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Abstract

So-called rough stochastic volatility models constitute the latest advancement
in option price modeling. In contrast to popular bivariate diffusion models
such as Heston, here the driving noise of volatility is modeled by a fractional
Brownian motion (fBM) with scaling in the rough regime of Hurst parameter
H < 0.5. A major appeal of such models lies in their ability to parsimo-
niously recover key stylized facts of market IV surfaces such as the exploding
power-law behaviour of the ATM volatility skew near zero, a crucial feature
Markovian models fail to reproduce. On the flipside, as a consequence of
fBM being neither a semimartingale nor a Markov process for H ̸= 1

2 , most
currently prevalent numerical pricing and calibration routines do not (eas-
ily) carry over to the rough setting. This thesis addresses this problem and
contributes to the existing literature as follows.

In chapter 2, we sharpen the large deviations results of Forde-Zhang (2017)
in a way that allows us to zoom-in around the money while maintaining full
analytical tractability. More precisely, this amounts to proving higher order
moderate deviations (MD) estimates, only recently introduced in the option
pricing context. In particular, we derive small-time asymptotic formulae for
log call prices and Black-Scholes implied volatility. This in turn allows us
to push the applicability range of known ATM skew approximation formulae
from CLT type log-moneyness deviations of order t

1
2 to the wider MD regime.

In chapter 3, we present a novel Monte Carlo (MC) pricing scheme for
rough volatility models based on a Karhunen-Loève-style approximation of
White Noise. This complements theoretical results by Bayer et al. (2017).
Our numerical experiments confirm a theoretical strong rate of H for a central
object of interest and indicate a weak rate of 2H for the option price.

In chapter 4, we introduce a novel model calibration routine for (rough)
stochastic volatility models dubbed deep calibration. Standard model cal-
ibration routines rely on the repetitive evaluation of the map from model
parameters to Black-Scholes implied volatility, rendering calibration of many
(rough) stochastic volatility models prohibitively expensive since often the
map can only be approximated by costly MC simulations. As a remedy,
we propose to combine the popular Levenberg-Marquardt optimization algo-
rithm with neural network (NN) regression, replacing expensive MC simula-
tions with cheap forward runs of a NN trained to approximate the implied
volatility map. Numerical experiments confirm the high accuracy and speed
of our approach.
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Zusammenfassung

So genannte raue stochastische Volatilitätsmodelle (rSV) stellen die jüngste
Weiterentwicklung der Optionspreismodellierung dar. Im Gegensatz zu biva-
riaten Diffusionsmodellen wie Heston wird das treibende Rauschen der Vo-
latilität hier durch eine fraktionelle Brownsche Bewegung (fBB) modelliert,
welche im rauen Regime mit Hurst index H < 0.5 skaliert. Mit nur wenigen
Parametern können nun Kerneigenschaften von empirischen impliziten Volati-
litätsoberflächen, wie z.B. das explodierende Potenzgesetzverhalten der ATM
volatility skew für t → 0, abgebildet werden. Da die fBB für H ̸= 1

2 weder ein
Semimartingal noch Markov ist, lassen sich gängige numerische Preis- und
Kalibrierungsverfahren nicht (einfach) übertragen. Diese Arbeit setzt hier an
und trägt auf folgende Weise zur Fachliteratur bei.

In Kapitel 2 entwickeln wir die Large Deviations Ergebnisse von Forde
und Zhang (2017) dahingehend weiter, dass wir am Geld nah heranzoomen,
gleichzeitig aber die analytische Berechenbarkeit beibehalten. Genauer ge-
sagt beweisen wir Abschätzungen höherer Ordnung im Kontext der Moderate
Deviations (MD), welche erst kürzlich in die Optionsbewertung eingeführt
wurden. Konkret leiten wir für kurze Maturitäten asymptotische Formeln
für Log-Call-Preise und Implizite Volatilität her. Dies ermöglicht uns, den
Anwendungsbereich bekannter ATM-Skew-Approximationsformeln von log-
moneyness Abweichungen des CLT-Typs der Ordnung t1/2 auf das breitere
MD Regime zu erweitern.

In Kapitel 3 stellen wir ein neuartiges Monte Carlo Verfahren zur Op-
tionspreisbewertung bei rSV Modellen vor, das auf einer Karhunen-Loève-
ähnlichen Näherung des Weißen Rauschens basiert. Dies ergänzt die theore-
tischen Ergebnisse von Bayer et al. (2017). Unsere numerischen Experimente
bestätigen eine theoretische, starke Rate von H für ein zentrales Objekt von
Interesse und zeigen eine schwache Rate von 2H für den Optionspreis.

In Kapitel 4 entwickeln wir ein schnelles Kalibrierungsverfahren für rSV
Modelle basierend auf Neuralen Netzwerken (NN). Die Funktion, welche Input
Parametern eine Implizite Volatilität zuweist, lässt sich im Kontext von rSV
Modellen meist nur durch teure MC Simulationen approximieren. Wir lassen
ein NN diese Funktion erlernen, sodass deren Auswertung einem schnellen und
günstigen Vorwärtslauf des NN entspricht. Durch eine Kombination mit dem
beliebten Levenberg-Marquardt Algorithmus, der die wiederholte Evaluation
dieser Funktion bedingt, lassen sich nun beliebige rSV Modelle schnell und
genau kalibrieren, wie verschiedene numerische Experimente belegen.
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1 Introduction

Almost half a century after its publication, the option pricing model by Black
and Scholes (1973) remains one of the most popular analytical frameworks
for pricing and hedging European options in financial markets. A part of its
success stems from the availability of explicit and hence instantaneously com-
putable closed formulas for both theoretical option prices and option price
sensitivities to input parameters (Greeks). This comes at the expense of as-
suming that volatility – the standard deviation of log returns of the underly-
ing asset price – is deterministic and constant. Still, in financial practice, the
Black-Scholes model is often considered a sophisticated transform between
option prices and Black-Scholes (BS) implied volatility (IV) σiv where the
latter is defined as the constant volatility input needed in the BS formula to
match a given (market) price. It is a well-known fact that in empirical IV sur-
faces obtained by transforming market prices of European options to IVs, the
implied volatilities vary across strikes and maturities, exhibiting well-known
smiles and at-the-money (ATM) skews and thereby contradicting the flat sur-
face predicted by Black-Scholes (Figure 1.1). In particular, Bayer, Friz, and
Gatheral (2016) report empirical at-the-money volatility skews of the form

⏐⏐⏐⏐⏐ ∂

∂m
σiv(m, T )

⏐⏐⏐⏐⏐ ∼ T −0.4, T → 0 (1.0.1)

for log moneyness m and time to maturity T .
While plain vanilla European Call and Put options often show enough liq-

uidity to be marked-to-market, pricing and hedging path-dependent options
(so-called Exotics) necessitates an option pricing model that prices European
options consistently with respect to observed market IVs across strikes and
maturities. In other words, it should parsimoniously capture stylized facts
of empirical IV surfaces. To address the shortcomings of Black-Scholes and
incorporate the stochastic nature of volatility itself, popular bivariate diffu-
sion models such as SABR (Hagan, Kumar, Lesniewski, & Woodward, 2002),
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Figure 1.1: SPX Market Implied Volatility surface on 15th February
2018. Implied volatilities have been inverted from SPX Weekly European
plain vanilla Call Mid prices and the interpolation is a (non-arbitrage-free)
Delaunay triangulation. Axes denote log-moneyness m = log(K/S0) for strike
K and spot S0, time to maturity T in years and market implied volatility
σiv(m, T ).

Heston (1993) or Hull and White (1993) have been developed to capture some
important stylized facts. However, according to Gatheral (2011), diffusive
stochastic volatility models in general fail to recover the exploding power-law
nature (1.0.1) of the volatility skew as time to maturity T → 0 and instead
predict a constant behaviour.

Since the seminal work of Gatheral, Jaisson, and Rosenbaum (2018) (a
preprint had been available since 2014), the past four years have brought
about a gradual shift in volatility modeling, leading away from classical diffu-
sive stochastic volatility models towards so-called rough stochastic volatility
models. Coined by Gatheral et al. (2018) and Bayer et al. (2016), the term
essentially describes a family of continuous-path stochastic volatility mod-
els where the driving noise of volatility is modeled by a fractional Brownian
motion1 (fBM) (Mandelbrot & Van Ness, 1968) with scaling in the regime
of Hurst index H ∈

(
0, 1

2

)
. The terminology rough here stems from the fact

that the driving noise of the volatility has Hölder regularity H−, hence smaller
than that of Brownian motion. This modeling choice is empirically based on

1Instantaneous volatility is not a traded asset, so loss of semimartingality (when H ̸= 1/2)
does not imply arbitrage.
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time series analysis conducted by Gatheral et al. (2018) who find that for all
indices in the Oxford-Man Institute’s Realized Library2, the distribution of in-
crements of log realized volatility is approximately Gaussian and log realized
volatility exhibits Hölder regularity in the order of H = 0.1. Further analyses
by Bennedsen, Lunde, and Pakkanen (2016) confirm the seminal discovery of
rough volatility for over 5000 individual equities worldwide, suggesting that
rough volatility is indeed a ubiquitous phenomenon. From an option-pricing
point of view, a major appeal of such rough volatility models is that they
allow to recover the characteristic exploding power law behaviour (1.0.1) of
the ATM volatility skew for short maturities. A notable example is the rough
Bergomi model introduced by Bayer et al. (2016) which can numerically be
shown to exhibit said characteristic behaviour of the ATM volatility skew
near zero. Once its only three model parameters have been calibrated to
market data, it is able to approximate the empirical ATM skew quite closely
(Bayer et al., 2016). At this point, we would also like to mention pioneering
works by Alòs, León, and Vives (2007) and Fukasawa (2011). Quite some
time before there existed any empirical evidence to consider rough volatility,
they analytically derive a skew formula in rather restrictive rough volatility
setting as an application example of a general framework.

The technical ability of rough volatility models to price European options
consistently with respect to observed market IVs across moneyness and ma-
turities makes them conceptually interesting for practitioners. On the other
hand, for this new class of models to be of any practical use, efficient numeri-
cal pricing and model calibration schemes need to be developed. In fact, with
some notable exceptions such as the Black and Scholes (1973) model, even
for most diffusive stochastic volatility models no closed formulas for option
prices are known. Indeed, drawing ideas and mathematical machinery from
many areas of (applied) mathematics, a multitude of numerical methods have
been developed over the years to approximate prices. These include but are
not limited to:

(I) PDEs (Finite difference schemes etc.)

(II) Transforms (Fourier pricing etc.)

2For more information, check https://realized.oxford-man.ox.ac.uk.
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(III) Large/Moderate Deviations (Small noise/time asymptotics etc. )

(IV) Stochastic simulation and related approaches (Monte Carlo (MC), Multi-
Level Monte Carlo (MLMC), Quasi Monte Carlo (QMC) combined with
variance reduction etc.)

Since fractional Brownian motion for H ̸= 1/2 is neither a semimartingale
nor a Markov process, currently prevalent option pricing techniques do not
easily carry over to the rough setting. In particular, the non-Markovianity
of fractional Brownian motion rules out any PDE related methods (I). More-
over, (off-the-shelf) Freidlin-Wentzell large deviation estimates are also not
immediately applicable (II). Regarding transform methods (III), recall that
the classical Heston (1993) model is amenable to Fast Fourier Pricing because
the characteristic function of the log price is explicitly known. In a rough ana-
logue of the Heston model dubbed rough Heston (Euch & Rosenbaum, 2018),
it turns out that while the characteristic function of the log price is no longer
explicitly known, it depends on the solution of a fractional analogue to the
Riccati equations arising in the standard Heston case. These can be solved
numerically, so Fourier Pricing is also applicable here. In summary, for a
large class of rough stochastic volatility models, only pricing approaches in
the direction of categories (III) & (IV) seem within reach at the moment and
in fact, the majority of research conducted prior and also in parallel to this
dissertation belongs to one of these two categories.

This thesis is dedicated to the development of novel pricing and calibration
techniques in the context of rough volatility. For each chapter, we shall now
provide an overview of existing works along the relevant research direction,
followed by a quick summary of our approach and the results achieved in each
piece of work.

4



1.1 Short-time near-the-money skew in rough fractional volatility models (Chapter 2)

1.1 Short-time near-the-money skew in rough
fractional volatility models (Chapter 2)

This chapter is based on joint work with Peter K. Friz, Christian Bayer,
Archil Gulisashvili and Blanka Horvath. It is a slightly revised version of
an accepted manuscript of the article (Bayer, Friz, Gulisashvili, Horvath, &
Stemper, 2018) published by Taylor & Francis in Quantitative Finance on
13 Nov 2018, available online: https://www.tandfonline.com/doi/full/
10.1080/14697688.2018.1529420.

In this chapter, we rely on small-maturity approximations of option prices.
This is a well-studied topic for which we mention (with no claim to complete-
ness) a number of works, either based on large deviations or central limit type
scaling regime, that inspired this work: (Alòs et al., 2007; Fukasawa, 2011;
Deuschel, Friz, Jacquier, & Violante, 2014b, 2014a; Fukasawa, 2017), (Hagan
et al., 2002; Berestycki, Busca, & Florent, 2004), also (Medvedev & Scail-
let, 2003, 2007; Osajima, 2007; Guennoun, Jacquier, Roome, & Shi, 2014;
Osajima, 2015; Mijatović & Tankov, 2016) and especially (Forde & Zhang,
2017). Rather recently, Friz, Gerhold, and Pinter (2018) introduced another
regime called moderately-out-of-the-money (MOTM), which, in a sense, effec-
tively navigates between the two regimes mentioned above, by rescaling the
strike with respect to the time to maturity. This approach has various advan-
tages. On the one hand, it reflects the market reality that as time to maturity
approaches zero, strikes with acceptable bid-ask spreads tend to move closer
to the money (see the original paper by Friz et al. (2018) for more details).
On the other hand, it allows us to zoom in on the term structure of implied
volatility around the money at a high resolution scale. To be more specific,
our paper adds to the existing literature in two ways. First, we obtain a gen-
eralization of the Osajima (2015) energy expansion to a non-Markovian case,
and using the new expansion, we extend the analysis of Friz et al. (2018)
to the case where the volatility is driven by a rough (H < 1/2) fractional
Brownian motion. Indeed, Laplace approximation methods on Wiener space
in the spirit of Azencott (1982, 1985), Ben Arous (1988) and Bismut (1984)
can be adapted to the present context, so that our analysis builds upon this
framework in a fractional setting. Unlike many other works in this field, we do

5
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not rely on density expansions. We derive a small-time asymptotic expression
for log call prices in the moderate deviations regime, and using a framework
of Gao and Lee (2014), transform it into a term structure for Black-Scholes
implied volatility. This in turn allows us to push the applicability range of
known ATM skew approximation formulae from CLT type log-moneyness de-
viations of order t1/2 to the wider moderate deviations regime. Finally, using
a version of the rough Bergomi model by Bayer et al. (2016) with constant for-
ward variance curve, we demonstrate numerically that our implied volatility
asymptotics capture very well the geometry of the term structure of implied
volatility over a wide array of maturities, extending up to a year.

1.2 Monte Carlo pricing under rough stochastic
volatility (Chapter 3)

This chapter is based on joint work with Peter K. Friz, Christian Bayer, Paul
Gassiat and Jörg Martin. Its contents have been partially reproduced from
(Bayer, Friz, Gassiat, Martin, & Stemper, 2017). A preprint of the article
has been made available at https://arxiv.org/abs/1710.07481.

With the problems pertaining to categories (I), (II) and also (III) in mind,
it does not come as a surprise that a large part of research prior and in par-
allel to this thesis is concentrated around stochastic simulation schemes. For
a large class of rough stochastic volatility models – this in particular includes
the rough Bergomi model (Bayer et al., 2016) – the stochastic structure is such
that Monte Carlo pricing requires an efficient joint simulation scheme for the
bivariate Gaussian process of a Brownian motion and a (rough) Volterra pro-
cess constructed from it. Numerical estimates for the stock price at maturity
(and therefore also for the fair price of a European Call) then follow easily
by for example an Euler discretization of the SDE describing the stock price
dynamics. For the numerical simulation of the discussed bivariate process
on some equidistant grid with n steps, a range of methods have been pro-
posed. The original scheme discussed by Bayer et al. (2016) is the Cholesky
method (Glasserman, 2003) which has a complexity of O(n3) for the one-time
Cholesky decomposition of the joint covariance matrix but then produces ex-

6
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1.2 Monte Carlo pricing under rough stochastic volatility (Chapter 3)

act samples at a cost of O(n2). Using FFT, the Hybrid scheme of Bennedsen,
Lunde, and Pakkanen (2017) pushes the complexity of obtaining a single
bivariate path down to O(n log n) at the cost of the scheme no longer be-
ing exact. Recently, McCrickerd and Pakkanen (2018) have "turbocharged"
the Hybrid scheme by employing a mix of variance reduction methods such
as control variates and antithetic variates. Finally, Horvath, Jacquier, and
Muguruza (2017) provide a rough Donsker type approximation of the joint
process.

In our work, we consider a general class of rough stochastic volatility mod-
els. We assume that the instantaneous volatility is given explicitly in terms
of a fBM Ŵ which is constantly correlated with the Brownian driver of the
SDE describing the stock price dynamics. For such a model, a straightfor-
ward application of the conditioning formula of Romano and Touzi (1997);
Willard (1997) reduces the Call price functional to the expectation of the
Black-Scholes formula for some stochastic input parameters. Numerically, ef-
ficient simulation of the latter proves to be challenging task. In particular,
this involves the efficient simulation of an object I which is given by the
integration of White Noise Ẇ against a functional of the Volterra fBM Ŵ

constructed from it.3 By integrating a Karhunen-Loève-style approximation
of Ẇ against the fractional Volterra Kernel of Ŵ , we first retrieve a joint
approximation

(
Ẇ ε, Ŵ ε

)
of White Noise and its corresponding Volterra pro-

cess. It turns out that an approximation of I using
(
Ẇ ε, Ŵ ε

)
leads to the

approximate integral not converging to the Itô integral I as the approxima-
tion becomes finer. In fact, even for the Brownian case H = 1/2, a famous
result by Wong and Zakai (1965) shows that the limit of the approximate
integral is the Stratonovich version of I which is given by the Ito integral
plus an Itô-Stratonovich correction term. For H < 1/2, this correction term
does not exist. As is argued in (Bayer et al., 2017), the theory of regularity
structures introduced by Hairer (2014) provides an appropriate framework to
address this issue and to derive correction terms that renormalize the ap-
proximative integral such that it converges to the desired object of interest.4

3The methods discussed above come to help here but we pursue a different approach.
4In this thesis, we provide the numerical counterpart to the theoretical results obtained in

(Bayer et al., 2017). A reader more interested in the derivation of the correction terms
is advised to study the original paper.
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1 Introduction

Several numerical experiments then confirm that the renormalization works
as planned. In particular, with H being the Hurst index of the considered
fBM, our numerical rates are consistent with a theoretical strong rate of con-
vergence of almost H for the approximate integral across the full range of
0 < H < 1

2 . Moreover, some weak approximation results point towards a
weak rate of 2H for the option price approximation across the full range of
0 < H < 1

2 .

1.3 Deep calibration of rough volatility models
(Chapter 4)

This chapter is based on joint work with Christian Bayer. Its contents have
been reproduced (almost) verbatim from (Bayer & Stemper, 2018). A preprint
of this work can be accessed at https://arxiv.org/abs/1810.03399.

In this chapter, we introduce a novel model calibration scheme Model cal-
ibration describes the optimization procedure of finding model parameters
such that the IV surface induced by the model best approximates a given
market IV surface in an appropriate metric. In the absence of an analyti-
cal solution, it is standard practice to solve the arising weighted non-linear
least squares problem using iterative optimizers such as Levenberg-Marquardt
(LM) (Levenberg, 1944; Marquardt, 1963). However, these optimizers rely on
the repetitive evaluation of the function φ from the space of model & option
parameters (and external market information) to model BS implied volatility.
If each such evaluation involves a time– and/or memory–intensive operation
such as a Monte Carlo simulation in the case of rough Bergomi (Bayer et
al., 2016) or other (rough) stochastic volatility models, this makes efficient
calibration prohibitively expensive.

Made possible by theoretical advancements as well as the widespread avail-
ability of cheap, high performance computing hardware, Machine Learning
has seen a tremendous rise in popularity among academics and practitioners
in recent years. Breakthroughs such as (super-) human level performance in
image classification (Krizhevsky, Sutskever, & Hinton, 2012; Simonyan & Zis-
serman, 2014; Szegedy et al., 2015) or playing the ancient Chinese board game

8
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1.3 Deep calibration of rough volatility models (Chapter 4)

Go (Silver et al., 2017) may all be attributed to the advent of Deep Learning
(Goodfellow, Bengio, & Courville, 2016). Fundamentally, its success stems
from the capability of multi-layered artificial neural networks to closely ap-
proximate functions f only implicitly available through input-output pairs
{(xi, f(xi))}N

i=1, so-called labeled data.
The fundamental idea of this paper is to leverage this capability by train-

ing a fully-connected neural network on specifically tailored, synthetically
generated training data to learn a map φNN approximating the true implied
volatility map φ.

Remark 1.3.1. In a related but different approach, Hernandez (2017) proposes
to use a neural network to learn the complete calibration routine – denoted Ψ
in our notation in (4.2.1) – taking market data as inputs and returning cali-
brated model parameters directly. He demonstrates numerically the prowess
of his approach by calibrating the popular short rate model of Hull and White
(1990) to market data.

