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Abstract

Our nature is full of microscopic organisms such as algae, which are at the basis
of the marine food chain and thus establish entire ecosystems, or bacteria, which
are important for our nutrition and health, and also find a broad application in
industrial processes. Thus, a broad research field is concerned with the many
aspects of the biology, chemistry and physics of microorganisms. Physicists are
particularly interested in the swimming motion of organisms such as algae, bacteria,
spermatozoa and others. In collective motion, these microswimmers exhibit a diverse
behavior such as the formation of swarms, vortices, convection rolls and plumes, and
active turbulence. Therby, most microswimmers are elongated, and are otherwise
characterized by different swimming mechanisms. Consequently, their dynamics
arises from the interplay of different interactions, i.e., direct collisions and long-range
flow fields. It is subject of current research to determine the role of the different
interactions for the fascinating collective dynamics.

In this context, we consider the squirmer rod, a model microswimmer that
consists of several spherical squirmers, in order to create an elongated body shape.
To realize the swimming mechanisms of bacteria and algae, i.e., pushers and pullers,
we concentrate the surface slip-velocity field on the rear end or front side of the rod.
This generates the force dipole, which these swimming mechanisms exert on the
fluid. Using the simulation method of multi-particle collision dynamics (MPCD),
we analyze the flow fields of the squirmer rods both in the bulk fluid as well as in
the Hele-Shaw geometry, i.e., in narrow confinement between two parallel plates.
Using hydrodynamic multipole expansions, we categorize the different multipole
contributions created by neutral, and pusher squirmer rods in the bulk fluid as well
as in the Hele-Shaw geometry. Thereby, we show how the confinement changes
the radial decay of the flow fields of the force or source multipoles, and hence the
characteristic flow fields compared to the bulk fluid.

Further, we present a detailed study of the collective dynamics of neutral squirmer
rods moving in the midplane of the Hele-Shaw geometry. From small to a large
aspect ratio and density, we observe a disordered state, dynamic swarms, a single
swarm, and a jammed cluster state and characterize them accordingly. We also
investigate a wide range of aspect ratios and densities for pushers and pullers and
provide corresponding state diagrams. The flow field of pushers destabilizes ordered
structures and favors the disordered state at small densities and aspect ratios. As
soon as geometric interactions become relevant for longer squirmer rods, we observe
a turbulent state, as well as a dynamic cluster, while a single swarm and jammed
clusters reappear at large aspect ratios. The power spectrum of the turbulent state
shows two distinct energy cascades at small and large wave numbers, which follow
power laws with non-universal exponents. Pullers show a strong tendency to form
swarms so that no disordered state occurs at the investigated densities. For larger
aspect ratios, the single swarm and jammed cluster are observed again.
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Another part of this work deals in more detail with the multi-particle collision
dynamics (MPCD) method, which is widely used in soft matter physics to simulate
fluid flows at micrometer scale. In general, in this model the fluid exhibits the
equation of state of an ideal gas, making it highly compressible. This is in contrast to
real fluids, which are incompressible for velocities well below the speed of sound.
Therefore, we propose a modified collision rule that leads to a MPCD algorithm
with a non-ideal equation of state and a significantly reduced compressibility. At
the same time, our algorithm requires less computational resources compared to
conventional MPCD algorithms. To further establish the algorithm, we provide
analytic expressions for the equation of state and shear viscosity, which show a good
agreement with simulations of the pressure in a fluid at rest, the shear viscosity in
linear shear flow, and the velocity field of a Poiseuille flow. Using two exemplary
squirmer rod systems, we further compare the results of the dynamics under the
extended MPCD method to those with the established MPCD version with Andersen
thermostat. Thereby, we investigate the dynamic swarm state and single swarm
state, which create large pressure gradients due to the sum of the many individual
squirmer-rod flow fields. For the single swarm state the extended MPCD fluid
shows more homogeneous fluid density, and we make the interesting observation
that dynamic swarms are more pronounced and exhibit a higher polar order for the
extended MPCD method.
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Zusammenfassung

Unsere Natur ist voll von mikroskopisch kleinen Organismen wie Algen, die an der
Basis der marinen Nahrungskette stehen und damit ganze Ökosysteme begründen,
oder Bakterien, die für unsere Ernährung und Gesundheit wichtig sind und auch in
industriellen Prozessen eine breite Anwendung finden. Daher befasst sich ein breites
Forschungsfeld mit den vielfältigen Aspekten der Biologie, Chemie und Physik
von Mikroorganismen. Physiker:innen interessieren sich dabei besonders für die
Schwimmbewegungen von Organismen wie Algen, Bakterien, Spermatozoen und
Anderen. In kollektiver Bewegung zeigen diese Mikroschwimmer ein vielfältiges
Verhalten, wie die Bildung von Schwärmen, Wirbeln, Konvektionsrollen und Plumes
sowie aktive Turbulenz. Dabei sind die meisten Mikroschwimmer länglich, und
zeichnen sich sonst durch verschiedene Schwimmmechanismen aus. Ihre Dynamik
entsteht folglich durch das Zusammenspiel der verschiedenen Wechselwirkungen
also durch direkte Zusammenstöße und weitreichenden Flussfelder. Die Rolle der
verschiedenen Wechselwirkungen für die faszinierende kollektive Dynamik zu
bestimmen, ist Gegenstand aktueller Forschung.

In diesem Kontext betrachten wir den Squirmer-Rod, ein Mikroschwimmer-
modell, das wir aus mehreren kugelförmigen Squirmern zusammensetzen, um
eine längliche Körperform zu erzeugen. Um die Schwimmmechanismen von Bak-
terien und Algen zu realisieren, d.h. Pusher und Puller, konzentrieren wir das
Oberflächengeschwindigkeitsfeld auf die Rückseite oder die Vorderseite des Rods
und können so den Kraft-Dipol dieser Schwimmmechanismen generieren. Mit Hilfe
der Simulationsmethode der Vielteilchenstoßdynamik (MPCD) analysieren wir die
Strömungsfelder dieser Squirmer-Rods sowohl in der freien Flüssigkeit, sowie in
der Hele-Shaw-Geometrie, d.h. eingeschlossen zwischen zwei dichten parallelen
Platten. Mittels der hydrodynamischen Multipolentwicklung kategorisieren wir
die unterschiedlichen Anteile der Flussfelder von neutralen und Pusher Squirmer-
Rods in der freien Flüssigkeit, sowie eingeschlossen zwischen zwei Platten. Dabei
zeigen wir wie der Einschluss in der Hele-Shaw-Geometrie die radiale Reichweite
der Flussfelder der Kraft- oder Quellmultipole, und somit der charakteristischen
Flussfelder, im Vergleich zur freien Flüssigkeit verändert.

Weiter präsentieren wir eine ausführliche Studie der kollektiven Dynamik neu-
traler Squirmer-Rods, die sich in der Mittelebene einer Hele-Shaw-Geometrie bewe-
gen. Von einem kleinen bis zu einem großen Längenverhältnis und einer großen
Dichte beobachten wir einen ungeordneten Zustand, dynamische Schwärme, einen
einzelnen Schwarm, sowie ein blockiertes Cluster und charakterisieren diese ent-
sprechend.

Auch für Pusher und Puller untersuchen wir eine breite Spanne von Längen-
verhältnissen und Dichten und liefern entsprechende Zustandsdiagramme. Das
Strömungsfeld von Pushern destabilisiert dabei geordnete Strukturen und begünstigt
den ungeordneten Zustand bei kleinen Dichten und Längenverhältnissen. Sobald
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geometrische Wechselwirkungen bei längeren Squirmer-Rods relevant werden,
beobachten wir einen turbulenten Zustand, sowie ein dynamisches Cluster, während
bei großen Längenverhältnissen wieder ein einzelner Schwarm und blockierte Clus-
ter auftreten. Die spektrale Leistungsdichte des turbulenten Zustands zeigt dabei
zwei unterschiedliche Energiekaskaden bei kleinen und großen Wellenzahlen die
Potenzgesetzen mit nicht-universellen Exponenten folgen. Puller hingegen zeigen
eine starke Tendenz zur Bildung von dynamischen Schwärmen, sodass bei den dabei
untersuchten Dichten gar keine ungeordneten Zustände auftreten. Bei größerem
Längenverhältnis tritt wieder ein einzelner Schwarm oder ein blockiertes Cluster
auf.

Ein weiterer Teil dieser Arbeit befasst sich eingehender mit der Methode der
Vielteilchenstoßdynamik (MPCD), welche in der Physik der weichen Materie häufig
verwendet wird, um Hydrodynamik im Mikrometerbereich zu simulieren. In der
Regel weist in diesem Modell die Flüssigkeit die Zustandsgleichung eines ide-
alen Gases auf, wodurch sie stark kompressibel ist. Dies steht jedoch im Wider-
spruch zu realen Flüssigkeiten, welche für Geschwindigkeiten weit unterhalb der
Schallgeschwindigkeit inkompressibel sind. Wir schlagen daher eine modifizierte
Kollisionsregel vor, die zu einem MPCD-Algorithmus mit einer nicht idealen Zus-
tandsgleichung und einer deutlich reduzierten Kompressibilität führt. Gleichzeitig
benötigt unser Algorithmus im Vergleich zu herkömmlichen MPCD-Algorithmen
weniger Rechenressourcen. Um dem Algorithmus ein theoretisches Fundament
zu geben, liefern wir analytische Ausdrücke für die Zustandsgleichung und die
Scherviskosität, die eine gute Übereinstimmung mit Simulationen des Drucks in
einem ruhenden Fluid, der Scherviskosität bei linearer Scherströmung und dem
Geschwindigkeitsfeld einer Poiseuille-Strömung zeigen. Anhand zweier exem-
plarischer Squirmer-Rod-Systeme vergleichen wir außerdem die Ergebnisse der
Dynamik der Squirmer-Rods unter der erweiterten MPCD-Methode mit denen der
etablierten MPCD-Version mit Andersen-Thermostat. Dabei betrachten wir die
Zustände der dynamischen Schwärme und des einzelnen Schwarms, die durch
die Summe der vielen Flussfelder einzelner Squirmer-Rods große Druckgradienten
erzeugen. Für den Zustand des einzelnen Schwarms zeigt die erweiterte MPCD-
Methode eine homogenere Fluiddichte, und wir machen die interessante Beobach-
tung, dass die dynamischen Schwärme bei der erweiterten MPCD-Methode stärker
ausgeprägt sind und eine höhere polare Ordnung aufweisen für die erweiterte
MPCD-Methode.
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CHAPTER 1

Introduction

Despite often unnoticed in our everyday life, our worlds flora and fauna consist of
microscopic organisms to a major fraction. Their omnipresence becomes especially
obvious when regarding the plant biomass that performs photosynthesis in the
carbon cycle. In fact, microscopic swimming algae amount to about 50% of the
total biomass involved in the carbon cycle, as estimated by satellite measuring of
chlorophyll concentration [1–3].

Bacteria exist right next to us and even in our bodies. For example, the normal
strains of the well-known bacterium Escherichia coli are a part of our gut microbiota
[4], where it plays an important role for nutrition, our health, our immune system
[5–8] and even performs tasks such as the production of vitamins [9].

Also in industrial processes, microorganisms find a broad application. In biotech-
nological and medical industry, straits of the E. coli and Bacillus subtilis bacteria are
used for the synthesis of different biochemicals. Examples are the production of bio
fuels [10–12], enzymes for the food and other branches of industry [13–16], ecological
plant protectives [17, 18], pharmaceuticals [19, 20] or supplemental vitamins [21].
Another important application is found in the process of waste water recycling [22,
23]. As this collection implies, a broad research field is concerned with the biology,
chemistry and physics of microorganisms and the many aspects of their behavior is
subject of current research.

For physicists, these self-propelled organisms – algae, bacteria, spermatozoa
and others – are particularly interesting because they swim in aqueous solutions.
Rather than only passively diffusing around, they perform an active swimming
motion to explore their environment [24, 25]. For this reason, physicists speak of
microswimmers. The microswimmers’ active motion introduces a whole variety of
new fascinating phenomena that go beyond the physics of passive particles [26, 27].
We illustrate this with a few examples from the dynamics of microswimmers.

In order to steer or navigate, microswimmers have developed various strategies
like the run-and-tumble motion pattern [28, 29]. Through the modulation of the time
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1. Introduction

between tumbling events in response to chemical concentrations microswimmers
are able to approach nutrients [30–34]. For sperm cells, steering in response to the
rheology of the fluid [35] and boundary-following navigation [36] is observed.

In collective motion, microswimmers exhibit a particularly interesting and di-
verse dynamic behavior that arises form their complex interactions [37, 38]. Ex-
amples are the formation of swarms [39–42] or vortices [43–46], convection rolls
and plumes [47], fluid pumps [48, 49], active nematic patterns [50–52], and active
turbulence [53–57].

Thereby, the phenomenon of active turbulence is currently receiving special
attention, because it forms an interesting counterpart to the classical turbulence in
passive fluids. While turbulence in passive fluids is caused by external driving,
active turbulence occurs due to the motion of the self-propelled particles. In both
cases, the supplied energy is transported and dissipated over different length scales.
Thereby, active turbulence exhibits a specific length scale, which appears as the
characteristic size of vortices and patterns, whereas classical turbulence is scale
invariant [58–60]. Furthermore, the power spectrum of the velocity fluctuation is no
longer universal but depends on the specific type of active particles and parameters
[60–62]. Systems, which exhibit active turbulence, include bacteria [53], bio-filaments
within the cytoplasm [50, 56] and cells in growing tissue [63, 64].

On the one hand, microswimmers interact through steric collisions, which typ-
ically cause an alignment due to their mostly elongated body shapes [24]. On the
other hand, swimming microorganisms interact via long-ranged flow fields created
by their swimming motion [65]. This second type of interaction depends funda-
mentally on the biological propulsion strategy of the species under consideration.
While bacteria propel with flagella that extent from the back of the cell body, also
other propulsion strategies exist [65, 66]. For example, algae like Chlamydomonas
reinhardtii propel with two short flagella that extent from the front of their body
and perform a breast stroke to swim forward [67, 68]. Other organisms like Parame-
cium are covered entirely with hair-like appendages called cilia, which perform a
synchronized wave-like motion to propel [69, 70]. On the microscopic scale, where
hydrodynamic flows are dominated by viscous dissipation, these mechanisms gener-
ate entirely different long-ranged flow fields, which results in the impressive variety
of observed phenomena [71–76]. Besides experiments with biological entities like
bacteria, synthetic microswimmers like the famous Janus particles [25, 77] or active
emulsion droplets [78, 79] are employed. However, the physics of active matter is
not limited to microswimmers, but is also found with slightly different mechanisms
or interactions in herds of sheep, flocks of birds, school of fish or human crowds.

On the theoretical side, a range of different particle-based models are employed.
Examples range from the famous Vicsek model that employs coarse-grained interac-
tions [80–82], to Langevin dynamics simulation with more realistic steric interactions
[83–88] and implicit hydrodynamic interactions [89, 90]. Models which explicitly
simulate the flow field use the method of multi-particle collision dynamics [41, 47,
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73, 74, 76, 91–97] or the lattice Boltzmann approach [98–101].
A suspension of microswimmers can also be considered in the continuum limit,

where they become the constituents of an active fluid [102, 103]. Continuum models
for polar active particles, which combine elements of the Toner-Tu [104] and Swift-
Hohenberg [105] equations, are able to reproduces active turbulence [58, 106] or
clustering [107]. In general, continuum models are distinguish between polar or
nematic symmetry, and dry or wet systems. For example, continuum models for wet
active nematic fluids include equations of motion for the order-parameter field and
extend the constitutive relation of stress tensor by an active contribution [108].

Nevertheless, it is still subject of current research to precisely determine the
influences of both steric and hydrodynamic interactions of the constituting particles
on the swarm formation, active turbulence, or other phenomena [75, 109–113]. In
this context, we introduced the elongated squirmer rod as a model for elongated mi-
croswimmers in their fluid environment. The squirmer rod thereby extend the well
known squirmer model swimmer [69, 74, 114] for spherical microswimmers such
as synthetic Janus particles [115–117] or biological organisms such as Volvox [118].
Commonly, squirmers propel themselves by imposing an axisymmetric surface-
velocity field on the surrounding fluid [74, 119, 120], which models the propulsion
through the beating motion of cilia in biological systems. The spherical squirmer
has been employed in various hydrodynamic studies of the collective behavior of
microswimmers [73, 74, 92, 94, 100, 121–124]. To model the hydrodynamic flow of
the solvent, we use the method of multi-particle collision dynamics (MPCD) [125].
In general, MPCD is well suited for numerical simulations of highly viscous hydro-
dynamic flows in the context of microscopic solute particles. As stochastic solver,
it includes thermal fluctuations [126, 127] and also complex geometric boundaries
can be implemented precisely with this method [128–131]. Furthermore, the MPCD
algorithms are well suited for parallel computing on graphic cards, such that large
systems can be simulated efficiently already on desktop computers [132, 133]. Be-
sides the application to model solvent dynamics in the context of microswimmers,
MPCD algorithms have been used to study colloidal suspensions [134–138], poly-
mers [139–141], blood cells [142], the African trypanosome as the causative agent of
the sleeping sickness [143], or fish schools [144]. The MPCD method itself has been
extended to multi component fluids [145], liquid crystals [146–148], or fluids with
chemical reactions [149].

Scientific questions

The large variety of different microswimmers described so far is mainly character-
ized by different body shapes and the flow fields generated by specific locomotion
mechanisms. Despite the multitude of microswimmers now known to researchers, it
remains an open question to identify the respective influences of mutual interaction
by hydrodynamic flow fields and steric collisions on collective behavior [109, 110,
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1. Introduction

Figure 1.1: Different interactions between colliding microswimmers. (a) Dominated
by steric interaction, the collision leads to an alignment of the particles. (b) Hydrody-
namic interactions can cause a torque on both particles, which leads to a deflection
[65].

112].
With the introduction of the elongated squirmer rod, we therefore first want to

explore the direct relationship between the flow field and the cell body shape. We
also investigate the influence of narrow confining walls in a Hele-Shaw geometry
on the hydrodynamic flow fields of the squirmer rods. This geometry enables us
to better understand the physics in experimental systems such as Petri dishes or
microscope slides. Furthermore, we also want to use our model to investigate the
respective influences of the hydrodynamic and steric interactions on the collective
dynamics of many microswimmers.

As depicted in Fig. 1.1(a), purely steric interactions mainly lead to an alignment
of elongated microswimmers such that they preferentially form swarming clusters
[150]. In contrast, hydrodynamic interactions can lead to an aligning or anti-aligning
torque depending on the type of swimmer and relative position, as shown for
pushers in Fig. 1.1(b) [65, 94].

Outline

This thesis is written in cumulative form, and organized as follows. Chapter 2
introduces the theoretical background of the physics of swimming microorganisms.
To begin with, the hydrodynamic transport equations that satisfy the continuity
equations for mass, momentum and energy, are discussed. After motivating New-
tonian fluids, the limit of highly viscous Stokes flow is discussed. On the basis of
hydrodynamic multipoles, the swimming strategies of different microorganisms are
reviewed and the interactions due to their characteristic flow fields are discussed.
Lastly, the squirmer-rod model for elongated microswimmers is introduced.

Chapter 3 introduces the multi-particle collision dynamics (MPCD) method, a
stochastic solver for hydrodynamic flows. Here, different variants of the original
algorithm are compared. Subsequently, the coupling to solute particles and inte-
gration of their equation of motion are discussed. We end with some notes on the
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efficient implementation of MPCD on modern computer graphic cards.
Since this thesis is written in cumulative form, the results of the research will be

presented in the form of their publication in scientific journals. The relevant four
articles are introduced and set into context in chapter 4. The first article in Sec. 4.2
introduces the squirmer-rod model and explores the resulting flow field for different
aspect ratios in the bulk fluid and in confinement between two parallel plain walls.
In Sec. 4.3 we introduce an extended variant of the MPCD method with a non-ideal
equation of state for the pressure, and we present the application to simulations of
squirmer rods in Sec. 4.4. Thereby, we present an in-depth study of the collective
dynamics of neutral squirmer rods for different aspect ratios and area fractions. In
the last article in Sec. 4.5 we then investigate the collective dynamics of pusher and
puller-type squirmer rods. Chapter 5 draws conclusions from the combination of
the articles and gives responses to the scientific questions that were posed above.
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CHAPTER 2

Physics of swimming
microorganisms

As we saw at the beginning of chapter 1, the large variety of motile microscopic
lifeforms predominantly lives in aquatic habitats in the oceans, lakes or other bodies
of water. Consequently, we approach the subject of active microswimmers starting
from the physics of fluids in motion. This will lead us from the more general
hydrodynamic transport equations to the Newtonian fluids, which are described by a
linear relation of the fluid stress and the strain rate. The dynamics of microswimmers
is further characterized by the limiting case of highly viscous flow. In the context
of this so-called Stokes flow, we introduce the theoretical framework to understand
the hydrodynamic interaction of microswimmers. As we will see in the following
sections, the fluid environment introduces fascinating hydrodynamic interactions
between organisms. Together with the active motion of the particles, this leads to a
particularly rich collective behavior.

2.1 Hydrodynamic flows

The physical properties of the matter that surrounds us — gases, liquids and solids
— can be described at different levels of detail. In our everyday life matter appears as
continuum because the complex microscopic state and dynamics smear out on the
macroscopic scale of the physical processes relevant for us. From our macroscopic
perspective, the number of the constituting particles is so large that even for a small
parcel of matter the microscopic dynamics can be described with the framework of
statistical mechanics. Thus, we may work with the dynamics of an ensemble average
because the microscopic detail vanishes in the thermodynamic limit. For the relevant
physical phenomena, this suggests a classical continuum description of matter, for
the dynamics of the fields of macroscopic variables like mass, momentum and energy.
In the case of gases and liquids, the constituting particles are not bound to a fixed
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2. Physics of swimming microorganisms

configuration such that their continuum description deals with deformation, flows
and transport. Due to this similarity, gases and liquids are typically combined under
the terminology of fluids.

Hydrodynamic flows are most commonly described by the so-called Navier-
Stokes equations, which apply to conventional length scales much larger than the
inter-particle distance. In addition to the simpler Euler equations, they take into
account internal friction in the fluid. In their mathematical form, they are a contin-
uum formulation of the basic physical principle of the conservation of momentum
with the addition of constitutive relations for the viscous stress tensor for the class of
Newtonian fluids. These equations governing the motion of fluids can be derived
starting from different basic premises. Most fundamentally, starting from the physics
of collisions between the constituting particles in the kinetic theory of gases, the
famous Chapman-Enskog approach can be used to derive hydrodynamic equations
of motion to different order in the Knudsen number from the Boltzmann equation
[151, 152]. The Knudsen number is thereby defined as the ratio of the mean free path
for the fluid particles to a characteristic physical length scale. Here, we follow a more
direct approach that starts with continuity equations as first principles and directly
leads to the hydrodynamic transport equations following Ref. [153]. In Section 2.2,
we then introduce the constitutive relations for the stress tensor and heat flux in a
Newtonian fluid, which then leads us to the Navier-Stokes equations.

2.1.1 Hydrodynamic transport equations

In the following, we derive the hydrodynamic transport equations following the
seminal work of Irving and Kirkwood [153]. In this approach, we derive continuity
equations for the fluid density, momentum and energy. For the momentum and
energy, pressure and viscous forces will become relevant.

We begin by considering a small stationary volume V inside the fluid of mass
density ρ(r, t). The local velocity of the fluid is described by the vector field u(r, t).
The rate of change in the total mass of the volume is due to transport of fluid mass
by the velocity field u(r, t) through the surface BV of the volume V

Btm(r, t) = Bt

ż

V
ρ(r, t)d3r = ´

ż

BV
ρ(r, t)u(r, t) ¨ dA. (2.1)

Here, dA is an infinitesimal oriented surface element normal to BV. For simplicity
and clarity, we will omit writing the dependence of the fields ρ and u on the position
r and time t in the following. According to Gauß’ theorem, the surface integral can
be rewritten as a volume integral

ż

BV
ρu ¨ dA =

ż

V
∇ ¨ (ρu)d3r. (2.2)
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2.1 Hydrodynamic flows

Since the choice of the integration volume V is arbitrary, the equality also applies to
the integrand, so that with Eq. (2.1) we obtain the continuity equation for the mass
density

Btρ = ´∇ ¨ (ρu). (2.3)

If we consider an incompressible fluid (∇ ¨ u = 0), we can use the so-called sub-
stantial or co-moving derivative D (˝)

Dt = (Bt + u ¨ ∇) (˝) to rewrite Eq. (2.3) as Dρ
Dt = 0.

Put in words, this means that as we move with a fluid parcel, the density of the
incompressible fluid remains constant.

To obtain the continuity equation for the momentum transport, we consider the
rate of change in total momentum

Bt

ż

V
(ρv)d3r (2.4)

in the fluid volume V. As for mass transport, we consider the transport of the
three components of momentum with the velocity field through the surface of the
stationary volume V. In vector notation this momentum flux through the surface is

ż

BV
(ρu b u)dA =

ż

V
∇(ρu b u)d3r (2.5)

However, in contrast to the conserved mass regarded before, the momentum of
the fluid is also changed by forces that act on the fluid inside V and at the surface
BV. These are (i) external forces such as gravity, that act in the whole volume,
and (ii) pressure and frictional surface forces arising from the interaction with the
neighboring fluid. The total external force (i) follows from the integration over the
whole volume of the force densities fext

ż

V
fext(r, t)d3r. (2.6)

The surface forces (ii) are described by the symmetric stress tensor σ(r, t) that
assigns every infinitesimal surface element dA an infinitesimal surface force dfA =
σ(r, t)dA. The specific form of the stress tensor σ depends on the physical properties
of the fluid under consideration, and will be addressed later. To obtain the total
surface force FA(t), the infinitesimal surface force is integrated over the whole
surface BV

FA(t) =

ż

BV
dfA =

ż

BV
σ(r, t)dA =

ż

V
∇σ(r, t)d3r, (2.7)

where we have used Gauß’ theorem again. In total, the change of momentum in
Eq. (2.4) is equal to the sum of Eq. (2.5), (2.6) and (2.7). Again using the arbitrary
choice of the integration volume V, we obtain Cauchy’s equation of motion for the
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2. Physics of swimming microorganisms

momentum transport

Bt(ρv) +∇(ρu b u) = ∇σ(r, t) + fext(r, t). (2.8)

Here, the external force acts as a source or sink of momentum, and can be, for
example, a uniform gravitational field fext = ρg.

To complete the description of the fluid flow, we also have to derive an equation
for the rate of change of energy. As for mass and momentum, we consider the energy
E(r, t) in an arbitrary stationary volume V in the fluid. This energy changes due to
advective transport, heat conduction, heat production and transfer of mechanical
work through the surface BV. Similar to before, integrals of flows across the surface
are transformed using Gauß’ theorem, such that we arrive at the equation for the
energy transport

BtE +∇ ¨ (Eu + q ´ σu) = 0. (2.9)

Here, Eu is the advective flow of energy, q is the heat current yet to be defined. The
term ∇(σu) describes the heat production due to friction and work performed by
the pressure. For isothermal systems, where the energy transport is not relevant for
the dynamics, the evaluation of Eq. (2.9) can be omitted. This is also the case for the
hydrodynamic flows around bacteria, which we consider in this work.

As became apparent in this section, the present hydrodynamic transport equa-
tions are quite general requiring only basic physical conservation laws and basic
vector calculus. However, we still need expressions for the viscous stress tensor σ,
the heat flux q and the thermodynamic pressure p, to close the set of equations [154].
These so-called constitutive relations are defined by the transport phenomena of the
physical fluid under consideration. In general they can be very model specific. In
the next section we derive the constitutive relations for the most common class of
the Newtonian fluids based on simple assumptions on the underlying materials.

2.2 Newtonian fluids

In the most simple case that applies to most ordinary liquids, the shear stress and heat
flux both depend linearly on the shear rate and temperature gradient, respectively.
This common behavior is expressed in the constitutive relations of the so-called
Newtonian fluids [151].

The hydrodynamic behavior of the Newtonian Fluids is described by the Navier-
Stokes equations, which combines these constitutive relations and the transport
equation derived above. In other words, Newtonian fluids are characterized in how
they react to deformations in the velocity field. To give a few counter-examples,
non-Newtonian fluids can exhibit shear stress which is non-linear in the strain rate
or viscoelastic stress that depends on the history of the deformation [154].

In the following, we first rationalize the constitutive relation of the heat flux. We
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2.2 Newtonian fluids

then describe how stress arises due to internal friction and pressure in the fluid and
express the dependence of the viscous part of the stress tensor on the velocity field.
Inserting the constitutive relation of the stress tensor into the Cauchy momentum
equations, we are then able to derive the Navier-Stokes equations.

2.2.1 Heat flux

Our intention is to express the conduction of heat in the most simple, linear depen-
dence on the temperature gradient. To justify this at the microscale, we have to
consider the transport of heat between two neighboring fluid elements due to molec-
ular motion and interactions. Clearly, the distribution of thermal energy has to vary
sufficiently smoothly in order to describe the fluxes resulting from inhomogeneities
as linear function locally. In view of the molecular processes, this requires that the
temperature gradient ∇T itself does not vary significantly over the length scale of
the molecular interaction λ, i.e. |BxT|/|B2

xT| " λ, which is usually satisfied in practice
[155]. In addition, the second law of thermodynamics requires that the heat flux
vanishes in the uniform distribution. Given these assumptions, the heat current can
be described by Fourier’s law of heat conduction q = ´κ∇T [154]. Here κ denotes
the scalar thermal conductivity that applies for isotropic materials [155]. It is worth
noting that, with this definition, the energy transport equation describes diffusion of
thermal energy in the absence of flow, u = 0.

2.2.2 The fluid stress tensor

The constitutive relation for the stress tensor can be derived as follows [156, 157].
First, we separate out the thermodynamic pressure p which is a material property of
the fluid at equilibrium and not related to the derivatives of the velocity field v(r).
Thus, we write σ = ´pI + σ1, where I is the identity matrix and the second term
σ1 the viscous stress tensor. In contrast to the pressure contribution, viscous stress
arises from the friction of two neighboring fluid layers moving relative to each other.
The viscous stress tensor is therefore only proportional to derivatives of the velocity
field and vanishes when the fluid is in uniform motion or at rest. For small velocity
gradients it is sufficient to consider only the first order derivatives. The fact that
no internal friction occurs in uniform rotational fields further constrains σ1 to the
symmetric part of the velocity gradient. All together, we obtain the following for the
viscous stress tensor

σ1 = η

[︃
(∇ b u)T +∇ b u ´

2
3

I(∇ ¨ u)
]︃
+ η1I(∇ ¨ u). (2.10)

Here, the first term in square brackets is the traceless rate of deformation tensor
while the second term describes pure isotropic compression given by the trace of the
symmetric velocity gradient. The viscosity coefficients η and η1 are thereby intrinsic
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2. Physics of swimming microorganisms

properties of the fluid and independent of the fluid motion, but depend on the
density ρ and temperature T of the fluid. The viscosity η1 related to volume changes
is generally referred to as bulk viscosity and is sometimes written as η1 = γ ´ 2η/3,
with the new parameter γ, to rearrange Eq. (2.10) [157]. Inserting the stress tensor
into Eq. (2.9) for the hydrodynamic transport of energy one obtains the conditions
that η ě 0 and η1 ě 0 to guarantee the positivity of the entropy production rate in
accordance with the second law of thermodynamics [154].

In the case of incompressible fluids (∇ ¨ u = 0) the viscous stress tensor reduces
to

σ1 = η
[︂
(∇ b u)T +∇ b u

]︂
. (2.11)

This simplification is justified if the typical flow speed |u| is much smaller than the
speed of sound usound and the Mach number M = |u|/usound ! 1 is small. In this
case, the motion of the fluid u is not subject to compressibility effects, and that the
fluid appears incompressible [154].

2.2.3 The Navier-Stokes equations

Using the continuity equation (2.3), we may first transfer the Cauchy momentum
equation from its conservation form to the convective form

ρ (Btu + u ¨ ∇u) = ∇σ + fext. (2.12)

Since the typical flow velocity in the context of microscopic self-propelled particles is
very small compared to the speed of sound, we restrict ourselves to the case of incom-
pressible fluids ∇ ¨ u = 0 in the following. Consequently, also the density ρ(r, t) = ρ

becomes a constant. Inserting the stress tensor in the above equation, we note that
the divergence of the first term η(∇ b u)T vanishes due to the incompressibility
condition, such that we arrive at the Navier-Stokes equations for incompressible
fluids

ρ (Btu + u ¨ ∇u) = ´∇p + η∇2u + fext. (2.13)

In this form, a moving fluid parcel is accelerated due to gradients of pressure and
external force densities. Additionally, it exchanges momentum with the rest of the
fluid via momentum diffusion, described by the second order derivative η∇2u. To
solve the Navier-Stokes equations for the unknown velocity field u(r), additional
boundary conditions are necessary. In the case of solid walls this is the so-called
no-slip condition, which states that u(r) = 0 at the wall. Note that the co-moving
derivative on the left hand side of the equation is non-linear in the velocity which
greatly complicates solving it in practice [158].

To further characterize the flow, we require a knowledge of the geometry and the
typical flow velocity such that characteristic scales of the length L, flow velocity U
and time T can be specified. Using these characteristic parameters along with the
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2.2 Newtonian fluids

density ρ and viscosity η the Navier-Stokes equation can be converted into a non-
dimensional form that contains only a few dimensionless parameters that further
characterize the flow [154, 159]. In this manner we use the characteristic length L,
flow velocity U and time T = L/U to introduce dimensionless variables according
to

ũ ” u/U, t̃ ” tU/L, ∇Ă ” L∇, p̃ ” pL/ηU, f̃ ” fextL2/ηU.

For a flow inside a channel, U is the maximum velocity in the center, while in an
unbounded flow it is chosen as the flow velocity at infinity. For a microswimmer U
corresponds to the self-propulsion velocity. These choices are not unique, especially
the choice of the inherent time scale T = L/U applies to stationary flow problems,
and the non-dimensional pressure may also be defined as p̃ = p/ρU2 [154]. Inserting
these definitions into the Navier-Stokes equations, we obtain the dimensionless form

Re
(︃

Bũ
B t̃

+ ũ ¨ ∇Ăũ
)︃

= ´∇̃ p̃ +∇Ă
2
ũ + f̃. (2.14)

Here, we have introduced the Reynolds number

Re ”
ρLU

η
, (2.15)

which describes the ratio between the inertial forces (numerator) and viscous forces
(denominator) of the Navier-Stokes equations [160]. An important implication for
systems with the same Reynolds number is that their flows are similar and can be
transformed into each other by a simple re-scaling of the lengths, velocities, and time
[156]. As a very illustrative consequence, aerodynamic studies can be performed
using miniaturized models immersed in water. In this particular example the change
in length scale L and viscosity η cancel in the Reynolds number and the two flows
are called similar. For large Reynolds numbers the non-linear term u ¨∇u is relevant
and makes the general solution of the Navier-Stokes equation complicated. In this
case, steady flows are unstable to small disturbances, which may lead to turbulent
flows [154, 160]. Of particular interest for us is the case of low Reynolds number
Re ! 1, where the Navier-Stokes equation can be further simplified to the so-called
Stokes equation.

2.2.4 The Stokes equations

For hydrodynamic flows in the context of bacteria and other microscopic particles,
length scales and typical flow velocities are small. Both of these conditions imply
that the Reynolds numbers Re ! 1 is small and thus the hydrodynamic flows are
dominated by the viscous terms on the right-hand side of Eq. (2.14) of the Navier-
Stokes equation. For this reason microscopic flows are termed strongly viscous [157].
Given these circumstances, the inertial terms on the left hand side of Eq. (2.14) can
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2. Physics of swimming microorganisms

be neglected, and we arrive at the so-called Stokes equations for creeping motion
[159]

η∇2 u ´ ∇p + f = 0
∇ ¨ u = 0 (2.16)

in terms of the dimensional variables. However, one should note that low Reynolds
numbers may also occur in very dilute aerodynamic flows [157].

The Stokes equations (2.16) manifest some important implications for hydro-
dynamic flows at low Reynolds numbers. Most crucially, without the convective
derivative in the inertial term the Stokes equation becomes a linear partial differ-
ential equation of the velocity and the pressure, such that flow problems can be
solved using Green’s formalism and boundary integral methods [159]. Another
consequence is the absence of a time derivative, such that solutions of the Stokes
equations are instantaneous and steady flows.

Note that there is also the so-called transient Stokes flow which also comprises the
acceleration term ρBtu. This hydrodynamic regime appears when the characteristic
acceleration time does not occur on the slow time scale L/U chosen in Eq. (2.14)
before, but over the much faster time scale L2ρ/η that is required for the vorticity
to diffuse over the characteristic length L. In this case the acceleration term ρBtu is
of the same order as the viscous terms and only the nonlinear term u ¨ ∇u can be
neglected for the Navier-Stokes equations [154, 158].

2.2.4.1 Fundamental solution of Stokes flow

The fundamental solution or Green’s function for Stokes flow is the flow field
generated by a point force acting on the fluid. It can be derived from the Fourier
transformation of the Stokes Eq. (2.16) and the incompressibility condition [158].
To account for an arbitrary orientation of the force the most general form of this
solution has the tensorial form

O(r) =
G(r)
8πη

=
1

8πη

(︃
I
r
+

r b r
r3

)︃
, (2.17)

for a point force located at the origin [161]. Thereby, the term O(r) is called the
Oseen tensor, but often we use G(r) in calculations without the factor (8πη)´1 for
simplicity. The associated pressure field has the form

p(r) =
1

4π

r
r3 . (2.18)

The solution uFM(r) = O(r)F and p = p(r) ¨ F for a given point force F is called
Stokeslet. Due to its appearance in response to a point force, the Stokeslet is also
called hydrodynamic force-monopole. The flow field for an arbitrary distribution of
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2.2 Newtonian fluids

forces F(r) can then be obtained by convolution with the Oseen tensor [161]

u(r) =

ż

V
O(r ´ r1)F(r1)d3r1 (2.19)

and the associated pressure field

p(r) =

ż

V
p(r ´ r1) ¨ F(r1)d3r1. (2.20)

Additional to the Stokeslet, the Stokes equations have another branch of solutions
for constant pressure p. In this case, the Stokes equation takes the form of the Laplace
equation with the vectorial solution [159]

uSM(r) = c
r
r3 , (2.21)

which describes a sink or a source with a flux of fluid into or out of the origin,
depending on the sign of the constant c.

2.2.5 Higher order singularities

Similar to electrostatics, the flow field of an arbitrary object can the be expressed
as a series of multipoles. To do so, the Oseen tensor in Eq. (2.19) for an arbitrary
disturbance is expressed in a Taylor series

G(r ´ r1) =
8
ÿ

n=0

(´r1 ¨ ∇)n

n!
G(r). (2.22)

We may then separate the primed and unprimed variables. The integration over
the primed variable yields the multipole coefficients of F(r), while the higher-order
gradients of G(r) represent the Stokes multipole moments, which are also solutions
to the Stokes equations. Note that in the context of the multipole expansion the factor
(8πη)´1 is integrated into the multipole coefficients so that we write ui(r) = f jGij(r̃)
with f j = Fj/(8πη) for the Stokeslet, and so on.

In the most general form, the Stokes multipoles moments are directional deriva-
tives

śn
i=1(d̂i ¨ ∇1)n that differentiate in the direction of the unit vectors d̂i with

respect to the position of the singularity. In the following we will write these deriva-
tives as gradients of the force and source monopole fields such that a singular solu-
tion of n-th order is described by a tensor of rank (n + 2). The flow fields then follow
from the contraction with a tensorial multipole coefficient d1,...,i = d1 b d2 b . . . b dn
of rank-(n + 1) that describes the directional derivatives [158, 159].

Applying one directional derivative to the source monopole results in the flow
field of two sources with opposite sign, separated by the vector d. Denoting the
distance to the singularity with r = |r̃|, where r̃ = r ´ r1 and r1 is the position of the
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2. Physics of swimming microorganisms

singularity, the resulting source dipole is described by the tensor

GSD
ij (r̃) =

B

Br1
i

r̃j

r̃3 = ´
δij

r̃3 +
3r̃i r̃j

r̃5 , (2.23)

and the resulting flow field is uSD
i (r) = djGSD

ij (r̃) (using the Einstein sum conven-
tion). The source dipole is also related to the force monopole through the relation
GSD

ij (r̃) = ´1
2∇

12Gij(r̃).
Higher order solutions derived from the Oseen tensor are the force dipole

GFD
ijk (r̃) = B

1
kGij(r̃) =

δijr̃k ´ δikr̃j ´ δjkr̃i

r̃3 +
3r̃i r̃jr̃k

r̃5 , (2.24)

and the force quadrupole GFQ
ijkl(r̃) = B1

lG
FD
ijk (r̃). Two other notable solutions are

a uniform rotation of the flow field — also called rotlet — which follows from
the combination of two force dipoles, i.e., anti-symmetric part of the gradient of
the Stokeslet GR

ij(r̃) = ´1
2 ϵkljBlGik(r̃) = ϵijk

r̃k
r̃3 and its gradient, the rotlet dipole

GRD
ijk (r) = B1

kϵijl
r̃l
r̃3 [159]. The latter of these two is encountered in the context of

microswimmers for the rotating flagella of bacteria [162]. For microswimmers,
additional symmetry arguments are used to simplify the tensorial forms as we show
in the following.

2.2.5.1 Multipole expansion for axisymmetric microswimmers

We investigate the multipole expansion of the flow field u(r) of our model mi-
croswimmers to provide an understanding of their hydrodynamic pair interactions.
To introduce the multipole expansion in the context of microswimmers, a few simpli-
fications are made. First of all, we consider microswimmers as axisymmetric around
their direction of swimming ê [65, 74]. In this case, the symmetry requires that all gra-
dients in Sec. 2.2.5 reduce to directional derivatives of the Stokeslet (ê ¨ ∇1)n[G(r̃)ê]
and source dipole (ê ¨ ∇1)n[GSD(r̃)ê] and all multipole coefficients reduce to scalars.
Furthermore, self-propelled particles are typically free of external forces and do not
consume fluid such that the force and source monopole moments are not present in
their flow fields [65, 162]. In Fig. 2.1 we show a collection of the first axisymmetric
multipoles beginning with the Stokeslet [Fig. 2.1(a)] and its first two derivatives
[Figs. 2.1(b) and (c)], along with the source monopole in Fig. 2.1(d) and its first two
derivatives [Figs. 2.1(e) and (f)].

At large distances to the microswimmer located at the origin of the coordi-
nate system, the flow field can then be written as a sum of the velocity fields of a
force dipole (uFD), source dipole (uSD), force quadrupole (uFQ), and rotlet dipole (uRD)

u(r) = uFD(r) + uSD(r) + uFQ(r) + uRD(r) + O(r´4) (2.25)
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2.2 Newtonian fluids

Figure 2.1: Flow fields of different singular solutions of Stokes flow in the laboratory
frame of reference. The top row shows the solutions based on point forces (a)
Stokeslet/hydrodynamic force monopole (uFM), (b) force dipole (uFD), (c) force
quadrupole (uFQ). The bottom row shows the potential flow solutions for constant
pressure p, namely (d) source monopole (uSM), (e) source dipole (uSD), (f) source
quadrupole (uSQ)

up to 3-rd order in 1/r. Among these moments, the force-dipole field |uFD|91/r2

has the longest range. If it is present for a type of microswimmer, it is usually the
dominant mode for pair interactions in the far field [74]. In the following, we omit
the rotlet dipole since it does not appear for the microswimmer model used in this
work.

