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Abstract 

In this work, the Plantwide Control (PWC) problem of a continuous bio-ethanol process is 

investigated from a Plantwide Optimizing Control (PWOC) perspective. A PWOC methodology 

is proposed which addresses this problem by integrating real-time optimization and control 

for optimal operation. The PWOC methodology consists of two main tasks. The first is a local 

control-oriented task related to the identification and design of necessary local control loops 

required for satisfying the primary objectives of the process (e.g. safe operation, 

environmental and equipment protection, etc.). The second is a Plantwide control-oriented 

task in which the available control degrees of freedom are used for maximizing the process 

profitability. This means that, excluding the local loops, no pre-defined set points will be 

either regulated or tracked. The core of the PWOC methodology proposed is the formulation 

of a Dynamic Real time optimization (D-RTO) problem for the complete process. In this 

work, two new approaches are proposed for reducing the computational effort of solving this 

problem in real time. First, it is proposed to shrink the search region in the optimization 

problem based on the effect of disturbances (both, known and unknown) on the profitability 

of the process. Second, a new stochastic global optimization algorithm denoted as Molecular-

Inspired parallel Tempering (MIPT) is proposed for solving the D-RTO problem. The 

performance of the MIPT algorithm is evaluated in different challenging case studies, 

demonstrating to be a very competitive and efficient algorithm, reaching the global optimum 

with 100% success ratio in most cases without requiring much computational effort. It is 

shown that incorporating the shrinking approach and the MIPT algorithm results in a very 

efficient approach for solving the complex problem of controlling a complete, highly 

interconnected plant, such as the bio-ethanol production process. In addition, two different 

PWOC approaches have been considered: A Single-Layer Direct Optimizing Control (PWOC-

one-layer) and a Multi-Layer without Coordination approach (PWOC-two-layer). The 

performance of the PWOC-one-layer and PWOC-two-layer schemes is analyzed under three 

different disturbance scenarios: a known disturbance in the feed concentration, an unknown 

disturbance in the kinetics parameters of fermentation, and a sudden increase in the raw 

material price. The performance of the PWOC approaches facing these challenges is 

compared to the performance when a decentralized Plantwide architecture (i.e. multiple 

single PID loops) is used, a typical configuration in industry, demonstrating the benefits of 

using Plantwide Optimization-based Control strategies towards reaching maximum 

profitability. 
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Zusammenfassung 

In der vorliegenden Arbeit wurde die Plantwide Optimizing Control (PWOC) für die 

kontinuierliche Bio-Ethanolproduktion untersucht. Diese Methode integriert Real-Time 
Optimization (RTO) und Regelung für den optimalen Betrieb in zwei verschiedene Aufgaben. 

Die erste ist eine lokale dezentralisierte Regelungsaufgabe, die aus der Identifizierung und 

dem Entwurf benötigter lokaler Regelkreise für die Erfüllung der Primärregelungsziele des 

Prozess (z.B. sicherer Betrieb, Umweltschutz, Anlageschutz, usw.) besteht. Die zweite ist 

eine anlagenweite (plantwide) Regelungsaufgabe, die die verfügbaren Freiheitsgrade nutzt 

um die Prozessrentabilität zu maximieren. Das heißt, dass außer den lokalen Regelkreisen, 

keine festgelegten Sollwerte vorgegeben werden. Das Prinzip des PWOC Methode ist die 

Formulierung eines Dynamic Real-Time Optimization (D-RTO) Problems für den ganzen 

Prozess. Die Berechnungsdauer der Lösung der D-RTO wird durch die Ausführung einer 

neuen Methode zur Verkleinerung des Durchsuchungsbereich und durch eine neue 

stochastiche globale Optimierungsmethode (Molecular-Inspired Parallel Tempering - MIPT) 

stark reduziert. Die Leistung des MIPT Optimierungsalgorithmus wird für verschiedene 

Probleme bewertet. Es wird nachgewiesen, dass MIPT eine sehr effiziente und hilfreiche 

Methode ist. Die Verwendung der neuen Methode zur Verkleinerung des 

Durchsuchungsbereichs und der MIPT Optimierungsmethode führen zu einer 

leistungsfähigen Lösung des komplizierten Plantwide Control (PWC) Problems (z.B. für den 

kontinuierlichen Bio-Ethanol Produktionsprozess). Zwei verschiedene PWOC Architekturen 

werden verwendet: Die Single-Layer Direct Optimizing Control Architektur und die Multi-
Layer without Coordination Architektur. Die Ergebnisse für jede Architektur sind für drei 

Störungsszenarien untersucht worden: eine bekannte Störung in der Zulaufkonzentration, 

eine unbekannte Störung in den kinetischen Parametern der Fermentation, und eine 

unerwartete Steigerung der Rohstoffpreise. Die Leistung der PWOC Architekturen werden mit 

der Leistung einer dezentralisierten Architektur (mehrere PID Regelkreise) verglichen. Es ist 

klar geworden, dass die PWOC Methode eine äußerst effiziente Strategie für die Maximierung 

der Prozessrentabilität darstellt. 
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1. Introduction 
 

In the year 2000, the Intergovernmental Panel on Climate Change presented a scientific 

study concluding that if the emission of greenhouse gases, mainly CO2, does not decrease, 

the global warming effect would dramatically increase the Earth temperature (up to 6°C on 

average), with devastating consequences for the environment and ecosystems, and 

consequently for mankind. The report presented in year 2000, clearly stated that the global 

warming is a real problem faced by the planet, and that the reduction of CO2 emissions 

generated by transportation is a challenge for the political, economic and industrial sectors. 

The German federal government, in the framework of its climate protection program, has 

adopted policies for motivating the production and consumption of fuels from regenerative 

sources of energy (Schmitz, 2003). A recent report by the Saxon State Ministry of the 

Environment and Agriculture (Grunert, 2005) summarizes the situation of the Bio-ethanol 

industry in Germany, where it is reported that up to 2005, there were four bio-ethanol 

production plants already installed and operating with a total production capacity of ca. 

600.000 m3/year, using rye, triticale, corn and wheat as main raw materials.  Furthermore, 

up to the same year, 7 additional plants were under construction with a planned capacity of 

100.000 m3/year each, in order to completely satisfy the internal bio-ethanol demand. As it 

can be noticed, the Bio-ethanol industry in Germany, and also worldwide, has become a very 

important sustainable alternative for replacing fuel-oils, in an effort to decrease the effects of 

fuels on the climate change. 

 

The intention of this work is to offer an alternative for assuring the economical feasibility of 

the bio-ethanol process industry from a plantwide control and optimization perspectives. In 

the next Section, the motivating reasons for this work are explained. Then, a general 

description of the bio-ethanol production process is provided. Finally, at the end of the 

section, the outline of this work is presented.   
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1.1. Motivation to Plantwide Control for the Bio-ethanol 

process 
 

Nowadays, bioprocess industry is an important part of the worldwide economy. Specifically, 

the bio-ethanol industry has experienced a significant growth in the last years because 

ethanol, as an environmentally friendly fuel, is considered an attractive alternative energy 

source. Fuel ethanol is considered today as a bulk product, whose consumption is expected 

to keep growing fast for the next 20 years, as reported by Licht (2006) and Walter et al. 

(2008) (Figure 1.1). Despite the growing market and favorable predictions, ethanol industry 

is at risk because the process is claimed to be economically infeasible, non-sustainable 

without governmental subsidies, and non-competitive with fuel oil prices today.  
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Figure 1.1 Fuel Ethanol consumption 2005-2030 (Source: Walter et al. 2008) 

 

In order to assure the economical and environmental feasibility of the bio-ethanol industry, 

ethanol production has been continuously improved in very different ways. Examples of this 

progress include the genetic modifications of the microbial strains for building more ethanol-

tolerant yeast, strains capable of carrying out simultaneously saccharification and 

fermentation tasks, and for the development of strains with capability for simultaneously 

fermenting hexoses and pentoses. Furthermore, the development of different purification 
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technologies for reducing energy consumption during the separation of the ethanol-water 

mixture has also been an active area of research, where new technologies such as 

pervaporation, extractive distillation, pressure swing adsorption using molecular sieves and 

pressure swing distillation with heat integration appear to be promising alternatives for 

improving the purification section in the bio-ethanol process. Recently, some efforts have 

been done from the Process system Engineering point of view, in which the focus has been 

to obtain an optimal design for the process, by minimizing energy consumption. For 

example, the work by Karuppiah et al. (2008) addressed the optimal design problem of a 

complete corn-based bio-ethanol plant, by formulating and solving a mixed integer nonlinear 

programming problem. The work by Ahmetovic et al. (2010) uses the results reported by 

Karuppiah et al. (2008), for both, optimizing energy consumption and synthesizing an 

optimal process water network in corn-based ethanol plants. In the work by Alvarado-

Morales et al. (2009), a methodology is proposed and applied for analyzing and designing 

a bio-ethanol production process from lignocelullose, considering new alternatives for 

reducing the waste water generation, and different alternatives for downstream separation. 

Finally, the works by Haelssig et al. (2008) and by Hoch and Espinosa (2008) 

addresses the conceptual design of the purification section for the bio-ethanol process, 

looking for a significant reduction in energy demand. The mentioned works have shown the 

potential of the application of computer-aided tools to the bio-ethanol process, resulting in 

very interesting alternatives for reducing operating costs whereas saving energy and 

minimizing waste production. However, in addition to an optimal design of the process, it is 

important also to account for an efficient and appropriate control system for the process 

which should consider the interactions between the different operating units in the process. 

Traditionally, the control problem for the bio-ethanol process (and for bioprocesses in 

general) has been focused in controlling the fermentation section separately from the other 

process units. This is why, in the literature, it is possible to find many works regarding the 

modeling, estimation, and control of the isolated fermentation stage, but only few works 

addressing the control problem considering the process as an integrated dynamic production 

system consisting of more than one single process unit (i.e. accounting for interactions 

between the fermentation, cells recycle, and purification units). Some representative works 

in this direction include those by Meleiro et al. (2009) and Costa et al. (2002), in which 

the model presented for controlling purposes includes more than one process equipment (i.e. 

fermentation, cells recycle and a flash vessel). However, in spite of accounting for the 

interaction between different process units, these works are still focused on the control of 

some state variables only in the fermentor, and lack of a suitable plantwide control 

formulation.  
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In the present work, the Plantwide Control (PWC) problem for the complete bio-ethanol 

process is addressed as an optimizing control problem based on Dynamic Real-Time 

Optimization (D-RTO), due to the following facts: the process is highly nonlinear and 

characterized by the coupling of slow and fast dynamics; there exist interactions between 

different operating units which cannot be neglected, also the quality and availability of the 

raw material change often, introducing disturbances into the process; and finally, the 

economical feasibility of the process can be effectively assured only if this is the main control 

objective of the plantwide strategy. Of course, an optimal process design should be the base 

for an efficient and economically feasible process, but this is not enough, because, despite 

optimal operation may be expected at the optimal operating point for the designed process, 

a real process is always affected by disturbances and uncertainties, which in many cases 

upset the process, driving the optimum to a very different operating point and thus resulting 

in significant economic losses.  

 

It is important to notice that for solving the dynamic real time optimization problem that 

arises in the Plantwide optimizing control framework, it is desirable to use global optimization 

algorithms for solving the problem in order to avoid reaching a lower profit performance at a 

local optimum. As noted by Lacks (2003), in large chemical processes the profit can be a 

nonlinear function of the operating conditions variables, and there may be local maxima, 

local minima and saddle points on the profit function space. Therefore, since the optimal 

operation of the process occurs at the conditions corresponding to the global maximum 

profit, it is important to search for the global optimum of the profit function by using global 

rather than local optimization algorithms. Although this last statement may seem obvious, 

usually real-time applications are solved using local optimization algorithms because of the 

larger computational requirements of global optimization procedures and the need to solve 

fast the real-time optimization problem. Trying to overcome these drawbacks, a new global 

optimization algorithm is proposed in Chapter 3, which has an excellent performance both in 

terms of finding the global optimum and requiring a reasonable computational demand.  

 

Before concluding this section, it is important to clarify that the scope of Global Optimization 

(GO) is to find the absolutely best set of admissible conditions to achieve an objective under 

given constraints (Neumaier, 2004). In this work, such “admissible conditions” is the set of 

plantwide manipulated variables that lead the process to maximum profitability. Figure 1.2 

shows an example of an optimization (maximization) problem consisting on a multimodal 
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objective function in two dimensions where the use of global optimization techniques is 

required in order to find the global maximum.  
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Figure 1.2 Global maximum and local maxima for the two-dimensional Shubert function. Only some of 

the local maxima are indicated by arrows. The Shubert function is described in Appendix B.1.  

 

In general, deterministic or stochastic approaches can be used for solving GO problems. In 

this thesis, stochastic methods are investigated and compared with a new method proposed 

and developed in this work, which is denoted as the Molecular-Inspired Parallel Tempering 

Algorithm (MIPT) and is presented in Chapter 3. 

 

1.2. Generalities of the Bio-ethanol process 

 

Fuel-ethanol can be obtained from different raw materials (substrates), mainly from starchy 

materials, sugar crops and lignocellulosic materials. In general, the production process 

involves the stages shown in Figure 1.3. First, the polymeric substrates are broken down into 

monosaccharides through physical, chemical or enzymatic techniques, as appropriate. Then, 

the conversion of the sugars to alcohol by microbial fermentation (generally by yeasts) is 

carried out. Finally, the alcohol is recovered by distillation and it is purified in subsequent 

steps, to obtain fuel-grade ethanol (>99.8% wt).  
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Anhydrous 
Ethanol

Pre-treatment: Physical /Chemical

Saccharification:
Monosaccharides production by

Enzymatic / Acid Hydrolysis

Fermentation:
Sugars Conversion to Ethanol
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Alcohol recovery by Distillation /Dehydration

Sugar Crops Starches Lignocellulose

 
Figure 1.3 Main stages in fuel-ethanol production from different raw materials: Sugar crops (dotted 

line), Starches (dashed line) and Lignocellulose (solid line) 

 

As it is mentioned by Roehr (2001) the selection of an appropriate substrate depends on a 

number of factors and one of the most important is the geographical climate of the intended 

production site. Thus, while starchy materials like corn, wheat, rice and potatoes are the 

most common substrates in Europe and North America; sugar cane, molasses, and cassava 

appear to provide the most promising supply of ethanol for tropical countries like Brazil. If 

well, lignocellulosic biomass is claimed to be a more convenient raw material for ethanol 

production (no competition between food and fuel production, low price, etc.), currently only 

few pilot plants worldwide produce ethanol from this raw material, mainly because 

saccharification is more difficult to carry out than in the case of starches, due to the 

presence of lignin which protects cellulose and hemicellulose against enzymatic action (thus 

increasing the pre-treatment costs); and because fermentation is also more complicated, as 

the substrate available for ethanol production consists on a mixture of pentoses and hexoses 

usually requiring the use of a genetically modified yeast strain.  

 

In Germany, the most promising raw materials for ethanol production are cereals like wheat, 

rye, barley and triticale (Jacobi and Hartman, 2005). Figure 1.4 shows a general block 

diagram of the ethanol production process from starchy materials. The raw material is first 

milled (in the milling section) to the desired grain size in order to allow enzymatic attack for 
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breaking down the polysaccharide (starch) into monosaccharides (mainly glucose). Such 

enzymatic process is done in the hydrolysis stage (involving gelatinization, liquefaction and 

saccharification). After hydrolysis, the glucose fermentation to ethanol is carried out where a 

fermentation broth containing ethanol, water, some glucose and non-fermentable material is 

obtained, but also some CO2 is produced. For obtaining fuel-ethanol, the fermentation broth 

is then sent to the purification section (distillation, rectification and dehydration). The CO2 is 

sent to a scrubber whereas the stillage (a high valuable protein content by-product obtained 

at the distillation bottoms) is sent to the Dried Distillers Grains section where it is dried and 

treated for being sold as animal feed. A more detailed description, including the modelling of 

each stage in the process is given in Chapter 4 where the particular case study addressed in 

this work, namely the Bio-ethanol continuous process from starchy raw materials, is 

presented. 
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Figure 1.4 General block diagram for the ethanol production process from starch 

 

1.3. Thesis Outline 

 

The main purpose of this work is to present a novel approach for the Plantwide Control of 

bio-ethanol production, in which the main control objective is to maximize the profitability of 

the whole process. The core of the Plantwide Control approach proposed in this thesis is the 

formulation of a Dynamic Real time optimization (D-RTO) problem for the complete process. 
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As solving such a problem requires much computational effort and time, this work proposes 

two new approaches for dealing with the problem in real time. First, an approach for 

shrinking the search region of the optimization problem is proposed, which is based on the 

effect of the disturbances (both, known and unknown) in the profitability of the process. 

Second, a stochastic global optimization method is proposed for solving the D-RTO problem, 

which is used in a sequential formulation for finding the global optima values for the 

manipulated variables that lead to maximum profitability in a reasonable computation time. 

With this novel approach it is possible to solve the complex problem of controlling a 

complete (highly interconnected) plant, such as the bio-ethanol production process (which 

considers three recycle loops) and similar applications in the chemical and biochemical 

industry.  

 

The thesis is organized as follows. Chapter 2 presents a review of the theoretical background 

in the plantwide control architectures that have been investigated in chemical processes 

applications during the last 20 years, including the decentralized, distributed, multilayer, and 

single-layer architectures. Furthermore, the background of the stochastic methods used in 

this work is also presented, namely, the localized random search algorithm, simulated 

annealing, particle swarm and genetic algorithms. The new global optimization method 

denoted as Molecular-Inspired Parallel tempering Algorithm is formulated in Chapter 3, 

where the performance of the method is tested in 6 challenging optimization problems and 

compared to the performance of other well-established optimization methods. As it is shown, 

the MIPT has an excellent performance in solving global optimization problems of different 

nature, showing to be a very promising algorithm for bioprocesses applications. The specific 

case study for plantwide optimizing control addressed in this work, that is, the bio-ethanol 

production from starchy raw materials is described in detail in Chapter 4, where the model 

developed for the entire process is presented. In Chapter 5, the Plantwide Optimizing Control 

(PWOC) methodology is presented. The proposed approach for PWOC is developed and 

explained in detail. In Section 5.2 the shrinking approach for reducing the search space of 

the D-RTO problem is introduced. Chapter 6 shows the application of the Plantwide 

Optimizing Control (PWOC) framework (using the Multi-layer and Single-layer architectures, 

denoted here as PWOC-two-layer and PWOC-one-layer, respectively) proposed in Chapter 5, 

where the shrinking approach as well as the MIPT algorithm is used in the solution strategy 

of the D-RTO problem that arises. The performance of the proposed PWOC approach 

(including the shrinking) is evaluated in three different scenarios. First, a known disturbance 

in the feed concentration (starch composition) is applied to the process. Second, a model 

mismatch is introduced on the kinetics parameters in the fermentation section of the 
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process. And third, a scenario that considers raw material price change is evaluated. The 

performance of PWOC facing these challenges is compared to the performance when a 

decentralized Plantwide architecture (i.e. multiple single PID loops) is used, which is a typical 

configuration in industry. Finally, conclusions and recommendations for future work are 

outlined in Chapter 7.  

 

It is important to notice that the problem of controlling a complete process involves many 

different interconnected tasks, as it is represented in Figure 1.5, all of which are very 

important in real applications. In this work, the focus has been on the process control and 

optimization tasks, which require the development of a reliable process model. In addition, 

complete observability of the process based on reliable measures taken by accurate physical 

sensors has been assumed, and therefore, the data reconciliation and soft-sensing issues 

were not addressed. Furthermore, parameter identification was done off-line in order to 

reduce computational effort. 
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Figure 1.5 Interconnected tasks and tools for Plantwide Control  
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2. Theoretical Background 
 

This research focuses on two main topics. The first is related to the control of a complete 

process plant (plantwide control), while the second is concerned on the use of stochastic 

global optimization as a tool for plantwide control. The purpose of this chapter is to 

summarize the theoretical background in these two topics. 

 

2.1.  Plantwide Control Architectures (PWC) 

 

Since the pioneer work by Buckley (1964), Plantwide Control (PWC) has attracted the 

attention of the process control community for more than 40 years. Through these years, 

different architectures have been used for tackling the problem of controlling a complete 

process. The intention of this section is to present a brief review of the several options 

reported for addressing PWC. One possible classification of the different PWC architectures is 

shown in Figure 2.1. In this classification, which agrees in some points with that presented 

by Scattolini (2009), PWC approaches are presented in four main groups, characterized by 

the complexity of the model considered into the control system for describing the dynamics 

of the process and by the degree of communication between controllers of different 

operating units or between different layers of the control system hierarchy. These four main 

architectures considered are: Decentralized, Distributed, Multi-layer and Single-layer. 

Considering the complexity of the model, in the decentralized approach the need for a model 

of the process is avoided (with exception of decentralized MPC, which of course do need a 

process model). In the Distributed architecture, the usual case is to use linear dynamic 

models. The Multi-layer case usually makes use of a nonlinear steady state model in the 

optimization layer and a linear dynamic model in the controller layer as it will be explained in 

Section 2.1.3. Finally, since the operation of the control system in the Single-layer case relies 

on a centralized controller, it is desirable to consider a first-principles nonlinear dynamic 

model of the process in order to predict the process behavior as close as possible to reality.  
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Figure 2.1 Classification of Plantwide Control architectures (Ochoa et al. 2010a) 

 

In the following, the description of the architectures considered in Figure 2.1 is given, in 

which the main features as well as remarkable contributions specially dedicated to chemical 

process applications are emphasized.  

 

For all architectures, let us assume a process (chemical or biochemical plant) composed of N 

different operating units (OU1, OU2, …,OUn, …, OUN), in which the vector of output variables 

to be regulated in OUn is denoted as Yn=[y1n, y2n, …, yin, …, yIn], where I is the number of 

controlled variables in each operating unit. Furthermore, the vector of manipulated variables 

in OUn is written as Un=[u1n, u2n, …, ujn, …, uJn], where J is the number of manipulated variables 

in each operating unit. Finally, the state vector Xn=[x1n, x2n, …, xkn, …, xKn] of operating unit OUn 

is conformed by the K state variables in that operating unit. 

 

2.1.1. Decentralized Architecture 

The Decentralized architecture (Figure 2.2) consists usually of SISO PID loops in which 

different individual controllers (C11,n, …, Cij,n, …, CIJ,n) are used in each operating unit OUn for 

regulating each output variable yin by manipulating ujn. The main feature of this architecture 

is that the control system is actually composed of several individual controllers which do not 
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share any kind of information between them independently of whether or not the selection 

of the manipulated and controlled variables takes into account the interactions in the 

process, i.e. each controller operates independently of the others without receiving/sending 

information from/to any controller, acting as an “isolated entity”. As noted by 

Stephanopoulous and Ng (2000), most of the research activities in the topic of PWC up 

to the year 2000 addressed the PWC problem as the selection of the best input-output 

pairing for the implementation of SISO PID loops. However, the work by Garcia and Morari 

(1984) is a notable exception, in which a multivariable control scheme based on a multi-

layer PWC architecture was proposed for controlling a benzene plant. As the decentralized 

approach is the simplest of the PWC structures (relying on PID controllers or linear dynamic 

models for the MPCs), it is still predominant in industry. The work by Larsson and 

Skogestad (2000) presents an excellent review in this topic and a mathematically-oriented 

design procedure based on the self-optimizing control concept (Skogestad, 2000). Recent 

works following these guidelines can be seen in Araujo (2007), Araujo et al. (2007a, 

2007b, 2008), Baldea et al. (2008) and Larsson et al. (2003). Other works in 

decentralized PWC architecture make use of an oriented process approach, in which mainly 

heuristics and simulation analysis are used. The books by Luyben et al. (1998) and 

Luyben (2002) present a popular heuristic procedure for developing decentralized PWC 

schemes. Other relevant works applying heuristics coupled with simulation for decentralized 

PWC include Konda et al. (2005, 2006), Lausch et al. (1998), McAvoy and Ye 

(1993), Price et al. (1994) and Vasudevan et al. (2009). 
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Figure 2.2 Decentralized architecture for Plantwide Control (Ochoa et al., 2009a) 
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2.1.2.  Distributed Architecture 

Most of the works in the remaining three architectures shown in Figure 2.1 make use of a 

multivariable controller. Two main reasons motivated the shift of the PWC problem from the 

paradigm of decentralized PID towards different alternatives (Venkat et al., 2007):  

1. The performance limitations of the decentralized architecture 

2. The broad industrial impact of the Model Predictive Control (MPC) framework  

 

In the Distributed architecture (Figure 2.3) each operating unit uses at least one MPC 

controller (MPCn), which is in charge of controlling the outputs vector Yn by manipulating the 

inputs Un of the specific operating unit. The main feature in this architecture is that the 

multiple MPC controllers do exchange some information between them. Two basic 

Distributed-MPC approaches are the communication-based and the cooperation-based, which 

mainly differ that in the former, each controller has a local objective function whereas in the 

latter the objective function in each controller is a copy of the total objective function for the 

complete plant (Rawlings and Stewart, 2008). Recent representative works addressing 

the PWC from the Distributed perspective are those by Mercangöz and Doyle (2007), 

Sun and El-Farra (2008) and Venkat et al. (2006, 2007). 
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Figure 2.3 Distributed architecture for Plantwide Control (Ochoa et al., 2009a) 
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2.1.3.  Multilayer Architecture 

The Multi-layer architecture is a hierarchical structure that follows the guidelines given by 

Findeisen et al. (1980), who classified the hierarchical control into multi-layer and multi-

level. According to Findeisen’s work, in the multi-layer case the control of a system is split 

into algorithms (layers), whereas in the multi-level case control it is divided into local goals 

and the action of each local control unit is coordinated by an additional superior unit. In 

Figure 2.1 it is proposed to sub-divide the Multi-layer (or hierarchical) architecture into: 

Multi-layer with Coordination (Figure 2.4) -denoted as Multi-level approach by Findeisen- and 

Multi-layer without Coordination (Figure 2.5). Both Multi-layer architectures are composed by 

at least two different layers, i.e. an optimization and a control layer. The optimization layer 

consists on a Real-Time Optimization (RTO) problem in which the main task is to compute 

optimal set point values (Ysp,opt) for the set of controlled variables (Yn) that minimizes an 

economic-type objective function. On the other hand, the control layer (MPC) is in charge of 

tracking those optimal set point values that come from the RTO-layer, minimizing a 

performance-type objective function. It is important to notice that the “connection” between 

RTO and MPC layers may suffer inconsistencies due to model mismatch (non-linear steady 

state vs. linear dynamic) and conflicting objectives (Biegler and Zavala, 2009). Therefore, 

in the last years a proposal for replacing the steady state RTO by a Dynamic Real Time 

Optimization (D-RTO) layer has emerged (Kadam et al., 2002, 2003; Kadam and 

Marquardt, 2004).  

 

2.1.3.1 Multilayer with Coordination Architecture 

In this type of Multilayer architecture, a coordination layer is usually included between the 

RTO and the MPC layers. This coordinator usually manages information coming from both 

layers, and it is in charge of finding for each MPCn a locally feasible set point (Yn,sp) close to 

the global solution found by the RTO layer (Ysp,opt). Then, each MPCn is responsible of 

tracking the local set points (Yn,sp) by calculating the vector of manipulated variables Un for 

each operating unit. Further details can be found in the work by Ying and Joseph (1999) 

where the coordinator is stated as a linear or quadratic programming problem; in the works 

by Lu (2003) and Tosukhowong et al. (2004) in which a least-squares coordination 

collar is used; and in the work by Cheng et al. (2007), where a price-driven method for 

coordination between the RTO and the MPC layers is applied. A final mention should be done 

regarding the difference between the Multi-layer with coordination and Distributed 

architectures. As both schemes include a kind of coordination, in the Distributed case the 
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coordination consists on exchanging some information between the local MPCs, whereas in 

the Multi-layer with coordination, the local MPCs are not directly communicated between 

them but communicated through the RTO layer (Figure 2.4). 
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Figure 2.4 Multilayer architecture with Coordination for Plantwide Control (Ochoa et al., 2009a) 

 

2.1.3.2 Multilayer without Coordination Architecture 

When no coordination is used between the optimization and control layers, the RTO is 

usually replaced by a D-RTO layer, in order to account for the dynamic nonlinear behavior of 

the process. The D-RTO layer is in charge of calculating the optimal set point values (Ysp,opt) 

for the process outputs, which are sent directly to the control layer (i.e. NMPC). Then, the 

control layer calculates the set U of vectors of manipulated variables for being applied in the 

process, where U={U1,U2,…,UN}. Kadam et al. (2002, 2003), Kadam and Marquardt 

(2004) and Ochoa et al. (2009b) present examples of PWC using the Multi-layer without 

Coordination architecture. Finally, the trigger blocks shown in Figure 2.4 and Figure 2.5 are 

acting as switches for recalling the optimization and control layers, when a certain condition 

is met. Some typical trigger conditions are presented in Section 5.1.5. 
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Figure 2.5 Multilayer architecture without Coordination for Plantwide Control (Ochoa et al., 2009a) 

 

A final mention should be done regarding the use of a NMPC controller layer instead of a 

linear MPC in the Multilayer architectures. The use of a nonlinear first principles model of the 

process is highly desirable in order to have a better predictive capacity of the performance of 

the process. However, in order to avoid the complexity of developing such a nonlinear model 

(which also commonly reduces the computational effort for solving the model), most of the 

works reported in the Multilayer with coordination architecture used a linear MPC. In 

contrast, works in the Multilayer without coordination architecture used more commonly a 

Nonlinear MPC. 

 

2.1.4. Single-Layer Architecture 

The last PWC architecture in the classification is the Single-layer scheme (Figure 2.6). The 

single-layer is a centralized structure that has been usually perceived and claimed as 

intractable for PWC (Venkat et al., 2007). In the last years, however, some publications 

from both industry and academia have shown that such approach is not only possible to 

implement but also that it provides very good results from an economic point of view 

(Bartusiak, 2007; Franke and Doppelhamer, 2007; Zavala et al., 2007). Works using 

this architecture solve online a moving-horizon optimization problem, in which the set of 

manipulated variables (U) corresponds to the set of decision variables that minimizes (or 

maximizes) a given objective function. Reported works differ in the type of objective function 

optimized. A first group of works denoted as Performance (N)MPC uses a performance-type 
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objective function (J(N)MPC) in which the tracking of reference values for the controlled and 

manipulated variables (Yref, Uref) is penalized as expressed in Equation (2.1). 
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where Q, R and P are weighting matrices that can be seen as tuning parameters for the 

(N)MPC. 
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Figure 2.6 Single-layer architecture for Plantwide Control (Ochoa et al., 2009a) 

 

A second group of works in the single-layer architecture includes, besides the performance 

term, an economic penalization term in the formulation of the objective function. It is 

therefore denoted here as Hybrid (N)MPC and is described by Equation (2.2); where ny, nu 

and nd are the number of outputs, manipulated variables and measured disturbances 

respectively, considered relevant for the objective function.  
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where wyi, wum and wdj are cost-weighting factors. 
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The last scheme denoted in the literature as Direct Optimizing Control (Engell, 2007) uses a 

pure economic objective function (Equation 2.3) in which the usual control specifications 

enter as constraints and not as set points, and therefore no tracking term is penalized.  

 

⎟
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It is important to notice that the Performance (N)MPC (Equation 2.1) as well as the Hybrid 

(N)MPC (Equation 2.2) differ from the Direct Optimizing Control (Equation 2.3) in that the 

latter does not consider the use of a Model Predictive Controller (neither linear nor nonlinear) 

because its objective is a pure economic function and it relies completely in the solution of a 

dynamic real time optimization problem (D-RTO). Additionally, it is important to mention that 

in the Performance N(MPC) as well as in the Hybrid case, the use of a nonlinear model of the 

process would be highly desirable in order to have better model predictions. However the 

decision about which kind of model to use should be done looking for a good balance 

between predictive capability and costs (i.e. of developing a complete nonlinear model for 

the whole process which also complicates the solution strategy resulting in higher 

computational costs).  

 

Some examples of the application of the Single-layer architecture can be found in Bartusiak 

(2007), Biegler and Zavala (2009), Engell (2007), Franke and Doppelhamer 

(2007), Franke and Vogelbacher (2006), Jockenhövel et al. (2003), Manenti and 

Rovaglio (2007), Ochoa et al. (2009b), Roman et al. (2006), Toumi and Engell 

(2004), Zavala et al. (2007) and the works by Trvzskâ de Gouvêa and Odloak 

(1998) and Zanin et al. (2000, 2002). Most of the reported applications using the Single-

layer architecture formulate the optimization-based controller as a D-RTO problem, similar to 

that included in the Multilayer without coordination architecture. Solving such D-RTO 

problem is a challenging task that usually is carried out using direct optimization 

formulations, which can be classified into (Jockenhövel et al., 2003): sequential, 

simultaneous or hybrid approaches (i.e. Multiple shooting). Srinivasan et al. (2003) 

provide a detailed explanation of the mentioned methods. The main features, advantages 

and disadvantages of the sequential, simultaneous and multiple shooting are summarized in 

Table 2.1, which have been previously reported by Jockenhövel et al. (2003), Michalik 

et al. (2009), Srinivasan et al. (2003) and Zavala (2008). 
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Table 2.1 Comparison of direct optimization formulations for solving dynamic optimization problems 
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On the other hand, regarding specifically the control issue for the bio-ethanol process it is 

noticed that despite the rapid growth of the bio-ethanol industry in the last 30 years and the 

high economic risk that this industry faces (especially in Europe, where the process is 

claimed to be neither sustainable nor competitive against the oil prices), not much effort has 

been done in order to improve the efficiency of the process from the optimization and 

control points of view. Several works have been published regarding mainly the modeling 

and control of the fermentation unit in the process (including the development of soft 

sensors for key fermentation variables), but only few works have addressed the control of 

the process considering more than the fermentation stage. Costa et al. (2001) used 

Dynamic Matrix Control for controlling the substrate or the product concentrations in the 

fermentor, manipulating the substrate input flow or the cells recycle rate. In a second 

contribution, Costa et al. (2002) proposes a SISO NMPC for controlling the substrate 

concentration in the fermentor manipulating the substrate input flow. In addition, Meleiro 

et al. (2009) presented a multivariate NMPC to control simultaneously the ethanol, 

substrate and biomass concentrations in the fermentor. Although the process modeled in 

these works considers interactions fermentor-cells recycle-flash, the control task is still 

focused on tracking or regulating the main state variables in the fermentor without 

considering the optimal economic operation of the whole process. Additionally, the recent 

work by Andrade and Lima (2009) addressed the PWC problem of the purification section 

(distillation and stripping but without including the fermentation section) of an ethanol 

production plant, following the guidelines given by McAvoy and Ye (1993) and Price et 

al. (1994) for designing decentralized SISO PWC architectures. Besides, Bartee et al. 

(2008) proposed using MPC for controlling the process including milling, cooking, distillation 

etc.; however, no details about the algorithms or implementation are given. Finally, 

regarding the optimization point of view, some recent works have been focused on the 

steady state analysis and optimization for designing the purification section (Dias et al., 

2009a; Hoch and Espinosa, 2008) or a complete bioethanol plant (Karuppiah et al., 

2008). 

 

 

 

 

 

 

 

Table 2.2 Advantages and disadvantages of the different Plantwide Control schemes  
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Finally, it should be noticed that the Multi-layer and the Single-layer architectures are used 

as part of the Plantwide optimizing control framework proposed in Chapter 5, due to the 

following reasons: 

• Both formulations include the incorporation of an economical objective function into 

their formulation, which is necessary if the Plantwide control objective pursued is to 

maximize the profitability, as stated here. 

• The formulations consider the dynamic behavior of the process through the use of a 

first principles dynamic model, which is used as a tool for predicting the process 

performance in terms of the objective function value, during the selected optimization 

horizon. Considering the dynamic behavior of the process is of vital importance in 

processes where the profitability is at risk when disturbances appear, such the case 

of the bio-ethanol production process, which is highly vulnerable to raw material 

quality disturbances, biomass viability, etc.  

 

For concluding this Section, the advantages and disadvantages of the different plantwide 

control architectures described, are summarized in Table 2.2. 

 

2.2. Stochastic Global Optimization 

 

As it was already explained, the main topic of this work is to propose a Plantwide Control 

(PWC) strategy for the bio-ethanol process. Such PWC strategy (see Chapter 5) is based on 

the optimizing control concept, in which a very important step is to solve a large-scale 

dynamic optimization problem in an efficient way, that is, in short time, without requiring 

much computational effort and with a high possibility of finding the global optimum. 

Considering a potential industrial application, the implemented optimization algorithm should 

be not only reliable, but also easy to understand and to implement. Furthermore, it is 

important to notice that due to the disturbances appearance and process uncertainties, the 

global optimum can move, therefore it is important that the optimization algorithm 

implemented has the capability for finding fast the global optimum. Although the literature in 

deterministic global optimization presents some powerful methods for solving global 

optimization problems (as reviewed by Floudas and Gounaris, 2009), in general, the main 

drawback of these methods is the need of gradient information, which becomes a main 

problem when a complete process is considered, that is, when implementing a plantwide 

strategy, as the case in this thesis. When deterministic approaches are not suitable for being 
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applied, stochastic methods appear as an option for solving global optimization problems. 

Stochastic optimization methods are those involving some kind of randomness or probability, 

which are useful for solving many global optimization problems either with continuous and/or 

discrete variables. In general, stochastic methods are simpler to implement from a 

computational point of view, and easier to use in a particular application because there is no 

need for derivatives. They are very well suited for highly multimodal problems, for problems 

involving uncertainties, and for black-box objective functions (Faber et al., 2005; Egea et 

al., 2009). Usually those algorithms sacrifice the guarantee of optimality for quickly finding 

a satisfactory solution (Zabinsky, 2009), a very important feature for on-line applications.  

 

Stochastic optimization methods can be classified into evolutionary and non-evolutionary 

methods, as presented in Figure 2.7. The most important feature of evolutionary methods is 

that they are inspired in biological systems. A detailed description and explanation of 

stochastic methods can be found in Glover and Kochenberger (2003) and Schneider 

and Kirkpatrick (2006).  
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Figure 2.7 Overview of stochastic optimization methods: Evolutionary vs. Non-evolutionary 

 

This section examines several stochastic direct search methods for global optimization, which 

are direct in the sense that they use no information about derivatives, are simple to 

implement, and have shown to have a wide applicability in many different disciplines, for 

successfully solving problems including constrained NLP, MINLP, dynamic optimization and 
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problems with highly multimodal functions. The general problem to be solved, for which the 

optimization algorithms are described in this section, is the minimization problem described 

by Equation (2.4). 

 

maxmin

obj
x

xxx
)y,x(h
)y,x(g.t.s

Fmin

≤≤
≥
=

0
0

         (2.4) 

 

where Fobj is the objective function to be minimized, x is the set of decision variables, y are 

the outputs of the process, g represents the set of equality constraints and h represents the 

set of inequality constraints.  

