
The Reliability of Deep Learning for Signal and Image Processing:

Interpretability, Robustness, and Accuracy

vorgelegt von

Jan Lukas Macdonald (M. Sc.)

von der Fakultät II - Mathematik und Naturwissenschaften

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

– Dr. rer. nat. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Tobias Breiten
Gutachter: Prof. Dr. Martin Skutella
Gutachter: Prof. Dr. Sebastian Pokutta
Gutachter: Prof. Dr. Reinhard Heckel
Gutachter: Prof. Dr. Lars Ruthotto

Tag der wissenschaftlichen Aussprache: 13. Oktober 2022

Berlin, 2022

Abstract

This thesis investigates several aspects of using data-driven methods for image and signal
processing tasks, particularly those aspects related to the reliability of approaches based
on deep learning. It is organized in two parts.

The first part studies the interpretability of predictions made by neural network classifiers.
A key component for achieving interpretable classifications is the identification of relevant
input features for the predictions. While several heuristic approaches towards this
goal have been proposed, there is yet no generally agreed-upon definition of relevance.
Instead, these heuristics typically rely on individual (often not explicitly stated) notions of
interpretability, making comparisons of results difficult. The contribution of the first part
of this thesis is the introduction of an explicit definition of relevance of input features for a
classifier prediction and an analysis thereof. The formulation is based on a rate-distortion
trade-off and derived from the observation and identification of common questions that
practitioners would like to answer with relevance attribution methods. It turns out that
answering these questions is extremely challenging: A computational complexity analysis
reveals the hardness of determining the most relevant input features (even approximately)
for Boolean classifiers as well as for neural network classifiers. This hardness in principle
justifies the adoption of heuristic strategies and the explicit rate-distortion formulation
inspires a novel approach that specifically aims at answering the identified questions
of interest. Furthermore, it allows for a quantitative evaluation of relevance attribution
methods, revealing that the newly proposed heuristic performs best in identifying the
relevant input features compared to previous methods.

The second part studies the accuracy and robustness of deep learning methods for
the reconstruction of signals from undersampled indirect measurements. Such inverse
problems arise for example in medical imaging, geophysics, communication, or astronomy.
While widely used classical variational solution methods come with reconstruction
guarantees (under suitable assumptions), the underlying mechanisms of data-driven
methods are mostly not well understood from a mathematical perspective. Nevertheless,
they show promising results and frequently empirically outperform classical methods in
terms of reconstruction quality and speed. However, several doubts remain regarding their
reliability, in particular questions concerning their robustness to perturbations. Indeed,
for classification tasks it is well known that neural networks are vulnerable to adversarial
perturbations, i.e., tiny modifications that are visually imperceptible but mislead the
neural network to make a wrong prediction. This raises the question if similar effects
also occur in the context of signal recovery. The contribution of the second part of this
thesis is an extensive numerical study of the robustness of a representative selection of
end-to-end neural networks for solving inverse problems. It is demonstrated that for
such regression problems (in contrast to classification) neural networks can be remarkably
robust to adversarial and statistical perturbations. Furthermore, they show state-of-the-
art performance resulting in highly accurate reconstructions: In the idealistic scenario
of synthetic and perturbation-free data neural networks have the potential to achieve
near-perfect reconstructions, i.e., their reconstruction error is close to numerical precision.

iii

Zusammenfassung

In dieser Dissertation werden verschiedene Aspekte der Verwendung datengestützter Me-
thoden für die Bild- und Signalverarbeitung untersucht, insbesondere die Zuverlässigkeit
von Deep Learning Ansätzen. Die Arbeit ist in zwei Teile gegliedert.

Der erste Teil untersucht die Interpretierbarkeit von Klassifikationsvorhersagen, die von
neuronalen Netzen gemacht werden. Eine Schlüsselkomponente für eine interpretierbare
Klassifikation ist die Identifizierung der relevanten Eingabegrößen für eine Vorhersage. Es
wurden zwar bereits zahlreiche heuristische Ansätze zur Erreichung dieses Ziels vorge-
schlagen, doch gibt es keine allgemein anerkannte Definition für die Relevanz. Stattdessen
beruhen diese Heuristiken in der Regel auf individuellen (oft nicht explizit genannten)
Auffassungen von Interpretierbarkeit, was einen Vergleich der Ergebnisse erschwert. Der
wissenschaftliche Beitrag des ersten Teils dieser Arbeit ist die Einführung sowie die Analyse
einer expliziten Definition für die Relevanz von Eingabegrößen für die Vorhersage einer
Klassifikationsfunktion. Die Formulierung basiert auf einem Rate-Distortion-Trade-Off
und leitet sich aus der Feststellung und Identifizierung von gängigen Fragen ab, die in
Anwendungen mit Hilfe von Relevanzbewertungsmethoden beantwortet werden sollen.
Wie sich herausstellt, ist die Beantwortung dieser Fragen jedoch äußerst schwierig: Eine
Untersuchung der rechnerischen Komplexität zeigt, wie aufwendig es ist, die relevantesten
Eingabegrößen für Boolesche Klassifikatoren und für Klassifikatoren auf Basis von neu-
ronalen Netzen (auch nur approximativ) zu bestimmen. Diese Schwierigkeit rechtfertigt
prinzipiell die Anwendung heuristischer Strategien. Ein neuartiger Ansatz, der speziell
auf die Beantwortung der identifizierten Fragen von praktischem Interesse abzielt, lässt
sich direkt aus der expliziten Rate-Distortion-Trade-Off Formulierung ableiten. Darüber
hinaus ermöglicht er eine quantitative Evaluation von Methoden zur Relevanzbewertung
und zeigt, dass die neu vorgeschlagene Heuristik im Vergleich zu früheren Methoden die
besten Ergebnisse bei der Identifizierung von relevanten Eingabegrößen erzielt.

Der zweite Teil untersucht die Genauigkeit und Robustheit von Deep Learning Methoden
für die Rekonstruktion von Signalen aus unzureichend abgetasteten indirekten Messungen.
Solche inversen Probleme treten zum Beispiel in der medizinischen Bildgebung, Geophysik,
Nachrichtentechnik oder Astronomie auf. Während weit verbreitete klassische variationelle
Lösungsmethoden (unter geeigneten Annahmen) Rekonstruktionsgarantien bieten, sind
die zugrunde liegenden Mechanismen der datengestützten Methoden aus mathematischer
Sicht meist nicht gut verstanden. Dennoch zeigen sie vielversprechende Ergebnisse und
übertreffen empirisch häufig die klassischen Methoden in ihrer Rekonstruktionsqualität
und -geschwindigkeit. Allerdings bestehen nach wie vor einige Zweifel an ihrer Zuver-
lässigkeit, insbesondere hinsichtlich ihrer Robustheit gegenüber Störungen der Eingaben.
In der Tat ist bekannt, dass Klassifikatoren auf Basis von neuronalen Netzen anfällig
gegenüber absichtlich herbeigeführten Störungen sind. Das heißt, dass winzige, visuell
nicht wahrnehmbare, Veränderungen des Eingabesignals das neuronale Netz zu einer
falschen Vorhersage verleiten können. Daher stellt sich die Frage, ob ähnliche Effekte auch
im Zusammenhang mit der Signalrekonstruktion auftreten. Der wissenschaftliche Beitrag
des zweiten Teils dieser Arbeit ist eine umfangreiche numerische Untersuchung der Ro-

v

bustheit von einer repräsentativen Auswahl von End-to-End Lösungsmethoden für inverse
Probleme auf Basis von neuronalen Netzen. Es wird gezeigt, dass neuronale Netze für
solche Regressionsproblemen (im Gegensatz zu den Klassifikationsproblemen) durchaus
sehr robust gegenüber absichtlich herbeigeführten und auch unvermeidbaren statistischen
Störungen sein können. Darüber hinaus können sie als State-of-the-Art angesehen werden
und führen zu äußerst genauen Rekonstruktionen: Unter idealisierten Bedingungen mit
synthetischen und störungsfreien Daten haben neuronale Netze das Potenzial, nahezu
perfekte Rekonstruktionen zu erzielen, das heißt, ihr Rekonstruktionsfehler erreicht fast
die numerische Maschinengenauigkeit.

vi

Acknowledgments

Writing this thesis would not have been possible without the continued support and
encouragement of a number of people, to whom I would like to express my sincere
gratitude.

First of all, I would like to thank the members of the doctoral committee. In particular,
Reinhard Heckel, Sebastian Pokutta, Lars Ruthotto, and Martin Skutella, for reviewing
and evaluating my work, and Tobias Breiten for chairing the committee.

Furthermore, I want to express my gratitude to my further collaborators and co-authors,
in particular, to Martin Genzel, Maximilian März, and Stephan Wäldchen. You were a
great source of inspiration and it has been a privilege working with you during my time at
the Technische Universität Berlin. I am glad for all the fruitful discussions and countless
opportunities to learn from you and with you.

I would also like to thank my colleagues of the former “Applied Functional Analysis”
group for the years of mutual support and the friendships that were formed during these
years, especially, thanks to Martin Genzel, Ingo Gühring, Sandra Keiper, Maximilian März,
Philipp Petersen, Mones Raslan, and Stephan Wäldchen. You have made working at TU
Berlin so much more enjoyable. My former doctoral advisor Gitta Kutyniok I want to
thank for the opportunities and freedoms that she gave me to work on an exciting research
topic. I am especially indebted to Martin Skutella and Sebastian Pokutta for their support
and guidance during the final stages of my doctoral studies.

Specifically with regard to the completion of this dissertation, I would like to thank
Martin Genzel, Maximilian März, and Stephan Wäldchen for several discussions and
comments that led to the improvement of this thesis, and Nicole Frost and Julian Kuhlmeier
for proofreading parts of it and providing valuable feedback. As always in these cases,
any errors or typos that remain are of course mine alone.

I am grateful for the support I received from the “Berlin Mathematical School” (BMS)
and “Biophysical Quantitative Imaging Towards Clinical Diagnosis” (BIOQIC) graduate
programs, both of which I was a part of during my doctoral studies.

On the personal side, I am grateful to my friend Jonathan Trantow, with whom I have
shared an apartment during most of this time. Last but not least, my warmest thanks go to
my family, especially to my parents and my sister, for their patience and endless support,
and for accompanying me on my journey over all these years.

vii

Contents

Preface . ii
Abstract . iii
Zusammenfassung . v
Acknowledgments . vii
List of Figures . xiii
List of Tables . xvi

1 Introduction . 1
1.1 Interpretability of Learned Classifier Functions 1
1.2 Accuracy and Robustness of Learned Reconstruction Methods 4
1.3 Previous Publication of the Results in this Thesis 9
1.4 Availability of Code . 11

2 Preliminaries and Notation . 13

I Classification Tasks 17

3 Interpretability of Boolean Circuit Classifiers 19
3.1 The 𝛿-Relevant-Input Problem . 20

3.1.1 Related Concepts . 22
3.2 Computational Complexity Analysis . 25

3.2.1 𝛿-Relevant-Input is NPPP-hard . 25
3.2.2 𝛿-Relevant-Input is Contained in NPPP 34

3.3 Variations of the Problem . 35
3.3.1 Introducing a Probability Gap . 35
3.3.2 Introducing a Set Size Gap . 38

3.4 Discussion . 42
3.4.1 Stability and Uniqueness of 𝛿-Relevant Sets 42
3.4.2 Binary versus Continuous . 42
3.4.3 Choice of Distribution . 43

3.5 Conclusion . 43

4 Interpretability of Neural Network Classifiers 45
4.1 The 𝜖-Distortion-Input Problem . 45
4.2 Computational Complexity Analysis . 48
4.3 Relaxation of the Problem . 52

4.3.1 Relevance Scores and Orderings 52
4.3.2 Sparse Rate-Distortion Explanations 54
4.3.3 Ordered Rate-Distortion Explanations 57
4.3.4 Assumed Density Filtering . 58

ix

Contents

4.4 Evaluating and Comparing Explanations 60
4.4.1 Invariance to Input Transformations 61
4.4.2 Synthetic Binary Strings . 62
4.4.3 An8flower Benchmark Dataset . 62
4.4.4 Relevance Ordering Test . 64

4.5 Discussion . 68
4.5.1 Sufficiency and Necessity of Finding Relevant Sets 71
4.5.2 Non-Uniform Distributions . 71
4.5.3 Conditional versus Marginal Distributions 72

4.6 Conclusion . 72

5 The Necessity of Using Approximate ADF . 73
5.1 Characterization of Invariant Families of Distributions 75

5.1.1 The Two Main Characterization Results 76
5.2 Proof of the First Characterization Result 77

5.2.1 Details of the Proof . 78
5.2.2 Surjectivity of Ξ (Proof of Lemma 5.13) 81
5.2.3 Local Lipschitz Continuity of Ξ (Proof of Lemma 5.14) 90

5.3 Proof of the Second Characterization Result 92
5.3.1 Families of Distributions in One Dimension 92
5.3.2 Families of Distributions With Finite Support 96
5.3.3 Families of Distributions Without Local Lipschitz Continuity . . 97

5.4 Discussion . 100
5.5 Conclusion . 101

II Reconstruction Tasks 103

6 Robustness of Reconstruction Methods . 105
6.1 Methods and Preliminaries . 107

6.1.1 Neural Network Architectures . 107
6.1.2 Neural Network Training . 110
6.1.3 Total Variation Minimization . 110
6.1.4 Adversarial Perturbations . 111

6.2 Results . 112
6.2.1 Case Study A: Compressed Sensing With Gaussian Measurements 112
6.2.2 Case Study B: Image Recovery of Phantom Ellipses 116
6.2.3 Case Study C: MRI on Real-World Data (fastMRI) 122

6.3 Further Aspects of Robustness . 123
6.3.1 Training Without Noise – An Inverse Crime? 123
6.3.2 Training With Noise – A Loss of Accuracy? 126
6.3.3 Adversarial Examples for Classification From Compressed Measure-

ments . 129
6.3.4 The Original fastMRI Challenge Setup 130

6.4 Discussion . 131
6.5 Conclusion . 132

x

Contents

7 Accuracy of Reconstruction Methods . 133
7.1 The AAPM Challenge Setup . 135
7.2 Methods . 135
7.3 Results . 141
7.4 Discussion . 143
7.5 Conclusion . 144

III Appendices 165

A Deferred Proofs of Chapter 3 . 167
A.1 Raising the Probability Threshold . 167
A.2 Lowering the Probability Threshold . 169
A.3 Neutral Operation . 171
A.4 Construction of the Functions Π𝜂,ℓ . 172

B Additions to Chapter 4 . 175
B.1 Algorithm Descriptions . 175

B.1.1 Projected Gradient Descent . 175
B.1.2 Frank-Wolfe Algorithms . 175
B.1.3 Feasible Regions, Projections, and Linear Minimization Oracles . 177

B.2 Supplementary Experimental Results . 179
B.2.1 Synthetic Binary Strings . 180
B.2.2 An8flower Dataset . 180
B.2.3 MNIST Dataset . 181
B.2.4 STL-10 Dataset . 187

B.3 Specifications of the Synthetic Binary Strings Experiment 187
B.3.1 Network Architecture . 187
B.3.2 RDE Optimization . 188
B.3.3 Comparison Methods . 199

B.4 Specifications of the An8flower Experiment 199
B.4.1 Network Architecture and Training 199
B.4.2 RDE Optimization . 199
B.4.3 Comparison Methods . 199

B.5 Specifications of the Relevance Ordering Test Experiment for MNIST . . 200
B.5.1 Network Architecture and Training 200
B.5.2 RDE Optimization . 200
B.5.3 Comparison Methods . 201
B.5.4 Relevance Ordering Comparison Test 201

B.6 Specifications of the Relevance Ordering Test Experiment for STL-10 . . 201
B.6.1 Network Architecture and Training 201
B.6.2 RDE Optimization . 202
B.6.3 Comparison Methods . 202
B.6.4 Relevance Ordering Comparison Test 203

B.7 Statistics from Streaming Data . 203
B.7.1 Sample Mean, Variance & Covariance 204
B.7.2 Low-Rank Approximations of Covariance 207

xi

Contents

C Deferred Proofs of Chapter 5 . 211
C.1 Metric Spaces and Hausdorff Dimension 211
C.2 Space-Filling Curves in Arbitrary Dimensions 212
C.3 Restricting the Set of Weight Matrices . 213

C.3.1 General Restrictions of the Weight Matrices 213
C.3.2 Restrictions on the Number of Weight Matrices and Bias Vectors 213

D Additions to Chapter 6 . 217

E Additions to Chapter 7 . 223

xii

List of Figures

1.1 Illustration of Relevance Attribution. Local attribution methods aim at
rendering decisions of a black-box classifier more interpretable. 3

1.2 Illustration of Signal Reconstruction. Example of an inverse problem
arising in magnetic resonance imaging (MRI). 5

1.3 Illustration of Adversarial Perturbations. Example of an adversarial
perturbation for a VGG-16 based neural network trained on the STL-10
dataset. 6

3.1 Boolean Circuits and Neural Networks. A Boolean function can be repre-
sented as a Boolean circuit or as a ReLU network. 20

3.2 Illustration of Relevant Sets. Example for a binary string classifier. . . . 20
3.3 The Probability Gap. Visualization of the 𝛾-Gapped-𝛿-Relevant-Input

problem. 36
3.4 The Set Size Gap. Visualization of the Intermediate Problem 3. 39

4.1 Rate-Distortion Viewpoint. 48
4.2 Binarization of Inputs. Illustration of a binarization function. 50
4.3 Synthetic Binary Strings – Relevance Maps. Relevance mappings gener-

ated by several methods for two binary strings. 63
4.4 An8flower – Network Architecture. Convolutional neural network archi-

tecture for the An8flower task. 63
4.5 An8flower – Relevance Maps. Relevance mappings generated by several

methods for an image classified as yellow stem by our network. 64
4.6 MNIST – Network Architecture. Convolutional neural network architecture

for the MNIST task. 65
4.7 MNIST – Relevance Maps. Relevance mappings generated by several

methods for an image classified as digit six by our network. 66
4.8 MNIST – Ordering Comparison. Relevance ordering test results of several

methods. 67
4.9 STL10 – Network Architecture. VGG-16 based convolutional neural net-

work architecture for the STL-10 task. 68
4.10 STL10 – Relevance Maps. Relevance mappings generated by several

methods for an image classified as monkey by our network. 69
4.11 STL10 – Relevance Maps. Relevance mappings generated by several

methods for an image classified as horse by our network. 70
4.12 STL10 – Ordering Comparison. Relevance ordering test results of several

methods. 71

5.1 Transformation of Distributions. Main steps of transforming a generic
probability distribution to a distribution supported on a polygonal chain. 78

xiii

List of Figures

5.2 Distribution and Arc Spaces. Schematic overview of the spaces and
functions involved in our proof. 78

5.3 Standard Arcs. Examples of several standard arcs. 79
5.4 Construction of Arcs – Scaling. Illustration of the “scaling” step. 86
5.5 Construction of Arcs – Bending. Illustration of the “bending” step. . . 89
5.6 Outer and Inner Arcs. 91
5.7 Arc Arrangements. Four possible arrangements of corresponding vertices

of two arcs. 92
5.8 Networks in One Dimension. ReLU networks in one dimension can only

take one of five distinct forms. 95

6.1 Data-driven Reconstruction Methods. Schematic network reconstruction
pipelines of UNet, TiraFL, and ItNet. 108

6.2 U-Net Architecture. 108
6.3 Dense Blocks. 109
6.4 Scenario A1 – CS with 1D Signals. Noise-to-error curves for adversarial,