In the case of axisymmetric flow fields, the multipoles can be expressed using
spherical coordinates with the swimmer located at the origin of the coordinate
system [69, 74, 114]. We introduce the polar angle θ relative to the swimmer axis
according to cos θ = ê ¨ r / r. Then, in spherical coordinates r, ϕ, and θ the respective
radial and polar components of the multipole expansion of the velocity field become

ur(r, θ) =
8
ÿ

n=1

[︂
Anr´n + Bnr´n´2

]︂
Pn(cos θ), (2.26)

uθ(r, θ) =
8
ÿ

n=1

[︄(︃
n
2

´ 1
)︃

Anr´n +
n
2

Bnr´n´2

]︄
Vn(θ). (2.27)
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2. Physics of swimming microorganisms

Here, Pn(cos θ) are the ordinary Legendre polynomials and

Vn(θ) =
2 sin θ

n(n + 1)
P1

n(cos θ) , (2.28)

where 1 denotes the derivative with respect to cos θ. The coefficients An and Bn
describe the strength of the respective nth-order force and source multipoles, e.g.,
B1 belongs to the source dipole. Due to the restriction to axisymmetric flow fields
ur(r, θ) and uθ(r, θ) are independent of the azimuthal angle ϕ. Furthermore, the
azimuthal velocity component uϕ vanishes since the swimmer is torque-free and we
do not consider a rotlet-dipole or derivatives of it.

The form of Eq. (2.26) may be used to decompose a flow field u(r) measured in
experiments or simulations into the series of multipole moments An and Bn [163].
To determine the terms An and Bn, we calculate the nth Legendre coefficient of the
radial component ur(r, θ) from the integral

ur,n(r) ”
2n + 1

2

ż π

0
ur(r, θ)Pn(cos θ) sin θ dθ

= Anr´n + Bnr´n´2, (2.29)

due to the completeness relation of the Legendre polynomials. With the knowledge
of a flow field and, in particular, the radial decay of the nth Legendre coefficient
ur,n(r), we can then infer the multipole coefficients An and Bn. Force and source
multipole moments can thereby be distinguished using their different radial decay.

Note that for a spherical rigid body each pair of An and Bn for n ą 1 is not
independent because the radial velocity ur(r, θ) has to vanish on the surface of the
body, due to the no-slip boundary condition.

2.3 Swimming at low Reynolds number

2.3.1 Flow field of a moving sphere

With regard to the hydrodynamic flow fields of arbitrary microswimmer models,
which will be considered in the following, it is instructive to look at the flow field of
a rigid sphere moving in a bulk fluid with the velocity U. To do so, we consider the
multipole expansion in spherical coordinates given in Eqs. (2.26) and (2.27). With
P1(cos θ) = cos θ and V1(θ) = sin θ we see that only terms of order n = 1 are suitable
to fulfill the boundary condition of a rigid moving sphere. For a sphere of radius R
the no-slip boundary condition gives ur(R, 0) = |U| and uθ(R, π/2) = ´|U|. For the
terms in the square brackets in Eqs. (2.26) and (2.27) we then find A1 = 3|U|/2 and
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2.3 Swimming at low Reynolds number

B1 = ´R2|U|/2. In Cartesian coordinates we obtain the velocity field

u(r) = 6πηU

(︄
1 +

R2

6
∇12

)︄
O(r ´ r1) (2.30)

as combination of the Stokeslet with magnitude A1 and a source dipole with magni-
tude B1 for a sphere located at r1, where we used the relation GSD(r̃) = ´1/2∇12G(r̃)
[158]. Due to the different radial decay of the two hydrodynamic multipoles, the
Stokeslet dominates the flow field at large distances r " R. Furthermore, we can
deduce the force acting on the moving sphere

F = 6πηRU (2.31)

which follows from the prefactor of the Stokeslet term. This force is related to the
inhomogeneity in the Stokes equation fext which drives the sphere.

2.3.2 Biological microswimmers

The fact that microorganisms swim in the regime of low Reynolds number governed
by the Stokes equation, has important implications for their propulsion strategies.
Phenomenologically speaking, low Reynolds numbers imply the dominance of
viscous friction such that microswimmers are not able to exploit their own inertia
during their propulsion as human swimmers do. More precisely, since the Stokes
equation is linear and contains no time derivative, its solutions are instantaneous
and exhibit kinetic reversibility. This means that for a solution u, ∇p and fext, also
the reverse flow ´u is a solution for ´∇p and ´fext [159]. As a consequence, the
propulsion strategies of microswimmers must use non-reciprocal deformations to
achieve a net displacement [164], which is know by the term Scallop theorem [165].

To solve this constraint on swimming strokes, nature has found a number of
different strategies. Organisms as Opalina, Paramecium or Volvox [70, 166] are en-
tirely covered by hair-like appendages, called cilia, which perform a non-reciprocal
beating motion [see Fig. 2.2(a)]. On a large scale, neighboring cilia synchronize
via hydrodynamic interactions such that metachronal waves form and push the
swimmer forward [69]. Pusher-type organisms as the bacteria E. coli or B. subtilis
[28, 38] possess a number of flagella joined in a bundle, which are shaped similar to
a cork-screw [see Fig. 2.2(b)]. The rotation of this flagella bundle pushes the fluid
backward similar to a propeller, and thus pushes the swimmer forward through the
fluid. Puller-type organisms as the Chlamydomonas algae [167, 168] have developed
two shorter flagella extending from the front of the cell body performing a beating
pattern similar to a breast stroke as depicted in see Fig. 2.2(c).

The three swimming strategies described so far differ decisively in their flow
fields. As we have seen in Sec. 2.3.1, a moving sphere free of external forces generates
the flow field of a source dipole. Even more, the source dipole is in fact present for
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Figure 2.2: Sketches of the three fundamental types of biological microswimmer
propulsion. (a) Ciliated organisms such as Opalina, Paramecium or Volvox [70, 166]
are entirely covered by hair-like cilia, which transport fluid along their surface. (b)
Pusher type organisms as the bacteria E. coli or B. subtilis [28, 38] use a bundle of
rotating flagella to push themselves through the fluid. (c) Puller type organisms as
the Chlamydomonas algae [167] use two beating flagella that fulfill a breast-stroke-like
motion to pull themselves through the fluid [168]. Dashed blue lines are used to
sketch the effective stroke averaged body shape of the swimmers including their cilia
or flagella. As depicted in the sketches, the cell bodies of all three microswimmer
types are rather elongated than spherical.

all self-propelled particles [162]. Fascinatingly, the surface slip-velocity of the source
dipole closely resembles the stroke averaged biological cilia beating patterns such
that the source dipole corresponds to ciliates like Opalina or Paramecium [114].

The swimming patterns of pushers and pullers generate an asymmetric distribu-
tion of forces, which results in the flow field of a force dipole in leading order. For
pushers the flagella create a backward pushing force, while the cell body pushes
fluid forward, for pullers the situation is reversed [74]. Consequently the flow field
of pushers and pullers possesses a force dipole moment of opposite sign as shown in
Fig. 2.1(b). The force dipole decays as „ r´2 with the distance to the swimmer, such
that the flow fields of pushers and pullers are more long-ranged than the source
dipole „ r´3 characteristic for ciliates. More complex shapes, such as elongated
particles, result in higher order multipole moments which are necessary to fulfill the
boundary conditions of the surface of the swimmer.

2.3.3 Flow fields of elongated particles

Different analytical approaches exist for the treatment of the flow field of elongated
particles. To begin with, the ordinary multipole expansion given in Eqs. (2.41), (2.26)
and (2.27) may be applied. This description results in higher-order terms to fulfill the
no-slip boundary condition on the non-spherical surface of the elongated particle,
and as we will see also the distribution of the surface slip velocity plays a role. A
more detailed picture of microswimmers and resulting boundary conditions will be
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2.4 Swimming in confinement

given in Sec. 2.6.
Another approach exists for ellipsoidal particles, which are relatively simple to

treat mathematically. In this case, the Stokes equation can be solved in elliptical
coordinates resulting in a multipole expansion in ellipsoidal harmonics [169–171].
Relating this solution to the ordinary multipole series the flow field may be written
in terms of a distribution of Stokeslets. However, the formulation of these solutions
are quite intricate, for more details we refer to Ref. [158].

Lastly, the so-called slender body theory is applied in the limit of thin elon-
gated particles as, for example, rigid polymers or fibers. In a nutshell, instead of
considering a volume distribution of Stokeslets as in Eq. (2.19), the distribution of
the disturbance forces is approximated by a line distribution of Stokeslets, source
dipoles, and force dipoles. The resulting velocity field is then obtained from a line
integral over the distribution of the singularities. In the limit of thin spheroids, the
ellipsoidal solution is consistent with the slender body theory [158].

2.4 Swimming in confinement

Although many microswimmers live in vast habitats that resemble a bulk fluid,
confined geometries are also a common environment. For example, on solid surfaces
or at air interfaces [172, 173]. Furthermore, Stokes flow in channels is relevant in the
context of blood flow [131, 142, 143], and also experimental setups using droplets,
Petri dishes or microscope slides [174].

In the presence of solid walls or interfaces, the solution of the Stokes equations
has to be adjusted such that it fulfills the boundary conditions, i.e., the no-slip
condition on the walls. In the following, we will therefore first consider the case of a
Stokeslet in the presence of a single plane no-slip wall. Then, we will proceed to the
Hele-Shaw geometry of a microswimmer between two parallel plane no-slip walls,
which is used throughout this work.

2.4.1 Stokes flow near a plain wall

A showcase of swimming in confinement is in the presence of a single plain wall. In
this case, analytical formulas have been derived by Blake et al. for a Stokeslet [175]
and other multipoles [178]. In the presence of a wall, the so-called Lorentz image
technique is used to fulfill the boundary condition for the velocity field similar to
electrostatics [158]. For a Stokeslet the mirrored image Stokeslet is accompanied by a
force dipole and a source dipole in order to fulfill the no-slip boundary condition at
the wall [175]. The resulting flow field for a point force pointing towards the wall
is shown in Fig. 2.3(a). The combined image system fulfills the no-slip boundary
condition and is often called Blake tensor. For the Stokeslet located at r1 with the
position r2 mirrored at the plane perpendicular to the z-direction it takes the form
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Figure 2.3: Image systems for a Stokeslet in the presence of solid walls. (a) In the
presence of a single infinite wall with no-slip boundary conditions, the image system
consisting of a Stokeslet, force dipole and source dipole is known as the so-called
Blake tensor [175, 176]. (b) In the Hele-Shaw geometry, the system is confined by two
parallel infinite walls with no-slip condition. In this case, the image system consists
of an infinite recursion of reflections, which results in a different characteristic of
hydrodynamic flow fields [177].

[159, 175, 176]

Bij(r, r2(r1)) = (´δjk ´ 2r2
z δk3∇2

j + (r2
z)

2Mkj∇22)Oik(r ´ r2) (2.32)

where M = diag(1, 1, ´1). For a plane that lies in the origin of the coordinate
system r2 = r1 ´ 2(r1 ¨ ẑ). The total flow field at r1 due to a point force f then reads
u(r) = [O(r ´ r1) + B(r, r2)]f. In Eq. (2.32), we can recognize the reflected Stokeslet,
force dipole and source dipole from left to right. The additional image system near
the plane wall affects the far field of the force monopole such that it behaves as a
force dipole if it is oriented parallel to the wall, or like a source dipole if it oriented
normal to the wall. Likewise, a rotlet near a plane wall appears as a rotlet dipole
[178].

2.4.2 The Hele-Shaw geometry

The geometry which we use throughout this work is the so-called Hele-Shaw ge-
ometry where the fluid is confined between two parallel plane walls with small
distance ∆z as shown in Fig. 2.3(b). This geometry describes for instance the fluid
between microscope slides or a thin fluid film in Petri dishes. Similar to the presence
of a single plane wall presented before, image singularities are used recursively to
solve the boundary conditions. However, an infinite number of recursive image
singularities are necessary in order to fulfill the boundary conditions at both walls.

As Liron and Mochon showed, an analytical solution can also be derived in this
geometry [177]. The solution involves a Fourier transformation in two dimensions,
where the infinite series of image singularities can be separated into an algebraic far
field contribution and an exponentially decaying near field term. The approach was
recently generalized to fluids in a thin film, i.e., with one no-slip and one slip wall,
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2.4 Swimming in confinement

and higher order singularities by Mathijssen et al. [176]. For a point force located at
position r1 the modified Green’s tensor at the position r is given by

Gij(r, r1) = ´24∆z
rz

∆z

(︃
1 ´ c

rz

∆z

)︃
r1

z
∆z

(︄
1 ´ c

r1
z

∆z

)︄[︄
δαβ

2ρ̃2 ´
r̃αr̃β

ρ̃4

]︄
δiαδjβ +O

(︂
e´ρ̃/∆z

)︂
.

(2.33)
Here, r̃ = r ´ r1 denotes the distance to the point force, ρ̃ =

b

r̃2
x + r̃2

y, and the
coefficient c distinguishes the parallel plates geometry (c = 1) and thin film case
with one slip boundary condition (c = 1/2). The corresponding pressure reads

Pj(r, r1) = ´
12η

∆z
r1

z
∆z

(︄
1 ´ c

r1
z

∆z

)︄
r̃α

ρ̃2 δjα +O
(︂

e´ρ̃/∆z
)︂

. (2.34)

Here, the Greek indices α, β denote the first two dimensions parallel to the confining
walls.

As we see here, the solution contains a leading order far-field term with an
algebraic radial decay if the force is oriented parallel to the walls (square brackets)
and an additional near field term with exponential decay. The structure of this
far-field term thereby behaves as a two-dimensional source dipole in the direction
parallel to the walls [176], and has a parabolic or shape in the direction perpendicular
to the walls. If the force is oriented perpendicular to the walls, the entire flow field
decays exponentially.

As in the bulk fluid, higher-order force moments follow from applying the
directional derivative (ê ¨ ∇1) to the Green’s function [176]. Likewise, applying the
Laplace operator ∇12 to the Green’s function flow field yields the flow field of a
source dipole, which here is up to a factor identical to the Green’s function [176].
Higher source-multipole moments are again generated by directional derivatives.
For an axisymmetric microswimmer oriented in the direction of ê the contributions
to the flow field are [162, 176]

uFD(r) = κ(ê ¨ ∇1)G(r, r1)ê (2.35)

uFQ(r) = ν(ê ¨ ∇1)2G(r, r1)ê (2.36)

uSD(r) = ´σ
1
2
∇12G(r, r1)ê (2.37)

uSQ(r) = ´χ(ê ¨ ∇1)GSD(r, r1)ê (2.38)

where ∇1 denotes the derivative with respect to the position of the singularity at r1.
In general, the multipole coefficients can be transferred from the bulk flow since the
same strength of the singularity is considered for the derivation of e.g., Eq. (2.33). In
order to discuss the implications of the modified multipole terms, we calculate the
expressions for the force dipole and source dipole terms. In the following, we restrict
ourselves to the case where the microswimmer is oriented parallel to the confining
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walls. In the Hele-Shaw geometry, the flow field of the source dipole resulting from
Eq. (2.37) reads

GSD
ij = ´

24c
∆z

rz

∆z

(︃
1 ´ c

rz

∆z

)︃[︄
δij

2ρ̃2 ´
r̃jr̃i

ρ̃4

]︄
. (2.39)

Here, we neglected the exponentially decaying terms of the near field in Eq. (2.33),
such that this far-field limit of the flow field is independent of the swimmer height
r1

z. For the force dipole we obtain

GFD
ij (r, r1) = ´24∆z

rz

∆z

(︃
1 ´ c

rz

∆z

)︃
r1

z
∆z

(︄
1 ´ c

r1
z

∆z

)︄⎡⎣2δijr̃j

ρ̃4 +
r̃i

ρ̃4 ´
4r̃i r̃2

j

ρ̃6

⎤⎦ . (2.40)

As we can read from Eqs. (2.33), (2.39) and (2.40) an important characteristic of
the Hele-Shaw geometry is that the flow fields decay with different exponents in ρ̃

compared to the bulk fluid. For the force multipoles, this means that the velocity
fields decay more rapidly with the order of G9ρ̃´2 and GFD

9ρ̃´3, whereas in the
bulk fluid G9r̃´1 and GFD9r̃´2. At the same time, the source dipole and other
source multipoles become more long ranged such that the velocity fields decay as
GSD

9ρ̃´2 compared to the bulk case where GSD9r̃´3. This transformation of the
radial decay radically changes the nature of the flow fields and also hydrodynamic
interactions in comparison to the flow fields in bulk [179].

Independent of the geometry, the source dipole is the lowest-order multipole
term for microswimmers free of external forces, which occurs for all self propelled
particles [162].

However, in the bulk flow the force dipole which is more long-ranged and
therefore always the dominant term of the far field, if it exists [179]. As we saw,
this changes in the Hele-Shaw geometry such that the source dipole becomes the
dominant term of the flow field, being most long-ranged. Although this seems to
implicate that it becomes irrelevant to distinguish between pusher and puller type
microswimmers, this is not the case. As we show, the force dipole still dominates
the intermediate range of the flow field, while the source dipole dominates the far
field [125].

Comparing the source dipole in Eq. (2.39) and the Green’s function in Eq. (2.33),
which are of the same order ρ̃´2, note that they both have the same shape
[δij/2 ´ r̃i r̃j/ρ̃2] of a two-dimensional source dipole. Furthermore, in the Hele-Shaw
geometry force and source singularities of equal order n also possess the same radial
decay ρ̃´(n+1).

Consequentially, the pairs of singularities of order n only differ in their de-
pendence on the confinement strength ∆z, which can be identified from the re-
maining factors ∆z and 1/∆z in Eqs. (2.33) and (2.39), respectively. For the force
monopole in Eq. (2.33) and higher-order force multipoles, the factor ∆z is factored
out from the hyperbolic profiles in rz and r1

z. For the source multipoles, the identity
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uSD(r)9∇12(G(r, r1)ê) results in a factor of 1/∆z instead.
In other words, the magnitude of the force multipoles increases with the height

of the Hele-Shaw geometry. At the same time, the magnitude of the source multipole
increases with the strength of the confinement. Thus, force and source multipoles
of the same order in ρ̃ may only be identified in a given flow field by using their
dependence on ∆z.

2.4.3 Multipole expansion in the Hele-Shaw geometry

With the multipoles presented in Sec. 2.4.2 it is possible to construct a series ex-
pansion for the flow field of a microswimmer similar to the bulk fluid. Again, we
consider the relevant flow fields of the source dipole (uuuSD), force dipole (uuuFD), force
quadrupole (uuuSD), and source octupole (uuuSD) in the Hele-Shaw geometry

u(r) = uuuSD(r) + uuuFD(r) + uuuFQ(r) + uuuSO(r) + . . . . (2.41)

Although the source quadrupole behaves equally to the force dipole in the Hele-
Shaw geometry, it is omitted here because we neither observe in the bulk fluid nor in
the Hele-Shaw geometry. This series is converted into a form similar to the bulk case,
such that a measured or simulated flow field can be decomposed into its multipole
moments and thereby determine the contributions in Eq. (2.41).

First, we switch to cylindrical coordinates (ρ, φ, z). We eliminate the z-dependence
by averaging over the z coordinate, restricting the height of the singularity r1

z to
r1

z = ∆z/2, and then obtain the average radial component from the projection on êρ,

ũρ(ρ, φ) ”
êρ

∆z
¨

ż ∆z

0
u(ρ, φ, z)dz. (2.42)

Applying this transformation to the flow fields of the multipoles presented in Sec.
2.4.2 we identify that the radial coordinates of the velocity can be written in terms of
Chebyshev polynomials of the first kind Tn(cos φ) = cos

(︁
nφ
)︁

[125]. For example,
for the force monopole we obtain

ũFM
ρ (ρ, φ) = A1ρ´2T1(cos φ) (2.43)

and for the source dipole

ũSD
ρ (ρ, φ) = B1ρ´2T1(cos φ) (2.44)

for a motion along the x axis, ê = êx. This form again shows the force monopole
and source dipole have the same dependence on ρ and φ, resulting in the same
factor ρ´2T1(cos φ), similar to other multipoles of the same order. Here, we have
integrated the ∆z dependence and remaining factors into the coefficients such that
they scale as A19∆z and B19∆z´1, respectively. Applying the identities (2.35) to
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(2.38) repeatedly also to higher order multipoles, one obtains a multipole series

ũρ(ρ, φ) =
8
ÿ

n=1

An + Bn

ρn+1 Tn(cos φ) . (2.45)

Here, An „ ∆z and Bn „ ∆z´1 are the respective coefficients of the force and source
multipole moments which all show the same scaling with the confinement strength
„ ∆z and „ ∆z´1, respectively. Again we can recognize that in case of a force-free
swimmer, A1 = 0, the source dipole becomes the most long-ranged multipole for
microswimmers in the Hele-Shaw geometry.

We may use the orthogonality relations of cos
(︁
nφ
)︁
= Tn(cos φ) to extract the

multipole moments from Eq. (2.45) by projecting ũρ(ρ, φ) on the Chebyshev polyno-
mials,

ũρ,n(ρ) ”
1
π

ż 2π

0
ũρ(ρ, φ) Tn(cos φ)dφ, (2.46)

which yields

ũρ,n(ρ) =
An + Bn

ρn+1 . (2.47)

We again stress that, in contrast to the bulk fluid [Eq. (2.29)], force and source
multipoles of same order n cannot be distinguished in a given flow field in the form
of Eq. (2.42) at constant ∆z. Principally, the different scaling with the slab width ∆z
may be used to infer the coefficients An and Bn, although in practice our simulation
data presented in Section 4.2 is not always sufficiently accurate to distinguish both
cases.

However, the relevant multipole coefficients may be transferred from the bulk
fluid, which can be rationalized as follows. On the one hand, both multipole ex-
pansions capture the disturbance created by a microswimmer in leading order, and
the characteristic distribution of force and source multipoles should remain the
same in the Hele-Shaw geometry. On the other hand, in contrast to a point-like
singularity higher-order terms enter to fulfill the boundary conditions on the surface
of a voluminous microswimmer and on the bounding plates. However, these are
short-ranged and do not contribute to the far field.

2.5 Hydrodynamic interactions

Hydrodynamic interactions emerge through the advection of particles in the flow
fields created by other particles, or the by the effective flow field resulting through
the reflection at a boundary as in, for example, Eq. (2.32). In the first case, the particle
interacts with another particle, in the second case with a wall.

In this section we will give a brief overview over the dynamical response of
spherical and elongated particles to arbitrary flow fields. Subsequently, we will
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argue how this affects interactions between particles. We start with Faxén’s law
for spherical particles which describes velocity and reorientation resulting from a
background flow. We will then describe the generalization to the case of prolate
spheroids, which will also lead us to the Jeffery orbits of elongated particles in shear
flow.

2.5.1 Faxén’s law

Faxén’s law describes the advection v and rotation ω of a particle in a background
flow u(r). The formalism uses a formulation of the Lorentz’ reciprocal theorem, an
integral theorem that follows from Green’s second identity and the structure of the
stress tensor [158]. The formulation

¿

S

u(σ1
¨ dS) ´

ż

V
u(∇ ¨ σ1)d3r =

¿

S

u1(σ ¨ dS) ´

ż

V
u1(∇ ¨ σ)d3r. (2.48)

relates two different solutions u, σ and u1, σ1 of the Stokes equation. Choosing
different solutions for u and u1, the reaction of different particles shapes to specific
flows can be calculated. To specifically obtain the force acting on a moving sphere of
radius R, the first solution u, σ is the flow field of the sphere moving with velocity v
which is yet to be determined. As second solution u1, σ1 serves the flow field of a
sphere in the flow of a point force acting on the fluid. For a sphere at the position r
the resulting hydrodynamic force is given by [157, 180]

v =
F

6πηR
+

[︄
1 +

R2∇2

6

]︄
u(r). (2.49)

Here, the first term coincides with Stokes-law for the velocity of a sphere due to the
external force F in the case of u(r) = 0. The first term in the square brackets is the
leading order direct advection in the flow field, while the additional term ∇2u =
∇p/η can be understood as proportional to the pressure gradient. Equivalently, the
torque on a sphere is obtained by considering the flow field of a rotating sphere as
first solution u, σ , which results in [158]

ω =
1
2
∇ ˆ u(r) ´

T
8πηR3 (2.50)

For elongated particles the multipole solution of Stokes flow for prolate spheroidal
particles can be inserted into the reciprocal theorem resulting in Faxén’s law for
prolate spheroids. The resulting advection velocity has a similar structure to Eq.
(2.49), but contains a line integral over the spheroid axis. This can be understood
recalling that the flow field of prolate spheroids can also be written as a superpo-
sition of lowest-order singularities. Likewise, an expression for the torque on a
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prolate spheroid may be calculated. Refer to [158] for more details and complete
expressions.

2.5.2 Jeffery orbits of elongated microswimmers

In contrast to spherical particles, which only rotate in response to a vortex in the
velocity field, anisotropic particles also react to a shearing motion of the solvent
depending on their instantaneous orientation. As a result, force-free anisotropic
particles perform a periodic tumbling motion in shear flow, known as Jeffery orbits.
The equations of motion may be derived using resistance tensors for the spheroid
and the velocity of the solvent [171], or the corresponding Faxén law for the rotation
of a prolate ellipsoid [158]. For uniaxial spheroids with director ê, the corresponding
equation for the angular velocity ω(t) is

ω(t) =
1
2
∇ ˆ u(r) + γ

␣

ê(t) ˆ
[︁
E(r)ê(t)

]︁(
, (2.51)

where E(r) = [(∇ b u)T +∇ b u]/2 is the local strain rate tensor at the position r,
which we already encountered in the context of the fluid stress tensor in Eq. (2.11)
[171, 181]. Further, the geometric factor γ = α2´1

α2+1 P [0, 1] depends on the aspect ratio
α of the elongated particles [158]. The equation of motion for the director ê of the
spheroid is Btê = ω(t) ˆ ê(t). The resulting solution for ê(t) describes orbits on a
unit sphere, called Jefferey orbits. As we can also read from Eq. (2.51), in the case of a
spherical particle α = 1 only a fluid vortex with vorticity ∇ ˆ u results in a rotation
of the particle.

2.5.3 Hydrodynamic interaction between microswimmers

Hydrodynamic interactions between pairs of microswimmers are decisively char-
acterized by the dominant hydrodynamic multipoles of their flow fields and their
shapes or aspect ratios. Together with their velocities, these enter Faxén’s law and
describe the resulting interaction by advection and reorientations. Additionally,
short-ranged interactions are described by the so-called lubrication theory [158]. We
begin with the most fundamental types of interactions, which can be understood
already in the context of spherical microswimmers. Considering emergent advection
and reorientations described by Eqs. (2.49) and (2.50), we realize that advection
resulting from the friction force 6πηR(u(r) ´ U) is most long ranged and dominates
the interaction for the flow field u(r) of a given multipole. The reason is that this
term decays with the inter-particle distance just as the multipole itself, while all
other terms contain derivatives of u(r), which decay faster. While the leading order
advection in the flow field always occurs, the pressure gradient ∇2u = ∇p vanishes
for source multipoles, which fulfill the harmonic equation ∇2u = 0.
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Figure 2.4: Hydrodynamic interactions between different types of microswimmers
adapted from [65]. Sketch of the flow fields of (a) pusher-, (b) puller- and (c) neutral-
type microswimmers. Both propulsion mechanisms create a pair of opposing forces
(red arrows) distinguished by a change of sign. Advection along the stream lines
(blue arrows) is the main manifestation of hydrodynamic interaction. Hydrodynamic
reorientations for pairs of (d) pusher and (e) puller type microswimmers resulting
from the vorticity of the flow fields shown in (a) and (b). Two pushers on an ap-
proaching trajectory are reoriented towards the swimming in parallel configuration.
For pullers, the rotation is opposite such that they are reoriented towards a perpen-
dicular configuration. In contrast, neutral microswimmer types do not impose a
rotation on each other since the flow field of the source dipole has zero vorticity. For
elongated microswimmers, Jeffery orbits arise due to the local strain rate tensor E(r)
according to Eq. (2.51). The radial decay of the interactions is denoted in powers of r
(bulk fluid) and ρ (Hele-Shaw geometry).

For pushers and pullers, which impose the flow field of a force dipole as shown
in Fig. 2.4(a) and (b), this has the following implications. Pushers swimming side-
by-side in parallel attract each other while pullers repel each other in the same
configuration, following the stream lines. Swimming behind one another pushers
repel while pullers attract each other [65]. The additional term „∇2u is more short
ranged. For neutral swimmers, for which the source dipole is the leading-order
multipole contribution, the mutual advection in the side-by-side and head-to-tail
configurations cancels and therefore does not introduce a characteristic attraction or
repulsion [Fig. 2.4(c)].

Regarding the reorientations, we look at the vorticity of the flow fields of the
force dipole, as shown in Fig. 2.4(a) and (b). As the streamlines indicate, the sign
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of the vorticity alternates in four quadrants. For pairs of swimmers, this affects a
converging trajectory in two different ways. As depicted in Fig. 2.4(d), pushers on a
converging path are reoriented towards a configuration swimming side-by-side in
parallel. If the force dipole changes the sign for pullers, swimmers approaching each
other are reoriented even more towards each other, as depicted in Fig. 2.4(e). Lastly,
the source-dipole flow field does not possess a vorticity, such that neutral spherical
microswimmers do not reorient. For elongated microswimmers, the local strain rate
tensor E(r) creates to Jeffery orbits according to Eq. (2.51).

However, compared to the reorientation arising from the vorticity in the Faxén
theorem, the effect of these periodic oscillations about a fixed axis is small.

Distinguishing between the bulk fluid and the Hele-Shaw geometry, we note that
the general shape of the flow fields remain the same such that interactions qualita-
tively remain the same. On the other hand, the radial decay of the hydrodynamic
multipoles change in the Hele-Shaw geometry such that the source dipole becomes
the most-long ranged contribution of the flow field. However, as we elaborated
before, the interaction via advection and reorientation mainly arise from the force
dipole such that the Hele-Shaw geometry primarily implies more short-ranged
interactions compared to the bulk fluid.

2.6 The squirmer model for microswimmers

The squirmer is a model for spherical microswimmers of radius R, which covers,
among others, the major microswimmer types presented in Sec. 2.3. For the ciliary
propulsion, the squirmer model enforces the flow velocity of a source dipole as slip
velocity on surface of the microswimmer [69, 114]. This resembles the analytical
solution of a moving sphere without external forces in Eq. (2.30). For spherical pusher
- and puller-type microswimmers, a pair of the force dipole and source quadrupole,
where the second term ensures that the normal velocity ur(r, θ) in Eq. (2.26) vanishes
on the squirmer surface [120]. In the same manner, pairs of higher order multipoles
can be added to model, for example, Janus particles [182]. However, for simplicity,
we restrict ourselves to terms up to n = 2 in Eq. (2.27) in the following. All together,
we obtain the slip-velocity at the surface of the spherical microswimmer

vs(x̂s) = Bs
1(1 + βê ¨ x̂s)

[︁
(ê ¨ x̂s)x̂s ´ ê

]︁
(2.52)

that acts on the surrounding fluid [73, 119]. Here, x̂s is the unit vector pointing from
the squirmer center to the respective surface point, and the unit vector ê indicates the
orientation of the squirmer. The squirmer parameter β is used to control the swimmer
type by changing the ratio between source-dipole and force-dipole moment. Thereby,
a value of β ă 0 results in a pusher, where the slip velocity is concentrated at the
rear of the sphere. Likewise, values of β ą 0 concentrate the slip velocity at the
front of the sphere and result in a puller. The absence of a force dipole, β = 0,
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results in a neutral squirmer, as depicted in Fig. 2.5(a). For a neutral squirmer, the
induced flow field in the bulk fluid is given by the flow field of a pure source-dipole
singularity with strength B1 = Bs

1R3. It can be shown that the squirmer parameter
Bs

1 also determines the swimming speed v0 = 2/3Bs
1 [114]. The resulting surface slip-

velocity field may then be used in computer simulations by enforcing the boundary
condition within the MPCD method [74, 120], the Lattice-Boltzmann method [183]
or the boundary-element method [184].

Figure 2.5: (a) Schematic of a single squirmer of radius R and with orientation
given by the unit vector ê. The surface slip-velocity field of a neutral squirmer is
indicated by blue arrows. (b) Schematic of the squirmer-rod model consisting of
nsq = 10 spherical squirmers placed on a straight line separated by the distance d.
All squirmer orientations ê are aligned with the rod axis. (c) Realization of a pusher
type squirmer rod. The surface slip velocity on the rod surface is multiplied with the
scalar envelope function f (x˚

s ¨ ê) given by Eq. (2.53), such that the slip-velocity is
concentrated on the rear of the rod.

2.6.1 The squirmer-rod model

To pursue our main objective and investigate how the interplay of shape anisotropy
of microswimmers and their hydrodynamic interactions determine their collective
motion, we introduce the new squirmer-rod model [125]. Squirmer rods consist of a
number of Nsq = 10 spherical squirmers [cf. Fig. 2.5(a)] arranged on a line to form a
rigid body as shown in Fig. 2.5(b). The resulting shape mimics the actual rod shape
of many biological microswimmers such as bacteria or Paramecium. Furthermore, the
model can be extended to flexible shapes by introducing bending rigidity between
the beads in future works, see chapter 5. To form rods of different aspect ratios
α = lS/2R, where lS is the rod length, we vary the squirmer distance d [cf. Fig. 2.5(b)].
To ensure a smooth surface and enable swimmers to slide past each other easily,
we do not exceed a maximum squirmer distance of d « 0.8R, which amounts to a
maximum aspect ratio of α = 5. This closely resembles the aspect ratio of bacteria
such as E. coli or B. subtilis. The squirmer rod propels itself via the axisymmetric
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2. Physics of swimming microorganisms

surface slip-velocity field of the neutral squirmer, which is imposed on the surface
of its individual squirmers to the surrounding fluid [74, 119, 120].

To encompass pusher and puller-type microswimmers in the squirmer rod model,
we concentrate the surface slip velocity either to the back or the front of the squirmer
rod as shown in Fig. 2.5(c). This is achieved by multiplying the magnitude of the
slip velocity by using the envelope function

f (x˚
s ¨ ê, χ) = 1 + χ tanh(10x˚

s ¨ ê/lS) (2.53)

where x˚
s is the vector that points from the rod center to a location on the rod surface

[cf. Fig. 2.5(c)] and lS/10 is the step width of the envelope function [185]. The
parameter χ P [´1, 1] determines the swimmer type and force-dipole strength, such
that for χ ă 0 a pusher-type swimmer is realized and likewise a puller-type swimmer
for χ ą 0. Choosing either χ = ´1 or χ = 1 results in one completely passive half of
the rods, while for intermediate values the relative contributions of the source dipole
and force dipole to the flow field vary. For χ = 0, the model resembles the neutral
squirmer rod [185]. With the definition that ensures that the average x f (x, χ)yx = 1
is independent of χ, also the swimming velocity is nearly independent of χ. Note
that the squirmer rod model is also related to the ellipsoidal squirmer model, which
is also elongated [184, 186]. However, it features a more realistic rod shape [187, 188]
and the surface-slip velocity is distributed evenly over the cell body independent of
the aspect ratio [186].

2.7 Brownian motion

Additional to the self-propelled motion, microswimmers are also subject to a dif-
fusive Brownian motion, which describes a random walk through the fluid. This
motion is a result of the random collisions with the solvent particles. The combi-
nation of the diffusive and active motion is described by the so-called Langevin
equation [152, 189]. In the overdamped limit of high viscosity, the particles velocity
v and angular velocity ω are given by [150, 161]

v(t) = v0ê + µT
[︁
´∇V(x, ê) + frand(t)

]︁
and

ω(t) = µR
[︁
´∇êV(x, ê) + τrand(t)

]︁
(2.54)

Here, µT and µR are the respective translational and rotational mobility tensors. In
this picture, the particle moves with the self-propulsion velocity v0ê and is subject to
two forces. The first deterministic force due to a potential V(x, ê) corresponds to an
external force or the interaction with other particles. The second force and last term
frand(t) describes a random force, which results from the random thermal motion of
the solvent particles. With the mobility µT we obtain the stochastic velocity η(t) =
µTfrand(t). Likewise, the angular velocity is given by the deterministic torque due to
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2.7 Brownian motion

the potential V(x, ê), and a stochastic torque τrand(t) transferred from the solvent.
The dynamic of the particle orientation then follows from Btê(t) = ω(t) ˆ ê(t).

The stochastic velocity η(t) has zero mean xη(t)y = 0 and is delta-correlated
in time with the variance xη(t) b η(t1)y = 2DTδ(t ´ t1), where DT = kBTµT is
the translational diffusion tensor given by the Stokes-Einstein relation [152]. A
similar expression applies for the stochastic angular velocity ζ(t) = µRτrand(t),
which also has zero mean xζ(t)y = 0 and is delta-correlated in time xζ(t) b ζ(t1)y =
2DRδ(t ´ t1). For the rotational diffusion tensor, the Stokes-Einstein relation reads
DR = kBTµR. These relations for the autocorrelation of the stochastic noise terms
are also a consequence of the fluctuation-dissipation theorem, because they relate
the fluctuations of the random force and torque to the dissipation described by the
friction tensor γT = D´1

T /kBT and γR = D´1
R /kBT, respectively.

For spherical particles as, for example, the squirmers, the friction and hence
diffusion tensors are rotationally symmetric and given by DT = 1kBT/(6πηR) and
DR = 1kBT/(8πηR3). If rod-like particles move through a fluid, they are subject to
an anisotropic friction force, so that also the diffusion becomes anisotropic as a result
of the Stokes-Einstein relation. In this case, the diffusion tensors are given by

DT = kBT
[︂
µ∥(ê b ê) + µK(1 ´ ê b ê)

]︂
and

DR = kBTµR, (2.55)

with the mobilities [190]

µ∥ =
µ0

2π

[︃
ln(α) ´ 0.207 +

0.980
α

´
0.133

α2

]︃
,

µK =
µ0

4π

[︃
ln(α) + 0.839 +

0.185
α

+
0.233

α2

]︃
, (2.56)

µR =
3µ0

πα2

[︃
ln(α) ´ 0.662 +

0.917
α

´
0.050

α2

]︃
.

Here, α denotes the aspect ratio of the rod-like particles and µ0 is the Stokes mobility
of a spherical particle with radius R. The rotational mobility µR thereby relates to
rotation perpendicular to the rod axis ê.

To discuss the resulting dynamics, we restrict ourselves to the case of a spherical
active Brownian particle free of external influences V(x, ê) = 0. In this case, the
random torque leads to an exponential decay of the orientational autocorrelation
[26]

xê(t) ¨ ê(0)y = e´t/τR ,

where τR = [(d ´ 1)DR]
´1 is the orientational persistence time in d dimensions. As

a result, the persistent motion becomes irrelevant at large time scale. The mean
square displacement is obtained by integration of the equations of motion Eq. (2.54),
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2. Physics of swimming microorganisms

resulting in

x|r(t) ´ r(0)|2y = 2dDTt + 2v2
0τrt ´ 2v2

0τ2
r (1 ´ e´t/τr). (2.57)

Here, we can identify two special cases depending on the time scale of t. At times
shorter that the persistence time t ! τR, the mean square displacement describes
a persistent ballistic motion due to the active swimming velocity v0, such that the
mean square displacement

x|r(t) ´ r(0)|2y = (v0t)2 + 2dDTt

grows quadratically in time 9t2. At long time scales t " τR, the motion becomes
diffusive due to the stochastic reorientation of the particles, such that the mean
square displacement

x|r(t) ´ r(0)|2y = 2t(dDT + v2
0τR)

grows linear in time 9t. For a discussion of the motion of elongated particles we
refer to ten Hagen et al. [191]. In order to compare the relative influences of the
active persistent motion and diffusive motion to the dynamics of the active particle,
another dimensionless quantity is introduced. The so-called Péclet number

Pe =
td
ta

=
2Rv0

DT
(2.58)

describes the ratio of the time scales td = (2R)2/DT and ta = 2R/v0, required for
active Brownian particles to travel the length of the particle diameter 2R due to
diffusion or active motion, respectively. Hence, active motion is negligible if Pe ! 1,
while diffusive motion is not relevant for Pe " 1

Also hydrodynamic interactions can be integrated into the Langevin equation via
the mobility or diffusion tensors within the Rodne-Prager framework for spherical
particles [161] or rods [192]. Thereby, the Faxén theorem of Eq. (2.49) is used to calcu-
late the acting hydrodynamic forces in pairs of particles within the so-called method
of reflection. Lastly, we note that the Langevin equation is physically equivalent to
the Smoluchowski equation for the evolution of the probability distribution function
of the active Brownian particles.
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CHAPTER 3

Multi-particle collision
dynamics (MPCD)

3.1 Introduction

When it comes to the numerical simulations of hydrodynamic flows, there are
numerous approaches at different levels of detail and abstraction. Most commonly,
differential equations that describe hydrodynamic flows are discretized and then
solved using finite elements or finite volume schemes [193]. For limiting cases there
are specific schemes like the boundary element method for Stokes flow that exploits
the Lorentz reciprocal theorem to describe the entire flow at the boundary of the
domain [159].

Another approach is followed in the so-called mesoscopic schemes, which in-
cludes the methods of multi-particle collision dynamics (MPCD), dissipative-particle
dynamics [194, 195], smoothed-particle hydrodynamics [194, 196] and the lattice-
Boltzmann method [197]. Common for this class is the utilization of coarse-grained
fluid particles that evolve according to simple dynamic rules [74, 194]. These rules
are defined such that the resulting hydrodynamic flow field fulfills the Navier-Stokes
equations [126, 198] In contrast, the lattice-Boltzmann method begins at a lower level
of description and discretizes the Boltzmann equation for the velocity distribution
function of the solvent particles [197, 199].

Since their introduction in 1999 [126], algorithms belonging to the method of
multi-particle collision dynamics (MPCD) have become a standard tool for the
simulation of fluid flows in the field of soft-matter physics [74, 200, 201]. In particular,
MPCD algorithms have been used extensively in the context of microswimmers [41,
47, 73, 76, 91–96, 125, 202, 203], to cite only a few examples. Other studies with
MPCD cover polymers [139–141], colloidal suspensions [134–138], blood cells [142],
the African trypanosome as the causative agent of the sleeping sickness [143], and
even schools of fish [144]. Also extensions to binary fluid mixtures [145], liquid
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3. Multi-particle collision dynamics (MPCD)

Figure 3.1: Sketch of the particle motion and collision rule in the MPCD method.
The fluid is represented by point like-particles (back dots) with continuous positions
and velocities (back arrows). The two steps mimic the ballistic motion and collision
of particles. In the streaming step (a) particles move ballistically for the duration of
∆t. For the collision step (b) the space is divide in a cubic lattice with lattice constant
a0 to form groups of particles. The particles in these cells then exchange momentum
(green arrows) and energy according to a collision rule, while conserving the total
momentum m0nξvξ . Some methods resemble the micro-canonical ensemble, such
that also the energy in the cell is conserved.

crystals [146–148], and chemically reacting systems[149] exist.
In our simulations, we employ a specific MPCD method that incorporates

a so-called Andersen thermostat and features angular-momentum conservation
(MPCD-AT+a) [73, 204]. Furthermore, we developed an extended version of MPCD
with a non-ideal equation of state and thus a reduced compressibility that enables
accurate simulations of dense microswimmer configurations [205, 206]. By solving
the Navier-Stokes equations, the method treats hydrodynamic interactions between
active squirmer rods and also with the confining walls of the Hele-Shaw geometry
[126, 201]. Furthermore, thermal fluctuations are included in the method.

