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ABSTRACT
Machine learning (ML) methods are being used in almost every conceivable area of electronic structure theory and molecular simulation.
In particular, ML has become firmly established in the construction of high-dimensional interatomic potentials. Not a day goes by with-
out another proof of principle being published on how ML methods can represent and predict quantum mechanical properties—be they
observable, such as molecular polarizabilities, or not, such as atomic charges. As ML is becoming pervasive in electronic structure theory
and molecular simulation, we provide an overview of how atomistic computational modeling is being transformed by the incorporation of
ML approaches. From the perspective of the practitioner in the field, we assess how common workflows to predict structure, dynamics, and
spectroscopy are affected by ML. Finally, we discuss how a tighter and lasting integration of ML methods with computational chemistry and
materials science can be achieved and what it will mean for research practice, software development, and postgraduate training.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0047760

I. INTRODUCTION

Atomistic and electronic structure simulations based on quan-
tum theoretical calculations form a central aspect of modern chem-
istry and materials research. They enable the prediction of molec-
ular and materials properties from first-principles as well as the
simulation of atomic-scale dynamics. On this basis, computational
chemists and physicists in academia and industry contribute to the
fundamental mechanistic understanding of chemical processes, the
identification of novel materials, and the optimization of existing
ones. Over the last few decades, computational molecular simu-
lation has been firmly established in the chemical sciences as an
important part of the method portfolio. This was accompanied by
a move to streamline and optimize common workflows for model
building and simulation (see Fig. 1). Algorithms for molecular
geometry optimization, efficient molecular dynamics (MD) simu-
lations, and electronic structure calculations perform highly spe-
cialized tasks while being massively scalable and parallelized across
a diverse range of hardware architectures.1,2 Simultaneously, Ph.D.
graduates in the field have been trained to be expert users of exist-
ing and developers of new simulation workflows. This is the status

quo at the time when machine learning (ML) methods enter the
stage.

The application of ML to atomistic simulation and electronic
structure theory has been developing rapidly since its earliest works
in a modern context.3–11 A number of excellent reviews have recently
been written to highlight progress in various contexts, including
the role of ML in catalyst design,12,13 in the development of force
fields and interatomic potentials for ground-state properties14–19 and
excited states,20–22 in quantum chemistry,23,24 and in finding solu-
tions to the Schrödinger equation25 and the role of unsupervised
learning in atomistic simulation26 (see Table I for a non-exhaustive
list).

An excellent retrospective of the last decade of ML in the con-
text of chemical discovery has recently been published by von Lilien-
feld and Burke,27 predicting a bright future in the context of ML for
quantum chemistry that lies ahead. Indeed, not a day goes by with-
out another novel ML approach being published, which promises
to predict atomic and electronic properties of molecules and mate-
rials at ever greater accuracy and efficiency. A main goal of many
ML models is the parameterization of analytical models to repre-
sent electronic structure. These ML models can then be evaluated
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extremely fast. Thus, ML models can speed up simulations to achieve
longer time and length scales. Their efficiency depends strongly
on the design of descriptors or neural network (NN) architectures
that optimally chart the vast space of chemical compounds and
materials.28,29 These approaches have the potential to fundamentally
change day-to-day practices, workflows, and paradigms in atomistic
and quantum simulations as they become more tightly integrated
with existing tools. But how exactly will ML affect the method
portfolio of future computational scientists working in electronic
structure theory and molecular simulation? How will this affect a
practitioner who wants to determine the equilibrium structure and
ground-state energy of a molecular system using electronic structure
theory? How will it change the required expertise and demands on
Ph.D. graduates?

For the uninitiated, it is easy to get lost in the vast array
of ML models, which might soon be comparable to the zoo of
exchange-correlation functionals available in density functional the-
ory (DFT).30 What will become the ML equivalent of go-to DFT
functionals for practitioners? At the moment, there are relatively
few examples where ML models have become generally applicable
to researchers outside the immediate circle of developers. In this
Perspective, we are discussing recent advances through the lens of
their potential benefit to a wide community of computational molec-
ular scientists who are not ML experts. Our goal is to identify future
possibilities of permanent integration of ML-based approaches into
workflows and electronic structure and simulation software pack-
ages. This can, for example, involve a common code base and data
structure for ML and simulation algorithms or bidirectional data
exchange between workflows based on ML or physical simulation.
Central to this Perspective is the question how ML can effectively

TABLE I. Overview of recent reviews of machine learning methods in electronic struc-
ture theory and atomistic simulation. This is not intended to be a complete list of all
reviews on the subject, but a selection of suggested further reading.

Year References Topic of ML Review

2017 Behler14 Interatomic potentials
2018 Goldsmith et al.31 ML in catalysis
2019 Carleo et al.32 ML in physical sciences
2019 Yang et al.33 Drug discovery
2019 Elton et al.13 Molecular design
2019 Schleder et al.34 ML in materials science
2019 Ceriotti26 Unsupervised learning
2020 Dral23 ML in quantum chemistry
2020 Noé et al.35 Molecular simulation
2020 von Lilienfeld et al.24 Chemical space
2020 Mueller et al.15 Interatomic potentials
2020 Manzhos et al.16 Small molecules and reactions
2020 Gkeka et al.17 Force fields and coarse graining
2020 Unke et al.18 Force fields
2020 Toyao et al.36 Catalysis informatics
2020 Manzhos25 ML in electronic structure
2020 Westermayr and ML for excited states

Marquetand20

2021 Behler37 Neural network potentials

FIG. 1. Schematic depiction of the key workflow steps in computational molecular
and materials modeling: model building and method choice, electronic structure
calculations, structure exploration and dynamics, and connection to experiment.
All of these steps can benefit from ML models. In many cases, ML methods do not
just enhance existing approaches but also open avenues toward new workflows.

address the computational bottlenecks and capability gaps in elec-
tronic structure calculations and molecular simulations and what are
the steps needed to make ML an integral part of the method portfolio
of this field.

Our goal is to make this account as accessible as possible and
to highlight applications and approaches that the community might
want to keep track of in the future. We stress that our aim is not to
provide a comprehensive review of existing ML descriptors, repre-
sentations, and approaches, which is beyond the scope of this Per-
spective and well covered by further reading material in Table I.
Following the key steps of molecular modeling shown in Fig. 1, each
section focuses on how ML methods can benefit a central workflow
or aspect of computational molecular and material science (cf. high-
lighted sentences in each paragraph). We place a particular focus on
approaches that have the potential to augment existing or introduce
new prevalent approaches.

II. MACHINE LEARNING PRIMER
We start by introducing basic terminology and concepts of

ML that will be used in Secs. III–VII. ML is concerned with algo-
rithms that improve with increasing amount of available data under
some performance measure. Statistical learning theory offers a gen-
eral framework to find predictive functions f : X→ Y mapping an
input space X to a target space Y.38 In contrast to conventional phys-
ical models, where one often starts with clear assumptions about
the system to be modeled, ML focuses on universal approximators.
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These are able to represent any function with arbitrary accuracy,
when given enough training data and parameters. Examples for
this class of models are Gaussian processes (GPs) or NNs.39 GPs
are defined by linear combinations of the covariances between data
points. These are given by a suitable (nonlinear) kernel function.
NNs consist of a sequence of multiple linear transforms, alternated
with nonlinear activation functions. This is also referred to as deep
learning, where each set of transform and nonlinearity is called a
layer.

The functional relationship to be found is specified by choos-
ing a suitable loss function. If the loss ℓ( f (x), y) requires knowledge
of the targets y ∈ Y, this is called supervised learning. This includes
classification and regression for categorical and continuous target
spaces Y, respectively (see also Fig. 2). ML force fields are examples
of regression tasks (see Sec. IV),40 where often the squared error is
used as a loss function. For instance, classifiers can be used to auto-
matically select appropriate quantum chemistry methods for a given
system (see Sec. III). In contrast, unsupervised ML aims to find pat-
terns in the data that are specified by a loss function without having
access to the ground truth targets y. Tasks falling under this category
include clustering, dimensionality reduction, or density estimation
of the data distribution. In the context of computational chemistry,
unsupervised ML finds application in post-processing and analysis
of molecular simulation data, e.g., in identifying collective variables
(CVs) and reaction pathways that will be discussed in Sec. VI (see
also Fig. 2).

The optimal predictive function minimizes the expected risk,
i.e., the expectation of the loss function weighted by the probability
distribution over the data.41 However, the data distribution is usu-
ally unknown, and in supervised learning, the loss requires access to

FIG. 2. Schematic depiction of different ML model categories. Unsupervised learn-
ing techniques use unlabeled data and are often used for dimensionality reduction
or clustering, whereas supervised ML models perform regression or classification
tasks on labeled data.

the targets. Thus, one instead optimizes the empirical risk, i.e., the
expectation over a training set sampled from the data distribution.
This could, for example, consist of electronic structure calculations
of systems x ∈ X with properties y ∈ Y. Since there typically exist
many possible approximates that fit a finite training set, one intro-
duces regularizer terms to the optimization problem, which punish
complex solutions. This avoids overfitting, i.e., an increased error on
unseen data due to approximating a simple functional relationship
with an overly complex function on the training set.