Gaussian, uniform, and Bernoulli noise. 113
6.5 Scenario A1 – CS with 1D Signals. Individual reconstructions of a randomly

selected signal from the test set for different levels of adversarial noise. . 114
6.6 Scenario A1 – CS with 1D Signals. Individual reconstructions of the signal

from Figure 6.5 under Gaussian noise. 114
6.7 Scenario A2 – CS with MNIST. Individual reconstructions of four randomly

selected digits from the test set for different levels of adversarial noise. . 115
6.8 Scenario A2 – CS with MNIST. Individual reconstructions of the digits

from Figure 6.7 under Gaussian noise. 115
6.9 Scenario A2 – CS with MNIST. Noise-to-error curves for adversarial and

Gaussian noise. 116
6.10 Scenario B1 – Fourier Measurements with Ellipses. Noise-to-error curves

for adversarial and Gaussian noise. 117
6.11 Scenario B1 – Fourier Measurements with Ellipses. Individual reconstruc-

tions of a randomly selected image from the test set for different levels of
adversarial noise. 118

6.12 Scenario B1 – Fourier Measurements with Ellipses. Individual reconstruc-
tions of the image from Figure 6.11 under Gaussian noise. 119

6.13 Scenario B2 – Radon Measurements with Ellipses. Individual reconstruc-
tions of a randomly selected image from the test set for different levels of
adversarial noise. 120

6.14 Scenario B2 – Radon Measurements with Ellipses. Individual reconstruc-
tions of the image from Figure 6.13 under Poisson noise. 120

6.15 Case Study B – Transferability of Perturbations. Analysis of transferring
adversarial noise between TV minimization and neural-network-based
solvers. 121

6.16 Case Study C – fastMRI. Noise-to-error curves for adversarial and Gaussian
noise. 123

6.17 Case Study C – fastMRI. Individual reconstructions of a central slice of
a randomly selected volume from the validation set for different levels of
adversarial noise. 124

xiv

List of Figures

6.18 Case Study C – fastMRI. Individual reconstructions of the image from
Figure 6.17 under Gaussian noise. 125

6.19 An Inverse Crime? A comparison between ItNet trained with and without
jittering. 126

6.20 An Inverse Crime? Intermediate steps performed by ItNet with and without
jittering. 127

6.21 An Inverse Crime? Comparison between UNet trained with and without
jittering for image recovery from sparse-angle Radon measurements. . . 127

6.22 Losing Accuracy? Comparison of TiraFL reconstructions trained with and
without jittering. 128

6.23 Classification Network. Convolutional neural network architecture for the
classification from compressed measurements. 129

6.24 Classification from Compressed Measurements. Noise-to-accuracy curve
for adversarial noise. 130

6.25 The Original fastMRI Challenge Setup. Reconstructions of a randomly
selected image from the validation set. 131

7.1 The AAPM Challenge Data. Example of a sinogram, FBP, and ground-truth
triple from the training dataset. 135

7.2 Fanbeam Geometry. Illustration of the parameters determining the geome-
try of the fanbeam CT model. 137

7.3 Loss Curves and Network Training. 140
7.4 Reconstruction Results. Reconstructions of different methods for a valida-

tion image. 142
7.5 Data-Consistency. Comparison for different methods. 143

B.1 Synthetic Binary Strings – Relevance Maps. Relevance mappings gener-
ated by several methods for two binary strings. 181

B.2 An8flower – Relevance Maps. Relevance mappings generated by several
methods for an image classified as yellow stem by our network. 182

B.3 MNIST – Relevance Maps. Relevance mappings generated by different FW
variants for an image classified as digit six by our network. 183

B.4 MNIST – Ordering Comparison. Relevance ordering test results for
different FW variants. 184

B.5 MNIST – Ordering Comparison. Relevance ordering test results for FW
and PGD solutions of (RC-RDE) at various rates. 185

B.6 MNIST – RDE Convergence. Average runtimes and number of iterations
until convergence of FW variants for (RC-RDE) at different rates. 185

B.7 MNIST – Ordering Comparison. Relevance ordering test results for (Ord-RDE)
for all considered FW variants. 186

B.8 MNIST – Ordering Comparison. Relevance ordering test results for (Ord-RDE)
for different variants of SFW. 187

B.9 STL-10 – Ordering Comparison. Relevance ordering test results for different
FW variants. 188

B.10 STL-10 – Relevance Maps. Relevance mappings generated by several
methods for an image classified as monkey by our network. 189

xv

B.11 STL-10 – Relevance Maps. Relevance mappings generated by several
methods for an image classified as cat by our network. 190

B.12 STL-10 – Relevance Maps. Relevance mappings generated by several
methods for an image classified as deer by our network. 191

B.13 STL-10 – Relevance Maps. Relevance mappings generated by several
methods for an image classified as ship by our network. 192

B.14 STL-10 – Relevance Maps. Relevance mappings generated by several
methods for an image classified as ship by our network. 193

B.15 STL-10 – Relevance Maps. Relevance mappings generated by several
methods for an image classified as deer by our network. 194

B.16 STL-10 – Relevance Maps. Relevance mappings generated by several
methods for an image classified as dog by our network. 195

B.17 STL-10 – Relevance Maps. Relevance mappings generated by several
methods for an image classified as bird by our network. 196

B.18 STL-10 – Relevance Maps. Relevance mappings generated by several
methods for an image classified as horse by our network. 197

B.19 STL-10 – Relevance Maps. Relevance mappings generated by several
methods for an image classified as airplane by our network. 198

B.20 Merge Orders. Illustration of the sequential and pairwise merge order for
low-rank approximations of autocorrelations. 208

B.21 MNIST – Low-Rank Approximations. Error analysis of low-rank approxi-
mations of the covariance matrix. 209

C.1 Graphical Representation of Interpolated Measures. 214

List of Tables

3.1 Changing Probability Thresholds. Overview of four possibilities to change
the probability threshold of a Boolean function. 32

4.1 An8flower – Correlation Comparison. Similarity between relevance map-
pings generated by several methods and the respective binary masks. . . 64

7.1 Reconstruction Results. Average reconstruction RMSE of different methods
over the hold-out validation set. 142

B.1 An8flower – Correlation Comparison. Similarity between relevance map-
pings generated by several methods and the respective binary masks. . . 182

B.2 An8flower – Network Architecture. Convolutional neural network for the
An8flower data set. 200

B.3 MNIST – Network Architecture. Convolutional neural network for the
MNIST data set. 202

B.4 STL10 – Network Architecture. VGG-16 based convolutional neural net-
work for the STL-10 data set. 203

xvi

List of Tables

D.1 Scenario A1 – CS with 1D Signals. Numerical representation of the results
of Figure 6.4(e). 217

D.2 Scenario A1 – CS with 1D Signals. Numerical representation of the results
of Figure 6.4(f). 217

D.3 Scenario A2 – CS with MNIST. Numerical representation of the results of
Figure 6.9(c). 217

D.4 Scenario A2 – CS with MNIST. Numerical representation of the results of
Figure 6.9(d). 217

D.5 Scenario B1 – Fourier Measurements with Ellipses. Numerical represen-
tation of the results of Figure 6.10(c). 218

D.6 Scenario B1 – Fourier Measurements with Ellipses. Numerical represen-
tation of the results of Figure 6.10(d). 218

D.7 Case Study C – fastMRI. Numerical representation of the results of Fig-
ure 6.16(c). 219

D.8 Case Study C – fastMRI. Numerical representation of the results of Fig-
ure 6.16(d). 219

D.9 Reconstruction Tasks – Network Architectures. Hyper-parameters for all
considered neural network architectures. 220

D.10 Reconstruction Tasks – Network Training. Hyper-parameters for all neural
network trainings. 221

D.11 Reconstruction Tasks – Adversarial Perturbations. Hyper-parameters for
finding adversarial perturbations. 222

E.1 AAPM Challenge – Network Architectures. Hyper-parameters for all
considered neural network architectures. 223

E.2 AAPM Challenge – Network Training. Hyper-parameters for all neural
network trainings. 223

xvii

1

Introduction

Artificial intelligence methods based on deep learning consistently achieve outstanding
performance in solving computational tasks arising in applications across various fields,
ranging from image analysis [KSH12; STE13], to natural language processing [Cho+14;
Vas+17], to medical diagnosis [SWS17; McB+18]. Previous “classical” methods for signal
and image processing mostly rely on hand-crafted mathematical models that are specifically
designed for a certain task. In contrast, the concept of deep learning is fitting generic
universal function approximators, named artificial neural networks, to large sets of training
data. This turn toward data-driven approaches was made possible by the immensely
increasing availability of data and the computational resources to process it. Frequently,
this led to a paradigm shift of the respective fields, with deep learning methods now
constituting the state of the art.

Along with this success comes an almost equally extensive debate on the drawbacks of
deep learning and concerns regarding its usage, especially in high-stakes applications, such
as medical diagnosis or autonomous driving. These concerns are rooted in the fact that
neural networks are still mostly considered opaque “black-box” models. It remains unclear
how they operate internally, which raises doubts about their reliability, interpretability,
and robustness.

In this work, we will consider two specific signal and image processing tasks: classifica-
tion and reconstruction from indirect measurements. The focus is primarily on analyzing
the interpretability and reliability of existing and commonly used types of neural networks
and not the development of new state-of-the-art network architectures. The main questions
that will be addressed are:

I. How can the decisions of complex and learned classifiers be made more human inter-

pretable? How difficult or computationally costly is it to achieve this goal? And how

can the quality of different interpretability methods be evaluated and compared?

II. How reliable are data-driven and learned methods for the reconstruction of signals

from indirect measurements? Can they compete with classical and provably robust

reconstruction methods? In which situations is it possible to learn accurate and robust

schemes and when is it not?

Answering these questions constitutes the two main parts of this thesis. In the following,
we give a more detailed introduction to both aspects.

1.1 Interpretability of Learned Classifier Functions

The task of classifying or labeling data arises in numerous applications, such as char-
acter recognition, voice recognition, medical diagnosis, autonomous driving, employee
recruitment and hiring, or credit scoring.

1

Chapter 1 Introduction

Traditional machine learning methods for classification tasks include support vector
machines [BGV92; CV95], decision trees [Bre+84; Qui86], naive Bayes classifiers [DH73;
LIT92], 𝑘-nearest-neighbor classifiers [FH85], or linear classifiers in combination with
handcrafted features that are first extracted from the data (e.g., Fisher vectors [PD07;
PSM10] or histograms of oriented gradients (HOG) [McC86; Wil94]). In many cases, they
allow for a straight-forward human interpretation of the model predictions.

Even though different versions of artificial neural networks were already introduced
many decades ago [MP43; Iva71; Fuk80] they became largely popular around 2010, after
achieving super-human performance at an image recognition contest for the first time
and subsequently winning several other classification challenges [Cir+12; KSH12] against
previous state-of-the-art methods. The continued success in the years that followed, up
to the present day, led to the adoption of neural networks and deep learning as a core
component of many modern machine learning and artificial intelligence systems.

In contrast to the traditional approaches, neural networks learn an end-to-end composition
of a feature extractor and a final classifier in a combined way. They are universal function
approximators [Hor91] and capable of hierarchical reasoning [Fuk80]. The expressiveness
of these highly non-linear and parameter-rich classifiers makes understanding and inter-
preting their decisions challenging. The reasoning behind the decisions remains generally
inaccessible. However, the ability to render these models less opaque by providing
interpretable explanations of their predictions is essential for a reliable use of neural
networks.

In an abstract sense, interpretability refers to the ability to explain the predictions made
by a deep learning model (or more generally: a machine learning model) to humans in an
understandable way [DK17]. Here, “explain” and “understandable” are rather vague terms
and can mean different things depending on the context and application. In an effort to
address this task from any possible angle, there has been a surge of research related to
explainable artificial intelligence (XAI) and various attempts to categorize interpretability
methods, see e.g., the recent surveys by [Fan+21; Cha+17; Gil+18; Zha+21] for an overview.

Zhang et al. propose a taxonomy to distinguish methods according to three main
characteristics [Zha+21]:

i) Passive methods give post-hoc explanations for already trained classifiers while active

methods require changing the classifier model already during training.

ii) The type of explanation (in increasing order of explanatory power) ranges from ex-
tracting prototypical examples, to feature attribution, to extracting hidden semantics,
and finally extracting specific logical decision rules.

iii) Local methods explain predictions for individual data samples while global methods
aim to explain classifier functions as a whole.

We focus on passive and local feature attribution, which is among the most widely used
forms of explanations. In this case, the goal is to partition the input features of a classifier
into relevant and non-relevant ones or to alternatively assign scores to each input feature of
a data sample indicating its relevance for a prediction, as illustrated in Figure 1.1. Feature
attribution methods are particularly popular in the context of image classification, where
the scores are visualized as so-called heatmaps or relevance maps. Recent years have seen
progress on this front with the introduction of multiple explanation methods for deep

2

1.1 Interpretability of Learned Classifier Functions

Φ “monkey”

relevance attribution

cl
as

si
fic

at
io

n
in

te
rp

re
ta

tio
n

Figure 1.1: Illustration of Relevance Attribution. Local attribution methods aim at rendering
decisions of a black-box classifier Φ more interpretable by providing heatmaps of the input
features that contribute most to an individual prediction.

neural networks [Bac+15; LL17; RSG16; SGK17; SVZ13; ZF14]. Most commonly, the
algorithms that produce these maps are motivated by heuristic arguments, yet there is no
agreed upon formal notion of relevance. Instead of answering a precise question, these
maps are mostly compared to human intuition about what part of the input variables should
be of importance. Notable exceptions are explanations based on Shapley values [Sha53]
that are required to satisfy certain game theoretic properties.

Nevertheless, relevance maps have been compared numerically using, e.g., pixel-
flipping [Sam+17] and input perturbations [FV17]. This points us toward what practitioners
understand as “relevant” and what information they expect to be conveyed by relevance
maps. The common criterion for relevance that we identified can be summarized by the
following question.

Q1: Is there a small part of the input variables that determines the classification decision

with high probability?

A more quantitative version of the question is the following.

Q2: What is the smallest part of the input variables that determines the classification

decision with high probability?

A reasonable explanation algorithm should provide sufficient information to answer these
questions.

Contribution

The first part of the thesis introduces a rigorous formulation of the concept of relevance in
the form of probabilistic prime implicants. First, this is done for binary classifier functions
on discrete domains. Second, it is extended to continuous classifiers on continuous
domains, including the important example of neural networks. In both cases we provide
a computational complexity analysis for the problem of finding small relevant sets of
variables.

In the discrete setting we show that the problem is complete for the complexity class
NPPP, which includes many important problems arising in artificial intelligence research,
such as probabilistic conformant planning [LGM98], calculating maximum expected utility
(MEU) solutions [CJ08], and maximum a posteriori (MAP) hypotheses [Par02]. A further
analysis of the relevance mapping problem (and several variations of it) reveals that even
approximating solutions remains NP-hard for any non-trivial approximation factor.

3

Chapter 1 Introduction

In the continuous setting, the problem can be rephrased in a rate-distortion formalism
(see for example [Ber03] for an overview) where the rate corresponds to the number of input
components that are considered relevant and the distortion corresponds to the expected
change in the classification if only the relevant part of the input was known. Answering
the questions Q1 and Q2 in this context amounts to evaluating a rate-distortion function.
We analyze the computational complexity of this task and see that the hardness result
from the discrete setting carries over to the continuous setting. Hence, even approximating
the rate-distortion function is generally a computationally hard problem:

Any efficient algorithm cannot reliably answer Q1 or approximately answer Q2 within

any non-trivial approximation factor unless P = NP.

This has important implications for the design and evaluation of relevance mapping
algorithms. Since no computationally feasible algorithm can be proven to succeed, we
have to rely on heuristic motivations and numerically evaluate the resulting relevance
maps in relation to our questions.

We propose our own heuristic, called RDE (Rate-Distortion Explanation). It combines a
problem relaxation that uses continuous relevance scores instead of a hard partition into
relevant and non-relevant variables with the rate-distortion formalism, and thus precisely
aims at answering the questions Q1 and Q2. The heuristic relies on the approximate
propagation of random variables through neural network functions. We show the necessity
to use approximations for this step for (almost) all probability distributions.

Finally, we discuss existing techniques for the evaluation of relevance mapping methods
and propose two new evaluation tests. The first is a benchmark test based on a classification
task with synthetic data and an explicitly constructed, hence transparent, classifier.
The second is a numerical post-hoc evaluation on real-world data based on “pixel-
flipping” [Sam+17] but adapted to our rate-distortion framework. We compare RDE to
various existing relevance mapping methods.

In summary, the main contributions of the first part are three-fold:

1. We formalize the relevance mapping problem for classifiers on discrete as well as
continuous domains and analyze its computational complexity.

2. We propose a novel heuristic for obtaining relevance maps for neural network
classifiers that directly aims to answer the questions Q1 and Q2.

3. We compare our proposed and several established heuristics with respect to existing
and two newly introduced evaluation methods and benchmark tests.

1.2 Accuracy and Robustness of Learned Reconstruction Methods

The reconstruction of signals from indirect measurements is an important task arising in ap-
plications such as medical imaging [Lus+08], geophysics [TV81], communication [Hau+08],
or astronomy [SPM02]. Such tasks are typically formulated as an inverse problem. In its
prototypical finite dimensional form it reads as follows:

Given a linear forward operator A ∈ R𝑚×𝑛

and corrupted measurements y = Ax0 + e

with ∥e∥2 ≤ 𝜂, reconstruct the signal x0.

 (IP)

4

1.2 Accuracy and Robustness of Learned Reconstruction Methods

x0

ground truth signal

y

measurements

≈ x0

reconstructed signal

A

+ noise
Rec

Figure 1.2: Illustration of Signal Reconstruction. Example of an inverse problem arising in
magnetic resonance imaging (MRI). The goal is to reconstruct the ground truth signal from
indirect and incomplete measurements (subsampled Fourier measurements in the case of MRI).
The data is taken from the NYU fastMRI knee dataset [Zbo+18; Kno+20b], see Chapter 6 for
more details.

This is illustrated in Figure 1.2. The forward operator models a physical measurement pro-
cess and e is the measurement noise. The measurement process is often time-consuming,
costly, or potentially harmful (e.g., exposure to x-ray radiation in computed tomography).
Hence, it is desirable to take as few measurements as possible. Therefore, the underdeter-
mined regime where 𝑚𝑚 ≪ 𝑛𝑛 is of utmost importance and has gained much attention in the
last decades. In this regime the inverse problem is “ill-posed” and has no unique solution
unless further restrictions (e.g., prior knowledge about x0) are imposed. Restrictions on
x0 can either be modeled explicitly by introducing handcrafted priors and regularization
methods or they can be inferred implicitly from sampled data.