In concrete, the MPCD method considers point-like particles with number density
n0 and defines simplified rules for the two dynamic stages in their motion, which are
ballistic motion and collisions, as sketched in Fig. 3.1. These rules are then applied
in alternating steps [126]. In the following we will first introduce the streaming step
which is common to all MPCD variants. We will then give a brief overview over the
most common collision rules and discuss their specific properties.

3.2 Streaming step

During the streaming step the point particles with masses m0, positions xi(t), and
velocities vi(t) move ballistically during the time ∆t according to

xi(t + ∆t) = xi(t) + vi(t)∆t. (3.1)
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3.3 Collision step

This motion represents the free motion of a particle in the fluid before a collision
occurs, which is represented by the collision step. During the streaming step, par-
ticles collide with confining walls or moving objects such as squirmers in our case
[47, 73, 74, 76, 94, 125] and thereby transfer both linear and angular momentum,
in particular, to the squirmers. The so-called bounce-back rule [126, 128] enforces
the no-slip boundary condition at confining walls or the slip-velocity field at the
squirmer surfaces [125].

3.3 Collision step

The key of the MPCD collision step is to define a simplified multi-particle collision
rule, which ensures momentum conservation. It can be shown that this is sufficient
to guarantee that the model fulfills the Navier-Stokes equations [126]. The resulting
methods are efficient for the numerical solution of hydrodynamic flows, and enable
the usage of powerful parallel computing architectures [132]. Furthermore, model
parameters can be derived by analytical calculations [194, 207].

To approach the MPCD collision rule, we begin with the very intuitive variant of
the so-called stochastic rotation dynamics (SRD), which was formulated by Male-
vanets and Kapral [126]. We will then cover variants with different thermodynamic
and mechanical properties as the utilization of a thermostat and the incorporation of
angular momentum conservation. We will then approach more complex collision
rules that generate different thermodynamic equations of state as a result of a tailored
inherent momentum transport mechanism [205, 206, 208]. However, we stress again
that all collision rules conserve momentum, and therefore obey the Navier-Stokes
equations.

Generic for all collision rules, the simulation volume is first divided into a cubic
lattice and the fluid particles are grouped into cubic unit cells of linear size a0 and
centered around ξ as depicted in Fig. 3.1(b). Thereby, the total number of particles
is chosen such that, on average, a number of n0 particles resides in each cell of unit
volume a3

0. Then, for the nξ particles in each cell volume Vξ = a3
0 around ξ the mean

velocity vξ and center-of-mass position xξ are determined. At this point one of the
following collision rules is applied to the particles within each cell. Lastly, before
the following collision step, the cubic lattice is randomly shifted to ensure Galilean
invariance [208].

3.3.1 Stochastic rotation dynamics (SRD)

The collision rule of the SRD method consists of a rotation of the thermal velocities
vi ´ vξ around a randomly chosen axis n̂ξ , which is different for each cell ξ and time
step, by the constant angle α [126]. With the rotation matrix R(n̂ξ , α) the collision
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3. Multi-particle collision dynamics (MPCD)

step can be summarized as

vnew
i = vξ + R(n̂ξ , α)

(︂
vi ´ vξ

)︂
. (3.2)

As can be easily proven, this rule conserves the momentum m0nξvξ , thermal energy
Eξ = m0

2nξ

ř

xiPVξ
(vi ´ vξ)

2 and, trivially, the number of particles nξ within each
collision cell. With these properties, it can be shown that the resulting flow field obey
the Navier-Stokes equation and the hydrodynamic equation of energy transport.
Furthermore, it can be proven that the dynamics fulfills the Boltzmann H-theorem
such that the system evolves towards thermodynamic equilibrium under the SRD
algorithm [126]. The model parameter α decisively controls the local redistribution
of momentum and energy and therefore describes other parameters of the SRD fluid,
as the viscosity [207]. Typically, values are chosen around 120˝. In two dimensions,
the rotation axis is perpendicular to the xy-plane, and the rotation angle randomly
selected between ˘α [207].

Due to the rotation of the relative velocities, the method does not conserve angular
momentum locally at the scale of the collision cells. This leads to incorrect angular
diffusion of immersed solute particles [209]. Angular-momentum conservation
can be restored by declaring the collision angle within each cell αξ(txi | xi P Vξu) a
function of the instantaneous position of the particles. This extension was proposed
by Ryder for SRD in two dimensions [201, 210].

To realize simulations in the canonical ensemble, a thermostat can be added to
the SRD method. In this case, the total kinetic energy in each cell Eξ relative to vξ is
calculated. Then, a random new thermal energy E1

ξ is generated from the appropriate
gamma distribution, which follows from the Maxwell-Boltzmann distribution for
the 3(nξ ´ 1) velocities. Lastly, all thermal velocities are rescaled with the factor
E1

ξ/Eξ [211]. In the canonical ensemble the SRD method has further been extended
to restore angular-momentum conservation of the collision rule. In this case, a
correction is added to the new velocities following from Eq. (3.2) and the rescaling
with the thermostat [212]. We elaborate this procedure in detail in the context of the
MPCD method with Andersen thermostat in Sec. 3.3.2.

3.3.2 MPCD with Andersen thermostat

The MPCD algorithm with Andersen thermostat (MPCD-AT) describes fluids in the
thermodynamic canonical ensemble. In the collision step, fluid particles are assigned
new random thermal velocities δvi relative to the center-of-mass velocity which are
drawn from a Boltzmann-distribution with variance

?
kBT0/m0 [74, 125, 204].

To restore overall momentum conservation, the change in linear momentum per
particle, m0∆vξ = m0

nξ

ř

xiPVξ
δvi, is subtracted from each particle velocity, such that
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3.3 Collision step

the final new velocity reads

vnew
i = vξ + δvi ´ ∆vξ . (3.3)

The collision step of the MPCD-AT method can be adapted to realize angular mo-
mentum conservation, and is then denoted by (MPCD-AT+a). To achieve this, a
correction term is added to Eq. (3.3) containing the angular momentum before the
collision Lξ = m0

nξ

ř

xiPVξ
xi,c ˆ vi, and the angular momentum introduced by the

random velocities ∆Lξ = m0
nξ

ř

xiPVξ
xi,c ˆ δvi. Here xi,c denotes the particle position

relative to the center-of-mass position xξ . With the additional correction term, the
collision step can be summarized by

vnew
i = vξ + δvi ´ ∆vξ ´ xi,c ˆ I´1

ξ ( Lξ ´ ∆Lξ ), (3.4)

Here, Iξ is the moment-of-inertia tensor of the configuration of particles inside
Vξ relative to the center-of-mass, such that ∆ω = I´1

ξ (Lξ ´ ∆Lξ) corresponds to a
correcting contribution in the angular velocity. Similar to the stochastic rescaling of
the thermal energy in the SRD method in Sec. 3.3.1, rescaling the thermal energy in
the MPCD-AT to the value before the collision can be used to perform simulations
in the micro-canonical ensemble [194].

In general, the MPCD-AT and SRD versions of MPCD show a similar perfor-
mance in simulations, and can be applied almost interchangeably. However, one
difference is the relaxation time to thermodynamic equilibrium. For SRD the relax-
ation time increases with the mean density n0, while it decreases for MPCD [201].
At the same time, the numerical implementation poses different challenges. For
MPCD efficient and fast random number generators are required to generate 3nξ

random numbers for the normal distribution. In contrast, SRD requires only 2 ran-
dom floating point numbers to generate a rotation axis, but generating a random
energy E1

ξ , which follows the gamma distribution, is numerically intensive. In our
experience the computational cost of the two different collision steps with thermo-
stat and angular momentum conservation are rather similar. In implementations
on graphic cards, which have immense numerical capabilities, the performance is
instead dominated by the efficient organization of the data transfer between the
memory and the processor. This is common for all MPCD algorithms, which require
multiple gigabytes of data to describe the state of the fluid particles.

3.3.3 Equation of state

In this section, we address how the macroscopic thermodynamic pressure of the
MPCD fluid can be derived from the microscopic dynamics of the streaming and
collision step. To calculate the equation of state for the pressure, we use the ex-
perimental definition of pressure as the normal component of the momentum flux
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through an arbitrarily oriented plane for the fluid in thermal equilibrium, i.e., with-
out gradients in the velocity field [207]. This is important to avoid contributions to
the normal component of the momentum flux which arise from the bulk viscosity in
the presence of gradients in the velocity field. In general, both the MPCD streaming
and collision step contribute to the pressure:

P = Pstr + Pcoll . (3.5)

During the streaming step, particles do not interact and simply transport momentum
by moving across any plane considered. This results in the ideal gas contribution
Pstr = n0kBT/a3

0, which is common for all MPCD methods [145].
To evaluate the contribution Pcoll from the collision step, we consider the momen-

tum flux across a plane with unit area a2
0, which lies inside a collision cell. Without

loss of generality, we choose the plane perpendicular to the y-axis at position y0 and
then average over all y0. During the collision step momentum is transported from
the region y ă y0 across the plane into the region y ą y0 during time ∆t. Thus, for
the pressure as momentum transfer per area and time we obtain

Pcoll =
m0

a2
0∆t

B

ŷ ¨
ÿ

ti|yiąy0u

(vnew
i ´ vi)

F

. (3.6)

Here, i is restricted to all particles yi ą y0 and m0ŷ ¨ (vnew
i ´ vi) is the change in the

normal momentum component of particle i during collision as given in, for example,
Eq. (3.4). The change in momentum is thereby transferred to the particles yi ă y0,
such that these particles are included in this consideration implicitly. The average
goes over all possible collisions, particle configurations, and positions y0. For the
traditional MPCD methods presented above, the collisional contribution vanishes
since there is no correlation between the velocity change (vnew

i ´ vi) and the positions
yi. In consequence, traditional MPCD possesses the thermodynamic equation of state
of the ideal gas [145]. In simulations of Stokes flow far from mechanical equilibrium
this may cause artifacts, because large density inhomogeneities arise to resolve the
Stokes pressure in an ideal gas [41, 206]. This, in turn, leads to inhomogeneous
material properties, such as the viscosity of the fluid [206].

As Ihle, Tützel, and Kroll demonstrated, introducing position and velocity de-
pendent collision rules in two dimensions results in different material properties,
in particular, a non-ideal equation of state [213]. As depicted in Fig. 3.2, pairs of
neighboring collision cells connected by red arrows are chosen randomly between
the configurations (i)-(iv). Using a stochastic collision with a probability that de-
pends on the densities and relative velocities in the pairs of cells, the method mimics
hard-sphere collisions. Most importantly, the collision is only initiated if the particle
groups move towards each other. Exchanging the relative velocities of the two
particle groups, the modified collision rule introduces a directed momentum flux at
equilibrium [213].
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3.3 Collision step

Figure 3.2: Sub-divided collision cells used to implement a position, velocity and
density dependent collision rule in two dimensions adapted from Ref. [213].

3.3.4 Shear viscosity

Similar to the pressure and equation of state, the shear viscosity consists of two
contributions from the streaming and collision step, respectively,

η = ηstr + ηcoll . (3.7)

The dynamic shear viscosity thereby relates the off-diagonal component of the
viscous stress tensor σ1

xy = ηByvx = ηγ̇ in the linear shear flow v(y) = γ̇yx̂ with
the constant shear rate γ̇. As for the pressure in Sec. 3.3.3, we may use that the
momentum flux through a plane in the fluid is equivalent to components of the
viscous stress tensor σ1 to determine the shear viscosity of the MPCD method [207].

The contribution of the streaming step is determined by the correlation between
the velocity components xvxvyy of a fluid particle, since only correlated velocity
components result in a flux of the x component of momentum along the y direction.
The velocity correlation function xvxvyy changes during both the streaming and
collision step, but should recover its initial state after one step cycle in the steady
state. Using this self-consistency condition, one can ultimately determine xvxvyy and
the contribution to σ1

xy (see Refs. [205] and [207] for more details).
For the contribution of the collision step, we again consider momentum trans-

ported within a collision cell from the region y ă y0 across the plane into y ą y0
during time ∆t. Compared to Eq. (3.6) for the pressure, we now need the transfer of
the x component of momentum per area and time, thus

σ1
xy = ´

m0

a2
0∆t

B

x̂ ¨
ÿ

i|yiąy0

vnew
i ´ vi

F

. (3.8)

To obtain ηcoll, Eq. (3.8) is then evaluated in the linear shear flow using that σ1
xy = ηγ̇.

The time step ∆t naturally determines the ratio of the two contributions to the
viscosity. The collisional contribution, ηcoll „ 1/∆t, scales with the frequency of the
collision, while in the streaming step, ηstr „ ∆t. Large mean-free paths λ „ ∆t imply
that the models behave more like a gas. Thus, ∆t ! 1 are applied to realize highly
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viscous flows in the context of microswimmers. Then, the collisional contribution
ηcoll dominates.

For the SRD method with or without thermostat one obtains the expressions [207]

ηSRD
str =

nkBT∆t
a3

[︄
5n

(n ´ 1 + e´n)[4 ´ 2 cos(α) ´ 2 cos(2α)]
´

1
2

]︄
and

ηSRD
coll =

m0
(︁
n ´ 1 + e´n)︁
18a0∆t

(︁
1 ´ cos(α)

)︁
. (3.9)

in the case of three spatial dimensions.

For the MPCD method with Andersen thermostat, one obtains [194]

ηMPCD´AT
str =

n0kBT∆t
m0

(︃
n0

n0 ´ 1 + e´n0
´

1
2

)︃
and

ηMPCD´AT
coll =

a2
0
(︁
n0 ´ 1 + e´n0

)︁
12∆t

. (3.10)

It is important to note that for MPCD-AT the collisional contribution to the stress
tensor is not symmetric, which means the violation of angular-momentum conser-
vation [201]. To restore the symmetry of the stress tensor of a Newtonian fluid,
the antisymmetric part of the velocity gradient σr 1 = σ1 + ηr

[︂
(∇ b u)T ´ ∇ b u

]︂
is

added. Here, η̃ is the antisymmetric part of the viscosity, which vanishes in angular
momentum conserving systems η̃ = 0. With the Cauchy momentum equation Eq.
(2.8) and assuming an incompressible fluid, this results in [209]

ρ (Btu + u ¨ ∇u) = ´∇p + (η + ηr)∇2u + fext. (3.11)

Although flow fields are not affected, this leads to spurious torques which influence
the dynamics of solute particles [209, 214]. Using a kinetic theory, one can show that
both contributions to the viscosity need to be equal, ηcoll = ηrcoll [215]. This can be
understood considering that the angular momentum of the particles in the collision
cell is induced by the vorticity of the shear flow, which generates the angular velocity
ω = (∇ ˆ v)/2 = ´(γ̇/2)ẑ. Hence, preserving the associated velocity ω ˆ xi,c
during the collision step essentially reduces the viscous momentum transport by a
factor of two by eliminating ηrcoll.

This is reflected in the expressions for the collisional viscosity of the collision rule
MPCD-AT+a with conserved angular momentum [194]. For sufficiently large n0, the
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streaming and collisional viscosity contributions read

ηMPCD´AT+a
str =

n0kBT∆t
m0

[︃
n0

n0 ´ (d + 2)/4
´

1
2

]︃
and

ηMPCD´AT+a
coll =

a2
0 (n0 ´ 7/5)

24∆t
, (3.12)

where d denotes the number of spatial dimensions.
For the SRD method with thermostat and angular-momentum conservation,

values for the viscosity are obtained by simulations [41]. As elaborated before, the
angular momentum conservation reduces the collisional viscosity by a factor of two.
For common collision angles around α = 130˝, the values of the collisional viscosity
are comparable to MPCD-AT+a.

Figure 3.3: (a) Side view of a collision cell divided by a plane (red line) through the
center-of-mass position xξ and with the unit normal vector n̂. (b) Normal vectors
n̂ of the 13 possible collision directions. They point to the corners, as well as the
centers of the edges and faces of the collision cell [205].

3.4 Extended MPCD method with non-ideal equation
of state

In Ref. [205] we suggested an alternative MPCD algorithm compared to the original
SRD [126] or MPCD-AT method [74]. In the following, we briefly describe the most
important properties of the algorithm based on Ref. [205]. The main difference of this
extended MPCD method is that the collision rule depends on both the positions and
velocities of the fluid particles. This mechanism generates a momentum flux, which
contributes to the pressure in the isotropic part of the stress tensor and, thereby,
generates a non-ideal equation of state. The collision rule thus generalizes the
method introduced in Ref. [213] to three dimensions.

In particular, collisions occur among two groups of particles at random, with
a probability that depends on the local density and velocities, and only if the two
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groups move towards each other. To select two groups of particles in three dimen-
sions, we divide each collision cell into two halves A and B by a plane with the unit
normal vector n̂ and containing the center-of-mass position xξ [see Fig. 3.3(a)]. At
each collision step n̂ is chosen at random from a discrete set of 13 possible orienta-
tions for each cell, as shown in Fig. 3.3(b). This enables the analytic calculation of
transport properties [205]. Alternatively, n̂ may also be chosen randomly on the unit
sphere, which even increases the viscosity of the model slightly.

To introduce a momentum flux during the collision, the particle groups exchange
the relative momentum along the unit vector n̂. To define the rate of the random
collisions, we use the mean velocities v̄A and v̄B along the normal vector n̂ on both
sides of the plane to define the relative velocity ∆u = v̄B ´ v̄A. Thereby, we define n̂
such that it always points towards region A, and ∆u ą 0 when the groups approach
each other. With the numbers of particles nA an nB in the two groups and the
scattering cross section c, the collision rate c ∆u nA nB is similar to the rate of collision
in two clouds of hard-core particles and can be derived from the collision term of
the Boltzmann equation [216]. Accordingly, we introduce the collision probability

p(∆u) ” Θ(∆u) c∆u nAnB (3.13)

« Θ(∆u)
[︃

1 ´ exp
(︂

´ c∆u nAnB

)︂]︃
, (3.14)

where the exponential ensures that p(∆u) ď 1, assuming a sufficiently small c.
Further, the Heaviside step function Θ(∆u) ensures that collisions only occur when
the groups approach each other.

3.5 Boundary conditions and solute particles

If boundaries like walls or solute particles are immersed in the MPCD fluid, they are
coupled to the fluid in both the streaming and collision step. During the streaming
step, fluid particles collide with the boundaries and thereby exchange momentum,
in particular, with the solute particles. To implement a no-slip boundary condition
for the fluid flow, the so-called bounce-back rule is applied. This means that the
velocity of a fluid particle is reversed vnew

i = ´vi upon collision with a solid wall, as
shown in Fig. 3.4(a).

In the case of a moving colloid or with the imposed slip velocity field on the
surface of a squirmer vs(x̂i) given in Eq. (2.52), the bounce-back rule implies that

vnew
i = ´vi + 2

[︁
p/m + ω ˆ (xi ´ r) + vs(x̂i,s)

]︁
. (3.15)

Here, r and p/m are the center-of-mass position and velocity of the solute particle
and x̂i,s is a unit vector that points from the center of the squirmer to the position of
the fluid particle xi [see Fig. 3.4(a)]. The change of momentum of the fluid particle is
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Figure 3.4: Coupling of the MPCD fluid to immersed boundaries. (a) During the
streaming step, particles collide with the solid walls according to the bounce-back
rule and exchange momentum with solute particles. (b) In the collision step, ghost
particles are distributed in the region of the boundaries with density n0. These
participate in the collision and their momentum change is assigned to the respective
solute particles.

thereby subtracted from the solute particle, such that the total linear and angular
momenta of solvent and solute particles are conserved.

In the MPCD collision step, the walls and solute particles contain so-called “ghost”
or “virtual” particles, which are randomly distributed in the collision cells which
overlap with the boundaries, as shown in blue in Fig. 3.4(b). The ghost particles
thereby guarantee that the number density remains equal to n0. Before the collision
step, their velocities are initialized as the local velocity of the translating and rotating
solute particles with the addition of a random thermal velocity δvMB drawn from
the Boltzmann distribution

vghost = p/m + ω ˆ (xghost ´ r) + vs(x̂ghost,s) + δvMB. (3.16)

Here, x̂ghost,s is a unit vector that points from the center of the squirmer to the
nearest point on the surface. In case of solid walls, only a random thermal velocity is
assigned. After the collision step, the changes in linear and angular momentum of the
ghost particles are assigned to the relevant squirmer, which ensures the conservation
of linear and angular momentum.

On the one hand, the use of ghost particles improves the validity of the no-
slip condition, on the other hand, they prevent that the density dependent fluid
properties do not deviate due to partially empty collision cells at boundaries [128].

3.6 Molecular dynamics of solute particles

Treating solute particles immersed in the MPCD fluid requires additional integration
methods known from molecular dynamics (MD) or event driven simulations. In our
case, interactions between solute particles are described by smooth potentials such
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that MD methods apply to solve the equations of motion for the solute positions r
and orientations e.

In particular, repulsive forces act between pairs of squirmers that were introduced
in Sec. 2.6, and also when they belong to different squirmer rods introduced in Sec.
2.6.1. The forces are described by the Weeks-Chandler-Andersen (WCA) potential,
which is a purely repulsive modification of the well-known Lennard-Jones potential
[217]. The WCA potential is defined as

VWCA(r) =

$

&

%

4ϵ
[︂
(σ/r)12 ´ (σ/r)6

]︂
+ ϵ if r/σ ă

6
?

2,

0 else,
(3.17)

where r is the particle-particle distance, ϵ describes the interaction energy, and σ the
interaction range. The first part of the potential thereby is the Lennard-Jones potential
shifted by ϵ, which has a minimum at the distance rmin = σ 6

?
2 with VWCA(rmin) = 0.

The step-wise definition guarantees that the potential is continuously differentiable
and goes to zero at the cutoff distance. For squirmer rods, we set σ = 2Rsq/ 6

?
2 as

the diameter of the squirmer and choose a large interaction energy ϵ „ 104kBT to
mimic hard-core interactions [205].

Because the squirmer rods are considered as rigid bodies, these squirmer interac-
tions result in respective forces and torques acting on the rods [218],

F = ´∇
ÿ

ij

VWCA(rij) and τ = ´
ÿ

ij

ri,c ˆ

[︂
∇VWCA(rij)

]︂
. (3.18)

Here, i iterates over squirmers in the rod under consideration, j over all squirmers
of different rods and ri,c denotes the squirmer position in the center-of-mass frame
of the rod.

The motion of the squirmer rods is therefore characterized by the forces F, torques
τ, their mass m, and their moment-of-inertia tensor I = diag(I1, I2, I3), written in
their center-of-mass frame aligned along the principle axes. The rotational symmetry
of the squirmer rods implies I1 = I2 with ê = êz in the body-fixed frame [125, 219].
The equations of motion for momentum p and angular momentum L of the squirmer
rods are

dp
dt

= F and
dL
dt

= τ. (3.19)

Further, the orientation of the squirmer rod evolves as ė = ω ˆ e, where ω = I´1L.
To integrate these dynamics into our simulation method, we alternate between the
MPCD steps and the MD integration. During the MPCD steps, the fluid particles ex-
change energy and momentum with the solute particles (squirmer rods) as described
in Sec. 3.5. During the MD integration the exchanged momenta are considered
together with the acting forces and torques. One cycle of the combined integration
scheme consist of
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1. the MPCD streaming step,

2. the MPCD collision step,

3. the MD integration with the refined time step δt = ∆t/10,

4. resolving the overlap of solutes and fluid particles.

The MD integration 3 is performed with a symplectic splitting method for rigid
body dynamics, which provides a high accuracy through a precise conservation of
energy [219]. To tune the precision of the MD integration independent of the MPCD
time step ∆t, which determines the fluid properties, we introduce the MD time step
δt = ∆t/10. The coupling to the fluid, which is subject to the Andersen thermostat,
guarantees that the whole system is in the canonical ensemble.

In the following, we provide a brief overview of the symplectic splitting method
for the integration of the rigid-body positions r(t) and orientations ê(t) according
to Ref. [219]. The MD method uses the leapfrog variant of the well-known velocity
Verlet method to integrate the translational degrees of freedom [218] and includes
additional steps to integrate the orientations ê(t) of, for example, the squirmer rods
[219]. The MD method is initiated by advancing the linear and angular momentum
by half a time step δt/2

p(t + δt/2) = p(t) + f(t)δt/2,
L(t + δt/2) = L(t) + τ(t)δt/2. (3.20)

Then, the positions are advanced by a complete time step δt

r(t + δt) = r(t) + p(t + δt/2)δt/m, (3.21)

Before advancing the momenta to the full time step t + δt with the updated forces
and torques in the second step, we integrate the angular degrees of freedom, in
particular, the orientations ê(t) of the squirmer rods.

The scheme by Dullweber et. al [219] thereby considers the dynamics of the
rotation matrix Q(t), that describes the reorientation ê(t) = QT(t)ê0 that the rigid
body has undergone with respect to a fixed reference frame ê0 = ẑ. For our case of a
rotationally symmetric rigid body, the update of Q(t) is

Q(t + δt) = Q(t)RT
z RT

L(t), (3.22)

where RT
L(t) is the rotation matrix about the axis L(t) by the angle δt|L(t)|/I1 [219].

For our case of a truly rotationally symmetric rigid body, we may omit the factor RT
z

in the update of Q(t) and directly apply the change of the transformation matrix
on the orientation vector of the rigid body e(t + δt) = RL(t)e(t). Note that in the
absence of external forces the integration scheme is is exact [219]. Lastly, the method
is completed by advancing the linear and angular momentum to the full time step
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δt, respectively,

p(t + δt) = p(t + δt/2) + f(t + δt)δt/2 and
L(t + δt) = L(t + δt/2) + τ(t + δt)δt/2. (3.23)

In the last step 4, overlaps between fluid particles and the solute resulting from
the MD step 3 are corrected by correcting the motion of the fluid particles similar to
Ref. [220]. Then, another cycle begins at step 1.

3.7 Efficient implementation of MPCD on graphic cards
(GPUs)

Over the recent years, computer graphic cards and their centerpiece, the graphics
processing unit (GPU), have become a very powerful tool that can replace small
computer clusters for applicable algorithmic problems. Their strength compared to
traditional computer clusters lies in their low price and superior efficiency regarding
electric power consumption [221].

However, the way GPUs process instructions and data is entirely different from
multi-core computers or clusters, and therefore require different programming
approaches or even algorithms [222]. In particular, processor cores combined in the
so-called vector processing units in GPUs are not independent and always apply the
same instruction on multiple data (SIMD) in contrast to multi-core computers which
apply multiple instructions on multiple data (MIMD). Otherwise, modern GPUs
possess multiple levels of hierarchies such that multiple SIMD vector processors can
work independently on different tasks, as shown in Fig. 3.5.

The collision rule of MPCD — which is simultaneously applied to millions
of fluid particles almost independently — is a good example for an algorithm
suitable for a GPU. Although already elementary implementations of MPCD on
GPUs achieve immense performance benefits compared to conventional computers,
a set of optimizations can again provide large performance increases.

The difficulty in a MPCD collision step is that in a naive implementation the
fluid particles have to be loaded into the processor repeatedly, in order to calculate
the center of mass, mean velocity, angular momentum, and moment of inertia
tensor. If the fluid particles that belong to one collision cell are located in different
memory locations, the GPU hardware cannot access their memory in a combined
read instruction, and instead has to use separate read instructions on different
memory locations [223]. To solve this issue, the memory array containing the fluid
particles is frequently sorted based on the index of the collision cell in which the
fluid particles lie [125, 132]. We thereby use the counting sort algorithm [224] by
calculating a parallel prefix sum [225]. This way, memory accesses can be combined
and the performance increases by a factor of two.
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Figure 3.5: Sketch of a computer system consisting of a graphic card (GPU) and
main processor (CPU). When running programs, the CPU mainly orchestrates the
GPU, without computing itself. The GPU can access and process the large number
of MPCD particles fast, due to the high bandwidth of its memory (ą 800GiB/s) and
large number of vector-processor cores („ 103 ´ 104) [222].

To avoid the repeated memory accesses in the collision step, which further limit
the performance, we make use of the small shared data caches inside of the GPU’s
vector processors. However, to be able to store all fluid particles residing in one
collision cell into this memory, the number of collision cells is typically lower than
the number of vector-processor cores (threads). To maximize performance, we
dynamically allocate shared memory and form groups of threads that work on each
collision cell. To synchronize work in the groups of threads (SIMD), we use parallel
summation and prefix sum algorithms.
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CHAPTER 4

Published Articles of the
Thesis

In this chapter, I will present the four articles published in scientific journals as part
of this thesis. To begin with, I will give a brief overview of the overall content and
place the different articles in line. The articles will then be presented in the following
sections.

During my thesis work, I have developed the new squirmer rod model for elon-
gated microswimmers, as well as an extended version of the MPCD algorithm to
improve simulations of dense configurations of squirmer rods. Using both models,
we investigated the flow fields of individual squirmer rods and the collective dy-
namics of squirmer rods as a function of the aspect ratio, density and swimmer type.
Our first two articles are thereby concerned with the introduction of the squirmer
rod (1., see below) and the extended MPCD method (2.). In the following articles,
we concentrated on the collective dynamics of neutral squirmer rods (3.) as well as
pusher and puller-type squirmer rods (4.).
Below, I provide an overview over the relevance of the articles.

1. A. W. Zantop and H. Stark. Squirmer rods as elongated microswimmers: flow field and
confinement. Soft Matter, 16, 6400-6412, (2020).
doi: https://doi.org/10.1039/D0SM00616E

Contribution: First author, performed research and wrote of the manuscript,
see Sec. 4.2 for more details.

Relevance: This work introduces the squirmer-rod model for elongated mi-
croswimmers and its implementation in the MPCD method. Its flow fields
in the bulk fluid and Hele-Shaw geometry are investigated by means of a
hydrodynamic multipole decomposition for multiple aspect ratios and
confinement strengths.

Status: published in peer reviewed journal.
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2. A. W. Zantop and H. Stark. Multi-particle collision dynamics with a non-ideal equation
of state. I. The Journal of Chemical Physics, 154, 024105, (2021).
doi: https://doi.org/10.1063/5.0037934

Contribution: First author, performed research and wrote of the manuscript,
see Sec. 4.3 for more details.

Relevance: This work introduces an extended MPCD method with a collision
rule that results in a non-ideal equation of state. Analytic expressions
for the equation of state and the shear viscosity are derived and show
excellent agreement with results from simulations.

Status: published in peer reviewed journal.

3. A. W. Zantop and H. Stark. Multi-particle collision dynamics with a non-ideal equation
of state. II. Collective dynamics of elongated squirmer rods. The Journal of Chemical
Physics, 155, 134904, (2021).
doi: https://doi.org/10.1063/5.0064558

Contribution: First author, performed research and wrote of the manuscript,
see Sec. 4.4 for more details.

Relevance: This work provides a study of the collective dynamics of squirmer
rods at different aspect ratio and density. Thereby, it is shown that the
extended MPCD method improves the precision of simulations in dense
configurations of squirmer rods and the flow field shows excellent agree-
ment with the analytical solution.

Status: published in peer reviewed journal.

4. A. W. Zantop and H. Stark. Emergent collective dynamics of pusher and puller
squirmer rods: swarming, clustering, and turbulence. Soft Matter, 18, 6179-6191,
(2022).
doi: https://doi.org/10.1039/D2SM00449F

Contribution: First author, performed research and wrote of the manuscript,
see Sec. 4.5 for more details.

Relevance: This work provides an in-depth analysis of the collective dynam-
ics of pusher and puller-type squirmer rods as a function of the aspect
ratio, density, and force dipole strength. It is found that swarming states
dominate the behavior of pullers, while pushers exhibit turbulence.

Status: published in peer reviewed journal.
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4.1 Synopsis

In our first article presented in Sec. 4.2, we introduce the squirmer-rod model for
elongated microswimmers motivated by the shape of biological microscopic organ-
isms [226, 227]. The model covers the different biological propulsion strategies of
ciliates, as for example Paramecium [70, 166], pushers like the E. coli or B. subtilis
bacteria [28, 228, 229], or pullers as the algae Chlamydomonas reinhardtii [38, 167]. To
model the hydrodynamic flow of the solvent, we employ the multi-particle collision
dynamics (MPCD) method [74, 120].

Thereby, we focus on the flow fields created by single squirmer rods in the bulk
fluid and Hele-Shaw geometry, where the squirmer rod swims between two parallel
plates. The flow fields are characterized using a decomposition into hydrodynamic
multipoles to identify the dominant contributions. For the bulk fluid, the decom-
position into hydrodynamic multipoles was introduced by de Graaf et al. [163]. In
our work, we extend their idea further to the Hele-Shaw geometry based on the
appropriate Green’s function of the Stokes equations derived by Liron and Mochon
[177] and Mathijssen et al. [176]. This allows us to formulate an alternative multipole
expansion for the far field in the Hele-Shaw geometry. Thereby, all multipoles are
modified with the transition from the bulk fluid to the confinement in the Hele-Shaw
geometry [176, 177, 179]. More specifically, this means that the algebraic radial de-
cays of the multipoles change; the force-multipoles become more short-ranged, while
the source-multipoles become more long-ranged. At the same time, the distance of
the confining plates controls the absolute strength of the multipoles. This has the
fundamental consequence that the source dipole dominates the far field of the fluid
flow of every type of self-propelled particle [74, 162].

For the neutral squirmer rod, we observe that the flow field is accurately de-
scribed by solely adding a force-quadrupole term compared to the spherical squirmer.
This additional term possesses the same 1/r3 radial decay as the source dipole and,
therefore, it does not alter the far-field behavior. The strength of this additional term
increases linearly with the aspect ratio of the rod. For the pusher-type squirmer rod
the modified surface slip-velocity results in the expected characteristic force-dipole
moment in the flow field, which is more long-ranged and, therefore, dominates flow
field in the bulk fluid.

In the Hele-Shaw geometry, we verify both the different radial decay of the flow
fields of the source and force multipoles as well as the scaling with the distance of the
confining walls. In particular, the characteristic source-dipole moment in the flow
field of neutral squirmer rods becomes more long-ranged, while the force-dipole
moment in the flow field of pushers becomes more short-ranged. The appropriate
multipole expansion for the Hele-Shaw geometry fits well in the far field and in
strong confinement. For larger separations of the walls, deviations appear at short
distances due to terms neglected from the full form of the appropriate Green’s func-
tion of the Stokes equations. For the pusher-type squirmer rod in the Hele-Shaw
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geometry an interesting crossover of the source-dipole to the force-dipole appears as
a function of the confinement strength.

In our second article presented in Sec. 4.3, we introduce an extended MPCD
method with improved thermodynamic properties for simulations of the collec-
tive dynamics of squirmer rods. This work is separated into two articles. In the
present first article, we introduce the extended MPCD method and derive analytic
expressions for the equation of state and the shear viscosity, which are compared
with simulations. In the second article, we evaluate the new method in the context
of squirmer rods and perform an in-depth study of the phase diagram of neutral
squirmer rods.

Our starting point is that the traditional MPCD fluid has the equation of state
of the ideal gas and is thus very compressible [126, 145, 230]. On this basis, we
formulated a new MPCD collision step, which extends the concept of Tüzel, Ihle,
and collaborators, who integrated geometric properties of collisions between hard-
core particles into a two-dimensional variant of MPCD [231, 232].

The definition of the extended collision rule resembles properties of collisions in
clouds of hard-core particles. This is realized as follows. Additionally to dividing
MPCD particles into collision cells, each cell is divided into two groups using a
randomly oriented plane. To mimic geometric properties of hard-core particles,
collisions exchange the relative momentum of these groups if they approach each
other. Moreover, the collision frequency in the MPCD collision cell increases with the
density and relative velocity of the two particle groups. To realize different collision
frequencies for each MPCD cell, collisions occur at random with a probability that
depends both on the local density and velocities of the particles. This is motivated
by the collision term in the Boltzmann equation for clouds of particles [216] and
appears in a similar form for chemical reactions of second order [233].

The extended MPCD method creates an inherent momentum flux that adds
to the pressure term of the stress tensor. As we show, this results in a non-ideal
equation of state of the model fluid and achieves a low compressibility at a high
numeric efficiency. Furthermore, we derive analytic expressions for pressure and the
shear viscosity, which are in good agreement with values obtained from numerical
simulations of the bulk fluid, constant linear shear and Poiseuille flow.

In our third article presented in Sec. 4.4 we continue our work on the extended
MPCD method [205], assess its properties and performance, and apply it for an
in-depth study of the collective dynamics of neutral squirmer rods.

As we are able to show, the extended MPCD method accurately reproduces the
analytic solution of the flow field of a pusher-type spherical squirmer in both the
bulk flow as well as in the Hele-Shaw geometry.

We further compare the extended MPCD method to the traditional MPCD-AT+a
method in simulations of a dense configuration of squirmer rods with large aspect
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ratio α, for the same viscosity η and Péclet number Pe. Simulations of the collective
dynamics of squirmer rods are thereby performed in a Hele-Shaw geometry, where
the squirmer rods are confined to move in the center plan between the confining
walls. In both MPCD methods, the squirmer rods form a large stable swarm, but as
expected the extended MPCD fluid indeed behaves more incompressible, and the
properties of the fluid remain more uniform. In a second comparison, we consider
squirmer rods with small aspect ratio α, which exhibit the dynamic formation of
small swarms with a finite lifetime for both MPCD methods. However, in this case,
the collective dynamics differs and the emergent swarms in the extended MPCD
method have larger velocities and reach larger sizes.

We further determine the state diagram of neutral squirmer rods for variations of
the aspect ratio α and the density, described by the two-dimensional area fraction ϕ

in the center plane. Overall, four different states emerge. In dilute systems, where
distances between particles are large, a disordered state without any correlations
between squirmer rods occurs. For higher aspect ratios, α ą 3.25, the rods exhibit a
dynamic swarming state, in which small to medium size swarms frequently form
and dissolve. If the aspect ratio is further increased, swarms become stable, and
ultimately a single big swarm forms. Lastly, at large density the rod configuration
reaches a jammed state with a large stationary cluster.

In our latest article presented in Sec. 4.5, we extend our study to the collective
dynamics of pusher and puller-type squirmer rods. In this regard, we adapt the
squirmer-rod model to include arbitrary values of the force-dipole strength, in order
to smoothly vary from strong pusher to strong puller type. We then investigate
the state diagram of squirmer rods in the Hele-Shaw geometry, as a function of the
force-dipole parameter χ, the aspect ratio α, and the density or area fraction ϕ.

For pusher-type squirmer rods we observe a new turbulent state alongside with
a dynamic cluster state, which emerges intermediate between active turbulence and
jammed clustering. We find that the dynamic states emerge in an interplay between
hydrodynamic interactions, described by the force-dipole strength χ, and the steric
interactions, described by the combination of α and ϕ. In dilute systems, where
particles collide less and steric interactions are less important, the hydrodynamic
interactions of pushers result in a complete destabilization of the swarming state
that emerges for neutral squirmer rods. Instead, we observe a disordered state that
exists also for higher aspect ratios α and densities ϕ. For larger α and ϕ, we observe
that short-ranged steric interactions that align rods are more important and the
turbulent state emerges in a competition with the more long-ranged hydrodynamic
disordering interactions. This results in positive and negative velocity correlations
that alternate on the length scale of a few swimmer lengths. The corresponding
power spectral density exhibits two distinct regimes with power-law scaling and
non-universal exponents and a maximum, indicating a characteristic patter length-
scale. For larger aspect ratios and denser systems, the steric interactions dominate
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and induce the single swarm and jammed cluster states already found for neutral
squirmer rods.

In contrast, the hydrodynamic interactions of pullers enhance the formation of
dynamic swarms, which then occur for all aspect ratios already at low densities.
Accordingly, also the single-swarm state and the jammed cluster state are shifted
towards smaller densities.

The variation of the swimmer-type parameter χ supports the previous findings.
For pullers, we observe that the dynamic swarming state dominates at low densities
for also small dipole strengths. The turbulent state is again found for intermediate
strengths of both hydrodynamic and steric interactions, and we observe that it is
destroyed if hydrodynamic interactions dominate.
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Squirmer rods as elongated microswimmers: flow
fields and confinement

Arne W. Zantop * and Holger Stark *

Microswimmers or active elements, such as bacteria and active filaments, have an elongated shape,

which determines their individual and collective dynamics. There is still a need to identify what role

long-range hydrodynamic interactions play in their fascinating dynamic structure formation. We

construct rods of different aspect ratios using several spherical squirmer model swimmers. With the help

of the mesoscale simulation method of multi-particle collision dynamics we analyze the flow fields of

these squirmer rods both in a bulk fluid and in Hele-Shaw geometries of different slab widths. Based on

the hydrodynamic multipole expansion either for bulk or confinement between two parallel plates, we

categorize the different multipole contributions of neutral as well as pusher-type squirmer rods. We

demonstrate how confinement alters the radial decay of the flow fields for a given force or source

multipole moment compared to the bulk fluid.

1 Introduction

Swimming at the micron scale and understanding how micro-
organisms overcome the constraints of low-Reynolds-number
hydrodynamics have attracted a lot of attention among physicists.1–3

Intriguing features such as active turbulence,4,5 swarming,6,7 polar
patterns,8 and vortex formation,8,9 which arise from the active nature
of the fluid, still pose challenges to scientists. The fluid environment
and the flow fields initiated by microswimmers strongly determine
both their isolated motion and their appealing collective patterns,
which they develop in non-equilibrium.10 But also the elongated
body shapes4,7,8 and geometric confinement11–15 of microswimmers
significantly contribute to their single and collective dynamics.
However, it is still a matter of current debate to completely identify
the individual contributions of direct steric and long-range hydro-
dynamic interactions.2,16,17 By introducing an active squirmer rod in
this article, we aim to contribute to the discussion with a detailed
analysis of its flow field in bulk and Hele-Shaw geometry.

Artificial microscopic swimmers with various locomotion
mechanisms have recently been constructed to study the principal
properties of their individual and collective motion. Examples
mostly include spherical microswimmers.6,18–21 Elongated and
flexible active constituents are realized by polar biofilaments in
motility assays8 or at a fluid–fluid interface,7 while bacteria provide
a natural realization of active rods.4

Combining elements of the Toner–Tu22 and Swift–Hohenberg23

theories, continuum models for bacterial microswimmers have
been developed that are able to reproduce pattern formation such

as vortices and active turbulence.4,24–26 Alternative continuum
theories for active matter based on liquid-crystal hydrodynamics
reproduce the creation, annihilation, and motion of liquid-crystal
defects27 or are able to describe the dynamics of the intracellular
cytoskeleton gel.2,28

In contrast, particle-based simulations are employed to study
the collective dynamics of active rods. In the famous Vicsek
model coarse-grained aligning interactions are able to reproduce
dynamical states such as flocking and swarming.29–31 Langevin
dynamics simulations of active rods4,32,33 or active filaments34,35

suggest that many properties might already emerge from short-
ranged steric interactions. However, also implicit hydrodynamic
pair interactions are included in such simulations to provide
more realistic models with novel dynamic states.36,37 An exten-
sion to single active filaments exists.38,39 Explicit hydrodynamic
simulation schemes have been applied, as well. For example, the
lattice Boltzmann method was used to investigate the properties
of microswimmers with various shapes40–42 while with the
method of multi-particle collision dynamics collective phases of
spherical43–45 and ellipsoidal microswimmers46,47 were studied,
as well as realizations of pusher and puller-type swimmers.48,49

In this work, we introduce and characterize single squirmer
rods with the idea to model elongated microswimmers in their
fluid environment. They then can be used to disentangle the
effect of direct steric and long-range hydrodynamic interactions
in their collective behavior. The squirmer model swimmer45,50,51

is a good model for spherical artificial microswimmers such
as Janus particles52–54 and also biological organisms such as
Volvox.55 Squirmers have in common that they propel themselves
by an axisymmetric surface–velocity field, which acts on the
surrounding fluid.45,56,57 In biological systems this is realized
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by cilia, located all over the cell surface, which perform synchronized
collective non-reciprocal motions. The squirmer has frequently been
used in hydrodynamic simulations of the collective behavior of
microswimmers42,58,59 and also by our own group,43–45,60–62

where we rely on the mesoscale method of multi-particle
collision dynamics.45,63,64

In this article we use squirmers to build rigid rod-shaped
microswimmers of different aspect ratios and perform large-
scale simulations with multi-particle collision dynamics. We
explore their hydrodynamic flow fields both in a bulk fluid and
in a Hele-Shaw geometry with varying cell width, where we keep
the squirmer rod in the midplane to mimic the fluid interface
in the experiments of ref. 7 (cf. Fig. 1).

