
Translational Expressiveness
Comparing Process Calculi using Encodings

vorgelegt von
Dipl.-Inform.

Kirstin Peters

aus Potsdam

von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzende: Prof. Dr. S. Glesner
Gutachter: Prof. Dr. U. Nestmann
Gutachter: Prof. Dr. J. Parrow
Gutachter: Prof. Dr. D. Gorla

Tag der wissenschaftlichen Aussprache: 19. September 2012

Berlin 2012
D 83

Acknowledgements

First of all let me express my thanks to my supervisor Prof. Uwe Nestmann. I very
much enjoyed my time as a PhD student in Berlin. It was Uwe who got me interested
in concurrency theory and process calculi. I learned a lot from the countless discussions
with him and within our group, and his door was open whenever I had a problem.
Moreover, Uwe gave me the opportunity to do a lot of teaching—a part of my job I
always loved and enjoyed.

Of course there were also a number of other researchers that supported me with fruit-
ful discussions and fresh ideas. In particular let me thank the members of our research
project on synchronous and asynchronous interactions in distributed systems: Prof. Ur-
sula Goltz, Jens-Wolfhard Schicke-Uffmann, and Stephan Mennicke from Braunschweig,
Prof. Rob van Glabbeek from Sydney, and Prof. Uwe Nestmann and Christian Ham-
merschmidt from Berlin. Most of the ideas of this thesis were developed during my work
in this project and the discussions at our regular meetings. I also benefited a lot from
the small project workshop with Prof. Rob van Glabbeek and Prof. Daniele Gorla in
Berlin.

Apart from that I express my thanks to the group of german researchers in concur-
rency theory that meet every spring to exchange ideas and providing a platform for
collaboration—in particular between the PhD students. The informal and familiar at-
mosphere at these meetings allowed me to present some of my ideas at an early stage
to an interested and candid audience. The discussions improved not only my style of
presentation but also led to new insights and ideas for ongoing work.

I would also like to thank Prof. Joachim Parrow, Prof. Björn Victor, Ioana Rodhe,
Johannes Borgström, Johannes Åman Pohjola, Palle Raabjerg, Tjark Weber, Ramunas
Gutkovas, and Alasdair Armstrong for the opportunity to visit Sweden and for the very
nice time I had in this group. Since these visits took part at the end and after finishing
the thesis, they might not have influenced the present document that much, but I am
sure that they will influence my future research.

I also thank Prof. Uwe Nestmann, Prof. Joachim Parrow, and Prof. Daniele Gorla
for taking the job to referee my thesis. Furthermore I would like to thank Margit Russ
for all the help related to the non-scientific parts of my time as a PhD student.

Last but not least I express my special thanks to Christoph Wagner for bearing me
in stressed times, cheering me up whenever I needed it, improving my latex code, and
everything else he has done for me.

iii

Summary

We study the relation between process calculi—in particular between variants of the pi-
calculus and the join-calculus—that differ in their either synchronous or asynchronous
interaction mechanism. Synchronous and asynchronous interactions are the two ba-
sic paradigms of interactions in distributed systems. While synchronous interaction is
widely used in specification languages, asynchronous interaction is often better suited to
implement real systems. We are interested in the conditions under which synchronous
interactions can be implemented using just asynchronous interactions. We compare the
different variants of the calculi with respect to their expressive power. To do so we anal-
yse the existence of encodings between the languages, i.e., translations of the processes
of one language into processes of another language. In particular we are interested in
encodings that preserve distributability, i.e., in translations that to not reduce the degree
of concurrency of the translated processes. We discuss positive as well as negative results
between synchronous and asynchronous variants of the pi-calculus and the join-calculus.

Zusammenfassung

Wir untersuchen die Beziehung zwischen Prozesskalkülen – insbesondere zwischen ver-
schiedenen Varianten des Pi-Kalküls und dem Join-Kalkül – die sich in den verwende-
ten Interaktionsmechanismen unterscheiden. Dabei unterscheiden wir im Wesentlichen
zwischen synchronen und asynchronen Interaktionsmechanismen, als Basisformen von
Interaktion in verteilten Systemen. Aufgrund ihrer größeren Ausdrucksstärke werden
synchrone Interaktionsmechanismen oft in Spezifikationen benutzt, asynchrone Inter-
aktionsmechanismen lassen sich in der Regel aber leichter in realen Systemen imple-
mentieren. Wir untersuchen unter welchen Bedingungen eine Abbildung synchroner
Interaktionen in asynchrone Interaktionen möglich ist. Dazu vergleichen wir die Aus-
drucksstärke verschiedener Varianten von Prozesskalkülen, indem wir untersuchen, ob
zwischen diesen Sprachen eine Kodierung existieren kann. Besonders interessieren wir
uns für die Möglichkeit einer Kodierung, welche den Grad der Verteilbarkeit der zu
übersetzenden Prozesse bewahrt. Wir diskutieren verschiedene Resultate sowohl für die
Möglichkeit als auch für die Unmöglichkeit einer solchen Kodierung zwischen Varianten
des Pi-Kalküls und dem Join-Kalkül.

v

Contents

Summary v

1. Introduction 1

1.1. Organisation of the Thesis . 2

1.1.1. Translational Expressiveness . 2

1.1.2. Synchrony and Asynchrony in the Pi-Calculus 4

1.1.3. Main Goals . 6

1.2. Publications . 6

2. Process Calculi 9

2.1. Basic Definitions . 10

2.1.1. The Pi-Calculus . 14

2.1.2. The Join-Calculus . 22

2.1.3. Communicating Sequential Processes (CSP) 23

2.2. Bisimulation . 24

2.2.1. Bisimulation and Coupled Simulation in the Pi-Calculus 25

2.2.2. Observables and Barbed Bisimulation in the Pi-Calculus 26

3. Encodings and their Quality 29

3.1. Encoding Functions . 29

3.2. Quality Criteria . 30

3.2.1. Equivalence . 31

3.2.2. Full Abstraction . 32

3.2.3. Operational Correspondence . 33

3.2.4. Observables, Testing, and Termination 34

3.2.5. Structural Requirements . 34

3.3. A General Framework . 36

3.4. Designing Quality Criteria . 40

3.4.1. Abstract Formulation . 40

3.4.2. Comparison and Classification . 42

3.4.3. Formalisation . 44

3.4.4. Verification . 47

3.4.5. Alternative Formalisation . 49

3.5. Summary and Related Work . 51

vii

Contents

4. Separating Languages 55
4.1. Absolute Results . 57

4.1.1. Formalising the Difference of Languages 58

4.1.2. Standard Problems . 62

4.1.3. Absolute Results and Quality Criteria 65

4.2. Separation and Quality Criteria . 74

4.2.1. Different Sets of Quality Criteria 74

4.2.2. Different Domains . 83

4.3. Transferring Absolute Results . 91

4.3.1. The Absolute Result . 92

4.3.2. A new Separation Result . 94

4.3.3. Transferring Separation Results . 97

4.4. Adapting an Absolute Result . 100

4.5. Summary and Related Work . 106

5. The Design of Encodings 111
5.1. Concept and Implementation . 112

5.1.1. Concept of the Encoding . 113

5.1.2. Implementing the Concept . 114

5.1.3. Encoding Example . 117

5.2. Extending Encodings . 118

5.2.1. Extending the Concept . 119

5.2.2. An Intermediate Encoding . 123

5.2.3. Encoding Example . 126

5.2.4. Refine the Encoding . 132

5.2.5. Encoding Example . 136

5.3. Modifications . 140

5.4. Composing Encodings . 142

5.5. Summary . 147

6. Properties of Encodings 151
6.1. Structural Criteria . 152

6.1.1. Compositionality . 153

6.1.2. Name Invariance . 155

6.2. Type Systems . 159

6.2.1. Terminology . 160

6.2.2. A Basic Type System . 164

6.2.3. Types with Behaviour . 179

6.2.4. Polarity and Multiplicity . 208

6.3. Semantic Properties . 228

6.3.1. Steps and States of Target Terms 230

6.3.2. Invariants . 236

6.3.3. Translated Observables . 258

6.3.4. A Behavioural Equivalence . 262

viii

Contents

6.3.5. Junk . 271
6.3.6. Semantic Criteria . 276

6.4. Domain-Specific Criteria . 281
6.5. Summary and Related Work . 284

7. Concluding Remarks 289
7.1. Contributions . 289
7.2. Hierarchy of Distributability in Pi-like Calculi 292
7.3. Further Research . 294

List of Figures 297

Bibliography 299

A. Appendix 309
A.1. Typed Encoding Functions . 309

A.1.1. Well-Typedness in the Basic Type System 309
A.1.2. Properties of the Monadic Type System 331
A.1.3. Well-Typedness in the Linear Type System 336

A.2. Semantic Properties . 345

ix

Contents

Brief Outline

Chapter 1 • Introduction to Translational Expressiveness
Introduction • Overview over Translational Results

• Overview over Results Comparing Synchronous and
Asynchronous Interactions in the Pi-Calculus

Chapter 2 • Introduction to Process Calculi
Process Calculi • Variants of the Pi-Calculus:

◦ πm: Synchronous Pi-Calculus with Mixed Choice
◦ πs: Synchronous Pi-Calculus with Separate Choice
◦ πa: Asynchronous Pi-Calculus (without Choice)
◦ πp: Asynchronous Pi-Calculus with Polyadic

Synchronisation
• Introduction to the Join-Calculus (J) and CSP
• Bisimulation and Observables in the Pi-Calculus

Chapter 3 • General Framework of Quality Criteria:
Encodings and their ◦ Compositionality, Name Invariance,
Quality Criteria ◦ Operational Correspondence,

◦ Divergence Reflection, Success Sensitiveness
• Domain-Specific Criterion:
◦ Preservation of Distributability

Chapter 4 • Breaking Symmetries
Separating Languages • No Good Encoding from πm into πs:

◦ Translates the Parallel Operator
Homomorphically

◦ Preserves Distributability
◦ Reflects Causal Dependencies
• No Good Encoding from πa into J Preserves

Distributability
• Synchronisation Patterns: M and ?

Chapter 5 • Encoding Functions:
The Design of Encodings ◦ J · Ksa : from πs into πa of [Nes00]

◦ J · Kmp : from πm into πp
◦ J · Kma : from πm into π=a
• Unfolding of Polyadic Communications

Chapter 6 • Correctness of the Encodings
Properties of Encodings • Properties of the Encodings:

◦ Administrative, Impure, and Core Steps
◦ Translated Observables
◦ (un)observable, (in)active Junk
◦ Preservation of Distributability

Chapter 7 • Summary of the Main Contributions
Concluding Remarks • Hierarchy on Distributability in Pi-like Calculi

• Further Research

x

1. Introduction

In today’s world of wireless and mobile networking, parallel and distributed systems
are omnipresent. Their analysis and verification, however, is still a challenging task.
A distributed system is a system whose components are assumed to reside on different
locations. In particular we assume that the components do not share a common clock.
Different components of such a system can either interact or act concurrently. The in-
terplay of interaction and concurrency in distributed concurrent systems results in an
awfully large state space even of reasonable small systems. Interactions are either syn-
chronous, i.e., interaction may happen immediately as atomic or simultaneous exchange
of information, or asynchronously, i.e., interaction may take time. While synchronous
interactions are widely used in specification languages, asynchronous interactions are
often better suited to implement real systems. The context of this thesis is the formal
analysis of both the expressive power and the (distributed) implementability of specifi-
cation and programming languages for concurrent systems, by the study of synchronous
and asynchronous interaction mechanisms. Concentrating on the computational essence
of such languages, we focus on so-called process calculi—as exemplified by the pi-calcu-
lus—which contain as few syntactic primitives as possible.

Process calculi (or process algebra) is one area of formalisations of concurrent systems.
Other areas are for example Petri nets [Pet62] or the Actor model [HBS73]. A brief
history of process algebra can be found in [Bae05]. Over the time different process calculi
emerge. Examples are CCS [Mil89], CSP [Hoa78], or ACP [BK82], just to name some
of the most prominent ones. The pi-calculus [MPW92, Mil99] has become more recently
prominent as a process calculus to reason about mobile systems. Note that each of these
calculi denotes rather a family of process calculi. The number of different process calculi
is in fact enormous. As discussed in [Nes06] there are many good reasons for this great
number of different calculi. The most plausible is maybe that many of these different
calculi stem from different practical needs. They are designed as domain-specific calculi
capturing exactly the set of primitives necessary to model the desired system at a proper
level of abstraction without overloading the theory with (for this domain) unnecessary
operations. The large number of calculi calls for methods to compare different calculi
or different variants within a family of process calculi with respect to their expressive
power. The most prominent such method is language embedding using encodings [BP91].
Encodings—or the proof of their absence—do not only allow to compare the expressive
power of languages but also formalise similarities and differences between the considered
languages. So they provide a base for implementations of languages into real systems.

Accordingly, we discuss how languages can be compared by means of encodings in
general and in particular how the synchronous and asynchronous variants of the pi-cal-
culus are related.

1

1. Introduction

1.1. Organisation of the Thesis

In principle there are two ways to read this thesis. As the title suggests, the common
thread of this thesis is to provide an overview on the derivation of translational results,
i.e., results that compare the expressive power of process calculi by means of encodings.
As running example throughout the chapters we compare synchronous and asynchronous
variants of the pi-calculus. In fact the main contributions of this work are the positive
and negative results obtained from the consideration of this running example, i.e., from
the comparison of different variants of the pi-calculus with respect to synchronous and
asynchronous interaction mechanisms.

1.1.1. Translational Expressiveness

There are basically two ways to measure the expressive power of a language [Par08].

An absolute result is a result about the expressive power of a single process calculus,
usually obtained by proving the ability (positive absolute result) or inability (negative
absolute result) to solve some kind of problem (see [Par08, Gor10b] and even [LSZ74]),
whereas a relative result compares two process calculi. However, the “absolute” of the
first kind of results does not necessarily mean that they cannot be used to derive relative
results. Indeed all absolute results presented in this thesis are used to compare two or
more different process calculi. For us, the “absolute” rather refers to the proof of the
respective result. More precisely, throughout this thesis we refer to all expressivity results
that are derived for a single language (without any reference to another language) as
absolute result.

Now, to compare the absolute expressive power of two languages, we may simply choose
a problem that can be solved in one language, but not in the other language. Note that
combining two absolute results that are both positive or both negative usually does not
reveal much information, because it proves only that the considered languages do not
differ with respect to the respective particular problem. Actually as soon as we compare
two languages, it makes sense to use the term relative expressive power, as we can now
relate the two languages. Unfortunately the terminology was introduced differently. It
has been attributed (see [Par08, Gor10b]) to the comparison of the expressive power of
two languages by means of the existence or non-existence of encodings from one language
into the other language, subject to various conditions on the encoding. In our opinion,
the term ”relative expressive power” is misleading. First, as mentioned above, also
the absolute expressive power can directly be used to relate two languages. Second,
results on the encodability of a language have to be understood relative to the specific
conditions on the encoding—it is not always clear to what aspect the ”relative” refers.
Thus, we prefer the notion of translational expressive power to refer to comparisons of
the expressiveness of two languages by analysing the existence or non-existence of an
encoding, subject to various conditions. A positive translational result, i.e., the proof
of the existence of an encoding, is denoted as encodability result, whereas a negative
translational result is denoted as translational separation result.

Chapter 2 introduces (the variants of) the process calculi that are considered within

2

1.1. Organisation of the Thesis

this thesis as well as bisimulation as a technique to reason about the behaviour of pro-
cess terms. As mentioned translational results are always subject to some conditions,
denoted as quality criteria in the following. To require that translational results satisfy
some quality criteria is necessary, to rule out trivial and meaningless encodings. In Chap-
ter 3 we formally define encoding functions and discuss possible sets of quality criteria.
Then we introduce a general framework of [Gor08b, Gor10b] which allows us to obtain
reasonable and comparable translational results. Moreover, we discuss the extension of
this framework by an additional domain-specific criterion in order to answer questions
that go beyond the general expressive power of process calculi.

Negative translational results are discussed in Chapter 4. Thereby we show the rel-
evance of absolute results for the derivation of translational separation results, discuss
different methods to obtain absolute results, and analyse what conditions turn an abso-
lute result suitable for the derivation of a translational separation result in a particular
setting of quality criteria. Then, we show separation with respect to varying sets of qual-
ity criteria including different general criteria as they occur in the general framework as
well as domain-specific criteria. We observe that translational separation results that
are based on absolute results basically follow the same line of argument (at least if the
absolute result is well-suited for the required set of quality criteria) and that sometimes
several negative translational results with respect to different sets of quality criteria or
even with respect to different languages can be derived from the same absolute result or
comparable instances of the same absolute result. Moreover, we discuss how translational
separation results can be transferred or adapted to separate other pairs of languages.

Chapter 5 discusses the design of encoding functions, i.e., positive translational results.
For this we distinguish between the main idea of an encoding, denoted as its concept,
and the implementation of this concept in terms of the target language. Then we show,
as an example, how the concept and the implementation can be extended to obtain an
encoding that covers a more expressive source language. To improve the presentation of
the resulting rather complex encoding, we make use of an intermediate encoding which
allows us to abstract from technical details.

How to prove that an encoding function satisfies a given set of criteria is discussed
in Chapter 6. Here, we mainly focus on the structural and semantic criteria that form
the general framework presented in Chapter 3, but consider also the prove of a domain-
specific condition that is introduced in Chapter 3. Moreover, we introduce some type
systems for the target languages of the presented encodings and discuss their use in the
proof of the semantic criteria. We also use invariants as poof technique. Furthermore,
we talk about typical properties of encodings. We analyse the kinds of steps that may be
performed by an encoded process term in order to simulate some behaviour and discuss
how a classification of such steps can guide the proof of semantic properties. We also
discuss how observables are translated by an encoding function and how this influences
the proof of correctness of this encoding and the set of criteria that can be satisfied by
the respective encoding. Also the kinds of junk or garbage that are introduced by an
encoding may influence the set of criteria it can satisfy. More precisely, the proof of
correctness of an encoding has to ensure that the introduced junk does no harm with
respect to the considered quality criteria.

3

1. Introduction

Finally, Chapter 7 concludes by showing how translational results can be combined to
obtain a hierarchy.

1.1.2. Synchrony and Asynchrony in the Pi-Calculus

We study the relation between process calculi that differ in their either synchronous
or asynchronous interaction mechanism. Synchronous and asynchronous interactions
are the two basic paradigms of interactions in distributed systems. While synchronous
interaction is widely used in specification languages, asynchronous interaction is often
better suited to implement real systems. We are interested in the conditions under which
synchronous interactions can be implemented using just asynchronous interactions, in
particular in the conditions under which it is possible to encode the synchronous pi-
calculus into its asynchronous variant. Within this thesis we derive positive as well as
negative translational results to answer this question.

A discussion on synchrony versus asynchrony cannot be separated from a discussion
of choice. When processes communicate via message-passing along channels, they do
not only listen to one channel at a time—they concurrently listen to a whole selection
of channels. Choice operators just make this natural intuition explicit. Moreover, their
mutual exclusion property allows us to concisely describe the particular effect of message-
passing actions on the process’s local state. Asynchronous send actions make no sense
as part of a mutually exclusive selection, as they cannot be prevented from happening.
Consequently, the asynchronous calculus only offers input-guarded choice or no choice
at all. In contrast synchronous send actions also allow for the definition of mixed choice,
i.e., selections of both input and output actions.

It is well known that there is a good encoding from the choice-free synchronous pi-cal-
culus into its asynchronous variant [Bou92, HT91, Hon92a]. It is also well-known [Pal03,
Gor10b] that there is no good encoding from the full pi-calculus—the synchronous pi-cal-
culus including mixed choice—into its asynchronous variant if the encoding translates
the parallel operator homomorphically. Palamidessi was the first to point out that
mixed choice strictly raises the absolute expressive power of the synchronous pi-calculus
compared to its asynchronous variant. The proof of this result analyses their different
expressive power concerning leader election in symmetric networks. More precisely,
Palamidessi proves that there is no symmetric network in the asynchronous pi-calculus
that solves leader election, whereas there are such networks in the synchronous pi-cal-
culus. The proof implicitly uses the fact that it is not possible in the asynchronous
pi-calculus to break initial symmetries, while this is possible in the synchronous pi-cal-
culus. To this end, a rather strong notion of symmetry consisting of a syntactic and a
semantic component is used to ensure that solving leader election requires breaking initial
symmetries. Later on, Gorla offered an arguably simpler proof that, instead of leader
election in symmetric networks, employed the reducibility of “incestual” processes (mixed
choices that include both enabled senders and receivers for the same channel) when
running two copies in parallel. In both proofs the role of breaking (initial) symmetries
is more or less apparent. In Section 4.1.3 we shed more light on this role by re-proving
the absolute result in [Pal03]—based on a proper formalisation of what it means to

4

1.1. Organisation of the Thesis

break symmetries—without referring to another problem domain like leader election.
In Section 4.2.1 we use this result to reprove the translational separation results of
[Pal03] and (the first setting of) [Gor10b], i.e., show that there cannot exist a reasonable
encoding that translates the parallel operator homomorphically.

As already Gorla [Gor10b] states, the condition of homomorphic translation of the
parallel operator is rather strict. Therefore Gorla proposes the weaker criterion of com-
positional translation of the source language operators. In Chapter 5 we discuss how
this weakening of the structural condition on the encoding of the parallel operator turns
the above separation results into an encodability result, i.e., there is an encoding from
the synchronous π-calculus—including mixed choice—into its asynchronous variant with
respect to the general framework of Gorla. Note that this general framework defines a
set of minimal criteria for encodings: they must be compositional and preserve and re-
flect computations, deadlocks, divergence, and success. In Chapter 6 we show that all
these conditions are satisfied by the proposed encoding of mixed choice. Moreover, we
discuss different properties and also drawbacks of the proposed encoding in Chapter 5
and Chapter 6.

The homomorphic translation of the parallel operator was used in [Pal03], because
encodings that preserve this criterion are ensured to preserve distributability. If we con-
sider the implementability of languages in real distributed systems, this requirement is
of great importance. Implementations that force programs to synchronise on each step
or to reside on a single location turn synchronous and distributed specifications mean-
ingless. Hence we are interested in translations that preserve the degree of distribution
of the encoded processes. However, as we discuss in Section 3.4, the homomorphic trans-
lation of the parallel operator is too strict as criterion for separation results. Instead
we propose a novel criterion and explain why it is better suited to measure preservation
of distributability. In Section 4.2.2 we prove then that also the resulting weaker setting
does not allow to encode mixed choice, i.e., we show that there exists no encoding that
respects the criteria in the general framework of Gorla and also preserves distributability.

In Section 4.4 we improve this separation result by a more intuitive proof. For this
we capture the difference between the synchronous and the asynchronous pi-calculus
within a so-called synchronisation pattern, i.e., a property of process terms defined on
their transition system. Moreover, in Section 4.3 we go a step further and analyse the
possibility to implement the asynchronous pi-calculus within a distributed setting. Intu-
itively, the degree of distributability corresponds to the amount of parallel components
that can act independently. Practical experience has shown that it is not possible to im-
plement every pi-calculus term—not even every asynchronous one—in an asynchronous
setting while preserving its degree of distributability, at least not with an automatic
algorithm. To overcome these problems, the join-calculus was introduced as a model of
distributed computation [Lév97]. It employs a locality principle by ensuring that there
is always exactly one immobile receiver for each communication channel. We formally
prove that this locality principle indeed results in a gap between the expressive power of
the join-calculus and the asynchronous pi-calculus with respect to distributability, i.e.,
we prove that there exists no encoding with respect to the general framework that also
preserves distributability. Again, we capture the difference between these two languages

5

1. Introduction

within a synchronisation pattern. The obtained synchronisation patterns provide an
intuitive description of the difference in the expressive power of the join-calculus, the
asynchronous pi-calculus, and the synchronous pi-calculus.

We conclude in Chapter 7 by combining the results of this thesis within a hierarchy
of synchronous and asynchronous interactions in the pi-calculus and interactions in the
join-calculus with respect to distributability.

1.1.3. Main Goals

Our main goal is to analyse and compare the expressive power of synchronous and
asynchronous variants of the pi-calculus (and also the join-calculus) with respect to
distributability. For this we (1) analyse and reconsider existing positive and negative
translational results in this direction, (2) discuss how distributability can be formalised
and what it means for an encoding to preserve distributability, and (3) analyse how this
new criterion influence the known positive and negative results. Moreover, we want to
present some kind of guideline on the derivation of translational expressiveness results,
although we do not believe that this thesis presents a complete overview on the current
state of research in this direction.

1.2. Publications

Some material of this thesis is already published, accepted for publication, or was recently
submitted for publication.

The results of Section 4.1.3 and Section 4.2.1 were already published in:

1. Breaking Symmetries by Kirstin Peters and Uwe Nestmann; published in the pro-
ceedings of the 17th International Workshop on Expressiveness in Concurrency
(EXPRESS ’10) [PN10a]

Some of the proofs of these results were presented within the following technical report.

2. Breaking Symmetries by Kirstin Peters and Uwe Nestmann; provided as technical
report at http://arxiv.org/abs/1007.4172v1 [PN10b]

In

3. Breaking Symmetries by Kirstin Peters and Uwe Nestmann; to appear in Mathe-
matical Structures in Computer Science (MSCS ’12) [PN12a]

we extended [PN10a] and [PN10b] by the main idea of the encoding of mixed choice as
presented in Section 5.3. We also discussed the main properties and drawbacks of this
encoding attempt and sketch the main line of its proof of correctness. Hence this paper
contains a very early rough draft of Chapter 6.

Section 4.2.2 contains a revised version of a result presented in

4. Synchrony vs Causality in the Asynchronous Pi-Calculus by Kirstin Peters, Jens-
Wolfhard Schicke, and Uwe Nestmann; published in the proceedings of the 18th In-
ternational Workshop on Expressiveness in Concurrency (EXPRESS ’11) [PSN11]

6

1.2. Publications

In contrast to the presentation in Section 4.2.2, [PSN11] concentrated more on causality
than distributability. In fact it was published before the formalisation of the criterion to
measure preservation of distributability in Section 3.4 was derived. A companion-paper
considers the effect of encoding synchronous interaction with respect to causality in the
context of Petri nets [SPG11]. A combination and revision of these two papers was
submitted as:

• Synchrony versus Causality in Distributed Systems by Kirstin Peters, Jens-Wolf-
hard Schicke-Uffmann, Ursula Goltz, and Uwe Nestmann; submitted.

The encoding of mixed choice as it is presented in Section 5.2.4 was already introduced
in

5. Is It a “Good” Encoding of Mixed Choice? by Kirstin Peters and Uwe Nestmann;
published in the proceedings of the 15th International Conference of Foundations
of Software Science and Computational Structures (FoSSaCS ’12) [PN12b]

Also its main properties and drawbacks are discussed. For this [PN12b] contains a
preliminary version of the criterion presented in Section 3.4 on the preservation of dis-
tributability. But, in contrast to the actual formulation of this criterion, the version
presented in [PN12b] was to focused on the pi-calculus. Based on the results in [PSN11]
it was shown that no good encoding of mixed choice can preserve distributability. This
result—together with a revised version of the result in [PSN11]—is presented in Sec-
tion 4.2.2. The technical report

6. Is it a “Good” Encoding of Mixed Choice? (Technical Report) by Kirstin Peters and
Uwe Nestmann; provided as technical report at http://arxiv.org/abs/1201.1410v1
[PN12c]

extends [PN12b] by the proof of the correctness of the encoding of mixed choice. In
particular Section 6.3.1 and the Sections 6.3.3 to Section 6.3.6 result from a revision of
the proofs presented in [PN12c]. Also the intermediate encoding of mixed choice with
respect to polyadic synchronisation of Section 5.2.2 is already contained in [PN12c] and
used in [PN12b] to validate the proposed preliminary version of the quality criterion of
the preservation of distributability.

Finally, a shortened version of Section 3.4, Section 4.3, and Section 4.4 was recently
submitted.

• Distributability in Process Calculi by Kirstin Peters, Uwe Nestmann, and Ursula
Goltz; submitted.

Remark: The above papers were developed in a close collaboration with my co-authors.
I was part of all aspects of the work with the definitions, separation results, design of
encodings, and all the proofs (except of the result on the relationship between synchrony
and causality in the context of Petri nets in [SPG11] that is not contained in this thesis).

7

2. Process Calculi

Process calculi focus on the specification and manipulation of process terms as induced
by a collection of operator symbols [Fok07]. Process calculi usually come with a well-
developed mathematical theory. In particular, they have a compositional semantics.
Hence, two process terms with the same semantics (possibly modulo some notion of
equivalence) may be exchanged in any context without changing the overall behaviour.
This is an important property and a precondition for program transformations and
modular design [Kie98].

The three (families of) process calculi—the pi-calculus, the join-calculus, and the CSP-
calculus—that are considered in this thesis certainly belong to the most famous process
calculi. Our main interest is in the pi-calculus [MPW92]. It evolved from CCS—the
calculus of communicating systems [Mil80]. CCS provides an algebraic notion for systems
or programs. Its focus is on the communications between components of the system,
where communications are modelled as two-way rendezvous. An action a synchronises
with its communication partner a yielding an internal τ -event. This distinguishes CCS
from CSP, where communication is between arbitrary many participants [Hoa78]. An
introduction to CCS can be found e.g. in [Mil80, Mil89, Bru97, Mil99], where the last
also contains an introduction to the pi-calculus.

In order to express mobile systems, [MPW92] introduces the pi-calculus (or the π-
calculus) as an extension of CCS (following the work of [EN86, EN00]). In the pi-calcu-
lus synchronising actions have the form y(x) and y〈z〉, where the former represents the
reception of a value x over a link or channel y and the later represents the transmission
of the value z over link y. The transmission of links changes the structure of a system
and, thus, expresses mobility. For this, links as well as the transmitted values are both
taken from the same domain. Implementations of the pi-calculus into a concurrent
programming language are for example considered in [PT97].

The pi-calculus is a well-known and frequently used process calculus to model con-
current systems. Therein, intuitively, the degree of distributability corresponds to the
amount of parallel components that can act independently (see Section 3.4). However,
practical experience has shown that it is not possible to implement every pi-calculus
term—not even every asynchronous one—in an asynchronous setting while preserving
its degree of distributability, at least not with an automatic algorithm. To overcome
these problems, the join-calculus was introduced as a model of distributed computa-
tion [Lév97]. It employs a locality principle by ensuring that there is always exactly
one immobile receiver for each communication channel. More precisely, for every name,
exactly one receiver is defined at the time of the name’s creation, and communication
occurs only on so-defined channels [Fou98]. Apart from that, the join-calculus can be
considered as a member (of the asynchronous branch) of the pi-calculus family.

9

2. Process Calculi

In the following we present some basic definitions for process calculi in Section 2.1
followed by the definition of the variants of the pi-calculus (Section 2.1.1), the join-cal-
culus (Section 2.1.2), and the CSP-calculus (Section 2.1.3) that are used throughout this
thesis. Moreover, we discuss bisimulation in Section 2.2 as prominent proof technique to
reason about process terms and introduce some standard bisimulations for the pi-calcu-
lus.

2.1. Basic Definitions

Assume a countably-infinite set N , whose elements are called names. Names are the
universe of elements of which the processes are constructed within (most of the) process
calculi. We use lower case letters a, b, c, . . . , a′, a1, . . . to range over names. Apart from
names some process calculi utilise additional universes to represent some kind of data
usually augmented with additional structure, as for instance the natural numbers N
with their total ordering ≤. However, within this thesis we deliberately restrict our
attention to process calculi that are constructed on top of the sole universe N , because
this simplifies several of the following considerations, as the definition of inference rules
of the considered process calculi in the following sections or the introduction of type
systems in Section 6.2, just to name two. There is one exception: we allow the use
of indices in form of natural numbers in order to compare to the results of [Pal03] in
Chapter 4. However, we do not allow to use functions or relations like ≤ on these indices,
i.e., do not allow o benefit from additional structure. Hence, we can also consider them
as special names whose syntactical representation are natural numbers instead of lower
case letters.

A process calculus is a language L = 〈 P, 7−→ 〉 that consists of a set of process terms P
(its syntax) and a relation 7−→ ⊆ P×P on process terms (its semantics). We often refer
to process terms also simply as processes—in particular if we want to underline their
character as elements of a language modelling real world objects and procedures—or as
terms—in particular if we refer to their mathematical representation and underlying the-
ory. But these intuitions are just guidelines. Indeed, we often treat the notions process
term, process, and term as equivalent. We use upper case letters P,Q,R, . . . , P ′, P1, . . .
to range over process terms.

The syntax is usually defined by a context-free grammar defining operators. An
operator op : N n ×Pm → P is a function from names and process terms into a process
term. In this case, we say op has the arity m. Sometimes, process calculi also specify
operators that, instead of a fixed number of arguments, accept any finite set of names
and/or process terms usually indexed by a finite index set I . In this case, the arity of
the operator is not a fixed value but, for a given set of arguments, is determined by the
number of process terms among the arguments. An example of such an operator is given
by the choice operator in the pi-calculus below. An operator of arity 0 is a constant. We
require that each process calculus defines at least the empty process as constant and the
parallel operator as binary operator. Note that, similar requirements can also be found
e.g. in [VPP07, Gor10b]. Moreover, in the style of [Gor10b] we add the special process

10

2.1. Basic Definitions

X to each process calculus. Its purpose is to denote success which allows us to compare
the abstract behaviour of terms in different process calculi as described in Section 3.3.
The arguments of an operator that are again process terms are called subterms of P .

Definition 2.1.1 (Subterms). Let 〈 P, 7−→ 〉 be a process calculus and P ∈ P a process
term. The set of subterms of P is defined as

• if P is a constant, i.e., P = op (x1, . . . , xn) for some x1, . . . , xn ∈ N , then the only
subterm of P is P itself, and

• else, if P = op (x1, . . . , xn, P1, . . . , Pm) with x1, . . . , xn ∈ N and P1, . . . , Pm ∈ P,
then the set of subterms of P contains P and all subterms of P1, . . . , Pm, i.e., the set
of subterms of P is given by { P, P ′ | ∃i ∈ { 1, . . . ,m } . P ′ is a subterm of Pi }.

We assume that the semantics is given as operational semantics consisting of inference
rules defined for the operators of the language [AFV01, Plo04, GMR06, MRG07]. For
many process calculi, the semantics is provided in two forms, as reduction semantics
and as labelled semantics. We assume that at least the reduction semantics 7−→ is given
as part of the definition. The labelled semantics is considered only as an additional
formulation of the behaviour, because the treatment of the reduction semantics is easier
in the context of encodings as explained in Section 3.3. In the case of the pi-calculus,
we introduce both, a labelled and a reduction semantics. A single application of the
reduction semantics is called a reduction step or shortly a step.

Definition 2.1.2 (Step). Let 〈 P, 7−→ 〉 be a process calculus and P, P ′ ∈ P. The pair
(P, P ′) ∈ 7−→ is called a (reduction) step of P and is written as P 7−→ P ′.

If P 7−→ P ′ is a step, we say P ′ is a derivative of P . Moreover, let P 7−→ denote the
existence of a step from P , i.e., P 7−→ , ∃P ′ ∈ P . P 7−→ P ′, let P 67−→ denote the
absence of a step from P , i.e., P 67−→ , ¬ (P 7−→), and let Z=⇒ denote the reflexive and
transitive closure of 7−→.

Accordingly, we call an application of the labelled semantics as a labelled step. A
sequence of reduction steps is called a reduction.

Definition 2.1.3 (Reduction). Let 〈 P, 7−→ 〉 be a process calculus and P ∈ P. A
sequence of steps from P is called a reduction.

Reductions are either finite, as in P1 7−→ . . . 7−→ Pn or P1 Z=⇒ Pn for some P1, . . . , Pn ∈
P, or they are infinite, as in P1 7−→ P2 7−→ . . . for some P1, P2, . . . ∈ P. We write P 7−→ω

if P has an infinite sequence of steps.
We also use execution to refer to a reduction starting from a particular term. A

maximal execution of a process P is a reduction starting from P that cannot be further
extended.

An infinite execution is an infinite sequence of finite executions. Note that an infinite
execution is not necessarily maximal. We do not forbid empty reductions, which can
be visualised as P Z=⇒ P , but of course the same notation is e.g. used to abbreviate a
reduction P 7−→ P ′ 7−→ P .

11

2. Process Calculi

Within this thesis, we often write inference rules in the form

Name
A1, . . . , An

C
S1, . . . , Sm

where Name is the name of the rule, A1, . . . , An is a set of subgoals, C is the conclusion
of the rule, and S1, . . . , Sm are side conditions. If n = 0 the corresponding rule is an
axiom. In the case of reduction rules the conclusion C is a step P 7−→ P ′ there P, P ′ are
process terms with process variables that allow the match of concrete terms against the
rule. To reason about environments we use functions on process terms called contexts.

Definition 2.1.4 (Context). Let 〈 P, 7−→ 〉 be a process calculus. A context

C([·]1, . . . , [·]n) : Pn → P

with n holes is a function from n process terms into a process term, i.e., given n terms
P1, . . . , Pn ∈ P, the term C(P1, . . . , Pn) is the result of inserting the n terms P1, . . . , Pn
in that order into the n holes of C.

Note that a context may bind some free names of its parameters.
To compare process terms, process calculi usually come with different well-studied

equivalence relations (see [vG01, vG93] for an overview and a classification of the most
frequent equivalences). Remember that an equivalence on a set M is a relation R ⊆
M ×M , that is reflexive, symmetric, and transitive. A special kind of equivalence with
great importance to reason about processes are congruences. A congruence is the closure
of an equivalence with respect to contexts.

Definition 2.1.5 (Congruence). Let 〈 P, 7−→ 〉 be a process calculus. An equivalence
R ⊆ P×P is a congruence if (P,Q) ∈ R implies (C(P) , C(Q)) ∈ R for all terms P,Q ∈ P
and all contexts C([·]) : P → P.

Moreover, let C be a set of contexts such that for all C ∈ C the context C is of type
P → P. Then an equivalence R ⊆ P×P is a congruence with respect to C if (P,Q) ∈ R
implies (C(P) , C(Q)) ∈ R for all terms P,Q ∈ P and all contexts C ∈ C.

To prove properties of an encoding the set of considered contexts has sometimes to be
restricted to contexts that respect the protocol behind the encoding (see e.g. [VP96]).
We use this technique in Section 6.3.4.

Moreover, process calculi usually come with a special congruence ≡ ⊆ P × P called
structural congruence. Its main purpose is to equate syntactically different process terms
that model quasi-identical behaviour. Often, this fact is captured explicitly by an infer-
ence rule of the form

P ≡ Q Q 7−→ Q′ Q′ ≡ P ′

P 7−→ P ′

in the reduction semantics. If the process calculus does not come with a standard
structural congruence, we either use equality instead or we derive the rules of structural
congruence by arguing as in the rule above. However, obtaining a structural congruence

12

2.1. Basic Definitions

in this way usually leads to unnecessary and very complicated rules. So, we strongly
recommend to use the standard structural congruence of a calculus if available.

The meaning of operators is defined by the inference rules in the operational semantics.
We distinguish between reducible (or dynamic) and static operators (compare e.g. to the
static and dynamic laws in [Mil89] or the static and dynamic constructions in [Mil93a]).
Intuitively, a reducible operator defines parts of terms that can perform steps, while
static operators define connections between terms and side conditions on the reductions
of their respective subterms, i.e., they allow for new reductions or forbid reductions of
their subterms. We sometimes denote the parts of a term that are removed or reduced
in reduction steps as capabilities, to illustrate that they indicate the parts of a term
that can perform steps. A typical example of a reducible operator are prefix operators
as y(x) .P in the pi-calculus or y!z → P in CSP, where the prefixes y(x) and y!z are
capabilities of the respective calculi. Note that static operators are usually manipulated
by the rules of structural congruence, whereas the reduction of reducible operators is
often described by the axioms of the reduction semantics. The remaining inference
rules of the reduction semantics usually describe the interplay with static operators. A
typical static operator that we assume to be part of every process calculus is the parallel
operator. Apart from reducible and static operators, we distinguish between operators
that allow for reductions of their subterms and those that require to be reduced first.
More precisely, we denote an operator as guard if at least one of its subterms cannot
be used to perform a step before the guard itself is reduced by a reduction step. Its
subterm(s) that cannot perform steps before the guard is reduced are called guarded
subterms. The other subterms, if there are any, as well as the subterms of operators
that are no guards are called unguarded subterms. Basically, all operators for sequential
compositions of terms or mutual exclusive alternatives are guards, whereas constants
are never guards, simply because they have no subterms. Note that a guard usually
guards all of its subterms, as it is the case in the pi-calculus. However, there are process
calculi, as the join-calculus, where a single operator combines different needs and, thus,
guards only some of its subterms. A guard is called context-sensitive if its reducibility
(in a reduction semantics) depends on a given context, i.e., if there are some contexts
in which the guard can be reduced and some in which the guard cannot be reduced
although it appears unguarded within the contexts. As an example in the asynchronous
pi-calculus the input y(x) .P is context-sensitive, because it can only be reduced if it
appears unguarded within a context that provides an unguarded matching output y〈z〉,
whereas the term τ.P can reduce in any context in which it appears unguarded, i.e., the
τ -prefix is a guard that is not context-sensitive.

Replication or recursion can be provided by reducible or static operators. For the
pi-calculus typical forms are y?(x) .P (reducible operator) or !P (static operator). Also
the semantics can be given by a reduction rule as y?(x) .P | y〈z〉 7−→ { z/x }P | y?(x) .P
or by a rule of structural congruence as y?(x) .P ≡ y(x) .P | y?(x) .P . In both cases,
recursion or replication distinguishes itself from other operators by the fact that (one
of) its subterms can be copied within rules of structural congruence or by reduction
rules while the operator itself is usually never removed during reductions. We call such
operators and capabilities recurrent.

13

2. Process Calculi

Another typical operator is the restriction of scopes of names. A scope defines an area
in which a particular name is known and can be used. For several reasons, it can be useful
to restrict the scope of a name. For instance to forbid interactions between two processes
or with an unknown and, hence, potentially untrusted environment. Names whose scope
is restricted such that they cannot be used from outside the scope are denoted as bound
names. The remaining names are called free names. Accordingly, we assume three
sets—the sets of names n(P) and its subsets of free names fn(P) and bound names
bn(P)—for each term P . In the case of bound names, their syntactical representation as
lower case letter serves as a place holder for any fresh name, i.e., any name that does not
occur elsewhere in the term. To avoid name capture or clashes, i.e., to avoid confusion
between free and bound names or different bound names, bound names can be mapped to
fresh names by α-conversion. We write P ≡α Q if P and Q differ only by α-conversion.
We use σ, σ′, σ1, . . . to range over substitutions. A substitution is a finite mapping from
names to names defined by a set { y1/x1, . . . , yn/xn } of renamings, where the x1, . . . , xn
are pairwise distinct. The application of a substitution to a term { y1/x1, . . . , yn/xn } (P)
is defined as the result of simultaneously replacing all free occurrences of xi by yi for
i ∈ { 1, . . . , n }, possibly applying α-conversion to avoid capture or name clashes. For all
names N \{ x1, . . . , xn } the substitution behaves as the identity mapping. Let id denote
identity, i.e., id is the empty substitution id = ∅. We sometimes omit the parentheses,
i.e., σ(P) = σP .

Let S(M) denotes the set of finite sequences of elements of M . Then x̃ ∈ S(M) is
such a finite sequence, i.e., if M = N , x̃ = x1, . . . , xn is a finite sequence of names for
some n ∈ N and some x1, . . . , xn ∈ N . The length of a sequence x̃ is denoted by |x̃|,
i.e., if x̃ = x1, . . . , xn then |x̃| = n. Moreover, we naturally extend substitutions to
sequences of names, i.e., if |x̃| = n = |ỹ| and all names in x̃ are pairwise different then
{ ỹ/x̃ } = { y1/x1, . . . , yn/xn }.

A network is the parallel composition of processes. Usually, we allow that these
processes can be surrounded by some static operator, for example to implement some
restriction on names that should be private to the network. Moreover, note that the
processes of a network can be again networks.

The semantics of process calculi is often given as interleaving semantics, i.e., the
semantics specifies the execution of single steps and concurrency is simulated via non-
deterministic interleaving. In contrast, semantics that explicitly consider the concurrent
executions of steps are often denoted as “truly concurrent” or step-semantics (see e.g.
[Pra86, Old87, DDNM88, MP95, AM96, Kie98, Lan07]). Within this thesis we restrict
our attention mainly to interleaving semantics. Consequently, the semantics introduced
in the following for different process calculi are interleaving semantics. However, for
Section 3.4, Section 4.3, and Section 4.4 we assume the existence of a step-semantics for
the considered calculi without explicitly referring to a particular such semantics.

2.1.1. The Pi-Calculus

In the following, we introduce different variants of the pi-calculus as described for in-
stance in [MPW92, Mil99, SW01]. Later on we compare these variants with respect to

14

2.1. Basic Definitions

their expressive power. Thereby the centre of interest is to compare synchronous and
asynchronous interactions. Note that the full pi-calculus describes synchronous inter-
actions, whereas asynchronous interactions are described by one of its subcalculi, the
asynchronous pi-calculus. As already demonstrated in [Pal03] and further exposed in
Chapter 4, the most interesting operator for a comparison of the expressive power be-
tween these two calculi is mixed choice, i.e., choice between input and output capabilities.
Thus, we denote the full pi-calculus by πm.

Let τ /∈ N and N the set of co-names, i.e., N = { n | n ∈ N }.

Definition 2.1.6 (πm). The set of process terms of the synchronous pi-calculus (with
mixed choice), denoted by Pm, is given by

P ::= X | (νx)P | P1 | P2 | y?(x) .P |
∑
i∈I

πi.Pi

π ::= y〈z〉 | y(x) | τ

for some names x, y, z ∈ N and a finite index set I .

The interpretation of the defined process terms is as usual. Restriction (νx)P restricts
the scope of the name x to the definition of P . The parallel composition P1 | P2 defines
the process in which P1 and P2 may proceed independently, possibly interacting using
shared links. y?(x) .P denotes input-guarded replication. It is the only recurrent operator
of πm. The process term

∑
i∈I πi.Pi represents finite guarded choice; as usual, the sum∑

i∈{ 1,...,n } πi.Pi is sometimes written as π1.P1+. . .+πn.Pn and 0 abbreviates the empty
sum, i.e., where I = ∅.

The capabilities of the pi-calculus are the (replicated) input prefix y(x), the output
prefix y〈z〉, and the prefix τ , where the capability of a choice is the conjunction of the
prefixes of all its branches—considered as single capability. The input prefix y(x) is used
to describe the ability of receiving the value x over link y and, analogously, the output
prefix y〈z〉 describes the ability to send a value z over link y. The prefix τ describes
the ability to perform an internal, not observable action. We sometimes refer to input
and output prefixes as action prefixes. Prefixes are guards and all their subterms are
guarded. Hence, recursion is defined for input-guarded processes only and the branches
of sums are also always guarded.

The definitions of free and bound names are completely standard, i.e., names are bound
by restriction and as parameter of input or replicated input and n(P) = fn(P) ∪ bn(P)
for all P . We naturally extend substitutions to co-names, i.e., ∀n ∈ N . σ(n) = σ(n) for
all substitutions σ.

As usual, the continuation 0 is often omitted, so y(x).0 becomes y(x). In addition,
for simplicity in the presentation of examples, we sometimes omit an action’s object
when it does not effectively contribute to the behaviour of a term. Typically, we do this
when it would be enough to use a CCS-like example, but the above definitions of the
pi-calculus would force us to carry some object along that would never be used on a
receiver side, e.g. as in y(x) .0, which would be written as y.0 or just y. Moreover, let
(νx̃)P abbreviate the term (νx1) . . . (νxn)P .

15

2. Process Calculi

The expressive power of πm is compared to two of its subcalculi: πs, the pi-calculus
with separate choice, and πa, the asynchronous pi-calculus. In πs, both output and input
can be used as guards, but within a single choice term either there are no input or no
output guards, i.e., we have input- and output-guarded choice, but no mixed choice.

Definition 2.1.7 (πs). The set of process terms of the pi-calculus with separate choice,
denoted by Ps, are given by

P ::= X | (νx)P | P1 | P2 | y?(x) .P |
∑
i∈I

πOi .Pi |
∑
i∈I

πIi .Pi

πO ::= y〈z〉 | τ πI ::= y(x) | τ

for some names x, y, z ∈ N and a finite index set I .

As expected, the definitions of πs and πm differ in the definition of choice only.
Asynchronous variants of the pi-calculus were introduced independently by [HT91,

HT92] and [Bou92]. In asynchronous communication, a process has no chance to directly
determine, i.e., without a hint by another process, whether a value sent by it was already
received or not. To model that fact in the asynchronous pi-calculus (πa), output actions
are not allowed to guard a process different from 0. Accordingly, the interpretation of
output guards within a choice construct is delicate. Here, we use the standard variant
of πa, where choice is not allowed at all. Since πa has no choice, and thus no nullary
choice, we include 0 as a primitive.

Definition 2.1.8 (πa). The set of process terms of the asynchronous π-calculus, denoted
by Pa, are given by

P ::= 0 | X | (νx)P | P1 | P2 | y?(x) .P | y〈z〉 | y(x) .P | τ.P

for some names x, y, z ∈ N .

Since πa has no choice, and thus no nullary choice, we include 0 as a primitive.
Note that in the formulations of πm, πs, and πa so far we omit one standard operator

of the pi-calculus. The match prefix

[a = b]P,

for some names a, b ∈ N and a process term P , works as a conditional guard. It can be
removed if and only if a and b are equal. We use the superscript = to denote process
calculi that are augmented with this operator. Hence, π=a denotes the asynchronous
pi-calculus with the match prefix, where its set of process terms P=

a is defined by the
grammar in Definition 2.1.8 extended with [a = b]P .

Furthermore, we consider a not standard extension of the asynchronous pi-calculus
denoted as polyadic synchronisation. Polyadic synchronisation was defined by Carbone
and Maffeis in [CM03] to permit divergence-free encodings of distributed calculi. More-
over, [CM03] show that polyadic synchronisation significantly increases the expressive
power of the pi-calculus and allows to simulate the match prefix. Indeed, we will use

16

2.1. Basic Definitions

it to obtain an encoding of mixed choice in Chapter 5, whereas—as we conjecture—a
divergence-free encoding without this parameter is only possible if we allow for the match
prefix in the target language. Polyadic synchronisation defines new action prefixes with
links that, instead of a single name, are composed of several channel names. In principle
[CM03] allow for compositions of any number of names to build a single link. However,
we need only polyadic synchronisation with links composed from maximal two names.
Moreover, we need this extension only for the asynchronous pi-calculus. Accordingly, we
extend the definition of Pa by the two operators

y1 · y2〈z〉 | y1 · y2(x) .P,

where x, y1, y2, z ∈ N , introducing output and input on channels composed of two
names. Two polyadic channels are equal if and only if they have the same length
and are composed of the same names in the same order. In contrast to the usual
π-calculus, polyadic synchronisation allows us to restrict parts of a channel such that
((νy1) y1 · y2〈z〉) | y1 ·y2(x) 67−→. Then the set of process terms Pp of of the asynchronous
pi-calculus with polyadic synchronisations, denoted by πp, is defined by the grammar in
Definition 2.1.8 extended with y1 · y2〈z〉 and y1 · y2(x) .P .

So far, we consider only monadic variants of the pi-calculus in that links carry ex-
actly one value. Polyadic variants are obtained from the respective monadic variants by
replacing within the grammar of the respective definition

• the output prefixes y〈z〉 and y1 · y2〈z〉 with y〈z1, . . . , zn〉 and y1 · y2〈z1, . . . , zn〉,
and

• the (replicated) input prefixes y(x), y?(x), and y1 ·y2(x) with the (replicated) input
prefixes y(x1, . . . , xn), y?(x1, . . . , xn), and y1 · y2(x1, . . . , xn),

where n is an arbitrary natural number and x1, . . . , xn, y, y1, y2, z1, . . . , zn ∈ N . Note
that all names in x1, . . . , xn have to be pairwise different. Again, we abbreviate sequences
of names x1, . . . , xn by x̃. Moreover, we use the symbol ∼ as superscript to denote a
polyadic variant of the pi-calculus. At the end of this section we present an overview on
the variants of the pi-calculus used within this thesis.

A network is a process (νx̃) (P1 | . . . | Pn) for some n ∈ N, some terms P1, . . . , Pn ∈ P,
and x̃ ∈ S(N), where P is the set of processes of one of the above defined variants of
the pi-calculus. We refer to P1, . . . , Pn as the (sub)processes of the network.

The structural congruence for all defined variants of the pi-calculus is jointly given by
the rules in Figure 2.1. Note that the Rule [a = a]P ≡ P is superfluous in variants of
the pi-calculus that do not contain the match prefix. Moreover, we temporary add the
Rule y?(x) .P ≡ y(x) .P | y?(x) .P in Section 3.4 in order to define distributability.

For the first two variants, πm and πs, we define a labelled as well as a reduction seman-
tics, because we conveniently use them for different purposes. The labelled semantics
is used in the first part of Chapter 4 to review a separation result of [Pal03] and to
obtain a similar result while the reduction semantics are used throughout the reset of
this thesis to obtain separation as well as encodability results. We start with the la-
belled semantics. Let A , { y (x) , y z, y (z) | x, y, z ∈ N } denote the set of monadic

17

2. Process Calculi

P ≡ Q if P ≡α Q P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

[a = a]P ≡ P (νn) 0 ≡ 0 (νn) (νm)P ≡ (νm) (νn)P

P | (νn)Q ≡ (νn) (P | Q) if n /∈ fn(P)

Figure 2.1.: Structural Congruence in the Pi-Calculus.

action labels for visible actions, where y (x) denotes free input, y z denotes free output,
and y (z) denotes bound output, respectively. Let τ denote an internal invisible action
whose label is denoted by τ as well. Let Aτ be the corresponding set of labels, i.e.,
Aτ = A∪{ τ }. We use µ, µ′, µ1, . . . to range over labels. Moreover, let fn(µ) denote the
sets of free names in µ, bn(µ) denote the sets of bound names in µ, and n(µ) denote the
sets of all names occurring in µ, respectively. Their definitions are completely standard,
i.e., names are bound when they are the object of input or bound output, n(τ) = ∅, and
n(µ) = fn(µ) ∪ bn(µ) for all µ ∈ Aτ .

To avoid confusion, we use
µ−−→ with µ ∈ Aτ for steps within the labelled semantics

and 7−→ within the reduction semantics. Moreover, let P −→ (P 6−→) denote existence
(non-existence) of a step from P , i.e., there is (no) P ′ ∈ Pm or P ′ ∈ Ps and (no) µ ∈ Aτ
such that P

µ−−→ P ′. Moreover, we sometimes use =⇒ to abbreviate a sequence of τ -
steps, i.e., =⇒ is the reflexive and transitive closure of

τ−−→. Similarly, we write
µ

=⇒
for some µ ∈ A to abbreviate the sequence =⇒ µ−−→=⇒, and

µ̂
=⇒ for some µ ∈ Aτ to

abbreviate =⇒ if µ = τ and else
µ

=⇒. The labelled semantics of πm and πs are jointly
given by the transition rules in Figure 2.2.

A (partial) execution of length n is a sequence of steps P
µ1,...,µn−−−−−→ P ′ such that P

µ1−−→
H1

µ2−−→ . . .
µn−1−−−→ Hn−1

µn−−→ P ′ for some P ′, H1, . . . ,Hn−1 ∈ Pm or P ′, H1, . . . ,Hn−1 ∈
Ps with the sequence µ1, . . . , µn of observable and unobservable actions, i.e., µ1, . . . , µn ∈
Aτ . Accordingly, P

µ̃−−→ P ′ 6−→ denotes a finite execution from P to P ′ with the sequence
of actions µ̃ ∈ S(Aτ). An infinite execution is an infinite sequence of finite executions.
A maximal execution is an execution that cannot be further extended. Note that an
infinite execution is not necessarily maximal.

Moreover, let P ()nQ denote a sequence of n -steps from P to Q for every kind of
steps ; e.g. in the case of 7−→-steps P (7−→)3Q denotes a sequence of three reduction
steps from P to Q, i.e., P 7−→7−→7−→ Q.

The reduction semantics of πm, πs, π
=
s , πa, π

=
a , and πp are jointly given by the

transition rules in Figure 2.3, where the indices m, s, a, and p refer to rules of πm, πs,
πa, and πp, respectively. Moreover, note that the presence or absence of the match prefix
does not influence the reduction rules, i.e., the reduction semantics of π=s and π=a are
given by the rules for πs and πa, respectively.

In Figure 2.5 we present an overview over all variants of the pi-calculus that are

18

2.1. Basic Definitions

Pi-ls-O-Sum ∑
i∈I πi.Pi

y z−−→ Pj
πj = y〈z〉 , j ∈ I

Pi-ls-I-Sum ∑
i∈I πi.Pi

y(z)−−−→ { z/x }Pj
πj = y(x) , j ∈ I

Pi-ls-Tau-Sum ∑
i∈I πi.Pi

τ−−→ Pj
πj = τ, j ∈ I

Pi-ls-Rep
y?(x) .P

y(z)−−−→ { z/x }P | y?(x) .P

Pi-ls-Com
P

y(z)−−−→ P ′ Q
y z−−→ Q′

P |Q τ−−→ P ′|Q′
Pi-ls-Open

P
y z−−→ P ′

(νz)P
y(z)−−−→ P ′

y 6= z

Pi-ls-Close
P

y(z)−−−→ P ′ Q
y(z)−−−→ Q′

P | Q τ−−→ (νz) (P ′ | Q′)
z /∈ fn(P)

Pi-ls-Par
P

µ−−→ P ′

P |Q µ−−→ P ′|Q
bn(µ) ∩ fn(Q) = ∅

Pi-ls-Res
P

µ−−→ P ′

(νx)P
µ−−→ (νx)P ′

x /∈ n(µ)

Pi-ls-Cong
P ≡ Q Q

µ−−→ Q′ Q′ ≡ P ′

P
µ−−→ P ′

Figure 2.2.: Labelled Semantics of πm and πs.

19

2. Process Calculi

Pi-Taum,s ∑
i∈I πi.Pi 7−→ Pj

πj = τ, j ∈ I Pi-Taua,p
τ.P 7−→ P

Pi-Comm,s ∑
i∈I1 πi.Pi |

∑
j∈I2 πj .Pj 7−→ { z/x }Pk | Pl

πk = y(x) , k ∈ I1,
πl = y〈z〉 , l ∈ I2

Pi-Coma,p
y(x) .P | y〈z〉 7−→ { z/x }P

Pi-ComPSp
y1 · y1(x) .P | y1 · y2〈z〉 7−→ { z/x }P

Pi-Repm,s
y?(x) .P |

∑
i∈I1 πi.Pi 7−→ { z/x }P | y

?(x) .P | Pj
πj = y〈z〉 , j ∈ I

Pi-Repa,p
y?(x) .P | y〈z〉 7−→ { z/x }P | y?(x) .P

Pi-Parm,s,a,p
P 7−→ P ′

P | Q 7−→ P ′ | Q
Pi-Resm,s,a,p

P 7−→ P ′

(νx)P 7−→ (νx)P ′

Pi-Congm,s,a,p
P ≡ Q Q 7−→ Q′ Q′ ≡ P ′

P 7−→ P ′

Figure 2.3.: Reduction Semantics of the Monadic Variants of the Pi-Calculus.

20

2.1. Basic Definitions

Pi-Tau∼a,p ∑
i∈I πi.Pi 7−→ Pj

πj = τ, j ∈ I Pi-Tau∼a,p τ.P 7−→ P

Pi-Com∼m,s ∑
i∈I1 πi.Pi |

∑
j∈I2 πj .Pj 7−→ { z̃/x̃ }Pk | Pl

πk = y(x̃) , k ∈ I1,
πl = y〈z̃〉 , l ∈ I2,
|x̃| = |z̃|

Pi-Com∼a,p y(x̃) .P | y〈z̃〉 7−→ { z̃/x̃ }P
|x̃| = |z̃|

Pi-ComPS∼p y1 · y2(x̃) .P | y1 · y2〈z̃〉 7−→ { z̃/x̃ }P
|x̃| = |z̃|

Pi-Rep∼m,s y?(x̃) .P |
∑

i∈I1 πi.Pi 7−→ { z̃/x̃ }P | y
?(x̃) .P | Pj

πj = y〈z̃〉 , j ∈ I ,
|x̃| = |z̃|

Pi-Rep∼a,p y?(x̃) .P | y〈z̃〉 7−→ { z̃/x̃ }P | y?(x̃) .P
|x̃| = |z̃|

Pi-Parm,s,a,p
P 7−→ P ′

P | Q 7−→ P ′ | Q
Pi-Resm,s,a,p

P 7−→ P ′

(νx)P 7−→ (νx)P ′

Pi-Congm,s,a,p
P ≡ Q Q 7−→ Q′ Q′ ≡ P ′

P 7−→ P ′

Figure 2.4.: Reduction Semantics of the Polyadic Variants of the Pi-Calculus.

21

2. Process Calculi

used within this thesis. Column 1–4 show the differences in the used operators, where
+m represents mixed choice like y〈x〉 .P1 + y(x) .P2, +s represents separate choice like
y〈x〉 .P1 + y〈x〉 .P2 or y(x) .P1 + y(x) .P2, =, represents a match prefix like [a = b]P , and
y1 ·y2 represents polyadic synchronisation. In the last two coloumns a link to the Figures
containing the labelled semantics (

µ−−→) and the reduction semantics (7−→) is provided.
Moreover, remember that all calculi without choice, i.e., πa, π

=
a , πp, π∼a , π=,∼a , and π∼p ,

are asynchronous variants of the calculus, i.e., output actions are not allowed to guard
a process different from 0.

Monadic Variants: Polyadic Variants:

+m +s = y1 · y2
µ−−→ 7−→ +m +s = y1 · y2 7−→

πm × × − − 2.2 2.3 π∼m × × − − 2.4

πs − × − − 2.2 2.3 π∼s − × − − 2.4

π=s − × × − 2.2 2.3

πa − − − − − 2.3 π∼a − − − − 2.4

π=a − − × − − 2.3 π=,∼a − − × − 2.4

πp − − − × − 2.3 π∼p − − − × 2.4

Figure 2.5.: Variants of the Pi-Calculus.

2.1.2. The Join-Calculus

Now, we introduce the join-calculus as described e.g. in [FG96, Fou98].

Definition 2.1.9 (J). The set of process terms of the join-calculus, denoted by PJ, is
given by

P ::= 0 | y 〈z〉 | P1 | P2 | defD inP | X
J ::= y (x) | J1 | J2 and D ::= J . P | D1 ∧D2

for some names x, y, z ∈ N .

The interpretation is again as usual. 0, y 〈z〉, and P1 | P2 define the empty process, an
output capability, and parallel composition similar to πa. A definition defD inP defines
a new receiver on fresh names, where D consists of one or several elementary definitions
J . P connected by ∧, J potentially joins several reception patterns y (x) connected by
|, and P is a process. Compared to the pi-calculus, join patterns represent (recurrent)
input capabilities that are matched against outputs in order to instantiate and unguard
an instance of a guarded subterm. Note that the definition construct defD inP unifies
the concepts of restriction, input capabilities, and replication of the pi-calculus. In
def (J1 . P1) ∧ . . . ∧ (Jn . Pn) inP the subterms P1, . . . , Pn are guarded while P is an
unguarded subterm. Again, we omit an action’s object when it does not effectively
contribute to the behaviour of a term, e.g. we write def y (x) . 0 in y 〈z〉 as def y . 0 in y.

22

2.1. Basic Definitions

The sets of received variables rv(·) and defined variables dv(·) are inductively defined
as:

rv(y (x)) , { x } rv(J1 | J2) , rv(J1)] rv(J2)

dv(y (x)) , { y } dv(J1 | J2) , dv(J1) ∪ dv(J2)

dv(J . P) , dv(J) dv(D1 ∧D2) , dv(D1) ∪ dv(D2)

By convention, the received variables of composed join patterns have to be pairwise
distinct. The bound names bn(P) of P are the union of the received and defined variables
in P . The free names of P are defined by its set of free variables, where fv(·):

fv(J . P) , dv(J) ∪ (fv(P) \ rv(J))

fv(D1 ∧D2) , fv(D1) ∪ fv(D2)

fv(y 〈z〉) , { y, z }
fv(defD inP) , (fv(P) ∪ fv(D)) \ dv(D)

fv(P1 | P2) , fv(P1) ∪ fv(P2)

Moreover, [FG96, Fou98] define the core join-calculus cJ as a subcalculus of J that
restricts definitions to the form def y1 (x1) | y2 (x2).P1 inP2, i.e., in the core join-calculus
definitions consist of a single elementary definition of exactly two reception patterns.

The operational semantics of the join-calculus is given by an extension of the chemical
approach in [BB90]. The rules operate on so-called solutions R ` M, where R andM
are multisets. As done in [FG96], we only mention the elements of the multisets that
participate in the rule, separated by commas. The semantics is given by the so-called
heating and cooling rules

JoinJ ` P | Q
 ` P,Q
AndJ D ∧ E `
 D,E `
DefJ ` defD inP
 σdv(D) ` σdv(P)

and the reduction rule

RedJ J . P ` σrv(J) 7−→ J . P ` σrv(P)

where σdv instantiates the defined variables in D to distinct fresh names, and σrv sub-
stitutes the transmitted names for the distinct received variables. Note that the heating
and cooling rules describe the underlying structural congruence on processes, i.e., if
P
 Q, Q 7−→ Q′, and Q′
 P ′ then also P 7−→ P ′. In the following, we write P ≡ Q
if P and Q differ only by applications of the heating and cooling rules.

2.1.3. Communicating Sequential Processes (CSP)

The language CSP was introduced by Hoare [Hoa78, Hoa04]. We consider two variants
of CSP that (instead of arbitrary action events) use in- and output prefixes. The first
variant CSPin allows input guards in the choice construct.

23

2. Process Calculi

Definition 2.1.10 (CSPin). The set of process terms of the CSP-calculus with input
guarded choice, denoted by Pin, is given by

P ::= STOP | P \ n | P1 ‖ P2 | y?? (x)→ P | X
| y!z → P | [C]

C ::= G | G � C and G ::= y? (x)→ P | τ → P

for some names n, x, y, z ∈ N .

P \ n restricts the name n to P . P1 ‖ P2 places its subterms in parallel. The process
y!z → P first sends a value z over y and then behaves as P . By convention, the prefix
operator → is right associative. [C] describes a choice whose branches are separated
by �. In CSPin all branches of a choice are either guarded by an input prefix y? (x) or
the internal action τ . For simplicity, we define recursion as input guarded replication
y?? (x) → P similar to the pi-calculus. However, this decision does not influence the
following results.

The capabilities and guards are similar to the pi-calculus. Also the definitions of free
and bound names are standard and similar to the pi-calculus. Again, we sometimes omit
an action’s object when it does not effectively contribute to the behaviour of a term, e.g.
as in y? (x)→ STOP, which would be written as y?→ STOP.

The second variant of CSP that we consider, is a subcalculus of CSPin that allows
only for internal choice.

Definition 2.1.11 (CSPno). The set of process terms of the CSP-calculus with only
internal choice, denoted by Pno, is given by

P ::= STOP | P \ n | P1 ‖ P2 | y?? (x)→ P | X
| y!z → P | y? (x)→ P | [C]

C ::= G | G � C and G ::= τ → P

for some names n, x, y, z ∈ N

The operational semantics and structural congruence of CSPin and CSPno can be
derived from [Hoa04]. In contrast to communications in the pi-calculus, where commu-
nication is always between exactly one input and one output guarded process, communi-
cation steps in CSP reduce a single output guarded process and arbitrarily many input
guarded terms. Moreover, to perform a communication step, all top-level parallel com-
ponents have to participate in this communication. Interestingly, this communication
mechanism in CSP leads to a separation result in Section 4.3.3, while [Nes00] presents
a good an distributability-preserving encoding between the respective counterparts πs
without output guarded sums and πa in the pi-calculus.

2.2. Bisimulation

In this section we introduce bisimulation, because it is the most studied form of be-
havioural equivalence for processes [San09]. Bisimulation is defined coinductively and

24

2.2. Bisimulation

represents not only a widely applicable equivalence but also a proof method. Within
this thesis bisimulation is in particular used to prove the quality of an encoding, i.e., to
establish positive translational results. Since the considered encodability results are on
variants of the pi-calculus we review some common notions of bisimulation in the pi-cal-
culus. An introduction to bisimulations in the pi-calculus can be found e.g. in [MPW92]
or [SW01].

2.2.1. Bisimulation and Coupled Simulation in the Pi-Calculus

[MPW92] introduces bisimulation as a technique to compare pi-calculus terms. Intu-
itively, a process simulates another process if it simulates all its transitions such that
the resulting derivatives remain in the simulation. A simulation is then called a bisimu-
lation if also its inverse is a simulation.

Definition 2.2.1 (Strong Simulation and Bisimulation). A relation S ⊆ Pm × Pm is
a strong simulation if (P,Q) ∈ S implies that for all P ′ ∈ Pm and µ ∈ Aτ such that

P
µ−−→ P ′ there is some Q′ ∈ Pm such that Q

µ−−→ Q′ and (P ′, Q′) ∈ S.
A relation B ⊆ Pm × Pm is a strong bisimulation if both B and B−1 are strong

simulations. Two processes P,Q ∈ Pm are strongly bisimilar, denoted as P ∼ Q, if they
are related by some strong bisimulation.

As explained in Section 2.1.1, the label τ represents an internal action. Accordingly,
one may want to abstract from internal actions while comparing process terms. The
resulting relation is denoted as weak bisimulation.

Definition 2.2.2 (Weak Simulation and Bisimulation). A relation S ⊆ Pm × Pm is
a weak simulation if (P,Q) ∈ S implies that for all P ′ ∈ Pm and µ ∈ Aτ such that

P
µ−−→ P ′ there is some Q′ ∈ Pm such that Q

µ̂
=⇒ Q′ and (P ′, Q′) ∈ S.

A relation B ⊆ Pm×Pm is a weak bisimulation if both B and B−1 are weak simulations.
Two processes P,Q ∈ Pm are weakly bisimular, denoted as P ≈ Q, if they are related by
some weak bisimulation.

In [PS92] an alternative to bisimulation, denoted as coupled simulation, is proposed.
In contrast to strong or weak bisimulation it allows an internal choice to be distributed
onto several internal choices. [vG93, PS94] extend coupled simulation to cover also
divergent processes.

Definition 2.2.3 (Coupled Simulation). A mutual simulation is a pair (S1,S2) such that
S1 and S−12 are weak simulations. A mutual simulation (S1,S2) is a coupled simulation
if

• for all (P,Q) ∈ S1 there is some Q′ ∈ Pm such that Q =⇒ Q′ and (P,Q′) ∈ S2,
and

• for all (P,Q) ∈ S2 there is some P ′ ∈ Pm such that P =⇒ P ′ and (P ′, Q) ∈ S1.

Two processes P,Q ∈ Pm are coupled similar, denoted as P � Q, if they are related by
both components of some coupled simulation.

25

2. Process Calculi

Already [Nes96, NP00, Nes00] use coupled simulation to reason about encodings of
choice. We do alike in Section 6.3.4, although we use coupled simulation in a much more
restricted manner. In fact, due to a different setting to measure quality of an encoding,
coupled simulation is not crucial for the correctness of the considered encodings.

2.2.2. Observables and Barbed Bisimulation in the Pi-Calculus

We observe that the bisimulations introduced in the last section rely on a labelled se-
mantics. On the other side, we define a labelled semantics only for two of the considered
variants of the pi-calculus, namely πm and πs. The reason is that the general framework
of quality criteria for encodings (Section 3.3) that we use throughout this thesis relies on
reduction semantics. Reduction semantics is easier in the context of encodings, because
its abstraction from labels allows to compare calculi that do not agree in the nature
of observable behaviour. If we change the use of labelled semantics in the definition
of (strong/weak) bisimilarity above, we obtain (strong/weak) reduction bisimulation.
Reduction bisimulations are for example discussed in [SW01].

Definition 2.2.4 (Strong Reduction Simulation and Bisimulation). A relation S ⊆
Pm×Pm is a strong reduction simulation if (P,Q) ∈ S implies that for all P ′ ∈ Pm such
that P 7−→ P ′ there is some Q′ ∈ Pm such that Q 7−→ Q′ and (P ′, Q′) ∈ S.

A relation B ⊆ Pm × Pm is a strong reduction bisimulation if both B and B−1 are
strong reduction simulations. Two processes P,Q ∈ Pm are strong reduction bisimilar,
denoted as P ↔ Q, if they are related by some strong reduction bisimulation.

Unfortunately, weak reduction bisimulation as defined below is trivial, i.e., does not
distinguish any process terms.

Definition 2.2.5 (Weak Reduction Simulation and Bisimulation). A relation S ⊆ Pm×
Pm is a weak reduction simulation if (P,Q) ∈ S implies that for all P ′ ∈ Pm such that
P 7−→ P ′ there is some Q′ ∈ Pm such that Q Z=⇒ Q′ and (P ′, Q′) ∈ S.

A relation B ⊆ Pm×Pm is a weak reduction bisimulation if both B and B−1 are weak
reduction simulations. Two processes P,Q ∈ Pm are weak reduction bisimilar, denoted
as P ⇔ Q, if they are related by some weak reduction bisimulation.

To obtain again useful notions of bisimulation we have to replace the lost information
on the labels by some notion of observable or barb. The standard observables in the
pi-calculus are its unguarded and not restricted output and input capabilities, where in
the case of an asynchronous variant of the pi-calculus usually only output capabilities
are considered [Hon92b, HY95, ACS98, SW01].

Definition 2.2.6 (Observables). Let P ∈ Pm. Then P has an output observable y,
denoted as P ↓y, if y ∈ fn(P) and P contains an unguarded output on channel y, and P
has an input observable y, denoted as P ↓y ,if y ∈ fn(P) and P contains an unguarded
input on channel y.

Moreover, let µ ∈ N ∪N . Then P reaches an observable µ, denoted as P ⇓µ, if there
exists some P ′ ∈ Pm such that P Z=⇒ P ′ and P ′ ↓µ.

26

2.2. Bisimulation

Augmenting reduction bisimulation with a requirement on the reachability of these
observables result in barbed bisimulation. Barbed bisimulation was introduced in [MS92]
and can be considered as one of the standard equivalences of the pi-calculus.

Definition 2.2.7 (Strong Barbed Simulation and Bisimulation). A relation S ⊆ Pm ×
Pm is a strong barbed simulation if (P,Q) ∈ S implies that

1. P ↓µ implies Q ↓µ for all µ ∈ A and

2. for all P ′ ∈ Pm such that P 7−→ P ′ there is some Q′ ∈ Pm such that Q 7−→ Q′ and
(P ′, Q′) ∈ S.

A relation B ⊆ Pm ×Pm is a strong barbed bisimulation if both B and B−1 are strong
barbed simulations. Two processes P,Q ∈ Pm are strong barbed bisimilar, denoted as
P ∼̇ Q, if they are related by some strong barbed bisimulation.

Weak barbed bisimulation is obtained straightforwardly.

Definition 2.2.8 (Weak Barbed Simulation and Bisimulation). A relation S ⊆ Pm×Pm
is a weak barbed simulation if (P,Q) ∈ S implies that

1. P ↓µ implies Q ⇓µ for all µ ∈ A and

2. for all P ′ ∈ Pm such that P 7−→ P ′ there is some Q′ ∈ Pm such that Q Z=⇒ Q′ and
(P ′, Q′) ∈ S.

A relation B ⊆ Pm × Pm is a weak barbed bisimulation if both B and B−1 are weak
barbed simulations. Two processes P,Q ∈ Pm are weak barbed bisimilar, denoted as
P ≈̇ Q, if they are related by some weak barbed bisimulation.

27

3. Encodings and their Quality

Language comparison by means of encodings is a wide area of research within the context
of process calculi. Reasonable and meaningful encodings from one language into another
shows that the latter is at least as expressive as the former, whereas the absence of such
an encoding shows that the former can express some behaviour that is not expressible
in the latter, i.e., reveals a difference in the expressive power of the former compared
to the latter language. However, as stated several times in literature (e.g. in [Pal03,
Nes06, Par08, Gor10b]), there is no agreement on what set of criteria makes an encoding
reasonable and meaningful.

Sometimes it is even stated that such an agreement may not exist or may not be
desirable (see e.g. [Pal03]), because many criteria result from different practical needs.
Indeed it is obviously no trivial task to decide on the quality criteria of translational
results. They are often derived from the main purpose of the current analysis. From
a practical point of view this is meaningful. But, obviously, using different quality
criteria for different results, because they were motivated by different practical problems,
naturally leads to incomparable results. To circumvent this problem, [Gor10b] as well
as [FL10] propose a general framework. Like them, we believe that a general framework
does exist and is meaningful at least as a core framework to compare languages and to
build hierarchies. Note that particularly the last requirement, i.e., the construction of
hierarchies, significantly benefits from a general framework.

In Section 3.1 we shortly formalise what we understand as an encoding. Then we
review common quality criteria in Section 3.2. In Section 3.3 we shortly revisit the
general framework presented in [Gor10b] that is used then throughout this thesis. To
cover the need for domain-specific analysis, we consider the extension of this framework
in Section 3.4 by an additional domain-specific criterion, which is then used in the
following chapters to obtain positive as well as negative translational results.

3.1. Encoding Functions

For us, an encoding is simply a function from process terms of the source language into
the process terms of the target language, i.e., it is a mapping of syntax.

Definition 3.1.1 (Encoding). Let LS = 〈 PS, 7−→S 〉 and LT = 〈 PT, 7−→T 〉 be two
process calculi, denoted as source and target language. An encoding from LS into LT
is a function J · K : PS → PT from the process terms PS of the source language LS into
process terms (of a subset of) PT of the target language LT.

In Chapter 5 we introduce some encoding functions between different process cal-
culi. To distinguish between different encodings we use different super- and subscripts.

29

3. Encodings and their Quality

Thereby, the superscript usually refers to the source and the subscript to the target
language. However, whenever we reason about arbitrary encodings as well as to define
properties of arbitrary encodings we abandon super- and subscribts as in the definition
above. We also use the blank version J · K to prove separation results in Chapter 4,
to mirror that there is no encoding function with the required properties, respectively.
Moreover, we often use S, S′, S1, . . . to range over terms of the source language and
T, T ′, T1, . . . to range over terms of the target language of some encoding.

Note that encodings often translate single source term steps into a sequence or pomset
of target term steps. We call such a sequence or pomset an emulation of the correspond-
ing source term step. The co-domain of an encoding is usually smaller than the set of
terms of the target language. With target terms we denote the set of process terms
that are reachable from the encoded source terms modulo structural congruence and
reduction steps.

Definition 3.1.2 (Target Terms). Let LS = 〈 PS, 7−→S 〉 and LT = 〈 PT, 7−→T 〉 be two
process calculi, and J · K : PS → PT be an encoding from LS into LT. The set of target
terms of J · K, denoted by PT�J · K, is the set of terms reachable from encoded source
terms, i.e.,

PT�J · K , { T | ∃S ∈ PS . J S K ≡T T ∨ J S K Z=⇒T T } ,

where ≡T is the structural congruence of LT.

Obviously, PT�J · K⊆ PT.

3.2. Quality Criteria

So far, an encoding function is simply a function from the processes of the source language
into the processes of the target language. Obviously, such functions can always be
obtained by doing some trivial mappings. For instance, between each pair of process
calculi we find the encoding that translates everything to the empty process, because
we assume that the empty process is part of every process calculus. Of course, such an
encoding tell us nothing about the expressive power of the considered calculi. Hence, to
analyse the quality of encodings and also to rule out trivial or meaningless encodings,
encodings are augmented with a set of quality criteria.

Discussions of often used quality criteria can e.g. be found in [Nes96, Nes00, VPP07,
Par08, Gor10b, FL10]. We shortly revisit the most common criteria in the following sub-
sections. Note that apart from general criteria as the criteria described in the following,
sometimes also domain-specific or problem-specific criteria are used. Domain-specific
criteria do not consider expressivity in general but the expressive power of a language
with respect to some specific domain. An example is the requirement on the homomor-
phic translation of the parallel operator that is used to ensure that an encoding preserves
the degree of distribution of source terms [Nes00, Pal03]. We discuss this issue in Sec-
tion 3.4. Problem-specific criteria are criteria designed in order to enable a separation
result with respect to a particular problem. For this, usually a problem is identified

30

3.2. Quality Criteria

that can be solved in one but not the other language and then the least set of criteria
is used that ensures that a solution of the problem in the source language is translated
into a solution in the target language [VPP07]. This leads to problem-driven criteria
[Gor10b]. As an example consider the side condition on the requirement of substitution
preservation in [Pal03]. It ensures that leader election can be used to distinguish πm and
πs. We discuss this result in Section 4.1.2.

Throughout the following subsections assume a source language LS = 〈 PS, 7−→S 〉, a
target language LT = 〈 PT, 7−→T 〉, and an encoding function J · K : PS → PT from the
source into the target language. Moreover, note that some of the quality criteria require
the preservation or reflection of some condition. An encoding preserves some condition,
e.g. some predicate P(·), if, for all source terms that satisfy this condition, the encoded
terms also satisfy this condition, i.e., P(S) implies P(J S K) for all S ∈ PS. Reflection is
the corresponding counterpart of preservation for the opposite direction. Accordingly,
an encoding reflects some condition, e.g. some predicate P(·), if, for all target terms that
satisfy this condition, the corresponding source terms also satisfy this condition, i.e.,
P(J S K) implies P(S) for all S ∈ PS.

3.2.1. Equivalence

The least debatable criterion is the direct comparison of the source and the target lan-
guage by a behavioural equivalence. This criterion requires that

∀S ∈ PS J S K � S

holds, for some behavioural equivalence � ⊆ (PS ∪ PT) × (PS ∪ PT) that is defined in
exactly the same way on the source and the target language [Par08]. Intuitively, it is
required that the encoding preserves and reflects the semantics of the source modulo
the chosen equivalence. Obviously, the quality of the encoding directly depends on �.
A stricter such equivalence leads to stricter requirements on the encoding function. It
is also very clear in this case under which circumstances two different results can be
compared. If both results are proven with respect to the same equivalence then the
results can be compared directly. If one of the considered equivalence is strictly weaker
then the results can be compared with respect to the weaker equivalence. Else, if the
equivalences are incomparable, also the results are incomparable. Hence, a language L1
can be considered as strictly weaker than the language L2 with respect to �, if there is
an encoding from L1 into L2 that satisfies the above requirement but there is no such
encoding from L2 into L1.

Of course, there may be still some debate on how to choose the equivalence �. For
instance neither the identity nor � = (PS ∪ PT)× (PS ∪ PT) are intuitively meaningful
choices. Moreover, as shown in [vG01, vG93] there are usually very many potential
candidates. However, since the choice of the equivalence directly monitors the require-
ments on the encoding function, this problem is not that serious. There are, how-
ever, two serious drawbacks of this criterion. The first is that the requirement that
� ⊆ (PS ∪ PT) × (PS ∪ PT) is defined in exactly the same way on the source and the

31

3. Encodings and their Quality

target language is in general a very severe requirement. Indeed, this side condition usu-
ally significantly limits the set of potential equivalences, at least with respect to the set of
well-understood standard equivalences in the source and the target. Since the quality of
the encoding is directly related to this equivalence, the criterion should be instantiated
with the strictest candidate possible. But, because of e.g. different standard observ-
ables in the source and target language, this equivalence (if it can be constructed at all)
will usually be very complex and unreadable. As a consequence, if � is not a standard
equivalence, the direct comparison of source and target terms modulo � reveals very less
intuition on the encoding function. The second problem is that a complex equivalence
� leads to a hard proof of this criterion. If � is not a standard equivalence, most of
the standard techniques that would ease such a proof may not be applicable. Moreover,
since there is only one criterion, the whole complexity of the quality proof is imposed to
a single proof.

Hence, this criterion is very well suited if it is proven with respect to a standard
equivalence. Else, it may reveal very less intuition and very less guidance for the proof
of encodability or separation as well as the design of the encoding function.

3.2.2. Full Abstraction

Whenever source and target can not be compared directly with respect to a standard
equivalence, full abstraction might be a way to use nonetheless standard equivalences.
Full abstraction—denoted as observational correspondence in [FL10]—is probably the
most common quality criterion for language comparison. It is used for instance in [San94,
Yos96, NP00, BPV05], just to name some. Full abstraction as proof method for language
comparison was adapted from the use of full abstraction to show correspondence between
a denotational semantics of a program and its operational semantics. An encoding J · K
is fully abstract if

∀S1, S2 ∈ PS . S1 �S S2 iff J S1 K �T J S2 K

for two behavioural equivalences �S ⊆ PS×PS and �T ⊆ PT×PT, i.e., full abstraction
requires that equivalent source terms have to be mapped into equivalent target terms
and vice versa. Note that the direction from the left to the right is often called soundness
condition and the only if part completeness condition of full abstraction. The soundness
condition is usually the most demanding part. Note that some well-known and widely
accepted encodings, as e.g. [Bou92, HT91, Mil92, Mil93b], do not satisfy this property
with respect to a reasonable combination of standard equivalences. The main advantage
of full abstraction is its wide applicability also with respect to (more or less) standard
equivalences. It does e.g. not require that source and target share any notion of observ-
able, which is a premise for the use of most of the standard equivalences in the criterion
above. However, again there may be a very large number of equivalences on the source
as well as equivalences on the target and the strictness of the property expressed by full
abstraction strongly relies on the combination of the chosen equivalences. To reduce the
strong dependence of full abstraction results on the chosen equivalences, full abstraction
is often combined with operational correspondence. In [FL10] it is even stated that full

32

3.2. Quality Criteria

abstraction is not of much use without operational correspondence. Because of the var-
ious possibilities two choose these two equivalences, it is often not possible to compare
different full abstraction results, which is a major drawback of this criterion.

3.2.3. Operational Correspondence

Intuitively, operational correspondence requires preservation and reflection of executions.
Again, it consists of a completeness a soundness part. The completeness condition,
also called adequacy, requires that for all source term steps S 7−→S S

′ or source term
executions S Z=⇒S S′ there is one emulating execution in the target language such
that J S K Z=⇒T�T J S′ K, where �T ⊆ PT × PT is some equivalences on the target
language. Note that there is no difference in the consideration of single source term
steps or source term executions. Intuitively, the completeness condition requires that
any source term execution is emulated by the target term modulo some equivalence �T .
Again, completeness is usually the easiest part.

For the soundness condition we basically find two formulations. The stricter formula-
tion requires that for all executions of the target J S K Z=⇒T T there exists some execution
of the source S Z=⇒S S

′ such that J S′ K �T T . Intuitively, soundness requires that what-
ever J S K can do is a translation of some behaviour of S modulo �T [FL10]. The weaker
formulation requires that for all executions of the target J S K Z=⇒T T there exists some
execution of the source S Z=⇒S S

′ and some execution of the target T Z=⇒T T
′ such that

J S′ K �T T ′. Intuitively, it states that any execution of the target is some part of the e-
mulation of an execution in the source modulo �T [Par08, Gor10b]. The main difference
is that the later formulation allows for intermediate or partial commitment states, i.e.,
for states that do not need to be related directly to the states of the respective source
term but that have to belong to some emulation of a source term step. In this sense, an
intermediate state results from the partial emulation of a source term step. We discuss
this issue in Section 6.3.1.

Again different variants of operational correspondence may arise from different require-
ments on the assumed equivalence �T on the target language. Note that [Nes96, NP00]
present operational correspondence without the equivalence, i.e., require J S K Z=⇒T

J S′ K whenever S 7−→S S
′ and J S K Z=⇒T T implies S Z=⇒S S

′ for some S′ such that
T Z=⇒T J S′ K, which again leads to a stricter formulation than above. They also present
a stricter variant of the soundness part—J S K 7−→T T implies S 7−→S S

′ for some S′

such that T �T J S′ K—and state that only prompt encodings can satisfy this stricter
variant.

Moreover, in [FL10] labelled steps are considered instead of a reduction semantics
under the assumption that there exists a mapping ·̂ from the labels of the source term

into the labels of the target term. Hence, the resulting requirement—J S K λ̂
=⇒�T J S′ K

whenever S
λ

=⇒ S′ and J S K λ
=⇒ T implies S

λ′
=⇒ S′ for some λ′, S′ such that J S′ K �T T

and λ̂′ = λ—can be considered as stricter than the above variant of operational corre-
spondence, because also observables have to be preserved and reflected in some sense.
In fact, without this strengthening to labelled semantics, operational correspondence

33

3. Encodings and their Quality

alone can hardly be considered as suitable criterion. Hence, the above version based on
reduction semantics is usually combined with other criteria as full abstraction or some
requirements on the preservation or reflection of some kind of observable.

3.2.4. Observables, Testing, and Termination

If source and target terms can not be compared directly by a standard equivalence,
e.g. because not all standard observables of the source are standard observables of the
target, a natural weaker requirement is to consider preservation or reflection of the
remaining observables that are shared by source and target. Typical observables are links
used for communication, barbs (communication capabilities), or traces [VPP07, Par08].
Moreover, the use of termination properties as the possibility of deadlock, livelock, or
divergence are popular [Nes00, Par08, Gor10b, FL10]. Also all kind of tests that the
process may (or must) pass, for some formal notion of test can be used to compare source
and target behaviour [Par08, Gor10b].

Another kind of termination property is the above mentioned promptness condition.
Intuitively, promptness ensures that an encoding does not introduce preprocessing steps.

Definition 3.2.1 (Promptness). An encoding J · K from 〈 PS, 7−→S 〉 into 〈 PT, 7−→T 〉
is prompt, if S 67−→S implies J S K 67−→T for all source terms S ∈ PS.

Within this thesis we consider the reflection of deadlock as well as divergence as a good
requirements for encodability and separation results. In the style of [Gor10b] we also
compare source terms and their encodings with respect to the reachability of success.
Since X can not be further reduced and n(X) = fn(X) = bn(X) = ∅, the semantics and
structural congruence of a process calculus are not affected by this additional constant
operator. The test for reachability of success is standard.

Definition 3.2.2 (Success). Let 〈 P, 7−→ 〉 be a process calculus and ≡ its structural
congruence. A process P ∈ P may lead to success or may-succeeds, denoted as P ⇓X,
if it is reducible to a process containing a top-level unguarded occurrence of X, i.e., if
P Z=⇒ P ′ ∧ P ′ ≡ P ′′ | X for some P ′, P ′′.

Moreover, we write P ⇓X!, if P reaches success in every finite maximal execution.
A process P ∈ P must lead to success or must-succeeds, denoted as P �X, if it reduces

to a process containing a top-level unguarded occurrence of X in every maximal execu-
tion.

Note that X can be considered as some kind of termination property—describing
successful termination in contrast to not successful termination by 0—or as the successful
pass of some kind of test.

3.2.5. Structural Requirements

The above discussed criteria describe semantic requirements, i.e., requirements on the
behaviour of target terms. To prove the quality of an encoding semantic criteria are
often combined with structural criteria. Intuitively, the semantic criteria describe how

34

3.2. Quality Criteria

the encoded terms should behave with respect to the behaviour of the corresponding
source term, whereas structural criteria rather describe how the encoded terms have
to look like. Moreover, as stated in [Par08], structural criteria are needed in order to
measure expressiveness of operators in contrast to expressiveness of terms.

The most common structural criterion is compositionality with homomorphy as a spe-
cial case. Intuitively, compositionality states that the translation of a compound term
must be defined in terms of the translation of the subterms. To mediate between transla-
tions of subterms, a context is introduced. Different manifestations result from different
requirements on allowed contexts. In the strictest form, often denoted as homomor-
phy, the context has to be the original source term operator again, i.e., an encoding
translates the source term operator op (x1, . . . , xn, S1, . . . , Sm) homomorphically if it en-
sures that J op (x1, . . . , xn, S1, . . . , Sm) K = op (x1, . . . , xn, J S1 K , . . . , J Sm K) holds for all
x1, . . . , xn ∈ N and all S1, . . . , Sm ∈ PS. Of course, this requires that the respective op-
erator is part of the source and the target language. Because of this, homomorphy is
often required only for the parallel operator, because it occurs more or less with the same
meaning and comparable syntax in most of the process calculi. Here, we require (like
[Gor10b]) that the parallel operator is a binary operator in every process calculus. Hence,
the homomorphic translation of the parallel operator means J S1 | S2 K = J S1 K | J S2 K
for all S1, S2 ∈ PS, where | is the syntactical representation of the parallel operator. Ho-
momorphic translations of operators are e.g. used to analyse the expressive power of a
single operator. To show for instance that a set of operators is not minimal the existence
of an encoding is analysed that translates all operators homomorphically except for the
operator that should be removed. Moreover, homomorphy is a very grateful property. As
discussed in Section 6.1, the homomorphic translation of some of the source term oper-
ators significantly eases the proof of the correctness of the encoding function. Basically,
the homomorphic translation of an operator ensures that for this operator nothing is to
show, because in this point the encoding obviously preserves and reflects all properties of
that operator. However, even in case the respective operator is part of the source as well
as the target language, homomorphy is a very strict requirement. Intuitively, it states
that the encoding function is not allowed to touch the respective operator and, hence, is
not allowed to simulate its behaviour by some protocol. Such translations are possible
only if the compared languages are very close (at least with respect to this operator). In
Section 4.2.1 we present some negative results in the style of [Pal03, Gor10b] to show that
not even between calculi that are so close as πm and πs an encoding that translates the
parallel operator homomorphically exists. Instead, often compositionality is required. It
does not impose additional restrictions on the introduced context. [Gor10b] even allows
for the context to be parametrised on the free names of the subterms. In contrast to
homomorphy, compositionality is a very natural requirement. Intuitively, it states that
every occurrence of an operator in the source term is treated by the encoding function
in exactly the same way, i.e., is translated into the same term modulo the translation
of the respective subterms. Also note that a compositional encoding, i.e., an encoding
that translates all source term operators compositionally, implies that also any source
term context can be represented as a context in the target language [Par08]. Moreover,
compositionality guides the design of encodings, because it describes how an encoding

35

3. Encodings and their Quality

has to look like.

Another structural criterion is the preservation of substitutions, denoted as name
invariance in [Gor10b] and as stability in [FL10]. It usually requires that, for all source
terms S ∈ PS and all substitutions σ on source terms, there exists some substitution
σ′ on target terms such that J σ(S) K �T σ′(J S K) for some equivalence �T ⊆ PT × PT
on target terms. Often additional requirements on the relationship between σ and σ′

or on the equivalence �T are stated. The strictest case is of course that σ = σ′ and
�T = ≡α. This criterion is based on the idea that names are property-less [FL10].
Hence, the preservation of substitutions should ensure that encodings of source terms
that differ only in their free names can also only differ in free names (modulo the provided
equivalence).

Moreover, [VPP07] present link independence, a condition that prevents encodings
from introducing free names. More precisely, link independence means that, for all
source terms S1, S2 ∈ PS, fn(S1) ∩ fn(S2) = ∅ implies fn(J S1 K) ∩ fn(J S1 K) = ∅.

3.3. A General Framework

In the last section we presented some criteria from a wide field of possible general re-
quirements for an encoding function. Together with domain-specific and problem-specific
criteria, and the various variants of the above criteria that result from the instantiation
of the required equivalences, the domain of requirements that may turn an encoding into
a good encoding is indeed huge. Unfortunately, there is no agreement on what criteria
lead to reasonable translational results [Pal03, Nes06, Par08, Gor10b]. Moreover, in
order to strengthen the respective kind of results, usually minimal criteria are searched
for negative results and maximal criteria for positive results. Because of that, we hardly
find two results from different authors that are proven with respect to exactly the same
set of criteria. Obviously, this is problematic, e.g. if we want to compare different results
to construct a hierarchy. Moreover, if we want to relate the expressive power of two
given languages there is no guidance on how to start or whether an obtained result is
sufficiently substantiated by the chosen criteria to call it reasonable.

In order to provide a general framework, Gorla in [Gor10b] suggests five criteria well
suited for language comparison, i.e., for positive as well as negative translational results.
In particular, this framework allows us to generate clearly organised hierarchies of lan-
guages with respect to their expressive power (compare to Section 7.2). As claimed in
[Gor10b], most of the encodings appearing in the literature satisfy this framework and
several known separation results can also be derived within this framework but there
are also encodings that do not satisfies this framework, i.e., the framework is not trivial.
Moreover, [Gor10b] presents some new separation results proved within this framework.
Finally, the set of criteria is small and handy but at the same time guides the design
of encoding functions and supports the proof of translational results by separating the
requirements on different intuitive criteria. Accordingly, we consider an encoding to be
“good” if it satisfies Gorla’s five criteria. In the following, we shortly present the criteria
of his general framework as presented in [Gor08b, Gor09, Gor10b].

36

3.3. A General Framework

The five conditions are divided into two structural and three semantic criteria. The
structural criteria include (1) compositionality and (2) name invariance. The semantic
criteria include (3) operational correspondence, (4) divergence reflection, and (5) success
sensitiveness. Note that for the definition of name invariance and operational corre-
spondence a behavioural equivalence � for the target language is assumed. Its purpose
is to describe the abstract behaviour of a target process, where abstract refers to the
behaviour of the source term.

Intuitively, an encoding is compositional if the translation of an operator is the same
for all occurrences of that operator in a term. Hence, the translation of that operator
can be captured by a context that is allowed in [Gor10b] to be parametrised on the free
names of the respective source term.

Definition 3.3.1 (Criterion 1: Compositionality). The encoding J · K is compositional
if, for every operator op : N n × PmS → PS of LS and for every subset of names
N , there exists a context CNop([·]1, . . . , [·]n+m) : N n × PmS → PT such that, for all
x1, . . . , xn ∈ N and all S1, . . . , Sm ∈ PS with fn(S1) ∪ . . . ∪ fn(Sm) = N , it holds that
J op (x1, . . . , xn, S1, . . . , Sm) K = CNop(x1, . . . , xn, J S1 K , . . . , J Sm K).

The second structural criterion states that the encoding should not depend on specific
names used in the source term. This is important, since sometimes it is necessary to
translate a source term name into a sequences of names or reserve some names for the
encoding function. To ensure that there are no conflicts between these reserved names
and the source term names, the encoding is equipped with a renaming policy ϕJ K, i.e.,
a substitution from names into sequences of names. To keep distinct names distinct,
Gorla assumes that the sequences of names that result from applying a renaming policy
to distinct names have no common name. Moreover, if the renaming policy translates a
single name into a sequence of names then the length of such a sequence has to be the
same for all names, such that the encoding can not distinguish between different source
term names by the length of the sequences to which they are encoded. Obviously, no
name should be translated into an infinite sequence of names.

Definition 3.3.2 (Renaming Policy). A substitution ϕJ K : N → N n from names into
sequences of names is a renaming policy, if

∀x, y ∈ N . x 6= y implies ϕJ K(x) ∩ ϕJ K(y) = ∅,

where ϕJ K(z) is simply considered as a set here.

Note that the renaming policy allows us to use the names reserved by the encoding like
implicit parameters. It is for instance possible that some part of the encoding introduces
a free occurrence of a reserved name within the encoding of a subterm which is bound
by the surrounding part of the encoding. An example can be found in Section 5.1.2.
Moreover, note that in [Gor10b] an encoding is in fact a pair

(
J · K ·, ϕJ K·

)
. All encodings

presented within this thesis follow this scheme and also introduce a renaming policy.
In the following, if single names are translated into single names, we sometimes extend

the notion of homomorphic translation to the use of a renaming policy. Thus, if the

37

3. Encodings and their Quality

encoding translates an operator op (x1, . . . , xn, S1, . . . , Sm) always into

op
(
ϕJ K(x1) , . . . , ϕJ K(xn) , J S1 K , . . . , J Sm K

)
,

as in J (νx)P K =
(
νϕJ K(x)

)
J P K, we call the translation of this operator again homo-

morphic.
If an encoding does not need a special renaming policy we use the identity function.

An encoding is then independent of specific names if it preserves all substitutions σ on
source terms by a substitution σ′ on target terms such that σ′ respects the changes made
by the renaming policy.

Definition 3.3.3 (Criterion 2: Name Invariance). The encoding J · K is name invariant
if, for every S ∈ PS and σ, it holds that

J σ (S) K

{
≡α σ′ (J S K) if σ is injective

� σ′ (J S K) otherwise

where σ′ is such that ϕJ K(σ (n)) = σ′
(
ϕJ K(n)

)
for every n ∈ N .

The first semantic criterion and usually the most elaborate one to prove is operational
correspondence. It consists of a soundness and a completeness condition. Completeness
requires that every computation of a source term can be emulated by its translation.
Soundness requires that every computation of a target term corresponds to some com-
putation of the corresponding source term.

Definition 3.3.4 (Criterion 3: Operational Correspondence). The encoding J · K satis-
fies operational correspondence if it satisfies:

Completeness: For all S Z=⇒S S
′, it holds J S K Z=⇒T� J S′ K.

Soundness: For all J S K Z=⇒T T , there exists an S′

such that S Z=⇒S S
′ and T Z=⇒T� J S′ K.

Note that the definition of operational correspondence relies on the equivalence � to get
rid of junks possibly left over within computations of target terms (compare to Section
6.3). Sometimes, we refer to the completeness criterion of operational correspondence
as operational completeness and, accordingly, for the soundness criterion as operational
soundness.

The next criterion concerns the role of infinite computations in encodings.

Definition 3.3.5 (Criterion 4: Divergence Reflection). The encoding J · K reflects di-
vergence if, for every S ∈ PS, J S K 7−→ω

T implies S 7−→ω
S .

The last criterion links the behaviour of source terms to the behaviour of their en-
codings. With Gorla [Gor10b], we assume a success operator X as part of the syntax of
both the source and the target language. An encoding preserves the abstract behaviour
of the source term if it and its encoding answer the tests for success in exactly the same
way.

38

3.3. A General Framework

Definition 3.3.6 (Criterion 5: Success Sensitiveness). The encoding J · K is success
sensitive if, for every S ∈ PS, S ⇓X iff J S K ⇓X.

Note that we choose may-testing here. However this choice is not crucial. This criterion
only links the behaviours of source terms and their literal translations, but not of their
derivatives. To do so, Gorla relates success sensitiveness and operational correspondence
by requiring that the equivalence on the target language never relates two processes with
different success behaviours.

Definition 3.3.7 (Success Respecting). Let 〈 P, 7−→ 〉 be a process calculus and R ⊆
P ×P be an equivalence. Then R is success respecting if, for every P,Q ∈ P with P ⇓X
and Q 6⇓X, it holds that (P,Q) /∈ R.

� is a success respecting equivalence.

By [Gor10b] a “good” equivalence � is often defined in the form of a barbed equivalence
(as described e.g. in [MS92]) or can be derived directly from the reduction semantics
(as described e.g. in [HY95]) and is often a congruence, at least with respect to parallel
composition. For the separation results presented in this thesis, we require only that �
is a success respecting reduction bisimulation.

Definition 3.3.8 (Weak Reduction Bisimulation). The equivalence � is a weak reduc-
tion bisimulation.

In this case, a good encoding respects also the ability to reach success in all finite
maximal executions.

Lemma 3.3.9. For all success respecting reduction bisimulations �⊆ PT × PT and all
terms T1, T2 ∈ PT such that T1 � T2, it holds T1 ⇓X! iff T2 ⇓X!.

Proof. Let us assume the contrary, i.e., there is some success respecting bisimulation
�⊆ PT × PT and two terms T1, T2 ∈ PT such that T1 � T2 and T1 ⇓X! but not T2 ⇓X!.
Then, for all T ′1 ∈ PT with T1 Z=⇒T T ′1, we have T ′1 ⇓X but there exists some T ′2 ∈ PT
such that T2 Z=⇒T T

′
2 and T ′2 6⇓X.

Since � is a weak reduction bisimulation (Definition 3.3.8), T1 � T2 and T2 Z=⇒T T ′2
imply that there exists some T ′′1 ∈ PT such that T1 Z=⇒T T ′′1 and T ′2 � T ′′1 . Because �
is success respecting (Definition 3.3.7), T ′2 � T ′′1 and T ′2 6⇓X imply T ′′1 6⇓X. This violates
the requirement that T1 ⇓X!, i.e., contradicts the assumption that for all T ′1 ∈ PT with
T1 Z=⇒T T

′
1 we have T ′1 ⇓X. We conclude that T1 ⇓X! iff T2 ⇓X!.

Moreover, in this case success sensitiveness preserves also the ability to reach success
in all finite maximal executions.

Lemma 3.3.10. For all operationally sound and success sensitive encodings J · K with
respect to some success respecting equivalence �⊆ PT ×PT and for all S ∈ PS, if S ⇓X!
then J S K ⇓X!.

39

3. Encodings and their Quality

Proof. Assume the contrary, i.e., there is an encoding that satisfies the criteria opera-
tional soundness and success sensitiveness, � is success respecting, and there is some
S ∈ PS such that for all S′ ∈ PS with S Z=⇒S S

′ we have S′ ⇓X, i.e., S ⇓X!, but there is
some T ∈ PT such that J S K Z=⇒T T and T 6⇓X.

Since J · K is operationally sound (Definition 3.3.4), J S K Z=⇒T T implies that there
exists some S′′ ∈ PS and some T ′ ∈ PT such that S Z=⇒S S

′′ and T Z=⇒T T ′ � J S′′ K.
By Definition 3.2.2, then T 6⇓X and T Z=⇒T T ′ imply T ′ 6⇓X. Since � respects success
(Definition 3.3.7), T ′ � J S′′ K and T ′ 6⇓X imply J S′′ K 6⇓X. Because J · K is success sensitive
(Definition 3.3.6), then also S′′ 6⇓X, which contradicts the assumption that S ⇓X!. We
conclude that if S ⇓X! then J S K ⇓X!.

3.4. Designing Quality Criteria

As mentioned before we consider the above discussed framework as a core framework
for language comparison. But on the other side we also see the need for domain-specific
analyses. The framework of [Gor10b] is well suited to analyse the general expressive
power of languages. It allows us to construct clearly separated hierarchies, guides the
design of encoding functions, separates the proof of correctness of an encoding in intuitive
requirements, and provides a good base to obtain negative results by using criteria from
which further proof techniques can easily be derived. Hence, it is a good starting point
not only for the analysis of the general expressive power. Moreover, as we see in the
following, it can easily be extended by domain-specific criteria. Domain-specific criteria,
as the name suggests, are used to analyse properties of a specific domain that may in
general not be interesting. Hence, it is not a good idea to overload the framework by
permanently adding domain-specific criteria. Instead, we add a domain-specific criterion
only if it is necessary to answer a particular kind of question. Possible domains in the
context of process calculi are e.g. causality, the branching time behaviour of processes,
or considerations related to some special features as failures or time constrains.

Note that an additional criterion may strengthen a positive translational result, but
it weakens negative translational results. Moreover, already a single additional criterion
significantly complicates the comparison of a result with other already established results
that do not rely on this additional criterion. Quite often, they even lead to incomparable
results; in particular if two results use different additional criteria. Hence, we strongly
recommend to introduce new criteria only in case they are unavoidable to answer a
specific kind of question.

3.4.1. Abstract Formulation

The first step in the design of a new criterion is to fix its purpose, i.e., to carefully describe
the area we want to analyse and which kind of processes we want to distinguish and why.
This consideration should result in an abstract description of the new criterion and an
argumentation to explain, why—and maybe also in which settings—it is meaningful to
consider this additional criterion.

40

3.4. Designing Quality Criteria

We want to fix the notions of distributability and preservation of distributability in
the context of process calculi. Note that, as we discuss in the following, distributability
is not captured by the general framework above. Intuitively, a distribution of a process
means the extraction (or separation) of its (sequential) components and their association
to different locations.

Systems composed from such components are called distributed systems. Due to the
interplay of synchronisation, i.e., actions in form of two or multi-way rendezvous of
different components, and concurrency, i.e., actions performed independently by other
components, the behaviour of distributed systems is usually hard to analyse. A com-
parison and classification of languages with respect to their degree of distributability
can help to analyse distributed concurrent systems. In particular, it reveals the class
of languages suited to express concurrency (possible with respect to some specific sys-
tem requirements) and, hence, the class of languages suited for system design in this
area of research. Because of that, we want to extend the general framework of Sec-
tion 3.3 in order to reason about the more domain-specific problem of distributability.
Then we use the extended framework in Section 4.3 and Section 4.4 to compare different
process calculi. In particular, we compare different variants of the pi-calculus and the
join-calculus.

Most of the existing approaches that analyse the distributability of concurrent sys-
tems use special formalisms often equipped with an explicit notion of location, e.g. the
distributed pi-calculus in [Hen07], a variant of the join-calculus with explicit locations
in [FLMR96], or [BD12] in Petri nets. In contrast to these approaches, we analyse (sim-
ilar to [vGGS08, vGGS12]) the potential of a formalism to describe distributed systems
without an explicit association of locations to processes. Instead, we abstract from a par-
ticular distribution and consider distributability and, thus, all possible explicitly-located
variants of a calculus. We do so because we consider the expressive power of languages,
not just of individual terms. Moreover, we obtain results for a larger number of process
calculi.

Another way is to explicitly consider the concurrent execution of independent steps
directly within an operational semantics, often called step semantics (e.g. [Lan07] for
the case of the pi-calculus), and also in the form of dedicated behavioural equivalences,
consequently denoted as step equivalences [vG01, vG93, vGG01]. Indeed, if we want to
compare source terms and their encodings directly with respect to distributability, we
would need a step semantics and a branching time equivalence. However, the quality
criteria in the general framework are designed to circumvent such direct comparisons of
source and target terms and we follow this line for our new criterion.

Given an extension of a process calculus with an explicit notion of distribution or
location we can define the degree of distribution of a process as the number of its loca-
tions. However, instead of considering locations explicitly, we just focus on the possible
divisions of a process term into components. Accordingly, a process P is distributable
into P1, . . . , Pn, if we find some distribution that extracts P1, . . . , Pn from within P onto
different locations. Preservation of distributability then means that the target term is as
least as distributable as the source term. Note that the operator of process calculi that
is usually associated with distribution is the parallel operator. Accordingly, we consider

41

3. Encodings and their Quality

components of a term that are composed in parallel as distributable.

Hence, we basically analyse the possibilities to implement the operators of a calculus
or especially its parallel operator. If it is always possible to preserve the degree of dis-
tributability in an encoding of a source language into a target language which is close to
an implementation e.g. in a real world scenario, then the corresponding parallel operator
can be implemented in this scenario simply as the operator of distribution, i.e., parallel
source terms can be implemented in distributed real world processes. If it is not possi-
ble to obtain a distributability preserving encoding, then the source language implicitly
defines side conditions on the use of the parallel operator usually induced by the defined
synchronisation mechanism that forbids for such simple implementations. Thus, the
implementation of parallel source terms as distributed processes may be possible only
under some side conditions, which are hopefully already paraphrased by the respective
separation result.

3.4.2. Comparison and Classification

As next step, the current set of used criteria and also well-known criteria from the
literature should be monitored, to check whether they already capture the new criterion.
It is always much easier to reuse an existing criterion than to design a new one and to
validate its design against the set of criteria used by others. Moreover, a comparison
with existing criteria may help to classify the new criterion with respect to existing ones.
Such a classification can be of great assistance for the formalisation in the next step as
well as to prepare the consistency check in the last step. At least we should analyse
whether our new criterion is a structural or rather a semantic criterion.

In order to measure whether an encoding respects the degree of distribution, usually
the homomorphic translation of the parallel operator, i.e., J P | Q K = J P K | J Q K, is
used as a criterion (see e.g. [Pal03, CM03, LV10]). Based on this requirement [Pal03]
already shows a separation result between the synchronous and the asynchronous variant
of the pi-calculus that we discuss in the first part of the next chapter. The homomor-
phic translation of the parallel operator forbids the introduction of a global coordinator,
i.e., a centralised control instance that resolves all conflicts but at the cost of reducing
the degree of distribution. Indeed, as we will observe in Section 3.4.4, the homomorphic
translation of the parallel operator implies (under certain conditions) that the respective
encoding preserves distributability but we will also observe that the converse is not true,
i.e., there are encodings that do not translate the parallel operator homomorphically but
preserve nonetheless the distributability of all source terms. In this sense, the homo-
morphic translation of the parallel operator is too strict—at least for separation results.
It rightly forbids the introduction of coordinators that reduce the degree of distribu-
tion. But it also forbids protocols that handle communications of parallel components
without sequentialising them or reducing the degree of distribution in another sense.
Moreover, the homomorphic translation of the parallel operator is not always suited to
reason about distribution in process calculi as, for example, the join-calculus: there, it
is not always possible to separate distributable subterms by means of a parallel operator
(see the discussion in the next section).

42

3.4. Designing Quality Criteria

Within his general framework, Gorla requires the compositional translation of source
term operators (Section 3.3). Interestingly, this requirement already prevents from the
use of global coordinators. Gorla requires that the parallel operator is binary and unique
for all process calculi1. Compositionality requires that all occurrences of a parallel opera-
tor have to be translated basically in the same way. Hence, if such an encoding introduces
a coordinator then for every parallel operator a coordinator is introduced and there is
no possibility to examine which of them is the outermost or to order them, i.e., it is not
possible to coordinate the coordinators such that they proceed as a centralised entity. In
that view, compositionality can be seen as a minimal criterion to ensure the preservation
of distributability. However, sometimes—as in the current case—compositionality alone
is too weak, because it still allows for local coordinators, i.e., a compositional encoding
may still sequentialise some parts of a source term. If we are not only interested in the
expressive power with respect to the abstract behaviour of terms but additionally in
how far problems can be solved exploiting at least the same degree of distributability,
we must consider an additional criterion.

Consequently, the preservation of distributability ranges between compositionality
with respect to the parallel operator and its homomorphic translation. Both are struc-
tural criteria. Hence, one may assume that also the preservation of distributability is a
structural criterion, but in fact this is not true.

A natural first condition is to require that encoded source terms are at least as dis-
tributable as the source term itself, i.e., that the degree of distributability has to be
preserved by the encoding. However, it does not suffice to reason about the degree of
distributability, i.e., about the number of distributable components, without additional
requirements on the components. An encoding can always trivially ensure that the
encoding has at least as much distributable components by introducing new subterms
without any behaviour. Thus, we require that the encodings of distributable source term
parts and their corresponding parts in the encoding are related by �. By doing so we
relate the definition of the preservation of distributability to operational completeness,
i.e., a semantic criterion that ensures the preservation of the behaviour of the source
term (part). Hence, we require that each target term part can emulate at least all be-
haviour of the respective source part. As a side effect, we require, that whenever a part
of a source term can solve a task independently of the other parts—i.e., it can reduce
on its own—then the respective part of its encoding must also be able to emulate this
reduction independently of the rest of the encoded term. This reflects our intuition that
distribution adds some additional requirements on the independence of parallel terms.
Accordingly, we require that not only the source term and its encoding are distributable
to the same degree, but also their derivatives, i.e., we do not only consider the initial
degree of distributability. Because of that, our new criterion has both a structural as
well as a semantic component.

1Remember that we require the same in Section 2.1.

43

3. Encodings and their Quality

3.4.3. Formalisation

Now, we have to formalise the new criterion. Note that this formalisation should be as
general as possible, because a formalisation that is to close to a specific process calculus
may hinder the derivation of similar results for other calculi and, thus, the comparison
with other results. Furthermore, it is sometimes easier to define a new criterion with
respect to an existing one, but again this may shrink the possibilities to compare to
other results that do not satisfy the old criterion.

Remember that we understand distribution as the separation of a process into its (se-
quential) components. In order to formalise the identification of sequential components,
we assume for each process calculus a so-called labelling on the capabilities of processes.
The labelling has to ensure that (1) each capability has a label (2) no label occurs more
than once in a labelled term, (3) that a label disappears only when the corresponding
capability is reduced in a reduction step, and (4) that, once it has disappeared, it will
not appear in the execution any more. The last three conditions are called unicity,
disappearence, and persistence in [CCP09] which defines a labelling method to estab-
lish such a labelling for processes of the pi-calculus. Note that such a labelling can be
derived from the syntax tree of processes possibly augmented with some informations
about the history of the process, as it is done in [CCP09]. However, we assume that,
once the labelling of a term is fixed, the labels are preserved by the rules of structural
congruence as well as by the reduction semantics of the respective calculus. Because of
recurrent operators, new subterms with fresh labels for their capabilities may arise from
applications of structural congruence or reduction rules. Since we need the labels only
to distinguish syntactically similar components of a term, and to track them alongside
reductions, we do not restrict the domain of the labels nor the method used to obtain
them as long as the resulting labelling satisfies the above properties for all terms and
all their derivatives in the respective calculus. Due to space constraints, and in order
not to clutter the development with the details of labelling, we prefer to argue at the
corresponding informal level.

Example 3.4.1. Consider the term P = y | y.X | y | y.0 in the pi-calculus. It con-
tains two syntactically equivalent outputs y. In order to unambiguously distinguish
its subterms as well as its steps we introduce labels. A suitable labelling of this ex-
ample is e.g. P = [y]1 | [y]2 .X | [y]3 | [y]4 .0. As described in the following, P is
distributable into at most four terms, namely [y]1, [y]2 .X, [y]3, and [y]4 .0, but is e.g.
also distributable into [y]3 | [y]2 .X and [y]1 | [y]4 .0. But it is e.g. not allowed to dis-
tribute P into [y]1 | [y]2 .X and [y]1 | [y]4 .0, because these two components share the
same capability, i.e., both contain a capability with the same label. Moreover, P can
perform four different steps—reducing the labels 1 and 2, 1 and 4, 3 and 2, and 3 and
4, respectively—but modulo structural congruence we can only distinguish between two
of them.

Before we can formalise what it means to preserve distributability, we have to for-
malise distributability itself. The most important operator to implement distribution
or distributability is the parallel operator. More precisely, we consider distributability

44

3.4. Designing Quality Criteria

as a special case of parallel composition with a stricter notion of independence, which
becomes visible only in calculi as the join-calculus or by comparing calculi. So, first of
all, two subterms are distributable if they are parallel.

Unfortunately, the converse of that statement—two subterms are not distributable if
they are not parallel—is usually not true. The main reason for this is scoping of names.
Consider for example the term (νx) (P | Q) in the pi-calculus. Although the outermost
operator is not the parallel operator, the processes P and Q are nonetheless distributable.
More precisely, for all variants of the pi-calculus introduced in Section 2.1.1, two subterms
are distributable if they are (modulo structural congruence) composed in parallel under
some restrictions; see the notion of standard form of the pi-calculus [Mil99]. Hence,
(1) we consider distributability modulo structural congruence, and (2) we allow to remove
top-level restrictions and parallel operators to separate the distributable components.

Note that recurrent operators as the replicated inputs y?(x) .P in the pi-calculus rep-
resent arbitrarily many copies of its subterm(s) in parallel as visualised by the reduction
rule Pi-Repm,s for πm that generates and reduces a copy of the subterm of the recurrent
operator but does not reduce the replicated input itself. Accordingly, we consider repli-
cated inputs as distributable. We can also visualise this by the (non-standard) structural
congruence rules y?(x) .P ≡ y(x) .P | y?(x) .P or y?(x) .P ≡ y?(x) .P | y?(x) .P . Indeed,
if we add the first of these rules to the considered structural congruence of the pi-calculus,
the respective rules for replicated inputs in the reduction semantics like Pi-Repm,s for
πm become superfluous. We do not add this rule to structural congruence in Figure 2.1,
because this simplifies some of the considerations in Chapter 6. But, in order to simplify
the following definition, we allow for such a structural congruence rule in the definition
of distributability. More precisely, we define ≡? as the union of the rules in Figure 2.1
and y?(x) .P ≡ y?(x) .P | y?(x) .P .

In the case of the join-calculus, the situation is worse. Again, the problematic operator
is scoping of names. But, in the case of the join-calculus, scoping is realised by definitions
that at the same time represent the input capabilities of the calculus. Consider the term
R = def a . 0 in (def b . c 〈a〉 in (a | b)). It is constructed of two nested definitions. Intu-
itively, it represents the combination of the two processes def a .0 in a and def b .c 〈a〉 in b
but, because of c 〈a〉, we can not get rid of the nesting of the definitions—not even modulo
structural congruence. The best we can achieve is R ≡ def a .0 in ((def b . c 〈a〉 in b) | a).
Note that def b . c 〈a〉 in b is not guarded within R. Because of that, the cooling and
heating rules, which model structural congruence of the join-calculus, allow us to derive
` R
 b . c 〈a〉 ` def a . 0 in a | b as well as ` R
 a . 0 ` def b . c 〈a〉 in b | a. This
reason is enough for us to consider def a . 0 in a and def b . c 〈a〉 in b as distributable
within R. Formally, each J-term J is distributable into the terms J1, . . . , Jn ∈ PJ if, for
all 1 ≤ i ≤ n, there exists some multisets R,M such that ` J
 R ` Ji,M and there
are no two capabilities in J1, . . . , Jn with the same label, i.e., the J1, . . . , Jn represent
distinct parts of the original term. Note that we can define structural congruence for
all process calculi by a chemical abstract machine, but that this kind of special consid-
eration is only necessary because definitions in the join-calculus are guards that have
unguarded subterms. Hence, we assume that, (at least) for all process calculi that con-
tain a guard with unguarded subterms, structural congruence is given by a chemical

45

3. Encodings and their Quality

abstract machine.
Note that this example on the join-calculus illuminates that we consider distributabil-

ity as an irreversible predicate. There is no possibility to restore from a given set of
distributable components the original process term, because by the separation of the
components we irreversibly lose their original connections. Thus, we can not beyond
doubt conclude that the terms def a . 0 in a and def b . c 〈a〉 in b originally belonged to
R. Similarly, we can not conclude that the terms P and Q were originally subterms of
the pi-calculus term (νx) (P | Q), because we lost the information about the restriction.
However, our main goal is the formulation of the preservation of distributability and, as
it turns out, for this criterion we do not need the information lost, because the preserva-
tion of the behaviour of the original term and, thus, the preservations of the connections
between distributable components, are already checked by the other quality criteria.

Another important observation on the join-calculus is that, here, replication is ex-
pressed by definitions; but it should not be allowed to distribute a single definition as we
do for replicated inputs in the pi-calculus. This reflects a fundamental design decision in
the join-calculus, namely that the receptors of a given channel are forced to reside at the
same location [FG96, Lév97]. Note that this design decision marks the main difference
between the join-calculus and the asynchronous pi-calculus. Accordingly, we require that
this design decision is made explicit by the existence or absence of a rule of structural
congruence as y?(x) .P ≡? y?(x) .P | y?(x) .P in the pi-calculus. A recurrent operator is
called distributable if such a structural congruence rule is provided; otherwise, it is not
distributable, i.e., J-term definitions are not distributable.

Definition 3.4.2 (Distributability). Let 〈 P, 7−→ 〉 be a process calculus, ≡ be its struc-
tural congruence, and P ∈ P. P is distributable into P1, . . . , Pn ∈ P if there exists
P ′ ∈ P with P ′ ≡ P such that

1. for all 1 ≤ i ≤ n, Pi is an unguarded subterm of P ′ or, in case ≡ is given by a
chemical approach, ` P ′
 R ` Pi,M for some multisets R,M, such that Pi
contains at least one capability or constant different from 0,

2. in P1, . . . , Pn there are no two occurrences of the same capability, i.e., no label
occurs twice, and

3. each guarded subterm and each constant of P ′ is a subterm of at least one of the
terms P1, . . . , Pn.

The degree of distributability of P is the maximal number of distributable subterms of
P .

Remember that for the considered variants of the pi-calculus we replace ≡ by ≡?.
By Definition 3.4.2, we can split a process into its sequential components or larger sub-

terms, e.g. each term is distributable into itself. This allows us to analyse the behaviour
of distributable subterms. Note that we do not allow to distribute the empty process,
because otherwise usually every process is distributable into infinitely many empty pro-
cesses. The same holds for subterms not containing any capability or constant different

46

3.4. Designing Quality Criteria

from 0, as e.g. in the term 0 | 0. As a consequence, e.g. the term 0 is not distributable at
all. On the other side, the above definition leads to an infinite degree of distributability
for each term containing a top-level distributable recurrent operator. Note that both
of these design decisions—0 is not distributable and the degree of distributability of
y?(x) .P is infinite—do not influence the results of this thesis.

Now, we formalise our new criterion. As discussed above, we require that encoded
source terms are at least as distributable as the source term itself and that the encod-
ings of distributable source term parts and their corresponding parts in the encoding are
related by �. By Definition 3.3.4, operational correspondence relates the behaviour of
source terms and their encodings modulo some success respecting reduction bisimulation
�. Since our formulation of the property of preserving distributability is not indepen-
dent of operational correspondence, it may have some odd meaning if the considered
encoding does not satisfy operational correspondence. However, all results derived on
the new criterion in the next chapter are based on the general framework which includes
operational correspondence.

Definition 3.4.3 (Preservation of Distributability). An encoding J · K : PS → PT pre-
serves distributability if for every S ∈ PS and for all terms S1, . . . , Sn ∈ PS that are
distributable within S there are some T1, . . . , Tn ∈ PT that are distributable within
J S K such that Ti � J Si K for all 1 ≤ i ≤ n.

In essence, this requirement is a distributability-enhanced adaptation of operational
completeness. Whenever a source term is distributable into n terms then its encoding
must again be distributable into n terms, i.e., the encoded source term is at least as
distributable as the source term itself. Moreover, if some of these n terms, say Si,
can perform some execution independent of the rest then, by operational completeness,
this execution has to be emulated by its translation modulo �, i.e., Si Z=⇒S S

′
i implies

Ti Z=⇒T� J S′i K. Thus, our formalisation of the preservation of distributability respects
both the intuition on distribution as separation on different locations—captured by the
structural requirement that the encoded source term is at least as distributable as the
source term itself—as well as the intuition on distribution as independence of processes
and their executions—a semantic requirement implemented by the condition Ti � J Si K.

Of course this is not the only way to reason about distribution or distributability.
However, we find it natural and appealing to require that parallel source term steps can
be emulated truly in parallel, i.e., that for each pair of independent source term steps
there is at least the possibility to emulate them independently.

3.4.4. Verification

As last step, we have to verify the new criterion against the current setting of existing
criteria. First, we have to ensure that the new criterion is not in conflict to the existing
criteria, i.e., positive results are still possible. Second, we have to argument why the new
criterion results indeed in new results and is not already subsumed by some other criteria.
At least the connection to the criteria identified in the second step in Section 3.4.2 as
close to the new criterion should be analysed.

47

3. Encodings and their Quality

To ensure that the new criterion is not in conflict with the framework of Gorla, it
suffices to show the existence of encodings that satisfy all six criteria. In Chapter 4
we discuss two such encodings; the encoding J · Ksa from πs into πa of [Nes00] and the
intermediate encoding J · Kmp from πm (without replicated input) into πp. In Chapter 6
we show that the encodings J · Ksa and J · Kmp satisfy the criteria of Gorla and preserve
distributability. Moreover, every good encoding between different variants of the pi-cal-
culus that translates the parallel operator and restriction homomorphically and preserves
structural congruence also preserves distributability.

Lemma 3.4.4. Let LS = 〈 PS, 7−→S 〉 and LT = 〈 PT, 7−→T 〉 be two two variants of the
pi-calculus as introduced in Section 2.1.1, and let ≡S and ≡T be the structural congruence
of LS and LT, respectively. Any operationally complete encoding that translates the
parallel operator and restriction homomorphically and preserves structural congruence,
i.e., S1 ≡S S2 implies J S1 K ≡T J S2 K for all S1, S2 ∈ PS, preserves distributability.

Proof. Let us assume that ≡S and ≡T contain the structural congruence rule y?(x) .P ≡
y?(x) .P | y?(x) .P (or y?(x̃) .P ≡ y?(x̃) .P | y?(x̃) .P if the considered calculus is
polyadic). Then, by Definition 3.4.2, S ∈ PS is distributable into the terms S1, . . . , Sn ∈
PS if S ≡S (νx1, . . . , xm) (S1 | . . . | Sn) for some sequence of names x1, . . . , xm ∈ N .
S ≡S (νx1, . . . , xm) (S1 | . . . | Sn) implies J S K ≡T J (νx1, . . . , xm) (S1 | . . . | Sn) K, be-
cause structural congruence is preserved by the encoding. By the homomorph translation
of the parallel operator and restriction, we have

J S K ≡T J (νx1, . . . , xm) (S1 | . . . | Sn) K
=
(
νϕJ K(x1) , . . . , ϕJ K(xm)

)
J S1 | . . . | Sn K

=
(
νϕJ K(x1) , . . . , ϕJ K(xm)

)
(J S1 K | . . . | J Sn K) ,

where ϕJ K is the renaming policy of J · K. Hence, J S K is distributable into the terms
T1, . . . , Tn ∈ PT with Ti = J Si K for all 1 ≤ i ≤ n. Obviously, J Si K � J Si K for all
1 ≤ i ≤ n. We conclude that J · K preserves distributability.

Not surprisingly, the most crucial requirement here is the homomorphic translation of
the parallel operator. However, this holds only in case of process calculi as the pi-calcu-
lus, where distributable terms can be separated modulo structural congruence by parallel
operators. In calculi as the join-calculus the criterion on the homomorphic translation
of the parallel operator is even stricter.

Thus, the (semantic) criterion formalised in Definition 3.4.3 can be considered to
be at most as hard as the (syntactic) criterion on the homomorphic translation of the
parallel operator. To see that it is not an equivalent requirement, but indeed strictly
weaker, we consider the intermediate encoding J · Kmp from πm (without replicated input)
into πp. This encoding is good and preserves distributability but it does not translate
the parallel operator homomorphically. Moreover, [CM03] proves that there is no good
encoding from πm into πp that translates the parallel operator homomorphically; this
separation result does not rely on replication, i.e., it also implies that there is no such
encoding from πm without replicated input into πp.