The error of any given reconstruction method Rec: R𝑚𝑚 → R𝑛𝑛 for (IP) can be decomposed
as

∥x0 − Rec(y)∥2 ≤ ∥x0 − Rec(Ax0)∥2︸����������������︷︷����������������︸
(a)

+ ∥Rec(Ax0) − Rec(y)∥2︸����������������������︷︷����������������������︸
(b)

. (1.1)

The first term (a) is associated to the accuracy of the solution map and measures how well
x0 can be estimated in the idealistic setting of noiseless measurements. The ubiquitous
presence of noise makes it indispensable that a reconstruction method has to be robust
against additive perturbations e. This robustness is captured by the second term (b).

Among the handcrafted priors and regularization methods, the notion of sparsity plays
an important role: under the assumption that x0 is sparse or can be sparsely represented in
some appropriate basis or dictionary, the methodology of compressed sensing has proven that
accurate and robust reconstruction from incomplete measurements is still possible [FR13].
In this case the solution map satisfies an error bound of the form

∥x0 − Rec(y)∥2 ≤ 𝐶𝐶 · 𝜂𝜂 (1.2)

for some constant 𝐶𝐶 > 0. In other words, the reconstruction error scales linearly with the
strength of the noise corrupting the measurements.1 Although state of the art in various
real-world applications, the practicability of the associated reconstruction algorithms

1In particular, perfect recovery can be achieved in the case of noiseless measurements, i.e., the first term (a)
in (1.1) must be arbitrarily small.

5

Chapter 1 Introduction

horse: 0.9989

deer: 0.0009

× 10
horse: 0.4980
deer: 0.4981

+ =

Figure 1.3: Illustration of Adversarial Perturbations. Example of an adversarial perturbation for a
VGG-16 [SZ14] based neural network trained on the STL-10 [CNL11] dataset (see Chapter 4 for
details). Adding a small visually imperceptible perturbation to a correctly classified horse image
changes the prediction to deer. The softmax scores for both classes before and after adding the
perturbation are shown below each respective image. For visual purposes the perturbation is
shown scaled by a factor ten in its right half.

is often limited by computational costs, the need for manual parameter tuning, and a
mismatch between the chosen sparsity model and the data.

Following the recent success of artificial intelligence in computer vision [KSH12; LBH15;
GBC16], there has been a considerable effort to solve the inverse problem (IP) using deep
learning approaches, e.g., see [GL10; Yan+16; Don+16; KMY17; Jin+17; Ham+18; Che+17a;
Bor+17; Zhu+18; Bub+19] and [Arr+19] for a recent survey. Considering the inverse
problem in the context of statistical leaning problems, we aim at inferring a solution map
by fitting a neural network to sampled data {(y𝑖𝑖 , x𝑖𝑖0)}

𝑀𝑀
𝑖𝑖=1 in a supervised learning procedure.

Here the assumption on x0 is rather implicit: it should be drawn from the same distribution
as {(y𝑖𝑖 , x𝑖𝑖0)}

𝑀𝑀
𝑖𝑖=1.

It is fair to say that data-driven approaches can significantly outperform classical
methods in terms of reconstruction accuracy and speed in many situations. On the other
hand, one may argue that the underlying mechanisms of the trained neural networks
remain largely unclear [Ela17]. In the absence of theoretical guarantees of the form (1.2),
an empirical verification of their accuracy and robustness against measurement noise is
crucial.

Recently, Sidky et al. pointed out a lack of evidence for the reliability and accuracy of
deep-learning-based solution strategies and demonstrated that a simple post-processing
approach with the prominent U-Net architecture [RFB15] may not yield satisfactory
recovery precision in sparse-view computed tomography (CT) [Sid+21b].

Similarly, while a number of works report a remarkable resilience against noise [Che+17b;
Zhu+18; Hau+20], several alarming findings indicate that deep-learning-based reconstruc-
tion schemes are typically unstable [Hua+18; Ant+20; Got+20; RBL20]. In particular, the
recent study of Antun et al. suggests that deep learning for inverse problems comes at the
cost of instabilities, in the sense that „[. . .] certain tiny, almost undetectable perturbations,
both in the image and sampling domain, may result in severe artifacts in the reconstruction
[. . .]“ [Ant+20]. In machine learning research on classification, such a sensitivity of
neural networks is a well-established phenomenon. Initiated by Szegedy et al. [Sze+14],
a substantial body of literature is devoted to adversarial attacks (and their defenses), i.e.,
the computation of a visually imperceptible change to the input that fools the network,
as shown in Figure 1.3. Typically, an “attacker” exploits gradient-based information in

6

1.2 Accuracy and Robustness of Learned Reconstruction Methods

order to cross the discontinuous decision boundary of a classifier. This can be a serious
issue for sensitive applications where wrong predictions impose a security risk—imagine
a misclassified stop sign in autonomous driving [KGB17; Eyk+18].

Despite these findings, it appears peculiar that solving inverse problems by deep-
learning-based schemes might become unstable. Learning a reconstruction algorithm
can be seen as a regression task, where measurements are mapped to a high-dimensional
signal manifold (e.g., medical images). In contrast, a neural network classifier maps to a
low-dimensional, discrete output domain, resulting in a “vulnerable” decision boundary.
Moreover, it is well known that robust and accurate algorithms exist for many inverse
problems. Since these are often used as templates for network architectures, it seems
surprising that the latter should suffer from severe instabilities.

Clearly, the accuracy and robustness against noise is quintessential for an application
of deep learning in practice, especially in sensitive fields such as biomedical imaging.
Therefore, a profound study of this topic is indispensable.

Contribution

The second part of this thesis is dedicated to a comprehensive numerical study of the
accuracy and robustness of neural-network-based methods for solving underdetermined
inverse problems.

We consider the aspect of accuracy in the context of the “AAPM Deep Learning Sparse-
View Computed Tomography” grand challenge that was initiated following the findings of
Sidky et al. with the goal of identifying „[. . .] the state-of-the-art in solving the CT inverse
problem with data-driven techniques“ [Sid+21a]. We show that data-driven approaches
can achieve near-exact (close to numerical precision) recovery in the noiseless case.

The primary objective of our experiments regarding the aspect of robustness is to
analyze how much the reconstruction error grows with the noise level 𝜂. We investigate
this relationship in terms of statistical and adversarial noise: the former means that
measurement noise is drawn from an appropriate probability distribution, while the latter
explores worst-case perturbations that maximize the reconstruction error for a fixed 𝜂.
Similar to adversarial attacks in classification, computing worst-case noise is based on
a non-convex formulation that is addressed by automatic differentiation and a gradient
descent scheme.

In the absence of an empirical certificate of robustness, a central and distinctive compo-
nent of our analysis is the systematic comparison with a classical benchmark method with
provable guarantees, namely total-variation (TV) minimization. In this case, evaluating the
gradient is non-trivial and carried out by unrolling the underlying optimization problem.

Our experiments consider several prototypical inverse problems as use cases. This
includes classical compressed sensing with Gaussian measurements as well as the re-
construction of phantom images from Radon and Fourier measurements. Furthermore,
a real-world scenario for magnetic resonance imaging (MRI) is investigated, based on
the NYU-fastMRI dataset [Zbo+18; Kno+20b]. We examine a representative selection of
learned reconstruction architectures, reaching from simple post-processing networks to
iterative schemes. In total, this presents a robustness analysis of more than 25 neural
networks, each of them trained in-house with publicly available code.

The main findings of the second part may be summarized as follows:

7

Chapter 1 Introduction

1. It is possible to achieve near-prefect accuracy using end-to-end neural networks for
underdetermined inverse problems (as exemplarily demonstrated for the AAPM
Sparse-View CT task).

2. In every considered scenario, we find deep-learning-based methods that are at least
as robust as TV minimization with respect to adversarial noise. This does not require
sophisticated architectures or defense strategies.

3. All trained neural networks are remarkably robust against statistical noise. Although
TV minimization may yield exact recovery for noiseless measurements, it is still
outperformed by learned methods in mid- to high-noise regimes.

4. The reconstruction performance is affected by the underlying network architecture.
For instance, promoting data consistency in iterative schemes may improve both
accuracy and robustness.

5. One should not commit the “inverse crime” of training a neural network with
noiseless data, which may cause an unstable behavior for higher noise levels. We
demonstrate that simply adding white Gaussian noise to the training measurements
is an effective remedy—a regularization technique that is commonly known as
jittering in machine learning research. This adaption has a virtually imperceptible
impact on the in-distribution accuracy, but might affect out-of-distribution features.

Apart from these observations, our work is, to the best of our knowledge, the first to
empirically characterize the performance gap between adversarial and statistical noise in
the context of (IP). In particular, this gap is not exclusive to deep-learning-based schemes
but also appears for classical methods such as TV minimization. Our central conclusion is:

The existence of adversarial examples in classification tasks does not naturally
carry over to neural-network-based solvers for inverse problems. Such recon-
struction schemes may not only supersede classical methods as state of the art,
but they can also exhibit a similar degree of robustness.

Since our study as it is has required massive computational resources, some aspects have
to remain unexplored. In particular, given the sheer number of network architectures, we
explicitly do not claim that every deep-learning-based method is stable. Nevertheless, our
findings suggest that fairly standard workflows allow for surprisingly robust reconstruction
schemes. This offers an alternative and novel perspective on the reliability of deep learning
strategies in inverse problems. Therefore, we believe that the present work takes an
important step toward their safe use in practice.

8

1.3 Previous Publication of the Results in this Thesis

1.3 Previous Publication of the Results in this Thesis

The results presented in this thesis have previously been published by the author and his
collaborators or have been submitted for publication and are currently under review. All
publications and preprints on which the content of this thesis is based are listed below:

[Wäl+21] S. Wäldchen, J. Macdonald, S. Hauch, G. Kutyniok,
“The Computational Complexity of Understanding Binary Classifier Deci-

sions”,
Journal of Artificial Intelligence Research (70), pp. 351–387, 2021.

This work introduces the problem of determining small sets of relevant
variables for discrete classifiers (Boolean circuits) and provides an analysis of
its computational complexity. This is incorporated in Chapter 3.

[Mac+19] J. Macdonald, S. Wäldchen, S. Hauch, G. Kutyniok,
“A Rate-Distortion Framework for Explaining Neural Network Decisions”,
Preprint [arXiv: 1905.11092], 2019.

This work introduces the problem of determining relevance scores for the
variables of continuous classifiers (ReLU neural networks) and proposes a
heuristic solution strategy. This is incorporated in Chapter 4, in particular
Sections 4.3 and 4.4.

[Mac+20] J. Macdonald, S. Wäldchen, S. Hauch, G. Kutyniok,
“Explaining Neural Network Decisions Is Hard”,
Presented at XXAI Workshop, 37th International Conference on Machine Learning

(ICML), 2020.

This work extends the problem of determining small sets of relevant vari-
ables from discrete (Boolean circuits) to continuous classifiers (ReLU neural
networks) and provides an analysis of its computational complexity. This
is incorporated in Chapter 4, in particular Sections 4.1 and 4.2. Together
with [MBP21] this work also forms the basis for parts of the introduction
relating to interpretable classification, in particular in Section 1.1.

[MBP21] J. Macdonald, M. Besançon, S. Pokutta,
“Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps

and Relevance Orderings”,
Preprint [arXiv: 2110.08105], 2021.
Accepted for publication in the Proceedings of the 39th International Conference

on Machine Learning (ICML).

This work extends the heuristic solution strategy for determining relevance
scores for the variables of continuous classifiers (ReLU neural networks).
It proposes a constrained optimization formulation and evaluates different
algorithmic approaches for solving it. Additionally, a variation based on
relevance orderings instead of scores is introduced. This is incorporated in
Chapter 4, in particular Sections 4.3 and 4.4. Together with [Mac+20] this

9

Chapter 1 Introduction

work also forms the basis for parts of the introduction relating to interpretable
classification, in particular in Section 1.1.

[MW22] J. Macdonald, S. Wäldchen,
“A Complete Characterisation of ReLU-Invariant Distributions”,
Proceedings of the 25th International Conference on Artificial Intelligence and

Statistics (AISTATS) (151), pp. 1457–1484, 2022.

This work justifies an approximation step in the above heuristic solution
strategies by introducing the concept of ReLU-invariant families of probability
distributions and showing that these can only exist in a few degenerate cases.
This is incorporated in Chapter 5.

[GMM20] M. Genzel, J. Macdonald, M. März,
“Solving Inverse Problems With Deep Neural Networks – Robustness

Included?”,
Preprint [arXiv: 2011.04268], 2020.
Accepted for publication in IEEE Transactions on Pattern Analysis and Machine

Intelligence.

This work provides an extensive empirical study regarding the robustness of
deep-learning-based reconstruction methods for ill-posed inverse problems.
This is incorporated in Chapter 6. Together with [GMM21] this work also
forms the basis for parts of the introduction relating to robust and accurate
reconstructions, in particular in Section 1.2.

[GMM21] M. Genzel, J. Macdonald, M. März,
“AAPM DL-Sparse-View CT Challenge Submission Report: Designing an

Iterative Network for Fanbeam-CT with Unknown Geometry”,
Preprint [arXiv: 2106.00280], 2021.

This work shows that deep-learning-based reconstruction methods can achieve
near-exact recovery for an exemplary ill-posed inverse problem in an idealized
situation (with synthetic data and noiseless measurements). This is incorpo-
rated in Chapter 7. Together with [GMM20] this work also forms the basis for
parts of the introduction relating to robust and accurate reconstructions, in
particular in Section 1.2.

The author of this thesis is a main contributor to all of these works. He is jointly responsible
for their presentation and was involved in the development of all mathematical results
(including their proofs) as well as in the design and execution of the experiments as well
as the evaluation and interpretation of the experimental results.

10

1.4 Availability of Code

1.4 Availability of Code

The code for the numerical experiments in this thesis is publicly available.

1. Rate-Distortion Explanations (RDE)

https://github.com/jmaces/rde
This repository provides the code for computing RDE relevance scores. It forms the
basis for all experiments in Chapter 4 that do not involve Frank-Wolfe algorithms.

2. Frank-Wolfe for RDE

https://github.com/ZIB-IOL/fw-rde
This repository provides the code for solving the constrained optimization formula-
tion of computing RDE relevance scores and orderings with Frank-Wolfe algorithms.
It forms the basis for all experiments in Chapter 4 that do involve Frank-Wolfe
algorithms.

3. Assumed Density Filtering (ADF)

https://github.com/jmaces/keras-adf
This repository provides a Tensorflow [Mar+15]/Keras [Cho+15] implementation
of Assumed Density Filtering (ADF) for several types of common neural network
layers. It is used as a building block for the experiments in Chapter 4.

4. Statistics Utilities

https://github.com/jmaces/statstream
This repository provides utility code for computing various statistics from streaming
data. It is used as a building block for the experiments in Chapter 4 and described in
more detail in Appendix B.7.

5. Robust Neural Networks

https://github.com/jmaces/robust-nets
This repository provides the code for our analysis of the robustness of deep-learning-
based approaches to solving inverse problems. It forms the basis for all experiments
in Chapter 6.

6. AAPM Sparse-View CT Challenge

https://github.com/jmaces/aapm-ct-challenge
This repository provides the code for our winning submission to the AAPM Sparse-
View CT Challenge. It forms the basis for all experiments in Chapter 7.

The author of this thesis is a main contributor to all of these code repositories. In addition,
we rely on the following external software packages and toolboxes.

1. Tensorflow/Keras [Mar+15; Cho+15]
https://github.com/tensorflow/tensorflow
https://github.com/keras-team/keras
These repositories provide tools for automatic differentiation and for building and
training neural networks. We use Tensorflow/Keras as our main computational
framework for the experiments in Chapter 4.

11

https://github.com/jmaces/rde
https://github.com/ZIB-IOL/fw-rde
https://github.com/jmaces/keras-adf
https://github.com/jmaces/statstream
https://github.com/jmaces/robust-nets
https://github.com/jmaces/aapm-ct-challenge
https://github.com/tensorflow/tensorflow
https://github.com/keras-team/keras

Chapter 1 Introduction

2. PyTorch [Pas+17]
https://github.com/pytorch/pytorch
This repository provides tools for automatic differentiation and for building and
training neural networks. We use PyTorch as our main computational framework
for the experiments in Chapters 6 and 7.

3. iNNvestigate [Alb+18]
https://github.com/albermax/innvestigate
This repository provides implementations of multiple relevance mapping methods.
It is used for most comparison baselines in the experiments in Chapter 4.

4. SHAP [LL17]
https://github.com/slundberg/shap
This repository provides an implementation of the Shapley Additive Explanation
(SHAP) relevance mapping method. It is used for the SHAP comparison baselines in
the experiments in Chapter 4.

5. LIME [RSG16]
https://github.com/marcotcr/lime
This repository provides an implementation of the Local Interpretable Model-
Agnostic Explanations (LIME) relevance mapping method. It is used for the LIME
comparison baselines in the experiments in Chapter 4.

6. FrankWolfe.jl [BCP21]
https://github.com/ZIB-IOL/FrankWolfe.jl
This repository provides a Julia implementation of various variants of Frank-Wolfe
and Conditional Gradient algorithms for constrained optimization. It is used as a
building block for the Frank-Wolfe experiments in Chapter 4.

12

https://github.com/pytorch/pytorch
https://github.com/albermax/innvestigate
https://github.com/slundberg/shap
https://github.com/marcotcr/lime
https://github.com/ZIB-IOL/FrankWolfe.jl

2

Preliminaries and Notation

This chapter introduces general notations and notational conventions as well as definitions
that are required throughout the thesis. A lot of them are quite standard, so we will keep
this part short and refrain from providing lengthy formal definitions.

Vectors and Matrices. While vectors and matrices are denoted by lower- and uppercase
boldface symbols respectively, their components are correspondingly denoted as lowercase
symbols with subscript indices, e.g., x = (𝑥1 , . . . , 𝑥𝑛) ∈ R𝑛 and A =

[
𝑎𝑖 𝑗

]
∈ R𝑚×𝑛 with

𝑚, 𝑛 ∈ N. The identity matrix is I𝑛×𝑛 ∈ R𝑛×𝑛 and the 𝑛-dimensional vectors of all
zeros or ones are denoted 0𝑛 and 1𝑛 respectively. The standard basis vectors of R𝑛 are
e1 , . . . , e𝑛 . Further, A

⊤ ∈ R𝑛×𝑚 and A
† ∈ R𝑚×𝑛 are the transpose1 and the Moore-Penrose

pseudo-inverse of A respectively.
We set [𝑛] = {1, . . . , 𝑛} and for a vector x ∈ R𝑛 and a subset 𝑆 ⊆ [𝑛]we denote by x𝑆 the

restriction of x to components indexed by 𝑆, i.e., x𝑆 = (𝑥 𝑗)𝑗∈𝑆 ∈ R|𝑆 |. The set complement
of 𝑆 is 𝑆𝑐 = [𝑛] \ 𝑆.