 

In this work, five stochastic algorithms were used, namely: Localized random search, 

Simulated Annealing, Particle Swarm Optimization, Parallel Tempering and the Molecular-

Inspired Parallel Tempering Algorithm (MIPT) proposed by first time in (Ochoa et al., 

2009c). In the next chapter, the new MIPT optimization algorithm is presented and tested 

in a wide range of problems, including constrained NLP, MINLP, dynamic optimization and 

problems with highly multimodal functions. Results shown in Chapter 3 compare the 

performance of the new MIPT algorithm, and it is proved that this new stochastic algorithm 

is a very efficient method for solving global optimization problems, with a high success ratio 

and with a reasonable computational effort. Therefore, the MIPT algorithm is used in 

Chapter 6 for solving the dynamic optimization problem that arises during the 

implementation of the plantwide optimizing control strategy proposed in Chapter 5. 

 

In the following, the theoretical background of the localized random search, simulated 

annealing, and the particle swarm optimization methods is revised, which were used in 

Chapter 3 for comparing the performance of the MIPT algorithm developed in this work. On 

the other hand, the Parallel Tempering and the Molecular Inspired Parallel Tempering are 

very well described in Chapter 3. 
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2.2.1. Localized Random Search (LRS) 

As it was previously mentioned, random search optimization methods are those employing 

some kind of randomness or probability in their algorithms. The randomness usually appears 

in the definition of the new trials and/or in the acceptance criteria at each iteration. In the 

most simple random search algorithms, the new trials are generated using a probability 

distribution (e.g. normal, uniform, etc), and the acceptance criteria simply checks if the 

objective function for the new trial decreases when compared to the previous point. 

According to Spall (2004), the most popular and simple random search algorithms that 

contain the most essential of these methods, are: the Blind Random Search and the 

Localized Random Search (Baba et al., 1994; Jang et al., 1997; Solis and Wets, 

1981).  The Blind Random Search (BRS) is the simplest version, in which the new trials are 

randomly generated without taking into account the sampling history. Although the blind 

search is the simplest algorithm, it is in general a very slow convergence algorithm. On the 

other hand, the Localized Random Search (LRS) differs from the blind search, in that the 

new trials are generated randomly around the current position. It is important to clarify that 

LRS is “local” in the sense that their new trials depend on the local environment near the 

current estimate, but this is not related with the searching for a local vs. a global solution. In 

fact, sometimes LRS may also provide global solutions (Spall, 2004).  

 

A flow diagram of the localized random search is shown in Figure 2.8. The first step is to pick 

a starting guess, which can be done randomly or using prior information. At this initial point 

(x0), the objective function value is evaluated for further comparison. The algorithm then 

generates the new trial (xi+1) around the previous sample, depending on a probability 

distribution ξ, as indicated by Equation (2.5).  

 

ξ+=+ ii xx 1           (2.5) 

 

Such a distribution is usually a Gaussian-type (Figure 2.9), whose probability density function 

(Equation 2.6) is defined by the values of the mean (μ) and the variance (σ2); however, 

other distributions can also be used.  
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Figure 2.8 Flow diagram of the Localized Random Search (LRS) Algorithm  

 

For the Gaussian distribution, also known as normal or bell distribution, the value of the 

variance determines the magnitude of the change around the previous sample. As a rule of 

thumb, almost all random values obtained from a Gaussian distribution are expected to 

belong to the interval [μ-3σ, μ+3σ]. In addition, in order to make unbiased moves around 

the current point, the mean value is usually set to zero (μ=0), although some other versions 

of the algorithm include updating rules for both the mean and variance. The main purpose of 

such updating rules is to enhance the performance of the pure random search methods, 

mainly by reducing, in an efficient and reliable way, the search space of the optimization 

problem at each iteration. Li and Rhinehart (1996) propose interesting rules for using the 

gradient information and the history of success in the calculation of the mean and variance.  
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Figure 2.9 Examples of probability density functions for Gaussian distributions 

 

After generating the new trial, the objective function is evaluated, and all constraints are 

checked. Then, the new trial is accepted only if it is feasible and if Fobj (xi+1)<Fopt, where Fopt 

is the current optimal value of the objective function. Finally, the stopping criteria are 

checked, and the optimization stops when at least one of them has been satisfied. 

 

Finally, it is important to notice that the localized random search algorithm, as shown in 

Figure 2.8, is used in Chapter 6 as one of the implemented optimization algorithms for the 

Plantwide Optimizing Control approach proposed in this work because: 

• The algorithm is very simple to implement (i.e. does not need derivative 

information, requires simple programming), which can be attractive for any 

potential application at industrial level. 

• The algorithm is very intuitive, and the only parameters to be tuned are the mean 

and variance of the probability distribution. 

• The hardware and software requirements for its implementation are not stringent. 

 

Although the LRS algorithm might be convenient for solving local optimization problems, its 

main drawback is that it lacks of a specific global character which, as it will be shown in 

Chapter 6, is important for dealing with unknown disturbances that shift the optimal 
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operating point far away form the current optimal. The implementation of the LRS algorithm 

(Figure 2.8) was done in MATLAB® (The MathWorks, Inc.).  

 

2.2.2. Simulated Annealing (SA) 

The simulated annealing algorithm developed by Kirkpatrick et al. (1983) used the 

concept of annealing in liquids and metals for finding the low energy configurations of 

disordered magnetic materials. Because of the analogy to the minimization of an objective 

function in an optimization problem, this algorithm has been extensively used in many other 

applications in fields like material engineering, electrical engineering, mechanical 

engineering, bioengineering, structural engineering, computational chemistry, 

crystallography and many other (Tan, 2008). A flow diagram of the algorithm is shown in 

Figure 2.10.  

 

The algorithm is initialized by defining an initial guess (x0) as well as the initial annealing 

parameter β0 and the annealing policy. The annealing parameter is usually interpreted as the 

reciprocal of the system temperature (Frenkel and Smit, 2002): 

 

TkB

1
=β           (2.7) 

 

where kB is the Boltzmann constant and T is the temperature. After defining an initial point, 

a new trial (xi+1) is randomly generated (from any random distribution, as in the case of the 

localized random search method described in the previous section), and the objective 

function value for this new trial (Fobj(xi+1)) is evaluated. Then, the acceptance probability Pacc 

is calculated from Equation (2.8) and compared against a random number (r) generated 

from a uniform distribution (e.g. r ∈ [0,1]). Such comparison is called the Metropolis 

condition (or Metropolis criterion) proposed first by Metropolis et al. (1953) in a pioneer 

work in statistical mechanics. When the Metropolis condition as criteria for accepting or 

rejecting a new trial is used, most of the trials will be accepted for low values of β (i.e. for 

high temperature values) providing the method with a global character by allowing the 

exploration of a wider region of the search space. However, for high values of β (i.e. low 

temperatures), the majority of the moves that deteriorate the objective function value, 

causing an increase in the energy of the system in analogy with the minimization of energy 

landscapes, will be rejected. As can be seen, the definition of the annealing parameter is a 

determining factor in the success of the method. A simple rule that can be implemented is 
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that the annealing β-parameter increases linearly with the number of iterations (i.e. β(i)=ci, 

where c is a constant representing the rate of annealing and i is the iterations counter).  

 

( ){ }))((exp,1min 11 optiobjiacc FxFP −−= ++β      (2.8) 

 

 
Figure 2.10 Flow diagram of the Simulated Annealing (SA) optimization algorithm. 
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The simulated annealing algorithm has been widely and successfully applied for solving 

global optimization problems in many disciplines (Tan, 2008), which can be explained due 

to the main virtues of this Monte Carlo-based method, such as: 

• its random nature, which allows the exploration of a much wider region 

• the Metropolis condition which avoids getting trapped in a local optimum 

• the annealing effect which takes care of the convergence of the method 

 

A detailed explanation of the origins of the method and a discussion of different cooling 

techniques (i.e. for defining a convenient annealing policy) can be found in the work by 

Schneider and Kirkpatrick (2006). A recent survey of different simulated annealing 

algorithms for single and multiobjective optimization is presented by Suman and Kumar 

(2006). The simulated annealing algorithm (provided by the Optimization Toolbox in 

MATLAB) is used in this work in Chapter 3 for solving several global optimization problems.  

 

2.2.3. Particle Swarm Optimization (PSO) 

The Particle Swarm Optimization (PSO) is a stochastic method based on the movement of 

swarms, developed by Kennedy and Eberhart (1995). In general terms, the PSO 

algorithm considers n different particles (k=1,2,…,n) moving in the search space looking for 

the best solution. At each iteration, a new trial (xi+1,k) is generated for each particle 

according to its current velocity (vi,k), its best preceding position (Xbest,k)  and the best 

preceding position for the whole swarm (Xgbest). In this way, each particle updates its 

position using some knowledge from its own experience, but also from the past experiences 

of the whole swarm. PSO is similar to genetic algorithms in that it uses a population of 

particles (individuals) for exploring the search space, but it differs in that all particles are 

kept as members of the population (i.e. there is no selection operation) and they just change 

its position and velocity during the optimization procedure. The algorithm for the original 

PSO method is presented in Figure 2.11. 

 

For initializing the algorithm, the number of particles (n) must be defined and the initial 

position and velocity for each of them is randomly picked. After that, the particle with the 

best objective function is set as Xgbest (best particle in the swarm) with a corresponding 

objective function value Fgbest. Then, before calculating the new position for each particle 

(xi+1,k), a new velocity (vi+1,k) is calculated according to three terms (Equation 2.9).  
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( ) ( )k,igbestk,ik,bestk,ik,i xXxX −+−+=+ 211 φφvv     (2.9) 

 

The first term is the velocity of the particle in the previous iteration (vi,k), whereas the 

second and third terms account for the best previous position (Xbest,k) and the best position 

between all particles in the swarm (Xgbest), respectively. It is important to notice that the 

second and third terms in the calculation for vi+1,k are weighted by some φ1 and φ2 factors, 

which define how much the individual and the social experience affect the calculation of the 

new position for each particle. Usually those factors are calculated considering a random 

component (i.e. φ1=c1ξ1, where c1 is a constant and ξ1 is a random number generated from 

an uniform distribution in which ξ1∈[0,1]). The new velocity vi+1,k is limited by the maximal 

velocity allowed (vmax). According to Eberhart and Shi (2001), vmax is a very important 

parameter determining the resolution at which the regions between the present and the 

target positions (global optima) are searched. Therefore, if vmax is too low, particles will 

become trapped in local optima, whereas in the opposite case, they might pass good 

positions without exploring them. Next, the new position xi+1,k is calculated according to 

Equation (2.10), assuming unit time steps, and the corresponding objective function 

(Fobj(xi+1,k)) is evaluated.  

 

k,ik,ik.i xx 11 ++ += v         (2.10) 

 

If the objective function for the new trial position (Fobj(xi+1,k)) is better than its own best 

objective function (Fbest,k), the former will be set as Fbest,k. If (Fobj(xi+1,k)) is also better than 

the best objective function for the whole swarm it is set as Fgbest. The procedure is repeated 

for all particles in the swarm until any of the stopping criteria is met. A more detailed 

explanation of the algorithm by its developers, including a discussion of many published 

variants of the algorithm can be found in Eberhart et al. (2001).  
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Figure 2.11 Flow diagram of the Particle Swarm Optimization method (PSO) 

 

PSO is used in Chapter 3 for comparing its performance in solving challenging global 

optimization problems. The algorithm in Figure 2.11 was implemented in MATLAB, following 

the formulation given by Clerc and Kennedy (2002).  
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2.2.4. Genetic Algorithms (GA) 

Genetic algorithms (GA) is the generic term used to designate evolutionary stochastic search 

method inspired on the mechanisms of natural selection, mutation and reproduction of living 

organisms. In analogy to living organisms the individuals simulated in genetic algorithms 

store genetic information in chromosomes, which can then be totally or partially transmitted 

to the next generations.  

 

The optimization by means of GA is performed assuming that the objective function to be 

maximized (or minimized) measures the fitness of the individual to the environment. Thus, 

by means of the selection operation, only the best fitted individuals in the population 

(parents) are allowed to breed a new generation of individuals (children), which will 

eventually substitute the older generations. The reproduction process may take place by 

different mechanisms, including for example binary cross-over, the random interchange of 

genetic information between two different parents, or unitary mutation, the replication of the 

genetic information of the parent incorporating random changes in the genetic sequence. 

Once a new generation of individuals has been generated, their fitness function (objective 

function) is evaluated and the whole process of natural selection and reproduction is 

repeated until any stopping criterion is met. This mechanism of successive cycles of selection 

and genetic information interchange is expected to lead to the rise of a population of very 

well-fitted individuals, and eventually, reaching the highest possible fitness value for the 

system. 

 

Since it is possible to consider many different types of selection rules as well as reproduction 

operations, there are many possible alternatives for implementing genetic algorithms. 

Chapter 3 of the book by Dréo et al. (2006) presents an excellent description of the 

different selection operations. A generalized flow diagram of the GA optimization is 

presented in Figure 2.12.  
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Figure 2.12. Flow diagram of the Genetic Algorithms (GA) optimization method 

 

During the initialization of the GA method, the number of individuals in the population (n) as 

well as the length of the chromosomes (l) must be defined. Usually, n and l are kept 

constant during the optimization procedure, but it is also possible to consider varying 

population sizes and varying chromosome lengths during breeding. Each individual in the 

population is initially generated by randomly assigning genetic information to its 

chromosome. This information is usually binary (0 or 1) although other types of information 

may be used. The advantage of binary genetic information relies on the easier 

implementation of a wide range of genetic operations during the reproduction stage.   

 

By far, the theoretical background in the core topics addressed in this work, namely, 

plantwide control and stochastic global optimization has been presented. In the next 

Chapter, the new algorithm for global optimization denoted as Molecular-Inspired Parallel 

Tempering, developed in this work, is presented.  
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2.3. Chapter conclusions 

 

In this chapter, a classification of the different reported architectures for addressing the 

Plantwide Control (PWC) problem in chemical processes has been proposed, and the 

theoretical background of those PWC schemes was reviewed, summarizing its main 

advantages and disadvantages in Table 2.1. After analyzing the different plantwide control 

architectures, the Multi-layer and the Single-layer schemes were selected to be used as part 

of the formulation of the Plantwide optimizing control framework proposed in Chapter 5. The 

main reason for this decision is that both formulations incorporate the statement and 

solution of a Dynamic Real Time Optimization (D-RTO) problem, which not only takes 

explicitly into account the dynamic behaviour of the process (which is important when the 

process is often subject to disturbances), but also allows the formulation of an economical 

objective function (e.g. maximization of the profitability) to be pursued as the main control 

objective of the process. In addition, considering that the solution of a D-RTO problem is an 

important step in the development of the Plantwide Optimizing Control methodology 

proposed in this work, the theoretical background of some relevant stochastic optimization 

algorithms was also described.  

 

Finally, it must be noticed that in this work stochastic optimization methods are used instead 

of deterministic because the former do not require gradient information. The need for the 

gradient increases the complexity of the problem becoming critical especially when 

implementing a plantwide strategy. In general, stochastic algorithms have been receiving 

increasingly attention because of their simplicity and they have been successfully used in 

several chemical and bio-chemical process applications, showing to be well suited for highly 

multimodal problems, for problems involving uncertainties, and for black-box-type objective 

functions. Furthermore, in spite of sacrificing the guarantee of optimality, stochastic methods 

are able to find quickly a satisfactory solution, which is a very important feature for on-line 

applications. 
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3. A New Stochastic Algorithm for Global 

Optimization: Molecular-Inspired Parallel 

Tempering 
 

In this Chapter, a new algorithm for stochastic global optimization denoted as Molecular-

Inspired Parallel Tempering (MIPT) is presented. In Section 3.1, a brief review of the original 

Parallel Tempering (PT) algorithm (which is the starting point for the development of the 

MIPT) is included. The MIPT algorithm is detailed described in Section 3.2, and a comparison 

of the performance of MIPT with respect to well-established optimization methods is 

presented in Section 3.3. 

 

3.1. Parallel Tempering 
 

Parallel Tempering (PT), referred also as the Replica Exchange Method (Swendsen and 

Wang, 1986) or the Markov Chain Monte Carlo approach (Geyer, 1992), simultaneously 

simulates multiple non-interacting replicas of a system under different thermodynamic or 

tempering conditions, e.g. under different temperatures (Earl and Deem, 2005; Li et al., 

2009a). Each replica can be independently cooled or warmed in order to achieve a global 

exploration effect at higher temperatures (because the replicas are able to escape local 

minima) and a local refinement effect (annealing effect) at lower temperatures. A key 

feature of PT is that the method considers two different types of transitions for generating 

new moves during the optimization algorithm (Hansmann, 1997; Schneider and 

Kirkpatrick, 2006). The first is a standard Monte Carlo (MC) move independently applied 

at each temperature level. The second is a replica transition, in which the configuration or 

conformation (i.e. set of values of the decision variables) is exchanged between different 

replicas. It is important to notice that in the standard MC transition the i-th replica is only 

allowed to change its configuration in a neighborhood around xi; whereas the replica 

transition allows to exchange complete configurations usually between adjacent replicas 

(adjacent in the temperature space, not in the configuration space). Thus, the replica 
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transition move allows the replica to wander from low temperatures (local refinement) to 

high temperatures (global exploration) by introducing random walk in the temperature space 

(Hansmann, 1997). 
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Figure 3.1 Simplified flowchart of the Parallel Tempering Algorithm (Ochoa et al., 2009c) 

 

A simplified flowchart of the parallel tempering algorithm is presented in Figure 3.1. The 

system is initialized by randomly selecting the position xi (for i=1,2,..,N) of the N replicas in 

the search space, evaluating their corresponding objective function values (Fobj(xi)), and 

assigning a temperature (Ti) to each replica. It is important to notice, that position xi is 

defined by the set of values of decision variables in the optimization problem, which is called 

in the following the configuration of the i-th replica. Then, the new possible position (xi*) for 

each replica is determined using Monte Carlo (MC) random steps (ξ) around its current 

position (xi), as shown in Equation (3.1), which is called the MC move: 

 

ξ+= ii xx*           (3.1) 
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where ξ represents a random number taken from a given distribution (i.e. uniform, Gaussian, 

etc.). The new position xi* of the replica is only accepted if the Metropolis condition given in 

Equation (3.2) is satisfied (otherwise the current position of the replica is retained).  

 

accPr <           (3.2) 

 

where r ∈ [0,1) is a uniform random number and Pacc is the Metropolis acceptance 

probability given by Equation (3.3): 

 

( ))exp(,1min iiacc GP Δ−= β         (3.3) 

 

where βi is a parameter inversely proportional to Ti, and, in analogy to thermodynamics, the 

“Gibbs free energy” change ΔGi is taken as expressed in Equation (3.4):  

 

)()( *
iobjiobji xFxFG −=Δ         (3.4) 

 

After applying a certain number of standard MC movements (Equation 3.1), the replica 

transition move is proposed (usually between adjacent i-j replicas) according to Equation 

(3.5), in which the replica i takes as new position (xi*) the current position (xj) of the replica 

j, and at the same time xj* is proposed to take the current configuration of the i-th replica 

(xi). 

 

ijji xxxx == ** ,          (3.5) 

 

The replica exchange transition given by Equation (3.5) is only accepted if the Metropolis-like 

condition (Equation 3.2) is satisfied. In this case, the acceptance probability criterion P is 

calculated according to Equation (3.6): 

 

( )))(exp(,1min ijijacc GP Δ−−= ββ        (3.6) 

 

where ΔGij  is given by Equation (3.7): 
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1),()( =−−=Δ ijxFxFG iobjjobjij       (3.7) 
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Figure 3.2 Representation of the replica transition in Parallel Tempering 

 

It should be highlighted that during the transition (Equation 3.5), the values of the decision 

variables of the two replicas involved are completely exchanged. Finally, the procedure is 

repeated from the generation of the Monte Carlo steps (Equation 3.1) until a certain 

stopping criterion is met (i.e. a given tolerance, maximum number of iterations, etc). A 

schematic representation of a replica transition in PT is shown in Figure 3.2. Two replicas 

(one at high and one at low temperature) are considered in an optimization problem with 

two decision variables (x1 and x2). The low temperature replica moves through the search 

region in short MC moves (dotted line) with a low probability of accepting worst 

configurations, whereas the high temperature replica moves in longer MC moves (dashed 

line) with a higher probability of accepting worst configurations. At a certain point in their 

trajectories, a replica exchange transition is accepted and the configurations of both replicas 

are interchanged. Therefore, the low temperature replica continues its search at the position 

of the high temperature replica and at the same time, the high temperature replica continues 

at the position of the low temperature replica. This algorithm was implemented in MATLAB 

following the flowchart presented in Figure 3.1. 



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process 

 41

 

Parallel Tempering methods have been successfully applied in different fields during the last 

20 years, especially for finding the optimal configuration of polymers (Sikorski, 2002), 

biomolecules (Calvo, 2009) and proteins (Lin et al., 2003; Schug and Wenzel, 2004); 

for the optimal determination of X-ray structures (Favre-Nicolin and Cerný, 2002), for 

solving benchmark global optimization problems (Li et al., 2009a), and many other 

applications (Earl and Deem, 2005). In spite of the successful application of the PT 

algorithm especially in complex systems with many local minima (complex systems with a 

rugged energy landscape), there are still some open issues that could be addressed in order 

to overcome some weaknesses of the algorithm towards improving its performance. For 

example, it is important to find more efficient strategies for amplifying the global character 

of the algorithm (improving the barrier-crossing capability, as mentioned by Li et al., 

2009b). Another issue is the adequate selection of temperatures for each replica. Several 

authors have pointed out the need of defining not only good temperature values, but also a 

suitable temperature distribution in order to provide the PT algorithm with a good capability 

for escaping local minima at a low computational cost. For example, according to Earl and 

Deem (2008), the highest temperature must be high enough for the simulation to pass 

over all of the energy barriers in the search space in a manageable computational time. 

Furthermore, as stated by Bittner et al. (2008) after two adjacent replicas have been 

exchanged, it is more likely than in the next move they change back to the original state 

than an exchange with another replica, and therefore, the replicas became trapped (they do 

not move from low to high temperatures at all). In the next section, a new Molecular-

Inspired Parallel Tempering algorithm (MIPT) is proposed, which addresses some of these 

open issues, resulting in a more efficient algorithm very well suited for Global Optimization 

problems of different nature, as it will be shown through the case studies solved in Section 

3.3.  

 

3.2. Molecular-Inspired Parallel Tempering Algorithm 

(MIPT) 

 

A novel stochastic algorithm for global optimization, denoted as Molecular-Inspired Parallel 

Tempering (MIPT), is developed in this section. MIPT incorporates some basic features of 

Molecular Dynamics simulation into the Parallel Tempering formulation. In MIPT, molecules 

move in the decision-variable-space as the result of different forces: repulsion, friction and 
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random forces. Two different types of molecules are considered: explorers and refiners. 

Explorers present lower friction and are subject to repulsion forces causing them to move 

faster towards low molecular density regions. Refiner molecules can only be feasible and are 

subject to larger friction forces restricting their motion to a narrow region around their 

current position. The efficiency of MIPT is tested in Section 3.3 in five challenging case 

studies.  

 

The Molecular Inspired Parallel Tempering (MIPT) algorithm mimics the behavior of charged 

molecules in solution. Each molecule is affected by three different forces: repulsion (Frep), 

random (FBm), and friction (Ff), as depicted in Figure 3.3. 
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Figure 3.3 Schematic representation of the forces acting on two molecules in solution: Basis of MIPT 

algorithm. Green arrows: Repulsion forces; Red arrows: Random forces; Blue arrows: Friction forces; 

Pink dashed arrows: Sum of forces acting on each molecule. Black arrow: Intermolecular distance 

 

The repulsion force exerted by molecule j over molecule i (Frep,j(i)) is calculated in analogy to 

Coulomb’s law (Equation 3.8), as inversely proportional to the square of the distance (dij) 

between them. 
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The random force (FBm), is responsible for the Brownian motion of the molecule and it is 

expressed by means of a normalized Gaussian distribution vector ξG with zero mean and 

standard deviation one, as given by Equation (3.9).  

 

iGBm Ki ,2)( ξF =          (3.9) 

 

The parameters K1 and K2 in Equation (3.8) and Equation (3.9) are the repulsion force and 

the stochastic force constants, respectively; these force constants can be seen as tuning 

parameters of the MIPT algorithm. Finally, the friction force (Ff) has an opposite direction to 

the net external force (Fnet
ext=Frep+FBm) and it is proportional to the velocity vi of the 

molecule by a factor γi, as shown in Equation (3.10): 

 

iif i vF γ−=)(           (3.10) 

 

where γi is a friction coefficient inversely proportional to the temperature associated to each 

molecule and it is the parameter used in this approach for tempering the algorithm. In 

general, γi may be expressed as a function of the objective function value (Fobj) (Equation 

3.11) in such a way that the best molecules will be subject to the highest friction coefficients 

and the worst molecules to the lowest friction coefficients. Any type of distribution of friction 

coefficients can be used. In this work, a logarithmic distribution of friction coefficients 

determined by the values of the objective function for each molecule is considered, as given 

by Equation (3.11). 

 

))))1/()(*))(((*))ln()((ln()exp(ln( minmaxmin −−−+= mmi niFeasibleiranknγγγγ  

           (3.11) 

 

where γmin and γmax are the minimal and maximal values allowed for the friction coefficient. 

nm is the total number of molecules, rank(i) (1≤rank(i)≤nm) is the position of molecule i in a 

ranking classification according to its objective function value Fobj and its feasibility value (0-

infeasible, 1-feasible). In this way, if the molecule is in an infeasible position (Feasible(i)=0), 
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then γ(i) =γmin, which results in a larger displacement (Δx(i)) for molecule i, in comparison to 

the displacement of all other molecules.  

 

At the equilibrium condition, the sum of forces acting on each molecule is zero (Equation 

3.12) and their velocities become constant (vi = dxi/dt = const.).   

 

0FFFF =++=Σ )()()()( iiii fBmrep        (3.12) 

 

Combining Equation (3.10) and (3.12), and using finite differences to approximate the 

velocity of the molecules, the friction force (Ff) is found to be: 

 

( )
t

iii i
iBmrepf Δ

Δ
−≈+−=

x
FFF γ)()()(       (3.13) 

 

where Δx(i) is the displacement of the i-th molecule during a sample time Δt. Considering 

one optimization step equivalent to one arbitrary unit of time (Δt=1), then the displacement 

of the molecules at each optimization step, used for generating the new trials of the 

algorithm, can be calculated using Equation (3.14): 
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On the other hand, one special feature of MIPT that differentiates it from the original PT is 

that in MIPT the replicas (molecules) are classified in two groups: refiners and explorers. 

Refiners-type molecules are always feasible points constrained to higher friction values, 

forcing the search to a narrow region around their current position and providing a local 

character to the method. These molecules make shorter displacements in the search region 

in order to refine the search in a neighborhood that contains local optima. Explorer-type 

molecules have lower friction values, are allowed to be infeasible and are affected by the 

repulsive effect (Frep≠0), which force them to move towards unexplored zones, providing a 

global character to the method. In this way, explorers make larger moves escaping from 

local optima that are already being explored by refiners. It is important to highlight that the 

inclusion of the repulsion force for the explorer-type molecules allows the MIPT algorithm to 
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greatly improve the barrier-cross capability of the original PT. A graphical representation of 

the main characteristics of the refiners and explorers is shown in Figure 3.4.  
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Figure 3.4 Main characteristics of the molecules used in MIPT and their interaction (Ochoa et al., 

2010b): a) Two explorer-type molecules, both are subject to intermolecular repulsion forces and are 

allowed to be infeasible, b) Two refiner-type molecules, they do not experience repulsion and must be 

always feasible, c) Explorer-type molecule (1) turns into a refiner (it found a feasible objective 

function value better than that of the worst refiner) whereas molecule (2) is kept as a explorer. Only 

the explorer is subject to repulsion force  

 

So far, the main features of the MIPT algorithm have been introduced, namely: the types of 

forces acting on each molecule which are responsible for its displacement (Δxi) in the search 

space at each step of the algorithm, and the type of molecules used in the algorithm in order 

to improve both the global and the local character of the optimization algorithm. The 

remaining of this section explains in detail the MIPT algorithm, which is depicted in the flow 

diagram shown in Figure 3.5. The following description is presented taking into account the 

problem of minimizing a given objective function.  
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Figure 3.5 Molecular-Inspired Parallel Tempering (MIPT) Algorithm for Global Optimization (Ochoa et 

al., 2009c) 

 

The MIPT optimization algorithm starts with the initialization of the number of molecules 

(nm), the stopping criteria and the tuning parameters of the algorithm. MIPT tuning 

parameters include the range of γ-values used for the friction coefficients of the molecules, 

the force constants K1 and K2, the parameter K3 included in the calculation of the Metropolis 

acceptance probability (see Equation (3.17)) and the minimum allowed fraction of explorers 
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(minfE). It is suggested that nm ≥ 2⋅ndv, in order to achieve an efficient coverage of the search 

region, taking into account that the probability of finding the global optimum increases with 

the number of molecules. However, selection of an adequate number of molecules depends 

on the specific problem addressed (e.g. on the number of local minima and the number of 

decision variables involved). In general, it is recommended to look for a good compromise 

between the success of finding the global optimum and the required computational effort. 

Furthermore, it is suggested that minfE  ≥ nm/2 ensuring that at least half of the molecules 

are exploring the search region looking for the global optimum. The next step is the random 

generation of the initial nm molecules (starting positions x0(i)). Then, the objective function 

(Fobj) is evaluated for each molecule and the γ-factors are updated (i.e. calculated as a 

function of the rank in Fobj, see Equation 3.11). Afterwards, the molecules are ranked as 

Refiners (R) or Explorers (E), according to their objective function values and feasibility. The 

ranking criteria must satisfy the condition that the total number of explorers (NE) should be 

greater or equal than the minimum number of explorers required, that is NE≥minfE .Then the 

algorithm is split into two branches depending on whether the molecule is a refiner or an 

explorer. The refiners’ branch begins setting the repulsion force to zero (Frep = 0). The 

random force FBm(i) is calculated from a Gaussian distribution, as given by Equation (3.9). 

After that, the new position (xnew,i) for each molecule is calculated according to Equation 

(3.15), where the displacement Δxi is given by Equation (3.14). 

 

iiinew xx xΔ+=,          (3.15) 

 

Once the new position has been calculated, the objective function value (Fobj,new) for xnew,i is 

evaluated, and the normalized “free energy” change ΔGi with respect to the current objective 

function value (Fobj) is calculated according to Equation (3.16).  
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After calculating ΔGi, all constraints are evaluated to check the feasibility of the new position. 

If the new position is an infeasible point, xnew,i is rejected. On the contrary, if xnew,i is feasible 

and also ΔGi<0, the new position is accepted and the position of molecule i is updated to its 

new value (xi=xnew,i).  
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The explorers’ branch begins calculating Frep(i) as a function of the intermolecular distance 

(Equation 3.8). The calculation of the new point xnew,i and the corresponding ΔGi is carried 

out as in the case of the refiners (using Equation 3.15 and Equation 3.16, respectively). After 

that, the Metropolis criterion given in Equation (3.2) is evaluated in order to reject or accept 

the new position xnew,i. In this case, the Metropolis acceptance probability is given by 

Equation (3.17): 

 

( )( )iiacc GKP Δ−= γ3exp,1min        (3.17) 

 

Equation (3.17) is an equivalent expression to that used in PT (see Equation 3.3) and in 

general in any formulation based on the Metropolis-Monte Carlo algorithm. In MIPT the 

tempering parameter used is the friction factor γ.* If the Metropolis criterion is satisfied, the 

new position will be accepted and updated. In the following step the algorithm checks the 

feasibility of the new position and if the new position is feasible and also has an objective 

function value lower than that for the worst refiner (the one with the highest Fobj), it would 

be set as refiner. Then, the total number of explores (NE) is checked, and if NE≤minfE, the 

worst refiner must be set as an explorer. Finally, the stopping criterion is checked and the 

algorithm stops if it has been met. The MIPT algorithm was implemented as an Optimization 

Toolbox in MATLAB according to the procedure shown in Figure 3.5. Instructions for the use 

of the MIPT Toolbox, as well as a quick overview of the algorithm pseudo-code, are 

presented in Appendix A. Additional information can be found in Ochoa et al. (2009c, 

2009d, 2010b). 

 

Finally, it is important to remark that the main advantage of the MIPT over the original 

Parallel Tempering (PT) formulation is that the classification of the replicas (molecules) in the 

MIPT algorithm into two different types (explorers and refiners) provides the method with an 

improved global character without deteriorating the local search capability. The improved 

global character of the MIPT over PT is evidenced in Section 3.3.1, where a set of 

challenging global optimization test problems containing many local minima is solved using 

both algorithms, and it is show that MIPT surpasses the performance obtained by using PT.  

 

                                            
* Actually, γ is related to the β parameter used in Equation (3.3) according to the following 
expression: γ=β/K3, and therefore, γ is related to the temperature according to: γ=(K3kBT)-1, 
where kB is the Boltzmann’s constant. 
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3.3. Performance Evaluation of the MIPT Algorithm for 

Global Optimization 
 

In this section, the capability and efficiency of the MIPT algorithm developed for solving 

different Global Optimization (GO) problems is tested in six case studies, and compared with 

other established, well-known optimization methods. The first example tests the 

performance of different optimization methods (including MIPT) over a set of 8 challenging 

benchmark GO test problems containing many local minima. The second case study 

evaluates MIPT performance in Mixed Integer Nonlinear Problems (MINLP). The last four 

examples are specifically related to bio-ethanol production, testing MIPT performance in the 

steady state optimization problem of biochemical reaction networks, the parameter 

identification problem in a 12-parameter unstructured model, the dynamic optimization 

problem of ethanol fed-batch fermentation, and solving the optimizing control problem for 

the purification stage of the process (distillation and rectification). Results shown in this 

Section demonstrate that MIPT is an efficient and very suitable algorithm for global 

optimization, capable of reaching the global optimum with 100% success ratio in most cases, 

without requiring much computational effort. 

 

MIPT was implemented in MATLAB, using the MIPT toolbox developed in this work (Appendix 

A). The results were obtained using a PC with 1.66GHz Intel Core 2 Duo processor and 1 GB 

RAM. The default set of parameters for MIPT used in all case studies is shown in Table 3.1.  

 

Table 3.1 Default set of parameters of the MIPT algorithm  

Parameter Value 

γmin 10-3 

γmax 1 

K1 5 

K2 5×10-4 

K3 100 

nm 2ndv 

minfE 0.1 
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3.3.1. Dixon-Szegö Set 

The first example is a set of 8 standard continuous GO test problems taken from the Dixon-

Szegö collection (Dixon and Szegö, 1978). This set of functions was chosen because it is 

diverse enough to cover many kinds of difficulties that arise in global optimization (Hedar 

and Fukushima, 2006). A description of the 8 test problems including the already known 

global minima values can be found in Hedar and Fukushima (2003), and a brief summary 

of the test functions used is included in Appendix B.1. A graphical representation of two 

challenging functions from the set, the Easom and Shubert functions, is shown in Figure 3.6 

in order to show graphically the complexity of the GO problems addressed.  

 

760 local minima:760 local minima:
18 global minima 18 global minima in in 9 clusters9 clusters

surrounded by surrounded by several local optimaseveral local optima!!

Several local minima: Several local minima: The The 
GO is in a small area! GO is in a small area! 

b) Shubert Functiona) Easom Function

 
Figure 3.6 Objective function surfaces and main features of the Easom (a) and Shubert (b) benchmark 

functions. 

 

In this work, each test problem was run 100 times, starting from randomly generated points. 

Two stopping criteria were implemented. The first one is the criterion reported by Hirsch et 

al. (2007), which is given in Equation (3.18): 

 

21 εε +≤− globalobjglobal FFF         (3.18) 

 

where Fglobal is the global optimum already known for each test function (see Appendix B.1.), 

Fobj is the current objective function value, and ε1 and ε2  are tolerance parameters taken as 

10-4 and 10-6, respectively. The second criterion was the maximum number of function 

evaluations, which was set to 100.000 function evaluations.  



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process 

 51

 

Table 3.2 shows a comparison between the results obtained using MIPT, Simulated 

Annealing (SA), Particle Swarm Optimization (PSO), the PT algorithm (which was 

implemented as described in Section 3.1), a new version of the GLOBAL method (Csendes 

et al., 2008) and the Continuous Grasp (C-GRASP) method (Hirsch et al., 2007). Columns 

in Table 3.2 show the test problems addressed, the number of decision variables in each 

case, the number of known local minima for each test problem, the average number of 

function evaluations (Nfeval) before reaching any stopping criterion, and the success ratio 

for the MIPT, SA, PSO, PT, the Global and C-GRASP methods, respectively. It is important to 

highlight that MIPT algorithm achieved a 100% of success ratio in all cases, as also reported 

for the GLOBAL method and the C-GRASP†. In contrast, the SA and PSO methods stalled in 

local minima in some of the runs, resulting in a lower success ratio. In the case of SA, the 

algorithm failed in the Hartman-6 problem, which is a challenging problem involving many 

local minima and 6 decision variables. In terms of success ratio, the PSO algorithm showed 

the worst performance, because its success ratio oscillated between 33%-92%, being unable 

to show complete success in any problem.   

 

According to results shown In Table 3.2, MIPT showed a better performance in solving the 

Easom, Shubert, Hartman-3 and Hartman-6 problems, whereas the GLOBAL achieved better 

performance for the remaining problems except for the Goldstein-Price. In conclusion, some 

facts are remarkable:  

1. The MIPT method was able to significantly improve PT results especially in larger 

problems involving many local minima. This is mainly a result of the improved global 

character of the MIPT algorithm, over the original PT formulation. 

2. The MIPT algorithm outperforms the SA and PSO methods, not only requiring a lower 

number of function evaluations in all the problems, but also achieving a 100% success 

ratio in all cases. 

3.  In general the performance of the MIPT method lies below the range of average values 

of all other methods, showing to be competitive in solving global unconstrained highly 

multimodal problems. It should also be noticed that MIPT is the best algorithm for the 

most challenging problems, including the Shubert, and Easom functions (Figure 3.6), 

even though they have completely different characteristics. These results show that the 

MIPT is a versatile algorithm, suitable for a wide range of global optimization problems.  