48

3.4. Designing Quality Criteria

3.4.5. Alternative Formalisation

As discussed above, the criterion in Definition 3.4.3 requires not only the preservation
of the distributability of processes but also the preservation of the distributability of
steps or executions of the respective distributable processes. In order to obtain an
alternative way to prove the preservation of distributability, we make this intuition
explicit. More precisely, we show that an operationally complete encoding that preserves
distributability always also preserves the distributability between sequences of source
term steps. To do so, we define first what it means for two steps or executions to be
distributable.

If a single process—of an arbitrary process calculus—can perform two different re-
duction steps, i.e., steps on capabilities with different labels, then we call these steps
alternative to each other. Two alternative steps can either be in conflict or not; in the
latter case, it is possible to perform both of them in parallel, according to some assumed
step semantics.

Definition 3.4.5 (Distributable Steps). Let 〈 P, 7−→ 〉 be a process calculus and P ∈ P
a process. Two alternative steps of P are in conflict, if performing one step disables the
other step, i.e., two steps are in conflict if both reduce the same not recurrent capability.
Otherwise, i.e., if all capabilities used by both steps are recurrent, the steps are called
parallel.

Two parallel steps of P are called distributable, if each recurrent capability reduced
by both steps is distributable. Else the steps are called local.

Note that the “same” in the definition above means “with the same label”, i.e., in
y | y.P1 | y the two alternative steps on y are in conflict but y | y.P1 | y.P2 | y
and y | y?.P1 | y can both perform two parallel steps on y. Moreover, the reductions
on channel a and b are parallel in a | b | a.P1 | b.P2, but there are in conflict in
a | b | a.P1 + b.P2, because choice counts as a single capability which is reduced in both
steps.

Also note that in contrast to parallel steps, distributable steps can reduce the same
recurrent capability only if it is distributable. In many process calculi such as πa, two
steps are distributable iff they are parallel, because all recurrent capabilities are also dis-
tributable. Therefore, there is often no need to distinguish these two notions. However,
there are also process calculi as the join-calculus in which these notions indeed refer to
quite different situations. Thus, for the comparison with these calculi as in Section 4.3.2,
their intuitive distinction is useful.

In the join-calculus, two alternative steps that reduce the same definition but do
not compete for some output, as e.g. the reduction of x 〈u〉 and x 〈v〉 in def x (z) .
y 〈z〉 in (x 〈u〉 | x 〈v〉), can be considered as parallel steps; they do not compete for the
input capability, because it is recurrent. However, we can not consider these two steps
as distributable, as this would imply that the definition itself is distributable which—by
design—is not intended in J: there is always exactly one receiver for each defined name
[FG96, Fou98].

49

3. Encodings and their Quality

With the notions of conflicting, parallel, and distributable steps in mind, we define
parallel and distributable sequences of steps.

Definition 3.4.6 (Distributable Executions). Let 〈 P, 7−→ 〉 be a process calculus, P ∈
P, and let A and B denote two executions of P . A and B are in conflict, if a step of A
and a step of B are in conflict. Else A and B are parallel.

Two parallel sequences of steps A and B are distributable, if each pair of a step of A
and a step of B is distributable.

In πa, two sequences of steps A and B of a process P are parallel iff there exists some
sequence of names x̃ and two terms P1, P2 ∈ Pa such that P ≡ (νx̃) (P1 | P2) and P1

can perform A while P2 can perform B, i.e., if A : P 7−→ PA,1 7−→ . . . 7−→ PA,n and
B : P 7−→ PB,1 7−→ . . . 7−→ PB,m then, for all 1 ≤ i ≤ n and all 1 ≤ j ≤ m, there exists

P ′A,i, P
′
B,j ∈ P such that PA,i ≡ (νx̃)

(
P ′A,i | P2

)
and PB,j ≡ (νx̃)

(
P1 | P ′B,j

)
. Moreover,

two sequences of steps are again distributable iff they are parallel. Unfortunately, in
the join-calculus two processes able two perform parallel sequences of steps can not
always be separated by a parallel operator in this way; even if they do not reduce the
same definition. The reason is again the restriction caused by definitions. In the term
def a . P1 in (def b . c 〈a〉 in (a | b)) the reduction of a is completely independent of the
reduction of b. Hence, we consider these two steps as parallel and even as distributable.
But, because of c 〈a〉, we can not get rid of the nesting of these two definitions.

Although the definitions of distributable processes in Definition 3.4.2 and distributable
executions in Definition 3.4.6 are quite different, they are closely related. Two execu-
tions of a term P are distributable iff P is distributable into two subterms such that
each performs one of these executions.

Lemma 3.4.7. Let L = 〈 P, 7−→ 〉 be a process calculus, P ∈ P, and A1, . . . , An a set
of executions of P . The executions A1, . . . , An are pairwise distributable within P iff P
is distributable into P1, . . . , Pn ∈ P such that, for all 1 ≤ i ≤ n, Ai is an execution of
Pi, i.e., during Ai only capabilities of Pi are reduced.

Proof. Let ≡ be the structural congruence of L.
Assume that the set of executions A1, . . . , An are pairwise distributable in P . By

Definition 3.4.6, no pair of executions Ai and Aj with 1 ≤ i ≤ n, 1 ≤ j ≤ n, and
i 6= j reduces the same not distributable capability. Moreover, since for all 1 ≤ i ≤ n
the sequence of steps Ai is an execution of P , i.e., P 7−→ Pi,1 7−→ . . . 7−→ Pi,m for
some Pi,1, . . . , Pi,m ∈ P, none of these executions reduces a capability produced, i.e.,
unguarded, by a step of one of the other executions in the set { A1, . . . , An }. Thus,
whenever an execution Ai reduces some capability that was guarded in P , then Ai also
reduces the guarding capability. Hence, we can choose P1, . . . , Pn such that, for all
1 ≤ i ≤ n, Pi is an unguarded subterm of P ′ or can be separated in P ′ by the chemical
approach with P ′ ≡ P and Pi contains at least all capabilities reduced in Ai. Note
that to ensure that all guarded subterms and constants of P are contained in at least
one of the terms P1, . . . , Pn, as it is required by the last condition of Definition 3.4.2,
some of these terms may contain subterms that are not reduced by one of the executions

50

3.5. Summary and Related Work

A1, . . . , An. Since different executions Ai and Aj with 1 ≤ i ≤ n, 1 ≤ j ≤ n, and i 6= j
reduce the same capability only if it is recurrent and distributable, by Definition 3.4.2,
the terms P1, . . . , Pn are distributable in P .

Now, assume that P is distributable into n terms P1, . . . , Pn ∈ P such that, for all
1 ≤ i ≤ n, Ai is an execution of Pi, i.e., during Ai only capabilities of Pi are reduced.
Then, by Definition 3.4.2, no capability with the same label occurs twice in P1, . . . , Pn.
Hence, since Ai reduces only capabilities in Pi, no two executions in A1, . . . , An reduces
the same capability. Thus, by Definition 3.4.6, all executions in { A1, . . . , An } are
pairwise distributable in P .

Based on the notion of distributable sequences of steps, we prove that an operationally
complete encoding is distributability-preserving only if it preserves the distributability
of sequences of source term steps.

Lemma 3.4.8 (Distributability-Preservation). An operationally complete encoding J · K :
PS → PT that preserves distributability also preserves distributability of executions, i.e.,
for all source terms S ∈ PS and all sets of pairwise distributable executions of S, there
exists an emulation of each execution in this set such that all these emulations are
pairwise distributable in J S K.

Proof. Let LS = 〈 PS, 7−→S 〉 and let LT = 〈 PT, 7−→T 〉 be two process calculi.

Let us assume that the set of executions A1, . . . , An is pairwise distributable within
S. Then, by Lemma 3.4.7, S is distributable into n terms S1, . . . , Sn ∈ P such that,
for all 1 ≤ i ≤ n, Ai is an execution of Si, i.e., during Ai only capabilities of Si are
reduced. Because J · K preserves distributability, by Definition 3.4.3, there are some
T1, . . . , Tn ∈ PT that are distributable within J S K such that Ti � J Si K for all 1 ≤
i ≤ n. Let us fix some arbitrary i ∈ { 1, . . . , n }. By operational completeness in
Definition 3.3.4, all sequences of steps of Si are emulated by its encoding, i.e., Si Z=⇒S S

′
i

implies J Si K Z=⇒S� J S′i K. Because � is some reduction bisimulation, Ti � J Si K implies
that also Ti has to emulate the executions of Si independently from the other encoded
subterms, i.e., J Si K Z=⇒S� J S′i K implies Ti Z=⇒S� J S′i K. We conclude that for all
1 ≤ i ≤ n the term Ti emulates the sequence of steps Ai. Then, again by Lemma 3.4.7,
all these emulations are pairwise distributable within J S K.

3.5. Summary and Related Work

As the title suggests, the main purpose of this chapter is to introduce encoding functions
and to discuss their quality. In Section 3.1 we presented a short formalisation of encoding
functions as well as target terms as they are used throughout this thesis.

In Section 3.2 we then reviewed some of the most common used quality criteria. In
[Nes96] also a class of rather quantitative criteria for the effectiveness or efficiency of an
encoding is discussed. The efficiency of an encoding can be measured for example by a
criterion to count the number of messages or steps of an emulation [BS83, AH92, Kna93].
However, within this thesis we are more focused on semantic and structural criteria.

51

3. Encodings and their Quality

In Section 3.3 we reviewed one general framework as core for language comparison that
will guide most of the results of the thesis. Suitability of quality criteria for encodability
as well as separation results were often discussed in literature (see e.g. [Nes96, Nes06,
VPP07, Par08, Gor10b, FL10]), but general frameworks or discussion of such general
frameworks are rare. For a long time full abstraction was accepted as general criterion for
language comparison. But, since there is no agreement on the equivalences that should
be used, full abstraction results are seldom comparable without some additional effort
to unify the notions of the used equivalences. Hence, to our opinion, full abstraction
can hardly be considered as a general framework. Apart from that many authors state
that a reasonable encoding should at least satisfy this or that property. Prominent
candidates—not counting candidates as the homomorphic translation of the parallel
operator in [Pal03] that are obviously added in order to measure some domain-specific
properties—are operational correspondence and divergence reflection (see e.g. [Nes96,
Nes00]). A variant of both is contained in the framework of [Gor08b, Gor10b] presented
in Section 3.3. Another attempt for such a general frameworks for language comparison
can e.g. be found in [FL10]. In contrast to [Gor10b], the authors of [FL10] present a
general framework based on labelled semantics. Intuitively, they combine full abstraction
and operational correspondence into a bisimulation-like relation called subbisimulation.
Subbisimulation connects labelled executions of the source and the target language.
Moreover, preservation and reflection of divergence is required. The approach is then
used to compare different variants of CCS and different variants of the pi-calculus. For
example subbisimilarity is applied to show the independence of the operators of the
pi-calculus. In comparison to the framework of Gorla the requirements induced by
the formulation of subbisimilarity seem to be stricter, although a direct comparison is
difficult, because of the different formulations. However, note that within this framework
the positive result presented in Chapter 5, i.e., the encoding from πm into πa, does not
hold, because [FL10] make use of a stricter variant of operational correspondence that
does not allow for intermediate or partially committed states.

In Section 3.4 we showed how the general framework can be extended by an additional
domain-specific criterion. To our opinion the generation of a new criterion has to follow
basically the following four steps.

1. Fix the purpose of the new criterion and the setting(s) in which it should be used.

2. Compare and classify the intended criterion with respect to existing criteria. Con-
vince yourself that the intended criterion is not already captured by a well-known
criterion from the literature.

3. Formalise the criterion (possibly with respect to existing criteria of the chosen
setting but) as general as possible. Discuss why the new criterion indeed captures
the intended meaning.

4. Verify the new criterion against the setting of quality criteria. Ensure that the
extension of the setting still allows for positive results and that new negative results
are possible.

52

3.5. Summary and Related Work

Furthermore, we presented an alternative formulation for the new criterion, i.e., already
derive some results on the new criterion that do not depend on the considered pair
of languages. Note that we do the same for the general framework in Lemma 3.3.9
and Lemma 3.3.10. Such results on the criteria are often very useful, because they
(1) provide additional intuition on the criteria and (2) possibly allow for new proof
methods to obtain translational results. Indeed, we use Lemma 3.3.9 and Lemma 3.3.10
as well as the results derived in Section 3.4.5 to obtain translational separation results
in the second half of the next chapter.

As main contribution of this chapter, Section 3.4 proposes a novel criterion to reason
about the degree of distributability which is better suited than the common homomorphic
translation of the parallel operator. We show that this criterion allows us to formalise
the difference between the asynchronous pi-calculus and the join-calculus (Section 4.3)
as well as to shed more light on the difference between the expressive power of mixed
and separate choice (Section 4.4).

53

4. Separating Languages

The main purpose of this chapter is to analyse how translational separation results are
obtained in general and in particular to show separation between some synchronous and
asynchronous variants of the pi-calculus. As already shown in [Pal03] and [Nes00], the
difference in the expressive power of the synchronous pi-calculus (πm) and the asyn-
chronous pi-calculus (πa) is a consequence of the different expressive power of mixed
choice compared to separate choice.1 We want to shed further light upon this difference.
To do so we consider different translational separation results between πm and πs (a
synchronous variant of the pi-calculus with separate choice) in particular with respect
to distributability. Finally, we capture the difference within a so-called synchronisation
pattern that describes this difference by means of distributable and conflicting steps.
Moreover, we analyse the distributability of the asynchronous pi-calculus by comparing
its expressive power with the join-calculus. Again we capture the difference between
these two calculi within a synchronisation pattern.

Translational separation results and separation results in general show in what way two
languages differ. Hence, separation results are specific to the pair of considered languages
and one may assume that separation results have nothing in common. But in fact, if
we compare different separation results, we observe that most of them share some kind
of meta proof method (as e.g. in [Bou88, HP01, Pal03, CM03, VPP07, Gor08a, Gor09,
Gor10b, FL10, LV10]). They prove first an absolute result, i.e., some condition of the
source or target language, which then guides the proof of the translational separation
result. This technique is particularly useful if not only a single separation result but
several of them are proved with respect to the same or comparable instances of the same
absolute result (see e.g. [VPP07, Gor10b]). For the common thread of this chapter we
concentrate on this observation.

The absolute expressive power of a language describes what kind of behaviour or
operations on behaviour are expressible in it (see [Par08, Gor10b] and even [LSZ74]).
Analysing the absolute expressive power of a language usually consists of analysing which
“problems” can be solved in it and which cannot. It is often difficult to identify a suit-
able problem instance or problem domain to properly measure the expressive power of a
language. For instance, one might consider Turing-completeness to measure the compu-
tational power of a language. In fact, Turing-completeness has been used in the context
of process algebras, e.g. for Linda [BGZ00]. However, many calculi are Turing-complete
and can thus not be distinguished by this problem. Hence, in Section 4.1 we discuss how
to obtain suitable problem instances. As examples we review two absolute results that
are introduced by Palamidessi in [Pal03] in order to separate πm and πs. Palamidessi

1See e.g. [Bou92, QW00, Gor07, Gor08a] for a comparison of the choice free fragment of the synchronous
pi-calculus and the asynchronous pi-calculus.

55

4. Separating Languages

uses confluence and, inspired by Bougé [Bou88], the distributed coordination problem of
leader election. Leader election refers to initially symmetric networks, where all poten-
tial leaders have equal chances and all processes run the same—read: symmetric—code.
There, to solve the leader election problem, it is required that in all possible executions
a leader is elected. Usually, it is argued that it is necessary—again in all possible exe-
cutions—to break the initial symmetry in order to do so. On the other hand, if there is
just a single execution in which the symmetry is somehow perpetually maintained or at
least restored, then also leader election may fail, and thus the leader election problem
is not solved. One may conclude that, at a closer look, Palamidessi’s proof furthermore
addresses another problem: the problem of breaking initial symmetries. Therefore, we
suggest to promote “breaking symmetries” from a mere auxiliary proof technique to a
proper problem of its own. It turns out that, by doing so, we can significantly weaken
the definition of symmetry and at the same time provide a stronger proof applicable
to problem instances different from leader election. We conclude that in the considered
setting breaking symmetries is better suited as leader election to derive a translational
separation result. To underpin that, we discuss under which circumstances an absolute
result is suited for the derivation of a separation result.

Later on, Gorla [Gor08b, Gor10b] uses a simpler difference between πm and πs. Instead
of leader election in symmetric networks, it employes the reducibility of “incestual”
processes (mixed choices that include both enabled senders and receivers for the same
channel) when running two copies in parallel. Note that Gorla does not explicitly use a
notion of symmetry. Both Palamidessi and Gorla rephrased their results by stating that
there is no good encoding from πm into πs. In Section 4.2 we review these translational
separation results. In each case, the ability to break initial symmetries turns out to be
essential. Furthermore, we present two new negative translational results that separate
πm and πs with respect to distributability and causality. While doing so, we concentrate
on the consequences of varying notions of uniformity and reasonableness, i.e., of varying
sets of quality criteria. Moreover, we show how absolute results can be used to derive
translational separation results.

In Section 4.1 we discuss how to obtain a suitable absolute result from scratch. Other
ways to obtain such a result are to transfer an absolute result from another formalism
or to adapt an absolute result of another translational result in the context of process
calculi. We consider examples for both ways in Section 4.3 and Section 4.4. Again, we
compare synchronous and asynchronous variants of the pi-calculus as running examples,
but, in contrast to the first half of this chapter, Section 4.3 and Section 4.4 are more
focused on the domain of distributability.

Other results on distributability can for instance be found for Petri nets in [vGGS08,
vGGS09, BD12, vGGS12]. In [vGGS08] a semi-structural property called M is derived
that distinguishes distributable Petri nets from those nets that may be implemented
only under additional assumptions on the underlying system structure in a fully asyn-
chronous and distributed setting. They also present a description of this property as
a property of a step transition system which allows us to use this property to reason
about process calculi. In Section 4.3 we show how this property can be transferred into
an absolute result to analyse distributability of the pi-calculus. Intuitively, the degree

56

4.1. Absolute Results

of distributability in the pi-calculus corresponds to the amount of parallel components
that can act independently. However, practical experience has shown that it is not
possible to implement every pi-calculus term—not even every asynchronous one—in an
asynchronous setting while preserving its degree of distributability, at least not with an
automatic algorithm. To overcome these problems, the join-calculus was introduced as
a model of distributed computation [Lév97]. It employs a locality principle by ensur-
ing that there is always exactly one immobile receiver for each communication channel.
More precisely, for every name, exactly one receiver is defined at the time of the name’s
creation, and communication occurs only on so-defined channels [Fou98]. Apart from
that, the join-calculus can be considered as an asynchronous variant of the pi-calculus.
By transferring the M of Petri nets into absolute results for the join-calculus and the
asynchronous pi-calculus, we are able to prove a difference in the expressive power of
these two calculi with respect to distributability, elucidated by the non-existence of a
good and distributability-preserving encoding from πa into J. Moreover, with exem-
plary results in the context of CSP, we show that the presented proof method, based
on synchronisation patterns like M, can also be applied to obtain separation results in
other process calculi. Thereby we also show how translational separation results can be
transferred to other source and target languages.

In Section 4.4 we adapt the absolute results of Section 4.3 to capture the difference be-
tween mixed choice and separate choice. It turns out that the difference in the expressive
power of these two choice variants with respect to distributability can be described by a
synchronisation pattern that is similar to the pattern used in Section 4.3 and [vGGS08]
but that is more complex. Moreover, we do not only adapt the synchronisation pattern
and the corresponding absolute results but also the rest of the proof method used in
Section 4.3.

4.1. Absolute Results

The first section of this chapter is dedicated to the derivation of absolute results suited
to obtain translational results. The most difficult task in obtaining absolute results is
usually the identification of a suitable problem description. We present two ideas that
can serve as starting points in this direction. Moreover, we discuss what makes an
absolute result suitable to derive a particular separation result.

Often two sublanguages of the same family of process calculi that differ only by single
operators or simple syntactical differences are compared in order to gain some knowledge
about the expressive power of the respective operator or syntactical restriction. In
Section 4.1.1 we present an absolute result of [Pal03] that is the formalisation of such a
simple syntactical difference between two languages. We also show how to derive a very
simple separation result on top of that absolute result.

If the two languages we want to compare are not that close, or if the absolute result
derived from syntactical differences is to weak, another idea is to use standard problems
for an absolute result. Therefore, in Section 4.1.2 we review such an absolute result
which again was already presented in [Pal03].

57

4. Separating Languages

In Section 4.1.3 we show how to generalise this absolute result such that it fits better
to the considered setting of quality criteria. Corresponding separation results are then
derived in Section 4.2.

4.1.1. Formalising the Difference of Languages

Our goal is to analyse the expressive power of mixed choice, or precisely to compare
the full pi-calculus including mixed choice (πm) with its subcalculus, in which only
separate choice is allowed (πs). The only syntactical difference between these two calculi
is the restriction on the choice operator. Now, we have to describe what effects on the
expressive power this syntactical restriction implies, i.e., what kinds of behaviour are
expressible in πm but not in πs. Fortunately, this task is quite easy, because the two
considered languages differ only by the characteristics of a single operator. However,
whenever the languages we want to compare are close or whenever there is already some
knowledge about the connection between the operators of the two languages, it is a
good advice to start with the formalisation of the differences between the languages
with respect to that single operators or those small syntactical differences. Of course,
we do not know how Palamidessi obtained the idea to describe this difference in form of
confluence, but it seems to be a good idea to start close to the operator itself.

A mixed choice is the combination of an input and an output capability within a
single sum. By contrast, in separate choice no such combinations are allowed. A sum
describes a process that behaves as any of its branches. As a special feature, as soon
as the process decides on which branch it proceeds, all the other branches of the sum
are immediately withdrawn. We observe that the reduction of no other operator of the
pi-calculus can immediately withdraw alternative actions or action guarded branches.
Because of that, it is possible in πm that a send operation immediately withdraws an
alternative input guarded subprocess, and accordingly a receive operation immediately
withdraws an alternative output guarded subprocess, although no communication was
performed. But both behaviours are impossible in πs.

Palamidessi denotes this inability to immediately disable alternative operations of the
opposite kind as confluence property [Pal03]. Let x [y] denote the label of an arbitrary
output action, i.e., x [y] refers either to a bound output x (y) or an unbound output x y.

Lemma 4.1.1 (Local Confluence). Let P ∈ Ps be a process. If P can perform two steps

P
x[y]−−→ Q and P

z(w)−−−→ R then there exists S such that Q
z(w)−−−→ S and R

x[y]−−→ S.

Confluence is visualised in Figure 4.1. The proof is by analysis of the possible rules
used to derive the labelled steps and by the fact that an input and an output guarded
term cannot be combined within a sum in πs. We recall the proof of [Pal03].

Proof. The following proof is an adaptation of the proof of Lemma 4.1 in [Pal03] at
pages 17 to 18.

There are two steps P
x[y]−−→ Q and P

z(w)−−−→ R, i.e., these two steps can be de-
rived from P using the rules of the labelled semantics of πs in Figure 2.2. None
of the Rules Pi-ls-Tau-Sum, Pi-ls-Com, or Pi-ls-Close was used to derive one of

58

4.1. Absolute Results

P

Q R

S

x [y] z (w)

z (w) x [y]

Figure 4.1.: Local Confluence [Pal03].

these steps, because they are not labelled by τ . Of the remaining rules Pi-ls-Open,
Pi-ls-Par, Pi-ls-Res, and Pi-ls-Cong cannot be applied in the root of the proof trees
for these two steps. Without Pi-ls-Com and Pi-ls-Close the two proof trees cannot

have more than a single branch. Moreover, in the root of the proof tree for P
x[y]−−→ Q the

Rule Pi-ls-O-Sum and in the root of the proof tree for P
z(w)−−−→ R either Pi-ls-I-Sum or

Pi-ls-Rep is applied. To apply these rules, P have to contain an unguarded sum with
one branch being some output guarded subterm x〈y〉 .P1 and either an unguarded sum
with one branch being some input guarded subterm z(w) .P2 or an unguarded subterm
z?(w) .P2 for some P1, P2 ∈ Ps. A replicated input cannot be a branch of a sum and,
since mixed sums are forbidden in πs, the input guarded term and the output guarded
term cannot be combined within the same sum in P . Hence, both subterms, the sum
with the output guarded branch and the sum with the input guarded branch or the
replicated input, have to be combined in parallel in P . By Rule Pi-ls-Par, the parallel

context of a term is left unchanged in a step. Hence, the steps P
x[y]−−→ Q and P

z(w)−−−→ R
preserve the respective other subterm and with it the ability to perform the respective
other action. By applying again the according rule Pi-ls-Par and all the other rules

of the steps P
x[y]−−→ Q and P

z(w)−−−→ R respectively we obtain the steps Q
z(w)−−−→ S and

R
x[y]−−→ S.

By the way, confluence is basically the opposite of conflicts. As we observe in Sec-
tion 4.3 and Section 4.4, the possibility to express different kinds of conflicts and their
combination with distributable steps distinguishes many different process calculi with
different synchronisation mechanisms or different characteristics on the operators ex-
pressing capabilities of communication. Hence, it is always a good advice to carefully
study confluence properties, in order to reason about the effect of such differences in
process calculi.

Note that also πa fulfils the confluence property, because, by Definition 2.1.7 and
Definition 2.1.8, πa is a subcalculus of πs. To show that confluence distinguishes the
absolute expressive power of πm and πs, consider the following example.

Example 4.1.2 (Breaking Confluence). Consider the πm-term

P , (x+ y) .

59

4. Separating Languages

P can perform either an output on x or an input on y. To fulfil the confluence property,
P must be able to perform an input on y after the output on x, and to perform an

output on x after the input on y. But, since P
x−−→ 0 and P

y−−→ 0, P cannot perform
two subsequent steps at all.

By Definition 2.1.6 and 2.1.7, πs is a subcalculus of πm. So, πm is at least as expressive
as πs. Now, by Example 4.1.2 and Lemma 4.1.1, πm is strictly more expressive than πs
and πa. Of course, it is not really surprising, that a restriction in the syntax of πm leads
to a less expressive subcalculus. But how big is the induced gap? To answer questions
like these, translational results are well suited, because encodings, i.e., translations,
abstract from the exact formalisation of behaviour in a specific calculus and allow to
compare the abstract behaviour of languages, where the degree of abstraction is defined
by the quality criteria on the encoding. For instance, a very naive—and obviously
stupid—quality criterion of an encoding J · K is to require that J S K = S holds for all
source terms S. This requirement is stupid, as it allows only for the identity function to
be a suitable encoding, i.e., requires syntactical equivalence of source and target.

A (little) better requirement is J S K ∼ S, where ∼ is strong bisimilarity defined
similarly on both languages in Section 2.2. In this case, the abstract behaviour measured
is their behaviour modulo strong bisimilarity, which is a strict but very common way
to analyse the behaviour at least of two terms of a single pi-calculus variant. Based on
this requirement, we can prove that there is no encoding J · K from πm into πs such that
J S K ∼ S for all source terms S ∈ Pm.

Lemma 4.1.3 (Separation Result). There exists no encoding J · K from πm into πs such
that J S K ∼ S for all source terms S ∈ Pm.

Proof. Assume the contrary, i.e., assume there is an encoding J · K : Pm → Ps such that
J S K ∼ S for all source terms S ∈ Pm. Consider the term S , (x+ y) of Example 4.1.2

as counterexample. The source term S can perform two steps: S
x−−→ 0 and S

y−−→ 0,
where the respective derivation 0 cannot perform any step at all. Since J S K ∼ S,

by Definition 2.2.1, there exists two target terms T1, T2 ∈ Ps such that J S K x−−→ T1,

J S K y−−→ T2, and T1 ∼ 0 ∼ T2. Then, by confluence (Lemma 4.1.1), there exists

some T ′ ∈ Ps such that T1
y−−→ T ′ and T1

x−−→ T ′. But, since 0 6−→, this contradicts
T1 ∼ 0 ∼ T2.

Observe that the counterexample used in the proof above is exactly the same example
we use to show that πm does not satisfy the confluence property. Hence, in this case,
identifying a suitable counterexample is easy, mainly because our absolute separation
result and the quality criterion are very close.

Again this requirement is too strict, because many interesting and accepted encodings
between different calculi allow to translate single steps into sequences of steps. Hence, the
source terms and their translations can usually be related at most by a weak equivalence.
But the confluence property does not hold in case of weak steps as the following example
illustrates.

60

4.1. Absolute Results

Example 4.1.4. Consider the term Q , (νl)
(
l | l.x | l.y

)
with Q ∈ Ps. Q consists of a

simple restricted lock l, which guards an output on x and an input on y. Q can perform

two different visible steps after removing the lock by an invisible step, i.e., Q
x

=⇒ 0 and
Q

y
=⇒ 0, but in both cases there are no further steps. Hence, Q can perform either a

visible output or a visible input but not both.

Nonetheless, the Q from the example above and the P from Example 4.1.2 are not
related by weak bisimilarity ≈. But alone with confluence, it takes some effort to prove
that there is no encoding from πm into πs such that J S K ≈ S for all source terms S.
Moreover, even a direct comparison of source and target by weak bisimilarity is usually
a very hard requirement. In general, and especially when the target language is not
a sublanguage of the source, it is not possible to relate source and target terms by a
standard equivalence. We discussed the problem of choosing the right quality criteria of
an encoding in Chapter 3.

Palamidessi in [Pal03] uses the homomorphic translation of the parallel operator as
one of her quality criteria, because it ensures the preservation of the degree of distribu-
tion of source terms as discussed in Section 3.4.2. As discussed later in this Chapter,
this requirement can still be considered as too strict. However, for the moment let us
restrict our attention to encodings that translate the parallel operator homomorphically.
Unfortunately, to prove the non-existence of such an encoding is again difficult if we rely
only on the confluence property. The problem is to identify a suitable counterexample
based on confluence and to show that its main properties are preserved by the quality
criteria. Palamidessi in [Pal03] circumvent this problem by proving another absolute
result based on confluence. Inspired by the work of Bougé in [Bou88], she chooses the
problem of solving leader election in symmetric networks; a famous problem often used
in the context of distributed systems.

However, note that confluence is crucial for both of the following absolute results:
leader election in symmetric networks in Section 4.1.2 as well as breaking symmetries
in Section 4.1.3. It ensures that a communication of two processes of a network cannot
immediately withdraw the possibility of all other network processes to mimic this com-
munication, which is the basic argument for both of the other absolute results. So, why
do we need an absolute result on top of confluence? The answer is, it is not necessary
but it is extremely helpful to derive translational results. To use an absolute result in a
translational result, we derive a term from the positive absolute result that we can use as
counterexample in the translational result and ensure that the discriminating properties
of this example are preserved by the required quality criteria, as it was done in the proof
of Lemma 4.1.3. It is not easy to obtain such an example directly from confluence and,
in case of the criteria used in Section 4.2, it is very hard and intricate to argue for the
preservation of its relevant properties. Deriving more complex absolute results on top
of confluence may need some effort, but it makes the derivation of translational results
significantly easier.

61

4. Separating Languages

4.1.2. Standard Problems

Another way to obtain an absolute result to distinguish two languages is to consider
standard problems of the respective domain. In the area of distributed systems leader
election or consensus problems in general are the most frequently used problem instances
to reason about the expressive power of a language (see e.g. [LL77, Gar82, Bou88, Lyn96,
VPP07]).

Leader election is an abstract formalisation of a consensus problem that often arises
in practice. In general leader election consists of a network of n processes. To solve
leader election, the n processes have to choose a leader among them. There are different
variants of the leader election problem differing in the assumptions on the given network,
existence and kind of unique identifiers for the processes of the network, or the way the
processes proclaim their solution. For instance, [Lyn96] requires that the winning process
changes some special status component of its state to declare itself as leader. Whereas in
[Pal03] a special channel out is assumed to propagate the index of the winning process,
i.e., the unique identifier of the leader.

We restrict our attention to leader election in symmetric networks, because else leader
election can always be solved by implementing a central coordinator. There is no common
definition of symmetric networks that is suitable for all kinds of domains and considered
problems2, but in the context of leader election the definition of symmetric networks
usually includes at least two properties. (1) All processes of a symmetric network run
basically the same abstract code. And (2) the topology of the network does not allow
for trivial solutions, as to choose the root as leader in case the topology of the network
is a tree. To ensure the last point, it is usually required that the links between the
processes of the network are distributed symmetrically over the processes, as it holds in
completely connected networks (each process can interact with each other process) or in
networks whose processes form a circle.

In the following we review the absolute and the separation result given in [Pal03] as
well as some previous work in the context of CSP in [Bou88]. Thus, missing proofs,
formal definitions, and further explanations can be found there.

As we do in Section 2.1, [Pal03] defines a network as the parallel composition of
processes with possibly some surrounding application of the restriction operator, i.e., a
network is a term of the form (νx̃) (P1 | . . . | Pk) for a sequence of names x̃ ∈ S(N) and
some processes P1, . . . , Pk. However, a major difference between networks in [Pal03] and
networks within this thesis is that [Pal03] explicitly allows the use of the process indices
1, . . . , k as data in the processes of the network. They are used to propagate the identity
of the winning process, i.e., the leader, over a special channel named out . More precisely,
in [Pal03] the leader election problem is solved by a network iff in each of its maximal
executions each process propagates the same process index over out and no other index
is propagated.

Usually a network is considered to be symmetric if all its processes are identical modulo
some renaming according to a permutation σ on their free names. Bougé denotes this
kind of symmetry as syntactic symmetry, because the processes can be considered to run

2cf. Johnson and Schneider: “Symmetry means different things to different people.” [JS85]

62

4.1. Absolute Results

syntactically identical code up to the renaming (see [Bou88]). He also points out that the
unique identifiers—the indices—of the processes can be augmented to do some cheating,
i.e., they allow for solutions of leader elections in symmetric networks even though the
network is purely asynchronous. The following example presents such a syntactically
symmetric network solving leader election in πs.

Example 4.1.5 (Asynchronous Symmetric Solution of Leader Election). Consider the
network

N , (νx, y) (P | σ(P))

with

P = x | x.out〈1〉+ y.out〈2〉 and σ = { x/y, y/x } .

N is syntactically symmetric with respect to the permutation σ, i.e., N = (νx, y) (P | P ′)
for some P ′ equal to P modulo the exchange of x and y according to σ. Moreover, N
solves the leader election problem, since in all maximal executions ofN both subprocesses
send via out the same index and no other index is transmitted.

To overcome these problems, i.e., to rule out such examples, Bougé recommends the
use of semantic symmetry, i.e., syntactical symmetry augmented with a semantic com-
ponent. The semantic component of the symmetry definition is designed to be strongly
connected to the problem considered, i.e., leader election in this case. Intuitively, its pur-
pose is to ensure that the only way to solve the leader election problem is to break the
initial symmetry of the given network. Note that N does not break the initial syntactic
symmetry to solve leader election, because e.g. in the execution

N
τ−−→ P | out〈1〉 τ−−→ out〈1〉 | out〈1〉 out 1−−−→ 0 | out〈1〉 out 1−−−→ 0 | 0 6−→

each second step results in a network that is syntactically symmetric with respect to σ.
So, without an additional semantic component in the definition of symmetry, the leader
election problem cannot be used to distinguish πm and πs.

We shortly revisit Palamidessi’s notion of symmetry for the pi-calculus [Pal03]. Note
that the involved definitions are based on the ones introduced by Bougé in [Bou88] for
CSP.

According to [Pal03], a hypergraph is a tuple H = 〈 N,X, t 〉, where N and X are
finite sets whose elements are called nodes and edges, and t, called type, is a function
assigning to each edge the set of nodes connected by this edge. An automorphism on
a hypergraph is a pair σ = 〈 σN , σX 〉 such that σN : N → N and σX : X → X are
permutations which preserve the type of edges. Given a hypergraph H and σ on H the
orbit of a name n is the set of nodes in which the iterations of σ map n.

A network P ≡ (νx̃) (P1 | . . . | Pk) of k processes solves the leader election problem if
for every execution of P there exists an extension and an index n ∈ { 1, . . . , k } such that
for each process the extended execution contains an output action of the form out n and
no other action out m with m 6= n. The hypergraph associated to a network P is the

63

4. Separating Languages

hypergraph H(P) = 〈 N,X, t 〉 with N = { 1, . . . , k }, X = fn(P1 | . . . | Pk)\{ out }, and
for each x ∈ X, t(x) = { n | x ∈ fn(Pn) }. Given a network P and the hypergraph H(P)
associated to P , an automorphism on P is any automorphism σ = 〈 σN , σX 〉 on H(P)
such that σX coincides with σN on N ∩X and σX preserves the distinction between free
and bound names.

A network P with the associated hypergraph H(P) = 〈 N,X, t 〉 and an automorphism
σ on P is symmetric with respect to σ iff for each node i ∈ N , Pσ(i) ≡α σ(Pi)

3.
The main point of the semantic component of symmetry is that the special channel

out cannot be renamed by σ while the indices of the processes of the network must be
permuted by σ. With that, the network N in Example 4.1.5 above is not symmetric
according to [Pal03], because it does not permute the indices. This allows Palamidessi
to prove that for each execution of a network in Ps, which is symmetric with respect to
an automorphism σ, whenever there is an output out i there is an output out σ(i) with
σ(i) 6= i as well, which contradicts the leader election problem. This explains why in
[Bou88, Pal03, VPP07] such an effort is spent to define symmetry.

To distinguish πm and πs Palamidessi shows that a network P ∈ Ps which is symmetric
with respect to an automorphism σ on P with only one orbit cannot solve the leader
election problem while this is possible in πm.

Theorem 4.1.6 ([Pal03] at page 18). Consider a network P = (νx̃) (P1 | . . . | Pk) in
πs, with k > 2, x̃ ∈ S(N), and P1, . . . , Pk ∈ Ps. Assume that P has an automorphism
σ with only one orbit, and that P is symmetric with respect to σ. Then P cannot solve
the leader election problem.

The existence of such a network in πm, i.e., a network that is symmetric with respect to
an automorphism with only one orbit, that solves the leader election problem is claimed
at page 25 of [Pal03] and the construction of such networks is explained on the following
pages. Based on this absolute difference between πm and πs Palamidessi proves the
following well-known separation result.

Corollary 4.1.7 ([Pal03] at page 33). There exists no uniform encoding of πm into πs
preserving a reasonable semantics.

Here, uniform means that the encoding translates the parallel operator homomorphically,
because that ensures that the degree of distribution of source terms is preserved by the
encoding function, and that J σ(P) K = θ(J P K) such that ∀i ∈ N . σ(i) = θ(i), i.e., the
encoding preserves renamings and does not manipulate occurrences of indices of source
term processes. With reasonable [Pal03] requires an encoding to be compositional on
the remaining operators and the preservation of some intended semantics which is not
further specified but includes at least that the encoding of a network solving leader
election in the source should solve leader election in the target.

Note that this separation result was the first that pointed out the importance of the
expressive power of mixed choice for a comparison of the synchronous and asynchronous
variant of the pi-calculus. With this result Palamidessi clarifies a fundamental difference

3In [Bou88] and [VPP07] formally slightly different conditions but with the same effect are used.

64

4.1. Absolute Results

between these two versions of the pi-calculus along a problem instance which is of great
relevance also in practice. Together with the encodability results in [HT91, Bou92] from
the choice-free fragment of the synchronous pi-calculus into the asynchronous pi-calcu-
lus and in [Nes00] from πs into πa it builds the basis for our analysis of synchronous
interactions in the pi-calculus.

However, analysing the results in [Pal03], we observe that we can significantly ease
the definition of symmetric network and at the same time improve the separation result
by abandoning the requirement on the preservation of renamings, if we instead of leader
election generalise the absolute result to breaking symmetries.

4.1.3. Absolute Results and Quality Criteria

If we analyse the use of absolute results to derive separation results in the previous
two sections we detect the following three observations. (1) The absolute result has to
be strong enough the distinguish the source and the target language. More precisely,
we have to show a positive absolute result for the source and a negative result on the
same problem instance for the target language. (2) In order to prove separation a
term in the source language is derived that reflects the basic distinguishing properties
of the absolute result. (3) If these properties are preserved by the requirements on
the encoding function this example can be used as counterexample in the proof of the
separation result. This proof then basically consists of showing how the distinguishing
properties of the counterexample are preserved, and in an application of the absolute
impossibility result to derive a conflict. Thus, the suitability of an absolute result for
the derivation of a separation result depends on whether the quality criteria required
in the given setting preserves the main properties of the absolute result. Moreover, the
better these properties are preserved the easier the proof of separation.

To require that a good encoding should preserve renamings or substitutions is a fre-
quently used criterion in the context of encoding functions and makes completely sense,
because it ensures that an encoding function cannot be pruned against specific examples.
Indeed, even the general framework of Gorla discussed in Section 3.3 contains a similar
requirement. But the unimposing side condition ∀i ∈ N . σ(i) = θ(i) is rather unusual
but crucial for the separation result in [Pal03], because it is necessary to preserve the
main properties of the counterexample. More precisely, it is necessary to ensure that
the encoding of a symmetric network again satisfies the semantic component of the sym-
metry definition, i.e., that Pσ(i) ≡α σ(Pi). The same holds for the rather complicated
definition of symmetry itself. As explained above the property Pσ(i) ≡α σ(Pi) is crucial
to rule out symmetric solutions of leader elections in πs. Without this property leader
election cannot be used to distinguish πm and πs. Of course, this property and also the
requirement ∀i ∈ N . σ(i) = θ(i) are acceptable in the current setting; maybe they are
even reasonable. But they are not necessary. To avoid both, it suffices to generalise
the used absolute result to some result about breaking symmetries. Note that the main
argument in the negative leader election result is already that the respective network is
not able to break initial symmetries of the network. So, we do not present a totally new
problem instance.

65

4. Separating Languages

Before we present our next absolute result, we define symmetric networks as used
within the rest of this thesis and what it exactly means to break symmetries. In contrast
to [Pal03], we use a simple syntactic definition of symmetry that, as mentioned above,
states two processes as symmetric iff they are identical modulo some renaming according
to a permutation σ on their free names.

Definition 4.1.8 (Symmetry Relation). A symmetry relation of degree n is a permuta-
tion σ : N → N , such that σn = id.

Let Sym(n,N) denote the set of symmetry relations of degree n overN and let σ0 = id.

Note that this definition does not require that n is the minimal degree of σ; consequently,
the condition that σ is an automorphism with only one orbit is released. A symmet-
ric network is then a network of n processes that are equal except for some renaming
according to a symmetry relation σ.

Definition 4.1.9 (Symmetric Network). Let 〈 P, 7−→ 〉 be a variant of the pi-calculus
introduced in Section 2.1.1 and P ∈ P. Let the sequence x̃ ∈ S(N) contain only free
names of P , n ∈ N, σ be a symmetry relation of degree n over N \ bn(P), and x̃ be
closed under σ, i.e., x̃ = x1, . . . , xm and i < m implies σ (xi) = xj for some j < m. Then[

P
]n,x̃
σ

= (νx̃)
(
σ0(P) | . . . | σn−1(P)

)
is a symmetric network of degree n.

In contrast to [Pal03], we consider the networkN of Example 4.1.5 as symmetric network,

because σ = { x/y, y/x } is a symmetry relation of degree 2 and thus N =
[
P
]2,x,y
σ

. Note
that in the following proofs, we make use of the fact that names bound in P are bound

in each other process of
[
P
]n,x̃
σ

as well, so we explicitly forbid α-conversion here. In the

following, whenever we assume some symmetric network
[
P
]n,x̃
σ

, we implicitly assume
the respectively quantified parameters: a variant 〈 P, 7−→ 〉 of the pi-calculus introduced
in Section 2.1.1, a process P ∈ P, a sequence x̃ containing only free names of P , a
network size n ∈ N, and a symmetry relation σ of degree n over N \ bn(P).

The main difference between our definition and the definition of a symmetric network
in [Pal03] is that in [Pal03] the processes of a symmetric network are numbered consecu-
tively and for each process Pi within the symmetric network Pσ(i) ≡ σ(Pi) holds, i.e., the
symmetry relation additionally has to permute the indices of the processes. Accordingly,
to obtain a symmetric network in the sense of [Pal03] from Example 4.1.5, we have to
extend σ with the permutation { 1/2, 2/1 }. But then, of course, N does not solve leader
election anymore. Thus, each symmetric network in [Pal03] is a symmetric network for
our definition, but not vice versa. Our definition of symmetry is weaker.

We use an index-guided form of substitution to replace single processes within a sym-
metric network.

Definition 4.1.10 (Indexed Substitution). Let
[
P
]n,x̃
σ

be a symmetric network. An
indexed substitution of some processes within a symmetric network, denoted by

{ i1 7→ Q1, . . . , im 7→ Qm }
[
P
]n,x̃
σ

66

4.1. Absolute Results

for some processes Q1, . . . , Qm ∈ P and i1, . . . , im ∈ { 0, . . . , n−1 } such that for all

j, k ∈ { 1, . . . ,m }, j 6= k implies ij 6= ik, is the result of exchanging σik(P) in
[
P
]n,x̃
σ

with Qk for all k ∈ { 1, . . . ,m }.

Obviously { i1 7→ Q1, . . . , im 7→ Qm }
[
P
]n,x̃
σ

is a network; in general, however, it is not
symmetric with respect to σ.

We prove that in πs it is not possible to break initial symmetries, i.e., starting with
a symmetric network there is always at least one execution preserving the symmetry.
We refer to such an execution as symmetric execution. Let us consider a symmetric

network
[
P
]n,x̃
σ

of degree n. Of course, if only one process does a step on its own, then
all the other processes of the network can mimic this step and thus restore symmetry.
So, there is a symmetry preserving execution if there is no communication between the
processes of the network. The most interesting case is how the symmetry is restored
after a communication between two processes of the network has temporarily destroyed
it. Both cases are reflected in the proof of Theorem 4.1.13.

Apart from symmetric networks, we use the notion of a symmetric sequence of actions.
Similarly to symmetric networks, in which a symmetry relation is applied to processes
to derive symmetric processes, a symmetric sequence of actions is the result of applying
a symmetry relation to action labels. It is sometimes necessary to translate a bound
output action to an according unbound output action, because a network can send a
bound name several times but only the first of this outputs will be bound.

Definition 4.1.11 (Symmetric sequence of actions). Let µ ∈ Aτ be an action label, let
x̃ ∈ S(N) be a sequence of names and σ a symmetry relation of degree n ∈ N. Then
[µ]n,x̃σ denotes the sequence µ1, . . . , µn of n labels such that µ1, . . . , µn ∈ Aτ , µ1 = µ and
for i ∈ { 2, . . . , n }:

µi =



τ, if µ = τ

σi(a) (b) , if µ = a (b)

σi(a)σi(b) , if µ = a b or
(
µ = a (b) and

σi(b) /∈ x̃ \
{
b, σ(b) , . . . , σi−1(b)

})
σi(a)

(
σi(b)

)
, if µ = a (b) and σi(b) ∈ x̃ \

{
b, σ(b) , . . . , σi−1(b)

}
Sometimes we refer to µ2, . . . , µn as the symmetric counterparts of µ.

Intuitively, a symmetric execution is an execution starting from a symmetric network
returning to a symmetric network after any nth step, and which is either infinite or
terminates in a symmetric network. Thereby, each sequence of n steps is labelled by a
symmetric sequence of actions.

Definition 4.1.12 (Symmetric Execution). A symmetric execution is either a finite
execution of length m · n ∈ N

[
P
]n,x̃
σ

[µ1]
n,x̃
σ1−−−−→

[
P1

]n,x̃1
σ1

[µ2]
n,x̃1
σ2−−−−−→ . . .

[µm]
n,x̃m−1
σm−−−−−−−→

[
Pm
]n,x̃m
σm

6−→

67

4. Separating Languages

for some P1, . . . , Pm ∈ P, µ1, . . . , µm ∈ Aτ , x̃1, . . . , x̃m ∈ S(N) and some σ1, . . . , σm ∈
Sym(n,N) such that σ ⊆ σ1 ⊆ . . . ⊆ σm or an infinite execution

[
P
]n,x̃
σ

[µ1]
n,x̃
σ1−−−−→

[
P1

]n,x̃1
σ1

[µ2]
n,x̃1
σ2−−−−−→

[
P2

]n,x̃2
σ2

[µ3]
n,x̃2
σ3−−−−−→

for some P1, P2, . . . ∈ P, µ1, µ2, . . . ∈ Aτ , x̃1, x̃2, . . . ∈ S(N) and σ1, σ2, . . . ∈ Sym(n,N)
such that σ ⊆ σ1 ⊆ σ2 ⊆

Note that because of σ ⊆ σ1 ⊆ . . . the symmetry relation can only increase during a
symmetric execution in a way such that existing symmetries are preserved. Moreover—as
shown in Lemma 4.1.14—the symmetry relation does only grow in the presence of bound
output or if a bound name is transmitted from one process to another process of the
network to capture the renaming done by α-conversion. In the absence of both we have
σ = σ1 = . . . = σm and σ = σ1 = σ2 = . . . respectively.

With help of the confluence property (compare to Section 4.1.1) we prove that it is
not possible to break symmetries in πs. Intuitively, we show that there is at least one
symmetric execution by proving, that whenever there is a step destroying symmetry,
we can restore it in n−1 more steps mimicking the first step. The respective existence
relies on the standard lemma in process calculi like the pi-calculus that transitions are
preserved under substitution. As conclusion, it is not possible in πs to break an initial
symmetry in all executions.

Theorem 4.1.13 (Absolute Result). No symmetric network in Ps can break its symme-
try within a single step, i.e., every symmetric network in Ps has at least one symmetric
execution.

Proof of Theorem 4.1.13. First we prove that for every symmetric network
[
P
]n,x̃
σ

in Ps,
whenever

[
P
]n,x̃
σ

can perform a step then there are exactly n−1 more steps that restore
symmetry, i.e., that lead to a symmetric network again and the corresponding n steps are
labelled by a sequence of symmetric actions. Note that the main line of argumentation
of this lemma is very similar to the proof of Theorem 4.2 in [Pal03] at pages 18 to 23,
although we prove a completely different statement. Nevertheless, due to the different
formulations of the statements, also the proofs differ in technical details.

Lemma 4.1.14.

∀n ∈ N . ∀x̃ ∈ S(N) . ∀P ∈ Ps . ∀σ ∈ Sym(n,N \ bn(P)) . ∀µ ∈ Aτ .[
P
]n,x̃
σ

µ−−→ P̂ implies

∃P ′ ∈ Ps . ∃x̃′ ∈ S(N) . ∃µ2, . . . , µn ∈ Aτ . ∃σ′ ∈ Sym(n,N) .

P̂
µ2,...,µn−−−−−→

[
P ′
]n,x̃′
σ′

and µ, µ2, . . . , µn = [µ]n,x̃σ′ and σ ⊆ σ′

Proof of Lemma 4.1.14. Without loss of generality, let us assume that there are no name
clashes in P , i.e., bn(P)∩fn(P) = ∅ and no syntactical representation of a name is bound

twice in P . Then, all name clashes in
[
P
]n,x̃
σ

are caused by symmetry, i.e., the syntactical
representation of a name if bound in P is bound in every process of the network.

68

4.1. Absolute Results

[
P
]n,x̃
σ

µ−−→ P̂ can be the result of either an internal µ-step of one process of the
network, i.e., it can be produced without the rules Pi-ls-Com or Pi-ls-Close, or of a
communication between two processes of the network, i.e., be produced by one of the
rules Pi-ls-Com or Pi-ls-Close. In the first case, only one process performs a step
and the rest of the network remains equal, i.e.,

∃i ∈ { 0, . . . , n−1 } . ∃H ∈ Ps . ∃x̃1 ∈ S(N) . σi(P)
µ−−→ H

and P̂ ≡ { i 7→ H }
[
P
]n,x̃1
σ

(C1)

In the second case, µ = τ and two processes of the network change, i.e.,

∃i, j ∈ { 0, . . . , n−1 } . ∃H1, H2 ∈ Ps . ∃z, z′ ∈ N . i 6= j

and
(
σi(P) | σj(P)

τ−−→ H1 | H2 or σi(P) | σj(P)
τ−−→
(
νz, z′

)
(H1 | H2)

)
and P̂ ≡ { i 7→ H1, j 7→ H2 }

[
P
]n,x̃′
σ′

(C2)

We proceed with a case split.

Case (C1): Within the symmetric network
[
P
]n,x̃
σ

, all processes σi(P) for 0 ≤ i ≤ n−1
are equal except for some renaming of free names according to σ. Thus, whenever a
process σi(P) can perform a step

µ−−→ then each other process σk(P) of the network

can mimic this step by
µ′−−→, where µ′ is the result of applying σk−i+n to µ possibly

by changing bound output to unbound output as described in Definition 4.1.11.4

The case of a bound output action µ is slightly tricky, so we consider the other
cases first.

If µ is no bound output, then we can choose the labels µ2, . . . , µn such that

µ, µ2, . . . , µn = [µ]n,x̃σ . Moreover, by symmetry σi(P)
µ−−→ H implies σk(P)

µ′−−→
σk−i+n(H) for a H ∈ Ps. With it, we can restore symmetry by mimicking the

µ-step of process σi(P) by the n−1 steps σi+1(P)
µ2−−→ σ(H), . . . , σn−1(P)

µn−i−−−→
σn−1−i(H), σ0(P)

µn−i+1−−−−−→ σn−i(H), . . . , σi−1(P)
µn−−→ σn−1(H). These n steps

build the chain[
P
]n,x̃
σ

µ−−→ (νx̃1)
(
σ0(P) | . . . | σi−1(P) | σ0(H) | σi+1(P) | . . .
| σn−1(P)

)
...

µn−i−−−→ (νx̃n−i)
(
σ0(P) | . . . | σi−1(P) | σ0(H) | . . .
| σn−1−i(H)

)
µn−i+1−−−−−→ (νx̃n−i+1)

(
σn−i(H) | σ(P) | . . . | σi−1(P) | σ0(H)
| . . . | σn−1−i(H)

)
...
µn−−→ (νx̃n)

(
σn−i(H) | . . . | σn−1(H) | σ0(H) | . . .
| σn−1−i(H)

)
4Note that n is added in k−i+n and k−j+n just to ensure that both values are positive. Because
σn = id if k−i ≥ 0 we have σk−i+n = σk−i.

69

4. Separating Languages

with x̃1, . . . , x̃n ∈ S(N) and x̃′ = x̃n. Because of σn = id after the last step, we
result in a network which is again symmetric with respect to σ, i.e., we choose σ′ =

σ. Hence, we can choose P ′ = σn−i(H) such that
[
P
]n,x̃
σ

µ−−→ P̂
µ2,...,µn−−−−−→

[
P ′
]n,x̃′
σ′

.

If µ is equal to τ , an input, or an unbound output action, then so are its symmetric
counterparts µ2, . . . , µn. We choose x̃′ = x̃1 = . . . = x̃n = x̃ and are done.

If µ is a bound output action y (z), then we have to consider two cases.

Case z /∈ bn
(
σi(P)

)
: Here, z ∈ fn

(
σi(P)

)
and because µ is a bound output z must

be in x̃. So we have to choose x̃1 = x̃ \ { z }. Then, by Definition 4.1.11 some
of the actions µ2, . . . , µn might be bound and some might be unbound outputs
depending on whether σj−1(z) was already the subject of an earlier bound
output of this sequence or not. If σj−1(z) of µj was already the subject of a
bound output within µ, µ2, . . . , µj−1, then µj is an unbound output and we
choose x̃j = x̃j−1, else µj is a bound output and we choose x̃j = x̃j−1\σj−1(z)
for all j ∈ { 2, . . . , n }. Again, we can choose σ′ = σ and P ′ = σn−i(H) and
proceed as in the case where µ is not a bound output.

Case z ∈ bn
(
σi(P)

)
: Here, by symmetry, σj(z) = z is bound in σi+j(P) for all

j ∈ { 0, . . . , n−1 }. By the above assumption that there are no name clashes
(except for the duplicate binding of names), we conclude z /∈ x̃. Then, by
Definition 4.1.11, µ, µ2, . . . , µn is a sequence of n bound output actions. Each
of these actions µj changes the scope of σi+j−1(P) (in a symmetric way to the
other processes) but the scope of the network is left unchanged. So, we can
again choose x̃′ = x̃1 = . . . = x̃n = x̃. The crux is that performing the first
bound output with label µ may force an α-conversion to avoid name clashes
to the other bound instances of z in the other processes of the network such
that the symmetry is destroyed. To illustrate this problem, let us consider an
example:
Example 4.1.15. Let

N , (νx) a〈x〉 .x | (νx) a〈x〉 .x =
[

(νx) a〈x〉 .x
]2
id
.

N can perform two bound outputs a (x). To avoid name capture we have to

apply α-conversion such that we have N
a(x)−−−→ x | (νx′) a〈x′〉 .x′ a(x′)−−−→ x | x′.

Because of this α-conversion, we result in a network which is not symmetric
with respect to id. Nevertheless, the first step is mimicked by the second step
and, thus, both parts of the network behave symmetrically. As consequence to
our intuition, the resulting network should be again considered as symmetric
network. To overcome this problem, we record the renaming done by α-con-
version in σ′ = { x/x′, x′/x } such that x | x′ =

[
x
]2
σ′

. Note that because of
this, σ′ can only increase by adding permutations on formerly bound names
and fresh names.

That is why we have to increase the symmetry relation in this case to keep
track of the renaming done by α-conversion. Thereto, we enforce the α-con-
version after the first bound output to rename all instances of z (except the

70

4.1. Absolute Results

first one) to a different fresh name for each process of the network and add
the respective permutations of z to σ in order to obtain σ′ such that σ ⊆ σ′.
Afterwards, we can choose µ2, . . . , µn such that µ, µ2, . . . , µn = [µ]n,x̃σ′ and
P ′ = σ′n−i(H) and proceed as in the case where µ is not a bound output.

Case (C2): In this case, there is a communication between σi(P) and σj(P) as result
of one of the rules Pi-ls-Com or Pi-ls-Close. Without loss of generality, let
us assume that σi(P) is the sender and σj(P) is the receiver of this communica-

tion, i.e., there are y, z1, z2 ∈ N such that σi(P)
y z1−−→ H1 (or σi(P)

y(z1)−−−→ H1)

and σj(P)
y(z2)−−−→ { z2/z1 }(H2). Because of symmetry, each process σk(P) for

0 ≤ k ≤ n−1 can perform an output action µout,k = σk−i+n(y)σk−i+n(z1) (or

µout,k = σk−i+n(y)
(
σk−i+n(z1)

)
) and an input action µin,k = σk−j+n(y) z2 such

that σk(P)
µout,k−−−→ σk−i+n(H1) and σk(P)

µin,k−−−→ σk−j+n({ z2/z1 }(H2)). Because of
the confluence Lemma 4.1.1, i.e., without mixed-choice an output action cannot
block an alternative input action (within one step) and vice versa5, as depicted
in Figure 4.2 (case of unbound output) process σk(P) must be able to perform
both actions consecutively in arbitrary order resulting in the same term which
we denote by Qk. To restore symmetry, we build a chain of n steps such that

σk(P)

σk−i+n(H1) σk−j+n({ z2/z1 }(H2))

{ z2/z1 }(Qk)

σk−i+n(y)σk−i+n(z1) σk−j+n(y) (z2)

σk−j+n(y) (z2) σk−i+n(y)σk−i+n(z1)

Figure 4.2.: Local confluence of receiving and sending actions.

each process σk(P) performs the output action µout,k in step ((k−i+n) mod n) +1
and the input action µin,k in step ((k−j+n) mod n) +1, i.e., each process is once
a sender and once a receiver and µ = µ2 = . . . = µn = τ and with that
µ, µ2, . . . , µn = [µ]n,x̃σ . Again, we consider the case of unbound outputs by first.

Then, we have
[
P
]n,x̃
σ

τ−−→ { i 7→ H1, j 7→ H2 }
[
P
]n,x̃
σ

as first step with σi(P)
y z1−−→

5Indeed without mixed choice the only possibility for σk(P) to be able to perform both actions is that
these two actions are composed in parallel, so σk(P) can perform both actions in an arbitrary order
and it is not possible that performing one of these actions alone prevents σk(P) from performing the
other one next.

71

4. Separating Languages

H1, σ
j(P)

y(z2)−−−→ { z2/z1 }(H2) and σi(P) | σj(P)
τ−−→ H1 | H2. Depending on the

values of i and j, some of the processes perform the corresponding input action
first while others perform at first the corresponding output action. Because of
Lemma 4.1.1, both is possible. We let each process perform exactly these two
actions (compare to Figure 4.2). We choose P ′ = Q0 and x̃′ = x̃. We start with
a symmetric network and all processes behave symmetrically, i.e., each process
mimic the behaviour of its neighbour, so we have Qk = σk(Q0) for all k with
0 ≤ k ≤ n−1 such that can choose σ′ = σ and have[

P
]n,x̃
σ

τ−−→
n [
P ′
]n,x̃′
σ′

.

Now we consider the case of bound outputs. Note that σi(P) and σj(P) perform
a communication step within the network, so if σi(P) performs a bound output z1
must be bound in σi(P), i.e., z1 /∈ x̃. By symmetry σl(z1) = z1 is bound in σi+l(P)
for all l ∈ { 0, . . . , n−1 }. With that either all output action are bound or all are
unbound. In case of bound output we have σi(P) | σj(P)

τ−−→ (νz, z′) (H1 | H2),
because first we have to apply α-conversion to rename the instance of z1 bound
in σj(P) and then the bound output by σi(P) leads to a scope extrusion such
that z = z1 and z′ is the renaming of z1 in σj(P). Again we use α-conversion
after the first communication step to rename all instances of z1 (except the first)
to a different fresh name for each process of the network and add the respective
permutations of z1 to σ in order to obtain σ′ such that σ ⊆ σ′. Let z1,2, . . . , z1,n
denote the sequence of names used to rename z1 according to σ′. We proceed as in
the case of unbound outputs with the n−1 communication steps as described above.
Of course we have to replace the processes σk(P) by { z1,2/z1, . . . , z1/z1,n }k−i(P)

and µout,k by σk−i+n(y)
[
{ z1,2/z1, . . . , z1/z1,n }k−i(z1)

]
for 0 ≤ k ≤ n−1. After

completing these n communication steps the names z1, z1,2, . . . , z1,n are pulled
outwards by scope extrusion, i.e., we have[

P
]n,x̃
σ

τ−−→ { i 7→ H1, j 7→ H2 }
[
P
]n,x̃,z1,z1,2
σ

τ−−→
n−1 [

R
]n,x̃′
σ′

,

where x̃′ = x̃, z1, z1,2, . . . , z1,n and P
σn−i(y)(z1),σn−j(y)(z2)−−−−−−−−−−−−−−−→ R. With that we can

choose P ′ = R and are done.

With Lemma 4.1.14, we can now construct the symmetric execution. We start with

an arbitrary symmetric network
[
P
]n,x̃
σ

. If
[
P
]n,x̃
σ
6−→ we have a symmetric execution

of length 0. Otherwise, if
[
P
]n,x̃
σ

can perform a step labelled by µ1 by Lemma 4.1.14

we can perform n−1 more steps such that
[
P
]n,x̃
σ

[µ1]
n,x̃
σ1−−−−→

[
P1

]n,x̃1
σ1

. Now we can proceed

alike with
[
P1

]n,x̃1
σ1

and result either in a finite symmetric execution of length n or we

have
[
P
]n,x̃
σ

[µ1]
n,x̃
σ1−−−−→

[
P1

]n,x̃1
σ1

[µ2]
n,x̃1
σ2−−−−−→

[
P2

]n,x̃2
σ2

. By recursively repeating this argument,
we either get a finite or an infinite symmetric execution.

72

4.1. Absolute Results

Note that Theorem 4.1.13 does not state anything about encodability and it does not
need a notion of reasonableness either. Instead, it just states without any precondition
that every symmetric network in Ps has at least one symmetric execution. In contrast,
there are symmetric networks in Pm without such a symmetric execution, as the following
example shows.

Example 4.1.16. Consider the network

(νx, y) (P | σ(P)) with P = x.1 + y.2 and σ = { x/y, y/x, 1/2, 2/1 }

with σ2 = id, i.e., (νx, y) (P | σ(P)) is a symmetric network in Pm. It has, modulo
structural congruence, exactly the two following executions

(νx, y) (P | σ(P))
τ−−→ 1 | 1 1−−→ 1

1−−→ 0

(νx, y) (P | σ(P))
τ−−→ 2 | 2 2−−→ 2

2−−→ 0

and even none of them is symmetric; the initial symmetry is broken.

So Theorem 4.1.13 proves a difference in the absolute expressive power between πm
and πs.

We conclude that the absolute result used by [Pal03] and reviewed in Section 4.1.2
is stricter than necessary. The weaker absolute result augmenting the ability to break
initial symmetries is already sufficient to prove a fundamental difference between πm
and πs. Moreover, we can abandon the additional property Pσ(i) ≡α σ(Pi) on symmetric
networks and present a very simple definition instead. As shown in the next section,
this absolute result is not only suited to derive a separation result similar to [Pal03] but
we can also abandon one of the requirements on encoding functions and, thus, obtain
a stronger separation result. The complicated definition of symmetry necessary to use
leader election as distinguishing problem description induces the necessity of an addi-
tional requirement on the quality of encodings, namely that J σ(P) K = θ(J P K) such
that ∀i ∈ N . σ(i) = θ(i). Such a requirement is not necessary to preserve the pure syn-
tactic definition of symmetry which allows to distinguish πm and πs by their ability to
break initial symmetries. Moreover, simpler, i.e., more general, absolute results usually
lead to simpler proofs of separation results, because it is often easier to show the preser-
vation of the respective distinguishing properties of the counterexample with respect to
the weaker set of quality criteria. This shows how a separation result can benefit from
the choice of a better suited absolute result. However, obtaining suitable problem de-
scriptions is often not an easy task. Usually, it requires an exhaustive study of the source
and the target language and their differences. Moreover, choosing a suitable problem
instance is a balancing act between absolute results strong enough to distinguish the
source and target language and to allow for the derivation of a suitable counterexample,
and results so weak that the main properties of the counterexample are preserved with
respect to the quality criteria in the current setting. However, absolute results do not
have to be optimal to derive interesting and important results and they always provide
further insights in the differences between the languages.

73

4. Separating Languages

4.2. Separation and Quality Criteria

The main purpose of this section is to show how separation results with respect to
different sets of quality criteria can be derived from a single absolute result, namely
Theorem 4.1.13. In all separation results of this section we compare again πm and πs.
The first part in Section 4.2.1 considers sets of quality criteria that share the requirement
on the homomorphic translation of the parallel operator. Since the homomorphic trans-
lation of the parallel operator naturally preserves symmetry of source term networks,
the absolute result is well-suited for all set of criteria in the first part, which leads to
considerable short and simple proofs of the separation results. They all follow the same
line of argumentation which is typical for separation results on top of absolute results.

In the second part in Section 4.2.2 the homomorphic translation of the parallel oper-
ator is replaced by the weaker requirement on compositionality and the preservation of
distributability. In this sense, we strengthen the results of the first part. However, we
replace the different settings in the first part by the general framework of Section 3.3,
whose criteria are stricter than the requirements in the different sets of the first part.
Hence, the results of the first and the second part are in fact incomparable. Unfortu-
nately, the absolute result is not well-suited for the criteria in the general framework,
because they do not preserve symmetry of source terms. Hence, proving separation be-
comes much more complicated and is less intuitive. However, the absolute result still
allows for some helpful arguments in the proof. Moreover, in Section 4.4 we present
an absolute result better suited in the context of the required criteria and a separation
result based on it that sheds more light on the difference between πm and πs.

In Section 4.2.2 two separation results with respect to different domains are derived.
First we consider distributability and then causality. In order to prove results for both
domains, we show first a condition of all good encodings from πm into πs that is then used
in the separation results. Note that we choose a very simple example of separation with
respect to different domains here, because under the presented setting and with respect
to the exploited properties of good encodings between πm and πs the two domains are
closely related.

4.2.1. Different Sets of Quality Criteria

Palamidessi in [Pal03] proves that there exists no uniform and reasonable encoding from
πm into πs based on an absolute result concerning the ability of these languages to solve
leader election in symmetric networks (see Section 4.1.2). Later on Gorla in [Gor10b]
proves a similar result with a considerable simpler proof with respect to his general
framework as reviewed in Section 3.3 and the additionally requirements that � is exact,
i.e., if T � T ′ then T

µ−−→ implies T ′
µ

=⇒ for all T, T ′ ∈ Ps and µ ∈ A, and that the
parallel operator is translated homomorphically. Moreover, he proves separation between
πm and πs in two more settings that do not require the homomorphic translation of the
parallel operator. Both settings are based again on the criteria of the general framework.
The second setting requires additionally that � is reduction sensitive, i.e., if T � T ′ then
T 7−→ implies T ′ 7−→ for all T, T ′ ∈ Ps, which leads to prompt encodings. Whereas the

74

4.2. Separation and Quality Criteria

third setting uses a stricter form of operational correspondence requiring that all leftovers
of former emulations, i.e., junk, in target terms are composed in parallel to the encoding
of the respective continuation.

Similarly, we will also consider the separation between πm and πs in three different
settings, but require in all three settings that the parallel operator is translated homo-
morphically. Moreover, we base all three separation results on the absolute result of
Theorem 4.1.13. It is no real surprise that this absolute result leads to differences in
the translational expressiveness of the languages. Because the homomorphic translation
of the parallel operator preserves the symmetric nature of πm-terms, the absolute result
directly leads to counterexamples for respective encodings. Hence, the non-existence
of a reasonable encoding from πm into πs that translates the parallel operator homo-
morphically is a natural consequence of the difference in their absolute expressiveness.
Unfortunately, there is no agreement on the minimal requirements of a reasonable encod-
ing, so we cannot formally prove this result in general, although we believe that it holds
for any meaningful definition of reasonableness. Instead, to underpin our assertion, we
prove it in the settings of [Pal03] and (the first setting of) [Gor10b].

According to [Pal03], an encoding is “uniform” if it translates the parallel operator
homomorphically and preserves renamings, i.e., for all permutations of names σ there
exists a permutation of names θ such that J σ(P) K = θ(J P K) that also fixes indexes.
Vigliotti et al. [VPP07] additionally require that the permutations σ and θ are compat-
ible on observables. Gorla [Gor10b] does not use the notion of uniformity, but in his
first setting the separation result between πm and πs does also assume the homomorphic
translation of the parallel operator. Moreover, he specifies name invariance as a crite-
rion for a good encoding, which is a more complex condition than Palamidessi’s second
condition, but comes without the strict side condition ∀i ∈ N . σ(i) = θ(i). It turns
out that in our setting we do not need a second condition like renaming preservation
or name invariance, because we base our counterexamples in the following separation
results on symmetric networks of the form P | P as already Gorla did in [Gor10b]. For
us, an encoding is uniform iff it translates the parallel operator homomorphically.

Definition 4.2.1 (Uniform encoding). An encoding J · K : PS → PT is a uniform encod-
ing if, for all P,Q ∈ PS

J P | Q K = J P K | J Q K (U)

Actually, Theorem 4.1.13 should suffice to prove that there cannot be a uniform and
reasonable encoding from πm into πs, because such encodings preserve symmetry and it
is possible to break symmetries in πm while this is not possible in πs. The problem is
that there is no commonly accepted notion of reasonableness. For separation results, we
seek a definition of reasonableness that is as weak as possible. But, without any notion
of reasonableness, the theorem would not hold. For instance, we could simply translate
everything to 0 (modulo ≡). Of course such an encoding makes no sense and so hardly
anyone would call it reasonable. Usually, an encoding is called reasonable if it preserves
some kind of behaviour or the ability to solve some kind of problem so to ensure that the

75

4. Separating Languages

purpose of the original term is preserved. In the following, we consider three different
notions of reasonableness.

Version 1. For Palamidessi, an encoding is reasonable if it preserves the relevant ob-
servables and termination properties [Pal03]. Implicitly, she requires that a reasonable
encoding should at least preserve the ability to solve leader election. We do alike but
with a different interpretation of what it means to solve leader election that is more
closely related to the definition used by Bougé [Bou88]: A network is said to solve leader
election iff in each execution exactly one process propagates itself as leader while all
the other processes propagate themselves as slaves. We assume the existence of two
different predetermined output actions, one to propagate as leader (µl) and the other to
propagate as slave (µs). Moreover, we require that for both output actions neither the
channel names nor the sent values are bound within the network6.

Definition 4.2.2 (Solving Leader Election). Let µl, µs ∈ A be two different output
action labels, i.e., µl 6= µs. A network N of size n > 1 solves leader election if every
maximal execution of N contains exactly one step labelled by µl and n−1 steps labelled
by µs and all names of µl and µs are free in N .

The main difference to the definition of leader election used in [Pal03] is that here the
slaves do not have to know the identity, i.e., the index, of the leader. So, this definition
is usually considered as a weaker notion of the leader election problem. An encoding is
now said to be reasonable iff it preserves the ability to solve the leader election problem.

Definition 4.2.3 (1-Reasonableness). An encoding J · K : Pm → Ps is 1-reasonable, if
J P K solves leader election iff P solves leader election, for all P ∈ Pm.

To prove that there is no uniform and reasonable encoding, we force our encoding
to lead to a network of two processes that is symmetric with respect to identity. By
Theorem 4.1.13, this network has at least one symmetric execution. Because we use the
identity as symmetry relation, in the symmetric execution both processes behave exactly
the same; in particular if one of them propagates himself as leader then the other one
does alike, which contradicts leader election.

Theorem 4.2.4 (Separation Result). There is no uniform and 1-reasonable encoding
from πm into πs.

Proof. Let us assume the contrary, i.e., there is a uniform and 1-reasonable encoding
J · K : Pm → Ps. Consider the network:

N , P | P with P = a.slave + a.leader

Obviously σ = id is a symmetry relation of degree 2. Because of that, the network

N =
[
a.slave + a.leader

]2
σ

is a symmetric network. Moreover N solves leader election,
because the leader sends an empty message over channel leader and all slaves send

6Note that if we allow bound names in these output actions, we could hardly predetermine them.

76

4.2. Separation and Quality Criteria

an empty message over channel slave. Since J · K is uniform, we have J P | P K
(U)
=

J P K | J P K =
[
J P K

]2
id

, i.e., J N K is again a symmetric network of degree 2 with id
as symmetry relation. By Theorem 4.1.13, J N K has at least one symmetric execution
and by reasonableness J N K must solve leader election, i.e., in every maximal execution
there is exactly one process that propagates itself as leader by an output action. Let
µl denote this send action. By Definition 4.1.12, a symmetric execution has symmetric
sequences of actions, i.e., the action µl is coupled to its symmetric counterpart building

the sequence [µl]
2,z̃′

σ′ for some z̃′ ∈ S(N) and σ′ ∈ Sym(2,N). By construction in
the proof of Lemma 4.1.14, and because we start with id, we know that σ′ consists of
(permutations of) names that are bound in J N K or fresh. Because, by definition, µl
can neither contain fresh nor bound names, we conclude [µl]

2,z̃′

σ′ = µl, µl, i.e., the output
action appears twice in the symmetric execution. So two processes propagate themselves
as leader, which is a contradiction.

Note that in contrast to the proof of Palamidessi [Pal03, VPP07] we do not have to
assume that the encoding preserves renamings.

Version 2. For the second (and also the third setting) we introduce a technical lemma.
Intuitively, it states that the symmetric execution of a symmetric network of degree
n, where n is not the minimal degree of the corresponding symmetry relation, can be
subdivided into symmetric executions on symmetric subnetworks of the original network.

Lemma 4.2.5 (Absolute Result). Let
[
P0

]n,x̃
σ

be a symmetric network in Ps. If the

degree of σ is not minimal, i.e., if there is a n′ ∈ N with 0 < n′ < n such that σn
′

= id,

then
[
P0

]n,x̃
σ

has a finite or an infinite symmetric execution

[
P0

]n,x̃
σ

[µ1]
n,x̃
σ1−−−−→

[
P1

]n,x̃1
σ1

[µ2]
n,x̃1
σ2−−−−−→ . . .

[µm]
n,x̃m−1
σm−−−−−−−→

[
Pm
]n,x̃m
σm

6−→

or
[
P0

]n,x̃
σ

[µ1]
n,x̃
σ1−−−−→

[
P1

]n,x̃1
σ1

[µ2]
n,x̃1
σ2−−−−−→ . . .

for some m ∈ N, P1, . . . , Pm ∈ Ps, σ1, . . . , σm ∈ Sym(n,N) with σ ⊆ σ1 ⊆ . . . ⊆
σm, x̃1, . . . , x̃m ∈ S(N) and µ1, . . . , µm ∈ Aτ or some P1, P2, . . . ∈ Ps, σ1, σ2, . . . ∈
Sym(n,N) with σ ⊆ σ1 ⊆ σ2 ⊆ . . ., some x̃1, x̃2, . . . ∈ S(N) and µ1, µ2, . . . ∈ Aτ ,

respectively, such that
[
P0

]n′,x̃
σ

has the finite or infinite symmetric execution

[
P0

]n′,x̃′
σ

[µ′1]
n′,x̃′

σ′1−−−−−→
[
P1

]n′,x̃′1
σ′1

[µ′2]
n′,x̃′1
σ′2−−−−−−→ . . .

[µ′m]
n′,x̃′m−1

σ′m−−−−−−−−→
[
Pm
]n′,x̃′m
σ′m

6−→

or
[
P0

]n′,x̃
σ

[µ′1]
n′,x̃
σ′1−−−−−→

[
P1

]n′,x̃′1
σ′1

[µ′2]
n′,x̃′1
σ′2−−−−−−→ . . .

for some x̃′1, . . . , x̃
′
m ∈ S(N), µ′1, . . . , µ

′
m ∈ Aτ and σ′1, . . . , σ

′
m ∈ Sym(n′,N) with σ ⊆

σ′1 ⊆ . . . ⊆ σ′m or some x̃′1, x̃
′
2, . . . ∈ S(N), µ′1, µ

′
2, . . . ∈ Aτ and σ′1, σ

′
2, . . . ∈ Sym(n′,N)

with σ ⊆ σ′1 ⊆ σ′2 ⊆ . . . respectively such that x̃′ is a subsequence of x̃, x̃′i is a subsequence

77

4. Separating Languages

of x̃i and either µ′i or if µ′i is a bound output its unbound variant is in [µi]
n,x̃i−1
σi

for all
i ∈ { 1, . . . ,m } or i ∈ N respectively.

Note that, like Theorem 4.1.13, this result is absolute in the sense that it holds indepen-
dently of any notion of uniformity or reasonableness.

The proof is based on the following observation: every network of degree n that is
symmetric with respect to a symmetry relation σ such that n is not the minimal degree
of σ can be subdivided into several identical symmetric networks with respect to σ.
Then, an induction on the number of sequences of n steps from a symmetric network to
a symmetric network is performed. The inductive step is proved by a case analysis on
whether the first step of such a sequence is due to an action of only one process of the
network or to a communication between two processes.

Proof. Assume there is a 0 < n′ < n such that σn
′

= id. Then because σn = id there
must be a k ∈ N such that n = k ∗ n′. Because σ0 = σn

′
= σi∗n

′
for each i ∈ { 1, . . . , k }

we have σj = σj+n
′
. So, for each P ′ ∈ Ps and each µ′ ∈ Aτ ,

[
P ′
]n,x̃
σ

can be divided

into k identical symmetric networks such that
[
P ′
]n,x̃
σ

= (νx̃)
([
P ′
]n′
σ
| . . . |

[
P ′
]n′
σ

)
and

[µ′]n,x̃σ can be divided in k sequences such that [µ′]n,x̃σ and [µ′]n
′,x̃
σ , . . . , [µ′]n

′,x̃
σ differ only

by replacing some unbound outputs on a name in x̃ by the respective bound outputs if

the respective step is a bound output for each subnetwork
[
P ′
]n′,x̃
σ

.

If
[
P0

]n,x̃
σ

has a symmetric execution of length 0, i.e.,
[
P0

]n,x̃
σ
6−→, then of course we

have
[
P0

]n′,x̃
σ
6−→ as well and so

[
P0

]n′,x̃
σ

has a symmetric execution of length 0.
Else we consider an arbitrary sequence of n steps

[
Pk
]n,x̃k
σk

[µk+1]
n,x̃k
σk+1−−−−−−−→

[
Pk+1

]n,x̃k+1

σk+1

of the given symmetric execution for k ∈ { 0, . . . ,m } in the case of a finite symmetric ex-
ecution and k ∈ N for an infinite symmetric execution. As constructed in Theorem 4.1.13
Pk+1 is either the result of a step of σik(Pk) realised without the rules Pi-ls-Com and

Pi-ls-Close or it is the result of two communications of σik(Pk) and σjk(Pk) realised by
one of the rules Pi-ls-Com or Pi-ls-Close. We proceed with a case split.

Case without Pi-ls-Com and Pi-ls-Close : Let σik(Pk) with i ∈ { 0, . . . , n−1 } be the
process which performs the first of the n steps labelled µk+1. We choose µ′k+1 as

the n−ith action in [µk+1]
n,x̃k
σk+1

, i.e., we choose the label of the action performed by

process Pk. If µk+1 is a bound output and µ′k+1 is not then we choose the bound
output variant of µ′k+1. By construction in the proof of Lemma 4.1.14 there are n′

steps performed by the processes σ0k(Pk), . . . , σn
′−1
k (Pk) and labelled by the first

n′ labels of
[
µ′k+1

]n,x̃k
σk+1

. Note that because σ′k differs from σk only on permutations

on formerly bound names we can perform these steps by σ′k
0(Pk), . . . , σ′k

n′−1(Pk),
too. If µk is not a bound output we can choose x̃′k+1 = x̃′k and σ′k+1 = σ′k and are
done. Else if µk = y (z) and z /∈ bn

(
σik(Pk)

)
we can choose σ′k+1 = σ′k and x̃′k+1 as

78

4.2. Separation and Quality Criteria

the sequence of names in x̃′k, z1, . . . , zl, where z1, . . . , zl are the values of the bound

outputs in
[
µ′k+1

]n′,x̃k
σ′k+1

. Else if z ∈ bn
(
σik(Pk)

)
we can choose x̃′k+1 = x̃′k and we

add the permutations of z done by α-conversion as described in Lemma 4.1.14 to
σ′k to obtain σ′k+1. Again by construction in Lemma 4.1.14 performing these n′

steps we have
[
Pk
]n′,x̃′k
σ′k

[µ′k+1]
n′,x̃′k
σ′
k+1−−−−−−−→

[
Pk+1

]n′,x̃′k+1

σ′k+1
.

Case with Pi-ls-Com or Pi-ls-Close : Then [µk+1]
n,x̃k
σk+1

is a sequence of n times τ .

We choose µ′k+1 = µk+1 = τ and
[
µ′k+1

]n′,x̃k
σk

is a sequence of n′ times τ . Let

σik(Pk) and σjk(Pk) with i, j ∈ { 0, . . . , n−1 } be the processes which perform the

first of the n steps. Without loss of generality let σik(Pk) be the sender and σjk(Pk)

be the receiver, i.e., σik(Pk) performs an output action γ and σjk(Pk) performs the
complementary receiving action γ. By construction in the proof of Lemma 4.1.14

the first n′ steps within
[
Pk
]n,x̃k
σk

[µk+1]
n,x̃k
σk+1−−−−−−−→

[
Pk+1

]n,x̃k+1

σk+1
are performed by the

senders σik(Pk), . . . , σi+n
′−1

k (Pk) in this order sending [γ]n
′,x̃k
σk+1

respectively and

by the receivers σjk(Pk), . . . , σj+n
′−1

k (Pk) in this order receiving [γ]n
′,x̃k
σk+1

. Now

because of σn
′

= id and σ′k differs from σ only by formerly bound names and
their renamings according to α-conversion for each g ∈ { i, . . . , i+n′−1 } and

for each h ∈ { j, . . . , j+n′−1 } we have σgk(Pk) and σ′k
gmod n′(Pk), and σhk (Pk)

and σ′k
hmod n′(Pk) respectively are equal modulo the renaming performed for-

merly by α-conversion. With that we can again close the cycle as in the proof

of Lemma 4.1.14 leading to
[
Pk
]n′,x̃′k
σk

[µ′k+1]
n′,x̃′k
σ′
k+1−−−−−−−→

[
Pk+1

]n′,x̃′k+1

σ′k+1
, where x̃′k+1 and

σ′k+1 are obtained from x̃′k and σ′k as described in Lemma 4.1.14.

Because we can subdivide an arbitrary sequence of n steps we can subdivide each such
sequence in the symmetric execution and with it the symmetric execution.

Gorla [Gor10b] defines the reasonableness of an encoding by operational correspon-
dence, divergence reflection, and success sensitiveness. We use just the last of his prop-
erties instantiated with must testing. So we implicitly require divergence reflection.
According to [Gor10b], success is represented by a process X that is part of the source
and the target language of the encoding and always appears unbound. More precisely,
a process must-succeeds if it reduces to a process containing a top-level unguarded oc-
currence of X in every maximal execution. The fact that P must-succeeds is denoted by
P �X. With it, an encoding is reasonable if the encoding of a term must-succeeds iff the
term itself must-succeeds.

Definition 4.2.6 (2-Reasonableness). An encoding J · K : Pm → Ps is 2-reasonable, if
P �X iff J P K �X for all P ∈ Pm.

79

4. Separating Languages

Again, we choose a term such that the encoding results in a network of the form Q | Q
in Ps that is symmetric with respect to identity. In this case, we take advantage of
the fact that the minimal degree of id is less than the degree of the network such that
we can use Lemma 4.2.5 to subdivide the symmetric execution. With it already Q can
perform the same sequence of steps as each process in Q | Q performs in the symmetric
execution.

Theorem 4.2.7 (Separation Result). There is no uniform and 2-reasonable encoding
from πm into πs.

Proof. Let us assume the contrary, i.e., there is a uniform and 2-reasonable encoding
J · K : Pm → Ps. Consider the network:

N , P | P with P = a.0 + a.X

Obviously, σ = id is a symmetry relation of degree 2 and so N =
[
a.0 + a.X

]2
σ

is a

symmetric network. Moreover, we have N �X but P 6�X. We have J P | P K
(U)
= J P K |

J P K =
[
J P K

]2
id

, i.e., J N K is again a symmetric network of degree 2 with id as sym-
metry relation. By Theorem 4.1.13, J N K has at least one symmetric execution and by
Definition 4.2.6 and must testing, J N K must reduce to a process containing a top-level
unguarded occurrence of Xwithin this symmetric execution, i.e., there is a sequence of
actions µ̃ ∈ S(Aτ), a process P ′ ∈ Ps, a σ′ ∈ Sym(2,N) and a sequence of names x̃

such that J P K | J P K µ̃−−→
[
P ′
]2,x̃
σ′

and P ′ or σ′(P ′) contain a top-level unguarded occur-

rence of X. Then, by symmetry, both processes of
[
P ′
]2,x̃
σ′

contain a top-level unguarded
occurrence of X. By Lemma 4.2.5, there is a sequence of actions µ̃′ ∈ S(Aτ) and an

execution J P K µ̃′−−→ (νx̃′)P ′ for a subsequence x̃′ of x̃. Since every maximal execution
of J P K leads to a symmetric execution of J P K | J P K, we have J P K �X, and with
Definition 4.2.6 P �X, which is a contradiction.

Note that, reconsidering the proofs of this separation result in [Gor10b], we managed
to omit one of Gorla’s additional assumptions. Namely, we do not need the assumption
that � is exact (first setting) or reduction sensitive (second setting) and we do not need
to assume the stronger version of operational correspondence in the third setting. On
the other side Gorla does not need to assume the homomorphic translation of | in his
second and third setting. He uses the weaker notion of compositional translation of |
instead. But there is an encoding from πm into π=a for this weaker structural assumption
presented in Chapter 5 and proved good in Chapter 6. Summarising, this separation
result is weaker than the result in the first setting of Gorla but incomparable to the
results in the other two settings. In contrast to [Pal03] we can apply our absolute
result to problem instances different from leader election, because we focus on breaking
symmetries instead of leader election.

Also note that we obtain the same result if we replace Definition 4.2.6 by operational
correspondence, divergence reflection, and success sensitiveness. Hence, this result holds
in the general framework of Gorla presented in Section 3.3.

80

4.2. Separation and Quality Criteria

Lemma 4.2.8 (Separation Result). There is no good and uniform encoding from πm
into πs.

Proof. Let us assume the contrary, i.e., there is a good and uniform encoding J · K :
Pm → Ps. Consider the network:

N , P | P with P = a.0 + a.X

Obviously, σ = id is a symmetry relation of degree 2 and so N =
[
a.0 + a.X

]2
σ

is a

symmetric network. Moreover, we have N ⇓X! but P 6⇓X. We have J P | P K
(U)
= J P K |

J P K =
[
J P K

]2
id

, i.e., J N K is again a symmetric network of degree 2 with id as sym-
metry relation. Since N has no infinite execution and because of divergence reflection
(Definition 3.3.5), J N K has no infinite execution. Moreover, by Lemma 3.3.10, N ⇓X!
implies J N K ⇓X!. By Theorem 4.1.13, J N K has at least one symmetric execution. Then
this symmetric execution is finite and success is reached, i.e., there is a process P ′ ∈ Ps,
a σ′ ∈ Sym(2,N) and a sequence of names x̃ such that J P K | J P K Z=⇒

[
P ′
]2,x̃
σ′

and
P ′ or σ′(P ′) contain a top-level unguarded occurrence of X. Then, by symmetry, both

processes of
[
P ′
]2,x̃
σ′

contain a top-level unguarded occurrence of X. By Lemma 4.2.5,
there is an execution J P K Z=⇒ (νx̃′)P ′ for a subsequence x̃′ of x̃. With it, J P K ⇓X, and
with success sensitiveness P ⇓X, which is a contradiction.

Version 3. In the second setting of [Gor10b], Gorla considers prompt encodings (see
Definition 3.2.1). Its separation results relies on the observation that there are terms
P ∈ Pm such that P 67−→, P 6⇓X and (P | P) ⇓X, but there are no such terms in Ps. Note
that P 6⇓X and (P | P) ⇓X implies P | P 7−→ and that there are no terms P in Ps such
that P 67−→ and P | P 7−→ which follows directly by Lemma 4.2.5. By using a slightly
stronger variant of promptness, we do not need any notion of testing or preservation of
behaviour to prove the separation result.

Definition 4.2.9 (3-Reasonableness). An encoding J · K : Pm → Ps is 3-reasonable if
P 7−→ iff J P K 7−→ for all P ∈ Pm.

To our knowledge, only few intuitively reasonable encodings are not also 3-reasonable.
Note, however, that the encoding J · Kma from πm into π=a introduced in Chapter 5 is
neither prompt nor 3-reasonable.

Theorem 4.2.10 (Separation Result). There is no uniform and 3-reasonable encoding
from πm into πs.

Again, for the separation proof, we enforce that the encoding results in a symmetric
network Q | Q. By subdividing the symmetric execution of this network, we prove that
Q 7−→ iff Q | Q 7−→, which does not necessarily hold in πm.

Proof. Let us assume the contrary, i.e., there is a uniform and 3-reasonable encoding
J · K : Pm → Ps. Consider the network:

N , P | P with P , a+ a

81

4. Separating Languages

Obviously, σ = id is a symmetry relation of degree 2 and so N =
[
a+ a

]2
σ

is a symmetric

network. Moreover, we have N 7−→ but P 67−→. We have J P | P K
(U)
= J P K | J P K =[

J P K
]2
id

, i.e., J N K is again a symmetric network of degree 2 with id as symmetry
relation. By Theorem 4.1.13, J N K has at least one symmetric execution and by 3-
reasonableness we have J P K | J P K 7−→ and J P K 67−→ and thus J P K | J P K τ−−→
and J P K 6 τ−−→. By Lemma 4.1.14, J P K | J P K τ−−→ implies that there is at least one
step in the symmetric execution, i.e., there is a process P ′ ∈ Ps, a symmetry relation

σ′ ∈ Sym(2,N), and a sequence of names x̃ ∈ S(N) such that J P K | J P K τ,τ−−→
[
P ′
]2,x̃
σ′

.

Then, by Lemma 4.2.5, there is an execution J P K τ−−→ (νx̃′)P ′ for a subsequence x̃′ of
x̃, i.e., J P K 7−→, which is a contradiction.

Noteworthy, we do not even assume divergence reflection in this argumentation. More-
over, the counterexample consists of two very simple mixed choices combined in parallel.
This shows the relevance of mixed choice for the non-existence of uniform encodings.

Summary. Our three translational separation results, i.e., the proofs of the non-exis-
tence of a uniform and reasonable encoding for different definitions of reasonableness,
follow similar lines of argument. The proofs argue by contradiction. First, a symmetric
network of the form P | P in Pm with special features—that are connected to our absolute
result—is presented. Second, we use the fact that uniformity, i.e., the homomorphic
translation of the parallel operator, preserves essential parts of the symmetric nature of
P | P . Third, we apply Theorem 4.1.13 to conclude with the existence of a symmetric ex-
ecution. In two proofs we then apply Lemma 4.2.5 to subdivide this symmetric execution.
At last we derive a contradiction between the additional information provided by the
symmetric execution (and its subdivision) and the respective definition of reasonableness.

Note that we prove the absolute result without any precondition and that we use
different definitions of reasonableness for the translational results. The only constant
precondition of the separation results is the homomorphic translation of the parallel op-
erator. This condition is crucial. Without it, we could not apply our absolute separation
result. To the best of our knowledge, only Gorla (second and third setting of [Gor10b])
and [FL10] (with respect to a stricter formulation of operational correspondence) ever
managed to prove such a separation result between πm and πs without the homomorphic
translation of the parallel operator. There is another separation result in [CCP07] via
must-testing; but they require J P | o K = J P K | J o K for all processes P and observers o.
Note that we present two more separation results with respect to a new criterion, namely
the preservation of distributability, in Section 4.2.2 and Section 4.4. However, by the
encoding J · Kma from πm into π=a in Chapter 5 and its validation in Chapter 6, we show
that separation does not hold for the general framework as presented in Section 3.3. On
the other side, we discuss some drawbacks of our encoding in the next two chapters that,
to our knowledge, cannot be avoided. Thus, we believe that there is no good encoding
from πm into πs, if either we do not allow for matching in the target language (as it
is allowed in [Gor10b]), or if we forbid for observable junk (see Section 6.3.5), e.g. by
restricting � to be exact.

82

4.2. Separation and Quality Criteria

We may also turn the non-existence of a uniform and reasonable encoding around and
rephrase it as a weakened existence statement. Recall that any uniform encoding from
πm into πs preserves symmetries. While it is possible to break such symmetries in πm,
this is not possible in πs. Note that Theorem 4.1.13 talks only about the existence of
a symmetric execution, but does not tell anything about their maximal length. Hence,
it is possible to “hide” in an encoding the symmetric execution of target terms within
divergent executions. Of course, in divergence reflecting encodings this is not allowed.
Thus, should there be a non-uniform but divergence reflecting and reasonable encoding
from πm into πs, then it would have to be the encoding itself to break symmetries. We
will use this insight as starting point for our encoding in Chapter 5.

4.2.2. Different Domains

In Section 3.4.3 we explain why the homomorphic translation of the parallel operator is
too strict for translational separation results with respect to distributability. Instead we
formalise a new criterion, namely preservation of distributability, for this purpose and
combine it with the criteria of the general framework in Section 3.3. For the existence
of a good encoding J · K from πm into πs, preservation of distributability means that for
all source terms S ∈ Pm, if S ≡ (νx̃) (S1 | . . . | Sn) then J S K ≡ (νx̃′) (T1 | . . . | Tn) such
that Ti � J Si K for all 1 ≤ i ≤ n. Unfortunately, the requirement Ti � J Si K is not strong
enough to ensure that (νx̃′) (T1 | . . . | Tn) is a symmetric network if (νx̃) (S1 | . . . | Sn) is
a symmetric network. Thus, in contrast to the homomorphic translation of the parallel
operator, the preservation of distributability does not preserve source term symmetries.
That is a problem for our absolute result in Theorem 4.1.13. But it turns out that,
although we need another argument to complete a separation result, we can nonetheless
use our absolute result to reason about the encoding function, which provides further
insights also with respect to the positive result in Chapter 5.

Therefore, we analyse the context introduced by compositionality to encode the par-
allel operator and examine how this context has to interact with the encodings of its
parameters to allow for an emulation of a source term step. We start with some obser-
vations concerning the three process terms

P , a+ a | b+ b.X, Q , P | P, and R , a+ b+ b.X | b+ a+ a.X,

which are used in the following lemmata as counterexamples. Note that we choose Q and
R such that each of them is a symmetric network of degree 2 with either σ = { a/b, b/a }
or id as symmetry relation. Moreover, to fix the context used to encode the parallel
operator we choose P , Q, and R such that fn(P) = fn(Q) = fn(R) = { a, b }. Hence
by compositionality for each of these three terms the outermost parallel operator is

translated by exactly the same context C{ a,b }| ([·]1, [·]2). Note that for all of the following

lemmata and observations we silently assume that J · K : Pm → Ps is a good encoding
from πm into πs, i.e., J · K satisfies the criteria introduced in Section 3.3.

83

4. Separating Languages

Observation 4.2.11. There exists a context C{ a,b }| ([·]1, [·]2) : Ps × Ps → Ps such that

J P K = C{ a,b }|
(
J a+ a K ,

q
b+ b.X

y)
,

J Q K = C{ a,b }| (J P K , J P K) , and

J R K = C{ a,b }|
(
J a+ b+ b.XK ,

q
b+ a+ a.X

y)
.

We choose P such that none of its executions lead to success, i.e., P 67−→ and P 6⇓X.
Because J · K satisfies the criteria of Section 3.3, this implies that also the encoding of P
does not reach success.

Lemma 4.2.12. For all TP ∈ Ps, J P K Z=⇒ TP implies TP 6⇓X.

Proof. P 67−→ implies, by operational soundness, that J P K cannot perform a step that
changes its state modulo �, i.e., J P K Z=⇒ TP implies TP Z=⇒� J P K for all TP ∈ Ps.
By success sensitiveness, P 6⇓X implies J P K 6⇓X. Because of that and since � is success
respecting we have TP 6⇓X for all TP ∈ Ps such that J P K Z=⇒ TP .

Hence, any occurrence of X—if there is any—in the context C{ a,b }| ([·]1, [·]2) is guarded
and the context cannot remove such a guard on its own. In contrast to P , we choose Q
such that Q reaches an unguarded occurrence of success in any of its maximal executions.
Again this has to be reflected by the encoding function.

Lemma 4.2.13. For all TQ ∈ Ps, J Q K Z=⇒ TQ implies TQ ⇓X.

Proof. By operational completeness, any execution Q 7−→ Q1 7−→ Q2 67−→ of Q can be
emulated by its encoding, i.e., J Q K Z=⇒ Q′1, J Q K Z=⇒ Q′2, and J Q1 K Z=⇒ Q′′2, where
Q′i � J Qi K for i ∈ { 1, 2 } and Q′′2 � J Q2 K. Note that any maximal execution of Q is
such that Q 7−→ Q1 7−→ Q2 67−→ for some Q1, Q2 ∈ Pm. By operational soundness for
each TQ ∈ Ps such that J Q K Z=⇒ TQ, there is some Q′ ∈ Pm such that Q Z=⇒ Q′ and
TQ Z=⇒� J Q′ K, i.e., there is some T ′Q ∈ Pa such that TQ Z=⇒ T ′Q and T ′Q � J Q′ K. By
success sensitiveness, J Q′ K ⇓X and since � is success respecting, we have T ′Q ⇓X. Thus,
by Definition 3.2.2, we have TQ ⇓X for all TQ ∈ Ps with J Q K Z=⇒ TQ.

At last we choose R such that some of its executions lead to success while some do
not.

Lemma 4.2.14. There are TR,1, TR,2 ∈ Ps with J R K Z=⇒ TR,1∧J R K Z=⇒ TR,2∧TR,1 ⇓X
∧TR,2 6⇓X.

Proof. R can reduce either to Xor to 0. By operational completeness, J R K can emulate
both steps, i.e., J R K Z=⇒� J XK and J R K Z=⇒� J 0 K. By success sensitiveness, we have
J XK ⇓X and J 0 K 6⇓X. Then, since � is success respecting, we have J XK 6� J 0 K. Thus,
there are at least two different target terms TR,1, TR,2 ∈ Ps such that J R K Z=⇒ TR,1,
J R K Z=⇒ TR,2, TR,1 ⇓X, and TR,2 6⇓X.

84

4.2. Separation and Quality Criteria

Our last observation concerns the structure of the context C{ a,b }| ([·]1, [·]2). The context

C{ a,b }| ([·]1, [·]2) has to place its parameters in parallel, because this is the only binary

operator for processes different from (separate) choice. Placing them within a choice
would not allow to use the encodings of both parameters to emulate target term steps.
Consequently, there must be some Ps-contexts C0([·]), C1([·]), C2([·]) with J S1 | S2 K ≡
C{ a,b }| (J S1 K , J S2 K) ≡ C0(C1(J S1 K) | C2(J S2 K)), for all source terms S1, S2 ∈ Pm with

fn(S1 | S2) = { a, b }.

Observation 4.2.15. There are some contexts C0([·]) , C1([·]) , C2([·]) : Ps → Ps such

that C{ a,b }| ([·]1, [·]2) ≡ C0(C1([·]1) | C2([·]2)).

Learning from the separation results in Section 4.2.1, we know that any good encoding
from πm into πs must break source term symmetries. To do so, we show that the context
introduced by the encoding of the parallel operator (which is allowed in weak composi-
tionality as opposed to homomorphic translations) must interact with the encodings of
its parameters.

Lemma 4.2.16. To emulate a source term step, C{ a,b }| ([·]1, [·]2) and the encodings of
its parameters have to interact.

Intuitively we show, that if there is no such interaction, then since Q is a symmetric
network its encoding also behaves as a symmetric network. Since any execution of J Q K
leads to an unguarded occurrence of success, by symmetry and by Lemma 4.2.5, there is
an execution of J P K leading to an unguarded occurrence of success, which contradicts
Lemma 4.2.12.

Proof. Assume the contrary, i.e., assume the context C{ a,b }| ([·]1, [·]2) is such that possibly
after some preprocessing steps of the context on its own, e.g. to unguard the parameters,
the source term steps can be emulated without any interaction with the context. In this
case, we have

J Q K 4.2.11
= C{ a,b }| (J P K , J P K)

4.2.15≡ C0(C1(J P K) | C2(J P K))

Z=⇒ (νỹ) (σ1(J P K) | σ2(J P K) | TC)

for some constant term TC , a sequence of names ỹ, and two substitutions σ1 and σ2. Note
that σ1 and σ2 capture renaming, due to α-conversion that is possibly necessary to move
restrictions outwards. Since there is no need for an interaction, i.e., for a communication,
with TC to emulate source term steps, we can ignore it.

If σ1 = σ2 then, since these substitutions result from α-conversion, σ1 = σ2 = id.
Then J P K | J P K is a symmetric network of degree 2 with id as symmetry relation.
By Theorem 4.1.13, J P K | J P K has a symmetric execution. By Lemma 4.2.13, J Q K
reaches an unguarded occurrence of success in any of its executions. Since the context,
and with it TC , cannot reach success on its own and there is no interaction, J P K | J P K
reaches success in its symmetric execution. Then there is some T ′′Q ∈ Ps such that

85

4. Separating Languages

J P K | J P K Z=⇒ (νx̃)
(
T ′′Q | σ3

(
T ′′Q

))
is a symmetric execution for some sequence of

names x̃ and some symmetry relation σ3 of degree 2 and (νx̃)
(
T ′′Q | σ3

(
T ′′Q

))
has an

unguarded occurrence of success. By symmetry and since n(X) = ∅, this implies that T ′′Q

as well as σ3

(
T ′′Q

)
has an unguarded occurrence of success. Since 2 is not the minimal

degree of the identity, by Lemma 4.2.5, this symmetric execution can be subdivided such
that J P K Z=⇒ (νx̃′)T ′′Q for some sequence of names x̃′. Then J P K ⇓X, because of the
unguarded occurrence of X in T ′′Q. This contradicts Lemma 4.2.12.

The argumentation for σ1 6= σ2 is similar, but more difficult. In this case σ1(J P K) |
σ2(J P K) is still a symmetric network whose symmetric execution leads to an unguarded
occurrence of success. But since its symmetry relation is not id we cannot apply
Lemma 4.2.5. However, because σ1 and σ2 result from α-conversion, they rename free
names of J P K to fresh names. If σ1(J P K) and σ2(J P K) want to interact on such a
fresh name, then they have first to exchange this fresh name over a channel known to
both. Let us denote this channel by z. So either σ1(J P K) receives a fresh name from
σ2(J P K) over z or vice versa. By symmetry, both terms have an unguarded input as
well as an unguarded output on z, so—instead of a communication between these two
processes—σ1(J P K) can as well reduce on its own. Adding this observation to the argu-
mentation in the proof of Lemma 4.2.5 we can prove again that the symmetric execution
of σ1(J P K) | σ2(J P K) can be subdivided such that σ1(J P K) ⇓X. Because n(X) = ∅,
this implies J P K ⇓X. Again, this contradicts Lemma 4.2.12.

Hence, to emulate a source term step, the context necessarily has to interact with its
parameters.

As induced by this lemma, the encoding function J · Kma from πm into π=a introduced in
Chapter 5 implements a protocol within the context allowed by compositionality that
controls the interactions between the encoded parameters of a parallel operator.

Note that the only possibility for the context to interact with its parameters is by
communication. So the context contains at least one capability, i.e., input or output
prefix, that needs to be consumed to emulate a source term communication between
the subterms of a parallel composition. Without loss of generality, let us assume that
indeed only a single capability needs to be consumed to emulate a step, i.e., a single
communication step of the context with (one of) its parameters suffices to enable the e-
mulation of a source term communication between the parameters of a parallel operator.
The argumentation for a couple of necessary communication steps is similar. Let us
denote this capability by µ.7

Next we show that either it is not possible to emulate two different source term steps

between the parameters of C{ a,b }| ([·]1, [·]2) at the same time or C{ a,b }| ([·]1, [·]2) has to
sequentialise parts of different emulations.

7In the case of a sequence of necessary steps, choose µ such that it denotes the capability that is the
last to be consumed in this sequence. In the case where there are different possibilities to enable the
emulation of a step, consider a set of those capabilities with one µi for each such possibility.

86

4.2. Separation and Quality Criteria

Lemma 4.2.17. The context C{ a,b }| ([·]1, [·]2) either has to restrict the number of source
term steps that can be emulated simultaneously, or it has to sequentialise two steps of
different emulations.

Here we use R as a counterexample. R can reduce either to 0 or X, so the choice
operator introduces mutual exclusion. Without choice mutual exclusion is hard to im-
plement, because of its ability to immediately block an alternative reduction. We show
that the emulation of the respective blocking behaviour introduces either deadlock or
divergence.

Proof. Assume the contrary, i.e., assume that the context C{ a,b }| ([·]1, [·]2) does enable
the emulation of different alternative source term steps concurrently, i.e., provides e.g.
by replication several instances of µ, and does not sequentialise emulations. Consider
the source term R. Since { a/b, b/a }(a+ b+ b.X) = b+a+a.X, by name invariance, there
is some substitution σ′ such that σ′(J a+ b+ b.XK) ≡α

q
b+ a+ a.X

y
, i.e., these two

terms are equal except to some renamings of free names.

Moreover, since both sums have the same free names, compositionality requires, that
we translate both by the same context. Without mixed choice, we either have to split
each of these sums into an input and an output guarded sum, or we have to convert each
of them into a single sum with only separate choice. In the second case, by composi-
tionality, both parameters have to be encoded in exactly the same way; then, we either
result in two input-guarded or two output-guarded sums. But then we cannot emulate
a communication between these two sums within a single step and, moreover, we cannot
decide within a single step whether a considered capability can be used to successfully
emulate a source term step. Unfortunately, the first step used to check whether we can
use this capability to emulate a source term step removes all the other encoded capa-
bilities of that sum, which violates operational correspondence. Therefore, at least the
output and input parts of the sums have to be placed somehow in parallel.

Note that R can perform either a step on channel a or b. Because we place the
encodings of the output and input capabilities of the sums a + b + b.X and b + a + a.X
in parallel, the emulation of the source term step on a does not immediately withdraw
the encodings of the capabilities on b and vice versa. Thus, since the emulation of
both steps of R are enabled concurrently, there is some moment in the emulation of
one source term step that disables the completion of the emulation of the respective
other source term step. Therefore, one emulation has to consume some capability that
is necessary to complete the other emulation. Remember that we assume that the only

capability of the context C{ a,b }| ([·]1, [·]2) necessary to be consumed to emulate a source
term step is µ. Hence, to allow the emulation of one step of R, to disable the emula-
tion of the respective other step of R, and since σ′(J a+ b+ b.XK) ≡α

q
b+ a+ a.X

y
,

there is some capability in J a+ b+ b.XK as well as in
q
b+ a+ a.X

y
and, to emulate

a source term step, both of these capabilities have to be consumed. Moreover, since
σ′(J a+ b+ b.XK) ≡α

q
b+ a+ a.X

y
, both capabilities are of the same kind, i.e., both

are either input prefixes or both are output prefixes. Note that there is no possibility in
πs to consume two capabilities of the same kind within the same target term step except

87

4. Separating Languages

they are parts of the same sum, which is not the case here, because one comes from the
left and the other from the right sum and by Observation 4.2.15 the left and the right
side of a parallel operator are composed in parallel. Then either both emulations agree
on which capability they have to consume first (Case 2) or it cannot be avoided that for
each of the emulations of the two steps exactly one of these two capabilities is consumed
(Case 1).

In Case 1, since both capabilities are already consumed, none of the emulations can
be completed, i.e., there is some local deadlock. Note that the possibility of such a
local deadlock violates the combination of success sensitiveness and operational corre-
spondence. Considering for example J Q K, such a deadlock leads to a term TQ with
J Q K Z=⇒ TQ and, since none of the source term steps is emulated, no unguarded occur-
rence of X is reached, i.e., TQ 6⇓X. This contradicts Lemma 4.2.13.

The only way to circumvent this deadlock is that one of these capabilities is released
by one of these emulations. To complete the emulation of this step later on, it has to be
possible that the released capability is consumed again. But then it cannot be avoided
that this is done before the other emulation is finished, i.e., that leads back to the
situation before. Then we introduce divergence, which contradicts divergence reflection.
Thus, in this case, it is not possible that the emulation of alternative source term steps is

enabled concurrently, i.e., the context C{ a,b }| ([·]1, [·]2) has to introduce some mechanism

(e.g. a lock) to ensure, that no two source term steps are emulated at the same time over

C{ a,b }| ([·]1, [·]2). Since µ is the only capability necessary to emulate a source term step,
this implies that there cannot be more than one instance of µ.

Let us consider the Case 2. Since the encoding is compositional we cannot simply
assume a total ordering of these capabilities before we start the encoding function,
because this would require global knowledge of the source term, which is not available in
a compositional encoding. Thus, the encoding function must decide at run time which
of the capabilities it consumes first and this decision has to be made consistently for
different emulation attempts. We observe furthermore that the algorithm to implement
this decision has to be placed into the encoding of a parallel operator, because that is
the only operator that surely surrounds the encodings of two communication partners
and with it the respective capabilities we have to order.

In order to emulate a source term step, the encodings of the respective communica-
tion partners send a request to the surrounding parallel operator encoding, which decides
which of the capabilities has to be consumed first. Note that we do not restrict the num-
ber of emulations that can be performed simultaneously, because else we result in Case 1
again. So there may be several requests originating from different pairs of communica-
tion partners that arrive at the same parallel operator encoding. Note there may even
be several left and several right requests induced by communication attempts on the
same source term channel. So it is sometimes necessary to combine a left request with
several right requests or the other way around. However, the parallel operator encoding
cannot combine the same left and the same right request infinitely often, because this
would introduce divergence. So, it must keep track of the pairs of requests it has already
combined. But to do so it cannot process these pairs in parallel but only in sequence.

88

4.2. Separation and Quality Criteria

The algorithm cannot combine all possible pairs at the same time, because that does
not allow to keep track of already checked pairs. Note that the sequential processing of

these pairs does not allow that the decision of the context C{ a,b }| ([·]1, [·]2) on which of
the respective capabilities has to be consumed first is made truly in parallel for concur-

rent emulations on the same parallel operator. Thus, the C{ a,b }| ([·]1, [·]2) sequentialise
two steps of different emulations in this case. If these emulations refer to distributable
source term steps this sequentialisation reduces the degree of distributability.

Obviously both—the temporary blocking of emulations as well as the sequentialisation
of some steps of different emulations —violates the preservation of distributability.

Theorem 4.2.18 (Separation Result). There exists no good encoding from πm into πs
that preserves distributability.

Proof. By Lemma 4.2.17, for all source term steps that are communications between the
parameters of a parallel operator, either the number of such communications that can
be emulated simultaneously has to be reduced or steps of the emulations of different
such source term steps have to be processed in sequence. Q can perform two parallel
steps; one reducing a and the other reducing b. For both step an interaction of the left
and the right side of the outermost parallel operator is necessary. By Lemma 4.2.17
either one emulation of these two steps is temporary blocked during the emulation of
the other, or two steps of both emulations are sequentialised, i.e., are not parallel and
thus not distributable. In both cases, the emulations of the distributable steps in Q are
not distributable in J Q K. Hence, by Lemma 3.4.8, the requirement of the preservation
of distributability is violated.

Moreover, Lemma 4.2.17 has direct consequences for another research area in the
context of distributed systems, namely for the ability to preserve the causal semantics
of source terms. Causal relations describe a special form of dependencies. For the pi-
calculus usually two kinds of causal dependencies are distinguished (see [Pri96, BS98]).
The first one, called structural or subject dependencies, originates from the nesting of
prefixes, i.e., from the structure of processes. A typical example of such a dependency
is given by (νb)

(
a.b | b.c

)
| a | c 7−→ (νb)

(
b | b.c

)
| c 7−→ c | c 7−→ 0. The second

step on channel b is causally dependent on the first step, because it unguards b. So b
is causally dependent on a. Similarly, c is causally dependent on b, and by transitivity
c is causally dependent on a. The other kind of dependencies are called link or object
dependencies and originate from the binding mechanisms on names. Here a typical
example is (νx) (y〈x〉 | x). In a labelled semantics the output on x is causally dependent
on the extrusion of x by an output on y, i.e., x is causally dependent on y.

Note that the areas of causality and distributability are connected, at least in one
direction. Two distributable steps are by definition independent to a degree that implies
also causal independence. In fact causality is often defined as the opposite of concurrency,
i.e., two actions are concurrent only if they are not causally dependent [CMT96, Pri96,
BS98]. Hence, if an encoding introduces additional causal dependencies between the e-
mulations of distributable steps, as induced by Lemma 4.2.17, then this directly violates

89

4. Separating Languages

the preservation of distributability. Apart from that, the analysis of causal relations is
interesting in itself.

We observe that causal dependencies are defined as a condition between actions or
names of actions. In the context of encodings this view is problematic, because steps
are often translated into pomsets of steps and names may be translated into sequences
of names. Moreover a pomset of steps simulating a single source term step may be
interleaved with another such pomset or some target term steps used to prepare the
simulation of another source term step, whose simulation may never be completed. So,
what precisely does it mean for an encoding to preserve or respect causal dependencies?
If source term names are translated into sequences of names, should one consider the
causal dependencies between all such translated names or only between some of them?
Moreover, how should an encoding handle names reserved for some special purposes of
the encoding function, i.e., target term names that do not result from the translation of
a source term name?

We have no final answer to these questions yet. However, the following separation
result does not require a thorough answer to the questions above. Instead we use a
definition of causal dependencies that is based only on direct subject dependencies. So
within this paper, a step b is considered causally dependent on a previous step a, if
b depends on the availability of a capability produced by a. More precisely, step b is
causally dependent on step a, if a unguards some capability, i.e., some input or output
prefix, which is consumed by step b. An encoding preserves causal dependencies, if for
any causal dependency between two steps of the source term there is a causal dependency
between some steps of their emulations, and an encoding reflects causal dependencies, if
for any causal dependency between two steps of different (completed) emulations there
is a causal dependency of the corresponding source term steps.

Theorem 4.2.19 (Separation Result). There exists no good encoding from πm into πs
that reflects causal dependencies.

Proof. By Lemma 4.2.17 we have to distinguish two cases.
In order to reduce the number of emulations of source term communications the con-

text C{ a,b }| ([·]1, [·]2) provides only a single instance of µ. Let us consider Q once more.

By operational completeness, J Q K Z=⇒ Q′1, J Q K Z=⇒ Q′2, and J Q1 K Z=⇒ Q′′2, where
Q′i � J Qi K for i ∈ { 1, 2 } and Q′′2 � J Q2 K, i.e., J Q K emulates two subsequent source
term steps. Note that for both step of Q an interaction of the left and the right side of
the outermost parallel operator is necessary, i.e., both emulations have to be enabled by

the context C{ a,b }| ([·]1, [·]2) by an instance of µ. Hence, the instance of µ consumed by
the emulation of the first source term step has to be restored during this first emulation
such that the second step can be emulated. Thus, the emulation of the second step has
to consume some capability µ produced by the emulation of the first step. Then the
emulation of the second step causally depends on the emulation of the first step.

In the second case J · K sequentialises two steps of different emulations. To forbid
that these two steps are performed in parallel the encoding has to introduce a causal
dependency between them. Again this leads to a causal dependency of the respective
emulations.

90

4.3. Transferring Absolute Results

Because any pair of subsequent steps of Q is causally independent, we conclude that
in each case the encoding function adds additional causal dependencies, i.e., does not
reflect the causal dependencies of the source term.

4.3. Transferring Absolute Results

If neither the analysis of single operators nor standard problems lead to suitable absolute
results, a third method is to reuse the main idea of separation results in other settings.
Another attempt to compare the expressive power of synchronous and asynchronous
interaction mechanisms can be found in [vGGS08]. It analyses the possibility to im-
plement a (synchronous) Petri net specification within an asynchronous setting by an
automatic algorithm. They find a semi-structural property called M that distinguishes
distributable Petri nets from those nets that may be implemented only under additional
assumptions on the underlying system structure in a fully asynchronous and distributed
setting.

a b c

Figure 4.3.: A fully reachable pure M in Petri nets.

An M, as visualised in Figure 4.3, describes a part of a Petri net that consist of
two parallel transitions and one transitions that is in conflict with both of the former.
In other words it describes a situation where either two parts of the net can proceed
independently or they synchronise each other in order to perform a single transition
together. Thus, an M describes a special situation of synchronisation. Hence, we denote
an M as synchronisation pattern. [vGGS08] states that a Petri net specification can be
implemented in an asynchronous, fully distributed setting if it does not contain a fully
reachable pure M. Accordingly, they denote such Petri nets as distributable. They also
present a description of a fully reachable pure M as a property of a step transition system
which allows us to directly use this pattern to reason about process calculi.

A first analysis shows that we find the M also in the asynchronous pi-calculus (see Ex-
ample 4.3.2 below). This reflects earlier observations in [Lév97, Fou98]: it is not possible
to implement the pi-calculus and even its asynchronous fragment in an asynchronous and
fully distributed setting. To overcome these problems the join-calculus was introduced
as a model of distributed computation [FG96, Lév97, Fou98]. Mutual encodings between
the (core) join-calculus and the asynchronous pi-calculus have shown that they have the
same abstract expressive power [Fou98]. Here, we show a difference with respect to the
degree of distributability. Hence, we explain what exactly distinguishes both calculi. It
turns out that this distinction is well described by the synchronisation pattern M, i.e.,
what distinguishes the asynchronous pi-calculus and the join-calculus is the ability to
express conflicts between distributable steps. This lack in expressiveness in turn allows

91

4. Separating Languages

fully distributed implementations of the join-calculus.
In Section 4.3.1 the M on Petri nets is transferred into a new absolute result that

distinguishes πa and J. In Section 4.3.2 the result of [vGGS08] is adapted to provide
a proof method for the separation of process calculi and the non-existence of a good
and distributability-preserving encoding between πa and J is shown. Section 4.3.3 then
shows how this proof method is applied and adapted to show results for other process
calculi.

4.3.1. The Absolute Result

If we compare the asynchronous pi-calculus and the join-calculus, the most obvious
difference is that in J any input channel can appear only once. As a consequence, two
conflicting steps in the join-calculus can only compete for different output messages but
not for different input capabilities, as it is the case in πa. Repeating this argument, all
steps of a chain of conflicting steps in the join-calculus are tied to the same definition,
i.e., are not distributable.

Lemma 4.3.1 (Absolute Result). For all P ∈ PJ and all lists S = [s1, . . . , sn] of steps
of P such that for all 1 ≤ i < n the step si is in conflict with the step si+1, all steps in
S are pairwise local and reduce the same definition.

Proof. Two steps are in conflict, if performing one step disables the other step. To do
so the first step has to consume something necessary to perform the other step. In the
join-calculus, it is not possible to consume input capabilities, i.e., definitions. Hence, the
only way for a step to disable a former alternative step is to consume one of its necessary
outputs. In the join-calculus, communication is allowed only on defined variables, i.e., to
consume an output message the channel of that message has to be defined in a definition.
Note that defining the syntactical representation of a name twice in different definitions
results in two different names. Thus, if the first step consumes an output necessary to
perform the second step, then both steps share a defined variable. Because of that, both
steps must use the same definition, i.e., are not distributable. We conclude that for each
list of alternative steps S = [s1, . . . , sn], where for all 1 ≤ i < n the step si is in conflict
with the step si+1, all steps in S use exactly the same definition. Thus, all pairs of steps
in the set S = { s1, . . . , sn } are pairwise local.

In contrast, in πa, it is very easy to find such a list of conflicting steps of which some
are distributable, by combining conflicts on outputs and inputs.

Example 4.3.2. Consider P = y〈u〉 | y(x) .P1 | y〈v〉 | y(x) .P2 with P ∈ Pa. P can
perform four different alternative steps modulo structural congruence:

P 7−→ { u/x }P1 | y〈v〉 | y(x) .P2 (s1)

P 7−→ y(x) .P1 | y〈v〉 | { u/x }P2 (s2)

P 7−→ y〈u〉 | y(x) .P1 | { v/x }P2 (s3)

P 7−→ y〈u〉 | { v/x }P1 | y(x) .P2 (s4)

92

4.3. Transferring Absolute Results

The step s1 is in conflict with step s2, since both compete for the first output y〈u〉.
Similarly, steps s2 and s3 compete for the second input y(x) .P2, and step s3 and step s4
compete for the second output, i.e., P has a chain S = [s1, . . . , s4] of conflicting steps.
But s1 and s3 as well as s2 and s4 are distributable in P .

Thus, the ability to express distributable conflicts separates the asynchronous pi-
calculus from the join-calculus. However, the preservation of distributability in Def-
inition 3.4.3 does not require to preserve the distributability of conflicts but only of
processes and their executions, i.e., this difference alone is not enough to prove the non-
existence of a distributability-preserving encoding. On the other side, the structure used
in [vGGS08] to identify distributable Petri nets strongly relies on the notion of conflict.
More precisely, an M arises from the combination of two parallel steps and a third step
that is in conflict with both of the former.

P

a

b

c

×
a ‖ b

a ‖ c

×
b ‖ c

Figure 4.4.: Visualisation of the Synchronisation Pattern M.

Definition 4.3.3 (Synchronisation Pattern M). Let 〈 P, 7−→ 〉 be a process calculus and
P ∈ P such that:

1. P can perform at least three alternative reduction steps a : P 7−→ Pa, b : P 7−→ Pb,
and c : P 7−→ Pc such that Pa, Pb, and Pc are pairwise different.

2. Moreover, the steps a and c are parallel in P .

3. But b is in conflict with both a and c.

In this case, we denote the process P as M. The synchronisation pattern M is visualised
in Figure 4.4.8 If the steps a and c are distributable in P , then we call the M non-local.
Otherwise, the M is called local.

We observe, that the P of Example 4.3.2 represents an M in πa, because we can choose
the step s1 as a, s2 as b, and s3 as c. Since s1 and s3 are distributable steps, P is a
non-local M. The following example visualizes an M in the join-calculus.

8Note that a, b, and c are not labels. They serve just to distinguish different steps. Moreover, x ‖ y
refer to the parallel execution of x and y, given a step semantics.

93

4. Separating Languages

Example 4.3.4 (Local M in the join-calculus). Consider the J-term

P = def x (z) | y
(
z′
)
. z
〈
z′
〉
in (x 〈u〉 | x 〈v〉 | y 〈u〉 | y 〈v〉) .

To show that P is an M, we can for example choose:

• a : P 7−→ u 〈u〉 | def x (z) | y (z′) . z 〈z′〉 in (x 〈v〉 | y 〈v〉),

• b : P 7−→ u 〈v〉 | def x (z) | y (z′) . z 〈z′〉 in (x 〈v〉 | y 〈u〉), and

• c : P 7−→ v 〈v〉 | def x (z) | y (z′) . z 〈z′〉 in (x 〈u〉 | y 〈u〉).

We observe that u 〈u〉, u 〈v〉, and v 〈v〉 are pairwise different. Moreover, the steps a and
c are parallel, but b disables a as well as c, because it consumes x 〈u〉 necessary for a
and y 〈v〉 necessary for c. Since P does only contain a single definition, all its steps are
local. Hence, P is a local M in the join-calculus. And, since P is in fact a cJ-term, it is
also a local M in the core join-calculus.

In contrast to Example 4.3.2, the M above is local. Indeed, all M in the join-calcu-
lus are local, because, by Lemma 4.3.1, the step b forces its conflicting counterparts to
reduce the same definition.

Lemma 4.3.5 (Absolute Result). All M in the join-calculus are local.

Proof. Assume the contrary, i.e., assume there is a non-local M in the join-calculus. Let
us denote the corresponding J-term as P . By Definition 4.3.3, P can perform three
alternative steps a, b, and c such that a and c are distributable but b is in conflict with
both a and c. By Lemma 4.3.1, all conflicts in the join-calculus are local. Thus, all three
steps a, b, and c are pairwise local, which contradicts the assumption that a and c are
distributable.

Thus, the asynchronous pi-calculus and the join-calculus do also differ by the ability
to express a non-local M. As described in [vGGS08], a language that cannot express a
non-local M can be considered as distributable. Accordingly, as intended by its design,
the join-calculus is distributable. In the following we show that the pi-calculus is not
distributable—not even in its asynchronous and choice-free fragment.

4.3.2. A new Separation Result

To show that the examined difference forbids distributability-preserving encodings, we
have to show that it is not possible to express the abstract behaviour of all non-local
M in the join-calculus with respect to our requirements on good and distributability-
preserving encodings. We use the M of Example 4.3.2 as running counterexample. In
the framework of Gorla, source terms and their encodings are compared by their ability
to reach success. To distinguish the conflicting step b = s2 from the parallel steps a = s1
and c = s3, we instantiate P1 with x, P2 with x | x, and place the observer O = u.v.v.X
in parallel to P .

94

4.3. Transferring Absolute Results

Example 4.3.6 (Running Counterexample). The non-local M

S = (y〈u〉 | y(x) .x) | (y〈v〉 | y(x) . (x | x) | u.v.v.X) (E1)

reaches success iff P performs both of the distributable steps a and c, where

Step a: S 7−→ Sa with Sa = u | y〈v〉 | y(x) . (x | x) | u.v.v.X and Sa ⇓X!,

Step b: S 7−→ Sb with Sb = y(x) .x | y〈v〉 | u | u | u.v.v.X and Sb 6⇓X, and

Step c: S 7−→ Sc with Sc = y〈u〉 | y(x) .x | v | v | u.v.v.X and Sc ⇓X!.

To show that no good and distributability-preserving encoding can emulate E1, we use
the fact that two distributable reductions in the join-calculus cannot reduce the same
defined variable.

Lemma 4.3.7. Let P ∈ PJ and let A and C denote two distributable executions of P .
Then the set of links of all outputs reduced in A and all outputs reduced in C are disjoint.

Proof. Without loss of generality let us assume that there are no name clashes in P .
Let DA denote the set of defined variables of all outputs reduced in A, and let DC

denote the corresponding set for C. Let us assume A and C are distributable but
DA ∩ DC 6= ∅. Then there is some defined variable y such that an output on channel
y is reduced in one step sa of A, and an output on channel y is reduced in one step sc
of C. Since for each defined variable there is exactly one definition in the join-calculus,
there is exactly one definition defining y. Because each step that reduces an output on
channel y in the join-calculus has to use this definition, by Definition 3.4.5, sa and sc
are not distributable. Hence, by Definition 3.4.6, A and C are not distributable, which
contradicts our assumption.

Note that any good encoding that preserves distributability has to translate E1 such
that the emulations of the steps a and c are again distributable. However, the encoding
can translate these two steps into sequences of steps, which allows to emulate the conflicts
with the emulation of b by two different distributable steps. Hence, we show next that
every distributability-preserving encoding has to distribute b and, afterwards, that this
distribution of b violates the criteria for a good encoding.

Lemma 4.3.8. Every encoding J · K : Pa → PJ that is good (except for compositionality)
and distributability-preserving has to split up the conflict in S given by E1 of b with a
and c such that there exists a maximal execution in J S K in which a is emulated but not
c, and vice versa.