Both generating the synthetic data set as well as the actual neural network
training are expensive in time and computing resource requirements, yet they
only have to be performed a single time. Trained networks may then be
quickly and efficiently saved, moved and deployed. The benefit of this novel
approach is twofold: First, evaluations of φNN amount to cheap and almost
instantaneous forward runs of a pre-trained network. Second, automatic dif-
ferentiation of φNN with respect to the model parameters returns fast and
accurate approximations of the Jacobians needed for the LM calibration rou-
tine. Used together, they allow for the efficient calibration of any (rough)
stochastic volatility model including rough Bergomi.

To demonstrate the practical benefits of our approach numerically, we ap-
ply our machinery to Heston (1993) and rough Bergomi (Bayer et al., 2016)
as representatives of classical and (rough) stochastic volatility models respec-
tively. Speed-wise, no systematic comparison is made between the proposed
neural network based approach and existing methods, yet with about 40ms
per evaluation, our approach is at least competitive with existing Heston
pricing methods and beats state-of-the-art rough Bergomi pricing schemes by
magnitudes. Also, in both experiments, φNN exhibits small relative errors
across the highly-liquid parts of the IV surface, recovering characteristic IV

9



1 Introduction

smiles and ATM IV skews. To quantify the uncertainty about model parame-
ter estimates obtained by calibrating with φNN, we infer model parameters in
a Bayesian spirit from (i) a synthetically generated IV surface and (ii) SPX
market IV data. In both experiments, a simple (weighted) Bayesian nonlin-
ear regression returns a (joint) posterior distribution over model parameters
that (1) correctly identifies sensible model parameter regions and (2) places
its peak at or close to the true (in the case of the synthetic IV) or previously
reported (Bayer et al., 2016) (in the case of the SPX surface) model param-
eter values. Both experiments thus confirm the idea that φNN is sufficiently
accurate for calibration.
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2 Short-term near-the-money skew in rough
fractional volatility models

The chapter is organized as follows: In Section 2.1 we set the scene, describing
the class of models included in our framework ((2.1.1) and (2.1.2)) and recall-
ing some known results ((2.1.4) and (2.1.7)), which are the starting point of
our analysis. Most importantly, we argue that for small-time considerations it
would suffice to restrict our attention to a class of stochastic volatility models
of the form (2.1.3) with a volatility process driven by a Gaussian Volterra
process such as in (2.1.2). We formulate general assumptions on the Volterra
kernel (Assumptions 2.1.1 and 2.1.5) and on the function σ in (2.1.3) (As-
sumption 2.1.4) under which our results are valid. In Section 2.2 we gather
our main results, concerning a higher order expansion of the energy (Theorem
2.2.1), and a general expansion formula for the corresponding call prices. We
derive the classical Black-Scholes expansion for the call price, using the latter
result mentioned above. In addition, in Section 2.2 we formulate moderate
deviation expansions, which allow us to derive the corresponding asymptotic
formulae for implied volatilities and implied volatility skews. Finally, Section
2.3 displays our simulation results. Sections 2.4, 2.5 and 2.6 are devoted to
proofs of the energy expansion, the price expansion and the moderate de-
viations expansion, respectively. In the appendix, we have collected some
auxiliary lemmas, which are used in different sections.

2.1 Exposition and assumptions

We consider a rough stochastic volatility model, normalized to r = 0 and
S0 = 1, of the form suggested by Forde and Zhang (2017)

dSt

St

= σ(B̂t)d (ρWt + ρBt) . (2.1.1)

11



2 Short-term near-the-money skew in rough fractional volatility models

Here (W, B) are two independent standard Brownian motions, ρ ∈ (−1, 1) a
correlation parameter, and ρ2 = 1 − ρ2. Then ρW + ρB is another standard
Brownian motion which has constant correlation ρ with the factor B, which
drives the stochastic volatility

σstoch (t, ω) := σ(B̂t (ω)) ≡ σ(B̂).

Here σ(.) is some real-valued function, typically smooth but not bounded, and
we will denote by σ0 := σ(0) the spot volatility, with B̂ a Gaussian (Volterra)
process of the form

B̂t =
∫ t

0
K (t, s) dBs, t ≥ 0, (2.1.2)

for some kernel K, which shall be further specified in Assumptions 2.1.1 and
2.1.5 below. The log-price Xt = log (St) satisfies

dXt = −1
2σ2(B̂t)dt + σ(B̂t)d (ρW + ρB) , X0 = 0. (2.1.3)

Recall that by Brownian scaling, for fixed t > 0,

(Bts, Wts)s≥0
law= ε(Bs, Ws)s≥0, where ε ≡ ε(t) ≡ t1/2.

As a direct consequence, classical short-time SDE problems can be analyzed
as small-noise problems on a unit time horizon. For our analysis, it will
also be crucial to impose such a scaling property on the Gaussian process B̂

(more precisely, on the kernel K in (2.1.2)) driving the volatility process in
our model:

Assumption 2.1.1 (Small time self-similarity). There exists a number t0

with 0 < t0 ≤ 1 and a function t ↦→ ε̂ = ε̂(t), 0 ≤ t ≤ t0, such that

(B̂ts : 0 ≤ s ≤ t0) law= (ε̂B̂s : 0 ≤ s ≤ t0).

In fact, we will always have

ε̂ ≡ ε̂(t) ≡ tH = ε2H ,

12



2.1 Exposition and assumptions

which covers the examples of interest, in particular standard fractional Brow-
nian motion B̂ = BH or Riemann-Liouville fBM with explicit kernel K (t, s) =√

2H|t − s|H−1/2. (This is very natural, even from a general perspective of
self-similar processes, see (Lamperti, 1962).)

We insist that no (global) self-similarity of B̂ is required, as only B̂|[0,t] for
arbitrarily small t matters.

Remark 2.1.2. It should be possible to replace the fractional Brownian motion
by a certain fractional Ornstein-Uhlenbeck process in the results obtained in
this chapter. Intuitively, this replacement creates a negligible perturbation
(for t ≪ 1) of the fBm environment. A similar situation was in fact encoun-
tered in (Cass & Friz, 2010), where fractional scaling at times near zero was
important. To quantify the perturbation, Cass and Friz (2010) introduced an
easy to verify coupling condition (see Corollary 2 in (Cass & Friz, 2010)). It
should be possible to employ a version of this condition in the present chapter
to justify the replacement mentioned above. We will however not pursue this
point further here.

Remark 2.1.3. Throughout this article, one can consider a classical (Marko-
vian, diffusion) stochastic volatility setting by taking K ≡ 1, or equivalently
H ≡ 1/2, by simply ignoring all hats ( ·̂ ) in the sequel. In particular then,
ε̂
ε

≡ 1 in all subsequent formulae.

General facts on large deviations of Gaussian measures on Banach spaces
(Deuschel & Stroock, 1989) such as the path space C([0, 1],R3) imply that a
large deviation principle holds for the triple {ε̂(W, B, B̂) : ε̂ > 0}, with speed
ε̂2 and rate function⎧⎪⎨⎪⎩

1
2 ∥h∥2

H1
0

+ 1
2 ∥f∥2

H1
0

, f, h ∈ H1
0 and f̂ = Kḟ,

+∞, otherwise,
(2.1.4)

where

Kḟ(t) :=
∫ t

0
K (t, s) ḟ(s)ds

13



2 Short-term near-the-money skew in rough fractional volatility models

for f ∈ H1
0 , the space of absolutely continuous paths with L2 derivative

H1
0 :=

{
f : [0, 1] → R continuous

⏐⏐⏐⏐ ∥f∥2
H1

0
:=
∫ 1

0
|ḟ(s)|2ds < ∞, f(0) = 0

}
.

(2.1.5)
This enables us to derive a large deviations principle for X in (2.1.3): the
(local) small-time self-similarity property of B̂ (Assumption 2.1.1) implies
that Xt

law= Xε
1 where

dXε
t = σ(ε̂B̂t)εd (ρWt + ρBt) − 1

2ε2σ2(ε̂B̂t)dt, Xε
0 = 0.

For what follows, it will be convenient to consider a rescaled version of (2.1.3)

dX̂ε
t ≡ d

(
ε̂

ε
Xε

t

)
= σ(ε̂B̂t)ε̂d (ρWt + ρBt) − 1

2εε̂σ2(ε̂B̂t)dt, X̂ε
0 = 0.

Under a linear growth condition on the function σ, Forde and Zhang (2017)
use the extended contraction principle to establish a large deviations principle
for (X̂ε

1) with speed ε̂2. More precisely, with

φ1 (h, f) := Φ1(h, f, f̂) =
∫ 1

0
σ(f̂)d (ρh + ρf) , (2.1.6)

the rate function is given by

I (x) = inf
h,f∈H1

0

{1
2

∫ 1

0
ḣ2dt + 1

2

∫ 1

0
ḟ 2dt : φ1 (h, f) = x

}

= inf
f∈H1

0

⎧⎪⎨⎪⎩1
2

(
x − ρ

⟨
σ(f̂), ḟ

⟩)2

ρ2
⟨
σ2(f̂), 1

⟩ + 1
2

∫ 1

0
ḟ 2dt

⎫⎪⎬⎪⎭ ,

(2.1.7)

where ⟨·, ·⟩ denotes the inner product on L2 ([0, 1], dt). Several other proofs
(under varying assumptions on σ) have appeared since (Jacquier, Pakkanen,
& Stone, 2017; Bayer et al., 2017; Gulisashvili, 2017).

As a matter of fact, this chapter relies on moderate - rather than large -
deviations, as emphasized in (iiic) below. To this end, let us make

Assumption 2.1.4.

(i) (Positive spot vol) Assume σ : R → R is smooth with σ0 := σ(0) > 0.

14



2.1 Exposition and assumptions

(ii) (Roughness) The Hurst parameter H satisfies H ∈ (0, 1/2].

(iiia) (Martingality) The price process S = exp X is a martingale.

(iiib) (Short-time moments) ∀m < ∞ ∃t > 0: E(Sm
t ) < ∞.

While condition (iiia) hardly needs justification, we emphasize that con-
ditions (iiia-b) are only used to the extent that they imply condition (iiic)
given below (which thus may replace (iiia-b) as an alternative, if more tech-
nical, assumption). The reason we point this out explicitly is that all the
conditions (iiia-c) are implicit (growth) conditions on the function σ(.). For
instance, (iiia-b) was seen to hold under a linear growth assumption (Forde
& Zhang, 2017; Gulisashvili, 2017), whereas the log-normal volatility case
(think of σ(x) = ex) is complicated. Martingality, for instance, requires ρ ≤ 0
and there is a critical moment m∗ = m∗(ρ), even when ρ < 0. See (Sin, 1998;
Jourdain, 2004; Lions & Musiela, 2007) for the case H = 1/2 and the forth-
coming work (Friz & Gassiat, 2018) for the general rough case H ∈ (0, 1].
We view (iiic) simply as a more flexible condition that can hold in situations
where (iiib) fails.

(iiic) (Call price upper moderate deviation bound) For every β ∈ (0, H), and
every fixed x > 0, and x̂ε := xε1−2H+2β,

E[(eXε
1 − ex̂ε)+] ≤ exp

(
− x2 + o(1)

2σ2
0ε4H−4β

)
.

This condition is reminiscent of the “upper part” of the large deviation esti-
mate obtained in (Forde & Zhang, 2017)

E[(eXε
1 − exε1−2H )+] = exp

(
−I(x) + o(1)

ε4H

)
. (2.1.8)

If fact, if one formally applies this with x replaced by xε2β, followed by Taylor
expanding the rate function,

I(xε2β) ∼ 1
2I ′′(0)x2ε4β = 1

2σ2
0
x2ε4β ,
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2 Short-term near-the-money skew in rough fractional volatility models

one readily arrives at the estimate (iiic). Unfortunately, o(1) = ox(1) in
(2.1.8), which is a serious obstacle in making this argument rigorous. Instead,
we will give a direct argument (Lemma 2.6.1) to see how (iiia-b) implies (iiic).

In the sequel, we will use another mild assumption on the kernel.

Assumption 2.1.5. The kernel K has the following properties

(i) B̂t =
∫ t

0 K(t, s)dBs has a continuous (in t) version on [0, 1].

(ii) ∀t ∈ [0, 1] :
∫ t

0 K(t, s)2ds < ∞.

Note that the Riemann-Liouville kernel K(t, s) =
√

2H(t−s)γ, γ = H−1/2
satisfies Assumption 2.1.5.

Remark 2.1.6. Assumption 2.1.5 implies that the Cameron-Martin space H
of B̂ is given by the image of H1

0 under K, i.e.,

H = {Kḟ | f ∈ H1
0 }.

See Lemma 2.4.3 and Remark 2.4.4 for more details. A reference and also a
sufficient condition for Assumption 2.1.5 (i) can be found e.g. in (Decreusefond,
2005, Section 3).

2.2 Main results

The following result can be seen as a non-Markovian extension of work by
Osajima (2015). The statement here is a combination of Theorem 2.4.10 and
Proposition (2.4.14) below. Recall that σ0 = σ (0) represents spot-volatility.
We also set σ′

0 ≡ σ′ (0).

Theorem 2.2.1 (Energy expansion). The rate function (or energy) I is
smooth in a neighbourhood of x = 0 (at-the-money) and it is of the form

I (x) = 1
σ2

0

x2

2 −
(

6ρ
σ′

0
σ4

0

∫ 1

0

∫ t

0
K(t, s)dsdt

)
x3

3! + O(x4).

The next result is an exact representation of call prices, valid in a non-
Markovian generality, and amenable to moderate- and large-deviation analysis
(Theorem 2.2.4 below).
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2.2 Main results

Theorem 2.2.2 (Pricing formula). For a fixed log-strike x ≥ 0 and time to
maturity t > 0, set x̂ := ε

ε̂
x, where ε = t1/2 and ε̂ = tH = ε2H , as before.

Then we have

c(x̂, t) = E
[
(exp (Xt) − exp x̂)+

]
= e

− I(x)
ε̂2 e

ε

ε̂
x

J (ε, x) , (2.2.1)

where
J (ε, x) := E

[
e

− I′(x)
ε̂2 Ûε (

exp
(

ε
ε̂
Û ε
)

− 1
)

eI′(x)Rε
2 1

Ûε≥0

]

and Û ε is a random variable of the form

Û ε = ε̂g1 + ε̂2Rε
2 (2.2.2)

with g1 a centred Gaussian random variable, explicitly given in equation (2.5.3)
below, and Rε

2 is a (random) remainder term, in the sense of a stochastic Tay-
lor expansion in ε̂, see Lemma 2.5.2 for more details.

Example 2.2.3 (Black-Scholes model). We fix volatility σ (·) ≡ σ > 0, and
H = 1/2 so that ε̂ = ε and all ·̂ can be omitted. Energy is given by I (x) = x2

2σ2

and
U ε = εg1 + ε2Rε

2 ≡ εσW1 − ε2σ2/2

with Rε
2 = R2 ≡ −σ2/2 independent of ε. Moreover,

J (ε, x) = E
[
e− I′(x)

ε2 Uε
(
eUε − 1

)
eI′(x)R2 1Uε≥0

]
= E

[
e− I′(x)

ε
g1

(
eεg1−ε2 σ2

2 − 1
)

1
{g1≥ εσ2

2 }

]

= E

[
e−αW1

(
eεσW1−

(εσ)2

2 − 1
)

1{W1≥ εσ
2 }

]

= e−
(εσ)2

2 M (−α + εσ) − M (−α) (2.2.3)

with α := I′(x)σ
ε

= 1
σ
(x/ε), and, in terms of the standard Gaussian cdf Φ,

M (β) := E
[
eβW1 1{W1≥ εσ

2 }

]
= eβ2/2Φ

(
β − εσ

2

)
.
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2 Short-term near-the-money skew in rough fractional volatility models

Using the expansion Φ(−y) = 1
y

√
2π

e−y2/2(1−y−2+...), as y → ∞ one deduces,
for fixed x > 0, the asymptotic relation, as ε → 0,

J (ε, x) ∼ e−x/2
√

2π

ε3σ3

x2 . (2.2.4)

We will be interested (cf. Theorem 2.2.4) in replacing x by x̃ = xε2β → 0
for β > 0. This gives α̃ = 1

σ
(x/ε1−2β) and the above analysis, now based on

α̃ → ∞, remains valid1 for β in the “moderate” regime β ∈ [0, 1/2) and we
obtain

∀x > 0, β ∈ [0, 1/2) : J
(
ε, xε2β

)
∼ 1√

2π

ε3−4βσ3

x2 . (2.2.5)

Let us point out, for the sake of completeness, that a similar expansion is not
valid for β > 1/2. To see this, first note that (2.2.1) implies that J(ε, x)|x=0

is precisely the ATM call price with time t = ε2 from expiration. Well-
known ATM asymptotics then imply that J(ε, x)|x=0 ∼ 1√

2π
εσ as ε → 0.

These asymptotics are unchanged in case of o(t1/2) = o(ε) out-of-moneyness
(“almost-at-the-money” in the terminology of Friz et al. (2018)), which readily
implies

∀x > 0, β > 1/2 : J
(
ε, xε2β

)
∼ 1√

2π
εσ = const × ε

At last, we have the borderline case β = 1/2, or x̃ = xε. From e.g. (Muhle-
Karbe & Nutz, 2011, Thm 3.1), we see that c(xε, ε2) ∼ a(x; σ)ε with positive
constant a(x; σ). A look at (2.2.1) then reveals

∀x > 0 : J (ε, xε) ∼ a(x; σ)εe
x2

2σ2 = const × ε .

For the call price expansion in the large / moderate deviations regime, β ∈
[0, 1/2), the polynomial in ε-behaviour of (2.2.5) implies that the J-term
in the pricing formula will be negligible on the moderate / large deviation
scale, in the sense for any θ > 0, we have εθ log J(ε, xε2β) → 0 as ε → 0.
Consequently, with kt = ktβ, for t = ε2, k > 0, β ∈ [0, 1/2), we get the
“moderate" Black-Scholes call price expansion,

− log cBS(kt, t) = 1
t1−2β

k2

2σ2 (1 + o (1)) as t ↓ 0.

1More terms in the expansion of Φ are needed.
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While the above can be confirmed by elementary analysis of the Black–Scholes
formula, the following theorem exhibits it as an instance of a general princi-
ple. See (Friz et al., 2018) for a general diffusion statement.

Theorem 2.2.4 (Moderate Deviations). In the rough volatility regime H ∈
(0, 1/2], consider log-strikes of the form

kt = kt
1
2 −H+β for a constant k ≥ 0.

(i) For β ∈ (0, H), and every θ > 0, we have

− log c(kt, t) = I ′′ (0)
t2H−2β

k2

2 + O(t3β−2H) + O(t−θ) as t ↓ 0.

(ii) For β ∈ (0, 2
3H), and every θ > 0, we have

− log c(kt, t) = I ′′ (0)
t2H−2β

k2

2 + I ′′′ (0)
t2H−3β

k3

6 + O(t4β−2H) + O(t−θ) as t ↓ 0.

Moreover,

I ′′ (0) = 1
σ2

0
,

I ′′′ (0) = −6ρ
σ′

0
σ4

0

∫ 1

0

∫ t

0
K(t, s)dsdt = −6ρ

σ′
0

σ4
0
⟨K1, 1⟩,

where ⟨·, ·⟩ is the inner product in L2 ([0, 1]).

Remark 2.2.5. In principle, further terms (of order tiβ−2H , i = 4, 5, . . .) can be
added to this expansion of log call prices, given that the energy has sufficient
regularity, see Theorem 2.2.6. We also note that, for small enough β, the
error term O(t−θ) can be omitted. In any case, one can replace the additive
error bounds by (cruder) ones, where the right-most term in the expansion is
multiplied with (1 + o(1)), as was done in (Friz et al., 2018).

Proof of Theorem 2.2.4. We apply Theorem 2.2.2 with x̂ = kt = kt1/2−H+β,
i.e., with x = ktβ = kε2β. In particular, we so get, with ε̂ = tH and ε = t1/2,

c(kt, t) = e
− I(x)

ε̂2 e
ε

ε̂
x

J
(
ε, kε2β

)
.
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2 Short-term near-the-money skew in rough fractional volatility models

The technical Proposition 2.6.3 asserts that, for fixed k > 0, the factor J is
negligible in the sense that, for every θ > 0,

εθ log J(ε, kε2β) → 0 as ε → 0 .

The theorem now follows immediately from the Taylor expansion of I(x)
around x = 0 (see Theorem 2.2.1), plugging in x = ktβ. Indeed, replacing
I(x) by the Taylor-jet seen in (i),(ii), leads exactly to an error term O(t3β−2H),
resp. O(t4β−2H) .

Fix real numbers k > 0, 0 < H < 1
2 , 0 < β < H, and an integer n ≥ 2. For

every t > 0, set
kt = kt

1
2 −H+β,

and denote
ϕn,H,β,θ(t) = max

{
t2H−2β−θ, t(n−1)β

}
.

Here, θ > 0 can be arbitrarily small. It is clear that for all small t and θ small
enough,

ϕn,H,β,θ(t) = t2H−2β−θ ⇔ 2H − 2β ≤ (n − 1)β ⇔ 2H

n + 1 ≤ β,

while

ϕn,H,β,θ(t) = t(n−1)β ⇔ 2H − 2β > (n − 1)β ⇔ β <
2H

n + 1 .