We denote the diagonal matrix with entries given by x as diag(x) and use ⊙ (resp. ⊘) for
the component-wise Hadamard product (resp. quotient) of vectors or matrices of the same
dimension. We write x

2 = x ⊙ x for brevity and consider univariate functions applied to
vectors or matrices to act component-wise.

Spaces and Norms. Unless stated otherwise, we are working in Euclidean R𝑛 with the
standard scalar product ⟨x, y⟩ = x

⊤
y and induced norm ∥x∥2 =

√
⟨x, x⟩. Similarly, ∥x∥𝑝

denotes the usual ℓ𝑝-norm for any 𝑝 ∈ [1,∞].
The space R𝑚×𝑛 of matrices is equipped with the scalar product ⟨A,B⟩ = tr(A⊤B)where

tr(·) denotes the trace of a square matrix. For a subset 𝑈 ⊆ R𝑛 we denote the linear
subspace spanned by𝑈 as span(𝑈), the affine subspace spanned by𝑈 as aff(𝑈), and the
convex hull of𝑈 as conv(𝑈).

Probability Distributions and Random Variables. We use the notation ℬ(R𝑛) for the
Borel 𝜎-Algebra on R𝑛 and𝒟(R𝑛) for the set of Radon2 Borel probability measures on R𝑛 .
Given a measure 𝜇 ∈ 𝒟(R𝑛) and a measurable function 𝑓 : R𝑛 → R𝑛 the pushforward of 𝜇
with respect to 𝑓 is denoted 𝑓∗𝜇 and defined as 𝑓∗𝜇(𝐵) = 𝜇(𝑓 −1(𝐵)) for 𝐵 ∈ ℬ(R𝑛).

The uniform distribution on a domain Ω ⊆ R𝑛 is 𝒰(Ω). Most important for us
are 𝒰({0, 1}𝑛) and 𝒰([0, 1]𝑛), that is the uniform distributions on {0, 1}𝑛 and [0, 1]𝑛

1For a complex matrix A ∈ C𝑚×𝑛 we denote the conjugate transpose as A
∗ ∈ C𝑚×𝑛 . This will only arise in

the context of Fourier measurements in Chapter 6. Everywhere else we consider real matrices and vectors.
2In fact R𝑛 is a separable complete metric space, thus every Borel probability measure is automatically a

Radon measure.

13

Chapter 2 Preliminaries and Notation

respectively. The normal distribution with mean vector 𝝁 ∈ R𝑛 and covariance matrix
𝚺 ∈ R𝑛×𝑛 is notated as𝒩(𝝁,𝚺).

Finally, P[. . .], E[. . .], and V[. . .] refer to the probability of some event, and the expected
value and (co-)variance of a random variable (or random vector) respectively.

Boolean Functions and Circuits. Throughout, Ψ : {0, 1}𝑛 → {0, 1} denotes an 𝑛-ary
Boolean function. In contrast, functions on continuous domains, such as neural networks,
will be denoted Φ (see below). We refer to Ψ as a Boolean circuit when its description is
in terms of standard logical gates like And, Or, and Not. The description length is the
number of gates.

We use the usual symbols ∧, ∨, ¬, and ⊕ for the logical conjunction, disjunction,
negation, and exclusive disjunction respectively. Further, we will use Boolean functions
also interchangeably as logical propositions, in the sense that Ψ(x) is shorthand for the
logical proposition Ψ(x) = 1. Whenever we discuss statements concerning probabilities of
logical propositions to hold, we assume independent uniform distributions for all involved
variables. Thus,

Pz [Ψ(z)] = Pz∼𝒰({0,1}𝑛) [Ψ(z)] =
|{ z ∈ {0, 1}𝑛 : Ψ(z) = 1 }|

|{ z ∈ {0, 1}𝑛 }| ,

and, conditioned to some event 𝐴(z),

Pz [Ψ(z) | 𝐴(z)] = Pz∼𝒰({0,1}𝑛) [Ψ(z) | 𝐴(z)] =
|{ z ∈ {0, 1}𝑛 : Ψ(z) = 1, 𝐴(z) = 1 }|
|{ z ∈ {0, 1}𝑛 : 𝐴(z) = 1 }| .

We omit the subscript whenever it is clear from the context over which variables the
probability is taken. If the probability is taken over all variables of a Boolean function, we
simply write P[Ψ] instead of Pz[Ψ(z)].

Neural Networks. There are countless different variations of neural network architectures,
however for the most part we will only require a precise notation for sets of simple feed-
forward neural networks. In their basic form these consist of alternating affine linear
maps and simple component-wise non-linear functions, called activation functions. Both
the domain and co-domain are assumed to be (subsets of) finite dimensional Euclidean
spaces.

Definition 2.1. Let 𝐿 ∈ N and 𝑛0 , . . . , 𝑛𝐿 ∈ N. Then

𝒩𝒩𝑛0 ,...,𝑛𝐿
𝐿,𝜚 ,𝜎 =

{
Φ : R𝑛0 → R𝑛𝐿 : Φ = Φ𝐿 ◦ · · · ◦Φ1 ,

Φ𝑗(x) = 𝜚(W𝑗x + b𝑗),W𝑗 ∈ R𝑛 𝑗×𝑛 𝑗−1 , b𝑗 ∈ R𝑛 𝑗 for 𝑗 = 1, . . . , 𝐿 − 1,
Φ𝐿(x) = 𝜎(W𝐿x + b𝐿),W𝐿 ∈ R𝑛𝐿×𝑛𝐿−1 , b𝐿 ∈ R𝑛𝐿

}
denotes the set of neural networks with 𝐿 layers of widths (𝑛0 , . . . , 𝑛𝐿) and with activation
functions 𝜚 : R→ R and 𝜎 : R→ R.

Each Φ𝑗 is referred to as a network layer and 𝐿 as the depth of the networks. The matrix W𝑗

and vector b𝑗 are called the weight matrix and bias vector of the 𝑗-th layer respectively. The

14

Chapter 2 Preliminaries and Notation

collection of all weights and biases are the free parameters of the networks that need to
be optimized when using a neural network in a supervised empirical risk minimization
problem. They are also sometimes collectively only referred to as the weights of the
network. The rectified linear unit (ReLU) [NH10; GBB11], defined as 𝜚(𝑥) = max{0, 𝑥}, has
emerged as the dominant choice for activation functions as of today [RZL17]. Allowing a
different activation 𝜎 in the last layer is often useful, especially in classification problems
(here the softmax function is frequently used [Bri89; Bri90]). For the special case of
networks with only one activation function and equally wide layers we introduce the
abbreviated notation𝒩𝒩𝑛

𝐿,𝜚 = 𝒩𝒩𝑛,...,𝑛
𝐿,𝜚 ,𝜚 . For the set of all neural networks with specified

input and output dimensions but arbitrary (finite) depth and intermediate layer widths
we denote𝒩𝒩𝑛in ,∗,𝑛out

∗,𝜚 ,𝜎 =
⋃
𝐿∈N

⋃
𝑛1 ,...,𝑛𝐿−1∈N𝒩𝒩

𝑛in ,𝑛1 ,...,𝑛𝐿−1 ,𝑛out
𝐿,𝜚 ,𝜎 .

Besides the simple affine linear (also called fully-connected) layers, many other types
of network layers have been proposed: convolutional layers [Fuk80; LeC+89] enforce a
sparsity pattern on the weight matrix so that it represents a convolution operation. This
drastically reduces the number of free parameters and is frequently used in large networks
(especially for image signals). Pooling layers [Fuk80; Yam+90] are alternative non-linear
maps that do not act component-wise but aggregate information over small neighborhoods
of components. This reduces the width of subsequent layers and thus also reduces the
number of free parameters. Other commonly used building-blocks in deep learning
architectures are normalization layers, such as batch-normalization [IS15] or group-
normalization [WH18], skip connections that link non-adjacent layers, or probabilistic
layers such as dropout [Sri+14]. A more detailed description of these operations is not
necessary at this point. For a comprehensive overview of neural networks the interested
reader is referred to [GBC16; Nie18].

15

I

Classification Tasks

3

Interpretability of Boolean Circuit Classifiers

Even though ultimately our goal is to analyze the interpretability of the immensely
important class of (ReLU) neural network classifiers, we begin our analysis for Boolean
function classifiers instead. For this, we extend the concept of prime implicants [Mar91;
Mar00] for Boolean functions to a probabilistic setting, which formalizes existing practical
attempts to interpret neural network classifiers. Neural networks can be seen as continuous
generalizations of Boolean circuits, as visualized in Figure 3.1, and the extension of the
results of this chapter to neural networks is discussed in Chapter 4.

Algorithmic problem solving in real-world scenarios often requires reasoning in an
uncertain environment. This necessity leads to the investigation of probabilistic satisfiability
problems and probabilistic computational complexity classes such as PP and NPPP. One
prototypical example, the E-Maj-Sat problem [LGM98; LMP01], is an extension of the
classical satisfiability problem that includes an element of model counting. The class of
NPPP-complete problems contains many relevant artificial intelligence (AI) problems such
as probabilistic conformant planning [LGM98], calculating maximum expected utility
(MEU) solutions [CJ08], and maximum a posteriori (MAP) hypotheses [Par02].

In this chapter we connect these probabilistic reasoning tasks to a key problem in
machine learning, namely the problem of interpreting the decisions of classifier functions.
A significant first step toward understanding classifier decisions is to distinguish the
relevant input variables from the less relevant ones for a specific prediction, as illustrated
in Figure 3.2.

A stringent logical concept that captures the idea of relevance for Boolean circuits are
prime implicant explanations [SCD18]. These consist of subsets of the input variables that,
if held fixed, guarantee that the function value remains unchanged, independent of the
assignment to the rest of the variables. The problem of finding small prime implicants is
NPcoNP-hard [EG95], and practical algorithms rely on highly optimized Sat or MILP-solvers
even for relatively low-dimensional cases [INM19]. In general, since the classifier function
is considered fixed within each problem instance, such complexity results carry over to
all types of classifiers that are able to efficiently represent Boolean circuits. As briefly
mentioned above, this includes the prominent example of ReLU neural networks.

Prime implicant explanations can be seen as a type of explanation under worst-case
conditions: the explaining set of variables is required to be sufficient for the function value
to remain unchanged for all possible assignments to the other variables.

In this work, we argue to relax this notion and allow the function value to change with a
small probability over random assignments to the non-relevant variables. This has two
main reasons. First, a worst case analysis might be feasible for binary classifiers of a
few variables, but it is too rigid for very high dimensional cases, such as modern image
classification. In many cases, it would lead to unnecessarily large sets of relevant variables
that are not able to pinpoint the true importance of variables. This is explained in more

19

Chapter 3 Interpretability of Boolean Circuit Classifiers

Ψ(𝑥1 , 𝑥2 , 𝑥3)

∨

∧

𝑥1 𝑥2

¬

𝑥3

+1

+1

−1 +1

𝑥1 𝑥2 𝑥3

+1 +1 −1

−1 −1

−1

−𝜚
©«
[
−1 −1

]
𝜚
©«

1 1 0

0 0 −1

𝑥1

𝑥2

𝑥3

 +

−1

1

ª®®®¬ + 1

ª®®®¬ + 1

(a) (b) (c)

Figure 3.1: Boolean Circuits and Neural Networks. The ternary Boolean function defined as
Ψ(𝑥1 , 𝑥2 , 𝑥3) = (𝑥1 ∧ 𝑥2) ∨ (¬𝑥3) viewed as a Boolean circuit (a) and a rectified linear unit
(ReLU) neural network in its graphical (b) and algebraic representation (c). The neural network
weights and biases are denoted at the edges and nodes respectively. The ReLU activation
𝜚(𝑥) = max{𝑥, 0} is applied component-wise.

0 1 0 0 0 0 1 0

Ψ

1

∗ ∗ 0 0 0 ∗ ∗ ∗

Ψ

1

Figure 3.2: Illustration of Relevant Sets. The Boolean function Ψ : {0, 1}8 → {0, 1} decides if a
binary input string contains a substring of three consecutive zeros. A relevant subset of input
variables for an exemplary input is highlighted by a box. In this simple case the three consecutive
zeros are relevant, because it is sufficient to know them to predict the decision made by Ψ,
independent of all other input variables. Note, that in this example the relevant set is not unique,
as there are two sets of three consecutive zeros.

detail in Section 3.1.1. Secondly, practical heuristic algorithms for determining sets of
important variables [FV17; RSG18; Kho+19] as well as methods to numerically evaluate and
compare them [FV17; Sam+17; ZF14], already implicitly rely on this relaxed probabilistic
formulation of relevance. They estimate the expected change in the function value via
random sampling of non-relevant variables. Thus, practical interpretation algorithms
necessarily need to solve the problem defined in the next section and are subject to our
hardness results. A rigorous analysis of this setting is long overdue and of high importance.

3.1 The 𝛿-Relevant-Input Problem

Let us now give a formal definition of our probabilistic notion of prime implicant
explanations and state the two main results of this chapter.

For this let Ψ be an 𝑛-ary Boolean function and x ∈ {0, 1}𝑛 . A subset 𝑆 ⊆ [𝑛] of variables
is relevant for the function valueΨ(x) if fixing x on 𝑆 and randomizing it on the complement

20

3.1 The 𝛿-Relevant-Input Problem

𝑆𝑐 does not change the value of Ψ with high probability. The complement then consists of
the non-relevant variables.

Definition 3.1. Let Ψ : {0, 1}𝑛 → {0, 1}, x ∈ {0, 1}𝑛 , and 𝛿 ∈ [0, 1]. We call 𝑆 ⊆ [𝑛] a
𝛿-relevant set for Ψ and x, if Pz [Ψ(z) = Ψ(x) | z𝑆 = x𝑆] ≥ 𝛿.

For 𝛿 close to one this means that the input x supported on 𝑆 already determines the
output Ψ(x)with high probability.

Remark 3.2. For 0 ≤ 𝛿1 ≤ 𝛿2 ≤ 1, any 𝛿2-relevant set is also 𝛿1-relevant. Further, any
𝑆 ⊆ [𝑛] is always zero-relevant and the set 𝑆 = [𝑛] is always one-relevant. In particular
[𝑛] is 𝛿-relevant for all 𝛿 ∈ [0, 1].

Now, the question arises whether for a given 𝛿 there exists a 𝛿-relevant set of a certain
size. Similarly, one could ask to find the smallest 𝛿-relevant set. This set would then be
composed of the most important variables for the function value Ψ(x). This introduces a
trade-off since a larger 𝛿 will generally require a larger set 𝑆.

Definition 3.3. For 𝛿 ∈ (0, 1]we define the 𝛿-Relevant-Input problem as follows.

Given: A Boolean circuit Ψ : {0, 1}𝑛 → {0, 1}, a signal x ∈ {0, 1}𝑛 , and 𝑘 ∈ [𝑛].

Decide: Does there exist 𝑆 ⊆ [𝑛]with |𝑆 | ≤ 𝑘 such that 𝑆 is 𝛿-relevant for Ψ and x?

Note that in our formulation 𝛿 is not a part of the problem instance, but instead each choice
of 𝛿 represents a problem class, similar to 𝑘-SAT for different values of 𝑘. We show that
the problem is hard for any fixed 𝛿. The minimization formulation of the above decision
problem can be defined in the obvious way.

Definition 3.4. For 𝛿 ∈ (0, 1] we define the Min-𝛿-Relevant-Input problem as follows.

Given: A Boolean circuit Ψ : {0, 1}𝑛 → {0, 1} and a signal x ∈ {0, 1}𝑛 .

Task: Find the minimal 𝑘 ∈ N such that there exist 𝑆 ⊆ [𝑛] with |𝑆 | ≤ 𝑘 and so that 𝑆
is 𝛿-relevant for Ψ and x.

The majority of the remainder of the chapter will deal with analyzing the computational
complexity of 𝛿-Relevant-Input, Min-𝛿-Relevant-Input, and related variants thereof. The
first main contribution of this chapter shows that the 𝛿-Relevant-Input problem is generally
hard to solve.

Theorem 3.5. For 𝛿 ∈ (0, 1) the 𝛿-Relevant-Input problem is NPPP
-complete.

Intuitively, the NP part of the problem complexity arises from the necessity to check
all subsets 𝑆 ⊆ [𝑛] as possible candidates for being 𝛿-relevant. The PP part of the
complexity arises from the fact that for any given set 𝑆 checking if it is 𝛿-relevant is by
itself a hard (in fact PP-hard)1 problem. The problem class NPPP is beyond the scope of

1Checking if a subset is one-relevant is in coNP instead of PP. Thus, we excluded 𝛿 = 1 in Theorem 3.5.

21

Chapter 3 Interpretability of Boolean Circuit Classifiers

conventional computing. In particular, Min-𝛿-Relevant-Input is at least as hard to solve as
the corresponding decision problem, which makes it unfeasible to solve exactly. However,
in applications it is rarely required to exactly find the smallest relevant set. It would be
desirable to obtain good approximate solutions within feasible computational complexity.

We present two potential ways for simplifying the problem by allowing approximations:
First, we relax the requirement that a solutions set has to be exactly 𝛿-relevant. Secondly,
we allow an approximation of the the minimal relevant set in terms of its size. The former
would address the PP part whereas the latter would address the NP aspect.

Calculating probabilities or expectation values may be hard in theory, yet it is often
easy to calculate them (approximately) in practice, e.g., by sampling. Checking whether a
logical proposition is satisfied with probability more than 𝛿 by sampling only fails if the
true probability can be arbitrarily close to 𝛿 both from above and below. These edge cases
cause the hardness of the problem, but in our scenario we do not necessarily care about
their resolution. We make this notion formal by stating a promise version of our problem
where, if the true probability is smaller than 𝛿, it will be smaller by at least 𝛾 with 0 ≤ 𝛾 < 𝛿.
We refer to this as the 𝛾-Gapped-𝛿-Relevant-Input problem and it is formally defined in
Section 3.3. We will see that for positive 𝛾 this reduces the problem complexity from NPPP

to NPBPP. The associated optimization problem is called Min-𝛾-Gapped-𝛿-Relevant-Input
and made formal in the same section. Unfortunately, even in this simplified case, it remains
NP-hard to approximate the size of the optimal set 𝑆 within any reasonable approximation
factor.

Theorem 3.6. Let 𝛿 ∈ (0, 1) and 𝛾 ∈ [0, 𝛿). Then, for any 𝛼 ∈ (0, 1) there is no polynomial

time approximation algorithm for Min-𝛾-Gapped-𝛿-Relevant-Input with an approximation

factor of 𝑛1−𝛼
unless P = NP.

The complete proofs of both main theorems as well as formal definitions, detailed
discussions, and analyses of the problem variants are given in Section 3.2 and Section 3.3.
Already here, we can draw an important corollary which follows from Theorem 3.6 for the
special case 𝛾 = 0.