Another important aspect to consider is the selection of train-
ing examples, which should be representative of the distribution
encountered when applying the ML model. This requires not only
a sufficient number of training examples but also sufficient coverage
of the input space. If an ML model is applied outside of its train-
ing domain, i.e., if it is used for extrapolation, its predictions quickly
become unreliable. Active learning aims to detect this and acquire
additional training data in the corresponding regions. Similarly,
Bayesian optimization is an approach for global search that obtains
additional examples where there is a high probability to optimize a
given criterion based on the current model and its uncertainty. ML
models are typically evaluated on a separate test set that is not used
during the training process, i.e., also not for controlling overfitting.
To get a better measure of the reliability of ML models in different
regions and to detect holes, additional sampling of data can be car-
ried out with, e.g., enhanced sampling techniques.42,43 Alternatively,
when using two NNs, minima of their negative squared difference
surface can be used to detect sparse conformational regions.44

To design accurate and data-efficient ML models, it is impor-
tant to be aware of the structure of the input space and how it is
represented. Encoding prior knowledge in the model reduces the
effective space to cover and, thus, the required amount of train-
ing data. Examples include the use of convolutions to encode roto-
translational invariances45 or delta learning, where only the differ-
ence to a baseline is learned.46 Beyond that, transfer learning stud-
ies how knowledge contained in models trained on one task can
be reused for related tasks. This also means that the question of
whether a prediction is an extrapolation depends not only on the
given training data but also on the prior knowledge built into the
ML model.

By employing a probabilistic input space and a structured tar-
get space, one obtains a model that can, e.g., be used to gener-
ate novel molecular structures. The probability distribution over
molecular space can be modeled explicitly, for example, using vari-
ational autoencoders,47 or implicitly, e.g., by generative adversar-
ial networks48 that provide access to the distribution only through
sampling. In a supervised setting, generative models can facilitate
inverse design by learning a probability distribution of chemical
structures conditioned on a desired target range of one or multiple
properties.

Finally, reinforcement learning is concerned with learning the
optimal action in a given state to maximize a specified future reward.
An example for this is an unfolded protein (state), where one applies
changes to the geometry (action) in order to come closer to the
folded structure with minimum energy (future reward).49 Reinforce-
ment learning includes an exploration strategy such that more data
are collected during the training process. Therefore, it can, for exam-
ple, be used for molecular design without requiring a representative
set of reference structures before training.
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III. ML IMPROVES MODEL BUILDING, METHOD
CHOICE, AND OPENS NEW MULTI-SCALE
APPROACHES

The first task one faces when investigating a chemical problem
in silico is to determine a suitable computational model. The model-
ing process involves the design of the atomistic structural model and
the choice of computational method for calculating the properties of
interest. Both choices traditionally are based on achieving a balance
between a sufficiently accurate description of the chemical phenom-
ena to be studied and limited computational effort that renders the
calculations feasible.

Computational methods can range from electronic structure
theory methods (e.g., correlated wavefunction or density functional
approaches) to more approximate empirical force fields. Depend-
ing on the level of approximation, a method can be appropriate
for modeling certain phenomena while being less reliable for oth-
ers. One example is classical empirical force fields, which sacrifice
the ability to model chemical bond breaking in favor of computa-
tional speed but yield excellent predictions for ensemble averages
of macromolecular systems. Different applications also place differ-
ent accuracy requirements on the reference method. A concept often
mentioned in the context of ML in chemistry is chemical accuracy,
which originally specified that the energy error of a computational
method deviates at most 1 kcal/mol from experiment. This accu-
racy requirement was coined by Pople in his Noble lecture50 for
thermodynamic properties, where it allows reliable comparison with
experiment.51 However, other applications may necessitate signif-
icantly more rigorous error limits. In the field of high-resolution
vibrational spectroscopy, for example, reliable predictions require
so-called spectroscopic accuracy, which corresponds to an energy
error smaller than 1 cm−1 or 0.003 kcal/mol.52 The model building
stage furthermore involves a range of decisions on how to repre-
sent the system, for example, how to treat environments such as
solvents, what size the simulation cell should have, or which atoms
to model explicitly. All these decisions can influence the quality
of results at a fundamental level and hence need to be considered
carefully.

Unfortunately, choices are often ambiguous and different
strategies can still yield similar results or may only work in cer-
tain combinations. The associated design choices typically require a
mix of expertise and chemical intuition of experienced practition-
ers. This makes it hard to see how ML could help automate this
process. Nevertheless, ML models can, e.g., learn to infer decision
rules or categorize complex patterns in a purely data driven fashion.
This makes them a promising tool to provide support during the
model building stage, making balanced model building choices more
widely available and potentially achieving fully automated decision
making in the future.

Transparent method selection protocols can be based on uncer-
tainty quantification.53,54 Currently, theoretical predictions tend to
be reduced to a single number, without considering the spread due
to, e.g., method-specific modeling errors. Access to confidence inter-
vals can provide several key advantages beyond determining how
well a particular method is suited for a task. Trends in method pre-
dictions can be analyzed in a more general manner, going beyond
the snapshots provided by traditional benchmark studies. When
combined with experiment, uncertainties assigned to theoretical

predictions allow for a better separation of error sources and inter-
pretation of results. Recently, some progress has been made in tack-
ling this problem with ML algorithms and Bayesian approaches, in
particular. Bayesian error estimation has been successfully used to
construct multiple density functionals. Wellendorff et al.55 reported
a Bayesian functional with a non-local van der Waals (vdW) cor-
relation term. This so-called Bayesian error estimation functional
(BEEF)-vdW functional provides predictions as well as computa-
tional error estimates. They demonstrated the utility of BEEF-vdW
based on two surface science problems: modeling graphene adsorp-
tion on a Ni(111) surface and the binding of CO to Pt(111) and
Rh(111) substrates. Bayesian frameworks for density functionals
were also developed by Aldegunde, Kermode, and Zabaras56 and
Simm and Reiher.57 All these approaches allow for the construction
of specialized density functionals that yield confidence intervals for
computed energies. This makes it possible to automatically probe
the reliability of the method for different compounds and structures
and identify problematic situations. Simm and Reiher57 used their
approach to estimate the errors associated with different reaction
barriers along the catalytic cycle of the Yandulov–Schrock catalyst,
where they demonstrated that even similar reaction steps can exhibit
very different confidence levels due to shortcomings of the com-
putational method. By applying this approach to chemical reaction
networks, Proppe et al.58 demonstrated how this method can further
be used to provide uncertainty estimates for chemical reaction rates.

Beyond error estimates, ML has been employed to automati-
cally construct basis sets for electronic structure methods.59 Usually,
pre-defined basis sets are used for electronic structure computa-
tions, which aim to provide reasonable accuracy over a wide range
of compounds. As such, they use higher radial and angular reso-
lution than might be necessary for certain molecules. Schütt and
VandeVondele59 have shown how ML can be used to generate an
adaptive basis set tailored to a specific system based only on local
structural information. Using liquid water as example, their adaptive
basis set was able to reduce computational cost by up to a factor of
200. Similarly, local pseudopotentials have been constructed based
on kernel ridge regression.60 Another important decision in method
selection is whether the problem of interest exhibits strong electron
correlation (also referred to as multi-reference character or static
correlation). In this case, a single antisymmetric product wavefunc-
tion is no longer sufficient to describe the electronic system and
single-reference methods [e.g., semi-local approximations to DFT
and single-reference coupled-cluster (CC) theory] yield inconsis-
tent performance across configurational space and fail to describe
bond breaking. Duan et al.61 have proposed a semi-supervised ML
approach to automatically classify chemical systems according to
their multi-reference character in an efficient manner. This makes it
possible to identify problematic systems without the need to carry
out expensive high-level calculations and thus aid in the method
selection process. In some situations, it can be advantageous to rely
not on a single method but instead employ a combination of elec-
tronic structure theories and basis set levels. Such composite meth-
ods have a long history in computational chemistry, with the Gaus-
sian methods for thermochemistry (G2–G4)62–64 being some of the
most prominent examples. All composite methods have in common
that they profit from the cancellation of errors at different levels
of theory and can offer improved accuracy at lower computational
cost. Zaspel et al.65 have leveraged ML and combination techniques
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to derive a composite method in a data driven fashion. They could
demonstrate that their method achieved CC accuracy using only
lower levels of theory.