                                            
† Results for the GLOBAL and C-GRASP methods were taken from the corresponding reported literature, where 
the stopping criterion was only the one given by Equation (3.18). The second stopping criterion was only 
implemented for the algorithms run in this work, namely, MIPT, PT, SA and PSO. 
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Table 3.2 Comparative Results for case study 1: MIPT vs. SA, PSO, PT, GLOBAL and C-GRASP. Values 

in bold correspond to the lowest average number of function evaluations for each case study.  
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3.3.2. Mixed Integer Nonlinear Problem (MINLP)  

In this section, a case study consisting in a Mixed Integer Nonlinear Problem (MINLP) that 

involves 7 decision variables is addressed, which is formulated in Equation (3.19). Yiqing et 

al. (2007) have recently reported results for this problem, comparing Genetic Algorithms 

(GA), a Simulated Annealing based algorithm (M-SIMPSA), the original PSO algorithm, and 

an improved PSO algorithm denoted as R-PSO. Furthermore, R-PSO algorithm was used in 

two variants: R-PSO_unc which updates continuous and discrete variables simultaneously, 

and the other, denoted as R-PSO_c that updates the different types of variables at difference 

pace.  
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 (3.19) 

 

Figure 3.7 shows the comparison between the mentioned stochastic algorithms and MIPT, in 

terms of the average number of function evaluations (Nfeval) and the success ratio (NRC), 

which is the percentage of runs that converged to the global optimum (Fobj=4.579582), in 

100 executions randomly initialized. As shown in Figure 3.7, MIPT algorithm has reached the 

global optimum in all the runs, having a success ratio NRC=100%. Furthermore, MIPT has 

also required by far the fewest number of function evaluations for reaching the global 

optimum, which demonstrates its capability for dealing successfully with MINLP problems. 
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Figure 3.7 Comparative results for the mixed-integer nonlinear optimization problem presented by 

Yiqing et al. (2007): Number of function evaluations and success ratio for MIPT, M-SIMPSA, GA, 

Original PSO, R-PSO Unc, R-PSO C, for 100 different runs randomly initialized. 

 

3.3.3. Nonlinear Constrained Optimization Problem  

The third case study is an example of the steady state optimization problem of biochemical 

reaction networks, which addresses the maximization of the flux of Piruvate Kinase (VPK), the 

enzyme directly responsible for ethanol production in the Saccharomyces cerevisiae pathway 

(Xu et al., 2008). This case study consists on a nonlinear constrained optimization problem, 

given in Equation (3.20): 
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    (3.20) 

 

where f represents the nonlinear steady-state model of the process (which is presented in 

detail in Appendix B.2), Xi the metabolites concentrations, Yk the enzymes activities, and Xi0 

and Yi0 are the basal steady-state values (corresponding to an objective function value 

VPk0=30.1124). Xu et al. (2008) solved the problem by applying a standard iterative 

Indirect Optimization Method (IOM) and a modified iterative IOM approaches, finding an 

objective function value of VPK=64.828VPK0 and VPK=64.829VPK0, respectively. The same 

problem was solved in this work using MIPT, Simulated Annealing (SA) and Particle Swarm 

Optimization (PSO). SA results were obtained using the MATLAB Optimization Toolbox 

whereas PSO was also implemented in MATLAB following the formulation given by Clerc 

and Kennedy (2002). These three methods reached the same objective function value, 

VPK= 65.022 VPK0, better than that obtained by the IOM approaches. A comparison on the 

performance for MIPT, SA and PSO in terms of number of function evaluations (Nfeval) and 

CPU time for the average, best and worst cases from 100 different runs randomly initialized, 

is presented in Figure 3.8. Values for the IOM approaches are not reported in the original 

work, and therefore are not included in the comparison. As it can be seen, MIPT has the best 

performance in terms of CPU time, whereas the number of function evaluations required for 

reaching the global optimum lies between those needed by SA and PSO, which confirms that 

MIPT provides a good performance also in constrained optimization problems. 
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Figure 3.8 Comparative results for the nonlinear constrained optimization problem presented by Xu et 

al. (2008): Number of function evaluations and total CPU time for MIPT, SA and PSO for 100 

different runs randomly initialized. 

 

3.3.4. Nonlinear parameter identification  

The fourth case study addresses the parameter identification of an unstructured model of 

ethanol production. The model includes 12 parameters to be identified by minimizing the 

normalized squared error between the predictions of the model and experimental data. The 

model and the experimental data for identification have been reported by Phisalaphong et 

al. (2006), and are summarized in Appendix B.3. In order to compare MIPT performance, 

the identification problem was also solved using Simulated Annealing (SA), Genetic 

Algorithms (GA) and a gradient-based (GRAD) method (i.e SQP), incorporated into the 

MATLAB Optimization Toolbox. The values of the objective function (normalized squared 

error) and computation time for the average, best and worst cases of ten different 

independent runs (randomly initialized) are presented in Figure 3.9. The stopping criterion 

was 1000 iterations for each algorithm. It can be observed that the best results 

(corresponding to the minimal objective function values) in all cases (average, best and 
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worst) have been obtained using the MIPT algorithm proposed in the present work. It can 

also be observed that the average CPU time of the MIPT method lies within the range of 

average values of the other methods. Therefore, it is possible to conclude that a significant 

improvement towards finding the global optimum is achieved using the MIPT method 

without increasing the computational effort. 
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Figure 3.9 Comparative results for the nonlinear parameter identification problem of the model 

presented in Phisalaphong et al. (2006): Values of the objective function and total CPU time for 

MIPT, SA, GA and GRAD, for 10 different runs randomly initialized. 

 

3.3.5. Dynamic optimization of ethanol fed-batch fermentation  

Solving the dynamic optimization problem for a fed-batch bioreactor allows finding optimal 

feeding profiles that should be applied to the process in order to maximize a given 

productivity objective function. This problem is usually solved using direct dynamic 

optimization methods, which parameterize the control profile as piecewise polynomial 

functions. However, in this work, parameterization of the control profile is done using cosine 

functions which are nonlinear and have the advantage of being non-monotonic, allowing to 

find control profiles that increase and decrease smoothly and continuously. Such 
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parameterization can be especially suitable for bioprocesses applications. The dynamic 

optimization problem for the fed-batch ethanol production has been previously studied in 

different works and the model of the process can be found in Banga et al. (1997) and it is 

also included in Appendix B.4. Equation (3.21) summarizes the optimization problem solved 

in this section. The state variables on the process are Volume (V), Biomass (X), Glucose (S) 

and Ethanol (E) concentrations. The manipulated variable whose profile is found by solving 

the dynamic optimization problem is the input flow of glucose (F). The productivity of the 

process has been maximized using different optimization algorithms, taking the parameters 

of the cosine profile as decision variables, using as stopping criterion the maximum number 

of function evaluations (i.e. 1000). All the optimization algorithms were randomly initialized, 

that is, the starting points were randomly selected from the set of values bounded by the 

upper and lower limits of the decision variable(s). The results of ten different independent 

runs are summarized in Figure 3.10. It is observed that the best results were obtained using 

the MIPT algorithm proposed in this work, compared to the Simulated Annealing algorithm 

(SA), the Genetic Algorithm (GA) and the gradient-based (GRAD) method (i.e. SQP). It is 

important to notice that the highest productivity values of individual runs were obtained for 

both the MIPT algorithm and the gradient based (GRAD) method, but the average 

performance of the MIPT is consistently high while the performance of the gradient method 

is strongly dependent on the starting conditions of the optimization. In the graph of Figure 

3.10, the best cosine feeding profile obtained from MIPT optimization is compared to the 

best feeding profile obtained by Banga et al. (1997) using a piecewise linear 

approximation. The use of a smooth non-linear profile, although similarly shaped, allows 

improving significantly the productivity of the ethanol fermentation process. 
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Figure 3.10 Dynamic optimization of ethanol fed-batch fermentation. MIPT vs. Simulated Annealing 

(SA), Genetic Algorithms (GA) and gradient-based (GRAD). In the right, the best smooth non-linear 

feeding profile obtained with MIPT vs. the best piecewise linear profile by Banga et al. (1997). 

 

3.3.6. Optimizing control of a Purification stage in Bio-ethanol 

production  

The last case study addresses the optimizing control problem of a two-distillation-column 

system for purification of a beer stream in an ethanol production process, which is shown in 

Figure 3.11.  
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Figure 3.11 Flow diagram of a two-distillation column system for ethanol purification. Beer column: no 

condenser. Rectification column: partial condenser.  
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The steady state model of the process (taken from the Aspen Plus Library) was exported to 

AspenTech’s Aspen Dynamics for obtaining the dynamic model comprising a total of 2411 

equations, involving 241 state variables. Five control loops for controlling the pressure in 

both columns, the level in the reboilers and in the partial condenser of the rectification 

column were included. The initial conditions for the dynamic model are the original steady 

state values. In case of disturbance, the heat duty of both reboilers (QR1 and QR2) and the 

heat duty of the partial condenser (QC2) can be used as manipulated variables in order to 

optimize the economic operation of the process (i.e. minimizing a cost function by varying 

the decision variables of an Optimizing Control problem). The cost function (Fobj) to be 

minimized is given by Equation (3.22), where Δtopt is the optimization horizon, FB1, FB2, FD2 are 

the mass flow rates in the bottoms of the distillation and the rectification columns, and the 

distillate mass flow rate at the top of the rectification column. xEB1, xEB2, xWD2 are the ethanol 

mass fractions at the bottom of the distillation and rectification, and the water mass fraction 

at the top of the rectification column. The factors that multiply each term of Equation (3.22) 

are penalization terms related to the ethanol price, the cost of steam to the reboilers and the 

cost of cooling water in the partial condenser. f represents the nonlinear dynamic model of 

the process, umin and umax are the upper and lower bounds for the decision variables in 

Equation (3.22) and xED2 is the mass fraction of ethanol in the distillate of the second 

column. 
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           (3.22) 

 

In order to discuss the performance of different optimization algorithms in optimizing the 

economic operation of this large scale system, a step disturbance corresponding to a 25% 

increase of the feed flow rate to the system was done. An optimization horizon of two hours 

was considered. The maximum number of function evaluations used as stopping criteria was 

200. In the scope of comparison, MIPT, SA, PSO and a Gradient based method (GRAD) were 
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tested. SA and GRAD were run using the MATLAB Optimization Toolbox (in the case of 

GRAD, a SQP method was used).  
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Figure 3.12 Comparative results for the dynamic optimization of a two-distillation column system for 

ethanol purification: Values of the objective function and total CPU time for MIPT, SA, GRAD and PSO, 

for five different runs randomly initialized. 

 

Figure 3.12 shows the comparison results for the average, best and worst cases of 5 

randomly initialized runs for each method, in terms of the objective function value reached 

after satisfying the stopping criteria (e.g. the maximal number of functions evaluations 

allowed was 200) and the total CPU time, respectively. It can be seen that MIPT algorithm 

has reached the same average and best optimal values than SA and PSO, but requiring less 

CPU Time in average. In contrast, the GRAD method had the worse performance for the 

average and worst cases, which is due to the fact that the method got trapped into local 

minima, probably because of the random initialization that was done in order to provide a 

faire comparison. In this example, it has been shown that MIPT is also suitable for large-

scale global dynamic optimization problems, which makes it a promising alternative for on-

line optimizing control applications. 
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3.4. Chapter conclusion 

 

In this chapter, a new stochastic algorithm for Global Optimization, denoted as Molecular-

Inspired Parallel Tempering (MIPT) has been proposed combining the advantages of Monte 

Carlo methods (taking as a base the PT algorithm) and the basic principles of Molecular 

dynamics. It was shown that MIPT was capable to reach the global optima with a high 

success rate and a reasonable number of function evaluations for a wide range of problems, 

including constrained NLP, MINLP, dynamic optimization and problems with highly 

multimodal functions. Through six challenging case studies, the performance of MIPT was 

compared to well-established optimization algorithms, reaching the best performance in most 

of the cases and showing to be a very well suited method for solving global optimization 

problems. In fact, the excellent results in terms of number of function evaluations and in 

success rate for finding the global optimum, especially in the set of benchmark test functions 

with many local minima and in the dynamic optimization related case studies, are the main 

reasons why the MIPT is the algorithm used for solving the Dynamic Real-Time optimization 

problem that arises in the formulation of the Plantwide Optimizing Control procedure 

proposed in Chapter 5. Finally, it was also shown that the MIPT method was able to 

significantly improve the performance of the Parallel Tempering algorithm, especially in 

larger problems involving many local minima. This is mainly a result of the improved global 

character of MIPT over the original PT formulation, resulting in a more efficient algorithm 

very well suited for different types of Global Optimization problems. 
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4. Case Study: Continuous Bio-ethanol Production 

Process from Starch 
 

In this chapter, a detailed description of the continuous bio-ethanol process form starchy raw 

materials is presented, including the dynamic model for each operating unit involved in the 

process. The dynamic model presented in Section 4.1 was implemented using Simulink as 

described in Section 4.2. It is important to mention that despite the fact that different steady 

state models and simulations for the bio-ethanol process have been already reported in the 

literature (Kwiatkowski et al., 2006; Alvarado-Morales et al., 2009), this is the first 

time that a completely rigorous dynamic model for the whole process is presented. The basic 

control loops in the process are also included in the model.  

 

4.1. Process Description and Modeling 

 

In this Section, the generalities and the dynamic model for the main operating units involved 

in the Bio-ethanol production process, namely the enzymatic hydrolysis, fermentation and 

the purification sections, are described.  

 

4.1.1. Generalities 

The purpose of this section is to present a complete description of the bio-ethanol process 

from starch-containing raw materials, which is the case study addressed in this work. In 

general the complete process involves five main unit operations: Milling, Enzymatic 

Hydrolysis, Fermentation, Ethanol Purification and DDGs (Distilled Dried Grains) drying, as 

shown in Figure 1.4. The purpose of milling is to break up the starchy raw material to an 

appropriate particle size, in order to facilitate the penetration of water during the hydrolysis 

stage. By means of the enzymatic hydrolysis, starch is depolymerized into its basic 

monosaccharide building blocks (glucose). During fermentation, certain microorganisms 

successfully transform glucose into ethanol as part of their metabolism. In the purification 
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section, ethanol is separated from all other components present in the fermentation broth, 

reaching a purity ≥ 99.8% wt (≥ 99.5% mol). The DDGs drying section removes water from 

the ethanol-free stream obtained at the bottom of the distillation column, producing a by-

product that can be used as animal feed due to its high protein content (up to 30%). In this 

work, the milling and DDGs drying sections are not considered for plantwide control, because 

milling is only a grinding process that does not change the chemical structure of the raw 

materials (although the grain size may influence the efficiency of enzymatic hydrolysis of the 

raw material), and the DDGs unit is devoted to the post-processing of a byproduct (i.e. 

stillage), which is not taken into account in the profitability analysis in this work. 

 

Figure 4.1 presents a flowsheet of the process considered, in which the feed to the process 

is a starch slurry stream (F0) coming from the milling unit, and the end-product is fuel-grade 

ethanol (F20). The by-products of the process are the stillage (B1), which is a mixture of non-

fermentable matter leaving the process at the bottom of the distillation column for being 

sent to the DDGs unit; and CO2 (produced at the fermentation stage), which should be sent 

to a scrubber (via stream F18). For simplicity, the local control loops are not shown in Figure 

4.1, as they will be described in Section 6.1.1. It is possible to distinguish three main 

sections in the process, which correspond to the starch hydrolysis, fermentation, and 

purification sections. For the specific example addressed in Chapter 6, a nominal production 

of 100.000 ton ethanol/year (12.6 Ton/h for 330 days of operation during 24h/day) is 

considered, using a mash of starchy material as feed. The process design procedure, which 

is based on a sensitivity analysis, is described in detail in Appendix D. 

 

As it can be seen in Figure 4.1, the process consists on the following main equipment: 

• A liquefaction tank (R-101) and a saccharification tank (R-102), where the enzymatic 

conversion of the starch polysaccharide into glucose (monosaccharide) is carried out. 

These tanks belong to the section denoted as Starch hydrolysis. 

• A fermentation tank (R-201), a biomass filter (F-201), a cells treatment tank (V-201) and 

a flash vessel (V-202), where the glucose fermentation to ethanol, as well as yeast 

separation, treatment and posterior recycle is carried out, and also CO2 separation is 

done. These equipments correspond to the Fermentation section.  

• A distillation column with reboiler and total condenser (T-301), a rectification column 

with reboiler and partial condenser (T-302) and the molecular sieves beds (T-303/ T-

304), where ethanol purification and dehydration for reaching the fuel-grade ethanol is 

carried out. These equipments make up the Purification section.  

  



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process 

 65

 

CO2
To Scrubber

Glucose

Fermentation broth

 
Figure 4.1 Flowsheet diagram for the continuous bio-ethanol production process from starch 

considered for plantwide control (control loops are not shown). 1- Enzymatic Starch hydrolysis (red 

region); 2- Fermentation (blue region), and 3-Purification (green region) Section.  
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Some of the most relevant characteristics of the bio-ethanol production process, that 

constitute a challenge when addressing the plantwide control problem, include: 

 There is a high variability in the quality of the raw material.  

 The main state variables in the process present a highly nonlinear behavior. 

 The process may contain recycle loops. In the particular process flowsheet considered in 

this work, three different recycle loops are present. The first loop is the recycle of cells 

from the filter to the fermentor (F11). The second loop is the recycle of the yeast-free 

stream from the bottom of the flash to the fermentor (F15). Finally, the third loop is the 

recycle of lutter water from the bottom of the rectification column to the liquefaction 

tank (F21). Due to the presence of these recycle loops the process has strong interactions 

between different units that makes difficult the control task. 

 The biomass concentration in the fermentor must track its optimal value (as it will be 

explained in Section 6.1.1), which is a dynamic variable whose optimal value depends on 

the behavior of other state variables in the process. 

 

In the following, a description of each stage involve in the continuous bio-ethanol production 

process is given, and the corresponding dynamic model is presented.  

 

4.1.2. Starch Hydrolysis 

4.1.2.1. Description 

Starch is a combination of two polymeric carbohydrates called amylose and amylopectin. 

Amylose (Figure 4.2a) is constituted by glucose monomer units which are linked by α−1,4 

linkages. Amylopectin (Figure 4.2b) has a branched structure comprising the α−1,4 

glucosidic linkages as in the amylase, but also branches connected by α−1,6 linkages. The 

ratio of amylose to amylopectin is characteristic for each starch source and has an impact on 

its gelatinization properties (e.g. gelatinization temperature range). Starches have the 

general formula (C6H10O5)n, where n is the total number of glucose monomer units (Jacques 

et al., 2003).  
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Figure 4.2 Polymeric components of starch: a) Amylose, b) Amylopectin. 

 

In order to achieve the hydrolysis of the starch into fermentable sugars, the enzymatic 

hydrolysis of the starchy material is carried out in three stages, as follows: 

 

• Gelatinization: The conversion of starch into fermentable sugars is accomplished by 

the action of the enzymes α-amylase and glucoamylase. However, in order for the α-

amylase to access the starch molecules, the starch should be gelatinized. 

Gelatinization is a physical process in which a slurry of starch meal is solubilized in 

water by heating. This is sometimes referred as “cooking”, and occurs at the 

gelatinization temperature, which can range from between 50°C – 120°C, depending 

on the starch source. In general, gelatinization temperatures for starch cereals are 

higher than those for root-starches (Thomas and Atwell, 1999). During this 

“cooking”, the starch adsorbs water and swells, losing gradually its crystalline 

structure, making it susceptible to enzymatic attack. The starch gelatinization process 

is described by Equation (4.1).  

 

( )[ ] ( )[ ] dgelatinizeOHzedungelatini n5106n5106 OHCOHC
2

⎯→⎯Δ
  (4.1) 
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• Liquefaction: During liquefaction, the  α-1,4 linkages in amylose and amylopectin of 

the exposed starch molecules are broken down by the action of the endoenzyme α-

amylase, resulting in shorter chains (oligosaccharides) called dextrins. Usually, 

maltose (C12H22O11) is produced during this stage (as shown in Equation 4.2), but 

other dextrins such as maltotriose (C18H32O16) can also be produced (see Equation 

4.3).  

 

( ) 112212251062 OHCnOnHOHC amylase
n ⎯⎯⎯⎯ →⎯+ −α

   (4.2) 

( ) 163218251063 OHCnOnHOHC amylase
n ⎯⎯⎯⎯ →⎯+ −α

   (4.3) 

 

In the model developed in this work, the gelatinization and liquefaction stages are 

considered to be carried out in the same reactor, which corresponds to the 

liquefaction tank denoted as R-101 in Figure 4.1. 

 

• Saccharification: In the saccharification stage (R-102 in Figure 4.1), the release of 

monosaccharides (individual glucose molecules) from the liquefied mixture of dextrins 

occurs. Saccharification is carried out by the action of the exoenzyme glucoamylase, 

which releases the single glucose (C6H12O6) molecules by hydrolyzing both (although 

at different rate), the remaining  α-1,4 linkages and the  α-1,6 branch linkages. 

Dextrins (e.g. maltose or maltotriose) conversion to glucose during saccharification 

can be expressed by means of Equation (4.4) and (4.5): 

 

61262112212 2 OHCOHOHC seGlucoamyla⎯⎯⎯⎯ →⎯+    (4.4) 

61262163218 32 OHCOHOHC seGlucoamyla⎯⎯⎯⎯ →⎯+    (4.5) 

 

In general, depolymerization of starch into glucose (involving gelatinization-

liquefaction-saccharification) can be expressed by Equation (4.6). Figure 4.3 shows 

typical operating conditions for the three main stages of starch hydrolysis (Jacques 

et al., 2003).  
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( ) ( )
eGluStarch

OHCnOnHOHC Enzymes
n

cos
612625106 ⎯⎯⎯ →⎯+

    (4.6) 

 

 
Figure 4.3 Typical block diagram and operating conditions of starch hydrolysis  

 

Now that the generalities of the starch hydrolysis stage have been explained, in the next 

section, the dynamic model for this stage is presented. 

 

4.1.2.2. Model 

The model of the hydrolysis stage was developed according to the sketch shown in Figure 

4.4 under the following assumptions: 

• Gelatinization and liquefaction take place simultaneously in the liquefaction tank R-

101. 

• Saccharification takes place only in the saccharification tank R-102. 

• The density is assumed to be constant and the same for all the streams. 

• There is no thermal degradation of glucoamylase. 

• Enzymatic action on gelatinized starch leads to the production of dextrins with a 

general formula C18H32O16. 

• Enzymatic action on dextrins leads only to the production of glucose. 

• Temperatures in both vessels are assumed to be kept constant at their optimal values 

by using external heating and/or by manipulation of the cooling fluid passing through 

the jacket.  

• Each vessel is considered to be ideally mixed. 

 

 



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process 

 70 

R-102

F0 F1
F3

R-101

F2
F4

Starch Slurry 
(from Milling  unit)

Alpha-amylase

Gluco-amylase

F23

Dextrins

P-101

HE-101

P-102

M

M

LC
1

LC
2

Lutter water recycle
(from Rectification)

Saccharified Mash to Fermentor
(mainly glucose)

 
Figure 4.4 Starch hydrolysis section including level control loops (red valves indicate potential 

manipulated variables available).  

 

Starch slurry containing ungelatinized starch (Sung), water (w) and non-fermentable material 

(nf), is fed into the liquefaction tank (through the feed stream F0), in which gelatinization of 

Sung into gelatinized starch (Sg) occurs simultaneously with the liquefaction of Sg into dextrins 

(mlt) by the action of  α-amylase (e1). The model is derived from the mass balances for each 

state variable (Sung, Sg, mlt, e1, w and nf) in the liquefaction tank (represented by the sub-

index L) as follows: 

 

The mass balance for the ungelatinazed starch in the liquefaction tank (Sung,L) is: 

 

dt
dV

V
S

V
SFVrSF

dt
dS L

L

Lung

L

LungLgungLung ,,20,0, −
−−

=    (4.7) 

 

where F0 is the starch slurry feed flow from the milling unit, Sung,0 is the ungelatinized starch 

concentration coming on the feed stream, rg is the gelatinization rate, VL is the liquid volume 

in the Liquefaction tank, F1 is the alpha-amylase feed flow rate and F23 is a recycle flow from 

the bottom of the rectification. F2 is the output volumetric flow from the liquefaction tank, 

which is calculated according to the control law given by Equation (4.8).  

 

)( ,,22 spLLcss HHKFF −+=         (4.8) 
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F2,ss is the steady state value for F2, Kc is the controller gain, and HL and HL,sp are the 

measured level and level set point values, respectively.  

 

A mass balance for the gelatinized starch in the liquefaction tank (Sg,L) is given by 

 

dt
dV

V
S

V
SFVrVr

dt
dS L

L

Lg

L

LgLmltLgLg ,,2, 9643.0
−

−−
=     (4.9) 

 

where the 0.9643 factor corresponds to the mass stoichiometric factor for gelatinized starch 

conversion into dextrins (kg dextrins/kg gelatinized starch), and rmlt is the rate for dextrins 

production. 

 

A mass balance for dextrins (mlt,L) results in: 

 

dt
dV

V
m

V
mFVr

dt
dm L

L

Llt

L

LltLmltLlt ,,2, −
−

=      (4.10) 

 

From a mass balance for alpha-amylase (e1,L),  

 

dt
dV

V
e

V
eFVreF

dt
de L

L

L

L

LLdeL ,1,121,11,1 −
−−

=      (4.11) 

 

where e1,1 is the alpha-amylase concentration in the diluted enzyme-feed stream F1; and rde 

is the enzyme deactivation rate. 

 

A water mass balance is given by; 

 

dt
dV

V
w

V
VrwFwFwFwF

dt
dw L

L

L

L

LmltLL −
−−++

=
0357.0211232300

  (4.12) 

 

where w0 is the water content in the feed flow stream F0, F23 is a mainly water content flow 

(i.e. it contains some ethanol traces), which results from a mixture of the recycle stream F21 

(from the rectification bottoms’) and a fresh water flow (F22). w1 is the water content in F1, 

and the 0.0357 factor is the stoichiometric mass factor of water consumed (swelled) for 
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dextrins production (e.g. the amount of water consumed during liquefaction corresponds to 

a factor of 0.0357 kg water/kg dextrins). 

 

The mass balance for the non-fermentable material (nf,L) is given by; 

 

dt
dV

V
n

V
nFnF

dt
dn L

L

Lf

L

LffLf ,,20,0, −
−

=       (4.13) 

 

where nf,0 is the concentration of non- fermentable material in the feed flow F0. 

 

Finally, Equation (4.14) describes the overall mass balance in the liquefaction tank:  

 

22310 FFFF
dt

dVL −++=         (4.14) 

 

In general the volume of liquid in the reactors (V) is related to the level by the following 

expression: 

 

HAV T=            (4.15) 

 

where AT and H represent the cross section area of the tank and the level of liquid in the 

reactor, respectively. 

 

The mathematical expressions for the reaction rates of starch gelatinization (rg), dextrins 

production (rmlt) and enzyme deactivation (rde) involved in Equations (4.7 - 4.13) are given 

by Equations (4.16 – 4.18) respectively, which were taken from Brandam et al. (2003). 

The parameters for these expressions are shown in Appendix C.1. 

 

Lung
L

ag
gg S

RT
E

kr ,exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=          (4.16) 

Lg
L

actL
mltmlt S

ae
kr ,

,1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρ
        (4.17) 

L
L
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dede e

RT
E
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⎠

⎞
⎜⎜
⎝

⎛
−=         (4.18) 
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Parameters kg, kmlt and kde are the kinetic constant for gelatinization, the kinetic factor for 

dextrins production, and the kinetic constant for alph-amyalse deactivation. Eag and Eade are 

the activation energies for gelatinization and enzyme denaturation, respectively. R, TL, aact 

and ρL are the universal gas constant, the liquefaction temperature, the specific alpha-

amylase activity and the density of the liquid mixture in the liquefaction tank. 

 

Next, the model of the saccharification tank is presented. The dextrins-rich stream F2 is 

continuously fed to the saccharification tank, in which dextrins are converted into glucose 

(G) by the action of gluco-amylase (e2). The mass balances for Sung, Sg, e1, nf and e2, are 

only affected by a dilution effect. The mass balance for ungelatinized starch in the 

saccharificator tank (Sung,s) is: 

 

dt
dV

V
S

V
SFSF

dt
dS S

S

Sung

S

SungLungSung ,,4,2, −
−

=       (4.19) 

 

where F4 is the output flow from the saccharification tank, calculated according to the control 

law given by Equation (4.20) and Vs is the liquid volume in the saccharification tank, which 

can be calculated from equation (4.21). 

 

)( ,,44 spSScss HHKFF −+=         (4.20) 

432 FFF
dt

dVS −+=          (4.21) 

 

The terms F4,ss, Hs and HS.Sp in (4.20) correspond to the steady state value for F4, the actual 

liquid level in the saccharification tank and its respective set point.  

 

Mass balances in the saccharification for the gelatinized starch (Sg,s), alpha-amylase (e1,s) 

and non- fermentables (nf,s) are given by Equations (4.22-4.24). 

 

dt
dV

V
S

V
SFSF

dt
dS S

S

Sg

S

SgLgSg ,,4,2, −
−

=       (4.22) 

dt
dV

V
e

V
eFeF

dt
de S

S

S

S

SLS ,1,14,12,1 −
−

=        (4.23) 
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dt
dV

V
n

V
nFnF

dt
dn S

S

Sf

S

SfLfSf ,,4,2, −
−

=        (4.24) 

 

The mass balance for glucoamylase in the saccharificator tank (e2,s) is 

 

dt
dV

V
e

V
eFeF

dt
de S

S

S

S

SS ,2,243,23,2 −
−

=       (4.25) 

 

where F3 and e2,3 are the glucoamylase feed flow and concentration, respectively.  

 

The dynamics of the remaining state variables in the saccharificator tank is also affected by 

chemical reactions in addition to the dilution effect. The mass balance for the water in the 

saccharification (ws) is represented by equation (4.26): 

 

dt
dV

V
w

V
VrwFwFwF

dt
dw S

S

S

S

SSmltSLS −
−−+

= ,4332 071.0
   (4.26) 

 

where w3 is the water content in stream F3, and the 0.071 factor represents the water 

consumed during the saccharification for releasing glucose (0.071 kg water/kg dextrins). 

Therefore, the total water consumption in liquefaction and saccharification amounts to 

0.1111 kg water/kg starch. 

 

The mass balances for dextrins (mlts) and glucose (Gs) in the saccharificator are given by 

equations (4.27) and (4.28): 

 

dt
dV

V
m

V
VrmFmF

dt
dm S

S

Slt

S

sSmltSltLltSlt ,,,4,2, −
−−

=      (4.27) 

dt
dV

V
G

V
GFVr

dt
dG S

S

S

S

SSSmltS −
−

= 4,071.1
      (4.28) 

 

where the 1.071 factor is the stoichiometric factor for dextrins conversion to glucose (1.071 

kg of dextrins /kg glucose). The dextrins reaction rate in the saccharificator (rmlt,S) is 

expressed by Equation (4.29) as reported by Gonçalves et al. (2001): 
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where gact is the specific glucoamylase activity. k3, km and ki are the kinetic constant, 

Michaelis- Menten constant and product inhibition constant for dextrins consumption, 

respectively.  

 

A final remark should be made regarding the saccharification step. Alternatively, the 

saccharification can be carried out simultaneously with the fermentation in the Simultaneous 

Saccharification Fermentation (SSF) process, whose main advantage is the reduction of the 

inhibition effect by high sugar concentration by adding the glucoamylase directly to the 

fermentor tank. Ochoa et al. (2007, 2008) developed and compared two different models 

(an unstructured and a cybernetic model) of the SSF process for ethanol production.  

 

The next section to be described and modeled is the fermentation stage, which is composed 

of: the fermentation tank, a yeast filter, a yeast treatment tank and a flash vessel for 

carrying out a first purification stage for releasing the CO2 produced in the fermentation, 

which was dissolved with the fermentation broth. Additionally, in Section 4.1.5 a degrees-of-

freedom analysis for the whole process is presented.  

 

4.1.3. Fermentation 

4.1.3.1. Description 

Conversion of glucose to ethanol is an exothermic reaction (enthalpy of reaction ∼ -550 J/g 

glucose according to Riva et al., 1998) carried out by many types of yeast and by few 

bacteria. Yeasts are capable of using a wide variety of substrates (although most of these 

substrates belong to the hexoses family). In general they are able to grow and efficiently 

ferment ethanol at pH values of 3.5-6.0 and temperatures of 28-35°C. Yeasts, under 

anaerobic conditions, metabolize glucose to ethanol following the Embden – Merhof pathway 

(Figure 4.5). Yeasts in the genus Saccharomyces are responsible for almost all the current 

industrial production of alcohol by fermentation (Roehr, 2001). As a result of the 

fermentation process, 2 moles of Adenosine Triphosphate (ATP) are produced per mole of 

glucose metabolized, and the yeast cells use them mainly for growth. Although fermentation 

by Saccharomyces is an anaerobic process, a small concentration of oxygen must be 
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provided to the fermentation tank, as it is a necessary component in the biosynthesis of 

polyunsaturated fats and lipids. However, an excess in O2 concentration will promote the use 

of ethanol as an additional substrate for the cells, further increasing cell growth but 

decreasing ethanol productivity. Besides the addition of a small amount of O2, other 

components are required for an efficient fermentation, including some nutrients (i.e. 

compounds containing nitrogen, hydrogen and small quantities of phosphorus and 

potassium, between others) and vitamins like biotin. 

 

Since the separation of ethanol from water accounts for much of the energy used in the 

overall production process, the higher the concentration of ethanol in the fermentor, the 

lower the purification costs per liter of product. However, there is a practical limit because 

ethanol is toxic to yeast cells at concentrations ranging between 8 and 18% by weight, 

depending on the strain of the yeast (Glazer and Nikaido, 1994). This phenomenon 

caused by an adverse effect of ethanol on the cell membranes is denoted as product 

inhibition. Above the inhibition concentration, a large number of ethanol molecules pass 

through the cell membrane and once inside the cell, they weaken the cell membrane 

structure allowing vital molecules, such as glucose, to leak out of the cells back into the 

medium. This effect is translated into a lower glucose metabolic rate and therefore, in a 

lower rate of ethanol production.  

 

Fermentation is a very complex process in which many byproducts can be produced. In the 

case of fermentation by yeast (see Figure 4.5), in addition to ethanol and CO2, it is possible 

to obtain glycerol, lactic acid, and fusel oil (higher alcohols). However, those components are 

not considered in this work, because its presence depends on the raw material used, the 

fermentation conditions (i.e. operating conditions and microorganism used, etc.) and, 

because usually their proportion to the other main components is minimal (Reimelt et al., 

2002). For modeling purposes, in this work it is considered that the main reactions occurring 

during glucose fermentation by the action of the yeast Saccharomyces cerevisiae lead to the 

production of ethanol, CO2 and also yeast growth, as follows:  

 

2526126 22 COOHHCOHC +⎯→⎯        (4.30) 

yeastOHC ⎯→⎯6126         (4.31) 
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Figure 4.5 Embden-Meyerhof yeast metabolic pathway from glucose (Jacques et al., 2003; Roehr, 

2001) 

 

Equation (4.30) shows the stoichiometric reaction for the production of ethanol (C2H5OH) 

and CO2, where the theoretical yield of ethanol from glucose (C6H12O6) is 51.1%. On the 

other hand, Equation (4.31) represents the anaerobic production of yeast.  

 

Over the years, several configurations of the fermentation stage have been tested for the 

production of ethanol in order to increase the productivity of the process. A review on the 
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different fermentation schemes was presented by Maiorella et al. (1981, 1984), including 

batch, simple CSTR, CSTR with cells recycle, and schemes with selective ethanol removal (as 

the flash fermentation, extractive fermentation and selective membranes). The main 

disadvantages of the batch fermentation are its lower productivity, longer fermentation times 

and higher capital investment (Reimelt, 2002) when compared to the continuous schemes. 

In spite of the advantages of the continuous fermentation configurations in terms of 

productivity, some new plants are still being designed for batch production, especially due to 

the high risk of contamination. This main disadvantage of the continuous process can be 

overcome using a CSTR with cells recycle configuration, such as the technology used in the 

industrial Biostil® process (Chematur engineering, Sweden) (Ehnström et al., 1991). Yeast 

recycle increases the cell density, leading to a higher ethanol concentration and low 

substrate concentration in the fermentor (Ehnström et al., 1991; Maiorella et al., 

1984). Another continuous fermentation technology of industrial use is the MULTICONT® 

process (Vogelbusch, Switzerland), in which a train of CSTR fermentors is employed. 
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Figure 4.6 Continuous fermentation with cells recycle configuration: fermentor-yeast filter-yeast 

treatment tank-flash vessel. Valves in red correspond to potential manipulated variables. The 

dynamics of the filter, treatment tank, flash and condenser are neglected in the model (steady state). 

 

The bio-ethanol process considered in this work is based on the continuous fermentation 

with cells recycle configuration, as shown in Figure 4.6. As it can be seen, a flash vessel is 
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also considered as part of the fermentation stage, which has two different tasks: first, the 

rapid extraction of ethanol for avoiding product inhibition, and second, the removal of the 

CO2 still present in the process. Such scheme has been often denoted in the literature as 

extractive fermentation (Da Silva et al., 1999; Costa et al., 2001; Meleiro et al., 

2009), but it should be noticed that it is not related to solvent extractive fermentation, 

which uses a liquid extractant for improving the removal of ethanol from the fermentation 

broth.  

 

4.1.3.2. Model 

The model was developed according the process shown in Figure 4.6, considering the 

following assumptions: 

• The effect of nutrients and vitamins on the fermentation kinetics is neglected. 

• The dynamics of the filter, treatment tank, flash and condenser are neglected as their 

dynamics are much faster than the dynamics in the fermentor (and also than the 

dynamics in other equipment involved in the whole process). Therefore those units 

were modeled at steady state.  

• Although a typical yeast treatment tank includes the addition of sulfuric acid for 

adjusting pH, this is neglected in the model, and the treatment tank is just 

considered as a mixing tank for yeast recycle.  

• The temperature in the fermentor is assumed to be kept constant at the optimal set 

point value (i.e. 32°C for the yeast to be used in the process‡). A typical control 

scheme uses the cooling flow rate through the jacket as manipulated variable for 

regulating the temperature.  

• pH is assumed to be kept constant at the optimal set point value for the particular 

yeast strain. 

• The density is assumed to be constant and the same for all the streams. 

• The fermentor is an ideal continuous stirred tank reactor (CSTR). 

• Ideal vapor-liquid equilibrium is assumed in the fermentor. 

• For the operating conditions in the flash vessel, only ethanol, CO2 and water are 

evaporated from the liquid feed stream. 

• The filter involved in the yeast recycle loop, which in a real process consists on a 

bent-sieve for separation of the fiber, and a centrifuge for separating the yeast to be 

recycled, is assumed here as a filter in which only the yeast is retained to be 
                                            
‡ Optimal temperature and pH are factors that depend on the yeast strain and should be investigated 
for each particular case. 
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recycled, whereas all other components pass through the filter to the downstream 

section of the process.  

