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Zusammenfassung

Die Vorhersage von Spurwechselverhalten (SW) im motorisierten Straßenverkehr ist ein
wichtiger Schritt zur Vermeidung von Spurwechselunfällen. Ziel dieser Dissertation
ist deshalb die Entwicklung einer umfassenden Methode zur Vorhersage von SW,
einschließlich experimentellen Designs, Modellierung, Auswahl relevanter Fahr- und
FahrerInnen-Variablen und deren Evaluation. Die Methode konzentriert sich hierbei
auf die Autobahn als Fahrumgebung. Es wurden drei aufeinander aufbauende Studien
durchgeführt, ein Fahrsimulatorexperiment, eine Analyse bestehender Realfahrtdaten,
sowie eine Realfahrtstudie. Hierbei kamen Methoden des Maschinellen Lernens (ML), der
Informatik, der Statistik, sowie Methoden der Human Factors Forschung zum Einsatz.

In der ersten Studie der Dissertation wurde eine komplexe Methode zur Vorhersage
von SW entwickelt, die bestehende Methoden zu SW Vorhersage weiterentwickelt.
In einem ersten Schritt wurden Verkehrsumfeldfaktoren sowie der Fahrstil von
AutofahrerInnen genutzt um einen Fahrstil Trainingsdatensatz zu erstellen. Zusätzlich
wurde ein weiterer Trainingsdatensatz ohne Einbezug von Verkehrsumfeldfaktoren und
Fahrstil erstellt, der Unkategorisiert Datensatz. Beide Datensätze wurden genutzt um
ein ML Modell zu trainieren, welches SW und Spurhalte (SH) Daten klassifizieren
kann. Zusätzlich wird eine neuartige blickbasierte Klassifikationsmethode (BKM)
entwickelt, um SW- und SH-Daten zu beschriften, und die BKM mit der bestehenden
Zeitfensterklassifikation (ZFK) verglichen. Die Ergebnisse zeigen, dass ML-Modelle, die
durch Fahrstil-Datensätze trainiert werden, höhere Klassifizierungswerte erzielen können
als ML Modelle die mit dem unkategorisierten Datensatz trainiert werden. Darüber
hinaus ist die Klassifikationsleistung der Modelle durch die Verwendung der BKM-
Methode vielversprechender als durch die ZFK-Methode. Um den Einschränkungen der
ersten Studie, speziell der Datenerhebung im Fahrsimulator und der Variablenauswahl
mit unzureichender empirischer Datenlage, entgegenzuwirken, wurde eine zweite Studie
durchgeführt, die einen bestehenden Datensatz mit Realfahrtdaten analysiert.

Das Ziel der zweiten Studie ist die Entwicklung einer systematischen Methode
zur Variablenauswahl, um Lücken in der bisherigen Forschung im Zusammenhang
mit der Vorhersage des SW-Verhaltens zu schließen. Aus bestehenden Realfahrtdaten
werden mehrere für das SW-Verhalten relevante Variablen extrahiert, z.B. dynamische
Variablen der Fahrzeugbewegung, des FahrerInnenverhaltens, komplexere Variablen,
die mehrere Variablen kombinieren, sowie Zeitfenstervariablen, die Änderungen im



Zeitverlauf integrieren. Darüber hinaus werden Variablen aus dem Frequenzbereich
extrahiert. Im Gegensatz zu bestehenden Methoden zur Variablenauswahl verwendet
diese Studie statistische Methoden, die ein tieferes Verständnis des Beitrags des einzelnen
Merkmals zum SW-Verhalten der FahrerInnen ermöglichen. Dieser Ansatz ist außerdem
allgemeiner als bestehende Ansätze, die eine Variablenauswahl nur für einen bestimmten
Algorithmus erlauben.

In einem dritten Experiment werden die Methoden aus den ersten beiden Studien
kombiniert, um SW-Verhalten in einem Realfahrtexperiment vorherzusagen. Obwohl
diese Studie ähnliche Methoden wie die ersten beiden Studien verwendet, bietet sie eine
einzigartige Gelegenheit, die Machbarkeit des vorgeschlagenen SW-Vorhersageansatzes
unter realen Straßenbedingungen zu testen. Neben dem Fahrstil Datensatz und
dem Unkategorisiert Datensatz wird in dieser Studie zusätzlich ein Personalisiert
Datensatz genutzt, der für jede Versuchsperson individuell angelegt wird. Es wird
ein Vergleich der Vorhersage von SW mittels der verschiedenen Trainingsdatensätze,
ML-Modellen und Klassifikationsmethoden, sowie der Frage, ob Eye-tracking für die
SW-Vorhersage einbezogen werden soll, durchgeführt. Die Ergebnisse deuten darauf hin,
dass ML-Modelle am besten mit der Kombination aus der Verwendung personalisierter
Trainingsdatensätze und der BKM-Methode mit der Verwendung von Eye-Tracking-
Informationen funktionieren. Im abschließenden simulierten Test der Vorhersage in der
Realfahrt konnte das entwickelte Modell das SW-Verhalten der FahrerInnen im Mittel
3,3 s (Genauigkeit 93,5 %) vor einem tatsächlichen SW-Manöver für einen linksseitigen
SW, und 2,6 s (Genauigkeit 72,4 %) für einen rechtsseitigen SW vorhersagen.

Die in dieser Dissertation entwickelte Methode zur Vorhersage von SW-Verhalten
kann in der Anwendung dazu beitragen, die Anzahl der Spurwechselunfälle zu verringern
und somit die Zahl der daraus resultierenden Verletzungen und Todesfälle reduzieren.
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Abstract

Prediction of driver lane-change (LC) behavior is very important to avoid LC related
traffic accidents. The aim of this dissertation is to propose a comprehensive framework,
including experimental design, modeling, feature selection as well as evaluation, which
can be implemented for prediction of driver LC behavior. The framework is designed
to concentrate on highway roads. To this end, three studies were conducted step by
step including a driving simulator based experiment, a big data analysis, and a real-
road experiment. Methods used in this dissertation involve machine-learning (ML),
informatics, statistics as well as the human factor field.

In the first study of the dissertation, a complete framework of prediction of driver
LC behavior was developed with several methodological innovations in comparison to
prior research. Firstly, driving contextual traffic and driving style were considered for
the preparation of the training datasets, termed as driving style datasets. Datasets
without any additional consideration were termed as non-categorized datasets. These
datasets were used to train the ML models to classify LC and lane-keep (LK) data
samples. Secondly, a newly gaze-based labeling (GBL) method was further proposed
to label LC and LK data samples compared with the time-window labeling (TWL)
method which was commonly used by the related works. The results show that ML
models trained by the driving style datasets can achieve higher classification scores than
the non-categorized datasets. In addition, by using the GBL method, the classification
performances of the models are more promising than by using the TWL method. To
counter the limitations of the first study, i.e. data collection from the driving simulator
and the feature selection based on the insufficient empirical knowledge, a second study
was conducted based on a large set of naturalistic driving data.

The aim of the second study was to propose a systematic feature selection method
to fill in gaps of prior research related to prediction of driver LC behavior. In order to
enrich the feature sets, a comprehensive set of features related to driver LC behavior were
extracted, e.g. dynamic features of vehicle movement, behavioral features of the driver,
more complex features that combine multiple variables, as well as time-window features
which integrate changes over time. In addition, features from the frequency domain were
extracted by varying time-windows. In contrast to the established methods for feature
selection, this study uses statistical methods that allow a deeper understanding of the
contribution of the individual feature to driver LC behavior and is more generalized in



comparison to prior research where the feature selection methods tend to work only for
one specific algorithm.

Finally, combining the methods developed in the first two studies, a real-road
experiment was conducted to evaluate the complete framework for LC prediction
proposed in this dissertation. While this study uses similar methods to the first two
studies, it provides a unique opportunity to assess the feasibility of the proposed LC
prediction approach under real-road conditions. Besides driving style datasets and
non-categorized datasets, in this study, personalized datasets, i.e. each participant has
his/her individual dataset, were added for comparison. Comparison was made between
training datasets, ML models, and labeling methods as well as the comparison between
fusing and without fusing eye-tracking signals and only using eye-tracking signals for
prediction. The result suggests that ML models perform best with the combination of
using the personalized training datasets and the GBL method by fusing eye-tracking
signals. In the final simulated real-time prediction test, the model could predict driver
LC behavior around 3.3 s (precision 93.5%) ahead of an actual LC maneuver for left LC
case and 2.6 s (precision 72.4%) for right LC case.

In conclusion, the framework for driver LC prediction developed in this dissertation,
if implemented, could help to decrease the number of LC related crashes and reduce the
resulting number of injuries and fatalities.
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1
Introduction

1.1 Motivation of the dissertation

In 2017 alone, a total of 3,180 people were killed in road traffic accidents in
Germany (FederalStatisticalOffice, 2017). The number of highway fatalities in the
USA is 37,461 in 2016, which was an increase of 5.6% from 2015 (NHTSA, 2016). New
data shows that more than 90% of traffic accidents are related to human error (Singh,
2015). Under such backdrop, various advanced driver assistance systems (ADASs),
e.g. adaptive cruise control systems, lane departure warning system etc., have been
developed to assist the driver in order to increase driving safety. However, research still
needs to be done one step further in order to improve the functionality and reliability of
ADASs. Understanding and modeling driver behavior provides a solution for developing
intelligent automotive application (Plöchl and Edelmann, 2007). If ADAS can predict
driver behaviors several seconds in advance, it can prevent a potential accident from an
improper driver behavior (Mokhiamar and Abe, 2002).

There are various driver behaviors that are necessary to be focused on, e.g. predicting
driver lane-change (LC) behavior and driver turning behavior can avoid side crashes,
braking or accelerating behavior for rear-end collision and detecting driver drowsiness
behavior for severe accident etc. Researching on all of them takes plenty of time. Instead,
this dissertation is focusing on one specific driver behavior comprehensively rather than
doing research that covers all the aspects but only superficially.

Among the above mentioned driver behaviors, LC behavior is one of the most
important one which may lead to a severe traffic accident but it is difficult to predict.
Actually, LC crashes account for about 10% of all crashes (Barr and Najm, 2001) and
1.5% of all motor vehicle fatalities in the USA (NHTSA, 2017). Statistical studies also
show that LC accidents because of human error are 89% (Luoma, Sivak, and Flannagan,
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1995). Thus, understanding and predicting driver LC behavior is beneficial for the
development of ADAS and thus we can reduce traffic accidents.

To this end, in this dissertation we are focusing on the prediction of driver LC
behavior on highway road. The aim is to propose a comprehensive framework and
methodology which can be implemented for prediction of driver LC behavior. The fields
of works included in this dissertation are regarding to machine-learning, informatics,
statistics as well as the human factor field.

1.2 Structure of the dissertation

The main work of this dissertation is structured in 7 chapters. In chapter 1, by
placing emphasis on the importance of traffic safety, the aim and the background of the
dissertation are introduced. Chapter 2 makes an introduction about the key components
of prediction of driver LC behavior, which includes the general concept of driver LC
behavior, LC types, driver decision-making process, predictors of driver LC behavior,
as well as models used for prediction in the related works. All these aspects lay the
foundation of the work presented in this dissertation. Chapter 3 details the mathematical
theories as well as the evaluation methods used throughout this dissertation. Instead
of just explaining mathematical formulas, the aim is to explain the theories in an
easy-to-understand way even for those who have little theoretical knowledge.

From chapter 4 on, the core studies involved in this dissertation are detailed. In
chapter 4 we propose a framework of prediction of driver LC behavior. Works include the
design of a driving simulator-based experiment, feature extraction, modeling machine
learning models, training datasets preparation, model selection and evaluation. Based
on the limitations summarized from the prior research, this chapter is seeking to make
improvements. Several improvements have been made i.e. considering driving contextual
traffic and driving styles in preparing for training datasets, and proposing a gaze-based
labeling method (GBL) to obtain high quality class labels.

Chapter 5 is related to a big data analysis on feature selection. The aim is to
overcome the limitation of the driving simulator based study by proposing a systematic
feature selection work in the perspective of statistics. The proposed feature selection
method can be used in general rather than for a specific algorithm.

By summarizing the method proposed in the last two studies and considering the
limitations, a real-road experiment based study is detailed in chapter 6. Works which
have been done include the experimental design in the real traffic, real-road data
processing, data labeling, feature selection as well as the evaluation of the ML models.

In chapter 7, a more general discussion about the results concluded in all the three
studies is given. At the same time, the original contributions of this dissertation are
also declared. In addition, an outlook is given regarding to the meaning of the practical
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implementation using the methods proposed in this dissertation as well as its possible
challenges.

Finally, the Appendix lists all the important materials regarding to the necessary
documents used in the experiments, data samples as well as the full scale of the results
in the form of tables and figures.
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2
Review - Prediction of driver

lane-change behavior

2.1 Overview

To prevent LC accidents, ADASs have been developed to predict forthcoming driver LC
behaviors while driving. For example, LC assistance system could assess the risk levels
of maneuvering a LC under the current driving situation. If the driver intends to make
LC with high risk, an alarm will be delivered to avoid the potential accidents. This
function is depicted in Figure 2.1. Comprehensively understanding of driver LC behavior
is very important but nontrivial. Fortunately, carefully partitioning the LC procedure
into small segments could make this goal achievable. From the perception-action level,
a complete LC task can be roughly divided into three stages: forming intent, preparing
actions, and executing actions. The driver first forms the LC intent according to his/her
traveling plan and the current driving situation, and with such intent, prepares for taking
LC actions by longitudinal adjustment (e.g., waiting, accelerating, or decelerating),
and then executes a series of LC actions such as lateral controls as long as the driving
situation is acceptable (Windridge, Shaukat, and Hollnagel, 2013). To ensure safe
driving, predicting driver LC behavior as early as possible can leave enough time to
prevent improper LC behaviors. In this chapter we will give an overview of the work
regarding to the prediction of driver LC behavior from basic concept to methodology
which will lay the foundation of the entire work.

2.2 Driver lane-change behavior

Lane-change is defined as the movement of a vehicle from one vehicle lane to another
lane with continuing travel in the same direction in the new lane (J2944, 2013).
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I want to change 
the lane to 

overtake him! 

Attention ! 
Dangerous ! 

Traffic situation 
and  

driver state 
detetion 

Does the 
driver 

intent to 
LC ? 

Dangerous 
! 

Alarm 

yes 

yes 

no 

no 

Figure 2.1: The use case of prediction of driver LC Behavior. Picture extracted from Audi
(2013).

Actually, driver LC behavior can be varying from different types with varying purposes.
Understanding driver LC behavior in depth is crucial for modeling driver LC behavior
as well as the predictive models.

2.2.1 Types of lane-change behavior

Mandatory lane-change (MLC)

MLC occurs when a driver must leave a lane, such as when the lane in which they
are driving ends (due to a lane drop or when merging from an on-ramp), to bypass
a blockage downstream, or to avoid entering and using a restricted lane. MLC can
also occur at the juncture of two or more traveled ways blending together in the same
direction (J2944, 2013). This type of LC can be depicted in Figure 2.2a.

Discretionary lane-change (DLC)

DLC occurs when a driver changes to a lane perceived to offer better traffic conditions,
such as to achieve desired speed, avoid following trucks, avoid merging traffic etc.
(Mathew, 2014). This type of LC case is shown in Figure 2.2b.

2.2.2 Lane-change decision-making process

One of the major problems to understand certain driver behavior is to phase the decision-
making process of the behavior. LC decision-making process is very complex since the
decision of a driver to make LC depends on a number of objectives, and at times LC
decision can be changed. For example, imagine a driver is driving in the rightmost
lane and wishes to turn right within 100 meters but still have to make LC to the left
to pass a car parked in front. Or, imagine a driver wishes to accelerate shortly to
execute LC to overtake the front car, but suddenly he/she finds that a fast moving car
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Ego 

vehicle 

The road is 

going to the 

end, I should 

change lane. 

Object 

vehicle 

(a) Mandatory lane-change.

Ego 

vehicle 
Object 

vehicle 

He is too 

slow, I want to 

overtake him! 

(b) Discretionary lane-change.

Figure 2.2: An example of the two types of LC.

approaching from behind on the destination lane, then he/she may abort the LC until
it is safe to maneuver the LC. From strategic level in the Gipps lane-change decision
structure (Gipps, 1986), the LC decision-making process is the result of the answers of
a number of questions:

• Is it possible to change lanes?

• Is it necessary to change lanes?

• Is it desirable to change lanes?

This process of LC comprises of two decisions: whether the driving conditions are
satisfactory, and if not, whether any other lane is better than the current lane. The
term driving conditions satisfactory implies that the driver is satisfied with the driving
conditions of the current lane as he is able to maintain the desired speed. Important
factors affecting the decision whether the driving conditions are satisfactory include the
speed of the driver compared to the desired speed; the presence of heavy vehicles in
front and behind the subject vehicle, if an adjacent on ramp merges with the current
lane, whether the subject is tailgated etc. If the driving conditions are not satisfactory,
the driver compares the driving conditions of the current lane with the adjacent lanes.
Important factors affecting this decision include the difference between the speed of
traffic in target lanes and the desired speed of the driver, the density of traffic in target
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lanes, the relative speed with respect to the front vehicle in the target lane, the presence
of heavy vehicles in target lanes ahead of the subject etc. (Mathew, 2014).

2.3 Predictor

Imagine we want to predict if it rains in the following few hours. Based on our prior
knowledge, normally before it rains it would be cloudy and humid. And if it is going
to rain, we can also observe some animal activities like ants building high ant mounts,
low-flying birds, bees and butterflies returning home, cows gathering together and laying
down etc. (Denham, 2012). These observations that can give clues to predict the rain
are termed as predictor.

In order to predict driver LC behavior, we also seek the way to find the predictors.
Some key predictors regarding to driver LC behavior can be listed as follows:

Steering

The driver maneuvers the steering wheel to execute a LC, so steering is a direct predictor
of driver LC behavior. Steering wheel angel is a measurement of how much the driver
steers. By detecting steering angle from Controller Area Network (CAN) bus, driver
LC behavior can be modeled using a dynamic Markov model (Pentland and Liu, 1999).
Similar work which uses steering wheel angle to model and predict LC behavior can
be found in Kumar et al. (2013), Mandalia and Salvucci (2005), Salvucci (2004), and
McCall et al. (2007).

Throttle

Research found when the driver wants to overtake a slow moving car, 5 s before executing
LC the driver decelerates gradually, in order to avoid colliding with the slower vehicle.
However, soon after lane-change onset, the driver accelerates to the overtaking speed
and maintains that speed through the rest of the LC (Salvucci and Liu, 2002). This
result indicates that we can find some clues to predict driver LC behavior by monitoring
the opening angle of the throttle in certain scenario like overtaking. For instance, a
recurrent neural network (RNN) approach was implemented by using throttle and brake
data, as well as steering wheel angle to predict driver short-term LC intention (Xing and
Xiao, 2018). Therefore, throttle data collected from CAN bus can be used for prediction.

Turn signal

It is quite common that the driver uses the turn signal to indicate his/her LC intention.
It was found that the driver turns on the signals approximately 1.5 s before the start of
a LC behavior (Salvucci and Liu, 2002), thus a computational driver model was used to
detect driver LC behavior (Salvucci, Mandalia, et al., 2007). Other methods involve
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the usage of the turn signals for LC prediction can be found in Xu et al. (2012) and
Winner and Lueder (2005). However, one drawback of using the turn signal as model
input for prediction is due to its instability. Research found that the turn signals were
used only 44% of the time, with signals used more often for left lane changes (48%) than
for right lane changes (35%) (Lee, Olsen, Wierwille, et al., 2004). Thus, turn signal is
recommenced to be used together with other signals.

Time to collision (TTC)

TTC is the time required for two vehicles to collide if they continue at their present
speeds on the same path. It is usually used to evaluate collision risk (Kusano and Gabler,
2011). If the driver follows a vehicle with a small TTC, he/she may execute a LC to
overtake the slow leading vehicle. Thus the TTC can be regarded as a valuable feature
to predict LC maneuver (Kasper et al., 2012). Using TTC as a feature, a dynamic
probabilistic drivability map was modeled to give the driver recommended acceleration
and timing to execute LC (Sivaraman and Trivedi, 2014). More related works that use
TTC as a predictor for prediction of driver LC behavior can be listed in Liebner et al.
(2013) and Peng et al. (2015).

Eye movement

Eye movement was found to be an indicator of information gathering and therefore can
be used to derive information about the next planned objective of the driver (Lethaus
and Rataj, 2007). A statistical analysis shows that the driver spends most of his/her
gaze time before a LC looking at the current lane. As onset approaches, more gaze time
is directed to the destination lane and the mirrors, since the driver is checking to the side
and rear of the vehicle to ensure safe passage (Salvucci and Liu, 2002). The period of 3 -
4 s prior a LC is considered as critical phase of visual search to determine the feasibility
of the maneuver (Beggiato et al., 2018). Based on Tijerina et al. (2005), during left
LC process, the chance of looking at the left mirror is 65% – 85% and the duration on
average is 1.1 s. This result indicates that driver LC behavior can be anticipated by
observing mirror-glancing duration of the driver. Lethaus, Baumann, et al. (2013) used
a mirror-glancing ratio during the last past seconds as the input of his model to predict
driver LC behavior. In order to analyze gaze behavior in depth during LC behavior,
the area of interests (AoI) of driver gaze performance is divided into several areas as it
is shown in Figure 2.3. According to Lee, Olsen, Wierwille, et al. (2004) it was found
that the most likely glance locations were forward (probability of 1.0), rear view mirror
(0.52), and left mirror (0.52). The highest link probability value (0.34) was between the
forward and rear view mirror locations. The most likely glance locations for right LC
were forward (1.0), rear view mirror (0.55), and right mirror (0.21). The highest link
probability value (0.60) was between the forward view and rear view mirror. The link
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value probabilities between forward and right mirror and between forward and right
blind spot were also relatively high at 0.12.

Figure 2.3: The AoIs of the driver while driving. Picture extracted from Doshi and
Trivedi (2009).

These works indicate that driver gaze behavior is closely related to LC behavior,
however, the challenge of using eye movement signals for real-time application is how to
ensure tracking accuracy since gaze tracking is sensitive to lighting condition change (Zhu,
Fujimura, and Ji, 2002).

Head pose

While driving, driver gaze behavior is closely related to his/her head pose, so head pose
can be also regarded as a predictor of driver LC behavior. Unlike eye movement which
can be monitored by various eye-tracking devices, the method of estimating head pose is
usually camera-based image processing (Martin et al., 2012), which poses a challenge to
the accuracy of head dynamic estimation technique. Once robust monocular in-vehicle
head pose estimation systems have been developed (Murphy-Chutorian, Doshi, and
Trivedi, 2007; Zhu and Fujimura, 2004), head pose thus can be used to model driver LC
behavior. Doshi and Trivedi (2009) compared the method of using driver gaze position
and head pose to predict driver LC behavior, and the result found that head pose can
achieve earlier LC prediction. However, a limitation of the head tracking system is that
it frequently loses track of the head direction at fast movements. It occurs when the
driver is looking over his shoulder to check for bicycles (Liebner et al., 2013). In addition,
head pose estimation is done by computer vision technology; the computational demand
is high especially for vehicle on-board real-time application.

2.4 Prediction model

Now we go back to the example of weather prediction. In the ancient time, people
forecasted the weather based on their prior knowledge. The prior knowledge mentioned
in the last section, i.e. by observing animal activities, is actually based on statistics.
Because those activities frequently happen, people can learn such lessons from the past
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and then could forecast the weather. It is the same way for predictive model. Predictive
model uses statistics to predict future events. Thanks to the development of informative
technology, machine learning (ML) becomes a powerful tool for prediction modeling.
Among various ML models, supervised learning models are the most popular tools,
e.g. support vector machines (SVM), Naive Bayes (NB), decision tree (DT), k-nearest
neighbor (KNN), artificial neural networks (ANN), Bayesian networks (BN), hidden
Markov model (HMM) etc. A number of studies regarding to prediction of driver LC
behavior have been carried out using supervised learning models as follows:

SVM

Kumar et al. (2013) proposed a solution to LC prediction based on the combination of
a multi-class SVM classifier and Bayesian filtering using driver steering wheel angle and
vehicle lane position data. The algorithm can predict on average 1.3 seconds before a
LC occurs. The limitation is that only two drivers took part in the experiment, thus
tests with more participants should be done to evaluate the method. Salvucci (2004)
and Mandalia and Salvucci (2005) used a novel mind-tracking technique incorporated
with SVM method to detect LC.

Bayesian model

A sparse Bayesian learning methodology was proposed by McCall et al. (2007) to infer
driver LC intention by estimating the head pose of the driver and tracking the lane mark.
It was found that by fusing driver state information it can predict driver LC behavior 3.0
s before an actual LC maneuver. However, the method used in the paper suffered from
harsh lighting conditions, heavy traffic, occlusion of the lane markings and extremely
poor road conditions. Kasper et al. (2012) introduced an object-oriented Bayesian
networks to detect driver maneuvers on highway roads. Besides driver LC behavior, this
model can also detect 26 other driver behaviors. But due to the parametrization of the
network is computationally demand, a learning algorithm should be employed.

HMM

Pentland and Liu (1999) proposed a HMM using vehicle velocity, driver steering angle,
brake pedal position as well accelerating pedal position signals to predict driver LC
behavior based on a driving simulator experiment. By giving the driver text commands,
the model can recognize LC maneuver 2 seconds after the onset of a LC command with
an accuracy of 93.3%. The limitation of this work is that the experiment was conducted
by giving text commands to the participants rather than letting them make LC based
on their own preference. An autoregressive input-output HMM method was proposed
by Jain, Koppula, Raghavan, et al. (2015). This model can estimate the head pose of
the driver by tracking his/her face orientation to predict LC behavior.
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Neural networks

Peng et al. (2015) developed a multi-parameter predictive model with a neural network
model. Vehicle motion state, handing characteristics, driving conditions as well as head
movement data were all involved in the model. A variation of neural network, termed
as recurrent neural networks (RNN), was proposed by Jain, Koppula, Soh, et al. (2016)
to predict driver behaviors. Using this model, maneuvers can be anticipated 3.5 seconds
before they occur in real-time with a precision of 90.5%.

2.5 Application

The application of predicting driver LC behavior in ADAS has been developed and
integrated into a human-machine interface to reduce driver workloads and enhance
traffic safety with either active or passive feedback.

Active feedback

An active feedback is reported if a LC behavior is feasible, then the well-designed driver
assistance system will cooperatively assist the driver changing lanes with recommended
acceleration and speed (Sivaraman and Trivedi, 2014; Butakov and Ioannou, 2015).

Passive feedback

Passive feedback will display LC safety states or deliver alarms to the driver when
changing lanes is infeasible (Schubert, Schulze, and Wanielik, 2010; Jain, Koppula,
Raghavan, et al., 2015).

2.6 Summary

This chapter gives an overview of the key components of the prediction of driver LC
behavior, including the general concept of driver LC behavior, LC types, driver decision-
making processes, predictors of driver LC behavior, as well as models used for prediction
in the related works. These contents are very important items which are the backbone
of this field of research. All the work proposed in this dissertation is based on prior
research, but not limited by them.
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3
Mathematical background

This chapter details the mathematical theories as well as the evaluation methods used
throughout this dissertation. Instead of just explaining mathematical formulas, we tend
to use lively examples in order to make the theory to be understood easily even for
those who have little theoretical knowledge. The detail of how to use these theories in
practice will be mainly explained in the following sections.

3.1 Machine learning model

In the last chapter, we have reviewed the related works of how machine learning (ML)
models have been implemented to solve the problem regarding to prediction of driver
LC behavior. This section gives an insight into the math behind the ML models which
would be mainly used in the following chapters.

3.1.1 Classification of ML models

When it comes to machine learning models, there are two main types of tasks: supervised,
and unsupervised. The main difference between the two types is that supervised learning
is done using a ground truth (class labels), or in other words, the prior knowledge of what
the output values for our samples should be. Therefore, the goal of supervised learning is
to learn a function that, given a set of data and desired outputs, best approximates the
relationship between input and output observables in the data. Unsupervised learning,
on the other hand, does not have labeled outputs, so its goal is to infer the natural
structure within a set of data points1. Especially in our case, since we use predictors for
prediction, the ML models used in this dissertation belong to supervised learning.

1More details can be found in this link: https://towardsdatascience.com/supervised-vs-unsupervised-
learning-14f68e32ea8d, visited on 31.07.2019
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3. Mathematical background

The two main branches of supervised learning models are generic models and
discriminant models. In the case of classification problems, generic models tend to model
how the training data are generated and then try to find the properties based on the
prior assumption. On the contrary, discriminant models do not care about how the
training data are generated and simply try to find the best classification boundary to
classify data samples. Both generic models (Bayesian network, naive Bayes etc.) and
discriminant models (SVM, decision tree etc.) are applied in this dissertation.

3.1.2 Bayesian network

Bayesian networks are graphical structures for representing the probabilistic relationships
among a large number of variables and doing probabilistic inference with those
variables (Neapolitan et al., 2004). In order to have a better understanding of how
BN predicts events, we use again the example of rain prediction. In chapter 2 we have
learned that in order to predict the rain, we need to find some predictors. Now we take
two predictors i.e. Sprinkler and Humidity for instance. Figure 3.1 depicts a famous
BN structure for the rain prediction adapted from Russell and Norvig (1995). Based on
our experience we know that before it rains, the humidity in the air is high. But when
the sprinkler waters, it could also increase humidity. Also, the rain has a direct effect
on the use of the sprinkler (considering that when it is going to rain, the sprinkler is
usually not turned on). Then this situation can be modeled with a BN. All the three
variables are binary values; the joint probability of this BN can be given as based on the
chain rule (Schum, 2001):

P (H, S, R) = P (H|S, R) · P (S|R) · P (R), (3.1)

where H, S and R are short for Humidity high, Sprinkler use and Rain, respectively.
Assume it is in a dry period which makes us believe that it is less likely to rain.

So it is reasonable to set the probability of rain as 0.2 and fair weather as 0.8. In
Bayesian inference theory it is called prior, which describes one’s beliefs before some
evidence is taken into account. The probability tables in Figure 3.1 regarding to sprinkler
and humidity are called conditional probability. If we observe high humidity in air,
then we can compute the probability of raining given high humidity condition, that is
P (R = T|H = T), which is called posterior :

P (R = T|H = T) = P (R = T, H = T)
P (H = T) , (3.2)

where T is for true.
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3.1 Machine learning model

Sprinkler Rain 

Humidity 

high 

P (R=T) P (R=F) 

0.2 0.8 
R P (S=T) P (S=F) 

T 0.01 0.99 

F 0.4 0.6 

S R P (H=T) P (H=F) 

F F 0.0 1.0 

F T 0.8 0.2 

T F 0.9 0.1 

T T 0.99 0.01 

Figure 3.1: The Bayesian network of rain prediction with probability tables (R = Rain,
S = Sprinkler, H = Humidity high, T = True and F = False).

Using a variation of total probability law2, equation (3.2) can be calculated as:

P (R = T, H = T)
P (H = T) =

∑
S P (H = T, R = T, S)∑

S,R P (H = T, S, R) . (3.3)

Combined with BN joint probability equation (3.1), P (H = T, R = T, S = T) can
be written as:

P (H = T, R = T, S = T) = P (H = T|S = T, R = T) · P (S = T|R = T) · P (R = T)
= 0.99 × 0.01 × 0.2 = 0.00198,

(3.4)

and P (H = T, R = T, S = F) can be written as:

P (H = T, R = T, S = F) = P (H = T|S = F, R = T) · P (S = F|R = T) · P (R = T)
= 0.8 × 0.99 × 0.2 = 0.1584.

(3.5)
2For any given event A, the probability of A can be written as : P (A) =

∑
B P (A, B), where

∑
B

means all the possibilities of event B.
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3. Mathematical background

So, ∑
S P (H = T, R = T, S) can be written as:

∑
S

P (H = T, R = T, S) = P (H = T, R = T, S = T) + P (H = T, R = T, S = F)

= 0.00198 + 0.1584 = 0.16038.

(3.6)

In the same way, we can also calculate ∑
S,R P (H = T, S, R):

∑
S,R

P (H = T, S, R) = 0.44838. (3.7)

Combining equation (3.2), (3.3), (3.6) and (3.7) we can get the probability of raining
given high humidity:

P (R = T|H = T) =
∑

S P (H = T, R = T, S)∑
S,R P (H = T, S, R)

= 0.16038
0.44838

≈ 35.77 %.

(3.8)

From this example we know that by only observing high humidity in air, the chance
of raining is 35.77 %, which means it is less likely to rain. One main reason is that
the prior probability of rain is low (P (R = T) = 0.2). Actually in BN, the posterior
probability, to a great extent, is governed by the prior. If in the example we preset the
prior of raining as 0.8 rather than 0.2, the outcome of posterior probability would be
a much higher value. Thus, the prior knowledge is important for Bayesian probability
inference.

The example of weather prediction only gives a discrete case of BN (all the variables
are discrete with binary states), however, BN can also be implemented with continuous
variables. Each variable in a BN is called a node. In Figure 3.1, Sprinkler, Rain and
Humidity high are the three nodes of the BN. Based on the causality of the three
nodes, the node Rain is termed as the parent node of Sprinkler and Humidity high, and
Sprinkler is the parent node of Humidity high. For any given BN, the joint probability
of the BN can be written as:

P (Z1, Z2, ..., Zn) =
n∏

i=1
(Zi|Pa(Zi)), (3.9)

where Pa(Zi) is the parent node of variable Zi. This is a general form of equation (3.1).
With the joint probability and Bayes theorem we can infer posterior probability. More
BN structures and inference methods can be found in Neapolitan et al. (2004) and
Murphy and Russell (2002).
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X 

Q 

𝑃 𝑋 = 𝑥 𝑄 = 𝑖  
𝑥 = [𝑥1, 𝑥2]

𝑇 
𝑖 = {1, 2} 

Q        P 
1 0.5 
2 0.5 

Prior 

Conditional probability 

Figure 3.2: The Bayesian network for data classification problem.

3.1.3 Gaussian mixture model

Let us take an example of data classification problem. Figure 3.2 presents a BN with
one discrete node Q and one continuous node X. In a BN with the mixture of both
discrete and continuous nodes, discrete nodes are usually represented as squares and
continuous nodes as circles. So, node Q is a discrete variable with binary states and X

is a continuous variable that obeys certain distribution. We set the prior of Q as 0.5
for both two random variable values. This means that the chance of Q = 1 and Q = 2
is equal. We do not know what distribution X obeys, but we can observe some values
of random variable X given Q = 1 and Q = 2, see Figure 3.3a. The red points are
generated when Q = 1 and the blue are from Q = 2. The problem is that given some
new data how can we know in which class they are from? In Figure 3.3b, we observe
new data points, are they red or blue?

-4 -2 0 2 4

(a)

-2

-1

0

1

2

x
2

Two datasets

Q = 1

Q = 2

-4 -2 0 2 4

(b)

-2

-1

0

1

2

x
2

Given new data

Q = 1 or 2 ?

x1 x1

Figure 3.3: An example of data classification problem.
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3. Mathematical background

Without loss of generality, we assume the black points are generated by Q = 1. So
we can know how much this assumption can be trusted by calculating the posterior
probability P (Q = 1|X) using Bayes theorem3:

P (Q = 1|X) = P (X|Q = 1) · P (Q = 1)
P (X) . (3.10)

Because the marginal distribution P (x) is very difficult to get, P (Q = 1|X) can
normalized in the form of:

P (Q = 1|X) = c · P (X|Q = 1) · P (Q = 1), (3.11)

where c is a constant value to make sure the posterior probability sum to one.
Then the problem of classification becomes how to fit the conditional probability

density p(x|Q = 1). Figure 3.4a shows the observed x values given Q = 1. Since
Gaussian distribution is the most important and most widely used distribution in
statistics, we assume p(x|Q = 1) is subject to Gaussian distribution:

p(x|Q = 1) = N (µ, Σ2), (3.12)

where µ, Σ are the mean and covariance of the observed data in Figure 3.4a.
The Gaussian fitting result can be seen in Figure 3.4b. However, from the probability

contour of the fitted distribution we may disbelieve our assumption that the conditional
distribution is subject to Gaussian distribution. Actually in Figure 3.4c we can see that
the Gaussian contour which represents data from Q = 1 largely overlaps the blue data
which generated from Q = 2. This result makes us reject the Gaussian assumption. But
it does not mean that we cannot use Gaussian method to fit p(x|Q = 1). Gaussian
mixture model (GMM) is an alternative solution.

3For any given event A and B, the probability of A given B can be written as : P (A|B) = P (B|A)·P (A)
P (B) ,

where P (B) ̸= 0.
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Figure 3.4: Fitting p(x|Q = 1) with Gaussian distribution.

GMM is a parametric probability density function represented as a weighted sum
of Gaussian component densities (Reynolds, 2015). If random variable p(x|Q = 1) is
subject to certain GMM, it can be written as:

p(x|Q = 1) =
m∑

i=1
wiN (µi, Σi) (3.13)

where m is the number of mixture components, wi is the weight of ith Gaussian
distribution with 0 ≤ wi ≤ 1,

∑m
i=1 wi = 1, and µi, Σi are the mean and covariance of

ith Gaussian distribution, respectively.
Figure 3.5 shows the fitting results by GMM with 2 and 3 mixture components,

respectively. We can see that with 2 mixture components (Figure 3.5a), the probability
contour is much better than it is in Figure 3.4b. And with 3 mixture components, the
fitting result looks even better in Figure 3.5b.
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Figure 3.5: Fitting p(x|Q = 1) with GMM by different numbers of mixture components.