Proof. By operational completeness (Definition 3.3.4), all three steps of S have to be
emulated in J S K, i.e., there exists Ta, Tb, Tc ∈ PJ such that J S K Z=⇒ Ta � J Sa K,
J S K Z=⇒ Tb � J Sb K, and J S K Z=⇒ Tc � J Sc K. Because S has no infinite execu-
tions and J · K reflects divergence (Definition 3.3.5), J S K has no infinite executions. By
success sensitiveness (Definition 3.3.6), Lemma 3.3.9 and 3.3.10, and because � is success
respecting (Definition 3.3.7), we have Ta ⇓X!, Tb 6⇓X, Tc ⇓X!, and Ta 6� Tb 6� Tc. We

95

4. Separating Languages

conclude that, for all Ta, Tb, Tc ∈ PJ such that Ta � J Sa K, Tb � J Sb K, and Tc � J Sc K
and for all sequences A : J S K Z=⇒ Ta, B : J S K Z=⇒ Tb, and C : J S K Z=⇒ Tc, there is a
conflict between a step of A and a step of B, and there is a conflict between a step of
B and a step of C. Note, that since Tb 6⇓X but Ta ⇓X! and Tc ⇓X!, the conflict between a
and b (or b and c) has to be translated into a conflict of A and B (or B and C). It is
not possible that the emulation of b disables all ways to reach success after Ta or Tc is
reached.

Because J · K preserves distributability (Definition 3.4.3) and because of Lemma 3.4.8,
the distributable steps a and c of S have to be translated into distributable executions,
i.e., there is at least one A and one C such that these two executions are distributable.
By Lemma 3.4.7, this implies that J S K is distributable into T1, T2 ∈ PJ such that A is
an execution of T1 and C is an execution of T2. By Lemma 4.3.1, the conflicts between
A, B, and C are such that B and A as well as B and C compete for some output but,
by Lemma 4.3.7, A and C do not reduce the same outputs. Hence, the two conflicts
cannot be ruled out in a single step. Moreover, the reduction steps of A that lead to the
conflicting step with B and the reduction steps of C that lead to the conflicting step with
B are distributable, because A and C are distributable. We conclude, that there is at
least one emulation of b, i.e., one execution B : J S K Z=⇒ Tb � J Sb K, starting with two
distributable executions such that one is (in its last step) in conflict with the emulation
of a in A : J S K Z=⇒ Ta � J Sa K and the other one is in conflict with the emulation of c
in C : J S K Z=⇒ Tc � J Sc K. In particular this means that also the two steps of B that
are in conflict with a step in A and a step in C are distributable.

Hence, there is no possibility to ensure that these two conflicts are decided consistently,
i.e., there is a maximal execution of J S K that emulates A but not C as well as a maximal
execution of J S K that emulates C but not A.

Note that Lemma 4.3.8 describes a partial deadlock. If the emulation of b and with it
the conflicts to the emulation of a and c are distributed, the encoded term can make
the wrong decision and, thus, result in one successful emulation (of a or c) but two
deadlocked emulation attempts of the respective other two steps. Since there is no ex-
ecution of E1 with a but not c (or vice versa), such an encoding cannot be considered
as a good encoding. Unfortunately, in the setting used so far, we cannot observe the
difference in the abstract behaviour of E1 and J E1 K. One reason for that are the
weak requirements on �. A success respecting bisimulation, in its simplest case, cannot
distinguish between more than three different cases: success is not reachable, success is
reachable in every execution, and success is reachable in some but not all executions.

To prove non-existence of distribution-preserving encodings, it suffices to require that
� is not trivial, e.g. by requiring that it distinguishes more than two observables. In
this case, we have to modify E1, i.e., choose a suitable instantiation of P1, P2, and the
observer, such that J Sa K, J Sb K, J Sc K, and J Sac K are pairwise distinguished by �,
where Sac is the result of performing a and c in S. Then, the maximal execution that
emulates a but not c contradicts operational correspondence.

Another way to show that there is no distribution-preserving encoding, is to make use
of compositionality. Note that the best known encoding from the asynchronous pi-calcu-

96

4.3. Transferring Absolute Results

lus into the (core) join-calculus in [FG96, Fou98] is not compositional, but consists of an
inner, compositional encoding surrounded by a fixed context—the implementation of so-
called firewalls—that is parameterised on the free names of the source term. Actually, it
is this surrounding context that reduces the degree of distributability, because different
steps on the same channel name have to synchronise on a firewall. The following result
captures this and similar encodings.

Theorem 4.3.9 (Separation Result). There exists no good and distributability-preser-
ving encoding from πa into J and also no distributability-preserving encoding from πa into
J that is good except for compositionality but consists of an inner compositional encoding
surrounded by a fixed context parametrised on the free names of the source term.

Proof. Assume the contrary. Then there is a good and distributability-preserving en-
coding of the S given by E1. By the proof of Lemma 4.3.8, there is a maximal execution
of J S K in that a but not c is emulated and success is reached, i.e., there is an execution
such that the emulation of a leads to success without the emulation of c.

For encodings as described above, there exists a context C : P2
J → PJ—the combina-

tion of the surrounding context and the context introduced by compositionality (Defi-
nition 3.3.1)—such that J S K = C(J S1 K , J S2 K), where S1 = y〈u〉 | y(x) .x and S2 =
y〈v〉 | y(x) . (x | x) | u.v.v.X. Let S′2 = y(x) . (x | x) | u.v.v.X. Since fn(S2) = fn(S′2),
also S1 | S′2 has to be translated by the same context, i.e., J S1 | S′2 K = C(J S1 K , J S′2 K).
Note that S and S1 | S′2 differ only by a capability necessary for step c, but step a and
b are still possible. We conclude that, if C(J S1 K , J S2 K) reaches some Ta ⇓X! without
the emulation of c, then C(J S1 K , J S′2 K) reaches at least some state T ′a such that T ′a ⇓X.
Hence, J S1 | S′2 K ⇓X but (S1 | S′2) 6⇓X which contradicts success sensitiveness.

4.3.3. Transferring Separation Results

In the following we show how the proof method behind the above separation result can
be transferred to other process calculi. Above, first an absolute result, i.e., a result that
does refer to the properties of a single language, is derived in Lemma 4.3.1. It clarifies
which property distinguishes the source and the target language, i.e., the reason why the
target language does not contain the synchronisation pattern M. Then, the existence of
the M in the source language is shown by an example which is used as counterexample
in the following. Lemma 4.3.8 uses properties of the target language—basically the
absolute result in Lemma 4.3.1—to show that any encoding has to split the conflict in
the counterexample. Finally, Theorem 4.3.9 reasons about some properties of the source
language to show that the split of the conflict in the encoded counterexample violates
the criteria of a good encoding. This argumentation provides a guideline for similar
considerations in other languages.

Accordingly, we consider two variants of CSP introduced in Section 2.1.3. First we
replace the source language πa by CSPin—a variant of CSP with input and output guards
and input guarded choice. Afterwards we replace the target language J by CSPno—a
subcalculus of CSPin, where choice is only internally branching. Note that these two
languages were already compared in [Bou88]. Here, we use them rather to explain how

97

4. Separating Languages

the separation result above is transferred than to prove new results. For simplicity, we
consider only compositional encodings in the following, but the results hold as well
for combinations of an inner compositional encoding surrounded by a fixed context
parametrised on the free names of the source terms as considered by Theorem 4.3.9.

Often, changing the source language is the easiest task, because it usually suffices to
show that the new source language is expressive enough to provide the counterexample
with the properties required by the absolute result. In the present case we have to show
that CSPin contains a M similar to E1 and to recycle the argumentation in the proof of
Theorem 4.3.9, thereby adapting it to the new source language. We gain the absolute
result and Lemma 4.3.8 for free, because its proofs does not use any information about
the source language except that it provides E1.

Example 4.3.10 (Non-Local M in CSPin). Consider

S = S1 ‖ (S2 ‖ S3) (E2)

with S, S1, S2, S3 ∈ Pin, where S1 = [(τ → STOP) � (b?→ STOP)], S2 = b! →
STOP, and S3 = [(b?→ STOP) � (τ → X)]. P can perform three different alterna-
tive steps modulo structural congruence:

Step a: S 7−→ Sa with Sa = STOP ‖ (S2 ‖ S3)

Step b: S 7−→ Sb with Sb = STOP ‖ (STOP ‖ STOP)

Step c: S 7−→ Sc with Sc = S1 ‖ (S2 ‖ X)

If the first step is either a or c then S can perform the respective other step as second
step. Moreover, the steps a and c are parallel and distributable but b is in conflict with
a and c. If b is not performed, any maximal execution of S has two steps and leads to
success. Hence, Sa ⇓X!, Sb 6⇓X, and Sc ⇓X!.

Since E2 and E1 have the same properties, we can show a separation result between
CSP and J similar to Theorem 4.3.9.

Theorem 4.3.11 (Separation Result). There exists no good and distributability-preser-
ving encoding from CSPin into J.

Proof. Assume the contrary. Because S of Example 4.3.10 and E1 have the same proper-
ties, Lemma 4.3.8 holds also for S. Thus, there is a good and distributability-preserving
encoding of S and there is a maximal execution of J S K in which a but not c is emulated
and success is reached, i.e., there is an execution such that the emulation of a leads to
success without the emulation of c.

Let S′3 = [(b?→ STOP) � (τ → STOP)]. Because of compositionality (Defini-
tion 3.3.1) and since fn(S3) = fn(S′3), the terms J S K and J S1 ‖ (S2 ‖ S′3) K differ only
by the encoding of S3. Note that S ⇓X and (S1 ‖ (S2 ‖ S′3)) 6⇓X, but the possibilities to
perform the steps a, b, and c remain unchanged. We conclude that, if J S K reaches some
Ta ⇓X! without the emulation of c, then J S1 ‖ (S2 ‖ S′3) K reaches as least some state T ′a
such that T ′a ⇓X. Hence, J S1 ‖ (S2 ‖ S′3) K ⇓X but (S1 ‖ (S2 ‖ S′3)) 6⇓X which contradicts
success sensitiveness.

98

4.3. Transferring Absolute Results

If we change the target language, we have to adapt the proof of Lemma 4.3.8. There-
fore, we have first to revise the absolute result. To do so, we show that, because of the
restrictive communication mechanism, without guards in choices all conflicts in CSPno

are between τ -steps of a single choice only. Since choice is not distributable, all conflicts
are local.

Lemma 4.3.12 (Absolute Result). All conflicts in CSPno are between τ -steps and are
local.

Proof. Two steps are in conflict if performing one step disables the other step by the
consumption of a capability necessary to perform the other step. In CSPno a reduction
step is either a τ -step or it reduces all unguarded capabilities of some subject. The later
case is possible only if all parallel processes have an unguarded prefix with that subject
and if there are not two unguarded output prefixes on this subject. Since all unguarded
capabilities of some subject are reduced, an alternative step is either again a τ -step or
a step on another subject. Without guards in choice it is not possible to remove an
output or input prefix of subject y in a step on subject x. Thus, the only chance for
conflicts is between τ -steps. The only way a τ -step may consume something necessary
for an alternative step is within a choice. Since in CSPno only internal choice is allowed,
i.e., all branches of a choice are guarded by τ , all conflicts in CSPno are between two
τ -steps reducing the same internal choice. Since choice is not distributable, such steps
are always local.

As a consequence, all M in CSPno are also local, because of the conflict between b and
a or c. Following the line of argumentation in Section 4.3.2, we show next that each
good encoding of an M has to split up the conflicts of b with the steps a and c. It turns
out that to adapt the proof of Lemma 4.3.8 it suffices to replace the argument on the
absolute result in Lemma 4.3.1 by our new absolute result above.

Lemma 4.3.13. Any good and distributability-preserving encoding from πa (or CSPin)
into CSPno has to split up the conflict in S given by E1 (or by E2) of b with a and c
such that there exists a maximal execution in J S K in which a is emulated but not c, and
vice versa.

Proof. The proof of Lemma 4.3.13 is similar to the proof of Lemma 4.3.8 above. It
suffices to replace the sentences

By Lemma 4.3.1, the conflicts between A, B, and C are such that B and
A as well as B and C compete for some output but, by Lemma 4.3.7, A and
C do not reduce the same outputs. Hence, the two conflicts cannot be ruled
out in a single step.

by

By Lemma 4.3.12, the conflicts between A, B, and C are such that B and
A as well as B and C compete for some τ -capabilities within the same choice.
Because the choice operator is not distributable but A and C are, the two
conflicts cannot be ruled out in a single step.

99

4. Separating Languages

Moreover, in case of E2, replace Ta, Tb, Tc ∈ PJ with Ta, Tb, Tc ∈ Pin.

In this case we gain the argumentation in the proof of Theorem 4.3.9 and Theo-
rem 4.3.11 for free.

Theorem 4.3.14 (Separation Result). There exists no good and distributability-preser-
ving encoding from πa (or CSPin) into CSPno.

Proof. In case of πa, the proof of Theorem 4.3.14 is similar to the proof of Theorem 4.3.9.
It suffices to replace Lemma 4.3.8 by Lemma 4.3.13.

Else if the source language is CSPin, the proof is similar to the proof of Theorem 4.3.11.
Again it suffices to replace Lemma 4.3.8 by Lemma 4.3.13.

4.4. Adapting an Absolute Result

In the last section we compare different process calculi by their ability to express the
synchronisation pattern M. We learn that the different synchronisation mechanisms of
the calculi lead to differences in the expressive power with respect to specific kinds of
conflicts. By Section 4.2 we also know that the restriction in the choice operator leads
to a separation result between πm and πs. Note that this separation result is based on
the difference examined by the confluence property in Section 4.1.1. Confluence in turn
basically describes the opposite of a conflict. Hence, in order to provide more intuitions
on this separation result and on the difference in the expressive power of πm and πs
with respect to conflicts, we prove once more a separation between these two calculi.
More precisely, we show that the calculi can be distinguished by a new synchronisation
pattern similar to the M but more complex. Not surprisingly, the new pattern combines
again conflicting and distributable steps. Interestingly, it reflects a well-known standard
problem in the area of distributed systems, namely the problem of the dining philosophers
[Dij71, LR81, Lyn96, HP01].

We start with a simple observation on the asynchronous pi-calculus. Without choice
each reduction step reduces exactly one output and one (replicated) input.

Observation 4.4.1. Each reduction step of πa reduces exactly one output capability
and exactly one (replicated) input capability, and all conflicts in πa are on steps on the
same link.

With separate choice a single step can reduce more than a single out- or input. But
if we consider steps between two distributable subprocesses then each reduction step
reduces only outputs in one subprocess and only inputs in the other. This reflects the
confluence property stated in [Pal03]: without mixed choice consuming an input cannot
immediately withdraw an output capability and vice versa.

Lemma 4.4.2 (Absolute Result). For all P ∈ Ps and for all P1, P2 ∈ Ps that are
distributable within P , a reduction step between P1 and P2 either reduces only output
guards in P1 and only (replicated) input guards in P2, or vice versa.

100

4.4. Adapting an Absolute Result

Proof. By the reduction semantics of πs in Figure 2.3, the derivation of each reduction
step results from exactly one axiom, i.e., there are no branches in derivation trees of
reduction steps in πs. Moreover, a step between two distributable processes, i.e., a step
that uses capabilities of two parallel composed processes, cannot result from Pi-Taum,s.
By the Axiom Pi-Comm,s and Pi-Repm,s an output guard within a sum and a (repli-
cated) input guard of another sum are reduced, but no other output or (replicated)
input guards are reduced outside the mentioned two sums. Remember that in πs it is
not allowed to place input and output guards within the same sum. Hence, if the step
reduces an output guard in P1 it has to reduce (replicated) input guards in P2 but can
neither reduce also input capabilities in P1 nor output capabilities in P2. The same holds
if we swap the roles of P1 and P2.

As a consequence, a chain of conflicting steps can build an M by alternating input and
output capabilities as visualised in Example 4.3.2. But, by this method, no circle of odd
length can be constructed as it is represented by the synchronisation pattern ?.

e

d

c

ba

Figure 4.5.: The Synchronisation Pattern ? in Petri nets.

Definition 4.4.3 (Synchronisation Pattern ?). Let 〈 P, 7−→ 〉 be a process calculus and
P ∈ P such that:

1. P can perform at least five alternative reduction steps a : P 7−→ Pa, b : P 7−→ Pb,
c : P 7−→ Pc, d : P 7−→ Pd, and e : P 7−→ Pe such that Pa, Pb, Pc, Pd, and Pe are
pairwise different.

2. Moreover, the steps a, b, c, d, and e form a circle such that a is in conflict with
b, b is in conflict with c, c is in conflict with d, d is in conflict with e, and e is in
conflict with a.

3. Finally, every pair of steps in { a, b, c, d, e } that is not in conflict is parallel in P .

In this case, we denote the process P as ?. The synchronisation pattern ? is visualised by
the Petri net in Figure 4.5. If all pairs of parallel steps in { a, b, c, d, e } are distributable
in P , then we call the ? non-local. Otherwise, the ? is called local.

101

4. Separating Languages

Note that for the pi-calculus the distinction between non-local and local ?—and also
between non-local and local M above—is not important, because every ? and every M is
non-local in the pi-calculus.

To see the connection of this synchronisation pattern with the dining philosophers
problem, consider the places in Figure 4.5 as the chopsticks of the philosophers, i.e., as
resources, and the transitions as eating operations, i.e., as steps consuming resources.
Each step needs mutually exclusive access to two resources and each resource is shared
among two subprocesses. If both resources are allocated simultaneously, eventually
exactly two steps are performed. As shown in the following, a fully distributable imple-
mentation of that pattern requires the expressive power of mixed choice.

By Example 4.3.2 we know that πs can express distributable conflicts, but as shown in
the following, πs cannot express distributable conflicts that are arranged in a circle of odd
degree greater than four as it is depicted by ?. To consider circles of degrees greater than
four is necessary because smaller circles do not have parallel, i.e., distributable, steps.
Hence, ? represents the smallest example of the problematic structure, but separation
can principally be proved for any such structure of odd degree and at least five steps. The
main argument is that πs can build chains of conflicts by alternating conflicts between
output and input capabilities, but without mixed choice no cycle of odd length can be
obtained in this way.

Lemma 4.4.4 (Absolute Result). There is no ? in πs.

Proof. Assume the contrary, i.e., assume there is some P ∈ Ps such that a : P 7−→ Pa,
b : P 7−→ Pb, c : P 7−→ Pc, d : P 7−→ Pd, and e : P 7−→ Pe for some Pa, Pb, Pc, Pd, Pe ∈ Ps
that are pairwise different such that a is in conflict with b, b is in conflict with c, c is
in conflict with d, d is in conflict with e, e is in conflict with a, and all pairs of steps
in { a, b, c, d, e } that are not in conflict are parallel in P . Note that a communication
step in πs always reduces a sum of output guarded subterms and a replicated input or a
sum of input guarded subterms. Accordingly, let ix be the replicated input or the sum
of input guards reduced by step x ∈ { a, b, c, d, e } in P and ox be the sum of output
guards reduced by step x, respectively.

Since a and c are distributable in P , by Lemma 3.4.7, P is distributable into the terms
P1, P2 ∈ Ps such that a is a step of P1 and c is a step of P2, i.e., there exists P ′1, P

′
2 ∈ Ps

and a sequence of names x̃ such that P ≡ (νx̃) (P1 | P2), Pa ≡ (νx̃) (P ′1 | P2), and
Pc ≡ (νx̃) (P1 | P ′2). Because b is in conflict with a and c, it reduces one capability in P1

and one capability in P2, i.e., b is a communication between P1 and P2. By Lemma 4.4.2,
b reduces either only input capabilities or only output capabilities in P1. Let us assume
that b reduces only output capabilities in P1. Since b is in conflict with a, it reduces
an unguarded output capability in oa = ob, i.e., a and b compete for outputs in the
same sum. Then, again by Lemma 4.4.2, the conflict between b and c comes from a
competition between capabilities in ib = ic in P2. b and d are distributable, but c is
in conflict with b and d. We know that the conflict between b and c comes from the
competition between capabilities in ib = ic. By the same argumentation as before, then c
and d compete for capabilities in oc = od. Furthermore, d and e compete for capabilities
in id = ie. And thus, e and a compete for oe = oa. But then e and a as well as a and

102

4.4. Adapting an Absolute Result

b compete for capabilities in oa. Because e and b are distributable and sums are not
distributable, they cannot reduce the same output guarded sum. This is a conflict. (By
the way, even if it would have been possible to distribute the output guarded sum, we
could apply Lemma 4.4.2 once more to derive the conflict as in the second case.)

Now, in order to capture the other case, let us assume that a and b compete for a
capability in ia = ib. Thus, b and c compete for a capability in ob = oc, c and d compete
for a capability in ic = id, d and e compete for a capability in od = oe, and e and a
compete for a capability in ie = ia. By Lemma 4.4.2, if a is in conflict with e and b, it
is not possible that a reduces an input capability in e as well as in b, i.e., again this is a
conflict.

The following example shows that πm, in contrast to πs, can express the synchronisa-
tion pattern ?. We use this example as running counterexample in the following.

Example 4.4.5 (? in πm). Consider a term S ∈ Pm such that

S = a+ b.S1 | b+ c.S2 | c+ d.S3 | d+ e.S4 | e+ a.S5 (E3)

for some S1, . . . , S5 ∈ { 0,X}. Then, S can perform the steps

Step a: S 7−→ Sa with Sa = b+ c.S2 | c+ d.S3 | d+ e.S4 | S5,

Step b: S 7−→ Sb with Sb = S1 | c+ d.S3 | d+ e.S4 | e+ a.S5,

Step c: S 7−→ Sc with Sc = a+ b.S1 | S2 | d+ e.S4 | e+ a.S5,

Step d: S 7−→ Sd with Sd = a+ b.S1 | b+ c.S2 | S3 | e+ a.S5, and

Step e: S 7−→ Se with Se = a+ b.S1 | b+ c.S2 | c+ d.S3 | S4.

Obviously, a is in conflict with b and e but parallel to c and d, b is in conflict with c but
parallel to d and e, c is in conflict with d but parallel to e, and d is in conflict with e.
Hence, by Definition 4.4.3, S is a non-local ?.

Unfortunately the same cyclic dependencies between the conflicts in ? that are used
in the proof of Lemma 4.4.4 prevent us from initialising S1, . . . , S5 such that Sx ⇓X! and
Sy 6⇓X for each pair of conflicting steps x and y. Note that in the proof of Lemma 4.3.8
we use the properties Sa ⇓X!, Sb 6⇓X, and Sc ⇓X! to ensure that the conflict of b with a
and c has to be translated into a conflict of B : J S K Z=⇒ Tb � J Sb K with A : J S K Z=⇒
Ta � J Sa K and C : J S K Z=⇒ Tc � J Sc K. Here we use compositionality and the fact
that initialising Si for 1 ≤ i ≤ 5 by either Xor 0 has no consequence on the surrounding
contexts in the encoding, to show that the encoding has to preserve also the conflicts in
E3.

Lemma 4.4.6. Any good and distributability-preserving encoding J · K from πm into πs
has to translate the conflicts in S given by E3 into conflicts of the corresponding emula-
tions.

103

4. Separating Languages

Proof. By operational completeness (Definition 3.3.4), all five steps of S have to be e-
mulated in J S K, i.e., there exists Ta, Tb, Tc, Td, Te ∈ Ps such that J S K Z=⇒ Tx � J Sx K
for all x ∈ { a, b, c, d, e }. Because J · K preserves distributability, for each pair of steps
x and y that are parallel in S, the emulations X : J S K Z=⇒ Tx and Y : J S K Z=⇒ Ty
such that Tx � J Sx K and Ty � J Sy K are distributable. Note that X and Y refer to the
upper case variants of x and y, respectively.

In Example 4.4.5 we do not initialise S1, . . . , S5. Now, we consider all variants of S,
where S1, . . . , S5 ∈ { 0,X}, i.e., each of these terms is either chosen to be empty or
to present an unguarded occurrence of success. Since n(X) = n(0) = ∅ and because of
compositionality (Definition 3.3.1), the encodings of these variants of S differ only by the
encodings of S1, . . . , S5. The remaining operators and, hence, the remaining term has to
be translated in exactly the same way. Accordingly, the encoding of a term S1, . . . , S5
cannot influence the emulation of the steps of S.

Thus, for each triple of steps x, y, z ∈ { a, b, c, d, e } in S such that y is in conflict with
x and z but x and z are parallel, we can choose Sf(x) = X= Sf(z) and initialise all other
terms in { S1, . . . , S5 } by 0, where

f (u) =



1, if x = b

2, if x = c

3, if x = d

4, if x = e

5, if x = a

for all u ∈ { a, b, c, d, e }, such that Sf(x) ⇓X! and Sf(z) ⇓X! but Sf(y) 6⇓X. Then, also
Sx ⇓X! and Sz ⇓X! but Sy 6⇓X. Now we can proceed as in the proof of Lemma 4.3.8.
Because S has no infinite execution and J · K reflects divergence, J S K has no infinite
execution. By success sensitiveness, Lemma 3.3.9 and 3.3.10, and because � is success
respecting, we have Tx ⇓X!, Ty 6⇓X, Tz ⇓X!, and Tx 6� Ty 6� Tz. We conclude that, for all
Tx, Ty, Tz ∈ PJ such that Tx � J Sx K, Ty � J Sy K, and Tz � J Sz K and for all sequences
X : J S K Z=⇒ Tx, Y : J S K Z=⇒ Ty, and Z : J S K Z=⇒ Tz, there is a conflict between
a step of X and a step of Y , and there is a conflict between a step of Y and a step of
Z.

Similar to Section 4.3.2, we show that each good encoding of the counterexample
requires that a conflict has to be distributed.

Lemma 4.4.7. Any good and distributability-preserving encoding J · K from πm into πs
has to split up a least one of the conflicts in S given by E3 such that there exists a
maximal execution in J S K in which only one source term step is emulated.

Proof. By operational completeness (Definition 3.3.4), all five steps of S have to be emu-
lated in J S K, i.e., there exists Ta, Tb, Tc, Td, Te ∈ Ps such that X : J S K Z=⇒ Tx � J Sx K
for all x ∈ { a, b, c, d, e }, where X is the upper case variant of x. By Lemma 4.4.6, for all
Ta, Tb, Tc, Td, Te ∈ Ps and all x ∈ { a, b, c, d, e } such that Tx � J Sx K, there is a conflict

104

4.4. Adapting an Absolute Result

between a step of the following pairs of emulations: A and B, B and C, C and D, D
and E, and E and A.

Since J · K preserves distributability (Definition 3.4.3) and by Lemma 3.4.3, each pair
of distributable steps in S has to be translated into emulations that are distributable
within J S K. Let X,Y, Z ∈ { A,B,C,D,E } be such that X and Z are distributable
within J S K but Y is in conflict with X as well as Z. By Lemma 3.4.7, this implies
that J S K is distributable into T1, T1 ∈ Ps such that X is an execution of T1 and Z is an
execution of T2. Since Y is in conflict with X and Z and because all three emulations are
executions of J S K, there is one step of Y that is in conflict with one step of X and there
is one (possibly the same) step of Y that is in conflict with one step of Z. Moreover,
since X and Z are distributable, if a single step of Y is in conflict with X as well as Z
then this step is a communication between T1 and T2.

Assume that for all such combinations X, Y , and Z, the conflicts between Y and X or
Z are ruled out by a single step of Y , i.e., both conflicts are ruled out by a communication
step between some capabilities of X and some capabilities of Z. By Lemma 4.4.2, then
this step reduces only input capabilities in one of the executions X and Z and only
output capabilities in the respective other, i.e., X and Y compete either only for input
or only for output capabilities and Y and Z compete for the respective other kind of
capabilities. Without loss of generality let us assume that A and B compete for some
output capabilities and, thus, B and C compete for some input capabilities, C and D
compete for some output capabilities, D and E compete for some input capabilities,
E and A compete for some output capabilities, and A and B compete for some input
capabilities. This is a contradiction, because, by Lemma 4.4.2, A and B cannot compete
for both input and output capabilities.

We conclude that there is at least one triple of emulations X, Y , and Z such that
the conflict of Y with X and with Z results from two different steps in Y . Because
X and Z are distributable, the reduction steps of X that leads to the conflicting step
with Y and the reduction steps of Z that leads to the conflicting step with Y are
distributable. We conclude, that there is at least one emulation of y, i.e., one execution
Y : J S K Z=⇒ Ty � J Sy K, starting with two distributable executions such that one is (in
its last step) in conflict with the emulation of x in X : J S K Z=⇒ Tx � J Sx K and the
other one is in conflict with the emulation of z in Z : J S K Z=⇒ Tz � J Sz K. In particular
this means that also the two steps of Y that are in conflict with a step in X and a step
in Z are distributable. Hence, there is no possibility to ensure that these two conflicts
are decided consistently, i.e., there is a maximal execution of J S K that emulates X but
neither Y nor Z.

In the set { A,B,C,D,E } there are—apart from X, Y , and Z—two remaining execu-
tions. One of them, say X ′, is in conflict with X and the other one, say Z ′, is in conflict
with Z. Since X is emulated successfully, X ′ cannot be emulated. Moreover, note that
Y and Z ′ are distributable. Thus, also Z ′ and the partial execution of Y that leads to
the conflict with Z are distributable. Moreover, also the step of Y that already rules
out Z cannot be in conflict with a step of Z ′. Thus, although the successful completion
of Z is already ruled out by the conflict with Y , there is some step of Z left, that is in
conflict with one step in Z ′. Hence, the conflict between Z and Z ′ cannot be ruled out

105

4. Separating Languages

by the partial execution described so far that leads to the emulation of X but forbids to
complete the emulations of X ′, Y , and Z. Thus, it cannot be avoided that Z wins this
conflict, i.e., that also Z ′ cannot be completed. We conclude that there is a maximal
execution of J S K such that only one of the five source term steps of S is emulated.

Note that each maximal execution of E3 consists of exactly two distributable steps.
So, Lemma 4.4.7 leads to a conflict with the requirements on a good and distributability-
preserving encoding.

Theorem 4.4.8 (Separation Result). There exists no good and distributability-preser-
ving encoding from πm into πs.

Proof. Assume the contrary, i.e., there is a good and distributability-preserving encoding
J · K from πm into πs, and, thus, also of S given by E3. Since S has no infinite executions
and because J · K is divergence reflecting, J S K has no infinite executions. By Lemma 4.4.7
there exists a maximal execution in J S K in which only one source term step is emulated.
Let us denote this step by x ∈ { a, b, c, d, e }. Hence, J S K Z=⇒ Tx Z=⇒ T with T 67−→ for
some T ∈ Ps, because there is no infinite execution. Moreover, by operational soundness,
Tx � T , because after the emulation of x no other step is emulated. Note that since we
do not fix S1, . . . , S5 in Example 4.4.5 and by the argumentation in the Lemma 4.4.6 and
4.4.7, the above conditions hold for all variants of S such that S1, . . . , S5 ∈ { 0,X}. Let
us consider the case that Sf(x) = 0 = Sf(y) but all other terms in { S1, . . . , S5 } are equal
to X, where f is the function defined in the proof of Lemma 4.4.6 and y is a step that is
parallel to x within S. Then, Sx ⇓X but Sx 6⇓X!, i.e., the step x may lead to success (in
case the next step is not y) or it does not lead to success (in case the next step is y).
By success sensitiveness and because � is success sensitive, then also Tx ⇓X and T ⇓X
but Tx 6⇓X! and T 6⇓X!. But this contradicts the property that T 67−→, because a term in
πs that cannot perform a step either already has an unguarded occurrence of success or
can never reach some. We conclude that there cannot be such an encoding.

Note that we could derive the same result if, as in Section 4.3.2, we allow for a not
compositional encoding that consists of an inner compositional encoding surrounded by
a fixed context parametrised on the free names of the source term. Moreover, since the
synchronisation pattern ? includes the pattern M—more precisely it consists of three
cyclic overlapping M—separation results derived from these two patterns (with respect
to the same quality criteria) automatically lead to a hierarchy. Here, by Theorem 4.3.9,
Theorem 4.3.14, and Theorem 4.4.8, there exists no good and distributability-preserving
encoding from πm into J or CSPno.

Corollary 4.4.9 (Separation Result). There exists no good and distributability-preser-
ving encoding from πm into J or CSPno.

4.5. Summary and Related Work

Within this chapter we showed the relevance of absolute results for the derivation of
translational separation results. We showed how absolute results can be derived from

106

4.5. Summary and Related Work

a syntactical difference between the considered calculi (Section 4.1.1), from standard
problems (Section 4.1.2), by generalising another absolute result (Section 4.1.3), from
problems used in other formalisms (Section 4.3.1), by transferring another absolute result
on other process calculi (Section 4.3.3), and by adaptation of another absolute result
(Section 4.4). In Section 4.2 we showed how different translational separation results
with respect to different quality criteria can be obtained from a single absolute result. In
particular the first three separation results in Section 4.2.1 reveal a general proof schema
of translational separation results on top of absolute results, because in these cases the
absolute result is well-suited for the considered sets of quality criteria. All these proofs
argument by contradiction. Then:

1. A counterexample is derived from the positive absolute result, i.e., an example
illuminating how the problem considered in the absolute result is solved in the
source language is chosen as counterexample in the separation proof.

2. It is shown how the main properties of the counterexample, i.e., the properties that
allow for a solution of the considered problem, are preserved by the quality criteria.
The easier this is possible the better the respective absolute result is suited for the
considered setting.

3. The negative absolute result is applied, i.e., the proof that the respective problem
cannot be solved in the target language, to construct a contradiction with the
preserved properties of the counterexample.

Also the separation results in Section 4.3 and Section 4.4 follow the same line of ar-
gumentation. Absolute results alone can neither be used to show that two languages
have the same expressive power nor that a language is strictly more expressive than
another, because they supply only an isolated single result with respect to a single prob-
lem instance and without any consequence to other not related problems. However, as
we observe in the above separation results and other separation results in the literature
(as e.g. [Bou88, HP01, CM03, Pal03, VPP07, Gor08a, Gor09, FL10, Gor10b, LV10]) we
can benefit from absolute results for the derivation of translational separation results.
Absolute results, in contrast to translational results, do not rely on any notion of quality
criteria and are thus applicable in different settings. Moreover, they often reveal an
additional intuition on the underlying difference between two languages and can guide
a separation proof.

In Section 4.1 we proved that πm is strictly more expressive than πs by means of
an absolute separation result about the ability to break initial symmetries. This result
is independent of any notion of uniformity or reasonableness, i.e., does not rely on
any set of quality criteria. Note that this absolute separation result implies that if
there exists a good encoding from πm into πs then it has to be the encoding itself that
breaks initial source term symmetries. By choosing the problem of breaking initial
symmetries instead of leader election, we significantly weaken the underlying definition
of symmetry in comparison to [Pal03]. Moreover, we could still apply our absolute
separation result to derive that there is no uniform and reasonable encoding from πm

107

4. Separating Languages

into πs (Section 4.2.1) considering three different definitions of reasonableness. It turns
out that the concentration on the underlying problem of breaking initial symmetries
allows us to use counterexamples different from leader election in translational separation
results. Likewise, the separation result in the setting of [Gor10b] can be derived by
our absolute result as well. Besides that, our absolute separation result allows us to
weaken the definition of uniformity in comparison to the translational separation result
of [Pal03], and also to weaken the definition of reasonableness in comparison to the
translational separation result in the first setting of [Gor10b]. Moreover, considering our
last translational separation result, we can even withdraw the assumption of divergence
reflection. We conclude that the problem of breaking initial symmetries is better suited
to obtain a translational separation result between πm and πs than the leader election
problem originally used in [Pal03] to separate these two languages. Moreover, we prove
that a difference between the expressive power of mixed and separated choice cannot
only be derived with respect to the homomorphic translation of the parallel operator
but also with respect to the weaker requirement on the preservation of distributability
and that this difference forbids also for encodings that reflect the causal semantics of
the source.

In order to clarify the difference between the respective calculi we presented a new sep-
aration result between the asynchronous pi-calculus and the join-calculus in Section 4.3
and between πm and πs in Section 4.4. The first results shows why the join-calculus
can be considered as distributable, while the asynchronous pi-calculus is in general not
distributable. The later result sheds more light on the difference in the expressive power
of mixed choice compared to separate choice. To do so, we presented two generally
formulated synchronisation patterns that expose the power of different synchronisation
mechanisms in the pi-calculus family but can be used in a similar manner to reason
about and to classify synchronisation mechanisms in other process calculi. We showed
that absolute results based on synchronisation patterns reveal a proof method that is in
general well suited to reason about the expressive power of synchronisation mechanisms
by showing how the first result can be transferred with little effort to compare other
source and target languages.

Note that all presented separation results between the different variants of the pi-cal-
culus remain valid if we add the match prefix to the target language. In particular, also
π=s can not break symmetries, there is no ? in π=s , and there exists no good encoding
from πm into π=s that translates the parallel operator homomorphically or preserves
distributability.

As already mentioned the relationship between the synchronous and the asynchronous
pi-calculus was first analysed in [Pal03]. Later on, [VPP07] review this result and extend
the consideration of leader election to a general proof technique for the comparison of
process calculi. However, as already [Pal03], they rely on the homomorphic translation
of the parallel operator to measure the quality of translational results with respect to
the preservation of distribution. As discussed in Section 3.4, we consider this criterion
as too strict for separation results. Also [CCP07] present a separation result between
πm and πs. In contrast to [Pal03, VPP07] they do not require that the parallel operator
is translated homomorphically, but they consider must-testing with an explicit observer

108

4.5. Summary and Related Work

o. More precisely, they require P must o implies J P K must J o K. From that they derive
J P | o K = J P K | J o K. We assume that the negative result is based on this introduction
of homomorphy in the consideration of the process and the observer. Note that within the
framework of Gorla [Gor10b] must-testing can also be applied with an explicit observer.
But in general J P | o K = J P K | J o K does not hold. Instead compositionality only
implies that J P | o K = CN| (J P K , J o K), where CN| is the context that is introduced in

order to encode the parallel operator and N = fn(P) ∪ fn(o).
Encodings of choice, i.e., positive translational results between πm, πs, and πa, are

considered by Nestmann in [Nes00]. We discuss the positive result between πs and πa in
the following chapter. Moreover, Nestmann presents some candidates for an encoding
from πm into πa and shows that each either violates compositionality or divergence
reflection. However, the encodings presented in [Nes00] are the basis for our encoding
from πm into πa in the following chapter. Note that the expressive power of choice is
also considered in other process calculi (see e.g. [BG95] for CCS or [Bou88] for CSP).

Also [FL10] compares different variants of the pi-calculus. In particular, they present
another proof for the negative result between πm and πs. In contrast to [Gor10b] and
the results presented here, they use a stricter notion of operational correspondence that
does not allow for intermediate states or partial commitment.

109

5. The Design of Encodings

Mixed choice is a widely-used primitive in process calculi. It is interesting, as it allows
to break symmetries in distributed process networks. The main purpose of this chapter
is the presentation of a good encoding of mixed choice in the context of the pi-calculus.

It is well known that there is a good encoding from the choice-free synchronous pi-
calculus into its asynchronous variant [Bou92, HT91, Hon92a]. The results in [Pal03],
[Gor10b], and (the first half of) Chapter 4 also tell us that there is no good encoding from
the synchronous pi-calculus including mixed choice (πm) into its asynchronous fragment
without choice (πa) if the encoding translates the parallel operator homomorphically.
Moreover, Section 4.1.3 and Section 4.2.1 tell us that the main reason for these separa-
tion results boils down to the fact that the full pi-calculus can break merely syntactic
symmetries, whereas its asynchronous variant cannot and if there is a good encoding of
mixed choice then this encoding has to break initial source term symmetries itself. Find-
ing a reasonable, divergence reflecting encoding of mixed choice is an open problem. An
“almost reasonable” divergent encoding was already presented in [Nes00]. It shows that,
if divergence reflection is not required, the encoding can ensure that all undesired sym-
metric executions are divergent such that it is not necessary for the encoding function
to break symmetry. [Nes00] also shows that symmetry can be broken globally by means
of some centralised artefacts, which of course violate compositionality. In the following
we present a symmetry breaking encoding by abandoning the requirement on the homo-
morphic translation of the parallel operator. The result is an encoding from πm into π=a
that meets all five of Gorla’s criteria1 and that exploits the parallel structure of source
terms to break symmetries locally. So, merely considering the (abstract) behaviour of
terms, the full pi-calculus and its asynchronous variant have the same expressive power.

We start with the discussion of the encoding J · Ksa from πs into πa that was introduced
in [Nes00]. This encoding serves as starting point for the derivation of our new encoding.
As already stated in [Nes96] there are several good reasons for dividing process calculus
encodings into several phases. Accordingly, we extend J · Ksa first to an intermediate
encoding in Section 5.2.2 from πm into πp (an asynchronous variant of the pi-calculus
augmented with polyadic synchronisation [CM03]) before we present the final encoding
in Section 5.2.4. More precisely, we use the expressive power of polyadic synchronisation
to abstract away from some technical details of the final encoding. Then, we further
extend and refine the encoding to get rid of the introduced polyadic synchronisation,
i.e., to obtain an encoding into the less expressive target language π=a . Moreover, in
Section 5.3 we present a second attempt for a good encoding from πm into πa that results

1Note that this encoding is neither prompt nor is the assumed equivalence � strict, so the similar
separation results of [Gor10b] do not apply here.

111

5. The Design of Encodings

from another idea to circumvent deadlocks. In Section 5.4 we discuss the composition
of two good encodings.

5.1. Concept and Implementation

An encoding is a function from the process terms of a source language into the process
terms of a target language, i.e., it is a formal mapping from the syntax of the source
language into the syntax of the target language. Hence, given this formal mapping,
it should be self-explanatory if the source and the target language are well-known or
exhaustively explained. From a mathematical point of view this is surely correct and
hence it should suffice to present an encoding by providing this function. However,
encodings quickly become huge and complex. Thus, presenting just their functional
representation is usually unsatisfactory.

J (νx)P Ksa , (νϕs
a(x)) J P Ksa

J P | Q Ksa , J P Ksa | J Q Ksat∑
i∈I

πi.Pi

|s

a

, (νl)

(
l〈>〉 |

∏
i∈I

J πi.Pi Ksa

)
J τ.P Ksa , test l then

(
l〈⊥〉 | J P Ksa

)
else l〈⊥〉

J y〈z〉 .P Ksa , (νs)
(
ϕs
a(y)〈l , s, ϕs

a(z)〉 | s. J P Ksa
)

J y(x) .P Ksa , (νr)
(
r | r?.ϕs

a(y)
(
l ′, s, ϕs

a(x)
)
.

test l then test l ′ then l〈⊥〉 | l ′〈⊥〉 | s | J P Ksa
else l〈>〉 | l ′〈⊥〉 | r

else l〈⊥〉 | ϕs
a(y)

〈
l ′, s, ϕs

a(x)
〉)

J y?(x) .P Ksa , ϕs
a(y)?(l , s, ϕs

a(x)) .test l then l〈⊥〉 | s | J P Ksa else l〈⊥〉
J XKsa , X

Figure 5.1.: An Encoding from πs into πa.

Consider, as an example, the encoding J · Ksa from the pi-calculus with separate choice
(πs) into the asynchronous pi-calculus without choice (πa) in Figure 5.1. It is (a slightly
adapted version of an encoding) presented by Nestmann in [Nes00]. Note that this
encoding is the simplest encoding considered within this chapter. Nonetheless, its pre-
sentation in Figure 5.1 is far from being self-explanatory. Therefore it is standard to
explain the intuition of an encoding and its underlying ideas. Often also its development
is illustrated by presenting problems of its design, showing wrong tracks, and explaining
the idea behind solutions to overcome these problems. If there is enough space, often
also examples of encoded terms and their behaviour are presented, to visualise the main
idea of the encoding function. Sometimes abbreviations are introduced or intermediate

112

5.1. Concept and Implementation

languages are used, to ease its presentation as well as its proof of correctness. An atten-
tive reader may have noticed the construct test l then test l′ then . . . else . . . else . . .,
which is of course not part of the syntax of πa, as well as the symbols > and ⊥. Indeed,
they are abbreviations introduced in [Nes96, Nes00] to visualise the main idea of the
encoding function and ease its presentation. Moreover, in [Nes96] these abbreviations
are rendered into an intermediate language to simplify the proof of correctness of encod-
ings. Of course, the proof of its correctness always reveals many information about the
underlying concept of an encoding function.

Within this thesis we deliberately distinguish between the intuition or idea of an
encoding, denoted as its concept, and the implementation of this concept within the
encoding function as terms of the target language. We do so because this distinction does
not only help to explain how the encoding works, but also significantly eases to extend
an encoding, to adapt it, or to transfer it to other source or target languages. Note that
the encoding J · Ksa above builds the basis of the main contribution of this chapter: an
encoding of mixed choice that satisfies all criteria of the general framework in Section 3.3.
Because of that, we review the presentation of J · Ksa in [Nes00]. For this, we present its
underlying concept in Section 5.1.1, show how this concept is implemented to achieve
J · Ksa and explain the abbreviations introduced for this encoding in Section 5.1.2, and
visualise the main idea of J · Ksa on a small example in Section 5.1.3. For a more exhaustive
explanation and analysis of this encoding including a discussion of its properties and on
the problems of its development we refer to [Nes00]. There, also the correctness of this
encoding with respect to divergence reflection and operational correspondence as well
as a full abstraction result is proved. However, in order to compare this encoding to
the encodings derived in this thesis and to obtain a hierarchy in Section 7.2, we prove
correctness of J · Ksa with respect to the criteria of Section 3.3 in Chapter 6.

5.1.1. Concept of the Encoding

The encoding in Figure 5.1 is an encoding from πs—a synchronous variant of the pi-
calculus with separate choice—into πa—the asynchronous pi-calculus without choice.
Because of that, we denote it as J · Ksa. There are two syntactical differences between
πs and πa. Since πs is a synchronous variant of the pi-calculus it allows for output
guards. By contrast, in πa outputs can only guard the empty process. However, as
already shown by [HT91] and [Bou92], this syntactical restriction does not influence
the expressive power of the calculi. The second syntactical difference is the absence of
choice in πa. Although this difference is much more crucial, the good encoding J · Ksa
shows that also this difference has little effect on the expressive power. To compensate
for the lacking choice operator in πa, J · Ksa places (the encodings of) the branches of
a source term sum in parallel. A locking mechanism ensures that nonetheless only a
single of this now parallel arranged branches can be chosen to perform a step or, more
precisely, to emulate a source term step.

Accordingly, the encoding introduces a so-called sum lock l carrying a boolean value
for each sum. In the following we denote such a lock with a boolean value as boolean
lock. Initially exactly one positive instantiation of this lock is provided to ensure that at

113

5. The Design of Encodings

most one of its branches can be chosen. Consequently, the emulation of a source term
step—which reduces one or two sums—turns the positive instantiation of the respective
sum locks into negative instantiations to indicate that no further branch of these sums
can be used in the emulation of source term steps. As part of such an emulation, the
encoding has to check the values of the sum locks of the respective encoded sender and
encoded receiver. If both are positive, i.e., if the encoded sender and the encoded receiver
belong to two encoded sums that are not yet used within an emulation, the emulation
is completed and both sum locks are set to false instantiations. Else, the emulation is
aborted.

Analysing the rules Pi-Comm,s and Pi-Repm,s (Figure 2.3) of the reduction semantics
of πs, we observe that a communication with a branch of a sum automatically removes
the other branches of that sum. The negative instantiations of sum locks disable other
branches of a sum, but they do not immediately withdraw these branches. They remain
as junk. However, the negative instantiation of the sum lock signalises that such a
remainder is junk and, hence, the encoding can ensure that these parts cannot contribute
to the abstract behaviour of encoded terms, i.e., are not used in further emulations. To
check whether a sum lock is still positive or negative, the encoding has to introduce
additional steps, i.e., single source term steps are translated into sequences of steps.

Apart from boolean locks to translate sums, J · Ksa introduces sender locks s. They are
used to circumvent the first syntactical difference between πs and πa, i.e., to compensate
the use of outputs as guards. Instead of an output, the encoded continuation of a sender
is guarded by an input on s. If the encoding was able to successfully emulate a step
on the respective source term sender, it provides an instantiation of the sender lock,
i.e., an output on s. An additional target term step then unguards the encoding of the
continuation.

5.1.2. Implementing the Concept

First note that the explanation above does neither talk about how to translate restriction
nor parallel composition. In fact, both are simply translated homomorphically in J · Ksa.
The same holds for X, which is not considered in [Nes00] but added here in order to
reason about the quality of this encoding within the general framework of Gorla.

The translation of the choice operator

t∑
i∈I

πi.Pi

|s

a

, (νl)

(
l〈>〉 |

∏
i∈I

J πi.Pi Ksa

)

introduces a sum lock with a positive instantiation, where
∏
i∈I J πi.Pi Ksa denotes the

parallel composition of the encodings of all branches πi.Pi in the respective sum. As
already mentioned, boolean values as the > above are not part of the asynchronous
pi-calculus. The same holds for the test-constructs used by the encoding J · Ksa to check
whether an instantiation of a sum lock is positive or negative. Of course, the pi-calculus
and also its asynchronous fragment is expressive enough to implement booleans and their
tests. Accordingly, [Nes96, Nes00] introduce both as abbreviations of πa-terms, which

114

5.1. Concept and Implementation

ensure that J · Ksa is indeed an encoding into πa. Because these abbreviations significantly
improve readability of the encoding, we use them also in the extensions J · Kmp and J · Kma
of this encoding in the next sections and do usually not unfold them. Their formal
definition is given below.

In πs each branch of a choice is guarded by an output prefix, an input prefix, or by τ .
The encoding of output prefixes

J y〈z〉 .P Ksa , (νs)
(
ϕs
a(y)〈l , s, ϕs

a(z)〉 | s. J P Ksa
)

introduces a sender lock s to guard the encoded continuation and augments the source
term output y〈z〉 by additional information about the corresponding sum and sender
lock. Note that J · Ksa should be an encoding into πa, which is a monadic calculus.
Hence, an output transmitting three values as above is not allowed. However, within
the presented encoding functions in the following, we treat the target language πa as if
it allows for polyadic communication. More precisely, we allow asynchronous links to
carry any number of values from zero to seven, of course under the requirement that
within each πa-term no link name is used twice with different multiplicities. Note that
these polyadic actions are again just abbreviations of monadic actions, i.e., they can be
simply translated by a standard encoding as given in [SW01]. We discuss that issue
in Section 5.4. For the moment, we silently use the polyadic versions of asynchronous
pi-calculus here and in the following sections.

In contrast to [Nes00], we augment the encoding J · Ksa by a renaming policy to reserve
the names l , l ′ for sum locks, s for sender locks, r for receiver locks explained below, and
t , f to implement boolean values. So, the renaming policy of this encoding, denoted by
ϕs
a, is some arbitrary injective substitution such that ∀n ∈ N . ϕs

a(n) ∩ (N ∪N ′) = ∅,
where N = { l , l′, s, r , t , f } and N ′ contains some auxiliary names used to unfold the
polyadic communications in Section 5.4. Note that the name l appears free in the
encoding of guarded terms. It is reserved by the renaming policy, i.e., different from all
translations of source term names, and bound by the encoding of a surrounding sum.
Since there are no guarded terms beyond sums, in all encoded terms all occurrences of
l are restricted. In [Nes00] indices on the encoding functions were used to capture the
name l as parameter of the encoding function and, silently, it was required that the
names in N are different from all source term names. The renaming policy turns the
use of l as parameter superfluous and makes the convention on the distinction between
source term names and the names in N ∪N ′ explicit.

In J · Ksa the receivers take control over the sum locks. If there are a source term sender
and receiver on the same channel name, the translated sender sends the names of its
sum lock and its sender lock s to the receiver. The receiver then checks for its own and
the sum lock of the sender. If both locks are instantiated with true then he instantiates
the sender lock and performs its subprocess. Moreover, both sum locks are instantiated
with ⊥ such that no other branch of the respective sums can be used for communication

115

5. The Design of Encodings

and the sender lock is instantiated to enable the unguarding of the senders continuation.

J y(x) .P Ksa , (νr)
(
r | r?.ϕs

a(y)
(
l ′, s, ϕs

a(x)
)
.

test l then test l ′ then l〈⊥〉 | l ′〈⊥〉 | s | J P Ksa
else l〈>〉 | l ′〈⊥〉 | r

else l〈⊥〉 | ϕs
a(y)

〈
l ′, s, ϕs

a(x)
〉)

The receiver lock r allows to restart a test on the corresponding receiver if a former
test failed due to a negative instantiation of the sender sum lock. To do so, in this
case, the receiver lock is reinstantiated. To allow the first test it is initially instantiated.
Moreover it blocks the search of a matching output partner for communication to avoid
multiple concurrent tests on the same encoded input guarded term. The receiver lock
is not reinstantiated in the case of a successful completion of a test nor of a test failing
due to a negative instantiation of the sum lock of the receiver because, in these cases, a
corresponding test will never succeed any more. Note that in each case the completion
of a test either reinstantiates the instantiations of all consumed sum locks or turns them
to negative instantiations. This ensures that later tests are possible, i.e., that there is
always eventually exactly one instantiation of each sum lock. Of course it is possible
that some sender lock is never instantiated. In that case it blocks the continuation of
the respective output for ever.

We naturally extend this encoding of guards to translate the τ prefix, which was not
considered in [Nes00]. Branches of choice guarded by τ can reduce without a communi-
cation partner. Thus, it suffices to check the corresponding sum lock.

The translation of replicated inputs

J y?(x) .P Ksa , ϕs
a(y)?(l , s, ϕs

a(x)) .test l then l〈⊥〉 | s | J P Ksa else l〈⊥〉

is similar to the translation of input guards. In contrast to them, replicated inputs can
be used arbitrarily often. Hence, only the sum lock of the sender is checked.

Note that in the case of an empty sum (i.e., I = ∅) the encoding yields (νl)
(
l〈>〉 | 0

)
which is semantically equivalent to 0. With that 0 is translated semantically equal to 0.

Locks, Booleans, and the test-construct. A lock is a special channel used by the
encoding function to block some further behaviour. Therefore the term we want to
block is guarded by an input on the lock channel such that the term is blocked until
an output on this channel is available. In the encoding presented above there are two
kinds of these simple locks: receiver locks, denoted by r , and sender locks, denoted by
s. In both cases, the locks carry no values. Hence, they can be implemented simply
by channels. The existence or absence of a respective output message on that channel
decides whether the term tucked away behind the lock can be unguarded, i.e., can be
used to emulate further behaviour.

In contrast, boolean locks are channels on which only the boolean values > (true) or ⊥
(false) are transmitted. An output over a boolean lock with value > is called a positive
instantiation of the respective lock while sending ⊥ is denoted as negative instantiation.

116

5.1. Concept and Implementation

At the receiving end of such a channel, the boolean value can be used to make a binary
decision, which is done here within a test-construct. The test-construct and accordingly
positive and negative instantiations of boolean locks are implemented in [Nes96, NP00]
using restriction and the order of transmitted values.

Definition 5.1.1 (Booleans and Tests). The test operator and positive or negative
instantiations of boolean locks, denoted by l〈>〉 and l〈⊥〉 for a boolean lock l, are
abbreviations of the terms:

l〈>〉 , l(t , f) .t

l〈⊥〉 , l(t , f) .f

test l then P else Q , (νt , f)
(
l〈t , f 〉 | t .P | f .Q

)
for some t , f /∈ fn(P | Q)

We observe that the boolean values > and ⊥ are realised by a pair of links without
parameters. Both are itself locks. The lock t representing > guards the then-case
P , while the else-case Q is guarded by f representing the value ⊥. Thus, the test-
construct operates as guard for its subterms P and Q. Accordingly, a boolean lock can
be considered as a lock with two parameters and the distinction between true and false
is given by the order of these parameters. By using the renaming policy (compare to
Definition 3.3.2), we can omit the condition on the freshness of t and f in the Definition
of test-constructs. The renaming policy ϕs

a reserves the names t and f to implement the
boolean values > and ⊥.

5.1.3. Encoding Example

Finally, let us consider the term

S = (y〈z1〉 .P1 + y〈z2〉 .P2) | (y(x) .P3)

of the source language πs as an example. It encoding is given by:

J S Ksa = J y〈z1〉 .P1 + y〈z2〉 .P2 Ksa | J y(x) .P3 Ksa
= (νl)

(
l〈>〉 | J y〈z1〉 .P1 Ksa | J y〈z2〉 .P2 Ksa

)
| (νl)

(
l〈>〉 | J y(x) .P3 Ksa

)
= (νl)

(
l〈>〉 | (νs)

(
ϕs
a(y)〈l , s, ϕs

a(z1)〉 | s. J P1 Ksa
)

| (νs)
(
ϕs
a(y)〈l , s, ϕs

a(z2)〉 | s. J P2 Ksa
))

| (νl)
(
l〈>〉 | (νr)

(
r | r?.ϕs

a(y)
(
l ′, s, ϕs

a(x)
)
.

test l then test l ′ then l〈⊥〉 | l ′〈⊥〉 | s | J P3 Ksa
else l〈>〉 | l ′〈⊥〉 | r

else l〈⊥〉 | ϕs
a(y)

〈
l ′, s, ϕs

a(x)
〉))

Without loss of generality let us assume that ϕs
a(y) = y, ϕs

a(z1) = z1, ϕ
s
a(z2) = z2, and

ϕs
a(x) = x. After a preprocessing step on r there are two possible steps on y, one for

117

5. The Design of Encodings

each such step in the source term. Note that both steps require a scope extrusion of the
sum locks. Hence, the term

(νl1, s1, s2, l2, r)
(

l1〈>〉 | s1. J P1 Ksa | y〈l1, s2, z2〉 | s2. J P2 Ksa
| l2〈>〉 | r?.y

(
l ′, s, x

)
.test l2 then test l ′ then l2〈⊥〉 | l ′〈⊥〉 | s | J P3 Ksa

else l2〈>〉 | l ′〈⊥〉 | r
else l2〈⊥〉 | y

〈
l ′, s, x

〉
| test l2 then test l1 then l2〈⊥〉 | l1〈⊥〉 | s1 | { z1/x } J P3 Ksa

else l2〈>〉 | l1〈⊥〉 | r

else l2〈⊥〉 | y〈l1, s1, x〉
)

is one possible result of performing two steps in J S Ksa. Now the unguarded nested
test-construct can be reduced to its then-case

l2〈⊥〉 | l1〈⊥〉 | s1 | { z1/x } J P3 Ksa ,

because both sum locks are instantiated with >. As result both sum locks become false,
an instantiation of the first sender lock becomes available, and the continuation of the
receiver is unguarded. An additional step also unguards the continuation of the sender:

(νl1, s1, s2, l2, r)
(

J P1 Ksa | y〈l1, s2, z2〉 | s2. J P2 Ksa
| r?.y

(
l ′, s, x

)
.test l2 then test l ′ then l2〈⊥〉 | l ′〈⊥〉 | s | J P3 Ksa

else l2〈>〉 | l ′〈⊥〉 | r
else l2〈⊥〉 | y

〈
l ′, s, x

〉
| l2〈⊥〉 | l1〈⊥〉 | { z1/x } J P3 Ksa

)
We observe that the continuation of the second sender stays guarded forever, because the
corresponding sum lock l1 is instantiated by ⊥. Moreover, note that in the term above
everything except J P1 Ksa and J P3 Ksa is junk. This shows that junk or garbage is often
a serious problem of encoding functions. In Section 6.3.5 we discuss different variants of
junk and prove that J · Ksa is such that all junks it introduces do not contribute to the
behaviour of target terms modulo a not-trivial equivalence. Thus, the junk introduced
by J · Ksa does no harm.

5.2. Extending Encodings

Of course it is much easier to design a new encoding function on top of an existing one.
This not only allows to reuse parts of the encoding functions or abbreviations improving
the presentation of an encoding function, but also to benefit from the solutions found by
the former encoding for some problems in its development and, hopefully, also to reuse
parts of the argumentation of its correctness. There are usually two reasons to extend

118

5.2. Extending Encodings

an encoding: either to change the set of its properties, i.e., satisfied quality criteria, or
to extend it in order to capture a more expressive source language or a less expressive
target language. Here we extend the encoding J · Ksa discussed in the last section to an
encoding J · Kma that instead of separate choice encodes mixed choice, i.e., we extend the
encoding in order to capture the more expressive source language πm.

To do so, we extend first the concept of the respective encoding, to deal with the
problems that arise from the new source or target language. We discuss in Section 5.2.1
in what sense mixed choice is more difficult than separate choice and how to overcome
these problems. Unfortunately our solution leads to a very huge encoding function.
Because of that, we introduce it in two steps. In Section 5.2.2 we use the expressive
power of polyadic synchronisation to introduce an intermediate encoding J · Kmp of mixed
choice. The presented encoding is a good encoding from πm (without replication) into
πp. Moreover, it preserves distributability and is thus interesting on its own. On the
other side, polyadic synchronisation is a very powerful synchronisation mechanism as
already explained in [CM03]. Hence, πp is strictly more expressive than πa. However, in
Section 5.2.4 we show that the full power of polyadic synchronisation is not necessary to
encode mixed choice, by refining the intermediate encoding J · Kmp into the final encoding
J · Kma . The encoding J · Kma is a good encoding of mixed choice with respect to the quality
criteria of the general framework in Section 3.3. But it is an encoding from πm into π=a ,
i.e., it requires the match prefix in the target language. Unfortunately, we were not able
to avoid the use of the match prefix and, indeed, there are good reasons to believe that
it is not possible to encode mixed choice without the power of matching. We shortly
discuss this problem at the beginning of Section 5.2.4. In the Sections 5.2.3 and 5.2.5
we present an example for each encoding function.

5.2.1. Extending the Concept

Sometimes extending an encoding in order to capture a more expressive variant of the
source language is fairly easy. We can for instance extend our source and target language
with the match prefix. To obtain an encoding from π=s into π=a , it suffices to extend the
encoding in Figure 5.1 with the homomorphic translation of the match prefix:

J [a = b]P Ksa , [ϕs
a(a) = ϕs

a(b)] J P Ksa

The match prefix and thus its translation does not interfere with the protocol imple-
mented by the encoding J · Ksa. The step from separate choice to mixed choice is not
that easy. As explained in [Nes00] the presence of mixed choice or, more precisely, cyclic
dependencies within a single mixed choice or a set of mixed choices, leads to deadlocks
in J · Ksa. That is why this encoding is a good encoding from πs into πa, but not a good
encoding from πm into πa. We explain the problem using two examples.

Example 5.2.1 (Incestuous sum). Consider the sum y〈z〉+ y(x). It is called an inces-
tuous sum because it contains two potential communication partners, i.e., there is an

119

5. The Design of Encodings

output and a matching input within the same sum. Its encoding

(νl)
(
l〈>〉 | (νs) (y〈l, s, z〉 | s. J 0 Ksa)
| (νr)

(
r | r?.y(l′, s, x) .test l then test l′ then l〈⊥〉 | l′〈⊥〉 | s | J 0 Ksa

else l〈>〉 | l′〈⊥〉 | r
else l〈⊥〉 | y

〈
l′, s, x

〉))
deadlocks while performing the nested test-construct because it tries to check twice for
the same lock, i.e., the first part of the nested test-construct consumes the sum lock
instantiation and so the second part—which tests for the same lock—is deadlocked.
Since the source term y〈z〉 + y(x) cannot perform a step as well this is not a problem.
But consider the term P = y〈z〉 + y(x) | y(x) .Q. It reduces to Q { z/x }. In this case
the deadlock which may occur by first testing the communication within the incestuous
sum leads to different behaviour of the target term, i.e., the target term may deadlock
without reaching the encoding of Q { z/x }, while the source term reaches Q { z/x } in
every maximal execution (w.r.t. reduction semantics).

a〈z〉+ b(x) .Q b〈z〉+ a(x) .Q

communication on channel a

communication on channel b

Figure 5.2.: Cyclic sums.

Example 5.2.2 (Cyclic sums). With cyclic sums we denote a set of sums with cyclic
dependencies of their potential communication partners as in P = a〈z〉 + b(x) .Q |
b〈z〉 + a(x) .Q. The cyclic dependencies of P are depicted in Figure 5.2. Obviously P
can reduce by a communication either on channel a or on channel b. The encoding of P

(νl1)
(
l1〈>〉 | (νs1) (a〈l1, s1, z〉 | s1. J 0 Ksa)

| (νr1)
(
r1 | r?1.b

(
l′, s, x

)
.test l1 then test l′ then l1〈⊥〉 | l′〈⊥〉 | s | J Q Ksa

else l1〈>〉 | l′〈⊥〉 | r1
else l1〈⊥〉 | b

〈
l′, s, x

〉))
| (νl2)

(
l2〈>〉 | (νs2)

(
b〈l2, s2, z〉 | s2. J 0 Ksa

)
| (νr2)

(
r2 | r?2.a

(
l′, s, x

)
.test l2 then test l′ then l2〈⊥〉 | l′〈⊥〉 | s | J Q Ksa

else l2〈>〉 | l′〈⊥〉 | r2
else l2〈⊥〉 | a

〈
l′, s, x

〉))
will deadlock if the two nested test-constructs are performed simultaneously, i.e., if the
first nested test-construct consumes the lock l1 and before its second part is performed the

120

5.2. Extending Encodings

second nested test-construct tests the lock l2. In this situation the process is deadlocked,
because both instantiations of sum locks are consumed and so none of the remaining test-
constructs can be resolved. Again the target term may deadlock without reaching the
encoding of Q { z/x }, while the source term reaches Q { z/x } in every maximal execution,
i.e., there is a difference in the behaviour of the target and the source term.

Both cases result in a deadlock that is induced by the encoding function and not
intended by the underlying source term. Note that such deadlocks are detected by
operational soundness provided � is not trivial. In other words, not dealing with this
problem adequately violates the operational correspondence criterion in Definition 3.3.4.
In [Nes00] different attempts to overcome these deadlocks are discussed. The simplest
way to resolve them is to implement the possibility to roll back a test. Unfortunately this
directly leads to divergence introduced by the encoding and thus violates the divergence
reflection criterion in Definition 3.3.5. Another attempt is to assume a total ordering
among the threads or processes of the system, such that within the test-constructs the
order of the locks tested can be determined by the order of the according threads. Since
we have no such total ordering on the source terms, it has to be constructed by the
encoding function. That can be done for instance by a two-level encoding or by an
encoding with global knowledge about the source term. Both solutions violate the com-
positionality criterion in Definition 3.3.1. A third attempt is to choose the order of the
locks tested at random. Again this violates—depending on the implementation—either
the operational correspondence criterion or the divergence reflection criterion although
deadlock or divergence may occur only with a very low probability. This approach was
formally investigated in [HP05] in the context of the probabilistic pi-calculus. Never-
theless, as we will show in the following, there is a way to circumvent both problems,
incestuous and cyclic sums, without referring to randomization within the framework of
a good encoding of Gorla presented in Section 3.3.

To be precise, we present two different ideas to extend the encoding J · Ksa to cover
mixed choice: one restricting the number of tests performed simultaneously (imple-
mented in Section 5.3) and the other implementing an algorithm to compute an appro-
priate ordering of the sum locks during executions. The main trick of both ideas is to
make use of the structure of source terms induced by the nesting of parallel operators.
This is motivated by another problem of an encoding between πm and (πs or) πa. As
shown in Chapter 4, πm and πs differ not only for the existence of cyclic dependencies
within sums. A more fundamental difference is that πm can break initial symmetries,
whereas this is impossible in πs and its subcalculus πa. Moreover, Section 4.2.1 shows
that this difference leads to a separation result concerning encodings that translate the
parallel operator homomorphically. We conclude from these considerations that an en-
coding between πm and πa cannot translate the parallel operator homomorphically and
that it has to be the encoding function that breaks potential source term symmetries,
because the target language is not able to do so. In Section 5.2.4 and Section 5.3, we
propose two single-level encodings, in which the symmetry is broken locally at each par-
allel operator, while still allowing for an unconstrained composability of encoded terms.
By doing so, we also avoid the problem with cyclic dependencies in sums. To explain

121

5. The Design of Encodings

(
a+ a | a

)
|

(
b | a+ b

)
Figure 5.3.: Parallel structure.

the main idea of the encodings, let us consider the source term

S = (a+ a | a) |
(
b | a+ b

)
and its parallel structure depicted in Figure 5.3.

As parallel structure, we denote the binary tree induced by the nesting of the parallel
operators of a term, where the leafs are formed by its capabilities. Analysing the oper-
ational semantics of πm, given by Figure 2.3, we observe that communication steps in
πm are always due to an input and an output guarded term on two different sides of a
node within the parallel structure of a term. Moreover, we observe that each matching
pair of communication partners is left and right of exactly one node of that binary tree,
i.e., their closest common parent node. S, for instance, can perform a step on channel
b by reducing the last two sums that meet at the right-most parallel operator, or it can
perform a step on channel a e.g. by reducing the first and the last sum that are left
and right to the outermost parallel operator, i.e., the root of the tree. Since there is no
choice operator in πa, its encoding forces us to represent its branches as parallel terms;
otherwise there would be no way for them to be concurrently enabled. Obviously, and
unfortunately, this changes the parallel structure of the original term. The sum lock is
introduced to restore the lost information about the correspondence of branches to a
sum. That suffices to encode separate choice, but as shown in the Examples 5.2.1 and
5.2.2 above it does not suffice to encode mixed choice. The main idea to overcome these
problems is to exploit the parallel structure of the originating source term when enabling
or guiding interactions in its translation at the target level. More precisely: (1) to avoid
the problem of incestuous sums, the encodings will guarantee that emulations of source
term steps will only be possible for senders and receivers emanating from two different
sides of a parallel operator in the source term; (2) to avoid the problem of cyclic sums,
the encoding either restricts the number of test-constructs being concurrently enabled
at the level of the same parallel operator, i.e., at the same node in the parallel structure
of the source term, or it orders the sum locks according to their origin in the parallel
structure, by testing the sum lock of the leftmost leaf first. Both solutions break source
term symmetries locally within each parallel operator encoding.

In essence, the detection of matching communication partners is ceded to the nodes of
the parallel structure of the source term. More precisely, each parent node, i.e., each par-
allel operator encoding, is equipped with a protocol to process and guide communication
requests from its child nodes. This is explicitly allowed by weak compositionality in con-
trast to homomorphic translations, and it is here that the source-term-level symmetry is

122

5.2. Extending Encodings

broken, because the protocol—in both encodings—handles requests from the left child
and requests from the right child slightly differently. Now, as opposed to the previous
globally-breaking proposals by Nestmann [Nes00], the overall exercise here is much more
difficult: from the point of view of a single parallel operator encoding, communication
may not only occur between its left- and right-hand subterms, but also between either
of these two and some outer—unknown—communication partner in the environment.
All guiding protocols residing at the various nodes in the binary parallelism-reflecting
tree must play together, and the encoding function must treat them all alike (to avoid
the term “symmetrically”) to keep the encoding truly compositional. To this aim, the
encoding of input and output capabilities announces their ability to send or receive in
form of requests along special channels to their parent nodes. If, at the level of a node,
a matching pair of communication partners is identified, the (nested) test-constructs are
checked as described in the encoding of Figure 5.1. At the same time, to keep up with
communication possibilities with “external” partners, the requests are passed on to the
potential parent of this node.

As it turns out, guiding the flow of requests and implementing a not divergent protocol
to find communication partners at the level of a parallel operator encoding awfully blows
up the encoding function. Because of that, we explain first the flow of requests within
the parallel structure of source terms on an intermediate encoding J · Kmp and postpone
the implementation of a divergence free algorithm to combine requests within a node to
the final encoding J · Kma . Hence, the intermediate encoding is presented in order to ease
the explanation of the final encoding.

To shorten the presentation of the encodings a little bit, we define forwarders. A
forwarder is a simple process that forwards each received message along some specified
set of links.

Definition 5.2.3 (Forwarder). Let I be a finite index set and for all i ∈ I let y and yi
be channel names with the same multiplicity n ∈ N, then a forwarder is given by:

y � { yi | i ∈ I } , y?(x1, . . . , xn) .

(∏
i∈I

yi〈x1, . . . , xn〉

)

In case of a singleton set we omit the brackets, i.e., y � y′ , y � { y′ }.

5.2.2. An Intermediate Encoding

First in [Pal03], and later as well in [Gor10b], and by us in Section 4.2.1, it is proved
that there is no encoding from πm into πs and, thus, no encoding from πm into πa
that translates the parallel operator homomorphically. So we have to abandon this
condition. As a natural consequence we implement the above described idea within
the translation of the parallel operator. Unfortunately this significantly blows up the
encoding, especially of the parallel operator and replicated input.

Because of that, we introduce the encoding in two steps, i.e., we present the encoding
J · Kmp as an intermediate step. Instead of πa the target language of J · Kmp is the strictly

123

5. The Design of Encodings

more expressive asynchronous pi-calculus augmented with polyadic (here: 2-adic) syn-
chronisation, denoted as πp, as proposed by Carbone and Maffeis [CM03]. Note that in
contrast to πa the calculus πp has the power to implement the match prefix as shown
in [CM03]. This is important to obtain an encoding of mixed choice as we will see in
Section 5.2.4. The use of an intermediate encoding allows us to focus on the essence
of the encoding. As we use the polyadic synchronisation only in a limited manner, its
usage can be expanded into the standard target calculus with match and is thus not
critical for the intended result. Moreover, we omit the encoding of replicated inputs in
J · Kmp , because its implementation requires to combine the translation of an input prefix
and the parallel operator. Thus, the translation of replicated inputs leads to the largest
target terms, although it does not really require new ideas or concepts compared to
the encoding of inputs or parallel composition. We postpone it to the final encoding in
Section 5.2.4. So, J · Kmp is an encoding of πm without replicated input into πp.

For sums, the translation via J · Kmp follows exactly the scheme of J · Ksa.

t∑
i∈I

πi.Pi

|m

p

, (νl)

(
l〈>〉 |

∏
i∈I

J πi.Pi Kmp

)

As described above, this translation splits up the encoded branches in parallel and
introduces the sum locks, which are initialised by >. To order these sum locks, we first
have to transport them to a surrounding parallel operator encoding: for example, in
P | Q, with P and Q being sequential processes, the sums occurring in either P or Q
will have their locks ordered by means of the translation J P | Q Kmp . Therefore, in the
translation, we let input- and output-guarded source terms not communicate directly,
but instead require that they first register their send/receive abilities to a surrounding
parallel operator encoding, by sending an output request po〈y, l , s1, s2, z〉 or an input
request pi〈y, l , r1, r2〉. A request carries all necessary information to resolve a (nested)
test-construct, i.e., the translated link name, the corresponding sum lock, the sender or
receiver locks, and, in case of an output request, the translation of the transmitted value.
Note that a sender lock, i.e., the s2 in J · Kmp , is used to guard the encoded continuation
of the sender, while over the receiver lock, i.e., the r2 in J · Kmp , the ordered sum locks
are transmitted back to the receiver. By the renaming policy ϕm

p , the mapping J · Kmp is
implicitly parametrised by the names po and pi . Some of their occurrences are bound,
while others—the outermost—remain free.

J τ.P Kmp , test l then l〈⊥〉 | J P Kmp else l〈⊥〉

J y〈z〉 .P Kmp , (νs1, s2)
(

s1 | s?1.po
〈
ϕm
p (y) , l , s1, s2, ϕ

m
p (z)

〉
| s2. J P Kmp

)
J y(x) .P Kmp , (νr1, r2)

(
r1 | r?1.pi

〈
ϕm
p (y) , l , r1, r2

〉
| r?2
(
l1, l2,−, s2, ϕm

p (x) , v, w
)
.

test l1 then test l2 then l1〈⊥〉 | l2〈⊥〉 | s2 | J P Kmp
else l1〈>〉 | l2〈⊥〉 | v

else l1〈⊥〉 | w
)

124

5.2. Extending Encodings

Apart from requests, the encoding of guarded terms is very similar to J · Ksa, the encoding
of terms guarded by τ is even the same. The sender and the receiver lock are split into
two parts. The respective first parts s1 and r1 ensure that the origin of a request in
the parallel structure is always the same, in case it has to be retransmitted because of
an aborted test-construct. The second sender lock s2 is similar to the sender lock in
J · Ksa. The nested test-construct of the receiver tests the sum locks l1 and l2 in the order
in which they are received on r2. Moreover, the locks s1 and r1 are transmitted on r2
as the values v and w ordered matching to their corresponding sum locks. In case the
test-construct fails due to a negative instantiation of a sum lock the lock guarding the
respective other out- or input request is instantiated.

The requests push the task of finding source term communication partners to the
surrounding parallel operator encodings. There, a strict policy controls the redirection
of requests. First, it restricts the request channels po and pi for both of its parameters
to be able to distinguish requests from the left from those from the right hand side.

J P | Q Kmp , (νpo,up , pi ,up , o, i)
(

(νpo , pi)
(
J P Kmp | procLeftOutReq | procLeftInReq

)
| (νpo , pi)

(
J Q Kmp | procRightOutReq | procRightInReq

)
| pushReq

)
Within the terms procLeftOutReq, procLeftInReq, procRightOutReq, and procRightInReq
communication partners, that meet at this node in the parallel structure, are identified
and the test of the corresponding sum locks is induced. To enable the identification
of communication partners in other parts of the tree, each parallel operator encoding
pushes all received (left or right) requests further upwards to a surrounding parallel
operator encoding by means of the forwarders in pushReq , po,up � po | pi ,up � pi .

Requests from the left are forwarded to the links po,up or pi ,up , to be pushed further
upwards with pushReq. Moreover, in order to combine requests from the left with re-
quests from the right side, all left requests are transmuted into outputs on the channel
y · o for output requests and y · i for input requests, where y is the translation of the
original channel name corresponding to the respective source term sender or receiver.

procLeftOutReq , po
?(y, l , s1, s2, z) . (y · o〈l , s1, s2, z〉 | po,up〈y, l , s1, s2, z〉)

procLeftOutReq , pi
?(y, l , r1, r2) .

(
y · i〈l , r1, r2〉 | pi ,up〈y, l , r1, r2〉

)
Here we use polyadic synchronisation to transfer the information whether the respective
requests result from a source term sender or receiver into the channel name. This allows
to transmute both, output and input requests, into output messages. The translated
channel name, represented by y, is necessary to ensure that communication is emulated
only on matching communication partners, i.e., on sender and receiver sharing the same
channel. As a special feature of polyadic synchronisation, the restriction on o and i in
the encoding of the parallel operator ensures that, for all y, the combined channels y · o
and y · i are fresh for each node in the parallel structure. In fact, this feature is the main

125

5. The Design of Encodings

reason for the use of polyadic synchronisation, because it allows us to restrict the search
for communication partners within the encoding of parallel operators.

At the right hand side, output and input requests are transmuted into inputs: y · i
for right output requests and y · o for right input requests. Hence, a communication
on a channel y · o or y · i reveals a pair of communication partners. In this case the
information necessary to resolve the respective test-construct are retransmitted over the
receiver lock r2 back to the receiver.

procRightOutReq , po
?(y, ls, s1, s2, z) .

(y · i(lr, r1, r2) .r2〈lr, ls, ls, s2, z, r1, s1〉 | po,up〈y, ls, s1, s2, z〉)
procRightInReq , pi

?(y, lr, r1, r2) .

(y · o(ls, s1, s2, z) .r2〈ls, lr, ls, s2, z, s1, r1〉 | pi ,up〈y, lr, r1, r2〉)

To avoid deadlock the sum lock of the left request is always checked first, i.e., the sum
lock of the left request is transmitted as first and the sum lock of the right request as
second parameter. Since the encoding relies on the parallel structure of the source term,
which is a binary tree, to prefer always the left lock indeed results in a total ordering of
the sum locks. The third parameter identifies always the sender lock, which is checked
in the translation of replicated inputs. Then, there are the second sender lock and the
translation of the sent value. The last two parameters are the first parts of the sender
and receiver locks. They are ordered with respect to their corresponding sum locks in
the first two parameters. Then all right requests are pushed upwards with pushReq.

Finally restriction and success are translated homomorphically:

J (νx)P Kmp ,
(
νϕm

p (x)
)
J P Kmp

J XKmp , X

We observe that the encoding function introduces twenty-two different names, covered
in the set N = { po , pi , po,up , pi ,up , l , ls, lr, l1, l2, s1, s2, r1, r2, o, i , v, w, x, y, z, t , f }. More-
over, some more names will be necessary to unfold the polyadic communications into
monadic communications in Section 5.4. The renaming policy ϕm

p ensures that there are
no clashes between these names and the names of the source terms. To achieve this, ϕm

p

can be every injective substitution such that, for all n ∈ N , ϕm
p (n) is neither in N nor

one of the names reserved in Section 5.4. The encoding J · Kmp is given by the Figures 5.4
and 5.5.

5.2.3. Encoding Example

To illustrate the encoding and the emulation of source term steps, we consider

S = a(z1) .0 + a〈z2〉 .0 | a(z3) .0 + a〈z4〉 .0

as an example. Note that this is a version of the term a + a | a + a used in the
Proof of Theorem 4.2.10, now without abbreviations, i.e., without omitting unnecessary

126

5.2. Extending Encodings

J (νx)P Kmp ,
(
νϕm

p (x)
)
J P Kmp

J P | Q Kmp , (νpo,up , pi ,up , o, i)
(

(νpo , pi)
(
J P Kmp | procLeftOutReq | procLeftInReq

)
| (νpo , pi)

(
J Q Kmp | procRightOutReq | procRightInReq

)
| pushReq

)
t∑

i∈I
πi.Pi

|m

p

, (νl)

(
l〈>〉 |

∏
i∈I

J πi.Pi Kmp

)
J τ.P Kmp , test l then l〈⊥〉 | J P Kmp else l〈⊥〉

J y〈z〉 .P Kmp , (νs1, s2)
(

s1 | s?1.po
〈
ϕm
p (y) , l , s1, s2, ϕ

m
p (z)

〉
| s2. J P Kmp

)
J y(x) .P Kmp , (νr1, r2)

(
r1 | r?1.pi

〈
ϕm
p (y) , l , r1, r2

〉
| r?2
(
l1, l2,−, s2, ϕm

p (x) , v, w
)
.

test l1 then test l2 then l1〈⊥〉 | l2〈⊥〉 | s2 | J P Kmp
else l1〈>〉 | l2〈⊥〉 | v

else l1〈⊥〉 | w
)

J XKmp , X

Figure 5.4.: An Encoding from πm without replication into πp.

procLeftOutReq , po
?(y, l , s1, s2, z) . (y · o〈l , s1, s2, z〉 | po,up〈y, l , s1, s2, z〉)

procLeftOutReq , pi
?(y, l , r1, r2) .

(
y · i〈l , r1, r2〉 | pi ,up〈y, l , r1, r2〉

)
procRightOutReq , po

?(y, ls, s1, s2, z) .

(y · i(lr, r1, r2) .r2〈lr, ls, ls, s2, z, r1, s1〉 | po,up〈y, ls, s1, s2, z〉)
procRightInReq , pi

?(y, lr, r1, r2) .

(y · o(ls, s1, s2, z) .r2〈ls, lr, ls, s2, z, s1, r1〉 | pi ,up〈y, lr, r1, r2〉)
pushReq , po,up � po | pi ,up � pi

Figure 5.5.: Auxiliary Functions of J · Kmp .

127

5. The Design of Encodings

parameters and trailing 0’s. Since a, z1, z2, z3, and z4 are no names reserved for the
encoding function we can assume without loss of generality that ϕm

p (a) = a, ϕm
p (z1) = z1,

ϕm
p (z2) = z2, ϕ

m
p (z3) = z3, and ϕm

p (z4) = z4. The corresponding target term J S Kmp is
given by the term in Figure 5.6.

(νpi ,up , po,up , o, i)
(

(νpi , po)
(

(νl)
(
l〈>〉

| (νr1, r2)
(

r1 | r?1.pi〈a, l , r1, r2〉 | r?2 (l1, l2, l3, s2, z1, v, w) .

test l1 then test l2 then l1〈⊥〉 | l2〈⊥〉 | s2 | (νl)
(
l〈>〉 | 0

)
else l1〈>〉 | l2〈⊥〉 | v

else l1〈⊥〉 | w
)

| (νs1, s2)
(
s1 | s?1.po〈a, l , s1, s2, z2〉 | s2. (νl)

(
l〈>〉 | 0

)))
| po?(y, l, s1, s2, z) . (y · o〈l, s1, s2, z〉 | po,up〈y, l, s1, s2, z〉)
| pi?(y, l, r1, r2) .

(
y · i〈l, r1, r2〉 | pi ,up〈y, l, r1, r2〉

))
| (νpi , po)

(
(νl)

(
l〈>〉

| (νr1, r2)
(

r1 | r?1.pi〈a, l , r1, r2〉 | r?2 (l1, l2, l3, s2, z3, v, w) .

test l1 then test l2 then l1〈⊥〉 | l2〈⊥〉 | s2 | (νl)
(
l〈>〉 | 0

)
else l1〈>〉 | l2〈⊥〉 | v

else l1〈⊥〉 | w
)

| (νs1, s2)
(
s1 | s?1.po〈a, l , s1, s2, z4〉 | s2. (νl)

(
l〈>〉 | 0

)))
| po?(y, ls, s1, s2, z) . (y · i(lr, r1, r2) .r〈lr, ls, ls, s2, z, r1, s1〉 | po,up〈y, ls, s1, s2, z〉)
| pi?(y, lr, r1, r2) . (y · o(ls, s1, s2, z) .r〈ls, lr, ls, s2, z, s1, r1〉 | pi ,up〈y, lr, r1, r2〉)

)
| po,up?(y, l, s1, s2, z) .po〈y, l, s1, s2, z〉 | pi ,up?(y, l, r1, r2) .pi〈y, l, r1, r2〉

)
Figure 5.6.: Encoding Example for J · Kmp .

First, we observe that the encoding of 0—bold-faced in S and J S Kmp —is simply

(νl)
(
l〈>〉 | 0

)
which is semantically equal to 0, because we have (νl)

(
l〈>〉 | 0

)
6−→.

Moreover, we observe that although the source term is a symmetric network of degree
2 (with respect to identity) the resulting target term is not. Note that the source term
symmetry is broken because of the different encodings of the left and the right hand
side of the parallel operator and not by changing the degree of the source network. To
restore the degree of the original network, it suffices to duplicate the last line of the
encoding of the parallel operator and assign one instance of it to each side of the en-
coding of the parallel operator within different scopes of the names pi ,up and po,up . We
observe that there are initially four requests within the target term; one for each input
or output capability of the source term. Moreover, since the corresponding capabilities
are unguarded in S, the requests are unguarded in J S Kmp or can become so by a single
target term step on the respective first sender lock.

128

5.2. Extending Encodings

Apart from the requests and sender locks, there are two more unguarded outputs.
Both are the positive instantiations l〈>〉 of sum locks to which no matching inputs are
unguarded. Accordingly, initially there are two steps on sender locks and then four steps,
one for each request.

First we take a look on the left hand side of the encoding of the parallel operator. The
consumption of the left requests leads to:

(νpi , po , l←, r1,←, r2,←, s1,←, s2,←)
(

l←〈>〉 | r?1,←.pi〈a, l←, r1,←, r2,←〉
| r?2,←(l1, l2, l3, s2, z1, v, w) .test l1 then test l2 then l1〈⊥〉 | l2〈⊥〉 | s2 | J 0 Kmp

else l1〈>〉 | l2〈⊥〉 | v
else l1〈⊥〉 | w

| s?1,←.po〈a, l←, s1,←, s2,←, z2〉 | s2,←. J 0 Kmp
| po?(y, l, s1, s2, z) . (y · o〈l, s1, s2, z〉 | po,up〈y, l, s1, s2, z〉)
| a · o〈l←, s1,←, s2,←, z2〉 | po,up〈a, l←, s1,←, s2,←, z2〉
| pi?(y, l, r1, r2) .

(
y · i〈l, r1, r2〉 | pi ,up〈y, l, r1, r2〉

)
| a · i〈l←, r1,←, r2,←〉 | pi,up〈a, l←, r1,←, r2,←〉

)
Analysing this term we observe that the requests were not completely consumed, but
instead copied into a new version for each request with the same parameters but on dif-
ferent channel names, namely po,up〈a, l←, s1,←, s2,←, z2〉 and pi ,up〈a, l←, r1,←, r2,←〉. The
purpose of these copies is to push the content of the requests over the restriction on pi
and po such that they can be pushed upwards in the parallel structure to enable com-
munications with other parts of the binary tree. Note that the replicated inputs on the
links pi and po remain. So some of the requests might be processed at the beginning
while other requests might be processed later. That allows us to handle the requests
of the encoding of a continuation of some input or output guarded term as soon as
the completion of a corresponding source term step removing the respective guard is
emulated within the target term. Therefore note that the encodings of continuations
of guarded terms, i.e., the J 0 Kmp in our case, appear guarded within the encoding of
the source term, where the guard is either a receiver lock in case of an input guarded
source or a sender lock in case of an output guarded source. Moreover, we observe that
these guards cannot be removed by reduction steps on requests. We also observe that
the two reduction steps cause a scope extrusion of the restrictions on l , r1, r2, s1 and s2.
Since in the current case there is only one instance of each of these locks no α-conversion
is necessary. Multiple receiver/sender locks stem from multiple input/output guarded
branches in the respective source term or from the case that at the corresponding side
of the parallel operator a subtree of the parallel structure of the source term is encoded
which can also lead to multiple sum locks. Later on we combine the requests of the
left with the requests of the right in order to emulate a reduction step of the source
term. Since on the right hand side there are different versions of these locks, we perform
α-conversion to avoid ambiguity later, i.e., we index the locks on the left side by ← and
the locks on the right side by →.

129

5. The Design of Encodings

The processing of the requests on the right side of the encoding of a parallel operator

(νpi , po , l→, r1,→, r2,→, s1,→, s2,→)
(

l→〈>〉 | r?1,→.pi〈a, l→, r1,→, r2,→〉
| r?2,→(l1, l2, l3, s2, z3, v, w) .test l1 then test l2 then l1〈⊥〉 | l2〈⊥〉 | s2 | J 0 Kmp

else l1〈>〉 | l2〈⊥〉 | v
else l1〈⊥〉 | w

| s?1,→.po〈a, l→, s1,→, s2,→, z4〉 | s2,→. J 0 Kmp
| po?(y, ls, s1, s2, z) . (y · i(lr, r1, r2) .r〈lr, ls, ls, s2, z, r1, s1〉 | po,up〈y, ls, s1, s2, z〉)
| a · i(lr, r1, r2) .r2〈lr, l→, l→, s2,→, z4, r1, s1,→〉 | po,up〈a, l→, s1,→, s2,→, z4〉
| pi?(y, lr, r1, r2) . (y · o(ls, s1, s2, z) .r2〈ls, lr, ls, s2, z, s1, r1〉 | po,up〈y, lr, r1, r2〉)
| a · o(ls, s1, s2, z) .r2,→〈ls, l→, ls, s2, z, s1, r1,→〉 | pi,up〈a, l→, r1,→, r2,→〉

)
is similar. We observe that to enable a test the following information is necessary: the
receiver and sum locks of the corresponding encoded input capability, and the sum lock,
the sender locks, and the sent value of the corresponding encoded output capability.
The requests cover all this information. If a right request is processed the already
gathered information are filled in (see a · i(lr, r1, r2) .r2〈lr, l→, l→, s2,→, z4, r1, s1,→〉 for
the right output request and a · o(ls, s1, s2, z) .r2,→〈ls, l→, ls, s2, z, s1, r1,→〉 for the right
input request). The missing details are gathered by the communication with a matching
left request.

Now there are two concurrently enabled steps, at channel a · o and at a · i . One for
each possible step of the source term. Note that the two steps of the source term are
in conflict, whereas the two steps here are not conflicting. The result of these two steps
and the four steps on the channels pi ,up and po,up is given in Figure 5.7. We observe that
the missing details are filled in. The results are two outputs on receiver locks and the
first two parameters are in both cases the same, i.e., the order of the sum locks is the
same. The consumption of these outputs enables a test of the sum locks of the respective
found pair of matching communication partners. Note that since such a pair consists
of a communication partner left and a partner right to the encoding of the respective
parallel operator, these two sum locks are always different. Because of that the problem
of incestuous sums described in Example 5.2.1 is avoided.

If we reduce both outputs on receiver locks, we obtain the unguarded test-constructs

test l← then test l→ then l←〈⊥〉 | l→〈⊥〉 | s2,→ | { z4/z1 }
(
J 0 Kmp

)
else l←〈>〉 | l→〈⊥〉 | r1,←

else l←〈⊥〉 | s1,→
and

test l← then test l→ then l←〈⊥〉 | l→〈⊥〉 | s2,← | { z2/z3 }
(
J 0 Kmp

)
else l←〈>〉 | l→〈⊥〉 | s1,←

else l←〈⊥〉 | r1,→.

130

5.2. Extending Encodings

(νpi ,up , po,up , i, o, l←, r1,←, r2,←, s1,←, s2,←, l→, r1,→, r2,→, s1,→, s2,→)
(

(νpi , po)
(
l←〈>〉 | r?1,←.pi〈a, l←, r1,←, r2,←〉

| r?2,←(l1, l2, l3, s2, z1, v, w) .test l1 then test l2 then l1〈⊥〉 | l2〈⊥〉 | s2 | J 0 Kmp
else l1〈>〉 | l2〈⊥〉 | v

else l1〈⊥〉 | w
| s?1,←.po〈a, l←, s1,←, s2,←, z2〉 | s2,←. J 0 Kmp
| po?(y, l, s1, s2, z) . (y · o〈l, s1, s2, z〉 | po,up〈y, l, s1, s2, z〉)
| pi?(y, l, r1, r2) .

(
y · i〈l, r1, r2〉 | pi ,up〈y, l, r1, r2〉

))
(νpi , po)

(
l→〈>〉 | r?1,→.pi〈a, l→, r1,→, r2,→〉

| r?2,→(l1, l2, l3, s2, z3, v, w) .test l1 then test l2 then l1〈⊥〉 | l2〈⊥〉 | s2 | J 0 Kmp
else l1〈>〉 | l2〈⊥〉 | v

else l1〈⊥〉 | w
| s?1,→.po〈a, l→, s1,→, s2,→, z4〉 | s2,→. J 0 Kmp
| po?(y, ls, s1, s2, z) . (y · i(lr, r1, r2) .r2〈lr, ls, ls, s2, z, r1, s1〉 | po,up〈y, ls, s1, s2, z〉)
| r2,←〈l←, l→, l→, s2,→, z4, r1,→, s1,→〉
| pi?(y, lr, r1, r2) . (y · o(ls, s1, s2, z) .r2〈ls, lr, ls, s2, z, s1, r1〉 | po,up〈y, lr, r1, r2〉)
| r2,→〈l←, l→, l←, s2,←, z2, s1,←, r1,→〉

)
| po,up?(y, l, s1, s2, z) .po〈y, l, s1, s2, z〉
| po〈a, l←, s1,←, s2,←, z2〉 | po〈a, l→, s1,→, s2,→, z4〉
| pi ,up?(y, l, r1, r2) .pi〈y, l, r1, r2〉 | pi〈a, l←, r1,←, r2,←〉 | pi〈a, l→, r1,→, r2,→〉

)
Figure 5.7.: Processing of Requests in the Example.

We observe, that for both test-constructs the sum lock l← has to be checked first. By
Definition 5.1.1, an instantiation of a sum lock has to be consumed to test the lock. Since
there is only one instantiation of the lock l← in the term in Figure 5.7, these two test-
constructs are in conflict. Without loss of generality, let the first test-construct consume
the given instantiation of the sum lock l←. The other case is similar. The instantiation
of l← is positive. Thus, the test-construct reduces to its then-case and tests the other
lock l→. Again there is only a single instantiation of this lock which is positive. Also
note, that the second test-construct is still blocked, because in the then-case of the first
part of the nested test-construct no new instantiation of a sum lock is unguarded. After
the test of the sum lock l→ the first test-construct reduces to:

l←〈⊥〉 | l→〈⊥〉 | s2,→ | { z4/z1 }
(
J 0 Kmp

)
The reduction to the first case shows that our communication attempt on the identified
pair of communication partners was successful, i.e., at this point we emulate the cor-
responding source term step. Both sum locks are changed to false instantiations. This

131

5. The Design of Encodings

outlines that already a branch of each of these two sums was used for communication.
Then there is an unguarded instantiation of the sender lock s2,→. So, we can remove
the guard of the encoding of the continuation of the output guarded right source term
within one more reduction step. The encoding of the continuation of the respective

input guarded source term is the term { z4/z1 }
(
J 0 Kmp

)
= J 0 Kmp . As we can observe

it is already unguarded. Moreover, the value sent by the respective right source term
output was received at the encoding of the left input guarded term as depicted by the
substitution { z4/z1 }.
S can perform only a single step, which we have emulated within its encoding. The

encoded term can perform some post-processing steps. The negative instantiations of
the sum locks enable the second nested test-construct. In this case only the first sum
lock, the lock l←, is tested. Because of its negative instantiation, the second nested test-
construct reduces to the else-case of its first part, i.e., to l←〈⊥〉 | r1,→. The consumed
negative instantiation of the sum lock l← is restored. Since the second sum lock l→ was
not tested in this case, the test-construct restores also the corresponding input request
by sending r1,→. Hence, in case the sum lock is still positive, the encoding can search
for another matching communication partner. Thus, reducing the second test-construct
results in a duplicate of the right input request. However, since the corresponding sum
lock is false, both versions of the right input request cannot be used to emulate a source
term step. Even if the sum lock is still positive, duplicates of requests can lead to only
a single emulation of a source term step, because the single instance of the sum lock
forbids for simultaneous evaluated test-constructs and after the first successful emula-
tion attempt the sum lock becomes false. Also note that, since for each given encoded
source term there are initially only finitely many requests, it is not possible to copy a
single request infinitely often. Similarly to the first right input request, the second right
input request can be transmitted upwards in the parallel structure.

Note that the resulting target term contains five unguarded and not restricted requests:
po〈a, l←, s1,←, s2,←, z2〉, po〈a, l→, s1,→, s2,→, z4〉, pi〈a, l←, r1,←, r2,←〉, and twice
pi〈a, l→, r1,→, r2,→〉. They can be bound by a surrounding parallel operator encoding,
i.e., by the next parent node. Since in our example there is no such surrounding parallel
operator they remain free.

5.2.4. Refine the Encoding

In the encoding given in the last section we used polyadic synchronisation to combine the
left and right requests within a node of the parallel structure, i.e., within the encoding of
a parallel operator. Thereby, we relied on the comfortable binding mechanism of polyadic
synchronisation that allows us to restrict a combined channel name by restricting only
one of its names. We want to identify communication partners, i.e., the translation of a
source term sender and receiver sharing the same channel name. Moreover, our encoding
functions relies on the parallel structure and, hence, it is necessary to restrict the search
of communication partners to single nodes in this structure, because we need to know
whether a request arrives at this node from the left or the right side.

The problem is that within the pi-calculus we cannot restrict received names, but

132

5.2. Extending Encodings

only names known in advance. By Definition 3.3.1 of compositionality, we can base
the encoding function on the free names of the source terms. But this does not help in
case of restricted source term names. Requests inform the nodes of the parallel structure
about potential communication partners. Remember that the necessity for such requests
is already shown in the proof of Lemma 4.2.17. To identify matching partners they
contain the translation of the original channel name of the corresponding source term
sender or receiver as first parameter. With polyadic synchronisation we can restrict for
each such name y a channel name y · o or y · i for each node by restricting o and i .
Without polyadic synchronisation there is no possibility to do something like that. Thus
we cannot use communication to identify matching communication partners. Instead we
use the match prefix to do so. Note that the match prefix increases the expressive power
of the pi-calculus, i.e., the considered target language π=a is more expressive then πa.
This is already discussed in [CM03]. Note that the criteria for a good encoding used in
[CM03] to show that there exists no good encoding of the match prefix are stricter than
the criteria used in this thesis. Instead of preservation and reflection of the ability to
reach success, [CM03] requires preservation and reflection of all observables of the source
language for their proof of separation. This is indeed a very strict requirement. However,
we believe that this separation result, i.e., that it is impossible to encode the expressive
power of the match prefix within the asynchronous pi-calculus, holds also with respect
to the general framework in Section 3.3. Under this assumption, it seems impossible to
encode mixed choice within πa.

The match prefix behaves as a conditional guard: if the constraint, i.e., the equation, is
satisfied the following term gets unguarded. We cannot ensure that we always magically
pick the right two matching requests first, to check whether their first parameters are
identical. Hence, we have to deal with the case that the first two parameters do not
match. Since the mismatch prefix further significantly increases the expressive power of
the calculus, we try to avoid it. Instead we implement an algorithm that combines each
pair of left and right requests exactly once. In case a match is found, we proceed by
inducing a test on the sum locks as before. Because every combination of left and right
requests is checked, we can simply do nothing if the translated channel names do not
match.

To keep track of the pairs already checked, we order the right requests within a so-
called chain along which all left requests are forwarded. More precisely, we introduce
two chains for each node of the parallel structure: one for right output and one for right
input requests. For this, the encoding of a parallel operator has to reserve the names mo

and mi as starting points of the chains, and the names co and ci to prepare the adding
of a new request to a chain. The tags o and i are not necessary any more.

J P | Q Kma , (νmo ,mi , po,up , pi ,up , co , ci)
(

(νpo , pi)
(
J P Kma | procLeftOutReq | procLeftInReq

)
| (νpo , pi)

(
J Q Kma | procRightOutReq | procRightInReq

)
| pushReq

)
We change the processing of left requests. Instead of transmuting the requests into

133

5. The Design of Encodings

outputs on combined channel names, we forward them to the starting point of the chains
on the channels mo for left output requests and mi for left input requests. Thus, left
requests are processed by two simple forwarders, procLeftOutReq , po � { mo , po,up }
and procLeftInReq , pi � { mi , pi ,up }.

The processing of requests from the right is more difficult. As described the encoding
ensures that any request of the left hand side is combined exactly once with each opposite
request of the right hand side. Then the respective first parameters of each pair of
requests are compared, to reveal a pair that results from the translation of matching
communication partners. If such a pair is found, the information necessary to resolve
the respective test-construct is again retransmitted over the receiver lock back to the
receiver, where the first parameter contains the respective sum lock at the left and the
second parameter the sum lock at the right hand side.

procRightOutReq , co〈mi〉 | co?(mi) .po(y, ls, s, z) .
(

(νmi ,up)
(

mi
?
(
y′, lr, r

)
.
([
y′ = y

]
r〈lr, ls, ls, s, z〉 | mi ,up

〈
y′, lr, r

〉)
| (νmi) (mi ,up � mi | co〈mi〉)

)
| po,up〈y, ls, s, z〉

)
procRightInReq , ci〈mo〉 | ci?(mo) .pi(y, lr, r) .

(
(νmo,up)

(
mo

?
(
y′, ls, s, z

)
.
([
y′ = y

]
r〈ls, lr, ls, s, z〉 | mo,up

〈
y′, ls, s, z

〉)
| (νmo) (mo,up � mo | ci〈mo〉)

)
| pi ,up〈y, lr, r〉

)

In order to emulate arbitrary source term steps, all pairs of left and right requests have
to be checked at least once. On the other side, a careless checking of the same pairs
infinitely often introduces divergence. Thus, only a single copy of each left request is
transmitted to the right side and, there, each pair of left and right requests is combined
exactly once. To do so, the right requests are linked together within two chains; one for
right output requests and one for right input requests. The first member of the chain
receives all left requests via mo or mi , combines them with its own information, and
sends a copy of each left request to the next member over mo,up or mi ,up , respectively.
Subsequent members of a chain are linked by mo or mi , i.e., each member creates a new
version of the corresponding name and sends this new version over co or ci to enable
the addition of a new member. Moreover, it transmits all received left requests along
this new version. A new member is then added to the chain by the consumption of
its request, also triggering to transmit a copy to pushReq via po,up or pi ,up . The term
pushReq remains unchanged.

Note that differently from to the encoding J · Kmp there is no need to retransmit requests
in case of failed test-constructs, because the protocol in the encoding of the parallel
operator already ensures that each combination of requests is checked. Accordingly,

134

5.2. Extending Encodings

there is no need for the first part of sender and receiver locks.

J y〈z〉 .P Kma , (νs) (po〈ϕm
a (y) , l , s, ϕm

a (z)〉 | s. J P Kma)

J y(x) .P Kma , (νr)
(
pi〈ϕm

a (y) , l , r〉 | r?(l1, l2,−, s, ϕm
a (x)) .

test l1 then test l2 then l1〈⊥〉 | l2〈⊥〉 | s | J P Kma
else l1〈>〉 | l2〈⊥〉

else l1〈⊥〉
)

The remaining operators (restriction, choice, τ -prefix, and success) are encoded like
in J · Kmp .

J (νx)P Kma , (νϕm
a (x)P) J P Kmat∑

i∈I
πi.Pi

|m

a

, (νl)

(
l〈>〉 |

∏
i∈I

J πi.Pi Kma

)
J τ.P Kma , test l then l〈⊥〉 | J P Kma else l〈⊥〉

J XKma , X

Replicated Input In the discussion so far, we omitted the encoding of replicated input,
because it is slightly tricky. The crux is that each replicated input implicitly represents
an unbounded number of copies of the respective input in parallel. Each such copy
changes the parallel structure of the source term, on which our encoding function relies.
Obviously, a compositional encoding cannot first compute the number of required copies:
By the reduction semantics, the copies of a replicated input are generated as soon as
they are needed. Likewise, the encoding of a replicated input adds a branch to the
constructed parallel structure, for each emulated communication with a replicated input.
To do so, it adapts the parallel operator translation for each unguarded continuation in
encodedContinuations.

J y?(x) .P Kma , (νl , r , cr1 , cr2 , ro , ri)
(
pi〈ϕm

a (y) , l , r〉
| r?(−,−, ls, s, z) .test ls then ls〈⊥〉 | s | cr1 〈z〉 else ls〈⊥〉
| ri〈ϕm

a (y) , l , r〉 | l〈>〉 | encodedContinuations
)

To direct the flow of requests among the additional branches, the branches are also
ordered into a chain.

encodedContinuations , cr2 〈ro , ri〉 | cr1 ?(ϕm
a (x)) .cr2 (ro , ri) .

(νmo ,mi , po,up , pi ,up , ro,up , ri ,up , co , ci)
(
pushReqIn

| (νpo , pi) (J P Kma | procRightOutReq | procRightInReq)

| (νro , ri) (cr2 〈ro , ri〉 | pushReqOut)
)

For each successful emulation of a replicated input, a new branch with the encoded
continuation is unguarded by transmitting the received source term value over cr1 . As

135

5. The Design of Encodings

in the chains of right requests, each branch in encodedContinuations restricts its own
versions of ro and ri to receive all requests from its successor. These links are transmitted
over cr2 to the respective next member. The translation of the replicated input serves
itself as first member of the chain by providing its own request over ri . Note that the
third line of encodedContinuations is exactly the same as the right hand side of a parallel
operator encoding. There, all received requests are combined with the requests of the
respective continuation to enable the emulation of a communication with the replicated
input or another of its unguarded continuations. Moreover, to enable an emulation
of a communication with the rest of the term, its requests are pushed upwards. The
remaining terms pushReqIn and pushReqOut direct the flow of requests.

pushReqIn , ro � { mo , ro,up } | ri � { mi , ri ,up }
pushReqOut , po,up � { po , ro } | ro,up � ro | pi ,up � { pi , ri } | ri ,up � ri

pushReqIn receives all requests from a predecessor in the chain and forwards one copy to
the encoded continuation over mo and mi and one copy to pushReqOut. There all requests
of the encoded continuation are pushed upwards to a surrounding parallel operator
encoding (or the encoding of a formally guarding replicated input) over po or pi , and for
all such requests and all requests received from a previous member, a copy is forwarded
to the successor over ro or ri .

The encoding function J · Kma introduces twenty-eight names covered in the set

N =
{

po , pi , po,up , pi ,up ,mo ,mi , co , ci ,mo,up ,mi ,up , l , ls, lr, l1, l2, s,

r , cr1 , cr2 , ro , ri , ro,up , ri ,up , y, y
′, z, t , f

}
.

Again additional names are necessary to unfold the polyadic communications. Hence,
ϕm
a is an arbitrary injective substitution such that, for all n ∈ N , ϕm

a (n) is neither a name
of N nor one of the auxiliary links introduced to translate polyadic communications in
Section 5.4. The encoding J · Kma is given by the Figures 5.8 and 5.9.

For a more exhaustive description of the algorithm implemented by this encoding and
how it emulates source term steps, we refer to the proof of its correctness in Chap-
ter 6. There also some properties of this encoding, as for instance the kinds of junk it
introduces, are analysed.

5.2.5. Encoding Example

In the encoding example presented in Section 5.2.3 we concentrate on the flow of requests
within the parallel structure, on the identification of matching communication partners,
and the processing of test-constructs. These concepts are implemented in J · Kma in ba-
sically the same way. So, this time we focus the encoding example on the difference
between the encodings J · Kmp and J · Kma , i.e., we concentrate on the chain of requests
in the encodings of the parallel operator and on the encoding of replicated inputs. We
consider the source term:

S = a〈c〉 .0 | a?(d) . ((νe) a〈e〉 .0 | e〈d〉 .0)

136

5.2. Extending Encodings

J (νx)P Kma , (νϕm
a (x)) J P Kma

J P | Q Kma , (νmo ,mi , po,up , pi ,up , co , ci)
(

(νpo , pi)
(
J P Kma | procLeftOutReq | procLeftInReq

)
| (νpo , pi)

(
J Q Kma | procRightOutReq | procRightInReq

)
| pushReq

)
t∑

i∈I
πi.Pi

|m

a

, (νl)

(
l〈>〉 |

∏
i∈I

J πi.Pi Kma

)
J τ.P Kma , test l then l〈⊥〉 | J P Kma else l〈⊥〉

J y〈z〉 .P Kma , (νs) (po〈ϕm
a (y) , l , s, ϕm

a (z)〉 | s. J P Kma)

J y(x) .P Kma , (νr)
(
pi〈ϕm

a (y) , l , r〉 | r?(l1, l2,−, s, ϕm
a (x)) .

test l1 then test l2 then l1〈⊥〉 | l2〈⊥〉 | s | J P Kma
else l1〈>〉 | l2〈⊥〉

else l1〈⊥〉
)

J y?(x) .P Kma , (νl , r , cr1 , cr2 , ro , ri)
(
pi〈ϕm

a (y) , l , r〉
| r?(−,−, ls, s, z) .test ls then ls〈⊥〉 | s | cr1 〈z〉 else ls〈⊥〉
| ri〈ϕm

a (y) , l , r〉 | l〈>〉 | encodedContinuations
)

J XKma , X

Figure 5.8.: An Encoding from πm into π=a .

137

5. The Design of Encodings

procLeftOutReq , po � { mo , po,up }
procLeftInReq , pi � { mi , pi ,up }

procRightOutReq , co〈mi〉 | co?(mi) .po(y, ls, s, z) .
(
po,up〈y, ls, s, z〉

| (νmi ,up)
(

mi
?
(
y′, lr, r

)
.
([
y′ = y

]
r〈lr, ls, ls, s, z〉 | mi ,up

〈
y′, lr, r

〉)
| (νmi) (mi ,up � mi | co〈mi〉)

))
procRightInReq , ci〈mo〉 | ci?(mo) .pi(y, lr, r) .

(
pi ,up〈y, lr, r〉

| (νmo,up)
(

mo
?
(
y′, ls, s, z

)
.
([
y′ = y

]
r〈ls, lr, ls, s, z〉 | mo,up

〈
y′, ls, s, z

〉)
| (νmo) (mo,up � mo | ci〈mo〉)

))
pushReq , po,up � po | pi ,up � pi

encodedContinuations , cr2 〈ro , ri〉 | cr1 ?(ϕm
a (x)) .cr2 (ro , ri) .

(νmo ,mi , po,up , pi ,up , ro,up , ri ,up , co , ci)
(
pushReqIn

| (νpo , pi) (J P Kma | procRightOutReq | procRightInReq)

| (νro , ri) (cr2 〈ro , ri〉 | pushReqOut)
)

pushReqIn , ro � { mo , ro,up } | ri � { mi , ri ,up }
pushReqOut , po,up � { po , ro } | ro,up � ro | pi ,up � { pi , ri } | ri ,up � ri

Figure 5.9.: Auxiliary Functions of J · Kma .

Again, we can assume without loss of generality that ϕm
a (a) = a, ϕm

a (c) = c, ϕm
a (d) = d,

and ϕm
a (e) = e. We concentrate first on the processing of requests on the encoding of

the outermost parallel operator of S. Left to that operator is the translation of the
output a〈c〉 .0. It contains the output request po〈a, l1, s1, c〉, where l1 is the sum lock
introduced to encode the left sum containing only the single output and s1 is the sender
lock introduced by the encoding of the output. In the parallel operator encoding the
link po is bound at the left side and the request is processed by

procLeftOutReq
Fig. 5.9

= po � { mo , po,up }
Def. 5.2.3

= po
?(y, l , s, z) . (mo〈y, l , s, z〉 | po,up〈y, l , s, z〉) .

As result a copy of this request is pushed upwards over po,up and pushReq and another
copy of the requests is transmitted over mo to the right hand side of the parallel operator
encoding. There the replicated input a?(d) . ((νe) a〈e〉 .0 | e〈d〉 .0) is encoded and leads
to the input request pi〈a, l2, r1〉 for some sum lock l2 and some receiver lock r1. This
time the request channel pi is bound by the restriction on the right hand side of the
parallel operator encoding and, thus, the request is processed by

procRightInReq
Fig. 5.9

= ci〈mo〉 | ci?(mo) .pi(y, lr, r) .
(
pi ,up〈y, lr, r〉

| (νmo,up)
(

mo
?
(
y′, ls, s, z

)
.
([
y′ = y

]
r〈ls, lr, ls, s, z〉 | mo,up

〈
y′, ls, s, z

〉)
| (νmo) (mo,up � mo | ci〈mo〉)

))
.

138

5.2. Extending Encodings

To do so, the chain that is implemented by procRightInReq has first to be prepared to
accept a new member. Thus, a pre-processing step on the chain lock ci is necessary
which leads to

pi(y, lr, r) .
(
pi ,up〈y, lr, r〉

| (νmo,up)
(
m?

o

(
y′, ls, s, z

)
.
([
y′ = y

]
r〈ls, lr, ls, s, z〉 | mo,up

〈
y′, ls, s, z

〉)
| (νmo) (mo,up �mo | ci〈mo〉)

))
.

It instantiates the link mo used by the member of the chain to receive left output requests.
Since this is the first member, the link is set to the channel used to transfer left requests
from the left hand side to the right hand side of the parallel operator encoding. For
the next member a fresh instance of mo is restricted in the last line. The forwarder
mo,up � mo ensures that each left request that arrives is forwarded to the next member.
The step on ci unguards an input on a request channel that allows for our right request
to register itself as first member of the chain. The consumption of the right request
pi〈a, l2, r1〉 leads to the term

(νmo,up)
(

mo
?
(
y′, ls, s, z

)
.
([
y′ = a

]
r1〈ls, l2, ls, s, z〉 | mo,up

〈
y′, ls, s, z

〉)
| (νmo) (mo,up � mo | ci〈mo〉)

)
| pi ,up〈a, l2, r1〉 .

We observe that the information carried by pi〈a, l2, r1〉 is filled in. The source term
channel a instantiates the right part of the equation within the match prefix. The
receiver lock r1 ensures that, in case of a found match, the collected information is
transmitted back to the encoding of the replicated receiver. And the sum lock of the
receiver becomes the second parameter of the output on r1, because it refers to a sum
that is right of the parallel operator encoding and, hence, should be tested as second
lock. In the current case, there is only one left output request mo〈a, l1, s1, c〉. Hence,

(νmo,up)
(

mo
?
(
y′, ls, s, z

)
.
([
y′ = a

]
r1〈ls, l2, ls, s, z〉 | mo,up

〈
y′, ls, s, z

〉)
| [a = a] r1〈l1, l2, l1, s1, c〉 | mo,up〈a, l1, s1, c〉
| (νmo) (mo,up � mo | ci〈mo〉)

)
| pi ,up〈a, l2, r1〉 .

With mo,up〈a, l1, s1, c〉 and the forwarder mo,up � mo a copy of the consumed left request
is transmitted to the next member in the chain (if there is any). Apart from that, the
missing information is filled in. Since the match [a = a] is satisfied, it can be removed
modulo structural congruence and a test-construct can be started within the encoded
replicated input by consuming r1〈l1, l2, l1, s1, c〉.

The replicated input a?(d) . ((νe) a〈e〉 .0 | e〈d〉 .0) is translated into

(νl2, r1, cr1 , cr2 , ro , ri)
(
pi〈a, l2, r1〉

| r?1
(
l , l ′, ls, s, z

)
.test ls then ls〈⊥〉 | s | cr1 〈z〉 else ls〈⊥〉

| ri〈a, l2, r1〉 | l2〈>〉 | cr2 〈ro , ri〉 | cr1 ?(d) .cr2 (ro , ri) .

(νmo ,mi , po,up , pi ,up , ro,up , ri ,up , co , ci)
(
pushReqIn

| (νpo , pi) (J (νe) a〈e〉 .0 | e〈d〉 .0 Kma | procRightOutReq | procRightInReq)

| (νro , ri) (cr2 〈ro , ri〉 | pushReqOut)
))

139

5. The Design of Encodings

within J S Kma . The Consumption of r1〈l1, l2, l1, s1, c〉 unguards the test-construct

test l1 then l1〈⊥〉 | s1 | cr1 〈c〉 else l1〈⊥〉

which reduces to l1〈⊥〉 | s1 | cr1 〈c〉, because of the positive instantiation of l1 on the left
hand side. The instantiation of the sender lock s1 allows to unguard the continuation of
the sender. To unguard the encoded continuation of the replicated source term input, we
have to add a branch to the parallel structure. To do so, we consume the instantiation
of the chain lock cr1 which also finally transmits the received source term name c to the
encoded continuation. A second step on the chain lock cr2 then initialises the channels
ro , ri of the new branch, to enable the reception of requests from other branches resulting
from earlier reductions of this replicated source term input as well as a copy of the input
request of the replicated input itself. The new branch is given by the term

(νmo ,mi , po,up , pi ,up , ro,up , ri ,up , co , ci)
(
pushReqIn

| (νpo , pi) ({ c/d } J (νe) a〈e〉 .0 | e〈d〉 .0 Kma | procRightOutReq | procRightInReq)

| (νro , ri) (cr2 〈ro , ri〉 | pushReqOut)
))

We observe that the second line of the new branch is similar to the encoding of the right
hand side of a parallel operator. And, indeed, each branch unguarded by an emulation
of a communication with a replicated source term input behaves as if its the right side of
a parallel operator encoding. It receives “left” requests, i.e., the original input request of

the replicated receiver and all requests of preceding branches, over pushReqIn
Fig. 5.9

= ro �
{ mo , ro,up } | ri � { mi , ri ,up }. Since the new branch is the first branch, ri〈a, l2, r1〉 is
the only request that will ever reach it. Note that the new branch produces an output
request po〈a, l3, s2, e〉 that leads to a matching pair of communication partners. As a
consequence, the test-construct in the encoded replicated input is unguarded once more,
reduces again to its then-case, and, thus, a second branch is added. This second branch
is has its own versions of ro , ri . The first branch transmits all its requests over

pushReqOut
Fig. 5.9

= po,up � { po , ro } | ro,up � ro | pi ,up � { pi , ri } | ri ,up � ri

to the second branch. That leads again to a possible step with the replicated receiver
adding a third branch and so forth.

5.3. Modifications

In Section 5.2.1 we present two very similar ideas to encode mixed choice. The first—pro-
posing a total order on sum locks—was implemented within J · Kma in the last section.
The other idea is to block the number of test-constructs to avoid deadlock by preventing
that cyclic dependencies in source term sums lead to cyclic dependencies between test-
constructs. It can be implemented by a simple modification of the encoding J · Kma .

First, we introduce and restrict a fresh name c denoted as coordinator lock in the
following. More precisely, each encoding of a parallel operator restricts its own version

140

5.3. Modifications

of the coordinator lock and initially provides exactly one instantiation of this lock.

J P | Q Kma,2 , (νc,mo ,mi , po,up , pi ,up , co , ci)
(

(νpo , pi)
(
J P Kma,2 | procLeftOutReq | procLeftInReq

)
| (νpo , pi)

(
J Q Kma,2 | procRightOutReq | procRightInReq

)
| c | pushReq

)

Then we remove the sum locks from input requests. They are not necessary in this
variant of the encoding. The combination of left and right requests is the same as in
J · Kma . But if a pair of matching requests is found, an instantiation of the coordinator lock
has to be consumed before r〈ls, s, z, c〉, i.e., before the sum lock of the sender, the sender
lock, the sent value, and the name of the corresponding coordinator lock are transmitted
to the encoded receiver and its (nested) test-construct. The input on the coordinator
lock ensures that for each encoding of a parallel operator at most one test-construct can
be unguarded concurrently. Note that this method prevents from deadlocks, because it
prevents sets of nested test-constructs with cyclic dependencies between their respective
first and second sum locks.

procRightOutReq , co〈mi〉 | co?(mi) .po(y, ls, s, z) .
(
po,up〈y, ls, s, z〉

| (νmi ,up)
(

mi
?
(
y′, r

)
.
([
y′ = y

]
c.r〈ls, s, z, c〉 | mi ,up

〈
y′, r

〉)
| (νmi) (mi ,up � mi | co〈mi〉)

))
procRightInReq , ci〈mo〉 | ci?(mo) .pi(y, r) .

(
pi ,up〈y, r〉

| (νmo,up)
(

mo
?
(
y′, ls, s, z

)
.
([
y′ = y

]
c.r〈ls, s, z, c〉 | mo,up

〈
y′, ls, s, z

〉)
| (νmo) (mo,up � mo | ci〈mo〉)

))
Restriction, choice, τ -prefix, output, and success are encoded exactly as in J · Kma . In the
encoding of inputs we have again to remove the sum lock from the input request. More-
over, we have to adapt the input on the receiver lock according to the above mentioned
output, i.e., the first parameter is the sum lock of the sender, the second parameter is
the sender lock, the third parameter is the received value, and the last parameter is the
name of the coordinator lock of which an instantiation was consumed to unguard the
respective output on the receiver lock. In this version of the encoding J · Kma it is not
necessary to test the sum locks in a particular order, because the blocking implemented
by the coordinator lock ensures the absence of deadlocks. Instead the sum lock of the
receiver is checked first and then the received sum lock of the sender as it is already done
in J · Ksa. To ensure that each parallel operator encoding allows not only for the emulation
of a single step, the completion of a nested test-construct restores the instantiation of

141

5. The Design of Encodings

the coordinator lock.

J y(x) .P Kma,2 , (νr)
(
pi〈ϕm

a (y) , r〉 | r?
(
l ′, s, ϕm

a (x) , c
)
.

test l then test l ′ then l〈⊥〉 | l ′〈⊥〉 | s | J P Kma,2 | c
else l〈>〉 | l ′〈⊥〉 | c

else l〈⊥〉 | c
)

Note that the coordinator lock is instantiated in each case of the nested test-construct,
i.e., it is restored regardless of the values of the tested sum locks.

It remains to adapt the encoding of replicated inputs. Remember that the translation
of replicated inputs is a combination of the protocol assumed for the encoding of the
parallel operator and the protocol assumed for the encoding of inputs. So, we have to
restrict a fresh version of the coordinator lock, provide exactly one initial instantiation
of this lock, adapt the input on the receiver lock, and ensure that for each outcome
of the test-construct an instantiation of the coordinator lock, whose instantiation was
consumed to unguard the output on the receiver lock and whose name was transmitted
over the receiver lock, is restored.

J y?(x) .P Kma,2 , (νc, r , cr1 , cr2 , ro , ri)
(
pi〈ϕm

a (y) , r〉 | c
| r?(l, s, z, c) .test l then l〈⊥〉 | s | cr1 〈z〉 | c else l〈⊥〉 | c
| ri〈ϕm

a (y) , r〉 | encodedContinuations
)

Finally, change all remaining occurrences of J · Kma into J · Kma,2 and change the forwarders
on requests matching to the new multiplicity of requests.

In general, adaptations of encodings are used to improve an encoding, i.e., to satisfy
more or stricter criteria, or to obtain an alternative of an encoding which is e.g. better
suited for another domain or can be implemented in an easier way in a particular setting.
However, the presented modification above leads to an encoding that is very similar to the
variant presented in Section 5.2. By Theorem 4.4.8 and because J · Ksa is a good encoding
(compare to [Nes00] or Chapter 6), both encodings from πm into πa do not preserve
distributability. The encoding J · Kma,2 restricts the number of emulation attempts that
can be performed concurrently, while J · Kma sequentialises only single steps of such emu-
lation attempts. Accordingly, one may consider the encoding J · Kma as slightly “better”
than J · Kma,2, but this is rather a point of view and does not underpin any of the quality
criteria of the general framework. However, for the rest of this thesis we concentrate on
the former encoding, i.e., do not prove that also the latter satisfies the criteria of the
general framework.

5.4. Composing Encodings

Assume there are three process calculi LA = 〈 PA, 7−→A 〉, LB = 〈 PB, 7−→B 〉, and
LC = 〈 PC , 7−→C 〉 and two good encodings; the encoding J · KAB : PA → PB from LA
into LB and the encoding J · KBC : PB → PC from LB into LC . Moreover, let J · KAC be the

142

5.4. Composing Encodings

compositions of these two encodings, i.e., let J S KAC =
r

J S KAB
zB
C

for all S ∈ PA. Then

the natural question arises, whether the composition J · KAC is again a good encoding
from LA into LC . Unfortunately, as discussed in [Gor10a], the composition of two
good encodings is not necessarily a good encoding, because operational correspondence
holds for the composition only under some assumptions. It is quite obvious that the
composition J · KAC is again success sensitive and reflects divergence.2 [Gor10a] also proves
that the first two criteria, compositionality and name invariance, hold for the composition
(for an appropriate combination of the respective renaming policies).

The problem with operational correspondence is that it is defined modulo an equiva-
lence � on the respective target language. This is necessary to get rid of junks possibly
left over by emulations, but it prevents that the composition of two good encodings
satisfies again operational correspondence. Note that the composition J · KAC should sat-
isfy operational correspondence with respect to the version of � of the second target
language, i.e., of LC in the current case. Let us denote the variant of � used in J · KBC
by �C and the variant used in J · KAB by �B, respectively. Then, [Gor10a] proves that

J · KAC satisfies operational correspondence if J · KBC preserves the equivalence �B, i.e., if

S1 �B S2 implies J S1 KBC �C J S2 KBC for all S1, S2 ∈ PB, and �C is reduction closed,
i.e., P �C Q and P Z=⇒C P

′ implies that there exists Q′ ∈ PC such that Q Z=⇒C Q
′ and

P ′ �C Q′ for all P, P ′, Q ∈ PC .

Since the preservation of the equivalence �B and the reduction closedness of �C
are very strict properties, Gorla provides also a second setting in which operational
correspondence holds for the combination of good encodings. For this a stricter version
of operational correspondence is proposed:

Completeness: For all S Z=⇒S S
′, it holds J S K Z=⇒T J S′ K | T for some T � 0.

Soundness: For all J S K Z=⇒T T , there exists an S′

such that S Z=⇒S S
′ and T Z=⇒T J S′ K | T for some T � 0.

Here, S and S′ are terms of the source language and 7−→S is its reduction semantics,
whereas T is a term of the target language, 7−→T is its reduction semantics, and �
is an equivalence on the target language. Then, [Gor10a] proves that J · KAC satisfies

operational correspondence if J · KAB and J · KBC satisfy the stricter version of operational

correspondence and if J · KBC preserves the equivalence class of 0, i.e., if S �B 0 implies

J S KBC �C 0 for all S ∈ PB, and translates the parallel operator homomorphically.

The Figures 5.1, 5.4, and 5.8 specify (together with the abbreviations in Defini-
tion 5.2.3 and Definition 5.1.1) encodings from πs into π∼a , from πm into π∼p , and from πm
into π∼a . To turn these encodings into encodings from πs into πa, from πm into πp, and
from πm into πa, respectively, we have to get rid of the polyadic communications. For
this, [NP00] uses an encoding from π∼a into πa that goes back to [HT91]. Let us denote
this encoding J · K∼. It acts homomorphic for all operators except for action prefixes for

2Note that in [Gor10a] a slightly stricter version of the general framework is presented that also requires
preservation of divergence.

143

5. The Design of Encodings

which it is defined as

J y〈z1, . . . , zn〉 K∼ , (νu) (y〈u〉 | u(u1) . (u1〈z1〉 | . . . | u(un) . (un〈zn〉) . . .))

J y(x1, . . . , xn) .P K∼ , y(u) .
(

(νu1)
(
u〈u1〉 | u1(x1) .

(
. . .

(νun) (u〈un〉 | un(xn) . J P K∼) . . .
)))

,

where for simplicity we omit the renaming policy that has to ensure in this case that
u, u1, . . . , un ∈ N are fresh names.

By the above argumentation, we can combine the polyadic variants of the encodings as
given in Figures 5.1, 5.4, and 5.8 and the encoding J · K∼ to obtain the desired encodings
if they satisfy one of the two discussed settings. Unfortunately, J · Kma as given in Fig-
ure 5.8 violates the second setting, because it does not translates the parallel operator
homomorphically and does also not satisfy the stricter notion of operational correspon-
dence. To use the first setting, we have to fix the relation � for this encoding which we
deliberately avoid up to now. We discuss this equivalence in Section 6.3.4. Accordingly,
we do not combine these encodings, but instead consider polyadic communications only
as abbreviations. Note that we do not use the full power of polyadic communication.
Thus, to obtain terms of the desired encodings into the target languages πa, πp, and π=a ,
we have to unfold all polyadic communications in Figures 5.1, 5.4, and 5.8 as described
by the following definition.