 

The feed to the fermentation stage (stream F4) is a saccharified mash containing mainly 

glucose (G), which is the only fermentable sugar considered. Fermentation is carried out by 

the action of the yeast Saccharomyces cerevisiae which can be fed to the fermentor through 

the fresh yeast stream (F5) and/or the recycle stream (F11). Total Biomass (Xt) comprises a 

viable (Xv) as well as a dead phase (Xd). The output stream of the bioreactor (F6) is filtered 

for retaining all the yeast (viable and dead), which is then sent to the yeast treatment tank 

(F9) and recirculated to the fermentor (F11). The yeast-free stream (F13) is fed to the flash 

vessel, where the remaining CO2 is released. The stream from the bottom of the flash (F14) is 

then sent to the distillation unit, with the possibility of being partially recirculated to the 

fermentor as stream F15. The stream from the top of the flash (F17) is mixed with the vapor 

output from the fermentor (F12), and passed through a condenser, where water and ethanol 

are condensed and sent to the top of the rectification column (F19), in the purification 

Section. The relevant state variables at this stage of the process are Xv,F ,Xd,F, GF, EF and 

CO2,F. The mass balances for the other variables (e.g. Sung,F, Sg,F, mlt,F, nf,F, w,F, e1,F, e2,F) are 

only influenced by the dilution effect and for that reason they are not shown here. 

 

The mass balances for the viable (Xv,F), death (Xd,F) and total (Xt,F) biomass are presented in 

Equations (4.32) – (4.34). 
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dt
dX

dt
dX

dt
dX FdFvFt ,,, +=         (4.34) 

 

where F15 is the recycle flow from the bottom of the flash, Xv,15 and Xd,15 are the viable and 

dead yeast concentrations in the recycle stream 15. F11 is the recycle flow from the yeast 

treatment tank and F5 is the fresh yeast feed flow (which only contains viable yeast). F6 is 

the output flow from the fermentor calculated according to the control law (4.35), where the 
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F6,ss, HF and HF.Sp terms correspond to the steady state value for F6, the actual liquid level in 

the fermentor and its corresponding set point.  

 

)( ,,66 spFFcss HHKFF −+=         (4.35) 

 

The liquid volume in the fermentor (VF) can be calculated from the overall balance in the 

liquid phase given by Equation (4.36), 

 

612151154 FFFFFF
dt

dVF −−+++=       (4.36) 

 

The rX and rd variables in equations (4.32-4.34) are the biomass growth and death rates 

respectively, given by equations (4.37) and (4.38), as reported by Costa et al. (2002): 
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( ) FvFdPdTd XEkkr ,exp=          (4.38) 

 

It is important to notice that although kinetic expressions (4.37) and (4.38) were taken from 

Costa et al (2002), the parameters values used in this work (summarized in Appendix C.1) 

were identified as described in the Appendix C.2. 

 

According to Monbouquette (1987), when high-biomass-density fermentations with cell 

recycle processes are considered, it is necessary to take into account that the biomass 

volume fraction is not part of the reaction volume. Models including this effect are called 

intrinsic and have shown to provide a more accurate prediction of the substrate and product 

concentrations. Following the guidelines by Monbouquette, the balances for Glucose and 

Ethanol take into account the reaction volume correction Xt,F/γx, where γx is the ratio of dry 

weight cell per wet cell volume. Therefore, the Glucose (GF) and Ethanol (EF) mass balances 

in the bioreactor are given by:  
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where G15, E15, G11 and E11 are the glucose and ethanol concentrations in the recycle streams 

15 and 11 (G11=0 and E11=0, if a yeast filter with a 100% separation efficiency is assumed), 

respectively. rS and rp are the substrate consumption and ethanol production rates 

respectively, which according to Costa et al. (2002), are given by equations (4.41) and 

(4.42). 
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Finally, the mass balance for the CO2 is given by (4.43).  
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where wCO2 and wE are the CO2 and ethanol molecular weight, respectively. F12 and CO2,12 

are the vent gas flow and carbon dioxide concentration in the vent gas from the fermentor.  

 

Fermentation is a complex process involving living microorganisms which is still not 

completely understood. This makes modeling a challenging task, especially regarding the 

description of the reaction rates (rX, rp, rS and rd). Several kinetic models have been proposed 

in the literature but there is still no consensus on which of them is the best. In any case, a 

key factor for improving the modeling of the process has been the incorporation of substrate 
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and product inhibition effects into the growth kinetics (rX). A comparison of different kinetic 

models proposed for the continuous ethanol production with cell recycle was presented by 

Nishiwaki and Dunn (1999). In this work, the kinetic expressions (Equations 4.37, 4.38, 

4.41, 4.42) used were taken from the model presented by Costa et al (2002). The kinetic 

parameters were identified (see Appendix C.2) using experimental data reported by 

Jarzebski et al. (1989).  

 

Before concluding this section, a brief mention about the filter, yeast treatment tank and 

flash models should be done. First, since the dynamics of these equipments are much faster 

than the dynamics of the saccharificator, fermentor, distillation and rectification columns, 

they were simulated using steady-state models. In the case of the filter, the model used 

assumes a 100% efficiency for yeast separation (i.e. all yeast, including death cells, is 

retained in the filter). Therefore, yeast is only involved in the recycle loop to the fermentor 

(F11), and not downstream. Additionally, as recommended by Maiorella et al. (1984), the 

total biomass concentration in the recycle loop (Xt,11) should be kept at a convenient fixed 

value (which is done using a ratio control loop as explained in Section 6.1.1), for avoiding 

pumping problems if the viscosity of the recycled slurry is too high. A recycle biomass 

concentration of 180 kg/m3 is set in order to calculate the ratio set point for keeping the 

viscosity of the biomass slurry in a suitable value. A purge stream (F8) is also considered for 

avoiding accumulation of death cells in the fermentor.  

 

A steady state mass balance for total biomass in the filter leads to  

 

X

FdFv XXF
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=         (4.44) 

 

whereas a total mass balance in the filter yields 

 

7613 FFF −=           (4.45) 

 

Now, taking into account that part of F7 is purged (through F8) for avoiding dead biomass 

accumulation, the input flow to the yeast treatment tank (F9) is calculated from a mass 

balance in the splitter 

 

879 FFF −=          (4.46) 
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Finally, a total mass balance in the treatment tank allows the calculation of the recycle flow 

from the treatment tank to the fermentor (F11): 

  

10911 FFF +=          (4.47) 

 

where stream F10 is the flow of fresh water required to adjust the biomass concentration in 

the recycle loop. The flowrate F10 is determined by a ratio controller as described in Section 

6.1.1. 

 

The flash vessel operates under vacuum at the same temperature of the fermentor, 

separating a vapor mixture of ethanol, CO2 and water from the liquid feed stream. The flash 

is modeled assuming non-ideal vapor-liquid equilibrium. The Antoine parameters correspond 

to those reported by Gmehling et al. (1990), whereas the activity coefficients were taken 

from Wang et al. (2007).  

 

The steady state balance equations in molar flow rates for the flash vessel (including the 

condenser) are presented next. From a total balance in the flash 

 

171314 FFF −=          (4.48) 

 

where F13 and F17 are the flash feed molar flow and the vapor output flow, respectively.  

 

A mass balance for CO2 in the flash yields the following equation: 
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where CO2 is considered to be the only non-condensable component. 

 

A mass balance for CO2 in the condenser leads to 

 

171721212218 FyFyF ,CO,CO +=        (4.50) 
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Equation (4.51) and (4.52) are obtained from the vapor-liquid equilibrium of ethanol and 

water in the flash vessel. 
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where y and x represent mole fractions in the vapor and liquid phases of the each stream, 

respectively. γE and γw are the activity coefficients for ethanol and water respectively. PvE and 

PvW are the vapor pressures for ethanol and water, and Pflash is the pressure in the flash 

vessel.  

 

Now, from the summation equation, the molar fraction of CO2 in the vapor is obtained 

 

17,17,17,2 1 wECO yyy −−=         (4.53) 

 

Now, from an ethanol mass balance in the flash, Equation (4.54) is obtained, 
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and from the summation of fractions in the liquid phase in the flash: 
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where i accounts for all other components different than ethanol and water (e.g. glucose, 

starch and non-fermentable material). 

 

Now, from a total balance in the splitter at the flash bottom: 

 

151416 FFF −=          (4.56) 
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and from a total balance in the condenser: 

 

18121719 FFFF −+=         (4.57) 

 

Finally, the vapor pressure for each component is obtained from Antoine’s Equation: 
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4.1.4. Purification Section  

In this section, the last stage in the bio-ethanol continuous process from starch is described, 

namely, the purification section, which comprises distillation, rectification and adsorption by 

molecular sieves. First a general description is given, and then the dynamic model for the 

columns and the sieves bed is developed.  

4.1.4.1. Description 

Over the years, many different downstream purification technologies have been proposed for 

ethanol dehydration, in order to obtain the desired purity for using it as a fuel (i.e. >99.8% 

wt.). Since the ethanol-water mixture forms an azeotrope at around 95.5% wt. of ethanol at 

a pressure of 1.013 bar (with a boiling point of 78.2°C), distillation at reduced pressure is 

not economically viable for reaching fuel grade purity. In the beginnings of the bio-ethanol 

industry, the preferred method for separating the ethanol-water mixture was azeotropic 

distillation (AD) which involves the addition of a third volatile component (usually benzene or 

cyclohexane) to form a ternary azeotrope at a more convenient composition. The high 

energy requirements, large capital costs and health and safety concerns of AD have widely 

reduced the application of this technique in the bio-ethanol industry. Over the years AD has 

been replaced by extractive distillation (ED) and adsorption technologies. In ED, a third 

component (solvent) is also involved, which increases the relative volatility of the 

components to be separated without forming a ternary azeotrope as is the case in AD. 

Different solvents have been reported in the literature of ethanol purification by ED, ranging 

from liquid solvents like ethylene glycol, to dissolved salts such as potassium and sodium 

acetate, to hyperbranched polymers, and many others. On the other hand, adsorption using 

molecular sieves is the technology most widely used today for ethanol dehydration. In this 
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case, the ethanol-water mixture at a composition close to the azeotrope is passed through a 

bed of zeolites in which the water is trapped and adsorbed whereas the ethanol molecules 

flow around them, as a consequence of the different size of ethanol and water molecules, 

4.52 Å and 1.23 Å, respectively (Daubert et al., 1989). Other technologies that have been 

proposed for ethanol purification include membrane pervaporation and Pressure Swing 

Distillation (PSD). Pervaporation involves the preferential passage of ethanol through a 

dense membrane matrix. However, systems involving membrane separation have not been 

industrially applied because they are claimed to have low maximal capacity and high 

replacement costs, which impact negatively the economy of the process (Szitkai et al., 

2002). On the other hand, pressure swing distillation has been recently evaluated and 

reported to result in a 44% of the reduction costs in the downstream process, by taking 

advantage of heat integration between the high and low pressure columns (Arifeen et al., 

2007). However, industrial applications of PSD in the bio-ethanol process have not been 

reported yet. A more detailed description of these technologies can be found in the works by 

Huang et al. (2008) and Vane (2008). Independently of the technology used, a typical 

purification section in a bio-ethanol production plant includes a first distillation step (usually 

two or more columns, including rectification) obtaining an ethanol concentration below the 

azeotrope. In this work, the configuration of the purification stage (which is currently the 

preferred configuration in Europe) includes: distillation, rectification and molecular sieves 

adsorption, as shown in Figure 4.7.  

 

 
Figure 4.7 Purification section configuration including level and pressure control loops for the 

distillation and rectification columns (red valves indicate potential manipulated variables) 
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The feed to the purification stage comes from the flash through two different streams. The 

main stream (F16), fed to the distillation (beer) column, is a liquid phase stream coming from 

the bottom of the flash with an ethanol purity of around 4% - 8% wt. The second feed 

stream (F19) enters directly into the top of the rectification column, as this is a higher ethanol 

concentration stream (>60% wt.) coming from the top of the flash after passing the 

condenser where the CO2 is completely released. The purpose of the first distillation column 

is to separate the heavy components and some water from a volatile water-ethanol mixture 

vapor stream leaving the column at the top. Depending on the yeast strain used in the 

fermentation, fusel oil (i.e. a mixture of higher alcohols) may also be produced, which can be 

separated as a side-stream in the distillation column. The purpose of the rectification column 

is to obtain an ethanol-water mixture close to the azeotropic composition. The coupling of 

distillation and rectification at different operating pressures, mainly vacuum-atmospheric (or 

higher) respectively, has been identified as an excellent alternative for saving steam 

consumption in the purification section (Dias et al., 2009b; Reimelt et al., 2002). In this 

work, the distillation column has been considered to operate under vacuum (0.3 atm) 

whereas the rectification column operates at atmospheric pressure. Besides the operating 

pressures, distillation and rectification columns differ mainly in the number of trays and the 

type of condenser used. In the distillation case, a lower number of trays may be required 

and a total condenser is used. In the rectification, a partial condenser is used because the 

feed to the molecular sieves should be a vapor stream. In order to obtain the required fuel-

grade ethanol purity, usually two or more zeolite-type molecular sieves beds are used for 

adsorption of water (one bed is used for adsorbing the water while the others are 

regenerated). For simulation purposes, in this work only the model for adsorption is 

considered. Regeneration of the bed is assumed to take place at a predetermined frequency, 

resulting in a return of the bed to its initial state (i.e. water-free). Finally, the bottom of the 

rectification column is partially recirculated to the liquefaction section (through stream 23), in 

order to reduce the fresh water consumption in the process (Reimelt, et al., 2002). In the 

following, the dynamic model of the purification section is presented. 

 

4.1.4.2. Model 

The purification Section shown in Figure 4.7 is modeled considering the following 

assumptions: 

• Perfect mixing in the liquid hold-up of each tray. 

• Non-ideal vapor-liquid equilibrium in each tray, described by the UNIQUAC model. 

• Negligible vapor hold-up. 
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• No energy losses from the columns. 

• Negligible heat capacity of the trays and columns construction material. 

• Total condenser without sub-cooling in the distillation column. Partial condenser in 

the rectification column. 

• The distillation column is modeled as a ternary system: water, ethanol and a heavy 

phase (containing glucose, starch, non-fermentable matter and all other non-volatile 

components). The rectification column is modeled as binary ethanol-water system. 

• Constant pressure drop across the trays. 

 

 

Distillation Column 

The model for the distillation columns comprises the equations for each tray, the reboiler and 

for condenser. The trays are numbered from the reboiler (i = 1) to the condenser (i = Nt). At 

each tray, the compositions for each component (j = 1 to Nc) in both phases, temperature, 

liquid hold-up, and vapor and liquid flows are calculated.  

 

1. Trays model: For any tray in the column (Figure 4.8), different from the reboiler 

and condenser, the dynamic model is described by the following equations: 

 

   
Figure 4.8 Schematic representation of a distillation column tray 

 

Overall mass balance for tray i (for i ≠ 1,Nt) 
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Mass balance for component j (for j =1,2,…,Nc)  
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where the Vapor flow rate (Vi) leaving tray i  is given by: 

 

i,evapiiii r)q(FVV +−+= − 11       (4.61) 

 

where the first term account for the vapor flow rate coming from below (Vi-1), the 

second term is the vapor coming with the feed stream to the tray where qi is the 

liquid fraction in the feed flow, and the last term (revap,i) represents the evaporation 

rate (or vapor absorption rate) on tray i. According to Beverley et al. (1999), the 

evaporation/absorption rate depends on the pressure and temperature conditions of 

the system and the molecular weight. For a multicomponent mixture, the evaporation 

rate on tray i can be expressed as follows:  

 

( )∑
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⋅=

Nc

j
i,ti,vjj

i,tj
i,evap PPA

RTw
r

1 2
1

3600
1

π
    (4.62) 

 

where revap,i is given in kmol/h, Pvj,i is the vapor pressure of pure component j in tray i 

(in Pa), Pt,i is the pressure at tray i (in Pa), wj is the molecular weight of component j 

(in kg/kmol), R is the universal gas constant (=8314 in J/kmolK), Tt,i is the 

temperature at tray i and Aj is the tray area covered by component j, which is 

calculated according to Equation (4.63). If Pv,ji >Pt,i, evaporation of component j 

occurs whereas, in the contrary case, component j is absorbed by the liquid phase. 
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where Atray is the tray wet area, aj is the molecular area of component j, xj is the mole 

fraction of component j in the liquid phase.  
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The liquid flow rate leaving each tray in kmol/h, neglecting the contribution of 

weeping, is calculated according to the Francis-weir formula (Vora and Daoutidis, 

2001): 
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where νl,i and νweir,i are the volume of liquid (in m3) and the weir volume (in m3) in 

tray i, respectively. Therefore, νl,i - νweir,i represents the volume of liquid over the 

weir. ρl,i is the density of the liquid mixture in tray i in kg/m3, and wl,i is the average 

molecular weight of the liquid in tray i in kmol/kg. 

 

Assuming thermodynamic equilibrium between the liquid and vapor phases, the vapor 

compositions yj,i (component j on tray i) are calculated as: 
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The activity coefficients γj and the vapor pressures were calculated using the 

UNIQUAC model and the Antoine Equation, respectively. The equations and 

parameters used in the VLE model are shown in the Appendix C.3. 

 

Finally, the sum of fractions in both phases must be equal to unity: 

 

;1;1
1

,
1

, == ∑∑
==

Nc

j
ij

Nc

j
ij yx        (4.66) 

 

The energy balance at tray i is given by: 
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(4.67) 

 

where hl and hv are the enthalpies for the liquid and vapor on tray i, given by 

Equations (4.68) and (4.69), respectively. 
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where hlj,ref is the enthalpy of liquid of component j at the reference temperature, Cpl,j 

is the molar heat capacity of component j in the liquid phase, and λj
Tt,i is the molar 

enthalpy of evaporation of component j at temperature Tt,i. The expressions for 

calculating the molar heat capacity and the molar enthalpy of evaporation for each 

pure component as a function of temperature are given in Appendix C.3. 

 

Since a constant pressure drop across each tray has been assumed, the pressure at 

each tray is calculated as: 

 

tttopit PiNPP Δ−+= )(,        (4.70) 

 

where Ptop is the pressure at the top of the column (pressure in the condenser) and Nt 

is the total number of trays in the column. The trays are numbered from the bottom 

(i = 1) to the top (i = Nt). 

 

2. Reboiler model: The reboiler is modeled as an equilibrium stage, and it is 

considered to include the bottom of the column, as shown in Figure 4.9.  
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Figure 4.9 Schematic representation of the reboiler section including level control 

 

The reboiler model comprises the mass and energy balances as well as the VLE 

model described in Appendix C.3. The total mass balance is written as: 
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The balance for component j is:  
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1,1
jjj

j BxyVxL
dt

xMd
−−=      (4.72) 

 

The calculation of the thermodynamic equilibrium is done using equation (4.65) as in 

the case for the tray model. Also the summation equation (4.66) is required. 

 

The energy balance is given by: 

 

( )
R,l,v,l

,l QBhhVhL
dt

hMd
+−−= 11122

11
     (4.73) 
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where heat losses from the column have been neglected. 

 

The reboiler duty (QR) is equal to the enthalpy increase of the boil-up as a result of 

evaporation: 

 

VBQR 1λ=          (4.74) 

 

where λ1 is the heat of vaporization of the mixture at the bottom of the column, and 

is a function of temperature and composition (see Equation C.12 in Appendix C.3) 

 

In addition, the following equality holds: 

 

VBV =1          (4.75) 

 

Finally, as shown in Figure 4.9, the level at the bottom of the column (HB) is 

controlled by manipulating the bottoms flow rate B, as a function of the error between 

the measured level (HB) and the desired set point value (HB,sp).  

 

⎥
⎦

⎤
⎢
⎣

⎡
−+−= ∫ dtHHHHKcB spBB

I
spBB )(1)( ,, τ    (4.76) 

 

where Kc and τI are the gain and integral time of a PI controller. 

 

4. Condenser model: The condenser is modeled as an equilibrium stage, including the 

reflux drum as depicted in Figure 4.10. For the distillation column, a total condenser 

without sub-cooling is considered. 
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 Figure 4.10 Schematic representation of the condenser section for the distillation column including 

level and pressure control  

 

The mass balance around the condenser is expressed as: 

 

DRV
dt

dM
Nt

Nt −−= −1        (4.77) 

 

The balance for component j in the condenser is: 

 

( )
Nt,jNt,jNt,jNt

Nt,jNt DxRxyV
dt

xMd
−−= −− 11     (4.78) 

 

Again, the calculation of the thermodynamic equilibrium is done using equation (4.65) 

and the mole fraction summation using equation (4.66) as in the case of the tray 

model. 

 

The energy balance is given by: 

 

( )
cNtlNtlNtvNt

NtjNt QDhRhhV
dt

hMd
−−−= −− ,,1,1

,
   (4.79) 
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where the heat losses were neglected.  

 

Since the condenser duty determines the vapor hold-up at the top of the column, it is 

possible to control the pressure of the column by manipulating the condenser duty, 

as it is shown by the pressure loop in Figure 4.10. For the purpose of controlling the 

pressure, the condenser duty (QC) is calculated according to the following control law:  

 

⎥
⎦

⎤
⎢
⎣

⎡
−+−+= ∫−− dtPPPPKcVQ sptoptop

I
sptoptopNtNtc )(1)( ,,11 τ

λ  

          (4.80) 

 

where the first term in equation (4.80) is a feedforward compensation, whereas the 

second term is a feedback action calculated as a function of the error between the 

measured pressure (Ptop) and its corresponding set point value (Ptop, sp).  

 

Finally, level control in the reflux drum can be implemented by manipulating the 

distillate (D) or reflux (R) rates. In this work, the distillate flow rate is used for 

controlling the level (HD) at the reflux drum in the distillation column; therefore, D is 

calculated as a function of the error between the measured level value (HD) and its 

set point (HD,sp): 

 

⎥
⎦

⎤
⎢
⎣

⎡
−+−+= ∫ dtHHHHKcDD spDD

I
spDDss )(1)( ,, τ   (4.81) 

 

where Dss is the value of the distillate flow at steady state. 

 

Rectification Column 

The model for the rectification column is similar to that presented for the distillation column. 

The basic differences are:  

• In the rectification, a second liquid feed stream is fed to the top of the column (tray 

Nt -1) 

• The condenser is partial.  

• A different control scheme for the reflux drum is used. 
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As the main differences are at the top of the column, only the model of the condenser 

(including reflux drum) will be described. The model is based on the scheme presented in 

Figure 4.11. 

 

 
Figure 4.11 Schematic representation of the condenser section for the rectification column including 

level and pressure control  

 

The balances around the dotted black region in Figure 4.11 are given by: 

 

DRV
dt

dM
Nt

Nt −−= −1         (4.82) 

( )
111 −−− −−= Nt,jNt,jNt,jNt

Nt,jNt DyRxyV
dt

xMd
    (4.83) 

( )
1,,1,1

,
−−− −−= NtvNtlNtvNt

NtjNt DhRhhV
dt

hMd
    (4.84) 

 

The thermodynamic equilibrium is calculated according to Equation (4.65). Also the 

summation Equation (4.66) is required for solving the model. 

 

As in this case the distillate flow rate (D) is a vapor stream, it has no effect on the level (HD) 

at the reflux drum. Therefore, the level in the reflux drum can only be controlled by 

manipulating the reflux rate (R) or the partial condenser duty (Qc).   

 

From a total molar balance in the liquid zone in the reflux drum (green dotted region), 
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RL
dt

dM
C

Nt −=          (4.85) 

 

where Lc is the flowrate of liquid from the condenser to the reflux drum, and is given by  

 

1−

=
Nt

c
C

QL
λ          (4.86) 

 

Replacing Equation (4.86) in Equation (4.85), results: 

 

RQ
dt

dM

Nt

cNt −=
−1λ         (4.87) 

 

Now, from an overall total mass balance around the vapor space in the reflux drum (red 

dotted region): 

 

01 =−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− DLV

dt
dP

TR
v

CNt
top

Nt

Nt,v
      (4.88) 

 

where TNt and vv,Nt are the temperature and the volume occupied by the vapor in the reflux 

drum respectively. Notice that in Equation (4.88), constant pressure Ptop in the reflux drum 

was assumed, thus, from Equation (4.86) and Equation (4.88) results: 

 

( ) 011 =−−−− cNtNt QDVλ        (4.89) 

 

Therefore, from a theoretical point of view, pressure can be kept constant by calculating the 

condenser duty or the distillate flowrate from equation (4.89). Thus, for controlling level and 

pressure at the top of the column, we have three possible manipulated variables, R, D and 

Qc. That means that there is only one degree of freedom, which in this work (unless 

otherwise is stated) is the reflux rate R. As it has been shown in Figure 4.11, in this work, 

the pressure Ptop is controlled by manipulating the distillate flow rate D, which is done 

according to the control law: 
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⎥
⎦

⎤
⎢
⎣

⎡
−+−+⎥

⎦

⎤
⎢
⎣

⎡
−= ∫

−
− dt)PP()PP(KcQVD sp,toptop

I
sp,toptop

Nt

c
Nt τλ

1

1
1   

(4.90) 

 

where the first term accounts for a feedforward compensation which is derived from 

equation (4.89). The second term is a feedback control action calculated as a function of the 

error between the measured pressure (Ptop) and its corresponding set point value (Ptop, sp). 

On the other hand, the level HD is controlled by manipulating the condenser duty, as a 

function of the error between the measured level (HD) and its corresponding set point (HD,sp), 

according to the following control law: 

 

⎥
⎦

⎤
⎢
⎣

⎡
−+−+= ∫ dt)HH()HH(KcQQ sp,DD

I
sp,DDCssC τ

1
   (4.91) 

 

where QCss is the condenser duty at steady state. 

 

Finally, for concluding the modeling of the purification Section, the molecular sieves model is 

presented in the following section.  

 

Molecular sieves 

The last step in the purification stage of the bio-ethanol process corresponds to the 

molecular sieves unit (Figure 4.12).  

 

 
Figure 4.12 Schematic representation of a molecular sieves unit 
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In this work, a simple model is used in the sieves unit.  A single bed unit has been simulated, 

assuming that the mass of water adsorbed per hour of sieve operation (Mads) is given by 

(Karuppiah et al., 2008): 

 

reg

MS
ads t

madsM ⋅
=          (4.92) 

 

where mMs is the mass (in kg) of molecular sieves in the bed, ads (kg water/kg molecular 

sieves) is the adsorption potential of the sieves and treg is the time of sieve operation without 

need for regeneration. However, the maximum rate of water adsorption is determined by the 

equilibrium separation efficiency of the sieves (ηads), as given by: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2

201
D,w

,w
ads x

*x
η          (4.93) 

 

where xw,20* is the equilibrium mass fraction of water in the ethanol-phase.  

 

From a steady-state mass balance in the ethanol-phase,  

 

adsMDF −= 220          (4.94) 

 

where D2 is the mass flow rate of distillate in the rectification column and F20 is the outlet 

mass flow rate of dehydrated ethanol. From a balance of water in the ethanol-phase,  

 

20,202,2 wDwads xFxDM −=        (4.95) 

 

Combining equations (4.94) and (4.95) and rearranging, the following expression is 

obtained: 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=

20,

20,2,
2 1 w

wDw
ads x

xx
DM        (4.96) 

 

At equilibrium, the mass fraction of water in the outlet flow is xw,20*. Now, considering that 

xw,20*<<1, equation (4.96) becomes  
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*)( 20,2,2max, wDwads xxDM −=        (4.97) 

 

From the definition of the separation efficiency (4.93), the following expression is obtained: 

 

adsDwads xDM η2,2max, =         (4.98) 

 

Finally, the mass fraction of ethanol in the product stream F20 can be calculated as: 

 

20

max,22
20

),min(
1

F
MMxD

x adsadswD
E

−
−=      (4.99) 

 

The main operating conditions and design parameters used in the model of the purification 

section are presented in Appendix C.1. The design parameters for the distillation and 

rectification columns were obtained using a sensitivity analysis as it is shown in Appendix D, 

whereas those for the molecular sieves were taken from Karuppiah et al. (2008). 

 

Finally, it is important to consider the overall and component mass balance in a splitter and a 

mixer located after the bottom of the rectification column, which are used for recycling a 

fraction of the lutter water, mixed with fresh water for maintaining a constant flow of water 

to the liquefaction tank. 

 

rect,LVBBF 12221 =++         (4.100) 

2,21, Bii xx =           (4.101) 

222123 FFF +=          (4.102) 

22,2221,2123,23 iii xFxFxF +=        (4.103) 

 

4.1.5. Plantwide degrees-of-freedom analysis  

 

In this section, a degrees-of-freedom analysis is carried out in order to check the consistency 

of the model for the whole plant. This analysis, indicating the dependent variables, the 

equations of the model and the degrees of freedom, is presented in Table 4.1. 
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Table 4.1 Plantwide analysis of degrees of freedom for the ethanol production process 

Dependent Variables Quantity  Equation Quantity 

Composition in liquefaction 

tank (R-101) 

nc Component mass balances in 

liquefaction R-101 (4.7, 4.9-

4.13) 

nc
 

Composition in 

saccharification tank (R-102) 

nc Component mass balances in 

saccharification R-102 (4.19, 

4.22-4.28) 

nc 

Composition in fermentation 

tank (R-201) 

nc Component mass balances in 

fermentation R-201 (4.32-

4.34,4.39,4.40,4.43) 

nc
 

Composition in trays of 

distillation column (T-301) - 2 

phases 

2*NT1*nc Component mass balances in 

trays of columns (4.60, 4.72, 

4.78, 4.83) 

(NT1+NT2)*(nc-1) 

Composition in trays of 

rectification column (T-302) - 

2 phases 

2*NT2*nc Overall mass balances in 

trays of columns (4.59, 4.71, 

4.77, 4.82) 

NT1 + NT2 

Temperature in trays of 

distillation and rectification 

columns 

NT1 + NT2 Energy balances in trays of 

columns (4.67, 4.73, 4.79, 

4.84) 

NT1 + NT2 

Liquid hold-up in trays of 

distillation and rectification 

columns 

NT1 + NT2 Vapor-liquid equilibrium in 

trays of columns (4.65) 

(NT1+NT2)*nc 

Volume of reactors (VL, VS, VF) 3 Overall mass balance in 

reactors (4.14, 4.21, 4.36) 

3 

Level of reactors (HL, HS, HF), 

reflux drums (HD1, HD2) and 

reboilers (HB1, HB2) 

7 Geometric relations (4.15) 7 

Rates of reaction (rg, rmlt, rde, 

rmlt,S, rX, rd, rS, rp) 

8 Kinetic expressions (4.16-

4.18, 4.29, 4.37, 4.38, 4.41, 

4.42) 

8 

Input flows of starch slurry, 

enzymes, yeast and water (F0, 

F1, F3, F5, F10, F22) 

6 Summation equations (4.66) NT1 + NT2 

Liquid output flows from 

reactors (F2, F4, F6) 

3 Level control laws (4.8, 4.20, 

4.35, 4.76, 4.81, 4.91) 

7 
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Table 4.1 (cont.) Plantwide analysis of degrees of freedom for the ethanol production process 

Dependent Variables Quantity  Equation Quantity 

Output flows from distillation 

and rectification columns (B1, 

D1, B2, D2) 

4 Pressure control laws (4.80, 

4.90)  

2 

Flow and composition of purge 

stream (stream 8) 

nc + 1 Equilibrium separation in 

filter (4.44) 

nc 

Flow and composition of cell 

recycle stream (stream 11) 

nc + 1 Overall and component mass 

balance in flash V-202 and 

condenser HE-202 (4.48-

4.50, 4.54, 4.56-4.57) 

2nc + 2 

Flow and composition of vent 

gas (stream 12) 

nc + 1 Vapor-liquid equilibrium in 

flash, fermentor and 

condenser HE-202 (4.51-

4.52) 

3nc 

Flow and composition of yeast-

free stream (stream 13) 

nc + 1 Overall and component mass 

balances in filter F-201 and 

yeast treatment tank V-201 

(4.45-4.47) 

2nc + 2 

Flow and composition of 

recycle stream from flash to 

fermentor (stream 15) 

nc + 1 Equilibrium separation in 

molecular sieves (4.93) 

nc 

Flow and composition of 

stream from flash to distillation 

(stream 16) 

nc + 1 Overall balance in molecular 

sieves units (4.94) 

1 

Flow and composition of 

stream from flash to scrubber 

(stream 18) 

nc + 1 Vapor mass balance in top of 

the columns (4.88) 

2 

Flow and composition of 

stream from flash to 

rectification (stream 19) 

nc + 1 Reboiler duty (4.74) 2 

Flow and composition of 

product (stream 20) 

nc + 1 Liquid and Vapor flow rates 

from trays of columns (4.61, 

4.64) 

2*(NT1+NT2) 

Flow and composition of lutter 

water (stream 21) 

nc + 1 Overall and component mass 

balance in rectification 

bottoms splitter and lutter 

water mixer (4.100 - 4.103)  

2nc + 2 
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Table 4.1 (cont.) Plantwide analysis of degrees of freedom for the ethanol production process 

Dependent Variables Quantity  Equation Quantity 

Flow and composition of water 

to liquefaction (stream 23) 

nc + 1 Water adsorption in 

molecular sieves units (4.92) 

1 

Pressure in the top of 

distillation and rectification 

columns (Pt1, Pt2) 

2   

Condenser and reboiler duties 

in distillation and rectification 

(Qc1, Qc2, Qr1, Qr2) 

4   

Reflux and boilup streams in 

distillation and rectification (R1, 

VB1, R2, VB2) 

4   

Liquid and vapor flows from 

the trays of the distillation and 

rectification columns (L, V) 

2*(NT1 + NT2)   

Operation time of molecular 

sieves unit before regeneration 

(treg) 

1   

TOTAL VARIABLES 14*nc 

+2*(NT1+NT2)*nc 

+4*(NT1+NT2)+53

TOTAL EQUATIONS 14*nc 

+2*(NT1+NT2)*nc 

+4*(NT1+NT2)+39

For nc=10 and NT1+NT2=80 2113 For nc=10 and NT1+NT2=80 2099 

DEGREES OF FREEDOM = 14 

 

According to Table 4.1, there are 14 degrees of freedom in the whole process, a result 

consistent with the number of available manipulated variables after closing the local level 

and pressure loops. This set of available manipulated variables includes: F0, F1, F3, F5, F8, F10, 

F15, F21, F22, R1, VB1, R2, VB2 and treg.  

 

By far, a complete model of the continuous bio-ethanol production from starchy raw 

materials has been presented. The complete dynamic model has been implemented using 

MATLAB’s Simulink as described in Section 4.2. The validation of the fermentation, distillation 

and rectification sections is presented in Appendix C. In contrast to those models which are 

part of the state of the art in the (bio)-chemical engineering field, the model developed in 

this work for the molecular sieves unit is a new approach. For this reason, in the next section 

the validation of the molecular sieves model described by Equations (4.92) – (4.99) is 

presented. 
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Molecular Sieves model validation 

The molecular sieves model described by Equations (4.92) – (4.99) is validated in this 

section. Initially, the model was developed assuming a constant adsorption capacity ads; 

however, during validation it was observed that a best fit to the experimental data was 

attained considering a variable adsorption capacity as a function of the sieve operation time 

(treg), as described by Equation (4.104): 

 

2
0

regt
ads

ads =           (4.104) 

 

Figure 4.13 shows a comparison between experimental data reported by Al-Asheh et al. 

(2004) for 3A-type molecular sieves (green points), the model predictions using a constant 

adsorption capacity (red line) and model predictions using a variable adsorption capacity 

(blue line) described by Equation (4.104). The data are plotted as water content in the 

effluent stream (xw20) divided by the inlet water content (xwD2), versus time. In this particular 

case, the data correspond to an inlet water content of 5% wt. As it can be seen, the model 

using a variable adsorption capacity fits very well the experimental data, in contrast to the 

model assuming a constant adsorption capacity. Therefore, it was decided to include in the 

molecular sieves model the expression given by Equation (4.104) for taking into account a 

variable adsorption capacity. The new model was validated by using a different set of 

experimental data, this time for 4A- type molecular sieves, which is shown in Figure 4.14.  

 

As it can be observed in Figure 4.14, the new model considering the variable adsorption 

capacity also fits very well the new set of experimental data for the molecular sieves 4A-

type. Finally, from the validation results presented in this section and in Appendix C, it can 

be concluded that the dynamic model developed in this work, based on the mass and energy 

balances presented in Section 4.1, provides a good approximation for predicting the behavior 

of the process variables in the fermentation and purification steps (distillation, rectification 

and adsorption) of an ethanol production process, which are the core units of the process.  
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Figure 4.13 Model validation for 3A-type Molecular sieves: Experimental data for 3A. (green points), 

Simulink model predictions considering a constant adsorption capacity (red line), and Simulink model 

predictions considering a variable adsorption capacity (blue line). 

 
Figure 4.14 Model validation for 4A-type Molecular sieves: Experimental data for 4A (red points), and 

Simulink model predictions considering a variable adsorption capacity (blue line). 
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4.2. Simulink Dynamic Model for the Bio-ethanol 

Process 
 

The case study addressed in this work is based on the continuous alcoholic fermentation of 

glucose to ethanol, sometimes referred in the literature as extractive fermentation (Costa et 

al., 2001; Meleiro et al., 2009) in which fermentation, cells recycle and a flash separation 

are considered as part of the fermentation stage. As one of the main purposes of this work is 

to propose a Plantwide Control (PWC) strategy for the ethanol continuous process from 

starch (typical raw material in the European countries) towards reaching maximal 

profitability, the process considered in this work (as described in Section 4.1) also includes 

liquefaction, saccharification and purification sections, similar to those of the Biostil® 2000 

process (Chematur Enginering AB, Karlskoga, Sweden). The nonlinear dynamic model of the 

process, consisting of a nonlinear DAE system comprising 311 differential states and 

approximately 1800 algebraic equations, was simulated using Mathwork’s Simulink®. The 

scheme of the Simulink model developed is shown in Figure 4.15.  

 

 
Figure 4.15 Scheme of the Simulink model: The model for each section is included as an embedded 

MATLAB function block. Cyan step blocks are the manipulated variables denoted as plantwide 

manipulated in Chapter 6.  
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In the developed Simulink model, each section of the process, namely, liquefaction, 

saccharification, fermentation, distillation, rectification and molecular sieves, corresponds to 

an embedded MATLAB function block. In total, the Simulink model considers 26 input 

variables that are described and pre-classified in Table 4.2. As a rule, the variables that 

cannot be manipulated by any means in the process are considered as disturbances, as it is 

the case of the feed concentrations of starchy slurry and enzymes, whose concentrations 

correspond to those provided by the suppliers of the raw materials. As it can be seen, 23 of 

the input variables are considered as potential manipulated variables, which in Chapter 6 

(Section 6.1.1) will be classified into local manipulated and plantwide manipulated variables. 

The remaining three inputs on Table 4.2 are considered as disturbances.  

 

In order to test the plantwide control methodology from an optimization perspective, an 

important step is the development of an optimal process design for the case study 

addressed. The design procedure based on a sensitivity analysis of a cost design function 

with respect to the main process design parameters is presented in Appendix D, considering 

a nominal production of 100.000 Ton ethanol/year (12.63 Ton/h for 330 days of operation 

during 24h/day) using a mash of starchy material as feed. After the process design, the 

Simulink model was used for studying the sensitivity of the process with respect to the main 

input variables. Such sensitivity analysis is an important tool for understanding the effect of 

the inputs on the process, which provides highly valuable information for implementing a 

suitable control system in the process.  

