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Chapter 1 
 
 
 
 
 

Introduction 
 
 
 
 
 
 
 
Robust decision making under uncertainty is deemed to be a crucial factor in many discipline 
and application areas. The competitive nature of the market environment imposes reliability 
requirements in meeting product demands and quality standards. The chemical industry is, 
therefore, required to make design and operating decisions which satisfy several conflicting 
goals in an optimal and safe manner. However, uncertainty and variability are inherent 
characteristics of any process system. They arise due to the unpredictable and instantaneous 
variability of different process conditions, such as temperature and pressure of coupled 
operating units, market conditions, (recycle) flow rates and/or compositions or other model 
parameters such as kinetic constants or equilibrium parameters. These uncertainties or 
disturbances are often multivariate and form correlated stochastic sequences which have a 
chain-effect on each unit operation of a production line.  
 
In industrial practice, uncertainties are usually compensated for by using conservative 
measures such as over-design of process equipment and then retrofits to overcome operability 
bottlenecks, or overestimation of operational parameters caused by worst case assumptions of 
the uncertain parameters, which leads to a significant deterioration of the objective function in 
an optimization problem. In other deterministic approaches, the expected values are used, 
which most likely leads to violations of the constraints when the decision variables are 
implemented on site. Moreover, using feedback control to compensate the uncertainty effects 
can not ensure adherence to the constraints on the open-loop variables. In several cases, 
particular variables describing product properties like composition, viscosity, density, and etc. 
can not be measured online. These variables are open-loop under the uncertainties, but they 
are supposed to be confined to a specific region corresponding to the product specifications. It 
should be noted that even measurable disturbance variables are also stochastic variables, 
because they may have been measured to the present time point, but their future values are 
unknown. However, in conventional design methods for feedback control systems the 
description of disturbances is not rigorous. Step change and white noise are the two types of 
disturbances typically considered thus far. Consequently, the consideration of 
uncertainties/disturbances and their stochastic properties in optimization approaches are 
necessary for robust process design, operation, and control. 
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In this thesis, the main focus is related to the application to transient processes. The 
optimization of such inherent dynamic processes is usually performed using model-based 
optimization techniques. In most previous studies, a nominal model is considered, with which 
the outcomes of a deterministic optimization allow neither variation nor uncertainty on 
operating conditions or model parameters. Moreover, it is not possible to generate highly 
accurate phenomenological models for most chemical processes because of the imprecise 
values of their physical parameters, and the lack of complete understanding of the underlying 
physical phenomena. The usually limited quality and quantity of input-output data used to fit 
the model implies that the model will not be an exact representation of the real process. Thus, 
the practical implementation of model-based techniques often leads to a significant 
discrepancy between reality and simulation. Therefore, the existence of these uncertainties has 
a detrimental impact on the optimized process and raises questions like: what would be the 
probability of complying with the constraints in accordance with the optimized operating 
policy? Handling uncertainty, which becomes important especially in the presence of 
constraints on quality and safety, has not been adequately addressed so far and constitutes a 
significant bottleneck in applying optimization techniques to real processes. Therefore, 
accounting for the uncertainties involved in an optimization problem formulation, any 
improvement obtained regarding a specified economic objective function may occasionally 
become irrelevant, i.e. safety, reliability, and operability are often decisive, and more crucial 
than an economic objective (Grossmann and Morari (1984)). However, these issues are more 
complex and there is no obvious approach to suitably assess them (Figure 1.1). Thus, in most 
cases, conservative decisions based on heuristics or empirical rules are made which might 
lead to a substantial profit decrease. Accordingly, it demands systematic methods to evaluate 
the trade-off between profitability and reliability of a planned operation. 
 

changing
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uncertain parameters
disturbancesprocess adjustments

control variables

feasible operation?
best product quality?

manipulated variables

state variables
optimal profiles

restrictions:
environment, safety, quality,
equipment, reproducibility, capacity
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time-dependent?

optimal
processing

system

 
 

Figure 1.1:   General operational objective targets. 
 
During the past decades several approaches have been suggested to address these problems in 
a systematic manner. These techniques mostly differ in how uncertainty is handled as well as 
in the objectives that may include process flexibility, profitability, and/or robustness. In 
general, the direct solution can be problematic due to the difficulty in both evaluating the 
integral over the uncertain parameter space and ensuring feasibility of the inequalities for all 
parameter values instances (Samsatli et al., 1998). Overview of developments in the area of 
process design and operations under uncertainty are given in comprehensive reviews of 
Grossmann et al. (1983), Kall and Wallace (1994), Pistikopoulos (1995b), Wets (1996), 
Diwekar (2003), Sahinidis (2004). The emphasis of these studies, particularly in chemical 
engineering, has been mainly on process design problems. While most of the researchers were 
concerned about independent uncertain variables, Rooney and Biegler (1999, 2001) studied 
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the effect of correlated uncertain variables on plant design. Two approaches have been used to 
represent uncertain variables: discrete and continuous distribution. In the former, the bounded 
uncertain variables are discretized into multiple intervals such that each individual interval 
represents a scenario with an approximated discrete distribution (Halemane and Grossmann, 
1993; Subrahmanyam et al., 1994; Pistikopoulos and Ierapetritou, 1995a; Rooney and Biegler, 
1999). Thus, so-called multiperiod optimization problems are formulated. The second 
approach considers the continuous stochastic distribution of the uncertain variables, in which 
a multivariate numerical integration method will be chosen. This leads to a stochastic 
programming problem. An approximated integration through a sampling scheme (Diwekar 
and Kalagnannam, 1997) and a direct numerical integration (Bernado et al., 1999) have been 
used. Alternatively to sampled optimization algorithms, the stochastic problem can be relaxed 
to an equivalent NLP problem and then solved by using standard techniques. Thus, the 
optimization problem needs to be reformulated. If the uncertain variables have an impact on 
the objective function, it is usually formulated as the expected value of the objective function 
(Torvi and Herzberg, 1997; Acevedo and Pistikopoulos, 1998). Practically most of the 
previous cited works employed the two-stage programming method with the recourse 
formulation to deal with inequality constraints. In this approach the first-stage decision 
variables are predetermined before the realization of the uncertain variables, while the second-
stage variables are decided after their realization. Moreover, in the recourse formulation, 
violation of the constraints is allowed, but penalized through penalty terms in the objective 
function. This leads to additional costs regarding the second-stage decisions. This approach is 
suitable when the objective function and constraint violations can be described by the same 
measurement, for example process planning problems under demand uncertainties (Clay and 
Grossmann, 1997; Gupta and Maranas, 2000).  This compensation, however, requires a 
common measurement to describe the objective function and the constraint violations. 
 
Decision making, however, inherently involves however consideration of uncertain outcomes. 
Thus, one is confronted with decisions a priori for the future operation. The decision though 
should be made before the occurrence of the random inputs. These uncertain variables can be 
constant or time-dependent in the future horizon. The stochastic distribution of the uncertain 
variables may have different forms. The mean and variance values can be determined based 
on historical data analysis. However, while computational advances in mathematical 
programming tools have aided decision making in many areas, their greatest impact may lie in 
enhancing decision making under uncertainty through stochastic programming. One method 
of stochastic programming is the probabilistic or chance-constrained approach which focuses 
on the reliability of the system, i.e., the system’s ability to meet feasibility in an uncertain 
environment. This reliability is expressed as a minimum requirement on the probability of 
satisfying constraints. Thus, the objective function is expressed in terms of expected value, 
while the constraints are expressed in terms of fractiles. In fact, stochastic optimization even 
with an approximated distribution is more reliable than a deterministic optimization. For the 
numerical optimization under probabilistic constraints, some methods have been developed 
and applied to several disciplines like finance and management (Prekopa, 1995; Uryasev, 
2000). In chemical process operations a few applications are known to date (Arellano-Garcia 
et al., 1998, 2003a). It has been used by, for instance, Maranas (1997) for molecular design 
and Petkov and Maranas (1997) for planning und scheduling of multiproduct batch plants. 
Additionally, several studies on model predictive control using probabilistic programming 
have been carried out for linear processes (Schwarm and Nikolaou, 1999; Wendt, 2005). In 
the case of a linear relation between the uncertain input and the output constraints, an efficient 
approach is presented by Prekopa (1995) for stochastic variables with correlated multivariate 
normal distribution, where numerical integration and sampling methods are combined. For the 
nonlinear case, sampling techniques can generally be employed. As an alternative to efficient 
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sampling techniques (Diwekar and Kalagnanam, 1997), Wendt et al., 2002 proposed in a 
previous work a computational method for nonlinear chance programming which is suitable, 
though, for steady state processes with only one single probabilistic constraint. 
 
1.1   Scope 
 
Deterministic optimization approaches have been well developed and widely used in the 
process industry to accomplish off-line and on-line process optimization. The challenge in this 
thesis is to address large-scale, complex optimization problems under various uncertainties. 
To deal with the unknown operating reality a priori, optimization under both parameter 
uncertainty and disturbance uncertainty has to be considered. Unlike the worst case analysis, 
for the presented approaches the stochastic characteristics (mean, covariance, correlation) of 
the uncertain variables will be involved in the optimization problem. While most parameter 
uncertainties are usually steady-state in nature, disturbance uncertainties are dynamic and will 
be described as stochastic processes. Uncertainties can be generally divided into external 
uncertainties like feed rate and/or its composition, recycle flows, temperature and pressure of 
the coupled operating units, supply of raw material and utilities, customer demand, prices, 
market conditions and internal uncertainties representing the unavailability of process 
knowledge such as model parameters. Model parameters are often regressed from a limited 
number of experimental data. While internal uncertainties have been well studied, external 
uncertainties have not been much emphasized. However, these uncertain variables will 
propagate through the process to the output variables and the outputs will also be uncertain, 
i.e., for a nonlinear process it is very difficult to analytically describe the distribution of the 
outputs. To overcome this problem, chance constrained programming is proposed in this 
thesis to deal basically with inequality constraints, which are based on the process 
requirements or limitations. This implies new approaches to high-order nonlinear integration 
of the joint probability density function. 
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Figure 1.2:   Strategies based on different uncertainty estimations. 
 
Thus, the main propose is to make robust decisions accounting for uncertainties and unknown 
unexpected disturbances a priori. The main problem is illustrated in Figure 1.2. Whenever 
uncertainties are overestimated, the controls u will infer a conservative output distribution 
with regard to the constrained output and thus will lead to greater operational costs than 
actually needed (point 1 in Fig. 1.2). Unlike this, if the uncertainties are underestimated, the 
resulting strategy will be too aggressive which inevitably results in a high probability of 
constraint violation (point 3). Moreover, in practice, the presence of nonlinear (possibly time-
varying) unmodelled dynamics and non-stationary noise or disturbances complicates the 
situation. How does one determine an optimal decision in such a complex setting? What is 
proposed in this thesis is a quantitative analysis of the probability of violating constraints by 
following a determined optimal strategy (point 2) based on the explicit integration of the 
available stochastic information of the uncertain variables. This requires a prior knowledge 
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about the probability distribution of the output variables. Generation of this information 
represents one of the main contributions of this thesis.  
 
In summary, a novel analysis and optimization framework is proposed for optimization 
problems under uncertainty. Based on the method of chance constrained programming, 
efficient solution approaches are developed to different process systems engineering problems 
in order to make optimal decisions by taking both performance (through the objective 
function) and reliability into account. The essential challenge in solving such problems lies in 
the computation of the probabilities of holding the constraints as well as their gradients. Due 
to the fact that a desired compromise between optimality and the reliability of complying with 
the constraints can be induced, as a result, the derived strategy is thereby neither conservative 
nor aggressive.  
 
 
1.2   Objectives 
 
In this thesis, new approaches for chance constrained programming of large-scale nonlinear 
dynamic systems under time-dependent uncertainty are introduced. The stochastic nature of 
the uncertainties is explicitly considered in the problem formulation in which some input and 
state constraints are to be complied with predefined probability levels. The developed 
methods consider a nonlinear relation between the uncertain input and the constrained 
variables. Efficient algorithms are applied to compute the probabilities and, simultaneously, 
the gradients through integration by collocation in finite elements. The formulation of single 
or joint probability limits incorporates the consideration of feasibility and that of the trade-off 
between robustness and profitability regarding the objective function values. The new 
approaches are relevant to all cases when uncertainty can be described by any kind of joint 
correlated multivariate distribution function. The potential and the efficiency of the presented 
systematic methodology are illustrated with application to different processes under 
uncertainty, in particular, transient processes. Moreover, the functionality and efficiency of 
the developed chance constrained framework are demonstrated throughout on examples of 
design, operation and control problems. Furthermore, two model-based approaches are 
developed to provide a close integration of dynamic real-time optimization and control and to 
cope with uncertainty. 
 
1.3   Overview 
 
This thesis is devoted to the development of suitable algorithms and numerical techniques for 
the efficient solution of process engineering problems involving uncertainties. The proposed 
chance-constrained optimization framework forms the basis for addressing design, operation 
and control problems under uncertainty. The rest of the thesis is structured in seven additional 
Chapters. The problem formulation in Chapter 2 reveals the necessity to explicitly 
incorporate the uncertainties into the optimization problems and underlines the importance of 
the chance constrained framework developed in this thesis. Moreover, the sources and 
characteristics of uncertainty and their analysis are highlighted. Chapter 3 reviews the main 
approaches which have been proposed for optimization under uncertainty. Chapter 4 
describes the main principles and properties of chance constrained programming problems 
focusing on linear and steady-state processes. In Chapter 5, the new framework for chance-
constrained programming of large-scale nonlinear dynamic systems under time-dependent 
uncertainty is introduced. The stochastic nature of the uncertainties is explicitly included in 
the optimization problem formulation. The method is based on the analysis of the relationship 
between the output constraints and the uncertain variables. The new approach involves 
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efficient algorithms for an indirect computation of the output probability distribution so that 
the probabilities and their gradients can be obtained by numerical integration of the 
probability density function of the multivariate uncertain variables by collocation in finite 
elements. Furthermore, depending on the process characteristics (linear, nonlinear, steady 
state, dynamic), the uncertainty type (constant, time-dependent) and the form of the chance 
constraints (single, joint), there are 16 different possible formulations of chance-constrained 
problems, as illustrated in Figure 4.3, which can in principle be solved using the proposed 
framework in this thesis. 

In order to demonstrate the efficiency of the developed approaches, in Chapter 6 the chance-
constrained optimization framework is applied to an industrial scale process, namely a 
reactive semi-batch distillation process. The comparison of the stochastic results with the 
deterministic results is presented to indicate the robustness of the stochastic optimization. 
These achievements are an important step towards the implementation of robust optimal 
operating policies on real uncertain processes. 
 
In Chapter 7 two methods based on a Nonlinear Model Predictive Control (NMPC) scheme 
are introduced to solve close-loop dynamic optimization problems within an online 
framework. The key idea lies in the consideration of unknown and unexpected disturbances in 
advance i.e. anticipating, in particular, violation of output hard-constraints. Here, the solution 
of the posed novel chance-constrained NMPC problem has the features of prediction, 
robustness and being closed-loop. Based on the moving horizon strategy, the developed 
control strategy is extended to on-line optimization under uncertainty. In addition, towards an 
integration of dynamic real-time optimization and control of transient processes, a two-level 
strategy is considered. 
 
Additionally, in all chance-constrained optimization problems under uncertainty treated in this 
thesis, the formulation of individual pre-defined probability limits of complying with the 
restrictions incorporates the issue of feasibility and the evaluation of trade-off between 
profitability and reliability.  
 
Finally, a summary of the most important conclusions and key contributions are presented in 
Chapter 8. Furthermore, some suggestions and an outlook of potentially interesting future 
developments are presented. 
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Chapter 2 
 
 
 
 
 

Problem Formulation 
 
 
 
In chemical industry, decisions are often made based on limited knowledge about the 
processes and the corresponding underlying phenomena. This may result in poor process 
performance. Moreover, in industrial practice, there is a requirement for simultaneous process 
development, scale up and chemical production and for testing with incomplete process 
knowledge. In addition, it is required to accomplish as much process validation as possible in 
the pilot plants rather then in the real plant or production environment. On the other hand, 
there is a high reliance on experimentation and empiricism in obtaining process feasibility 
regions with little time devoted to process model development. Even in some processes most 
of the knowledge is empirical or with little understanding of the underlying mechanisms and 
it is rarely compatible with models derived from first principles. Thus, models used may be 
unreliable and the results inaccurate due to a number of non measurable external influences 
and limitations of models used for scale-up. As a consequence, the significance of a model-
based approach in supporting and influencing practical decisions is limited by the low 
reliability of the results obtained. However, based on the agreement that process modeling can 
considerably benefit the process development and since the models represent the existing 
process knowledge in mathematical form, it becomes obvious that evaluation of the 
uncertainty effects in the process knowledge should not be ignored. 
 
In order to improve the decision-making process, model-based deterministic optimization 
techniques have been successfully applied to a large number of engineering problems. 
However, it is widely recognized that in any engineering system there are always 
uncertainties  due to variations in design conditions, loading and material properties, physical 
dimensions, and operating conditions. Deterministic approaches do not consider the impact of 
such variations, and as a result, the solution may be very sensitive to these variations. 
Moreover, deterministic optimization lacks the ability to achieve specified levels of constraint 
satisfaction especially for reliability and safety requirements. Therefore, the nominal 
deterministic model-based solution may be infeasible or over-conservative. On the other hand, 
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it is obvious that compared with the feasible region for deterministic optimization, the size of 
the feasible region will be reduced after considering robustness requirements. This raises the 
questions:  
 

• How to describe feasibility under the effect of uncertainty and variability to maintain 
robustness?  

 
• What kind of constraint model should be adopted to ensure the accuracy in evaluating 

levels of constraint satisfaction?  
 
The design and simulation of chemical processes requires knowledge of thermodynamic 
properties, rate constants, transport coefficients, etc. However, exact values for many of these 
parameters are often not available, and this uncertainty must nevertheless be taken into 
account. For instance, an important factor in risk analysis and performance studies is the 
uncertainty associated with thermodynamic models. It exposes the importance of this topic for 
decision making in process safety and economic profitability analysis. Recent studies confirm 
the importance of this problem by analyzing the effect of thermodynamic data on estimated 
process performance (Vasquez and Whiting, 2000, Xin and Whiting, 2000). Generally, 
thermodynamic models are greatly affected by property inaccuracies because most of the 
parameters in the models are obtained via nonlinear regression procedures using experimental 
data (Fig. 2.1). Moreover, the measurements may be imprecise and even a small change in 
composition may be quite significant and thus any error of this magnitude can not be 
tolerated.   
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Figure 2.1:   Predicted binodal curves for the liquid-liquid equilibrium of the ternary system  
                     chloroform-acetone-water 25°C using the NRTL model. NRTL parameters are       
                     regressed from different experimental data sources as indicated (Vasquez, V. R., 
          W. B. Whiting, 2000). 
 
In industrial practice, uncertainty is usually compensated for by means of overdesign. The 
design of even a simple piece of equipment often involves considering several uncertain 
parameters whose effects may be in opposition. Let us consider as a case study the design of a 
vacuum distillation column separating a temperature sensitive mixture. Uncertainty in tray 
efficiency leads to overdesign through the use of more than the optimum number of trays 
computed assuming complete knowledge. These trays are added to avoid penalties associated 
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with using reflux ratios higher than the optimum. However, in the separation of temperature 
sensitive mixtures the temperature in the reboiler is often limiting. The uncertainty in the 
temperature at which decomposition occurs often suggests using a temperature lower than the 
maximum allowed. The temperature in the reboiler of vacuum distillation columns is fixed 
through the phase rule by the pressure in the reboiler. In this context, higher pressure 
translates to higher temperature. The pressure in the reboiler depends on the number of trays 
in the column. The more trays there are, the higher the pressure in the reboiler. Hence, for this 
situation, uncertainty in tray efficiency indicates that more trays should be used while 
uncertainty in the decomposition temperature requires fewer trays.  
 
In the daily production of chemical industry many plants are operated accounting for product 
requirements. Following the optimal operation planning, predefined steady-state operating 
points for continuous processes, e.g. a distillation column, are assigned to a process control 
system. The objective of the feedback control system is then to reject known or unknown 
disturbances so that the a priori set-points can be maintained. For several processes, however, 
the optimal productivity is close to the inherent limitations, product constraints or equipment 
capacity limits. Moreover, these restrictions may in fact vary while the process is running 
(horizontal and vertical lines in Fig. 2.2). In the neighborhood of such inherent limitations the 
process dynamics often exhibit highly nonlinear behavior. Thus, conservative operating points 
are usually chosen. However, controllers do not work perfectly, i.e. the controlled variables 
oscillate around their set-points (point A and B in Fig. 2.2.). Furthermore, depending on the 
control quality the fluctuations may be large or small. This is graphically represented as 
circles around the actual set-points (Fig. 2.2 – 2.4), where the bottom product xB and the 
distillate product xD are considered as constrained output. 
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Figure 2.2:   Constraints variations during process operation. 
 
Also, the constrained variables are often monitored for safety considerations but not close-
loop controlled. The disturbances behave randomly and even measured disturbances are 
stochastic variables since their values can not be precisely predicted for a future time point. 
Thus, it may be necessary to back off from the nominal optimal value of the constraints (point 
A in Fig. 2.3 left) which are difficult to measure or to control due to the poor dynamics. Since 
multivariate disturbances often exist in a large plant, it is difficult to decide a proper value. 
However, the back-off values are usually overestimated and thus leading to a conservative 
operation. For instance, it is well known that compositions are often not measurable online. 
Instead, temperatures are selected as reference variables for composition control. However, 
the specified points for temperature control do not necessarily guarantee the product purity 
specifications (e.g. if the pressure of the plant swings). Consequently, because of the 
conservative decisions concerning the temperature set-points (point B in Figure 2.3 left), a 
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much purer product than specified will be achieved which causes much higher operating costs 
than actually needed. 
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Figure 2.3:   Steady state operating set-points by feedback control. 
 
To overcome the outlined problems, taking into account the influence of uncertainty on the 
optimization problems for different purposes is proposed in this work. Thus, for instance, 
considering the operating point of a distillation column system defined by the distillate and 
bottom product specifications (Fig. 2.2 and 2.3), the values of the setpoints and controls can 
be adjusted so that the target area in Figure 2.3 right will be tailored according to the 
changing disturbances. Thus, in comparison to the conventional feedback control shown in 
Figure 2.3 left, the operating points can be moved closer to the nominal point A which leads 
to a higher profit. 
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Figure 2.4:   Dynamic operating set-points trajectories. 
 
Another important aspect of process operation is that most chemical processes exhibit 
nonlinear and time-dependent behavior and large numbers of variables. Thus, it is very 
difficult to find optimal solutions a priori or even feasible solutions only by using heuristic 
rules. Therefore, systematic methods incorporating uncertainty information are neccesary. In 
Figure 2.4, the dynamic operating set-point trajectories for a time-varying process with 
changing (active) constraints (Fig. 2.4 left) and a stationary process with set-point 
modifications (Fig. 2.4 right) are illustrated to explain this issue. The size of the dynamic 
operating region around the optimum is affected by fast disturbances. Moreover, the true 
process optimum lies on the boundary of the feasible region defined by the active constraints 
(g=0). Due to the uncertainty in the parameters and the measurement errors, the process 
optimum and the set-point trajectory would be infeasible. Therefore, the optimal policy (set-
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point profiles) needs to be adapted based on the current state, the disturbances and the 
available model parameters. To track the optimal set-points for transient processes, adaptive 
control strategies are required due to the changing dynamics of the operating process. By this 
means, robust approaches are required to relocate the region of the set-point trajectory within 
the feasible region of the process in order to guarantee, on the one hand, feasible operation, 
and to operate the process, on the other hand, still as closely to the true optimum as possible. 
 
2.1   Sources and characteristics of uncertainty 
 
When operating in a changing and uncertain environment, it is essential for market success to 
design processing systems capable of acceptably satisfying multiple conflicting goals (e.g. 
changeovers in customer demands, product specification, feed stocks and environmental 
regulations) in an optimal and safe manner. In industrial practice, uncertainties are 
compensated for by using conservative decisions like over-design of process equipment or 
overestimation of operational parameters based on worst case assumptions of the uncertain 
parameters, which leads to significant deterioration of the objective function in an 
optimization problem. Traditionally design and control are treated in a sequential way. 
Moreover, design stage calculations are conventionally performed under deterministic 
optimization paradigms: an economic objective function is optimized and leads to single-point 
solutions in the decision space, without taking into consideration different sorts of 
uncertainty.  
 
However, almost all systems encountered in the process industries have uncertainty associated 
with them. From the viewpoint of process operation, the source of uncertainty may be either 
internal such as inaccurate model parameters and/or external such as unknown future 
feedstock. These disturbances are often multivariate and correlated stochastic sequences 
which have a chain-effect on each unit operation of a production line. In order to incorporate 
these uncertainties, two approaches: deterministic and stochastic, can generally be 
distinguished. In the former case, parametric uncertainties are described through lower and 
upper bounds or via a finite number of fixed parameter values (periods, scenarios). However, 
since a number of parameters are frequently estimated at the same time from a single set of 
experimental data, simple lower and upper bounds may not capture the actual uncertainty. 
Previous results have shown that failure to account for correlation amount the uncertain 
parameters can also lead to conservative estimates of the influence of uncertainty, infeasible 
operation, or both. Moreover, additional complications arise in process systems engineering 
problems because of highly nonlinear systems. Modeling the parametric uncertainty in these 
instances may require a more detailed statistical analysis. Therefore, the stochastic method 
takes a more general approach describing the uncertainties description by probability 
distribution functions.  
 
2.1.1   Uncertainty classification 
 
In the context of chemical engineering process systems, Ierapetritou et al. (1996a) proposed 
the following classification of the uncertainty types involved in process models: 
 

(I) Model-inherent uncertainty: includes kinetic constants, physical properties and 
transfer coefficients. Information is usually obtained from experimental and pilot-
plant data and the uncertainty is described via either a range of possible 
realizations or some approximation of a probability distribution function. 

(II) Process-inherent uncertainty: it comprises flowrate/temperature variations, stream 
quality fluctuations and so on. This uncertainty type is usually described by 
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probability distributions obtained from (on-line) measurements. Here, any desired 
range of uncertain parameter realizations could theoretically be achieved through 
the implementation of a suitable control scheme. 

 
(III) External uncertainty: it includes uncertainty in feed stream availability, product 

demands, prices and environmental conditions. Forecasting techniques based on 
historical data, customers´ orders and market indicators are typically used to obtain 
approximate ranges of uncertainty levels or the corresponding probability 
distributions.  

 
(IV) Discrete uncertainty: this type is used to describe equipment availability and other 

random discrete events. A (discrete) probability distribution function can 
commonly be obtained from available data and manufactures´ specifications. 

 
A further classification can be made in relation to the uncertain time dependence in the future 
horizon. The representation of uncertainty is an important modeling question. The potential 
effect of variability on process decisions regarding process design and operations constitutes 
another challenging problem. Moreover, the uncertain variables may be correlated or 
uncorrelated. However, they are undetermined before their realization. It means that either the 
measurable uncertain variables have been measured or the uncertain parameters newly 
estimated. In this thesis, the developed approaches are mainly concerned with uncertainties 
associated with the first three types (I-III) enumerated above. 
 
2.1.2   Quantification of Uncertainty 
 
Currently, process simulation models and other tools allow engineers to design, simulate, and 
to optimize chemical processes. However, there is a large need to incorporate uncertainties as 
a key issue to study the effect of variability on decisions related to process performance and 
quality. The quantification of uncertainty in stochastic process systems requires the 
quantification and characterization of the uncertain input. These are modeled by considering 
them as random variables. The assumed distributions for model parameter uncertainties 
depend on the obtainable information and the parameters nature. On the other hand, diverse 
probability distributions are possible for the different random inputs which are obtained based 
on measurements. Furthermore, a risk associated with a processing sequence is represented 
via particulars measures in the distributed output performance criteria predicted by the 
stochastic system. The general function for a stochastic output criterion measure involves the 
evaluation of the expected value E of the performance metric f, for a deterministic output 
performance criterion Ψ. This can be expressed analytically by the probability integral given 
in Equation 2.1. 
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Ψ Ψ Ψ Ψ∫         (2.1) 

 
Accounting for the fact that the precise forms of the output and the probability density 
function ρ(Ψ) are both unknown, it is more appropriate to express the expected value E as a 
multi-dimensional integral over the joint probability distribution function of the stochastic 
inputs ρ(ξ), 
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In equation (2.2) the whole uncertain space is denoted by Ξ. The probability distribution 
function can be either estimated from experimental data or assumed using regular 
distributions. The expected value is given as  
 

( ){ } ( ) ( )
ξ Ξ

Ε ξ = Ψ ξ ρ ξ dξ
∈

Ψ ∫          (2.3) 

 
The variance of a random variable (or equivalently, of a probability distribution) is a measure 
of its statistical dispersion, indicating how its possible values are spread around the mean (Eq. 
2.4). The variance Var is given as follows: 
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ξ Ξ
Var Ψ ξ = Ψ ξ - E Ψ ξ ρ ξ dξ

∈∫        (2.4) 

 
The presence of outliners can drastically influence the variance. In case the outliners are 
considered not as important as the width of the desired confidence interval or that between 
lower and upper fractiles, the variance can be employed as a measure to determine the 
uncertainty in the distribution bulk merely. The square root of the variance is the standard 
deviation. This is another measure of variability. 
 
The uncertainty space, from which the system output response results, is formed by 
characterizing of the stochastic inputs to the system. This mostly affects the probability 
distribution functions contained in the joint confidence regions or confidence intervals. 
Nevertheless, it assumes a priori data availability in order to estimate the description of a 
particular parameter or set of parameters. In the absence of sufficient data, evaluation of 
realistic estimates of the parameter limits and the importance of the distributions analytical 
form are recommended. Under the assumption that parameters are independent of each other, 
the joint sampling space may be described as a hyper-rectangle where each dimension 
represents one uncertain input bounded by its respective upper and lower confidence limits. 
When no data is available, confidence limits around the assumed nominal values are defined 
as some percentage of the nominal values. In a multi-parameter model where the parameters 
are estimated simultaneously, a joint confidence region (e.g. normally distributed) provides a 
more appropriate measure of the uncertainty space in comparison to a hyper-rectangle 
comprising the individual confidence intervals. Rooney and Biegler (1999) demonstrate the 
importance of including parameter correlations in design problems by using elliptical joint 
confidence regions to describe the correlation among the uncertain model parameters.  
 
Once the uncertain input space is defined in terms of its limits and distribution form, the next 
step is to quantitatively describe the related system outputs with regard to the performance 
criteria. Because of the use of highly nonlinear input probability distributions and complex 
(deterministic) model equations, as well as nonlinear constraints, it is very difficult or 
impossible to determine the system output probability distribution function or to derive 
nonlinear probability integral measures analytically (Fig. 2.5). Thus, approximation 
approaches are applied which usually situate observations within the input uncertainty 
distribution space at which the actual deterministic model is solved. They are generally 
classified into sampling techniques and numerical integration approximation formulas.  
 
In sampling-based techniques, the performance response is estimated over the entire space of 
the uncertainties. However, the choice of successive inputs to obtain the information on the 
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stochastic output is very important when it is necessary to keep the number of observations 
small for computational efficiency reasons. Independently of the sampling technique, the 
deterministic model is simulated using the observed values of the stochastic inputs found with 
the help of the sampling strategy. This is based on the distribution characteristics of the input 
uncertainties. Here, general statistical metrics can be applied to quantify various aspects of the 
generated sample output distribution, such as the sample expected value and variance. An 
important advantage of the sampling techniques based on pseudo-random number sequences 
is that they do not always require more sample observations as the problem dimension 
(number of uncertainties) increases (Diwekar, 2003).  
 

 
 

Figure 2.5:   Uncertainty propagation. 
 
In cases where the distribution function is known or approximated, numerical integration 
methods are generally applied. Here the different scenarios are weighted pursuant to the 
extent of fulfillment of some condition (Fig. 2.5). Approaches like Gaussian quadrature and 
cubature methods are presented in (Bernardo et al., 1999). Gaussian quadrature is a common 
numerical approximation approach for multi-dimensional integrals. It has used in optimal 
chemical process design under uncertainty approaches by Straub and Grossmann (1993), 
Pistikopoulos and Ierapetritou (1995a), and Terwiesch et al. (1998). In order to calculate 
Gauss product and cubature, enhanced integration formulas were proposed by Bernardo et al. 
(1999). They can be employed in order to improve the accurateness of the numerical 
integration over the multidimensional probability distribution.  
 
 
 
2.2   Uncertainty analysis and sampling 
 
To evaluate uncertainty, sensitivity analysis through a series of multiple runs can be 
performed. However, usually only one or two parameters at a time are varied in a simulation 
framework, where the underlying model may contain a large number of independent 
variables. Consequently, important interactions and scenarios may not be evaluated. Although 
a larger number of cases may be run as part of a sensitivity study, the volume of the output 
generated makes the results cumbersome or difficult to interpret. Even where many cases are 
analyzed, sensitivity analysis still provides no information as to the likelihood of different 
outcomes (Diwekar et al., 1991a).  
 
Uncertainty analyses basically comprise the proliferation of uncertainty in model parameters 
and model structure to attain confidences statements for the estimate of risk and identify 
model components of critical importance. This is required especially when there is no a priori 
knowledge about the system uncertainty. Uncertainty analysis aims to provide a quantification 
of the uncertainty associated with a stochastic system in terms of the output performance 
distribution to the distributions of the (stochastic) inputs. The analysis of uncertainties is even 
more important when the technical or economical variables of the process are not determined 
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or the system design is incomplete. At the simulation stage, the computation results of the 
thermodynamic equations can be different due to the process states or the available parameter 
ranges. Thus, both earlier stochastic analysis capability and model accuracy are necessary in 
order to treat uncertainties efficiently. A well-established method for estimating model 
uncertainties is through model validation. But, it is often restricted because of the lack of data, 
limited experimental opportunities, and insufficient financial resources. However, 
characterizations of uncertainty sources enhance the value of model predictions by allowing 
for quantification of their precision, thus increasing the confidence one can have in them. 
Uncertainty is introduced into a simulation model in several ways, and its propagation is 
manifested as uncertainty or variability in the model output (Fig. 2.5). Thus, uncertainty 
analysis requires stochastic modeling environments. 
 
Approaches involving uncertainty and sensitivity methods have predominantly paid attention 
to the simulation assessment of continuous processes, in particular, those unit operations 
which employ thermodynamic models and chemical reaction kinetic models subject to 
physical property and kinetic parameter uncertainties. In the past, several articles have 
investigated uncertainties in rigorous physical properties in chemical engineering applications 
(Maranas, 1997; T∅rvi and Hetzberg, 1998; Terwiesch et al., 1998; Whiting et al., 1999; 
Vasquez and Whiting, 1999 and 2000; Tayal and Diwekar, 2001; Ulas and Diwekar, 2004). 
Approaches examining the dynamic propagation of uncertainty (Phenix et al., 1997) and 
others approximating the evolution of probability distribution functions in uncertain dynamic 
systems (T∅rvi and Hetzberg, 1998) have been proposed. Due to the use of the quadrature for 
the integration under the multivariate distribution function, the latter method is limited to 
small numbers of uncertain factors. 
 
2.2.1   General approach to uncertainty analysis and stochastic simulation 
 
Systems process modeling can significantly benefit the process development. The created 
mathematical models represent the process knowledge. Consequently, the assessment of the 
uncertainty effects should not be overlooked. Computational and time resources may impose 
limits on the accuracy which can be obtained from uncertainty und sensitivity analysis. The 
stochastic simulation constitutes a general approach to perform parameter uncertainty 
analysis. For the purpose of simulation, uncertainty in process model systems is now 
explicitly considered using sampling techniques based on pseudo-random number sequences. 
The latter exhibits a number of desirable advantages for uncertainty and sensitivity analysis. 
They are not only conceptually simple but also flexible to in accomodating various situations 
such as the estimation of different statistical measures which include not only the mean and 
variance but also one-sided deviation functions. They also exploit the full range of the input 
uncertainties and the output performance distributions can be estimated without the use of 
intermediate models. The major disadvantage of these techniques is the large number of 
samples required to obtain good accuracy and the lack of uniformity, which may be apparent 
in the sample. To execute a quantitative uncertainty analysis, probability distributions must be 
allocated to each of the uncertain parameters. The distribution may result directly from data 
obtained from an appropriate experimental design, but usually expert judgment must be used 
to estimate the probability for the unknown value of a parameter to lie within a specified 
range. One common method for probabilistic or stochastic simulation follows an iterative 
procedure which can be generally formulated as follows: 
 
a) Perform an inventory of all uncertain key input parameters 
b) Define the maximum range of the appropriate unknown parameter values 
c) Designate a probability distribution within this range 
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d) Establish and validate correlations amongst parameters 
e) Sampling the distribution of the specified parameter 
f) Derive quantitative assessment of the uncertainty e.g. in terms of confidence intervals for      
    the unknown value 
g) Perform sensitivity analysis to rank the key parameters involvement  
h) Spread the effect of uncertainty through the model and estimate the probability    
    distribution of the model predictions 
i) Acquire supplementary data for the significant model parameters and reiterate steps b) to h) 
j) Apply statistical techniques to evaluate the outcomes 
 
2.2.1.1   Specifying probability distributions for uncertain model parameters 
 
In engineering models uncertainty or variability can be expressed in terms of probabilistic 
distributions. The type of distribution chosen for an uncertain variable reflects the amount of 
available information. Experimental and plant data may contain systematic errors, erroneous 
data and outliners. In this thesis, systematic errors are not specifically considered. However, 
the chosen probability distributions show the range of values which the variable could assume 
and the probability of occurrence of each value within the range. In this way, the distributions 
give a description of the probability measures associated with the values of a random 
uncertain variable. Probability distributions may be viewed as cumulative distribution 
functions, or by selected parameters, such as fractiles and moments (e.g. mean and variance). 
A detailed review of these methods can be found in Diwekar and Rubin (1991a, 1994). 
 
In order to better capture the diverse nature of uncertainty, different distributions can be 
employed for an uncertain variable. For instance, the uniform and log-uniform distributions 
represent an equal likelihood of a value to lie anywhere within a specified range, on either a 
linear or logarithmic scale, respectively. Uniform distribution is used when information is 
poor and only the limiting values are known. As it has no central tendency, uncertainties 
result in a broad value distribution of the output variables. In contrast, a normal distribution 
reveals a symmetric but varying probability of a parameter value being above or below the 
mean value. On the other hand, some distributions such as a lognormal distribution are 
distorted such that there is a high probability of values lying on one side of median than the 
other. Different distributions may be apparent for other stochastic input properties which are 
directly based on physical measurements. Besides, user-specified distributions can be used to 
represent any arbitrary characterization of uncertainty; including probabilistic constraints i.e. 
fixed probabilities. However, once probability distributions are assigned to the uncertain 
parameters, the next step is to perform a sampling operation from the multivariable uncertain 
parameter domain. 
 
2.2.1.2   Sampling 
 
To obtain representative values from the parameter space frequently, the sampling approach is 
used. This is the case, for instance, when performing uncertainty analysis of regression 
models. The primary purpose is to acquire reliable results for the output distributions of the 
variable analyzed. However, common sampling techniques e.g. Monte Carlo, though easy to 
employ, require numerous model evaluations for accurate results. Furthermore, techniques 
like Perturbation Methods and Stochastic Finite Elements though efficient, need access to 
model equations, i.e. a “black box” approach is not possible. In past chemical engineering 
applications sampling techniques, in particular Monte Carlo and Latin Hyper-Cube LHS 
strategies have been used. The Monte Carlo sampling technique (MCS) is one of the most 
widely used techniques for sampling from a probability distribution. This sampling approach 
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is based on a pseudorandom generator used to approximate a uniform distribution. The 
specific values for each input variable are selected by inverse transformation over the 
cumulative probability distribution. The computational effort required to achieve sufficient 
accuracy depends directly on the number of deterministic model simulations. Thus, an 
efficient sampling method for a large number of input uncertainty factors is necessary. In 
comparison to the MCS and LHS, the Hammersley Sequence Sampling HSS (Diwekar and 
Kalagnaman, 1997) appears to be the most efficient. The authors provide evidence that the 
convergence rate of samples propagated through diverse functions are claimed to be between 
3 and 100 times faster for HSS than the MCS, LHS and median LHS techniques, over the 
range of linear and non-linear functions and correlation structures, they considered. The HSS 
method uses a quasi-random number generator based on the Hammersley points to uniformly 
sample a unit hypercube, and inverts these points over the multivariate probability distribution 
to provide a sample set for the variables of interest. Due to the distribution uniformity of the 
Hammersley points in the hypercube, the HSS sampling method exhibits a high efficiency. A 
disadvantage is that it imposes a correlation structure on the sample, which appears to change 
the uniformity properties of the low discrepancy design. Another disadvantage is that as a 
sampling based approach, a large sample number may still be required to achieve a reasonable 
accuracy. The sampled results of two variables with correlated normal distribution are shown 
in Figure 2.6. The difference between Monte-Carlo and Hammersley can easily be observed.  
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Figure 2.6:   Two random variables with correlated normal distribution after sampling with  
                     MCS (left) and HSS (right). 
 
 
After propagating the effects of uncertainties through the corresponding model, the next step 
is to analyze the results by application of statistical techniques. Here, the main task is the 
importance ranking of the uncertain parameters and their potential contribution to the total 
risk. Finally, uncertainty analyses are effective when they are conducted in an iterative 
manner providing a major tool for decision making. Additional reading on this issue can be 
obtained from a number of authors (Diwekar, 2003). 
 
2.2.2   Advantages of an uncertainty and sensitivity analysis 
   
In process simulation  probability is generally applied to describe uncertainty. Provided that 
statistical methods are employed with no process knowledge, the physical implications of the 
outcomes can not be explicated. The analysis results give an idea about the tendency of the 
modification in the process variables uncertainties, in the relevance of the variables, and in the 
relation between them. For this purpose, the deterministic models can be emloyed in any 
usual simulator without adaptations. After that, a sensitivity analysis can be used in order to 
understand the system behavior by making out the main contributions of the considered 
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random outputs. In connection with the contributions of the uncertain inputs to the stochastic 
system, this analysis also offers quantitative measures of the strength of certain relationships 
between uncertain parameters to the predicted output variables. These measures are primarily 
sub-classes of the variance-based methods (Saltelli et al., 2000). Furthermore, given that 
discrete events are also handled by process simulations e.g. start-up, shut down, batch 
processes, for these discrete events the concepts of event und state can be used. While an 
event takes place at a time point, the system state is changed to a different one by an event. 
However, for an implicit event the time of occurrence is not known.  On the contrary, for an 
explicit event it is known. Thus, either a point action is taken once at the moment when the 
event occurs or a continuous action is taken for the time period while a precondition is 
fulfilled. Uncertainties changes can be conveyed as variations of the distribution parameters. 
 
The stochastic simulation is a helpful tool to validate a process model and to anticipate the 
unsteady state behavior of a process under diverse uncertainties. Overall, this generalized 
stochastic modeling capability can be practical for performance analysis, economic analysis, 
determination of over-design factor, error and sensitivity analysis, feasibility studies, risk 
analysis, identification of process R&D priorities and planning.  
 
