T ]×Ω)n. Then fi
converges to f in C0([0, T ], L2(Ω,R)).

Proof. Combine Theorem 5.4 with the compact embedding of H1([0, T ]× Ω)n into
L2([0, T ]× Ω)n, i.e., the Rellich embedding theorem [4, A6.4].

Remark 5.6. Note that the same arguments can be used if we use higher spatial
regularity, such as H2, in this section. From a numerical point of view, the bound on
the divergence is always satisfied for C large enough if we use linear interpolation
for the velocities on a fixed grid. Here we use that all norms are equivalent on
finite-dimensional spaces.

5.3 Regularizing properties of template-based
image reconstruction

In this section, we prove regularizing properties of template-based reconstruction
as defined in (5.2). Recall that the problem reads

min
v∈V

D
(︁
K ◦ fv(T, ·), g

)︁
+ γ∥v∥2V ,

s.t. C(v),

where C(v) is the Cauchy problem with either the transport or the continuity
equation. The admissible set V is chosen such that the regularity requirements
stated in the previous section are satisfied. For the following considerations we
require these assumptions on K and D:

1. The operator K is continuous, D(·, g) is lower semi-continuous for each g ∈ Y ,
and D(g, ·) is continuous for each g ∈ Y .

2. If fn, gn are two convergent sequences with limits f and g, respectively, then
D must satisfy lim infn→∞D(fn, g) ≤ lim infn→∞D(fn, gn).

3. If D(f, g) = 0, then f = g.

In particular, the requirements on D are satisfied if D is a metric. The obtained
results are along the lines of [64] but are adapted to our setting and notation. For
simplicity we stick to the notation of the continuity equation, but want to mention
that the same derivations hold for the transport equation with coefficients in the
set A. First, we prove that a minimizer of the problem exists.

Proposition 5.7 (Existence). For every f0 ∈ L2(Ω,R), the functional Jγ,g defined
in (5.3) has a minimizer.

Proof. The idea of the proof is to construct a minimizing sequence that is weakly
convergent and then use that the functional is weakly lower semi-continuous. Let
us consider a sequence vn such that Jγ,g(vn) converges to infv Jγ,g(v). By con-
struction of the functional, vn is bounded in L2([0, T ],V) and hence there exists
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a subsequence, also denoted with vn, such that vn ⇀ v∞. By Proposition 5.3,
there exists a subsequence, also denoted with vn, such that fvn(T, ·) → fv∞(T, ·)
in L2(Ω,R). With this at hand, we are able to prove weak lower semi-continuity
of the data term. Indeed, as K is continuous, from fvn(T, ·) → fv∞(T, ·) we get
K ◦fvn(T, ·) → K ◦fv∞(T, ·). Since D(·, g) is lower semi-continuous, we obtain that
D(K ◦ fv∞(T, ·), g) ≤ lim infn→∞D(K ◦ fvn(T, ·), g). This concludes the proof as
Jγ,g is weakly lower semi-continuous, and hence Jγ,g(v∞) ≤ infv Jγ,g(v).

Next, we state a stability result.

Proposition 5.8 (Stability). Let f0 ∈ L2(Ω,R) and γ > 0. Let gn be a sequence
in Y converging to g ∈ Y . For each n, we choose vn as minimizer of Jγ,gn. Then,
there exists a subsequence of vn that converges weakly towards a minimizer v of Jγ,g.

Proof. By the properties of D it holds, for every n, that

∥vn∥2V ≤ 1
γ
Jγ,gn(vn) ≤ 1

γ
Jγ,gn(0) =

1
γ
D(K ◦ f0, gn) → 1

γ
D(K ◦ f0, g) <∞.

Hence, vn is bounded in L2([0, T ],V) and there exists a subsequence, also denoted
with vn, such that vn ⇀ v. Further, it holds γ∥v∥2V ≤ γ lim infn→∞ ∥vn∥2V .

By passing to a subsequence and by using Proposition 5.3, we deduce that
fvn(T, ·) → fv(T, ·). Together with the convergence of gn and the convergence
property of D this implies

D
(︁
K ◦ fv(T, ·), g

)︁
≤ lim inf

n→∞
D
(︁
K ◦ fvn(T, ·), g

)︁
≤ lim inf

n→∞
D
(︁
K ◦ fvn(T, ·), gn

)︁
.

Thus, for any ṽ, it holds that

Jγ,g(v) ≤ lim inf
n→∞

γ∥vn∥2V +D
(︁
K ◦ fvn(T, ·), gn

)︁
= lim inf

n→∞
Jγ,gn(vn) ≤ lim inf

n→∞
Jγ,gn(ṽ),

since vn minimizes Jγ,gn . Then, as Jγ,gn(ṽ) converges to Jγ,g(ṽ) by the assumptions
on D, we deduce Jγ,g(v) ≤ Jγ,g(ṽ) and hence that v minimizes Jγ,g.

Finally, we state a convergence result for the method.

Proposition 5.9 (Convergence). Let f0 ∈ L2(Ω,R) and g ∈ Y , and suppose that
there exists v̂ ∈ L2([0, T ],V) such that K ◦ fv̂(T, ·) = g. Further, assume that
γ : R>0 ↦→ R>0 satisfies γ(δ) → 0 and δ/γ(δ) → 0 as δ → 0. Now, let δn be a
sequence of positive numbers converging to 0 and assume that gn is a data sequence
satisfying D(g, gn) ≤ δn for each n ∈ N. Let vn be a minimizer of Jγn,gn, where
γn = γ(δn). Then there exists a subsequence of vn that converges weakly towards an
element v such that K ◦ fv(T, ·) = g.

Proof. For every n, it holds that

∥vn∥2V ≤ 1
γn
Jγn,gn(vn) ≤ 1

γn
Jγn,gn(v̂) =

1
γn

(︁
D(g, gn) + γn∥v̂∥2V

)︁
≤ δn

γn
+ ∥v̂∥2V .

From the requirements on γ and δ we deduce that vn is bounded in L2([0, T ],V)
and then that up to an extraction, vn converges weakly to some v in L2([0, T ],V).
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Further, it holds D(K ◦ fv(T, ·), g) ≤ lim infn→∞D(K ◦ fvn(T, ·), gn) with the
same arguments as in the previous proposition. Finally, for every n, it holds that

D
(︁
K ◦ fvn(T, ·), gn

)︁
≤ Jγn,gn(vn) ≤ Jγn,gn(v̂) = D(g, gn) + γn∥v̂∥2V ,

where the two rightmost terms both converge to zero. Thus, K ◦ fv(T, ·) = g by
the assumptions on D.

We conclude with a remark on data discrepancy functionals that satisfy the
conditions and will be used in our numerical experiments in Section 5.5.

Remark 5.10. We now assume that the data space Y is a real Hilbert space.
Clearly, the conditions are satisfied if DSSD(f, g) = ∥f − g∥2Y . We will only check
the convergence condition. It holds

lim inf
n→∞

∥fn − g∥2Y = lim inf
n→∞

∥fn − gn∥2Y + 2⟨fn − gn, gn − g⟩+ ∥g − gn∥2Y ,

where the last two terms converge to zero since convergent sequences are bounded.
Another function that satisfies the conditions is DNCC : Y \{0}×Y \{0} → [0, 1]

with
DNCC(f, g) = 1− ⟨f, g⟩2

∥f∥2Y ∥g∥2Y
,

which is based on the NCC. First, note that D̃(·, g) = ⟨·, g⟩2/∥g∥2Y and the function
∥ · ∥−2

Y are continuous. Thus, we get that DNCC(·, g) is continuous. By symmetry,
this also holds for DNCC(g, ·). It remains to check the convergence property

lim
n→∞

1−DNCC(fn, g) = lim
n→∞

(︁
⟨fn, g − gn⟩+ ⟨fn, gn⟩

)︁2
∥fn∥2Y ∥g∥2Y

= lim
n→∞

⟨fn, gn⟩2
∥fn∥2Y ∥g∥2Y

= lim
n→∞

⟨fn, gn⟩2
∥fn∥2Y ∥gn∥2Y

= lim
n→∞

1−DNCC(fn, gn).

From this we conclude lim infn→∞DNCC(fn, g) = lim infn→∞DNCC(fn, gn). Unfor-
tunately, DNCC(f, g) = 0 only implies f = cg, with c ∈ R.

5.4 Numerical solution
The focus of this section is to approximately solve the problem (5.2). Our approach
is based on the Lagrangian methods developed in [193] and the inexact multilevel
Gauss–Newton method used in [205]. Both methods and their necessary modifica-
tions are briefly outlined here.

As customary in PDE-constrained optimization [88, Chap. 3], we eliminate the
state equation by defining a control-to-state operator, which parameterizes the final
state fv(T, ·) in terms of the unknown velocities v. With a slight abuse of notation,
we define this solution map as

S : V → L2(Ω,R),
v ↦→ fv(T, ·) =: f(v).

(5.8)
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Here, fv denotes the unique solution to either the transport or the continuity equa-
tion, as defined in Section 5.2. As a result, we obtain the reduced form of (5.2):

min
v∈V

D
(︁
K ◦ f(v), g

)︁
+ γR(v). (5.9)

Here, R : V → R≥0 is a regularization functional that can be written as

R(v) =
1

2

∫︂ T

0

∫︂
Ω

∥Bv(t, x)∥2 dx dt (5.10)

with B denoting a linear (vectorial) differential operator.
In this work, we consider the operators B = ∇x and B = ∆x, which are also used

in [193]. We refer to the resulting functionals R as diffusion and curvature regular-
ization functionals, respectively. Note that B can as well be chosen to incorporate
derivatives with respect to time.

Among the operators above, we also consider a regularization functional that
resembles the norm of the space V = L2([0, T ], H3

0 (Ω,R
n)). This particular choice is

motivated by the fact that, for n = {2, 3}, the space H3
0 (Ω,R

n) can be continuously
embedded in C1,α

0 (Ω,Rn), for some α > 0, so that the results in Section 5.2 hold.
The norm of V is given by

∥v∥2V =
1

2

∫︂ T

0

∥v(t, ·)∥2L2(Ω,Rn) dt+
1

2

∫︂ T

0

|v(t, ·)|2H3(Ω,Rn) dt. (5.11)

Here, |·|Hk(Ω,Rn) denotes the usual Hk-seminorm including only the highest-order
partial derivatives. By the Gagliardo–Nirenberg inequality, (5.11) is equivalent
to the usual norm of L2([0, T ], H3

0 (Ω,R
n)). To simplify numerical optimization,

we omit the requirement that v is compactly supported in Ω and minimize over
L2([0, T ], H3(Ω,Rn)).

In order to solve problem (5.9), we follow a discretize-then-optimize strategy.
Without loss of generality, we assume that the domain is Ω = (0, 1)n. We partition
it into a regular grid consisting of mn equally sized cells of edge length hX = 1/m
in every coordinate direction.

The template image f0 ∈ L2(Ω,R) is assumed to be sampled at cell-centered
locations xc ∈ Rmn

, giving rise to its discrete version f0(xc) ∈ Rmn

. The tem-
plate image is interpolated on the cell-centered grid by means of cubic B-spline
interpolation as outlined in [205, Chap. 3.4].

Similarly, the time domain is assumed to be [0, 1] and is partitioned into mt

equally sized cells of length ht = 1/mt. We assume that the unknown velocities
v : [0, 1] × Ω → Rn are sampled at cell-centered locations in space as well as at
cell-centered locations in time, leading to a vector of unknowns v ∈ RN , where
N = (mt + 1) · n · mn is the total number of unknowns of the finite-dimensional
minimization problem.

Lagrangian solver In order to compute the solution map f(v) numerically, i.e.,
to solve the hyperbolic PDEs (5.4) and (5.7), the Lagrangian solver in [193] follows
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a two-step approach. First, given a vector v ∈ RN of velocities, the ODE (5.6)
is solved approximately using a fourth-order Runge–Kutta (RK4) method with Nt

equally spaced time steps of size ∆t. For simplicity, we follow the presentation
in [193] based on an explicit first-order Euler method and refer to [193, Sec. 3.1] for
the full details.

Given initial points x ∈ Rmn

and velocities v ∈ RN , an approximate solution
Xv : [0, 1]

2 × Rmn → Rmn

is given by

Xv(0, tk+1,x) = Xv(0, tk,x) + ∆t I
(︁
v, tk,Xv(0, tk,x)

)︁
, (5.12)

for all k = 0, 1, . . . , Nt − 1, with initial condition Xv(0, 0,x) = x. Here, we need
the componentwise interpolation I(v, tk,Xv(0, tk,x)) of v at time tk = k∆t and at
the points Xv(0, tk,x). Note that, since the characteristic curves for both PDEs
coincide, this step is identical regardless of which PDE we impose.

The second step computes approximate intensities of the final state fv(1, ·). This
step depends on the particular PDE. For the transport equation, in order to compute
the intensities at the grid points xc, we follow characteristic curves backwards in
time, which is achieved by setting ∆t = −1/Nt in (5.12). The deformed template
is then given by

f(v) = f0 ◦Xv(1, 0,xc), (5.13)

where f0 ∈ Rmn

is the interpolation of the discrete template image.
For the continuity equation, a particle-in-cell (PIC) method is proposed by [193],

see [67] for details. The density of particles that are initially located at grid points
xc is represented by a linear combination of basis functions, which are then shifted
by following the characteristics computed in the first step. To determine the final
density at grid points, exact integration over the grid cells is performed. By setting
∆t = 1/Nt in (5.12), the transformed template can be computed as

f(v) = F ◦Xv(0, 1,xc)f0(xc), (5.14)

where F ∈ RN×N is the push-forward matrix that computes the integrals over the
shifted basis functions. See [193, Sec. 3.1] for its detailed specification using linear,
compactly supported basis functions. By design, the method is mass-preserving at
the discrete level.

Numerical optimization Let us denote by K : RN → RM , M ∈ N, a finite-
dimensional, Fréchet differentiable approximation of the (not necessarily linear)
operator K : L2(Ω,R) → Y . With the application to CT in mind, we outline a
discretization of (5.9) suitable for the n-dimensional Radon transform, which maps
a function on Rn into the set of its integrals over the hyperplanes in Rn [208,
Chap. 2].

An element K ◦ f(v) ∈ Y is a function on the unit cylinder Sn−1 × R of Rn+1,
where Sn−1 is the (n− 1)-dimensional unit sphere. We discretize this unit cylinder
as follows. First, we sample p ∈ N directions from Sn−1. When n = 2, as it is the
case in our experiments in Section 5.5, directions are parameterized by angles from
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5. Template-Based Image Reconstruction

the interval [0, 180] degrees. For simplicity, we say (slightly imprecise) that we take
one measurement in each direction. Second, similarly to the sampling of Ω, we use
an interval (0, 1) instead of R and partition it into q equally sized cells of length
hY = 1/q. Depending on n and the diameter of Ω, the interval length may require
adjustment. Each measurement i is then sampled at cell-centered points yc ∈ Rq

and denoted by gi(yc) ∈ Rq. All measurements are then concatenated into a vector
g := g(yc) ∈ RM , where M = p · q.

The finite-dimensional optimization problem in abstract form is then given by

min
v∈RN

{︁
Jγ,g(v) := D

(︁
K ◦ f(v),g

)︁
+ γR(v)

}︁
, (5.15)

where D and R are chosen to be discretizations of a distance and of (5.10), respec-
tively.

In further consequence, we approximate integrals using a midpoint quadrature
rule. As we are mainly interested in the setting where only few directions are
given, we disregard integration over the unit sphere. For vectors x,y ∈ RM , the
corresponding approximations of the distance based on sum-of-squared-differences
and the NCC-based distance are then

DSSD(x,y) ≈
hY
2
(x− y)⊤(x− y) and DNCC(x,y) ≈ 1− (x⊤y)2

∥x∥2∥y∥2 , (5.16)

respectively. See [205, Chaps. 6.2 and 7.2] for details. Note that, due to cancellation,
no (spatial) discretization parameter occurs in the approximation of the NCC above.

Moreover, we approximate the regularization functional in (5.10) with

R(v) ≈ hthnX
2

v⊤B⊤Bv, (5.17)

where B ∈ RN×N is a finite-difference discretization of the differential operator in
(5.10), analogous to [204, Chap. 8.5]. In our implementation, we use zero Neumann
boundary conditions and pad the spatial domain to mitigate boundary effects arising
from the discretization of the operator.

In order to apply (inexact) Gauss–Newton optimization to problem (5.15), we
require first- and (approximate) second-order derivatives of Jγ,g(v). By application
of the chain rule, we obtain

∂
∂v
Jγ,g(v) =

∂
∂v
f(v)⊤ ∂

∂f
K ◦ f(v)⊤ ∂

∂x
D
(︁
K ◦ f(v),g

)︁
+ γ ∂

∂v
R(v),

where ∂K/∂f is the Fréchet derivative of K and ∂f(v)/∂v is the derivative of the
solution map (5.8) with respect to the velocities, which is given below.

The partial derivatives of the distance functions (5.16) with respect to its first
argument are given by

∂
∂x
DSSD(x,y) = hY (x− y) and ∂2

∂x2DSSD(x,y) = hY IN , (5.18)

where IN ∈ RN×N is the identity matrix of size N , and

∂
∂x
DNCC(x,y) = −2

(x⊤y)y

∥x∥2∥y∥2 + 2
(x⊤y)2x

∥x∥4∥y∥2 ,
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5.4 Numerical solution

respectively. Moreover, the derivatives of (5.17) are given by

∂
∂v
R(v) = hth

n
XB

⊤Bv and ∂2

∂v2R(v) = hth
n
XB

⊤B.

In order to obtain an efficient iterative second-order method for solving (5.15),
we require an approximation of the Hessian H ∈ RN×N that balances the following
tradeoff. Ideally, it is reasonably efficient to compute, consumes limited memory
(sparsity is desired), and has sufficient structure so that preconditioning can be
used. However, each iteration of the Gauss–Newton method should also provide a
suitable descent direction. For these reasons, we approximate the Hessian by

H(v) = ∂2

∂v2Jγ,g(v) ≈ ∂
∂v
f(v)⊤ ∂

∂f
K ◦ f(v)⊤ ∂2

∂x2D
(︁
K ◦ f(v),g

)︁
∂
∂f
K ◦ f(v) ∂

∂v
f(v)

+ γhth
n
XB

⊤B+ ϵIN ,

where ϵ > 0 ensures positive semi-definiteness. For simplicity, the term involv-
ing ∂2f(v)/∂v2 is omitted and, regardless of the chosen distance, we use the second
derivative in (5.18) as an approximation of ∂2D(x,y)/∂x2. In our numerical experi-
ments we found that this choice works well for the problem considered in Section 5.5.

It remains to discuss the derivative of the solution map. For the transport
equation, the application of the chain rule to (5.13) yields

∂
∂v
f(v) = ∇xf0

(︁
Xv(1, 0,xc)

)︁
∂
∂v
Xv(1, 0,xc),

where ∇xf0 denotes the gradient of the interpolation of the template image and
∂Xv/∂v is the derivative of the endpoints of the characteristic curves with respect
to the velocities, see below. Similarly, for the solution map (5.14) that corresponds
to the continuity equation, we obtain

∂
∂v
f(v) = ∂

∂Xv

(︁
F ◦Xv(0, 1,xc)f0(xc)

)︁
∂
∂v
Xv(0, 1,xc).

Here, ∂F/∂Xv is the derivative of the push-forward matrix with respect to the
endpoints of the characteristics, again see [193, Sec. 3.1].

If explicit time stepping methods are used to solve the ODE (5.6), the partial
derivative ∂Xv/∂v can be computed recursively. For example, for the forward Euler
approach in (5.12) it is given by

∂
∂v
Xv(0, tk+1,xc) =

∂
∂v
Xv(0, tk,xc) + ∆t ∂

∂v
I
(︁
v, tk,Xv(0, tk,xc)

)︁
+∆t ∂

∂Xv
I
(︁
v, tk,Xv(0, tk,xc)

)︁
∂
∂v
Xv(0, tk,xc),

for all k = 0, 1, . . . , Nt− 1, with ∂I/∂v and ∂I/∂Xv being the derivatives of the in-
terpolation schemes with respect to the velocities and with respect to the endpoints
of the characteristics, respectively. We refer to [205, Chap. 3.5] for details. The case
where characteristics are computed backwards in time can be handled similarly.

In order to solve the finite-dimensional minimization problem (5.15), we apply
a inexact Gauss–Newton–Krylov method, which proceeds as follows. Given an
initial guess v(0) = 0, we update the velocities in each iteration i = 0, 1, . . . by
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5. Template-Based Image Reconstruction

v(i+1) = v(i) + µδv until a termination criterion is satisfied. Here, µ ∈ R denotes a
step size that is determined via Armijo line search and δv ∈ RN is the solution to
the linear system

H
(︁
v(i)
)︁
δv = − ∂

∂v
Jγ,g

(︁
v(i)
)︁
. (5.19)

For details on the stopping criteria and the line search we refer to [205, Chap. 6.3.3].
We solve the system (5.19) approximately by means of a preconditioned conju-
gate gradient (PCG) method, which can be implemented matrix-free whenever the
derivative of K and its adjoint can be computed matrix-free. See [193, Sec. 3.2] for
further details on the preconditioning.

Due to the non-convexity of (5.9) and to speed up computation, we use a multi-
level strategy in order to reduce the risk of ending up in a local minimum, see [143].
On each level, we use a subsampled version of the velocities that were computed on
the previous, coarser discretization as initial guess.

While standard image registration typically uses resampling of the template and
the target image [205, Chap. 3.7], the approach described here requires multilevel
versions of the operator K together with a suitable method for resampling the
measurements g. We stress that, if these are not available, optimization can as well
just be performed on the finest discretization level.

In the following, we assume that K is a discretization of the Radon transform
[208], which is a linear operator, and outline a suitable procedure for creating multi-
level versions of the operator and the measured data. The former is easily achieved
with a computational backend such as Astra [268, 269], which allows to explicitly
specify the number of grid cells used to discretize the measurement geometry. For
the sake of simplicity, we restrict the presentation here to the case where n = 2,
i.e., Ω ⊂ R2, and K is linear.

Let us assume that the number of grid cells used to discretize Ω at the finest level
is m = 2ℓ, ℓ ∈ N. In our experiments, we set the number of grid cells of the one-
dimensional measurement domain (0, 1) at the current level k ≤ ℓ to q(k) = 1.5 ·2(k)
and set the length of each cell to h(k)Y = 1/q(k). Then, a multilevel representation
of each measurement gi, i ≤ p, at cell-centered grid points yj = (j − 1/2)h

(k−1)
Y is

given by
g
(k−1)
i (yj) :=

(︂
g
(k)
i (yj) + g

(k)
i

(︁
yj + h

(k)
Y

)︁)︂
/4,

where the denominator arises from averaging over two neighboring grid points and
dividing the edge length of the imaging domain Ω in each coordinate direction in
half. The approach can be extended to higher dimensions.

5.5 Numerical examples
In our numerical experiments we use the Radon transform [208] as operator. Other
choices are possible and, assuming that one has access to a suitable resampling
procedure for the measured data, the multilevel strategy can be applied as well.
The aim here is to investigate the reconstruction quality with different regularization
functionals, distances, and noise levels for both PDE constraints. We show synthetic
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5.5 Numerical examples

(a) Template image. (b) Unknown image. (c) Measured (sinogram)
data without noise.

Figure 5.1: Synthetic example based on an artificial brain image [141] that has
been deformed manually. We generated six Radon transform measurements that
correspond to six equally spaced angles from the interval [0, 60] degrees.

examples for the settings n = 2 and n = 3, and nonsynthetic examples for n = 2
using real X-ray tomography data. In the synthetic case, all shown reconstructions
are computed from measurements taken from at most 10 directions (angles) sampled
from intervals within [0, 180] degrees.

All computations are performed using an Intel Xeon E5-2630 v4 2.2GHz server
equipped with 128GB RAM and an NVIDIA Quadro P6000 GPU featuring 24GB
of memory. The GPU is only used for computing the Radon transform of 3D
volumes.

Before we proceed, we give a brief idea of suitable parameter choices. For the
multilevel approach we use in each synthetic example 32× 32 pixels at the coarsest
level and 128×128 pixels at the finest level, i.e., ℓ = 7. The size of the reconstructed
images in the nonsynthetic examples is 128× 128. Again, three levels are used. In
the synthetic 3D example, the reconstructed volume is 32×32×32 and the coarsest
level is 8× 8× 8.

We use time dependent velocity fields with only one time step, i.e., nt = 1, since
this keeps the computational cost reasonable and suffices for our examples. The
characteristics are computed using five Runge–Kutta steps, i.e., Nt = 5.

The spatial regularization parameter depends on the chosen regularization func-
tional and the noise level, and is chosen in the order of 10−3, 100, and 103 for third-
order, curvature, and diffusion regularization, respectively, in the noisefree case and
using the NCC-based distance. The temporal regularization parameter is less sen-
sitive and is chosen in the order of 102. Furthermore, the parameter corresponding
to the norm of L2(Ω,Rn) in (5.11) is set to 10−6.

In our first example, we investigate different regularization functionals with dif-
ferent noise levels together with the transport equation. The target is 2D Radon
transform data based on a digital brain image and the template is a deformed version
thereof, see Fig. 5.1. Since we want to focus on the behavior of the regularization
functionals, we do not treat the continuity equation here. The data is generated
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5. Template-Based Image Reconstruction

(a) Reconstruction
using filtered

back-projection.

(b) Reconstruction
using R1 (TV

reconstruction).

(c) Reconstruction
using R2 with given

template.

(d) Reconstruction
using the

metamorphosis
approach [139].

Figure 5.2: Comparison of different reconstruction models applied to an artificial
brain image [205] that has been deformed manually. We generated six measurements
that correspond to six equally spaced angles from the interval [0, 60] degrees.

using parallel beam tomography with only six equally distributed angles from the
interval [0, 60] degrees and corrupted with Gaussian white noise of different levels.

Fig. 5.2 shows results obtained from the generated noisefree measurements using
four existing methods. In Fig. 5.2a filtered backprojection is used. In Fig. 5.2b and
5.2c, the following two total variation regularization-based models, see [55],

min
u

∥Ku− g∥2 + γRi(u),

with R1(u) := TV(u), R2(u) := TV(u − f0), and γ > 0 are used. Here, R2(u)
incorporates template information. Approximate minimizers of both functionals are
computed using the primal-dual hybrid gradient method [57]. For the case of filtered
backprojection, the standard MATLAB implementation is used. The results in
Fig. 5.2a and 5.2c highlight why more sophisticated methods, such as the proposed
template-based approach, are necessary to obtain satisfying reconstructions in this
setting, and illustrate the challenges when dealing with very sparse data.

As outlined in Section 5.1, one possibility is the metamorphosis approach [139].
In Fig. 5.2d we show a result obtained with this method using the recommended
parameters, i.e., 200 gradient descent steps are performed and the regularization
parameters are set to γ = 10−5 and τ = 1. Observe the change in image intensities
compared to Fig. 5.1a and the blur in the heavily deformed regions.

