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F- AND H-TEST ASSUMPTIONS REVISITED'

KLAUS BOEHNKE?
Technische Universitat Berlin

The effects of some restraints not included in the classical assump-
tions of the F- and H-test (e.g., correlation of mean and sample
size) were examined in a simulation design of 1000 samples per
condition. Also simulated was a situation in which two assump-
tions were not met simultaneously. The major conclusions were: H
was not an appropriate alternative for F with samples of N = 20; in
all cases of unequal variances combined with unequal sample sizes
H should be applied; and neither H nor F should be applied if more
than one assumption of either test is not met.

TRADITIONALLY, to test several samples simultaneously for dif-
ferences in location Fisher’s F-test is applied. For example, a typical
application of the F-statistic would be to compare the effects of
several different teaching methods on the mean achievement of
students as measured by a standardized achievement test.

F-tests in one-way ANOVA designs like this are based on three
major assumptions: normality of the population distributions, homo-
geneity of the population variances, and additivity of treatment and
error components. According to most textbooks, the F-test is fairly
robust to violations of these assumptions (Bortz, 1979; Clauss and
Ebner, 1971; Weber, 1980). However, if these assumptions are not
met, Kruskal-Wallis’ H-test is a possible alternative. According to
Lienert (1973), there are also three assumptions of the H-test:
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continuous measurement of the dependent variable; homomerity,
i.e., treatments are allowed to effect only the means but not the
shape of population distributions; and additivity of treatment and
error components. The basic issue is: when parametric assumptions
are not met, under what conditions should the H-test be applied, and
under what conditions should the F-test be applied.

The present study focused on two major aspects of this question:
(a) to assess to what extent certain conditions (sample size, correla-
tion of sample size and sample mean, etc.) not usually included in
the above mentioned classical assumptions influence the accuracy
of the tests; (b) to assess the results when two of the classical
assumptions are not met simultaneously. Although much research
has been done on the comparison of F- and H-tests, (cf. Keselman
and Rogan, 1977; Scheirer, Hare, and Schmitt, 1978), previous
studies have rarely concentrated on the questions raised above;
moreover their conclusions have been somewhat contradictory
(compare Bradley, 1968, vs. Smith, Note 1, concerning e.g., the
influence of sample size on the power of the respective test).

Method

To answer these questions, a 1000-samples-per-condition simula-
tion was performed using the SPSS random number generator (Nie
et al. 1975). Three conditions were systematically varied. The
conditions were chosen to enable cross-validation with results from
studies by Bradley (1968), Keselman and Rogan (1977), and Smith
(Note 1) concerned primarily with the influence of sample size on
the power of the H- as well as the F-test. Furthermore results not
provided by those studies, namely the influence of two parametric
assumptions not being met simultaneously and of neither parametric
nor non-parametric assumptions being met, were desired.

The three conditions can be described as follows: First were
conditions under which all the parametric assumptions had been
met. Included here were varying sub-conditions, i.e., number of
treatments (k), level of nominal «, and number of subjects under
each treatment (n;); second were conditions under which all the
parametric assumptions had not been met but non-parametric as-
sumptions had been. Again, included here were varying sub-condi-
tions, i.e., non-normal distributions of different shapes combined
with homogeneous variances (0°), normal distributions combined
with unequal variances (¢%), and non-normal distributions of differ-
ent shape combined with non-homogeneous variances (¢%). Within
these sub-conditions, number of subjects (n;) under each treatment
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(k), correlation (r) between sample size (rn;) and population variance
(%), correlation (r) between sample size (nj) and population means
(w) additionally varied. Third, were conditions under which para-
metric as well as non-parametric assumptions had not been met.
Included again here were varying sub-conditions, i.e., non-continu-
ous dependent variables from equally shaped distributions, and non-
continuous dependent variables from non-homomeric distributions.

Each of the conditions was simulated under the null as well as
under the alternative hypothesis. Under the null hypothesis, means
of all populations were chosen to be u = 4. Under the alternative
hypothesis, means were chosentobe u; =2, u, =3, u3 =7, ug = 4,
and us = 4. This selection of means is based on an example for one-
way ANOVA given by Bortz (1979). Population variances were then
adjusted so that the F-test would have an expected power of .6
according to the tables generated by Cohen (1977). Cohen’s power
coefficient was chosen because it is the most extensively tabulated
coefficient available.