The following statement provides an asymptotic formula for the implied
variance.

Theorem 2.2.6. Suppose 0 < β < 2H
n

and θ > 0 small enough. Then as
t → 0 (and for k > 0),

σ impl(kt, t)2 =
n−2∑
j=0

(−1)j2j

I ′′(0)j+1

(
n∑

i=3

I(i)(0)
i! ki−2t(i−2)β

)j

+ O (ϕn,H,β,θ(t)) . (2.2.6)

The O-estimate in (2.2.6) depends on n, H, β, θ, and k. It is uniform on
compact subsets of [0, ∞) with respect to the variable k.
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2.2 Main results

Remark 2.2.7. Using the multinomial formula, we can represent the expression
on the left-hand side of (2.2.6) in terms of certain powers of t. However, the
coefficients become rather complicated.

Remark 2.2.8. Let an integer n ≥ 2 be fixed, and suppose we would like to use
only the derivatives I(i)(0) for 2 ≤ i ≤ n in formula (2.2.6) to approximate
σimpl(kt, t)2. Then, the optimal range for β is the following: 2H

n+1 ≤ β < 2H
n

.
On the other hand, if β is outside of the interval [ 2H

n+1 , 2H
n

), more derivatives
of the energy function at zero may be needed to get a good approximation of
the implied variance in formula (2.2.6).

We will next derive from Theorem 2.2.6 several asymptotic formulas for the
implied volatility. In the next corollary, we take n = 2.

Corollary 2.2.9. As t → 0,

σimpl(kt, t) = σ0 + O(ϕ2,H,β,θ(t)). (2.2.7)

Corollary 2.2.9 follows from Theorem 2.2.6 with n = 2, the equality

I ′′(0) = σ−2
0 (2.2.8)

given in Theorem 2.2.4, and the Taylor expansion
√

1 + h = 1 + O(h) as
h → 0.

In the next corollary, we consider the case where n = 3.

Corollary 2.2.10. Suppose β < 2H
3 . Then, as t → 0,

σimpl(kt, t) = σ0 + ρ
σ′

0
σ0

⟨K1, 1⟩ktβ + O(ϕ3,H,β,θ(t)). (2.2.9)

Corollary 2.2.10 follows from Theorem 2.2.6 with n = 3, formula (2.2.8),
the equality

I ′′′(0) = −6ρ
σ′

0
σ4

0
⟨K1, 1⟩ (2.2.10)

(see Theorem 2.2.4), and the expansion
√

1 + h = 1 + 1
2h + O(h2) as h → 0.

Using Corollary 2.2.10, we establish the following implied volatility skew
formula in the moderate deviation regime.
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2 Short-term near-the-money skew in rough fractional volatility models

Corollary 2.2.11. Let 0 < H < 1
2 , 0 < β < 2

3H, and fix y, z > 0 with y ̸= z.
Then as t → 0,

σimpl(yt
1
2 −H+β, t) − σimpl(zt

1
2 −H+β, t)

(y − z)t 1
2 −H+β

∼ ρ
σ′

0
σ0

⟨K1, 1⟩tH− 1
2 . (2.2.11)

Remark 2.2.12. Corollary 2.2.11 complements earlier works of Alòs et al.
(2007) and Fukasawa (2011, 2017). For instance, the following formula can
be found in (Fukasawa, 2017, p. 6), see also (Fukasawa, 2011, p. 14):

σimpl(yt
1
2 , t) − σimpl(zt

1
2 , t)

(y − z)t 1
2

∼ ρC(H)σ′
0

σ0
tH− 1

2 . (2.2.12)

In formula (2.2.12), we employ the notation used in the present chapter. Our
analysis shows that the applicability range of skew approximation formulas
is by no means restricted to the Central Limit Theorem type log-moneyness
deviations of order t1/2. It also includes the moderate deviations regime of
order t1/2−H+β. The previous rate is clearly ≫ t1/2 as t → 0.

Remark 2.2.13 (Symmetry). Write Φ1(W, B, B̂; ρ; σ) for the “Itô-type map”

Φ1(W, B, B̂) :=
∫ 1

0
σ(B̂)d (ρW + ρB) .

It equals, in law, Φ1(W, −B, −B̂; −ρ; σ(−·)), and indeed all our formulae
are invariant under this transformation. In particular, the skew remains un-
changed when the pair (ρ, σ′

0) is replaced by (−ρ, −σ′
0).

2.3 Simulation results

We verify our theoretical results numerically with a variant of the rough
Bergomi model (Bayer et al., 2016) which fits nicely into the general rough
volatility framework considered in this chapter. As before, the model has been
normalized such that S0 = 1 and r = 0. We let (W, B) be two independent
Brownian motions and ρ ∈ (−1, 1) with ρ2 = 1 − ρ2 such that Z = ρW + ρB

is another Brownian motion having constant correlation ρ with B. For some
spot volatility σ0 and volatility of volatility parameter η, we then assume the
following dynamics for some asset S:
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2.3 Simulation results

dSt

St

= σ(B̂t)dZt (2.3.1)

σ(x) = σ0 exp
(1

2ηx
)

(2.3.2)

where B̂ is a Riemann-Liouville fBM given by

B̂t =
√

2H
∫ t

0
|t − s|H−1/2dBs.

The approach taken for the Monte Carlo simulations of the quantities we
are interested in is the one initially explored in the original rough Bergomi
pricing paper (Bayer et al., 2016). That is, exploiting their joint Gaussianity,
we use the well-known Cholesky method to simulate the joint paths of (Z, B̂)
on some discretization grid D. With (2.3.2) being an explicit function in
terms of the rough driver, an Euler discretisation of the Ito SDE (2.3.1) on
D then yields estimates for the price paths.

The Cholesky algorithm critically hinges on the availability and explicit
computability of the joint covariance matrix of (Z, B̂) whose terms we readily
compute below.2

Lemma 2.3.1. For convenience, define constants γ = 1
2 − H ∈ [0, 1

2) and
DH =

√
2H

H+ 1
2

and define an auxiliary function G : [1, ∞) → R by

G(x) = 2H

(
1

1 − γ
x−γ + γ

1 − γ
x−(1+γ) 1

2 − γ
2F1(1, 1 + γ, 3 − γ, x−1)

)
(2.3.3)

where 2F1 denotes the Gaussian hypergeometric function (Olver, 2010). Then
the joint process (Z, B̂) has zero mean and covariance structure governed by

2Note that expressions for the exact same scenario have have been computed before in
the original pricing paper (Bayer et al., 2016), yet in that version the expression for
the autocorrelation of the fBM B̂ was incorrect. We compute and state here all the
relevant terms for the sake of completeness.
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2 Short-term near-the-money skew in rough fractional volatility models

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Var[B̂2
t ] = t2H , for t ≥ 0,

Cov[B̂sB̂t] = t2HG (s/t) , for s > t ≥ 0,

Cov[B̂sZt] = ρDH

(
sH+ 1

2 − (s − min(t, s))H+ 1
2
)

, for t, s ≥ 0,

Cov[ZtZs] = min(t, s), for t, s ≥ 0.

Numerical simulations3 confirm the theoretical results obtained in the last
section. In particular - as can be seen in Figure 2.1 – the asymptotic formula
for the implied volatility (2.2.9) captures very well the geometry of the term
structure of implied volatility, with particularly good results for higher H

and worsening results as H ↓ 0. Quite surprisingly, despite being an asymp-
totic formula, it seems to be fairly accurate over a wide array of maturities
extending up to a single year.

2.4 Proof of the energy expansion

Consider

dX = −1
2σ2(Y )dt + σ (Y ) d (ρdW + ρdB) , X0 = 0

dY = dB̂, Y0 = 0

where B̂t =
∫ t

0 K (t, s) dBs for a fixed Volterra kernel (recall (2.1.3) in the pre-
vious section). We study the small noise problem (Xε, Y ε) where

(
W, B, B̂

)
is replaced by

(
εW, εB, ε̂B̂

)
. The following proposition roughly says that

P
(

Xε
1 ≈ ε

ε̂
x
)

≈ exp
(

−I (x)
ε̂2

)
.

Proposition 2.4.1 (Forde and Zhang (2017)). Under suitable assumptions
(cf. Section 2.1), the rescaled process

(
ε̂
ε
Xε

1 : ε ≥ 0
)

satisfies an LDP (with
speed ε̂2) and rate function

I (x) = inf
f∈H1

0

⎡⎣(x − ρG (f))2

2ρ2F
(
f̂
) + 1

2E (f)
⎤⎦ ≡ inf

f∈H1
0

Ix (f) (2.4.1)

3The Python 3 code used to run the simulations can be found at
github.com/RoughStochVol.
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2 Short-term near-the-money skew in rough fractional volatility models

where

G (f) =
∫ 1

0
σ
((

Kḟ
)

(s)
)

ḟsds ≡
⟨
σ
(
Kḟ

)
, ḟ
⟩

≡
⟨
σ(f̂), ḟ

⟩
F (f) =

∫ 1

0
σ
((

Kḟ
)

(s)
)2

ds ≡
⟨
σ2
(
Kḟ

)
, 1
⟩

≡
⟨
σ2(f̂), 1

⟩
E (f) =

∫ 1

0

⏐⏐⏐ḟ (s)
⏐⏐⏐2 ds ≡

⟨
ḟ , ḟ

⟩

The rest of this section is devoted to analysis of the function I as defined
in (2.4.1). First, we derive the first order optimality condition for the above
minimization problem.

Proposition 2.4.2 (First order optimality condition). For any x ∈ R we
have at any local minimizer f = fx of the functional Ix in (2.4.1) that

fx
t =

ρ (x − ρG (fx))
{⟨

σ
(
Kḟx

)
, 1[0,t]

⟩
+
⟨
σ′
(
Kḟx

)
ḟx, K1[0,t]

⟩}
ρ2F (fx)

+ (x − ρG (fx))2

ρ2F 2 (fx)
⟨
(σσ′)

(
Kḟx

)
, K1[0,t]

⟩
, (2.4.2)

for all t ∈ [0, 1].

Proof. We denote a ≈ b whenever a = b + o (δ) for a small parameter δ. We
expand

E (f + δg) ≈ E (f) + 2δ
⟨
ḟ , ġ

⟩
F (f + δg) ≈ F (f) + δ

⟨(
σ2
)′ (

Kḟ
)

, Kġ
⟩

G (f + δg) ≈ G (f) + δ
{⟨

σ
(
Kḟ

)
, ġ
⟩

+
⟨
σ′
(
Kḟ

)
ḟ , Kġ

⟩}
If f = fx is a minimizer then δ ↦→ Ix (f + δg) has a minimum at δ = 0 for all
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2.4 Proof of the energy expansion

g. We expand

Ix (f + δg) = (x − ρG (f + δg))2

2ρ2F (f + δg) + 1
2E(f + δg)

≈

(
x − ρG (f) − δρ

{⟨
σ
(
Kḟ

)
, ġ
⟩

+
⟨
σ′
(
Kḟ

)
ḟ , Kġ

⟩})2

2ρ2
[
F (f) + δ

⟨
(σ2)′

(
Kḟ

)
, Kġ

⟩]
+ 1

2E(f) + δ
⟨
ḟ , ġ

⟩
≈

(x − ρG (f))2 − δ2ρ (x − ρG (f))
{⟨

σ
(
Kḟ

)
, ġ
⟩

+
⟨
σ′
(
Kḟ

)
ḟ , Kġ

⟩}
2ρ2F (f)

[
1 + δ

F (f)

⟨
(σ2)′

(
Kḟ

)
, Kġ

⟩]
+ 1

2E (f) + δ
⟨
ḟ , ġ

⟩
≈

(x − ρG (f))2 − δ2ρ (x − ρG (f))
{⟨

σ
(
Kḟ

)
, ġ
⟩

+
⟨
σ′
(
Kḟ

)
ḟ , Kġ

⟩}
2ρ2F (f)

− (x − ρG (f))2

2ρ2F (f)
δ

F (f)

⟨(
σ2
)′ (

Kḟ
)

, Kġ
⟩

+ 1
2E (f) + δ

⟨
ḟ , ġ

⟩
.

As a consequence, we must have, for f = fx and every ġ ∈ L2 [0, 1]

0 = d

dδ
{Ix (f + δg)}δ=0 = −

ρ (x − ρG (f))
{⟨

σ
(
Kḟ

)
, ġ
⟩

+
⟨
σ′
(
Kḟ

)
ḟ , Kġ

⟩}
ρ2F (f)

−(x − ρG (f))2

ρ2F 2 (f)
⟨
(σσ′)

(
Kḟ

)
, Kġ

⟩
+
⟨
ḟ , ġ

⟩
.

Recall fx
0 = 0, any x. We now test with ġ = 1[0,t] for a fixed t ∈ [0, 1] and

obtain

fx
t =

ρ (x − ρG (fx))
{⟨

σ
(
Kḟx

)
, 1[0,t]

⟩
+
⟨
σ′
(
Kḟx

)
ḟx, K1[0,t]

⟩}
ρ2F (fx)

+ (x − ρG (fx))2

ρ2F 2 (fx)
⟨
(σσ′)

(
Kḟx

)
, K1[0,t]

⟩
.

2.4.1 Smoothness of the energy

Having formally identified the first order condition for minimality in (2.4.1),
we will now show that the energy x ↦→ I(x) is a smooth function. More pre-
cisely, we will use the implicit function theorem to show that the minimizing
configuration fx is a smooth function in x (locally at x = 0). As Ix is a
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2 Short-term near-the-money skew in rough fractional volatility models

smooth function, too, this will imply smoothness of x ↦→ Ix(fx) = I(x), at
least in a neighborhood of 0.

As the Cameron-Martin space H of the process B̂ continuously embeds
into C ([0, 1]), K maps H1

0 continuously into C ([0, 1]), i.e., there is a constant
C > 0 such that for any f ∈ H1

0 we have

∥Kḟ∥∞ ≤ C∥f∥H1
0
. (2.4.3)

This result will follow from

Lemma 2.4.3. Let (Vt : 0 ≤ t ≤ 1) be a continuous, centred Gaussian process
and H its Cameron-Martin space. Then we have the continuous embedding
H ↪→ C [0, 1]. That is, for some constant C,

∥h∥∞ ≤ C∥h∥H.

Proof. By a fundamental result of Fernique, applied to the law of V as Gaus-
sian measure on the Banach space (C [0, 1] , ∥·∥∞), the random variable ∥V ∥∞

has Gaussian integrability. In particular,

σ2 := E( ∥V ∥2
∞) < ∞,

On the other hand, a generic element h ∈ H can be written as ht = E [VtZ]
where Z is a centred Gaussian random variable with variance ∥h∥2

H, see,
e.g., (Friz & Hairer, 2014, page 150). By Cauchy–Schwarz,

|ht| ≤ E [|Vt|]1/2 ∥h∥H ≤ σ ∥h∥H

and conclude by taking the sup over on the l.h.s. over t ∈ [0, 1].

Remark 2.4.4. Assume V is of Volterra form, i.e. Vt =
∫ t

0 K (t, s) dBs. Then
it can be shown (see (Decreusefond, 2005, Section 3)) that H is the image of
L2 under the map

K : ḟ ↦→ f̂ :=
(

t ↦→
∫ t

0
K (t, s) ḟsds

)

and
Kḟ


H

=
ḟ

L2
. In particular then, applying the above with h = Kḟ ∈
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2.4 Proof of the energy expansion

H, gives Kḟ


∞
≤ C

Kḟ


H
= C

ḟ
L2

= C∥f∥H1
0
.

2.4.1.1 The uncorrelated case

We start with the case ρ = 0 as the formulas are much simpler in this case.
By Proposition 2.4.2, any local optimizer f = fx of the functional Ix :

H1
0 → R in the uncorrelated case ρ = 0 satisfies for any t ∈ [0, 1]

ft = x2

F 2 (f)
⟨
(σσ′)

(
Kḟ

)
, K1[0,t]

⟩
.

We define a map H : H1
0 × R → H1

0 by

H(f, x)(t) := ft − x2

F 2 (f)
⟨
(σσ′)

(
Kḟ

)
, K1[0,t]

⟩
. (2.4.4)

Hence, for given x ∈ R, any local optimizer f must solve H(f, x) = 0. As
one particular solution is given by the pair (0, 0), we are in the realm of the
implicit function theorem. We need to prove that

• (f, x) ↦→ H(f, x) is locally smooth (in the sense of Fréchet);

• DH(f, x) := ∂
∂f

H(f, x) is invertible in (0, 0).

Note that invertibility should hold for x small enough, as DH(f, x) = idH1
0

−x2R

for some R, which is invertible as long as R has a bounded norm for sufficiently
small x.

Remark 2.4.5. The method of proof in this section is purely local in H1
0 .

Hence, we only really need smoothness of σ locally around 0. Note, however,
that stochastic Taylor expansions used in Section 2.5 will actually require
global smoothness of σ.

Lemma 2.4.6. The functions F : H1
0 → R and R1 : H1

0 → C ([0, 1]) defined
by

R1(f)(t) :=
⟨
(σσ′)

(
Kḟ

)
, K1[0,t]

⟩
, t ∈ [0, 1],

are smooth in the sense of Fréchet.
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2 Short-term near-the-money skew in rough fractional volatility models

Proof. For N ≥ 1 we note that the Gateaux derivative of F satisfies

DNF (f) · (g1, . . . , gN) =
∫ 1

0

dN

dxN
σ2(Kḟ)Kġ1 · · · KġNds.

By Lemma 2.4.3, we can bound

|DNF (f) · (g1, . . . , gN)| ≤ const
∫ 1

0
|Kġ1(s)| · · · |K ˙gN(s)|ds

≤ const ∥Kġ1∥∞ · · · ∥KġN∥∞

≤ const CN∥g1∥H1
0

· · · ∥gN∥H1
0
,

for const = ∥ dn

dxn σ2∥∞.4 Thus, DNF (f) is a multi-linear form on H1
0 with op-

erator norm ∥DNF (f)∥ ≤ ∥ dn

dxn σ2∥∞CN independent of f . As f ↦→ DNF (f)
is continuous, we conclude that DNF (f) as given above is, in fact, a Fréchet
derivative.

Let us next consider the functional R1. Note that

(
DNR1(f) · (g1, . . . , gN)

)
(t) =

⟨
sN(Kḟ)Kġ1 · · · KġN , K1[0,t]

⟩
for sN(x) := dN

dxN σ(x)σ′(x). Hence, Assumption 2.1.5 implies that

∥DNR1(f) · (g1, . . . , gN)∥2
H1

0
=
∫ 1

0

(∫ 1

t
sN

(
(Kḟ)(s)

) N∏
i=1

(Kġi)(s)K(s, t)ds

)2

dt

≤ ∥sN∥2
∞

N∏
i=1

∥Kġi∥2
∞

∫ 1

0

∫ 1

t
K(s, t)2dsdt

≤ ∥sN∥2
∞ C2N

N∏
i=1

∥gi∥2
H1

0

∫ 1

0

∫ s

0
K(s, t)2dtds

≤ ∥sN∥2
∞ C2N

∫ 1

0

∫ s

0
K(s, t)2dtds

N∏
i=1

∥gi∥2
H1

0
.

We see that the multi-linear map DNR1(f) has operator norm bounded by

∥DNR1(f)∥ ≤ ∥sN∥∞ CN

√∫ 1

0

∫ s

0
K(s, t)2dtds,

4More precisely, since neither σ nor its derivatives need to be bounded, we need to actually
work with a local version of the above estimate, for instance by replacing the max with
a sup over a compact set containing {(Kḟ)(t) : 0 ≤ t ≤ 1}.
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2.4 Proof of the energy expansion

independent of f . From continuity of f ↦→ DNR1(f), it follows that DNR1(f)
is the N ’th Fréchet derivative.

Theorem 2.4.7 (Zero correlation). Assuming ρ = 0, the energy I(x) (as
defined in (2.4.1)) is smooth in a neighborhood of x = 0.

Proof. By construction, we have

DH(f, x) = idH1
0

−x2A(f)

for A : H1
0 → L(H1

0 , H1
0 ) defined by

A(f) := R1(f) ⊗ DF −2(f) + F −2(f)DR1(f).

Here, (
R1(f) ⊗ DF −2(f)

)
· g = (DF −2(f) · g)  

∈R

R1(f)  
∈H1

0

.

As verified above, H is smooth in the sense of Fréchet. Trivially, DH(0, 0) =
idH1

0
is invertible and H(0, 0) = 0. Therefore, the implicit function theorem

implies that there are open neighborhoods U and V of 0 ∈ H1
0 and 0 ∈ R,

respectively, and a smooth map x ↦→ fx from V to U such that H(fx, x) ≡ 0
and fx is unique in U with this property.

For the energy, we prove that I(x) = Ix(fx) in a neighborhood of x = 0.
First of all, we show that a minimizer exists. If not, there is a function g ∈ H1

0

with Ix(g) < Ix(fx). For small enough x such a g must be inside a ball with
radius ε around 0 ∈ H1

0 , as Ix(g) ≥ 1
2∥g∥2

H1
0

and limx→0 Ix(fx) = 0. Then
note that for any g ∈ H1

0

D2I0(0) · (g, g) = ∥g∥2
H1

0
> 0,

where D2Ix(f) denotes the second derivative of f ↦→ Ix(f). By continuity,
D2Ix(f) stays positive definite for (x, f) in a neighborhood of (0, 0). As noted,
for x small enough, both g and fx (and the line connecting them) lie in this
neighborhood. For h := g − fx, this implies

Ix(g) − Ix(fx) = DIx(fx) · h +
∫ 1

0
D2Ix(fx + th) · (h, h) dt > 0,
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2 Short-term near-the-money skew in rough fractional volatility models

since DIx(fx) · h = 0 and D2Ix(fx + tsh) · (h, h) > 0. This contradicts
the assumption that Ix(g) < Ix(fx), and we conclude that fx is, indeed, a
minimizer of Ix, implying that I(x) = Ix(fx) locally.