Corollary 3.7. Let 𝛿 ∈ (0, 1). Then for any 𝛼 ∈ (0, 1) there is no polynomial time

approximation algorithm for the Min-𝛿-Relevant-Input problem with an approximation factor

of 𝑛1−𝛼
unless P = NP.

3.1.1 Related Concepts

Prime Implicant Explanations. A concept closely related to 𝛿-relevant sets are prime
implicant explanations [SCD18]. An implicant explanation of Ψ(x) is a subset 𝑆 of the
variables such that x𝑆 is sufficient for Ψ(x). In other words, any completion z satisfying
z𝑆 = x𝑆 yields Ψ(z) = Ψ(x). In our terminology, implicants are precisely the one-relevant
sets. A prime implicant is an implicant that is minimal with respect to set inclusion and
can therefore not be reduced further. The 𝛿-Relevant-Input problem with 𝛿 = 1 answers
the question if there exists a prime implicant of size at most 𝑘. This is known to be hard
for NPcoNP [EG95] in general. However, certain representations of Boolean functions such
as Binary Decision Diagrams (BDD) [Ake78] allow for an efficient search over the prime
implicants [CM92; MOM98].

22

3.1 The 𝛿-Relevant-Input Problem

As already briefly mentioned, the case 𝛿 = 1 is often too strict, especially for high-
dimensional problems as commonly found in modern machine learning. Let us illustrate
this with the task of image classification as an example. In this case, often small regions
of the input image can be manipulated in a way that changes a classifier prediction, e.g.,
through adversarial patches [Bro+17; Liu+18]. Thus, prime implicants will have to cover
large portions of the input image, independent of the size of the actual object in the image
that led to the original classifier prediction.

Thus, we extend the complexity analysis for 𝛿 < 1, which adds a model counting compo-
nent. Although model counting can be done efficiently for various classes of representations
of Boolean functions, such as BDDs [Bry86], deterministic Decomposable Negation Normal
Forms (d-DNNF) [Dar00], and Sentential Decision Diagrams (SDD) [Dar11], this alone
does not solve the inapproximability of our problem as we will prove in Section 3.3.2.
Going further, we do not see a straightforward way to extend the prime implicant finding
algorithm of [CM92] for BDDs to our problem setting with 𝛿 < 1. The basic observation
underlying the algorithm is that a set of variables not containing 𝑥 𝑗 is an implicant for Ψ(x)
exactly if it is an implicant for both Ψ(𝑥1 , . . . , 𝑥 𝑗 = 0, . . . , 𝑥𝑛) and Ψ(𝑥1 , . . . , 𝑥 𝑗 = 1, . . . , 𝑥𝑛).
This is not true for 𝛿-relevance.

Sufficient Explanations. Khosravi et al. introduced sufficient explanations for binary
decision functions obtained from thresholding a continuous prediction model, e.g., a logistic
regression classifier [Kho+19]. As in our approach, the authors consider a probabilistic
version of the prime implicant problem. In this case, the classification decision is required
to remain unchanged in expectation instead of for all possible assignments to the non-fixed
variables. More precisely, let Φ : 𝒳 → [0, 1] be a continuous prediction model on a domain
𝒳 (e.g., a logistic regression model), 𝜃 : [0, 1] → {0, 1} be a binarization function (e.g.,
thresholding at 0.5), and𝒟 be a distribution on𝒳. A variable 𝑥 𝑗 of an input x ∈ 𝒳 is called
a supporting variable, if{

Ez∼𝒟
[
Φ(z)

��
z{ 𝑗}𝑐 = x{ 𝑗}𝑐

]
≤ Φ(x) if 𝜃(Φ(x)) = 1,

Ez∼𝒟
[
Φ(z)

��
z{ 𝑗}𝑐 = x{ 𝑗}𝑐

]
> Φ(x) if 𝜃(Φ(x)) = 0.

In other words, randomizing 𝑥 𝑗 conditioned on fixing all other variables does not increase
the classification margin in expectation. A sufficient explanation is a cardinality minimal
subset 𝑆 of all supporting variables satisfying

𝜃(Ez∼𝒟 [Φ(z) | z𝑆 = x𝑆]) = 𝜃(Φ(x)).

For an already binary function Φ and 𝒟 = 𝒰({0, 1}𝑑), this approach is essentially the
same as finding small 1

2 -relevant sets. The only difference is that sufficient explanations
only consider subsets of supporting variables, while we make no such distinction. This is
however a minor difference and we conjecture that our hardness results carry over.

Anchors. Anchors were introduced recently by Ribeiro, Singh, and Guestrin as local
model-agnostic explanations [RSG18]. Given a generic function Φ : 𝒳 → 𝒴 from a domain
𝒳 to a codomain𝒴 (e.g., a set of class labels) and a threshold 𝛿 ∈ [0, 1], an anchor for an
input x ∈ 𝒳 is some predicate 𝐴 : 𝒳 → {0, 1} satisfying

𝐴(x) = 1 and Pz∼𝒟x
[Φ(z) = Φ(x) | 𝐴(z)] ≥ 𝛿,

23

Chapter 3 Interpretability of Boolean Circuit Classifiers

where 𝒟x is a local distribution in the neighborhood of x. The description of feasible
predicates 𝐴 is rather vague, however the predicates explicitly considered by [RSG18] are
of the form

𝐴(z) =
{

1 if z𝑆 = x𝑆 ,

0 otherwise,

for some subset 𝑆 of the variables in 𝒳, just as in our formulation. Choosing the domain
𝒳 = {0, 1}𝑑 and codomain𝒴 = {0, 1}, the only difference to our 𝛿-Relevant-Input problem
is that we consider a global uniform distribution instead of local perturbations around x.
Ribeiro, Singh, and Guestrin suggested to search for an anchor with the largest possible
coverage, defined as coverage(𝐴) = Pz∼𝒟x

[𝐴(z)]. For the uniform distribution this is
exactly equivalent to searching for the smallest set 𝑆. We conjecture that our hardness
results carry over to the problem of finding anchors for many possible perturbation
distributions𝒟x.

Shapley Values. Another concept for measuring the relevance or the contribution of
individual variables to a collective are the Shapley values [Sha53] in cooperative game
theory. Here, the variables are seen as players of a coalitional game, and the Shapley
values describe a method to distribute the value achieved by a coalition of players to the
individual players. This distribution fulfills a set of game theoretic properties that make it
“fair”.

Let 𝜈 : 2[𝑛] → R be a function that assigns a value to each subset of variables (coalition
of players). It is called the characteristic function of the game. Then, the Shapley value of
the 𝑗-th variable (𝑗-th player) is defined as

𝜑 𝑗 ,𝜈 =
∑

𝑆⊆[𝑛]\{ 𝑗}

|𝑆 |!(𝑛 − |𝑆 | − 1)!
𝑛! (𝜈(𝑆 ∪ { 𝑗}) − 𝜈(𝑆)),

which can be interpreted as the marginal contribution of the 𝑗-th variable to the value
𝜈 averaged over all possible coalitions. In general it is #P-hard to compute Shapley
values [DP94]. However, in some cases efficient approximation algorithms exist [FWJ08].

In our scenario the value of a subset of variables 𝑆 can be measured by the expected
difference in Ψ when fixing variables in 𝑆 and randomizing the remaining variables.
In [TK10] it was proposed to use

𝜈(𝑆) = 1
2𝑛−|𝑆 |

∑
z∈{0,1}𝑛

z𝑆=x𝑆

Ψ(z) − Ez [Ψ(z)]

for the analysis of classifier decisions, which uses the expectation of the completely
randomized classifier score as a reference value to determine the coalition value. We
observe that

Pz [Ψ(z) = Ψ(x) | z𝑆 = x𝑆] = 1 − 1
2𝑛−|𝑆 |

∑
z∈{0,1}𝑛

z𝑆=x𝑆

|Ψ(z) −Ψ(x)|

= 1 − |𝜈(𝑆) + Ez [Ψ(z)] −Ψ(x)|,

24

3.2 Computational Complexity Analysis

hence 𝑆 ⊆ [𝑛] is 𝛿-relevant for Ψ and x exactly if |𝜈(𝑆) + Ez [Ψ(z)] −Ψ(x)| ≤ 1 − 𝛿.
Despite this relation between 𝛿-relevant sets and the characteristic function 𝜈 our

problem formulation is considerably different from the Shapley value approach. The task
considered in this chapter is not to distribute the value of coalitions amongst the variables
but to find (small) coalitions that are guaranteed to have a certain value.

3.2 Computational Complexity Analysis

Recall the first main theorem of this chapter, which shows that the 𝛿-Relevant-Input
problem is generally hard to solve for 𝛿 ∈ (0, 1).

Theorem 3.5. For 𝛿 ∈ (0, 1) the 𝛿-Relevant-Input problem is NPPP
-complete.

The proof of Theorem 3.5 will be split into two parts. We will show that 𝛿-Relevant-Input
is NPPP-hard in Section 3.2.1 and that it is contained in NPPP in Section 3.2.2.

3.2.1 𝛿-Relevant-Input is NPPP
-hard

We now give the first part of the proof of Theorem 3.5. This is done by constructing
a polynomial-time reduction of a NPPP-complete problem to 𝛿-Relevant-Input. The
canonical complete problem for NP is the Boolean-satisfiability-problem [Coo71].

Definition 3.8. The Sat problem is defined as follows.

Given: A Boolean function Ψ : {0, 1}𝑛 → {0, 1} in conjunctive normal form (CNF).

Decide: Does there exist x ∈ {0, 1}𝑛 such that Ψ(x) = 1?

An extension of Sat, the majority-satisfiability-problem, is the canonical complete problem
for PP [Gil74; Sim75].

Definition 3.9. The Maj-Sat problem is defined as follows.

Given: A Boolean function Ψ : {0, 1}𝑛 → {0, 1} in conjunctive normal form (CNF).

Decide: Does Px [Ψ(x)] > 1
2 hold?

Finally, the canonical complete problem for NPPP is a further extension, called the exists-
majority-satisfiability-problem. It was defined and proven NPPP-complete in [LGM98].

Definition 3.10. The E-Maj-Sat problem is defined as follows.

Given: A Boolean function Ψ : {0, 1}𝑛 → {0, 1} in conjunctive normal form (CNF)
and 𝑘 ∈ [𝑛].

Decide: Does there exist x ∈ {0, 1}𝑘 such that Pz

[
Ψ(z)

��
z[𝑘] = x

]
> 1

2?

25

Chapter 3 Interpretability of Boolean Circuit Classifiers

Remark 3.11. Sat, Maj-Sat, and E-Maj-Sat are the prototypical complete problems for
the complexity classes NP, PP, and NPPP respectively. While Sat asks only for the
existence of a satisfying variable assignment Maj-Sat asks whether the majority of
variable assignments is satisfying. Note that the Sat decision can also be rephrased
in terms of probabilities by asking if Px [Ψ(x)] > 0 holds. Finally, E-Maj-Sat asks for
the existence of a fixed partial assignment to the first 𝑘 variables such the majority of
assignments to the remaining (𝑛 − 𝑘) variables is satisfying. Maj-Sat can be seen as a
special case of E-Maj-Sat with 𝑘 = 0.

Three hurdles must be overcome if we want to reduce E-Maj-Sat to the 𝛿-Relevant-Input
problem.

1. Instead of freely assigning values to a subset of variables we are given an assignment
to all variables and can only choose which to fix and which to randomize.

2. Instead of assigning values to a given set of 𝑘 variables we can freely choose the set 𝑆
of size at most 𝑘.

3. Instead of checking whether the majority of assignments satisfies Ψ we check if the
fraction of satisfying assignments is greater than or equal to some 𝛿.

We address each of these and give a chain of polynomial-time reductions

E-Maj-Sat ⪯𝑝 IP1 ⪯𝑝 IP2 ⪯𝑝 𝛿-Relevant-Input (3.1)

in three steps with intermediate auxiliary problems IP1 and IP2. The following observations
will turn out to be useful.

Remark 3.12. Let Ψ1 and Ψ2 be two Boolean functions, not necessarily of different
variables. Then

P [Ψ2] = 0 =⇒ P [Ψ1 ⊕Ψ2] = P [Ψ1] ,
P [Ψ2] = 1 =⇒ P [Ψ1 ⊕Ψ2] = 1 − P [Ψ1] ,

and if Ψ1 and Ψ2 are independent, that is P [Ψ1 ∧Ψ2] = P [Ψ1]P [Ψ2], also

P [Ψ2] =
1
2 =⇒ P [Ψ1 ⊕Ψ2] =

1
2 .

Lemma 3.13. For 𝑘 ∈ N let

EQ: {0, 1}𝑘 × {0, 1}𝑘 → {0, 1} : (u, v) ↦→
𝑘∧
𝑗=1
¬(𝑢𝑗 ⊕ 𝑣 𝑗)

and

FLIP: {0, 1}𝑘 × {0, 1}𝑘 × {0, 1} → {0, 1} : (u, v, 𝑡) ↦→ ©«
𝑘∨
𝑗=1
(𝑢𝑗 ⊕ 𝑣 𝑗)ª®¬ ∧ 𝑡.

26

3.2 Computational Complexity Analysis

Then for any Ψ : {0, 1}𝑘 × {0, 1}𝑛−𝑘 → {0, 1} and 𝐴 : {0, 1}𝑘 × {0, 1}𝑘 → {0, 1} with

P [𝐴(u, v) ∧ EQ(u, v)] > 0, and P [𝐴(u, v) ∧ ¬EQ(u, v)] > 0,

we have

P [Ψ(u, r) ⊕ FLIP(u, v, 𝑡) | 𝐴(u, v)] > 1
2 ⇐⇒ P [Ψ(u, r) | EQ(u, v), 𝐴(u, v)] > 1

2 .

The condition EQ determines whether u = v or not. As soon as there exists a 𝑗 with
𝑢𝑗 ≠ 𝑣 𝑗 , FLIP(u, v, 𝑡) has the value of 𝑡, which is 1 with probability 1

2 . That means by
modulo-adding FLIP to Ψ we only have to consider the cases where u = v to decide
whether the majority of assignments to Ψ evaluates to true. This is independent from any
additional condition 𝐴(u, v).

Proof. We observe that FLIP can be rewritten as FLIP(u, v, 𝑡) = ¬EQ(u, v)∧ 𝑡 and therefore

P [FLIP | EQ] = 0 and P [FLIP | ¬EQ] = 1
2 .

Further, Ψ | 𝐴 and FLIP | 𝐴 are conditionally independent given ¬EQ since in this case
FLIP depends only on 𝑡. Thus, we obtain from Remark 3.12 that

P [Ψ ⊕ FLIP | 𝐴, EQ] = P [Ψ | 𝐴, EQ] and P [Ψ ⊕ FLIP | 𝐴,¬EQ] = 1
2 .

Therefore,

P [Ψ ⊕ FLIP | 𝐴] = P [Ψ ⊕ FLIP | 𝐴, EQ]P [EQ] + P [Ψ ⊕ FLIP | 𝐴,¬EQ]P [¬EQ]

= P [Ψ | 𝐴, EQ]P [EQ] + 1
2 (1 − P [EQ])

=
1
2 +

(
P [Ψ | 𝐴, EQ] − 1

2

)
P [EQ] ,

which finally implies that P [Ψ ⊕ FLIP | 𝐴] > 1
2 if and only if P [Ψ | 𝐴, EQ] > 1

2 .

Fixing or Randomizing Variables

Let us now come to the first step of the reductive chain (3.1). In this, we translate the
possibility of freely assigning the first 𝑘 variables into the choice of fixing or randomizing
variables from a given assignment. This choice is however still restricted to the first 𝑘
variables.

Definition 3.14. We define the Intermediate Problem 1 (IP1) as follows.

Given: A Boolean circuit Ψ : {0, 1}𝑛 → {0, 1}, a signal x ∈ {0, 1}𝑛 , and 𝑘 ∈ [𝑛].

Decide: Does there exist 𝑆 ⊆ [𝑘] such that Pz [Ψ(z) | z𝑆 = x𝑆] > 1
2?

In other words, IP1 asks the questions whether there exists a subset of the first 𝑘 variables
of Ψ such that fixing these to the values given by x implies that the majority of assignments
to the remaining variables satisfies Ψ.

27

Chapter 3 Interpretability of Boolean Circuit Classifiers

Lemma 3.15. We have E-Maj-Sat ⪯𝑝 IP1. In particular, IP1 is NPPP
-hard.

Proof. Let {Ψ, 𝑘} be an E-Maj-Sat instance. With a slight abuse of notation we denote by
Ψ : {0, 1}𝑛 → {0, 1} the Boolean circuit representation corresponding to the CNF formula
of the E-Maj-Sat instance. From now on we will not distinguish between Ψ and the CNF
formula that it represents. We will construct {Ψ′, x′, 𝑘′} that is a Yes-instance for IP1 if and
only if {Ψ, 𝑘} is a Yes-instance for E-Maj-Sat. For convenience we split the 𝑛 variables of Ψ
into the first 𝑘 variables and the remaining 𝑛 − 𝑘 variables and denote this Ψ(x) = Ψ(u, r).
The main idea is to duplicate the first 𝑘 variables and choose x

′ in such a way that fixing
the original variables or their duplicates corresponds to assigning zeros or ones in the
E-Maj-Sat instance respectively. More precisely, we define

▶ Ψ′ : {0, 1}𝑘 × {0, 1}𝑘 × {0, 1}𝑛−𝑘 × {0, 1} → {0, 1} : (u, v, r, 𝑡) ↦→ Ψ(u, r) ⊕ FLIP(u, v, 𝑡),

▶ x
′ = (0𝑘 , 1𝑘 , 0𝑛−𝑘 , 0) ∈ {0, 1}𝑘 × {0, 1}𝑘 × {0, 1}𝑛−𝑘 × {0, 1},

▶ 𝑘′ = 2𝑘,

with FLIP defined as in Lemma 3.13. This is a polynomial time construction.

Necessity. Assume that {Ψ, 𝑘} is a Yes-instance for E-Maj-Sat. Then, there exists an
assignment u

∗ ∈ {0, 1}𝑘 to the first 𝑘 variables of Ψ such that Pr [Ψ(u∗ , r)] > 1
2 . Now, we

can choose 𝑆′ = { 𝑗 ∈ [𝑘] : 𝑢∗
𝑗
= 0 } ∪ { 𝑗 ∈ [2𝑘] \ [𝑘] : 𝑢∗

𝑗−𝑘 = 1 } ⊆ [𝑘′] = [2𝑘]. Let

𝐴 : {0, 1}𝑘 × {0, 1}𝑘 → {0, 1} : (u, v) ↦→ ©«
∧

𝑗∈𝑆′∩[𝑘]
¬𝑢𝑗ª®¬ ∧ ©«

∧
𝑗∈𝑆′∩([2𝑘]\[𝑘])

𝑣 𝑗−𝑘
ª®¬

and EQ as in Lemma 3.13. Note that 𝐴 depends on 𝑆′ and thus implicitly on u
∗. In fact,

𝐴(u, v) = 1 holds if and only if both 𝑢∗
𝑗
= 0 implies 𝑢𝑗 = 0 and 𝑢∗

𝑗
= 1 implies 𝑣 𝑗 = 1 for all

𝑗 ∈ [𝑘]. In particular, we have 𝐴(u, u) = 1 if an only if u = u
∗. Also EQ(u, v) = 1 if and only

if u = v. Thus, we have

Pr [Ψ(u∗ , r)] = P [Ψ(u, r) | u = u
∗]

= P [Ψ(u, r) | 𝐴(u, u)]
= P [Ψ(u, r) | 𝐴(u, v), EQ(u, v)] ,

and by the choice of x
′, 𝐴, and 𝑆′ we get

Pz
′
[
Ψ′(z′)

��
z
′
𝑆′ = x

′
𝑆′
]
= P [Ψ′(u, v, r, 𝑡) | 𝐴(u, v)]
= P [Ψ(u, r) ⊕ FLIP(u, v, 𝑡) | 𝐴(u, v)] .