Definition 5.4.1 (Unfolding Polyadic Communications). To unfold the polyadic com-
munications we define (for each encoding) the function u(·) that has to be applied on
the definition of the encoding in the respective figure. We consider the encoding J · Ksa
first. In this case, we have to unfold in Figure 5.1 all outputs and (replicated) inputs
with multiplicity zero by

u1

(
t
)
, (νvt) t〈vt〉 u1(t .P) , t(vt) . u1(P)

u1

(
f
)
, (νvf) f 〈vf 〉 u1(f .P) , f (vf) . u1(P)

u1(s) , (νvs) s〈vs〉 u1(s.P) , s(vs) .u1(P)

u1(r) , (νvs,r) r〈vs,r 〉 u1(r
?.P) , r?(vs,r) . u1(P)

all outputs and inputs with multiplicity two by

u1

(
l〈t , f 〉

)
, (νu∼,l)

(
l〈u∼,l 〉 | u∼,l (ut) . (ut〈t〉 | u∼,l (uf) .uf 〈f 〉)

)
u1(l(t , f) .P) , l(u∼,l) . ((νut) (u∼,l 〈ut〉 | ut(t) . ((νuf) (u∼,l 〈uf 〉 | uf (f) . u1(P)))))

and all outputs and inputs with multiplicity three by

u1

(
ϕs
a(y)〈l , s, ϕs

a(z)〉
)
, (νu∼,i)

(
ϕs
a(y)〈u∼,TS 〉 | u∼,TS (ul) .

(
ul 〈l〉 | u∼,TS (us) .

(
us〈s〉

| u∼,TS (uTS) .uTS 〈ϕ
s
a(z)〉

)))
u1(ϕ

s
a(y)(l , s, ϕs

a(x)) .P) , ϕs
a(y)(u∼,TS) .

(
(νul)

(
u∼,TS 〈ul 〉 | ul (l) .

(
(νus)

(
u∼,TS 〈us〉

| us(s) . ((νuTS) (u∼,TS 〈uTS 〉 | uTS (ϕs
a(x)) .u1(P)))

))))
.

144

5.4. Composing Encodings

To obtain J · Kmp , we have to unfold in Figure 5.4 all outputs and inputs with multi-
plicity zero by

u2

(
t
)
, (νvt) t〈vt〉 u2(t .P) , t(vt) .u2(P)

u2

(
f
)
, (νvf) f 〈vf 〉 u2(f .P) , f (vf) .u2(P)

u2(s1) , (νvs,r) s1〈vs,r 〉 u2(s1.P) , s1(vs,r) .u2(P)

u2(s2) , (νvs) s2〈vs〉 u2(s2.P) , s2(vs) . u2(P)

u2(r1) , (νvs,r) r1〈vs,r 〉 u2(r1.P) , r1(vs,r) . u2(P)

all outputs and inputs with multiplicity two by

u2

(
l〈t , f 〉

)
, (νu∼,l)

(
l〈u∼,l 〉 | u∼,l (ut) . (ut〈t〉 | u∼,l (uf) .uf 〈f 〉)

)
u2(l(t , f) .P) , l(u∼,l) . ((νut) (u∼,l 〈ut〉 | ut(t) . ((νuf) (u∼,l 〈uf 〉 | uf (f) .u2(P)))))

all outputs and inputs with multiplicity three by

u2

(
y · i〈l , r1, r2〉

)
, (νu∼,ti)

(
y · i〈u∼,ti 〉 | u∼,ti (ul) .

(
ul 〈l〉 | u∼,ti (us,r) .

(
us,r 〈r1〉

| u∼,ti (ur ′) .ur ′〈r2〉
)))

u2(y · i(l , r1, r2) .P) , y · i(u∼,ti) .
(

(νul)
(
u∼,ti 〈ul 〉 | ul (l) .

(
(νus,r)

(
u∼,ti 〈us,r 〉

| us,r (r1) . ((νur ′) (u∼,ti 〈ur ′〉 | ur ′(r2) .u2(P)))
))))

all outputs and (replicated) inputs with multiplicity four by

u2(pi〈y, l , r1, r2〉) ,
(
νu∼,i ′

) (
pi
〈
u∼,i ′

〉
| u∼,i ′(un) .

(
un〈y〉 | u∼,i ′(ul) .

(
ul 〈l〉

| u∼,i ′(us,r) .
(
us,r 〈r1〉 | u∼,i ′(ur ′) .ur ′〈r2〉

))))
u2(y · o〈l , s1, s2, z〉) , (νu∼,to)

(
y · o〈u∼,to 〉 | u∼,to (ul) .

(
ul 〈l〉 | u∼,to (us,r) .

(
us,r 〈s1〉

| u∼,to (us) .
(
us〈s2〉 | u∼,to (un) .un〈z〉

))))
u2(pi

?(y, l , r1, r2) .P) , pi
?
(
u∼,i ′

)
.
(

(νun)
(
u∼,i ′〈un〉 | un(y) .

(
(νul)

(
u∼,i ′〈ul 〉

| ul (l) .
(

(νus,r)
(
u∼,i ′〈us,r 〉 | us,r (r1) .

(
(νur ′)

(
u∼,i ′〈ur ′〉

| ur ′(r2) . u2(P)
))))))))

u2(y · o(l , s1, s2, z) .P) , y · o(u∼,to) .
(

(νul)
(
u∼,to 〈ul 〉 | ul (l) .

(
(νus,r)

(
u∼,to 〈us,r 〉

| us,r (s1) .
(

(νus)
(
u∼,to 〈us〉 | us(s2) .

(
(νun)

(
u∼,to 〈un〉

| un(z) .u2(P)
))))))))

all outputs and replicated inputs with multiplicity five by

u2(po〈y, l , s1, s2, z〉) ,
(
νu∼,o′

) (
po
〈
u∼,o′

〉
| u∼,o′(un) .

(
un〈y〉 | u∼,o′(ul) .

(
ul 〈l〉

| u∼,o′(us,r) .
(
us,r 〈s1〉 | u∼,o′(us) .

(
us〈s2〉

| u∼,o′(un) .un〈z〉
)))))

u2(po
?(y, l , s1, s2, z) .P) , po

?
(
u∼,o′

)
.
(

(νun)
(
u∼,o′〈un〉 | un(y) .

(
(νul)

(
u∼,o′〈ul 〉

| ul (l) .
(

(νus,r)
(
u∼,o′〈us,r 〉 | us,r (s1) .

(
(νus)

(
u∼,o′〈us〉

| us(s2) .
(
(νun)

(
u∼,o′〈un〉 | un(z) .u2(P)

))))))))))

145

5. The Design of Encodings

and all outputs and replicated inputs with multiplicity seven by

u2(r2〈l1, l2, ls, s2, z, v, w〉) , (νu∼,r)
(
r2〈u∼,r 〉 | u∼,r (ul) .

(
ul 〈l1〉 | u∼,r (ul) .

(
ul 〈l2〉

| u∼,r (ul) .
(
ul 〈ls〉 | u∼,r (us) .

(
us〈s2〉

| u∼,r (un) .
(
un〈z〉 | u∼,r (us,r) .

(
us,r 〈v〉

| u∼,r (us,r) .us,r 〈w〉
)))))))

u2(r
?
2 (l1, l2, ls, s2, z, v, w) .P) , r?2 (u∼,r) .

(
(νul)

(
u∼,r 〈ul 〉 | ul (l1) .

(
(νul)

(
u∼,r 〈ul 〉

| ul (l2) .
(

(νul)
(
u∼,r 〈ul 〉 | ul (ls) .

(
(νus)

(
u∼,r 〈us〉

| us(s2) .
(

(νun)
(
u∼,r 〈un〉 | un(z) .

(
(νus,r)

(
u∼,r 〈us,r 〉

| us,r (v) .
(

(νus,r)
(
u∼,r 〈us,r 〉

| us,r (w) . u2(P)
))))))))))))))

.

Finally, to obtain J · Kma , we have to unfold in Figure 5.8 all outputs and inputs with
multiplicity zero by

u3

(
t
)
, (νvt) t〈vt〉 u3(t .P) , t(vt) . u3(P)

u3

(
f
)
, (νvf) f 〈vf 〉 u3(f .P) , f (vf) . u3(P)

u3(s) , (νvs) s〈vs〉 u3(s.P) , s(vs) .u3(P)

all outputs and inputs with multiplicity two by

u3

(
l〈t , f 〉

)
, (νu∼,l)

(
l〈u∼,l 〉 | u∼,l (ut) . (ut〈t〉 | u∼,l (uf) .uf 〈f 〉)

)
u3(cr2 〈ro , ri〉) , (νu∼,c) (cr2 〈u∼,c〉 | u∼,c(uo) . (uo〈ro〉 | u∼,c(ui) .ui〈ri〉))
u3(l(t , f) .P) , l(u∼,l) . ((νut) (u∼,l 〈ut〉 | ut(t) . ((νuf) (u∼,l 〈uf 〉 | uf (f) .u3(P)))))

u3(cr2 (ro , ri) .P) , cr2 (u∼,c) .
(

(νuo)
(
u∼,c〈uo〉 | uo(ro) .

(
(νui)

(
u∼,c〈ui〉

| ui(ri) .u3(P)
))))

all outputs and (replicated) inputs with multiplicity three by

u3(pi〈y, l , r〉) , (νu∼,i)
(
pi〈u∼,i〉 | u∼,i(un) .

(
un〈y〉 | u∼,i(ul) .

(
ul 〈l〉

| u∼,i(ur) .ur 〈r〉
)))

u3(pi(y, l , r) .P) , pi(u∼,i) .
(

(νun)
(
u∼,i〈un〉 | un(y) .

(
(νul)

(
u∼,i〈ul 〉

| ul (l) . ((νur) (u∼,i〈ur 〉 | ur (r) .u3(P)))
))))

u3(pi
?(y, l , r) .P) , pi

?(u∼,i) .
(

(νun)
(
u∼,i〈un〉 | un(y) .

(
(νul)

(
u∼,i〈ul 〉

| ul (l) . ((νur) (u∼,i〈ur 〉 | ur (r) .u3(P)))
))))

146

5.5. Summary

all outputs and (replicated) inputs with multiplicity four by

u3(po〈y, l , s, z〉) , (νu∼,o)
(
po〈u∼,o〉 | u∼,o(un) .

(
un〈y〉 | u∼,o(ul) .

(
ul 〈l〉

| u∼,o(us) .
(
us〈s〉 | u∼,o(un) .un〈z〉

))))
u3(po(y, l , s, z) .P) , po(u∼,o) .

(
(νun)

(
u∼,o〈un〉 | un(y) .

(
(νul)

(
u∼,o〈ul 〉

| ul (l) .
(

(νus)
(
u∼,o〈us〉 | us(s) .

(
(νun)

(
u∼,o〈un〉

| un(z) . u3(P)
))))))))

u3(po
?(y, l , s, z) .P) , po

?(u∼,o) .
(

(νun)
(
u∼,o〈un〉 | un(y) .

(
(νul)

(
u∼,o〈ul 〉

| ul (l) .
(

(νus)
(
u∼,o〈us〉 | us(s) .

(
(νun)

(
u∼,o〈un〉

| un(z) . u3(P)
))))))))

and all outputs and replicated inputs with multiplicity five by

u3

(
r
〈
l1, l2, l

′, s, z
〉)
, (νu∼,r)

(
r〈u∼,r 〉 | u∼,r (ul) .

(
ul 〈l1〉 | u∼,r (ul) .

(
ul 〈l2〉

| u∼,r (ul) .
(
ul

〈
l ′
〉
| u∼,r (us) . (us〈s〉 | u∼,r (un) .un〈z〉)

))))
u3

(
r?
(
l1, l2, l

′, s, z
)
.P
)
, r?(u∼,r) .

(
(νul)

(
u∼,r 〈ul 〉 | ul (l1) .

(
(νul)

(
u∼,r 〈ul 〉

| ul (l2) .
(

(νul)
(
u∼,r 〈ul 〉 | ul

(
l ′
)
.
(

(νus)
(
u∼,r 〈us〉

| us(s) . ((νun) (u∼,r 〈un〉 | un(z) . u3(P)))
))))))))

.

Note that the use of distinct auxiliary names for different purposes instead of the
names u, u1, . . . , un eases the typing of the respective encoding function in Section 6.2.3.

5.5. Summary

The main contribution of this chapter is the presentation of a good encoding of mixed
choice. To the best of our knowledge, this is the first good encoding from πm into
π=a —and in particular the first good encoding of mixed choice. We based this encoding
on an encoding of separated choice, namely J · Ksa, from Nestmann in [Nes00]. Nestmann
also introduces some candidates for an encoding from πm into πa that either violate
compositionality or divergence reflection. Based on these discussions and the informa-
tion gained from the translational separation results in (the first half of) Chapter 4 we
derived a good encoding from πm into π=a . For this, we first reviewed the concept of
the encoding J · Ksa from [Nes00] (Section 5.1). In order to simplify the presentation of
the rather complex new encoding we introduced it in two steps. Note that also e.g. in
[PS92, Nes96] encodings are introduced step-wise to reduce the complexity of the single
encodings. In Section 5.2.2 we introduced an intermediate encoding, because this al-
lows us to concentrate first on the identification of source term communication partners
within an emulation and postpone at least some part of the complicated protocol guiding
the flow of requests to the final encoding. By separating these two concepts and intro-
ducing them step by step, we hope to provide more intuition on our encoding function.
Moreover, the intermediate encoding is interesting in its own, because it represents a
good and distributability-preserving encoding from πm into πp. At least we can use it to

147

5. The Design of Encodings

validate our formulation of the novel criterion to measure preservation of distributability
in Section 3.4. The final encoding is presented in Section 5.2.4

Note that within this chapter we only presented the encodings, but of course we also
have to prove their correctness with respect to the required quality criteria, i.e., to the
general framework of Section 3.3. We do so and also discuss the main properties of these
encodings in the next chapter.

In Section 5.3 we showed how an alternative of the concept behind the encoding
J · Kma can be implemented into an adapted version of this encoding. We observed that
the separation of the concept of an encoding and the implementation of this concept
within the encoding function helps us to present an encoding and to adapt it. Already
[Nes00] points out that the consideration of mixed choice in contrast to separate choice
is a potential source of deadlock. The proof of Lemma 4.2.17 reveals two solutions to
this problem. Either one has to order some capabilities necessary to emulate source
term steps—in the presented encoding that are the sum locks—or one has to temporary
block some alternative emulation attempts. The first solution was already discussed in
[Nes00], but there such an ordering was assumed to be given in advance which violates
compositionality. Our encoding J · Kma generate this ordering on its own during emula-
tion attempts. The second solution leads to the adapted version of the encoding J · Kma
presented in Section 5.3. In fact, this encoding was our first attempt to encode mixed
choice with respect to the criteria of Section 3.3. However, the other attempt, i.e., that
deadlocks can be avoided by the implementation of an algorithm to order sum locks,
seems to be more intuitive for us. So, we concentrate on this solution.

In Section 5.4 we reviewed a discussion of [Gor10a] on the quality of the composition
of two good encodings. Unfortunately, the composition of two good encodings does not
necessarily result in a good encoding. The investigation of methods to overcome or to
circumvent this drawback are an interesting topic of further research.

Moreover, note that the separation of the concept of an encoding and the implemen-
tation of this concept can also help to transfer the main idea of an encoding to another
pair of a source and a target language. As example consider the well-known encoding of
[FG96, Fou98] from the asynchronous pi-calculus into the join-calculus. As discussed in
Section 4.3, this encoding cannot preserve distributability, but it can surely be accepted
as a reasonable encoding that (together with the encoding for the opposite direction)
shows that πa and J have the same general expressive power. Unfortunately it does
not fit into the general framework of Gorla presented in Section 3.3, because as a two-
level encoding it violates compositionality. Instead it consists of an inner compositional
encoding surrounded by a fixed context that is parametrised on the free names of the
source term. This surrounding context introduces so-called firewalls. However, as we
conjecture, this encoding can be turned into a good encoding by transferring the main
concept of the encoding J · Kma . The firewalls are necessary to allow for the emulation of
source term communications on free names. This is not necessary if—as it is done in
J · Kma over the requests—source term communications are not emulated by a communi-
cation on the respective translations of the source term names, but by a communication
on a fresh name introduced and maintained by the encoding function. Accordingly,
we suggest to replace the concept of firewalls by the way source term communications

148

5.5. Summary

partners are identified and their communication is emulated in J · Kma , i.e., we suggest
to transfer the concepts of the requests and the protocol assumed with the encoding of
the parallel operator into an encoding from πa into J. As we conjecture, this results
in a good encoding that satisfies all criteria of the general framework. However, by
transferring the main concept of the encoding J · Kma , of course, also its drawbacks are
transferred. In particular, we suppose that to obtain a good encoding from πa into J the
target language has again to contain the match prefix.

149

6. Properties of Encodings

The main purpose of this chapter is the discussion of properties of encoding functions
and their influence on the quality of an encoding as well as to prove correctness of
the encodings of Chapter 5 with respect to the criteria of the general framework of
Section 3.3. Apart from these criteria we discuss properties related to the steps of an
emulation, the translation of observables, and junk.

In Section 6.1 we start with the analysis of the structural criteria. Structural criteria
like compositionality or even the homomorphic translation of some operator may be hard
to achieve within an encoding—in fact these requirements strongly limit the possibilities
to achieve an encoding function—but they are in general easy to prove. Compositionality
for instance can be shown by observation. Indeed we are also able to define a setting in
which also name invariance can be checked by observation. Accordingly, the proofs of
the structural criteria for the considered encodings J · Ksa, J · Kmp , and J · Kma are easy.

By contrast, proving the semantic criteria and in particular proving operational cor-
respondence turns out to be very elaborate. To reduce the complexity of the proofs
we introduce some type systems in Section 6.2. Type systems are a frequently used
technique to reason about process terms [SW01]. In contrast to for example equivalence
relations, type systems allow to formalise static properties of process terms without an
exhaustive analysis of the state space reachable from the term. Since the three considered
encodings are encodings of choice in the pi-calculus, we mainly focus on type systems
for the pi-calculus. In particular we use the type systems to formalise the strict name
schema used by the encoding functions to separate between links that are introduced for
different purposes and prove a confluence property for some of these links.

In Section 6.3 we use the information gained from the type systems to abbreviate
some of the proofs of the semantic criteria in the general framework. Furthermore, we
discuss other semantic properties of encoding functions in this section. In particular we
discuss the kind of steps of an emulation and how a distinction of these steps can help
to reason about the reductions of target terms. Then we fix the relation between source
term observables and their translation by the encoding functions within so-called trans-
lated observables and use them to define equivalences to reason about the target terms.
Moreover, we discuss junk or garbage that is introduced during emulation attempts.
Usually two kinds of junks are distinguished: inactive junk, i.e., a junk that remains
which does not perform further reductions on its own nor interact with the surrounding
target terms, and active junk. Of course, proving an encoding to be good requires to
prove that its active junks do no harm, i.e., do not influence the abstract behaviour of
the target term. However, the presented encodings J · Ksa, J · Kmp , and J · Kma induce the
consideration of a second dimension of junk, namely observable and unobservable junk.
In most cases developers of encodings make sure that all produced junk is unobservable,

151

6. Properties of Encodings

i.e., using the standard notions of observables for the target language neither the steps
on junk nor the junk itself is observable. Unfortunately, as for the presented encodings,
it is not always possible to define the encoding function such that all produced junk is
unobservable. Ideally �—the equivalence on target terms whose purpose is to abstract
from junks and modulo which we have to prove operational correspondence—is one of the
well-known standard equivalences of the target calculus, which is usually some kind of
bisimulation. In the case of πa, asynchronous barbed bisimulation ≈̇a can be considered
as (one of) its standard equivalences [MS92]. The completion of an emulation changes
positive instantiations of sum locks into negative ones and so influences the translated
observables, but the corresponding requests—in the case of J · Kma —or in- and outputs
of other branches—in the case of J · Ksa—remain as observable junk. While active junks
often aggravates the proof of correctness of an encoding, due to intricate proofs to show
that they do no harm, observable junks turn out to be even worse for an encoding,
because they prevent from the use of standard equivalences to describe the abstract be-
haviour of a target term. In Section 6.3 we show how to deal with this problem in order
to nonetheless prove the correctness of the considered encodings.

In Section 6.4 we consider correctness with respect to the additional domain-specific
criterion introduced in Section 3.4 to measure preservation of distributability. In partic-
ular we prove that J · Ksa and J · Kmp preserve distributability and explain why J · Kma does
not.

Note that, due to the complexity of the encodings J · Ksa, J · Kmp , and J · Kma , some of
the following proofs become rather lengthy. This holds in particular for some of the
inductions. We postpone some of these straightforward inductions to the appendix.

6.1. Structural Criteria

The five criteria of Gorla are divided into two structural and three semantic criteria.
Structural criteria describe the structure of the encoding, whereas the semantic criteria
describe how it should behave or more precisely how the encoded terms should behave.
However, also structural criteria influence (at least indirectly) the behaviour of encoded
terms. Thus, there is no strict borderline between syntactic and semantic criteria. How-
ever, a main difference between these two kinds of criteria is that structural criteria
can usually be proven by analysing only the syntax of encoded terms, i.e., by analysing
the encoding function, while to prove semantic criteria it is necessary to analyse the
behaviour of target terms, i.e., their executions, with respect to the behaviour of the
original source terms.

In general, structural criteria are easy to prove but often very hard to achieve. A
very good example is the homomorphic translation of an operator. It is the strictest
structural criterion presented in Chapter 3 and maybe the strictest criterion at all that
still allows for non trivial and meaningful encodings. It completely determines how the
encoding of the respective operator has to look like and, thus, can always be checked by
observation. Moreover, the homomorphic translation of an operator usually ensures the
correctness of this part of the encoding function also with respect to all other criteria,

152

6.1. Structural Criteria

because it intuitively states that the encoding function is not allowed to change the use
of the respective operator. So, homomorphically translated operators significantly ease
the proof of correctness of an encoding. On the other side, the homomorphic translation
of an operator is an extremely strict criterion. It requires that the respective opera-
tor is part of both the source and the target language. Hence, it can usually only be
applied within the same family of process calculi. An exception is the homomorphic
translation of the parallel operator, because we assume that this operator is introduced
by any process calculus in Section 2.1. Note that similar requirements can be found
for example in [Gor10b] or [VPP07]. As an example, consider the encoding function
J · Ksa in Figure 5.1 at Page 112. It is easy to observe that restriction, the parallel o-
perator, and success are translated homomorphically. Of course, proving a separation
result based on this criterion is more elaborate, because we have to show that under
the assumption of e.g. the homomorphic translation of the parallel operator there is no
encoding satisfying the other required properties (see Section 4.2.1). But even in this
case—e.g. by comparing the separation results in Section 4.2.1 and Section 4.2.2—we
observe that a stricter structural criterion leads to easier proofs. In the current case, i.e.,
in the general framework, we have to consider compositionality and name invariance.

6.1.1. Compositionality

Compositionality is strictly weaker than the homomorphic translation of an operator.
An encoding is compositional if it defines a fixed context for each operator including
holes for the translation of its parameters. By Definition 3.3.1 of compositionality,

The encoding J · K is compositional if, for every operator op : N n ×
PmS → PS of LS and for every subset of names N , there exists a context
CNop([·]1, . . . , [·]n+m) : N n × PmS → PT such that, for all x1, . . . , xn ∈ N and
all S1, . . . , Sm ∈ PS with fn(S1) ∪ . . . ∪ fn(Sm) = N , it holds that

J op (x1, . . . , xn, S1, . . . , Sm) K = CNop(x1, . . . , xn, J S1 K , . . . , J Sm K) .

the context is allowed to depend on the free names of the subterm-parameters. Again,
that an encoding satisfies this criterion can be checked easily by analysing the definition
of the encoding function, i.e., by observation. Consider the definition of the encoding
of a single operator. It has to be possible to separate the right hand side of such a
definition into a context possibly parametrised on the set N with exactly one hole for
each parameter of the operator and within these holes there has to be the names and
the encodings of the subterms used as parameters of the operator at the left hand side.
We check this condition by analysing whether (1) the right hand side of a definition
is a term of the target language, i.e., only target language operators are used and the
encoded subterms (if there are any) appear as parameter of a target language operator
at a position on which a subterm is required1, (2) the only allowed parameter on the
right hand side of a definition is the set N , and (3) for any parameter of the source

1Note that, if the source language operator on the left hand side requires only a single parameter, the
right hand side can be defined by (the encoding of) this parameter without surrounding context.

153

6. Properties of Encodings

language operator at the left, there is exactly one occurrence of the respective name or
the translation of the respective subterm on the right hand side, i.e., we have to count
these occurrences.

Analysing the encoding functions in Figure 5.1, Figure 5.4, and Figure 5.8, we observe
that none of the encodings J · Ksa, J · Kmp , and J · Kma uses the possibility to parametrise
the contexts by the set N of the free names of the subterms or any other parameter.
Hence, the second condition is satisfied trivially for all three encoding functions. Also,
all encodings satisfy obviously the first condition. However, with respect to the very
strict interpretation of the compositionality criterion given above, none of the encodings
satisfies the last condition, because they use names that are parameters on the left hand
side several times on the right hand side, as for instance the names y and x in the
encoding of input guarded terms of J · Ksa in Figure 5.1.

J y(x) .P Ksa , (νr)
(
r | r?.ϕs

a(y)
(
l ′, s, ϕs

a(x)
)
.

test l then test l ′ then l〈⊥〉 | l ′〈⊥〉 | s | J P Ksa
else l〈>〉 | l ′〈⊥〉 | r

else l〈⊥〉 | ϕs
a(y)

〈
l ′, s, ϕs

a(x)
〉)

Fortunately, it is simple to repair this shortcoming. All we need to do is to introduce a
mechanism to copy names, as in

J y(x) .P Ksa , (νr ,u)
(
u〈ϕs

a(y) , ϕs
a(x)〉 | u

(
y′, x′

)
.
(
r | r?.y′

(
l ′, s,x′

)
.

test l then test l ′ then l〈⊥〉 | l ′〈⊥〉 | s | J P Ksa
else l〈>〉 | l ′〈⊥〉 | r

else l〈⊥〉 | y′
〈
l ′, s,x′

〉))
Note that this mechanism introduces—due to the unfolding of polyadic communica-
tion—exactly five additional internal and encapsulated steps for each source term input
guard but, except for these steps, it does not change the behaviour of the term. Also
note that none of the encodings presented in Chapter 5 is prompt (Definition 3.2.1).
Thus, we can ignore these additional steps. Moreover, we observe that this kind of du-
plication of a name is possible in all name passing calculi. Thus, in order to simplify the
presentation of encoding functions, we allow the duplication of names in name passing
calculi and regard corresponding encoding functions nonetheless as compositional.

Observation 6.1.1. The encodings J · Ksa, J · Kmp , and J · Kma are compositional.

Consequently, in higher order languages, where terms can be transmitted, we also
allow to copy the subterm-parameters. Moreover, in calculi that implement a context-
sensitive guard that is either unobservable or can be restricted, we also allow to omit
names or subterms that are parameters on the left hand side. Again, we can convert an
encoding omitting a parameter into a strict compositional encoding by adding a subterm
with that parameter, for example in parallel to the rest of the right hand side, that is

154

6.1. Structural Criteria

guarded such that this guard can never reduce and is not observable with respect to the
chosen equivalence �.

Let us have a closer look at the contexts introduced by J · Kma . In the encodings of
restriction and success the context is used only to translate source term names according
to the renaming policy. Apart from that the encoding of these operators are homomor-
phic. The encoding of the choice operator introduces a positive instantiation of a fresh
sum lock and splits up the encodings of the branches in parallel, because there is no
choice operator in the target language. Therefore, of course we have to consider the
choice operator as binary with an index set and a set or list of its branches as parame-
ters. We left the question whether there is an encoding from πm with the binary choice
operator into π=a as an open question to further research. The encodings of input and
output guarded terms and the encoding of terms guarded by τ introduce rather small
contexts. However, in the case of J · Kma the contexts introduced to translate the binary
parallel operator and replicated input are rather complicated and huge. Remember that
we claim in Section 2.1 that the parallel operator is binary. Comparing its encoding
with the encoding of the choice operator, we observe that this claim is crucial, because
it forbids the introduction of a global coordinator for all parallel terms as the sum lock
is for all the branches of a choice.

6.1.2. Name Invariance

Name invariance ensures that the encoding function does not rely on specific names of
source terms. Hence, it forbids that encodings are designed against or for some special
examples or counterexamples. To obtain name invariance the renaming policy can be of
great assistance. It prevents conflicts between source term names and names introduced
by the encoding function by translating source term names into fresh names if necessary.
Indeed, a strict use of the renaming policy together with the preservation of bound
occurrences of source term names suffices to ensure name invariance of compositional
encodings, where strict means that all source term names and all names introduced by
the encoding function are clearly separated by the renaming policy.

Definition 6.1.2 (Strict Renaming). Let LS = 〈 PS, 7−→S 〉 and LT = 〈 PT, 7−→T 〉 be
two process calculi, and J · K : PS → PT be an encoding from LS into LT with the
renaming policy ϕJ K : N → N l. Moreover, let J · K be compositional. The encoding
make strict use of the renaming policy, if

1. the renaming policy is applied on all names at the right hand side that appear also
on the left hand side of a definition, i.e., on all source term names, but on no other
name, and,

2. for all names n ∈ N that appear at the right hand side of a definition but not at
the left hand side, the renaming policy ensures that ∀m ∈ N . ϕJ K(m) 6= n.

Note that the combination of these two conditions allows an encoding to forget source
term names, i.e., there are names at the left hand side of a definition such that neither
the name itself nor its translation occurs at the right hand side.

155

6. Properties of Encodings

Definition 6.1.3 (Preservation of Binding). Let LS = 〈 PS, 7−→S 〉, LT = 〈 PT, 7−→T 〉
be two process calculi, and J · K : PS → PT be an encoding from LS into LT with the
renaming policy ϕJ K : N → N l. Moreover, let J · K be compositional. The encoding
preserves the binding of names, if, for all names n ∈ N that are bounded at the left
hand side of a definition, all occurrences of n or its translation ϕJ K(n) are bound on the
right hand side.

A strict use of the renaming policy ensures that there are no clashes between source
term names and names introduced by the encoding function. Because of that, it allows to
translate substitutions on source term names into substitutions on target terms without
the risk that names introduced by the encoding function are accidentally captured.
The preservation of the binding of source term names is necessary to ensure that the
substitution on source terms and its translation on target terms behave similarly.

Lemma 6.1.4. Every compositional encoding that makes strict use of the renaming
policy and preserves the binding of names is name invariant.

Proof. Let LS = 〈 PS, 7−→S 〉 and LT = 〈 PT, 7−→T 〉 be two process calculi, and J · K :
PS → PT be an encoding from LS into LT with the renaming policy ϕJ K : N → N l.

By Definition 3.3.3 it suffice to show, that:

∀σ : N → N . ∃σ′ : N → N . ∀S ∈ PS .
J σ (S) K ≡α σ′ (J S K) ∧ ∀z ∈ N . ϕJ K(σ (z)) = σ′

(
ϕJ K(z)

)
We proceed with an induction over the structure of S, i.e., over the syntax of the source
language. Without loss of generality let, for the base case as well as for the induction step,
σ = { y1/x1, . . . yn/xn } for some n ∈ N and some names x1, . . . , xn, y1, . . . , yn ∈ N . We can
choose σ′ , { ϕJ K(y1)/ϕJ K(x1), . . . , ϕJ K(yn)/ϕJ K(xn) }, where if l > 1 then each ϕJ K(y1)/ϕJ K(x1)

represents ϕJ K(y1).1/ϕJ K(x1).1, . . . , ϕJ K(y1).l/ϕJ K(x1).l. So, ∀z ∈ N . ϕJ K(σ (z)) = σ′
(
ϕJ K(z)

)
.

Base Case: The constants of a process calculus are its operators without subprocesses
as parameters. Although in most of the process calculi the constants have no
parameters at all, as for instance the constants 0 and X in πm, we do not forbid
that constants are parametrised on names. Let us consider an arbitrary such ope-
rator S = op (a1, . . . , an) for some names a1, . . . , an ∈ N . By compositionality, the
encoding of this operator is given by J op (a1, . . . , an) K = C∅op(a1, . . . , an) for some

context C∅op([·]1, . . . , [·]n) : N n → PT. Since there are no subterms and thus no free
names of subterms, this context is not parametrised on names. Without loss of
generality let us assume that for all 1 ≤ i ≤ n either all occurrences of ai are free
or all occurrences of ai are bound in op (a1, . . . , an), because else the operator can
be simply replaced by an operator with additional names separating the bound
and unbound occurrences. Thus, σ (op (a1, . . . , an)) ≡α op (b1, . . . , bn), where, for
all 1 ≤ i ≤ n, if ai ∈ fn(op (a1, . . . , an)) then bi = σ (ai) and else bi is either ai or
a fresh name to avoid a name clash if σ (aj) = ai for some 1 ≤ j ≤ n with j 6= i.

J σ (S) K = J σ (op (a1, . . . , an)) K ≡α J op (b1, . . . , bn) K = C∅op(b1, . . . , bn)

156

6.1. Structural Criteria

Because of the first condition of Definition 6.1.2, all occurrences of the names
b1, . . . , bn are translated by the renaming policy, i.e., appear in the target term
as ϕJ K(b1) , . . . , ϕJ K(bn). Moreover, ϕJ K(σ (ai)) = σ′

(
ϕJ K(ai)

)
for all 1 ≤ i ≤ n,

because ∀z ∈ N . ϕJ K(σ (z)) = σ′
(
ϕJ K(z)

)
. Note that, by the preservation of the

binding of names (Definition 6.1.3), for all 1 ≤ i ≤ n such that the translated
name ϕJ K(bi) is free in C∅op(b1, . . . , bn) the name ai is free in op (a1, . . . , an) and
ϕJ K(bi) = ϕJ K(σ (ai)). Hence, by the second condition of Definition 6.1.2, all free

occurrences of translated names in C∅op(b1, . . . , bn) are of the form ϕJ K(σ (ai)) for
some 1 ≤ i ≤ n and we substitute them by σ′

(
ϕJ K(ai)

)
. Again this may cause

some α-conversion to avoid name capture if σ′
(
ϕJ K(ai)

)
= ϕJ K(bj) for some name

ϕJ K(bj) bound in C∅op(b1, . . . , bn). Since all names in σ′ are in the co-domain of ϕJ K

but, by the second condition of Definition 6.1.2, no name of C∅op([·]1, . . . , [·]n) is in
this set, σ′ has no effect on the context but only on the translated source names.
Hence, we can pull the substitution σ′ outwards, i.e.,:

J σ (S) K ≡α C∅op(b1, . . . , bn) ≡α σ′
(
C∅op(a1, . . . , an)

)
= σ′ (J S K)

Induction Hypothesis:

∀S ∈ PS . J σ (S) K ≡α σ′ (J S K) (IH)

Induction Step: Let S = op (a1, . . . , an, S1, . . . , Sm) for some names a1, . . . , an ∈ N
and some source terms S1, . . . , Sm ∈ PS when op is an arbitrary operator of
the source language that is not a constant, i.e., m > 0. By compositional-
ity, the encoding of this operator is given by J op (a1, . . . , an, S1, . . . , Sm) K =
CNop(a1, . . . , an, J S1 K , . . . , J Sm K) for some CNop([·]1, . . . , [·]n+m) : N n × PmS → PT
and N = fn(S1) ∪ . . . ∪ fn(Sm). Again, without loss of generality let us assume
that there are no name clashes in op (a1, . . . , an, [·]n+1, . . . , [·]n+m), i.e., the sets
of free and bound names of op (a1, . . . , an, [·]n+1, . . . , [·]n+m) are disjoint in this
partially instantiated context. We want to pull the substitution σ inside. There-
fore, we have to take care of the free names of the subterms S1, . . . , Sm that
are bound by the operator. Let us denote these names by v1, . . . , vk ∈ N , i.e.,
(fn(S1) ∪ . . . ∪ fn(Sm)) ∩ bn(op (a1, . . . , an, S1, . . . , Sm)) = { v1, . . . , vk }. To pull σ
inside, we substitute these names with fresh names. Accordingly, let w1, . . . , wk ∈
N be fresh names, i.e., { w1, . . . , wk } ∩ (n(σ) ∪ n(op (a1, . . . , an, S1, . . . , Sm))) = ∅
and the w1, . . . , wk are pairwise different. Thus, ϕJ K(wi) /∈ n(σ′) for all 1 ≤ i ≤ k.
Without loss of generality let us assume that { v1, . . . , vk } ⊆ { a1, . . . , an }, i.e.,
that the operator does not bind fixed names, otherwise we can replace the operator
by an operator with additional parameters covering these fixed names. Then

σ (op (a1, . . . , an, S1, . . . , Sm)) ≡α op (b1, . . . , bn, σ (θ (S1)) , . . . , σ (θ (Sm))) ,

157

6. Properties of Encodings

where θ = { w1/v1, . . . ,wk/vk } and, for all 1 ≤ i ≤ n,

bi =


σ (ai) , if ai ∈ fn(op (a1, . . . , an, S1, . . . , Sm))

θ (ai) , else if ai ∈ { v1, . . . , vk }
fi , else if ∃j ∈ { 1, . . . , n } . ai = σ (aj)

ai , else

where all fi are fresh names.

J σ (S) K = J σ (op (a1, . . . , an, S1, . . . , Sm)) K
≡α J op (b1, . . . , bn, σ (θ (S1)) , . . . , σ (θ (Sm))) K

= Cσ(θ(N))
op (b1, . . . , bn, J σ (θ (S1)) K , . . . , J σ (θ (Sm)) K)

Because of the first condition of Definition 6.1.2, all occurrences of the names
b1, . . . , bn are translated by the renaming policy, i.e., appear in the target term
as ϕJ K(b1) , . . . , ϕJ K(bn). Moreover, ϕJ K(σ (ai)) = σ′

(
ϕJ K(ai)

)
for all 1 ≤ i ≤ n,

because ∀z ∈ N . ϕJ K(σ (z)) = σ′
(
ϕJ K(z)

)
. Note that, by the preservation of the

binding of names (Definition 6.1.3), for all 1 ≤ i ≤ n such that the translated name

ϕJ K(bi) is free in Cσ(θ(N))
op (b1, . . . , bn, J σ (θ (S1)) K , . . . , J σ (θ (Sm)) K), the name ai

is free in op (a1, . . . , an) and ϕJ K(bi) = ϕJ K(σ (ai)). Hence, by the second condition
of Definition 6.1.2, all free occurrences of translated names in the target term are
of the form ϕJ K(σ (ai)) for some 1 ≤ i ≤ n and we substitute them by σ′

(
ϕJ K(ai)

)
.

Again this may cause some α-conversion to avoid name capture. Since all names
in σ′ are in the co-domain of ϕJ K but, by the second condition of Definition 6.1.2,

no name of Cσ(θ(N))
op ([·]1, . . . , [·]n+m) or Cθ(N)

op ([·]1, . . . , [·]n+m) is in this set, σ′ has
no effect on the context but only on the translated source names. Because of that,
we can pull the substitution σ′ outwards such that

J σ (S) K ≡α Cσ(θ(N))
op (b1, . . . , bn, J σ (θ (S1)) K , . . . , J σ (θ (Sm)) K)

≡α Cσ(θ(N))
op

(
b1, . . . , bn, σ

′ (J θ (S1) K) , . . . , σ′ (J θ (Sm) K)
)

by (IH)

≡α σ′
(
Cθ(N)
op

(
b′1, . . . , b

′
n, J θ (S1) K , . . . , J θ (Sm) K

))
,

where b′i is θ (ai) if ai ∈ { v1, . . . , vk }, and else b′i = ai, for all 1 ≤ i ≤ n. By
undoing θ, we conclude:

J σ (S) K ≡α σ′
(
Cθ(N)
op

(
b′1, . . . , b

′
n, J θ (S1) K , . . . , J θ (Sm) K

))
≡α σ′

(
CNop(a1, . . . , an, J S1 K , . . . , J Sm K)

)
= σ′ (J op (a1, . . . , an, S1, . . . , Sm) K) = σ′ (J S K)

Analysing the encoding functions in Figure 5.1, Figure 5.4, and Figure 5.8, we observe
that all of three encodings J · Ksa, J · Kmp , and J · Kma make strict use of the renaming policy
and preserve the binding of names. Thus, they are name invariant.

158

6.2. Type Systems

Corollary 6.1.5. The encodings J · Ksa, J · Kmp , and J · Kma are name invariant.

Of course, not every name invariant encoding makes strict use of the renaming policy,
preserves the binding of names, or even is compositional. For instance, there is no need
to guard names introduced by the encoding function with the help of the renaming policy
against source term names, if these names are introduced restricted and encapsulated
such that already the encoding function ensures that there are no clashes with source
term names. In cases like that, the proof of Lemma 6.1.4 can serve as guideline to show
name invariance: (1) find an appropriate definition of σ′, (2) perform an induction on
the structure of source terms, (3) rename the names free in the subterm-parameters but
bound by the operator into fresh names to avoid capture, and (4) then, in each case,
(a) pull σ inside the operator, (b) apply the encoding function, and (c) pull σ′ outside.

If the encoding does not preserve the binding of source term names, σ′ can be chosen
by first restricting σ to the free names of the source term S. But then σ′ is chosen with
respect to S, i.e., we can only show that for all combinations of S and σ we find an
appropriate σ′ (∀S . ∀σ . ∃σ′ instead of ∀σ . ∃σ′ . ∀S .). In contrast, σ′ in Lemma 6.1.4
depends only on σ and the respective renaming policy. Moreover, we observe that for
all considered encodings J · Ksa, J · Kmp , and J · Kma we can prove the first case of name
invariance in Definition 3.3.3 for all kinds of substitutions σ, i.e., it suffice to consider
equivalence modulo α-conversion.

Corollary 6.1.6 (Encoding substitutions). For all substitutions σ = { y1/x1, . . . , yn/xn }
it holds that

∀S ∈ Ps . J σ (S) Ksa ≡α { ϕ
s
a(y1)/ϕs

a(x1), . . . , ϕ
s
a(yn)/ϕs

a(xn) } (J S Ksa) ,

∀S ∈ Pm . J σ (S) Kmp ≡α { ϕ
m
p (y1)/ϕm

p (x1), . . . , ϕ
m
p (yn)/ϕm

p (xn) }
(
J S Kmp

)
, and

∀S ∈ Pm . J σ (S) Kma ≡α { ϕ
m
a (y1)/ϕm

a (x1), . . . , ϕ
m
a (yn)/ϕm

a (xn) } (J S Kma) .

6.2. Type Systems

Another static way to analyse encodings are type systems. Type systems for the pi-
calculus were already introduced by Milner in [Mil93b]. They provide a mechanism to
classify elements of a language. In the case of the pi-calculus types are usually assigned
to the names as e.g. in [San92, Mil93b, Tur96, PS96, SW01]. Like a process calculus, a
type systems consists of a syntax to build types and a set of typing rules. In contrast
to process calculi, these rules (usually) do not describe the behaviour of types—in fact
most types are static and have no behaviour—instead they describe a property of typed
process terms called well-typed. A typed process term within a type environment, i.e.,
a process term augmented with a type for each of its names, is well-typed if its typing
agrees with the behaviour of the term. An introduction and overview for type systems
in the context of the pi-calculus can e.g. be found in [SW01].

In principle we use type systems for two reasons. (1) they allow us to pick up el-
ements of the target language by their type instead of their name. Since nearly all

159

6. Properties of Encodings

names introduced by the encoding functions are restricted, this significantly eases the
identification of particular objects in the encoding function. Moreover, types allow us
to sum up different terms or capabilities that are introduced for the same purpose and
hence do not need to be considered separately. (2) we use type systems to prove some
static properties on the general use of some links. We show for example that some links
are never used for input but only replicated input and that the use on other links is so
limited that we can mostly ignore their existence. Both significantly eases and shortens
the considerations and proofs in Section 6.3.

In Section 6.2.1 we review some general concepts of type systems as for example type
environments. To introduce type systems we present then a very simple type system in
Section 6.2.2. Basically, it is a mixture of the basic type system introduced in [SW01]
and an adaptation of the sortings introduced in [Mil93b] to type the polyadic version
of the pi-calculus. Note that Section 6.2.2 serves as both an introduction to type sys-
tems as well as a tutorial on how to derive a type system for an encoding. Nonetheless,
already this exemplary type system is of great assistance (at least as intuition) in reason-
ing about the encoding J · Kma , because it exposes the strict name schema used there to
introduce names for different purposes and, moreover, proves that the encoding indeed
makes strict use of that schema. This allows us to formulate and prove invariants on the
respective parts of the protocol underlying the encoding function in Section 6.3.2. In
Section 6.2.3 we cover the problem of typing a monadic pi-calculus and, in particular, of
typing the translation of polyadic into monadic communication. Therefore, we revisit the
type system introduced for this translation in [QW00]. This type system closes the gap
between the first introduced type system and the target languages of our encoding func-
tions. In particular we prove that the unfolding of polyadic communication as defined in
Section 5.4 preserves the types of the basic type system. Because of that we can mainly
ignore the unfolding of polyadic communication in Section 6.3. Section 6.2.4 discusses
types with polarities and multiplicities [PS96, KPT99, San99]. Polarities tell us whether
a link can be used for output, input, or both, whereas multiplicities describe how often
a link can be used. Such information can be used to prove termination properties as
deadlock- or divergence-freedom (see e.g. [Kob98]). We use polarities and multiplicities
to show a partial confluence property for some of the links introduced by the encoding
functions. Partial confluence (compare to Section 4.4) basically means absence of con-
flicts. This again allows us to abstract from communications on links in some of the
proofs of Section 6.3.

6.2.1. Terminology

We mainly follow the Definitions of [SW01] for typing. Accordingly, we distinguish
between names used as links—link types—and names used as values communicated over
links—value types. The atom type, denoted as v, serves as basic and only type of
pure values, i.e., each name that is never used as link but only transmitted on links
is typed by the atom type. In [SW01] two approaches to build type systems—the by-
name and the by-structure approach—are distinguished. In the by-name approach two
types are different if they have a different name, where in the by-structure approach

160

6.2. Type Systems

distinguishable types have to differ in their structure, e.g. the type of a link carrying a
value of an atom type is distinguished from a link type characterising a link that carries
a link that carries a value. Hence, the by-name approach is more flexible, because it
allows to distinguish types with the same structure. On the other side, the by-structure
approach is mathematically more elegant, because it has a natural interpretation as a
logic. The type systems presented in the following are a mixture of both. Basically, we
follow the by-structure approach but, in order to gain more information, we distinguish
between different variants of the atom type to distinguish structurally equivalent types
of names which are introduced for different purposes.

The syntax of a type system consist of three sets: the set of value types V, the
set of link types L, and the set of types T covering at least all value and all link types.
Remember that we mainly follow the by-structure approach when building type systems.
Accordingly, in [SW01] link names are defined by the grammar L ::=](V), where the
prefix] marks a so-called connection type, that is a constructor for link types, followed
by the type of the transmitted value which again can be a link type or a value type.
We extend this concept to cover polyadic communication, i.e., allow lists of value or link
types as arguments of a link type. Usually, we use V, V ′, V1, . . . to range over value types,
L,L′, L1, . . . to range over link types, and T, T ′, T1, . . . to range over types.

The allocation of types to names is done in form of type assignments. Note that,
similarly to [SW01], we omit curly brackets when presenting sets of type assignments.

Definition 6.2.1 (Type Assignment). Let T be the set of types of a type system,
n ∈ N be a name, and T ∈ T be a type. Then the type assignment n :T allocates the
type T to the name n. Moreover, let n1, . . . , nm : T abbreviate the set of assignments
n1 :T, . . . , nm :T for some names n1, . . . , nm ∈ N (that are pairwise disjoint) and a type
T ∈ T.

Note the side condition that within sets of type assignments the names should be pairwise
disjoint. This condition ensures that there is no set with a pair of type assignments that
assign different types to a single name. Hence, we require that sets of type assignments
are unambiguous. Because of that also type environments, that are simply sets of type
assignments, have to be unambiguous.

Definition 6.2.2 (Type Environment). Let T be the set of types of a type system.
Then type environments are defined by

Γ ::= ∅ | Γ, n :T

where n ∈ N is a name, T ∈ T is a type, and n :T is a type assignment. We assume that
for all type environments Γ the names of different assignments are disjunct. Moreover,
let Γ(n) = T if n : T ∈ Γ, i.e., if n : T is an assignment in Γ, let n(Γ) return the set
of names in Γ, and let Γ1,Γ2 denote the union of the environments Γ1 and Γ2 under
the assumptions that Γ1(n) = Γ2(n) for all names n ∈ n(Γ1) ∩ n(Γ2). Consequently, we
abbreviate ∅,Γ by Γ.

We use Γ,Γ′,Γ1, . . . to range over type environments.

161

6. Properties of Encodings

A typing of a term (or an encoding function) is a set of assignments that allocate a type
to each name of the term (or to each name of the right hand side of each definition). We
assume that the typing of a term is given by a typed term and a type environment, where
the typed variant of a term is the term augmented with type assignments for all names
under restriction and the corresponding type environment provides the types for all free
names of the term. All other types, i.e., the types of the arguments of links, can be
derived in the by-structure approach from the type of the respective link. The syntax of
typed terms can simply be obtained from the syntax of the corresponding language—in
the case of encodings this is the respective target language—by replacing the restriction
operator, i.e., (νx)P in the pi-calculus, by its typed version (νx :T)P , where x :T is a
type assignment. Because of that, we do not explicitly distinguish between the untyped
syntax of an untyped term and the typed syntax of a typed term, but instead use only the
untyped version silently assuming that it is replaced by its typed variant if necessary.
Again, we abbreviate (νx1 :T1) (. . . (νxn :Tn) (P) . . .) by (νx1 :T1, . . . , xn :Tn)P . For a
process calculus 〈 P, 7−→ 〉 we denote the set of typed processes by P :T, where T is the
set of types of the respective type system. We write T (P) to denote the typed variant of
a term P with respect to a set of type assignments T that defines (at least) the types of
all restricted names of P . Note that two restrictions of syntactical the same name lead
to the same type in T (P). The typed variant of an encoding J · K, denoted by T J · K, is
obtained similarly by replacing all restrictions on the right hand side of all definitions by
the corresponding typed restriction, where again for all names under restriction T has
to provide a type assignment. Consequently, (P :T)�TJ · K denotes the set of typed target
terms with respect to the typed encoding T J · K if P is the set of processes of the target
language of J · K. We do not introduce the typed variants of the concepts of free names,
bound names, names, structural congruence, or the reduction relation but simply use
the corresponding untyped versions instead, because the differences between the typed
and untyped versions are trivial.

The property of a typed process or a type assignment to be well-typed with respect
to a given type environment is expressed by type judgements.

Definition 6.2.3 (Type Judgement). Let T be the types of a type system and Γ a type
environment in this type system. Then Γ ` x :T and Γ ` P are type judgements if x :T
is a type assignment for some x ∈ N and T ∈ T and P is a typed process.

If a type judgement Γ ` E can be derived by the typing rules of the type system then
E is well-typed with respect to Γ. In this cases, we also say that the typed process
P or the type assignment x : T respects Γ, and if Γ ` x : T that the type T can be
derived for x from Γ. Consequently, we denote a typed encoding T J · K as well-typed
with respect to a type environment Γ if each encoded term respects Γ, i.e., if for all S
of the respective source language we can derive Γ ` T J S K. Note that in Section 6.2.3
we extend type judgements with two additional sets. Hence, type judgements in the
monadic type system in Section 6.2.3 as well as in the linear type system in Section 6.2.4
have the form Γ; ∆; Ψ ` P for a typed term P , a type environment Γ and two auxiliary
sets ∆ and Ψ.

162

6.2. Type Systems

Typing rules describe the inference of type judgements much the same as reduction
rules describe the inference of reduction steps. Axioms allow to derive type judgements
for names and constant terms, whereas the remaining rules describe how type judgements
of composed terms or constants containing names can be derived from type judgements
of their respective subterms and names. Remember that with type systems we allocate
types to names. Hence, constants as 0 or X that do not contain any names are always
trivially well-typed. Similarly, because the prefix τ does not contain any names, typed
processes guarded by τ are usually well-typed if their continuation is well-typed. Because
of that, all of the following type systems contain rules similar to:

T-Nil
Γ ` 0

T-Succ
Γ ` X

T-Tau
Γ ` P

Γ ` τ.P
Furthermore, they contain the axiom

T-Name
Γ, x :T ` x :T

to illustrate that a type assignment x : T can be derived from a type environment
Γ′, if Γ′ already contains the type assignment x : T . Type assignments that are not
provided by the type environment have to be derived from the typing rules using either
the information given by the link types about the parameters of a link or by the typed
restrictions. Link types are handled quite different by the following type systems but
typed restrictions are processed by a rule or a set of rules comparable to

T-Res
Γ, x :T ` P

Γ ` (νx :T)P
,

i.e., a typed term under a typed restriction is well-typed with respect to a type envi-
ronment Γ if the unrestricted term is well-typed with respect to the union of Γ and the
type assignment provided by the typed restriction.

As mentioned above, type systems are a static way to reason about process terms,
i.e., they describe properties of terms without analysing their reductions. Nevertheless,
type systems usually define properties that are robust against reduction steps. They do
so, because they usually satisfy a so-called subject reduction property. Subject reduction
states consistency between the typing rules of the type system and the semantics of a
calculus. More precisely, we require that well-typedness is preserved by reduction steps,
i.e., that the derivative of a typed term is well-typed if the original term is well-typed with
respect to the same type environment. Of course, we have to prove subject reduction
with respect to the target language of the encodings J · Ksa, J · Kmp , J · Kma . Unfortunately,
the match prefix in the target language of the last encoding needs special consideration.
The problem is that by the reduction rule Pi-Congm,s,a,p and the structural congruence
rule [a = a]P ≡ P it is possible to introduce fresh free names within reductions for which
no typing information is given. Obviously, the so introduced matching prefixes [a = a]
do not contribute to the behaviour of target terms and, hence, are ignored. Accordingly,
we prove subject reduction only for closed type environments, i.e., type environments
that provide a type for all free names of a typed term.

163

6. Properties of Encodings

Definition 6.2.4 (Closed Type Environment). Let T be the types of a type system and
Γ a type environment in this type system. Then Γ is closed for some typed process P ,
if Γ (a) is defined for all names that are free in P .

To simplify the proof of subject reduction we also consider some other properties
of type systems. The strengthening property states that a type judgement remains
valid if we remove superfluous type assignments from the type environment, i.e., type
assignments on names that are not free in the respective term. Similarly, weakening
describes the property that type judgements remains valid if we add type assignments
as long as these new type assignments are not in conflict to the type environment, i.e.,
do not allocate a type to a name for which the type environment already specifies a
different type. Moreover, we consider robustness of type judgements with respect to
substitutions, to capture communication steps in the subject reduction lemma, and with
respect to structural congruence, to capture the rule Pi-Congm,s,a,p.

6.2.2. A Basic Type System

We use a very simple type system to extract some static information on encoded terms.
Intuitively, we use types to distinguish the names introduced by the encoding function
for different purposes, i.e., to manifest the strict naming scheme of J · Ksa, J · Kmp , and
J · Kma . Moreover, as a side effect, we prove that the representation of polyadic channels
is done consistently, by proving that no name of a target term is used with different
multiplicities. However, to show that all target terms are well-typed we have to unfold
all abbreviations, i.e., to boil down target terms to elements of P=

a without forwarders,
test-constructs, or polyadic communication. Unfortunately, as already pointed out by
Milner in [Mil93b], the translation of polyadic communication causes some troubles and
requires a rather complicated type system as introduced in [Yos96] or [QW00]. Because
of that, we postpone the treatment of polyadic communication (at least of channels with
multiplicity greater than one) to Section 6.2.3.

We want to type the encoding functions J · Ksa, J · Kmp , and J · Kma . Therefore, we de-
termine first what kind of types are necessary and collect the corresponding type as-
signments in the sets T 1

B , T 2
B , and T 3

B . The typed encodings are then given by T 1
B J · Ksa,

T 2
B J · Kmp , and T 3

B J · Kma , respectively.
If we analyse the encoding function J · Kma , we observe that as part of the underlying

algorithm all source term names are used within the encoding only as values but never
as links. As consequence, we can type all source term names by the atom type, which
throws away all potential requirements on the typing of source terms. However, to obtain
more information, we distinguish between different kinds of atom types. The first, vn,
is reserved for translations of source term names. Accordingly, T 3

B contains the type
assignments ϕm

a (x) , ϕm
a (y) , ϕm

a (z) , y, y′, z :vn and we obtain

T 3
B J (νx)P Kma , (νϕm

a (x) :vn)
(
T 3
B J P Kma

)
as the typed version of the encoding of restriction. Apart from translated source term
names, names that are never used as links are necessary to implement channels of

164

6.2. Type Systems

multiplicity zero, i.e., channels without parameters. Such channels are used to im-
plement boolean values with the links t and f , and to implement a sender lock s. If
an instantiation of a sum lock is checked the value true is represented by the message

t
Def. 5.4.1

= (νvt) t〈vt〉 and false is represented by f
Def. 5.4.1

= (νvf) f 〈vf 〉. An instantiation
of a sender lock, necessary to unguard the encoded continuation of a source term sender,

is implemented by s
Def. 5.4.1

= (νvs) s〈vs〉. Since the auxiliary values vt , vf , and vs are
never used as links, we can type them by the atom type. But then the type of true,
false, and an instantiation of a sender lock are equally represented by](v). So, in order
to distinguish boolean values and instantiations of sender locks, we use the three differ-
ent value types v>, v⊥, and vs to type the auxiliary names vt , vf , and vs , respectively.
Accordingly, we obtain](v>) as type of t ,](v⊥) as type of f , and](vs) becomes the
type of sender locks. To simplify the presentation of types, we introduce abbreviations
for some link types, e.g. we abbreviate the type of sender locks by s.

A positive instantiation of a sum lock l〈>〉 is, by Definition 5.1.1, an abbreviation of
l(t , f) .t , i.e., a sum lock l is a link carrying two values. Following the by-structure ap-
proach, sum locks are typed by a link type with the types of t and f as arguments. Thus,
T 3
B contains the type assignments l , l1, l2, ls, lr :](](v>) ,](v⊥)) and the typed version of

the translation of a sum is

T 3
B

t∑
i∈I

πi.Pi

|m

a

, (νl : l)

(
l(t , f) .

(
(νvt :v>) t〈vt〉

)
|
∏
i∈I
T 3
B J πi.Pi Kma

)
,

where l is used to abbreviate the type](](v>) ,](v⊥)). The counterpart of instantiations
of sum locks are test-constructs. Their unfolding into P=,∼

a do not introduce new names
with respect to the unfolding of instantiations of sum locks. Thus, the typed version of
a test-construct is obtained straightforwardly as

T 3
B (test l then P else Q) = (νt :](v>) , f :](v⊥))

(
l〈t , f 〉 | t .T 3

B (P) | f .T 3
B (Q)

)
.

It is also straightforward to determine the type of all other names introduced by the
encoding function J · Kma if we use instead of π=a its variant with polyadic communica-
tion as target language and, consequently, do not unfold the abbreviations of inputs or
outputs transmitting more than a single value. Figure 6.1 presents an overview of all
names and their types for J · Kma . Thus, T 3

B is the set of all type assignments defined
in Figure 6.1. We observe, that to type this encoding we need only four different value
types and eleven different (polyadic) link types. Interestingly, there are no cyclic de-
pendencies between types, as they result e.g. from a link carrying an argument of its
own or a more complex type. There are three reasons for this nice discipline on the use
of links in the encoding J · Kma : (1) the renaming policy ϕm

a separates clearly between
translated source term names and names introduced by the encoding function, (2) to
type the encoding function we can completely ignore the types of source terms, because
translated source term names are used as values only, and (3) the algorithm underlying
the encoding function is such that all steps necessary to emulate a source term step are
directed, i.e., there are no cycles in the flow of information. An advantage of the absence

165

6. Properties of Encodings

Description Names Type

source term names
ϕm
a (x) , ϕm

a (y) , ϕm
a (z) ,

vny, y′, z

auxiliary values
vt v>
vf v⊥
vs vs

booleans
t](v>)
f](v⊥)

sum locks l , l1, l2, ls, lr l =](](v>) ,](v⊥))

sender locks s s =](vs)

receiver locks r r =](l, l, l, s, vn)

output requests
po ,mo , po,up , o =](vn, l, s, vn)mo,up , ro , ro,up

input requests
pi ,mi , pi ,up , i =](vn, l, r)mi ,up , ri , ri ,up

chain locks

co](i)
ci](o)

cr1](vn)
cr2](o, i)

Figure 6.1.: Basic Types in J · Kma .

of such cyclic dependencies in types is that we are not forced to introduce recursive
types as explained in Section 6.7 of [SW01]. We conclude that to type J · Kma we can fix
the sets of value and link types to the types given in Table 6.1, i.e., there is no need to
consider e.g. all kinds of link types](V1, V2) of multiplicity two for some pair of value or
link types V1 and V2 but only l =](](v>) ,](v⊥)) and](o, i).

Within the other two encodings J · Ksa and J · Kmp the translations of source term names
are used as links. However, in J · Kmp translated source term names are used only as part
of links in polyadic synchronisation. This allows us to cheat a little bit, by capturing the
typing information for polyadic synchronisation links within the type of the second part
of the link, namely the output tag o or the input tag i . Because of this trick, we can
again type all translated source term names by the pure value type vn. Note that this
is indeed a trick to ease the typing of the encoding J · Kmp ; it is by no means a standard
way to type polyadic synchronisation. Apart from the links for polyadic synchronisation
the encoding J · Kmp can be typed very similarly to J · Kma . They differ mainly in the
multiplicity of (second) receiver locks and out- and input requests. Moreover, J · Kmp
introduces an additional sender and an additional receiver lock in comparison to J · Kma .
We observe that these two looks are transmitted as the last two parameters in outputs
on second receiver locks r2 as in procRightOutReq

po
?(y, ls, s1, s2, z) . (y · i(lr, r1, r2) .r2〈lr, ls, ls, s2, z, r1, s1〉 | po,up〈y, ls, s1, s2, z〉)

166

6.2. Type Systems

Description Names Type

source term names
ϕm
p (x) , ϕm

p (y) , ϕm
p (z) ,

vny, z

auxiliary values

vt v>
vf v⊥

vs,r vs,r
vs vs

booleans
t](v>)
f](v⊥)

sum locks l , l1, l2, ls, lr l =](](v>) ,](v⊥))

sender and receiver locks
s1, r1, v, w](vs,r)

s2 s =](vs)
r2 r′ =](l, l, l, s, vn,](vs,r) ,](vs,r))

output requests po , po,up o′ =](vn, l,](vs,r) , s, vn)

input requests pi , pi ,up i′ =](vn, l,](vs,r) , r
′)

tags
o to =](l,](vs,r) , s, vn)
i ti =](l,](vs,r) , r

′)

Figure 6.2.: Basic Types in J · Kmp .

and in procRightInReq

pi
?(y, lr, r1, r2) . (y · o(ls, s1, s2, z) .r2〈ls, lr, ls, s2, z, s1, r1〉 | pi ,up〈y, lr, r1, r2〉) .

The order of these parameters depends on the origin of the respective request in the
parallel structure. This parallel structure is captured by the encoding in a static way,
i.e., the restriction of the out- and input requests ensures that a left part of a parallel
operator encoding can always be identified as left part. It is not possible to destruct
the encoded parallel structure by structural congruence or reduction rules. Thus, it is
indeed possible to reason about the translation of the parallel structure of source terms
within a type systems. But this requires some effort and is beyond the scope of this
thesis. We will use invariants instead to reason about the structure of target terms and
the information flow of requests along the encoded parallel structure. Since first sender
locks as well as first receiver locks are both links carrying no value, we can type them
by the same type. This allows us to type also second receiver locks properly without
reasoning about the encoded parallel structure within target terms. By the way, this
allows us in Definition 5.4.1 to use the same auxiliary value vs,r to unfold polyadic
communication of these two links. In order to avoid confusion with translated source
term names, booleans, and second sender locks, we type vs,r by a fresh atom type vs,r.
Accordingly, the type of first sender and first receiver locks becomes](vs,r) and second
receiver locks are typed by r′ =](l, l, l, s, vn,](vs,r) ,](vs,r)). The type of the remaining
links is then obtained by simply following the by-structure approach. Note that the use
and, hence, also the typing of booleans, sum locks, and (second) sender locks is the same

167

6. Properties of Encodings

for all three encoding functions. Figure 6.2 presents an overview of all names and their
types for J · Kmp and T 2

B is the set of type assignments specified in this figure.
For the encoding J · Ksa we cannot perform such a trick. In the by-structure approach

the type of an output ϕs
a(y)〈l , s, ϕs

a(z)〉 on the translation of the source term name y
depends on the type of the source term name z. Because of this, we can type J · Ksa
only with respect to well-typed source terms. More precisely, we assume that there is
a type system for the source language πs of J · Ksa with the types Ts that also follow the
by-structure approach such that the types of parameters of a link can be obtained from
the respective link type and consider only source terms S that are well-typed within this
type systems given a typing that provides a type for all names of S. We denote source
terms that satisfy these properties as well-structured.

Definition 6.2.5 (Well-Structured Source). Let S ∈ πs. Without loss of generality let
us assume that S is free of name clashes, i.e., fn(S) ∩ bn(S) = ∅ and no name is bound
twice in S. Then S is well-structured if there exists a type system of πs with the types
Ts and a set of type assignments TS such that

1. for all names x ∈ n(S) there is a type assignment x :TS in TS with TS ∈ Ts,

2. for all y, z ∈ n(S) and all S′ ∈ πs such that yz.S′ or y(z) .S′ is a subterm of S,
y :TS ∈ TS and z :T ′S ∈ TS imply TS =](T ′S), and

3. there exists a type environment ΓS ⊆ TS such that ΓS ` TS(S).

In this case, we also say that S is well-structured with respect to Ts and TS .

We can type all target terms in Pa�J · Ksa with respect to all well-structured source terms
of πs. Remember that the encoding J · Ksa in Figure 5.1 translates source term outputs

y〈z〉 into polyadic outputs ϕs
a(y)〈l , s, ϕs

a(x)〉, i.e., it adds a sum lock and a sender lock
to outputs (and also inputs) on translated source term names. To capture this, we
inductively replace source term link types by link types carrying additionally a sum lock
type and a sender lock type.

Definition 6.2.6 (Translation of Source Types). Let Ts be the set of types of a type
system in πs and TS ∈ Ts. Then the translation of the source type TS into a type of the
basic type system, denoted by T̃S , is defined as:

T̃S =

{
]
(
l, s, T̃ ′S

)
, if ∃T ′S ∈ Ts . TS =](T ′S)

TS , else

Moreover, we extend the translation of source types to the translation of type assign-
ments, i.e., x̃ :TS , ϕs

a(x) : T̃S , and to the translation of sets of type assignments, i.e.,

T̃S ,
{
x̃ :TS | x :TS ∈ TS

}
.

The remaining types, i.e., the types of the names introduced by the encoding function,
are obtained for J · Ksa as for the other encodings. An overview of all names and their

168

6.2. Type Systems

Description Names Type Condition

ϕs
a(x)

VS if VS ∈ Ts, VS 6=](TS), and Γ ` x :VS

source term
](l, s, TS) if TS ∈ Ts and Γ ` x :](TS)

names
ϕs
a(y)](l, s, TS) where TS ∈ Ts and Γ ` x :](TS)

ϕs
a(z)

VS if VS ∈ Ts, VS 6=](TS), and Γ ` z :VS
](l, s, TS) if TS ∈ Ts and Γ ` z :](TS)

vt v>
auxiliary vf v⊥
values vs vs

vs,r vs,r

booleans
t](v>)
f](v⊥)

sum locks l , l ′ l =](](v>) ,](v⊥))

sender locks s s =](vs)

receiver locks r](vs,r)

Figure 6.3.: Basic Types in J · Ksa.

types for J · Ksa is given in Figure 6.3. Again, T 1
B is the set of type assignments specified

in this figure, where in this case T 1
B is defined with respect to a set Ts of source term

types.

The set of types of the basic type system is the union of the types given in Figures 6.1,
6.2, and 6.3.

Definition 6.2.7 (Basic Types). Let Ts be the types of the type system of the source
language πs. The types of the basic type system, denoted as basic types, are given by
the sets

VB , { vn, v>, v⊥, vs, vs,r } ∪ { VS | VS ∈ Ts ∧ ∀TS ∈ Ts . VS 6=](TS) }
LB ,

{
](v>) ,](v⊥) , l, s, r, o, i,](i) ,](o) ,](vn) ,](o, i) ,](vs,r) , r

′, o′, i′, to, ti
}

∪
{
T̃S |](TS) ∈ Ts

}
TB , VB ∪ LB

of basic value types VB, basic link types LB, and basic types TB, respectively.

The typing rules of the basic type system are given by the rules in Figure 6.4. Note
that the Rules T-ResB, T-InB, and T-RepB assume the implicit side condition that
the required enlargement of the type environment is possible, i.e., Γ (x) is not defined or
equal to T for the Rule T-ResB and, for all 1 ≤ i ≤ n, Γ (xi) is not defined or equal to
Ti for T-InB and T-RepB.

The typing rules of the basic type system are very similar to the rules presented at
Page 241 in [SW01]. As explained above, the axioms T-NameB, T-NilB, and T-SuccB

169

6. Properties of Encodings

T-NameB
Γ, x :T ` x :T

T-NilB
Γ ` 0

T-SuccB
Γ ` X

T-ResB
Γ, x :T ` P

Γ ` (νx :T)P
T-ParB

Γ ` P Γ ` Q
Γ ` P | Q

T-MatB
Γ ` a :T Γ ` b :T Γ ` P

Γ ` [a = b]P
T-TauB

Γ ` P
Γ ` τ.P

T-OutB
Γ ` y :](T1, . . . , Tn) Γ ` z1 :T1 . . . Γ ` zn :Tn

Γ ` y〈z1, . . . , zn〉

T-OutPSB
Γ ` y :vn Γ ` o :](T1, . . . , Tn) Γ ` z1 :T1 . . . Γ ` zn :Tn

Γ ` y · o〈z1, . . . , zn〉

T-InB
Γ ` y :](T1, . . . , Tn) Γ, x1 :T1, . . . , xn :Tn ` P

Γ ` y(x1, . . . , xn) .P

T-InPSB
Γ ` y :vn Γ ` o :](T1, . . . , Tn) Γ, x1 :T1, . . . , xn :Tn ` P

Γ ` y · o(x1, . . . , xn) .P

T-RepB
Γ ` y :](T1, . . . , Tn) Γ, x1 :T1, . . . , xn :Tn ` P

Γ ` y?(x1, . . . , xn) .P

Figure 6.4.: Typing Rules of the Basic Type System.

state that a type assignment of a type environment respects this type environment and
that 0 and X respect every type environment—a simple consequence of the fact that
neither 0 nor X contain names. T-ResB states that a typed term P under a typed
restriction (νx :T) respects a type environment Γ if P respects Γ, x :T . A parallel com-
position respects a type environment if each of its subterms respects this environment.
Similarly, by the Rule T-TauB, τ.P respect Γ if P respects Γ. The Rule T-MatB states
that a typed process P guarded by a matching prefix [a = b] respects a type environ-
ment Γ if a and b have the same type that can be derived from Γ and P respects Γ. The
rules for output and input are variants of the corresponding rules in [SW01] extended to
polyadic communication. An output guarded process y〈z1, . . . , zn〉 respects a type envi-
ronment Γ if for the channel y a link type with the n arguments T1, . . . , Tn and for each
of the transmitted values zi the corresponding type Ti can be derived from Γ. Note that,
because we type an asynchronous calculus, outputs have no continuations. Accordingly,
an input guarded process y(x1, . . . , xn) .P respects Γ if again for y a link type with the
n arguments T1, . . . , Tn can be derived from Γ and P respects Γ, x1 :T1, . . . , xn :Tn. The
Rules T-OutPSB and T-InPSB are necessary to type links for polyadic synchronisation
in J · Kmp . They require that polyadic links y · o are constructed from a source term name

170

6.2. Type Systems

y, i.e., the type of y has to be vn, and a tag o that represents the actual type of the link
represented by y · o. Apart from that T-OutPSB and T-InPSB are similar to T-OutB

and T-InB. The Rule T-RepB for replicated inputs is similar to T-InB.

Definition 6.2.8 (Basic Type System). The basic type system is given by the basic
types in Definition 6.2.7 and the typing rules in Figure 6.4.

In the basic type system a typed process is well-typed with respect to a type envi-
ronment, if we can derive a type judgement by the typing rules in Figure 6.4. Some
of these rules, as for instance T-ResB, require that a subterm is well-typed under an
extended type environment. This is necessary to check type constrains on bound names,
i.e., the added type assignments provide the types of the bound names. By the implicit
assumption on type environments in Definition 6.2.2, extensions are allowed only if the
new type assignment is not in conflict with the type environment, i.e., for some new
assignment x :T either the type environment does not contain a type assignment for x or
it already assigns the type T to x. Hence, to type processes, it is sometimes necessary to
apply α-conversion, in order to avoid name clashes between a typed process and its type
environment. In the following, whenever we prove a type judgement, i.e., not only for
the basic type system, we will silently apply α-conversion if necessary. Thus, we equate
typed processes that are equivalent modulo α-conversion.

To ensure that the set of typing rules of a type system indeed guarantees agreement
with the behaviour of the term, we augment each type system with the already mentioned
subject reduction lemma. In order to simplify its proof, we show some properties of the
basic type system. Note that we implicitly assume the basic type system for the rest of
this subsection. The first lemma states two properties. A type assignment can be derived
if and only if it is already part of the type environment. And if it is possible to derive
a type assignment then this assignment is unambiguous, i.e., given a type environment
each name can be well-typed for at most one type.

Lemma 6.2.9. Γ ` x :T iff Γ (x) = T . And for every type environment Γ and name x
there is at most one type T such that Γ ` x :T .

Proof. By the typing rules in Figure 6.4, Γ ` x : T can only be derived from the
Rule T-NameB under the condition that Γ (x) = T , i.e., Γ = Γ′, x :T , which proves the
first property. Moreover, Γ ` x :T ′ for some T ′ 6= T can only be derived if Γ′ (x) = T ′.
But the implicit assumption on type environments in Definition 6.2.2 states that Γ can-
not contain two assignments with different types for the same name. We conclude that
for all Γ, x, T, and T ′ such that Γ ` x :T as well as Γ ` x :T ′ we have T = T ′.

Strengthening allows to remove superfluous type assignments from type judgements.

Lemma 6.2.10 (Strengthening). If Γ, x′ : T ′ ` P and x′ /∈ fn(P) then Γ ` P , and if
Γ, x′ :T ′ ` x :T and x′ 6= x then Γ ` x :T .

Proof. By Lemma 6.2.9, Γ, x′ :T ′ ` x :T and x′ 6= x imply Γ (x) = T , i.e., Γ = Γ′, x :T .
Then Γ′, x :T ` x :T follows directly by T-NameB.

For the other case, we perform an induction on the depth of the derivation.

171

6. Properties of Encodings

Base Case: If Γ, x′ :T ′ ` P can be derived from one of the axioms then either P = 0 or
P = X. In both cases Γ ` P follows again directly by T-NilB or T-SuccB.

Induction Hypothesis: ∀P ∈ (P=,∼
a :TB) . Γ, x′ :T ′ ` P ∧ x′ /∈ fn(P) imply Γ ` P

Induction Step: We have to distinguish nine cases—one for each inference rule in Fig-
ure 6.4. All cases follow simply by applying the respective rule on Γ ` P and then
concluding by the induction hypothesis and by the strengthening property for type
assignments shown above. We show the case for Rule T-InB as example.

In this case, P is an input guarded process y(x1, . . . , xn) .P ′ and the first step of
the derivation is:

. . .

Γ, x′ :T ′ ` y :](T1, . . . , Tn)
. . .

. . .

Γ, x′ :T ′, x1 :T1, . . . , xn :Tn ` P ′
. . .

Γ, x′ :T ′ ` y(x1, . . . , xn) .P ′
T-InB

If we apply T-InB to Γ ` P we have to show the subgoals Γ ` y :](T1, . . . , Tn) and
Γ, x1 : T1, . . . , xn : Tn ` P ′. The first follows from Γ, x′ : T ′ ` y :](T1, . . . , Tn) and
the weakening property for type assignments. The second subgoal follows from
Γ, x′ :T ′, x1 :T1, . . . , xn :Tn ` P ′ by the induction hypothesis.

The weakening property shows that a type judgement remains valid if we add addi-
tional type assignment as long as these are not in conflict with the given type environ-
ment.

Lemma 6.2.11 (Weakening). If Γ ` P then Γ, x′ : T ′ ` P , and if Γ ` x : T then
Γ, x′ :T ′ ` x :T for any type T ′ and any name x′ such that Γ (x′) is not defined or equal
to T ′.

Proof. Since type environments are sets, if Γ (x′) = T ′ then Γ, x′ :T ′ = Γ and the lemma
holds trivially. We consider the other case.

Γ ` x :T can only derived by the Rule T-NameB. We conclude that Γ (x) = T , i.e.,
Γ = Γ′, x :T . Then Γ′, x :T, x′ :T ′ ` x :T follows directly by T-NameB again.

For the other case, i.e., Γ ` P , we perform an induction on the depth of the derivation.

Base Case: If Γ ` P can be derived from one of the axioms then either P = 0 or P = X.
In both cases Γ, x′ :T ′ ` P follows again directly by T-NilB or T-SuccB.

Induction Hypothesis:

∀x′ ∈ N . T ′ ∈ TB . ∀P ∈ (P=,∼
a :TB) . Γ ` P ∧ x′ /∈ n(Γ) imply Γ, x′ :T ′ ` P

Induction Step: Again, we consider one case for each inference rule in Figure 6.4. All
cases simply follow by applying the respective rule on Γ, x′ : T ′ ` P and then
concluding by the induction hypothesis. We show the case for Rule T-InB as
example.

172

6.2. Type Systems

In this case, P is an input guarded process y(x1, . . . , xn) .P ′ and the first step of
the derivation is:

. . .

Γ ` y :](T1, . . . , Tn)
. . .

. . .

Γ, x1 :T1, . . . , xn :Tn ` P ′
. . .

Γ ` y(x1, . . . , xn) .P ′
T-InB

If x′ ∈ { x1, . . . , xn }, we apply α-conversion to avoid a name clash between P
and x′ : T ′. If we apply T-InB to Γ, x′ : T ′ ` P we have to show the subgoals
Γ, x′ :T ′ ` y :](T1, . . . , Tn) and Γ, x′ :T ′, x1 :T1, . . . , xn :Tn ` P ′. The first follows
from Γ ` y :](T1, . . . , Tn) and the weakening property for type assignments. The
second subgoal follows from Γ, x1 :T1, . . . , xn :Tn ` P ′ by the induction hypothesis.

Before we show that the typing rules agree with the reduction relation, we prove that
they agree with structural congruence. Unfortunately, this is not true for the match
prefix.

Example 6.2.12. Let P ∈ (P=,∼
a :TB) and Q , [a = a]P . Obviously, P ≡ Q.

Moreover, Γ ` Q always implies Γ ` P , because of Rule T-MatB. But Γ ` P does not
necessarily imply Γ ` Q, as for instance if Γ = ∅ and P = 0, because there is no type
assignment for a.

Because of the rule [a = b]P ≡ P , it is possible to introduce free names to a typed term
for which we do not have any type constrains. To handle this problem, we introduced
closed type environments in Section 6.2.1. Hence, we prove agreement with the rules of
structural congruence only with respect to closed type environments.

Lemma 6.2.13. If Γ ` P , P ≡ Q, and Γ is closed for Q then Γ ` Q.

Proof. We show the condition for a single application of the rules of structural congru-
ence in Figure 2.1 at Page 18. The lemma then follows by induction on the depth of the
derivation of P ≡ Q. As described above, we equate typed processes that are equivalent
modulo α-conversion. Of the remaining rules of structural congruence the only interest-
ing case is [a = b]P ≡ P . All other cases are simple consequences of the Rules T-NilB,
T-ParB, and T-ResB. Note that for the last case P | (νx :T)Q ≡ (νx :T) (P | Q)
the side condition x /∈ fn(P) ensures that the derivation of Γ ` P | (νx :T)Q can be
constructed from the derivation of Γ ` (νx :T) (P | Q), because it ensures that the ad-
ditional type assignment on x is superfluous to prove that P is well-typed and can be
removed by Lemma 6.2.10.

In the case of the rule for the match prefix, either P = [a = a]Q or Q = [a = a]P for
some name a. In the first case, Γ ` Q follows from Γ ` [a = a]Q and T-MatB. In the
second case, i.e., if Q = [a = a]P , we apply T-MatB which results in three subgoals.
The first two are both Γ ` a :T for some arbitrary type T . Since Γ is closed for Q, there
is some T ′ such that Γ (a) = T ′. Thus, we choose T = T ′. Then Γ ` a : T follows by
Lemma 6.2.9. The last subgoal Γ ` P holds by assumption.

173

6. Properties of Encodings

Of course, whenever some typed process respects some type environment then this
type environment is closed for the typed process, i.e., provides a type for all free names.

Lemma 6.2.14. If Γ ` P then Γ is closed for P .

Proof. Assume the contrary, i.e., assume Γ ` P and x /∈ n(Γ) but x ∈ fn(P). Apart from
the matching operator free names can occur as links or values of outputs. Hence, P has
a (potentially guarded) subterm which is either of the form

1. y〈z1, . . . , zn〉 or y · o〈z1, . . . , zn〉 for some names y, o, z1, . . . , zn ∈ N ,

2. y(x1, . . . , xn) .P ′, or y · o(x1, . . . , xn) .P ′, or y?(x1, . . . , xn) .P ′ for some y, o ∈ N ,
some bound names x1, . . . , xn ∈ N , and some P ′, or

3. [a = b]P ′ for some names a, b ∈ N and some P ′

such that x ∈ { y, o, z1, . . . , zn, a, b }. None of the typing rules in Figure 6.4 allows
to derive a type judgement for a term without requiring a type judgement for all its
subterms. Hence, in the derivation of Γ ` P there is some subgoal Γ′ ` y〈z1, . . . , zn〉, Γ′ `
y · o〈z1, . . . , zn〉, Γ′ ` y(x1, . . . , xn) .P ′, Γ′ ` y · o(x1, . . . , xn) .P ′, Γ′ ` y?(x1, . . . , xn) .P ′,
or Γ′ ` [a = b]P ′ for some Γ′ that is obtained from Γ during the derivation up to the
mentioned subgoal. The typing rules in Figure 6.4 can add type assignments to Γ during
this partial derivation but do so only for bound names in the Rules T-ResB, T-InB,
T-InPSB, and T-RepB (the other rules do not add type assignments). We conclude
that x /∈ n(Γ′).

Consider the case that x = y. Then applying the Rule T-OutB on the subgoal
Γ′ ` y〈z1, . . . , zn〉, T-InB on the subgoal Γ′ ` y(x1, . . . , xn) .P , or T-RepB on the subgoal
Γ′ ` y?(x1, . . . , xn) .P , which are the only applicable rules, results in the subgoal Γ′ ` y :
](T1, . . . , Tn) for some types T1, . . . , Tn. Moreover, applying the Rule T-OutPSB on the
subgoal Γ′ ` y · o〈z1, . . . , zn〉 or T-InPSB on the subgoal Γ′ ` y · o(x1, . . . , xn) .P results
in the subgoal Γ′ ` y : vn. But, since y /∈ n(Γ′) and because of Lemma 6.2.9, neither
Γ′ ` y :](T1, . . . , Tn) nor Γ′ ` y : vn can hold. Hence, the judgement Γ ` P cannot be
derived, which contradicts the assumption.

If x = o, applying the Rule T-OutPSB on the subgoal Γ′ ` y · o〈z1, . . . , zn〉 or
T-InPSB on Γ′ ` y · o(x1, . . . , xn) .P results in the subgoal Γ′ ` o :](T1, . . . , Tn) for
some types T1, . . . , Tn. Again, by o /∈ n(Γ′) and Lemma 6.2.9, Γ′ ` o :](T1, . . . , Tn) has to
fail. Hence, the judgement Γ ` P cannot be derived, which contradicts the assumption.

If x ∈ { z1, . . . , zn } then P contains an output y〈z1, . . . , zn〉 or y · o〈z1, . . . , zn〉. Ap-
plying T-OutB or T-OutPSB on the corresponding subgoal results in the subgoals
Γ′ ` z1 : T1, . . . , Γ′ ` zn : Tn. But, since x /∈ n(Γ′), x ∈ { z1, . . . , zn }, and because of
Lemma 6.2.9, one of these subgoals has to fail. Hence, the judgement Γ ` P cannot be
derived, which contradicts again the assumption.

In the remaining case x ∈ { a, b } and P contains a subterm [a = b]P ′. Applying
T-MatB on the subgoal Γ′ ` [a = b]P ′, which is the only applicable rule, results in the
subgoals Γ′ ` a :T and Γ′ ` b :T for some type T . But, since x /∈ n(Γ′), x ∈ { a, b }, and
because of Lemma 6.2.9, one of these subgoals has to fail. Hence, the judgement Γ ` P
cannot be derived, which contradicts the assumption.

174

6.2. Type Systems

The next lemma shows that type judgements are robust under substitution if the
substitution preserves the type of the substituted name, i.e., if the substituted name
and its replacement have the same type.

Lemma 6.2.15. Assume Γ (x) = Γ (z). Then Γ ` P implies Γ ` { z/x }P .

Proof. We construct the derivation of Γ ` { z/x }P from the derivation of Γ ` P , by
showing that both proof trees have the same structure, i.e., apply the same typing rules
in the same order. Analysing the rules in Figure 6.4, we observe that the rules T-NilB,
T-SuccB, T-ParB, and T-TauB do not consider specific names, i.e., can be applied
in exactly the same way in both proof trees. The same holds for the third subgoal of
T-MatB. Moreover, we observe that the typing rules may add type assignments to the
environments of their subgoals but do not remove any, i.e., for all subgoals with a type
environment Γ′ in both derivations we have Γ′ (x) = Γ′ (z).
P and { z/x }P differ only if x is free in P . So, T-ResB can also be applied in exactly

the same way in both proof trees. For the same reason, the respective second subgoals
of the Rules T-InB and T-RepB as well as the last subgoal of T-InPSB are unaffected.

All remaining subgoals are of the form Γ′′ ` y :T ′. By Lemma 6.2.9 and Γ (x) = Γ (z),
Γ ` x : T iff Γ ` z : T . By Lemma 6.2.11, this condition remains valid if during the
derivation new assignments are added to Γ, i.e., Γ ` x : T iff Γ ` z : T implies that
Γ,Γ′ ` x :T iff Γ,Γ′ ` z :T for all Γ′. Hence, for all leaves proven by T-NameB in the
proof tree of Γ ` P we can prove the corresponding leaf in the proof tree of Γ ` { z/x }P
again by T-NameB.

Subject reduction, finally, ensures the agreement of a type system with the reduction
relation of a process calculus [SW01]. Accordingly, we show that the typing rules in
Figure 6.4 agree with the reduction relation of π=,∼a .

Lemma 6.2.16 (Subject Reduction). If Γ ` P , P 7−→ P ′, and Γ is closed for P ′ then
Γ ` P ′.

Proof. We perform an induction on the depth of the derivation of P 7−→ P ′.

Base Case: The reduction semantics of the target languages π∼a , π∼p , and π=,∼a in Fig-
ure 2.4 contains the Axioms Pi-Tau∼a,p, Pi-Com∼a,p, Pi-ComPS∼p , and Pi-Rep∼a,p.
The first rule requires that P = τ.Q and P ′ = Q for some Q that, depending on
the considered encoding, is in P∼a :TB, P∼p :TB, or P=,∼

a :TB. Hence, Γ ` P ′ follows
from Γ ` P and T-TauB.

The Rule Pi-Com∼a,p requires that P = y(x1, . . . , xn) .Q | y〈z1, . . . , zn〉 and P ′ =
{ z1/x1, . . . , zn/xn }Q. In this case, the derivation of Γ ` P starts with

D1 D2

Γ ` y(x1, . . . , xn) .Q | y〈z1, . . . , zn〉
T-ParB

where

D1 =

. . .

Γ ` y :](T1, . . . , Tn)
. . .

. . .

Γ, x1 :T1, . . . , xn :Tn ` Q
. . .

Γ ` y(x1, . . . , xn) .Q
T-InB

175

6. Properties of Encodings

and

D2 =

. . .

Γ ` y :](T ′1, . . . , T
′
n)
. . .

. . .

Γ ` z1 :T ′1
.

. . .

Γ ` zn :T ′n
. . .

Γ ` y〈z1, . . . , zn〉
T-OutB

By Γ ` y :](T1, . . . , Tn), Γ ` y :](T ′1, . . . , T
′
n), and Lemma 6.2.9, we have Ti = T ′i

for all 1 ≤ i ≤ n. Moreover, because of Γ ` z1 : T ′1, . . . Γ ` zn : T ′n, and again
Lemma 6.2.9, we know that Γ (zi) = Ti for all 1 ≤ i ≤ n. With Lemma 6.2.15
and Γ, x1 : T1, . . . , xn : Tn ` Q we conclude Γ, x1 : T1, . . . , xn : Tn ` P ′. Finally, by
Lemma 6.2.10, we have Γ ` P ′, because xi /∈ fn(P ′) for all 1 ≤ i ≤ n.

The Rule Pi-ComPSp requires that P = y1 · y2(x1, . . . , xn) .Q | y1 · y2〈z1, . . . , zn〉
and P ′ = { z1/x1, . . . , zn/xn }Q. In this case, the derivation of Γ ` P starts again
with

D1 D2

Γ ` y(x1, . . . , xn) .Q | y〈z1, . . . , zn〉
T-ParB

where

D1 =

. . .

Γ ` y1 :vn
. . .

. . .

Γ ` y2 :](T1, . . . , Tn)
. . . D′1

Γ ` y1 · y2(x1, . . . , xn) .Q
T-InPSB

D2 =

. . .

Γ ` y1 :vn
. . .

. . .

Γ ` y2 :](T ′1, . . . , T
′
n)
. . . D′2

Γ ` y1 · y2〈z1, . . . , zn〉
T-OutPSB

and again

D′1 =
. . .

Γ, x1 :T1, . . . , xn :Tn ` Q
. . .

D′2 =
. . .

Γ ` z1 :T ′1
.

. . .

Γ ` zn :T ′n
. . .

By Γ ` y2 :](T1, . . . , Tn), Γ ` y2 :](T ′1, . . . , T
′
n), and Lemma 6.2.9, we have Ti = T ′i

for all 1 ≤ i ≤ n. Moreover, because of Γ ` z1 : T ′1, . . . Γ ` zn : T ′n, and again
Lemma 6.2.9, we know that Γ (zi) = Ti for all 1 ≤ i ≤ n. With Lemma 6.2.15
and Γ, x1 : T1, . . . , xn : Tn ` Q we conclude Γ, x1 : T1, . . . , xn : Tn ` P ′. Finally, by
Lemma 6.2.10, we have Γ ` P ′, because xi /∈ fn(P ′) for all 1 ≤ i ≤ n.

The Rule Pi-Rep∼a,p requires that P = y?(x1, . . . , xn) .Q | y〈z1, . . . , zn〉 and P ′ =
{ z1/x1, . . . , zn/xn }Q | y?(x1, . . . , xn) .Q. The derivation of Γ ` P starts with

D1 D2

Γ ` y?(x1, . . . , xn) .Q | y〈z1, . . . , zn〉
T-ParB

where

D1 =

. . .

Γ ` y :](T1, . . . , Tn)
. . .

. . .

Γ, x1 :T1, . . . , xn :Tn ` Q
. . .

Γ ` y?(x1, . . . , xn) .Q
T-RepB

176

6.2. Type Systems

and again

D2 =

. . .

Γ ` y :](T ′1, . . . , T
′
n)
. . .

. . .

Γ ` z1 :T ′1
.

. . .

Γ ` zn :T ′n
. . .

Γ ` y〈z1, . . . , zn〉
T-OutB

By Γ ` y :](T1, . . . , Tn), Γ ` y :](T ′1, . . . , T
′
n), and Lemma 6.2.9, we have Ti =

T ′i for all 1 ≤ i ≤ n. Moreover, because of Γ ` z1 : T ′1, . . . Γ ` zn : T ′n,
and again Lemma 6.2.9, we know that Γ (zi) = Ti for all 1 ≤ i ≤ n. With
Lemma 6.2.15 and Γ, x1 : T1, . . . , xn : Tn ` Q we conclude Γ, x1 : T1, . . . , xn : Tn `
{ z1/x1, . . . , zn/xn }Q. And, by Lemma 6.2.10, we have Γ ` { z1/x1, . . . , zn/xn }Q,
because xi /∈ fn({ z1/x1, . . . , zn/xn }Q) for all 1 ≤ i ≤ n. Finally, Γ ` P ′ fol-
lows by T-ParB and because of Γ ` { z1/x1, . . . , zn/xn }Q for the left and Γ `
y?(x1, . . . , xn) .Q for the right hand side.

Induction Hypothesis: Γ ` P, P 7−→ P ′, and Γ is closed for P ′ implies Γ ` P ′ for all
P ∈ (P∼a :TB), P ∈

(
P∼p :TB

)
, and P ∈ (P=,∼

a :TB)

Induction Step: There are three cases; one for each of the reduction Rules Pi-Resm,s,a,p,
Pi-Parm,s,a,p, and Pi-Congm,s,a,p. The first two cases follow by the Rule T-ResB
or T-ParB and the induction hypothesis. In the last case, P ≡ Q, Q 7−→ Q′, and
Q′ ≡ P ′ for some Q,Q′ ∈ (P∼a :TB), Q,Q′ ∈

(
P∼p :TB

)
, or Q,Q′ ∈ (P=,∼

a :TB),
respectively. Without loss of generality let us assume that this is the only appli-
cation of Pi-Congm,s,a,p in P 7−→ P ′. Let R,R′ be such that Q ≡ R, Q′ ≡ R′,
and neither R nor R′ contains unguarded subterms guarded by an already resolved
match [a = a]. Then, by Pi-Congm,s,a,p, also P ≡ R, R 7−→ R′, and R′ ≡ P ′. This
time, R and R′ do not have a match that is not already in P or P ′, respectively.
Moreover, by Lemma 6.2.14, Γ ` P implies that Γ is closed for P , i.e., provides a
type for each free name of P . By assumption, Γ is also closed for P ′. Since the
only rule of structural congruence that allows to introduce free names is the rule
that introduces matches, Γ is also closed for R, and R′. By Lemma 6.2.13, then
Γ ` P and P ≡ R imply Γ ` R. By the induction hypothesis Γ ` R and R 7−→ R′

imply Γ ` R′. Finally, by Lemma 6.2.13, Γ ` R′ and R′ ≡ P ′ imply Γ ` P ′.

It remains to show that the typed encodings T 1
B J · Ksa, T 2

B J · Kmp , and T 3
B J · Kma are well-

typed with respect to some appropriate type environments. Type environments cover
the types of the free names of the term we analyse. Since J · Kmp and J · Kma use translated
source term names only as values and introduces all other names under restriction except
for the outermost occurrences of the request channels po and pi , for all source terms
S ∈ Pm, appropriate type environment are

ΓJ S Kma = { po :o, pi : i } ∪ { ϕm
a (x) :vn | x ∈ fn(S) } and

ΓJ S Kmp =
{

po :o′, pi : i′
}
∪ { ϕm

a (x) :vn | x ∈ fn(S) } .

177

6. Properties of Encodings

Note that, because of Lemma 6.2.10, it is no problem if a type environment contains
unnecessary type assignments as long as these are not in conflict with a type assignment
that can be derived for the corresponding typed term.

Lemma 6.2.17. The encoding T 3
B J · Kma is well-typed with respect to ΓJ · Kma .

Proof. An encoding is well-typed if each encoded term is well-typed. Hence, we perform
an induction over the structure of source terms. Note that no source term can contain
infinitely many free names. We conclude that the type environment is finite for each
source term S ∈ Pm. Let Γ = ΓJ S Kma .

Base Case: In Pm there are two terms without subterms, namely 0 and X. T 3
B J 0 Kma =

(νl : l) l(t , f) .
(
(νvt :v>) t〈vt〉

)
and T 3

B J XKma = X. The second case, i.e., the type
judgement Γ ` X, follows directly by T-SuccB. For the first case, remember that
l =](](v>) ,](v⊥)). The proof is given by the derivation

Γ, l : l ` l : l
T-NameB

D

Γ′ ` (νvt :v>) t〈vt〉
T-ResB

Γ, l : l ` l(t , f) .
(
(νvt :v>) t〈vt〉

) T-InB

Γ ` (νl : l) l(t , f) .
(
(νvt :v>) t〈vt〉

) T-ResB

where

D =
Γ′, vt :v> ` t :](v>)

T-NameB
Γ′, vt :v> ` vt :v>

T-NameB

Γ, l : l, t :](v>) , f :](v⊥) , vt :v> ` t〈vt〉
T-OutB

and Γ′ = Γ, l : l, t :](v>) , f :](v⊥).

Induction Hypothesis:

∀S ∈ Pm . ΓJ S Kma ` T
3
B J S Kma (IH)

Induction Step: We have to prove that Γ ` T 3
B J S Kma for the cases when S is a restricted

term, a parallel composition, a sum, or a replicated input. The corresponding
derivations are huge but very simple. For each step in each case there applies
exactly one rule of Figure 6.4. To show how the induction hypothesis is applied in
these derivations we present the derivation of the first case. Note that ΓJ S′ Kma =
ΓJ S Kma , ϕ

m
a (x) :vn and Γ = ΓJ S Kma .

Γ, ϕm
a (x) :vn ` T 3

B J S′ Kma
(IH) and Lemma 6.2.11

Γ ` (νϕm
a (x) :vn) T 3

B J S′ Kma
T-ResB

The derivations of the other cases are postponed to the appendix in Section A.1.1.

For sake of completeness note that name clashes do not cause any problems here, because
syntactically equal names in T 3

B J · Kma have also the same type. However, we obtain the
same result if we apply α-conversion to avoid name clashes in T 3

B J S Kma .

178

6.2. Type Systems

The proof of well-typedness of T 2
B J · Kmp is very similar.

Lemma 6.2.18. The encoding T 2
B J · Kmp is well-typed with respect to ΓJ · Kmp .

The encoding function J · Ksa does not introduces free names but can be typed only
with respect to well-structured source terms.

Lemma 6.2.19. For all source terms S ∈ Ps that are well-structured with respect to Ts

and TS, the encoding T 1
B J S Ksa is well-typed with respect to ΓJ S Ksa = T̃S.

The proof of these two Lemmata are postponed to the appendix in Section A.1.1.
With the subject reduction lemma we conclude that all target terms are well-typed.

Unfortunately, as already discussed above, T 3
B J · Kma is not a function from Pm into P=,∼

a :
TB but leads to an intermediate language that allows for polyadic communication, i.e.,
to P=,∼

a :TB.

Lemma 6.2.20. All target terms of T 1
B J · Ksa, T 2

B J · Kmp , and T 3
B J · Kma , i.e., all terms

P1 ∈ (P∼a :TB)�T 1
BJ · Ksa, P2 ∈

(
P∼p :TB

)
�T 2

BJ · Kmp , and P3 ∈ (P=,∼
a :TB)�T 3

BJ · Kma , are modulo

structural congruence well-typed with respect to ΓJ · Ksa (and well-structured source terms),
ΓJ · Kmp , and ΓJ · Kma , respectively.

Proof. By Lemmata 6.2.19, 6.2.18, and 6.2.17, all encoded source terms are well-typed.
The target languages of the first two encodings do not contain a match prefix. Hence, by
Lemma 6.2.16, all target terms P1 ∈ (P∼a :TB)�T 1

BJ · Ksa and P2 ∈
(
P∼p :TB

)
�T 2

BJ · Kmp are well-

typed with respect to ΓJ · Ksa (and well-structured source terms) and ΓJ · Kmp , respectively.

We observe that in J · Kma match is used only in the translation of the parallel operator
on (bound) occurrences of translated source term names of type vn. The side condi-
tion “modulo structural congruence” allows us to abstract from unnecessary matches,
i.e., from matches that do not result from the encoding function but are introduced
by the rule [a = a]P ≡ P of structural congruence. Thus, for all target terms P3 ∈
(P=,∼

a :TB)�T 3
BJ · Kma without unnecessary matches the type environment ΓJ · Kma is closed.

By Lemma 6.2.16, we conclude that for all P3 there is some P ′3 ≡ P3 that is well-typed
with respect to ΓJ · Kma .

In the next section we show that the basic type system can be extended to cover also
the abbreviations of channel with multiplicity greater one.

6.2.3. Types with Behaviour

As already explained by Milner in [Mil93b], the type system described above cannot type
the translation of polyadic into monadic communication which is discussed in Section 5.4.

Example 6.2.21. Consider an output y〈z1, z2〉 of multiplicity two. Its translation into
π=a is given by the term:

(νu) (y〈u〉 | u(u1) . (u1〈z1〉 | u(u2) .u2〈z2〉))

179

6. Properties of Encodings

Moreover, let us assume that we are able to assign a type to z1, say T1, and to z2, say
T2. With respect to the type system given above, we assign the type](T1) to u1 and
](T2) to u2. If T1 = T2 then the type of u is simply](](T1)) and y is typed by](](](T1))).
But if T1 6= T2, e.g. because z1 is a value and z2 is a link or simply because we want to
distinguish z1 from z2, we cannot assign a type to u or y.

The problem is that u is used two times to transmit different values. Intuitively, its
type should be something like](](T1)) ∨](](T2)), to outline that over u two different
kinds of arguments can be transmitted. However, allowing such a type would cause
other problems and obviously it reduces the amount of information we can derive from a
well-typed process. It is much easier to reason about a link that always transmits values
of a specific kind than to reason about a link that may unpredictably choose to transmit
either this or that kind of value. Moreover, a type like](](T1))∨](](T2)) does not reveal
all information available for the process described in the example above. There, u is
not unpredictable but always sends first a value of type](](T1)) and then a value of
type](](T2)). The protocol that underlies the translation of polyadic communication
determines the behaviour of u in a very strict way. In this sense the behaviour of u
can be considered as somehow static or better predetermined. [Yos96] and [QW05]
present two different but related ways to transfer predetermined behaviour in a type
system. The resulting types are not as static as the basic types in Section 6.2.2, because
they change over time but these changes are completely predetermined. [Yos96] and
[QW05] mainly consider the translation of the polyadic communication in the case of
a synchronous target language, although both give hints on how to adapt this concept
to the asynchronous case. Moreover, both represent the behaviour of types as graphs.
However, we mainly focus on the concept in [QW05], because it results in a type system
that is a little bit simpler. More precisely, we shortly revisit the type system presented
in [QW00], which directly focuses on the case of an asynchronous target language, and
then will adapt it to our needs.

[QW00] introduces two new kinds of graph based link types, called m-sorts. The
“m” stands for monadic and sorts refers to the type system for the polyadic pi-calcu-
lus introduced in [Mil93b]. We will adapt this notation and consequently denote the
resulting type system as monadic type system and its types as monadic types. Note
that we introduce the monadic type system as an extension of the basic type system in
Section 6.2.2. This allows us to reuse some notation and proofs as well as the simple
presentation of types as basic types if possible. Moreover, we will again reduce the
general concept to our needs, i.e., abandon type constructors but use a fixed set of types
instead.

The first kind of m-sorts, called primary m-sorts, is defined in [QW00] by the set

Sm1 = { ◦s | s ∈ S } ∪
{
si | 1 ≤ i ≤ |λ (s)| , s ∈ S

}
∪ { • } ,

where S denotes the set of sorts, i.e., types, of the polyadic source language and λ (s)
returns the types of the arguments of a link type s, i.e., if s =](T1, . . . , Tn) then
λ (s) = T1, . . . , Tn, such that |λ (s)| returns the multiplicity of a link type. Primary
m-sorts are used to type names that are used to transmit arguments of different kinds

180

6.2. Type Systems

as the u in Example 6.2.21. More precisely, the monadic type system assigns different
primary m-sorts to different occurrences of such names. At the beginning, to denote
the creation of such a link, ◦s is assigned. In this state the name can be used only as
argument of other links, as by y in y〈u〉 in Example 6.2.21. Then, for u(u1), its type
becomes s1 to represent](](T1)), and then it becomes s2 to represent](](T2)) for u(u2)
in Example 6.2.21. Finally, the type • is assigned to u to represent its destruction and
ensure that it cannot be used any further—neither as link nor as send value.

Secondary m-sorts are used to type names like u1 and u2 in Example 6.2.21 that
are used to transmit the arguments of the original polyadic communication. They are
defined in [QW00] by the set

Sm2 =
{
◦si | 1 ≤ i ≤ |λ (s)| , s ∈ S

}
∪
{
δs
i | 1 ≤ i ≤ |λ (s)| , s ∈ S

}
.

Again the type ◦si is used to type a name for being used as argument in a communication.
Consequently, in Example 6.2.21 the type ◦s1 is assigned to u1 for u(u1) and ◦s2 is
assigned to u2 for u(u2), where s is the type of y in the polyadic source language, i.e.,
s =](T1, T2) in Example 6.2.21. Then, to transmit the original arguments, the type δs

i
is

assigned. This result in the type δs
1

for u1 in u1〈z1〉 and δs
2

for u2 in u2〈z2〉. Note that,
by the translation of polyadic communication, the names used to transmit the original
arguments—as u1 and u2 here—are always first transmitted and then used exactly once
as link. Because of that it is not necessary here to explicitly mark destruction.

The behaviour of primary and secondary m-sorts can best be presented in labelled
graphs whose nodes are the primary m-sorts and whose edges are labelled by the sec-
ondary m-sorts and original types as explained in [QW00]. As an example, the behaviour
of the type of the auxiliary names u, u1, and u2 in the translation of y〈z1, z2〉 in Exam-
ple 6.2.21 is represented by the chain

◦s −→ s1
δs

1
T1−−−→ s2

δs
2
T2−−−→ •

where s =](T1, T2).

By Example 6.2.21, we know that the basic type system is not well suited to type the
links that are typed in [QW00] by primary m-sorts, because this would force us to identify
the parameters of the respective polyadic channel by the same type. Consequently, we
introduce new link types to capture this kind of type. More precisely, we use four
different primary m-sorts to type the translation of the polyadic communication on
receiver locks, output requests, input requests, and the second chain locks of replicated
input, respectively. However, at this stage, there is no need to use secondary m-sorts.
The basic type system is sufficient to type the auxiliary links that are typed in [QW00]
with secondary m-sorts. The reason for this additional kind of types in [QW00] is to
prove linearity of the secondary m-sorts and encapsulation of the corresponding links
with respect to the links typed by primary m-sorts. We decide here to separate these
concepts and, accordingly, discuss linear types in Section 6.2.4. So, we type names like
the u1 and u2 in Example 6.2.21 by types similar to basic types.

181

6. Properties of Encodings

There are five different kinds of polyadic communication with multiplicity greater
than one in J · Kma : (1) communication on sum locks and second chain locks of replicated
inputs of multiplicity two, (2) communication on input request channels of multiplicity
three, (3) communication on output request channels of multiplicity four, and (4) com-
munication on receiver locks of multiplicity five. To type these links, we first unfold
the abbreviation of polyadic communication as explained in Definition 5.4.1. Then the
auxiliary links used to transmit the values of the polyadic communication are typed by
basic types, but the auxiliary links carrying these links are assigned primary m-sorts
as described above. Finally, the type of the original polyadic channel is changed into a
link type carrying a single parameter which is the primary m-sort. To avoid confusion
between the link types of the basic type system and the link types of the auxiliary links
introduced to unfold polyadic communications we use another link type symbol, namely
\(·). Moreover, because of that new symbol, it is easier to show that the auxiliary links
are indeed used only to unfold polyadic communications in the encoding functions. Note
that we ignore the difference between](·) and \(·) in the typing rules below.

Definition 6.2.22 (Translated Basic Types). Let T ∈ TB be a basic type, then its
translation into the corresponding monadic type, denoted by T̂ , is defined as:

T̂ =


T, if T ∈ VB

]
(
T̂ ′
)
, if T =](T ′) ∧ T ′ ∈ TB

]
(
◦ .]

(
\
(
T̂1

))
.]

(
\
(
T̂n

))
. •
)
, if T =](T1, . . . , Tn) ∧ n > 1

We extend the definition of basic types to the translation of type assignments, i.e.,
x̂ :T = x : T̂ for x ∈ N and T ∈ TB.

Accordingly, type environments Γ in the basic type system are translated into the
corresponding type environment of the monadic type system, denoted by Γ̂, by replacing
all type assignments y :T in Γ by y : T̂ .

As an example we consider the translation of an output cr2 〈ro , ri〉 on a second chain
lock of replicated inputs and the corresponding input cr2 (ro , ri) .P . As described in
Definition 5.4.1,

cr2 〈ro , ri〉 = (νu∼,c) (cr2 〈u∼,c〉 | u∼,c(uo) . (uo〈ro〉 | u∼,c(ui) .ui〈ri〉))

and

cr2 (ro , ri) .P = cr2 (u∼,c) .
(
(νuo)

(
u∼,c〈uo〉 | uo(ro) .

(
(νui)

(
u∼,c〈ui〉 | ui(ri) .P

′)))) ,
where P ′ represents the term P after unfolding all remaining polyadic communications.
In the basic type system we allocate the type o to ro , i to ri , and](o, i) to cr2 . Let To = o
and Ti = i, i.e.,](o, i) =](To, Ti) and obviously To 6= Ti. Hence, by Definition 6.2.22,
cr2 〈ro , ri〉 is translated into

(νu∼,c :◦ .](\(o)) .](\(i)) . •) (cr2 〈u∼,c〉 | u∼,c(uo) . (uo〈ro〉 | u∼,c(ui) .ui〈ri〉)) ,

182

6.2. Type Systems

where the type ◦ .](\(o)) .](\(i)) . • depicts that u∼,c is first transmitted over cr2 then
used to transmit uo , which is of the type \(o), and finally used to transmit ui of type
\(i). Consequently, the input cr2 (ro , ri) .P is translated into

cr2 (u∼,c) .
(

(νuo :\(o))
(

u∼,c〈uo〉 | uo(ro) .
(

(νui :\(i))
(

u∼,c〈ui〉 | ui(ri) .P̂
))))

.

Since cr2 is now used to swap the channel u∼,c of type ◦ .](\(o)) .](\(i)) . •, its type
becomes](◦ .](\(o)) .](\(i)) . •). In the same manner the types of receiver locks and
the links of input and output requests, as well as the necessary auxiliary channels, are
derived.

Again, because of the very strict name schema, the encoding function J · Kma can com-
pletely be typed by a finite number of different types depicted in Figure 6.5. The set of
monadic types inherits all basic value types and the basic link types](v>),](v⊥), s, and
](vn).

In the same manner also the monadic types of the encoding J · Kmp in Figure 6.6 and of
the encoding J · Ksa in Figure 6.7 are derived. Again, J · Kmp leads to finitely many types.
But, in the case of J · Ksa, the number of monadic types depends on the number of types
in the source language as it was already the case for the basic type system. For each link
type TS in the source the unfolding of polyadic communication introduces two auxiliary
links uTS and u∼,ϕs

a(z)
that are typed by \(TS) and n◦,TS = ◦.](\(l)).](\(s)).](\(TS)).•,

respectively.
Again, the types of the monadic type system are the unification of the types in Fig-

ures 6.5, 6.6, and 6.7.

Definition 6.2.23 (Monadic Types). Let Ts be the types of the type system of the
source language πs. The types of the monadic type system, called monadic types, are
given by the monadic value types VM, the monadic link types LM, and the monadic
types TM. The monadic value types are defined as for the basic type system by the set

VM , VB = { vn, v>, v⊥, vs, vs,r } ∪ { VS | VS ∈ Ts ∧ ∀TS ∈ Ts . VS 6=](TS) }

The set of monadic link types is defined as

LM =
{
](v>) ,](v⊥) , l, s, r, o, i,](i) ,](o) ,](vn) ,](c◦) ,](vs,r) , r

′, o′, i′, to, ti
}

∪ { \(vn) , \(](v>)) , \(](v⊥)) , \(l) , \(s) , \(r) , \(o) , \(i) , l◦, c◦, i◦, o◦, r◦ }
∪
{
\(](vs,r)) , \

(
r′
)
, ti,◦, i

′
◦, to,◦, o

′
◦, r
′
◦
}

∪ { \(VS) | VS ∈ Ts ∧ ∀TS ∈ Ts . VS 6=](TS) }

∪
{
](n◦,TS) , \(TS) , n◦,TS |]

(
T ′S
)
∈ Ts ∧ TS = T̃ ′S

}
.

As in the basic type system, TM = VM ∪ LM.

The Figures 6.5, 6.6, and 6.7 also specify the set of type assignments T 3
M, T 2

M, and
T 1
M, respectively. Accordingly, the typed variant of a target term P3 ∈ P=

a �J · Kma , P2 ∈
Pp�J · Kmp , or P1 ∈ Pa�J · Ksa in the monadic type system is given (after unfolding all

183

6. Properties of Encodings

Description Names Type

source term ϕm
a (x) , ϕm

a (y) ,
vnnames ϕm

a (z) , y, y′, z

auxiliary values
vt v>
vf v⊥
vs vs

booleans
t](v>)
f](v⊥)

sum locks l , l1, l2, ls, lr l =](l◦)

sender locks s s =](vs)

receiver locks r r =](r◦)

output requests
po ,mo , po,up , o =](o◦)mo,up , ro , ro,up

input requests
pi ,mi , pi ,up , i =](i◦)mi ,up , ri , ri ,up

chain locks

co](i)
ci](o)

cr1](vn)
cr2](c◦)

auxiliary links

un \(vn)
ut \(](v>))
uf \(](v⊥))
ul \(l)
us \(s)
ur \(r)
uo \(o)
ui \(i)

u∼,l l◦ = ◦ .](\(](v>))) .](\(](v⊥))) . •
u∼,c c◦ = ◦ .](\(o)) .](\(i)) . •
u∼,i i◦ = ◦ .](\(vn)) .](\(l)) .](\(r)) . •
u∼,o o◦ = ◦ .](\(vn)) .](\(l)) .](\(s)) .](\(vn)) . •

u∼,r
r◦ =

◦ .](\(l)) .](\(l)) .](\(l)) .](\(s)) .](\(vn)) . •

Figure 6.5.: Monadic Types in J · Kma .

184

6.2. Type Systems

Description Names Type

source term ϕm
p (x) , ϕm

p (y) ,
vnnames ϕm

p (z) , y, z

auxiliary values

vt v>
vf v⊥

vs,r vs,r
vs vs

booleans
t](v>)
f](v⊥)

sum locks l , l1, l2, ls, lr l =](l◦)

sender and
s1, r1, v, w](vs,r)

receiver locks
s2 s =](vs)
r2 r′ =](r′◦)

output requests po , po,up o′ =](o′◦)

input requests pi , pi ,up i′ =](i′◦)

tags
o to =](to,◦)
i ti =](ti,◦)

auxiliary links

un \(vn)
ut \(](v>))
uf \(](v⊥))
ul \(l)

us,r \(](vs,r))
us \(s)
ur ′ \(r′)
u∼,l l◦ = ◦ .](\(](v>))) .](\(](v⊥))) . •
u∼,ti ti,◦ = ◦ .](\(l)) .](\(](vs,r))) .](\(r′)) . •

u∼,i ′
i′◦ =

◦ .](\(vn)) .](\(l)) .](\(](vs,r))) .](\(r′)) . •

u∼,to
to,◦ =

◦ .](\(l)) .](\(](vs,r))) .](\(s)) .](\(vn)) . •

u∼,o′
o′◦ = ◦ .](\(vn)) .](\(l)) .

](\(](vs,r))) .](\(s)) .](\(vn)) . •

u∼,r
r′◦ = ◦ .](\(l)) .](\(l)) .](\(l)) .

](\(s)) .](\(vn)) .](\(](vs,r))) .](\(](vs,r))) . •

Figure 6.6.: Monadic Types in J · Kmp .

185

6. Properties of Encodings

Description Names Type

ϕs
a(x)

VS

source term
](n◦,TS)

names
ϕs
a(y)](n◦,TS)

ϕs
a(z)

VS
](n◦,TS)

vt v>
auxiliary vf v⊥
values vs vs

vs,r vs,r

booleans
t](v>)
f](v⊥)

sum locks l , l ′ l =](l◦)

sender locks s s =](vs)

receiver locks r](vs,r)

auxiliary links

uTS \(TS)
ut \(](v>))
uf \(](v⊥))
ul \(l)
us \(s)

u∼,l l◦ = ◦ .](\(](v>))) .](\(](v⊥))) . •
u∼,TS n◦,TS = ◦ .](\(l)) .](\(s)) .](\(TS)) . •

Figure 6.7.: Monadic Types in J · Ksa.

polyadic communications) as T 3
M(P3), T 2

M(P2), and T 1
M(P1), respectively. We extend the

translation of basic types to the translation of typed terms in the basic type system to
typed terms in the monadic type system.

Definition 6.2.24 (Translated Basic Typed Terms). Let P be a typed process in the
basic type system, i.e., P ∈ (P∼a :TB), P ∈

(
P∼p :TB

)
, or P ∈ (P=,∼

a :TB). Without loss
of generality let us assume that P is free of name clashes, i.e., fn(P) ∩ bn(P) = ∅ and
no name is bound twice in P , and let the set { u, u1, . . . , un | n ∈ N } contain only fresh
names, i.e., { u, u1, . . . , un | n ∈ N } ∩ n(P) = ∅. Then, there exists an untyped version
P ′ of P and a set of type assignments TB in the basic type system for all restricted
names in P such that P = TB(P ′). Moreover, let Γ be a type environment that is not in
conflict with TB and provides a type for each free name of P .

Then the translation of P with respect to Γ into the corresponding typed process of
Pa :TM, Pp :TM, or P=

a :TM, denoted by P̂ , is obtained from P by replacing recursively

186

6.2. Type Systems

any output y1〈z1,1, . . . , z1,n1〉 with n1 > 1 and y1 :](T1,1, . . . , T1,n1) ∈ TB ∪ Γ by(
νu :◦ .]

(
\
(
T̂1,1

))
.]

(
\
(
T̂1,n1

))
. •
)

(y1〈u〉 | u(u1) . (u1〈z1,1〉 | . . . | u(un1) . (un1〈z1,n1〉) . . .))

any output y2,1 · y2,2〈z2,1, . . . , z2,n2〉 with n2 > 1 and y2,2 :](T2,1, . . . , T2,n2) ∈ TB ∪ Γ by(
νu :◦ .]

(
\
(
T̂2,1

))
.]

(
\
(
T̂2,n2

))
. •
)

(y2,1 · y2,2〈u〉 | u(u1) . (u1〈z2,1〉 | . . . | u(un2) . (un2〈z2,n2〉) . . .))

any input y3(x3,1, . . . , x3,n3) .P ′ with n3 > 1 and y3 :](T3,1, . . . , T3,n3) ∈ TB ∪ Γ by

y3(u) .
((

νu1 :\
(
T̂3,1

))(
u〈u1〉 | u1(x3,1) .

(
. . .(

νun,3 :\
(
T̂3,n3

))(
u〈un3〉 | un3(x3,n3) .P̂ ′

)
. . .
)))

any input y4,1 · y4,2(x4,1, . . . , x4,n4) .P ′ with n4 > 1 and y4,2 :](T4,1, . . . , T4,n4) ∈ TB ∪ Γ
by

y4,1 · y4,2(u) .
((

νu1 :\
(
T̂4,1

))(
u〈u1〉 | u1(x4,1) .

(
. . .(

νun,4 :\
(
T̂4,n4

))(
u〈un4〉 | un4(x4,n4) .P̂ ′

)
. . .
)))

and any replicated input y?5(x5,1, . . . , x5,n5) .P ′ with n5 > 1 and y5 :](T5,1, . . . , T5,n5) ∈
TB ∪ Γ by

y?5(u) .
((

νu1 :\
(
T̂5,1

))(
u〈u1〉 | u1(x5,1) .

(
. . .(

νun,5 :\
(
T̂5,n5

))(
u〈un5〉 | un5(x5,n5) .P̂ ′

)
. . .
)))

Note that by Definition 5.4.1 the names of auxiliary links used to unfold the polyadic
communications in the three encoding functions differ from the names used above. How-
ever the associated typed terms differ only by α-conversion, because all auxiliary links
are restricted.

Observation 6.2.25. T̂ 3
B (P3) ≡α T 3

M(P ′3) with respect to T 3
B , where P ′3 is the result

of unfolding all polyadic communications with respect to Definition 5.4.1. Similarly,

T̂ 2
B (P2) ≡α T 2

M(P ′2) with respect to T 2
B and T̂ 1

B (P1) ≡α T 1
M(P ′1) with respect to T 1

B .

Moreover, note that we define the translation of typed terms with respect to a type
environment, because the typed term provides only the types of restricted channels and
we need a basic link type as starting point for each translation of a polyadic communi-
cation. However, in the following we mainly consider the translation of type judgements
which consist of a typed term and the corresponding type environment. If not explicitly
stated otherwise, we silently translate the typed terms of type judgements with respect

187

6. Properties of Encodings

to the type environment of the type judgement potentially extended by arbitrary types
for all free names that do not occur in the type environment. Of course, in the case of
well-typed terms, the type environment provides a type for all free names of the term
as shown by Lemma 6.2.14. The sets T 3

M, T 2
M, and T 1

M provide a type for all names that
occur in the target terms of the encodings.

To capture the m-sorts like types as l◦ and their behaviour, type judgements are
augmented with two additional sets, ranged over by ∆,∆′,∆1, . . . and Ψ,Ψ′,Ψ1, . . .,
respectively. Given a type judgement Γ ` P in the basic type system, Γ̂; ∆; Ψ ` P̂ is the
corresponding type judgement in the monadic type system, where initially ∆ = Ψ = ∅.2
∆ and Ψ are very similar to type environments but instead of type assignments x : T
they contain assignment like elements u :M , there M is a part of a m-sort like monadic
link type, i.e., in contrast to type assignments M is often not a type. These sets are used
to capture the current state of m-sort like types. Therefore, ∆ contains the respective
information for input capabilities, while Ψ provides the corresponding information used
to type outputs. Note that all m-sort like types in the type environment are complete.

Definition 6.2.26 (Monadic Type Judgements). Let Γ be a type environment, ∆ and
Ψ be auxiliary sets that contain assignment like elements u :M there u ∈ N , and let P
be a typed term with respect to monadic types. Then, Γ; ∆; Ψ ` P is a monadic type
judgement if (n(∆) ∪ n(Ψ)) ⊆ n(Γ) and for all u :M ∈ ∆ ∪Ψ there exists some u :T ∈ Γ
such that M is a part of T , i.e., T = T1 Tn with n > 3, T1 = ◦, and Tn = • and
either M = Ti for some 1 < i < n or M = Ti1Tim for some i1, . . . , im ∈ { 1, . . . , n }
such that ik < ik+1 for all 1 ≤ k < m.

Moreover, for all type environments or auxiliary sets M within monadic type judge-
ments M1,M2 is defined only if n(M1) ∩ n(M2) = ∅. In this case M1,M2 = M1 ∪M2.

Note that in the basic type system, we allow to add the same type assignment several
times to the same type environment. By the way, by doing so we do not need to apply
α-conversion in the proofs of Lemma 6.2.17, Lemma 6.2.18, or Lemma 6.2.19. How-
ever, in the type system defined within this subsection we require that two parts of a
type environment or an auxiliary set do not share a name. This avoids confusion be-
tween the type environment and the auxiliary sets, if two or more unfoldings of polyadic
communication are considered simultaneously.

Intuitively, ∆ and Ψ capture information about the current state of primary m-sort
like types. That is necessary to check the use of links typed by a m-sort like type. The
axioms are not influenced by these information, because they are used to check the type
of constants that do not contain names or to check the type of a name which does not
require information about the actual state of its type. Hence, we recycle the typing
Rule T-NameB to derive judgements on type assignments. Moreover, we require that
the protocol associated with a m-sort like type is finished before a constant is reached,
i.e., 0 and X are well-typed if ∆ = Ψ = ∅ (see Figure 6.8 at Page 191).

The Rule T-ResB for restriction in the monadic type system is split into two rules;
one for restriction on m-sort like types and the other for all remaining types (including

2In [QW00] Ψ is used to denote the original type environment. Hence, Γ and Ψ are swapped.

188

6.2. Type Systems

link types whose parameter is a m-sort like type). The rule covering restriction on m-
sorts is denoted by T-Res-MM. Such a restriction marks the beginning of a translation
of polyadic communication at the side of a sender. The new auxiliary link with the m-
sort like type is transmitted and then used to receive other auxiliary links. Hence, ∆ is
initialised by T-Res-MM to check the type of the continuation. To do so, the preceding ◦
is cut off. Moreover, T-Res-MM allows to cut off more from the beginning of the m-sort
like type, to enable typing of derivatives of well-typed terms. The subsequent rules will
ensure that after each input the first part of the remaining m-sort is cut off. T-Res-BM

is similar to T-ResB, i.e., requires that the continuation is well-typed with respect to the
type environment extended by an additional type assignment covering the type constraint
of the typed restriction. To make the use of T-Res-BM and T-Res-MM unambiguous,
T-Res-BM is augmented with a side condition depicting that the restricted link is not
typed by a m-sort like type. To cover structural congruence both rules have to allow
for not empty sets ∆ and Ψ in the precondition. We require that these sets remain
unchanged except for the additional element added by T-Res-MM to ∆.

Neither τ -prefix nor match occur in the translation of polyadic communication. Thus,
the Rule T-TauM is obtained from T-TauB by adding the precondition ∆ = Ψ = ∅.
Because of the match rule in structural congruence, we have to allow for arbitrary sets ∆
and Ψ in the precondition of T-MatM. But we require that these sets are not changed
and are inherit by the subgoal of the subterm. The check of the type assignments for
the names in the match is similar to T-MatB.

The Rule T-OutB is also split into two cases. The first rule, denoted by T-Out-BM,
adds in comparison to T-OutB the precondition ∆ = Ψ = ∅ and is used to type outputs,
where the link is not typed by a m-sort. Note that this rule does not distinguish between
link types](·) or link types \(·) of auxiliary links, i.e., implicitly T-Out-BM represents
two rules

Γ ` y :](T) Γ ` z :T

Γ; ∅; ∅ ` y〈z〉
and

Γ ` y :\(T) Γ ` z :T

Γ; ∅; ∅ ` y〈z〉
.

T-Out-MM covers the case that the link is typed by a m-sort. Here, the first subgoal of
T-OutB is missing. To be permitted to send the respective value, Ψ has to assign the
corresponding link type that is a part of the respective m-sort. Note that in both cases
∆ = ∅ and Ψ contains at most one element that is consumed by T-Out-MM.

The encoding J · Kmp uses polyadic synchronisation on links combined from two channel
names in the translation of the parallel operator. Over these links three values are
swapped in the variant of the encoding with polyadic communication. Hence, links for
polyadic synchronisation are used only to transmit a value that is typed by a m-sort like
type. Accordingly, we use a variant of T-Out-BM to capture outputs on links of the
form y · o. The result is the Rule T-OutPSM. As in T-OutPSB, y has to be typed by
vn and the information on the link type is carried by the tag o.

T-InB is split into three cases. The first rule, denoted by T-In-BM, covers inputs
where neither the link nor the value are typed by a m-sort. Because such inputs appear
in the translation of polyadic inputs such that the respective continuation may output
on a link typed by a m-sort, T-In-BM allows that Ψ is not empty. But again ∆ = ∅ is

189

6. Properties of Encodings

required and it is not allowed to change Ψ. T-In-BM does not distinguish between link
types](·) and link types \(·) of auxiliary links. Apart from that, T-In-BM is similar to
T-InB. The translation of a polyadic input starts with an input whose value is typed
by a m-sort. This case is covered by T-In-M1M. Since this point marks the starting
point of a translated polyadic communication, the rule requires that no such protocol
is still active, i.e., ∆ = Ψ = ∅. The only difference with T-InB is that T-In-M1M
initialises Ψ and, thus, enables the transmission of the first value over the link typed
by the m-sort. T-In-M2M is used to cover inputs within the translation of a polyadic
sender. Accordingly, ∆ contains the active part of the m-sort for the link. Its first part
has to be a link type corresponding to the received value, which replaces the first subgoal
in T-InB. For the remaining subgoal the first part of the actual state of the m-sort like
type is cut off. Intuitively, it is consumed by this rule. For both, the precondition as
well as the continuation, Ψ = ∅.

The Rule T-InPSM is similar to T-In-M1M but covers polyadic synchronisation of
links combined from two channel names. The Rules T-Rep-BM and T-Rep-MM are
similar to T-In-BM and T-In-M1M. The set of all typing rules of the monadic type
system is given in Figure 6.8.

We observe that in the translation of a polyadic sender the actual state of a m-sort
is expressed by cutting off the already consumed parts in T-Res-MM and T-In-M2M.
However, also T-Out-MM requires that the respective m-sort is already cut down to its
actual state but this cutting is done by no rule described so far. In fact, it is performed
by T-ParM, the counterpart of T-ParB, covering parallel compositions. Outputs on
links typed by a m-sort are necessary to translate polyadic inputs and polyadic replicated
inputs, as for the translation of cr2 (ro , ri) .P into

cr2 (u∼,c) .
(

(νuo :\(o))
(

u∼,c〈uo〉 | uo(ro) .
(

(νui :\(i))
(

u∼,c〈ui〉 | ui(ri) .P̂
))))

.