In our analysis, we rely on the hydrodynamicmultipole expansion
both in the bulk fluid10,40,50,65 and between two parallel plates.12–14

This will enable us to categorize the different multipoles of both
neutral as well as pusher-type squirmer rods and to determine the
different radial decays of their multipole flow fields.

The paper is organized as follows. In Section 2 we introduce
the squirmer rod and the methods to generate and analyze its
flow fields. We present the results of our analysis in Section 3
and conclude in Section 4.

2 System and methods

The hydrodynamics of the squirmer rod at small Reynolds
numbers is determined by the Stokes equations including the
incompressibility condition,

Zr2u � rp + f = 0 r�u = 0. (1)

Here, Z is the viscosity of the fluid, u(r) the fluid velocity, p(r)
the pressure, and f(r) denotes a body force at point r. In the
following we introduce the squirmer-rod model, the funda-
mental solutions of the Stokes equations both in bulk and a
Hele-Shaw cell, in order to characterize its hydrodynamic
multipole moments, and details of the method of multi-
particle collision dynamics (MPCD) to simulate the flow fields
together with the relevant parameters.

2.1 Squirmer rod model

To investigate the influence of shape anisotropy of microswimmers
and their hydrodynamic interactions on collective motion, we
introduce a newmodel of squirming active rods. To construct them,
we arrange several spherical squirmers [cf. Fig. 2(a)] on a line to form

a rigid body as shown in Fig. 2(b). On the one hand, this closely
resembles the actual rod shape of many biological microswimmers
such as bacteria, on the other hand the model can be extended to a
flexible swimmer body by introducing bending rigidity in future
works. In concrete, we always take Nsq = 10 spherical squirmers and
vary the squirmer distance d [cf. Fig. 2(b)] to form rods of different
aspect ratios a = lS/2R, where lS is the rod length. We do not go
beyond a maximum squirmer distance of dE 0.8R, which amounts
to amaximum rod length lS = 9.5R, so that the surface is still smooth
enough that swimmers can slide past each other. Each of the
individual squirmers of a rod propels itself by an imposed axisym-
metric surface slip-velocity field of a neutral squirmer,45,56,57

vs = Bs1[(ê�x̂s)x̂s � ê] (2)

that acts on the surrounding fluid. Here, x̂s is the unit vector
along xs, which points from the squirmer center to its surface,
and unit vector ê indicates the orientation and swimming
direction of the squirmer. In the case of a single squirmer,
the induced flow field in a bulk fluid agrees with the velocity
field of a pure source-dipole singularity with strength B1 = Bs1R

3

as explained in the following section. The squirmer parameter
Bs1 also determines the swimming speed v0, which amounts to
v0 = 2/3Bs1 for a single squirmer.

Having the surface velocity field distributed over the whole
squirmer rod [cf. Fig. 2(b)], our model resembles ciliated
microorganisms such as Paramecium. In contrast, bacteria like

Fig. 1 Perspective view of a squirmer rod moving in the midplane (in light
gray) of a Hele-Shaw cell with slab width Dz. Periodic boundary conditions
along the x and y directions are used.

Fig. 2 (a) Schematic of a single squirmer of radius R and with orientation
given by the unit vector ê. The surface slip-velocity field of a neutral
squirmer is indicated by blue arrows. (b) Schematic of the squirmer rod
model. Always, nsq = 10 spherical squirmers are placed on a straight line
with distance d to form active rods. All squirmer orientations ê are aligned
with the rod axis. (c) Implementation of a pusher type squirmer rod. The
surface slip velocity on the rod surface is multiplied by the envelop
function f (xs*�ê) of eqn (3) such that the slip-velocity field is concentrated
on the rear of the rod.
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E. coli propel themselves with a bundle of rotating flagella that
pushes fluid backwards while the cell body does not have any
surface velocity field. To implement squirmer rods of such a
pusher or also of puller type, we use the envelope function

f ðxs� � êÞ ¼
1� tanh 10xs

� � ê=lSð Þ
2

: (3)

Here, xs* is a vector from the center of mass of the rod to any
point on the surface [cf. Fig. 2(c)] and 10/lS is the step width of
the envelope function. Multiplying the surface velocity field
with f (xs*�ê), concentrates the slip velocity field on the rear half
of the rod for the – sign in f and thereby a pusher squirmer rod
is realized, while the + sign generates a puller.

2.2 Fundamental solutions of Stokes flow in bulk

To provide an understanding of the flow field u(r) that squirmer rods
initiate in a bulk fluid and how they interact hydrodynamically, we
review themultipole expansion of u(r).50,66 It is composed of singular
solutions of the Stokes equations including the Stokeslet as the flow
field of the leading force monopole, which has to vanish for force-
free microswimmers, the flow field of the source dipole, and their
higher-order derivatives. We introduce the polar angle y relative to
the squirmer-rod axis via cosy = ê�r/r. Then, in spherical coordinates
r, f, and y the respective radial and polar components of the velocity
field can be written as50,66

urðr; yÞ ¼
X1
n¼1

Anr
�n þ Bnr

�n�2
� �

Pnðcos yÞ;

uyðr; yÞ ¼
X1
n¼1

n

2
� 1

� �
Anr

�n þ n

2
Bnr

�n�2
h i

VnðyÞ:

(4)

Here, Pn(cosy) are the ordinary Legendre polynomials and

VnðyÞ ¼
2 sin y

nðnþ 1ÞPn
0 ðcos yÞ; (5)

where 0 means derivative with respect to cos y. Due to the
rotational symmetry of a squirmer rods about its axis, the flow
field is independent of the azimuthal angle f and the azimuthal
velocity component uf vanishes. The multipole coefficients An
and Bn describe the strength of the nth-order force and source
multipoles, where B1 belongs to the source dipole. To determine
them, we calculate the nth expansion or Legendre coefficient of
the radial component of the flow field in eqn (4),

ur;nðrÞ �
2nþ 1

2

ðp
0

urðr; yÞPnðcos yÞ sin ydy; (6)

using the completeness relation of the Legendre polynomials,
which gives

ur,n(r) = Anr
�n + Bnr

�n�2. (7)

Thus, from the simulated flow fields of the squirmer rods, in
particular, from the radial decay of ur,n(r), we can infer their
leading force and source multipole moments. We will demon-
strate this in Section 3.1. Note that the nth force and source
monopole can be clearly distinguished by their radial decay.

2.3 Fundamental solutions of Stokes flow in Hele-Shaw
geometry

In a seminal paper Liron and Mochon12 determined the Stokeslet
solution between two infinitely extended parallel plates with no-slip
boundary condition (cf. Hele-Shaw geometry in Fig. 1) using
an infinite series of image forces. For a force parallel to the plates
(x � y plane), the x, y components of the resulting Stokeslet flow
field are long-range and consist of a Poiseuille flow profile g(z)
along the plate normal times the flow field of a two-dimensional
source dipole in the plane (cf. Appendix A). As in the bulk fluid65

one can generate the flow fields of higher-order force moments by
applying the directional derivative ê�rp to the Stokeslet flow field.14

Here, rp is the nabla operator acting on the position of the
Stokeslet singularity and the unit vector ê gives the direction of
the force multipole in the x � y plane, which we assume to be
uniaxial for simplicity. Likewise, by applying the Laplace operator
rp

2 to the Stokeslet flow field, one obtains the flow field of a source
dipole, which here is up to a factor identical to the Stokeslet flow
field.14 Higher source multipole moments are again generated by
directional derivatives.

Relevant for the squirmer rod will be the flow fields of the
source dipole (uSD), force dipole (uFD), force quadrupole (uSD),
and source octupole (uSD):†

u(r) = uSD(r) + uFD(r) + uFQ(r) + vSO(r) + . . .. (8)

To determine these contributions from the simulated flow field
of the squirmer rod, we first average over the z coordinate and
then treat the resulting velocity field ũ(r,j) in the x–y plane
using polar coordinates r, j. As we demonstrate in Appendix A,
for a microswimmer oriented along the x axis, ê = êx, the
multipole expansion for the radial component of the flow
field gives

~urðr;jÞ ¼
X1
n¼1

An þBn

rnþ1
TnðcosjÞ: (9)

Here, Tn(cosj) = cos(nj) are the Chebyshev polynomials of the
first kind andAn, Bn are the respective coefficients of the force
and source multipole moments. They start with A1 for the
force monopole, which does not exist for a force-free swimmer,
and B1 for the source dipole, and so on.

It immediately becomes obvious that in contrast to the bulk
fluid one cannot distinguish the flow fields of force and source
multipoles with the same angular dependence (same order n)
by the radial decay. We note that the coefficients scale differ-
ently with the slab width Dz. In Appendix A we motivate An p

Dz and Bn p 1/Dz. However, our simulated data are not always
sufficiently accurate to discriminate both cases. So, we assign
the relevant multipole assuming that it is preserved from the
bulk fluid. The multipole expansion captures the distribution

† Although the source quadrupole shares the same radial dependence as the
force dipole in the Hele-Shaw geometry, it is not considered in this list for two
reasons. First, we solely observe a force dipole in the bulk fluid but no source
quadrupole. Second, the strength of ũr,2(r) grows with the slab width Dz in our
simulations, which identifies it as a force dipole rather than a source quadrupole.
We will elaborate on this further below.
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of force and source multipoles in leading order. This distribution
generated by the rod surface should remain the same in the
Hele-Shaw geometry. However, since we deal with a voluminous
rod in contrast to a point-like source, higher-order terms enter to
fulfill the boundary conditions on both the rod surface and the
bounding plates. The flow fields of these terms will decay faster
than the leading bulk moments at some distance from the rod.

Finally, exploiting the orthogonality relations of cos nj =
Tn(cosj), we extract the multipole moments from eqn (9) by
projecting ũr(r,j) on the Chebyshev polynomials,

~ur;nðrÞ �
1

p

ð2p
0

~urðr;jÞTnðcosjÞdj; (10)

which yields

~ur;nðrÞ ¼
An þBn

rnþ1
: (11)

In both the bulk fluid and Hele-Shaw geometry we can restrict
our focus on a particular set of Stokes flow singularities. These
will be the source dipole (B1), force dipole (A2), force quadru-
pole (A3), and source octupole (B3).

2.4 MPCD fluid model

To model the fluid in our simulations, we apply the method of
multi-particle collision dynamics together with the Andersen
thermostat and angular momentum conservation (MPCD-AT+a).44

The method solves the Navier–Stokes equations and thereby can
also treat hydrodynamic interactions between the active squirmer
rod and the confining walls of the Hele-Shaw geometry.63,64

Furthermore, it also includes thermal fluctuations. The MPCD
method considers point-like particles that represent the fluid and
defines rules for (i) their motion and (ii) their collisions such that
the resulting hydrodynamic flow field fulfills the Navier–Stokes
equations. These rules are applied in alternating steps. We shortly
introduce the essential features of the MPCD method and refer to
ref. 45 for more details.

During the streaming step (i) the point particles with masses
m0, positions xi(t), and velocities vi(t) move ballistically during
time Dt,

xi(t + Dt) = xi(t) + vi(t)Dt. (12)

During this step fluid particles collide with confining walls or
the surface of the squirmer rod. By applying the so-called
bounce-back rule44,45 the collisions either enforce the no-slip
boundary condition on confining walls or the slip-velocity field
on the squirmer-rod surface. In addition, the collisions also
transfer both linear and angular momentum, in particular, to
the squirmer rod. This changes the center-of-mass and angular
momentum of the rigid rod, which is calculated relative to the
center-of-mass. In Appendix B we present formulas for the mass
mrod and moment-of-inertia tensor Irod of the rigid squirmer rod.

For the collision step (ii), the simulation volume is divided
by a cubic lattice and the fluid particles are grouped into the
cubic unit cells of linear size a0 and centered around x. First, for
the nx particles in each cell with volumeVx the mean velocity vx
and center-of-mass position xx are determined. Then, in the

center-of-mass frame the fluid particles are assigned new
random velocities dvi from a Boltzmann-distribution with tem-
perature T0. To restore overall momentum conservation, the

total change in linear momentum, m0Dvx ¼
m0

nx

P
xi2Vx

dvi, has to

be subtracted from the new velocities, while an additional term
containing the difference of the angular momentum before

the collision Lx ¼
m0

nx

P
xi2Vx

xi;c � vi, and the change in angular

momentum, DLx ¼
m0

nx

P
xi2Vx

xi;c � dvi, is added to preserve

angular momentum. Here xi,c denotes the particle position
relative to the center-of-mass position xx. Thus, the collision
step can be summarized by

vnewi = vx + dvi � Dvx � xi,c � Ix
�1(Lx � DLx), (13)

Here, Ix is the moment-of-inertia tensor of the distribution of
particles inside Vx calculated in the center-of-mass frame.
During this step immersed boundaries are represented by
so-called ‘‘ghost’’ particles. They are added to the collision cells
divided by the boundaries and interact with the other fluid
particles. These ghost particles are assigned the local velocity of
the translating and rotating squirmer rod plus a random
thermal velocity drawn from a Boltzmann distribution. The
changes of linear and angular momentum of the ghost particles
during the collision step are then added to the squirmer rod to
ensure linear and angular momentum conservation. Finally,
before performing each collision step, the lattice is randomly
shifted to ensure Galilean invariance.

Given the center-of-mass and angular momentum of the
rigid squirmer rod, its location and orientation are updated 10
times during each collision step using a standard leapfrog
algorithm.67 The rod is treated as single rigid body the position
and orientation vector of which is updated following ref. 67. To
keep the squirmer rod in the midplane of the Hele-Shaw cell,
we only use the x and y component of the fluid force acting on
the rod to integrate its motion in time throughout the simula-
tion. Due to the symmetry about the midplane only Brownian
forces are acting on the squirmer normal to the midplane. Note
due to this constraint we do not observe any oscillatory trajec-
tories between the plates as observed in ref. 68.

We have implemented the MPCD model fluid together with
the squirmer-rod model in C++ and CUDA to enable the use of
graphic cards. Because the main performance bottleneck in
MPCD is memory access, we integrate a sorting algorithm and
lookup table following ref. 69. Additionally, we use variable size
cooperative thread groups to add dynamic load balancing to
our MPCD collision routines in CUDA.

2.5 Geometry and fluid parameters

For the MPCD fluid we use a density of n0 = 10/a0
3 fluid particles

per cell and the same mass density r0 = m0n0 for the immersed

squirmer rod. With time step Dt ¼ 0:02a0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=kBT0

p
one obtains

a dynamic fluid viscosity of Z ¼ 16:05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0kBT0

p �
a0

2.44 Through-
out this work, the radius and the squirner parameter of the
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single squirmer are chosen as R= 3a0 and Bs
1 ¼ 0:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT0=m0

p
,

respectively.
To determine how the hydrodynamic moments of the squirmer

flow field in a bulk fluid varies with the aspect ratio a in
Section 3.1, we simulate single rods in a cubic box of linear
size L = 100a0 using periodic boundary conditions in all three
dimensions. For all other bulk simulations in Sections 3.1 and
3.3, we use box sizes of L = 180a0 with periodic boundary
conditions. We begin by simulating the system for a time 104Dt
to equilibrate the MPCD fluid flow and then average the flow
fields over the time interval from 104Dt to 5 � 106Dt. To
determine the radial component vr(r,y) of the velocity field,
we also exploit the rotational symmetry of the flow fields by
averaging about the rod axis. Using eqn (6), we then obtain the
expansion coefficients ur,n(r) for different multipole order n and
extract the strengths of the hydrodynamic moments by fitting
ur,n(r) from eqn (7) to the curves determined from the simulated
flow fields.

For the simulations in Hele-Shaw geometry in Sections 3.2
and 3.3, we use box sizes of L = 200a0 with no-slip walls and
periodic boundary conditions along the x and y directions. For
the slab width we investigate the three values Dz/R = 2.7, 6.0,
and 9.3. When determining the flow fields in the Hele-Shaw
geometry, the total simulation time is increased up to 107Dt to
compensate for the fact that the flow field cannot be averaged
about the rod axis.

3 Results

In the following, we present our results. We first discuss the
flow field of a neutral squirmer rod in the bulk fluid and how it
depends on the aspect ratio a. We then study neutral squirmer
rods in Hele-Shaw geometries of different slab widths and
illustrate the different far-field behavior compared to the bulk
fluid. Finally, we look at a squirmer rod of pusher type moving
in both bulk fluid and the Hele-Shaw geometry.

3.1 Neutral squirmer rods in bulk fluid

In the bulk fluid, rods of different aspect ratio a create flow
fields as shown in Fig. 3. In all panels (a), (b), and (c) only a part

of the simulated fluid volume is shown. In the case of the
spherical squirmer, a = 1, in Fig. 3(a) we observe a perfect
match with the theoretical prediction for the flow field of a
source dipole moment. For a short squirmer rod with a = 1.75
the flow field already becomes stretched along the rod
[cf. Fig. 3(b)]. At higher aspect ratio, a = 4.0, the flow field
shows a strong deviation from the one of a source dipole
moment, with the streamlines buckling inwards at the sides
of the rod. Thus, we expect higher-order moments to contribute
strongly to squirmer rods with higher aspect ratios a.

To provide a quantitative analysis, we apply eqn (6) and
decompose the flow field into its different angular contribu-
tions with the nth-order Legendre coefficients ur,n(r). As an
example, we show in Fig. 4(a) the measured ur,n(r) as data
points for a squirmer rod of a = 4 and also include fitted
polynomials in r�1 as solid lines.

All radial velocity components ur,n(r) either show distinct
power law behavior as for n = 1 and 3 or vanish. The first-order
coefficient ur,1(r) clearly shows a pure 1/r3 decay, indicating a
zero force monopole moment A1 while the source dipole
moment B1 is present, as expected. This is consistent with the
fact that we consider microswimmers free of external forces.
Consistent with the head–tail symmetry of the forces, the
squirmer rods exert on the fluid, we do not observe a force
dipole moment, A2 = 0, since the second-order coefficient ur,2(r)
vanishes. Furthermore, the third-order contribution ur,3(r) is
also present and decays with 1/r3, which indicates an additional
force quadrupole moment A3. We elaborate on its origin further
below. Both curves ur,1(r) and ur,3(r) fall off from the theoreti-
cally predicted power law at large r due to the finite size of the
simulation box. They also show small deviations from the
power law, which we attribute to the flow fields of the image
swimmers introduced by the use of periodic boundary condi-
tions. All other coefficients ur,n(r) are too small to be distin-
guished from noise and hence can be neglected in the
following. Thus, the flow field of a neutral squirmer rod is a
superposition of a source dipole moment (B1 a 0), and a force
quadrupole moment (A3 a 0), which both decay as 1/r3. In
Fig. 4(b) we plot the two moments normalized by the squirmer
parameter Bs1 versus the aspect ratio a. They both increase
roughly linearly in a. While the source-dipole moment B1 shows

Fig. 3 Simulated flow fields of an active squirmer rod for different aspect ratios a = 1 (a), a = 1.75 (b), and a = 4.0 (c) shown in the laboratory frame. The
color-coded magnitude of the velocity field and streamlines are presented. In each case only a part of the simulated fluid volume is shown.
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a modest increase in a starting from B1 = B
s
1R

3 for a = 1, the force
quadrupole moment A3 increases much more strongly from
zero and clearly dominates beyond a = 2.

The additional force quadrupole does not break the head–
tail symmetry of the squirmer rod, which we therefore denote
as neutral. However, the corresponding flow field clearly affects
the shape of the overall flow field as we saw in Fig. 3. Since its
angular dependence is governed by the third-order Legendre
polynomial P3(cos y) compared to P1(cos y) of the source dipole,
it will influence the hydrodynamic interactions with other
squirmer rods, also because its flow field shows the same radial
decay, 1/r3.

To shed some light on the origin of the force quadrupole, we
determined the local force Fhyd(yi), with which the spherical
squirmer component i placed at yi along the rod axis acts on the
surrounding fluid. Of course, the rod is force free, thus all the

forces Fhyd(yi) add up to zero,
PNsq

i¼1

FhydðyiÞ ¼ 0. The forces from

the terminal squirmers i = 1 and i = Nsq are mainly determined
by fluid pressure. They cancel each other up to some remaining
force, Fhyd,p = Fhyd( y1) + Fhyd(yNsq

). In the following, we refer the
force of the other squirmers on this remaining force, dFhyd(yi) =
Fhyd(yi) � Fhyd,p/(Nsq � 2), so that they sum up to zero:PNsq�1

i¼2

dFhydðyiÞ ¼ 0. In Fig. 5(a) we plot the relative force dFhyd(yi),

the schematic in Fig. 5(b) rationalizes the different signs of
dFhyd(yi). In the center of the rod (y = 0), the relative local force
is negative due to the surface velocity of the squirmer rod
pushing fluid backwards, while at both ends of the rod the fluid
is dragged with the rod. This generates the observed force
quadrupole.

Finally, as we show in Fig. 4(c), the swimming speed vrod of
the rod increases with a and then saturates. With increasing
aspect ratio the swimming speed is more and more determined
by the maximum surface velocity around the equator of the
constituent squirmers and thus the speed increases. At large a
the cap regions of the squirmer rod become irrelevant and the
swimming speed saturates. To calculate an analytic expression
for the swimming speed, we average the surface slip-velocity
field vs of the squirmer rod over the whole surface with area
Srod.

70 For the component along the squirmer axis ê we obtain

vrod ¼ � 1

Srod

ð
Srod

ê � vsdS (14)

¼ v0
3

2
� 1

2a
� 1

54
þ 1

162a
þ a
54

� a2

162

� 	
: (15)

The derivation is sketched in Appendix C. Note that the first
two terms on the right-hand side of eqn (15) result when
a perfect spherocylinder with the maximum slip velocity
Bs1 = 3v0/2 on the straight region is assumed. For a = 1 we
reproduce the swimming velocity v0 of the spherical squirmer.
Fig. 4(c) shows the analytic expression overestimates the swim-
ming speed. The reason is that the surface average of eqn (14)
to calculate the swimming speed only applies to spherical
shapes since then the hydrodynamic surface stress for a passive
sphere is constant along the surface.70 This is used in the
derivation of eqn (14) and obviously no longer valid for the
passive squirmer rod.

3.2 Neutral squirmer rods in Hele-Shaw geometry

To discuss the flow fields of a squirmer rod in the confining
Hele-Shaw geometry, we start with Fig. 6 where we show the
color-coded strength of the flow field and streamlines in the
midplane of the cell (upper panel) and the cross-sectional plane

Fig. 4 (a) Radial Legendre coefficients ur,n(r) of the simulated flow field of
a neutral squirmer rod with aspect ratio a = 4.0 calculated from eqn (6)
(symbols) and with fitted power laws (solid lines). SD and FQ stand
for source dipole and force quadrupole, respectively. (b) Hydrodynamic
multipole moments in units of the squirmer parameter Bs

1R
3 plotted versus

aspect ratio a. (c) Swimming speed vrod of a squirmer rod plotted versus a.
vrod is normalized by the swimming speed v0 = 2/3Bs

1 of a single squirmer at
a = 1. Simulation data (blue dots) and analytical values as given by eqn (15)
(dashed black line).

Fig. 5 (a) Local relative force dFhyd(yi), with which the squirmer rod acts
on the fluid, plotted along the long axis y of the squirmer rod. The aspect
ratio is a = 4. The dots correspond to the axial positions yi of the
constituent squirmers and the line is a guide to the eye. Note, in contrast
to the rest of the article, Nsq = 20 squirmers are used to compose the rod
in order to generate a smoother surface. (b) Sketch of dFhyd(y) (blue arrows)
to illustrate the force quadrupole. The grey arrow indicates the swimming
velocity.
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(lower panel). For a squirmer rod of a = 4.0 and similar to the
bulk fluid [cf. Fig. 2(c)], we observe how the streamlines at the
sides of the rod buckle inwards (upper panel of Fig. 6) due to
the flow field of the force quadrupole moment. However, as
explained in Section 2.3 and detailed in Appendix A, in the
Hele-Shaw geometry the flow field of the source dipole with
moment B1 is of longer range than the one of the force
quadrupole with moment A3. Indeed, already at a distance lS
from the rod the buckling of the flow lines is much weaker
compared to the bulk fluid [cf. Fig. 3(c)] and the flow field
assumes the shape of a pure source dipole.

In the lower panel of Fig. 6, further away from the rod
(|x/lS| 4 1) the streamlines are approximately parallel to the
bounding plates in agreement with the Poiseuille flow profile of
the single force and source multipoles as detailed in Appendix
A. However, in the direct vicinity of the rod, |x/lS| o 3/4, near-
field flow along the z direction occurs, which is due to terms
with exponential decay in the full hydrodynamic solution in a
slab geometry.

We now present a more quantitative analysis of the simu-
lated flow fields in Fig. 7 and 8. As for the bulk fluid, we
decompose the flow fields into the different angular contribu-
tions given by the Chebyshev polynomials Tn(cosj) using
eqn (10). Since from the radial decay of the expansion coeffi-
cients ũr,n(r) we cannot distinguish between the force multi-
pole of nth order and the source multipole of n + 1th order, we
are guided by the analysis in the bulk fluid from Section 3.1 and
attribute the expansion coefficients ũr,1(r) and ũr,3(r), plotted
in Fig. 7 and 8, to a source dipole (SD) and force quadrupole
(FQ), respectively.

In Fig. 7 we plot ũr,1/3(r) averaged over the cell height for
different slab widths Dz. For a small width Dz = 2.7R = 0.34lS the
coefficients are in very good agreement with the expected
power-law decay: 1/r2 for the source dipole and 1/r4 for the
force quadrupole. Both power laws fit well over the whole range
of the radial distance. For slab width Dz = 6R = 0.75lS the
measured coefficients ũr,n(r) approach the predicted power-law

decays at a radial distance of approximately r/lS = 1. This
is larger than the slab width, where we expect the far-field
solutions of the different multipoles to become valid. At this
distance the corresponding streamlines shown in the lower
panel of Fig. 6 are parallel to the bounding plates as predicted
by the multipole flow fields. Finally, increasing the slab width
further to Dz = 9.3R = 1.2lS the measured coefficients ũr,n(r)
show clear deviations from the expected power-law decay over
the whole range of the radial distance r. All in all, when we vary
the slab width, the force quadrupole moment stays the same,
while the source dipole moment increases with decreasing Dz.

In Fig. 8 we choose the smallest slab width Dz/R = 2.7, where
we obtained the best agreement in the previous figure and plot
the coefficients ũr,1/3(r) for different aspect ratios a. Again there
is very good agreement between the coefficients and the
expected power law decay. Only at radial distance smaller than
lS one realizes deviations, as expected. This is, in particular,
visible in plot (a).

3.3 Pusher-type squirmer rods

As explained in Section 2.1 we also implemented a pusher-type
squirmer rod with aspect ratio a = 4.0 and show our analysis in
Fig. 9. In the bulk fluid, the force dipole now dominates the
flow field as the new coefficient ur,2(r) demonstrates, which
decays with 1/r2 starting from r E lS. Compared to the neutral
squirmer rod and the dominating force dipole, the flow field of
the source dipole is roughly an order of magnitude smaller.
We also observe a deviation from the expected 1/r3 decay
(as indicated by the solid line) to a decay of roughly 1/r2. One
explanation might be the hydrodynamic interaction of the
squirmer rod with its images due to the periodic boundary
conditions, which especially affects the weaker multipole
moments. Compared to the neutral rod, the force-dipole field
is more long-ranged and therefore hydrodynamic interactions
between the images are stronger, which especially influences the
field of higher-order multipoles. Very different from the neutral
squirmer rod, the third-order coefficient ur,3(r) changes sign at a
radial distance of rE lS from positive to negative with increasing
r. This is why we plot the magnitude of the coefficients ur,n(r). It
is tempting to fit the 1/r5 decay of a source octupole with positive
moment B3 at distances r/lS o 1, while at r/lS 41 we indicate the
decay of a force quadrupole with negative moment A3. Again, the
latter is probably strongly disturbed by the periodic images,
resulting in a decay of roughly 1/r2, similar to our observations
before. In conclusion, since the flow fields of both the source
dipole and force quadrupole are one order of magnitude weaker
compared to the force dipole, the overall flow field is well
described by the latter.

In Fig. 10 we analyze the flow field of the pusher-type
squirmer rod in the Hele-Shaw geometry for different slab
widths. In addition to the findings for the neutral squirmer
rod (cf. Fig. 7), we also observe the force dipole. Compared to
the bulk fluid, it now has a stronger radial decay, ũr,2(r)p 1/r3,
as described by theory. At distances r/lS o 1.3 the strong but
shorter ranged force-dipole flow field dominates, while for
r/lS 4 1.3 the slower decay of the source-dipole field takes over.

Fig. 6 Simulated flow field of a squirmer rod with aspect ratio a = 4.0 in a
Hele-Shaw geometry with slab width Dz = 6R = 18a0 shown in the
laboratory frame. The color-coded magnitude of the velocity field v and
streamlines are presented. Upper panel: Flow field in the midplane; lower
panel: flow field in the cross-sectional plane indicated by the red dashed
line in the upper panel.
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Increasing the slab width, the flow field of the force dipole always
dominates in the given radial range [cf. Fig. 10(b) and (c)]. The
reason is the green curve shifts upwards while the blue curve
shifts downwards with increasing Dz. Thus, the dipole-force
moment increases with Dz in qualitative agreement with An p Dz
(cf. Section 2.3), while the source-dipole moment decreases with Dz
again in qualitative agreement with Bn p 1/Dz.

The third-order coefficient ũr,3(r) p 1/r4 does not change
very significantly in one direction with increasing Dz. We take this
as an indication that both the force quadrupole and source
octupole contribute to the flow field. A more detailed analysis of
A3 and B3 is not feasible with the hydrodynamic MPCD method
since due to thermal fluctuations it requires long averaging in order
to obtain smooth flow lines at large distances. Therefore, larger
system sizes would require an immense computational effort.

4 Summary and conclusion

In this paper we introduced the squirmer rod as a new model
for elongated microswimmers. By varying aspect ratio and
surface slip-velocity field, it is able to describe artificial and
biological microswimmers of different shape and propulsion
type, such as pushers, pullers, and neutral swimmers. To
quantify the generated hydrodynamic flow fields of the squirmer
rod, we determined the hydrodynamic multipole moments both
in the bulk fluid and the Hele-Shaw geometry, by projecting the
simulated flow fields on Legendre or Chebyshev polynomials,
respectively. The corresponding expansion coefficients showed
the expected radial decay.

The flow field of the neutral squirmer rod in the bulk fluid
shows the expected source dipole, while a force quadrupole
moment develops linearly with increasing aspect ratio and

Fig. 7 Multipole analysis of the simulated flow field of a neutral squirmer rod with aspect ratio a = 4 for different slab widths of the Hele-Shaw cell:
(a) Dz = 2.7R, (b) Dz = 6.0R and (c) Dz = 9.3R. As in the bulk fluid the radial decays of the expansion coefficients ũr,n(r) feature a source dipole (n = 1, blue
dots) and force quadrupole (n = 3, red pluses). The solid lines show fits with the corresponding power laws of r�2 and r�4, respectively. Grey vertical bar:
the coefficients ũr,n(r) were determine for radial distances r Z lS/2. The gray vertical dashed line indicates r = Dz.

Fig. 8 Multipole analysis of the simulated flow field of a neutral squirmer rod confined in a Hele-Shaw cell with slab width Dz = 2.7R for different aspect
ratios: (a) a = 1.75, (b) a = 3.25, and (c) a = 4.0. Otherwise, the same description as in Fig. 7 is used.

Fig. 9 Absolute values of the radial Legendre coefficients |ur,n(r)| of the
simulated flow field of a pusher-type squirmer rod with aspect ratio a = 4.0
calculated from eqn (6) (symbols) and with fitted power laws (solid lines).
FD, FQ stand for force dipole and quadrupole, while SD, SO mean source
dipole and octupole, respectively.
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becomes dominant beyond a = 2. It is due to a non-uniform
distribution of the force, with which the rod acts on the fluid.
By taking an average of the surface slip-velocity field over the
rod surface, the actual swimming velocity is overestimated. In
the Hele-Shaw geometry the radial decay of the multipole flow
fields changes as predicted by theory. Especially at low slab
width Dz we find a good match with our simulations. The flow
field of the source dipole now decay as 1/r2 and dominates at
radial distances r 4 Dz for all a and Dz over the field of the
force quadrupole, which now decays as 1/r4.

For the pusher-type squirmer rod with noticeable elongation
we observe that the flow field is composed of four hydro-
dynamic moments: force dipole, source dipole, force quadru-
pole, and source octupole. In bulk the force dipole completely
dominates the flow field and determines the radial decay with
1/r2. However, in the Hele-Shaw geometry the radial decay
changes to 1/r3 and is less long-ranged. Nevertheless, for larger
slab widths and the recorded radial distances it dominates the
flow field, while for small slab widths we see a cross over to
the longer-ranged source-dipole field. This is in qualitative
agreement with the expected behavior of the strength of the
multipole moments with increasing slab width: the force dipole
becomes stronger while the source dipole weakens. Finally, in
the Hele-Shaw geometry the flow fields of force quadrupole and
source octupole have the same radial decay. Varying slab width
suggests that they both contribute.

Our work shows how elongated microswimmers generate
additional hydrodynamic multipole moments compared to
swimmers of spherical shape, which leads to a more complex
appearance of the generated flow field. Since rods experience
additional torques in a non-uniform flow field via the strain-
rate tensor71 this will generate different behavior in suspen-
sions of squirmer rods compared to their pure steric interac-
tions. Furthermore, the source dipole is predicted to be the
dominant hydrodynamic moment in a Hele-Shaw geometry,13

which we confirm for neutral squirmer rods for varying slab
width. However, for pusher and puller rods the dominance of
the force dipole depends on the slab width and radial distance.

Therefore, in the continuation of this work, we plan to
investigate the collective dynamic behavior of the squirmer rods
introduced in this work. Thereby we will gain an understanding

how hydrodynamic interactions through the self-generated flow
fields contribute to different types of dynamic behavior such as
swarming in active nematics or active turbulent phases. As a
further extension of the presented model, we plan to introduce
bending rigidity between the different components of the squir-
mer rod to model active flexible filaments used, for example, in
ref. 7 and 8.

Conflicts of interest

There are no conflicts to declare.

A Force and source multipole
moments in Hele-Shaw geometry

In their seminal paper Liron and Mochon derived Green’s
function G for solving the Stokes equations in a Hele-Shaw cell
of width Dz (cf. Fig. 1) using an infinite series of image point
forces.12 For a point force along the z axis normal to the
bounding plates, the Stokeslet decays exponentially and the
same applies to the flow field component u3(r) along the z
direction. In the following we concentrate on the case, where
the point force is directed along unit vector ê in the x–y plane
and only flow in this plane is monitored. Then the main feature
of the Stokeslet is the long-range flow field of a two-
dimensional hydrodynamics source dipole, which appears in
the second line,

Gij êj /� 3Dz
pZ

r3

Dz
1� r3

Dz

� �rsw3
Dz

1� rsw3
Dz

� 	

� 1

r2
dij
2
� r̂i r̂j


 �
êj :

(16)

Here, the indices i, j A {1, 2} belong to the x–y plane, r is the
corresponding radial distance from the point force, and r̂ the
radial unit vector. In the first line on the right hand side a
Poiseuille flow profile is visible, which vanishes at the plate
locations r3 = 0 and Dz, and an equivalent term with the z
coordinate of the swimmer, rsw3 , appears.

In the Stokes flow regime any flow field surrounding a solid
body can be written as the sum of hydrodynamic multipoles or

Fig. 10 Multipole analysis of the simulated flow field of a pusher-type squirmer rod with aspect ratio a = 4 for different slab widths of the Hele-Shaw cell:
(a) Dz = 2.7R, (b) Dz = 6.0R and (c) Dz = 9.3R. In addition to the source dipole (n = 1, blue dots) and force quadrupole/source octupole (n = 3, red pluses),
the force dipole (n = 2, green crosses) is observed. Otherwise, the same description as in Fig. 7 is used.
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singularities, which can be derived from the Stokeslet in eqn (16).
For the flow field of the squirmer rod we list the relevant terms:

u(r) = uFD(r) + uFQ(r) + uSD(r) + uSO(r). . .. (17)

Since the squirmer rod is force free, there only appears the flow
field of a force dipole [uFD(r)] and, in addition, the flow fields of
a force quadrupole [uFQ(r)], a source dipole [uSD(r)], and a
source octupole [uSO(r)].

14,65

Following ref. 14 and 65 we derive the flow fields of force
multipoles with uniaxial symmetry from the Stokeslet in
eqn (16) by applying the directional derivative ê�rpn times on
Gijêj, where rp acts on the location of the point force. For n = 1
and 2 we thus obtain the respective flow fields of a hydrody-
namic force dipole,

ui;FDðrÞ ¼ � 24
A2

r3
r3

Dz
1� r3

Dz

� �rsw3
Dz

1� rsw3
Dz

� 	

� 2dij r̂i êj þ r̂i � 4r̂i r̂j
2êj

� �
;

(18)

and force quadrupole,

ui;FQðrÞ ¼ � 24
A3

r4
r3

Dz
1� r3

Dz

� �rsw3
Dz

1� rsw3
Dz

� 	

� dij � 4dij r̂i2 � 4r̂i r̂j þ 8r̂i r̂j
3

� �
êj :

(19)

Note that we allocated a factor Dz from the Stokeslet to the force-
multipole moments, so that we have An p Dz. Again following
ref. 14 and 65, we derive the flow field of a source dipole by the
operation, ui,SD(r) p rp

2Gijêj. While the second derivative with
respect to rsws removes the term with rsws and generates a factor
1/Dz2, the remaining two-dimensional Laplace operator acting
on the source dipole term gives zero. Thus, one arrives at

vi;SDðrÞ ¼ �6
B1

r2
r3

Dz
1� r3

Dz

� � dij
2
� r̂i r̂j


 �
êj (20)

which is nearly identical to the Stokeslet. Flow fields of higher
source multipoles are generated by the directional derivate ê�rp

acting on vSD(r). Of relevance is the second derivative, which
gives the flow field of a source octupole:

vi;SOðrÞ ¼ � 6
B3

r4
r3

Dz
1� r3

Dz

� �

� dij � 4dij r̂i2 � 4r̂i r̂j þ 8r̂i r̂j
3

� �
êj :

(21)

Again, we have allocated a factor 1/Dz to the source-multipole
moments, so that we have Bn p 1/Dz. In the following, we
restrict ourselves to a squirmer rod oriented along the x-axis and
swimming in the midplane of the Hele-Shaw cell, i.e., ê = êx and

rsw3 ¼ Dz
2
. To convert the flow fields in the Hele-Shaw geometry to

a form similar to the one used in free Stokes flow, we switch to
cylindrical coordinates (r,j,z). We eliminate the z-dependence of
the multipole flow fields by integrating over the Poiseuille profile
along z, project the resulting velocity field on the radial direction,
and arrive at

~urðr;jÞ �
êr

Dz
�
ðDz
0

uðr;j; zÞdz: (22)

The resulting radial velocity component can also be decomposed
into cell-height averaged multipole moments ũr,n. For the rele-
vant multipole moments we have

ũr(r,j) = ũr,FD(r,j) + ũr,FQ(r,j) + ũr,SD(r,j) +ũr,SO(r,j) + . . ..
(23)

which we calculate using eqn (18)–(21). For the force dipole and
quadrupole, we obtain

~ur;FDðr;jÞ ¼ �A2
T2ðcosjÞ

r3
(24)

and

~ur;FQðr;jÞ ¼ �A3
T3ðcosjÞ

r4
; (25)

respectively. The source dipole and octupole give

~ur;SDðr;jÞ ¼ �B1
T1ðcosjÞ

r2
(26)

and

~ur;SOðr;jÞ ¼ �B3
T3ðcosjÞ

r4
(27)

respectively, where the Tn(cosj) = cos(nj) are Chebyshev poly-
nomials of the first kind. These formulas agree with the general
result given in eqn (9) in the main text. Using eqn (10) and (11),
we can then determine the force and source moments A2,
A3,1, and B3 by a numerical fit of the power law r�n to ũr,n(r).

B Moment-of-inertia tensor of the squirmer rod

The moment-of-inertia tensor Irod of the squirmer rod can be
calculated applying Steiner’s theorem to the constituent parts
of the squirmer rod. First, we calculate the masses mmid and
mcap as well as the moment-of-inertia tensors Imid and Icap of
the middle segments and end caps relative to their respective
centers of mass. Due to the rotational symmetry around the rod
axis, Irod, Imid and Icap have two degenerate eigenvalues in the
x�y plane perpendicular to the rod axis and a different eigen-
value along the rod axis ê = ẑ.

In each of the constituent parts of the squirmer rods, we use
cylindrical coordinates (r,j,z), where z = 0 is the center of each
spherical squirmer. The constituent parts are sections of
spheres of radius R that extend from z = hmin to z = hmax.
Integration over the enclosed volume with constant mass
density r0, gives the mass

m ¼ r0p R2z� z3

3


 �hmax

hmin

: (28)

For the middle segments of the rod, �hmin = hmax = d/2, and for
the end caps hmin = �d/2 and hmax = R.

Based on the known formula for the moment-of-inertia
tensor for a solid body with uniform mass density r0,
Iij ¼ r0

Ð
ðx2 � xixjÞdV, we first calculate the Izz components of

the constituent parts. Integrating r0r
2 over the enclosed
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volume yields

Izz ¼
pr0
4

R4zþ 2R2z3

2
� 3z5

5


 �hmax

hmin

(29)

For the component Ixx the integrand becomes r0ðz2 þ r2 sin2 jÞ,
which yields

Ixx
0 ¼ pr0

2
R4z� 2R2z3

2
þ z5

5


 �hmax

hmin

: (30)

We attach a dash here since for the end caps the mass
distribution is not symmetric about z = 0 and therefore the
center of mass of the caps does not coincide with the reference
point x = 0, for which Ixx0 was calculated. For further use below, we
need the moment of inertia Ixx for a rotation axis perpendicular to
the z axis through the center of mass and calculate it using
Steiner’s theorem: Ixx = Ixx0 � mzcom

2. The distance zcom between
z = 0 and the center of mass follows by integrating zr0/m over the
enclosed volume,

zcom ¼ pr0
m

z2R2

2
� z3

3


 �hmax

hmin

: (31)

For the middle segments the mass distribution is symmetric
about z = 0 and hence Ixx = Ixx0.

We now use the previous results to calculate the relevant
moments of inertia Irod,ij for the squirmer rod. For the moment
Irod,zz the relevant rotational axis along ẑ goes through all the
centers of mass of the ns segments. Thus, we can just add up
their moments of inertia:

Irod,zz = 2Icap,zz+ (ns � 2)Imid,zz. (32)

For the remaining non-zero moments, Irod,xx = Irod,yy, we have to
shift the respective moments of the middle segments and end
caps, Imid,xx and Icap,xx, using their distances from the rod’s
center of mass and Steiner’s theorem:

Irod;xx ¼ 2
Xns=2�1

i¼1

Imid;xx þmmidd
2 i � 1

2

� 	2
" #(

þ Icap;xx þmcap
ns � 1

2
d

� 	2
)
;

(33)

for an even number of squirmers per rod ns.