Finally, as x ↦→ fx is smooth and (f, x) ↦→ Ix(f) = x2

2F (f) + 1
2∥f∥2

H1
0

is
smooth, we see that x ↦→ I(x) = Ix(fx) is smooth in a neighborhood of 0.
(Note that this arguments relies on σ(0) ̸= 0, implying that F (f) ̸= 0 for f

in a neighborhood to 0.)

Remark 2.4.8. Classical counter-examples in the context of the direct method
of calculus of variations show that the step of verifying the existence of a
minimizer should not be taken too lightly. For instance, the functional

J(u) :=
∫ 1

0

[
(u′(s)2 − 1)2 + u(s)2

]
ds

does not have a minimizer in H1
0 , but J can be made arbitrarily close to 0 by

choosing piecewise-linear functions u with slope |u′| = 1 oscillating around
0. We refer to any text book on calculus of variations. In the situation
above, local “convexity” in the sense of a positive definite second derivative
prevents this phenomenon. An alternative method of proof for the existence
of a minimizer is to show that J is (lower semi-) continuous in the weak sense.

2.4.1.2 The general case

In the general case (cf. Proposition 2.4.2), we define the function H : H1
0 ×R →

H1
0 by

H(f, x)(t) := ft −
ρ (x − ρG (f))

{⟨
σ
(
Kḟ

)
, 1[0,t]

⟩
+
⟨
σ′
(
Kḟ

)
ḟ , K1[0,t]

⟩}
ρ2F (f)

+ (x − ρG (f))2

ρ2F 2 (f)
⟨
(σσ′)

(
Kḟ

)
, K1[0,t]

⟩
= ft − ρ (x − ρG(f))

ρ2F (f) (R2(f)(t) + R3(f)(t)) + (x − ρG(f))2

ρ2F (f)2 R1(f)(t),

(2.4.5)

32



2.4 Proof of the energy expansion

where R2, R3 : H1
0 → H1

0 are defined by

R2(f)(t) :=
⟨
σ(Kḟ), 1[0,t]

⟩
, (2.4.6)

R3(f)(t) :=
⟨
σ′(Kḟ)ḟ , K1[0,t]

⟩
, (2.4.7)

t ∈ [0, 1].
One easily checks that G, R2, R3 are smooth in the Fréchet sense.

Lemma 2.4.9. The functions G : H1
0 → R, R2 : H1

0 → H1
0 and R3 : H1

0 →
H1

0 are smooth in Fréchet sense.

Proof. The proof of smoothness is clear. We report the actual derivatives.
For G we get

DNG(f) · (g1, . . . , gN) =
⟨

σ(N)
(
Kḟ

)
ḟ ,

N∏
i=1

Kġi

⟩
+

+
N∑

k=1

⟨
σ(N−1)

(
Kḟ

)
, ġk

∏
i̸=k

Kġi

⟩
.

For R2 and, respectively, R3, we obtain

(
DNR2(f) · (g1, . . . , gN)

)
(t) =

∫ t

0
σ(N)

(
(Kḟ)(s)

) N∏
i=1

(Kġi)(s)ds,

and

(
DNR3(f) · (g1, . . . , gN)

)
(t) =

⟨
σ(N+1)

(
Kḟ

)
ḟK1[0,t],

N∏
i=1

Kġi

⟩
+

+
N∑

k=1

⟨
σ(N)

(
Kḟ

)
K1[0,t], ġk

∏
i̸=k

Kġi

⟩
.

Theorem 2.4.10. Let σ be smooth with σ(0) ̸= 0. Then the energy I(x) as
defined in (2.4.1) is smooth in a neighborhood of x = 0.

Proof. The proof is similar to the proof of Theorem 2.4.7. In fact, the only
difference is in establishing invertibility of DH(0, 0) and the existence of a
minimizer.

Note that (2.4.5) contains three terms. The derivative of the first term
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2 Short-term near-the-money skew in rough fractional volatility models

(f ↦→ f) is always equal to idH1
0
. For the second term, we note that

(x − ρG(f))|x=0, f=0 = 0.

Hence, the only non-vanishing contribution to the derivative of the second
term evaluated in direction g ∈ H1

0 at x = 0, f = 0 and t ∈ [0, 1] is

ρ2DG(0) · g

ρ2F (0) (R2(0) + R3(0)) = ρ2σ0g(1)
ρ2σ2

0
(σ0t + 0) = ρ2

ρ2 g(1)t.

For the same reason, the derivative of the third term at (f, x) = (0, 0) vanishes
entirely. Hence,

(DH(0, 0) · g)(t) = g(t) + ρ2

ρ2 g(1)t.

It is easy to see that g ↦→ DH(0, 0) · g is invertible. Indeed, let us construct
the pre-image g = DH(0, 0)−1 · h of some h ∈ H1

0 . At t = 1 we have

ρ2 + ρ2

ρ2 g(1) = h(1),

implying g(1) = ρ2h(1). For 0 ≤ t < 1, we then get

g(t) + ρ2

ρ2 g(1)t = g(t) + ρ2

ρ2 ρ2h(1)t = g(t) + ρ2h(1)t = h(t),

or g(t) = h(t) − ρ2h(1)t.
For existence of the minimizer, note that

D2J0(0) · (g, g) = ρ2

ρ2 g(1)2 + ∥g∥2
H1

0
,

which is again positive definite.

Remark 2.4.11. Though only formulated in terms of “smoothness”, it is easy
to show that σ ∈ Ck implies that I ∈ Ck−1 (locally at 0).

2.4.2 Energy expansion

Having established smoothness of the energy I as well as of the minimizing
configuration x ↦→ fx locally around x = 0, we can proceed with computing
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2.4 Proof of the energy expansion

the Taylor expansion of fx around x = 0. We will once more rely on the first
order optimality condition given in Proposition 2.4.2. Plugging the Taylor
expansion of fx into Ix will then give us the local Taylor expansion of I(x).

2.4.2.1 Expansion of the minimizing configuration

Theorem 2.4.12. We have

fx
t = αtx + βt

x2

2 + O
(
x3
)

,

αt = ρ

σ0
t,

βt = 2σ′
0

σ3
0

[
ρ2
⟨
K1, 1[0,t]

⟩
+
⟨
K1[0,t], 1

⟩
− 3ρ2t ⟨K1, 1⟩

]
.

Remark 2.4.13 (Non-Markovian transversality). In the RL-fBM case, K (t, s) =√
2H |t − s|γ with γ = H − 1/2 one computes

⟨
1, K1[0,t]

⟩
= 1

(1 + γ) (2 + γ)
{
1 − (1 − t)2+γ

}
∈ C1 [0, 1] .

Interestingly, the transversality condition known from the Markovian setting
(q1 = 0, which readily translates to ḟx

1 = 0 there) remains valid here (for
ρ = 0), at least to order x2, in the sense that

ḟx
t ≈ βt

x2

2 = (const) (1 − t)1+γ |t=1 = 0

Proof of Theorem 2.4.12. First order expansion:
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2 Short-term near-the-money skew in rough fractional volatility models

Up to the order needed in order to get the first order term, we have

fx
t = αtx + O(x2),

ḟt
x = α̇tx + O(x2),

σ(Kḟx) = σ0 + σ′
0Kα̇ x + O(x2),

σ′(Kḟx) = σ′
0 + σ′′

0Kα̇ x + O(x2),

F (fx) = ⟨σ2(Kḟx), 1⟩

= σ2
0 + O(x),

G(fx) = ⟨σ(Kḟx), ḟx⟩

= ⟨σ0, α̇⟩ x + O(x2).

Therefore,

⟨σ(Kḟx), 1[0,t]⟩ = σ0t + O(x),

⟨σ′(Kḟx)ḟx, K1[0,t]⟩ = O(x),

⟨σσ′(Kḟx), K1[0,t]⟩ = O(1),

x − ρG(fx) = (1 − ρσ0α1)x + O(x2),

(x − ρG(fx))2 = O(x2).

This yields for the first order term in (2.4.2)

αt = ρ(1 − ρσ0α1)
ρ2σ0

t.

Setting t = 1, we get
α1 = ρ

ρ2σ0
− ρ2

ρ2 α1,

which is solved by α1 = ρ
σ0

. Inserting this term back into the equation for αt,
we get

αt = ρ

σ0
t. (2.4.8)

Second order expansion:

Using (2.4.8) and the ansatz fx
t = αtx + 1

2βtx
2 + O(x3), we re-compute the
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2.4 Proof of the energy expansion

relevant terms appearing in the (2.4.2). We have

σ(Kḟx(s)) = σ0 + σ′
0

ρ

σ0
(K1)(s)x + O(x2)

and analogously for σ replaced by σ′, σσ′. This implies

⟨
σ(Kḟx), 1[0,t]

⟩
= σ0t + σ′

0
ρ

σ0

⟨
K1, 1[0,t]

⟩
x + O(x2),

⟨
σ′(Kḟx)ḟx, K1[0,t]

⟩
= ρ

σ′

σ0

⟨
K1[0,t], 1

⟩
x + O(x2),⟨

σσ′(Kḟx), K1[0,t]
⟩

= σ0σ
′
0

⟨
K1[0,t], 1

⟩
+ O(x).

Using the notation introduced earlier, we have

F (fx) = σ2
0 + 2σ′

0ρ ⟨K1, 1⟩ x + O(x2),

G(fx) = ρx +
(

1
2σ0β1 + ρ2 σ′

0
σ2

0
⟨K1, 1⟩

)
x2 + O(x3).

This directly implies

x − ρG(fx) = ρ2x − ρ

(
1
2σ0β1 + ρ2 σ′

0
σ2

0
⟨K1, 1⟩

)
x2 + O(x3),

(x − ρG(fx))2 = ρ4x2 − 2ρ2ρ

(
1
2σ0β1 + ρ2 σ′

0
σ2

0
⟨K1, 1⟩

)
x3 + O(x4).

We next compute some auxiliary terms appearing in (2.4.2).

N1 := ρ(x − ρG(fx))
(⟨

σ(Kḟx), 1[0,t]
⟩

+
⟨
σ′(Kḟx)ḟx, K1[0,t]

⟩)
= ρρ2σ0tx +

[
ρ2ρ2 σ′

0
σ0

(⟨
K1, 1[0,t]

⟩
+
⟨
K1[0,t], 1

⟩)
− ρ4 σ′

0
σ0

t ⟨K1, 1⟩ − 1
2ρ2σ2

0tβ1

]
x2 + O(x3)

The corresponding denominator is ρ2F (fx). Using the formula

a1x + a2x
2 + O(x3)

b0 + b1x + O(x2) = a1

b0
x + a2b0 − a1b1

b2
0

x2 + O(x3),
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2 Short-term near-the-money skew in rough fractional volatility models

we obtain

N1

ρ2F (fx) = ρ

σ0
tx +

[
ρ2 σ′

0
σ3

0

(⟨
K1, 1[0,t]

⟩
+
⟨
K1[0,t], 1

⟩)
−
(

ρ4

ρ2 + 2ρ2
)

σ′
0

σ3
0
t ⟨K1, 1⟩ − 1

2
ρ2

ρ2 β1t

]
x2 + O(x3) (2.4.9)

For the second term in (2.4.2), let

N2 := (x − ρG(fx))2
⟨
(σσ′)(Kḟx), K1[0,t]

⟩
= ρ4σ0σ

′
0

⟨
K1[0,t], 1

⟩
x2 + O(x3).

The corresponding denominator is ρ2F (fx)2 = ρ2σ4
0 + O(x). Hence,

N2

ρ2F (fx)2 = ρ2 σ′
0

σ3
0

⟨
K1[0,t], 1

⟩
x2 + O(x3). (2.4.10)

Combining (2.4.9) and (2.4.10), we get

fx
t = ρ

σ0
tx +

[
ρ2 σ′

0
σ3

0

(⟨
K1, 1[0,t]

⟩
+
⟨
K1[0,t], 1

⟩)
− ρ4

ρ2
σ′

0
σ3

0
t ⟨K1, 1⟩

− 1
2

ρ2

ρ2 β1t − 2ρ2 σ′
0

σ3
0
t ⟨K1, 1⟩ + ρ2 σ′

0
σ3

0

⟨
K1[0,t], 1

⟩]
x2 + O(x3)

We shall next compute β1. Taking the second order terms on both sides and
letting t = 1, we obtain

1
2β1 = ρ2 σ′

0
σ3

0
2 ⟨K1, 1⟩ − ρ4

ρ2
σ′

0
σ3

0
⟨K1, 1⟩

− 1
2

ρ2

ρ2 β1 − 2ρ2 σ′
0

σ3
0

⟨K1, 1⟩ + ρ2 σ′
0

σ3
0

⟨K1, 1⟩ .

Moving β1 to the other side with 1+ ρ2

ρ2 = 1
ρ2 and collecting terms on the right

hand side, we arrive at

1
2

1
ρ2 β1 = σ′

0
σ3

0
⟨K1, 1⟩

(
2ρ2 − ρ4

ρ2 − 2ρ2 + ρ2
)

= 1 − 2ρ2

ρ2
σ′

0
σ3

0
⟨K1, 1⟩

We conclude that
β1 = 2(1 − 2ρ2)σ′

0
σ3

0
⟨K1, 1⟩
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2.4 Proof of the energy expansion

Hence, we obtain

βt = 2σ′
0

σ3
0

[
ρ2
⟨
K1, 1[0,t]

⟩
+
⟨
K1[0,t], 1

⟩
− 3ρ2t ⟨K1, 1⟩

]
.

2.4.2.2 Energy expansion in the general case

Now we compute the Taylor expansion of I(x) as defined in Proposition 2.4.1.
We start with the second term. Plugging in the optimal path fx

t = αtx +
1
2βtx

2 + O(x3) (and using
⟨
β̇, 1

⟩
= β1 as β0 = 0) we obtain

1
2
⟨
ḟx, ḟx

⟩
= 1

2
ρ2

σ2
0
x2 + 1

2
ρ

σ0
β1x

3 + O(x4).

Inserting β1 = 2(1−2ρ2)σ′
0

σ3
0

⟨K1, 1⟩ into the above formula for (x − ρG(fx))2,
we get

(x − ρG(fx))2 = ρ4x2 − 2ρ4ρ
σ′

0
σ2

0
⟨K1, 1⟩ x3 + O(x4).

Recall the denominator

2ρ2F (fx) = 2ρ2σ2
0 + 4ρ2σ′

0ρ ⟨K1, 1⟩ x + O(x2).

Using the expansion of a fraction

a2x
2 + a3x

3 + O(x4)
b0 + b1x + O(x2) = a2

b0
x2 + a3b0 − a2b1

b2
0

x3 + O(x4),

we obtain from

(x − ρG(fx))2

2ρ2F (fx) = ρ4

2ρ2σ2
0
x2+

+

(
−2ρ4ρ

σ′
0

σ2
0

⟨K1, 1⟩
)

2ρ2σ2
0 − ρ4 (4ρ2σ′

0ρ ⟨K1, 1⟩)
4ρ4σ4

0
x3 + O(x4)

= ρ2

2σ2
0
x2 − 2ρ2ρ

σ′
0

σ4
0

⟨K1, 1⟩ x3 + O(x4).

We note that

1
2

ρ

σ0
β1−2ρ2ρ

σ′
0

σ4
0

⟨K1, 1⟩ =
(
(1 − 2ρ2) − 2(1 − ρ2)

)
ρ

σ′
0

σ4
0

⟨K1, 1⟩ = −ρ
σ′

0
σ4

0
⟨K1, 1⟩ .
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2 Short-term near-the-money skew in rough fractional volatility models

Adding both terms, we arrive at the

Proposition 2.4.14. The energy expansion to third order gives

I(x) = 1
2σ2

0
x2 − ρ

σ′
0

σ4
0

⟨K1, 1⟩ x3 + O(x4).

2.4.2.3 Energy expansion for the Riemann-Liouville kernel

Let us specialize the energy expansion given in Proposition 2.4.14 for the
Riemann-Liouville fBm. Choose γ = H − 1

2 and recall that the kernel K

takes the form K(t, s) = (t − s)γ. We get

(K1)(t) =
∫ t

0
K(t, s)ds =

∫ t

0
(t − s)γds = t1+γ

1 + γ
.

The key term ⟨K1, 1⟩ appearing in the energy expansion now gives

⟨K1, 1⟩ =
∫ 1

0
(K1)(t)dt =

∫ 1

0

t1+γ

1 + γ
dt = 1

(1 + γ)(2 + γ) = 1
(H + 1/2)(H + 3/2) .

Plugging formula (2.4.2.3) into the energy expansion, we obtain the energy
expansion for the Riemann-Liouville fractional Browian motion

I(x) = 1
2σ2

0
x2 − ρ

(H + 1/2)(H + 3/2)
σ′

0
σ4

0
x3 + O(x4).

For completeness, let us also fully describe the time-dependence of the
second order term βt in the expansion of the optimal trajectory fx

t . Unlike
the first order time, here we do not have a linear movement any more. Indeed

⟨
K1, 1[0,t]

⟩
=
∫ t

0
(K1)(s)ds =

∫ t

0

s1+γ

1 + γ
ds = t2+γ

(1 + γ)(2 + γ) , (2.4.11)
⟨
K1[0,t], 1

⟩
= 1

(1 + γ)(2 + γ)
(
1 − (1 − t)2+γ

)
. (2.4.12)
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2.5 Proof of the pricing formula

2.5 Proof of the pricing formula

Fix x ≥ 0 and x̂ = ε
ε̂
x where ε = t1/2 and ε̂ = tH = ε2H . We have

c(x̂, t) = E (exp (Xt) − exp x̂)+

= E (exp (Xε
1) − exp x̂)+

= E
(

exp
(

ε

ε̂
X̂ε

1

)
− exp

(
ε

ε̂
x
))+

where we recall

X̂ε
1 ≡ ε̂

ε
Xε

1 =
∫ 1

0
σ(ε̂B̂)ε̂d (ρW + ρB) − 1

2εε̂
∫ 1

0
σ
(
ε̂B̂t

)2
dt.

Consider a Cameron-Martin perturbation of X̂ε
1 . That is, for a Cameron-

Martin path h = (h, f) ∈ H1
0 × H1

0 consider a measure change corresponding
to a transformation ε̂ (W, B)⇝ ε̂ (W, B) + (h, f) (transforming the Brownian
motions to Brownian motions with drift), we obtain the Girsanov density

Gε = exp
(

−1
ε̂

∫ 1

0
ḣsdWs − 1

ε̂

∫ 1

0
ḟsdBs − 1

2ε̂2

∫ 1

0

(
ḣ2

s + ḟ 2
s

)
ds
)

. (2.5.1)

Under the new measure, X̂ε
1 becomes Ẑε

1 , where

Ẑε
1 =

∫ 1

0
σ(ε̂B̂t + f̂t) [ε̂d (ρWt + ρBt) + d (ρht + ρft)] − 1

2εε̂
∫ 1

0
σ(ε̂B̂t + f̂t)2dt.

Definition 2.5.1. For fixed x ≥ 0, write (h, f) ∈ Kx if Φ1
(
h, f, f̂

)
= x. Call

such (h, f) admissible for arrival at log-strike x. Call (hx, fx) the cheapest
admissible control, which attains

I (x) = inf
h,f∈H1

0

{1
2

∫ 1

0
ḣ2dt + 1

2

∫ 1

0
ḟ 2dt : Φ1

(
h, f, f̂

)
= x

}
,

where we recall that f̂ = Kḟ and

Φ1(h, f, f̂) =
∫ 1

0
σ(f̂)d (ρh + ρf) .

For any Cameron-Martin path (h, f), the perturbed random variable Ẑε
1

admits a stochastic Taylor expansion with respect to ε̂.
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2 Short-term near-the-money skew in rough fractional volatility models

Lemma 2.5.2. Fix (h, f) ∈ Kx and define Ẑε
1 accordingly. Then

Ẑε
1 = x + ε̂g1 + ε̂2Rε

2, (2.5.2)

where g1 is a Gaussian random variable, given explicitly by

g1 =
∫ 1

0
{σ(f̂t)d (ρWt + ρBt) + σ′(f̂t)B̂td (ρht + ρft)}, (2.5.3)

and

Rε
2 =

∫ 1

0
σ′
(
f̂t

)
B̂td (ρWt + ρBt) − 1

2
ε

ε̂

∫ 1

0
σ(ε̂B̂t + f̂t)2dt

+ 1
2ε̂2

∫ ε̂

0

∫ 1

0
σ′′
(
ζB̂t + f̂t

)
B̂2

t [ε̂d (ρWt + ρBt) + d (ρht + ρft)] (ε̂ − ζ) dζ.