We use Lemma 3.13 together with Pr [Ψ(u∗ , r)] > 1
2 to conclude Pz

′
[
Ψ′(z′)

��
z
′
𝑆′ = x

′
𝑆′
]
> 1

2
which shows that {Ψ′, x′, 𝑘′} is a Yes-instance for IP1.

28

3.2 Computational Complexity Analysis

Sufficiency. Now, conversely, assume that {Ψ′, x′, 𝑘′} is a Yes-instance for IP1. Then, there
exists 𝑆′ ⊆ [𝑘′] = [2𝑘] such that Pz

′
[
Ψ′(z′)

��
z
′
𝑆′ = x

′
𝑆′
]
> 1

2 . Following the same grouping
of variables as before, we write x

′ = (u′, v′, r′, 𝑡′). We can translate this into a satisfying
assignment u

∗ for E-Maj-Sat where 𝑢∗
𝑗
= 0 when 𝑗 ∈ 𝑆′ and 𝑢∗

𝑗
= 1 when 𝑗 + 𝑘 ∈ 𝑆′. For that,

we need two statements to be true. First, not both 𝑗 and 𝑗 + 𝑘 can be in 𝑆′. And second, if
neither 𝑗 nor 𝑗 + 𝑘 are in 𝑆′, then there is always the possibility of adding one of them to 𝑆′
and still satisfy Pz

′
[
Ψ′(z′)

��
z
′
𝑆′ = x

′
𝑆′
]
> 1

2 .
To prove the first statement, assume toward a contradiction that there exists a 𝑗 ∈ [𝑘]

with 𝑗 ∈ 𝑆′ and 𝑗 + 𝑘 ∈ 𝑆′. Since u
′ = 0𝑘 and v

′ = 1𝑘 , we have that (u, v)𝑆′ = (u′, v′)𝑆′
implies 𝑢𝑗 = 0 ≠ 1 = 𝑣 𝑗 and hence

Pu,v,𝑡 [FLIP(u, v, 𝑡) | (u, v)𝑆′ = (u′, v′)𝑆′] = Pu,v,𝑡 [𝑡 | (u, v)𝑆′ = (u′, v′)𝑆′] =
1
2 .

Thus, Remark 3.12 would imply Pz
′
[
Ψ′(z′)

��
z
′
𝑆′ = x

′
𝑆′
]
= 1

2 , which contradicts the assump-
tion that {Ψ′, x′, 𝑘′} is a Yes-instance for IP1.

For the second statement, assume there exists a 𝑗 ∈ [𝑘] with neither 𝑗 ∈ 𝑆′ nor 𝑗 + 𝑘 ∈ 𝑆′.
Then 𝐴(u, v) is a condition on u and v that does not include the variables 𝑢𝑗 and 𝑣 𝑗 .
Therefore,

Pu,v,𝑡 [Ψ′(u, v, 𝑡) | 𝐴(u, v)] =
1
4Pu,v,𝑡

[
Ψ′(u, v, 𝑡)

��𝐴(u, v), 𝑢𝑗 = 0, 𝑣 𝑗 = 0
]

+1
4Pu,v,𝑡

[
Ψ′(u, v, 𝑡)

��𝐴(u, v), 𝑢𝑗 = 0, 𝑣 𝑗 = 1
]

+1
4Pu,v,𝑡

[
Ψ′(u, v, 𝑡)

��𝐴(u, v), 𝑢𝑗 = 1, 𝑣 𝑗 = 0
]

+1
4Pu,v,𝑡

[
Ψ′(u, v, 𝑡)

��𝐴(u, v), 𝑢𝑗 = 1, 𝑣 𝑗 = 1
]
.

For the second and third summand we have 𝑢𝑗 ≠ 𝑣 𝑗 , thus using Remark 3.12 again, we get

Pu,v,𝑡

[
Ψ′(u, v, 𝑡)

��𝐴(u, v), 𝑢𝑗 = 0, 𝑣 𝑗 = 1
]
=

1
2 = Pu,v,𝑡

[
Ψ′(u, v, 𝑡)

��𝐴(u, v), 𝑢𝑗 = 1, 𝑣 𝑗 = 0
]
,

and obtain

Pu,v,𝑡 [Ψ′(u, v, 𝑡) | 𝐴(u, v)] =
1
4Pu,v,𝑡

[
Ψ′(u, v, 𝑡)

��𝐴(u, v), 𝑢𝑗 = 0, 𝑣 𝑗 = 0
]

+1
4Pu,v,𝑡

[
Ψ′(u, v, 𝑡)

��𝐴(u, v), 𝑢𝑗 = 0, 𝑣 𝑗 = 1
]

+1
4Pu,v,𝑡

[
Ψ′(u, v, 𝑡)

��𝐴(u, v), 𝑢𝑗 = 0, 𝑣 𝑗 = 1
]

+1
4Pu,v,𝑡

[
Ψ′(u, v, 𝑡)

��𝐴(u, v), 𝑢𝑗 = 1, 𝑣 𝑗 = 1
]

and therefore

Pu,v,𝑡 [Ψ′(u, v, 𝑡) | 𝐴(u, v)] =
1
2Pu,v,𝑡

[
Ψ′(u, v, 𝑡)

��𝐴(u, v), 𝑢𝑗 = 0
]

+1
2Pu,v,𝑡

[
Ψ′(u, v, 𝑡)

��𝐴(u, v), 𝑣 𝑗 = 1
]
.

29

Chapter 3 Interpretability of Boolean Circuit Classifiers

Altogether, if Pu,v,𝑡 [Ψ′(u, v, 𝑡) | 𝐴(u, v)] > 1
2 , then at least one of the additional conditions

𝑢𝑗 = 0 or 𝑣 𝑗 = 1 must also yield a probability greater than 1
2 . This implies that if

Pz
′
[
Ψ′(z′)

��
z
′
𝑆′ = x

′
𝑆′
]
> 1

2 then either 𝑗 or 𝑗 + 𝑘 can be added to 𝑆′ while keeping the
probability greater than 1

2 .
So, without loss of generality, we can assume that for each 𝑗 ∈ [𝑘] exactly one of the

cases 𝑗 ∈ 𝑆′ or 𝑗 + 𝑘 ∈ 𝑆′ occurs. Then, we can define u
∗ ∈ {0, 1}𝑘 as 𝑢∗

𝑗
= 0 if 𝑗 ∈ 𝑆′

and 𝑢∗
𝑗
= 1 otherwise. We observe that 𝑆′ and u

∗ are exactly as in the previous step and
the rest of the proof follows analogously. Again we use Lemma 3.13 and conclude from
Pz
′
[
Ψ′(z′)

��
z
′
𝑆′ = x

′
𝑆′
]
> 1

2 that Pr [Ψ(u∗ , r)] > 1
2 . This shows that {Ψ, 𝑘} is a Yes-instance

for E-Maj-Sat.

Allowing for All Variables to Be Chosen

We continue with the second step of the reductive chain (3.1). Instead of choosing the set
𝑆 from the first 𝑘 variables we are free to chose it from all 𝑛 variables but with cardinality
at most 𝑘.

Definition 3.16. We define the Intermediate Problem 2 (IP2) as follows.

Given: A Boolean circuit Ψ : {0, 1}𝑛 → {0, 1}, a signal x ∈ {0, 1}𝑛 , and 𝑘 ∈ [𝑛].

Decide: Does there exist 𝑆 ⊆ [𝑛]with |𝑆 | ≤ 𝑘 such that Pz [Ψ(z) | z𝑆 = x𝑆] > 1
2?

In other words, IP2 asks the question whether there exists a subset of at most 𝑘 variables of
Ψ such that fixing these to the values given by x implies that the majority of the possible
assignments to the remaining variables satisfies Ψ.

Lemma 3.17. We have IP1 ⪯𝑝 IP2. In particular, IP2 is NPPP
-hard.

Proof. Let {Ψ, x, 𝑘} be an IP1 instance. We will construct {Ψ′, x′, 𝑘′} that is a Yes-instance
for IP2 if and only if {Ψ, x, 𝑘} is a Yes-instance for IP1. For convenience, we split the 𝑛
variables of Ψ into the first 𝑘 variables and the remaining 𝑛 − 𝑘 variables and denote this
Ψ(x) = Ψ(u, r). The main idea is to extend Ψ with clauses that force the set 𝑆 to be chosen
from the first 𝑘 variables. More precisely, we define

▶ Ψ′ : {0, 1}𝑘 × {0, 1}𝑘 × {0, 1}𝑛−𝑘 × {0, 1}𝑛−𝑘 × {0, 1}𝑛−𝑘 → {0, 1} with

Ψ′(u, v, r1 , r2 , r3) = Ψ(u, r1 ⊕ r2 ⊕ r3) ∧ ©«
𝑘∧
𝑗=1
((𝑢𝑗 ⊕ ¬𝑥 𝑗) ∨ 𝑣 𝑗)ª®¬ ,

where r1 ⊕ r2 ⊕ r3 is understood component-wise,

▶ x
′ = (x[𝑘] , 1𝑘 , x[𝑘]𝑐 , x[𝑘]𝑐 , x[𝑘]𝑐) ∈ {0, 1}𝑘 × {0, 1}𝑘 × {0, 1}𝑛−𝑘 × {0, 1}𝑛−𝑘 × {0, 1}𝑛−𝑘 ,

▶ 𝑘′ = 𝑘.

This is a polynomial time construction.

30

3.2 Computational Complexity Analysis

Necessity. Assume that {Ψ, x, 𝑘} is a Yes-instance for IP1. Then, there exists 𝑆 ⊆ [𝑘] such
that Pz [Ψ(z) | z𝑆 = x𝑆] > 1

2 . Now, choose

𝑆′ = 𝑆 ∪ { 𝑗 ∈ [2𝑘] \ [𝑘] : 𝑗 − 𝑘 ∉ 𝑆 }.

Then, |𝑆′ | = |𝑆 | + (𝑘 − |𝑆 |) = 𝑘 = 𝑘′ and for each 𝑗 ∈ [𝑘] exactly one of the cases 𝑗 ∈ 𝑆′ or
𝑗 + 𝑘 ∈ 𝑆′ occurs. The former corresponds to fixing 𝑢𝑗 = 𝑥′

𝑗
= 𝑥 𝑗 and the latter to fixing

𝑣 𝑗 = 1. Therefore,

P(u,v)

𝑘∧
𝑗=1
((𝑢𝑗 ⊕ ¬𝑥 𝑗) ∨ 𝑣 𝑗)

������ (u, v)𝑆′ = x
′
𝑆′

 = 1,

which means, conditioned on (u, v)𝑆′ = x
′
𝑆′, the probability of satisfying Ψ′ only depends

on Ψ(u, r1 ⊕ r2 ⊕ r3). Now, since the random vector r1 ⊕ r2 ⊕ r3 is independent of this
condition, it has the exact same distribution as the random vector r, and we obtain

Pz
′
[
Ψ′(z′)

��
z
′
𝑆′ = x

′
𝑆′
]
= P

[
Ψ′(u, v, r1 , r2 , r3)

�� (u, v)𝑆′ = x
′
𝑆′
]

= P
[
Ψ′(u, v, r1 , r2 , r3)

��
u𝑆 = x𝑆 , v[𝑘]\𝑆 = 1𝑘−|𝑆 |

]
= P [Ψ(u, r) | u𝑆 = x𝑆]

= Pz [Ψ(z) | z𝑆 = x𝑆] >
1
2 . (3.2)

Hence, {Ψ′, x′, 𝑘′} is a Yes-instance for IP2.

Sufficiency. Now, conversely, assume that {Ψ′, x′, 𝑘′} is a Yes-instance for IP2. Then,
there exists a set 𝑆′ ⊆ [2𝑘 + 3(𝑛 − 𝑘)]with |𝑆′ | ≤ 𝑘′ = 𝑘 and

Pz
′
[
Ψ′(z′)

��
z
′
𝑆′ = x

′
𝑆′
]
>

1
2 .

First, we show that 𝑆′ can contain at most two indices that are not in [2𝑘]. For any
𝑗 ∈ [𝑘], consider the term (𝑢𝑗 ⊕ ¬𝑥 𝑗) ∨ 𝑣 𝑗 , which is true if 𝑢𝑗 = 𝑥 𝑗 or 𝑣 𝑗 = 1. This could be
assured by 𝑗 ∈ 𝑆′ or 𝑗 + 𝑘 ∈ 𝑆′ respectively. Otherwise, P𝑢𝑗 ,𝑣 𝑗

[
(𝑢𝑗 ⊕ ¬𝑥 𝑗) ∨ 𝑣 𝑗

]
= 3

4 . Let
𝑁 = |{ 𝑗 ∈ [𝑘] | 𝑗 ∉ 𝑆′ ∧ 𝑗 + 𝑘 ∉ 𝑆′}|, then

Pz
′
[
Ψ′(z′)

��
z
′
𝑆′ = x

′
𝑆′
]
≤ P

𝑘∧
𝑗=1
((𝑢𝑗 ⊕ ¬𝑥 𝑗) ∨ 𝑣 𝑗)

������ (u, v)𝑆′ = x
′
𝑆′

 =

(
3
4

)𝑁
,

and since
(3

4
)3

< 1
2 but Pz

′
[
Ψ′(z′)

��
z
′
𝑆′ = x

′
𝑆′
]
> 1

2 , we know that 𝑁 ≤ 2.
Therefore, at most two variables out of r1, r2, and r3 can be fixed and thus r1 ⊕ r2 ⊕ r3

conditioned on z
′
𝑆′ = x

′
𝑆′ has the same distribution as r1 ⊕ r2 ⊕ r3 without the condition. So,

without loss of generality, we can even assume 𝑆′ ∩ [2𝑘]𝑐 = ∅.
Similarly, if 𝑗 ∈ 𝑆′, we have P

[
(𝑢𝑗 ⊕ ¬𝑥 𝑗) ∨ 𝑣 𝑗

�� (u, v)𝑆′ = x
′
𝑆′
]
= 1 and additionally having

𝑗 + 𝑘 ∈ 𝑆′ could not increase the probability of satisfying Ψ′. Hence, we can assume
𝑗 + 𝑘 ∉ 𝑆′ in this case. Contrary, if 𝑗 ∉ 𝑆′, we have

P
[
(𝑢𝑗 ⊕ ¬𝑥 𝑗) ∨ 𝑣 𝑗

�� (u, v)𝑆′ = x
′
𝑆′
]
=

1
2 +

1
2P

[
𝑣 𝑗

�� (u, v)𝑆′ = x
′
𝑆′
]
,

31

Chapter 3 Interpretability of Boolean Circuit Classifiers

Table 3.1: Changing Probability Thresholds. Overview of four possibilities to change the probabil-
ity threshold of a Boolean function Ψ by conjoining or disjoining it with an auxiliary function Π.

> to ≥ ≥ to >

raising probability threshold Lemma 3.18 Lemma 3.22
lowering probability threshold Lemma 3.19 Lemma 3.23

which is one if 𝑗 + 𝑘 ∈ 𝑆′ and 3
4 otherwise. So including 𝑗 + 𝑘 in 𝑆′ does not decrease the

probability.
Altogether, without loss of generality, we can assume 𝑆′ ⊆ [2𝑘], |𝑆′ | = 𝑘 and for each

𝑗 ∈ [𝑘] exactly one of the cases 𝑗 ∈ 𝑆′ or 𝑗 + 𝑘 ∈ 𝑆′ occurs. We now choose 𝑆 = 𝑆′ ∩ [𝑘].
Then, the rest of the proof proceeds exactly as in (3.2), and we conclude

Pz [Ψ(z) | z𝑆 = x𝑆] = Pz
′
[
Ψ′(z′𝑆′)

��
z
′
𝑆′ = x

′
𝑆′
]
>

1
2 ,

implying that {Ψ, x, 𝑘} is a Yes-instance for IP1.

Changing the Probability Threshold

Now, we want to change the probability threshold from 1
2 to an arbitrary number 𝛿 ∈ (0, 1)

and show that the hardness does not depend on 𝛿. Our reduction will depend on whether
𝛿 > 1

2 or 𝛿 < 1
2 since we either have to raise or lower the probability threshold. See Table 3.1

for an overview of the four possible ways to change the probability threshold of a Boolean
function. We will make use of two of them in this section and the other two in the next
section.

To raise the probability threshold, we make use of the following lemma.

Lemma 3.18. Given 0 ≤ 𝛿1 < 𝛿2 < 1, for any 𝑛 ∈ N there exists a monotone function

Π
𝛿2
𝛿1 ,𝑛

: {0, 1}𝑑 → {0, 1} with 𝑑 ∈ 𝒪(𝑛2) such that for all Ψ : {0, 1}𝑛 → {0, 1} we have

Pz [Ψ(z)] > 𝛿1 ⇐⇒ P(z,r)
[
Ψ(z) ∨Π

𝛿2
𝛿1 ,𝑛
(r)

]
≥ 𝛿2.

The function Π
𝛿2
𝛿1 ,𝑛

can be constructed in 𝒪(𝑑) time.

The constructive proof of Lemma 3.18 can be found in Appendix A.1. An analogous lemma
is used to lower the probability threshold.

Lemma 3.19. Given 0 < 𝛿1 ≤ 𝛿2 ≤ 1, for any 𝑛 ∈ N there exists a monotone function

Π
𝛿2
𝛿1 ,𝑛

: {0, 1}𝑑 → {0, 1} with 𝑑 ∈ 𝒪(𝑛2) such that for all Ψ : {0, 1}𝑛 → {0, 1} we have

Pz [Ψ(z)] > 𝛿2 ⇐⇒ P(z,r)
[
Ψ(z) ∧Π

𝛿2
𝛿1 ,𝑛
(r)

]
≥ 𝛿1.

The function Π
𝛿2
𝛿1 ,𝑛

can be constructed in 𝒪(𝑑) time.

32

3.2 Computational Complexity Analysis

The constructive proof of Lemma 3.19 can be found in Appendix A.2.
Lastly, we introduce an auxiliary operation that allows us to makeΨ(x) true for the initial

assignment x, while not changing the overall probability for random assignments.