C Swimming velocity

In principle, following ref. 70 the swimming velocity of a
squirmer of arbitrary shape can be calculated analytically using
the reciprocal theorem.70 If (v,s) are the velocity and stress
tensor that solve the Stokes equation for the force-free swim-
mer and (v0,s0) the corresponding fields for a passive object of
the same shape pulled now by a force F0, then

F0 �U ¼ �
ð
S

n̂ � s0 � vsdS: (34)

Here U is the swimming velocity, n̂ the surface normal, vs the
slip velocity at the swimmer surface and S the surface of the
swimmer’s body. For a sphere of radius R the acting force is

F0 = �6pZRU0, where U0 is the translational velocity, and the

surface force density n̂ � s0 ¼ �3Z
2R

U0 is constant and propor-

tional to U0. Thus, for a sphere the swimming velocity U is
simply the negative average of the surface slip velocity vs

U ¼ � 1

4pR2

ð
S

vsdS: (35)

To provide an estimate for the swimming velocity of the
squirmer rod, we apply the approximation that the surface
force density is constant along the surface of the passive rod,
when pulled by force F0 along its long axis. The estimate for the
swimming velocity is thus the average of the surface slip
velocity vs as given in eqn (14).

To determine the swimming velocity, we calculate the sur-
face of the squirmer rod,

Srod ¼ 2pR2

ðp
0

sin ydyþ ðns � 1Þ
ðymax

ymin

sin ydy

 �

; (36)

which adds up the surface of one complete sphere and ns � 1
middle segments of a sphere. The integration limits for the

polar angles of the middle segments are ymin ¼ arccos
a� 1

ns � 1

� 	
and ymax = p � ymin. We obtain Srod = 4pR2a. Similarly, we
integrate the scalar product of the surface velocity vs and the
orientation vector ê

vs�ê = Bs1(cos
2 y � 1) (37)

over the surface of one complete sphere and ns � 1 middle
segments,ð

Srod

vs � êdS ¼ 2pR2Bs
1

ðp
0

vs � êð Þ sin ydy



þ ðns � 1Þ
ðymax

ymin

vs � êð Þ sin ydy
�
;

(38)

and obtainð
Srod

vs � êdS ¼ 4pR2Bs
1 a� 1

3
� ns � 1

3

a� 1

n� 1

� 	3
" #

: (39)

The swimming velocity of the squirmer rod is ultimately given
by eqn (15).
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ABSTRACT

The method of multi-particle collision dynamics (MPCD) and its different implementations are commonly used in the field of soft matter
physics to simulate fluid flow at the micron scale. Typically, the coarse-grained fluid particles are described by the equation of state of an ideal
gas, and the fluid is rather compressible. This is in contrast to conventional fluids, which are incompressible for velocities much below the
speed of sound, and can cause inhomogeneities in density. We propose an algorithm for MPCD with a modified collision rule that results
in a non-ideal equation of state and a significantly decreased compressibility. It allows simulations at less computational costs compared to
conventional MPCD algorithms. We derive analytic expressions for the equation of state and the corresponding compressibility as well as
shear viscosity. They show overall very good agreement with simulations, where we determine the pressure by simulating a quiet bulk fluid
and the shear viscosity by simulating a linear shear flow and a Poiseuille flow.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0037934., s

I. INTRODUCTION

Since their introduction in 1999,1 algorithms belonging to the
method of multi-particle collision dynamics (MPCD) have become
a standard tool to simulate fluid flows in the field of soft matter
physics.2–4 In particular, MPCD algorithms have commonly been
used to model solvent dynamics in the context of microswim-
mers,5–18 where we can only cite a few examples. Further stud-
ies address colloidal suspensions,19–23 polymers,24–26 blood cells,27

the African trypanosome as the causative agent of the sleeping
sickness,28 and even fish schools.29 Also, extensions to binary and
ternary fluid mixtures,30–32 liquid crystals,33–35 and chemically react-
ing systems36 exist. MPCD methods are particularly suited to sim-
ulate solvent flow on the microscopic scale because they solve the
Navier–Stokes equations but also incorporate the omnipresent ther-
mal fluctuations.1,37 The particle-based strategy of MPCDmakes the
implementation of no-slip boundary conditions in complex geome-
tries very straightforward.38 Furthermore, the collision rules for the
coarse-grained fluid particles are well suited for the implementation
on parallel computer hardware39,40 so that extensive simulations can
also be performed on desktop computers with graphic cards.

Although MPCD methods are often used to simulate the
dynamics of incompressible solvents, one has to be aware that the

coarse-grained fluid particles follow the equation of state of an ideal
gas.1,32,41 Therefore, the fluid is rather compressible and has a low
speed of sound cs.21 This is tolerable for typical flow velocities well
below cs. In contrast, in the presence of large pressure gradients, pro-
nounced inhomogeneities in the fluid density can occur due to the
high compressibility. For example, such a situation has recently been
observed in strongly clustered microswimmers,12 where the overlap-
ping flow fields of many microswimmers are responsible for strong
pressure gradients.While variations in fluid density are, in principal,
necessary to generate pressure gradients, these variations need to be
small to stay close to the limit of an incompressible fluid. Thus, the
compressibility needs to be sufficiently small. For the MPCD fluid
with its ideal-gas equation of state, this can be achieved by increas-
ing the number n0 of fluid particles per collision cell and thereby
density.12 However, such an approach causes an immense increase
in the simulation time proportional to the square of the fluid den-
sity n20 if the system size should be kept constant at an equal Péclet
number.

In this paper, we follow a different strategy to decrease com-
pressibility. All the MPCD algorithms consist of a sequence of col-
lision and streaming steps. Here, we propose a new collision rule
that results in a non-ideal equation of state for the MPCD fluid.
Note that such non-ideal equations of state are required and have

J. Chem. Phys. 154, 024105 (2021); doi: 10.1063/5.0037934 154, 024105-1
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already been introduced in the context of simulating fluid mix-
tures within MPCD.31,32 Thus, compressibility is reduced for the
constant particle number n0, and the computational efficiency is
enhanced compared to conventional MPCD algorithms, which need
to employ a larger particle density. Our approach extends ideas of
Tüzel, Ihle, and collaborators, who included geometric properties
of hard-core particles in two dimensions into the collision rule to
control momentum transport in the fluid.42,43 This approach has
also been extended to the simulation of fluid mixtures.30 In contrast
to conventional MPCD algorithms, where collisions take place at a
fixed rate 1/Δt, collisions instead occur stochastically with a proba-
bility that depends on the local density and velocities. In the present
work, we extent the approach of Refs. 42 and 43 to three dimensions
and strongly modify the geometric rules of the collision so that they
can be implemented in an existingMPCD codemore easily. Further-
more, our new collision rule allows us to keep the typical canonical
thermostat and also to take care of angular momentum conservation
during collisions, which is particularly important for the simulation
of colloids and active particles.44

This article is structured as follows: In Sec. II, we introduce
the extended MPCD method with its new collision rule including
three possible collision probabilities. Then, we derive approximate
analytic expressions for the equation of state and the associated com-
pressibility in Sec. III as well as the shear viscosity in Sec. IV. For
the shear viscosity, we consider both contributions that arise from
the streaming and collision step of the extended MPCD method.
In Sec. V, we compare these analytic expressions with the results
from simulations and obtain very good agreement for the equation
of state. In particular, we demonstrate the reduction of the com-
pressibility for reasonable particle densities. We measure the shear
viscosity by determining the collisional and streaming viscosities in
a linear shear flow geometry. The total viscosity agrees very well with
values determined from simulating a Poiseuille flow and also with
the analytic expression above a density of ∼n0 = 20. We close with
conclusions and an outlook in Sec. VI.

II. ALGORITHM OF THE EXTENDED MPCD METHOD

Our method shares the common features typical for the group
of MPCD algorithms.1,3,45 Like all MPCD algorithms, it consid-
ers point-like particles that represent the fluid at a mesoscopic
level of description. They perform a sequence of streaming and
collision steps. Since the latter conserves linear momentum, the
resulting hydrodynamic flow fields fulfill the Navier–Stokes equa-
tions.1 While we perform the steaming step as in other MPCD
algorithms, we alter the collision step as already mentioned in the
Introduction. We now explain the extendedMPCDmethod in more
detail.

During the streaming step (i), the point particles with masses
m0, positions xi(t), and velocities vi(t) move ballistically during
time Δt,

xi(t + Δt) = xi(t) + vi(t)Δt. (1)

They collide with confining walls or moving objects such as model
microswimmers called squirmers4,8,9,16–18 and thereby transfer both
linear and angular momentum to these moving objects. By apply-
ing the so-called bounce-back rule,1,38 the collisions either enforce

the no-slip boundary condition at confining walls and passive
colloids or the slip-velocity field, which are present at squirmer
surfaces.

For the collision step (ii), we suggest an alternative algorithm
compared to the original SRD method1 or the collision operator
based on the Andersen thermostat.4 As in all MPCD algorithms, the
simulation volume is divided by a cubic lattice and the fluid parti-
cles are grouped into the cubic unit cells of linear size a0 centered
around ξ and with volume Vξ . Each cell then contains nξ particles
with the mean velocity vξ and center-of-mass position xξ . Addition-
ally, each cell is divided into two halves A and B by a plane Pxξ ,n̂
through the center-of-mass position xξ46 and with an orientation
defined by the unit normal vector n̂ [see Fig. 1(a)]. For each cell,
n̂ is randomly drawn from a discrete set of 13 possible orientations
at each collision step. By definition, n̂ always points to region A. The
number of particles on each side of the plane is denoted by nA and
nB, respectively. Their mean velocities v̄A and v̄B, respectively, along
the normal vector n̂ are given relative to vξ .

The main idea of the new collision step is that the particles in
region A and B only collide when they move toward each other.
Then, they stochastically exchange a momentumm0δvi along n̂ both
with particles in the same half A, B and also on the other side of the
plane. The latter mechanism generates momentum flux across the
randomly oriented plane and thereby contributes to pressure, which
belongs to the isotropic part of the stress tensor.

The collision step can be summarized by

vnewi = vi + χ(Δu){n̂ [ n̂ ⋅ (vξ − vi) + δvi]
− I−1ξ m0 ∑

xj∈Vξ

[xj,c × n̂ (δvj − n̂ ⋅ vj)] × xi,c}, (2)

where xi ,c denotes the position vector of particle i relative to
the center-of-mass position xξ . As we explain below, the collision
between the particles in region A and B occurs with a certain prob-
ability. To initiate a collision, the stochastic variable χ(Δu) is set to
one; otherwise, it is zero. The term following χ(Δu) in the square
brackets sets the normal velocity components of all particles i to
the normal component of the center-of-mass velocity, n̂ ⋅ vξ . Then,
new values for the relative velocity component δvi are assigned as
explained below. They all add up to zero in order to preserve the total
momentum. The second term in the curly brackets is added to con-
serve the angular momentum. Thus, the value Lξ = m0∑xi∈Vξ

xi × vi

FIG. 1. (a) Side view of a collision cell with the dividing plane Pxξ ,n̂ through the
center-of-mass position xξ and unit normal vector n̂. (b) 13 possible collision or
normal vectors n̂ that point to the corners as well as centers of surfaces and edges
of the collision cell.
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before the collision is preserved. Here, Iξ is the moment-of-inertia
tensor of all particles in the cell relative to the center of mass.

We have already introduced the mean values of the normal
velocity components v̄A and v̄B on either side of the collision plane.
Then, collisions between the particles of region A and B occur, when,
on average, they move toward each other, meaning that the relative
velocity

Δu = v̄B − v̄A (3)

is positive. Furthermore, collisions between the particle clouds in A
and B occur with the rate cΔunAnB, where c quantifies the scatter-
ing cross section. A similar term has been used for the collision rate
of two clouds of hard-core particles or in chemical reactions of the
second order47 and can be motivated by the collision term in the
Boltzmann equation.48 Thus, the probability that a collision occurs
or that the stochastic variable χ(Δu) is set to one becomes

pχ(Δu) ≡ Θ(Δu) cΔunA nB (4)

≈ Θ(Δu)[1 − exp(−cΔunA nB)]. (5)

Here, Θ(Δu) is the Heaviside step function so that collisions only
occur for Δu > 0. In the second line, assuming a sufficiently small
c, we have introduced the exponential that guarantees pχ(Δu) ≤ 1.
Another possibility to fulfill this constraint using Eq. (4) is30

pχ(Δu) = {Θ(Δu) cΔunA nB for pχ(Δu) ≤ 1
1 else.

(6)

We will explore also this form in Sec. V B when we calculate the
pressure in the MPCD simulations.

Finally, we introduce the changes δvi in the velocity component
along the normal n̂. It consists of two contributions: δvi = δvti + δvsi .
The first term transfers momentum from region B of the cell to
particles i in the region A and vice versa,

δvti ≡ nB/A
nA/B v̄B/A. (7)

Here, the first indices apply to particles i in region A that take over
the momentum m0v̄B from region B and the second indices apply
to particles i in region B. The ratios nB/nA and nA/nB guarantee the
overall momentum conservation, meaning the total momenta from
regions A and B are just swapped. The second contribution,

δvsi ≡ δvMB
i − ΔvA/B, (8)

assigns each particle a random velocity δvMB
i drawn from a

Maxwell–Boltzmann distribution at temperature T, which serves as
a thermostat for the fluid. We subtract the mean random velocity

ΔvA/B = 1
nA/B ∑{xi∈VA/B}

δvMB
i (9)

to preserve total momentum in both regions A and B, separately.
In particular, the introduction of the momentum transfer in

Eq. (7) and the transfer rate Eq. (5) defines the equation of state. As
shown in Sec. III, it contains a term proportional to n2ξ resembling a
virial expansion and thus extends the ideal gas term.

As in otherMPCD algorithms, immersed boundaries are repre-
sented by the so-called “ghost” particles during the collision step.38

These are added to the collision cells to interact with the other
fluid particles. In simulations with squirmers, the ghost particles are
assigned the local velocity of the translating and rotating squirm-
ers plus a random thermal velocity drawn from a Boltzmann dis-
tribution. Then, the changes in linear and angular momentum of
the ghost particles following from step (ii) are assigned to the rele-
vant squirmer, which ensures that linear and angularmomentum are
conserved. Finally, before performing each collision step, the lattice
is randomly shifted to ensure Galilean invariance.49

III. EQUATION OF STATE

To calculate the equation of state, we use the definition of pres-
sure as the normal component of the momentum flux through an
arbitrarily oriented plane.50 In the extended MPCD method, both
streaming (i) and collision step (ii) contribute to the pressure,

P = Pcoll + Pstr. (10)

During the streaming step (i), particles do not interact and sim-
ply transport momentum across a plane. This results in the ideal
gas contribution Pstr = nkBT/a30, which we already know from the
conventional MPCD methods.32

To evaluate the contribution Pcoll from the collision step (ii),
we consider the momentum flux across a plane with area a20 that lies
in a single collision cell. Without loss of generality, we choose the
plane P ŷ,y0 perpendicular to the ŷ axis at position y0 and then aver-
age over all y0 (see Fig. 2). During the collision step, momentum is
transported from the region y < y0 across the plane P ŷ,y0 into y > y0
during time Δt. Thus, for the pressure as momentum transfer per
area and time, we obtain

Pcoll = m0

a20Δt
⟨ ŷ ⋅ ∑{i∣yi>y0}

(vnewi − vi)⟩. (11)

Here, i is restricted to all particles above P ŷ,y0 andm0ŷ ⋅ (vnewi − vi) is
the change in the normal momentum component of particle i during

FIG. 2. To derive the equation of state, we consider the momentum transferred to
the region above the plane P ŷ,y0 with unit normal vector ŷ and at position y = y0.
Note that to evaluate sign(x ⋅ n̂ ) in Eq. (15), one has to distinguish particles that
are located in the green region as part of region A relative to the collision plane
with normal n̂ and particles in the blue region as part of B.
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collision and given in Eq. (2). The average goes over all possible col-
lisions, particle configurations, orientations n̂ of the collision planes,
and positions y0. The term added to Eq. (2) in the second line to
preserve angularmomentumdoes not contribute to Pcoll since it van-
ishes when averaging over all possible collisions. Furthermore, since
particle i is either in region A and B and we average over all particle
velocities relative to vξ with identical velocity distributions, we can
ultimately replace n̂ ⋅(vξ−vi) in Eq. (2) by the mean velocities − v̄A/B
in region A or B of the collision cell. Note that v̄A/B are given rela-
tive to n̂ ⋅ vξ . The choice of index A or B depends on the location of
particle i. Thus, we can simplify Eq. (11) to

Pcoll = m0

a20Δt
⟨χ(Δu) ŷ ⋅ n̂ ∑{i∣yi>y0}

δvi − v̄A/B⟩. (12)

The stochastic contribution δvsi of δvi given in Eq. (8) obeys a Gaus-
sian distribution with zero mean and therefore vanishes on average.
The remaining part δvti given in Eq. (7) becomes v̄B/A using nA/B≈ nξ/2. Thus, with the definition of the collision velocity Δu in
Eq. (3), we can finally replace δvi − v̄A/B by v̄B/A − v̄A/B = Δu sign(xi ⋅ n̂). The factor sign(xi ⋅ n̂) comes in since the first index in
v̄B/A − v̄A/B applies if particle i is in region A, while the second index
refers to a particle i in B (see Fig. 2). Noting also that Δu and xi
are independent stochastic variables, we can factorize the average in
Eq. (12) and rewrite it as

Pcoll = m0

a20Δt
⟨χ(Δu)Δu⟩⟨ ŷ ⋅ n̂ ∑{i∣yi>y0}

sign(xi ⋅ n̂)⟩, (13)

where

⟨χ(Δu)Δu⟩ = ∞
∫
0

Δupχ(Δu) p(Δu)dΔu. (14)

Here, p(Δu) is the probability distribution for Δu and pχ(Δu) is the
probability for a collision to take place, as introduced in Sec. II.

We now calculate the two averages of Eq. (13). In the second
average, we replace the conditional sum by a volume integral intro-
ducing the factor nξ/a30Θ(y − y0) and average over y0. We write the
second average as nξαP, where we identify the purely geometrical
factor

αP ≡ ⟨ ŷ ⋅ n̂
a40

∫
Vξ
∫ a0/2
−a0/2 sign(x ⋅ n̂ )Θ(y − y0)dy0dV ⟩

n̂
. (15)

It is the difference between the green and blue volume in Fig. 2 aver-
aged over all n̂ and y0 and weighted by the projection of n̂ on ŷ. The
integrals can be calculated for each of the 13 normal vectors n̂ so that
we obtain in total

αP = 1
26

[1
2
+ 4( 1

3
√
2
+

13
48
√
3
)] ≈ 0.08. (16)

For the second average, we need the probability distribution for
Δu = v̄B − v̄A. Since the components of the single-particle velocities
are Gaussian distributed with variance kBT/m0, also Δu is Gaus-
sian distributed with variance 4kBT/(m0nξ), as shown in Appendix A
using nA = nB ≈ nξ/2. Taking the collision probability from Eq. (4),

we then have

⟨χ(Δu)Δu⟩ = c nA nB⟨Θ(Δu)Δu2⟩ = c nξ
kBT
2m0

. (17)

Thus, in total, we obtain from Eq. (13) for the pressure contri-
bution of the collision step,

Pcoll = cαP
2a20Δt

kBTnξ
2, (18)

which is quadratic in the particle density nξ . Hence, up to second
order in density, the full equation of state reads

Pa30 = (Pstr + Pcoll) a30 = nξkBT(1 + ca0αP
2Δt

nξ). (19)

This gives a compressibility

β = 1
nξ

∂nξ
∂P

= a30
nξkBT

1
1 + cαPa0nξ/Δt , (20)

where the ideal gas contribution from the streaming step, βid= a30/(nξkBT), is diminished by the second-order contribution
from the collision step. This means that the MPCD fluid is less
compressible.

We add two comments. First, if we take for the collision proba-
bility pχ(Δu) the expression from Eq. (5), which we use as one option
in the simulations, one can still evaluate ⟨χ(Δu)Δu⟩ and then obtain
the pressure contribution from the collision step,

Pcoll = αPc kBTnξ2

2a20Δt
exp(c2kBT

8m0
nξ

3) erfc⎛⎝
√

kBT
2m0

cnξ3

2
⎞⎠

= cαP
2a20Δt

kBTnξ
2
⎡⎢⎢⎢⎢⎣1 − c

√
kBTnξ3

2π

⎤⎥⎥⎥⎥⎦ +O(nξ5). (21)

We will use this form when comparing the pressure in the simula-
tions to the analytic result. Second, in deriving Pc, we have always
set nA = nB ≈ nξ/2, thus neglecting fluctuations in the particle num-
bers in regions A and B. For sufficiently large particle numbers, these
fluctuations are small. When we compare our analytic results to sim-
ulations, we obtain good agreement and the approximation seems to
be reasonable.

IV. SHEAR VISCOSITY

To derive an expression for the dynamic shear viscosity η, we
consider the linear shear flow

v(y) = γ̇yx̂ (22)

with constant shear rate γ̇ (see Fig. 3). We also note that the non-
vanishing component of the viscous stress tensor, σxy = η∂yvx = ηγ̇,
describes the negative flux of the x component of momentum along
the y direction. Similar to the derivation of the equation of state in
Sec. III, the viscosity consists of two contributions from the collision
and streaming step, respectively,

η = ηcoll + ηstr. (23)

While the derivation of the collisional viscosity ηcoll requires simi-
lar steps used in calculating the collisional contribution of pressure,
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FIG. 3. To derive the shear viscosity, we
apply the shear flow v(y) = γ̇yx̂ and
consider the momentum transferred to
the region above the plane P ŷ,y0 with unit
normal vector ŷ and at position y = y0.
Examples for collision planes with yA = 0
(a) and yA ≠ 0 (b) are shown.

the streaming viscosity ηstr needs special attention. We start with the
derivation of ηcoll.

A. Collisional viscosity

Similar to our derivation of the pressure starting from Eq. (11),
we consider the momentum transported during the collision step
from the region y < y0 across the plane P ŷ,y0 into y > y0 during
time Δt (see Fig. 3). However, for σxy, we need the transfer of the
x component of momentum per area and time, and thus,

σxy = − m0

a20Δt
⟨ x̂ ⋅ ∑

i∣yi>y0
vnewi − vi⟩. (24)

When evaluating the term in the angular bracket using Eq. (2), we
concentrate on the first line of Eq. (2) and then at the end following
Ref. 45 to include angularmomentum conservation, which is the ori-
gin of the second line. Replacing δvi in Eq. (2) by v̄B/A as before in
Sec. III, we obtain

σxy = − m0

a20Δt
⟨χ(Δu) x̂ ⋅ n̂ ∑

i∣yi>y0
[v̄B/A + n̂ ⋅ (vξ − vi)]⟩.

On average, the relative velocity Δu = v̄B − v̄A is equally distributed
on the mean velocities of regions A and B so that we can use Δu/2≈ v̄A = −v̄B. Furthermore, on average, vξ can be replaced by vi/nξ ,51
and we arrive at

σxy = − m0

a20Δt
⟨χ(Δu) x̂ ⋅ n̂ ∑

i∣yi>y0
sign(xi ⋅ n̂) Δu2 − n̂ ⋅ vi(1 − 1

nξ
)⟩.
(25)

As explained in Sec. III, sign(xi ⋅ n̂) is necessary to distinguish
between particle i being in either region A or B.

Now, we need to introduce the shear rate γ̇ from the applied
linear shear profile of Eq. (22). It comes in by setting vi equal to
its deterministic part γ̇yix̂ and through the Gaussian distribution of
Δu. In Appendix B, we show that the conditional distribution for
Δu, given the collision vector n̂ and fixed position xi of particle i, is
Gaussian with the mean value

μi,n̂ = ⟨Δu⟩i,n̂ = −2 γ̇ x̂ ⋅ n̂ yA(nξ − 1) + sign(xi ⋅ n̂)yi
nξ

. (26)

The first factor originates from the orientation of the collision plane
with collision vector n̂ relative to the shearing direction x̂ and the
second factor from keeping particle i at fixed height yi. The quantity
yA is the y coordinate of the center of mass of region A defined by
the collision plane. For the different collision vectors n̂, we give them
in Table I. We need this conditional mean value μi,n̂ = ⟨Δu⟩i,n̂ when
averaging over Δu since in Eq. (25), we also average over the posi-
tion of particle i. Now, to evaluate the shear viscosity, it is sufficient
to only consider the terms of σxy linear in the shear rate γ̇. As we
demonstrate in the following, they result from either thermal fluc-
tuations of Δu or the deterministic part of vi equal to γ̇yix̂. Thermal
fluctuations of vi can be neglected since they produce higher-order
terms in γ̇.

To perform the average overΔu in Eq. (25), we first evaluate the
required averages using the conditional distribution p(Δu−μi,n̂) (see
Appendix C). Since the shear-induced shift μi,n̂ is small compared to
the width of the distribution, m0μ2i,n̂/kBT ≪ 1, we can always lin-
earize in μi,n̂ ∝ γ̇. First, for the mean conditional collision rate using
Eq. (4) for pχ(Δu), we obtain

⟨χ(Δu)⟩ = ∫ ∞
0

p(Δu − μi,n̂) pχ(Δu)dΔu
= c

√
kBTnξ3

8πm0
+O(μi,n̂) ≡ Γ(nξ , c) +O(μi,n̂). (27)

Only the contribution of the zeroth order in μi,n̂ is required, since
the last term in Eq. (25) already contributes the required term linear
in γ̇ by setting vi = γ̇yix̂. For the second necessary mean value, we
obtain

TABLE I. Values of |yA| and ∣αη,n̂∣ for all collision vectors n̂. Both quantities yA

and αη,n̂ have the same sign equal to −sign(n̂ ⋅ ŷ) and only appear as product in
Eq. (30). Furthermore, note that only collision vectors with n̂ ⋅ x̂ ≠ 0 are relevant for
the evaluation of Eq. (30).

n̂ |yA| ∣αη,n̂∣
x̂, ẑ, (x̂ ± ẑ)/√2 0 0
ŷ 1/4 1/2(x̂ ± ŷ)/√2, (ŷ ± ẑ)/√2 1/6 1/3(x̂ ± ŷ ± ẑ)/√3 13/96 13/48
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⟨χ(Δu)Δu⟩ = ∫ ∞
0

Δup(Δu − μi,n̂) pχ(Δu)dΔu
= c

⎛⎝kBTnξ2m0
+

√
kBTnξ3

2πm0
μi,n̂

⎞⎠ +O(μ2i,n̂)
≡ Ξ(nξ , c) + Ω(nξ , c)μi,n̂ +O(μ2i,n̂) (28)

up to the linear order in μi,n̂ ∝ γ̇. One can show that the zeroth-
order term Ξ(nξ , c) does not contribute to σxy, as it should be. The
contribution vanishes for collision planes with yA = 0 or in combi-
nation with two collision vectors. Using Eqs. (27) and (28) in the
expression (25) and only collecting all terms linear in γ̇, we arrive at

σxy = m0γ̇
a20Δt nξ

⟨(x̂ ⋅ n̂)2 ∑
yi>y0yiΩ + (nξ − 1)

× [ yiΓ + sign(xi ⋅ n̂) yAΩ ]⟩. (29)

Here, the remaining average ⟨⋯⟩ goes over xi, the offset y0 of the
plane P ŷ,y0 , and the collision vector n̂.

As in the derivation of the equation of state, we replace the aver-
age over all particles and the conditional sum by a volume integral
over nξ/a30Θ(y− y0) and also average over y0. With only the average
over the collision vector n̂ remaining, we obtain

σxy = m0γ̇
a20Δt

⟨(x̂ ⋅ n̂)2{Ω/12 + (nξ − 1)[Γ/12 + (αη,n̂ yA)Ω ]}⟩, (30)

where

αη,n̂ ≡ 1
a40

∫
Vξ
∫ a0/2
−a0/2 sign(x ⋅ n̂)Θ(y − y0)dy0dV . (31)

In Table I, we give the values αη,n̂ and yA for all collision vectors n̂.
Averaging over all of them, we obtain for the collisional viscosity
without taking into account angular momentum conservation in the
collision rule of Eq. (2),

η−Acoll = m0

78 a20Δt
{13
6
[Γ(nξ − 1) + Ω] + 361

576
Ω(nξ − 1)}. (32)

For our choice of c = 1/100 and nξ = 20, we obtain Ω ≈ 5/14 and
Γ = Ω/2. If instead of Eq. (4), we use Eq. (5) to have a bounded colli-
sion probability pχ(Δu), we still can evaluate the averages of Eqs. (27)
and (28) and expand into γ̇. The resulting expressions for Ω and Γ
are given in Appendix C. For c = 1/100 and nξ = 20, we then obtain
Ω ≈ 1/4 and Γ ≈ 9/65.

So far, we did not consider the term due to angular momen-
tum conservation in our collision rule (2) when evaluating σxy. We
follow here Ref. 45 to take into account two additional terms. The
essential contribution is the rotational motion of the particles in the
collision cell induced by the vorticity of the shear flow, which gener-
ates the rotational velocity ω = ∇ × v/2 = −γ̇/2ẑ. The velocity ω ×
xi ,c of particle i due to this rotational flow is removed during the ran-
dom collision, and we have to add it to vnewi − vi considered so far to
preserve angular momentum. More precisely, our collision rule (2)

only considers the component normal to the collision plane, and
when we average over all collision vectors, we realize that only the
x component of ω × xi ,c is needed. Hence, in total, we need to add to
the last term in Eq. (25) the normal velocity component (n̂ ⋅ x̂)γ̇yic/2.
When averaging over all particle positions j ≠ i, we can set yi ,c = yi− yξ = yi(1 − 1/nξ) following a similar reasoning as in footnote 1.
Thus, a careful inspection of Eq. (25) and the following steps show
that we have to subtract half of the last term in Eq. (25). Ultimately,
this replaces Γ in Eq. (32) by Γ/2.

Aminor contribution comes from the random velocity changes
δvj during collision. We mention it here since it gives a near perfect
agreement with the simulation results we will present in Fig. 5(a).
The random changes δvj add the angular momentum ∑j xj,c × n̂ δvj
to the cell, for which we have to subtract a term in the second
line of Eq. (2) in order to restore angular momentum conserva-
tion. This velocity also has to be considered in x̂ ⋅ (vnewi − vi)
when starting with Eq. (24) for σxy, and then, the relevant steps
carefully have to be repeated. As before, we only need the z com-
ponent of the angular momentum. Dividing by the moment of
inertia for the relevant z direction, Iξ,zz/m0 = ∑j x

2
j + y2j , and

taking the average over Δu, we obtain the mean angular velocity⟨ωδvi
z ⟩Δu = x̂ ⋅ n̂ ⟨χ(Δu)∑j yj,cΔu/2 sign(xj ⋅n̂)

Iξ,zz/m0
⟩. Then, evaluating this aver-

age and introducing the mean moment of inertia ⟨Iξ⟩zz/m0 = a20(nξ − 1)/6 gives ⟨ωδvi
z ⟩Δu = −12(x̂ ⋅ n̂)2y2Aγ̇Ω/a20, where we neglected

correlations in the product yjΔu and used ⟨χ(Δu)Δu⟩ ≃ −2Ωx̂ ⋅n̂yAγ̇.
Finally, from the angular velocity, one calculates the mean x compo-
nent of the velocity correction, ⟨⟨ωδvi

z ⟩Δuyic⟩. Performing the remain-
ing averages, one ultimately realizes that this changes the prefactor of
Ω in Eq. (32) from 361/567 to 0.5034 ≈ 1/2. Together with the correc-
tion from the previous paragraph, we then obtain the final formula
for the shear viscosity,

η+Acoll = m0

78 a20Δt
{13
6
[Γ
2
(nξ − 1) + Ω] + Ω

2
(nξ − 1)}. (33)

B. Streaming viscosity

To determine the streaming viscosity based on the linear shear
flow of Eq. (22), we follow the work of Kikuchi et al.50 They deter-
mined the shear stress component σxy from the momentum along
the x direction transported through the plane y = 0 during the
streaming time Δt. They showed that this results in the expression

σxy = m0nξ
a30

( γ̇Δt
2

⟨v2y⟩ − ⟨vxvy⟩), (34)

where vx and vy are velocity components of the fluid particles. The
average is performed at the beginning of the streaming step. In the
steady state, we can immediately use ⟨v2y⟩ = kBT/m0. However, as
we explain now, the velocity correlation ⟨vxvy⟩ changes when we
cycle once through the streaming and collision step. However, in the
steady state, it should be back to the value at the start of the cycle.
Using this self-consistency condition, one can ultimately determine⟨vxvy⟩ and therefore σxy.

First of all, if p(vx, vy) is the velocity distribution of the par-
ticles at the beginning of the streaming step, it will evolve toward
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the distribution p(vx + γ̇vyΔt, vy) at the end of the streaming step
since particles in the shear flow acquire additional speed along the
x axis when moving along the y direction. Based on this altered dis-
tribution, the velocity correlation at the end of the streaming step
becomes50

⟨vxvy⟩newstr = ⟨vxvy⟩ − γ̇Δt⟨v2y⟩. (35)

In other words, the value of ⟨vxvy⟩ decreases by a constant value dur-
ing the streaming step. Both Eqs. (34) and (35) are common to all
MPCD algorithms.45

In a second step, ⟨vxvy⟩newstr is altered during the subsequent
collision step. This depends on the detailed collision rule. As
we demonstrate below and in Appendix D, the velocity correla-
tions change by a constant factor during collision. Thus, ⟨vxvy⟩newcoll= (1 − b)⟨vxvy⟩newstr . Inserting Eq. (35) and using the self-consistency
condition ⟨vxvy⟩newcoll = ⟨vxvy⟩ as explained above, we can solve

⟨vxvy⟩ = (1 − 1
b
)γ̇Δt⟨v2y⟩. (36)

We insert this result into the expression (34) for σxy and use ⟨v2y⟩= kBT/m0 to finally arrive at

σxy = γ̇nξkBTΔt
a30

(1
b
− 1
2
). (37)

Thus, after determining the factor 1 − b for our collision rule, we will
have an expression for the streaming viscosity.

In order to write ⟨vxvy⟩newcoll in a compact way, we abbreviate
in the collision rule of Eq. (2) the term added to restore angu-
lar momentum conservation by A and use for the other term
Bi = n̂[n̂ ⋅(vξ −vi)+δvi]. Furthermore, right before the collision, the
velocity correlation is ⟨vxvy⟩newstr so that we have

⟨vxvy⟩newcoll = ⟨vxvy⟩newstr

+ ⟨χ(Δu)[vi,xBi,y + Bi,xvi,y + vi,xAy + Axvi,y
+AxAy + Bi,xBi,y + AxBi,y + AyBi,x]⟩. (38)

Since the value of χ(Δu) is either 0 or 1, we have set χ(Δu)2 = χ(Δu).
Note that in δvi = δvsi + δvti , we can drop δvsi since it is zero, on
average, and also set δvt = v̄B/A using nA = nB ≈ nξ/2 in Eq. (7).
Hence, we will always use δvi = v̄B/A in the following. For the first
term in Eq. (38), we demonstrate here how it is evaluated and refer
to Appendix D for the evaluation of all the other terms. We obtain
with δvi = v̄B/A

⟨χ(Δu)vi,xBi,y⟩ = ⟨χ(Δu)vi,xny[v̄B/A + n̂ ⋅ (vξ − vi)]⟩.
Here, we recognize that v̄B/A + n̂ ⋅ vξ = 2/nξ ∑{j∈VB/A} n̂ ⋅ vj after
using the respective definitions of v̄B/A and vξ . Since the construction
particles i and j lie on different sides of the collision plane and are
therefore different, this term vanishes under the typical molecular
chaos assumption ⟨vi ,xvj ,y⟩ = 0. For the remaining term, we realize
that it involves the projector n̂⊗ n̂, which when averaging over all n̂
gives the unit matrix 1/3. Hence, we ultimately have

⟨χ(Δu)vi,xBi,y⟩ = −⟨χ(Δu)vi,xvi,y⟩/3.≈ −⟨χ(Δu)⟩⟨vi,xvi,y⟩/3. (39)

In the last line, we used again the molecular chaos assumption and
neglected higher correlations for particle i.

For the derivation of the remaining terms in Eq. (38), we refer
to Appendix D. Finally, putting all terms in Eqs. (39), (D3), (D1),
(D4), and (D8) into Eq. (38), we obtain

⟨vxvy⟩newcoll = ⟨vxvy⟩newstr [1 − ⟨χ(Δu)⟩14 − 13nξ + 8nξ2

18nξ2
], (40)

from which we read off the factor b as the second term in the brack-
ets. Using it in Eq. (37) together with ⟨χ(Δu)⟩ ≈ Γ(nξ , c) from Eq. (27)
and dividing by the shear rate, we obtain the streaming viscosity

ηstr = nξkBTΔt
a30

[ 18nξ2(14 − 13nξ + 8nξ2)Γ(nξ , c) − 1
2
]. (41)

The sum of this equation and the collisional viscosity from
Eq. (33) gives the complete shear viscosity in this new version of
MPCD,

η = ηstr + η+Acoll. (42)

V. COMPARISON WITH SIMULATIONS

In this section, we compare the derived analytic expressions
(21) for the pressure and (33) and (41) for the collision and stream-
ing viscosities with values obtained from simulations. To calculate
the collisional contribution to the pressure, we use with Eq. (11) the
same formula with which we started the analytic calculations. Like-
wise, for the collisional and streaming viscosities, we set up the linear
shear–flow profile v(y) = γ̇yx̂ and then explore Eqs. (24) and (34),
respectively, to evaluate the viscosities from η = σxy/γ̇. Finally, to
test our method in a realistic situation, we also simulate a Poiseuille
flow profile and measure the total viscosity from the maximum flow
velocity. We start with some computational details.

A. Computational details

To calculate the collisional contribution to the pressure equa-
tion of state, we perform MPCD simulations in a box with edge
length L using periodic boundary conditions and the parameters
introduced further below. The setups of the shear flow profile and
the Poiseuille flow need more comments. All the simulations are
performed with the bounded collision probability of Eq. (5). For the
pressure, we will also show results for the alternative form of Eq. (6).

1. Linear shear flow profile
To generate a steady shear flow profile with constant shear rate

∂yvx = γ̇ in a cubic simulation box with edge length L, we use the
so-called Lees–Edwards boundary conditions. We introduce them
shortly.50,52 In the directions along the x̂ and ẑ axes, perpendicular to
the shear gradient, regular periodic boundary conditions are applied.
However, along the direction of the shear gradient, the boundary
conditions are modified such that the periodic images of the sys-
tem move with velocity ±Lγ̇. This means that a particle receives a
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shift in position and velocity when crossing the boundaries along
the y direction. If the particle crosses the lower boundary at time t
and position (x, y = −L/2, z), it re-enters the system at the upper
boundary at position ((x + Lγ̇t)mod L, y = +L/2, z) with velocity(vx + Lγ̇, vy, vz). If it crosses the corresponding upper boundary at
time t and position (x, y = + L/2, z), it re-enters the system at the
lower boundary at position ((x−Lγ̇t)mod L, y = −L/2, z)with velocity(vx − Lγ̇, vy, vz).
2. Poiseuille flow profile

To generate a Poiseuille flow profile, we do not introduce
bounding walls but simulate a driven system with periodic bound-
aries in all three dimensions and two profiles with opposing flow
directions along the x̂ axis.53 For this, we introduce a pressure dif-
ference Δp by acting with a constant body force on all the particles.
Particles with positions yi < 0 experience the force −m0gx̂, and for
particles with positions yi > 0, the force points in the opposite direc-
tion, m0gx̂. This setup with the box dimensions L × 2L × L pro-
duces two opposing Poiseuille flow profiles and thereby avoids the
implementation of any solid boundaries. With the resulting pres-
sure gradient Δp/L = m0n0g/a30, the viscosity then follows from the
maximum flow velocity vmax = ΔpL

8η .54

3. Parameters
For all simulations, we use the edge length L = 64a0, the colli-

sion parameter c = 1/100, and, in MPCD units, set kBT = 1 and mass
m0 = 1. For the Lees–Edwards simulations, the shear rate is cho-
sen as γ̇ = ∂yvx = 0.006 25 in units of the inverse MPCD time scale
t0 = a0

√
m0/kBT.

Each system is initialized by randomly distributing N = n0L3

particles in the volume L3 and by choosing their velocities from
the Maxwell–Boltzmann distribution. For the Lees–Edwards simu-
lations, a local offset for the mean velocity component along the x
direction is chosen, ⟨vx⟩ = γ̇y. To equilibrate the system at the begin-
ning, we simulate it for 105 time steps Δt. Then, we sample Eqs. (11),
(24), and (34) during a simulation time of 5 × 105Δt. When simu-
lating the Poiseuille flow, we average the flow profile over the same
amount of time but use an increased equilibration time of 5 × 105Δt
to assure that the flow has reached its maximum velocity.

Our goal is to perform the MPCD simulations with defined
values of the parameters, which we keep constant throughout the
simulations. The collision parameter c introduced in Eq. (4) has to
be sufficiently small so that we can explore the dependence on Δu,
nA, and nB. It turns out that c = 1/100 and an average number of
n0 = 20 particles per cell is a suitable choice, which yields a collision
rate of ⟨χ(Δu)⟩ ≈ 0.14.

Together with a time step of Δt = t0/200, our set of param-
eters is particularly interesting because it yields a total viscosity
η = ηstr+η+Acoll ≈ 16a0

√
kBT/m0, which is commonly used for simulat-

ing microswimmers with MPCD.8,9,12,17 Hence, in the following, we
focus on densities between n0 = 7 and n0 = 35 and investigate how
pressure and viscosities behave in this range of densities centered
around n0 = 20.

B. Equation of state

Figure 4 shows the simulated total pressure P, normalized by
the ideal gas pressure Pid = n0kBT/a30, as a function of density n0 for

FIG. 4. (a) Total pressure P relative to the ideal gas pressure Pid = n0kBT/a30 plot-
ted vs density n0 for three different values of the time step Δt. Circle symbols show
data points obtained from simulations using Eq. (11) together with the bounded
collision probability of Eq. (5), and dashed lines show the corresponding theory
curves from Eq. (21). The dotted lines show the theory curves from Eq. (19), and
the squares show data points obtained from simulations using the bounded colli-
sion probability of Eq. (6) for Δt = t0/200. (b) The corresponding compressibility β
relative to the ideal gas value βid = a30/(nξkBT) plotted vs n0.

different time steps Δt. The colored circle symbols are the numerical
results using the bounded collision probability fromEq. (5). They are
in very good agreement with the analytic result of Eq. (21) plotted as
dashed lines. In particular, the simulations confirm the relation Pcoll∝ 1/Δt according to which a smaller Δt results in a larger pressure.
This makes sense since the collision probability is independent of
the time step Δt. Hence, there are more collisions in the same time
interval when Δt decreases. As dotted lines, we also show the pres-
sure of Eq. (19) calculated with the unbounded collision probability
of Eq. (4). They are in very good agreement with the simulated pres-
sure only until ∼n0 = 10. With the idea to enhance the pressure in
the simulations further, we also used the alternative bounded col-
lision probability of Eq. (6). Indeed, for the example of Δt = t0/200,
we obtain a larger pressure (square symbols) since we keep the linear
dependence in ΔunAnB until the probability becomes one. It starts to
deviate from the dotted line not until n0 = 20.