From the probability contour in Figure 3.6, it can be found that using GMM with 3
mixture components to fit the conditional probability density p(x|Q = 1), data from
Q = 1 and Q = 2 can be classified in an efficient way. This is how GMM works to fit
probability distribution.
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Figure 3.6: The classification result of using GMM with 3 mixture components.

3.1.4 Other ML models

Although BN and GMM is the main ML models detailed in this dissertation, however
other ML models e.g. support vector machine (SVM), naive Bayes (NB), decision tree
(DT) and k-nearest neighbors (KNN), are also important models in the field of machine
learning.

Support vector machine

The support vector machine (SVM), in dealing with classification problems, is a
supervised learning method that generates hyperplane functions from a set of labeled
training data. With the decision boundary functions, new data can thus be classified
into different classes.
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3.1 Machine learning model

Suppose we have data come from two classes. An SVM classifies data by finding
the best hyperplane that separates all data points of one class from another. The best
hyperplane for an SVM is with the largest margin between the two classes. The margin
is the maximal width of the slab parallel to the separating hyperplane that has no
interior data points (Wang, 2005). The support vectors are the data points that are
closest to the hyperplane, which are on the boundary of the slab. Figure 3.7 illustrates
these definitions.

Class 1 

Class 2 

Support vectors 

Figure 3.7: An example of how SVM works to classify data from two classes.

The above example is a linear classification case, which means that the best
hyperplane can be described by a linear function. For the case whose hyperplane
cannot be presented by a nonlinear function (in the space whose dimension is the same
as the input data) is the non-linear classification problem. For non-linear classification
problems, kernel function K(x, x

′) is used to transform the data from the current space
to a new space where the hyperplane can be described as a linear function. This process
can be illustrated in Figure 3.8. Common kernel functions are linear kernel, polynomial
kernel and Gaussian kernel. The chosen of certain kernel function in a SVM is depending
on the training data, and the guidance can be found in Scholkopf and Smola (2001) and
Ben-Hur and Weston (2010).
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𝑘(𝑥, 𝑥′) 

Figure 3.8: Using kernel function to transform data from one space to another, where
the hyperplane used for classification can be described by a linear function.

The advantages of support vector machine is that it performs well and memory
effective even with high dimensional features, however, when the number of feature
dimension is much greater than the number of training samples, over-fitting could
happen (Smola and Schölkopf, 2004).

Naive Bayes

The naive Bayes (NB) classifier is a supervised learning algorithm based on Bayes theorem
with the simple assumption of conditional independence between each feature set given
different classes. Assume a set of training data with feature set x = [x1, ..., xt..., xn]T (xi

means the i-th feature) are labeled by class C, so based on Bayes theorem the predicted
probability given features can be written as:

P (C|x1, x2, ..., xn) = P (C) · P (x1, x2, ..., xn|C)
P (x1, x2, ..., xn) , (3.14)

and with the conditional independent assumption:

P (x1, x2, ..., xn|C) =
n∏

i=1
P (xi|C), (3.15)

thus equation (3.14) is simplified to:

P (C|x1, x2, ..., xn) = P (C) · ∏n
i=1 P (xi|C)

P (x1, x2, ..., xn) . (3.16)

Since P (x1, x2, ..., xn) is a constant, equation (3.16) is then written as:

P (C|x1, x2, ..., xn) ∝ P (C) ·
n∏

i=1
P (xi|C), (3.17)

where P (xi|C) is the conditional distribution needs to be fitted. The common
distributions used to fit the conditional distribution are Gaussian distribution, kernel
distribution as well as multivariate multinomial distribution etc., which are detailed
in Manning, Raghavan, and Schütze (2010).
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3.1 Machine learning model

Naive Bayes classifiers can be extremely fast compared to more sophisticated methods.
The decoupling of the class conditional feature distributions means that each distribution
can be independently estimated as a one dimensional distribution. This in turn helps to
alleviate problems stemming from the curse of dimensionality (Zhang, 2004). However,
the downside is also caused by the conditional independent assumption between features
since some features are dependent and thus lead to poor fitting problem.

K-nearest neighbor

The nearest neighbor method for classification is a type of instance-based learning, which
means that it does not attempt to construct a general internal model, like the mentioned
SVM and NB, but simply stores instances of the training data. Given new data, the
decision of classifying is computed from a simple majority vote of the nearest neighbors
of each new data points: a query point is assigned the data class which has the most
representatives within the nearest neighbors of the point (Pedregosa et al., 2011).

In KNN, K is the number of nearest neighbors. The number of neighbors is the core
deciding factor. K is generally an odd number if the number of classes is 2. When K=1,
then the algorithm is known as the nearest neighbor algorithm. Let us set an example.
Given a new point (green triangle in Figure 3.9), for which a label needs to be predicted,
KNN works in the following procedures:

1. Calculate distance: there are various metrics to determine the distance between the
new point and its neighbors, e.g. Euclidean distance, city block metric, Mahalanobis
distance, Minkowski metric, Chebychev distance, Cosine distance, Jaccard distance,
Correlation distance etc.. One can choose them depend on certain requirement.

2. Find closest neighbors: select the closest neighbors depends on K. If K=1, then only
one neighbor is selected (Figure 3.9a) and for K=3, three neighbors are selected
(Figure 3.9b).

3. Vote for labels: classify points by the majority votes of its k neighbors. Each object
votes for their class and the class with the most votes is taken as the prediction.
In Figure 3.9b three neighbors are selected, with two points voting for class 1 and
one for class 2, so the new point is predicted as class 1.

From the above example we can see that K does matter for new point prediction,
however, there are no optimal number of neighbors that suits all kind of data sets. Each
dataset has its own property. Generally, K can also be chosen by generating the model
on different values of K and check their performance. The detailed guidance of choosing
K can be found in (Friedman, 1997).
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K = 1 

? ????????

Class 1 

Class 2 

New data 

(a) KNN finding closest neighbors for the case K=1.

Class 1 

Class 2 

New data 

? 

K = 3 

????????

(b) KNN finding closest neighbors for the case K=3.

Figure 3.9: An example of how KNN works for classification of new data.

Decision tree

Decision Tree (DT) is a non-parametric supervised learning method, which creates a
model that predicts the new data for which class it comes from by learning simple
decision rules inferred from the features. Here is an example to show how DT works for
making decision of Whether to play tennis?4. The decision of Whether to play tennis?
is influenced by several conditions, e.g. outlook of the weather, temperature, humidity,
wind etc. The decision tree of Whether to play tennis? can be drawn in Figure 3.10.

4This example is from the presentation in a machine learning course made by Prof. Dr.
Martin Riedmiller of Albert-Ludwigs-Universität Freiburg, full source link: http://ml.informatik.uni-
freiburg.de/former/_media/teaching/ss10/03_decisiontrees.pdf, visited on 31.07.2019
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Weather 
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Normal 
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Figure 3.10: The decision tree of Whether to play tennis?.

A decision tree is drawn upside down with its root at the top, which is Weather in
this case. The bold text in ellipse represents a condition node, and the blue texts are
the status of the condition. Based on the condition node, the tree splits into branches.
The end of the branch that cannot split anymore is the leaf, in this case, whether to play
tennis, represented as red and green text respectively. In the real case of classification,
a decision tree is trained by more features and has more branches with more complex
structure. In practice, it is tricky to set when the branch to split and when stop splitting.
Because if the dataset has a large number of features, it results in large number of splits,
which in turn gives a huge tree. Such trees are complex and can lead to over-fitting
problem. For more guidance of configuring DTs see (Safavian and Landgrebe, 1991).

The decision tree model for classification is easy to understand and only requires a
small amount of training dataset. In addition, little data preparation is needed to train
a decision tree, i.e. data normalization and dummy variables are not necessary because
decision tree can use the original feature to split branches. However, the decision tree
can be also sensitive to the data, because small variations in the data might result in a
completely different tree being trained.
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3.2 Parameter learning

In this thesis, the expectation-maximization (EM) algorithm is used to learn the
parameters of a GMM (Bishop, 2006). The EM is an iterative algorithm that initiates
from a random θ and then proceeds to iteratively calculate the log-likelihood of θ and
update till the likelihood becomes convergence. Each iteration consists an E-step and
M-step (Bishop, 2006):

• Initialize θi = [wi, µi, Σi] and evaluate the initial value of the log-likelihood:

l(θ) = log(p(x|θ)) =
N∑

j=1
log

{
m∑

i=1
wiN (µi, Σi)

}
(3.18)

where x = [x1, ..., xN ].

• E-step: here a latent variable γi is introduced to represent the posterior probabilities
of P (θ|x), and based on Bayes rule, it could be written as

γi(x) = wiN (µi, Σi)∑m
j=1 wjN (µj , Σj) (3.19)

• M-step: Re-estimate the parameters using current posterior probabilities, so the
new θ can be written as

µNew
i =

∑N
j=1 γi(xj)xj∑N

j=1 γi(xj)

ΣNew
i =

∑N
j=1 γi(xj)(xj − µi)(xj − µi)T∑N

j=1 γi(xj)

wNew
i = 1

N

N∑
j=1

γi(xj)

(3.20)

After estimation of new θNew update the log-likelihood:

l(θNew) =
N∑

j=1
log

{
m∑

i=1
wNew

i N (µNew
i , ΣNew

i )
}

(3.21)

The iteration equation (3.19)-(3.21) are repeated until l(θNew) − l(θ) < ε, where ε is a
very small positive value.
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3.3 Evaluation method

3.3.1 Receiver operating characteristic

One of the most popular methods of evaluating classification or prediction performance
are receiver operating characteristic (ROC) curves. Regarding to LC behavior research
using ROC curve method can be found in McCall et al. (2007), Liebner et al. (2013),
Peng et al. (2015), Doshi and Trivedi (2009), and Lethaus, Baumann, et al. (2013).

The ROC curve is created by plotting the true positive rate (TPR) against the false
positive rate (FPR) at various threshold settings. TPR and FPR are computed by

TPR = TP

TP + FN

FPR = FP

TN + FP
(3.22)

where TP, TN, FP and FN are true positives, true negatives, false positives, and false
negatives, respectively. Thus TPR and FPR are the function of threshold T, termed as

TPR =
∫ ∞

T
f1(x)dx

FPR =
∫ ∞

T
f2(x)dx

(3.23)

3.3.2 Area under curve

The metric of using ROC curve to compare model performance over different methods
is to calculate the value of area under curve (AUC) of each ROC curve. AUC is given
by Fawcett (2006):

AUC =
∫ −∞

∞
TPR(T )FPR′(T )dT, (3.24)

where T is the different threshold setting. Basically, AUC is ranging from 0 to 1 and a
larger AUC value indicates better performance.

3.3.3 Cross-validation

Training a prediction model and testing it on the same data is a methodological mistake.
This would lead to over-fitting, which means the model just repeats the labels of the
samples that it has just trained with and could get a perfect score with such trained data,
however, would fail to predict anything useful on non-trained data. To avoid over-fitting,
it is common practice when performing a supervised machine learning experiment to
hold out part of the available data and train the model with the rest. In other words,
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training data and test data should be separated. This method is called cross-validation
(CV).

One popular CV method is k-fold cross-validation. The original sample is randomly
partitioned into k equal sized subsets. Of the k subsets, a single subset is retained as
the validation data for testing the model, and the remaining k − 1 subsets are used as
training data. The cross-validation process is then repeated k times, with each of the k

subset used exactly once as the validation data. The k results can then be averaged to
produce a single estimation (McLachlan, Do, and Ambroise, 2005).

3.4 Summary

In this chapter, the core machine learning mode, i.e. Bayesian network and Gaussian
mixture model, as well as the dominated parameter learning algorithm, i.e. the
expectation–maximization algorithm are detailed. At the same time, support vector
machine, Naive Bayes, K-nearest neighbor as well as decision tree are also explained.
In order to explain the math behind each model in an easy-to-understand way, this
dissertation uses some lively examples to uncover the mystery of the theories. In addition,
evaluation methods that are used for evaluating classification result are also introduced
here. All these theories are the backbone of this dissertation.
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4
Experiment 1 - Prediction of driver

lane-change behavior based on a
driving simulator experiment

© 2018 IEEE. Reprinted, with permission, from Xiaohan Li (the author of this
dissertation), Wenshuo Wang, and Matthias Roetting, Estimating Driver’s Lane-Change
Intent Considering Driving Style and Contextual Traffic, IEEE Transactions on Intelligent
Transportation Systems, October 2018. DOI: 10.1109/TITS.2018.2873595.

A substantial portion of this chapter is based on the above paper.

4.1 Introduction

In chapter 2, the related works regarding to prediction of driver LC behavior have been
introduced, however, to design a comprehensive framework is no easy task. There are
still some aspects that should be taken into account or can be improved.

Contextual traffic

In chapter 2, we mentioned two types of lane-change, i.e. mandatory lane-change (MLC)
and discretionary lane-change (DLC). Since the purposes of MLC and DLC are different,
the decision-making process is different as well. Research found that most drivers who
were involved in LC crashes did not attempt an avoidance maneuver (Olsen, Lee, and
Wierwille, 2005). This suggests that the driver did not see or was unaware of the
presence of another vehicle or crash hazard (Tijerina, 1999). In this situation, the driver
fails to understand the danger of the current driving context.

Actually, contextual traffic is closely related to driver behavior. For instance, it
impacts driver gaze behavior. Lee, Olsen, Wierwille, et al. (2004) found that driver
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glance duration can increase by 0.25 s on average (a 20% increase) in driving situation
where an overtaking vehicle appeared, in comparison to the situation with no traffic
involved. More specifically, single glance duration was ranging from 1.1 s to 1.8 s (Mean
= 1.25 s) when no overtaking occurred in the adjacent lane, and from 1.0 s to 2.3 s
(Mean = 1.5 s) when overtaking occurred in the adjacent lane. Overall, the road traffic
caused a large (50% to 85%) increase in both total and visual input times. Without the
road traffic, visual search times were 3.7 s for left LC and 3.4 s for right LC. If there
were more road traffic, visual search times were 6.1 s for left LC and 4.5 s for right LC.
Considering that driver gaze behavior is an important predictor of driver LC behavior,
the effect of contextual traffic should be considered. Beggiato et al. (2018) found that
by monitoring driver gaze behavior the number of glances in a sequence was primarily
associated with the road traffic density on the target lane. There are more vehicles on
the target lane, the more and longer the driver glancing mirror behavior can be observed.
Therefore, to predict driver LC behavior, the current contextual traffic should be taken
into account.

Driving style

As long as the driver remains a part of the control loop, driving and safety behaviors
are more than just the mechanical operation of a vehicle (Hennessy, 2011), but also
affected by the driving style of the driver. The concept of driving style can be termed
as either a dynamic behavior of a driver on the road (Murphey, Milton, and Kiliaris,
2009) or an intrinsic driving habit (Saad, 2004; Sagberg et al., 2015).

The former concept tends to consider driving style as a transient behavior, which
means that a driver can be aggressive at one time period but normal at other situation.
Murphey, Milton, and Kiliaris (2009) classified the dynamic driving style as calm driving,
aggressive driving and normal driving. Velocity, acceleration and jerk were used as the
measurements. The result suggested that drivers with aggressive driving have more fuel
consumption.

The latter concept of driving style, however, is more popular since different driving
habits may affect the design, effectiveness, and feedback mechanisms of future ADAS. For
example, Doshi and Trivedi (2010) found that aggressive drivers are more consistent in
behaviors and more predictable than non-aggressive drivers. In a paper by Johnson and
Trivedi (2011), it was found that aggressive and non-aggressive drivers tend to behave
in different ways in the similar situation. Non-aggressive drivers are quantifiable and
significantly more compliant to feedback from ADAS. It indicated that the populations
of non-aggressive drivers need to be further split in order to detect more significant
behavioral trends. By monitoring driver gaze behavior, the results shows that when
the driver is conducting a LC to overtake cars, conservative drivers prefer a higher
time-headway (Mean = 1.76 s) than either the neutral drivers (Mean = 1.23 s) or the
aggressive drivers (Mean = 1.15 s). So, it is reasonable to say that drivers with different
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driving styles would have different preference when initiating a LC in an overtaking
scenario (Fairclough, May, and Carter, 1997).

In conclusion, the driving style should be considered in prediction of driver LC
behavior.

Data labeling method

The related works regarding to the prediction of driver behavior mainly use supervised
machine learning models (Pentland and Liu, 1999; Kasper et al., 2012; Liebner et al.,
2013; Jain, Koppula, Raghavan, et al., 2015; Peng et al., 2015). The fact is that to train
good supervised learning models are strongly depended on high-quality labeled data.
To some degree, model performance is closely related to the quality of the labeled data.
Specifically for prediction of LC, how to label LC and lane-keep (LK) data samples from
the raw dataset is a big issue because different training datasets could train different
parameters.

Most of the related works applied a time-window (TWL) to label LC datasets, termed
as the TWL method. A time-window with a fixed length of duration is used to label
time series data. This method is commonly used by labeling two adjacent events in time
series. By using the TWL method, data samples, which are within certain time-window
before the moment that one specific part of the vehicle just hits the lane boundary, are
labeled as LC datasets (Mandalia and Salvucci, 2005; Doshi and Trivedi, 2009; Lethaus,
Baumann, et al., 2013; Doshi and Trivedi, 2008; Morris, Doshi, and Trivedi, 2011).

The limitation of the TWL method is that the fixed TW that is used to distinguish
LC and LK events is the same for all the drivers, regardless of different driving situations.
However, in practice the driver could start to prepare for a LC either early or late
depends on traffic situation and his/her personal preference. In other words the suitable
TW depends on the contextual traffic as well as driving style. For instance, what may
happen in a complex situation is that the driver attempts to make LC and afterwards
he/she aborts his/her intention. In other words, driver LC behavior is very driver and
situation specific. Rehder et al. (2016) made a statistical analysis which counted how
early the driver tends to start a LC behavior until the front wheel of the car just hits
the lane boundary. The duration of this process suffers a high variance of 2.42 s, and
this large difference does impair the prediction performance based on the results.

Therefore, a data labeling method that considers LC behavior case by case could
improve the quality of the labeled datasets.

Motivation of this study

In this chapter we aim to design a framework which can be used for prediction of driver
LC behavior. The experiment was conducted in a seat-box based driving simulator. For
the purpose of making the simulated driving environment easier but without loss of
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generality, the driving scenario was modeled on a two-lane highway and for the case of
left lane-change (LLC). Inspired by the related works, several aspects that are discussed
above could be improved through this study:

1. Considering contextual traffic, a cell-grid method is implemented to model the
current driving situation.

2. Considering driving style, all the participants are classified into three groups, i.e.
high aggressive, medium aggressive and low aggressive driving style by using a
behavioral-psychological questionnaire.

3. In order to obtain high-quality labeled datasets for model training, a gaze-based
labeling (GBL) method is implemented. With the GBL method, LC datasets can
be labeled based on the moment that the driver really tends to make LC rather by
assuming a fixed TW.

4. In the process of preparing for training datasets, the labeled datasets are manually
organized by different driving scenarios as well as by different driving styles.

4.2 Driving scenario

4.2.1 Modeling contextual traffic

In order to model contextual traffic, the road traffic should be specified. Two kinds
of vehicles, i.e. subject vehicle and nearest surrounding vehicles, are considered in the
specified scenarios (Figure 4.1). The subject vehicle (blue) is the host vehicle drove by
the participant. Vehicle 1, Vehicle 2, and Vehicle 3 are the nearest surrounding vehicles
(red) to the subject vehicle on the current lane and/or on the target lane. The target
lane is to which the subject vehicle wants to change. In order to term the scenarios
easily, we define the LC scenarios as follows in Figure 4.1:

• Scenario lead only (Figure 4.1a): There is no vehicle on the target lane within a
specific range. The only surrounding vehicle is Vehicle 1 in front of the subject
vehicle.

• Scenario lead + adjacent behind (Figure 4.1b): The subject vehicle intends to make
LLC to overtake the slow leading vehicle, meanwhile, a fast moving vehicle (Vehicle
2) is approaching from left behind on the target lane.

• Scenario lead +2 adjacent (Figure 4.1c): The subject vehicle intends to make LLC
to overtake the slow leading vehicle, by then a left front vehicle (Vehicle 3) and a
left behind vehicle (Vehicle 2) are on the target lane.

There are some existing works regarding to driving contextual traffic modeling.
A potential field diagram composed of bubbles with different dynamic sizes has
been proposed to describe the dynamic relationship between the subject vehicle and
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Vehicle 1 Subject vehicle 

Target lane 

Current lane 

(a) A slow leading vehicle in front of the subject vehicle on the current lane.

Vehicle 1 Subject vehicle 

Vehicle 2 

(b) A vehicle on the target lane with a slow leading vehicle in front of the
current lane.

Vehicle 1 

Vehicle 2 Vehicle 3 

Subject vehicle 

(c) Two vehicles on the target lane with a slow leading vehicle in front of the
current lane.

Figure 4.1: Illustration of the defined LLC scenarios, (a) Scenario lead only (b) Scenario
lead + adjacent behind and (c) Scenario lead +2 adjacent.
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surrounding vehicles (Woo et al., 2016). However, it is not a direct modeling method
which can be used for driving contextual traffic analysis. Leonhardt and Wanielik (2017)
developed a probabilistic situation assessment model to evaluate the safety state of
the subject vehicle with surrounding vehicles, however, it aims at recognizing driver
behavior rather than modeling driving scenarios.

To easily describe the relationship between the subject vehicle and the surroundings,
one of the most popular approaches is to segment the surrounding traffic into grid
cells (Do et al., 2017; Nilsson, Silvlin, et al., 2016; Kasper et al., 2012) and then
model the dynamic relationship of these grid cells. The occupancy status of each cell
is represented by a binary value, i.e. occupied or empty. Since the experiment in this
study is only focused on the two-lane highway, a five-cell contextual grid is enough to
describe the contextual traffic which is demonstrated in Figure 4.2:

• f : the cell in front of the subject vehicle on the current lane.

• b: the cell behind the subject vehicle on the current lane.

• l: the cell on the left of the subject vehicle on the target lane.

• fl: the cell in front of the subject vehicle on the target lane.

• bl: the cell behind the subject vehicle on the target lane.

where f, b, l, f l, bl ∈ {0, 1} are the status of each cell. The status in the corresponding
cell is 1 if the cell is occupied by vehicles otherwise it is 0 for unoccupied. The length of
cell l is the length of the subject vehicle plus a short safety distance. Here, the length
of cell l is set as 5 m. According to Ayres et al. (2001), the preferred car-following
time-headway ranges from 1 s to 2 s on highways. Based on the traffic density study in
Fairclough, May, and Carter (1997), the average time-headway for conservative drivers
to initiate overtaking maneuvers is 1.76 s. Time-headway is often determined by traffic
counting devices that determine the inter-arrival times of vehicles. In our case, the
time-gap (net time-headway) (Ha, Aron, and Cohen, 2012) is used to measure the
inter-vehicle distance since it is usually measured via radars or LiDAR mounted on the
subject vehicle and presumably reflected by the rear of the leading vehicle (J2944, 2013).
The length of the front and rear cell grids is set to a time-gap of 2 s, see Figure 4.2.

fl l 
bl 

f b 

5m 

2s time gap 2s time gap 

Figure 4.2: Illustration of the occupancy grid on a two-lane highway.
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4.2.2 Feature extraction

Selecting suitable features is beneficial to improve model performance. Both
TTC (Hayward, 1972) and time-gap are the preferable features to analyze or model LC
behavior (Zhao, Lam, et al., 2017; Wakasugi, 2005). TTC is the time required for two
vehicles to collide if they continue at their present speed and on the same path. It is
usually used to measure collision risk (Kusano and Gabler, 2011). Time-gap is often
used to assess safe car-following distance (Tordeux, Lassarre, and Roussignol, 2010). We
select time-gap and TTC as prediction features which are defined according to J2944
(2013). The parameters of the definition can be seen in Figure 4.3:

• TTC with respect to the vehicle in cell f :

ttcf = d1

v0 − v1
, (4.1)

where d1 is the distance between the front edge of the subject vehicle and the rear
edge of Vehicle 1, v0 and v1 are the speed of the subject vehicle and Vehicle 1,
respectively.

• Time-gap with respect to the vehicle in cell f :

tgapf = d1

v0
, (4.2)

• TTC with respect to the vehicle in cell bl:

ttcbl = d2

v2 − v0
, (4.3)

where d2 is the distance between the front edge of vehicle 2 and the rear edge of
the subject vehicle. v2 is the speed of vehicle 2.

• TTC with respect to the vehicle in cell fl:

ttcfl = d3

v0 − v3
, (4.4)

where d3 is the distance between the front edge of the subject vehicle and the rear
edge of Vehicle 3. v0 and v3 are the speed of the subject vehicle and Vehicle 3,
respectively.

When the speed of the subject vehicle is close to the speed of Vehicle 1, then equation (4.1)
approaches to infinity. To avoid this case, we use the inverse of ttcf , noted as ttc−1

f , as
the feature. Similarly, we compute the inverse of ttcfl, ttcbl, tgapf and then obtain ttc−1

fl ,
ttc−1

bl , tgap−1
f , respectively.
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Vehicle 1 

Vehicle 2 Vehicle 3 
𝑑2 

𝑑3 

𝑑1 

𝑣0 
𝑣2 

𝑣1 

Figure 4.3: Illustration of the parameters regarding to the features.

4.3 Experiment

4.3.1 Experimental setup

Driving simulator

The experiments were conducted in a seat-box based driving simulator. The steering
wheel control system was a Fanatec ClubSport Wheel Base V2.5 with torque feedback.
The software we used to create the driving scenario is OpenDS Pro 3.55. There are
several basic driving scenarios such as urban roads, highways as well as countryside. In
order to design the driving task, the basic driving scenarios were extended to a two-lane
motorway scenario used for our driving experiment.

For the surrounding vehicles in the scenarios, we set the speed on four levels, i.e. 100
km/h, 120 km/h, 140 km/h, and 150 km/h. The length of each car is 4 m. Vehicles on
the left lane were moving faster than vehicles on the right lane. Figure 4.4 depicts that
one participant is doing the driving simulator experiments.

Eye-tracker

The eye-tracker used to monitor driver gaze behavior is a SMI ETG (SMI, 2015), see
Figure 4.5. SMI ETG can record video from the first-person view. We process the
eye-tracking data through BeGaze 3.6, which is an official software from SMI. In order
to map driver gaze behavior, we define 5 areas of interests (AoI) in Figure 4.6, i.e. Rear
mirror, Left mirror, Right mirror, Speedometer and besides Wind screen which is all the
reset area of the screen. Thus, AoIs of the participant during the experiment can be
extracted frame by frame by BeGaze 3.6.

In order to synchronize data collection from the driving simulator and the eye-tracker,
the sampling rate is set to 30 Hz for both devices.

5https://opends.dfki.de/ (visited on 04.2016)
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Figure 4.4: A participant is doing experiment on the simulator.

Figure 4.5: The eye-tracking used in the experiment. Picture extracted from the
link: https://www.smivision.com/eye-tracking/products/mobile-eye-tracking/ (visited on
31.07.2019).
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Rear mirror 

Left mirror 

Speedometer 

Right mirror 

Figure 4.6: The AoIs of the driver in a frame using BeGaze 3.6.

Driving task

Before the experiment, the participants were asked to fill in a demographic questionnaire.
The details can be found in Appendix A.1.1. After finishing the demographic
questionnaire, the participants were given an oral instruction, including the calibration of
the eye-tracker and a short description of the driving task etc. The detailed instruction
in text form can be found in Appendix A.1.3 and A.1.4.

After calibration, participants were guided to drive in a warming-up scenario to
be familiar with the simulator. The driving tasks were designed based on the three
scenarios mentioned in Figure 4.1. Participants were instructed to drive on the right lane
throughout the experiment and to only use the left lane for the purpose of overtaking
vehicles. Figure 4.8 gives an example of car-following case where the participant is
driving on the right lane behind a vehicle. And at the same time we can see from
the left view mirror that a vehicle on the left lane is approaching from behind, so the
participants have to decide if it is safe to overtake the slow vehicle.

No speed limit signs were set on the highway scenario since it is quite common in
Germany. Participants were allowed to drive at their own speed preference to either
follow or overtake vehicles. All participants took the identical driving task which lasts
about 40 minutes.

4.3.2 Participants

In total, 32 participants (18 females and 14 males) with ages from 21 to 51 years (Mean
= 30.4 years) participated in the experiment. All the participants had normal vision
and had held their driving licenses for a minimum of 1.5 years and maximum of 27 years
(Mean = 10.7 years). Among all participants, 28 of them got paid for the experiment
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Figure 4.7: Illustration of the driving habits of the participants in histogram.

Figure 4.8: A screen shot of driving simulator and driving scenarios.
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and the others were either volunteers or students who need credits. Figure 4.7 gives
some driving background information regarding to the participants. We can see that
almost 2/3 of them have experience of doing driving simulator experiment and most of
them prefer to drive over 120 km/h on highway. This speed preference is in accordance
with our speed setting. In addition, most of them rarely overtake cars by executing
right lane-change, since it is not allowed based on German traffic rules. More detailed
statistics of the participants about their background can be seen in Appendix Figure A.1.

4.3.3 Driving style classification

In order to classify driving style, all the participants were asked to fill in a behavioral-
psychological questionnaire (in Appendix A.1.2) used for evaluating the aggressiveness
of driving habit proposed by (Glaser and Waschulewski, 2005). A similar method
which uses questionnaire to evaluate driving style can be found in French et al. (1993).
Vöhringer-Kuhnt and Trexler-Walde (2005) listed the questions which can reflect driving
aggressiveness. The correlation tests indicates that the driver who achieves a higher
score by given specific questions represents a higher aggressiveness with Cronbach’s
α = 0.765. Based on the their scores, participants were categorized into three groups: 8
drivers with scores between 0 and 5 (Mean = 2.5) were categorized as the low aggressive
group, 15 drivers with scores greater than 5 and smaller than 10 (Mean = 7) were
categorized as the medium aggressive group, and 9 drivers with scores greater than
10 (M = 14.7) were categorized as the high aggressive group, respectively. The whole
statistics about the aggressiveness scores are illustrated in Figure 4.9.
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Figure 4.9: Illustration of the aggressiveness scores of the participants in histogram.
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4.4 Lane-change data labeling

Slow leading vehicle Subject vehicle 

𝑡𝑝𝑟𝑒𝑝𝑎𝑟𝑒 𝑡𝑐ℎ𝑎𝑛𝑔𝑒  𝑡0 

𝑡𝑖𝑛𝑡𝑒𝑛𝑡 

Figure 4.10: The key moments during a lane change course.

To make the data labeling process easy to understand, we define three key moments to
describe driver LC behavior as it is depicted in Figure 4.10. Firstly, t0 is the moment
that the front left wheel of the vehicle just runs cross the central dotted line, which
can be mapped out by lateral movement of the subject vehicle. Secondly, tchange is the
moment that the driver really starts to execute an LC maneuver, which can be marked
by finding the steering wheel angle threshold (Li, Wang, and Rötting, 2016). However,
it is difficult to find the moment tintent. Previous studies found that driver gaze behavior
gives us clues to predict upcoming behaviors (Salvucci and Liu, 2002; Fitch et al., 2009).
Result suggested that when LLC occurs, the driver takes 65% – 85% chance to glance at
the left view mirror (Tijerina et al., 2005). Therefore, the glancing mirror behavior of
the driver indicates a LC intention. Inspired by this result, a gaze-based labeling (GBL)
method is proposed. This GBL method labels LC datasets based on driver gaze behavior.
Since tprepare is different by LC cases and by different drivers, the GBL method could
take advantage of driver gaze behavior to capture this moment exactly, compared with
the TWL method which uses a fixed time-window to assume tintent (Lethaus, Baumann,
et al., 2013; Doshi and Trivedi, 2009).
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4.4.1 Gaze-based labeling method

Labeling criterion

The LC decision-making procedure is described as follows: when the driver wants to
make LC, he/she will firstly glance at the mirrors to check whether it is safe or not to
finish a successful LC maneuver (Lee, Olsen, Wierwille, et al., 2004). In our driving
simulator experiment, it was found that 84.37% (27/32) of the participants performed
like what it is described above.

Figure 4.11a sets an example of how driver gaze behavior performs during a LC
course. The blue line represents the lateral position of the subject vehicle. The green line,
which is a binary signal, represents driver gaze behavior, i.e. glancing at the left-view
mirror. If the driver glances at the left view mirror, the signal turns to 2 without unit6

and if there is no glancing behavior it keeps 0.
The red line represents the status of the left-turn signal also with a binary signal

with 0 for switching off and -2 for switching on. The inserted pictures are extracted from
software BeGaze 3.6, which were recorded during the experiment. The green points in
the pictures are fixations of the participant. By observing fixations, we can clearly know
where the driver is looking at during the entire drive.

Thus for each LLC case, based on driver gaze behavior, tprepare can be defined as the
last fixation on left view mirror (termed as mirror-glancing behavior) before the driver
switching on the left-turn indicator. This case is illustrated by the green rectangular
wave before the red one, in Figure 4.11a. The green rectangular waves far away from t0

are not regarded as tprepare since they are just normal mirror-glancing behavior with no
following LC maneuver executed. However, in case that a LC which no mirror-glancing
behavior is detected before a left-turn signal, we set the moment of switching left-turn
indicator on as tprepare. This special case can be illustrated in Figure 4.11b, where we can
see that the driver switches on the turn indicator but before it there is no mirror-glancing
behavior detected.

With the GBL method, time series data between tprepare and tchange are labeled as
LC datasets. For the problem of classification, because of the unequal class distribution,
unbalanced data sets have commonly agreed that the performance of the classifiers tends
to be biased towards the majority class (Ganganwar, 2012). In order to obtain balanced
training datasets, the same amount of samples should be labeled as LK datasets as it is
depicted in Figure 4.11c, where LK data samples are labeled right before tprepare and
the number of the samples is equal to LC samples.

6The reason of setting this value is just used for visualization, to match the value of the vehicle
position represented in the blue line.
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(a) Lane-change course recorded by BeGaze 3.6. This case demonstrates the
driver glances at the left-view mirror before switching on the left signal.
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(b) Lane-change course recorded by BeGaze 3.6. This case demonstrates the
driver glances at the left-view mirror after switching on the left signal.
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(c) GBL method labeling LC and LK datasets. The number of labeled LC
samples and LK samples is equal.

Figure 4.11: Labeling LC and LK data samples to attain balanced datasets.
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4.4.2 Time-window labeling method
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𝑡𝑖𝑛𝑡𝑒𝑛𝑡 

(a) Using a time-window to emperically define tintent moment.
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(b) Labeling LC and LK datasets using TWL with time-window
= 5 s.

Figure 4.12: Illustration of the TWL method.

In comparison to the GBL method, the process of TWL method is illustrated in
Figure 4.12a. Instead of defining tprepare, the TWL method directly uses a time-window
with an ad hoc duration of time period before t0 to label tintent. And then it selects a
better window size after evaluation of the classification performance. Take the example of
using 5 s as the time-window, LC and LK datasets are labeled as is shown in Figure 4.12b.
In order to keep balance labeling, time series data between t0 and prior 5 s are labeled
as LC class, while data between 10 s and 5 s are labeled as LK class.

4.5 Model implementation

In this section, we introduce how to use a BN to model driver LC behavior and how to
learn the parameters of the BN. At the same time, the configuration of the SVM and
the naive Bayes model are also detailed. In addition, the model evaluation methods are
explained.

4.5.1 Bayesian network

Bayesian network (BN) is a directed acyclic graph network and has shown its effectiveness
in many fields of prediction, e.g. parsing video events and agents’ intent prediction (Pei,
Jia, and Zhu, 2011), enemy’s tactical intention prediction (Johansson and Falkman, 2006),
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user’s click intent for web search ranking (Chapelle and Zhang, 2009) and prediction of
highway traffic maneuvers (Weidl et al., 2018). Since driver behavior could suffer from
various uncertainties of driving contextual traffic and driver status, we should design
an algorithm that is capable of dealing with such uncertainties. To this end, a BN is
introduced to offer an explicit, graphical, and interpretable representation of uncertain
knowledge (Bielza and Larrañaga, 2014). In addition, BN is compatible with many kinds
of probability inference, including tabular probability, Gaussian distribution, soft-max
function, root function, or Gaussian mixture distribution (Murphy, 1998a). Inspired
by its extensive applications and effectiveness, we can use a BN to predict driver LC
behavior that is able to consider driving uncertainties7.

Lane-change Bayesian network

Y 

LC 

X 

Figure 4.13: Illustration of the lane-change Bayesian network, where node X and Y
represent the dynamic driving situation.