By T-In-M1M, Ψ is initialised by the m-sort without the preceding ◦. Then T-ParM

distributes the remaining m-sort such that the first part is assigned to the output capa-
bility and the rest to the remaining term. This behaviour is captured by the precondition
ΨP ·ΨQ. It ensures, that either ΨP ·ΨQ = ΨP ,ΨQ, or ΨP and ΨQ distribute some m-sort
like types in the elements y :T of Ψ into the part necessary on the left hand side and the
part necessary on the right hand side of the parallel composition.

Definition 6.2.27. Let ΨP and ΨQ be two sets that contain elements of the form y :T ,
where y ∈ N and T is part of a m-sort like monadic type. Then ΨP ·ΨQ holds if either
n(ΨP) ∩ n(ΨQ) = ∅ and ΨP ·ΨQ = ΨP ,ΨQ, or if n(ΨP) ∩ n(ΨQ) 6= ∅ and

ΨP ·ΨQ = { yP :TP | yP ∈ (n(ΨP) \ n(ΨQ)) ∧ yP :TP ∈ ΨP }
∪ { yQ :TQ | yQ ∈ (n(ΨQ) \ n(ΨP)) ∧ yQ :TQ ∈ ΨQ }
∪ { y :T1 Tn . • | y ∈ (n(ΨP) ∩ n(ΨQ)) }

such that, for all y ∈ (n(ΨP) ∩ n(ΨQ)) with y :T1 Tn . • ∈ ΨP · ΨQ, there exists
some i1, . . . , im and j1, . . . , jo such that

190

6.2. Type Systems

T-NameB
Γ, x :T ` x :T

T-NilM
Γ; ∅; ∅ ` 0

T-SuccM
Γ; ∅; ∅ ` X

T-Res-BM
Γ, x :T ; ∆; Ψ ` P

Γ; ∆; Ψ ` (νx :T)P
T 6= ◦ . T ′

T-Res-MM
Γ, x :T . T ′; ∆,∆′; Ψ ` P
Γ; ∆; Ψ ` (νx :T . T ′)P

∆′ =

{
x :T ′, if T ′ 6= •
∅, else

T-ParM
Γ; ∆P ; ΨP ` P Γ; ∆Q; ΨQ ` Q

Γ; ∆P ,∆Q; ΨP ·ΨQ ` P | Q

T-MatM
Γ ` a :T Γ ` b :T Γ; ∆; Ψ ` P

Γ; ∆; Ψ ` [a = b]P
T-TauM

Γ; ∅; ∅ ` P
Γ; ∅; ∅ ` τ.P

T-Out-BM
Γ ` y :](T) Γ ` z :T

Γ; ∅; ∅ ` y〈z〉
T-Out-MM

Γ ` z :T

Γ; ∅; y :](T) ` y〈z〉

T-OutPSM
Γ ` y :vn Γ ` o :](◦ . T) Γ ` z :◦ . T

Γ; ∅; ∅ ` y · o〈z〉

T-In-BM
Γ ` y :](T) Γ, x :T ; ∅; Ψ ` P

Γ; ∅; Ψ ` y(x) .P
T 6= ◦ . T ′

T-In-M1M
Γ ` y :](◦ . T) Γ, x :◦ . T ; ∅;x :T ` P

Γ; ∅; ∅ ` y(x) .P

T-In-M2M
Γ, x :T ; ∆; ∅ ` P

Γ; y :](T) . T ′; ∅ ` y(x) .P
∆ =

{
∅, if T ′ = •
y :T ′, else

T-InPSM
Γ ` y :vn Γ ` o :](◦ . T) Γ, x :◦ . T ; ∅;x :T ` P

Γ; ∅; ∅ ` y · o(x) .P

T-Rep-BM
Γ ` y :](T) Γ, x :T ; ∅; ∅ ` P

Γ; ∅; ∅ ` y?(x) .P
T 6= ◦ . T ′

T-Rep-MM
Γ ` y :](◦ . T) Γ, x :◦ . T ; ∅;x :T ` P

Γ; ∅; ∅ ` y?(x) .P

Figure 6.8.: Typing Rules of the Monadic Type System.

191

6. Properties of Encodings

1. m > 0, o > 0, { i1, . . . , im, j1, . . . , jo } = { 1, . . . , n }, and n = m+ o,

2. for all 1 ≤ k < m and all 1 ≤ l < o, we have ik < ik+1 and jl < jl+1,

3. if m > 1 then y :Ti1 Tim . • ∈ ΨP and else y :Ti1 ∈ ΨP , and

4. if o > 1 then y :Tj1 Tjo . • ∈ ΨQ and else y :Tj1 ∈ ΨQ.

Note that the definition above allows also to distribute a part of a m-sort like type by
cutting it into its atomic pieces and distribute this pieces arbitrarily among both sides
of a parallel operator as long as the order of pieces for each side is not changed. This
is necessary to capture reordering of terms modulo structural congruence if there are
more than two unguarded subterms containing an output that transmits a value typed
by a part of the respective m-sort like type. However, by Definition 5.4.1, this does not
happen in the considered encodings. Also note that, in the case of remainders containing
only a single atomic piece, the terminating • is omitted. Except from that ∆P ,∆Q and
ΨP · ΨQ ensure that for each name typed by a m-sort like type the information about
the actual state of that type can only be used in one part of the parallel composition.
This shows that links typed by m-sort like types are linearised (see Lemma 6.2.58), i.e.,
in each term there is not more than a single unguarded out- or input on that link.

The monadic type system consists of the monadic types and the typing rule in Fig-
ure 6.8. Remember that, in contrast to the basic type system, the monadic type system
uses the monadic type judgements of Definition 6.2.26.

Definition 6.2.28 (Monadic Type System). The monadic type system is given by the
monadic types in Definition 6.2.23 and the typing rules in Figure 6.8.

Because the monadic type system inherits the typing rule for type assignments of the
basic type systems, the validity of Lemma 6.2.9 is not affected. The same holds for
strengthening and weakening of type judgements for type assignments. We show that
also the remaining properties of the basic type system are preserved by the extension of
the basic to the monadic type system.

Lemma 6.2.29 (Strengthening). If Γ, x :T ; ∆; Ψ ` P and x /∈ fn(P) then Γ; ∆; Ψ ` P .

Lemma 6.2.30 (Weakening). If Γ; ∆; Ψ ` P then Γ, x : T ; ∆; Ψ ` P for any monadic
type T and any name x such that Γ (x) is not defined or equal to T .

The proof of strengthening and weakening for the monadic type system are similar
to the respective proofs in the basic type system (Lemma 6.2.10 and Lemma 6.2.11).
To demonstrate the influence of the additional sets in the type judgements, we present
the respective inductions in the appendix in Section A.1.2. Again, well-typedness of
a typed term is preserved modulo structural congruence with respect to closed type
environments.

Lemma 6.2.31. If Γ; ∆; Ψ ` P , P ≡ Q, and Γ is closed for Q then Γ; ∆; Ψ ` Q.

192

6.2. Type Systems

The proof is (similar to the linear type system) by a case differentiation on the rules
of structural congruence and an induction on the number of structural congruence rules
applied to obtain P ≡ Q. We postpone it to Section A.1.2. Remarkably, ∆ and Ψ
contain only information about free names of the term.

Lemma 6.2.32. If Γ; ∆; Ψ ` P then n(∆) ∪ n(Ψ) ⊆ fn(P).

Proof. We perform an induction on the depth of the derivation. Let P ∈ { Pa,Pp,P=
a }

be the set of processes of the target language of the considered encoding.

Base Case: If Γ; ∆; Ψ ` P can be derived from one of the axioms then ∆ = Ψ = ∅.

Induction Hypothesis: Γ; ∆; Ψ ` P implies n(∆) ∪ n(Ψ) ⊆ fn(P)

Induction Step: We perform a case split on the inference rules in Figure 6.8.

Case of T-Res-BM : In this case, P = (νx :T)P ′ for some x ∈ N , T ∈ TM, P ′ ∈
(P :TM), and Γ, x :T ; ∆; Ψ ` P ′. By the induction hypothesis, n(∆)∪ n(Ψ) ⊆
fn(P ′). Moreover, by Definition 6.2.26, x /∈ n(Γ) and, thus, x /∈ n(∆) ∪ n(Ψ).
Then, since fn(P) = fn(P ′) \ { x }, n(∆) ∪ n(Ψ) ⊆ fn(P).

Case of T-Res-MM : Again P = (νx :T)P ′ for some x ∈ N , T ∈ TM, and
P ′ ∈ (P :TM) but here Γ, x : T ; ∆,∆′; Ψ ` P ′, where ∆′ is either x : T or
∅. By the induction hypothesis, n(∆,∆′) ∪ n(Ψ) ⊆ fn(P ′). Moreover, by
Definition 6.2.26, x /∈ n(Γ) and, thus, x /∈ n(∆) ∪ n(Ψ). Then, since fn(P) =
fn(P ′) \ { x }, n(∆) ∪ n(Ψ) ⊆ fn(P).

Case of T-ParM : In this case, P = P1 | P2 for some P1, P2 ∈ (P :TM), ∆ =
∆1,∆2, Ψ = Ψ1 · Ψ2, Γ; ∆1; Ψ1 ` P1, and Γ; ∆2; Ψ2 ` P2. Thus, by the
induction hypothesis, n(∆1) ∪ n(Ψ1) ⊆ fn(P1) and n(∆2) ∪ n(Ψ2) ⊆ fn(P2).
By Definition 6.2.27, n(Ψ) = n(Ψ1) ∪ n(Ψ2). Since fn(P) = fn(P1) ∪ fn(P2),
n(∆) ∪ n(Ψ) ⊆ fn(P).

Case of T-MatM : In this case, P = [a = b]P ′ for some a, b ∈ N , P ′ ∈ (P :TM),
and Γ; ∆; Ψ ` P ′. By the induction hypothesis, n(∆) ∪ n(Ψ) ⊆ fn(P ′). Then,
since fn(P) = fn(P ′), n(∆) ∪ n(Ψ) ⊆ fn(P).

Case of T-TauM, T-Out-BM, T-OutPSM, T-In-M1M, T-InPSM, T-Rep-BM,
or T-Rep-MM : Here, ∆ = Ψ = ∅.

Case of T-Out-MM : In this case, ∆ = ∅, n(Ψ) = { y } and y ∈ fn(P).

Case of T-In-BM : In this case, P = y(x) .P ′ for some x, y ∈ N , P ′ ∈ (P :TM),
∆ = ∅, and Γ, x :T ; ∆; Ψ ` P ′. By the induction hypothesis, n(Ψ) ⊆ fn(P ′).
Moreover, by Definition 6.2.26, x /∈ n(Γ) and, thus, x /∈ n(Ψ). Then, since
fn(P) = fn(P ′) \ { x }, n(Ψ) ⊆ fn(P).

Case of T-In-M2M : In this case, n(∆) = { y }, Ψ = ∅, and y ∈ fn(P).

193

6. Properties of Encodings

As for type judgements in the basic type system, a monadic type judgement can be
proved only if for all free names a type is provided by the type environment.

Lemma 6.2.33. If Γ; ∆; Ψ ` P then Γ is closed for P .

Proof. Assume the contrary, i.e., assume Γ; ∆; Ψ ` P and x /∈ n(Γ) but x ∈ fn(P).
Hence, P has a (potentially guarded) subterm which is either of the form

1. y〈z〉 or y · o〈z〉 for some names y, o, z ∈ N ,

2. y(x′) .P ′, or y · o(x′) .P ′, or y?(x′) .P ′ for some o, x′, y ∈ N and some P ′, or

3. [a = b]P ′ for some a, b ∈ N and some P ′

such that x ∈ { a, b, o, y, z }. None of the typing rules in Figure 6.8 allows to derive a type
judgement for a term without requiring a type judgement for all its subterms. Thus, in
the derivation of Γ; ∆; Ψ ` P there is some subgoal Γ′; ∆′; Ψ′ ` y〈z〉, Γ′; ∆′; Ψ′ ` y · o〈z〉,
Γ′; ∆′; Ψ′ ` y(x′) .P ′, Γ′; ∆′; Ψ′ ` y · o(x′) .P ′, or Γ′; ∆′; Ψ′ ` y?(x′) .P ′ for some Γ′ that
is obtained from Γ during the derivation up to the mentioned subgoal. Moreover, the
typing rules in Figure 6.8 can add type assignments to Γ during derivations but do so
only for bound names. We conclude that, x /∈ n(Γ′). By Definition 6.2.26, then also
x /∈ n(∆′) ∪ n(Ψ′).

Consider the case that x = y. Then we can apply only T-Out-BM on the subgoal
Γ′; ∆′; Ψ′ ` y〈z〉, because T-Out-MM requires y ∈ n(Ψ′). As result we obtain the
subgoal Γ′ ` y :](T) for some type T ∈ TM. The Rule T-OutPSM on the subgoal
Γ′; ∆′; Ψ′ ` y · o〈z〉 leads to Γ′ ` y : vn. If Γ′; ∆′; Ψ′ ` y(x′) .P ′ we can apply T-In-BM

or T-In-M1M. Both lead again to Γ′ ` y :](T) for some type T ∈ TM. T-InPSM

on Γ′; ∆′; Ψ′ ` y · o(x′) .P ′ leads to Γ′ ` y : vn. On Γ′; ∆′; Ψ′ ` y?(x′) .P we can apply
T-Rep-BM or T-Rep-MM. Both result in the subgoal Γ′ ` y :](T). Hence, for all cases
we have to show either Γ′ ` y :](T) for some type T ∈ TM or Γ′ ` y : vn. But, since
y /∈ n(Γ′) and because of Lemma 6.2.9, neither Γ′ ` y :](T) nor Γ′ ` y : vn can hold.
Hence, the judgement Γ; ∆; Ψ ` P cannot be derived, which contradicts the assumption.

If x = o, applying the Rule T-OutPSB on the subgoal Γ′; ∆′; Ψ′ ` y · o〈z〉 or T-InPSB

on the subgoal Γ′; ∆′; Ψ′ ` y · o(x′) .P results in the subgoal Γ′ ` o :](T) for some type
T ∈ TM. Again, by o /∈ n(Γ′) and Lemma 6.2.9, Γ′ ` o :](T) has to fail. Hence, the
judgement Γ; ∆; Ψ ` P cannot be derived, which contradicts the assumption.

If x = z then P contains an output y〈z〉 or y · o〈z〉. Applying Rule T-Out-BM,
Rule T-Out-MM, or Rule T-OutPSM on the corresponding subgoal results in the
subgoal Γ′ ` z : T for some T ∈ TB. Since x /∈ n(Γ′) and because of Lemma 6.2.9,
this subgoal has to fail. Hence, the judgement Γ; ∆; Ψ ` P cannot be derived, which
contradicts again the assumption.

If x ∈ { a, b } then P contains a subterm [a = b]P ′. Applying T-MatM on Γ′; ∆′; Ψ′ `
[a = b]P ′ results in the subgoals Γ′ ` a : T and Γ′ ` b : T for some type T ∈ TM. But
since x /∈ n(Γ′), x ∈ { a, b }, and because of Lemma 6.2.9, one of these subgoals has
to fail. Hence, the judgement Γ; ∆; Ψ ` P cannot be derived, which contradicts the
assumption.

194

6.2. Type Systems

Monadic type judgements are robust under substitution if the substitution preserves
the type of the substituted name and the substitution is also applied on the auxil-
iary sets ∆ and Ψ. We define such substitutions on auxiliary sets M as { z/x }M =
{ y′ :T | y :T ∈M ∧ y′ = { z/x } (y) }.

Lemma 6.2.34. Assume Γ(x) = Γ(z). Then Γ; ∆; Ψ ` P implies Γ; { z/x }∆; { z/x }Ψ `
{ z/x }P .

Proof. We construct the derivation of Γ; { z/x }∆; { z/x }Ψ ` { z/x }P from the deriva-
tion of Γ; ∆; Ψ ` P , by showing that both proof trees have the same structure, i.e., apply
the same typing rules in the same order. Note that { z/x }∆ and { z/x }Ψ ensure that
the preconditions of the Rules T-ParM, T-Out-MM, and T-In-M2M are satisfied for
the derivation of Γ; { z/x }∆; { z/x }Ψ ` { z/x }P if they are satisfied for Γ; ∆; Ψ ` P .
Moreover, Lemma 6.2.32 ensures that the substitution has only an effect on the auxil-
iary sets if it has an effect on P , i.e., if x ∈ fn(P). Analysing the rules in Figure 6.8,
we observe that the Rules T-NilM, T-SuccM, T-ParM, and T-TauM do not consider
specific names of terms, i.e., can be applied in exactly the same way in both proof trees.
The same holds for the third subgoal of T-MatM. Moreover, we observe that the typ-
ing rules may add type assignments to the environments of their subgoals but do not
remove any, i.e., for all subgoals with a type environment Γ′ in both derivations we have
Γ′ (x) = Γ′ (z).
P and { z/x }P differ only if x is free in P . So, T-Res-BM and T-Res-MM can also be

applied in exactly the same way in both proof trees. For the same reason, the respective
second subgoals of the Rules T-In-BM, T-In-M1M, T-Rep-BM, and T-Rep-MM as
well as the last subgoal of T-InPSM and the only subgoal of T-In-M2M are unaffected.

All remaining subgoals are of the form Γ′′ ` y :T ′. By Lemma 6.2.9 and Γ (x) = Γ (z),
Γ ` x : T iff Γ ` z : T . By Lemma 6.2.11, this condition remains valid if during the
derivation new assignments are added to Γ, i.e., Γ ` x : T iff Γ ` z : T implies that
Γ,Γ′ ` x : T iff Γ,Γ′ ` z : T for all Γ′. Hence, for all leaves proven by T-NameB in
the proof tree of Γ; ∆; Ψ ` P we can prove the corresponding leaf in the proof tree of
Γ; { z/x }∆; { z/x }Ψ ` { z/x }P again by T-NameB.

Of course, the most important property is again subject reduction. Note that in
contrast to type environments the typing rules can remove elements from the sets ∆ and
Ψ and do also manipulate elements of these sets. Moreover, we have to require that if
the current state is of a link typed by a m-sort like type is captured by both sets, ∆ and
Ψ, then these two sets have to describe the same state of the link. In this case we say
∆ and Ψ are consistent.

Definition 6.2.35 (Consistent Auxiliary Sets). Let ∆ and Ψ be two sets containing
elements of the form y :T , where y ∈ N and T is a part of a monadic type. Then ∆ and
Ψ are consistent if, for all y ∈ n(∆) ∩ n(Ψ) such that y : T1 ∈ ∆ and y : T2 ∈ Ψ, either
T1 = T2 . T

′ or the first part of T1 and the first part of T2 are equal.

A reduction of an input may consume or change an element of ∆ if this input was
typed with respect to the Rule T-In-M2M. Moreover, a reduction of a (replicated)

195

6. Properties of Encodings

input may add an element to Ψ if this (replicated) input was typed with respect to the
Rule T-In-M1M or T-Rep-MM. Accordingly, a reduction of an output may consume or
change an element of Ψ if this output was typed with respect to the Rule T-Out-MM.
If ∆′ and Ψ′ are obtained from ∆ and Ψ by such a reduction, we call them derivatives
of ∆, Ψ, and the corresponding Γ.

Definition 6.2.36 (Derivatives of Auxiliary Sets). Let Γ; ∆; Ψ ` P . Then ∆′ and Ψ′

are derivatives of Γ, ∆, and Ψ if

1. ∆′ = ∆ or there exists some y1 : T1 ∈ ∆ such that ∆′ = (∆ \ { y1 :T1 }) ∪
{ y1 :T ′′1 | T1 = T ′1 . T

′′
1 ∧ T ′′1 6= • }, and

2. Ψ′ = Ψ, or there exists some y3 : T3 ∈ Ψ such that Ψ′ = (Ψ \ { y3 :T3 }) ∪
{ y3 :T ′′3 | T3 = T4 . T

′
4 . T

′′
4 ∧ ((T ′′4 6= • ∧ T ′′3 = T ′4 . T

′′
4) ∨ (T ′′4 = • ∧ T ′′3 = T ′4)) },

or Ψ′ = Ψ, y2 :T2 for some y2 /∈ n(Ψ) and Γ(y2) = ◦ . T2.

Note that consistency is preserved by subject reduction. Moreover, by Lemma 6.2.39,
for every translated typed term P̂ such that P is well-typed in the basic type system
with respect to Γ, we can derive Γ; ∅; ∅ ` P̂ . So, the ∆ and Ψ obtained during derivations
of translated typed terms are always consistent.

Lemma 6.2.37 (Subject Reduction). If Γ; ∆; Ψ ` P , P 7−→ P ′, Γ is closed for P ′, and
∆ and Ψ are consistent then Γ; ∆′; Ψ′ ` P ′ such that ∆′ and Ψ′ are consistent derivatives
of Γ, ∆, and Ψ.

Proof. We perform an induction on the depth of the derivation of P 7−→ P ′. Let P ∈
{ Pa,Pp,P=

a } be the set of processes of the target language of the considered encoding.

Base Case: The reduction semantics of πa, πp, and π=a in Figure 2.3 contains the Ax-
ioms Pi-Taua,p, Pi-Coma,p, Pi-ComPSp, and Pi-Repa,p. The first rule requires
that P = τ.Q and P ′ = Q for some Q ∈ (P :TM). Hence, Γ; ∆; Ψ ` P ′ follows from
Γ; ∆; Ψ ` P and T-TauM.

The Rule Pi-Coma,p requires that P = y(x) .Q | y〈z〉 and P ′ = { z/x }Q. In this
case, the derivation of Γ; ∆; Ψ ` P starts with

D1 D2

Γ; ∆; Ψ ` y(x) .Q | y〈z〉
T-ParM

where Γ; ∆1; Ψ1 ` y(x) .Q is the goal of D1 and Γ; ∆2; Ψ2 ` y〈z〉 is the goal of D2

such that ∆ = ∆1,∆2 and Ψ = Ψ1 · Ψ2. On the left hand side we have to apply
next one of the input Rules T-In-BM, T-In-M1M, or T-In-M2M and on the right
hand side one of the Rules T-Out-BM or T-Out-MM.

Case of T-In-BM : If D1 is shown by T-In-BM, we have

D1 =
Γ ` y :](T)

T-NameB
. . .

Γ, x :T ; ∆1; Ψ1 ` Q
. . .

Γ; ∆1; Ψ1 ` y(x) .Q
T-In-BM

196

6.2. Type Systems

for some T ∈ TM that does not contain .. By Lemma 6.2.9, Γ ` y :](T)
implies Γ(y) =](T). Because of that and by Definition 6.2.26, y does not
occur in ∆ or Ψ. Since ∆ = ∆1,∆2 and Ψ = Ψ1 ·Ψ2 and by Definition 6.2.27,
this implies that y does also not occur in ∆1, ∆2, Ψ1, or Ψ2. Thus, we cannot
apply T-Out-MM for D2. Hence,

D2 =
Γ ` y :](T ′)

T-NameB
Γ ` z :T ′

T-NameB

Γ; ∆2; Ψ2 ` y〈z〉
T-Out-BM

where ∆2 = Ψ2 = ∅. By Definition 6.2.27, then ∆ = ∆1 and Ψ = Ψ1. By
Lemma 6.2.9, T = T ′. Moreover, because of Γ ` z :T ′ and again Lemma 6.2.9,
we know that Γ(z) = T . With Lemma 6.2.34 and Γ, x : T ; ∆1; Ψ1 ` Q we
conclude Γ, x :T ; ∆; Ψ ` P ′. Finally, by Lemma 6.2.10, we have Γ; ∆; Ψ ` P ′,
because x /∈ fn(P ′).

Case of T-In-M1M : If D1 is shown by T-In-M1M, we have ∆1 = Ψ1 = ∅ and

D1 =
Γ ` y :](◦ . T)

T-NameB
. . .

Γ, x :◦ . T ; ∅;x :T ` Q
. . .

Γ; ∅; ∅ ` y(x) .Q
T-In-M1M

By Lemma 6.2.9, Γ ` y :](◦ . T) implies Γ(y) =](◦ . T). Because of that
and by Definition 6.2.26, y does not occur in ∆ = ∆2 or Ψ = Ψ2. Thus, we
cannot apply T-Out-MM for D2. Hence,

D2 =
Γ ` y :](T ′)

T-NameB
Γ ` z :T ′

T-NameB

Γ; ∆2; Ψ2 ` y〈z〉
T-Out-BM

where ∆2 = Ψ2 = ∅. By Definition 6.2.27, then ∆ = Ψ = ∅. By Lemma 6.2.9,
T ′ = ◦ . T . Moreover, because of Γ ` z :T ′ and again Lemma 6.2.9, we know
that Γ(z) = ◦.T . With Lemma 6.2.34 and Γ, x :◦.T ; ∅;x :T ` Q we conclude
Γ, x : ◦ . T ; ∅; z : T ` P ′. Finally, by Lemma 6.2.10, we have Γ; ∅; z : T ` P ′,
because x /∈ fn(P ′). Note that ∅ and z :T are consistent and are derivatives
of Γ, ∅, and ∅.

Case of T-In-M2M : If D1 is shown by T-In-M2M, we have ∆1 = y :](T) . T ′,
Ψ1 = ∅, and

D1 =

. . .

Γ, x :T ; ∆′1; ∅ ` Q
. . .

Γ; y :](T) . T ′; ∅ ` y(x) .Q
T-In-M2M

where ∆′1 is ∅ if T ′ = • and else ∆′1 = y :T ′. By Definition 6.2.26, y ∈ n(∆1)
implies Γ(y) = ◦ . Ty for some Ty. Thus, by Lemma 6.2.9, we cannot derive
a judgement like Γ ` y :](T ′′), i.e., cannot apply T-Out-BM on D2. Hence,

D2 = Γ ` z :T ′′
T-NameB

Γ; ∆2; Ψ2 ` y〈z〉
T-Out-MM

197

6. Properties of Encodings

where ∆2 = ∅ and Ψ2 = y :](T ′′). Thus, ∆ = ∆1 and Ψ = Ψ2. Since ∆
and Ψ are consistent and by Definition 6.2.35, T ′′ = T . Because of Γ ` z :T ′′

and Lemma 6.2.9, Γ(z) = T . With Lemma 6.2.34 and Γ, x :T ; ∆′1; ∅ ` Q we
conclude Γ, x :T ; ∆′1; ∅ ` P ′. Finally, by Lemma 6.2.10, we have Γ; ∆′1; ∅ ` P ′,
because x /∈ fn(P ′). Note that ∆′1 and ∅ are consistent and are derivatives of
Γ, ∆1, and Ψ2.

The other two cases are similar.

The Rule Pi-ComPSp requires that P = y · o(x) .Q | y · o〈z〉 and P ′ = { z/x }Q.
In this case, the derivation of Γ; ∆; Ψ ` P starts again with

D1 D2

Γ; ∆; Ψ ` y · o(x) .Q | y · o〈z〉
T-ParM

where Γ; ∆1; Ψ1 ` y · o(x) .Q is the goal of D1 and Γ; ∆2; Ψ2 ` y · o〈z〉 is the goal
of D2 such that ∆ = ∆1,∆2 and Ψ = Ψ1 · Ψ2. On the left hand side we have
to apply next T-InPSM and on the right hand side T-OutPSM. Hence, we have
∆1 = Ψ1 = ∅ and

D1 =
Γ ` y :vn

N
Γ ` o :](◦ . T)

N
. . .

Γ, x :◦ . T ; ∅;x :T ` Q
. . .

Γ; ∅; ∅ ` y · o(x) .Q
T-InPSM

where N = T-NameB. Moreover, ∆2 = Ψ2 = ∅ and

D2 =
Γ ` y :vn

N
Γ ` o :](T ′)

N
Γ ` z :T ′

T-NameB

Γ; ∅; ∅ ` y〈z〉
T-OutPSM

where N = T-NameB. By Definition 6.2.27, then ∆ = Ψ = ∅. By Lemma 6.2.9,
T ′ = ◦ . T . Moreover, because of Γ ` z : T ′ and again Lemma 6.2.9, we know
that Γ(z) = ◦ . T . With Lemma 6.2.34 and Γ, x : ◦ . T ; ∅;x : T ` Q we conclude
Γ, x :◦ . T ; ∅; z :T ` P ′. Finally, by Lemma 6.2.29, we have Γ; ∅; z :T ` P ′, because
x /∈ fn(P ′). Again, ∅ and z :T are consistent and are derivatives of Γ, ∅, and ∅.
The Rule Pi-Repa,p requires that P = y?(x) .Q | y〈z〉 and P ′ = { z/x }Q | y?(x) .Q.
The derivation of Γ; ∆; Ψ ` P starts with

D1 D2

Γ; ∆; Ψ ` y?(x) .Q | y〈z〉
T-ParM

where Γ; ∆1; Ψ1 ` y?(x) .Q is the goal of D1 and Γ; ∆2; Ψ2 ` y〈z〉 is the goal of D2

such that ∆ = ∆1,∆2 and Ψ = Ψ1 · Ψ2. On the left hand side we have to apply
next T-Rep-BM or T-Rep-MM. In the first case the rest of the proof is similar
to the Case of T-In-BM for Pi-Coma,p and in the other case the rest of the proof
is similar to the Case of T-In-M1M for Pi-Coma,p.

Induction Hypothesis: Γ; ∆; Ψ ` P , P 7−→ P ′, Γ is closed for P ′, and ∆ and Ψ are
consistent imply Γ; ∆′; Ψ′ ` P ′ such that ∆′ and Ψ′ are consistent derivatives of Γ,
∆, and Ψ, for all P ∈ (P :TM).

198

6.2. Type Systems

Induction Step: There are three cases; one for each of the reduction Rules Pi-Resm,s,a,p,
Pi-Parm,s,a,p, and Pi-Congm,s,a,p.

Case of Pi-Parm,s,a,p : In this case, P = P1 | P2, P1 7−→ P ′1, and P ′ = P ′1 | P2 for
some P1, P

′
1, P2 ∈ (P :TM). The derivation of Γ; ∆; Ψ ` P starts with

. . .

Γ; ∆1; Ψ1 ` P1
. . .

. . .

Γ; ∆2; Ψ2 ` P2
. . .

Γ; ∆; Ψ ` P1 | P2
T-ParM

where ∆ = ∆1,∆2 and Ψ = Ψ1 · Ψ2. By the induction hypothesis, we have
Γ; ∆′1; Ψ′1 ` P ′1 such that ∆′1 and Ψ′1 are consistent derivatives of Γ, ∆1,
and Ψ1. Then, by Definition 6.2.35 and Definition 6.2.36, ∆′ = ∆′1,∆2 and
Ψ′ = Ψ′1 ·Ψ2 are also consistent derivatives of Γ, ∆, and Ψ. Hence,

. . .

Γ; ∆′1; Ψ′1 ` P ′1
IH

Γ; ∆2; Ψ2 ` P2
A

Γ; ∆′; Ψ′ ` P ′1 | P2
T-ParM

where IH is the induction hypothesis and A means by assumption, i.e., by
the derivation above.

Case of Pi-Resm,s,a,p : In this case, P = (νx :T)P1, P1 7−→ P2, and P ′ =
(νx :T)P2 for some x ∈ N , T ∈ TM, and P1, P2 ∈ (P :TM). The deriva-
tion of Γ; ∆; Ψ ` P starts with

. . .

Γ, x :T ; ∆1; Ψ ` P1
. . .

Γ; ∆; Ψ ` (νx :T)P1
R

where either R = T-Res-BM and ∆1 = ∆ or R = T-Res-MM, T = T1 . T2,
and ∆1 = ∆, x : T2 or again ∆1 = ∆. By the induction hypothesis, Γ, x :
T ; ∆2; Ψ2 ` P2 such that ∆2 and Ψ2 are consistent derivatives of Γ, x :T , ∆1,
and Ψ. Hence,

Γ, x :T ; ∆2; Ψ2 ` P2
IH

Γ; ∆′2; Ψ2 ` (νx :T)P2
R

if we find an appropriate ∆′2. If R = T-Res-BM then ∆1 = ∆ and, so,
∆′2 = ∆2. Else, if R = T-Res-MM, we have T = T1 . T2 and ∆1 = ∆, x :T2
or ∆1 = ∆. By Definition 6.2.36, ∆1 = ∆ implies x /∈ n(∆2). In this case
∆′2 = ∆2 again. Else, by Definition 6.2.36, ∆1 = ∆, x :T2 implies ∆2 = ∆1 or
∆2 = ∆, x :T ′2, where T2 = T ′′2 . T

′
2. In both cases, we can choose ∆′2 = ∆.

Case of Pi-Congm,s,a,p : In the this case, P ≡ Q, Q 7−→ Q′, and Q′ ≡ P ′ for some
Q,Q′ ∈ (P :TM). Without loss of generality let us assume that this is the only
application of Pi-Congm,s,a,p in P 7−→ P ′. Let R,R′ be such that Q ≡ R,
Q′ ≡ R′, and neither R nor R′ contains unguarded subterms guarded by a
match prefix [a = a]. Then, by Pi-Congm,s,a,p, also P ≡ R, R 7−→ R′, and

199

6. Properties of Encodings

R′ ≡ P ′. This time, R and R′ do not have a match that is not already in P or
P ′, respectively. Moreover, by Lemma 6.2.33, Γ; ∆; Ψ ` P implies that Γ is
closed for P , i.e., provides a type for each free name of P . By assumption, Γ is
also closed for P ′. Since the only rule of structural congruence that allows to
introduce free names is the rule that introduces matches, Γ is also closed for
R and R′. By Lemma 6.2.31, then Γ; ∆; Ψ ` P and P ≡ R imply Γ; ∆; Ψ ` R.
By the induction hypothesis Γ; ∆; Ψ ` R and R 7−→ R′ imply Γ; ∆′; Ψ′ ` R′.
Finally, by Lemma 6.2.31, Γ; ∆′; Ψ′ ` R′ and R′ ≡ P ′ imply Γ; ∆′; Ψ′ ` P ′.

Finally, we show that the translation of basic types in Definition 6.2.22 and of terms
typed in the basic type system in Definition 6.2.24 preserves well-typedness. For this,
we consider first preservation of type judgements on type assignments.

Lemma 6.2.38 (Preservation of Well-Typed Assignments). Γ ` x :T iff Γ̂ ` x : T̂ .

Proof. By Lemma 6.2.9, Γ ` x : T iff Γ (x) = T . By Definition 6.2.22 and Defi-
nition 6.2.24, Γ (x) = T iff Γ̂ (x) = T̂ . And again by Lemma 6.2.9, Γ̂ (x) = T̂ iff
Γ̂ ` x : T̂ .

With this lemma we can now show that a translated typed term is well-typed in the
monadic type system if and only if its origin is well-typed in the basic type system.

Lemma 6.2.39 (Preservation of Well-Typed Processes). Let P ∈ (P∼a :TB), P ∈(
P∼p :TB

)
, or P ∈ (P=,∼

a :TB) and P̂ its translation with respect to Γ. Then

Γ ` P iff Γ̂; ∅; ∅ ` P̂

and Γ̂; ∆; Ψ ` P̂ implies ∆ = Ψ = ∅.

Proof. We perform an induction on the depth of the derivation. Let P ∈ { Pa,Pp,P=
a }

be the set of processes of the target language of the considered encoding and P∼ ∈{
P∼a ,P∼p ,P

=,∼
a

}
the respective set of processes of the intermediate language allowing

for polyadic communication.

Base Case: If Γ ` P can be derived from one of the axioms in the basic type system
then either P = 0 or P = X. In both cases Γ̂; ∅; ∅ ` P̂ follows again directly from
T-NilM or T-SuccM.

If Γ̂; ∆; Ψ ` P̂ can be derived from one of the axioms in the monadic type system
then ∆ = Ψ = ∅ and again either P̂ = 0 or P̂ = X. In both cases Γ ` P follows by
T-NilB or T-SuccB.

Induction Hypothesis: ∀P ∈ (P :TB) .
(

Γ ` P iff Γ̂; ∅; ∅ ` P̂
)

and
(

Γ̂; ∆; Ψ ` P̂

implies ∆ = Ψ = ∅
)

.

200

6.2. Type Systems

Induction Step: We consider first the goal: Γ ` P implies Γ̂; ∅; ∅ ` P̂ . The basic type
system defines nine inference rules.

Case of T-ResB : In this case, P = (νx :T)P ′ for some x ∈ N , T ∈ TB, P ′ ∈
(P∼ :TB), and Γ, x : T ` P ′. Then P̂ =

(
νx : T̂

)
P̂ ′ and, by the induction

hypothesis, we have Γ̂, x : T̂ ; ∅; ∅ ` P̂ ′. Thus, we conclude Γ̂; ∅; ∅ ` P̂ by
T-Res-BM.

Case of T-ParB : In this case, P = P1 | P2 for some P1, P2 ∈ (P∼ :TB) and

Γ ` P1 as well as Γ ` P2. Then P̂ = P̂1 | P̂2 and, by the induction hypothesis,

we have Γ̂; ∅; ∅ ` P̂1 as well as Γ̂; ∅; ∅ ` P̂2. Hence, because ∅ = ∅, ∅ and, by
Definition 6.2.27, also ∅ = ∅ · ∅, we conclude Γ̂; ∅; ∅ ` P̂ by T-ParM.

Case of T-MatB : In this case, P = [a = b]P ′ for some a, b ∈ N , P ′ ∈ (P∼ :TB),

Γ ` a :T , Γ ` b :T , and Γ ` P ′ for some T ∈ TB. Then P̂ = [a = b] P̂ ′ and, by

the induction hypothesis, we have Γ̂; ∅; ∅ ` P̂ ′. By Lemma 6.2.38, Γ̂ ` a : T̂
and Γ̂ ` b : T̂ . We conclude Γ̂; ∅; ∅ ` P̂ by T-MatM.

Case of T-TauB : In this case, P = τ.P ′ for some P ′ ∈ (P∼ :TB) and Γ ` P ′.
Then P̂ = τ.P̂ ′ and, by the induction hypothesis, we have Γ̂; ∅; ∅ ` P̂ ′. Thus,
we conclude Γ̂; ∅; ∅ ` P̂ by T-TauM.

Case of T-OutB : In this case, P = y〈z1, . . . , zn〉 for some n ≥ 0 and some names
y, z1, . . . , zn ∈ N and Γ ` y :](T1, . . . , Tn), Γ ` z1 :T1, . . . , Γ ` zn :Tn for some

T1, . . . , Tn ∈ TB. If n = 1 then P̂ = P and, by Lemma 6.2.38, Γ̂ ` y :]
(
T̂1

)
and Γ̂ ` z1 : T̂1. We conclude Γ̂; ∅; ∅ ` P̂ by T-Out-BM.

Else, n > 1. By Lemma 6.2.38,

Γ̂ ` y :]
(
◦ .]

(
\
(
T̂1

))
.]

(
\
(
T̂n

))
. •
)

, and (6.1)

Γ̂ ` z1 : T̂1, . . . , Γ̂ ` zn : T̂n. (6.2)

and

P̂ = (νu :Tu) (y〈u〉 | u(u1) . (u1〈z1〉 | . . . | u(un) . (un〈zn〉) . . .))

for Tu = ◦ .]
(
\
(
T̂1

))
.]

(
\
(
T̂n

))
. •. Then

D1 D2

Γ̂, u :Tu;u :]
(
\
(
T̂1

))
.]

(
\
(
T̂n

))
. •; ∅ ` Q

T-ParM

Γ̂; ∅; ∅ ` P̂
T-Res-MM

where Q = y〈u〉 | u(u1) . (u1〈z1〉 | . . . | u(un) . (un〈zn〉) . . .).

D1 =
Γ̂, u :Tu ` y :](Tu)

(6.1)
Γ̂, u :Tu ` u :Tu

T-NameB

Γ̂, u :◦ .]
(
\
(
T̂1

))
.]

(
\
(
T̂n

))
. •; ∅; ∅ ` y〈u〉

T-Out-BM

201

6. Properties of Encodings

Let Q1 = (u1〈z1〉 | . . . | u(un) . (un〈zn〉) . . .) and

T ′u =]
(
]
(
T̂2

))
.]

(
]
(
T̂n

))
. •,

then

D2 =

D′2 D3

Γ̂, u :Tu, u1 :\
(
T̂1

)
;u :T ′u; ∅ ` Q1

T-ParM

Γ̂, u :Tu;u :]
(
\
(
T̂1

))
.]

(
\
(
T̂n

))
. •; ∅ ` u(u1) .Q1

T-In-M2M

where

D′2 =
Γ̂1 ` u1 :\

(
T̂1

)T-NameB
Γ̂1 ` z1 : T̂1

(∗)

Γ̂1; ∅; ∅ ` u1〈z1〉
T-Out-BM

Γ̂1 = Γ̂, u : Tu, u1 : \
(
T̂1

)
and the subgoal Γ̂1 ` z1 : T̂1 marked by (∗) follows

by (6.2) above and Lemma 6.2.11. Repeating the argumentation in D2, i.e.,
applying Rule T-In-M2M then T-ParM and on the output-subgoal T-NameB
and (∗), n− 2 more times results in the subgoal

Γ̂, u :Tu, u1 :\
(
T̂1

)
, . . . , un−1 :\

(
T̂n−1

)
;u :]

(
\
(
T̂n

))
. •; ∅ ` u(un) .un〈zn〉

Let Γ̂n−1 = Γ̂, u :Tu, u1 :\
(
T̂1

)
, . . . , un−1 :\

(
T̂n−1

)
. We conclude with

Dn+1 =

D′n+1 D′′n+1

Γ̂n−1, un :\
(
T̂n

)
; ∅; ∅ ` un〈zn〉

T-Out-BM

Γ̂n−1;u :]
(
\
(
T̂n

))
. •; ∅ ` u(un) .un〈zn〉

T-In-M2M

where

D′n+1 =
Γ̂n−1, un :\

(
T̂n

)
` un :\

(
T̂n

)T-NameB

and

D′′n+1 =
Γ̂n−1, un :\

(
T̂n

)
` zn : T̂n

(6.2) and Lemma 6.2.11

Case of T-OutPSB : Similar to the case before but instead of link y we have the
link y · o in P , instead of (6.1) we have

Γ̂ ` y :vn, and (6.1.1)

Γ̂ ` o :]
(
◦ .]

(
\
(
T̂1

))
.]

(
\
(
T̂n

))
. •
)

(6.1.2)

202

6.2. Type Systems

and D1 becomes

D1 =
Γ′ ` y :vn

(6.1.1)
Γ′ ` o :](Tu)

(6.1.2)
Γ̂, u :Tu ` u :Tu

N

Γ̂, u :◦ .]
(
\
(
T̂1

))
.]

(
\
(
T̂n

))
. •; ∅; ∅ ` y · o〈u〉

O

where Γ′ = Γ̂, u :Tu, N = T-NameB, and O = T-OutPSM.

Case of T-InB : In this case, P = y(x1, . . . , xn) .P ′ for some n ≥ 1, some
y, x1, . . . , xn ∈ N , and P ′ ∈ (P∼ :TB) and Γ ` y :](T1, . . . , Tn), and Γ, x1 :
T1, . . . , xn : Tn ` P ′ for some T1, . . . , Tn ∈ TB. If n = 1 then P̂ = P and,

by Lemma 6.2.38, Γ̂ ` y :]
(
T̂1

)
. By the induction hypothesis, we have

Γ̂, x1 : T̂1; ∅; ∅ ` P̂ ′ and T̂1 6= ◦ . T ′ for all T ′. We conclude Γ̂; ∅; ∅ ` P̂ by
T-In-BM.

Else, n > 1. By Lemma 6.2.38,

Γ̂ ` y :]
(
◦ .]

(
\
(
T̂1

))
.]

(
\
(
T̂n

))
. •
)
. (6.3)

Let Γ′ = Γ, x1 :T1, . . . , xn :Tn. Then

P̂ = y(u) .
((

νu1 :\
(
T̂1

))(
u〈u1〉 | u1(x1) .

(
. . .(

νun :\
(
T̂n

))(
u〈un〉 | un(xn) .P̂ ′

)
. . .
)))

and, by the induction hypothesis, we have Γ̂′; ∅; ∅ ` P̂ ′. Let Tu = ◦.]
(
\
(
T̂1

))
.

. . . .]
(
\
(
T̂n

))
. •. Then:

D =
Γ̂ ` y :](Tu)

(6.3) D1

Γ̂; ∅; ∅ ` P̂
T-In-M1M

Let Q1 = u〈u1〉 | u1(x1) .
(
. . .
(
νun :\

(
T̂n

))(
u〈un〉 | un(xn) .P̂ ′

)
. . .
)

and

Ψ1 = u :]
(
\
(
T̂1

))
.]

(
\
(
T̂n

))
. •. Then

D1 =

D′1 D′′1

Γ̂, u :Tu, u1 :\
(
T̂1

)
; ∅; Ψ1 ` Q1

T-ParM

Γ̂, u :Tu; ∅; Ψ1 `
(
νu1 :\

(
T̂1

))
Q1

T-Res-BM

Let Q2 = u〈u2〉 | u2(x2) .
(
. . .
(
νun :\

(
T̂n

))(
u〈un〉 | un(xn) .P̂ ′

)
. . .
)

. By

Definition 6.2.27, we can distribute Ψ1 into u :]
(
\
(
T̂1

))
and Ψ2 = u :

203

6. Properties of Encodings

]
(
\
(
T̂2

))
.]

(
\
(
T̂n

))
. • such that Ψ1 = u :]

(
\
(
T̂1

))
·Ψ2. Thus,

D′1 =
Γ̂, u :Tu, u1 :\

(
T̂1

)
` u1 :\

(
T̂1

)T-NameB

Γ̂, u :Tu, u1 :\
(
T̂1

)
; ∅;u :]

(
\
(
T̂1

))
` u〈u1〉

T-Out-MM

and

D′′1 =
Γ̂, u :Tu, u1 :\

(
T̂1

)
` u1 :\

(
T̂1

)T-NameB D2

Γ̂, u :Tu, u1 :\
(
T̂1

)
; ∅; Ψ2 ` u1(x1) .

(
νu2 :\

(
T̂2

))
Q2

T-In-BM

where D2 introduces the subgoal Γ̂1; ∅; Ψ2 `
(
νu2 :\

(
T̂2

))
Q2 with Γ̂1 = Γ̂, u :

Tu, u1 : \
(
T̂1

)
, x1 : T̂1. Repeating the argumentation for D1 again n− 2 more

times results in the subgoal

Γ̂n−1; ∅; Ψn `
(
νun :\

(
T̂n

))(
u〈un〉 | un(xn) .P̂ ′

)
,

where Γ̂n−1 = Γ̂, u :Tu, u1 : \
(
T̂1

)
, x1 : T̂1, . . . , un−1 : \

(
T̂n−1

)
, xn−1 : T̂n−1 and

Ψn = u :]
(
\
(
T̂n

))
. We conclude with

Dn =

D′n D′′n

Γ̂n−1, un :\
(
T̂n

)
; ∅; Ψn ` u〈un〉 | un(xn) .P̂ ′

T-ParM

Γ̂n−1; ∅; Ψn `
(
νun :\

(
T̂n

))(
u〈un〉 | un(xn) .P̂ ′

) T-Res-BM

where

D′n =
Γ̂n−1, un :\

(
T̂n

)
` un :\

(
T̂n

)T-NameB

Γ̂n−1, un :\
(
T̂n

)
; ∅;u :]

(
\
(
T̂n

))
` u〈un〉

T-Out-MM

and

D′′n =
Γ̂n−1, un :\

(
T̂n

)
` un :\

(
T̂n

)T-NameB D′′′n

Γ̂n−1, un :\
(
T̂n

)
; ∅; ∅ ` un(xn) .P̂ ′

T-In-BM

Let Γ̂n = Γ̂, u : Tu, u1 : \
(
T̂1

)
, x1 : T̂1, . . . , un : \

(
T̂n

)
, xn : T̂n. It remains to

show, for D′′′n , that Γ̂n; ∅; ∅ ` P̂ ′. By the induction hypothesis, we have

Γ̂′n; ∅; ∅ ` P̂ ′ with Γ̂′n = Γ̂, x1 : T̂1, . . . , xn : T̂n. Hence, we conclude by
Lemma 6.2.29.

204

6.2. Type Systems

Case of T-InPSB : Similar to the case before but instead of link y we have the
link y · o in P , instead of (6.3) we have

Γ̂ ` y :vn, and (6.3.1)

Γ̂ ` o :]
(
◦ .]

(
\
(
T̂1

))
.]

(
\
(
T̂n

))
. •
)

(6.1.2)

and D becomes

D =
Γ̂ ` y :vn

(6.3.1)
Γ̂ ` o :](Tu)

(6.1.2) D1

Γ̂; ∅; ∅ ` P̂
T-InPSM

Case of T-RepB : Similar to the case of T-InB. In D apply T-Rep-MM instead
of T-In-M1M.

It remains to show that Γ̂; ∆; Ψ ` P̂ implies Γ ` P and ∆ = Ψ = ∅. Here, we
distinguish between the inference rules of the monadic type system.

Case of T-Res-BM : In this case, P̂ = (νx :T)P ′ for some x ∈ N , T ∈ TM,
P ′ ∈ (P :TM), ∆ = ∅, T 6= ◦ . T ′ for all T ′, and Γ̂, x :T ; ∆; Ψ ` P ′. Because of
T̂ 6= ◦.T ′ for all T ′ ∈ TM, T is no m-sort and, thus, there exists some T ′′ ∈ TB

such that T = T̂ ′′. Consequently, there also exists some P ′′ ∈ (P∼ :TB) such

that P ′ = P̂ ′′ and P = (νx :T ′′)P ′′. Hence, by the induction hypothesis,

Γ̂, x : T̂ ′′; ∆; Ψ ` P̂ ′′ implies that Γ, x :T ′′ ` P ′′ and ∆ = Ψ = ∅. We conclude
Γ ` P by T-ResB.

Case of T-Res-MM : Again P̂ = (νx :T)P ′ for some x ∈ N , T ∈ TM, P ′ ∈
(P :TM), and Γ̂, x :T ; ∆; Ψ ` P ′ but here T = T1 .T2 for some T1, T2. Because
of Definition 6.2.24, then P = y〈z1, . . . , zn〉 (or P = y · o〈z1, . . . , zn〉) for some

y, z1, . . . , zn ∈ N . Accordingly, T = ◦ .]
(
\
(
T̂1

))
.]

(
\
(
T̂n

))
. • and

P ′ = y〈u〉 | u(u1) . (u1〈z1〉 | . . . | u(un) . (un〈zn〉) . . .) .

By the argumentation in the Case of T-OutB above, i.e., by the derivation
presented for Γ̂; ∆; Ψ ` P̂ , we observe that Γ̂; ∆; Ψ ` P̂ implies ∆ = Ψ = ∅,
Γ̂, u :T ` y :](T) and Γ̂i ` zi : T̂i, where Γ̂i = Γ̂, u :T, u1 :]

(
T̂1

)
, . . . , ui :]

(
T̂i

)
,

for all 1 ≤ i ≤ n. Moreover, by Definition 6.2.22,](T) = ̂](T1, . . . , Tn). Thus,
by Lemma 6.2.11 and Lemma 6.2.38, Γ ` y :](T1, . . . , Tn) and Γ ` zi : Ti for
all 1 ≤ i ≤ n. We conclude Γ ` P by T-OutB.

Case of T-ParM : In this case, P̂ = P1 | P2 for some P1, P2 ∈ (P :TM), ∆ =
∆1,∆2, Ψ = Ψ1 ·Ψ2, Γ̂; ∆1; Ψ1 ` P1, and Γ̂; ∆2; Ψ2 ` P2. By Definition 6.2.24,

there exists P ′1, P
′
2 ∈ (P∼ :TB) such that P1 = P̂ ′1, P2 = P̂ ′2, and P = P ′1 | P ′2.

Then, by the induction hypothesis, Γ̂; ∆1; Ψ1 ` P1 and Γ̂; ∆2; Ψ2 ` P2 imply
Γ ` P ′1, Γ ` P ′2, and ∆1 = ∆2 = Ψ1 = Ψ2 = ∅. Hence, ∆ = ∆1,∆2 = ∅ and
Ψ = Ψ1 ·Ψ2 = ∅. We conclude Γ ` P by T-ParB.

205

6. Properties of Encodings

Case of T-MatM : In this case, P̂ = [a = b]P ′ for some a, b ∈ N , P ′ ∈ (P :TM),
Γ̂ ` a :T , Γ̂ ` b :T , for some T ∈ TM,and Γ̂; ∆; Ψ ` P ′. By Definition 6.2.24,
there exists P ′′ ∈ (P∼ :TB) such that P ′ = P̂ ′′ and P = [a = b]P ′′. Then,
by the induction hypothesis, Γ̂; ∆; Ψ ` P ′ implies Γ ` P ′′ and ∆ = Ψ = ∅.
By Definition 6.2.22, there exists some T ′ ∈ TB such that T = T̂ ′. Hence, by
Lemma 6.2.38, Γ̂ ` a : T and Γ̂ ` b : T imply Γ ` a : T ′ and Γ ` b : T ′. We
conclude Γ ` P by T-MatB.

Case of T-TauM : In this case, P̂ = τ.P ′ for some P ′ ∈ (P :TM), ∆ = Ψ = ∅,
and Γ̂; ∆; Ψ ` P ′. By Definition 6.2.24, there exists P ′′ ∈ (P∼ :TB) such that

P ′ = P̂ ′′ and P = τ.P ′′. Then, by the induction hypothesis, Γ̂; ∆; Ψ ` P ′
implies Γ ` P ′′. We conclude Γ ` P by T-TauB.

Case of T-Out-BM : In this case, P̂ = y〈z〉 for some y, z ∈ N , ∆ = Ψ = ∅,
Γ̂ ` z : T , and either Γ̂ ` y :](T) or Γ̂ ` y : \(T) for some T ∈ TM. By
Definition 6.2.22 and Definition 6.2.24, there exists T ′ ∈ TB be such that
T = T̂ ′, if we have Γ̂ ` y :](T). In the other case, i.e., if Γ̂ ` y : \(T),
P /∈ (P∼ :TB). Hence, by Lemma 6.2.38, Γ̂ ` y :](T) and Γ̂ ` z : T imply
Γ ` y :](T ′) and Γ ` z :T ′. We conclude Γ ` P by T-OutB.

Case of T-Out-MM : Here P̂ = y〈z〉 for some y, z ∈ N , ∆ = ∅, and Γ̂ ` z :T for
some T ∈ TM but Ψ = y :](T). However, by Definition 6.2.26, Ψ = y :](T)
implies Γ(y) = ◦ . T ′ for some T ′. Thus, by Definition 6.2.24, P /∈ (P∼ :TB).

Case of T-OutPSM : In this case, P̂ = y · o〈z〉 for some o, y, z ∈ N , ∆ = Ψ = ∅,
Γ̂ ` y :vn, Γ̂ ` o :](T), and Γ̂ ` z :T for some T ∈ TM. By Definition 6.2.22,
Definition 6.2.24, and because P̂ = y · o〈z〉, there exists T ′ ∈ TB be such that
T = T̂ ′. Hence, by Lemma 6.2.38, Γ̂ ` y :vn, Γ̂ ` o :](T), and Γ̂ ` z :T imply
Γ ` y :vn, Γ ` o :](T ′), and Γ ` z :T ′. We conclude Γ ` P by T-OutPSB.

Case of T-In-BM : In this case, P̂ = y(x) .P ′ for some names x, y ∈ N , P ′ ∈
(P :TM), ∆ = ∅, Γ̂, x : T ; ∅; Ψ ` P ′, and either Γ̂ ` y :](T) or Γ̂ ` y : \(T)
for some T ∈ TM such that T 6= ◦ . T ′ for all T ′. By Definition 6.2.22
and Definition 6.2.24, there exists P ′′ ∈ (P∼ :TB) such that P ′ = P̂ ′′ and

P = y(x) .P ′′ and there exists T ′′ ∈ TB be such that T = T̂ ′′, if we have
Γ̂ ` y :](T). In the other case, i.e., if Γ̂ ` y : \(T), P /∈ (P∼ :TB). Then, by
the induction hypothesis, Γ̂, x :T ; ∆; Ψ ` P ′ implies Γ, x :T ′′ ` P ′′ and Ψ = ∅.
By Lemma 6.2.38, Γ̂ ` y :](T) implies Γ ` y :](T ′′). We conclude Γ ` P by
T-InB.

Case of T-In-M1M : Again P̂ = y(x) .P ′ for some names x, y ∈ N , P ′ ∈ (P :TM),
and ∆ = ∅ but here Γ̂ ` y :](T), Ψ = ∅, and Γ̂, x : T ; ∅;x : T ′ ` P ′ for
some T ∈ TM such that T = ◦ . T ′. Thus, by Definition 6.2.24, there exists
x1, . . . , xn ∈ N and P ′′ ∈ (P∼ :TB) such that P = y(x1, . . . , xn) .P ′′,

P ′ =
(
νu1 :\

(
T̂1

))(
u〈u1〉 | u1(x1) .

(
. . .(

νun :\
(
T̂n

))(
u〈un〉 | un(xn) .P̂ ′′

)
. . .
))
,

206

6.2. Type Systems

and T = ◦ .]
(
\
(
T̂1

))
.]

(
\
(
T̂n

))
. • for some T1, . . . , Tn ∈ TB. By the

argumentation in the Case of T-InB above, i.e., by the derivation presented
for Γ̂; ∅; ∅ ` P , we observe that Γ̂; ∅; ∅ ` P implies Γ̂n; ∅; ∅ ` P̂ ′′, where

Γ̂n = Γ̂, u : T, u1 : \
(
T̂1

)
, x1 : T̂1, . . . , un : \

(
T̂n

)
, xn : T̂n. By Lemma 6.2.29,

then Γ̂′n; ∅; ∅ ` P̂ ′′, where Γ̂′n = Γ̂, x1 : T̂1, . . . , xn : T̂n. And, by the induction

hypothesis, Γ̂′n; ∅; ∅ ` P̂ ′′ implies Γ, x1 : T1, . . . , xn : Tn ` P ′′. Moreover, by

Definition 6.2.22,](T) = ̂](T1, . . . , Tn). Thus, by Lemma 6.2.38, Γ̂ ` y :](T)
implies Γ ` y :](T1, . . . , Tn). We conclude Γ ` P by T-InB.

Case of T-In-M2M : Again P̂ = y(x) .P ′ for some names x, y ∈ N , P ′ ∈ (P :TM),
and Γ̂, x : T ; ∆; Ψ ` P ′ for some T ∈ TM but ∆ = y :](T) . T ′ for some
T ′ ∈ TM, and Ψ = ∅. However, by Definition 6.2.26, ∆ = y :](T) . T ′ implies
Γ(y) = ◦ . T ′ for some T ′. Thus, by Definition 6.2.24, P /∈ (P∼ :TB).

Case of T-InPSM : In this case P̂ = y · o(x) .P ′ for some names o, x, y ∈ N ,
P ′ ∈ (P :TM), ∆ = Ψ = ∅, Γ̂ ` y :vn, Γ̂ ` o :](T), and Γ̂, x :T ; ∅;x :T ′ ` P ′ for
some T ∈ TM such that T = ◦ . T ′. Thus, by Definition 6.2.24, there exists
x1, . . . , xn ∈ N and P ′′ ∈ (P∼ :TB) such that P = y · o(x1, . . . , xn) .P ′′,

P ′ =
(
νu1 :\

(
T̂1

))(
u〈u1〉 | u1(x1) .

(
. . .(

νun :\
(
T̂n

))(
u〈un〉 | un(xn) .P̂ ′′

)
. . .
))
,

and T = ◦ .]
(
\
(
T̂1

))
.]

(
\
(
T̂n

))
. • for some T1, . . . , Tn ∈ TB. By

the argumentation in the Case of T-InPSB (which is similar to the Case of
T-InB) above, i.e., by the derivation presented for Γ̂; ∅; ∅ ` P , we observe

that Γ̂; ∅; ∅ ` P implies Γ̂n; ∅; ∅ ` P̂ ′′, where Γ̂n = Γ̂, u : T, u1 : \
(
T̂1

)
, x1 :

T̂1, . . . , un : \
(
T̂n

)
, xn : T̂n. By Lemma 6.2.29, then Γ̂′n; ∅; ∅ ` P̂ ′′, where

Γ̂′n = Γ̂, x1 : T̂1, . . . , xn : T̂n. And, by the induction hypothesis, Γ̂′n; ∅; ∅ ` P̂ ′′
implies Γ, x1 : T1, . . . , xn : Tn ` P ′′. Moreover, by Definition 6.2.22,](T) =

̂](T1, . . . , Tn). Thus, by Lemma 6.2.38, Γ̂ ` y : vn and Γ̂ ` o :](T) imply
Γ ` y :vn and Γ ` o :](T1, . . . , Tn). We conclude Γ ` P by T-InPSB.

Case of T-Rep-BM : Similar to the case of T-In-BM. P̂ = y?(x) .P ′. Use
T-RepB instead of T-InB.

Case of T-Rep-MM : Similar to the case of T-In-M1M. P̂ = y?(x) .P ′. Use the
argumentation of the Case of T-RepB (which is similar to the Case of T-InB)
instead of the Case of T-InB and T-RepB instead of T-InB.

We conclude that the encoding functions are well-typed in the monadic type system.

207

6. Properties of Encodings

Theorem 6.2.40. All target terms of T 1
MJ · Ksa, T 2

MJ · Kmp , and T 3
MJ · Kma , i.e., all terms

P1 ∈ (Pa :TM)�T 1
MJ · Ksa, P2 ∈ (Pp :TM)�T 2

MJ · Kmp , and P3 ∈ (P=
a :TM)�T 3

MJ · Kma , are modulo

structural congruence well-typed with respect to Γ̂J · Ksa (and well-structured source terms),

Γ̂J · Kmp , and Γ̂J · Kma , respectively.

Proof. By Lemma 6.2.20, Observation 6.2.25, Lemma 6.2.37, and Lemma 6.2.39.

Note that this theorem allows us to forget about the unfolding of polyadic commu-
nications and use the type information of the basic type system—or the type system
introduced in the following—instead.

6.2.4. Polarity and Multiplicity

The type systems of the last two sections allow us to talk about the components of the
encoding functions, which significantly eases the formulation and the proof of invariants.
However, type systems can also be used directly to show properties of encodings. Within
this section we use polarities and multiplicities to prove some properties on the usage
of the links in the encoding functions. Polarities state how a link can be used [PS96],
whereas multiplicities indicate how often a link can be used [San97, KPT99, San99].

A link can have one of three polarities. Links typed by the polarity ↑ can be used
for output only, whereas ↓ denotes an input-only polarity. If the link should be used
for both, we assign the polarity l. Note that these polarities will replace the symbol
] for link types. Furthermore, we augment this new symbol with a superscript and/or
subscript to denote multiplicities. Linear links, i.e., links that are used for exactly one
out- or input, are assigned multiplicity 1. + is used to denote links that can be used at
most once but can also be used not at all. In contrast ω means arbitrarily often, i.e.,
the link can be used any number of times from zero to any finite number. Moreover, we
use the multiplicity ∗ to denote links that are used for exactly one replicated input but
no other input. Of course, such links can hardly be considered as linear, since replicated
inputs can be used arbitrarily often. Instead ∗ means that all input capabilities of that
link are equivalent since they all stem from exactly the same replicated input capability.
In [SW01] such links are called ω-receptive, because the existence of such replicated input
automatically proves that once unguarded it provides a communication partner for each
output on that link. Hence, ∗ ensures that all such outputs are eventually processed in
exactly the same way, if the respective replicated input is not guarded.

A typical example of linear links, i.e., links that are used exactly once for input and
exactly once for output are the auxiliary links that are introduced by the unfolding of
polyadic communication and that are not typed by a m-sort like type. We type all such
auxiliary links in all three encodings by l11(T), where T is the type of the respective
value. Note that as soon as a step on the respective link removes the only out- and
input the corresponding restriction that introduces this link is superfluous and can be
removed modulo structural congruence.

Apart from the protocol to unfold polyadic communications, all three encodings share
sum locks and booleans. Remember that the positive instantiation of a sum lock l looks

208

6.2. Type Systems

like l〈>〉 = l(t , f) .t , while l〈⊥〉 = l(t , f) .f represents a negative instantiation. Hence,
whether a sum lock is positively or negatively instantiated depends on the boolean link
that is used for output. The boolean links t and f are then used in a test-construct
test l then P else Q = (νt , f)

(
l〈t , f 〉 | t .P | f .Q

)
to guard the respective continuation

of the then or the else-case. Here, the restriction ensures that for each pair of boolean
links t , f there is exactly one input for each link. The instantiation of the sum lock,
however, will only send a message on one of these links. Hence, for each boolean link
there is at most one output and exactly one input. Accordingly, we type them by l+1(v>)
and l+1(v⊥). Note that within communications on sum locks only the output capability
of booleans is communicated, while the linear input capability of the booleans remains
in the respective test-construct. Because of this, we have to assign the type l11(↑+(v>))
to the auxiliary link ut and l11(↑+(v⊥)) to the auxiliary link uf . The same holds for all
other polyadic communications in the three encodings, i.e., in polyadic communications
only the output capabilities of the parameters is communicated. The encodings also
ensure that there is always at most one instantiation of each sum lock. Moreover, for
each consumed instantiation of a sum lock eventually a new instantiation is unguarded.
But, unfortunately, these properties are not that easy to check. There is at most one
instantiation of each sum lock, because to unguard a new one it is necessary to first con-
sume one within a test-construct. For each so consumed instantiation exactly one new
instantiation is eventually unguarded. But to prove that, we have to consider commu-
nications on various channels. First the instantiation is consumed by a communication
on a sum lock. This starts the protocol behind the unfolding of polyadic communica-
tions, which requires in the case of sum locks four more steps. Finally, there is a step
on a boolean. Hence to ensure that eventually each consumed sum lock instantiation is
restored we need a more complex type system that also covers the relationships between
links. In [Nes00] e.g. an ordering of dependencies between links is used to show that
all links introduced by the encoding J · Ksa are reliable, i.e., do not introduce deadlocks.
As discussed in Section 6.5 it is not easy to extend this type system to reason about
deadlock-freedom in J · Kma . Instead we use invariants to reason about such properties.
Consequently, we do not assign a link type with special multiplicities to sum locks, but
rely on the ordinary link type](l◦). However, because we assign linear types to all aux-
iliary links and because again over the link u∼,l of type l◦ only output capabilities are
communicated, the m-sort like type l◦ becomes ◦ .]

(
↑1(↑+(v>))

)
.]
(
↑1(↑+(v⊥))

)
. •.

The encoded continuation of a source term sender is guarded in all three encodings
by a sender lock (second sender lock in J · Kmp). Since such a source term sender has
exactly one (possibly empty) continuation, for each encoded source term sender there is
exactly one sender lock and initially exactly one input on this lock. However, a successful
emulation of a source term step may remove this single input, but since there may be
still some guarded outputs on the sender lock, the corresponding restriction cannot be
removed as it is the case for the linear types above. Consequently, we assign the type
lω+(vs). Note that the ω for the output capability shows that our type system allows for
arbitrary many (possibly guarded) outputs on sender locks.

Receiver locks in J · Kma guard test-constructs by a replicated input. Again, J · Kma
introduces exactly one receiver lock for each translated source term input and exactly one

209

6. Properties of Encodings

Description Names Type

source term ϕm
a (x) , ϕm

a (y) ,
vnnames ϕm

a (z) , y, y′, z

auxiliary values
vt v>
vf v⊥
vs vs

booleans
t l+1(v>)
f l+1(v⊥)

sum locks l , l1, l2, ls, lr l =](l◦)

sender locks s s = lω+(vs)

receiver locks r r = lω∗(r◦)

output requests
po ,mo , po,up , o =](o◦), o∗ = lω∗(o◦)mo,up , ro , ro,up

input requests
pi ,mi , pi ,up , i =](i◦), i∗ = lω∗(i◦)mi ,up , ri , ri ,up

chain locks

co lω∗(↓∗(i◦))
ci lω∗(↓∗(o◦))

cr1 lω∗(vn)
cr2](c◦)

auxiliary links

un l11(vn)
ut l11(↑+(v>))
uf l11(↑+(v⊥))
ul l11(l)
us l11(↑ω(vs))
ur l11(↑ω(r◦))
uo l11(↑ω(o◦))
ui l11(↑ω(i◦))

u∼,l l◦ = ◦ .]
(
↑1(↑+(v>))

)
.]
(
↑1(↑+(v⊥))

)
. •

u∼,c c◦ = ◦ .]
(
↑1(↑ω(o◦))

)
.]
(
↑1(↑ω(i◦))

)
. •

u∼,i i◦ = ◦ .]
(
↑1(vn)

)
.]
(
↑1(l)

)
.]
(
↑1(↑ω(r◦))

)
. •

u∼,o
o◦ = ◦ .]

(
↑1(vn)

)
.

]
(
↑1(l)

)
.]
(
↑1(↑ω(vs))

)
.]
(
↑1(vn)

)
. •

u∼,r
r◦ = ◦ .]

(
↑1(l)

)
.]
(
↑1(l)

)
.

]
(
↑1(l)

)
.]
(
↑1(↑ω(vs))

)
.]
(
↑1(vn)

)
. •

Figure 6.9.: Linear and Monadic Types in J · Kma .

210

6.2. Type Systems

replicated input for each such lock. Accordingly, we type them by lω∗(r◦). Remarkably, we
can assign the same type also to most of the input and output requests. Inputs on request
channels are usually replicated inputs, except for the inputs that collect right requests
of a parallel operator. Note that J · Kma ensures that also for right requests there is
eventually exactly one input. But again this property can only be proved by considering
the relationships between links, because the respective input can be temporary guarded
by a replicated input on a chain lock. Because of that, we use the ordinary link type for
request channels that are restricted at the right hand side of a parallel operator encoding.
Nonetheless, since the most difficult and challenging task of the algorithm introduced
by J · Kma is to guide the flow of requests, the special type of the remaining requests
channels is still a very helpful information. Finally, there is also exactly one replicated
input for each chain lock except for the second kind of chain locks associated to the
translations of replicated inputs. An overview of all names and types used for J · Kma is
presented in Figure 6.9. To obtain the typed variant of a term P , replace the syntactical
representation of the request channels bound for the right hand side in the translations
of the parallel operator by a fresh name, say po

′ and pi
′, respectively. Then the typed

variant of P is T 3
L (P), where T 3

L contains the assignments po :o∗, pi : i∗, po
′ :o, and pi

′ : i
and is defined for the remaining names by the type assignments given in Figure 6.9. In
the following, whenever we write T 3

L (P) for some P ∈ P=
a or P = J S Kma with S ∈ Pm

we silently assume that T 3
L (P) is obtained in this way.

The encoding J · Kmp introduces additional sender and receiver locks (the respective
first parts) to retransmit requests after failed test-constructs, i.e., to compensate for
aborted emulation attempts. For both locks J · Kmp introduces exactly one replicated
input. Hence, we type them by lω∗(vs,r). Moreover, for all request channels exactly
one replicated input is provided. Apart from that, the names in J · Kmp are typed as
in J · Kma . Figure 6.10 provides an overview. Also, the definition of types for J · Ksa is
straightforward. They are given in Figures 6.11. Figure 6.10 and 6.11 define also the
sets of type assignments T 2

L and T 1
L that are used to obtain typed terms of the respective

encoding.

We denote our third type system as linear type system, because it introduces linear
types for some of the links. However, to avoid confusion with the linear types, which
are link types with one of the multiplicities 1 or ∗, the types of the linear type system
are denoted as multiplicity types. The set of multiplicity types is again defined by the
union of the types in Figures 6.9, 6.10, and 6.11.

Definition 6.2.41 (Multiplicity Types). Let Ts be the types of the type system of
the source language πs. The types of the linear type system, called multiplicity types,
are given by the multiplicity value types VL, the multiplicity link types LL, and the
multiplicity types TL = VL ∪ LL. The multiplicity value types are defined as for the
basic type system by the set

VL , VB = { vn, v>, v⊥, vs, vs,r } ∪ { VS | VS ∈ Ts ∧ ∀TS ∈ Ts . VS 6=](TS) }

211

6. Properties of Encodings

Description Names Type

source term ϕm
p (x) , ϕm

p (y) ,
vnnames ϕm

p (z) , y, z

auxiliary values

vt v>
vf v⊥

vs,r vs,r
vs vs

booleans
t l+1(v>)
f l+1(v⊥)

sum locks l , l1, l2, ls, lr l =](l◦)

sender and
s1, r1, v, w lω∗(vs,r)

receiver locks
s2 s = lω+(vs)
r2 r′ = lω∗(r′◦)

output requests po , po,up o′ = lω∗(o′◦)
input requests pi , pi ,up i′ = lω∗(i′◦)

tags
o to =](to,◦)
i ti =](ti,◦)

auxiliary links

un l11(vn)
ut l11(↑+(v>))
uf l11(↑+(v⊥))
ul l11(l)

us,r l11(↑ω(vs,r))
us l11(↑ω(vs))
ur ′ l11(↑ω(r′◦))
u∼,l l◦ = ◦ .]

(
↑1(↑+(v>))

)
.]
(
↑1(↑+(v⊥))

)
. •

u∼,ti
ti,◦ =

◦ .]
(
↑1(l)

)
.]
(
↑1(↑ω(vs,r))

)
.]
(
↑1(↑ω(r′◦))

)
. •

u∼,i ′
i′◦ = ◦ .]

(
↑1(vn)

)
.]
(
↑1(l)

)
.

]
(
↑1(↑ω(vs,r))

)
.]
(
↑1(↑ω(r′◦))

)
. •

u∼,to
to,◦ = ◦ .]

(
↑1(l)

)
.]
(
↑1(↑ω(vs,r))

)
.

]
(
↑1(↑ω(vs))

)
.]
(
↑1(vn)

)
. •

u∼,o′
◦ .]

(
↑1(vn)

)
.]
(
↑1(l)

)
.

]
(
↑1(↑ω(vs,r))

)
.]
(
↑1(↑ω(vs))

)
.]
(
↑1(vn)

)
. •

u∼,r

r′◦ = ◦ .]
(
↑1(l)

)
.]
(
↑1(l)

)
.

]
(
↑1(l)

)
.]
(
↑1(↑ω(vs))

)
.]
(
↑1(vn)

)
.

]
(
↑1(↑ω(vs,r))

)
.]
(
↑1(↑ω(vs,r))

)
. •

Figure 6.10.: Linear Types in J · Kmp .

212

6.2. Type Systems

Description Names Type

ϕs
a(x)

VS

source term
](n◦,TS)

names
ϕs
a(y)](n◦,TS)

ϕs
a(z)

VS
](n◦,TS)

vt v>
auxiliary vf v⊥
values vs vs

vs,r vs,r

booleans
t l+1(v>)
f l+1(v⊥)

sum locks l , l ′ l =](l◦)

sender locks s s = lω+(vs)

receiver locks r lω∗(vs,r)

auxiliary links

uTS l11(TS)
ut l11(↑+(v>))
uf l11(↑+(v⊥))
ul l11(l)
us l11(↑ω(vs))

u∼,l l◦ = ◦ .]
(
↑1(↑+(v>))

)
.]
(
↑1(↑+(v⊥))

)
. •

u∼,TS n◦,TS = ◦ .]
(
↑1(l)

)
.]
(
↑1(↑ω(vs))

)
.]
(
↑1(TS)

)
. •

Figure 6.11.: Linear Types in J · Ksa.

Let M denote the set of types in Figures 6.9, 6.10, and 6.11, i.e.,

M =
{
l+1(v>) , l+1(v⊥) , l, s, r, o, i,](i) ,](o) ,](vn) ,](c◦) ,](vs,r) , r

′, o′, i′, to, ti, l11(vn)
}

∪
{
l11
(
↑+(v>)

)
, l11
(
↑+(v⊥)

)
, l11(l) , l11(↑ω(vs)) , l11(↑ω(r◦)) , l11(↑ω(o◦)) , l11(↑ω(i◦))

}
∪
{
l◦, c◦, i◦, o◦, r◦, l11(↑ω(vs,r)) , l11

(
↑ω
(
r′◦
))
, ti,◦, i

′
◦, to,◦, o

′
◦, r
′
◦
}

∪
{
l11(VS) | VS ∈ Ts ∧ ∀TS ∈ Ts . VS 6=](TS)

}
∪
{
](n◦,TS) , l11(TS) , n◦,TS |]

(
T ′S
)
∈ Ts ∧ TS = T̃ ′S

}
Then, the set of multiplicity link types is defined as

LL =M ∪ { ↑n(T) , ↓m(T) | lnm(T) ∈M } .

Moreover, let Tlin =
{
l11(T ′) , ↑1(T ′) , ↓1(T ′) , l

+
1(T ′) , lω∗(T ′) , ↓∗(T ′) | T ′ ∈ TL

}
define the

set of linear types, i.e., the types that contain a multiplicity 1 or ∗. Accordingly, we
define:

lin(Γ) = { x :T | x :T ∈ Γ ∧ T ∈ Tlin }
lin+(Γ) =

{
x :T | x :T ∈ Γ ∧ T ∈

(
Tlin ∪

{
lω+
(
T ′
)
, ↑+
(
T ′
)
, ↓+
(
T ′
)
| T ′ ∈ TL

}) }

213

6. Properties of Encodings

Note that we consider none of the link types](·), ↑ω(·), or ↑+(·) as linear types even if
they carry a linear type as argument. In contrast, for simplicity, we denote the types
lω∗(·) and ↓∗(·) as linear types, although they are associated to unique replicated inputs.

The typing rules of the linear type system in Figure 6.12 are very similar to the typing
rules of the monadic type system in Figure 6.8. Indeed, the Rule T-Res-ML for restric-
tion is equivalent to the Rule T-Res-MM in the monadic type system. The same holds
for the Rule T-TauL for τ -prefixes and the Rules T-Out-ML and T-In-M2L that are
designed to cover communications on links typed by a m-sort. The Axioms T-NameL,
T-NilL, and T-Succ differ only by the additional side condition lin(Γ) = ∅. It ensures
that the typing by a linear multiplicity 1 or ∗ induces an obligation. A link typed by
l11(T) has to be used exactly once for input and exactly once for output. A term con-
taining a name typed by a linear type cannot be well-typed before this obligation is
satisfied.

The typing Rule T-Res-BL is very similar to the corresponding Rule T-Res-BM in
the monadic type system, but it allows to “forget” a linear type to allow for restrictions
on already consumed links with a linear type. Note that such restrictions are superfluous
and can be removed modulo structural congruence.

The typing Rule T-ParL for parallel compositions differs from T-ParM by some
additional requirements on the type environments. In the basic and the monadic type
system each subgoal of a typing rule simply inherits the type environment of the goal. In
the linear type system this is different. A linear multiplicity and also the multiplicity +
forbids that an output or input on the typed link occurs more than once. To ensure this,
type environments contain information about capabilities of a multiplicity in { 1, ∗,+ }
only if the respective capability did not already occur in the derivation so far. Intuitively,
type environments only contain still active type information for linear capabilities and
capabilities of multiplicity +. Hence, to check the type of a parallel composition, its type
environment—or more precisely the parts of the type environment with a multiplicity in
{ 1, ∗,+ }—have to be distributed on the two subgoals. How such a distribution has to
look like is formalised by the function Γ1 + Γ2.

Definition 6.2.42. Let Γ1 and Γ2 be type environments. Then, for all x ∈ n(Γ1)∪n(Γ2),

(Γ1 + Γ2)(x) =


Γ1(x) , if x /∈ n(Γ2)

Γ2(x) , else if x /∈ n(Γ1)

Γ1(x) + Γ2(x) , else

where

T + T ′ = T ′ + T lω∗(T) = ↑ω(T) + ↓∗(T)
](T) =](T) +](T) lω∗(T) = ↑ω(T) + lω∗(T)
](T) =](T) + ↑ω(T) lω+(T) = ↑ω(T) + ↓+(T)

T1 . T2 = T1 . T2 + T1 . T2 lω+(T) = ↑ω(T) + lω+(T)
↑ω(T) = ↑ω(T) + ↑ω(T) l+1(T) = ↑+(T) + ↓1(T)
l11(T) = ↑1(T) + ↓1(T)

for all T, T ′ ∈ TL and all parts of a m-sort like type T1, T2.

214

6.2. Type Systems

In order to type terms like y〈z〉 | y(x) .0 with respect to a linear type for y, the rules
above allow to distribute a linear type constraint into its output and input part. The
Rule T + T ′ = T ′ + T ensures that Γ1 + Γ2 is symmetric for all type environments, i.e.,
Γ1 + Γ2 = Γ2 + Γ1. Moreover, the rules also ensure associativity, i.e., Γ1 + (Γ2 + Γ3) =
(Γ1 + Γ2)+Γ3 for all environments Γ1, Γ2, and Γ3. Note that for every typing rule of the
linear type system with more than one subgoal it is required that the type environments
of the subgoals are combined by Γ + Γ′ to obtain the type environment of the goal. This
ensures that no linearly typed capability is used more than once.

Besides the additional requirement on the type environments, T-MatL differs from
T-MatM by the side condition T ∈ VL. Remember that the match prefix occurs only in
J · Kma and there only translated source term names typed by a value type are compared
in a match. The side condition T ∈ VL forbids the use of links—names typed by a
link type—in the match prefix of well-typed terms in the linear type system. Since we
assign multiplicities and polarities only to link types, this ensures that the typing rule
for match does not require special treatment in the linear type system. Hence, the use
of values in a match prefix does not influence the counting on multiplicities of links.

The remaining rules for output, input, and replicated input check for the correct
polarities of the respective links. For this, they use the abbreviations:

]+(T) ,](T) ∨ ↑n(T)

]+(T) ,](T) ∨ ↓n(T)

]∗(T) ,](T) ∨ ↓∗(T)

where n ∈ { 1,+, ω }. For example]+(T) replaces in T-Out-BL the requirement](T)
in the T-Out-BM that ensures that each name used as link is indeed typed by a link
type.]+(T) allows for outputs on names typed by the conventional link type as well as
for the new link types as long as they have the right polarity.

The typing rules of the linear type system are presented in Figure 6.12.

Definition 6.2.43 (Linear Type System). The linear type system is given by the mul-
tiplicity types in Definition 6.2.41 and the typing rules in Figure 6.12.

In the following we show that also the linear type system satisfies a form of subject
reduction and, thus, is consistent with the reduction semantics of the target languages
of the encoding functions. For this, we consider again the preservation of the remaining
properties. First note that Lemma 6.2.9 holds also in the case of T-NameL, because
the additional side condition lin(Γ) restricts only the set of not used type assignments.
However, because of this side condition, weakening holds only in the case of not linear
types. This shows that within the linear type system we have to be more careful with
the surplus type assignments.

Lemma 6.2.44. If Γ; ∆; Ψ ` P then Γ does not contain unnecessary linear type infor-
mation, i.e., n(lin(Γ)) ⊆ fn(P).

Proof. We perform an induction on the depth of the derivation. Let P ∈ { Pa,Pp,P=
a }

be the set of processes of the target language of the considered encoding.

215

6. Properties of Encodings

T-NameL
Γ, x :T ` x :T

lin(Γ) = ∅

T-NilL
Γ; ∅; ∅ ` 0

lin(Γ) = ∅ T-SuccL
Γ; ∅; ∅ ` X

lin(Γ) = ∅

T-Res-BL
Γ′; ∆; Ψ ` P

Γ; ∆; Ψ ` (νx :T)P

T 6= ◦ . T ′,
Γ′ = Γ, x :T ∨ (T ∈ Tlin ∧ Γ′ = Γ)

T-Res-ML
Γ, x :T . T ′; ∆,∆′; Ψ ` P
Γ; ∆; Ψ ` (νx :T . T ′)P

∆′ =

{
∅, if T ′ = •
x :T ′, else

T-ParL
ΓP ; ∆P ; ΨP ` P ΓQ; ∆Q; ΨQ ` Q
ΓP + ΓQ; ∆P ,∆Q; ΨP ·ΨQ ` P | Q

T-TauL
Γ; ∅; ∅ ` P

Γ; ∅; ∅ ` τ.P

T-MatL
Γ1 ` a :T Γ2 ` b :T Γ3; ∆; Ψ ` P

Γ1 + Γ2 + Γ3; ∆; Ψ ` [a = b]P
T ∈ VL

T-Out-BL
Γ1 ` y :]+(T) Γ2 ` z :T

Γ1 + Γ2; ∅; ∅ ` y〈z〉
T-Out-ML

Γ ` z :T

Γ; ∅; y :](T) ` y〈z〉

T-OutPSL
Γ1 ` y :vn Γ2 ` o :]+(◦ . T) Γ3 ` z :◦ . T

Γ1 + Γ2 + Γ3; ∅; ∅ ` y · o〈z〉

T-In-BL
Γ1 ` y :]+(T) Γ2, x :T ; ∅; Ψ ` P

Γ1 + Γ2; ∅; Ψ ` y(x) .P
T 6= ◦ . T ′

T-In-M1L
Γ1 ` y :]+(◦ . T) Γ2, x :◦ . T ; ∅;x :T ` P

Γ1 + Γ2; ∅; ∅ ` y(x) .P

T-In-M2L
Γ, x :T ; ∆; ∅ ` P

Γ; y :](T) . T ′; ∅ ` y(x) .P
∆ =

{
∅, if T ′ = •
y :T ′, else

T-InPSL
Γ1 ` y :vn Γ2 ` o :]+(◦ . T) Γ3, x :◦ . T ; ∅;x :T ` P

Γ1 + Γ2 + Γ3; ∅; ∅ ` y · o(x) .P

T-Rep-BL
Γ1 ` y :]∗(T) Γ2, x :T ; ∅; ∅ ` P

Γ1 + Γ2; ∅; ∅ ` y?(x) .P
T 6= ◦ . T ′, lin+(Γ2) = ∅

T-Rep-ML
Γ1 ` y :]∗(◦ . T) Γ2, x :◦ . T ; ∅;x :T ` P

Γ1 + Γ2; ∅; ∅ ` y?(x) .P
lin+(Γ2) = ∅

Figure 6.12.: Typing Rules of the Linear Type System.

216

6.2. Type Systems

Base Case: If Γ; ∆; Ψ ` P can be derived from one of the axioms then either P = 0 or
P = X and lin(Γ) = ∅.

Induction Hypothesis: Γ; ∆; Ψ ` P implies n(lin(Γ)) ⊆ fn(P).

Induction Step: We perform a case split on the inference rules in Figure 6.12. Note
that, by Definition 6.2.42, Γ = Γ1 + Γ2 implies n(lin(Γ)) = n(lin(Γ1)) ∪ n(lin(Γ2)).

Case of T-Res-BL or T-Res-ML : Here, P = (νx :T)P ′ for some x ∈ N , T ∈ TL,
P ′ ∈ (P :TL), and Γ′; ∆′; Ψ ` P ′, where either Γ′ = Γ, x : T or Γ′ = Γ
and T ∈ Tlin. Thus, by the induction hypothesis, n(lin(Γ′)) ⊆ fn(P ′). By
Definition 6.2.26, T ∈ Tlin and Γ′ = Γ, x : T imply x /∈ n(Γ). Since fn(P) =
fn(P ′) \ { x }, then n(lin(Γ)) ⊆ fn(P).

Case of T-ParL : In this case, P = P1 | P2 for some P1, P2 ∈ (P :TL), Γ = Γ1+Γ2,
Γ1; ∆1; Ψ1 ` P1, and Γ2; ∆2; Ψ2 ` P2. Thus, by the induction hypothesis,
n(lin(Γ1)) ⊆ fn(P1) and n(lin(Γ2)) ⊆ fn(P2). Since fn(P) = fn(P1) ∪ fn(P2),
then n(lin(Γ)) ⊆ fn(P).

Case of T-TauL : In this case, P = τ.P ′ for some P ′ ∈ (P :TL) and Γ; ∆; Ψ ` P ′.
By the induction hypothesis, we have n(lin(Γ)) ⊆ fn(P ′). Since fn(P) =
fn(P ′), then n(lin(Γ)) ⊆ fn(P).

Case of T-MatL : In this case, P = [a = b]P ′ for some a, b ∈ N , P ′ ∈ (P :TL),
Γ1 ` a : T , Γ2 ` b : T , Γ3; ∆; Ψ ` P ′, and Γ = Γ1 + Γ2 + Γ3. Because of
the side condition of T-NameL, n(lin(Γ1)) ⊆ { a } and n(lin(Γ2)) ⊆ { b }. By
the induction hypothesis, n(lin(Γ3)) ⊆ fn(P ′). Since fn(P) = fn(P ′) ∪ { a, b },
then n(lin(Γ)) ⊆ fn(P).

Case of T-Out-BL : In this case, P = y〈z〉 for some y, z ∈ N , Γ1 ` y :T1, Γ2 ` z :
T2, and Γ = Γ1 + Γ2. By T-NameL, n(lin(Γ1)) ⊆ { y } and n(lin(Γ2)) ⊆ { z }.
Since fn(P) = { y, z }, then n(lin(Γ)) ⊆ fn(P).

Case of T-Out-ML : Here, P = y〈z〉 for some y, z ∈ N and Γ ` z :T . Again, by
T-NameL, n(lin(Γ)) ⊆ { z }. Since fn(P) = { y, z }, then n(lin(Γ)) ⊆ fn(P).

Case of T-OutPSL : In this case, P = y · o〈z〉 for some o, y, z ∈ N , Γ1 ` y : vn,
Γ2 ` y :T1, Γ3 ` z :T2, and Γ = Γ1 + Γ2 + Γ3. By T-NameL, n(lin(Γ1)) = ∅,
n(lin(Γ2)) ⊆ { y } and n(lin(Γ3)) ⊆ { z }. Since fn(P) = { o, y, z }, then
n(lin(Γ)) ⊆ fn(P).

Case of T-In-BL, T-In-M1L, T-Rep-BL, or T-Rep-ML : Here, P = y(x) .P ′ or
P = y?(x) .P ′ for some x, y ∈ N , P ′ ∈ (P :TL), Γ1 ` y :T1, Γ2, x :T2; ∆; Ψ′ `
P ′, and Γ = Γ1 + Γ2. By T-NameL, n(lin(Γ1)) ⊆ { y }. By the induction
hypothesis, n(lin(Γ2, x :T2)) ⊆ fn(P ′). By Definition 6.2.26, Γ2, x : T implies
x /∈ n(lin(Γ2)). Since fn(P) = (fn(P ′) \ { x }) ∪ { y }, then n(lin(Γ)) ⊆ fn(P).

Case of T-In-M2M : In this case, P = y(x) .P ′ for some x, y ∈ N , P ′ ∈ (P :TL),
and Γ, x : T ; ∆′; Ψ ` P ′. By the induction hypothesis, n(lin(Γ, x :T)) ⊆
fn(P ′). By Definition 6.2.26, Γ, x : T implies x /∈ n(lin(Γ)). Since fn(P) =
(fn(P ′) \ { x }) ∪ { y }, then n(lin(Γ)) ⊆ fn(P).

217

6. Properties of Encodings

Case of T-InPSM : In this case, P = y·o(x) .P ′ for some o, x, y ∈ N , P ′ ∈ (P :TL),
Γ1 ` y : vn, Γ2 ` o : T1, Γ3, x : T2; ∆; Ψ′ ` P ′, and Γ = Γ1 + Γ2 + Γ3. By
T-NameL, n(lin(Γ1)) = ∅ and n(lin(Γ2)) ⊆ { o }. By the induction hypothesis,
n(lin(Γ3, x :T2)) ⊆ fn(P ′). By Definition 6.2.26, Γ3, x :T implies x /∈ n(lin(Γ3)).
Since fn(P) = (fn(P ′) \ { x }) ∪ { o, y }, then n(lin(Γ)) ⊆ fn(P).

Because of this, we cannot remove type assignments with linear types from environ-
ments, because such assignments are never superfluous. By contrast, assignments with
not linear types can still be superfluous and, if they are, can be removed.

Lemma 6.2.45 (Strengthening). If Γ, x :T ; ∆; Ψ ` P and x /∈ fn(P) then Γ; ∆; Ψ ` P .

Proof. By Lemma 6.2.44, x /∈ fn(P) implies x /∈ n(lin(Γ, x :T)). Hence, by Defini-
tion 6.2.42, if Γ, x : T = Γ1 + Γ2 then x : T ∈ Γ1 and x : T ∈ Γ2. Similarly,
Γ, x : T = Γ1 + Γ2 + Γ3 implies x : T ∈ Γ1, x : T ∈ Γ2, and x : T ∈ Γ3. Because of
this, the proof is similar to the proof of Lemma 6.2.29.

Because of the side condition lin(Γ) = ∅, weakening does not hold in the case of names
typed by a linear type. However, for all remaining names, weakening is still valid.

Lemma 6.2.46 (Weakening). If Γ; ∆; Ψ ` P then Γ, x : T ; ∆; Ψ ` P for any T ∈ TL

and any name x such that Γ (x) is not defined or equal to T and lin(x :T) = ∅.

Proof. By Lemma 6.2.44, Γ; ∆; Ψ ` P implies that n(lin(Γ)) ⊆ fn(P). Since lin(x :T) =
∅, we have lin(Γ) = lin(Γ, x :T). Hence, by Definition 6.2.42, Γ1, x : T + Γ2, x : T =
(Γ1 + Γ2) , x :T for all type environments Γ1 and Γ2 in the linear type system. The rest
of the proof is similar to the argumentation in the proof of Lemma 6.2.30.

Note that the main difference between the typing rules of the monadic type system
and the typing rules of the linear type system is the additional requirement on the
type environments, which is expressed by the function Γ1 + Γ2. Since this function is
symmetric and associative, the linear type system inherits consistency with structural
congruence from the monadic type system.

Lemma 6.2.47. If Γ; ∆; Ψ ` P , P ≡ Q, and Γ is closed for Q then Γ; ∆; Ψ ` Q.

Proof. By Definition 6.2.42, the operation + on type environments is symmetric and
associative such that Γ1 + Γ2 = Γ2 + Γ1 and Γ1 + (Γ2 + Γ3) = (Γ1 + Γ2) + Γ3. Moreover,
note that the side condition of T-Res-BL allows for the introduction of restrictions
on fresh names also if they are typed by a linear type, because it allows to forget the
respective type. Apart from this, the argumentation for this proof is similar to the
argumentation in the proof of Lemma 6.2.31.

The auxiliary sets ∆ and Ψ and their use in the typing rules is not influenced by
the changes to linear types. Hence, Lemma 6.2.32 remains valid. Also Lemma 6.2.33
remains valid.

218

6.2. Type Systems

Lemma 6.2.48. If Γ; ∆; Ψ ` P then Γ is closed for P .

Proof. For linear types the argumentation is similar to the proof of Lemma 6.2.44; for
the remaining types it is similar to the proof of Lemma 6.2.33.

Because weakening does require an additional side condition, we cannot prove robust-
ness with respect to substitutions as in the other two type systems. As done in [SW01]
we use a slightly different formulation instead, that is equivalent to the other formula-
tions if there are no linear types. In contrast with the above substitution lemmas, the
following substitution lemma removes the type assignment for the substituted name.
After the substitution this assignment is superfluous. Hence, its removal ensures that it
causes no problems even if it refers to a linear type.

Lemma 6.2.49. Assume Γ, x : T ; ∆; Ψ ` P , Γ + Γ′ is defined, and Γ′ ` z : T . Then
Γ + Γ′; { z/x }∆; { z/x }Ψ ` { z/x }P .

Proof. We perform an induction on the depth of the derivation. Let P ∈ { Pa,Pp,P=
a }

be the set of processes of the target language of the considered encodings. Note that, by
Lemma 6.2.44 and because of Γ′ ` z :T , we have lin(Γ′) ⊆ { z :T }. By Definition 6.2.42,
Γ + Γ′ implies that there are no clashes between assignments in Γ and Γ′.

Base Case: If Γ, x : T ; ∆; Ψ ` P can be derived from one of the axioms then either
P = 0 or P = X, ∆ = Ψ = ∅, and lin(Γ) = ∅, i.e., x /∈ fn(P), { z/x }P = P ,
{ z/x }∆ = ∆, and { z/x }Ψ = Ψ. By Lemma 6.2.44, then lin(Γ′) = ∅. Thus,
Γ + Γ′; { z/x }∆; { z/x }Ψ ` { z/x }P follows from T-NilL or T-SuccL.

Induction Hypothesis: Γ, x : T ; ∆; Ψ ` P , Γ + Γ′ is defined, and Γ′ ` z : T imply
Γ + Γ′; { z/x }∆; { z/x }Ψ ` { z/x }P

Induction Step: We perform a case split on the inference rules in Figure 6.12.

Case of T-Res-BL : In this case, P = (νx′ :T ′)P ′ for some x′ ∈ N , T ′ ∈ TL,
P ′ ∈ (P :TL), and Γ, x :T,Γx′ ; ∆; Ψ ` P ′, where either Γx′ = x′ :T ′ or T ′ ∈ Tlin

and Γx′ = ∅. Without loss of generality let us assume that x 6= x′ 6= z and x′ /∈
n(Γ)∪n(Γ′). By the induction hypothesis, then Γ,Γx′+Γ′; { z/x }∆; { z/x }Ψ `
{ z/x }P ′. We conclude by T-Res-BL.

Case of T-Res-ML : This case is similar to the case before. Note that the type
assignment x :T ′ potentially added by T-Res-ML to ∆ is not influenced by
the substitution, because x′ 6= x 6= z.

Case of T-ParL : In this case, P = P1 | P2 for some P1, P2 ∈ (P :TL), Γ, x :T =
Γ1 + Γ2, ∆ = ∆1,∆2, Ψ = Ψ1 · Ψ2, Γ1; ∆1; Ψ1 ` P1, and Γ2; ∆2; Ψ2 ` P2.
By Definition 6.2.42, Γ1 + Γ′ and Γ2 + Γ′ are defined if Γ, x : T + Γ′ is de-
fined. Moreover, { z/x }∆ = { z/x }∆1, { z/x }∆2 and { z/x }Ψ = { z/x }Ψ1 ·
{ z/x }Ψ2. By Definition 6.2.42, Γ, x : T = Γ1 + Γ2 implies that x ∈ n(Γ1)
or x ∈ n(Γ2) or both. If x ∈ n(Γ1) then, by the induction hypothesis, Γ′1 +
Γ′; { z/x }∆1; { z/x }Ψ1 ` { z/x }P1, where Γ′1 = { y :T ′ | y 6= x ∧ y :T ′ ∈ Γ1 }.

219

6. Properties of Encodings

Else, by Lemma 6.2.48 and Lemma 6.2.32, x /∈ fn(P1) ∪ n(∆1) ∪ n(Ψ1). Sim-
ilarly, if x ∈ n(Γ2) then Γ′2 + Γ′; { z/x }∆2; { z/x }Ψ2 ` { z/x }P2, where
Γ′2 = { y :T ′ | y 6= x ∧ y :T ′ ∈ Γ2 }, else x /∈ fn(P2) ∪ n(∆2) ∪ n(Ψ2). We con-
clude by T-ParL.

Case of T-TauL : In this case, P = τ.P ′ for some P ′ ∈ (P :TL) and Γ, x :T ; ∆; Ψ `
P ′. By the induction hypothesis, Γ + Γ′; { z/x }∆; { z/x }Ψ ` { z/x }P ′. We
conclude by T-TauL.

Case of T-MatL : In this case, P = [a = b]P ′ for some a, b ∈ N , P ′ ∈ (P :TL),
Γ1 ` a :T ′, Γ2 ` b :T ′, T ′ ∈ VL, Γ3; ∆; Ψ ` P ′, and Γ, x :T = Γ1 + Γ2 + Γ3. If
lin(x :T) = ∅ then x :T ∈ Γ1 ∩ Γ2 ∩ Γ3. Else, by Lemma 6.2.44 and T ′ ∈ VL,
x : T ∈ Γ3. In both cases there exists some Γ′3 such that Γ′3, x : T = Γ3. By
Definition 6.2.42, Γ′3 + Γ′ is defined if Γ + Γ′ is defined. By the induction
hypothesis, then Γ′3 + Γ′; { z/x }∆; { z/x }Ψ ` { z/x }P ′. We conclude again
by T-MatL.

Case of T-Out-BL : In this case, P = y〈z′〉 for some y, z′ ∈ N , ∆ = Ψ = ∅,
Γ1 ` y :]+(T ′), Γ2 ` z′ : T ′, and Γ, x : T = Γ1 + Γ2. By Definition 6.2.26,
x /∈ n(Γ). By Definition 6.2.42, Γ′1 + Γ′ and Γ′2 + Γ′ are defined if Γ + Γ′

is defined, where Γ′i = { x1 :T1 | x1 6= x ∧ x1 :T1 ∈ Γi } for i ∈ { 1, 2 }. Since
]+(T) 6= T , either y /∈ { x, z } or z′ /∈ { x, z }. Moreover, by T-NameL,
Γ1 ` y :]+(T ′) and Γ2 ` z′ :T ′ imply lin(Γ1) ∩ lin(Γ2) = ∅.

If T is not a linear type then x :T ∈ Γ1∩Γ2. Hence, Γ′1+Γ′ ` ({ z/x } y) :]+(T ′)
and Γ′2 + Γ′ ` ({ z/x } z′) :T ′. We conclude by T-Out-BL.

Else, by Lemma 6.2.44 and Definition 6.2.42, Γ, x :T ; ∆; Ψ ` P implies that
either y = x 6= z′, x : T ∈ Γ1 \ Γ2, and Γ′1 + Γ′ ` z :]+(T ′) or y 6= x = z′,
x :T ∈ Γ2 \Γ1, and Γ′2 + Γ′ ` z :T ′. In both cases we conclude by T-Out-BL.

Case of T-Out-ML : In this case, P = y〈z′〉 for some y, z′ ∈ N , ∆ = ∅, y ∈ n(Ψ),
and Γ, x :T ` z′ :T ′. If x 6= z′ then, by Lemma 6.2.44, T is not a linear type
and (Γ \ x :T) + Γ′ ` z′ :T ′. Else, if x = z′ then T ′ = T and (Γ \ x :T) + Γ′ `
z :T . In both cases we conclude again by T-Out-ML.

Case of T-OutPSL : In this case, P = y · o〈z′〉 for some o, y, z′ ∈ N , ∆ = Ψ = ∅,
Γ1 ` y : vn, Γ2 ` o :]+(T ′), Γ3 ` z′ : T ′, and Γ, x : T = Γ1 + Γ2 + Γ3. By
Definition 6.2.26, x /∈ n(Γ). By Definition 6.2.42, Γ′1 + Γ′, Γ′2 + Γ′, and Γ′3 + Γ′

are defined if Γ + Γ′ is defined, where Γ′i = { x1 :T1 | x1 6= x ∧ x1 :T1 ∈ Γi }
for i ∈ { 1, 2, 3 }. Note that neither vn nor T ′ are linear types. Hence, by
T-NameL, lin(Γ1) = lin(Γ3) = ∅.

If T is not a linear type then x :T ∈ Γ1∩Γ2∩Γ3. Hence, Γ′1+Γ′ ` ({ z/x } y) :vn,
Γ′2 + Γ′ ` ({ z/x } o) :]+(T ′), and Γ′3 + Γ′ ` ({ z/x } z′) : T ′. We conclude by
T-OutPSL.

Else, by Lemma 6.2.44 and Definition 6.2.42, x = o, x /∈ { y, z′ }, x : T ∈
Γ2 \ (Γ1 ∪ Γ3), and Γ′2 + Γ′ ` z :]+(T ′). We conclude by T-OutPSL.

220

6.2. Type Systems

Case of T-In-BL : In this case, P = y(x′) .P ′ for some x′, y ∈ N , P ′ ∈ (P :TL),
Γ1 ` y :]+(T ′), Γ2, x

′ : T ′; ∅; Ψ ` P ′, ∆ = ∅, and Γ, x : T = Γ1 + Γ2. By
Definition 6.2.42, Γ′1 + Γ′ and Γ′2, x

′ :T ′ + Γ′ are defined if Γ + Γ′ is defined,
where Γ′i = { x1 :T1 | x1 6= x ∧ x1 :T1 ∈ Γi } for i ∈ { 1, 2 }. Without loss of
generality let us assume x 6= x′.

If x ∈ n(Γ2) then, by the induction hypothesis, Γ′2, x
′ : T ′ + Γ′; ∅; { z/x }Ψ `

{ z/x }P ′. Else, by Lemma 6.2.48 and Lemma 6.2.32, x /∈ fn(P ′) ∪ n(Ψ).

If T is not a linear type then x :T ∈ Γ1∩Γ2. Hence, Γ′1+Γ′ ` ({ z/x } y) :]+(T ′).
Else, by Lemma 6.2.44 and Definition 6.2.42, then either y = x and again
Γ′1 + Γ′ ` ({ z/x } y) :]+(T ′) or y 6= x and x /∈ Γ1. In all cases we conclude by
T-In-BL.

Case of T-In-M1L : In this case, P = y(x′) .P ′ for some x′, y ∈ N , P ′ ∈ (P :TL),
Γ1 ` y :]+(T ′), Γ2, x

′ :T ′; ∅;x′ :T ′′ ` P ′, ∆ = Ψ = ∅, and Γ, x :T = Γ1 +Γ2. By
Definition 6.2.42, Γ′1 + Γ′ and Γ′2, x

′ :T ′ + Γ′ are defined if Γ + Γ′ is defined,
where Γ′i = { x1 :T1 | x1 6= x ∧ x1 :T1 ∈ Γi } for i ∈ { 1, 2 }. Without loss of
generality let us assume x 6= x′.

If x ∈ n(Γ2) then, by the induction hypothesis, Γ′2, x
′ : T ′ + Γ′; ∅;x′ : T ′′ `

{ z/x }P ′. Else, by Lemma 6.2.48 and Lemma 6.2.32, x /∈ fn(P ′).

If T is not a linear type then x :T ∈ Γ1∩Γ2. Hence, Γ′1+Γ′ ` ({ z/x } y) :]+(T ′).
Else, by Lemma 6.2.44 and Definition 6.2.42, then either y = x and again
Γ′1 + Γ′ ` ({ z/x } y) :]+(T ′) or y 6= x and x /∈ Γ1. In all cases we conclude by
T-In-M1L.

Case of T-In-M2L : In this case, P = y(x′) .P ′ for some x′, y ∈ N , P ′ ∈ (P :TL),
∆ = y : T1 . T2, Ψ = ∅, and Γ, x : T, x′ : T ′; ∆′; ∅ ` P ′. Without loss of
generality let us assume x 6= x′. Then x /∈ n(∆′). Since y ∈ n(∆) and by
Definition 6.2.26, T ′ 6= T and x 6= y. By the induction hypothesis, Γ, x′ :
T ′ + Γ′; ∆′; ∅ ` { z/x }P ′. We conclude by T-In-M2L.

Case of T-InPSL : In this case, P = y · o(x′) .P ′ for some x′, y ∈ N , P ′ ∈
(P :TL), Γ1 ` y : vn, Γ2 ` o :]+(T ′), Γ3, x

′ : T ′; ∅;x′ : T ′′ ` P ′, ∆ = Ψ = ∅,
Γ, x : T = Γ1 + Γ2 + Γ3, and T ′ is not a linear type. By Definition 6.2.42,
Γ′1 + Γ′, Γ′2 + Γ′, and Γ′3, x

′ : T ′ + Γ′ are defined if Γ + Γ′ is defined, where
Γ′i = { x1 :T1 | x1 6= x ∧ x1 :T1 ∈ Γi } for i ∈ { 1, 2, 3 }.
If x ∈ n(Γ3) then, by the induction hypothesis, Γ′3, x

′ : T ′ + Γ′; ∅;x′ : T ′′ `
{ z/x }P ′. Else, by Lemma 6.2.48 and Lemma 6.2.32, x /∈ fn(P ′).

If T is not a linear type then x :T ∈ Γ1∩Γ2∩Γ3. Hence, Γ′1+Γ′ ` ({ z/x } y) :vn
and Γ′2 + Γ′ ` ({ z/x } o) :]+(T ′). Else, by Lemma 6.2.44 and Definition 6.2.42,
then y 6= x, x /∈ Γ1, and either x = o and again Γ′2 + Γ′ ` ({ z/x } o) :]+(T ′) or
y 6= x and x /∈ Γ2. In all cases we conclude by T-InPSL.

Case of T-Rep-BL : Similar to the Case of T-In-BL.

Case of T-Rep-ML : Similar to the Case of T-In-M1L.

221

6. Properties of Encodings

To prove subject reduction we explicitly allow to remove superfluous type assignments
in the type environment of the derivative. This is necessary to avoid problems with linear
types.

Lemma 6.2.50 (Subject Reduction). If Γ; ∆; Ψ ` P , P 7−→ P ′, Γ is closed for P ′, and
∆ and Ψ are consistent then there exists Γ′ and Γ′′ such that Γ′+Γ′′ = Γ, Γ′; ∆′; Ψ′ ` P ′
and ∆′ and Ψ′ are consistent derivatives of Γ, ∆, and Ψ.

Proof. We perform an induction on the depth of the derivation of P 7−→ P ′. Let P ∈
{ Pa,Pp,P=

a } be the set of processes of the target language of the considered encoding.
Without loss of generality let us assume that there are no name clashes in P or P ′.

Base Case: The reduction semantics of πa, πp, and π=a in Figure 2.3 contains the Ax-
ioms Pi-Taua,p, Pi-Coma,p, Pi-ComPSp, and Pi-Repa,p. The first rule requires
that P = τ.Q and P ′ = Q for some Q ∈ (P :TL). Hence, fn(P) = fn(P ′) and
Γ; ∆; Ψ ` P ′ follows from Γ; ∆; Ψ ` P and T-TauL.

Rule Pi-Coma,p requires that P = y(x) .Q | y〈z〉 and P ′ = { z/x }Q. In this case,
the derivation of Γ; ∆; Ψ ` P starts with

D1 D2

Γ; ∆; Ψ ` y(x) .Q | y〈z〉
T-ParL

where Γ1; ∆1; Ψ1 ` y(x) .Q is the goal of D1 and Γ2; ∆2; Ψ2 ` y〈z〉 is the goal of
D2 such that Γ = Γ1 + Γ2, ∆ = ∆1,∆2, and Ψ = Ψ1 ·Ψ2. Since there are no name
clashes, x /∈ n(Γ) ∪ n(∆) ∪ n(Ψ). On the left hand side we have to apply next one
of the input Rules T-In-BL, T-In-M1L, or T-In-M2L and on the right hand side
one of the Rules T-Out-BL or T-Out-ML.

Case of T-In-BL : If D1 is shown by T-In-BL, we have

D1 =
Γ1,1 ` y :]+(T)

T-NameL
. . .

Γ1,2, x :T ; ∆1; Ψ1 ` Q
. . .

Γ1; ∆1; Ψ1 ` y(x) .Q
T-In-BL

for some T ∈ TL that does not contain . and Γ1 = Γ1,1+Γ1,2. By Lemma 6.2.9
and Definition 6.2.42, Γ1,1 ` y :]+(T) implies Γ(y) 6= T1 . T2. Because of that
and by Definition 6.2.26, y does not occur in ∆ or Ψ. Since ∆ = ∆1,∆2 and
Ψ = Ψ1 ·Ψ2 and by Definition 6.2.27, this implies that y does also not occur
in ∆1, ∆2, Ψ1, or Ψ2. Thus, we cannot apply T-Out-ML for D2. Hence,

D2 =
Γ2,1 ` y :]+(T ′)

T-NameL
Γ2,2 ` z :T ′

T-NameL

Γ2; ∆2; Ψ2 ` y〈z〉
T-Out-BL

where ∆2 = Ψ2 = ∅ and Γ2 = Γ1,2 + Γ2,2. By Definition 6.2.27, then ∆ =
∆1 and Ψ = Ψ1. By Lemma 6.2.9 and Definition 6.2.42, Γ1,1(y) =]+(T),
Γ2,1(y) =]+(T ′), and T = T ′. By Definition 6.2.42, Γ1,2 + Γ2,2 is defined,

222

6.2. Type Systems

because (Γ1,1 + Γ1,2)+(Γ2,1 + Γ2,2) is defined. Because of Lemma 6.2.49, then
Γ1,2, x :T ; ∆1; Ψ1 ` Q and Γ2,2 ` z :T ′ imply Γ1,2 + Γ2,2; ∆; Ψ ` P ′. Moreover,
by Definition 6.2.42, Definition 6.2.41, and T-NameL, if lin(y :]+(T)) 6= ∅
then Γ1 = Γ1,2 + y :]+(T) and y :]+(T) /∈ Γ1,2, and else Γ1 = Γ1,2. Similarly,
if lin+(y :]+(T)) 6= ∅ then Γ2 = Γ2,2 + y :]+(T) and y :]+(T) /∈ Γ2,2, and else
Γ2 = Γ2,2. In both cases we can choose Γ′ = Γ1,2 + Γ2,2.

Case of T-In-M1L : If D1 is shown by T-In-M1L, we have ∆1 = Ψ1 = ∅ and

D1 =
Γ1,1 ` y :]+(◦ . T)

T-NameL
. . .

Γ1,2, x :◦ . T ; ∅;x :T ` Q
. . .

Γ1; ∅; ∅ ` y(x) .Q
T-In-M1L

where Γ1 = Γ1,1 + Γ1,2. By Lemma 6.2.9 and Definition 6.2.42, Γ1,1 ` y :
](◦ . T) implies Γ(y) =](◦ . T). Because of that and by Definition 6.2.26, y
does not occur in ∆ = ∆2 or Ψ = Ψ2. Thus, we cannot apply T-Out-ML for
D2. Hence,

D2 =
Γ2,1 ` y :]+(T ′)

T-NameL
Γ2,2 ` z :T ′

T-NameL

Γ2; ∆2; Ψ2 ` y〈z〉
T-Out-BM

where Γ2 = Γ2,1 + Γ2,2 and ∆2 = Ψ2 = ∅. By Lemma 6.2.9 and Defini-
tion 6.2.42, Γ1,1(y) =]+(◦ . T), Γ2,1(y) =]+(T ′), and T ′ = ◦ . T . By Defini-
tion 6.2.42, Γ1,2+Γ2,2 is defined, because (Γ1,1 + Γ1,2)+(Γ2,1 + Γ2,2) is defined.
Because of Lemma 6.2.49, then Γ1,2, x :T ′; ∅;x :T ` Q and Γ2,2 ` z :T ′ imply
Γ1,2 +Γ2,2; ∅; z :T ` P ′. Moreover, by Definition 6.2.42, Definition 6.2.41, and
T-NameL, if lin(y :]+(T ′)) 6= ∅ then Γ1 = Γ1,2 + y :]+(T ′) and y :]+(T ′) /∈ Γ1,2,
and else Γ1 = Γ1,2. Similarly, if lin+(y :]+(T ′)) 6= ∅ then Γ2 = Γ2,2 + y :]+(T ′)
and y :]+(T ′) /∈ Γ2,2, and else Γ2 = Γ2,2. In both cases we can choose
Γ′ = Γ1,2 + Γ2,2. Note that ∅ and z :T are consistent and are derivatives of Γ,
∅, and ∅.

Case of T-In-M2L : If D1 is shown by T-In-M2L, we have ∆1 = y :](T) . T ′,
Ψ1 = ∅, and

D1 =

. . .

Γ1, x :T ; ∆′1; ∅ ` Q
. . .

Γ1; y :](T) . T ′; ∅ ` y(x) .Q
T-In-M2L

where ∆′1 is ∅ if T ′ = • and else ∆′1 = y : T ′. By Definition 6.2.26 and
Definition 6.2.42, y ∈ n(∆1) implies Γ1(y) = ◦.Ty = Γ(y) for some Ty. Thus,
by Lemma 6.2.9, we cannot apply T-Out-BL on D2. Hence,

D2 =
Γ2 ` z :T ′′

T-NameL

Γ2; ∆2; Ψ2 ` y〈z〉
T-Out-ML

where ∆2 = ∅ and Ψ2 = y :](T ′′). Thus, ∆ = ∆1 and Ψ = Ψ2. Since ∆
and Ψ are consistent and by Definition 6.2.35, T ′′ = T 6= T ′. Because of
Lemma 6.2.49, then Γ1, x : T ; ∆′1; ∅ ` Q and Γ2 ` z : T ′′ imply Γ; ∆′1; ∅ ` P ′.
Note that ∆′1 and ∅ are consistent and are derivatives of Γ, ∆1, and Ψ2.

223

6. Properties of Encodings

Rule Pi-ComPSp requires that P = y ·o(x) .Q | y · o〈z〉 and P ′ = { z/x }Q. In this
case, the derivation of Γ; ∆; Ψ ` P starts again with

D1 D2

Γ; ∆; Ψ ` y · o(x) .Q | y · o〈z〉
T-ParL

where Γ1; ∆1; Ψ1 ` y · o(x) .Q is the goal of D1 and Γ2; ∆2; Ψ2 ` y · o〈z〉 is the goal
of D2 such that Γ = Γ1 + Γ2, ∆ = ∆1,∆2, and Ψ = Ψ1 ·Ψ2. On the left hand side
we have to apply next T-InPSL and on the right hand side T-OutPSL. Hence,
we have ∆1 = Ψ1 = ∅ and

D1 =
Γ1,1 ` y :vn

N
Γ1,2 ` o :]+(◦ . T)

N
. . .

Γ1,3, x :◦ . T ; ∅;x :T ` Q
. . .

Γ1; ∅; ∅ ` y · o(x) .Q
I

where N = T-NameL, I = T-InPSL, and Γ1 = Γ1,1 + Γ1,2 + Γ1,3. Moreover,
∆2 = Ψ2 = ∅ and

D2 =
Γ2,1 ` y :vn

N
Γ2,2 ` o :]+(T ′)

N
Γ2,3 ` z :T ′

N

Γ2; ∅; ∅ ` y〈z〉
T-OutPSL

where N = T-NameL and Γ2 = Γ2,1 + Γ2,2 + Γ2,3. By Definition 6.2.27, then
∆ = Ψ = ∅. By Lemma 6.2.9 and Definition 6.2.42, Γ1,2(o) =]+(◦ . T), Γ2,2(o) =
]+(T ′), and T ′ = ◦ . T . By Definition 6.2.42, Γ1,3 + Γ2,3 is defined, because
(Γ1,1 + Γ1,2 + Γ1,3)+(Γ2,1 + Γ2,2 + Γ2,3) is defined. Because of Lemma 6.2.49, then
Γ1,3, x : T ′; ∅;x : T ` Q and Γ2,3 ` z : T ′ imply Γ1,3 + Γ2,3; ∅; z : T ` P ′. Moreover,
by Definition 6.2.42, Definition 6.2.41, and T-NameL, if lin(o :]+(T ′)) 6= ∅ then
Γ1 = Γ1,3 + o :]+(T ′) and o :]+(T ′) /∈ Γ1,3, and else Γ1 = Γ1,3. Similarly, if
lin+(o :]+(T ′)) 6= ∅ then Γ2 = Γ2,3 + o :]+(T ′) and o :]+(T ′) /∈ Γ2,3, and else
Γ2 = Γ2,3. In both cases we can choose Γ′ = Γ1,3 + Γ2,3. Again, ∅ and z : T are
consistent and are derivatives of Γ, ∅, and ∅.
Rule Pi-Repa,p requires that P = y?(x) .Q | y〈z〉 and P ′ = { z/x }Q | y?(x) .Q.
The derivation of Γ; ∆; Ψ ` P starts with

D1 D2

Γ; ∆; Ψ ` y?(x) .Q | y〈z〉
T-ParL

where Γ1; ∆1; Ψ1 ` y?(x) .Q is the goal of D1 and Γ2; ∆2; Ψ2 ` y〈z〉 is the goal of
D2 such that Γ = Γ1 + Γ2, ∆ = ∆1,∆2, and Ψ = Ψ1 · Ψ2. On the left hand side
we have to apply next T-Rep-BL or T-Rep-ML. In the first case the rest of the
proof is similar to the Case of T-In-BL for Pi-Coma,p and in the other case the
rest of the proof is similar to the Case of T-In-M1L for Pi-Coma,p.

Induction Hypothesis: Γ; ∆; Ψ ` P , P 7−→ P ′, Γ is closed for P ′, and ∆ and Ψ are
consistent imply that there exists Γ′ and Γ′′ such that Γ′+ Γ′′ = Γ, Γ′; ∆′; Ψ′ ` P ′,
and ∆′ and Ψ′ are consistent derivatives of Γ, ∆, and Ψ.

224

6.2. Type Systems

Induction Step: There are three cases.

Case of Pi-Parm,s,a,p : In this case, P = P1 | P2, P1 7−→ P ′1, and P ′ = P ′1 | P2 for
some P1, P

′
1, P2 ∈ (P :TL). The derivation of Γ; ∆; Ψ ` P starts with

. . .

Γ1; ∆1; Ψ1 ` P1
. . .

. . .

Γ2; ∆2; Ψ2 ` P2
. . .

Γ; ∆; Ψ ` P1 | P2
T-ParL

where Γ = Γ1+Γ2, ∆ = ∆1,∆2, and Ψ = Ψ1·Ψ2. By the induction hypothesis,
we have Γ′1; ∆′1; Ψ′1 ` P ′1 such that ∆′1 and Ψ′1 are consistent derivatives of
Γ1, ∆1, and Ψ1, and Γ′1 + Γ′′1 = Γ1. We can choose Γ′ = Γ′1 + Γ2. By
Definition 6.2.35, Definition 6.2.36, and Definition 6.2.42, ∆′ = ∆′1,∆2 and
Ψ′ = Ψ′1 ·Ψ2 are consistent derivatives of Γ, ∆, and Ψ. Hence,

. . .

Γ′1; ∆′1; Ψ′1 ` P ′1
IH

Γ2; ∆2; Ψ2 ` P2
A

Γ′; ∆′; Ψ′ ` P ′1 | P2
T-ParL

where IH is the induction hypothesis and A means by assumption, i.e., by
the derivation above.

Case of Pi-Resm,s,a,p : In this case, P = (νx :T)P1, P1 7−→ P2, and P ′ =
(νx :T)P2 for some x ∈ N , T ∈ TL, and P1, P2 ∈ (P :TL). The derivation of
Γ; ∆; Ψ ` P starts with

. . .

Γ,Γx; ∆1; Ψ ` P1
. . .

Γ; ∆; Ψ ` (νx :T)P1
R

where either R = T-Res-BL, Γx = x :T or T ∈ Tlin,Γx = ∅, and ∆1 = ∆ or
R = T-Res-ML, T = T1 . T2, and ∆1 = ∆, x :T2 or again ∆1 = ∆. Note that
if T is a linear type then Lemma 6.2.44 implies that x ∈ fn(P1). Hence, by the
induction hypothesis, there exists Γ2 + Γ′2 = Γ such that Γ2,Γx; ∆2; Ψ2 ` P2

and ∆2,Ψ2 are consistent derivatives of Γ,Γx, ∆1, and Ψ. Choose Γ′ = Γ2.
Then

Γ′,Γx; ∆2; Ψ2 ` P2
by the induction hypothesis

Γ′; ∆′2; Ψ2 ` (νx :T)P2
R

holds, if we find an appropriate ∆′2. If R = T-Res-BM then ∆1 = ∆ and, so,
∆′2 = ∆2. Else, if R = T-Res-MM, we have T = T1 . T2 and ∆1 = ∆, x :T2
or ∆1 = ∆. By Definition 6.2.36, ∆1 = ∆ implies x /∈ n(∆2). In this case
∆′2 = ∆2 again. Else, by Definition 6.2.36, ∆1 = ∆, x :T2 implies ∆2 = ∆1 or
∆2 = ∆, x :T ′2, where T2 = T ′′2 . T

′
2. In both cases, we can choose ∆′2 = ∆.

Case of Pi-Congm,s,a,p : In the this case, P ≡ Q, Q 7−→ Q′, and Q′ ≡ P ′ for some
Q,Q′ ∈ (P :TM). Without loss of generality let us assume that this is the only
application of Pi-Congm,s,a,p in P 7−→ P ′. Let R,R′ be such that Q ≡ R,

225

6. Properties of Encodings

Q′ ≡ R′, and neither R nor R′ contains unguarded subterms guarded by a
match prefix [a = a]. Then, by Pi-Congm,s,a,p, also P ≡ R, R 7−→ R′, and
R′ ≡ P ′. This time, R and R′ do not have a match that is not already in P or
P ′, respectively. Moreover, by Lemma 6.2.48, Γ; ∆; Ψ ` P implies that Γ is
closed for P , i.e., provides a type for each free name of P . By assumption, Γ is
also closed for P ′. Since the only rule of structural congruence that allows to
introduce free names is the rule that introduces matches, Γ is also closed for
R and R′. By Lemma 6.2.47, then Γ; ∆; Ψ ` P and P ≡ R imply Γ; ∆; Ψ ` R.
By the induction hypothesis Γ; ∆; Ψ ` R and R 7−→ R′ imply Γ; ∆′; Ψ′ ` R′.
Finally, by Lemma 6.2.47, Γ; ∆′; Ψ′ ` R′ and R′ ≡ P ′ imply Γ; ∆′; Ψ′ ` P ′.

It remains to show that the typed encodings T 1
L J · Ksa, T 2

L J · Kmp , and T 3
L J · Kma are well-

typed with respect to some appropriate type environments. Since J · Ksa does not intro-
duces free names, we can again show well-typedness with respect to well-typed source
terms S and ΓJ · Ksa = { x :](n◦,TS) | x ∈ fn(S) ∧ x :TS ∈ TS }, where n◦,TS = ◦ .]

(
↑1(l)

)
.

]
(
↑1(↑ω(vs))

)
.]
(
↑1(TS)

)
. •.

Lemma 6.2.51. For all source terms S ∈ Ps that are well-structured with respect to Ts

and TS, the encoding T 1
L J · Ksa is well-typed with respect to ΓJ · Ksa.

The other two encoding functions J · Kmp and J · Kma introduce free outputs on request
channels. Since J · Kmp and J · Kma use translated source term names only as values and
introduce all other names under restriction except for the outermost occurrences of the
request channels po and pi , for all source terms S ∈ Pm, the encodings T 2

L J · Kmp and

T 3
L J · Kma are well-typed with respect to

ΓJ · Kmp =
{

po :↑ω
(
o′◦
)
, pi :↑ω

(
i′◦
)
| po , pi ∈ fn

(
J S Kmp

) }
∪ { x :vn | x ∈ fn(S) } and

ΓJ · Kma = { po :↑ω(o◦) , pi :↑ω(i◦) | po , pi ∈ fn(J S Kma) } ∪ { x :vn | x ∈ fn(S) } ,

respectively. Note that the set { po :↑ω(o◦) , pi :↑ω(i◦) | po , pi ∈ fn(J S Kma) } is either emp-
ty (e.g. in the case of J 0 Kma) or contains exactly two assignments.

Lemma 6.2.52. The encoding T 2
L J · Kmp is well-typed with respect to ΓJ · Kmp .

Lemma 6.2.53. The encoding T 3
L J · Kma is well-typed with respect to ΓJ · Kma .

The proofs of these three lemmata can be obtained by adapting the respective proofs
in the basic type system. We present the proof for J · Kma , i.e., Lemma 6.2.53, in the
appendix in Section A.1.3. With the subject reduction lemma we conclude that all
target terms are well-typed.

Theorem 6.2.54. All target terms of T 1
L J · Ksa, T 2

L J · Kmp , and T 3
L J · Kma , i.e., all terms

P1 ∈ (Pa :TL)�T 1
LJ · Ksa, P2 ∈ (Pp :TL)�T 2

LJ · Kmp , and P3 ∈ (P=
a :TL)�T 3

LJ · Kma , are modulo

structural congruence well-typed with respect to ΓJ · Ksa (and well-structured source terms),
ΓJ · Kmp , and ΓJ · Kma , respectively, and ∆ = Ψ = ∅.

226

6.2. Type Systems

Proof. By Lemmata 6.2.51, 6.2.52, and 6.2.53, all encoded source terms are well-typed.
The target languages of the first two encodings does not contain a match prefix. Hence,
by Lemma 6.2.50, all target terms P1 ∈ (Pa :TL)�T 1

LJ · Ksa and P2 ∈ (Pp :TL)�T 2
LJ · Kmp are well-

typed with respect to ΓJ · Ksa (and well-structured source terms) and ΓJ · Kmp , respectively.

We observe that in J · Kma match is used only in the translation of the parallel operator
on (bound) occurrences of translated source term names of type vn. The side condition
“modulo structural congruence” allows us to abstract from unnecessary matches, i.e.,
from matches that do not result from the encoding function but are introduced by the rule
[a = a]P ≡ P of structural congruence. Thus, for all target terms P3 ∈ (P=

a :TL)�T 3
LJ · Kma

without unnecessary matches the type environment ΓJ · Kma is closed. By Lemma 6.2.50,
we conclude that for all P3 there is some P ′3 ≡ P3 that is well-typed with respect to
ΓJ · Kma .

We observe that we are able to assign types with special multiplicities to many of the
introduced links. Fortunately, the special types we consider induce some nice properties.
We use these properties in the following section to abbreviate some of the proofs on
the correctness of the encoding functions. Since we do not want to drag along all the
information necessary to identify the typed version of a target term, we explain how to
obtain the type of names in untyped terms.

Definition 6.2.55 (Type of Names in Target Terms). Let P1 ∈ Pa�J · Ksa , P2 ∈ Pp�J · Kmp ,

P3 ∈ P=
a�J · Kma , P ′1 ∈ (Pa :TL)�T 1

LJ · Ksa , P ′2 ∈ (Pp :TL)�T 2
LJ · Kmp and P ′3 ∈ (P=

a :TL)�T 3
LJ · Kma such

that, for all i ∈ { 1, 2, 3 }, Pi and P ′i are free of name clashes, P ′i = T (Pi) for some set
of type assignments T of names to linear types, and Γi; ∅; ∅ ` P ′i , where Γ1 = ΓJ · Ksa ,
Γ2 = ΓJ · Kmp , and Γ3 = ΓJ · Kma .