In Fig. 5.3, we show results for the different noise levels and different regular-
ization functionals computed with our approach. All results are obtained using the
NCC-based distance. As expected, the quality of the reconstruction gets worse for
higher noise levels and, consequentially, larger regularization parameters are nec-
essary. Since data is acquired from only six directions, the influence of the noise
is very strong. Especially for the diffusive regularization we need to choose large
regularization parameters for higher noise levels, see Fig. 5.3c. Since diffusion cor-
responds to first-order regularization, it is much easier to reconstruct the noise
with “rough” deformations. Overall, we found that second- and third-order regular-
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5.5 Numerical examples

ization performed similar when appropriate regularization parameters are chosen.
Even though some theoretical results only hold for higher-order regularity, second-
order regularization seems sufficient for our use case. The computation time for the
results in Fig. 5.3 is between 200 and 700 seconds.

In the second example, see Fig. 5.4, we compare the behavior of the SSD and the
NCC-based distance. The example consists of two different hands that, in addition,
are rotated relative to each other. Here, the deformation is much larger than in the
previous example, but still fairly regular. The data is generated similarly to the
previous example, but with only five angles from the interval [0, 75] degrees. Note
also that the intensities of the template and target image are different (roughly by
a factor of two). First, we discuss the transport equation. The intensity difference
is a serious issue if we use the SSD distance, as we can see in Fig. 5.4e. The hand is
deformed into a smaller version in order to compensate the differences. If we use the
NCC-based distance instead, which can deal with such discrepancies, the result is
much better from a visual point of view. The shapes are well-aligned. The resulting
SSIM value is still low, which is not surprising as SSIM is not invariant with respect
to intensity differences between perfectly aligned images. However, neither of the
two approaches is able to remove or create any of the additional (noise) structures
in the images. For the combination SSD with continuity equation, no satisfactory
results could be obtained. Since no change of intensity is possible by changing the
size of the hand, part of it is moved outside of the image. This behavior could po-
tentially be corrected if other boundary conditions are used in the implementation.
Therefore, we do not provide an example image for this case. Using the NCC-based
distance, the results look similar as for the transport equation with slightly worse
SSIM value. These results suggest that the NCC-based distance is a more robust
choice that avoids unnatural deformations, which would be required in the case of
SSD to compensate intensity differences. In this example, the computation times
are between 50 and 325 seconds.

In the next example, see Fig. 5.5, we compare the continuity equation with the
transport equation as constraint together with the NCC-based distance. The conti-
nuity equation allows for limited change of mass along the deformation path. Since
the intensity change scales with the determinant of the Jacobian, bigger changes are
only possible if areas are compressed or extended a lot. In the presented example
this occurs only to a mild extent. For this example, the continuity equation and
the transport equation yield visually similar results with minor differences in the
SSIM value. As in the previous examples, higher-order regularization is beneficial
and artifacts occur for the diffusion regularization. The computation time amounts
to roughly 64 to 360 seconds in this example.

In Fig. 5.6, we created an artificial pair of images consisting of a disk to show
the possibilities of intensity changes when using the continuity equation as a con-
straint. Both template and unknown image are constructed so that their total mass
is equal. The measurements are generated as before using only five angles uniformly
distributed in the interval [0, 90] degrees. Furthermore, we use curvature regular-
ization. For the transport equation we observe that the shape is matched, but the
intensity is not correct, see Fig. 5.6d. If we use the continuity equation instead,

125



5. Template-Based Image Reconstruction

(a) Diffusion regularization,
no noise, SSIM 0.920.

(b) Diffusion regularization,
5 % noise, SSIM 0.867.

(c) Diffusion regularization,
10 % noise, SSIM 0.798.

(d) Curvature
regularization, no noise,

SSIM 0.955.

(e) Curvature
regularization, 5 % noise,

SSIM 0.897.

(f) Curvature
regularization, 10 % noise,

SSIM 0.823.

(g) Third-order
regularization, no noise,

SSIM 0.950.

(h) Third-order
regularization, 5 % noise,

SSIM 0.901.

(i) Third-order
regularization, 10 % noise,

SSIM 0.798.

Figure 5.3: Reconstructions for the artificial brain image in Fig. 5.1 using our
method and different regularization functionals. Note that only six measurements
were used. The measured data was corrupted with noise of different levels.
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(a) Template image. (b) Unknown image. (c) Measured noisy
(sinogram) data.

(d) NCC-based distance
with transport equation,

SSIM 0.562.

(e) SSD distance with
transport equation, SSIM

0.568.

(f) NCC-based distance
with continuity equation,

SSIM 0.555.

Figure 5.4: Reconstructions of manually deformed Hand [205] images with differ-
ent image intensity levels using our method. We generated five measurements that
correspond to five equally spaced angles from the interval [0, 75] degrees and added
five percent noise.

intensity changes are possible, which can be observed in Fig. 5.6e. The computation
time for the two results are 90 and 500 seconds, respectively.

In order to demonstrate the practicality of our method, we compute results
from nonsynthetic X-ray tomography data [50, 146], which are available online.3,4

See Fig. 5.7 for these two examples (‘lotus’ and ‘walnut’). The template is generated
by applying filtered backprojection to the full measurements and by subsequently
deforming it. Then, this deformed template is used in our method to compute a
reconstruction from only few measurement directions. The computation times are
roughly 80 and 600 seconds in these examples. In both nonsynthetic examples, the
use of the NCC-based distance proved crucial and no satisfactory result could be
obtained using SSD.

In Fig. 5.8, we demonstrate that our framework is also capable of reconstructing

3https://doi.org/10.5281/zenodo.1254204
4https://doi.org/10.5281/zenodo.1254206
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5. Template-Based Image Reconstruction

3D volumes. Here, we use the SSD distance together with curvature regularization
and the transport equation. We apply the 3D Radon transform to obtain ten
measurements from angles within [0, 180]. The total computation time is roughly
800 seconds.

All in all, our results demonstrate that, given a suitable template image, very rea-
sonable reconstructions can efficiently be obtained from only a few measurements,
even in the presence of noise. Moreover, our examples show that the NCC-based
distance adds robustness to the approach with regard to discrepancies in the image
intensities.

5.6 Conclusions
Overall, our numerical examples show that our implementation yields good results,
as long as the deformation between template and target is fairly regular. By using
the NCC-based distance, robustness with respect to intensity differences between
the template and the target image can be achieved. As already mentioned in the
introduction, we do not follow the metamorphosis approach, since there is too much
flexibility in the model and the source term likely reproduces noise and artifacts
if the data is too limited. It is left for further research to investigate possible
adaptations of the model that allow for the appearance of new objects or structures
in the reconstruction without reproducing noise or artifacts. Possibly, the results
of our method can be used as better template for other algorithms that require
template information. Finally, note that due to the great flexibility of the FAIR
library, it is also possible to use a great variety of regularization functionals for
the velocities and other distances, see [205, Chaps. 7 and 8]. Additionally, our
implementation is not necessarily restricted to the Radon transform and essentially
every (continuous) operator can be used. The multilevel approach can be applied
as long as a meaningful resampling procedure for the operator and the measured
data can be provided.
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(a) Template image. (b) Unknown image. (c) Measured noisy
(sinogram) data.

(d) Continuity equation
with third-order

regularization, SSIM 0.910.

(e) Continuity equation
with curvature

regularization, SSIM 0.753.

(f) Continuity equation
with diffusion

regularization, SSIM 0.560.

(g) Transport equation
with third-order

regularization, SSIM 0.913.

(h) Transport equation
with curvature

regularization, SSIM 0.912.

(i) Transport equation with
diffusion regularization,

SSIM 0.580.

Figure 5.5: Reconstructions for the HNSP [205] image using our approach, differ-
ent regularization functionals, and different PDE constraints. Here, ten measure-
ments corresponding to ten angles equally distributed in the interval [0, 180] degrees
were taken. The measured data was corrupted with five percent noise.
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(a) Template
image.

(b) Unknown
image.

(c) Measured
noisy (sinogram)

data.

(d) Transport
equation, SSIM

0.880.

(e) Continuity
equation, SSIM

0.922.

Figure 5.6: Reconstructions of an image showing a disk obtained with our method.
Five measurements were taken at directions corresponding to five angles equally
distributed in [0, 90] degrees. As before, five percent noise was added.

(a) Template image. (b) Unknown image. (c) Reconstruction,
SSIM 0.984.

(d) Measured Radon
transform data.

(e) Template image. (f) Unknown image. (g) Reconstruction,
SSIM 0.992.

(h) Measured Radon
transform data.

Figure 5.7: Reconstructions based on nonsynthetic X-ray tomographic measure-
ments [50, 146] computed with our method using the transport equation together
with curvature regularization. Measurements from twelve and six directions with
angles in [0, 180] degrees were used.
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(a) Template volume. (b) Unknown volume.

(c) Measured noisy Radon transform data. (d) Reconstruction using the SSD
distance, curvature regularization, and the

transport equation, SSIM 0.887.

Figure 5.8: Reconstruction of a 3D volume (‘mice3D’, see [205]) using our method.
In Fig. 5.8a, Fig. 5.8b, and Fig. 5.8d, slices (left to right, top to bottom) of each
volume along the third coordinate direction are shown. In Fig. 5.8c, slices of the
3D Radon transform measurements are shown. Each slice corresponds to one mea-
surements direction. In total, only ten measurements were taken at angles equally
distributed in [0, 180] degrees. As before, five percent noise was added.
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6. From Optimal Transport to Discrepancy

Abstract

This chapter1 is published in [215]. A common way to quantify the “dis-
tance” between measures is via their discrepancy, also known as maximum
mean discrepancy (MMD). Discrepancies are related to Sinkhorn divergences
Sε with appropriate cost functions as ε → ∞. In the opposite direction, if
ε → 0, Sinkhorn divergences approach another important distance between
measures, namely the Wasserstein distance or more generally optimal trans-
port “distance”. In this chapter, we investigate the limiting process for ar-
bitrary measures on compact sets and Lipschitz continuous cost functions.
In particular, we are interested in the behavior of the corresponding optimal
potentials φ̂ε, ψ̂ε and φ̂K appearing in the dual formulation of the Sinkhorn di-
vergences and discrepancies, respectively. While part of the results are known,
we provide rigorous proofs for some relations which we have not found in this
generality in the literature. Finally, we demonstrate the limiting process by
numerical examples and show the behavior of the distances when used for the
approximation of measures by point measures in a process called dithering.

1Accepted and soon to be published in Handbook of Mathematical Models and Algorithms in
Computer Vision and Imaging by Springer Nature.
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6.1 Introduction

Figure 6.1: Approximation of a measure on S2 by an empirical measure [134] (left)
and a measure supported on a curve [102] (right) using discrepancies as objective
function to minimize.

6.1 Introduction

The approximation of probability measures based on their discrepancies is a well
examined problem in approximation and complexity theory [180, 194, 222]. Discrep-
ancies appear in a wide range of applications, e.g., in the derivation of quadrature
rules [222], the construction of designs [89], image dithering and representation
[102, 134, 245, 259], see also Fig. 6.1, generative adversarial networks [96] and mul-
tivariate statistical testing [107, 137, 138]. In the last two applications, they are
also called kernel based maximum mean discrepancies (MMDs).

On the other hand, optimal transport (OT) “distances” and in particular Wasser-
stein distances became very popular for tackling various problems in imaging sci-
ences, graphics or machine learning [82]. There exists a large amount of papers
both on the theory and applications of OT, for image dithering with Wasserstein
distances see, e.g., [61, 129, 183].

Recently, regularized versions of OT for an efficient numerical treatment, known
as Sinkhorn divergences [81], were used as replacement of OT in data science. Note
that such regularization ideas are also investigated in the earlier works [242, 249, 280,
287]. For appropriately related transport cost functions and discrepancy kernels, the
Sinkhorn divergences interpolate between the OT distance if the parameter goes to
zero and the discrepancy if it goes to infinity [108]. In this chapter, the convergence
behavior is examined for general measures on compact sets. Since cost functions
applied in practice are mainly Lipschitz, we restrict our attention to such costs.
This simplifies some proofs, since the theorem of Arzelà–Ascoli can be utilized.
To make the paper self-contained, we provide most of the proofs although some
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of them are not novel and the corresponding papers are cited in the context. For
estimating approximation rates when approximating measures by those of certain
subsets, see, e.g., [68, 102, 122, 222], the dual form of the discrepancy, respectively
of the (regularized) Wasserstein distance, plays an important role. Therefore, we are
interested in the properties of the optimal dual potentials for varying regularization
parameters. In Proposition 6.13 we prove that the optimal dual potentials converge
uniformly to certain functions as ε → ∞. Then, in Corollary 6.15, we see that
the normalized difference of these limiting functions coincides with the optimal
potential in the dual form of the discrepancy if the cost function and the kernel are
appropriately related. This behavior is underlined by a numerical example.

This chapter is organized as follows: Section 6.2 recalls basic results on measures,
the Kullback-Leibler (KL) divergence and from convex analysis. In Section 6.3, we
introduce discrepancies, in particular their dual formulation. Since these rely on
positive definite kernels, we have a closer look at positive definite and conditionally
positive definite kernels. Optimal transport and in particular Wasserstein distances
are considered in Section 6.4. In Section 6.5, we investigate the limiting processes for
the KL regularized OT distances, when the regularization parameter goes to zero or
infinity. Some results in Proposition 6.8 are novel in this generality; Proposition 6.13
seems to be new as well. Remark 6.7 highlights why the KL divergence should be
preferred as regularizer instead of the (neg)-entropy when dealing with non-discrete
measures. KL regularized OT does not fulfill OTε(µ, µ) = 0, which motivates
the definition of the Sinkhorn divergence Sε in Section 6.6. Further, we prove Γ-
convergence to the discrepancy as ε → ∞ if the cost function of the Sinkhorn
divergence is adapted to the kernel defining the discrepancy. Section 6.7 underlines
the results on the limiting process by numerical examples. Further, we provide an
example on the dithering of the standard Gaussian when Sinkhorn divergences with
respect to different regularization parameters ε are involved. Finally, conclusions
and directions of future research are given in Section 6.8.

6.2 Preliminaries
Measures Let X be a compact Polish space (separable, complete metric space)
with metric dX. By B(X) we denote the Borel σ-algebra on X and by M(X) the
linear space of all finite signed Borel measures on X, i.e., all µ : B(X) → R satisfying
µ(X) < ∞ and for any sequence {Bk}k∈N ⊂ B(X) of pairwise disjoint sets the
relation µ(∪∞

k=1Bk) =
∑︁∞

k=1 µ(Bk). In the following, the subset of non-negative
measures is denoted by M+(X). The support of a measure µ is defined as the
closed set

supp(µ) :=
{︁
x ∈ X : B ⊂ X open, x ∈ B =⇒ µ(B) > 0

}︁
.

The total variation measure of µ ∈ M(X) is defined by

|µ|(B) := sup
{︂ ∞∑︂
k=1

|µ(Bk)| :
∞⋃︂
k=1

Bk = B, Bk pairwise disjoint
}︂
.
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6.2 Preliminaries

With the norm ∥µ∥M = |µ|(X) the space M(X) becomes a Banach space. By C(X)
we denote the Banach space of continuous real-valued functions on X equipped with
the norm ∥φ∥C(X) := maxx∈X |φ(x)|. The space M(X) can be identified via Riesz’
representation theorem with the dual space of C(X) and the weak-∗ topology on
M(X) gives rise to the weak convergence of measures. More precisely, a sequence
{µk}k∈N ⊂ M(X) converges weakly to µ and we write µk ⇀ µ, if

lim
k→∞

∫︂
X
φ dµk =

∫︂
X
φ dµ for all φ ∈ C(X).

For a non-negative, finite measure µ and p ∈ [1,∞), let Lp(X, µ) be the Banach
space (of equivalence classes) of complex-valued functions with norm

∥f∥Lp(X,µ) =

(︃∫︂
X
|f |p dµ

)︃ 1
p

<∞.

A measure ν ∈ M(X) is absolutely continuous with respect to µ and we write
ν ≪ µ if for every A ∈ B(X) with µ(A) = 0 we have ν(A) = 0. If µ, ν ∈ M+(X)
satisfy ν ≪ µ, then the Radon-Nikodym derivative σν ∈ L1(X, µ) (also denoted
by dν

dµ
) exists and ν = σνµ. Further, µ, ν ∈ M(X) are mutually singular and we

write µ ⊥ ν if two disjoint sets Xµ, Xν ∈ B(X) exist such that X = Xµ ∪ Xν and
for every A ∈ B(X) we have µ(A) = µ(A ∩ Xµ) and ν(A) = ν(A ∩ Xν). For any
µ, ν ∈ M+(X), there exists a unique Lebesgue decomposition of µ with respect to ν
given by µ = σµν + µ⊥, where σ ∈ L1(X, ν) and µ⊥ ⊥ ν.

By P(X) we denote the set of Borel probability measures on X, i.e., non-negative
Borel measures with µ(X) = 1. This set is weakly compact, i.e., compact with respect
to the weak-∗ topology. Note that there is an ambiguity in the notation as the above
usual weak-∗ convergence is called weak convergence in stochastics. In Section 6.4,
we introduce a metric on P(X) such that it becomes a Polish space.

Convex analysis The following can be found, e.g., in [46]. Let V be a real Banach
space with dual V ∗, i.e., the space of real-valued continuous linear functionals on
V . We use the notation ⟨v, x⟩ = v(x), v ∈ V ∗, x ∈ V . For F : V → (−∞,+∞], the
domain of F is given by domF := {x ∈ V : F (x) ∈ R}. If domF ̸= ∅, then F is
called proper. The subdifferential of F : V → (−∞,+∞] at a point x0 ∈ domF is
defined as

∂F (x0) :=
{︁
v ∈ V ∗ : F (x) ≥ F (x0) + ⟨v, x− x0⟩

}︁
,

and ∂F (x0) = ∅ if x0 ̸∈ domF . The Fenchel conjugate F ∗ : V ∗ → (−∞,+∞] is
given by

F ∗(v) = sup
x∈V

{⟨v, x⟩ − F (x)}.

If F : V → ( − ∞,+∞] is convex and lower semi-continuous (lsc) at x ∈ domF ,
then

v ∈ ∂F (x) ⇔ x ∈ ∂F ∗(v). (6.1)
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6. From Optimal Transport to Discrepancy

By Γ0(V ) we denote the set of proper, convex, lsc functions mapping from V to
(−∞,+∞]. Let W be another real Banach space. Then, for F ∈ Γ0(V ), G ∈ Γ0(W )
and a linear, bounded operator A : V → W with the property that there exists
x ∈ domF such that G is continuous at Ax, the following Fenchel–Rockafellar
duality relation is fulfilled

sup
x∈V

{︁
−F (−x)−G(Ax)

}︁
= inf

w∈W ∗

{︁
F ∗(A∗w) +G∗(w)

}︁
, (6.2)

see [104, Thm. 4.1, p. 61], where we consider

sup
x∈V

{︁
−F (−x)−G(Ax)

}︁
= − inf

x∈V

{︁
F (−x) +G(Ax)

}︁
as primal problem with respect to the notation in [104]. If the optimal (primal)
solution x̂ exists, it is related to any optimal (dual) solution ŵ by

Ax̂ ∈ ∂G∗(ŵ), (6.3)

see [104, Prop. 4.1].

Kullback-Leibler divergence A function f : [0,+∞) → [0,+∞] is called en-
tropy function, if it is convex, lsc and domf ∩ (0,+∞) ̸= ∅. The corresponding
recession constant is given by f ′

∞ = limx→∞
f(x)
x

. For every µ, ν ∈ M+(X) with
Lebesgue decomposition µ = σµν + µ⊥, the f -divergence is defined as

Df (µ, ν) =

∫︂
X
f ◦ σµ dν + f ′

∞ µ⊥(X). (6.4)

In case that f ′
∞ = ∞ and µ⊥(X) = 0, we make the usual convention ∞· 0 = 0. The

f -divergence fulfills Df (µ, ν) ≥ 0 for all µ, ν ∈ M+(X) with equality if and only if
µ = ν, and is in general neither symmetric nor satisfies a triangle inequality. The
associated mapping Df : M+(X)×M+(X) → [0,+∞] is jointly convex and weakly
lsc, see [188, Cor. 2.9]. The f -divergence can be written in the dual form

Df (µ, ν) = sup
φ∈C(X)

∫︂
X
φ dµ−

∫︂
X
f ∗ ◦ φ dν,

see [188, Rem. 2.10]. Hence, Df (·, ν) is the Fenchel conjugate of H : C(X) → R
given by H(φ) :=

∫︁
X f

∗ ◦ φ dν. If f ∗ is differentiable, we directly deduce from (6.1)
that

φ ∈ ∂µDf (µ, ν) ⇔ µ = ∇H(φ) ⇔ µ = ∇f ∗ ◦ φν. (6.5)

In the following, we focus on the Shannon-Boltzmann entropy function and its
Fenchel conjugate given by

f(x) = x log(x)− x+ 1 and f ∗(x) = exp(x)− 1

with the agreement 0 log 0 = 0. The corresponding f -divergence is the Kullback-
Leibler divergence KL: M+(X) × M+(X) → [0,+∞]. For µ, ν ∈ M+(X) with
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6.3 Discrepancies

existing Radon-Nikodym derivative σµ = dµ
dν

of µ with respect to ν, formula (6.4)
can be written as

KL(µ, ν) :=

∫︂
X
log(σµ) dµ+ ν(X)− µ(X). (6.6)

In case that the above Radon-Nikodym derivative does not exist, (6.4) implies
KL(µ, ν) = +∞. For µ, ν ∈ P(X) the last two summands in (6.6) cancel each
other. Hence, we have for discrete measures µ =

∑︁n
j=1 µjδxj and ν =

∑︁n
j=1 νjδxj

with µj, νj ≥ 0 and
∑︁n

j=1 µj =
∑︁n

j=1 νj = 1 that

KL(µ, ν) =
n∑︂
j=1

log

(︃
µj
νj

)︃
µj.

Further, the KL divergence is strictly convex with respect to the first variable. Due
to the Fenchel conjugate pairing

H(φ) =

∫︂
X
exp(φ)− 1 dν and H∗(µ) = KL(µ, ν), (6.7)

the derivative relation (6.5) simplifies to

φ ∈ ∂µKL(µ, ν) ⇔ µ = eφν ⇔ φ = log
(︂ dµ

dν

)︂
. (6.8)

Finally, note that the KL divergence and the total variation norm ∥ ·∥M are related
by the Pinsker inequality ∥µ− ν∥2M ≤ KL(µ, ν).

6.3 Discrepancies

In this section, we introduce the notation of discrepancies and have a closer look
at (conditionally) positive definite kernels. In particular, we emphasize how condi-
tionally positive definite kernels can be modified to positive definite ones.

Let σX ∈ M(X) be non-negative with supp(σX) = X. The given definition of
discrepancies is based on symmetric, positive definite, continuous kernels. There
is a close relation to general discrepancies related to measures on B(X), see [222].
Recall that a symmetric function K : X×X → R is positive definite if for any finite
number n ∈ N of points xj ∈ X, j = 1, . . . , n, the relation

n∑︂
i,j=1

aiajK(xi, xj) ≥ 0

is satisfied for all (aj)nj=1 ∈ Rn and strictly positive definite if strict inequality holds
for all (aj)nj=1 ̸= 0. Assuming that K ∈ C(X × X) is symmetric, positive definite,
we know by Mercer’s theorem [80, 195, 257] that there exists an orthonormal basis
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6. From Optimal Transport to Discrepancy

{ϕk : k ∈ N} of L2(X, σX) and non-negative coefficients {αk}k∈N ∈ ℓ1 such that K
has the Fourier expansion

K(x, y) =
∞∑︂
k=0

αkϕk(x)ϕk(y) (6.9)

with absolute and uniform convergence of the right-hand side. If αk > 0 for some
k ∈ N0, the corresponding function ϕk is continuous. Every function f ∈ L2(X, σX)
has a Fourier expansion

f =
∞∑︂
k=0

f̂kϕk, f̂k :=

∫︂
X
fϕk dσX.

Moreover, for k ∈ N0 with αk > 0, the Fourier coefficients of µ ∈ P(X) are well-
defined by

µ̂k :=

∫︂
X
ϕk dµ.

The kernel K gives rise to a reproducing kernel Hilbert space (RKHS). More
precisely, the function space

HK(X) :=
{︂
f ∈ L2(X, σX) :

∞∑︂
k=0

α−1
k |f̂k|2 <∞

}︂
equipped with the inner product and the corresponding norm

⟨f, g⟩HK(X) =
∞∑︂
k=0

α−1
k f̂kĝk, ∥f∥HK(X) = ⟨f, f⟩

1
2

HK(X) (6.10)

forms a Hilbert space with reproducing kernel, i.e.,

K(x, ·) ∈ HK(X) for all x ∈ X,
f(x) = ⟨f,K(x, ·)⟩HK(X) for all f ∈ HK(X), x ∈ X. (6.11)

Note that f ∈ HK(X) implies f̂k = 0 if αk = 0, in which case we make the con-
vention α−1

k f̂k = 0 in (6.10). Indeed, HK(X) is the closure of the linear span of
{K(xj, ·) : xj ∈ X} with respect to the norm (6.10). The space HK(X) is contin-
uously embedded in C(X) and hence point evaluations in HK(X) are continuous.
Since the series in (6.9) converges uniformly and the functions ϕk are continuous,
the function

∥K(x, ·)∥HK(X) =
⃦⃦⃦ ∞∑︂
k=0

αkϕk(x)ϕk(·)
⃦⃦⃦
HK(X)

=

(︃ ∞∑︂
k=0

αk|ϕk(x)|2
)︃ 1

2

is also continuous so that we have
∫︁
X ∥K(x, ·)∥HK(X) dµ(x) < ∞. By the definition

of Bochner integrals, see [165, Prop. 1.3.1], we have for any µ ∈ P(X) that∫︂
X
K(x, ·) dµ(x) ∈ HK(X). (6.12)
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6.3 Discrepancies

For µ, ν ∈ M(X), the discrepancy DK(µ, ν) is defined as norm of the linear
operator T : HK → R with φ ↦→

∫︁
X φ dξ,

DK(µ, ν) = max
∥φ∥HK (X)≤1

∫︂
X
φ dξ, (6.13)

where ξ := µ − ν, see [128, 222]. If µn ⇀ µ and νn ⇀ ν as n → ∞, then also
µn⊗νn ⇀ µ⊗ν. Thus, continuity of K implies that limn→∞ DK(µn, νn) = DK(µ, ν).
Since ∫︂

X
φ dξ =

∫︂
X
⟨φ,K(x, ·)⟩HK(X) dξ(x) =

⟨︂
φ,

∫︂
X
K(x, ·) dξ(x)

⟩︂
HK(X)

,

we obtain by Schwarz’ inequality that the optimal dual potential (up to the sign)
is given by

φ̂K =

∫︁
XK(x, ·) dξ(x)

∥
∫︁
XK(x, ·) dξ(x)∥HK(X)

=

∫︁
XK(x, ·) dµ(x)−

∫︁
XK(x, ·) dν(x)

∥K(x, ·) dµ(x)−
∫︁
XK(x, ·) dν(x)∥HK(X)

. (6.14)

In the following, it is always clear from the context if the Fourier transform of
the function or the optimal dual potential is meant. Further, Riesz’ representation
theorem implies

DK(µ, ν) = max
∥φ∥HK (X)≤1

∫︂
X
φ dξ =

⃦⃦⃦∫︂
X
K(x, ·) dξ(x)

⃦⃦⃦
HK(X)

,

so that we conclude by Fubini’s theorem and (6.11) that

D2
K(µ, ν) =

⃦⃦⃦∫︂
X
K(x, ·) dξ(x)

⃦⃦⃦2
HK(X)

=

∫︂
X2

K d(ξ ⊗ ξ) (6.15)

=

∫︂
X2

K d(µ⊗ µ) +

∫︂
X2

K d(ν ⊗ ν)− 2

∫︂
X2

K d(µ⊗ ν).