The model building process encompasses many other aspects
apart from method selection. This includes decisions on which
structural aspects of the system need to be considered explicitly or
only accounted for in their implicit effect on the system (e.g., implicit
vs explicit solvation models), whether periodic boundary conditions
are required, or which boundary box shapes and sizes are appro-
priate. Other aspects concern the electronic structure, especially in
the context of multi-reference methods. Most of these approaches
require decisions on which particular electronic reference configura-
tions, often referred to as active space, to include in the description of
a system. This problem is highly nontrivial, as it not only depends on
the intrinsic electronic structure of a system but also on the chemical
reaction to be studied. As a consequence, these methods [e.g., Com-
plete Active Space Self-Consistent Field (CASSCF)] have been hard
to use by non-expert users in a black box manner in the past. Jeong
et al.66 recently introduced a ML protocol based on decision trees for
active space selection in bond dissociation studies. Their approach
is able to predict active spaces able to reproduce the dissociation
curves of diatomic molecules with a success rate of ∼80% precision
compared to random selection. This constitutes an important step
toward black box applications of multi-reference methods.

ML approaches further show great potential in the context of
multi-scale modeling. Multi-scale approaches combine information
from different levels of theory to bridge different physical scales.
Examples include hybrid quantum mechanics/molecular mechan-
ics (QM/MM) simulations.67 For example, Zhang, Shen, and Yang68

have shown how a simple Δ-learning based model can improve
the accuracy of solvent free energy calculations, where they could
reach hybrid DFT accuracy using a semi-empirical Density Func-
tional Tight-binding (DFTB) baseline. A similar scheme has been
employed by Böselt, Thürlemann, and Riniker69 to simulate the
interactions of organic compounds in water. Gastegger, Schütt, and
Müller70 used a ML/MM approach where a ML model completely
replaced the QM region to model solvent effects on molecular spec-
tra and reactions. This made it possible to achieve an acceleration of
up to four orders of magnitude while still retaining the accuracy of
the hybrid functional reference method. Combining fragment meth-
ods with ML techniques, Chen, Fang, and Cui71 were able to investi-
gate excited states in extended systems in an efficient manner by only
treating the photochemically active region with a multi-reference
method while the environment is modeled with ML. Finally, Caccin
et al.72 have introduced a general framework for leveraging multi-
scale models using ML to simulate crack propagation through mate-
rials, thus enabling simulations that would otherwise be impossible
using either classical force fields or electronic structure methods
alone.

Future directions: While a complete automation of the model
building stage has not yet been achieved, ML-based algorithms have
nevertheless led to significant progress toward this endeavor. Due
to the complexity of the model building process, there still are a
large number of untouched subjects that may serve as fruitful sub-
strates for future ML research. Potential avenues include the auto-
mated selection of suitable levels of correlation methods for spe-
cific problems and using ML to automatically generate partitions in
multi-scale approaches.

IV. ML IN ELECTRONIC STRUCTURE THEORY
The solution to the electronic Schrödinger equation can be

approximated in various ways, where a tug-of-war between accu-
racy and computational efficiency is crucial to any choice of method.
The bottlenecks that need to be addressed to achieve more efficient
electronic structure calculations are mainly

(1) the evaluation of multi-center and multi-electron interaction
integrals, which requires optimally tuned basis representa-
tions to construct Hamiltonians and sets of secular equations,
and

(2) the (iterative) solution of coupled sets of equations to predict
total energies, wavefunctions, electron densities, and other
properties derived thereof.

To overcome these bottlenecks, developments of correlated
wavefunction-based methods, exchange-correlation functionals
within DFT, and methods based on many-body perturbation the-
ory must go hand in hand with algorithmic advances. Progress
on challenge (2) has been propelled by algorithmic ingenuity
and a collective community effort to develop massively scal-
able linear algebra algorithms to be collected in central libraries,
such as the Electronic Structure Library (ESL1) and the Elec-
tronic Structure Interface (ELSI2). It is challenge (1) where ML
methods can potentially have the biggest impact on eliminat-
ing computational bottlenecks while maintaining high predictive
power.

Currently, the most pervasive application of ML is to replace
ab initio electronic structure calculations with ab initio-quality
interatomic potentials. In doing so, ML methods also signifi-
cantly improve the predictive capabilities of molecular dynamics
(MD) simulations by enabling ab initio accuracy at computational
costs comparable to classical force fields (cf. Sec. VI). In princi-
ple, ML models can parameterize any smooth function, such as the
ground-state total energy, the forces, and other derived properties
obtained from a first-principles calculation. Related ML models for
interatomic potentials have already been reviewed extensively (see
Table I, for example). We therefore focus on ML representations
of electronic structure quantities beyond ground-state energies and
forces in the following.

Many ML representations of excited-state properties, such
as HOMO–LUMO gaps,73–75 excited-state energies,21,76–78 or band
gaps,79–82 have been proposed and were mainly based on NNs or ker-
nel methods. Recently, ML models have also been applied to derive
excited-state or response properties explicitly by learning the density
of states83 or orbital energies,74,78 respectively. These models have
further been applied to obtain excitation spectra. However, a main
challenge that is frequently encountered when fitting many energy
levels is the non-smoothness of the target functions, which is true
for orbital energies as well as adiabatic potential energy surfaces
(PESs).61,84 Avoided crossings at conical intersections in adiabatic
potential energy landscapes represent a good example for this behav-
ior: When two potential energies become degenerate and form a
cusp, the respective coupling values become singular at this point
in the conformational space. Consequently, a direct learning of such
properties is prohibited in many cases, making a smoothing of the
target property or novel fitting approaches preferable. Approaches
to achieve better learning behavior strongly depend on the purpose
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of the ML model. For instance, in the case of spectroscopic predic-
tions, it is sufficient to learn the spectral shape directly instead of
the energy levels. This has been done with Gaussian approximation
potentials for the density of states83 and with NNs for x-ray spec-
troscopy85,86 or for excitation spectra.74 In the latter case, NNs could
describe spectral intensities with deviations of 0.03 arb.u. The same
authors also fitted orbital energies of the QM9 dataset comprising
134 k organic molecules with a mean average error of 0.186 eV.74

Alternatively, a diabatic87 or latent Hamiltonian matrix78 can be
learned and used to obtain orbital energies or adiabatic energies
as eigenvalues of the matrix, respectively. The latter approach was
shown to improve the accuracy of orbital energy predictions by a
factor of 2 compared to direct learning.78

ML parameterization of excited states is especially challeng-
ing when multi-reference methods are required because states can
switch their character along certain reaction paths, which leads to
jumps in the PESs. While this can also be the case for ground-state
PESs, this problem is more pronounced for higher-lying excited
states in regions where the density of states is high, leading to sig-
nificant higher noise in excited-state PESs and, consequently, more
difficult learning.84

While ML parameterization of electronic structure data is well
established, it is intrinsically limited in its application range by the
unfavorable scaling associated with bottleneck (1), i.e., many highly
accurate electronic structure methods are too computationally costly
to generate sufficiently large training datasets that enable reli-
able parameterization. Sometimes, better accuracy can be achieved
with Δ-ML approaches. This approach is based on the assump-
tion that the difference in energy between two electronic structure
methods—a low-level one and a high-level one—is easier to rep-
resent than either one of the two methods.46 An alternative to the
Δ-learning approach is transfer learning,88 where a model is trained
on data from a low level of theory and retrained with less data points
of a more accurate method. A rule for determination of the num-
ber of data points needed in consecutive Δ-learning approaches that
takes computational cost and prediction accuracy into account is
proposed by Dral et al.89 Many studies use about 10% of the orig-
inal training data for Δ-learning76,78,90,91 and transfer learning.92–96

In both cases, the ML model ideally yields an accuracy that is com-
parable to the higher-level theory. The prediction of energies with
CC accuracy for the QM datasets was shown by Smith, Isayev,
and Roitberg97 using transfer learning and mostly range-separated
semi-local DFT data (5 × 106 DFT data points compared to 500
000 CC data points). Very recently, Bogojeski et al.98 have demon-
strated that with Δ-ML, a model with CC accuracy was generated
by using mostly semi-local DFT reference data and only a few data
points calculated with CC theory. For instance, MD of resorcinol
[C6H4(OH)2] could be achieved with 1004 data points at DFT and
CC accuracy. While the DFT ML model had mean absolute errors
of 2–3 kcal/mol compared to CC, the Δ-ML model could achieve
already 1 kcal/mol accuracy with respect to CC with as few as 25 data
points.98

Data efficiency can also be improved by designing NN archi-
tectures that implicitly satisfy symmetry constraints (i.e., rotational
equivariance and permutational invariance) and, as a consequence,
require much fewer data points to achieve a given accuracy.99,100