In Fig. 4(b), we plot the corresponding compressibility as a
function of n0 relative to its ideal-gas value βid = 1/Pid. Using
P = Pid[1 + f (n0)], the compressibility

β = 1
n0

( ∂P
∂n0

)−1 = βid
1

1 + f + ∂f
∂n0

(43)

can be directly related to the deviation of pressure from Pid. The
dashed and dotted lines in Fig. 4(b) represent the analytic results cal-
culated from the formulas for pressure, while the derivative ∂f /∂n0
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for the numerical results was determined with the standard Python
toolchain. Relative to the ideal-gas value, compressibility is further
reduced and, in particular, β also decreases with the decrease in Δt.
For example, at Δt = t0/200 and with n0 = 20 as a reasonable den-
sity, compressibility is reduced to 0.4βid. Now, applying the bounded
collision probability of Eq. (6), the compressibility is down to 0.3βid.
To obtain such a reduction with conventional MPCD methods and
the ideal-gas pressure, one would need to increase the particle num-
ber per cell by a factor of three. Thus, the new collision rule with its
non-ideal equation of state reduces the computational efforts.

C. Shear viscosity

We first discuss the collisional viscosity. Figure 5(a) shows the
simulated collisional viscosity η+Acoll in MPCD units m0/(a0t0) as a
function of the density n0 for three values of Δt. The circle symbols
show data points from simulations using the bounded collision rule
Eq. (5). Over a wide range of densities, the values are in very good
agreement with the analytical result of Eq. (33) shown as dashed
lines. Hence, there is a quantitative agreement between simulations
and theory. Similar to the pressure, the simulations confirm the scal-
ing η+Acoll ∝ 1/Δt. For the two larger time stepsΔt = t0/100Δt = t0/200,
we see a deviation at densities n0 ≤ 10. We attribute this to the fol-
lowing reasons: first, our collision rule is not constructed for small
numbers of particles, and second, to derive Eq. (33), we neglected

FIG. 5. (a) Collisional viscosity η+Acoll in MPCD units m0/(a0t0) plotted vs density n0
for three values of the time step Δt. Circle symbols show data points obtained from
simulations using Eq. (24), and the dashed lines show the corresponding analytical
values as given by Eq. (33). (b) Streaming viscosity ηstr in MPCD units m0/(a0t0)
plotted vs density n0 for the same values of Δt. Here, the circle symbols show data
points obtained from the same simulations using Eq. (34), and the dotted lines
refer to the analytic expression of Eq. (41).

fluctuations of the center of mass position, which also requires a
higher number of particles.

We now continue with the streaming viscosity ηstr that we
extract from the same simulations. Figure 5(b) shows ηstr in MPCD
units m0/(a0t0) as a function of the density n0 and for different val-
ues ofΔt. Again, the circle symbols show data points for the bounded
collision rule from Eq. (5), while dotted lines refer to the analytic
values given by Eq. (41). Although we observe an approximate quan-
titative agreement of the simulated values for ηstr with Eq. (41) for
larger densities n0, there are clear differences. First, Eq. (41) predicts
an increase in the streaming viscosity toward smaller n0, which then
falls sharply to zero at n0 = 0 (not shown). The simulated stream-
ing viscosities only show a slight increase for Δt = t0/100; other-
wise, they are roughly independent of n0. Second, while we do not
reproduce the predicted scaling ηstr ∝Δt, we observe a clear increase
in the streaming viscosity with Δt, and thus, the expected trend is
reproduced qualitatively. As a main reason for the disagreement of
the simulated viscosities with Eq. (41), we consider the approxima-
tion ⟨χ(Δu)vi ,xvi ,y⟩ ≈ ⟨χ(Δu)⟩⟨vi ,xvi ,y⟩ made during the derivation
of Eq. (41). Nevertheless, factoring out the collision rate ⟨χ(Δu)⟩ in
the previous expression provides a rough quantitative estimate of the
streaming viscosity ηstr as demonstrated.

FIG. 6. (a) Poiseuille flow profiles vx vs lateral channel position y determined
in simulations for different densities n0. The velocity unit is the thermal velocity
vT = √

kBT/m0. (b) Total viscosity in MPCD units m0/a0t0. Blue circle symbols
show data points for the viscosity determined from the flow profiles in (a). The red
triangle symbols refer to data points resulting from the sum of viscosities, ηstr+η+Acoll ,
determined in Sec. V C. The black dashed line shows the analytical expression of
Eq. (42).
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D. Poiseuille flow

To simulate the Poiseuille flow profiles, we used the time step
Δt = t0/200. After averaging the velocity field over the time 5× 104Δt,
the final flow profiles are generated by also averaging along the x and
z directions. The resulting profiles vx as a function of the y position
are shown in Fig. 6(a) for different densities n0. The two oppos-
ing profiles are clearly visible, and in both regions y < 0 and y > 0,
we observe excellent agreement with the expected parabolic shape.
The decrease in the flow velocity toward higher densities n0 already
indicates an increase in the total viscosity η with n0. This increase
is even more pronounced since also the pressure difference Δp
increases with n0 because we always use the same body force per fluid
particle.

In Fig. 6(b), we plot the total viscosity η as a function of the
density n0. The blue circle symbols show data points obtained by
extracting vmax from the Poiseuille flow profiles shown in Fig. 6(a)
and using η = ΔpL/(8vmax). The red triangle symbols show the total
viscosity η+Acoll+ηstr consisting of the collisional and streaming viscos-
ity, which we determined in Sec. V C from the simulated linear shear
profile. The numerical data are compared to the analytical result of
Eq. (42), which is shown as the dashed line.

First of all, the values for the viscosities, determined in the sim-
ulations by analyzing either momentum transfer in linear shear flow
or the maximum flow speed of the Poiseuille profile, are in excellent
agreement over the whole range of densities. In addition, we also
observe a good agreement with the analytical expression of Eq. (42)
for densities n0 ≥ 10, where the collisional viscosity η+Acoll dominates.
For low densities n0 < 10, the deviations occur due to ηstr as discussed
before.

VI. CONCLUSIONS AND OUTLOOK

The new collision rule in our extendedMPCDmethod provides
the fluid with a non-ideal equation of state by introducing stochas-
tic collisions between two particle clouds in the collision cell. In
short, the collision frequency is quadratic in density and collisions
only occur if the particle clouds move toward each other. In con-
trast to prior approaches, the extended MPCD method is designed
for three dimensions, conserves angular momentum, and features
a thermostat. The main goal of our method is to guarantee a low
fluid compressibility for simulations in which significant pressure
gradients occur. Since with the reduced compressibility, we can keep
the particle number per collision cell at reasonably small values, our
method requires significantly less simulation time compared to rais-
ing the fluid density in classical MPCD algorithms.12 We provide an
example in footnote.55 At the same time, ourmethod saves computer
memory necessary to store MPCD particles so that we do not need
to reduce the system size. We will explore this more in a planned
second publication.

Based on the new collision rule, we have derived the equa-
tion of state and also demonstrated the impact of different collision
probabilities. Indeed, in the regime where the collision probability
is quadratic in density, we observe the nonlinear quadratic varia-
tion of pressure with density. For larger densities, where the colli-
sion frequency is bounded by the maximum value 1/Δt, the pres-
sure again becomes linear in density, albeit at a higher value, which

increases with 1/Δt. For typical values of Δt/t0 = 1/200 and n0 = 20
together with the most effective collision probability, compressibil-
ity is reduced by a factor three compared to the ideal-gas value at
n0 = 20. Overall, we find very good agreement with values obtained
from simulations in the regime where our analytic expressions
apply.

Moreover, for the shear viscosity, we have derived analytic
expressions for the contributions of the collision and streaming step.
For the collisional viscosity, we find very good agreement with the
values obtained from simulating a linear shear flow and determining
momentum transport, while for the streaming viscosity, the ana-
lytic expression only provides a rough estimate. However, for density
values n0 above 10, the collisional viscosity starts to dominate and
we obtain a very good agreement with the simulated values. This
is also demonstrated by simulating a Poiseuille flow and extracting
viscosity from the maximum flow velocity.

In a planned second publication, we will use our extended
MPCD method for selected flow problems to demonstrate its appli-
cability. Furthermore, we intend to apply it to dense systems of
microswimmers, where large pressure fields arise naturally. Prelim-
inary simulations of such systems show that the extended MPCD
method keeps the inhomogeneities in fluid density small. This will
help us to obtain reliable insight into how hydrodynamic flow
fields influence the collective dynamics of clustering and swarming
microswimmers.
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APPENDIX A: GAUSSIAN DISTRIBUTION FOR Δu

For the derivation of the pressure, the fluid is considered at
rest. Assuming molecular chaos, the velocities vj of the individ-
ual particles all obey the Maxwell–Boltzmann distribution. For the
scalar product with the collision vector n̂, this implies the probability
density

p(vj ⋅ n̂) =
√

m0

2πkBT
exp(−m0(vj ⋅ n̂)2

2kBT
). (A1)

The probability distribution for Δu = v̄B − v̄A then follows from

p(Δu) = ∫ δ
⎛⎝Δu −

⎡⎢⎢⎢⎢⎣ ∑{xj∈VB}
vj ⋅ n̂
nB

− ∑{xj∈VA}
vj ⋅ n̂
nA

⎤⎥⎥⎥⎥⎦
⎞⎠

× N∏
j=1 p(vj ⋅ n̂)d(vj ⋅ n̂), (A2)

where δ(⋯) stands for the delta function. Eliminating it by integrat-
ing over one normal velocity component and then carefully per-
forming the rest of the N − 1 integration finally gives the Gaussian
distribution
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p(Δu) = 1√
2π⟨Δu2⟩ exp(−

Δu2

2⟨Δu2⟩). (A3)

It has zero mean, ⟨Δu⟩ = 0, and variance

⟨Δu2⟩ = kBT
nAm0

+
kBT
nBm0

= 4kBT
m0nξ

, (A4)

where we used the approximation nA/B ≈ nξ/2 in the last step. Thus,
the sum over Gaussian distributed random numbers follows again a
Gaussian distribution.

APPENDIX B: CONDITIONAL DISTRIBUTION OF Δu
IN SHEAR FLOW

For deriving the collisional shear viscosity in Sec. IV A, we need
the distribution for Δu under the condition that the collision vector
n̂ and the position xi of particle i are given. We again start with the
single-particle velocity distributions. Relative to the applied shear
flow, the velocities still follow the Maxwell–Boltzmann distribution,

p(vj ⋅ n̂, yj) =
√

m0

2πkBT
exp(−m0[(vj − γ̇yjx̂) ⋅ n̂]2

2kBT
). (B1)

Following the same reasoning as in Appendix A, this implies that
the conditional distribution for Δu is again Gaussian with the same
variance as before: ⟨(Δu − ⟨Δu⟩)2⟩ = 4kBT/(m0nξ).

However, the conditional mean of Δu under the applied shear
flow and for fixed n̂ and xi is non-zero. Starting from the definition of
Δu and averaging over all particle velocities and all positions besides
particle i, one obtains

⟨Δu⟩i,n̂ = γ̇ x̂ ⋅ n̂⎡⎢⎢⎢⎢⎣ ∑{xj∈VB/xi}
⟨yj⟩
nB

− ∑{xj∈VA/xi}
⟨yj⟩
nA

⎤⎥⎥⎥⎥⎦
− sign(xi ⋅ n̂) yi

nA/B , (B2)

where the subscripts i, n̂ indicate the conditions that the particle i
resides at xi and the collision vector takes the value n̂. When we
introduce the center-of-mass in the respective regions ⟨yj⟩ = yA/B
for xj ∈ VA/B and use yA = −yB and nA/B ≈ nξ/2, we can ultimately
write the conditional mean as

⟨Δu⟩i,n̂ = −2γ̇ x̂ ⋅ n̂ yA(nξ − 1) + sign(xi ⋅ n̂) yi
nξ

≡ μi,n̂. (B3)

Based on the conditional distribution p(Δu − μi,n̂), we can now cal-
culate the required mean values ⟨χ(Δu)⟩ and ⟨χ(Δu)Δu⟩ in shear
flow.

APPENDIX C: MEAN VALUES ⟨χ(Δu )⟩ AND ⟨χ(Δu )Δu⟩
IN SHEAR FLOW

We start with the unbounded form of the collision rate pχ(Δu)
in Eq. (4) and find for the mean collision rate

⟨χ(Δu)⟩ = ∫ ∞
0

p(Δu − μxi ,n̂) pχ(Δu)dΔu
= cnξ

2

⎧⎪⎪⎨⎪⎪⎩
√

kBTnξ
2πm0

exp(−μ2i,n̂m0nξ
4kBT

) (C1)

+
μi,n̂nξ
8

[1 + erf(μi,n̂
√

m0nξ
8kBT

)]⎫⎪⎪⎬⎪⎪⎭
= c

√
kBTnξ3

8πm0
+O(μi,n̂) ≡ Γ(nξ , c) +O(μi,n̂), (C2)

where in the last line, we show the relevant zeroth-order term after
expansion in μi,n̂. For the second mean value, we obtain

⟨χ(Δu)Δu⟩ = ∫ ∞
0

Δup(Δu − μxi ,n̂) pχ(Δu)dΔu
= cnξ

2
{(kBT

m0
+
μ2i,n̂nξ
4

)[1 + erf(μi,n̂
√

m0n
8kBT

)]
+μi,n̂

√
kBTnξ
2πm0

exp(−μ2i,n̂m0nξ
8kBT

)⎫⎪⎪⎬⎪⎪⎭ (C3)

and, after expanding to first order in μi,n̂,

⟨χ(Δu)Δu⟩ = c
⎛⎝kBTnξ2m0

+

√
kBTnξ3

2πm0
μi,n̂

⎞⎠ +O(μ2i,n̂)
≡ Ξ(nξ , c) + Ω(nξ , c)μi,n̂ +O(μ2i,n̂). (C4)

For the bounded form of the collision rate pχ(Δu) in Eq. (5), we
can also calculate the mean values. The mean collision rate becomes

⟨χ(Δu)⟩ = ∫ ∞
0

p(Δu − μxi ,n̂) pχ(Δu)dΔu
= 1
2

⎧⎪⎪⎨⎪⎪⎩1 + erf(μi,n̂
√

m0nξ
8kBT

) , (C5)

− exp[ cnξ2
8

(cnξ kBTm0
− 2μi,n̂)]

× erfc
⎡⎢⎢⎢⎢⎣
√nξ

8
⎛⎝cnξ

√
kBT
m0

− μi,n̂
√

m0

kBT
⎞⎠
⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

= 1 − exp( c2kBTnξ
8m0

) erfc⎛⎝c
√

kBTnξ3

8m0

⎞⎠ +O(μi,n̂)
≡ Γ(nξ , c) +O(μ2i,n̂), (C6)

where the last line shows the relevant zeroth-order term after expan-
sion in μi,n̂. The second mean value becomes
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⟨χ(Δu)Δu⟩ = ∫ ∞
0

Δup(Δu − μxi ,n̂) pχ(Δu)dΔu
= 1
2

⎧⎪⎪⎨⎪⎪⎩μi,n̂[1 + erf(μi,n̂
√

m0nξ
8kBT

)]
+(cnξ kBTm0

− μi,n̂)
× exp[ cnξ2

8
(cnξ kBTm0

− 2μi,n̂)]
× erfc

⎡⎢⎢⎢⎢⎣
√nξ

8
⎛⎝cnξ

√
kBT
m0

− μi,n̂
√

m0

kBT
⎞⎠
⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭,

and after expanding to first order in μi,n̂, one has

⟨χ(Δu)Δu⟩ = ckBTnξ
2m0

exp(c2 kBTnξ3
8m0

)erfc⎛⎝c
√

kBTnξ
8m0

⎞⎠
+

μi,n̂
2

⎡⎢⎢⎢⎢⎣1 + c

√
kBTnξ3

2πm0
− (1 + c2

kBTnξ3

4m0
)

× exp(c2 kBTnξ3
8m0

) erfc⎛⎝c
√

kBTnξ3

8m0

⎞⎠
⎤⎥⎥⎥⎥⎦ +O(μ2i,n̂)

≡ Ξ(nξ , c) + Ω(nξ , c)μi,n̂ +O(μ2i,n̂). (C7)

APPENDIX D: VELOCITY CORRELATION DURING
COLLISIONS

To derive of the streaming viscosity in Sec. IV B, we consider
the evolution of the velocity correlation ⟨vi,xvi,y⟩newcoll during a col-
lision step. In the main text, we have already evaluated the term⟨χ(Δu)vi ,xBi ,y⟩. Here, we calculate the remaining terms ⟨χ(Δu)vxAy⟩,⟨χ(Δu)AxAy⟩, ⟨χ(Δu)Bi ,xBi ,y⟩, and ⟨χ(Δu)AxBi ,y⟩.

We begin by applying some transformations on the abbrevia-
tions Bi and A that we introduced to write Eq. (38) in a compact
way. First, we note that we may drop the stochastic part δvsi of
δvi = δvti + δvsi because it averages to zero. Furthermore, we replace
δvti = v̄A/B using nA = nB ≈ nξ/2. With the definitions of vξ and v̄A/B,
the quantity Bi reads

Bi = −n̂ ⋅ vi + 2n̂
nξ

∑{j∈VB/A}
n̂ ⋅ vj.

Furthermore, we can insert the quantity Bj into A,

A ≡ −I−1ξ m0 ∑
xj∈Vξ

[xj,c × n̂ (δvj − n̂ ⋅ vj)] × xi,c

= −I−1ξ m0 ∑
xj∈Vξ

( xj,c × Bj) × xi,c,

and using that, we are free to add the constant velocity vξ inside the
round brackets.

With these simplifications, we now begin considering the next
most simple term ⟨χ(Δu)Bi ,xBi ,y⟩ of the new velocity correlation⟨vi,xvi,y⟩newcoll .

We first note that the single term and the sum in Bi always con-
tain different particles i ≠ j. Hence, the product of these terms van-
ishes under the usual molecular chaos assumption ⟨vi ,xvj ,y⟩ = 0. If we
further use that particles are interchangeable so that ⟨χ(Δu)vi ,xvi ,y⟩
= ⟨χ(Δu)vj ,xvj ,y⟩, we obtain

⟨χ(Δu)Bi,xBi,y⟩ = ( 2
nξ

+ 1)⟨χ(Δu)nxny(n̂ ⋅ vi)2⟩.
Finally, averaging over n̂ and neglecting higher correlations for
particle i, we arrive at

⟨χ(Δu)Bi,xBi,y⟩ ≈ 2
9
( 2
nξ

+ 1)⟨χ(Δu)⟩⟨vi,xvi,y⟩. (D1)

In the next term ⟨χ(Δu)vi ,xAy⟩, we note that the quantity A
also depends on the positions of the particles so that these must
be included in the average. We may perform this average over the
particle positions separately on A to obtain

⟨A⟩ = −⟨ I−1ξ m0 ∑
xj,c∈Vξ

[ (xi,c ⋅ xj,c)Bj − (Bj ⋅ xi,c)xj,c]⟩
= −⟨ I−1ξ m0[x2i,cBi − (xi,c ⋅ Bi)xi,c]⟩
= −2⟨I−1ξ ⟩m0⟨x2i,c⟩Bi = −Bi

nξ
, (D2)

where xi ,c denotes any of the components of xi ,c. In the last line,
we assumed that the contribution of the single particle i is low so
that we can average ⟨Iξ⟩ = (nξ −1)m0a20I/6 separately. Furthermore,
we used that ⟨x2i,c⟩ = a20/12(1 − 1/nξ) for any of the components of
the position and that different components of the position xi ,c are
uncorrelated.

Putting Eq. (D2) into ⟨χ(Δu)vi ,xAy⟩ and using Eq. (39), we
obtain

⟨χ(Δu)vi,xAy⟩ = − ⟨χ(Δu)vi,xBi,y⟩
nξ

≈ ⟨χ(Δu)⟩⟨vi,xvi,y⟩
3nξ

. (D3)

We proceed with the term ⟨χ(Δu)Bi ,xAy⟩. Since the term Bi ,x does
not depend on the position of the particle, we can immediately apply
Eq. (D2) and insert Eq. (D1) to arrive at

⟨χ(Δu)Bi,xAy⟩ ≈ − 2
9nξ

( 2
nξ

+ 1)⟨χ(Δu)⟩⟨vi,xvi,y⟩. (D4)

The last term to calculate is

⟨χ(Δu)AxAy⟩
= ⟨χ(Δu)⎡⎢⎢⎢⎢⎣I

−1
ξ m0 ∑

xj,c∈Vξ

(xi,c ⋅ xj,c)Bj − (Bj ⋅ xi,c)xj,c⎤⎥⎥⎥⎥⎦x
×⎡⎢⎢⎢⎢⎣I

−1
ξ m0 ∑

xk,c∈Vξ

(xi,c ⋅ xk,c)Bk − (Bk ⋅ xi,c)xk,c⎤⎥⎥⎥⎥⎦y⟩. (D5)
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Similarly, we separately average ⟨I2ξ⟩ = (19/360 + (nξ − 1)/36)(nξ− 1)m0a20I ≈ (nξ − 1)2m0a20I/36 based on the assumption of molec-
ular chaos and that the contribution of single pairs of particles is
small. Multiplying out yields three terms,

⟨χ(Δu)AxAy⟩
= ⟨I−2ξ ⟩m2

0⟨χ(Δu) ∑
xj,c ,xk,c∈Vξ

⎡⎢⎢⎢⎢⎣Bj,xBk,y∑
α
x2i,c,αxj,c,αxk,c,α

− 2∑
α,β

xi,c,αxj,c,αBj,xBk,βxi,c,βxk,c,y
⎤⎥⎥⎥⎥⎦⟩, (D6)

of which the last is zero because ⟨xj ,xxk ,y⟩ = 0 for all j, k. We con-
tinue with the averages over the positions inside the sums. In the
first summand of Eq. (D6), we recognize that ⟨xj,c,αxk,c,α⟩ = ⟨x2j,c,α⟩δkj,
and in the second one, we may rewrite ⟨xi,c,αxi,c,β⟩ = ⟨x2i,c,α⟩δαβ and⟨xj,c,αxk,c,y⟩ = ⟨x2j,c,α⟩δαyδkj. This follows from the usual molecular
chaos assumption that different particles are uncorrelated and the
assumption that the components of a position are also uncorrelated.
Performing the sums with these replacements, we obtain

⟨χ(Δu)AxAy⟩
= ⟨I−2ξ ⟩m2

0⟨χ(Δu)3Bj,xBj,y[(nξ − 1)⟨x2i,c⟩2 + ⟨x4i,c⟩]
−2Bi,xBi,y[(nξ − 1)⟨x2i,c⟩2 + ⟨x4i,c⟩]⟩

= ⟨I−2ξ ⟩m2
0[(nξ − 1)⟨x2i,c⟩2 + ⟨x4i,c⟩]⟨χ(Δu)Bi,xBi,y⟩. (D7)

For the term ⟨χ(Δu)Bj ,xBj ,y⟩, we may refer to Eq. (D1). If we
approximate ⟨x4i,c⟩ ≈ a40/80 and nξ−1

4nξ2
≈ 1

4nξ
, we arrive at

⟨χ(Δu)AxAy⟩
= ⟨I−2ξ ⟩a40m2

0[(nξ − 1)3
144nξ2

+
1
80

]⟨χ(Δu)Bi,xBi,y⟩
= [ 1

4nξ
+

9
20(nξ − 1)2 ]⟨χ(Δu)Bi,xBi,y⟩

≈ 1
18nξ

( 2
nξ

+ 1)⟨χ(Δu)⟩⟨vi,xvi,y⟩. (D8)

In the last line, we have furthermore neglected the term 9
20(nξ−1)2 ,

which is small compared to 1
4nξ

.
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The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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ABSTRACT

Simulations of flow fields around microscopic objects typically require methods that both solve the Navier–Stokes equations and also include
thermal fluctuations. One such method popular in the field of soft-matter physics is the particle-based simulation method of multi-particle
collision dynamics (MPCD). However, in contrast to the typically incompressible real fluid, the fluid of the traditional MPCDmethods obeys
the ideal-gas equation of state. This can be problematic because most fluid properties strongly depend on the fluid density. In a recent article,
we proposed an extendedMPCD algorithm and derived its non-ideal equation of state and an expression for the viscosity. In the present work,
we demonstrate its accuracy and efficiency for the simulations of the flow fields of single squirmers and of the collective dynamics of squirmer
rods. We use two exemplary squirmer-rod systems for which we compare the outcome of the extendedMPCDmethod to the well-established
MPCD version with an Andersen thermostat. First, we explicitly demonstrate the reduced compressibility of the MPCD fluid in a cluster of
squirmer rods. Second, for shorter rods, we show the interesting result that in simulations with the extendedMPCDmethod, dynamic swarms
are more pronounced and have a higher polar order. Finally, we present a thorough study of the state diagram of squirmer rods moving in
the center plane of a Hele-Shaw geometry. From a small to large aspect ratio and density, we observe a disordered state, dynamic swarms, a
single swarm, and a jammed cluster, which we characterize accordingly.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0064558

I. INTRODUCTION

Simulations of hydrodynamic flows in the context of micro-
scopic colloidal and active particles share a long history with the
method of multi-particle collision dynamics (MPCD).1–3 Different
modifications of the original algorithm4 have been applied in stud-
ies of colloidal suspensions,5–9 microswimmers,10–23 polymers,24–26
and even complex deformable bodies such as red blood cells27,28
or the African trypanosome,29,30 the causative agent of the sleep-
ing sickness, to name a few examples. Our particular interest lies
in the collective dynamics of elongated microswimmers and active
filaments for which interesting states, such as swarming,21,31–33 vor-
tex formation,34–37 active nematic patterns,38–40 and active turbu-
lence,41–45 have been observed. Many of these features can already
be described by continuum models46–49 that combine elements of
the Toner–Tu50 and Swift–Hohenberg51 equations. However, it is
still a matter of current debate to identify the importance of purely

steric and hydrodynamic interactions on the scale of the constitut-
ing particles.52–57 In this context, we introduced elongated squirmer
rods as a model for elongated bacteria usingMPCD to simulate their
flow fields.17 Our model thereby adds to the topmost layer of detail
in a wide range of models ranging from coarse-grained interactions
in the famous Vicsek model58–60 over Langevin dynamics simula-
tion41,61–67 with implicit hydrodynamic interactions68,69 to explicit
hydrodynamic simulations using the MPCD and lattice Boltzmann
approach.70–73

In this context, solving the Navier–Stokes equations at vanish-
ing Reynolds numbers with the particle-based mesoscale method of
MPCD has few advantages. It inherently includes the omnipresent
thermal fluctuations,4,74 and complex geometries are straightfor-
ward to implement with this method.28,75–77 Furthermore, the col-
lision rules of MPCD algorithms suit well for parallel computing on
graphic cards so that also on desktop computers, one can perform
extensive simulations.78,79
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However, a property that most MPCD algorithms share is that
the MPCD fluid particles obey the equation of state of an ideal
gas.4,80,81 This makes the model fluid rather compressible and results
in a low speed of sound cs,5 which is in conflict with simulating
the dynamics of incompressible solvents at a low Reynolds num-
ber. It is a matter of current debate how this affects the dynamics
of immersed particles,20 especially for strongly inhomogeneous sys-
tems, such as clustered microswimmers.21 To render the MPCD
fluid more incompressible, different strategies can be used. For the
ideal-gas models, increasing the density of fluid particles n0 natu-
rally decreases the compressibility.21 However, this comes with an
immense increase in simulation time proportional to n20 if the system
size is held constant. Alternatively, auxiliary field equations can be
coupled to the dynamics of the MPCD particles to alter the equation
of state of the model.81

In a recent publication,82 we introduced an extended version
of MPCD with a modified collision step that transfers momentum
across a randomly oriented plane within the collision cell in order
to generate a non-ideal equation of state. In addition, the collision
probability depends on the local density and velocities. This is dif-
ferent from traditional MPCD algorithms, where collisions occur at
a fixed rate. Our approach is motivated by the collision rate in the
Boltzmann equation83 and has the advantage that it can easily be
integrated into an existing MPCD program. A similar approach has
been formulated for two-dimensional systems in Refs. 84 and 85.
While we have already derived expressions for the equation of state
and the viscosity in our previous publication,82 in the present work,
we demonstrate its application to the dynamics of single squirmers
and squirmer rods, but most importantly to explore their collective
dynamics.17

In Sec. II, we start by shortly reviewing the extended MPCD
method82 and the squirmer-rod model for elongated microswim-
mers17 introduced by us in earlier publications. We then demon-
strate the applicability of the extended MPCD method and, in par-
ticular, compare it to the traditional MPCD version. First, in Sec. III,
we show that our new method accurately reproduces the leading
hydrodynamic multipoles contributing to the flow field of a single
squirmer in the bulk fluid and in confinement. Second, in Sec. IV,
we explicitly demonstrate the lower compressibility of the extended
MPCD method considering the specific example of a cluster of
squirmer rods. Then, for shorter rods, we illustrate quantitative dif-
ferences in their swarming behavior between both MPCD methods.
Finally, in Sec. V, we employ the extended MPCD method to study
in-depth the collective dynamics of squirmer rods. We present a
state diagram of squirmer rods for variable aspect ratio and den-
sity, which includes dynamic swarms, single swarms, and jammed
clusters, and we discuss their structural and dynamic properties. We
finish with concluding remarks and an outlook in Sec. VI.

II. METHODS
A. Extended MPCD method

As common to all MPCD algorithms, the fluid is modeled by
point-like particles, the dynamics of which proceeds in two alter-
nating steps: ballistic motion along the mean free path followed by a
collision. Because the collision rule conserves linear and also angular
momentum, the simulated fluid flow solves the Navier–Stokes equa-
tions.4 In MPCD, these steps occur simultaneously for all particles.

During the streaming step (i), particles with masses m0, positions
xi(t), and velocities vi(t) move ballistically for the duration of the
time step Δt,

xi(t + Δt) = xi(t) + vi(t)Δt. (1)

Moreover, the particles collide with bounding walls, colloids, or,
in our case, squirmers3,13,14,16–18 and transfer linear and angular
momenta. To enforce either the no-slip boundary condition or a pre-
defined slip-velocity at a squirmer surface, the so-called bounce-back
rule is applied.4,75

Our extended MPCDmethod82 nowmodifies the collision step
(ii). As usual, the simulation volume is divided by a cubic lattice
with lattice constant a0 and all particles are grouped into cubic cells
with volume 𝒱ξ centered around position ξ. Before each collision
step, the lattice is randomly shifted against the previous lattice to
ensure Galilean invariance.86 The nξ particles inside a cell have the
mean velocity vξ , center-of-mass position xξ , andmoment-of-inertia
tensor Iξ defined relative to xξ .

Now, in our modified collision step, each cell is divided into
two halves A and B by a plane P n̂,xξ that contains the center of mass
xξ and has the normal unit vector n̂, which, by definition, always
points toward A. For each cell and time step, n̂ is randomly drawn
from a discrete set of 13 possible orientations. The modified colli-
sion step transfers momentum across the randomly oriented plane
and thereby generates a non-linear equation of state. We denote the
respective number of particles on each side of the plane by nA and
nB and their respective mean velocity components along n̂ taken
relative to vξ by v̄A and v̄B. We also introduce the relative velocity
Δu ≡ v̄B − v̄A for further use. The collision step introduces for each
particle velocity vi in cell𝒱ξ a new value vnewi and is defined by

vnewi = vi + χ(Δu)⎧⎪⎪⎨⎪⎪⎩n̂[n̂ ⋅ (vξ − vi) + δvi]
− I−1ξ m0 ∑

xj∈𝒱ξ

[xj,c × n̂(δvj − n̂ ⋅ vj)] × xi,c
⎫⎪⎪⎬⎪⎪⎭, (2)

where xi,c denotes the position vector of particle i relative to the
center-of-mass position xξ . In contrast to other MPCDmethods, the
collision only occurs with a certain probability as explained below.
To initiate a collision, the stochastic variable χ(Δu) is set to one,
otherwise it is zero. The term in square brackets in the first line sets
the normal velocity component of particle i relative to n̂ ⋅ vξ to a
new random value δvi, which we introduce below. It mainly trans-
fers momentum across the collision plane P n̂,xξ , and all values add
up to zero in order to preserve the total momentum. Finally, the
term in the second line is added to preserve the angular momentum
Lξ = m0∑xi∈𝒱ξ

xi × vi during collision.
Note that themomentum transfer across the randomly oriented

plane is responsible for the decreased compressibility of the MPCD
fluid. As we showed in Ref. 82, it generates a term proportional to
n2ξ in the equation of state, which thereby deviates from the ideal-
gas equation of the classical MPCD fluid. On average, a collision
between particles in regions A and B occurs when the two clouds
move toward each other meaning Δu ≡ v̄B − v̄A > 0. Following the
collision term in the Boltzmann equation, we take for the collision
rate cΔu nAnB, where c is the scattering cross section.83 Thus, we set
the probability for a collision to occur to
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pχ(Δu) ≡ Θ(Δu)[1 − exp(−cΔu nAnB)], (3)

where Θ(Δu) is the Heaviside step function, and we use the expo-
nential function to guarantee pχ(Δu) ≤ 1.

Finally, we introduce the new velocity component along the
normal n̂,

δvi ≡ nB/A
nA/B v̄B/A + δvMB

i − ΔvA/B. (4)

Here, the first term transfers momentum between regions A and
B. The first index applies to particles i in region A. They take
over the momentum m0v̄B from region B and vice versa. The
prefactor nB/A/nA/B guarantees that the overall momentum is con-
served. Essentially, the total momenta from regions A and B are just
swapped. The second term assigns each particle a thermal velocity
δvMB

i drawn from aMaxwell–Boltzmann distribution at temperature
T, which thereby serves as a thermostat for the fluid. The last term
subtracts the mean thermal velocities in each region (A and B),

ΔvA/B = 1
nA/B ∑{xi∈𝒱A/B}

δvMB
i , (5)

in order to conserve momentum.
As in all MPCD algorithms, the so-called “ghost” particles

are introduced to participate in the collision step. They are added
where overlap with boundaries leads to partially empty collision
cells, thereby improving the validity of the no-slip boundary condi-
tion.75 After the collision step, the changes in the linear and angular
momentum of the ghost particles are assigned to movable objects,
which in our case are squirmers. This ensures that the linear and
angular momenta are conserved.

B. Squirmer and squirmer rods
To investigate the flow fields of microswimmers and their

hydrodynamic interactions in collective motion, we use spherical
squirmers and build squirmer rods from them. Spherical squirm-
ers propel by an imposed axisymmetric slip-velocity field on their
surfaces,3,87,88

vs = Bs
1[(1 + βê ⋅ r̂s)(ê ⋅ x̂s)x̂s − ê], (6)

which initiates flow in the surrounding fluid. Here, the unit vector
x̂s points from the squirmer center toward the squirmer surface and
ê indicates the orientation and swimming direction of the squirmer.
The resulting flow field in the bulk fluid is a superposition of mul-
tipole solutions of the Stokes equations. In particular, it contains a
source dipole singularity with strength B1 = Bs

1R
3 and a force dipole

singularity with strength A2 = βBs
1R

2. The latter is controlled by the
parameter β, which determines the squirmer type, and R denotes the
radius of the squirmer. For different values of β, the squirmer repre-
sents either a pusher (β < 0), a neutral swimmer (β = 0), or a puller
(β > 0). The squirmer parameter Bs

1 also determines the swimming
speed v0 = 2/3Bs

1.
To model the actual rod shape of many biological microswim-

mers, we use the squirmer rod. It is constructed by arranging sev-
eral neutral spherical squirmers on a line such that they overlap
and form a single rigid body. By varying the squirmer distance
d, rods of different aspect ratios α = lS/2R are realized where lS
is the rod length. In this work, we always use Nsq = 10 spherical
squirmers and a maximum squirmer distance of d ≈ 0.8R so that the
surface is still smooth enough that swimmers can slide past each

other. This amounts to a maximum aspect ratio of α = 4.75. To
model steric interactions between pairs of squirmer rods, we employ
the Weeks–Chandler–Andersen potential89 that acts between two
squirmers from different rods. The force constant is chosen strong
enough (εWCA ≈ 104kBT) to ensure that there is no significant over-
lap between two rods.

The squirmer rod model described so far resembles ciliated
micro-organisms such as Paramecium. To model bacteria, such as
E. Coli, which are driven by a bundle of rotating flagella extending
from its rear, one can concentrate the surface velocity on the back
of the rod by multiplying the slip velocity with an envelope or step
function.17

C. Parameters
We choose the parameters for the extended MPCD method

such that the total viscosity η = ηstr + η+Acoll ≈ 16
√
m0kBT/a20 (see

Ref. 82) given in MPCD units matches previous studies where other
MPCD methods are employed.13,14,17,21 In particular, the collision
parameter c = 1/100 and the average number density n0 = 20 are
chosen such that the average collision rate ⟨χ(Δu)⟩ ≈ 0.14 is low
enough to be in the quadratic regime of the equation of state.82

Together with a time step of Δt = 0.005a0
√
kBT/m0, the total vis-

cosity takes the prescribed value. For the squirmers, we use a radius
of R = 3a0 and a source dipole strength of Bs

1 = 0.1, which results in a
Péclet number of Pe = Rv0/DT ≈ 354.6, whereDT is the translational
diffusion coefficient of the spherical squirmer.14

To initialize a simulation, we distribute the fluid particles ran-
domly and choose thermal velocities from the Maxwell–Boltzmann
distribution. In addition, the squirmer rods are randomly distributed
in the midplane of the simulation box for area fractions ϕ below 0.6.
For ϕ ≥ 0.6, we initiate the simulation by arranging the swimmers in
a rectangular pattern and by choosing their orientations at random
along the longer side of the rectangular unit cell.

We use the following geometries and simulation times in our
computer studies. To simulate the flow fields of pusher-type squirm-
ers, we use periodic boundary conditions for the bulk fluid with an
edge length of L = 150a0 of the cubic simulation box. In the Hele-
Shaw geometry, the confining parallel plates have a separation of
Δz = 8a0 and an edge length of L = 300a0, and the squirmers are
constrained to move in the midplane of the cell (see Fig. 1) by set-
ting the normal component of the velocity vz and the components
ωx,ωy of the angular velocities of the squirmer rods to zero after
each time step. The flow fields are first equilibrated during 50 000
time steps Δt, and 20 independent simulation runs are used to aver-
age the flow fields over a total of 107Δt. To simulate the collective
motion of squirmer rods, we choose a Hele-Shaw geometry with a

FIG. 1. Schematic of the Hele-Shaw geometry in a perspective view. The squirmers
and rods are restricted to move in the midplane between two parallel walls with
separation Δz. In the directions parallel to the walls, periodic boundary conditions
are applied.
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plate separation of Δz = 18a0, otherwise the edge length L = 300a0 is
the same. The system is equilibrated during 107 time steps Δt, and
data are sampled during another 107Δt.

III. FLOW FIELDS IN THE EXTENDED MPCD METHOD

In this section, we present a first test for the extended MPCD
method by demonstrating the accuracy with which it simulates flow
fields of microswimmers. We compare the simulation results of the
flow field of a pusher-type squirmer with the analytic multipole
expression both in the bulk fluid and in confinement between two
parallel plates.

We briefly outline the underlying theory. In the Stokes regime,
the flow field generated by an object moving through the bulk fluid
can be written as a series of hydrodynamic multipoles. This series
contains at the lowest order the Stokeslet or hydrodynamic force
monopole, which is not allowed for autonomous swimmers, the
source dipole, and their higher-order derivatives. For swimmers
with radial symmetry about their swimming direction ê, the flow
fields of these multipoles can be expanded into a Legendre polyno-
mial Pn(cos θ). In spherical coordinates r, ϕ, and θ with ẑ = ê, the
radial velocity component of the multipole expansion reads

ur(r, θ) = ∞∑
n=1 [Anr−n + Bnr−n−2 ]Pn(cos θ). (7)

We use the orthogonality of the Legendre polynomials to extract the
coefficients ur,n(r) = Anr−n + Bnr−n−2 from the simulated flow field
with the radial component ur(r, θ) and then determine the coef-
ficients of the force multipoles An and source multipoles Bn by a
polynomial fit in r−n and r−n−2.

When the object moves in a fluid confined between two parallel
plates with distance Δz (Hele-Shaw geometry), a multipole expan-
sion for the flow field averaged along the plate normal exists.17,90
Using polar coordinates ρ and φ in the plane, the radial velocity
component reads

ũρ(ρ,φ) = ∞∑
n=1 (𝒜n +ℬ n)ρ−n−1 cos(nφ), (8)

where φ is measured against the swimming direction ê. Along the
normal or z direction, the flow field is parabolic, which is inte-
grated out and included into the coefficients 𝒜n and ℬ n. Similar
to the bulk case, we use the orthogonality of the basis functions
cos(nφ) to extract the coefficients ũρ,n(ρ) = (𝒜n +ℬ n)ρ−n−1. The
relative strength of the amplitudes 𝒜n and ℬ n can be deduced
either by extrapolating from the bulk case or by their different
scaling behavior 𝒜n ∝ Δz and ℬ n ∝ 1/Δz. Most interesting about
Eq. (8) is the radial decay of the different multipoles compared to the
bulk case. For a force-free microswimmer (A1 = 𝒜1 = 0), the source
dipole moment ℬ 1 becomes the dominant term in the Hele-Shaw
geometry, while in the bulk fluid the force dipole A2 dominates.

In Fig. 2, we demonstrate the multipole analysis of the flow
field of the pusher squirmer simulated with the extended MPCD
method. Figure 2(a) shows all non-vanishing radial velocity coef-
ficients ur,1(r) and ur,2(r) in the bulk fluid for the squirmer type
with β = −1. In agreement with the analytic expression, each follows
a distinctive power law specific for themultipole moment. The radial
decay of ur,1(r) clearly has the exponent −3 corresponding to the

FIG. 2. Radial decay of the radial velocity coefficients of the hydrodynamic mul-
tipoles obtained from the Legendre–Fourier decomposition of the flow field of a
pusher squirmer. (a) Bulk fluid and squirmer type β = −1. (b) Hele-Shaw geometry
with Δz = 8a0 and squirmer type β = −3.

source dipole moment B1, and ur,2(r) decays with an exponent −2
in the farfield as expected for the force dipole moment A2. However,
for ur,2(r) close to the squirmer, we also recognize the importance
of the short-ranged flow field of the source quadrupole moment B2,
which has the exponent −4. Thus, the polynomial fit deviates from
the straight line. The additional source quadrupole moment with a
negative value is necessary to balance the force dipole A2 such that
the correct surface velocity field of the pusher squirmer is imple-
mented. In contrast, the flow field of the source dipole moment B1
obeys the boundary condition by itself so that ur,1(r) follows a pure
power law.

In the Hele-Shaw geometry, we choose β = −3 to get a stronger
signal from the force dipole. We observe the corresponding radial
coefficients ũρ,1(ρ) and ũρ,2(ρ), which perfectly show the expected
radial decay [see Fig. 2(b)]. However, note that due to the confine-
ment, the exponents of the moments of force and source dipole are
swapped, and hence, the source dipole ultimately dominates the far
field. Note that, unlike in the bulk fluid, force and source multipoles
in ũρ,n(ρ) decay with the same power law in a Hele-Shaw geometry.
Here, the deviation of the force dipole field from theory at ρ < Δz
(gray dashed line) is due to short-ranged contributions to the flow
field that are neglected in Eq. (8).90,91
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IV. COMPARISON OF TRADITIONAL
AND EXTENDED MPCD
A. Fluid density in squirmer-rod systems

In this section, we demonstrate how the low compressibility
of the extended MPCD algorithm results in a much more uniform
density of theMPCDparticles compared to traditionalMPCDmeth-
ods in systems where the fluid is strongly forced. In particular, we
consider a dense suspension of squirmer rods that are constrained
to move in the center plane between two confining parallel plates,
which we will further study in Sec. V. We choose squirmer rods with
an aspect ratio of α = 4.0 at an area fraction of ϕ = 0.6.