 

Table 4.2 Input variables considered in the Simulink Dynamic Model for Bio-ethanol production: 

Potential manipulated vs. disturbances§  

Input Variable Classification Meaning 

F0 Potential manipulated Starch slurry feed flow to 

the process (m3/h) 

F1 Potential manipulated Alpha-amylase input flow 

to Liquefaction (m3/h). 

F2 Potential manipulated Output flow form 

Liquefaction (m3/h). 

F3 Potential manipulated Glucoamylase input flow 

to Saccharification 

(m3/h). 

 

                                            
§ A sensitivity analysis is presented in this section for the variables in bold face.  
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Table 4.2 (cont.) Input variables considered in the Simulink Dynamic Model for Bio-ethanol 

production: Potential manipulated vs. disturbances 

Input Variable Classification Meaning 

F4 Potential manipulated Output flow from 

Saccharification (m3/h). 

F5 Potential manipulated Fresh yeast flow (m3/h). 

F6 Potential manipulated Output flow from 

Fermentation (m3/h). 

F8 Potential manipulated Cells purge flow (m3/h). 

F10 Potential manipulated Water input flow to the 

mixing tank (m3/h). 

F15 Potential manipulated Recycle flow from the 

flash to the fermentor 

(m3/h). 

F22 Potential manipulated Fresh Water input flow to 

the process(m3/h) 

F21 Potential manipulated Stillage Recycle from the 

bottom of the 

rectification (m3/h). 

R1 Potential manipulated Reflux rate in the 

distillation (kmol/h). 

VB1 Potential manipulated Boilup rate in the 

distillation (kmol/h). 

B1 Potential manipulated Bottoms flow rate in the 

distillation (kmol/h). 

Qc1 Potential manipulated Condenser heat flux in 

the distillation (J/h). 

D1 Potential manipulated Distillate flow rate in the 

distillation (kmol/h). 

R2 Potential manipulated Reflux rate in the 

rectification (kmol/h). 

VB2 Potential manipulated Boilup rate in the 

rectification (kmol/h). 

B2 Potential manipulated Bottoms flow rate in the 

rectification (kmol/h). 

Qc2 Potential manipulated Condenser heat flux in 

the rectification (J/h). 

D2 Potential manipulated Distillate flow rate in the 

rectification (kmol/h). 
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Table 4.2 (cont.) Input variables considered in the Simulink Dynamic Model for Bio-ethanol 

production: Potential manipulated vs. disturbances 

Input Variable Classification Meaning 

treg Potential manipulated Regeneration cycle period 

(h) 

Sung,0 Disturbance Starch content on the 

feed (kg/m3) 

e1,1 Disturbance Alpha-amylase 

concentration (kg/m3) 

e2,3 Disturbance Gluco-amylase 

concentration (kg/m3) 

 

 

In this section, the Simulink model (Figure 4.15) is used for carrying out the sensitivity 

analysis of the process with respect to the main input variables. This analysis is done after 

closing some basic local control loops for the process, including: the level loops for the 

liquefaction, saccharification and fermentation tanks; the levels in reboiler and condenser in 

the distillation and rectification columns, as well as the pressure in each column. After 

closing these basic local loops, there are still 14 potential manipulated variables available in 

the process, for control purposes. These variables are shown in bold in Table 4.2, and in the 

following, their impact on the process profitability is studied through a sensitivity analysis. 

For this purpose, the profitability function presented in Equation (4.105) is used. 
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 (4.105) 

 

The first term in the objective function (4.105) accounts for the incomes obtained from 

selling the ethanol produced; the second term penalizes the raw material consumption; the 

third term is a quality soft constraint included for promoting a high ethanol concentration at 

the top of the rectification column (xED2) and reducing the risk of production of ethanol out of 

specifications; the following three terms are used for penalizing the energy consumption in 

the process (pumping power and steam consumption). The terms weighted by w7 and w8 
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penalize the economic losses due to the presence of ethanol in the streams leaving the 

process at the bottom of the columns. The next three terms penalize consumption of 

enzymes (alpha-amylase and glucoamylase) and fresh water, whereas the last term accounts 

for regeneration costs in the molecular sieves. The Δt is the optimization horizon, which in 

the case study addressed here was taken as 25 hours.  

 

Table 4.3 Sensitivity analysis of the main process inputs 

Input Variable** 
Nominal 

value 

Variation 

Interval 

Sub-optimal 

initial value from 

sensitivity 

analysis 

Optimal 

operating 

point†† 

F0 (m3/h) 30 15 – 45 33 27.3 

F1 (L/h) 20 0.2 – 23 1.3 1.55 

F22 (m3/h) 35 28 – 49 42 44.4 

F3 (L/h) 45 22 – 67  45 38.2 

F21/L1,rect 0.8 0 – 1 0.8 0.933 

F8/F7  0.015 0 – 0.05 0.02 0.025 

F5 (m3/h) 0 0 – 1 0 0 

F15/F14 0 0 – 0.09 0 0.011 

R1 (kmol/h) 4170 3760 – 4600 4100 3907.1 

VB1 (kmol/h) 5250 4720 – 5770 5250 4987.3 

R2 (kmol/h) 1845 1750 – 1880 1845 1854.7 

VB2 (kmol/h) 2100 2015 – 2120 2070 2047.6 

treg (h) 0.1 0.05 – 1 0.4 0.466 

 

The sensitivity analysis was carried out as follows. After identifying the design parameters as 

described in Appendix D, the Simulink process model was run setting the inputs at their 

                                            
** The analysis of recycle and purge flows (F23, F15 and F8) was performed considering the 
corresponding flow ratios, in order to gain a better understanding of the process. 
†† The optimal operating point was determined by solving the optimization problem stated in Equation 
(4.106) using the MIPT algorithm described in Chapter 3. 
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nominal values until a steady state was found. Then, each process input was changed 

between the allowed variation intervals around the nominal point, and the process was 

simulated starting from the steady state condition previously found. 
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c) Rectification bottoms recycle ratio
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d) Glucoamylase flowrate (L/h)

20 30 40 50 60 70

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

(€
/h

)

-3070

-3060

-3050

-3040

-3030

-3020

-3010

-3000

45 L/h

 

e) Flash recycle ratio
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 f) Fresh water flowrate (m3/h)
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Figure 4.16 Sensitivity analysis of the main input variables of the process. a) Starch slurry flowrate, b) 

alpha-amylase flowrate, c) Rectification bottoms recycle ratio, d) Glucoamylase flowrate, e) Flash 

recycle ratio, f) Fresh water flowrate 
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g) Distillation reflux rate (kmol/h)
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 h) Distillation boilup rate (kmol/h)
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i) Rectification reflux rate (kmol/h)

1740 1760 1780 1800 1820 1840 1860 1880 1900

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e 

(€
/h

)

-4000

-2000

0

2000

4000

6000

Feasible operating points
Unfeasible operating points

1845 kmol/h

 j) Rectification boilup rate (kmol/h)
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 k) Biomass purge ratio
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 l) Molecular sieves regeneration period (h)
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Figure 4.16 (cont.) Sensitivity analysis of the main input variables of the process. g) Distillation reflux 

rate, h) Distillation boilup rate, i) Rectification reflux rate, j) Rectification boilup rate, k) Biomass purge 

ratio, l) Molecular sieves regeneration period. 

 

The optimal value selected for each input was the one returning the highest profitability 

while at the same time satisfying the following constraints: 

• Ethanol production rate ≥ 80.000 Ton ethanol/year. The process was designed for a 

100.000 ton ethanol/year capacity, and in order to operate a profitable process, the 

production rate should be higher than the 80% of the total capacity.  

• Ethanol purity ≥ 99.8% wt. 
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After finding the optimal value for the first input, this was taken as the new nominal value, 

and the procedure was sequentially repeated for the other inputs. Table 4.3 shows the 

variation interval used for each input variable, and the sub-optimal value obtained after 

performing the sensitivity analysis. The detailed results of the sensitivity analysis are shown 

in Figure 4.16. For some variables, infeasible points are sometimes found, corresponding to 

operating conditions that do no satisfy the minimum production rate and/or the minimum 

ethanol concentration in the final product.  

 

From the sensitivity analysis results shown in Figure 4.16 it is possible to conclude that the 

potential manipulated variables with a minimal effect on the profitability function (for the 

range analyzed) are the input flows of alpha-amylase and glucoamylase, the fresh yeast flow 

(F5) and the fresh water flow (F22). Therefore, those variables will not be considered as 

plantwide manipulated variables (i.e. they are not included as decision variables in the 

optimization problem that arises in the plantwide optimizing control), but will be considered 

as part of the local control loops. For the case of alpha-amylase and glucoamlyase flow 

rates, those will be used for keeping a constant ratio to the starch slurry feed flow rate, as 

suggested by Karuppiah (2008). On the other hand, the fresh yeast flow will be used 

together with the biomass purge flow in a local strategy for controlling the viable biomass in 

the fermentor, and the fresh flow water F22 will be calculated for achieving a constant total 

recycle flow rate to the liquefaction tank (F23). These loops will be presented as part of the 

local control strategy for the ethanol process in Chapter 6 (see Section 6.1.1).  

 

On the other hand, the values of the manipulated variables denoted as sub-optimal during 

the sensitivity analysis were taken as starting point for finding the optimal operating point of 

the process (in terms of the manipulated variables). For this, the model was run until a new 

steady state was achieved, and then the optimization problem described by Equation (4.106) 

was solved using the Molecular-Inspired Parallel Tempering (MIPT) optimization algorithm 

presented in Chapter 3, in order to find the optimal operating point for the process inputs. 

The optimal values found are listed in the last column of Table 4.3.  
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U=[F0, F1, F22, F21, F3, F8, F5, F10, F15, R1, VB1, R2, VB2, treg], F20 is the flow of product of the 

plant (in Ton/year) and xE,20 is the mass fraction of ethanol in the final product (stream F20). 

The constraint used in Equation (4.106) corresponds to a minimum mass fraction of ethanol 

of 0.998. Notice also that the objective function Φ is the same profitability given by Equation 

(4.105) evaluated for the same optimization horizon, and that the set of decision variables is 

constituted by all the inputs catalogued as available potential manipulated variables. Finally, 

it must be mentioned that the initial conditions of the main state variables in the Simulink 

model obtained after solving the optimization problem (4.106), are given in Appendix C.5. 

These conditions constitute the optimal initial steady state of the process.  

 

Until now, the detailed model for the case study addressed in this work has been presented, 

and the description of the dynamic simulation (including sensitivity analysis to the process 

inputs) has been given. The dynamic model presented in this section will be used in Chapter 

6 for applying the Plantwide Optimizing Control framework developed in this work, which is 

introduced in the next Chapter. 

 

4.3. Chapter conclusion 

 

In this chapter, a dynamic nonlinear first principles model for the bio-ethanol continuous 

process from starch has been developed. The model (simulated using Simulink®) comprises 

the main sections in the bio-ethanol process, namely liquefaction, saccharification, 

fermentation, distillation, rectification and dehydration (molecular sieves unit). The 

implemented Simulink model consists of a nonlinear DAE system comprising 311 differential 

states, approximately 1800 algebraic equations and a total of 14 degrees of freedom 

(manipulated variables available after closing level and pressure control loops). The 

developed model was used in this chapter for analyzing the sensitivity of the process 

profitability with respect to the 14 available degrees of freedom. From this analysis, it was 

observed that the variables F1, F3, F5 and F22, have a minimal effect on the profitability 

function (for the range analyzed), and therefore those variables will be considered in Chapter 

6 as part of the local control loops of the process, and not as plantwide manipulated 

variables. Finally, a new, simple but reliable model for the molecular sieves unit was 

developed and validated, which is adequate for the purpose in this work, i.e. to have a good 

predictive capability whereas at the same time avoiding a high model complexity.  
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5. Plantwide Optimizing Control Methodology 
 

In the last 20 years the plantwide control problem in chemical processes has been addressed 

from different perspectives, some of which were presented already in Chapter 2. Most of the 

literature in this field is devoted to the formulation of decentralized plantwide control 

architectures, following either heuristic or mathematical-based procedures. The decentralized 

architecture can be convenient for processes with a small (or not) degree of interconnection 

between different operating units, but definitively is not enough for successfully handling 

dynamic processes that have a high degree of interconnection between different units. The 

reason for this is that the very first principle of decentralization is to assume that each 

operating unit is an isolated entity that is not affected by the other units. However, as a rule, 

and with the purpose of operating with a high profit, industry has to build processes with 

recycle loops which definitively represent a high degree of interconnection complicating the 

control task. Despite of this drawback, decentralized architectures are still preferred for 

solving the problem of controlling a complete process. The main reason for this preference 

relies on the easiness of implementation and the use of PID controllers, which without doubt 

are the most commonly used in the process industry. PID controllers are and will be the 

basis of any control system in an industrial process because of its simplicity (for both, 

implementation and understanding) and robustness. However, with the emerging of very 

fast computers and communication tools, a new spectrum of possibilities has been opened 

for improving the plantwide control strategies in the process industry, of course still using 

PID controllers as a base but integrating online optimization tools for taking advantage of the 

available control degrees of freedom using them to push the process towards maximum 

profitability. Precisely, this is the purpose of this chapter, namely to propose a plantwide 

control framework that keeps controlled the local control objectives in the process (i.e. safety 

and environmental specifications, etc) by using SISO control loops (e.g. using PID 

controllers), whereas at the same time, the available (non-local) control degrees of freedom 

are used inside a dynamic real time optimization formulation to drive the process towards a 

maximum profitability at each time. Such approach is denoted in this work as Plantwide 

Optimizing Control (PWOC) because integrates the Plantwide and the Online optimizing 

control concepts, as depicted in Figure 5.1.  
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Figure 5.1 Plantwide Optimizing Control Concept (Ochoa et al., 2010a) 

 

Online optimizing control optimizes an economic objective function over a finite moving 

horizon during plant operation based upon a rigorous nonlinear dynamic model (Küpper 

and Engell, 2008). Plant limitations and product specifications are included in the 

optimization as constraints. This definition is used in this work as a key concept for 

developing the basic steps of a Plantwide optimizing Control (PWOC) approach. PWOC 

addresses Plantwide Control (PWC) as a nonlinear dynamic real-time optimization problem, 

in which the available manipulated variables in the process (i.e. those not used in the local 

control loops) are used for achieving maximum profitability in the plant in the presence of 

disturbances. In this way, PWOC calculates optimal values for the set of selected 

manipulated variables in order to maximize a Plantwide Profitability Objective function (Φ,) 

instead of maintaining a set of controlled outputs at predefined set points. A key feature of 

PWOC is that the input-output pairing is avoided (except for the local control loops), because 

the output actually controlled in the process is the Plantwide Profitability and the available 

manipulated variables are simultaneously used for satisfying that purpose. Online optimizing 

control has been receiving increasing attention in the last years in different chemical process 

applications (Engell, 2007). However, not much work has been reported in the open 

literature about the on-line optimizing control of bioprocesses.  

 

This chapter is organized as follows. In Section 5.1 the Plantwide Optimizing Control (PWOC) 

methodology is proposed and a detailed description of the stages involved is given. Two 

different PWOC approaches have been considered: A Single-Layer Direct Optimizing Control 

approach, denoted in the following as PWOC-one-layer, and a Multi-Layer without 
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Coordination approach denoted as PWOC-two-layer. Furthermore, as the PWOC framework is 

based on the solution of a Dynamic Real Time Optimization problem (D-RTO) efficient 

strategies should be used for solving the problem in real-time. Therefore, in Section 5.2 an 

approach for shrinking the search region of the optimization problem is proposed, whose 

main purpose is to reduce the search region of the optimization problem according to the 

capability of each manipulated variable for rejecting both known and unknown disturbances.  

 

5.1. Stages of the Plantwide optimizing Control (PWOC) 

Procedure 

 

The proposed PWOC approach comprises six main stages, as shown in Figure 5.2, in which 

clearly two main different tasks can be identified. The first task (stages 1-3) is a local 

control-oriented task because it is related to the identification and design of the necessary 

local control loops. This task can be carried out using the decentralized control framework 

employing for example PI or PID controllers. The second is a Plantwide control-oriented task 

(stages 4-6), which can only be implemented after assuring the accomplishment of the 

objectives established at the local control-task. The main purpose of this Plantwide oriented-

task is to use the available control degrees of freedom (i.e. after closing the local loops) for 

accomplishing a unique objective: maximizing the process profitability. This means that, 

excluding the local loops, no pre-defined set points will be either regulated or tracked. In the 

following, a description of each stage considered in Plantwide optimizing Control is 

presented. 
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Figure 5.2 Stages of the Plantwide Optimizing Control Procedure  
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5.1.1. Identification of the necessary Local Control Objectives  

Even though the goal of any chemical or biochemical process is the return of maximum 

profit, there are additional control objectives that must be taken into account before 

establishing a plantwide control structure for satisfying this economic goal. In this work, the 

process control objectives are classified in two groups, local-control-oriented and plantwide-

oriented, as shown in Figure 5.3. The local control oriented objectives are necessary control 

loops related to safe operation, environmental and equipment protection, and are 

recommended to be the primary selected variables that must be locally controlled before 

establishing the plantwide optimizing control structure, that is, they should be achieved (i.e. 

kept within pre-defined bounds) independently of the economical performance of the plant, 

by using local control loops. On the other hand, the Plantwide control-oriented objectives 

include the maximization of the process profit, while at the same time assuring the product 

quality and a smooth operation. Such plantwide control objectives should enter directly in 

the objective function, or as constraints in the optimization problem formulated in step 4 of 

the Plantwide Optimizing Control (PWOC) framework (Section 5.1.4).  

 

 
Figure 5.3 Process Control Objectives: Local vs. Plantwide oriented 

 

5.1.2. Classification of the Manipulated variables  

The available manipulated variables in the process can be used in the local control loops or 

for the plantwide optimizing control of the process. Those manipulated variables used for 

satisfying the local control set points will be denoted as Local manipulated (uLoc), whereas 

the Plantwide manipulated variables (uPW) are those that remain available after selecting uLoc, 

and that are used for maximizing the plantwide profitability objective function. Selection of 

the local manipulated variables involves heuristic knowledge of the causal relationship 

between the process outputs and inputs, which should be accompanied by simulation 

studies, especially when highly interacting processes are evaluated. Although in this stage 
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only a pre-classification of the manipulated variables is done (without taking into account the 

input-output pairing), in general it is desirable that each input classified as local manipulated 

variable has a direct effect on only one output variable. Of course, in most situations this is 

not the case, but it is desirable to select as local manipulated variables those inputs that 

disturb the less other states in the process.  

 

5.1.3. Design of Local Control Strategies 

After identifying the necessary local control objectives in the process and the local 

manipulated variables (uLoc) required for satisfying those control objectives at the local 

control loops, it is then necessary to address the design of those local loops. The design of 

the local control loops includes mainly the pairing of manipulated-controlled variables, the 

selection of the controller type and the tuning of the controller. Usually at this stage a 

decentralized plantwide control structure can be used, based on the implementation of 

multiple PI or PID SISO loops. The pairing problem is often solved by process insight, 

although for difficult cases a RGA analysis is recommended (Araujo, 2007; Castro and 

Doyle, 2004). On the other hand, the tuning of the PI or PID controllers can be addressed 

in many different ways including the use of controller tuning relations, the use of computer 

simulation for minimizing a performance objective function, and on-line tuning (Bequette, 

2006; Luyben, 1990; Marlin, 2000; O’Dwyer, 2009; Seborg et al., 2003).  

 

Until now, the stages involved in the local control-oriented part of the plantwide optimizing 

control framework proposed in Figure 5.2 have been introduced. After designing the 

necessary local control strategy, the remaining manipulated variables are available degrees 

of freedom for control. These variables are denoted as Plantwide manipulated variables 

(uPW), and are used for fulfilling the main objective of the Plantwide-oriented part, namely 

maximizing the profitability objective function for the whole process.  

 

5.1.4. Objective function Statement 

The next step in the Plantwide Optimizing control framework (Figure 5.2) is to establish a 

plantwide profitability function Φ and its constraints, in order to formulate a D-RTO problem. 

The objective function Φ depends upon the specific process addressed. However, it may 

contain terms related to the productivity of the process, raw materials costs, energy 

consumption, economic losses, etc. Constraints in the optimization problem can be 

determined by plant and product specifications (e.g. minimal/maximal production rate 
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according to the demand of the market, required purity of the end-product, etc.), and by 

limitations in the state and input variables. Equation (5.1) shows a general form of the 

profitability objective function, which considers a Mayer term (M), related to the state of the 

process at the final time, and a Lagrange term (l) that represents an economical function 

related to the dynamic behavior of the state variables during the transition from the initial 

optimization time (t0) to the final optimization time (t0+Δtopt), where Δtopt is the prediction 

horizon over which the profitability objective function and constraints will be evaluated. 

 

∫
Δ+

+Δ+=Φ
opttt
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Since PWOC addresses the optimizing control problem for a complete plant over a finite 

moving horizon during plant operation, it is very important to determine an adequate 

prediction horizon Δtopt depending on the specific process analyzed. It is suggested that Δtopt 

should not be shorter than the characteristic response time of the slowest relevant dynamic 

in the process (to avoid unexpected long-term performance deterioration), while at the same 

time it should be as short as possible to minimize computational load. 

 

Once the profitability objective function has been formulated, the next step is to design the 

optimization-based control strategy to be applied for the whole process. In this work, the 

Single-layer direct optimizing control and Multilayer without coordination are suggested as 

the selected architectures for the optimization-based control strategy, due to the fact that 

they include the formulation of a dynamic real-time optimization problem, allowing the 

explicit consideration of the process dynamics. 

 

5.1.5. Design of the Optimization-Based Control Strategy 

As it was previously mentioned, two different architectures are proposed in this work for 

implementing the Plantwide Optimizing Control framework: the Single-Layer Direct 

Optimizing Control and the Multi-Layer Control without Coordination, which have been 

already introduced in Sections 2.1.4 and 2.1.3.2, respectively. The structures for both 

approaches are shown in Figure 5.4 and a detailed description of the building blocks for each 

framework is given in the following. 
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Figure 5.4 General schemes of the Optimization-based Control Strategies for Plantwide optimizing 

Control. Top: Single Layer Direct Optimizing (PWOC-one-layer). Bottom: Multi-Layer Control without 

Coordination (PWOC-two-layer). 

 

• Dynamic Real-Time Optimization (D-RTO) layer: This layer consists of a dynamic real-

time optimization problem in which the objective function is usually an economical 
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function that should be maximized over a moving horizon (i.e. profitability described 

by equation 5.1). Usually the D-RTO problem is subject to equality and inequality 

constraints defined by restrictions on the states and input variables, purity 

requirements, throughput, among others. The decision variables of the D-RTO 

problem are the plantwide manipulated variables (Upw=Uopt) used for maximizing the 

economical objective function.  

• Real Plant: This block corresponds to the real process for which the Plantwide control 

problem needs to be solved. In this work, only simulation studies (considering a 

completely observable process) have been carried out for testing the Plantwide 

optimizing Control framework (results are presented in Chapter 6). The real plant is 

represented by the first principles model detailed in Chapter 4, incorporating some 

noise on key process parameters as described in Chapter 6. 

• Estimation Block: In order to find the optimal operating point at each time, it is 

necessary to estimate the main state variables ( X̂ ) that cannot be measured directly 

in the process; this can be done by using software sensors which employ the 

information of the available measured variables (Y). In this work, it is assumed that 

all the state variables are known at every sample time; therefore no estimation block 

is considered in the simulation studies presented in Chapter 6. 

• Trigger: As it can be seen in Figure 5.4, there are two different triggers: an 

optimization-trigger and a controller-trigger. These trigger blocks act like switches for 

re-calling the optimization layer (D-RTO trigger) and the control layers (MPC-trigger) 

when a certain condition is met. An optimization trigger can work based on a time 

criterion (e.g. the optimization is called periodically at a predetermined frequency), 

based on the disturbances dynamics (after occurrence of a disturbance) or based on 

the performance of the plantwide profitability objective function (when Φ decreases 

below a certain tolerance). On the other hand, the controller trigger can be based on 

a time criterion or based on the controlled variables deviations from their optimal set 

points. Figure 5.5 shows schematically the different criteria for activating the 

optimization and controller triggers. 

• Model Predictive Controller (MPC) layer: This layer consists on a MPC (that can be 

linear or nonlinear), in which the optimal values given by the D-RTO layer are used as 

set points for the controller. In this work, a Nonlinear Model Predictive Controller 

(NMPC) is used in the control layer.  
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Disturbances Time Plantwide performance

Trigger Optimization based on…

If d1 ∨ dj happens
Trigger on

end

If t=ttrigger
Trigger on

end

If Φ(t-Δt)-Φ(t)>Tol
Trigger on

end

Time

Trigger NMPC based on…

If t=ttrigger NMPC
Trigger on

end

If abs(Yi,opt-Yi)>Toli
Trigger on

end

State variables deviation

Disturbances Time Plantwide performance

Trigger Optimization based on…

If d1 ∨ dj happens
Trigger on

end

If t=ttrigger
Trigger on

end

If Φ(t-Δt)-Φ(t)>Tol
Trigger on

end

Time

Trigger NMPC based on…

If t=ttrigger NMPC
Trigger on

end

If abs(Yi,opt-Yi)>Toli
Trigger on

end

State variables deviation

a)

b)

 
Figure 5.5 Summary of trigger activation conditions: a) Optimization trigger and b) Controller trigger  

 

Comparing the schemes for the one-layer and two-layer frameworks (Figure 5.4), it can be 

seen that both approaches have very much in common. For example, both approaches are 

driven by a D-RTO layer, in which the objective function to be maximized is the plantwide 

profitability Φ. The main difference between the two frameworks is that in the PWOC-one-

layer approach, the set of input variables applied to the real plant is given by the 

optimization layer (UPW=Uopt), whereas for the PWOC-two-layer, the inputs applied to the 

real plant are calculated by a control layer (UPW=UMPC) that uses as set points, the optimal 

values (Yopt) of the controlled outputs given by the optimization layer. In both cases, the 

decision variables of the D-RTO problem are the set of plantwide manipulated variables UPW. 

However, in the Two-Layer case a second layer (MPC controller) is applied which solves the 

optimization problem for minimizing a performance-type objective function. This 

performance-type function may contain three different terms: a penalization of the deviation 

of the main output variables from their set points (Yopt), a term that constraints the 

manipulated variables to a small envelope around the reference trajectories (Uopt) given by 

the optimization layer, and a term that prevents large changes in the manipulated variables 

from one sample time to the next, assuring smooth operation. 

 

In chapter 6, the one-layer and the two-layer optimization-based control strategies will be 

used inside the Plantwide Optimizing Control framework for the bio-ethanol case study. 

Furthermore, as these optimization-based control strategies require the solution of a 
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Dynamic Real-Time Optimization problem, the next stage considered in the Plantwide 

optimizing control procedure is the solution of such D-RTO problem.  

 

5.1.6. Dynamic Real-Time Optimization 

The last stage in the Plantwide Optimizing control framework is to solve the nonlinear 

dynamic large-scale optimization problem that arises when formulating the optimization 

based control strategies of stage 5 of the PWOC framework in Figure 5.2, namely the one-

layer (Single-Layer Direct Optimizing Control) and the two-layer (Multilayer without 

coordination). Efficient feasible optimization methods are needed in order to solve the 

problem in real time. For this purpose, direct optimization formulations are usually employed, 

which can be classified into sequential, simultaneous or hybrid approaches (e.g. multiple 

shooting). Srinivasan et al. (2003) provide a detailed explanation of the mentioned 

methods. The main features, advantages and disadvantages of the sequential, simultaneous 

and multiple shooting formulations have been already presented in Section 2.1 (Table 2.1).  

 

In this work, a sequential formulation using stochastic methods for solving the large scale 

NLP problem is used. The reason for using the sequential formulation instead of 

simultaneous or multiple shooting is that the sequential formulation provides a feasible path 

in which the DAE system is satisfied at each step of the optimization (Srinivasan et al., 

2003). Ensuring a feasible path during the optimization is a very important fact for real plant 

applications because in the event of an interruption of the optimization routine (e.g. because 

the time limit for optimization is reached), it is highly probable that the partial results 

obtained by an infeasible path approach will not satisfy the optimization constraints, since 

they are satisfied only at the end of the optimization, posing serious risks to the operation of 

the plant.  

 

After defining the method for formulating the dynamic optimization problem, an efficient 

optimization algorithm should be chosen for solving the optimization. In general deterministic 

or stochastic approaches can be used. In this work, stochastic optimization algorithms are 

suggested for solving the problem, because they are relatively simple to implement, have a 

reduced computational load (there is not need of information about derivatives as required 

by gradient-based methods), and can be easily connected to available simulation packages 

(Egea et al., 2009; Faber et al., 2005). In Section 6.3, two different stochastic methods, 

Localized Random Search (Spall, 2003; Zabinsky, 1998) and Molecular-Inspired Parallel 

Tempering (Ochoa et al. 2009c, 2009d, 2010b) are used for solving a sequential 
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formulation of the dynamic real time optimization problem that arises in the PWOC for the 

bio-ethanol case study. According to Jezowsky et al. (2005), random search optimization 

methods are efficient and robust for solving practical engineering problems although their 

convergence to the global optimum can not be assured. Independently of the optimization 

algorithm applied (deterministic or stochastic) or the solution approach (sequential, 

simultaneous, etc.), the method will search for the optimal solution in the space of the 

decision variables, i.e. the region bounded by the lower and upper limits of each manipulated 

variable (which are the decision variables of the optimization problem). Sometimes this 

search region may be too large, resulting in long computation times and making difficult the 

solution of the PWOC problem in real time. In order to raise the efficiency of the optimization 

routine for solving the D-RTO problem, in the following section a novel stochastic-based 

approach for shrinking the search region of the optimization problem is presented. 

 

5.2. An stochastic approach for shrinking the search 

region of the optimization problem 

 

When disturbances (known or unknown) occur in a process, the manipulated variables must 

act in order to reject or compensate their effect. The main idea of new the stochastic-based 

shrinking approach proposed in this work, is that the changes in each plantwide manipulated 

variable (ΔuPWi) required for rejecting a disturbance can be calculated as a function of the 

changes in the disturbances (Δdj) and the profitability objective function (ΔΦ). 

Mathematically, this can be written as shown in Equation (5.2). 

 

),,...,,( 21,, ΔΦΔΔΔ=−=Δ Δ+ jitPWittPWiPWi dddfuuu     (5.2) 

 

where i is the number of plantwide manipulated variables and j is the number of 

disturbances that may be present in the process; fi is a function that represents how much 

the manipulated variable i should change for rejecting the disturbances. The general 

expression given in Equation (5.2) considers both a feedforward contribution (that accounts 

for measured disturbances occurrence) and a feedback contribution (in the sense that the 

profitability function will decrease or increase after an unknown disturbance has upset the 

process). Finding an analytical expression for the function fi (i.e. from the model of the 

process) is a very complex task in a Plantwide Control context. Therefore, in this work an 

approximation is proposed, in which a Gaussian distribution is used for describing the 
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function fi. This choice of function is made because Gaussian distribution functions are 

suitable for representing many different real processes as can be evidenced from the Central 

Limit Theorem (Gardiner, 1994). In this way, each plantwide manipulated variable (uPW) is 

allowed to change only inside a region described by a Gaussian distribution, as expressed by 

Equation (2.6). Thus, the particular value of the change for each manipulated variable is 

determined as a random number obtained from the Gaussian distribution as described in 

Equation (5.3). 

 

),0( uiiPWiu σξ=Δ          (5.3) 

 

ξi(0,σui) represents a random number obtained from a Gaussian distribution with zero mean 

and standard deviation σui. A zero mean value is fixed in the formulation, because it 

corresponds to the current value for the plantwide manipulated variables, when the 

optimization is called (i.e. when the known or unknown disturbances occurs and therefore 

re-optimization of the plantwide manipulated variables is needed), preventing abrupt 

changes. On the other hand, the standard deviation σui can be calculated as the maximum 

between different contribution terms, representing the capability of the manipulated variable 

i for rejecting the different known disturbances of the process and/or rejecting a decrease in 

Φ (that can be caused by both known and unknown disturbances) at time t, as shown in 

Equation (5.4): 

 

),,...,,max( 2211 ΔΦΔΔΔ= ΦΦ zwdwdwdw ijijiiuiσ      (5.4) 

 

where wij are gain factors that express how much a change in the manipulated variable uPWi 

can reject (or counteract) the occurrence of disturbance dj, wiΦ is the gain factor for the 

manipulated variable i rejecting the decrease in the profitability objective function Φ, and zΦ 

is a dummy variable that is only activated when the objective function Φ decreases below a 

given tolerance Tol. This is: 

 

⎩
⎨
⎧

>Φ−Δ−Φ
≤Φ−Δ−Φ

=Φ Tolttt
Tolttt

z
)()(,1
)()(,0

       (5.5) 

 

Regarding the calculation of the gain factors (wij) used for obtaining the standard deviation 

σui, it would be desirable to calculate these gains from the nonlinear model of the process as 

expressed in Equation (5.6) 
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where ∂ui/∂xk represents the inverse of the open loop gain between state variable xk and 

input ui; and ∂xk/∂di represents the open loop disturbance gain between xk and disturbance 

dj. However, as the complexity of the process model increases, the complexity for calculating 

the wij factors analytically also increases. For this reason, it is proposed to estimate these 

gain factors by using digraphs, which are causal models that can be used to describe the 

behavior of the process capturing the essential information flow in a cause-effect relationship 

(Maurya et al., 2003). One of the most important advantages of using digraph-based 

models is that they do not require much quantitative information and therefore have been 

applied in different fields like hazard and operability analysis and fault diagnosis. 

  

A graphical representation of the shrinking approach for a system with two manipulated 

variables and two disturbances that occur at the same time is presented in Figure 5.6. The 

left and right projections show the Gaussian distributions with standard deviation σ11 and σ22 

for describing the probability of change for the manipulated variables u1 and u2 respectively, 

when disturbances occur in the process. The center figure shows the Shrunk Search Region 

for the optimization problem, formed by the projections of the Gaussian distributions for u1 

and u2. It is important to notice that even though the maximum standard deviation is 

selected for each case, a reduction of the search space, and thus a reduction in the 

computational effort during the optimization, is achieved because the original search region 

of the optimization problem was only bounded by the upper and lower bounds of u1 and u2. 

The stochastic-based shrinking approach is used in Chapter 6 for reducing the search region 

of the optimization problem that arises when the PWOC concept is applied to the continuous 

bio-ethanol production case study. As it will be shown through this example, the PWOC 

problem has been solved more efficiently by applying the shrinking approach than without 

shrinking. 
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Figure 5.6 Shrinking approach: Probability distribution projections, final shrunk search region and 

original search region. 

 

5.3. Chapter conclusion 

 

In this chapter, a Plantwide Optimizing Control (PWOC) methodology has been proposed 

based on the Optimizing Control concept. The PWOC methodology consists on two main 

tasks: a local control-oriented task, which is usually carried out using typical PID 

decentralized schemes; and a plantwide control-oriented task, whose main purpose is to 

maximize the process profitability. Furthermore, a new stochastic-based shrinking approach 

for reducing the search space of the D-RTO that arises in PWOC has also been developed. 

The main purpose of the shrinking approach is to use the qualitative relationship between 

the disturbances and the manipulated variables to constraint the search space of the 

decision variables according to their capability for rejecting each disturbance. Such shrinking 

is important for online applications (where very short times are required for finding a solution 

of the optimization problem), because by reducing the search space, the optimization 

algorithm does not lose time in changing manipulated variables that are not able to reject a 

particular disturbance.  
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6. Plantwide control of the Bio-ethanol Process. 
 

In this chapter, the Plantwide Control (PWC) problem for the continuous bio-ethanol process 

introduced and described in Chapter 4 is investigated. The organization of this Chapter is as 

follows. First, the Plantwide Optimizing Control (PWOC) methodology proposed in Chapter 5 

is used in Section 6.1 for designing the plantwide control structure of the whole bio-ethanol 

process using the two different PWOC approaches presented in Section 4.5, namely, the 

PWOC-one-layer and the PWOC-two-layer. Then, in Section 6.2, a typical decentralized 

plantwide control scheme for the process is presented, which is a multi-loop formulation that 

will be used in Section 6.3 for comparing the performance of the Plantwide Optimizing 

Control architectures. Finally, in Section 6.3, the performance of the PWOC approach is 

evaluated under three different scenarios. First, a known disturbance in the feed 

concentration (starch composition) is applied to the process. Second, an unknown 

disturbance into the kinetic parameters of the fermentation section is introduced in the 

process (i.e. in the real plant model), which also introduces a model mismatch in the PWOC 

schemes. And third, a known disturbance in the price of the starch raw material is 

introduced. The performance of PWOC facing these challenges is compared to the 

performance when the decentralized Plantwide architecture (i.e. multiple single PID loops) is 

used, which up to now is the typical configuration in industry. 

 

6.1. Plantwide Optimizing Control (PWOC) for Bio-

ethanol production 

 

In this section, the Plantwide optimizing control methodology proposed in Chapter 5 is 

applied to the case study. First, the steps related to the Local control-oriented task are 

explained (Section 6.1.1), and then, the steps involved in the Plantwide Control-oriented task 

are addressed (Section 6.1.2-6.1.4).  
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6.1.1. Stages 1-3: Identification and design of the Local Control 

Strategy 

 

According to the guidelines given in Chapter 5, the local-oriented process control objectives 

are those related mainly to safe operation, environmental and equipment protection. These 

control objectives must be accomplished, even if they adversely affect the process 

profitability. From process insight, and in order to assure safe operation, the following loops 

are identified as necessary local control loops: 

• Liquid levels for the liquefaction, saccharification and fermentation tanks. 

• Liquid levels for the reflux drum and reboiler in the distillation and rectification 

columns. 

• Pressure control for the distillation and rectification columns. 

 

It must be remarked that in addition to the above-mentioned loops, there are other 

important loops that should be taken into account as part of the necessary local control 

strategy (i.e. temperature and pH control for the liquefaction, saccharification and 

fermentation, and pressure and level control for the flash vessel), due to their 

unquestionable importance for assuring safe operation and equipment protection. However, 

in an attempt to reduce the complexity of the simulation task, in this work, the simulation 

studies were carried out taking into account only the local necessary control loops shown in 

Figure 6.1. All other local variables were assumed to be constant during the simulation (i.e. 

ideally regulated at their predefined set point values), either because they have a very fast 

response and are quickly and easily controlled, or because they do not influence significantly 

the performance of the plant.  