This is only one of many possible strategies to include more
physical information into ML model architectures. Including the

mathematical structures and the physical boundary conditions rele-
vant to electronic structure methods into deep learning models leads
to a further boost of data efficiency and model transferability. This
has recently been shown with reproducing kernels optimized for
long-range intermolecular forces101 and with an ML-based param-
eterization of Density Functional Tight-binding (DFTB). The latter
model provided error reductions of up to 67% for test molecules
containing eight heavy elements compared to existing DFTB param-
eterizations.102 Similarly, the MOB-ML approach uses localized two-
electron interaction integrals from Hartree–Fock calculations as
input to construct a highly accurate and transferable Gaussian Pro-
cess Regression (GPR) model. This is applied to the prediction
of coupled-cluster single double (CCSD) correlation energies for a
diverse range of molecular systems.103–105 The MOB-ML approach,
for instance, reaches chemical accuracy by using three times fewer
training data points for organic molecules with up to seven heavy
atoms compared to Δ-ML approaches. Transferability was tested
with molecules with up to 13 heavy atoms, and MOB-ML could
achieve chemical accuracy with 36 times fewer data points compared
with Δ-ML.104

Alternatively, rather than circumventing the solution of iter-
ative equations of correlated wavefunction methods, ML models
may also be used to facilitate faster convergence. On average, about
40% reduction of the number of iterations for different basis sets
could be achieved by Townsend and Vogiatzis.106 They trained
an ML model to facilitate the convergence of CC methods based
on lower-level theory electronic structure data. Besides ML mod-
els being powerful to accelerate the computation of target prop-
erties, they can also be used to predict correlated total energies
of molecules based on Hartree–Fock or DFT results. Examples
are NeuralXC,107 DeepHC,108 and OrbNet,109 which provide NN
representations based on atomic orbital features.

ML becomes increasingly important as an integrated ele-
ment of solving quantum many-body problems. First attempts
to solve non-homogeneous ordinary and partial differential equa-
tions using ML algorithms6,110–112 already date back to more than
20 years ago for model systems and have recently been applied to
solve the quantum many-body problem for small organic molec-
ular systems.113–120 These efforts have recently been summarized
in a comprehensive review16 and perspective.25 While they are
conceptually exciting and potentially transformative in solving the
many-body problem, their integration into existing, widely acces-
sible electronic structure software may not be fully practicable yet
as existing models are limited to small system sizes and not yet
transferable.

ML methods can also be used to parameterize electronic struc-
tures in an already known representation that is compatible with
well-established electronic structure packages. Such ML models are
on their way to becoming an integrated element of electronic
structure codes. The resulting surrogate models, thereby, provide
not only predictions of total energies and their derivatives but also
further enable the derivation of many additional properties. One
such example is the SchNOrb model (SchNet for Orbitals),75 which
is based on the deep tensor NN SchNet.121,122 SchNOrb predicts
Hamiltonians and overlap matrices in a local atomic orbital repre-
sentation compatible with most quantum chemistry software pack-
ages. Thus, it can be trained with data from quantum chemistry
codes and its prediction can directly enter further quantum chemical
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calculations, e.g., as an initial guess of the wavefunctions in self-
consistent field calculations or to perform perturbation theory calcu-
lations of correlation energies. Self-consistent field iterations could
be reduced by an average of 77% when using the SchNOrb wave-
function as an initial guess. Beyond that, it has been shown that the
model can represent interaction integrals in localized effective mini-
mal basis representations, which benefits the prediction accuracy for
larger systems.123

Alternatively, an ML model may predict the electron den-
sity or a density functional.16,83,107,124 A recent example of a deep
learning framework to predict the electronic density or properties
related to the density of a reference DFT method is DeepDFT.125

A symmetry-adapted method that considers geometrical covariance
was proposed by Fabrizio et al.126 and Grisafi et al.127 to learn the
charge density of different organic molecules via Gaussian Process
Regression (GPR) models.126,127 This model is physically inspired
and learns the charge density via a sum of atom-centered basis
functions with the coefficients of these functions being predicted
by the ML model. The authors achieve linear scaling with respect
to the number of atoms and allow for size-extensive transferability.
The latter was showcased by training the density of butadiene and
butane and predicting the density of octa-tetraene and octane.127

Fabrizio et al.128 have further shown on the example of organic
molecules that ML can be used to predict the on-top pair den-
sity in combination with a newly developed basis set. The on-top
pair density can be used to assess electron correlation effects of
a target compound, which most often cannot be described accu-
rately using DFT. However, its evaluation requires post-HF or
multi-reference calculations, which could be avoided due to the use
of ML.

A universal density functional provided by an ML model
could potentially eliminate the need for exhaustively comparing dif-
ferent types of functionals for a given chemical problem. So far,
ML has been used to generate new DFT functionals or to adjust
the energy functional, bypassing the need to solve the iterative
Kohn–Sham equations and accelerating simulations for the ground
state104,107,129–134 and excited states135 significantly. These models
further promise better transferability for different types of molec-
ular systems. Orbital-free DFT is another effort that allows for more
reliable DFT calculations, but it requires the kinetic energy density
functional.136 However, various approaches have been put forward
to parameterize the kinetic energy density functional with different
kernel-based and deep learning methods.137–140 Li et al.124 recently
presented an approach that integrates the iterative self-consistent
field algorithm into an ML model to construct a learned represen-
tation of the exchange-correlation potential for 1D model systems
of H2 and H4.

The concept of ML-based Hamiltonian and density functional
surrogate models directly leads to the construction of approxi-
mate electronic structure models based on ML. Recently reported
approaches include an ML-based Hückel model,141 parameterized
Frenkel102,142–145 and tight-binding (TB) Hamiltonians,146 as well as
semi-empirical methods with ML-tuned parameters.147,148 Beyond
that, several groups have proposed to combine established DFTB
Slater–Koster parameterizations with kernel ridge regression or NN
representations of the repulsive energy contributions to improve
the accuracy and transferability of DFTB.149,150 On the example of
the QM7-X dataset,151 a mean absolute error of 0.5 kcal/mol could

be achieved on the atomization energies of the DFTB-ML model
compared to hybrid DFT reference values.149

Future directions: We expect a vivid development regarding
the tight integration of ML within electronic structure software—an
approach that some package developers already pursue (e.g., in
the case of entos152 and DFTB+153). Already in recent years, elec-
tronic structure software has started to move away from monolithic
(all-in-one) software to more modular designs with interfaces to
general-purpose standalone libraries154 (see Fig. 3). These develop-
ments will be helpful in the future to achieve integrated ML/QM
solutions in computational workflows. As can be seen in Fig. 3,
existing atomistic ML packages, such as atomistic machine-learning
package (AMP),155 sGDML,156 or SchNetPack,45,121 could be inter-
faced with electronic structure packages that heavily expose inter-
nal routines (e.g., FHI-aims,157 PSI4,158 or PySCF159) and be used
alongside dynamics packages, such as i-Pi160 and SHARC,161,162 as
well as algebra and electronic structure libraries, such as ELSI2 and
ESL.1 The structure generation, workflow, and parser tool Atomic
Simulation Environment (ASE)163 is, for example, already inter-
faced with the above examples of AMP and SchNetPack. This
could also involve a closer integration with existing data reposito-
ries, such as NOMAD,164,165 the Materials Project,164,165 the MolSSI
QCArchive,166 or the Quantum Machine repository.167 Universal
data communication standards between quantum chemistry and
ML will play an important role in the future. Efficient and scal-
able multi-language interoperability would further be needed to
pursue the goal of tight integration of ML in electronic structure
theory. In the future, we believe that ML will be part of many elec-
tronic structure codes to enable highly accurate electronic structure
predictions at generally low computational costs. In this regard,
data-efficient ML models are highly beneficial. Many recent works
have shown that incorporation of symmetries and physical infor-
mation into ML representations improves data efficiency, e.g., via
the use of features derived from efficient low-level methods, such as

FIG. 3. Electronic structure software is increasingly becoming more modular. By
moving away from monolithic (all-in-one) code models to a modular design, atom-
istic ML toolkits and data repositories, together with other standardized libraries,
can be more tightly integrated into electronic structure workflows.
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FIG. 4. Exploration methods can target
different scales of molecular and mate-
rial space. At the highest level, chemical
space, both chemical composition and
structure are varied. Global exploration
targets a single PES with constant chem-
ical composition and explores different
structural conformations and their rela-
tive stability. At the lowest level, local
details of the PES, such as reaction path-
ways and transition states, are investi-
gated.

Hartree–Fock or MP2 theory, to predict observables at high level of
theories.103 Existing electronic structure software may further bene-
fit from latent ML representations to mitigate existing bottlenecks in
integral evaluations or to efficiently represent scalar and vector field
quantities.

V. ML WILL IMPROVE OUR ABILITY TO EXPLORE
MOLECULAR STRUCTURE AND MATERIALS
COMPOSITION

A key objective of computational chemistry and materials sci-
ence is the prediction of new stable structures and viable reaction
pathways to synthesize them. Beyond the significance to the discov-
ery of new drugs and materials, finding stable equilibrium geome-
tries and accessible transition states is a crucial element of compu-
tational molecular and materials discovery that typically involves
tailored workflows.168 As shown in Fig. 4, optimization problems
in atomistic simulation span different scales from searching stable
molecules across chemical space to charting the global energy land-
scape spanned by the chemical coordinates of a given molecule down
to local structure relaxation and transition state search. Even without
considering the computational cost of electronic structure calcula-
tions, high-dimensional structure search is uniquely challenging and
can be greatly facilitated by ML methods.