The directed acyclic graph of the lane-change Bayesian network (LCBN) is shown in
Figure 4.13. The square represents a discrete variable (LC is a binary state) and the
cycles represent the continuous variables X and Y that contain driving uncertainties.
The meaning of variables in LCBN is detailed as follows:

• The relationship between the subject vehicle and the vehicle in cell f is

x = [x1, ..., xt..., xn]T, (4.5)

where xt = [ttc−1
ft

, tgap−1
ft

]T is the data point at time t and n is the number of data
points.

7A Bayes Net Toolbox is used to create customized Bayesian networks. This Toolbox is
based on Matlab developed by Murphy (Murphy, 1998a), which can be found in the link
http://www.cs.utah.edu/ tch/notes/matlab/bnt/docs/usage.html (visited on 31.07.2019)

45



4. Experiment 1 - Prediction of driver lane-change behavior based on a driving
simulator experiment

• The relationship between the subject vehicle and the vehicles in cell fl and cell bl

is

y = [y1, ..., yt..., yn]T, (4.6)

where yt = [ttc−1
flt

, ttc−1
blt

]T is the data point at time t and n is the number of data
points.

• Node LC is a binary variable of representing whether the driver intends to make
LLC:

LC = k, k ∈ {0, 1} , (4.7)

with k = 0 for lane-keeping and k = 1 for lane-changing.

In LCBN framework, we set X node at an upper layer and Y node at the bottom
layer based on two facts:

1. Whether the driver wants to make LC highly depends on the traffic situation on
the current lane in front of the subject vehicle.

2. When the driver makes the final LC decision, the driver would observe the traffic
situation on the target lane to ensure safety.

The LCBN model aims to infer the probability of LC = 1 given the observations X and
Y (gray circles), which can be computed by

P (LC = 1|X, Y ). (4.8)

Based on Bayes theorem, the posterior probability of making LC given the current
observations of driving situation is

P (LC = 1|X, Y ) = P (Y |LC = 1, X) · P (LC = 1|X)∑1
k=0 P (Y |LC = k, X) · P (LC = k|X) .

(4.9)

In a BN, it is assumed that each variable is independent of its non-descendants in the
graph given the state of its parents (Friedman, Geiger, and Goldszmidt, 1997). For our
LCBN, LC is the parent of Y , and X is non-descendant of Y . Therefore, variables X

and Y are conditional independent to each other given LC, i.e.

P (Y |LC = k, X) = P (Y |LC = k). (4.10)
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And then equation (4.9) can be written as

P (LC = 1|X, Y ) = P (Y |LC = 1) · P (LC = 1|X)∑1
k=0 P (Y |LC = k) · P (LC = k|X) .

(4.11)

In order to compute the posterior probability P (LC = k|X, Y ) in equation (4.11), we
need to estimate the conditional probability distributions P (LC = 1|X) and P (Y |LC =
k). Since LC is a binary variable and X is a continuous variable, we use a logistic
function to estimate P (LC = 1|X), given by

P (LC = 1|X, β) = 1
1 + e−βTX

, (4.12)

where β is the parameter with the same dimension of X. If we set X node as a Gaussian
node, it is tractable to inference P (Y |LC = k), k ∈ {0, 1} (Murphy, 1998b; Murphy,
1999; Murphy et al., 2001; Murphy, 2012).

In case P (Y |LC = k) does not follow a standard Gaussian distribution, it would
lead to poor performance. Just like what is discussed in section 3.1.3, where the model
shows poor fitting result if we fit a data samples in Gaussian distribution however it
does not follow Gaussian distribution.

Fortunately, previous research found that GMM has a good compatibility with BN
in fitting the probability distribution of observations (Dielmann and Renals, 2004; Sun,
Zhang, and Yu, 2006). This gives us clues to fit P (Y |LC = k) with GMM.

LCBN with GMM

Y 

X 

 𝜃 

LC 

GMM 

Figure 4.14: Illustration of LCBN incorporated with GMM.
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GMM is a parametric probability density function represented as a weighted sum of
Gaussian component densities (Reynolds, 2015; Bishop, 2006), given by

p(x|wi, µi, Σi) =
M∑

i=1
wiN (µi, Σi) (4.13)

where M is the number of mixture components, wi is the weight of ith Gaussian
distribution with 0 ≤ wi ≤ 1,

∑M
i=1 wi = 1, and µi, Σi are the mean and covariance of ith

Gaussian distribution, respectively. In order to integrate GMM into LCBN, termed as
LCBN-GMM, we extend the LCBN framework by adding a new node θ = {wi, µi, Σi}M

i=1.
θ is a hidden node depicted as a dotted square, as is shown in Figure 4.14. Therefore,
the posterior probability can also be written as

P (LC = 1|X, Y, θ) = P (X|LC = 1, θ) · P (LC = 1|X, θ)∑1
k=0 P (Y |LC = k, θ) · P (LC = k|X, θ) ,

(4.14)

where

P (LC = 1|X, θ) = P (θ|LC = 1) · P (LC = 1|X)∑1
k=0 P (θ|LC = k) · P (LC = k|X) (4.15)

and
p(Y |LC = 1, θ) =

M∑
i=1

wiN (µi, Σi). (4.16)

Thus, the parameters of LCBN-GMM are ξ = [β, θ].

Parameter estimation

In LCBN-GMM, given a dataset of observations O = [o1, ..., ot..., oN ]T, then their
likelihood is computed by

p(O|ξ, LCBN − GMM) =
N∏

i=1
p(oi|ξ, LCBN − GMM). (4.17)

And the log-likelihood can be thus written as

L(ξ) =
N∑

i=1
log(p(oi|ξ, LCBN − GMM)). (4.18)

Due to the nonlinearity with respect to the parameters, using maximum-likelihood
for estimation is not possible (Dempster, Laird, and Rubin, 1977). Here, the
expectation-maximization (EM) algorithm is used to estimate hyper-parameters in
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LCBN-GMM (Ghahramani, 1998; Bishop, 2006). The iteration procedure of the EM is
illustrated in section 3.2.

Before training LCBN-GMM, we need to determine the parameter M in equa-
tion (4.13) based on the Bayesian information criterion (BIC) (Caner, 2009):

BIC = −2 ∗ L(ξ) + p ∗ log(q) (4.19)

where L(ξ) is the estimated log-likelihood in equation (4.18), q = 2 is the amount
of observations in LCBN-GMM with two observations, and p = 4 is the amount of
estimated number of parameters in GMM. Generally, a lower BIC value represents better
fitting result (Steele and Raftery, 2010). Figure 4.15 shows the tendency of BIC values
with respect to the number of GMM components presented by drivers with different
driving styles. It indicates that BIC is mainly convergent at M = 9. Thus, we set
M = 9 in for LCBN-GMM.
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Figure 4.15: BIC values of three driving styles with respect to parameter M .

4.5.2 Other machine learning models

Besides BN, SVM and naive Byes (NB) are also popular machine learning models for
classification. For instance, SVM is used for driver fatigue prediction (Senaratne et al.,
2007; Camlica, Hilal, and Kulić, 2016), stress event prediction (Rigas, Goletsis, and
Fotiadis, 2011) and naive Bayes classifier for driver LC intent prediction (Lethaus,
Baumann, et al., 2013). Thus, these two models are also implemented in this chapter
for further evaluation.

Unlike BN, which is very complex to model the network and learn the parameters,
the implementation of SVM and NB is simpler. The non-linear kernel function used
in SVM to generate decision boundary is a Gaussian kernel recommended by Ben-Hur
and Weston (2010) and Wang et al. (2017). And we also map the prior distribution of
NB in Gaussian distribution for simplicity. Both of them can be implemented using the

49



4. Experiment 1 - Prediction of driver lane-change behavior based on a driving
simulator experiment

Statistics and Machine Learning Toolbox8 by Matlab. All the models are trained by
exactly the same training datasets.

4.5.3 Model training and evaluation method

All the data were firstly grouped into three categories according to driving styles (high
aggressive, medium aggressive, and low aggressive) and again separated them by three
pre-defined driving scenarios illustrated in Figure 4.1. Thus, training datasets are
organized by driving styles and driving scenarios. In addition, the set of all the labeled
data samples that are simply grouped together without doing any separation is termed
as non-categorized group. Totally, the number of labeled data samples by the GBL
method for each LC scenario and driving style are listed in Table 4.1.

Table 4.1: The number of labeled data samples using the GBL method.

Aggressiveness Type
Scenario Scenario Scenario

lead only lead + adjacent behind lead + 2 adjacent

High
LC 1280 2620 2502

LK 1280 2620 2502

Medium
LC 2271 4789 4431

LK 2271 4789 4431

Low
LC 1245 2214 2145

LK 1245 2214 2145

Non-categorized
LC 4796 9623 9078

LK 4796 9623 9078

In order to guarantee that the training data and testing data are disjoint, a cross-
validation (CV) method is used to evaluate the models. Each labeled dataset is randomly
and evenly divided into ten folds. Nine folds are used for training and the rest one fold
is used for testing. Totally, such procedure is conducted ten times.

Receiver operating characteristic (ROC) curve (McCall et al., 2007; Morris, Doshi,
and Trivedi, 2011) is used to access the performance of the models. It is already
explained in section 3.3.1. We plot ROC curves for each model using the function
provided by Matlab9, by which given true class labels of the testing samples and the
predicted confidence, true negatives, false positives, and false negatives as well as AUC
values can be calculated. Classification performance can be evaluated based on AUC
values (Huang and Ling, 2005; Vickers and Elkin, 2006).

8https://www.mathworks.com/products/statistics.html (visited on 31.07.2019)
9https://www.mathworks.com/help/stats/perfcurve.html (visited on 31.07.2019)
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4.6 Result and analysis

Statistics of the labels by GBL method

Firstly we make a statistical analysis to see if tprepare is varying by driving styles as
well as by driving scenarios. The statistics of tprepare (duration between tprepare and
t0) for the three driving styles in the different scenarios depicted in box plot is shown
in Figure 4.16. The mean and standard deviation (SD) are listed in Table 4.2. The
following results can be found:

• From the perspective of driving style: on average, tprepare of high aggressive driver
is smaller than less aggressive driver (medium and low). This result means that
high aggressive driver takes shorter time to prepare for a LC.

• Comparison of different LC scenarios: it indicates that the mean of tprepare in
Scenario lead only is smaller than in other two scenarios. In addition, the mean of
tprepare increases as the scenario becomes more complex (complexity: Scenario lead
only < Scenario lead + adjacent behind < Scenario lead +2 adjacent). The results
are also consistent with what is concluded in Beggiato et al. (2018) that the more
vehicles on the target lane, the more and longer mirror glances.

Thus, it can be concluded that driving style and contextual traffic do impact on
labeling results, which is coincide with the reference by Rehder et al. (2016).
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Figure 4.16: The box plots of the labeled moment tprepare before t0 for different scenarios
and different levels of aggressive driving styles.
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Table 4.2: The mean and SD (in second) of the labeled tprepare before moment t0 for
different scenarios and driving styles.

Aggressiveness
Scenario Scenario Scenario

lead only lead + adjacent behind lead + 2 adjacent

High 3.53 (SD = 1.06) 3.88 (SD = 1.35) 4.06 (SD = 1.60)

Medium 3.80 (SD = 1.51) 4.31 (SD = 1.53) 4.57 (SD = 1.44)

Low 3.98 (SD = 1.45) 4.89 (SD = 1.22) 4.45 (SD = 1.30)

Mean 3.76 (SD = 1.38) 4.31 (SD = 1.46) 4.40 (SD = 1.46)

4.6.1 Comparison between different models

Table 4.3: The AUC values performed by different models with GBL.

Scenario Aggressiveness LCBN-GMM NB SVM

lead only

High 0.92 (↑) 0.90 (↓) 0.88 (↓)

Medium 0.94 (↑) 0.95 (↑) 0.91 (↑)

Low 0.93 (↑) 0.90 (↓) 0.91 (↑)

Mean 0.93 (↑) 0.92 (↑) 0.90

Non-categorized 0.89 0.91 0.90

lead + adjacent behind

High 0.91 (↑) 0.92 (↑) 0.93 (↑)

Medium 0.90 (↑) 0.88 (↑) 0.90 (↑)

Low 0.93 (↑) 0.83 (↑) 0.84 (↓)

Mean 0.91 (↑) 0.87 (↑) 0.89 (↑)

Non-categorized 0.86 0.85 0.87

lead + 2 adjacent

High 0.89 (↑) 0.83 (↑) 0.82 (↑)

Medium 0.86 (↑) 0.63 (↓) 0.67 (↓)

Low 0.88 (↑) 0.72 (↑) 0.82 (↑)

Mean 0.87 (↑) 0.73 (↑) 0.77 (↑)

Non-categorized 0.74 0.71 0.70

In this section, model comparison is made between LCBN-GMM, SVM and NB
using the GBL method. AUC values of the classification (LC and LK samples)
performed by different models and using different training datasets are listed in Table 4.3.
The corresponding ROC curves can be found in Appendix Figure A.2 – Figure A.4.
Considering each LC scenario alone, the highest AUC value achieved by certain model
(horizontal comparison) is marked as bold. We can see that on average (see the
mean), LCBN-GMM performs best. And it almost achieves the best performance with
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each driving style training dataset and in each LC scenario. The only exception are
in Scenario lead only and Scenario lead + adjacent behind, where Naive Bayes with
medium aggressive driving style datasets and SVM with high aggressive driving style
datasets perform slightly better than LCBN-GMM.

In conclusion, considering the average AUC scores, LCBN-GMM outperforms SVM
and NB.

4.6.2 Comparison between training datasets

In this section, comparison is made between different training datasets, i.e. the high
aggressive, medium aggressive, low aggressive as well as the non-categorized dataset.
We compare AUC values between the categorized datasets and non-categorized dataset
with an up arrow ‘↑’ for performance improvement and a down arrow ‘↓’ for performance
deterioration (vertical comparison).

From Table 4.3 it can be seen that using the non-categorized datasets, the three
models achieve similar classification results in each scenario, e.g. from 0.89 to 0.91 in
Scenario lead only, from 0.85 to 0.87 in Scenario lead + adjacent behind, and from 0.70
to 0.74 in Scenario lead + 2 adjacent.

The average performance can be improved if the model is trained by the categorized
datasets in comparison to the non-categorized datasets. The only exception is SVM
in Scenario lead only, where the average performance is the same as using the non-
categorized dataset. The classification results in different scenarios will be discussed
separately as follows.

• In Scenario lead only: using the categorized datasets the performance can be
slightly improved from 0.89 to 0.93 for LCBN-GMM and from 0.91 to 0.92 for
Naive Bayes. SVM is the exception.

• In Scenario lead + adjacent behind: using the categorized datasets rather than
the non-categorized datasets, model performance can be improved for all methods.
More specifically, model performances of LCBN-GMM, Naive Bayes and SVM are
improved from 0.86 to 0.91, from 0.85 to 0.87, and from 0.87 to 0.89, respectively.
But for the low aggressive driving style dataset, the performance of SVM slightly
decreases compared with using the non-categorized dataset.

• In Scenario lead +2 adjacent: we find that compared with using the non-categorized
datasets, model performance can be improved by using the categorized datasets for
all methods. For instance, AUC value increases from 0.74 to 0.87 for LCBN-GMM,
from 0.71 to 0.73 for Naive Bayes, and from 0.70 to 0.77 for SVM. It also indicates
that for Naive Bayes and SVM, the performance of using the medium aggressive
driving style datasets does not have significant improvement.

It can be concluded that model performance can be improved by using the categorized
training datasets compared with using the non-categorized datasets.
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4.6.3 Comparison between the labeling methods

Table 4.4: The mean and SD of the AUC values performed by LCBN-GMM with different
labeling methods.

Label type
Scenario Scenario Scenario

lead only lead + adjacent behind lead + 2 adjacent

GBL 0.93 (SD = 0.008) 0.91 (SD = 0.012) 0.87 (SD = 0.012)

TWL 5 s 0.85 (SD = 0.049) 0.82 (SD = 0.057) 0.72 (SD = 0.054)

TWL 4 s 0.90 (SD = 0.059) 0.85 (SD = 0.054) 0.80 (SD = 0.043)

TWL 3 s 0.92 (SD = 0.070) 0.87 (SD = 0.054) 0.78 (SD = 0.063)

TWL 2 s 0.94 (SD = 0.057) 0.91 (SD = 0.051) 0.82 (SD = 0.066)

TWL 1 s 0.95 (SD = 0.040) 0.96 (SD = 0.004) 0.87 (SD = 0.052)

In this section, comparison is made between the GBL and the TWL method performed
by LCBN-GMM. Table 4.4 summarizes the mean and standard deviation (SD) of AUC
values. The full AUC values of TWL can be seen in Table A.1 in Appendix.

It indicates that only by choosing time-windows that are less than 2 s in Scenario
lead only and time-window of 1 s in Scenario lead + adjacent behind, the TWL method
could performs slightly better than the GBL method. In Scenario lead +2 adjacent, the
GBL method represents a smaller SD of AUC values compared with TWL method. For
instance in Scenario lead only, SD of AUC values for the GBL method is 0.008, which is
much smaller than that of the TWL method. From this perspective, the GBL method
achieves more stable performance than the TWL method, except for Scenario lead +
adjacent behind when TWL chooses 1 s as the time-window.

In practice, the TWL method works like this: firstly choosing different time-windows
and selecting the best time-window size after evaluation like what we listed in Table 4.4.
However, this process is inefficient. The selected time-window size is very scenario
specific, which means it does not cover general situation. In comparison, the GBL
method takes advantages of driver gaze behavior, it can find tprepare in each LC events
with unified labeling criteria, and thus it can make sure that the datasets are labeled
in high quality. In conclusion, considering efficiency the GBL method outperforms the
TWL method.

4.6.4 Real-time lane-change behavior prediction

In order to further evaluate the GBL and the TWL method, a real-time LC behavior
prediction test is made by feeding time series driving data to the well-trained model.
Since LCBN-GMM represents good result in model comparison, we use this model to
perform the test. Prediction precision and predicted time in advance of LC behavior are
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as metrics to evaluate these two labeling method. For the TWL method, time-window
size is chosen as 2 s time-window in Scenario lead only, and 1 s time-window in Scenario
lead + adjacent behind and Scenario lead +2 adjacent. The reason of choosing such
time-windows is that in Table 4.4 these time-windows are with highest AUC values in
each driving scenario.

Data used for the real-time test are collected from the experiment described in
section 4.3, including totally 304 LC cases. During test, if the output LC probability of
LCBN-GMM is greater than a predefined threshold, then a report of LC intent will be
given, otherwise not. The rule of determining whether it correctly predicts driver LC
behavior is defined as: if the model predicts a LC at certain moment and in the following
8 seconds the driver dose execute a LC maneuver, then this prediction is regarded as
correct, otherwise incorrect. Here a threshold of 8 s is selected since the largest time
interval between tprepare and t0 we labeled is close to 8 s. The statistics of tprepare can
be seen in Figure 4.16.

Table 4.5: The real-time prediction result performed by LCBN-GMM using GBL and
TWL method.

Type
Label Scenario Scenario Scenario

Mean
method lead only

lead + lead +

adjacent behind 2 adjacent

Precision
GBL 56 (46) 82.1% 124 (89) 71.7% 124 (102) 82.2% 78.2%

TWL 56 (50) 89.2% 124 (89) 71.7% 124 (45) 36.2% 60.7%

Prediction GBL 4.5 (SD = 1.5) 4.8 (SD = 1.7) 4.1 (SD = 1.4) 4.5

time (s) TWL 4.7 (SD = 1.9) 4.5 (SD = 1.7) 4.0 (SD = 2.4) 4.4

The final prediction results are listed in Table 4.5, and the box plot can be seen
in Figure 4.17. Table 4.5 suggests that only in Scenario lead only, the TWL slightly
outperforms the GBL method with earlier prediction time and higher precision. In
Scenario lead + adjacent behind and Scenario lead +2 adjacent, however, the GBL
method performs much better than the TWL with both earlier prediction time and
higher precision. Especially in Scenario lead +2 adjacent, the TWL method gets poor
precision of only 36.2%. However, the GBL method can achieve 82.2%. In addition,
considering the average performance, the GBL method is still with higher accuracy,
earlier prediction time as well as smaller SD.

In conclusion, the GBL method outperforms the TWL method with higher precision
and earlier predicted time.

Figure 4.18 gives an example of how LCBN-GMM predicts driver LC behavior in
real-time case. The blue line represents the lateral position of the subject vehicle. We
can see that the driver changes to the left lane at around 30 s and steers back to the
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Figure 4.17: The box plot of correctly predicted LC before t0.

𝑡0 𝑡0 

𝑡𝑖𝑛𝑡𝑒𝑛𝑡 𝑡𝑖𝑛𝑡𝑒𝑛𝑡 

Figure 4.18: An example of the real-time prediction performance of LCBN-GMM.
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right lane at around 40 s. The pink line is the posterior probability of LC behavior
by LCBN-GMM. The probability threshold of giving a LC report is set as 0.9. That
is to say if the probability is greater than 0.9, then LCBN-GMM would report a LC
prediction report. The green dotted line represents driver mirror glancing behavior,
which is a binary signal with value of 2 for observing a glancing and of 0 for no glancing
behavior. Because the signal of driver mirror glancing behavior is only used for data
labeling rather than an input of LCBN-GMM, the normal glancing signals do not impact
on LC prediction probability. It can be seen that even there are two mirror glancing
behaviors observed between 0 and 10 s, LCBN-GMM does not report LC. The driver
executes the first LC maneuver at around 30 s and LCBN-GMM can predict it several
seconds ahead of the actual LC maneuver. LCBN-GMM is modeled only for left LC
case, however, for right LC case the output probability of LCBN-GMM is stay in 0.

4.7 Summary

This chapter proposes a framework of prediction of driver LC behavior including works
like the design of driving simulator-based experiment, feature extraction, modeling
machine learning models, training datasets preparation, model selection and evaluation.
Inspired by the prior research, several improvements have been made e.g. considering
driving contextual traffic and driving styles in preparing training datasets, proposing a
gaze-based labeling method (GBL) to obtain high quality training datasets.

In conclusion, comparison of different ML models, result indicates that LCBN-
GMM performs better than SVM and NB. Comparing different training datasets, the
performance of the models trained by categorized datasets outperform by non-categorized
training datasets. This applies to all the models in each driving scenario. In addition,
comparison of the GBL and the TWL method, the GBL outperforms the TWL with
both higher precision and earlier predicted time. Finally, using the GBL method LCBN-
GMM achieves 78% prediction precision and could predict driver LC behavior nearly
4.5 seconds ahead of an actual LC maneuver.

The limitation of the study is that the experiment was conducted in a driving
simulator, which means the experiment condition is tool idealized compared with
the real-road traffic and thus the participants tend to be absent of real risk while
driving (Schmitt et al., 2018). In addition, during the experiment the participants were
given oral instruction before doing driving task. This may impact on the driving habits
of the participants. For example, before the experiment, participants were suggested to
use the turn signal before taking a left LC, however, the case of no turn signal usage
during LC course might happen in real situation. Furthermore, the method used for
classification of driving styles is limited by the questionnaire. The driving aggressiveness
score tends to describe the driver’s driving style globally, i.e. from personality trait
level, however, two drivers who score similarly may show different temporary driving
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styles which can be represented by different speed choice as well as accelerating or
braking behavior etc.. This limitation also happens to all the methods that attempt to
classify the driver’s global driving style (Sagberg et al., 2015). Thus, seeking to consider
individual driving style in preparing for datasets would be one solution. Additionally,
there is no systematic feature selection work before model training. That is to say,
research should be done to test whether the selected features are really suitable or
not. Most of the feature selection work by previous research is based on the empirical
knowledge. Therefore, a comprehensive study of feature selection on driver LC behavior
is needed.
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5
Big data analysis - Evaluation of

feature selection for driver lane-change
behavior

© Xiaohan Li (the author of this dissertation), Wenshuo Wang, Zhang Zhang and
Matthias Rötting. Reprinted from, Effects of feature selection on lane-change maneuver
recognition: an analysis of naturalistic driving data, Journal of Intelligent and Connected
Vehicles, published by Emerald Publishing Limited, October 2018. DOI: 10.1108/JICV-
09-2018-0010.

A substantial portion of this chapter is based on the above paper.

5.1 Introduction

At the end of chapter 4, it proposes the underlying problem of extracting features
based on the empirical knowledge. In addition, another aspect that can be improved in
the whole framework of driver LC prediction is using naturalistic driving data instead
of using data collected from the driving simulator. In this chapter, we tend to make
improvement in these two aspects.

Actually, the importance of feature selection has been emphasized on for a long
time in the field of machine learning (ML). For instance, Menze et al. (2009) proposed
a method of feature selection for classification of spectral data; Kira and Rendell
(1992) put forward a practical approach of feature selection. Vafaie and Imam (1994)
summarized two feature selection method i.e. genetic algorithms and greedy-like search.
However, specifically for driver LC behavior, there are few related works regarding to this
topic. Blindly using features without selection may lead to excessive computation time,
however, insufficient feature selection may cause poor classification results. Selecting
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Figure 5.1: An example of LC with two different purposes.

high contributive features to classify lane-change (LC) and lane-keep (LK) data samples
is necessary for further LC prediction work.

Many kinds of features have been used for driver LC behavior classification. For
instance, longitudinal features like time to collision (Sivaraman and Trivedi, 2014;
Liebner et al., 2013; Peng et al., 2015), longitudinal acceleration, and lateral features
e.g. steering angle (Xu et al., 2012), yaw rate (Sivaraman and Trivedi, 2014; Doshi,
Morris, and Trivedi, 2011), and lateral acceleration (Kasper et al., 2012; Boubezoul,
Koita, and Daucher, 2009). These features are assumed to be strong enough for LC
behavior classification either based on intuition or the empirical knowledge, however,
this assumption is still hanging on and yet comprehensively studied.

In general, driver LC behavior can be either discretionary or mandatory. A mandatory
lane-change will occur when a driver must leave a lane due to a lane drop or bypass a
blockage etc. A discretionary lane change occurs when a driver prefers a more efficient
adjacent lane (J2944, 2013), e.g. when passing a slow-moving leading vehicle to maintain
the current speed (Lee, Olsen, Wierwille, et al., 2004). This means that in discretionary
and mandatory LC cases, the importance of the features is different as well. In other
words, certain feature is useful to discretionary LC does not mean it is also useful to
mandatory LC. Take the feature TTC for instance. Thought it is assumed to be very
important for modeling LC decision-making process (Lee, Olsen, and Wierwille, 2003;
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Nilsson and Sjöberg, 2013), the importance of TTC in the two different scenarios is
different. As we can see in Figure 5.1, TTC can be an important feature for overtaking
purpose (e.g. Figure 5.1a), however, it maybe not that important to mandatory LC (e.g.
Figure 5.1b). Leonhardt and Wanielik (2017) evaluated the effects of various features
in different LC driving scenarios. The result indicated that even for the same feature,
the weight of overtaking a slow vehicle and merging is different. Thus, feature selection
process should also take LC scenario into account.

To this end, in this chapter we investigate the contribution of each extracted feature
from the perspective of statistics based on naturalistic driving data. The aim is to
comprehensively figure out the importance of different types of features regarding to
driver LC behavior and select the most contributive features that can be used for model
training. The main improvements in this study compared with the prior research can
be summarized as follows:

1. Present a feature selection method from the perspective of statistics to investigate
the statistical significance of each feature that is related to driver LC behavior.

2. Not only time-domain features but also frequency-domain features are considered
to fill in gaps in the previous works. This can largely enrich the candidate feature
sets.

3. In feature extraction procedure, different driving scenarios are taken into account
to comprehensively evaluate the extracted features.

5.2 Related work of feature selection

The goal of feature selection is to reduce the dimension of the feature sets by removing
unimportant features. In general, feature selection method can be grouped into filter
method and wrapper method. Filter method analyzes the intrinsic properties of data,
ranking and selecting features without involving learning algorithms. In comparison,
wrapper method involves learning algorithms. It would give scores to a given subset of
features based on certain algorithm (Guyon et al., 2008; Geng et al., 2007). For wrapper
method, the ranking of features can be varying from learning algorithm to algorithm.
This study is aim at finding the intrinsic properties of the features and selecting the
most contributive features among all features rather than ranking and selecting features
for a specific ML algorithm. Therefore, the feature selection method in this chapter
belongs to wrapper method.

For LC behavior prediction, the data collected from sensors are in the form of
time series, so the properties of the features in time-domain are the most frequently
extracted (Xu et al., 2012; Kasper et al., 2012; Liebner et al., 2013; Sivaraman and
Trivedi, 2014; Peng et al., 2015; Doshi, Morris, and Trivedi, 2011; Boubezoul, Koita,
and Daucher, 2009). On the other hand, frequency-domain features have already been
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used to recognize driver state. For instance, the power spectrum features via wavelet
transform are selected for Belief networks (Hajinoroozi et al., 2015; Chen et al., 2015).
In other areas regarding to recognition such as speech recognition (Thomas, Ganapathy,
and Hermansky, 2008) and anomaly detection (Zhang et al., 2008), frequency-domain
features play important roles.

In this study we consider the properties of the features in both time-domain and
frequency-domain.

5.3 Lane-change scenario modeling
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(a) Illustration of LC occupancy schedule grid.
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(b) The relationship between the ego vehicle and object
vehicles.

Figure 5.2: Illustration of the parameters used for calculating the length of the cell-grid.

To easily describe the relationship between the ego vehicle and its surroundings
vehicles, we adopt the method presented in section 4.2.1, i.e cell-grid based modeling
method. Based on Do et al. (2017), totally 9 cells and 32 situations (25) are considered
in the driving contextual traffic. But the paper does not give the specific boundary
of the cells. Kasper et al. (2012) modeled the cell by considering the speed-dependent
information when a cell will be occupied or will become free. But they assumed that
the vehicle can move unobstructed towards certain cell, which cannot be satisfied in
the situation where the ego vehicle is being overtaken by other vehicles. In this chapter
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we aim to detail the cell-grid method by considering the dynamic relationship between
the ego vehicle and the surrounding vehicles. A 3-cell grid is employed to model the
contextual traffic for both left and right LC case with totally 8 scenarios.

The experimental vehicle, from which the data used in this study were collected,
has no back view sensors installed, so only the front traffic can be detected. The traffic
situation on the back of the ego vehicle is not considered. Despite such limitation, the
method of modeling contextual traffic in this chapter can be extended to more cell-grids
which can cover the traffic on back of the ego vehicle as well. But it is not within the
scope of this study. Figure 5.2a depicts the modeled cell-grid.

We adopt the theory presented by Karim et al. (2013) to define the middle cell (cellm)
and the theory by Kesting and Treiber (2013) to define the left (celll)/right cell (cellr).
The dynamic length of each cell is s∗

1, s∗
2, s∗

3, respectively, as it is shown in Figure 5.2a.
The length of cellm is defined by a Mean Safe Time Gap (MSTG) based on Karim et al.
(2013) as:

MSTG = BTEV − BTOV + RT (5.1)

where BTEV and BTOV are the brake time of the ego vehicle and object vehicle 1,
respectively. RT is the driver’s perception-reaction time. And for certain vehicle, the
BT is calculated by an empirical equation

BT = 0.02321 · vz − 0.08785, (5.2)

where vz is the vehicle speed and thus

BTEV − BTOV = 0.02321 · Ṙ (5.3)

where, Ṙ is the range rate between the ego vehicle and object vehicle 1. So, the dynamic
length of s∗

1 can be written as
s∗

1 = v · MSTG, (5.4)

where v is the longitudinal speed of the ego vehicle.
We define celll and cellr based on the Intelligent Driver Model (IDM) (Kesting and

Treiber, 2013). In the study, the safe distance is derived from the leading vehicle,
driving at a desired speed, or preferring accelerations to be within a comfortable range.
Additionally, kinematical aspects are taken into account, such as the quadratic relation
between braking distance and speed. Firstly, on the left and right lane, a term desired
distance on the left (s∗

l ) and right (s∗
r) lane are defined respectively as:

s∗
l = s0 + max(0, v · T + Ṙl · Rl

2 ·
√

a∗ · b∗
) (5.5)
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s∗
r = s0 + max(0, v · T + Ṙr · Rr

2 ·
√

a∗ · b∗
), (5.6)

where s0 is the minimum (bumper-to-bumper) gap, T is the safe time gap, a∗ and b∗ are
acceleration and comfortable deceleration. Rl, Ṙl and Rr, Ṙr are the range and range
rate the ego vehicle with object vehicle 2 and vehicle 3 in Figure 5.2b, respectively. The
dynamic term Ṙl · Rl/(2 ·

√
a∗ · b∗) and Ṙr · Rr/(2 ·

√
a∗ · b∗) imply the intelligent braking

strategy for left lane-change(LLC) and right lane-change (RLC) cases.
Secondly, based on the desired distance on the left (s∗

l ) and right (s∗
r) lane , the

dynamic safety distance, namely the length of s∗
2 and s∗

3 can be written as:

s∗
2 = s∗

l√
( s∗

l

Rl
)2 − ∆a+abias

az

(5.7)

s∗
3 = s∗

r√
( s∗

r

Rr
)2 − ∆a−abias

az

, (5.8)

where az is the longitudinal acceleration of the ego vehicle. ∆a is the LC threshold.
abias represents the asymmetric property of LLC and RLC.

Table 5.1: The reference values regarding to the parameters for the cell grid

Parameter Value

RT 1.9 s

T 1.0 s

s0 2 m

a∗ 1.0 m/s2

b∗ 1.5 m/s2

∆a 0.1 m/s2

abias 0.3 m/s2

All the values of the parameters in equation (5.1) and equation (5.5) – equation (5.8)
are listed in Table 5.1, and the occupancy states of cells can be given by

cellm = 0 if R ≥ s∗
1

cellm = 1 if R < s∗
1

(5.9)

celll = 0 if Rl ≥ s∗
2

celll = 1 if Rl < s∗
2

(5.10)
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cellr = 0 if Rr ≥ s∗
3

cellr = 1 if Rr < s∗
3

(5.11)

LLC Scenario 0_0 LLC Scenario 0_1 LLC Scenario 1_0 LLC Scenario 1_1 

𝑐𝑒𝑙𝑙𝑙 𝑐𝑒𝑙𝑙𝑚 

(a) Left lane-change scenarios.

RLC Scenario 0_0 RLC Scenario 0_1 RLC Scenario 1_0 RLC Scenario 1_1 

𝑐𝑒𝑙𝑙𝑟  𝑐𝑒𝑙𝑙𝑚 

(b) Right lane-change scenarios.

Figure 5.3: Illustration of the modeled LC scenarios using the cell-grid method.

Depend on the occupancy states of cell-grids, totally 8 scenarios (4 scenarios for each
LLC and RLC) can be generated, as it is depicted in Figure 5.3:

• LLC Scenario 0_0 : When the ego vehicle makes LLC, there are no object vehicles
on both cellm and celll.

• LLC Scenario 0_1 : When the ego vehicle makes LLC, there is no object vehicle
on celll but cellm is occupied.

• LLC Scenario 1_0 : When the ego vehicle makes LLC, there is no object vehicle
on cellm but celll is occupied.

• LLC Scenario 1_1 : When the ego vehicle makes LLC, both cellm and celll are
occupied.

• RLC Scenario 0_0 : When the ego vehicle makes RLC, there are no object vehicles
on both cellm and cellr.

• RLC Scenario 0_1 : When the ego vehicle makes LLC, there is no object vehicle
on cellm but cellr is occupied.

• RLC Scenario 1_0 : When the ego vehicle makes LLC, there is no object vehicle
on cellr but cellm is occupied.
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• RLC Scenario 1_1 : When the ego vehicle makes LLC, both cellm and cellr are
occupied.

The name of the LC scenarios termed Scenario 0_1 and Scenario 1_0 is in accordance
with the binary states of the occupancy cells illustrated in Figure 5.3.

5.4 Data processing and feature extraction

5.4.1 Naturalistic driving data

Figure 5.4: The experimental route of the SPMD project. Picture extracted from Bezzina
and Sayer (2014).

The naturalistic driving data that are used in this study is based on the project of
Safety Pilot Model Deployment (SPMD), which is a comprehensive data collection project
in real-road condition. This third party datasets is extremely useful for researchers who
cannot conduct their own real-road experiment. It is completely open sourced which is
popular in many field of research.

The real-road project includes multi-modal traffic, hosting approximately 3,000
vehicles equipped with vehicle-to-vehicle (V2V) communication devices. The datasets
we used were collected from 20 vehicles, driving in the real-road including 75 miles of
roadway. The route is shown in Figure 5.4. Roads that marked as yellow are the route
SPMD vehicle drove. The drivers voluntarily joined in SPMD project. They drove
the SPMD vehicle completely based on their own driving styles with no restriction
on their driving behaviors. Each SPMD vehicle was equipped with data acquisition
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systems (DAS) e.g. CAN and GPS as well as vision system like Mobileye. All the
signals coming from different DAS were time-synchronized with sampling rate at 10
Hz. Datasets are available on-line on the website of U.S. transportation department10,
where DataFrontTargets, DataLane and DataWsu were downloaded for our study. The
description of the three datasets can be found in Henclewood, Abramovich, and Yelchuru
(2014) as follows:

• DataFrontTargets: Log of the data collected by the Mobileye sensor which is a part
of the DAS; largely includes data about the (vehicle) object that is in front of the
ego vehicle.