As a reference, we also perform simulations with the standard
MPCD-AT+A algorithmwith angularmomentum conservation and
an Andersen thermostat.3 We choose the simulation parameters
such that the relevant physical quantities characterizing the system,
the fluid viscosity and the Péclet number, match in both MPCD
algorithms. Hence, for the standard MPCD method, we use n′0 = 10
and Δt′ = 0.02a0

√
kBT/m0, which results in the same viscosity

η ≈ 16
√
m0kBT/a20.14,82 Because the two MPCD algorithms use dif-

ferent time steps, we choose 20 × 106 and 5 × 106 time steps, respec-
tively, to simulate the same period with the extended and conven-
tional MPCD method.

With both algorithms, the initial random distribution of
squirmer rods evolves into a stable compact swarm, which moves
through the system [insets of Figs. 3(a) and 3(b)]. Above and below
the swarm, the fluid experiences strong forcing due to the slip
velocity fields on the rod surfaces. This generates a strong pres-
sure gradient between the region of the cluster and the rest of
the system. However, the MPCD fluid densities simulated with the
traditional and extended MPCD algorithms behave differently, as
shown in the main parts of Figs. 3(a) and 3(b). While the relative
fluid densities ⟨ρ/ρ0⟩z and ⟨ρ/ρ′0⟩z , averaged over the z direction,
become non-uniform in both simulations, the deviations from the
mean density when using the extended MPCD algorithm are much
smaller.

For the traditional MPCD algorithm [cf. Fig. 3(a)], the pressure
gradient creates regions sparse of fluid particles above and below the
swarming cluster as well as between the rods. These fluid particles
are pressed into regions outside of the cluster, where the density
increases. Note that the density field also includes the ghost parti-
cles of the squirmer rods, which are clearly visible in white because
their density is held constant at n0 by definition. In the vicinity of
the swarming cluster, the relative density drops to values of about
60% and it rises to 140% in regions outside the cluster. In simula-
tions with stronger confinement, i.e., smaller Δz, this effect becomes
even stronger.

In contrast, for the extended MPCD algorithm, the deviations
in relative density are significantly lower with around ±6% [cf.
Fig. 3(b)]. Thus, the density is only mildly decreased in the vicinity
of the cluster and increased in the remaining regions of the sys-
tem. Note that the fluid density directly between squirmer rods in
the midplane follows the trend of the height-averaged density in
Figs. 3(a) and 3(b), but the deviations are stronger. With the tradi-
tional MPCD method, the relative density drops to 30%, while with
the extended MPCD method, the minimum relative density is 90%.
All this is in accordance with the low compressibility of the fluid
in the extended MPCD method, which is about five times lower

FIG. 3. Density field of the fluid in systems with squirmer rods of an aspect ratio
of α = 4.0 and an area fraction of ϕ = 0.6 and in a Hele-Shaw geometry with a
plate distance of Δz = 18a0. The relative density is averaged over the height of
the system and shown in top view. The insets show snapshots of the configuration
of squirmer rods. Results obtained with the traditional MPCD-AT+A algorithm (a)
and with the extended MPCD algorithm (b).

compared to the simulations with traditional MPCD.82 However,
note that this comes with an increase in simulation time.

Thus, the extendedmethod better satisfies the incompressibility
condition∇ ⋅ v = 0. Furthermore, also the viscosity, which depends
on the local density, is more uniform in the extended MPCD
method and the simulation thus closer to the Stokes limit. This is
particularly important for simulating microswimmers, where typ-
ically a constant Péclet number Pe ∝ η is assumed for the entire
system.

To be more quantitative, we show in Fig. 4 the pressure ⟨p/p0⟩z
and viscosity fields ⟨η/η0⟩z derived from the density fields shown
in Fig. 3 using the respective analytical formulas of the traditional
method and our extended MPCD method.2,82 Note that, since both
pressure and viscosity depend on density ρ, they are not independent
of each other. While the viscosity of the traditional MPCD method
is linear in the density and varies accordingly by ±40% [cf. Fig. 4(c)],
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FIG. 4. Fluid pressure (top row) and viscosity (bottom row) fields of the systems
shown in Fig. 3 in top view. Both quantities are averaged over the height of the
system and smoothed with a Gaussian filter using σ = 3a0. Results obtained with
the traditional MPCD-AT+A algorithm in the left panels [(a) and (c)] and with the
extended MPCD algorithm in the right panels [(b) and (d)]. Note that p0 is different
for the two methods.

variations are much smaller for the extendedmethod. Here, the rela-
tion between density and viscosity is more complex and only results
in a variation of ±10% [cf. Fig. 4(d)]. The pressure fields show a sim-
ilar behavior. A closer inspection shows that the deviations from the
mean value are marginally smaller compared to the viscosity vari-
ations, as one can see in Fig. 4(a) for the traditional method and
Fig. 4(b) for the extended method.

Now, with the significant increase in the local Péclet number
Pe ∝ η outside of the cluster for the traditional MPCD method,
we would assume enhanced clustering compared to the much less
compressible fluid, which has been reported for spherical squirm-
ers.21 However, clustering in the two simulations reported here is
very similar, suggesting that steric interactions between the elon-
gated rods dominate. In Subsection IV B, we will therefore compare
two simulations with shorter rods such that the alignment due to the
elongated shape is less pronounced and hydrodynamic interactions
between the rods become more important.

B. Influence on hydrodynamic interactions
To investigate how the lower compressibility of the extended

MPCD method affects the hydrodynamic interactions between the
rods and ultimately their clustering, we choose a lower aspect ratio
of α = 2.5 and an area fraction of ϕ = 0.4 to reduce the effect of steric
interactions. Otherwise, we use the same system parameters as in
Sec. IV A and perform simulations with the two different MPCD
algorithms.

In the temporal evolution of both systems, small clusters form
due to direct collisions. However, only with the extended MPCD
method, they begin to form swarms that grow to a significant
size, while with the traditional MPCD method the collision clusters
remain small and dissolve rather quickly. The snapshots of Figs. 5(a)

and 5(b) as well as videos V1 and V2 illustrate this difference. To
quantify it, we identify individual rod clusters such that all spheri-
cal squirmers that are separated by a center-to-center distance less
than Δx < 1.02R belong to one cluster. The cluster sizeNc then is the
number of rods within a cluster determined by the ratio of squirmer
number in the cluster to squirmers per rod. Additionally, we define
the cluster velocity as the instantaneous average of rod velocities over
the cluster.

Figure 5(c) shows the mean cluster velocity ⟨vc⟩ relative to the
squirmer velocity v0, and Fig. 5(d) shows the probability density for
a rod to lie in a cluster with sizeNc. Note that the swimming speed of
single squirmer rods is ∼1.1v0.17 The difference between both meth-
ods is immediately visible. For small groupsN < 10, we observe sim-
ilar velocities vc ≈ 1.1v0 in Fig. 5(c) close to the value of a single rod
in the bulk fluid. These rods form a dilute background, which exists
equally in both systems, as the identical probability distributions of
cluster sizes with Nc < 10 in Fig. 5(d) show.

FIG. 5. Snapshots of simulations with (a) the traditional MPCD method and (b) the
extended MPCD method. Both snapshots show a typical cluster/swarm, which is
marked by a red circle. (c) Mean velocity of clusters with size Nc given in units of
the squirmer velocity v0 for squirmer rods with an aspect ratio of α = 2.5 at a dilute
area fraction of ϕ = 0.4. (d) Probability density for a squirmer rod to lie in a cluster
of size Nc . The system size is equal to Fig. 3 and also the systems used in Sec. V.
The results are obtained with the traditional MPCD-AT+A algorithm (blue) and the
extended MPCD algorithm (green).

J. Chem. Phys. 155, 134904 (2021); doi: 10.1063/5.0064558 155, 134904-6

© Author(s) 2021



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Large clusters also exist in both systems, but they behave differ-
ently. Visual inspection of video V1 shows that clusters in simula-
tions with traditionalMPCD are formed rather by collisions between
rods or other clusters and dissolve quickly. As a result, the mean
cluster velocity vc in Fig. 5(c) decreases drastically with the cluster
sizeNc. Furthermore, Fig. 5(d) shows that the clusters do not exceed
a size of roughly Nc = 200.

In contrast, the formation of stable swarms in simulations with
the extended MPCD method leads to the plateau value of the mean
cluster velocity at vc ≈ 0.6v0 for Nc > 30 [Fig. 5(c)]. In addition, the
distribution P(Nc) in Fig. 5(d) shows the existence of larger clusters.
Both results indicate that these swarms are more ordered compared
to the simulations with the traditional MPCD method. They accu-
mulate new members during the collective swimming so that the
polar order remains constant. Visual inspection of video V2 shows a
dynamic swarming behavior where swarms still merge and dissolve,
but overall they are more stable.

This is an interesting result because it shows that the extended
MPCD method with its lower compressibility stabilizes clusters
in the current system. Moreover, we conclude that the extended
method mediates hydrodynamic interactions better such that rods
align and form swarms.

V. COLLECTIVE DYNAMICS OF SQUIRMER RODS

We now present a thorough investigation of the collective
dynamics of squirmer rods varying aspect ratio α and 2D area frac-
tion ϕ. Overall, we observe four different dynamic states, which
we briefly describe here based on visual inspections before turn-
ing to a detailed analysis in Subsections V A and V B. The state
diagram together with exemplary snapshots is given in Fig. 6, and
videos V3–V6 in the supplementary material illustrate the differ-
ent dynamic states and correspond to the respective snapshots
[Figs. 6(b)–6(e)].

At small densities and also at larger densities below a critical
value of the aspect ratio, αmin ≈ 2, we observe a disordered state
with little variations in the local density. Thereby, we support the
conclusion of Ref. 21 that the low fluid compressibility reduces
clustering. Increasing α above 2 and also for sufficiently large den-
sity, swarms of squirmer rods form. They consist of clusters with
inherent polar order such that the squirmer rods move collectively
in one direction. However, as described already in Sec. IV B, the
swarms are dynamic, meaning that they are not stable in time but
frequently break apart and reform creating an interesting dynamics
reminiscent of dynamic clustering found for spherical active par-
ticles in the presence of a chemical field.92,93 Crossing the dashed
black line in the state diagram by increasing density and/or aspect
ratio further, the dynamic swarms merge into one large swarm,
which is stable in time. Depending on the individual history of
such a swarm, it can show either continuous translational or rota-
tional motion. Further increasing area fraction ϕ, the global swarms
grow bigger until they span over the whole system. In this situation,
the cluster is jammed, where all movements inside the cluster are
blocked and only some drift velocity of the whole cluster remains.
Our findings generally show parallels to the surface dynamics of
B. subtilis reported in Ref. 94. In particular, the dynamic swarms,
single swarm, and the jammed cluster are observed. For systems of

FIG. 6. (a) State diagram of squirmer rods of different aspect ratios α and at differ-
ent area fractions ϕ. Red circles: disordered system (b), green circles: dynamic
swarms (c), black stars: single moving swarm (d), and black squares: single
jammed or drifting cluster (e). [(b)–(e)] Snapshots of the respective states for the
points indicated in the state diagram.

elongated spheroidal squirmers, the disordered and single swarm
states have been reported as well.21

For a detailed quantitative analysis of these dynamic states, we
first study in Sec. V A the distribution of the local area fraction ϕloc as
well as the cluster size and velocity. To analyze the alignment of the
squirmer rods in the dilute and also cluster states, we use the spatial
orientational pair-correlation function in Sec. V B.

A. Distributions of local area fraction, cluster size,
and velocity

The observed swarms are clustered squirmer rods with addi-
tional polar order. Thus, to differentiate swarms from dilute regions
in the system and to characterize the different states, we determine
the distribution of local area fraction as well as cluster sizes and their
velocities. To assign each squirmer rod a local area fraction ϕloc, we
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use a Voronoi tessellation following our earlier work.14 The con-
cept is extended to the squirmer rods as follows and illustrated in
Fig. 7(b). First, the ordinary Voronoi tessellation is calculated for
all spherical squirmers. Here, periodic images are added around the
central simulation box to achieve correct results across the periodic
boundary conditions. Then, the Voronoi cells of the squirmers that
belong to the same rod form the Voronoi cell of the rod, which
are no longer convex polygons. Finally, the local area fraction fol-
lows from the ratio of the squirmer rod’s cross section and the area
of the Voronoi cell. In addition, we identify individual rod clusters
and determine their velocity as described in Sec. IV B. To calculate
the distribution of local area fractions P(ϕloc) and to identify clus-
ters, we use all snapshots of the system after an equilibration time of
teq = 10 × 106Δt in steps of 5 × 104Δt.

We now characterize the different dynamic states using
Fig. 7(a), where we plot the normalized distribution functions
P(ϕloc) for different global or mean area fractions ϕ, always for
squirmer rods with an aspect ratio of α = 3.25. In addition, Fig. 7(c)
shows individual clusters with their sizeNc and velocity vc so that for
each area fraction a dynamic state is represented by a cloud of points.
A dashed line is added for each area fraction ϕ, indicating the max-
imum possible cluster size equal to the total number of rods. Note
that the distribution in the velocity is naturally broader for small
clusters, which give rise to larger fluctuations.

Increasing ϕ from small to large values, we observe the follow-
ing characteristics. At ϕ = 0.1, the distribution P(ϕloc) is narrow and
strongly peaked at the global value, which indicates the absence of
pronounced clustering in the system. The distribution of cluster sizes
in Fig. 7(c) reflects this behavior indicating only small groups of col-
liding squirmer rods. This is where we locate the disordered state,
which is homogeneous in the local area fraction. At the larger area
fraction of ϕ = 0.2, P(ϕloc) shows the same trend but now the peak
at low ϕloc is broader and a pronounced tail toward higher values
of ϕloc is visible. Most of the system is still dilute, but small denser
clusters are present, as shown in Fig. 7(c). This indicates that we are
at the transition to the state of dynamic swarms. However, Fig. 7(c)
indicates that these clusters are still mainly caused by collisions and
not by longer lasting swarms with intrinsic rod alignment because
their velocities are low.

At ϕ = 0.4, we are right in the subsequent state of dynamic
swarms. Here, the distribution P(ϕloc) becomes very broad and, in
particular, bimodal. The bimodal distribution of area fractions has
also been found for swarming B. Subtilis.94 This signature is caused
by parts of the system forming a dilute disordered background, while
also dense dynamic swarms are visible. Their preferred area frac-
tion indicated by the right peak of P(ϕloc) is close to the maximum
ϕloc = 1. Thus, the clusters in the swarms are compact. Note that
the peak for the dilute disordered background becomes more pro-
nounced when decreasing the global area fraction and/or the aspect
ratio toward the disordered state. The very broad distribution of
cluster sizes and velocities in Fig. 7(c) also reflects this dynamic state
of swarms. However, the size of the clusters always remains well
below the total number of squirmer rods.

At the global aspect ratio of ϕ = 0.6, we are in the state where
the squirmer rods form a single moving swarm. Here, the distribu-
tion P(ϕloc) only shows one peak close to ϕloc ≈ 1 and the dilute
background is nearly absent. The distribution of cluster sizes in

FIG. 7. (a) Distribution of local area fraction P(ϕloc) obtained from the Voronoi
tessellation of the configurations of squirmer rods with an aspect ratio of α = 3.25
at different global area fractions ϕ. (b) Demonstration of a Voronoi tessellation for
squirmer rods with α = 3.25 and at ϕ = 0.4. The black dots mark the positions of
the spherical squirmers, and the green circles mark their cross sections. Note that
because always ten squirmers lie on a line, each squirmer rod creates nine parallel
lines in the Voronoi diagram. (c) Cluster velocity vc in units of the squirmer velocity
v0 plotted against the cluster size Nc . Each point represents a cluster determined
from the snapshots. The colored dashed lines mark the total number of rods for
the given area fraction ϕ. The black symbols ⊗ indicate the mean cluster velocity
for clusters with size Nc > 50, which is chosen arbitrarily to exclude small collision
groups.
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Fig. 7(c) is narrow, meaning that this cluster is highly stable and
its size almost reaches the total number of rods in the system. The
jammed cluster at the highest aspect ratio ϕ = 0.77 shows almost the
same trend. However, the maximum of P(ϕloc) slightly moved to
the left and the distribution is broader compared to ϕ = 0.6. This is
in agreement with visual inspections, which show that the jammed
clusters are less dense. When they form, the density is so high that
they cannot all align properly as in the swarms, which we will con-
firm in Sec. V B. As shown in Fig. 7(c), the size of the cluster now
reaches the total number of squirmer rods and the velocity of the
jammed cluster is significantly smaller compared to the single swarm
state.

For squirmer rods with other aspect ratios α, we observe the
same behavior, with differences only in the quantitative descrip-
tion. At smaller aspect ratios α < 3.25, the distributions P(ϕloc) are
broader and the bimodality in the swarming state is less pronounced.
For higher aspect ratios α > 3.25, the trend is inverted and also the
peaks of P(ϕloc) are more pronounced. Equally, the distribution of
cluster sizes becomes more compact. This is a clear consequence of
the fact that the rods tend to align better at larger aspect ratios α,
which stabilizes the swarms.

B. Orientational correlations
As a second measure to characterize the different states of our

system, we use the orientational pair-correlation function ⟨êi ⋅ êj⟩,
where êi and êj are the orientation vectors of two squirmer rods with
a distance Δx. It helps us to distinguish the different swarming and
jamming states by quantifying the degree of alignment in the clus-
ters. Figure 8(a) presents the orientational pair-correlation function
for different global area fractions for squirmer rods with an aspect
ratio of α = 3.25. The plot uses the same parameters as Figs. 7(a) and
7(c) in Sec. V A and supplements the results reported there.

For dilute rod suspensions with an area fraction of ϕ = 0.1, we
observe that the squirmer rods are indeed disordered. Although the
orientational pair correlations have a pronounced peak at the side-
by-side contact distance of two squirmer rods, they quickly decay to
almost zero at two rod lengths. The strong correlations at a short
distance make sense since the squirmer rods collide with each other
even in the disordered state. Because of their active movement,
pairs of squirmer rods are more likely to approach and collide if
their swimming directions are already nearly aligned to each other.
Moreover, a side-by-side configuration is more persistent, which
causes the first peak with ⟨êi ⋅ êj⟩ ≈ 1. At Δx = lS, we observe a sec-
ond smaller peak in the orientational pair correlations, which is due
to two squirmer rods swimming behind each other. This configu-
ration persists for longer times than a head on collision, and there-
fore, the correlation function is positive. At ϕ = 0.2, we are close to
the dynamic-swarm state. Still, the pair correlations are similar to
ϕ = 0.1, but overall they are increased. While the height of the first
peak is almost the same, in particular, the second peak is more pro-
nounced. This indicates the presence of small clusters with squirmer
rods swimming side by side and also behind each other.

At ϕ = 0.4, the orientational pair-correlations clearly change.
They are of longer range, and the system is in the dynamic-swarm
state. For example, the correlation only decays slowly to ⟨êi ⋅ êj⟩≈ 0.25 at 4lS. The peak at Δx = lS for two squirmer rods swim-
ming behind each other increases, and a careful inspection of the

FIG. 8. (a) Orientational pair-correlation function ⟨êi ⋅ êj⟩ of two squirmer rods
plotted vs their distance Δx for different global area fractions ϕ. (b) Results of
simulation runs with different initial conditions at ϕ = 0.6 and α = 3.25.

curve also shows an additional peak at Δx = 0.62, twice the side-by-
side distance. This agrees with visual inspections, which show that
squirmer rods tend to swim in successive rows within a swarm. Fur-
thermore, the very weak peaks at 2lS and 3lS agree with the approx-
imate extension of RS ≈ 3lS of the dynamic swarms. Note that the
alignment is not perfect within clusters, and hence, the correlation
reduces with increasing distance.

For the higher area fraction ϕ = 0.6, the squirmer rods now
form a single big swarm. Here, we see a further increase in the
strength and range of the orientational correlations. Interestingly,
Fig. 8(b) shows that the shape of the correlation function depends on
the initial conditions. As described in Sec. II C, for ϕ ≥ 0.6, we only
change the orientation randomly along one direction. As a result,
in each simulation run, the cluster assumes a different shape and
behaves differently. In particular, in the first simulation run the clus-
ter of squirmer rods rotates rather than performing a straightmotion
as observed in simulation run 2. Thus, the rods at opposite sides of
the cluster are anti-parallel to each other, causing the negative corre-
lations ⟨êi ⋅ êj⟩ at distances Δx > 6lS. In simulation runs 3 and 4, the
configuration of the cluster creates both straightmotion and rotation
so that it moves on a circle. Thus, the orientational pair-correlation
function has an intermediate characteristic.

Increasing the area fraction further to ϕ = 0.77, the cluster is
jammed. Compared to the swarming cluster, the orientational corre-
lations are weaker and of shorter range. This indicates that both local
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and global alignments are reduced and swarming does not occur.
The system is too dense to allow alignment during swimming, which
initiated the swarm formation at lower densities. For α = 3.25, the
jammed cluster is not entirely stable and can partially break up and
reform again, as observed by visual inspection. As a result, the orien-
tational correlation function looks quite similar to that for the swarm
state at ϕ = 0.4. For the larger aspect ratios α = 4.0 and α = 4.75, the
jammed cluster is entirely stable and the orientational correlation
function decays to zero at even shorter distances.

For aspect ratios different from α = 3.25, the results are qualita-
tively similar. For smaller aspect ratios, the orientational correlations
are expectably lower and decay faster than for higher aspect ratios.
For α > 3.25, the orientational correlations are stronger at short dis-
tances Δx < 2lS, especially in the dynamic-swarm state. However, in
the single-swarm state, the squirmer rods cannot align as much as
before, which results in lower cluster velocities.

VI. CONCLUSIONS AND OUTLOOK

In this article, we have tested the extended MPCD method
introduced in our previous article82 against known cases and also
used it to explore the collective dynamics of squirmer rods. As we
have demonstrated in Sec. III, the extended MPCD method accu-
rately solves the Navier–Stokes equations in the Stokes limit. In
particular, the hydrodynamic multipoles that occur due to the pre-
scribed surface flow field of the pusher-type squirmer are correctly
represented in the simulated velocity field. In both, the bulk fluid
andHele-Shaw geometry, the hydrodynamic source dipole and force
dipole decay with the correct power law. In the simulations of the
bulk fluid, we could also identify the source quadrupole, which
becomes noticeable close to the squirmer.

Due to the non-linear equation-of-state, the MPCD fluid of the
extended method is less compressible and, therefore, the density,
viscosity, and pressure are significantly more uniform compared to
traditional MPCD methods. Small variations in the fluid density
remain since also in the extended model the fluid density encodes
fluid pressure. Nevertheless, squirmer rods with a high aspect ratio
α = 4 show very similar clustering in both methods, which suggests
that steric interactions due to the strongly elongated shape are dom-
inant. To reduce the tendency to align and thereby increase the
influence of hydrodynamic interactions, we lowered the aspect ratio
to α = 2.5. Interestingly, the observed swarming of dynamic clus-
ters is more pronounced with the extended MPCD method. They
have higher polar order, are more stable, and form larger clusters.
Our understanding is that in a less compressible fluid where the
fluid density is not reduced between nearby rods as in the tradi-
tional MPCD, the hydrodynamic flow reduces the occurrence of
hard collisions, and thereby, the rods have the possibility to better
align along each other. This favors the formation of swarms due to
the prolonged duration of polar encounters.

Finally, we systematically investigated the collective dyna-
mics of squirmer rods and found four different dynamic states with
increasing aspect ratio α and area fraction ϕ, namely, a disordered
state, dynamic swarms, a single swarm, and a jammed cluster. Sim-
ilar states are identified for B. Subtilis in the experiments of Ref. 94.
The disordered state and a global swarm also exist for spheroidal
squirmers.21 To characterize the dynamic states quantitatively, we

determined the distribution of local area fraction P(ϕloc) as a mea-
sure for the degree of clustering in the system. Additionally, we iden-
tified clusters of squirmer rods and determined theirmean velocities,
while the intrinsic structure of the swarms was analyzed with the
orientational pair-correlation function.

For low density ϕ and aspect ratio α, we observe a disordered
state with homogeneous density in which squirmer rods only inter-
act during frequent collisions. Above a critical value of α ≈ 2 and at
larger densities, the squirmer rods form dynamic swarms, where the
system clearly separates into a dilute background and very dynamic
polar clusters with a broad size distribution. When the density is
increased further, the dynamic swarms turn into a single stable
swarm. The dilute background of squirmer rods disappears, and the
swarm keeps a high polarization. Depending on the initial condition,
the swarm can exhibit directed motion, rotation, or a combination
of both, which results in a circular trajectory. At the highest density
ϕ = 0.77 in our simulations, the system is so crowded that the forma-
tion of highly ordered swarms is inhibited. The rod cluster becomes
jammed and moves with a significantly lower velocity compared to
the swarms. Our findings show similarities with previous studies64–67
of dry active rods with different penetrability. In particular, the dis-
ordered and also motile cluster or swarming state is found in all
systems. These states appear to originate from the rod shape and fre-
quent collisions rather than the particular details of the steric inter-
actions. Additionally, Refs. 64–67 found states of giant clusters of
different nature. If particles cannot cross each other, also immobile
giant clusters are observed.65,67 In contrast, the giant clusters in our
study are more polar and therefore more motile, which we attribute
to the hydrodynamic interactions present in our work. In the case
when rods are allowed to cross each other, the tendency to jam is
reduced.66 However, the mechanism for forming giant clusters is
now different. Reference 65 adds an interesting study of hydrody-
namically interacting flagella of pusher type. Thus, their collective
dynamics is less comparable to our system.

In future investigations, we plan to extend our study to the
collective dynamics of pusher- and puller-type squirmer rods as
introduced in Ref. 17. In addition, it is straightforward to extend
the squirmer-rod model to active flexible filaments by adding bend-
ing rigidity. This will provide valuable insights how hydrodynamic
interactions influence the collective dynamics of active filaments and
bridge between dry models33,95 and models with implicit hydrody-
namic interactions,96,97 on the one hand, and continuum descrip-
tions,98,99 on the other hand. Clearly, the extended MPCD method
will prove beneficial for simulations of dense suspensions of active
filaments by providing a less compressible fluid environment in the
regime of vanishing Reynolds numbers.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional video files
V1–V6, which show the dynamic evolution of the systems shown
in Figs. 5(a), 5(b), and 6(b)–6(e), in the order of their occurrence.
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Emergent collective dynamics of pusher and
puller squirmer rods: swarming, clustering,
and turbulence†

Arne W. Zantop * and Holger Stark *

We study the interplay of steric and hydrodynamic interactions in suspensions of elongated micro-

swimmers by simulating the full hydrodynamics of squirmer rods in the quasi two-dimensional geometry

of a Hele-Shaw cell. To create pusher or puller-type squirmer rods, we concentrate the surface

slip-velocity field more to the back or to the front of the rod and thereby are able to tune the rod’s

force-dipole strength. We study a wide range of aspect ratios and area fractions and provide

corresponding state diagrams. The flow field of pusher-type squirmer rods destabilizes ordered

structures and favors the disordered state at small area fractions and aspect ratios. Only when steric

interactions become relevant, we observe a turbulent and dynamic cluster state, while for large aspect

ratios a single swarm and jammed cluster occurs. The power spectrum of the turbulent state shows two

distinct energy cascades at small and large wave numbers with power-law scaling and non-universal

exponents. Pullers show a strong tendency to form swarms instead of the disordered state found for

neutral and pusher rods. At large area fractions a dynamic cluster is observed and at larger aspect ratio a

single swarm or jammed cluster occurs.

1 Introduction

Microscopic unicellular organisms make up a major fraction of
all life forms on our planet. They are involved in important
natural processes such as photosynthesis1–3 or industrial pro-
cesses such as the production of enzymes4,5 or biofuels,6–8 or
the recycling of wastewater.9,10 Especially in photosynthesis,
commonly viewed as the basis of life, unicellular phytoplankton
accomplish about half of the worldwide natural turnover.2,3

However, still many aspects of the behavior of unicellular
organisms is not completely understood. In fact, many of these
life forms are self-propelling microswimmers,11–13 as, for exam-
ple, the algae C. reinhardtii14,15 or the bacterium E. coli.16–18

From the perspective of physicists, their active motion gives rise
to very interesting new collective phenomena. In this article we
study the rich emergent collective dynamics of rod-shaped
model microswimmers, which we can tune between the pusher
and puller type.

Active motion is always performed in non-equilibrium and,
therefore, gives rise to new and interesting phenomena. For
example, specially designed boundaries can rectify the random
motion of active particles,19–23 or under gravity active particles
develop polar order and even show inverted sedimentation
profiles when they are bottom-heavy.24,25 In addition, micro-
swimmer suspensions are subject to long-range hydrodynamic
interactions with characteristic power-law decay.13,26,27 But also
short-range steric interactions play an important role, in parti-
cular, for elongated particles, which align along each other.12

The combination of these interactions gives rise to numerous
interesting dynamic patterns. Common examples are the for-
mation of swarms or flocks,28–32 convection rolls and plumes,25

fluid pumps,33,34 vortices,35–38 active nematic patterns,39–41 and
the emergence of the so-called active turbulence,42,43 termed in
analogy to classical inertial turbulence.44,45 However, contrary to
classical turbulence, where fluid flow is driven on themacroscopic
scale, active turbulence is generated at the microscopic scale of
the self-propelled particles and then energy is dissipated on larger
scales. This mechanism causes a characteristic length scale for
the formation of vortices and patterns, which is in contrast to
the scale invariance of classical turbulence.46–48 In particular, the
specific model parameters now determine the scaling of the
velocity power spectrum, which is no longer universal.48–50 Active
turbulence is found for microswimmers,51,52 active bio-filaments,
which exist in the cytoplasm,39,53 and in growing tissue.54,55
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On the theoretical side, the dynamics of active particles has
been investigated at different levels of description. While the
celebrated Vicsek model56–58 uses coarse-grained alignment
rules, also models with explicit steric interactions exist.42,51,59–64

These models have also been generalized to active filaments31,65,66

and models, which implicitly include hydrodynamic inter-
actions.67,68 Models, which directly simulate fluid flow and
thereby explicitly include hydrodynamic interactions, use the
method of multi-particle collision dynamics (MPCD)25,30,32,69–79

or the lattice-Boltzmann method.80–83 Continuum models
combine elements of the Toner-Tu84 and Swift-Hohenberg85

equations to generate hydrodynamic equations for active
suspensions.46,86,87 Microswimmers are also distinguished by
their swimming mechanisms and the flow field, they generate
in the surrounding fluid.11,13 While some microorganisms
propel with cilia located all over their surface, common bacteria
and algae propel with flagella that extent from the front or back
of the cell body. In the first case, the flow field of a source
dipole is realized, which decays as r�3, while bacteria and algae
are termed pusher or puller-type swimmers that generate a
long-range force-dipole flow field, which decays as r�2.13,27 The
specific form of these hydrodynamic multipole flow fields deter-
mines the collective dynamics of the microswimmers.32,69,74,88–90

In this context, we proposed in ref. 76 the squirmer rod as
a realistic microscopic model for elongated microswimmers.
It consists of overlapping squirmers and thereby extends the
well-known spherical squirmer model for ciliary propulsion26,91

and its implementation in MPCD.92 Restricting the surface slip-
velocity to the front or the back of the squirmer rod, puller and
pusher-type squirmer rods can be realized, respectively. The
hydrodynamic flow field is simulated using an efficient imple-
mentation of MPCD with a reduced compressibility such that
also collective dynamics in large and dense systems can be
studied.93 Most recently, we presented the state diagram of
neutral squirmer rods and identified with increasing area
fraction and depending on the aspect ratio of the rods the
disordered state, dynamic swarms, a single swarm, and ultimately
a jammed cluster.94

In this article we generalize the squirmer-rod model to
pushers and pullers with tunable force-dipole strength in the
flow field. Compared to spheroidal squirmers it has the advan-
tage that it better approximates real rodlike microswimmers
such as E. coli. Using this model, we provide a comprehensive
study of the state diagram for hydrodynamically interacting
microswimmers over a wide range of aspect ratios, densities,
and force-dipole strengths as the state diagrams in Fig. 3(a),
7(a) and 9(a) show. Hereby, we go well beyond previous works,
which focused mainly on more dilute systems95,96 or a single
aspect ratio.97 Thus, our work provides an overall view how
hydrodynamics and shape determine the dynamic states of
microswimmers. For example, our particle-based model nicely
illustrates that the active turbulent state occurs as a compro-
mise between the disordering hydrodynamic pusher–pusher
interactions and aligning steric interactions. We also demon-
strate that the two distinct energy cascades at low and large
wave numbers in the power spectral density of velocity

fluctuations exhibits non-universal exponents. Moreover, we
find a dynamic cluster state at large densities. Besides this
state all other states are also found in dry active rods.98 But, in
our case, they have a specific contribution from hydrodynamics
as, for example, the turbulent and swarming states show. The
overall appearance of the states in our state diagrams can be
summarized as follows. For pushers we observe that the swarm-
ing states of neutral squirmer rods are destabilized. Instead, for
smaller aspect ratio between the disordered and dynamic
cluster state, we observe the turbulent state as already men-
tioned. At high aspect ratios, where steric interactions become
more relevant, we recover the single swarm and jammed cluster
state of neutral squirmer rods. For pullers, hydrodynamic
interactions stabilize the swarming state even for our smallest
area fraction. Thus, compared to neutral squirmer rods, states
are shifted towards lower densities. Variation of the force-dipole
strength at constant aspect ratio supports all these findings.

The article is organized as follows. In Section 2 we give a
brief overview of the methods used in this paper. Section 3
provides a detailed study of the different dynamic states of the
squirmer rods as a function of their area fraction, aspect ratio,
and force-dipole strength. We end with a summary and con-
clusions in Section 4.

2 System and methods

We first introduce the squirmer-rod model and then summarize
some details of the method of multi-particle collision dynamics,
which we use to simulate the flow fields generated by the
squirmer rods.

2.1 Model of the squirmer rod

To model shape-anisotropic microswimmers, we employ the
squirmer rod model as introduced in our previous work.76

Squirmer rods consist of Nsq overlapping spherical squirmers
of radius Rsq, arranged on a line to form a single rigid body [see
Fig. 1(a)]. By varying the distance d between neighboring
squirmers, we can tune the aspect ratio of the squirmer rod,
a = lS/2R, where lS is the rod length. However, we do not exceed
a distance of d E 0.8R so that the surface of the rod is
sufficiently smooth. With a number of Nsq = 10 squirmers in
this work, this amounts to a maximum aspect ratio of a E 5,
which closely resembles the aspect ratio of bacteria such as
E. coli or B. subtilis.

The squirmer rods propel through the axisymmetric and
tangential slip velocity field at the surface of individual sphe-
rical squirmers,

vs = Bs1[(ê�x̂s)x̂s � ê], (1)

which is imposed on the surrounding fluid.26,92 Here, ê is the
rod axis and x̂s the unit vector pointing from the center of a
squirmer to a point on the squirmer surface. This generates a
source-dipole flow field, which is a higher-order singular
solution of the Stokes equations Zr2v = rp together with the
incompressibility condition r�v = 0, that govern fluid flow at
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the microscale. Here, v and p are the respective fluid velocity
and pressure fields, and Z is the dynamic shear viscosity. The
strength Bs1 controls the swimming velocity v0 = 2/3Bs1 of the
spherical squirmer and hence of the squirmer rod. In ref. 76
we showed that the swimming velocity of the squirmer rods
v E 1.2v0 slightly exceeds the velocity of a single spherical
squirmer. Additionally, the velocity of the rods varies by 10% in
the range of aspect ratios used in this article. Although the
increased velocity at the larger aspect ratios might augment
clustering, we assume the effect to be negligible.

As described so far, the surface slip velocity of the squirmer
rod resembles ciliated microorganisms such as Paramecium.
In this realization, the profile of the slip velocity generates a
flow field in the surrounding fluid, the far field of which can be
described by a source dipole and an additional force quadru-
pole singularity, which both decay with |usd|, |ufq| B r�3, as we
show in ref. 76.

However, other prominent microswimmers such as E. coli
bacteria or Chlamydomonas algae propel by rotating or beating
flagella that extent from the back or the front of their bodies,
respectively. These modes of propulsion create a pair of oppos-
ing forces that generate the more long-ranged force-dipole flow
field |ufd|B r�2. To generalise the squirmer rod model to these
pusher and puller-type microswimmers, we concentrate the
surface slip velocity either to the back or the front of the
squirmer rod [see Fig. 1(a)]. This is done by multiplying

the surface flow field with the envelope function

f ðx�s � ê; wÞ ¼ 1þ w tanhð10x�s � ê=lSÞ; (2)

where x�s points from the rod center to a location on the rod
surface. The parameter w A [�1, 1] determines the swimmer
type and force-dipole strength, such that for w o 0 a pusher-
type swimmer is realised and likewise a puller-type swimmer
for w 4 0. For either w = �1 or w = 1 this modification leads to a
completely passive half of the rods [see Fig. 1(a)], while for
intermediate values the relative contributions of the source
dipole and force dipole to the flow field vary. For w = 0, the
model again resembles the neutral squirmer rod.

In the present work, we consider the collective dynamics of
squirmer rods confined between two parallel walls. In this
so-called Hele-Shaw cell the radial decays of hydrodynamic
multipoles are modified compared to the bulk fluid, such that
the confined source dipole and force dipole decay as |ũsd| B r�2

and |ũfd|B r�3, respectively, where r is the polar distance76,99 (see
appendix of ref. 99). As a consequence, the source dipole has the
longest range in the flow field and ultimately dominates the far
field. However, already in our previous work we realized that a
distance of Dz = 6R between the walls, which we will use in our
simulations, alters the relative strength of the source and force
dipoles.76 As a consequence, the force dipole dominates the flow
field at short and medium distance as we will demonstrate in
Section 3.2.

2.2 Method of multi-particle collision dynamics

To model the fluid flow in our simulations, we employ the
meso-scale simulation technique of multi-particle collision
dynamics (MPCD).100–102 The MPCD method is particularly
suited for solving the Navier–Stokes equations at the micro-
scale, because it includes thermal fluctuations and is straight-
forward to implement boundary conditions for complex
geometries.

The MPCD method uses a sequence of streaming and
collision steps of the point-like fluid particles. In the streaming
step the fluid particles move ballistically with their velocities
during time step Dt. Then, the simulation box is divided into
cubic cells with edge length a0 and the velocities of the fluid
particles in one cell are modified randomly but keeping the
mean velocity or linear momentum fixed. In this work, we use a
collision rule optimized to achieve a low compressibility of the
fluid.93 As in other MPCD methods, it includes angular
momentum conservation and a thermostat. By choosing the
MPCD fluid density n0 = 20/a0

3, i.e., on average 20 fluid particles

per cell, and the time step Dt ¼ 0:005a0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=kBT0

p
, we obtain a

fluid viscosity of Z ¼ 16:05
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0kBT0

p
=a0

2, which is comparable
to previous work.74,76,96 Here, m0 is the mass of one fluid
particle.

The immersed squirmer rods are modeled with the mass
density of the fluid r0 = m0n0. The radius of the constituting
squirmers is chosen as Rsq = 3a0 and the strength of the surface slip
velocity as Bs1 = 0.1, which results in a Péclet number of PeE 350.94

Steric repulsion is realized with a Weeks–Chandler–Andersen

Fig. 1 (a) Sketch of the surface slip velocity of three squirmer rods with
respective swimmer-type parameters w = �1, 0, and 1 (from left to right).
The arrows within the squirmer rods indicate the swimming direction ê.
The parameter w A {�1, 1} can be used to smoothly vary the type of the
squirmer rod from pusher to neutral to puller. (b) Force-dipole coefficient
A2(w) (blue) and active velocity v(w)/v(0) (red) as a function of the swimmer
parameter w. (c) Schematic state diagram for neutral squirmer rods adapted
from ref. 94.
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potential103 that acts between two squirmers of different rods.
To ensure that there is no significant overlap between two
squirmer rods, we choose a strong force constant eWCA E 104kBT.

The squirmer rods move because they acquire momentum
from the surrounding fluid. In the MPCD streaming step, linear
and angular momentum is transferred to the squirmer rod by
collisions with the fluid particles. We achieve this by applying
the so-called bounce back rule, which we also modify accord-
ingly to implement the slip velocity in eqn (1) on the surface of
the squirmer rods.100,101 Squirmer rods also contain so-called
‘‘ghost’’ particles, which improve the implementation of no-slip
boundary conditions.101 During the MPCD collision step, they
exchange momentum with the fluid, which is ascribed to the
squirmer rod. Lastly, the equations of motion for the squirmer
rods are integrated with a refined time step of dtMD = Dt/3
using a symplectic splitting algorithm for rigid body molecular
dynamics.104

For our simulations we use two different geometries.
To determine how the force dipole strength A2 depends on
the swimmer-type parameter w, we use a cubic box of linear size
L = 100a0 with periodic boundary conditions along all spatial
directions. In this case we use the time 104Dt to equilibrate the
MPCD fluid flow fields and then average the fluctuating flow
fields over additional 5 � 105Dt time steps during simulations.

To simulate the collective dynamics of the squirmer rods, we
consider the quasi two-dimensional geometry of a Hele-Shaw
cell of linear size L = 300a0 in the x and y direction. Along the
z direction the system is confined by walls separated by a
distance Dz = 6R to mimic the experimental setups using
microfluidic chambers51,105 or liquid–oil interfaces.106,107 It has
also been used in previous work.94,97 Additionally, this realization
guarantees a strong contribution of the force-dipole interaction
in the near field, as we will show in Section 3.2 and Fig. 2. In the
x and y direction periodic boundary conditions are employed.
In this geometry, the N squirmer rods are confined to only
move in the midplane of the Hele-Shaw cell by a strong
harmonic potential. The rods’ initial positions are generated
randomly for area fractions f = NAsw/L

2 o 0.6, where Asw is the
two-dimensional cross section of one squirmer rod. For fZ 0.6

squirmer rods are placed on a rectangular lattice, all with a
randomly chosen orientation either parallel or anti-parallel to
one of the major axis of the unit cell. We simulate for a time of
107Dt while saving snapshots every 2500Dt for further analysis.
To ensure that the system is equilibrated, we omit the first
100 snapshots from the analysis.

To improve statistics in the study of the emergent turbulent
patterns of pusher-type squirmer rods, we perform two addi-
tional simulation runs for all turbulent states and their neigh-
boring points in the (a, f) parameter space. Furthermore, for all
these cases we also perform three simulation runs with an
increased system size of L = 600a0 to investigate finite-size effects.

3 Results

In the following we report on our simulation results. First, we
show that the anisotropy parameter w of the surface slip-velocity
field is directly proportional to the strength of the hydro-
dynamic force-dipole field and we illustrate the flow field of a
single pusher-type squirmer rod in the Hele-Shaw cell. Then, we
thoroughly discuss the state diagrams of the strongest pusher
rod (w = �1) and the strongest puller rod (w = 1) depending on
aspect ratio a and area fraction f. We describe the different
states using the velocity pair-correlation function, the power
spectral density of the velocity fluctuations, and the orienta-
tional autocorrelation function. Finally, for a specific aspect
ratio a, we show the state diagram in the space of w versus f.