Efficient chemical exploration methods need to be able to
identify CVs in high-dimensional spaces that are associated with
relevant reaction events that occur at vastly different time scales
ranging from the femtosecond regime (electron transfer and vibra-
tional motion) to multiple nanoseconds (configurational dynamics
of biomolecules).169 It is therefore not surprising that the use of a
variety of methods that fall under the umbrella of ML has led to
a significant boost in the capability to explore chemical structure
space.

Even a task that is nominally as simple as finding the near-
est equilibrium structure, i.e., the local minimum of the potential
energy landscape, can benefit from ML approaches. The most com-
mon geometry optimization algorithms are based on quasi-Newton
methods that determine trial steps based on an approximate Hes-
sian. Finding optimal initial guesses and preconditioners for the
Hessian is key to minimizing the number of geometry optimizations
that are required. Recently, several more sophisticated precondi-
tioning schemes have been proposed based on GPR that, compared
to established quasi-Newton algorithms, significantly reduce the
required number of geometry optimization steps for molecules and

transition metal complexes,170–172 for correlated quantum chem-
istry methods that require numerical differentiation,173 and for bulk
materials and molecules adsorbed at surfaces.174,175 Furthermore,
unsupervised ML can be used to automatically identify if geometry
optimization has failed or led to an irrelevant outcome as recently
shown for transition metal complexes.61

ML methods have also recently been used to accelerate the
search of first-order saddle points or transition states. Denzel and
Kästner have used GPR to speed-up gradient-based transition state
search starting from an equilibrium structure (one-ended search)
by a factor of 2 compared to conventional methods.170,176 Simul-
taneously, several approaches have been proposed to incorporate
aspects of ML into double-ended transition state search based on the
Nudged Elastic Band (NEB) method.177–179 Garrido Torres et al.179

have proposed a surrogate GPR model to accelerate a NEB method,
leading to a factor of 5–25 fewer energy and force evaluations when
compared to the conventional NEB method.

One of the most challenging tasks, namely, identifying the
global minimum of a potential energy landscape associated with
the most stable structure, can be significantly facilitated by the
use of ML. Established methods to perform global optimization are
often evolutionary algorithms or stochastic methods. Examples for
the former are genetic algorithms180 and for the latter are random
structure search181 or basin hopping.182,183 A prominent example
of a global optimization problem on a complex high-dimensional
energy landscape is protein folding. Here, the AlphaFold184 and
AlphaFold2185 deep NN models were recently able to show what can
be achieved when ML and structure optimization methods are com-
bined. In AlphaFold, the ML model predicts residue distances and
torsional angle distributions. On the basis of this, a coarse-grained
potential is constructed to perform a sequence of random structure
search and optimization cycles. Hammer and co-workers have pro-
posed a global structure prediction algorithm, called ASLA, based
on image recognition and reinforcement learning.186,187 The use of
image recognition to identify structural characteristics removes the
need for encoding strings such as simplified molecular input line
entry specification (SMILES) or descriptors of the atomic environ-
ment. The approach is applicable to molecules as well as mate-
rials and has been showcased on graphene formation and oxide
surface reconstructions.188 In the case of graphene, the method
is able to generate graphene as the most stable two-dimensional
phase starting from initially random atom placement. Bayesian
optimization has become a common tool to achieve efficient
structure prediction for crystals,189,190 surface reconstructions,191
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and hybrid organic/inorganic interfaces, to name just a few exam-
ples.192,193 They often outperform evolutionary algorithms in terms
of efficiency.

As shown in Fig. 4, one level above the search for stable
structures in energy landscapes lies the search for possible stable
molecular compositions in chemical space. Generative ML mod-
els have recently shown great utility to predict molecules with tai-
lored properties,194,195 for example, using SMILES representation196

or molecular graphs.197 While these are supervised approaches that
require reference data for training, several related approaches have
been proposed that use reinforcement learning.198,199 These mod-
els can further be constrained to only predict SMILES strings that
are chemically valid.200,201 Well beyond providing stability ranking,
this approach can be used to generate molecules with arbitrary tar-
get properties to be used in drug and materials discovery. Unfor-
tunately, molecular graph-based generative models are limited in
their applicability since they cannot distinguish between different
conformations that lead to the same graph. However, for applica-
tions such as protein folding, optimizing reaction environments, or
finding reaction paths, it is paramount to have full access to con-
formation space. Mansimov et al.202 proposed a generative model
to sample 3D conformations from SMILES. This approach suffers
from the same limitations as the graph representation it is built upon
when properties are directly related to the 3D structure. There have
been several recent efforts to directly generate 3D molecular struc-
tures: Köhler, Klein, and Noé203 proposed equivariant normalizing
flows that are able to estimate a probability density over many-
particle systems. This has been applied to finding meta-stable states
of large Lennard-Jones systems. Gebauer, Gastegger, and Schütt204

introduced G-SchNet that places atoms successively, incorporating
rotational and translational symmetries. The model can be fine-
tuned to generate molecules with properties in a specified target
range.

Future directions: With ML methods affecting every aspect of
our ability to explore molecular configurations and compositions,
their routine application to facilitate continuous exploration across
composition space is not far, which would allow for the variation
of the number and type of atoms in the system via ML-enabled
alchemical optimization. So-called alchemical potentials have long
been applied to rational drug design205,206 and changing of reaction
barriers.207 ML methods, such as NNs, have shown to be capable of
modeling alchemical potentials208,209 as well as to produce smooth
paths through alchemical space.210 We expect a lot of activity in
this area in the future with ML methods enabling the continuous
variation of elemental composition in materials to optimize their
properties.

VI. ML ENABLES CLASSICAL AND QUANTUM
DYNAMICS FOR SYSTEMS OF UNPRECEDENTED
SCALE AND COMPLEXITY

The dynamical motion of atoms is a central target of a large
part of computational research. In molecular simulation, we study
the time evolution of electrons and atoms not only to predict static
and dynamic equilibrium properties of molecules and materials at
realistic temperature and pressure conditions but also to understand
nonequilibrium dynamics and rare events that govern chemical
reactions. Dynamics methods range from classical MD and mixed

quantum–classical dynamics (MQCD) methods (incorporating elec-
tronic quantum effects) to quantum dynamics in full quantum or
semi-classical formalisms. In all cases, equations of motion need to
be integrated over time, which involves numerous evaluations of
forces and other properties that govern the dynamics. ML meth-
ods can address bottlenecks in such simulations on various levels:
Their most prevalent use is to speed up energy, force, and prop-
erty evaluations in each time step by providing ML-based force
fields and interatomic potentials. Other ML approaches directly
target MD by supporting coarse graining and the use of larger
time steps or by replacing MD completely with a direct predic-
tion of dynamical properties, expectation values, and correlation
functions.

The most obvious way in which ML can facilitate MD simu-
lations is the use of ML-based interatomic potentials instead of
on-the-fly ab initio MD. Many early applications of ML in molec-
ular simulation were mostly focused on ML parameterization of
electronic structure data for the benefit of MD simulation. ML-
based interatomic potentials that replace electronic structure eval-
uation during dynamics are by now commonly established (see,
e.g., Refs. 18, 211, and 212) and have since enabled simulations of
unprecedented complexity and scale. For example, a recent break-
through by Deringer et al.213 showed that Gaussian approximation
potentials7,209 could be used to predict phase transitions and elec-
tronic properties of systems containing more than 100 000 atoms.
Jiang, Li, and Guo214 have recently reviewed the transformative
role that ML-based high-fidelity PESs play in gas-surface dynamics
simulations.