 
2.3   Illustrative example 
 
In this section, the optimization of a batch distillation process is used as an example. The 
objective of the case study is to evaluate the influence of uncertainties on the process 
performance. Batch distillation processes are time-varying and this ever changing process also 
provides flexibility in operating and configuring the column in various ways. A distinctive 
feature of batch distillation is that it produces not only the desired products but also off-cuts. 
Conventionally, off-cuts are recycled to the reboiler of the column for the next batch. In this 
case study, an alternative operation mode for batch distillation is proposed, namely, the off-
cuts will be recycled in form of a continuous feed flow into the column (Arellano-Garcia et 
al., 2002). The separation effect is promoted in this way and thus economical benefits can be 
achieved. Here, simulation and deterministic optimization based on a rigorous model are 
carried out to show the properties and feasibility of this operation mode and develop optimal 
operating policies.  
 
In the proposed recycle strategy, the time of adding adds one further degree of operational 
freedom. The second principle of thermodynamics provides again useful indications. Since 
mixing is accompanied by irreversibility, the addition of an off-cut to the reboiler should be 
done when the two compositions are as close as possible. Since the composition of the off-
cuts lies between the initial composition in the reboiler and that of the distillate, feeding the 
off-cuts to a certain stage of the column shortens the way of separation. The main problem is 
to decide when and how much recycle can be profitable.  
 
The process considered is a batch distillation with a packed column for separating a 4-
component mixture with A, B, C, D representing from the lightest to the heaviest component 
(Fig. 2.8). Furthermore, three main cuts (fractions A and C from the top of the column as well 
as one fraction D from the reboiler) will be obtained during the batch. An off-cut mainly 
containing B will be also received from the distillate. The heaviest component D has no vapor 
phase and remains in the reboiler during the batch. Moreover, in this system there is an 
azeotropic point. The VLE relationships of the other three components (A, B, C), which are 
distillated through the top of the column during the batch, show an abnormal behavior, 
especially those involving the least volatile component C. By “normal” and “abnormal” are 
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meant the x-y diagrams of a binary system given in Figure 2.7a and b, respectively. The 
relationship between component B and C in the mixture has the form of (b) in Fig. 2.7, from 
which one can imagine how drastically the state will change, when component C appears and 
goes up through the batch column.  
 

x

y

x

y

(a) (b)  
 

Figure 2.7:   x-y diagram of a binary system: (a) normal and (b) abnormal. 
 
In addition, because component C is much heavier than A and B, the column pressure has to 
be decreased during the period of distilling of fraction C. This means that besides the reflux 
ratio, the policy of the column pressure should be considered as a decision variable for the 
optimization. Until now, column pressure has been considered as a fixed parameter in 
previous studies on optimization of batch distillation. As we know, the variation of column 
pressure leads to a strong nonlinearity of the entire process and thus causes more severe 
convergence problems in the simulation. The optimization of column pressure is of interest, 
because an increase of the column pressure allows an increase of the total mass flow of vapor 
stream at the same vapor load term (F-factor). On the other hand, an increase in the column 
pressure also causes a decrease of the relative volatility that necessitates a higher reflux ratio 
to fulfill the purity constraints of the distillate products. To describe the packed column we 
use a detailed dynamic tray-by-tray model (Wendt et al., 2000). The number of the theoretical 
trays is calculated corresponding to the height of the packing. The holdup of each theoretical 
tray is computed with the correlation model proposed by by Engel et al. (1997). The vapor 
load from the reboiler to the column is restricted by the F-factor of the column as well as the 
heating capacity of the plant. 
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Figure 2.8:   Batch distillation system with the proposed operation mode and their  
                     specifications. 
 
2.3.1   Deterministic optimization 
 
In industrial practice, it is often desired to minimize the duration of the batch processing. Thus 
we consider the time-optimal problem to find optimal policies for the proposed operation 
mode, which can be described as follows: 
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The decision variables are the reflux ratio RV, the feed flow rate of the recycled off-cut FR and 
the system pressure P. The different time intervals are also regarded as decision variables in 
order to properly identify the switching time-points between the different fractions as well as 
the total batch time. The output constraints are the specifications of the average composition 
in the three cuts and the final composition in the reboiler. The considered process features a 
strong nonlinear behavior and the model leads to a large-scale DAE system. To efficiently 
simulate and optimize the processes, collocation on finite elements is used to discretize the 
dynamic model equations. Through this discretization the dynamic optimization problem is 
transformed into a nonlinear programming (NLP) problem. It should however be noted that 
the choice of the feed tray for the recycle stream can also be optimized. To prevent the 
problem from becoming too complicated, simulations have been carried out to decide the feed 
tray. 
 
Due to the amount of component A in the off-cut to be fed, its whole content should be 
pumped into the column by the end of the first main cut period. Thus, only in this period, the 
differences between the conventional and the new operation mode can be seen. Figure 2.9 left 
shows the optimal trajectories of the reflux in this period for both the conventional and the 
new operation mode. 
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Figure 2.9:   Optimal reflux ratio for the conventional and the new operation mode (left) 
                     and the optimal feed position of the recycle stream (right). 
 
In Figure 2.9 right the optimal feed position of the recycle stream corresponding to the 
theoretical tray number is illustrated. This is approximately corresponding to the position in 
the column where the composition is equal to the feed composition. Figure 2.10 left shows the 
optimal recycle flow rate during the first period. It has to be noted that the difference 
concerning the optimal policies of the column pressure are only marginal, since a higher 
pressure is favorable in case of a constant F-Factor during the first main cut period. But the 
pressure is restricted by an upper bound due to the temperature of the reboiler heating steam. 
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Figure 2.10:   Optimal recycle flow rate and pressure policy. 
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The column pressure, as shown in Figure 2.10, should be high during the first fraction so that 
the column will have a large vapor load, because there is a large amount of component A in 
the reboiler at the beginning of the batch. After that the pressure should be decreased, since 
the effect of separation is more and more important as the mixture in the reboiler becomes 
heavier. This result illustrates the compensation between the amount and purity of the 
distillate by regulating the column pressure. The total batch time resulted from the optimized 
policy is about 6 hours, which is only 40% of the batch time needed for the conventional 
operation. 
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Figure 2.11:   Optimal time-dependent reboiler compositions of A, B and C. 
 
Due to the fact that in the new operation mode the off-cut of the previous batch is kept 
separated from the liquid mixture in the reboiler from the beginning (Fig. 2.11), it has only a 
little amount of component B compared to the composition in the conventional operation 
mode (Fig. 2.11). This leads to the fact that at the beginning the VLE interaction between 
component A and C is more dominating, which causes an increasing volatility and thus a 
much lower reflux rate is required for fulfilling the purity constraint of the first fraction. 
However, due to the decreasing amount of component A in the column during the batch, the 
supply of the recycle flow has to begin at a certain time as a compensation of this decrease. 
On the other hand, the content of the feed tank has to be depleted early enough before the first 
switch to the next fraction, in order to provide sufficient time for separating the remaining 
amount of component A, which originally comes from the recycle flow.  
 
The computed trajectory of the recycle flow indicates two physical phenomena. With the 
proceeding time, by means of a decreasing amount of component A, a stronger compensation 
and thus a larger feed flow rate is desired. On the other hand, large liquid flows in later time 
intervals also cause a longer period until the first switch to the next fraction can be done due 
to the higher amount of liquid in the column, which needs to be distilled. Thus, the optimized 
curve indicates a trade-off between those two contradictory requirements. However, it should 
be noted that the shape of the curve does not have a strong impact on the targets of this 
optimization problem. 
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2.3.2   Uncertainty consideration 
 
In the previous section, a deterministic optimization approach has been applied using a model 
with constant parameters. However, since the operation policy developed is highly sensitive 
towards variations in model parameters and boundary conditions, the product specifications 
may be violated when implementing it in the real plant. Furthermore, the amount and 
composition of the initial charge are also uncertain, since they are mostly product outputs of 
the previous batch. Therefore, simulation studies have been exemplarily carried out in order to 
determine the influence of uncertainty consideration on the distillate composition of the 
lightest product A which is constrained to 99 weight percent during the first main-cut period. 
For the purpose of this analysis, the values of the concentration of the heaviest component D 
in the reboiler, the initial charge, the concentration of component B in the recycle feed amount 
as well as the recycle feed amount, all of them at the beginning of the batch run, were varied 
around their expected values (from the deterministic optimization) (Fig. 2.12a). 
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Figure 2.12:   Changes of the distillate composition with regard to component A based on  
                      (a) simulation studies and stochastic simulations with a standard deviation of 
                      (b) initial charge 1%; (c) component B in the recycled off-cut 3%;  
           (d) component D in the reboiler 5%. 
 
Moreover, in order to analyze the reliability of the developed operation policies, stochastic 
simulations have been performed. For this purpose, the Monte Carlo sampling approach using 
the nominal operating policies was used to obtain representative values from the uncertain 
space. Thus, the uncertain inputs such as amount and composition of both the initial charge 
and the recycled off-cut are considered in this case study (Fig. 2.12a-d).  
 



Problem Formulation  24 

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,15 0,17 0,19 0,21 0,23 0,25

concentration

de
ns

ity
 fu

nc
tio

n

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

di
st

rib
ut

io
n 

fu
nc

tio
n

      

0,00

0,20

0,40

0,60

0,80

1,00

0,980 0,985 0,990 0,995 1,000

concentration

de
ns

ity
 fu

nc
tio

n

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

di
st

rib
ut

io
n 

fu
nc

tio
n

 
 
Figure 2.13:   Stochastic distribution of the product concentration A (right) in the first main- 
                      cut with uncertain initial concentration of D in the reboiler (left). 
 
The uncertainties are assumed to be normally distributed. From the results with 500 sample 
points it can be seen that the risk of violating the purity restriction in the first main-cut is 
47,4%. The presented results show that although the expected values of the product 
concentrations and objective are satisfactory, there is a significant variability resulting in a 
high probability that the product quality constraint will be violated. Thus, the optimal policies 
from the deterministic optimization can not be reliable. From Figure 2.13, it can clearly be 
recognized that although the uncertain input is assumed to be normally distributed the output 
distribution is not. This effect is due to the nonlinear propagation of the random input. 
 
2.4   Summary 
 
In any decision-making process where the data or information upon which decisions are 
based, may be uncertain and where the entailing strategy involves a significant risk, 
quantitative risk and uncertainty evaluation studies provide an important aid. As shown in this 
chapter, for a quantitative understanding and control of e.g. time varying phenomena in 
process systems, it is essential to relate the observed dynamic behavior to mathematical 
models. These models usually depend on a number of parameters whose values are unknown 
or with insufficient accuracy. Furthermore, often only a part of the system's dynamics can be 
measured. Therefore, a plant model unavoidably involves uncertainties. In this context, a 
further challenging problem constitutes the potential effect of variability on process decisions 
which is an inherent property of the system and cannot usually be reduced but compensated.  
 
Accounting for this problem, characterizations of uncertainty sources enhance the value of 
model predictions by allowing for quantification of their precision, thus increasing the 
confidence one can have in them. However, the available data quality and quantity in order to 
build process models has a large impact on the uncertainty connected with their parameters. 
Experimental data may enclose outliners, systematic errors and erroneous data. An illustrative 
example on a batch distillation column has demonstrated that an optimal operation based on 
nominal parameters values can result in poor overall performance when evaluated accounting 
for typical uncertainty levels. The underlying model parameter uncertainty has a detrimental 
impact on the process performance. More significantly, the probability of the constraint being 
violated in this case is almost 50%.  In order to reduce this risk and increase the robustness of 
the operating policies, a quantitative measure of the trade-off between compliance with the 
constraints and the objective function is required. Thus, in this thesis, new approaches to 
robust optimization are introduced in order to improve the objective function performance 
while keeping the probability of a constraint violation within defined bounds. 
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Optimization under Uncertainty 
 

 

 

 
Studies on dynamic optimization have recently been performed to aid in optimal design and 

operation of increasingly intensified processes. Most of these studies make use of 

deterministic nonlinear optimization methods which have been developed to solve large-scale 

NLP problems (Gill et al., 1997; Leineweber et al., 1997). They can be classified into 

simultaneous and sequential approaches. The former includes all discretized variables usually 

resulting in extremely large NLP problems (Steinbach, 1995; Cervantes and Biegler, 1998, 

Biegler et al., 2002). The latter approach uses a simulation step to compute the dependent 

variables. Therefore, only the independent variables are explicitly varied by NLP (Logsdon 

and Biegler, 1992; Vassiliadis et al., 1994a,b; Li et al., 1998; Feehery and Barton, 1998). 

These approaches have been successfully applied to a number of primarily continuous 

chemical processes e.g. reactive, azeotropic distillation or batch distillation (Logsdon and 

Biegler, 1989; Li et al., 1998; Wendt et al., 2000). However, the optimization results are only 

applicable when the real operating conditions are precisely reflected in the optimization. 

 

It is well-known that chemical processes are subject to large uncertainties. In industrial 

practice, they are usually compensated for by using conservative decisions like over-design of 

process equipment or overestimation of operational parameters based on worst case 

assumptions about the uncertain parameter values, which leads to significant deterioration of 

the economic performance (objective function) in an optimization problem. Moreover, 

uncertainties may have detrimental effects on equipment decisions, plant operability, and 

economical analysis. Thus, systematic methods are required for integrating the available 

stochastic information about the uncertain parameters into the process operation decisions. 

These uncertainties or disturbances are often multivariate and correlated stochastic sequences 

which have an influence like a chain-effect to each unit operation of the production line. In 

order to reduce it to a negligible level, a complex modeling effort is required. In the last 
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decades, aiming to determining the optimal operational policies, many deterministic model-

based approaches have been developed. Depending on the objectives, decision variables, and 

constraints, in the literature the deterministic optimization problems are formally classified as 

Linear Programming (LP), Non-Linear Programming (NLP), Integer Programming (IP), 

Mixed Integer LP (MILP), and Mixed Integer NLP (MINLP). However, due to the high 

modeling complexity, model-based approaches are often impossible to implent in industrial 

processes. Furthermore, uncertainty compensation without considering its properties has 

several drawbacks. Optimization under uncertainty tackles these problems. It is a kind of 

optimization where the stochastic properties of the uncertainties in the data and the model are 

taken into account and is popularly known as Stochastic Programming or stochastic 

optimization problems. “Stochastic Programming handles mathematical programming 

problems where some of the parameters are random variables...” (Prekopa, 1995) is one of 

the simpler definitions given for Stochastic Programming. In this terminology, stochastic 

refers to the randomness, and programming refers to the mathematical programming 

techniques like LP, NLP, IP, MILP, and MINLP. There are probabilistic techniques like 

Simulated Annealing and Genetic Algorithms; these techniques are occasionally referred to as 

the stochastic optimization techniques because of the probabilistic nature of the search 

algorithms. In general, however, Stochastic Programming and stochastic optimization imply 

optimal decision making under uncertainties (Diwekar, 2003). 

 

In the literature, several methods have been proposed to systematically solve optimization 

problems which are subject to uncertainties. The techniques introduced differ in the way of 

handling the sources of uncertainty or solving resulting problems. Rather than giving an 

exhaustive literature review, the reader is recommended to read the comprehensive reviews of 

Grossmann et al. (1983), Pistikopoulos (1995), Wets (1996), Diwekar (Review), Sahinidis 

(2004). In this chapter an overview of the approaches applied to this problem, in particular, 

some of the more recent articles in this area are highlighted. 

 

The first works which considered stochastic uncertainties aimed at formalizing the calculation 

of safety factors commonly used to over-design the processes.  Several works appeared in the 

1970s including the ones by Takamatsu et al. (1973) and Damert et al., 1977, in which the 

distinction between design and control variables for continuous plants was proposed for the 

first time. This distinction becomes important with the assumption that the control variables 

can be adjusted for any possible realizations of the uncertainty. However, a large amount of 

the process system engineering literature refers to optimization under uncertainty concerning 

the simultaneous equipment design and control variable optimization. Nevertheless, the 

emphasis of previous studies has been mainly on process design problems. Parameter design 

methods were used to obtain robust design in the sense of reducing the source of variations.  

 

Generally, the literature on optimization under uncertainty very often divides the problems 

into categories such as “wait and see", and “here and now". The former implies the 

assumption of perfect control adjustment and its validity extent relies on both the ability to 

detect feedback information from on-line process measurements, and the quality of the 

available information for close-loop control adjustment of certain process variables. For the 

latter when design and control variables are considered equivalent only a single operating 

policy is obtained in a conservative “here and now” strategy. Thus, the relative influence of 

different parameter values and disturbances on the optimization problem must be defined. 
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3.1   “Wait and See” Approach 

 
The approach in which the expected values of the uncertainties are used in the problem 

formulation is the so-called “wait-and-see” approach. In such cases when additional 

measurement information on the uncertainties becomes available, the operational strategy can 

be adapted. But, since the complete future trajectory will rarely be known, this approach is not 

suitable for handling time-varying disturbances. Thus, provided that the main uncertainties are 

associated with time-invariant parameters e.g. raw materials, measurements of the parameter 

values following this approach may provide the required variable values. However, the wait 

and see strategy is, in fact, compensation without considering the uncertainty properties and 

has several drawbacks. First of all, the actions taken are always a posteriori. Second, a 

feedback control can not ensure constraints on open-loop variables. Moreover, these input 

uncertainties will propagate through the process to the output variables e.g. composition, 

temperature. In particular, for nonlinear processes the analytical description of the output 

distribution is challenging. In this case the term nonlinear describes the relationship between 

the uncertain and the constrained variables. As described in Chapter 2, a scheme of simulation 

with sampling can address this issue. In “wait and see" one waits until an observation is made 

on the random elements, and then solves the deterministic problem. This strategy requires the 

solution of several deterministic optimization problems in order to find the deterministic 

optimal decision at each scenario or random sample. The problem can be formulated in the 

following general form:  
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Since the optimization procedure is repeated for each uncertain variable sample, as shown in 

Figure 2.1, ξξξξ corresponds to the vector of uncertain variable values associated with each 

scenario or sample. Thus, a probabilistic representation of the uncertain output can be 

obtained. The shortcoming of this strategy is that it can not guarantee satisfaction of 

inequality constraints. 
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Figure 2.1:   “Wait and See” Approach. 

 

3.2   “Here and Now” Approach 
 

While in the “wait-and-see” approach the expected values of the uncertainties are used in the 

problem formulation, the “here-and-now” problems involve the definition of both the 

objective function and constraints in terms of some probabilistic representation (e.g. expected 
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value, variance, fractiles). Furthermore, the decision variables are detached from the uncertain 

parameters (see Figure 2.2). A “here-and-now” problem can be formulated as follows: 
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As can be seen in (2.2), in contrast to the deterministic optimization problem, the stochastic 

optimization considers the probabilistic functionals of the objective function and the 

constraints. Thus, P represents a cumulative distribution functional e.g. expected value, 

variance, or fractiles. To solve such problems the use of stochastic modeling is required. 

Accordingly, an iterative probabilistic model representing the discretized uncertainty space is 

embedded in the simulation stage as a part of the optimization loop in Figure 2.2. 
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Figure 2.2:   “Here and Now” Approach. 

 

As described above, both “here and now” and “wait and see” problems require representation 

of uncertainties in the probabilistic space and then propagate these uncertainties through the 

model to obtain the probabilistic representation of the output. This is the main dissimilarity 

between stochastic and deterministic optimization problems. In process system engineering 

there are many problems which incorporates both “here and now”, and “wait and see” 

problems. After separating the decisions into these two categories, a coupled approach can be 

employed to deal with such problems. However, stochastic or deterministic uncertainty 

models are only approximations of the true model-plant mismatch, the potential variability 

and disturbances of the true process. The selection of a realistic type and extent of uncertainty 

representations require a careful judgment in order to properly balance robustness and 

conservativeness regarding the extent of probable variations. A general optimization or 

control problem under uncertainty can be formulated mathematically as: 
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where { }Eξ f  is the expected value of f, ρ(ξ) the joint probability density function, f the 

performance metric to be optimized, x the differential state variables, x�  their derivatives with 

respect to the time, y are the algebraic state variables, u the time-dependent optimization 

variables, v the time-invariant optimization variables, t the time, tC certain time points, tf the 

final time, ξξξξ the uncertain model parameters over the domain ΞΞΞΞ. The equality constraints g 

generally represent the process model equations but also could similarly include constraints 

on the process or performance requirements. The inequality constraints h are usually related 

to equipment limitations, safety regulations, environmental and/or performance restrictions 

(e.g. product purity specifications). The initial conditions of the system are represented by i0. 

 

The explicit uncertainty consideration adds information to the optimization model (2.3) and 

allows for more robustness. However, a stochastic optimization problem has to be solved 

whose complexity may exceed the complexity of the corresponding deterministic problem by 

several orders of magnitude. The uncertainty nature, which includes time dependency or its 

significance in the objective and the constraints, leads to different classes of stochastic 

optimization formulations. Several approaches have been suggested to formulate and solve 

this problem (2.3), differing in how uncertainty is handled in the constraints as well as in the 

objectives that may include process flexibility, profitability, and/or robustness. In general, the 

direct solution can be problematic due to the difficulty in both evaluating the integral over the 

uncertain parameter space and ensuring feasibility of the inequalities for all parameter 

realizations.  

 

Concerning the way uncertainty is handled, the choice of uncertainty characterization is the 

key assumption which strongly influences the way in which several methods have been 

developed. Most of the methods proposed to solve optimization problems under uncertainty, 

especially those relating to design, are associated with the verification of the limits of the 

feasible region. Other methods allow some infeasibility during the optimization procedure 

without explicit definition of the feasible region. Generally speaking, three different 

approaches can be distinguished:  

 

1) Scenario-based optimization approach, where the uncertainty is described by a set of 

scenarios (periods) using either discrete probability distributions or the discretization of 

continuous probability functions, and the expectation of a certain performance criterion, 

resulting in a multi-period optimization problem. 

 

In scenario-based optimization, the bounded uncertain parameters are discretized into multiple 

intervals such that each individual interval represents a scenario associated with an 

approximated discrete distribution. Each instance is called a scenario and represents a certain 

event or history of events. The scenarios may be determined explicitly if the most important 

combinations of parameter values and the associated probabilities are known a priori. 

Otherwise, they may be generated implicitly by assuming probability density functions for the 

parameters. Generally, this leads to a multi-period optimization problem that provides the 

solution which is feasible only for the selected points. Thus, the feasibility problem must be 

then tested over the entire range of parameters. In precise probabilistic terms this corresponds 

to a discrete distribution given by a finite probability. Scenario-based approaches provide a 

simple way to incorporate uncertainty. But, they inevitably expand the size of the problem 

significantly as the number of scenarios augments exponentially with the number of uncertain 

parameters. This main drawback prevents the application of these approaches to solve 

practical problems with large numbers of uncertain parameters. The problems following the 

scenario-based approach can be formulated as follows: 
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Where nk is the number of scenarios and γk is the associated probability of occurrence of 

scenario k. It should be noted that in (2.4), u is independent of the scenarios (here and now) 

but that dependence on the scenarios could be included to represent “wait and see” case where 

controls are optimally adjusted for the values of the uncertain parameters realized in the 

scenario (Samsatli et al., 1998). Abel and Marquardt, (2000) integrated time varying 

uncertainties into the robust optimization of operating policies for dynamic hybrid (discrete 

continuous) systems. Optimization approaches are formulated considering uncertainty not 

only in model parameters but also in the process model structure resulting either in a single-

level or bi-level scenario integrated optimization problems. These provide solutions 

comprising different control policies for the various switching times, at which the model 

structure and uncertainty may change. 

 

2) Stochastic approach, where the uncertainty parameters are described through a joint 

probability density function (PDF) resulting in a stochastic optimization problem. 

 

3) Parametric approach, where the problem is solved parametrically in the space of the 

uncertain parameters. 

 

More recently, parametric programming ideas have been developed for design and control 

under uncertainty (Acevedo and Pistikopoulos, 1998; Vassiliadis and Pistikopoulos, 1998; 

Bansal et al. 2000, 2002). The advantage of such a technique is that it is based on building a 

complete map of the model validity for different regions of uncertainty. This can then be used 

to generate all optimal solutions as the operating conditions change as a function of the 

parameter uncertainty. For nonlinear models including integer variables, the parameter 

programming solution approaches have been limited to either only a single model uncertain 

parameter or several uncertain parameters varying in a single direction. Dua and 

Pistikopuolos, (2002) proposed algorithms for the solution of multiparametric mixed-integer 

nonlinear optimization (mp-MINLP) problems where uncertainty is described by a set of 

parameters constrained by lower and upper bounds. However, the computational complexity 

of these approaches is expected to increase significantly with the problem dimensionality. 

Thus, the implementation as well as the application of such algorithms to large-scale 

processes, and their extension for the case of non-convex models is still a challenge to be 

tackled. 

 

To summarize, the first two approaches are based on the characterization of the uncertain 

parameter space by considering either discrete scenarios or stochastic distributions, assuming 

that some information regarding the uncertainty is provided either in the form of the expected 

nominal point or specific range of values or in the form of a probability distribution function. 

In the parametric framework, no assumptions are made about the uncertainty model and the 

objective function is obtained as a function of the uncertain parameters over the demand 

space. 
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The direct solution of (2.3) is challenging due to the difficulty in both evaluating the integral 

over the uncertain parameter space and guaranteeing feasibility of the inequalities for all 

parameter realizations. In process systems engineering, the previous studies on decision 

making under uncertainty have been concerned mainly with process design problems. One of 

the most widely used techniques is two-stage programming (Liu and Sahinidis 1998, Petkov 

and Maranas 1998, Dantzig, 1955, Pistikopoulos, 1995b). In this method, the decision 

variables of the problem are divided into two sets. The first-stage variables (design variables) 

are to be predetermined before the actual realization of the uncertain parameters (“here-and-

now” decisions). Therefore, when the random events occur, further design or operational 

policy improvements can be made by opting for, at a certain cost, the values of the second-

stage, or recourse, variables (“wait-and-see” decisions). Conventionally, the second-stage 

variables are understood as corrective measures or recourse against any infeasibility arising 

due to a particular realization of uncertainty. However, the second-stage problem may also be 

an operational-level decision problem following a first-stage strategy and the uncertainty 

realization. Due to uncertainty, the second-stage cost is a random variable. The idea is to 

select the first-stage variables so that the sum of the first-stage costs and the expected value of 

the random second-stage recourse costs are minimized. The concept of recourse has been 

applied to linear, integer, and nonlinear programming (Sahinidis, 2004). 

 

The application of these different approaches to solving design optimization problems under 

uncertainty has extensively been studied in chemical engineering in the past. Grossmann et al. 

(1983) discussed two types of generic problems: i) design for a fixed degree of flexibility, 

where the plant is designed for optimal economics while maintaining operational feasibility 

over a pre-specified range of parameter uncertainties and ii) design for an optimal degree of 

flexibility, where a design is optimized for both economics and flexibility, and the degree of 

flexibility is quantified using a flexibility index. Usually, the problem of parameter 

uncertainty is then reduced to the general form of a multi-period problem. The discretization 

of the parameter uncertainty space generates a set of scenarios for which the control variables 

can be modified separately. The assumption is that during operation there is enough 

information about the uncertain parameters to optimally adjust the control variables. For a 

cost objective function C, the two-stage problem can be defined as follows: 
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The feasible region R associated with the design is given by, 

 

( ) ( ){ }p p : , , 0= ∀ ∈ ∃ ≤d u d u pfR R  

 

The original equalities and inequalities are reformulated into a new vector, f, which expresses 

the implicit elimination of the state variables from the problem. Two-stage design and 

operation approaches have extensively been investigated for the case of deterministic 

parameter uncertainties characterized by bounded ranges. Thus, a variety of technique have 
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been proposed to solve (2.5). However, the uncertain parameters are discretized into a number 

of values from their overall uncertainty description. These discretized points are often set to 

lower and upper bounds based on their confidence intervals. In other works, the discretized 

points are selected from elliptical joint confidence regions or the confidence region is derived 

from a likelihood ratio test (Seber and Wild, 1989; Gallant, 1987; Rooney and Biegler, 2001). 

This leads to a multi-period (or multi-stage) optimization problem which is solved in the 

design stage, 
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where f0 represents a function for the fixed costs, the index k is an index for the periods 

(scenarios), and ωk stands for weight factors related to the discrete probability of each period. 

The vector of uncertain parameters p is characterized by bounded values, in a region P, which 

contains all possible parameter values. Based on this formulation, several methods with 

application to distillation sequence synthesis, design feasibility under uncertainty, multi-

period multi-product batch plants, and scheduling under uncertainty have been developed to 

solve multi-period design optimization problems (Grossmann and Sargent, 1978, Varvarezos 

et al., 1992, Subrahmanyan et al., 1994). Its solution results in designs which are optimal only 

for the discretized values of the parameters, but not necessarily feasible for the entire region 

of uncertainty. Thereby a feasibility problem is solved to verify if the design variables operate 

over the entire uncertain region, 
 

( ) ( )* *

P
max min max , ,

∈
=

up
d d u pX h .        (2.7) 

 

where the equality constraints, g, have been implicitly incorporated into the inequality 

constraints, h. If  X(d
*
) ≤0 for all p∈P, the current design d

*
 is feasible. If X(d

*
) ≥0 for any 

p∈P, then the current design is not feasible. The solution of (2.7) results in critical values of 

the parameters where the greatest constraint violation arises because there is a part of P where 

the feasible region is an empty space. The discretization can then be updated with the critical 

point, and another multiperiod design problem is solved. Numerous methods have been 

proposed to solve (2.7) comprising vertex search methods where the critical points are located 

at vertices of the hyper-rectangle (Halemane and Grossmann, 1983; Swaney and Grossmann, 

1985a,b; Ostrovsky et al., 1994) and the active-set approach with mixed-integer strategies 

suggested by Grossman and Floudas (1987) based on the a priori identification of potential 

active constraints which limit flexibility. Ostrovsky et al. 1998, 2000 proposed different 

bounding methods for the flexibility analysis with which a global solution can be found based 

upon global search using interval analysis. However, a steady-state point of view renders an 

unrealistic control schema and thus a dynamic analysis is required. Dimitriadis and 

Pistikopoulos (1995) formulate the dynamic feasibility problem and define a dynamic 

flexibility index which represents the largest scaled deviation of the uncertain parameter 

profile that the design can tolerate while remaining feasible within the time horizon 

considered. The main drawbacks are the high dimension of the optimization even for small 

problems, and the assumption that the direction in the parameter space for the critical point 
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locations is either known or is at one of the vertices in the dynamic hyper-rectangle. This 

concept was then extended to stochastic flexibility for linear dynamic systems (Adjiman et al., 

1998, Floudas et al., 2001). 

 

3.3   Probabilistic feasible region approaches 

 
In order to determine the feasible region more accurately than the hyper-rectangle 

characterization, different methods using probabilistic definitions of uncertainty have been 

proposed to incorporate a superior information level in comparison to bounded range 

deterministic uncertainty approaches. Thus, stochastic flexibility analysis procedures were 

defined which are concerned with the probability of feasible operation for linear systems, 

subject to combined discrete and continuous uncertainties, described by probability 

distributions, but for which perfect control is assumed. Straub and Grossmann (1993) 

presented an approach to assess the stochastic flexibility of a nonlinear convex feasible region 

under perfect control. For a total of P uncertain parameter dimensions the stochastic flexibility 

index SFI is defined as, 
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Where p
UB

 and p
LB

 are the upper and lower bounds of each dimension in the feasible region 

using Gaussian quadrature in order to approximate the multidimensional integral and  ρ(p) 

represents the truncated correlated joint distribution function. The application of this approach 

to design optimization involves again iteration between a design master problem and an 

operating stage sub-problem (2.6) applying Benders decomposition. (Birge and Louveaux, 

1997, Dantzing and Wolfe, 1960, Benders, 1962). For continuous probability distributions, 

this challenge has been primarily tackled through the explicit/implicit discretization of the 

probability space for approximating the multivariate probability integrals. The key advantage 

of these methods lies in the fact that they are largely insensitive to the type of probability 

distribution. However, this suffers from the disadvantage that there is an exponential increase 

in the number of optimization sub-problems that must be solved as the numbers of uncertain 

parameters and quadrature points increase. Further, SFI produces feasible designs, but they 

may show larger quadratic loss. More efficient integration techniques than Gaussian 

quadrature have also been proposed in the context of stochastic design optimization, such as 

specialised quadratures and cubatures for normally distributed parameters (Bernardo et al., 

1999) and efficient sampling techniques (Diwekar and Kalagnanam, 1997; Acevedo and 

Pistikopoulos, 1998). However, the difficulty in applying these methods to stochastic 

flexibility evaluation is that each of the generated integration points has to be tested to verify 

if it lies within the feasible region of uncertain parameters. Balasubramanian and Grossmann 

(2003) proposed a multiperiod MILP model for scheduling multistage flowshop plants with 

uncertain processing times. They developed a special branch and bound algorithm with an 

aggregated probability model. The scenario-based approaches provide a straightforward way 

to implicitly incorporate uncertainty. However, they inevitably enlarge the size of the problem 

significantly as the number of scenarios increases exponentially with the number of uncertain 

parameters. 
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3.4   Limited feasibility approaches 
 

Guaranteeing feasibility in a specified region is a significant issue in the conceptual problems 

described above. However, it is also relevant to examine the effect that regions of non-

feasibility may have on the process. Therefore, an approach which provides optimal decisions 

under the complete uncertainty range while capturing the dynamic/continuous and non-linear 

effects modelled in the system of integrated processes is required. Thus, in other approaches 

the solutions do not assure feasibility over a specified feasible region but rather allow partial 

feasibility by evaluating the entire uncertainty space. For this purpose, a stochastic constraint 

is defined as a constraint on a stochastic variable. This constraint may be considered as either 

hard or soft, for which some violations are accepted at the expense of a finite penalty (Saltelli 

et al., 2000). Such approaches are different from flexibility analyses which deal with all 

constraints as hard and attempt to ensure feasibility within the uncertainty space presupposing 

perfect control when reacting to uncertainties. 

 

To consider the uncertainties, the optimization problem needs to be reformulated. Thus, some 

special manipulations of the objective function and the equality and inequality constraints 

have to be performed in order to relax the stochastic problem to an equivalent NLP problem 

so that it can be solved by the existing optimization routines. If the uncertain variables have 

an impact on the objective function, it is usually re-formulated as the expected value of the 

objective function. To handle the inequality constraints under uncertainty during the time 

horizon, two main types of formulation have been used: the recourse formulation and the 

formulation of chance constraints. In the recourse formulation, violation of the constraints is 

allowed, but penalized through a penalty term in the objective function. This approach is 

recommendable when the objective function and constraint violations can be described by the 

same measurement, for example process planning problems under demand uncertainties 

(Subrahmanyam et al., 1994; Liu and Sahinidis, 1996; Ahmed and Sahinidis, 1998; Gupta and 

Maranas, 2000). In many situations, however, a model of such costs is not easily available or 

even nonsense, particularly, when the constraints are related to safety requirements (Kall and 

Wallace, 1994). In such situations, it is preferable not to compensate for violations by 

additional costs, but rather to maintain a high level of reliability which implies that the 

constraints have to be satisfied at least with a probability exceeding some pre-selected value.  

 

Several methods following this strategy have been developed. An efficient approach for linear 

systems was proposed with stochastic variables with correlated multivariate normal 

distribution, where numerical integration and sampling methods are combined (Prékopa, A., 

1995). Chance constraints can indeed be computed by sampling techniques. The disadvantage 

of sampling approaches is that some effort might be wasted on optimizing when 

approximation is not accurate (Birge and Louveaux, 1997). In nearly all stochastic 

optimization problems, the major bottleneck is the computational time spent for generating 

and evaluating probabilistic functions of the objective function and constraints. The accuracy 

of the estimates for the actual mean and the actual standard deviation is particularly important 

so as to obtain realistic estimates of any performance or economic parameter. However, this 

accuracy is dependent on the number of samples and the number of uncertain parameters. The 

number of samples required for a given accuracy in a stochastic optimization problem 

depends upon several factors, such as the type of uncertainty, and the point values of the 

decision variables (Painton and Diwekar, 1995). Especially for optimization problems, the 

number of samples required also depends on the location of the trial point solution in the 

optimization space. Therefore, the selection of the number of samples for the stochastic 

optimization procedure is a crucial and challenging problem. A combinatorial optimization 
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algorithm that automatically selects the number of samples and provides a trade-off between 

accuracy and efficiency is presented in Ki-Joo Kim and Diwekar (2002). 

 

3.5   Summary 

 

The outcomes of a deterministic optimization allow neither variation nor uncertainty on 

operating conditions or model parameters. However, the existence of these uncertainties raises 

questions like: what will be the corresponding probability of complying with the constraints 

in accordance with the optimized operating policy? Handling uncertainty, which becomes 

important especially in the presence of constraints on quality and safety, has not been 

adequately addressed and constitutes the main bottleneck in applying optimization techniques 

to real processes. Therefore, in relation to the uncertainties involved in an optimization 

problem formulation, the comparative improvement obtained due to a specified economic 

objective function may occasionally become irrelevant, i.e. safety, reliability, and operability 

are often decisive, and more crucial than an economic objective (Grossmann and Morari 

(1984)). However, these issues are more complex and there is no established approach to 

assess them appropriately. Thus, in most cases, conservative decisions based on heuristics or 

empirical rules have to be made which might lead to a substantial profit decrease. Therefore, 

systematic methods to evaluate the relationship between profitability and reliability of a 

planned operation are required.  
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Chapter 4 
 
 

Chance-Constrained Optimization under Uncertainty 
 
 
Decision making inherently involves consideration of uncertain outcomes. While 
computational advances in mathematical programming tools have aided decision making in 
many areas, their greatest impact may lie in enhancing decision making under uncertainty 
through stochastic programming. During the past decades several approaches have been 
suggested to address these problems in a systematic manner. One method of stochastic 
programming is the probabilistic or chance-constrained approach which focuses on the 
reliability of the system, i.e., the system’s ability to remain feasible in an uncertain 
environment. The reliability is expressed as a minimum requirement on the probability of 
satisfying the system constraints. Specifically in complex dynamic systems there are 
parameters which are usually uncertain, but may have a large impact on the objective function 
and the constrained outputs. Thus, the challenge is to make decisions a priori for the future 
operation. However, the decision is needed to be made before the realization of the uncertain 
inputs. Consequently, under the consideration of uncertainties, the following questions should 
be answered: 1) how to achieve an economically optimal operation? 2) How to ensure that the 
constraints of the output variables are satisfied? 3) How to prevent the propagation of the 
uncertainties to downstream processes? And 4) how to design a proper feedback control 
system? A stochastic programming problem has to be defined and solved to answer these 
questions.  
 
Most current approaches to process operations are based either on heuristic rules or on 
deterministic optimization, where uncertainties of several parameters are not taken into 
consideration. Furthermore, in many practical applications, only some uncertain outputs 
involved and critical for quality control are available for online measurement. For instance, 
pressure, and temperature in non-isothermal reactors are usually available online while the 
values of product and reactant concentrations are often available only via off-line analysis. 
Alternatives such as state observers are commonly developed using a perfect knowledge of 
the system parameters. Especially concerning process kinetics, it is difficult to define error 
bounds and there is often a large uncertainty on these parameters. However, uncertainty in the 
model parameters can result in a possibly large bias in the estimation of the unmeasured 
states. The limiting factors are, among others, the insufficient knowledge about the key 
parameters, which are often estimated with poor initial guesses; the large variations of the 
operating conditions, in particular, in batch processes; the inaccuracy of the initial estimates 
of the state variables; the imprecise measurement of the feed amount and its composition. To 
deal with the unknown operating reality a priori, two general methods are known in the 
chemical industry: the worst-case and the base-case analysis have commonly been used 
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(Fig.4.1). The latter uses the nominal (mean) values of the uncertain variables. However, the 
realized values will deviate from the nominal values and hence the constraints will almost 
certainly be violated by the implementation of the developed strategies for the base-case 
analysis. The former is a simplistic approach to the evaluation of feasibility and robustness. It 
is usually applied to problems in which the distributions of random variables are not given. 
The worst case analysis assumes that all fluctuations may occur simultaneously in the worst 
possible combinations. The worst case analysis is conservative since it is unlikely that the 
worst cases of variable or parameter deviations will simultaneously occur. However, in spite 
of the low achievable profit, worst case analysis is used widely in many areas of optimization 
applications due to its simplification and reliability in ensuring the constraints. It should be 
pointed out that operability and reliability become increasingly important issues in operations 
planning. In this thesis, a systematic approach is formulated which is capable of evaluating 
the balance between the reliability and the profitability of future operations. 
 

constrained output
(profit improvement )

worst-case

base-case constraint
violation

SPy
 

 
Figure 4.1: Trade-off between reliability and profitability   
 
 
A general optimization or control problem under uncertainty can be formulated as: 
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where  f is a time-variant performance criterion to be optimized, n⊆ ℜx  are the differential 
state variables, x  their derivatives with respect to the time, L⊆ ℜy  the constrained output 
variables, M⊆ ℜu  the optimization variables, t time, tC certain time points, tf the final time, 
and S⊆ ℜξ  the uncertain parameters over the domain Ξ. The equality constraints n+L⊆ ℜg  
generally represent the process model equations but could also include constraints on the 
process or performance requirements. The inequality constraints L⊆ ℜh  are usually related 
to equipment limitations, safety, and/or performance restrictions. The known initial conditions 
of the system are represented by i0. Since the model involves uncertainty, process output 
predictions are also uncertain. This uncertainty in process output predictions may result in 
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adverse violation of the constraints on the outputs. Thus, incorporation of uncertainty into the 
output constraints is necessary and needs to be included in the problem formulation. As stated 
in chapter 2, a process may have internal uncertainties such as inaccurate model parameters or 
structures and external uncertainties such as unknown future feedstock or atmospheric 
temperature. While internal uncertainties have been well studied in the framework of robust 
control in the past (Morari and Zafiriou, 1989, Calafiore and Dabbene, 2000), external 
uncertainties have not been much emphasized.  
 
The characteristics of these uncertainties or stochastic disturbances, such as mean, covariance 
or probability distribution, may be known from statistical analysis of historical data (Bates, 
1988). In chemical process industry, there has been an explosive growth of computer-based 
process monitoring systems in the last two decades, which makes it relatively easy to acquire 
process data to be utilized for distribution analysis (Jobson, 1991, Pearson, 2001). The 
probability distribution of different variables may have different forms. Normal distribution is 
frequently regarded as an appropriate assumption for some uncertain variables in the 
engineering practice. This statement is based on the central limit theorem (Loeve, 1963; 
Maybeck 1995). Accordingly, if a random variable is generated as the sum of effects of 
different independent random parameters, the variable distribution is close to a normal 
distribution regardless of the distribution of each individual parameter. However, stochastic 
optimization with even an approximated distribution is more reliable than a deterministic 
optimization. In most of the examples in this thesis, uncertainties are assumed to have a 
correlated multivariate normal distribution, but the developed approach does not depend on 
the particular distribution form. 
 