By (6.9), we finally get

D2
K(µ, ν) =

∞∑︂
k=0

αk
⃓⃓
µ̂k − ν̂k

⃓⃓2
, (6.16)

where the summation runs over all k ∈ N0 with αk > 0.

Remark 6.1. (Relation to attraction-repulsion functionals) We briefly con-
sider the relation to attraction-repulsion functionals motivated from electrostatic
halftoning, see [245, 259]. Let ν = w dx be fixed, for example a continuous (nor-
malized) image with gray values in [0, 1] represented by w : X → [0, 1], where pure
black is the largest value of w and white the smallest one. Then, looking for a dis-
crete measure µ = 1

M

∑︁M
j=1 δ(·−pj) that approximates ν by minimizing the squared

discrepancy is equivalent to solving the minimization problem

argmin
p∈RM

{︃
1

2M

M∑︂
i,j=1

K(pi, pj)⏞ ⏟⏟ ⏞
repulsion

−
M∑︂
i=1

∫︂
X
w(x)K(x, pi)⏞ ⏟⏟ ⏞
attraction

}︃
.
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6. From Optimal Transport to Discrepancy

For K(x, y) = h(∥x− y∥) and an decreasing function h : [0,+∞) → R, it becomes
clear that

• the first term is minimal if the points are far away from each other, implying
a repulsion;

• the second (negative) term becomes maximal if for large w(x), there are many
points positioned in this area; so it can be considered as an attraction steered
by w.

Kernels. In this paragraph, we want to have a closer look at appropriate kernels.
Recall that for symmetric, positive definite kernels Ki ∈ C(X × X), i = 1, 2, and
α > 0, the kernels αK1, K1 +K2, K1 ·K2 and exp(K1) are again positive definite,
see [256, Lems. 4.5 and 4.6].

Of special interest are so-called radial kernels of the form

K(x, y) := h
(︁
dX(x, y)

)︁
,

where h : [0,+∞) → R. In the following, the discussion is restricted to compact sets
X in Rd and the Euclidean distance dX(x, y) = ∥x − y∥. Many results on positive
definite functions on Rd go back to Schoenberg [246] and Micchelli [198]. For a good
overview, we refer to [278], where some of the following statements can be found.
Clearly, restricting positive definite kernels on Rd to compact subsets X results in
positive definite kernels on X. The radial kernels related to the Gaussian, which
are quite popular in MMDs, and the inverse multiquadric given by

h(r) = e−r
2/c2 and h(r) = (c2 + r2)−p, c, p > 0,

are known to be strictly positive definite on Rd for every d ∈ N. Further, the
following compactly supported functions h give rise to positive definite kernels in
Rd:

h(r) = (1− r)p+, p ≥
⌊︃
d

2

⌋︃
+ 1, (6.17)

where ⌊a⌋ denotes the largest integer less or equal than a ∈ R and a+ := max(a, 0).
In connection with Wasserstein distances, we are interested in (negative) powers

of distances K(x, y) = ∥x − y∥p, p > 0, related to the functions h(r) = rp. Un-
fortunately, all these functions are not positive definite! By (6.17), we know that
K̃(x, y) = 1 − |x − y| is positive definite in one dimension d = 1. A more general
result for the Euclidean distance is given in the following proposition.

Proposition 6.2. Let K(x, y) = −∥x − y∥. For every compact set X ⊂ Rd, there
exists a constant C > 0 such that the function

K̃(x, y) := C − ∥x− y∥

is positive definite on X. Further, for µ, ν ∈ P(X), it holds

D2
K̃
(µ, ν) = D2

K(µ, ν) and φ̂K̃ = φ̂K .

142



6.3 Discrepancies

Proof. In [131, Cor. 2.15] it was shown that K̃ is positive definite. The rest follows in
a straightforward way from (6.15) and (6.14) regarding that µ and ν are probability
measures.

Some interesting functions such as negative powers of Euclidean distances or the
smoothed distance function

√︁
c2 + ∥x− y∥2, 0 < c ≪ 1, are conditionally positive

definite. Let Πm−1(Rd) denote the
(︁
d+m−1

d

)︁
-dimensional space of polynomials on

Rd of absolute degree (sum of exponents) ≤ m − 1. A function K : X × X → R is
conditionally positive definite of order m if for all points x1, . . . , xn ∈ Rd, n ∈ N,
the relation

n∑︂
i,j=1

aiajK(xi, xj) ≥ 0 (6.18)

holds true for all a1, . . . , an ∈ R satisfying

n∑︂
i=1

aiP (xi) = 0 for all P ∈ Πm−1(Rd).

If strong inequality holds in (6.18) except for ai = 0 for all i = 1, . . . , n, then K is
called strictly conditionally positive definite of order m. In particular, for m = 1,
the condition (6.18) relaxes to

∑︁n
i=1 ai = 0.

The radial kernels related to the following functions are strictly conditionally
positive definite of order m on Rd:

h(r) = (−1)⌈p⌉(c2 + r2)p, p > 0, p ̸∈ N,m = ⌈p⌉,
h(r) = (−1)⌈p/2⌉rp, p > 0, p ̸∈ 2N,m = ⌈p/2⌉,
h(r) = (−1)k+1r2k log(r), k ∈ N,m = k + 1,

where ⌈a⌉, denotes the smallest integer larger or equal than a ∈ R. The first
group of functions are called multiquadric and the last group is known as thin plate
splines. In connection with Wasserstein distances, the second group of functions is
of interest.

By the following lemma, it is easy to turn conditionally positive definite func-
tions into positive definite ones. However, only for conditionally positive definite
functions of order m = 1, the discrepancy remains the same.

Lemma 6.3. Let Ξ := {uk : k = 1, . . . , N} with N :=
(︁
d+m−1
m−1

)︁
be a set of points

such that P (uk) = 0 for all k = 1, . . . , N , P ∈ Πm−1(Rd), is only fulfilled for
the zero polynomial. Denote by {Pk : k = 1, . . . , N} the set of Lagrangian basis
polynomials with respect to Ξ, i.e., Pk(uj) = δjk. Let K ∈ C(X×X) be a symmetric
conditionally positive definite kernel of order m.
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6. From Optimal Transport to Discrepancy

i) Then

K̃(x, y) := K(x, y)−
N∑︂
j=1

Pj(x)K(uj, y)−
N∑︂
k=1

Pk(y)K(x, uk)

+
N∑︂

j,k=1

Pj(x)Pk(y)K(uj, uk)

is a positive definite kernel.

ii) If µ and ν have the same moments up to order m − 1, then they satisfy
D2
K̃
(µ, ν) = D2

K(µ, ν).

iii) In particular, we have for m = 1, µ, ν ∈ P(X) and any fixed u ∈ X that

K̃(x, y) = K(x, y)−K(u, y)−K(x, u) +K(u, u) (6.19)

and

D2
K̃
(µ, ν) = D2

K(µ, ν),

φ̂K̃ =

∫︁
XK(x, ·) dµ(x)−

∫︁
XK(x, ·) dν(x) + cν − cµ

∥
∫︁
XK(x, ·) dµ(x)−

∫︁
XK(x, ·) dν(x) + cν − cµ∥HK(X)

,

where
cµ :=

∫︂
X

K(x, u) dµ(x) and cν :=

∫︂
X

K(x, u) dν(x). (6.20)

Proof. i) This part follows by straightforward computation, see [278, Thm. 10.18].
ii) Assuming that µ and ν have the same moments up to order m− 1, i.e.,

pj =

∫︂
X
Pj(x) dµ(x) =

∫︂
X
Pj(x) dν(x), j = 1, . . . , N,

and abbreviating for the symmetric kernels

cµ,j :=

∫︂
X
K(uj, y) dµ(y), cν,j :=

∫︂
X
K(uj, y) dν(y),

we obtain by definition of K̃ that

D2
K̃
(µ, ν)

=

∫︂
X2

K̃ d(µ⊗ µ) +

∫︂
X2

K̃ d(ν ⊗ ν)− 2

∫︂
X2

K̃ d(µ⊗ ν)

=D2
K̃
(µ, ν)−

N∑︂
j=1

pj(cµ,j + cν,j)−
N∑︂
k=1

pj(cµ,k + cν,k) + 2
N∑︂

j,k=1

pjpkK(uj, uk)

+
N∑︂
j=1

pj(cµ,j + cν,j) +
N∑︂
k=1

pj(cµ,k + cν,k)− 2
N∑︂

j,k=1

pjpkK(uj, uk)

=D2
K(µ, ν).
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6.4 Optimal transport and Wasserstein distances

iii) Let m = 1. Then we have for the optimal dual potential in (6.14) related to DK̃

that

φ̂K̃ =

∫︁
X K̃(x, ·) dµ(x)−

∫︁
X K̃(x, ·) dν(x)

∥
∫︁
X K̃(x, ·) dµ(x)−

∫︁
X K̃(x, ·) dν(x)∥HK(X)

=

∫︁
XK(x, ·) dµ(x)−

∫︁
XK(x, ·) dν(x) + cν − cµ

∥
∫︁
XK(x, ·) dµ(x)−

∫︁
XK(x, ·) dν(x) + cν − cµ∥HK(X)

.

6.4 Optimal transport and Wasserstein distances
The following discussion about optimal transport is based on [6, 82, 243], where
many aspects simplify due to the compactness of X and the assumption that the
cost c is Lipschitz continuous. Let µ, ν ∈ P(X) and c ∈ C(X×X) be a non-negative,
symmetric and Lipschitz continuous function. Then, the Kantorovich problem of
optimal transport (OT) reads

OT(µ, ν) := inf
π∈Π(µ,ν)

∫︂
X2

c dπ, (6.21)

where Π(µ, ν) denotes the set of joint probability measures π on X2 with marginals
µ and ν. In our setting, the OT functional π ↦→

∫︁
X2 c dπ is weakly continuous,

(6.21) has a solution and every such minimizer π̂ is called optimal transport plan.
In general, we can not expect the optimal transport plan to be unique. However, if
X is a compact subset of a separable Hilbert space, c(x, y) = ∥x− y∥pX, p ∈ (1,∞),
and either µ or ν is regular, see [6, Def. 6.2.2] for the technical definition, then (6.21)
has a unique solution. Instead of giving the exact definition, we want to remark
that for X = Rd the regular measures are precisely the ones which have a density
with respect to the Lebesgue measure.

The c-transform φc ∈ C(X) of φ ∈ C(X) is defined as

φc(y) = min
x∈X

{︁
c(x, y)− φ(x)

}︁
.

Note that φc has the same Lipschitz constant as c. A function φc ∈ C(X) is called
c-concave if it is the c-transform of some function φ ∈ C(X).

The dual formulation of the OT problem (6.21) reads

OT(µ, ν) = max
(φ,ψ)∈C(X)2

φ(x)+ψ(y)≤c(x,y)

∫︂
X
φ dµ+

∫︂
X
ψ dν. (6.22)

Maximizing pairs are essentially of the form (φ, ψ) = (φ̂, φ̂c) for some c-concave
function φ̂ and fulfill φ̂(x) + φ̂c(y) = c(x, y) in supp(π̂), where π̂ is any optimal
transport plan. The function φ̂ is called (Kantorovich) potential for the couple
(µ, ν). If (φ̂, ψ̂) is an optimal pair, clearly also (φ̂−C, ψ̂+C) with C ∈ R is optimal
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6. From Optimal Transport to Discrepancy

and manipulations outside of supp(µ) and supp(ν) do not change the functional
value. But even if we exclude such manipulations, the optimal dual potentials are
in general not unique as Example 6.4 shows.

Example 6.4. We choose X = [0, 1], c(x, y) = |x − y|, µ = δ0/2 + δ1/2 and
ν = δ0.1/2 + δ0.9/2. Then, OT(µ, ν) = 0.1 with the unique optimal transport plan
π̂ = 1

2
δ0,0.1 +

1
2
δ1,0.9. Optimal dual potentials are given by

φ̂1(x) =

⎧⎪⎨⎪⎩
0.1− x for x ∈ [0, 0.1],

x− 0.9 for x ∈ [0.9, 1],

0 else,
and φ̂2(x) =

⎧⎪⎨⎪⎩
0.2− x for x ∈ [0, 0.2],

x− 0.9 for x ∈ [0.9, 1],

0 else.

Clearly, these potentials do not differ only by a constant.

Remark 6.5. Note that the space C(X)2 in the dual problem could also be replaced
with C(supp(µ)) × C(supp(ν)). Using the Tietze extension theorem, any feasible
point of the restricted problem can be extended to a feasible point of the original
problem and hence the problems coincide. If the problem is restricted, all other
concepts have to be adapted accordingly.

For p ∈ [1,∞), the p-Wasserstein distance Wp between µ, ν ∈ P(X) is defined
by

Wp(µ, ν) :=

(︃
min

π∈Π(µ,ν)

∫︂
X2

d(x, y)pdπ(x, y)

)︃ 1
p

.

It is a metric on P(X), which metrizes the weak topology. Indeed, due to compact-
ness of X, we have that µk ⇀ µ if and only if limk→∞Wp(µk, µ) = 0.

For 1 ≤ p ≤ q < ∞ it holds Wp ≤ Wq. The distance W1 is also called
Kantorovich-Rubinstein distance or Earth’s mover distance. Here, it holds φc = −φ
and the dual problem reads

W1(µ, ν) = max
|φ|Lip(X)≤1

∫︂
X
φ dξ, ξ := µ− ν,

where the maximum is taken over all Lipschitz continuous functions with Lipschitz
constant bounded by 1. This looks similar to the discrepancy (6.13), but the space
of test functions is larger for W1.

The distance W1 is related to Wp by

W1(µ, ν) ≤ Wp(µ, ν) ≤ CW1(µ, ν)
1
p

with a constant 0 ≤ C <∞ depending on diam(X) and p.
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6.5 Regularized optimal transport

6.5 Regularized optimal transport
In this section, we give a self-contained introduction to continuous regularized opti-
mal transport. For µ, ν ∈ P(X) and ε > 0, regularized OT is defined as

OTε(µ, ν) := min
π∈Π(µ,ν)

{︂∫︂
X2

c dπ + εKL(π, µ⊗ ν)
}︂
. (6.23)

Compared to the original OT problem, we will see in the numerical part that OTε

can be efficiently solved numerically, see also [82]. Moreover, OTε has the following
properties.

Lemma 6.6.

i) There is a unique minimizer π̂ε ∈ P(X2) of (6.23) with finite value.

ii) The function OTε is weakly continuous and Fréchet differentiable.

iii) For any µ, ν ∈ P(X) and ε1, ε2 ∈ [0,∞] with ε1 ≤ ε2 it holds

OTε1(µ, ν) ≤ OTε2(µ, ν).

Proof. i) First, note that µ ⊗ ν is a feasible point and hence the infimum is finite.
Existence of minimizers follows as the functional is weakly lsc and Π(µ, ν) ⊂ P(X2)
is weakly compact. Uniqueness follows since KL(·, µ⊗ ν) is strictly convex.

ii) The proof uses the dual formulation in Proposition 6.9, see [108, Prop. 2].
iii) Let π̂ε2 be the minimizer for OTε2(µ, ν). Then, it holds

OTϵ2(µ, ν) =

∫︂
X2

c dπ̂ε2 + ε2KL(π̂ε2 , µ⊗ ν)

≥
∫︂
X2

c dπ̂ε2 + ε1KL(π̂ε2 , µ⊗ ν) ≥ OTϵ1(µ, ν).

Note that in special cases, e.g., for absolutely continuous measures, see [56, 187],
it is possible to show convergence of the optimal solutions π̂ε to an optimal solution
of OT(µ, ν) as ε → 0. However, we are not aware of a fully general result. An
extension of entropy regularization to unbalanced OT is discussed in [69].

Originally, entropic regularization was proposed in [81] for discrete probability
measures with the negative entropy E, see also [227],

˜︃OTε(µ, ν) := min
π∈Π(µ,ν)

{︂∫︂
X2

c dπ + εE(π)
}︂
, E(π) :=

n∑︂
i,j=1

log(pij)pij = KL(π, λ⊗ λ),

where λ denotes the counting measure. For π ∈ Π(µ, ν) it is easy to check that

E(π) = KL(π, µ⊗ ν) +
n∑︂

i,j=1

log(µiνj)µiνj = KL(π, µ⊗ ν) + KL(µ⊗ ν, λ⊗ λ),

i.e., the minimizers are independent of the chosen regularization. For non-discrete
measures, special care is necessary as the following remark shows.
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Remark 6.7. (KL(π, µ⊗ν) versus E(π) regularization) Since the entropy is only
defined for measures with densities, we consider compact sets X ⊂ Rd equipped with
the normalized Lebesgue measure λ and µ, ν ≪ λ with densities σµ, σν ∈ L1(X).
For π ≪ λ⊗ λ with density σπ the entropy is defined by

E(π) =

∫︂
X2

log(σπ)σπ d(λ⊗ λ) = KL(π, λ⊗ λ).

Note that for any π ∈ Π(µ, ν) we have

π ≪ µ⊗ ν ⇐⇒ π ≪ λ⊗ λ,

where the right implication follows directly and the left one can be seen as follows:
If π ≪ λ⊗ λ with density σπ ∈ L1(X× X), then

0 =

∫︂
{z∈X:σµ(z)=0}

∫︂
X
σπ(x, y) dy dx.

Consequently, we get σπ(x, y) = 0 a.e. on {z ∈ X : σµ(z) = 0} × X (for any
representative of σµ). The same reasoning is applicable to X×{z ∈ X : σν(z) = 0}.
Thus,

π = σπ (λ⊗ λ) =
σπ(x, y)

σµ(x)σν(y)
(µ⊗ ν),

where the quotient is defined as zero if σµ or σν vanish. Hence, the left implication
also holds true.

If KL(µ⊗ ν, λ⊗ λ) <∞, we conclude for any π ≪ λ⊗ λ with π ∈ Π(µ, ν) that
the following expressions are well-defined

KL(π, λ⊗ λ)−KL(µ⊗ ν, λ⊗ λ)

=

∫︂
X2

log(σπ) dπ −
∫︂
X2

log
(︂ d(µ⊗ ν)

d(λ⊗ λ)

)︂
d(µ⊗ ν)

= KL(π, µ⊗ ν) +

∫︂
X2

log
(︁
σµ(x)σν(y)

)︁
dπ(x, y)−

∫︂
X2

log
(︁
σµ(x)σν(y)

)︁
dµ(x) dν(y)

= KL(π, µ⊗ ν).

Consequently, in this case we also have˜︃OTε(µ, ν) = OTε(µ, ν) + εKL(µ⊗ ν, λ⊗ λ).
The crux is the condition KL(µ⊗ ν, λ⊗ λ) <∞, which is equivalent to µ, ν having
finite entropy, i.e., σµ, σν are in a so-called Orlicz space L logL [209]. The authors
in [74] considered the entropy as regularization (with continuous cost function)
and pointed out that ˜︃OTε(µ, ν) admits a (finite) minimizer exactly in this case.
However, we have seen that we can avoid this existence trouble if we regularize
with KL(π, µ ⊗ ν) instead, which therefore seems to be a more natural choice. A
comparison of the settings and a more general existence discussion based on merely
continuous cost functions can be also found in [90].

Another possibility is to use quadratic regularization instead, see [189] for more
details. In connection with discrepancies, we are especially interested in the limiting
case ε → ∞. The next proposition is basically known, see [82, 108]. However, we
have not found it in this generality in the literature.
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Proposition 6.8.

i) It holds limε→∞OTε(µ, ν) = OT∞(µ, ν), where

OT∞(µ, ν) :=

∫︂
X2

c d(µ⊗ ν).

ii) It holds limε→0OTε(µ, ν) = OT(µ, ν).

Proof. i) For π = µ⊗ ν, we have∫︂
X2

c dπ + εKL(π, µ⊗ ν) = OT∞(µ, ν)

and consequently lim supε→∞ OTε(µ, ν) ≤ OT∞(µ, ν). In particular, the optimal
transport plan π̂ε satisfies lim supε→∞ εKL(π̂ε, µ ⊗ ν) ≤ OT∞(µ, ν). Since KL is
weakly lsc, we conclude that the sequence of minimizers π̂ε satisfies π̂ε ⇀ µ⊗ ν as
ε→ ∞. Hence, we obtain the desired result from

lim inf
ε→∞

OTε(µ, ν) = lim inf
ε→∞

∫︂
X2

c dπ̂ε + εKL(π̂ε, µ⊗ ν)

≥ lim inf
ε→∞

∫︂
X2

c dπ̂ε = OT∞(µ, ν).

ii) This part is more involved and follows from Proposition 6.13 ii).

Similar as OT in (6.22), its regularized version OTε can be written in dual form,
see [69, 74].

Proposition 6.9. The (pre-)dual problem of OTε is given by

OTε(µ, ν) = sup
(φ,ψ)∈C(X)2

{︂∫︂
X
φ dµ+

∫︂
X
ψ dν

− ε

∫︂
X2

exp
(︂φ(x) + ψ(y)− c(x, y)

ε

)︂
− 1 d(µ⊗ ν)

}︂
. (6.24)

If optimal dual solutions φ̂ε and ψ̂ε exist, they are related to the optimal transport
plan π̂ε by

π̂ε = exp
(︂ φ̂ε(x) + ψ̂ε(y)− c(x, y)

ε

)︂
µ⊗ ν. (6.25)

Proof. Let us consider F ∈ Γ0(C(X)2), G ∈ Γ0(C(X2)) with Fenchel conjugates
F ∗ ∈ Γ0(M(X)2), G∗ ∈ Γ0(M(X2)) together with a linear bounded operator
A : C(X)2 → C(X2) with adjoint operator A∗ : M(X2) → M(X)2 defined by

F (φ, ψ) =

∫︂
X
φ dµ+

∫︂
X
ψ dν,

G(φ) = ε

∫︂
X2

exp
(︂φ− c

ε

)︂
− 1 d(µ⊗ ν),

A(φ, ψ)(x, y) = φ(x) + ψ(y).
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Then, (6.24) has the form of the left-hand side in (6.2). Incorporating (6.7), we get

G∗(π) =

∫︂
X
c dπ + εKL(π, µ⊗ ν).

Using the indicator function ιC defined by ιC(x) := 0 for x ∈ C and ιC(x) := +∞
otherwise, we have

F ∗(A∗π) = sup
(φ,ψ)∈C(X)2

⟨A∗π, (φ, ψ)⟩ −
∫︂
X
φ dµ−

∫︂
X
ψ dν

= sup
(φ,ψ)∈C(X)2

⟨π, φ(x) + ψ(y)⟩ −
∫︂
X
φ dµ−

∫︂
X
ψ dν

= ιΠ(µ,ν)(π).

Now, the duality relation follows from (6.2).
If the optimal solution (φ̂ε, ψ̂ε) exists, we can apply (6.3) and (6.8) to obtain

φ̂ε(x) + ψ̂ε(y) = c+ log

(︃
dπ̂ε

d(µ⊗ ν)

)︃
,

which yields (6.25).

Remark 6.10. Using the Tietze extension theorem, we could also replace the space
C(X)2 by C(supp(µ))× C(supp(ν)).

Note that the last term in (6.24) is a smoothed version of the associated con-
straint φ(x)+ψ(y) ≤ c(x, y) appearing in (6.22). Clearly, the values of φ and ψ are
only relevant on supp(µ) and supp(ν), respectively. Further, for any φ, ψ ∈ C(X)
and C ∈ R, the potentials φ+ C,ψ − C realize the same value in (6.24).

For fixed φ or ψ, the corresponding maximizing potentials in (6.24) are given
by

ψ̂φ,ε = Tµ,ε(φ) on supp(ν) and φ̂ψ,ε = Tν,ε(ψ) on supp(µ),

respectively. Here, Tµ,ε : C(X) → C(X) is defined as

Tµ,ε(φ)(x) := −ε log
(︃∫︂

X
exp
(︂φ(y)− c(x, y)

ε

)︂
dµ(y)

)︃
. (6.26)

Therefore, any pair of optimal potentials φ̂ε and ψ̂ε must satisfy

ψ̂ε = Tµ,ε(φ̂ε) on supp(ν), φ̂ε = Tν,ε(ψ̂ε) on supp(µ).

For every φ ∈ C(X) and C ∈ R, it holds Tµ,ε(φ+C) = Tµ,ε(φ)+C. Hence, Tµ,ε can
be interpreted as an operator on the quotient space C(X)/R, where f1, f2 ∈ C(X)
are equivalent if they differ by a real constant. This space can equipped with the
oscillation norm

∥f∥◦,∞ := 1
2
(max f −min f)

and for f ∈ C(X)/R there is a representative f̄ ∈ C(X) with ∥f∥◦,∞ = ∥f̄∥∞. Fi-
nally, it is possible to restrict the domain of Tµ,ε to C(supp(µ)) and C(supp(µ))/R,
respectively. This interpretation is useful for showing convergence of the Sinkhorn
algorithm. In the next lemma, we collect a few properties of Tµ,ε, see also [122, 271].
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Lemma 6.11.

i) For any measure µ ∈ P (X), ε > 0 and φ ∈ C(X), the function Tµ,ε(φ) ∈ C(X)
has the same Lipschitz constant as c and satisfies

Tµ,ε(φ)(x) ∈
[︂

min
y∈supp(µ)

c(x, y)− φ(y), max
y∈supp(µ)

c(x, y)− φ(y)
]︂
. (6.27)

ii) For fixed µ ∈ P(X), the operator Tµ,ε : C(supp(µ)) → C(X) is 1-Lipschitz.
Additionally, the operator Tµ,ε : C(supp(µ))/R → C(X)/R is κ-Lipschitz with
κ < 1.

Proof. i) For x1, x2 ∈ X (possibly changing the naming of the variables) we obtain⃓⃓
Tµ,ε(φ)(x1)− Tµ,ε(φ)(x2)

⃓⃓
=ε
⃓⃓⃓
log

∫︂
X
exp
(︂φ(y)− c(x2, y)

ε

)︂
dµ(y)− log

∫︂
X
exp
(︂φ(y)− c(x1, y)

ε

)︂
dµ(y)

⃓⃓⃓
=ε log

(︃∫︂
X
exp
(︂φ(y)− c(x2, y)

ε

)︂
dµ(y)

/︂∫︂
X
exp
(︂φ(y)− c(x1, y)

ε

)︂
dµ(y)

)︃
.

Incorporating the L-Lipschitz continuity of c, we get

exp
(︂c(x1, y)− c(x2, y)

ε

)︂
≤ exp

(︂ |c(x1, y)− c(x2, y)|
ε

)︂
≤ exp

(︂L
ε
|x1 − x2|

)︂
,

so that∫︂
X
exp
(︂φ(y)− c(x2, y)

ε

)︂
dµ(y) ≤ exp

(︂L
ε
|x1 − x2|

)︂∫︂
X
exp
(︂φ(y)− c(x1, y)

ε

)︂
dµ(y).

Thus, Tµ,ε(φ) is Lipschitz continuous⃓⃓
Tµ,ε(φ)(x1)− Tµ,ε(φ)(x2)

⃓⃓
≤ ε log

(︂
exp
(︂L
ε
|x1 − x2|

)︂)︂
= L|x1 − x2|.