 

On the other hand, besides the local loops already identified as necessary for safety reasons, 

five additional control loops are locally implemented (also included in Figure 6.1). The first 

two loops (blue lines) control the ratio between the flow of enzymes (alpha-amylase and 

glucoamylase, fed to the liquefaction and saccharification tanks respectively) and the starch 

slurry feed flow. These control loops have predetermined set points values RF1/F0sp and 

RF3/F0sp, corresponding to the flow ratios F1/F0 and F3/F0, respectively. The set point values for 

these local control loops, were calculated according to the recommendations provided by 

Karuppiah et al (2008), and are listed in Table 6.1, where also the set points for all the 

other local loops are given. Additionally, after several simulation studies of the dynamics of 

the fermentation section (including the flash vessel and cells recycle), it was decided to 
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implement a new local biomass control strategy (Ochoa et al, 2009b) for controlling the 

biomass concentration in the fermentor. This new biomass control strategy comprises two 

internal control loops as shown in Figure 6.1 (green and purple lines). The first loop 

corresponds to a split-range controller (green lines), which is used for tracking a viable 

biomass concentration set point (XV,F-sp) in the fermentor (which may be given by the D-RTO 

layer as XV,F-opt). In this way, the split range controller is in charge of calculating (e.g. by 

using a proportional control law) the proper values of the manipulated variables F5 and F8 

(fresh yeast feed flow to the fermentor and purge flow in the recycle loop respectively) 

required for tracking the optimal set point for the viable biomass in the fermentor. For 

example, if the viable biomass concentration in the fermentor (XV,F) is above its set point 

value XV,F-sp, the split range controller should increase the purge flow (F8). In the opposite 

case, when XV,F<XV,F-sp, the controller will reduce the purge and open the fresh yeast valve 

(for feeding fresh yeast) if necessary. The second loop (purple lines in Figure 6.1) 

corresponds to a ratio controller for achieving a suitable viscosity in the biomass recycle 

slurry. This controller calculates the actual flow ratio between streams F9 and F10 (which are 

the free-yeast and water streams fed to the cells treatment tank, respectively) and adjusts 

F10 in order to fulfill the ratio set point (RF10/F9sp) required for keeping the biomass 

concentration in the recycle loop in a suitable value (Xt,F= 180 kg/m3, according to the 

recommendations by Maiorella et al. 1981). Finally, it is important to mention that there 

are two main reasons that motivate the proposal of this biomass control strategy as a local 

control strategy. The first one is that an optimal biomass concentration in the fermentor 

should be always guaranteed in order to avoid a misuse of the substrate (which can be 

quickly consumed for cells maintenance and growth instead of metabolite production) if a 

higher concentration than the optimal is available. Additionally, if the biomass concentration 

is below the optimum, a slower metabolite production rate will occur, affecting the 

productivity of the process. The second reason is that the yeast is only involved in a closed 

mass-loop comprising fermentation, filtration and cells recycle, and thus, no biomass is found 

on the streams up the fermentor nor downstream the filter (after F13). Finally, the last 

control loop considered as local is the flow control of stream F23 (by manipulating the fresh 

water flow F22), which is the recycle of lutter-water to the liquefaction tank (orange lines in 

Figure 6.1). The main purpose for keeping constant this flow is to reduce the variability 

introduced by the recycle stream. As already mentioned, the control loops identified as 

necessary local loops in the bio-ethanol continuous process from starch are shown in Figure 

6.1, whereas in Table 6.1 a description for each loop (e.g. controlled and manipulated 

variables and set point values) is provided. The tuning parameters of these loops can be 

found in Appendix C.1. 
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Figure 6.1 Local control loops implemented for the Continuous Bio-ethanol production Process from 

starch. Level and pressure control loops are shown in black, Enzymes flow ratio control in blue, Viable 

biomass control in the fermentor in green, Ratio control in the cells recycle loop in purple and lutter 

water flow control in orange. Available manipulated variables after closing the local loops are shown in 

red. 
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Table 6.1 Local control strategy: Variable pairing and set points  

Controller 

ID 

Controlled 

variable 

Manipulated 

variable 

Set point 

LC-1 HL F2 HLsp=6 m 

LC-2 HS F4 HSsp=11 m 

LC-3 HF F6 HFsp=12 m 

LC-4 HB1 B1 HB1sp=5 m 

LC-5 HD1 D1 HD1sp=3 m 

LC-6 HB2 B2 HB2sp=3 m 

LC-7 HD2 Qc2 HD2sp=2 m 

PC-1 Pt1 Qc1 Pt1sp=225 mmHg 

PC-2 Pt2 D2 Pt2sp=760 mmHg 

FC-1 Ratio F1/F0 F1 RF1/F0sp= 5.7e-5 

FC-2 Ratio F3/F0 F3 RF3/F0sp= 0.0014 

FC-3 Ratio F10/F9 F10 RF10/F9sp=5.33 

FC-4 F23 F22 F23sp=62.86 m3/h 

AC-1 Xv,F F8 and F5 Xv,F-sp= Xv,F-opt, is a 

variable SP given by 

the D-RTO layer 

 

An important part of the Plantwide Optimizing Control procedure at this stage is to classify 

the available manipulated variables between local and plantwide manipulated. The 

classification of the variables for the present case study is given in Table 6.2. Notice that the 

variables denoted as plantwide manipulated are shown in Figure 6.1 in red, which are the 

available degrees of freedom for accomplishing the aim of the Plantwide Optimizing Control, 

to maximize the process profitability.  

 

As it was already mentioned, the process has 23 manipulated variables, and only 15 of them 

are used as local manipulated variables in the local control strategy described in Figure 6.1. 

Therefore, the remaining 8 manipulated variables (F0, F15, VB1, R1, VB2, R2, treg, F21) which 

are the starch input flow, recycle flow from the flash to the fermentor, boilup and reflux 

rates for each column, the regeneration time of the molecular sieves unit, and the recycle 

flow from the rectification to the liquefaction, are the manipulated variables denoted in the 

following as Plantwide manipulated variables (uPW). These variables will be used as decision 

variables of the D-RTO problem that arises in the Plantwide Optimizing Control formulation, 

as it will be shown in Section 6.3. 
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Table 6.2 Description and classification of input variables 

# Input Variable Classification Meaning 

1 F0 Plantwide manipulated Starch slurry feed flow to 

the process (m3/h) 

2 F1 Local manipulated Alpha-amylase input flow 

to Liquefaction (m3/h). 

3 F2 Local manipulated Output flow from 

Liquefaction (m3/h). 

4 F3 Local manipulated Glucoamylase input flow 

to Saccharification 

(m3/h). 

5 F4 Local manipulated Output flow from 

Saccharification (m3/h). 

6 F5 Local manipulated Fresh yeast flow (m3/h). 

7 F6 Local manipulated Output flow from 

Fermentation (m3/h). 

8 F8 Local manipulated Cells purge flow (m3/h). 

9 F10 Local manipulated Water input flow to the 

mixing tank (m3/h). 

10 F15 Plantwide manipulated Recycle flow from the 

flash to the fermentor 

(m3/h). 

11 F21 Plantwide manipulated Stillage Recycle from the 

bottom of the 

rectification (m3/h). 

12 F22 Local manipulated Fresh Water input flow to 

the process(m3/h) 

13 R1 Plantwide manipulated Reflux rate in the 

distillation (kmol/h). 

14 VB1 Plantwide manipulated Boilup rate in the 

distillation (kmol/h). 

15 B1 Local Manipulated Bottoms flow rate in the 

distillation (kmol/h). 

16 Qc1 Local Manipulated Condenser heat flux in 

the distillation (J/h). 
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Table 6.2 (cont.) Description and classification of input variables 

# Input Variable Classification Meaning 

17 D1 Local Manipulated Distillate flow rate in the 

distillation (kmol/h). 

18 R2 Plantwide manipulated Reflux rate in the 

rectification (kmol/h). 

19 VB2 Plantwide manipulated Boilup rate in the 

rectification (kmol/h). 

20 B2 Local Manipulated Bottoms flow rate in the 

rectification (kmol/h). 

21 Qc2 Local Manipulated Condenser heat flux in 

the rectification (J/h). 

22 D2 Local Manipulated Distillate flow rate in the 

rectification (kmol/h). 

23 treg Plantwide manipulated Regeneration cycle period 

(h) 

 

After designing the local control strategy, the next step in the Plantwide optimizing control 

procedure is the statement of the plantwide profitability objective function, which is the first 

step related to the plantwide-oriented task. 

 

6.1.2. Stage 4: Statement of Plantwide Profitability Function (Φ) 

The following profitability objective function (Equation 6.1) is formulated as the function to 

be maximized for the bio-ethanol process studied in this work: 
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   (6.1) 

 

where wi are pure economical weight factors, which are listed in Table 6.3. The first term in 

Equation 6.1 is related to the productivity of the process expressed as the product flow rate 

(i.e. ethanol fuel-grade); the second term penalizes raw material consumption and the third 
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term is a quality soft constraint used for promoting a high ethanol concentration at the top 

of the rectification column, before entering the molecular sieves unit. The following three 

terms (weighted by w4, w5 and w6) are used for penalizing the energy consumption in the 

process (pumping power and steam consumption). The terms weighted by w7 and w8 

penalize the economic losses due to the presence of ethanol in the streams leaving the 

process at the bottom of the columns. The next three terms penalize consumption of 

enzymes (alpha-amylase and glucoamylase) and fresh water. Finally, the last term penalizes 

the costs involved in the regeneration of each molecular sieves unit. t0 is the initial time for 

the optimization routine and Δtopt is the prediction horizon over which the objective function 

and constraints are evaluated. Δtopt=25 hours has been selected taking into account the 

slowest dynamic response of the process to changes in its inputs. 

 

Table 6.3 Weight factors used in the profitability objective function 

Weight factor Value Description 

w1 33.7 €/kmol Ethanol selling price 

w2 0.16 €/kg Starch price (e.g. from corn) 

w3 3000 €/h Soft constraint 

w4 11.57 €/m3 Energy cost due to pumping 

w5 0.257 €/kmol Vapor consumption price 

w6 0.257 €/kmol Vapor consumption price 

w7 33.7 €/kmol Ethanol price 

w8 33.7 €/kmol Ethanol price 

w9 5 €/kg Alpha-amylase price 

w10 3.5 €/kg Gluco-amylase price 

w11 4.1×10-5 €/kg Fresh water price 

w12 37 €/regeneration cycle Price for regenerating a 

molecular sieves unit. 

 

Most of the weighting factors shown in Table 6.3 are prices taken from Franceschin et al. 

(2008). w3 is a soft constraint that was tuned during the preliminary simulation studies. w4 

was assumed to be 2% of the ethanol price and w7-w8 were considered to be equal to the 

ethanol price. Finally, w12 was determined considering that the regeneration of a molecular 

sieves unit consumes 0.84 GJ/m3 of ethanol dehydrated (source: NPPBCO). The nominal 

production of the plant is 100.000 ton ethanol/year (15.8 m3/h) and therefore, 13.3 GJ/h are 

required for dehydrating the product. Assuming a cost of 14.0 €/GJ (source: NPGA) and 

considering a regeneration period of 0.2 h (Kempe, 2008), each cycle costs around €37.  



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process 

 141

6.1.3.  Stage 5: Design of the Optimization-Based Control 

Strategy 

In order to compare the one- and two-layer Plantwide Optimizing Control schemes, in this 

Section, the design of the optimization-based control strategy is carried out using both 

PWOC schemes, as shown in Figures 6.2 and 6.3.  

 

Lo
ca

l 
S

et
po

in
ts

  
Figure 6.2 Plantwide Optimizing Control-One-Layer scheme 
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Figure 6.3 Plantwide Optimizing Control-Two-Layer scheme 
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In the following, the most important features for the two addressed optimization based 

control plantwide schemes are summarized: 

 

1. The viable biomass control (AC-1 in Figure 6.1) loop is running in cascade with the D-

RTO layer (in both frameworks), from which it receives the optimal set point value 

(Xv,F-opt) that should be locally tracked. 

 

2. In both cases, the profitability objective function to be maximized in the D-RTO layer 

is given by Equation (6.1). The complete formulation of the optimization problem 

addressed in the D-RTO layers is given in Equation 6.2.  
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As it can be seen, the decision variables of the optimization problem are the values 

for the uPW (uPW=[F0,F15,VB1,R1,VB2,R2,treg,F21]). The first constraint in Equation (6.2) 

accounts for the fulfillment of the dynamic model. The second constraint assigns the 

initial conditions of the state variables in the dynamic model. The third constraint 

bounds the values of the set of plantwide manipulated variables (uPW) between the 

minimum (umin) and maximum (umax) allowed (which are given by design and 

operating specifications). The fourth constraint is included for assuring a final product 

quality equal or higher than the specification for fuel-ethanol (i.e. 0.998 mass fraction 

of ethanol). The fifth constraint accounts for a product flow rate equal or higher than 

80.000 Ton/year (the nominal value is 100.000 Ton/year), in order to assure a 

minimal throughput for keeping a good profit. Finally, the last inequality constraint is 

used inside the optimization loop for assuring that the solution of the optimization 

problem will guarantee a long-term ethanol concentration at the top of the 

rectification column (xED2). This is done by forcing the optimization towards values of 
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xED2 at the end of the optimization horizon equal or greater than the concentration 

obtained if the plantwide manipulated variables were kept constant at uPw* (which 

are the values of the manipulated variables at the time t0). 

 

3. The performance-type objective function in the NMPC layer of the PWOC-two-layer 

approach penalizes deviations of the main state variables in each equipment from 

their optimal set point values given by the D-RTO layer during a prediction horizon 

Δtmpc=2 hours. As stated in Equation (6.3), the state variables whose performance is 

penalized are the following: the maltotriose in the liquefaction tank (mlt,L), glucose in 

the saccharification tank (GS), ethanol in the fermentor (EF), top and bottoms ethanol 

concentration in the distillation column (xED1 and xEB1, respectively), top and bottoms 

ethanol concentration in the rectification column (xED2 and xEB2, respectively), and 

finally, ethanol concentration at the molecular sieves output, which is the final 

product concentration (i.e. xE20) 
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where Q is a diagonal matrix given by Equation (6.4). Q was defined as a 

normalization factor for each term in the objective function Γ, with the purpose of 

having the same weight value for each contribution term in the performance-type 

objective function.  

 

4. The specific optimization problem solved in the NMPC layer of the PWOC-two-layer 

scheme is given by Equation (6.5).  
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Constraints given in Equation (6.5) for the MPC-layer have the same meaning that 

those already explained for the D-RTO problem, except for the third constraint, which 

assigns the optimal decision variables values found by the D-RTO layer, as initial 

condition for the decision variables in the NMPC layer.  

 

5. The estimation block has been neglected in both schemes under the assumption of a 

completely observable system (i.e. all state variables are assumed to be known). 

 

6. The D-RTO layer in both schemes is recalled using a trigger based on the detection of 

disturbances and on the deterioration of the plantwide performance (detection of a 

decrease in the profitability objective function). This means that the D-RTO layer will 

be activated when a known disturbance enters the process or when a decrease in the 

profitability objective function takes place (e.g. caused by the occurrence of an 

unknown disturbance). The trigger condition for recalling the D-RTO layer is activated 

according to Equation (6.6).  
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where d1, d2,...,dj are normalized deviation values of known disturbances that enter 

into the process, Δt is the sampling time and Tol is the maximum decrease allowed in 

the profitability objective function during the sampling time.  

 

Similarly, the trigger condition for the NMPC layer is given by Equation (6.7). 
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where xSP,i is the set point value of state i, xi(t) is the value of state i at time t, and 

ei,threshold is the maximum error allowed for state i. The evaluation of the NMPC trigger 

is performed at a predefined frequency, in this particular example, every 0.2 hours. 

 

7. Finally, the real plant block is represented in this work by the Simulink model 

(described in Chapter 4). The real plant model incorporates white noise signals for 

three different kinetic parameters (one for each reaction section). These parameters 

are the rate constant of maltotriose production in the liquefaction (kmlt), the rate 

constant of maltotriose consumption in the saccharification (k3), and the maximum 

specific growth rate of yeast in the fermentation (µmax). The noise power considered 

was 10-5, 10-5 and 10-4, respectively. On the other hand, the local set points entering 

to the local controllers block are those given in Table 6.1, with exception of Xv,F-sp, 

which is given by the D-RTO layer.  

 

So far, the five first steps in the plantwide optimizing control methodology have been 

implemented to the bio-ethanol continuous process from starch, going from the local control 

loops design up to the design of the optimizing control strategy (using both, the PWOC-one-

layer and the PWOC-two-layer). In the final step of the PWOC methodology, the D-RTO 

problem that arises in PWOC (Equation 6.2) is solved, returning as solution the optimal 

values for the decision variables of the PWOC problem, that is, the optimal values for the 

plantwide manipulated variables that lead the process to maximal profitability.  

 

The PWOC strategies were implemented in MATLAB and the models of the process employed 

in the simulation, named, start-up, real plant, optimization and NMPC, were developed in 



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process 

 146 

Simulink. All these Simulink models are based on the dynamic nonlinear process model 

developed in Chapter 4. The start-up model is used for loading the nominal steady state 

values of the state variables, and the corresponding input variables. The real plant model is 

the one already described, in which white noise signals have been incorporated. The 

optimization and NMPC models use a prediction horizon of 25 h and 2 h, respectively. The 

interaction between MATLAB and the different Simulink models for the One-Layer and Two-

Layer strategies is schematically represented in Figures 6.4 and 6.5, respectively. 

 

 
Figure 6.4 PWOC-one-layer implementation in MATLAB and Simulink 
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Figure 6.5 PWOC-two-layer implementation in MATLAB and Simulink 

 

6.1.4. Stage 6: Solution of the D-RTO problem  

As already mentioned in Section 2.1.4, the D-RTO problem can be solved using different 

formulations, namely, sequential, simultaneous or multiple shooting. In this work, a 

sequential formulation using stochastic methods for solving the large scale NLP problem is 

used. The reasons for implementing the sequential formulation (instead of simultaneous or 

multiple shooting) and solve it using stochastic algorithms (instead of deterministic), already 

mentioned in Section 5.1.6, are mainly that the sequential approach is a feasible path 

formulation, and that stochastic optimization algorithms are simpler to implement, do not 

require derivative information, usually demand a reduced computational load and can be 

easily connected with available simulation packages. The D-RTO problem is then solved in 

this work using two different algorithms, as follows: 
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1. The Molecular Inspired Parallel Tempering algorithm (MIPT), which was introduced in 

Section 3.2, and whose performance was evaluated through different case studies in 

Section 3.3. When compared with other stochastic methods, MIPT proved to be a 

suitable optimization algorithm for solving specially Dynamic Real Time Optimization 

problems, and problems involving many local minima. Therefore, the D-RTO problem 

that arose in the application of the PWOC methodology will be solved using the MIPT 

algorithm. The MIPT algorithm used in this work is based on follows the flowchart 

shown in Figure 3.5, and was implemented using the MIPT-toolbox described in 

Appendix A.  

2. The Localized Random Search algorithm introduced in Section 2.2.1, which is a 

stochastic method with a very simple formulation (i.e. does not need derivative 

information) and easy to implement, and therefore, it can be attractive for any 

potential application at industrial level. The Localized Random Search (LRS) algorithm 

used is based on the flowchart given in Figure 2.8.  

 

Before concluding this section, it should be emphasized that in order to improve the strategy 

of solution for the D-RTO problem, the shrinking approach introduced in Section 5.2 is used 

for reducing the search region of the optimization problem, according to the capability of 

each plantwide manipulated variable for rejecting both, known and unknown disturbances, 

while keeping a maximum profitability for the whole process. The shrinking approach was 

then included in the solution of the PWOC-one-layer and the PWOC-two-layer, for reducing 

the search space of the D-RTO problem in each case. Recalling the basic ideas already 

exposed in Section 5.2, the implementation of the shrinking approach is carried out as 

follows. First, the gain factors wij and wiΦ in Equation (5.4) –which  represent how much a 

change in the manipulated variable uPWi can reject (or counteract) the occurrence of 

disturbance dj, and a decrease in the profitability objective function Φ, respectively– should 

be calculated for each plantwide manipulated variable (uPWi). Then, the standard deviation 

σui of the Gaussian distribution that will describe the probability of change of each 

manipulated variable for rejecting the disturbances is calculated as the maximum between 

different contributions terms (see Equation 5.4). Afterwards, each method explores randomly 

the shrunk search space according to their respective algorithms. The gain factors for each 

plantwide manipulated variable with respect to two potential process disturbances (Sung,0 and 

e1,1) and the profitability objective function are shown in Table 6.4. Furthermore, as an 

example, the digraph showing the graphical relationship between Sung,0 and each plantwide 

manipulated variable through the state variables in the process, is shown in Figure 6.6. The 

values of the weights wij shown in Table 6.4 for S ung,0 were obtained from this digraph. 
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Table 6.4 Manipulated variable-disturbance gain factors obtained from digraphs 

 Gain factor wij (relationship uPWi –dj) 

 F0 F15 F21 R1 VB1 R2 VB2 treg 

Sung,0 1/2 1/7 1/11 1/10 1/10 1/11 1/11 1/12 

e1,1 1/5 1/5 1/3 1/9 1/9 1/10 1/10 1/11 

ΔΦ 1/1 1/2 1/1 1/2 1/1 1/2 1/1 1/1 
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Figure 6.6 Sample digraph showing the relation between the manipulated variables (inside a 

rectangle) and the disturbance in starch feed concentration. Notice that such relationship comes from 

the reciprocal of the number of relational steps between the disturbances and manipulated variables 

through the state variables (in ovals). 

 

So far, the step by step application of the Plantwide Optimizing control methodology 

proposed in Chapter 5 to the Bio-ethanol continuous process form starch has been carried 

out. In order to compare the performance of the PWOC methodology, the plantwide control 

problem for the bio-ethanol case study is also addressed in this work using a decentralized 

architecture, which is presented in the next section. 
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6.2. Decentralized Plantwide Control Architecture for 

the Bio-ethanol process 
 

In this section, a plantwide decentralized control scheme is described, which was 

implemented for comparison purposes. The decentralized scheme (Figure 6.7) uses seven PI 

control loops, in addition to the Local Control strategy (Section 6.1.1). This scheme 

comprises the following loops (pairings controlled-manipulated variable): F20-F0, GF-F15, xED1-

R1, xEB1-VB1, xED2-R2, xEB2-VB2, and xE20-treg. It should be noticed that, following the 

recommendations given by Araujo (2007), and in order to make an objective comparison 

of the PWOC results, the selected controlled variables for the distillation and rectification 

columns in the decentralized scheme are concentrations and not temperatures (or 

temperature differences), which are usually the real controlled variables used in industry. 

The corresponding tuning parameters for each loop are reported in Table 6.5. 

 

Table 6.5 Decentralized control strategy: Variable pairing, set points and tuning parameters 

Controller ID Controlled 

variable 

Manipulated 

variable 

Set point Tuning 

parameters‡‡ 

FC-5 F20 (kg/h) F0 (m3/h) F20sp=257.94 F0ss=27.3 

K=0.2; I=0.5 

AC-2 GF (kg/m3) F15 (m3/h) GFsp =0.831 F15ss=2.16 

K=-0.4; I=0.5 

AC-3 xED1 R1 (kmol/h) xED1sp =0.1885 R1ss=3907.1 

K=1500; I=10 

AC-4 xEB1 VB1 (kmol/h) xEB1sp=8.6E-16 VB1ss=4987.3 

K=-7E9; I=10 

AC-5 xED2 R2 (kmol/h) xED2sp=0.8874 R2ss=1854.7 

K=2000; I=20 

AC-6 xEB2 VB2 (kmol/h) xEB2sp=7.3E-15 VB2ss=2047.7 

K=-7E9; I=10 

AC-7 xE20 treg (h) xE20sp=0.999 tregss=0.466 

K=-50; I=10 

 

 
                                            
‡‡   The tuning parameters were determined as follows: First, an initial set of parameters was found 
according to Shinskey’s correlations given in O’Dwyer (2009). Then, each parameter was 
sequentially fine-tuned by using dynamic simulations of the plant and guidelines given by McMillan 
(2005). 
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Figure 6.7 Decentralized control scheme (blue) for the ethanol production process (Local control loops 

described in Section 6.1.1 are also included). 
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6.3. Results and Discussion: Comparison of Plantwide 

Optimizing Control Architecture vs. Decentralized 
 

The performance of the Plantwide Optimizing Control methodology proposed in this work is 

evaluated and compared with the performance of a typical Decentralized scheme, in three 

different scenarios, as follows: 

 

1. Scenario 1: In this case, a known disturbance in the ungelatinized starch feed 

concentration (Sung,0) is applied to the process after 5 hours of continuous steady 

operation. The disturbance is done as a step change of a 20% decrease, which 

means that Sung,0 changes from 833.17 kg/m3 to 666.53 kg/m3 (see Figure 6.8 left). 

Results obtained for the PWOC-one-layer and the PWOC-two-layer are presented and 

discussed in Section 6.3.1, where also a comparison with the Decentralized scheme 

described in Section 6.2 is given.  

 

2. Scenario 2: In this case, the response of the different PWC architectures to an 

unknown disturbance on the fermentation kinetics is investigated. The disturbance 

consists on a step change introduced into the maximum specific biomass growth rate 

(µmax), which is a key parameter in the fermentation section of the process. This kind 

of disturbance can take place, for example, when there is a contamination in the 

fermentor that causes inhibition of cellular growth. This step-type disturbance is 

introduced into the “Real plant” block of both PWOC schemes, which represents the 

real process, but neither the model used by the D-RTO layer nor the model used by 

the NMPC layer are able to detect such disturbance due to the fact that there is no 

update of the model parameters. Thus, for both PWOC approaches this unknown 

disturbance causes a model mismatch between the optimization models and the 

real plant. In order to test the performance of the PWC approaches in a worst-case 

scenario, the step change applied into the maximum biomass growth rate is a 90% 

decrease, meaning that µmax changed from 0.423 h-1 (at time 5 hours) to 0.0423 h-1 

(see Figure 6.8 right).  

 

3. Scenario 3: A raw material price change is introduced, which tests the 

performance of the different Plantwide Control architectures for facing a pessimistic 

scenario with market prices fluctuations. Therefore, the third scenario analyzed 

considers a worst-case in which the raw material price is increased in a 100% of its 
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current value. Although such disturbance appears to be exaggerated, in recent years, 

the corn raw material experienced an increase of around 70% in the period 2005-

2007. (Leibtag, 2008). Such increase in the price was introduced as a known step 

disturbance in the PWOC architectures. 

 

  
Figure 6.8 Step disturbances considered in Scenarios 1 and 2. Left: Scenario 1 - Known disturbance, 

20% decrease in ungelatinized starch concentration in starch slurry feed; Right: Scenario 2 - Unknown 

disturbance, 90% decrease in maximum specific biomass grow rate. Both disturbances take place at 

time t=5 h.  

 

The results obtained of applying the Plantwide Optimizing Control schemes for dealing with 

the three disturbances scenarios already described, are presented in the following sections, 

where the comparison with the performance obtained using the pure decentralized scheme is 

also discussed.   

 

6.3.1. PWOC Performance Evaluation: Scenario 1 - Known 

Disturbance 

In this section, results for the PWOC-one-layer and PWOC-two-layer for the case in which a 

known disturbance enters to the process (Scenario 1) are discussed and compared to those 

obtained when the typical decentralized scheme described in Section 6.2 is used. Before 

presenting the results obtained using the different approaches for solving the problem stated 

in Scenario 1, it is important to remark that all simulation studies in this work were carried 

out using the nonlinear model of the process (Chapter 4) as the real plant, considering some 

noise as already mentioned in Section 6.1.3. The results presented in this Section correspond 

to the simulation of the system starting at an optimal steady state operating point. After 5 

hours of operation at this steady state, a known step disturbance in the starch feed 

concentration enters the process. At this moment, the optimization trigger (in both PWOC 
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schemes) is switched on and the D-RTO layer is called for first time, in order to calculate the 

new values of the plantwide manipulated variables that drive the process to optimal 

operation (maximal profitability). Then, the optimization algorithm (MIPT and/or the LRS) 

solves the D-RTO problem stated in Equation 6.2. For the PWOC-one-layer case, when a 

solution is found (i.e. when any stopping criterion is met) the optimal values of the plantwide 

manipulated variables are applied to the “real plant”, and then, the trigger conditions are 

checked, which if activated, will recall the D-RTO layer. On the other hand, for the PWOC-

two-layer, the NMPC layer is also activated after solving the D-RTO problem, which is used 

and recalled according to the defined NMPC-trigger. The process is run for a total horizon of 

50 h.  

 

Figures 6.9 – 6.20 show the simulation results obtained by applying the different Plantwide 

control schemes to the bio-ethanol process under Scenario 1. The results obtained using the 

PWOC-one-layer are presented in blue, those for the PWOC-two-layer in green, and the 

results for the decentralized scheme in red. At this point it is important to remark that all the 

control approaches compared in this section used the Local Control Strategy described in 

Section 6.1.1 (see Figure 6.1). 

 

 
Figure 6.9 Profitability function values for Scenario 1. Blue: PWOC-one-layer. Green: PWOC-two-layer. 

Red: Decentralized scheme. 
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Analyzing the results for the profitability objective function (Figure 6.9), it is possible to 

observe that after the disturbance occurs the PWOC-one-layer (blue) leads the process to 

higher profitability than the PWOC-two-layer (green) and the decentralized scheme (red). 

The cumulative profitability achieved by each Plantwide Control scheme is presented in Table 

6.6. It can be observed that the PWOC-one-layer has the highest cumulative profitability 

(1.769×105 €), proving to be the best scheme for facing the disturbance in Scenario 1.  

 

Table 6.6 Cumulative Profitability Comparison in Scenario 1: PWOC vs. Decentralized 

Plantwide Control Scheme Cumulative Profitability (€) 

PWOC-one-layer 1.769×105 

PWOC-two-layer 1.719×105 

Decentralized 1.696×105 

 

According to Table 6.6, the second best performance is given by the PWOC-two-layer with a 

cumulative profitability value of 1.719×105 €. In contrast, the decentralized architecture 

resulted in the lowest cumulative profitability and also showed the slowest response to the 

disturbance. The poor performance (in terms of profitability value) showed by the 

decentralized plantwide control scheme is due to the fact that the main objective of this 

decentralized architecture is to maintain the controlled variables at their corresponding set 

point values, without considering that the disturbance may change the optimal operating 

point impacting negatively the profitability. In contrast, both PWOC schemes aim to increase 

the profitability by searching for the best values of the manipulated variables after the 

disturbance takes place. However, the second layer of the PWOC-two-layer (i.e. the NMPC 

controller layer) has an additional objective which is to minimize the tracking error of the 

state variables from their optimal set points given by the optimization layer, neglecting the 

effect of the manipulated variables on the profitability. In this way, the PWOC-two-layer 

applies control actions that might differ from the optimal values calculated in the D-RTO 

layer, which minimize the tracking error but do not maximize the profitability. On the other 

hand, the PWOC-one-layer has a unique objective, which is the maximization of the process 

profitability, and as it can be seen in Figure 6.9, it is able not only of rejecting the 

disturbance, but also of achieving a profitability value much better than the nominal 

operating point before the disturbance took place. On the other hand, the slow response of 

the decentralized scheme to the disturbance is caused by the large time delay between the 

occurrence of the disturbance and its effect on the final product (flow rate and composition). 
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Figure 6.10 shows the flow rate of anhydrous ethanol leaving the molecular sieves unit. It 

can be evidenced that for the decentralized scheme the product flow rate (F20) remains 

almost constant for approximately 4 hours after the disturbance occurred, whereas the 

change in product flow rate for the PWOC schemes was immediate. This is due to the fact 

that the PWOC schemes take plantwide decisions against the disturbance immediately after 

it occurs considering a long-term prediction horizon (25 hours), and thus, the time delay of 

the process for counteracting the disturbance is significantly reduced. 

 

 
Figure 6.10 Mass flow rate of anhydrous ethanol leaving the molecular sieves units for Scenario 1. 

Blue: PWOC-one-layer. Green: PWOC-two-layer. Red: Decentralized scheme.  

 

Given that there is a reduction in the concentration of ungelatinized starch in the starch 

slurry feed, the rate of ethanol production can only be sustained by an increase in the starch 

feed flow rate, as it is done by all PWC schemes considered. At this point it is important to 

notice that in the decentralized scheme, the product flow rate is controlled (flow control FC-5 

in Figure 6.7) by manipulating the flow rate of starch slurry (Figure 6.11). However, the 

increase in starch flow rate after the disturbance for the PWOC-one-layer was the largest, 

whereas for the decentralized scheme it was the smallest. In addition, in Figure 6.10, it is 

observed that the PWOC approaches increased the product flow rate while the decentralized 

approach reduced it.  
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Figure 6.11 Starch slurry volumetric flow rate entering the liquefaction section for Scenario 1. Blue: 

PWOC-one-layer. Green: PWOC-two-layer. Red: Decentralized scheme.  

 

In general, increasing the flow rate of starch slurry has at least three different effects on the 

operation of the plant. On one hand there is an increase in the net raw material flow rate for 

producing ethanol, which can also lead to inhibition of ethanol production by accumulation of 

ethanol in the fermentor. Second, there is a decrease in residence times in the reactors 

leading to lower conversion of the raw material (especially in the liquefaction and 

saccharification stages) and to inhibition of ethanol production if there is an accumulation of 

unreacted glucose in the fermentor. The third is a dilution effect caused by the additional 

water and/or non-fermentable compounds entering the system through the starch slurry 

feed. As a result of the dilution, the inhibition effect by ethanol concentration can be reduced 

but at the same time, the rate of ethanol production is reduced by the decrease in biomass 

and glucose concentration in the fermentor. As it can be seen, even without considering 

additional effects on the separation stage, the simple compensation of raw material for 

rejecting the disturbance in starch feed composition does not necessarily lead to optimal 

operation. The advantage of the PWOC-one-layer is that it is able to identify the adequate 

starch flow rate which maximizes the profitability of the plant, overcoming the compromise 

imposed by the inhibition and dilution effects. The PWOC-two-layer approach finds a 

different balance between the profitability and control performance (almost constant product 

flow rate) objectives. The result is an intermediate behavior between the pure economical 
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objective (PWOC-one-layer) and the pure control performance objective (decentralized 

approach). Finally, it is important to mention that the decentralized approach presented a 

negative offset in ethanol flow rate which can be explained by the slow dynamic response 

and the long time delays of the plant. For this control configuration, any effort exerted in 

removing the offset led to controller instability with large and sometimes divergent 

oscillations.  

 

 
Figure 6.12 Biomass concentration (solid lines) and Biomass concentration setpoint (dashed lines) in 

the fermentor for Scenario 1. Blue: PWOC-one-layer. Green: PWOC-two-layer. Red: Decentralized 

scheme. 

 

In the following, an analysis of the main state variables as well as the profiles for the main 

plantwide manipulated variables in the process is presented. First, the analysis is focused on 

the fermentation section (Figure 6.12 – 6.14) and then on the purification section, including 

the rectification and molecular sieves units (Figures 6.15 – 6.20). Figure 6.12 shows the 

dynamic behavior of the viable biomass concentration in the fermentor. As it can be seen, 

after the disturbance enters the process, the viable biomass for the PWOC schemes first 

decreases slightly and then increases reaching values of 84.5 kg/m3 and 83 kg/m3 for the 

PWOC-one-layer and the PWOC-two-layer, respectively, 25 hours after the disturbance 

occurrence. On the other hand, the decentralized scheme kept the viable biomass at its set 

point value of 82.4 kg/m3, which corresponds to the nominal steady state. The optimal 
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biomass profiles applied by the PWOC schemes drive the ethanol concentration in the 

fermentor to slightly higher values when compared to the decentralized scheme, as it is 

shown in Figure 6.13.  

 

Even thought the differences in viable biomass and ethanol concentration in the fermentor 

may seem small, analyzing Figure 6.14, which is the total ethanol mass flow rate entering to 

the purification section (EF×F6), it is possible to observe that using a combination of higher 

ethanol concentration and larger starch flow rates (see Figure 6.11), the PWOC-one-layer 

drives the process operation towards the highest productivity in the fermentation section, 

contributing very positively to increase increasing the process profitability.  

 

 
Figure 6.13 Ethanol concentration (solid lines) and ethanol concentration setpoint (dashed line) in the 

fermentor for Scenario 1. Blue: PWOC-one-layer. Green: PWOC-two-layer. Red: Decentralized scheme. 
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Figure 6.14 Ethanol mass flow rate to the purification section for Scenario 1. Blue: PWOC-one-layer. 

Green: PWOC-two-layer. Red: Decentralized scheme. 

 

Following the analysis, in the next, the results obtained for the distillation and rectification 

sections are presented. Figure 6.15 and Figure 6.16 show the results for the ethanol 

concentration at the top of the distillation (xED1) and at the top of the rectification (xED2), 

respectively. It can be observed that the strategy applied by the PWOC-one-layer (blue line) 

relies on increasing the purity of the ethanol concentration that leaves the distillation 

column, whereas allowing a slightly decrease in the ethanol concentration leaving the 

rectification column. The reason behind this strategy is that, by doing so, the optimizer finds 

an operating point with lower total energy consumption for the distillation-rectification 

system, without deteriorating the quality requirements of the final product (Figure 6.19). 

Such total energy consumption correlated to the sum of the vapour boil-up rates of both 

columns, is shown in Figure 6.17. At this point, it is important to remark that in this example, 

the optimum operating conditions for the purification and fermentation sections shifted from 

their initial nominal values as a consequence of the presence of the disturbance, and this is 

not considered by the decentralized scheme.  
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Figure 6.15 Ethanol mole fraction at the top of the distillation column for Scenario 1. Blue: PWOC-one-

layer. Green: PWOC-two-layer. Red: Decentralized scheme. Dashed: Ethanol concentration set point 

at the top of the distillation column. 

 
Figure 6.16 Ethanol mole fraction at the top of the rectification column for Scenario 1. Blue: PWOC-

one-layer. Green: PWOC-two-layer. Red: Decentralized scheme. Dashed: Ethanol concentration set 

point at the top of the rectification column. 
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Following with the analysis of the purification section, it must be also noticed that the PWOC-

two-layer does not allow large deviations in composition at the top of the distillation and 

rectification columns (as a result of the control performance objective), while at the same 

time reduces the operating costs in the purification section (economic objective). 

Unfortunately, the tight control in composition is accomplished by abrupt changes in the 

distillate flow rates (Figure 6.18) which ultimately affect the operation of the molecular 

sieves unit (Figure 6.20), increasing regeneration costs and reducing the plantwide 

profitability, and eventually compromising the quality of the final product by reaching values 

close to the specification limit from time to time (Figure 6.19). 

  

 
Figure 6.17 Boil-up molar flow rates in the purification section for Scenario 1. Distillation column (top-

left), Rectification column (top-right), Sum of boil-up molar flow rates of the distillation and 

rectification columns as a measure of their energy consumption (bottom). Blue: PWOC-one-layer. 

Green: PWOC-two-layer. Red: Decentralized scheme.   
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Figure 6.18 Distillate flow rates for Scenario 1. Blue: PWOC-one-layer. Green: PWOC-two-layer. Red: 

Decentralized scheme.  