• DataLane: Logs quality of the lane markings next to the ego vehicle as well as the
distances between each side of the vehicle and each lane line.

• DataWsu: Log of GPS and CAN Bus data obtained via the onboard Wsu.

The description of the tree types of datasets regarding to the features of this study
is illustrated in Table 5.2, 5.3 and 5.4, respectively. The full details of the datasets can
be found in Henclewood, Abramovich, and Yelchuru (2014).

Device, Trip and Time are synchronized 

Figure 5.5: An example of the jointed datasets of DataFrontTargets, DataLane and
DataWsu using MySQL.

Due to the large quantity of the dataset (nearly 20 Gigabit), MySQL 6.3 is used to
query the datasets. In addition, although all the sensors installed in the SPMD vehicles
were synchronized, for research use all the three separated datasets, i.e. DataFrontTargets,
DataLane and DataWsu, should be jointed in one datasets. Figure 5.5 illustrates the
jointed datasets by using MySQL, where we can see that the whole datasets are
synchronized by device, trip and time.

10https://data.transportation.gov/Automobiles/Safety-Pilot-Model-Deployment-Data/a7qq-9vfe (vis-
ited on 31.07.2019)
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Table 5.2: The description of datasets DataFrontTargets

Data element Units Description
Device none A unique numeric ID assigned to each DAS. This ID also

doubles as a vehicle’s ID.

Time 1
10s Time in centiseconds since DAS started, which (generally)

starts when the ignition is in the on position.
Trip none Count of ignition cycles. Each ignition cycle commences

when the ignition is in the on position and ends when it is
in the off position.

TargetId none Numeric ID assigned by the Mobileye sensor to distinguish
between the different objects being tracked; the closest
obstacle is given a TargetId value of 1.

ObstacleId none ID of new obstacle, as assigned by the Mobileye sensor, and
its value will be the last used free ID.

Range m Longitudinal position of an object, typically the closest object,
relative to a reference point on the ego vehicle, according to
the Mobileye sensor.

RangeRate m/s Longitudinal velocity of an object, typically the closest object,
relative to the ego vehicle, according to the Mobileye sensor.

Transversal m The lateral position of the obstacle, as determined by the
Mobileye sensor.

Status none Classification of the motion (kinematic state) of an identified
obstacle/target as stopped, moving, etc.

CIPV none Field communicating whether an obstacle is the closest in a
vehicle’s path.

Table 5.3: The description of datasets DataLane

Data element Units Description
Device none A unique numeric ID assigned to each DAS. This ID also

doubles as a vehicle’s ID.

Time 1
10s Time in centiseconds since DAS started, which (generally)

starts when the ignition is in the on position.
Trip none Count of ignition cycles. Each ignition cycle commences

when the ignition is in the on position and ends when it is
in the off position.

LaneDistanceLeft m Distance between the left side of the vehicle and the left
boundary of the travel lane.

LaneDistanceRight m Distance between the right side of the vehicle and the right
boundary of the travel lane.
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Table 5.4: The description of datasets DataWsu

Data element Units Description
Device none A unique numeric ID assigned to each DAS. This ID also

doubles as a vehicle’s ID.

Time 1
10s Time in centiseconds since DAS started, which (generally)

starts when the ignition is in the on position.
Trip none Count of ignition cycles. Each ignition cycle commences

when the ignition is in the on position and ends when it is
in the off position.

AxWsu m/s2 Longitudinal acceleration from vehicle CAN Bus.
YawRateWsu deg/s2 Yaw rate from vehicle CAN Bus.
SpeedWsu km/h Speed from vehicle CAN Bus.

The method of querying LC events from huge time series data is used by Zhao,
Guo, and Jia (2017). Totally, 1375 lane-change cases (761 LLC and 614 RLC) are
extracted for analysis. The statistics of the LC cases with respect to the corresponding
LC scenarios in Figure 5.3 can be seen in Table 5.5. We can see that in LLC scenarios,
most of the cases took place in LLC Scenario 0_0 (365 cases) and LLC Scenario 0_1
(354 cases). And in RLC scenarios, the dominating cases are RLC Scenario 0_0 (371
cases) and RLC Scenario 1_0 (214 cases). This result implies that when the driver
wants to execute left/right LC maneuver, he/she tends to wait until the destination lane
being empty (celll/ cellr is unoccupied).

Table 5.5: The otal amount of LC cases

LC type Scenario Amount

LLC

0_0 365
0_1 354
1_0 15
1_1 27

RLC

0_0 371
0_1 10
1_0 214
1_1 16

5.4.2 Feature extraction

Vehicle dynamic feature

Vehicle dynamic feature refers to features that can describe the dynamic motion of the
ego vehicle. Vehicle yaw rate and lateral acceleration are widely regarded as strong
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features of vehicle lateral behavior. Together with longitudinal acceleration, the above
signals are necessary for recognizing, predicting as well as modeling vehicle lateral
behaviors (Leonhardt and Wanielik, 2017; Higgs and Abbas, 2015; Li, Li, et al., 2015;
Luo et al., 2016). In this study we also choose the following features that can be directly
collected from the on-board sensors:

• yawRatet: yaw rate of the ego vehicle at time t.

• azt: longitudinal acceleration of the ego vehicle at time t.

• axt: lateral acceleration of the ego vehicle at time t.

Combined feature

Combined feature is the feature combines different types of features. The common
combined features are as follows.

Time to collision (TTC) is the time required for two vehicles to collide if they
continue at their present speeds on the same path. It is usually used to evaluate the
collision risk (Kusano and Gabler, 2011). If the driver follows a vehicle with a small
TTC, he/she maybe execute a LC to overtake the slow leading vehicle. Thus the TTC
can be regarded as a valuable feature to recognize driver LC behavior (Kasper et al.,
2012). Time-to-lane crossing (TLC) represents the time available for a driver until the
moment at which any part of the vehicle reaches one of the lane boundaries (Godthelp,
Milgram, and Blaauw, 1984). It is an indicator to estimate if the ego vehicle is going to
cross the lane. Based on J2944 (2013), TTC and TLC are given by

• TTC with the object vehicle in front on the current lane (TTCt) at time t:

TTCt = −R

Ṙ
(5.12)

where R and Ṙ (in Figure 5.2b) are the range and the range rate between the
front edge of the ego vehicle and rear edge of the closest object vehicle in the same
traveling path as the ego vehicle, respectively. Here, what needs to be mentioned
is that TTC is only calculated for the LC case when Cellm = 1, because Cellm = 0
means there is no vehicle in the cell.

• TLC at time t (TLCt):
TLCt = dx

vx
, (5.13)

where dx is lateral distance between the front wheel and the lane boundary of the
ego vehicle. vx is the lateral speed.

In case that Ṙ and vx are equal to zero, equation (5.12) and (5.13) become infinity,
we use the inverse of TTC−1

t and TLC−1
t instead.
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Time-window feature

Data collected from the on-board sensors are in time series, so using a time-window (TW)
to extract features is effective to capture the information during the past few seconds
and this information can be used to recognize upcoming events (Thissen et al., 2003;
Salfner and Malek, 2007). In the case of predicting driver LC behavior, different lengths
of TW between 1 second to 5 seconds are selected for feature extraction (Mandalia
and Salvucci, 2005). In order to capture the properties of time series data, statistical
variables (mean, standard deviation, maximum, minimum and median) are calculated
within each TW (Li, Li, et al., 2015) as is described in Table 5.6, i.e. feature number
6–80. The number of the top right corner of the feature is the length of TW. Thus,
‘5’ in mean_yaw5

t means choosing 5 seconds as TW and ‘4’ in mean_yaw4
t represents

4 seconds TW, see feature # 6 and # 7 as examples. Figure 5.6a demonstrates how
time-window features are extracted.

Frequency-domain feature

Frequency-domain features have already been widely used in anomaly detection area as
well as detecting driver mental states (Chen et al., 2015; Chandola, Banerjee, and Kumar,
2009). Fast Fourier transform (FFT) is a popular method to transform time-domain
signals into frequency-domain (Heckbert, 1995). After FFT, the maximum value of
FFT coefficients within TW is a good indicator to represent the property of frequency
signals (Mörchen, 2003). The description of the frequency-domain features are listed in
Table 5.6, i.e. feature number 81–95. Figure 5.6b depicts how frequency domain features
are extracted.

𝑡 𝑡 𝑡 − 5 𝑠 𝑡 − 5 𝑠 

(a) Time-window feature extracion (b) Frequency-domain feature extracion 

Extracting feature,  

i.e. max, min, std, med and mean, 

 at moment  𝑡 with time-window 5 s. 

Extracting feature after FFT,  

i.e. max, min, std, med and mean, 

 at moment  𝑡 with time-window 5 s. 
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Figure 5.6: Illustration of the time-window feature and the frequency domain feature.
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Table 5.6: Description of the extracted features.

# Feature name Feature description
1 yawRatet yaw rate of ego vehicle at time t
2 azt az of ego vehicle at time t
3 axt ax of ego vehicle at time t
4 TTC−1

t TTC−1
t at time t

5 TLC−1
t TLC−1

t at time t
6 mean_yaw5

t mean of yawRate in TW 5 s
7 mean_yaw4

t mean of yawRate in TW 4 s

8-10
... mean_yawt in TW 3 s, 2 s, 1 s

11 std_yaw5
t std of yawRate in TW 5 s

12-15
... std_yawt in TW 4 s, 3 s, 2 s, 1 s

16 max_yaw5
t maximum of yawRate in TW 5 s

17-20
... max_yawt in TW 4 s, 3 s, 2 s, 1 s

21 min_yaw5
t minimum of yawRate in TW 5 s

22-25
... min_yawt in TW 4 s, 3 s, 2 s, 1 s

26 med_yaw5
t median of yawRate in TW 5 s

27-30
... med_yawt in TW 4 s, 3 s, 2 s, 1 s

31 mean_az5
t mean of the az in TW 5 s

32-35
... mean_azt in TW 4 s, 3 s, 2 s, 1 s

36 std_az5
t standard deviation of az in TW 5 s

37-40
... std_azt in TW 4 s, 3 s, 2 s, 1 s

41 max_az5
t maximum of az in TW 5 s

42-45
... max_azt in TW 4 s, 3 s, 2 s, 1 s

46 min_az5
t minimum of az in TW 5 s

47-50
... min_azt in TW 4 s, 3 s, 2 s, 1 s

51 med_az5
t median of az in TW 5 s

52-55
... med_azt in TW 4 s, 3 s, 2 s, 1 s

56 mean_ax5
t mean of the ax in TW 5 s

57-60
... mean_axt in TW 4 s, 3 s, 2 s, 1 s

61 std_ax5
t standard deviation of ax in TW 5 s

62-65
... std_axt in TW 4 s, 3 s, 2 s, 1 s

66 max_ax5
t maximum of ax in TW 5 s

67-70
... mean_axt in TW 4 s, 3 s, 2 s, 1 s

71 min_ax5
t minimum of ax in TW 5 s

72-75
... min_axt in TW 4 s, 3 s, 2 s, 1 s

76 med_ax5
t median of ax in TW 5 s

77-80
... med_axt in TW 4 s, 3 s, 2 s, 1 s

81 max_F_yaw5
t max yawRate FFT coefficients in TW 5 s

82-85
... max_F_yawt in TW 4 s, 3 s, 2 s, 1 s

86 max_F_az5
t max az FFT coefficients in TW 5 s

87-90
... max_F_azt in TW 4 s, 3 s, 2 s, 1 s

91 max_F_ax5
t max ax FFT coefficients in TW 5 s

92-95
... max_F_axt in TW 4 s, 3 s, 2 s, 1 s
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5.4.3 Data labeling

Ego 

vehicle 

10𝑠 5𝑠 𝑡0 
LK data LC data 

15𝑠 
Object 

vehicle 

Figure 5.7: Labeling for LC and LK datasets.

In order to evaluate the extracted features, LC datasets and LK datasets should be
labeled. To label LC events, one of the most important things is to find t0. Take LLC
for example. As it is shown in Figure 5.7, the ego vehicle (blue) intends to overtake the
slow vehicle (red) by left lane change. The moment that the left wheel of the ego car
just crosses the central dotted line is marked as the initial LC time t0. Since there is
no eye-tracker equipped in SPMD vehicles, the GBL method proposed in section 4.4.1
cannot be implemented. Instead, we can only use the TWL method to label datasets.
Based on the study in Salvucci and Liu (2002), it suggests that the driver tends to start
a LC maneuver approximately 5 s before an accrual LC. Thus in this study, time series
data between t0 and 5 seconds before are labeled as LC data samples. To ensure LK
datasets are separation of LC datasets, LK data samples are labeled between 10 seconds
and 15 seconds prior to t0. The same rule is applied to RLC.

5.5 Evaluation method

5.5.1 Feature evaluation

From the perspective of statistics, p-value is commonly used to test whether there is
statistical significance between two groups. If there is statistical significance between LC
datasets and LK datasets, it is thus to say that the extracted features are probably good
indicators for classification of LC and LK data samples. However, only using p-value to
evaluate significance is not enough (Sullivan and Feinn, 2012). The effect size, such as
Cohen’s d (Cohen, 1988), is also an important evaluation metric (Cohen, 1990):

d = |M1 − M2|√
S2

1+S2
2

2

(5.14)

where
d = Cohen’s index,
M1 = mean of the first group data,
M2 = mean of the second group data,
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S1 = standard deviation of the first group data,
S2 = standard deviation of the second group data.

In order to define significance level, Cohen defines the effect class as follow (J.Cohen,
1992):

• d < 0.5: small effect

• 0.5 ≤ d < 0.8: medium effect

• d ≥ 0.8: large effect

For each LC behavior, we label LC and LK datasets and calculate both Cohen’s
d and p-value for each feature. Then for all LC cases, we average the Cohen’s d and
p-values to get the mean for each feature in each scenario.

5.5.2 Models used for feature evaluation

In order to test if using the selected feature has advantages over using all the features
for ML models, SVM, naive Bayes (NB), Decision Tree (DT) and k-nearest neighbors
(KNN) are chosen to evaluate the classification performance. We implement the above
ML models through the Statistics and Machine Learning Toolbox11 provided by Matlab.
Here, the SVM model is set with a Gaussian kernel function, and the NB with Kernel
smoothing density estimation method, the DT with the default setting and the KNN
using an empirical prior with k = 1. The datasets used for training those models are
the same.

11https://www.mathworks.com/products/statistics.html (visited on 31.07.2019)
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5.6 Result and analysis

5.6.1 Analysis on effect size and p-value

All the evaluation results (Cohen’s d and p-value) for each feature in both LLC and RLC
scenarios can be found in Appendix Table B.1 and B.2, respectively. In statistical analysis,
p-value that is smaller than 0.05 can be regarded as having statistical significance and
Cohen’s d that is greater than 0.8 represents a large effect level (J.Cohen, 1992). By
following this two criterion, we mark each feature with Cohen’s d greater than 0.8 and
p-value smaller than 0.05 as red in Table B.1. So, those marked features are regarded as
strong features statistically and thus can be used for classification of LC and LK data
samples. Overall, based on the features marked as red, we find the following results:

• Although some features (p < 0.05) have shown statistical significance, marked as
blue, they have only medium or small effect size level (Cohen’s d < 0.8). This
result is also coincide with what it is refereed in Sullivan and Feinn (2012) that
only using p-value to evaluate statistical significance is not enough.

• Vehicle dynamic features e.g. yawRatet (#1), azt (#2) and axt (#3), and combined
feature TLC−1

t (#5) are not strong features for LLC case with no items marked as
red. For RLC case, only azt and TLC−1

t in RLC Scenario 0_1 can be regarded as
strong features. This implies that from the statistical view the common empirical
knowledge of using these features is not that much convincing. Additional feature
selection work should be done before using them.

• We mentioned that TTC−1
t is only calculated when the front cell of the ego vehicle

is occupied by an object vehicle (cellm = 1). TTC−1
t is marked as a strong feature

in LLC case, which demonstrates that the potential of the rear-end collision does
impact on driver LC decision. A hypothesis has been made by many research,
i.e. if the driver follows a leading vehicle which is too slow, he/she would probably
maneuver a LC to overtake the slow leading vehicle. And this analysis from the
naturalistic driving data proves that this hypothesis is reasonable.

• Feature #56 – #60, which refer to mean_ax, represent no statistical significance
at all and thus are regarded as unimportant features.

• To analyze the time-window (TW) features (#6 – #95), we take an example of the
marked strong features in LLC Scenario 0_0 and LLC Scenario 0_1. To make it
clear, we segment the table horizontally with 5 features in a group, e.g. feature #6
– #10 are related to the same feature mean_yaw but with different TW from 5 s –
1 s etc. The detailed illustration in both LLC and RLC scenarios can be seen in
Table B.1 and B.2 in Appendix, where features that have the largest Cohen’s d and
the smallest p-value are marked with ‘▲’ and ‘▼’, respectively. From these peak
and valley values we find that features with the greatest Cohen’s d are also likely
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to have the smallest p-values, except for feature #31 and #32 in LLC Scenario
0_0. We select the final features for each scenario based on the marked peak and
valley features, and for the special case like feature #31 and #32, features with
greater Cohen’s d (e.g. #31) are selected.

5.6.2 Final selected features for each LC scenario

Based on the marked features from the results, the final selected features in both LLC
and RLC scenarios are listed in Table 5.7 and Table 5.8. It can be found that different
LC scenarios have different features sets. The number of selected features from all 95
features for each LC scenario ranges from 8 to 16 differently. There is no feature set
which is eligible for all the LC scenarios. This is why we select the features based on
different LC scenarios. In LLC Scenario 0_0 and LLC Scenario 1_0, RLC Scenario
0_0, and RLC Scenario 1_0, there are no vehicle dynamic features and combined
features (#2, #4, #5) selected which means that these features are overestimated.

Although vehicle dynamic features related to vehicle lateral movement (yawRatet

(#1), azt (#2), and axt (#3)) are not contributive as expected, their corresponding
time-window features indicate larger effect sizes. This implies that the property of the
vehicle dynamic features within certain TW may contain more important information.
In addition, frequency-domain features are also promising features, with nearly at
least one feature being selected as strong feature in each scenario. The exception is
in LLC Scenario 0_1, where no frequency-domain features are selected. We will use
the final selected features to train ML models and further evaluate their classification
performance.
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Table 5.7: The final selected strong features of each LLC scenario.

# Feature
LLC Scenario

0_0 0_1 1_0 1_1
d p d p d p d p

4 TTC−1
t – – 0.92 0.04 – – 1.18 0.01

6 mean_yaw5
t 1.02 0.03 – – – – 1.54 0.04

7 mean_yaw4
t – – 0.98 0.04 1.14 < 0.01 – –

11 std_yaw5
t – – 1.05 0.03 – – – –

12 std_yaw4
t – – – – – – 1.03 0.01

13 std_yaw3
t 0.99 0.04 – – – – – –

16 max_yaw5
t 1.00 0.04 – – – – – –

17 max_yaw4
t – – 0.97 0.03 – – 1.36 0.03

21 min_yaw5
t – – 0.95 0.03 – – – –

22 min_yaw4
t 1.03 0.03 – – – – 1.20 0.04

23 min_yaw3
t – – – – 1.04 0.03 – –

26 med_yaw5
t 0.92 0.04 – – – – – –

27 med_yaw4
t – – – – 0.95 < 0.01 – –

31 mean_az5
t 0.92 0.04 – – 0.87 0.01 – –

32 mean_az4
t – – 0.95 0.04 – – – –

36 std_az5
t 0.91 0.04 1.05 0.04 – – – –

38 std_az3
t – – – – 1.23 < 0.01 – –

41 max_az5
t 0.98 0.04 – – – – – –

42 max_az4
t – – 1.01 0.03 – – – –

43 max_az3
t – – – – – – 0.85 0.04

46 min_az5
t 0.93 0.03 0.90 0.04 – – – –

50 min_az1
t – – – – – – 1.04 0.03

51 med_az5
t 0.88 0.04 0.94 0.04 0.97 0.01 – –

54 med_az2
t – – – – – – 0.91 0.03

61 std_ax5
t – – – – 1.21 < 0.01 – –

62 std_ax4
t – – – – – – 1.02 0.03

68 max_ax3
t – – – – 1.06 0.04 – –

71 min_ax5
t 0.94 0.04 – – – – – –

72 min_ax4
t – – – – 0.99 < 0.01 – –

82 max_F_yaw4
t – – – – 0.87 0.01 – –

83 max_F_yaw3
t – – – – – – 1.14 0.04

86 max_F_az5
t 0.98 0.04 – – – – 0.83 0.02

93 max_F_ax3
t – – – – 1.18 < 0.01 – –

Selected amount 12 10 11 11
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Table 5.8: The final selected strong features of each RLC scenario.

# Feature
RLC Scenario

0_0 0_1 1_0 1_1
d p d p d p d p

2 azt – – 0.96 0.04 – – – –
4 TTC−1

t – – – – – – 1.18 < 0.01
5 TLC−1

t – – 0.82 0.02 – – – –
6 mean_yaw5

t 0.92 0.04 1.29 0.04 0.96 0.04 1.54 < 0.01
11 std_yaw5

t 1.01 0.03 – – 1.02 0.03 0.98 0.03
13 std_yaw3

t – – 1.60 < 0.01 – – – –
16 max_yaw5

t 0.97 0.03 – – 0.95 0.04 – –
18 max_yaw3

t – – – – – – 1.40 < 0.01
21 min_yaw5

t 0.98 0.04 1.10 0.02 1.06 0.02 1.38 < 0.01
26 med_yaw5

t – – – – 1.04 0.03 – –
28 med_yaw3

t – – – – – – 1.23 0.01
31 mean_az5

t – – 1.16 < 0.01 – – – –
32 mean_az4

t – – – – 0.98 0.04 – –
36 std_az5

t 0.91 0.04 0.85 0.02 0.94 0.04 – –
38 std_az3

t – – – – – – 0.92 0.03
41 max_az5

t – – – – 0.98 0.04 – –
42 max_az4

t 0.95 0.04 – – – – – –
46 min_az5

t 0.84 0.04 1.28 0.02 0.94 0.03 – –
51 med_az5

t – – 1.01 < 0.01 – – 0.94 < 0.01
52 med_az4

t – – – – 1.00 0.04 – –
61 std_ax5

t – – 1.16 0.02 – – – –
62 std_ax4

t – – – – – – 1.02 0.01
66 max_ax5

t – – 1.13 0.01 – – – –
71 min_ax5

t – – 1.10 0.02 – – – –
72 min_ax4

t – – – – – – 1.12 0.03
76 med_ax5

t – – 1.06 0.04 – – – –
81 max_F_yaw5

t – – 0.95 0.01 – – – –
82 max_F_yaw4

t 0.88 0.04 – – – – 1.20 0.03
86 max_F_az5

t – – 0.88 0.02 0.95 0.04 – –
87 max_F_az4

t – – – – – – 0.86 0.04
91 max_F_ax5

t – – – – – – 1.16 0.02
94 max_F_ax2

t – – 1.11 < 0.01 – – – –
Selected amount 8 16 11 13
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5.6.3 Evaluation of different machine learning models using
the selected features

In order to test if using the selected features could really improve the model performance,
we compare the classification results of the ML models in section 5.5.2 both with the
selected features (termed as ‘Selected’) and all the features (termed as ‘All Features’).
To guarantee that the training data and testing data are disjoint, a cross-validation
(CV) method is used. The datasets are evenly divided into ten folds. Nine folds are
used to train the models and the remaining is used to test the models. ROC curves
and AUC values are as the metrics to evaluate the model performance as it is used in
chapter 4. All the ROC curves regarding to the classification performance are illustrated
in Appendix, where Figure B.1–B.4 are for LLC case and Figure B.5–B.8 for RLC case.
The corresponding AUC values are listed in Table 5.9 and 5.10.

In Table 5.9 and 5.10, comparison is made between using all the features and the
selected features for each ML model in both LLC scenarios and RLC scenarios. Since
the aim is to check if the model performance can be improved by using the selected
features instead of using all the features, we denote ‘↓’ as performance deterioration.
The improvement in percentage can be also seen from the table. Summarily, we found
the following result:

• Using the selected features, the performance of KNN can be improved in all the
scenarios. DT has the similar results. Using selected features, the performance of
DT can be improved significantly from 0.82 to 0.98 (an increase of 19.5%), and only
it only shows tiny deterioration (1.0%) in LLC Scenario 1_1 and RLC Scenario
1_1.

• For SVM, using the selected features can largely improve the classification
performance (performance increase between 4.2% and 13.6%) compared with
using all the features, and only show declination in LLC Scenario 0_1.

• NB represents different pictures. Using the selected features can hardly have
any improvements compared with using all the features. For example there is no
improvement in all LLC scenarios. It also happens to RLC Scenario 0_1 and RLC
Scenario 1_1. The poor performance of NB may be caused by the conditional
independent assumption between features. This is the biggest downside of NB.
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Table 5.9: The AUC values of the classification results by different models using the
selected features and all features in LLC scenarios.

Feature type
LLC Scenario 0_0 LLC Scenario 0_1

SVM NB DT KNN SVM NB DT KNN
All features 0.90 0.85 0.82 0.96 0.92 0.85 0.94 0.99

Selected 0.99 0.81 ↓ 0.98 0.98 0.84 ↓ 0.78 ↓ 0.97 0.99
Improvement (%) 10.0 -4.7 19.5 2.0 -8.6 -8.2 3.1 0

Feature type
LLC Scenario 1_0 LLC Scenario 1_1

SVM NB DT KNN SVM NB DT KNN
All features 0.88 0.94 0.99 0.98 0.93 0.97 0.99 0.98

Selected 1 0.93 ↓ 0.99 1 0.99 0.96 ↓ 0.98 ↓ 0.99
Improvement (%) 13.6 -1.0 0 2.0 6.4 -1.0 -1.0 1.0

Table 5.10: The AUC values of the classification results by different models using the
selected features and all features in RLC scenarios.

Feature type
RLC Scenario 0_0 RLC Scenario 0_1

SVM NB DT KNN SVM NB DT KNN
All features 0.94 0.87 0.91 0.97 0.95 0.94 0.99 0.96

Selected 0.98 0.80 ↓ 0.98 0.99 0.99 0.95 0.98 ↓ 1
Improvement (%) 4.2 -8.0 7.6 1.0 4.2 1.0 -1.0 4.1

Feature type
RLC Scenario 1_0 RLC Scenario 1_1

SVM NB DT KNN SVM NB DT KNN
All features 0.93 0.83 0.92 0.97 0.92 0.93 0.97 0.96

Selected 0.97 0.75 ↓ 0.98 0.99 0.99 0.98 0.98 0.98
Improvement (%) 4.3 -9.6 6.5 2.0 7.6 5.3 1.0 2.0
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5.7 Summary

In this chapter, we aim to propose a feature selection methodology in the view of
statistics. Unlike other feature selection technologies which select features for specific
algorithm, the method proposed in this study is more general and can be used for all
the algorithms. In order to make the statistical analysis convincing, a big data analysis
based on naturalistic datasets is implemented.

To enrich the feature sets, vehicle dynamic features directly collected from the
on-board sensors, combined features e.g. TTC and TLC, as well as time-window
features were extracted. In addition, features are not restricted to time-domain features,
frequency-domain features are also considered. Totally 95 features were extracted. In
order to comprehensively evaluate the features based on driving scenarios, a 3-cell grid
was used to model the contextual traffic. Both effect size (Cohen’s d) and p-value were
calculated as the metrics of feature selection. Results show that frequency-domain
features, which are rarely used in driver behavior related research, are also promising
features, with nearly at least one feature being selected as strong feature in each scenario.
From the final selected feature sets we find that for different LC scenarios, the final
selected features are different. Thus, feature selection should be based on driving
scenarios. In addition, features refer to vehicle lateral movement (azt and TLC−1

t ) which
are commonly used for recognition of driver LC behavior, do not represent statistical
significance (only except for TLC−1

t in RLC Scenario 0_1 ). This counter-empirical
result makes it more worthwhile doing feature selection work rather than just selecting
features based on the empirical knowledge.

Finally, we compared the classification performance of using the final selected features
to that of using all the features in each LC scenario. The result shows that except for
the relatively poor performance of naive Bayes, the performance of SVM and Decision
Tree, as well as KNN, can be improved from different levels in most of the LC scenarios.
Summarily, the high performance achieved by the ML models using all the features
(95 features) is at the expense of computation time. Considering the fact that using
the selected features (nearly only 10 features), ML models can still achieve the same
performance or even have improvement, it can be concluded that it is more efficient and
effective to using the selected features.

Summarily, the methodology presented in this study can be used for selecting any
features regarding to driver LC behavior, however, there are still some limitations that
can be improved in the further study:

• the raw naturalistic datasets are provided by the third party from U.S, where the
driving scenarios and driving rules are slightly different from Germany. In different
driving scenarios and based on different traffic rules, the final selected features as
well as feature evaluation result may lead to different results.
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• the extracted feature sets in this study (in Table 5.6) are limited by vehicle dynamic
features (like yaw rate, acceleration etc.). There are no features related to driver
behavior. For example, driver eye movements, driver maneuvering features e.g.
steering wheel angle and brake pedal data etc. Since there are no such features
available in the naturalistic datasets we used.

In order to overcome the limitations mentioned above and to further evaluate the
framework proposed in chapter 4, an experiment conducted on German road is necessary.
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6
Experiment 2 - Evaluation based on a

real-road experiment

6.1 Introduction

In order to further evaluate the methods proposed in the last two chapters and to
overcome the limitations, a real-road based study is made in this chapter. The content
includes experimental design, data processing, data labeling, feature selection as well as
evaluation. The real-road experiment was carried out in the period between 15.01.2019
to 19.03.2019 with 12 subjects participated12.

6.2 Experimental design

This part details the whole design of the real-road experiment which includes the
materials and equipment, and the synchronization method for data acquisition as well
as participants recruiting and driving task description.

6.2.1 Equipment

Testing vehicle

The testing vehicle is BMW 520 Touring with diesel engine and 8-gear automatic
transmission. There are some ADAS functionalities in the testing vehicle, such as head-
up display, adaptive cruise control system, lane departure warning system and parking
assistance system. However, except for head-up display, during the entire experiment
participants are not allowed to use the rest functionalities.

12This experiment is supported by Joyson Safety Systems GmbH. They provided the testing vehicle
and the necessary sensors. In addition, the cost of recruiting participants is also covered by the company.
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On-board CAN bus systems

The signals from sensors were collected through CAN bus systems and were recorded by
an on-board PC, which was located below the truck floor of the vehicle. Totally there
were four CAN bus systems used for data collection, i.e. S-CAN, K-CAN, PT1 and
PT2-CAN13. The location of the four CAN systems and the on-board PC is shown in
Figure 6.1.

Figure 6.1: CAN bus setup in the testing vehicle. Picture extracted from Zühlsdorff
(2018), where the same testing vehicle is used as in this study.

Figure 6.2: The first person view from the participant who wears the SMI glasses is
driving on the highway, where the blue point is the fixation monitored by eye-tracker.

Eye-tracker setup

The eye-tracker used in this experiment is the same as it is used in chapter 4, see
Figure 4.5. The difference is that in chapter 4, the experiment was conducted in

13S-CAN, K-CAN, PT1 and PT2-CAN are different CAN channels.
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a driving simulator but in this chapter the experiment was a real-road experiment.
Figure 6.2 illustrates the first person view from one participant on highway. The entire
driving scenario during the test in the view of the participant can be recorded by the
eye-tracking glasses, which can be used for further data processing. The sampling rate
of the eye-tracker is at 30 Hz.

Data synchronization

Since the eye-tracking data are not collected through CAN bus, a real-time synchro-
nization between signals from CAN bus and the eye-tracker is crucial for further data
processing.

The real-time synchronization work is done as follows: during the experiment,
messages are sent from PC used for recording CAN signals (Figure 6.1) to the eye-
tracker at a frequency of 0.1 Hz. In Figure 6.3a, the blue points are the messages received
by the eye-tracker from the on-board PC. Each message contains a Unix timestamp
in seconds based on the current time from PC and the eye-tracker timestamp. An
example of the messages for synchronization can be seen in Figure 6.3b, where the
term Timestamp is the eye-tracker time and Value is the Unix timestamp14 from the
on-board PC. In this way, data collected from the on-board PC and the eye-tracker is
synchronized.

6.2.2 Participants

Based on the regulation of Joyson Safety Systems GmbH, only the employees of the
company could drive the testing vehicle, thus the participants were selected among
the personnel. Since the participants were asked to wear eye-tracking glasses during
the entire drive, for calibration issue15, only participants who have normal vision or
wear contact lenses can meet the requirement. The questionnaire that is used to select
participants can be found in Appendix C.1.1.

Totally 12 volunteers (6 male and 6 female drivers) participated the experiment,
among which 9 participants are in the age group between 25 and 39, 2 participants in the
age group between 40 - 54 and one is over 55. All the participants are native German,
having had their driver licenses with minimum 9 years and maximum 45 years (Mean =
19.08 years). They are familiar with the traffic rules in Germany, and could understand
the questionnaire and the instruction in German without having any trouble. The
detailed statistics of the demographic questionnaire regarding to participants’ gender,
age, driving kilometers as well as driving frequency can be found in Appendix Figure C.1.

14The unix time stamp is a way to track time as a running total of seconds. This count starts at
the Unix Epoch on January 1st, 1970 at UTC. This is very useful to computer systems for tracking
and sorting dated information in dynamic and distributed applications both online and client side.
https://www.unixtimestamp.com/ (visited on 31.07.2019)

15If the driver wears glasses, the reflection of the glasses may lead to the failure of calibrating SMI
eye-tracking glasses.
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(a) A screen shot taken from the software used to process eye-tracking data, where
the blue points are the messages from PC used to record CAN signals carrying Unix
timestamps.

(b) Illustration of synchronized timestamps between CAN and the eye-tracker.

Figure 6.3: Data synchronization between CAN and the eye-tracker.

0 2 4 6 8 10 12 14 16 18

Scores

0

1

2

3

4

5

Figure 6.4: Illustration of the aggressiveness scores of the participants in histogram.
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High (score > 10)

Medium (5 <= score < 10)

Low (0 <= score < 5)

Figure 6.5: The pie chart of classification of driving styles based on scores, where high,
medium and low represents the levels of aggressive driving styles.

In order to classify the driving styles of the participants, the same behavioral-
psychological questionnaire as it is described in chapter 4 (in Appendix A.1.2) is used.
Figure 6.4 illustrates the aggressiveness scores of all the participants. Based on the score
of classification from 32 participants in chapter 4.3.3, the driving style classification
results of the 12 participants in this experiment is as follows and the distribution of the
pie chart can be found in Figure 6.5:

• Low aggressive driving style: scored between 0 and 5.

• Medium aggressive driving style: scored greater than 5 and smaller than 10.

• High aggressive driving style: scored over 10.

The above classification of driving style groups are used for organizing the training
datasets which will be detailed in section 6.3.

6.2.3 Driving task

Driving instructions

After signing a declaration of consent to store personal data and completing a
demographic questionnaire as well as the behavioral-psychological questionnaire, the
participants were instructed by the assist16 about how to use the testing vehicle before
start the journey.

16There were two assists who are two master students sitting on back row of the testing vehicle. One
assist was responsible for giving on-board instruction and checking the status of the on-board PC which
is used for recording data. Another assist was responsible for manually labeling the driving behaviors
of the participants which is detailed in 6.3.
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The participants were informed that their eye movements will be recorded by the
eye-tracker, and also the GPS data, driving dynamics movements. But the exact purpose
of the experiment was not told to them in order not to impact on their driving habits.
The functionalities of some assistance systems which are available in the vehicle were
explained, e.g. the adaptive cruise control and head up display, but the participants
can only use the head up display. The participants were also told the procedure of the
experiment, e.g. how long it takes, when to break for a while, the possible on-board
instruction, calibration of the eye-tracker as well as how to abort the experiment if they
do not want to continue etc. The whole instruction document can be found in Appendix
in C.1.4.

Calibration

A 3-points calibration method is used to calibrate the eye-tracking glasses. As we can
see in Figure 6.6, the participant was asked to focus his/her fixation on a 3-by-3 matrix
card. The three orange squares are used for calibration.

Figure 6.6: The 3-by-3 matrix card used for calibration of the eye-tracker using, where
the red point is the fixation point of the participant.
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Route of the experiment

After calibration, the participants can start their journey. They do not need to remember
the way or use navigation; instead, all the driving guidance was given by the assist. The
route of the entire experiment is illustrated in Figure 6.7, which follows clockwise. The
start and end point is Hussitenstr. 34, where Joyson Safety System GmbH is located.
There are three stages of driving and two breaks during the experiment. The first and
the third are city scenarios, between them is on highway A10 where some part of the
route has no speed limits. The net driving duration is around two hours and a half
excluding the two breaks. Two breaks are before and after driving on highway so that
the participants would not be fatigue because of long time driving. During the break the
participants do not need to wear the eye-tracker anymore, but re-calibration is needed
before they start again.

Figure 6.7: A screen shot of google map which captures the route (in clockwise) of the
experiment in Berlin.