Finally, (6.27) follows directly from (6.26) since µ is a probability measure.
ii) For any x ∈ X and φ1, φ2 ∈ C(supp(µ)) it holds

Tµ,ε(φ1)(x)− Tµ,ε(φ2)(x) =

∫︂ 1

0

d
dt
Tµ,ε
(︁
φ1 + t(φ2 − φ1)

)︁
(x) dt (6.28)

=

∫︂ 1

0

∫︂
X

(︁
φ1(z)− φ2(z)

)︁
ρt,x(z) dµ(z) dt

with

ρt,x :=
exp
(︁(︁
tφ2 + (1− t)φ1 − c(x, ·)/ε

)︁)︁∫︁
X exp

(︁(︁
tφ2(z) + (1− t)φ1(z)− c(x, z)

)︁
/ε
)︁
dµ(z)

.

This directly implies

∥Tµ,ε(φ1)−Tµ,ε(φ2)∥∞ ≤ sup
x∈supp(µ)

∫︂ 1

0

∫︂
X

⃓⃓
φ1(z)−φ2(z)

⃓⃓
ρt,x(z) dµ(z) dt ≤ ∥φ1−φ2∥∞.

151



6. From Optimal Transport to Discrepancy

In order to show the second claim, we choose representatives φ1 and φ2 such
that ∥φ1 − φ2∥∞ = ∥φ1 − φ2∥◦,∞. Given x, y ∈ X, we conclude using (6.28) that

1

2

(︁
Tµ,ε(φ1)(x)− Tµ,ε(φ2)(x)− Tµ,ε(φ1)(y) + Tµ,ε(φ2)(y)

)︁
=
1

2

∫︂ 1

0

∫︂
X

(︁
φ1(z)− φ2(z)

)︁(︁
ρt,x(z)− ρt,y(z)

)︁
dµ(z) dt

≤∥φ1 − φ2∥◦,∞
1

2

∫︂ 1

0

∥ρt,x − ρt,y∥L1(µ) dt. (6.29)

For all z ∈ X with pt,x(z) ≥ pt,y(z), we can estimate

pt,x(z)− pt,y(z) ≤ pt,x(z)(1− exp(−2L diam(X)/ε))

and similarly for z ∈ X with pt,y(z) ≥ pt,x(z). Hence, we obtain

∥ρt,x − ρt,y∥L1(µ) ≤
∫︂
X
(1{pt,x≥pt,y}pt,x + 1{pt,y>pt,x}pt,y)

(︁
1− exp(−2L diam(X)/ε)

)︁
dµ

≤2
(︁
1− exp(−2L diam(X)/ε)

)︁
.

Finally, inserting this into (6.29) implies⃦⃦
Tµ,ε(φ1)− Tµ,ε(φ2)

⃦⃦
◦,∞ ≤

(︁
1− exp(−2L diam(X)/ε)

)︁
∥φ1 − φ2∥◦,∞.

Now, we are able to prove existence of an optimal solution (φ̂ε, ψ̂ε).

Proposition 6.12. The optimal potentials φ̂ε, ψ̂ε ∈ C(X) exist and are unique on
supp(µ) and supp(ν), respectively (up to the additive constant).

Proof. Let φn, ψn ∈ C(X) be maximizing sequences of (6.24). Using the operator
Tµ,ε, these can be replaced by

ψ̃n = Tµ,ε(φn) and φ̃n = Tν,ε ◦ Tµ,ε(φn),

which are Lipschitz continuous with the same constant as c by Lemma 6.11 i)
and therefore uniformly equi-continuous. Next, we can choose some x0 ∈ supp(µ)
and w.l.o.g. assume ψ̃n(x0) = 0. Due to the uniform Lipschitz continuity, the
potentials ψ̃n are uniformly bounded and by (6.27) the same holds true for φ̃n.
Now, the theorem of Arzelà–Ascoli implies that both sequences contain convergent
subsequences. Since the functional in (6.24) is continuous, we can readily infer the
existence of optimal potentials φ̂ε, ψ̂ε ∈ C(X). Due to the uniqueness of π̂ε, (6.25)
implies that φ̂ε|supp(µ) and ψ̂ε|supp(ν) are uniquely determined up to an additive
constant.
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Combining the optimality condition (6.26) and (6.24), we directly obtain for any
pair of optimal solutions

OTε(µ, ν) =

∫︂
X
φ̂ε dµ+

∫︂
X
ψ̂ε dν. (6.30)

Adding, e.g., the additional constraint∫︂
X
φ dµ = 1

2
OT∞(µ, ν), (6.31)

the restricted optimal potentials φ̂ε|supp(µ) and ψ̂ε|supp(ν) are unique. The next propo-
sition investigates the limits of the potentials as ε→ 0 and ε→ ∞.

Proposition 6.13.

i) If (6.31) is satisfied, the restricted potentials φ̂ε|supp(µ) and ψ̂ε|supp(ν) converge
uniformly for ε→ ∞ to

φ̂∞(x) =

∫︂
X
c(x, y) dν(y)− 1

2
OT∞(µ, ν),

ψ̂∞(y) =

∫︂
X
c(x, y) dµ(x)− 1

2
OT∞(µ, ν),

respectively.

ii) For ε → 0 every accumulation point of (φ̂ε|supp(µ), ψ̂ε|supp(ν)) can be ex-
tended to an optimal dual pair for OT(µ, ν) satisfying (6.31). In particular,
limε→0OTε(µ, ν) = OT(µ, ν).

Proof. i) Since X is bounded, the Lipschitz continuity of the potentials together with
(6.31) implies that all φ̂ε are uniformly bounded on supp(µ). Then, we conclude
for y ∈ supp(ν) using l’Hôpital’s rule, dominated convergence and (6.31) that

lim
ε→∞

ψ̂ε(y)

= lim
ε→∞

−
∫︁
X

(︁
φ̂ε(x)− c(x, y)

)︁
exp
(︁(︁
φ̂ε(x)− c(x, y)

)︁
/ε
)︁
dµ(x)∫︁

X exp
(︁(︁
φ̂ε(x)− c(x, y)

)︁
/ε
)︁
dµ(x)

= lim
ε→∞

∫︂
X
c(x, y) exp

(︁(︁
φ̂ε(x)− c(x, y)

)︁
/ε
)︁
− φ̂ε(x) exp

(︁(︁
φ̂ε(x)− c(x, y)

)︁
/ε
)︁
dµ(x)

=

∫︂
X
c(x, y) dµ(x)− lim

ε→∞

∫︂
X
φ̂ε(x)

(︂
exp
(︁(︁
φ̂ε(x)− c(x, y)

)︁
/ε
)︁
− 1
)︂
+ φ̂ε(x) dµ(x)

=

∫︂
X
c(x, y) dµ(x)− 1

2
OT∞(µ, ν).

Again, a similar reasoning, incorporating (6.27), can be applied for φ̂ε. Finally, note
that pointwise convergence of uniformly Lipschitz continuous functions on compact
sets implies uniform convergence.
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6. From Optimal Transport to Discrepancy

ii) By continuity of the integral, we can directly infer that (6.31) is satisfied for any
accumulation point. Note that for any fixed φ ∈ C(X), x ∈ X and ε→ 0 it holds

Tµ,ε(φ)(x) → min
y∈supp(µ)

c(x, y)− φ(y),

see [108, Prop. 9], which by uniform Lipschitz continuity of Tµ,ε(φ) directly im-
plies the convergence in C(X). Let {(φ̂εj , ψ̂εj)}j be a subsequence converging to
(φ̂0, ψ̂0) ∈ C(supp(µ))× C(supp(ν)). Then, we have

ψ̂0 = lim
j→∞

ψ̂εj = lim
j→∞

Tµ,εj(φ̂εj)

= lim
j→∞

(︂
Tµ,εj(φ̂εj)− Tµ,εj(φ̂0) + Tµ,εj(φ̂0)

)︂
.

By Lemma 6.11 ii), it holds

∥Tµ,εj(φ̂εj)− Tµ,εj(φ̂0)∥∞ ≤ ∥φ̂εj − φ̂0∥∞
and we conclude

ψ̂0 = lim
j→∞

Tµ,εj(φ̂0) = min
y∈supp(µ)

c(·, y)− φ̂0(y).

Similarly, we get

φ̂0 = min
y∈supp(ν)

c(·, y)− ψ̂0(y).

Thus, (φ̂0, ψ̂0) can be extended to a feasible point in C(X)2 of (6.22) by Remark 6.5.
Due to continuity of (6.30) and since OTε is monotone in ε, this implies

lim
j→∞

OTεj(µ, ν) =

∫︂
X
φ̂0 dµ+

∫︂
X
ψ̂0 dν ≤ OT(µ, ν) ≤ lim

j→∞
OTεj(µ, ν).

Hence, the extended potentials are optimal for (6.22). Since the subsequence choice
was arbitrary, this also shows Proposition 6.8 ii).

So far we cannot show the convergence of the potentials for ε → 0 for the fully
general case. Essentially, our approach would require that all Tµ,ε are contractive
with a uniform constant β < 1, which is not the case. Note that if we assume
that the unregularized potentials satisfying (6.31) are unique, then ii) directly im-
plies convergence of the restricted dual potentials, see also [34, Thm. 3.3] and [76].
Nevertheless, we always observed convergence in our numerical examples.

6.6 Sinkhorn divergence
The functional OTε is biased, i.e., in general minν OTε(ν, µ) ̸= OTε(µ, µ). Hence,
the usage as distance measure is meaningless, which motivates the introduction of
the Sinkhorn divergence

Sε(µ, ν) = OTε(µ, ν)− 1
2
OTε(µ, µ)− 1

2
OTε(ν, ν).
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6.6 Sinkhorn divergence

Indeed, it was shown that Sε is non-negative, bi-convex and metrizes the conver-
gence in law under mild assumptions [108]. Clearly, we have S0 = OT. By (6.14)
and Proposition 6.13, we obtain the following corollary.

Corollary 6.14. Assume that K ∈ C(X × X) is symmetric and positive definite.
Set c(x, y) := −K(x, y). Then, it holds S∞(µ, ν) = 1

2
D2
K(µ, ν) and the optimal dual

potential φ̂K realizing DK(µ, ν) is related to the uniform limits φ̂∞, ψ̂∞ of φ̂ε, ψ̂ε in
OTε(µ, ν) with constraint (6.31) by

φ̂K =
φ̂∞ − ψ̂∞

∥φ̂∞ − ψ̂∞∥HK(X)
.

Note that (6.12) already implies that for the chosen c it holds φ̂∞, ψ̂∞ ∈ HK(X).
By Corollary 6.14, we have for c(x, y) := −K(x, y) that S∞(µ, ν) = 1

2
D2
K(µ, ν) if

K ∈ C(X × X) is symmetric, positive definite. For the cost c(x, y) = ∥x − y∥p
of the classical p-Wasserstein distance, we have already seen in Section 6.3 that
K(x, y) = −c(x, y) is not positive definite. However, at least for p = 1 the kernel
is conditionally positive definite of order 1 and can be tuned by Proposition 6.2
to a positive definite kernel by adding a constant, which neither changes the value
of the discrepancy nor of the optimal dual potential. More generally, we have the
following corollary.

Corollary 6.15. Let K ∈ C(X × X) be symmetric, conditionally positive definite
of order 1, and let K̃ be the corresponding positive definite kernel in (6.19). Then
we have for c = −K̃ that

S∞(µ, ν) = 1
2
D2
K(µ, ν)

and for the optimal dual potentials

φ̂∞(x) =

∫︂
X
−K(x, y) dν(y) +

1

2

∫︂
X2

K d(µ⊗ ν) +K(x, ξ) +
1

2

(︁
cν − cµ −K(ξ, ξ)

)︁
,

ψ̂∞(y) =

∫︂
X
−K(x, y) dµ(x) +

1

2

∫︂
X2

K d(µ⊗ ν) +K(ξ, y) +
1

2

(︁
cµ − cν −K(ξ, ξ)

)︁
,

with some fixed ξ ∈ X and cµ, cν defined as in (6.20).

Proof. By Corollary 6.14 and Lemma 6.3, we obtain

S∞(µ, ν) = 1
2
DK̃(µ, ν)

2 = 1
2
DK(µ, ν)

2.

The second claim follows by Proposition 6.13.

In the following, we want to characterize the convergence of the functional
Sε(·, ν) in the limiting cases ε → 0 and ε → ∞ for fixed ν ∈ P(X). Recall that
a sequence {Fn}n∈N of functionals Fn : P(X) → (−∞,+∞] is said to Γ-converge
to F : P(X) → (−∞,+∞] if the following two conditions are fulfilled for every
µ ∈ P(X), see [44]:
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6. From Optimal Transport to Discrepancy

i) F (µ) ≤ lim infn→∞ Fn(µn) whenever µn ⇀ µ,

ii) there is a sequence {µn}n∈N with µn ⇀ µ and lim supn→∞ Fn(µn) ≤ F (µ).

The importance of Γ-convergence relies in the fact that every cluster point of min-
imizers of {Fn}n∈N is a minimizer of F .

Proposition 6.16. It holds Sε(·, ν) Γ−→ S∞(·, ν) as ε → ∞ and Sε(·, ν) Γ−→ OT(·, ν)
as ε→ 0.

Proof. In both cases the lim sup-inequality follows from Proposition 6.8 by choosing
for some fixed µ ∈ P(X) the constant sequence µn = µ, n ∈ N.

Concerning the lim inf-inequality, we first treat the case ε → ∞. Let µn ⇀ µ
and εn → ∞. Since OTε(µ, ν) is increasing with ε, it holds for every fixed m ∈ N
that

lim inf
n→∞

Sεn(µn, ν) = lim inf
n→∞

(︁
OTεn(µn, ν)− 1

2
OTεn(µn, µn)− 1

2
OTεn(ν, ν)

)︁
≥ lim inf

n→∞

(︁
OTm(µn, ν)− 1

2
OT∞(µn, µn)

)︁
− 1

2
OT∞(ν, ν).

Due to the weak continuity of OTm and OT∞, we obtain

lim inf
n→∞

Sεn(µn, ν) ≥ OTm(µ, ν)− 1
2
OT∞(µ, µ)− 1

2
OT∞(ν, ν).

Letting m→ ∞, Proposition 6.8 implies the lim inf-inequality.
Next, we consider ε → 0. Let µn ⇀ µ and εn → 0. With similar arguments as

above we obtain for any fixed m ∈ N that

lim inf
n→∞

Sεn(µn, ν) ≥ lim inf
n→∞

(︁
OT(µn, ν)− 1

2
OTm(µn, µn)

)︁
− 1

2
OTm(ν, ν)

and weak continuity of OTm and OT implies

lim inf
n→∞

Sεn(µn, ν) ≥ OT(ν, µ)− 1
2
OTm(µ, µ)− 1

2
OTm(ν, ν).

Using again Proposition 6.8, we verify the lim inf-inequality.

6.7 Numerical approach and examples
In this section, we discuss the Sinkhorn algorithm for computing OTε based on
the (pre)-dual form (6.24) and show some numerical examples. As pointed out
in Remark 6.10, we can restrict the potentials and the update operator (6.26) to
supp(µ) and supp(ν), respectively. In particular, this restriction results in a discrete
problem if both input measures are atomic. For a fixed starting iterate ψ(0), the
Sinkhorn algorithm iterates are defined as

φ(i+1) = Tν,ε(ψ
(i)),

ψ(i+1) = Tµ,ε(φ
(i+1)).
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6.7 Numerical approach and examples

(a) Measure µ (b) Measure ν (c) Values Sε(µ, ν) for in-
creasing ε

Figure 6.2: Energy values between S0 and S∞ for two given measures on [0, 1]
and cost function c(x, y) = |x− y|. Every blue dot corresponds to the position and
the weight of a Dirac measure.

Equivalently, we could rewrite the scheme with just one potential and the following
update ψ(i+1) = Tµ,ε ◦ Tν,ε(ψ(i)). According to Lemma 6.11, the operator Tµ,ε ◦ Tν,ε
is contractive and hence the Banach fixed point theorem implies that the algorithm
converges linearly. Note that it suffices to enforce the additional constraint (6.31)
after the Sinkhorn scheme by adding an appropriately chosen constant. Then, the
value of OTε(µ, ν) can be computed from the optimal potentials using (6.30). Here,
we do not want to go into more detail on implementation issues, since this is not the
main scope of this chapter. The numerical examples merely serve as an illustration
of the theoretical results. All computations in this section are performed using
GEOMLOSS, a publicly available PyTorch implementation for regularized optimal
transport. Implementation details can be found in Feydy et al. [108] and in the
corresponding GitHub repository.

Demonstration of convergence results. In the following, we present a numer-
ical toy example for illustrating the convergence results from the previous sections.
First, we want to verify the interpolation behavior of Sε(µ, ν) between OT(µ, ν)
and DK(µ, ν). We choose X = [0, 1], c(x, y) = |x− y| and the probability measures
µ and ν depicted in Fig. 6.2. The resulting energies Sε(µ, ν) in log-scale are plotted
in the same figure.

We observe that the values converge as shown in Proposition 6.8 and that the
change mainly happens in the interval [10−2, 101]. Additionally, the numerical re-
sults indicate Sε1(µ, ν) ≤ Sε2(µ, ν) for ε1 > ε2, which is the opposite behavior as
for OTε where the energies increase, see Lemma 6.6 iii). So far we are not aware of
any theoretical result in this direction for Sε(µ, ν).

Next, we investigate the behavior of the corresponding optimal potentials φ̂ε and
ψ̂ε in (6.24). The convergence of the potentials as shown in Proposition 6.13 iii)
is numerically verified in Fig. 6.3. Further, the corresponding potentials φ̂ε are
depicted in Fig. 6.4 and the differences φ̂ε − ψ̂ε are depicted in Fig. 6.5. According
to Corollary 6.14, this difference is related to the optimal potential φ̂K in the dual
formulation of the related discrepancy. The shape of the potentials ranges from
something almost linear for small ε to something more quadratic for large ε. Again,
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6. From Optimal Transport to Discrepancy

(a) supsupp(µ) |φ̂ε − φ̂∞| for
increasing values of ε

(b) supsupp(ν) |ψ̂ε − ψ̂∞| for
increasing values of ε

(c) φ̂1e−4 + ψ̂1e−4

Figure 6.3: Numerical verification of Prop. 6.13 and of ψ̂ε ≈ −φ̂ε for small ε.

(a) φ̂0.02 (b) φ̂0.08 (c) φ̂0.32

(d) φ̂1.28 (e) φ̂81.92 (f) φ̂∞

Figure 6.4: Optimal potentials φ̂ε in OTε(µ, ν) for increasing values of ε.

we observe that the changes mainly happen for ε in the interval [10−2, 101] and
that numerical instabilities start to occur for ε > 103. For small values of ε, we
actually observe numerical convergence and that the relation ψ̂ε ≈ −φ̂ε holds true,
see Fig. 6.3c. This fits the theoretical findings for W1(µ, ν) in Section 6.4.

Dithering results. Now, we want to take a short glimpse at a more involved
problem. In the following, we investigate the influence of using Sε with different
values ε as approximation quality measure in dithering. For this purpose, we choose
X = [−1, 1]2, c(x, y) = |x − y| and µ = C exp(−9∥x∥2/2)(λ ⊗ λ), where C ∈ R
is a normalizing constant. In order to deal with a fully discrete problem, µ is
approximated by an atomic measure with 90 × 90 spikes on a regular grid. Then,
we approximate µ with a measure ν ∈ P400

emp(X) (empirical measure with 400 spikes)
in terms of the following objective function

min
ν∈P400

emp(X)
Sε(µ, ν). (6.32)
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6.7 Numerical approach and examples

(a) φ̂0.02 − ψ̂0.02 (b) φ̂0.08 − ψ̂0.08 (c) φ̂0.32 − ψ̂0.32

(d) φ̂1.28 − ψ̂1.28 (e) φ̂81.92 − ψ̂81.92 (f) φ̂∞ − ψ̂∞

Figure 6.5: Difference φ̂ε− ψ̂ε of optimal potentials in OTε(µ, ν) for increasing ε,
where the normalized function φ̂∞ − ψ̂∞ coincides with the optimal dual potential
φ̂K in the discrepancy by Corollary 6.15.

For solving this problem, we can equivalently minimize over the positions of the
equally weighted Dirac spikes in ν. Hence, we need the gradient of Sε with respect
to these positions. If ε = ∞, this gradient is given by an analytic expression. Other-
wise, we can apply automatic differentiation tools to the Sinkhorn algorithm in order
to compute a numerical gradient, see [108] for more details. Here, it is important to
ensure high enough numerical precision and to perform enough Sinkhorn iterations.
In any case, the gradient serves as input for the L-BFGS-B (Quasi-Newton) method
in which the Hessian is approximated in a memory efficient way [54]. The numerical
results are depicted in Fig. 6.6, where all examples are iterated to high numerical
precision. Numerically, we nicely observe the convergence of Sε(µ, ν̂) in the limits
ε → 0 and ε → ∞ as implied from the Γ-convergence result in Proposition 6.16.
Visually, the result using Fourier methods is most appealing. Differences could be
caused by the different numerical approaches. In particular, the minimization of
(6.32) is quite challenging and our applied approach is pretty straight forward with-
out including any special knowledge about the problem. Noteworthy, the Fourier
method uses a truncation of S∞ = 1

2
D2
K in the Fourier domain, see (6.16), namely

N∑︂
k=0

αk
⃓⃓
µ̂k − ν̂k

⃓⃓2
, N := 128

as target functional, see [134]. The value of S∞ for the Fourier method is slightly
larger than the result using optimization of S∞ directly. Since the computational
cost increases as ε gets smaller, we suggest to choose ε ≈ 1 or to directly stick
with discrepancies. This also avoids that the approximation rates suffer from the
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6. From Optimal Transport to Discrepancy

(a) Fixed measure µ. (b) S0.03(µ, ν̂) = 1.303e−3. (c) S0.15(µ, ν̂) = 1.071e−4.

(d) S1.25(µ, ν̂) = 1.491e−5. (e) S∞(µ, ν̂) = 1.118e−5. (f) Fourier formulation [102],
S∞(µ, ν̂) = 1.156e−5.

Figure 6.6: Optimal approximations ν̂ and corresponding energies Sε(µ, ν̂) for
increasing ε.

so-called curse of dimensionality.
Finally, note that we sampled µ with a lot more points than we used for the

dithering. If not enough points are used, we would observe clustering of the dithered
measure around the positions of µ. One possibility to avoid such a behavior for Sε
could be to use the semi-discrete approach described in [123], avoiding any sampling
of the measure µ. In the Fourier based approach, this issue was less pronounced.

6.8 Conclusions

In this chapter, we examined the behavior of the Sinkhorn divergences Sε as ε→ ∞
and ε → 0, with focus on the first case, which leads to discrepancies for appropri-
ate cost functions and kernels. We considered a quite general scenario of measures
involving, e.g., convex combinations of measures with densities and point mea-
sures (spikes). Besides application questions, some open theoretical problem are
left. While OTε is monotone increasing in ε for any cost function c, we observed
numerically for c(x, y) = ∥x − y∥ that Sε is monotone decreasing. Further, in
Proposition 6.13 ii), we were not able to show convergence of the whole sequence
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of optimal potentials {(φ̂ε, ψ̂ε)}ε without further assumptions so far.

6.A Basic theorems
We frequently apply the theorem of Arzelà–Ascoli. By definition, a sequence
{fn}n∈N of continuous functions on X is uniformly bounded, if there exists a con-
stant M ≥ 0 independent of n and x such that for all fn and all x ∈ X it holds
|fn(x)| ≤ M . The sequence is said to be uniformly equi-continuous if, for every
ε > 0, there exists a δ > 0 such that for all functions fn

|fn(x)− fn(y)| < ε

whenever dX(x, y) < δ.

Theorem 6.17. (Arzelà–Ascoli) Let {fn}n∈N be a uniformly bounded, uniformly
equi-continuous sequence of continuous functions on X. Then, the sequence has a
uniformly convergent subsequence.

For the dual problems, we want to extend continuous functions from A ⊂ X
to the whole space, which is possible by the following theorem. In the standard
version, the theorem comes without the bounds, but they can be included directly
since min and max of two continuous functions are again continuous functions.

Theorem 6.18. (Tietze Extension Theorem) Let a closed subset A ⊂ X and a
continuous function f : A → R be given. If g, h ∈ C(X) are such that g ≤ h and
g(x) ≤ f(x) ≤ h(x) for all x ∈ A, then there exists a continuous function F : X → R
such that F (x) = f(x) for all x ∈ A and g(x) ≤ F (x) ≤ h(x) for all x ∈ X.
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7. Curve Based Approximation of Measures

Abstract

The approximation of probability measures on compact metric spaces and
in particular on Riemannian manifolds by atomic or empirical ones is a clas-
sical task in approximation and complexity theory with a wide range of ap-
plications. This chapter1, which is published in [102], is instead concerned
with the approximation by measures supported on Lipschitz curves. Special
attention is paid to push-forward measures of Lebesgue measures on the unit
interval by such curves. Using the discrepancy as distance between measures,
we prove optimal approximation rates in terms of the curve’s length and Lip-
schitz constant. Having established the theoretical convergence rates, we are
interested in the numerical minimization of the discrepancy between a given
probability measure and the set of push-forward measures of Lebesgue mea-
sures on the unit interval by Lipschitz curves. We present numerical examples
for measures on the 2- and 3-dimensional torus, the 2-sphere, the rotation
group on R3 and the Grassmannian of all 2-dimensional linear subspaces of
R4. Our algorithm of choice is a conjugate gradient method on these mani-
folds, which incorporates second-order information. For efficient gradient and
Hessian evaluations within the algorithm, we approximate the given measures
by truncated Fourier series and use fast Fourier transform techniques on these
manifolds. At this point I also want to thank my colleague Manuel Gräf who
provided the numerical implementation for this chapter.

1This is a post-peer-review, pre-copyedit version of an article published in Foundations
of Computational Mathematics. The final authenticated version is available online at DOI:
10.1007/s10208-021-09491-2. The article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/, which
permits unrestricted use, distribution, and reproduction in any medium, provided you give ap-
propriate credit to the original authors and the source, provide a link to the Creative Commons
license, and indicate if changes were made.
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7.1 Introduction

7.1 Introduction
The approximation of probability measures by atomic or empirical ones based on
their discrepancies is a well examined problem in approximation and complexity
theory [180, 194, 222] with a wide range of applications, e.g., in the derivation of
quadrature rules and in the construction of designs. Recently, discrepancies were
also used in image processing for dithering [134, 245, 259], i.e., for representing a
gray-value image by a finite number of black dots, and in generative adversarial
networks [96].

Besides discrepancies, Optimal Transport (OT) and in particular Wasserstein
distances have emerged as powerful tools to compare probability measures in re-
cent years, see [82, 274] and the references therein. In fact, so-called Sinkhorn
divergences, which are computationally much easier to handle than OT, are known
to interpolate between OT and discrepancies [108]. For the sample complexity of
Sinkhorn divergences we refer to [122]. The rates for approximating probability
measures by atomic or empirical ones with respect to Wasserstein distances depend
on the dimension of the underlying spaces, see [68, 177]. In contrast, approxima-
tion rates based on discrepancies can be given independently of the dimension [222],
i.e., they do not suffer from the curse of dimensionality. Additionally, we should
keep in mind that the computation of discrepancies does not involve a minimization
problem, which is a major drawback of OT and Sinkhorn divergences. Moreover,
discrepancies admit a simple description in Fourier domain and hence the use of fast
Fourier transforms is possible, leading to better scalability than the aforementioned
methods.