Then, for all i ∈ { 1, 2, 3 }, the type of a name x in Pi is T ∈ TL if x ∈ n(Pi) and
either

• x ∈ fn(Pi) and x :T ∈ Γi, or

• x ∈ bn(Pi) and there exists some subterm P ′′ in P ′i such that either the typed
restriction (νx :T)P ′′ or an input y(x) .P ′′ is a subterm of P ′i and in the latter case
the type of y in Pi is some kind of link type carrying a value of type T .

The multiplicities 1 and + are introduced to capture unique use of links. As it turns
out we need in particular uniqueness of inputs to ease the proofs of the following section.

Lemma 6.2.56 (Unique Input). Let P ∈ Pa�J · Ksa, P ∈ Pp�J · Kmp , or P ∈ P=
a �J · Kma , and

let y ∈ n(P), where the type of y in P is T ∈ TL and

T ∈
{
l11
(
T ′
)
, l+1
(
T ′
)
, lω+
(
T ′
)
| T ′ ∈ TL

}
.

Then there is at most one input on y in P .

Proof. By contradiction and an induction over the derivation of well-typedness of a
term P that contains more than one input on y. The contradiction results from Def-
inition 6.2.42 and the requirements on type environments in the typing rules of Fig-
ure 6.12.

227

6. Properties of Encodings

Similarly, ∗ is introduced to capture unique replicated inputs. J · Kmp and J · Kma fre-
quently use such links. The multiplicity ensures that, once the replicated input is un-
guarded, outputs are always eventually processed and are always handled in the same
way.

Lemma 6.2.57 (Unique Replicated Input). Let P ∈ Pa�J · Ksa, P ∈ Pp�J · Kmp , or P ∈
P=
a�J · Kma , and let y ∈ n(P), where the type of y in P is lω∗(T) ∈ TL. Then either y occurs

only within restrictions or there is exactly one replicated input on y in P .

Proof. By contradiction and an induction over the derivation of well-typedness of a term
P that contains more than one replicated input on y or none and at least one occurrence
of y in a match-prefix, or as subject of input or output, or object of output, input or
replicated input. If y occurs in a match-prefix the contradiction results from the side
condition of T-MatL. Else, the contradiction results from Definition 6.2.42 and the
requirements on type environments in the typing rules of Figure 6.12.

Finally we prove that steps on linear links or links of type l+1(T ′), lω∗(T ′), or T1 . T2
for some T ′, T1 . T2 ∈ TL can never be in conflict with some alternative step. Note that
partial confluence allows us to define some equivalences in Section 6.3.4 that abstract
from most of the target term steps. Since we prove correctness of the encodings modulo
this equivalences, this significantly shortens the proofs.

Lemma 6.2.58 (Partial Confluence). Let P ∈ Pa�J · Ksa, P ∈ Pp�J · Kmp , or P ∈ P=
a �J · Kma ,

and let y ∈ n(P), where the type of y in P is T ∈ TL and

T ∈
{
l11
(
T ′
)
, l+1
(
T ′
)
, lω∗
(
T ′
)
, T1 . T2 | T ′, T1 . T2 ∈ TL

}
.

Then each step of P on the link y is not in conflict to any other step, i.e., for all P 7−→ P1

and P 7−→ P2 such that the latter step is a step on y, there exists P ′ such that P1 7−→ P ′

and P2 7−→ P ′.

Proof. Note that within the considered asynchronous variants of the pi-calculus all con-
flicts result from alternative steps on the same subject. If the type of y is lω∗(T ′) then
the statement follows directly from Lemma 6.2.57. If the type of y is l11(T ′) or l+1(T ′),
show—similarly to the proof of Lemma 6.2.56—that there is at most one output on y
in P . Then conclude by Lemma 6.2.56. Else, the lemma follows by contradiction and
an induction over the derivation of well-typedness of a term P that has a conflict on an
auxiliary link (Definition 5.4.1) of type T1 . T2 ∈ TL. The contradiction results from the
fact that no target term has a free name of type T1 . T2 ∈ TL and the requirements on
the auxiliary sets ∆ and Ψ in the typing rules of Figure 6.12 (and also of Figure 6.8).

6.3. Semantic Properties

In Section 6.1 we showed that the encodings J · Ksa, J · Kmp , and J · Kma are compositional and
satisfy name invariance. The main goal of this section is to show the remaining criteria:
operational correspondence, divergence reflection, and success sensitiveness of the general

228

6.3. Semantic Properties

framework as described in Section 3.3. Moreover, we want to discuss some general
properties of encoding functions and how they influence the possibility of satisfying the
quality criteria.

Within this section we make strongly use of the type information gained in the last
section. Note that nearly all links that are introduced by the encoding functions appear
under restriction. To unambiguously identify the links, i.e., to fix a particular name
or a class of such names, we make use of the type information. Of course we are only
interested in names that occur in the considered target term. The following definition
allows us to abstract away from names that are never used as links.

Definition 6.3.1 (Used Names). Let P ∈ Pa, P ∈ Pp, or P ∈ P=
a and let x ∈ n(P).

Then P uses the name x if x does not only occur as parameter of the restriction operator
within P . Moreover, let un(P) denote the set of names that are used in P .

Note that in the last chapter we intuitively explain what we mean with e.g. sum locks.
The type information allows us to formalise this notion. Furthermore we formalise
instantiations of sum locks.

Definition 6.3.2 (Sum Lock). Let T ∈ Pa�J · Ksa , T ∈ Pp�J · Kmp , or T ∈ P=
a �J · Kma and let

l ∈ un(T) such that the type of l in T is l. Then l is a sum lock of T . Furthermore, T
has a positive instantiation of l if T has an unguarded subterm

l〈>〉 Def. 5.1.1
= l(t , f) .t

Def. 5.4.1
=

l(u∼,l) .
(
(νut)

(
u∼,l 〈ut〉 | ut(t) .

(
(νuf)

(
u∼,l 〈uf 〉 | uf (f) . (νvt) t〈vt〉

))))
and T has a negative instantiation of l if T has an unguarded subterm

l〈⊥〉 Def. 5.1.1
= l(t , f) .f

Def. 5.4.1
=

l(u∼,l) .
(
(νut)

(
u∼,l 〈ut〉 | ut(t) .

(
(νuf)

(
u∼,l 〈uf 〉 | uf (f) . (νvf) f 〈vf 〉

))))
.

In these cases, we also say that l is instantiated positively or negatively in T , respectively.
Note that positive and negative instantiations are clearly distinguished by the type of
the link of the terminal output.

To consume an instantiation of a sum lock it suffices to perform a step on the sum
lock, i.e., on a channel typed with the sum lock type, because the continuation of the
input on the sum lock l(u∼,l) does not have the form of an instantiation on a sum
lock. However, we sometimes say that an instantiation of a sum lock is completely
consumed or completely reduced to denote the fact that the whole term represented by
l〈>〉 or l〈⊥〉 is reduced to 0. In these cases, we also say that the protocol associated
with an instantiation of a sum lock is completed. Of course to do so also the protocol
associated to the counterpart of an instantiation on a sum lock, i.e., to a test-construct
test l then P else Q, has to be completed.

Section 6.3.1 analyses the different kinds of steps a target term may perform to emulate
a source term step. As we discuss and show in the following sections a distinction of these
steps can help to show the different criteria. Furthermore, we analyse the possibility of

229

6. Properties of Encodings

intermediate states. In Section 6.3.2 we capture the intention behind the links introduced
by the encoding functions within invariants. For this we formalise the purpose of the
introduced links as it is done above for sum locks. Then we show how the respective class
of links is used within the encodings in form of an invariant. In Section 6.3.3 we analyse
how the encoding functions treat source term observables and formalise the relationship
between source term observables and their correspondence in target terms within so
called translated observables. Such considerations are very important to reason about
encoding functions, because (1) they show how source and target terms are related with
respect to standard source term observables and hence are very important to understand
the way the encoding handles source terms and (2) it allows us to define equivalences to
compare target terms with respect to their corresponding source terms. We define such
equivalences and also congruences in Section 6.3.4. Of course equivalences defined with
respect to translated observables are specific to the encoding function and are usually
not standard equivalences. However, if no standard equivalence turns out to be suitable
to prove correctness of an encoding, translated observables provide the possibility to
nonetheless obtain a suitable notion of equivalence. Moreover, the connection between
target terms covered in equivalences on translated observables may be of great assistance
as it is the case for the presented encodings. Section 6.3.5 discusses junk. Garbage
or junk is something nearly every not trivial encoding has to deal with. We discuss
different forms of junk that can result from emulation attempts in encodings and how
they influence the possibility of satisfying quality criteria. Note that junk in particular
influences which equivalences can be used to show the quality of an encoding. Finally,
in Section 6.3.6 we conclude with the proof of operational correspondence, divergence
reflection, and success sensitiveness.

6.3.1. Steps and States of Target Terms

Within this section we analyse and classify the steps performed by target terms. As we
can observe in the following sections, such a classification can help to prove semantic
properties. In the simplest case an encoding translates each source term step into exactly
one target term step. Such a one-to-one correspondence obviously significantly eases and
also guides the proof of quality criteria. However, encodings that translate each source
term step into exactly one target term step are extremely rare. None of the encoding
functions presented or discussed in the last chapter satisfies this strict requirement.
Otherwise, a single source term step is translated into a sequence of target term steps.
Theoretically, an encoding function—in some settings even a good one—can translate a
source term such that some of its steps are translated into an empty sequence of steps
in the target term. But this case is also very rare. Thus, not surprisingly, all three
encoding functions J · Ksa, J · Kmp , and J · Kma translate each source term step into a not
empty sequence of target term steps, as it is the usual case.

Note that such sequences of target term steps modelling a single source term step are
denoted as emulation within this thesis. Difficulties arise from interleaving of emula-
tions. Emulations are very seldom fixed sequences of consecutive steps that are always
performed in the same order and even in this case there are usually interleaving between

230

6.3. Semantic Properties

different emulations. Note that this is not a sign of a bad design of an encoding function.
Instead, parallel processes and concurrent behaviour of different parallel components
belong to the fundamental concepts of all (not trivial) process calculi. An encoding
that is not able to mimic the variability of behaviour that comes from concurrency can
hardly be considered as good. Note that, because of compositionality, it is usually not
possible that encoding functions shift all this variability into the first step of an emu-
lation. Hence, the designers of encodings have to deal with the interleaving of target
term steps. This leads to extremely large state spaces even in the case of source terms
without infinite executions. A classification of target term steps can help to manage this
state explosion.

An emulation usually consists of some preprocessing steps, followed by one or more
steps that mimic the behaviour of the source term step, and finally there are often some
postprocessing steps. Of course there is no clear border line between the steps considered
as pre- or postprocessing steps and the steps doing the actual work of mimicking the
source term behaviour. Their distinction rather depends on the point of view. Nonethe-
less, such a distinction, if carefully performed, supports the proof of semantic properties.
We mainly distinguish between two classes of steps: administrative steps and core steps.
Core steps of target terms with respect to an encoding function are the steps that con-
tribute to the abstract behaviour of the target terms. Obviously, these include all steps
that disable possible ways to reach success. Success sensitiveness requires that every
source term and its encoding answer the test on the reachability of success in the same
way. Moreover, because � has to respect success, operational correspondence constraints
reachability of success also for derivatives of encoded source terms with respect to the
source term behaviour. Apart from the reachability of success, source and target terms
are often compared with respect to (at least some) standard observables of the source
language. Literally, the criteria of the general framework of Gorla do not require an
additional consideration of observables apart from success. Sometimes it is indeed hard
to establish a correspondence between observables of fundamentally different process
calculi, which is the main reason to base the consideration of the preservation and reflec-
tion of the source term behaviour on the reachability of success. However, an additional
consideration of standard source term observables and their correspondence in target
terms often reveals a lot of insights and intuition on the encoding function. It helps
to explain connections between source terms and their encodings as well as connections
between derivatives of encoded terms. Hence, such considerations can often be used to
guide the proof of semantic properties. In this case, a core step is any step that changes
the set of considered observables.

Note that a core step is not necessarily the step that finally unguards a term repre-
senting an observable, but can also be a preceding step that removes all ways that do
not lead to this observable. Hence, core steps are steps that decide about the further
behaviour of a term by removing some alternatives. Consider for example a source term
S = y.X+ y.0 | y. It can perform two conflicting steps, one leading to success and the
other one leading to 0. An encoding of this source term has to mimic this variability
within the emulations of target terms. By operational completeness, both alternative
steps of S have to be emulated in the encoding of S. Moreover, because � respects

231

6. Properties of Encodings

success and by operational soundness, the two emulations of the target term are again
in conflict. Hence, there is one step in each emulation that decides which of the possible
source term steps is currently emulated. This is the core step. It can be seen as the
point of no return illuminating the identity of the source term step emulated currently
by ruling out the conflicting emulations. The S above could be a source term of all three
considered encodings J · Ksa, J · Kmp , and J · Kma . Remember that the latter two encodings
inherit the main idea of encoding choices with the help of sum locks from the first en-
coding. Hence, any emulation of a source term step on a τ -prefix or a communication
with a replicated input consumes exactly one positive instantiation of a sum lock and
any emulation of a source term communication not reducing a replicated input consumes
exactly two positive instantiations of sum locks within a nested test-construct. In all
three encodings, as we will show in the following sections, this consumption of positive
instantiations of sum locks marks the point of no return, i.e., the core steps.

Definition 6.3.3 (Core Step). Let T1, T2 ∈ Pa�J · Ksa , T1, T2 ∈ Pp�J · Kmp , or T1, T2 ∈
P=
a �J · Kma . A step T1 7−→ T2 is a core step, denoted by T1

7→7−→ T2, if this step reduces a
positive instantiation of a sum lock within a single test-construct or within the second
test of a nested test-construct.

Accordingly, administrative steps are pre- or postprocessing steps of an encoding that
do not influence the set of considered observables which contain at least success. In this
sense, they do not contribute to the abstract behaviour of target terms, but of course
they prepare terms to perform steps that do so. In principle, for all three encodings,
any step that does not reduce a positive instantiation of a sum lock is an administrative
step. Moreover, we distinguish between two kinds of administrative steps within our
three encoding functions. The protocol that is used to unfold polyadic communications
is very strict and predictable. It does not rule out the existence of interleaving steps,
but the encapsulation of the protocol ensures that its steps are not in conflict with other
steps of the target term as it is shown by Lemma 6.2.58. The same holds for all steps on
names that are typed by a type in

{
l11(T ′) , l

+
1(T ′) , lω∗(T ′) , T1 . T2 | T ′, T1 . T2 ∈ TL

}
.

Because of that, we introduce a special kind of administrative steps, denoted as strict
administrative steps, capturing these kinds of steps. This allows us to ignore these steps
in many situations and eases e.g. the definition of translated observables later in this
chapter.

Definition 6.3.4 (Administrative Step). Let T1, T2 ∈ Pa�J · Ksa , T1, T2 ∈ Pp�J · Kmp , or

T1, T2 ∈ P=
a �J · Kma . A step T1 7−→ T2 is an administrative step, denoted by T1

�7−→ T2,
if it is not a step on a translated source term name and does not reduce a positive
instantiation of a sum lock.

Moreover, an administrative step T1
�7−→ T2 is a strict administrative step, denoted

by T1
��7−→ T2, if it reduces a link y ∈ n(T1) such that the type of y in T1 belongs to{

l11(T ′) , l
+
1(T ′) , lω∗(T ′) , T1 . T2 | T ′, T1 . T2 ∈ TL

}
.

Let
�Z=⇒ denote the transitive and reflexive closure of

�7−→ and
��Z=⇒ denote the transitive

and reflexive closure of
��7−→, respectively.

232

6.3. Semantic Properties

Because they do not influence the considered observables of a term, semantic criteria
as success sensitiveness or even operational correspondence are often easier to prove in
the case of administrative steps. The proof of operational correspondence depends on
the choice of �. In Section 6.3.4 we discuss the choice of this equivalence and show
how a clear separation between administrative and core steps can guide this choice. An
optimal choice leads to an equivalence that is insensitive to administrative steps, which
significantly eases the proof of operational correspondence. On the other hand, the
existence of core steps can be linked to the existence of source term steps which helps
to prove properties like divergence reflection. Unfortunately, it is not always possible to
separate that clearly between administrative and core steps. The intuition behind the
distinction in administrative and core steps describes a semantic property. A core step
decides on which source term step is emulated and an administrative step does not. But
our formalisation of this distinction in Definitions 6.3.3 and 6.3.4 is rather structural,
because it distinguishes steps by the type of the reduced link and, in the case of positive
instantiations of sum locks, the type of the continuation of the reduced input. This leads
to a clear separation if the syntactical difference in all situations induces the intended
semantic consequence. For the three encodings J · Ksa, J · Kmp , and J · Kma this holds in
the case of single test-constructs, i.e., the consumption of a positive instantiation of a
sum lock within a single test-construct is clearly a core step. But in the case of nested
test-constructs the situation is different. Sometimes the consumption of the first positive
instantiation marks the point of no return, sometimes the second does, and sometimes
even both consumptions remove conflicting emulations. Such steps that are somehow
in between, i.e., sometimes influence the set of considered observables of a term and
sometimes do not, need special consideration for all three semantic criteria. We denote
such steps as impure steps. An attentive reader may have observed that the consumption
of a positive instantiation of a sum lock within the second test of a nested test-construct
is by definition a core steps, but the consumption of a positive instantiation of a sum
lock within the first test of a nested test-construct is not captured by the distinction
in administrative and core steps so far. The same holds for steps on translated source
term names in J · Ksa. This is because, if a nested test-construct consumes first a positive
and then a negative instantiation of a sum lock, then the respective emulation attempt
is aborted, i.e., the corresponding reduction does not really belong to any emulation at
all but can rather be considered as junk. By contrast, the consumption of a positive
sum lock within the second test of a nested test-construct always leads to a successful
emulation of a source term step. Accordingly, we consider the reduction of a positive
instantiation of a sum lock within the second test of a nested test-construct as an impure
core step and such a reduction within a single test-construct as a pure core step. By the
way, this allows us to prove later that for each emulation of a source term step, there
is exactly one core step. But the consumption of a positive instantiation of a sum lock
within the first test of a nested test-construct is neither administrative nor core but only
impure.

Note that in J · Ksa to check for a potential pair of translated communication partners
a communication on the translated channel name is performed. In J · Kmp polyadic syn-
chronisation channels on translated source term names are used for the same purpose.

233

6. Properties of Encodings

Similarly to the consumption of positive instantiations of sum locks, this might rule out
alternative emulations. Because of that, we consider steps on translated source term
names as impure steps of J · Ksa and J · Kmp . Also note that in J · Kma translated source
term names are used as values only; so there are no steps on translated source term
names.

Definition 6.3.5 (Impure Step). Let T1, T2 ∈ Pa�J · Ksa , T1, T2 ∈ Pp�J · Kmp , or T1, T2 ∈

P=
a �J · Kma . A step T1 7−→ T2 is an impure step, denoted by T1

�/7→7−→ T2, if it either reduces
a positive instantiation of a sum lock within the first test of a nested test-construct, or
is a step on a translated source term name.

Obviously, each emulation of a source term step contains at least one core step or,
if a clear separation is not possible, at least one core or impure step. We show later
that, for J · Ksa, J · Kmp , and J · Kma , each successful emulation of a single source term step
contains exactly one core step. But apart from that, such a successful emulation can also
contain impure steps. Both core and impure steps may rule out alternative emulation
attempts. Hence, a sequence of steps containing both an impure and a core step may
successively rule out different alternative emulations in consecutive steps such that both
steps mark a point of no return. This is sometimes necessary if the source term removes
and/or adds several observables simultaneously within a single step—as it is the case for
reductions of sums—and the target language or at least the target terms of the encoding
are not able to mimic all these changes within a single step. We denote this situation
as partial commitment. Gradual or partial commitments were already described e.g.
in [PS92, PS94] and lead to the definition of coupled simulation (see Definition 2.2.3).
Moreover, already [Nes96, Nes00, NP00] show that partial commitments are a side effect
of encoding choice.

Example 6.3.6 (Partial Commitment). Let us consider the source term

S = (a.S1 + a.S2) | a | a.S3

for some S1, S2, S3 ∈ Ps. So S ∈ Ps as well as S ∈ Pm. The encoding of S, regardless
whether it is encoded by J · Ksa, J · Kmp , or J · Kma , generates three sum locks, one for each
sum. Let us assume the sum lock generated for a.S1 +a.S2 is l1, the sum lock for a is l2,
and l3 is generated for a.S3. S can perform three conflicting steps leading to S1, S2, or
S3, respectively. Each of these steps can be emulated by the encodings. To emulate the
step to S1 the positive instantiation of the sum lock l1 is consumed first and to complete
the emulation a positive instantiation of the sum lock l2 has to be consumed. However,
it is possible that the encoded term instead performs another nested test-construct and
consumes both positive instantiations of l2 and l3 to emulate the step to S3 instead.
Because of that, the step on l1 is not a core step. Even, if at this point the sum lock that
is tested next by this test-construct is still instantiated positive, it can become negative
by a concurrent test-construct.

So after the consumption of the positive instantiation of l1 in order to emulate the
source term step to S1, there is still the possibility to complete instead the emulation of

234

6.3. Semantic Properties

the source term step to S3. However, there is no possibility to complete the emulation of
the source term step to S2. Note that, to emulate the step to S2, a positive instantiation
of each of the locks l1 and l2 is necessary. But the instantiation of l1 is already consumed.
The only possibility to restore it is to consume a negative instantiation of l2 (compare
to the nested test-constructs in the encodings of input guarded terms in Figure 5.1,
Figure 5.4, and Figure 5.8). As we prove later, there is no possibility to change that
negative instantiation back into a positive one. So, as soon as l1 is consumed, one of
the three possible emulations, namely either the one leading to S1 or to S2, is ruled out
while there are still two possible emulations left.

� J S Kma

T1

T2

� J S3 Kma

� J S1 Kma

� J S2 Kma

Figure 6.13.: Partially Committed States.

We visualise this phenomenon in Figure 6.13 (for the case of J · Kma). Here, the nodes
represent states of target terms, i.e., equivalence classes of target terms modulo the
instantiation of � which is chosen later, and the edges represent target term steps. Note
that administrative steps do not change the state of a target term modulo the considered
equivalence, i.e., are represented by the cycles. The impure steps lead to T1 or T2. The
other steps are core steps. Between the encoding of the source term S and the encodings
of its derivatives S1, S2, and S3 there are two partially committed states depicted by T1
and T2, i.e., two states that differ from each encoded source term within that picture.

Definition 6.3.7 (Partially Committed State). Let the process calculi LS = 〈 PS, 7−→S 〉
and LT = 〈 PT, 7−→T 〉 be the source and target language of an encoding J · K that is
good with respect to some equivalence �⊆ PT × PT. Then a term T ∈ PT�J · K is a
partially committed state, if there exist some S, S1, S2, S3 ∈ PS such that

1. S Z=⇒S S1, S Z=⇒S S2, and S Z=⇒S S3 but there exists no S′ ∈ PS such that
S Z=⇒S S

′, S′ Z=⇒S S1, and S′ Z=⇒S S2; and

2. J S K Z=⇒T T , T Z=⇒T� J S1 K, and T Z=⇒T� J S2 K, but there exists no T ′ ∈ PT
such that T Z=⇒T T

′ and T ′ � J S3 K.

235

6. Properties of Encodings

J S K

T

� J S2 K

� J S1 K

� J S3 K

Note that the observability of a partially committed state depends on the chosen equiv-
alence � on target terms. If we for example consider the equivalence classes of target
terms modulo weak reduction bisimulation then there are no partially committed states
for all three encodings.

In Example 6.3.6 impure steps lead to the partially committed states. Indeed, for all
three encoding functions J · Ksa, J · Kmp , and J · Kma , any partially committed state results
from an impure step, but not every impure step leads to a partially committed state.

Remarkably, the existence of partially committed states in J · Ksa is independent of
structural congruence—if two source terms are structurally congruent, then their en-
codings have the same partially committed states—while this is not true for J · Kmp or
J · Kma . Here, the locks are always tested according to a total ordering created along the
structure induced by the nesting of parallel operators of the source term. Because of
that, this ordering of sum locks differ for source terms that are structurally congruent
but differ in the order of their subprocesses, i.e., differ by rule P | Q ≡ Q | P . So, struc-
turally congruent source terms can differ in the number and nature of reachable partially
committed states; e.g. S′ = a | (a.S1 + a.S2) | a.S3, which is structurally congruent to
S from Example 6.3.6, does not reach any of the above partially committed states. In-
stead, in S′ the first consumption of a positive instantiation of a sum lock, which is an
impure step, completely determines which emulation can be completed. Note that in
this case the two following core steps are semantically rather administrative steps. Inter-
estingly, also in the alternative of J · Kma presented in Section 5.3 the presence of partially
committed states is influenced by structural congruence of source terms. Instead of com-
mutativity, here associativity of the parallel operator, i.e., P | (Q | R) ≡ (P | Q) | R,
is the problem, because it changes the identity of the closest common parent node of a
pair of communication partners in the parallel structure used in the target term and,
thus, the instance of the coordinator lock that has to be consumed in order to enable
their emulation. However, separating these kinds of steps by structural properties in
Definitions 6.3.3, 6.3.4, and 6.3.5 eases the argumentation in the following sections.

6.3.2. Invariants

In Chapter 5 we explain that each name that is introduced by one of the encoding
functions is introduced for a particular purpose. In this section we give more intuition
for the respective purposes, because we formulate and prove conditions on the use of the
respective links. More precisely, we formalise the properties of different links in form of
invariants. Invariants define some kind of properties of terms that remain valid under

236

6.3. Semantic Properties

reduction steps. Usually they are shown by an induction on the reductions of target
terms. Note that already the type information in Section 6.2 formulates some invariants
of the links, as for example that some links are never used as input channels. Moreover,
Lemma 6.2.20 shows that in J · Kma (translations of) source term names are never used
as links.

Observation 6.3.8. No translated source term name is the name of a link in a target
term of J · Kma .

Thus, some of the following invariants are simple consequences of the type information
from Section 6.2. Note that we can show all of the following invariants (without the type
information) by an exhaustive induction on the structure of source terms and the number
of steps that are necessary to reach a particular target term from an encoded source term.
However, because also the type information and in particular Theorem 6.2.54 results from
such inductions, we can use the type information to abbreviate the following proofs.

Already in [Nes00] invariants are used to describe the properties of sum locks:

“On each [sum] lock, at most one message may ever be available at any
time. This guarantee implements locking, which enables mutual exclusion.”

“Each reader of a [sum] lock eventually writes back to the lock. This
obligation enables the correct abortion of non-chosen branches.”

We do alike for all three encodings that use sum locks in basically the same way.
Note that for all three encodings J · Ksa, J · Kmp , or J · Kma the encoded subterms of restric-

tions, parallel composition, and choice appear unguarded in the respective encodings of
these operators. But the encoded subterms of τ , output, or (replicated) input prefixes
appear guarded. Thus, the encoding of a source term part is guarded iff the source term
part is guarded.

Observation 6.3.9. Let J · K : PS → PT be one of the encodings J · Ksa, J · Kmp , or J · Kma ,
and let S, S′ ∈ PS be such that S′ is subterm of S. Then J S′ K is guarded in J S K iff S′

is guarded in S.

The most difficult property of sum locks is that for each consumed instantiation even-
tually a new instantiation of this lock is unguarded, i.e., that there are no deadlocks
caused by the processing of sum locks. We postpone this condition to the end of this
section, because its proof makes use of some other invariants. Now we show that the
encoding of a source term sum leads to exactly one sum lock that is initially instantiated
positively. We prove that each sum lock stems from the encoding of a source term sum.
Moreover, all outputs on sum locks belong to a test-construct and all inputs on sum locks
are possibly guarded instantiations of this lock. We show that after a step on a sum
lock the reduction of the respective instantiation and test-construct can be interleaved
but not interfered, i.e., is eventually completed. Furthermore, there is at most one in-
stantiation of each sum lock and a negatively instantiated sum lock can never become
positive again.

237

6. Properties of Encodings

Lemma 6.3.10 (Sum Lock). The encodings J · Ksa, J · Kmp , and J · Kma satisfy the following
invariants on sum locks for all their target terms:

1. In each encoded source term there is exactly one sum lock for each source term
sum (and in J · Kma also for each replicated source term input) and one input on
this lock that is unguarded iff the encoded sum (replicated input) is unguarded. If
the input is unguarded it is a positive instantiation. All other inputs on sum locks
are guarded. Moreover, there is exactly one output on a sum lock for each τ -guard
or replicated input in the source term and exactly two such outputs for each source
term input. Outputs that result from the translation of a τ -guard are unguarded iff
the translation of the τ -guard is unguarded. All other outputs are guarded.

2. Each sum lock originates from the encoding of exactly one source term sum (or,
in the case of the encoding J · Kma , exactly one replicated source term input).

3. All (replicated) inputs on sum locks l are of the form l〈>〉 or l〈⊥〉 and all outputs
on sum locks l belong to a test-construct test l then P else Q for some P,Q.

4. For each step on a sum lock l eventually exactly one instantiation of l is completely
consumed and exactly one test-construct test l then P else Q on l is reduced to its
then-case P | (νf) (f .Q) if the consumed instantiation was positive and else to its
else-case Q | (νt) (t .P).

5. There is at most one instantiation of each sum lock.

6. A negative instantiation of a sum lock can never become positive.

Proof. By Theorem 6.2.54, all sum locks of all target terms are restricted. The first
condition holds by Lemma 6.2.51, Lemma 6.2.52, and Lemma 6.2.53. By Lemma 6.2.47,
the condition holds also for terms that are structurally congruent to encoded source
terms. For the remaining conditions we perform an induction on the number of steps
from an encoded source term.

Base Case: Note that all three encodings translates choice in the same way. The Con-
ditions 2, 3, and 4 follow from Lemma 6.2.51, Lemma 6.2.52, Lemma 6.2.53, and
Lemma 6.2.47, for all encoded source terms and all target terms that are struc-
turally congruent to an encoded source term. Note that outputs on sum locks are
introduced by the translations of terms guarded by τ , input, or replicated input and
inputs on sum locks are introduced by the translations of sums and terms guarded
by τ , input, or replicated input. The other conditions hold trivially, because there
were no steps on sum locks yet.

Induction Hypothesis: All target terms of the encodings satisfy the above conditions.

Induction Step: Consider the target terms T, T ′ for one of the three encodings J · Ksa,
J · Kmp , and J · Kma such that T 7−→ T ′. By the induction hypothesis, the five prop-
erties hold for T .

238

6.3. Semantic Properties

The only possibility to introduce new restrictions and hence new sum locks is to
reduce a replicated input. However, since all sum locks in T originate from the
translation of exactly one source term sum (or replicated source term input) which
also includes sum locks whose restriction is guarded by a replicated input, the new
sum lock also originates from the translation of exactly one source term sum (or
replicated source term input).

Since Condition 3 considers all inputs and outputs on an arbitrary name of type
l and also guarded inputs and outputs, the condition is (at least for the inputs)

invariant under steps. For outputs remember that test l then P else Q
Def. 5.1.1

=
(νt , f)

(
l〈t , f 〉 | t .P | f .Q

)
, i.e., the first step that reduces a test-construct has to

be a step on a sum lock. Thus, also the property for outputs in Condition 3 is
invariant under steps.

For the fourth condition we have to analyse all possibilities for steps on sum locks.
By Definition 6.3.2, instantiations on sum locks are unguarded inputs on sum
locks. By Condition 3, all outputs on sum locks correspond to test-constructs and
all inputs on sum locks are of the form l〈>〉 or l〈⊥〉. Remember that:

test l then P else Q
Def. 5.1.1

= (νt , f)
(
l〈t , f 〉 | t .P | f .Q

)
Def. 5.4.1

= (νt , f)
(

(νu∼,l)
(
l〈u∼,l 〉 | u∼,l (ut) . (ut〈t〉 | u∼,l (uf) .uf 〈f 〉)

)
| t(vt) .P | f (vf) .Q

)
Hence, for every output and input on a sum lock there is some sequence of steps
in which either a positive instantiation l〈>〉 is reduced to 0 and a test-construct
test l then P else Q is reduced to P | (νf) (f .Q), or a negative instantiation l〈⊥〉 is
reduced to 0 and a test-construct test l then P else Q is reduced to Q | (νt) (t .P).
By Theorem 6.2.54, all steps in the respective reductions are on links that have
the type t1 . t2 (for u∼,l), l11(t) (for ut and uf), or l+1(t) (for t and f) in T , for
some t1 . t2, t ∈ TL. So, by Lemma 6.2.58, these steps cannot be in conflict with
any other step of T ′ or its derivatives. We conclude that if T 7−→ T ′ is a step on
a sum lock, then eventually exactly one instantiation of l is completely consumed
and exactly one test-construct test l then P else Q on l is reduced to its then-
case P | (νf) (f .Q) if the consumed instantiation was positive or to its else-case
Q | (νt) (t .P), otherwise.

By the induction hypotheses there is at most one instantiation of each sum lock
in T and each of its predecessors. By the argumentation above, the step T 7−→ T ′

can only lead to new instantiations on sum locks if either the completion of the
protocol on a test-construct unguards some or if the encoding of a source term
sum is unguarded by the step. In the second case, by Condition 1, there is exactly
one positive instantiation of a fresh sum lock. By the argumentation in the case
before, to complete a test-construct on a sum lock l it is necessary to consume an
instantiation of l . We observe that in all three encoding functions in Figure 5.1,
Figure 5.4, and Figure 5.8, the completion of a (nested) test-construct on l (and

239

6. Properties of Encodings

l ′) unguards exactly one instantiation of l (and l ′). Since there is at most one
instantiation of each sum lock in T and each of its predecessors, we conclude that
there is again at most one instantiation of each sum lock in T ′, namely exactly one
for each sum lock that is not currently processed by the protocol of a test-construct
on the respective sum lock.

By the argumentation above, new instantiations of an existing sum lock are the
result of resolving a (nested) test-construct. More precisely, such a (nested) test-
construct on l (and l ′) unguards exactly one instantiation of l (and l ′). In all three
encoding functions in Figure 5.1, Figure 5.4, and Figure 5.8, positive instantiations
can be changed into negative instantiations in this way, but negative instantiations
always lead to the else-case that simply restores the consumed instantiations of the
respective sum locks without changing their value.

Note that the remainders (νf) (f .Q) and (νt) (t .P) represent unobservable and inactive
junk as explained in Section 6.3.5, i.e., they do no harm.

Also sender locks—second sender locks in the case of J · Kmp —are similar in all three
encodings.

Definition 6.3.11 (Sender Lock). Let T ∈ Pa�J · Ksa , T ∈ Pp�J · Kmp , or T ∈ P=
a�J · Kma and let

s ∈ un(T) such that the type of s in T is s. Then s is a sender lock of T . Furthermore,
T has an instantiation of s if T has an unguarded subterm

s
Def. 5.4.1

= (νvs) s〈vs〉 .

In this case, we also say that s is instantiated in T .

Sender locks guard the encoded continuation of source term senders. They are un-
guarded by an instantiation of a sender lock that is provided after the successful emula-
tion of a source term step, illuminated by the reduction of a nested test-construct to its
first case or the reduction of a single test-construct to its then-case in the translation of a
replicated input. Therefore sender locks are transmitted as part of output requests and
outputs on receiver locks. Accordingly, if the concept of the encodings is implemented
correctly within the functions J · Ksa, J · Kmp , and J · Kma , there is at most one step on each
sender lock. Accordingly, the invariant is very simple.

Lemma 6.3.12 (Sender Lock). The encodings J · Ksa, J · Kmp , and J · Kma satisfy the fol-
lowing invariants on sender locks for all their target terms:

1. In each encoded source term there is exactly one sender lock for each source term
output and exactly one input on this lock that guards the encoded continuation of
the source term output. This is unguarded iff the encoded output is unguarded.

2. No encoded source term contains an instantiation of a sender lock.

3. Each sender lock originates from the encoding of exactly one source term output.

240

6.3. Semantic Properties

4. All (replicated) inputs on a sender lock are of the form s(vs) .P for some P such
that vs /∈ fn(P) and P is an encoded source term.

5. There is at most one input on each sender lock and no replicated input.

Proof. By Theorem 6.2.54, all sender locks of all target terms are restricted. Condition 5
follows from Definition 6.3.11 and Lemma 6.2.56. By Lemma 6.2.51, Lemma 6.2.52, and
Lemma 6.2.53, the first two conditions are satisfied and Condition 3 holds for all encoded
source terms. By Lemma 6.2.47, they also hold for all target terms that are structurally
congruent to an encoded source term. Condition 3 is invariant under steps, because
it considers only the origin of restrictions and restriction can only be copied by the
reduction of a replicated input but there is no possibility to introduce new restrictions.

Consider an arbitrary target term T . By Lemma 6.2.51, Lemma 6.2.52, Lemma 6.2.53,
and Lemma 6.2.47, all (replicated) inputs on sender locks are of the form s(vs) .P , where
P is the encoding of the continuation of a source term output (Condition 1) for all
encoded source terms. By Figure 6.12 and because the type of s in T is s = lω+(vs), the
type of vs in T is vs. The respective renaming policy ensures that vs is different from
each translated source term name. By Lemma 6.2.51, Lemma 6.2.52, and Lemma 6.2.53,
P is well-typed with respect to a type environment that does not contain an assignment
for vs . By Lemma 6.2.48 and Definition 6.2.4, then vs /∈ fn(P). Again, Condition 4
is invariant under reduction steps of the target, because it considers all—guarded or
unguarded—(replicated) inputs on all links—free or bound—that are, due to their type,
sender locks.

Note that the Condition 4 ensures that the auxiliary value introduced by the unfolding
of polyadic communication does not introduce any further behaviour, i.e., does no harm.

Receiver locks are used differently by the three encodings, but we also find some
similarities. However, we observe that, in contrast with J · Ksa and J · Kma , J · Kmp introduces
two kinds of sender and receiver locks. As defined above, we denote the second kind of
sender locks as sender locks, because they correspond to the sender locks used in the
other encodings. Remember that we assign the same type to the first sender and receiver
locks.

Definition 6.3.13 (Auxiliary Sender or Receiver Lock). Let T ∈ Pp�J · Kmp and let s1 ∈
un(T) such that the type of s1 in T is lω∗(vs,r). Then s1 is a auxiliary sender or receiver
lock of T . Furthermore, T has an instantiation of s1 if T has an unguarded subterm

s1
Def. 5.4.1

= (νvs) s1〈vs〉 .

In this case, we also say that s1 is instantiated in T .

Auxiliary sender and receiver locks are used to retransmit output and input requests
to compensate for consumed requests in aborted emulation attempts. To ensure a first
emulation attempt they have to be initially instantiated.

Lemma 6.3.14 (Auxiliary Sender or Receiver Lock). The encoding J · Kmp satisfies the
following invariants on auxiliary sender or receiver locks for all of its target terms:

241

6. Properties of Encodings

1. In each encoded source term there is exactly one auxiliary sender or receiver lock for
each source term output or input and at least one output and exactly one replicated
input (that guards an output or an input request) on this lock. This output and
this replicated input are guarded iff the encoded out- or input is guarded. No other
output on an auxiliary sender or receiver lock is unguarded.

2. Each auxiliary sender or receiver lock originates from the encoding of exactly one
source term output or input.

3. All (replicated) inputs on an auxiliary sender or receiver lock are of the form
s?1 (vs,r) .P for some P such that vs,r /∈ fn(P) and P is either an output or an
input request.

4. There is exactly one replicated input on each auxiliary sender or receiver lock and
no input.

Proof. By Theorem 6.2.54, all auxiliary sender and receiver locks of all target terms
are restricted. Condition 4 follows from Definition 6.3.13 and Lemma 6.2.57. By
Lemma 6.2.52, the first condition is satisfied and Condition 2 holds for all encoded
source terms. By Lemma 6.2.47, they also hold for all target terms that are structurally
congruent to an encoded source term. Condition 2 is invariant under steps, because it
considers only the origin of restrictions.

Consider an arbitrary target term T . By Lemma 6.2.52 and Lemma 6.2.47, all (repli-
cated) inputs on an auxiliary sender or receiver lock are of the form s?1 (vs,r) .P , where P
is either an output or an input request (Condition 1) for all encoded source terms. By
Figure 6.12 and because the type of s1 in T is lω∗(vs,r), the type of vs,r in T is vs,r. By
Lemma 6.2.52, no free name of requests has this type. Hence, vs,r /∈ fn(P).

The second receiver locks of J · Kmp are introduced for the same purpose as the receiver
locks in J · Kma . For the definition of receiver locks and their instantiations, we use again
the information gained by the linear type system.

Definition 6.3.15 (Receiver Lock). Let T ∈ Pa�J · Ksa and let r ∈ un(T) such that
the type of r in T is lω∗(vs,r). Then r is a receiver lock of T . Furthermore, T has an
instantiation of r if T has an unguarded subterm

r
Def. 5.4.1

= (νvs,r) r〈vs,r 〉 .

In this case, we also say that r is instantiated in T .
Let T ∈ Pp�J · Kmp and let r2 ∈ un(T) such that the type of r2 in T is r′. Then r2 is

a receiver lock of T . Furthermore, T has an instantiation of r2 if T has an unguarded
subterm

r2〈l1, l2, ls, s2, z, v, w〉
Def. 5.4.1

= (νu∼,r)
(
r2〈u∼,r 〉 | u∼,r (ul) .

(
ul 〈l1〉 | u∼,r (ul) .

(
ul 〈l2〉

| u∼,r (ul) .
(
ul 〈ls〉 | u∼,r (us) .

(
us〈s2〉

| u∼,r (un) .
(
un〈z〉 | u∼,r (us,r) .

(
us,r 〈v〉

| u∼,r (us,r) .us,r 〈w〉
)))))))

242

6.3. Semantic Properties

for some l1, l2, ls, s2, z, v, w ∈ N such that l1, l2, l
′ are sum locks of T , s2 is a sender lock

of T , z is typed as a translated source term name by vn, and v, w are auxiliary sender
or receiver locks. In this case, we also say that r2 is instantiated in T .

Let T ∈ P=
a �J · Kma and let r ∈ un(T) such that the type of r in T is r. Then r is

a receiver lock of T . Furthermore, T has an instantiation of r if T has an unguarded
subterm

r
〈
l1, l2, l

′, s, z
〉 Def. 5.4.1

= (νu∼,r)
(
r〈u∼,r 〉 | u∼,r (ul) .

(
ul 〈l1〉 | u∼,r (ul) .

(
ul 〈l2〉

| u∼,r (ul) .
(
ul

〈
l ′
〉
| u∼,r (us) . (us〈s〉 | u∼,r (un) .un〈z〉)

))))
for some l1, l2, l

′, s, z ∈ N such that l1, l2, l
′ are sum locks of T , s is a sender lock of T ,

and z is typed as a translated source term name by vn. In this case, we also say that r
is instantiated in T .

The different ways to instantiate a receiver lock underpin the difference of the three en-
codings in the use of receiver locks. In J · Ksa receiver locks are introduced to guard inputs
on translated source term names in the encoding of source term inputs. Initially there
is exactly one instantiation of the receiver lock and new instantiations are unguarded if
an emulation attempt is aborted because of the test of a negative instantiation of a sum
lock associated to a sender.

Lemma 6.3.16 (Receiver Locks in J · Ksa). The encoding J · Ksa satisfies the following
invariants on receiver locks for all of its target terms:

1. In each encoded source term there is exactly one receiver lock r for each source
term input y(x) .P and at least one output and exactly one replicated input (that
guards the term

ϕs
a(y)

(
l ′, s, ϕs

a(x)
)
.test l then test l ′ then l〈⊥〉 | l ′〈⊥〉 | s | J P Ksa

else l〈>〉 | l ′〈⊥〉 | r
else l〈⊥〉 | ϕs

a(y)
〈
l ′, s, ϕs

a(x)
〉)

for two sum locks l, l′ and a sender lock s) on this lock. This output and this
replicated input are guarded iff the encoded input is guarded.

2. Each receiver lock originates from the encoding of exactly one source term input.

3. All (replicated) inputs on receiver locks are of the form r?(vs,r) .P for some P such
that vs,r /∈ fn(P) and P is as described by Condition 1.

4. There is exactly one replicated input on each receiver lock and no input.

Proof. By Theorem 6.2.54, all receiver locks of all target terms are restricted. Condi-
tion 4 follows from Definition 6.3.15 and Lemma 6.2.57. By Lemma 6.2.51, the first con-
dition is satisfied and Condition 2 holds for all encoded source terms. By Lemma 6.2.47,
they also hold for all target terms that are structurally congruent to an encoded source

243

6. Properties of Encodings

term. Condition 2 is invariant under steps, because it considers only the origin of re-
strictions.

Consider an arbitrary target term T . By Lemma 6.2.51 and Lemma 6.2.47, all (repli-
cated) inputs on receiver locks are of the form r?(vs,r) .Tr such that

Tr = ϕs
a(y)

(
l ′, s, ϕs

a(x)
)
.test l then test l ′ then l〈⊥〉 | l ′〈⊥〉 | s | J P Ksa

else l〈>〉 | l ′〈⊥〉 | r
else l〈⊥〉 | ϕs

a(y)
〈
l ′, s, ϕs

a(x)
〉)

as described in Condition 1 for all encoded source terms. By Figure 6.12 and because the
type of r in T is lω∗(vs,r), the type of vs,r in T is vs,r. ϕ

s
a ensures that vs,r is different from

each translated source term name. By Lemma 6.2.51, J P Ksa is well-typed with respect
to a type environment that does not contain an assignment for vs,r . By Lemma 6.2.48
and Definition 6.2.4, then vs,r /∈ fn(J P Ksa). By Lemma 6.2.51, then no free name of Tr
has the type vs,r. Hence, vs,r /∈ fn(Tr).

In the encodings J · Kmp and J · Kma translated source term names are used only as values
and receiver locks directly guard a (nested) test-construct. Remember that J · Kmp is an
encoding from πm without replicated inputs into πp.

Lemma 6.3.17 (Receiver Locks in J · Kmp). The encoding J · Kmp satisfies the following
invariants on receiver locks for all of its target terms:

1. In each encoded source term there is exactly one receiver lock r2 for each source
term input y(x) .P and exactly one replicated input and this term is of the form

r?2
(
l1, l2,−, s2, ϕm

p (x) , v, w
)
.test l1 then test l2 then l1〈⊥〉 | l2〈⊥〉 | s2 | J P Kmp

else l1〈>〉 | l2〈⊥〉 | v
else l1〈⊥〉 | w

)
.

This replicated input is guarded iff the encoded input is guarded. No output on a
receiver lock is unguarded.

2. Each receiver lock originates from the encoding of exactly one source term input.

3. For each step on a receiver lock r2 eventually exactly one instantiation on r2 of the
form r2〈l1, l2, ls, s2, z, v, w〉 is completely consumed and exactly one replicated input
r?2 (x1, x2, x3, x4, x5, x6, x7) .P is reduced to { l1/x1, l2/x2, ls/x3, s2/x4, z/x5, v/x6,w/x7 }P

4. There is exactly one replicated input on each receiver lock and no input.

Proof. By Theorem 6.2.54, all receiver locks of all target terms are restricted. Condi-
tion 4 follows from Definition 6.3.15 and Lemma 6.2.57. By Lemma 6.2.52, the first con-
dition is satisfied and Condition 2 holds for all encoded source terms. By Lemma 6.2.47,
they also hold for all target terms that are structurally congruent to an encoded source

244

6.3. Semantic Properties

term. Condition 2 is invariant under steps, because it considers only the origin of re-
strictions.

Consider an arbitrary target term T . By Condition 1, Lemma 6.2.20, and Theo-
rem 6.2.54, all outputs on receiver locks r2 are of the form r2〈l1, l2, ls, s2, z, v, w〉 and all
(replicated) inputs on r2 are replicated inputs of the form r?2 (x1, x2, x3, x4, x5, x6, x7) .P .
Hence, for every output and replicated input on a receiver lock there is some sequence
of steps in which the instantiation is completely consumed and the replicated input is
reduced to { l1/x1, l2/x2, ls/x3, s2/x4, z/x5, v/x6,w/x7 }P . By Theorem 6.2.54, all steps in the
respective reduction are on links that have type t1 . t2 (for u∼,r) or l11(t) (for the remain-
ing auxiliary links) in T , for some t1.t2, t ∈ TL. So, by Lemma 6.2.58, these steps cannot
be in conflict with any other step of T or its derivatives. We conclude that eventually
exactly one instantiation of r2 is completely consumed and exactly one replicated input
is reduced as required.

In contrast to the other two encodings, J · Kma introduces receiver locks also for repli-
cated inputs. Apart from this, the use of receiver locks in J · Kmp and J · Kma differs by the
number of parameters.

Lemma 6.3.18 (Receiver Locks in J · Kma). The encoding J · Kma satisfies the following
invariants on receiver locks for all of its target terms:

1. In each encoded source term there is exactly one receiver lock r for each source
term input y(x) .P and exactly one replicated input and this term is of the form

r?(l1, l2,−, s, ϕm
a (x)) .test l1 then test l2 then l1〈⊥〉 | l2〈⊥〉 | s | J P Kma

else l1〈>〉 | l2〈⊥〉
else l1〈⊥〉

)
.

This replicated input is guarded iff the encoded input is guarded. No output on a
receiver lock is unguarded.

2. In each encoded source term there is exactly one receiver lock r for each replicated
source term input y?(x) .P and exactly one replicated input

r?(−,−, ls, s, z) .test ls then ls〈⊥〉 | s | cr1 〈z〉 else ls〈⊥〉 ,

where cr1 is a chain lock of type lω∗(vn) (Definition 6.3.23). This replicated input
is guarded iff the encoded replicated input is guarded.

3. Each receiver lock originates from the encoding of exactly one (replicated) source
term input.

4. For each step on a receiver lock r eventually exactly one instantiation on r of
the form r〈l1, l2, l′, s, z〉 is completely consumed and exactly one replicated input
r?(x1, x2, x3, x4, x5) .P is reduced to { l1/x1, l2/x2, l′/x3, s/x4, z/x5 }P .

5. There is exactly one replicated input on each receiver lock and no input.

245

6. Properties of Encodings

Proof. By Theorem 6.2.54, all receiver locks of all target terms are restricted. Condi-
tion 5 follows from Definition 6.3.15 and Lemma 6.2.57. By Lemma 6.2.53, the first
two conditions are satisfied and Condition 3 holds for all encoded source terms. By
Lemma 6.2.47, they also hold for all target terms that are structurally congruent to an
encoded source term. Condition 3 is invariant under steps, because it considers only the
origin of restrictions.

Consider an arbitrary target term T . By Condition 1, Condition 2, Lemma 6.2.20,
and Theorem 6.2.54, all outputs on receiver locks r are of the form r〈l1, l2, l′, s, z〉 and
all (replicated) inputs on r are of the form r?(x1, x2, x3, x4, x5) .P . Hence, for ev-
ery output and replicated input on a receiver lock there is some sequence of steps in
which the instantiation is completely consumed and the replicated input is reduced to
{ l1/x1, l2/x2, l′/x3, s/x4, z/x5 }P . By Theorem 6.2.54, all steps in the respective reduction
are on links that have type t1 . t2 (for u∼,r) or l11(t) (for the remaining auxiliary links)
in T , for some t1 . t2, t ∈ TL. So, by Lemma 6.2.58, these steps cannot be in conflict
with any other step of T or its derivatives. We conclude that eventually exactly one
instantiation of r is completely consumed and exactly one replicated input is reduced as
required.

The encoding J · Ksa translates outputs and inputs on source term names into outputs
and inputs on translated source term names augmented with additional parameters for
sum, sender, and receiver locks.

Lemma 6.3.19. The encoding J · Ksa satisfies the following invariants on out- and inputs
on translated source term names for all of its target terms:

1. In each encoded source term for each source term output y〈z〉 there is exactly one
output on a translated source term name, i.e., a name of type](n◦,TS), and this

term is of the form ϕs
a(y)〈l, s, ϕs

a(z)〉 for some sum lock l and sender lock s that is
introduced by the same translation as the source term output. This term is guarded
iff the respective source term output is guarded.

2. In each encoded source term for each source term input y(x) .P there is exactly
one input and this term is as described in Condition 1 of Lemma 6.3.16. This
input is guarded by a replicated input on the receiver lock that is introduced by this
translation of a source term input.

3. In each encoded source term for each replicated source term input y?(x) .P there is
exactly one replicated input

ϕs
a(y)?(l , s, ϕs

a(x)) .test l then l〈⊥〉 | s | J P Ksa else l〈⊥〉 .

This replicated input is guarded iff the respective replicated source term input is
guarded.

4. In each encoded source term J S Ksa and for all translated source term names ϕs
a(y) ∈

n(J S Ksa), ϕ
s
a(y) is free in J S Ksa iff y is free in S.

246

6.3. Semantic Properties

5. Each output, input, and replicated input on a translated source term name, i.e., on
a name of type](n◦,TS), originates from the encoding of exactly one source term
output, source term input, or replicated source term input, respectively.

6. For each step on a translated source term name y, i.e., y is of type](n◦,TS), even-
tually exactly one output y〈l, s, z〉 is reduced to 0 and exactly one (replicated) input
y(x1, x2, x3) .P or y?(x1, x2, x3) .P is reduced to { l/x1, s/x2, z/x3 }P .

Proof. By Lemma 6.2.53 and an induction on the structure of source terms, the first
four conditions are satisfied and Condition 5 holds for all encoded source terms. By
Lemma 6.2.47, they also hold for all target terms that are structurally congruent to
an encoded source term. Condition 5 is invariant under steps, because it considers all
outputs and (replicated) inputs on all links that are, due to their type, translated source
term names.

By the Conditions 1, 2, 3, Lemma 6.2.20, and Theorem 6.2.54, all outputs on translated
source term names y belong to a term of the form y〈l, s, z〉 and all (replicated) inputs are
of the form y(x1, x2, x3) .P or y?(x1, x2, x3) .P . Hence, for every output and (replicated)
input on a translated source term name there is some sequence of steps in which the term
y〈l, s, z〉 is reduced to 0 and the (replicated) input y(x1, x2, x3) .P or y?(x1, x2, x3) .P is
reduced to { l/x1, s/x2, z/x3 }P . By Theorem 6.2.54, all steps in the respective reduction
are on links that have type t1 . t2 (for u∼,TS) or l11(t) (for the remaining auxiliary links)
in T , for some t1 .t2, t ∈ TL. So, by Lemma 6.2.58, these steps cannot be in conflict with
any other step of T or its derivatives. We conclude that eventually exactly one term
y〈l, s, z〉 is reduced to 0 and exactly one (replicated) input is reduced as required.

Instead of out- and inputs on translated source term names, the encodings J · Kmp and
J · Kma introduce requests. The translations of source term names are used as values only.
Requests in J · Kmp and J · Kma differ in their number of arguments.

Definition 6.3.20 (Request). Let T ∈ Pp�J · Kmp and let po ∈ un(T) such that the type

of po in T is o′. Then po is an output request channel of T . Similarly, let T ∈ P=
a �J · Kma

and let pi ∈ un(T) such that the type of pi in T is i. Then pi is an input request channel
of T . Furthermore, T ∈ Pp�J · Kmp has an output request if there exist y, l , s1, s2, z ∈ N
such that y, z are translated source term names of type vn, l is a sum lock of T , s1 is an
auxiliary sender or receiver lock of T , s2 is a sender lock of T , and T has an unguarded
subterm

po〈y, l , s1, s2, z〉
Def. 5.4.1

=
(
νu∼,o′

) (
po
〈
u∼,o′

〉
| u∼,o′(un) .

(
un〈y〉 | u∼,o′(ul) .

(
ul 〈l〉

| u∼,o′(us,r) .
(
us,r 〈s1〉 | u∼,o′(us) .

(
us〈s2〉

| u∼,o′(un) .un〈z〉
)))))

for some output request channel po of T . And T ∈ Pp�J · Kmp has an input request if there

exist y, l , r1, r2 ∈ N such that y is of type vn, l is a sum lock of T , r1 is an auxiliary

247

6. Properties of Encodings

sender or receiver lock of T , r2 is a receiver lock of T , and T has an unguarded subterm

pi〈y, l , r1, r2〉
Def. 5.4.1

=
(
νu∼,i ′

) (
pi
〈
u∼,i ′

〉
| u∼,i ′(un) .

(
un〈y〉 | u∼,i ′(ul) .

(
ul 〈l〉

| u∼,i ′(us,r) .
(
us,r 〈r1〉 | u∼,i ′(ur ′) .ur ′〈r2〉

))))
for some input request channel pi of T . Two requests on different request channels but
with the same parameters are considered as the same request.

Let T ∈ P=
a �J · Kma and let po ∈ un(T) such that the type of po in T is o or o∗. Then

po is an output request channel of T . Similarly, let T ∈ P=
a�J · Kma and let pi ∈ un(T) such

that the type of pi in T is i or i∗. Then pi is an input request channel of T . Furthermore,
T ∈ P=

a �J · Kma has an output request if there exist y, l , s, z ∈ N such that y, z are typed
as translated source term names of type vn, l is a sum lock of T , s is a sender lock of T ,
and T has an unguarded subterm

po〈y, l , s, z〉
Def. 5.4.1

= (νu∼,o)
(
po〈u∼,o〉 | u∼,o(un) .

(
un〈y〉 | u∼,o(ul) .

(
ul 〈l〉

| u∼,o(us) .
(
us〈s〉 | u∼,o(un) .un〈z〉

))))
for some output request channel po of T . And T ∈ P=

a�J · Kma has an input request if there
exist y, l , r ∈ N such that y is of type vn, l is a sum lock of T , r is a receiver lock of T ,
and T has an unguarded subterm

pi〈y, l , r〉
Def. 5.4.1

= (νu∼,i) (pi〈u∼,i〉 | u∼,i(un) . (un〈y〉 | u∼,i(ul) . (ul 〈l〉 | u∼,i(ur) .ur 〈r〉)))

for some input request channel pi of T . Two requests on different request channels but
with the same parameters are considered as the same request.

Requests are introduced by the translation of guarded source terms. They fix the
relationship between sender and receiver locks and their corresponding sum locks. Note
that we consider here two requests that only differ by their link name but not their

values as the same request. Remarkably, requests are preserved (modulo
��7−→-steps) by

the encoding function, i.e., each derivative of a target term has all the requests of its
predecessor. In J · Kmp requests are initially guarded by auxiliary sender or receiver locks.

Lemma 6.3.21 (Requests in J · Kmp). Then encoding J · Kmp satisfies the following invari-
ants on requests for all of its target terms:

1. In each encoded source term for each source term output y〈z〉 there is one output
on an output request channel and this is of the form po

〈
ϕm
p (y) , l , s1, s2, ϕ

m
p (z)

〉
,

where s1, s2 are introduced by the same translation as the source term output. This
term is guarded by a replicated input on s1. No output on an output request channel
is unguarded.

2. In each encoded source term for each source term input y(x) .P there is one output
on an input request channel and this term is of the form pi

〈
ϕm
p (y) , l , r1, r2

〉
, where

r1, r2 are introduced by the same translation as the source term input. This term
is guarded by a replicated input on r1. No output on an output request channel is
unguarded.

248

6.3. Semantic Properties

3. In each encoded source term J S Kmp and for all translated source term names

ϕm
p (y) ∈ n

(
J S Kmp

)
, ϕm

p (y) is free in J S Kmp iff y is free in S.

4. Each output request and each input request originates from the encoding of exactly
one source term output and exactly one source term input, respectively.

5. For each step on an output request channel po eventually exactly one output request
of the form po〈y, l , s1, s2, z〉 is completely consumed and exactly one replicated input
po
?(x1, x2, x3, x4, x5) .P reduces to P ′ = { y/x1, l/x2, s1/x3, s2/x4, z/x5 }P such that P ′

contains the consumed output request on some output request channel po
′ ∈ fn(P ′).

6. For each step on an input request channel pi eventually exactly one input request
of the form pi(y, l , r1, r2) is completely consumed and exactly one replicated input
pi
?(x1, x2, x3, x4) .P reduces to P ′ = { y/x1, l/x2, r1/x3, r2/x4 }P such that P ′ contains

the consumed input request on some input request channel pi
′ ∈ fn(P ′).

7. For all T 7−→ T ′ there exists some T ′′ such that T ′
��Z=⇒ T ′′ and T ′′ contains all

requests of T .

8. There is exactly one replicated input on each output or input request channel that
is not free in the respective target term. There are no inputs on request channels.

9. Requests are unambiguously identified by their sender/receiver locks, i.e., all re-
quests that share the same third or fourth parameter are equal.

Proof. By Definition 6.3.20, Theorem 6.2.54, and Lemma 6.2.57, Condition 8 is valid.
By Lemma 6.2.52 and an induction on the structure of source terms, the first three
conditions are satisfied, all (replicated) inputs on an output request channel po are
modulo structural congruence equal to

Po = p?o(x1, x2, x3, x4, x5) .
(
p′o〈x1, x2, x3, x4, x5〉 | P ′o

)
for some P ′o that does not contain requests and some output request p′o〈x1, x2, x3, x4, x5〉,
and all (replicated) inputs on an input request channel pi are modulo structural congru-
ence equal to

Pi = p?i (x1, x2, x3, x4) .
(
p′i〈x1, x2, x3, x4〉 | P

′
i

)
for some P ′i that does not contain requests and some input request p′i〈x1, x2, x3, x4〉,
for all encoded source terms. By Lemma 6.2.47, the same holds for all target terms
that are structurally congruent to an encoded source term. Because the conditions on
(replicated) inputs on request channel above hold for all (replicated) inputs on request
channels—and not only for unguarded—the conditions are invariant under reduction
steps.

Consider an arbitrary target term T . By the above argumentation, Lemma 6.2.20,
and Theorem 6.2.54, all unguarded outputs on an output/input request channel are

249

6. Properties of Encodings

output/input requests, all (replicated) inputs on an output request channel are as Po,
and all (replicated) inputs on an input request channel are as Pi above. Hence, for every
output and (replicated) input on a request channel there is some sequence of steps that
is as described by Condition 5 and Condition 6. By Theorem 6.2.54, all steps in the
respective reduction are on links that have type t1 . t2 (for u∼,o′ and u∼,i ′) or l11(t) (for
the remaining auxiliary links) in T , for some t1 . t2, t ∈ TL. So, by Lemma 6.2.58, these
steps cannot be in conflict with any other step of T or its derivatives. We conclude
that eventually exactly output/input request is completely reduced and exactly one
(replicated) input is reduced as required by Condition 5 and Condition 6.

Condition 7 follows from Condition 5, Condition 6, Definition 5.4.1, and Defini-
tion 6.3.4.

By Lemma 6.2.52 and Lemma 6.2.47, for all encoded source terms and all target
terms that are structurally congruent to an encoded source term, all requests, i.e., all
unguarded outputs on request channels, originate from the encoding of exactly one source
term output or input. Moreover, all guarded outputs on request channels are guarded
by a replicated input on a request channel as described by Po and Pi above. Thus,
Condition 4 follows from Condition 5 and Condition 6.

By Conditions 1, 2, and 4, each request is either the copy of a former request or
results from a step on an auxiliary sender or receiver lock. Hence, Condition 9 follows
from Lemma 6.3.14, because there is exactly one replicated input on each auxiliary
sender or receiver lock.

In J · Kma input requests are also introduced by replicated inputs. Moreover, because
of the processing of requests on the right hand side of the parallel operator encoding, we
cannot easily prove that there is not more one a single unguarded (replicated) input for
each request channel as we did in Lemma 6.3.21. Instead we have to take chain locks
into account (Lemma 6.3.24). Note that the distinction on the kind of input capabilities
in J · Kma provides a clear distinction between left and right requests. Right requests are
requests that interact with inputs on request channels, whereas left requests interact
with replicated inputs on request channels and are the only kind of requests that are
duplicated within the encoding of a parallel operator.

Lemma 6.3.22 (Requests in J · Kma). Then encoding J · Kma satisfies the following invari-
ants on requests for all of its target terms:

1. In each encoded source term for each source term output y〈z〉 there is one output
on an output request channel and this term is of the form po〈ϕm

a (y) , l , s, ϕm
a (z)〉,

where s is introduced by the same translation as the source term output. This term
is guarded iff the encoded source term output is guarded. No other output on an
output request channel is unguarded.

2. In each encoded source term for each source term input y(x) .P there is one output
on an input request channel and this term is of the form pi〈ϕm

a (y) , l , r〉, where r is
introduced by the same translation as the source term input. This term is guarded
iff the encoded source term input is guarded.

250

6.3. Semantic Properties

3. In each encoded source term for each replicated source term input y?(x) .P there are
two outputs on input request channels and this terms are of the form pi〈ϕm

a (y) , l , r〉
(with different subjects), where r is introduced by the same translation as the repli-
cated source term input. These terms are guarded iff the encoded replicated source
term input is guarded. No other output on an input request channel is unguarded.

4. In each encoded source term J S Kma and for all translated source term names
ϕm
a (y) ∈ n(J S Kma), ϕm

a (y) is free in J S Kma iff y is free in S.

5. Each output request and each input request originates from the encoding of exactly
one source term output and exactly one (replicated) source term input, respectively.

6. For each step on an output request channel po eventually exactly one output request
of the form po〈y, l , s, z〉 is completely consumed and exactly one (replicated) input
po(x1, x2, x3, x4) .P or po

?(x1, x2, x3, x4) .P reduces to P ′ = { y/x1, l/x2, s/x3, z/x4 }P
such that P ′ contains the consumed output request on some output request channel
po
′ ∈ fn(P ′).

7. For each step on an input request channel pi eventually exactly one input request
of the form pi(y, l , r) is completely consumed and exactly one (replicated) input
pi(x1, x2, x3) .P or pi

?(x1, x2, x3) .P reduces to P ′ = { y/x1, l/x2, r/x3 }P such that
P ′ contains the consumed input request on some input request channel pi

′ ∈ fn(P ′).

8. For all T 7−→ T ′ there exists some T ′′ such that T ′
��Z=⇒ T ′′ and T ′′ contains all

requests of T .

9. Requests are unambiguously identified by their sender/receiver locks, i.e., all re-
quests that share the same third parameter are equal.

Proof. By Lemma 6.2.52 and an induction on the structure of source terms, the first
four conditions are satisfied and all guarded outputs on a request channel are of the
form y1〈z1, z2, z3, z4〉 (for output request channels) and y2〈z1, z2, z3〉 (for input request
channels) and these terms are guarded by a (replicated) input on a request channel
y3(x1, x2, x3, x4) .P or y?3(x1, x2, x3, x4) .P (for output request channels) and (for output
request channels) y4(x1, x2, x3) .P or y?4(x1, x2, x3) .P such that the respective request is
unguarded in P . Moreover, all (replicated) inputs on a request channel guard at least
one request on the same parameters.

Consider an arbitrary target term T . By the above argumentation, Lemma 6.2.20,
and Theorem 6.2.54, all unguarded outputs on an output/input request channel are an
output/input request and all (replicated) inputs on request channels are as described
above. Hence, for every output and (replicated) input on a request channel there is
some sequence of steps that is as described by Condition 6 and Condition 7. By Theo-
rem 6.2.54, all steps in the respective reduction are on links that have type t1 . t2 (for
u∼,o′ and u∼,i ′) or l11(t) (for the remaining auxiliary links) in T , for some t1 . t2, t ∈ TL.
So, by Lemma 6.2.58, these steps cannot be in conflict with any other step of T or its
derivatives. We conclude that eventually exactly output/input request is completely

251

6. Properties of Encodings

reduced and exactly one (replicated) input is reduced as required by Condition 6 and
Condition 7.

Condition 8 follows from Condition 6, Condition 7, Definition 5.4.1, and Defini-
tion 6.3.4.

By Lemma 6.2.53 and Lemma 6.2.47, for all encoded source terms and all target
terms that are structurally congruent to an encoded source term, all requests, i.e., all
unguarded outputs on request channels, originate from the encoding of exactly one
source term output or (replicated) input. Moreover, all guarded outputs on request
channels are guarded by a replicated input on a request channel as described above.
Thus, Condition 5 follows from Condition 6 and Condition 7.

By Conditions 1, 2, 3, and 5, each request is either the copy of a former request or
results from the encoding of a source term output or (replicated) source term input.
Hence, Condition 9 is satisfied.

J · Kma translates source term observables into requests, which are then combined to
search for potential communication partners. In order to avoid divergence, requests
cannot be copied arbitrarily often. To ensure that indeed each left request is combined
with each possible matching right request, the right requests—in the encoding of a
parallel operator as well as in the encoding of a replicated input—are linked within
some kind of chain or list, along which the left requests are forwarded. Again to avoid
divergence these chains cannot be infinitely long, so the links co and ci are introduced
by the encoding function to extend these chain or list by a new right request as soon
as its last place is occupied. We denote these links as chain locks. Similarly, the chain
lock cr1 in the encoding of a replicated input is used to establish some kind of chain on
encoded source terms—the encoded continuations of that replicated input—instead of
right requests.

Definition 6.3.23 (Chain Lock). Let T ∈ P=
a �J · Kma and let c ∈ un(T) such that the

type of c in T is lω∗(↓∗(i◦)), lω∗(↓∗(o◦)), lω∗(vn), or](c◦). Then, c is a chain lock of T .
Furthermore, if the type of c in T is lω∗(↓∗(i◦)), lω∗(↓∗(o◦)), or lω∗(vn), then T has an
instantiation on a chain lock c if T has an unguard output on c. Else, if the type of c in
T is](c◦), T has an instantiation on a chain lock c if T has an unguard subterm

c〈ro , ri〉
Def. 5.4.1

= (νu∼,c) (c〈u∼,c〉 | u∼,c(uo) . (uo〈ro〉 | u∼,c(ui) .ui〈ri〉))

for some output request channel ro and some input request channel ri of T . If T has a
chain lock c such that the type of c in T is t we say that T has a chain lock c of type t.

To reason about steps on chain locks we fix within the following invariant their use in
the encoding function. A very important property is the last condition. Since chain locks
are the only links that—by Theorem 6.2.54—are allowed to transmit request channels,
the last conditions is necessary to ensure that the encoding can maintain the parallel
structure of the source term. Intuitively, this parallel structure is reflected by the re-
strictions on request channels. To preserve this structure chain locks transmit only fresh
request channels.

252

6.3. Semantic Properties

Lemma 6.3.24 (Chain Lock). The encoding J · Kma satisfies the following invariants on
chain locks for all of its target terms:

1. In each encoded source term there is exactly one chain lock of type lω∗(↓∗(i◦)) and
exactly one chain lock of type lω∗(↓∗(o◦)) for each source term parallel operator or
replicated source term input, and exactly two outputs and exactly one replicated
input of these locks that guard exactly one input on a request channel. One output
and the replicated input of each of these locks that result from the translation of
a parallel operator encoding are guarded iff the respective encoding of the parallel
operator is guarded. The respective other output is guarded by an input on a request
channel. In the other case there is an additional guard on an input of a chain lock
of type](o, i) for the respective outputs and the replicated input.

2. In each encoded source term each input on an output request channel and each
input on an input request channel is guarded by a replicated chain lock of type
lω∗(↓∗(i◦)) or lω∗(↓∗(o◦)), respectively.

3. In each encoded source term there is exactly one chain lock cr1 of type lω∗(vn) and
exactly one chain lock cr2 of type](o, i) for each replicated source term input. More-
over, there is exactly one output on cr1 that is guarded as described in Condition 2
of Lemma 6.3.18, exactly two outputs on cr2 that are of the form cr2〈ro, ri〉, ex-
actly one replicated input on cr1, and exactly one input on cr2 that is guarded by
the replicated input on cr1. One output on cr2 and the replicated input on cr1 are
guarded iff the encoded replicated source term input is guarded. The other output
on cr2 is guarded by the input on this lock.

4. Each chain lock of type lω∗(↓∗(i◦)) or lω∗(↓∗(o◦)) originates from the encoding of
exactly one source term parallel operator or exactly one replicated source term.
Each other chain lock originates from the encoding of exactly one replicated source
term.

5. For each step on a chain lock of type](vn) exactly one pair of chain locks of
type lω∗(↓∗(i◦)) and lω∗(↓∗(o◦)) as described in Condition 1 is introduced. Moreover,
eventually exactly one step on a chain lock of type](o, i) is performed as described
in Condition 6.

6. For each step on a chain lock cr2 of type](o, i) eventually exactly one instanti-
ation on cr2 of the form cr2〈ro, ri〉 is completely consumed and exactly one input
cr2(x1, x2) .P is reduced to { ro/x1, ri/x2 }P such that P contains exactly one instan-
tiation on cr2 and unguards exactly one output and exactly one replicated input of
a chain lock of type lω∗(↓∗(i◦)) and exactly one output and exactly one replicated
input of a chain lock of type lω∗(↓∗(o◦)) that are introduced by the step on a chain
lock of type](vn) that unguards the reduced input on cr2.

7. For each step that reduces an input on an output request channel eventually exactly
one instantiation on a chain lock of type lω∗(↓∗(i◦)) is unguarded. For each step that

253

6. Properties of Encodings

reduces an input on an input request channel eventually exactly one instantiation
on a chain lock of type lω∗(↓∗(o◦)) is unguarded.

8. There is exactly one replicated input on each chain lock of type lω∗(↓∗(i◦)), lω∗(↓∗(o◦)),
and lω∗(vn) and no other input.

9. There is at most one instantiation of each chain lock of type lω∗(↓∗(i◦)), lω∗(↓∗(o◦)),
or](c◦).

10. Within each execution of a target term no two instantiations on chain locks of type
lω∗(↓∗(i◦)), lω∗(↓∗(o◦)), or](c◦) carry the same request channel.

Proof. By Theorem 6.2.54 all chain locks are restricted. Condition 8 follows from
Lemma 6.2.57. By Lemma 6.2.53, the first three conditions are satisfied and Condi-
tion 4 holds for all encoded source terms. By Lemma 6.2.47, these conditions hold also
for all target terms that are structurally congruent to an encoded source term. Con-
dition 4 is invariant under steps, because it considers only the origin of restrictions.
Moreover, we observe in the case of replicated source terms the resulting restrictions
on chain locks of types lω∗(↓∗(i◦)) and lω∗(↓∗(o◦)) are guarded by a replicated input on
the chain lock of type lω∗(vn) followed by an input on a chain lock of type](o, i) that is
introduced by this translation.

Consider an arbitrary target term T . By the above argumentation, Conditions 1 and
3, Lemma 6.2.17, and Theorem 6.2.53, all outputs on chain locks cr2 of type](o, i) are of
the form cr2〈ro, ri〉 and all (replicated) inputs on this lock are structurally equivalent to
cr2(x1, x2) . ((νco, ci, z̃) (P1 | (νro, ri) (P2 | cr2〈ro, ri〉))) such that co is of type lω∗(↓∗(i◦)),
ci is of type lω∗(↓∗(o◦)), co, ci, cr2 /∈ n(P2), and P1 contains exactly two outputs of which
exactly one is unguarded and exactly one unguarded replicated input of co and ci, re-
spectively, and there are no other chain locks or out/inputs on chain locks in P1. Hence,
for every step on a chain lock of type](o, i) there is a sequence of steps that is as required
in Condition 6. By Theorem 6.2.54, all steps in the respective reduction are on links
that have the type t1 . t2 (for u∼,c) or l11(t) (for the remaining auxiliary links) in T , for
some t1 . t2, t ∈ TL. So, by Lemma 6.2.58, these steps cannot be in conflict with any
other step of T or its derivatives. We conclude that eventually exactly one instantiation
on cr2 is completely consumed and exactly one input on this lock is reduced as required
by Condition 6.

Condition 5 then follows from Conditions 3 and 6.
Condition 7 follows from Lemma 6.3.21 and Condition 1.
Condition 9 follows from Conditions 1, 3, 8, Lemma 6.2.47, and an induction on the

number of steps of a target term from an encoded source term, because to unguard a
new instantiation a former one has to be consumed.

Condition 10 follows from Lemma 6.2.53, because all—guarded or unguarded—outputs
on the respective locks appear unguarded under a restriction of its parameter(s) and no
other output on the same lock appears unguarded under the same restriction(s).

Note that if the consumption of a chain lock of type lω∗(vn) or](o, i) is lazy, a fast
emulation of a later step on the respective encoded replicated input can overtake a

254

6.3. Semantic Properties

former one such that there are two instantiations of the former lock or two inputs on
the latter lock. By Lemma 6.2.58, the former case causes no problem. In the latter
case, the corresponding branches are not necessarily ordered within the chain induced
by encodedContinuations in the order matching to the respective emulations. However,
since eventually all branches are added to the chain and within the chain all requests
are transmitted eventually to all branches, this causes no problem.

Finally we compose some of the above introduced concepts and show how they interact
in emulations. The first two conditions of the following invariant show that for each e-
mulation there is a core step and that each core step belongs to the emulation of a
source term step. Conditions 3, 4, and 5 show how requests are combined to unguard
test-constructs. Condition 7 allows us to abstract from administrative steps in most of
the following proofs. Condition 8 and 10 prove that the encodings J · Ksa, J · Kmp , and
J · Kma do not introduce deadlock.

Lemma 6.3.25. The encodings J · Ksa, J · Kmp , and J · Kma satisfy the following invariants
for all of their target terms:

1. Each execution that unguards a term that originates from the encoding of a subterm
of a source term contains at least one core step.

2. Each execution T Z=⇒ 7→7−→ Z=⇒ T ′ unguards at least one term that originates from
the encoding of a subterm of a source term.

3. In J · Kmp and J · Kma the parallel structure of source terms is maintained by the
restrictions on request channels.

4. Each instantiation of a receiver lock r in J · Kmp is of the form r2〈l1, l2, l3, s2, z, v, w〉
such that modulo

��7−→-steps either l1 = l3 and there is a left output request of the
form po〈y, l1, s2, v, z〉 and a right input request pi〈y, l2, w, r2〉, or l2 = l3 and there
is a left input request pi〈y, l1, v, r2〉 and a right output request po〈y, l2, s2, w, z〉.

5. Each instantiation of a receiver lock r in J · Kma is of the form r〈l1, l2, l3, s2, z〉 such

that modulo
��7−→-steps either l1 = l3 and there is a left output request po〈y, l1, s2, z〉

and a right input request pi〈y, l2, r2〉, or l2 = l3 and there is a left input request
pi〈y, l1, r2〉 and a right output request po〈y, l2, s2, z〉.

6. In each execution there is at most one instantiation of each sender lock.

7. Let T ∈ Pa�J · Ksa or T ∈ Pp�J · Kmp . Then no administrative step of T is in conflict

with any alternative step of T . Let T ∈ P=
a �J · Kma . Then no administrative step

of T that does not reduce a right request of some parallel operator encoding or an
instantiation of a chain lock of type](o, i) is in conflict with any alternative step
of T .

8. Administrative steps do not introduce deadlock.

9. Administrative steps do not influence reachability of success.

255

6. Properties of Encodings

10. For each step on a sum lock l there is eventually an instantiation of l .

Proof. By Figures 5.1, 5.4, and 5.8, all three encodings ensure that a subterm of a
source term is guarded in the encoding iff it is guarded in the source term. Moreover,
the encodings of subterms that are guarded by τ , input, or replicated input in the
source appear within the then-case of a single test-construct or the first case of a nested
test-construct and the encodings of subterms that are guarded by an output on the
source are guarded in the encoding by an input on a sender lock. By Lemma 6.3.12
initially no sender lock is instantiated. Moreover, by Lemma 6.2.51, Lemma 6.2.52,
and Lemma 6.2.53, all inputs on sender locks appear within the then-case of a single
test-construct or the first case of a nested test-construct. By Lemma 6.3.10, each execu-
tion that reduces test l then P else Q to P | (νf) (f .Q) completely consumes a positive
instantiation of l . Hence, Condition 1 and Condition 2 follow from Definition 6.3.3.

By Lemma 6.2.52 and Lemma 6.2.53, for all encoded source terms the parallel structure
is maintained by the encoding by the restriction of left or right request channels in the
encoding of the parallel operator. In J · Kmp request channels are never transmitted,
i.e., the structure induced by restrictions on request channels is not changed during
reductions. In J · Kma request channels are transmitted by reductions on chain locks but as
shown in the proof of Lemma 6.3.24 only fresh request channels are transmitted, i.e., new
branches that result from emulations of steps on replicated source term inputs are added
and new members are added to the chain of left or right requests in procRightOutReq
and procRightInReq. This proves Condition 3.

By Lemma 6.2.52, all outputs on receiver locks originate from the encoding of a parallel
operator. Remember that

procLeftOutReq , po
?(y, l , s1, s2, z) . (y · o〈l , s1, s2, z〉 | po,up〈y, l , s1, s2, z〉)

procLeftOutReq , pi
?(y, l , r1, r2) .

(
y · i〈l , r1, r2〉 | pi ,up〈y, l , r1, r2〉

)
procRightOutReq , po

?(y, ls, s1, s2, z) .

(y · i(lr, r1, r2) .r2〈lr, ls, ls, s2, z, r1, s1〉 | po,up〈y, ls, s1, s2, z〉)
procRightInReq , pi

?(y, lr, r1, r2) .

(y · o(ls, s1, s2, z) .r2〈ls, lr, ls, s2, z, s1, r1〉 | pi ,up〈y, lr, r1, r2〉)

and, by Condition 3, procLeftOutReq and procLeftOutReq consume only left requests
while procRightOutReq and procRightInReq consume only right requests. Moreover, note
that the polyadic links y · o and y · i are restricted for the respective parallel operator
encoding. By Definition 6.3.15, an instantiation of a receiver lock is an unguarded output
of the form r2〈z1, z2, z3, z4, z5, z6, z7〉. Hence, to unguard such an instantiation an input
on y · i or y ·o has to be consumed that requires in turn the consumption of the requests
that are required by Condition 4. Note that by Lemma 6.2.52 and Lemma 6.2.58, we
can ignore the unfoldings of polyadic communications. We conclude by Lemma 6.3.21,

because requests are preserved modulo
��7−→-steps.

By Lemma 6.2.53, all outputs on receiver locks originate from procRightOutReq and
procRightInReq in the encoding of a parallel operator or replicated input. Remember

256

6.3. Semantic Properties

that

procRightOutReq , co〈mi〉 | co?(mi) .po(y, ls, s, z) .
(
po,up〈y, ls, s, z〉

| (νmi ,up)
(

mi
?
(
y′, lr, r

)
.
([
y′ = y

]
r〈lr, ls, ls, s, z〉 | mi ,up

〈
y′, lr, r

〉)
| (νmi) (mi ,up � mi | co〈mi〉)

))
procRightInReq , ci〈mo〉 | ci?(mo) .pi(y, lr, r) .

(
pi ,up〈y, lr, r〉

| (νmo,up)
(

mo
?
(
y′, ls, s, z

)
.
([
y′ = y

]
r〈ls, lr, ls, s, z〉 | mo,up

〈
y′, ls, s, z

〉)
| (νmo) (mo,up � mo | ci〈mo〉)

))
and, by Condition 3, the inputs on requests channels refer to right requests, where the
not restricted mo and mi above refer to left requests. By the processing of right output
requests a chain is constructed whose elements are all of the form

(νmi ,up)
(

mi
?
(
y′, lr, r

)
.
([
y′ = y

]
r〈lr, ls, ls, s, z〉 | mi ,up

〈
y′, lr, r

〉)
| (νmi) (mi ,up � mi | co〈mi〉)

)
Different members differ only by the free names mi ,up , y, ls, s, z of which all but mi ,up

result from the consumed right output request. By Lemma 6.3.24, all members of the
chain are linked by mi ,up over that only left requests are transmitted and the consumption
of a right request does not prevent the consumption of another right request but only
temporary blocks it. We conclude that the order of right output requests in this chain
does not matter for the possibility to unguard a particular instantiation of a receiver
lock. The argumentation for right input requests is similar. Hence, to unguard an
instantiation r〈l1, l2, l3, s, z〉 of a receiver lock r a right and a left request have to be
consumed and are as required by Condition 5. We conclude by Lemma 6.3.22, because

requests are preserved modulo
��7−→-steps.

By Lemma 6.2.51, Lemma 6.2.52, and Lemma 6.2.53, the then-case of a single test-
construct or the first case of a nested test-construct instantiated all tested sum locks
with ⊥. By Lemma 6.3.21 and Lemma 6.3.18, all output requests that share the same
sender lock also share the same sum lock. In the case of J · Ksa, by Lemma 6.2.51 and
Lemma 6.3.19, each test-construct that contains an output on a sender lock is guarded
by an input or a replicated input on a translated source term name and to unguard the
output on the sender lock the sum lock that is transmitted over this translated source
term name has to be instantiated by ⊥. Note that, by Lemma 6.3.12 and Lemma 6.3.19,
all outputs on translated source term names that share the same sender lock as param-
eter also share the same sum lock. In the case of J · Kmp and J · Kma , by Lemma 6.3.17,
Lemma 6.3.18, and Conditions 4 and 5, all (nested) test-constructs that contain an out-
put on a sender lock s are guarded by a receiver lock and, to unguard the output s, a
sum lock l has to be instantiated by ⊥ such that in all output requests that contain s
also l is contained. Condition 3 then follows from Lemma 6.3.10, because no negative
instantiation of a sum lock can become positive again.

By Lemma 6.3.12 and Condition 6, there is at most one input and at most one instan-
tiation on each sender lock in T , i.e., steps on sender locks cannot be in conflict with any
alternative step of T . Then Condition 7 follows from Definition 6.3.4, Lemma 6.2.58,

257

6. Properties of Encodings

and the types of the remaining links that are not translated source term names, not
sender locks, not sum locks, and for J · Kma also right request channels, or chain locks of
type](o, i).

Condition 8 follows for J · Ksa and J · Kma from Condition 7. The administrative steps
of J · Kma that are not covered by Condition 7 influence only the order in which right
requests or new branches of encoded replicated inputs are added to the respective chain.
By a similar argumentation as above, we can show that also all unguarded encodings of
continuations of encoded replicated source term inputs are eventually added as branches
to the latter chain and that the order of branches in this chain does not matter. Hence,
no administrative step can influence which impure or core steps can be reached which
proves Condition 8.

By Figures 5.1, 5.4, and 5.8, X is translated into Xand there are no other occurrences
of X in the encoding functions, i.e., an encoded source term contains X iff the source
term contains Xand for each X in the source term the X in the encoding is guarded iff it
is guarded in the source term. Hence, by the above conditions and the above argument,

T1
�Z=⇒ T2 implies (T1 ⇓X iff T2 ⇓X) for all target terms T1, T2.

By the argumentation for Condition 3 and 4 of Lemma 6.3.10, instantiations on
sum locks are consumed only by test-constructs and the completion of a (nested) test-
construct on l (and l ′) unguards exactly one instantiation of l (and l ′). Hence, the only
possibility that a consumed instantiation of a sum lock is never restored is that there is
a deadlock caused by a nested test-construct because of a missing instantiation of a sum
lock (see the discussion in Section 5.2.1). For J · Ksa Condition 10 follows from the proof
in [Nes00] that there are no such deadlocks in J · Ksa. Note the slightly changes in J · Ksa as
presented here and in [Nes00] do not influences reachability of such deadlocks. Moreover,
[Nes00] already points out that a total order on sum locks ensures that the same holds
also in the case of mixed choice. Hence, Condition 10 follows for the other encoding
from the above conditions, because the test of the left most sum lock and Condition 3
lead to such a total ordering.

6.3.3. Translated Observables

As already stated in Section 6.3.1, the analysis of source term observables (apart from X)
and their correspondence in target terms can help to describe the relationship between
source terms and their encodings as well as between source terms or encoded source
terms and derivatives of encoded source terms. By doing so we gain more insights in
the operating principles of the encodings and, moreover, ease their proof of correctness.
The consideration of source term observables and their correspondence in target terms
in particular guides our choice of � for the three encodings in the next section.

In the simplest case a source term observable µ is translated into an observable ϕJ K(µ),
where ϕJ K is the renaming policy of the considered encoding function. Of course this
requires that both the source and the target language have basically the same kind of
observables, which is usually the case only between close members of the same family of
process calculi. Note that not even πs and πa satisfy this requirement, because usually
in the synchronous πs input as well as output observables are considered whereas for its

258

6.3. Semantic Properties

asynchronous fragment πa usually only output observables are considered. However, if
such a strict correspondence is achieved it may be even possible to compare source and
target terms directly by some standard equivalence.

A more liberal case is the translation of standard source term observables into standard
target term observables. This case usually allows to choose � as a standard equivalence
of the target language. Unfortunately, for none of the three encoding functions J · Ksa,
J · Kmp , and J · Kma considered here the situation is that easy. As already explained in
[Nes00], the encoding J · Ksa translates source term output barbs y into an output on
ϕs
a(y) whose first parameter is a sum lock that has to be instantiated positively, i.e.,

S ↓y iff J S Ksa ≡ (νl , s, x̃)
(
ϕs
a(y)〈l , s, z〉 | l〈>〉 | T

)
for some l , s, z ∈ N , x̃ ∈ S(N), and

T ∈ Pa such that y is not a name of x̃. Source term input barbs are translated similarly,
but are not considered in [Nes00]. Hence, in comparison to standard observables of πs or
πa, we have to add a requirement on the current instantiation of the corresponding sum
lock. We capture the translation of source term observables explicitly within so called
translated observables. The concept of translated observables is in principle equivalent
to the Σ-Barbs introduced in [Nes96, Nes00], but in contrast to [Nes00] we define the
translation of output as well as input observables. We do so, because our aim is not
only to define a suitable equivalence for the target language but also to capture the
relationship between source and target terms in order to guide to proof of correctness.
For this it seems reasonable to consider all standard observables of the source language.

Note that within J · Ksa inputs on the translated source term names are guarded by a
receiver lock. Similarly, after a core step the translated observables of the encoded source
term continuations that are unguarded by the corresponding source term step are still
guarded by a step on a sender lock. Moreover, because of the unfolding of polyadic com-
munication in J · Kmp and J · Kma , the requests that define translated observables for these
encodings can vanish temporarily, e.g. they are temporarily consumed by the forwarders
in procLeftOutReq or procLeftInReq. Because of that, we define translated observables
modulo the administrative steps.

Definition 6.3.26 (Translated Observables in J · Ksa). Let T ∈ Pa�J · Ksa . Then T has a

translated output observables y, denoted by T ↓1y, if T has modulo
�7−→-steps an output

on ϕs
a(y) whose first parameter is a sum lock l such that l is instantiated positively in

T and ϕs
a(y) ∈ fn(T).

T has a translated input observables y, denoted by T ↓1y, if T has modulo
�7−→-steps an

input on ϕs
a(y) followed by a test on a sum lock l such that l is instantiated positively

in T and ϕm
p (y) ∈ fn(T), or if T has modulo

�7−→-steps a replicated input on ϕs
a(y) and

ϕs
a(y) ∈ fn(T).
Moreover, T reaches some translated output (input) observable, denoted as T ⇓1µ, if

there exists some T ′ ∈ Pa�J · Ksa such that T Z=⇒ T ′ and T ′ ↓1µ.

The condition y /∈ x̃ is necessary to rule out translated observables that corresponds to
invisible in- or outputs of the source term (see Definition 2.2.6).

The encoding functions J · Kmp and J · Kma translate source term observables into a re-
quest again augmented with the information covered by the sum lock.

259

6. Properties of Encodings

Definition 6.3.27 (Translated Observables in J · Kmp). Let T ∈ Pp�J · Kmp . Then T has a

translated output (input) observable y, denoted by T ↓2y (T ↓2y), if T has modulo
�7−→-steps

an output (input) request whose first parameter is ϕm
p (y) and whose second parameter

is a sum lock l such that l is instantiated positively in T and ϕm
p (y) ∈ fn(T).

Moreover, T reaches some translated output (input) observable, denoted as T ⇓2µ, if
there exists some T ′ ∈ Pp�J · Kmp such that T Z=⇒ T ′ and T ′ ↓2µ.

The definition of translated observables for J · Kma is similar, but remember that the
definition of requests differ in J · Kmp and J · Kma in the number of parameters.

Definition 6.3.28 (Translated Observables in J · Kma). Let T ∈ P=
a�J · Kma . Then T has a

translated output (input) observable y, denoted by T ↓3y (T ↓3y), if T has modulo
�7−→-steps

an output (input) request whose first parameter is ϕm
a (y) and whose second parameter

is a sum lock l such that l is instantiated positively in T and ϕm
a (y) ∈ fn(T).

Moreover, T reaches some translated output (input) observable, denoted as T ⇓3µ, if
there exists some T ′ ∈ P=

a�J · Kma such that T Z=⇒ T ′ and T ′ ↓3µ.

Obviously, by the above definitions, translated observables are preserved by adminis-
trative steps. However note that administrative steps can neither change sum locks
nor reduce an out- or input on a translated source term name in J · Ksa. Moreover, by

Lemmata 6.3.21 and 6.3.22, also requests are preserved modulo
�7−→-steps. Hence, only

the successful emulation of a source term step—or some part of such an emulation—can
change the translated observables by changing the value of sum locks from true to false,
which also unguards some encoded source term continuation (in the source guarded by
τ , input, or replicated input) and, if the emulated step was not a τ -step, an instantiation
of a sender lock to unguard the encoded continuation of the source term sender.

To show that the notion of translated observables indeed captures our intuition we
prove that the set of observables of a source term coincides with the set of translated
observables of its encoding.

Lemma 6.3.29. For all three encodings J · Ksa, J · Kmp , and J · Kma , the set of observables
of any source term is equal to the set of translated observables of its encoding.

Proof. We have to show that for all S1 ∈ Ps, all S2 ∈ Pm that do not contain replicated
inputs, and all S3 ∈ Pm it holds that

∀µ ∈ N ∪N . S1 ↓µ iff J S1 Ksa ↓
1
µ ∧ S2 ↓µ iff J S2 Kmp ↓

2
µ ∧ S3 ↓µ iff J S3 Kma ↓

3
µ .

By Lemma 6.3.10 for all unguarded sums in S there is a positively instantiated sum
lock in J S Ksa, J S Ksa, J S Ksa and each positively instantiated sum lock belongs to the
translation of an unguarded source term sum. In the case of J · Ksa, by Lemma 6.3.19 and
Lemma 6.3.16, some inputs on translated source term names are guarded by a replicated
input on a receiver lock but this replicated input is unguarded and the lock is instan-
tiated iff the respective source term input is unguarded in S. By Lemma 6.3.21 and
Lemma 6.3.14, in J · Kmp requests are initially guarded by replicated inputs on auxiliary

260

6.3. Semantic Properties

sender or receiver locks but again these are unguarded and the locks are instantiated
iff the respective source term out- or input is unguarded in S. We conclude by Defini-
tion 6.3.4 and the respective invariants for links on translated source term names and
requests, i.e., by Lemma 6.3.19, Lemma 6.3.21, and Lemma 6.3.22.

Moreover, the same holds for the set of reachable observables.

Lemma 6.3.30. For all three encodings J · Ksa, J · Kmp , and J · Kma , the set of reachable
observables of any source term is equal to the set of reachable translated observables of
its encoding.

Proof. We have to show that for all S1 ∈ Ps, all S2 ∈ Pm that do not contain replicated
inputs, and all S3 ∈ Pm it holds that

∀µ ∈ N ∪N . S1 ⇓µ iff J S1 Ksa ⇓
1
µ ∧ S2 ⇓µ iff J S2 Kmp ⇓

2
µ ∧ S3 ⇓µ iff J S3 Kma ⇓

3
µ .

This follows from Lemma 6.3.29, operational correspondence, i.e., by Lemmata 6.3.52 at
page 276, 6.3.53 at page 276, and 6.3.54 at page 277, and the definition of the respective
version of � as explained below.3

Furthermore, we show that administrative steps do not only preserve translated ob-
servables but also do not remove any.

Lemma 6.3.31. Administrative steps do not influence the set of translated observables.

Proof. Let T1, T2 ∈ Pa�J · Ksa such that T1
�7−→ T2. Then, by Definition 6.3.26, T2 ↓1µ

implies T1 ↓1µ for all µ ∈ N ∪ N . Assume T1 ↓1µ for some arbitrary µ ∈ N ∪ N . By
Definition 6.3.4, administrative steps neither reduce positive instantiations of sum locks
nor capabilities on translated source term names. Moreover, by Lemma 6.3.25, adminis-
trative steps are not in conflict with any other step. Hence, by Definition 6.3.26, T2 ↓1µ.

We conclude that T2 ↓1µ iff T1 ↓1µ for all µ ∈ N ∪N .

Let T1, T2 ∈ Pp�J · Kmp such that T1
�7−→ T2. Then, by Definition 6.3.27, T2 ↓2µ implies

T1 ↓2µ for all µ ∈ N ∪ N . Assume T1 ↓2µ for some arbitrary µ ∈ N ∪ N . By Defini-
tion 6.3.4, administrative steps do not reduce positive instantiations of sum locks and, by

Lemma 6.3.21, requests are preserved modulo
��7−→-steps. Moreover, by Lemma 6.3.25,

administrative steps are not in conflict with any other step. Hence, by Definition 6.3.27,
T2 ↓2µ. We conclude that T2 ↓2µ iff T1 ↓2µ for all µ ∈ N ∪N .

Let T1, T2 ∈ P=
a �J · Kma such that T1

�7−→ T2. Then, by Definition 6.3.28, T2 ↓3µ implies

T1 ↓3µ for all µ ∈ N ∪ N . Assume T1 ↓3µ for some arbitrary µ ∈ N ∪ N . By Defini-
tion 6.3.4, administrative steps do not reduce positive instantiations of sum locks and, by

Lemma 6.3.22, requests are preserved modulo
��7−→-steps. Moreover, by Lemma 6.3.25,

administrative steps are either not in conflict with any other step or by repeating the
argument in the proof of Lemma 6.3.25 they do not influence reachability of instantia-
tions on receiver locks and thus the possibilities to unguard a test-construct. Hence, by
Definition 6.3.28, T2 ↓3µ. We conclude that T2 ↓3µ iff T1 ↓3µ for all µ ∈ N ∪N .

3Note that we use this lemma only to prove Lemma 6.3.56, i.e., not to prove one of the used lemmata.

261

6. Properties of Encodings

In contrast, core as well as impure steps can remove translated observables by con-
suming positive instantiations of sum locks. But only core steps lead to new translated
observables, because by Lemma 6.3.25 they unguard encoded continuations of guarded
source terms.

6.3.4. A Behavioural Equivalence

Before we can prove operational correspondence we have to fix the equivalence � in the
settings of all three encodings. According to [Gor10b], � is a behavioural equivalence
that is usually a congruence at least with respect to parallel composition. Moreover,
by the criteria in Section 3.3, � has to respect success. The main purpose of � in the
definition of operational correspondence is to abstract from junk, i.e., left over of former
emulations that do not influence the abstract behaviour of a target term.

Since the target language is the asynchronous pi-calculus, it seems natural to choose
weak asynchronous bisimilarity ≈a or asynchronous barbed congruence ∼̇=a. Unfortu-
nately for both choices the presented encodings are not good. Consider for example the
source term S = (νx) (x+ y | x). It can perform a reduction to 0. But all derivatives
of its encoding, i.e., all T ∈ Pa with J S Ksa Z=⇒ T or J S Kma Z=⇒ T , are neither asyn-
chronously barbed bisimilar nor asynchronously barbed congruent to the encoding of 0,
i.e., T 6≈a (νl)

(
l〈>〉

)
and T ˙6∼=a (νl)

(
l〈>〉

)
, where J 0 Ksa = (νl)

(
l〈>〉

)
= J 0 Kma . Note

that this is not due to the encoding of 0, which is indeed weak asynchronously bisimi-
lar to 0 again, but to the observable junk, which suffices to distinguish the left over of
emulations from 0. Because of this, a proof of the correctness of these encodings with
respect to ≈a or ∼̇=a fails due to operational correspondence (see the Definition 3.3.4). Of
course, you might argue that an encoding that cannot get rid of observable junk is not
a good encoding. On the other side, Nestmann in [Nes00] gives some good reasons to
accept J · Ksa as a good encoding. Moreover, the translation of observables into something
different seems to be quite a natural habit of encoding functions. And indeed rephrasing
a standard equivalence to take instead of observables translated observables into account
suffices to turn it into an equivalence that describes the abstract behaviour of encoded
terms. The same holds if we do not consider observables at all, but e.g. consider only
reachability of success.

We denote the variants of barbed bisimilarity that use translated observables instead
of standard observables as translated barbed bisimilarity. Because of the different for-
mulations of translated observables for the three encoding functions we obtain three
different notions of translated barbed bisimilarity. Moreover, we augment the follow-
ing variants of barbed bisimilarity with an additional requirement that ensures that the
equivalences respect success.

Definition 6.3.32 (Translated Barbed Bisimilarity). Let P,Q ∈ Pa. Then P and Q
are translated barbed bisimilar with respect to J · Ksa, denoted by P ≈̇↓1 Q, if

1. P ⇓X iff Q ⇓X,

2. for all µ ∈ N ∪N , P ⇓1µ iff Q ⇓1µ,

262

6.3. Semantic Properties

3. for all P ′ ∈ Pa, P 7−→ P ′ implies Q Z=⇒ ≈̇↓1 P ′, and

4. for all Q′ ∈ Pa, Q 7−→ Q′ implies P Z=⇒ ≈̇↓1 Q′.

Let P,Q ∈ Pp. Then P and Q are translated barbed bisimilar with respect to J · Kmp ,

denoted by P ≈̇↓2 Q, if

1. P ⇓X iff Q ⇓X,

2. for all µ ∈ N ∪N , P ⇓2µ iff Q ⇓2µ,

3. for all P ′ ∈ Pp, P 7−→ P ′ implies Q Z=⇒ ≈̇↓2 P ′, and

4. for all Q′ ∈ Pp, Q 7−→ Q′ implies P Z=⇒ ≈̇↓2 Q′.

Let P,Q ∈ P=
a . Then P and Q are translated barbed bisimilar with respect to J · Kma ,

denoted by P ≈̇↓3 Q, if

1. P ⇓X iff Q ⇓X,

2. for all µ ∈ N ∪N , P ⇓3µ iff Q ⇓3µ,

3. for all P ′ ∈ P=
a , P 7−→ P ′ implies Q Z=⇒ ≈̇↓3 P ′, and

4. for all Q′ ∈ P=
a , Q 7−→ Q′ implies P Z=⇒ ≈̇↓3 Q′.

Note that the first condition of each equivalence ensures that it respects success. The
other conditions then define a version of weak barbed bisimilarity which uses translated
observables instead of standard barbs. Note that we consider the translation of input as
well as output observables, although our target language is asynchronous. However, in
J · Kmp and J · Kma both translated output as well as translated input barbs are represented
by requests, i.e., outputs on request channels. Moreover, the consideration of all standard
observables of a source language can help to reason about the relationship of source and
target terms. In particular it can help to reason backwards from a target term to its
original source term as it is required by operational soundness.

Alternatively, we could decide not to consider barbs at all, by omitting the second
condition of the above equivalences. We result then in an equivalence that considers
only reachability of X as abstract behaviour of a term. Note that this intuition goes
along very well with the criteria defined by Gorla as they also do only require a similar
reachability of X. This allows to base the notion of abstract behaviour on an observable
that is defined independently from a specific source or target language. An advantage
of such an equivalence is that it is independent of the considered encoding function.
However, in the presented case the resulting equivalence is trivial, because it reduces
to weak success respecting reduction bisimulation that cannot distinguish between more
than three cases. Moreover, translated observables reflect a main operating principle of
the encoding functions and thus ease the following argumentation on their correctness.

The encodings J · Kmp and J · Kma induce also another problem concerning the choice
of an appropriate equivalence, although that problem is not that crucial as observable

263

6. Properties of Encodings

junk. As explained in Section 6.3.1, encodings of structurally congruent source terms
can differ in the number and nature of reachable partially committed states. Operational
soundness explicitly allows for intermediate states, i.e., target term states that do not
map to the encodings of any of the corresponding source terms. So the presence of
partially committed states in the encoding of some source term does not cause any
problem. However, if � distinguishes target terms by the reachability of partially com-
mitted states, we have a problem with the reduction Rule Pi-Congm,s,a,p of Figure 2.3
and operational completeness of Definition 3.3.4. Let us consider the source terms S =
(a.S1 + a.S2) | a | a.S3 and S′ = a | (a.S1 + a.S2) | a.S3. The source term b.S | b
can reduce to S but, because of Pi-Congm,s,a,p, it can reduce to S′ as well. J · Kma can
emulate the first step modulo ≈̇↓3 but not the second step. Note that Pi-Congm,s,a,p

is used to shorten the presentation of the reduction semantics, but it is neither necessary
nor was it the original choice. So the most natural way to circumvent this problem is
to rephrase the rules of the reduction semantics by avoiding Rule Pi-Congm,s,a,p and
with it the possibility to arbitrary reorder the subprocesses during reductions. However
we can also circumvent this problem by using a form of coupled simulation which does
not distinguish terms by the reachability of partially committed states. Therefore we
adapt the definition of weak barbed simulation in Section 2.2.2 such that it considers
translated observables instead of the standard observables of the pi-calculus.

Definition 6.3.33 (Translated Barbed Simulation). S ⊆ Pp × Pp is a weak translated
barbed simulation with respect to J · Kmp if (P,Q) ∈ S implies that

1. P ⇓X implies Q ⇓X,

2. P ⇓2µ implies Q ⇓2µ for all µ ∈ N ∪N , and

3. for all P ′ ∈ Pp such that P Z=⇒ P ′ there is some Q′ ∈ Pp such that Q Z=⇒ Q′ and
(P ′, Q′) ∈ S.

P,Q ∈ Pp are weakly translated barbed similar with respect to J · Kmp , denoted as P .̇
↓2
Q,

if they are related by some weak translated barbed simulation.
S ⊆ P=

a ×P=
a is a weak translated barbed simulation with respect to J · Kma if (P,Q) ∈ S

implies that

1. P ⇓X implies Q ⇓X,

2. P ⇓3µ implies Q ⇓3µ for all µ ∈ N ∪N , and

3. for all P ′ ∈ P=
a such that P Z=⇒ P ′ there is some Q′ ∈ P=

a such that Q Z=⇒ Q′ and
(P ′, Q′) ∈ S.

P,Q ∈ P=
a are weakly translated barbed similar with respect to J · Kma , denoted as

P .̇
↓3
Q, if they are related by some weak translated barbed simulation.

Again we consider the translations of output as well as input observables of the source
term. Note that by Lemma 6.3.25 there is eventually an instantiation of each consumed

sum lock. Thus

(
.̇
↓3
,
(
.̇
↓3)−1)

is a coupled translated barbed simulation.

264

6.3. Semantic Properties

Definition 6.3.34 (Coupled Translated Barbed Simulation). A mutual translated bar-
bed simulation is a pair (S1,S2) such that S1 and S−12 are weak translated barbed
simulations.

A mutual barbed simulation (S1,S2) with respect to J · Kmp is a coupled translated
barbed simulation with respect to J · Kmp if

1. for all (P,Q) ∈ S1 there is some Q′ ∈ Pp such that Q Z=⇒ Q′ and (P,Q′) ∈ S2, and

2. for all (P,Q) ∈ S2 there is some P ′ ∈ Pp such that P Z=⇒ P ′ and (P ′, Q) ∈ S1.

Two processes P,Q ∈ Pp are coupled translated barbed similar with respect to J · Kmp ,

denoted as P �̇
↓2
Q, if they are related by both components of some coupled barbed

simulation with respect to J · Kmp .
A mutual barbed simulation (S1,S2) with respect to J · Kma is a coupled translated

barbed simulation with respect to J · Kma if

1. for all (P,Q) ∈ S1 there is some Q′ ∈ P=
a such that Q Z=⇒ Q′ and (P,Q′) ∈ S2,

and

2. for all (P,Q) ∈ S2 there is some P ′ ∈ P=
a such that P Z=⇒ P ′ and (P ′, Q) ∈ S1.

Two processes P,Q ∈ P=
a are coupled translated barbed similar with respect to J · Kma ,

denoted as P �̇
↓3
Q, if they are related by both components of some coupled barbed

simulation with respect to J · Kma .

Note that coupled translated barbed simulation is strictly weaker than translated
barbed bisimulation and that we use it to circumvent the problem with Pi-Congm,s,a,p

in operational completeness only. More precisely, we use it to show preservation of
structural congruence for the source term in Lemma 6.3.42. For the remaining results
we use the stricter equivalence.

Observation 6.3.35. ≈̇↓2 ⊂ �̇↓2 and ≈̇↓3 ⊂ �̇↓3 .

Also note that already in [Nes96, NP00, Nes00] coupled simulation is used to reason
about encodings of choice. There, however, coupled simulation is used in order to obtain
a full-abstraction result. We observe that in the general framework of Gorla (Section 3.3)
coupled simulation is not necessary to reason about J · Ksa. And in the case of our
encodings of mixed choice, it is only necessary if we do not forbid Rule Pi-Congm,s,a,p

in the source language.
The observable junk does not only rule out standard equivalences but also congru-

ences with respect to contexts that allow for interaction with observable junk. Such
an interaction can for instance lead to a positive instantiation of a formerly negative
instantiation of a sum lock and so turn an observable junk into a translated observable,
or it can instantiate a sender lock and so complete emulations on junk.

Example 6.3.36. Let us consider the target term T = (νl)
(
J y.XKma | l〈⊥〉

)
of J · Kma .

We prove in the next section (Lemma 6.3.49) that this term is junk. Such a term can

265

6. Properties of Encodings

result from an emulation of a source term step of an out- or input within choice, e.g. for
a source term x+y.X | x. Since T does not reach any translated observable or unguarded
occurrence of X, we have T ≈̇↓3 J 0 Kma . However, we can distinguish T from J 0 Kma by
the context C([·]) = [·] | po(−,−, s,−) .s, where po is the free output request channel of

J y.XKma . We have C(T) ⇓X but C(0) 6⇓X, i.e., C(T) ˙6≈↓3 C(0).

Because of this, we have to reduce the number of contexts we consider to obtain
a congruence. Intuitively, we consider only contexts that respect the protocol of the
encoding function. Thus, we consider only contexts that, if their argument is a target
term as for instance the encoding of 0, result in a target term.

Definition 6.3.37 (Translated Barbed Congruence). Two terms T1, T2 ∈ Pa are trans-

lated barbed congruent with respect to J · Ksa, denoted as T1 ∼̇=
↓1
T2, if

∀C([·]) : Pa → Pa . ∀S ∈ Ps . C(J S Ksa) ∈ Pa�J · Ksa implies C(T1) ≈̇↓1 C(T2) .

Two target terms T1, T2 ∈ Pp are translated barbed congruent with respect to J · Kmp ,

denoted as T1 ∼̇=
↓2
T2, if

∀C([·]) : Pp → Pp . ∀S ∈ Pm . C
(
J S Kmp

)
∈ Pp�J · Kmp implies C(T1) ≈̇↓2 C(T2) .

Two target terms T1, T2 ∈ Pp are coupled translated barbed congruent with respect to

J · Kmp , denoted as T1 �̇
↓2
c T2, if

∀C([·]) : Pp → Pp . ∀S ∈ Pm . C
(
J S Kmp

)
∈ Pp�J · Kmp implies C(T1) �̇

↓2 C(T2) .

Two target terms T1, T2 ∈ P=
a are translated barbed congruent with respect to J · Kma ,

denoted as T1 ∼̇=
↓3
T2, if

∀C([·]) : P=
a → P=

a . ∀S ∈ Pm . C(J S Kma) ∈ P=
a�J · Kma implies C(T1) ≈̇↓3 C(T2) .

Two target terms T1, T2 ∈ P=
a are coupled translated barbed congruent with respect to

J · Kma , denoted as T1 �̇
↓3
c T2, if

∀C([·]) : P=
a → P=

a . ∀S ∈ Pm . C(J S Kma) ∈ P=
a�J · Kma implies C(T1) �̇

↓3 C(T2) .

Operational correspondence considers only target terms, so it would suffice to define
the congruence over target terms only. However, in defining it over all terms of the
target language we gain more flexibility. In particular, it allows us to stepwise reduce
junk which in some cases leads to non target terms. Since these non target terms are
behaviourally equivalent to the considered target terms, they serve as connecting pieces
to link the target terms. Moreover, as the example above shows, the congruence relations
are strictly weaker than their corresponding equivalences.

Observation 6.3.38. ∼̇=↓1 ⊂ ≈̇↓1 , ∼̇=↓2 ⊂ ≈̇↓2 , ∼̇=↓2 ⊂ �̇
↓2
c ⊂ �̇

↓2
,

∼̇=↓3 ⊂ ≈̇↓3 , and ∼̇=↓3 ⊂ �̇↓3c ⊂ �̇↓3 .

266

6.3. Semantic Properties

Of course all the presented congruences contain structural congruence of target terms.

Lemma 6.3.39. Translated barbed congruence includes structural congruence.

Proof. Let T1, T2 ∈ P=
a �J · Kma . By Definitions 3.2.2 and 6.3.28, T1 ≡ T2 implies T1 ⇓X

iff T2 ⇓X and T1 ↓3µ iff T2 ↓3µ for all µ ∈ N ∪ N . By Pi-Congm,s,a,p in the reduction

semantics of π=a in Figure 2.3, then T1 ≈̇↓3 T2. Hence, ≡ ⊂ ≈̇↓3
Moreover, let C([·]) : P=

a → P=
a such that C(J S Kma) ∈ Pa�J · Ksa for all source terms S ∈

Pm. Then obviously C(T1) ≡ C(T2) and thus, by the above argument, C(T1) ≈̇↓3 C(T2).

The argument for the other encodings is similar. Hence, ≡ ⊂ ∼̇=↓1 , ≡ ⊂ ∼̇=↓2 , and

≡ ⊂ ∼̇=↓3 .

Remember that to our intuition administrative steps are only pre- or postprocessing
steps that do not influence which emulations can be completed. To underpin that intu-
ition, we prove that administrative steps do not change the state of a target term modulo
the considered equivalences and congruences.

Lemma 6.3.40. Administrative steps do not influence the state of a target term modulo
translated barbed congruence.

Proof. Let T1, T2 ∈ P=
a �J · Kma such that T1

�7−→ T2. By Lemma 6.3.25, T1 ⇓X iff T2 ⇓X.
By Lemma 6.3.31, T1 ↓3µ iff T2 ↓3µ for all µ ∈ N ∪N . Moreover, by Lemma 6.3.25, most
of the administrative steps are not in conflict with any other step and the remaining
steps do only influence the order of elements in chains but do not influence reachability
of instantiations on receiver locks and thus reachability of unguarded outputs on sum
locks. Hence, T1 ≈̇↓3 T2.

Moreover, let C([·]) : P=
a → P=

a such that C(J S Kma) ∈ Pa�J · Ksa for all source terms

S ∈ Pm. Then obviously C(T1) , C(T2) ∈ P=
a�J · Kma . If T1 is unguarded in C then C(T1)

�7−→
C(T2) and, by the argument above, C(T1) ≈̇↓3 C(T2). If there is no way to unguard T1
in C then there is also no way for the context to unguard T2 or to interact with one
of the terms, i.e., again C(T1) ≈̇↓3 C(T2). Else there is an execution C(T1) Z=⇒ C′(T1)
and so C(T2) Z=⇒ C′(T2). By the above argument, C′(T1) ≈̇↓3 C

′
(T2). By an induction

on the number of steps in C(T1) Z=⇒ C′(T1), then also C(T1) ≈̇↓3 C(T2). Hence, by

Definition 6.3.37, also T1 ∼̇=
↓3
T2.

The argumentation for the other encodings is similar.

Note that, because of this lemma, we can mostly ignore administrative steps in the
following proofs. To deal with the reduction Rule Pi-Congm,s,a,p in the proof of op-
erational completeness, we prove that the encodings preserve structural congruence of
source terms modulo the presented congruences.

Lemma 6.3.41. The encoding J · Ksa preserves structural congruence of source terms
modulo translated barbed congruence, i.e.,

∀S, S′ ∈ Ps . S ≡ S′ implies J S Ksa ∼̇=
↓1 q

S′
ys
a
.

267

6. Properties of Encodings

Proof. The strict use of the renaming policy ϕs
a, i.e., the fact that source term names

are translated into single names not used by the encoding function for special purposes,
ensures the preservation of equality modulo α-conversion. Since the parallel operator
and restriction are translated homomorphically, the encoding J · Ksa preserves structural
congruence of source terms for all rules except for P | 0 ≡ P , i.e., if S and S′ are
structurally congruent without using the rule P | 0 ≡ P , then J S Ksa ≡ J S′ Ksa. By

Lemma 6.3.39, then J S Ksa ∼̇=
↓1 J S′ Ksa.

The rule P | 0 ≡ P is not preserved, because the empty sum 0 is not translated
homomorphically, so e.g. 0 | 0 ≡ 0 but J 0 | 0 Ksa = (νl) l〈>〉 | (νl) l〈>〉 6≡ (νl) l〈>〉 =
J 0 Ksa. Note that, because of the renaming policy ϕs

a and the homomorphic translation
of restriction, the rule (νn) 0 ≡ 0 is preserved, i.e., since ϕs

a(n) /∈ fn(J 0 Ksa), we have
J (νn) 0 Ksa = (νϕs

a(n)) (νl) l〈>〉 ≡ (νl) l〈>〉 = J 0 Ksa. However, since 0 is translated into
a closed term that cannot perform any step, its encoding behaves as 0. In particular
J 0 Ksa cannot interact with any context and does not reach success or any translated

observable on its own. So, even in this case, we have J S Ksa ∼̇=
↓1 J S′ Ksa.

Since J · Kmp and J · Kma do not translate the parallel operator homomorphically, struc-
tural congruence of source terms is not preserved. But, since the encoding preserves the
abstract behaviour of source terms, the encodings of structurally congruent source terms
are similar modulo equivalences measuring only the abstract behaviour. As already ex-
plained, to prove the following statement, the equivalence must not distinguish terms by
their reachable partially committed states.

Lemma 6.3.42. The encodings J · Kmp and J · Kma preserve structural congruence of source
terms modulo coupled translated barbed congruence, i.e.,

∀S, S′ ∈ Pm . S ≡ S′ implies J S Kmp �̇
↓2
c

q
S′

ym
p
∧ J S Kma �̇

↓3
c

q
S′

ym
a
.

Proof. Again, the strict use of the renaming policy ϕm
a ensures the preservation of equal-

ity modulo α-conversion. So S ≡α S′ implies J S Kma ≡α J S′ Kma . Also, the homomor-
phic translation of restriction ensures the preservation of structural congruence modulo
the rules (νn) 0 = 0, (νn) (νm)P ≡ (νm) (νn)P , and P | (νn)Q ≡ (νn) (P | Q) if
n /∈ fn(P). So, if S and S′ do only differ due to one or more of these three rules, then

J S Kma ≡ J S′ Kma . By Lemma 6.3.39, we conclude J S Kma �̇
↓3
c J S′ Kma for the above

cases.

Now consider a single application of the remaining structural congruence rules. The
proof is then by induction on the number of structural congruence rules necessary to
obtain S ≡ S′.

Case of P | 0 ≡ P : In this case S = P | 0 and S′ = P for some P ∈ Pm. By Figure 5.8,

268

6.3. Semantic Properties

we have

J S Kma = (νmo ,mi , po,up , pi ,up , co , ci)
(

(νpo , pi) (J P Kma | procLeftOutReq | procLeftInReq)

| (νpo , pi)
(
(νl) l〈>〉 | procRightOutReq | procRightInReq

)
| pushReq

)
and J S′ Kma = J P Kma . Obviously J S Kma and J S′ Kma are not structurally congruent.
However, J P Kma appears unguarded within J S Kma , so if J S′ Kma reaches X or a
translated observable then so does J S Kma and vice versa. Moreover we observe
that, since the encoding of 0 does not emit any requests, the right branch of J S Kma

(νpo , pi)
(
(νl) l〈>〉 | procRightOutReq | procRightInReq

)
can do nothing but two steps on chain locks. Because of that, requests of J P Kma are
prepared to be transmitted to the right side by procLeftOutReq and procLeftInReq
but they are never received at the right side. What remains is the upward pushing
of all requests of J P Kma by the interplay of procLeftOutReq, procLeftInReq, and
pushReq. Because of that, for all target term contexts J P | 0 Kma and J P Kma differ

only by administrative steps. By Lemma 6.3.40, J S Kma �̇
↓3
c J S′ Kma .

Case of P | Q ≡ Q | P : In this case S = P | Q and S′ = Q | P for some P,Q ∈ Pm.
Their encodings are given by:

J S Kma = (νmo ,mi , po,up , pi ,up , co , ci)
(

(νpo , pi) (J P Kma | procLeftOutReq | procLeftInReq)

| (νpo , pi) (J Q Kma | procRightOutReq | procRightInReq)

| pushReq
)

q
S′

ym
a

= (νmo ,mi , po,up , pi ,up , co , ci)
(

(νpo , pi) (J Q Kma | procLeftOutReq | procLeftInReq)

| (νpo , pi) (J P Kma | procRightOutReq | procRightInReq)

| pushReq
)

Since all combinations of left and right requests are checked, J S Kma can emula-
te the same source term steps as J S′ Kma . However, since J P Kma and J Q Kma are
swapped at the outermost parallel operator the roles of left and right requests are
swapped. As a consequence, if a combination of requests from J P Kma and J Q Kma
leads to a test on the respective sum locks, the order in which these locks are
tested is different in J S Kma and J S′ Kma . So J S Kma and J S′ Kma differ in their total
ordering of sum locks. The ordering in J S Kma is based on the structure induced by
the nesting of parallel operators in P | Q, whereas the ordering in J S′ Kma is based
on the structure induced by the parallel operator nesting in Q | P . Note that,
since in both cases this structure is a binary tree, by Lemma 6.3.25, the encoding

269

6. Properties of Encodings

does not introduce deadlock. But as explained in Example 6.3.6 the different
orderings may lead to different reachable partially committed states. Apart from
intermediate states, J S Kma and J S′ Kma are similar, i.e., they have the same chance
to reach success or translated observables. Note that consecutive impure steps may
lead to a partially committed state that cannot be turned into a normal state by
a single core step. But, because of Lemma 6.3.10, eventually for each consumed
instantiation of a sum lock a new one is unguarded. Thus there is always a sequence
of steps that resolves all started nested test-constructs, unguards an instantiation
of all consumed instantiations of sum locks, and leads back to a normal state.

Because of that, J S Kma �̇
↓3 J S′ Kma . Note that a context cannot change the order

of sum locks within its parameter but only include this order within the order of

its own sum locks. Because of that, J S Kma �̇
↓3
c J S′ Kma .

Case of P | (Q | R) ≡ (P | Q) | R: In this case S = P | (Q | R) and S′ = (P | Q) | R for
some P,Q,R ∈ Pm. Their encodings are given by

J S Kma = (νmo ,mi , po,up , pi ,up , co , ci)
(

(νpo , pi) (J P Kma | procLeftOutReq | procLeftInReq)

| (νpo , pi)
(

(νmo ,mi , po,up , pi ,up , co , ci)
(

(νpo , pi) (J Q Kma | procLeftOutReq | procLeftInReq)

| (νpo , pi) (J R Kma | procRightOutReq | procRightInReq)

| pushReq
)

| procRightOutReq | procRightInReq
)

| pushReq
)

and

q
S′

ym
a

= (νmo ,mi , po,up , pi ,up , co , ci)
(
pushReq

| (νpo , pi)
(

(νmo ,mi , po,up , pi ,up , co , ci)
(
pushReq

| (νpo , pi) (J P Kma | procLeftOutReq | procLeftInReq)

| (νpo , pi) (J Q Kma | procRightOutReq | procRightInReq)
)

| procLeftOutReq | procLeftInReq
)

| (νpo , pi) (J R Kma | procRightOutReq | procRightInReq)
)
.

In J S Kma the encoding of Q appears left and the encoding of R appears right
within the encoding of a parallel operator. Together they form the right branch
of a surrounding encoding of a parallel operator, there the left branch is filled
with J P Kma . In contrast, in J S′ Kma the terms J P Kma and J Q Kma are left and right
of a parallel operator encoding which is the left branch of a surrounding parallel
operator encoding, where J R Kma appears right. However, by Lemma 6.3.25, all
requests are pushed upwards to each surrounding parallel operator encoding. Thus
all combinations of requests among the three encoded subterms J P Kma , J Q Kma , and

270

6.3. Semantic Properties

J R Kma are checked in J S Kma as well as in J S′ Kma . Moreover, we observe that in both
encodings J S Kma and J S′ Kma the encoding of P is always left to the encodings of
Q and R, and the encoding of Q is always left to the encoding of R. So in this case
J S Kma and J S′ Kma do not differ in the underlying total ordering of sum locks, i.e.,
they reach the same intermediate or partially committed states. So the behaviour
of J S Kma and J S′ Kma does only differ in administrative steps on requests but they
have in all contexts the same chance to reach X and translated observables. By

Lemma 6.3.40, then J S Kma �̇
↓3
c J S′ Kma .

The argumentation for J · Kmp is similar.

These two lemmata finally prove that partially committed states do not forbid for
operational completeness even if we allow to have the reduction Rule Pi-Congm,s,a,p in
the source language.

6.3.5. Junk

We consider left over of emulations that behave modulo ≈̇↓1, ≈̇↓2, and ≈̇↓3 like 0 and
do not influence the possibility or inability to emulate further source term steps as junk.
The emulation of source term steps may leave different kinds of junk. Note that, to prove
that junk does no harm, is in particular necessary to show operational completeness.

Of course we are only interested in kinds of junk that appear in target terms, i.e.,
that are pieces of target terms. However, to ease the argumentation on the proof of
operational completeness we want to allow to stepwise reduce junk. Unfortunately, as
soon as we reduce a target term by the first piece of junk, it is often not a target term
any more. So, in order to allow for a stepwise reduction of junk, we give a recursive
definition of what it means to be a piece of a target term.

Definition 6.3.43 (Piece of a Target Term). A term T ∈ Pa is a piece of a target term

in Pa�J · Ksa , denoted by T ∈ P
(
Pa�J · Ksa

)
, if T ∈ Pa�J · Ksa or there exists T ′, J ∈ Pa, and a

sequence of names x̃ such that

T ≡ (νx̃)T ′ ∧ T ∼̇=↓1 (νx̃)
(
T ′ | J

)
∧ (νx̃)

(
T ′ | J

)
∈ P

(
Pa�J · Ksa

)
.

A term T ∈ Pp is a piece of a target term in Pp�J · Kmp , denoted by T ∈ P
(
Pa�J · Kmp

)
, if

T ∈ Pp�J · Kmp or there exists T ′, J ∈ Pp, and a sequence of names x̃ such that

T ≡ (νx̃)T ′ ∧ T ∼̇=↓2 (νx̃)
(
T ′ | J

)
∧ (νx̃)

(
T ′ | J

)
∈ P

(
Pa�J · Kmp

)
.

A term T ∈ P=
a is a piece of a target term in P=

a �J · Kma , denoted by T ∈ P
(
P=
a�J · Kma

)
, if

T ∈ P=
a�J · Kma or there exists T ′, J ∈ P=

a , and a sequence of names x̃ such that

T ≡ (νx̃)T ′ ∧ T ∼̇=↓3 (νx̃)
(
T ′ | J

)
∧ (νx̃)

(
T ′ | J

)
∈ P

(
P=
a�J · Kma

)
.

271

6. Properties of Encodings

Intuitively, the definition above allows for a piece of a target term to recover the cor-
responding target term by stepwise restoring the reduced junk. Moreover note that,

although the relations ∼̇=↓1, ∼̇=↓2, and ∼̇=↓3 are not sensitive to divergence, they are sensi-

tive to deadlock. Because of that, we require T ∼̇=↓1 (νx̃) (T ′ | J) to ensure that indeed
only junk is removed and no deadlock is introduced.

Definition 6.3.44 (Junk). A term J ∈ Pa is called junk of the encoding J · Ksa modulo
≈̇↓1 if J behaves modulo ≈̇↓1 like 0 for all pieces of target terms, i.e.,

∀C([·]) : Pa → Pa . C(J) ∈ P
(
Pa�J · Ksa

)
implies C(J) ≈̇↓1 C(0) .

A term J ∈ Pp is called junk of the encoding J · Kmp modulo ≈̇↓2 if J behaves modulo

≈̇↓2 like 0 for all pieces of target terms, i.e.,

∀C([·]) : Pp → Pp . C(J) ∈ P
(
Pa�J · Kmp

)
implies C(J) ≈̇↓2 C(0) .

A term J ∈ P=
a is called junk of the encoding J · Kma modulo ≈̇↓3 if J behaves modulo

≈̇↓3 like 0 for all pieces of target terms, i.e.,

∀C([·]) : P=
a → P=

a . C(J) ∈ P
(
P=
a�J · Kma

)
implies C(J) ≈̇↓3 C(0) .

Since we do not consider junk modulo equivalences different from ≈̇↓1, ≈̇↓2, and ≈̇↓3, we
omit the equivalence in the following. Moreover we omit the encoding function if the
considered junk appears within all three encodings.

Of course, whenever we reduce a piece of a target term by removing junk, the result is
again a piece of a target term. Moreover, reducing junk does not change the behaviour
of such a term modulo translated barbed congruence.

Lemma 6.3.45. Let T be a piece of a target term including some junk J . Then removing
this junk results in a piece of a target term which is congruent to T .

Proof. For J · Kma we have to show that

T ≡ (νx̃)
(
T ′ | J

)
implies (νx̃)T ′ ∈ P

(
P=
a�J · Kma

)
∧ T ∼̇=↓3 (νx̃)T ′

for all T ∈ P
(
P=
a�J · Kma

)
, all T ′ ∈ P=

a , all J ∈ P=
a that are junk of the encoding J · Kma

modulo ≈̇↓3 , and all sequences of names x̃.