6.3 Data processing

After two months, the whole experiment was finished with totally 158 Gigabyte data
collected. Data collected by SMI eye-tracker are the majority, taking up 152 Gigabyte.
The videos of the entire experiment were also recorded as it is shown in Figure 6.2. Data
from CAN bus take up the rest 6 Gigabyte. All the data were stored separately by each
participant. After checking the integrity of the datasets, it is found that data collected
from two participants failed to be synchronized and thus would not be used for further
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study. In addition, only data collected on highway (the second stage in Figure 6.7) is
processed since the focus of this study is mainly on highway roads17.

6.3.1 Eye-tracking data processing

The software used for processing the eye-tracking data in this experiment is software
BeGaze 3.7, which is the updated version of BeGaze 3.6 used in chapter 4 with no new
feature upgraded.

Defining AoI for real-road scenario

According to Lee, Olsen, Wierwille, et al. (2004), the most likely glancing locations
while driving are forward, rear view mirror, left mirror as well as blind spot region
like left side window and right side window. In experiment 1 presented by chapter
4, the setting of AoIs is limited by the driving simulator. In the simulator scenario,
there is no room for the participant to check the blind spot. See Figure 4.4 where the
simulated driving scenario is projected on the wall with no blind spot. Limited by
this experimental condition, only five AoIs are defined, i.e. Rear mirror, Left mirror,
Right mirror, Speedometer and Wind screen. Considering blind spot checking is a very
important driver behavior before executing a LC maneuver, conducting the experiment
using the driving simulator suffers this limitation. However for the real-road experiment,
there is no such limitation at all. Two additional AoIs are defined in this study, i.e. Left
window and Right Window, used for monitoring driver blind spot checking behavior.
Figure 6.8 is the illustration of the defined AoIs for the read-road driving scenario. The
orange and blue points are the fixations of the participants.

Although in the real-road scenario it is possible to define more flexible AoIs than in
the driving simulator scenario, it is also more challenging to label each defined AoI than
in the driving simulator scenario. The reason is that in the driving simulator experiment,
due to the limited viewing angle (the participants is focusing on the projected scenario on
the wall), the participants do not need to check the blind spot so their head orientation
are nearly fixed. With nearly fixed head orientation, the recorded frame by the eye-
tracker is also nearly fixed18. This makes it easier to label AoIs for each frame. However,
in the real-road scenario, the participants are more likely to rotate their heads in order

17The target of this study is on highway road, however, the experiment was conducted both on
highway and in city road. The reason is that this real-road experiment, which is supported by Joyson
Safety Systems GmbH, is not only for the purpose of this study but also for other research purposes
by the company itself. This would not impact on this study since all the participants were not told
the purpose of the experiment, but were told to drive like normal without giving them any additional
instruction.

18Fixations, which are presented by the orange and blue points in Figure 6.8 are frame based. That
is to say, the coordinate of the fixation is actually the pixel coordinate in reference image. Even for
the same AoI, the fixation coordinate in different recorded images can be different. For example, the
fixation coordinates in Figure 6.8a and in Figure 6.8d are likely the same, however, they represent
different AoIs. The former refers to Left window but the latter refers to Left mirror. The same situation
happens to Figure 6.8c and Figure 6.8f.
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(a) Left window 

(b) Rear mirror 

(c) Right window 

(d) Left mirror 
(e) Speedometer 

(f) Right mirror 

(g) Wind screen 

Figure 6.8: The definition of the 7-region AoIs in software BeGaze 3.7.

to check the driving situations. The result is that the recorded frame is also changing
frequently, which makes it difficult to use the coordinate value of the fixation to label
AoIs. Thus, labeling AoIs for the read-road data is more challenging than the driving
simulator data. A Semantic gaze mapping method is used to label AoIs.

Semantic gaze mapping

Fixations and saccades are two important gaze events which indicate human’s certain
intention (Liu, Yttri, and Snyder, 2010). By monitoring fixation and saccade, Maltz and
Shinar (1999) found that younger drivers and older drivers represent significant different
visual information processing pattern. Some researches were focusing on identifying
fixation and saccade (Salvucci and Goldberg, 2000; Nyström and Holmqvist, 2010). In
this chapter we use a semantic gaze mapping way to label AoIs.

Semantic gaze mapping is to identify all the fixation and saccade events, and order
them chunk by chunk in time series. The fixations and saccades are processed by
SMI BeGaze 3.7. In Figure 6.9, the green chunks are fixations and the length of the
chunk represents the duration of the fixation. Between two adjacent fixation chunks are
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saccades. AoIs defined in Figure 6.8 are thus labeled by the semantic chunks. In order
to avoid missing labels, we manually labeled all the AoIs, chunk by chunk19.

After labeling all the AoIs, the entire gaze pattern including fixations and saccades as
well as the AoIs can be represented in a reference frame, see Figure 6.10. This example
uses the data collected from the real-road experiment by one of the participants. In
Figure 6.10a, the points in circle are the fixations. The circle with a larger radius means
a longer duration. Between two fixations is the scan path of corresponding saccade.
We can clearly see that the fixations fall into our pre-defined AoIs. The distribution
of the fixations as a heat map can be seen in Figure 6.10b. Regions that covered with
larger areas with red color mean that there are more fixations falling in. So Wind screen
and Left mirror are the most popular AoIs for this participant. The data format as
well as the content of the output data after labeling AoIs can be found in Appendix in
Figure C.2.

Fixation Saccade 

Figure 6.9: A screen shot represents the semantic gaze events in software BeGaze 3.7.

6.3.2 Parsing CAN data

In section 6.2.1 we mentioned that all the signals from on-board sensors were collected
through CAN bus and recorded by an on-board PC. To use the raw data for further
study, parsing CAN data is needed20. The parsed CAN signals are listed in Table 6.1
which illustrates the name and origin of the signals.

19Manually labeling AoIs is time consuming, however, to get high quality AoI labels it is worth the
effort. This work was done by the author of this dissertation and a master student. For each participant,
it takes around 2 hours. If there are considerable more data need to be labeled, it is better to use
computer vision techniques.

20Thanks to Joyson Safety Systems GmbH who provides all the necessary interpretation about the
DBC file for the testing vehicle BMW 520, so that the CAN data can be parsed.
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(a) Scan path of gaze movement as well as the fixation pattern
with respect to the defined AoIs.

(b) Heat map of gaze fixation pattern with respect to defined
AoIs.

Figure 6.10: A reference frame which illustrates the gaze map hitting on AoIs, where
the term LWindow refers to Left window and RWindow refers to Right window.
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Table 6.1: Illustration of the parsed CAN signals.

Name of signal Origin of signal Type of CAN

SF_CAN_DV_ACTN_STW Steering wheel S-CAN

SF_CAN_DV_ACTN_BRTORQ Brake pedal S-CAN

SF_CAN_DV_ACTN_ACPD Throttle sensor S-CAN

SF_CAN_V_VEH Speed sensor S-CAN

SF_CAN_VYAW_VEH IMU S-CAN

NAV_GPS1 GPS S-CAN

BLINKEN Turn signal S-CAN

OBJDT_HDWOBS ACC S-CAN

Since the sampling rate between each CAN signal is unequal, a linear interpolation
method is used to equalize the number of the samples among different signals. An
example of linear interpolation is shown in Figure 6.11, where at t2, t4, t6 and t8 there
are no data collected, thus a linear interpolation method can make up for the missing
data. After re-sampling, all the data from CAN bus are at 25Hz. For data fusion
purpose, eye-tracking data, which were collected at 30Hz, are down-sampled at 25Hz to
match the CAN bus data. In this way, all the data are at 25Hz sampling rate.

Raw data 

Interpolated 

t 

value 

𝑡1 𝑡2 𝑡4 𝑡6 𝑡8 𝑡3 𝑡5 𝑡7 𝑡9 

Figure 6.11: An example of how linear interpolation works.
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6.3.3 Feature extraction

Although the feature extraction method as well as the extracted feature sets is already
illustrated in chapter 4, however, due to the difference of the sensors, the datasets of the
former study are different from the datasets in this chapter. In chapter 4, the testing
vehicle was equipped with Mobileye system, which can detect targets in front of the ego
vehicle on different lanes. In addition, the lane mark can also be detected by the vision
system. However, the testing vehicle in this study is limited by no such sensors, only
the forward targets driving on the same lane with the ego vehicle can be detected.

The advantage of the data collected in this study over the datasets from the third
party in the last chapter is that there are more data types included, e.g. steering wheel
angle, brake and gas pedal data etc. And we can also equip eye-tracker in the experiment.
Thus the feature extraction work should be reconsidered.

Vehicle dynamic feature

Vehicle dynamic feature refers to the feature that can describe the dynamic motion of
the ego vehicle. The extracted features are:

• yawRatet: yaw rate of the ego vehicle at time t.

• at: absolute acceleration of the ego vehicle at time t.

Driver behavior feature

Features which reflect driver behavior are extracted as follows:

• brpdt: brake pedal pressure of the ego vehicle at time t.

• acpdt: throttle opening angle of the ego vehicle at time t.

• stwt: steer wheel angle of the ego vehicle at time t.

• stwRatet: steering wheel angle rate of the ego vehicle at time t.

Combined feature

In section 5.4.2, two combined features, i.e. time to collision (TTC) and time-to-lane
(TLC) crossing are considered. But the testing vehicle in this experiment cannot detect
the lane mark, TLC is not possibly calculated. Only TTC is considered as the combined
feature. The inverse is given by21:

TTC−1
t = vego

∆d
(6.1)

21As it is mentioned in section 5.4.2, if the velocity of the ego vehicle and the front vehicle is the
same, TTC becomes infinite.
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where vego and ∆d is the velocity of the ego vehicle and the distance with the front
vehicle at time t, respectively. The motion of the ego vehicle relative to the front vehicle
is illustrated in Figure 6.12.

𝞓𝑑 

Ego 

vehicle 

Front 

vehicle 

𝑣𝑒𝑔𝑜 

Figure 6.12: Illustration of the motion of the ego vehicle.

Time-window feature

The way of extracting time-window (TW) features is the same as it is described in
section 5.4.2. TW between 1 second to 5 seconds are used. Statistical properties like
mean, standard deviation, maximum, minimum and median of the features mentioned
above are considered.

Frequency-domain features

Fast Fourier transform (FFT), which is already described in section 5.4.2, is used to
transform the time-domain features into frequency-domain (Heckbert, 1995). After FFT,
the maximum value of FFT coefficient within TW is chosen as the feature value (Mörchen,
2003). All the extracted features in this experiment can be found in Appendix Table C.1.

6.4 Method

6.4.1 Labeling lane-change dataset

It is known that the classification performance of the supervised learning models is
highly depended on class labels. In section 4.4, two LC labeling methods are proposed,
i.e. a gaze-based labeling (GBL) and a time-window labeling (TWL) method. For the
real-road experiment, we also use these two labeling methods to label LC data samples.

On-board labeling lane-change event

In order to improve the efficiency of the off-line data labeling task, i.e. quickly querying
LC events from huge collected raw data, an on-board LC event labeling method was
used. In this method, an assist sitting on back of the testing vehicle was responsible for

96



6.4 Method

Figure 6.13: The keyboard which is used for manually labeling lane-change events
on-board.

labeling LC events in real-time using a keyboard in Figure 6.13. When the participant
prepared to make LC, he/she would perform certain pre-LC behaviors, e.g. mirror
glancing, blind point checking, and then execute the actual maneuver. The task of the
assist was to notice such behaviors and label the start time (the participant steers the
steering wheel) by pressing and end time (LC finish) by releasing key 122. This labeling
process can be illustrated in Figure 6.14, where the assist presses key 1 from tstart to
tend to mark this lane-change event. This on-board labeling method is very useful and
efficient to query each LC event from the big time series data. tend functions as a very
important criterion to extract LC and LK datasets, which will be detailed in the data
labeling section.

Front vehicle Ego vehicle 

𝑡𝑠𝑡𝑎𝑟𝑡 𝑡𝑒𝑛𝑑  𝑡0 

Steering wheel turning direction 

Figure 6.14: Illustration of the selected time of the on-board labeling task.

22Note that the keyboard was not only used for labeling driver LC behavior, but also for curve
driving, turning at the intersection, for city scenarios etc. These behaviors are not the research scope
of this study.
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Table 6.2 lists the number of LC maneuvered by each participant. For the case that
the participant attempted to make a LC but due to certain reasons, e.g. danger, he/she
aborted the LC maneuver, it is counted as Aborted LC. Totally there are 232 LLC and
227 RLC cases observed. The LC cases that the driver did not use the turn signal 8
seconds before executing a LC are also marked. It indicates that this situation happened
more in RLC case than LLC case. In addition, the classification of driving styles of each
participant from section 6.2.2 is also listed in the right column.

Table 6.2: The statistics of LC cases in the real-road experiment.

# Participant LLC RLC Aborted LC Driving style
1 19 19 0 High aggressive
2 18 18 3 Medium aggressive
3 23 23 3 Low aggressive
4 27 26 4 High aggressive
5 23 22 2 High aggressive
6 30 29 0 Low aggressive
7 16 16 1 Medium aggressive
8 30 30 1 High aggressive
9 28 26 4 High aggressive
10 18 18 1 High aggressive
Sum 232 227 19 -
No turn signal 12 21 - -

Gaze-based labeling method

The rule of the gaze-based labeling (GBL) method is the same as it is in section 4.4.1,
where the moment tprepare is the critical moment. Take the LLC case for instance. As it
is demonstrated in Figure 6.15a, tprepare is defined by the last mirror-glancing behavior
by the participant before he/she uses the turn signal to indicate a LC. If the turn signal
is observed before a mirror-glancing behavior, we choose the moment he/she indicates
the turn signal as the tprepare. It is the same rule for RLC case as it is depicted in
Figure 6.15b. The LC case which will not be used for data labeling is when the driver
does not use the turn signal 8 seconds before t0. Totally there are 12 cases and 21 cases
for LLC and RLC, respectively, which is illustrated in Table 6.2.

The statistics of tprepare in box plot is plotted in Figure 6.16, where the y axis is the
duration between tprepare and t0 in seconds. Then LC datasets can be labeled between
tprepare and t0. t0 is defined as the moment that the wheel of the ego vehicle just crosses
the dotted central line. In order to obtain a balanced dataset for training, lane-keep
(LK) data samples are labeled as the equal number as the LC data samples.
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Ego vehicle 

𝑡𝑝𝑟𝑒𝑝𝑎𝑟𝑒 𝑡0 lane-keep 

LK dataset LC dataset 

glancing left view mirror 

(a) Gaze-based labeling method for LLC case. The number of labeled LC samples
and LK samples is equal.

Ego vehicle 

𝑡𝑝𝑟𝑒𝑝𝑎𝑟𝑒 𝑡0 lane-keep 

LK dataset LC dataset 

glancing right view mirror 

(b) Gaze-based labeling method for RLC case. The number of labeled LC samples
and LK samples is equal.

𝑡0 

LC dataset 

𝑡0′ 

Trajectory of the ego-vehicle 

LK dataset 

same length 
with LC 
datasets 

𝑡𝑝𝑟𝑒𝑝𝑎𝑟𝑒 𝑡𝑒𝑛𝑑′ 

(c) The case which is not suitable of using GBL method.

Figure 6.15: Demonstration of using the GBL method to label LC and LK datasets.
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t_prepare LLC
0

2

4

6

8
s

t_prepare RLC

2

4

6

8

s

Figure 6.16: The box plot of tprepare ahead of t0.

A special case we cannot use the GBL method is pictured in Figure 6.15c. That is:
when t0 − tprepare > tprepare − t

′
end, where t

′
end refers to the end of the last adjacent LC

event. In other words, the difference between t
′
end and tprepare should be greater than

tprepare and t0, otherwise it is not possible to extract equal amount of LK data samples
as LC datasets.

Time-window labeling method

The time-window labeling (TWL) method uses a fixed length time interval to label data
samples. As we can see in Figure 6.17a, candidate TW, i.e. 5s, 4s, 3s, 2s, 1s are selected.
Thus data before t0 and within the selected TW are labeled as LC dataset. Right before
LC dataset, the same amount of data are then labeled as LK samples for the need of
obtaining balanced datasets. This rule applies to both LLC and RLC case.

The criterion of choosing the largest TW for certain LC case follows what it is
illustrated in Figure 6.17b:

TW ⩽
t0 − t

′
end

2 (6.2)

where t0 refers to the current LC event, and t
′
end refers to the end of the last adjacent

LC event. The reason of restricting the largest allowed TW is that once TW is too large,
it is impossible to extract equal numbers of LK data samples as LC. If TW is greater
than t0 − t

′
end, LC dataset cannot even be extracted. If choosing the smallest TW, i.e.

TW = 1 s, it still cannot satisfy the above criterion, then this LC will be excluded for
data extraction.
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Ego vehicle 

TW length 

𝑡0 lane-keep 

LK dataset LC dataset 

same length 
with TW 

5s 
4s 

3s 

2s 

1s 

(a) An example of using TWL method to label LC and LK datasets. The number
of labeled LC samples and LK samples is equal.

TW length 

𝑡0 

LK dataset LC dataset 

𝑡0′ 

TW length 

Trajectory of the ego-vehicle 

𝑡𝑒𝑛𝑑′ 

(b) The criterion of choosing the largest length of TW for certain LC case.

Figure 6.17: Demonstration of using the TWL method for both LLC and RLC case.
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Data labeling result

Following the rules of the GBL and the TWL method, the numbers of the balanced
training samples is illustrated in Table 6.3. What needs to be mentioned is, as we can
see from the TWL method, the smaller the time-window is, the less the number of
labeled samples. In addition, the number of the training samples by the GBL method is
similar with the TWL method with 3 s time-window. The main difference of the GBL
and the TWL is that the GBL method tends to label LC data case by case, however,
the TWL method takes all the LC cases as the same by using a fixed time-window.

Table 6.3: The labeled training samples by the GBL and TWL method.

Labeling method Data type
Scenario Scenario

LLC RLC

GBL
LC 12001 12971

LK 12001 12971

TWL 5 s
LC 17750 17500

LK 17750 17500

TWL 4 s
LC 15500 16400

LK 15500 16400

TWL 3 s
LC 12600 13350

LK 12600 13350

TWL 2 s
LC 9350 9350

LK 9350 9350

TWL 1 s
LC 4950 4925

LK 4950 4925
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6.4.2 Feature selection

The same rule is applied to feature selection as it is mentioned in section 5.6.1, i.e.
features whose p-value smaller than 0.05 at the same time Cohen’s d larger than 0.8 are
selected for model training. In statistical analysis, p-value < 0.05 represents statistical
significance. Similarly, Cohen’s d > 0.8 indicates high effect size level (J.Cohen, 1992).
In addition, for the same feature with different time-windows, feature with a larger time-
window is preferable because more information is included within larger time-window.
For instance, if both max_yaw5

t (5 s time-window) and max_yaw3
t (3 s time-window)

are qualified, max_yaw5
t is selected.

The final selected features for both LLC and RLC case as well as by different labeling
methods can be seen in Table 6.4 and Table 6.5 (features with ✗are the selected). The full
scale of p-value and Cohen’s d of all the extracted features are listed in Appendix Table
C.2 and Table C.3. From the two tables we can see that the final selected features
are different by labeling methods. Additionally, LLC and RLC scenario also show
different feature selection results. This result is coinciding with the one we concluded
in section 5.6.2 from the big data analysis, which emphasizes the importance of doing
feature selection.

6.4.3 Training dataset

After feature selection, training datasets can be organized based on the selected features.
Three kinds of training datasets are prepared for model training:

• Driving style dataset: training datasets are grouped by driving styles. In other
words, data collected from the participants whose driving styles is in the same
group, i.e. high aggressive, medium aggressive or low aggressive, are categorized
together. The classified driving style of each participant is listed in Table 6.2.

• Personalized dataset: datasets are separated by each participant, which means
that each participant has his/her individual training dataset. The aim of using the
personalized datasets for training is to consider the individual driving style. As it
is mentioned in chapter 4 that even two drivers are at similar aggressive level, they
may show different temporary driving styles which can be represented by different
speed choice as well as accelerating or braking behavior.

• Non-categorized dataset: all the datasets are directly grouped together without
considering driving style and individuation. It is a super huge dataset.
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Table 6.4: The feature selection results of different labeling methods for LLC scenario.

# Feature TWL
GBL 5 s 4 s 3 s 2 s 1 s

1 yawRatet – – – ✗ – –
3 TTC−1

t ✗ ✗ ✗ – ✗ ✗

13 std_yaw5
t ✗ ✗ ✗ ✗ ✗ ✗

18 max_yaw5
t ✗ ✗ ✗ ✗ ✗ ✗

23 min_yaw5
t – ✗ ✗ ✗ – –

24 min_yaw4
t – – – – ✗ –

26 min_yaw2
t ✗ – – – – –

27 min_yaw1
t – – – – – ✗

28 med_yaw5
t – ✗ ✗ ✗ – –

30 med_yaw3
t – – – – ✗ –

31 med_yaw2
t – – – – – ✗

32 med_yaw1
t ✗ – – – – –

33 mean_a5
t ✗ ✗ ✗ ✗ ✗ –

34 mean_a4
t – – – – – ✗

38 std_a5
t ✗ ✗ ✗ ✗ ✗ ✗

43 max_a5
t ✗ ✗ ✗ ✗ ✗ –

48 min_a5
t – ✗ ✗ ✗ – –

52 min_a1
t – – – – – ✗

53 med_a5
t – ✗ ✗ ✗ – –

54 med_a4
t – – – – ✗ –

58 mean_brpd5
t – ✗ ✗ ✗ ✗ –

60 mean_brpd3
t ✗ – – – – –

61 mean_brpd2
t – – – – – ✗

113 std_stw5
t ✗ ✗ ✗ ✗ ✗ ✗

118 max_stw5
t ✗ ✗ ✗ ✗ ✗ ✗

123 min_stw5
t – ✗ ✗ ✗ – –

125 min_stw3
t – – – – ✗ –

126 min_stw2
t ✗ – – – – –

127 min_stw1
t – – – – – ✗

128 med_stw5
t – ✗ ✗ ✗ – –

130 med_stw3
t – – – – ✗ –

131 med_stw2
t – – – – – ✗

132 med_stw1
t ✗ – – – – –

133 mean_stwRate5
t – ✗ ✗ ✗ – –

134 mean_stwRate4
t ✗ – – – ✗ ✗

163 max_F_a5
t ✗ ✗ ✗ ✗ ✗ ✗

168 max_F_brpd5
t ✗ ✗ ✗ ✗ – ✗

183 max_F_stwRate5
t – ✗ ✗ ✗ ✗ ✗
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Table 6.5: The feature selection results of different labeling methods for RLC scenario.

# Feature TWL
GBL 5 s 4 s 3 s 2 s 1 s

1 yawRatet – ✗ ✗ ✗ – –
3 TTC−1

t ✗ – – – ✗ ✗

13 std_yaw5
t ✗ ✗ ✗ ✗ ✗ ✗

18 max_yaw5
t ✗ ✗ ✗ ✗ ✗ –

19 max_yaw4
t – – – – – ✗

23 min_yaw5
t – ✗ ✗ ✗ – –

24 min_yaw4
t – – – – ✗ –

26 min_yaw2
t ✗ – – – – ✗

28 med_yaw5
t – ✗ ✗ ✗ – –

29 med_yaw4
t ✗ – – – ✗ –

31 med_yaw2
t – – – – – ✗

33 mean_a5
t ✗ ✗ – ✗ ✗ ✗

34 mean_a4
t – – ✗ – – –

38 std_a5
t ✗ ✗ ✗ ✗ ✗ ✗

43 max_a5
t ✗ ✗ ✗ ✗ ✗ –

45 max_a3
t – – – – – ✗

48 min_a5
t – ✗ ✗ ✗ – –

50 min_a3
t ✗ – – – – –

53 med_a5
t – ✗ ✗ ✗ – –

55 med_a3
t – – – – ✗ –

56 med_a2
t ✗ – – – – –

58 mean_brpd5
t ✗ ✗ ✗ – ✗ –

59 mean_brpd4
t – – – – – ✗

113 std_stw5
t ✗ ✗ ✗ ✗ ✗ ✗

118 max_stw5
t ✗ ✗ ✗ ✗ ✗ ✗

123 min_stw5
t – ✗ ✗ ✗ – –

124 min_stw4
t ✗ – – – – –

125 min_stw3
t – – – – ✗ –

127 min_stw1
t – – – – – ✗

128 med_stw5
t – ✗ ✗ ✗ – –

130 med_stw3
t ✗ – – – ✗ –

132 med_stw1
t – – – – – ✗

133 mean_stwRate5
t – ✗ ✗ ✗ – –

134 mean_stwRate4
t ✗ – – – ✗ –

136 mean_stwRate2
t – – – – – ✗

163 max_F_a5
t ✗ ✗ ✗ ✗ ✗ ✗

168 max_F_brpd5
t ✗ ✗ ✗ ✗ ✗ ✗

169 max_F_brpd4
t – – – – –

183 max_F_stwRate5
t ✗ ✗ ✗ ✗ ✗ ✗
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6.5 Evaluation result

In this section, evaluation is made from different aspects, i.e. model selection, training
datasets comparison, labeling method comparison as well as the real-time prediction
test. The method used for evaluation adopts the same rule as it is used in section 4.6
where ROC curves and AUC values are as the metrics. Similar methods can be found in
McCall et al. (2007), Liebner et al. (2013), Peng et al. (2015), Doshi and Trivedi (2009),
and Lethaus, Baumann, et al. (2013).

6.5.1 Model and dataset comparison

In this section, three machine learning models proposed in section chapter 4 are evaluated.
They are lane-change Bayesian network with a Gaussian mixture model (LCBN-GMM),
SVM and naive Bayes (NB) model. LCBN-GMM has the same structure as it is detailed
in section 4.5.1. The prior distribution of NB is set as Gaussian. For SVM, the kernel
function used to generate the decision boundary is modeled as a Gaussian kernel. The
above three models are trained by the same training datasets mentioned in the last
section and thus we can compare the classification performance. The performance of
classifying LC and LK data samples by each model is listed in Table 6.6, where the
results are after 10-fold cross-validation. The corresponding ROC curves can be found
in Appendix Figure C.3.

Table 6.6: The AUC values of LCBN-GMM, SVM and NB trained by different datasets
using GBL method .

Scenario Training dataset LCBN-GMM SVM NB

LLC

Driving style 0.9659 0.9962 0.8340

Personalized 0.9877 0.9970 0.9247

Non-categorized 0.8215 0.9900 0.7825

RLC

Driving style 0.9673 0.9987 0.8190

Personalized 0.9892 0.9981 0.9203

Non-categorized 0.8577 0.9964 0.7611

The results can be discussed as follows.

• Comparison of models: LCBN-GMM and SVM perform much better than NB in
both LLC and RLC scenarios trained by each dataset. SVM performs slightly
better than LCBN-GMM (AUC values in bold are the best among each model).

• Comparison of training datasets: using the personalized training dataset, models
can achieve better performance than using the driving style dataset and much
better than the non-categorized dataset. The only exception is for SVM in RLC
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scenario where using the driving style dataset it performs slightly better than
using the personalized dataset. The non-categorized datasets are the worst for all
the models. In addition, we find that SVM is not influenced heavily by training
datasets as LCBN-GMM and NB.

In conclusion, NB and the non-categorized datasets are not qualified since their
performances are far worse than other combinations and thus would not be taken into
account for further comparison.

6.5.2 Labeling method comparison

In model comparison and training dataset comparison, NB and the non-categorized are
out. This section we use LCBN-GMM and SVM to compare the performance of using
the driving style dataset and the personalized dataset by different labeling methods. The
AUC values of LCBN-GMM and SVM are listed in Table 6.7 and Table 6.8, respectively.
The corresponding ROC curves can be seen in Appendix Figure C.4, where the results
are after 10-fold cross-validation.

Table 6.7: The AUC values of LCBN-GMM trained by different datasets using both
GBL and TWL method.

Scenario Labeling method Driving style Personalized

LLC

GBL 0.9659 0.9877

TWL 5 s 0.9618 0.9867

TWL 4 s 0.9578 0.9843

TWL 3 s 0.9054 0.9767

TWL 2 s 0.8856 0.9699

TWL 1 s 0.8929 0.9706

RLC

GBL 0.9673 0.9892

TWL 5 s 0.9260 0.9853

TWL 4 s 0.9220 0.9873

TWL 3 s 0.9050 0.9806

TWL 2 s 0.9274 0.9823

TWL 1 s 0.9044 0.9608
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Table 6.8: The AUC values of SVM trained by different datasets using both GBL and
TWL method.

Scenario Labeling method Driving style Personalized

LLC

GBL 0.9962 0.9970

TWL 5 s 0.9970 0.9972

TWL 4 s 0.9964 0.9964

TWL 3 s 0.9971 0.9975

TWL 2 s 0.9919 0.9947

TWL 1 s 0.9923 0.9941

RLC

GBL 0.9987 0.9981

TWL 5 s 0.9982 0.9984

TWL 4 s 0.9982 0.9975

TWL 3 s 0.9966 0.9964

TWL 2 s 0.9964 0.9948

TWL 1 s 0.9896 0.9919

From the two tables we find the following results:

• Comparison of labeling method: except for SVM in LLC scenario where using the
TWL method with 3 s time-window, the best AUC values are achieved by using
the GBL method.

• Comparison of training datasets: except for SVM in RLC scenario, the best AUC
values are all from the personalized datasets.

In conclusion, training the models using the personalized datasets labeled by the GBL
method is the recommended combination. Thus for the final real-time LC prediction
test, we test both LCBN-GMM and SVM using the personalized datasets with the GBL
method.

6.5.3 Real-time performance evaluation

In order to evaluate the real-time LC prediction performance of LCBN-GMM and SVM,
data from the entire drive of each participant are fed to the off-line trained model, i.e.
by the personalized training datasets with the GBL method, to test the real-time LC
prediction performance. One thing needed to be mentioned is that because of the sensor
failure during experiment, part of the data collected from participant # 4 are missing
and thus will not be used for testing.

Unlike the off-line training and testing task which only performs classification given
the labeled LC and LK data samples, the real-time prediction task is much more
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challenging. The reason is that in the real-time prediction test the whole data in time
series are tested. It includes significant amount of untrained data samples and the
majority of them are LK data samples. Thus, reducing false alarm and at the same
time achieving high precision is a big challenge.

Prediction fusing eye-tracking signal

In the real-time prediction test, the eye-tracking signal is fused into the prediction
algorithm, which is defined in terms of glancing_ratio by

glancing_ratio = mirror glancing duration
TW (6.3)

where the mirror-glancing duration is the total amount of time by the participant to
glance at the left view mirror and the left window (for RLC case is the right view mirror
and the right window). The time-window here is chosen as 5 s. If the participant does
not check the left/right view mirror/window, this ratio should be zero. The non-zero
histogram of glancing_ratio for both LLC and RLC is plotted in Figure 6.18.
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Figure 6.18: Non-zero histogram of mirror glancing ration for LLC and RLC scenario.
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Algorithm

The algorithm of the real-time LC prediction is described as follow:

Algorithm 1 Algorithm of the real-time driver LC behavior prediction.
1: Input feature signals at time t.
2: if P (LLC) > P (RLC) then
3: if P (LLC) ≥ ϵ & glancing_ratio ≥ ξleft then
4: LLC
5: else Lane-keeping
6: end if
7: else if P (LLC) < P (RLC) then
8: if P (RLC) ≥ ϵ & glancing_ratio ≥ ξright then
9: RLC

10: else Lane-keeping
11: end if
12: else
13: Lane-keeping
14: end if

where, ϵ is the decision threshold which is set as 0.9 for LCBN-GMM and 0 for
SVM23. ξleft and ξright are set as 0.05 and 0.03, respectively.

Evaluation

Three metrics, i.e. precision, recall and predicted time ahead of t0, are used to evaluate
model performance. Precision and recall are defined as:

Precision = TP

TP + FP

Recall = TP

TP + FN

(6.4)

where TP, FP and FN are true positives, false positives and false negatives, respectively.
For the case of LC behavior prediction, TP, FP and FN is defined as follows and can be
illustrated in Figure 6.19:

• TP: if the algorithm reports LLC/RLC intent and within the next 8 seconds24 the
driver does execute a LLC/RLC maneuver, then this prediction is counted as a TP
otherwise it is regarded as a FN.

23Since Bayesian network is a probability model, this threshold means that the model has 90%
confidence for the prediction. For SVM, it simple classifies data by the decision boundary, where the
positive class is greater than zero and negative class is smaller than zero

24The reason of choosing this threshold is that from Figure 6.16 we can see that the majority of
tprepare are within the range of 0 - 6 s and the maximum is nearly 8 s. Thus the maximum tprepare, i.e.
8 s, is selected as the threshold. For reference, in Leonhardt, Pech, and Wanielik (2018) the threshold
is set as 10 seconds, which means a larger forgiveness.
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• FP: if the driver executes LLC/RLC maneuver but in the previous 8 seconds the
algorithm did not report the correct LLC/RLC or there is even no report at all,
then this case is counted as a FP.
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Figure 6.19: Illustration of TP, FN and FP of the real-time prediction.

Precision and recall are counted separately for LLC and RLC case. For comparison,
we also perform the real-time prediction test for the case of without fusing eye-tracking
signal as well as only using eye-tracking signal. The threshold setting is the same as it
is in Algorithm 1. The final results are illustrated in Table 6.9, where the value in bond
represents the best performance given metrics.

Table 6.9: The real-time LC prediction result performed by LCBN-GMM and SVM.

Metric
Fusion of eye-tracking Only Only

LCBN-GMM SVM LCBN-GMM SVM eye-tracking

LLC

Precision 89.42% 93.51% 93.03% 98.21% 92.23%

Recall 56.34% 54.09% 26.71% 31.78% 42.59%

Prediction
3.1 s 3.3 s 4.7 s 5.1 s 3.6 s

time

RLC

Precision 71.21% 72.39% 94.40% 97.61% 62.78%

Recall 48.70% 82.90% 26.95% 31.78% 63.34%

Prediction
2.6 s 2.6 s 4.7 s 4.9 s 2.8 s

time
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From the table we find the following results:

• Comparison of LCBN-GMM and SVM fusing eye-tracking signal: SVM achieves
slightly higher precision in both LLC and RLC scenario and much better recall value
in RLC scenario. The recall of LCBN-GMM in LLC scenario is slight higher than
SVM. In addition, SVM can predict LC behavior slight earlier than LCBN-GMM.

• Comparison of fusion and without fusion of eye-tracking signal: for LLC, the
prediction of both LCBN-GMM and SVM fusing eye-tracking signal are slightly
lower (around 5%) than without fusing eye-tracking signal. The reason is that by
fusing eye-tracking signal, an additional condition is added to predict a LC report,
which means the condition of reporting a true LC is stricter. This can increase
the chance of missing-prediction. The missing-prediction case is more often in
RLC case, which leads to a lower precision. The possible reason is that fusing
eye-tracking signal is highly depended on if the driver performs mirror-glancing
behavior before LC. And in RLC case, based on the statistics in Table 6.2, the
chance of executing a LC without mirror-glancing behavior in RLC scenario is
nearly 50% more than LLC scenario. This is why the precision of predicting RLC
by fusing eye-tracking signal is much lower than LLC.
However, the benefit of more strict condition is highly increasing the recall. We
can see that the recall values of the fusing eye-tracking signal of both models are
much higher than without fusing eye-tracking signal, which are nearly 30% for
LCBN-GMM and 20% for SVM (in RLC case for SVM is more than 50%). a Higher
recall value represent a lower false alarm level, which plays an essential role in the
practical implementation of ADASs.

• Comparison of fusion eye-tracking and only using eye-tracking signal: prediction of
LLC by only using eye-tracking signal can achieve relatively higher precision with
earlier prediction time, however, the recall is more than 10% lower than fusion
method. For RLC, only using eye-tracking signal suffers a low prediction. This is
also in consistent with the result that glance pattern is promising LC predictors
for certain types (Beggiato et al., 2018), implying that it does not apply to all the
cases. Thus, it can be concluded that only using eye-tracking signal to predict
driver LC behavior is not recommended.

In conclusion, balancing the precision and the recall, SVM fusing eye-tracking signal
can achieve the best performance in LLC scenario. For RLC scenario, among all the
methods, it is difficult to balance the precision and the recall, which indicates the
prediction of RLC is more challenging than LLC. The precision of SVM fusing eye-
tracking signal decreases significantly compared with its performance in LLC scenario.
But it could achieve much higher recall values than other counterparts, which means
the false alarm is very low.
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Figure 6.20: An example of the real-time prediction of LC by SVM.

Figure 6.20 gives an example of the real-time prediction of LC by SVM during 100
seconds. The red dotted line represents the moment t0 in Figure 6.19. The positive
values are for LLC and negative values for RLC. The blue line is the SVM prediction
signal for prediction of LLC as 1 and RLC as -1. We can see that SVM can predict
LC several seconds before t0 for both LLC and RLC. The green and the pink line are
the glancing_ratio in equation (6.3) for left and right side, respectively. It depicts the
change of glancing_ratio before and after LC, and it shows that glancing_ratio has a
dramatic increase before each LC.