In problem (4.1) the major difficulty is due to the optimal decisions that have to be made prior 
to the observation of random parameters. Thus, it is complicated to find any decision which 
would definitely exclude later constraint violations caused by unexpected random effects. As 
explained in chapter 3, in several cases such constraint violation can be balanced afterwards 
by some compensating decisions made in the second stage. In many applications, however, 
compensations simply do not exist (e.g. safety restrictions) or can not be modeled in any 
reasonable way. In such circumstances, a chanced-constrained approach can be used in which 
a user-defined probability level of holding the constraints (reliability of being feasible) will be 
ensured. A generic way to express such probabilistic or chance constraint as an inequality is 
 

( )( ), 0≥ ≥ αhP ξr u                        (4.2) 
 
Here, u and ξ are decision and random vectors, respectively. The value α ∈ [0, 1] represents 
the probability level. Since α can be defined by the user, it is possible to select different levels 
and make a compromise between the objective function value and the risk of constraint 
violation. In engineering practice, inequality constraints are commonly used to specify or 
restrict some of the output variables: 
 

( )min max
i i iy y , y i 1, , L≤ ≤ =u ξ …                     (4.3) 

 
where min

iy and max
iy  are the output lower and upper bounds, respectively. In continuous 

operation they may be constant, while in batch processes they are often time dependent. 
Holding these constraints is usually critical to ensure safe production.  The proposed approach 
in this thesis relies on formulating output constraints of the form (4.3) as chance constraints as 
follows: 
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( ){ }min max
i i i iPr y y , y , i 1, ,L≤ ≤ ≥ α =u ξ …                   (4.4) 

 
With this representation single probabilities of ensuring each inequality for [ ]0 ft t , t∈ will be 
calculated. In this form, different confidence levels can be assigned to different outputs based 
on their requirements. Another form is the joint chance constraint, where all inequalities are 
included in the probability computation and they must be satisfied simultaneously with the 
one given confidence (probability) level 
 

( ){ }min max
i i iPr y y , y , i 1, ,L≤ ≤ = ≥ αu ξ …                    (4.5) 

 
The values of α or αi are not given by explicit formulae, but are rather defined as probabilities 
of some implicitly defined regions in the space of the random parameter ξ in such a way that 
the feasible region will shrink if the confidence level is increased, which will imply a more 
conservative decision. Increasing the confidence levels brings, however, the advantage of 
keeping a more stable operation, but it may reduce the system flexibility with respect to the 
variations required. Moreover, as shown in Figure 4.2, the feasibility in (4.5) includes the one 
in (4.4), but the reverse is not true.   
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Figure 4.2: Reliability in single and joint constraints  
 
The main challenge in chance-constrained programming lies in calculating values, gradients 
and possibly Hessians of these functions. However, the main difference between (4.4) and 
(4.5) lies in their reliability. While a joint chance constraint demands for reliability in the 
output feasible region as a whole, single chance constraints call for reliability in the individual 
output feasible region. Thus, single chance constraints may be used when some output 
constraints yi

SP are more critical than the others. On the other hand, if the constraints are 
related to safety considerations in process operation, a joint constraint may be more 
convenient. With regard to the equalities in problem (4.1) which are the process model 
equations, they have to be satisfied with any realization of the uncertain variables. Moreover, 
the effect of the model equations is a projection of the space of the random variables ξ as 
inputs to a space of state variables x and y, with given controls u. Consequently, the equalities 
can be eliminated through an integration of the equations in the space of the uncertain 
variables. This means that the sequential approach may be suitable for solving such problems.  
 
To treat the objective function in problem (4.1), minimizing the expected value and the 
variance of the objective function has usually been adopted (Darlington et al., 1999): 
 

( ) ( )min E f D f+ ω⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦x,u,ξ x,u,ξ                     (4.6) 
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E and D are the operators of expectation and variation, respectively, ω is a weighting factor 
between the two terms. By these means, the objective function in (4.1) is now relaxed to a 
deterministic function through these two operators. Accordingly, a general chance constrained 
problem can be formulated starting from (4.1) by using the objective function from (4.6) and 
(4.4) as the single constraints 
 

( ) ( )

( ){ }
( )

C C
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0 C

min max

min max

0 C f
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or (4.5) as the joint constraint.  
 

( ) ( )

( ){ }
( )

C C

i

0 C

min max

min max

0 C f

min E f , , , t ; D f , , , t ;

s.t. ( , , , , t, ) 0,

Pr , , , , t; 0, i 1, ,L

(0), (0), , (0), t ; 0,

,
,

t t t

⎡ ⎤ ⎡ ⎤+ ω⎣ ⎦ ⎣ ⎦
=

≥ = ≥ α

=

≤ ≤

≤ ≤

≤ ≤

x y u ξ x y u ξ

g x x y u ξ

h x x y u ξ

i x x y u ξ

y y y
u u u

      (4.8) 

 
Therefore, as shown in Figure 4.3, such problems can be classified based on process 
properties, uncertainties and constraint forms. According to the Figure 4.3, there are total 16 
different possible formulations. 
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Dynamic

Constant

Time-
dependent

Single

Joint

Process Uncertainty Constraint

 
 
Fig. 4.3: Classification of chance constrained problems 
 
The solution of such problems will lead to an expected optimal value of the objective function 
by searching for the decision in a feasible region defined with a given confidence level to be 
held. The initial letters are used to denote the different chance constrained problems. For 
example, a linear steady state process with constant uncertainties under single chance 
constraint is called an LSCS problem. It is interesting to note that LSTS and NSTS can be 
solved separately for each interval, while for LSTJ and NSTJ (a quasi-dynamic problem) the 
whole time horizon should be considered. To solve such problems with an existing 



Chance-Constrained Optimization under Uncertainty 41 

optimization routine, the probability of holding the constraints has to be computed. Moreover, 
the gradients of the probability function with respect to the controls are also required. Since α 
can be defined by the user, it is possible to select different levels and make a compromise 
between the objective function value and risk of constraint violation. Different problems have 
different degrees of complexity for computing these values, which will be discussed in the 
following sections. 
 
For numerical optimization under probabilistic constraints, some methods have been 
developed and applied to several disciplines like finance and management (Prekopa, 1995; 
Uryasev, 2000). In chemical process operations few applications have been made (Arellano-
Garcia et al., (1998, 2003b), Henrion et al., 2001). It has been used by, for instance, Maranas 
(1997) for molecular design and Petkov and Maranas (1997) for planning und scheduling of 
multiproduct batch plants. Additionally, several studies on model predictive control using 
probabilistic programming have been carried out for linear processes (Schwarm and 
Nikolaou, 1999; Wendt, 2005).  
 
 
4.1   Linear Chance-Constrained Optimization 
 
Due to the fact that the uncertain input variables propagate through the process to the output 
variables, the outputs are also uncertain. However, chance constrained linear problems can be 
relatively easily treated and have some affable properties. In systems where the relation 
between uncertain input and constrained variables is linear, the type of the multivariate 
probability distribution function of the constrained output is the same as the one of the 
uncertain input. Thus, in this thesis, linear systems are referred to those systems where a 
linear relation between the uncertain variables and the constrained variables exists. 
Optimization of linear steady state systems (LSCS and LSCJ) under constant uncertain 
variables has been well studied (see Kall and Wallace, 1994). Especially in production 
planning, linear input-output relations for process modeling are commonly used. In the 
framework of a linear system, the solution of a problem with single chance constraints can be 
derived simply by a coordinate transformation. For the cost minimization, a generic chance 
constrained linear optimization problem under single probabilistic constraints can be 
formulated as follows:  
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      (4.9) 

 
The formulation under one joint probabilistic constraint is, 
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m nu y
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               (4.10) 

 
Where u yc ,c  represent the price vectors of the input and output variables, and {a, b, d, e} are 
vectors with known parameters. The inflow and outflow random vectors are 

R Sand ⊆ ℜ ⊆ ℜθ ξ , respectively. Additionally m nand ⊆ ℜ ⊆ ℜu y  are vectors of the input 
and output decision variables. It should be noted that the uncertain variables have no impact 
on the objective function and the feasible region of problem (4.10) is a subset of that of 
problem (4.9). In order to characterize the uncertain variables, it will be assumed that the 
probability density function of θ and ξ are identified as r s(θ ) and (ξ )r sρ ρ . According to this, 
the probability distribution functions are then expressed as, 
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                (4.11) 

 
Where Φ  is the probability distribution function with 1)( =∞Φ . The form of probability 
distribution of different variables can vary. In some cases the uncertain variables may be 
uncorrelated; however, they usually have correlations. Therefore, this leads to the formulation 
of a unified density function for the correlated variables, 
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              (4.12) 

 
4.1.1 Relaxation of the probabilistic constraints 
 
The solution strategy to probabilistic programming problems defined in (4.9) and (4.10) is to 
relax them into equivalent deterministic problems, so that they can be solved by available 
commercial optimization tools. Based on (4.11) and (4.12), problem (4.9) can be converted 
into the following equivalent deterministic problem 
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                (4.13) 

 
The operator 1−Φ  represents the inverse function of (4.11) and (4.12). Its value is only 
dependent on the specified confidence levels. However, this is a linear programming (LP) 
problem that can be solved with any LP solver such as the simplex method. Unfortunately, the 
relaxation of problems under a joint probabilistic constraint (4.10) leads to a NLP problem. If 
the uncertain variables are uncorrelated, the joint probability is merely the multiplication of 
the single probabilities. Thus, problem (4.10) can be reformulated as 
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             (4.14) 

 
In order to solve problem (4.14), a NLP solver such as SQP is required. Furthermore, it 
should be noted that the gradient of a probability function is the value of the density function. 
In the case of correlated uncertain variables, as denoted in (4.12), the joint probability results 
in an integration form, and thus problem (4.10) is then, 
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To compute the constraint values in (4.15) a multivariate integration is necessary, which is 
generally complicated. However, in order to avoid the multivariate integration, marginal 
distributions can be used in (4.13) and (4.14) to cope with correlated uncertain variables. But, 
such formulation does not appropriately reproduce the real problem and thus may lead to an 
incorrect solution. 
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4.1.2 Linear steady state problem - an illustrative example 
 
In this section a linear system is considered where the whole process is steady state including 
constant random variables, a LSCS problem. In this example, a blending problem is 
considered with specified outflow and uncertain inflow. Generally, given a characterization of 
variability in the properties comprising a blend, one may ask the following questions: how the 
blend quality should be expressed in terms of constraints and the probability of exceeding 
those constraints due to the variability in the properties? Given an explicit probabilistic 
description of acceptable blend quality, how can the blend be optimized to minimize the cost? 
What is the trade-off between different objectives for blending (e.g., minimizing expected 
cost, or variance? Answers to these questions can be given taking into account the 
probabilistic nature of the properties and the effects of changes in properties on plant 
performance, and cost. 
 

 
 
Figure 4.4: Process representation for the blending problem 
 
Here a simplified blending problem is introduced as an illustrative example. The amounts 
recived from the respective suppliers to form the total blending outflow are given by νi. The 
aim of the optimization is the cost minimization of the blending process shown in Figure 4.4. 
The process will produce a blend product (output) by using three different suppliers A, B, C 
(inputs). These inputs consist of raw material as feedstock (see Table 4.1). Altogether 1000kg 
of mixture G, which consists of the components y and z, are to be produced at minimal costs. 
The content of z in the outflow should be greater than 30 percent. Furthermore, the delivery 
amount of the supplier B is restricted to an upper bound of 500 Kg. Its supply may have a 
degree of uncertainty. The suppliers A and C can provide much larger amounts as requested. 
On the outlet side, the blend composition can be treated as a decision variable, if it can be sold 
out on the market, and, thus, its amount may depend on random demands of customers. Due 
to changing market conditions these demands are uncertain in the planned future time 
horizon, but their stochastic distributions may be known or at least a range of values they may 
assume. For such production problems, linear input-output relations for process modeling are 
typically used. The parameters in these relations are supposed to be available. Hence, it is 
possible to represent the uncertain variables with the decision variables. 

 
 Supplier A Supplier B Supplier C 

Composition  xy (kg/kg) 50% 80% 90% 

Composition  xz (kg/kg) 50% 20% 10% 

Cost                 c (€/kg) 4,00 1,00 2,00 

 
Table 4.1: The composition and the costs for the different supply quantities 

Blending G

Supplier C 

Supplier B

Supplier A 
νA

νB

νC
xGZ ≥ 30%
MG = 1000kg

M B ≤ 500kg
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The deterministic optimization problem can be defined as follows: 
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                   (4.16) 

 
In Figure 4.5 the feasible region in terms of the amounts “v” from suppliers A and B is 
represented (see left Fig. 4.5), which is limited through the sum relation of vi, the restrictions 
of the delivery amount of B and the blending composition xGZ. Also, the objective function 
invariant lines are shown on the right in Fig. 4.5. 
 

 
 
Figure 4.5: Feasible region and the objective function values 
 
The linear deterministic optimization problem can be solved with the Simplex-Method. The 
solution is * * * *

A B C= 37,5% , = 50,0% , = 12,5% , f 2250 €ν ν ν = . For the case of single chance 
constraints the original problem (4.16) can be reformulated into the following equivalent 
chance constrained linear problem.  
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where x is the vector of the decision variables. iac,  are vectors with known parameters and 

i ib , α  are scalars. Defining T
i i i iz b= + ≥ ξa x  Equation (4.17) can be transformed into 

 
{ }i i iPr z i 1, , Lξ ≤ ≥ α =                    (4.18) 
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For the normal distribution 2
i i i~ N( , )ξ µ σ , the following expression can be derived  

 

( ) i i i i
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                  (4.19) 

 
where Φ  is the probability function of the standard normal distribution. From the monotonic 
nature of the probability function, it follows from (4.19) for each single chance constraint 
that: 
  

1
i i i iz ( ) 0−− µ − σ Φ α ≥                    (4.20) 

 
Equation (4.20) represents a deterministic linear inequality. Thus, the optimization problem in 
(4.17) has been converted to a deterministic linear programming problem. In the case of an 
upper bound on an uncertain variable, the chance constraint is formulated as 
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and thus, 
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from which the following expression can be obtained 
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Therefore, the stochastic optimization problem can be transformed into a deterministic LP 
problem at any rate. First, the problem described in equation (4.24) is solved for three 
different example cases, 
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a) * * * *

1 2 A B C= 25,0% , = 600 , = 22,5% , = 60,0% , = 17,5% , f 1850 €ξ ξ ν ν ν =  

b) * * * *
1 2 A B C= 30,0% , = 500 , = 37,5% , = 50,0% , = 12,5% , f 2250 €ξ ξ ν ν ν =  

c) * * * *
1 2 A B C= 35,0% , = 400 , = 52,5% , = 40,0% , = 7,5% , f 2650 €ξ ξ ν ν ν =  
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Figure 4.6: Alteration of the feasible region boundaries. 
 
The diagram in Figure 4.6 shows the changes to the feasible region boundaries due to the 
different uncertainties. Thus, since the actual realization of these values can not be predicted, 
uncertainties are described with their probability distributions. Consequently, it will be 
assumed that the random variables are normally distributed, namely 2

1 ~ N(30% ,  5% ) ,ξ  
2

2 ~ N(500 ,  150 )ξ . As a result, a single chance-constrained optimization problem based on 
equations (4.16) and (4.20) is formulated as follows, 
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The optimization problem formulated in equation (4.25) is again a LP problem, and its 
solution is * * * *

A B C= 58,3% , = 30,8% , = 10,9% , f 2858,74 €ν ν ν = . It should be noted that in 
comparison to the deterministic solution, the total cost increases. This is obviously the price 
for the reliability increase.  
 
The following diagram in Figure 4.7 shows different assumed types of probability distribution 
regarding the uncertain input. 
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Figure 4.7: Probability densities of a continuous random variable: delivery amount of B. 
 
Figure 4.8 shows distinct operating regions of the problem where various confidence levels 
are assigned to the restriction concerning the delivery amount of B. Thus, the sensitivity of the 
total cost to the reliability of the uncertain inflow can be analyzed considering different 
probability density functions. The solution provides a relationship between the objective 
function and the risk of constraint violation. If a higher probability level is chosen, the 
strategy derived will be more reliable, but the total cost will considerably increase. 
Consequently, a suitable confidence level should be specified with which an appropriate 
trade-off between objective function and reliability can be established. 
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Figure 4.8: Total cost vs. probability level 
 
The presented approach to stochastic programming under chance constraints can easily be 
extended to those problems (e.g. planning problems) which also include integer decision 
variables. These discontinuous variables can represent the case where plants in a production 
line will be out of operation due to, for instance, market conditions. The superstructure of a 
plant operation as described in Li et al., (2003) is illustrated in Figure 4.9. By means of linear 
mass and energy balances of the plants as well as of the process, a large-scale dynamic MILP 
problem under single chance constraints can be formulated. Based on the stochastic 
distribution of the uncertain variables, the problem is then relaxed to an equivalent 
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deterministic mixed-integer-linear-programming (MILP) problem. A further detailed 
description of the transformation can be found in Arellano-Garcia et al., 1998. Thus, the 
model presented above can be transferred to the following MILP problem, 
 

T Tmin
s.t.

0, {0,1}

+
+ ≥

≥ ∈

c x d y
Ax By b
x y

                   (4.26) 

 
where x and y are continuous and integer decision variables, respectively. The integer 
variables stand for discrete decisions such as operation status of equipment, as well as 
capacity and design logic.. The vectors c, b, d, and the matrices A, B are known constants. 
The problem in (4.26) can then be solved with a standard MILP solver.   
 

n
from upstream unit to downstream unit{

}

{
{

}

uncertain supplies

purchases to be decided

uncertain demands

sales to be decided

to disposal

}
}

 
 
Figure 4.9: Superstructure of a plant (n=1,…,N) (Li et al., 2003). 
 
The relaxation and solution of chance constrained optimization problems for linear systems 
under single constraints, as shown before, is not problematic. However, the introduction of 
joint chance constraints implies the focus on the success of operation as a whole, i.e. all the 
constraints must be satisfied simultaneously for the specified confidence level. Furthermore, 
the relaxation of the optimization problem under joint probabilistic constraints leads to a NLP 
problem. Similarly to equation (4.17) the problem with a joint constraint can be formulated as, 
 

{ }
T

T
i i i

min f ( )

s.t. Pr b , i 1, ,L

=

+ ≥ ξ = ≥ α

x c x

a x
                 (4.27) 

 
The uncertain variables in the inequality constraint can be converted through standardization 
 

  
T
i i i i i

i s,i
i i

bz , i 1, ,L+ − µ ξ − µ
= ≥ = ξ =

σ σ
a …                 (4.28) 

 
Thus the chance constraint in Equation (4.27) corresponds to 
 

( ) { }1 L s,i iz , , z Pr z , i 1, ,LΦ = ξ ≤ = ≥ α… …                 (4.29) 
 
Using (4.29), it can be seen that the correlation effect between the uncertain variables can now 
be taken into account. The main challenge lies in the computation of the probability and their 
gradients. For the illustrative example in section 4.1.2, the problem with a joint constraint is 
formulated as: 
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                  (4.30) 

 
Following the standardization in (4.28), the joint probability with two inequality constraints or 
“events” in (4.30) can be defined as: 
 

( ) ( )1 2

1 s,1 2 s,2 s,1 s,2 s,1 s,2

z z
z , z , d d

∞ ∞
Φ ≤ ξ ≤ ξ = ξ ξ ξ ξ∫ ∫ ρ                (4.31) 

       
1 2

12

2 2z z
1 1 1 1 2 2 2 2

12 1 22 2 22 - - 1 212 1 21 2

(ξ -µ ) (ξ -µ )(ξ -µ ) (ξ -µ )1 1exp - - 2r + dξ dξ
σ σ2(1- r ) σ σ2πσ σ (1- r ) ∞ ∞

⎡ ⎤⎛ ⎞
⎢ ⎥= ⎜ ⎟∫ ∫ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫  

 
The resulting probability can then be computed through numerical integration. Thus, for the 
bivariate standard normal distribution in (4.31) the next equation can be used 
 

( ) ( )1 2 2 12 1
12

1 12

z , z z r z z
z 1 r

⎛ ⎞∂Φ −⎜ ⎟= Φ
⎜ ⎟∂ −⎝ ⎠

ρ                   (4.32) 

 
The joint probability gradients are computed through evaluation of the probability function Φ 
and the density function ρ of each uncertain variable. Consequently, the gradient with respect 
to the decision variables x in (4.27) is computed by 
 

( ) ( )1 2 1 21 2

i 1 i 2 i

z , z z , zz zPr
x z x z x

∂Φ ∂Φ∂ ∂∂
= +

∂ ∂ ∂ ∂ ∂
                 (4.33) 

 
Based on the mathematical derivation above, the formulated optimization problem in (4.27) 
can then be solved with a NLP solver. Following (4.14), if the uncertain variables are 
uncorrelated (r12=0), the computation will be simplified to, 
 

1 2
2 2z z

1 1 2 2
1 2 1 22 2

1 21 2

1 1 2 2

1 2

( ) ( )1 1 1 1F(z , z ) exp d exp d
2 22 2

z z

−∞ −∞

⎡ ⎤ ⎡ ⎤ξ − µ ξ − µ
= − ξ − ξ⎢ ⎥ ⎢ ⎥∫ ∫

σ σπσ πσ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎛ ⎞ ⎛ ⎞− µ − µ

= Φ Φ⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠ ⎝ ⎠

            (4.34) 

 
Figure 4.10 shows the probability distributions of the strongly correlated bivariaten standard-
normal distributed variables. The influence of the correlation can easily be observed. The 
stronger the correlation is, the larger is the common feasible area of the two events 
(deterministic constraints). For the extreme case 112 →r , the optimal solution will approach 
closely the one of the case with single chance constraints. 



Chance-Constrained Optimization under Uncertainty 51 

 

-2 -1,2 -0,4 0,4 1,2 2
-2

-1,2

-0,4

0,4

1,2

2

0

0,2

0,4

0,6

0,8

1

Z

X

Y

    

-2,0 -1,2
-0,4

0,4
1,2

2,0
-2,0

-1,2

-0,4

0,4

1,2

2,0

0

0,2

0,4

0,6

0,8

1

Z

X

Y

 
  112 −→r       112 →r  
 
Figure 4.10: PDF of correlated bivariate standard normal distributed variables. 
 
4.1.3 Probability computation for multivariate systems 
 
In cases of problems with joint chance constraints, an explicit solution cannot be obtained, 
since the calculation of a joint probability of multivariate uncertain variables is needed. 
Unfortunately, it is not trivial to compute these probability values even numerically, when the 
dimension is larger than 3. A simulation scheme proposed by Szántai (1988) to estimate 
multivariate integrals seems to be very efficient. A detailed description of this method can be 
found in Prékopa (1995). The idea is to relax the stochastic problem to a deterministic 
nonlinear programming problem. For a linear problem with a joint chance constraint, the 
relaxed problem is convex (Kall and Wallace, 1994). Theoretically, it is possible to perform 
the joint probability computation of linear systems through numerical multivariate integration 
of Equation (4.27). However, with increasing the value of L, the computation time increases 
exponentially. For this reason, several sampling techniques have been developed. In most of 
the previous studies, Monte-Carlo method has been used (Fishman, 1999). Recently, efficient 
sampling methods have been developed such as the Hammersley sequence sampling (HSS) 
proposed by Diwekar and Kalagnanam (1997), which has an increase of efficiency up to 3 to 
100 times in comparison to the Monte-Carlo method. Furthermore, it is also possible to 
combine numerical integration techniques with efficient sampling methods. An integration 
method based on the simulation scheme of Szántai (1988) and Prékopa (1995), where the 
probabilities and gradients of the constraints composed of stochastic variables with 
multivariate normal distribution can efficiently be computed, was implemented for correlated 
variables with normal distributions (Arellano-Garcia et al., 1998). 
 
The idea is based on evaluating the joint probability of N events 1 2 NA ,A , ,A…  (i.e., 

i iA : z , i 1, , Nξ ≤ = … ) through application of the following:  
 

1 2 N 1 2 NPr(A) P(A A A ) 1 Pr(A A A )= ∩ ∩ ∩ = − ∪ ∪ ∪… …               (4.35) 
 
where 1 2 NA ,A , ,A…  are the complement i.e. violation of the events. According to the 
inclusion-exclusion principle: the number of elements in a finite set that have at least one out 
of N properties is equal to the number of elements having exactly one of the properties 
(corresponding to S1), less the number having exactly two properties (S2), plus the number 
having exactly three properties (S3), and so on, up to the number having all N (SN). (See 
Figure 4.11). 
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Figure 4.11: Illustration of the inclusion-exclusion principle. 
 
Thus, the inclusion-exclusion formulas is defined as 
 

N
1 2 3 NPr(A) 1 S S S ( 1) S= − + − + + −                  (4.36) 

 

1 k
1 k

k i i
i i i N

S Pr(A A )
≤ < < ≤

= ∩ ∩∑                   (4.37) 

 
where 1S  and 2S  are the combinations of the probabilities of violating the constraints for 
single and bivariate normal events which can be computed exactly for the given normal 
distribution function by means of series expansions (Prékopa, 1995). However, for kS  with 
k 3≥ , the computation will be very difficult. Therefore, the fundamental idea of the 
simulation method is based on the computation of the probability of the combinations of the 
single and the bivariate events ( 1S  and 2S ) accurately and to approximate the rest of the 
inclusion-exclusion formula (4.36) through sampling from the given multivariate normal 
distribution. Accordingly, let TN  be the length of the sample set, corresponding to each 
sample s, the number of violations Sk  of the events can be observed. Then the following 

expression represents an estimate of kS : 
 

TN S
k

S 1T

k1S
kN =

⎛ ⎞
≈ ∑ ⎜ ⎟

⎝ ⎠
                    (4.38) 

 
Consequently, three estimates for Pr(A)  can be obtained: 
 

0 0P̂r = ν , 1 1 1P̂r 1 S= − + ν ,  2 1 2 2P̂r 1 S S= − + + ν                 (4.39) 
 
where  
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                (4.40) 

 
Subsequently, an optimal weighted sum of the three estimates will represent the 
approximation of Pr(A) , 
 

0 0 1 1 2 2
ˆ ˆ ˆ ˆPr Pr Pr Pr= ω + ω + ω                    (4.41) 

 
with 0 1 2 1ω + ω + ω = , where 0 1 2, ,ω ω ω  are chosen so that the variance of P̂r  is minimized. 
Let C be the covariance matrix of the three estimates. C can also be calculated through 
sampling. Then the variance of P̂r  is TCω ω , where T

0 1 2( , , )= ω ω ωω  can be obtained by 
solving the following problem: 
 

T

0 1 2

0 1 2

min
s.t. 1

, , 0
ω + ω + ω =

ω ω ω ≥

ω Cω
                          (4.42) 

 
To compute the probability function gradients of the joint normal distribution, N probability 
distribution function values have to be computed, each of which is a value of a (N-1)-
dimensional normal probability distribution function (Prékopa, 1995). However, the 
computation may be too large. To overcome this problem, Wendt (2005) proposed a reduced 
gradient approach where the gradients of 1S  and 2S  are accurately computed, while the 
gradients of the remaining terms of the inclusion-exclusion formula are approximated by 
sampling. For this purpose, a small perturbation is given on each sample so as to observe the 
increment of the number of violations. In this way, the probability and their gradients can be 
computed simultaneously (Li et al., 2002). 
 
4.1.4 Feasibility Analysis 
 
An important aspect in formulating and solving probabilistic programming problems is the 
feasibility analysis. In Equation (4.13) the feasible region is formed by cutting-planes, 
whereas the feasible regions in (4.14) or (4.15) are constructed by a curvature. However, the 
feasible definition area region of the problem is dependent on the user-predefined probability 
level α. Thus, tuning the value of α is an issue of the relation between feasibility and 
profitability. Obviously, a high confidence level of compliance with the constraints is in 
principle preferred. But, the solution of a chance-constrained problem is only able to arrive at 
a maximum value αmax which is dependent on the properties of the uncertain inputs and the 
restriction of the controls and outputs. If a greater value is chosen, the solver (e.g. SQP) will 
not find a solution to the problem. In previous studies, Prekopa (1995) suggested a probability 
maximization step to obtain the maximum probability value αmax. For linear systems, Li, 
Wendt, Arellano-Garcia, Wozny (2002) propose an easy-to-use method to compute the 
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maximum feasible confidence level. The basic idea is to map the stochastic inputs to the 
outputs and analyze the output properties. In the following section is shown that the joint 
probability has the maximum value if the mean values of the outputs are in the middle of the 
restricted region [ymin, ymax]. Thus, αmax can be obtained by a simulation run. 
 
4.1.4.1   One-step horizon 
 
Consider the following general linear system 
 
y(i 1) ay(i) bu(i) c (i)+ = + + ξ                    (4.43) 
 
where a, b and c are known model parameters, y and u are the input and output variables, 
correspondingly. The sampling time instant is indicated by i, ξ are the non-zero mean 
correlated stochastic disturbance variables described by the probability density function of a 
multivariate normal distribution 
 

1 T 1( ) ( )
2

N 1/ 2 N / 2

1( ) e
(2 )

−− − ∑ −
ϕ =

Σ π

ξ µ ξ µ
ξ                             (4.44) 

 
where µ  is a mean value vector in N  and ∑  is a non-degenerate symmetrical positive 
definite covariance N N×  matrix. They can be represented as follows:  
 

2
1 1 1 2 12 1 N 1N

2
2 1 2 12 2 2 N 2N

2
N 1 N 1N 2 N 2N N

r r
r r

r r

µ ⎡ ⎤σ σ σ σ σ⎡ ⎤
⎢ ⎥⎢ ⎥µ σ σ σ σ σ⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥µ σ σ σ σ σ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

µ Σ                (4.45) 

 
where iσ  is the standard deviation of each individual stochastic variable, and ijr [ 1,1]∈ −  are the 

correlation coefficients between iξ  and jξ . It should be stressed that a strong correlation 
between the uncertain variables often exists, in particular, for time-varying stochastic 
processes. A positive correlation ( ijr 0> ) means that if a variable is larger (smaller) than the 
mean value in a time interval, then the variable is likely to be larger (smaller) than the mean 
value in the next time interval too. The opposite is true if the sign of the correlation 
coefficient is negative. However, the presence of a correlation will lead to larger output 
deviations from the expected values and, thus, generates a higher probability of violating the 
output constraints. The inequality constraint for one future point can reduced to  
 

min maxr{y y(1) y }Ρ ≤ ≤ ≥ α                (4.46) 
 
From (4.43) the mean and the standard deviation of )1(y  can be derived 
 

y(1) 1ay(0) bu(0) cµ = + + µ                    (4.47) 
 

y(1) 1cσ = σ                      (4.48) 
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Furthermore, the input value may change the mean value of the future output but has no effect 
on its variance. In the context of linear systems, for a normally distributed disturbance the 
output of the system is also normally distributed. The chance constraint (4.46) is then 
equivalent to  
 

max y(1) min y(1)
1 1

y(1) y(1)

y y⎛ ⎞ ⎛ ⎞− µ − µ
Φ − Φ ≥ α⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠ ⎝ ⎠

                 (4.49) 

 
where 1Φ  is the one-dimensional (1-D) standard normal probability distribution function. The 
interactions of the parameters in (4.49) are represented in Fig. 4.12. For the range of output 
variances resulting from (4.48), the probability will assume different values. This issue is 
shown in Fig. 4.12 for yyy σ ′′′<σ ′′<σ′ . With the output standard deviation yσ′ , we have the 
option to reallocate )1(yµ  with )0(u  due to the large possible feasible region. In case of  yσ ′′  
there will be no choice, i. e. )0(u  must have such value that )1(yµ  is located in the central 
point of ],[ maxmin yy . Thus, the feasible region is diminished to one point. For a value of )1(yσ  
greater than yσ ′′ , such as yσ ′′′ , no feasible solution can be found for the problem. Therefore, 
providing an unconstrained input, 1σ  determines the feasibility of the system. Consequently, 
in order to guarantee a feasible problem solution, the following formulation based on (4.49) 
should be used 
 

max min
1

1
1

y y
12 c

2
−

−
σ ≤

α +⎛ ⎞Φ ⎜ ⎟
⎝ ⎠

                   (4.50) 

 
where 1

1
−Φ  denotes the inverse function of 1Φ . Hence, it can be concluded that an infeasible 

problem can be relaxed by decreasing the probability level α or by expanding the specified 
output region ],[ maxmin yy . 
 

 
 
Figure 4.12: Probability profiles w. r. t the output. 
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4.1.4.2   N-step horizon 
 
For a horizon with N predictive points, from (4.43) the output on each time point can be 
described as 
 

i i
i l 1 l 1

l 1 l 1
y(i) a y(0) b a u(i l) c a (i l) i 1, , N− −

= =

= + − + ξ − =∑ ∑               (4.51) 

 
The mean of the output is then from (4.45): 
 

i i
i l 1 l 1

y(i) i l 1
l 1 l 1

a y(0) b a u(i l) c a− −
− +

= =

µ = + − + µ∑ ∑                 (4.52) 

 
The covariance of the output between point i and j ( j i, i 1, , N≥ = ) can be calculated by 
 

{ }y y(i) y( j)

ji
2 l 1 m 1

i l 1 j m 1
l 1 m 1

ji
2 i j l m

l m l,m
l 1 m 1

R (i, j) y(i) y( j)

c a [ (i l) ] a [ ( j m) ]

c a r

− −
− + − +

= =

+ − −

= =

⎡ ⎤ ⎡ ⎤= Ε − µ − µ⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤⎡ ⎤⎪ ⎪= Ε ξ − − µ ξ − − µ⎨ ⎬⎢ ⎥⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

= σ σ

∑ ∑

∑∑

                         (4.53) 

 
which will contribute to the correlation of these two points. The variance of the output at point 
i is in that case: 
 

i i
2 2 2i l m
y(i) y l m l,m

l 1 m 1
R (i, i) c a r− −

= =

σ = = σ σ∑∑                  (4.54) 

 
which is part of the covariance (4.53). However, it is again evident from 4.52 and 4.54 that 
the input can only affect the means of the outputs which horizontally shift the individual 
probability profile (Fig. 4.12). From (4.53) and (4.54), on the other hand, the output 
covariance and variance are determined by the covariance of the disturbance at different time 
points as well as by the model parameters (a, c). Furthermore, the shape of the probability 
curve will be influenced by the covariance. Thus, in connection with a problem with N 
predictive points, the feasibility relies on the output covariance matrix provided that the input 
is unconstrained or the allowable input region is sufficiently large. Moreover, due to the high 
order exponential terms, both mean and covariance of the outputs are highly sensitive to the 
values of the model parameter a. 
 
Single chance constraints 
Since the output of a linear system disturbed by a normally distributed sequence is also 
normally distributed, in case of single chance constraints, Equation (4.49) can be applied to 
the inequality constraint of each individual output point. This means 
 

max y(i) min y(i)
1 1

y(i) y(i)

y y
i 1, , N

⎛ ⎞ ⎛ ⎞− µ − µ
Φ − Φ ≥ α =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠ ⎝ ⎠

               (4.55) 
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where )()( , iyiy σµ  are computed from (4.52) and (4.54), respectively. Manipulating u(i) such 
that )(iyµ  is in the middle of ],[ maxmin yy , the possible maximum value of the individual 
probability will be   
 

max max min
1

y(i)

y y(i) 2 1 i 1, , N
2

⎛ ⎞−
α = Φ − =⎜ ⎟⎜ ⎟σ⎝ ⎠

                           (4.56) 

 
By means of comparison between max (i)α  and α, one can then identify whether the problem is 
feasible or not. The required input values u(i) corresponding to this achievable probability can 
be calculated through (4.52). 
 
Joint chance constraint 
In case of a joint chance constraint with N output points it is not possible to obtain an explicit 
probability representation similar to (4.55) and (4.56). Large absolute values of the elements 
in the output covariance matrix may cause an infeasible problem. Thus, from (4.53) and 
(4.54) the following relationships between the output covariance of a point and that of the 
point before can be derived, 
 

i
2 2 i l

y y(i) l i 1 l,i 1
l 1

R (i, i 1) c (a a r )−
+ +

=

+ = σ + σ σ∑                  (4.57) 

 
i 1 i

2 2 2 2 i 1 l i 1 m
y(i 1) y(i) l i 1 l,i 1 m i 1 i 1,m

l 1 m 1
c (a a r a r )

+
+ − + −

+ + + + +
= =

σ = σ + σ σ + σ σ∑ ∑               (4.58) 

 
Based on these equations, the change of the output covariance (variance) values from one 
time point to the next can be followed. Moreover, in addition to the variance of the 
disturbance at each individual point, the correlation between the points of the stochastic 
sequence effectively increases the variance of the next output. For small element values in the 
output covariance matrix, it is preferred to have small correlation coefficients jir ,  in the 
disturbance covariance matrix. For instance, for the model parameters, it can be concluded 
from (4.57) and (4.58) that 1and1 << ac  is favorable for the feasibility of the system. An 
additional factor which has an influence on the value of the covariance (variance) is the 
horizon length. For example, if i i, ja 1, , r 0,σ σ= = =  (i j, i, j 1, , N),≠ =  the output 
variance at point N will be  
 

2 2 2
y(N) c Nσ σ=                     (4.59) 

 
In comparison to (4.51), the output variance at point N is N-times greater than the value at the 
first point. In this case, however, a larger N will most likely lead to an infeasible problem. 
Furthermore, there is no explicit function to calculate the joint multivariate probability. The 
maximum achievable probability value can be computed, however (see Appendix A1). It can 
be proven that the joint probability reaches its maximum value whenever the mean values of 
the output vector are in the middle of min max[y , y ]  for i 1, , N= , i.e., 
 

min max
y(i)

y y i 1, , N
2

µ +
= =                   (4.60) 
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After substituting )(iyµ  in (4.52) with )(iyµ  from (4.60), the resulting input vector can be 
calculated by: 
 

i i i
l 1 l 1

y(i) i l 1
l 1 l 2

1 a cu(i 1) y(0) a a u(i l) i 1, , N
b b b

µ µ− −
− +

= =

− = − − − − =∑ ∑              (4.61) 

 
Based on this control vector, the maximum achievable joint probability can be computed 
through one simulation run by the method described above. However, it should be remarked 
that with an increase of the standard deviation value of the disturbance variables, the largest 
obtainable probability will decrease. Furthermore, a strong correlation between the variables 
leads more likely to constraint violations. 
 
4.1.5 Linear dynamic problems 
 
As demonstrated in the previous section, the solution of a problem within the framework of a 
linear system with single chance constraints can basically be derived by a coordinate 
transformation. In cases of linear problems with a joint chance constraint, the relaxed problem 
is a convex NLP provided that the probability distribution function of the uncertain variables 
is quasi-concave. Thus, it can be solved with an NLP solver. The probabilities and gradients 
of the constraints, composed of stochastic variables with multivariate normal distribution, can 
be computed using an efficient simulation approach. The approaches have been applied to 
linear predictive control problems (Schwarm and Nikolaou, 1999, Li et al., 2000b, Wendt, 
2005). However, optimization of linear steady state systems (LSCS and LSCJ) under constant 
uncertain variables has been well studied (Kall and Wallace, 1994). It can be applied in 
process design and planning under uncertainty. 
 
In this section, linear dynamic systems with time dependent uncertain inputs are considered 
(LDTS and LDTJ). Consequently, the outputs in the future horizon depend on the current 
state, the future and past controls as well as uncertain inputs. The uncertain inputs can include 
both uncertain parameters and disturbances. The controls in the horizon will be decided to 
optimize some objective function and ensure the chance constraints for the outputs. However, 
for the computational treatment of linear dynamic processes, the time dependence of all 
variables has to be taken into account. Furthermore, for the mathematical and numerical 
treatment it is also important to differentiate whether there is a time dependence of the 
uncertain variables or not as well. In the case of no time dependency (steady random 
variables), the probability computation follows the same pattern as described in the previous 
section, since the dynamics of the process has only an impact on the deterministic variables. 
 
 

t 0 t f       t0 tf  
 

Figure 4.13: Static and dynamic uncertain variables. 
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Dynamic random variables have either to be discretized into a finite number of time intervals 
or described by a finite number of other auxiliary uncertain variables so as to approximate a 
linear relation between a certain number of uncertain inputs and constrained outputs. 
Noteworthy examples, where a stochastic optimization problem of linear systems with 
dynamic random variables is relevant, are predictive control problems which include chance 
constraints in its mathematical formulation (Schwarm and Nikolaou, 1999, Li et al., 2000b). 
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                 (4.62) 

 

In these works, the model uncertainty is described as the uncertainty of the step-response 
coefficients. Thus, in order to predict future outputs both model and disturbance uncertainties 
are considered to have multivariate normal distributions. Moreover, strong correlations are 
taken into account to properly estimate the real system. Based on the moving horizon strategy, 
each output within the horizon is to be restricted between specific upper and lower bounds 
with a corresponding probability level. Since the outputs are restricted by these chance 
(probabilistic) constraints, the objective function of the predictive control problem basically 
comprises the input moves which are to be minimized within the horizon. Furthermore, when 
considering a multi-input/multi-output (MIMO) linear system, the outputs in the future 
horizon are functions of the current state, the future and past controls and of the uncertain 
disturbances. Thus, the control policy will be computed by solving the optimization problem 
on the basis of the initial state, the model uncertainties and also the uncertain disturbances in 
the new horizon. This leads, however, to an optimization problem under joint chance 
constraints. So for instance, assuming that each of the model and disturbance uncertainties is a 
sequence (over N time intervals) of stochastic variables with multivariate normal distribution, 
the joint probability in (4.62) can be formulated as follows: 
 

l,min l l,max

l,min l l,max
l

l,min l l,max

y (k 1) y (k 1) y (k 1)
y (k 2) y (k 2) y (k 2)

Pr

y (k N) y (k N) y (k N)

+ ≤ + ≤ +⎧ ⎫
⎪ ⎪+ ≤ + ≤ +⎪ ⎪ ≥ α⎨ ⎬
⎪ ⎪
⎪ ⎪+ ≤ + ≤ +⎩ ⎭

                (4.63) 

 
Immediately after the first control is applied in response to the disturbance, the new state at 
the next time point t+1 is available. Then, the computation proceeds to the next horizon. In 
addition, since there may be varying uncertain properties at each horizon move, the 
uncertainty characteristics such as mean, variance and correlation play a decisive role in the 
optimal control advance. However, with the joint probability the problem becomes an NLP 
problem. Unfortunately, it is not possible to easily compute those probability values even 
numerically, if the dimension is larger than 3. In Chapter 7, the performance of the predictive 
controller with its extension to a robust NMPC under chance constraints is explained in detail.  
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4.2   Nonlinear Chance-Constrained Optimization 
 
In systems where the relationship between uncertain and constrained variables is nonlinear, 
the type of the probability distribution function of the uncertain input is not the same as the 
one of the constrained output. Unlike linear systems, a multivariate normal distribution of the 
uncertain input never causes a multivariate normal distribution of the output. Furthermore, 
due to the nonlinear propagation, it is difficult to obtain the stochastic distribution of output 
variables. Thus, nonlinear chance constrained programming remained as an unresolved 
problem. The output probability distribution function is often not even known exactly and has 
to be estimated from historical data (Johnston and Kramer, 1998). Moreover, even a given 
multivariate distribution (such as multivariate normal) can not be calculated exactly in general 
but has to be approximated by simulations or bounding arguments. However, a linear 
relationship can rarely be found in process system engineering. On the other hand, the relation 
is nonlinear, but, it shows very often a monotonic relationship between uncertain input and 
constrained output.  
 