 

 
Figure 6.19 Ethanol mass fraction in the final product leaving the molecular sieves unit for Scenario 1. 

Blue: PWOC-one-layer. Green: PWOC-two-layer. Red: Decentralized scheme. Set point: 0.999; 

specification limit: 0.998.  
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Figure 6.20 Operation time before regeneration of the molecular sieves units for Scenario 1. Blue: 

PWOC-one-layer. Green: PWOC-two-layer. Red: Decentralized scheme.  

 

By far, the comparison of the different Plantwide Control schemes for dealing with the 

known disturbance in Scenario 1 has been presented. After analyzing the results taking into 

account not only the dynamic behavior of the main state variables in the process, but also 

the plantwide manipulated variables profiles applied by the PWOC-one-layer, the PWOC-two-

layer and the decentralized scheme, it is possible to conclude that the three plantwide 

schemes applied resulted in different performance due to the fact that they pursue different 

objectives: a pure economical objective for the PWOC-one-layer, a pure control performance 

objective for the decentralized, and a good balance between the pure economical and the 

pure control performance for the PWOC-two-layer. As it was evidenced in this section, if the 

aim of a process production plant is to operate at maximal profitability, the PWOC-one-layer 

scheme is the best option. However, as stated by Engell (2009), stability of the Direct 

Optimizing Control has not be proven yet, as it has been done for the integration between 

the RTO-MPC (i.e. two-layer architecture) and for the conventional decentralized schemes. 

Therefore, it is possible to think that still much work is needed for convincing the industrial 

sector about relying on the Plantwide Optimizing Control- One-Layer approach instead of 

using the second layer that introduces the MPC controller, or the pure decentralized 

architecture. Finally, it is important to mention that the intention of this work, as it will be 

shown also in Scenario 2 and Scenario 3 (sections 6.3.5 and 6.3.6 respectively), is to show 
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that besides of being successful in leading the process to maximal profitability where a 

known disturbance enters the process, the PWOC-one-layer is a very suitable and successful 

architecture capable to overcome even worst-case scenarios in which the pure decentralized 

scheme appears to be weak.  

 

Before presenting the comparative results of the performance of the different Plantwide 

control schemes for facing the next disturbance scenario (in Section 6.3.5), denoted as 

Scenario 2 (i.e. unknown disturbance + model mismatch), additional results are presented in 

the following sections. First, in Section 6.3.2, representative results are shown, in order to 

demonstrate the advantages of using the Shrinking approach proposed in Section 5.2 as part 

of the strategy for solving the D-RTO problem that arises in the PWOC formulation. Then, in 

Section 6.3.3, three different replicas for solving the PWOC-one-layer using the MIPT 

algorithm are compared, in order to show the reproducibility capacity of the method despite 

the fact of being stochastic in nature. Finally, in Section 6.3.4, the performance of the MIPT 

and the Localized Random Search (LRS) algorithms in the PWOC-one layer and PWOC-two 

layer formulations is compared for dealing with the disturbance in Scenario 1.  

 

6.3.2. PWOC-one-layer: Comparison of Shrinking vs. No 

Shrinking for Scenario 1 

The Shrinking approach proposed in Section 5.2 has the purpose of reducing the search 

space of the D-RTO problem according to the capability of each plantwide manipulated 

variable for rejecting known and unknown disturbances that negatively impact the process 

profitability. The main advantage of using the shrinking approach is that the probability of 

change for each manipulated variable is a function of their capability for rejecting each 

disturbance; in other words, by implementing the shrinking approach, the optimization 

algorithm does not waste time testing large changes in the manipulated variables that just 

reject in a weak manner (or are not able to reject) the disturbances. In the case without 

shrinking, each manipulated variable is allowed to change from its lower to its upper bound, 

without any other restriction, whereas the shrinking approach bounds the search region 

according to the standard deviation calculated for each manipulated variable. Precisely, this 

standard deviation contains the information about the cause-effect relationship between 

each manipulated variable and each disturbance. In order to evaluate the performance of 

the shrinking approach, several simulation studies applying the PWOC with and without 

shrinking the search region of the optimization problem were carried out. Figures 6.21 – 6.23 
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show representative results obtained for the PWOC-one-layer using the shrinking approach 

(blue line), compared to the results obtained when the same problem was solved without 

implementing the shrinking (black line). In both cases the optimization algorithm used was 

the MIPT, using as stopping criteria the maximum number of function evaluations (Nfeval 

=30) and/or a maximum time for running the optimization routine (tlimopt=0.4 h). For 

comparison purposes, in Figure 6.21, besides the profitability objective function, also the 

profiles for the main plantwide manipulated variables (F0, R1, VB1, R2 and VB2) are presented 

in Figures 6.22 and 6.23  

 

 
Figure 6.21 Profitability objective function PWOC-One-layer: Shrinking vs. No Shrinking for Scenario 1. 

Blue: PWOC-one-layer implementing search region shrinking. Black: PWOC-one-layer without 

shrinking. 

 

As it can be seen in Figure 6.21, when the shrinking approach (blue line) is implemented in 

the solution strategy for solving the D-RTO problem, the process is led to a much higher 

profitability than when no shrinking is applied, being capable of successfully rejecting the 

disturbance that affected the process. In contrast, when no shrinking is used, the process 

profitability decreases considerably. This poor performance obtained when no shrinking is 

used can be understood analyzing the profiles of the main plantwide manipulated variables. 

It can be seen that when no shrinking is used (black line) each manipulated variable changes 

in a step-type policy with higher amplitude and longer period than when using shrinking 
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(blue line). Therefore, due to the wider search region where the algorithm must look for the 

optimal values of the decision variables, the optimization algorithm is not able of finding 

suitable movements of the plantwide manipulated variables, in a reasonable time, i.e. before 

meeting any stopping criterion, and it gets stuck in local minima that lead the process to 

lower profitability. In fact, in the ideal case where the shrinking and no shrinking approaches 

where run unlimitedly, both approaches would achieve the same performance.   

 

 
Figure 6.22 Starch slurry volumetric flow rate PWOC-One-layer: Shrinking vs. No Shrinking for 

Scenario 1. Blue: PWOC-one-layer implementing search region shrinking. Black: PWOC-one-layer 

without shrinking.  

 

Finally, it is possible to conclude that when the shrinking approach is used as part of the 

solution strategy of the Plantwide Control problem for online applications (in which usually a 

stringent limit time exists for running the optimization), a very important improvement in the 

performance of the solution strategy is achieved. For the particular case analyzed, this 

improvement in optimization allowed the achievement of a much higher profitability. 

Furthermore, it has been also shown that when using the shrinking, smoother changes in the 

control actions are applied, which is also a very important issue regarding process stability 

and equipment protection. 
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Figure 6.23 PWOC-One-layer: Shrinking vs. No Shrinking for Scenario 1. Reflux molar flow rate in the 

distillation column (top-left), Boil-up molar flow rate in the distillation column (top-right), Reflux molar 

flow rate in the rectification column (bottom-left), and Boil-up molar flow rate in the rectification 

column (bottom-right). Blue: PWOC-one-layer implementing search region shrinking. Black: PWOC-

one-layer without shrinking.   

 

6.3.3. PWOC-one-layer: Replicas Comparison of MIPT for 

Scenario 1 

Given that the MIPT algorithm used for solving the D-RTO problem in the PWOC-one-layer is 

a stochastic method, the purpose of this section is to show that in spite of the random 

nature of the method, the results obtained by applying MIPT for solving the PWOC problem 

are reproducible following almost the same path and converging to almost the same optimal 

value at the end of the simulation period (i.e. 50 hours). The results presented in Figure 6.24 

compare the profitability objective function for three different replicas in which the MIPT 

optimization algorithm was used in the application of the PWOC-one-layer scheme for facing 

a known disturbance (Scenario 1). Furthermore, Table 6.7 shows a comparison of the 

cumulative profitability value achieved in each case. 
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Figure 6.24 Profitability Objective function PWOC-one-layer: Comparison of different MIPT replicas. 

 

Table 6.7 Cumulative Profitability Comparison in Scenario 1: Analysis of different Replicas   

Plantwide Control Scheme Cumulative Profitability (€) 

PWOC-one-layer-Replica#1 1.769×105 

PWOC-one-layer-Replica#2 1.746×105 

PWOC-one-layer-Replica#3 1.753×105 

 

As can be seen in Figure 6.24, the different replicas do not converge to exactly the same 

point due not only to the stochastic decisions made by the method, but also to the fact that 

the optimization problem solved is a multivariable problem (involving 8 decision variables) 

and may exhibit many local minima. However, it should be noticed that all replicas achieved 

almost the same cumulative profitability value (Table 6.7). Also, it is important to mention 

that the optimization stopped in most cases by the time criterion imposed. For this reason, 

the optimal value found may not be the global optimum but an operating point close to the 

optimum, obtained before the time limit was reached. From the comparison of the different 

replicas, it is possible to conclude that the results obtained by the MIPT algorithm are 

reproducible. This is an important fact that, together with the global character of the 

method, potentiates the use of MIPT for Plantwide Control applications. 

 



Plantwide Optimizing Control for the Continuous Bio-Ethanol Production Process 

 170 

All results shown until now for solving the problem stated in Scenario 1 were obtained using 

the MIPT algorithm described and evaluated in Chapter 5. In the following section, the MIPT 

is compared to the Localized Random Search (LRS) method, which is a stochastic local 

optimization algorithm, whose main advantage is the easiness of application, being very 

intuitive without requiring much programming effort, and therefore it might be of interest for 

industrial applications.  

 

6.3.4. PWOC-one-layer: Comparison between MIPT and LRS for 

Scenario 1 

In order to compare the performance of the MIPT and the Localized Random Search (LRS) 

algorithms, in this section the results obtained using both methods in terms of the 

profitability objective function are presented. Figure 6.25 shows the comparison between the 

profitability obtained with the PWOC-one-layer using the MIPT algorithm (blue line) and the 

PWOC-one-layer using the LRS algorithm (red line). Furthermore, the comparison of the two 

optimization algorithms is also made for the PWOC-two-layer case (Figure 6.26). In Figure 

6.26, the differences obtained applying the PWOC-two-layer using the MIPT algorithm (blue 

line) and the PWOC-two-layer using the LRS algorithm (red line) can be clearly appreciated.  

 
Figure 6.25 PWOC-one-layer: Comparison of the Molecular Inspired Parallel Tempering (MIPT) 

Algorithm (blue line) and the Localized Random Search (red line) for Scenario 1.  
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Figure 6.26 PWOC-two-layer: Comparison of the Molecular Inspired Parallel Tempering (MIPT) 

Algorithm (blue line) and the Localized Random Search (red line) for Scenario 1.  

 

Analyzing the results presented in Figure 6.25 and Figure 6.26 it is possible to derive two 

main conclusions: 

• Comparing the performance obtained for the PWOC-one-layer and PWOC-two-layer, 

it can be seen that the PWOC-two-layer scheme presents an unstable and aggressive 

behaviour (especially when the LRS algorithm is used), which is due to the conflict 

between the different objectives in the D-RTO and NMPC layers of the PWOC-two-

layer approach. It is important to recall that for the D-RTO layer the main objective is 

to maximize the profitability in the process, but for the NMPC layer, the ultimate 

objective is to minimize a performance objective function which penalizes deviations 

of the state variables from their set points. So, although the profitability is also taken 

into account, the plantwide manipulated variables applied to the process are finally 

determined by the NMPC layer. It is also important to notice that both layers (the D-

RTO and the NMPC) used the same process model, which discards any conflict as a 

result of model mismatch.  

• Comparing the MIPT and LRS optimization algorithms in terms of the cumulative 

profitability achieved when facing the problem stated in Scenario 1 (Table 6.8), it can 

be seen that both methods have a very similar performance and that none of them 
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outperforms the other. According to the results presented in this section, it is possible 

to conclude that independently of the optimization algorithm used, the Plantwide 

Optimizing control methodology proposed in Chapter 4 is a very efficient and 

successful plantwide control architecture, capable of successfully rejecting known 

process disturbances.  

 

Table 6.9 Cumulative Profitability Comparison in Scenario 1: MIPT vs. LRS  

Plantwide Control Scheme Cumulative Profitability (€) 

PWOC-one-layer-MIPT 1.769×105 

PWOC-one-layer-LRS 1.751×105 

PWOC-two-layer-MIPT 1.719×105 

PWOC-two-layer-LRS 1.753×105 

 

Although the LRS optimization algorithm proved to be suitable for solving the problem stated 

in Scenario 1, in the following sections it is demonstrated that the main feature of the MIPT 

that outperforms LRS, namely its global character, is very useful for facing more challenging 

scenarios where the optimal operating point for the process moves further away from the 

nominal or previous optimal, as is the case addressed in Scenario 2 (Section 6.3.5) and 

Scenario 3 (Section 6.3.6).  

 

6.3.5. PWOC Performance Evaluation: Scenario 2 - Unknown 

Disturbance with Model Mismatch 

In this section, a comparison between the MIPT and LRS algorithms is presented when the 

PWOC-one-layer scheme (including shrinking of the search region) is used for counteracting 

the disturbance of Scenario 2, which is an unknown disturbance in the maximum biomass 

growth rate in the fermentation section that impact negatively the process profitability. The 

disturbance for this Scenario takes place at time t=5 hours, and the total time considered 

was 40 hours. As it can be observed in the process profitability of MIPT (green line) and LRS 

(magenta line) shown in Figure 6.27, the optimal operating point of the process moves 

further away from the profitability values reached in Scenario 1. The displacement of the 

system to a new global optimum due to the appearance of the disturbance can be better 

appreciated taking a look at the biomass control profiles shown in Figure 6.28 (optimal 

profile for Scenario 1 shown in blue). Comparing the optimal biomass behavior for Scenario 1 

and Scenario 2 it is possible to observe a displacement of the optimal operating point of the 

system. For Scenario 1, the optimal operating point was displaced to a higher biomass 
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concentration than the nominal steady state. In contrast, due to the disturbance in the 

biomass growth rate, the optimal operating point in Scenario 2 is found at much lower 

biomass concentrations.  

 

 
Figure 6.27 PWOC-One-Layer: Profitability Comparison of MIPT vs. LRS algorithms for Scenario 2. 

Green: MIPT. Magenta: LRS. 

 

Figure 6.29 shows the behaviour of ethanol concentration in the fermentor using both 

algorithms. It is observed that the concentration of ethanol during fermentation was higher 

when the LRS algorithm was used compared with MIPT. However, a high concentration of 

ethanol in the fermentor does not necessarily leads to higher profitability values as it is seen 

in Figure 6.27, evidencing that the problem of maximizing the profitability in a chemical 

process not only requires to take into account the interactions between the different 

operating units, but also that the strategy for solving the corresponding optimization problem 

must consider an algorithm that assure an efficient exploration towards finding the global (or 

getting close to the global) optimum operating point.  
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Figure 6.28 PWOC-One-Layer: Viable Biomass concentration in the fermentor. Comparison of MIPT vs. 

LRS for Scenario 2. Green: MIPT. Magenta: LRS. Blue: PWOC-one-layer MIPT for Scenario 1. Dashed: 

Biomass concentration set point. 

 
Figure 6.29 PWOC-One-Layer: Ethanol concentration in the fermentor. Comparison of MIPT vs. LRS 

algorithms for Scenario 2. Green: MIPT. Magenta: LRS. 
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A better understanding of the differences found in the profitability objective function when 

applying the MIPT and LRS algorithms for solving the PWOC problem can be obtained by 

analyzing the profiles of the main manipulated variables (Figure 6.30 and 6.31).  

 

 
Figure 6.30 PWOC-One-Layer: Starch slurry feed flow rate. Comparison of MIPT vs. LRS algorithms for 

Scenario 2. Green: MIPT. Magenta: LRS. 

 

It can be observed that even though the profile for F0 shown in Figure 6.30 is very similar in 

both cases, the profiles for the other manipulated variables differ significantly. For example, 

analyzing in detail the profile for R1 and VB1 it is possible to see that both methods, MIPT 

(green line) and LRS (magenta line) found very different optimal values for those decision 

variables. Analyzing the profile for R1 it is possible to appreciate the global character of the 

MIPT algorithm. In this case, both algorithms started increasing the R-value in order to 

reject the disturbance. However, whereas the MIPT (green line) was able to surpass a local 

optimum at around 3910 kmol/h, the LRS was unable to overcome the attraction exerted by 

that local minimum. A similar behavior is observed for the VB2 profile, where once more the 

global feature of the MIPT is able to drive the system further away from the local optimum in 

which the LRS stays stalled (around 2030 kmol/h). Finally, it should be noticed that the 

problem is not the magnitude of the steps in the manipulated variables between different 

trials, because both methods are able to combine small and large step changes when 
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needed. This effect can be observed in the profile of VB1 (Figure 6.31). As it can be seen for 

this manipulated variable, the LRS moves VB1 beyond its nominal value, and also beyond the 

optimum operating point found by the MIPT algorithm, which on the contrary, and in spite of 

having explored also larger changes for VB1, it was able to come back to the region where 

the global optimum is located.  

 

  

  
Figure 6.31 PWOC-One-Layer for facing Scenario 2: Plantwide manipulated variables in the separation 

section. Top-left: Reflux rate in distillation column. Top-right: Boil-up rate in distillation column. 

Bottom-left: Reflux rate in rectification column. Bottom-right: Boil-up rate in rectification column. 

Comparison of MIPT vs. LRS algorithms. Green: MIPT. Magenta: LRS. 

 

For concluding this section, it is important to remark that although the LRS algorithm showed 

almost the same performance than the MIPT algorithm for facing Scenario 1, a very big 

different performance was obtained for both methods when they were used for 

implementing the PWOC-one-layer problem for facing the disturbance in Scenario 2. This is 

due to the fact that in the case of Scenario 2, a more challenging worst case disturbance 

was evaluated, which tested the global character of the algorithms.  

 

Finally, in order also to show the advantages of the PWOC architecture over the 

Decentralized scheme, Figure 6.32 shows a comparison between the profitability objective 
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function when the PWOC-one-layer (green line) and the Decentralized 1 (black line) schemes 

are used for dealing with the disturbance Scenario 2. It can be seen that the PWOC-one-

layer architecture (green line) is capable of leading the process to a high profitability value, 

even in the worst-case analyzed in this Section. In contrast, the Decentralized scheme (black 

line) leads the process to a very low cumulative and negative profitability value (see Table 

6.9), and shows to be unable and unsuitable for dealing with the analyzed disturbance. 

Therefore,  through this example, it has been demonstrated not only the global character 

and suitability of MIPT algorithm for dealing with such challenging disturbances, but also, it 

has been proved once more that the PWOC-one-layer architecture surpass the performance 

obtained by a typical decentralized scheme, demonstrating the advantages of the PWOC 

methodology proposed in this work. 

 

 
Figure 6.32 PWOC-One-Layer vs. Decentralized architecture: Profitability performance comparison for 

Scenario 2. Green: PWOC-one-layer-MIPT. Black: Decentralized. 

  

Table 6.9 Cumulative Profitabilty Comparison in Scenario 2: PWOC vs. Decentralized  

Plantwide Control Scheme Cumulative Profitability (€) 

PWOC-one-layer-MIPT 1.125×105 

PWOC-one-layer-LRS 1.074×105 

Decentralized -8.464×103 
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6.3.6. PWOC Performance Evaluation: Scenario 3 - Increase in 

the Raw Material Price  

Nowadays, the economical feasibility of the bio-ethanol industry strongly depends on the 

taxes exemption policy applied by the governments. In the particular case of Germany, a 

study by the Kiel Institute for World Economics (Henke et al., 2003) concludes that the 

industry of bio-ethanol in the country is not competitive at all without tax exemption. Such 

situation would get dramatically worst if the raw material prices increase as a result of the 

competition between food consumption and bio-fuels production. As such scenario will 

jeopardize even more the economical feasibility of the industry, the purpose of this Section is 

to show the potential use of the Plantwide optimizing control architecture for dealing with 

such worst-case scenario. The scenario analyzed here considers a very pessimistic situation, 

in which the starch raw material price increases in 100%, varying from 0.16 €/kg to 0.32 

€/kg. This disturbance takes place at time t=5 hours, and the total time considered for the 

process was 40 hours. Results for this case study are shown in Figure 6.33 - 6.37, where the 

performance of the PWOC-one-layer (blue) using the Molecular Inspired Parallel Tempering 

(MIPT) algorithm is compared with the performance obtained when the Decentralized 

plantwide architecture (black) is used, and also using the PWOC-one-layer, but solving the 

D-RTO problem by the Localized Random Search optimization algorithm (red).  

 
Figure 6.33 Comparison of profitability objective function values for Scenario 3: price change in the 

raw material. Blue: PWOC-one-layer-MIPT. Black: Decentralized approach. Red: PWOC-one-layer-LRS.   
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Table 6.10 Cumulative Profitabilty Comparison in Scenario 3: PWOC vs. Decentralized 

Plantwide Control Scheme Cumulative Profitability (€) 

PWOC-one-layer-MIPT 626.32 

PWOC-one-layer-LRS -3.659×103 

Decentralized -9.479×103 

 

Figure 6.33 shows the profitability objective function when a worst case in the price change 

impacts the process. In this very pessimistic scenario, the objective function for the different 

plantwide architectures analyzed decreases considerably, as expected, even leading the 

process to a non viable operation from an economical point of view, just after the change in 

the raw material price was introduced. As the Decentralized Plantwide Control architecture 

does not take explicitly into account the process profitability, and as in this scenario the 

analyzed “disturbance” does not affect the state variables in the process (i.e. the controlled 

variables stay at their nominal steady state values), the decentralized scheme is not “aware” 

of its effect on the plantwide performance of the process. Therefore, the decentralized 

scheme does not take any action on the manipulated variables in order to reject the 

disturbance, as it can be appreciated in Figure 6.34 for F0, which is kept constant at its 

nominal steady state value (i.e. with a small oscillation around the nominal value due to the 

noise effect). Of course, it can be argued that the plant manager and/or plant operators are 

aware of such disturbance, and thus, they would have the chance to adapt the process 

conditions to this price fluctuation, for example, by changing the set points and re-tuning the 

PID parameters of the decentralized scheme. However, such adaption will depend on the 

operators own experience and will also require not only to set the product flow rate to a 

different value, but also to re-tune all other decentralized loops which is not an easy task in 

a highly interconnected process as the bio-ethanol case study. In contrast to the 

Decentralized scheme, the PWOC-one-layer architecture shows to be able of dealing with the 

challenging disturbance for this scenario. As it is shown in Table 6.10, the PWOC-one-layer 

that implemented the MIPT algorithm for solving the D-RTO problem presents the best 

performance, leading the process to a cumulative profitability of 626 €, meaning that for the 

analyzed operating period, the PWOC-one-layer architecture was able to avoid economical 

losses. The strategy followed by the PWOC-one-layer consisted in decreasing the raw 

material flow rate (Figure 6.34); however, this was not the only plantwide manipulated 

variable that changed. In fact, the other 7 plantwide manipulated variables also changed in 

order to synergistically reject the disturbance. Although the profiles for all other Plantwide 

manipulated variables is not shown, it is possible to observe in Figure 6.35, where the 
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efficiency of ethanol production in terms of kg ethanol produced/kg ungelatinized starch 

consumed is presented, that the optimal profile applied for the manipulated variables by the 

PWOC-one-layer leads the process to a much better use of the raw material in the process 

for accomplishing the main task, which is producing ethanol while maximizing profitability. 

 

 
Figure 6.34 Comparison of starch slurry feed flow rates for Scenario 3: price change in the raw 

material. Blue: PWOC-one-layer-MIPT. Black: Decentralized approach. Red: PWOC-one-layer-LRS.  

 

Finally it is also important to notice, that despite of the lower feed flow rate used to 

maximize the profitability, the PWOC-one-layer still satisfies the constraint imposed on the 

minimal flow rate of product of  F20>=80000 Ton/year (i.e F20 >=10.1 Ton ethanol/h), as it 

is shown in Figure 6.36. Furthermore, it is important to observe that even though the 

decentralized scheme (black line) in this Scenario maintained the maximum product flow rate 

(when compared to the PWOC schemes), which is an important term that contributes very 

positively in the calculation of the profitability objective function (Equation 6.1). This 

behavior does not assure good profitability, because as it is evidenced once more, the 

problem of leading the process to maximal profitability is a plantwide control problem that 

should not be addressed from a decentralized perspective in which the different operating 

units are considered as isolated entities. 
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Figure 6.35 Comparison of raw material yield during ethanol production for Scenario 3: price change 

in the raw material. Blue: PWOC-one-layer-MIPT. Black: Decentralized approach. Red: PWOC-one-

layer-LRS.  

 
Figure 6.36 Comparison of ethanol product mass flow rates for Scenario 3: price change in the raw 

material. Blue: PWOC-one-layer-MIPT. Black: Decentralized approach. Red: PWOC-one-layer-LRS. 

Constraint: Flow rate≥10.1 Ton/h. 
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For closing this section, a brief mention about the comparison between the results obtained 

using the Molecular Inspired Parallel Tempering (MIPT) Algorithm and the Localized random 

Search (LRS) for solving the D-RTO problem in the PWOC-one-layer, should be done. As it 

can be seen in Figure 6.33, the LRS algorithm was the first to respond after the price change 

(at around 7 hours of operation, whereas the MIPT responded at around 9.5 hours). 

However, at time 17 h the profitability suddenly decreases and it cannot be restored for the 

rest of the period. Sudden drops in profitability are usually caused by relatively short-term 

improvements achieved during the optimization. In these cases, the profitability initially 

increases but after some hours (usually close to the optimization horizon) it starts to 

decrease again because the operating condition can not be sustained. Then, the optimizer 

must find new actions that drive the process again towards high profitability values. If the 

optimizer is able to reach the global optimum from the beginning, it will lead to a long-term 

sustainable increase in profitability. 

 

 

6.4. Chapter conclusions 

 

PWOC has been applied to the bio-ethanol process, showing much better results from an 

economical point of view than when the process is only controlled by a conventional 

decentralized control scheme. It has been demonstrated that PWOC is a very promising 

alternative for controlling a complete chemical or biochemical processes in which the 

economical feasibility is at risk when disturbances appear.  

 

The novel shrinking approach was successfully tested resulting in an improvement of the 

solution of the D-RTO problem, which was evidenced by obtaining higher productivities (for 

the same number of function evaluations and/or limit time for the optimization routine) than 

when no shrinking was used. 

 

Additionally, comparing the PWOC-one-layer and the PWOC-two-layer, it is possible to 

conclude that the former achieves higher profitability. However, its success strongly depends 

on the model accuracy, and its main drawback is that stability issues have not been proved 

yet. On the other hand, the PWOC-two–layer case, tracks very well the state variables in the 

process, but does not guarantee good profitability. However, its main advantage is that it is 

more robust due to the presence of the MPC-layer. 
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Finally, it was corroborated that the MIPT algorithm has an excellent performance, and that 

it is a suitable optimization algorithm for solving the optimization problem that arises in 

PWOC. MIPT showed to be capable of finding an optimal solution in the three different 

disturbance scenarios analyzed, even in the worst cases (unknown disturbance and price 

increase of the raw material), and in doing so, allowed the PWOC strategy to lead the 

process to the highest cumulative profitability values.  
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7. Final Conclusions and Outlook 
 

The fuel Bio-ethanol industry is currently a very important part of the worldwide economy, 

which has experienced an accelerated growth in the last years, because bio-ethanol, as an 

environmentally friendly fuel, is considered an attractive alternative energy source with the 

potential of having a much lower contamination impact that the one caused by the use of oil-

based fuels. However, despite the growing market and favorable predictions, ethanol 

industry is at risk because the process is claimed to be economically infeasible, non-

sustainable without governmental subsidies, and non-competitive with today’s fuel oil prices. 

In order to contribute for assuring the economical feasibility of the bio-ethanol industry from 

a process system engineering point of view, in this work, the plantwide control problem of 

the bio-ethanol process has been addressed as an optimizing control problem based on 

Dynamic Real-Time Optimization (D-RTO). The main reasons that motivated this are: the 

process is highly nonlinear and characterized by the coupling of slow and fast dynamics; 

there exist interactions between different operating units which cannot be neglected; the 

quality and availability of the raw material change often introducing disturbances into the 

process; and finally, the economical feasibility of the process can be effectively assured only 

if this is the main control objective of the plantwide strategy.  

 

In spite of having been studied for more than 40 years, the plantwide control problem of 

chemical and biochemical processes is still a top problem for academics but also for the 

industry. Thanks to the advances and the emerging of very fast computers and 

communication tools during the last decades, a new spectrum of possibilities has been 

opened for improving the plantwide control strategies in the process industry. Some recent 

issues, namely, the integration of optimization and control layers in a multilayer architecture 

and the formulation of the plantwide problem as a single layer scheme, appear to be not 

only realizable for a whole process, but also have proved to be more suitable for addressing 

the plantwide control problem when the objective is not only to regulate the process at fixed 

predefined set points, but to drive the process to the fulfilment of an economical objective 

stated by the particular process. However, the decentralized architecture continues to be the 

most frequently used alternative for addressing the control problem of a complete process. 
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The main reason for this preference relies on the easiness of implementation and 

understanding of the operation of the PID controllers. However, it must be noticed that even 

if regulation of the controlled variables at fixed set points (as done by the typical 

decentralized architecture) results in a good performance in terms of error deviation, it might 

deteriorate the profitability of the process, because when a disturbance enters the process, 

the optimal operating point may also move. How much this point moves can not be 

generalized because it depends on the process and the nature of the disturbances. If well it 

is completely true that over the years the process industry has been operating under fixed 

set point policies relying on PID-SISO loops without reporting enormous economical losses, it 

is also true as stated by Prett and García (1988), that the apparent savings in doing so 

(i.e. minimization of both design effort and maintenance) are in the majority of cases 

nonexistent and in the long run result in more costs than the use of multivariate techniques. 

Therefore, the main purpose of this work has been to solve the plantwide control problem 

for the bio-ethanol production process from an optimizing control perspective.  

 

This work presents a novel contribution to the research in plantwide control, proposing a 

methodology for solving the problem of controlling a whole process, the continuous bio-

ethanol process from starch, towards reaching maximal profitability. In summary, the main 

contributions of this thesis are the following: 

 

• The proposal of a novel methodology for plantwide control, denoted as Plantwide 

Optimizing Control (PWOC): This methodology, based on the optimizing control 

concept, has as main objective to provide the steps required for designing the control 

system of a complete process, which leads the process to maximal profitability even 

in the presence of disturbances. The PWOC methodology is divided in two main 

tasks. First, a local control-oriented task should be carried out, whose aim is the 

design of the local control loops required for the fulfilment of the control objectives 

related to safe operation and environmental and equipment protection. The second is 

a plantwide-oriented task, in which the available degrees of freedom are used in 

order to drive the process towards maximal profitability. The novel plantwide 

optimizing control methodology was tested in three challenging scenarios in which 

disturbances of different nature, namely, the change in the raw material quality, 

change in the kinetics of the microorganism, and change in the raw material price, 

affected the process. In these three scenarios, PWOC was compared with a typical 

decentralized architecture and proved to be the best option in economic terms, that 

is, it led the process to the highest cumulative profitability.  
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• The proposal of a novel algorithm for global optimization, denoted as 

Molecular Inspired Parallel tempering (MIPT): Since the core of the PWOC 

methodology proposed is the formulation and solution of a Dynamic Real Time 

Optimization problem, in this work, the new MIPT stochastic optimization method was 

developed. MIPT presented a very good performance (in terms of the number of 

function evaluations and success ratio for reaching the global optimum) in solving 

different types of global optimization problems. The MIPT algorithm was compared in 

several case studies to other well-established stochastic algorithms, and in all cases 

proved to be a very well suited method for global optimization. The strength of the 

MIPT algorithm is that, when searching for an optimum, it combines very well the 

global character with the local refinement. The global character is provided by the 

explorer-type molecules, which allow the efficient exploration of a wider region of the 

space of decision variables. Due to the presence of the refiner molecules, the 

algorithm is also able to keep exploring promising local regions (i.e. local refinement). 

The combination of these two effects enormously increases the capacity of the 

algorithm for finding the global optimum. MIPT was used inside the formulation of 

the PWOC for the three disturbance scenarios analyzed, demonstrating to be able of 

finding an optimal solution in all cases and resulting in a more profitable operation.   

 

• The proposal of a new stochastic-based approach for shrinking the search 

region of the optimization problem: The purpose of the shrinking approach was 

to reduce the search space of the optimization problem, in order to have a higher 

success ratio in finding the global optima solution (or close to the optimal), when 

solving the D-RTO problem that arises in PWOC, in a short time. This is an important 

fact that needs to be taken into account in online applications, because in such 

applications, the time for reaching an optimal solution every time that the 

optimization routine is called is short because the decision variables of the 

optimization problem must be quickly applied to the process for ensuring maximal 

profitability. The shrinking approach was also applied inside the PWOC methodology 

for solving the control problem of the bio-ethanol process when facing three 

challenging disturbance scenarios. Comparing to the case in which the PWOC was 

implemented without shrinking the search region, it was concluded that the use of 

the shrinking approach allows the optimization algorithm to find a much higher value 

for the profitability objective function than when no shrinking is used. This result 

confirms the advantages of the stochastic-based shrinking approach and shows that 
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it is not a blind approach, but on the contrary, it is a guided approach that uses 

information of the causal relationship between the disturbances and manipulated 

variables (through the analysis of the effect that they exert on the state variables), 

for taking the decisions on how much to reduce the search region according to the 

capability of each manipulated variable for rejecting a particular disturbance or a 

decrease in the profitability objective function.  

 

Finally, some ideas for future work towards complementing the contributions given in this 

thesis are the following: 

 

• The incorporation of the very important topics of data reconciliation, soft-sensors 

development and on-line parameter identification into the PWOC methodology, in 

order to close the gap between the theory developed here (tested in simulation 

studies) and real applications.  

• To formulate a parallelized version of the MIPT algorithm, in order to take advantage 

of its formulation (i.e. each molecule could be run in an independent processor) for 

speeding up the convergence to the Global Optimum, reducing CPU time. 

• To extend the application of the shrinking approach for being used also in 

deterministic formulations. 
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Appendix A. MIPT Toolbox Developed in MATLAB 
 

A.1. MIPT Toolbox Instructions 

 

1. Creating the objective function 

 

The objective function must be created as a .m file in MATLAB using the following structure: 

 

[Fobj,feasible]=myfunctionname(decisionvariables) 

Fobj = … 

feasible = … 

 

Fobj is the value of the objective function to be minimized. feasible is a binary variable. 

feasible should be set to 1 if the set of decision variables provides a feasible result (all 

constraints are satisfied, i.e. linear, non-linear, equality, inequality); otherwise, feasible 

should be set to 0. 

The name of the .m file should correspond to the name provided to the function (i.e., 

myfunctionname.m) 

 

2. Defining the optimization options 

 

The following is a list of the most important options and their corresponding default values 

for the MIPT optimization procedure: 

NumberOfMolecules: Number of molecules used in the optimization.  

[ positive integer | {'3*numberofvariables'} ]  

MaxIter: Maximum number of iterations allowed. 

                         [ positive scalar | {Inf} ] 

  TolFun: Termination tolerance on function value evaluated during a certain number 

   of stall iterations. 

                        [ positive scalar | {1e-6} ]  

RepulsionForceConst: Value of the repulsion force constant. 

                         [ positive scalar | {5} ] 

  RandomForceConst: Value of the random force constant 

                         [ positive scalar | {5e-4} ] 
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  Metropolis: Type of Metropolis conditions used 

                         [ 'none' | {'explorers only'} | 'refiners only' | 'both' ] 

      MetropolisConstant: Value of the constant used for the Metropolis condition 

                         [ positive scalar | {1e3} ] 

      MinFracExplorers: Minimum fraction of explorer molecules 

                        [ positive fraction | {0.5} ] 

      InitNumberRefiners: Initial number of refiner molecules. It must be consistent with 

   the minimum fraction of explorer molecules! 

                [ positive integer | {1} ]  

     MinFrictionCoeff: Minimum value of the friction coefficient 

          [ positive scalar | {1e-9} ] 

     MaxFrictionCoeff: Maximum value of the friction coefficient 

                         [ positive scalar | {1} ] 

     CutoffDist: Interaction force cut-off distance 

                        [ positive scalar | {0.25*sqrt(numberofvariables)} ] 

      StallIterLimit: Number of iterations over which average change in objective function  

  value at current point is less than options.TolFun  

                [ positive scalar | {500*numberOfVariables} ] 

     MaxFunEvals: Maximum number of function (objective) evaluations allowed  

                         [ positive scalar | {3000*numberOfVariables} ] 

     TimeLimit: Total time (in seconds) allowed for optimization 

                         [ positive scalar | {Inf} ] 

      ObjectiveLimit: Minimum objective function value desired  

                        [ scalar | {-Inf} ] 

     Display: Controls the level of display  

                        [ 'off' | 'iter' | 'diagnose' | {'final'} ] 

     DisplayInterval: Interval for iterative display  

                         [ positive integer | {10} ] 

     AutoSave: Automatically save the results in a .mat file 

                         [{'off'} | 'on' ] 

     PlotType: Type of plot for final results.  

 numberfunceval plots the best value of the objective function vs. the number of function 

 evaluations.   

 iterations plots the best value of the objective function versus the number of iterations of the   

 algorithm. 

                         [ {'none'} | {'numberfunceval' | 'iterations'} ] 
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You can create and save the optimization options using the following commands: 

 

myoptions=miptoptimset(‘param1’,value1,’param2’,value2,…); 

save myoptionsfile myoptions 

 

Any unspecified parameters are set to the default value for that parameter. It is sufficient to 

type only the leading characters that uniquely identify the parameter. Case is ignored for 

parameter names. NOTE: For values that are strings, correct case and the complete string 

are required. Additional information can be found typing help miptoptimset or help 

miptoptimget in the command window of MATLAB. 

 

3. Defining the optimization problem 

The most important parameters of the optimization problem include: 

 

     Objective: Function handle of the objective function for minimization. 

       x0: Starting point 

     lb: Lower bounds of decision variables 

             ub: Upper bounds of decision variables 

     options: Options structure 

 

The optimization problem can be created and saved using the following commands: 

 

myproblem = miptproblem(@myfunctionname,x0,lb,ub,myoptions); 

save myproblemfile myproblem 

 

x0, lb and ub can be saved as variables before the definition of the problem, or they can be 

typed as vectors during the definition of the problem. Type help miptproblem in the 

command window of MATLAB for additional information. 

 

4. Executing the optimization 

 

You can execute the optimization using the following command: 

 

mipt(myproblem) 
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Depending on the selected display option, you will see the results of the optimization on the 

command window of MATLAB, and depending on the plot option, you will also get a 

graphical summary of the performance at the end of the optimization. 

 

The results will be saved automatically after finishing the optimization in the current work 

folder. The name of the file will contain the date and time at which optimization is finished. 

Type help mipt in the command window of MATLAB for more information.  