Instead of point measures, we are interested in approximations with respect to
measures supported on curves. More precisely, we consider push-forward measures
of probability measures ω ∈ P([0, 1]) by Lipschitz curves of bounded speed, with
special focus on absolutely continuous measures ω = ρλ and the Lebesgue measure
ω = λ. In this chapter, we focus on approximation with respect to discrepancies.
For related results on quadrature and approximation on manifolds, we refer to
[109, 140, 196, 197] and the references therein. An approximation model based on
the 2-Wasserstein distance was proposed in [183]. That work exploits completely
different techniques than ours both in the theoretical and numerical part. Finally,
we want to point out a relation to principal curves which are used in computer
science and graphics for approximating distributions approximately supported on
curves [151, 152, 173, 152, 175]. For the interested reader, we further comment on
this direction of research in Remark 7.5 and in the conclusions. Next, we want to
motivate our framework by numerous potential applications:

• In MRI sampling [43, 60], it is desirable to construct sampling curves with
short sampling times (short curve) and high reconstruction quality. Unfortu-
nately, these requirements usually contradict each other and finding a good
trade-off is necessary. Experiments demonstrating the power of this novel
approach on a real-world scanner are presented in [182].

• For laser engraving [183] and 3D printing [66], we require nozzle trajectories
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based on our (continuous) input densities. Compared to the approach in [66],
where points given by Llyod’s method are connected as a solution of the TSP
(traveling salesman problem), our method jointly selects the points and the
corresponding curve. This avoids the necessity of solving a TSP, which can
be quite costly, although efficient approximations exist. Further, it is not
obvious that the fixed initial point approximation is a good starting point for
constructing a curve.

• The model can be used for wire sculpture creation [3]. In view of this, our
numerical experiment presented in Fig. 7.5 can be interpreted as a building
plan for a wire sculpture of the Spock head, namely of a 2D surface. Clearly,
the approach can be also used to create images similar to TSP Art [170],
where images are created from points by solving the corresponding TSP.

• In a more manifold related setting, the approach can be used for grand tour
computation on G2,4 [12], see also our numerical experiment in Fig. 7.11. More
technical details are provided in the corresponding section.

Our contribution is two-fold. On the theoretical side, we provide estimates of
the approximation rates in terms of the maximal speed of the curve. First, we
prove approximation rates for general probability measures on compact Ahlfors d-
regular length spaces X. These spaces include many compact sets in the Euclidean
space Rd, e.g., the unit ball or the unit cube as well as d-dimensional compact
Riemannian manifolds without boundary. The basic idea consists in combining the
known convergence rates for approximation by atomic measures with cost estimates
for the traveling salesman problem. As for point measures, the approximation rate
Ld/(2d−2) ≤ L−1/2 for general ω ∈ P([0, 1]) and Ld/(3d−2) ≤ L−1/3 for ω = λ in terms
of the maximal Lipschitz constant (speed) L of the curves does not crucially depend
on the dimension of X. In particular, the second estimate improves a result given
in [61] for the torus.

If the measures fulfill additional smoothness properties, these estimates can
be improved on compact, connected, d-dimensional Riemannian manifolds without
boundary. Our results are formulated for absolutely continuous measures (with
respect to the Riemannian measure) having densities in the Sobolev space Hs(X),
s > d/2. In this setting, the optimal approximation rate becomes roughly speak-
ing L−s/(d−1). Our proofs rely on a general result of Brandolini et al. [45] on the
quadrature error achievable by integration with respect to a measure that exactly
integrates all eigenfunctions of the Laplace–Beltrami with eigenvalues smaller than
a fixed number. Hence, we need to construct measures supported on curves that
fulfill the above exactness criterion. More precisely, we construct such curves for
the d dimensional torus Td, the spheres Sd, the rotation group SO(3) and the Grass-
mannian G2,4.

On the numerical side, we are interested in finding (local) minimizers of discrep-
ancies between a given continuous measure and those from the set of push-forward
measures of the Lebesgue measure by bounded Lipschitz curves. This problem is
tackled numerically on T2, T3, S2 as well as SO(3) and G2,4 by switching to the
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Fourier domain. The minimizers are computed using the method of conjugate gra-
dients (CG) on manifolds, which incorporates second order information in form of
a multiplication by the Hessian. Thanks to the approach in the Fourier domain,
the required gradients and the calculations involving the Hessian can be performed
efficiently by fast Fourier transform techniques at arbitrary nodes on the respective
manifolds. Note that in contrast to our approach, semi-continuous OT minimiza-
tion relies on Laguerre tessellations [87], which are not available in the required
form on the 2-sphere, SO(3) or G2,4.

This chapter is organized as follows: In Section 7.2 we give the necessary pre-
liminaries on probability measures. In particular, we introduce the different sets of
measures supported on Lipschitz curves that are used for the approximation. Note
that measures supported on continuous curves of finite length can be equivalently
characterized by push-forward measures of probability measures by Lipschitz curves.
Section 7.3 provides the notation on reproducing kernel Hilbert spaces and discrep-
ancies including their representation in the Fourier domain. Section 7.4 contains
our estimates of the approximation rates for general given measures and different
approximation spaces of measures supported on curves. Following the usual lines in
approximation theory, we are then concerned with the approximation of absolutely
continuous measures with density functions lying in Sobolev spaces. Our main re-
sults on the approximation rates of smoother measures are contained in Section 7.5,
where we distinguish between the approximation with respect to the push-forward
of general measures ω ∈ P [0, 1], absolute continuous measures and the Lebesgue
measure on [0, 1]. In Section 7.6 we formulate our numerical minimization prob-
lem. Our numerical algorithms of choice are briefly described in Section 7.7. For
a comprehensive description of the algorithms on the different manifolds, we re-
fer to respective papers. Section 7.8 contains numerical results demonstrating the
practical feasibility of our findings. Conclusions are drawn in Section 7.9. Finally,
Appendix 7.A briefly introduces the different manifolds X used in our numerical
examples together with the Fourier representation of probability measures on X.

7.2 Probability measures and curves

In this section, the basic notation on measure spaces is provided, see [5, 113], with
focus on probability measures supported on curves. At this point, let us assume
that

X is a compact metric space endowed with a bounded non-negative
Borel measure σX ∈ M(X) such that supp(σX) = X. Further, we denote
the metric by dX.

Additional requirements on X are added along the way and notations are explained
below. By B(X) we denote the Borel σ-algebra on X and by M(X) the linear
space of all finite signed Borel measures on X, i.e., the space of all µ : B(X) → R
satisfying µ(X) <∞ and for any sequence (Bk)k∈N ⊂ B(X) of pairwise disjoint sets
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7. Curve Based Approximation of Measures

the relation µ(
⋃︁∞
k=1Bk) =

∑︁∞
k=1 µ(Bk). The support of a measure µ is the closed

set
supp(µ) :=

{︁
x ∈ X : B ⊂ X open, x ∈ B =⇒ µ(B) > 0

}︁
.

For µ ∈ M(X) the total variation measure is defined by

|µ|(B) := sup

{︃ ∞∑︂
k=1

|µ(Bk)| :
∞⋃︂
k=1

Bk = B, Bk pairwise disjoint
}︃
.

With the norm ∥µ∥M = |µ|(X) the space M(X) becomes a Banach space. By C(X)
we denote the Banach space of continuous real-valued functions on X equipped with
the norm ∥φ∥C(X) := maxx∈X |φ(x)|. The space M(X) can be identified via Riesz’
theorem with the dual space of C(X) and the weak-∗ topology on M(X) gives rise to
the weak convergence of measures, i.e., a sequence (µk)k ⊂ M(X) converges weakly
to µ and we write µk ⇀ µ, if

lim
k→∞

∫︂
X
φ dµk =

∫︂
X
φ dµ for all φ ∈ C(X).

For a non-negative, finite measure µ, let Lp(X, µ) be the Banach space (of equiva-
lence classes) of complex-valued functions with norm

∥f∥Lp(X,µ) =

(︃∫︂
X
|f |p dµ

)︃ 1
p

<∞.

By P(X) we denote the space of Borel probability measures on X, i.e., non-
negative Borel measures with µ(X) = 1. This space is weakly compact, i.e., compact
with respect to the topology of weak convergence. We are interested in the ap-
proximation of measures in P(X) by probability measures supported on points and
curves in X. To this end, we associate with x ∈ X a probability measure δx with
values δx(B) = 1 if x ∈ B and δx(B) = 0 otherwise.

The atomic probability measures at N points are defined by

Patom
N (X) :=

{︃ N∑︂
k=1

wkδxk : (xk)
N
k=1 ∈ XN , (wk)

N
k=1 ∈ [0, 1]N ,

N∑︂
k=1

wk = 1

}︃
.

In other words, Patom
N (X) is the collection of probability measures, whose support

consists of at most N points. Further restriction to equal mass distribution leads
to the empirical probability measures at N points denoted by

Pemp
N (X) :=

{︃
1

N

N∑︂
k=1

δxk : (xk)
N
k=1 ∈ XN

}︃
.

In this chapter, we are interested in the approximation by measures having
their support on curves. Let C([a, b],X) denote the set of closed, continuous curves
γ : [a, b] → X. Although our presented experiments involve solely closed curves,
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7.2 Probability measures and curves

some applications might require open curves. Hence, we want to point out that
all of our approximation results still hold without this requirement. Upper bounds
would not get worse and we have not used the closedness for the lower bounds on
the approximation rates. The length of a curve γ ∈ C([a, b],X) is given by

ℓ(γ) := sup
a≤t0≤...≤tn≤b

n∈N

n∑︂
k=1

dX
(︁
γ(tk), γ(tk−1)

)︁
.

If ℓ(γ) <∞, then γ is called rectifiable. By reparametrization, see [145, Thm. 3.2],
the image of any rectifiable curve in C([a, b],X) can be derived from the set of closed
Lipschitz continuous curves

Lip(X) :=
{︁
γ ∈ C([0, 1],X) : ∃L ∈ R with dX

(︁
γ(s), γ(t)

)︁
≤ L|s− t| ∀s, t ∈ [0, 1]

}︁
.

The speed of a curve γ ∈ Lip(X) is defined a.e. by the metric derivative

|γ̇|(t) := lim
s→t

dX
(︁
γ(s), γ(t)

)︁
|s− t| , t ∈ [0, 1],

cf. [6, Sec. 1.1]. The optimal Lipschitz constant L = L(γ) of a curve γ is given by
L(γ) = ∥ |γ̇| ∥∞([0,1]). For a constant speed curve it holds L(γ) = ℓ(γ).

We aim to approximate measures in P(X) from those of the subset

Pcurv
L (X) :=

{︁
ν ∈ P(X) : ∃γ ∈ C([a, b],X), supp(ν) ⊂ γ([a, b]), ℓ(γ) ≤ L

}︁
. (7.1)

This space is quite large and in order to define further meaningful subsets, we derive
an equivalent formulation in terms of push-forward measures. For γ ∈ C([0, 1],X),
the push-forward γ∗ω ∈ P(X) of a probability measure ω ∈ P([0, 1]) is defined by
γ∗ω(B) := ω(γ−1(B)) for B ∈ B(X). We directly observe supp(γ∗ω) = γ(supp(ω)).
By the following lemma, Pcurv

L (X) consists of the push-forward of measures in
P([0, 1]) by constant speed curves.

Lemma 7.1. The space Pcurv
L (X) in (7.1) is equivalently given by

Pcurv
L (X) =

{︁
γ∗ω : γ ∈ Lip(X) has constant speed L(γ) ≤ L, ω ∈ P([0, 1])

}︁
. (7.2)

Proof. Let ν ∈ Pcurv
L (X) as in (7.1). If supp(ν) consists of a single point x ∈ X only,

then the constant curve γ ≡ x pushes forward an arbitrary δt for t ∈ [a, b], which
shows that ν is contained in (7.2).

Suppose that supp(ν) contains at least two distinct points and let γ ∈ C([a, b],X)
with supp(ν) ⊂ γ([a, b]) and ℓ(γ) < ∞. According to [51, Prop. 2.5.9], there exists
a continuous curve γ̃ ∈ Lip(X) with constant speed ℓ(γ) and a continuous non-
decreasing function φ : [a, b] → [0, 1] with γ = γ̃ ◦ φ. Now, define f : X → [0, 1] by
f(x) := min{γ̃−1(x)}. This function is measurable, since for every t ∈ [0, 1] it holds
that {︁

x ∈ X : f(x) ≤ t
}︁
=
{︁
x ∈ X : min{γ̃−1(x)} ≤ t

}︁
= γ̃([0, t])

is compact. Due to supp(ν) ⊂ γ̃([0, 1]), we can define ω := f ∗ν ∈ P([0, 1]). By
construction, ω satisfies γ̃∗ω(B) = ω(γ̃−1(B)) = ν(f−1 ◦ γ̃−1(B)) = ν(B) for all
B ∈ B(X). This concludes the proof.
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7. Curve Based Approximation of Measures

The set Pcurv
L (X) contains Patom

N (X) if L is sufficiently large compared to N and
X is sufficiently nice, cf. Section 7.4. It is reasonable to ask for more restrictive sets
of approximation measures, e.g., when ω ∈ P([0, 1]) is assumed to be absolutely
continuous. For the Lebesgue measure λ on [0, 1], we consider

Pa-curv
L (X) :=

{︁
γ∗ω : γ ∈ Lip(X), L(γ) ≤ L, ω = ρλ ∈ P([0, 1]), L(ρ) ≤ L

}︁
.

In the literature [61, 183], the special case of push-forward of the Lebesgue
measure ω = λ on [0, 1] by Lipschitz curves in Td was discussed and successfully
used in certain applications [43, 60]. Therefore, we also consider approximations
from

Pλ-curv
L (X) :=

{︁
γ∗λ : γ ∈ Lip(X), L(γ) ≤ L

}︁
.

It is obvious that our probability spaces related to curves are nested,

Pλ-curv
L (X) ⊂ Pa-curv

L (X) ⊂ Pcurv
L (X).

Hence, one may expect that establishing good approximation rates is most difficult
for Pλ-curv

L (X) and easier for Pcurv
L (X).

7.3 Discrepancies and RKHS
The aim of this section is to introduce the way we quantify the distance (“dis-
crepancy”) between two probability measures. To this end, choose a continuous,
symmetric function K : X × X → R that is positive definite, i.e., for any finite
number n ∈ N of points xj ∈ X, j = 1, . . . , n, the relation

n∑︂
i,j=1

aiajK(xi, xj) ≥ 0

is satisfied for all aj ∈ R, j = 1, . . . , n. We know by Mercer’s theorem [80, 195, 257]
that there exists an orthonormal basis {ϕk : k ∈ N} of L2(X, σX) and non-negative
coefficients (αk)k∈N ∈ ℓ1 such that K has the Fourier expansion

K(x, y) =
∞∑︂
k=0

αkϕk(x)ϕk(y) (7.3)

with absolute and uniform convergence of the right-hand side. If αk > 0 for some
k ∈ N0, the corresponding function ϕk is continuous. Every function f ∈ L2(X, σX)
has a Fourier expansion

f =
∞∑︂
k=0

f̂kϕk, f̂k :=

∫︂
X
fϕk dσX.

The kernel K gives rise to a reproducing kernel Hilbert space (RKHS). More pre-
cisely, the function space

HK(X) :=
{︂
f ∈ L2(X, σX) :

∞∑︂
k=0

α−1
k |f̂k|2 <∞

}︂
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equipped with the inner product and the corresponding norm

⟨f, g⟩HK(X) =
∞∑︂
k=0

α−1
k f̂kĝk, ∥f∥HK(X) =

√︁
⟨f, f⟩HK(X) (7.4)

forms a Hilbert space with reproducing kernel, i.e.,

K(x, ·) ∈ HK(X) for all x ∈ X,
f(x) =

⟨︁
f,K(x, ·)

⟩︁
HK(X) for all f ∈ HK(X), x ∈ X.

Note that f ∈ HK(X) implies f̂k = 0 if αk = 0, in which case we make the
convention α−1

k f̂k = 0 in (7.4). The space HK(X) is the closure of the linear span
of {K(xj, ·) : xj ∈ X} with respect to the norm (7.4), and HK(X) is continuously
embedded in C(X). In particular, the point evaluations in HK(X) are continuous.

The discrepancy DK(µ, ν) is defined as the dual norm on HK(X) of the linear
operator T : HK(X) → C with φ ↦→

∫︁
X φ d(µ− ν):

DK(µ, ν) = max
∥φ∥HK (X)≤1

⃓⃓⃓∫︂
X
φ d(µ− ν)

⃓⃓⃓
, (7.5)

see [128, 222]. Note that this looks similar to the 1-Wasserstein distance, where
the space of test functions consists of Lipschitz continuous functions and is larger.
Since ∫︂

X
φ dµ =

∫︂
X

⟨︁
φ,K(x, ·)

⟩︁
HK(X) dµ(x) =

⟨︂
φ,

∫︂
X
K(x, ·) dµ(x)

⟩︂
HK(X)

,

we obtain by Riesz’s representation theorem

max
∥φ∥HK (X)≤1

∫︂
X
φ dµ =

⃦⃦⃦∫︂
X
K(x, ·) dµ(x)

⃦⃦⃦
HK(X)

,

which yields by Fubini’s theorem, (7.3), (7.4) and symmetry of K that

D2
K(µ, ν) =

∫︂∫︂
X×X

K dµ dµ− 2

∫︂∫︂
X×X

K dµ dν +

∫︂∫︂
X×X

K dν dν (7.6)

=
∞∑︂
k=0

αk|µ̂k − ν̂k|2, (7.7)

where the Fourier coefficients of µ, ν ∈ P(X) are well-defined for k with αk ̸= 0 by

µ̂k :=

∫︂
X
ϕk dµ, ν̂k :=

∫︂
X
ϕk dν.

Remark 7.2. The Fourier coefficients µ̂k and ν̂k depend on both K and σX, but
the identity (7.6) shows that DK(µ, ν) only depends on K. Thus, our approxima-
tion rates do not depend on the choice of σX. On the other hand, our numerical
algorithms in Section 7.7 depend on ϕk and hence on the choice of σX.
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If µn ⇀ µ and νn ⇀ ν as n → ∞, then also µn ⊗ νn ⇀ µ ⊗ ν. Therefore,
the continuity of K implies that limn→∞ DK(µn, νn) = DK(µ, ν), so that DK is
continuous with respect to weak convergence in both arguments. Thus, for any
weakly compact subset P ⊂ P(X), the infimum

inf
ν∈P

DK(µ, ν)

is actually a minimum. All of the subsets introduced in the previous section are
weakly compact.

Lemma 7.3. The sets Patom
N (X), Pemp

N (X), Pcurv
L (X), Pa-curv

L (X), and Pλ-curv
L (X) are

weakly compact.

Proof. It is well-known that Patom
N (X) and Pemp

N (X) are weakly compact.
We show that Pcurv

L (X) is weakly compact. In view of (7.2), let (γk)k∈N be
Lipschitz curves with constant speed L(γk) ≤ L and (ωk)k∈N ⊂ P([0, 1]). Since
P([0, 1]) is weakly compact, we can extract a subsequence (ωkj)j∈N with weak limit
ω̂ ∈ P([0, 1]). Now, we observe that dX(γkj(s), γkj(t)) ≤ L|s− t| for all j ∈ N. Since
X is compact, the Arzelà–Ascoli theorem implies that there exists a subsequence
of (γkj)j∈N which converges uniformly towards γ̂ ∈ Lip(X) with L(γ̂) ≤ L. Then,
ν̂ := γ̂∗ω̂ fulfills supp(ν̂) ⊂ γ̂([0, 1]), so that ν̂ ∈ Pcurv

L (X) by (7.1). Thus, Pcurv
L (X)

is weakly compact.
The proof for Pa-curv

L (X) and Pλ-curv
L (X) is analogous and hence omitted.

Remark 7.4. (Discrepancies and Convolution Kernels) Let X = Td := Rd /Zd be
the torus and h ∈ C(Td) be a function with Fourier series

h(x) =
∑︂
k∈Zd

ĥk e
2πi⟨k,x⟩, ĥk :=

∫︂
Td

h(x) e−2πi⟨k,x⟩ dσTd(x),

which converges in L2(Td) so that
∑︁

k |ĥk|2 < ∞. Assume that ĥk ̸= 0 for all
k ∈ Zd. We consider the special Mercer kernel

K(x, y) :=
∑︂
k∈Zd

|ĥk|2 e2πi⟨k,x−y⟩ =
∑︂
k∈Zd

|ĥk|2 cos
(︁
2π⟨k, x− y⟩

)︁
with associated discrepancy Dh via (7.6), i.e., ϕk(x) = e2πi⟨k,x⟩, αk = |ĥk|2, k ∈ Zd
in (7.3). The convolution of h with µ ∈ M(Td) is the function h∗µ ∈ C(Td) defined
by

(h ∗ µ)(x) :=
∫︂
Td

h(x− y) dµ(y).

By the convolution theorem for Fourier transforms it holds ˆ︂(h ∗ µ)k = ĥkµ̂k, k ∈ Zd,
and we obtain by Parseval’s identity for µ, ν ∈ M(Td) and (7.7) that

∥h ∗ (µ− ν)∥2L2(Td) =
⃦⃦(︁
ĥk (µ̂k − ν̂k)

)︁
k∈Zd

⃦⃦2
ℓ2
=
∑︂
k∈Zd

|ĥk|2|µ̂k − ν̂k|2 = D2
h(µ, ν).

In image processing, metrics of this kind were considered in [61, 114, 259].
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Remark 7.5. (Relations to Principal Curves) A similar concept, sharing the com-
mon theme of “a curve which passes through the middle of a distribution” with the
intention of our chapter, is that of principle curves. The notion of principal curves
has been developed in a statistical framework and was successfully applied in statis-
tics and machine learning, see [124, 173, 175]. The idea is to generalize the concept
of principal components with just one direction to so-called self-consistent (prin-
cipal) curves. In the seminal paper [151], the authors showed that these principal
curves γ are critical points of the energy functional

E(γ, µ) =

∫︂
X
∥x− projγ(x)∥22dµ(x), (7.8)

where µ is a given probability measure on X and projγ(x) = argminy∈γ∥x− y∥2 is a
projection of a point x ∈ X on γ. This notion has also been generalized to Rieman-
nian manifolds in [152], see also [175] for an application on the sphere. Further
investigation of principal curves in the plane, cf. [94], showed that self-consistent
curves are not (local) minimizers, but saddle points of (7.8). Moreover, the existence
of such curves is established only for certain classes of measures, such as elliptical
ones. By additionally constraining the length of curves minimizing (7.8), these un-
favorable effects were eliminated, cf. [173]. In comparison to the objective (7.8), the
discrepancy (7.6) averages for fixed x ∈ X the distance encoded by K to any point
on γ, instead of averaging over the squared minimal distances to γ.

7.4 Approximation of general probability
measures

Given µ ∈ P(X), the estimates2

min
ν∈Patom

N (X)
DK(µ, ν) ≤ min

ν∈Pemp
N (X)

DK(µ, ν) ≲ N− 1
2 , (7.9)

are well-known, cf. [131, Cor. 2.8]. Here, the constant hidden in ≲ depends on X
and K but is independent of µ and N ∈ N. In this section, we are interested in
approximation rates with respect to measures supported on curves.

Our approximation rates for Pcurv
L (X) are based on those for Patom

N (X) combined
with estimates for the traveling salesman problem (TSP). Let TSPX(N) denote the
worst case minimal cost tour in a fully connected graph G of N arbitrary nodes
represented by x1, . . . , xN ∈ X and edges with cost dX(xi, xj), i, j = 1, . . . , N .
Similarly, let MSTX(N) denote the worst case cost of the minimal spanning tree of
G. To derive suitable estimates, we require that X is Ahlfors d-regular (sometimes
also called Ahlfors-David d-regular), i.e., there exists 0 < d <∞ such that

σX
(︁
Br(x)

)︁
∼ rd, for all x ∈ X, 0 < r ≤ diam(X), (7.10)

2We use the symbols ≲ and ≳ to indicate that the corresponding inequalities hold up to
a positive constant factor on the respective right-hand side. The notation ∼ means that both
relations ≲ and ≳ hold. The dependence of the constants on other parameters shall either be
explicitly stated or clear from the context.
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where Br(x) = {y ∈ X : dX(x, y) ≤ r} and the constants in ∼ do not depend on x
or r. Note that d is not required to be an integer and turns out to be the Hausdorff
dimension. For X being the unit cube the following lemma was proved in [253].

Lemma 7.6. If X is a compact Ahlfors d-regular metric space, then there is a
constant 0 < CTSP <∞ depending on X such that

TSPX(N) ≤ CTSPN
1− 1

d .

Proof. Using (7.10) and the same covering argument as in [252, Lem. 3.1], we see
that for every choice x1, . . . , xN ∈ X, there exist i ̸= j such that dX(xi, xj) ≲ N−1/d,
where the constant depends on X.

Let S = {x1, . . . , xN} be an arbitrary selection of N points from X. First, we
choose xi and xj with dX(xi, xj) ≤ cN−1/d. Then, we form a minimal spanning
tree T of S \ {xi} and augment the tree by adding the edge between xi and xj.
This construction provides us with a spanning tree and hence we can estimate
MSTX(N) ≤ MSTX(N − 1) + cN−1/d. Iterating the argument, we deduce

MSTX(N) ≲ N1− 1
d ,

cf. [253]. Finally, the standard relation TSPX(N) ≤ 2MSTX(N) for edge costs
satisfying the triangular inequality concludes the proof.

To derive a curve in X from a minimal cost tour in the graph, we require the
additional assumption that X is a length space, i.e., a metric space with

dX(x, y) = inf
{︁
ℓ(γ) : γ a continuous curve that connects x and y

}︁
,

cf. [48, 51]. Thus, for the rest of this section, we are assuming that

X is a compact Ahlfors d-regular length space.

In this case, Lemma 7.6 yields the next proposition.

Proposition 7.7. If X is a compact Ahlfors d-regular length space, then it holds
Patom
N (X) ⊂ Pcurv

CTSPN1−1/d(X).

Proof. The Hopf-Rinow Theorem for metric measure spaces, see [48, Chap. I.3] and
[51, Thm. 2.5.28], yields that every pair of points x, y ∈ X can be connected by a
geodesic, i.e., there is γ ∈ Lip(X) with constant speed and ℓ(γ|[s,t]) = dX(γ(s), γ(t))
for all 0 ≤ s ≤ t ≤ 1. Thus, for any pair x, y ∈ X, there is a constant speed curve
γx,y ∈ Lip(X) of length ℓ(γx,y) = dX(x, y) with γx,y(0) = x, γx,y(1) = y, cf. [51,
Rem. 2.5.29]. For µN ∈ Patom

N (X), let {x1, . . . , xN} = supp(µN). The minimal cost
tour in Lemma 7.6 leads to a curve γ ∈ Lip(X), so that µN = γ∗ω ∈ Pcurv

L (X) for
an appropriate measure ω ∈ Patom

N ([0, 1]).

Proposition 7.7 enables us to transfer approximation rates from Patom
N (X) to

Pcurv
L (X).
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7.4 Approximation of general probability measures

Theorem 7.8. For µ ∈ P(X), it holds with a constant depending on X and K that

min
ν∈Pcurv

L (X)
DK(µ, ν) ≲ L− d

2d−2 .