4.2.1 Monotonic relationship between uncertain input and output 
 
In order to introduce the concept of monotony with reference to the relationship between a 
constrained uncertain output and a random input, in this section, a very simple derivation is 
carried out for a random variable function. So for instance, if ξ∈Ξ is a random variable, any 
other variable y∈Y defined as function of ξ will also be a random variable. In such case, ρΞ(ξ) 
and FΞ(ξ) denote the probability density and distribution functions of ξ, respectively. The 
main difficulty is to find the density function ρY(y) and the distribution function FY(y) of the 
random output variable y. Assuming the following functional relation, 
 
Y=γ(Ξ)                      (4.64) 
 
The distribution function of Y is then the probability of realizing Y less than or equal to y, by 
definition. Furthermore, it results that, 
 

( ) y

 F (y) = Pr( y) = Pr( y) = ( ) dρ
γ ξ ≤

≤ γ ≤ ξ ξ∫Y Y Ξ                 (4.65) 

 
whereas the integration is to be carried out over all values of ξ for which γ(ξ)≤y. The 
probability density function of Y is defined as, 
 

 (y) = F (y)
y

ρ ∂ ⎡ ⎤⎣ ⎦∂Y Y                     (4.66) 

 
The relationships formulated in (4.65) and (4.66) are general and can be applied to any 
function γ(ξ). If γ(ξ) is a monotonically increasing or decreasing function, as diagramed in 
Fig. 4.14, the integration bounds can be set up without any difficulty. 
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(y)ξ = π

 y ( )= γ ξ

dξ

dy

  (y)ξ = π

y ( )= γ ξ

dξ

dy

 
    (a)            (b) 
 
Figure 4.14:   Monotonic relations: (a) monotonic increasing; (b) monotonic decreasing. 
 
In this case, the inverse relation of (4.64) can be stated as 
 
ξ = γ -1(y) = π(y)                    (4.67) 
 
From (4.67), it can be seen that ξ is a single valued function of y. Based on (4.67), it follows 
that: 
 

d d = dy (y) dy
dy
π ′ξ = π                    (4.68) 

 
where the absolute value is introduced to deal with both the increasing and the decreasing 
type of functions. From (4.65) and (4.68) results then: 
 

[ ]
y

-

 F (y)= (y) (y) dY
∞

′π π∫Y ρΞ                    (4.69) 

 
Furthermore, the differentiation of FY(y) provides, 
 

[ ] (y)= (y) (y)ρ ρ ′π πY Ξ                    (4.70) 
 
However, if a process system is modeled by the functional relationship from (4.64) and if the 
relation between uncertain input and uncertain output is nonlinear, the generation of the 
inverse relation (4.67) or reverse projection is not a trivial task. Particularly, when a correlated 
multivariate distribution function is considered, the correlation between the variables leads to 
a rather complicated integration due to the overlap of the uncertain variables´ spaces.  
 
4.2.2 Solution strategy 
 
The basic idea of chance-constrained optimization is to integrate explicitly the available 
stochastic information. The essential challenge here lies in the computation of the 
probabilities of complying with the constraints, and their gradients. Following the idea of 
monotony described in 4.2.1, Wendt et al. (2002) propose a probability computation method 
for steady state problems under only one single chance constraint.  
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Figure 4.15:   Mapping between an uncertain input variable and an output variable. 
 
By means of the monotony of the output variables with respect to one of the uncertain 
variables, the output feasible region is mapped back to a region of the uncertain input 
variables. Thus, the probability of holding the output constraints can be achieved by 
integration of the probability density function of the multivariate uncertain variables (Fig. 
4.15). The main idea relies upon the case of a monotonic relationship between a constrained 
output variable i iy Y∈  and at least one of the uncertain input variables s sξ ∈Ξ  where sΞ  is a 
subspace of Ξ . This study can be performed easily by analyzing the operation of the process 
considered via simulation. As shown on the right in Fig. 4.15, the confined feasible region is 
considered that will formed by the nonlinear projection of the uncertain input region for some 
given controls u (hatched area in the uncertain output). Thus, the points in Fig. 4.15 represent 
some realizations of the variables based on their distribution functions. That means a point in 

sΞ  leads to a point in iY  through the projection ( )i sy F= ξ . Consequently, a point i iy Y∈  can 

simply lead to one value of sξ  through the reverse projection ( )1
s iF y−ξ = . Hence, the 

boundary of the constrained value SPy  in the output region corresponds to a limiting value L
sξ  

for sξ  in the input region. In Fig. 4.15 the entire output region is represented by iY , while the 

hatched sub-area iY ′  includes only those values of iy  which do not exceed the constrained 

bound SPy  so that the constraint 
 

{ }SP
i iPr y y≤ ≥ α                     (4.71) 

 
is satisfied. The hatched sub-area s

′Ξ  displays the uncertain input region with the bound L
sξ  

which corresponds to the output constraint SPy . Thus, one can come to the conclusion that if 
the positive monotony i iy ↑⇒ ξ ↑  exists then the chance constraint in (4.71) can be 
formulated as 
 

{ }L
s sPr ξ ≤ ξ ≥ α                     (4.72) 

 
On the other hand, if a negative monotony i iy ↑⇒ ξ ↓  is in force then the representation 
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{ }L
s sPr ξ ≥ ξ ≥ α                     (4.73) 

 
is equivalent to (4.71). Generally, in the case of a negative monotony, an upper bound of the 
constrained output corresponds to a lower bound of the random input variable and vice versa. 
In contrast, in case of a positive monotonic relation there is no change between upper and 
lower bound. It should be noted that all uncertain variables which have an impact on iy  are 

taken into account when computing { }SP
i iPr y y≤ . In addition, the values of the decision 

variables u also have an impact on the projected region. Thus, the bound L
sξ  will change 

based on the realization of the individual uncertain variables ( 1 s 1, −ξ ξ ) and the value of u as 
follows 
 

( )L 1 SP
s 1 s 1 iF , , , y ,−

−ξ = ξ ξ u                    (4.74) 

 
The limiting value L

sξ  is computed by solving the model equations with given decision 

variables and the boundary value SPy . This implies that the probability of complying with the 
output constraint can be transformed to a multivariate integration in the corresponding limited 
region of the uncertain inputs 
 

{ } { }
( )

L
s

1

SP L s
s s k

1 s s k s 1

Pr y y Pr , ,s k

, , , d d d
∞ ξ ∞

−
−∞ −∞ −∞

≤ = ξ ≤ ξ ξ ⊆ ℜ ≠

= ρ ξ ξ ξ ξ ξ ξ∫ ∫ ∫
              (4.75) 

 
where ρ(ξ) is the joined distribution function of  ξ. The right-hand side of (4.75) represents a 
multivariate integration over the region of Ξ excluding the section beyond the confining value 

L
sξ . Consequently, the probability of the constrained output is attained by computing the 

value of the probability density function of the random inputs. In principle, this solution 
approach can be used to solve problems under uncertainties with any kind of joint correlated 
multivariate distribution function, provided that the density function is available or it can be 
approximated.  
 
 
4.2.2.1 Mapping approach- elementary illustration 
 
To illustrate the mapping approach (Fig. 4.15), the following problem with a joint normal 
distribution of two uncertain variables is considered. The information which defines the 
stochastic properties of the uncertain input is given in Table 4.2.  
 

Random input expected value standard deviation correlation matrix 
ξ1 
ξ2 

4.0 
4.0 

0.5 
0.7 

1.0 0.6
0.6 1.0

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 

 
Table 4.2:   Stochastic properties of the uncertain inputs 
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Here, the nonlinear relation between the constrained output, y, and the random inputs ξ1 and 
ξ2 is specified by: 
 

( )3
1 2y 2 8 6.2= ξ − − ξ +                    (4.76) 

 
and the probability of complying with the constraint { }Pr y 2.5≤  needs to be calculated. A 
monotonic relationship between y and ξ2 is assumed. Through reverse projection (mapping) 
of the constrained output to the region of the random input, the bound of the uncertain input 
region is obtained 
 

( )3L
12 8 3.72ξ = ξ − +                     (4.77) 

 
This represents the integration bound which is required for the computation of the output 
constraint probability: 

{ } ( )
( )

{ }

3
12 8 3.7

2 1 2 2 1Pr y 2.5 , d d

Pr y 2.5 71.44%

ξ − +
∞

−∞
−∞

≤ = ϕ ξ ξ ξ ξ

≤ =

∫ ∫                 (4.78) 

 
where ϕ2 denotes the density function of the bivariate normal distribution. Figure 4.16 
illustrates the reliability of the results, and the mapping concerning the compliance of the 
bound through variation of the uncertain variables obtained by Monte Carlo simulations (1000 
samples). 
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Figure 4.16: Mapping of the constrained output to the uncertain input region. 
 
In spite of the difficulty in describing the output distribution due to the nonlinearity, the 
probability of holding the output constraint can be calculated. About 71% of the points in Fig. 
4.16 are below the bounds. Figure 4.17 shows the resulting integration limit over the uncertain 
variables.  
 



Chance-Constrained Optimization under Uncertainty 65 

 
 
Figure 4.17:   Density function and the integration limit (black solid area) over the uncertain  
            input. 
 
4.2.2.2 Computation of the probability gradients 
 
The solution strategy is basically to relax the nonlinear chance-constrained programming 
problem in order to transform it to a deterministic NLP problem. Thus, the computational 
strategy is a sequential NLP as illustrated in Fig. 4.18. Here the input boundary ξs

L is 
computed by the Newton-Raphson method for more complex models based on the output 
value of ySP. Since this boundary depends on the realization of the uncertain variables 
(ξ1 ,...,ξs-1) according to Equation (4.74), it has to be computed on each collocation point of 
these variables. In this way, the equality constraints (model equations) are eliminated by 
expressing the state variables in terms of decision and uncertain variables. Furthermore, to 
link the chance-constrained approach to a NLP framework, the gradients of the output 
constraint probabilities with regard to the decision variables u need to be computed. From 
(4.74) and (4.75) the decision variables, u, have an impact on the value of the probability 
through the integration bound of the corresponding region of the random inputs. Thus, the 
gradients can be computed as follows 
 

{ } ( )1

SP L
i i sL

1 s s 1 k

Pr y y
, , , d d

u u

∞ ∞

−
−∞ −∞

∂ ≤ ∂ξ
= ρ ξ ξ ξ ξ ξ

∂ ∂∫ ∫               (4.79) 

 

where 
L
s

u
∂ξ

∂
 represents the gradient vector. It should be noted that for the gradient computation 

the number of integrals will be reduced by one integral in comparison to (4.75). The right-
hand side of (4.79) can simultaneously be computed to (4.75) by numerical integration in the 
input region.  
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Figure 4.18:   Computational strategy for solving steady-state problems with one single  
            chance constraint 
 
As mentioned earlier, collocation in finite elements is used to discretize the bounded region of 
the uncertain inputs. We refer here to the appendix A2 for supplementary details concerning 
the orthogonal collocation approach. It should be noted, however, that for normal distributions 
the boundaries of the infinite integrals in (4.75) are chosen as [-3σ, 3σ]. In the next section, a 
nested computational scheme for performing the multivariate integration is presented based 
on the fact that the S-dimensional integration can be computed by an S-1 dimensional 
integration (Wendt 2005).  
 
4.2.3 Numerical approach to multivariate integration 
 
In this section, the numerical approach to the multivariate integration used in this thesis is 
presented. It is derived from the orthogonal collocation on finite elements. The random inputs 
are supposed to be an S-dimensional joint normal distribution with the probability density 
function 
 

T 11 ( ) ( )
2

S 1/ 2 S/ 2

1( ) e
(2 )

−− ξ−µ ∑ ξ−µ
ϕ ξ =

Σ π
                 (4.80) 

 
where µ  and Σ  are known expected values and the covariance matrix of the stochastic 
variables, respectively. They have the following form: 
 

2
1 1 1 2 12 1 S 1S

2
2 1 2 12 2 2 S 2S

2
S 1 S 1S 2 S 2S S

r r
r r

r r

µ ⎡ ⎤σ σ σ σ σ⎡ ⎤
⎢ ⎥⎢ ⎥µ σ σ σ σ σ⎢ ⎥⎢ ⎥µ = Σ =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥µ σ σ σ σ σ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

               (4.81) 

 
The standard deviation of each individual random variable is represented by iσ , and 

i, jr ( 1, 1)∈ −  is the correlation coefficients between iξ  and j (i, j 1, ,S)ξ = . However, by 
definition, the probability of the random inputs in a certain region can be obtained starting 
from the standard probability distribution function SΦ ,  
 

(1)(1)
S1 zz

(1) (1) (1)
S 1 S S 1 S 1 S

ˆ ˆ ˆ ˆˆ ˆ(z , , z , ) ( , , )d d
−∞ −∞

Φ Σ = ϕ ξ ξ ξ ξ∫ ∫                (4.82) 
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where Sϕ̂  is the standard density function and z the integration limits. ξ̂  and Σ̂  refer to the 
linear transformation of ξ  and the covariance matrix, respectively. Both constitute the 
standard normal distribution with zero mean. Σ̂  denotes the correlation matrix which features 
unit diagonal elements. Further, Equation (4.82) can be rewritten as 
 

(1)
1z

(1) (1) (1) (2) (2) (2) (1) (1)
S 1 S S 1 2 S 1 1 1

ˆ ˆˆ ˆ ˆ(z , , z , ) (z , , z , ) ( )d−
−∞

Φ Σ = Φ Σ ϕ ξ ξ∫               (4.83) 

 
where S 1−Φ  stands for the S-1-dimensional standard probability distribution function while 1ϕ̂  
is the standard normal density function of a single random variable (Prekopa, 1995). A 
general characterization of (4.83) can be formulated as follows, 
 

( j 1)
j 1z

( j 1) ( j 1) ( j 1) ( j 2) ( j 2) ( j 2) ( j 1) ( j 1)
S j 1 S S j 1 j 2 S 1 j 1 j 1

ˆ ˆˆ ˆ ˆ(z , , z , ) (z , , z , ) ( )d
+

+

+ + + + + + + +
− − − + + +

−∞

Φ Σ = Φ Σ ϕ ξ ξ∫             (4.84) 

 
and 

2

( j) ( j) ( j)
k k, j j( j 1)

k
( j)
k, j

ˆz r
z , j 1, ,S 1; k j 1, ,S

1 r
+ − ξ

= = − = +
−

               (4.85) 

 
 

( j)Σ̂  is the (S j 1) (S j 1)− + × − +  correlation matrix with the elements 
 

2 2

( j) ( j) ( j)
k,i k, j i, j( j 1)

k,i
( j) ( j)
k, j i, j

r r r
r , k, i j 1, ,S

1 r 1 r
+ −

= = +
− −

                (4.86) 

 
Repeating this procedure for 2−S  transformation steps from (4.83, 4.85, and 4.86) the 
following 2-dimensional integration is obtained 
 

( )
(S 1)
S 1z

(S 1) (S 1) (S 1) (S) (S 1) (S 1)
2 S 1 S 1 S 1 S 1 S 1

ˆ ˆˆ ˆ(z , z , ) z d
−

−
− − − − −

− − −
−∞

⎡ ⎤Φ Σ = Φ ϕ ξ ξ⎣ ⎦∫                (4.87) 

 
where 1Φ  is the standard probability function of a normally distributed variable. Since an 
analytic solution of (4.87) is not available, numerical integration is required. For this purpose, 
collocation on finite elements, which has been regarded as an efficient method (Finlayson, 
1989), is used. In the collocation framework, the integration interval (S 1)

S 1( , z ]−
−−∞  is discretized 

into subintervals. In this thesis, for the standard normal distribution, the domain (S 1)
S 1[ 3, z ]−

−−  is 
used for most of the examples presented. However depending on the optimization problem 
there may also exist lower bounds. Based on the equations (4.80)-(4.87), a nested 
computational approach has been developed. Derived from the collocation method, the values 
of 2Φ  on the collocation points of the random variable are calculated. These values will then 
be employed to compute the values of 3Φ  and the procedure will proceed upwards until the 
values of SΦ  are finally computed.  
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Figure 4.19: Probabilities associated with the normal distribution. 
 
The selection of the number of intervals and the number of collocation points defines a trade-
off between accuracy and computational time. A large number of intervals and collocation 
points will result in high accuracy, but the computation time will considerably increase. 
Simulation results have demonstrated that four intervals with 3-point-collocation or two 
intervals with 5-point-collocation can reach a probability error of less than 1%. Table 4.3 
shows the results corresponding to the normal distribution.  
 

number of collocation points number of intervals total number of points error 
3 4 12 0.5% 
5 2 10 0.1% 
5 1 5 1% 

 
Table 4.3:   Integration of the standard normal distribution with orthogonal collocation 
 
To implement the numerical approach, it is necessary to determine the standardized value 

(1)
Sz for each integration step. The corresponding real value true L

S Sξ = ξ  is then calculated from 
(4.74) based on the model equations so that: 
 

true
(1) S S
S

S

z ξ − µ
=

σ
                    (4.88) 

 
Besides, the real values of the other remaining uncertain variables true

k kξ = ξ (with k=1,..,S-1) 
are also required for the computation of true L

S Sξ = ξ  in every integration step. This results from 
(4.85), being the starting point the collocation points NK which are distributed on the 
corresponding integral for each uncertain variable and, thus, they are set as fixed values ( j)

j,wξ̂  
with j 1,...,S 1= −  and w 1,..., NK= . The relationship (4.85), based on which the 
transformation of the integration limits is described, can also be used for any other points 
within the integral such that 
 

  
2( j) ( j 1) ( j) ( j) ( j)

k k k, j k, j j
ˆ ˆ ˆ1 r r , j 1, ,S 1; k j 1, ,S 1+ξ = ξ ⋅ − + ⋅ξ = − = + −              (4.89) 

 
Under the assumption of a normal distribution, the computation of the gradients (4.79) can be 
carried out similarly to the previously described procedure. However, from (4.74) and the fact 
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that merely the very last bound value of the integral in (4.82) are concerned with the decision 
variables u, the gradient vector can be computed from (4.83) as follows, 
 

1z
S S 1

1 1 1
ˆ ˆˆ ( )d−

−∞

∂ ∂
= ϕ ξ ξ

∂ ∂∫u u
Φ Φ                    (4.90) 

 
Furthermore, given that 
 

( 2)
2z

(2) (2) (2) (3) (3) (3) (2) (2)
S 1 1 S S 2 3 S 1 2 2

ˆ ˆˆ ˆ ˆ(z , , z , ) (z , , z , ) ( )d− −
−∞

Σ = Σ ϕ ξ ξ∫Φ Φ               (4.91) 

 
The following relation can be read 
 

( 2)
2z

(2) (2)S 1 S 2
1 2 2

ˆ ˆˆ ( )d− −

−∞

∂ ∂
= ϕ ξ ξ

∂ ∂∫u u
Φ Φ                   (4.92) 

 
If the procedure is carried forward for S 2−  steps i.e. transformations, it results in 
 

( )
(S 1)
S 1z

(S 1) (S 1)2 1
1 S 1 S 1

ˆ ˆˆ d
−

−
− −

− −
−∞

∂ ∂
= ϕ ξ ξ

∂ ∂∫u u
Φ Φ                   (4.93) 

 
along with 
 

(S)
(S) S1

1 S
zˆ (z ) ∂∂

= ϕ
∂ ∂u u
Φ                     (4.94) 

 

The gradient 
(S)
Sz∂

∂u
 can be obtained from 

L
S∂ξ

∂u
which refers to the real physical value. For this 

purpose, the same transformation chain from (4.88) and (4.89) is adopted. Consequently, for 
the computation of the gradients using multivariate integration, the same orthogonal 
collocation points can be used which are used for the probability computation. Thus, the 
gradients of the probability, from (4.94) back to (4.90), can be calculated simultaneously with 
the computation of SΦ . 
 
4.2.4 Illustrative example: design of a reactor-separator system 
 
One important aspect in process design is to reduce the effect of the system uncertainties such 
as unpredictable variations in the values of plant parameters around their nominal values 
which are often encountered in operation of process plants. However, the design of chemical 
processes requires data, most of which are obtained from experiments or are estimated from 
correlations. This introduces into the design uncertainties with even unknown magnitudes. To 
reduce the probability of inadequate system performance, overdesign factors are applied to 
account for these uncertainties in the design parameters. Often, these safety factors are, 
however, based on experience or heuristics and are only partially related quantitatively to 
possible causes of system malfunctions.  
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The following example will demonstrate the efficiency of the approach presented until this 
point. Here, the design of a prototype chemical process shown in Fig. 4.20 and presented by 
Dittmar and Hartmann (1976), Grossmann and Sargent (1978), Ostrovsky et al. (2000), is 
investigated.  
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Figure 4.20:   Reactor-separator system 
 
The system consists of a continuous stirred tank reactor, in which Denbigh´s reaction takes 
place with first-order irreversible kinetics. The CSTR is connected in series with an ideal 
separator. The Denbigh kinetics are given as follows, 
 
A B R

X Y

⎯⎯→ ⎯⎯→

↓ ↓

k kB R

k kX Y                    (4.95) 

 
The feed flow of raw material into the reactor comprises only component A in a molar 
concentration CA0. The reaction product includes all components. From the separator 
overhead, a product stream containing the desired product R is drwan while the rest of the 
components are either recycled or sent downstream for further processing. Components A and 
B are recycled at the ratio of λ, and components X and Y at the ratio of β with reference to the 
amount of these components in the separator feed. The ratios of molar concentrations Ci of the 
components (i = A, B, R, X, Y) to CA0 are denoted with xi, the molar flow rate of raw material 
with FA0, and the molar flow rate of the reactor feed with Fi. However, the steady-state 
process operation, assuming isothermal conditions, constant density, and liquid-phase reaction 
are then described by the following set of nonlinear equations: 
 

( ){ }
A0 i A i A B X A0 A

i B i B A0 B A R Y B

i X i X A0 X A

i Y i Y A0 Y B

i A0 R B

A B R X Y

F F x F x V (k k )C x 0
F x F x V C k x k k k 0

F x F x V C k x 0
F x F x V C k x 0
F V C k x 0

x x x x x 1 0

+ λ − − + =
λ − + − + =

β − + =
β − + =
− + =

+ + + + − =

                (4.96) 
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The required amount of R and the sum of the molar concentrations of the products X and Y 
are given: 
 

( )
i R 1

A0 X Y 2

F x q
C x x q

=

+ =
                    (4.97) 

 
The nominal values and the data necessary for simulation and optimization are listed in Table 
4.5. The aim of the design optimization is to minimize the total cost of the system which is 
defined by the equipment (reactor volume) and the recycle costs. C1 and C2 denote the 
respective prices. 
 

( ) ( ){ }1 2 i A B i X Y= C V C F x x F x x+ λ + + β +J                 (4.98) 
 
The deterministic optimization problem for the reactor-separator design is first solved using 
the nominal values of the model parameters. The optimization problem is defined by the 
objective function (4.98) and the constraints (4.96) and (4.97) while complying with a product 
concentration restriction of Rx 25%≥  . The decision variables are the reactor volume V, and 
the factors λ and β. 
 
Table 4.5:   Data for the reactor-separator system_________      

1
A0 A0 X

1
1 2 Y

1 2
1 1

B R

F 100mol / h C 0.1mol / l k 0.02h
C 0.01u€ / l C 0.125u€ /(mol / h) k 0.01h
q 70mol / h q 0.005mol / h
k 0.4h k 0.1h

−

−

− −

= = =
= = =
= =
= =

 

_______________________________________________________________________________________________________________________________________________ 
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Figure 4.21:   Objective function and product concentration xR in dependence on the expected 
value deviation of the model parameters. 
 
In Fig. 4.21 the simulation studies based on the deterministic optimization results show the 
influence of the different reaction rates, the feed flowrate FA0 and its concentration CA0 on the 
objective function J and on the product concentration. For this purpose, the parameters were 
varied 20% around their expected values. From Figure (4.21b), the perturbation analysis on 
the deterministic outcomes demonstrates that the three most relevant parameters are the feed 
flowrate FA0, and the reaction rates kB, kR. However, provided that CA0 is constant, these 
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parameters are assumed to be the only sources of uncertainty. They are assumed to be 
distributed normally with a standard deviation of 5% from the mean value. The resulting 
probability density and distribution functions are given in Figure 4.22. 
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Figure 4.22:   Probability density and distribution function  
 
 
Monte Carlo simulations (5000 samples) have been performed to determine the effect of 
uncertainty on the deterministic optimization results. The results in Figure 4.23 show the high 
probability (~50%) for the product quality constraint violation. Therefore, for a robust design 
the explicit consideration of uncertainties within the optimization problem is needed. 
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Figure 4.23:  Performance of the deterministic optimization through Monte Carlo simulations. 
 
In order to formulate the chance-constrained optimization problem, the uncertain parameters 
form the joint normal distribution. Here, the correlation matrix elements may result from 
parameter estimation. Derived from Figure (4.21b) and further simulation results, a strict 
monotonic relation between the constrained output (product quality) and the nominated 
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uncertain parameters can be determined. Since the monotony of at least one uncertain 
parameter is only required for the application of the nonlinear chance-constrained approach, 
the reaction rate kB is selected as the random variable to compute the bound of the region of 
the uncertain variables. Thus, the chance-constrained optimization problem can be formulated 
as follows, 
 

SP
R R

A B R X Y

min
s.t. equality constraints (4.96) and (4.97)

Pr(x x )
0 1
0 1
0 x , x , x , x , x 1

≥ ≥ α
≤ λ ≤
≤ β ≤
≤ ≤

J

                 (4.99) 

 
The decision variables are the reactor volume, λ and β. Due to the dependence of the product 
concentration on the random variables, the fulfilment of the inequality constraint is described 
as a chance constraint. It can then be shown that a positive monotonic relation exists, namely 

R Bx k↑ ⇒ ↑  and, thus, { }SP
R RP x x≥  can be restated as { }L

B B1 P k k− ≤  compliant with 
(4.71) and (4.72). Besides, based on the realization of the other uncertain variables, the 
product quality restriction SP

Rx , as well as the value of the decision variables, the upper bound 
for the random variable Bk is then: 
 

L 1 SP
B A0 R Rk F (F ,k , x ,V, , )−= λ β                 (4.100) 

 
Therefore, following (4.75) L

Bk  can be used as the upper bound for the numerical integration, 
  

{ }
LkB

SP
R R A0 R B B R A0Pr x x (F ,k ,k )dk dk dF

∞ ∞

−∞ −∞ −∞

≥ = ρ∫ ∫ ∫              (4.101) 

 
Based on the computational scheme described in section 4.2.3, the multivariate integration in 
(4.101) is computed with the three-point-collocation and an inaccuracy less than 10-6. The 
outcomes of the robust design optimization under uncertainty are depicted in Figure 4.24. The 
robustness of the optimal design is thereby demonstrated by sampling the random parameters.  
  

        
 
Figure 4.24:   Scatter plots showing the impact of parameter uncertainties on the constrained 
output. 
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However, the Monte Carlo simulations (5000 samples) indicate that, as anticipated, a risk of 
constraint violation of 10% results from the stochastic optimization for 0.9α = . Table 4.6 
provides additional details from the results of the chance-constrained optimization in 
comparison with those of the deterministic optimization. Here, the deterministic case and 
three additional stochastic cases are listed with regard to different probability levels.  
 

    J α SP
Rx  V λ β 

  

deterministic 
  

154.2995 
  

-- 
  

0.25 
  

12759.927 
  

0.919 
  

0.275 
   

160.5967 
  

0.90 
  

0.25 
  

11957.747 
  

0.943 
  

0.448 
Stochastic 172.1216 0.93 0.25 11746.478 0.956 0.549 
 184.9851 0.96 0.25 11260.653 0.963 0.613 

 
Table 4.6:   Deterministic and stochastic optimization results  
 
The uncertainties are not only compensated for by variation of the reactor volume but also by 
further change of the decision variables λ and β. It can also be seen that the total cost 
increases if a higher probability level is required, i.e. the total cost resulting from the 
deterministic optimization is lower. But, implementations of decisions based on the 
deterministic results are not appropriate due to the high risk of constraint violation (see Fig. 
4.23). One important effect observed is that the stochastic optimization results become 
increasingly sensitive to the specified probability level α  as it approaches the maximum 
achievable probability of complying with the constraint. In Chapter 6, this issue is discussed 
in detail for a large-scale process system.  
 
4.3   Summary 
 
Under the framework of linear systems, which are defined through a linear relation between 
the uncertain input and the output constraints, efficient approaches are presented with 
stochastic variables with correlated multivariate normal distribution combining numerical 
integration and sampling methods. Thus, for instance, a continuous process with constant 
uncertain inputs leads to a steady-state problem, while a continuous process with time-
dependent uncertain inputs represents a dynamic problem under uncertainty. However, in case 
of a nonlinear process it is very difficult to describe the distribution of the outputs 
analytically. In this case, sampling techniques can generally be employed. For this purpose, a 
scheme of simulation with sampling can address this problem. According to their 
distributions, random values are generated. After simulation runs with the sampled data, the 
probability distribution of the outputs can be obtained. Besides Monte-Carlo, some other 
efficient sampling strategies also have been proposed (Diwekar and Kalagnanam, 1997).  
 
As an alternative to sampling techniques, a method for nonlinear chance-constrained 
programming has been introduced in this Chapter. The basic idea of the method is to map the 
output distribution onto that of the uncertain input variables. Since the uncertainty properties 
are taken into account, the solution of the problem is a decision a priori. A predefined 
probability to satisfy the constraints will be held under the uncertainty and thus the decision is 
robust. The solution provides a comprehensive relationship between the performance criteria 
and the probability level of satisfying the constraint (Section 4.2.4). For linear systems, an 
easy-to-use method is proposed to determine the maximum feasible confidence level by 
simulation.  
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However, the performance of the method is limited to the problem definition of steady state 
processes with just one single chance constraint. For other relevant processes, in particular, 
dynamic systems including operation and control tasks under uncertainty (e.g. time-dependent 
uncertainties), the approach needs to be extended including also those cases where the 
definition of multiple single probabilistic constraints is required. In this case, different 
confidence levels can be selected for different output constraints when some output 
constraints are more critical than the others. Furthermore, the extension of the approach to a 
joint chance-constrained problem is not a trivial task, but is necessary, if the constraints are 
related to e.g. safety considerations where reliability is required over the entire output feasible 
region. Moreover, as identified in section 4.1.4, an important open issue in solving chance-
constrained programming problems is the feasibility analysis, which is still pending to be 
analyzed for nonlinear dynamic processes. Thus, development of more efficient methods to 
address high dimension problems, e.g. Nonlinear Dynamic Systems under Time-dependent 
Uncertainty and Joint constraints (NDTJ), represents a significant challenge. For this purpose, 
in the next Chapters, a new promising chance constrained optimization framework and its 
applications to process optimization and control under uncertainty is introduced and discussed 
to illustrate its efficiency and potential. 
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Chapter 5 

 

 

 

 

 

 

A New Stochastic Optimization Framework for Nonlinear 

Dynamic Systems under Chance Constraints 
 

 

 

In this Chapter, a new framework with different approaches for chance constrained 

programming of large-scale nonlinear dynamic systems under time-dependent and time-

independent uncertainty is presented which focuses on the reliability of the system, i.e., the 

system’s ability to meet feasibility in an uncertain environment. The stochastic property of the 

uncertainties is explicitly considered in the problem formulation in which some input and 

state constraints are to be complied with predefined probability levels. The method considers 

a nonlinear relation between the uncertain input and the constrained variables. Following the 

idea introduced in the previous Chapter, the concept is basically to map the output feasible 

region (distribution) back to a bounded region of the uncertain input variables; so that the 

probability of complying with the output constraints and their gradients can be achieved by 

numerical integration of the probability density function of the multivariate correlated 

uncertain variables by collocation in finite elements. By this means, the original idea is now 

applicable for dynamic optimization problems with larger scale. The framework involves new 

efficient algorithms for the required back-mapping as well as for the computation of single 

and joint probabilities and their gradients with an optimal number of collocation points. The 

formulation and tuning of predefined probability limits incorporate the issue of feasibility and 

the contemplation of trade-off between the objective function (profitability) and robustness. 

Thus, the results can be used to select optimal and robust operation policies. The approach is 

relevant to all cases when uncertainty can be described by any kind of joint correlated 

multivariate distribution functions. 

 

In chemical process industry, transient process operations have significantly increased. Thus, 

from a practical viewpoint, the development of optimal policies and/or the design of a control 

system for optimal operation on time-varying trajectories pose a major challenge. However, 

approaches that consider the system capability to readily adjust in order to meet the 

requirements of changing conditions or to recover from process disturbances or dynamic plant 

behaviour are rather limited. In this Chapter, fundamental developments of a new chance-

constrained optimization framework are described. To demonstrate its efficiency and 

potential, it is used to obtain among others strategies for operation planning as well as 

integrated process and control systems design, which are economically optimal and can cope 
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with model uncertainty and process disturbances. Based on a dynamic mathematical model 

describing the process, including path constraints, interior and end-point constraints such as 

product specifications and safety restrictions, and relations describing uncertain parameters 

and time-varying disturbances (probability distributions), the problem is posed as a stochastic 

nonlinear dynamic optimal formulation within a finite time horizon of interest. 

 

 

5.1   Strict monotonic relationship between constrained output and uncertain input 
 

The main significance of considering dynamic optimization problems under uncertainty is 

based on the fact that the solution of the chance-constrained problem has the feature of 

prediction and robustness. The predictive strategy is derived for a future time horizon where 

output constraints are to be complied with a certain probability level. This means, depending 

on the stochastic property of the uncertainties, the process operation will be planned so that 

large changes of the uncertain disturbances can optimally be compensated while complying 

with the output constraints and leading to a better performance of the objective function. 

 

The key idea is to avoid direct computing the output probability distribution. Instead, an 

equivalent representation of the probability is derived by mapping the probabilistic 

constrained output region back to a bounded region of the uncertain inputs. Since dynamic 

systems with multiple time intervals are now considered, the reverse projection (mapping) of 

the output feasible region is not trivial. Furthermore, a more efficient dynamic solver is 

required in order to solve dynamic problems with time-dependent constraint variables and the 

uncertain parameters occurring throughout the entire operation time with different control 

parameters u in different time intervals.  

 

The conceptual mathematical formulation is given by a set of differential and algebraic 

equations and inequalities of the following form: 

 

( ) ( )
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(5.1) 

 

Where: 

 
1f ⊆ ℜ  Time-dependent objective function 

n L+⊆ ℜg  Dynamic model equations 

L⊆ ℜh  Inequality constraints influenced by uncertain parameters 

H⊆ ℜk  Inequality constraints independent of uncertain parameters 



Stochastic Optimization Framework for Nonlinear Dynamic Systems under Chance Constraints 78 

n⊆ ℜx  Time-dependent unconstrained state (output) variables 

L⊆ ℜy  Time-dependent constrained state (output) variables 

M⊆ ℜu  Time-dependent decision variables 

S⊆ ℜξ  Uncertain variables 

SP L⊆ ℜy  Output variables bounds 

 

 The equality constraints represent the process model equations but could also comprise 

constraints on the process or performance requirements. The inequality constraints are 

typically related to equipment limitations, safety regulations, environmental and/or product 

purity specifications, but some of them are not necessary dependent on the uncertain 

variables
H⊆ ℜk . They have to be satisfied throughout the period of operation or only 

imposed at specific times tC. However, while inequality constraints regarding bounds on 

process inputs can be easily satisfied by the actual system, constraints on process outputs are 

more indefinable. Due to the uncertainty, process output predictions are then also uncertain 

leading to violation of constrained outputs. Thus, uncertainty incorporation into the output 

constraints is required and needs to be considered in the optimization problem formulation. 

The main challenge in chance constrained programming lies in calculating probability values, 

the gradients of the probability function to the controls and possibly Hessians. In case of 

dynamic systems, the problem has different degrees of complexity for computing these 

values, which will be discussed in the next sections. 

 

5.1.1   Solution approach 
 

In this section, a systematic methodology is presented which can be applied to large scale 

dynamic problems in a reasonable computation time. The method considers a nonlinear 

relation between the uncertain input and the constrained variables. The procedure of the 

dynamic solver implies two basic steps:  

 

i)  The reverse projection of the feasible region for solving dynamic problems 

ii) The computation of the joint or multiple single probabilities and their sensitivities. 

 

5.1.1.1  Reverse projection of the feasible region 
 

The computation of the time-dependent uncertain variable boundaries through reverse 

projection according to 

 

( )L 1 SP
s 1 s 1 iF , , , y , t,

−
−ξ = ξ ξ u� ,                    (5.2) 

 

is not trivial. Due to the model complexity, an explicit expression of (5.2) is usually not 

available. For steady-state problems a Newton-Raphson step has been found to be suitable 

(see section 4.2.2). However, in order to solve dynamic optimization problems under chance 

constraints, a more general and efficient approach is required. As a consequence of the model 

complexity, an additional iterative procedure is employed in order to calculate the limiting 

value L
sξ . Here, the desired value is approximated through multiple simulations embedded in 

the so-called reverse projection approach which is basically based on the bisectional method. 

Figure 5.1 shows a scheme of the restricted region by [ξa , ξb] where the bound L
sξ  according 

to the constrained output y
SP

 can be searched. This region corresponds to the integration area 

where the multivariate integration is also carried out. Firstly, the function values yi of the 
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corresponding interval endpoints (ξa, ξb) are defined and verified to ensure that the reverse 

projection value is located inside of the interval (Fig. 5.1).  

 
 

aξSP

iy
bξ

iy

L

Sξ

 
 

Figure 5.1:   Search-space for the reverse projection 

 

The reverse projection approach is a systematic, iterative method which is used to find a 

“root” ( )L SP
s iξ y  of a monotonic continuous function (Fig. 5.2). The algorithm picks midpoints 

of ξS  within the interval (ξa, ξb) and after computing their corresponding output value iy , one 

of the interval endpoints is then changed depending on whether the iy  is greater or less than 

( )i ay ξ  or ( )i by ξ . Afterwards, half of the original interval is discarded and the midpoint is 

assigned to one of the endpoints. After a few iterations, the algorithm yields an approximation 

of the required bound value L
sξ , with a given specified tolerance. The only required inputs for 

the approach would be the tolerance, the endpoints of the original interval, the maximum 

number of iterations, and the function values from just one simulation run for each iteration 

step. By this means convergence can be guaranteed. Moreover, the success of the presented 

approach is based on the size of the original interval. 
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Figure 5.2:   The reverse projection approach. 

 

The approach converges linearly because the width of the bracketed range decreases by a 

factor of two after each iteration. However, it can be slightly improved by interpolating the 

successive approximated roots ξS between the function's values iy  at the interval endpoints. 

This modification leads to the method which is also known as linear inverse interpolation, the 

false-position method. It is similar to the method presented above, but instead of the midpoint 

we take a point defined by an intersection of the secant line joining the points ( )a i a, y ξ ξ   

and  ( )b i b, y ξ ξ   with the sξ -axis (Fig. 5.3). 
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Figure 5.3:   (a) Linear inversion interpolation   (b) Newton Method 

 

Both methods used in this work assume a monotonic continuous function. The linear inverse 

interpolation uses a pair of points, essentially to figure out the slope of the function, and hence 

where it will cross the axis. In contrast, Newton's method will linearize the unknown function, 

but its data is now all gathered at the latest point. The Newton's method is admittedly faster 

than the methods presented, but it unfortunately requires both the function and its derivative 

which makes the programming unnecessary complex apart from computing time. 

Furthermore, there is not always a guarantee for convergence. 

 

5.1.1.2  Computing the gradients of the probability  
 

The computation of the gradients of the output constraint probability gradients with respect to 

the decisions variables u is based on the formulation of the total differential of the model 

equations ( )L
1 s, , t,ξ , ξg x u � , 

 
L
s

L
s

d d d d
 ∂ξ∂ ∂ ∂ ∂   

= + + =    ∂ ∂ ∂ ∂∂ξ     

g x g g
g u u u 0

x u u u
.       (5.3) 

 

Firstly, according to the calculated boundary value L
sξ  (Eq. 5.2), we define the following 

function F  corresponding to the feasible region 

 

{ } { }

( ) ( )
L

s

s

1

SP L s
s s k

L L
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Pr y y Pr , ,s k

, , , d d d
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−∞
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∫ ∫Ξ
� � �F

.    (5.4) 

 

The right-hand side of (5.4) represents the numerical integration in the bounded input region. 

Thus, the gradients computation can be formulated as follows  

 

( )
s L

s

1

L
s sL

1 s s k 1L
s

dd Pr d
, , , d d
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−

ξ

 ξ ξ
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 ξ
 

∫Ξu u u
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F
,     (5.5) 

 

whereas the values of  
L

s

sd

d
ξ

ξ

u
 in (5.5) will be calculated in accordance with the model 

equations g  through  
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d d d
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x u 0

x u
 ,        (5.6) 

 

which can be rewritten by the following way 

 
L
s
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s

d d d
 ∂ξ∂ ∂ ∂ ∂   
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This leads to 

 

LL
ss

∂ 
   ∂∂ ∂ ∂   = −   ∂ ∂∂ξ∂ξ      
 

∂ 

x

ug g g

x u

u

.          (5.8) 

 

To clarify the applicability of the presented solution strategy, let us consider a simple example 

for a dynamic process with the following attributes: 

 

1 2 3 4y (t), y (t), y (t), y (t)  4 time-dependent constrained state variables 

1 2 3u (t), u (t), u (t)  3 time-dependent control variables 

( )1 2 1 1 2 2, ,ξ ξ ξ ∈Ξ ξ ∈Ξ  2 static uncertain variables 

 

With the initial state: 1 2 3 4y (0), y (0), y (0), y (0) , a process with one single output end-point 

chance constraint is contemplated, namely SP

1 f 1y (t ) y≤ . The inequality output constraint is 

then formulated as a chance constraint of the form SP

1 1P{y y }≤  for [ ]0 ft t , t∈ . Based on the 

impacts of the uncertain parameters on the constrained output variable, a strict monotonic 

relation between 1ξ  and 1y  is assumed to be 1 1yξ ↑⇒ ↑  such that 

 

 SP L

1 1 1 1 2 2P{y y } P{ , }≤ = ξ ≤ ξ ξ ∈Ξ . 

 

Using orthogonal collocation, the discretized nonlinear model equations in time interval j are 

represented as, 

 

1 1 2 3 4 1 2 3 1 2

2 1 2 3 4 1 2 3 1 2

3 1 2 3 4 1 2 3 1 2

4 1 2 3 4 1 2 3

g (y ( j), y ( j), y ( j), y ( j), u ( j), u ( j), u ( j), , ) 0

g (y ( j), y ( j), y ( j), y ( j), u ( j), u ( j), u ( j), , ) 0

g (y ( j), y ( j), y ( j), y ( j), u ( j), u ( j), u ( j), , ) 0

g (y ( j), y ( j), y ( j), y ( j), u ( j), u ( j), u

ξ ξ =

ξ ξ =

ξ ξ =

1 2( j), , ) 0ξ ξ =

. 

 

If three time intervals with piecewise constant decision variables or controls u are considered, 

the upper bound of the integration is then expressed as a function of,  
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Analog to (5.5) the probability computation is then stated as follows, 
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The gradient computation can be derived as 
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with the unknown variables 

 
L

1 2 3 4 1 2 3 4 1 2 3 4y (1), y (1), y (1), y (1), y (2), y (2), y (2), y (2), , y (3), y (3), y (3)ξ   

 

and given  

 

1 2 3 1 2 3 1 2 3 2u (1), u (1),u (1),u (2),u (2),u (2),u (3),u (3), u (3),ξ ,  

 

the resulting equation system for 3 time intervals can be formulated as follows, 
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The equation system can generally be characterized by L

1( , , ) 0ξ =g y u and its solution provides 

L

1ξ . From (5.3) the total differential is, 
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yg g g
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y u
 

 

This is a matrix vector system which can be written as follows 
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Where the state variables are represented by, yi,j, with i and j as variable and interval index, 

respectively. Furthermore, by means of Gauss elimination, the gradients can easily be 

computed.  They correspond to the values of the last line of the eliminated matrix. 