(2.5.4)

Proof. By a stochastic Taylor expansion for the controlled process Ẑε
t with

control (h, f) ∈ Kx as in Definition 2.5.1 and thanks to σ ∈ C2, we have at
t = 1

Ẑε
1 =

∫ 1

0
σ(ε̂B̂ + f̂) [ε̂d (ρW + ρB) + d (ρh + ρf)] − 1

2εε̂
∫ 1

0
σ(ε̂B̂t + f̂t)2dt

=
∫ 1

0
σ(f̂)d (ρh + ρf) + ε̂

∫ 1

0
{σ(f̂)d (ρW + ρB) + σ′(f̂)B̂d (ρh + ρf)}+

+ ε̂2
∫ 1

0
σ′
(
f̂t

)
B̂td (ρWt + ρBt) − 1

2εε̂
∫ 1

0
σ(ε̂B̂t + f̂t)2dt

+ 1
2

∫ ε̂

0

∫ 1

0
σ′′
(
ζB̂t + f̂t

)
B̂2

t [ε̂d (ρWt + ρBt) + d (ρht + ρft)] (ε̂ − ζ) dζ.

Collecting terms in powers of ε̂ and with the random variable g1 as in (2.5.3)
(recalling that ε̂ε ∈ O(ε̂2)), we have

Ẑε
1 =

∫ 1

0
σ(f̂)d (ρh + ρf) + ε̂g1 + O(ε̂2),

furthermore, since (h, f) ∈ Kx, by the definition of Φ1, it holds that
∫ 1

0
σ(f̂)d (ρh + ρf) = x.

This proves the statement (2.5.2) and the statement that g1 is Gaussian is
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2.5 Proof of the pricing formula

immediate from the form (2.5.3).

Finally, we determine an explicit form of the Girsanov density Gε for the
choice where (hx, fx) in (2.5.1) are chosen the cheapest admissible control
(cf. Definition 2.5.1. Similarly to classical works of Azencott, Ben Arous
(1988) and others,we show that the stochastic integrals in the exponent of Gε

are proportional to the first order term g1 (with factor I ′(x)) when evaluated
at the minimizing configuration (hx, fx).

Lemma 2.5.3. We have
∫ 1

0
ḣx

t dWt +
∫ 1

0
ḟx

t dBt = I ′ (x) g1.

Proof. See Lemma 2.8.2.

With these preparations in place, we are now ready to prove the pricing
formula from Section 2.2.

Proof of Theorem 2.2.2. With a Girsanov factor (all integrals on [0, 1])

Gε = e
− 1

ε̂

∫
ḣdW − 1

ε̂

∫
ḟdB− 1

2ε̂2

∫
(ḣ2+ḟ2)dt

and (evaluated at the minimizer)

Gε|∗ = e
− I(x)

ε̂2 e
− I′(x)g1(ω)

ε̂ ,

we have, setting Û ε := Ẑε
1 − x = ε̂g1 + ε̂2Rε

2

c(x̂, t) = E

[(
exp

(
ε

ε̂
Ẑε

1

)
− exp

(
ε

ε̂
x
))+

Gε|∗
]

= e
ε

ε̂
x
E

[(
exp

(
ε

ε̂
Û ε
)

− 1
)+

Gε|∗
]

= e
− I(x)

ε̂2 e
ε

ε̂
x
E

[(
exp

(
ε

ε̂
Û ε
)

− 1
)+

e
− I′(x)g1

ε̂

]

= e
− I(x)

ε̂2 e
ε

ε̂
x
E

[(
exp

(
ε

ε̂
Û ε
)

− 1
)

e
− I′(x)

ε̂2 Ûε

eI′(x)Rε
21

Ûε≥0

]
.

= e
− I(x)

ε̂2 e
ε

ε̂
x
J (ε, x) .
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2 Short-term near-the-money skew in rough fractional volatility models

2.6 Proof of the moderate deviation expansions

In Section 2, we pointed out that (iiic) is exactly what one gets from (call
price) large deviations (2.1.8), if heuristically applied to xε2β. We now give a
proper derivation based on moderate deviations.

Lemma 2.6.1. Assume (iiia-b) from Assumption 2.1.4. Then an upper mod-
erate deviation estimate holds both for calls and digital calls. That is, we
have

(iiic) For every β ∈ (0, H), and every fixed x > 0, and x̂ε := xε1−2H+2β,

E[(eXε
1 − ex̂ε)+] ≤ exp

(
− x2 + o(1)

2σ2
0ε4H−4β

)

and also
P [Xε

1 > x̂ε] ≤ exp
(

− x2 + o(1)
2σ2

0ε4H−4β

)
. (2.6.1)

Proof. Recall σ(.) smooth but unbounded and recall x̂ε := xε1−2H+2β. In
case of β = 0 and H = 1/2 a large deviation principle (LDP) for (Xε

1 ε̂/ε)
is readily reduced, via exponential equivalence, to a LDP for the family
of stochastic Itô integrals given by

∫
σ(ε̂B̂)ε̂dZ for some Brownian Z, ρ-

correlated with B. There are then many ways to establish a LDP for this
family. A particularly convenient one, that requires no growth restriction on
σ, uses continuity of stochastic integration with respect to the rough path
(B, Z,

∫
BdZ) = (B, Z,

∫
B̂dZ) in suitable metrics, for which a LDP is known

(Friz & Hairer, 2014, Ch 9.3). It was pointed out in (Bayer et al., 2017) that
a similar reasoning is possible when H < 1/2, the rough path is then replaced
by a “richer enhancement” of (B, Z), the precise size of which depends on
H, for which again one has a LDP. A moderate deviation priniple (MDP) for
(Xε

1 ε̂/ε) is a LDP for (ε−2βXε
1 ε̂/ε) for β ∈ (0, H). This can be reduced to a

LDP, with ε := ε−2β ε̂ = ε2H−2β, for

ε−2β
∫ 1

0
σ(ε̂B̂)ε̂dZ =

∫ 1

0
σ(ε̂B̂)εdZ ≡

∫ 1

0
σε(εB̂)εdZ

with speed ε2. Since σε(·) ≡ σ(ε2β·) converges (with all derivatives) locally
uniformly to the constant function σ0, and one checks that the above is ex-
ponentially equivalent to the (Gaussian) family given by σ0εZ1, with law
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2.6 Proof of the moderate deviation expansions

N (0, σ2
0ε2) = N (0, σ2

0ε4H−4β) which gives (2.6.1), even with equality. (By
localization, exponential equivalence can again be done for σ without growth
restrictions.)

We have not yet used either assumption (iiia-b). These become important
in order to extend estimate (2.6.1) to the case of genuine call payoffs. We can
follow here a well-known argument (e.g. ((Forde & Jacquier, 2009; Pham,
2010; Forde & Zhang, 2017)) with the “moderate” caveat to carry along a
factor ε2β. In fact, this follows precisely the argument of (Forde & Zhang,
2017) where the authors carry along a factor ε̂/ε = ε2H−1. (This provides
a unified view on rough and moderate deviations.) The remaining details
then follow essentially “Appendix C. Proof of Corollary 4.13., part (ii) up-
per bound” of (Forde & Zhang, 2017), noting perhaps that the authors use
their assumptions to show validity of what we simply assumed as condition
(iiib), and also that one works with the quadratic rate function I ′′(0)x2 = x2

2σ2
0

throughout.

Remark 2.6.2. By an easy argument similar to “Appendix C. Proof of Corol-
lary 4.13., part (i) lower bound” of (Forde & Zhang, 2017) one sees that
validity of the call price upper bound (iiic) implies the corresponding digital
call price upper bound (2.6.1.) For this reason, we only emphasized (iiic) but
not (2.6.1) in Section 2.

In a classical work, Azencott (1982) (see also (Azencott, 1985), (Ben Arous,
1988, Théorème 2)) obtained asymptotic expansions of functionals of Laplace
type on Wiener space, of the type “E[exp(−F (Xε)/ε2)]”, for small noise dif-
fusions Xε. This refines the large deviation (equivalently: Laplace) principle
of Freidlin–Wentzell for small noise diffusions. In a nutshell, for fixed X0 = x,
Azencott gets expansions of the form e−c/ε2(α0 + α1ε...). His ideas (used by
virtually all subsequent works in this direction) are a Girsanov transform,
to make the minimizing path “typical”, followed by localization around the
minimizer (justified by a good large deviation principle), and finally a local
(stochastic Taylor) type analysis near the minimizer. None of these ingre-
dients rely on the Markovian structure (or, relatedly, PDE arguments). As
a consequence (and motivation for this work) such expansions were also ob-
tained in the (non-Markovian) context of rough differential equations driven
by fractional Brownian motion (Inahama, 2013; Baudoin & Ouyang, 2015)
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2 Short-term near-the-money skew in rough fractional volatility models

with H < 1/2.

And yet, our situation is different in the sense that call price Wiener func-
tionals do not fit the form studied by Azencott and others, nor can we in
fact expect a similar expansion: Example 2.2.3 gives a Black-Scholes call
price expansion of the form constant times e−cε2(ε3 + ...). Azencott’s ideas
are nonetheless very relevant to us: we already used the Girsanov formula in
Theorem 2.2.2 in order to have a tractable expression for J . It thus “only”
remains to carry out the localization and do some local analysis.

Proposition 2.6.3. Let x > 0 and β ∈ (0, H). Then the factor J is negligible
in the sense that, for every θ > 0,

εθ log J(ε, xε2β) → 0 as ε → 0 .

Proof. Step 1. Localization Write xε := xε2β, x̂ε := xεε
1−2H = xε1−2H+2β. By

definition,
E[(eXε

1 − ex̂ε)+]e
I(xε)

ε̂2 e−x̂ε = J (ε, xε) .

Fix x, δ > 0 and write δε = δε2β. We claim that (the positive quantity)

J (ε, xε) − Jδε (ε, xε) = e
I(xε)

ε̂2 e−x̂εE[(eXε
1 − ex̂ε)1

X̂ε
1>xε+δε

] (2.6.2)

is exponentially small, in the sense that, for some c > 0 and ε2 = ε4H−4β,

J (ε, xε) − Jδε (ε, xε) = O
(
e−c/ε2)

.

There is a battle here between the exploding factor e
I(xε)

ε̂2 , with exponent

I (xε)
ε̂2 ∼ I ′′(0) (xε)2

2ε̂2 = I ′′(0)x2

2ε4H−4β
,

and on the other hand

E[(eXε
1 − ex̂ε)1

X̂ε
1>xε+δε

] ≤ exp
(

−(x + δ)2 + o(1)
2σ2

0ε4H−4β

)

where the given estimate is an easy consequence of Lemma 2.6.1. Since
I ′′(0) = 1/σ2

0 we see that the last factor “exponentially over-compensates”
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2.6 Proof of the moderate deviation expansions

the rest, so that the difference is indeed exponentially negligible.

Step 2. Upper bound. For any x > 0, recall that Û ε,x = Û ε decomposes
into a Gaussian random variable g1 = gx

1 and remainder Rε,x
2 = Rε

2. In order
to control this remainder without imposing a boundedness assumption on
σ(·), we will crucially use a ”localized remainder tail estimate” as given in
Proposition 2.6.4 below. We have, for any ε ∈ (0, 1],

Jδ (ε, x) = E

[
e

− I′(x)
ε̂2 Ûε (

exp
(

ε
ε̂
Û ε
)

− 1
)

eI′(x)Rε
2 1

Ûε∈[0,δε]

]
(2.6.3)

≤ (eδ − 1)E[e− I′(x)
ε̂

gx
1 ; Û ε,x ∈ [0, δ]].

To proceed, recall ε̂−1gx
1 = ε̂−2Û ε,x − Rε,x

2 so that, for any κ > 0,

e
− I′(x)

ε̂
gx

1 = e
− I′(x)

ε̂
gx

1 1|ε̂B̂|∞;[0,1]
≥κ

+ e
− I′(x)

ε̂2 Ûε,x

eI′(x)Rε,x
2 1|ε̂B̂|∞;[0,1]

<κ
.

Since I ′(x) > 0 for small enough x > 0, it follows that − I′(x)
ε̂2 Û ε,x < 0 on the

event {Û ε,x ∈ [0, δ]}, which leads us to

Jδ (ε, x) ≤ (eδ − 1)E[e− I′(x)
ε̂

gx
1 ; |ε̂B̂|∞;[0,1] ≥ κ] + (eδ − 1)E[eI′(x)Rε,x

2 ; |ε̂B̂|∞;[0,1] < κ]

≤ (eδ − 1)
√

E[e− 2I′(x)
ε̂

gx
1 ]
√

P
[
|ε̂B̂|∞;[0,1] ≥ κ

]
+ (eδ − 1)C

where, by Proposition 2.6.4, the constant C = C(κ) is uniform in small ε and
x. The square-root terms are computed resp. (Fernique) estimated by

exp
(

(I ′ (x))2V(gx
1 )

ε̂2

)
× exp(−cκ2/ε̂2)

for some c > 0 which depends on the law of B (hence H), but is uniform in ε

and x. Hence, for x small enough, the resulting exponent (I ′ (x))2V(gx
1 ) − cκ2

is negative, which is more than enough to conclude the upper bound.

Step 3. Lower bound. Write Eδ,κ [·] = E[·1
Ûε,x∈[0,δε]1|ε̂B̂|∞;[0,1]

<κ
] and esti-
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2 Short-term near-the-money skew in rough fractional volatility models

mate

Eδ,κ

[
e

− I′(x)
ε̂2 Ûε/2 (exp

(
ε
ε̂
Û ε
)

− 1
)1/2

]

= Eδ,κ

[
e

− I′(x)
ε̂2 Ûε/2 (exp

(
ε
ε̂
Û ε
)

− 1
)1/2

eI′(x)Rε
2/2 e−I′(x)Rε

2/2
]

≤ Jδ (ε, x)
1
2 Eδ,κ

[
e−I′(x)Rε

2
] 1

2

where we used Cauchy–Schwarz and discarded the event {|ε̂B̂|∞;[0,1] < κ}.
The localized remainder estimate provides an upper bound on Eδ,κ

[
e−I′(x)Rε

2
]
,

uniformly over small (enough) ε and x. It then suffices to get a suitable lower
bound of the left-hand side above. Indeed, for u ∈ [0, ε̂2η] = [0, ε4H Var η],
with η small enough, not dependent on ε,

u ↦→ (e
ε

ε̂
u − 1) 1

2 e
− I′(x)

ε̂2 u/2 ≥ γ
(

ε

ε̂
u
)1/2

(2.6.4)

for a constant γ > 0 which can also be taken uniformly in small x, ε. Then
estimate

Eδ,κ[(e
ε

ε̂
Ûε

− 1) 1
2 e− I′(x)

2ε2 Ûε ]

≥ γε1/2−HE[|Û ε|1/21
Ûε∈[0,ε̂2η]1|εB|∞;[0,1]<κ] .

As a quick sanity check, pretend zero remainder so that Û ε = ε̂g1: dropping
further the (exponentially close to probability one) event {|εB|∞;[0,1] < κ}, a
Gaussian computation then shows that we are left with (γε1/2−H times ε̂1/2

times)
E[|g1|1/2; g1 ∈ [0, ε̂]] ∼ (const)ε̂3/2 .

In general, set V ε = Û ε/ε̂ = g1 + ε̂R2s
ε, so that5

Eκ

[
|Û ε|1/2; Û ε ∈ [0, ε̂2η]

]
= ε̂1/2 Eκ[|V ε|1/2 ; V ε ∈ [0, ε̂η]] .

At this stage, it is difficult to treat ε̂Rε as perturbation of g since, on the
given event {V ε ∈ [0, ε̂η]}, all terms are of order ε̂. We can solve this is-
sue by realizing that we can replace, throughout, x by xε = xε2β. Since

5Write Eκ for the expected value restricted to the event {|εB|∞;[0,1] < κ}
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2.6 Proof of the moderate deviation expansions

I ′(xε) ∼ (const)xε, with see from (2.6.4), that in the above estimate the
event Û ε ∈ [0, ε̂2η] = [0, ε4Hη] (resp. V ε ∈ [0, ε̂η] = [0, ε2Hη]) can be replaced
by Û ε ∈ [0, ε4H−2βη] (resp. V ε ∈ [0, ε2H−2βη]), possibly with an insignificantly
modified constant η. It is now straight-forward to show that the behaviour of
Eκ[|V ε|1/2 ; V ε ∈ [0, ε2H−2βη]] is of the same order as E[g1/2; g ∈ [0, ε2H−2βη]],
the correct behaviour (i.e. positive power of ε) is obtained by spelling out the
(Gaussian) integral.

Proposition 2.6.4 (Localized remainder tail estimate). For every κ > 0,
there exists c1, c2 > 0 such that, for all r and uniformly in small ε, x we have

P
[
|Rε

2| > r, |ε̂B̂|∞;[0,1] < κ
]

≤ c1 exp (−c2r)

Proof. We decompose ε̂2Rε
2 = M ε + N ε in terms of the (local) martingale

M ε := ε̂
∫

0

[
σ
(
ε̂B̂ + f̂

)
− σ

(
f̂
)]

d[ρW + ρB]

and the (bounded variation) process

N ε :=
∫

0

[
σ
(
ε̂B̂ + f̂

)
− σ

(
f̂
)

− σ′
(
f̂
)

ε̂B
]

d[ρh+ρf ]−1
2εε̂

∫
0

σ2
(
ε̂B̂ + f̂

)
dt .

Let τ ε,κ be the stopping time when ε̂B̂ first leaves the uniform ball of radius
κ. Then

Mκ,ε
t := M ε

t∧τε,κ

still yields a (local) martingale. The point is that
{
|ε̂B̂|∞;[0,1] < κ

}
= {τ ε,κ > 1}.

On this event, M ε|[0,1] = Mκ,ε|[0,1] and we can thus replace M ε, in the def-
inition of the remainder, by Mκ,ε. Let K = Kκ,x be the κ-fattening of
{f (t) : 0 ≤ t ≤ 1}, recall f = fx, then, for t ∈ [0, 1],

d [Mκ,ε]t /dt = ε̂2(σ(ε̂B̂t + f̂t) − σ(ft))2 ≤ ε̂4 ∥σ′∥2
∞;K |B̂t|2 .

Clearly, we can replace K by K̃κ which contains all Kκ,x for small x. To
summarize, we have, on the event

{
|ε̂B̂|∞;[0,1] < κ

}
,

Rε (·) = ε̂−2Mκ,ε + ε̂−2N ε
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2 Short-term near-the-money skew in rough fractional volatility models

with [ε̂−2Mκ,ε] = O
(
|B̂|2∞;[0,1]

)
and, as seen by a similar (but easier) reason-

ing, ε̂−2N ε = O
(
|B̂|2∞;[0,1]

)
, always for fixed κ > 0, but uniformly in small

ε (equivalently, ε̂) and small x > 0. This clearly shows that ε̂−2N ε has ex-
ponential tails. The same is true for the martingale part, whose bracket is
O(Gaussian2). This is exactly the situation for the “model” martingal in-
crement 2

∫ 1
0 BdB = B2

1 − 1 which clearly has exponential tails. To make
this rigorous, recall that Gaussian resp. exponential tails are characertized
by O(√p) resp. O(p)-growth of the Lp-norms. The statement is then an
easy consequence of the sharp (upper) BDG constant (Carlen & Kree, 1991),
known to be O(√p).

2.7 Proof of the implied volatility expansion

With Theorem 2.2.2 in place, we now turn to the proof of the implied volatility
expansion, formulated in Theorem 2.2.6.

Proof of Theorem 2.2.6. We will use an asymptotic formula for the dimen-
sionless implied variance

V 2
t = tσimpl(kt, t)2, t > 0,

obtained in (Gao & Lee, 2014). It follows from the first formula in Remark
7.3 in (Gao & Lee, 2014) that

V 2
t − k2

t

2Lt

= O
(

k2
t

L2
t

(kt + | log kt| + log Lt)
)

, t → 0, (2.7.1)

where Lt = − log c(kt, t), t > 0.

We will need the following formula that was established in the proof of
Theorem 2.2.4:

Lt = I(ktβ)
t2H

+ O(t−θ) (2.7.2)

as t → 0, for all x ≥ 0 and β ∈ [0, H) and any θ > 0. Let us first assume
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2.7 Proof of the implied volatility expansion

2H
n+1 ≤ β < 2H

n
. Using the energy expansion, we obtain from (2.7.2) that

Lt =
n∑

i=2

I(i)(0)
i! kitiβ−2H + O

(
t−θ
)

= I ′′(0)
2 k2t2β−2H

×
[
1 +

n∑
i=3

2I(i)(0)
i!I ′′(0) ki−2t(i−2)β + O

(
t2H−2β−θ

)]
(2.7.3)

as t → 0. The second term in the brackets on the right-hand side of (2.7.3)
disappears if n = 2.

Remark 2.7.1. Suppose n ≥ 2 and 2H
n+1 ≤ β < 2H

n
. Then formula (2.7.3) is

optimal. Next, suppose n ≥ 2 and 0 < β < 2H
n+1 . In this case, there exists

m ≥ n+1 such that 2H
m+1 ≤ β < 2H

m
, and hence (2.7.3) holds with m instead of

n. However, we can replace m by n, by making the error term worse. It is not
hard to see that the following formula holds for all n ≥ 2 and 0 < β < 2H

n+1 :

Lt =
n∑

i=2

I(i)(0)
i! kitiβ−2H + O

(
t(n+1)β−2H

)
= I ′′(0)

2 k2t2β−2H

×
[
1 +

n∑
i=3

2I(i)(0)
i!I ′′(0) ki−2t(i−2)β + O

(
t(n−1)β

)]
(2.7.4)

as t → 0 provided we choose θ small enough.