Proof. Choose α = d−1
d

. For L large enough, set N := ⌊(L/CTSP)
1
α ⌋ ∈ N, so that

we observe Patom
N (X) ⊂ Pcurv

L (X). According to (7.9), we obtain

min
ν∈Pcurv

L (X)
DK(µ, ν) ≤ min

ν∈Patom
N (X)

DK(µ, ν) ≲ N− 1
2 ≲ L− 1

2α .

Next, we derive approximation rates for Pa-curv
L (X) and Pλ-curv

L (X).

Theorem 7.9. For µ ∈ P(X), we have with a constant depending on X and K that

min
ν∈Pa-curv

L (X)
DK(µ, ν) ≤ min

ν∈Pλ-curv
L (X)

DK(µ, ν) ≲ L− d
3d−2 . (7.11)

Proof. Let α = d−1
d

, d ≥ 2. For L large enough, set N := ⌊L 2
2α+1/ diam(X)⌋ ∈ N.

By (7.9), there is a set of points {x1, . . . , xN} ⊂ X such that

DK(µ, νN) ≲ N− 1
2 ≲ L− 1

2α+1 , νN :=
1

N

N∑︂
j=1

δxj . (7.12)

Let these points be ordered as a solution of the corresponding TSP. Set x0 := xN
and τi := dX(xi, xi+1)/L, i = 0, . . . , N − 1. Note that

N ≤ L
2

2α+1/ diam(X) ≤ L/dX(xi, xi+1),

so that τi ≤ N−1 for all i = 0, . . . , N−1. We construct a closed curve γL : [0, 1] → X
that rests in each xi for a while and then rushes from xi to xi+1. As in the proof of
Proposition 7.7, X being a compact length space enables us to choose γi ∈ Lip(X)
with γi(0) = xi, γi(1) = xi+1 and L(γi) = dX(xi, xi+1). For i = 0, . . . , NL − 1, we
define

γL(t) :=

{︄
xi for t ∈

[︁
i
N
, i+1
N

− τi
)︁
,

γi
(︁

1
τi

(︁
t− i+1

N
+ τi

)︁)︁
for t ∈

[︁
i+1
N

− τi,
i+1
N

)︁
.

By construction, L(γL) is bounded by mini d(xi, xi+1)τ
−1
i ≤ L. Defining the measure

ν := (γL)∗λ ∈ Pλ-curv
L (X), the related discrepancy can be estimated by

DK(µ, ν) = sup
∥φ∥HK (X)≤1

⃓⃓⃓ ∫︂
X
φ dµ−

∫︂ 1

0

φ ◦ γL dλ
⃓⃓⃓

≤ DK(µ, νN) + sup
∥φ∥HK (X)≤1

N−1∑︂
i=0

(︂
τi|φ(xi)|+

⃓⃓⃓ ∫︂ i+1
N

i+1
N

−τi
φ ◦ γL dλ

⃓⃓⃓)︂
.
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7. Curve Based Approximation of Measures

The relation (7.12) yields DK(µ, νN) ≤ CL− 1
2α+1 with some constant C > 0. Since

for φ ∈ HK(X) it holds ∥φ∥L∞(X) ≤ CK∥φ∥HK(X) with CK := supx∈X
√︁
K(x, x), we

finally obtain by Lemma 7.6

DK(µ, ν) ≤ C L− 1
2α+1 + 2CK

N−1∑︂
i=0

τi ≤ C L− 1
2α+1 + 2CK CTSP

Nα

L

≤
(︁
C + 2CK CTSP/ diam(X)

)︁
L− 1

2α+1 .

Note that many compact sets in Rd are compact Ahlfors d-regular length spaces
with respect to the Euclidean metric and the normalized Lebesgue measure such
as the unit ball or the unit cube. Moreover many compact connected manifolds
with or without boundary satisfy these conditions. All assumptions in this section
are indeed satisfied for d-dimensional connected, compact Riemannian manifolds
without boundary equipped with the Riemannian metric and the normalized Rie-
mannian measure. The latter setting is studied in the subsequent section to refine
our investigations on approximation rates.

Remark 7.10. For X = Td with d ∈ N, the estimate

min
ν∈Pλ-curv

L (X)
DK(µ, ν) ≲ L− 1

d . (7.13)

was derived in [61] provided that K satisfies an additional Lipschitz condition, where
the constant in (7.13) depends on d and K. The rate coincides with our rate in (7.11)
for d = 2 and is worse for higher dimensions as d

3d−2
> 1

3
for all d ≥ 3.

7.5 Approximation of probability measures having
Sobolev densities

To study approximation rates in more detail, we follow the standard strategy in
approximation theory and take additional smoothness properties into account. We
shall therefore consider µ with a density satisfying smoothness requirements. To
define suitable smoothness spaces, we make additional structural assumptions on
X. Throughout the remaining part of the chapter, we suppose that

X is a d-dimensional connected, compact Riemannian manifold with-
out boundary equipped with the Riemannian metric dX and the nor-
malized Riemannian measure σX.

In the first part of this section, we introduce the necessary background on Sobolev
spaces and derive general lower bounds for the approximation rates. Then, we
focus on upper bounds in the rest of the section. So far, we only have general upper
bounds for Pcurv

L (X). In case of the smaller spaces Pa-curv
L (X) and Pλ-curv

L (X), we
have to restrict to special manifolds X in order to obtain bounds. For a better
overview, all theorems related to approximation rates are named accordingly.
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7.5 Approximation of probability measures having Sobolev densities

7.5.1 Sobolev spaces and lower bounds

In order to define a smoothness class of functions on X, let −∆ denote the (neg-
ative) Laplace–Beltrami operator on X. It is self-adjoint on L2(X, σX) and has a
sequence of positive, non-decreasing eigenvalues (λk)k∈N (with multiplicities) with a
corresponding orthonormal complete system of smooth eigenfunctions {ϕk : k ∈ N}.
Every function f ∈ L2(X, σX) has a Fourier expansion

f =
∞∑︂
k=0

f̂(k)ϕk, f̂(k) :=

∫︂
X
fϕk dσX.

The Sobolev space Hs(X), s > 0, is the set of all functions f ∈ L2(X, σX) with
distributional derivative (I −∆)s/2f ∈ L2(X, σX) and norm

∥f∥Hs(X) := ∥(I −∆)s/2f∥L2(X,σX) =
(︂ ∞∑︂
k=0

(1 + λk)
s|f̂(k)|2

)︂ 1
2
.

For s > d/2, the space Hs(X) is continuously embedded into the space of Hölder
continuous functions of degree s−d/2, and every function f ∈ Hs(X) has a uniformly
convergent Fourier series, see [235, Thm. 5.7]. Actually, Hs(X), s > d/2, is a RKHS
with reproducing kernel

K(x, y) :=
∞∑︂
k=0

(1 + λk)
−sϕk(x)ϕk(y).

Hence, the discrepancy DK(µ, ν) satisfies (7.5) with HK(X) = Hs(X). Clearly, each
kernel of the above form with coefficients having the same decay as (1 + λk)

−s for
k → ∞ gives rise to a RKHS that coincides with Hs(X) with an equivalent norm.
Appendix 7.A contains more details of the above discussion for the torus Td, the
sphere Sd, the special orthogonal group SO(3) and the Grassmannian Gk,d.

Now, we are in the position to establish lower bounds on the approximation rates.
Again, we want to remark that our results still hold if we drop the requirement that
the approximating curves are closed.

Theorem 7.11 (Lower bound). For s > d/2 suppose that HK(X) = Hs(X) holds
with equivalent norms. Assume that µ is absolutely continuous with respect to σX
with a continuous density ρ. Then, there are constants depending on X, K, and ρ
such that

N− s
d ≲ min

ν∈Patom
N (X)

DK(µ, ν) ≤ min
ν∈Pemp

N (X)
DK(µ, ν),

L− s
d−1 ≲ min

ν∈Pcurv
L (X)

DK(µ, ν) ≤ min
ν∈Pa-curv

L (X)
DK(µ, ν) ≤ min

ν∈Pλ-curv
L (X)

DK(µ, ν).

Proof. The proof is based on the construction of a suitable fooling function to
be used in (7.5) and follows [45, Thm. 2.16]. There exists a ball B ⊂ X with
ρ(x) ≥ ϵ = ϵ(B, ρ) for all x ∈ B and σX(B) > 0, which is chosen as the support
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7. Curve Based Approximation of Measures

of the constructed fooling functions. We shall verify that for every ν ∈ Patom
N (X)

there exists φ ∈ Hs(X) such that φ vanishes on supp(ν) but∫︂
B

φ dµ ≳ ∥φ∥Hs(X)N
− s

d , (7.14)

where the constant depends on X, K, and ρ. For small enough δ we can choose 2N
disjoint balls in B with diameters δN−1/d, see also [125]. For ν ∈ Patom

N (X), there
are N of these balls that do not intersect with supp(ν). By putting together bump
functions supported on each of the N balls, we obtain a non-negative function φ
supported in B that vanishes on supp(ν) and satisfies (7.14), with a constant that
depends on ϵ, cf. [45, Thm. 2.16]. This yields⃓⃓⃓∫︂

X
φ dµ−

∫︂
X
φ dν

⃓⃓⃓
=

∫︂
B

φ dµ ≳ ∥φ∥Hs(X)N
− s

d .

The inequality for Pcurv
L (X) is derived in a similar way. Given a continuous

curve γ : [0, 1] → X of length L, choose N such that L ≤ δNN−1/d. By taking
half of the radius of the above balls, there are 2N pairwise disjoint balls of radius
δ
2
N−1/d contained in B with pairwise distances at least δN−1/d. Any curve of length
δNN−1/d intersects at most N of those balls. Hence, there are N balls of radius
δ
2
N−1/d that do not intersect supp(γ). As above, this yields a fooling function φ

satisfying (7.14), which ends the proof.

7.5.2 Upper bounds for Pcurv
L (X)

In this section, we derive upper bounds that match the lower bounds in Theo-
rem 7.11 for Pcurv

L (X). Our analysis makes use of the following theorem, which was
already proved for X = Sd in [158].

Theorem 7.12. [45, Thm. 2.12] Assume that νr ∈ P(X) provides an exact quadra-
ture for all eigenfunctions φk of the Laplace–Beltrami operator with eigenvalues
λk ≤ r2, i.e., ∫︂

X
φk dσX =

∫︂
X
φk dνr. (7.15)

Then, it holds for every function f ∈ Hs(X), s > d/2, that there is a constant
depending on X and s with⃓⃓⃓∫︂

X
f dσX −

∫︂
X
f dνr

⃓⃓⃓
≲ r−s∥f∥Hs(X).

For our estimates it is important that the number of eigenfunctions of the
Laplace–Beltrami operator on X belonging to eigenvalues with λk ≤ r2 is of order
rd, see [62, Chap. 6.4] and [163, Thm. 17.5.3, Cor. 17.5.8]. This is known as Weyl’s
estimates on the spectrum of an elliptic operator. For some special manifolds, the
eigenfunctions are explicitly given in the appendix. In the following lemma, the
result from Theorem 7.12 is rewritten in terms of discrepancies and generalized to
absolutely continuous measures with densities ρ ∈ Hs(X).
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7.5 Approximation of probability measures having Sobolev densities

Lemma 7.13. For s > d/2 suppose that HK(X) = Hs(X) holds with equivalent
norms and that νr ∈ P(X) satisfies (7.15). Let µ ∈ P(X) be absolutely continuous
with respect to σX with density ρ ∈ Hs(X). For sufficiently large r, the measures
ν̃r :=

ρ
βr
νr ∈ P(X) with βr :=

∫︁
X ρ dνr are well defined and there is a constant de-

pending on X and K with

DK

(︁
µ, ν̃r

)︁
≲ ∥ρ∥Hs(X)r

−s.

Proof. Note that Hs(X) is a Banach algebra with respect to addition and multipli-
cation [78], in particular, for f, g ∈ Hs(X) we have fg ∈ Hs(X) with

∥fg∥Hs(X) ≤ ∥f∥Hs(X) ∥g∥Hs(X). (7.16)

By Theorem 7.12, we obtain for all φ ∈ Hs(X) that⃓⃓⃓ ∫︂
X
φρ dσX −

∫︂
X
φρ dνr

⃓⃓⃓
≲ r−s∥φρ∥Hs(X) ≲ r−s∥φ∥Hs(X)∥ρ∥Hs(X). (7.17)

In particular, this implies for φ ≡ 1 that⃓⃓
1− βr

⃓⃓
≲ r−s∥ρ∥Hs(X). (7.18)

Then, application of the triangle inequality results in⃓⃓⃓ ∫︂
X
φ dµ−

∫︂
X
φ dν̃r

⃓⃓⃓
≤
⃓⃓⃓ ∫︂

X
φ dµ−

∫︂
X
φρ dνr

⃓⃓⃓
+
⃓⃓⃓ ∫︂

X
φρβr−1

βr
dνr

⃓⃓⃓
.

According to (7.17), the first summand is bounded by ≲ r−s∥φ∥Hs(X)∥ρ∥Hs(X). It
remains to derive matching bounds on the second term. Hölder’s inequality yields⃓⃓⃓ ∫︂

X
φρβr−1

βr
dνr

⃓⃓⃓
≲ ∥φ∥L∞(X) |βr − 1| ≲ ∥φ∥Hs(X)r

−s∥ρ∥Hs(X),

where the last inequality is due to Hs(X) ↪→ L∞(X) and (7.18).

Using the previous lemma, we derive optimal approximation rates for Patom
N (X)

and Pcurv
L (X).

Theorem 7.14 (Upper bounds). For s > d/2 suppose that HK(X) = Hs(X) holds
with equivalent norms. Assume that µ is absolutely continuous with respect to σX
with density ρ ∈ Hs(X). Then, there are constants depending on X and K such
that

min
ν∈Patom

N (X)
DK(µ, ν) ≲ ∥ρ∥Hs(X)N

− s
d , (7.19)

min
ν∈Pcurv

L (X)
DK(µ, ν) ≲ ∥ρ∥Hs(X)L

− s
d−1 . (7.20)

Proof. By [45, Lem. 2.11] and since the Laplace–Beltrami hasN ∼ rd eigenfunctions
belonging to eigenvectors λk < r2, there exists a measure νr ∈ Patom

N (X) that
satisfies (7.15). Hence, (7.15) is satisfied with r ∼ N1/d, where the constants depend
on X and K. Thus, Lemma 7.13 with ν̃r ∈ Patom

N (X) leads to (7.19).
The assumptions of Lemma 7.6 are satisfied, so that analogous arguments as in

the proof of Theorem 7.8 yield Patom
N (X) ⊂ Pcurv

L (X) with suitable N ∼ Ld/(d−1).
Hence, (7.19) implies (7.20).
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7. Curve Based Approximation of Measures

7.5.3 Upper bounds for Pa-curv
L (X) and special manifolds X

To establish upper bounds for the smaller space Pa-curv
L (X), restriction to special

manifolds is necessary. The basic idea consists in the construction of a curve and
a related measure νr such that all eigenfunctions of the Laplace–Beltrami operator
belonging to eigenvalues smaller than a certain value are exactly integrated by this
measure and then applying Lemma 7.13 for estimating the minimum of discrepan-
cies. We begin with the torus.

Theorem 7.15 (Torus). Let X = Td with d ∈ N, s > d/2 and suppose that
HK(X) = Hs(X) holds with equivalent norms. Then, for any absolutely continuous
measure µ ∈ P(X) with Lipschitz continuous density ρ ∈ Hs(X), there exists a
constant depending on d, K, and ρ such that

min
ν∈Pa-curv

L (X)
DK(µ, ν) ≲ L− s

d−1 .

Proof. 1. First, we construct a closed curve γr such that the trigonometric poly-
nomials from Πr(Td), see (7.33) in the appendix, are exactly integrated along this
curve. Clearly, the polynomials in Πr(Td−1) are exactly integrated at equispaced
nodes xk = k

n
, k = (k1, . . . , kd−1) ∈ Nd−1

0 , 0 ≤ ki ≤ n − 1, with weights 1/nd−1,
where n := r + 1. Set z(k) := k1 + k2n+ . . .+ kd−1n

d−2 and consider the curves

γk : Ik :=
[︁ z(k)
nd−1 ,

z(k)+1
nd−1

]︁
→ Td with γk(t) :=

(︃
xk
nd−1t

)︃
.

Then, each element in Πd
r is exactly integrated along the union of these curves, i.e.,

using I := {0, . . . , n− 1}d−1, we have∫︂
Td

p dσTd =
∑︂
k∈I

∫︂
Ik

p ◦ γk dλ, p ∈ Πd
r .

The argument is repeated for every other coordinate direction, so that we end up
with dnd−1 curves mapping from an interval of length 1

dnd−1 to Td. The intersection
points of these curves are considered as vertices of a graph, where each vertex has 2d
edges. Consequently, there exists an Euler path γr : [0, 1] → Td trough the vertices
build from all curves. It has constant speed dnd−1 and the polynomials Πd

r are
exactly integrated along γr, i.e.,∫︂

Td

p dσTd =

∫︂
Td

p dγr∗λ, p ∈ Πd
r .

2. Next, we apply Lemma 7.13 for νr = γr∗λ. We observe ν̃r = γr∗((ρ◦γr)/βrλ)
and deduce L(ρ ◦ γr/βr) ≤ L(γr)L(ρ)/βr ≲ rd−1 ∼ L as βr ∼ 1. Here, constants
depend on d, K, and ρ.

Now, we provide approximation rates for X = Sd.
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7.5 Approximation of probability measures having Sobolev densities

Theorem 7.16 (Sphere). Let X = Sd with d ≥ 2, s > d/2 and suppose that
HK(X) = Hs(X) holds with equivalent norms. Then, we have for any absolutely
continuous measure µ ∈ P(X) with Lipschitz continuous density ρ ∈ Hs(X) that
there is a constant depending on d, K, and ρ with

min
ν∈Pa-curv

L (X)
DK(µ, ν) ≲ L− s

d−1 .

Proof. 1. First, we construct a constant speed curve γr : [0, 1] → Sd and a probabil-
ity measure ωr = ρrλ with Lipschitz continuous density ρr : [0, 1] → R≥0 such that
for all p ∈ Πr(Sd), it holds ∫︂

Sd
p dσSd =

∫︂ 1

0

p ◦ γr dωr. (7.21)

Utilizing spherical coordinates

x1 = cos θ1, x2 = sin θ1 cos θ2, . . . , xd =
d−1∏︂
j=1

sin θj cosϕ, xd+1 =
d−1∏︂
j=1

sin θj sinϕ,

(7.22)
where θk ∈ [0, π], k = 1, . . . , d− 1, and ϕ ∈ [0, 2π), we obtain∫︂

Sd
p dσSd =

∫︂ π

0

cd sin(θ1)
d−1

∫︂
Sd−1

p
(︁
cos(θ1), sin(θ1)x̃

)︁
dσSd−1(x̃) dθ1, (7.23)

where cd := (
∫︁ π
0
sin(θ)d−1 dθ)−1. There exist nodes x̃i ∈ Sd−1 and positive weights

ai, i = 1, . . . , n ∼ rd−1, with
∑︁n

i=1 ai = 1, such that for all p ∈ Πr(Sd−1) it holds∫︂
Sd−1

p dσSd−1 =
n∑︂
i=1

aip(x̃i).

To see this, substitute uk = sin θk, k = 2, . . . , d − 1, apply Gaussian quadrature
with nodes ⌈(r+1)/2⌉ and corresponding weights to exactly integrate over uk, and
equispaced nodes and weights 1/(2r+1) for the integration over ϕ as, e.g., in [275].
Then, we define γr : [0, 1] → Sd for t ∈ [(i− 1)/n, i/n], i = 1, . . . , n, by

γr(t) := γr,i(2πnt), γr,i(α) :=
(︁
cos(α), sin(α)x̃i

)︁
, α ∈ [0, 2π].

Since (1, 0, . . . , 0) = γr,i(0) = γr,i(2π) for all i = 1, . . . , n, the curve is closed.
Furthermore, γr(t) has constant speed since for i = 1, . . . , n, i.e.,

|γ̇r|(t) = |γ̇r,i|(2πnt) = 2πn ∼ rd−1.

Next, the density ρr : [0, 1] → R is defined for t ∈ [(i− 1)/n, i/n], i = 1, . . . , n, by

ρr(t) := ρr,i(2πnt), ρr,i(α) := aicdπn| sin(α)|d−1, α ∈ [0, 2π].

We directly verify that ρr is Lipschitz continuous with L(ρr) ≲ maxi ain
2. By [115],

the quadrature weights fulfill ai ≲ 1
rd−1 so that L(ρr) ≲ n2r−(d−1) ∼ rd−1. By
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definition of the constant cd and weights ai, we see that ρr is indeed a probability
density ∫︂ 1

0

ρr dλ =
n∑︂
i=1

∫︂ i
n

i−1
n

ρr,i(2πnt) dt =
1

2πn

n∑︂
i=1

∫︂ 2π

0

ρr,i(α) dα

=
cd
2

n∑︂
i=1

ai

∫︂ 2π

0

| sin(θ)|d−1 dθ = 1.

For p ∈ Πr(Sd), we obtain∫︂ 1

0

p ◦ γr ρr dλ

=
n∑︂
i=1

∫︂ i
n

i−1
n

p
(︁
γr,i(2πnt)

)︁
ρr,i(2πMt) dt =

∫︂ 2π

0

1

2πn

n∑︂
i=1

p
(︁
γr,i(α)

)︁
ρr,i(α) dα

=
cd
2

∫︂ 2π

0

| sin(α)|d−1

n∑︂
i=1

aip
(︁
cos(α), sin(α)x̃i

)︁
dα

=
cd
2

∫︂ π

0

| sin(α)|d−1

n∑︂
i=1

ai

(︂
p
(︁
cos(α), sin(α)x̃i

)︁
+ p
(︁
− cos(α),− sin(α)x̃i

)︁)︂
dα.

Without loss of generality, p is chosen as a homogeneous polynomial of degree k ≤ r,
i.e., p(tx) = tkp(x). Then,∫︂ 1

0

p ◦ γr ρr dλ =
1 + (−1)k

2

∫︂ π

0

cd| sin(α)|d−1

n∑︂
i=1

aip
(︁
cos(α), sin(α)x̃i

)︁
dα,

and regarding that for fixed α ∈ [0, 2π] the function x̃ ↦→ p(cos(α), sin(α)x̃) is a
polynomial of degree at most r on Sd−1, we conclude∫︂ 1

0

p ◦ γr ρr dλ =
1 + (−1)k

2

∫︂ π

0

cd| sin(α)|d−1

∫︂
Sd−1

p
(︁
cos(α), sin(α)x̃

)︁
dσSd−1(x̃) dα.

Now, the assertion (7.21) follows from (7.23) and since
∫︁
Sd p dσSd = 0 if k is odd.

2. Next, we apply Lemma 7.13 for νr = γr∗ρrλ, from which we obtain that
ν̃r = γr∗((ρ ◦ γr)ρr/βrλ). As all ρr are uniformly bounded by construction and ρ is
bounded due to continuity, we conclude using L(ρr) ≲ rd−1 and L(γr) ∼ rd−1 that

L(ρ ◦ γr ρr/βr) ≤
(︁
L(ρ ◦ γr)∥ρr∥∞ + L(ρr)∥ρ∥∞

)︁
/βr ≲

(︁
L(ρ) + ∥ρ∥∞

)︁
rd−1,

which concludes the proof.

Finally, we derive approximation rates for X = SO(3).

Corollary 7.17 (Special orthogonal group). Let X = SO(3), s > 3/2 and suppose
HK(X) = Hs(X) holds with equivalent norms. Then, we have for any absolutely
continuous measure µ ∈ P(X) with Lipschitz continuous density ρ ∈ Hs(X) that

min
ν∈Pa-curv

L (X)
DK(µ, ν) ≲ L− s

d−1 ,

where the constant depends on K and ρ.
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Proof. 1. For fixed L ∼ r2, we shall construct a curve γr : [0, 1] → SO(3) with
L(γr) ≲ L and a probability measure ωr = ρrλ with density ρr : [0, 1] → R≥0 and
L(ρr) ≲ L, such that ∫︂

SO(3)

p dσSO(3) =

∫︂
SO(3)

p dγr∗(ρrλ).

We use the fact that the sphere S3 is a double covering of SO(3). That is, there
is a surjective two-to-one mapping a : S3 → SO(3) satisfying a(x) = a(−x), x ∈ S3.
Moreover, we know that a : S3 → SO(3) is a local isometry, see [130], i.e., it respects
the Riemannian structures, implying the relations σSO(3) = a∗σS3 and

dSO(3)

(︁
a(x1), a(x2)

)︁
= min

(︁
dS3(x1, x2), dS3(x1,−x2)

)︁
.

It also maps Πr(SO(3)) into Π2r(S3), i.e., p ∈ Πr(SO(3)) implies p ◦ a ∈ Π2r(S3).
Now, let γ̃r : [0, 1] → S3 and ω̃r be given as in the first part of the proof of Theo-
rem 7.16 for d = 3, i.e., γ̃r∗ω̃r satisfies (7.21) with L(γr̃) ≲ L and ω̃r = ρr̃λ with
L(ρ̃r) ≲ L.

We now define a curve γr in SO(3) by

γr : [0, 1] → SO(3), γr(t) := a ◦ γ̃2r(t),
and let ωr := ω̃2r. For p ∈ Πr(SO(3)), the push-forward measure γr∗ωr leads to∫︂

SO(3)

p dσSO(3) =

∫︂
SO(3)

p da∗σS3 =

∫︂
S3
p ◦ a dσS3

=

∫︂
S3
p ◦ a dγ2r˜ ∗ω̃2r =

∫︂
SO(3)

p dγr∗ωr.

Hence, property (7.15) is satisfied for γr∗ωr = γr∗(ρ̃2rλ).
2. The rest follows along the lines of step 2. in the proof of Theorem 7.16.

7.5.4 Upper bounds for Pλ-curv
L (X) and special manifolds X

To derive upper bounds for the smallest space Pλ-curv
L (X), we need the following

specification of Lemma 7.13.

Lemma 7.18. For s > d/2 suppose that HK(X) = Hs(X) holds with equivalent
norms. Let µ ∈ P(X) be absolutely continuous with respect to σX with positive
density ρ ∈ Hs(X). Suppose that νr := γr∗λ with γr ∈ Lip(X) satisfies (7.15) and
let βr :=

∫︁
X ρ dνr. Then, for sufficiently large r,

g : [0, 1] → [0, 1], g(t) :=
1

βr

∫︂ t

0

ρ ◦ γr dλ

is well-defined and invertible. Moreover, γ̃r := γr ◦ g−1 satisfies L(γ̃r) ≲ L(γr) and

DK(µ, γ̃r∗λ) ≲ r−s, (7.24)

where the constants depend on X, K, and ρ.
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Proof. Since ρ is continuous, there is ϵ > 0 with ρ ≥ ϵ. To bound the Lipschitz
constant L(γ̃r), we apply the mean value theorem together with the definition of g
and the fact that (g−1)′(s) = 1/g′(g−1(s)) to obtain

⃓⃓
γ̃r(s)− γ̃r(t)

⃓⃓
≤ L(γr)

⃓⃓
g−1(s)− g−1(t)

⃓⃓
≤ L(γr)

βr
ϵ
|s− t|.

Using (7.18), this can be further estimated for sufficiently large r as

⃓⃓
γ̃r(s)− γ̃r(t)

⃓⃓
≲ L(γr)

1 + ∥ρ∥Hs(X)r
−s

ϵ
|s− t| ≲ L(γr)

2

ϵ
|s− t|.