 
T

L L L L

1 1 1 1

11 21 33

d
, , ,

d du du du

 ξ ∂ξ ∂ξ ∂ξ
=  
 u

�  

 

Thus, we finally deal only with NLP problems (see Chapter 6). For the optimization itself, the 

sequential approach with a standard NLP solver is used. Consequently, the proposed approach 

employs a three-staged computation framework to decompose the problem (Fig. 5.4). The 

upper stage is a superior optimizer following the sequential strategy, where the optimization 

generates the values of the decision variables and supplies those to the lower stages i.e. 

simulation stage which also includes the multivariate integration where the probabilities and 

their gradients are finally calculated. These stages give the values of the objective function, 

the deterministic and probabilistic constraints, as well as the gradients back to the optimizer. 
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Figure 5.4:   Chance-Constrained Optimization Framework 
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5.1.1.3   Convexity analysis 
 

A critical issue in dealing with probabilistic constraints is the convexity analysis of the 

problem for nonlinear systems. An analytical result regarding this issue is given by Prekopa 

(1995). It states that if the constraints such as (5.4) form a convex set and if the density 

function is logarithmically concave, the corresponding problem is convex. Although 

distribution functions can never be concave or convex (they are bounded between zero and 

one), many of them turn out to be quasi-concave. 

 

 
 

Figure 5.5:   Bivariate normal distribution function (left) and standard normal distribution  

         and its logarithm (right), Henrion et al., (1999a). 

 

Figure 5.5 (left) shows the graph of the bivariate normal distribution function with 

independent components. It is neither concave nor convex, but all its upper level sets are 

convex. For algorithm purposes it is often desirable to know that the function defining an 

inequality constraint is not just quasi-concave but actually concave. However, most of the 

important multivariate distribution functions (multivariate normal, uniform distribution on 

convex compact sets, Dirichlet, Pareto, etc.) share the property of being log-concave. Figure 

5.5 (right) shows the one dimensional normal distribution and its log (Henrion et al., 1999). 

The problem of normal distributions with correlated components is open. However, a 

complex system described with a rigorous model is frequently non-convex. Besides, the 

condition that the constrained output must be convex is difficult to be fulfilled. Thus, the 

solution with the gradient-based chance-constrained optimization normally provides a local 

optimum. 

  

5.1.1.4   Illustrative example 
 

Batch processes are inherently dynamic and, thus, the complete profiles of the degree of 

freedoms are required in order to define their optimal operating policies. The optimization of 

such processes is generally performed using model-based optimization techniques. In 

previous studies, deterministic optimization with a nominal model has normally been the 

common approach for batch distillation. Since uncertainties exist, the results obtained by 

deterministic approaches may however cause a high risk of constraints violations. To 

overcome these drawbacks, the developed approach is, at first, applied to the dynamic 

optimization of a simple batch distillation process (Fig 5.6) with a binary mixture and a single 

fraction (Arellano-Garcia et al., 2003b).  
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impact of probability level α on the objective 
 

α 50% 60% 90% 95% 

PD 0.2294831 0.2290534 0.2274652 0.2267549 
 

 

Figure 5.6:   Simplified flowsheet of the batch distillation column (left); impact of the  

          probability on the reflux ration and the objective function 

 

The aim of the optimization is the maximization of the total amount of distillate product PD 

within a fixed time horizon tf. The uncertain parameters are the initial feed composition and 

the tray efficiency as well. The product is restricted by a given purity specification of 0.99 

mol/mol. Thus, in this example, the problem formulation includes a single chance constraint.  

 

( ){ }D fPr x t 0,99 0,96≥ ≥  

 

The trajectory of the reflux ratio and the different lengths of the time intervals are the decision 

variables to be optimized. In Figure 5.6, the impact of the different probability levels is 

illustrated indicating the trade-off between the objective function and the robustness of the 

process. It can be noted that mainly in the beginning time intervals, the probability level has 

an impact on the optimal process operation policy. Thus, only these intervals are shown in 

Fig. 5.6. In Chapter 6, the application of the solution approach to a large-scale nonlinear 

dynamic system including multiple single and joint constraints will show its efficiency and 

potential. 

 

5.1.2   Handling of single and joint constraints 
 

The probability computation procedure from (5.4) can basically be augmented to multiple 

single chance constraints. This means, the probability computation for each constraint is 

formulated as follows 
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i i s s k

1 s s k s 1

Pr y y Pr , ,s k

, , , d d d i 1, ,L
∞ ξ ∞

−
−∞ −∞ −∞
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   (5.9) 
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It should be noted that distinct uncertain variables can be selected for different constraints. 

The extension of the approach to joint chance constrained problems is not a trivial task. 

Firstly, an uncertain variable sξ  has to be found which is monotone to all constrained output 

variables i.e. to the joint probability. The choice of an appropriate uncertain variable is viable 

by carefully examining the relation between uncertain inputs and constrained outputs. This 

can be achieved by process simulation perturbing the uncertain variables or by analyzing the 

physical properties of the process. Then the uncertain variable has to be defined as an upper or 

lower bound according to the bounds of the constrained outputs and the characteristics of the 

monotony, respectively. In case there are several constrained outputs inducing several upper 

or lower bounds, then the lowest possible value of the upper bound and the highest possible 

value of the lower bound is chosen for the integration of sξ . Therefore, the joint probability 

with regard to the output constraints can be expressed as 

 

{ } { }SP LB UB
i i s s sPr y y , i 1, ,L Pr≤ = = ξ ≤ ξ ≤ ξ�                 (5.10) 

 

where LB
sξ  and UB

sξ  are the upper and lower bound of the uncertain input region, 

correspondingly. This region is formed by the cutting planes mapped by 

( ) SP
i iy , y , (i 1, , L)≤ = …u ξ . In that case the joint probability (5.10) can be computed by 
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It should be noted that if all constrained outputs have a positive monotonic relation to the 

uncertain input, there will be no lower bound, but the lowest possible value will become the 

upper bound (case 1). The different possible cases for joint constraints are listed below with 

regard to the integration bound value in case of a positive and/or negative monotonic relation. 

However, if all constrained outputs are affected by the same uncertain variables, the joint 

probability in (5.11) is applicable. For the sake of simplicity, the following assumptions are 

set: 
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Case 4: ( )1 1y f= ξ , ( )2 2y f≠ ξ , j 1 2Pr Pr Pr= ⋅ ; { }2Pr 0,1=  
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Furthermore, to link the chance-constrained approach to a NLP framework, the gradients of 

the output constraint probability in reference to the decisions variables u are required. From 

(5.2) and (5.11) the decision variables u have an impact on the value of the probability 

through the integration bound of the corresponding region of the random inputs. Thus, the 

gradients for multiple single constraints can be computed as follows 
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where 

L
s

u

∂ξ

∂
 represents the gradient vector. The right-hand side of Equation (5.12) can 

simultaneously be computed to (5.9) by numerical integration in the input region. For this 

purpose the optimal number of collocation points and intervals need to be determined in order 

to find a trade-off between computational time and accuracy. Table 4.3 shows the results 

corresponding to the normal distribution.  
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The gradients computation of a joint chance constraint (Eq. 5.11) can generally be described 

as follows, 
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where LB
sξ  and UB

sξ  are the upper and lower bound of the uncertain input region, respectively. 

These bound values are selected in a similar way to (5.10). However, following the idea of the 

solution method the stochastic problem is relaxed to a nonlinear programming problem, so 

that it can be solved with a standard NLP algorithm such as SQP (Figure 5.4).  

 

In addition, there are, in fact, cases where different uncertain variables or subsets of the total 

number of uncertain variables have an influence on different constrained outputs. This is, for 

instance, the case of a stochastic dynamic optimization in which both the uncertain variables 

and the chance constraints have a selective point-in-time dependency    
SP

i iy( , , t ) y , i 1, , m≤ = …u ξ . Then the joint probability has to be reformulated considering the 

upper and lower bounds of the different integrals 
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             (5.14) 

 

The mathematical formulation of the process needs then to be discretized into time intervals 

such that the end of those intervals corresponds to the time points of the constrained outputs. 

Thus, the dynamic change of the random variable is discretized into a certain number of time 

intervals where it is assumed to be piecewise constant. Hence, when the whole time period of 

the process is divided into N time intervals, one dynamic random variable is converted into N 

random inputs ξ(ti) ≤ ξi, with i=1,…,N. Consequently, each of those random inputs ξi 

corresponds to one partial integral in the multiple integral formulations on the right hand side 

of Equation (5.14). This means, the larger the number of those time intervals N, the higher the 

numerical expense for solving the multiple integral. Therefore, for discretization, a trade-off 

decision needs to be made between the real trajectory of ξ(t) and the number of time intervals. 

 

In general, for the numerical implementation, the most convenient way is when the time 

intervals of  ξ(ti) ≤ ξi, with i=1,…,N are exactly the same as those intervals between the time 

points where the specification bounds of the constrained outputs are defined, i.e. for N=m. 

Furthermore, since each integral in Equation (5.14) corresponds precisely to each time 

interval, the numerical treatment of the constrained output and the uncertain input can 

simultaneously be considered. Moreover, the existence of the required monotone relation 

guarantees that each specified bound of the constrained output, min max
i iy , y , for a certain time 

point has exactly one corresponding bound of the uncertain input of the preceding time 

interval. This leads to the conclusion that in the multiple integral each partial integral has 
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upper and lower bounds UB LB
i i, ; i 1, ,S; S N mξ ξ = ∧ = =… , which are computed by the 

reverse function with the upper and lower bounds of the constrained variables min max
i iy , y  as 

the input. Thus, the mathematical formulation for the joint probabilistic constraint can be 

formulated by the multiple integral in Equation (5.14) with those bounds of the random inputs 

mentioned above. In order to numerically solve the multiple integral, a special characteristic 

of this problem has to be noted, namely, that each bound of the random input is influenced by 

all values of other random inputs and the control variables of all previous time intervals. This 

means, that for each integration step, the bounds of the random input will change and need to 

be recalculated by solving the reverse function with the corresponding constrained variable 

and new values of random inputs of the previous time intervals. A new approach to 

considering dynamic random variables in dynamic systems is introduced in section 5.3. 

 

 

5.2   Non-monotonic relationship 

 

In the previous section, a systematic approach to solving nonlinear chance constrained 

optimization problems, where the monotony of the constrained output to at least one uncertain 

input is utilized, so that the feasible region (output distribution) is mapped to a region of the 

uncertain variables. However, there are, in fact, some stochastic optimization problems where 

no monotone relation between constrained output and any uncertain input variable can be 

assured. By this means, when the required monotony can not be guaranteed, more than one 

uncertain input lead to the same unique uncertain output. For instance, such processes which 

imply complex reaction systems where the question of whether there is a monotony or not are 

strongly dependent on the policies of the decision variables.  

 

To address this problem, a new efficient approach is proposed to chance constrained 

programming for nonlinear dynamic processes with no guarantee of a monotonic relation 

between constrained output and uncertain input. 

 

 
 

Figure 5.7:  General Chance-Constrained Optimization Framework 
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5.2.1   Solution approach 
 

The proposed approach uses a two-stage computation framework (Fig. 5.7). The upper stage 

is a superior optimizer following the sequential strategy. Inside the simulation layer there is a 

two-layer structure to compute the probabilistic constraints. One is the superior layer, where 

the probabilities and their gradients are finally calculated by multivariate integration. The 

main novelty is contained in the other, the sub-layer, and is the key to the computation of the 

chance constraints with non-monotonous relation. The main idea is that for the multivariate 

integration the bounds of the constrained output y and those for the selected uncertain 

variables ξξξξ reflecting the feasible area concerning y are computed at temporarily given values 

of both the decision and the other uncertain variables. Thus, all local minima und maxima of 

the function reflecting y are first detected (Fig. 5.8). This computation of the required points 

of [min y(ξξξξ)] and [max y(ξξξξ)] can be achieved by an optimization step in the sub-layer (in case 

monotony exists, this optimization step can be neglected). With the help of those significant 

points, the entire space of ξξξξ can be divided into monotonous sections in which the bounds of 

the subspaces of feasibility can be computed through a reverse projection by solving the 

model equations of this sub-layer in the following step.  

 

 
 

 
 

Figure 5.8:   Mapping feasible regions and the non-monotonic sections 
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The bounds of feasibility are supplied to the superior multivariate integration layer, where the 

necessary probabilities Eqs. (5.15)-(5.16) and the gradients are computed by adding all those 

feasible fractions together (Fig. 5.8). 

 

iPr Pr(z )=∑                      (5.15) 

 

( )
S

S

max,i

min,i

i i S S 1 1Pr(z ) ; d d d

ξ∞ ∞

−

−∞ −∞ ξ

= ρ ξ ξ ξ ξ∫ ∫ ∫ R� �                  (5.16) 

 

5.2.1.1   Local min and max value of the constrained outputs 

 

In the presence of multiple local optima, specific optimization methods have been developed 

for many classes of global optimization GO problems. Additionally, general techniques have 

been developed that appear to have applicability to a wide range of problems. However, 

considering also numerical efficiency issues, all rigorous GO approaches have an inherent 

computational demand which increases non-polynomially, as a function of problem-size, even 

in the simplest GO instances. Global convergence, however, needs to be guaranteed by the 

global scope algorithm component.  
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Figure 5.9:   Identifying local extrema values. 

 

Alternatively, to detect all local minima and maxima of the constrained output y, its gradients 

with respect to the uncertain variable ξξξξ are calculated (Fig. 5.9). For this purpose, an ad hoc 

modification of the Mueller Method (Mueller, 1956) with different initial values is proposed. 

This computation leads to all values with zero gradient and therefore to the extreme values of 

the constrained outputs. These points represent the boundaries of the different monotone 

sections. The main challenge is again the mapping back or reverse projection. 

 

 



Stochastic Optimization Framework for Nonlinear Dynamic Systems under Chance Constraints 92 

k = 0; i = 0

The Mueller Method

using ξguess → ξM

is ξM really

a zero?

initial value
ξguess = lb + k * (ub - lb) / N

k = N ?

lb – lower bound

ub – upper bound

N - number of iterations

y

i = i + 1

ξroot,i = ξM

k = k + 1

n

end

y

n

      

y

ξ

∂
∂

ξ
p

3

p
4

p
5

p
1

p
0

p
2

y

ξ

∂
∂

ξ
p

3

p
4

p
5

p
1

p
0

p
2

 
 

Figure 5.10:   Root finding algorithm based on the Mueller method. 

 

The Mueller method is a generalization of the secant method and assumes a function to be 

approximately quadratic in the region of interest. Each improvement is taken as the point 

where the approximating parabolic curve (defined by 3 points in each case) crosses the axis 

nearest to the last point. Since this method is intended to be used for polynomials, it can not 

be guaranteed that any initial values leads to a zero in our case. Therefore, the Mueller 

method is applied several times using different initial values between a lower and an upper 

bound for the uncertain variable. In order to ensure that no root is found twice with the 

algorithm described in Fig. 5.10, the function is divided by (ξ-ξ0i). After having determined 

the boundaries of the monotone sections, the next step is to calculate the reverse projection of 

y
SP

 for each section. 

 

5.2.1.2   Verification of the integration limits  

 

In principle, six different cases can occur in such a monotone section (Fig. 5.11): either the 

constrained output increases with the uncertain variable ξ and crosses y
SP

 so that a reverse 

projection is possible (1) or stays above it (2) and (3). It can also decrease with the uncertain 

variable and cross the restriction, as seen in (4), or it stays completely below the constrained 

bound for the cases (5) and (6). In the cases (2), (3), (5), and (6), there is no change of the 

integration limits, whereas in the remaining cases a reverse projection of y
SP

 using the 

developed method in section 5.1.1 leads to a new integration limit. By repeating this 

procedure for every monotone section, all limits can be determined. They represent then the 

boundaries of the sections in which the constrained output y remains below its upper bound 

(Fig. 5.11) and can be used for calculating the probability by multivariate integration. 
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Figure 5.11:   Integration limits of the non-monotonous function. 

 

Arising changes of the integration limits are consistently verified for every monotone section. 

In case of variation, the reverse projection of y
SP

 leads to new integration limits, which are, 

then, employed to compute the probability by multivariate integration. 
 

Similar to the elementary illustration in section 4.2.2.1, we consider the following problem 

with a joint normal distribution of two uncertain variables. The stochastic properties are given 

in Table 5.1. 
 

Random input expected value standard deviation correlation matrix 

ξ1 

ξ2 

4.0 

4.0 

0.5 

0.7 
1.0 0.6

0.6 1.0

− 
 − 

 

 

Table 5.1:   Stochastic properties of the uncertain inputs. 
 

The nonlinear relation between the constrained output, y, and the random inputs ξ1 and ξ2 is 

given by the function, 
 

2 2

1 2y (2 7,6) 3 ( 4,2) 2,52= ⋅ξ − − ⋅ ξ − + . 

 

Here the probability of complying with the constraint Pr{y≤2,5} is to be computed. However, 

in this case, there is no monotonic relation between the constrained output and any of the 

uncertain inputs. The following figure illustrated this issue, where one of the uncertain inputs 

is kept at its expected value, respectively. 
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Figure 5.12:   Non-monotonic relation between constrained output and uncertain input. 
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The integration limits for the probability computation are obtained through division of the 

function, y, into monotonous sections in which for each value of y again exactly one value of 

ξ2 can be assigned. The required probability { }Pr y 2,5 82,32%≤ =  arises then as a result of 

the integration over those monotonic sections and addition of the computed partial 

probabilities. 
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Figure 5.13:   (a) Mapping of the uncertain input (b) integration limits over the uncertain  

      variables. 

 

The mapping of a joint normal distribution of the two uncertain variables (ξ1 , ξ2) is shown in 

Figure 5.13a. It also illustrated the reliability of the results, and the mapping concerning the 

compliance with the bound (y≤2,5) through variation of the uncertain variables by Monte 

Carlo simulations (1000 samples). Moreover, in Figure 5.13b the resulting integration limits 

over the uncertain variables are illustrated. 

 

5.2.2   Illustrative example: a dynamic reactor network system 
 

The major challenge of design and operation lies in dealing with the conflicts between the 

objectives. Moreover, there are uncertainties that need to be taken into consideration in order 

to make the results more reliable for practical realization. In this example the introduced 

chance constrained optimization approach is used to address the problem of optimal process 

design under uncertainty, in which optimal operational considerations and robustness analysis 

are simultaneously considered. The formulation of individually pre-defined probability limits 

of complying with the restrictions incorporates the issue of feasibility and the contemplation 

of trade-off between profitability and reliability. As illustrated in Fig. 5.14, a two-stage 

reactor system is investigated as a practical example. The reactor network consists of two 

reactors connected in series, in which two main chain reactions take place. Component B 

(CB), as the intermediate product, is deemed to be the desired product. It is assumed that the 
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feed flow into the 1
st
 reactor, F0, is the product stream from an upstream plant, which is stored 

previously in a vessel as the middle buffer and can be supplied to the network with a 

controllable flow rate, but with a given composition and temperature. The corresponding 

model and additional data are summarized in Appendix A3.  
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Figure 5.14:   Reactor network flowsheet. 

 

First of all, the potential for optimization needs to be investigated through preliminary 

simulation studies. The dynamic behavior of the process is computed through discretization 

by the collocation method on finite elements. The results of the simulation studies are 

illustrated in Figure 5.15, where the necessity for design and operational optimization is 

demonstrated.  
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Figure 5.15:   Optimization potential analysis. 

 

As expected, the product concentration of component B depends on the reaction kinetics of 

both reactors, which actually depends on both the residence time and the temperature. Figure 

5.15 is created for fixed volumes and thus F0 can roughly be seen as a reciprocal measurement 

for the residence time. It can also be seen that an increasing temperature allows lower 

residence times for fulfilling the purity restriction concerning CB, which allows either higher 

feed flow rates, and thus higher product flow rates, or lower design costs related to the 

volumes. On the other hand, it induces higher utility costs (UT). With regard to the residence 

time, a decision is required between higher flow rates or smaller volumes. Those facts lead to 

the conclusion that, for cost minimization, overall trade-off decisions need to be made 

between the temperatures, the flow rates and the volumes. Due to the process dynamics a high 

degree of flexibility concerning the time-dependence of temperatures and flow rates will lead 

to better optimal results. In reality, however, the design optimization is often realized first, 

before optimal operation policies are computed based on the previously optimized design 

T1 
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parameters. The analysis of Figure 5.15 leads to the conclusion that better results are expected 

when design and dynamic operational optimization are both realized simultaneously in one 

optimization scheme. 

 

Problem definition 

 

The aim of the optimization is the minimization of total costs. Thus the objective function 

includes both the design which implies material costs of the reactor depending on the volumes 

(Vi) and operational costs (utilities UTi) during the time period, minus a term indicating the 

total amount of the desired product (PB), which is assumed to be profitable. The objective 

function of the optimization problem can be written as follows with A, B and C as specific 

price factors: 

 
2 2

2/3

i i i i

i=1 i=1

min f = min A V - B PB + C UT
 

⋅ ⋅ ⋅ 
 
∑ ∑                 (5.17) 

 

Additionally, there are lower bounds for the amount of the converted Product (PB) and upper 

bounds of utility supply for both reactors (UT1 and UT2) necessary to realize the desired 

trajectories of reactor temperatures in closed control loops. To achieve the optimization goal, 

the design parameters such as volumes (V1 and V2) of both reactors, as well as operational 

parameters such as flow rates and temperatures are used as free decision variables. The latter 

ones can be seen as time-dependent, which leads to greater improvement in the dynamic 

optimization problem. 

 

It should be noted that utility costs are caused by both hot utility supply for sudden increase 

and cold utility supply for sudden decrease of reactor temperatures. Thus, the utility costs are 

proportional to the absolute value of the current temperature deviation. This may lead to 

complications concerning the gradient computation around the value of the current 

temperature, which could be critical for the implementation of NLP solvers such as SQP. To 

overcome this problem, the relation of the utility costs to the reactor temperature deviation is 

approximated by a self-formulated exponential function, which is smooth also around the 

point of the current temperature and thus easy to differentiate, and on the other hand close to 

the original curve (see Appendix A3). 

 

In an attempt to make the optimization more robust and the results reliable, uncertainties of 

several parameters are taken into consideration. For this example the kinetic parameters and 

the reaction enthalpies are considered to be uncertain. However, since all constraints are 

affected by the uncertain parameters, they should be reformulated to chance constraints. The 

uncertain parameters also have an impact on the objective function. The usual way is to 

reformulate it to its expected value. However, for practical application, it is more convenient 

to assure a certain reliability of the realization of the calculated objective value. This can be 

achieved by minimizing an upper bound β and its compliance can be guaranteed with certain 

reliability by formulating an additional chance constraint. Thus, the entire dynamic stochastic 

optimization problem will be formulated as follows with αi as the probability levels: 
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                 (5.18) 

 

This formulation allows the user greater flexibility to control the reliability of certain bounds 

of the objective value. With this formulation, it is also possible to analyze the impact on the 

optimized value of β with a variation of the probability limit α1. The created curve of β as a 

function of α1 can be a base for trade-off decisions between the upper bound of costs and the 

reliability. For instance, the end of a section, where this curve is rather flat, could be an 

interesting point for the user, since a high increase of α1 induces only a low increase of the 

cost limit. 

 

 

activation energy EA1

25480 29120 32760 36400 40040 43680 47320

u
ti

li
ty

 c
o
st

s 
fo

r 
th

e
 2

n
d

re
a
ct

o
r

activation energy EA1

25480 29120 32760 36400 40040 43680 47320

u
ti

li
ty

 c
o
st

s 
fo

r 
th

e
 2

n
d

re
a
ct

o
r

         activation energy EA1

p
r
o
b

a
b

il
it

y
 d

en
si

ty
 f

u
n

ct
io

n

25480 29120 32760 36400 40040 43680 47320

activation energy EA1

p
r
o
b

a
b

il
it

y
 d

en
si

ty
 f

u
n

ct
io

n

25480 29120 32760 36400 40040 43680 47320

 
 

Figure 5.16:   Non-monotony and pdf of the uncertain variable: activation energy EA1. 

 

Process analysis has resulted in the fact that the constrained utility costs are not monotone to 

any uncertain input for several sets of decision variables. For some cases even the other 

constrained variables such as the final product concentration and the conversion, are not 

monotone either. For the computation the activation energy has been selected as the uncertain 

input variable for the determination of the feasibility bounds, because of best convergence 

properties. 
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Figure 5.16 shows the upper bound of the utility costs for the second reactor against the 

uncertain activation energy at some given controls. It is an example of the non-monotonic 

relationship between constrained output and the uncertain input variable that can occur in the 

considered system. For a given bound of the utility costs two corresponding values for EA1 

can be identified.  These are then projected onto the probability density function and represent 

the bounds for the computation of the probability. Figure 5.17 shows the resulting optimal 

design and operation policies. 
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Figure 5.17:   Optimal operation policies, feed flowrate (left) as well as reactor temperatures 

and optimal volumes (right). 

 

 

Numerical results 

 

Figures 5.18 illustrate the reliability of both the deterministic optimization results and the 

stochastic optimization results concerning the compliance of the upper bounds of the utility 

costs through variation of the uncertain parameters by Monte Carlo simulations. For the 

stochastic results only less than 5 % of the samples exceed the bounds of feasibility as 

claimed in the formulation of the chance constraints, while for the deterministic results the 

exceeding samples are close to 50%. Moreover, it is interesting to observe the difference 

concerning the distribution shapes of the utility costs in the second reactor caused by different 

values of the decision variables. This is due to the non-monotonous relation between the 

activation energy EA1 and that constrained output. While the simulation with deterministically 

optimized controls induces one minimum of the utility costs, the one with stochastically 

optimized controls induces at least two minima and one maximum. The fact that the shape of 

the curves and the number of peaks strongly depend on the values of the decision variables is 

illustrated in the two graphics at the bottom of the Figure 5.18 as the main reason why the 

development of this new approach has become necessary. 
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Figure 5.18:   Optimization results 

 

Due to the reformulation of the objective function, the computational results show that with 

the help of this new optimization framework a high degree of flexibility concerning trade-off 

decisions between the optimization target and the reliability is guaranteed. Moreover, the 

relationship between the probability levels and the corresponding values of the objective 

function can be used for a suitable trade-off decision between profitability and robustness. 

Tuning the value of αi is also an issue of the relation between feasibility and profitability. The 

solution of a defined problem, however, is only able to arrive at a maximum value αmax
 which 

is dependent on the properties of the uncertain inputs and the restriction of the controls and 

outputs (Arellano-Garcia et al., 2004b). 

 

Feasibility analysis 

 

The knowledge of αmax
 is decisive; if a value greater than αmax

 is selected, the feasible region 

will be empty. For linear systems, an easy-to-use method has been introduced in the previous 

Chapter to compute the maximum feasible confidence level. Thus, αmax
 can be obtained by a 

simulation run. In this Chapter, a preceding probability maximization step is set up to find out 

the maximum probability value. For this purpose, in case of a joint constraint the original 

objective function is replaced with 

 

( ){ }min max
i i imax Pr y y , y , i 1, , L≤ ≤ =u ξ … .                (5.19) 

 

and then the optimization problem is solved. In case of single constraints the procedure is 

carried out iteratively for each chance constraint creating a multidimensional Pareto front. 

 

5.3   Chance-constrained optimization under time-dependent uncertainty 

 

Uncertainty and variability are inherent characteristics of any process system. Moreover, 

measurements often contain random errors that invalidate the process model used for 

optimization and control. This implies that neither the magnitude nor the sign of the error can 

be predicted with certainty. However, the uncertainties considered are continuous variables, 

not results of discrete events. This means that there is infinity of possible “discrete” values for 
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the events associated with continuous time-dependent variables. The only possible way these 

weaknesses can be characterized is by use of probability distributions. Besides, uncertain 

variables can be constant or time-dependent in the future horizon (Fig. 4.13). They are 

undetermined before their realization. Moreover, usually only a subset of variables can be 

measured. The unmeasured variables are though open loop but should be constrained under 

uncertain disturbances. 

 

Therefore, in this section, the chance-constrained approach is extended to deal with time-

dependent uncertainties. For this purpose, a dynamic process with NY time-dependent output 

state variables y(t), NU time-dependent control variables u(t), and NΦ time-dependent 

uncertain parameters ξξξξ(t) is considered. The probability Pr of complying with a certain 

restriction which corresponds to the output state variable y
sp

 at every time point, t, during the 

process operation is to be calculated and formulated by the following expression: 

 

( ) [ ]{ }SP
0 fPr y , t, y , t t , t≤ ∀ ∈u ξ              (5.20) 

 

In order to transform the infinite number of time points to a finite number of representing 

values, the entire time horizon is divided into several short time intervals where both the 

control variables and the uncertain variables are piecewise constant. Due to the monotony 

between the restricted output y
SP

 and at least one uncertain parameter, the value of this 

uncertain parameter ξSP
, which corresponds to the bound of the constrained output y

SP
, can be 

calculated for every time interval JT according to the following equation: 

 

( )SP

NMM NMM 1

SP
1 JT 1f u , , u , , , , y−ξ = ξ ξ� �   with   NMM JT N= × Φ               (5.21) 

 

However, for NT time intervals, the probability of complying with the constraint for all time 

intervals can be computed by multivariate integration of a probability density function over all 

uncertain parameters as follows: 

 

( )
NMM

SP SP

N

NMM NMM1 1Pr , , d d

Φξ ξ∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞ −∞ −∞

= ρ ξ ξ ξ ξ∫ ∫ ∫ ∫ ∫ ∫� � � �   with  NMM NT N= × Φ             (5.22) 

 

Each integration bound of the uncertain parameter ξSP
 corresponds to the bound of the 

constrained output y
SP

 within the corresponding interval. All the other uncertain parameters 

will be integrated over their entire space. For the case of two dynamic random variables 

(NΦ=2) the calculation will be simplified to 
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               (5.23) 
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With 
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j
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−
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Since only few discretization points are required for the integration over a relatively large 

integration space with an acceptable accuracy, the orthogonal collocation method on finite 

elements has been proved to be very efficient. Based on this, a calculation scheme has been 

derived where the first uncertain parameter ξ1 is discretized in the first interval. For each 

resulting collocation point (NK), a value for the second uncertain parameter ξ2
sp

 can be 

obtained which exactly corresponds to the bound of the constrained output y
SP

  within this 

interval and, thus, forming the bound for the second integration layer. Over the new derived 

integration space, the second uncertain parameter can be discretized. Thus, in case of two 

dynamic random variables, NK
2
 collocation points result for the first interval. This procedure 

will then be repeated until the next-to-last integration layer. The approach can be represented 

by the following computation tree structure, 

 

  
 

Figure 5.19:   Computation tree structure for time-dependent uncertainties 

 

Since the values below the integration bound are only used for calculations in the following 

integrals, only one value which corresponds to the bound of the constrained output is required 

for the last uncertain parameter of the last time interval. Thus, the probability of complying 

with the restrictions of the last interval under given values of the other uncertain variables and 

all control variables will be obtained. This value can also be seen as a part of the probability 

density function of the next-to-last integration layer. The integration along this layer leads to 
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the probability calculation concerning this layer. This procedure will be carried out up to the 

most superior integration layer and, thus, we finally obtain the originally wanted probability 

for fulfilling the constraints of the entire time horizon. Furthermore, to solve the NLP-

problem with a standard NLP solver such as SQP, gradients of the objective function and the 

constraints with regard to the control parameters u(t) are additionally required. These 

gradients can be computed as follows: 
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5.3.1   Illustrative example: a semi-batch reactor under time-dependent uncertainty 
 

In order to assess the applicability of the developed approach to allowing for dynamic random 

variables, in this section a simple semi-batch reactor example is considered where a sequential 

reaction system ( A B C→ → ) takes places (Fig. 5.20). Both reactions are assumed to be first 

order. Basically, the aim is to achieve a certain concentration of the desired product B and 

minimize the batch time by means of manipulating the feed flow rate Fe(t). For the sake of 

illustration, the cooling system is neglected and thus the reactor temperature is also a time-

varying operational degree of freedom. By this means, an energy balance can be omitted and 

the actual model is simply composed of the component balances, and the equations for the 

reaction rates. The model parameter and data are summarized in Appendix A4.  
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Figure 5.20:   Scheme of the semi-batch reactor. 
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The chance-constrained optimization problem can be posed as: 
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ξ(t) = x (t), x (t)  

 

The total feed amount is restricted to 162mol. In addition to the deterministic constraints, the 

defined single chance constraint corresponds to the end-point restriction on the concentration 

of B and is to be satisfied with a probability level of 98%. In this case study, the time-varying 

uncertainties are assumed to be the feed flow concentration xei(t). 
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Figure 5.21:   Feed flow and molar flow disturbance profiles. 

 

Since in the nominal optimization is assumed that the feed flow only consist of A, the bold 

lines in Figure 5.21a-b represent the deterministic problem solution of (5.25) with regards to 

the feed flow rate and the corresponding molar flow of A. Furthermore, the thin lines in all 



Stochastic Optimization Framework for Nonlinear Dynamic Systems under Chance Constraints 104 

illustrations in Figure 5.21 characterize the time-dependent behaviour of the molar flow of all 

components in (a) and for each of them in (b)-(d), respectively. 
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Figure 5.22:   Concentration profiles in the reactor for (a) nominal and (b) uncertain initial 

   composition. 

 

Based on the outcomes in Figure 5.22, the influence of the uncertainties on the composition 

during the batch operation is pointed up. In Figure 5.22b, in particular, the concentration 

changes due to the uncertain initial operating conditions underscore the fact that a classical 

open-loop implementation of off-line calculated nominal outputs may not lead to the optimal 

performance. Furthermore, constraint complying can not be assured unless a conservative 

strategy is implemented such as an extended reaction time, lower feed rate or temperature in 

order to force the reaction to fully consume the reactant. 
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Figure 5.23:   Robust optimal profiles: reactors component amount (left); temperature and  

            feed flow rate policies (right). 

 

The resulting robust optimal trajectories of the operational degree of freedom and the state 

variables are illustrated in Figure 5.23. A piecewise constant profile of the reactor temperature 

is determined. It can be seen that the desired product B is initially converted relatively slow. 

Towards the end of the batch process both restrictions for B and C, respectively, are however 

fulfilled. Moreover, the feed flow rate is high in the beginning in order to assure a fast ignition 

of the reaction. During this period A is accumulated in the reactor. Afterwards the feed flow 

rate is decreased drastically due to the static potential in the reactor. In order to achieve the 

desired conversion of B, the remaining feed is again supplied to the reactor. The developed 

strategies are robust and may be particularly effective for meeting path and terminal 

constraints under time-varying uncertainties. 
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5.4   Summary 
 

In this chapter, a new approach to chance constrained programming of large-scale nonlinear 

dynamic systems has been presented. In dynamic processes, in particular, there are parameters 

which are usually uncertain, but may have a large impact on the targets like the objective 

value and the constrained outputs. The stochastic property of the uncertainties is explicitly 

included in the problem formulation. The method is based on the employment of a monotonic 

relation between output constraints and at least one uncertain variable, so that the probabilities 

and their gradients can be achieved by numerical integration of the probability density 

function of the multivariate uncertain variables by collocation in finite elements. The new 

approach involves new efficient algorithms for realizing the required reverse projection for 

dynamic systems and hence the probability and gradient computation with an optimal number 

of collocation points. Another novelty of this approach lies in the efficient computation of 

single and joint constraints and their gradients.   

 

Moreover, the chance-constrained optimization approach has been extended to deal with such 

stochastic optimization problems where no monotonic relation between constrained output 

and any uncertain input variable can be guaranteed. Especially for those cases which involve 

chemical chain reactions or other complex reaction systems which strongly depend on the 

decision variables whether there is monotony or not. A two-stage reactor system has been 

investigated to demonstrate the potential of the new approach. Here, the novel chance 

constrained optimization approach has been used to address the problem of optimal process 

design under uncertainty and process variability, in which optimal operational considerations 

and robustness analysis are simultaneously considered. The formulation of individual pre-

defined probability limits of complying with the restrictions incorporates the issue of 

feasibility and the contemplation of trade-off between profitability and reliability. 

 

Since optimal operation and control problems involve the determination of time-varying 

profiles through dynamic optimization, such problems turn out to be even more complex in 

practical situations where the handling of time dependent uncertainties becomes a significant 

issue. Moreover, some parameters may exhibit a drift with respect to time, which could be 

due to several causes. In time these changes may gradually relieve resulting in a drift in the 

nominal values or measurements. Therefore, novel algorithms have been integrated to 

consider time-dependent uncertainties. The influence of these uncertain variables on the 

output constraints will propagate through the nonlinear dynamic process from time interval to 

time interval. Thus, the solution of the problem has the feature of prediction and robustness. 

 

In order to show the scope of the proposed approach, in the next Chapter, the stochastic 

dynamic optimization of a large-scale dynamic system under uncertainty is considered to 

show the analytical steps of the approach, and to demonstrate the efficiency of the proposed 

optimization framework. 
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Chapter 6 

 

 

 

 

 

Robust Dynamic Optimization of a Large-Scale Process System 
 

 
Due to the growing competition, dynamic optimization of batch processes has attracted more 

attention in recent years since it is a natural choice for reducing production costs, improving 

product quality, and meeting safety requirements and environmental regulations (Bonvin et 

al., 2001). However, batch processes are inherently transient and their operation demands the 

determination of time-varying trajectories rather than a set of time-invariant operating 

conditions. In the production of low-volume, high-value specialty chemicals, batch distillation 

is one of the most common operations. Although it has long been recognized that continuous 

distillation is much more energy efficient and less labor intensive than batch distillation, batch 

distillation has continued to be an important technology due to the greater operational 

flexibility that offers. This operational flexibility of batch distillation columns makes them 

particularly suitable for smaller, multi-product or multi-purpose operations. In particular, 

when chemical reactions and physical separations have some overlapping operating 

conditions the combination of these tasks in a single process unit can offer significant 

benefits. These benefits could involve avoidance of reaction equilibrium restrictions, higher 

conversion, selectivity and yield, removal of side reactions and recycling streams, 

circumvention of non-reactive azeotropes, and finally, reduction of investment costs and 

energy demands through heat integration (Reuter, 1994). Although there is an intensive 

literature on batch distillation, relatively little has been published on reactive batch 

distillation. 

 
The most outstanding feature of batch distillation is its flexibility. It allows for operating with 

completely different feed stocks and product specifications. However, this flexibility along 

with the nature of unsteady state of the process poses challenges in design and operation. In 

the chemical industry, conservative operation policies of batch processes are mostly 

determined by heuristic rules. Conservatism is necessary here to guarantee feasibility despite 

process disturbances. Although the capital investment required for a batch column is less than 

a continuous column, the unsteady state nature of batch distillation results in higher operating 

costs. Furthermore, in industrial practice, optimal control problems in batch distillation 

involve finding an open loop solution for the policies profiles. The trajectories are then 

followed by a controller to optimize the selected performance index. These trajectories are 

then optimal when the mathematical model accurately represents the physical phenomena. 

However, compensation without considering the uncertainty properties is, in fact, the wait-

and-see strategy and has several drawbacks. First, it is always a posteriori. Second, the 
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system propagates the disturbances to connecting systems. Third, a feedback can not ensure 

constraints on open-loop variables. In many cases it is impossible to on-line measure some 

variables which describe product properties (e.g. composition, viscosity, density). These 

variables have to be open-loop under the uncertainties but they should be confined to a 

specified region corresponding to the product specifications. 

 
As shown in the previous chapters, dealing with dynamic and uncertainty is a key problem for 

optimal design and operation. The techniques developed in the present thesis for the chance-

constrained optimization of dynamic systems have been illustrated for examples of limited 

complexity. In order to demonstrate the efficiency of the developed approaches, the chance-

constrained optimization framework is applied to an industrial scale process. For this purpose, 

the reactive batch distillation process is treated here. The comparison of the stochastic results 

with the deterministic results is presented to indicate the robustness of the stochastic 

optimization. The achievements are an important step towards the implementation of robust 

optimal operating policies on real uncertain processes. 

 

 

6.1   Problem definition: An industrial reactive batch distillation process 
 

The detailed modelling of batch distillation processes formulates a large-scale nonlinear 

differential and algebraic equation (DAE) system. Thus, in most of the previous studies 

concerning batch distillation optimization, simplified models have often been employed as a 

compromise between the model accuracy and the solution possibility of the optimization 

problem (Farhat et al. 1990, Reuter et al., 1989, Ahmad et al. 1998, Diwekar 1995, Low and 

Sorensen 2002). Thus far no reports on experimental studies of batch distillation processes 

optimization of an industrial scale have been found in the open literature. In this chapter, an 

industrial semi batch distillation process with a transesterification taking place in the reboiler 

is considered. Since a conventional batch process run was carried out on the industrial site, 

the model was validated with measured experiment data. Thus, a detailed dynamic model is 

used to describe the batch process more accurately. 

 

6.1.1.   Process description 
 

An industrial reactive semi batch distillation process composed of a total condenser, a column 

with 30 bubble-cap trays, a reboiler, and two accumulators (main-cut and off-cut) is 

considered. A slightly endothermic transesterification of two esters and two alcohols takes 

place in the reboiler, which can be described as follows:  

 
Educt ester (A) + Educt alcohol (B) ↔↔↔↔ Product ester (C) + Product alcohol (D) 

                  Methyl Myristat + Isopropanol  ↔↔↔↔  Isopropyl Myristat + Methanol 

 

At the beginning of the batch operation 6.9 m
3
 of pure educt ester, 2.6 m

3
 of a mixture 

consisting of educt alcohol and product alcohol of the off-cut from the last batch, 0.4 m
3
 of 

pure educt alcohol, and 80 kg of the homogeneous catalyst are charged to the reboiler. This 

leads to the initial molar fraction composition of 0.2944, 0.1329, 0.3532, and 0.2195 for the 

components A to D, respectively. The reboiler is then stirred and heated with the pressurized 

steam. During the start-up period the batch column is usually operated with total reflux. An 

inert gas is introduced to keep the column at a constant operating pressure. During the batch, a 

limited amount of educt alcohol will be fed to the reboiler in order to intensify the reaction. 

Moreover, the product alcohol, which is the lightest component, is distillated from the 

reboiler. By this means, the reaction will be shifted toward the product side. The use of an 
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excess of educt alcohol and the simultaneous removal of the product alcohol through 

distillation are very effective in displacing the reaction equilibrium towards the product side 

and hence to a high reaction rate. During the main cut period the product alcohol is collected 

in the first distillate accumulator according to a given purity specification, while in the off-cut 

period the reboiler reaction temperature will be increased such that the still remained educt 

ester can react to an acceptable extent in an attempt to avoid an additional special separation 

step. At the end of the batch process, a mixture consisting of the product ester and the educt 

alcohol will be obtained in the reboiler and separated then by a recovery column. The 

accumulated off-cut will be recharged to the reboiler of the next batch. In the real plant, the 

temperatures, flow rates, and pressures of the different positions (Fig. 6.1) can be measured 

on-line, while the composition measurements are provided via an off-line chromatographic 

analysis. Some control loops are implemented to ensure a stable process operation. The 

samples composition from the condenser and the reboiler are taken hourly and analyzed to 

obtain the composition profiles. 

 

 
 

Figure 6.1:   Flowsheet of the reactive semi batch distillation process 

 

6.1.2.   Process modelling and simulation 

 
A detailed tray-by-tray model is used to describe the batch column. Included are component 

balance, energy balance and vapor-liquid equilibrium of each tray in the unit model. The 

holdup, the pressure drop of each tray, and non-equimolar flow in the column are taken into 

consideration. The vapor-liquid equilibrium is described with nonideal liquid phase computed 

by the NRTL model. The reaction kinetic is incorporated to the model to depict the chemical 

reaction in the reboiler. The component compositions of the liquid and the vapor phases, the 

liquid and vapor flow rates, and the temperature are the variables of each tray, i.e. the total 

number of the variables are: (number of components x 2 + 3) times the number of trays. Thus, 

a large complex dynamic system composed of nonlinear differential algebraic equations 

(DAEs) is formulated. A detailed description of the model is given in Appendix A5. The 

model parameters required are the constants of the Antoine component vapor pressure 
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equation, of the component heat capacity correlation, and of the NRTL model which are taken 

from Reid et al. (1987) and Gmehling et al. (1977), respectively. The kinetic parameters of 

the endothermic transesterification are taken over by the experimental study of Reuter (1994). 