Let us continue the proof of Theorem 2.2.6. Since kt ≈ t
1
2 −H+β and Lt ≈

t2β−2H as t → 0, (2.7.1) implies that

V 2
t = k2t1−2H+2β

2Lt

+ O
(
t1+2H−2β−θ

)
, t → 0. (2.7.5)

Next, using the Taylor formula for the function u ↦→ 1
1+u

, and setting

u =
n∑

i=3

2I(i)(0)
i!I ′′(0) ki−2t(i−2)β + O(t2H−2β−θ),

we obtain from (2.7.3) that

(2Lt)−1 = t2H−2β

k2I ′′(0)

⎡⎣n−2∑
j=0

(−1)juj + O(un−1)
⎤⎦
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as t → 0. It follows from 2H
n+1 ≤ β < 2H

n
that (n − 1)β ≥ 2H − 2β, and hence

(2Lt)−1 = t2H−2β

k2I ′′(0)

⎡⎣n−2∑
j=0

(−1)juj

⎤⎦+ O(t4H−4β−θ)

= t2H−2β

k2I ′′(0)

⎡⎣n−2∑
j=0

(−1)j

(
n∑

i=3

2I(i)(0)
i!I ′′(0) ki−2t(i−2)β

)j
⎤⎦+ O(t4H−4β−θ)

as t → 0. Now, (2.7.5) gives

V 2
t = t

I ′′(0)

⎡⎣n−2∑
j=0

(−1)j

(
n∑

i=3

2I(i)(0)
i!I ′′(0) ki−2t(i−2)β

)j
⎤⎦

+ O
(
t1+2H−2β−θ

)
as t → 0. Finally, by cancelling a factor of t in the previous formula, we obtain
formula (2.2.6) for 2H

n+1 ≤ β < 2H
n

. The proof in the case where β ≤ 2H
n+1 is

similar. Here we take into account Remark 2.7.1. This completes the proof
of Theorem 2.2.6.

2.8 Auxiliary lemmas

In this section we provide and prove some auxiliary lemmas, which are used
in the preparations to the proof of Theorem 2.2.2. We start with a technical
Lemma, that justifies the derivation.

Lemma 2.8.1. Assume σ (.) > 0 and |ρ| < 1. Then Kx is a Hilbert manifold
near any h := (h, f) ∈ Kx ⊂ H := H1

0 × H1
0 .

Proof. Similar to Bismut (1984, p. 25), we need to show that Dφ1 (h) is
surjective where φ1 (h) : H → R with

φ1 (h) = φ1 (h, f) =
∫ 1

0
σ(f̂)d (ρh + ρf) .
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2.8 Auxiliary lemmas

From

φ1 (h + δh′) =
∫ 1

0
σ(f̂ + δf̂ ′)d (ρh + ρf + δ(ρh′ + ρf ′))

= φ1 (h) + δ
∫ 1

0
σ(f̂)d(ρh′ + ρf ′)

+δ
∫ 1

0
σ′(f̂)f̂ ′d (ρh + ρf) + o (δ) .

the functional derivative Dφ1 (h) can be computed explicitly. In fact, even
the computation

(Dφ1 (h) , (h′, 0)) = ρ
∫ 1

0
σ(f̂)dh′

is sufficient to guarantee surjectivity of Dφ1 (h).

We now give the proof of Lemma 2.5.3, which determines the form of the
Girsanov measure change (2.5.1) for the minimizing configuration.

Lemma 2.8.2. (i) Any optimal control h0 = (hx, fx) ∈ Kx is a critical point
of

h = (h, f) ↦→ −I
(
φh

1

)
+ 1

2 ∥h∥2
H ;

(ii) it holds that ∫ 1

0
ḣxdW +

∫ 1

0
ḟxdB = I ′ (x) g1.

Proof. (Step 1) Write h = (h, f) and

φ1 (h) = φ1 (h, f) =
∫ 1

0
σ(f̂)d (ρh + ρf) .

Let h0 = (hx, fx) ∈ Kx an optimal control. Then

KerDφ1
(
h0
)

= Th0Kx =
{
h ∈ H1 : Dφ1 (h) = 0

}
.

(This requires Kx to be a Hilbert manifold near h0, as was seen in the last
lemma.)
(Step 2) For fixed h ∈ H, define

u (t) := −I
(
φh0+th

1

)
+ 1

2
h0 + th

2

H
≥ 0

with equality at t = 0 (since x = φh0

1 and I (x) = 1
2 ∥h0∥2

H) and non-negativity
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2 Short-term near-the-money skew in rough fractional volatility models

for all t because h0 + th is an admissible control for reaching x̃ = φh0+th
1 (so

that I (x̃) = inf {...} ≤ 1
2 ∥h0 + th∥2

H.)
(Step 3) We note that u̇ (0) = 0 is a consequence of u ∈ C1 near 0, u (0) = 0
and u ≥ 0. In other words, h0 is a critical point for

H1 ∋ h ↦→ −I
(
φh

1

)
+ 1

2 ∥h∥2
H .

(Step 4) The functional derivative of this map at h0 must hence be zero. In
particular, for all h ∈ H,

0 ≡ −I ′
(
φh0

1

) ⟨
Dφ1

(
h0
)

, h
⟩

+
⟨
h0, h

⟩
= −I ′ (x)

⟨
Dφ1

(
h0
)

, h
⟩

+
⟨
h0, h

⟩
.

(Step 5) With h0 = (hx, fx) and h = (h, f)

⟨
Dφ1

(
h0
)

, h
⟩

= d

dε

⏐⏐⏐⏐⏐
ε=0

∫ 1

0
σ(f̂x + εf̂)d (ρhx + ρfx + ε (ρh + ρf))

=
∫ 1

0
σ(f̂x)d (ρh + ρf) +

∫ 1

0
σ′(f̂x)f̂d (ρhx + ρfx)

By continuous extension, replace h = (h, f) by (W, B) above and note that

⟨
Dφ1

(
h0
)

, (W, B)
⟩

= g1

since indeed g1 =
∫ 1

0 σ(f̂t)d (ρWt + ρBt) + σ′(f̂t)B̂td (ρht + ρft). Hence
∫ 1

0
ḣxdW +

∫ 1

0
ḟxdB = I ′ (x) g1.
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3 Monte Carlo pricing under rough stochastic
volatility

This chapter is organized as follows. In Section 3.1, we set the scene, intro-
duce notation and state assumptions. In Section 3.2, we present the novel
Monte Carlo pricing scheme. In Section 3.3, we collect the results of our nu-
merical experiments in which we look at numerical strong and weak rates of
convergence of different objects of interest.

3.1 Exposition and assumptions

Throughout this chapter, we shall be working on a filtered probability space
(Ω, F , {Ft}t≥0,P) satisfying the usual conditions and supporting two inde-
pendent Brownian motions under the pricing measure P. We consider a finite
time horizon T < ∞ and assume that the asset price process S = (St)t∈[0,T ]

has been normalized without loss of generality such that spot S0 = 1 and the
risk-free rate r = 0.

We are interested in stochastic volatility models of the form

dSt

St

= f(Ŵt, t)dBt, t ∈ [0, T ] (3.1.1)

where B is a Brownian motion. Following Bayer et al. (2016), for fixed Hurst
index H ∈ (0, 1

2) and another Brownian motion W , the process Ŵ = (Ŵt)t∈[0,T ]

is a Volterra or Riemann-Liouville (RL) fractional Brownian motion (fBM)
with integral representation

Ŵt :=
∫ t

0
K (s, t) dWs =

∫ t

0

√
2H |t − s|H− 1

2 dWs, s ∈ [0, t].

Here, we work with a RL fBM but other choices such as the classical fBM by
Mandelbrot and Van Ness (1968) for suitably modified kernel K are also pos-
sible. The leverage effect d ⟨B, W ⟩t = ρdt between stock and volatility drivers
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3 Monte Carlo pricing under rough stochastic volatility

is incorporated by working with a 2D standard Brownian motion
(
W, W

)
and

setting
B := ρW + ρW ≡ ρW +

√
1 − ρ2W.

Note that, in contrast even to many classical stochastic volatility models such
as Heston (1993), the stochastic volatility is explicitly given and no rough /
stochastic differential equation needs to be solved. In the terminology of Bayer
et al. (2017), this class of rough stochastic volatility models is called simple.
Throughout this chapter, we further assume that f : R2 → R+ is smooth
in its first argument and such that the asset price is a (local) martingale, as
required by modern financial theory. We remark that the function f admits
in particular an explicit time dependence such that for example the rough
Bergomi model (Bayer et al., 2016) with non-constant forward variance curve
is also covered by our framework.

We are interested in pricing a European Call with spot S0 > 0, strike K > 0
and time to maturity T > 0 in the context of a simple stochastic volatility
model. Let the Black-Scholes pricing function for said option be given by

CBS
(
S0, K, σ2T

)
:= E

[
S0 exp

(
σ

√
TZ − σ2

2 T

)
− K

]+

where Z denotes a standard normal random variable. By an elementary
conditioning argument, introduced in a Markovian context by Romano and
Touzi (1997); Willard (1997), on the sample path W[0,T ], the fair price of a
European Call in the context of a simple rough volatility model can be reduced
to the expectation of a Black-Scholes (Black & Scholes, 1973) formula with
random inputs. More precisely, one can show that

CRV(K, T ) := E
[
CBS

(
exp

(
ρI − ρ2

2 V

)
, K, ρ2V

)]
(3.1.2)

with the bivariate object (I , V ) defined as follows

(I , V ) := (I (T ), V (T )) =
(∫ T

0
f(Ŵr, r)dWr,

∫ T

0
f 2(Ŵr, r)dr

)
. (3.1.3)

From a numerical perspective, this is a step forward as it avoids any simu-
lation of the second Brownian motion W . In order to sample from (3.1.3),
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3.2 Monte Carlo pricing

an immediate idea would be to sample the two-dimensional Gaussian process
(W, Ŵ )t∈[0,T ] on some fine (equidistant) discretization grid and then approx-
imate (I , V ) by an Euler discretization of the respective integrals (3.1.3).
Recall from the introduction that for the joint simulation of (W, Ŵ )t∈[0,T ], ex-
act and approximate numerical schemes have been proposed in the literature
(Bayer et al., 2016; Bennedsen et al., 2017; McCrickerd & Pakkanen, 2018;
Horvath et al., 2017). A remaining problem however with that approach is
that the convergence of an Euler approximation of I is very slow since Ŵ

has little regularity when H is small (recall that Gatheral et al. (2018) re-
port H as low as 0.05). In fact, Neuenkirch and Shalaiko (2016) show (in a
slightly different setting) that the strong rate for the standard Euler scheme
(or, more precisely, left-point rule) is no better than H in general even when
the fractional process is exactly simulated.

3.2 Monte Carlo pricing

The aim of this section is to propose a novel approximation scheme for the
bivariate object (I , V ) as defined in (3.1.3). For fixed N ∈ N, let us first
define a level N Haar grid to be one with step size given by ε = 2−N . With
ϕ := 1[0,1) the so-called father wavelet, the Haar system given by the set of
functions

{
ϕl,N = 2N/2 ϕ(· 2N − l) = 2N/21[l2−N ,(l+1)2−N ) | l ∈ Z

}
then forms an orthonormal basis of L2(R). While the Paley-Wiener-Zygmund
theorem states that Brownian motion is almost surely nowhere differentiable
(in a classical sense), it does have a derivative in a distributional or generalized
sense. This derivative is given by White Noise which we shall denote Ẇ .

The basis of our approach is a Karhunen-Loève-style approximation of
White Noise. Mathematically, for N fixed and with {Zl}l∈Z some standard iid
normal random variables, let Ẇ ε be an approximation of White noise given
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3 Monte Carlo pricing under rough stochastic volatility

by

Ẇ ε(t) =
∞∑

l=−∞
Zlϕl,N(t) =

⌈t2N⌉−1∑
l=0

Zl2N/21[l2−N ,(l+1)2−N )(t), t ∈ [0, T ].

(3.2.1)

By integration against against the Kernel K(s, t), this then induces an ap-
proximation of the Riemann-Liouville fBm Ŵ given by

Ŵ ε(t) =
∫ t

0
K (s, t) Ẇ ε(s)ds =

⌈t2N⌉−1∑
l=0

Zl êε
l (t), t ∈ [0, T ] (3.2.2)

where for all l ∈
[
0,
⌈
t2N

⌉
− 1

]
, the functions êε

l are given by

êε
l (t) =

√
2H2N/2

H + 1/2

(
|t − l2−N |H+1/2 − |t − min((l + 1)2−N , t)|H+1/2

)
. (3.2.3)

Recall that it is our fundamental interest to devise an approximation scheme
for the bivariate object (I , V ) defined in (3.1.3). Having constructed a joint
approximation

(
Ẇ ε, Ŵ ε

)
of
(
Ẇ , Ŵ

)
, a mathematical analysis by Bayer et

al. (2017) however reveals that

I ε =
∫ T

0
f(Ŵ ε(t), t)Ẇ ε(t)dt ↛ I =

∫ T

0
f(Ŵr, r)dWr, ε → 0. (3.2.4)

This does not come as a surprise as even when considering a standard Brown-
ian motion (H = 1/2), a well-known result by Wong and Zakai (1965) states
that I ε converges to the Stratonovich version of I which is given by I plus
an Itô-Stratonovich correction term. The latter is given by the quadratic
covariation, defined (whenever possible) as the limit, in probability, of

∑
[u,v]∈π

(f(Ŵv) − f(Ŵu))(Wv − Wu), (3.2.5)

along any sequence (π) of partitions with mesh-size tending to zero. But,
disregarding trivial situations, this limit does not exist for H < 1/2. For
instance, when f(x) = x fractional scaling immediately gives divergence (at
rate H − 1/2) of the above bracket approximation.
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3.2 Monte Carlo pricing

Bayer et al. (2017) argue that the theory of regularity structures (Hairer,
2014) provides a convenient, yet technically advanced framework to address
this issue and to renormalize the approximative integral I ε such that it
converges to the desired Itô integral I in the limit.

Definition 3.2.1 (Bayer et al. (2017)). For the specific case of the Haar
basis, let us first define a renormalization object C ε(t) which can be one of

C ε(t) =

⎧⎪⎨⎪⎩
2N

√
2H

H+1/2 |t −
⌊
t2N

⌋
2−N |H+1/2, H ∈

(
0, 1

2

]
√

2H
(H+1/2)(H+3/2)2

N(1/2−H), H > 1
4 .

(3.2.6)

where the second expression only valid for H > 1/4 is the time average of the
first equation. One approach towards renormalization of I ε is then given by

Ĩ ε(t) :=
∫ t

0
f(Ŵ ε(r), r) dW ε(r) −

∫ t

0
C ε(r)∂1f(Ŵ ε(r), r) dr (3.2.7)

for t ∈ [0, T ].

The next theorem then provides quantitative estimates for the convergence
of Ĩ ε towards the desired Itô integral I . More precisely, a strong rate for
the integral approximation is given below.

Theorem 3.2.2 (Bayer et al. (2017)). Let f be a smooth and bounded func-
tion with bounded derivatives. Alternatively, let f and its derivatives be of
exponential growth. With Ĩ ε as defined in Definition 3.2.1, for any δ ∈ (0, 1)
and any p < ∞, there exists C such that sup

t∈[0,T ]

⏐⏐⏐⏐Ĩ ε(t) −
∫ t

0
f(Ŵ (r), r)dW (r)

⏐⏐⏐⏐


Lp

≤ CεδH , (3.2.8)

Remark 3.2.3. With regards to the mentioned results of Neuenkirch and Sha-
laiko (2016), this shows that the scheme described in Definition 3.2.1 is almost
optimal with a strong rate of almost H.

Remark 3.2.4. Readers interested in the derivation of the correction terms
are advised to study the original paper. In this work, we exclusively provide
the numerical counterpart to the theoretical results obtained in (Bayer et al.,
2017).
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3 Monte Carlo pricing under rough stochastic volatility

Substituting the terms of the renormalized integral approximation defined
in (3.2.7) by the respective expressions (3.2.1) and (3.2.6) for the approxi-
mation of the White Noise and the non-constant renormalization object, we
arrive at the following expression which has been transformed into a form
more convenient for simulation:

Ĩ ε =
⌈T 2N⌉−1∑

l=0

∫ (l+1)2−N

l2−N

[
Zl2N/2f(Ŵ ε(t), t)

−
√

2H2N

H + 1/2 |t − l2−N |H+1/2∂1f(Ŵ ε(t), t)
]
dt (3.2.9)

and similarly for the other integral (which does not exhibit convergence issues)

V ε =
⌈T 2N⌉−1∑

l=0

∫ (l+1)2−N

l2−N
f 2(Ŵ ε(t), t)dt. (3.2.10)

A vectorized numerical procedure for computing Monte Carlo samples of(
Ĩ ε, V ε

)
based on (3.2.9), (3.2.10) is then collected in Algorithm 1.

3.3 Numerical results

In this subsection, we will discuss strong convergence of the approximative
object Ĩ ε to the actual object of interest I as well as weak convergence
of the option price as the Haar grid interval size ε → 0. Specifically, we
will be looking at Monte Carlo estimates of our errors, that is, in order to
approximate some quantity E[X] for some random variable X, we will instead
be looking at 1

M

∑M
i=1 Xi where the Xi are M iid samples drawn from the

same distribution as X. In other words, we need to generate M realisations
of the bivariate stochastic object

(
Ĩ ε, V ε

)
, a task that can be vectorized

as described below, thus avoiding expensive looping through realizations.1

Without loss of generality, we set time to maturity T = 1.
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3.3 Numerical results

Algorithm 1: Simulation of M samples of (Ĩ ε, V ε)
Parameters: # Monte Carlo simulations M , Haar grid level N ,

# discretisation points of trapezoidal rule in each Haar
subinterval d

Output: M samples of bivariate object (Ĩ ε, V ε)
1 initialize Ĩ ε = V ε = 0 ∈ RM ;
2 simulate array Z ∈ RM×⌈T 2N ⌉ of iid standard normals;
3 for each Haar subinterval [l2−N , (l + 1)2−N) where

l ∈ {0, . . . , ⌈T2N⌉ − 1} do
4 choose discretization grid Dl with d points on the Haar subinterval;
5 evaluate functions êε

k defined in (3.2.3) for k = 0, . . . , l on Dl to
obtain êε ∈ R(l+1)×d;

6 compute Ŵε = Z∗ × êε ∈ RM×d where Z∗ ∈ RM×(l+1) is the
truncation of Z to its first l + 1 columns such that Ŵε is an
approximation of the fBM on Dl;

7 evaluate integrands from equations (3.2.9, 3.2.10) on Dl using Ŵε

and the last column of Z∗;
8 approx. respective integrals on subinterval by trapezoidal rule ;
9 add obtained estimates to running sums Ĩ ε and V ε;

10 end
11 return Ĩ ε, V ε
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3.3 Numerical results

3.3.1 Strong convergence of the renormalized integral

With the help of several Monte Carlo experiments we can verify part (i) of
Theorem 3.2.2 numerically as follows. We fix p = 2, i.e. look at convergence
in L2(Ω), and choose f (x, t) = exp(x) because this closely resembles models
such as the rough Bergomi model by Bayer et al. (2016). Note that for
simplicity we have excluded an explicit time dependence. We are concerned
with Monte Carlo approximations of

∥Ĩ ε −
∫ 1

0
exp(Ŵt)dWt∥L2(Ω)

and in line with Theorem 3.2.2, we expect an error almost of order εH .

Remark 3.3.1. We also checked the simplest non-trivial choice, f (x, t) = x

but here the discretization error is overshadowed by the Monte Carlo error,
even for very coarse grids.

As has been mentioned before,
(
W, Ŵ

)
is a two-dimensional Gaussian

process with known covariance structure, it is therefore possible to use the
Cholesky algorithm (Bayer et al., 2016) to simulate the joint paths exactly
on some grid and then use standard Riemann sums to approximate the inte-
gral. The value obtained in this way could serve as a reference value for our
scheme. However for strong convergence we need both objects to be based on
the same stochastic sample. For this reason, we find it easier to construct a
reference value by the wavelet-based scheme itself, i.e. we simply pick some
ε′ ≪ ε and consider

∥Ĩ ε − Ĩ ε′∥L2(Ω) (3.3.1)

as ε → ε′. As can be seen in Figures 3.1a and 3.1b, both renormalization
approaches stated in (3.2.6) are consistent with a theoretical strong rate of
almost H across the full range of 0 < H < 1

2 .

1Documented Python 3 code has been made available at the URL
https://www.github.com/RoughStochVol.
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3 Monte Carlo pricing under rough stochastic volatility

3.3.2 Weak convergence

An analysis that – for suitable test functions φ : R → R – yields a weak rate
of convergence for

⏐⏐⏐⏐E [φ (Ĩ ε
)]

− E
[
φ
(∫ 1

0
exp(Ŵt)dWt

)]⏐⏐⏐⏐ , ε → 0

remains an open problem.2 Hence, we shall perform two numerical experi-
ments in this section. First, picking φ(x) = x2, Ito’s isometry conveniently
yields

E
[(∫ 1

0
exp(Ŵt)dWt

)2]
=
∫ 1

0
E
[
exp

(
2Ŵt

)]
dt =

∫ 1

0
exp

(
2t2H

)
dt (3.3.2)

which can be approximated numerically. So we can consider
⏐⏐⏐⏐E [(Ĩ ε

)2
]

−
∫ 1

0
exp

(
2t2H

)
dt
⏐⏐⏐⏐ , ε → 0. (3.3.3)

Our preliminary results indicate that for both renormalization approaches the
weak rate seems to be around the strong rate H.