Results
Condition 1: All parametric assumptions met

Under condition 1, the simulation showed that the H-test is less
powerful and more conservative than the F-test under all sub-
conditions tested. The influence of sample size (n;) may be seen in
Table 1. As can be seen, in general as sample size increases, relative
efficiency also increases. (See Footnote e, Table 1 for qualifications
to this conclusion.)

TABLE 1
Empirical Power of H and F at Different Sample Sizes

n’ 1 - Bs° 1 — B¢ 1 - Bu/l - B
3 .485 .600 .808
4 554 .604 917
5¢ .550 .588 .935
6 516 .577 .894
8 .541 .591 915
11 .554 .600 .923
31 .560 .594 943
S1 551 578 953
250 614 .637 .964
average 547 .597 917

# Number of treatments held constant at k = 3.

b Empirical power of H.

¢ Empirical power of F.

4 Local relative efficiency of H compared to F.

¢ Exact critical values were used for n; = 5, x°-approximations were used for n; > 5.
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2 Between o = 2.0 and o = 3.5 first decimals were probed in addition to full numbers
only probed otherwise.

® Power of F-test according to the Tables of Cohen (1977).

¢ Power of the H-test standardized by the ratio of the expected power of the F-test
and the empirical power of the F-test.

Figure 1. Power curves of H and F.

The power curves of the H- and F-tests are presented in Figure 1.
Examination shows that the power curves of H and F are not
parallel. As can be seen, the distance between these two curves
varies (unsystematically) as a function of the size of the standard
deviation of the population. This was expected because the H-
statistic has a discrete distribution. In order to obtain power curves
for H and F, the standard procedure for obtaining an alternative
hypothesis with the expected power of .6 was applied and then
population standard deviations (o) were systematically varied. Em-
pirical power values of H and F were afterwards standardized on the
basis of Cohen’s expected power coefficients, i.e., the empirical
power values of H were divided by the empirical power values of F
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TABLE 2

Empirical Type I Errors of H and F for p = .05
nj aHa a,.-b

3 .048 .046

4 .053 .057

5¢ .052 .057

6 .047 .054

8 .052 .053

11 .035 .039

31 .047 .045

51 .052 .052
250 .048 .049
average 10482 .0502

2 Empirical percentage of false rejections of the null hypothesis by the H-test.
b Empirical percentage of false rejections of the null hypothesis by the F-test.
¢ Exact critical values were used for n; < 5, xz-approximalions were used for n; > 5.

and multiplied by the expected power of F according to Cohen
(1977).

Under the null hypothesis, H was conservative under all sub-
conditions. Table 2 shows the percentage of false rejections of the
null hypothesis by H and F, on a nominal a-level of p = .05 with k =
3 and n; varying. As can be seen, on the average, the empirical Type
I error of the F-test is closer to the expected Type I error than is that
of the H-test.

Three additional results obtained under condition 1 were some-
what unexpected. First, in a substantial number of samples (4% of
all samples drawn), the false null hypothesis was rejected by the H-
test, while at the same time it was falsely retained by the F-test; an
example of this kind of sample is given in Table 3.

TABLE 3
Parametric Sample for Which H Rejects While F Retains the False Null
Hypothesis
A, A, As Ag

2.000 3.000 10.618 523

2.537 5.688 7.000 2.260

.389 675 6.322 4.000

6.121 5.688 7.905 6.146

—1.047 -.051 3.155 7.071

S x 10.000 15.000 35.000 20.000

X; 2.000 3.000 7.000 4.000
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Second, with large samples (n; = 250), the empirical power of H is
consistently higher than the power expected on the basis of asymp-
totic theory (see Pitman, Note 2): In this case, itis 1 — B8 = .97 as
compared to an expected 1 — B = .955. Third, with unequal sample
sizes under each treatment, the power of both H and F is considera-
bly reduced especially when population means are negatively corre-
lated with sample size. This loss is as high as 65% under the most
extreme conditions.

Condition 2: Parametric assumptions not met and non-parametric
assumptions met

Results under condition 2 of the simulation are presented by sub-
condition.>

Under the first sub-condition, namely of homogeneous variances
with non-normal distributions, three results were obtained: (a) the
shape of the distribution has almost no effect on Type I and Type 11
errors as long as the distribution is symmetrical, (b) the relative
efficiency of H compared to F does not increase under a rectangular
distribution, as would have been predicted by asymptotic theory;
and (c) the H-test gains considerably in relative efficiency with
asymmetric distributions; it even exceeds 1.0 if the distribution is
log-normal.