 

To efficiently simulate the reactive semi batch operation, collocation on finite elements is also 

used to discretize the dynamic model equations in each time interval. The dependent variables 

are approximated with Lagrange polynomials with shifted roots of Legendre polynomials 

(Finlayson, 1980). To keep the variables continuity between intervals, the last collocation 

point is defined as the starting point of the next interval. The Newton-Raphson algorithm is 

then applied to solve the algebraic equations derived from the discretization. By this means, 

the operation of the process is simulated from interval to interval. To take advantage of the 

dominant block tridiagonal structure of the Jacobian matrix, a Gauss elimination approach for 

sparse matrices is employed. As defined in the previous chapter, the developed simulation 

program can directly be incorporated into the optimization framework following the 

sequential strategy (Li et al., 1998).  

 

However, prior to the simulation, the pressure, holdup, and tray efficiency parameters of the 

model have to be computed. The pressure of each tray can be calculated through interpolation 

between the top and bottom operating pressures. The holdup of each tray is usually 

determined from the tray volume. Furthermore, since the value of the Murphree tray 

efficiency is typically in the range between 0.7 and 1.0 its determination is conventionally 

carried out through trial-and-error by comparing the simulated results with those of the 

measured experiment data. To overcome this drawback, in the next section, an approach to 

improve the reliability of the initial state is introduced. 

 

6.1.3.   Physical initialization 

 
In batch distillation operation there are uncertainties which affect the trajectory computed for 

the operation policies. Some of the static uncertainties are even translated into dynamic 

uncertainties due to the time-dependent nature of the process and some of them are not. In 

several systems encountered in pharmaceutical, specialty chemical and biochemical 

industries, the thermodynamic models are not exact or there is not enough data to predict the 

behaviour caused by non-idealities (Rico-Ramirez et al., 2003; Ulas et al., 2004). These 

thermodynamic uncertainties represent static uncertainties, which in most cases can be 

characterized by probability distributions functions. However, since batch distillation is of 

unsteady state nature, static uncertainties are translated into time-dependent uncertainties 

which affect the optimal operating conditions. For instance, variability observed in initial 

variables, such as the amounts of feed, and the feed initial composition, are static 

uncertainties. Since these are initial values in batch operation the uncertainties in these 

variables are not translated into dynamic uncertainties. It implies though that the profile 

determined for the optimal policies need to be moved to a new starting point and re-evaluated 

for the accurate, optimum performance. 
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Figure 6.2:   Initial conditions for the formulation of an optimization problem with time-   

                     dependent restrictions 

 

Moreover, a further inherent characteristic of batch distillation is that a batch (reactive) 

column will frequently be started up from the cold and empty state. Furthermore, as stated 

before, the amount, the composition as well as the nature of the components in the initial 

charge may be variable from batch to batch. Therefore, modelling and simulation of the batch 

distillation start-up operation from a given initial state plays an important role in the optimal 

design and operation of such process, particularly with regard to reactive batch distillation. 

Owing to the dynamic nature, initialization of such a system is a challenging problem. 

However, the initial state, in previous studies on optimization and control of batch distillation, 

is assumed to be a pseudo-warm state (Diwekar et al., 1991b; Mujtaba et al., 1998; Sorensen 

et al., 1994). Due to the unsteady state operation point for batch distillation, the most common 

solution for this problem is trial-and-error. In most available simulation software of batch 

distillation, a pseudo-warm state is also applied (Jimenez et al., 2000). In this thesis, a hybrid 

model for simulation of start-up operation for batch distillation with overlapping chemical 

reactions is proposed. Thus, the proposed model includes both equation and variable 

discontinuity. A detailed tray-by-tray model for the reactive batch distillation has been 

developed. The total equation system consists of mass balance, energy balance, vapour-liquid 

equilibrium relations and tray hydraulics. During the start-up phase each tray will be 

described from a non-equilibrium phase, in which only mass and energy transfer are taking 

place, to an equilibrium phase in which the vapour-liquid equilibrium is held (Wang et al., 

2003). The switching point between these two phases is decided by the relationship of bubble 

point temperature at the operating pressure. The equilibrium state is attained tray by tray from 

bottom to top of the column, whereas the liquid hold-up of each tray is mainly filled due to 

the reflux flow. Figure 6.3 shows the state transition of the trays in the batch column during 

start-up. At certain time point, a tray may be at the state of empty (EM), liquid accumulation 

(LA) or vapour-liquid equilibrium (VLE). 
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Figure 6.3:   Tray state transition during the start-up.  

 

 

6.1.3.1   Start-up procedure 
 

Turning on the heater in the reboiler commences the startup operation. When the temperature 

of the reboiler charge reaches its bubble point, the first vapor rises to the lowest tray from the 

bottom. Due to the condensation of the rising vapor on the tray, its state changes then from 

EM (empty) to the state of LA (liquid accumulation). Simultaneously, the condensed liquid in 

this tray is heated by the rising vapor. When the temperature reaches the bubble point, the tray 

state will be switched from LA to the equilibrium state VLE. Subsequently, the rising vapor 

from this tray reaches then the tray above and will be condensed there. As shown in Figure 

6.3 (left) the transition sequence of the batch column trays during the startup upwards is 

EM�LA�VLE. When the vapor attains to the condenser, the reflux drum level will 

gradually increase. Provided that a certain liquid level in the reflux drum is achieved, the 

reflux valve will be opened. After that the holdup in the trays will significantly be 

incremented tray by tray from top of the column to the bottom due to the reflux flow. The 

startup phase is usually completed when the lowest tray of the batch column arrives at its 

maximum holdup which also means that all trays have achieved their VLE state, respectively. 

 

6.1.3.2   Simulation of reactive batch distillation starting from a cold and empty state 
 

Based on the observation and analysis of the described start-up procedure, the model 

describing the startup operation should specify two different switching properties on a batch 

column tray. The first switching is from the non-equilibrium phase to the equilibrium phase. 

The non-equilibrium phase is defined by the EM and LA states during which there is no 

thermal separation on the tray. Due to the temperature increase the vapor leaves then the tray 

which implies that the tray state is now switched from the non-equilibrium phase to the VLE 

phase. In order to determine the switching event, the bubble point pressure is used as the first 

switching parameter. However, the tray is initially filled with air or inert gas until the bubble 

point pressure on the tray reaches the operating pressure of the column. By this means, the 

vapor leaving the tray will force up the air or inert gas to the trays above. The rising vapor 

leads to a pressure drop and thus the pressure on the tray will be increased (Fig. 6.4). The 

second switching parameter is due to the use of two different weir heights according to the 

structure and geometry of the trays. A lower weir used before the reflux valve is opened and 

the higher weir after this (Fig. 6.5). In order to describe the different separation effect with 

respect to these two different liquid holdups, a semi-theoretical tray efficiency formula is used 
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(Wang et al., 2003). Therefore, the model proposed is a hybrid one including both equation 

and variable discontinuity. In the numerical implementation the number of equations and state 

variables are not the same in different operating phases. It should be noted that the empty 

state EM does not need to be modeled. Besides, in the LA phase mass, component and energy 

balances as well as the Francis-weir formula are used to detail the condensation process. To 

describe the VLE state all MESH equations and hydraulic relations are required (see 

Appendix A6). 

 

        
 

Figure 6.4:   Simulated profiles of the distillate composition and the trays pressure. 

 

                   
 

Figure 6.5:   Simulated start-up profiles of the batch column temperature and the holdup  

                     transition. 

 

The presented profiles in the Figures 6.4 and 6.5 show the simulation of the startup period 

beginning from a cold and empty state (ambient conditions). It should be reminded that the 

reactor volume is 10 m
3
. In Figure 6.5 (left) the reboiler temperature increases steadily during 

the start-up along with the distillation of the light components. The holdup transition with its 

different weir heights is shown in Figure 6.5 (right) where, in particular, the holdups on the 

trays increase due to the reflux flow. The enlargement of the figure shows the holdup during 

the column heating through the rising vapor. Furthermore, due to the conservative operation –

total reflux- during the startup, which is the common operation on industrial site, the purity of 

the product alcohol (Fig. 6.4 left) is definitely much higher than its specification (0.98 

mol/mol). This is primarily due to the inappropriate reflux ratio profile at the operation 

beginning. Besides, since the product alcohol can not be removed rapidly from the reboiler, 

the reaction will be lowered.  

 

Based on the simulation results of the start-up, alternative operations can be derived. So for 

instance, since the product alcohol purity attained at the very beginning of the start-up 

procedure is higher as required (Fig. 6.4 left) it is not necessary to wait until the last batch 

column tray is filled by the liquid flow stream due to the reflux. By this means, distillate 

product can be withdrawn just after the reflux drum has reached a certain level such that a 

suitable corresponding reflux ratio can be established by taking care of the maximum vapour 
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load. The decision of the time point, when to remove the distillate product, can be determined 

through simulation of the start-up phase with the method of the physical initialization 

introduced in this section. 

 

6.1.3.3   Optimal operation of reactive batch distillation including the start-up phase 
 

In this section, the optimal operation problem of an industrial reactive semi-batch distillation 

column including the startup period is solved. The aim is the minimization of the total batch 

time subject to the model equation system (see appendix A6). The total equation system 

consists of mass balance, energy balance vapor-liquid equilibrium relations and tray 

hydraulics. The tray hydraulics is related to the geometry of the trays and essential for 

computing the pressure drop and holdup of each tray. The reaction kinetic is added to the 

model to depict the slightly endothermic trans-esterification in the reboiler. Following the 

process description in 6.1.1, during the batch a limited amount of educt alcohol will be fed to 

the reboiler in order to increase the reaction rate in the desired direction. 

 

To simulate and optimize the process efficiently, the orthogonal collocation on finite elements 

is used to discretize the dynamic model equations in each time interval. Since the dynamic 

system exhibits both continuous and discrete aspects, a difficulty in solving the model 

equations is to deal with state variables which will be switched from non-equilibrium to an 

equilibrium phase. In addition, discontinuity also arises while the liquid holdup of each tray is 

filled from the top of the column to the bottom. To overcome those problems, a multiple time-

scale strategy is proposed to guarantee a smooth transition between the different transition 

states during the start-up period (Fig. 6.6). 
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Figure 6.6:   Multiple time-scale strategy. 

  

In this strategy, the large time intervals are to be long enough for the practical realization as 

well as for the reduction of the computation time in the sensitivity calculation for the 

optimization. In order to keep the continuity of the variables, the last collocation point is used 

as the starting point of the next interval. Furthermore, small time intervals are adjusted in the 

simulation and their length is kept more flexible to guarantee the convergence in the Newton 

iteration. In case of non-convergence, a step length adjustment will be activated to reduce the 

step length until convergence is achieved. Moreover, the last collocation point of a small time 

interval must be one of the collocation points of the large time interval. Simulation studies 

have shown that one advantage of the collocation method is that the solutions of state 

variables at the same time point are almost independent of the step length. Therefore, the state 

variables at those large intervals can be used to compute the sensitivities. By this means, the 

gradient calculation has to be done only at the end of one large time interval. As a result, both 

the number of decision variables and the computation time for the sensitivity calculation can 

be significantly reduced. 
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The independent variables i.e. the only decision variables of the problem to be optimized 

using the NLP solver SQP, following the sequential strategy, are the feed flow rate into the 

reactor, and the reflux ratio. In addition, the lengths of the different time intervals are also 

considered as independent variables in order to conveniently handle the fraction switching 

time between the fractions and the total batch time. In order to compare the optimal results 

with those of the experimental run, the total amount of product alcohol recovered in the main 

cut fraction is restricted to a lower bound predetermined by experimental data. Furthermore, 

there are two constraints: one concerning to the average distillate composition at the end of 

the main cut period and the second one is related to the bottom purity at the end of the batch 

process, respectively.  

 

        
 

Figure 6.7:   Optimal profiles of the reflux ratio and the feed flow rate. 
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Figure 6.8:   Optimal distillate composition and holdup transition profiles. 

 

The optimal policies for the feed flow rate and the reflux ratio indicate both the thermal 

separation and chemical reaction effects (Fig. 6.7). The more product alcohol in the entire 

column, the less reflux ratio we need to satisfy the purity restrictions. A slow increase of the 

reflux ratio in the first 6 hours is allowed, since a large amount of product alcohol results from 

the drastic increase of the feed flow of the educt alcohol. However, when the feed flow has 

reached its maximum value, the reflux ratio needs to increase drastically in order to ensure the 

distillate purity constraint. The decrease of the reflux ratio after 11.5 h can be explained by 

the time delay between the feed supply of educt alcohol and the resulting effect of the 

formation of product alcohol caused by the chemical reaction. However, the average distillate 

composition at the end of the main fraction is to be fulfilled and not its instantaneous value. 

Moreover, to meet the purity requirement of the educt ester at the end of the batch process, an 

amount of feed is needed to react at the end of the charge. Figure 6.8 left shows the 

instantaneous value of the concentration at the top of the column, but the inequality constraint 

defined in the optimization problem refers to the cumulative value at the end of the main-cut 

period. Figure 6.8 right shows the holdup transition during the whole startup procedure. The 
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optimization outcomes show significant improvements in operation efficiency in comparison 

to conventional startup strategies. In particular, due to the reflux ratio strategy, which begins 

just after the reflux drum is filled up, the total batch time can be reduced. Furthermore, 

depending on the column geometry, liquid tray hold-up, vapor load and the reflux drum 

volume, in some cases the actual optimal reflux ratio strategy will be executed while the batch 

column trays are filled. For some systems, for the sake of simplicity, it might be more 

convenient to determine at first a feasible, reliable initial state from which a mathematical 

optimization can be carried out. However, to decide when and how much reflux ratio is 

appropriate, the simulation i.e. the model-based optimization including the start-up phase 

from a cold and empty batch column is required. The shown results clearly indicate the 

effectiveness and efficiency of the approach.  

 

6.2 Deterministic Off-line Optimization 

 

As stated before batch processes are inherently dynamic and thus the complete profiles of the 

decision variables are needed in order to define their optimal operating policies. In most 

studies, deterministic model-based optimization approaches have been performed for batch 

distillation processes using a nominal model (Low et al., 2002; Li et al., 1998; Arellano-

Garcia et al. 2002, 2003). However, uncertainty in the model parameters or in the operating 

environment might have detrimental effects on the optimized process. Thus, since the 

operation policy developed is highly sensitive to the parameters and boundary conditions, 

product specifications may often be violated when implementing it in the real plant.  

 

6.2.1 Optimization problem formulation 

 

To evidence the performance of the developed approach (Chap. 5), the deterministic 

optimization of the large-scale nonlinear dynamic process described in section 6.1.1 is carried 

out at first. For this purpose, the model employed is the same as the one described in section 

6.1.2 and Appendix A5. This model has been validated with experimental data (Li et al., 

1998). Furthermore, based on the modeling approach for the startup of reactive batch 

distillation processes starting from a cold and empty state, a feasible reliable initial state is 

generated from which the deterministic model-based optimization is performed. Nonetheless, 

in view of the expected computational load required for the stochastic optimization, which 

strongly depends on the number of uncertain variables considered as well as on the total 

number of intervals with regard to the gradient computation, the process is scale-down 

without loss of generality. Accordingly, the reactor dimension, the column diameter and the 

initial amount of the charge are reduced. By this means and based on the orthogonal 

collocation method (three points), the resulting tailored system has now 233x3x30=20.970 

state variables and 90 control (independent) variables which include the reflux ratio Rv, the 

feed flow rate into the reactor F as well as the time length of the different intervals.  

 

In this thesis, the posed dynamic optimization problems are solved using the sequential 

approach where the variables space is divided into state x and control space u. Therefore, only 

the control or independent variables are optimized by the NLP solver (e.g. SQP). The large-

scale DAE system is discretized with the orthogonal collocation on finite elements, thus, the 

differential and algebraic (dependent) variables are solved throughout the integration of the 

DAEs with the Newton method, and the required sensitivities are computed based on the 

interval gradient information (Li et al., 1998). The whole batch time is discretized into 30 

time intervals. The control variables are set as piecewise constant.  
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The aim of the optimization of the reactive semi-batch distillation process is the minimization 

of the total batch time. Hence, the objective function of the nonlinear dynamic optimization 

problem can be formulated as follows: 

 

( )f v u fmin t F(t),R (t), t , t           (6.1) 

 

Since the time-length of the different intervals are also regarded as independent variables, tu 

and tf refer to the switching time point from the main-cut to the off-cut period and the total 

batch time, respectively. Besides, the optimization problem is subject to equality constraints 

which include the model equations and an additional constraint which corresponds to the 

limited amount of educt alcohol M1 to be fed to the reactor or reboiler: 

 

f

0

t

1
t

F(t)dt M=∫            (6.2) 

 

It is also subject to inequality constraints including product purity specifications. So, the 

average composition of the product alcohol xD accumulated during the main-cut period is at 

tu: 

 

D ux (t ) 0,98  mol/mol≥           (6.3) 

 

According to the process operation requirements, the remaining educt alcohol in the reactor or 

reboiler should have been converted by the end of the batch process tf as far as possible. Thus, 

an upper bound for the concentration of the educt alcohol is considered, 

 

A fx (t ) 0.002 mol/mol≤           (6.4) 

 

As a result, two time-dependent end-point purity restrictions are considered. In addition, the 

total amount of the product alcohol, D, collected in the main-cut period is restricted to a lower 

bound in order to assure a reasonable comparison with other optimal operational strategies 

 

u minD(t ) D≥              (6.5) 

 

Physical restrictions are also included in the optimization problem. These are among others an 

upper and lower bound for the reflux ratio Rv and the feed supply F:  

 
L U
v,min v v, maxR R (t) R≤ ≤           (6.6) 

 
L U

maxminF F(t) F≤ ≤            (6.7) 

 

6.2.2 Deterministic optimization results 

 

The computed trajectories of the control variables for the optimal operation are illustrated in 

Figure 6.9. The optimal results in Figure 6.9, analogous to Figure 6.7, indicate again both the 

thermal separation and chemical reaction effects. The more product alcohol in the entire 

column, the less reflux ratio is required to comply with the product specifications. The policy 

of the feed flow rate shown in Figure 6.9 illustrates an optimal distribution of the educt 

alcohol during the batch in order to forward the reaction to the product side. However, since 

the supply of educt alcohol increases, the reflux ratio is augmented considerably in order to 
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guarantee the fulfillment of the distillate purity restriction. Furthermore, due to the time 

displacement between the feed flow rate of educt alcohol and the resulting effect of formation 

of product alcohol caused by the progress of the chemical reaction, the reflux ratio is reduced 

before the main-cut period is completed. Moreover, in consequence of the educt alcohol 

excess during the off-cut period, which guarantees the desired conversion in the reboiler, the 

reflux ratio is held down to favor the reaction rate. By this means, the end-point restriction 

concerning the remaining educt ester (6.4) can be fulfilled. 
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Figure 6.9:   Optimal reflux ratio and feed flow rate profiles via deterministic optimization. 

 

 

6.2.3 Impacts of the uncertain inputs to the constrained outputs 

 

The purpose of this section is to illustrate the effect of uncertainty for the process treated 

above. Generally speaking, the design of chemical processes required a good deal of data, 

most of which are obtained from specific experiments or are estimated from correlations. The 

resulting design contains uncertainties, but their magnitudes may be unknown. In industrial 

practice, overdesign factors has commonly be applied to overcome this problem.  

 

In this section, uncertainties are considered in order to simulate the impact of the uncertain 

inputs to the constrained outputs. In reactive batch distillation, the chemical reaction kinetic 

parameters are usually considered as uncertain parameters, since they are often determined 

through a limited number of experimental data. Furthermore, the amount and composition of 

the initial charge are also uncertain, since they are mostly product outputs of a previous batch. 

In this case study, the Arrhenius equation (Eq. 6.8) is used to describe the way the rate 

constant k varies with the absolute temperature T. 

 
E

RT
0k k e

−

= ⋅             (6.8) 

 

where E (activation energy) represents the energy difference between the reactants and an 

activated species. R is the gas constant. The term k0 stands for the frequency factor. This is 

related to the frequency of molecular collisions in the collision theory and to the entropy term 

in the transition state theory. Taking the natural logarithm of both sides of the Arrhenius 

equation (6.8), it can be redefined as follows: 

 

0

E
ln k ln k

RT
=− +            (6.9) 
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Using a linear regression the slope and ordinate intercept of (6.9) can be determined. Figure 

6.10 (a)-(d) shows the reaction rate based on different Arrhenius parameters. In the 

deterministic optimization the nominal values of E and k0 are used. However, while 

remarkably accurate in a wide range of circumstances, the Arrhenius equation is not exact. 

Thus, the values of E and k0 can be expressed as a probability density function (Fig. 6.10-a). 

Usually they are given in an area of validity (Fig. 6.10 b-d). By this means, the kinetic 

parameters are uncertain and thus they have a great impact on the output variables which are 

then also uncertain. This is particularly the case when both parameters are stochastic (Fig. 

6.10-d). 
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Figure 6.10:   Reaction rate with different Arrhenius parameters. 
 

In order to compare the performance results of the deterministic optimization with those of 

the stochastic optimization, the effect of the uncertainties is emphasized. Thus, the optimal 

operation of the reactive batch distillation based on the nominal values of the parameters is 

taken into account at first.  Here, we assume that the two kinetic parameters, the frequency 

factor of the forward and reverse reaction, respectively, and the tray efficiency are uncertain. 

Besides, they have a correlated multivariate normal distribution according to Table 6.1. The 

terms of the correlation matrix are values that result from parameter estimation. It should be 

noted that the assumption that the Arrhenius constants are correlated and that all are normally 

distributed is not necessarily a practical assumption.  
 

 expected 

values 

standard 

deviation 

correlation 

matrix 

k01 43093,9 5% 

k02 15671,0 5% 

η 0,70 3% 

1 0,5 0,2

0,5 1 0,2

0,2 0, 2 1

 
 
 
 
 
  

 

 

Table 6.1:   Random parameters. 



Robust Dynamic Optimization of a Large-Scale Process System 119 

 

1,5%

2,0%

2,5%

35500 38000 40500 43000 45500 48000 50500

e
d

u
c

t
e

s
t
e

r
 c

o
n

c
e

n
t
r
a

t
i
o

n

frequency factor   k
01        

97,5%

98,0%

98,5%

35500 37500 39500 41500 43500 45500 47500 49500

frequency factor  k
01

p
r
o

d
u

c
t
 a

lc
o

h
o

l 
c

o
n

c
e

n
t
r
a

t
io

n

 
 

(a)                                                                       (b) 

 

  

1,5%

2,0%

2,5%

13000 14000 15000 16000 17000 18000

e
d

u
c

t
e

s
t
e

r
 c

o
n

c
e

n
t
r
a

t
io

n

frequency factor  k
02        

97,5%

98,0%

98,5%

13000 14000 15000 16000 17000 18000

frequency factor k
02

p
r
o

d
u

c
t
 
a

lc
o

h
o

l
 c

o
n

c
e

n
t
r
a

t
i
o

n

 
 

(c)                                                                       (d) 

 

Figure 6.11:   Impact of the uncertain frequency factors k01 and k02 on the constrained purity  

                       restrictions using the optimal policies determined through deterministic  

                       optimization. 

 

From Figure 6.11 a-b, it can be noticed that though the frequency factor k01 has a negative 

correlation with the educt ester concentration, has it a positive correlation with the product 

alcohol concentration. This is based on the fact that the larger k01, the higher the reaction rate 

and, thus, the products become purer. However, due to the lower value of k02 compared to k01, 

the sampling correlation between k02 and the product concentrations (Fig. 6.11 c-d) is not 

clearly defined. Furthermore, the scatterplots in Figure 6.11 a-d show the constraints defining 

the feasible region (grey labeled) together with the simulation points calculated by 

propagating the parametric uncertainty through the model via Monte Carlo simulation with 

1000 points. Sampling the random parameters based on the information of Table 6.1, it can be 

seen that the implementation of the deterministic optimization results will lead to about 50% 

of constraint violations. However, uncertainty and variability are inherent characteristics of 

any process system. Besides, for a quantitative understanding and control of transient 

processes, it is essential to relate the observed dynamical behavior to mathematical models. 

As stated in the previous chapters, these models usually depend on a number of parameters 

whose values are unknown or only known roughly. Furthermore, often only a part of the 

system's dynamics can be measured. Thus, the explicit consideration of the stochastic 

information of the uncertain input should be included in the optimization problem. By this 

means, an appropriate decision regarding the optimal policies will be taken in order to 

compensate between the objective function and the risk of constraint violation. 
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6.3 Stochastic Dynamic Optimization 
 

Decision making inherently involves consideration of uncertain outcomes. Thus, we are 

confronted with decisions a priori for the future operation. The decisions should however be 

taken before the realization of the random inputs. These uncertain variables arise due to the 

unpredictable and instantaneous variability of different process condition, and can be constant 

or time-dependent in the future horizon. Moreover, the use of feedback control in order to 

compensate uncertainty can not ensure constraints on open-loop variables. Consequently, the 

consideration of uncertainties/disturbances and their stochastic properties in optimization 

approaches are necessary for robust process operation, and control. The stochastic distribution 

of the uncertain variables may feature different forms. The developed approach assumes 

though the availability of the uncertainty quantification and the knowledge of a process 

model. However, while a model which describes the process considered may be available, in 

many cases, the quantification of uncertainties represents a bottleneck in applying this 

approach. On the other hand, there has been an increasing attention on statistical analysis in 

the process industry. Furthermore, measurement instruments are increasingly installed to 

collect data from industrial processes. The mean and variance values can be determined based 

on historical data analysis. However, with the proposed optimization framework in Chapter 5 

stochastic optimization with even an approximated distribution is more reliable than a 

deterministic optimization. In this thesis, uncertainties are assumed to have a correlated 

multivariate normal distribution, but the presented approach does not depend on the 

distribution form. 

 

6.3.1   Chance constrained optimization problem formulation 

 

In this section, the developed approach in Chapter 5 is applied also to the process described in 

6.1.1. The uncertainty properties are included in the problem formulation. Thus, the model 

incorporates the probabilistic nature of the uncertain inputs. The resulting chance constrained 

optimization problem is formulated as follows, 

 

( )f v u fmin t F(t),R (t), t , t  

s.t. 
f

0

t

1
t

F(t)dt M=∫  

 u minD(t ) D≥  

 { }D u 1Pr x (t ) 0,98  mol/mol≥ ≥ α                  (6.10) 

 { }A f 2Pr x (t ) 0.02 mol/mol≤ ≥ α  

 L U
v,min v v, maxR R (t) R≤ ≤  

 
L U

maxminF F(t) F≤ ≤  

 

Uncertain variables are the frequency factors k01, k02, the activation energy E1 and E2, the tray 

efficiency η as well as the initial composition of the charge in the reboiler. To restrict the risk 

of constraint violation under the uncertainties, the product specifications in (6.3) and (6.4) are 

now expressed as single chance constraints at first. These impose lower bounds on the 

probability that the specified purity restrictions are fulfilled. Thus, α1 and α2 are the user-

defined probability levels to hold the two specifications. Following the solution approach in 

this thesis, the stochastic programming problem will then be relaxed to an equivalent 

deterministic NLP problem. As indicated in the previous chapters, the main challenge lies in 

the computation of the probabilities of holding the constraints as well as their gradients. 
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6.3.2   Inverse mapping of the feasible region 
 

Due to the nonlinear propagation, it is difficult to gain the stochastic distribution of output 

variables. Thus, nonlinear chance constrained programming remained as an unresolved 

problem. As stated before, in this thesis, the computation of the output probability distribution 

is avoided. Instead, an equivalent representation of the probability is derived by mapping the 

chance constrained region of the outputs back to a bounded region of the uncertain inputs. 

However, before the developed optimization framework can be applied, it needs to be proved 

whether there exists a strict monotonic relationship between constrained output and uncertain 

input or not. For this purpose, the impacts of the uncertain parameters on the constrained 

output variables are analyzed. Using the trajectories of the controls determined by the 

deterministic optimization, the constrained outputs are computed with values around the 

expected value of the uncertain parameters through simulation. 
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Figure 6.12:   Impact of the frequency factors on the purity restrictions. 

 

The simulation results show in Figure 6.12 that the two frequency factors have a strong 

impact on the output constraints in all regions. They have a monotonic relationship to both 

product restrictions. As shown in Figure 6.13, the tray efficiency exhibits also a strongly 

monotonic relation to the constrained output variables in the probabilistic constraints at any 

rate. The tray efficiency causes a strongly negative effect on the purity constraints in lower 

regions while causing a slightly positive effect in upper regions. By this means, there is a 

positive correlation  Dη x↑⇒ ↑ , which corresponds to the distillate purity restriction, and, on 

the other hand, a negative correlation related to the educt ester constraint Aη x↑⇒ ↓ .  
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Figure 6.12:   Relation between tray efficiency and the constraint output variables. 
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In this case study and due to numerical reasons concerning the convergence reliability, the 

tray efficiency η is chosen as the uncertain variable  

 Sξ , which has, in fact, a strict monotone 

relation to both output constraints, thus, the principals of the developed approach in 5.1.1 can 

be applied to solve the stochastic nonlinear dynamic optimization problem. Due to the 

positive monotony, the boundary of the constrained variable in the output region corresponds 

to the limit value  L

 Sξ  for  

 Sξ  in the input region. Thus, we can then transform the originally 

chance constraints: 

 

{ }SP
D u DPr x (t ) x≥    to   { }L

1 Pr− η ≤ η  and                  (6.11) 

 

{ }SP
A f APr x (t ) x≤    to   { }L

Pr η ≥ η                   (6.12) 

 

However, this boundary depends also on the realization of the other uncertain 

variables   
, , ) S  S-1(ξ ξ� . They are computed on each collocation point of these variables. The 

computation of the time-dependent uncertain variable boundaries is carried out through 

inverse mapping of the feasible output region according to: 

  

( )L -1
01 02 1 2 0 D u v(t) F k , k , E , E , n , x (t ), R (t), F(t), tη = ∆                (6.13) 

 

( )L -1
01 02 1 2 0 A f v(t) F k ,k , E ,E , n , x (t ), R (t), F(t), tη = ∆                (6.14) 

 

where n0 and ∆t denote the initial composition of the charge and the different lengths of the 

time intervals, respectively.  Accordingly, the corresponding bound of the random variable in 

the numerical integration can be determined based on these relations (6.13) and (6.14). 

However, due to the model complexity of the reactive batch distillation, there is no explicit 

expression for these expressions. Thus, in order to solve the nonlinear dynamic optimization 

problem with time-dependent constraints, uncertain parameters occurring throughout the 

entire operation, and different values of u in different time intervals, the dynamic solver 

introduced in chapter 5 is required (see Fig. 5.4). One main task is the iterative determination 

of the tray efficiency which exactly generates the output variables values SP
Dx  and SP

Ax  by 

given trajectories of the independent variables. This occurs however with different 

combinations of the other uncertain parameters. By this means, a raster results from the five-

point-collocation which is extended over the space of the uncertain variables (Fig. 6.13).  
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Figure 6.13:   Collocation points of the frequency factors. 
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In Figure 6.13, the grid points correspond to the integration bounds for the probability 

computation. Thus, the dynamic solver is called 25 times for each probability. The 

computation of ηL
 follows the reverse projection (inverse mapping) approaches presented in 

5.1.1. In order to emphasize the advantages of both approaches for the specific case of the 

reactive batch distillation system, several studies were accomplished. For this purpose, the 

number of required simulation calls can be seen as a degree of efficiency. Thus, Figure 6.14 

shows a representative example for the probability computation of complying with both 

product constraints and their corresponding simulation calls. 
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Figure 6.14:   Number of required simulation calls for both approaches, linear inverse  

            interpolation LII, and bisectional method BM. 

 

In Figure 6.14 a-b, it can be seen that the number of simulation calls is apparently lower for 

LII than using BM. However, this does not apply to all collocation points. The cases, where 

just one or two simulations calls are required, can be explained by the fact that the sought 

reverse projection bound ηL
 lies outside of the search range [-3σ, +3σ] and thus no further 

computation is needed. Accordingly, the BM requires for the example above a total of 466 

simulation calls while the LII approach implies presently 406 calls for the computation of 

both single probabilities. At an average, the iterative determination of ηL
 with LII is approx. 

10% faster. Therefore, it is selected for further computation related to the system treated in 

this chapter (Arellano-Garcia et al., 2003b). 

 

6.3.3   Computation of the probability gradients 
 

Another main task of the dynamic solver is finally the sensitivity computation. As shown in 

section 5.1.1.2, the method for the computation of the gradients with respect to the decisions 

variables u is based on the formulation of the total differential of the model equations g:  
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 ∂ξ∂ ∂ ∂ ∂   
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g u u u 0

u u u
                (6.15) 

 

As exemplified in the previous chapter, Equation (6.15) can generally be reformulated as 

follows:  

 

LL
ss

x

x

∂ 
   ∂∂ ∂ ∂   = −   ∂ ∂∂ξ∂ξ      
 

∂ 

ug g g

u

u

                   (6.16) 

 

The application of the approach to the reactive semi-batch distillation leads though to a large-

scale system of equations generated after discretization of the models equations with the 

orthogonal collocation method. The derived equation system can be formulated as follows: 

  

 

 

 

 

(6.17) 

                   ℑ Ω Γℑ Ω Γℑ Ω Γℑ Ω Γ 

 

Where Ji denotes the Jacobian matrix at the time interval i, and m is the total number of time 

intervals which result from the discretization,  

 

iJ =
ix

∂

∂

g
                     (6.18) 

 

Ci represents the gradients of the model equations with respect to the bound value,  

 

iC =
L
s i

∂

∂ξ

g
                     (6.19) 

 

In contrast, Ai describes the derivative of the model equations with respect to the variables x 

which correspond to the previous interval (i-1), 

 

iA  =
i 1x −

∂

∂

g
                     (6.20) 

 

Fi denote the derivative with respect to the decision variables u, 

 

iF =
i

∂

∂

g

u
                     (6.21) 
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Thus, all these variables can be derived from the model equations. In Equation (6.17) the rows 

of the first matrix on the left hand side represent the model equations in their respective 

intervals, while die columns denote the variables x which also include the constrained outputs 

yi. However, since the constrained outputs yi are defined by their specifications yi
SP, its 

corresponding column will be replaced by the uncertain inputs L
sξ . Moreover, since the 

formulated nonlinear dynamic optimization problem under single chance constraints in (6.10) 

encloses output constraints for fixed end time points, namely, at the end of the main-cut 

period and at the end of the batch process, the gradients Ci are also located in the last column 

of the matrix ℑℑℑℑ . By this means, all model equations of the intervals (i = 1,…., m-1) do not 

depend on the other variables of the last time interval m since the last column in ℑℑℑℑ  stands for 

the uncertain input variable L

sξ . Thus, Jm represents the modified Jacobian matrix where the 

constrained outputs are replaced by L

sξ . In fact, the actual unknowns at the present system of 

equations (6.17) are the derivatives of x at the interval i with respect to the decision variables 

u at the interval j ( x∂ ∂u ). They are represented in ΩΩΩΩ (6.17) by ,ijxu . However, primarily the 

values xu of the last row of  ΩΩΩΩ are of interest since they include the desired gradients L

s∂ξ ∂u . 

Furthermore, in ℑℑℑℑ  are the matrices Ai, which stand for the derivative of the model equations 

of the current interval with respect to the variables of the previous interval, only at the column 

of the last collocation point taken, since these operate as initial values for the current interval.  

 

However, since the individual matrices in (6.17) are very large, the solution of the whole 

equation system poses some difficulties. So for instance, the entries of ℑℑℑℑ , namely, Ji, Ai, and 

Ci are even matrices, each of them has the dimension 699x699 while the dimension of Fi and  

xu,ij is 699xb, respectively. Here, b stands for the number of control variables which depends 

on the number of intervals m. The unknowns of the equation system are computed using the 

Gauss elimination approach. By this means, the matrix ℑℑℑℑ  in (6.17) is transformed to an upper 

triangular matrix which features a main diagonal composed of unit matrices, while the matrix 

ΓΓΓΓ  is converted to a lower triangular matrix. The allocation of the matrix ΩΩΩΩ, however, remains 

unchanged. 
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Figure 6.15:   Structure of the equation system after the Gauss elimination (Arellano-Garcia et 

            al., 2003c). 
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By means of the structure illustrated in Figure 6.15, the required gradients of the reverse 

projected bound value L

sξ  with respect to the control variables u can easily be computed. 

Furthermore, around 60% of the initially computing time could be saved by exploiting the 

structure of the sparse matrices Ai and Ci. 

 

The computational strategy for solving the nonlinear chance constrained optimization 

problem is illustrated in Figure 5.4. The gradient vector is simultaneously computed to the 

probability computation of each single chance constraint by numerical integration in the 

limited area of the uncertain inputs. For this purpose, the optimal number of collocation points 

and intervals is firstly determined based on a trade-off between computational time and 

accuracy. In this case study, in particular, the five-point collocation is more efficient than the 

three-point-collocation at any rate, so for instance, with two intervals the error of probability 

computation is always less than 1%. 

 

6.3.4   Stochastic optimization results 

 

In this section, the results of the stochastic optimization problem formulated in (6.10) 

including single chance constraints are presented. Figure 6.16 shows the resulting optimal 

operation policy for the reactive semi-batch distillation process. Compared to the results of 

the deterministic approach, the reflux ratio is slightly higher, which is necessary in order to 

reduce the risk of violating the purity constraints. This inevitably means that the total batch 

time has to be a little longer (5.6h) than that of the deterministic approach (5.28h).  
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Figure 6.16:   Optimal reflux ratio and feed flow rate profiles via stochastic optimization. 

 

The deterioration of the objective value is obviously the price for a higher robustness. 

However, it can easily be seen in Figure 6.17 that the desired robustness is achieved. Using 

again Monte Carlo simulation, the distribution of the constrained output variables are 

illustrated according to the operation policy obtained by the stochastic approach. Setting the 

probability level for both chance constraints to the value of 96%, by the robust optimization 

policy, the risk of violation is reduced to less than 4%.  
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Figure 6.17:   Impact of the uncertain frequency factors k01 and k02 on the constrained purity  

                       restrictions using the optimal policies determined through stochastic  

                       optimization. 

 

The numerical results presented in Figure 6.17 a-d point up the efficiency of the developed 

approach. Since the uncertainty attributes are considered, the problem solution is a decision a 

priori. The predefined probabilities to comply with the constraints are held under the 

influence of several uncertainties, thus, the decision is robust. Furthermore, it provides a 

comprehensive relationship between the performance criteria and the probability level of 

fulfilling the constraints. This issue can be used as a measurement for evaluating and selecting 

operation policies. By this means, conservative or aggressive decisions can be prevented.  

 

6.3.5   Feasibility analysis with chance constraints 

 
In this section, we focus on the analysis of the impact of chance constraint probability limits 

on the optimal process operation policies in terms of robustness and feasibility, in particular 

with regard to the optimized value of the objective function. These probability limits 

(α=confidence level) can be seen as a criterion for robustness of the optimized strategies. 

Obviously a high confidence level to ensure the constraints will be preferred. However, due to 

the properties of the uncertain input and the restrictions of the controls and outputs, it is often 

impossible to find an operation policy with a 100% guarantee for complying with the 

constraints. Thus, as already introduced in chapter 4 as well, a maximum confidence level 

max-α needs to be found first.  
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The knowledge of max-α is essential, so for instance, if a value greater than max-α is chosen, 

the feasible region will be empty. Moreover, below max-α the optimized value of the 

objective function deteriorates with an increasing probability limit due to the decrease of the 

feasible region. Hence, those regions where an increase of the probability limit α causes only 

a little deterioration of the optimized objective function are of special interest. Consequently, 

the relationship between the probability levels and the corresponding values of the objective 

function can be used for a suitable trade-off decision between profitability and robustness. 

Tuning the value of α is also an issue of the relation between feasibility and profitability. The 

solution of a defined problem, however, is only able to arrive at a maximum value max-α 

which is dependent on the properties of the uncertain inputs and the restriction of the controls.  

 

 
 

Figure 6.18:   Feasible region according to the probability levels and the objective function 

 

In Figure 6.18, we consider the case of a minimization problem subject to two single 

probabilistic constraints representing α1 and α2 the probability levels, respectively. If we 

assigned to α2 a certain probability level, we can then compute, as stated in Equation 6.22, the 

corresponding maximum achievable probability level for α1 and vice versa. For this purpose, 

we replace the original objective function and solve then the optimization problem, 
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        (6.22) 

 

The aslope solid lines within the gray area represent the isolines for max-α1. Since they have 

a monotonic relation, the value of objective function will be degraded if α1 is increased. Now, 

we repeat the computation for a lower value of α2. We get here again the maximum 

achievable probability level which is, in fact, greater than the one calculated before. If we 

continue doing the computation for further values of α2 we obtain different pairings of α2 and 

the corresponding maximum value for α1. By connecting all the resulting points to each other, 

a feasibility boundary arises under which every combination of α1 and α2 leads to a feasible 

solution. Moreover, from the maximal achievable probability level for α2 results a defined 

feasible area. If pairing values outside of this area are chosen, the feasible region will be 
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empty and the SQP algorithm can not find a feasible solution. Moreover, one can analyze for 

the reactive batch distillation the profile of the function value changing again the probability 

level and decide a suitable trade-off between profitability and reliability. For this purpose, the 

chance constrained optimization problem (6.10) is solved several times with different paring 

values of α1 and α2.  

 

 
 

Figure 6.19:   Trade-off between probability level and objective function 

 

Since the results are to be used for finding trade-off decisions between robustness and the 

benefit of the objective value, the optimized values are computed for different probability 

levels. In Figure 6.19, α1, the probability level of the distillate product purity is fixed at 99%. 

It represents the case that almost no risk can be afforded towards a violation of the distillate 

product purity. We then change the confidence level for holding the bottom purity restriction 

α2. It is worthwhile to note the significant increase of the objective value from the confidence 

level of 92% on. From this point on, it is obvious that not much reliability can be gained by 

increasing the batch time. The opposite occurs in regions of lower probabilities. For a trade-

off decision the point, at which the low increase ends and the significant increase begins, can 

be chosen (Arellano-Garcia et al., 2004a).  
 

6.3.6   Joint chance constrained optimization 
 

The stochastic optimization problem formulate in (6.10) has more than one restriction, thus, 

distinction has to be made between single and joint probabilistic constraints. A joint chance 

constraint requires the reliability in the output feasible region as a whole, while single chance 

constraints demand the reliability in the individual output feasible region. In addition, the 

joint probabilistic constraint leads to more robustness of all policies during the entire process. 