In another experiment, we pick a simplified version of the rough Bergomi
model (Bayer et al., 2016) where the instantaneous variance is given by

f 2 (x) = σ2
0 exp (ηx)

with σ0 and η denoting spot volatility and volatility of volatility respectively.
Let Cε

RV(K, T ) denote the approximation of the call price (3.1.2) based on(
Ĩ ε, V ε

)
, fix some ε′ ≪ ε and consider

⏐⏐⏐Cε
RV (K, 1) − Cε′

RV (K, 1)
⏐⏐⏐ , ε → ε′. (3.3.4)

The empirical results displayed in Figure 3.2 indicate a weak rate of 2H across
the full range of 0 < H < 1

2 .

2Of course, for φ Lipschitz, strong convergence implies weak convergence with the same
rate or better.
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4 Deep calibration of rough volatility models

This chapter is organized as follows. In Section 4.1, we set the scene, intro-
duce notation and revisit some important machinery that lies at the core of
our proposed calibration scheme. In Section 4.2, we state the model calibra-
tion objective and introduce deep calibration, our approach of combining the
established Levenberg-Marquardt calibration algorithm with neural network
regression to enable the efficient calibration of (rough) stochastic volatility
models. In Section 4.3, we outline practical intricacies of our approach, rang-
ing from considerations related to generating synthetic, tailored labeled data
for training, validation and testing to tricks of the trade when training neural
networks and performing hyperparameter optimization. Finally, in Section
4.4, we collect the results of our numerical experiments.

4.1 Background

We now set the scene and introduce notation. Throughout the chapter, we
shall be working on a filtered probability space (Ω, F , {Ft}t≥0,P) satisfying
the usual conditions and supporting two (or more) independent Brownian
motions under the pricing measure P. We consider a finite time horizon
T < ∞ and assume the asset price process S = (St)t∈[0,T ] has been without
loss of generality normalized such that spot S0 = 1 and risk-free rate r = 0.
We define moneyness M := K/S0 and log moneyness m := log(M) = log(K).

4.1.1 Construction of a model IV surface

The concept of an implied volatility surface is an important idea and tool
central to the theory of modern option pricing. In the introduction, we saw
how such a surface arises from market prices of liquid European Call options
on the S&P 500 Index SPX (cf. Figure 1.1). We now formalize the construc-
tion of such a surface from model prices. In a first step, we define the pricing
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4 Deep calibration of rough volatility models

function that maps model & option parameters (and possibly external market
information) to the fair price of a European option at time t = 0.

Definition 4.1.1 (Pricing map). Consider a (rough) stochastic volatility
(market) model for an asset S with model parameters µ ∈ M ⊆ Rm and
possibly incorporated market information ξ ∈ E ⊆ Rk. The fair price of a
European Call option at time t = 0 is then given by

E [ST (µ, ξ) − M ]+

where (M, T ) ∈ Θ ⊆ R2 denote moneyness and time to maturity respectively.
Letting

I := {(µ, ξ) × (M, T ) | µ ∈ M, ξ ∈ E , (M, T )T ∈ Θ} ⊆ Rm+k+2 (4.1.1)

be the pricing input space, we then define the pricing map P0 : I → R+ by

(µ, ξ) × (M, T ) ↦→ E [ST (µ, ξ) − M ]+ . (4.1.2)

Example 4.1.2. In the rough Bergomi model by Bayer et al. (2016), the
dynamics for the asset price process S and the instantaneous variance process
v = (vt)t∈[0,T ] are given by

dSt

St

= √
vtd

(
ρWt +

√
1 − ρ2W ⊥

t

)
vt = ξ0(t) exp

(
ηW H

t − 1
2η2t2H

)
, t ∈ [0, T ].
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4.1 Background

Here,
(
W, W ⊥

)
=
(
Wt, W ⊥

t

)
t∈[0,T ]

are two independent Brownian motions
and ρ ∈ (−1, 1) is a constant correlation parameter introducing the leverage
effect – the empirically observed anti correlation between stock and volatility
movements – at the driving noise level. The parameter η > 0 denotes volatil-
ity of variance and ξ0(t) : R+ → R+ given by ξ0(t) = E(vt), t ∈ [0, T ] is a
so-called forward variance curve which may be recovered from market infor-
mation (Bayer et al., 2016). Moreover, W H is a Riemann-Liouville fractional
Brownian motion given by

W H
t =

√
2H

∫ t

0
(t − s)H− 1

2 dWs, t ∈ [0, T ]

with Hurst parameter H ∈ (0, 1). By Kolmogorov, sample paths of W H are
locally almost surely H-ε Hölder for ε > 0. With respect to Definition 4.1.1,
hence µ = (H, η, ρ) and ξ = ξ0.

Example 4.1.3. In the Heston model (Heston, 1993), with independent
Brownian motions W and W ⊥ and model parameters ρ, η defined as in Ex-
ample 4.1.2, the dynamics of the asset price S and the instantaneous variance
process v = (vt)t∈[0,T ] starting from spot variance v0 > 0 follow

dSt

St

= √
vtd

(
ρWt +

√
1 − ρ2W ⊥

t

)
dvt = λ(v − vt)dt + η

√
vtdWt, t ∈ [0, T ].

Here, v > 0 is the long-run average variance and λ > 0 is the speed of mean
reversion. Feller’s condition 2λv > η2 ensures that vt > 0 for t ≥ 0. In
this model, we thus have µ = (λ, v, v0, ρ, η) and no market information is
incorporated into the model.

Let BS(M, T, σ) denote the Black-Scholes price of a European Call with
moneyness M , time to maturity T and assumed constant volatility σ of the
underlying and let Q(M, T ) be the corresponding market price. The BS
implied volatility σiv(M, T ) corresponding to Q(M, T ) satisfies

Q(M, T ) − BS(M, T, σiv(M, T )) != 0.

and the map (M, T ) ↦→ σiv(M, T ) is called a volatility surface.
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Input Hidden layer Output 

Figure 4.1: Schematic of a fully-connected neural network (FCNN).
Depicted FCNN has a single hidden layer consisting of three neurons and may
learn to represent a subset of general functions f : R2 → R3. In the directed
acyclic graph above, vertices denote nodes and directed edges describe the
flow of information from one node to the next. If number of hidden layers
higher than one (typically dozens or hundreds of layers), a neural network is
considered deep.

Definition 4.1.4 (IV map). Let µ, ξ, M, T be defined as in Definition 4.1.1.
The Black-Scholes IV σiv(µ, ξ, M, T ) corresponding to the theoretical model
price P0 (µ, ξ, M, T ) satisfies

P0 (µ, ξ, M, T ) − BS(M, T, σiv(µ, ξ, M, T )) != 0. (4.1.3)

The function φ : I → R+ given by

(µ, ξ, M, T ) ↦→ σiv(µ, ξ, M, T ) (4.1.4)

is what we call the implied volatility map.

4.1.2 Regression with neural networks

Given a data set D =
{
(xi, yi) : xi ∈ Rd, yi ∈ R

}n

i=1
of variables xi and cor-

responding scalar, continuous response variables yi, the statistical procedure
of estimating the relationship between these variables is commonly called re-
gression analysis. Here, we will introduce neural networks and outline their
prowess as a regression tool.

The atomic building block of every neural network is a node, a functional
that performs a weighted sum of its (multi-dimensional) inputs, adds a bias
term and then composes the linearity with a scalar non-linear function α :
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4.1 Background

R → R that is identical across the network. Formally, for some input x ∈
Rd, d ∈ N, the output of an individual node is given by

y = α
(
wT x + b

)
∈ R

where w ∈ Rd and b ∈ R are individual weight and bias terms. An artificial
neural network is then a collection of many such nodes, grouped into non-
overlapping sets called layers together with a rule of how the information
flows between the layers.

Over the years different architectural styles have been developed to suit the
specific needs of different domains such as speech, text or vision. Arguably
the simplest neural network topology not adapted to any particular domain
is that of a fully-connected neural network (FCNN). An FCNN consists of
sequentially ordered so-called dense layers followed by a linear output layer.
Any two nodes of a dense layer act independently of each other and do not
share weights and biases. Their input is given by the output of all nodes in
the previous layer – or all input features if it is the first layer – and their
output serves as an input to all nodes in the following layer, see Figure 4.1
for a depiction of a small example.

FCNNs serve as powerful regression tools because they are able to repre-
sent large families of functions. In his Universal Approximation Theorem,
Hornik (1991) proves that FCNNs can approximate continuous functions on
R arbitrarily well.

Theorem 4.1.5 (Universal Approximation Theorem). Let N(α) denote the
space of functions that a fully connected neural network with activation func-
tion α : R → R, a single hidden layer with a finite number of neurons l ∈ N
and a linear output layer can represent, i.e.

N(α) =

⎧⎨⎩f : Rd → R | f(x) =
l∑

i=1
wiα

⎛⎝ d∑
j=1

w
(i)
j xj + b(i)

⎞⎠+ bi

for some w, b ∈ Rl and w(i), b
(i) ∈ Rd, 1 ≤ i ≤ l

}

where w, b ∈ Rl are weights and biases of the output layer and w(i), b
(i) ∈

Rd, 1 ≤ i ≤ l are the weights and biases of the l individual neurons in the
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4 Deep calibration of rough volatility models

hidden layer. Assuming the activation function α : R → R is non-constant,
unbounded and continuous, N(α) is dense in C(X) for compact X ⊆ R in
the uniform topology, i.e. for any f ∈ C(X) and arbitrary ε > 0, there is
g ∈ N(α) such that

sup
x∈X

|f(x) − g(x)| < ε.

The Rectified Linear Unit (ReLU) nonlinearity α : R → R+ given by
α(x) := max(0, x) fulfills the conditions of being non-constant, unbounded
and continuous and so in theory ReLU FCNNs allow for approximation of con-
tinuous functions to arbitrary accuracy. However, the reason the ReLU has
become a de facto standard in recent years (LeCun, Bengio, & Hinton, 2015)
is that in comparison to first generation nonlinearities such as the sigmoid or
tanh, ReLU networks are superior in terms of their algorithmic learnability,
see more in Section 4.3.

Remark 4.1.6. Over the years, various alternative activation functions have
been proposed such as Leaky ReLU (He, Zhang, Ren, & Sun, 2015), ELU
(Clevert, Unterthiner, & Hochreiter, 2015) or lately the SiLU (Elfwing, Uchibe,
& Doya, 2018; Ramachandran, Zoph, & Le, 2017). To date, none of these acti-
vation functions have been shown to consistently outperform ReLUs (Ramachandran
et al., 2017), so a systematic comparison of the effect of different activation
functions on training results has been left for future research.

4.2 Calibration of option pricing models

The implied volatility map φ : I → R+ defined in (4.1.4) formalizes the
influence of model parameters on an option pricing model’s implied volatility
surface. Calibration describes the procedure of tweaking model parameters
to fit a model surface to an empirical IV surface obtained by transforming
liquid European option market prices to Black-Scholes IVs (cf. Figure 1.1).
A mathematically convenient approach consists of minimizing the weighted
squared differences between market and model IVs of N ∈ N plain vanilla
European options.

Proposition 4.2.1 (Calibration objective). Consider a (rough) stochastic
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4.2 Calibration of option pricing models

volatility model with model parameters µ ∈ M ⊆ Rm and embedded market
information ξ ∈ E ⊆ Rk (recall Def. 4.1.1). Suppose the market IV quotes of
N European options with moneyness M (i) and time to maturity T (i) are given
by

Q :=
(
Q
(
M (1), T (1)

)
, . . . , Q

(
M (N), T (N)

))T
∈ RN

and analogously the model IV quotes of the same options under said pricing
model are given by

φ (µ, ξ) :=
(
φ
(
µ, ξ, M (1), T (1)

)
, . . . , φ

(
µ, ξ, M (N), T (N)

))T
∈ RN .

Given market quotes Q and market information ξ, we define the residual
R(µ) : M → RN between market and model IVs by

R(µ) := φ(µ, ξ) − Q

so that the calibration objective becomes

µ⋆ = arg min
µ∈M

∥W
1
2R(µ)∥2

2 = arg min
µ∈M

∥W
1
2 [φ(µ, ξ) − Q]∥2

2 := Ψ (W, ξ,Q)

(4.2.1)

where W = diag [w1, . . . , wN ] ∈ RN×N is a diagonal matrix of weights and
∥·∥2 denotes the standard Euclidean norm.

Since R(µ) : M → RN is non-linear in the parameters µ ∈ M ⊆ Rm and
N > m, the optimization objective (4.2.1) is an example of an overdetermined
non-linear least squares problem, usually solved numerically using iterative
solvers such as the de-facto standard Levenberg-Marquardt (LM) algorithm
(Levenberg, 1944; Marquardt, 1963).

Proposition 4.2.2 (LM calibration). Suppose R : O → RN is twice continu-
ously differentiable on an open set O ⊆ Rm and N > m. Let J : O → RN×m

denote the Jacobian of R with respect to the model parameters µ ∈ Rm, i.e.
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4 Deep calibration of rough volatility models

its components are given by

[Jij]1≤i≤N,

1≤j≤m

=
[

∂Ri(µ)
∂µj

]
1≤i≤N,

1≤j≤m

=
[

∂φi (µ, ξ)
∂µj

]
1≤i≤N,

1≤j≤m

.

With regards to the objective in (4.2.1), the algorithm starts with an initial pa-
rameter guess µ0 ∈ Rm and then at each iteration step with current parameter
estimate µk ∈ Rm, k ∈ N, the parameter update ∆µ ∈ Rm solves

[
J(µk)TWJ(µk) + λIm

]
∆µ = J(µk)TWR(µk) (4.2.2)

where Im ∈ Rm×m denotes the identity and λ ∈ R.

It is hence necessary that the normal equations (4.2.2) be quickly and accu-
rately solved for the iterative step ∆µ. In a general (rough) stochastic volatil-
ity setting this is problematic: The true implied volatility map φ : I → R+

as well as its Jacobian J : O → RN×m are unknown in analytical form. In
the absence of an analytical expression for ∆µ, an immediate remedy is:

(I) Replace the (theoretical) true pricing map P0 : I → R+ defined in
(4.1.2) by an efficient numerical approximation P̃0 : I → R+ such as
Monte Carlo, Fourier Pricing or similar means. This gives rise to an
approximate implied volatility map φ̃ : I → R+.

(II) Apply finite-difference methods to φ̃ : I → R+ to compute an approxi-
mate Jacobian J̃ : O → RN×m.

In many (rough) stochastic volatility models such as rough Bergomi, expensive
Monte Carlo simulations have to be used to approximate the pricing map. In
a common calibration scenario where the normal equations (4.2.2) have to
be solved frequently, the approach outlined above thus renders calibration
prohibitively expensive.

4.2.1 Deep calibration

In a first step, we use the approximate implied volatility map φ̃ : I → R+ to
synthetically generate a large and as accurate as computationally feasible set
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4.2 Calibration of option pricing models

Algorithm 2: Deep calibration (LM combined with NN regression)
Input: Implied vol map φNN and its Jacobian JNN, market quotes Q,

market info ξ
Parameters: Lagrange multiplier λ0 > 0, maximum number of

iterations nmax, minimum tolerance of step norm εmin,
bounds 0 < β0 < β1 < 1

Result: Calibrated model parameters µ⋆

1 initialize model parameters µ = µ0 and step counter n = 0;
2 compute R(µ) = φNN(µ, ξ) − Q and JNN(µ) and solve normal

equations (4.2.2) for ∆µ;
3 while n < nmax and ∥∆µ∥2 > ε do
4 compute relative improvement cµ = ∥R(µ)∥2−∥R(µ+∆µ)∥2

∥R(µ)∥2−∥R(µ)+JNN(µ)∆µ∥2
with

respect to predicted improvement under linear model;
5 if cµ ≤ β0 then reject ∆µ, set λ = 2λ;
6 if cµ ≥ β1 then accept ∆µ, set µ = µ + ∆µ and λ = 1

2λ;
7 compute R(µ) and JNN(µ) and solve normal equations (4.2.2) for

∆µ;
8 set n = n + 1;
9 end

of labeled data

D :=
{(

x(i), φ̃
(
x(i)

))
| x ∈ I

}n

i=1
∈ (I × R+)n, n ∈ N.

Here, it is sensible to trade computational savings for an increased numer-
ical accuracy since the expensive data generation only has to be performed
once. Using the sample input-output pairs D, a ReLU FCNN is trained to
approximate φ̃ : I → R+, in other words, we use a ReLU FCNN to regress
response variables φ̃

(
x(i)

)
= φ̃

(
µ(i), ξ(i), M (i), T (i)

)
on explanatory variables(

µ(i), ξ(i), M (i), T (i)
)
. We denote this function that the network is now able

to represent by φNN : I → R+. With respect to the repeated solving of the
normal equations (4.2.2), the benefit of this new approach is twofold:

(I) Evaluations of φNN : I → R+ amount to forward runs of a trained
ReLU FCNN. Computationally, forwards runs come down to highly
optimized and parallelizable matrix-matrix multiplications combined
with element-wise comparison operations – recall the ReLU activation
is given by α(·) = max(0, ·) – both of which are fast.
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4 Deep calibration of rough volatility models

(II) In order to perform backpropagation, the standard training algorithm
for neural networks, industrial grade machine learning software libraries
such as Google Inc.’s Tensorflow (Abadi et al., 2016) ship with built-
in implementations of automatic differentiation (Baydin, Pearlmutter,
Radul, & Siskind, 2015). This may easily be exploited to quickly com-
pute approximative Jacobians JNN : O → RN×m accurate to machine
precision.

It is also important to stress that trained networks can be efficiently stored,
moved and loaded, so training results can be shared and deployed quickly.

Remark 4.2.3. Hernandez (2017) calibrates the Hull and White (1990) short-
rate model by directly learning calibrated model parameters from market
data, i.e. the total calibration routine Ψ in (4.2.1). Extending his approach
to equity models necessitates a network topology that allows to learn from
empirical IV point clouds. Here, adaptations of Convolutional Neural Net-
works (CNNs) invented for computer vision problems might be worthwhile to
explore.

4.3 Neural network training

While theoretically easy to understand, the training of neural networks in
practice often becomes a costly and most importantly time–consuming ex-
ercise full of potential pitfalls. To this end, we outline here the approach
taken in this chapter, briefly mentioning important tricks of the trade that
have been utilized to facilitate or accelerate the training of the ReLU FCNN
networks.

4.3.1 Generation of synthetic labeled data

The ability of a neural network to learn the implied volatility map φ to a high
degree of accuracy critically hinges upon the provision of a large and accurate
labeled data set

D =
{(

µ(i), ξ(i), M (i), T (i), φ̃
(
µ(i), ξ(i), M (i), T (i)

))}n

i=1
∈ (I × R+)n, n ∈ N.
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4.3 Neural network training

Table 4.1: Marginal priors of model parameters µ for synthetically generating
D. The continuous uniform distribution on the interval bounded by ai, bi ∈ R
is denoted by U [ai, bi] and Ntrunc[ai, bi, λ, σ] stands for the normal distribution
with mean λ ∈ R and standard deviation σ ∈ R+, truncated to the interval
[ai, bi] with ai, bi ∈ R.

Heston rough Bergomi
Parameter Marginal Parameter Marginal

η U [0, 5] η Ntrunc[1, 4, 2.5, 0.5]
ρ U [−1, 0] ρ Ntrunc[−1, −0.5, −0.95, 0.2]
λ U [0, 10] H Ntrunc[0.01, 0.5, 0.07, 0.05]
v U [0, 1] v0 Ntrunc[0.05, 1, 0.3, 0.1]2
v0 U [0, 1]

Knowledge of the parametric dependence structure φ̃ : I → R+ between
inputs and corresponding outputs allows us to address these requirements
adequately. First, trading computational savings for increased numerical ac-
curacy, we ensure that ∥φ̃ − φ∥∞ < ε for ε small. Second, we can sample
an arbitrarily large set of labeled data D, allowing the network to learn the
underlying dependence structure φ̃ – rather than noise present in the training
set – and generalize well to unseen test data. In the numerical tests in Section
4.4, we draw n = |D| = 106 iid sample inputs from a to be specified sampling
distribution G on I and compute the corresponding outputs as follows: For
Heston, we use the Fourier pricing method implemented in the open-source
quantitative finance library QuantLib (Ametrano et al., 2015) which makes
use of the well-known fact that the characteristic function of the log asset
price is known. For rough Bergomi, we use a self-coded, parallelized imple-
mentation of a slightly improved version of the Monte Carlo scheme proposed
by McCrickerd and Pakkanen (2018). Black-Scholes IVs are inverted from
option prices using a publicly available implementation of the implied volatil-
ity solver by Jäckel (2015). The full dataset D is then randomly shuffled and
partitioned into training, validation and test sets Dtrain, Dvalid and Dtest of
sizes ntrain, nvalid and ntest respectively.1

An important advantage of being able to synthetically generate labeled data
is the freedom in choosing the sampling distribution G on I. Prior to calibra-

1The code has been made available at https://github.com/roughstochvol.
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tion, little is known about the interplay of model parameters and particular
model parameter regions of highest interest to be learned accurately. Con-
sequently, we assume zero prior knowledge of the (joint) relevance of model
parameters µ in the Heston experiment in Section 4.4. An ad-hoc approach is
to sample individual model parameters independently of each other from the
uniformly continuous marginal distributions collected in Table 4.1. A similar
reasoning also applies in the rough Bergomi experiment in Section 4.4, except
that here we do assume some prior marginal distributional knowledge and use
truncated normal marginals instead of uniform marginals.