In principle, approaches can be distinguished between those
that sample molecule deformations around an equilibrium geome-
try, e.g., for optimizations,171,215 and those that consider “reactive”
potential energy surfaces.214,216–220 An alternative approach is to
directly predict targeted simulation properties, such as reaction
yields.221,222 A key factor in building ML force fields for MD sim-
ulations is the efficient and comprehensive sampling of relevant
data points. Active learning schemes have been proposed84,223–227 to
efficiently sample the relevant configuration space that a molecule
visits during an MD simulation. These schemes are based on an
uncertainty measure during ML dynamics, which can be used to
detect unexplored or undersampled conformational regions. The
uncertainty measure could be, for instance, the deviation of two
NNs or the statistical uncertainty estimate of the inferences made
with, e.g., GPR. One way to measure the accuracy and inter-
polative regime of ML models is to use the previously men-
tioned adaptive sampling techniques also during the production
runs. This allows to detect holes in the potential energy surfaces
on-the-fly.84

By using gradient-domain ML models that are trained on gra-
dients rather than energies, energy-conserving ML force fields can
be obtained with high accuracy and little amount of training data
required.156,228,229 Δ-ML models, in the context of MD simulations,
have also proven to be very powerful in providing a data-efficient
representation of CC accuracy from DFT data98 or DFT accuracy
from mostly DFTB data in the context of QM/MM simulations,90 to
name two recent examples. Beyond the use of ML to facilitate accu-
rate force evaluations in MD, ML methods have been used to enable
the simulation of rare events that occur on time scales inaccessible
to conventional MD. A perspective review that recently arose from
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a CECAM conference on “Coarse-graining with ML in molecular
dynamics” provides a comprehensive overview of ML for free energy
sampling, coarse graining, and long-time MD.17

ML methods help identify CVs, which characterize long-time
dynamics of molecular systems. This is important to identify long-
lived attractor states in phase spaces and to find strategies to effi-
ciently explore dynamics in complex hierarchical energy landscapes,
e.g., for the isomerization of alanine dipeptide230 or for protein
folding.231 ML methods in this domain based on principal com-
ponent analysis232 date back to over 20 years ago.233 More recent
approaches include kernel principal component analysis,234–236 dif-
fusion maps,237–239 the Sketch map method,240,241 Markov state
models,242,243 and various types of autoencoders.244,245

Several ML models have been developed that aim to achieve
bottom-up coarse graining by representing the potential of mean
force or free energy surface as a function of coarse-grained variables.
This has been done, for instance, using NNs to infer conformational
free energies for oligomers246 or to construct a coarse-grained liquid
water potential247 or using a Gaussian approximation-based coarse-
grained potential for alanine dipeptide248 and molecular liquids.249

MQCD, i.e., classical dynamics of nuclei coupled to the time-
dependent quantum mechanical evolution of electrons, is com-
monly used to simulate light-induced nonadiabatic dynamics of
molecules,250–252 as well as coupled electron–nuclear dynamics in
extended systems.253 While on-the-fly MQCD simulations have
become feasible in the last decade, the accessible time scale and the
number of non-equilibrium trajectories that can be realistically sim-
ulated on-the-fly are too limited to enable comprehensive statistical
analysis and ensemble averaging. ML shows great promise in nona-
diabatic excited-state simulations20,21 as documented by recent
works using NNs to construct excited-state energy landscapes to
perform fewest-switches surface hopping MD at longer time scales
or with more comprehensive ensemble averaging than would other-
wise be possible with on-the-fly dynamics.84,254,255 Similar progress
has been achieved in nonadiabatic dynamics at metal surfaces, where
NNs have been used to construct excited-state landscapes4,256 and
continuous representations of the electronic friction tensor257 used
in MD with electronic friction simulations.258,259

Even full quantum dynamics simulations have recently seen
an increasing uptake of ML methodology to push beyond long-
standing limitations in the dimensionality of systems that can be
simulated. The main bottleneck in quantum dynamics simulations
is not the evaluation of the temporal evolution of the electrons, but
the temporal evolution of the nuclear wavefunction, which involves
computations that (formally) scale exponentially with the number
of atoms in the system. Potential energy landscapes in quantum
dynamics are typically represented in a diabatic basis rather than
the adiabatic representation (directly outputted by electronic struc-
ture codes) in a process called (quasi-)diabatization.260,261 However,
quasi-diabatization requires expert knowledge and is highly com-
plex for more than two coupled electronic states. The construc-
tion of diabatic representations with deep NNs has recently shown
great potential to simplify and automate this laborious task.87,262–266

Besides the PES generation itself, recent works use GPR to fit the
diabatic PESs in reduced dimensions.267–270 One of the largest ML-
enhanced quantum dynamics simulation was recently performed on
a 14-dimensional energy landscape for a mycosporine-like amino
acid.271

The computational efficiency of ML models is an important
point to consider. MD simulations based on ML models are con-
siderably more efficient than ab initio MD yet still relatively slow
compared to empirical force fields. For example, 100 femtosecond
MQCD MD of CH2NH+2 on a single compute core take 24 s with
ML potentials compared to 74 224 s with the reference method (MR-
CISD/aug-cc-pVDZ).254 The simulation of 100 femtosecond classi-
cal MD of the same molecule in the gas phase with an empirical force
field takes 0.005 s with Amber.272 The computational efficiency of
ML models can become a bottleneck if long time scales or ensemble
averages over many thousands of reaction events are required. Simi-
lar memory and central processing unit (CPU) efficiency bottlenecks
can arise during model training of kernel methods and deep NNs.
if large training datasets and complex high-dimensional models are
involved.

Future directions: ML-based interatomic potentials and con-
tinuous regression models already play an important role across
almost all domains of MD simulations and we expect that the use
of ML in MD will further increase in the coming years. As larger
and more complex systems are targeted and longer time scales are
needed, a future challenge that needs to be tackled is the computa-
tional efficiency of ML models, especially for MD simulations. The
concept of sparsity in terms of ML methods and data representation
can lead to better computational efficiency. Recently, explicit atomic
high body order expansions in permutationally invariant polynomi-
als (e.g., aPIPs273 and ACE274) have emerged as appealing alternative
to kernel and deep learning methods as they accurately allow high-
dimensional parameterization as a function of atomic coordinate
spaces and can be trained by linear regression. As a result, both train-
ing and evaluation are highly efficient with evaluation times on the
order of few milliseconds per atom.275 While most approaches focus
on assisting MD by providing highly accurate interatomic potentials
and force fields, they have also shown great potential in predict-
ing dynamical properties directly and skipping the MD simulation
completely or in assessing the validity of different approximations
in dynamical simulations. The latter has only recently been shown
by Jasinski et al.276 with a Bayesian model to estimate errors due to
different approximations in quantum scattering simulations. Going
forward, complex dynamical simulation methods will become more
accessible to non-expert users with the help of ML and will open
avenues to tackle complex systems in solvent environments71 or
dynamics at hybrid organic–inorganic interfaces.259 It is evident that
ML methods will play an important role in extending the range
of applications for MQCD methods in the coming years. A recent
work by Brieuc et al.277 employing ML methods to achieve con-
verged path-integral MD simulations of reactive molecules in super-
fluid helium under cryogenic conditions is an exemplary showcase
of what the synergy of ML and quantum dynamics methods can
achieve.

VII. ML HELPS TO CONNECT THEORY
AND EXPERIMENT

The ultimate goal of computational molecular and materials
simulation is to connect theory and experiment. This could mean
supporting the explanation of experimental outcomes or finding
new theoretical rules in observations, in both cases leading to a bet-
ter understanding of the physical world and its laws. Forming this
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connection is a hard task. A plethora of different effects need to be
considered in even the simplest atomistic systems, making it very
difficult to faithfully reproduce experimental conditions in silico.
On the other hand, experimental observations can be obscured by
a variety of influences or by the sheer complexity of the measured
signal. As we have seen in Secs. III–VI, ML approaches can increase
the accuracy of predictions and the speed with which they can be
obtained. This makes it possible to carry out computational studies
that close the gap between theory and experiment by more efficiently
incorporating experimental parameters, such as finite temperature,
measurement conditions, and solvent effects. Moreover, ML tech-
niques can also provide invaluable support in extracting information
from experimental observations and uncovering trends that are not
directly apparent to the practitioner (Fig. 5).

One field that has greatly profited from these developments is
computational spectroscopy. The prediction of spectroscopic prop-
erties is a central aspect of computational modeling as it provides
results that can be directly compared against experiments. Exam-
ples of successful ML applications include the prediction of differ-
ent vibrational spectra, combined with different response proper-
ties of the electric field. Gastegger, Behler, and Marquetand226 have
combined a latent charge dipole model with interatomic poten-
tials in order to efficiently simulate infrared (IR) spectra of organic
molecules in gas phase without having to resort to electronic struc-
ture computations of the molecular dipole. This approach has
further been applied to model absorption spectra.77,144 Raimbault
et al.278 introduced a kernel approach for predicting the Raman spec-
tra of organic crystals based on molecular polarizabilities. Using a
NN based approach, Sommers et al.279 have demonstrated that ML
can also be used to simulate Raman spectra of extended systems,

FIG. 5. Depiction of how ML methods can act as a bridge between theory and
experiment. ML models trained on theory predict spectra with realistic line shapes.
At the same time, ML models can be used to infer structural information from
experimental measurements.

such as liquid water, which would be computationally unfeasible
when done with DFT. In addition to vibrational spectra, ML models
are also capable of modeling response properties, allowing the simu-
lation of electronic excitations using, e.g., MQCD approaches (see
Sec. VI). For example, Zhang et al.144 used NN models to obtain
transition dipole moments, which, in turn, could be used to pre-
dict UV and visible light spectra. ML approaches have further been
used to predict nuclear magnetic resonance (NMR) spectra from
molecular simulations. Paruzzo et al.,280 for example, have used the
kernel model from Ref. 278 to predict chemical shifts in molec-
ular solids. Recently, Christensen et al. have introduced an elec-
tric field dependent descriptor in the FCHL kernel framework.281

Based on this, they have derived molecular dipole moments as a
general response to the electric field, which can be used to simu-
late IR spectra of small organic molecules. Gastegger, Schütt, and
Müller70 have applied a response theory approach in combination
with a deep NN architecture, which explicitly depends on electric
and magnetic fields. They could show that, in this manner, a sin-
gle ML model can predict IR, Raman, and NMR spectra. More-
over, by introducing the field generated by a molecular environ-
ment, they were able to model the effect of solvents on the resulting
spectra.