To derive (7.24), we aim to apply Lemma 7.13 with νr = γr∗λ. We observe

ν̃r =
ρ

βr
γr∗λ = γr∗

(︂ρ ◦ γr
βr

λ
)︂
= γr∗(g

′λ) = (γr ◦ g−1)∗λ = γr̃∗λ,

so that Lemma 7.13 indeed implies (7.24).

In comparison to Theorem 7.15, we now trade the Lipschitz condition on ρ with
the positivity requirement, which enables us to cover Pλ-curv

L (X).

Theorem 7.19 (Torus). Let X = Td with d ∈ N, s > d/2 and suppose that
HK(X) = Hs(X) holds with equivalent norms. Then, for any absolutely continuous
measure µ ∈ P(X) with positive density ρ ∈ Hs(X), there is a constant depending
on d, K, and ρ with

min
ν∈Pa-curv

L (X)
DK(µ, ν) ≤ min

ν∈Pλ-curv
L (X)

DK(µ, ν) ≲ L− s
d−1 .

Proof. The first part of the proof is identical to the proof of Theorem 7.15. Instead
of Lemma 7.13 though, we now apply Lemma 7.18 for γr and ρr ≡ 1. Hence,
γ̃r = γr ◦ g−1

r satisfies L(γ̃r) ≤ βr
ϵ
d(2r + 1)d−1 ≲ rd−1, so that γr̃∗λ satisfies (7.24)

and is in Pλ-curv
L (X) with L ∼ rd−1.

The construction on X = Sd for Pa-curv
L (X) in the proof of Theorem 7.16 is not

compatible with Pλ-curv
L (X). Thus, the situation is different from the torus, where

we have used the same underlying construction and only switched from Lemma
7.13 to Lemma 7.18. Now, we present a new construction for Pλ-curv

L (X), which is
tailored to X = S2. In this case, we can transfer the ideas of the torus, but with
Gauss-Legendre quadrature points.

Theorem 7.20 (2-sphere). Let X = S2, s > 1 and suppose HK(X) = Hs(X)
holds with equivalent norms. Then, we have for any absolutely continuous measure
µ ∈ P(X) with positive density ρ ∈ Hs(X) that there is a constant depending on K
and ρ with

min
ν∈Pa-curv

L (X)
DK(µ, ν) ≤ min

ν∈Pλ-curv
L (X)

DK(µ, ν) ≲ L−s.
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Proof. 1. We construct closed curves such that the spherical polynomials from
Πr(S2), see (7.35) in the appendix, are exactly integrated along this curve. It suffices
to show this for the polynomials p(x) = xk1xk2xk33 ∈ Πr(S2) with k1 + k2 + k3 ≤ r
restricted to S2. We select n = ⌈(r + 1)/2⌉ Gauss-Legendre quadrature points
uj = cos(θj) ∈ [−1, 1] and corresponding weights 2ωj, j = 1, . . . , n. Note that∑︁n

j=1 ωj = 1. Using spherical coordinates x1 = cos(θ), x2 = sin(θ) cos(ϕ), and
x3 = sin(θ) sin(ϕ) with (θ, ϕ) ∈ [0, π]× [0, 2π], we obtain∫︂

S2
p dσS2 =

1

4π

∫︂ 2π

0

cos(ϕ)k2 sin(ϕ)k3
∫︂ π

0

cos(θ)k1 sin(θ)k2+k3 sin(ϕ) dθ dϕ

=
1

4π

∫︂ 2π

0

cos(ϕ)k2 sin(ϕ)k3
∫︂ 1

−1

uk1(1− u2)
k2+k3

2 du dϕ,

see also [276]. If k2 + k3 is odd, then the integral over ϕ becomes zero. If k2 + k3 is
even, the inner integrand is a polynomial of degree ≤ r. In both cases we get∫︂

S2
p dσS2 =

1

2π

n∑︂
j=1

ωj

∫︂ 2π

0

p
(︁
cos(θj), sin(θj) cos(ϕ), sin(θj) sin(ϕ)

)︁
dϕ.

Substituting in each summand ϕ = 2πt/ωj, j = 1, . . . , n, yields∫︂
S2
p dσS2 =

n∑︂
j=1

∫︂ ωj

0

p ◦ γj dλ,

where γj : [0, ωj] → S2 is defined by

γj(t) :=
(︁
cos(θj), sin(θj) cos(2πt/ωj), sin(θj) sin(2πt/ωj)

)︁
,

and has constant speed L(γj) = 2π sin(θj)/ωj. The lower bound ωj ≳ 1
n
sin(θj),

cf. [115], implies that L(γj) ≲ n. Defining a curve γ̃ : [0, 1] → S2 piecewise via

γ̃|[0,s1] = γ1, γ̃|[s1,s2] = γ2(· − s1), . . . , γ̃|[sn−1,1] = γn(· − sn−1),

where sj := ω1 + . . .+ ωj, we obtain∫︂
S2
p dσS2 =

∫︂ 1

0

p dγ̃∗λ, p ∈ Πr(S2).

Further, the curve satisfies L(γ̃) ≲ r.
As with the torus, we now “turn” the sphere (or switch the position of ϕ) so

that we get circles along orthogonal directions. This large collection of circles is
indeed connected. As with the torus, each intersection point has an incoming and
outgoing part of a circle, so that all this corresponds to a graph, where again each
vertex has an even number of “edges”. Hence, there is an Euler path inducing our
final curve γr : [0, 1] → S2 with piecewise constant speed L(γr) ≲ r satisfying∫︂

S2
p dσS2 =

∫︂ 1

0

p d(γr∗λ), p ∈ Πr(S2).

2. Let r ∼ L. Analogous to the end of the proof of Theorem 7.19, Lemma 7.18
now yields the assertion.
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To get the approximation rate for X = G2,4, we make use of its double covering
X = S2 × S2, cf. Remark 7.27.

Theorem 7.21 (Grassmannian). Let X = G2,4, s > 2 and suppose HK(X) = Hs(X)
holds with equivalent norms. Then, we have for any absolutely continuous measure
µ ∈ P(X) with positive density ρ ∈ Hs(X) that there exists a constant depending on
K and ρ with

min
ν∈Pa-curv

L (X)
DK(µ, ν) ≤ min

ν∈Pλ-curv
L (X)

DK(µ, ν) ≲ L− s
3 .

Proof. By Remark 7.27 in the appendix, we know that G2,4
∼= S2×S2/{±1} so that

is remains to prove the assertion for X = S2 × S2.
There exist pairwise distinct points {x1, . . . , xN} ⊂ S2 such that 1

N

∑︁N
j=1 δxj

satisfies (7.15) on S2 with N ∼ r2, cf. [37, 38]. On the other hand, let γ̃ be the
curve on S2 constructed in the proof of Theorem 7.20, so that γ̃∗λ satisfies (7.15) on
S2 with ℓ(γ̃) ≤ L(γ̃) ∼ r. Let us introduce the virtual point xN+1 := x1. The curve
γ̃([0, 1]) contains a great circle. Thus, for each pair xj and xj+1 there is Oj ∈ O(3)
such that xj, xj+1 ∈ Γj := Oj γ̃([0, 1]). It turns out that the set on S2 × S2 given by⋃︁N
j=1({xj} × Γj) ∪ (Γj × {xj+1}) is connected. We now choose γj := Oj γ̃ and know

that the union of the trajectories of the set of curves

t ↦→
(︁
xj, γj(t)

)︁
, t ↦→

(︁
γj(t), xj+1

)︁
, j = 1, . . . , N,

is connected. Combinatorial arguments involving Euler paths, see Theorems 7.15
and 7.20, lead to a curve γ with ℓ(γ) ≤ L(γ) ∼ NL(γ̃) ∼ r3, so that γ∗λ satisfies
(7.15). The remaining part follows along the lines of the proof of Theorem 7.16.

Our approximation results can be extended to diffeomorphic manifolds, e.g.,
from S2 to ellipsoids, see also the 3D-torus example in Section 7.8. To this end, recall
that we can describe the Sobolev space Hs(X) using local charts, see [260, Sec. 7.2].
The exponential maps expx : TxX → X give rise to local charts (B̊x(r0), exp

−1
x ),

where B̊x(r0) := {y ∈ X : dX(x, y) < r0} denotes the geodesic balls around x with
the injectivity radius r0. If δ < r0 is chosen small enough, there exists a uniformly
locally finite covering of X by a sequence of balls (B̊xj(δ))j with a corresponding
smooth resolution of unity (ψj)j with supp(ψj) ⊂ B̊xj(δ), see [260, Prop. 7.2.1].
Then, an equivalent Sobolev norm is given by

∥f∥Hs(X) :=
(︂ ∞∑︂
j=1

∥(ψjf) ◦ expxj ∥2Hs(Rd)

)︂ 1
2
, (7.25)

where (ψjf) ◦ expxj is extended to Rd by zero, see [260, Thm. 7.4.5]. Using Defini-
tion (7.25), we are able to pull over results from the Euclidean setting.

Proposition 7.22. Let X1, X2 be two d-dimensional connected, compact Rieman-
nian manifolds without boundary, which are s + 1 diffeomorphic with s > d/2.
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7.5 Approximation of probability measures having Sobolev densities

Assume that for HK(X2) = Hs(X2) and every absolutely continuous measure µ with
positive density ρ ∈ Hs(X2) it holds

min
ν∈Pλ-curv

L

DK(µ, ν) ≲ L− s
d−1 ,

where the constant depends on X2, K, and ρ. Then, the same property holds for
X1, where the constant additionally depends on the diffeomorphism.

Proof. Let f : X2 → X1 denote such a diffeomorphism and ρ ∈ Hs(X1) the density
of the measure µ on X1. Any curve γ̃ : [0, 1] → X2 gives rise to a curve γ : [0, 1] → X1

via γ = f ◦ γ̃, which for every φ ∈ Hs(X1) satisfies⃓⃓⃓ ∫︂
X1

φρ dσX1 −
∫︂ 1

0

φ ◦ γ dλ
⃓⃓⃓
=
⃓⃓⃓ ∫︂

X2

(φρ) ◦ f | det(Jf )| dσX2 −
∫︂ 1

0

φ ◦ f ◦ γ̃ dλ
⃓⃓⃓
,

where Jf denotes the Jacobian of f . Now, note that φ ◦ f, ρ ◦ f | det(Jf )| ∈ Hs(X2),
see (7.16) and [260, Thm. 4.3.2], which is lifted to manifolds using (7.25). Hence,
we can define a measure µ̃ on X2 through the probability density ρ ◦ f | det(Jf )|.
Choosing γ̃L as a realization for some minimizer of infν∈Pλ-curv

L
D(µ̃, ν), we can apply

the approximation result for X2 and estimate for γL = f ◦ γ̃L that⃓⃓⃓ ∫︂
X1

φρ dσX1 −
∫︂ 1

0

φ ◦ γL dλ
⃓⃓⃓
≲ L− s

d−1∥φ ◦ f∥Hs(X2) ≲ L− s
d−1∥φ∥Hs(X1),

where the second estimate follows from [260, Thm. 4.3.2]. Now, L(γL) ≤ L(f)L
implies

inf
ν∈Pλ-curv

L

DK(µ, ν) ≲ L− s
d−1 .

Remark 7.23. Consider a probability measure µ on X such that the dimension dµ
of its support is smaller than the dimension d of X. Then, µ does not have any
density with respect to σX. If supp(µ) is itself a dµ-dimensional connected, compact
Riemannian manifold Y without boundary, we switch from X to Y. Sobolev trace
theorems and reproducing kernel Hilbert space theory imply that the assumption
HK(X) = Hs(X) leads to HK′(Y) = Hs′(Y), where K ′ := K|Y×Y is the restricted
kernel and s′ = s− (d− dµ)/2, cf. [121]. If, for instance, Y is diffeomorphic to Tdµ
(or Sdµ with dµ = 2), and µ has a positive density ρ ∈ Hs′(Y) with respect to σY,
then Theorem 7.19 (or 7.20) and Proposition 7.22 eventually yield

min
ν∈Pλ-curv

L

DK(µ, ν) ≲ L
− s′

dµ−1 .

If supp(µ) is a proper subset of Y, we are able to analyze approximations with
Pa-curv
L (Y). First, we observe that the analogue of Proposition 7.22 also holds for

Pa-curv
L (X1),Pa-curv

L (X2) when the positivity assumption on ρ is replaced with the
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Lipschitz requirement as in Theorems 7.15 and 7.16. If, for instance, Y is diffeo-
morphic to Tdµ or Sdµ and µ has a Lipschitz continuous density ρ ∈ Hs′(Y) with
respect to σY, then Theorems 7.15 and 7.16, and Proposition 7.22 eventually yield

min
ν∈Pa-curv

L

DK(µ, ν) ≲ L
− s′

dµ−1 .

7.6 Discretization
In our numerical experiments, we are interested in determining minimizers of

min
ν∈Pλ-curv

L (X)
D2
K(µ, ν). (7.26)

Defining AL := {γ ∈ Lip(X) : L(γ) ≤ L} and using the indicator function

ιAL
(γ) :=

{︃
0 if γ ∈ AL,
+∞ otherwise,

we can rephrase problem (7.26) as a minimization problem over curves

min
γ∈C([0,1],X)

JL(γ),

where JL(γ) := D2
K(µ, γ∗λ) + ιAL

(γ). As X is a connected Riemannian manifold,
we can approximate curves in AL by piecewise shortest geodesics with N parts, i.e.,
by curves from

AL,N :=
{︁
γ ∈ AL : γ|[(i−1)/N,i/N ] is a shortest geodesic for i = 1, . . . , N

}︁
.

Next, we approximate the Lebesgue measure on [0, 1] by eN := 1
N

∑︁N
i=1 δi/N and

consider the minimization problems

min
γ∈C([0,1],X)

JL,N(γ), (7.27)

where JL,N(γ) := D2
K(µ, γ∗eN) + ιAL,N

(γ). Since ess supt∈[0,1] |γ̇|(t) = L(γ), the
constraint L(γ) ≤ L can be reformulated as

∫︁ 1

0
(|γ̇|(t)− L)2+ dt = 0.1 Hence, using

xi = γ(i/N), i = 1, . . . , N , x0 = xN and regarding that |γ̇|(t) = NdX(xi−1, xi) for
t ∈
(︁
i−1
N
, i
N

)︁
, problem (7.27) is rewritten in the computationally more suitable form

min
(x1,...,xN )∈XN

D2
K

(︂
µ,

1

N

N∑︂
i=1

δxi

)︂
s.t.

1

N

N∑︂
i=1

(︁
NdX(xi−1, xi)− L

)︁2
+
= 0. (7.28)

This discretization is motivated by the next proposition. To this end, recall that
a sequence (fN)N∈N of functions fN : X → (−∞,+∞] is said to Γ-converge to
f : X → (−∞,+∞] if the following two conditions are fulfilled for each x ∈ X,
see [44]:

1For r ∈ R, we use the notation r+ =

{︄
r, r ≥ 0,

0, otherwise.
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i) f(x) ≤ lim infN→∞ fN(xN) whenever xN → x,

ii) there is a sequence (yN)N∈N with yN → x and lim supN→∞ fN(yN) ≤ f(x).

The importance of Γ-convergence relies in the fact that every cluster point of min-
imizers of (fN)N∈N is a minimizer of f . Note that for non-compact manifolds X an
additional equi-coercivity condition would be required.

Proposition 7.24. The sequence (JL,N)N∈N is Γ-convergent with limit JL.
Proof. 1. First, we verify the lim inf-inequality. Let (γN)N∈N with limN→∞ γN = γ,
i.e., the sequence satisfies supt∈[0,1] dX(γ(t), γN(t)) → 0. By excluding the trivial
case lim infN→∞ JL,N(γN) = ∞ and restricting to a subsequence (γNk

)k∈N, we may
assume γNk

∈ AL,Nk
⊂ AL. Since AL is closed, we directly infer γ ∈ AL. It holds

eN ⇀ λ, which is equivalent to the convergence of Riemann sums for f ∈ C[0, 1],
and hence also γN ∗eN ⇀ γ∗dr. By the weak continuity of D2

K , we obtain

JL(γ) = D2
K(µ, γ∗λ) = lim

N→∞
D2
K(µ, γN ∗eN) = lim inf

N→∞
JL,N(γN). (7.29)

2. Next, we prove the lim sup-inequality, i.e., we are searching for a sequence
(γN)N∈N with γN → γ and lim supN→∞ JL,N(γN) ≤ JL(γ). First, we may exclude
the trivial case JL(γ) = ∞. Then, γN is defined on every interval [(i− 1)/N, i/N ],
i = 1, . . . , N , as a shortest geodesic from γ((i− 1)/N) to γ(i/N). By construction
we have γN ∈ AL,N . From γ, γN ∈ AL we conclude

sup
t∈[0,1]

dX
(︁
γ(t), γN(t)

)︁
= max

i=1,...N
sup

t∈[(i−1)/N,i/N ]

dX
(︁
γ(t), γN(t)

)︁
≤ max

i=1,...N
sup

t∈[(i−1)/N,i/N ]

dX
(︁
γ(t), γ(i/N)

)︁
+ dX

(︁
γN(i/N), γN(t)

)︁
≤ 2L

N
,

implying γN → γ. Similarly as in (7.29), we infer lim supN→∞ JL,N(γN) ≤ JL(γ).

In the numerical part, we use the penalized form of (7.28) and minimize

min
(x1,...,xN )∈XN

D2
K

(︂
µ,

1

N

N∑︂
i=1

δxi

)︂
+
λ

N

N∑︂
i=1

(︁
NdX(xi−1, xi)− L

)︁2
+
, λ > 0. (7.30)

7.7 Numerical algorithm
For a detailed overview on Riemannian optimization we refer to [233] and the
books [2, 266]. In order to minimize (7.30), we have a closer look at the discrepancy
term. By (7.6) and (7.7), the discrepancy can be represented as follows

D2
K

(︂
µ,

1

N

N∑︂
i=1

δxi

)︂
=

1

N2

N∑︂
i,j=1

K(xi, xj)− 2
N∑︂
i=1

∫︂
X
K(xi, x) dµ(x) +

∫︂∫︂
X×X

K dµ dµ

=
∞∑︂
k=0

αk

⃓⃓⃓
µ̂k −

1

N

N∑︂
i=1

φk(xi)
⃓⃓⃓2
.
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Both formulas have pros and cons: The first formula allows for an exact evaluation
only if the expressions Φ(x) :=

∫︁
XK(x, y) dµ(y) and

∫︁
XΦdµ can be written in

closed forms. In this case the complexity scales quadratically in the number of
points N . The second formula allows for exact evaluation only if the kernel has a
finite expansion (7.3). In that case the complexity scales linearly in N .

Our approach is to use kernels fulfilling HK(X) = Hs(X), s > d/2, and approx-
imating them by their truncated representation with respect to the eigenfunctions
of the Laplace–Beltrami operator

Kr(x, y) :=
∑︂
k∈Ir

αkφk(x)φk(y), Ir :=
{︁
k : φk ∈ Πr(X)

}︁
.

Then, we finally aim to minimize

min
x∈XN

F (x) :=
∑︂
k∈Ir

αk

(︂
µ̂k −

1

N

N∑︂
i=1

φk(xi)
)︂2

+
λ

N

N∑︂
i=1

(︁
NdX(xi−1, xi)− L

)︁2
+
, (7.31)

where λ > 0. Our algorithm of choice is the nonlinear conjugate gradient (CG)
method with Armijo line search as outlined in Algorithm 7.1 with notation and
implementation details described in the comments after Remark 7.25, see [85] for
Euclidean spaces. Note that the notation is independent of the special choice of
X in our comments. The proposed method is of “exact conjugacy” and uses the
second order derivative information provided by the Hessian. For the Armijo line
search itself, the sophisticated initialization in Algorithm 7.2 is used, which also
incorporates second order information via the Hessian. The main advantage of the
CG method is its simplicity together with fast convergence at low computational
cost. Indeed, Algorithm 7.1, together with Algorithm 7.2 replaced by an exact line
search, converges under suitable assumptions superlinearly, more precisely dN -step
quadratically towards a local minimum, cf. [250, Thm. 5.3] and [131, Sec. 3.3.2,
Thm. 3.27].

Remark 7.25. The objective in (7.31) violates the smoothness requirements when-
ever xk−1 = xk or dX(xk−1, xk) = L/N . However, we observe numerically that
local minimizers of (7.31) do not belong to this set of measure zero. This means
in turn, if a local minimizer has a positive definite Hessian, then there is a local
neighborhood where the CG method (with exact line search) permits a superlinear
convergence rate. We do indeed observe this behavior in our numerical experiments.

Let us briefly comment on Algorithm 7.1 for X ∈ {T2,T3,S2, SO(3),G2,4} which
are considered in our numerical examples. For additional implementation details
we refer to [131]. By γx,d we denote the geodesic with γx,d(0) = x and γ̇x,d(0) = d.
Besides evaluating the geodesics γx(k),d(k)(τ (k)) in the first iteration step, we have
to compute the parallel transport of d(k) along the geodesics in the second step.
Furthermore, we need to compute the Riemannian gradient ∇XNF and products of
the Hessian HXNF with vectors d, which are approximated by the finite difference

HXNF (x)d ≈ ∥d∥
h

(︂
∇XNF

(︁
γx,hd/∥d∥

)︁
−∇XNF (x)

)︂
, h := 10−8.

190



7.7 Numerical algorithm

Algorithm 7.1 (CG Method with Restarts)
Parameters: maximal iterations kmax ∈ N
Input: twice differentiable function F : XN → [0,∞), initial point x(0) ∈ XN

Initialization: g(0) := ∇XNF
(︁
x(0)
)︁
, d(0) := −g(0), r := 0

for k := 0, . . . , kmax do
x(k+1) := γx(k),d(k)

(︁
τ (k)
)︁

where τ (k) is determined by Algorithm 7.2

d̃
(k)

:= γ̇x(k),d(k)
(︁
τ (k)
)︁

g(k+1) := ∇XNF
(︁
x(k+1)

)︁
β(k) :=

⎧⎨⎩
⟨︁
d̃
(k)
,HXN F (x(k+1))g(k+1)

⟩︁⟨︁
d̃
(k)
,HXN F (x(k+1))d̃

(k)
⟩︁ , ⟨︁

d̃
(k
,HXNF

(︁
x(k+1)

)︁
d̃
(k)⟩︁ ̸= 0,

0, else

d(k+1) := −g(k+1) + β(k)d̃
(k)

if
⟨︁
d(k+1), g(k+1)

⟩︁
> 0 or (k + 1) ≡ r mod Ndim(X) then

d(k+1) = −g(k+1)

r := k + 1

Output: iteration sequence x(0), x(1), · · · ∈ XN

Algorithm 7.2 (Armijo Line Search)

Parameters: 0 < a < 1
2
, 0 < b < 1, maximal iterations kmax ∈ N

Input: smooth function F : XN → [0,∞), start point x ∈ XN , descent direction
d ∈ TxXN

Initialization: k := 0,

τ (0) :=

⎧⎨⎩
⃓⃓⃓⃓ ⟨︁

d,∇XN F (x)
⟩︁⟨︁

d,HXN F (x)d
⟩︁ ⃓⃓⃓⃓ , ⟨︁

d,HXNF (x)d
⟩︁
̸= 0,

1, else

while f ◦ γx,d
(︁
τ (k)
)︁
− F (x) ≥ aτ (k)

⟨︁
∇XNF (x), d

⟩︁
and k < kmax do

τ (k+1) := bτ (k)

k := k + 1

Output: τ (k) (success if k ≤ kmax)

The computation of the gradient of the penalty term in (30) is done by applying the
chain rule and noting that for x ↦→ dX(x, y), we have ∇XdX(x, y) = logx y/dX(x, y),
x ̸= y with the logarithmic map log on X, while the distance is not differentiable for
x = y. Concerning the later point, see Remark 5. The evaluation of the gradient of
the penalty term at a point in XN requires only O(N) arithmetic operations. The
computation of the Riemannian gradient of the data term in (30) is done analytically
via the gradient of the eigenfunctions φk of the Laplace–Beltrami operator. Then,
the evaluation of the gradient of the whole data term at given points can be done
efficiently by fast Fourier transform (FFT) techniques at non-equispaced nodes
using the NFFT software package of Potts et al. [174]. The overall complexity of
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X Reference Complexity
Td [134], [131, Sec. 5.2.1] O(rd log(r) +N)
S2 [133, 134], [131, Sec. 5.2.2] O(r2 log2(r) +N)
SO(3) [130, 132], [131, Sec. 5.2.3] O(r3 log2(r) +N)
G2,4 [91] O(r4 log2(r) +N)

Table 7.1: References for implementation details of Alg. 7.1 (left) and arithmetic
complexity for the evaluations per iteration for the different manifolds (right).

the algorithm and references for the computation details for the above manifolds
are given in Table 7.1.

7.8 Numerical results
In this section, we underline our theoretical results by numerical examples. We
start by studying the parameter choice in our numerical model. Then, we provide
examples for the approximation of absolutely continuous measures with densities
in Hs(X), s > d/2, by push-forward measures of the Lebesgue measure on [0, 1]
by Lipschitz curves for the manifolds X ∈ {T2,T3,S2, SO(3), G2,4}. Supplementary
material can be found on our webpage.

7.8.1 Parameter choice

We like to emphasize that the optimization problem (7.31) is highly nonlinear and
the objective function has a large number of local minimizers, which appear to
increase exponentially in N. In order to find for fixed L reasonable (local) solutions
of (7.26), we carefully adjust the parameters in problem (7.31), namely the number
of points N , the polynomial degree r in the kernel truncation, and the penalty
parameter λ. In the following, we suppose that dim(supp(µ)) = d ≥ 2.

i) Number of points N : Clearly, N should not be too small compared to L.
However, from a computational perspective it should also be not too large
since the optimization procedure is hampered by the vast number of local
minimizers. From the asymptotic of the path lengths of TSP in Lemma 7.6,
we conclude that N ≳ ℓ(γ)d/(d−1) is a reasonable choice, where ℓ(γ) ≤ L is
the length of the resulting curve γ going through the points.

ii) Polynomial degree r: Based on the proofs of the theorems in Subsection
7.5.4 it is reasonable to choose

r ∼ L
1

d−1 ∼ N
1
d .

iii) Penalty parameter λ: If λ is too small, we cannot enforce that the points
approximate a regular curve, i.e., L/N ≳ dX(xk−1, xk). Otherwise, if λ is
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7.8 Numerical results

too large the optimization procedure is hampered by the rigid constraints.
Hence, to find a reasonable choice for λ in dependence on L, we assume that
the minimizers of (7.31) treat both terms proportionally, i.e., for N → ∞
both terms are of the same order. Therefore, our heuristic is to choose the
parameter λ such that

min
x1,...,xN

D2
K

(︂
µ,

1

N

N∑︂
k=1

δxk

)︂
∼ N− 2s

d ∼ λ

N

N∑︂
k=1

(︁
NdX(xk−1, xk)− L

)︁2
+
.

On the other hand, assuming that for the length ℓ(γ) =
∑︁N

k=1 dX(xk−1, xk) of
a minimizer γ we have ℓ(γ) ∼ L ∼ N (d−1)/d, so that NdX(xk−1, xk) ∼ L, the
value of the penalty term behaves like

λ

N

N∑︂
k=1

(︁
NdX(xk−1, xk)− L

)︁2
+
∼ λL2 ∼ λN

2d−2
d .