3.1 Variation of the swimmer-type parameter v

To extract the force-dipole coefficient A2 from the flow field of
the squirmer rod in the 3D bulk fluid, we follow the method
described in detail in our previous article ref. 76. To do so, we
consider the expansion of an axisymmetric flow field into a
series of hydrodynamic multipoles u(r) = uFD(r) + uSD(r) +
uFQ(r) +. . ., where the leading-order multipoles are the force
dipole, source dipole, and force quadrupole, respectively. The

radial velocity component with the general form urðr; yÞ ¼

P1
n¼1

Anr
�n þ Bnr

�n�2
� �

Pnðcos yÞ is measured from the simula-

tions and then projected on the second Legendre polynomial

P2(cosy). From the resulting polynomial
5

2

Ð p
0urðr; yÞP2ðcos yÞ

sin ydy ¼ A2r
�2 þ B2r

�4, we determine the force-dipole
coefficient A2 by a polynomial fit in r�1.

Indeed, we find a linear relation of the swimmer-type para-
meter w and the force-dipole coefficient w B A2 [Fig. 1(b)]. This
is expected since the terminal values of the envelope function
f (x) in eqn (2), which determine the strength of the force
dipole, are linear in w. Furthermore, we find that due to the
definition of the envelope function with h f (x)i = 1, the swim-
ming velocity is nearly independent of w [cf. Fig. 1(b), red curve].

3.2 Force-dipole flow fields in the Hele-Shaw geometry

As already explained, our study of the collective dynamics of the
squirmer rods is performed in a Hele-Shaw cell, which alters

Fig. 2 Hydrodynamic flow field around a pusher-type squirmer rod
(w = �1.0) swimming in the Hele-Shaw geometry with cell height Dz = 6R.
(a) Flow field in the mid plane of the Hele-Shaw cell. The force dipole clearly
dominates the near field. (b) Radial components ũr,n(r) of the leading source-
dipole (blue) and force-dipole (red) flow fields. They are normalized by the
thermal velocity of fluid particles, vth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m0

p
.
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the radial decay of the multipole far fields but also their
strengths depends on the cell height Dz.76,99 Thus, the multi-
pole expansion for the radial component of the flow field

becomes ~urðr;jÞ ¼
P1
n¼1

ðAn þBnÞr�ðnþ1Þ cosðnjÞ for a micro-

swimmer oriented along the x-axis.76 Force multipoles dissipate
momentum at the bounding walls, which increases for smaller
Dz, i.e., when they are closer to the walls.99,108 In our notation
this means that the coefficient of the force dipole in the
Hele-Shaw cell scales as A2 B A2Dz with respect to the bulk
coefficient A2. In contrast, the fluid mass flux initiated by a
point source in the Hele-Shaw geometry is distributed in a
volume that is proportional to the cell height Dz. Hence, the
coefficient of the source dipole, as all the other source multi-
poles, scales as B2 B B2/Dz.

76,99

Fig. 2(a) shows the flow field of a pusher-type squirmer rod
(w = �1.0, a = 3.25) swimming in Hele-Shaw geometry with wall
distance Dz = 6R. The force-dipole field visibly dominates the
flow field with its characteristic outwards directed streamlines
along the rod and inwards directed streamlines at the side.
From the simulated flow field, we extracted the radial parts
of different hydrodynamic multipoles ũr,n(r) following our
previous work,76 and arrived at the curves shown in Fig. 2(b).
The radial part of the force dipole Br�3 (red symbols) domi-
nates the flow field up to a distance of circa 8lS, where it is
exceeded by the more long-ranged field of the source dipole
Br�2 (blue symbols). For smaller cell heights Dz, this crossover
occurs at smaller distances. Since we are interested in exploring
the effect of the hydrodynamic force dipole, we keep Dz = 6R for
the rest of this work, such that the force dipole dominates the
flow field close to the squirmer rod.

3.3 Pushers-type squirmer rods

3.3.1 State diagram. For the minimum dipole strength
w = �1, i.e., the pusher-type squirmer rods with the largest
force dipole, we study the collective dynamical states as a
function of the aspect ratio a and area fraction f. A comparison
between the state diagrams of neutral squirmer rods [cf. Fig. 1(c)]
and pusher rods [cf. Fig. 3(a)] already illustrates the strong
influence of the long-ranged hydrodynamic dipole–dipole inter-
actions. Compared to neutral squirmer rods the transition line
from the disordered to other states is shifted to larger area
fractions and new dynamic states arise such as active turbulence
and dynamic clustering. We provide an overview of the observed
dynamic states before presenting a more quantitative analysis in
Section 3.3.2.

Most interestingly, compared to neutral squirmer rods the
flow field of the pusher rod obviously suppresses the formation
of dynamic swarms and impedes the single swarm state, which
only occurs for large aZ 4.0. This is in agreement with findings
of Saintillan and Shelley,88 who employ slender-body theory to
show that polar and nematic order in systems of elongated
pusher microswimmers is destroyed by their hydrodynamic
flow fields. Likewise, explicit hydrodynamic simulations of
collective dynamics of spherical squirmers show that pushers

create disordered homogeneous systems,13,109 while pullers
show swarming.109 An argument for this difference in the
collective dynamic behavior is found in both implicit90 and
explicit71 hydrodynamic simulations, which show that pushers
are deflected during collision, while pullers align.

Instead of the suppressed swarming states for a r 3.25,
we find a very dynamic or turbulent state. A typical snapshot of
a rod configuration is shown in Fig. 4(a), a video is provided
in the Video 1 (ESI†). Here, the hydrodynamic dipole–dipole
interactions compete with steric interactions that favor the
formation of single swarms at large area fraction f in the case
of neutral rods.94 Towards lower f the turbulent state transi-
tions to the disordered state and towards higher aspect ratio a
to cluster or swarm states.

Similar to other examples of active turbulence in theory and
experiments,47,49–51,97 we find two cascades in the power spec-
tral density of the squirmer velocities, as we will show in detail
in Section 3.3.2. For the turbulent state at a = 3.25 and f = 0.6
we construct a continuous velocity field v(x, y) to visualize the
turbulent flow pattern and its vortices. A snapshot of the system
and the resulting flow field are shown in Fig. 4(a) and (b),
respectively. We also calculate the vorticity o = (r � v)z, which
is shown in Fig. 4(c). To easily obey the periodic boundary
conditions, the vorticity was determined via a Fourier trans-
formation. In all turbulent states, we observe that squirmer
rods show a local alignment, which extends over short streaks,
where squirmer rods swim side by side and head to tail.
However, these streaks buckle and dissolve frequently, leaving
a chaotic pattern of streaks and vortices.

Fig. 3 (a) State diagram of the strongest pusher-type squirmer rods with
w = �1 in the parameter space aspect ratio a versus area fraction f.
(b) Snapshot of a single swarm state at a = 4.75 and f = 0.6, (c) snapshot of
a dynamic cluster state at a = 4.0 and f = 0.7 as indicated in the state
diagram. The color of the individual squirmer rods encode their orientation
êi in the xy-plane.
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For large aspect ratio a Z 4.0 we still find the single swarm
state [Fig. 3(b) and Video 2, ESI†], where a stable cluster moves
through the system, and also a jammed cluster state. Since they
are also found for neutral squirmer rods,76 we deduce that they
mainly arise from steric interactions. Indeed, they are also
found for dry active rods.98 For aspect ratios below a o 4.75
and large area fractions clusters still form, but they deform
dynamically while squirmer rods join or leave constantly
[Fig. 3(c) and Video 3, ESI†]. However, the power spectral
densities of this dynamic cluster state lacks the characteristic
scaling behavior of the turbulent state, as we will show in
Section 3.3.2. The absence of two power-law regimes (energy
cascades) in the power spectra separated by a maximum, which
defines a characteristic length scale, is our main criterion to
distinguish the dynamic cluster state from the turbulent state.
Hence, this state is intermediate between the jammed cluster
and turbulent state. In the jammed cluster state observed for
a = 4.75 and f = 0.77 the average swimmer velocity is low,
hvi�êii E 0.18v0, and rises to hvi�êii E 0.4v0 for the aspect ratio
a r 4 in the dynamic cluster state.

As already mentioned, the disordered state extends to higher
densities compared to neutral squirmer rods. Here, velocity
correlations between squirmer rods are short-ranged and the
power spectral density decays without any algebraic behavior as
we will show in Section 3.3.2. In other words, no patterns
emerge because energy is not transported to larger scales.

All together, our results imply that the pusher-type flow
fields inhibit or destabilize the steric alignment of swimmers
that has been found for neutral squirmer rods. In intermediate
regions of the state diagram, the competition of both effects
lead to new dynamic states.

3.3.2 Velocity pair correlations and power spectral density.
To investigate and classify the emergent dynamic states of
pushers-type squirmer rods, we employ the velocity pair-
correlation function Cv(R) and the power spectral density of
velocity fluctuations, E(k). While the velocity pair correlation
allows us to examine emerging patterns, the power spectral
density quantifies the distribution of kinetic energy over

different length scales 1/k, which we will use to classify
turbulent dynamics. To calculate the velocity pair-correlation
function,

CvðRÞ ¼

P
iaj

vi � vjdðjrij j � RÞ
* +

P
iaj

dðjrij j � RÞ
* + ; (3)

we use a histogram for the scalar product vi�vj with distance R
between rods i and j, assuming our systems are isotropic,
i.e., Cv(R) = Cv(R). Here, h� � �i means an average over time. The
power spectral density is formally defined as h|ṽ(k)|2i, where
ṽ(k) is the Fourier transform of the velocity field of the squirmer
rods. According to the Wiener–Khinchin theorem, the power
spectral density is related to the Fourier transform of the
velocity pair-correlation function, h|ṽ(k)|2i = F(Cv)(k). Due to
the isotropy of the velocity fluctuations, we introduce the
spectrum as a function of wave number k following ref. 51

and 110, EðkÞ ¼ k

2p
j~vðkÞj2
� �

. Then, using the zeroth-order Bessel

function of the first kind, we arrive at

EðkÞ ¼ k

2p

ð
L2

CvðRÞe�ik�Rd2R ¼ k

ðRmax

0

CvðRÞJ0ðkRÞRdR; (4)

where Rmax = L is the system size.111 Since for small R, Cv(R)
only exists for rods positioned side by side and thereby is highly
anisotropic, we shift Cv(R) by a length lS/2 to smaller distances
R when calculating E(k), similar to ref. 97.

In Fig. 4 we compare the normalized velocity pair-correlation
functions C̃v(R) = Cv(R)/hvi2i of pusher-type squirmer rods for
aspect ratio a = 3.25 at different area fractions f. A more
complex behavior is observed for an area fraction in the
range f A [0.4, 0.77], which allows for competing steric and
hydrodynamic interactions and for which we show C̃v(R)
in Fig. 5. The respective states are characterized as disordered
(f = 0.4/0.5), turbulent (f = 0.6/0.7), and dynamic cluster
f = 0.77, as we detail also further below. Generally, for larger f,

Fig. 4 Turbulent state of pusher-type squirmer rods with dipole strength w = �1, an aspect ratio a = 3.25, and for an area fraction of f = 0.6. (a) Snapshot
of the system with individual squirmer rods. Their orientation angles j in the x/y-plane are color-coded to help identifying small groups with the same
orientation. (b) Streamlines of the velocity field v(x, y) of the squirmer rods constructed from the snapshot in (a) with color-coded swimming velocity
v = |v(x, y)|. To construct the velocity field, each rod is represented by an elliptic Gaussian function with the standard deviations s8 and s> matching the
shape of the squirmer rods. Each point on a regular grid is then assigned the average velocity of the surrounding rods weighted with the Gaussians.
(c) Streamlines of the velocity field with color-coded vorticity o = [r � v(x, y)]z.
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the correlations extend to larger distances, which indicates
that the size of ordered patterns increases with density.
Distinctive for pushers we find that C̃v(R) is not purely positive
but also shows distances where it becomes negative. In more
detail, we observe the following characteristics. For distances,
where steric interactions occur and dominate, R o lS, C̃v(R) is
positive. With increasing R it decays to zero around R = lS to
R = 3lS and becomes negative for area fractions f up to 0.7.
In the turbulent states for f = 0.6 and 0.7, C̃v(R) returns to
positive values at more than twice the first zero-crossing dis-
tance [inset of Fig. 5]. For f = 0.6 we even observe a third zero
crossing. In the disordered states for f = 0.4 and 0.5C̃v(R) does
not show a second zero crossing but approaches zero from the
negative region. Lastly, at f = 0.77 the system is in the dynamic
cluster state with densely packed squirmer rods. This is in
agreement with the pair-correlation function, which has the
longest range and only exhibits anti-correlations for R 4 6lS.
However, we find that the orientational autocorrelation func-
tion hê(t)�ê(t + dt)i (not shown) decays after the cluster moved a
distance of 3–5lS, considering its mean velocity of hvi�êiiE 0.4v0
for a = 4.0. This clearly indicates that the clusters are dynamic.
For other aspect ratios a only small quantitative changes occur.
Especially, the correlation functions for the turbulent and
disordered states are representative for all a and f.

The power spectral densities E(k) calculated from Cv(R) are
in accordance with the findings so far. In Fig. 6(a) we compare
the power spectral densities E(k) for three different aspect ratios
a = 1.75, 2.5, and 3.25 in dense systems. The velocity autocorrela-
tion functions C̃v(R) show the same oscillating decay as already
observed above for a = 3.25 and f = 0.6. We called these states
active turbulence since the power spectral density E(k) shows a
broad peak, which separates two regions from each other with
power-law decays towards low and high k. This is characteristic of
active turbulence. Close to the characteristic wave number kc = 2p/lS,
where energy is inserted from the active motion of the squirmer
rods, E(k) decays to zero. Themaxima of the power spectral density
all roughly occur at 0.2kc, indicating that the pattern size scales
with lS, which makes sense when the density is roughly the same.

As reported in other experimental51 and theoretical50 studies
on polar active fluids, the scaling exponents for the power laws
in k are not universal. Towards smaller length scales (larger k),
the exponent shows only a weak dependence on the aspect ratio
a with values of �1.1 and �1.3, while towards larger length
scales we observe a stronger variation of the scaling exponent
with aspect ratio. For short squirmer rods with a = 1.75, the
power spectral density decays more rapidly with E(k) B k1.9 and
for a larger aspect ratio a = 3.25, the power spectral density
scales with E(k) B k1. This indicates that for larger aspect ratio
patterns at large length scales (small k) are observed more
frequently.

For disordered states the power spectra do not follow power
laws [cf. Fig. 6(b)]. Instead, they quickly decay towards smaller
k, which indicates again that energy is not transported to larger
length scales. In contrast, for the dynamic cluster state energy
is concentrated at the larger length scales (small k) as expected,
while E(k) decays strongly towards smaller length scales
[cf. Fig. 6(c)]. To investigate finite size effects, we compare the
regular systems of size L = 300a0 to systems with the increased
system size of L = 600a0 performed for a = 4 and f = 0.7. In the
bigger system the maximum of E(k) shifts to smaller values
of k roughly proportional to the change in L which suggests
that the maximum correlation length always corresponds to the
system size, and no characteristic length scale emerges. At the
same time, we observe a decrease of max[E(k)] indicating
that the dynamic of the cluster slows down as L increases.

Fig. 5 Normalized velocity pair-correlation function C̃v(R) as a function of
the rod distance R for pusher-type squirmer rods (w = �1) with aspect ratio
a = 3.25 at different area fractions f. Inset: Plot of |C̃v(R)| versus R.

Fig. 6 (a) Power spectral density E(k) in the turbulent state calculated
from the velocity pair-correlation function Cv(R). Light and dark colors
correspond to small and large system sizes L, respectively. (b) Power
spectral density E(k) in the disordered state and (c) in the dynamic cluster
state.
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This behavior clearly distinguishes the dynamic cluster state
from active turbulence, which has an intrinsic characteristic
length scale. However, we note that data for larger systems
would be necessary to show that the maximum correlation
length 1/argmax[E(k)] diverges for infinite system size. Though,
this currently exceeds our computational capabilities. Note, the
irregular behavior in the curve for L = 300a0 is due to the fact
that with increasing a close to the jammed cluster state the
dynamics of the clusters slows down and longer simulation
times are needed to smooth the curve.

3.4 Puller-type squirmer rods

3.4.1 State diagram. For strong puller-type squirmer rods
with w = 1, we also investigate the system for varying aspect ratio
a and area fraction f and generate the state diagram as shown
in Fig. 7(a). Here, we observe a completely different behavior
compared to the pusher-type squirmer rods. Only for dense
systems and at large aspect ratios, where steric interactions
dominate, we observe the same single swarm/jammed cluster
states for pusher and puller rods. Thus, the behavior resembles
that of dry self-propelled rods,98 although differences for

pushers and pullers still remain. Otherwise, the state diagram
is more similar to that of the neutral squirmer rods [Fig. 1(c)].
Only the disordered state is completely suppressed and replaced
by the swarming state. This also means that the occurrence of all
states are shifted towards smaller area fractions f.

The most prominent feature of puller-type squirmer rods is
that their flow fields strongly promote the formation of small
swarms. Even for dilute systems with area fractions down to 0.2,
the hydrodynamic interactions between the squirmer rods
favor small swarms against the disordered state. Different from
the purely steric alignment responsible for swarming neutral
squirmer rods,94 pairs of puller-type squirmer rods form
T-shaped configurations, although deformed, when they col-
lide. Examples are indicated in the snapshot of Fig. 7(b). This
leads to small groups, where several squirmer rods follow a
central leader of the group, arranged in a ‘‘comet tail’’ and
pointing inwards [Fig. 7(b)]. A similar behavior is also found in
ref. 95 and for dry active rods.98 However, we observe that for
the hydrodynamically interacting squirmer rods the swarming
behavior extends to smaller densities and aspect ratios com-
pared to dry self-propelled rods.61,64 Often the swarms have an
asymmetric shape, which then induces curved trajectories
(Video 4, ESI†). With increasing area fraction, f Z 0.4, swarms
also increase in size. However, the overall alignment in the
swarms rather decreases. This is due to the low polarity of the
small swarms, which then merge in an unordered fashion with
increasing f.

For aspect ratios a Z 3 we also observe the formation of a
single swarm, which collects all squirmer rods in the system
[Fig. 7(d) and Video 5, ESI†]. For area fractions f Z 0.6 and
sufficiently large aspect ratios the single swarm becomes
jammed and forms a static cluster state [Fig. 7(e) and Video 6,
ESI†]. Reducing the aspect ratio at f = 0.77 to ar 2.5, the jammed
cluster becomes dynamic similar to the state observed in pusher-
type squirmer rods [Fig. 7(c) and Video 7, ESI†].

3.4.2 Velocity pair correlations. For a quantitative study of
the emergent states of the puller-type squirmer rods, we use
again the velocity pair-correlation function. In Fig. 8(a) we
compare results for the representative aspect ratio a = 4, which
exhibits most of the emergent states. We immediately notice
the difference to the pusher-type squirmer rods; C̃v(R) does not
become negative. This underlines the tendency of pullers to
form two swarming states. To thoroughly distinguish these
states, which both give very similar velocity correlation functions,
we will further examine the orientational autocorrelations in
Section 3.4.3.

We have already seen, that even in dilute systems with
f = 0.2, the puller-type flow fields locally align the squirmer
rods and thereby cause swarming. This is also visible in the
velocity correlation function C̃v(R), which is more long-ranged
compared to pusher-type rods [Fig. 5(a)]. Thus, squirmer rods
are significantly correlated for distances up to R = 2lS. As
described in Section 3.4.1, the size of swarms increases with
density. For the subsequent area fraction of f = 0.4 the system
is already in the single swarm state at the chosen aspect ratio of
4.0. Hence, the velocity correlation function C̃v(R) becomes

Fig. 7 (a) State diagram of the puller-type squirmer rods with w = 1 in the
parameter space aspect ratio a versus area fraction f. Snapshots of the
system in (b) the swarming state at f = 0.2 and a = 2.5 (only a part of
the system is shown), (c) the dynamic cluster state at f = 0.77 and a = 2.5,
(d) the single swarm state at f = 0.4 and a = 4.0, and (e) the jammed cluster
state at f = 0.77 and a = 4.0.
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more long-ranged. At f = 0.6 and f = 0.77, when the system is
noticeably in the jammed cluster state, we observe two different
features. For f = 0.6, C̃v(R) reaches a plateau, which indicates
that the jammed cluster drifts in one direction since the
squirmer rods are aligned, on average. At the highest density
f = 0.77 the cluster formation takes place more quickly result-
ing in a disordered structure without drift. Here, the velocity
correlation function C̃v(R) decreases and does not exhibit a
plateau until R/lS = 5.

3.4.3 Orientational autocorrelations. To further characterize
and distinguish the single swarm, dynamic cluster, and jammed
cluster states from each other, we employ the orientational
autocorrelation function Ce(dt) = hei(t)�ei(t + dt)i. In Fig. 8(b) we
compare Ce(dt) for different area fractions f at constant aspect
ratio a = 4, and in Fig. 8(c) for different a at constant f = 0.77.

In dilute systems with f = 0.2, Ce(dt) decays to zero at around
dt = 15lS/v0, meaning that swarms swim a distance of around 7lS
until they either rotate, merge with other clusters or dissolve
(Video 8, ESI†). For the single swarm state at f = 0.4, we observe
a more long-ranged autocorrelation. After a swarm has formed

it remains stable but also goes through configurational changes
so that partially straight motion is observed interrupted by
rotations or turns of the swarm (Video 5, ESI†). As a result,
Ce(dt) exhibits a damped oscillation, where the first minimum
at dtE 37lS/v0 means that the swarm has rotated by 1801. In the
jammed cluster state, we again observe two different features.
For f = 0.6, the cluster drifts due to its overall polar order.
However, also configurational changes occur, which results in a
decay of Ce(dt) towards a non-zero value meaning that the
cluster has reached some stable configuration within the
observation window. At the higher density f = 0.77, the cluster
now has a more random but static arrangement of the rods.
Therefore, it hardly drifts and it only rotates very slowly, which
causes a very slow decrease of Ce(dt).

Comparing dense systems (f = 0.77) of different aspect
ratios to each other, we observe the following characteristics
from high to low a [Fig. 8(c)]. For the largest aspect ratio a = 4.75
steric interactions between the rods are most dominant and we
find an entirely jammed configuration with constant Ce(dt) = 1.
Lowering the aspect ratio, the jammed cluster becomes more
and more interrupted by occasional configurational changes,
which results in the noticeable but slow decay of Ce(dt) for
a = 3.25. In contrast, the dynamic cluster states at a = 1.75 and
a = 2.5 show a fast exponential decay of Ce(dt) due to the
dynamic rearrangements within the cluster. The decay is faster
for the lower aspect ratio, where the rods reorient more easily.

3.5 Variation from pusher to puller-type squirmer rod

In this section, we compare squirmer rods at a constant aspect
ration a = 3.25 and vary the swimmer type by the force-dipole
strength w. Furthermore, we performed simulations at different
area fractions f. The resulting state diagram is shown in Fig. 9(a).
States of neutral squirmer rods are adapted according to ref. 94.

For puller-type squirmer rods with w 4 0, we observe that
already weak pullers with w = 0.25 show swarming at the small
area fraction of f = 0.2, i. e., the same state we observed in
Section 3.4.1 for the highest strength w = 1.0. Obviously, the
force-dipole field, which attracts nearby rods along the rod axis,
promotes swarming. However, with increasing f, swarming
also extends to weak pusher rods. At higher area fractions
f Z 0.6, we find single swarm and jammed cluster states due to
steric interactions between the rods, where neutral (w = 0) and
puller-type squirmer rods show qualitatively similar behavior.

For pusher-type squirmer rods, w o 0, we observe a more
diverse behavior, which we already noted for w = 1 in Sec-
tion 3.3.1. While at f = 0.2 only the disordered state occurs,
at f = 0.4 we find a transition from swarming to turbulent to
disordered state with increasing pusher strength. The analysis
of the power spectral density E(k) reveals that the system with
w = �0.5 is indeed in the turbulent state. Thus, the pusher flow
field destabilizes swarming clusters. As a compromise between
swarming and disordered states, active turbulence occurs in
conjunction with steric repulsion. Increasing density further to
f = 0.6, steric repulsion stabilizes swarming clusters and active
turbulence is shifted to the largest pusher strength w = �1.
Finally, at f = 0.77 the pusher flow field destabilizes the

Fig. 8 (a) Normalized velocity pair-correlation function C̃v(R) plotted
versus distance R for puller-type squirmer rods at constant aspect ratio
of a = 4.0. (b) Orientational autocorrelation function Ce(dt) for constant
aspect ratio a = 4.0. (c) Orientational autocorrelation function Ce(dt) in
dense systems at area fraction f = 0.77.
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jammed cluster of neutral and puller-type squirmer rods, which
then becomes dynamic.

3.5.1 Velocity pair correlations and power spectral density.
For a more quantitative analysis, we use the normalized velocity
pair-correlation function C̃v(R) as defined in eqn (3). In Fig. 9(b)
we compare C̃v(R) in dilute systems with f = 0.2 for different
force-dipole strengths w to each other. The collective dynamics
is mainly governed by hydrodynamic interactions. Fig. 9(c)
shows C̃v(R) for the larger area fraction f = 0.6, where a
transition to the turbulent state occurs at w = �1.

In the dilute systems, all the velocity pair-correlation func-
tions in the swarming state of puller-type swimmers (w 4 0) are
nearly identical and show correlations up to circa 2lS [Fig. 9(b)].
This indicates that the mechanism behind swarm formation is
fully established already at small dipole strength. Pusher-type
squirmer rods (w o0) only exhibit the disordered state and no
swarms, so C̃v(R) is more short-ranged compared to pullers.
Pushers prefer to order side by side and therefore pronounced
peaks at closest distance R = lS/a are observed compared to
puller rods. Furthermore, we observe anti-correlations with
C̃v(R) o 0 starting at distances R between lS and 2lS. They
belong to pusher rods approaching each other head on.

At the higher area fraction f = 0.6, we observe the single
swarm, swarming, and turbulent states [Fig. 9(c)]. In the single
swarm state observed for weak pullers (w = 0.25), C̃v(R) is long-
ranged and shows significant correlations for all recorded
distances up to R = 5lS. In the swarming state that emerges
for pushers at w =�0.25 and�0.5 the correlation length of C̃v(R)
decreases with increasing force-dipole strength. At w = �0.5 it is
around R = 2lS. In the turbulent state at w = �1, C̃v(R) becomes
even more short-ranged and negative at R = lS due to the
occurrence of vortices.

In Fig. 9(d) we compare the power spectral densities E(k) for
three systems in the turbulent state at a = 3.25. All three spectra
show a regular cascade towards large k (small scales) and a
second cascade towards small k (large scales). At large k all
three power spectral densities show roughly the same scaling
behavior E(k) B k�1.3. Furthermore, the curves for (w, f) =
(�0.5, 0.4) and (w, f) = (�1.0, 0.6) coincide in the range from
k = 0.2kc to kc, which includes the maximum of both spectra.
For the second cascade, different scaling exponents are
observed. At w = �1 the power spectral density decays more
rapidly in the system with f = 0.6 following a scaling E(k) B k2,
while in the denser system (f = 0.7) the scaling is E(k) B k1.
Furthermore, the maximum of E(k) shifts to a smaller wave
number k, which implies a larger intrinsic length scale of the
turbulent pattern. For the system with the smaller pusher
strength, w = �0.5, the scaling follows E(k) B k1.4, thus, it is
situated between the two cases just discussed.

4 Summary and conclusion

In this article, we investigated the dynamic states of pusher and
puller-type squirmer rods. Varying the head-to-tail anisotropy
parameter w of the surface slip-velocity field of the squirmer
rod, we are able to smoothly tune the force-dipole strength of
the resulting flow field between a pusher and puller.

Fig. 9 (a) State diagram of the squirmer rods for different dipole-
strengths w and area fraction f at an aspect ratio of a = 3.25. The labeled
vertical lines indicate the states for which the velocity correlation function
is shown in (b and c). (b) Normalized velocity pair-correlation function
C̃v(R) for dilute systems with f = 0.2 and different force-dipole strengths w.
Red curves belong to systems in the swarming state and green curves to
the disordered state. (c) Normalized velocity pair-correlation function
C̃v(R) for f = 0.6. The black curve belongs to the system in the single
swarm state, green to the swarming state, and yellow to the turbulent case
(d) Power spectral density E(k) for the turbulent state at different w, f.
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For pushers with largest force-dipole strength w = �1, we
observe a new turbulent state along with other modifications in
the state diagram compared to neutral squirmer rods. In dilute
systems, where steric interactions are less important, the
pusher flow field suppresses the formation of the swarming
states so that the disordered state extends to larger area frac-
tions and aspect ratios. When steric interactions and thereby
steric alignment of the rods become more important with
increasing area fraction, the turbulent state emerges at small
aspect ratios. To observe it for weaker pusher strengths at
constant aspect ratio, one has to decrease the area fraction,
which confirms the importance of steric interactions for the
turbulent state. The velocity pair-correlation function decays and
exhibits negative regions after one or two swimmer lengths,
which indicates a characteristic length scale. At the same time,
the power spectral density of the velocity fluctuations shows
two energy cascades at small and large wave numbers with
power-law scaling and non-universal exponents as reported
in other works on active turbulence in polar fluids.49,50,97

Increasing the area fraction further, a transition to the dynamic
cluster state occurs at medium aspect ratios, which is reminis-
cent of the turbulent state but without the characteristic energy
cascades. This is in contrast to soft active rods, where jammed
states occur,42,63 which are, however, destroyed for strong
enough self-propulsion.112 At larger aspect ratios, steric inter-
actions become more important. Here, pushers resemble the
dynamics of neutral squirmer rods94 and dry active rods,61,62

such that, instead of the turbulent and dynamic swarm state, a
single swarm and jammed cluster are observed.

For pullers at all studied force-dipole strengths w and in the
most dilute system at f = 0.2, hydrodynamic interactions
already promote the swarming state instead of the disordered
state observed for neutral rods. At smaller aspect ratios and the
largest area fraction, the dynamic cluster state occurs, while
for larger aspect ratios swarming and dynamic clustering are
replaced by a single swarm and jammed cluster state.

Thus, our study clearly indicates the importance of the type
of the swimmer flow field for the occurring states. Although
comparable states are often found for dry self-propelled rods,
for squirmer rods their occurrence in the state diagram cru-
cially depends on the specific hydrodynamic flow field. Speci-
fically, active turbulence is only found for pushers and puller
type flow fields greatly enhance the formations of swarms.
Additionally, the different scaling exponents in the turbulent
state show that steric interactions, tuned by rod density, play an
important role for this state. All in all, the turbulent state
occurs as a compromise between disordering hydrodynamic
pusher flow fields and aligning steric interactions. Therefore,
with our work we contribute to the insights how various bio-
logical propulsion strategies determine the collective motion of
microswimmers.

In future work, it will be interesting to investigate collective
dynamics of pusher and puller-type squirmer rods also in the
bulk fluid, where the hydrodynamic force-dipole has the most
long-range or dominant flow field. Likewise, implementing a
liquid–air interface using a slip-boundary condition at one wall

of the Hele-Shaw geometry, would provide a realistic modeling
of recent experiments, where bacteria move close to a fluid–air
interface.113
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CHAPTER 5

Conclusions and Outlook

Conclusions

Biological microswimmers exist in various shapes and employ different propulsion
strategies to explore their environment. To model the particle shape of microswim-
mers, which is mostly elongated, we have introduced the squirmer-rod model. The
squirmer rod consists of several spherical squirmers arranged on an straight line
to form a rigid body. The surface slip-velocity of the squirmer thereby models the
ciliary propulsion found for organisms such as Paramecium. To model also pusher
and puller-type microswimmers, the surface slip velocity of the individual squirmers
is modified such that the surface velocity is concentrated to either the back or the
front of the rod. These realizations serve as model for E. coli bacteria and C. reinhardtii
algae, respectively. To model the fluid surrounding the squirmer rods, we use the
method of multi-particle collision dynamics (MPCD). This method solves the full
Navier-Stokes equation including thermal fluctuations.

Performing simulations in the bulk fluid, we find that the neutral squirmer rod
mainly results in the addition of a force quadrupole moment to the basic flow field
of the spherical squirmer, which is a source dipole. The force quadrupole possesses
the same radial decay |vFQ| „ r´3 such that the overall radial decay of the flow field
remains unchanged. For pusher-type squirmer rods we observe the additional flow
field of a force dipole due to concentrating the surface velocity to the back of the
rod. Consequently, the overall flow field of the pusher-type squirmer rod decays as
|v| „ r´2 in leading order.

In addition, we considered the Hele-Shaw geometry in which the fluid and mi-
croswimmer is confined in a narrow slit between to parallel plates. In this geometry
the hydrodynamic multipoles are crucially altered and as a result, the flow fields
show different characteristics. Most importantly the radial decay of the different mul-
tipoles is altered such that the source dipole, which now exists for all self-propelled
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particles becomes the most long-ranged multipole field, |vSD| „ ρ´2. At short and
intermediate distances, however, we observe that the force dipole moment still
dominates. Moreover, the force and source multipoles are affected by the confine-
ment strength in an opposite way. Hence, the confinement strength introduces an
interesting variation between the two hydrodynamic multipoles.

To create a less compressible model fluid, we introduced an extended collision
rule for the MPCD method. The model generates an inherent momentum flux within
each collision cell that contributes to the pressure. We showed that this extended
rule results in a non-ideal equation of state and also derived analytic expressions
for the shear viscosity. We find that these predictions are in good agreement with
measurements obtained from equilibrium, constant shear, and Poiseuille flow sim-
ulations. Likewise, simulations of the flow fields of squirmers in the bulk fluid
and Hele-Shaw geometry show good agreement with the analytic prediction. In
simulations of the collective dynamics of squirmer rods, where the MPCD fluid
is subject to strong forces, the comparison of the traditional MPCD-AT+a and the
extended MPCD method shows a more homogeneous fluid density and viscosity in
the context of clustering. For swarming squirmer rods we observe that the extended
MPCD results in an increase in the size and velocity of emergent swarms compared
to the traditional MPCD method.

In an in-depth study of neutral squirmer rods, we investigate the influence of
their aspect ratio α and the density, given by the two-dimensional area fraction ϕ.
We observe four different states going from small to large aspect ratio α. For short
squirmer rods and low density we observe a disordered state with no correlations
between the particles. At higher aspect ratio a state of dynamic swarms emerges,
which is characterized by the frequent formation and break up of medium sized
swarms. As the aspect ratio or density is further increased, the swarms become
stable and the systems exhibits a single swarm state. For very high density the
system becomes stationary and forms a jammed configuration.

The dynamic behavior becomes more diverse for pusher and puller-type squirmer
rods. Here, we observe a new turbulent state for the pusher-type squirmer rods,
as well as a dynamic clustering state, which is intermediate between turbulence
and clustering. In dilute systems, where hydrodynamic interactions dominate, the
pusher-type flow fields completely suppress the formation of swarms observed for
neutral squirmer rods. Instead, a disordered state is found also for higher aspect
ratio and density.

When steric interactions become more important at higher densities and aspect
ratios, the turbulence state emerges as a compromise between the aligning and
disordering interactions. In the turbulent state we observe a positive velocity pair-
correlation at short distances which becomes negative at the length scale of a few
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swimmer lengths. Then, again, it becomes positive after a few swimmer lengths, then
negative again, and so on. The power spectral density of the velocity fluctuations
shows two energy cascades at small and large wave numbers with power law scaling
and non-universal exponents. When steric interactions dominate at high density
and aspect ratio, the clustering and single-swarm states of neutral squirmer rods are
recovered.

For puller-type squirmer rods we observe an increased tendency to form dynamic
swarms for all aspect ratios. Here, the dynamic swarming state occurs already for
very low densities, and the single-swarm state is shifted to lower densities and
aspect ratios.

Investigating the swimmer-types for intermediate values of the force-dipole
moment confirms our previous findings. Accordingly, also pushers rods exhibit
the turbulent state, which, however, disappears for large values of the force-dipole
strength. For pullers the tendency to form swarms sets in immediately when the
force dipole is introduced.

Overall, we conclude that our study of the squirmer rod-model clearly indicates
the importance of both the shape and hydrodynamic characteristic of the flow
fields for the dynamics of elongated microswimmers. Although studies of dry self-
propelled rods exhibit often similar states, our results clearly confirm previous work
that the occurrence of, for example, active turbulence or the swarming state crucially
depends on the type of hydrodynamic flow field [61]. As such, active turbulence is
a characteristic of pushers, while swarms prevail for puller-type microswimmers.
Furthermore, we observe that the scaling exponents, which characterize the turbulent
state, depend on the aspect ratio and density and thus the strength of the interactions.
This stresses again that the turbulent state emerges through a balance between
aligning steric and disordering pusher-type hydrodynamic interactions. In contrast,
we observe that neutral squirmer rods mainly exhibit swarming and jamming, which
is more similar to dry active rods. Therefore, with our work we contribute to the
understanding how biological propulsion strategies determine the collective motion
of microswimmers.

Outlook

Below, we discuss a number of extensions for the squirmer rod models, which
would be of interest for future studies. We have already implemented some of these
extensions, such that we can discuss some preliminary results.

Rotlet dipole

A notable extension of the pusher-type squirmer rod is to improve the model for
the actual propulsion mechanism of a rotating flagellum. For bacteria, the motor of
the flagellar apparatus creates a torque that rotates the flagellum. At the same time,
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the reverse torque rotates the cell body in the opposite direction. Resulting from
the opposing torques, the flow field possesses the additional flow field of the rotlet
dipole, as indicated in Sec. 2.2.5.1. This rotlet dipole results in circular trajectories
when microswimmers are close to solid walls or liquid-air interfaces, where the
orientation of rotation depends on the slip condition [234, 235].

To introduce the rotating flagellum in the squirmer-rod model, we add an az-
imuthal contribution to the surface slip velocity, which mimics the rotation of the
flagellum. Preliminary research, which has been performed by the bachelor student
Phillip Eisenhuth, showed that indeed circular trajectories emerge in the proximity
of solid walls or liquid-air interfaces. We assume that this circular motion will be
interesting in the context of the active turbulence that we observed for pusher-type
squirmer rods. In particular, we assume an interaction between the radius of the
circular trajectories of single squirmer rods and the characteristic vortex size of the
active turbulence. However, more detailed simulations are required to investigate
the statistics of the turbulent patters observed in the collective dynamics of these
chiral pusher-type squirmer rods.

Flexible filaments

Another interesting extension of the squirmer-rods model is the realization of flexible
filaments, as a model for polymer chains [43, 50], flagella [228], or elongated bacteria
[236, 237] or the nematode worm C. elegans [238]. Our approach thereby provides an
accurate description with explicit hydrodynamic interactions.

Similar work on filaments has been done using overdamped Langevin dynamics
and implicit hydrodynamic interactions via the Rotne-Prager approximation [239–
241], or inside the MPCD fluid without volume exclusion [242]. We have already
conducted preliminary work on this topic, which we will discuss in the following.
We begin with outlining the details of the flexible filament model and how it is
coupled to the fluid.

To implement flexible filaments, the rigid-body constraint of the squirmer rod is
partially released so that the constituting squirmers now move individually. In this
way, the configuration of squirmers can deform and thereby model the deformation
of a filament. To hold the squirmers in place and model the flexibility of filaments, we
introduce additional potential forces between the individual squirmers. To introduce
bending rigidity, we use the additional bending potential

Vbend(r1, ..., rNsq) = ´
ϵbend

2

Nsq´1
ÿ

i=2

[︂
cos(θi) + θ12

i

]︂
(5.1)

where θi = >(ri´1, ri, ri+1) is the angle between the connecting vectors in the triplets
of spherical squirmer, similar to Refs. [239, 240]. The additional θ12

i term is added
to avoids sharp angles above 90˝ in the configuration. For small θ ď π/4 this term
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Figure 5.1: Snapshots of two simulations of flexible filaments for different bending
energy ϵbend. (a) For a bending rigidity ϵbend „ 103 the filaments are rather soft and
deform when they touch each other due to their active swimming. The softness
thereby reduces the alignment due to steric interactions and hinders the formation
of swarms. Moreover, filaments are able to escape dense configuration due to their
flexibility. (b) For more stiff filaments with bending rigidity ϵbend „ 104 we see again
the formation of swarms.

is negligible, and thus mostly does not affect the configuration. For long filaments
the WCA potential of Eq. (3.17) is also applied between pairs of squirmers within
a filament, when the index difference is greater than 10, which guarantees that the
repulsion does not interfere with the bending potential. This avoids overlap of
the filament with itself in compact configurations. To hold the bond length at the
prescribed value, we use the constraint solver algorithm P-LINCS [243, 244], which
is known from the simulation of molecules, e.g., with the GROMACS package [245].
In other words, the P-LINCS algorithm keeps the distance between neighboring
squirmers inside the filaments constant. Masses and moment-of-inertia tensors of
the segments, which are required by P-LINCS, are taken from Ref. [125] presented in
Sec. 4.2.

To couple the motion of the MPCD fluid to the flexible filament, we apply the
momentum transfer of the squirmer i on the same squirmer. To apply the angular
momentum transfer of the squirmer i to the filament, we consider triplets that
include the two neighboring squirmers and are treated as rigid bodies during the
angular momentum transfer. Furthermore, the orientation vector of the squirmer
i is set to êi = (ri´1,i ´ ri,i+1)/|ri´1,i ´ ri,i+1|, such that we may define the surface
slip-velocity of the spherical squirmer for every bead.

In Fig. 5.1 we compare two simulations of flexible filaments using different
bending energies ϵbend. In both systems of size L = 300a0 and thickness ∆z = 8a0,
the filaments are constrained to move on in the center between the confining walls,
similar to [206]. Filaments consist of Nsq = 40 squirmers of radius R = 2 and an
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aspect ratio of α « 20. The area fraction is given by ϕ = 0.6 and individual squirmers
propel with the typical slip-velocity parameter Bsq

1 = 0.1.
For the soft filaments shown in Fig. 5.1(a), the flexibility leads to strong shape

changes upon collisions of the flexible filaments. Therefore, filaments are rather
reoriented, than aligned, which suppresses the formation of swarms for this bending
energy ϵbend. Likewise, the flexibility reduces the formation of clusters because
filaments can escape dense regions in the system.

For the more rigid filaments shown in Fig. 5.1(b), we observe the formation of
swarms again. Here, the increased rigidity allows an alignment of the filaments
generally, while the deformations enables more aligned configurations and therefore
more efficient formation of swarms. However, the deformation of filaments within
swarms also leads to curved trajectories of the swarms.

Obstacles

In theory [106, 246] and experiments [174] with E. coli bacteria, it has been shown
that the emerging active turbulence can be stabilized in regular patterns through the
placement of obstacles in the domain of the microswimmers. It would be interesting
to simulate our microscopic squirmer-rod model interacting with such pillars, since
in the experiments microswimmers close to the pillars are not accessible for the
microscopic imaging technique. [106].

In this context we performed preliminary research which, however, predates our
latest articles including the investigation of active turbulence [185] and the more
incompressible MPCD method [205, 206]. It would therefore be interesting to revisit
this topic and explore pillars with structured surfaces, which prohibit the sliding
motion of the microswimmers around the pillars. In our preliminary simulations, we
immersed cylindrical pillars in the flow, which are realized with the WCA potential
and no-slip boundary condition for the fluid. We show two exemplary simulations
of pusher-type squirmer rods within the unit cell of a quadratic lattice in Fig. 5.2.
Since active turbulence exhibits a characteristic length scale, the emergent dynamics
is expected to couple to a specific lattice size [174], which is given by the different
system sizes in Fig. 5.2(a) and (b).
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Figure 5.2: Snapshots of two simulations of pusher-type squirmer rods in the unit
cell of a periodic square lattice with a pillar radius of Rpillar = 1.25lS at different
system sizes. (a) Small system size L = 300a0 and (b) large system size L = 600a0.
The system height is ∆z = 18a0 in both cases.
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