Beyond that, ML offers the possibility to directly extract
information from experimental observations and relate them
to fundamental chemical concepts. One example is the use of
ML to interpret different types of spectroscopic measurements
to determine structural or electronic properties of molecules
and materials. Fine et al.282 have recently presented a ML
approach to extract data on functional groups from infrared
and mass spectroscopy data, while Kiyohara et al.283 have suc-
cessfully applied a ML scheme to obtain chemical, elemental,
and geometric information from the x-ray spectra of materi-
als. Another application where ML shows promise is the auto-
mated interpretation of nuclear magnetic resonance spectra with
respect to the atomic structure, which typically relies heavily on
experience.284

However, ML can also be used to leverage information con-
tained in large collections of scientific data. The majority of
chemical knowledge is collected in the form of publications. ML
approaches, such as natural language processing and image recog-
nition, offer the possibility to directly distill functional relationships
and chemical insights from the massive body of scientific literature.
For instance, Tshitoyan et al.285 have used natural language process-
ing to extract complex materials science concepts, such as structure
property relationships, from a large collection of research literature.
They could further demonstrate that their model was able to gen-
eralize on the learned concepts and recommend materials for dif-
ferent functional applications. Raccuglia et al.286 recently trained a
ML model using information on failed experiments extracted from
archived laboratory notebooks to predict the reaction success for
the crystallization of templated vanadium selenites. Their model
was able to learn general reaction conditions and even revealed
new hypotheses regarding the conditions for successful product
formation.

Finally, ML offers new ways in which theory can guide
experiment. Two fields where ML has played a transformative
role are molecular/materials discovery and computational high-
throughput screening, with several reviews summarizing recent
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advances.13,31,33,34,36,287 The combination of high-throughput screen-
ing with accurate and efficient ML models has proven to be highly
valuable as it allows us to substitute most of the required elec-
tronic structure calculations.288 Examples of what is possible in
this space include the objective-free exploration of light-absorbing
molecules,289 drug design,290 the computational search for highly
active transition metal complexes that catalyze C–C cross cou-
pling reactions,291 or the discovery of new perovskite materials292

or polymers for organic photovoltaic applications.293,294

Still, chemical space is estimated to cover more than 1060

molecules;295 hence, exhaustive computational screening remains
infeasible—even with fast and accurate ML models. In this con-
text, ML-enabled inverse design offers a promising alternative by
reversing the usual paradigm of obtaining properties from struc-
tures.296,297 Instead, the aim is to create structures exhibiting a range
of desired properties. Since such ML models readily provide analytic
gradients, an application to property-based structure optimization
is straightforward. First steps of applying ML in these areas have
recently been achieved. Examples include the optimization of the
HOMO–LUMO gap as demonstrated by Schütt et al.75 and relax-
ation for crystal structure prediction as investigated by Podryabinkin
et al.298 While ML only provides gradient-based local optimization
in these examples, it can be combined with genetic algorithms298

or global optimization methods, such as simulated annealing or
minima hopping.299

Future directions: While ML techniques and atomistic ML
potentials, in particular, have contributed greatly to closing the gap
between theory and experiment, a range of open issues remains.
Problems that have only recently begun to be studied include how to
extend ML simulations to efficiently reproduce different experimen-
tal conditions, such as solvents or electromagnetic fields. Another
frequently encountered issue concerns the data efficiency of ML
models, as well as the availability of reliable reference data. For
example, most generative models and inverse design approaches
to date primarily target simulated properties rather than experi-
mentally measured ones. While calculated quantities (e.g., redox
potentials and singlet–triplet gaps) can offer invaluable guidance for
design endeavors, they ultimately represent approximations to the
physical characteristics of a system, which can only be fully cap-
tured through experiments (e.g., full-cell study for redox kinetics
and electrochemical stability). Successful design endeavors therefore
often combine theoretical computations with experimental data or
calibrate against them.300,301

VIII. OUTLOOK
We expect that ML methods will soon become an integrated

part of electronic structure and molecular simulation software push-
ing the boundaries of existing techniques toward more computa-
tionally efficient simulations. ML methods may, for example, replace
complex integral evaluations in the construction of Hamiltonians
and secular equations, or they can provide improved initial guesses
to iteratively solve integro-differential equations. ML methods can
further help describe non-local effects in time and space and provide
mechanisms for on-the-fly uncertainty quantification and accuracy
improvements. The beneficial scaling properties of ML algorithms
with respect to the size of atomistic systems will play an important

role in extending the range of application of existing electronic struc-
ture and dynamics simulation methods. The application of ML to
MQCD simulations will make it possible to reach currently unfea-
sible time and length scales beyond few picoseconds and tens of
atoms. This will, in turn, require the improvement of existing molec-
ular simulation methods to capture long time dynamics. As we
explore systems of increasing size, we will be able to better study the
boundary between quantum effects at the nanoscale and collective
many-body effects and fluctuations at the meso- and macroscale.302

A necessary requirement is the establishment and the distribu-
tion of user-friendly and well-maintained simulation software with
tight integration of ML methodology in chemistry and materials
science. Software solutions will need to be modular to allow interfac-
ing with well-established deep learning platforms, such as Tensor-
Flow or PyTorch. This should involve the establishment of common
data standards to easily communicate atomistic simulation and elec-
tronic structure data between chemistry and ML packages. In many
ways, this requirement is in line with recent trends of increased mod-
ularity of codes via general libraries, such as ESL1 and ELSI2 (see
Fig. 3). A recent initiative toward an integration of ML is the ENTOS
quantum chemistry package and ENTOS AI.152

Another challenge ahead is related to establishing a culture
of openness and willingness to share data and ML models as the
availability of training data is a crucial aspect of driving advances
in this field. While data sharing is quite common in materials sci-
ence, it is not yet so common in computational molecular science.
Well defined materials data standards as put forward by the Fair
Data Infrastructure project (FAIR-DI)303 and ab initio data reposito-
ries, such as the NOMAD repository,164,165 the Materials Project,304

and the MolSSI QCArchive,166 are needed in all research areas. The
need for open access to vast amount of data will need to be bal-
anced against other needs, such as commercial interest that arises
from industrial research or commercial software projects.

Sustainable integration of ML methods into widely used soft-
ware will require long-term community effort and might be less
glamorous than exciting proof-of-principle applications of ML
in chemistry and materials science. Research funding agencies,
reviewers, and industrial stakeholders need to acknowledge this
and ensure that sustained funding for such efforts is put in
place.

If achieved, an integration of ML methodology into electronic
structure and molecular simulation software will induce a lasting
change in workflows and capabilities for computational molecular
scientists. Furthermore, it will offer the opportunity to reconsider
many of the underpinning design choices of electronic structure
and molecular simulation software packages, which, in many cases,
historically arose from computational efficiency considerations. For
example, Gaussian basis representations have been chosen decades
ago in quantum chemistry due to the ease of evaluating multi-center
integrals. If ML methods can vastly facilitate the evaluation of multi-
center integrals, are Gaussian basis functions still the best choice of
basis representation?

An integration of ML and molecular simulation will drastically
widen participation in the field and uptake of our methods and prob-
lem solving approaches. If codes require dramatically fewer comput-
ing resources and offer the ability to directly predict experimentally
accessible quantities, computational simulation will become more
appealing as a complementary tool in synthetic and analytical labs.
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In many industrial applications, cost–benefit analysis requires that
a clear correspondence exists between the cost of delivering predic-
tions and the accuracy and precision that is required for an appli-
cation. The use of ML methods within such workflows will hope-
fully also provide a drive toward establishing better measures of
uncertainty in atomistic simulation.