Lemma 3.20. Given 0 < 𝛿 < 1, for any 𝑛 ∈ N there exists 𝑇𝛿,𝑛 ∈ N and a monotone function

Γ𝛿,𝑛 : {0, 1}𝑑 → {0, 1} with 𝑑 + 𝑇𝛿,𝑛 ∈ 𝒪(𝑛2) such that for all Ψ : {0, 1}𝑛 → {0, 1} we have

Pz [Ψ(z)] ≥ 𝛿 ⇐⇒ P(z,r,t)

(Ψ(z) ∧ Γ𝛿,𝑛(r)) ∨ ©«
𝑇∧
𝑗=1

𝑡 𝑗
ª®¬
 ≥ 𝛿,

for any 𝑇 ≥ 𝑇𝛿,𝑛 . The function Γ𝛿,𝑛 can be constructed in 𝒪(𝑑) time.

The constructive proof of Lemma 3.20 can be found in Appendix A.3. Now, we are able to
prove the following lemma.

Lemma 3.21. For 𝛿 ∈ (0, 1) we have IP2 ⪯𝑝 𝛿-Relevant-Input. In particular, the 𝛿-

Relevant-Input problem is NPPP
-hard.

Proof. We consider the two cases 𝛿 ≤ 1
2 and 𝛿 > 1

2 separately and start with the latter,
that is 𝛿 ∈ (12 , 1). Let {Ψ, x, 𝑘} be an IP2 instance. We will construct {Ψ′, x′, 𝑘′} that is a
Yes-instance for 𝛿-Relevant-Input if and only if {Ψ, x, 𝑘} is a Yes-instance for IP2.

For this, let Π = Π
𝛿2
𝛿1 ,𝑛

: {0, 1}ℓ → {0, 1} be as in Lemma 3.18 with 𝛿1 = 1
2 and 𝛿2 = 𝛿.

Further, let Γ = Γ𝛿,𝑛+ℓ : {0, 1}𝑚 → {0, 1} and 𝑇𝛿,𝑛+ℓ be defined according to Lemma 3.20
and set 𝑑 = 𝑇𝛿,𝑛+ℓ + 𝑘. We define

▶ Ψ′ : {0, 1}𝑛 × {0, 1}ℓ × {0, 1}𝑚 × {0, 1}𝑑 → {0, 1}
(z, r, s, t) ↦→ ((Ψ(z) ∨Π(r)) ∧ Γ(s)) ∨ (∧𝑑

𝑗=1 𝑡 𝑗)

▶ x
′ = (x, 0ℓ , 0𝑚 , 1𝑑) ∈ {0, 1}𝑛 × {0, 1}ℓ × {0, 1}𝑚 × {0, 1}𝑑,

▶ 𝑘′ = 𝑘.

This is a polynomial time construction. By the choice of Ψ′ and x
′, we guarantee Ψ′(x′) = 1

regardless of the value of Ψ(x) since
∧𝑑
𝑗=1 1 = 1.

Necessity. Assume that {Ψ, x, 𝑘} is a Yes-instance for IP2 with satisfying set 𝑆. We set
𝑆′ = 𝑆. From the definition of Π and 𝑑 we get

Pz [Ψ(z) | z𝑆 = x𝑆] >
1
2

⇐⇒ P(z,r) [Ψ(z) ∨Π(r) | z𝑆 = x𝑆] ≥ 𝛿

⇐⇒ P(z,r,s,t)

((Ψ(z) ∨Π(r)) ∧ Γ(s)) ∨ ©«
𝑑∧
𝑗=1

𝑡 𝑗
ª®¬
������ z𝑆 = x𝑆

 ≥ 𝛿

⇐⇒ Pz
′
[
Ψ′(z′) = Ψ′(x′)

��
z
′
𝑆′ = x

′
𝑆′
]
≥ 𝛿.

Hence, {Ψ′, x′, 𝑘′} is a Yes-instance for 𝛿-Relevant-Input.

33

Chapter 3 Interpretability of Boolean Circuit Classifiers

Sufficiency. Now assume that {Ψ′, x′, 𝑘′} is a Yes-instance for 𝛿-Relevant-Input. Then
there exists a subset 𝑆′ with |𝑆′ | ≤ 𝑘′ = 𝑘 and Pz

′
[
Ψ′(z′) = Ψ′(x′)

��
z
′
𝑆′ = x

′
𝑆′
]
≥ 𝛿. Since

Π and Γ are monotone and their initial input assignments according to x
′ are 0ℓ and 0𝑚 ,

including any of their variables in 𝑆′ does not increase the probability that Ψ′ evaluates
to Ψ′(x′) = 1. Thus, without loss of generality, we can assume that 𝑆′ does no include
variables from Π or Γ. Furthermore, at most 𝑘′ = 𝑘 of the 𝑑 variables in the additional
conjunction from Lemma 3.20 can be included in 𝑆′, which by the choice of 𝑑 does not
affect whether the overall probability threshold of 𝛿 is reached or not. Thus,

Pz
′
[
Ψ′(z′) = Ψ′(x′)

��
z
′
𝑆′ = x

′
𝑆′
]
≥ 𝛿 =⇒ Pz

′

[
Ψ′(z′) = Ψ′(x′)

��� z′𝑆′∩[𝑛] = x
′
𝑆′∩[𝑛]

]
≥ 𝛿.

We set 𝑆 = 𝑆′ ∩ [𝑛]. Clearly |𝑆 | ≤ |𝑆′ | = 𝑘′ = 𝑘. Then analogous to before,

Pz
′
[
Ψ′(z′) = Ψ′(x′)

��
z
′
𝑆 = x

′
𝑆

]
≥ 𝛿 ⇐⇒ Pz [Ψ(z) | z𝑆 = x𝑆] >

1
2 ,

implying that {Ψ, x, 𝑘} is a Yes-instance for IP2.
The reduction for the other case 𝛿 ∈ (0, 1

2] can be done analogously by using Lemma 3.19
instead of Lemma 3.18 and we omit the details for brevity.

3.2.2 𝛿-Relevant-Input is Contained in NPPP

We now come to the second part of the proof of Theorem 3.5. We will show that 𝛿-Relevant-
Input is indeed contained in NPPP, meaning that it can be solved in polynomial time by a
non-deterministic Turing machine with access to a PP-oracle. The following lemmas, very
similar to Lemmas 3.18 and 3.19 (cf. Table 3.1), will be useful.

Lemma 3.22. Given 0 ≤ 𝛿1 ≤ 𝛿2 < 1, for any 𝑛 ∈ N there exists a monotone function

Π
𝛿2
𝛿1 ,𝑛

: {0, 1}𝑑 → {0, 1} with 𝑑 ∈ 𝒪(𝑛2) such that for all Ψ : {0, 1}𝑛 → {0, 1} we have

Pz [Ψ(z)] ≥ 𝛿1 ⇐⇒ P(z,r)
[
Ψ(z) ∨Π

𝛿2
𝛿1 ,𝑛
(r)

]
> 𝛿2.

The function Π
𝛿2
𝛿1 ,𝑛

can be constructed in 𝒪(𝑑) time.

The constructive proof of Lemma 3.22 can be found in Appendix A.1.

Lemma 3.23. Given 0 < 𝛿1 < 𝛿2 ≤ 1, for any 𝑛 ∈ N there exists a monotone function

Π
𝛿2
𝛿1 ,𝑛

: {0, 1}𝑑 → {0, 1} with 𝑑 ∈ 𝒪(𝑛2) such that for all Ψ : {0, 1}𝑛 → {0, 1} we have

Pz [Ψ(z)] ≥ 𝛿2 ⇐⇒ P(z,r)
[
Ψ(z) ∧Π

𝛿2
𝛿1 ,𝑛
(r)

]
> 𝛿1.

The function Π
𝛿2
𝛿1 ,𝑛

can be constructed in 𝒪(𝑑) time.

The constructive proof of Lemma 3.23 can be found in Appendix A.2.

34

3.3 Variations of the Problem

Lemma 3.24. For 𝛿 ∈ (0, 1) the 𝛿-Relevant-Input problem is contained in NPPP
.

Proof. Again we consider the two cases 𝛿 ≤ 1
2 and 𝛿 > 1

2 separately and start with the
latter, that is 𝛿 ∈ (12 , 1). Let {Ψ, x, 𝑘} be an instance of 𝛿-Relevant-Input. It suffices to show
that the decision problem whether a given set 𝑆 ⊆ [𝑛] is 𝛿-relevant for Ψ and x is in PP.
Without loss of generality we can assume Ψ(x) = 1. Otherwise, we could consider ¬Ψ
instead. Now, choose Π = Π

𝛿2
𝛿1 ,𝑛

: {0, 1}𝑑 → {0, 1} as in Lemma 3.23 for 𝛿1 = 1
2 and 𝛿2 = 𝛿.

Then,
Pz [Ψ(z) | z𝑆 = x𝑆] ≥ 𝛿 ⇐⇒ P(z,r) [Ψ(z) ∧Π(r) | z𝑆 = x𝑆] >

1
2 .

A probabilistic Turing machine can now draw a random assignment (z, r) conditioned
on z𝑆 = x𝑆 and evaluate Ψ(z) ∧Π(r). Thus, the machine will answer Yes with probability
strictly greater than 1

2 if and only if 𝑆 is 𝛿-relevant. This means the subproblem of checking
a set for 𝛿-relevance is contained in PP. A non-deterministic Turing-machine with a
PP-oracle can thus guess a set 𝑆 ⊆ [𝑛] with |𝑆 | ≤ 𝑘 and, using the oracle, check whether it
is 𝛿-relevant.

The other case 𝛿 ∈ (0, 1
2] can be handled analogously by using Lemma 3.22 instead of

Lemma 3.23 and we omit the details for brevity.

3.3 Variations of the Problem

We want to consider two variations of the 𝛿-Relevant-Input problem. The first variation
relaxes the requirement to check if a candidate set 𝑆 is exactly 𝛿-relevant or not by
introducing a probability gap 𝛾. In short, we then ask if a 𝛿-relevant set of size 𝑘 exists or
if all sets of size 𝑘 are not even (𝛿 − 𝛾)-relevant.

The second variation concerns the optimization version of the problem. Here, we
introduce a set size gap and relax the requirement to find the smallest 𝛿-relevant set.
Instead, for 𝑘1 < 𝑘2 we ask if a 𝛿-relevant set of size 𝑘1 exists or if all relevant sets must be
of size at least 𝑘2.

We show that these problems remain hard to solve (even in combination, that is with
both a gap in probability and set size). This can be used to show that no polynomial
time approximation algorithm for Min-𝛿-Relevant-Input with approximation factor better
than the trivial factor 𝑛 can exist unless P = NP. Due to the connection between Boolean
circuits and neural networks, that was already mentioned at the beginning of this chapter
and illustrated in Figure 3.1, this inapproximability result shows theoretical limitations of
interpretation methods for neural network decision. A detailed formal extension of the
results to neural networks is given in Chapter 4.

3.3.1 Introducing a Probability Gap

As explained in the problem formulation, see Section 3.1, probabilities and expectation
values may be hard to calculate in theory, yet are often easy to approximate in practice
via sampling. The edge cases where the true probability can be arbitrarily close to the
threshold 𝛿 cause the hardness of problems in PP. It seems impractical to defend the
hardness of the 𝛿-Relevant-Input problem with the exact evaluation of probabilities.

35

Chapter 3 Interpretability of Boolean Circuit Classifiers

no (𝛿 − 𝛾)-relevant
sets exist

No instances

a 𝛿-relevant set
exists

Yes instances

𝑘∗ 𝑘

Figure 3.3: A Problem Variant with Probability Gap. Visualization of the 𝛾-Gapped-𝛿-Relevant-
Input problem for fixed Ψ and x and for various 𝑘. In the unmarked region in the center no
𝛿-relevant set exists but �̃�-relevant sets could exist for any �̃� < 𝛿, in particular also for �̃� = 𝛿 − 𝛾.
In this region we do not expect an answer for the gapped problem. The solution 𝑘∗ of the
ungapped optimization problem Min-𝛿-Relevant-Input is the left boundary of the Yes-region.

Therefore, we introduce a variant of the problem including a probability gap. This can be
seen as a promise problem with the promise that all sets 𝑆 are either 𝛿-relevant or not even
(𝛿 − 𝛾)-relevant. Alternatively, this can be seen as the 𝛿-Relevant-Input problem where we
want to answer Yes if a 𝛿-relevant set of size 𝑘 exists but only want to answer No if all sets
of size 𝑘 are not even (𝛿 − 𝛾)-relevant. For cases in between we do not expect an answer at
all or do not care about the exact answer. This is illustrated in Figure 3.3.

Definition 3.25. For 𝛿 ∈ (0, 1] and 𝛾 ∈ [0, 𝛿)we define the 𝛾-Gapped-𝛿-Relevant-Input
problem as follows.

Given: A Boolean circuit Ψ : {0, 1}𝑛 → {0, 1}, a signal x ∈ {0, 1}𝑛 , and 𝑘 ∈ [𝑛].

Decide:

Yes: There exists 𝑆 ⊆ [𝑛]with |𝑆 | ≤ 𝑘 such that 𝑆 is 𝛿-relevant for Ψ and x.
No: All 𝑆 ⊆ [𝑛]with |𝑆 | ≤ 𝑘 are not (𝛿 − 𝛾)-relevant for Ψ and x.

For 𝛾 = 0 we exactly retrieve the original 𝛿-Relevant-Input problem, but for 𝛾 > 0 this
is an easier question. Similar to the original problem formulation, we can also state an
optimization version of the gapped problem. In this case, we relax the optimality condition
on the set size 𝑘 by allowing also sizes in the region between Yes- and No-instances of
𝛾-Gapped-𝛿-Relevant-Input (cf. Figure 3.3). In other words, we want to find any 𝑘 that is
large enough so that it is not a No-instance for the gapped problem but not larger than the
optimal solution of the ungapped minimization problem. Strictly speaking, this results in
a search problem and not an optimization problem. However, problems of this type can
be referred to as weak optimization problems [GLS88].

Definition 3.26. For 𝛿 ∈ (0, 1] and 𝛾 ∈ [0, 𝛿) we define the Min-𝛾-Gapped-𝛿-Relevant-
Input problem as follows.

Given: A Boolean circuit Ψ : {0, 1}𝑛 → {0, 1} and signal x ∈ {0, 1}𝑛 .

Find: 𝑘 ∈ [𝑛] such that
(i) There exists 𝑆 ⊆ [𝑛]with |𝑆 | = 𝑘 and 𝑆 is (𝛿 − 𝛾)-relevant for Ψ and x.

36

3.3 Variations of the Problem

(ii) All 𝑆 ⊆ [𝑛]with |𝑆 | < 𝑘 are not 𝛿-relevant for Ψ and x.

Remark 3.27. Note that both for 𝛾-Gapped-𝛿-Relevant-Input and Min-𝛾-Gapped-𝛿-
Relevant-Input a solution for 𝛾1 will always also be a solution for 𝛾2 > 𝛾1. Specifically,
being able to solve the ungapped problems introduced in Section 3.1 provides a
solution to the gapped problems for any 𝛾 > 0.

Lemma 3.28. For 𝛿 ∈ (0, 1) and 𝛾 ∈ (0, 𝛿) the 𝛾-Gapped-𝛿-Relevant-Input problem is

contained in NPBPP
.

Proof. Let {Ψ, x, 𝑘} be an instance of 𝛾-Gapped-𝛿-Relevant-Input. It suffices to show
that the decision problem whether a given set 𝑆 ⊆ [𝑛] is either 𝛿-relevant (Yes) or not
(𝛿 − 𝛾)-relevant (No) for Ψ and x is in BPP. To see this, we describe an explicit algorithm
with bounded error probability.

Draw 𝑑 =

⌈
2 ln(3)
𝛾2

⌉
independent random binary vectors b

(𝑗) ∈ {0, 1}𝑛−|𝑆 | for 𝑗 ∈ [𝑑] from

the uniform distribution on {0, 1}𝑛−|𝑆 | and define z
(𝑗) ∈ {0, 1}𝑛 as z

(𝑗)
𝑆

= x𝑆 and z

(𝑗)
𝑆𝑐

= b
(𝑗).

Set

𝜉 =
1
𝑑

𝑑∑
𝑗=1

𝜉𝑗 , where 𝜉𝑗 =

{
1, if Ψ(x) = Ψ(z(𝑗))
0, if Ψ(x) ≠ Ψ(z(𝑗))

for 𝑗 = 1, . . . , 𝑑.

Then, answer No if 𝜉 < 𝛿 − 𝛾
2 and Yes if 𝜉 ≥ 𝛿 − 𝛾

2 .
The random variables 𝜉𝑗 are independently and identically Bernoulli(𝑝) distributed

variables with parameter

𝑝 = E[𝜉𝑗] = E[𝜉] = Pz [Ψ(z𝑆) = Ψ(x) | z𝑆 = x𝑆] .

Therefore, 𝑆 is 𝛿-relevant if 𝑝 ≥ 𝛿 and not (𝛿 − 𝛾)-relevant if 𝑝 < 𝛿 − 𝛾. We use Hoeffding’s
inequality [Hoe94] to bound the error probability of the algorithm. Firstly, assume 𝑝 ≥ 𝛿.
Then, we make an error if 𝜉 < 𝛿 − 𝛾

2 , which implies 𝑝 − 𝜉 > 𝛾
2 . The probability for this

event can be bounded by

P
[
𝑝 − 𝜉 >

𝛾

2

]
≤ 𝑒−

𝑛𝛾2
2 ≤ 1

3 .

Secondly, assume 𝑝 < 𝛿 − 𝛾. Then, we can bound the probability that 𝜉 ≥ 𝛿 − 𝛾
2 , and thus

𝜉 − 𝑝 > 𝛾
2 , by

P
[
𝜉 − 𝑝 >

𝛾

2

]
≤ 𝑒−

𝑛𝛾2
2 ≤ 1

3 .

Altogether the algorithm answers correctly with probability 2
3 , showing that the problem

lies in BPP.
A non-deterministic Turing machine with BPP-oracle can thus guess a set 𝑆 ⊆ [𝑛] with
|𝑆 | ≤ 𝑘 and, using the oracle, check if it is 𝛿-relevant or not (𝛿 − 𝛾)-relevant.

37

Chapter 3 Interpretability of Boolean Circuit Classifiers

3.3.2 Introducing a Set Size Gap

Even the gapped version of the minimization problem is hard to approximate. We prove
this by introducing another intermediate problem which we show to be NP-hard but
which would be in P if there exists a “good” polynomial time approximation algorithm for
Min-𝛾-Gapped-𝛿-Relevant-Input. As mentioned above, strictly speaking Min-𝛾-Gapped-𝛿-
Relevant-Input is not an optimization but a search problem. In order to give a meaning to
the concept of approximation factors we use the following convention.

Definition 3.29. An algorithm for Min-𝛾-Gapped-𝛿-Relevant-Input has an approxima-

tion factor 𝑐 ≥ 1 if, for any instance {Ψ, x}, it produces an approximate solution 𝑘 such
that there exists a true solution �̃� (satisfying both conditions in Definition 3.26) with
�̃� ≤ 𝑘 ≤ 𝑐 �̃�.