6.6 Summary

The work presented in this chapter is the combination of chapter 4 and chapter 5, aiming
to design a comprehensive framework of prediction of driver LC behavior. The content
includes experimental design, data processing, feature selection, model selection and
evaluation. Although the condition of the experiment conducted in this chapter is not
exactly the same as it is in chapter 4 and chapter 5, the methods are mainly the same.

In order to evaluate the methods proposed in the last chapters, a real-road experiment
was conducted on highway in Berlin. Totally 12 participants joined in the experiment
with 3 hours’ drive for each person (40 min on highway). During the experiment, the
participants were asked to wear the SMI eye-tracking glasses to monitor their gaze
behavior. A semantic gaze mapping method was used to capture the AoIs of the
participant during the driving task. Synchronization work was done between CAN
Bus and the eye-tracker so that data collected from different sensors are synchronized.
Furthermore for the off-line data processing, all the data were re-sampled at 25Hz by
using a interpolation method. In preparing for training datasets, besides the driving
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style dataset and the non-categorized training datasets, a new training dataset, i.e. the
personalized dataset, was added for comparison.

The feature selection method used in this chapter is the same as it is presented in
chapter 5, where p- value and Cohen’s d were chosen as the metrics. The result shows
that the items of the final selected features are different by LC scenarios as well as by
labeling methods, which implies that feature selection is necessary before model training.

The ML models being tested are the same as in chapter 4, i.e. LCBN-GMM, SVM
and naive Bayes. Data are labeled using both the GBL and the TWL method. The
evaluation applies to the same metrics used throughout this dissertation, i.e. ROC
curves and AUC values. Result shows that the personalized training dataset with the
GBL method is the best combination for model training. Comparison of the three
models, LCBN-GMM and SVM outperform NB, thus NB is out of the final real-time
prediction test.

In the final test, we mimic the real-time prediction scenario by feeding data from
the entire drive (participant by participant) in time series to LCBN-GMM and SVM to
evaluate their real-time prediction performance. Comparison was also made between
fusing and without fusing eye-tracking signal as well as only using eye-tracking signal
for prediction. Result shows that in LLC scenarios, SVM fusing eye-tracking signal can
achieve the best performance. It can predict driver LC behavior 3.3 s before actual
LC with precision 93.51% and recall 54.09%. However, it represents different picture
in RLC scenario. It is difficult to balance the precision and the recall, which in other
words indicates that predicting driver LC behavior in RLC scenario is more difficult
than in LLC scenario.

The limitation of this study is that because there is no detection sensors equipped
in our testing vehicle, no contextual traffic is modeled. Thus, we cannot analyze the
influence of different contextual traffic on model performance. Especially for the fact
that LCBN-GMM performs better than SVM in chapter 4 where the contextual traffic
is modeled, however, in this chapter SVM slightly outperforms LCBN-GMM without
modeling the contextual traffic. In addition, since the case of the driver making LC
without glancing mirror happens more often for RLC than LLC, which makes it more
challenging to predict RLC. If the contextual traffic can be modeled, it could be beneficial
for the prediction. The influence of the contextual traffic on driver LC behavior as well
as model performance will be further discussed in next chapter.
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7
Discussion and outlook

This chapter summarizes the final conclusions throughout this dissertation and gives an
outlook on the research of prediction of driver lane-change behavior.

7.1 Overall conclusion

In this dissertation, a systematic framework of prediction of driver lane-change (LC)
behavior is proposed, including experimental design, data processing, data labeling as
well as model performance evaluation. Several issues reading to the framework are
scattered in three studies, i.e. chapter 4 - chapter 6. The pipeline of the research method
is in the form of question and answer and can be summarized as: What did the related
works do?, What can be improved?, What is our limitation and how to overcome it?.
The conclusions from different aspects are discussed in the following sections.

7.1.1 Modeling

Modeling is the first issue to be considered for implementation. The main modeling
work that is included in this dissertation is regarding to modeling of driving contextual
traffic and machine learning (ML) models.

Contextual traffic

It has been concluded in many research that contextual traffic is very import in driver
behavior related studies (Oliver and Pentland, 2000; Wahle et al., 2000; McGehee
et al., 2002; Wahle et al., 2002). In this dissertation, the concept of the contextual
traffic is related to the relationship between the subject vehicle and its surrounding
vehicles. In the case of driver LC behavior, the contextual traffic could impact on driver
decision-making process. In more complex contextual scenario, it takes longer time for
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the driver to prepare for a LC maneuver. The contextual traffic also has influence on
driver gaze behavior which is a very important indicator for prediction of driver LC
behavior.

In order to dynamically modeling the contextual traffic, a cell-grid mapping method
is used inspired by Do et al. (2017), Nilsson, Silvlin, et al. (2016), and Kasper et al.
(2012). So far, this modeling method is only implemented on highway roads since the
road situations are less complex than in city. In addition, this cell-grid modeling method
is also depended on how many lanes it has on highway road and the sensor level of the
experimental vehicle. For example, the number of cells is different for two-lane highway
and three-lane highway. And if there are only front detection sensors, e.g. camera or
LiDAR, then only the front contextual traffic can be modeled.

In chapter 4, where the experiment was conducted in a driving simulator, it is
assumed that all the necessary sensors are well equipped and thus we could model both
the front and the back contextual traffic. In chapter 5, where the ego-vehicle had only
front view camera installed, thus only the front contextual traffic was modeled. However
in chapter 6, limited by no detection sensors, the real-road experiment was conducted
without contextual traffic modeling. The absence of modeling contextual traffic is also
one reason that leads to the relative poor prediction performance of right LC (RLC)
in comparison to left LC (LLC). It is also indicated in Beggiato et al. (2018) that by
monitoring vehicle environment it can allow for better prediction performance, e.g. the
number of driving lanes available, the possibility of changing the lane (i.e. traffic density
on the target lane) and the presence of a slower leading vehicle etc.

Machine learning models

Supervised learning models are mainly focused on in this dissertation. The two main
branches of supervised learning models are generic model and discriminant model. For
the purpose of covering both of the two branches, an easier generic model of Naive
Bayes (NB), and a more complex generic model of Bayesian networks (BN) as well
as discriminant model of support vector machine (SVM) are implemented for model
comparison. BN is modeled specially for LC case and is incorporated with a Gaussian
mixture model in terms of LCBN-GMM.

By comparing the classification performance of these three models in both chapter 4
(a driving simulator based study) and chapter 6 (a real-road experiment based study), it
can be concluded that LCBN-GMM and SVM outperforms NB. The poor performance
of NB may be caused by the conditional independent assumption between features. This
is the biggest downside of NB. However, the comparison of LCBN-GMM and SVM
in chapter 4 and chapter 6 indicates different results. In the driving simulator based
experiment, LCBN-GMM performs better than SVM, however, in the real-road based
experiment SVM performs slight better than LCBN-GMM. This controversial result may
be coursed by the different experimental condition. Because the real-road experiment
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was conducted without contextual traffic modeling, this makes LCBN-GMM not perform
at its best as it could. In addition, because SVM is a discriminant model, which does not
care how the data are generated but simply tries to find the best classification boundary
to classify data samples, it is less sensitive to the quality of the dataset compared with
generic models.

Although it is still an open question which really performs better, it can be concluded
that both LCBN-GMM and SVM could achieve high performance using the proposed
method in this dissertation. In the real-road experiment, the best AUC values of LCBN-
GMM is nearly 0.99 for both LLC and RLC scenario, and SVM could achieve slight
over 0.99 in both LLC and RLC scenario. Based on the study by Fan, Upadhye, and
Worster (2006), AUC > 0.97 can be regarded as a very good classification performance.

7.1.2 Feature selection

Feature selection is crucial for ML models. It can not only speed up the learning
process but also can improve model performance (Kira and Rendell, 1992). A statistical
method is proposed in this dissertation to select the most contributive features based
on the metrics of p-value and Cohen’s d. Instead of ranking features to a specific
algorithm (Geng et al., 2007), this feature selection method tends to avoid heuristic
search and thus the selected features can be used by all the ML models.

From the big data analysis in chapter 5, it can be concluded that the importance of
the features is varying by different contextual scenarios. In other words, to predict driver
LC behavior in different scenarios, the selected strong features are probably different
as well. Frequency-domain features, which are rarely used in driver behavior related
research, are also promising features, with nearly at least one feature being selected
as the strong feature in each scenario. In addition, in some contextual scenarios, the
commonly assumed and being used features regarding to vehicle lateral movement, e.g.
lateral acceleration and time-to-lane cross (TLC), do not show statistical significance
and thus would not be regarded as strong features. This result indicates that feature
selection should be done in a systematic way rather than only based on the empirical
knowledge.

After feature selection, 95 features are reduced to around 10 features for each scenario.
Finally, ML modes are tested with the use of the selected features and all the features
without selection. The result suggests that using the selected features, the performance
of ML models shows increase in different levels (maximum 10% increase) compared
with using all the features. The exception is NB model, whose performance can hardly
be improved. Considering the fact that using the selected features (nearly only 10
features), ML models (except for NB) can still achieve the same performance or even
have improvements, it can be concluded that it is more efficient and effective to use the
selected features than use all the features without feature selection.
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7.1.3 Evaluation

The main metrics used for evaluating classification performance are ROC curve and AUC
value, which are widely used in many related works like in McCall et al. (2007), Liebner
et al. (2013), Peng et al. (2015), Doshi and Trivedi (2009), and Lethaus, Baumann,
et al. (2013). We also use precision and recall as the metrics to evaluate the real-time
prediction performance. Evaluations are made in the following aspects.

Training dataset and Labeling method

In the last section we have discussed the importance of feature selection. Actually, the
quality of the training datasets can also impact on the performance of the ML models.

Although feature selection is considered in many research to improve model
performance, few research studied the influence of training dataset on prediction
performance. As we mentioned the influence of driving style on driver LC behavior,
it mainly affects the quality of the labeled training datasets. To improve the quality
of the training datasets, datasets are separated into different categories to test their
performance, i.e. driving style datasets (datasets are grouped based on driving styles),
personalized datasets (data collected from each participant is a single group) and
non-categorized datasets (a huge dataset without any classification).

Another issue can have influence on the quality of the training datasets is the labeling
method. The most popular way to label LC and LK datasets by the related research is
the time-window labeling (TWL) method, with the assumption that data within certain
time-window (TW) ahead of the LC maneuver can be labeled as LC samples (Mandalia
and Salvucci, 2005; Doshi and Trivedi, 2009; Lethaus, Baumann, et al., 2013; Doshi
and Trivedi, 2008; Morris, Doshi, and Trivedi, 2011). The limitation of this labeling
method is without considering the differences between drivers and LC cases. Because
driver LC behavior is very driver and LC case specific. Considering these differences, a
gaze-based labeling (GBL) method is proposed with the use of eye-tracker. The GBL
method considers the mirror glancing behavior of the driver before an actual LC. All
the training datasets are labeled by both the GBL and the TWL method for evaluation.

Result shows that using the driving style training dataset is much better than the
non-categorized training dataset. The personalized training dataset performs slightly
better than the driving style dataset. This result implies that the effect of driving style
on model performance does exist. Thus, preparing for the training datasets by individual
driver is preferable. What it needs to be mentioned here is that the personalized
training datasets may suffer from being short of training samples. This is the reason
that in chapter 4 there are no personalized training datasets being considered. For
inadequate training samples, organizing dataset by driving styles is recommended since
it outperforms the non-categorized dataset. In addition to the comparison between
labeling method, the GBL achieves the best performance for both LCBN-GMM and
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SVM almost in all scenarios, except for SVM in LLC scenario where the TWL performs
slightly better than the GBL with 3 s time-window.

In conclusion, the best combination used for model training is the personalized
training datasets with the GBL method.

Real-time prediction performance

All the work presented above, i.e. modeling, feature selection, model selection as well as
training dataset and labeling method selection, is to pave the way to evaluate the real-
time prediction performance. Both LCBN-GMM and SVM trained by the personalized
datasets using the GBL method are tested. In the real-time test, we feed all the data
(on highway) in time series to the two trained models and to see whether they can
correctly predict LC maneuvers or not. Comparison is made between fusing and without
fusing eye-tracking signal in the prediction algorithm as well as only using eye-tracking
signal without ML models for prediction. Precision and recall are the two metrics for
evaluation. Precision represents the level of how many LC behaviors can be correctly
predicted, whereas recall reflects the false alarm level.

Comparison between LCBN-GMM and SVM both fusing eye-tracking signal, SVM
performs slightly better than LCBN-GMM for LLC case and much better for RLC case
by achieving significant higher recall vales. Thus, SVM fusing eye-tracking signal is
chosen for further comparison.

For LLC case by SVM fusing eye-tracking information, although the precision
decreases slightly in comparison to without fusing eye-tracking signal, the recall can be
improved significantly. The reason of fusing eye-tracking makes the precision slightly
decreases is that an additional threshold makes it stricter to report a LC. But it can
also reduce false alarm significantly. Given that fusing eye-tracking signal the models
can still achieve high precision (93.5%) and with significant recall increase, it can be
concluded that fusing eye-tracking signal can improve the prediction performance. And
by comparing fusing eye-tracking signal and only using eye-tracking signal for prediction,
we found that SVM fusing eye-tracking signal outperforms only using eye-tracking signal
in both precision and recall.

For RLC case, however, it shows different picture. Only using eye-tracking signal for
prediction could lead to poor performance. And it is difficult to balance precision and
recall by either fusing eye-tracking signal or not. For SVM without fusing eye-tracking
signal, it can achieve high precision but suffer from low recall, which means high false
alarm. Fusion of eye-tracking signal, the precision of SVM is going down significantly
despite the recall also increases significantly. This result indicates that predicting driver
right LC behavior is more difficult than left LC behavior. The possible reason is that we
can observe less evidence in RLC case than LLC case. Research found that most lane
changes are to the left with a mean duration of over 11 seconds than to the right which
has a mean of 6.6 seconds (Lee, Olsen, Wierwille, et al., 2004). LLC cases are mainly
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for the purpose of overtaking a slow leading vehicle. Especially based on traffic rules in
Germany, it is not allowed to execute a RLC for overtaking. In an overtaking process,
the driver has to do more preparation to execute a LLC and thus gives more clues that
can be used for prediction. For example, turn signal used in LLC case is 13% more
frequently than RLC case, and the chance of glancing at the left view mirror for LLC
is also higher than glancing at the right view mirror for RLC (Lee, Olsen, Wierwille,
et al., 2004). It was hypothesized that the driver executing RLC has often just passed a
slow leading vehicle and therefore has a greater degree of situational awareness than the
driver anticipating a LLC. Thus, the driver may feel that it is unnecessary to do the
same safety check for RLC (Lee, Olsen, Wierwille, et al., 2004).

In conclusion, SVM fusing eye-tracking signal can achieve good prediction perfor-
mance for LLC case, however for RCL case, more driving uncertainty, e.g. specified
contextual traffic, possibility of changing the lanes, should be known in advance to
predict LC more precisely and reliably.

7.1.4 Contribution

Although the topic of prediction of driver LC behavior has been studied in many related
works for a couple of years, some methods proposed in this dissertation are original and
can be extended to the other similar fields of research. The original contributions of
this dissertation are summarized as follows:

1. Although the method of using a cell-grid to model the contextual traffic and the
way of using a behavioral-psychological questionnaire to classify diving style are
from related research, the method of considering these two factors in preparing for
the training datasets is unique.

2. A novel data labeling method termed as the GBL method is proposed. This labeling
method takes advantage of driver gaze behavior and can make LC data labeling
work correlated with driver LC behavior. In this way the quality of the training
datasets can be improved.

3. Regarding to prediction of driver LC behavior, few research have done with
a systematic feature selection work before training their ML models. The
most common case is just using features based on the empirical knowledge or
recommended in the prior research rather than performing a comprehensive feature
selection work. This dissertation proposes a systematic feature selection method in
the perspective of statistics. Wide ranges of features related to driver LC behavior
are extracted, e.g. vehicle dynamic features, driver behavior features, combined
features and time-window features, to enrich the feature sets. In addition, features
are not limited in time-domain but also covering frequency-domain. This feature
extraction and selection method is general for all the ML models and can be also
extended to other field of research regarding to machine learning techniques.
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7.2 Outlook

Modern ADASs need to adapt to driver intentions and situations to match the driver’s
actual need for assistance, that is to say the future ADASs themselves need the knowledge
about the driver’s intention (Leonhardt, Pech, and Wanielik, 2018). For the case of the
LC assistance system, the framework presented in this dissertation is very promising in
practical application. In the simulated real-time prediction test, by using the method
proposed in this dissertation, driver LC behavior can be predicted on average 3.3 s
ahead of an actual LC maneuver for LLC case and 2.6 s for RLC case. There are mainly
two use cases for the prediction:

1. The prediction signal can be implemented in ADAS by either active feedback or
passive feedback. For the active feedback, when the system predicts the driver wants
to make LC, then ADAS could assist the driver with recommended acceleration
and speed as well as the LC path etc. And for the passive feedback, ADAS can
alarm the driver if the LC intention is unsafe in current driving situation.

2. The technology of the connected vehicles plays a key role in realizing cooperative
intelligent transportation systems (Narla, 2013). The prediction signal can be used
for inter-vehicle communication by sharing it with other surrounding vehicles and
can thus cooperatively prevent the potential traffic accidents.

Although this dissertation proposes a comprehensive framework for prediction of
driver LC behavior, it still has a long way to go for the real-road implementation. The
following aspects should be particularly taken into account.

• Driving uncertainty: being maximal aware of the driving uncertainty is the
goal, since without understanding of the driving uncertainties may lead to
prediction failure as it is discussed in RLC case. In this dissertation, we
can conclude that modeling contextual traffic is helpful for prediction of LC.
However, more uncertainties, e.g. the possibility of changing the lanes, lane
mark information (Leonhardt, Pech, and Wanielik, 2018), and even weather or
illumination condition, are also necessary to be covered.

• Synchronization: the importance of this issue is usually underestimated. In this
dissertation, an off-line synchronization method is proposed by re-sampling the
data with interpolation. However, it is much more challenging to synchronize
different sensors in real-time case (Alemdar and Ibnkahla, 2007). The Network
Time Protocol (NTP) (Mock et al., 2000) or reference-broadcast synchronization
(RBS) (Elson and Römer, 2003) method is possible solutions.

• Extending driving scenarios: the framework presented in this dissertation is designed
for highway scenario. In city scenario, however, the traffic situation is more
complex than on highway and thus it is more challenging. Adopting vehicle to
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infrastructure (V2I) technology (Djahel, Jabeur, et al., 2015; Djahel, Salehie, et al.,
2013; Barrachina et al., 2015) as well as high precision map (Matthaei, Bagschik,
and Maurer, 2014; Seif and Hu, 2016; Schreier, Willert, and Adamy, 2013) could
largely reduce the driving uncertainties in city scenario.

• Eye-tracking: it has been proved in many related research that using eye-tracking
signal has positive effect on predicting driver behavior (Salvucci and Liu, 2002;
Lethaus and Rataj, 2007; Tijerina et al., 2005; Kaplan et al., 2015). However, the
use of eye-tracking in this dissertation is limited by the software provided by SMI to
extract features from the eye-tracker. To further extend the usage of eye-tracking,
computer vision technology is necessary to be implemented (Kim and Ramakrishna,
1999).

• Driving style: Although it is concluded in this dissertation that considering driving
style in preparing for training datasets can improve the predictive performance of
driver LC behavior, however, more researches are needed to define driving style
as well as the role it plays in the development of ADASs. For example, based
on French et al. (1993), Glaser and Waschulewski (2005), and Vöhringer-Kuhnt
and Trexler-Walde (2005), by using questionnaire it is capable of defining the
global driving style (Sagberg et al., 2015) of the driver but the driver’ temporary
driving styles are still needed to be captured by going deep into the driving data.
The temporary driving styles can be represented by the temporary speed choice,
accelerating and braking behavior, emotional status (stress or fatigue), sensation
seeking and risk taking (Quimby et al., 1999), as well as the attitudes towards
speed limits (Ahie, Charlton, and Starkey, 2015). As long as the driver remains
a part of the control loop, driving and safety behaviors are more than just the
mechanical operation of a vehicle (Hennessy, 2011), and thus driving style cannot
be neglected.
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A
Experiment 1

A.1 Documents

A.1.1 Demographic questionnaire - German version
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Datum: Pbn.-Nr.: 

Im Folgenden werden Ihnen einige Fragen zu Ihrer Person gestellt. 

Ihre Daten werden selbstverständlich anonym erhoben und 

ausgewertet. 
 
 
1: Geschlecht 
 
 weiblich 
  
 männlich 

 
 
2: Alter 
 
 
 
In dieses Feld dürfen nur Ziffern eingetragen werden  
 
 
3: Was ist Ihr höchster Bildungsabschluss? 

Bitte wähle eine der folgenden Antworten 
 
 Hauptschulabschluss 
 
 Mittlere Reife 
 
 (Fach-) Abitur 
 
 Bachelor / Master / Diplom  / Magister 
 
 Promotion / Habilitation 
 
 
4: Besitzen Sie einen Führerschein? 
 

 Ja 

 Nein 

 
 
5: Seit wie vielen Jahren besitzen Sie einen Führerschein? 

 

         Jahre 

In dieses Feld dürfen nur Ziffern eingetragen werden  

  



 

 
 
6: Wie viele Kilometer sind Sie schon insgesamt seit Erwerb Ihres 

Führerscheins gefahren? 

 

         Kilometer 

In dieses Feld dürfen nur Ziffern eingetragen werden  

 

7: Wie viele Kilometer fahren Sie im Durchschnitt pro Jahr? 

 

        Kilometer 

In dieses Feld dürfen nur Ziffern eingetragen werden  

 

 

8: Haben Sie die Erfahrung mit dem Fahren im Simulator?  
 
 Ja 

 Nein 

 

9: Wie schnell fahren Sie auf der Autobahn bei normalen 
Verkehrsbedingungen?  
 

        Km/h 

In dieses Feld dürfen nur Ziffern eingetragen werden  

 
 
10: Wie oft überholen Sie auf der Autobahn Autos auf der rechten Spur?  
(1 = nicht sehr oft; 5 = sehr oft) 
 

         1  2  3  4  5  

 

11: Wieviel Abstand zum vorausfahrenden Fahrzeug halten Sie beim 
Überholvorgang auf der Autobahn?  
(1 = wenig Abstand; 5 = viel Abstand) 
 

         1  2  3  4  5  



 

 
 

12: Wie fahren Sie im Schnitt bei normalen Verkehrsbedingungen (keine Glätte, 

kein Stau etc.)?  

(1 = defensiv; 5 = eher flott & zügig) 

 

         1  2  3  4  5  

 
 
 
 
 
 

Für mögliche Rückfragen möchte ich Sie bitten, Ihre E-Mailadresse anzugeben: 

 

 

(Ihre E-Mailadresse wird natürlich nicht weitergegeben) 

 

Vielen Dank! 



A.1 Documents

A.1.2 Behavioral-psychological questionnaire - German ver-
sion

Question NO.2, NO.3, NO.8, NO.10, NO.12, NO.16, NO.23 are used for calculating the
score of aggressiveness, the rest would not count. The participants are not aware of the
use of this questionnaire.
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Die folgende Liste enthält kleinere Fehler und Regelübertretungen, die 

Verkehrsteilnehmern von Zeit zu Zeit passieren. Bitte geben Sie im folgenden an,  

wie häufig Ihnen diese im letzten Jahr passiert sind. Da eine genaue Angabe oft 

schwierig ist, kreuzen Sie bitte das Kästchen an, das Ihrer Meinung nach am 

ehesten zutrifft.  

 

 Nie 
(0) 

Fast 
Nie 
(1) 

Selten 
(2) 

Gele- 
gentlich 

(3) 

Häufig 
(4) 

Sehr 
häufig 

(5) 

1. Sie versuchen, im falschen Gang 

an der Ampel anzufahren. 
      

2. Sie ärgern sich über ein auf der 

Autobahn links fahrendes 

langsames Fahrzeug und 

überholen es rechts. 

      

3. Sie fahren dicht auf ein 

vorausfahrendes Fahrzeug auf, 

um dem Fahrer zu signalisieren, 

dass er schneller fahren oder Ihre 

Spur verlassen soll. 

      

4. Sie versuchen, jemanden zu 

überholen und bemerken nicht, 

dass er bereits nach links blinkt 

und abbiegen möchte. 

      

5. Sie haben vergessen, wo Sie das 

Auto im Parkhaus oder auf dem 

Parkplatz abgestellt haben. 

      

6. Sie betätigen aus Versehen einen 

Schalter (z. B. für den Blinker), 

obwohl Sie eigentlich einen 

anderen betätigen wollten (z. B. 

für die Scheibenwischer). 

      

7. Sie stellen fest, dass Sie 

eigentlich nicht genau wissen, 

wie die Strecke aussah, die sie 

gerade gefahren sind. 

      

8. Sie fahren noch über eine Ampel, 

obwohl Sie wissen dass Sie 

eigentlich anhalten müssten. 

      

9. Sie bemerken beim Abbiegen 

Fußgänger nicht, die die Straße 

überqueren. 

      

10. Sie ärgern sich über einen 

anderen Fahrer und jagen ihm 

hinterher, um ihm zu zeigen, was 

Sie von ihm halten. 

      

11. Sie erwischen am Kreisverkehr 

die falsche Ausfahrt. 
      

12. Sie halten sich nachts oder bei 

wenig Verkehr nicht an 

Geschwindigkeitsbegrenzungen.  

      



 Nie 

(0) 

Fast 

Nie 
(1) 

Selten 

(2) 

Gele- 

gentlich 
(3) 

Häufig 

(4) 

Sehr 

häufig 
(5) 

13. achten beim Einbiegen in eine 

Vorfahrtsstraße so sehr auf den 

dortigen Verkehr, dass Sie 

beinahe auf den Vordermann auf 

Ihrer Spur auffahren. 

      

15. Sue fahren, obwohl Sie wissen, 

dass Sie möglicherweise mehr 

Alkohol getrunken haben als 

erlaubt.  

      

16. Sie haben eine Abneigung gegen 

eine bestimmte Art von 

Autofahrern und Sie zeigen ihnen 

das, wo immer Sie können. 

      

17. Sie unterschätzen beim 

Überholen die Geschwindigkeit 

eines entgegenkommenden 

Fahrzeugs. 

      

18. Sie fahren beim Zurückstoßen 

gegen etwas, was Sie vorher 

nicht gesehen haben. 

      

19. Sie wollen nach A fahren und 

merken plötzlich, dass Sie sich 

auf dem Weg nach B befinden, z. 

B. weil Sie sonst immer nach B 

fahren. 

      

20. Sie ordnen sich vor einer 

Kreuzung in die falsche Spur ein. 
      

21. Sie übersehen ein “Vorfahrt 

gewähren“-Schild und stoßen 

beinahe mit einem 

bevorrechtigten 

Verkehrsteilnehmer zusammen. 

      

22. Sie versäumen beim 

Spurwechsel, vor dem 

Aussteigen, etc. in den 

Rückspiegel zu schauen. 

      

23. Sie lassen sich auf Wettrennen 

mit anderen Autofahrern ein. 
      

24. Sie bremsen auf rutschiger 

Fahrbahn zu scharf oder lenken 

nicht richtig, so dass sie ins 

Schleudern kommen. 

      

 



A. Experiment 1

A.1.3 Overall instruction on the participants - German version
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Liebe Teilnehmerin, lieber Teilnehmer, 

Sie sind eingeladen, an einer Studie der technischen Universität Berlin teilzunehmen, die 

sich mit dem Autofahren in einer Simulation beschäftigt. Voraussetzungen für die 

Teilnahme sind, dass Sie den Führerschein der Klasse B haben und keine Brille tragen. 

Wir sichern Ihnen zu, dass die in dieser Studie erhobenen Daten lediglich für 

Forschungszwecke anonymisiert verwendet und streng vertraulich behandelt werden. 

Rückschlüsse auf die Identität des Ausfüllenden werden nicht möglich sein. 

Die Teilnahme erfolgt freiwillig. Sie haben jederzeit das Recht Ihr Einverständnis zur 

Teilnahme an der Studie, ohne Angaben von Gründen, zu widerrufen. 

Die Studie wird ca. 40 Minuten dauern und Sie bekommen für die Teilnahme an dieser 

Studie am Ende eine VP-Stunde oder eine angemessene Aufwandschädigung. 

  

Vielen Dank für Ihre Mitarbeit und Ihr Engagement!  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



A. Experiment 1

A.1.4 Experiment instruction - German version
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Sehr geehrte/r Proband/in, 

vielen Dank für Ihre Teilnahme an diesem Experiment. Der Test wird im Fahrsimulator 

stattfinden und ungefähr 40 min dauern. Dabei wird mithilfe einer Eye-tracking Brille die 

Blickbewegung mit erfasst. 

1. Bitte füllen Sie den Fragebogen (Persönliche Informationen zur Fahrerfahrung) aus! 

2. Bitte setzen Sie sich nun in den Fahrsimulator und stellen Sie sich den Sitz so ein, dass 

Sie bequem die Pedale und das Lenkrad erreichen können! Der Hebel dafür befindet 

sich unter dem Sitz auf der rechten Seite. 

3. Bitte setzen Sie die Eye-tracking Brille erst unter meiner Anleitung auf! Während der 

Kalibrierung, werde ich Sie bitten an spezifische Orte zu schauen. 

4. Der vierte Teil beschäftigt sich mit den Fahraufgaben und bitte beachten Sie die 

folgenden Punkte die gesamte Zeit während Sie fahren! 

- Die Fahraufgaben sind unterteilt in mehrere kleinere Aufgaben. Sie werden auf 

einer zweispurigen Autobahn fahren. Die erste Fahrt ist zur Gewöhnung an den 

Fahrsimulator gedacht. Danach beginnt die eigentliche Testung. 

- Stellen Sie sich während der Fahrt vor, dass sie auf einer realen Autobahn sind 

und fahren Sie Ihren persönlichen Fahrstil, so wie Sie gewöhnlich fahren! Falls 

langsamer Verkehr Sie aufhalten sollte, können Sie die Spur wechseln. Beachten 

Sie dabei den Sicherheitsabstand nach vorn und zur Seite einzuhalten! 

- Bitte beachten Sie, dass während der Fahrt die Verkehrsregeln möglichst 

einzuhalten sind, z.B. Innenspiegel, Seitenspiegel anschauen und rechtzeitiges 

Blinken beim Spurwechsel usw.. Hier bitte beachten Sie, dass Sie den Blinker 

richtig runter rücken und nach Spurwechsel wieder zurückstellen müssen. 

- Nach dem Überholvorgang kehren Sie bitte wieder auf Ihre ursprüngliche 

Fahrspur zurück! Bitte beachten Sie weiterhin, dass die Sicherheit aller 

Verkehrsteilnehmer gewährleistet ist, auch zu dem überholten Fahrzeug! 

- Bitte bewegen Sie während der Fahrt nicht die Brille, da diese ja bereits kalibriert 

wurde. Ihren Kopf dürfen Sie in kleinen Winkeln drehen, jedoch nicht in größeren 

Winkeln (kein Schulterblick!)! 

- Fahren Sie los, sobald das Szenario startet, und stoppen Sie erst, wenn auf dem 

Bildschirm „Quit?“ steht! 

- Auf dem Autobahn sind keine Geschwindigkeitsbegrenzungen vorhanden! 

Falls Fragen aufkommen, können Sie mich gerne jederzeit fragen! 

Vielen Dank für Ihre Mitarbeit! 



A. Experiment 1

A.2 Figures

A.2.1 Statistics of the demographic questionnaire
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Figure A.1: Illustration of the background information of the participants in histogram.
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A.2 Figures

A.2.2 Result of model comparison
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Figure A.2: The ROC curves of LCBN-GMM, Naive Bayes, and SVM in Scenario lead
only.
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Figure A.3: The ROC curves of LCBN-GMM, Naive Bayes, and SVM in Scenario lead
+ adjacent behind.
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Figure A.4: The ROC curves of LCBN-GMM, Naive Bayes, and SVM in Scenario lead
+2 adjacent.
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A.2 Figures

A.2.3 Result of labeling method comparison
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Figure A.5: The ROC curves of using different labeling strategies in Scenario lead only.
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Figure A.6: The ROC curves of using different labeling strategies in Scenario lead +
adjacent behind.
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Figure A.7: The ROC curves of using different labeling strategies in Scenario lead +2
adjacent .

138



A.3 Tables

A.3 Tables

A.3.1 Full scale of AUC values by LCBN-GMM using TWL
method

Table A.1: The AUC values of LCBN-GMM using TWL method in different time-window
size.

Scenario Driving style
Length of TW

5 s 4 s 3 s 2 s 1 s

lead only

Aggressive 0.88 0.94 0.97 0.97 0.98

Neutral 0.89 0.95 0.97 0.99 0.99

Conservative 0.78 0.82 0.82 0.86 0.90

Mean 0.85 0.90 0.92 0.94 0.95

Non-categorized 0.84 0.85 0.93 0.92 0.94

lead + adjacent behind

Aggressive 0.87 0.88 0.92 0.95 0.96

Neutral 0.85 0.89 0.91 0.95 0.97

Conservative 0.74 0.77 0.80 0.84 0.96

Mean 0.82 0.85 0.87 0.91 0.96

Non-categorized 0.81 0.84 0.88 0.91 0.92

lead + 2 adjacent

Aggressive 0.80 0.83 0.88 0.91 0.92

Neutral 0.69 0.75 0.73 0.75 0.80

Conservative 0.68 0.73 0.77 0.81 0.90

Mean 0.72 0.80 0.78 0.82 0.87

Non-categorized 0.69 0.77 0.70 0.79 0.80
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B
Big data analysis

B.1 Tables

B.1.1 Result of feature selection for LLC scenarios

Table B.1: The full scale effect size of the features in LLC scenarios.