To consider a joint chance constraint, the two single chance constraints in (6.10) will be 

replaced by a joint chance constraint with the following formulation: 
 

D u

A f

x (t ) 0,98  mol/mol
Pr

x (t ) 0.002 mol/mol

≥ 
≥ α 

≤ 
                             (6.23) 

  

Due to the monotonic relations Dη x↑⇒ ↑  and Aη x↑⇒ ↓ , both purity restrictions induce 

an upper bound of the tray efficiency, η, in the integral for computing the probability of 

violation (or a lower bound for the probability of being feasible). Follwing the principles in 

section 5.1.2, we have also the convenient case that there is only an upper bound, but no 

lower bound. This means that in each step, the reverse function is computed for each purity 

restriction according to Equation (5.10) and (5.11) so that we have for each one a 

corresoponding upper bound for η: 
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 L,1 -1 SP L
 S  1  S-1 1  1ξ = F (ξ , ,ξ , y , , t) = ηu�                   (6.24) 

 
 L,2 -1 SP  L
 S  1  S-1 2  2ξ = F (ξ , ,ξ , y , , t) = ηu�                   (6.25) 

 

Then the higher one will be taken as the upper bound for the integration: 

 

{ } L  L  L
 S  1  2ξ = max η ,η                     (6.26) 

 

It is worthwhile to note that different values of  L
 1η and  L

 2η  are generated through reverse 

projection at different values of the other uncertain parameters. Taking the last point from the 

curve in Figure 6.19 (i.e.  1α = 99%  and  2α = 93% ), some corresponding curves of  L
 1η  and 

 L
 2η  are illustrated in Figure 6.20. It can be seen that the higher value according Equation 

(6.26) alternates between  L
 1η  and  L

 2η  in different situations. 
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Figure 6.20:   Tray efficiency over frequency factors 

 

Due to this alternating behaviour, it can be concluded that the joint probability resulting from 

a determined operation policy is always significantly lower than both single constraints. This 

fact can be confirmed in Figure 6.21, showing the results of both constrained outputs by the 

optimal operation policy and 1000 samples of the uncertain paramerters through Monte Carlo 

simulation. Moreover, it can be seen that the optimal policy will result in a higher reliability 

for holding the product alcohol purity than that of the educt ester purity.  
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Figure 6.21:   Constrained output after stochastic optimization. 
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Figure 6.22:   Comparison between single and joint constraints. 

 

With those results, regions which are attractive for trade-off decisions between robustness and 

the objective value can easily be identified and thus are a suitable basis for decision making. 

In Figure 6.22 the comparison between single and joint probabilistic for the stochastic 

optimization of the reactive batch distillation is shown. It can be seen that the joint chance 

constraint is more severe than the single chance constraints with the same value (α1,2 = 96% ) 

for the probability levels. Thus, if the constraints are related to safety consideration of a 

process operation, a joint chance constraint may be preferred. By this means, optimal 

operational considerations and robustness analyses can simultaneously be considered.  

 

6.4   Summary  
 

In this chapter, the application of the new approach to chance constrained programming of 

large-scale nonlinear dynamic systems has been presented. The stochastic property of the 

uncertainties is included in the problem formulation. Following the idea introduced in chapter 

5, a monotonic relation between output constraints and at least one uncertain variable is used 

so that the probabilities and their gradients can be achieved by numerical integration of the 

probability density function of the multivariate uncertain variables by collocation in finite 

elements. The new approach involves new efficient algorithms for realizing the required 

reverse projection for dynamic systems and hence the probability and gradient computation 

with an optimal number of collocation points. Another novelty of this approach lies in the 

efficient computation of single and joint constraints and their gradients. In general, the 

approach is relevant to all cases when uncertainty can be described by any kind of joint 

correlated multivariate distribution function. 

 

The scope of the optimization framework is evidenced by application to a reactive semi-batch 

distillation process under several uncertainties. The aim was the minimization of the total 

batch time subject to product purity restrictions at certain time points. A comparison of the 

stochastic results with the deterministic results has been made with respect to the objective 

values and the reliability of satisfying the purity constraints. The formulation of individual 

pre-defined probability limits of complying with the restrictions incorporates the issue of 

feasibility. Thus, a feasibility analysis for the stochastic optimization problem was offered. 

The results obtained by the implementation with a higher probability level showed that the 

consideration of uncertainties with chance constraints leads to a trade-off between the 

objective value and robustness. Furthermore, a comparison between the effect of single and 

joint constraint has been presented. These results can be used for a trade-off decision between 

robustness and profitability to select optimal and robust operation policies. 
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Chapter 7 
 
 
 
 
 

Chance Constrained On-line Optimization 
 
 
 
 
Model-based process control has become significant during the last few decades. However, 
for a quantitative understanding and control of time varying phenomena in process systems, it 
is essential to relate the observed dynamical behavior to mathematical models. Due to the 
generally limited quality and quantity of input-output data used to fit the model, the model 
will not be an exact representation of the true process. Thus, the practical implementation of 
model-based techniques often leads to a significant discrepancy between reality and 
simulation. These models usually depend on a number of parameters whose values are 
unknown or only known roughly. Furthermore, often only a part of the system's dynamics can 
be measured. Therefore, a plant model unavoidably involves uncertainties. They are either 
endemic due to the external disturbances or introduced into the model to account for 
imprecisely known dynamics. These uncertainties or disturbances are often multivariate and 
correlated stochastic sequences. Moreover, the use of feedback control in order to compensate 
uncertainties can not ensure compliance of constraints on open-loop variables. Thus, a close-
loop control requires on-line measured values of controlled variables. Many variables in the 
engineering practice can not, though, be measured on-line. These variables often represent the 
product quality and, thus, their control is desired. To overcome this problem, measurable 
variables are chosen as controlled variables in order to control the product quality indirectly. 
This concept is schematically illustrated in Figure 7.1. Here, the measurable output variable y 
will be controlled at their set-points  by using the control variables u. On the other hand, 
control of  is preferred, but, due to the lack of on-line measurement it has to be open-loop. 
In these cases,  needs to be constrained unlike y.  

SPy
Cy

Cy
 

process

ξ
yC

ycontrollers uySP

-
 

 
Figure 7.1:   The open-closed framework. 
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To guarantee yet the product quality, the common procedure in industrial practice is to select 
an extremely conservative set-point value. This implicates that the product quality will be 
unnecessarily much higher than specified and, thus, the operation costs will be much higher 
than necessary. Consequently, an optimal set of set-points for the controllers is needed which 
are neither conservative nor aggressive. In addition, constrained variables for safety or 
environmental considerations are often monitored but not close-loop controlled. Thus, it is 
required to evaluate the probability of violating these constraints at the decided operation 
point. For this purpose, in this chapter, chance constrained optimization is proposed, i.e. the 
objective function (e.g. costs) is improved and the constraints with regard to  are then to be 
satisfied with a predefined confidence level. Thus, unlike the problem definition above, where 
controls are decision variables, in the closed framework the set-points of the measurable 
outputs are defined as decision variables. The controls will react based on the realization of 
the uncertain inputs and, thus, they are uncertain variables. Consequently, the consideration of 
uncertainties/disturbances and their stochastic properties in optimization approaches are 
necessary for robust process control. 

Cy

 
In order to emphasize this issue, in this chapter, two methods based on a nonlinear model 
predictive control NMPC scheme are proposed to solve close-loop stochastic dynamic 
optimization problems assuring both robustness and feasibility with respect to state output 
constraints within an online framework. The main concept lies in the consideration of 
unknown and unexpected disturbances in advance. The first one is a new deterministic 
approach based on the wait-and-see strategy. The key idea is here to anticipate, in particular, 
violation of output hard-constraints, which are strongly affected by instantaneous 
disturbances, by backing off of their bounds along the moving horizon with a decreasing 
degree of severity leading then to the generation of a trajectory consisting of the modified 
constraint bounds. This trajectory is however dependent on the amount of measurement error 
and parameter variation including uncertainty. The second method is based on the stochastic 
approach proposed in this thesis to solve nonlinear chance-constrained dynamic optimization 
problems under uncertainties. The key aspect is the explicit consideration of the stochastic 
properties of both exogenous and endogenous uncertainties in the problem formulation (here-
and-now strategy). The approach considers a nonlinear relation between the uncertain input 
and the constrained state output variables. Accordingly, the stated inequality constraints are to 
be complied with a predefined probability level. Thus, the solution of the problem has the 
feature of prediction, robustness and being closed-loop. 
 
Furthermore, towards an integration of dynamic real-time optimization and control of 
transient processes, a two-stage strategy is considered which is characterized through an 
upper stage corresponding to a dynamic optimization problem and a lower stage related to a 
tracking control problem. The performance of the developed methodologies is assessed via an 
application to a semi-batch reactor under safety constraints, where a strongly exothermic 
series reaction conducted in a non-isothermal batch reactor is considered to explain the 
analytical steps of the developed approaches, and to demonstrate the applicability of the 
proposed online framework. 
 
7.1   Problem statement 
 
In contrast to continuous processes which have been subject to several rigorous optimization 
studies, batch and semi-batch reactors are often still operated using recipes which are based 
on heuristics and experience. Due to its ability to include constraints directly in the 
computation of the control moves, nonlinear model predictive control offers advantages for 
the optimal operation of transient chemical plants (Morari and Lee, 1999). However, 
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numerous robust predictive controllers suffer from excessively conservative control because 
they rely upon open-loop predictions of future system uncertainty (Kothare et al., 1996). 
Open-loop predictions overestimate the uncertainty in future outputs (Lee and Yu , 1997, Ma 
et al., 1999, Nagy and Braatz, 2004). Furthermore, since the true process optimum 
occasionally lies on a boundary of the feasible region defined by one or more active 
constraints, the process is forced into an infeasible region due to the uncertainty in the 
parameters, external disturbances, and measurement errors (Chisci et al., 2001). Thus, the risk 
of infeasibility at every sampling instant represents another critical issue in MPC. Hence, the 
formulation of soft constraints has become common to handle state output constraints, in 
which penalty terms concerning the constraints are included in the objective function. This 
prevents infeasibility problems by allowing violations of the constraints (Mayne, 2000). On 
the other hand, approaches based upon relaxation are, in fact, inapplicable for processes with 
safety restrictions which are not supposed to be violated at any time point. Recently, 
deterministic approaches to handling robustness in MPC (Mhaskar et al., 2005) and to 
ensuring state constraint satisfaction via modification of the constraints for steady state 
processes (Dubljevic et al., 2005) have been proposed. Besides, although NMPC can 
inherently exhibit a certain degree of robustness (De Nicolao et al., 2000), for safety-critical 
transient processes, however, an explicit consideration of uncertainty and disturbances is 
needed. 
 
7.1.1   Process description and model 
 
A strongly exothermic series reaction conducted in a non-isothermal fed-batch reactor is 
considered (Figure 7.2). The reaction kinetics are second-order for the first reaction producing 
B from A, and an undesirable consecutive first-order reaction converting B to C. The reaction 
scheme is given as follows, 
 

1 2K K2A B C⎯⎯→ ⎯⎯→      (7.1) 
 
The intermediate product B is deeemed to be the desired product. In order to prevent the risk 
of runaways, batch reactors are usually equiped with two cooling systems, a jacket around and 
a coil inside the reactor. In this case study, only the dynamic of the jacket cooling system is 
explicitly considered while the temperature of the cooling system inside is used as an 
operational degree of freedom. In addition, for safety reasons, the potentially hazardous 
process is operated in a fed-batch manner. However, in industrial practice, the simple feeding 
strategy with a constant dosing rate over the entire batch time is commonly used. 
 

 
 
Figure 7.2:   Scheme of the semi-batch reactor and its cooling system. 
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The restricted industrial acceptance of model-based optimization techniques is caused by the 
availability of detailed dynamic models. Their lack of reliability together with the presence of 
uncertainty has motivated the investigation of process improvement via chance-constrained 
online optimization. In this case study, a detailed first-principle model of the exothermic fed-
batch process is given by a set of DAEs based on mass balance, 
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reactor energy balance, 
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cooling jacket energy balance, 
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and the constitutive algebraic equations 
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In these equations V denotes the varying volume, ni the molar amount of component i, T, TF, 

coolT , Tcool, the reactor, dosing, jacket and cooling medium temperatures, respectively. h0i are 
the specific standard enthalpies, kHT the heat transfer coefficient, d the scaled reactor 
diameter, A the heat exchange surface,  molecular weights, ρiM i densities and cpi are heat 
capacities. Additional data and parameters corresponding to the batch reactor model are given 
in appendix A7. The resulting model comprises 5 differential and 2 algebraic state variables, 
as well as 3 time-varying operational degrees of freedom which are the feed flow rate into the 
reactor, the cooling flow rate, and the length of the different time intervals. 
 
7.1.2   Physical and safety restrictions 
 
The consideration of physical, in particular, safety aspects is essential. They often determine 
the recipe design procedure and limit the achievable performance. Thus, their contemplation 
is required in order to operate the process closer to the existing constraints.  The developed 
model considers both the reactor and the cooling jacket energy balance. Thus, the dynamic 
performance between the cooling medium flow rate as manipulated variable and the 
controlled reactor temperature is also included in the model equations. Thereby, it can be 
guaranteed that later the computed temperature trajectory can be implemented by the 
controller. Furthermore, whilst the reaction proceeds, the reactor’s volume diminishes so that 
the computation of the corresponding cooling capacity is adapted according to the remaining 
cooling jacket area. Besides, since the heat removal is limited, the temperature is controlled 
by the feed rate of the reactant A (semi-batch operation mode), and the flow rate of the 
cooling liquid . At the start, the reactor partly contains the total available amount of A. 
The remainder is then fed and its feed flow rate is optimized to maximize the yield. However, 
the accumulation of A at the start of the batch time must be prevented, otherwise, as the batch 
proceeds; exhaustion of the cooling system capacity can not be avoided. 

coolV

 
Maximal reactor temperature 
 
In order to guarantee operability within a specified operating regime it should be assured that 
the occurring heat development can be discharged through the cooling system at any time. 
Thus, there exists a maximal allowable reactor temperature starting from which the maximum 
cooling performance is not longer enough so as to run the process within the specified product 
requirements. By this means, there is an upper bound according to the critical reactor 
temperature which should not be exceeded at any time point during the whole batch process. 
Consequently, the following condition results: 
 

( ) ( )reac max max
HT, max
coolQ T Q T≤                    (7.13) 

 
This means that in each time point it must be possible to lower both reactor temperature and 
cooling jacket temperature with the maximum available cooling flow rate in order to fulfill 
condition (7.13). This leads to: 
 
dT 0
dt

≤   and  cooldT 0
dt

≤                    (7.14) 
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In that case, the relations given in (7.14) are inserted in the equations (7.5) and (7.6), 
respectively. Derived from this the following equations result: 
 

min reac
cool cool 2

HT

QT T
d Vk 4
4 d

−= ≤ +⎛ ⎞π ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜⎝ ⎠

T                   (7.15) 
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                  (7.16) 

 
Equation (7.15) indicates the minimal required cooling jacket temperature in order to comply 
with condition (7.14) while equation (7.16) denotes the minimal needed cooling pump 
capacity in order to remove the reaction heat. This issue is illustrated in Figure 7.3. 
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Figure 7.3:   Simulated minimal cooling jacket temperature and cooling pump capacity. 
 
From Figure 7.3, it can be seen that after the reactor exceeds the temperature of 300K, a 
sufficient large gradient exists for heat removal over the cooling jacket. Besides, the required 
minimum temperature of the cooling medium in the cooling jacket is higher than the cooling 
inlet temperature. Moreover, for lower reactor temperatures the necessary pump capacity is 
rather low, it escalates though for higher reactor temperatures and reaches at 356K its 
maximal value of 0,3 l/s, which is predefined by the pump design. Thus, the maximal 
permitted operating temperature for the reactor can be specified explicit. 
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Figure 7.4:   Reactor temperature during the heating process. 
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Figure 7.4 corresponds to the case study when the reactor is charged with the entire amount of 
A and the cooling system is switched off. As soon as the reactor temperature arrives at a 
certain temperature, the cooling pump will be put into operation at full capacity. In the first 
case (T=356K) represented in Figure 7.4, it can be seen that the reactor temperature can be 
lowered with a slight delay. It achieves the maximum value of 358K. On the other hand, if the 
pump starts up when the reactor temperature is at 360K, then, a further temperature rise can 
not be stopped and the reactor is not controllable any longer. A runaway can not be avoided 
by switching on the pump at 369K. 
 
Safety restriction to avoid runaways 
 
The operation of the fed-batch reactor requires not only operability within specified operating 
regimes but also in non-specified. Since the reaction is strongly exothermic specific 
awareness is necessary in order to ensure that the determined operation remains safe. In this 
study, the particular scenario of a sudden cooling failure is taken into account. However, since 
the time instant of a possible failure is not known a priori, a safety constraint is incorporated 
which has to be complied with during the whole path. This implies verification through 
dynamic simulation at every time point. Thus, based on the thermal explosion theory used for 
the analysis and design of reaction processes under safety considerations, the adiabatic 
temperature rise  is considered to deal with the dynamic of the cooling system failure 
(Abel et al., 2000). However, since the maximum achievable temperature after failure is 
primarily of interest at any time point, once a runaway has started, it can be assumed that the 
feed is stopped immediately and that the reaction will carry on under adiabatic conditions. 
Consequently, the heat produced by the reaction will cause a temperature rise whose extent 
depends on the momentary concentrations, reactor temperature, cooling jacket temperature, 
the heat capacity of the reactor content as well as on the reactor heat. This can be calculated 
by a stationary energy balance around the reactor assuming adiabatic conditions. Thus, with 
the reactor temperature T in progress, the adiabatic end temperature T

adT∆

ad can then be described 
as follows, 
 

ad adT T(t) T= +∆                      (7.17) 
 
It results then, 
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h
               (7.18) 

 
Hence, the Equation (7.18) represents a further algebraic relation which can also be used to 
restrict the variable Tad by a temperature limit converting the dynamic treatment of the 
cooling system failure to a path constraint. In order to emphasize this issue, the development 
of the reactor temperature, the cooling jacket temperature as well as the reaction performance 
is illustrated in Figure 7.5 considering the current entire feed amount in the reactor (500mol of 
A) and a switched-off cooling. Due to the stationary balance, the instantaneous increase of the 
temperature is not covered, the heat produced, however, is transferred relatively fast to the 
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cooling jacket reaching temperature compensation. Furthermore, the maximum possible 
temperature without heat dissipation to the environment is 683K. Because of the heat transfer 
to the cooling jacket, the adiabatic end temperature of the reactor content plus cooling jacket 
is 564K. On the other hand, if the initial feed amount of A is reduced, for instance to 240mol, 
then the end temperature will be decreased to 497K. Thereby, it becomes clear that supplying 
A during the batch is the most appropriate operation mode in order to comply with the safety 
regulation because of its sensitivity to the adiabatic end temperature. By this means, the initial 
amount of A represents also an additional degree of freedom. 
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Figure 7.5:   Batch heating-up procedure with switched-off cooling. 
 
Thus, the Equation (7.18) represents rather a regulation for the reactor operation. If this 
regulation/constraint is complied, it can then be guaranteed that in case of cooling failure, the 
reactor will not exceed a certain stationary final temperature at any time point. Figure 7.6 
shows the simulation results for Tad=500K and a cooling failure after 2364s with subsequent 
switch-off of the cooling pump. 
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Figure 7.6:   Simulation of cooling failure. 
 
By this means, the limitations of the cooling system (pump capacity) can explicitly be taken 
into account for the optimization. In addition, both maximum temperature constraints have to 
be enforced during the complete batch time. The selected cooling medium is Aral Farolin U 
which can be applied for a temperature range from -10 to 320 °C. Therefore, it does not 
represent a source of danger in non-specified operating regimes.  
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7.1.3   Problem formulation 
 
The optimal operational strategy for the semi-batch reactor is now to be calculated such that 
the physical and safety restrictions derived in the previous section are also considered. 
Moreover, the open-loop optimal control problem needs to be solved first and represents a 
prerequisite for the consecutive optimization with moving horizons involved in NMPC. The 
objective function is basically chosen depending on the nature of the problem. Thus, there are, 
in general, two practical optimization problems related to batch operation: maximization of 
product concentration in a fixed batch time or minimization of batch operation time in order 
to determine an optimal reactor temperature profile. The first problem formulation is applied 
to a situation where the increase of the desired product amount is required while batch 
operation time is fixed. This is due to the limitation of complete production line in a 
sequential processing. However, in some circumstances, we need to reduce the duration of 
batch run to allow the operation of more runs per day. This requirement leads to the minimum 
time optimization problem. In this problem definition, both issues are combined, thus, the 
objective is to maximize the production of B at the end of the batch (CBf) while reducing the 
total batch time tf, 
 

( )
cool A,0

f fV ,feed, t,n
min CB t with 1 70

∆
− +λ⋅ λ=                   (7.19) 

 
subject to the equality constraints i.e. process model equations (7.2)-(7.12) as well as path and 
end point constraints. The numbers in brackets [.] to the left denotes the current number of 
constraints. First, a limited available amount of A, which is to be converted by the final time, 
is fixed to, 
 

[1]                 (7.20) ( )f

0

t

A,total f A,0 A
t 0

n (t ) n n t dt 500mol
=

= + =∫
 
At the final batch time the reactor temperature must not exceed a limit in order to include also 
the shut-down procedure, 
 
[2]                     (7.21) ( )fT t 303 K≤

 
The safety restrictions are defined as path constraints. The adiabatic end temperature is used 
amongst others to determine the temperature after failure, as indicator for the educt 
accumulation, as operation mode regulation, and as process monitoring aid. Handling this 
constraint ensures that even in the extreme case of a total cooling failure no runaway will 
occur. 
 
[3-42]                           (7.22) ( )T t 356 K≤
 
[43-82]                         (7.23) ( )adT t 500 K≤
 
In addition, in order to prevent too large fluctuations of the control variables, the feed and 
cooling flow rate changes from interval to interval are restricted to an upper bound. This has a 
positive effect on the convergence particularly with regard to the initial values for the 
optimization run. However, these limitations can also be modified during the optimization 
run. For instance, close to the end of the batch process only the absolute amount of heat 



Chance Constrained On-line Optimization  141 

discharged is of interest for the maximization of product B. Thus, the allowed changes of the 
cooling flow rate between the neighboring intervals are smaller. 
 
[83-122]  ( ) ( )cool coolV t 1 V t 0,0+ − ≤ 5       (7.24) 

 
[123-162]  ( ) ( )feed feedt 1 t 0,2+ − ≤       (7.25) 

 
The optimization problem definition includes also the vector of states with known initial 
conditions x0. The decision variables are the feed flow rate into the reactor (0-3 mol/s), the 
cooling flow rate (0-0,3 l/s), the length of the different 40 time intervals (60-180s) as well as 
the initial amount of A, nA,0, in the reactor. This results in 121 decision variables for the entire 
optimization horizon. 
  
7.1.4   Optimal nominal solution 
 
In this section, the open-loop optimal results are presented. In the nominal optimization the 
uncertainty is basically discharged. Figure 7.7 shows the resulting nominal trajectories of the 
feed and cooling flow rate. During the first few intervals the feed flow rate is determined at a 
higher value such that the constraints (7.22) and (7.23) are not violated. After a certain feed 
amount has been added the feed flow rate is drastically reduced. By this means, a fast ignition 
of the reaction and a quick conversion can also be ensured.  
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Figure 7.7:   Optimal nominal trajectories of the feed and cooling flow rates. 
  
As soon as the reactor temperature is about to reach its limit value the cooling and, in 
particular, the feed flow rate is again increased. At this time the conversion is sufficiently fast 
to prevent the accumulation of A. After 2500s, when the total feed amount has been supplied, 
the reactor temperature increases rapidly again and arrives at its maximum allowable value 
where it evolves along its upper limit during a long time period (Fig. 7.8). Subsequently, in 
order to comply with the shut-down end-point constraint (7.21), the cooling rate is increased 
progressively.  
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Figure 7.8:   Optimal profiles of the components amount, the reactor and the cooling jacket 

         temperature at nominal optimum. 
  
The time-dependent amount of the different components, the reactor as well as the cooling 
jacket temperatures are depicted in Figure 7.8. From Figures 7.8 and 7.9, it can be seen that 
the safety restrictions and the feed flow rate determine the reactor temperature evolution. 
Furthermore, the adiabatic end temperature is decisive during the first half of the process run 
while in the second part the process is operated almost with maximum reactor temperature 
until the shut-down period starts. The change of the different time interval lengths can also be 
noticed. The sum of all 40 time intervals represents the total time. The duration of each 
individual interval has however a detrimental effect on the applied operational strategy. 
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Figure 7.9:   Trajectory of the adiabatic end temperature at nominal optimum. 
 
The evolution of the adiabatic end temperature for the nominal operation is depicted in Figure 
7.9. It can be seen that the adiabatic end temperature reaches its upper limit right from the 
start and remains at this value during the heating process with switched-off cooling (up to 
1500s) and maintains this value through a large part of the batch time. By this means, the 
reactor temperature and, in particular, the adiabatic end temperature is an active constraint 
over a large time period. This poses a potential threat. Although operation at this nominal 
optimum is desired, it typically cannot be achieved with simultaneous satisfaction of all 
constraints due to the influence of uncertainties and/or external disturbances. However, the 
safety constraints should not be violated at any time point. Thus, in this chapter, two methods 
based on a nonlinear model predictive control scheme are proposed to implement such an 
optimal strategy despite disturbances solving close-loop dynamic optimization problems 
assuring robustness with respect to state output constraints within an online framework. 
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7.1.5   NMPC simulation results 
 
Batch processing offers greater flexibility in the production of specialty and pharmaceutical 
chemicals. Thus, the trend in the chemical industry towards high value products has increased 
interest in the optimal model-based control of batch processes (Bonvin, 2001). Due to its 
ability to directly include constraints in the computation of the control moves, nonlinear 
model predictive control NMPC presents advantages for the optimal operation of transient 
chemical plants. Moreover, it provides a systematic methodology to handle constraints on 
manipulated and controlled variables not being limited to a certain model structure (Allgöwer 
et al., 1999).  
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Figure 7.10:   Principles of model predictive control 
 
The principle of MPC is shown in Figure 7.10. The model predictive controller uses a process 
model to predict the future, and then computes the future control trajectory that optimizes a 
performance objective based on the sum squares of the differences between model predicted 
outputs and a desired output variable trajectory over a prediction horizon solving an open-
loop optimization problem. The value for the control move at the current sampling instance is 
implemented, i.e. the manipulated variables of the first time interval are applied. At the next 
sampling instance, new measurements are collected and the control calculation is repeated. By 
this means, the time window is shifted into the future where the whole procedure is repeated 
(Figure 7.15). These steps update the control move calculations to consider the latest 
measurement information. However, most of the research efforts have mainly been directed 
towards the regulation problem for stationary problems. Recently, a growing number of works 
have studied the application of MPC to batch and semi-batch processes. However, most of the 
processes are nonlinear and while linear models are good approximations if the process is 
kept close to an operating point, this is not the case when the process changes operating point 
or is subject to high perturbations (Camacho, 1999). 

 
7.1.5.1   Open-loop strategy implementation 
 
Based on the open-loop optimal control trajectories of the critical state variables (see 7.1.4), 
in this section, a deterministic NMPC scheme is implemented for the exothermic fed-batch 
process. In order to implement the open-loop strategy, the 40 intervals from the open-loop 
optimization are divided into small intervals with the same length but not smaller than 6 
seconds. The time length values for the intervals with regard to the decision variables are 
taken over from the off-line optimization results. In contrast, the values of the temperature for 
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the beginning of each new interval are linear interpolated with the previous values of the off-
line trajectory.  

manipulated variable
controlled variable

 
 
Figure 7.11:   Modification of the time interval length based on the multiple-time-scaling 
            approach. 
 
The adjustment of the interval lengths is accomplished by a developed multiple-time-scaling 
strategy which is based on the orthogonal collocation method in finite elements. The strategy 
is applied for both discretization and implementation of the optimal policies according to the 
controller’s discrete time intervals (6-12s). Thereby, it results around 600-700 intervals. In 
Figure 7.11, the approach is illustrated schematically.  
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Figure 7.12:   Implementation of the open-loop strategy. 
 
In Figure 7.12, the open-loop strategy implementation according to the feedforward strategy 
is presented, i.e. the reactor is operated with the optimal trajectories of the feed and cooling 
flow rate determined by the off-line deterministic optimization. However, during the course of 
a typical batch, process variables swing over wide ranges and process dynamics go through 
significant changes due to nonlinearity. Furthermore, batch processes are characterized by 
significant uncertainties, a certain number of noisy measurements, and the fact that the 
controlled properties are usually not measured on-line. Thus, in order to show the sensitivity 
to disturbances the model described in section 7.1.1 is extended to include also the catalyst 
activity a. Thereby, a further factor of influence on the system is realized. For this purpose, a 
simple approach is used to describe a homogeneous distributed catalyst in the system 
considered. The catalyst is assumed to influence the main reaction A B, primarily. So far it 
was assumed that the total amount of A is available for the reaction, this is however not the 
case if the reaction is catalyzed. In fact, using a catalyst supposes a decrease of the catalyst 
activity and, thus, a limited conversion of the available educt A. This is mainly attributed to 
the fact that the reaction takes place on the catalyst surface and this is not fully available in 
the course of the reaction any longer. In a simplified form, the catalyst activity can be 
described as a relationship between the current reaction rate and the reaction rate with the 
fresh catalyst (t=0). However, if the deactivation mechanism is more complex, the catalyst 
kinetics can then not be described independent from the reaction kinetics (non-separable 
kinetics). In this case study, the catalyst activity is considered directly as a factor of the 
reaction term in the component balances. The reaction term of the reaction A-B results in, 
 

A B Ar a(t) k(T)−′ =− ⋅ ⋅c                    (7.26) 
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The kinetics of the catalyst activity is described as follows, 
 

2A B A
decay A B

da nK (a )
dt V

−
−=− ⋅ ⋅                   (7.27) 

 
where Kdecay and aA-B denote the catalyst decay rate and the catalyst diminution (second order), 
respectively (Fogler, 1999). Furthermore, the inlet temperature of the cooling medium into the 
cooling jacket has been assumed so far to be a constant parameter during the off-line 
optimization. However, due to weather or heat input through the cooling pump depending on 
its momentary performance, the inlet temperature is rather subject to fluctuations. The impact 
of these changes on the feedforward strategy is depicted in Figure 7.13.  
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Figure 7.13:   Simulation results of the open-loop strategy implementation with ∆Tcool, in=2K. 
 
The simulation results of the batch operation for an increment of only 2K with regard to the 
cooling inlet temperature from originally 298K to 300K are illustrated in Figure 7.13. Here, it 
becomes obvious that the operating conditions deviate significantly from the nominal optimal 
conditions determined in the open-loop optimization. In particular, the reference trajectories 
of the educt A in the reactor and the reactor temperature at each time point differ from the 
simulated trajectories. This has evidently an effect on the yield. However, although operation 
at the nominal optimum is desired, it typically cannot be achieved with simultaneous 
satisfaction of all constraints, because of the influence of external disturbances (Loeblein and 
Perkins, 1999). Thus, an NMPC based approach is proposed to implement such an optimal 
strategy despite disturbances. 
 
7.1.5.2   Close-loop Optimization 
 
In this section, a nonlinear model predictive controller is implemented which assures the 
compliance with the operating conditions tracking the path of the reference trajectory. The 
feed flow rate control is not included in the close-loop. Based on simulation studies, the 
reactor temperature possesses a higher sensitivity with respect to model uncertainty and 
disturbances. Its impact on the reaction rate is crucial for the course and conversion of the 
reaction. By this means, the moving horizon tracking controller will then increase the system 
robustness against external disturbances at some extent.  
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Figure 7.14:   NMPC scheme for the tracking control problem. 
 
The process/plant model, which also includes now some disturbances such as catalyst decay 
and fluctuations of the inlet cooling temperature, is discretized using the orthogonal 
collocation method with three points. In contrast, these disturbances are assumed to be 
constant parameters within the NMPC process model, which is discretized with the implicit 
Euler method. Due to the short horizon and the small intervals, both large deviation and error 
reproduction are not expected. Thus, with constant step length, the computation time can be 
reduced. This is particularly important with regard to the simulation and the gradient 
computation for the optimization. It should be noted that the time required for the solution of 
the optimization problem is restricted through the interval length within the moving horizon.  
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Figure 7.15: Close-loop optimization with the moving horizon. 
 
As shown in Figure 7.14, in oder to implement the developed recipe the length of the diverse 
time intervals are first adjusted through the multiple-time-scaling approach. The NMPC 
controller receives then the discret set-point trajectory determined via open-loop optimization. 
However, the performance of the model based control approach relies on the proper 
estimation of current and future states. Thus, at the end of each corresponding time interval 
and in time-discrete distance the controller is updated with the current process state. This 
occurs through measurements at the beginning of each interval. For this purpose, the values of 
the components amounts, the reactor and cooling jacket temperatures are required in order to 
fully describe the process state. Since the measurements (here the current values from the 
process simulation) can commonly not be measured accurately, in this case study, these 
values are corrupted with white noise e.g. component amount 8%, temperature 2%. 
Subsequently, they are smoothed with a first order filter. By this means, fast disturbances can 
efficiently be rejected by the controller. 
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Figure 7.16:   Tasks during the current interval. 
 
In case the available time within the interval is not sufficient to solve the NMPC problem, a 
trigger is activated that holds the current control signal for the next interval. Furthermore, as 
stated before, proper state estimation is crucial for the success of the NMPC application. 
Extended Kalman filter (EKF) has been widely used in process control applications, however 
its performance strongly depends on the accuracy of the model (Nagy and Braatz, 2003, 
2004). To avoid highly biased model predictions, some of the model parameters are estimated 
together with the states. In this case study, the state information is however assumed to be 
available. For further details concerning the state estimation, we refer to the paper of 
Haseltine and Rawlings (2005). 
 
7.1.5.3   Tracking problem without safety restrictions 
 
For the online optimization of the semi-batch process, the momentary criteria on the restricted 
controller horizon with regard to the entire batch operation are insufficient. Therefore, the 
original objective (7.19) must be substituted by an appropriate alternative that can be 
evaluated on the local nonlinear MPC prediction horizon, 
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ˆmin N ,N , N = δ j y t + j | t -w t + j + λ j ∆u t + j-1⋅ ⎡ ⎤ ⎡⎣ ⎦ ⎣∑ ∑J ⋅ ⎤⎦             (7.28) 

 
Accordingly, the cooling flow rate becomes now a manipulated variable while the resulting 
time-variant reactor temperature is taken as reference trajectory. In equation 7.28, the first 
term of the function stands for the task of keeping as close as possible to the calculated open 
loop optimal trajectory of the critical variables  (e.g. the reactor temperature, which can 
easily be measured online), whereas the second term corresponds to control activity under the 
consideration of the systems restriction. Moreover, the control and prediction horizons are 
chosen equal, to avoid large deviations of the predicted quantities from their setpoints due to 
the transient character of the process. N

ŷ

1 and N2 denote the number of past, and future time 
intervals, respectively. NU stands for the number of controls. Both the prediction Tp and 
control horizon TC comprise 8 intervals. The corresponding parameters of the objective 
function are given in Table 7.1.  
 

TP    prediction horizon  8 intervals      
TC    control horizon  8 intervals 
λ      MV variation weighting factor  3000 
δ      offset weighting factor  α (Tp-j)  with α=0,7 

 
Table 7.1:   Objective function parameters. 
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Figure 7.17:   NMPC-based control of the exothermic fed-batch reactor under several  
                      disturbances without safety restrictions. 
 
The parameters of the objective function in Table 7.1 are determined in such a way that the 
best possible control quality can be achieved compensating for disturbances and model 
uncertainties. Thus, in order to examine the robustness of the developed strategies, diverse 
disturbance scenarios are integrated simultaneously. The inlet temperature fluctuations are 
simulated with a sinus oscillation of +/-5K around its nominal value of 298 K and a period 
duration of 1500 seconds. In order to include the impact of the catalyst activity decay, an 
initial catalyst activity is considered with a(t = 0) = 100% and a specific decay rate of 
Kdecay=0,000006. Thus, a gradual poisoning of the catalyst is simulated with a final reduced 
activity of 70% at the process end. Moreover, white noise with a maximum deviation of 8% 
for the component amounts and 2% for the temperature are assumed. The time constant of the 
filter is 15 seconds. 
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Figure 7.18:   Trajectories of the cooling flow rate with regard to open and close-loop  
                       optimization. 
 
Despite several disturbances the NMPC simulation results show almost perfect tracking 
regarding the reference temperature, in particular, after 2000 seconds. The deviations at the 
beginning are due to the lower catalyst activity in combination with a smaller heat 
development as assumed in the open-lop optimization. Thus, the difference between the 
reference trajectory and the actual reactor temperature is not based on the control activity. On 
the contrary, the controller responds rather appropriately extending the heating period until 
the reference trajectory is reached.  
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Figure 7.19:   NMPC-based control with time-invariant values for the catalyst activity and the  
                       inlet cooling temperature. 
 
However, without considering safety restrictions the implemented controller features some 
deficiencies. Figure 7.19 and 7.20 show the results for another scenario using the same 
parameters from Table 7.1. In this case study, the inlet cooling temperature (=301K) and the 
catalyst activity a=105% are assumed to be time-invariant representing the case of model 
mismatch. As a consequence, the reactor temperature is generally higher than in Figure 7.17. 
This is because of the controller model errors. The controller assumes a lower heat 
development and a higher cooling capacity than they actually arise with the implementation.  
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Figure 7.20:   Trajectories of the cooling flow rate with respect to open and close-loop 
                       optimization for the second scenario. 
 
At the beginning of the heating process, the cooling pump is activated although the inlet 
cooling temperature still runs above the reactor temperature (Fig. 7.20). In general, during the 
entire batch process the reactor temperature often lies above the reference trajectory and, as a 
result, it also exceeds the maximum allowed reactor temperature. This means that the reactor 
is operated in not allowed region where safety restrictions are not fulfilled. Consequently, the 
controller quality essentially depends on the model accuracy. In other simulated scenarios 
even a runaway can not be avoided. However, in a typical batch, process variables swing over 
wide ranges and process dynamics go through significant changes. Moreover, batch processes 
are characterized by significant uncertainties, a number of noisy measurements, and the fact 
that the controlled properties are typically not measured on-line. Therefore, the potential 
advantages of a model based control system are likely to lead to significant tracking errors. 
Thus, in order to guarantee that the determined optimal operation remains safe, safety 
restrictions are needed to be incorporated explicitly here. 
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7.2   A NMPC-Based On-line Optimization Approach 
 
In this section, the safety restrictions described in section 7.1.2 are now explicitly considered 
in the NMPC-based control of the exothermic batch process including the equations (7.22) 
and (7.23). On the one hand, the adiabatic end temperature constraint which guarantees that 
the temperature evolution even in a case of cooling system failure does not exceed a critical 
safety limit. On the other hand, an upper limit corresponding to the reactor temperature which 
assures operability within specified operating regimes according to the maximum available 
pump performance. Both constraints are to be enforced during the complete batch time and 
are formulated as hard-constraints in the optimization problem. For this purpose, a nonlinear 
MPC scheme is proposed to solve close-loop dynamic optimization problems ensuring both 
robustness and feasibility with respect to output constraints. The main concept lies in the 
consideration of unknown and unexpected disturbances in advance. The novel deterministic 
approach is based on the wait-and-see strategy. The key idea is here to anticipate violation of 
output hard-constraints (safety restrictions), which are strongly affected by instantaneous 
disturbances. 
 
In the nominal optimization of the exothermic fed-batch reactor, safety restrictions have been 
considered. They are formulated both as path and end time-point constraints. The open-loop 
resulting trajectories of the reactor temperature and the adiabatic end temperature are depicted 
in Figure 7.8 and 7.9. It can be observed that during a large part of the batch time both states 
variables evolve along the upper limit. The adiabatic end temperature, in particular, is an 
active constraint over a large time period. Even though operation at this optimum is preferred, 
it usually cannot be accomplished with simultaneous fulfillment of all constraints, due to the 
effect of external disturbances. Thus, in this section, an NMPC based approach is proposed to 
implement such an optimal strategy remaining safe despite disturbances. 
 
The consideration of these output constraints for the control problem in the limited horizon 
does not naturally imply that a feasible operation can be guaranteed at each time point. Poorly 
defined constraints within the moving horizon can lead to a deadlock situation. That means 
that the system is maneuvered into a situation where the problem is infeasible and can not be 
solved with the given optimization variables and their limitations (Helbig et al, 1998). In 
connection with batch reactors a deadlock situation arises when a high educt accumulation 
takes place in the reactor leading to a heat development which exceeds the system cooling 
capacity. By this means, the reactor can not be controlled any longer and runs away. 
 
In order to prevent such situations, a predictive optimization is necessary. This is however 
limited through the horizon length and, thus, is not necessarily enough in order to hold the 
process within a feasible operating region. Previous studies on this issue show that certain 
restrictions can be formulated so as to prevent a deadlock-situation. One possibility will be to 
work with special path constraints which consider worst case scenarios. Another alternative 
assuring feasibility can also be the restriction of the allowable deviation from the set-point 
trajectory. In this work, the main aim is to meet the safety constraints under all circumstances. 
Therefore, deviations from the originally determined trajectories to the possible disadvantage 
of the economic objectives are accepted. 
 
7.2.1   Dynamic adaptive back-off strategy 
 
Since the true process optimum occasionally lies on a boundary of the feasible region defined 
by one or more active constraints, the process is forced into an infeasible region due to the 
uncertainty in the parameters, external disturbances, and measurement errors. Thus, the risk of 
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infeasibility at every sampling instant represents another critical issue in model predictive 
control. Hence, the formulation of soft constraints has become common to handle state and 
output constraints, in which penalty terms on the constraints are included in the objective 
function. This prevents infeasibility problems by allowing violations of the constraints. On the 
other hand, approaches based upon relaxation are, in fact, inapplicable for processes with 
safety restrictions which are not supposed to be violated at any time point. Recently, 
deterministic approaches to handling robustness in MPC (Mhaskar et al., 2005) and to 
ensuring state constraint satisfaction via modification of the constraints for steady state 
processes have been proposed (Dubljevic et al., 2005). Besides, although NMPC can 
inherently exhibit a certain degree of robustness, for safety-critical transient processes, 
however, an explicit consideration of uncertainty and disturbances is needed.  
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Figure 7.21:   Course of the reactor temperature within the horizon. 
 
This issue can be explained with an assumed trajectory of the reactor temperature (T-model) 
in Figure 7.21. This temperature is calculated with the controller model and it depends on the   
initial value T(t0) and on the cooling flow rate strategy within the horizon (0≤t≤TP). The 
cooling flow rate is determined through solution of the optimization problem such that the 
discrete values of the reactor temperature are feasible at the end of each interval, i.e. the 
maximum allowable reactor temperature Tmax is not exceeded. In Figure 7.21, the values 
T(j=1) and T(j=2) lies on the bound of the feasible area, which means that the constraint is 
active. Besides, in Figure 7.21 at the bottom on the left, the implementation is represented. 
The reactor temperature at the end of the first interval differs from the predicted temperature 
due to the measurement and model errors and the hard-constraint is violated. For the sake of 
demonstration, a poor direction of action has been chosen. This does not mean that a 
constraint violation is always unavoidable.  
 
The third diagram on the right in Figure 7.21 represents the issue which corresponds to the 
initial value for the optimization problem in the next interval. This value is determined 
through measurement and does not necessarily correspond to the actual process state. In this 
case, a feasible problem solution means that the decision variable (cooling flow rate) is 
selected in such a way that the reactor temperature will lie inside of the feasible region at the 
end of each interval. But, it is also possible that even the maximum system cooling capacity is 
not able to realize this demand. By this means, the optimization problem can not be solved. 
Thus, practical implementation of NMPC becomes difficult for any reasonably nontrivial 
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nonlinear system (Mayne D. Q., 2000). However, as illustrated in Figure 7.21, critical issues 
are robustness and the feasibility of the optimization problem, i.e. the presence of an input 
profile that satisfies the constraints. 
 