On the other hand, it is reasonable to increase the number of samples in
option parameter regions with high liquidity since these are given more weight
by the calibration objective (4.2.1) and as such require to be more accurate.
To that end, we postulate a joint distribution of moneyness and time to
maturity based on liquidity and estimate it using a weighted Gaussian kernel
density estimation (wKDE) (Scott, 2015): Let Li denote the market liquidity
of an option i, i ∈ N, with time to maturity T (i) and moneyness M (i). We
proxy liquidities by inverse bid-ask spreads of traded European Call Options
on SPX and then run a wKDE on samples

{(
M (i), T (i)

)}n

i=1
with weights

{Li}n
i=1 and a smoothing bandwidth. In a similar vein, one may also derive a

multivariate distribution Kξ of external market data ξ ∈ Rk.
With regards to the individual marginals collected in Table 4.1, the sam-

pling distribution GHeston on I ⊆ Rm+k+2 is given by

GHeston := U⊗m[ai, bi] ⊗ Kξ ⊗ K(M,T ) (4.3.1)

and analogously for the rough Bergomi model, we have

GrBergomi := N ⊗m
trunc[ai, bi, λi, σi] ⊗ Kξ ⊗ K(M,T ). (4.3.2)

4.3.2 Backpropagation and hyper parameter optimization

Consider a ReLU FCNN with L ∈ N hidden layers as described in Section
4.1.2. Let nl, 1 ≤ l ≤ L denote the number of nodes of the hidden layers
and Shmodel the function space spanned by such a network with model hyper
parameters hmodel = (L, n1, . . . , nL). Let X : Ω → I denote a random input
and consider hmodel fixed. Then the fundamental objective of neural network
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training is to learn a function that minimizes the generalization error:

f ⋆
hmodel

= arg min
fhmodel ∈Shmodel

∥fhmodel(X) − φ̃(X)∥2
L2(Ω), X ∼ G (4.3.3)

where G ∈ {GHeston, GrBergomi}, depending on experiment. In many calibration
scenarios, φ̃ is a Monte-Carlo approximation to φ, so φ̃(·) = φ(·) + ε for ε

some homoskedastic error with E(ε) = 0 and Var(ε) = σ2 > 0. The MSE loss
in (4.3.3) admits the well-known bias-variance decomposition

∥fhmodel(X) − φ̃(X)∥2
L2(Ω) = (E [fhmodel(X) − φ(X)])2 + Var [fhmodel(X)] + σ2

(4.3.4)

where in addition to a bias and variance term we also have the variance of the
sample error, the irreducible error. The empirical analogue to (4.3.3) relevant
for practical training is given by

f ⋆
hmodel

≈ arg min
fhmodel ∈Shmodel

1
nvalid

nvalid∑
i=1

[
fhmodel

(
x(i)

)
− φ̃

(
x(i)

)]2
(4.3.5)

where
(
x(i), φ̃

(
x(i)

))
∈ Dvalid. The optimization in the function space Shmodel

corresponds to a high-dimensional nonlinear optimization in the space of net-
work weights and biases, similarly to (4.2.1) typically addressed by gradient-
based schemes. Backpropagation (Goodfellow et al., 2016), a specific form of
reverse-mode automatic differentiation (Baydin et al., 2015) in the context of
neural networks, prevails as the go-to approach to iteratively compute gradi-
ents of the empirical MSE loss with respect to weights and biases of all nodes
in the network. The gradients are then often used in the well-known Mini-
Batch Gradient Descent (Goodfellow et al., 2016) optimization algorithm, a
variant of which called Adam (Kingma & Ba, 2014) we use in our experiments.
Adam incorporates momentum to prevent the well-known zigzagging of Gra-
dient Descent in long and sharp valleys of the error surface and adaptively
modifies a given global step size for each component of the gradient individu-
ally to speed up the optimization process. It in turn has its own optimization
hyper parameters hopt = (δ, β) where δ denotes the mentioned global learning
rate and β denotes the mini-batch size used. In the following, we denote the
learning algorithm Adam mapping training data Dtrain to a local minimizer
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f ⋆
hmodel

of (4.3.5) by Ahopt : In → Shmodel .

Up to know, we treated the hyper parameters (hopt, hmodel) as fixed whereas
in reality they may be varied and have a crucial influence on the training
outcome. Indeed, for all other variables besides (hopt, hmodel) fixed, let us
define a hyper parameter response function H by

H(hopt, hmodel) := 1
nvalid

nvalid∑
i=1

[[
Ahopt (Dtrain)

]
hmodel

(
x(i)

)
− φ̃

(
x(i)

)]2
.

(4.3.6)

In practice, it then turns out the real challenge in training neural networks to
high accuracy lies in the additional (outer) optimization over hyper parame-
ters:

(h⋆
opt, h⋆

model) = arg min
(hopt,hmodel)

H(hopt, hmodel). (4.3.7)

The scope of effect of hyper parameters hmodel and hopt does not overlap: The
former determines the capacity of Shmodel , the latter governs which local mini-
mizer f ⋆

hmodel
the optimization algorithm Ahopt converges to and the speed with

which this happens. This allows us to treat their optimization separately. A
coarse grid search reveals that adding additional layers beyond 4 hidden layers
does not consistently reduce errors on the validation set. Rather, networks
become harder to train as evidenced by errors fluctuating more wildly on the
validation set. We suspect this is a consequence of what Ioffe and Szegedy
(2015) call internal covariate shift: First-order methods such as Gradient De-
scent are blind to changes in the weights and biases of the layers feeding into
a given layer and so with deeper networks the propagating and magnifying
effects of changes in one layer to subsequent layers worsen and slow down the
training. On the other hand, our locally available compute resources max out
at 4096 = 212 nodes per layers, so we fix hmodel = (4) × (4096)4. Each evalu-
ation of the hyper parameter response function H in (4.3.7) requires a ReLU
FCNN to be fully trained from scratch which is a very costly operation in
terms of time and computing resources. Moreover, gradient-based optimiza-
tion approaches are ruled out by the fact that gradients of H with respect to
hopt are unavailable (after all, batch sizes are discrete). In our experiments,
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Figure 4.2: Schematic of IV ReLU FCNN. Depiction of 4-layer ReLU
FCNN used to learn IV maps. It consists of 212 = 4096 nodes at each hidden
layer. Note the output layer is a linear layer with no activation function.
Rectangles denote tensors and circles denote operations, MatMul is matrix
multiplication. The number of parallel IV calculations is given by n ∈ N.

we explore the use of Gaussian Regression (Rasmussen & Williams, 2006;
Snoek, Larochelle, & Adams, 2012) which is an adaptive gradient-free mini-
mization algorithm. Postulating a surrogate Gaussian model for H, it takes
existing function evaluations into account and – balancing exploitation and
exploration – iteratively proposes the next most promising candidate input
in terms of information gain. As is common in applied sciences, we use a
Matérn Kernel for the covariance function of the Gaussian model and the
Lower Confidence Bound (LCB) acquisition function.

4.3.2.1 Tricks of the trade

Feature scaling or preconditioning is a standard preprocessing technique
applied to input data of optimization algorithms in order to improve the speed
of optimization. After the data set D has been partitioned into training,
validation and test sets, we compute the sample mean xtrain ∈ Rm+k+2 of
the inputs across the training set and the corresponding sample standard
deviation strain ∈ Rm+k+2. For each input x(i) ∈ I from D, its standardized
version x̂(i) is given by

x̂(i) := x(i) − xtrain

strain
, 1 ≤ i ≤ n.
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4 Deep calibration of rough volatility models

where the operations are defined componentwise. We then use these stan-
dardized inputs x̂(i) – which have zero offset and unit scale – for training and
prediction. It is important to stress that all n inputs from the complete set D
are standardized using the training mean and standard deviation, including
those of the validation and test sets.

Weight initialization is an important precursor to the iterative optimiza-
tion process of Adam. Initialization is a delicate task that may speed up or
hamper the training process all together: If within (but not necessarily across)
all layers, weights and biases of all nodes are identical, then the same is true
for their outputs and the partial derivative of the loss with respect to their
weights and biases, impeding any learning on the part of the optimizer. To
break the symmetry, it is standard procedure to draw weights from a symmet-
ric probability distribution centered at zero. Suppose w

(l)
ij denotes the weight

of node i, 1 ≤ i ≤ nl in layer 1 ≤ l ≤ L being multiplied with the output of
node j, 1 ≤ j ≤ nl−1 in layer l − 1 and n0 denotes the number of network in-
puts. He et al. (2015) suggest the weights and biases be independently drawn
as follows

w
(l)
ij ∼ N

(
0,

2
nl−1

)
, b

(l)
i = 0.

Adapting an argument by Glorot and Bengio (2010) for linear layers to ReLU
networks, they can show that – under some assumptions – this ensures that,
at least at initialization, input signals and gradients do not get magnified
exponentially during forward or backward passes of backpropagation.

Regularization in the context of regression – be it deterministic in the
case of L2 or L1 or stochastic in the form of Dropout (Srivastava, Hinton,
Krizhevsky, Sutskever, & Salakhutdinov, 2014) – describes a set of techniques
aimed at modifying a training algorithm so as to reduce overfitting on the
training set. With regards to (4.3.4), the conceptual idea is that a modified
optimizer allows to trade an increased bias of the estimator for an over pro-
portional decrease in its variance, effectively reducing the MSE overall. In our
experiments, we only regularize in time in the form of early stopping: While
optimizing the weights and biases on the training set, we periodically check
the performance on the validation set and save the model if a new minimum
error is reached. When the error on the validation set begins to stall, training
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4.4 Numerical experiments

Table 4.2: Reference model parameters µ† for Heston and rough Bergomi.
Obtained from (Gatheral, 2011) and (Bayer et al., 2016) respectively.

Heston rough Bergomi
Parameter Value Parameter Value
η 0.3877 η 1.9
ρ -0.7165 ρ -0.9
λ 1.3253 H 0.07
v 0.0354 v0 0.01
v0 0.0174

is stopped.
Batch normalization (BN) devised by Ioffe and Szegedy (2015) is very

popular technique to facilitate and accelerate the training of deeper networks
by addressing the mentioned internal covariate shift. It alters a network’s
topology by inserting normalization operations between linearities and non-
linearities of each dense layer, effectively reducing the dependence of each
node’s input on the weights and biases of all nodes in previous layers. Our
numerical experiments confirm a strongly regularizing effect of BN as is well-
known in the literature, reducing the expressiveness of our networks consider-
ably and hence leading to worse performance. Despite its success in allowing
to train deeper networks, we hence decided to turn it off.

4.4 Numerical experiments

Here, we examine the performance of our approach by applying it to the
option pricing models recalled in Section 4.1: First, we consider the Heston
model as a test case and then the rough Bergomi model as a representative
from the class of rough stochastic volatility models. Specifically, we look at
the speed and accuracy of the learned implied volatility map φNN : I → R+.
A systematic comparison of performance metrics between existing methods
and our approach has been left for future research.

The Gaussian hyper parameter optimization and individual network train-
ing runs are performed on a local CPU-only compute server. Unless otherwise
stated, all computations and performance measures referenced in this section
are performed on a standard early 2015 Apple Mac Book with a 2.9 GHz Intel
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4 Deep calibration of rough volatility models

Core i5 CPU with no GPU used.

4.4.1 The Heston model

Following the approach outlined in Section 4.3.1, we estimate K(M,T ) using
SPX Option Price data2 from 15th February 2018. Empirically, we observe
that a majority of the liquidity as proxied by inverse bid-ask spreads is con-
centrated in the small region given by −0.1 ≤ m ≤ 0.28 and 1

365 ≤ T ≤ 0.2
which is why for this test case we exclusively learn the IV map on this bounded
domain. The size of the labeled set data D is n = 990000 of which we allocate
ntrain = 900000 samples to the training set and nvalid = ntest = 45000 to test
and validation sets.

Single evaluations of the learned implied volatility map φNN : I → R+

and the associated Jacobian JNN : O → RN×m are extremely fast with
about 36ms on average to compute both together, making this neural network
based approach at least competitive with existing Fourier-based schemes. To
determine the accuracy of φNN, we define

RE(µ, m, T ) := |φNN(µ, v0, em, T ) − φ̃(µ, v0, em, T )|
φ̃(µ, v0, em, T ) (4.4.1)

to be the relative error of the output of φNN with respect to that of a Fourier-
based reference map φ̃ for model parameters µ, option parameters (m, T ) and
fixed spot variance v0. Figure 4.3a shows a normalized histogram of relative
errors on the test set where µ and (M, T ) are allowed to vary across samples,
demonstrating that empirically, φNN approximates φ̃ with a high degree of
accuracy. In typical pricing or calibration scenarios, we are interested in the
accuracy of φNN for some fixed model parameters µ which is why in Figures
4.3b, 4.3c and 4.3d, we fix µ = µ† with µ† the reference model parameters
in Table 4.2. In Figure 4.3b, we compute an IV point cloud using φNN,
interpolate it using a (not necessarily arbitrage-free) Delaunay triangulation
and recover a characteristic Heston-like model IV surface. Indeed, as the
heatmap of interpolated relative errors in Figure 4.3c shows, these are small
across most of the IV surface, with increased relative errors only for times on

2Option prices for SPX Weeklys can be retrieved from a publicly available database at
www.cboe.com/DelayedQuote/QuoteTableDownload.aspx.
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4 Deep calibration of rough volatility models

the short and long end which may be attributed to less training because of
less liquidity. Finally, in Figure 4.3d, we plot three different approximations
to the Heston ATM volatility skew for small times: A reference skew in blue
obtained by a finite difference approximation using φ̃, another skew in orange
obtained by the same method but applied to φNN and finally the exact ATM
skew of φNN in green, available by automatic differentiation. As is to be
expected, φNN recovers the characteristic flat behaviour for short times, the
general drawback of bivariate diffusion models such as Heston.

4.4.2 The rough Bergomi model

For simplicity, we consider the rough Bergomi model as introduced in Example
4.1.2 with a flat forward variance curve ξ0(t) = v0 ∈ R+ for t ≥ 0. For the
remainder of this work, we shall consider v0 an additional model parameter.
Again, following the approach outlined in Section 4.3.1, we estimate K(M,T )

using SPX Option Price data, this time from 19th May 20173. We do not
restrict the option parameter region considered and learn the whole surface
with parameter bounds given by −3.163 ≤ m ≤ 0.391 and 0.008 ≤ T ≤ 2.589.
Of the one million synthetic data pairs sampled, 90% are allocated to the
training set and 5% to validation and test sets respectively.

Recall that in this experiment we use the same network topology as in the
Heston example. As is to be expected, the speed of single evaluations of the
learned rough Bergomi IV map φNN : I → R+ and the associated Jacobian
JNN : O → RN×m are hence of the same order with about 36ms to com-
pute both objects together, beating state of the art methods by magnitudes.
Intuitively, the non-Markovian nature of rough Bergomi manifests itself in
an increased model complexity and so it is unsurprising that the general ac-
curacy of the rough Bergomi IV map φNN on the rough Bergomi test set is
lower than its counterpart on the Heston test set (cf. 4.4a). On the other
hand, for fixed model parameters µ = µ† (cf. Table 4.2), the implied volatility
map φNN recovers the characteristic rough Bergomi model IV surface (Figure
4.4b) with low relative error across most of the liquid parts of the IV surface
(Figure 4.4c). It also exhibits the striking power law behaviour of the ATM
volatility skew near zero (Figure 4.4d).

3Thanks to Jim Gatheral for providing us with this data set.
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4 Deep calibration of rough volatility models

On the contrary, measuring the accuracy of the neural-network enhanced
Levenberg-Marquardt scheme introduced in Section 4.2.1 is not a straightfor-
ward task. To see why, consider the small-time asymptotic formula for the
BS implied volatility σiv of rough stochastic volatility models as derived by
Bayer et al. (2018). With scaling parameter β < 2

3H, their expansion applied
to our setting yields

σiv(ekt , t) = √
v0 + 1

2ρη C(H)ktβ + O(t) (4.4.2)

for small times t → 0, time-scaled log moneyness kt = kt
1
2 −H+β and constant

C(H) depending on H. Hence, at least for small times, all three model
parameters enter multiplicatively either directly (ρ and η) or indirectly (H)
into the second term in (4.4.2) which corrects the crude estimate given by
spot volatility. A decrease in |ρ| could hence for example be offset by an
adequate increase in η and still yield the same IV. Mathematically speaking,
for fixed moneyness and time to maturity, it is thus to be expected that the
map φNN is non-injective in its model parameters on large parts of its model
parameter input domain. Quantifying the accuracy of the deep calibration
scheme by computing any form of distance between true and calibrated model
parameters in model parameter space is hence nonsensical.

4.4.2.1 Bayesian parameter inference

Intuitively, we are interested in quantifying the uncertainty about model pa-
rameter estimates obtained by calibrating with the approximative IV map
φNN. To this end, we switch to a Bayesian viewpoint and treat model pa-
rameters µ as random variables. The fundamental idea behind Bayesian pa-
rameter inference is to update prior beliefs p(µ) formalised in (4.3.2) with the
likelihood p(y | µ) of observing a given IV point cloud y ∈ RN to deduce a
posterior (joint) distribution p(µ | y) over model parameters µ.

Formally, for pairs
(
M (i), T (i)

)
of moneyness & time to maturity, let an IV

point cloud to calibrate against be given by

y =
[
y1
(
M (1), T (1)

)
, . . . , yN

(
M (N), T (N)

)]T
∈ RN
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4 Deep calibration of rough volatility models

and analogously, collect model IVs for model parameters µ as follows

φNN (µ) =
[
φNN

(
µ, M (1), T (1)

)
, . . . , φNN

(
µ, M (N), T (N)

)]T
∈ RN .

We perform a liquidity-weighted nonlinear Bayes regression. Mathematically,
for heteroskedastic sample errors σi > 0, i = 1, . . . , N , we postulate

y = φNN (µ) + ε, ε ∼ N
(
0, diag[σ2

1, . . . , σ2
N ]
)

so that for some diagonal weight matrix W = diag [w1, . . . , wN ] ∈ RN×N , the
liquidity-weighted residuals are distributed as follows

W
1
2 [y − φNN (µ)] ∼ N

(
0, diag[w1σ

2
1, . . . , wNσ2

N ]
)

.

In other words, we assume that the joint likelihood p (y | µ) of observing data
y is given by a multivariate normal. In absence of an analytical expression
for the posterior (joint) probability p(µ|y) ∝ p(y|µ)p(µ), we approximate
it numerically using MCMC techniques (Foreman-Mackey, Hogg, Lang, &
Goodman, 2013) and plot the one- and two-dimensional projections of the
four-dimensional posterior by means of an MCMC plotting library (Foreman-
Mackey, 2016).

We perform two experiments. First, fixing µ = µ†, we generate a synthetic
IV point cloud

ysynth =
[
φ̃
(
µ†, M (1), T (1)

)
, . . . , φ̃

(
µ†, M (N), T (N)

)]
∈ RN

using the reference method φ̃. Next, we perform a non-weighted Bayesian
calibration against the synthetic surface and collect the numerical results in
Figure 4.5a. If the map φNN is sufficiently accurate for calibration, the com-
puted posterior should attribute a large probability mass around µ†. The
results in Figure 4.5a are quite striking in several ways: (1) From the uni-
variate histograms on the diagonal it is clear that the calibration routine has
identified sensible model parameter regions covering the true values. (2) His-
tograms are unimodal and its peaks close or identical to the true parameters.
(3) The isocontours of the 2d Gaussian KDE in the off-diagonal pair plots for
(η, H) and (η, ρ) show exactly the behaviour expected from the reasoning in
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4.4 Numerical experiments

the last section: Since increases or decreases in one of η, H or ρ can be offset
by adequate changes in the others with no impact on the calculated IV, the
Bayes posterior cannot discriminate between such parameter configurations
and places equal probability on both combinations. This can be seen by the
diagonal elliptic probability level sets.

In a second experiment, we want to check whether the inaccuracy of φNN

allows for a successful calibration against market data. To this end, we per-
form a liquidity-weighted Bayesian regression against SPX IVs from 19th May
2017. For bid and ask IVs ai > 0 and bi > 0 respectively, we proxy the IV
of the mid price by mi := ai+bi

2 . With spread defined by si = ai − bi ≥ 0, all
options with si/mi ≥ 5% are removed because of too little liquidity. Weights
are chosen to be wi = mi

ai−mi
≥ 0, effectively taking inverse bid-ask spreads

as a proxy for liquidity. Finally, σi are proxied by a fractional of the spread
si. The numerical results in Figure 4.5b further confirm the accuracy of φNN:
(1) As can be seen on the univariate histograms on the diagonal, the Bayes
calibration has again identified sensible model parameter regions in line with
what is to expected. (2) Said histograms are again unimodal with peaks at
or close to values previously reported by Bayer et al. (2016). (3) Quite strik-
ingly, at a first glance, the effect of the diagonal probability level sets in the
off-diagonal plots as documented in Figure 4.5a cannot be confirmed here.
However, the scatter plots in the diagrams do reveal some remnants of that
phenomenon.
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