#
LLC Scenario

0_0 0_1 1_0 1_1
d p d p d p d p

1 0.75 0.10 0.75 0.10 0.81 0.05 0.66 0.14
2 0.81 0.09 0.71 0.13 0.74 0.13 0.79 0.10
3 0.06 0.78 0.07 0.75 0.04 0.86 0.07 0.75
4 – – 0.92 ▲ 0.04 ▼ – – 1.18 ▲ 0.01 ▼

5 0.51 0.18 0.59 0.11 0.31 0.27 0.60 0.16
6 1.02 ▲ 0.03 ▼ 0.98 0.05 0.98 0.02 1.54 ▲ 0.04 ▼

7 0.97 0.06 0.98 ▲ 0.04 ▼ 1.14 ▲ <0.01 ▲ 1.32 0.07
8 0.91 0.06 0.89 0.06 1.00 0.01 0.83 0.07
9 0.86 0.06 0.88 0.06 0.89 0.06 0.92 0.09
10 0.82 0.07 0.79 0.09 0.86 0.10 1.04 0.10
11 0.98 0.04 1.05 ▲ 0.03 ▼ 0.91 0.05 0.98 0.08
12 0.97 0.04 1.04 0.05 1.21 0.12 1.03 ▲ 0.01 ▼

13 0.99 ▲ 0.04 ▼ 0.97 0.06 1.08 0.06 0.79 0.02
14 0.91 0.06 0.90 0.08 0.77 0.03 1.07 0.09
15 0.80 0.09 0.73 0.12 0.63 0.17 0.84 0.11
16 1.00 ▲ 0.04 ▼ 0.93 0.04 0.62 0.08 1.34 0.02
17 0.94 0.05 0.97 ▲ 0.03 ▼ 0.94 0.08 1.36 ▲ 0.03 ▼

Continued on next page
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B. Big data analysis

Table B.1 – Continued from previous page

#
LLC Scenario

0_0 0_1 1_0 1_1
d p d p d p d p

18 0.98 0.06 0.93 0.04 0.78 0.11 1.40 0.06
19 0.92 0.07 0.88 0.06 0.74 0.07 1.23 0.09
20 0.84 0.06 0.84 0.08 0.79 0.10 0.91 0.05
21 0.98 0.04 0.95 ▲ 0.03 ▼ 0.89 0.06 1.38 0.07
22 1.03 ▲ 0.03 ▼ 0.94 0.04 0.77 0.14 1.20 ▲ 0.04 ▼

23 1.00 0.04 0.94 0.05 1.04 ▲ 0.03 ▼ 0.72 0.05
24 0.94 0.05 0.91 0.07 0.91 0.02 0.56 0.01
25 0.88 0.07 0.82 0.07 0.90 0.09 0.99 0.05
26 0.92 ▲ 0.04 ▼ 0.95 0.05 1.11 0.06 1.18 0.08
27 0.91 0.06 0.93 0.05 0.95 ▲ <0.01 ▼ 1.15 0.10
28 0.87 0.06 0.83 0.06 0.80 0.03 1.23 0.07
29 0.80 0.09 0.82 0.06 0.87 0.06 0.98 0.06
30 0.79 0.08 0.77 0.09 0.82 0.09 1.01 0.09
31 0.92 ▲ 0.04 0.94 0.04 0.87 ▲ 0.01 ▼ 0.70 0.02
32 0.91 0.03 ▼ 0.95 ▲ 0.04 ▼ 0.67 0.03 0.59 0.02
33 0.87 0.04 0.86 0.06 0.59 0.11 0.85 0.07
34 0.86 0.07 0.85 0.06 0.66 0.13 0.80 0.07
35 0.83 0.07 0.81 0.10 0.75 0.06 0.71 0.10
36 0.91 ▲ 0.04 ▼ 1.05 ▲ 0.04 ▼ 1.06 0.01 1.00 0.05
37 0.93 0.05 0.98 0.05 1.07 0.01 1.05 0.09
38 0.99 0.05 0.93 0.07 1.23 ▲ <0.01 ▼ 0.92 0.10
39 0.94 0.07 0.88 0.08 1.10 <0.01 0.74 0.06
40 0.75 0.10 0.75 0.11 0.87 0.01 0.54 0.08
41 0.98 ▲ 0.04 ▼ 0.99 0.04 0.76 0.08 0.73 0.03
42 0.96 0.04 1.01 ▲ 0.03 ▼ 0.78 0.06 0.53 <0.01
43 0.90 0.05 0.95 0.05 0.85 0.04 0.79 ▲ 0.01 ▼

44 0.89 0.06 0.91 0.04 0.71 0.03 0.60 0.05
45 0.87 0.07 0.86 0.09 0.49 0.08 0.65 0.05
46 0.93 ▲ 0.03 ▼ 0.90 ▲ 0.04 ▼ 0.58 0.14 0.90 0.01
47 0.89 0.04 0.88 0.05 0.66 0.11 0.82 <0.01
48 0.85 0.06 0.87 0.06 0.74 0.17 1.00 <0.01
49 0.81 0.07 0.91 0.06 0.45 0.07 0.89 0.04
50 0.84 0.07 0.84 0.08 0.63 0.16 1.04 ▲ 0.03 ▼

51 0.88 ▲ 0.04 ▼ 0.94 ▲ 0.04 ▼ 0.97 ▲ 0.01 ▼ 0.94 0.05
52 0.86 0.05 0.91 0.05 0.61 0.04 0.83 <0.01
53 0.81 0.05 0.88 0.06 0.61 0.15 0.82 <0.01
54 0.82 0.07 0.85 0.06 0.74 0.05 0.91 ▲ 0.03 ▼

Continued on next page
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B.1 Tables

Table B.1 – Continued from previous page

#
LLC Scenario

0_0 0_1 1_0 1_1
d p d p d p d p

55 0.84 0.07 0.81 0.10 0.79 0.05 0.83 0.05
56 0.37 0.34 0.44 0.28 0.31 0.38 0.30 0.39
57 0.36 0.34 0.44 0.27 0.33 0.37 0.39 0.31
58 0.35 0.33 0.44 0.25 0.30 0.40 0.34 0.25
59 0.31 0.35 0.43 0.23 0.28 0.48 0.38 0.19
60 0.24 0.40 0.34 0.27 0.23 0.48 0.39 0.25
61 0.91 0.05 0.96 0.05 1.21 ▲ <0.01 ▼ 0.76 0.06
62 0.90 0.05 0.95 0.05 1.16 0.01 1.02 ▲ 0.03 ▼

63 0.93 0.07 0.93 0.05 1.06 0.07 0.93 0.03
64 0.91 0.07 0.85 0.08 1.02 0.04 0.89 0.07
65 0.73 0.08 0.69 0.12 0.82 0.01 0.70 0.05
66 0.88 0.06 0.91 0.06 1.00 <0.01 0.79 0.06
67 0.87 0.07 0.90 0.06 0.97 0.07 0.77 0.02
68 0.91 0.07 0.89 0.07 1.06 ▲ 0.04 ▼ 0.70 0.04
69 0.87 0.07 0.82 0.10 0.98 0.05 0.63 0.02
70 0.70 0.08 0.67 0.12 0.70 0.03 0.59 0.06
71 0.94 ▲ 0.04 ▼ 0.94 0.06 0.98 <0.01 0.95 0.06
72 0.93 0.05 0.94 0.06 0.99 ▲ <0.01 ▼ 1.12 0.05
73 0.94 0.06 0.91 0.07 1.03 0.11 0.98 0.06
74 0.91 0.07 0.82 0.08 0.98 0.07 0.98 0.07
75 0.71 0.10 0.65 0.11 0.81 0.05 0.80 0.05
76 0.83 0.06 0.84 0.07 0.71 0.07 0.64 0.04
77 0.82 0.07 0.81 0.08 0.76 0.03 0.65 0.08
78 0.79 0.09 0.80 0.11 0.62 0.04 0.59 0.07
79 0.67 0.11 0.64 0.13 0.59 0.18 0.52 0.09
80 0.48 0.20 0.44 0.21 0.47 0.16 0.42 0.13
81 0.91 0.05 0.96 0.05 0.81 0.02 0.75 0.06
82 0.94 0.05 0.83 0.07 0.87 ▲ 0.01 ▼ 1.20 0.08
83 0.90 0.07 0.85 0.09 0.70 0.07 1.14 ▲ 0.04 ▼

84 0.84 0.09 0.78 0.11 0.59 0.12 0.90 0.02
85 0.69 0.14 0.62 0.15 0.83 0.10 0.73 0.13
86 0.98 ▲ 0.04 ▼ 0.97 0.06 0.61 0.07 0.83 ▲ 0.02 ▼

87 0.86 0.06 0.89 0.06 0.79 0.08 0.86 0.07
88 0.89 0.07 0.87 0.07 1.03 0.05 0.66 0.06
89 0.82 0.09 0.79 0.10 0.87 0.07 0.83 0.10
90 0.66 0.14 0.59 0.17 0.74 0.10 0.72 0.13
91 0.92 0.05 0.84 0.05 0.97 <0.01 1.16 0.10
92 0.87 0.05 0.79 0.09 1.03 0.08 0.90 0.14
Continued on next page
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Table B.1 – Continued from previous page

#
LLC Scenario

0_0 0_1 1_0 1_1
d p d p d p d p

93 0.81 0.09 0.81 0.10 1.18 ▲ <0.01 ▼ 0.65 0.16
94 0.79 0.09 0.80 0.09 1.09 0.11 0.74 0.09
95 0.65 0.15 0.61 0.17 1.01 0.11 0.52 0.11
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B.1 Tables

B.1.2 Result of feature selection for RLC scenarios

Table B.2: The full scale effect size of the features in RLC scenarios.

#
RLC Scenario

0_0 0_1 1_0 1_1
d p d p d p d p

1 0.66 0.11 0.60 0.12 0.76 0.09 0.66 0.19
2 0.69 0.12 0.96 ▲ 0.04 ▼ 0.81 0.09 0.79 0.08
3 0.06 0.78 0.07 0.72 0.07 0.76 0.07 0.74
4 – – – – 0.84 0.06 1.18 ▲ <0.01 ▼

5 0.55 0.16 0.82 ▲ 0.02 ▼ 0.62 0.13 0.71 0.04
6 0.92 ▲ 0.04 ▼ 1.29 ▲ 0.04 ▼ 0.96 ▲ 0.04 ▼ 1.54 ▲ <0.01 ▼

7 0.91 0.04 0.01 0.11 0.94 0.06 1.32 0.02
8 0.92 0.05 0.72 0.03 0.85 0.07 0.83 0.01
9 0.89 0.07 1.11 <0.01 0.80 0.09 0.92 0.01
10 0.78 0.08 0.94 0.14 0.78 0.08 1.04 0.08
11 1.01 ▲ 0.03 ▼ 1.29 0.02 1.02 ▲ 0.03 ▼ 0.98 ▲ 0.03 ▼

12 0.95 0.04 1.28 <0.01 0.99 0.03 1.03 0.11
13 0.96 0.05 1.60 ▲ <0.01 ▼ 0.97 0.07 0.79 0.02
14 0.91 0.09 1.34 <0.01 0.88 0.09 1.07 0.10
15 0.79 0.10 1.02 0.03 0.74 0.12 0.84 0.09
16 0.97 ▲ 0.03 ▼ 1.28 <0.01 0.95 ▲ 0.04 ▼ 1.34 <0.01
17 1.02 0.05 1.13 <0.01 0.97 0.05 1.36 <0.01
18 0.99 0.05 1.03 <0.01 0.96 0.05 1.40 ▲ <0.01 ▼

19 0.93 0.06 1.38 <0.01 0.91 0.06 1.23 <0.01
20 0.88 0.06 0.93 <0.01 0.83 0.06 0.91 0.05
21 0.98 ▲ 0.04 ▼ 1.10 ▲ 0.02 ▼ 1.06 ▲ 0.02 ▼ 1.38 ▲ <0.01 ▼

22 0.93 0.04 0.98 <0.01 1.03 0.04 1.20 0.03
23 0.93 0.04 0.60 0.11 0.94 0.06 0.72 0.04
24 0.89 0.07 0.24 0.23 0.91 0.06 0.56 0.09
25 0.80 0.08 0.69 0.04 0.82 0.07 0.99 0.14
26 0.90 0.05 0.65 0.06 1.04 ▲ 0.03 ▼ 1.18 <0.01
27 0.92 0.05 0.83 0.06 1.00 0.04 1.15 0.03
28 0.89 0.05 1.05 0.11 0.85 0.07 1.23 ▲ 0.01 ▼

29 0.77 0.08 0.90 0.16 0.77 0.08 1.01 0.07
31 0.87 0.06 1.16 ▲ <0.01 ▼ 0.96 0.04 0.70 0.02
32 0.89 0.06 0.88 <0.01 0.98 ▲ 0.04 ▼ 0.59 0.05
33 0.89 0.07 0.69 0.02 0.95 0.03 0.85 0.06
34 0.87 0.06 1.04 0.07 0.95 0.06 0.80 0.06
35 0.83 0.06 1.07 0.09 0.83 0.07 0.71 <0.01
36 0.91 ▲ 0.04 ▼ 0.85 ▲ 0.02 ▼ 0.94 ▲ 0.04 ▼ 1.00 0.06
Continued on next page
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Table B.2 – Continued from previous page

#
RLC Scenario

0_0 0_1 1_0 1_1
d p d p d p d p

37 0.96 0.05 0.66 0.03 0.92 0.05 1.05 0.06
38 0.97 0.05 0.79 0.05 0.90 0.07 0.92 ▲ 0.03 ▼

39 0.90 0.06 0.81 0.21 0.84 0.11 0.74 0.05
40 0.71 0.12 0.89 0.11 0.69 0.13 0.54 0.22
41 0.92 0.04 1.00 0.10 0.98 ▲ 0.04 ▼ 0.73 0.07
42 0.95 ▲ 0.04 ▼ 1.12 0.16 0.87 0.04 0.53 0.09
43 0.93 0.05 0.90 0.09 0.90 0.04 0.79 0.11
44 0.93 0.04 0.63 0.06 0.84 0.06 0.60 0.13
45 0.91 0.05 0.90 0.02 0.83 0.07 0.65 0.01
46 0.84 ▲ 0.04 ▼ 1.28 ▲ 0.02 ▼ 0.94 ▲ 0.03 ▼ 0.90 0.06
47 0.85 0.05 1.30 0.05 0.92 0.03 0.82 0.08
48 0.83 0.05 1.01 0.09 0.95 0.05 1.00 0.04
49 0.87 0.07 0.90 0.02 0.95 0.05 0.89 0.05
50 0.80 0.09 0.89 0.05 0.90 0.08 1.04 0.01
51 0.91 0.05 1.01 ▲ <0.01 ▼ 0.90 0.05 0.94 ▲ <0.01 ▼

52 0.88 0.05 0.63 0.09 1.00 ▲ 0.04 ▼ 0.83 0.06
53 0.85 0.07 0.54 0.02 0.93 0.04 0.82 0.10
54 0.84 0.07 0.92 0.09 0.93 0.08 0.91 0.04
55 0.82 0.06 1.07 0.06 0.83 0.07 0.83 0.01
56 0.41 0.31 0.58 0.12 0.48 0.26 0.30 0.46
57 0.42 0.30 0.54 0.10 0.48 0.26 0.39 0.24
58 0.39 0.31 0.71 0.09 0.47 0.25 0.34 0.23
59 0.36 0.30 0.58 0.13 0.43 0.26 0.38 0.17
60 0.28 0.35 0.38 0.27 0.32 0.30 0.39 0.12
61 0.96 0.05 1.16 ▲ 0.02 ▼ 0.95 0.06 0.76 0.03
62 0.93 0.07 1.11 0.10 0.91 0.07 1.02 ▲ 0.01 ▼

63 0.97 0.08 0.96 0.09 0.86 0.07 0.93 0.01
64 0.90 0.05 0.80 0.04 0.79 0.09 0.89 0.07
65 0.72 0.09 0.79 0.03 0.70 0.09 0.70 0.17
66 0.92 0.07 1.13 ▲ 0.01 ▼ 0.97 0.05 0.79 0.01
67 0.91 0.06 0.86 0.15 0.93 0.07 0.77 0.07
68 0.90 0.08 0.96 0.08 0.88 0.07 0.70 0.18
69 0.84 0.09 0.86 0.05 0.79 0.10 0.63 0.17
70 0.65 0.11 0.67 0.17 0.65 0.13 0.59 0.24
71 0.94 0.06 1.10▲ 0.02 ▼ 0.85 0.08 0.95 0.13
72 0.92 0.05 1.09 0.01 0.92 0.08 1.12 ▲ 0.03 ▼

73 0.95 0.07 0.88 0.11 0.89 0.08 0.98 0.01
74 0.86 0.07 0.76 0.05 0.82 0.09 0.98 0.02
Continued on next page
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Table B.2 – Continued from previous page

#
RLC Scenario

0_0 0_1 1_0 1_1
d p d p d p d p

75 0.70 0.10 0.72 0.15 0.68 0.10 0.80 0.11
76 0.77 0.08 1.06 ▲ 0.04 ▼ 0.77 0.10 0.64 0.15
77 0.76 0.10 1.08 0.06 0.78 0.11 0.65 0.17
78 0.72 0.13 0.91 0.02 0.74 0.12 0.59 0.13
79 0.67 0.14 0.80 0.10 0.69 0.14 0.52 0.24
80 0.44 0.20 0.53 0.12 0.49 0.23 0.42 0.20
81 0.86 0.06 0.95 ▲ 0.01 ▼ 0.93 0.05 0.75 0.08
82 0.88 ▲ 0.04 ▼ 0.43 0.01 0.90 0.06 1.20 ▲ 0.03 ▼

83 0.87 0.08 1.36 0.05 0.82 0.08 1.14 0.01
84 0.83 0.11 0.88 0.03 0.78 0.10 0.90 0.09
85 0.68 0.15 0.62 0.05 0.68 0.14 0.73 0.06
86 0.90 0.06 0.88 ▲ 0.02 ▼ 0.95 ▲ 0.04 ▼ 0.83 0.09
87 0.88 0.08 0.86 0.14 0.88 0.07 0.86 ▲ 0.04 ▼

88 0.81 0.08 0.70 0.12 0.87 0.08 0.66 0.09
89 0.72 0.13 0.63 0.23 0.75 0.10 0.83 0.13
90 0.58 0.19 0.57 0.10 0.59 0.17 0.72 0.16
91 0.89 0.07 0.52 0.01 0.81 0.07 1.16 ▲ 0.02 ▼

92 0.88 0.07 0.88 0.10 0.88 0.06 0.90 0.09
93 0.90 0.07 1.05 0.02 0.86 0.06 0.65 0.14
94 0.79 0.08 1.11 ▲ <0.01 ▼ 0.82 0.09 0.74 0.11
95 0.59 0.15 1.09 <0.01 0.61 0.15 0.52 0.18
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B. Big data analysis

B.2 Figures

B.2.1 Result of model performance using selected features for
LLC scenarios
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Figure B.1: The ROC curves of the classification performance for LLC Scenario 0_0.
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Figure B.2: The ROC curves of the classification performance for LLC Scenario 0_1.
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Figure B.3: The ROC curves of the classification performance for LLC Scenario 1_0.
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Figure B.4: The ROC curves of the classification performance for LLC Scenario 1_1.
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B.2 Figures

B.2.2 Result of model performance using selected features for
RLC scenarios
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Figure B.5: The ROC curves of the classification performance for RLC Scenario 0_0.
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Figure B.6: The ROC curves of classification performance for RLC Scenario 0_1.
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Figure B.7: The ROC curves of the classification performance for RLC Scenario 1_0.
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Figure B.8: The ROC curves of the classification performance for RLC Scenario 1_1.
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C
Experiment 2

C.1 Documents

C.1.1 Driver selection questionnaire - German version

Question NO.4, NO.6, NO.7, NO.8, NO.9, NO.10 are used for selecting participants.
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  ECHTFAHRT-STUDIE 

Screener: Driver Intention II    Name:____________________ 

1.) Wie alt sind Sie?       _________ 

2.) Welche Führerscheinklassen besitzen Sie?     __________ 

3.)  Wie lange besitzen Sie Ihren Führerschein bereits?    __________ 

4.) Haben Sie Probleme beim Hören?        

Wenn ja  Ende      ○ Ja, ○ Nein  

6.) Haben Sie Schwierigkeiten Ihre Hände und/oder Finger zu bewegen?  

Wenn ja  Ende      ○ Ja, ○ Nein  

7.) Haben Sie Probleme in der Motorik im rechten Fuß?   

Wenn ja  Ende      ○ Ja, ○ Nein   

8.) Nehmen Sie regelmäßig Medikamente ein, die Ihre Fahrleistung beeinträchtigen können? 

Wenn ja  Ende      ○ Ja, ○ Nein  

9.) Haben Sie eine Farbsehschwäche?   

Wenn ja  Ende      ○ Ja, ○ Nein  

10.) Tragen Sie eine Brille?       ○ Ja, ○ Nein  

 Wenn Brille: Besitzen Sie auch Kontaktlinsen, die Sie zum Versuch tragen können? Dies ist 

wichtig, da wir im Versuch Ihre Blickbewegung mit Eye-Tracking messen und eine Brille die 

Messung stören kann.         

  Wenn Fahrt nur mit Brille möglich  Ende 

11.) Bitte erscheinen Sie zu dem Versuch ohne Augen-Make-up, oder stellen Sie sich darauf ein, 

dieses vor Ort zu entfernen. Sind Sie hiermit einverstanden?    

Wenn nein  Ende      ○ Ja, ○ Nein   

12.)  Bitte erscheinen Sie zum Versuch in einem gesundheitlich guten Zustand und sein Sie zum 

Zeitpunkt der Versuchsdurchführung fahrtüchtig. Sind Sie hiermit einverstanden?“  

Wenn nein  Ende      ○ Ja, ○ Nein  

13.)  Bitte bringen Sie zum Versuch ihren Führerschein und Personalausweis mit. Sind Sie damit 

einverstanden?  

Wenn nein  Ende      ○ Ja, ○ Nein  

Uhrzeit und Datum des vereinbarten Termins: ________________________________________  

Handynummer für Notfälle:_________________________________________________________ 



C.1 Documents

C.1.2 Recruiting participants - German version
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Ereignisprotokoll 

HMI & PRODUCT STRATEGY 
last change 

Jan 2019 

Revision: 

 0.1 

Page 

1 of 2 

 

© 2013 All rights reserved by TAKATA AG. Document file: 00_Ereignisprotokoll  

 
PB-Nr.:_______________ 

Datum____________ ___ 

Uhrzeit______________ 

         

Besondere Ereignisse: 

 

Uhrzeit Was?  Strecke (Abschnitt 1,2 oder 3) 

   

   

   

   

   

   

 

Verbale Ermahnung des Probanden war notwendig in Fahrt…nach…min…wegen: 

Fahrt Minute Grund des verbalen Eingreifens  

   

   

   

 

 

Fehlende Daten (z.B. fehlende Videoaufzeichnung), technische Schwierigkeiten:  

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________ 

 

 



Page 2 of 2   HMI & PRODUCT STRATEGY  
 

 

Sonstiges:  

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________ 

 

 

Sitzposition:  

Titel Maß 

Winkel d. Rückenlehne  

Winkel d. Lenkrades   

Höhe d. Sitzes (cm)  

Abstand d. Sitzes (cm)  

Abstand d. Lenkrades (cm)  

 

 



C. Experiment 2

C.1.3 Demographic questionnaire - The graphical user inter-
face in German

158



 

 

 

 

 



C. Experiment 2

C.1.4 Experimental instruction - German version
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Vorbereitung (Am Auto) 

 1. Rekrutierung 

 Mit Probanden Screener durchgehen 
 Probanden einladen (Kalendereintrag) 

2. Auto starten: 

 Tür öffnen 

 Innerhalb von 1 Min. Auto starten 

 Lenkrad für 2 Min. nicht anfassen 

 Auf das blinkende grüne Licht in der Mittelkonsole achten 

3. Laptop starten und Eyetracker anschließen: 

 In Versuche  „Driver Intention Studie“  Kodierung des Probanden: 

VP_Nr_Abschnitt (z.B. VP_1_1,  VP_1_2, VP_1_3) 

4. Kalibrierungsmatrix auf den Beifahrersitz legen.   

5. Ereignisprotokoll (2x) und Einverständniserklärung (1x) ausdrucken 

Begrüßung: (Im E-Labor) 

Herzlich Willkommen zu unserer Echtfahrzeug-Studie!  

Zusammenfassung der Studie 

(Im E- Labor) 

Bevor wir beginnen, fasse ich Ihnen zunächst einmal die wichtigsten Informationen der 

heutigen Studie zusammen. Bei weiteren Fragen können Sie sich selbstverständlich 

jederzeit an mich wenden. 

Zweck der Studie ist die Untersuchung des Fahrverhaltens unter Berücksichtigung der 

Handposition, der Augenbewegung und verschiedener Fahrdaten in einer realen 

Fahrsituation.  

Es handelt sich bei diesem Fahrzeug um ein Erprobungsfahrzeug mit Automatikgetriebe, 

dass mit einer speziellen Messtechnik ausgestattet ist. In dem Lenkrad befinden sich 

kapazitive Sensoren mit denen wir Ihre Handposition erfassen. Zusätzlich werden Ihre 

Blickbewegungen mit Hilfe eines Eyetrackers aufgenommen. Dieser muss vor Beginn der 

Fahrt kalibriert werden. Gegebenenfalls muss die Kalibrierung im Verlauf der Studie 

wiederholt werden. Außerdem werden verschiedene Fahrmanöver, wie z.B. Abbiegen, 

Überholen und Kurvenfahren, durch meinen Kollegen kodiert.  

Haben Sie bis hierhin noch Fragen? 

 

 

 



Diese Studie wird insgesamt etwa 3 Stunden dauern und beinhaltet zwei Pausen. Wir fahren 

darin eine festgelegte Strecke.  

 Laminierte Strecke zeigen  

Sie müssen sich den Weg nicht merken. Diese Abbildung dient lediglich der Orientierung. 

Während der Studie werde ich Ihnen stets rechtszeitig mitteilen, in welche Richtung Sie 

weiterfahren müssen (Siehe Kommentar). Sofern Sie keine weiteren Instruktionen erhalten, 

setzen Sie die Strecke in Fahrtrichtung fort. 

Kommentar: 

 Die Änderung der Fahrtrichtung soll dem Probanden rechtszeitig mitgeteilt werden, 

dh. die Instruktion erfolgt mindesten 10 Sekunden bevor die Fahrtrichtung geändert 

wird. In die spätere Untersuchung gehen Daten von 4 Sekunden vor dem 

Fahrmanöver mit ein. Ziel ist es ein möglichst natürliches Fahrverhalten zu erreichen. 

 Es soll bei Instruktionen vermieden werden Landmarken zu wählen, die 

unmittelbaren Einfluss auf das Blickverhalten haben (beispielsweise Straßennamen, 

die können, wenn sie nicht bekannt sind, erst aus der Nähe identifiziert werden). 

Besser ist es rechtzeitig große Gebäude/Ampeln, die bereits aus der Ferne zu sehen 

sind zu nennen. Alternativ soll auf Richtungsangaben (beispielsweise an der 

kommenden Straße rechts) zurückgegriffen werden. 

 Falls es nicht möglich dem Probanden mindestens 10 Sekunden vor Fahrmanöver 

einen Fahrtrichtungswechsel mitzuteilen, werden Instruktion gebündelt mitgeteilt 

(beispielsweise an der kommenden Kreuzung rechts und danach direkt wieder links 

abbiegen).   

 Sobald ein Fahrmanöver erfolgt ist, soll dem Probanden direkt angekündigt werden, 

wann er das nächste Mal die Fahrtrichtung gewechselt wird (beispielsweise folgen 

Sie dem Straßenverlauf für 3 km). 

Haben Sie dazu Fragen? Wenn nein, dann fortfahren.  

Fragebogen und Einverständniserklärung 

Bevor wir die Fahrt beginnen, würde ich Sie bitte die Einverständniserklärung genau zu 

lesen und zu unterschreiben.  

Toilette 

Sie haben jetzt nochmal die Möglichkeit auf die Toilette zu gehen, wenn Sie möchten. 

Später werden Sie in den Pausen ebenfalls die Möglichkeit haben die Toilette zu benutzen, 

ansonsten würde ich ungerne die Studie unterbrechen.  

 

 

 

 

 



Instruktionen am Erprobungsfahrzeug 

Sie können sich nun in das Fahrzeug setzen und den Fahrersitz sowie die Spiegel in eine 

geeignete Position einstellen. Falls Sie Hilfe benötigen, helfe ich Ihnen gerne weiter. 

 Lüftung des Fahrzeugs auf maximal stellen 

Dann zeige ich Ihnen zunächst einmal die Bedienung des Fahrzeugs.  

 

Bedienung des Fahrzeugs:  

Erläuterung wie:  

1. das Fahrzeug gestartet und gestoppt wird  

 „Das Fahrzeug ist bereits gestartet. Stoppen Sie das Fahrzeug nur, wenn wir Sie 

explizit drauf hinweisen.“ 

 „Sie können bei Bedarf das Fahrzeug parken, indem Sie den P-Knopf drücken. Bitte 

schalten Sie das Fahrzeug dabei nicht aus.“ 

2. die Handbremse und Gänge eingelegt werden 

 

Assistenzsysteme: 

1. Head-up-Display  

Haben Sie zur Bedienung des Fahrzeugs noch Fragen? Wenn nein, dann fortfahren.  

Sie können zu jedem Zeitpunkt den Versuch abbrechen. Möchten Sie den Versuch 

abbrechen, können Sie dies dem Versuchsleiter einfach mitteilen. Wir halten dann an der 

nächsten Gelegenheit an und bringen Sie zurück zu Joyson Safety Systems. Andererseits 

kann durch den roten Notabschaltungsknopf in der Mittelkonsole die Messtechnik auch 

direkt abschaltet werden. Achten Sie bitte darauf, dass der Knopf nicht versehentlich, 

sondern nur im Notfall gedrückt wird, da Ihre Daten sonst verloren gehen. 

Selbstverständlich müssen Sie sich an die Straßenverkehrsordnung halten. Achten Sie 

besonders darauf, dass wenn Sie auf der Autobahn Fahrzeuge überholen, Sie sich im 

Anschluss wieder rechts einsortieren.  

Haben Sie dazu noch Fragen?  

 

Kalibrierung des Eyetrackers 

Wir werden den Eyetracker mindesten dreimal im Verlauf der Studie kalibrieren. 

Gegebenenfalls muss der Eyetracker innerhalb eines Studienabschnittes außerplanmäßig 

nachkalibriert werden. Ist dies der Fall, werde ich Sie auffordern bei der nächsten 

Gelegenheit rechts anzuhalten, damit wir die Kalibrierung wiederholen können.  

Dann beginnen wir jetzt mit der ersten Kalibrierung. 



Erläuterung und Eyetracker aufsetzen: 

1. Bitte setzen Sie sich den Eyetracker möglich bequem auf. Achten Sie darauf, dass 

dabei keine Druckstellen entstehen und er nicht verrutschen kann.  

 Falls hier bereits Druckstellen auftreten, dann mit Schaumgummi abpolstern. 

 Eyetracker Kabel mit ausreichend Spiel nach hinten führen und fixieren.  

2. Probanden die Kalibrierungsmatrix zeigen  

 Kalibrierungsmatrix etwa 50 cm vor den Körper halten 

 Alle Punkte sollen von der Szenenkamera erfasst werden. 

 

„Achten Sie bitte darauf, dass während Kalibrierung der Kopf nicht bewegt werden 

darf. Sie sollen nur mit den Augen die Punkte fixieren.“ 

Kalibrierung und Schnell-Check: 

3. Bitte halten Sie ihren Kopf ruhig und fixieren Sie die 1. nur mit den Augen 

 Punkt anklicken 

4. Bitte halten Sie ihren Kopf ruhig und fixieren Sie die 3. nur mit den Augen 

 Punkt anklicken 

5. Bitte halten Sie ihren Kopf ruhig und fixieren Sie die 8. nur mit den Augen 

 Punkt anklicken 

 

6. Kalibrierung anhand der gesamten Matrix überprüfen. 

7. Schnell-Check:  

o Schauen Sie bitte in den linken Seitenspiegel 

o Schauen Sie bitte in den Rückspiegel 

o Schauen Sie bitte in den rechten Seitenspiegel  

 

Dann beginnen wir jetzt mit der Studie. Bitte wundern Sie sich nicht, dass während des 

Versuchs wenig gesprochen wird, da ablenkende Gespräche einen Einfluss auf das 

Fahrverhalten haben. Wir wünschen Ihnen eine angenehme Zeit im Erprobungsfahrzeug 

und eine sichere Fahrt!  
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C.2.1 Statistics of the demographic questionnaire
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Figure C.1: The statistics of the demographical questionnaire in histogram.
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C.2.2 Data sample

Time AoI Event 

Figure C.2: The output data example from software BeGaze 3.7, where the term white
screen refers to Wind screen and LWindow refers to Left mirror.
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C.2.3 Model and dataset comparison
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(a) The ROC curves of different models in LLC scenario.
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(b) The ROC curves of different models in RLC scenario.

Figure C.3: The classification performance of LCBN-GMM, SVM and NB trained by
different datasets using GBL method.
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C.2.4 Labeling method comparison
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(a) The ROC curves of LCBN-GMM in both LLC and RLC scenarios.
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(b) The ROC curves of SVM in both LLC and RLC scenarios.

Figure C.4: The classification performance of LCBN-GMM and SVM trained by two
different datasets using TWL method.
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C.3 Tables

C.3.1 Extracted features

Table C.1: Description of the extracted features from real road experiment.

# Feature name Feature description
1 yawRatet yaw rate of the ego vehicle at time t
2 at acceleration of the ego vehicle at time t
3 TTC−1

t TTC−1
t at time t

4 brpdt brake pedal pressure of the ego vehicle at time t
5 acpdt throttle opening angle of the ego vehicle at time t
6 stwt steer wheel angle rate of the ego vehicle at time t
7 stwRatet steer wheel angle rate of the ego vehicle at time t
8 mean_yaw5

t mean of yawRate in TW 5 s
9 mean_yaw4

t mean of yawRate in TW 4 s

10-12
... mean_yawt in TW 3 s, 2 s, 1 s

13 std_yaw5
t standard deviation of yawRate in TW 5 s

14-17
... std_yawt in TW 4 s, 3 s, 2 s, 1 s

18 max_yaw5
t maximum of yawRate in TW 5 s

19-22
... max_yawt in TW 4 s, 3 s, 2 s, 1 s

23 min_yaw5
t minimum of yawRate in TW 5 s

24-27
... min_yawt in TW 4 s, 3 s, 2 s, 1 s

28 med_yaw5
t median of yawRate in TW 5 s

29-32
... med_yawt in TW 4 s, 3 s, 2 s, 1 s

33 mean_a5
t mean of the acceleration in TW 5 s

34-37
... mean_at in TW 4 s, 3 s, 2 s, 1 s

38 std_a5
t standard deviation of acceleration in TW 5 s

39-42
... std_at in TW 4 s, 3 s, 2 s, 1 s

43 max_a5
t maximum of acceleration in TW 5 s

44-47
... max_at in TW 4 s, 3 s, 2 s, 1 s

48 min_a5
t minimum of acceleration in TW 5 s

49-52
... min_at in TW 4 s, 3 s, 2 s, 1 s

53 med_a5
t median of acceleration in TW 5 s

54-57
... med_at in TW 4 s, 3 s, 2 s, 1 s

58 mean_brpd5
t mean of brpd in TW 5 s

59-62
... mean_brpdt in TW 4 s, 3 s, 2 s, 1 s

63 std_brpd5
t standard deviation of brpd in TW 5 s

Continued on next page
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Table C.1 – Continued from previous page
# Feature name Feature description

64-67
... std_brptt in TW 4 s, 3 s, 2 s, 1 s

68 max_brpd5
t maximum of brpd in TW 5 s

69-72
... max_brptt in TW 4 s, 3 s, 2 s, 1 s

73 min_brpd5
t minimum of brpd in TW 5 s

74-77
... min_brptt in TW 4 s, 3 s, 2 s, 1 s

78 med_brpd5
t median of brpd in TW 5 s

79-82
... med_brptt in TW 4 s, 3 s, 2 s, 1 s

83 mean_acpd5
t mean of acpd in TW 5 s

84-87
... mean_brptt in TW 4 s, 3 s, 2 s, 1 s

88 std_acpd5
t standard deviation of acpd in TW 5 s

89-92
... std_acpdt in TW 4 s, 3 s, 2 s, 1 s

93 max_acpd5
t maximum of acpd in TW 5 s

94-97
... max_acpdt in TW 4 s, 3 s, 2 s, 1 s

98 min_acpd5
t minimum of acpd in TW 5 s

99-102
... min_acpdt in TW 4 s, 3 s, 2 s, 1 s

103 med_acpd5
t median of acpd in TW 5 s

104-107
... med_acpdt in TW 4 s, 3 s, 2 s, 1 s

108 mean_stw5
t mean of stw in TW 5 s

109-112
... mean_brptt in TW 4 s, 3 s, 2 s, 1 s

113 std_stw5
t standard deviation of stw in TW 5 s

114-117
... std_stwt in TW 4 s, 3 s, 2 s, 1 s

118 max_stw5
t maximum of stw in TW 5 s

119-122
... max_stwt in TW 4 s, 3 s, 2 s, 1 s

123 min_stw5
t minimum of stw in TW 5 s

124-127
... min_stwt in TW 4 s, 3 s, 2 s, 1 s

128 med_stw5
t median of stw in TW 5 s

129-132
... med_stwt in TW 4 s, 3 s, 2 s, 1 s

133 mean_stwRate5
t mean of stwRate in TW 5 s

134-137
... mean_stwRatet in TW 4 s, 3 s, 2 s, 1 s

138 std_stwRate5
t standard deviation of stwRate in TW 5 s

139-142
... std_stwRatet in TW 4 s, 3 s, 2 s, 1 s

143 max_stwRate5
t maximum of stwRate in TW 5 s

144-147
... max_stwRatet in TW 4 s, 3 s, 2 s, 1 s

148 min_stwRate5
t minimum of stwRate in TW 5 s

149-152
... min_stwRatet in TW 4 s, 3 s, 2 s, 1 s

153 med_stwRate5
t median of stwRate in TW 5 s

Continued on next page
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Table C.1 – Continued from previous page
# Feature name Feature description

154-157
... med_stwRatet in TW 4 s, 3 s, 2 s, 1 s

158 max_F_yaw5
t max yawRate FFT coefficients in TW 5 s

159-162
... max_F_yawt in TW 4 s, 3 s, 2 s, 1 s

163 max_F_a5
t max acceleration FFT coefficients in TW 5 s

164-167
... max_F_at in TW 4 s, 3 s, 2 s, 1 s

168 max_F_brpd5
t max brpd FFT coefficients in TW 5 s

169-172
... max_F_brpdt in TW 4 s, 3 s, 2 s, 1 s

173 max_F_acpd5
t max acpd FFT coefficients in TW 5 s

174-177
... max_F_acpdt in TW 4 s, 3 s, 2 s, 1 s

178 max_F_stw5
t max stw FFT coefficients in TW 5 s

179-182
... max_F_stwt in TW 4 s, 3 s, 2 s, 1 s

183 max_F_stwRate5
t max stwRate FFT coefficients in TW 5 s

184-187
... max_F_stwRatet in TW 4 s, 3 s, 2 s, 1 s

171



C. Experiment 2

C.3.2 Result of feature selection

Table C.2 and Table C.3 list all the p-value and Cohen’s d for LLC and RLC scenario.
Feature number in these two tables can be matched exactly with Table C.1. Feature
whose Cohen’s d shows ‘ - ’ is a invalid value.

Table C.2: The full scale effect size of the extracted feature for LLC case.