Finally, the method portfolio and skill set of computational
molecular scientists will need to adapt as a consequence of the
growing importance of ML methods in electronic structure the-
ory and molecular simulation. In many cases, the presence of some
aspects of ML “under the hood” of existing methods and work-
flows will not change how we apply these methods. For example,
a DFT functional parameterized by a ML approach can be applied
as any existing functional (although its range of applicability might
be very different). In other cases, the presence of ML methods
will fundamentally change basic workflows as we have discussed
across the sections of this Perspective. In those instances, practi-
tioners need a basic understanding of ML concepts and the different
models that they are working with. This involves knowledge of the
capabilities and limitations of most standard applications to avoid
pitfalls. As such, ML methodology will have to become an inte-
gral part of education in computational chemistry and materials
science.
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74K. Ghosh, A. Stuke, M. Todorović, P. B. Jørgensen, M. N. Schmidt, A. Vehtari,
and P. Rinke, “Deep learning spectroscopy: Neural networks for molecular excita-
tion spectra,” Adv. Sci. 6, 1801367 (2019).
75K. T. Schütt, M. Gastegger, A. Tkatchenko, K.-R. Müller, and R. J.
Maurer, “Unifying machine learning and quantum chemistry with a deep
neural network for molecular wavefunctions,” Nat. Commun. 10, 5024
(2019).
76R. Ramakrishnan, M. Hartmann, E. Tapavicza, and O. A. von Lilienfeld,
“Electronic spectra from TDDFT and machine learning in chemical space,”
J. Chem. Phys. 143, 084111 (2015).

J. Chem. Phys. 154, 230903 (2021); doi: 10.1063/5.0047760 154, 230903-14

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1021/acs.chemrev.8b00728
https://doi.org/10.1088/2515-7639/ab084b
https://doi.org/10.1146/annurev-physchem-042018-052331
https://doi.org/10.1021/acscatal.9b04186
https://doi.org/10.1021/acs.chemrev.0c00868
https://doi.org/10.1016/s0893-6080(05)80131-5
https://doi.org/10.1021/ct400195d
https://doi.org/10.1109/72.914517
https://doi.org/10.1007/s00214-018-2413-y
https://doi.org/10.1063/1.5109531
https://doi.org/10.1063/5.0004944
https://doi.org/10.1021/acs.jctc.5b00099
https://doi.org/10.1021/acs.jctc.5b00099
https://doi.org/10.1021/acs.jpcb.8b06521
https://doi.org/10.1103/revmodphys.71.1267
https://doi.org/10.1063/1.481336
https://doi.org/10.1021/acs.chemrev.9b00007
https://doi.org/10.1002/qua.24605
https://doi.org/10.1002/qua.24605
https://doi.org/10.1146/annurev-matsci-071312-121708
https://doi.org/10.1103/physrevb.85.235149
https://doi.org/10.1103/physrevb.85.235149
https://doi.org/10.1016/j.jcp.2016.01.034
https://doi.org/10.1021/acs.jctc.6b00318
https://doi.org/10.1039/c6fd00144k
https://doi.org/10.1021/acs.jctc.8b00378
https://doi.org/10.1021/acs.jpca.0c05723
https://doi.org/10.1021/acs.jpca.0c05723
https://doi.org/10.1021/acs.jpclett.0c02018
https://doi.org/10.1021/acs.jpclett.0c02018
https://doi.org/10.1063/1.460205
https://doi.org/10.1063/1.477422
https://doi.org/10.1063/1.2436888
https://doi.org/10.1063/1.2436888
https://doi.org/10.1021/acs.jctc.8b00832
https://doi.org/10.1021/acs.jctc.9b01297
https://doi.org/10.1063/1.5029879
https://doi.org/10.1021/acs.jpcb.8b11905
https://doi.org/10.1021/acs.jpcb.8b11905
https://doi.org/10.1021/acs.jctc.0c01112
https://doi.org/10.1021/acs.jctc.0c01112
http://arxiv.org/abs/2010.14942
https://doi.org/10.1021/acs.jpclett.9b03113
https://doi.org/10.1002/qua.24952
https://doi.org/10.1140/epjb/e2018-90148-y
https://doi.org/10.1002/advs.201801367
https://doi.org/10.1038/s41467-019-12875-2
https://doi.org/10.1063/1.4928757


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

77J. Westermayr and P. Marquetand, “Deep learning for UV absorption spectra
with SchNarc: First steps toward transferability in chemical compound space,”
J. Chem. Phys. 153, 154112 (2020).
78J. Westermayr and R. J. Maurer, “Physically inspired deep learning of molecular
excitations and photoemission spectra,” arXiv:2103.09948 (2021).
79K. T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K. R. Müller, and E. K. U.
Gross, “How to represent crystal structures for machine learning: Towards fast
prediction of electronic properties,” Phys. Rev. B 89, 205118 (2014).
80Y. Zhuo, A. Mansouri Tehrani, and J. Brgoch, “Predicting the band gaps of
inorganic solids by machine learning,” J. Phys. Chem. Lett. 9, 1668–1673 (2018).
81J. Lee, A. Seko, K. Shitara, K. Nakayama, and I. Tanaka, “Prediction model of
band gap for inorganic compounds by combination of density functional theory
calculations and machine learning techniques,” Phys. Rev. B 93, 115104 (2016).
82G. Pilania, J. E. Gubernatis, and T. Lookman, “Multi-fidelity machine learn-
ing models for accurate bandgap predictions of solids,” Comput. Mater. Sci. 129,
156–163 (2017).
83C. Ben Mahmoud, A. Anelli, G. Csányi, and M. Ceriotti, “Learning the electronic
density of states in condensed matter,” Phys. Rev. B 102, 235130 (2020).
84J. Westermayr, M. Gastegger, M. F. S. J. Menger, S. Mai, L. González, and P.
Marquetand, “Machine learning enables long time scale molecular photodynamics
simulations,” Chem. Sci. 10, 8100–8107 (2019).
85C. D. Rankine, M. M. M. Madkhali, and T. J. Penfold, “A deep neural net-
work for the rapid prediction of X-ray absorption spectra,” J. Phys. Chem. A 124,
4263–4270 (2020).
86C. D. Rankine and T. J. Penfold, “Progress in the theory of x-ray spectroscopy:
From quantum chemistry to machine learning and ultrafast dynamics,” J. Phys.
Chem. A 125, 4276 (2021).
87Y. Shu and D. G. Truhlar, “Diabatization by machine intelligence,” J. Chem.
Theory Comput. 16, 6456–6464 (2020).
88S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl. Data
Eng. 22, 1345–1359 (2010).
89P. O. Dral, A. Owens, A. Dral, and G. Csányi, “Hierarchical machine learning of
potential energy surfaces,” J. Chem. Phys. 152, 204110 (2020).
90L. Böselt, M. Thürlemann, and S. Riniker, “Machine learning in QM/MM
molecular dynamics simulations of condensed-phase systems,” J. Chem. Theory
Comput. 17, 2641 (2021).
91A. Nandi, C. Qu, P. L. Houston, R. Conte, and J. M. Bowman, “Δ-machine learn-
ing for potential energy surfaces: A PIP approach to bring a DFT-based PES to
CCSD(T) level of theory,” J. Chem. Phys. 154, 051102 (2021).
92J. S. Smith, B. T. Nebgen, R. Zubatyuk, N. Lubbers, C. Devereux, K. Barros,
S. Tretiak, O. Isayev, and A. E. Roitberg, “Approaching coupled cluster accuracy
with a general-purpose neural network potential through transfer learning,” Nat.
Commun. 10, 2903 (2019).
93L. Ward, B. Blaiszik, I. Foster, R. S. Assary, B. Narayanan, and L. Curtiss,
“Machine learning prediction of accurate atomization energies of organic
molecules from low-fidelity quantum chemical calculations,” MRS Commun.
9(3), 891–899 (2019).
94S. Käser, D. Koner, A. S. Christensen, O. A. von Lilienfeld, and M. Meuwly,
“Machine learning models of vibrating H2CO: Comparing reproducing kernels,
FCHL, and PhysNet,” J. Phys. Chem. A 124, 8853–8865 (2020).
95S. Käser, E. Boittier, M. Upadhyay, and M. Meuwly, “MP2 is not good enough:
Transfer learning ML models for accurate VPT2 frequencies,” arXiv:2103.05491
(2021).
96C. Qu, P. Houston, R. Conte, A. Nandi, and J. M. Bowman, “Breaking the
CCSD(T) barrier for machine learned potentials of large molecules: Demonstra-
tion for acetylacetone,” J. Phys. Chem. Lett. 12(20), 4902–4909 (2021).
97J. S. Smith, O. Isayev, and A. E. Roitberg, “ANI-1: An extensible neural net-
work potential with DFT accuracy at force field computational cost,” Chem. Sci.
8, 3192–3203 (2017).
98M. Bogojeski, L. Vogt-Maranto, M. E. Tuckerman, K.-R. Müller, and K.
Burke, “Quantum chemical accuracy from density functional approximations via
machine learning,” Nat. Commun. 11, 5223 (2020).
99S. Batzner, T. E. Smidt, L. Sun, J. P. Mailoa, M. Kornbluth, N. Molinari, and
B. Kozinsky, “SE(3)-equivariant graph neural networks for data-efficient and
accurate interatomic potentials,” arXiv:2101.03164 (2021).

100K. T. Schütt, O. T. Unke, and M. Gastegger, “Equivariant message passing for
the prediction of tensorial properties and molecular spectra,” Proceedings of the
38th International Conference on Machine Learning (in press).
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