 

A.2. MIPT Algorithm Pseudo-Code 

MIPT Algorithm
1 Call Initialization 
2 while stop_flag = FALSE
3 iter = iter + 1 Update iteration number
4 gamma = exp(log(gmin)+(log(gmax)-log(gmin))*(nm-molrank)/(nm-1))

Update friction coefficients of molecules
5 frep = 0 Variable initialization for summation
6 for i = 1 to nm
7 for j = 1 to nm
8 d(i,j) = norm(x(i)-x(j)) Intermolecular distance
9 if 0 < d(i,j) < dcutoff and molclass(i) = 1 then
10 frep(i) = frep(i) - (x(j)-x(i))/(d(i,j)^3)

Intermolecular repulsion force
11 end
12 end
13 fbm(i) = normal_random(ndv) Random force vector
14 dx(i) = (K1*frep(i) + K2*fbm(i))/gamma(i) Molecular displacement
15 xnew(i) = x(i) + dx(i) New molecular position
16 Fobjnew(i) = objfunct(xnew(i)) New objective function evaluation
17 nFeval = nFeval + 1 Update number of function evaluations
18 dG(i) = (Fobjnew(i) – Fobj(i))/(max(Fobj)-min(Fobj)) 

Calculation of normalized free energy change
19 P(i) = exp(-K3*gamma(i)*dG(i)) Acceptance criterion
20 end
21 Call Molecules_update_subroutine
22 mopt = index of feasible molecule with best objective function value
23 if objfunct(x(mopt)) < Fopt then
24 Fopt = objfunct(x(mopt)) Optimal value of the objective function
25 xopt = mopt Position of the optimal molecule
26 end
27 evaluate stop_conditions
28 if any(stop_conditions) = TRUE then
29 stop_flag = FALSE
30 end
31 end
32 print Fopt, xopt, iter, nFeval
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Initialization procedure
Input Data: 
1 ndv = Number of decision variables
2 nm = Number of molecules
3 niter = Number of maximum iterations
4 tol = Tolerance in the objective function
5 objfunct(x) = Objective function evaluated at position x
Load Parameters:
6 gmin = Lowest friction coefficient
7 gmax = Largest friction coefficient
8 K1 = Repulsion force constant
9 K2 = Stochastic force constant
10 K3 = Constant used in the Metropolis criterion
11 minfexp = Minimum fraction of explorers during optimization
12 dcutoff = Cut-off distance for intermolecular forces
Initialization of variables:
13 iter = 0 Number of iterations
14 nFeval = 0 Number of function evaluations
15 stop_flag = FALSE Status of stopping conditions
Initialization of molecules:
16 for i = 1 to nm
17 molclass(i) = 1
Classification of molecules (0 = Refiner, 1 = Explorer)
18 x(i) = uniform_random(ndv)
Setting initial position vector of molecules
19 Fobj(i) = objfunct(x(i)) Initial objective function evaluation
20 nFeval = nFeval + 1 Update number of function evaluations
21 end
22 R = set of indices of refiner molecules
23 molrank = sort index of molecules according to feasibility (descending) and 

objective function (ascending)
24 mopt = index of feasible molecule with best objective function value

 
 

Molecules_update_subroutine procedure
1 for i = 1 to nm
2 if molclass(i) = 1 and P(i) > uniform_random then
3 x(i) = xnew(i) Update molecular position
4 Fobj(i) = Fobjnew(i) Update objective function value
5 if feasible and Fobj(i) < max(Fobj(r)) then
6 molclass(i) = 0 Molecule set as refiner
7 if sum(molclass) < nm*minfexp
8 r = index of refiner molecule with highest Fobj
9 molclass(r) = 1 Set molecule as explorer
10 end
11 end
12 elseif feasible and dG(i) < 0 then
13 x(i) = xnew(i) Update molecular position
14 Fobj(i) = Fobjnew(i) Update objective function value
15 end
16 end
17 molrank = sort index of molecules according to feasibility (descending)

and objective function (ascending)
18 for i = 1 to nm
19 if molrank(i) < nm-sum(molclass) then
20 molclass(i) = 0 Update refiners
21 else
22 molclass(i) = 1 Update explorers
23 end
24 end
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Appendix B. Global Optimization Problems 
 

B.1. Dixon-Szegö Test Functions 

 

Dixon and Szegö (1978) proposed a set of challenging set functions for testing global 

optimization algorithms. Some of these functions (all of them showing multiple local minima) 

were selected for testing the performance of MIPT vs. other well-established optimization 

methods. The details of the selected functions are presented here. 

 

Easom function 

• Number of variables: 2 

• Search region: -10 < xj < 10, j = 1, 2. 

• Definition:  

( )2
2

2
12121 )()(exp)cos()cos(),( ππ −−−−−= xxxxxxfobj    (B.1) 

• Global minimum: x1* = π, x2* = π, fobj* = -1 

 

Goldstein and Price function 

• Number of variables: 2 

• Search region: -2 < xj < 2, j = 1, 2. 

• Definition:  
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• Global minimum: x1* = 0, x2* = -1, fobj* = 3 

 

Shubert function 

• Number of variables: 2 

• Search region: -10 < xj < 10, j = 1, 2. 

• Definition:  
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• Multiple global minima: fobj* = -186.7309 
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Hartmann-3 function 

• Number of variables: 3 

• Search region: 0 < xj < 1, j = 1, 2, 3. 

• Definition:  
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• Global minimum: x1* = 0.114614, x2* = 0.555649, x3* = 0.852547, fobj* = -3.862782 

 

Table B.1. Parameters of Hartmann-3 function 

aij pij 
i 

j=1 j=2 j=3 
ci 

j=1 j=2 j=3 

1 3.0 10 30 1.0 0.6890 0.1170 0.2673 

2 0.1 10 35 1.2 0.4699 0.4387 0.7470 

3 3.0 10 30 3.0 0.1091 0.8732 0.5547 

4 0.1 10 35 3.2 0.0381 0.5743 0.8828 

 

 

Hartmann-6 function 

• Number of variables: 6 

• Search region: 0 < xj < 1, j = 1, ..., 6. 

• Definition:  

( )∑ ∑
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• Global minimum: x1* = 0.201690, x2* = 0.150011, x3* = 0.476874, x4* = 0.275332, 

x5* = 0.311652, x6* = 0.657300, fobj* = -3.32237 

 

Table B.2. Parameters of Hartmann-6 function 

aij pij 
i 

j=1 j=2 j=3 j=4 j=5 j=6 
ci 

j=1 j=2 j=3 j=4 j=5 j=6 

1 10 3 17 3.5 10 30 1.0 0.1312 0.1696 0.5596 0.0124 0.8283 0.5886

2 0.05 10 17 0.1 10 35 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 3 3.5 1.7 10 10 30 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

4 17 8 0.05 10 10 35 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381
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Shekel functions 

• Number of variables: 4 

• Search region: 0 < xj < 10, j = 1, …, 4. 

• Definition:  
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• Global minimum: x1* = 4, x2* = 4, x3* = 4, x4* = 4,  
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Table B.3. Parameters of Shekel functions 

aij 
i 

j=1 j=2 j=3 j=4 
ci 

1 4 4 4 4 0.1 

2 1 1 1 1 0.2 

3 8 8 8 8 0.2 

4 6 6 6 6 0.4 

5 3 7 3 7 0.4 

6 2 9 2 9 0.6 

7 5 5 3 3 0.3 

8 8 1 8 1 0.7 

9 6 2 6 2 0.5 

10 7 3.6 7 3.6 0.5 

 

 

B.2. Nonlinear Steady-State Model of a Biochemical 

Reaction Network 

 

The complete model for the pathway of ethanol production by Saccharomyces cerevisiae, 

and the corresponding optimization problem are presented by Xu et al. (2008). The 

optimization problem used as for testing the MIPT algorithm is the following: 
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B.3. Unstructured model of Ethanol Production 

 

The system considered by the unstructured model is composed of three main state variables: 

Glucose (G), Cells (X) and Ethanol (E) concentrations. The cells concentration in the batch 

depends on the cell’s growth and cell’s death rates as follows:  

 

XKX
dt
dX

d−= μ           (B.9) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

++
=

m

ss
s

m E
E

K
GGk

G 12μμ       (B.10) 

 

μ is the specific growth rate in h-1, Kd is the cell’s death rate in h-1, ks is the saturation growth 

constant in g/L, Kss is the substrate growth inhibition constant in g/L, and Em is the ethanol 

inhibition constant for growth in g/L. Besides substrate limitation, the cell’s growth 

expression shown in Equation (B.10) includes inhibition caused by both substrate (glucose) 

and product (ethanol). 

 

Glucose produced during the saccharification is given by the first term on Equation (B.11). 

The second and third term represent the fraction of glucose that is used for cell growth 

(including maintenance) and ethanol production respectively.  
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q is the ethanol specific production rate in h-1, YX/G is the yield coefficient of cell growth in 

g/g, YE/G is the yield coefficient of product in g/g and Kcm is the rate of glucose consumption 

for cell maintenance in h-1. 

 

Finally, the ethanol is produced only by cells at the rate: 

 

qX
dt
dE

=           (B.12) 
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qm is the maximum specific production rate in h-1, ksp is the saturation production constant in 

g/L, Kssp is the substrate production inhibition term in g/L, and Emp is the ethanol inhibition 

constant for production in g/L. 

 

The objective function for this problem was defined taking into account the normalized mean 

of the squared error (MSE) for the X, S, G and E, as: 

 

( ) ( )EGSXobjpk
MSEMSEMSEMSEF +++= minmin     (B.14) 

 

where pk represent the 12 parameters of the model to be identified: µm, ks, Kss, Em, Kd, q, ksp, 

Kssp, Emp, Kcm, YXG and YEG. 

 

The normalized MSE for each variable is described as: 
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where iyexp,  and iŷ  (for i=1,2..,n) are respectively the experimental data reported and the 

value predicted by the model for the variable y; and n is the number of available 

experimental data used for identification.  

 

The initial conditions of the fermentation are: 220 g/L of glucose and 0.2 g/L of biomass. 

The simulation time is 72 hours. The model is solved using Euler’s method with a step of 0.1 

hours. 
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B.4. Ethanol fed-batch fermentation 

 

The dynamic model for fed-batch production of ethanol by means of Saccharomyces 

cerevisiae, using glucose as raw material is given by: 

 

F
dt
dV

=            (B.16) 
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Where V, X, S and P are the state variables Volume, Biomass, Substrate (glucose) and 

Product (ethanol) concentration respectively. F is the substrate flow rate and Sin is the 

concentration of substrate in the feed. The kinetic expressions for cells’ growth and ethanol 

production are given by: 
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The parameters of the model are given in Table B.4. The initial conditions for the state 

variables and the constraints for the states (in this case only for the volume) and for the 

control variables are given in Table B.5.  

 

The substrate flow feed rate profile is described by a cosine parameterization:  
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The objective function to be maximized is the productivity of the process defined as: 
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The total fermentation time considered was 54 hours. 

 

Table B.4 Model parameters for the ethanol fermentation process taken from Hong (1986) 

Parameter Description Value 

μ0 (1/h) Maximum Biomass growth rate 0.408 

q0 (1/h) Maximum Ethanol production rate 1 

Ks (g/l) Monod Constant 0.22 

Ks' (g/l) Monod Constant 0.44 

Kp (g/l) Substrate Inhibition Constant 16 

Kp' (g/l) Product Inhibition Constant 71.5 

Y (gX/gS) Yield Factor 0.1 

Sin (g/l) Substrate Input Concentration 150 

 

Table B.5 Initial conditions for the ethanol fermentation process taken from Hong (1986) 

Bounds 
Variable 

Lower Upper

Initial 

Condition

V (l) 0 200 10 

X (g/l) 0 - 1 

S (g/l) 0 - 150 

P (g/l) 0 - 0 

F (l/h) 0 12 - 
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Appendix C. Additional information of the bio-

ethanol production process model 

C.1. Model parameters and operating conditions 

 

The model parameters, including the kinetics and the operating conditions used in the model 

of the hydrolysis stage are shown in Table C.1.  

 

Table C.1 Model parameters and operating conditions for the starch hydrolysis stage 

Parameter/ 

Operating 

condition 

Description Value Units 

kg Kinetic factor for gelatinization 1.116×1018 h-1 

Eag Activation Energy for gelatinization 1.083×108 J/kmol 

kmlt Kinetic constant for dextrins 

production 

421.2 kg/Uh 

Kde Kinetic factor for alpha-amylase 

deactivation 

2.484×1034 h-1 

Eade Activation Energy for denaturation 2.242×108 J/kmol 

aact
1 Specific Alpha-amylase Activity  5×107 U/kg 

TL Liquefaction temperature 365 K 

ρL Density  1037 kg/m3 

AT,L Cross section of the liquefaction tank 12.5 m2 

K3 Kinetic constant 7.56×10-5 kg/Uh 

km Michaelis-Menten constant 0.45 kg/m3 

ki Product inhibition constant 0.52 kg/m3 

gact
2 Specific Gluco-amylase Activity  7×107 U/kg 

AT,S Cross section of the saccharification 

tank 

45.45 m2 

TS Saccharification temperature 333 K 

PL Liquefaction pressure 1.2 atm 

PS Saccharification pressure 1.2 atm 
1,2 Specific activity of alpha-amylase and gluco-amylase from Bacillus subtillis and Aspergillius niger, respectively.  

 

Table C.2 shows the kinetics parameters and operating conditions considered for the 

fermentation stage. 
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Table C.2 Model parameters and operating conditions for the fermentation stage 

Parameter/ 

Operating 

condition 

Description Value Units 

μmax Maximum specific growth rate  0.4233 1/h 

Em Inhibition constant by product 80 kg/m3 

Xm Biomass concentration when cell 

grows ceases 

330 kg/m3 

A1 Constant in equation 4.37 1  

A2 Constant in equation 4.37 1  

Ks Monod constant 4.074 kg/m3 

Ki Inhibition constant by substrate 4.218×10-3 m3/kg 

YXS Limit cellular yield 0.1204 kg/kg 

Mx Maintenance coefficient 0.2548 h-1 

YPX Yield of product 4.7135 kg/kg 

Mp Ethanol production associated to 

growth 

0.1 h-1 

kdT Coefficient of death by temperature 2.48×10-14 h-1 

kdP Coefficient of death by ethanol 0.3928 m3/kg 

γx Ratio of concentration of intracellular 

to extracellular ethanol 

390 kg/m3 

AT,F Cross section of the Fermentor tank 75 m2 

TF Fermentor temperature 305 K 

PF Fermentor pressure 1.2 Atm 

 

The operating conditions and design parameters of the distillation and rectification columns 

are summarized in Table C.3. In addition, each adsorption unit (T-303/304) consists of a bed 

of 1000 kg of molecular sieves with a pore size of 3 Å. 

 

In Table C.4, the level-, pressure- and composition-control loops implemented in the plant as 

local control strategy (Section 6.1.1) are presented including their corresponding set point 

values and tuning parameters. 
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Table C.3 Operating conditions and design parameters for the purification section 

Parameter Distillation Rectification 

Feed trays 30 20, 42 

Feed temperature (K) 368 368, 358 

Top pressure (atm) 0.3 1 

Number of trays 37 43 

Tray diameter (m) 3 2 

Weir height (cm) 0.03 0.02 

Tray pressure drop (mm Hg) 5 5 

 

Table C.4 Local control strategy: Set points and tuning parameters 

Controller ID Set point Tuning parameters§§ 
LC-1 HLsp=6 m F2ss=90.16 m3/h 

K=50 m2/h 
LC-2 HSsp=11 m F4ss=90.2 m3/h 

K=100 m2/h 
LC-3 HFsp=12 m F6ss=222.52 m3/h 

K=200 m2/h 
LC-4 HB1sp=5 m B1ss=7762 kmol/h 

K=-5000 kmol/m h 
LC-5 HD1sp=3 m D1ss=1347.2 kmol/h 

K=-5000 kmol/m h 
LC-6 HB2sp=3 m B2ss=1089.8 kmol/h 

K=-5000 kmol/m h 
LC-7 HD2sp=2 m Qc2ss=7.2×1010 J/h 

K=5×109 J/m h 
PC-1 Pt1sp=225 mmHg Qc1ss=2.2×1011 J/h 

K=2.5×108 J/m h 
PC-2 Pt2sp=760 mmHg D2ss=290.37 kmol/h 

K=2 kmol/ mmHg h 
AC-1 Xv,F-sp= Xv,F-opt, is a 

variable SP (given by 
the D-RTO layer). 

F5ss=0 m3/h 
KF5=-0.001 m6/ kg h 

F8ss=0.576 m3/h 
KF8=0.5 m6/ kg h 

 

                                            
§§ The tuning parameters were determined as follows: First, an initial set of parameters was found 
according to Shinskey’s correlations given in O’Dwyer (2009). Then, each parameter was 
sequentially fine-tuned by using dynamic simulations of the plant and guidelines given by McMillan 
(2005).  
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C.2. Parameter identification and structural validation 

of the fermentation model  
 

The model of the fermentation stage was introduced and described in Equations (4.32) – 

(4.58). The fermentation kinetics was modeled as reported by Costa et al. (2002). In this 

section, the fermentation model is used to describe two different sets of fermentation 

experimental data in order to i) identify the best set of parameters for describing the kinetics 

of the process considered, which is a continuous fermentation with high biomass 

concentration and cells recycle; and ii) to assess the adequacy of the model structure 

(Equations 4.32 – 4.43), by using the model structure for describing a completely different 

set of data. The model structure validation is carried out using experimental data of batch 

fermentation with low biomass concentration and no cells recycle.  

 

Parameter identification 

The parameter identification was carried out using experimental data reported by Jarzebski 

et al. (1989). The objective function minimized for parameter identification was the Mean 

Square Relative Error (MSRE) for the state variables in the fermentor, namely: Viable yeast 

(Xv), total biomass (Xt), glucose (G) and ethanol concentrations (E), as shown in Equation 

(C.1). The optimization method used was the Molecular-Inspired Parallel Tempering (MIPT) 

algorithm presented in Chapter 3. 
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where ND is the number of experimental data and ti is the time at which each experimental 

data was taken.   

 

Results of parameter identification are presented in Figure C.1, showing the comparison 

between the model used in this work (red line) and the experimental data reported by 

Jarzebsky et al. (1989), for the total biomass, viable biomass, glucose and ethanol 

concentrations. The objective function value in the parameter identification for the model 

used in this work was MSRE=0.0193, indicating a very good fit between the experimental 
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data and the model, which is confirmed by an analysis of Figure C.1. Predictions for Biomass 

(total and viable) and glucose presented the best fit to experimental data, whereas ethanol 

predicted by the model presents a higher deviation from the data, which can be caused by 

the high dispersion of the experimental data after 50 hours. The best set of parameters 

identified has been already presented in Table C.2. 
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Figure C.1 Comparison of experimental data and the model used in this work after parameter 

identification for continuous ethanol fermentation with cells recycle and high biomass. Top left: Total 

biomass; Top right: Viable biomass; Bottom left: Glucose concentration; Bottom right: Ethanol 

concentration. The data points are the Experimental data from Jarzebsky et al (1989) and the red 

line describes the model predictions.  

 

 

Model Structure Validation 

In order to validate the model structure, experimental data from a batch fermentation 

process were used. For that purpose, batch fermentation experiments were performed using 

the yeast Saccharomyces cerevisiae 46 EDV and a culture medium with the following 

composition: 118.4 g/l glucose, 2 g/l (NH4)2SO4, 2.72 g/l KH2PO4, 0.5 g/l MgSO4⋅7Н2О and 1 

g/l yeast extract. Temperature and pH were controlled at 28 °С and 4.5 respectively. The 

bioreactor used was a 2-Liter glass cylinder (1.7 liters working volume) equipped with a six-
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blade turbine stirrer and an Applikon control system. Yeast inoculum concentrations of 2% 

(w/v) were used corresponding to an initial population of living cells of approximately 107 

CFU/mL. Ethanol and glucose concentrations were determined from density measurements 

using an Anton Paar DMA 4500, whereas the biomass was measured spectrophotometrically 

at 620 nm wavelength using a Spekol 11. It is important to notice that these experimental 

data were taken in a batch lab-scale bioreactor without cells recycle, and with a low biomass 

concentration, in contrast to the experimental data by Jarzebky et al. (1989) that were 

used for parameter identification, where a continuous fermentation with cell recycle at high 

biomass concentration was evaluated. Therefore, the purpose of using the new set of batch 

experimental data is to validate only the model structure (Equations 4.32 – 4.43), for which 

new parameters should be identified.***  

 

The error function to be minimized in this case is the same than that described by Equation 

(C.1), but without the viable yeasts term, because the set of experimental data only include 

data for total biomass, glucose and ethanol. Figure C.2 shows the comparison between the 

model and the new set of experimental data, for the total biomass, glucose and ethanol 

concentrations. As it can be observed, the model is in good agreement with the experimental 

behavior (MSRE = 0.00435), especially for the glucose and ethanol predictions. The highest 

deviation is observed in the biomass concentration, which can be explained by the accuracy 

of biomass determination.  

 

It is observed that the model structure used in this work for the fermentation model, which 

was taken from Costa et al. (2002), is a reliable structure for representing the ethanol 

fermentation from glucose for a wide range of operating conditions: either batch or 

continuous mode, with or without cells recycle, and high or low biomass concentration. 

 

                                            
*** The parameters of the model change as a result of the different operating conditions (biomass 
concentration, substrate concentration, etc.), different microorganism strain and also different 
substrate quality. 
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Figure C.2 Comparison of experimental data and simulation models after parameter identification for 

batch ethanol fermentation without cells recycle and low biomass concentration. Top: Total biomass; 

Top right: Glucose concentration; Bottom Ethanol concentration. Data points: Experimental data; Blue 

Red line: Model used in this work. 

 

 

C.3. Phase equilibrium calculation and additional 

constants and model parameters 

 

The Vapour-Liquid equilibrium in the trays of the distillation and rectification columns is 

described by Equation (4.65), rewritten in Equation (C.2). 
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where γj and Pv,j are the activity coefficient and the vapor pressure, respectively. The activity 

coefficients are calculated using the UNIQUAC model as given by Equation (C.3) 

 

( )ricii ,, lnlnexp γγγ +=         (C.3) 

 

where γI,c and γI,r are the combinatorial and residual activity contributions, which are given 

by Equation (C.4) and (C.5), respectively. 
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where Qi is a molecular area parameter for component i, whereas  φi, θi, and τij are the 

molecular volume fraction and molecular area fraction of component i and temperature-

dependent interaction parameters, given by Equations (C.6) – (C.8). 
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where Ri, aij and bij are the molecular volume parameter and the UNIQUAC interaction 

constants for component i, and T and T0 are the system temperature and the reference 

temperature. 

 

The vapor pressure in Equation (C.2) is calculated according to Antoine’s equation: 
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Table C.5 and C.6 show the parameters used for the phase equilibrium calculations for the 

three-component system: Ethanol-water-glucose. The parameters for the calculation of the 

activity coeffcients were taken from Macedo and Peres (2001), whereas the Antoine 

parameters are those reported by Gmehling et al. (1990). The vapour pressure of the 

heavy components (i.e. glucose, starch, non-fermentable) was assumed to be zero for the 

whole range of temperatures considered.  

 

Table C.5 UNIQUAC interaction parameters for the system ethanol-water-glucose taken from Macedo 

and Peres (2001) 

Parameter Value Units 

R1 2.5755  

R2 0.92  

R3 8.1528  

Q1 2.588  

Q2 1.4  

Q3 7.92  

a11 0 K 

a22 0 K 

a33 0 K 

a12 249.06 K 

a21 -132.51 K 

a13 178.83 K 

a31 9.1123 K 

a23 96.5267 K 

a32 -68.6157 K 

b11 0  

b22 0  

b33 0  

b12 0  

b21 0  

b13 0  

b31 0  

b23 0.277  

b32 -0.069  

T0 298.15 K 
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Table C.6 Antoine Parameters (Temperature in K, Pressure in mm Hg) taken from Gmehling et al. 

(1990) 

Parameter Value 

AE 8.1122 

BE 1592.864 

CE -46.966 

Aw 8.07131 

Bw 1730.63 

Cw -39.574 

 

On the other hand, the expressions used for calculating thermodynamic variables of mixtures 

are the following: 
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The parameters for the calculation of specific heat and vaporization enthalpy of water were 

taken from Smith et al. (2005). The corresponding parameters for ethanol were taken 

from Henke et al. (2009). These are presented in Table C.7. Additional physicochemical 

properties are included in Table C.8. 
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Table C.7 Additional thermodynamic parameters taken from Smith et al. (2005) and Henke et al. 

(2009) 

Parameter Value units 

acp,w 7.243×104 J/kmol K 

bcp,w 10.3925 J/kmol K2 

ccp,w -1.4965×10-3 J/kmol K3 

aλ,w 5.5968×107 J/kmol 

bλ,w -4.0387×104 J/kmol K 

acp,E 1.28×105 J/kmol K 

bcp,E 2.986×103 J/kmol K 

ccp,E 7.779×104 J/kmol K 

dcp,E 2.1405×105 J/kmol K 

ecp,E -3.4487×105 J/kmol K 

fcp,E 6.6786×105 J/kmol K 

aλ,E 5.043×107 J/kmol 

bλ,E 0.4989  

cλ,E 0.4475  

Tc,E 513.92 K 

 

 

Table C.8 Physicochemical properties of components 

Parameter Value units 

wco2 44 kg/kmol 

wE 46 kg/kmol 

ww 18 kg/kmol 

wG 180 kg/kmol 

wS 342 kg/kmol 

ρE 790 kg/m3 

ρw 1000 kg/m3 

 

C.4. Distillation Model Validation  

 

Before validating the model for the distillation columns, it is necessary first to verify that the 

vapor-liquid equilibrium (VLE) model adequately describes the system. Figure C.3 shows a 

comparison of the UNIQUAC model used to describe the VLE (Appendix C.3) versus reported 

experimental data (Green and Perry, 2008). As it can be seen, there is a good agreement 

between the experimental data and the UNIQUAC, with an average absolute error of 2.1% in 
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ethanol composition and a maximum absolute error of 3.5%. It can be noticed that the 

largest deviations are observed in the range of 30-70% ethanol (molar basis), and that the 

UNIQUAC model satisfactorily predicts the azeotrope at around 89%mol of ethanol. 

Therefore, it is concluded that the UNIQUAC model and its corresponding parameters can be 

used to predict equilibrium data in the ethanol-water system.  
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Figure C.3 Ethanol-water Vapor-Liquid Equilibrium. Experimental data (Green and Perry, 2008) vs. 

UNIQUAC model (Gmehling et al., 1990). 

 

The distillation and rectification models were validated using simulated data obtained from 

Aspen Plus. The validation procedure was the following. Both columns were separately 

simulated in: 

• Aspen Plus using Radfrac columns under the conditions identified as optimal (See 

Table C.3) 

• Simulink using the dynamic model of the columns presented in Section 4.1.4.2, 

until it reached a steady state, for the same optimal design parameters (Table 

C.3) and input values (Table 4.3.).  

 

The comparison between the validation data (e.g. Aspen simulated data) and the Simulink 

model for the temperature profiles across the column, and the profiles for the ethanol 

concentration in the liquid phase, for the Distillation and rectification columns is shown in 

Figures C.4 and C.5, respectively. Table C.9 shows the average and maximum deviation of 

these variables between the Aspen model and the model presented in Chapter 4. The 
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deviation in composition is the absolute value expressed as %mol. The deviation in 

temperature is presented relative to the temperature obtained in Aspen Plus. 

 

Table C.9 Comparison of distillation and rectification models presented in 4.1.4.2 versus Aspen Plus 

 
Average 

deviation 

Maximum 

deviation 

Composition 0.05% mol 0.58% mol 
Distillation column 

Temperature 0.16% 3.89% 

Composition 0.44% mol 4.93% mol 
Rectification column 

Temperature 0.16% 1.57% 
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Figure C.4 Comparison between the distillation column model presented in Chapter 4 and results 

obtained using Aspen Plus. Left: Ethanol molar fraction; Right: Tray temperature. 
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Figure C.5 Comparison between the rectification column model presented in Chapter 4 and results 

obtained using Aspen Plus. Left: Ethanol molar fraction; Right: Tray temperature. 
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As can be seen in Table C.8 and Figure C.4, for the distillation case, the model developed in 

this work and implemented in in Simulink is in excellent agreement with the Aspen Plus 

results for most of the trays in the column. The main deviation between the model and the 

Aspen data lies on the temperature of the condenser stage, basically because of the 

assumption of no sub-cooling in the total condenser for the Simulink model. On the other 

hand, for the rectification case, analyzing results shown in Table C.8 and in Figure C.5 it is 

possible to conclude that the Simulink model used in this work is in very good agreement 

with the Aspen plus model, and that the maximum deviation between the model predictions 

and the Aspen simulated data is observed for the concentration profile at the bottoms of the 

column (trays 40-43).  

 

After comparing the simulink model for the distillation and rectification columns with total 

and partial condenser respectively, it is possible to conclude that the model described in 

Chapter 4 for the Distillation and Rectification is a suitable model for being used in the 

simulation studies.  

C.5. Initial conditions of the process  

A summary of the initial (optimal steady-state) conditions of the process are summarized in 

Tables C.10 and C.11. 

 

Table C.10 Initial values of state variables in reactors 

Variable \ Equipment Liquefaction 
tank (R-101) 

Saccharification 
tank (R-102) 

Fermentor  
(R-201) 

Level (m) 6.00 11.00 12.00 
Ungelatinized starch 

concentration (kg/m3) 0.86 0.85 0.83 

Gelatinized starch 
concentration (kg/m3) 0.19 0.19 0.08 

Maltotriose concentration 
(kg/m3) 260.57 6.20 2.51 

Alpha-amylase 
concentration (kg/m3) 0.00 0.00 0.00 

Non-fermentables 
concentration (kg/m3) 109.38 109.34 44.32 

Glucose concentration 
(kg/m3) 0.00 272.32 0.83 

Glucoamylase 
concentration (kg/m3) 0.00 0.34 0.14 

Ethanol concentration 
(kg/m3) 0.00 0.00 64.39 

Viable biomass 
concentration (kg/m3) 0.00 0.00 82.39 

Total biomass 
concentration (kg/m3) 0.00 0.00 119.23 

CO2 concentration (kg/m3) 0.00 0.00 1.22 
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Table C.11 Initial values of state variables in columns 

Distillation Rectification 
Tray %mol 

Ethanol 
%mol 
Water 

Holdup 
(kmol) 

Temp 
(K) 

%mol 
Ethanol 

Holdup 
(kmol) 

Temp 
(K) 

1 (Bottom) 0 0.99638 278.4 356.15 7.26E-15 166.7 379.94 
2 0 0.99771 36.8 356.15 3.65E-14 13.2 379.94 
3 7.51E-16 0.99770 36.8 355.83 1.74E-13 13.2 379.79 
4 3.23E-15 0.99770 36.8 355.52 8.18E-13 13.2 379.64 
5 1.04E-14 0.99770 36.7 355.19 3.84E-12 13.2 379.49 
6 3.14E-14 0.99770 36.7 354.87 1.80E-11 13.2 379.34 
7 9.33E-14 0.99770 36.7 354.54 8.47E-11 13.2 379.18 
8 2.76E-13 0.99770 36.7 354.20 3.98E-10 13.2 379.03 
9 8.14E-13 0.99770 36.7 353.87 1.87E-09 13.2 378.87 
10 2.41E-12 0.99770 36.7 353.52 8.82E-09 13.2 378.72 
11 7.11E-12 0.99769 36.7 353.18 4.15E-08 13.2 378.56 
12 2.10E-11 0.99769 36.7 352.83 1.96E-07 13.2 378.41 
13 6.23E-11 0.99769 36.7 352.48 9.22E-07 13.2 378.25 
14 1.84E-10 0.99769 36.7 352.12 4.35E-06 13.2 378.09 
15 5.47E-10 0.99769 36.7 351.76 2.05E-05 13.2 377.93 
16 1.62E-09 0.99769 36.6 351.39 9.69E-05 13.2 377.74 
17 4.81E-09 0.99769 36.6 351.02 0.00046 13.2 377.48 
18 1.43E-08 0.99769 36.6 350.64 0.00215 13.1 376.83 
19 4.25E-08 0.99768 36.6 350.26 0.00998 13.0 374.68 
20 1.26E-07 0.99768 36.6 349.87 0.04318 12.5 368.91 
21 3.76E-07 0.99768 36.6 349.48 0.11270 8.9 363.23 
22 1.12E-06 0.99768 36.6 349.08 0.31731 7.6 357.93 
23 3.34E-06 0.99768 36.6 348.68 0.53574 6.8 356.01 
24 9.98E-06 0.99767 36.6 348.27 0.65428 6.4 355.33 
25 2.98E-05 0.99765 36.5 347.85 0.71927 6.3 354.96 
26 8.90E-05 0.99758 36.5 347.41 0.75925 6.2 354.68 
27 0.00027 0.99741 36.5 346.93 0.78608 6.1 354.46 
28 0.00079 0.99688 36.5 346.36 0.80524 6.1 354.25 
29 0.00236 0.99531 36.4 345.52 0.81955 6.1 354.06 
30 0.00688 0.99078 36.2 344.29 0.83061 6.0 353.88 
31 0.00688 0.99312 22.7 343.59 0.83938 6.0 353.70 
32 0.00687 0.99313 22.7 343.13 0.84649 6.0 353.53 
33 0.00687 0.99313 22.7 342.66 0.85234 6.0 353.36 
34 0.00706 0.99294 22.7 342.14 0.85723 6.0 353.19 
35 0.00906 0.99094 22.6 341.22 0.86136 6.0 353.02 
36 0.02870 0.97130 22.0 337.48 0.86488 6.0 352.85 
37 0.18854 0.81146 129.0 337.48 0.86791 6.0 352.69 
38     0.87053 6.0 352.52 
39     0.87281 6.0 352.35 
40     0.87480 5.9 352.18 
41     0.87654 5.9 352.01 
42     0.87808 5.9 351.85 
43     0.88743 46.1 351.75 
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Appendix D. Process Design 
 

In order to test the plantwide control methodology from an optimization perspective, the first 

step was the development of an optimal process design. For this purpose, the model 

developed in Section 4.1 was used. The process was designed to achieve a nominal 

production of 100.000 Ton ethanol/year (12.63 Ton/h for 330 days of operation during 

24h/day) using a mash of starchy material as feed. The following aspects were considered 

during the process design stage: 

1. For the conversion of starch to ethanol, a yield of only 90% was considered. Thus, 

the theoretical mass flow of ungelatinized starch required is 24.7 Ton/h. The raw 

material is considered to consist of: nonfermentable matter (25%), ungelatinized 

starch (60%) and water (15%). 

2. According to Karuppiah (2008), the amount of alpha-amylase and glucoamylase 

needed in the liquefaction and saccharification steps is 0.05% and 0.12% the weight 

of starch slurry, respectively. That is, flow rates of 20.6 kg/h alpha-amylase and 49.5 

kg/h glucoamylase are required.  

 

The main design parameters were obtained using sensitivity analysis, minimizing a pure 

economic objective function related to the capital and operating costs in the process. The 

economic objective function used for the sensitivity analysis is given in Equation (D.1): 

 

∑
=

−+++++=
10

0year
lRawMateriaRectiDistilFerSacLiqTotal ProfitCCCCCCC  (D.1) 

 

where the total cost in Euros (CTotal) was evaluated for a period of 10 years of operation. CLiq, 

Csac, CFer, CDistil and CRecti are the costs in the liquefaction, saccharification, fermentation, 

distillation and rectification sections, respectively. CRawMaterial and Profit is the difference 

between the costs related to raw material consumption and the incomes generated from the 

commercialization of the product. The costs for the liquefaction, saccharification and 

fermentation tanks consider only the capital costs related to the size of each tank (assuming 

L/D =1.5, and vertical cylindrical vessels), as shown in Equations (D.2) – (D.4) (Hoch and 

Espinosa, 2008).  
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where a is the annualized cost of the equipment, calculated as: 

 

( )
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−+

+
= y

y

i
iia           (D.5) 

 

y represents the years of operation considered (10 years), and i is the annual interest rate. 

For this process, the annual interest rate used was 42% (Franceschin et al., 2008). 

The capital costs for the distillation and rectification columns were calculated using the 

expressions reported by Hoch and Espinosa (2008) (D.6 – D.7), which take into account 

the cost for the shell (Cshell) and the cost of the trays (Ctrays) in the columns. The operating 

costs for each column consider the energy consumption of the reboiler (QReb) and the 

condenser (Qcond).  

 

CondbTraysShellColumn CCCCC +++= Re       (D.6) 

condCoolbresteamTNTqtraysBMqBMColumn QCQCDNffFDLfFC +++= 2146.2
,

23.1 10441190
87.0

  

(D.7) 

 

where L is the height of the column, D is the column diameter and NT is the total number of 

stages. The parameters FBM, FBM,trays, fq, and fNT are the bare module and the contingency for 

the shell and the stages, respectively. Considering steel as construction material and 

assuming a height equal to L=NT*D/2, the following expressions for the total cost in the 

columns are obtained: 
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Steam (Csteam) and cooling costs (Ccool), taken from Hoch and Espinosa (2008), are 

Csteam=22.62  €/MW and  CCool=3.82 €/MW. 

 

In total, seven design parameters were selected for sensitivity analysis, namely the liquid 

volume of the liquefaction, saccharification and fermentation tanks, and the number of trays 

and feed tray location for the distillation and rectifications columns. The sensitivity analysis 

for process design was carried out as follows. Each parameter was changed between the 

lower and upper bounds shown in Table D.1, while keeping all other parameters at their 

nominal values (initial estimates) if they have not been analyzed yet, or at their optimal 

values if they have already been analyzed. The procedure was sequentially solved in the 

order presented in Table D.1. The results of the sensitivity analysis that led to the optimal 

design of the process are shown in Figure D.1.  

 

Table D.1 Design parameters and their values considered for sensitivity analysis 

Design Parameter Variation Interval 
Nominal value 

(initial estimate) 
Optimal Value 

Liquefaction Tank Volume 
VL (m3) 40 – 100 50 90 

Saccharification Tank 
Volume Vs (m3) 40 – 1000 70 600 

Fermentation Tank 
Volume VF (m3) 400 – 1500 700 1080 

Number of trays in 
Distillation column 30 – 38 36 37 

Feed Tray in Distillation 
column 5 – 35 20 30 

Number of trays in 
Rectification column 4 – 47 39 43 

Feed Tray in Rectification 
column 2 – 40 4 20 

 

Table D.1 shows the range of values considered for each design parameter and the optimal 

value obtained after analyzing the sensitivity of the economic objective function with respect 

to these parameters. 
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 e) Distillation Column Feed Tray
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g) Rectification Column Feed Tray
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Figure D.1 Sensitivity analysis of the main process design parameters. a) Liquifier volume, b) 

Saccharificator volume, c) Fermentor volume, d) Number of trays in distillation column, e) Distillation 

column feed tray, f) Number of trays in rectification column, g) Rectification column feed tray 