Let J ∈ P=
a be junk. And let T ∈ P

(
P=
a�J · Kma

)
, T ′ ∈ P=

a , and x̃ a sequence

of names such that T ≡ (νx̃) (T ′ | J). By Lemma 6.3.39, T ≡ (νx̃) (T ′ | J) implies

T ∼̇=↓3 (νx̃) (T ′ | J). By Definition 6.3.37, then C(T) ≈̇↓3 C((νx̃) (T ′ | J)) for all con-
texts C([·]) : P=

a → P=
a such that C(J S Kma) ∈ P=

a �J · Kma for all S ∈ Pm. Let C′([·]) =

(νx̃) (T ′ | [·]). Then C′([·]) ∈ P=
a → P=

a , T ≡ C′(J), and C′(J) ∈ P
(
P=
a�J · Kma

)
. By Def-

inition 6.3.37, T ∼̇=↓3 (νx̃) (T ′ | J) implies C(T) ≈̇↓3 C
(
C′(J)

)
for all C([·]) : P=

a → P=
a

272

6.3. Semantic Properties

such that C(J S Kma) ∈ P=
a �J · Kma for all S ∈ Pm. Moreover, C′(J) ∈ P

(
P=
a�J · Kma

)
implies

C
(
C′(J)

)
∈ P

(
P=
a�J · Kma

)
for all such contexts C. By Definition 6.3.44 of junk, then

C
(
C′(J)

)
≈̇↓3 C

(
C′(0)

)
for all such contexts C. Since C

(
C′(0)

)
= C((νx̃) (T ′ | 0)) ≡

C((νx̃)T ′) and by Lemma 6.3.39, then C
(
C′(J)

)
≈̇↓3 C((νx̃)T ′) for all such contexts C.

Then C(T) ≈̇↓3 C
(
C′(J)

)
for all such contexts C and C

(
C′(J)

)
≈̇↓3 C((νx̃)T ′) for all

such contexts C imply C(T) ≈̇↓3 C((νx̃)T ′) for all such contexts C. Thus, by Definition

6.3.37, we conclude T ∼̇=↓3 (νx̃)T ′.

Finally, by Lemma 6.3.39, T ∼̇=↓3 (νx̃)T ′ implies (νx̃)T ′ ∼̇=↓3 (νx̃) (T ′ | J). Thus,

since (νx̃) (T ′ | J) ∈ P
(
P=
a�J · Kma

)
, we conclude (νx̃)T ′ ∈ P

(
P=
a�J · Kma

)
.

The argumentation for the other encodings is similar.

Using this lemma we can remove junk from a target term T . As result we obtain a

piece of a target term T ′ such that T ∼̇=↓1 T ′, T ∼̇=↓2 T ′, or T ∼̇=↓3 T ′, respectively. Then
we can further reduce T ′ by removing junk such that we result in a piece of a target term

T ′′ with T ′ ∼̇=↓1 T ′′, T ′ ∼̇=↓2 T ′′, or T ′ ∼̇=↓3 T ′′ and so forth. Note that we spend some
effort in defining the notion of a piece of a target term to allow the stepwise removal of
junk. This allows us to consider different kinds of junk separately. If we instead consider
all possible junk of a target term at one go, then for the definition of junk it suffices to
require that the context C is such that C(J) is a target term. However, it seems to be
more efficient and more descriptive to consider the different kinds of junk separately.

In the simplest case junk is a closed process that cannot perform any step, i.e., junk is
invisible and inactive. Such a kind of junk is produced e.g. as left over of a test-construct.
By Definition 5.1.1, a test-construct and the corresponding instantiations of booleans are
defined as:

l〈>〉 , l(t, f) .t

l〈⊥〉 , l(t, f) .f

test l then P else Q , (νt, f)
(
l〈t, f〉 | t.P | f.Q

)
for some t, f /∈ fn(P) ∪ fn(Q)

If we test a positive instantiation of sum lock we result in the then-case P | (νt , f) (f .Q),
else a test results in the else-case Q | (νt , f) (t .P). The terms (νt , f) (f .Q) or (νt , f) (t .P)
remain as unobservable and inactive junk.

Lemma 6.3.46. The terms (νt , f) (f .Q) or (νt , f) (t .P) are junk.

Proof. Let J1 = (νt , f) (f .Q) and J2 = (νt , f) (t .P). J1 as well as J2 are closed terms,
which cannot perform any step. Moreover, they reach neither success nor translated
observables, i.e., Ji 6⇓X, Ji 6⇓1µ, Ji 6⇓2µ, and Ji 6⇓3µ for all µ ∈ N ∪ N and all 1 ≤ i ≤ 2.

Because of that, for all contexts C([·]) ∈ Pa → Pa we have C(J1) ≈̇↓1 C(0) ≈̇↓1 C(J2)
and similarly for the other encodings. Thus, by Definition 6.3.44, J1 and J2 are junk.

273

6. Properties of Encodings

Note that, due to this lemma, we can securely omit the left over of test-constructs in the
following. Another kind of unobservable and inactive junk is produced by the translation
of the empty sum 0. It results in a positive instantiation of a sum lock that is not used
anywhere. However, let us generalise this case a little bit to an arbitrary instantiation
of a sum lock (either positive or negative) that is not used anywhere.

Lemma 6.3.47. For any name l the term (νl)
(
l〈z〉

)
, where z ∈ { >,⊥ }, is junk.

Proof. Let J = (νl)
(
l〈z〉

)
. J is a closed term, which cannot perform any step. Moreover,

this term can reach neither success nor any translated observable, i.e., J 6⇓X and J 6⇓3µ
for all µ ∈ N ∪ N . So for all contexts C([·]) ∈ P=

a → P=
a we have C(J) ≈̇↓3 C(0).

The argumentation for the other encodings is similar. Thus, by Definition 6.3.44, J is
junk.

Note that this lemma shows that the translation of the empty sum is junk, i.e., we
translate nothing into nothing but junk. Moreover we use it to reduce the left over of
emulations. In the following lemma we prove, that requests on negative instantiations of
sum locks are junk of the encodings J · Kmp and J · Kma . Note that in this case we consider
junk that is potentially observable and active.

Lemma 6.3.48. Requests on negative instantiations of sum locks are junk.

Proof. By Lemma 6.3.10, a negative instantiation on a sum lock never becomes positive
and all tests on a negatively instantiated sum lock result in the respective else-case. By
Lemma 6.3.25, interactions with J1 or J2 do not cause deadlocks and all (nested) test-
constructs that are unguarded due to an interaction with J1 or J2 test the negatively
instantiated sum lock. By Lemma 6.2.53, all else-cases of a single or nested test-construct
reduce the respective (nested) test-construct to some kind of forwarder that consumes
one or two instantiations of sum locks and, by Lemma 6.3.25, eventually unguards new
instantiations on the consumed locks with exactly the same values. So, J1 and J2 do
neither influence the reachability of success nor the reachability of translated observables.

Thus for all contexts C1([·]) , C2([·]) ∈ P=
a → P=

a , such that C1(J1) , C2(J2) ∈ P
(
P=
a�J · Kma

)
,

we have C1(J1) ⇓3µ iff C1(0) ⇓3µ and C2(J2) ⇓3µ iff C2(0) ⇓3µ for all µ ∈ N ∪N . All steps that
result from an interaction with J1 and J2 are administrative steps or impure steps that
behave as administrative steps, because they do not change a sum lock instantiation.
By Lemma 6.3.40, then C1(J1) ≈̇

↓3 C1(0) and C2(J2) ≈̇
↓3 C2(0).

The argumentation for J · Kmp is similar.

Next we show, that—for all encodings—encoded guarded terms linked to negative
instantiations of sum locks are junk as well. Note that such encoded guarded terms
linked to negative instantiations of sum locks result from encoded sums of which already
one branch was used to emulate a source term step.

Lemma 6.3.49. Let J · K be one of the encodings J · Ksa, J · Kmp , or J · Kma .

Then (νl)
(∏

i∈I J πi.Pi K | l〈⊥〉
)

is junk.

274

6.3. Semantic Properties

Proof. Let J = (νl)
(∏

i∈I J πi.Pi Kma | l〈⊥〉
)
. By Lemma 6.3.10, there is no positive

instantiation of l and the negative instantiation cannot be changed by the context into
a positive instantiation. By Lemma 6.3.22 and Definition 6.3.28, J has no translated
observables. Moreover, because of the guards πi, J has no unguarded occurrence of X
and cannot reach some on its own, i.e., J 6⇓X. By Figure 5.8, J can perform a step on
its own if for some j ∈ I the guard πj is equal to τ . By Lemma 6.3.10, l〈⊥〉 | J τ.Pj Kma
eventually reduces to l〈⊥〉. Because of that, we can ignore all J πi.Pi Kma for πi = τ , i.e.,

they are junk. Let J ′ = (νl)
(∏

i∈I ,πi 6=τ J πi.Pi Kma | l〈⊥〉
)

.

Then J ′ 67−→. By Lemma 6.2.53, there are no unguarded (replicated) inputs on free
names of J ′ and all free outputs are requests. If the index set { i | i ∈ I ∧ πi 6= τ } is
empty, we can apply Lemma 6.3.47. By Lemma 6.3.48 all requests of J are junk, because
of the negative instantiation of the sum lock. As a consequence, no interaction with J or
J ′ can influence the ability of the context to reach success or translated observables and
no step that results from an interaction with J or J ′ influences the state of the context

modulo ≈̇↓3 . Thus for all contexts C([·]) ∈ Pa → Pa, such that C(J) ∈ P
(
P=
a�J · Kma

)
,

we have (C(J) ⇓X iff C(0) ⇓X) and
(
C(J) ⇓3µ iff C(0) ⇓3µ

)
for all µ ∈ N ∪ N . Moreover

no step of J on its own or that results from an interaction with J does influence the
state of the context modulo ≈̇↓3. So, C(J) ≈̇↓3 C(0).

The argumentation for the other encodings is similar.

Analysing the encoding function we observe that the input on a receiver lock of an
encoded input guarded source term, that guards a test-statement, is a replicated input.
Of course, such a test-statement can only be used once to emulate a source term step.
After such an emulation this replicated input becomes junk.

Lemma 6.3.50. All replicated inputs on receiver locks r such that there is a negative
instantiation of a sum lock l and some input request that carries r and l as parameter
are junk in J · Kmp and J · Kma .

Proof. Note that, because of the Lemmata 6.3.17, 6.3.18, 6.3.21, 6.3.22, and 6.3.25, the
sum locks introduced by translations of replicated inputs are never tested and thus cannot
become false. By Lemma 6.3.25, all instantiations of r are caused by the mentioned
input request and hence contain l . Because of the negative instantiation of l , we can
complete the proof by repeating the argumentation of the proofs of Lemma 6.3.48 and
Lemma 6.3.49.

As a consequence also the corresponding outputs on receiver locks are junk.

Lemma 6.3.51. For all receiver locks r the terms [y′ = y] r〈lr, l , l , s, z〉 (contained in
procRightOutReq) and [y′ = y] r〈ls, l , ls, s, z〉 (contained in procRightInReq) are junk of
J · Kma , if there is a negative instantiation of the sum lock l .

For all receiver locks r2 the terms y ·i(lr, r1, r2) .r2〈lr, l, l, s2, z, r1, s1〉 (contained in pro-
cRightOutReq) and y ·o(ls, s1, s2, z) .r2〈ls, l, ls, s2, z, s1, r1〉 (contained in procRightInReq)
are junk of J · Kmp , if there is a negative instantiation of the sum lock l .

275

6. Properties of Encodings

Proof. Note that if these terms are omitted then the processing of left requests in the
respective member of a chain of right requests reduces to the forwarder mi � mi ,up or
mo � mo,up .

In the second case, by Lemma 6.3.25 and Lemma 6.3.22, there is an input request that
carries r and l as parameter. Hence, by Lemma 6.3.50 and Lemma 6.3.18, all matching
(replicated) inputs are junk. Because of that, also the output is junk.

In the first case, by Lemma 6.3.25 and Lemma 6.3.22, there is an output request that
carries l as parameter. We conclude by repeating the argumentation of the proof of
Lemma 6.3.48.

By a similar argumentation, also the respective outputs on receiver locks r2 are junk
of J · Kmp . Since the inputs on the polyadic channels y · i and y ·o do not lead to translated
observables, we can remove also them.

Unfortunately, we cannot declare any left over of emulations as junk, because we
cannot ignore the forwarding of left requests in the chains of right requests which is
left over by formerly considered right requests. However, after removing the junk as
described by the above lemma, there is indeed nothing more left than simple forwarders,
which cannot influence the state of the process modulo ≈̇↓2 or ≈̇↓3. That suffice to prove
operational completeness.

6.3.6. Semantic Criteria

Among the semantic criteria operational correspondence is the most elaborate to prove.
Therefore we show both its conditions, operational completeness and operational sound-
ness, separately. In order to show operational completeness, we have to show how source
terms steps are emulated by the encodings and that all terms left over by a emulations
are junk. Hence, operational completeness follows for all three encodings by an induc-
tion on the number and kind of source term steps and the Lemmata of Section 6.3.5.
Because of the complexity of the emulations the proofs are rather long. Because of that
we postpone the proofs of operational completeness to the appendix in Section A.2.

Lemma 6.3.52 (Operational Completeness). The encoding J · Ksa satisfies operational
completeness.

Because J · Kma is an intermediate step in order to obtain J · Kma , the proof of operational
completeness of these two encodings are quite similar. We present the more complex
case of J · Kma in Section A.2.

Lemma 6.3.53 (Operational Completeness). The encodings J · Kmp and J · Kma satisfy
operational completeness.

We observe that for each emulation there is exactly one core step, i.e., there is exactly
one core step for each of the rules Pi-Taum,s, Pi-Comm,s, and Pi-Repm,s and the e-
mulation of the remaining rules does not introduce additional core steps. Note that
the connection between emulations and core steps is already shown by the first two
conditions of the invariant in Lemma 6.3.25. This underpins our intuition of core steps

276

6.3. Semantic Properties

(see Section 6.3.1). Any emulation of a source term step is connected to exactly one
core step. Moreover, any core step marks exactly one emulation of a source term step
by steering the emulation to the “point of no return”, i.e., to a point from where no
other sequence of steps can disable the completion of that emulation and from where
any possibility to emulate a conflicting source term step is ultimately withdrawn. Based
on this we prove operational soundness, by showing that each target term is part of an
emulation of some source term step. To do so, we have to reason backwards, i.e., we
have to conclude from the steps—in particular core steps—of the target terms on the
structure of the source term.

Lemma 6.3.54 (Operational Soundness). The encodings J · Ksa, J · Kmp , and J · Kma satisfy
operational soundness.

Proof. We start with J · Ksa. By Definition 3.3.4, we have to show that:

∀S ∈ Ps . ∀T ∈ Pa . J S Ksa Z=⇒ T

implies ∃S′ ∈ Ps . ∃T ′ ∈ Pa . S Z=⇒ S′ ∧ T Z=⇒ T ′ ∧ T ′ ∼̇=↓1
q
S′

ys
a

Note that T is a target term, i.e., T ∈ Pa�J · Ksa . By Lemma 6.3.40, administrative steps

do not influence the state of a target term modulo ∼̇=↓1, i.e., ∀T, T ′ ∈ Pa�J · Ksa . T
�Z=⇒ T ′

implies T ∼̇=↓1 T ′. Because of that, it suffice to consider impure and core steps, i.e., steps
on translated source term names or sum locks. By Lemma 6.3.10 and Lemma 6.2.51,
steps on negative instantiations of sum locks reduce the corresponding test-constructs
to simple forwarders, that eventually restore the consumed instantiations of sum locks.
Thus impure steps that reduce a positive instantiation of a sum lock followed by ad-
ministrative steps that restore this positive instantiation do not change the state of a

target term modulo ∼̇=↓1 .

Consider the sequence J S Ksa
�Z=⇒ T

7→7−→ T ′
�Z=⇒ T ′′ for a source term S ∈ Ps. By

Lemma 6.3.40, all target terms in the sequence J S Ksa
�Z=⇒ T (including T) are congruent

to J S Ksa modulo ∼̇=↓1. Similarly, all target terms in the sequence T ′
�Z=⇒ T ′′, including T ′,

are congruent to T ′′ modulo ∼̇=↓1. By Definition 6.3.3, Lemma 6.3.25, and Lemma 6.3.10,
the core step unguards some encoded source term by reducing a (nested) test-construct
to its then-case. By Lemma 6.2.51, each single test-construct results from the translation
of a source term guarded by τ or a replicated source term input and each nested test-
construct results from the translation of a source term input. Moreover, the respective
encoded source term parts are guarded in the encoding iff the parts are guarded in
the source. By Lemma 6.2.51, the test-construct has to result from the encoding of
a τ -prefix, because in the other cases the test-constructs are guarded by an input or
replicated input on a translated source term name. By Lemma 6.3.25, this subterm is

not guarded in S, because else J S Ksa
�Z=⇒ T would need another core step to unguard

the encoding of this subterm. Hence, S ≡ (νx̃)
(∑

i∈I πi.Si | S′
)

for some sequence
of names x̃, a finite index set I , some terms πi.Si, S

′ ∈ Ps, and there is some j ∈ I
such that πj = τ . Then S 7−→ (νx̃) (Sj | S′). By Lemma 6.2.53, the source term part

277

6. Properties of Encodings

that is unguarded by the core step is J Sj Ksa. Moreover, by Lemma 6.3.10, the admi-
nistrative step consumes the positive instantiation of the sum lock introduced by the
encoding of

∑
i∈I πi.Si and eventually a negative instantiation is unguarded. Hence, by

Lemma 6.3.40 and Lemma 6.3.39, all target terms in the sequence T ′
�Z=⇒ T ′′, including

T ′, are congruent to J (νx̃) (Sj | S′) Ksa modulo ∼̇=↓1.
To capture the case of single test-construct that results from the translation of a

replicated source term, we have to add an impure step to the above sequence. Hence,

consider J S Ksa
�Z=⇒ T1

�/ 7→7−→ T2
�Z=⇒ T3

7→7−→ T4
�Z=⇒ T5. Again, by Lemma 6.3.40, all

target terms in the sequence J S Ksa
�Z=⇒ T1 are congruent to J S Ksa modulo ∼̇=↓1, all target

terms in the sequence T2
�Z=⇒ T3 are congruent to T2 modulo ∼̇=↓1, and all target terms

in the sequence T4
�Z=⇒ T5 are congruent to T4 modulo ∼̇=↓1. Since the considered im-

pure step is the first impure step it cannot reduce the positive instantiation of a sum
lock, because all nested test-constructs are initially guarded by an input on a translated
source term name. Hence, the impure step is a step on a translated source term name.
Let us ignore for the moment that the impure step and the core step are not necessarily
related, e.g. the impure step can reduce an input on a translated source term name
that guards a nested test-construct and the core step can be as like in the previous
case. We consider such cases later. Hence, the impure step reduces a replicated input

on a translated source term name ϕs
a(y) which after some

�7−→-steps unguards a single
test-construct that results from the translation of a replicated input in S and the admi-
nistrative step reduces this test-construct. By Lemma 6.3.19 and Lemma 6.3.25, then
S ≡ (νñ)

(
y?(x) .S1 |

∑
i∈I πi.S2,i | S3

)
for some index set I such that πj .S2,j = y〈z〉 .S2

for some j ∈ I , some names x, z, a sequence of names ñ, and some terms S1, S2,i, S3 ∈ Ps.
Hence, S 7−→ (νñ) (y?(x) .S1 | { z/x }S1 | S2 | S3). By Lemma 6.3.10, Lemma 6.3.12, and

Lemma 6.3.19, the reduction of the positive sum lock after some
�7−→-steps leads to a

negative instantiation of the sum lock, an instantiation of a sender locks that unguards

after another
�7−→-step the encoding of S2 in T4 and the encoding of S1 in T4. By

Lemma 6.3.49 and Lemma 6.3.45, the negative instantiation of the sum lock ensures

that we can remove junk. Hence, T4 ∼̇=
↓1 J (νñ) (y?(x) .S1 | { z/x }S1 | S2 | S3) Ksa.

For the case of nested test-constructs we add another impure step. Hence, consider

J S Ksa
�Z=⇒ T1

�/7→7−→ T2
�Z=⇒ T3

�/7→7−→ T4
�Z=⇒ T5

7→7−→ T6
�Z=⇒ T7. Again, by Lemma 6.3.40,

all target terms in the sequence J S Ksa
�Z=⇒ T1 are congruent to J S Ksa modulo ∼̇=↓1, all

target terms in the sequence T2
�Z=⇒ T3 are congruent to T2 modulo ∼̇=↓1, all target terms

in the sequence T4
�Z=⇒ T5 are congruent to T4 modulo ∼̇=↓1, and all target terms in the

sequence T6
�Z=⇒ T7 are congruent to T6 modulo ∼̇=↓1. Moreover, let us assume that the

core step reduces a nested test-construct. Then the first impure step is on a translated

source term name ϕs
a(y) and (modulo

��7−→-steps) unguards the nested test-construct, the
second impure step consumes the first positive instantiation of the tested sum locks,
and the core step consumes the second positive instantiation. By Lemma 6.3.19 and
Lemma 6.3.25, then S ≡ (νñ)

(∑
i∈I1 πi.S1,i |

∑
i∈I2 πi.S2,i | S3

)
for some index sets I1, I2

such that πj .S1,j = y(x) .S1 and πk.S2,k = y〈z〉 .S2 for some j ∈ I1, k ∈ I2, some

278

6.3. Semantic Properties

names x, z, a sequence of names ñ, and some terms S1,i, S2,j , S3 ∈ Ps. Hence, S 7−→
(νñ) ({ z/x }S1 | S2 | S3). By Lemma 6.3.10, Lemma 6.3.12, and Lemma 6.3.19, the

reduction of the positive sum locks after some
�7−→-steps leads to negative instantiations

of the sum locks, an instantiation of a sender locks that unguards after another
�7−→-

step the encoding of S2 in T6 and the encoding of S1 in T6. By Lemma 6.3.49 and
Lemma 6.3.45, the negative instantiations of the sum locks ensure that we can remove

junk. Hence, T6 ∼̇=
↓1 J (νñ) ({ z/x }S1 | S2 | S3) Ksa.

We conclude by an induction on the number of impure and core steps in the sequence
J S Ksa Z=⇒ T . All occurring cases can be derived from one of the three cases above or
from combinations of these cases. The latter is necessary to show that for each sequence
that starts more than a single emulation attempt eventually all emulation attempts are
either completed or aborted. Note that this is always possible, because by Lemma 6.3.25
all consumed sum locks are eventually restored and thus the encoding J · Ksa does not
introduce deadlock. Intuitively, after restoring all consumed instantiations of a sum lock
the target term is always in some kind of stable state (see e.g. [PS92]) that can directly
be compared to the state of a source term. Moreover, note that aborted emulation
attempts do, by Lemma 6.3.25, not result from core steps and all impure steps behave
as administrative steps.

The argumentation for J · Kmp and J · Kma is similar to the argumentation for J · Ksa above.
Note that in J · Kma there are no steps on translated source term names, so there are less
impure steps. Also note that in J · Kmp and J · Kma we cannot directly reason backwards
from the reduction of a (nested) test-construct to the look of the source term but have to
perform an intermediate step by reasoning over the requests. All necessary information to
do so are covered by the invariants in Lemmata 6.3.25, 6.3.17, 6.3.18, 6.3.21, 6.3.22.

The lemmata for operational completeness and soundness together imply operational
correspondence. It remains to show that the encodings reflect divergence and are sensi-
tive to success. For the former we rely on the observation that for each core step in the
target there is some step in source.

Lemma 6.3.55 (Divergence Reflection). The encodings J · Ksa, J · Kmp , and J · Kma reflect
divergence.

Proof. By Lemma 6.3.25 and as shown in the proof of operational soundness, for all core
steps there is a step of the source term. Thus we have to show that there is no infinite
sequence of administrative and impure steps between two core steps. The argumentation
for the sequence of administrative steps before the first core step and for the sequence
of administrative steps after the last core step—in the case of a terminating process—is
then similar.

Auxiliary Links: Auxiliary links are used to unfold the polyadic communications on sum
locks, sender locks, receiver locks, output requests, input requests, and chain locks
of type](o, i). By Lemma 6.2.39, Lemma 6.2.56, and Theorem 6.2.54, there are
infinitely many steps on auxiliary links only if there are infinitely many steps on
the other links.

279

6. Properties of Encodings

Sender Locks: Note that each target term has a finite representation. Hence, because

of Lemma 6.3.12, there are modulo
��7−→-steps only finitely many sender locks in

each target term. Moreover, new sender locks do only result from emulations of
steps on replicated source term inputs. By Lemma 6.3.25, such emulations require
core steps. Hence for each sequence of steps between two core steps, there are only
finitely many different sender locks. By Lemma 6.3.12 there is at most one input
for each sender lock in the considered sequence and thus there are only finitely
many steps on sender locks.

Chain Locks of Type lω∗(vn) and](o, i): By Lemma 6.3.18 and Lemma 6.3.24, instanti-
ations of chain locks of type lω∗(vn) result (like instantiations on sender locks) from
core steps. Hence, between two core steps there are only finitely many instantia-
tions on these chain locks that unguard only finitely many inputs on chain locks
of type](o, i) that in turn unguard only finitely many branches that result from
emulations of steps on replicated source term inputs. Hence, there are only finitely
many steps on these chain locks.

Requests and Chain Locks of Type lω∗(↓∗(i◦)) and lω∗(↓∗(o◦)) : By Lemma 6.3.22 there
are only finitely many different requests in each target term. Requests are copied
to be pushed upwards in the parallel structure of the source term, i.e., between
two core steps there can be more than one step on each request. By Lemma 6.3.22
and Lemma 6.3.25 the flow of requests within the target term is guided by the
maintained parallel structure. Since, this is finite requests cannot be pushed in-
finitely often upwards. By the above case, requests can also only be forwarded
to finitely many branches of chains of encoded continuations of replicated source
term inputs. Because of that there are only finitely many requests that are right
or left to such a branch or encodings of parallel operators. By Lemma 6.3.24
and Lemma 6.3.25, there are only finitely many instantiations chain locks of type
lω∗(↓∗(i◦)) and lω∗(↓∗(o◦)) induced by the actual state of the maintained parallel
structure. Hence, only finitely many right requests can be added to a chain of such
requests. Hence there are only finitely many steps on requests and only finitely
many steps on chain locks of type lω∗(↓∗(i◦)) and lω∗(↓∗(o◦)).

Receiver Locks: By Lemma 6.3.25 and Lemma 6.3.18 there is at most one instantiation
of each receiver lock for each combination of left and right requests. Hence by
the case before, there are only finitely many instantiations of receiver locks and
because of this only finitely many steps on receiver locks.

Sum Locks: For each target term there are only finitely many unguarded test-constructs.
By the above case and Lemma 6.3.18, only finitely new test-constructs can be
unguarded by steps on receiver locks within a sequence between two core steps.
By Lemma 6.3.10, there are only finitely many steps on sum locks that are not
core steps.

Booleans: First, it may be necessary to complete the consumptions of some positive
instantiations of sum locks that are reduced by former core steps. But since there

280

6.4. Domain-Specific Criteria

cannot be infinitely many sum locks and thus, by Lemma 6.3.10, not infinitely many
instantiations on sum locks, only finitely many steps are necessary to complete
these consumptions. By the case above, there are only finitely many new reductions
on sum locks. Hence, by Lemma 6.3.10, there are only finitely many steps on
booleans.

The argumentation for the other encodings is similar.

Success sensitiveness basically follows from operational correspondence.

Lemma 6.3.56 (Success Sensitiveness). The encodings J · Ksa, J · Kmp , and J · Kma are suc-
cess sensitive.

Proof. We start with J · Kma . By Definition 3.3.6, we have to show that S ⇓X iff J S Kma ⇓X
for all S ∈ Pm. Let S ∈ Pm be an arbitrary source term. We prove both directions
separately.

By Definition 3.2.2 and Pi-Congm,s,a,p, S ⇓X implies that there is some S′ ∈ Pm such
that S Z=⇒ S′ | X. By operational completeness, the sequence S Z=⇒ S′ | X can be
emulated by J S Kma , i.e., there exists some T ∈ P=

a �J · Kma such that J S Kma Z=⇒ T and

T �̇
↓3
c J S′ | XKma . By Figure 5.8, the encodings of the subterms of a parallel operator

are guarded within the encoded parallel operator iff these subterms are guarded within

the source term parallel operator. Hence, J S′ | XKma ⇓X. Because �̇
↓3
c is sensitive to

success, J S′ | XKma �̇
↓3
c T implies T ⇓X. Since J S Kma Z=⇒ T , we conclude J S Kma ⇓X.

By Definition 3.2.2, S 6⇓X implies that either there is no occurrence of X in S or all
such occurrences are guarded and there is no execution of S that unguards one of them.
In the first case, by Figure 5.8, there is no X in J S Kma , i.e., J S Kma 6⇓X. In the other case,
let a /∈ n(S) ∪ n(J S Kma) and let S′ be the result of replacing all occurrences of X by a.
Hence, S ⇓X iff S′ ⇓a. Let b = ϕm

a (a). By Figure 5.8, Definition 6.3.28, Lemma 6.3.10,
Lemma 6.3.12, and Lemma 6.3.25, J S Kma ⇓X iff J S′ Kma ⇓3b . By Lemma 6.3.3, S′ 6⇓a
implies J S′ Kma 6⇓3b . Thus, J S Kma 6⇓X.

The argumentation for the other encodings is similar.

By the lemmata above all three encodings satisfy all requirements for a good encoding
as they are presented in Section 3.3.

Theorem 6.3.57. The encodings J · Ksa, J · Kmp , and J · Kma are good.

Proof. By Observation 6.1.1, all three encodings are compositional. By Corollary 6.1.5,
they are name invariant. Operational correspondence follows from the Lemmata 6.3.52,
6.3.53, and 6.3.54. By Lemma 6.3.55, all three encodings reflect divergence. And, by
Lemma 6.3.56, they are success sensitive.

6.4. Domain-Specific Criteria

In Sections 6.1 and 6.3 we proved correctness of the three encodings with respect to the
general framework of Gorla as described in Section 3.3. In this section we analyse the

281

6. Properties of Encodings

encodings with respect to the additional criterion on the preservation of distributabil-
ity formalised in Section 3.4. More precisely, we prove that J · Ksa and J · Kmp preserve
distributability, whereas J · Kma does not.

As shown in Lemma 3.4.4, the encoding J · Ksa preserves distributability because it
translates restriction and the parallel operator homomorphically and preserves (enough
of) the structural congruence of source terms.

Lemma 6.4.1. The encoding J · Ksa preserves distributability.

Proof. By Definition 3.4.3, J · Ksa preserves distributability if for every source term S
and for all terms S1, . . . , Sn that are distributable within S there are some target terms

T1, . . . , Tn that are distributable within J S Ksa and are related modulo ∼̇=↓1 to the encoded

distributable source term parts, i.e., if Ti ∼̇=
↓1 J Si Ksa for all 1 ≤ i ≤ n. Note that, by

Definition 3.4.2, empty processes 0 are not considered as distributable.

Accordingly, consider an arbitrary source term S ∈ Ps. By Definition 3.4.2, S is
distributable into S1, . . . , Sn ∈ Ps if there exists a sequence of names x1, . . . , xm such that
S ≡ (νx1, . . . , xm) (S1 | . . . | Sn). By the argumentation in the proof of Lemma 6.3.41
and because 0 is not distributable, S ≡ (νx1, . . . , xm) (S1 | . . . | Sn) implies J S Ksa ≡
J (νx1, . . . , xm) (S1 | . . . | Sn) Ksa. Moreover, by Figure 5.1, we have

J (νx1, . . . , xm) (S1 | . . . | Sn) Ksa = (νϕs
a(x1) , . . . , ϕ

s
a(xm)) (J S1 | . . . | Sn Ksa)

= (νϕs
a(x1) , . . . , ϕ

s
a(xm)) (J S1 Ksa | . . . | J Sn Ksa) .

Thus, J S Ksa is distributable into J S1 Ksa , . . . , J Sn Ksa. Since obviously J Si Ksa ∼̇=
↓1 J Si Ksa

for all 1 ≤ i ≤ n, the encoding J · Ksa preserves distributability.

The encoding J · Kmp does not translate the parallel operator homomorphically. Instead
it implements a protocol within the encoding of the parallel operator that allows for the
combination of requests. However, a closer look reveals that the encoded subterms of
the parallel operator still appear unguarded and that all additional terms introduced
within the encoding of a parallel operator are guarded by a replicated input. Hence,
J · Kmp is distributable, because within the pi-calculus replicated input is distributable as
discussed in Section 3.4.

Lemma 6.4.2. The encoding J · Kmp preserves distributability.

Proof. Consider an arbitrary source term S ∈ Pm. By Definition 3.4.2, S is dis-
tributable into S1, . . . , Sn ∈ Pm if there exists a sequence of names x1, . . . , xm such that
S ≡ (νx1, . . . , xm) (S1 | . . . | Sn). By the argumentation in the proof of Lemma 6.3.42,
structural congruence of source terms is preserved for all rules except for commutativity
and associativity of the parallel operator and P | 0 ≡ P . In particular the structural
congruence rules that allow to pull restriction outwards are preserved. Let S′ ∈ Pm be
such that S ≡ (νx1, . . . , xm)S′ ≡ (νx1, . . . , xm) (S1 | . . . | Sn) and S′ and S1 | . . . | Sn
differ only by applications of the structural congruence rules for commutativity and as-
sociativity of the parallel operator and P | 0 ≡ P . Then S ≡ (νx1, . . . , xm)S′ implies

282

6.4. Domain-Specific Criteria

J S Kmp ≡ J (νx1, . . . , xm)S′ Kmp =
(
νϕm

p (x1) , . . . , ϕ
m
p (xm)

)
J S′ Kmp . By Definition 3.4.2,

0 is not distributable. Hence, S′ ≡ S1 | . . . | Sn can be obtained without the rule
P | 0 ≡ P . Since this rule is the only structural congruence rule that allows for the in-
troduction of additional parallel operators, we conclude that S′ and S1 | . . . | Sn contain
the same number of parallel operators and differ only in the order of parallel components
and their structure among each other. By Figure 5.4 and Figure 5.5,

J P | Q Kmp , (νpo,up , pi ,up , o, i)
(

(νpo , pi)
(
J P Kmp | procLeftOutReq | procLeftInReq

)
| (νpo , pi)

(
J Q Kmp | procRightOutReq | procRightInReq

)
| pushReq

)
and all terms in procLeftOutReq, procLeftInReq, procRightOutReq, procRightInReq, and
pushReq are guarded by a replicated input. Remember that replicated input in the
pi-calculus is distributable, i.e., we can use the additional rule y?(x) .P ≡ y?(x) .P |
y?(x) .P to derive the distributable components of a term. We conclude that all encoded
source terms with respect to J · Kmp are distributable into the encodings of the paral-

lel components of the respective source term. Hence
(
νϕm

p (x1) , . . . , ϕ
m
p (xm)

)
J S′ Kmp

is distributable into J S1 Kmp , . . . , J Sn Kmp . Since obviously J Si Kmp �̇
↓2
c J Si Kmp for all

1 ≤ i ≤ n, the encoding J · Kmp preserves distributability.

In contrast, Theorem 4.2.18 and Theorem 4.4.8 show that J · Kma cannot preserve dis-
tributability, because by Theorem 6.3.57 it is a good encoding. Intuitively, the problem
are the chains of right requests in the encoding of the parallel operator. Remember
that they are introduced to avoid divergence or deadlock but as shown in the following
example they forbid for the preservation of distributability.

Example 6.4.3. Consider the counterexample S =
(
a | b

)
| (a | b). S ≡ S1 | S2 with

S1 = (a | a) and S2 =
(
b | b

)
such that S1 7−→ 0 and S2 7−→ 0. Of course, since J · Kma is

good, J S Kma can emulate both steps in either order. But it cannot emulate both truly
in parallel.

The encoding of S is given by:

J S Kma = (νmo ,mi , po,up , pi ,up , co , ci)
(

(νpo , pi)
(q

a | b
ym
a
| procLeftOutReq | procLeftInReq

)
| (νpo , pi) (J a | b Kma | procRightOutReq | procRightInReq)

| pushReq
)

We observe that for both source term steps their emulations require that the correspond-
ing requests are combined at the outermost parallel operator encoding, i.e., the one given
above. Moreover, in both emulations the output requests arrive at the left and the input
requests arrive at the right hand side of this parallel operator encoding. Thus, for both

283

6. Properties of Encodings

emulations the requests are combined by procRightInReq.

procRightInReq = ci〈mo〉 | ci?(mo) .pi(y, lr, r) .
(
pi ,up〈y, lr, r〉

| (νmo,up)
(

mo
?
(
y′, ls, s, z

)
.
([
y′ = y

]
r〈ls, lr, ls, s, z〉 | mo,up

〈
y′, ls, s, z

〉)
| (νmo) (mo,up � mo | ci〈mo〉)

))
We observe that the main part of procRightInReq is guarded by a replicated input and
can thus be distributed as for J · Kmp in the lemma above. But there is only one unguarded
instantiation of the corresponding chain lock ci〈mo〉 and without it the remaining term
guarded by the replicated input on this chain lock is useless. Note that if we provide two
such outputs initially we obtain two chains of right input requests and cannot ensure
any more that all left and right requests of opposite kind can be combined. Because of
that, procRightInReq is not distributable. Hence, the encoding J · Kma does not preserve
distributability.

Because of that, J S Kma cannot emulate both source term steps without sequentialising
the linking of the respective right requests within the required chain. So J S Kma cannot
completely emulate the independent source term steps in parallel.

6.5. Summary and Related Work

Within this chapter we discussed how to validate an encoding in general and in particular
we proved correctness of the encodings introduced in the last chapter. We started with
the structural criteria. Compositionality restricts the look of the encoding function and
can thus be checked by observation. Also name invariance follows in some settings
directly from the look of an encoding. In Section 6.1 we show that this criterion holds
whenever the encoding function makes strict use of the renaming policy and preserves
the binding on names.

In contrast, the proof of the remaining criteria is very elaborated, because of the
complexity of the encoding functions. In Section 6.2 we make use of different type
systems, to abbreviate some of the proofs. The type system in [Mil93b] can be considered
as the first type system for the pi-calculus. Based on this type system and one of the
type systems in [SW01] we introduced a basic type system in Section 6.2.2 to capture the
distinction of links introduced for different purposes by the encoding functions. The main
advantage of this is that we can unambiguously identify particular links and sum up links
that are introduced for the same purpose. In Section 6.2.3 we discussed type systems
for the monadic variants of the pi-calculus—as the target languages of the considered
languages—and by the way demonstrated that types can also be used to express some
kind of “behaviour” as long as it is predictable. We reviewed the type systems introduced
in [Yos96, QW00, QW05] to type unfoldings of polyadic communications and adapt
them to our setting. These type systems describe some predetermined sequence of
consecutive states for some of the types. The actual state of the type evolves during the
derivation following the syntax tree of a term. Of course, this kind of behavioural types
can also be used to prove more advanced properties. In Section 6.2.4 we proved some
properties of links using polarities and multiplicities. Polarities are introduced in [PS96],

284

6.5. Summary and Related Work

[KPT99] consider linearity, and receptiveness is introduced in [San97, San99]. As result
we were able to prove partial confluence for some of the links that are introduced by the
encoding functions. Partial confluence significantly reduces the state space that has to
be considered in proofs on process terms. A discussion on how type systems can be used
to establish confluence can be found in [Nes96, NS97].

Nestmann in [Nes00] uses a type system to prove deadlock-freedom of J · Ksa (or the
original variant of this encoding as presented in [Nes00]). Therefore he adapts a type
system of [Kob98] that introduces reliable links.4 Reliability means that every input
or output on such a channel eventually finds its communication partner. Nestmann
proves that all channels introduced by the encoding function J · Ksa are reliable. Thus
the encoding does not introduce deadlock. Intuitively, Kobayashi extends earlier type
systems with multiplicities and polarities by obligations that capture information about
the dependencies between the usages of different links. In [Nes00] this suffices to show
that all potential sources of deadlock result from links that are direct translations of the
source term links. However, because J · Kma uses translated source term names only as
values and relies on requests for the identification of source term communication partners,
this type system cannot be easily extended to cover deadlock-freedom in J · Kma . Instead,
we used invariants in Section 6.3.2 to prove that the encodings do not introduce deadlock.

Also note that all type systems introduced in Section 6.2 are type systems for variants
of the pi-calculus. Hence, the presented typing rules and instructions for typing a term
are specific to the pi-calculus. However, there are also type systems for other process
calculi as e.g. in [CG99, CGG99] for the mobile ambient calculus [CG98].

Then in Section 6.3 we proved the quality of the three encodings and also discussed
some related properties. We distinguished between administrative steps, i.e., pre- and
postprocessing steps of an encoding, and core steps that represent the entire translation
of a source term step. Moreover, we discussed the presence of intermediate states re-
sulting from partial commitment. As already explained in [NP00], partially committed
states that result from partial emulations of steps are a frequent side effect of choice
encodings. Intuitively, the problem is that the choice-constructs in the source language
allow to reduce several different capabilities simultaneously and that the target terms
can not mimic all these reductions within a single step. The consequence is an inter-
mediate state, i.e., a state that cannot be directly related to one of the source term
states. Of course such intermediate states do not only result from encodings of choice
in the pi-calculus but occur whenever the target language (or at least the target terms
of the respective encodings) have to split up effects of a single source term step onto
several target term steps. Note that intermediate states do not immediately rule out
the possibility of a good encoding, but they make it harder to prove correctness of the
respective encoding. In Section 6.3.1 we denote steps that (potentially) lead to inter-
mediate states—i.e.,partially committed states—as impure steps and explain why they
usually need special consideration. Also note that some kind of intermediate states may
indeed influence the possibility to satisfy some particular criteria. So the non-existence
of distributability-preserving good encodings in Section 4.3 and Section 4.4 rely on the

4In [Kob06] Kobayashi extends this type system to cover recursion.

285

6. Properties of Encodings

fact that the respective target languages are not able to translate a source term step such
that all the conflicts it rules out simultaneously in the source are also decided within a
single step in the target.

In [Nes96] Nestmann uses factorisation as a technique to improve the presentation
of an encoding function and also to structure the proofs of its correctness. Moreover,
factorisation is combined with decoding functions in order to obtain an equivalence
and to prove full abstraction. We also use intermediate encodings and intermediate
languages—the polyadic variants of the encodings—but do not use these to obtain an
equivalence. Note that we also do not try to prove full abstraction, although we believe
that such a result can be obtained by a suitable adaptation of the coupled simulation
used in [Nes96]. Instead we rely on the quality criteria introduced by Gorla in [Gor10b].
Because of that, we gain additional flexibility in the choice of the equivalence, because
in the general framework the burden on the proof is not on the equivalence. Moreover,
we discussed junk. Junk can appear in different forms. While unobservable and inactive
junk does usually not influence the properties of an encoding, observable or active junk
may forbid for some good properties. All three considered encodings J · Ksa, J · Kmp , and
J · Kma introduce observable junk which prevents the use of equivalences on standard ob-
servables on the respective target language. We showed how nonetheless quality of these
encodings can be proved with respect to the general framework. For this we introduced
the notion of translated observables, i.e., the translation of source term observables, and
show how they can be used to obtain a suitable equivalence or congruence. Moreover,
the explicit formalisation of translated observables provides further intuition on the en-
coding functions and visualises the connection to the related source terms. As we can
observe in Section 6.3 this connection helps to guide the proofs of correctness.

Finally we consider distributability in Section 6.4, i.e., the additional domain-specific
criterion defined in Section 3.4 to measure preservation of distributability of an encoding
function. As expected J · Ksa preserves distributability, because it translates the parallel
operator homomorphically. The encoding J · Kmp does not translate the parallel operator
homomorphically but preserves nonetheless distributability. This shows that the crite-
rion on the preservation of distributability that we formalise in Section 3.4 is indeed
weaker as the commonly used criterion on the homomorphic translation of the parallel
operator.

The main contribution of this chapter is the proof that all three encodings J · Ksa,
J · Kmp , and J · Kma satisfy all five criteria of the general framework of Gorla as presented
in Section 3.3. We also discussed some drawbacks of these encodings. In particular
we showed that they introduce observable junk and thus do not allow for the use of
standard equivalences to show operational correspondence. In Chapter 5 we also dis-
cussed the use of the match prefix in J · Kma and conjecture that there can not exists
a good encoding from πm into πs or πa that does not make use of match. Moreover,
J · Kma does not preserve distributability. This is not due to an awkward design of the
encoding function but a general limitation of encodings on mixed choice. As shown by
Theorems 4.2.18 and 4.4.8, there exists no good encoding of mixed choice that preserves
distributability. Nonetheless the above encodability result for J · Kma is meaningful and
important. It is the first encodability result of this kind and provides further intuition on

286

6.5. Summary and Related Work

the relationship between mixed choice and separate choice in particular and synchronous
and asynchronous interactions in general. For the latter it basically sums up the positive
results obtained in [HT92, Bou92, Nes96, NP00, Nes00] in this direction. Moreover, it
is crucial for the hierarchy derived in Section 7.2, because it tells us in what πm and π=a
do not differ.

287

7. Concluding Remarks

We conclude with an overview of the obtained results in Section 7.1. Furthermore we
combine our results in order to obtain a hierarchy on different levels of distributability
between the considered synchronous and asynchronous variants of the pi-calculus and
the join-calculus in Section 7.2. In Section 7.3 we discuss further research.

7.1. Contributions

In Chapter 3 we proposed a new criterion to measure preservation of distributability of
encoding functions. In Chapter 4 we proved several absolute and translational separation
results. Moreover, we presented two encodings of mixed choice in Chapter 5 and proved
their correctness in Chapter 6.

Breaking Symmetries. We proved without any further assumption that the pi-calculus
with separate choice lacks—in contrast to the pi-calculus with mixed choice—the ability
to break initial symmetries. For this reason, we stated an absolute separation result
proving that mixed choice is strictly more expressive than separate choice. Moreover,
since homomorphic translation of the parallel operator preserves initial symmetries, this
absolute result turned out to be well suited to prove several translational separation
results for respectively different definitions of reasonableness. These results support the
conjecture that there is no reasonable encoding from the pi-calculus with mixed choice
into the pi-calculus with separate choice that translates the parallel operator homomor-
phically, where the notion of reasonableness covers at least reflection of divergence and
deadlock, and some suitable notion of preservation of behaviour. Moreover, by com-
paring the presented translational separation results we observe that: (1) the absolute
separation result plays a central role in each presented translational result, (2) the use
of the absolute separation result allows us to weaken the assumptions under which the
translational separation results hold in comparison to earlier proposals, (3) the use of the
absolute separation result induces an intuitive way to prove quite different translational
separation results. In summary, these arguments emphasize the central role of absolute
separation results for language comparison. Note that even with the help of match, the
pi-calculus with separate choice can not break symmetries and there is no uniform and
reasonable encoding from the pi-calculus with mixed choice into the pi-calculus with
separate choice or the asynchronous pi-calculus.

As shown in [Pal03], leader election serves to derive a translational result, but even
input-output confluence suffices to separate mixed from separate choice by an absolute
result. Absolute separation results like confluence, leader election, and breaking sym-
metries can be used to obtain translational separation results. Therefore, typically an

289

7. Concluding Remarks

example is chosen that illustrates the main discriminating features of the absolute result
and that can be used in the translational separation result as counterexample. To do so,
the main features of this example have to be preserved by the encoding function, i.e.,
by the criteria required for the encoding. Thus confluence is not an adequate choice to
derive a translational separation result as the above, since it is very difficult to find a
discriminating counterexample based on confluence; even if such an example is found, it
is intricate to argue for the preservation of its properties. In this sense leader election is
much more suitable, because its main conditions are preserved under uniform encodings
that preserve substitutions. However, breaking symmetries is even better suited because
its properties are preserved by weaker requirements on reasonable encodings. Accord-
ingly, confluence can be considered as a too weak property, while leader election is a little
bit too specific. In short, breaking symmetries serves as a “sweet spot”. It allows for
the formulation of a general result: there is no reasonable encoding from the pi-calculus
with mixed choice into the pi-calculus with separate choice that translates the parallel
operator homomorphically, where the notion of reasonableness covers at least reflection
of divergence and deadlock, and some suitable notion of preservation of behaviour.

Preservation of Distributability. In order to measure whether an encoding preserves
distributability, usually the homomorphic translation of the parallel operator is used as
a criterion (see e.g. [Pal03, CM03, LV10]). Such an encoding naturally preserves the par-
allel structure of terms and thus (at least for process calculi like CSP or the pi-calculus)
the degree of distributability. However, the opposite is not true. We presented an en-
coding that preserves distributability although it does not translate the parallel operator
homomorphically. In this sense, the homomorphic translation of the parallel operator is
too strict—at least for separation results. It rightly forbids the introduction of coordina-
tors that reduce the degree of distributability. But it also forbids protocols that handle
communications of parallel components without sequentialising them or reducing the de-
gree of distributability in another sense. Moreover, the homomorphic translation of the
parallel operator is not always suited to reason about distributability in process calculi
as e.g. the join-calculus in that distributable subterms are not necessarily separated by a
parallel operator. To overcome this problem, we proposed a novel criterion and showed
that is well-suited to reason about distributability-preservation of good encodings. In
particular our new criterion is weaker than the common homomorphic translation of
the parallel operator and can be applied also to reason about distributability in process
calculi as the join-calculus in that distributability is not necessarily the same as parallel.
Moreover, we showed that distributability of processes implies also distributability of
executions. This leads to a new proof method for separation results.

Then we proved that even under this weaker requirement no good encoding from πm
into πs can preserve distributability, because—to avoid deadlock and divergence—each
encoding of mixed choice has to sequentialise some steps of the emulation of some steps
that are distributable in the source term. As a consequence every good encoding of
mixed choice leads to additional causal dependencies.

290

7.1. Contributions

Synchronisation Pattern. By adapting the synchronisation pattern M

a b c

proposed in [vGGS08, vGGS12] to reason about distributability, we were able to clarify
the difference between the asynchronous pi-calculus and the join-calculus. Note that
the pi-calculus is a well-known and frequently used process calculus to model concurrent
systems. But practical experience has shown that it is not possible to implement every
pi-calculus term—not even every asynchronous one—in an asynchronous setting while
preserving its degree of distributability. To overcome these problems, the join-calculus
was introduced as a model of distributed computation [Lév97]. The synchronisation pat-
tern M describes a conflict between two distributable processes. The process can either
act concurrently—reflected by the actions a and c—or they can decide to synchronise—on
the action b. To implement this pattern within a fully asynchronous and distributed set-
ting we would have to ensure that the distributable processes always coincide in their
decision to either act concurrently or to synchronise. If we rely on the distributability
of these processes such an implementation is in general not possible without accepting
the possibility of deadlock or divergence. Because of that, by proving the impossibil-
ity to express the pattern M in the join-calculus, we presented a formal argument for
the distributability of the join-calculus1. Moreover, we proved that the asynchronous
pi-calculus is not distributable and that there can not exist a good encoding from the
asynchronous pi-calculus into the join-calculus that preserves distributability.

To shed more light on the difference between the synchronous pi-calculus with mixed
choice and its fragment with only separate choice we extended the synchronisation pat-
tern M to the synchronisation pattern ? that can be visualised by the Petri net:

e

d

c

ba

Again this pattern describes conflicts between distributable processes, but here a circle
of such processes of odd length is described. Remarkably, this pattern reflects a well-
known standard problem in the area of distributed systems, namely the problem of the
dining philosophers. Although the situation described by the pattern ? does not look

1Note that we follow [vGGS08, vGGS12] if we consider calculi in which the above synchronisation
pattern M is not expressible as intuitively distributable.

291

7. Concluding Remarks

that complicated and despite the imposing expressive power of the pi-calculus with sep-
arate choice, we proved that it cannot express the above conflicts between distributable
processes—not even modulo weak reductions. This distinguishes separate choice from
mixed choice, where examples for the pattern ? can be easily obtained by combining con-
flicts on input and output capabilities over mixed choices. We elucidated this difference
by proving that there exists no good and distributability-preserving encoding.

With exemplary results in the context of CSP, we show that the presented proof
method, based on synchronisation patterns, can also be applied to obtain separation re-
sults in other process calculi. Thereby the general, i.e., mainly model-independent, for-
mulation of the above synchronisation patterns in terms of conditions on step-transition
systems enables the use of these patterns to reason about and to classify synchronisation
mechanisms in other process calculi.

Encoding Mixed Choice. Learning from the separation results in Chapter 4 we derived
a good encoding of mixed choice, i.e., an encoding from the synchronous pi-calculus with
mixed choice into the asynchronous pi-calculus without choice that is compositional,
name invariant, satisfies operational correspondence, divergence reflection, and success
sensitiveness. From the “breaking symmetry” results we learned that no good encoding
of mixed choice can translate the parallel operator homomorphically and that the encod-
ing function has to break initial symmetries of the source term. Hence, by abandoning
the condition of homomorphic translation of the parallel operator in favour of composi-
tionality, we proposed an encoding from the synchronous pi-calculus with mixed choice
into the asynchronous pi-calculus that, as we proved, meets all five of Gorla’s criteria.
As a novelty, our new encoding overcomes the previous non-compositional attempts to
break symmetries globally by providing a principle that breaks symmetries locally, saving
true compositionality. Moreover, we analysed different properties and also drawbacks of
the proposed encoding. As drawback we consider the necessity of the match prefix for
the encoding of choice and the introduction of observable junk. As discussed, we believe
that both drawbacks can not be avoided, i.e., that there exists no good encoding of
mixed choice into the asynchronous pi-calculus without the match prefix and that every
good encoding of mixed choice introduces observable junk. Moreover, we proved that
no good encoding of mixed choice preserves distributability or reflects causal dependen-
cies. Despite these limitations our positive translational result reveals new insights onto
the relationship of the synchronous and asynchronous pi-calculus. The existence of this
good encoding shows that—with respect to their abstract behaviour—the synchronous
pi-calculus with mixed choice is as expressible as the asynchronous pi-calculus (without
choice). This is in particular important for the hierarchy that we consider in the next
section.

7.2. Hierarchy of Distributability in Pi-like Calculi

In Chapter 4 we presented several translational separation results between the full syn-
chronous pi-calculus with mixed choice (πm) and its—also synchronous—variant with

292

7.2. Hierarchy of Distributability in Pi-like Calculi

only separate choice (πs). The most intuitive of these results is surely the last one in
Section 4.4. It shows that no good encoding from πm into πs can preserve distributability.
To separate these two languages the synchronisation pattern ? was used. As explained,
synchronisation pattern provide not only a method to obtain counterexamples for sep-
aration results, but in fact describe a particular kind or effect of synchronisation and
can thus be used to classify the synchronisation mechanisms of a calculus. In a similar
manner the asynchronous pi-calculus (πa) and the join-calculus (J) were separated by a
simpler synchronisation pattern, the pattern M, in Section 4.3. Again the non-existence
of a good and distributability-preserving encoding was shown.

In Section 6.4 we proved that the encoding from πs into πa proposed in [Nes00] pre-
serves distributability. Moreover, we showed that this encoding, which was proved cor-
rect in [Nes00] with respect to another setting of quality criteria, also satisfies the criteria
of the general framework (Section 3.3). Hence this encoding is a good encoding from πs
into πa that preserves distributability. Since πs is a subcalculus of πm and πa is a subcal-
culus of πs, there are obviously good and distributability-preserving encodings from πs
into πm and from πa into πs. Remember that we consider the join-calculus as an asyn-
chronous variant of the pi-calculus. In fact we can easily prove that the encoding from
J into πa proposed in [FG96] is a good encoding and does also preserve distributability.

In contrast, our encoding from πm into πa is good but does not preserve distributability.
Note that [FG96] introduce also an encoding from πa into J. But this encoding is defined
in two-levels and is thus not compositional. However, as we discussed in Section 5.5,
there are good reasons to nonetheless accept this encoding as good and, moreover, we
believe that by adapting some concepts of the encoding from πm into πa this encoding
can be turned into an encoding from πa into J that satisfies again all the requirements
of the general framework.

Combining these positive results and these negative translational results on the two
synchronisation patterns, we obtain a hierarchy of distributability between pi-like calculi.
The synchronous pi-calculus with mixed choice (πm), the synchronous pi-calculus with
separate choice (πs), the asynchronous pi-calculus (πa), and the join-calculus (J) all
have the same expressive power, but there exists no good and distributability-preserving
encoding from πm into πa, and neither from πa into J.

πm

πs πa

J

Figure 7.1.: Distributability in Pi-like Calculi.

293

7. Concluding Remarks

In Figure 7.1 the mentioned positive and negative translational results are visualised by
lines connecting the respective source and target language. Moreover, positive results are
visualised by arrows from the source into the target language. Hence negative results are
illustrated by the absence of an arrow head in the corresponding direction. Moreover, the
existence of negative results is illuminated by dashed lines that visualise the borderline
between the expressive power of the considered variants and that are augmented with a
pictogram of the respective distinguishing synchronisation pattern. Note that there are
of course also good encodings from J into πs and πm and from πa into πm.

Note that to obtain this hierarchy, i.e., to obtain the picture in Figure 7.1, we need
the negative translational separation results and the good and distributability-preserving
encoding from πs into πa of [Nes00]. However, to tell what this hierarchy is talking about,
i.e., to ensure that it indeed shows different levels of distributability, we also need the
other mentioned positive results, because they prove that preservation of distributability
is in fact the only discriminating feature between the considered languages.

The hierarchy in Figure 7.1 tells us that the considered variants of the pi-calculus
and the join-calculus represent three different levels on the expressive power of their
synchronisation mechanisms with respect to distributability. The borderlines between
these levels are described by the possibility or impossibility to express the synchronisation
patterns M and ? as visualised in Figure 7.1. Interestingly, the asynchronous pi-calcu-
lus resides on the same level as the synchronous pi-calculus with only separate choice.
This shows that in order to benefit from the additional expressive power that is usually
assumed with synchronous interactions we also have to include the expressive power of
mixed choice.

7.3. Further Research

Of course we do not believe that the two synchronisation patterns that lead to the hier-
archy in Figure 7.1 already capture all kinds of synchronisation mechanisms in process
calculi. In further research we want to analyse e.g. what kind of synchronisation pat-
terns are expressed by polyadic synchronisation in [CM03] or by the synchronisation
mechanisms described in [LV10]. Also the study of distributability in extensions of the
calculi e.g. by mechanisms to express real-time or failures is an interesting area of further
research.

In the case of separation results, a natural next step to improve the results is to go
back to particular distributions, in order to examine the problematic set of distributable
terms in the source language. This way a positive result for a sublanguage of the source
language can be derived. An exhaustive analysis may even lead to an exact borderline
between distributable and not distributable languages. Note that the results in [vGGS12]
go in this direction for the area of Petri nets. This kind of consideration is beyond the
scope of the this thesis, but another interesting topic of further research.

Another direction of further research is the analysis of synchronisation mechanisms
in other process calculi and other concurrency formalisms in general, and a comparison
of the obtained results. As explained, the synchronisation pattern M that allows us to

294

7.3. Further Research

separate πa from J originates from a similar consideration in the context of Petri nets. In
fact we can observe several similarities but also differences between our results and results
obtained in the context of Petri nets. As an example consider the discussion in [SPG11]
and [PSN11]. An analysis of these similarities and differences as well as the consideration
of further concurrency formalisms may provide further insights on the nature of different
synchronisation mechanisms and may even lead to some model independent answers on
questions related to the implementability of synchronisation mechanisms in distributed
real systems.

In Section 5.4 we discuss the composition of encoding functions. As Gorla ([Gor10a])
we find it annoying that the composition of two good encodings does not necessarily
lead to a good encoding. Hence, we agree with him that the revision of the quality
criteria such that they result in less demanding conditions for the composition of good
encodings, is a challenging but also very interesting direction for future research.

Furthermore, the lengthy proofs in the Appendix of this thesis show the need of
mechanical proof assistance. The formalisation of the pi-calculus within Isabelle/HOL
[NWP02] can provide a starting point in this direction [BP07, Ben10]. Hence extend-
ing this formalisation by the concept of encodings and quality criteria as well as proof
methods for the derivation of correctness proofs as for example type systems is also an
interesting topic of further research.

295

List of Figures

2.1. Structural Congruence in the Pi-Calculus. 18

2.2. Labelled Semantics of πm and πs. 19

2.3. Reduction Semantics of the Monadic Variants of the Pi-Calculus. 20

2.4. Reduction Semantics of the Polyadic Variants of the Pi-Calculus. 21

2.5. Variants of the Pi-Calculus. 22

4.1. Local Confluence [Pal03]. 59

4.2. Local confluence of receiving and sending actions. 71

4.3. A fully reachable pure M in Petri nets. 91

4.4. Visualisation of the Synchronisation Pattern M. 93

4.5. The Synchronisation Pattern ? in Petri nets. 101

5.1. An Encoding from πs into πa. 112

5.2. Cyclic sums. 120

5.3. Parallel structure. 122

5.4. An Encoding from πm without replication into πp. 127

5.5. Auxiliary Functions of J · Kmp . 127

5.6. Encoding Example for J · Kmp . 128

5.7. Processing of Requests in the Example. 131

5.8. An Encoding from πm into π=a . 137

5.9. Auxiliary Functions of J · Kma . 138

6.1. Basic Types in J · Kma . 166

6.2. Basic Types in J · Kmp . 167

6.3. Basic Types in J · Ksa. 169

6.4. Typing Rules of the Basic Type System. 170

6.5. Monadic Types in J · Kma . 184

6.6. Monadic Types in J · Kmp . 185

6.7. Monadic Types in J · Ksa. 186

6.8. Typing Rules of the Monadic Type System. 191

6.9. Linear and Monadic Types in J · Kma . 210

6.10. Linear Types in J · Kmp . 212

6.11. Linear Types in J · Ksa. 213

6.12. Typing Rules of the Linear Type System. 216

6.13. Partially Committed States. 235

7.1. Distributability in Pi-like Calculi. 293

297

Bibliography

[ACS98] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On Bisim-
ulations for the Asynchronous π-Calculus. Theoretical Computer Science,
195(2):291–324, 1998. [An extended abstract appears in the proceedings of
CONCUR ’96.].

[AFV01] Luca Aceto, Wan Fokkink, and Chris Verhoef. Structural Operational Se-
mantics. Handbook of Process Algebra, pages 197–292, 2001.

[AH92] S. Arun-Kummar and Matthew Hennessy. An efficiency preorder for pro-
cesses. Acta Informatica, 29(8):737–760, 1992.

[AM96] Luca Aceto and David Murphy. Timing and causality in process algebra.
Acta Informatica, 33(4):317–350, 1996.

[Bae05] J.C.M. Baeten. A brief history of process algebra. Theoretical Computer
Science, 335(2–3):131–146, 2005.

[BB90] Gerard Berry and Gerard Boudol. The Chemical Abstract Machine. In
Proceedings of POPL (Principles of Programming Languages), SIGPLAN-
SIGACT, pages 81–94. ACM, 1990.

[BD12] Eike Best and Philippe Darondeau. Petri Net Distributability. In Proceedings
of PSI ’11 (Perspectives of Systems Informatics), volume 7162 of Lecture
Notes in Computer Science, pages 1–18. Springer, 2012.

[Ben10] Jesper Bengtson. Formalising process calculi. PhD thesis, Acta Universitatis
Upsaliensis, 2010.

[BG95] Nadia Busi and Roberto Gorrieri. Distributed Conflicts in Communicating
Systems. In Object-Based Models and Languages for Concurrent Systems,
volume 924 of Lecture Notes in Computer Science, pages 49–65. Springer,
1995.

[BGZ00] Nadia Busi, Roberto Gorrieri, and Gianluigi Zavattaro. On the Expres-
siveness of Linda Coordination Primitives. Information and Compututation,
156(1–2):90–121, 2000.

[BK82] Jan A. Bergstra and Jan W. Klop. Fixed point semantics in process algebra.
Technical Report IW 206/82, Mathematical Centre, Amsterdam, 1982.

299

Bibliography

[Bou88] Luc Bougé. On the Existence of Symmetric Algorithms to Find Leaders
in Networks of Communicating Sequential Processes. Acta Informatica,
25(4):179–201, 1988.

[Bou92] Gérard Boudol. Asynchrony and the π-calculus (note). Note, INRIA, 1992.

[BP91] Frank S. Boer and Catuscia Palamidessi. Embedding as a tool for Lan-
guage Comparison: On the CSP hierarchy. In Proceedings of CONCUR
(Concurrency-Theory), volume 527 of Lecture Notes in Computer Science,
pages 127–141. Springer, 1991.

[BP07] Jesper Bengtson and Joachim Parrow. Formalising the π-Calculus Using
Nominal Logic. In Proceedings of FoSSaCS (Foundations of Software Science
and Computational Structures), volume 4423 of Lecture Notes in Computer
Science, pages 63–77. Springer, 2007.

[BPV05] Michael Baldamus, Joachim Parrow, and Björn Victor. A Fully Abstract
Encoding of the π-Calculus with Data Terms (Extended Abstract). In Pro-
ceedings of ICALP (International Colloquium on Automata, Languages and
Programming), volume 3580 of Lecture Notes in Computer Science, pages
1202–1213. Springer, 2005.

[Bru97] Glenn Bruns. Distributed Systems Analysis with CCS. Prentice-Hall, 1997.

[BS83] Gael Norma Buckley and Abraham Silberschatz. An Effective Implementa-
tion for the Generalized Input-Output Construct of CSP. ACM Transactions
on Programming Languages and Systems (TOPLAS), 5(2):223–235, 1983.

[BS98] Michele Boreale and Davide Sangiorgi. A fully abstract semantics for causal-
ity in the π-calculus. Acta Informatica, 35(5):353–400, 1998.

[CCP07] Diletta Cacciagrano, Flavio Corradini, and Catuscia Palamidessi. Separation
of synchronous and asynchronous communication via testing. Theoretical
Computer Science, 386(3):218–235, 2007.

[CCP09] Diletta Cacciagrano, Flavio Corradini, and Catuscia Palamidessi. Explicit
fairness in testing semantics. Logical Methods in Computer Science, 5(2):1–
27, 2009.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile Ambients. In Proceedings of
FoSSaCS (Foundations of Software Science and Computation Structures),
volume 1378 of Lecture Notes in Computer Science, pages 140–155. Springer,
1998.

[CG99] Luca Cardelli and Andrew D. Gordon. Types for Mobile Ambients. In
Proceedings of POPL (Principles of Programming Languages), SIGPLAN-
SIGACT, pages 79–92. ACM, 1999.

300

Bibliography

[CGG99] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Mobility Types for
Mobile Ambients. In Proceedings of ICALP (International Colloquium on
Automata, Languages and Programming), volume 1644 of Lecture Note in
Computer Science, pages 230–239. Springer, 1999.

[CM03] Marco Carbone and Sergio Maffeis. On the Expressive Power of Polyadic
Synchronisation in π-Calculus. Nordic Journal of Computing, 10(2):70–98,
2003.

[CMT96] Bernadette Charron-Bost, Friedmann Mattern, and Gerard Tel. Syn-
chronous, asynchronous, and causally ordered communication. Distributed
Computing, 9(4):173–191, 1996.

[DDNM88] Pierpaolo Degano, Rocco De Nicola, and Ugo Montanari. On the Consis-
tency of “Truly Concurrent” Operational and Denotational Semantics. In
Proceedings of LICS (Logic in Computer Science), pages 133–141. IEEE,
1988.

[Dij71] E. W. Dijkstra. Hierarchical Ordering of Sequential Processes. Acta Infor-
matica, 1(2):115–138, 1971.

[EN86] Uffe H. Engberg and Mogens Nielsen. A Calculus of Communicating Systems
with Label Passing. Technical Report DAIMI PB-208, University of Aarhus,
1986.

[EN00] Uffe H. Engberg and Mogens Nielsen. A Calculus of Communicating Systems
with Label Passing—Ten Years After. Proof, Language, and Interaction;
Essays in Honour of Robin Milner, pages 599–622, 2000.

[FG96] Cédric Fournet and Georges Gonthier. The Reflexive CHAM and the Join-
Calculus. In Proceedings of POPL (Principles of Programming Languages),
SIGPLAN-SIGACT, pages 372–385. ACM, 1996.

[FL10] Yuxi Fu and Hao Lu. On the expressiveness of interaction. Theoretical
Computer Science, 411(11-13):1387–1451, 2010.

[FLMR96] Gonthier Georges Fournet, Cédric, Jean-Jacques Lévy, Luc Maranget, and
Didier Rémy. A Calculus of Mobile Agents. In Proceedings of CONCUR
(Concurrency Theory), volume 1119 of Lecture Notes in Computer Science,
pages 406–421. Springer, 1996.

[Fok07] Wan Fokkink. Modelling Distributed Systems. Springer, 2007.

[Fou98] Cédric Fournet. The Join-Calculus: a Calculus for Distributed Mobile Pro-
gramming. PhD thesis, L’École Polytechnique, 1998.

[Gar82] Hector Garcia-Molina. Elections in a Distributed Computing System. IEEE
Transactions on Computers, 31(1):48–59, 1982.

301

Bibliography

[GMR06] Jan F. Groote, Mohammad R. Mousavi, and Michel A. Reniers. A Hierarchy
of SOS Rule Formats. In Proceedings of SOS ’05 (Structural Operational Se-
mantics), volume 156 of Electronic Notes in Theoretical Computer Science,
pages 3–25. Elsevier, 2006.

[Gor07] Daniele Gorla. Synchrony vs Asynchrony in Communication Primitives. In
Proceedings of EXPRESS ’06 (Expressivity in Concurrency), volume 175 of
Electronic Notes in Theoretical Computer Science, pages 87–108. Elsevier,
2007.

[Gor08a] Daniele Gorla. Comparing Communication Primitives via their Relative
Expressive Power. Information and Computation, 206(8):931–952, 2008.

[Gor08b] Daniele Gorla. Towards a Unified Approach to Encodability and Separation
Results for Process Calculi. In Proceedings of CONCUR (Concurrency The-
ory), volume 5201 of Lecture Notes in Computer Science, pages 492–507.
Springer, 2008.

[Gor09] Daniele Gorla. On the Relative Expressive Power of Calculi for Mobility. In
Proceedings of MFPS (Mathematical Foundations of Programming Seman-
tics), volume 249 of Electronic Notes in Theoretical Computer Science, pages
269–286. Elsevier, 2009.

[Gor10a] Daniele Gorla. A taxonomy of process calculi for distribution and mobility.
Distributed Computing, 23(4):273–299, 2010.

[Gor10b] Daniele Gorla. Towards a Unified Approach to Encodability and Separation
Results for Process Calculi. Information and Computation, 208(9):1031–
1053, 2010.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular AC-
TOR formalism for artificial intelligence. In Proceedings of IJCAI (Inter-
national Joint Conference on Arteficial Intelligence), pages 235–245. ACM,
1973.

[Hen07] Matthew Hennessy. A Distributed Pi-Calculus. Cambridge University Press,
2007.

[Hoa78] Sir Charles Antony Richard Hoare. Communicating Sequential Processes.
Communications of the ACM, 21(8):666–677, 1978.

[Hoa04] Sir Charles Antony Richard Hoare. Communicating Sequential Processes.
Prentice-Hall International Series in Computer Science, June 21 2004. Elec-
tronic version of Communicating Sequential Processes, first published in
1985 by Prentice Hall International.

[Hon92a] Kohei Honda. Notes on Soundness of a Mapping from π-calculus to ν-
calculus. With comments added in October 1993, May 1992.

302

Bibliography

[Hon92b] Kohei Honda. Two bisimilarities in ν-calculus. CS Report 92-002, Keio
University, 1992. Revised on March 31, 1993.

[HP01] Oltea Mihaela Herescu and Catuscia Palamidessi. On the generalized dining
philosophers problem. In Proceedings of PODC (Principles of Distributed
Computing), pages 81–89. ACM, 2001.

[HP05] Oltea Mihaela Herescu and Catuscia Palamidessi. A Randomized Encoding
of the π-Calculus with Mixed Choice. Theoretical Computer Science, 335(2–
3):373–404, 2005.

[HT91] Kohei Honda and Mario Tokoro. An Object Calculus for Asynchronous Com-
munication. In Proceedings of ECOOP (European Conference on Object-
Oriented Programming), volume 512 of Lecture Notes in Computer Science,
pages 133–147. Springer, 1991.

[HT92] Kohei Honda and Mario Tokoro. On Asynchronous Communication Seman-
tics. In Object-Based Concurrent Computing, volume 612 of Lecture Notes
in Computer Science, pages 21–51. Springer, 1992.

[HY95] Kohei Honda and Nobuko Yoshida. On Reduction-Based Process Semantics.
Theoretical Computer Science, 151(2):437–486, 1995.

[JS85] Ralph E. Johnson and Fred B. Schneider. Symmetry and Similarity in Dis-
tributed Systems. In Proceedings of PODC (Principles of Distributed Com-
puting), pages 13–22. ACM, 1985.

[Kie98] Astrid Kiehn. Concurrency in Process Algebras. Habilitationsschrift, 1998.

[Kna93] Frederick Knabe. A Distributed Protocol for Channel-Based Communication
with Choice. Computers and Artificial Intelligence, 12(5):475–490, 1993.

[Kob98] Naoki Kobayashi. A Partially Deadlock-Free Typed Process Calculus.
ACM Transactions on Programming Languages and Systems (TOPLAS),
20(2):436–482, 1998. [This is an extended and revised version of the paper
presented in proceedings of LICS ’97.].

[Kob06] Naoki Kobayashi. A New Type System for Deadlock-Free Processes. In
Proceedings of CONCUR (Concurrency Theory), volume 4137 of Lecture
Notes in Computer Science, pages 233–247. Springer, 2006.

[KPT99] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity
and the Pi-Calculus. ACM Transactions on Programming Languages and
Systems (TOPLAS), 21(5):914–947, 1999. [This is a revised and extended
version of a paper presented at POPL ’96.].

[Lan07] Ivan Lanese. Concurrent and Located Synchronizations in π-Calculus. In
Proceedings of SOFSEM: Theory and Practice of Computer Science, volume
4362 of Lecture Notes in Computer Science, pages 388–399. Springer, 2007.

303

Bibliography

[Lév97] Jean-Jacques Lévy. Some Results in the Join-Calculus. In Theoretical As-
pects of Computer Software, volume 1281 of Lecture Notes in Computer
Science, pages 233–249. Springer, 1997.

[LL77] Gérard Le Lann. Distributed Systems—Towards a Formal Approach. In
Information Processing, pages 155–160. IFIP, 1977.

[LR81] Daniel Lehmann and Michael O. Rabin. On the advantages of free choice: a
symmetric and fully distributed solution to the dining philosophers problem.
In Proceedings of POPL (Principles of Programming Languages), SIGPLAN-
SIGACT, pages 133–138. ACM, 1981.

[LSZ74] Richard J. Lipton, Lawrence Snyder, and Yechezkel Zalcstein. A Compar-
ative Study of Models of Parallel Computation. In Proceedings of SWAT
(Annual Symposium on Switching and Automata Theory), pages 145–155.
IEEE, 1974.

[LV10] Cosimo Laneve and Antonio Vitale. The Expressive Power of Synchroniza-
tions. In Proceedings of LICS (Logics in Computer Science), pages 382–391.
IEEE, 2010.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc.
San Francisco, CA, USA, 1996.

[Mil80] Robin Milner. A Calculus of Communicating Systems. volume 92 of Lecture
Notes in Computer Science. Springer, 1980.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, Inc., 1989.

[Mil92] Robin Milner. Functions as Processes. Mathematical Structures in Computer
Science, 2(2):119–141, 1992.

[Mil93a] Robin Milner. Elements of Interaction: Turing Award Lecture. Communi-
cations of the ACM, 36(1):78–89, 1993.

[Mil93b] Robin Milner. The Polyadic π-Calculus: a Tutorial. Logic and Algebra of
Specification, 94:203–246, 1993.

[Mil99] Robin Milner. Communicating and Mobile Systems: The π-Calculus. Cam-
bridge University Press, New York, 1999.

[MP95] Ugo Montanari and Marco Pistore. Concurrent Semantics for the π-calculus.
In Proceedings of MFPS (Mathematical Foundations of Programming Se-
mantics), volume 1 of Electronic Notes in Theoretical Computer Science,
pages 411–429, 1995.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile
Processes, Part I and II. Information and Computation, 100(1):1–77, 1992.

304

Bibliography

[MRG07] Mohammad R. Mousavi, Michel A. Reniers, and Jan F. Groote. SOS formats
and meta-theory: 20 years after. Theoretical Computer Science, 373(3):238–
272, 2007.

[MS92] Robin Milner and Davide Sangiorgi. Barbed Bisimulation. In Proceedings
of ICALP (International Coloquium on Automata, Languages and Program-
ming), volume 623 of Lecture Notes in Computer Science, pages 685–695.
Springer, 1992.

[Nes96] Uwe Nestmann. On Determinacy and Nondeterminacy in Concurrent Pro-
gramming. PhD thesis, Universität Erlangen-Nürnberg, 1996.

[Nes00] Uwe Nestmann. What is a “Good” Encoding of Guarded Choice? Informa-
tion and Computation, 156(1-2):287–319, 2000.

[Nes06] Uwe Nestmann. Welcome to the Jungle: A subjective Guide to Mobile
Process Calculi. In Proceedings of CONCUR Concurrency Theory, volume
4137 of Lecture Notes in Computer Science, pages 52–63. Springer, 2006.

[NP00] Uwe Nestmann and Benjamin C. Pierce. Decoding Choice Encodings. In-
formation and Computation, 163(1):1–59, 2000. An extended abstract ap-
peared in the Proceedings of CONCUR’96, volume 1119 of Lecture Notes in
Computer Science.

[NS97] Uwe Nestmann and Martin Steffen. Typing Confluence. In Proceedings of
ERCIM (Formal Methods in Industrial Critical Systems), 1997.

[NWP02] Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL:
a proof assistant for higher-order logic. Springer, 2002.

[Old87] Ernst-Rüdiger Olderog. Operational Petri Net Semantics for CCSP. In
Advances in Petri Nets, volume 266 of Lecture Notes in Computer Science,
pages 196–223. Springer, 1987.

[Pal03] Catuscia Palamidessi. Comparing the Expressive Power of the Synchronous
and the Asynchronous π-calculi. Mathematical Structures in Computer Sci-
ence, 13(5):685–719, 2003.

[Par08] Joachim Parrow. Expressiveness of Process Algebras. Electronic Notes in
Theoretical Computer Science, 209:173–186, 2008.

[Pet62] Carl A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für
Instrumentelle Mathematik, Bonn, 1962.

[Plo04] Gordon D. Plotkin. A structural approach to operational semantics. Journal
of Logic and Algebraic Programming, 60:17–140, 2004. [An earlier version of
this paper was published as technical report at Aarhus University in 1981.].

305

Bibliography

[PN10a] Kirstin Peters and Uwe Nestmann. Breaking Symmetries. In Proceedings of
EXPRESS (Expressiveness in Concurrency), volume 41 of Electronic Pro-
ceedings in Theoretical Computer Science, pages 136–150, 2010.

[PN10b] Kirstin Peters and Uwe Nestmann. Breaking Symmetries. Tech-
nical report, Technische Universität Berlin, Germany, 2010.
http://arxiv.org/abs/1007.4172v1.

[PN12a] Kirstin Peters and Uwe Nestmann. Breaking Symmetries. Mathematical
Structures in Computer Science, 2012. To appear.

[PN12b] Kirstin Peters and Uwe Nestmann. Is It a “Good” Encoding of Mixed
Choice? In Proceedings of FoSSaCS (Foundations of Software Science and
Computational Structures), volume 7213 of Lecture Notes in Computer Sci-
ence, pages 210–224. Springer, 2012.

[PN12c] Kirstin Peters and Uwe Nestmann. Is it a “Good” Encoding of Mixed
Choice? Technical report, Technische Universität Berlin, Germany, 2012.
http://arxiv.org/abs/1201.1410v1.

[Pra86] Vaughan Pratt. Modelling Concurrency with Partial Orders. International
Journal of Parallel Programming, 15:33–71, 1986.

[Pri96] Corrado Priami. Enhanced Operational Semantics for Concurrency. PhD
thesis, Universita’ di Pisa-Genova-Udine, 1996.

[PS92] Joachim Parrow and Peter Sjödin. Multiway Synchronization Verified with
Coupled Simulation. In Proceedings of CONCUR (Concurrency Theory),
volume 630 of Lecture Notes in Computer Science, pages 518–533. Springer,
1992.

[PS94] Joachim Parrow and Peter Sjödin. The Complete Axiomatization of Cs-
congruence. In Proceedings STACS (Symposium on Theoretical Aspects of
Computer Science), volume 775 of Lecture Notes in Computer Science, pages
555–568. Springer, 1994.

[PS96] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mo-
bile processes. Mathematical Structures in Computer Science, 6(5):409–454,
1996. [A preliminary version appeared in proceedings of LICS ’93.].

[PSN11] Kirstin Peters, Jens-Wolfhard Schicke, and Uwe Nestmann. Syn-
chrony vs Causality in the Asynchronous Pi-Calculus. In Proceed-
ings of EXPRESS (Expressiveness in Concurrency), volume 64 of Elec-
tronic Proceedings in Theoretical Computer Science, pages 89–103, 2011.
http://arxiv.org/abs/1108.4469v1.

[PT97] Benjamin C. Pierce and David N. Turner. Pict: A Programming Language
Based on the Pi-Calculus. In Proof, Language and Interaction: Essays in
Honour of Robin Milner, pages 455–494. MIT Press, 1997.

306

Bibliography

[QW00] Paola Quaglia and David Walker. On Synchronous and Asynchronous Mobile
Processes. In Proceedings of FoSSaCS (Foundations of Software Science
and Computation Structures), volume 1784 of Lecture Notes in Computer
Science, pages 283–296. Springer, 2000.

[QW05] Paola Quaglia and David Walker. Types and full abstraction for polyadic
π-calculus. Information and Computation, 200(2):215–246, 2005.

[San92] Davide Sangiorgi. Expressing Mobility in Process Algebras—First-Order and
Higher-Order Paradigms. PhD thesis, Department of Computer Science,
University of Edinburgh, 1992.

[San94] Davide Sangiorgi. An investigation into functions as processes. In Pro-
ceedings of MFPS (Mathematical Foundations of Programming Semantics),
volume 802 of Lecture Notes in Computer Science, pages 143–159. Springer,
1994.

[San97] Davide Sangiorgi. The name discipline of uniform receptiveness. In Pro-
ceedings of ICALP (International Colloquium on Automata, Languages and
Programming), volume 1256 of Lecture Notes in Computer Science, pages
303–313. Springer, 1997.

[San99] Davide Sangiorgi. The name discipline of uniform receptiveness. Theoretical
Computer Science, 221(1–2):457–493, 1999.

[San09] Davide Sangiorgi. On the Origins of Bisimulation and Coinduction.
ACM Transactions on Programming Languages and Systems (TOPLAS),
31(4):Article 15, 2009.

[SPG11] Jens-Wolfhard Schicke, Kirstin Peters, and Ursula Goltz. Synchrony vs.
Causality in Asynchronous Petri Nets. In Proceedings of EXPRESS (Expres-
siveness in Concurrency), volume 64 of Electronic Proceedings in Theoretical
Computer Science, pages 119–131, 2011. http://arxiv.org/abs/1108.4471v1.

[SW01] Davide Sangiorgi and David Walker. The π-calculus: A Theory of Mobile
Processes. Cambridge University Press New York, NY, USA, October 16
2001.

[Tur96] David N. Turner. The Polymorphic Pi-Calculus: Theory and Implementa-
tion. PhD thesis, Department of Computer Science, Universitiy of Edin-
burgh, 1996.

[vG93] Rob J. van Glabbeek. The Linear Time – Branching Time Spectrum II.
In Proceedings of CONCUR (Concurrency Theory), volume 715 of Lecture
Notes in Computer Science, pages 66–81. Springer, 1993.

[vG01] Rob J. van Glabbeek. The Linear Time – Branching Time Spectrum I: The
Semantics of Conrete, Sequential Processes. Handbook of Process Algebra,
pages 3–99, 2001.

307

Bibliography

[vGG01] Rob J. van Glabbeek and Ursula Goltz. Refinement of Actions and Equiv-
alence Notions for Concurrent Systems. Acta Informatica, 37(4-5):229–327,
2001.

[vGGS08] Rob J. van Glabbeek, Ursula Goltz, and Jens-Wolfhard Schicke. On Syn-
chronous and Asynchronous Interaction in Distributed Systems. In Proceed-
ings of MFCS (Mathematical Foundations of Computer Science), volume
5162 of Lecture Notes in Computer Science, pages 16–35. Springer, 2008.

[vGGS09] Rob J. van Glabbeek, Ursula Goltz, and Jens-Wolfhard Schicke. Symmetric
and Asymmetric Asynchronous Interaction. In Proceedings of ICE (Inter-
action and Concurrency Experiences), volume 229 of Electronic Notes in
Theoretical Computer Science, pages 77–95. Elsevier, 2009.

[vGGS12] Rob J. van Glabbeek, Ursula Goltz, and Jens-Wolfhard Schicke-Uffmann.
On Distributability of Petri Nets. In Proceedings of FoSSaCS (Foundations
of Software Science and Computational Structures), volume 7213 of Lecture
Notes in Computer Science, pages 331–345. Springer, 2012.

[VP96] Björn Victor and Joachim Parrow. Constraints as Processes. In U. Monta-
nari and V. Sassone, editors, Proceedings of CONCUR (Concurrency The-
ory), volume 1119 of Lecture Notes in Computer Science, pages 389–405.
Springer, 1996.

[VPP07] Maria Grazia Vigliotti, Iain Phillips, and Catuscia Palamidessi. Tutorial on
separation results in process calculi via leader election problems. Theoretical
Computer Science, 388(1–3):267–289, December 5 2007.

[Yos96] Nobuko Yoshida. Graph Types for Monadic Mobile Processes. In Proceedings
of FST&TCS (Foundations of Software Technology and Theoretical Com-
puter Science), volume 1180 of Lecture Notes in Computer Science, pages
371–386. Springer, 1996.

308

A. Appendix

A.1. Typed Encoding Functions

A.1.1. Well-Typedness in the Basic Type System

Within this section we present the proofs of Lemma 6.2.19 and Lemma 6.2.18 as well
as the missing cases of the proof of Lemma 6.2.17, i.e., we prove that the encodings
T 1
B J · Ksa, T 2

B J · Ksa, and T 3
B J · Ksa are well-typed. Note that all three encodings use sum

locks and type them by the same type. Because of that, instantiations on sum locks are
typed equivalently in the encoding functions.

Lemma A.1.1. Positive and negative instantiations of a sum lock l that are typed by
T 1
B , T 2

B , or T 3
B are well-typed with respect to l : l.

Proof. By Figure 6.3, Figure 6.2, and Figure 6.1, sum locks, booleans, and the auxiliary
values used in instantiations of sum locks are typed equivalently in T 1

B , T 2
B , and T 3

B .
More precisely, for T ∈

{
T 1
B , T 2

B , T 3
B

}
, we have

T
(
l〈>〉

) Def. 5.1.1
= T

(
l(t , f) .t

) Def. 5.4.1
= T

(
l(t , f) . (νvt) t〈vt〉

)
= l(t , f) . (νvt :v>) t〈vt〉

for positive and

T
(
l〈⊥〉

) Def. 5.1.1
= T

(
l(t , f) .f

) Def. 5.4.1
= T

(
l(t , f) . (νvf) f 〈vf 〉

)
= l(t , f) . (νvf :v⊥) f 〈vf 〉

for negative instantiations of l . Remember that l =](](v>) ,](v⊥)) for all three sets of
type assignments. Let Γ = l : l, t :](v>) , f :](v⊥). Then,

l : l ` l : l
N

Γ, vt :v> ` t :](v>)
N

Γ, vt :v> ` vt :v>
N

l : l, t :](v>) , f :](v⊥) , vt :v> ` t〈vt〉
T-OutB

l : l, t :](v>) , f :](v⊥) ` (νvt :v>) t〈vt〉
T-ResB

l :](](v>) ,](v⊥)) ` l(t , f) . (νvt :v>) t〈vt〉
T-InB

and

l : l ` l : l
N

Γ, vf :v⊥ ` f :](v⊥)
N

Γ, vf :v⊥ ` vf :v⊥
N

l : l, t :](v>) , f :](v⊥) , vf :v⊥ ` f 〈vf 〉
T-OutB

l : l, t :](v>) , f :](v⊥) ` (νvf :v⊥) f 〈vf 〉
T-ResB

l :](](v>) ,](v⊥)) ` l(t , f) . (νvf :v⊥) f 〈vf 〉
T-InB

where N = T-NameB.

309

A. Appendix

Lemma 6.2.19 states that for all source terms S ∈ Ps that are well-structured with
respect to Ts and TS , the encoding T 1

B J S Ksa is well-typed with respect to ΓJ S Ksa = T̃S .

Proof of Lemma 6.2.19. An encoding is well-typed if each encoded term is well-typed.
Hence, we perform an induction over the structure of (well-structured) source terms
S ∈ πs. Note that no source term can contain infinitely many free names. We conclude
that TS is finite and, thus, also ΓJ · Ksa = T̃S is finite for each source term S.

Base Case: In Ps there are two terms without subterms, namely 0 and X. Note that
TS(0) = 0 and TS(X) = X. T 1

B J 0 Ksa = (νl : l)
(
T 1
B

(
l〈>〉

))
and T 1

B J XKsa = X. The

second case, i.e., the type judgement T̃S ` X, follows directly from T-SuccB. For
the first case, we have

T̃S , l : l ` T 1
B

(
l〈>〉

)Lemma A.1.1 and Lemma 6.2.11

T̃S ` (νl : l)
(
T 1
B

(
l〈>〉

)) T-ResB

Induction Hypothesis:

∀S ∈ Ps . S is well-structured with respect to Ts and TS
implies T̃S ` T 1

B J S Ksa
(IH)

Induction Step: We perform a case split over the structure of S.

Case S = (νx)S′: By Definition 6.2.5 and because x ∈ n(S), there is some type
assignment x : TS ∈ TS for some source type TS ∈ Ts. Then T 1

B J S Ksa =(
νϕs

a(x) : T̃S

)
T 1
B J S′ Ksa and

T̃S ` T 1
B J S′ Ksa

(IH)

T̃S `
(
νϕs

a(x) : T̃S

)
T 1
B J S′ Ksa

T-ResB

because T̃S , ϕs
a(x) : T̃S = T̃S .

Case S = S1 | S2: Then T 1
B J S Ksa = T 1

B J S1 Ksa | T 1
B J S2 Ksa and

T̃S ` T 1
B J S1 Ksa

IH ∗
T̃S ` T 1

B J S2 Ksa
IH∗

T̃S ` T 1
B J S1 Ksa | T 1

B J S2 Ksa
T-ParB

where IH∗ = (IH) and Lemma 6.2.11.

Case S =
∑

i∈I πi.Si: Then T 1
B J S Ksa = (νl : l)

(
T 1
B

(
l〈>〉

)
|
∏
i∈I T 1

B J πi.Si Ksa
)

and

T̃S , l : l ` T 1
B

(
l〈>〉

)Lemma A.1.1 and Lemma 6.2.11 D

T̃S , l : l ` T 1
B

(
l〈>〉

)
|
∏
i∈I T 1

B J πi.Si Ksa
T-ParB

T̃S ` (νl : l)
(
T 1
B

(
l〈>〉

)
|
∏
i∈I T 1

B J πi.Si Ksa
) T-ResB

310

A.1. Typed Encoding Functions

To prove D, we have to show that T̃S , l : l `
∏
i∈I T 1

B J πi.Si Ksa. With the
typing Rule T-ParB we decompose this subgoal into several subgoals of the
form T̃S , l : l ` T 1

B J πi.Si Ksa, where each πi is either a τ , an output or an input
prefix.

Case πi = τ : Then T 1
B J πi.Si Ksa = (νt :](v>) , f :](v⊥)) (T1 | T2 | T3), where

the subterms T1 = l〈t , f 〉, T2 = t(vt) .
(
T 1
B

(
l〈⊥〉

)
| T 1

B J Si Ksa
)

and T3 =

f (vf) .
(
T 1
B

(
l〈⊥〉

))
. Let Γ = T̃S , l : l, t :](v>) , f :](v⊥). Then

D1
D2 D3

Γ ` T2 | T3
T-ParB

T̃S , l : l, t :](v>) , f :](v⊥) ` T1 | T2 | T3
T-ParB

T̃S , l : l, t :](v>) ` (νf :](v⊥)) (T1 | T2 | T3)
T-ResB

T̃S , l : l ` (νt :](v>) , f :](v⊥)) (T1 | T2 | T3)
T-ResB

Remember that l =](](v>) ,](v⊥)). Hence,

D1 =
Γ ` l : l

N
Γ ` t :](v>)

N
Γ ` f :](v⊥)

N

Γ ` l〈t , f 〉
T-OutB

where N = T-NameB.

D2 =
Γ ` t :](v>)

T-NameB D′2

Γ ` t(vt) .
(
T 1
B

(
l〈⊥〉

)
| T 1

B J Si Ksa
)T-InB

To prove Γ, vt :v> ` T 1
B

(
l〈⊥〉

)
| T 1

B J Si Ksa for D′2 apply T-ParB and then
Lemma A.1.1 and Lemma 6.2.11 at the left hand side and the induction
hypothesis and Lemma 6.2.11 at the right hand side.

D3 =
Γ ` f :](v⊥)

T-NameB
Γ, vf :v⊥ ` T 1

B

(
l〈⊥〉

)R
Γ ` f (vf) .

(
T 1
B

(
l〈⊥〉

)) T-InB

where R = Lemma A.1.1 and Lemma 6.2.11.

Case πi = y〈z〉: Then T 1
B J πi.Si Ksa = (νs :s) (T1 | T2), where the subterms

T1 = ϕs
a(y)〈l , s, ϕs

a(z)〉 and T2 = s(vs) .T 1
B J Si Ksa.

D1
D2 D3

T̃S , l : l, s :s ` s(vs) .T 1
B J Si Ksa

T-InB

T̃S , l : l, s :s ` T1 | T2
T-ParB

T̃S , l : l ` (νs :s) (T1 | T2)
T-ResB

By Definition 6.2.5 and because y, z ∈ fn(S), there exists TS ∈ Ts

such that y :](TS) , z : TS ∈ TS . Then, by Definition 6.2.6, ϕs
a(y) :

311

A. Appendix

]
(
l, s, T̃S

)
, ϕs

a(z) : T̃S ∈ T̃S . Hence, T̃S , l : l, s : s ` ϕs
a(y)〈l , s, ϕs

a(z)〉
for D1 follows from T-OutB and T-NameB for all remaining subgoals.
T̃S , l : l, s : s ` s : s for D2 follows from T-NameB and to prove T̃S , l :
l, s : s, vs : vs ` T 1

B J Si Ksa for D3 apply the induction hypothesis and
Lemma 6.2.11.

Case πi = y(x): Then:

T 1
B J πi.Si Ksa = (νr :](vs,r)) ((νvs,r :vs,r) r〈vs,r 〉 | T1)

T1 = r?(vs,r) .ϕs
a(y)

(
l ′, s, ϕs

a(x)
)
.T2

T2 = (νt :](v>) , f :](v⊥)) (T3 | T4 | T8)
T3 = l〈t , f 〉
T4 = t(vt) . (νt :](v>) , f :](v⊥)) (T5 | T6 | T7)
T5 = l ′〈t , f 〉
T6 = t(vt) .T 1

B

(
l〈⊥〉

)
| T 1

B

(
l ′〈⊥〉

)
| (νvs :vs) s〈vs〉 | T 1

B J Si Ksa
T7 = f (vf) .T 1

B

(
l〈>〉

)
| T 1

B

(
l ′〈⊥〉

)
| (νvs,r :vs,r) r〈vs,r 〉

T8 = f (vf) .T 1
B

(
l〈⊥〉

)
| ϕs

a(y)
〈
l ′, s, ϕs

a(x)
〉

Let Γ1 = T̃S , l : l, r :](vs,r) , vs,r :vs,r. Then

Γ1 ` r :](vs,r)
N

Γ1 ` vs,r :vs,r
N

Γ1 ` r〈vs,r 〉
T-OutB

T̃S , l : l, r :](vs,r) ` (νvs,r :vs,r) r〈vs,r 〉
R D1

T̃S , l : l, r :](vs,r) ` (νvs,r :vs,r) r〈vs,r 〉 | T1
T-ParB

T̃S , l : l ` (νr :](vs,r)) ((νvs,r :vs,r) r〈vs,r 〉 | T1)
R

where N = T-NameB and R = T-ResB.

Let Γ2 = T̃S , l : l, r :](vs,r) , vs,r :vs,r. Then

D1 =

D′1
D′′1 D2

Γ2 ` ϕs
a(y)(l ′, s, ϕs

a(x)) .T2
T-InB

T̃S , l : l, r :](vs,r) ` r?(vs,r) .ϕs
a(y)(l ′, s, ϕs

a(x)) .T2
T-RepB

where T̃S , l : l, r :](vs,r) ` r :](vs,r) for D′1 follows from T-NameB. By
Definition 6.2.5 and because x, y ∈ n(S), there exists some source type
TS ∈ Ts such that y :](TS) , x : TS ∈ TS . Then, by Definition 6.2.6,

ϕs
a(y) :]

(
l, s, T̃S

)
, ϕs

a(x) : T̃S ∈ T̃S . Hence, Γ2 ` ϕs
a(y) :]

(
l, s, T̃S

)
for D′′1

follows from T-NameB and Γ2, l
′ : l, s : s, ϕs

a(x) : T̃S = Γ2, l
′ : l, s : s. Let

Γ3 = Γ2, l
′ : l, s : s = T̃S , l , l ′ : l, r :](vs,r) , vs,r : vs,r, s : s and Γ4 = Γ3, t :

312

A.1. Typed Encoding Functions

](v>) , f :](v⊥).

D2 =

D3
D4 D8

Γ4 ` T4 | T8
T-ParB

Γ3, t :](v>) , f :](v⊥) ` T3 | T4 | T8
T-ParB

Γ3, t :](v>) ` (νf :](v⊥)) (T3 | T4 | T8)
T-ResB

Γ3 ` (νt :](v>) , f :](v⊥)) (T3 | T4 | T8)
T-ResB

Γ4 ` l〈t , f 〉 for D3 follows from T-OutB and T-NameB for all remaining
subgoals. Let Γ5 = Γ4, vt :v>. Then

D4 =

D′4

D5
D6 D7

Γ5 ` T6 | T7
T-ParB

Γ5 ` T5 | T6 | T7
T-ParB

Γ5 ` (νf :](v⊥)) (T5 | T6 | T7)
T-ResB

Γ5 ` (νt :](v>) , f :](v⊥)) (T5 | T6 | T7)
T-ResB

Γ4 ` t(vt) . (νt :](v>) , f :](v⊥)) (T5 | T6 | T7)
T-InB

where Γ4 ` t :](v>) for D′4 follows from T-NameB. Again, Γ5 ` l ′〈t , f 〉
for D5 follows from T-OutB and T-NameB for all remaining subgoals.

D6 =

D′6

D6,1

D6,2

D6,3

Γ5 ` (νvs :vs) s〈vs〉
T-ResB D6,4

Γ5 ` (νvs :vs) s〈vs〉 | T 1
B J Si Ksa

P

Γ5 ` T 1
B

(
l ′〈⊥〉

)
| (νvs :vs) s〈vs〉 | T 1

B J Si Ksa
P

Γ5 ` T 1
B

(
l〈⊥〉

)
| T 1

B

(
l ′〈⊥〉

)
| (νvs :vs) s〈vs〉 | T 1

B J Si Ksa
P

Γ5 ` t(vt) .
(
T 1
B

(
l〈⊥〉

)
| T 1

B

(
l ′〈⊥〉

)
| (νvs :vs) s〈vs〉 | T 1

B J Si Ksa
)I

where P = T-ParB and I = T-InB. Γ5 ` t :](v>) for D′6 follows from
T-NameB. Γ5 ` T 1

B

(
l〈⊥〉

)
for D6,1 and Γ5 ` T 1

B

(
l ′〈⊥〉

)
for D6,2 follow

from Lemma A.1.1 and Lemma 6.2.11. Γ5, vs :vs ` s〈vs〉 for D6,3 follows
from T-OutB and T-NameB for all remaining subgoals. Γ5 ` T 1

B J Si Ksa
for D6,4 follows from the induction hypothesis and Lemma 6.2.11. Let
Γ6 = Γ5, vf :v⊥. Then

D7 =

D7,1

D7,2

D7,3
D7,4

Γ6 ` (νvs,r :vs,r) r〈vs,r 〉
T-ResB

Γ6 ` T 1
B

(
l ′〈⊥〉

)
| (νvs,r :vs,r) r

P

Γ6 ` T 1
B

(
l〈>〉

)
| T 1

B

(
l ′〈⊥〉

)
| (νvs,r :vs,r) r

P

Γ5 ` f (vf) .
(
T 1
B

(
l〈>〉

)
| T 1

B

(
l ′〈⊥〉

)
| (νvs,r :vs,r) r

) T-InB

where P = T-ParB. Γ5 ` f :](v⊥) follows from T-NameB. Again, Γ6 `
T 1
B

(
l〈>〉

)
for D7,2 and Γ6 ` T 1

B

(
l ′〈⊥〉

)
for D7,3 follow from Lemma A.1.1

313

A. Appendix

and Lemma 6.2.11. Γ6, vs,r : vs,r ` r〈vs,r 〉 for D7,4 follows from T-OutB

and T-NameB for all remaining subgoals. Let Γ7 = Γ4, vf :v⊥ Finally,

D8 =

D8,1
Γ7 ` T 1

B

(
l〈⊥〉

)R D8,2

Γ7 ` T 1
B

(
l〈⊥〉

)
| ϕs

a(y)〈l ′, s, ϕs
a(x)〉

T-ParB

Γ4 ` f (vf) .T 1
B

(
l〈⊥〉

)
| ϕs

a(y)〈l ′, s, ϕs
a(x)〉

T-InB

where R = Lemma A.1.1 and Lemma 6.2.11. Γ4 ` f :](v⊥) for D8,1

follows from T-NameB. Γ7 ` ϕs
a(y)〈l ′, s, ϕs

a(x)〉 for D8,2 follows from
T-OutB and T-NameB for all remaining subgoals.

Case S = y?(x) .S′: Then

T 1
B J S Ksa = ϕs

a(y)?(l , s, ϕs
a(x)) . (νt :](v>) , f :](v⊥)) (T1 | T2 | T3)

T1 = l〈t , f 〉
T2 = t(vt) .

(
T 1
B

(
l〈⊥〉

)
| (νvs :vs) s〈vs〉 | T 1

B

q
S′

ys
a

)
T3 = f (vf) .T 1

B

(
l〈⊥〉

)
Let Γ = T̃S , l : l, s :s, t :](v>)

D0

D1
D2 D3

Γ, f :](v⊥) ` T2 | T3
T-ParB

Γ, f :](v⊥) ` T1 | T2 | T3
T-ParB

Γ ` (νf :](v⊥)) (T1 | T2 | T3)
T-ResB

T̃S , l : l, s :s ` (νt :](v>) , f :](v⊥)) (T1 | T2 | T3)
T-ResB

T̃S ` ϕs
a(y)?(l , s, ϕs

a(x)) . (νt :](v>) , f :](v⊥)) (T1 | T2 | T3)
T-RepB

By Definition 6.2.5 and because x, y ∈ n(S), there exists some source type
TS ∈ Ts such that y :](TS) , x : TS ∈ TS . Then, by Definition 6.2.6, we have

ϕs
a(y) :]

(
l, s, T̃S

)
, ϕs

a(x) : T̃S ∈ T̃S . Hence, T̃S ` ϕs
a(y) :]

(
l, s, T̃S

)
for D0

follows from T-NameB and T̃S , l : l, s : s, ϕs
a(x) : T̃S = T̃S , l : l, s : s. T̃S , l : l, s :

s, t :](v>) , f :](v⊥) ` l〈t , f 〉 for D1 follows from T-OutB and T-NameB for
all remaining subgoals. Let Γ1 = Γ, f :](v⊥) and Γ2 = Γ1, vt :v>. D2 =

D2,1

D2,2

D2,3

Γ2 ` (νvs :vs) s〈vs〉
T-ResB D2,4

Γ2 ` (νvs :vs) s〈vs〉 | T 1
B J S′ Ksa

T-ParB

Γ2 ` T 1
B

(
l〈⊥〉

)
| (νvs :vs) s〈vs〉 | T 1

B J S′ Ksa
T-ParB

Γ1 ` t(vt) .
(
T 1
B

(
l〈⊥〉

)
| (νvs :vs) s〈vs〉 | T 1

B J S′ Ksa
) T-InB

Γ1 ` t :](v>) for D2,1 follows from T-NameB. Γ2 ` T 1
B

(
l〈⊥〉

)
for D2,2 follows

from Lemma A.1.1 and Lemma 6.2.11. Γ2, vs :vs ` s〈vs〉 for D2,3 follows from

314

A.1. Typed Encoding Functions

T-OutB and T-NameB for all remaining subgoals. Γ2 ` T 1
B J S′ Ksa for D2,4

follows from the induction hypothesis and Lemma 6.2.11.

D3 =

D′3
Γ1, vf :v⊥ ` T 1

B

(
l〈⊥〉

)Lemma A.1.1 and Lemma 6.2.11

Γ1 ` f (vf) .T 1
B

(
l〈⊥〉

) T-InB

where Γ1 ` f :](v⊥) for D′3 follows from T-NameB.

Lemma 6.2.18 states that the encoding T 2
B J · Kmp is well-typed with respect to ΓJ · Kmp ,

where ΓJ S Kmp = { po :o′, pi : i′ } ∪ { ϕm
a (x) :vn | x ∈ fn(S) } for all source terms S ∈ Pm.

Proof of Lemma 6.2.18. Again, we perform an induction over the structure of source
terms. Note that no source term can contain infinitely many free names. We conclude
that ΓJ · Kmp is finite for each source term S ∈ Pm. Let Γ = ΓJ S Kmp .

Base Case: In Pm there are two terms without subterms, namely 0 and X. T 2
B J 0 Kmp =

(νl : l) l(t , f) .
(
(νvt :v>) t〈vt〉

)
and T 2

B J XKmp = X. The second case, i.e., the type
judgement Γ ` X, follows directly from T-SuccB. For the first case, we have

Γ, l : l ` T 2
B

(
l〈>〉

)Lemma A.1.1 and Lemma 6.2.11

Γ ` (νl : l)
(
T 2
B

(
l〈>〉

)) T-ResB

Induction Hypothesis:

∀S ∈ Pm . ΓJ S Kmp ` T
2
B J S Kmp (IH)

Induction Step: We perform a case split over the structure of S.

Case S = (νx)S′: Then T 2
B J S Kmp =

(
νϕm

p (x) :vn
)
T 2
B J S′ Kmp and

Γ, ϕm
p (x) :vn ` T 2

B J S′ Kmp
(IH)and Lemma 6.2.11

Γ `
(
νϕm

p (x) :vn
)
T 2
B J S′ Kmp

T-ResB

Case S = S1 | S2: Then

T 2
B J S Kmp =

(
νpo,up :o′, pi ,up : i′, o : to, i : ti

)
(T1 | T4 | T7)

T1 =
(
νpo :o′, pi : i′

) (
T 2
B J S1 Kmp | T2 | T3

)
T2 = procLeftOutReq

T3 = procLeftInReq

T4 =
(
νpo :o′, pi : i′

) (
T 2
B J S2 Kmp | T5 | T6

)
T5 = procRightInReq

T6 = procRightOutReq

T7 = pushReq

315

A. Appendix

We have to show that Γ ` T 2
B J S Kmp . After applying four times Rule T-ResB

it remains to show that Γ1 ` T1 | T4 | T7, where Γ1 = Γ, po,up : o′, pi ,up : i′, o :
to, i : ti.

D1
D2 D3

Γ1, po :o′, pi : i′ ` T2 | T3
P

Γ1, po :o′, pi : i′ ` T 2
B J S1 Kmp | T2 | T3

P

Γ1, po :o′ ` (νpi : i′)
(
T 2
B J S1 Kmp | T2 | T3

)R
Γ1 ` (νpo :o′, pi : i′)

(
T 2
B J S1 Kmp | T2 | T3

) R
D4 D7

Γ1 ` T4 | T7

Γ1 ` T1 | T4 | T7
P

where P = T-ParB and R = T-ResB. Γ1, po : o′, pi : i′ ` T 2
B J S1 Kmp for D1

follows from the induction hypothesis and by Lemma 6.2.11. Let Γ2 = Γ1, po :
o′, pi : i′ and Γ3 = Γ2, y, z :vn, l : l, s1 :](vs,r) , s2 :s.

D2 =

D2,1
D2,2 D2,3

Γ3 ` y · o〈l , s1, s2, z〉 | po,up〈y, l , s1, s2, z〉
T-ParB

Γ2 ` po?(y, l , s1, s2, z) . (y · o〈l , s1, s2, z〉 | po,up〈y, l , s1, s2, z〉)
T-RepB

Γ2 ` po : o′ for D2,1 follows from T-NameB. Γ3 ` y · o〈l , s1, s2, z〉 for D2,2

follows from T-OutPSB and T-NameB and Γ3 ` po,up〈y, l , s1, s2, z〉 for D2,3

follows from T-OutB and T-NameB for all remaining subgoals. Let Γ4 =
Γ2, y :vn, l : l, r1 :](vs,r) , r2 :r′.

D3 =

D3,1
D3,2 D3,3

Γ4 ` y · i〈l , r1, r2〉 | pi ,up〈y, l , r1, r2〉
T-ParB

Γ2 ` pi?(y, l , r1, r2) .
(
y · i〈l , r1, r2〉 | pi ,up〈y, l , r1, r2〉

)T-RepB

Γ2 ` pi : i′ for D3,1 follows from T-NameB. Γ4 ` y · i〈l , r1, r2〉 for D3,2 follows
from T-OutPSB and T-NameB and Γ4 ` pi ,up〈y, l , r1, r2〉 for D3,3 follows
from T-OutB and T-NameB for all remaining subgoals.

D4 =

D′4
D5 D6

Γ1, po :o′, pi : i′ ` T5 | T6
T-ParB

Γ1, po :o′, pi : i′ ` T 2
B J S2 Kmp | T5 | T6

T-ParB

Γ1, po :o′ ` (νpi : i′)
(
T 2
B J S2 Kmp | T5 | T6

) T-ResB

Γ1 ` (νpo :o′, pi : i′)
(
T 2
B J S2 Kmp | T5 | T6

) T-ResB

where Γ1, po : o′, pi : i′ ` T 2
B J S2 Kmp for D′4 follows from the induction hy-

pothesis and by Lemma 6.2.11. Let T ′5 = r2〈lr, ls, ls, s2, z, r1, s1〉, T ′′5 =
po,up〈y, ls, s1, s2, z〉, Γ5 = Γ2, y, z : vn, ls : l, s1 :](vs,r) , s2 : s, and Γ6 = Γ5, lr :

316

A.1. Typed Encoding Functions

l, r1 :](vs,r) , r2 :r′.

D5 =

D5,1

D5,2 D5,3 D5,4

Γ5 ` y · i(lr, r1, r2) .T ′5
T-InPSB D5,5

Γ5 ` y · i(lr, r1, r2) .T ′5 | T ′′5
T-ParB

Γ2 ` po?(y, ls, s1, s2, z) . (y · i(lr, r1, r2) .T ′5 | T ′′5)
T-RepB

Γ2 ` po : o′ for D5,1, Γ5 ` y : vn for D5,2, and Γ5 ` i : ti for D5,3 follow
from T-NameB. Γ6 ` T ′5 for D5,4 and Γ5 ` T ′′5 for D5,5 follow from T-OutB

and T-NameB for all remaining subgoals. Let T ′6 = r2〈ls, lr, ls, s2, z, s1, r1〉,
T ′′6 = pi ,up〈y, lr, r1, r2〉, Γ7 = Γ2, y : vn, lr : l, r1 :](vs,r) , r2 : r′, and Γ8 = Γ7, ls :
l, s1 :](vs,r) , s2 :s, z :vn.

D6 =

D6,1

D6,2 D6,3 D6,4

Γ7 ` y · o(ls, s1, s2, z) .T ′6
T-InPSB D6,5

Γ7 ` y · o(ls, s1, s2, z) .T ′6 | T ′′6
T-ParB

Γ2 ` pi?(y, lr, r1, r2) . (y · o(ls, s1, s2, z) .T ′6 | T ′′6)
T-RepB

Γ2 ` pi : i′ for D6,1, Γ7 ` y : vn for D6,2, and Γ7 ` o : to for D6,3 follow
from T-NameB. Γ8 ` T ′6 for D6,4 and Γ8 ` T ′′6 for D6,5 follow from T-OutB

and T-NameB for all remaining subgoals. Let T ′7 = po〈y, l, s1, s2, z〉 and
T ′′7 = pi〈y, l, r1, r2〉.

D7 =

D7,1 D7,2

Γ1 ` po,up?(y, l, s1, s2, z) .T ′7
R

D7,3 D7,4

Γ1 ` pi ,up?(y, l, r1, r2) .T ′′7
R

Γ1 ` po,up?(y, l, s1, s2, z) .T ′7 | pi ,up?(y, l, r1, r2) .T ′′7
T-ParB

where R = T-RepB. Γ1 ` po,up : o′ for D7,1 and Γ1 ` pi ,up : i′ for D7,3

follow from T-NameB. Finally, Γ1, y, z : vn, l : l, s1 :](vs,r) , s2 : s ` T ′7 for D7,2

and Γ1, y : vn, l : l, r1 :](vs,r) , r2 : r′ ` T ′′7 for D7,4 follow from T-OutB and
T-NameB for all remaining subgoals.

Case S =
∑

i∈I πi.Si: Then T 2
B J S Kmp = (νl : l)

(
T 2
B

(
l〈>〉

)
|
∏
i∈I T 2

B J πi.Si Kmp
)

.

Γ, l : l ` T 2
B

(
l〈>〉

)Lemma A.1.1 and Lemma 6.2.11 D

Γ, l : l ` T 2
B

(
l〈>〉

)
|
∏
i∈I T 2

B J πi.Si Kmp
T-ParB

Γ ` (νl : l)
(
T 2
B

(
l〈>〉

)
|
∏
i∈I T 2

B J πi.Si Kmp
) T-ResB

To prove D, we have to show that Γ, l : l `
∏
i∈I T 2

B J πi.Si Kmp . With T-ParB

we decompose this goal into several subgoals of the form Γ, l : l ` T 2
B J πi.Si Kmp ,

where each πi is either a τ , an output or an input prefix.

Case πi = τ : Then T 2
B J πi.Si Kmp = (νt :](v>) , f :](v⊥)) (T1 | T2 | T3), where

the subterms T1 = l〈t , f 〉, T2 = t(vt) .
(
T 2
B

(
l〈⊥〉

)
| T 2

B J Si Kmp
)

and T3 =

317

A. Appendix

f (vf) .
(
T 2
B

(
l〈⊥〉

))
. Let Γ′ = Γ, l : l, t :](v>) , f :](v⊥). Then

D1
D2 D3

Γ′ ` T2 | T3
T-ParB

Γ, l : l, t :](v>) , f :](v⊥) ` T1 | T2 | T3
T-ParB

Γ, l : l, t :](v>) ` (νf :](v⊥)) (T1 | T2 | T3)
T-ResB

Γ, l : l ` (νt :](v>) , f :](v⊥)) (T1 | T2 | T3)
T-ResB

Remember that l =](](v>) ,](v⊥)). Hence,

D1 =
Γ′ ` l : l

N
Γ′ ` t :](v>)

N
Γ′ ` f :](v⊥)

N

Γ′ ` l〈t , f 〉
T-OutB

where N = T-NameB.

D2 =
Γ′ ` t :](v>)

T-NameB D′2

Γ′ ` t(vt) .
(
T 2
B

(
l〈⊥〉

)
| T 2

B J Si Kmp
)T-InB

To prove Γ′, vt :v> ` T 2
B

(
l〈⊥〉

)
| T 2

B J Si Kmp for D′2 apply T-ParB and then
Lemma A.1.1 and Lemma 6.2.11 at the left hand side and the induction
hypothesis and Lemma 6.2.11 at the right hand side.

D3 =
Γ′ ` f :](v⊥)

T-NameB
Γ′, vf :v⊥ ` T 2

B

(
l〈⊥〉

)R
Γ′ ` f (vf) .

(
T 2
B

(
l〈⊥〉

)) T-InB

where R = Lemma A.1.1 and Lemma 6.2.11.

Case πi = y〈z〉: Then

T 2
B J πi.Si Kmp = (νs1 :](vs,r) , s2 :s) (T1 | T2 | T3)

T1 = (νvs,r :vs,r) s1〈vs,r 〉
T2 = s?1 (vs,r) .po

〈
ϕm
p (y) , l , s1, s2, ϕ

m
p (z)

〉
T3 = s2(vs) .T 2

B J Si Kmp

Let Γ1 = Γ, l : l, s1 :](vs,r) , s2 :s.

D1
D2 D3

Γ1 ` T2 | T3
T-ParB

Γ, l : l, s1 :](vs,r) , s2 :s ` T1 | T2 | T3
T-ParB

Γ, l : l, s1 :](vs,r) ` (νs2 :s) (T1 | T2 | T3)
T-ResB

Γ, l : l ` (νs1 :](vs,r) , s2 :s) (T1 | T2 | T3)
T-ResB

The proof of the first subgoal is given by the derivation

D1 =

Γ1, vs,r :vs,r ` s1 :](vs,r)
N

Γ1, vs,r :vs,r ` vs,r :vs,r
N

Γ1, vs,r :vs,r ` s1〈vs,r 〉
O

Γ1 ` (νvs,r :vs,r) s1〈vs,r 〉
R

318

A.1. Typed Encoding Functions

where N = T-NameB, O = T-OutB, and R = T-ResB.

D2 =
D2,1 D2,2

Γ1 ` s?1 (vs,r) .po
〈
ϕm
p (y) , l , s1, s2, ϕm

p (z)
〉T-RepB

where Γ1 ` s1 :](vs,r) for D2,1 follows from T-NameB. Since y, z ∈ fn(S),
we have y, z :vn ∈ Γ. Hence, Γ1, vs,r :vs,r ` po

〈
ϕm
p (y) , l , s1, s2, ϕ

m
p (z)

〉
for

D2,2 follows from T-OutB and T-NameB for all remaining subgoals.

D3 =
Γ1 ` s2 :s

T-NameB
Γ1, vs :vs ` T 2

B J Si Kmp
R

Γ1 ` s2(vs) .T 2
B J Si Kmp

T-InB

where R = (IH) and Lemma 6.2.11.

Case πi = y(x): Then:

T 2
B J πi.Si Kmp =

(
νr1 :](vs,r) , r2 :r′

)
(T1 | T2 | T3)

T1 = (νvs,r :vs,r) r1〈vs,r 〉
T2 = r?1 (vs,r) .pi

〈
ϕm
p (y) , l , r1, r2

〉
T3 = r?2

(
l1, l2, ls, s2, ϕ

m
p (x) , v, w

)
.

((νt :](v>) , f :](v⊥)) (T4 | T5 | T9))
T4 = l1〈t , f 〉
T5 = t(vt) . ((νt :](v>) , f :](v⊥)) (T6 | T7 | T8))
T6 = l2〈t , f 〉
T7 = t(vt) .

(
T 2
B

(
l1〈⊥〉

)
| T 2

B

(
l2〈⊥〉

)
| (νvs :vs) s〈vs〉 | T 2

B J Si Kmp
)

T8 = f (vf) .
(
T 2
B

(
l1〈⊥〉

)
| T 2

B

(
l2〈>〉

)
| (νvs,r :vs,r) v〈vs,r 〉

)
T9 = f (vf) .

(
T 2
B

(
l1〈⊥〉

)
| (νvs,r :vs,r)w〈vs,r 〉

)
Let Γ1 = Γ, l : l, r1 :](vs,r) , r2 :r′.

D1

Γ1 ` T1
T-ResB

D2 D3

Γ1 ` T2 | T3
T-ParB

Γ, l : l, r1 :](vs,r) , r2 :r′ ` T1 | T2 | T3
T-ParB

Γ, l : l, r1 :](vs,r) ` (νr2 :r′) (T1 | T2 | T3)
T-ResB

Γ, l : l ` T 3
B J πi.Si Kma

T-ResB

where the subgoal Γ1, vs,r : vs,r ` r1〈vs,r 〉 for D1 follows from T-OutB

and then T-NameB on all subgoals.

D2 =

D2,1
D2,2 D2,3 D2,4 D2,5 D2,6

Γ1, vs,r :vs,r ` pi
〈
ϕm
p (y) , l , r1, r2

〉T-OutB

Γ1 ` r?1 (vs,r) .pi
〈
ϕm
p (y) , l , r1, r2

〉 T-RepB

319

A. Appendix

where Γ1 ` r1 :](vs,r) for D2,1, Γ1, vs,r :vs,r ` pi : i′ for D2,2, Γ1, vs,r :vs,r `
l : l for D2,4, Γ1, vs,r :vs,r ` r1 :](vs,r) for D2,5 and Γ1, vs,r :vs,r ` r2 : r′ for
D2,6 follow from T-NameB. Moreover, since y ∈ fn(S), we have y :vn ∈ Γ.
Hence, Γ1, vs,r : vs,r ` ϕm

p (y) : vn for D2,3 follows from T-NameB. Let
Γ2 = Γ1, l1, l2, ls : l, s2 :s, ϕm

p (x) :vn, v, w :](vs,r).

D3 =

D′3

D4
D5 D9

Γ2, t :](v>) , f :](v⊥) ` T5 | T9
P

Γ2, t :](v>) , f :](v⊥) ` T4 | T5 | T9
P

Γ2, t :](v>) ` (νf :](v⊥)) (T4 | T5 | T9)
R

Γ2 ` (νt :](v>) , f :](v⊥)) (T4 | T5 | T9)
R

Γ1 ` T3
T-RepB

where R = T-ResB and P = T-ParB. Γ1 ` r2 : r′ follows from
T-NameB. Γ2, t :](v>) , f :](v⊥) ` l1〈t , f 〉 for D4 follows from T-OutB

and T-NameB for all remaining subgoals. Let Γ3 = Γ2, t :](v>) , f :](v⊥)
and Γ4 = Γ3, vt :v>.

D5 =

D′5

D6
D7 D8

Γ4 ` T7 | T8
T-ParB

Γ4 ` T6 | T7 | T8
T-ParB

Γ4 ` (νf :](v⊥)) (T6 | T7 | T8)
R

Γ3, vt :v> ` (νt :](v>) , f :](v⊥)) (T6 | T7 | T8)
R

Γ3 ` t(vt) . ((νt :](v>) , f :](v⊥)) (T6 | T7 | T8))
T-InB

where R = T-ResB. Γ3 ` t :](v>) for D′5 follows from T-NameB.
Moreover, apply T-OutB and then T-NameB on all subgoals to show
Γ4 ` l2〈t , f 〉 for D6. Let T ′7 = (νvs :vs) s〈vs〉.

D7 =

D7,1

D7,2

D7,3

D7,4

Γ4 ` T ′7
R D7,5

Γ4 ` T ′7 | T 2
B J Si Kmp

P

Γ4 ` T 2
B

(
l2〈⊥〉

)
| T ′7 | T 2

B J Si Kmp
P

Γ4 ` T 2
B

(
l1〈⊥〉

)
| T 2

B

(
l2〈⊥〉

)
| T ′7 | T 2

B J Si Kmp
P

Γ4 ` T7
T-InB

where P = T-ParB and R = T-ResB. Again, Γ4 ` t :](v>) for
D7,1 follows from T-NameB. By Lemma A.1.1 and Lemma 6.2.11, we
have Γ4 ` T 2

B

(
l1〈⊥〉

)
for D7,2 and Γ4 ` T 2

B

(
l2〈⊥〉

)
for D7,3. To show

Γ4, vs : vs ` s〈vs〉 for D7,4 apply T-OutB and then T-NameB for both
subgoals. Γ4 ` T 2

B J Si Kmp for D7,5 follows from the induction hypothesis

320

A.1. Typed Encoding Functions

and Lemma 6.2.11. Let T ′8 = (νvs,r :vs,r) v〈vs,r 〉.

D8 =

D8,1

D8,2

D8,3
D8,4

Γ4, vf :v⊥ ` T ′8
T-ResB

Γ4, vf :v⊥ ` T 2
B

(
l2〈>〉

)
| T ′8

P

Γ4, vf :v⊥ ` T 2
B

(
l1〈⊥〉

)
| T 2

B

(
l2〈>〉

)
| T ′8

P

Γ4 ` f (vf) .
(
T 2
B

(
l1〈⊥〉

)
| T 2

B

(
l2〈>〉

)
| T ′8
) T-InB

where P = T-ParB. Γ4 ` f :](v⊥) for D8,1 follows from T-NameB. By
Lemma A.1.1 and Lemma 6.2.11, we have Γ4, vf :v⊥ ` T 2

B

(
l1〈⊥〉

)
for D8,2

and Γ4, vf :v⊥ ` T 2
B

(
l2〈>〉

)
for D8,3. To show Γ4, vf :v⊥, vs,r :vs,r ` v〈vs,r 〉

for D8,4 apply T-OutB and then T-NameB for both subgoals.

D9 =

D9,1

D9,2
D9,3

Γ3, vf :v⊥ ` (νvs,r :vs,r)w〈vs,r 〉
T-ResB

Γ3, vf :v⊥ ` T 2
B

(
l1〈⊥〉

)
| (νvs,r :vs,r)w〈vs,r 〉

T-ParB

Γ3 ` f (vf) .
(
T 2
B

(
l1〈⊥〉

)
| (νvs,r :vs,r)w〈vs,r 〉

) I

where I = T-InB. Γ3 ` f :](v⊥) for D9,1 follows from T-NameB. By
Lemma A.1.1 and Lemma 6.2.11, we have Γ3, vf :v⊥ ` T 2

B

(
l1〈⊥〉

)
for D9,2.

Finally, apply T-OutB and then T-NameB for both subgoals to show
Γ3, vf :v⊥, vs,r :vs,r ` w〈vs,r 〉 for D9,3.

In the following we present the missing cases of Lemma 6.2.17, i.e., show that also
parallel composition, sum, and replicated inputs are well-typed in the basic type system.
Remember that Γ = ΓJ · Kma , where ΓJ S Kma = { po :o, pi : i } ∪ { ϕm

a (x) :vn | x ∈ fn(S) } for
all source terms S ∈ Pm, and the induction hypothesis is given by:

∀S ∈ Pm . ΓJ S Kma ` T
3
B J S Kma (IH)

1. If S = S1 | S2 for some S1, S2 ∈ Pm then:

T 3
B J S Kma = (νmo , po,up :o,mi , pi ,up : i, co :](i) , ci :](o))

(
(νpo :o, pi : i)

(
T 3
B J S1 Kma | T

3
B (procLeftOutReq) | T 3

B (procLeftInReq)
)

| (νpo :o, pi : i)
(
T 3
B J S2 Kma | T

3
B (procRightOutReq) | T 3

B (procRightInReq)
)

| T 3
B (pushReq)

)
By applying T-ResB several times, Γ ` T 3

B J S Kma becomes Γ1 ` T1 | T2 | T3, where
Γ1 = Γ,mo , po,up :o,mi , pi ,up : i, co :](i) , ci :](o) and

T1 = (νpo :o, pi : i)
(
T 3
B J S1 Kma | T

3
B (procLeftOutReq) | T 3

B (procLeftInReq)
)

T2 = (νpo :o, pi : i)
(
T 3
B J S2 Kma | T

3
B (procRightOutReq) | T 3

B (procRightInReq)
)

T3 = T 3
B (pushReq)

321

A. Appendix

Then

D1
D2 D3

Γ1 ` T2 | T3
T-ParB

Γ1 ` T1 | T2 | T3
T-ParB

Let Γ2 = Γ1, po : o, pi : i. By applying again T-ResB two times, respectively,
D1 becomes Γ2 ` T 3

B J S1 Kma | T 3
B (procLeftOutReq) | T 3

B (procLeftInReq) and D2

becomes Γ2 ` T 3
B J S2 Kma | T 3

B (procRightOutReq) | T 3
B (procRightInReq). Let T4 =

T 3
B (procLeftOutReq), T5 = T 3

B (procLeftInReq), T6 = T 3
B (procRightOutReq), and

T7 = T 3
B (procRightInReq). Then

Γ2 ` T 3
B J S1 Kma

(IH) and Lemma 6.2.11
D4 D5

Γ2 ` T4 | T5
T-ParB

Γ2 ` T 3
B J S1 Kma | T 3

B (procLeftOutReq) | T 3
B (procLeftInReq)

T-ParB

and

Γ2 ` T 3
B J S2 Kma

(IH) and Lemma 6.2.11
D6 D7

Γ2 ` T6 | T7
T-ParB

Γ2 ` T 3
B J S2 Kma | T 3

B (procRightOutReq) | T 3
B (procRightInReq)

T-ParB

Let Γ3 = Γ2, y, z :vn, l : l, s :s.