#
GBL TWL_5 TWL_4 TWL_3 TWL_2 TWL_1

d p d p d p d p d p d p

1 1.45 0.05 0.97 0.06 1.02 0.06 1.29 0.03 1.67 0.05 1.29 0.11
2 0.54 0.26 0.60 0.11 0.54 0.19 0.52 0.22 0.53 0.25 0.42 0.39
3 2.30 0.03 2.15 0.03 2.24 0.02 2.29 0.03 2.44 0.04 2.56 0.03
4 - <0.01 - <0.01 - 0.01 - 0.02 - <0.01 - <0.01
5 - 0.05 1.42 0.07 1.38 0.07 1.46 0.05 - 0.03 - 0.04
6 2.54 0.03 2.37 0.02 2.45 0.01 2.55 0.02 2.63 0.03 2.65 0.03
7 - 0.12 - 0.12 - 0.13 - 0.10 - 0.10 - 0.03
8 2.23 0.03 1.74 0.03 1.74 0.02 1.79 0.03 2.34 0.01 2.95 0.01
9 2.15 0.03 1.61 0.03 1.65 0.04 1.79 0.03 2.23 0.03 2.92 0.01
10 2.08 0.06 1.51 0.02 1.56 0.05 1.73 0.05 2.24 0.04 2.86 0.02
11 2.02 0.02 1.30 0.04 1.38 0.03 1.60 0.02 2.17 0.03 2.82 0.01
12 1.98 0.03 1.11 0.05 1.21 0.06 1.45 0.03 2.08 0.02 2.25 0.03
13 1.97 0.04 1.49 0.02 1.57 0.03 1.60 0.03 1.97 0.04 2.36 0.03
14 1.90 0.02 1.36 0.03 1.41 0.05 1.51 0.05 1.97 0.02 2.39 0.03
15 1.66 0.04 1.14 0.04 1.23 0.05 1.52 0.05 1.84 0.07 2.11 0.06
16 1.42 0.09 0.89 0.07 1.04 0.09 1.29 0.04 1.45 0.08 2.06 0.05
17 1.14 0.07 0.62 0.11 0.72 0.07 0.79 0.12 1.02 0.13 1.58 0.08
18 1.86 0.10 1.58 0.03 1.64 0.03 1.74 0.02 1.99 0.06 - 0.19
19 1.92 0.07 1.49 0.03 1.60 0.04 1.73 0.02 2.15 0.02 - 0.14
20 2 0.05 1.41 0.03 1.49 0.04 1.76 0.05 2.20 0.02 - 0.11
21 2.02 0.02 1.27 0.05 1.44 0.03 1.70 0.02 2.16 0.03 - 0.02
22 - 0.03 1.14 0.05 1.28 0.06 1.51 0.05 2.03 0.02 2.05 0.04
23 - 0.18 1.78 0.04 1.86 0.05 1.79 0.02 - 0.14 - 0.47
24 - 0.12 1.67 0.05 1.83 0.02 1.83 0.04 - 0.03 - 0.35
25 - 0.04 1.53 0.05 1.66 0.05 1.85 0.03 1.82 0.03 - 0.20
26 - 0.04 1.24 0.06 1.31 0.05 1.55 0.07 1.74 0.05 1.86 0.03
27 1.70 0.04 1.06 0.06 1.13 0.08 1.31 0.04 1.84 0.04 1.97 0.05
28 2.11 0.03 1.72 0.03 1.68 0.03 1.79 0.04 2.12 0.04 - 0.02
29 2.06 0.03 1.55 0.04 1.61 0.04 1.79 0.03 2.15 0.01 2.59 0.01
30 1.86 0.03 1.40 0.04 1.51 0.04 1.68 0.05 2.05 0.05 2.44 0.02
31 1.87 0.03 1.26 0.04 1.36 0.05 1.58 0.04 2.07 0.02 2.51 0.02
32 1.84 0.04 1.06 0.06 1.15 0.07 1.37 0.03 1.96 0.03 2.12 0.03
33 2.48 0.02 2.11 0.03 2.33 0.02 2.55 0.01 2.43 0.01 2.65 0.02
34 2.27 0.04 2.05 0.04 2.29 0.01 2.37 0.02 2.28 0.04 2.52 0.01
35 2.09 0.03 1.98 0.01 2.08 0.03 2.21 0.01 2.17 0.03 2.50 0.02
36 1.85 0.06 1.81 0.03 1.84 0.03 1.85 0.04 1.91 0.04 2.34 0.03
37 1.78 0.05 1.60 0.02 1.59 0.03 1.59 0.06 1.71 0.06 2.07 0.06
Continued on next page
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Table C.2 – Continued from previous page

#
GBL TWL_5 TWL_4 TWL_3 TWL_2 TWL_1

d p d p d p d p d p d p

38 1.94 0.04 1.77 0.03 1.80 0.02 1.94 0.04 1.98 0.04 2.12 0.05
39 1.95 0.03 1.61 0.03 1.72 0.03 1.97 0.04 1.91 0.05 2.19 0.04
40 1.76 0.04 1.42 0.06 1.66 0.03 1.85 0.05 1.86 0.03 2.11 0.04
41 1.61 0.06 1.23 0.08 1.45 0.05 1.61 0.03 1.71 0.05 1.86 0.05
42 1.30 0.07 0.97 0.08 1.09 0.06 1.15 0.06 1.26 0.08 1.59 0.08
43 - 0.05 1.69 0.02 1.81 0.02 1.87 0.03 - 0.05 - 0.06
44 - 0.03 1.67 0.04 1.78 0.03 1.81 0.03 - 0.03 - 0.07
45 - 0.05 1.59 0.02 1.60 0.02 1.71 0.04 - 0.03 - 0.04
46 - 0.04 1.37 0.04 1.38 0.07 1.49 0.08 1.69 0.09 - 0.03
47 1.40 0.06 1.17 0.05 1.15 0.07 1.17 0.07 1.42 0.07 1.72 0.04
48 - 0.04 1.70 0.03 1.70 0.03 1.73 0.04 - 0.09 - 0.10
49 - 0.02 1.64 0.05 1.69 0.03 1.86 0.04 1.73 0.01 - 0.09
50 - 0.04 1.46 0.03 1.56 0.05 1.86 0.04 1.91 0.01 - 0.06
51 - 0.05 1.34 0.05 1.42 0.02 1.59 0.04 1.78 0.06 - 0.03
52 - 0.07 1.11 0.07 1.14 0.05 1.26 0.06 1.40 0.06 1.63 0.08
53 - 0.03 2.12 0.01 2.25 0.03 2.39 0.01 2.21 0.03 - 0.04
54 - 0.04 2.05 0.04 2.17 0.02 2.27 0.01 2.15 0.03 - 0.04
55 1.91 0.05 1.92 0.04 1.98 0.02 2.10 0.03 1.98 0.04 - 0.03
56 1.72 0.05 1.72 0.03 1.75 0.02 1.77 0.05 1.81 0.04 2.16 0.03
57 1.63 0.04 1.47 0.04 1.47 0.05 1.42 0.06 1.54 0.08 1.93 0.07
58 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
59 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
60 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
61 - <0.01 - <0.01 - <0.01 - <0.01 - 0.02 - <0.01
62 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
63 - 0.03 - <0.01 - <0.01 - 0.02 - <0.01 - <0.01
64 - <0.01 - <0.01 - 0.08 - <0.01 - 0.02 - <0.01
65 - <0.01 - <0.01 - 0.02 - <0.01 - <0.01 - <0.01
66 - <0.01 - 0.02 - 0.02 - 0.07 - <0.01 - 0.03
67 - <0.01 - 0.04 - 0.05 - <0.01 - 0.02 - <0.01
68 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
69 - <0.01 - <0.01 - <0.01 - <0.01 - 0.02 - <0.01
70 - 0.01 - 0.01 - 0.01 - 0.01 - 0.01 - <0.01
71 - 0.01 - <0.01 - <0.01 - 0.02 - 0.06 - 0.01
72 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
73 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - 0.11
74 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - 0.11
75 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - 0.11
76 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
77 - <0.01 - <0.01 - <0.01 - 0.02 - <0.01 - <0.01
78 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
79 - 0.01 - <0.01 - <0.01 - <0.01 - <0.01 - 0.02
80 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
81 - <0.01 - <0.01 - <0.01 - <0.01 - 0.05 - <0.01
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82 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
83 - 0.01 - 0.01 - 0.02 - 0.01 - 0.02 - 0.01
84 - 0.01 - 0.01 - 0.01 - <0.01 - 0.02 - 0.01
85 - 0.02 - 0.01 - 0.03 - 0.01 - 0.03 - <0.01
86 - 0.01 - 0.02 - 0.01 - 0.02 - 0.03 - <0.01
87 - 0.01 - 0.02 - 0.02 - 0.03 - 0.01 - 0.01
88 - 0.02 - 0.03 - 0.02 - 0.02 - 0.02 - 0.01
89 - 0.02 - 0.03 - 0.02 - 0.02 - 0.01 - 0.02
90 - 0.03 - 0.03 - 0.02 - 0.01 - 0.04 - 0.02
91 - 0.05 - 0.03 - 0.04 - 0.01 - 0.02 - 0.04
92 - 0.05 - 0.03 - 0.04 - 0.04 - 0.03 - 0.03
93 - 0.04 - 0.01 - 0.02 - 0.02 - 0.03 - 0.12
94 - 0.03 - 0.01 - 0.01 - 0.01 - 0.02 - 0.09
95 - 0.02 - 0.01 - 0.02 - 0.01 - 0.01 - 0.04
96 - 0.01 - 0.01 - 0.02 - 0.01 - 0.01 - 0.02
97 - 0.01 - 0.03 - 0.02 - 0.01 - 0.03 - 0.01
98 - 0.06 - <0.01 - 0.01 - <0.01 - 0.04 - 0.13
99 - 0.03 - 0.01 - <0.01 - 0.01 - 0.01 - 0.11
100 - 0.01 - 0.02 - 0.01 - 0.01 - 0.02 - 0.09
101 - 0.01 - 0.02 - 0.01 - <0.01 - 0.01 - 0.05
102 - 0.02 - 0.01 - 0.02 - 0.02 - 0.02 - 0.02
103 - 0.01 - <0.01 - 0.01 - 0.01 - 0.01 - 0.07
104 - 0.01 - 0.01 - 0.01 - <0.01 - 0.01 - 0.03
105 - 0.02 - 0.01 - 0.03 - 0.01 - 0.01 - 0.02
106 - 0.02 - 0.03 - 0.01 - 0.02 - 0.02 - 0.02
107 - 0.02 - 0.02 - 0.02 - 0.03 - 0.02 - 0.03
108 2.87 0.02 2.80 <0.01 2.72 0.01 2.78 0.01 3.03 0.01 3.17 0.01
109 2.78 0.01 2.72 0.01 2.65 0.02 2.77 0.01 2.90 0.01 3.08 0.01
110 2.76 0.02 2.62 0.02 2.64 0.01 2.70 <0.01 2.90 0.01 3.13 0.01
111 2.73 0.01 2.52 0.03 2.56 0.02 2.64 0.02 2.90 0.02 3.12 0.01
112 2.62 0.04 2.41 0.02 2.51 <0.01 2.60 0.02 2.80 <0.01 2.88 0.02
113 2.65 0.03 2.54 0.02 2.50 0.02 2.51 0.02 2.73 0.02 2.95 0.01
114 2.63 0.01 2.43 0.03 2.41 0.03 2.43 0.03 2.71 0.02 2.85 0.01
115 2.55 0.03 2.35 0.02 2.32 0.02 2.42 0.04 2.66 0.02 2.88 0.01
116 2.54 0.02 2.21 0.03 2.24 0.04 2.33 0.03 2.55 0.02 2.76 0.02
117 2.28 0.04 2.12 0.05 2.16 0.05 2.21 0.04 2.37 0.03 2.56 0.03
118 - 0.01 2.68 0.01 2.70 <0.01 2.64 0.02 - 0.01 - 0.03
119 - 0.01 2.62 0.02 2.63 0.01 2.70 0.01 - 0.01 - 0.02
120 - 0.01 2.56 0.02 2.61 0.01 2.71 0.01 2.88 <0.01 - 0.01
121 2.80 <0.01 2.52 0.01 2.60 0.01 2.69 0.01 2.92 0.01 - 0.01
122 2.73 0.02 2.46 0.03 2.58 0.02 2.66 0.02 2.88 0.01 2.77 0.01
123 - 0.01 2.75 0.02 2.77 0.01 2.59 0.01 - 0.01 - 0.04
124 - 0.01 2.75 0.02 2.70 <0.01 2.56 0.01 - 0.01 - 0.04
125 - 0.01 2.64 0.01 2.56 0.01 2.65 0.02 2.62 0.01 - 0.03
Continued on next page

174



C.3 Tables

Table C.2 – Continued from previous page

#
GBL TWL_5 TWL_4 TWL_3 TWL_2 TWL_1

d p d p d p d p d p d p

126 - 0.02 2.48 0.01 2.44 0.03 2.59 0.03 2.60 0.03 2.69 0.03
127 2.51 0.02 2.36 0.02 2.43 0.01 2.50 0.03 2.65 0.02 2.73 0.03
128 - 0.01 2.75 0.01 2.69 0.01 2.72 0.01 - 0.01 - 0.02
129 2.74 0.02 2.69 0.01 2.64 0.01 2.72 0.02 2.85 0.01 2.91 0.02
130 2.68 0.01 2.58 0.02 2.60 0.02 2.68 0.03 2.82 0.01 - 0.01
131 2.62 0.02 2.47 0.02 2.53 0.01 2.62 0.02 2.82 0.02 2.94 0.01
132 2.57 0.04 2.39 0.02 2.48 0.01 2.56 0.02 2.74 0.01 2.77 0.03
133 - 0.04 - 0.03 - 0.01 - 0.03 - 0.05 - 0.04
134 - 0.03 - 0.02 - 0.03 - 0.04 - 0.03 - 0.04
135 - 0.02 - 0.03 - 0.04 - 0.03 - 0.02 - 0.03
136 - 0.04 - 0.02 - 0.05 - 0.05 - 0.03 - 0.03
137 - 0.06 - 0.06 - 0.07 - 0.07 - 0.05 - 0.03
138 - 0.03 - 0.01 - 0.01 - 0.02 - 0.02 - 0.02
139 - 0.02 - 0.03 - 0.02 - 0.01 - 0.02 - 0.01
140 - 0.03 - 0.02 - 0.02 - 0.01 - 0.03 - 0.01
141 - 0.01 - 0.03 - 0.04 - 0.01 - 0.01 - 0.02
142 - 0.03 - 0.05 - 0.03 - 0.03 - 0.04 - 0.02
143 - 0.04 - 0.04 - 0.01 - 0.04 - 0.07 - 0.16
144 - 0.03 - 0.01 - 0.02 - 0.02 - <0.01 - 0.10
145 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02 - 0.10
146 - 0.02 - 0.03 - 0.03 - 0.02 - 0.02 - 0.02
147 - 0.03 - 0.06 - 0.03 - 0.05 - 0.03 - 0.02
148 - 0.07 - 0.02 - <0.01 - 0.03 - 0.07 - 0.18
149 - 0.06 - 0.02 - 0.02 - 0.01 - 0.01 - 0.15
150 - 0.06 - 0.01 - 0.03 - 0.02 - 0.02 - 0.08
151 - 0.04 - 0.06 - 0.04 - 0.03 - 0.03 - 0.02
152 - 0.06 - 0.05 - 0.03 - 0.06 - 0.03 - 0.03
153 - 0.02 - 0.01 - 0.01 - 0.01 - 0.03 - 0.01
154 - 0.02 - 0.02 - 0.01 - 0.01 - 0.01 - 0.02
155 - 0.03 - 0.02 - 0.02 - 0.02 - 0.02 - 0.02
156 - 0.03 - 0.02 - 0.04 - 0.05 - 0.03 - 0.02
157 - 0.06 - 0.03 - 0.06 - 0.07 - 0.06 - 0.02
158 1.85 0.05 1.58 0.02 1.57 0.02 1.60 0.04 1.90 0.04 2.39 0.05
159 1.76 0.04 1.47 0.04 1.48 0.04 1.57 0.04 1.85 0.05 2.43 0.04
160 1.67 0.05 1.30 0.03 1.35 0.05 1.48 0.05 1.89 0.05 2.36 0.04
161 1.63 0.04 1.11 0.08 1.27 0.04 1.43 0.03 1.78 0.04 2.36 0.04
162 1.72 0.04 1.01 0.03 1.14 0.08 1.28 0.06 1.75 0.03 2.15 0.03
163 1.94 0.05 1.77 0.03 1.78 0.03 1.92 0.03 2.03 0.05 2.22 0.04
164 1.91 0.03 1.70 0.04 1.72 0.02 1.83 0.03 2 0.05 2.05 0.05
165 1.72 0.06 1.53 0.02 1.56 0.06 1.82 0.03 1.86 0.06 1.87 0.06
166 1.55 0.06 1.31 0.06 1.43 0.06 1.68 0.04 1.49 0.06 1.94 0.06
167 1.35 0.07 1.06 0.08 1.18 0.05 1.26 0.06 1.22 0.07 1.56 0.09
168 - <0.01 - 0.31 - 0.25 - 0.18 - 0.33 - 0.19
169 - <0.01 - 0.31 - 0.25 - 0.20 - 0.33 - 0.18
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170 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
171 - <0.01 - <0.01 - <0.01 - <0.01 - 0.02 - <0.01
172 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
173 - 0.01 - <0.01 - 0.01 - 0.01 - 0.02 - 0.01
174 - 0.02 - 0.02 - 0.02 - 0.01 - 0.01 - 0.01
175 - 0.02 - 0.01 - 0.03 - 0.01 - 0.03 - <0.01
176 - 0.01 - 0.02 - 0.01 - 0.02 - 0.03 - <0.01
177 - 0.01 - 0.02 - 0.01 - 0.03 - 0.01 - 0.01
178 2.81 0.02 2.79 0.01 2.72 0.01 2.78 0.01 2.97 0.01 3.11 0.01
179 2.76 0.01 2.72 0.01 2.67 0.02 2.75 0.01 2.88 0.01 3.02 0.01
180 2.76 0.01 2.65 0.01 2.65 0.02 2.67 0.01 2.88 0.02 3.04 0.01
181 2.73 0.02 2.53 0.03 2.55 0.02 2.61 0.01 2.89 0.02 3.05 0.01
182 2.61 0.03 2.41 0.02 2.49 0.01 2.59 0.02 2.79 <0.01 2.85 0.03
183 - 0.01 - 0.01 - 0.04 - 0.01 - 0.03 - 0.02
184 - 0.03 - 0.02 - 0.02 - 0.01 - 0.02 - 0.02
185 - 0.03 - 0.04 - 0.03 - 0.01 - 0.03 - 0.03
186 - 0.04 - 0.03 - 0.02 - 0.03 - 0.02 - 0.03
187 - 0.03 - 0.03 - 0.03 - 0.04 - 0.04 - 0.04
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Table C.3: The full scale effect size of the extracted feature for RLC case.

#
GBL TWL_5 TWL_4 TWL_3 TWL_2 TWL_1

d p d p d p d p d p d p

1 1.22 0.05 1.01 0.04 1.09 0.04 1.29 0.02 1.19 0.08 1.55 0.06
2 0.40 0.29 0.57 0.15 0.49 0.17 0.42 0.26 0.38 0.35 0.32 0.47
3 2.52 0.02 2.44 0.01 2.46 0.01 2.51 0.02 2.51 0.02 2.52 0.03
4 - <0.01 - 0.01 - <0.01 - <0.01 - <0.01 - <0.01
5 - 0.06 1.58 0.02 1.51 0.03 1.40 0.06 - 0.05 - 0.04
6 2.36 0.02 2.40 0.03 2.39 0.02 2.53 0.01 2.30 0.05 2.80 0.01
7 - 0.12 - 0.17 - 0.15 - 0.11 - 0.06 - 0.10
8 2.09 0.02 1.47 0.03 1.68 0.03 2.01 0.02 2.58 0.01 2.75 0.02
9 2.14 0.02 1.44 0.03 1.64 0.03 1.97 0.02 2.69 0.01 2.67 0.02
10 2.24 0.03 1.37 0.03 1.61 0.04 2.03 0.01 2.60 0.01 2.64 0.02
11 2.17 0.02 1.33 0.02 1.61 0.01 1.95 0.05 2.41 0.01 2.37 0.03
12 1.82 0.03 1.21 0.03 1.42 0.01 1.68 0.02 1.96 0.04 1.94 0.07
13 1.96 0.02 1.56 0.03 1.66 0.03 1.90 0.03 2.24 0.02 2 0.06
14 1.92 0.02 1.44 0.04 1.58 0.04 1.89 0.03 2.03 0.05 2.10 0.05
15 1.79 0.03 1.29 0.03 1.46 0.05 1.66 0.03 1.88 0.05 2.02 0.04
16 1.37 0.07 1 0.06 1.13 0.06 1.26 0.07 1.49 0.06 1.81 0.07
17 0.98 0.10 0.65 0.08 0.70 0.10 0.80 0.09 1.05 0.09 1.20 0.11
18 - 0.10 1.62 0.05 1.76 0.04 1.83 0.01 - 0.13 - 0.37
19 - 0.10 1.49 0.02 1.62 0.03 1.79 0.02 1.56 0.02 - 0.26
20 - 0.05 1.29 0.05 1.50 0.05 1.68 0.04 1.73 0.04 - 0.16
21 1.58 0.05 1.12 0.04 1.27 0.04 1.53 0.03 1.76 0.03 1.74 0.05
22 1.63 0.03 1.05 0.04 1.24 0.05 1.53 0.01 1.75 0.05 1.70 0.07
23 - 0.03 1.62 0.02 1.80 0.04 2.04 0.01 2.18 0.06 - 0.25
24 2.11 0.03 1.59 0.05 1.76 0.03 2.05 0.01 2.31 0.01 - 0.19
25 2.17 0.02 1.51 0.02 1.77 0.01 2.05 0.02 2.32 0.02 - 0.16
26 2.10 0.03 1.47 0.02 1.69 0.04 1.96 0.02 2.23 0.02 1.72 0.02
27 1.74 0.03 1.30 0.02 1.45 0.03 1.65 0.03 1.86 0.04 1.82 0.06
28 1.92 0.02 1.43 0.04 1.54 0.06 1.84 0.02 2.32 0.03 2.47 0.02
29 2.05 0.03 1.33 0.04 1.51 0.03 1.82 0.03 2.39 0.02 2.33 0.02
30 2.04 0.02 1.26 0.03 1.47 0.03 1.88 0.02 2.35 0.01 2.30 0.02
31 2.05 0.02 1.21 0.03 1.46 0.03 1.86 0.02 2.30 0.03 2.21 0.05
32 1.70 0.03 1.13 0.03 1.33 0.02 1.56 0.03 1.79 0.03 1.85 0.07
33 2.50 0.02 2.27 0.02 2.36 0.03 2.53 0.02 2.68 0.01 2.51 0.01
34 2.39 0.02 2.15 0.01 2.22 0.01 2.46 0.01 2.43 0.02 2.47 0.03
35 2.18 0.03 1.99 0.04 2.10 0.04 2.27 0.01 2.27 0.03 2.34 0.01
36 1.94 0.02 1.90 0.02 1.98 0.02 1.94 0.05 1.96 0.04 2.19 0.04
37 1.60 0.03 1.67 0.04 1.69 0.03 1.61 0.03 1.66 0.05 1.78 0.07
38 1.95 0.04 1.79 0.02 1.86 0.04 1.98 0.03 2.16 0.03 2.03 0.05
39 1.76 0.05 1.63 0.04 1.78 0.04 1.99 0.03 1.87 0.05 1.98 0.06
40 1.70 0.06 1.55 0.04 1.67 0.05 1.79 0.03 1.72 0.05 2.02 0.04
41 1.45 0.07 1.37 0.05 1.42 0.04 1.39 0.08 1.74 0.03 1.74 0.07
42 1.15 0.10 1.05 0.07 0.99 0.08 1.07 0.07 1.30 0.07 1.59 0.10
43 - 0.04 1.80 0.04 1.84 0.04 1.84 0.03 - 0.04 - 0.03
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44 - 0.03 1.80 0.05 1.81 0.04 1.97 0.02 - 0.03 - 0.03
45 1.68 0.04 1.69 0.03 1.74 0.04 1.83 0.03 - 0.04 - 0.04
46 1.48 0.05 1.49 0.03 1.49 0.03 1.48 0.05 1.70 0.06 - 0.04
47 1.24 0.05 1.20 0.04 1.11 0.05 1.12 0.08 1.39 0.05 1.64 0.08
48 - 0.03 1.81 0.03 1.87 0.03 1.81 0.03 - 0.06 - 0.06
49 - 0.03 1.69 0.03 1.77 0.02 1.91 0.03 - 0.02 - 0.05
50 - 0.05 1.59 0.04 1.68 0.04 1.72 0.05 1.85 0.02 - 0.06
51 1.55 0.04 1.51 0.02 1.47 0.05 1.49 0.06 1.68 0.04 1.58 0.06
52 1.15 0.08 1.27 0.04 1.18 0.05 1.17 0.08 1.25 0.08 1.59 0.05
53 2.25 0.03 2.17 0.02 2.20 0.03 2.28 0.03 2.26 0.03 - 0.02
54 2.20 0.02 2.07 0.02 2.10 0.02 2.27 0.01 2.09 0.03 2.13 0.03
55 2 0.03 1.91 0.03 1.98 0.03 2.04 0.02 2 0.02 - 0.04
56 1.82 0.03 1.81 0.02 1.83 0.02 1.80 0.04 1.84 0.05 - 0.04
57 1.36 0.07 1.52 0.03 1.46 0.04 1.43 0.06 1.38 0.05 1.60 0.09
58 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
59 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - 0.01
60 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
61 - <0.01 - <0.01 - <0.01 - <0.01 - 0.01 - 0.01
62 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
63 - <0.01 - <0.01 - <0.01 - <0.01 - 0.05 - <0.01
64 - <0.01 - <0.01 - <0.01 - 0.03 - <0.01 - <0.01
65 - <0.01 - <0.01 - 0.01 - <0.01 - <0.01 - <0.01
66 - <0.01 - 0.01 - 0.05 - 0.05 - <0.01 - <0.01
67 - <0.01 - 0.05 - 0.02 - 0.01 - 0.03 - <0.01
68 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
69 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
70 - <0.01 - 0.01 - <0.01 - 0.01 - 0.01 - <0.01
71 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
72 - <0.01 - <0.01 - <0.01 - 0.01 - <0.01 - <0.01
73 - <0.01 - <0.01 - <0.01 - <0.01 - 0.05 - <0.01
74 - <0.01 - <0.01 - <0.01 - <0.01 - 0.01 - 0.01
75 - <0.01 - <0.01 - 0.01 - <0.01 - <0.01 - <0.01
76 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
77 - <0.01 - 0.01 - <0.01 - <0.01 - <0.01 - <0.01
78 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - 0.08
79 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
80 - <0.01 - <0.01 - <0.01 - 0.02 - 0.01 - <0.01
81 - <0.01 - <0.01 - 0.01 - <0.01 - <0.01 - <0.01
82 - 0.02 - <0.01 - 0.01 - 0.01 - 0.02 - 0.02
83 - 0.01 - 0.01 - <0.01 - 0.01 - 0.02 - 0.01
84 - 0.01 - 0.01 - 0.02 - 0.01 - <0.01 - 0.01
85 - 0.01 - 0.01 - 0.02 - 0.01 - 0.02 - <0.01
86 - 0.01 - 0.01 - 0.01 - 0.02 - <0.01 - 0.01
87 - 0.01 - 0.01 - 0.02 - 0.01 - 0.02 - 0.02
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88 - 0.01 - 0.02 - 0.03 - 0.02 - 0.02 - 0.02
89 - 0.01 - 0.03 - 0.03 - 0.02 - <0.01 - 0.02
90 - 0.02 - 0.02 - 0.02 - 0.01 - 0.02 - 0.01
91 - 0.01 - 0.03 - 0.02 - 0.04 - 0.02 - 0.02
92 - 0.05 - 0.05 - 0.04 - 0.04 - 0.03 - 0.05
93 - 0.03 - 0.02 - 0.01 - 0.02 - 0.08 - 0.18
94 - 0.04 - 0.03 - 0.01 - 0.02 - 0.04 - 0.14
95 - 0.01 - 0.01 - <0.01 - 0.01 - 0.01 - 0.09
96 - 0.02 - 0.01 - 0.01 - 0.02 - 0.02 - 0.06
97 - 0.01 - 0.03 - 0.02 - 0.01 - 0.01 - 0.02
98 - 0.03 - <0.01 - 0.01 - 0.01 - 0.07 - 0.12
99 - 0.03 - 0.01 - 0.01 - 0.02 - 0.04 - 0.08
100 - 0.02 - 0.01 - 0.02 - 0.01 - 0.02 - 0.05
101 - 0.02 - <0.01 - 0.02 - 0.03 - 0.02 - 0.04
102 - 0.01 - 0.01 - 0.02 - 0.02 - 0.02 - 0.01
103 - <0.01 - 0.01 - 0.01 - 0.01 - 0.01 - 0.06
104 - 0.01 - 0.01 - <0.01 - <0.01 - 0.01 - 0.02
105 - 0.01 - 0.02 - 0.02 - 0.01 - 0.02 - 0.04
106 - 0.01 - 0.02 - 0.01 - 0.02 - 0.02 - 0.03
107 - 0.02 - 0.01 - 0.03 - 0.01 - 0.02 - 0.02
108 2.70 0.02 2.55 0.02 2.64 0.01 2.85 <0.01 3.09 <0.01 3.04 0.01
109 2.82 0.02 2.55 0.02 2.63 0.02 2.82 0.01 3.10 0.01 3.07 0.01
110 2.83 0.01 2.53 0.01 2.60 0.01 2.83 0.01 3.12 0.01 2.97 0.01
111 2.78 0.01 2.51 0.01 2.57 0.01 2.80 0.02 3.01 0.02 2.77 0.02
112 2.63 0.01 2.47 0.01 2.52 0.01 2.74 0.02 2.66 0.02 2.67 0.02
113 2.55 0.02 2.57 0.02 2.57 <0.01 2.71 0.01 2.81 0.02 2.76 0.02
114 2.48 0.02 2.51 0.02 2.51 0.01 2.67 0.01 2.67 0.03 2.71 0.03
115 2.49 0.03 2.42 0.01 2.45 0.01 2.56 0.04 2.61 0.03 2.65 0.03
116 2.33 0.04 2.35 0.02 2.30 0.04 2.40 0.03 2.40 0.05 2.64 0.01
117 2.17 0.04 2.22 0.03 2.14 0.04 2.16 0.06 2.17 0.08 2.36 0.05
118 - 0.03 2.63 0.01 2.50 <0.01 2.48 0.01 - 0.02 - 0.03
119 2.52 0.02 2.56 0.02 2.48 0.02 2.57 0.01 - 0.01 - 0.02
120 - 0.02 2.47 0.03 2.47 0.02 2.60 0.02 2.62 0.02 - 0.02
121 - 0.02 2.40 0.03 2.45 0.02 2.61 0.01 2.62 0.02 - 0.03
122 2.57 0.01 2.40 0.02 2.44 0.01 2.62 0.01 2.62 0.02 2.68 0.03
123 - 0.01 2.61 0.01 2.74 0.01 2.93 <0.01 - 0.01 - 0.03
124 - 0.02 2.60 0.01 2.75 <0.01 2.92 0.01 - <0.01 - 0.02
125 2.72 0.01 2.59 0.01 2.71 <0.01 2.82 0.02 2.82 0.01 - 0.01
126 2.77 <0.01 2.58 <0.01 2.63 0.02 2.79 0.02 2.86 0.01 - 0.02
127 2.62 0.02 2.52 0.01 2.55 0.01 2.78 0.01 2.65 0.02 2.61 0.02
128 - 0.01 2.49 0.02 2.52 0.01 2.64 0.03 - 0.01 - 0.01
129 2.77 0.01 2.48 0.02 2.51 0.02 2.68 0.01 2.93 <0.01 - <0.01
130 2.71 0.02 2.45 0.02 2.50 0.02 2.69 0.02 2.97 0.01 - 0.01
131 2.72 0.02 2.44 0.01 2.49 0.01 2.73 0.02 2.93 0.01 2.64 0.02
Continued on next page
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Table C.3 – Continued from previous page

#
GBL TWL_5 TWL_4 TWL_3 TWL_2 TWL_1

d p d p d p d p d p d p

132 2.58 0.02 2.42 0.01 2.46 0.01 2.68 0.01 2.61 0.03 2.58 0.01
133 - 0.02 - 0.01 - 0.01 - 0.02 - 0.02 - 0.03
134 - 0.04 - 0.02 - 0.02 - 0.03 - 0.04 - 0.04
135 - 0.03 - 0.02 - 0.03 - 0.03 - 0.06 - 0.03
136 - 0.06 - 0.03 - 0.03 - 0.06 - 0.06 - 0.02
137 - 0.07 - 0.09 - 0.08 - 0.09 - 0.04 - 0.03
138 - 0.02 - <0.01 - 0.02 - 0.01 - 0.01 - 0.02
139 - 0.02 - 0.02 - 0.01 - 0.01 - 0.03 - 0.02
140 - 0.03 - 0.03 - 0.02 - 0.02 - 0.04 - 0.03
141 - 0.06 - 0.02 - 0.02 - 0.02 - 0.03 - 0.04
142 - 0.03 - 0.04 - 0.06 - 0.07 - 0.03 - 0.03
143 - 0.02 - 0.02 - 0.01 - 0.01 - 0.05 - 0.10
144 - 0.02 - 0.01 - 0.03 - 0.02 - 0.02 - 0.07
145 - 0.03 - 0.03 - 0.01 - 0.02 - 0.02 - 0.06
146 - 0.03 - 0.06 - 0.02 - 0.05 - 0.05 - 0.03
147 - 0.07 - 0.03 - 0.03 - 0.05 - 0.06 - 0.03
148 - 0.04 - 0.01 - 0.02 - 0.01 - 0.08 - 0.25
149 - 0.04 - 0.02 - 0.01 - 0.03 - 0.01 - 0.21
150 - 0.04 - 0.03 - 0.04 - 0.03 - 0.02 - 0.13
151 - 0.03 - 0.05 - 0.02 - 0.03 - 0.03 - 0.01
152 - 0.03 - 0.06 - 0.05 - 0.05 - 0.03 - 0.03
153 - 0.02 - 0.01 - 0.02 - 0.03 - 0.01 - 0.03
154 - 0.03 - 0.02 - 0.01 - 0.02 - 0.02 - 0.01
155 - 0.02 - 0.02 - 0.02 - 0.02 - 0.03 - 0.01
156 - 0.03 - 0.04 - 0.06 - 0.04 - 0.03 - 0.02
157 - 0.07 - 0.06 - 0.06 - 0.07 - 0.02 - 0.03
158 1.86 0.04 1.51 0.03 1.59 0.04 1.75 0.04 2.17 0.03 2.23 0.05
159 1.85 0.02 1.48 0.02 1.58 0.04 1.85 0.03 2.12 0.04 2.20 0.04
160 1.85 0.03 1.31 0.06 1.53 0.03 1.85 0.02 2.03 0.03 2.07 0.07
161 1.70 0.04 1.23 0.05 1.46 0.04 1.68 0.03 1.97 0.06 2.03 0.03
162 1.50 0.05 1.12 0.05 1.28 0.04 1.41 0.05 1.69 0.05 1.84 0.07
163 1.83 0.03 1.78 0.02 1.77 0.03 1.86 0.05 2.04 0.03 1.95 0.04
164 1.73 0.04 1.68 0.04 1.77 0.04 1.86 0.04 1.93 0.04 1.86 0.07
165 1.61 0.06 1.64 0.03 1.66 0.04 1.61 0.06 1.81 0.05 1.89 0.04
166 1.59 0.05 1.53 0.03 1.46 0.08 1.44 0.04 1.70 0.06 1.81 0.06
167 1.26 0.06 1.22 0.06 1.12 0.07 1.16 0.06 1.38 0.06 1.52 0.09
168 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
169 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - 0.01
170 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
171 - <0.01 - <0.01 - <0.01 - <0.01 - 0.01 - 0.01
172 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01 - <0.01
173 - 0.01 - <0.01 - <0.01 - 0.01 - 0.02 - 0.01
174 - <0.01 - 0.02 - 0.01 - 0.02 - <0.01 - 0.01
175 - 0.01 - <0.01 - 0.02 - 0.01 - 0.01 - <0.01
Continued on next page
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Table C.3 – Continued from previous page

#
GBL TWL_5 TWL_4 TWL_3 TWL_2 TWL_1

d p d p d p d p d p d p

176 - 0.01 - 0.01 - 0.01 - 0.02 - <0.01 - 0.01
177 - 0.01 - <0.01 - 0.02 - 0.01 - 0.02 - 0.02
178 2.70 0.02 2.55 0.02 2.64 0.01 2.85 <0.01 3.09 <0.01 3.04 0.01
179 2.82 0.01 2.55 0.02 2.63 0.02 2.82 0.01 3.10 0.01 3.07 0.01
180 2.83 <0.01 2.53 0.01 2.60 0.01 2.83 0.01 3.12 0.01 2.97 0.01
181 2.78 0.01 2.51 0.01 2.57 0.01 2.80 0.02 3.01 0.02 2.77 0.02
182 2.63 0.01 2.47 0.01 2.52 0.01 2.74 0.02 2.66 0.02 2.67 0.02
183 - 0.01 - 0.02 - 0.02 - 0.02 - 0.03 - 0.03
184 - 0.03 - 0.03 - 0.02 - 0.03 - 0.02 - 0.02
185 - 0.03 - 0.02 - 0.06 - 0.01 - 0.04 - 0.03
186 - 0.04 - 0.04 - 0.03 - 0.01 - 0.04 - 0.02
187 - 0.04 - 0.04 - 0.04 - 0.07 - 0.05 - 0.05
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