In order to guarantee robustness and feasibility with respect to output constraints despite of 
uncertainties and unexpected disturbances, an adaptive dynamic back-off strategy is 
introduced into the optimization problem to guarantee that the restrictions are not violated at 
any time point, in particular, in case of sudden cooling failure. For this purpose, it is necessary 
to consider the impact of the uncertainties between the time points for re-optimization and the 
resulting control re-setting by setting, in advance, the constraint bounds much more severe 
than the physical ones within the moving horizon. 
 

 
 
Figure 7.22:   Back-off strategy within the moving horizon. 
 
Thus, as shown in Figure 7.22 and 7.23, the key idea of the approach is based on backing-off 
of these bounds with a decreasing degree of severity leading then to the generation of a 
trajectory which consists of the modified constraint bounds along the moving horizon (8 
intervals). For the near future time points within the horizon, these limits (bounds) are more 
severe than the real physical constraints and will gradually be eased (e.g. logarithmic) for 
further time points. The trajectory of these bounds is dependent on the amount of 
measurement error and parameter variation including uncertainty. 
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Figure 7.23:   Back-off from active constraints. 
 
As previously illustrated in Figure 7.8 and 7.9, the true process optimum lies on the boundary 
of the feasible region defined by the active constraints. Due to the uncertainty in the 
parameters and the measurement errors, the process optimum and the set-point trajectory 
would be infeasible. By introducing a back-off from the active constraints in the optimization, 
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the region of the set-point trajectory is moved inside the feasible region of the process to 
ensure, on the one hand, feasible operation, and to operate the process, on the other hand, still 
as closely to the true optimum as possible (Fig. 7.23). By this means, the black-marked area in 
Figure 7.22 illustrates the corrected bounds  of the hard constraints. Here, it should 
however be noted that due to the severe bound at the computation of the previous horizon, the 
initial value at  is rather far away from the constraint limit in the feasible area. Thus, in the 
first interval of the current moving horizon, the bound is set at the original physical limit to 
avoid infeasibility. The back-off adjustment starts from the second interval, i.e. from the time 
point on, where the next re-optimization begins. Since there will be more time points for re-
optimization and thus for compensating disturbances, for the further remaining intervals 
within the moving horizon  approaches to the original constrained bound. The size of 

 strongly depends on parametric uncertainty, disturbances, and the deviation by 
measurement errors. Thus, the safety constraints for the adiabatic end temperature and the 
reactor temperature within the moving horizon are now reformulated as follows, 

maxy

0t

maxy

maxy
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                   (7.29) 
 

( ) ( )
ad, max

j-2
adT j 500 K - T≤ ⋅                    (7.30) 

 
with , , and . For the formulation of the NMPC-based 
online optimization, the parameters of the objective function (7.28) are also taken from Table 
7.1. The hard-constraints and their back-offs, which are now to be included in the 
optimization problem, are formulated in the Equations (7.29) and (7.30), respectively. The 
manipulated variable is again the cooling flow rate. In order to compare the performances of 
the open-loop nominal solution and the nominal NMPC with the proposed dynamic adaptive 
back-off strategy, different disturbances have been considered. The developed close-loop 
optimization framework is depicted in Figure 7.24. The concept incorporates also a feasibility 
analysis with regard to the handling of safety constraints. For this purpose, the safety 
constraints are set at the beginning of each time step. By this means, the value of  can be 
verified through simulation. 
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maxy
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Figure 7.24:   Close-loop optimization framework including hard output constraints. 
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In case the optimization algorithm does not find a solution, a trigger is activated that holds the 
current control signal for the next interval. Another important issue represents the initial 
values for the optimization. Here the values of the open-loop optimization are used as 
reference. Furthermore, by means of simulation, the constraint tightening (back-off) within 
the horizon can be estimated. This depends however on the size and effect of the arising 
uncertainties. The back-off is also to be selected as small as possible in order not to lose 
optimization potential. In case the required process knowledge is even not available then the 
back-off is determined in a conservative manner. 
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Figure 7.25:   NMPC-based control of the exothermic fed-batch reactor considering safety    
                       restrictions under several disturbances. 
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Figure 7.26:   Optimal trajectory of the adiabatic temperature and the cooling flow rate with   
                       regard to open and close-loop optimization. 
 
In order to show the relevance of the developed close-loop optimization framework, the 
robustness of the developed strategies considering the safety restrictions is illustrated in 
Figure 7.25 and 7.26. The optimal policies guarantee the constraints compliance both for 
nominal operation as well as for cases of large disturbances e.g. sudden cooling failure at any 
time-point. To emphasize this fact, diverse strong disturbance have been realized 
simultaneously. The inlet cooling temperature fluctuations are simulated with a sinus 
oscillation of +/-5K around its nominal value of 298 K and a period duration of 1500 seconds. 
Moreover, an initial catalyst activity is considered with a(t = 0) = 100% and a specific decay 
rate of Kdecay=0,0000015, thus, the final reduced activity is 86% at the process end. Moreover, 
all measurements are corrupted with white noise with a maximum deviation of 2% for the 
temperature and 8% for the component amounts. 
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As depicted in Figure 7.25, the reactor temperature evidently differs from the reference 
temperature (hatched area). This is principally due to the lower reaction performance. The 
reactor temperature lags the reference temperature during the heating process. Moreover, 
since the controller does not have a direct influence on the feed supply, in case of imminent 
danger of exceeding the adiabatic end temperature, the controller can only lower the reactor 
temperature. Thus, as shown in Figure 7.26, Tad reacts very sensitive during the time period 
when the feed flow is mainly supplied (1500-2500s). Furthermore, since the heat removal and 
the trajectory of the feed flow rate are determined in such a way that for a largest part of the 
operating time the process is run close to the feasible bounds, a higher activity of the 
controller can be observed in Figure 7.26. Thus, as the manipulated variable changes several 
peaks arise which basically appears within those ranges where the constraints are active. 
These peaks are mostly caused by measurement noise. This is also the resulting effect of 
increasing the educt amount in the reactor and thus raising the potential in the reactor. 
Although in the reference trajectory a temperature diminishment is provided, it is however not 
sufficient since a large amount of the educt has been accumulated due to the slower reaction 
as originally assumed. However, the constraint with regard to the adiabatic end temperature 
will then be violated if the reactor temperature is not lowered. The now lowered reactor 
temperature implies though a diminished reaction performance such that this effect will again 
be strengthened. 
 
The explicit inclusion of the safety restrictions has assets and drawbacks. The main advantage 
is obviously the guarantee of compliance with the safety regulations at each time point during 
the operation. In general, the consideration of output-constraints leads to an increased activity 
of the manipulated variable. This is due to the relatively small horizon of the controller and 
the relatively large influence of the uncertainties. However, the temperature control is 
effectively implemented and the process is now robust regarding the compensation for fast 
disturbances and, thus, guaranteeing operability within specified operating regimes. The 
highest priority is though given to the fulfillment of the safety restrictions. This means that in 
case of threatening risk of exceeding the adiabatic end temperature the operating conditions 
can keenly deviate from the reference conditions. This arises primarily due to the time-variant 
changes of the catalyst activity. In other words, the effects of slow disturbances or drifting 
parameters can not be compensated satisfactorily. However, feasibility and robustness in 
particular with respect to output constraints have been achieved by the presented dynamic 
backing-off strategy. On the other hand, in order to compensate for such disturbances, in the 
following section the implementation of a next higher level in Figure 7.24 is proposed (see 
Fig. 7.27). This is definitely necessary since the selected operating conditions by the 
controller do not imply an optimal global solution for the operation. This is amongst others 
due to the rather limited horizon, the tracking of a given reference trajectory as well as the 
restricted actions which primarily concerns the cooling flow rate. 
  
7.2.2   A two-level strategy for optimization based control 
 
The size of the dynamic operating region around the optimum (see Figure 7.23) is affected by 
fast disturbances. These are, however, efficiently rejected by the proposed regulatory NMPC-
based approach. On the other hand, there are, in fact, slowly time-varying non-zero mean 
disturbances or drifting model parameters which change the plant optimum with time 
(Loeblein and Perkins, 1999). Thus, a re-optimization, i.e., dynamic real-time optimization 
(D-RTO) may be indispensable for an optimal operation. When on-line measurement gives 
access to the system state, on-line re-optimization promises considerably improvement. 
Moreover, additional constraints can be formulated. In this case study, the state information is 
assumed to be available and parameters are estimated from available measurements. 
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Figure 7.27:   Online Framework: Integration of NMPC and dynamic re-optimization. 
 
In order to compensate slow disturbances, the on-line dynamic re-optimization problem is 
automatically activated three times along the batch process time according to a trigger defined 
as the maximum allowable bounded difference, ∆T, between the actual reactor temperature 
and the temperature reference trajectory (see Fig. 7.28a). New recipes resulting from this are 
then updated as input to the on-line framework. Due to the different trigger time-points the 
current D-RTO problem progressively possesses a reduced number of variables within a 
shrinking horizon (Nagy and Braatz, 2003). However, as a result of this and a catalyst 
contamination, the final total batch time increases. But, despite the large model mismatch and 
the absence of kinetic knowledge nearly perfect control is accomplished. Thus, the resulting 
NMPC scheme embedded in the on-line re-optimization framework is viable for the 
optimization of the semi-batch reactor recipe while simultaneously guaranteeing the 
constraints compliance, both for nominal operation as well as for cases of large disturbances 
e.g. cooling failure situation at any time-point. The proposed scheme yields almost the same 
profit as the one of the off-line optimization operational profiles (see Table 7.2). 
 

 fCB [mol] fCC [mol] ft [s] 
Nominal open-loop optimization 152,5 37,8 4434 
NMPC / unconstrained  141,0 28,8 4434 
NMPC / safety restrictions / dynamic back-off strategy 127,9 12,8 4434 
NMPC / safety restrictions / dynamic back-off / D-RTO 148,8 36,8 4892 

 
Table 7.2:   Nominal optimal and NMPC simulation results under the consideration of several  
                   uncertainties and disturbances. 
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Figure 7.28:   Implementation results of the online re-optimization: (a) reference and optimal  
                       reactor temperature; (b) open and close-loop optimal cooling flow rate; (c) open    
                       and close-loop optimal feed flow rate. 
 
The online framework illustrated in Figure 7.27 basically provides a basis for feedback from 
the process to both the NMPC tracking controller and to the trajectory design level. This also 
means that the developed two-level strategy for the transient process relies in principle on the 
assumption that the existing disturbances can be divided into fast and slowly time-varying 
non-zero mean disturbances or drifting parameters. The update of new trajectories is however 
performed on a larger time-scale than the sampling time of the controller. The real output 
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variables and the current estimated catalyst activity are handed over to the re-optimization 
step as constant values for the triggered optimization run at the corresponding time-point. 
Besides, the information about the remaining or already employed educt A is imperative. This 
issue changes the total amount of A, nA,total, to be still supplied and, therefore, the equality 
constraint (Eq. 7.20) needs to be readjusted. However, both online optimization and controller 
use the imperfect model as also assumed in the open-loop optimization. In the Figures 7.28a-c 
the implementation results of the online optimization in comparison with the nominal open-
loop optimization are shown. The resulting new reference trajectories are updated three times 
during the batch run at 1700, 2450 and 3450 seconds. The different considered strong 
disturbances are again the oscillations of the inlet cooling temperature, a catalyst 
contamination with Kdecay=0,0000021, as well as perturbed measurements with white noise. 
The objective function of the D-RTO is the same as in Equation (7.19). From Figure 7.28a-c, 
it is evident that a substantial improvement of the product yield can be obtained by re-
optimizing the operating conditions. However, the required total time of operation has 
increased. An alternative to counter this problem might be to suitably adapt or restate the 
objective function of the D-RTO based on the new arising process conditions. 
 
7.3   Robust Chance-Constrained NMPC under Uncertainty 
 
Model predictive control has extensively been used in process control engineering. One 
reason for its popularity is the ability to directly include constraints in the computation of the 
control moves.  However, since the prediction of future process outputs within an NMPC 
moving horizon is based on a process model involving the effects of manipulated inputs and 
disturbances on process outputs, the compliance with constraints on process outputs is more 
challenging than these on process inputs. Moreover, as the model involves uncertainty, 
process output predictions are also uncertain. This results in output constraints violation by 
the close-loop system, even though predicted outputs over the moving horizon might have 
been properly constrained.  Consequently, a method of incorporating uncertainty explicitly 
into the output constraints of the online optimization is needed.  
 
Moreover, as discussed in the previous section, the true process optimum occasionally lies on 
a boundary of the feasible region defined by one or more active constraints and, thus, 
representing a risk of infeasibility at every sampling instant. In addition, the dynamic 
operating region around the backed-off optimum is certainly not a rigid shape determined by 
the corresponding back-offs from the safety constraints but corresponds rather to a 
distribution with points which are closer to the nominal optimum (see Fig. 7.29) and thus 
leading to a better performance. 
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Figure 7.29:   Distribution of the operating points. 
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Thus, in this section, a new robust nonlinear MPC scheme is proposed by means of using the 
chance constrained approaches developed in this Thesis. Here, in particular, close-loop 
stochastic dynamic optimization problems are solved assuring both robustness and feasibility 
with respect to output constraints. The main concept lies in the consideration of unknown and 
unexpected disturbances in advance. The approach considers a nonlinear relation between the 
uncertain input and the constrained output variables. The new controller solves a chance-
constrained nonlinear dynamic optimization problem at each execution in order to determine 
the set of control moves that will optimize the expected performance of the system while 
complying with the constraints. The controller deals with model uncertainty and disturbances, 
which are assumed to be correlated multivariate stochastic variables, by replacing the 
deterministic inequality constraints in the NMPC formulation with chance constraints which 
are to be complied with a predefined probability level. The formulation and tuning of 
individual predefined probability limits of complying with the restrictions incorporates the 
issue of feasibility, and the contemplation of trade-off between the objective function 
(profitability) and robustness. Thus, the solution of the problem has the feature of prediction, 
robustness and being closed-loop.  
 
7.3.1   Chance constrained linear MPC 
 
For linear MPC with single chance constraints, the chance constraints can easily be 
transformed to linear deterministic inequalities where the uncertain variables in the prediction 
horizon are described as random variables with a probability distribution function, and the 
output constraints are formulated as chance constraints. It leads however to a QP problem and 
thus the solution can be derived analytically (Schwarm and Nikolaou, 1999). In cases of 
problems with a joint chance constraint, an explicit solution cannot be obtained, since the 
calculation of a joint probability of multivariate uncertain variables is needed. Here, the 
resulting linear chance constrained MPC problem is then transformed in a convex nonlinear 
optimization problem so that it can be solved with a standard NLP method. It should be noted 
that even if the uncertain inputs are uncorrelated, the outputs are correlated through the linear 
propagation. Linear MPC under probabilistic (chance) constraints have been proposed in (Li 
et al., 2000b, Wendt, 2005). In these studies, the distribution of disturbances are considered in 
the design of chance constrained MPC controllers, so that the resulting control performance is 
more robust than that from the conventional MPC design methods. However, unlike the linear 
case, for nonlinear (dynamic) processes the controls have also an impact on the covariance of 
the outputs. 
 
7.3.2   Chance constrained nonlinear MPC 
 
In this Section, the chance constrained programming framework developed is used to propose 
a robust nonlinear model predictive control strategy. As emphasized in the previous chapters, 
the main challenge lies here also in the mapping back of the output probability distribution as 
well as in the computation of the probabilities and their gradients. For this purpose, the 
approaches developed in this Thesis (see Chapter 5) are implemented. Based on the 
formulations for the tracking controller discussed in Section 7.2.1, the general chance 
constrained NMPC problem, which is solved at each sampling time k, can be formulated as 
follows: 
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Where 

1
g are the first-principle model equations describing the dynamic changes of the state 

variables x, while 
2

g describe the state of the constrained variables y depending on the control 
variables u and the uncertain parameters ξ . The main novelty of the chance constrained 
NMPC relies basically on the explicit inclusion of the uncertainties in the problem 
formulation. The principles of the control strategy are schematically depicted in Figure 7.30. 
Based on the current output variable y(t) and the input u(t-1) the future N controls will then be 
computed such that the predicted outputs are restricted within the specified bandwidth with a 
given probability. Once the control is implemented including the realization of the 
disturbances, the new state at the time-point t+1 is accessible. The computation is then 
repeated in the next horizon. 
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Figure 7.30:   Principles of chance constrained model predictive control. 
 
The efficiency of the chance-constrained controller is proved through application to the same 
scenario of the fed-batch reactor under safety constraints discussed throughout this Chapter. 
The resulting NMPC scheme is also embedded in the on-line optimization framework (Fig. 
7.27). For the sake of simplicity, the objective function only includes the quadratic terms of 
the controls, since the outputs are confined in the chance constraints. Thus, the performance 
of the objective function from (7.31) is now redefined as follows, 
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subject to the entire first principle model described in Section 7.1.1. Besides, in order to 
compare the performance of the chance constrained NMPC with the dynamic adaptive back-
off strategy; the constraint regarding the process shout down is neglected in the nominal open-
loop optimization. Furthermore, while the hard-constraint with regard to the adiabatic end 
temperature (7.30) is still taken over, the safety restriction (7.29) corresponding to the 
maximum allowable reactor temperature is now formulated as a chance constraint within the 
moving horizon, 
 

maxPr{T(k i | k) T 356K} α+ ≤ = ≥ .                  (7.33) 
 
The decision variable is here the cooling flow rate too. Moreover, the relationship between the 
probability level and the corresponding value of the objective function can also be used here 
for a suitable trade-off decision between profitability and robustness. As previous discussed, 
tuning the value of α is also an issue of the relation between feasibility and profitability. The 
general solution of the defined NMPC problem (Eq. 7.31), however, is only able to arrive at a 
maximum value αmax which is dependent on the properties of the uncertain inputs and the 
restriction of the controls. The value of αmax can be computed through a previous probability 
maximization step. For this purpose, the original objective function (7.32) is replaced and the 
following optimization problem will then be solved:   
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where g represents the model equations, which form the equality constraints (see Section 
7.1.1) and hD are the deterministic inequality constraints. The maximization of α  is 
equivalent to the computation of the highest probability value of complying with the 
constraint, which can be maximized as an ordinary objective function by setting the optimal 
values of the decision variables u. Solving the problem in Equation 7.34, a value of 
αmax=96,7% is achieved. In order to identify the potential of the proposed approach, the main 
disturbance assumed is the catalyst activity with a variance of 15%.  
 
However, the use of this strategy for transient process with the consideration of uncertainties 
in advance has for those NMPC-Problems a great impact where the reference trajectory is 
very close to a defined upper bound of the constraint output at some time-periods. Thus, a 
comparison between the chance-constrained approach and the deterministic dynamic adaptive 
back-off strategy is meaningful in order to find further improvement of operation policies due 
to the stochastic approach.  
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Figure 7.31:   Reactor temperature trajectory of both strategies. 
 
The resulting trajectories of the reactor temperature concerning both strategies are illustrated 
in Figure 7.31. It can be seen that the reactor temperature trajectory based on the back-off 
strategy reaches early a stationary value caused by fixed bounds of the temperature 
formulated in the corresponding optimization problem. The temperature curve of the chance-
constrained approach shows several changes with lower values of temperatures compared to 
the back-off strategy just after the heating period, and higher values after the total feed 
amount has been supplied (see Fig. 7.32). This is caused by the fact that with the 
consideration of uncertainties in advance, the sensitivity changes of uncertain parameters 
towards the reactor temperature are also taken into consideration by means of the stochastic 
approach. 
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Figure 7.32:   Optimal cooling flow rate for both strategies and the given feed supply. 
 
Due to the higher sensitivities, the stochastic approach implements a more conservative 
strategy after 1600s and, thus, the operation may achieve more robustness than the back-off 
strategy. Towards the end of the process, the decrease of sensitivities is used for a closer 
approach to the maximum allowable reactor temperature and thus leading to a better objective 
value. Moreover, different confidence levels can be assigned to different time periods within 
the moving horizon by using single chance constraints. By this means, a decreasing factor, 
i.e., a lower confidence level for the future periods within the horizon can be introduced. As a 
result, the process operation will be as close as possible to the constrained boundaries. Thus, 
the chance-constrained strategy leads to an improvement of both robustness and the objective 
value.  
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7.4   Summary 
 
Model-based process control of transient processes has become significant during the last few 
decades. However, transient processes are inherent dynamic and characterized by the fact that 
some of the controlled properties are commonly not measured on-line. Moreover, since 
nonlinear models are derived from input-output data, which inevitably contain significant bias 
and variance, the uncertainties and disturbances are required to be quantified and considered 
explicitly in the controller design and analysis. As demonstrated for the semi-batch reactor 
under safety restrictions, the potential advantages of a model-based control system are 
otherwise likely to lead to significant tracking errors.  
 
In this chapter, two methods based on a nonlinear model predictive control NMPC scheme are 
introduced to solve close-loop dynamic optimization problems within an online framework. 
The key idea lies in the consideration of unknown and unexpected disturbances in advance i.e. 
anticipating, in particular, violation of output hard-constraints, which are strongly affected by 
instantaneous disturbances. The first approach is realized by means of an adaptive backing off 
of their bounds along the moving horizon with a decreasing degree of severity leading then to 
the generation of a trajectory consisting of the modified constraint bounds. This trajectory is 
however dependent on the amount of measurement error and parameter variation including 
uncertainty. In addition, towards an integration of dynamic real-time optimization and control 
of transient processes, a two-stage strategy is considered which is characterized through a 
higher level corresponding to a dynamic optimization problem and a lower level related to a 
tracking control problem. 
 
In the chance-constrained control approach the known properties of some major disturbances 
can be integrated in the NMPC formulation. These are described with stochastic distributions, 
which can be achieved based on historical data. Moreover, since the influence of the uncertain 
variables on the output constraints propagate through the nonlinear process from time interval 
to time interval. The solution of the chance-constrained NMPC problem has the feature of 
prediction, robustness and being closed-loop. Due to the property of the moving horizon the 
developed control strategy is extended to on-line optimization under uncertainty. Thus, 
derived from the proposed approach, in this Chapter, a novel concept based on a nonlinear 
MPC scheme has been introduced to solve close-loop stochastic dynamic optimization 
problems assuring efficiently both robustness and feasibility with respect to input and, in 
particular, output constraints. The formulation of individual pre-defined probability limits of 
complying with the restrictions incorporates the issue of feasibility and the contemplation of 
trade-off between profitability and reliability. In order to demonstrate the performance of the 
developed concepts and the efficiency of the proposed online framework, both presented 
NMPC schemes are applied for the on-line optimization of a semi-batch non-isothermal 
reactor under safety (hard-) constraints and the influence of several disturbances.  
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Chapter 8 
 
 
 
 
 
 

Conclusions and Future Research Directions 
 
 
In the industrial practice, an overestimation of uncertainties, which is a widespread practice in 
the chemical industry, leads to conservative decisions resulting in an unnecessary 
deterioration of the economic performance. The main reason for these intuitive decisions in 
planning chemical process operations is due to the lack of systematic reliability analysis. In 
other cases, an aggressive strategy may be preferred due to profit expectations. This is very 
likely to lead to process constraint violations. Accordingly, a systematic way is required to 
evaluate the trade-off between profitability and reliability. To allow solving the optimization 
problems with inherent uncertainty, a promising chance-constrained programming approach 
has been developed and presented in this thesis. Its main feature is that the resulting decisions 
ensure the probability of complying with constraints, i.e., a sufficient confidence level of 
being feasible. Thus, using chance constrained programming, the relationship between the 
profitability and reliability can be quantified. In other words, the solution of the problem 
provides comprehensive information about the economical performance as a function of the 
desired confidence level of satisfying process constraints.  
 
Therefore, in this thesis the aspects of uncertainty in process engineering problems have been 
addressed. The main challenge has been the solution of large-scale, complex optimization 
problems under uncertainties focusing on the development of a general chance-constrained 
programming framework to deal with different optimization problems as depicted in Figure 
1.3. The resulting optimization problems are then relaxed into equivalent nonlinear 
optimization problems such that they can be solved by a nonlinear programming solver. The 
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major challenge when solving chance-constrained optimization problems lies in the 
computation of the probability and its derivatives of satisfying inequality constraints. Suitable 
algorithms and numerical approaches to addressing nonlinear, steady-state as well as dynamic 
optimization problems under uncertainty have been developed and applied to various 
optimization tasks with uncertainties, such as optimal design and operation as well as optimal 
control of processes under uncertainty.  
 
This work presents a novel contribution to the research of optimization under uncertainty and 
provides theoretical developments and practical applications of chance-constrained 
programming. One of the main contributions is also that the solution of such problems based 
on the developed approaches can offer both optimal and reliable decisions such that the 
analysis of the outcomes allows for identifying the critical constraint which cuts off the 
largest part of the feasible region. This information is important for decision makers in order 
to relax the constraint, if necessary, so as to arrive at a meaningful decision. It has been 
clearly demonstrated that probabilistic programming is a promising technique in solving 
optimization problems under uncertainty in process system engineering. 
 
 
8.1   Summary of contributions 
 
Summarizing the major contributions of this thesis are: 
 
Nonlinearity between constrained output and uncertain input 

The approach considers a nonlinear relation between the uncertain input and the constrained 
output variables. In fact, the approach is relevant to all cases when uncertainty can be 
described by any kind of joint correlated multivariate distribution function. The essential 
achievement is the efficient computation of the probabilities of holding the constraints, as 
well as their gradients. 
 
Mapping back or reverse projection of output probability distribution 

In systems where the relation between uncertain and constrained variables is nonlinear, the 
type of the probability distribution function of the uncertain input is not the same as the one of 
the constrained output. Thus, due to the nonlinear propagation, it is difficult to obtain the 
stochastic distribution of output variables. For this reason, nonlinear chance-constrained 
programming remained an unresolved problem. In this thesis, new approaches are introduced 
to infer the output probability distribution. The basic idea is to avoid directly computing the 
output probability distribution. Instead, an equivalent representation of the probability is 
derived by mapping the probabilistic constrained output region back to a bounded region of 
the uncertain inputs. Thus, within the developed framework the probability computation of 
the output constraints is transformed to a multivariate integration in the limited area of 
uncertain inputs. Hence, the output probabilities and, simultaneously, their gradients can be 
calculated through multivariate integration of the density function of the uncertain inputs. For 
this purpose, efficient algorithms are introduced based on the orthogonal collocation on finite 
elements with an optimal number of collocation points. However, since multiple time 
intervals are considered, the reverse projection of the feasible output region is not trivial. 
Therefore, the approach also involves efficient algorithms for the computation of the required 
(mapping) reverse projection so as to deal with large-scale nonlinear dynamic processes. 
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Strict monotonic and non-monotonic relationship 

Depending on the relation between the uncertain input and the output variables, the developed 
method relies upon the case of a strict monotonic relationship between the constrained output 
variables and at least one of the uncertain input variables. However, the chance-constrained 
programming framework has also been extended to address stochastic optimization problems 
where no monotonic relationship between constrained output and any uncertain input variable 
can be assured. Especially for those process systems where the decision variables are strongly 
critical to the question of whether there is monotony or not such that chance-constrained 
nonlinear dynamic optimization can now also be realized efficiently even for those cases 
where the monotony can not be guaranteed. 
 
Consideration of single and joint constraints 

In this work, we also focus on the analysis of the impact of chance constraint probability 
limits on the optimal policies in terms of robustness and feasibility, particularly with regard to 
the optimized value of the objective function. These probability limits can be seen as 
measurements of the robustness of the optimized strategies. Obviously a high confidence level 
to ensure the constraints will be preferred. However, due to the nature of the uncertain inputs 
and the restriction of the controls and outputs, it is often impossible to find an operation 
policy with a 100% guarantee for complying with the constraints. Thus a maximum 
confidence level needs to be found first. As part of this work, therefore, a systematic analysis, 
appropriate to the system complexity, has been developed to compute this value. The novelty 
lies in the efficient computation of single and joint constraints and their gradients. 
 
Time-dependent uncertainties 

Uncertain variables can be constant or time-dependent in the future horizon. They are, 
however, undetermined before their realization. Moreover, usually only a subset of variables 
can be measured. However, in this work novel efficient algorithms have been integrated to 
consider time-dependent uncertainties. 
 
Integration of D-RTO and control level 

Furthermore, for the integration of dynamic real-time optimization and control of transient 
processes, a two-stage strategy is considered which is characterized by an upper stage 
corresponding to a dynamic optimization problem and a lower stage related to a tracking 
control problem. For this purpose, two methods based on a nonlinear model predictive control 
(NMPC) scheme are proposed to solve close-loop stochastic dynamic optimization problems 
assuring both robustness and feasibility with respect to state output constraints within an 
online framework. 
 
Dynamic adaptive back-off strategy 

Feasibility and robustness with respect to input and output constraints have been achieved by 
the proposed backing-off strategy. The resulting NMPC scheme embedded in the on-line re-
optimization framework is viable for the optimization of transient processes while 
simultaneously guaranteeing the constraints compliance - both for nominal operation as well 
as for cases of large disturbances e.g. failure situation. 
 
Robust Nonlinear MPC under Chance Constraints 

Since the prediction of future process outputs within an NMPC moving horizon is based on a 
process model involving the effects of manipulated inputs and disturbances on process 
outputs, the compliance with constraints on process outputs is more challenging than these on 
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process inputs. Furthermore, as the model involves uncertainty, process output predictions are 
also uncertain. This leads to output constraints violation by the close-loop system, even 
though predicted outputs over the moving horizon might have been properly constrained. 
Thus, a robust predictive control strategy is introduced for the online optimization of transient 
processes, in particular, under hard constraints leading to a chance-constrained nonlinear 
MPC scheme where the output constraints are to be held with a predefined probability with 
respect to the entire horizon. Due to the moving horizon approach, the control strategy can be 
extended to on-line optimization under uncertainty. 
 
Finally, a number of example problems are discussed including the application of the 
optimization framework to a large-scale industrial process. Thus, the developed chance-
constrained optimization framework demonstrates to be promising to address optimization 
problems under uncertainties. The different solution strategies have mainly been applied to 
transient processes. The solution provides a robust operation strategy in the future time 
horizon. Moreover, the relationship between the probability levels and the corresponding 
values of the objective function can be used for a suitable trade-off decision between 
profitability and robustness. Tuning the value of the different confidence levels is also an 
issue of the relation between feasibility and profitability.  
 
 
8.2   Recommendations for future work 
 
Derived from the ideas suggested in this thesis and along the lines of the presented 
development, several points were raised that call for further investigations and can lead to 
interesting extensions of this work. 
 
Usually the distribution of an uncertain variable can be estimated through statistical 
regression from past data logs or through interpolation or extrapolation. There has been an 
explosive growth of computer-based process monitoring systems, which makes it relatively 
easy to acquire process data for utilization in distribution analysis. Uncertain variables may be 
correlated or uncorrelated and their stochastic distribution may also have different forms. The 
developed solution approaches are not dependent on the distribution of the random variables, 
whenever the probability distribution function of the random variables is known or can be 
approximated, the chance-constrained programming framework can be applied. However, the 
application of the approach to processes under uncertainties with other distributions may be a 
challenging future work. In this context, the development of appropriate algorithms to 
approximate a multivariate probability distribution function based on available data represents 
an interesting task to be tackled. 
 

System Θξ System Θξ
 

 
Figure 8.1:   Defining (time-dependent) parameters as output variables. 
 
Another interesting topic concerns the application of the developed approaches to reducing 
the confidence interval of estimated parameters (Θ). Here the random input ξ can be 
represented by means of uncertain operating conditions, measurement uncertainty amongst 
others (Fig. 8.1). 
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Beyond doubt, the most attractive work direction represents the extension of chance 
constrained programming in order to also consider integer variables for nonlinear dynamic 
systems, thus, leading to mixed-integer dynamic optimization problems under uncertainty. 
This, in fact, represents the most motivating challenge for the immediate future work. 
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Figure 8.2:   Close coordination and integration between process, control and optimization. 
 
The case studies discussed in the previous chapters are mainly concerned with single unit 
operations. However, chemical processes are mostly composed of a large number of units 
which are interconnected with each other through flows of materials and energy including 
recycle streams. Thus, based on the promising results obtained in this thesis, the development 
of a unified framework for a robust tight integration and coordination of the different 
optimization and control tasks accounting for the uncertain operating conditions, uncertain 
model parameters and disturbances at different time scales, as illustrated in Figure 8.2, poses 
an interesting challenge for integrated chemical processes development. Together with the 
increasingly intensifying computer performance, the developed algorithms in this thesis, 
which some of them are still time-consuming for real-time control of large-scale systems, will 
lead to a broader applicability of optimization problems with probabilistic performance 
functions and constraints. Thus, chance constrained programming will further evolve into a 
promising technique in solving optimization problems under uncertainty in several 
applications and disciplines. 
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Appendix A1: Theorem for the Maximal joint Probability of a Multivariate Normal 

   Distribution (Li, P., Wendt, M., Arellano-Garcia, H., Wozny G., 2002). 

 

 

Theorem: For a multivariate normal distribution the maximal value of the joint probability is 

achieved, if  
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Proof: Let the probability density function of the output vector be 
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where γ  and )(yf  are the corresponding constant and function, respectively. The joint 

probability is then 

 

)()()1()()(
max

min

max

min

max

min

NdyidydyP
y

y

y

y
N

y

y
y ����∫ ∫∫ ϕ= yµ              (A1.3) 

 

at the maximum point, there will be 
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From (A1.2) 
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From (A1.3) and (A1.4), it results 
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That is 
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It means 
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Since 
1−Φ N
 is the probability function of N-1 joint events of normally distributed variables, it 

is continuous and symmetric. Since
maxmin yy ≠ , then the mean of )(iy  must be at the center of 

],[ maxmin yy . 

 
 

Appendix A2: Collocation on finite elements for numerical integration (Finlayson, 1980) 

 

The integration required has the form 
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namely 
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The domain ],[ 0 fvv  of the variable v will be discretized into subintervals 

( Llvv ll ,,1],,[ 1 �=+ ). In each interval the integration function will be approximated by 

Lagrange-functions 
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where NC is the number of collocation points and Γ  is the Lagrange-function 
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jΩ  and )( j
v  are the values of the integration and the random variable on the corresponding 

collocation points which are usually the zeros of the shifted Legendre-function, respectively. 

Thus the derivatives of Ω  on the collocation points can be calculated 
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From (A2.2) and (A2.5), the value of the integration on the collocation points can be 

calculated. For the continuity, we use the integrated value on the last collocation point of the 

current interval as the initial value of the next interval. 

 

 

 

Appendix A3:  Model equations and parameters of the dynamic reactor network system 

    in section 5.2.2 
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Figure A.3.1: Reactor network system. 

 

Component balances for reactor 1: 
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Component balances for reactor 2: 
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2C
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Product amounts 
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with, 
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Auxiliary equations 
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0

II 2
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where MM is the total number of intervals II and i=1,2. The independent (decisions) variables 

are the length of the different time intervals TD(II), the feed flow rate F0(II), the reactor 

temperatures T1(II) and T2(II), and the reactor volumes V1(II) and V2(II), II represents the 

current interval. The dependent variables are the concentrations: c1A, c1B, c1C, c2A, c2B, c2C, the 

product amounts SD1, SD2, SD3, and the heat flux QP1, QP2 for both reactors, which are 

necessary in order to keep constant the reactor temperature in the respective interval II. In this 

case study, the activation energies, the frequency factors, and the reaction enthalpies are 

assumed to be uncertain. 

  

uncertain parameters  ξξξξ expected value µµµµ Standard deviation σσσσ 
activation energy EA1 36.400,00 J / Mol 10% 

activation energy EA2 34.600,00 J / Mol 1% 

frequency factor k01 840.000,00 1 / min 10% 

frequency factor k02 76.000,00 1 / min 10% 

reaction enthalpy ∆H1 21,20 kJ / Mol 5% 

reaction enthalpy ∆H2 63,60 kJ / Mol 5% 

density ρ = ρA = ρB = ρC 1.180,00 kg / m³ 5% 

heat capacity cp 3,20 kJ / kg K 5% 

 

Table A3.1:   Stochastic properties of the uncertain inputs. 
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Correlation matrix: 

 

A1 A2 01 02 1 2 p

A1

A2

01

02

1

2

p

E E k k H H c

E 1,0 0,5 0,3 0,2 0,1 0,0 0,0 0,0

E 0,5 1,0 0,5 0,3 0,2 0,1 0,0 0,0

k 0,3 0,5 1,0 0,5 0,3 0, 2 0,1 0,0

k 0,2 0,3 0,5 1,0 0,5 0,3 0, 2 0,1

H 0,1 0,2 0,3 0,5 1,0 0,3 0,1 0,0

H 0,0 0,1 0, 2 0,3 0,

0,0 0,0 0,1 0,2

c 0,0 0,0 0,0 0,1

∆ ∆ ρ

∆

∆

ρ

3 1,0 0,2 0,0

0,1 0, 2 1,0 0,1

0,0 0,0 0,1 1,0

 
 
 
 
 
 
 
 
 
 
 
  

            (A3.13) 

 

Furthermore, since the utility costs UTi are proportional to the absolute value of the current 

temperature deviation. The relation of the utility costs to the reactor temperature deviation is 

approximated by an exponential function (Eq. A3.14), which is smooth also around the point 

of the current temperature and thus easy to differentiate, 

 

( )i i i i i i

1
T (II) T (II 1) T (II) T (II 1) exp k T (II) T (II 1)

k
− − = − − + − − −           (A3.14) 

also 
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with k=20. 

 

 

 

Appendix A4:  Model equations and parameters of the semi-batch reactor  

    in section 5.3.1 
 

 

Component balances 
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− −
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A 2E

C RT
02 B

dx
k e x

dt

−

=                (A4.3) 

 

parameter value parameter value 

k01 20000  1/s EA2 53000  J/mol 

k02 10000  1/s R 8.314  J/mol/K 

EA1 48890  J/mol NA(t=0)     200  mol 

 

Table A4.1:  Model parameter. 
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Appendix A5:  Model of the reactive semibatch distillation 
 

The model considered in the deterministic and stochastic optimization in the sections 6.2 and 

6.3 is based on the following assumptions:  

 

1) constant holdup in the condenser and on the trays  

2) constant tray pressure 

3) total condenser without subcooling 

4) ideal vapor phase on each tray 

5) negligible vapor holdup 

6) ideal heat exchange in the condenser and reboiler. 

 

The trays are numbered from the condenser (j=1) to the reboiler (j=NST). The variables on 

each tray are the component compositions of both liquid and vapor phases, the liquid and 

vapor flow rates, as well as the temperature. With the above assumptions, the following DAE 

system is formulated 

 

Total condenser: j 1=  

 

Component balance 

 

i,1

1 2 i,2 1 i,1

dx
HU V y (L D)x

dt
= − +                  (A5.1) 

 

Summation equation: 
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x 1
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=∑                     (A5.2) 

 

The energy balance is replaced wit the following relationship 
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K x 1
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Total mass balance 

 

V j 2

1

V j

1 R (T ) V
L

R (T )

 + =                              (A5.4) 

 

Internal trays: j 2, NST 1= −  

 

Component balance 

 

i, j

j j 1 i, j 1 j 1 i, j 1 j i, j j i, j i, j

dx
HU L x V y L x V y r

dt
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Vapor-liquid equilibrium 

 

i, j j i, j i, j j i, j 1y K x (1 )y += η + − η                  (A5.6) 

 

Summation equations 

 
NK

i, j

i 1

x 1
=

=∑  
NK

i, j

i 1

y 1
=

=∑                   (A5.7) 

 

Energy balance 

 
L

j L V L V
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Reboiler: j NST=  

 

Component balance 
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j j 1 i, j 1 j 1 i, j 1 j i, j j i, j i, j

dx
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− − + += + − − +                          (A5.9) 

 

Vapor-liquid equilibrium 

 

i, j j i, j i, j j i, j 1y K x (1 )y += η + − η                 (A5.10) 

 

Summation equations 
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Based on the assumption of ideal heat exchange, the energy balance of the reboiler can be 

replaced as follows 

 

NST NST 1V L D−− =                  (A5.12) 

 

Total mass balance 

 

NST
NST 1 NST NST

dHU
L V F
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−= − +                (A5.13) 

 

and the volume of the reaction 
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Phase equilibrium: 

 
0

i, j

i, j i, j j i, j
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p
K (T , x )

p
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Antoine equation 
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The activity coefficient γ i j,  is calculated by the NRTL model. 

 

Enthalpy 
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where the vapor and liquid molar enthalpy of a component can be computed respectively with 

 

i ,j

T

i, j 298i p

298

h H c dT= ∆ + ∫                 (A5.18) 

 

and 

 

i , j

2 3

p i,0 i,1 j i,2 j i,3 jc a a T a T a T= + + +                (A5.19) 

 

Reaction rate 

 

i,NST H A,NST B,NST R C,NST D,NSTr k C C k C C= −               (A5.20) 

 

with the Arrhenius equation: 

 

0

NST

E
k k exp( )

RT
= −                  (A5.21) 

 

There are ( )2 3NK +  variables and the same number of equations per tray.  

 

 

 

Appendix A6:  A hybrid model for the start-up of the reactive batch column 

    starting from the cold and empty state 
 

In section 6.1.3, a hybrid model for the simulation of the start-up operation of batch 

distillation with overlapping chemical reactions is proposed. The proposed model includes 

both equation and variable discontinuity (Wang et al., 2003). A detailed tray-by-tray model 

has been developed. The total equation system consists of mass balance, energy balance, 
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vapor-liquid equilibrium relations and tray hydraulics. Below are given some auxiliary 

equations 

 

Liquid flow rate: 

 
1.5

liq tray

j j liq

j weir j

h h
L l vol

 −β
= α   β 

                (A6.1) 

 

with 
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Gas velocity: 
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Vapor flow: 
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Wet pressure drop: 
 

( ) ( )L 0
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where the average liquid density is calculated by 

 

( )

NK

i, j i
L i 1
j NK

i
i, j L

i 1 i, j j

x M

M
x

T

=

=

ρ =

ρ

∑

∑
                   (A6.6) 

 

Dry pressure drop: 
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2

ρ
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here the average vapor density is 
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( )
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Tray efficiency 
 

j NK

i, j i

i 1

L L

j j

1

k MW

1
h T

=

η =

+ µ
ρ

∑
                  (A6.9) 

 

µ has been taken over from Perry et. al., (1997). 

 

 

 

Appendix A7:  Process data and parameter of the exothermic batch reactor 
 

parameter value parameter value 

Aν  2 d 3  dm 

0T  273  K 
coolρ  900  g/dm

3
 

R 8,31441  J/mol/K 
p,coolc   3,1  J/g/K 

pAc  92,3  J/mol/K 
coolT   298  K 

pBc  154,2  J/mol/K 
HTk  10 W/dm

2
/K 

pCc  173,9  J/mol/K 
jacketV  6,98   dm

3
 

AM�  25  g/mol Feed mol/s 

BM�  50  g/mol 
coolV�  dm

3
/s 

CM�  50  g/mol 
0Ah    48500  J/mol 

Aρ    550  g/dm
3
 

0Bh    36500  J/mol 

Bρ    800  g/dm
3
 

0Ch    30000  J/mol 

Cρ  900  g/dm
3
 

1E        48890  J/mol 

01k   500  1/s 
2E        53000  J/mol 

02k   10000  1/s   

 

Table A7.1:  Model parameter. 
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