D4 =

D4,1
D4,2 D4,3

Γ3 ` mo〈y, l, s, z〉 | po,up〈y, l, s, z〉
T-ParB

Γ2 ` po?(y, l, s, z) . (mo〈y, l, s, z〉 | po,up〈y, l, s, z〉)
T-RepB

Γ2 ` po : o for D4,1 follows from T-NameB. Apply T-OutB and then T-NameB
on all subgoals to show Γ3 ` mo〈y, l, s, z〉 for D4,2 and Γ3 ` po,up〈y, l, s, z〉 for D4,3.
Let Γ4 = Γ2, y :vn, l : l, r :r.

D5 =

D5,1
D5,2 D5,3

Γ4 ` mi〈y, l, r〉 | pi ,up〈y, l, r〉
T-ParB

Γ2 ` pi?(y, l, r) . (mi〈y, l, r〉 | pi ,up〈y, l, r〉)
T-RepB

Γ2 ` pi : i for D5,1 follows from T-NameB. Apply T-OutB and then T-NameB on
all subgoals to show Γ4 ` mi〈y, l, r〉 for D5,2 and Γ4 ` pi ,up〈y, l, r〉 for D5,3. Let

T6 = co〈mi〉 | co?(mi) .po(y, ls, s, z) .
(
po,up〈y, ls, s, z〉 | T ′6

)
T ′6 = (νmi ,up : i)

(
T ′′6 | (νmi : i)

(
mi ,up

?
(
y′, lr, r

)
.mi

〈
y′, lr, r

〉
| co〈mi〉

))
T ′′6 = mi

?
(
y′, lr, r

)
.
([
y′ = y

]
r〈lr, ls, ls, s, z〉 | mi ,up

〈
y′, lr, r

〉)
Let Γ5 = Γ2, y, z :vn, ls : l, s :s.

D6 =

D6,1

D6,2

D6,3
D6,4 D6,5

Γ5 ` po,up〈y, ls, s, z〉 | T ′6
P

Γ2 ` po(y, ls, s, z) . (po,up〈y, ls, s, z〉 | T ′6)
T-InB

Γ2 ` co?(mi) .po(y, ls, s, z) . (po,up〈y, ls, s, z〉 | T ′6)
T-RepB

Γ2 ` co〈mi〉 | co?(mi) .po(y, ls, s, z) . (po,up〈y, ls, s, z〉 | T ′6)
P

322

A.1. Typed Encoding Functions

where P = T-ParB. Apply T-OutB and then T-NameB on all subgoals to show
Γ2 ` co〈mi〉 for D6,1 and Γ5 ` po,up〈y, ls, s, z〉 for D6,4. Γ2 ` co : o for D6,2 and
Γ2 ` po :o for D6,3 follow from T-NameB.

D6,5 =

D6,6

D6,7 D6,8

Γ5,mi ,up : i ` mi ,up
?(y′, lr, r) .mi〈y′, lr, r〉

T-RepB D6,9

Γ5,mi ,up : i ` mi ,up
?(y′, lr, r) .mi〈y′, lr, r〉 | co〈mi〉

P

Γ5,mi ,up : i ` (νmi : i) (mi ,up
?(y′, lr, r) .mi〈y′, lr, r〉 | co〈mi〉)

R

Γ5,mi ,up : i ` T ′′6 | (νmi : i) (mi ,up
?(y′, lr, r) .mi〈y′, lr, r〉 | co〈mi〉)

P

Γ5 ` T ′6
R

where R = T-ResB and P = T-ParB. Γ5,mi ,up : i ` mi ,up : i for D6,7 follows
from T-NameB. Apply T-OutB and then T-NameB on all subgoals to show
Γ6 ` mi〈y′, lr, r〉 for D6,8 and Γ5,mi ,up : i ` co〈mi〉 for D6,9, where Γ6 = Γ5,mi ,up :
i, y′ :vn, lr : l, r :r.

D6,6 =

D6,10

D6,11 D6,12 D6,13

Γ6 ` [y′ = y] r〈lr, ls, ls, s, z〉
T-MatB D6,14

Γ6 ` [y′ = y] r〈lr, ls, ls, s, z〉 | mi ,up〈y′, lr, r〉
T-ParB

Γ5,mi ,up : i ` mi
?(y′, lr, r) . ([y′ = y] r〈lr, ls, ls, s, z〉 | mi ,up〈y′, lr, r〉)

T-RepB

Γ5,mi ,up : i ` mi : i for D6,10, Γ6 ` y : vn for D6,11, and Γ6 ` y′ : vn for D6,12 follow
from T-NameB. To show Γ6 ` r〈lr, ls, ls, s, z〉 for D6,13 and Γ6 ` mi ,up〈y′, lr, r〉 for
D6,14 apply T-OutB and then T-NameB. Let

T7 = ci〈mo〉 | ci?(mo) .pi(y, lr, r) .
(
pi ,up〈y, lr, r〉 | T ′7

)
T ′7 = (νmo,up :o)

(
T ′′7 | (νmo :o)

(
mo,up

?
(
y′, ls, s, z

)
.mo

〈
y′, ls, s, z

〉
| ci〈mo〉

))
T ′′7 = mo

?
(
y′, ls, s, z

)
.
([
y′ = y

]
r〈ls, lr, ls, s, z〉 | mo,up

〈
y′, ls, s, z

〉)
Let Γ7 = Γ2, y :vn, lr : l, r :r.

D7 =

D7,1

D7,2

D7,3
D7,4 D7,5

Γ7 ` pi ,up〈y, lr, r〉 | T ′7
P

Γ2 ` pi(y, lr, r) . (pi ,up〈y, lr, r〉 | T ′7)
T-InB

Γ2 ` ci?(mo) .pi(y, lr, r) . (pi ,up〈y, lr, r〉 | T ′7)
T-RepB

Γ2 ` ci〈mo〉 | ci?(mo) .pi(y, lr, r) . (pi ,up〈y, lr, r〉 | T ′7)
P

where P = T-ParB. Apply T-OutB and then T-NameB on all subgoals to show
Γ2 ` ci〈mo〉 for D7,1 and Γ7 ` pi ,up〈y, lr, r〉 : for D7,4. Γ2 ` ci : i for D7,2 and
Γ2 ` pi : i for D7,3 follows from T-NameB. D7,5 =

D7,6

D7,7 D7,8

Γ7,mo,up :o ` mo,up
?(y′, ls, s, z) .mo〈y′, ls, s, z〉

T-RepB D7,9

Γ7,mo,up :o ` mo,up
?(y′, ls, s, z) .mo〈y′, ls, s, z〉 | ci〈mo〉

P

Γ7,mo,up :o ` (νmo :o) (mo,up
?(y′, ls, s, z) .mo〈y′, ls, s, z〉 | ci〈mo〉)

R

Γ7,mo,up :o ` T ′′7 | (νmo :o) (mo,up
?(y′, ls, s, z) .mo〈y′, ls, s, z〉 | ci〈mo〉)

P

Γ7 ` T ′7
R

323

A. Appendix

where R = T-ResB and P = T-ParB. Γ7,mo,up : o ` mo,up : o for D7,7 follows
from T-NameB. Apply T-OutB and then T-NameB on all subgoals to show
Γ8 ` mo〈y′, ls, s, z〉 for D7,8 and Γ7,mo,up : o ` ci〈mo〉 for D7,9, where Γ8 =
Γ7,mo,up :o, y′, z :vn, ls : l, s :s. D7,6 =

D7,10

D7,11 D7,12 D7,13

Γ8 ` [y′ = y] r〈ls, lr, ls, s, z〉
T-MatB D7,14

Γ8 ` [y′ = y] r〈ls, lr, ls, s, z〉 | mo,up〈y′, ls, s, z〉
T-ParB

Γ7,mo,up :o ` mo
?(y′, ls, s, z) . ([y′ = y] r〈ls, lr, ls, s, z〉 | mo,up〈y′, ls, s, z〉)

T-RepB

Γ7,mo,up :o ` mo :o for D7,10, Γ8 ` y :vn for D7,11, and Γ8 ` y′ :vn for D7,12 follow
from T-NameB. To show Γ8 ` r〈ls, lr, ls, s, z〉 for D7,13 and Γ8 ` mo,up〈y′, ls, s, z〉
for D7,14 apply T-OutB and then T-NameB. Finally,

D3 =
D3,1 D3,2

Γ1 ` po,up?(y, l , s, z) .po〈y, l , s, z〉 | pi ,up?(y, l , r) .pi〈y, l , r〉
T-ParB

where

D3,1 =

D3,3
D3,4 D3,5 D3,6 D3,7 D3,8

Γ1, y, z :vn, l : l, s :s ` po〈y, l , s, z〉
T-OutB

Γ1 ` po,up?(y, l , s, z) .po〈y, l , s, z〉
T-RepB

and

D3,2 =

D3,9
D3,10 D3,11 D3,12 D3,13

Γ1, y :vn, l : l, r :r ` pi〈y, l , r〉
T-OutB

Γ1 ` pi ,up?(y, l , r) .pi〈y, l , r〉
T-RepB

and Γ1 ` po,up : o for D3,3, Γ1, y, z : vn, l : l, s : s ` po : o for D3,4, Γ1, y, z : vn, l : l, s :
s ` y : vn for D3,5, Γ1, y, z : vn, l : l, s : s ` l : l for D3,6, Γ1, y, z : vn, l : l, s : s ` s : s
for D3,7, Γ1, y, z : vn, l : l, s : s ` z : vn for D3,8, Γ1 ` pi ,up :](vn, l, r) for D3,9,
Γ1, y : vn, l : l, r : r ` pi :](vn, l, r) for D3,10, Γ1, y : vn, l : l, r : r ` y : vn for D3,11,
Γ1, y :vn, l : l, r : r ` l : l for D3,12, and Γ1, y :vn, l : l, r : r ` r : r for D3,13 follow from
T-NameB.

2. If S =
∑

i∈I πi.Si for some πi.Si ∈ Pm then

T 3
B J S Kma = (νl : l)

(
T 3
B

(
l〈>〉

)
|
∏
i∈I
T 3
B J πi.Si Kma

)
.

We have:

Γ, l : l ` T 3
B

(
l〈>〉

)Lemma A.1.1 and Lemma 6.2.11 D

Γ, l : l ` T 3
B

(
l〈>〉

)
|
∏
i∈I T 3

B J πi.Si Kma
T-ParB

Γ ` (νl : l)
(
T 3
B

(
l〈>〉

)
|
∏
i∈I T 3

B J πi.Si Kma
) T-ResB

To prove D, we have to show that Γ, l : l `
∏
i∈I T 3

B J πi.Si Kma . With T-ParB we
decompose this goal into several subgoals of the form Γ, l : l ` T 3

B J πi.Si Kma , where
each πi is either a τ , an output or an input prefix.

324

A.1. Typed Encoding Functions

a) If πi = τ then:

T 3
B J πi.Si Kma = (νt :](v>) , f :](v⊥))

(
l〈t , f 〉 | t(vt) .

(
T 3
B

(
l〈>〉

)
| T 3

B J Si Kma
)

| f (vf) .T 3
B

(
l〈⊥〉

))
Let T1, T2, T3 be such that T1 = l〈t , f 〉, T2 = t(vt) .

(
T 3
B

(
l〈>〉

)
| T 3

B J Si Kma
)
,

and T3 = f (vf) .T 3
B

(
l〈⊥〉

)
.

D1
D2 D3

Γ, l : l, t :](v>) , f :](v⊥) ` T2 | T3
T-ParB

Γ, l : l, t :](v>) , f :](v⊥) ` T1 | T2 | T3
T-ParB

Γ, l : l, t :](v>) ` (νf :](v⊥)) (T1 | T2 | T3)
T-ResB

Γ, l : l ` (νt :](v>) , f :](v⊥)) (T1 | T2 | T3)
T-ResB

where Γ, l : l, t :](v>) , f :](v⊥) ` l〈t , f 〉 for D1 follows from T-OutB and then
T-NameB for all subgoals. Let Γ1 = Γ, l : l, t :](v>) , f :](v⊥).

D2 =

D2,1
D2,2 D2,3

Γ1, vt :v> ` T 3
B

(
l〈>〉

)
| T 3

B J Si Kma
T-ParB

Γ1 ` t(vt) .
(
T 3
B

(
l〈>〉

)
| T 3

B J Si Kma
) T-InB

Γ1 ` t :](v>) for D2,1 follows from T-NameB. By Lemma A.1.1 and
Lemma 6.2.11, we have Γ1, vt :v> ` T 3

B

(
l〈>〉

)
for D2,2. Γ1, vt :v> ` T 3

B J Si Kma
for D2,3 follows from the induction hypothesis and Lemma 6.2.11.

D3 =
D3,1 D3,2

Γ1 ` f (vf) .T 3
B

(
l〈⊥〉

)T-InB

Γ1 ` f :](v⊥) for D3,1 follows from T-NameB. Finally, by Lemma A.1.1 and
Lemma 6.2.11, we have Γ1, vf :v⊥ ` T 3

B

(
l〈⊥〉

)
for D3,2.

b) If πi = y〈z〉 for some y, z ∈ N then

T 3
B J πi.Si Kma = (νs :](vs))

(
po〈ϕm

a (y) , l , s, ϕm
a (z)〉 | s(vs) .T 3

B J Si Kma
)
.

Because Γ (po) =](vn, l, s, vn) and Γ (ϕm
a (y)) = Γ (ϕm

a (z)) = vn, we have

D1
Γ′, s :](vs) ` s :](vs)

T-NameB D2

Γ′, s :](vs) ` s(vs) .T 3
B J Si Kma

T-InB

Γ′, s :](vs) ` po〈ϕm
a (y) , l , s, ϕm

a (z)〉 | s(vs) .T 3
B J Si Kma

T-ParB

Γ′ ` (νs :](vs))
(
po〈ϕm

a (y) , l , s, ϕm
a (z)〉 | s(vs) .T 3

B J Si Kma
) T-ResB

for Γ′ = Γ, l : l where

D1 =
D1,1 D1,2 D1,3 D1,4 D1,5

Γ, l : l, s :](vs) ` po〈ϕm
a (y) , l , s, ϕm

a (z)〉
T-OutB

325

A. Appendix

and

D2 =
Γ, l : l, s :](vs) , vs :vs ` T 3

B J Si Kma
(IH) and Lemma 6.2.11

and the remaining subgoals Γ, l : l, s :](vs) ` po :](vn, l, s, vn) for D1,1, Γ, l : l, s :
](vs) ` ϕm

a (y) :vn for D1,2, Γ, l : l, s :](vs) ` l : l for D1,3, Γ, l : l, s :](vs) ` s :](vs)
for D1,4, and Γ, l : l, s :](vs) ` ϕm

a (z) :vn for D1,5 follow from T-NameB.

c) If πi = y(x) for some x, y ∈ N then

T 3
B J πi.Si Kma = (νr :r) (pi〈ϕm

a (y) , l , r〉 | T1)
T1 = r?(l1, l2, ls, s, ϕ

m
a (x)) . ((νt :](v>) , f :](v⊥)) (T2 | T3 | T7))

T2 = l1〈t , f 〉
T3 = t(vt) . ((νt :](v>) , f :](v⊥)) (T4 | T5 | T6))
T4 = l2〈t , f 〉
T5 = t(vt) .

(
T 3
B

(
l1〈⊥〉

)
| T 3

B

(
l2〈⊥〉

)
| (νvs :vs) s〈vs〉 | T 3

B J Si Kma
)

T6 = f (vf) .
(
T 3
B

(
l1〈>〉

)
| T 3

B

(
l2〈⊥〉

))
T7 = f (vf) .T 3

B

(
l1〈⊥〉

)
Because Γ (pi) =](vn, l, r) and Γ (ϕm

a (y)) = vn, we have

D1,1 D1,2 D1,3 D1,4

Γ, l : l, r :](l, l, l, s, vn) ` pi〈ϕm
a (y) , l , r〉

T-OutB D1

Γ, l : l, r :](l, l, l, s, vn) ` pi〈ϕm
a (y) , l , r〉 | T1

T-ParB

Γ, l : l ` T 3
B J πi.Si Kma

T-ResB

where the subgoals Γ, l : l, r : r ` pi :](vn, l, r) for D1,1, Γ, l : l, r : r ` ϕm
a (y) : vn

for D1,2, Γ, l : l, r : r ` l : l for D1,3, and Γ, l : l, r : r ` r : r for D1,4 follow from
T-NameB. Let Γ1 = Γ, l , l1, l2, ls : l, r :r, s :s and Γ2 = Γ1, t :](v>) , f :](v⊥).

D1 =

D′1

D2
D3 D7

Γ2 ` T3 | T7
T-ParB

Γ2 ` T2 | T3 | T7
T-ParB

Γ1, t :](v>) ` (νf :](v⊥)) (T2 | T3 | T7)
T-ResB

Γ1 ` (νt :](v>) , f :](v⊥)) (T2 | T3 | T7)
T-ResB

Γ, l : l, r :r ` T1
T-RepB

Γ, l : l, r : r ` r : r for D′1 follows from T-NameB. Apply T-OutB and then
T-NameB on each subgoal to prove Γ2 ` l1〈t , f 〉 for D2. D3 =

D′3

D4
D5 D6

Γ2, vt :v> ` T5 | T6
T-ParB

Γ2, vt :v> ` T4 | T5 | T6
T-ParB

Γ2, vt :v> ` (νf :](v⊥)) (T4 | T5 | T6)
T-ResB

Γ2, vt :v> ` (νt :](v>) , f :](v⊥)) (T4 | T5 | T6)
T-ResB

Γ2 ` t(vt) . ((νt :](v>) , f :](v⊥)) (T4 | T5 | T6))
T-InB

326

A.1. Typed Encoding Functions

Again, Γ2 ` t :](v>) for D′3 follows from T-NameB. Apply T-OutB and
then T-NameB on each subgoal to prove Γ2, vt : v> ` l2〈t , f 〉 for D4. Let
T ′5 = (νvs :vs) s〈vs〉 and Γ3 = Γ2, vt :v>.

D5 =

D5,1

D5,2

D5,3

D5,4

Γ3 ` T ′5
R D5,5

Γ3 ` T ′5 | T 3
B J Si Kma

P

Γ3 ` T 3
B

(
l2〈⊥〉

)
| T ′5 | T 3

B J Si Kma
P

Γ3 ` T 3
B

(
l1〈⊥〉

)
| T 3

B

(
l2〈⊥〉

)
| T ′5 | T 3

B J Si Kma
P

Γ3 ` T5
T-InB

where P = T-ParB and R = T-ResB. Again, Γ3 ` t :](v>) for D5,1 follows
from T-NameB. By Lemma A.1.1 and Lemma 6.2.11, we have Γ3 ` T 3

B

(
l1〈⊥〉

)
for D5,2 and Γ3 ` T 3

B

(
l2〈⊥〉

)
for D5,3. To show Γ3, vs : vs ` s〈vs〉 for D5,4

apply T-OutB and then T-NameB for both subgoals. Γ3 ` T 3
B J Si Kma for

D5,5 follows from the induction hypothesis and Lemma 6.2.11.

D6 =

D6,1
D6,2 D6,3

Γ3, vf :v⊥ ` T 3
B

(
l1〈⊥〉

)
| T 3

B

(
l2〈>〉

)T-ParB

Γ3 ` f (vf) .
(
T 3
B

(
l1〈⊥〉

)
| T 3

B

(
l2〈>〉

)) T-InB

Γ3 ` f :](v⊥) for D6,1 follows from T-NameB. By Lemma A.1.1 and
Lemma 6.2.11, we have Γ3, vf : v⊥ ` T 3

B

(
l1〈⊥〉

)
for D6,2 and Γ3, vf : v⊥ `

T 3
B

(
l2〈>〉

)
for D6,3.

D7 =
D7,1 D7,2

Γ2 ` f (vf) .T 3
B

(
l1〈⊥〉

)T-InB

Γ2 ` f :](v⊥) for D7,1 follows from T-NameB. Finally, by Lemma A.1.1 and
Lemma 6.2.11, we have Γ2, vf :v⊥ ` T 3

B

(
l1〈⊥〉

)
for D7,2.

3. If S = y?(x) .S2 for some x, y ∈ N and S2 ∈ Pm then:

T 3
B J S Kma = (νl : l, r :r, cr1 :](vn) , cr2 :](o, i) , ro :o, ri : i)

(
pi〈ϕm

a (y) , l , r〉
| r?(l1, l2, ls, s, z) . (νt :](v>) , f :](v⊥))

(
ls〈t , f 〉

| t(vt) .
(
T 3
B

(
ls〈⊥〉

)
| (νvs :vs) s〈vs〉 | cr1 〈z〉

)
| f (vf) .T 3

B

(
ls〈⊥〉

))
| ri〈ϕm

a (y) , l , r〉 | T 3
B

(
l〈>〉

)
| T 3

B (encodedContinuations)
)

By applying T-ResB several times, Γ ` T 3
B J S Kma becomes Γ1 ` T1 | T2 | T3 | T4 |

327

A. Appendix

T5 where Γ1 = Γ, l : l, r :r, cr1 :](vn) , cr2 :](o, i) , ro :o, ri : i and

T1 = pi〈ϕm
a (y) , l , r〉

T2 = r?(l1, l2, ls, s, z) . (νt :](v>) , f :](v⊥))
(
ls〈t , f 〉

| t(vt) .
(
T 3
B

(
ls〈⊥〉

)
| (νvs :vs) s〈vs〉 | cr1 〈z〉

)
| f (vf) .T 3

B

(
ls〈⊥〉

))
T3 = ri〈ϕm

a (y) , l , r〉
T4 = T 3

B

(
l〈>〉

)
T5 = T 3

B (encodedContinuations)

Then

D1

D2

D3
D4 D5

Γ1 ` T4 | T5
T-ParB

Γ1 ` T3 | T4 | T5
T-ParB

Γ1 ` T2 | T3 | T4 | T5
T-ParB

Γ1 ` T1 | T2 | T3 | T4 | T5
T-ParB

Since y ∈ fn(S), we have ϕm
a (y) :vn ∈ Γ. Moreover, Γ (pi) =](vn, l, r). Hence, apply

T-OutB and the T-NameB on all subgoals to show Γ1 ` pi〈ϕm
a (y) , l , r〉 for D1

and Γ1 ` ri〈ϕm
a (y) , l , r〉 for D3. Γ1 ` T 3

B

(
l〈>〉

)
for D4 follows from Lemma A.1.1

and Lemma 6.2.11. Let T ′2 = t(vt) .
(
T 3
B

(
ls〈⊥〉

)
| (νvs :vs) s〈vs〉 | cr1 〈z〉

)
, T ′′2 =

f (vf) .T 3
B

(
ls〈⊥〉

)
, and Γ2 = Γ1, l1, l2, ls : l, s :s, z :vn.

D2 =

D2,1

D2,2
D2,3 D2,4

Γ2, t :](v>) , f :](v⊥) ` T ′2 | T ′′2
P

Γ2, t :](v>) , f :](v⊥) ` ls〈t , f 〉 | T ′2 | T ′′2
P

Γ2, t :](v>) ` (νf :](v⊥))
(
ls〈t , f 〉 | T ′2 | T ′′2

)R
Γ2 ` (νt :](v>) , f :](v⊥))

(
ls〈t , f 〉 | T ′2 | T ′′2

) R
Γ1 ` r?(l1, l2, ls, s, z) . (νt :](v>) , f :](v⊥))

(
ls〈t , f 〉 | T ′2 | T ′′2

)T-RepB

where P = T-ParB and R = T-ResB. Γ1 ` r :](l, l, l, s, vn) for D2,1 follows from
T-NameB. To show Γ2, t :](v>) , f :](v⊥) ` ls〈t , f 〉 for D2,2 apply T-OutB and
then T-NameB on all subgoals. Let Γ3 = Γ2, t :](v>) , f :](v⊥) , vt :v>.

D2,3 =

D2,5

D2,6

D2,7

Γ3 ` (νvs :vs) s〈vs〉
T-ResB D2,8

Γ3 ` (νvs :vs) s〈vs〉 | cr1 〈z〉
T-ParB

Γ3 ` T 3
B

(
ls〈⊥〉

)
| (νvs :vs) s〈vs〉 | cr1 〈z〉

T-ParB

Γ2, t :](v>) , f :](v⊥) ` t(vt) .
(
T 3
B

(
ls〈⊥〉

)
| (νvs :vs) s〈vs〉 | cr1 〈z〉

)T-InB

Γ2, t :](v>) , f :](v⊥) ` t :](v>) for D2,5 follows from T-NameB. By Lemma A.1.1
and Lemma 6.2.11, we have Γ3 ` T 3

B

(
ls〈⊥〉

)
for D2,6. Apply T-OutB and then

328

A.1. Typed Encoding Functions

T-NameB on all subgoals to show Γ3, vs : vs ` s〈vs〉 for D2,2 and Γ3 ` cr1 〈z〉 for
D2,8.

D2,4 =
D2,9 D2,10

Γ2, t :](v>) , f :](v⊥) ` f (vf) .T 3
B

(
ls〈⊥〉

)T-InB

Γ2, t :](v>) , f :](v⊥) ` f :](v⊥) for D2,9 follows from T-NameB. Γ2, t :](v>) , f :
](v⊥) , vf :v⊥ ` T 3

B

(
ls〈⊥〉

)
for D2,10 follows from Lemma A.1.1 and Lemma 6.2.11.

We further decompose T5 = T 3
B (encodedContinuations) into:

T5 = cr2 〈ro , ri〉 | cr1 ?(ϕm
a (x)) .cr2 (ro , ri) .T6

T6 = (νmo , po,up , ro,up :o,mi , pi ,up , ri ,up : i, co :](i) , ci :](o))T7

T7 = T 3
B (pushReqIn) | T8 | T9

T8 = (νpo :o, pi : i)
(
T 3
B J S2 Kma | T

3
B (procRightOutReq) | T 3

B (procRightInReq)
)

T9 = (νro :o, ri : i)
(
cr2 〈ro , ri〉 | T 3

B (pushReqOut)
)

Then

D5 =

D5,1

D5,2
D5,3 D6

Γ1, ϕm
a (x) :vn ` cr2 (ro , ri) .T6

T-InB

Γ1 ` cr1 ?(ϕm
a (x)) .cr2 (ro , ri) .T6

T-RepB

Γ1 ` cr2 〈ro , ri〉 | cr1 ?(ϕm
a (x)) .cr2 (ro , ri) .T6

T-ParB

To show Γ1 ` cr2 〈ro , ri〉 for D5,1 apply T-OutB and then T-NameB on all sub-
goals. Γ1 ` cr1 :](vn) for D5,2 and Γ1, ϕ

m
a (x) : vn ` cr2 :](o, i) for D5,3 fol-

low from T-NameB. Applying several times T-ResB on the subgoal Γ1, ϕ
m
a (x) :

vn ` T6 for D6 leads to Γ4 ` T7, where Γ4 = Γ1, ϕ
m
a (x) : vn,mo , po,up , ro,up :

o,mi , pi ,up , ri ,up : i, co :](i) , ci :](o). Note that T 3
B (pushReqIn) = T ′7 | T ′′7 , where

T ′7 = ro
?(y, l, s, z) . (T7,1 | T7,2), T ′′7 = ri

?(y, l, r) . (T7,3 | T7,4), T7,1 = mo〈y, l, s, z〉,
T7,2 = ro,up〈y, l, s, z〉, T7,3 = mi〈y, l, r〉, and T7,4 = ri ,up〈y, l, r〉. Let Γ5 = Γ4, y, z :
vn, l : l, s :s and Γ6 = Γ4, y :vn, l : l, r :r. Then

D7,1
D7,2 D7,3

Γ5 ` T7,1 | T7,2
P

Γ4 ` T ′7
R

D7,4
D7,5 D7,6

Γ6 ` T7,3 | T7,4
P

Γ4 ` T ′′7
R

Γ4 ` ro?(y, l, s, z) . (T7,1 | T7,2) | ri?(y, l, r) . (T7,3 | T7,4)
P

D8 D9

Γ4 ` T8 | T9
P

Γ4 ` T7
P

where P = T-ParB and R = T-RepB. Γ4 ` ro : o for D7,1 and Γ4 ` ri : i for
D7,4 follow from T-NameB. Apply T-OutB and then T-NameB on all subgoals
to show Γ5 ` mo〈y, l, s, z〉 for D7,2, Γ5 ` ro,up〈y, l, s, z〉 for D7,3, Γ6 ` mi〈y, l, r〉 for
D7,5, and Γ6 ` ri ,up〈y, l, r〉 for D7,6.

Apart from the type environment Γ4 ` T8 for D8 is equal to the goal of D2

in the first case. Hence, it can be proved by the same argumentation and the
Lemmata 6.2.10 and 6.2.11.

329

A. Appendix

Finally, note that T 3
B (pushReqOut) = T9,1 | T9,2 | T9,3 | T9,4, where

T9,1 = po,up
?(y, l, s, z) . (po〈y, l, s, z〉 | ro〈y, l, s, z〉)

T9,2 = ro,up
?(y, l, s, z) .ro〈y, l, s, z〉

T9,3 = pi ,up
?(y, l, r) . (pi〈y, l, r〉 | ri〈y, l, r〉)

T9,4 = pi ,up
?(y, l, r) .ri〈y, l, r〉

Then

D9 =

D′9

D9,1

D9,2
D9,3 D9,4

Γ4 ` T9,3 | T9,4
P

Γ4 ` T9,2 | T9,3 | T9,4
P

Γ4 ` T9,1 | T9,2 | T9,3 | T9,4
P

Γ4 ` cr2 〈ro , ri〉 | T 3
B (pushReqOut)

P

Γ4 ` (νri : i)
(
cr2 〈ro , ri〉 | T 3

B (pushReqOut)
)T-ResB

Γ4 ` (νro :o, ri : i)
(
cr2 〈ro , ri〉 | T 3

B (pushReqOut)
) T-ResB

where P = T-ParB. Apply T-OutB and then T-NameB on all subgoals to show
Γ4 ` cr2 〈ro , ri〉 for D′9.

D9,1 =

D10,1
D10,2 D10,3

Γ5 ` po〈y, l, s, z〉 | ro〈y, l, s, z〉
T-ParB

Γ4 ` po,up?(y, l, s, z) . (po〈y, l, s, z〉 | ro〈y, l, s, z〉)
T-RepB

Γ4 ` po,up : o for D10,1 follows from T-NameB. Apply T-OutB and afterwards
T-NameB on all subgoals to show Γ5 ` po〈y, l, s, z〉 for D10,2 and Γ5 ` ro〈y, l, s, z〉
for D10,3.

D9,2 =
D10,4 D10,5

Γ4 ` ro,up?(y, l, s, z) .ro〈y, l, s, z〉
T-RepB

Γ4 ` ro,up : o for D10,4 follows from T-NameB. Again, apply T-OutB and then
T-NameB on all subgoals to show Γ5 ` ro〈y, l, s, z〉 for D10,5.

D9,3 =

D10,6
D10,7 D10,8

Γ6 ` pi〈y, l, r〉 | ri〈y, l, r〉
T-ParB

Γ4 ` pi ,up?(y, l, r) . (pi〈y, l, r〉 | ri〈y, l, r〉)
T-RepB

Γ4 ` pi ,up : i for D10,6 follows from T-NameB. Apply T-OutB and then T-NameB
on all subgoals to show Γ6 ` pi〈y, l, r〉 for D10,7 and Γ6 ` ri〈y, l, r〉 for D10,8.

D9,4 =
D10,9 D10,10

Γ4 ` ri ,up?(y, l, r) .ri〈y, l, r〉
T-RepB

Γ4 ` ri ,up : i for D10,9 follows from T-NameB. Again, apply T-OutB and then
T-NameB on all subgoals to show Γ6 ` ri〈y, l, r〉 for D10,10.

330

A.1. Typed Encoding Functions

A.1.2. Properties of the Monadic Type System

Within this section we present the proofs of some properties of the monadic type system
discussed in Section 6.2.3. In the following we show strengthening and weakening in the
monadic type system.

Proof of Lemma 6.2.29. We perform an induction on the depth of the derivation. Let
P ∈ { Pa,Pp,P=

a } be the set of processes of the target language of the considered
encoding.

Base Case: If Γ, x :T ; ∆; Ψ ` P can be derived from one of the axioms then either P = 0
or P = X and ∆ = Ψ = ∅. In both cases Γ; ∆; Ψ ` P follows again directly by
T-NilM or T-SuccM.

Induction Hypothesis:

∀P ∈ (P :TM) . Γ, x :T ; ∆; Ψ ` P ∧ x /∈ fn(P) imply Γ; ∆; Ψ ` P

Induction Step: We perform a case split on the inference rules in Figure 6.8. As in
Lemma 6.2.10, each case is simple. Nonetheless, we present them in full detail, to
show the influence of the additional sets in judgements.

Case of T-Res-BM : In this case, P = (νx′ :T ′)P ′ for some x′ ∈ N , T ′ ∈ TM,
T ′ 6= ◦ . T ′′ for all T ′′, P ′ ∈ (P :TM), Γ, x : T, x′ : T ′; ∆; Ψ ` P ′, and ∆ = ∅.
Without loss of generality, let us assume that x′ 6= x, else apply α-conversion
first. Since x′ 6= x and x /∈ fn(P), we have x /∈ fn(P ′). Thus, by the induction
hypothesis, Γ, x′ :T ′; ∆; Ψ ` P ′. Then Γ; ∆; Ψ ` P follows from T-Res-BM.

Case of T-Res-MM : Again P = (νx′ :T ′)P ′ for some x′ ∈ N , x′ 6= x, T ′ ∈ TM,
P ′ ∈ (P :TM), and x /∈ fn(P ′) but here T ′ = T1 . T2 for some T1, T2 and
Γ, x : T, x′ : T ′; ∆,∆′; Ψ ` P ′, where ∆′ is either x′ : T2 or ∅. Thus, by the
induction hypothesis, we have Γ, x′ :T ′; ∆,∆′; Ψ ` P ′, and conclude again by
T-Res-MM.

Case of T-ParM : In this case, P = P1 | P2 for some P1, P2 ∈ (P :TM), x /∈
fn(P1) ∪ fn(P2), ∆ = ∆1,∆2, Ψ = Ψ1 · Ψ2, Γ, x : T ; ∆1; Ψ1 ` P1, and Γ, x :
T ; ∆2; Ψ2 ` P2. Thus, by the induction hypothesis, Γ; ∆1; Ψ1 ` P1 and
Γ; ∆2; Ψ2 ` P2. We conclude by T-ParM.

Case of T-MatM : In this case, P = [a = b]P ′ for some a, b ∈ N , P ′ ∈ (P :TM),
x /∈ fn(P ′), Γ, x : T ` a : T ′, Γ, x : T ` b : T ′ for some T ′ ∈ TM, and Γ, x :
T ; ∆; Ψ ` P ′. Because x /∈ fn(P), we have a 6= x 6= b. Thus, by Lemma 6.2.9
and Lemma 6.2.10, also Γ ` a :T ′ and Γ ` b :T ′. By the induction hypothesis,
we have Γ; ∆; Ψ ` P ′. We conclude with T-MatM.

Case of T-TauM : In this case, P = τ.P ′ for some P ′ ∈ (P :TM), x /∈ fn(P ′),
∆ = Ψ = ∅, and Γ, x : T ; ∆; Ψ ` P ′. By the induction hypothesis, we have
Γ; ∆; Ψ ` P ′. We conclude with T-TauM.

331

A. Appendix

Case of T-Out-BM : In this case, P = y〈z〉 for some y, z ∈ N , ∆ = Ψ = ∅,
Γ, x :T ` y :](T ′), and Γ, x :T ` z :T ′ for some T ′ ∈ TM. Since x /∈ fn(P), we
have y 6= x 6= z. Thus, by Lemma 6.2.9 and Lemma 6.2.10, also Γ ` y :](T ′)
and Γ ` z :T ′. We conclude with T-Out-BM.

Case of T-Out-MM : Here P = y〈z〉 for some y, z ∈ N , y 6= x 6= z, ∆ = ∅,
Γ, x : T ` z : T ′, and Γ ` z : T ′ for some T ′ ∈ TM but Ψ = y :](T ′). Hence,
again we conclude with T-Out-MM.

Case of T-OutPSM : In this case, P = y · o〈z〉 for some o, y, z ∈ N , ∆ = Ψ = ∅,
Γ, x :T ` y :vn, Γ, x :T ` o :](T ′), and Γ, x :T ` z :T ′ for some T ′ ∈ TM. Since
x /∈ fn(P), we have x /∈ { o, y, z }. Thus, by Lemma 6.2.9 and Lemma 6.2.10,
also Γ ` y :vn, Γ ` o :](T ′), and Γ ` z :T ′. We conclude with T-OutPSM.

Case of T-In-BM : In this case, P = y(x′) .P ′ for some x′, y ∈ N , P ′ ∈ (P :TM),
∆ = ∅, Γ, x : T ` y :](T ′), and Γ, x : T, x′ : T ′; ∆; Ψ ` P ′ for some T ′ ∈ TM

such that T ′ 6= ◦ . T ′′ for all T ′′. Without loss of generality, let us assume
that x′ 6= x. Hence, x /∈ fn(P ′). Moreover, since x /∈ fn(P), we have y 6= x.
Thus, by Lemma 6.2.9 and Lemma 6.2.10, also Γ ` y :](T ′). By the induction
hypothesis, we have Γ, x′ :T ′; ∆; Ψ ` P ′. We conclude with T-In-BM.

Case of T-In-M1M : Again P = y(x′) .P ′ for some x′, y ∈ N , P ′ ∈ (P :TM),
x′ 6= x 6= y, ∆ = ∅, Γ, x :T ` y :](T ′), and Γ ` y :](T ′) for some T ′ ∈ TB but
here Ψ = ∅, T ′ = ◦ . T ′′ for some T ′′, and Γ, x :T, x′ :T ′; ∆;x′ :T ′′ ` P ′. By
the induction hypothesis, we have Γ, x′ :T ′; ∆;x′ :T ′′ ` P ′. We conclude with
T-In-M1M.

Case of T-In-M2M : Here P = y(x′) .P ′ for some x′, y ∈ N , P ′ ∈ (P :TM), and
x′ 6= x 6= y, but ∆ = y :](T ′) . T ′′, Ψ = ∅, and Γ, x : T, x′ : T ′; ∆′; Ψ ` P ′
for some T ′, T ′′ and either T ′′ = • and ∆′ = ∅ or T ′′ 6= • and ∆′ = y : T ′′.
By the induction hypothesis, we have Γ, x′ :T ′; ∆′; Ψ ` P ′. We conclude with
T-In-M2M.

Case of T-InPSM : In this case, P = y · o(x′) .P ′ for some o, x′, y ∈ N , P ′ ∈
(P :TM), ∆ = Ψ = ∅, Γ, x : T ` y : vn, Γ, x : T ` o :](T ′), and Γ, x : T, x′ :
T ′; ∆;x′ : T ′′ ` P ′ for some T ′ ∈ TM such that T ′ = ◦ . T ′′ for some T ′′.
Without loss of generality, let us assume that x′ 6= x. Hence, x /∈ fn(P ′).
Moreover, since x /∈ fn(P), we have y 6= x. Thus, by Lemma 6.2.9 and
Lemma 6.2.10, also Γ ` y :vn and Γ ` o :](T ′). By the induction hypothesis,
we have Γ, x′ :T ′; ∆;x′ :T ′′ ` P ′. We conclude with T-InPSM.

Case of T-Rep-BM : Similar to the case of T-In-BM.

Case of T-Rep-MM : Similar to the case of T-In-M1M.

The proof of weakening is similar.

Proof of Lemma 6.2.30. Since type environments are sets, if Γ (x) = T then Γ, x :T = Γ
and the lemma holds trivially.

332

A.1. Typed Encoding Functions

For the other case, we perform an induction on the depth of the derivation. Let
P ∈ { Pa,Pp,P=

a } be the set of processes of the target language of the considered
encoding.

Base Case: If Γ; ∆; Ψ ` P can be derived from one of the axioms then either P = 0 or
P = X and ∆ = Ψ = ∅. In both cases Γ, x :T ; ∆; Ψ ` P follows again directly by
T-NilM or T-SuccM.

Induction Hypothesis: ∀x ∈ N . ∀T ∈ TM . ∀P ∈ (P :TM) . Γ; ∆; Ψ ` P ∧ x /∈ n(Γ)
imply Γ, x :T ; ∆; Ψ ` P

Induction Step: We perform a case split on the inference rules in Figure 6.8. As for
Lemma 6.2.11, each case is simple. Nonetheless, we present them in full detail, to
show the influence of the additional sets in judgements.

Case of T-Res-BM : In this case, P = (νx′ :T ′)P ′ for some x′ ∈ N , T ′ ∈ TM,
T ′ 6= ◦.T ′′ for all T ′′, P ′ ∈ (P :TM), Γ, x′ :T ′; ∆; Ψ ` P ′. Without loss of gen-
erality, let us assume that x′ 6= x, else apply α-conversion first. By assump-
tion, x /∈ n(Γ). Thus, by the induction hypothesis, Γ, x′ :T ′, x :T ; ∆; Ψ ` P ′.
Then Γ, x :T ; ∆; Ψ ` P follows from T-Res-BM.

Case of T-Res-MM : Again P = (νx′ :T ′)P ′ for some x′ ∈ N , x′ 6= x, T ′ ∈ TM,
P ′ ∈ (P :TM), and x /∈ n(Γ) but here T ′ = T1 . T2 for some T1, T2, and
Γ, x′ :T ′; ∆,∆′; Ψ ` P ′, where ∆′ is either x′ :T2 or ∅. Thus, by the induction
hypothesis, we have Γ, x′ : T ′, x : T ; ∆,∆′; Ψ ` P ′, and conclude again by
T-Res-MM.

Case of T-ParM : In this case, P = P1 | P2 for some P1, P2 ∈ (P :TM), ∆ =
∆1,∆2, Ψ = Ψ1 · Ψ2, Γ; ∆1; Ψ1 ` P1, and Γ; ∆2; Ψ2 ` P2. Thus, by the
induction hypothesis, Γ, x : T ; ∆1; Ψ1 ` P1 and Γ, x : T ; ∆2; Ψ2 ` P2. We
conclude by T-ParM.

Case of T-MatM : In this case, P = [a = b]P ′ for some a, b ∈ N , P ′ ∈ (P :TM),
Γ ` a : T ′, Γ ` b : T ′ for some T ′ ∈ TM, and Γ; ∆; Ψ ` P ′. Because of
Lemma 6.2.9, Γ ` a : T ′, and Γ ` b : T ′, we have Γ (a) = T ′ = Γ (b) and, so,
a 6= x 6= b. Thus, by Lemma 6.2.11, also Γ, x :T ` a :T ′ and Γ, x :T ` b :T ′.
By the induction hypothesis, we have Γ, x : T ; ∆; Ψ ` P ′. We conclude with
T-MatM.

Case of T-TauM : In this case, P = τ.P ′ for some P ′ ∈ (P :TM), x /∈ fn(P ′), ∆ =
Ψ = ∅, and Γ; ∆; Ψ ` P ′. By the induction hypothesis, Γ, x : T ; ∆; Ψ ` P ′.
We conclude with T-TauM.

Case of T-Out-BM : In this case, P = y〈z〉 for some y, z ∈ N , ∆ = Ψ = ∅,
Γ ` y :](T ′), and Γ ` z : T ′ for some T ′ ∈ TM. Because of Lemma 6.2.9,
x /∈ n(Γ), Γ ` y :](T ′), and Γ ` z : T ′, we have y 6= x 6= z. Thus, by
Lemma 6.2.11, also Γ, x :T ` y :](T ′) and Γ, x :T ` z :T ′. We conclude with
T-Out-BM.

333

A. Appendix

Case of T-Out-MM : Here P = y〈z〉 for some y, z ∈ N , ∆ = ∅, Γ ` z :T ′, x 6= z,
and Γ, x : T ` z : T ′ for some T ′ ∈ TM but Ψ = y :](T ′). Hence, again we
conclude with T-Out-MM.

Case of T-OutPSM : In this case, P = y · o〈z〉 for some o, y, z ∈ N , ∆ = Ψ = ∅,
Γ ` y :vn, Γ ` o :](T ′), and Γ ` z :T ′ for some T ′ ∈ TM. Since x /∈ fn(P), we
have x /∈ { o, y, z }. Thus, by Lemma 6.2.9 and Lemma 6.2.11, also Γ, x :T `
y :vn, Γ, x :T ` o :](T ′), and Γ, x :T ` z :T ′. We conclude with T-OutPSM.

Case of T-In-BM : In this case, P = y(x′) .P ′ for some x′, y ∈ N , P ′ ∈ (P :TM),
∆ = ∅, Γ ` y :](T ′), and Γ, x′ : T ′; ∆; Ψ ` P ′ for some T ′ ∈ TM such that
T ′ 6= ◦ . T ′′ for all T ′′. Without loss of generality, let us assume that x′ 6= x.
Moreover, because of Lemma 6.2.9, x /∈ n(Γ), and Γ ` y :](T ′), we have y 6= x.
Thus, by Lemma 6.2.11, also Γ, x :T ` y :](T ′). By the induction hypothesis,
we have Γ, x′ :T ′, x :T ; ∆; Ψ ` P ′. We conclude with T-In-BM.

Case of T-In-M1M : Again P = y(x′) .P ′ for some x′, y ∈ N , P ′ ∈ (P :TM),
x′ 6= x 6= y, ∆ = ∅, Γ ` y :](T ′), and Γ, x : T ` y :](T ′) for some T ′ ∈ TB

but here Ψ = ∅, T ′ = ◦ . T ′′ for some T ′′, and Γ, x′ : T ′; ∆;x′ : T ′′ ` P ′. By
the induction hypothesis, we have Γ, x′ :T ′, x :T ; ∆;x′ :T ′′ ` P ′. We conclude
with T-In-M1M.

Case of T-In-M2M : Here P = y(x′) .P ′ for some x′, y ∈ N , P ′ ∈ (P :TM), and
x′ 6= x 6= y but ∆ = y :](T ′) . T ′′, Ψ = ∅, and Γ, x′ :T ′; ∆′; Ψ ` P ′ for some
T ′, T ′′ and either T ′′ = • and ∆′ = ∅ or T ′′ 6= • and ∆′ = y : T ′′. By the
induction hypothesis, we have Γ, x′ : T ′, x : T ; ∆′; Ψ ` P ′. We conclude with
T-In-M2M.

Case of T-InPSM : In this case, P = y · o(x′) .P ′ for some o, x′, y ∈ N , P ′ ∈
(P :TM), ∆ = Ψ = ∅, Γ ` y : vn, Γ ` o :](T ′), and Γ, x′ : T ′; ∆;x′ : T ′′ ` P ′
for some T ′ ∈ TM such that T ′ = ◦ . T ′′ for some T ′′. Without loss of
generality, let us assume that x′ 6= x. Hence, x /∈ fn(P ′). Moreover, since
x /∈ fn(P), we have y 6= x. Thus, by Lemma 6.2.9 and Lemma 6.2.11, also
Γ, x :T ` y : vn and Γ, x :T ` o :](T ′). By the induction hypothesis, we have
Γ, x′ :T ′, x :T ; ∆;x′ :T ′′ ` P ′. We conclude with T-InPSM.

Case of T-Rep-BM : Similar to the case of T-In-BM.

Case of T-Rep-MM : Similar to the case of T-In-M1M.

Lemma 6.2.31 states that if Γ; ∆; Ψ ` P , P ≡ Q, and Γ is closed for Q then Γ; ∆; Ψ `
Q.

Proof of Lemma 6.2.31. We show the condition for a single application of the rules of
structural congruence in Figure 2.1 at Page 18. The lemma then follows by induction
on the depth of the derivation of P ≡ Q. As described above, we equate typed processes
that are equivalent modulo α-conversion.

334

A.1. Typed Encoding Functions

Case of P ′ | 0 ≡ P ′: In this case, either P = P ′ | 0 and Q = P ′ or P = P ′ and Q =
P ′ | 0. In the first case, the derivation of Γ; ∆; Ψ ` P ′ | 0 starts with T-ParM

which leads to the subgoals Γ; ∆1; Ψ1 ` P ′ and Γ; ∆2; Ψ2 ` 0 such that ∆ = ∆1,∆2

and Ψ = Ψ1 · Ψ2. Γ; ∆2; Ψ2 ` 0 can only be proved by T-NilM which requires
∆2 = Ψ2 = ∅. Hence, ∆1 = ∆ and, by Definition 6.2.27, Ψ1 = Ψ. Hence,
Γ; ∆; Ψ ` Q follows from Γ; ∆1; Ψ1 ` P ′.
In the other case, P = P ′, i.e., we have Γ; ∆; Ψ ` P ′. Then Γ; ∆; Ψ ` Q with
Q = P ′ | 0 holds, because

Γ; ∆; Ψ ` P ′
by assumption

Γ; ∅; ∅ ` 0
T-NilM

Γ; ∆; Ψ ` P ′ | 0
T-ParM

Case of P ′ | Q′ ≡ Q′ | P ′: This case follows by the symmetric definition of T-ParM,
i.e., we can always exchange the left and the right hand side in parallel compo-
sitions. Note that also the preconditions ∆P ,∆Q = ∆P ∪ ∆Q and ΨP · ΨQ in
Definition 6.2.27 are defined such that they always hold also in the symmetric
case.

Case of P ′ | (Q′ | R) ≡ (P ′ | Q′) | R: In this case, either P = P ′ | (Q′ | R) and Q =
(P ′ | Q′) | R or P = (P ′ | Q′) | R and Q = P ′ | (Q′ | R). In the first case the
derivation of Γ; ∆; Ψ ` P starts with

. . .

Γ; ∆1; Ψ1 ` P ′
. . .

. . .

Γ; ∆2,1; Ψ2,1 ` Q′
. . .

. . .

Γ; ∆2,2; Ψ2,2 ` R
. . .

Γ; ∆2; Ψ2 ` Q′ | R
T-ParM

Γ; ∆; Ψ ` P ′ | (Q′ | R)
T-ParM

such that ∆2 = ∆2,1,∆2,2, Ψ2 = Ψ2,1 · Ψ2,2, ∆ = ∆1, (∆2,1,∆2,2), and Ψ =
Ψ1 · (Ψ2,1 ·Ψ2,2). Obviously, ∆1, (∆2,1,∆2,2) = (∆1,∆2,1) ,∆2,2. Moreover, by
Definition 6.2.27, also Ψ1 ·(Ψ2,1 ·Ψ2,2) = Ψ = (Ψ1 ·Ψ2,1) ·Ψ2,2. Hence, Γ; ∆; Ψ ` Q
can be shown by the derivation

Γ; ∆1; Ψ1 ` P ′
A

Γ; ∆2,1; Ψ2,1 ` Q′
A

Γ; ∆1,∆2,1; Ψ1 ·Ψ2,1 ` P ′ | Q′
T-ParM

Γ; ∆2,2; Ψ2,2 ` R
A

Γ; ∆; Ψ ` (P ′ | Q′) | R
T-ParM

where A = by assumption, i.e., the remaining subgoals hold by the derivation
above. The other case is similar.

Case of [a = a]P ′ ≡ P ′: In this case either P = [a = a]P ′ and Q = P ′ or P = P ′ and
Q = [a = a]P ′. In the first case, Γ; ∆; Ψ ` Q follows from Γ; ∆; Ψ ` [a = a]Q and
T-MatM. In the second case, i.e., if Q = [a = a]P ′, we apply T-MatM which
results in three subgoals. The first two are both Γ ` a :T for some arbitrary type
T . By assumption, there is some T ′ such that Γ (a) = T ′. Thus, we choose T = T ′.
Then Γ ` a : T follows by Lemma 6.2.9. The last subgoal Γ; ∆; Ψ ` P ′ holds by
assumption.

335

A. Appendix

Case of (νn :T) 0 ≡ 0: If P = (νn :T) 0 and Q = 0 then the derivation of Γ; ∆; Ψ `
(νn :T) 0 starts with T-Res-BM followed by T-NilM, because the latter requires
∆ = Ψ = ∅. Hence, Γ; ∅; ∅ ` 0 follows from T-NilM. Else, if P = 0 and Q =
(νn :T) 0, Γ; ∆; Ψ ` 0 can only be shown by T-NilM if ∆ = Ψ = ∅. Hence,
Γ; ∅; ∅ ` (νn :T) 0 follows from T-Res-BM and then T-NilM.

Case of (νn :Tn) (νm :Tm)P ′ ≡ (νm :Tm) (νn :Tn)P ′: If P = (νn :Tn) (νm :Tm)P ′ and
Q = (νm :Tm) (νn :Tn)P ′, the derivation of Γ; ∆; Ψ ` P starts with T-Res-BM or
T-Res-MM followed by another application of one of these two rules. (1) Applying
two times T-Res-BM leads to Γ, n : Tn,m : Tm; ∆; Ψ ` P ′, (2) applying first
T-Res-BM and then T-Res-MM leads to Γ, n : Tn,m : Tm; ∆,∆2; Ψ ` P ′, where
∆2 is either m : T ′m or ∅, (3) applying first T-Res-MM and then T-Res-BM

leads to Γ, n : Tn,m : Tm; ∆,∆3; Ψ ` P ′, where ∆3 is either n : T ′n or ∅, and
(4) applying two times T-Res-MM leads to Γ, n :Tn,m :Tm; ∆,∆4; Ψ ` P ′, where
∆4 ⊆ n : T ′n,m : T ′m. Accordingly, Γ; ∆; Ψ ` Q can be shown by applying (1) two
times T-Res-BM, (2) first T-Res-MM and then T-Res-BM, (3) first T-Res-BM

and then T-Res-MM, or (4) two times T-Res-MM and the assumption.

Case of P ′ | (νn :T)Q′ ≡ (νn :T) (P ′ | Q′) with n /∈ fn(P ′): In this case, we have P =
P ′ | (νn :T)Q′ and Q = (νn :T) (P ′ | Q′) or P = (νn :T) (P ′ | Q′) and Q = P ′ |
(νn :T)Q′. In the first case the derivation of Γ; ∆; Ψ ` P starts with

. . .

Γ; ∆1; Ψ1 ` P ′
. . .

. . .

Γ, n :T ; ∆′2; Ψ2 ` Q′
. . .

Γ; ∆2; Ψ2 ` (νn :T)Q′
R

Γ; ∆; Ψ ` P ′ | (νn :T)Q′
T-ParM

where R is either T-Res-BM or T-Res-MM, ∆ = ∆1,∆2, and Ψ = Ψ1 · Ψ2. If
R = T-Res-BM then ∆′2 = ∆2 and else, if R = T-Res-MM, then ∆′2 = ∆2, n :T ′

or ∆′2 = ∆2. In both cases, we have

Γ, n :T ; ∆1; Ψ1 ` P ′
A

Γ, n :T ; ∆′2; Ψ2 ` Q′
by assumption

Γ, n :T ; ∆′; Ψ ` P ′ | Q′
T-ParM

Γ; ∆; Ψ ` (νn :T) (P ′ | Q′)
R

where A = (by Lemma 6.2.30 and assumption) and ∆′ = ∆ if R = T-Res-BM

and else ∆′ = ∆, n :T ′ or ∆′ = ∆. The other case is similar.

A.1.3. Well-Typedness in the Linear Type System

Within this section we present the proofs of the Lemma 6.2.51, Lemma 6.2.52, and
Lemma 6.2.53, i.e., we prove that the encodings T 1

L J · Ksa, T 2
L J · Ksa, and T 3

L J · Ksa are well-
typed. Note that all three encodings use sum locks and type them by the same type. In
fact, instantiations on sum locks are typed equivalently in the encoding functions.

336

A.1. Typed Encoding Functions

Lemma A.1.2. Positive and negative instantiations of a sum lock l that are typed by
T 1
L , T 2

L , or T 3
L are well-typed with respect to l : l and ∆ = Ψ = ∅.

Proof. By Figure 6.11, Figure 6.10, and Figure 6.9, sum locks, booleans, and the aux-
iliary values used in instantiations of sum locks are typed equivalently in T 1

L , T 2
L , and

T 3
L . More precisely, for T ∈

{
T 1
L , T 2

L , T 3
L

}
, we have

T
(
l〈>〉

) Def. 5.1.1
= T

(
l(t , f) .t

)
Def. 5.4.1

= T
(
l(u∼,l) .

(
(νut)

(
u∼,l 〈ut〉 | ut(t) .

(
(νuf)

(
u∼,l 〈uf 〉 | uf (f) . (νvt) t〈vt〉

)))))
= l(u∼,l) .

((
νut :l11

(
↑+(v>)

)) (
u∼,l 〈ut〉 | ut(t) .

((
νuf :l11

(
↑+(v⊥)

)) (
u∼,l 〈uf 〉

| uf (f) . (νvt :v>) t〈vt〉
))))

for positive and

T
(
l〈⊥〉

) Def. 5.1.1
= T

(
l(t , f) .f

)
Def. 5.4.1

= T
(
l(u∼,l) .

(
(νut)

(
u∼,l 〈ut〉 | ut(t) .

(
(νuf)

(
u∼,l 〈uf 〉 | uf (f) . (νvf) f 〈vf 〉

)))))
= l(u∼,l) .

((
νut :l11

(
↑+(v>)

)) (
u∼,l 〈ut〉 | ut(t) .

((
νuf :l11

(
↑+(v⊥)

)) (
u∼,l 〈uf 〉

| uf (f) . (νvf :v⊥) f 〈vf 〉
))))

for negative instantiations of l . Remember that

l =](l◦) =]
(
◦ .]

(
↑1
(
↑+(v>)

))
.]
(
↑1
(
↑+(v⊥)

))
. •
)

for all three sets of type assignments. Let

T
(
l〈b〉
)

= l(u∼,l) .
((
νut :l11

(
↑+(v>)

))
(u∼,l 〈ut〉 | T2,b)

)
T2,b = ut(t) .

((
νuf :l11

(
↑+(v⊥)

))
(u∼,l 〈uf 〉 | T3,b)

)
T3,> = uf (f) . (νvt :v>) t〈vt〉
T3,⊥ = uf (f) . (νvf :v⊥) f 〈vf 〉

T1 =]
(
↑1(↑+(v>))

)
, and T2 =]

(
↑1(↑+(v⊥))

)
.

D1,1

D1,2

l : l, u∼,l : l◦, ut :↑1(↑+(v>)) ; ∅; u∼,l :T1 ` u∼,l 〈ut〉
O D2

l : l, u∼,l : l◦, ut :l11(↑+(v>)) ; ∅; u∼,l :T1 . T2 . • ` u∼,l 〈ut〉 | T2,b
T-ParL

l : l, u∼,l : l◦; ∅; u∼,l :T1 . T2 . • `
(
νut :l11(↑+(v>))

)
(u∼,l 〈ut〉 | T2,b)

R

l : l; ∅; ∅ ` T
(
l〈b〉
) I

where O = T-Out-ML, R = T-Res-BL, and I = T-In-M1L. l : l ` l :]+(l◦) for D1,1 and
l : l, u∼,l : l◦, ut :↑1(↑+(v>)) ` ut :↑1(↑+(v>)) for D1,2 follow from T-NameL. D2 =

D2,1

D2,2

l : l, u∼,l : l◦, uf :↑1(↑+(v⊥)) ; ∅; u∼,l :T2 ` u∼,l 〈uf 〉
O D3,b

l : l, u∼,l : l◦, t :↑+(v>) , uf :l11(↑+(v⊥)) ; ∅; u∼,l :T2 ` u∼,l 〈uf 〉 | T3,b
T-ParL

l : l, u∼,l : l◦, t :↑+(v>) ; ∅; u∼,l :T2 `
(
νuf :l11(↑+(v⊥))

)
(u∼,l 〈uf 〉 | T3,b)

R

l : l, u∼,l : l◦, ut :↓1(↑+(v>)) ; ∅; u∼,l :T2 ` T2,b
I

337

A. Appendix

where O = T-Out-ML, R = T-Res-BL, and I = T-In-BL. l : l, u∼,l : l◦, ut :↓1(↑+(v>)) `
ut : ↓1(↑+(v>)) for D2,1 and l : l, u∼,l : l◦, uf : ↑1(↑+(v⊥)) ` uf : ↑1(↑+(v⊥)) for D2,2 follow
from T-NameL. Finally,

D3,> =

D3,1

D3,2 D3,3

l : l, u∼,l : l◦, t :↑+(v>) , f :↑+(v⊥) , vt :v>; ∅; ∅ ` t〈vt〉
O

l : l, u∼,l : l◦, t :↑+(v>) , f :↑+(v⊥) ; ∅; ∅ ` (νvt :v>) t〈vt〉
T-Res-BL

l : l, u∼,l : l◦, t :↑+(v>) , uf :↓1(↑+(v⊥)) ; ∅; ∅ ` T3,>
I

and

D3,⊥ =

D3,1

D3,4 D3,5

l : l, u∼,l : l◦, t :↑+(v>) , f :↑+(v⊥) , vf :v⊥; ∅; ∅ ` f 〈vf 〉
O

l : l, u∼,l : l◦, t :↑+(v>) , f :↑+(v⊥) ; ∅; ∅ ` (νvf :v⊥) f 〈vf 〉
T-Res-BL

l : l, u∼,l : l◦, t :↑+(v>) , uf :↓1(↑+(v⊥)) ; ∅; ∅ ` T3,⊥
I

where O = T-Out-BL and I = T-In-BL. l : l, u∼,l : l◦, uf : ↓1(↑+(v⊥)) ` uf : ↓1(↑+(v⊥))
for D3,1, l : l, u∼,l : l◦, t : ↑+(v>) , f : ↑+(v⊥) , vt : v> ` t : ↑+(v>) for D3,2, l : l, u∼,l : l◦, vt :
v> ` vt : v> for D3,3, l : l, u∼,l : l◦, t : ↑+(v>) , f : ↑+(v⊥) , vf : v⊥ ` f : ↑+(v⊥) for D3,4, and
l : l, u∼,l : l◦, vf :v⊥ ` vf :v⊥ for D3,5 follow from T-NameL.

Similarly, outputs on sum locks, i.e., test-constructs, are well-typed in the typed vari-
ants of all three encodings within the linear type system.

Lemma A.1.3. All test-constructs test l then P else Q in the typed encodings T 1
L J · Ksa,

T 2
L J · Kmp , or T 3

L J · Kma are well-typed with respect to ∆ = Ψ = ∅ and all Γ such that
Γ; ∅; ∅ ` P | Q.

Proof. By Figure 6.11, Figure 6.10, and Figure 6.9, sum locks, booleans, and the aux-
iliary values used in outputs on sum locks are typed equivalently in T 1

L , T 2
L , and T 3

L .
More precisely, for T ∈

{
T 1
L , T 2

L , T 3
L

}
, we have

T (test l then P else Q)
Def. 5.1.1

= T
(
(νt , f)

(
l〈t , f 〉 | t .P | f .Q

))
Def. 5.4.1

= T
(

(νt , f)
(

(νu∼,l)
(
l〈u∼,l 〉 | u∼,l (ut) . (ut〈t〉 | u∼,l (uf) .uf 〈f 〉)

)
| t(vt) .P

| f (vf) .Q
))

=
(
νt :l+1(v>) , f :l+1(v⊥)

) ((
νu∼,l :◦ .]

(
↑1
(
↑+(v>)

))
.]
(
↑1
(
↑+(v⊥)

))
. •
)(

l〈u∼,l 〉 | u∼,l (ut) . (ut〈t〉 | u∼,l (uf) .uf 〈f 〉)
)
| t(vt) .P | f (vf) .Q

)
Moreover, we observe that, for all three encodings and all test-constructs, Γ contains at
least l : l. By T-ParL, Γ; ∅; ∅ ` P | Q implies that there exists two type environments
ΓP and ΓQ such that

ΓP ; ∅; ∅ ` P, (A.1)

ΓQ; ∅; ∅ ` Q, (A.2)

338

A.1. Typed Encoding Functions

and Γ = ΓP + ΓQ. By Definition 6.2.42, l : l ∈ ΓP as well as l : l ∈ ΓQ. Let

T (test l then P else Q) =
(
νt :l+1(v>) , f :l+1(v⊥)

)
(P1 | t(vt) .P | f (vf) .Q)

P1 = (νu∼,l : l◦)
(
l〈u∼,l 〉 | P2

)
P2 = u∼,l (ut) . (ut〈t〉 | u∼,l (uf) .uf 〈f 〉)

l◦ = ◦ .]
(
↑1(↑+(v>))

)
.]
(
↑1(↑+(v⊥))

)
. •, T1 =]

(
↑1(↑+(v>))

)
, and T2 =]

(
↑1(↑+(v⊥))

)
.

Moreover, let Γ′ contain all type assignments of Γ that do not assign a linear type
(inclusive l : l). Then, by Definition 6.2.42, Γ = Γ′+ Γ. We use Γ′ for D1 in the following
derivation.

D1
DP DQ

Γ, t :↓1(v>) , f :↓1(v⊥) ; ∅; ∅ ` t(vt) .P | f (vf) .Q
T-ParL

Γ, t :l+1(v>) , f :l+1(v⊥) ; ∅; ∅ ` P1 | t(vt) .P | f (vf) .Q
T-ParL

Γ, t :l+1(v>) ; ∅; ∅ `
(
νf :l+1(v⊥)

)
(P1 | t(vt) .P | f (vf) .Q)

R

Γ; ∅; ∅ ` T (test l then P else Q)
R

where R = T-Res-BL.

DP =
ΓP , t :↓1(v>) ` t :↓1(v>)

N
Γ′P ; ∅; ∅ ` P

(A.1) and Lemma 6.2.46

ΓP , t :↓1(v>) ; ∅; ∅ ` t(vt) .P
T-In-BL

where N = T-NameL and Γ′P = ΓP if vt ∈ n(ΓP) and else Γ′P = ΓP , vt :v>. Note that
the respective renaming policy ensures that for each encoding and each test-construct
we always have vt /∈ fn(P). However, since vt :v> and v> is a linear value type, the name
vt can never be used as link or be received on a channel that expects a link and so does
no harm. Similarly,

DQ =
ΓQ, f :↓1(v⊥) ` f :↓1(v⊥)

N
Γ′Q; ∅; ∅ ` Q

(A.2) and Lemma 6.2.46

ΓQ, f :↓1(v⊥) ; ∅; ∅ ` f (vf) .Q
T-In-BL

where N = T-NameL and Γ′Q = ΓQ if vf ∈ n(ΓQ) and else Γ′Q = ΓQ, vf :v⊥.

D1 =

D1,1 D1,2

Γ′, u∼,l : l◦; ∅; ∅ ` l〈u∼,l 〉
T-Out-BL D2

Γ′, t :↑+(v>) , f :↑+(v⊥) , u∼,l : l◦; u∼,l :T1 . T2 . •; ∅ ` l〈u∼,l 〉 | P2

T-ParL

Γ′, t :↑+(v>) , f :↑+(v⊥) ; ∅; ∅ ` (νu∼,l : l◦)
(
l〈u∼,l 〉 | P2

) R

where R = T-Res-ML. Γ′, u∼,l : l◦ ` l :](l◦) for D1,1 and Γ′, u∼,l : l◦ ` u∼,l : l◦ for D1,2

follow from T-NameL. Let Γ2 = Γ′, t :↑+(v>) , f :↑+(v⊥) , u∼,l : l◦. D2 =

D2,1 D2,2

Γ′, t :↑+(v>) , u∼,l : l◦, ut :↑1(↑+(v>)) ; ∅; ∅ ` ut〈t〉
T-Out-BL D3

Γ2, ut :↑1(↑+(v>)) ; u∼,l :T2 . •; ∅ ` ut〈t〉 | u∼,l (uf) .uf 〈f 〉
T-ParL

Γ2; u∼,l :T1 . T2 . •; ∅ ` P2
T-In-M2L

339

A. Appendix

Γ′, u∼,l : l◦, ut : ↑1(↑+(v>)) ` ut : ↑1(↑+(v>)) for D2,1 and Γ′, t : ↑+(v>) , u∼,l : l◦ ` t : ↑+(v>)
for D2,2 follow from T-NameL. Finally,

D3 =

D3,1 D3,2

Γ′, f :↑+(v⊥) , u∼,l : l◦, uf :↑1(↑+(v⊥)) ; ∅; ∅ ` uf 〈f 〉
T-Out-BL

Γ′, f :↑+(v⊥) , u∼,l : l◦; u∼,l :T2 . •; ∅ ` u∼,l (uf) .uf 〈f 〉
T-In-M2L

Γ′, u∼,l : l◦, uf :↑1(↑+(v⊥)) ` uf :↑1(↑+(v⊥)) for D3,1 and Γ′, f :↑+(v⊥) , u∼,l : l◦ ` f :↑+(v⊥)
for D3,2 follow from T-NameL.

Moreover, remember that the unfolding of polyadic communication follows a strict
schema given in Definition 6.2.24 and proved correct in Lemma 6.2.39. Also the aug-
mentation with linear types follows a strict line within this unfolding as described by
Figures 6.9, 6.10, and 6.11. Hence, all such unfoldings of polyadic communication are
well-typed in the linear type system.

Lemma A.1.4. All unfolded polyadic communications in the typed encodings T 1
L J · Ksa,

T 2
L J · Kmp , and T 3

L J · Kma are well-typed with respect to ∆ = Ψ = ∅ and some type environ-
ment Γ if the respective continuation is well-typed with respect to Γ′ and ∆ = Ψ = ∅,
where in case of outputs Γ′ = Γ and else Γ′ is the union of Γ and a type assignment for
each received value in the polyadic communication.

Proof. Analysing the types in Figures 6.9, 6.10, and 6.11, we observe that all auxiliary
links introduced by the unfoldings of polyadic communications (Definition 5.4.1) are
typed by m-sorts or linear types. Since all these unfoldings follow the same schema and
have similar types also the derivations of the respective type judgements are similar.
With Lemma A.1.2 and Lemma A.1.3 we present two derivations of such judgements;
one for inputs and one for outputs of polyadic communications of multiplicity two. The
other derivations are similar.

Lemma 6.2.53 states that the encoding T 3
L J · Kma is well-typed with respect to ΓJ · Kma ,

where ΓJ · Kma = { po :↑ω(o◦) , pi :↑ω(i◦) | po , pi ∈ fn(J S Kma) } ∪ { x :vn | x ∈ fn(S) } for all
source terms S ∈ Pm.

Proof of Lemma 6.2.53. An encoding is well-typed if each encoded term is well-typed.
Hence, we perform an induction over the structure of source terms. Note that no source
term can contain infinitely many free names. We conclude that the type environment is
finite for each translation of a source term. Let Γ = ΓJ · Kma .

Base Case: In Pm there are two terms without subterms, namely 0 and X. T 3
L J 0 Kma =

(νl : l)
(
T 3
L

(
l〈>〉

))
and T 3

L J XKma = X. The second case, i.e., the type judgement
∅; ∅; ∅ ` X, follows directly from T-SuccL. For the first case, we have

l : l; ∅; ∅ ` T 3
L

(
l〈>〉

)Lemma A.1.2

∅; ∅; ∅ ` (νl : l)
(
T 3
L

(
l〈>〉

)) T-Res-BL

340

A.1. Typed Encoding Functions

Induction Hypothesis:

∀S ∈ Pm . Γ; ∅; ∅ ` T 3
L J S Kma (IH)

Induction Step: We have to prove that Γ; ∅; ∅ ` T 3
L J S Kma for the cases that S is a

restricted term, a parallel composition, a sum, or a replicated input. The corre-
sponding derivations are huge but very simple. For each step in each case there
applies exactly one rule of Figure 6.12.

1. If S = (νx)S′ for some S′ ∈ Pm. Note that fn(S) = fn(S′) \ { x }. Thus,
ΓJ S′ Kma = ΓJ S Kma , ϕ

m
a (x) :vn if x ∈ fn(S′) and else ΓJ S′ Kma = ΓJ S Kma . Then:

Γ, ϕm
a (x) :vn; ∅; ∅ ` T 3

L J S′ Kma
(IH) and Lemma 6.2.46

Γ; ∅; ∅ ` (νϕm
a (x) :vn) T 3

L J S′ Kma
T-Res-BL

2. If S = S1 | S2 for some S1, S2 ∈ Pm then T 3
L J S Kma =

(νmo , po,up :o∗,mi , pi ,up : i∗, co :lω∗(↓∗(i◦)) , ci :lω∗(↓∗(o◦)))
(

(νpo :o∗, pi : i∗)
(
T 3
L J S1 Kma | T

3
L (procLeftOutReq) | T 3

L (procLeftInReq)
)

| (νpo :o, pi : i)
(
T 3
L J S2 Kma | T

3
L (procRightOutReq) | T 3

L (procRightInReq)
)

| T 3
L (pushReq)

)
.

By applying α-conversion and T-Res-BL several times, Γ; ∅; ∅ ` T 3
L J S Kma

becomes Γ1; ∅; ∅ ` T1 | T2 | T3, where Γ1 = Γ,mo , po,up : o∗,mi , pi ,up : i∗, co :
lω∗(↓∗(i◦)) , ci :lω∗(↓∗(o◦)), σ1 = { po ′/po, pi

′/pi } and

T1 =
(
νpo

′ :o∗, pi
′ : i∗
) (
σ1T 3

L J S1 Kma | T4 | T5
)

T2 =
(
νpo

′ :o, pi
′ : i
) (
σ1T 3

L J S2 Kma | T6 | T7
)

T3 = T 3
L (pushReq) , T4 = σ1T 3

L (procLeftOutReq) , T5 = σ1T 3
L (procLeftInReq)

T6 = σ1T 3
L (procRightOutReq) , T7 = σ1T 3

L (procRightInReq)

Let Γ1,1 = Γ,mo , po,up : ↑ω(o◦) ,mi , pi ,up : ↑ω(i◦), Γ1,2 = Γ,mo : ↓∗(o◦) , po,up :
↑ω(o◦) ,mi : ↓∗(i◦) , pi ,up : ↑ω(i◦) , co : lω∗(↓∗(i◦)) , ci : lω∗(↓∗(o◦)), and Γ1,3 =
Γ, po,up :↓∗(o◦) , pi ,up :↓∗(i◦). Then

D1
D2 D3

Γ1,2 + Γ1,3; ∅; ∅ ` T2 | T3
T-ParL

Γ1; ∅; ∅ ` T1 | T2 | T3
T-ParL

Let Γ2,1 = Γ1,1, po
′ : o∗, pi

′ : i∗, Γ2,1,1 = Γ, po
′ : ↑ω(o◦) , pi ′ : ↑ω(i◦), Γ2,1,2 =

Γ1,1, po
′ :↓∗(o◦) , pi ′ :↓∗(i◦), Γ2,2 = Γ1,2, po

′ : o, pi
′ : i, Γ2,2,1 = Γ, po

′ :↑ω(o◦) , pi ′ :
↑ω(i◦), and Γ2,2,2 = Γ1,2, po

′ : o, pi
′ : i. By applying T-Res-BL two times,

341

A. Appendix

respectively, D1 becomes Γ2,1; ∅; ∅ ` σ1T 3
L J S1 Kma | T4 | T5 and D2 becomes

Γ2,2; ∅; ∅ ` σ1T 3
L J S2 Kma | T6 | T7. Then

Γ2,1,1; ∅; ∅ ` σ1T 3
L J S1 Kma

(IH) and Lemma 6.2.46
D4 D5

Γ2,1,2; ∅; ∅ ` T4 | T5
P

Γ2,1; ∅; ∅ ` σ1T 3
L J S1 Kma | T4 | T5

P

and

Γ2,2,1; ∅; ∅ ` σ1T 3
L J S2 Kma

(IH) and Lemma 6.2.46
D6 D7

Γ2,2,2; ∅; ∅ ` T6 | T7
P

Γ2,2; ∅; ∅ ` σ1T 3
L J S2 Kma | T6 | T7

P

where P = T-ParL. Let Γ3 = Γ1,1, y, z :vn, l : l, s :↑ω(vs).

D4 =

D4,1
D4,2 D4,3

Γ3; ∅; ∅ ` mo〈y, l, s, z〉 | po,up〈y, l, s, z〉
T-ParL

Γ1,1, po ′ :↓∗(o◦) ; ∅; ∅ ` po ′?(y, l, s, z) . (mo〈y, l, s, z〉 | po,up〈y, l, s, z〉)
R

where R = T-Rep-BL and Lemma A.1.4. Γ1,1, po
′ : ↓∗(o◦) ` po

′ : ↓∗(o◦)
for D4,1 follows from T-NameL. Apply T-Out-BL and Lemma A.1.4, and
then T-NameL on all subgoals to show Γ3; ∅; ∅ ` mo〈y, l, s, z〉 for D4,2 and
Γ3; ∅; ∅ ` po,up〈y, l, s, z〉 for D4,3. Let Γ4 = Γ1,1, y :vn, l : l, r :↑ω(r◦).

D5 =

D5,1
D5,2 D5,3

Γ4; ∅; ∅ ` mi〈y, l, r〉 | pi ,up〈y, l, r〉
T-ParL

Γ1,1, pi ′ :↓∗(i◦) ; ∅; ∅ ` pi ′?(y, l, r) . (mi〈y, l, r〉 | pi ,up〈y, l, r〉)
R

where R = T-Rep-BL and Lemma A.1.4. Γ1,1, pi
′ : ↓∗(i◦) ` pi

′ : ↓∗(i◦) for
D5,1 follows from T-NameL. Apply T-Out-BL and Lemma A.1.4, and then
T-NameL on all subgoals to show Γ4; ∅; ∅ ` mi〈y, l, r〉 for D5,2 and Γ4; ∅; ∅ `
pi ,up〈y, l, r〉 for D5,3. Let

T6 = co〈mi〉 | co?(mi) .po
′(y, ls, s, z) .

(
po,up〈y, ls, s, z〉 | T ′6

)
T ′6 = (νmi ,up : i∗)

(
T ′′6 | (νmi : i∗)

(
mi ,up

?
(
y′, lr, r

)
.mi

〈
y′, lr, r

〉
| co〈mi〉

))
T ′′6 = mi

?
(
y′, lr, r

)
.
([
y′ = y

]
r〈lr, ls, ls, s, z〉 | mi ,up

〈
y′, lr, r

〉)
Let Γ2,2,2,1 = Γ, po,up : ↑ω(o◦) ,mi : ↓∗(i◦) , co : lω∗(↓∗(i◦)) , po ′ : o, Γ2,2,2,2 =
Γ,mo :↓∗(o◦) , pi ,up :↑ω(i◦) , ci :lω∗(↓∗(o◦)) , pi ′ : i, Γ2,2,2,1,2 = Γ, po,up :↑ω(o◦) , co :
lω∗(↓∗(i◦)) , po ′ : o, Γ′2,2,2,1,2 = Γ, po,up : ↑ω(o◦) , co : ↑ω(↓∗(i◦)) , po ′ : o,mi : ↓∗(i◦),
and Γ5 = Γ, po,up :↑ω(o◦) , co :↑ω(↓∗(i◦)) ,mi :↓∗(i◦) , y, z :vn, ls : l, s :↑ω(vs).

D6 =

D6,1

D6,2

D6,3
D6,4 D6,5

Γ5 ` po,up〈y, ls, s, z〉 | T ′6
P

Γ′2,2,2,1,2; ∅; ∅ ` po ′(y, ls, s, z) . (po,up〈y, ls, s, z〉 | T ′6)
I

Γ2,2,2,1,2; ∅; ∅ ` co?(mi) .po ′(y, ls, s, z) . (po,up〈y, ls, s, z〉 | T ′6)
R

Γ2,2,2,1; ∅; ∅ ` co〈mi〉 | co?(mi) .po ′(y, ls, s, z) . (po,up〈y, ls, s, z〉 | T ′6)
P

342

A.1. Typed Encoding Functions

where P = T-ParL, R = T-Rep-BL and Lemma A.1.4, and I = T-In-BL

and Lemma A.1.4. Apply T-Out-BL and Lemma A.1.4, and then T-NameL
on all subgoals to show Γ,mi : ↓∗(i◦) , co : ↑ω(↓∗(i◦)) ; ∅; ∅ ` co〈mi〉 for D6,1

and Γ, po,up : ↑ω(o◦) , y, z : vn, ls : l, s : ↑ω(vs) ; ∅; ∅ ` po,up〈y, ls, s, z〉 for D6,4.
Γ, co : ↓∗(o◦) ` co : ↓∗(o◦) for D6,2 and Γ, po

′ : o ` po
′ : o for D6,3 follow from

T-NameL. Let Γ5,2 = Γ, co : ↑ω(↓∗(i◦)) ,mi : ↓∗(i◦) , y, z : vn, ls : l, s : ↑ω(vs),
Γ′5,2 = Γ5,2,mi ,up : i∗, Γ5,2,1 = Γ,mi :↓∗(i◦) , y, z :vn, ls : l, s :↑ω(vs) ,mi ,up :↑ω(i◦),
Γ5,2,2 = Γ, co :↑ω(↓∗(i◦)) , y, z :vn, ls : l, s :↑ω(vs) ,mi ,up :↓∗(i◦), Γ′5,2,2 = Γ5,2,2,mi :
i∗, Γ5,2,2,1 = Γ, y, z : vn, ls : l, s : ↑ω(vs) ,mi ,up : ↓∗(i◦) ,mi : ↑ω(i◦), and Γ5,2,2,2 =
Γ, co :↑ω(↓∗(i◦)) ,mi :↓∗(i◦). D6,5 =

D6,6

D6,7 D6,8

Γ5,2,2,1; ∅; ∅ ` mi ,up
?(y′, lr, r) .mi〈y′, lr, r〉

R′ D6,9

Γ′5,2,2; ∅; ∅ ` mi ,up
?(y′, lr, r) .mi〈y′, lr, r〉 | co〈mi〉

P

Γ5,2,2; ∅; ∅ ` (νmi : i∗) (mi ,up
?(y′, lr, r) .mi〈y′, lr, r〉 | co〈mi〉)

R

Γ′5,2; ∅; ∅ ` T ′′6 | (νmi : i∗) (mi ,up
?(y′, lr, r) .mi〈y′, lr, r〉 | co〈mi〉)

P

Γ5,2; ∅; ∅ ` T ′6
R

where R = T-Res-BL, P = T-ParL, and R′ = T-Rep-BL and Lemma A.1.4.
Γ,mi ,up : ↓∗(i◦) ` mi ,up : ↓∗(i◦) for D6,7 follows from T-NameL. Apply
T-Out-BL and Lemma A.1.4, and then T-NameL on all subgoals to show
Γ, y, y′, z : vn, ls, lr : l, s : ↑ω(vs) ,mi : ↑ω(i◦) , r : ↑ω(r◦) ; ∅; ∅ ` mi〈y′, lr, r〉 for
D6,8 and Γ5,2,2,2; ∅; ∅ ` co〈mi〉 for D6,9. Let Γ6 = Γ, y, y′, z : vn, ls, lr : l, s :
↑ω(vs) ,mi ,up :↑ω(i◦) , r :↑ω(r◦).

D6,6 =

D6,10

D6,11 D6,12 D6,13

Γ6; ∅; ∅ ` [y′ = y] r〈lr, ls, ls, s, z〉
T-MatL D6,14

Γ6; ∅; ∅ ` [y′ = y] r〈lr, ls, ls, s, z〉 | mi ,up〈y′, lr, r〉
T-ParL

Γ5,2,1; ∅; ∅ ` mi
?(y′, lr, r) . ([y′ = y] r〈lr, ls, ls, s, z〉 | mi ,up〈y′, lr, r〉)

R

where R = T-Rep-BL and Lemma A.1.4. Γ,mi : ↓∗(i◦) ` mi : ↓∗(i◦) for
D6,10, Γ6 ` y′ : vn for D6,11, and Γ6 ` y : vn for D6,12 follow from T-NameL.
To show Γ6; ∅; ∅ ` r〈lr, ls, ls, s, z〉 for D6,13 and Γ6; ∅; ∅ ` mi ,up〈y′, lr, r〉 for
D6,14 apply T-Out-BL and Lemma A.1.4, and then T-NameL. The deriva-
tion of Γ2,2,2,2; ∅; ∅ ` T7 for D7 is similar to the derivation of D6. Fi-
nally Γ1,3; ∅; ∅ ` po,up(y, l , s, z) .po〈y, l , s, z〉 | pi ,up(y, l , r) .pi〈y, l , r〉 for D3

follows from T-ParL, then T-In-BL and Lemma A.1.4, T-Out-BL and
Lemma A.1.4, and T-NameL on all leafs.

3. If S =
∑

i∈I πi.Si for some πi.Si ∈ Pm then

T 3
L J S Kma = (νl : l)

(
T 3
L

(
l〈>〉

)
|
∏
i∈I
T 3
L J πi.Si Kma

)
.

343

A. Appendix

We have:

l : l; ∅; ∅ ` T 3
L

(
l〈>〉

)Lemma A.1.2 and Lemma 6.2.46 D

Γ, l : l; ∅; ∅ ` T 3
L

(
l〈>〉

)
|
∏
i∈I T 3

L J πi.Si Kma
T-ParL

Γ; ∅; ∅ ` (νl : l)
(
T 3
L

(
l〈>〉

)
|
∏
i∈I T 3

L J πi.Si Kma
) T-Res-BL

To prove D, we have to show that Γ, l : l; ∅; ∅ `
∏
i∈I T 3

L J πi.Si Kma . With
T-ParL we decompose this goal into several subgoals of the form Γ, l : l; ∅; ∅ `
T 3
L J πi.Si Kma , where each πi is either a τ , an output or an input prefix.

a) If πi = τ then Γ, l : l; ∅; ∅ ` T 3
L J τ.Si Kma follows from Lemma A.1.2,

Lemma A.1.3, and the induction hypothesis.

b) If πi = y〈z〉 for some y, z ∈ N then

T 3
L J πi.Si Kma =

(
νs :lω+(vs)

) (
po〈ϕm

a (y) , l , s, ϕm
a (z)〉 | s(vs) .T 3

L J Si Kma
)
.

Because Γ (po) = ↑ω(o◦) and Γ (ϕm
a (y)) = Γ (ϕm

a (z)) = vn, we have

D1
Γ′, s :↓+(vs) ` s :↓+(vs)

T-NameL D2

Γ′, s :↓+(vs) ; ∅; ∅ ` s(vs) .T 3
L J Si Kma

I

Γ′, s :lω+(vs) ; ∅; ∅ ` po〈ϕm
a (y) , l , s, ϕm

a (z)〉 | s(vs) .T 3
L J Si Kma

T-ParL

Γ′; ∅; ∅ `
(
νs :lω+(vs)

) (
po〈ϕm

a (y) , l , s, ϕm
a (z)〉 | s(vs) .T 3

L J Si Kma
) R

where I = T-In-BL and Lemma A.1.4, R = T-Res-BL, and Γ′ = Γ, l :
l. Γ, l : l, s : ↑ω(vs) ; ∅; ∅ ` po〈ϕm

a (y) , l , s, ϕm
a (z)〉 for D1 follows from

T-Out-BL and Lemma A.1.4, and then T-NameL for all subgoals.

D2 =
Γ, l : l, vs :vs ` T 3

L J Si Kma
(IH) and Lemma 6.2.46

c) If πi = y(x) for some x, y ∈ N then

T 3
L J πi.Si Kma = (νr :lω∗(r◦)) (pi〈ϕm

a (y) , l , r〉 | T1)
T1 = r?(l1, l2, ls, s, ϕ

m
a (x)) .T2

T2 = T 3
L

(
test l1 then test l2 then l1〈⊥〉 | l2〈⊥〉 | s | J P Kma

else l1〈>〉 | l2〈⊥〉

else l1〈⊥〉
))

Because Γ (pi) = ↑ω(i◦) and Γ (ϕm
a (y)) = vn, we have

D D1

Γ, l : l, r :lω∗(r◦) ; ∅; ∅ ` pi〈ϕm
a (y) , l , r〉 | T1

T-ParL

Γ, l : l; ∅; ∅ ` T 3
L J πi.Si Kma

T-Res-BL

344

A.2. Semantic Properties

Γ, l : l, r : ↑ω(r◦) ; ∅; ∅ ` pi〈ϕm
a (y) , l , r〉 for D follows from T-Out-BL and

Lemma A.1.4, and then T-NameL on all subgoals.

D1 =
D′1 D2

Γ, l : l, r :↓∗(r◦) ; ∅; ∅ ` r?(l1, l2, ls, s, ϕm
a (x)) .T2

T-Rep-BL

Γ, l : l, r : ↓∗(r◦) ` r : ↓∗(r◦) for D′1 follows from T-NameL. Γ, l : l, r :
↓∗(r◦) , l1, l2, ls : l, s :↑ω(vs) , ϕm

a (x) :vn; ∅; ∅ ` T2 for D2 follows from several
applications of Lemmata A.1.2 and Lemmata A.1.3, one application of
T-Out-BL and Lemma A.1.4 (for the output on the sender lock), and
the induction hypothesis.

4. The derivation for S = y?(x) .S2, where x, y ∈ N and S′ ∈ Pm, is similar to
the cases above.

A.2. Semantic Properties

Lemma 6.3.52 states that the encoding J · Ksa satisfies operational completeness.

Proof of Lemma 6.3.52. By Definition 3.3.4 it suffice to show that:

∀S, S′ ∈ Ps . S 7−→ S′ implies ∃T ∈ Pa . J S Ksa Z=⇒ T ∧ T ∼̇=↓1
q
S′

ys
a

The lemma then holds by induction over the number of steps in S Z=⇒ S′. To prove
the condition above, we perform an induction over the proof tree that leads to the step
S 7−→ S′.

Base Case: We consider the axioms in Figure 2.3.

Case of Pi-Taum,s : In this case S is a single sum, one branch of which is guarded
by τ , and S′ is the continuation of this τ guarded branch, i.e., there are some
finite index set I, some guards πi, and some processes Pi ∈ Ps such that
S =

∑
i∈I πi.Pi with πj = τ for some j ∈ I and S′ = Pj . The corresponding

encodings are given by the following terms:

J S Ksa ≡ (νl)

l〈>〉 |
∏

i∈I ,i 6=j
J πi.Pi Ksa | test l then l〈⊥〉 | J Pj Ksa else l〈⊥〉


q
S′

ys
a

= J Pj Ksa

We observe that J S Ksa can emulate the step S 7−→ S′ by reducing the test-
statement in the encoding of the j’s branch. By Lemma 6.3.10,

J S Ksa Z=⇒ (νl)

 ∏
i∈I ,i 6=j

J πi.Pi Ksa | l〈⊥〉 | J Pj Ksa

 = T.

345

A. Appendix

Note that, because of Lemma 6.3.46, we silently omit junk that results from
the reduction of test-constructs here and in the following proofs. Furthermore,

we observe that T ≡ (νl)
(∏

i∈I ,i 6=j J πi.Pi Ksa | l〈⊥〉
)
| J Pj Ksa, because, by the

renaming policy ϕs
a and Lemma 6.2.51, the name l is not free in the term

J Pj Ksa. By Lemma 6.3.49, the term (νl)
(∏

i∈I ,i 6=j J πi.Pi Ksa | l〈⊥〉
)

is junk.

Finnaly, by Lemma 6.3.45, we conclude that T ∼̇=↓1 J S′ Ksa.
Case of Pi-Comm,s : Here S is a parallel composition of two sums and S′ is the

parallel composition of the continuations of an input guarded branch of the
first and a matching output guarded branch of the second sum, i.e., there are
two finite index sets I1, I2, some guards πi, and some processes Pi, Qi ∈ Ps
such that S =

∑
i∈I1 πi.Pi |

∑
i∈I2 πi.Qi with πj1 = y(x) and πj2 = y〈z〉 for

some j1 ∈ I1, some j2 ∈ I2, and x, y, z ∈ N and S′ = { z/x }Pj1 | Qj2 . The
encodings of S and S′ are given by the following terms:

J S Ksa ≡ (νl)
(

l〈>〉 |
∏

i∈I1,i 6=j1

J πi.Pi Ksa

| (νr)
(
r | r?.ϕs

a(y)
(
l ′, s, ϕs

a(x)
)
.

test l then test l ′ then l〈⊥〉 | l ′〈⊥〉 | s | J Pj1 Ksa
else l〈>〉 | l ′〈⊥〉 | r

else l〈>〉 | ϕs
a(y)

〈
l ′, s, ϕs

a(x)
〉))

| (νl)
(

l〈>〉 |
∏

i∈I1,i 6=j1

J πi.Qi Ksa

| (νs)
(
ϕs
a(y)〈l , s, ϕs

a(z)〉 | s. J Qj2 Ksa
))

q
S′

ys
a

= J { z/x } (Pj1) Ksa | J Qj2 Ksa
To emulate the source term step S 7−→ S′ first the receiver lock has to be
reduced to enable a communication over ϕs

a(y). Then the test-construct and
the sender lock are reduced to complete the emulation of the source term step.

J S Ksa Z=⇒ (νl1, l2, s)
(
{ l1/l }

 ∏
i∈I1,i 6=j1

J πi.Pi Ksa


| (νr)

(
l1〈⊥〉 | l2〈⊥〉 | { ϕs

a(z)/ϕs
a(x) }

(
J Pj1 Ksa

)
| r?.ϕs

a(y)
(
l ′, s, ϕs

a(x)
)
.

test l1 then test l ′ then l1〈⊥〉 | l ′〈⊥〉 | s | J Pj1 Ksa
else l1〈>〉 | l ′〈⊥〉 | r

else l1〈⊥〉 | ϕs
a(y)

〈
l ′, s, ϕs

a(x)
〉)

| { l2/l }

 ∏
i∈I1,i 6=j2

J πi.Qi Ksa

 | J Qj2 Ksa
)

= T

346

A.2. Semantic Properties

By Corollary 6.1.6, { ϕs
a(z)/ϕs

a(x) } J Pj1 Ksa ≡α J { z/x }Pj1 Ksa. To show that

T ∼̇=↓1 J S′ Kma we stepwise reduce T by ignoring junk. Since l1, l2, r , s /∈
fn
(
J { z/x }Pj1 Kma

)
∪ fn

(
J Qj2 Kma

)
, we can reorder the term according to the

restrictions on l1, l2, r and the restriction on s can be omitted. The term

(νr)
(
r?.ϕs

a(y)
(
l ′, s, ϕs

a(x)
)
.

test l1 then test l ′ then l1〈⊥〉 | l ′〈⊥〉 | s | J Pj1 Ksa else l1〈>〉 | l ′〈⊥〉 | r
else l1〈⊥〉 | ϕs

a(y)
〈
l ′, s, ϕs

a(x)
〉)

is obviously junk, since it is closed and can not perform any step. Moreover,

by Lemma 6.3.49, the term (νl)
(∏

i∈I1,i 6=j1 J πi.Pi Ksa | l〈⊥〉
)

and the term

(νl)
(∏

i∈I1,i 6=j2 J πi.Qi Ksa | l〈⊥〉
)

are junk. So, by Lemma 6.3.45, we conclude

T ∼̇=↓1 J S′ Ksa.

Case of Pi-Repm,s : Here S is a parallel composition of a replicated input and a
sum and S′ is the parallel composition of the replicated input, the continuation
of the replicated input, and the continuation of a matching output guarded
branch, i.e., there is a finite index set I , some guards πi, and some processes
P,Qi ∈ Ps such that S = y?(x) .P |

∑
i∈I πi.Qi with πj = y〈z〉 for some j ∈ I

and x, y, z ∈ N , and S′ = { z/x }P | Qj | y?(x) .P . The encodings of S and
S′ are given by the following terms:

J S Ksa ≡ ϕ
s
a(y)?(l , s, ϕs

a(x)) .test l then l〈⊥〉 | s | J P Ksa else l〈⊥〉

| (νl)

l〈>〉 |
∏

i∈I1,i 6=j
J πi.Qi Ksa | (νs)

(
ϕs
a(y)〈l , s, ϕs

a(z)〉 | s. J Qj Ksa
)

q
S′

ys
a

= J { z/x } (P) Ksa | J Qj Ksa | J y
?(x) .P Ksa

To emulate the source term step S 7−→ S′, first the two subprocesses of J S Ksa
communicate over ϕs

a(y). Then the test-construct and the sender lock are
reduced to complete the emulation of the source term step.

J S Ksa Z=⇒ (νl , s)
(
test l then l〈⊥〉 | s | { ϕs

a(z)/ϕs
a(x) } (J P Ksa) else l〈⊥〉

| ϕs
a(y)?(l , s, ϕs

a(x)) .test l then l〈⊥〉 | s | J P Ksa else l〈⊥〉

| l〈>〉 |
∏

i∈I1,i 6=j
J πi.Qi Ksa | s. J Qj Ksa

)
Z=⇒ (νl , s)

(
l〈⊥〉 | { ϕs

a(z)/ϕs
a(x) } (J P Ksa)

| ϕs
a(y)?(l , s, ϕs

a(x)) .test l then l〈⊥〉 | s | J P Ksa
else l〈⊥〉

|
∏

i∈I1,i 6=j
J πi.Qi Ksa | J Qj Ksa

)
= T

347

A. Appendix

By Corollary 6.1.6, { ϕs
a(z)/ϕs

a(x) } J P Ksa ≡α J { z/x }P Ksa. Since l , s are not free
in J { z/x }P Kma or J Qj Kma , we can reorder the term according to the restric-
tion on l and the restriction on s can be omitted. Because of Lemma 6.3.49,

(νl)
(∏

i∈I ,i 6=j J πi.Qi Ksa | l〈⊥〉
)

is junk. By Lemma 6.3.39, ∼̇=↓1 includes

structural congruence. Thus, by Lemma 6.3.45, T ∼̇=↓1 J S′ Ksa.

Induction Hypothesis: S1 7−→ S′1 implies ∃T1 ∈ Pa . J S1 Ksa Z=⇒ T1 ∧ T1 ∼̇=
↓1 J S′1 Ksa

Induction Step: We have to consider the remaining reduction rules of πs in Figure 2.3.

Case of Pi-Parm,s,a,p : Then S = S1 | S2 for some S1, S2 ∈ Ps, S1 7−→ S′1, and
S′ = S′1 | S2. By the induction hypothesis there is some T1 ∈ Pa such that

J S1 Ksa Z=⇒ T1 and T1 ∼̇=
↓1 J S′1 Ksa. Since J · Ksa translates the parallel oper-

ator homomorphically, i.e., J S Ksa = J S1 Ksa | J S2 Ksa and J S′ Ksa = J S′1 Ksa |
J S2 Ksa, we can apply rule Pi-Parm,s,a,p to conclude from J S1 Ksa Z=⇒ T1 that

J S Ksa Z=⇒ T1 | J S2 Ksa = T . By Definition 6.3.37, T1 ∼̇=
↓1 J S′1 Ksa implies

C(T1) ≈̇↓1 C
(
J S′1 Ksa

)
for all contexts C([·]) ∈ Pa → Pa such that C(J P Ksa) ∈

Pa�J · Ksa for all P ∈ Ps. Since J P Ksa | J S2 Ksa ∈ Pa�J · Ksa for all P ∈ Ps, the

quantification over C includes all contexts C such that C([·]) = C′([·] | J S2 Ksa).
Because of that, C′(T1 | J S2 Ksa) ≈̇

↓1 C′
(
J S′1 Ksa | J S2 Ksa

)
for all such contexts

C′([·]) ∈ Pa → Pa. By Definition 6.3.37, we conclude T ∼̇=↓1 J S′ Ksa.

Case of Pi-Resm,s,a,p : Then S = (νx)S1 for some x ∈ N and some S1 ∈ Ps,
S1 7−→ S′1, and S′ = (νx)S′1. By the induction hypothesis there is some

T1 ∈ Pa such that J S1 Ksa Z=⇒ T1 and T1 ∼̇=
↓1 J S′1 Ksa. Since J · Ksa trans-

lates restriction homomorphically, i.e., J S Ksa = (νϕs
a(x)) J S1 Ksa and J S′ Ksa =

(νϕs
a(x)) J S′1 Ksa, we can apply rule Pi-Resm,s,a,p to conclude from J S1 Ksa Z=⇒

T1 that J S Ksa Z=⇒ (νϕs
a(x))T1 = T . By Definition 6.3.37, T1 ∼̇=

↓1 J S′1 Ksa
implies C(T1) ≈̇↓1 C

(
J S′1 Ksa

)
for all contexts C([·]) ∈ Pa → Pa such that

C(J P Ksa) ∈ Pa�J · Ksa for all P ∈ Ps. Since (νϕs
a(x)) J P Ksa ∈ Pa�J · Ksa for all

P ∈ Ps, the quantification over C includes all contexts C such that C([·]) =
C′((νϕs

a(x)) [·]). Because of that, C′((νϕs
a(x))T1) ≈̇↓1 C

′(
(νϕs

a(x)) J S′1 Ksa
)

for all such contexts C′([·]) ∈ Pa → Pa. By Definition 6.3.37, we conclude

T ∼̇=↓1 J S′ Ksa.

Case of Pi-Congm,s,a,p : Then S ≡ S1 for some S1 ∈ Ps, S1 7−→ S′1, and S′1 ≡ S′.
By Lemma 6.3.41, the encoding J · Ksa preserves structural congruence of source

terms modulo ∼̇=↓1 . So S ≡ S1 and S′1 ≡ S′ imply J S Ksa ∼̇=
↓1 J S1 Ksa and

J S′1 Ksa ∼̇=
↓1 J S′ Ksa. By Definition 6.3.37, for all contexts C([·]) ∈ Pa → Pa

such that C(J P Ksa) ∈ Pa�J · Ksa for all P ∈ Ps we have C(J S Ksa) ≈̇
↓1 C(J S1 Ksa)

and, hence, J S Ksa ≈̇
↓1 J S1 Ksa. Thus, by Definition 6.3.32, for each sequence

J S Ksa Z=⇒ T there is a sequence J S1 Ksa Z=⇒ T1 for some T1 ∈ Pa such
that T ≈̇↓1 T1. The same holds for all contexts C, i.e., for each sequence

348

A.2. Semantic Properties

C(J S Ksa) Z=⇒ C(T) there is a sequence C(J S1 Ksa) Z=⇒ C(T1) for some T1 ∈ Pa
such that C(T) ≈̇↓1 C(T1). So, by Definition 6.3.37, T ∼̇=↓1 T1. By the in-

duction hypothesis, T1 ∼̇=
↓1 J S′1 Ksa. Then T ∼̇=↓1 T1, T1 ∼̇=

↓1 J S′1 Ksa, and

J S′1 Ksa ∼̇=
↓1 J S′ Ksa imply T ∼̇=↓1 J S′ Ksa.

Lemma 6.3.53 states that the encodings J · Kmp and J · Kma satisfy operational complete-
ness.

Proof of Lemma 6.3.53. By Definition 3.3.4 it suffice to show that:

∀S, S′ ∈ Pm . S 7−→ S′ implies ∃T ∈ Pa . J S Kma Z=⇒ T ∧ T �̇↓3c
q
S′

ym
a

The lemma then holds by induction over the number of steps in S Z=⇒ S′. To prove
the condition above, we perform an induction over the proof tree that leads to the step
S 7−→ S′.

Base Case: We consider the axioms in Figure 2.3.

Case of Pi-Taum,s : In this case S is a single sum, one branch of which is guarded
by τ , and S′ is the continuation of this τ guarded branch, i.e., there are some
finite index set I, some guards πi, and some processes Pi ∈ Pm such that
S =

∑
i∈I πi.Pi with πj = τ for some j ∈ I and S′ = Pj . The corresponding

encodings are given by the following terms:

J S Kma ≡ (νl)

l〈>〉 |
∏

i∈I ,i 6=j
J πi.Pi Kma | test l then l〈⊥〉 | J Pj Kma else l〈⊥〉


q
S′

ym
a

= J Pj Kma

We observe that J S Kma can emulate the step S 7−→ S′ by reducing the test-
construct in the encoding of the jth branch. By Lemma 6.3.10,

J S Kma Z=⇒ (νl)

 ∏
i∈I ,i 6=j

J πi.Pi Kma | l〈⊥〉 | J Pj Kma

 = T.

Hence, T ≡ (νl)
(∏

i∈I ,i 6=j J πi.Pi Kma | l〈⊥〉
)
| J Pj Kma , because l is not free

in J Pj Kma . By Lemma 6.3.49, (νl)
(∏

i∈I ,i 6=j J πi.Pi Kma | l〈⊥〉
)

is junk. By

Lemma 6.3.45, we conclude that T �̇
↓3
c J S′ Kma .

Case of Pi-Comm,s : Here S is a parallel composition of two sums and S′ is the
parallel composition of the continuations of an input guarded branch of the
first and a matching output guarded branch of the second sum, i.e., there are
two finite index sets I1, I2, some guards πi, and some processes Pi, Qi ∈ Pm

349

A. Appendix

such that S =
∑

i∈I1 πi.Pi |
∑

i∈I2 πi.Qi with πj1 = y(x) and πj2 = y〈z〉 for
some j1 ∈ I1, some j2 ∈ I2, and x, y, z ∈ N , and S′ = { z/x }Pj1 | Qj2 .

J S Kma ≡
(νmo ,mi , po,up , pi ,up , co , ci ,mo,up ,mi ,up)

(
(νpo , pi)

(
(νl)

(
l〈>〉 |

∏
i∈I1,i 6=j1

J πi.Pi Kma

| (νr)
(

pi〈ϕm
a (y) , l , r〉 | r?(l1, l2,−, s, ϕm

a (x)) .

test l1 then test l2 then l1〈⊥〉 | l2〈⊥〉 | s | J Pj1 Kma
else l1〈>〉 | l2〈⊥〉

else l1〈⊥〉
))

| procLeftOutReq | procLeftInReq
)

| (νpo , pi)
(

(νl)
(

l〈>〉 |
∏

i∈I2,i 6=j2

J πi.Qi Kma

| (νs)
(
po〈ϕm

a (y) , l , s, ϕm
a (z)〉 | s. J Qj2 Kma

))
| procRightOutReq | procRightInReq

)
| pushReq

)
q
S′

ym
a

= (νmo ,mi , po,up , pi ,up , co , ci ,mo,up ,mi ,up)
(

(νpo , pi)
(
J { z/x }Pj1 Kma | procLeftOutReq | procLeftInReq

)
| (νpo , pi)

(
J Qj2 Kma | procRightOutReq | procRightInReq

)
| pushReq

)

To emulate the source term step S 7−→ S′, the endings of the two sums in
S have to interact with the encoding of the parallel operator between them.
First the input and output register themselves to the encoding of the parallel
operator by pushing requests. These requests are then combined and a test
on the respective sum locks1 is induced by providing an output on the receiver
lock. Finally the test-construct is reduced to complete the emulation of the
source term step.

J S Kma Z=⇒ (νmo ,mi , po,up , pi ,up , co , ci ,mo,up ,mi ,up , la, lb, r , s)
(

1In order to avoid a deadlock caused by multiple simultaneous such tests on sum locks, the sum locks
are ordered by ensuring that always the left one is checked first.

350

A.2. Semantic Properties

(νpo , pi)
(
{ la/l }

 ∏
i∈I1,i 6=j1

J πi.Pi Kma

 | la〈⊥〉 | lb〈⊥〉
| { ϕm

a (z)/ϕm
a (x) } J Pj1 Kma

| r?(l1, l2,−, s, ϕm
a (x)) .test l1 then test l2 then l1〈⊥〉 | l2〈⊥〉 | s | J Pj1 Kma

else l1〈>〉 | l2〈⊥〉
else l1〈⊥〉

| procLeftOutReq | procLeftInReq | pi ,up〈ϕm
a (y) , la, r〉

)
| (νpo , pi)

(
{ lb/l }

 ∏
i∈I2,i 6=j2

J πi.Qi Kma

 | J Qj2 Kma

| (νmi ,up)
(

mi
?
(
y′, lr, r

)
.(
[
y′ = ϕm

a (y)
]

r〈lr, lb, lb, s, ϕm
a (z)〉

| mi ,up

〈
y′, lr, r

〉
)

| mi ,up〈ϕm
a (y) , la, r〉

| (νmi) (mi ,up � mi | procRightOutReq)
)

| po,up〈ϕm
a (y) , lb, s, ϕ

m
a (z)〉 | procRightInReq

)
| pushReq

)
= T

By Corollary 6.1.6, { ϕm
a (z)/ϕm

a (x) } J Pj1 Kma ≡α J { z/x }Pj1 Kma . To show that

T �̇
↓3
c J S′ Kma , we stepwise reduce T by ignoring junk. By Lemma 6.3.48, the

requests pi ,up〈ϕm
a (y) , la, r〉, mi ,up〈ϕm

a (y) , la, r〉, and po,up〈ϕm
a (y) , lb, s, ϕ

m
a (z)〉

are junk. Next, by Lemma 6.3.50, we can ignore the term

r?(l1, l2,−, s, ϕm
a (x)) .test l1 then test l2 then l1〈⊥〉 | l2〈⊥〉 | s | J Pj1 Kma

else l1〈>〉 | l2〈⊥〉
else l1〈⊥〉 .

And, by Lemma 6.3.51, we can ignore [y′ = ϕm
a (y)] r〈lr, lb, lb, s, ϕm

a (z)〉, so

mi
?
(
y′, lr, r

)
.
([
y′ = ϕm

a (y)
]

r〈lr, lb, lb, s, ϕm
a (z)〉 | mi ,up

〈
y′, lr, r

〉)
becomes mi � mi ,up . Note that this forwarder and the following forwarder
mi ,up � mi for an other instance of mi may be necessary to emulate further
source term steps, but since they perform only invisible steps, they do not

influence the state of T modulo �̇
↓3
c in comparison to a fresh chain of right

requests as in J S′ Kma . Finally, since la, lb, r , s /∈ fn
(
J Pj1 Kma

)
∪fn
(
J Pj2 Kma

)
, we

can reorder the term according to the restrictions on la, lb, r and the restriction

on s can be omitted. By Lemma 6.3.49, (νl)
(∏

i∈I1,i 6=j1 J πi.Pi Kma | l〈⊥〉
)

and

(νl)
(∏

i∈I1,i 6=j2 J πi.Qi Kma | l〈⊥〉
)

are junk. So, by Lemma 6.3.45, we conclude

T �̇
↓3
c J S′ Kma .

351

A. Appendix

Case of Pi-Repm,s : Here S is a parallel composition of a replicated input and a
sum and S′ is the parallel composition of the replicated input, the continuation
of the replicated input, and the continuation of a matching output guarded
branch, i.e., there is a finite index set I , some guards πi, and some processes
P,Qi ∈ Pm such that S = y?(x) .P |

∑
i∈I πi.Qi with πj = y〈z〉 for some j ∈ I

and x, y, z ∈ N , and S′ = { z/x }P | Qj | y?(x) .P .

J S Kma ≡ (νmo ,mi , po,up , pi ,up , co , ci ,mo,up ,mi ,up)
(

(νpo , pi)
(

(νl , r , cr1 , cr2 , ro , ri)
(

r?(−,−, ls, s, ϕm
a (x)) .test ls then ls〈⊥〉 | s | cr1 〈ϕm

a (x)〉
else ls〈⊥〉

pi〈ϕm
a (y) , l , r〉 | ri〈ϕm

a (y) , l , r〉 | l〈>〉 cr2 〈ro , ri〉
| cr1 ?(ϕm

a (x)) .cr2 (ro , ri) .

(νmo ,mi , po,up , pi ,up , ro,up , ri ,up , co , ci ,mo,up ,mi ,up)
(

pushReqIn

| (νpo , pi) (J P Kma | procRightOutReq | procRightInReq)

| (νro , ri) ((cr2 〈ro | ri〉 | pushReqOut)
))

| procLeftOutReq | procLeftInReq
)

(νpo , pi)
(

(νl)
(

l〈>〉 |
∏

i∈I2,i 6=j
J πi.Qi Kma

| (νs)
(
po〈ϕm

a (y) , l , s, ϕm
a (z)〉 | s. J Qj Kma

))
| procRightOutReq | procRightInReq

)
pushReq

)
q
S′

ym
a

= (νmo ,mi , po,up , pi ,up , co , ci ,mo,up ,mi ,up)
(

(νpo , pi)
(

(νmo ,mi , po,up , pi ,up , co , ci ,mo,up ,mi ,up)
(

(νpo , pi)
(

J { z/x } (P) Kma
| procLeftOutReq | procLeftInReq

)
(νpo , pi)

(
J Qj Kma | procRightOutReq | procRightInReq

)
pushReq

)
| procLeftOutReq | procLeftInReq

)
(νpo , pi) (J y?(x) .P Kma | procRightOutReq | procRightInReq)

pushReq
)

To emulate the source term step S 7−→ S′, the two subterms of J S Kma have
to interact with the encoding of the parallel operator between them. First
the replicated input and the output register themselves to the encoding of the

352

A.2. Semantic Properties

parallel operator by pushing requests. Then the requests are combined and a
test on the sum lock of the sender is induced by providing an output on the
receiver lock. Next the test-statement is reduced. To complete the emulation
of the source term step, the continuation of the replicated input encoding is
unguarded and placed within an adoption of the parallel operator encoding.

J S Kma Z=⇒ (νmo ,mi , po,up , pi ,up , co , ci ,mo,up ,mi ,up , la, lb, r , s)
(

(νpo , pi)
(

(νcr1 , cr2 , ro , ri)
(

lb〈⊥〉 | r?(−,−, ls, s, ϕm
a (x)) .test ls then ls〈⊥〉 | s | cr1 〈ϕm

a (x)〉 else ls〈⊥〉
| ri〈ϕm

a (y) , la, r〉 | la〈>〉 | cr1 ?(ϕm
a (x)) .cr2 (ro , ri) .

(νmo ,mi , po,up , pi ,up , ro,up , ri ,up , co , ci ,mo,up ,mi ,up)
(
pushReqIn

| (νpo , pi) (J P Kma | procRightOutReq | procRightInReq)

| (νro , ri) (cr2 〈ro | ri〉 | pushReqOut)
)

| (νmo ,mi , po,up , pi ,up , ro,up , ri ,up , co , ci ,mo,up ,mi ,up)
(
pushReqIn

| (νpo , pi)
(
{ ϕm

a (z)/ϕm
a (x) } (J P Kma)

| procRightOutReq | procRightInReq
)

| (νro , ri) (cr2 〈ro | ri〉 | pushReqOut)
))

| procLeftOutReq | procLeftInReq | pi ,up〈ϕm
a (y) , la, r〉

)
| (νpo , pi)

(
{ lb/l }

 ∏
i∈I2,i 6=j

J πi.Qi Kma

 | J Qj Kma

| (νmi ,up)
(

mi
?
(
y′, lr, r

)
.(
[
y′ = ϕm

a (y)
]

r〈lr, lb, lb, s, ϕm
a (z)〉

| mi ,up

〈
y′, lr, r

〉
)

| mi ,up〈ϕm
a (y) , la, r〉

| (νmi) (mi ,up � mi | procRightOutReq)
)

| po,up〈ϕm
a (y) , lb, s, ϕ

m
a (z)〉 | procRightInReq

)
| pushReq

)
= T

By Corollary 6.1.6, { ϕm
a (z)/ϕm

a (x) } J P Kma ≡α J { z/x }P Kma . Here it does

not suffice to ignore junk to prove that T �̇
↓3
c J S′ Kma , because in J S′ Kma

there are two encoded parallel operators whereas in T there is only one.
Nevertheless, we start reducing T by omitting junk. Since the sum lock lb is
instantiated by false, by Lemma 6.3.48, the request po,up〈ϕm

a (y) , lb, s, ϕ
m
a (z)〉

is junk. Moreover, by Lemma 6.3.50, the term

mi
?
(
y′, lr, r

)
.
([
y′ = ϕm

a (y)
]

r〈lr, lb, lb, s, ϕm
a (z)〉 | mi ,up

〈
y′, lr, r

〉)
reduces to the forwarder mi � mi ,up . Since la, lb, r , s /∈ fn(J { z/x }P Kma) ∪
fn
(
J Qj Kma

)
, we can reorder the term according to the restrictions on la, lb,

and r and the restriction on s can be omitted. By Lemma 6.3.49, then

353

A. Appendix

(νl)
(∏

i∈I ,i 6=j J πi.Qi Kma | l〈⊥〉
)

is junk. By Lemma 6.3.45, T �̇
↓3
c T ′, where

(νmo ,mi , po,up , pi ,up , co , ci ,mo,up ,mi ,up)
(

(νpo , pi)
(

(νl , r , cr1 , cr2 , ro , ri)
(

r?(−,−, ls, s, ϕm
a (x)) .test ls then ls〈⊥〉 | s | cr1 〈ϕm

a (x)〉 else ls〈⊥〉
| ri〈ϕm

a (y) , l , r〉 | l〈>〉
| cr1 ?(ϕm

a (x)) .cr2 (ro , ri) .

(νmo ,mi , po,up , pi ,up , ro,up , ri ,up , co , ci ,mo,up ,mi ,up)
(

pushReqIn

| (νpo , pi) (J P Kma | procRightOutReq | procRightInReq)

| (νro , ri) (cr2 〈ro | ri〉 | pushReqOut)
)

| (νmo ,mi , po,up , pi ,up , ro,up , ri ,up , co , ci ,mo,up ,mi ,up)
(
pushReqIn

| (νpo , pi)
(

J { z/x }P Kma | procRightOutReq | procRightInReq
)

| (νro , ri) (cr2 〈ro | ri〉 | pushReqOut)
))

| procLeftOutReq | procLeftInReq | pi ,up〈ϕm
a (y) , l , r〉

)
| (νpo , pi)

(
J Qj Kma | procRightInReq
| (νmi ,up)

(
mi � mi ,up | mi ,up〈ϕm

a (y) , l , r〉
| (νmi) (mi ,up � mi | procRightOutReq)

))
| pushReq

)
= T ′

In comparison to J S′ Kma the encoded subterms J { z/x }P Kma , J Qj Kma , and
the term representing J y?(x) .P Kma appear in the wrong order. However, since

S′ ≡ S′′ = (y?(x) .P | { z/x }P) | Qj and �̇
↓3
c , by Lemma 6.3.42, preserves

structural congruence of source terms, we have J S′ Kma �̇
↓3
c J S′′ Kma . As in

the case before, on the right hand side of the parallel operator encoding there
are the two forwarders mi � mi ,up and mi ,up � mi (for different instances
of mi). Again they are necessary to emulate further source term steps on the
continuation J Qj Kma , but, since they perform only invisible steps, they do not

influence the state of T ′ modulo �̇
↓3
c .

Moreover there is the request mi ,up〈ϕm
a (y) , l , r〉, to enable an emulation of

a communication of Qj and y?(x) .P . Note that there is also the request
pi ,up〈ϕm

a (y) , l , r〉 at the right hand side of the parallel operator encoding,
but the request pi〈ϕm

a (y) , l , r〉, which belongs to J y?(x) .P Kma , is missing.
However, since by mi ,up � mi the request pi ,up〈ϕm

a (y) , l , r〉 is forwarded to
mi〈ϕm

a (y) , l , r〉 by administrative steps and since this configuration is equal
to one application of procLeftInReq on pi〈ϕm

a (y) , l , r〉—again administrative
steps—these two requests in comparison to pi〈ϕm

a (y) , l , r〉 do not influence

the state of T ′ modulo �̇
↓3
c .

354

A.2. Semantic Properties

What remains as difference of T ′ and J S′′ Kma is the fact that in T ′ the encoding
of { z/x }P appears within a branch of the replicated input encoding whereas
in J S′′ Kma it appears as right branch of a parallel operator encoding, i.e., it

remains to show that T ′′ �̇
↓3
c J y?(x) .P | { z/x }P Kma , where

T ′′ = (νl , r , cr1 , cr2 , ro , ri)
(

r?(−,−, ls, s, ϕm
a (x)) .test ls then ls〈⊥〉 | s | cr1 〈ϕm

a (x)〉 else ls〈⊥〉
| ri〈ϕm

a (y) , l , r〉 | l〈>〉
| cr1 ?(ϕm

a (x)) .cr2 (ro , ri) .

(νmo ,mi , po,up , pi ,up , ro,up , ri ,up , co , ci ,mo,up ,mi ,up)
(
pushReqIn

| (νpo , pi) (J P Kma | procRightOutReq | procRightInReq)

| (νro , ri) (cr2 〈ro | ri〉 | pushReqOut)
)

| (νmo ,mi , po,up , pi ,up , ro,up , ri ,up , co , ci ,mo,up ,mi ,up)
(
pushReqIn

| (νpo , pi) (J { z/x }P Kma | procRightOutReq | procRightInReq)

| (νro , ri) (cr2 〈ro | ri〉 | pushReqOut)
))

Note that the term

(νpo , pi) (J { z/x }P Kma | procRightOutReq | procRightInReq)

exactly corresponds to the right branch of J y?(x) .P | { z/x }P Kma . If we
compare pushReqIn with procLeftOutReq and procLeftInReq, we observe that
the former includes exactly the same forwarders as the latter but also some
additional forwarders. The same holds for pushReqOut and pushReq. Note
that the additional forwarders ensure that each request of each branch of the
replicated input encoding is forwarded to each next right branch, and so these
additional forwarders are necessary in case there is more than one branch.
Also note that the given forwarders guarantee that each pair of requests,
such that one is an input and the other one an output request and both
requests do not origin from the same sum, can be combined. Moreover, note
that the only request from the left side, i.e., of the encoding of the replicated
input, is transmitted to the right side, i.e., the only branch of the replicated
input, by the request ri〈ϕm

a (y) , l , r〉 and pushReqIn. So these forwarders do

not distinguish T ′ and J S′′ Kma modulo �̇
↓3
c .

Since T ′′ and J y?(x) .P | { z/x }P Kma do only differ by the forwarding of re-
quests but nevertheless allow for the same combinations, we deduce that

T ′′ �̇
↓3
c J y?(x) .P | { z/x }P Kma . Thus, T �̇

↓3
c J S′ Kma .

Induction Hypothesis: S1 7−→ S′1 implies ∃T1 ∈ Pa . J S1 Kma Z=⇒ T1 ∧ T1 �̇
↓3
c J S′1 Kma

Induction Step: We have to consider the remaining reduction rules of πm in Figure 2.3.

355

A. Appendix

Case of Pi-Parm,s,a,p : Then S = S1 | S2 for some S1, S2 ∈ Pm, S1 7−→ S′1, and
S′ = S′1 | S2. By the induction hypothesis there is some T1 ∈ Pa such that

J S1 Kma Z=⇒ T1 and T1 �̇
↓3
c J S′1 Kma . The corresponding encodings are given

by the following terms:

J S Kma = (νmo ,mi , po,up , pi ,up , co , ci ,mo,up ,mi ,up)
(

(νpo , pi) (J S1 Kma | procLeftOutReq | procLeftInReq)

| (νpo , pi) (J S2 Kma | procRightOutReq | procRightInReq)

| pushReq
)

q
S′

ym
a

= (νmo ,mi , po,up , pi ,up , co , ci ,mo,up ,mi ,up)
(

(νpo , pi)
(q
S′1

ym
a
| procLeftOutReq | procLeftInReq

)
| (νpo , pi) (J S2 Kma | procRightOutReq | procRightInReq)

| pushReq
)

Since J S1 Kma Z=⇒ T1 and since J S1 Kma is not guarded in J S Kma , we can use the
rules Pi-Parm,s,a,p, Pi-Resm,s,a,p, and Pi-Congm,s,a,p in the asynchronous
calculus to show that:

J S Kma Z=⇒ (νmo ,mi , po,up , pi ,up , co , ci ,mo,up ,mi ,up)
(

(νpo , pi) (T1 | procLeftOutReq | procLeftInReq)

| (νpo , pi) (J S2 Kma | procRightOutReq | procRightInReq)

| pushReq
)

= T

By Definition 6.3.37, T1 �̇
↓3
c J S′1 Kma implies C(T1) �̇

↓3 C
(
J S′1 Kma

)
for all

contexts C([·]) ∈ Pa → Pa such that C(J P Kma) ∈ P=
a �J · Kma for all P ∈ Pm.

Since J P | S2 Kma ∈ P=
a�J · Kma , the quantification over C includes all contexts C

such that:

C([·]) = C′
(

(νmo ,mi , po,up , pi ,up , co , ci ,mo,up ,mi ,up)
(

(νpo , pi) ([·] | procLeftOutReq | procLeftInReq)

| (νpo , pi) (J S2 Kma | procRightOutReq | procRightInReq)

| pushReq
))

= C′
(
C′′([·])

)
Because of that, we have C′

(
C′′(T1)

)
�̇
↓3 C′

(
C′′
(
J S′1 Kma

))
for all contexts

C′([·]) ∈ Pa → Pa such that C′(J P Kma) ∈ P=
a �J · Kma for all P ∈ Pm. By

Definition 6.3.37, we conclude T �̇
↓3
c J S′ Kma .

Case of Pi-Resm,s,a,p : Then S = (νx)S1 for some x ∈ N and some S1 ∈
Pm, S1 7−→ S′1, and S′ = (νx)S′1. By the induction hypothesis, there is

some T1 ∈ Pa such that J S1 Kma Z=⇒ T1 and T1 �̇
↓3
c J S′1 Kma . Since J · Kma

356

A.2. Semantic Properties

translates restriction homomorphically, i.e., J S Kma = (νϕm
a (x)) J S1 Kma and

J S′ Kma = (νϕm
a (x)) J S′1 Kma , we can apply rule Pi-Resm,s,a,p to conclude from

J S1 Kma Z=⇒ T1 that J S Kma Z=⇒ (νϕs
a(x))T1 = T . By Definition 6.3.37,

T1 �̇
↓3
c J S′1 Kma implies C(T1) �̇

↓3 C
(
J S′1 Kma

)
for all contexts C([·]) ∈ Pa →

Pa such that C(J P Kma) ∈ P=
a �J · Kma for all P ∈ Pm. Since (νϕm

a (x)) J P Kma ∈
P=
a �J · Kma , the quantification over C includes all contexts C such that C([·]) =

C′((νϕm
a (x)) [·]). Because of that, C′((νϕm

a (x))T1) �̇
↓3 C′

(
(νϕm

a (x)) J S′1 Kma
)

for all contexts C′([·]) ∈ Pa → Pa such that C′(J P Kma) ∈ P=
a �J · Kma for all

P ∈ Pm. By Definition 6.3.37, we conclude T �̇
↓3
c J S′ Kma .

Case of Pi-Congm,s,a,p : Then S ≡ S1 for some S1 ∈ Pm, S1 7−→ S′1, and
S′1 ≡ S′. By Lemma 6.3.42, the encoding J · Kma preserves structural con-

gruence of source terms modulo �̇
↓3
c . So S ≡ S1 and S′1 ≡ S′ imply

J S Kma �̇
↓3
c J S1 Kma and J S′1 Kma �̇

↓3
c J S′ Kma . By Definition 6.3.37, for all

contexts C([·]) ∈ Pa → Pa such that C(J P Kma) ∈ P=
a �J · Kma for all P ∈ Pm,

we have C(J S Kma) �̇
↓3 C(J S1 Kma) and, hence, J S Kma �̇

↓3 J S1 Kma . Thus,
by Definition 6.3.32, for each sequence J S Kma Z=⇒ T there is a sequence

J S1 Kma Z=⇒ T1 for some T1 ∈ Pa such that T �̇
↓3

T1. The same holds

for all contexts C, i.e., since C(J S Kma) �̇
↓3 C(J S1 Kma), for each sequence

C(J S Kma) Z=⇒ C(T) there is a sequence C(J S1 Kma) Z=⇒ C(T1) for some T1 ∈ Pa
such that C(T) �̇

↓3 C(T1). So, by Definition 6.3.37, T �̇
↓3
c T1. By the in-

duction hypothesis, T1 �̇
↓3
c J S′1 Kma . Then T �̇

↓3
c T1, T1 �̇

↓3
c J S′1 Kma , and

J S′1 Kma �̇
↓3
c J S′ Kma imply T �̇

↓3
c J S′ Kma .

The argumentation for J · Kmp is similar.

357

	Summary
	Introduction
	Organisation of the Thesis
	Translational Expressiveness
	Synchrony and Asynchrony in the Pi-Calculus
	Main Goals

	Publications

	Process Calculi
	Basic Definitions
	The Pi-Calculus
	The Join-Calculus
	Communicating Sequential Processes (CSP)

	Bisimulation
	Bisimulation and Coupled Simulation in the Pi-Calculus
	Observables and Barbed Bisimulation in the Pi-Calculus

	Encodings and their Quality
	Encoding Functions
	Quality Criteria
	Equivalence
	Full Abstraction
	Operational Correspondence
	Observables, Testing, and Termination
	Structural Requirements

	A General Framework
	Designing Quality Criteria
	Abstract Formulation
	Comparison and Classification
	Formalisation
	Verification
	Alternative Formalisation

	Summary and Related Work

	Separating Languages
	Absolute Results
	Formalising the Difference of Languages
	Standard Problems
	Absolute Results and Quality Criteria

	Separation and Quality Criteria
	Different Sets of Quality Criteria
	Different Domains

	Transferring Absolute Results
	The Absolute Result
	A new Separation Result
	Transferring Separation Results

	Adapting an Absolute Result
	Summary and Related Work

	The Design of Encodings
	Concept and Implementation
	Concept of the Encoding
	Implementing the Concept
	Encoding Example

	Extending Encodings
	Extending the Concept
	An Intermediate Encoding
	Encoding Example
	Refine the Encoding
	Encoding Example

	Modifications
	Composing Encodings
	Summary

	Properties of Encodings
	Structural Criteria
	Compositionality
	Name Invariance

	Type Systems
	Terminology
	A Basic Type System
	Types with Behaviour
	Polarity and Multiplicity

	Semantic Properties
	Steps and States of Target Terms
	Invariants
	Translated Observables
	A Behavioural Equivalence
	Junk
	Semantic Criteria

	Domain-Specific Criteria
	Summary and Related Work

	Concluding Remarks
	Contributions
	Hierarchy of Distributability in Pi-like Calculi
	Further Research

	List of Figures
	Bibliography
	Appendix
	Typed Encoding Functions
	Well-Typedness in the Basic Type System
	Properties of the Monadic Type System
	Well-Typedness in the Linear Type System

	Semantic Properties