Hence, a reasonable choice is

λ ∼ L
−2s−2(d−1)

d−1 ∼ N
−2s−2(d−1)

d . (7.32)

Remark 7.26. In view of Remark 7.23 the relations in i)-iii) become

N ∼ L
dµ

dµ−1 , r ∼ N
1
dµ ∼ L

1
dµ−1 , λ ∼ L

−2s−3dµ+d+2

dµ−1 ∼ N
−2s−3dµ+d+2

dµ .

In the rest of this subsection, we aim to provide some numerical evidence for
the parameter choice above. We restrict our attention to the torus X = T2 and
the kernel K given in (7.34) with d = 2 and s = 3/2. Choose µ as the Lebesgue
measure on T2. From (7.32), we should keep in mind λ ∼ N−5/2 ∼ L−5.

Influence of N and λ. We fix L = 4 and a large polynomial degree r = 128
for truncating the kernel. For any λi = 0.1 · 2−5i/2, i = 1, . . . , 4, we compute local
minimizers with Nj = 10 · 2j, j = 1, . . . , 4. More precisely, keeping λi fixed we
start with N1 = 20 and refine successively the curves by inserting the midpoints of
the line segments connecting consecutive points and applying a local minimization
with this initialization. The results are depicted in Fig. 7.1. For fixed λ (fixed
row) we can clearly notice that the local minimizers converge towards a smooth
curve for increasing N . Moreover, the diagonal images correspond to the choice
λ = 0.1(N/10)−5/2, where we can already observe good approximation of the curves
emerging to the right of it. This should provide some evidence that the choice of
the penalty parameter λ and the number of points N discussed above is reasonable.
Indeed, for λ→ ∞ we observe L(γ) → ℓ(γ) → L = 4.

Influence of the polynomial degree r. In Fig. 7.2 we illustrate the lo-
cal minimizers of (7.31) for fixed Lipschitz parameters Li = 2i and corresponding
regularization weights λi = 0.2 · L−5

i , i = 1, . . . , 4, (rows) in dependence on the
polynomial degrees rj = 8 · 2j, j = 1, . . . , 5 (columns). According to the previous
experiments, it seems reasonable to choose N = 20L2. Note, that the (numerical)
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7. Curve Based Approximation of Measures

N = 20 N = 40 N = 80 N = 160

ℓ(γ) ≈ 4.20 ℓ(γ) ≈ 4.43 ℓ(γ) ≈ 4.49 ℓ(γ) ≈ 4.50

ℓ(γ) ≈ 4.47 ℓ(γ) ≈ 5.16 ℓ(γ) ≈ 5.38 ℓ(γ) ≈ 5.44

ℓ(γ) ≈ 4.66 ℓ(γ) ≈ 5.91 ℓ(γ) ≈ 6.64 ℓ(γ) ≈ 6.87

ℓ(γ) ≈ 4.73 ℓ(γ) ≈ 6.45 ℓ(γ) ≈ 8.15 ℓ(γ) ≈ 9.03

Figure 7.1: Influence of N and λ on local minimizers of (7.31) for the Lebesgue
measure on T2, L = 4 and r = 128. Results for increasing N (column-wise) and
decreasing λ = 0.1 ·2−5i/2, i = 1, . . . , 4, (row-wise). Here, the curve length increases
for decreasing λ or increasing N , until stagnation for sufficient small λ or large N .
For all minimizer the distance between consecutive points is around ℓ(γ)/N .
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r = 16 r = 32 r = 64 r = 128 r = 256

ℓ(γ) ≈ 4.07 ℓ(γ) ≈ 4.07 ℓ(γ) ≈ 4.06 ℓ(γ) ≈ 4.06 ℓ(γ) ≈ 4.05

ℓ(γ) ≈ 8.48 ℓ(γ) ≈ 8.28 ℓ(γ) ≈ 8.32 ℓ(γ) ≈ 8.23 ℓ(γ) ≈ 8.22

ℓ(γ) ≈ 10.42 ℓ(γ) ≈ 16.96 ℓ(γ) ≈ 16.77 ℓ(γ) ≈ 16.63 ℓ(γ) ≈ 16.4

ℓ(γ) ≈ 10.48 ℓ(γ) ≈ 20.83 ℓ(γ) ≈ 34.09 ℓ(γ) ≈ 33.52 ℓ(γ) ≈ 33.35

Figure 7.2: Influence of r on the local minimizer of (7.31) for the Lebesgue measure
on T2. Column-wise we increase r = 16, 32, 64, 128, 256 and row-wise we increase
L = 2, 4, 8, 16, where λ = 0.2L−5 and N = 20L2. Note that the degree r steers the
resolution of the curves. It appears that the spacing of the curves is bounded by
r−1.

choice of λ leads to curves with length ℓ(γ) ≈ 2L. In Fig. 7.2 we observe that for
r = cL the corresponding local minimizers have common features. For instance, if
c = 4 (i.e., r ≈ ℓ(γ)) the minimizers have mostly vertical and horizontal line seg-
ments. Furthermore, for fixed r it appears that the length of the curves increases
linearly with L until L exceeds 2r, from where it remains unchanged. This observa-
tion can be explained by the fact that there are curves of bounded length cr which
provide exact quadratures for degree r.

7.8.2 Quasi-optimal curves on special manifolds

In this subsection, we give numerical examples for X ∈ {T2,T3, S2, SO(3),G2,4}.
Since the objective function in (7.31) is highly non-convex, the main problem is
to find nearly optimal curves γL ∈ Pλ-curv

L (X) for increasing L. Our heuristic is as
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follows:

i) We start with a curve γL0 : [0, 1] → X of small length ℓ(γ) ≈ L0 and solve
the problem (7.31) for increasing Li = cLi−1, c > 1, where we choose the
parameters Ni, λi and ri in dependence on Li as described in the previous
subsection. In each step a local minimizer is computed using the CG method
with 100 iterations. Then, the obtained minimizer γi serves as the initial guess
in the next step, which is obtained by inserting the midpoints.

ii) In case that the resulting curves γi have non-constant speed, each is refined
by increasing λi and Ni. Then, the resulting problem is solved with the CG
method and γi as initialization. Details on the parameter choice are given in
the according examples.

The following examples show that this recipe indeed enables us to compute
“quasi-optimal” curves, meaning that the obtained minimizers have optimal decay
in the discrepancy.

2d-Torus T2. In this example we illustrate how well a gray-valued image (con-
sidered as probability density) may be approximated by an almost constant speed
curve. The original image of size 170x170 is depicted in the bottom-right corner of
Fig. 7.3. Its Fourier coefficients µ̂k1,k2 are computed by a discrete Fourier transform
(DFT) using the FFT algorithm and normalized appropriately. The kernel K is
given by (7.34) with d = 2 and s = 3/2.

We start with N0 = 96 points on a circle given by the formula

x0,k =
(︂

1
5
cos(2πk/N0),

1
5
sin(2πk/N0)

)︂
, k = 0, . . . , N0.

Then, we apply our procedure for i = 0, . . . , 11 with parameters

Li = 0.97 · 2 i+5
2 , λi = 100 · L−5

i , Ni = 96 · 2i ∼ L2
i ri = ⌊2 i+11

2 ⌋ ∼ Li,

chosen such that the length of the local minimizer γi satisfies ℓ(γi) ≈ 2(i+5)/2 and
the maximal speed is close to Li.

To get nearly constant speed curves γi, see ii), we increase λi by a factor of 100,
Ni by a factor of 2 and set Li := 2(i+5)/2. Then, we apply the CG method with
maximal 100 iterations and i restarts. The results are depicted in Fig. 7.3. Note
that the complexity for the evaluation of the function in (7.31) scales roughly as
N ∼ L2. In Fig. 7.4 we observe that the decay-rate of the squared discrepancy
D2
K(µ, ν) in dependence on the Lipschitz constant L matches indeed the theoretical

findings of Theorem 7.19.

3D-Torus T3. The aim of this example is two-fold. First, it shows that the
algorithm works pretty well in three dimensions. Second, we are able to approximate
any compact surface in the three-dimensional space by a curve. We construct a
measure µ supported around a two-dimensional surface by taking samples from
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7.8 Numerical results

Figure 7.3: Local minimizers of (7.31) for the image at bottom right.

Figure 7.4: Squared discrepancy between the measure µ given by the image in
Fig. 7.3 and the computed local minimizers (black dots) on T2 in log-scale. The
blue line corresponds to the optimal decay-rate in Theorem 7.19.
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Spock’s head3 and placing small Gaussian peaks at the sampling points, i.e., the
density is given for x ∈ [−1

2
, 1
2
] by

ρ(x) := c−1
∑︂
p∈S

e−30000∥p−x∥22 , c :=

∫︂
[−1

2
,
1
2
]3

∑︂
p∈S

e−30000∥p−x∥22 dx,

where S ⊂ [−1
2
, 1
2
]3 is the discrete sampling set. From a numerical point of view

it holds dim(supp(µ)) = 2. The Fourier coefficients are again computed by a DFT
and the kernel K is given by (7.34) with d = 3 and s = 2 so that HK = H2(T3).

We start with N0 = 100 points on a smooth curve given by the formula

x0,k =
(︂

3
10
cos(2πk/N0),

3
10
sin(2πk/N0),

3
10
sin(4πk/N0)

)︂
, k = 0, . . . , N0.

Then, we apply our procedure for i = 0, . . . , 8 with parameters, cf. Remark 7.26,

Li = 2
i+5
2 , λi = 10 · L−5

i , Ni = 100 · 2i ∼ L2
i , ri = ⌊2 i+5

2 ⌋ ∼ Li.

To get nearly constant speed curves γi, we increase λi by a factor of 100, Ni by a
factor of 2 and set Li := 2(i+6)/2. Then, we apply the CG method with maximal
100 iterations and one restart to the previously found curve γi. The results are
illustrated in Fig. 7.5. Note that the complexity of the function evaluation in
(7.31) scales roughly as N3/2 ∼ L3. In Fig. 7.6 we depict the squared discrepancy
D2
K(µ, ν) of the computed curves. For small Lipschitz constants, say L(γ) ≤ 50, we

observe a decrease of approximately L(γ)−3, which matches the optimal decay-rate
for measures supported on surfaces as discussed in Remark 7.23.

2-Sphere S2. Next, we approximate a gray-valued image on the sphere S2 by
an almost constant speed curve. The image represents the earth’s elevation data
provided by MATLAB, given by samples ρi,j, i = 1, . . . , 180, j = 1, . . . , 360, on the
grid

xi,j :=
(︂
sin
(︁
i π
180

)︁
sin
(︁
j π
180

)︁
, sin

(︁
i π
180

)︁
cos
(︁
j π
180

)︁
, cos

(︁
i π
180

)︁)︂
.

The Fourier coefficients are computed by discretizing the Fourier integrals, i.e.,

µ̂mk :=

{︄
1

180·360
∑︁180

i=1

∑︁360
j=1 ρi,jY

m
k (xi,j) sin

(︁
i π
180

)︁
, 1 ≤ k ≤ 2m+ 1,m ≤ 180,

0, else,

followed by a suitable normalization such that µ̂0
0 = 1. The corresponding sums are

efficiently computed by an adjoint non-equispaced fast spherical Fourier transform
(NFSFT), see [228]. The kernel K is given by (7.36). Similar to the previous
examples, we apply our procedure for i = 0, . . . , 12 with parameters

Li = 9.7 · 2 i
2 , λi = 100 · L−5

i , Ni = 100 · 2i ∼ L2
i , ri = ⌊Li⌋ ∼ Li.

To get nearly constant speed curves, we increase λi by a factor of 100, Ni by a
factor of 2 and set Li := L02

i/2. Then, we apply the CG method with maximal 100
3http://www.cs.technion.ac.il/∼vitus/mingle/
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Figure 7.5: Local minimizers of (7.31) for a measure µ concentrated on a surface
(head of Spock) in T3.

Figure 7.6: Squared discrepancy between the measure µ given by the surface in
Fig. 7.5 and the computed local minimizers (black dots) on T3 in log-scale. The
blue line corresponds to the optimal decay-rate in Theorem 7.19.
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Figure 7.7: Local minimizers of (7.31) for µ given by the earth’s elevation data
on the sphere S2.

Figure 7.8: Squared discrepancy between the measure µ and the computed local
minimizers (black dots) in log-scale. The blue line corresponds to the optimal
decay-rate in Theorem 7.20.

iterations and one restart to the previously constructed curves γi. The results for
i = 6, 8, 10, 12 are depicted in Fig. 7.7. Note that the complexity of the function
evaluation in (7.31) scales roughly as N ∼ L2. In Fig. 7.8 we observe that the decay-
rate of the squared discrepancy D2

K(µ, ν) in dependence on the Lipschitz constant
matches indeed the theoretical findings in Theorem 7.20.

3D-Rotations SO(3). There are several possibilities to parameterize the rota-
tion group SO(3). We apply those by Euler angles and an axis-angle representation
for visualization. Euler angles (φ1, θ, φ2) ∈ [0, 2π) × [0, π] × [0, 2π) correspond to
rotations Rot(φ1, θ, φ2) in SO(3) that are the successive rotations around the axes
e3, e2, e3 by the respective angles. Then, the Haar measure of SO(3) is determined
by

dµSO(3)(φ1, θ, φ2) =
1

8π2 sin(θ) dφ1 dθ dφ2.

We are interested in the full three-dimensional doughnut

D =
{︁
Rot(φ1, θ, φ2) : 0 ≤ θ ≤ π

2
, 0 ≤ φ1, φ2 ≤ 2π

}︁
⊂ SO(3).

Next, we want to approximate the Haar measure µ = µD restricted to D, i.e., with
normalization we consider the measure defined for f ∈ C(SO(3)) by∫︂

SO(3)

f dµD =
1

4π2

∫︂ 2π

0

∫︂ π
2

0

∫︂ 2π

0

f(φ1, θ, φ2) sin(θ) dφ1 dθ dφ2.
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The Fourier coefficients of µD can be explicitly computed by

µ̂kl,l′ =

{︄
Pk−1(0)− Pk+1(0), l, l′ = 0, k ≥ 0,

0, l, l′ ̸= 0,

where Pk are the Legendre polynomials. The kernel K is given by (7.37) with d = 3
and s = 2. For i = 0, . . . , 8 the parameters are chosen as

Li = 0.93 · 2 2i+12
3 , λi = 10 · L−4

i , Ni = 64 · 2i ∼ L2
i , ri = ⌊2 i+9

3 ⌋ ∼ L
1
2
i .

Here, we use a CG method with 100 iterations and one restart. Step ii) appears to
be not necessary. Note that the complexity for the function evaluations in (7.31)
scales roughly as N ∼ L3/2.

The constructed curves are illustrated in Fig. 7.9, where we utilized the following
visualization: Every rotation R(α, r) ∈ SO(3) is determined by a rotation axis
r = (r1, r2, r3) ∈ S2 and a rotation angle α ∈ [0, π], i.e.,

R(α, r)x = r(rTx) + cos(α) ((r × x)× r) + sin(α)(r × x).

Setting q := (cos(α
2
), sin(α

2
)r) ∈ S3 with r ∈ S2 and α ∈ [0, 2π], see (7.22), we

observe that the same rotation is generated by −q = (cos(2π−α
2

), sin(2π−α
2

(−r)) ∈ S3,
in other words SO(3) ∼= S3/{±1}. Then, by applying the stereographic projection
π(q) = (q2, q3, q4)/(1+q1), we map the upper hemisphere onto the three dimensional
unit ball. Note that the equatorial plane of S3 is mapped onto the sphere S2, hence
on the surface of the ball antipodal points have to be identified. In other words,
the rotation R(α, r) is plotted as the point

π(q) =
sin
(︁
α
2

)︁
1 + cos

(︁
α
2

)︁r = tan
(︁
α
4

)︁
r ∈ R3.

In Fig. 7.10 we observe that the decay-rate of D2
K(µ, ν) in dependence on the

Lipschitz constant L matches the theoretical findings in Corollary 7.17.
The 4-dimensional Grassmannian G2,4. Here, we aim to approximate the

Haar measure of the Grassmannian G2,4 by a curve of almost constant speed. As this
curve samples the space G2,4 quite evenly, it could be used for the grand tour, a tech-
nique to analyze high-dimensional data by their projections onto two-dimensional
subspaces, cf. [12].

The kernel K of the Haar measure is given by (7.38) and the Fourier coefficients
are given by µ̂k,k

′

m,m′ = δm,0δm′,0δk,0δk′,0. For i = 0, . . . , 8 the parameters are chosen as

Li = 0.91 · 2 3i+16
4 , λi = 100 · L− 11

3
i , Ni = 128 · 2i ∼ L2

i , ri = ⌊2 3i+16
12 ⌋+ 1 ∼ L

1
3
i .

Here, we use a CG method with 100 iterations and one restart. Our experiments
suggest that step ii) is not necessary. Note that the complexity for the function
evaluation in (7.31) scales roughly as N ∼ L3/2.
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Figure 7.9: Local minimizers of (7.31) for the Haar measure µD of three-
dimensional doughnut D in the rotation group SO(3) with a color scheme for better
visibility of the 3D structure.

Figure 7.10: Squared discrepancy between the measure µD and the computed
local minimizers (black dots) in log-scale. The blue line corresponds to the optimal
decay-rate in Corollary 7.17.
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The computed curves are illustrated in Fig. 7.11, where we use the follow-
ing visualization. By Remark 7.27, there exists an isometric one-to-one mapping
P : S2×S2/{±1} → G2,4. Using this relation, we plot the point P (u, v) ∈ G2,4 by two
antipodal points z1 = u+ v, z2 = −u− v ∈ R3 together with the RGB color-coded
vectors ±u.4 More precisely, R = (1∓ u1)/2, G = (1∓ u2)/2, B = (1∓ u3)/2. This
means a curve γ(t) ∈ G2,4 only intersects itself if the corresponding curve z(t) ∈ R3

intersects and has the same colors at the intersection point. In Fig. 7.12 we ob-
serve that the decay-rate of the squared discrepancy D2

K(µ, ν) in dependence on the
Lipschitz constant L matches indeed the theoretical findings in Theorem 7.21.

7.9 Conclusions
In this chapter, we provided approximation results for general probability measures
on compact Ahlfors d-regular metric spaces X by

i) measures supported on continuous curves of finite length, which are actually
push-forward measures of probability measures on [0, 1] by Lipschitz curves;

ii) push-forward measures of absolutely continuous probability measures on [0, 1]
by Lipschitz curves;

iii) push-forward measures of the Lebesgue measure on [0, 1] by Lipschitz curves.

Our estimates rely on discrepancies between measures. In contrast to Wasserstein
distances, these estimates do not reflect the curse of dimensionality.

In approximation theory, a natural question is how the approximation rates
improve as the “measures become smoother”. Therefore, we considered absolutely
continuous probability measures with densities in Sobolev spaces, where we have to
restrict ourselves to compact Riemannian manifolds X. We proved lower estimates
for all three approximation spaces i)-iii). Concerning upper estimates, we gave a
result for the approximation space i). Unfortunately, we were not able to show
similar results for the smaller approximation spaces ii) and iii). Nevertheless, for
these cases, we could provide results for the d-dimensional torus, the d-sphere,
the three-dimensional rotation group and the Grassmannian G2,4, which are all
of interest on their own. Numerical examples on these manifolds underline our
theoretical findings.

Our results can be seen as starting point for future research. Clearly, we want
to have more general results also for the approximation spaces ii) and iii). We hope
that our research leads to further practical applications. It would be also interesting
to consider approximation spaces of measures supported on higher dimensional
submanifolds as, e.g., surfaces.

Recently, results on the principal component analysis (PCA) on manifolds were
obtained. It may be interesting to see if some of our approximation results can

4Note that the decomposition of z ∈ R3 with 0 < ∥z∥ < 2 into u and v is not unique. There is a
one-parameter family of points us, vs ∈ S2 such z = us+vs. The point z = 0 has a two-dimensional
ambiguity v = −u, u ∈ S2 and the point z ∈ 2S2 has a unique pre-image v = u = 1

2z.
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7. Curve Based Approximation of Measures

Figure 7.11: Local minimizers of (7.31) for the Haar measure of the Grassmannian
G2,4.

Figure 7.12: The squared discrepancy between the Haar measure µ and the com-
puted local minimizers (black dots) in log-scale. Here, the blue line corresponds to
the optimal decay-rate, cf. Theorem 7.21.
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be also modified for the setting of principal curves, cf. Remark 7.5. In contrast to
[173, Thm. 1] that bounds the discretization error for fixed length, we were able
to provide precise error bounds for the discrepancy in dependence on the Lipschitz
constant L of γ and the smoothness of the density dµ.

7.A Special manifolds
Here, we introduce the main examples that are addressed in the numerical part.
The measure σX is always the normalized Riemannian measure on the manifold X.
Note that for simplicity of notation all eigenspaces are complex in this section. We
are interested in the following special manifolds.

Example 1: X = Td. For k ∈ Zd, set |k|2 := k21 + . . . + k2d and |k|∞ :=
max{|k1|, . . . , |kd|}. Then −∆ has eigenvalues {4π2|k|2}k∈Zdwith eigenfunctions
{ e2πi⟨k,·⟩}k∈Zd . The space of d-variate trigonometric polynomials of degree r,

Πr(Td) := span
{︁
e2πi⟨k,x⟩ : |k|∞ ≤ r

}︁
(7.33)

has dimension (2r + 1)d and contains the eigenspaces belonging to eigenvalues
smaller than 4π2r2. As kernel for Hs, s = (d + 1)/2, we use in our numerical
examples

K(x, y) =
∑︂
k∈Zd

(1+|k|22)−
d+1
2 e2πi⟨k,x−y⟩ =

∑︂
k∈Zd

(1+|k|22)−
d+1
2 cos

(︁
2π⟨k, x−y⟩

)︁
. (7.34)

Example 2: X = Sd ⊂ Rd+1, d ≥ 1. We use distance dSd(x, z) = arccos(⟨x, z⟩).
The Laplace–Beltrami operator −∆ on Sd has the eigenvalues {k(k + d − 1)}k∈N
with the spherical harmonics of degree k,{︁

Y k
l : l = 1, . . . , Z(d, k)

}︁
, Z(d, k) := (2k + d− 1) Γ(k+d−1)

Γ(d)Γ(k+1)

as corresponding orthonormal eigenfunctions [207]. The span of eigenfunctions with
eigenvalues smaller than r(r + d− 1) is given by

Πr(Sd) := span
{︁
Y k
l : k = 0, . . . , r, l = 1, . . . , Z(d, k)

}︁
. (7.35)

It has dimension
∑︁r

k=0 Z(d, k) =
(d+2r)Γ(d+r)
Γ(d+1)Γ(r+1)

∼ rd and coincides with the space of
polynomials of total degree r in d variables restricted to the sphere. As kernel for
Hs(S2), s = 3/2, we use

K(x, y) =
1

3
+

∞∑︂
k=1

2

(2k − 1)(2k + 1)(2k + 3)

2k+1∑︂
l=1

Y k
l (x)Y

k
l (y) (7.36)

=
1

3
+

∞∑︂
k=1

2

(2k − 1)(2k + 3)
Pk
(︁
⟨x, y⟩

)︁
= 1− 1

2
∥x− y∥2

with the Legendre polynomials Pk. Note that the coefficients have the decay as
(k(k + 1))−3/2.
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Example 3: X = SO(3). This 3-dimensional manifold is equipped with the
distance dSO(3)(x, y) = arccos((trace(xTy) − 1)/2)/2. The eigenvalues of −∆ are
{k(k + 1)}∞k=0 and the (normalized) Wigner -D functions {Dk

l,l′ : l, l
′ = −k, . . . , k}

provide an orthonormal basis for L2(SO(3)), cf. [270]. The span of eigenspaces
belonging to eigenvalues smaller than r(r + 1) is

Πr(SO(3)) := span
{︁
Dk
l,l′ : k = 0, . . . , r, l, l′ = −k, . . . , k

}︁
and has dimension (r + 1)(2r + 1)(2r + 3)/3. In the numerical part, we use the
following kernel for Hs (SO(3)), s = 2,

K(x, y) =
π

8
− 1

3
+

∞∑︂
k=1

1

(2k − 1)(2k + 1)2(2k + 3)

k∑︂
l=−k

k∑︂
l′=−k

Dk
l,l′(x)Dk

l,l′(y) (7.37)

=
π

8
− 1

3
+

∞∑︂
k=1

1

(2k − 1)(2k + 1)(2k + 3)
U2k

(︂
1
2

√︁
tr(x⊤y) + 1

)︂
=
π

8
− π

√
2

16
∥x− y∥F,

where Uk are the Chebyshev polynomials of the second kind.

Example 4: X = G2,4. For integers 1 ≤ s < r, the (s, r)-Grassmannian is the
collection of all s-dimensional linear subspaces of Rr and carries the structure of
a closed Riemannian manifold. By identifying a subspace with the orthogonal
projector onto this subspace, the Grassmannian becomes

Gs,r :=
{︁
x ∈ Rr×r : x⊤ = x, x2 = x, rank(x) = s

}︁
.

In our context, the cases G1,2, G1,3, and G2,3 can essentially be treated by the spheres
S1 and S2. The simplest Grassmannian that is algebraically different is G2,4. It is a
4-dimensional manifold and the geodesic distance between x, y ∈ G2,4 is given by

dG2,4
(x, y) =

√
2
√︂
θ21(x, y) + θ22(x, y),

where θ1(x, y) and θ2(x, y) are the principal angles between the subspaces associated
to x and y, respectively. The terms cos(θ1(x, y))

2 and cos(θ2(x, y))
2 correspond to

the two largest singular values of the product xy. The eigenvalues of −∆ on G2,4

are 4(λ21 + λ22 + λ1), where λ1 and λ2 run through all integers with λ1 ≥ λ2 ≥ 0,
cf. [16, 17, 18, 101, 167, 237]. The associated eigenfunctions are denoted by φλl with
l = 1, . . . , Z(λ), where Z(λ) = (1 + λ1 + λ2)η(λ2) and η(λ2) = 1 if λ2 = 0 and 2 if
λ2 > 0 cf. [120, (24.29) and (24.41)] as well as [17, 18].

The space of polynomials of total degree r on R16 ∼= R4×4 restricted to G2,4 is

Πr(G2,4) := span
{︁
φλl : λ1 + λ2 ≤ r, l = 1, . . . , Z(λ)

}︁
.

It contains all eigenfunctions φλl with 4(λ21 + λ22 + λ1) < 2(r + 1)(r + 2), cf. [47,
Thm. 5].
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For Hs(G2,4) with s = 5/2, we chose the kernel

K(x, y) =
∑︂

λ1≥λ2≥0

(︁
1 + λ21 + λ22

)︁− 5
2

Z(λ)∑︂
l=1

φλl (x)φ
λ
l (y). (7.38)

Remark 7.27. It is well-known that S2 × S2 is a double covering of G2,4. More
precisely, there is an isometric one-to-one mapping P : S2 × S2/{±1} → G2,4 given
by

P (u, v) = P (−u,−v) := 1

2

(︃
1 + uTv −(u× v)T

−u× v uvT + vuT + (1− uTv)I3

)︃
,

cf. [91]. Moreover, the φλl are essentially tensor products of spherical harmonics,
which enables transferring the non-equispaced fast Fourier transform from S2 × S2

to G2,4, see [91] for details.
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