Under the second sub-condition, namely of the normal distribu-
tion with unequal variances, the F-test is slightly liberal, even with
equal sample sizes, i.e., .08 at a nominal a-level of .05. In addition,
the H-test leads to fewer false decisions under the null as well as
under the alternative hypothesis when variances and sample sizes
are negatively correlated. Finally, if population means and variances
are strongly correlated, the power of both H and F is considerably
reduced, e.g., from expected 1 — Br = .6 and 1 — By = .57 to .12
and .09 respectively.

Under the third sub-condition, namely of non-normal distribu-
tions with unequal variances, the simulation shows that neither the
F- nor the H-test should be used, because under certain conditions
(e.g., an inverted j-shaped distribution* combined with slightly
unequal variances) both tests lead to approximately 60% false
decisions under the null hypothesis.

3 Detailed Tables are omitted here, they may be obtained from the author, Klaus
Boehnke, Technische Universitit Berlin, Institut fiir Psychologie, Dovestr. 1-5, D
1000 Berlin 10, Federal Republic of Germany.

4 A distribution of the absolute scores of the normal distribution.
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Condition 3: Neither parametric nor non-parametric assumptions
met

Again, the results of this part of the simulation are presented by
sub-condition.

Under the sub-condition of discontinuous but homomeric distri-
butions: (a) discontinuity has hardly any influence whatsoever as
long as the distribution is symmetrical; and (b) H gains considerably
in relative efficiency if applied to a Poisson-distribution. H retains
power of .95 even at very small sample sizes (e.g., k = 4, n; = 5)
compared to .85 under perfectly parametric conditions with the
same sample size.

Under the sub-condition of discontinuous and non-homomeric
populations, the simulation again shows that both tests should not
be applied in cases where more than one assumption is not met.
However, this is true for different reasons. The F-test loses its
power almost completely; at the same time under the null hypothe-
sis, frequencies of correct decisions come close to the nominal a. H,
on the other hand, retains its power to an extent that comes close to
that expected from asymptotic theory, but results in about 50% false
decisions when the null hypothesis is true.

Discussion

The effects of some restraints not included in the classical
assumptions of the F- and H-test, (e.g., sample size, correlation of
variance or mean with sample size) were examined in a simulation
design. As has been discussed previously (Illers, Note 3), such
parameters may have a major impact on the accuracy of non-
parametric tests, especially in comparison to their parametric ana-
logs. Also of interest was the accuracy of F- and H-tests under
conditions where two assumptions of either of the tests were not met
simultaneously.

Three major conclusions can be drawn from the results of this
study.

1. With sample sizes of N (k - n)) = 20, the H-test should not be
used as a regular alternative for the F-test, even if parametric
assumptions are not completely met.

2. The H-test should be used instead of the F-test if unequal
variances are combined with unequal sample sizes, especially if both
are negatively correlated.

3. Neither of the two tests should be applied if more than one
assumption of either test is not met.
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The results from which conclusion 1 is derived directly oppose the
position taken by Bradley (1968) who claimed that non-parametric
tests are only slightly less efficient with extremely small sample
sizes and lose power with increasing sample sizes. Smith (Note 1)
claimed the opposite and the present results definitely support her
view. The results underlying the second conclusion are consistent
with results of studies by Box (1954) and by Keselman and col-
leagues in recent years (e.g., Keselman and Rogan, 1977). The third
conclusion finds no counterpart in the literature. In agreement with
Bradley (1968) it is concluded that robustness of the F-test is a
“myth’’ if more than one assumption of the test is not met; these
results suggest that it is also a myth for the H-test if more than one
assumption of that test is not met.

The reasons for the occurrence of samples like the one in Table 3
still remain unclear. This kind of sample has already been referred to
by Games (1971). More information could be gained by an analytical
study of the rejection areas of both the H- and the F-test. The
present study, being purely empirical, could not attempt this analy-
sis. Higher order ANOV A designs as well were not within the scope
of the present study but are also an area for future additional
research.

Whatever the results of further research,-it is clear that a more
careful examination of the parametric as well as the non-parametric
assumptions is needed if serious errors in future research are to be
avoided.
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