An algorithm that always produces the trivial approximate solution 𝑘 = 𝑛 achieves an
approximation factor 𝑛. We will show that it is generally hard to obtain better factors.
More precisely, for any 𝛼 ∈ (0, 1) an algorithm achieving an approximation factor 𝑛1−𝛼 can
not be in polynomial time unless P = NP.

Definition 3.30. For 𝛿 ∈ (0, 1] and 𝛾 ∈ [0, 𝛿) we define the Intermediate Problem 3
(IP3) as follows.

Given: A Boolean circuit Ψ : {0, 1}𝑛 → {0, 1}, a signal x ∈ {0, 1}𝑛 , and 𝑘1 , 𝑘2 ∈ [𝑛]
with 𝑘1 ≤ 𝑘2.

Decide:

Yes: There exists 𝑆 ⊆ [𝑛]with |𝑆 | ≤ 𝑘1 such that 𝑆 is 𝛿-relevant for Ψ and x.
No: All 𝑆 ⊆ [𝑛]with |𝑆 | ≤ 𝑘2 are not (𝛿 − 𝛾)-relevant for Ψ and x.

Remark 3.31. The restriction of IP3 to instances with 𝑘1 = 𝑘2 is exactly the same as the
𝛾-Gapped-𝛿-Relevant-Input problem. However, here we also allow the case 𝑘1 < 𝑘2
with a gap in the set sizes as illustrated in Figure 3.4.

Lemma 3.32. For 𝛿 ∈ (0, 1) and 𝛾 ∈ [0, 1) we have Sat ⪯𝑝 IP3. In particular, in this case

IP3 is NP-hard.

The idea for the proof of this lemma is rather simple. Given a Sat-formula Ψ with 𝑛

variables, we replace each variable by a conjunction of sufficiently many new variables, i.e.,

𝑢(𝑖) =

𝑞∧
𝑗=1

𝑢
(𝑖)
𝑗
,

initially set to one. Fixing all 𝑢(𝑖)
𝑗

sets 𝑢(𝑖) to one, while randomizing all 𝑢(𝑖)
𝑗

effectively
sets 𝑢(𝑖) to zero with high probability. If we now disjoin the resulting formula with a

38

3.3 Variations of the Problem

No-instances

Yes-instances

a 𝛿-relevant set of
size 𝑘1 exists

no (𝛿 − 𝛾)-relevant
set of size 𝑘1 exists

no (𝛿 − 𝛾)-relevant
set of size 𝑘2 exists

a 𝛿-relevant set of
size 𝑘2 exists

𝑘1 = 𝑘2

𝑘1

𝑘2

Figure 3.4: A Problem Variant with Set Size Gap. Visualization of the Intermediate Problem 3 for
some fixed Ψ and x and for various 𝑘1 and 𝑘2. As before we do not expect an answer for this
problem in the unmarked regions. The restriction to the diagonal 𝑘1 = 𝑘2 corresponds to the
𝛾-Gapped-𝛿-Relevant-Input problem (cf. Figure 3.3).

polynomially large conjunction of additional independent variables, i.e.,

Ψ
©«
𝑞∧
𝑗=1

𝑢
(1)
𝑗
, . . . ,

𝑞∧
𝑗=1

𝑢
(𝑛)
𝑗

ª®¬ ∨ ©«
𝑀∧
𝑗=1

𝑣 𝑗
ª®¬ ,

initially also set to one, then any satisfying assignment for Ψ yields a 𝛿-relevant set of size
at most 𝑛𝑞 by effectively setting u to the satisfying assignment. On the other hand, if Ψ is
not satisfiable a (𝛿 − 𝛾)-relevant set has to include almost all of the additional 𝑀 variables.
Choosing 𝑀 sufficiently larger than 𝑛𝑞 results in the desired set size gap. We now make
this argument formal.

Proof. Given a Sat instance in conjunctive normal form (CNF), let Ψ : {0, 1}𝑛 → {0, 1} be
the Boolean circuit representation corresponding to the CNF formula. From now on we
will not distinguish between Ψ and the CNF formula that it represents. We will construct
{Ψ′, x′, 𝑘′1 , 𝑘

′
2} that is a Yes-instance for IP3 if and only if Ψ is a Yes-instance for Sat. Let

𝑞 =
⌈
log2

(𝑛

1 − 𝛿

)⌉
and 𝑝 =

⌊
log2

(
1

𝛿 − 𝛾

)⌋
+ 1.

We set

▶ 𝑘′1 = 𝑛𝑞,

▶ 𝑘′2 ≥ 𝑘′1 arbitrary but at most polynomial in 𝑛,

39

Chapter 3 Interpretability of Boolean Circuit Classifiers

▶ Ψ′ : {0, 1}𝑛×𝑞 × {0, 1}𝑘′2+𝑝 → {0, 1}
(u(1) , ..., u(𝑛) , v) ↦→ Ψ

(∧𝑞

𝑗=1 𝑢
(1)
𝑗
, . . . ,

∧𝑞

𝑗=1 𝑢
(𝑛)
𝑗

)
∨

(∧𝑘′2+𝑝
𝑗=1 𝑣 𝑗

)
, with each u

(𝑖) ∈ {0, 1}𝑞 ,

▶ x
′ = 1𝑛𝑞+𝑘′2+𝑝 .

This is a polynomial time construction. By the choice of Ψ′ and x
′ we guarantee Ψ′(x′) = 1

regardless of the satisfiability of Ψ.

Necessity. Let Ψ be a Yes-instance for Sat. This means that there exists x ∈ {0, 1}𝑛 with
Ψ(x) = 1. Let 𝑆 = { 𝑗 ∈ [𝑛] : 𝑥 𝑗 = 1 } and 𝑆′ = 𝑆 × [𝑞]. Then, |𝑆′ | ≤ 𝑘′1. Denote

𝐴(u(1) , . . . , u(𝑛)) =
∧
(𝑖 , 𝑗)∈𝑆′

𝑢
(𝑖)
𝑗
.

Hence, 𝑆′ is 𝛿-relevant for Ψ′ and x
′ if P

[
Ψ′(u(1) , . . . , u(𝑛) , v)

��𝐴(u(1) , . . . , u(𝑛))] ≥ 𝛿. We
have

P
[
Ψ′(u(1) , . . . , u(𝑛) , v)

���𝐴(u(1) , . . . , u(𝑛))] ≥ P Ψ ©«
𝑞∧
𝑗=1

𝑢
(1)
𝑗
, . . . ,

𝑞∧
𝑗=1

𝑢
(𝑛)
𝑗

ª®¬
������𝐴(u(1) , . . . , u(𝑛))

≥ P

∀𝑖 ∈ [𝑛] :
𝑞∧
𝑗=1

𝑢
(𝑖)
𝑗

= 𝑥𝑖

������𝐴(u(1) , . . . , u(𝑛))
 .

With a union bound and using the abbreviated notation A = 𝐴(u(1) , . . . , u(𝑛)), we obtain

P

∀𝑖 ∈ [𝑛] :
𝑞∧
𝑗=1

𝑢
(𝑖)
𝑗

= 𝑥𝑖

������A
 = 1 − P

∃𝑖 ∈ [𝑛] :
𝑞∧
𝑗=1

𝑢
(𝑖)
𝑗

≠ 𝑥𝑖

������A

= 1 − P
∃𝑖 ∈ 𝑆𝑐 :

𝑞∧
𝑗=1

𝑢
(𝑖)
𝑗

≥ 1 − |𝑆𝑐 |2−𝑞

≥ 𝛿,

which shows that {Ψ′, x′, 𝑘′1 , 𝑘
′
2} is a Yes-instance for IP3.

Sufficiency. Now, conversely, let Ψ be a No-instance for Sat. Then, for any subset
𝑆′ ⊆ [𝑛𝑞 + 𝑘′2 + 𝑝]with |𝑆′ | ≤ 𝑘′2 we have

Pz
′
[
Ψ′(z′) = Ψ′(x′)

��
z
′
𝑆′ = x

′
𝑆′
]
= Pz

′
[
Ψ′(z′)

��
z
′
𝑆′ = 1|𝑆′ |

]
= P(u(1) ,...,u(𝑛) ,v)

𝑘′2+𝑝∧
𝑗=1

𝑣 𝑗

������ (u(1) , . . . , u(𝑛) , v)𝑆′ = 1|𝑆′ |

≤ 2−(𝑘′2+𝑝−|𝑆′ |)

≤ 2−𝑝

< 𝛿 − 𝛾.

40

3.3 Variations of the Problem

This shows that 𝑆′ is not (𝛿−𝛾)-relevant for Ψ′ and x
′, hence {Ψ′, x′, 𝑘′1 , 𝑘

′
2} is a No-instance

for IP3.

Recall the second main theorem of this chapter which shows the inapproximability of
the Min-𝛾-Gapped-𝛿-Relevant-Input problem.

Theorem 3.6. Let 𝛿 ∈ (0, 1) and 𝛾 ∈ [0, 𝛿). Then, for any 𝛼 ∈ (0, 1) there is no polynomial

time approximation algorithm for Min-𝛾-Gapped-𝛿-Relevant-Input with an approximation

factor of 𝑛1−𝛼
unless P = NP.

The proof idea is to choose 𝑘′2 in the previous proof large enough such that even an
approximation algorithm that promises only a rough approximation factor could still be
used to solve an NP-hard problem.

Proof of Theorem 3.6. We prove this by showing that the existence of an approximation
algorithm for Min-𝛾-Gapped-𝛿-Relevant-Input with approximation factor 𝑛1−𝛼 would
allow us to decide IP3 for certain instances. These can be chosen as in the proof of
Lemma 3.32, which in turn implies that we could decide Sat. This is only possible in
polynomial time if P = NP.

Given a Sat instance as a CNF formula, let Ψ : {0, 1}𝑛 → {0, 1} be a Boolean circuit
representation of the CNF formula and {Ψ′, x′, 𝑘′1 , 𝑘

′
2} an equivalent IP3 instance as in

the proof of Lemma 3.32. As before, we will not further distinguish between the CNF
formula and the circuit Ψ representing it. We have seen that there is some freedom in the
choice of 𝑘′2 as long as it satisfies 𝑘′1 ≤ 𝑘

′
2 and is at most polynomial in 𝑛. We will choose

it in such a way, that any approximate solution 𝑘 for Min-𝛾-Gapped-𝛿-Relevant-Input
with approximation factor 𝑛′1−𝛼 would allow us to decide {Ψ′, x′, 𝑘′1 , 𝑘

′
2} by checking

whether 𝑘 < 𝑘′2 or 𝑘 > 𝑘′2. For this we set 𝑘′2 =

⌈
max(2𝑘′1(𝑘

′
1

1−𝛼 + 𝑝1−𝛼), (2𝑘′1)
1
𝛼 + 1)

⌉
with

𝑝 =

⌊
log2

(
1

𝛿−𝛾

)⌋
+ 1 as before. Recall that 𝑘′1 = 𝑛𝑞 with 𝑞 =

⌈
log2

(
𝑛

1−𝛿
)⌉

, so clearly 𝑘′2 is

polynomial in 𝑛 and 𝑘′1 ≤ 𝑘
′
2. Further, we have 𝑘′2 > (2𝑘′1)

1
𝛼 so 1− 𝑘′1𝑘

′
2
−𝛼 > 1

2 and therefore

𝑘′2(1 − 𝑘′1𝑘
′
2
−𝛼) >

𝑘′2
2 ≥ 𝑘

′
1(𝑘
′
1

1−𝛼 + 𝑝1−𝛼).

Now, let 𝑛′ = 𝑘′1 + 𝑘
′
2 + 𝑝 denote the number of variables of Ψ′. By the subadditivity of the

map 𝑧 ↦→ 𝑧1−𝛼 we finally obtain

𝑘′1𝑛
′1−𝛼 = 𝑘′1(𝑘

′
1 + 𝑘

′
2 + 𝑝)1−𝛼 ≤ 𝑘′1

(
𝑘′1

1−𝛼 + 𝑘′2
1−𝛼 + 𝑝1−𝛼

)
< 𝑘′2.

It remains to show that an IP3 instance with 𝑘′2 > 𝑘′1𝑛
′1−𝛼 can be decided by an approxi-

mation algorithm for Min-𝛾-Gapped-𝛿-Relevant-Input with approximation factor 𝑛′1−𝛼.
Assume such an algorithm exists and let 𝑘 be an approximate solution. Then, there exists
a true solution �̃� with �̃� ≤ 𝑘 ≤ 𝑛′1−𝛼 �̃�.

Firstly, assume that {Ψ′, x′, 𝑘′1 , 𝑘
′
2} is a Yes-instance for IP3. Then, there is a 𝛿-relevant

set of size 𝑘′1. However, no set smaller than �̃� can be 𝛿-relevant. This implies �̃� ≤ 𝑘′1 and
therefore 𝑘 ≤ 𝑛′1−𝛼𝑘′1 < 𝑘′2.

41

Chapter 3 Interpretability of Boolean Circuit Classifiers

Secondly, assume that {Ψ′, x′, 𝑘′1 , 𝑘
′
2} is a No-instance for IP3. Then, all sets of size at

most 𝑘′2 are not (𝛿 − 𝛾)-relevant. However, there exists a (𝛿 − 𝛾)-relevant set of size �̃�. This
implies 𝑘 ≥ �̃� > 𝑘′2.

Altogether, checking whether 𝑘 < 𝑘′2 or 𝑘 > 𝑘′2 decides {Ψ′, x′, 𝑘′1 , 𝑘
′
2}.

Proof of Corollary 3.7. This is a direct consequence of Theorem 3.6 for the case 𝛾 = 0.

3.4 Discussion

We want to briefly discuss the scope of our analysis in this chapter and the implications
for algorithms that explain the predictions of classifiers. One could ask whether a solution
set 𝑆 to the Min-𝛿-Relevant-Input problem is in itself already a good explanation for a
classifier prediction. We are not arguing that a solution set alone is enough to fully explain
the decision of a classifier to humans. The solution sets have some limitations that are
discussed in the following subsection. We rather argue that any good explanation should
contain a solution of the Min-𝛿-Relevant-Input problem. Given a good explanation for a
classification prediction, we want to be able to conclude: If we fix these input variables
then the classification will remain unchanged with high probability.

The evaluation methods for explanations of [Sam+17] and [FV17] indicate that practi-
tioners agree and design algorithms that should solve Min-𝛿-Relevant-Input in practice.
Yet, our hardness results indicate that efficient methods cannot be proven to achieve this
under all circumstances.

3.4.1 Stability and Uniqueness of 𝛿-Relevant Sets

One should note that, like prime implicant explanations, the solution sets of the Min-𝛿-
Relevant-Input problem are generally not unique. However, this behavior is expected
since an input can contain redundant information and each part of it alone can already
be sufficient for the prediction. Even for instances with unique solution sets, these can
depend sensitively on the probability threshold 𝛿, i.e., slight changes in 𝛿 can lead to very
different (and possibly not even overlapping) solution sets.

Further, the concept of 𝛿-relevance is not monotone, in the sense that if 𝑆1 is 𝛿-relevant
then 𝑆2 ⊇ 𝑆1 does not need to be 𝛿-relevant as well. Again, this behavior is expected, since
there can be negative evidence in some of the variables. For example, think of a cat-vs-dog
image classifier and an input containing both a cat and a dog. A set of variables including
the cat will get less relevant for the prediction “cat” if we add more variables covering the
dog to it. In fact, this non-monotonicity property was essential for the constructions used
in our proof of the inapproximability theorem.

3.4.2 Binary versus Continuous

In our analysis, we considered Boolean circuit classifiers and binary input variables. As
discussed in the introduction, the classifier is fixed in each problem instance, thus any class
of classifiers that can efficiently describe Boolean circuits is also subject to our hardness

42

3.5 Conclusion

results. This includes ReLU neural networks (see Chapter 4) as well as Bayesian networks.2
Moreover, we only considered a binary partition into relevant and non-relevant variables

analogous to the prime implicant explanation, even though many practical methods
provide continuous relevance scores (in some cases even negative scores) [SWM17]. The
concept of relevance scores is discussed in more detail in Chapter 4. Here, we want to
briefly give two reasons for restricting our analysis to binary partitions until now.

Firstly, there is generally no agreed upon interpretation of what the continuous relevance
scores produced by various algorithms mean. Therefore, we prefer to keep the clear
meaning of a partition of the variables, in the same way as this is done for prime implicants.

Secondly, many prominent applications of relevance mappings rely on binarizations
of the continuous relevance scores. In other words, the continuous scores are merely an
intermediate algorithmic choice. A mask for relevant objects in the input, e.g., tumor cells
in body tissue [LH18] or expressive genes in a sequence [Vid+15], can be obtained by
considering only the variables with a sufficiently large relevance score. The decision in the
end is thus a binary one.

3.4.3 Choice of Distribution

We restricted our analysis to the case of using the uniform distribution over the binary
cube to randomize non-relevant variables. One could also consider more data-adapted
or even empirical distributions. However, this may obscure insights about the classifiers
reasoning.

As an example, consider a faulty image classifier for boats that recognizes water instead.
If the data-adapted distribution only models images of boats on water, then marking
the boat as relevant will always lead to random completions including water around the
boat. Consequently, the prediction will remain unchanged even though the boat is not
the true underlying reason for the classifier prediction. The classifier appears to work
correctly, even though it will fail for images showing other objects on water. Instead, if
the distribution used for the random completion is oblivious to the correlation between
boats and water, the function output will only remain constant when the water is fixed,
revealing the true relevant region.

3.5 Conclusion

There exists a wide variety of algorithms that aim to make modern machine learning
methods interpretable. In turn, these algorithms themselves must be trusted. Thus, it is
clearly important to define the exact problem that the algorithms try to solve and to gain
insights about the quality of their solutions.

In this chapter we discussed that our probabilistic version of prime implicant explanations
is a crucial part of the problem that practitioners want to solve when they design
interpretation algorithms. We showed that the task of identifying the relevant components
of an input assignment to the variables of a Boolean circuit is complete for the complexity
class NPPP and thus, for example, as difficult as planing under uncertainty [DB90].

2The conditional probabilities describing the Bayesian network can represent truth tables of logical operators.
This allows them to emulate Boolean circuits [Par02].

43

Chapter 3 Interpretability of Boolean Circuit Classifiers

The chapter furthermore investigated whether it is possible to reduce the complexity of
the problem at the cost of getting only approximate solutions. We relaxed the problem
by introducing the promise of a probability gap that allows for efficient bounding of the
fraction of satisfying assignments. Furthermore, we required that a solution set only
approximates the optimal set up to any non-trivial approximation factor. Both these
relaxations do not render this problem computationally feasible unless P = NP.

This makes practical guarantees for the interpretation of classifier decisions infeasible,
as long as the classifiers are powerful enough to represent arbitrary logical functions. This
includes the important case of ReLU neural networks (see Chapter 4 for details). Provable
algorithmic guarantees would require further restrictions of the problem setting. However,
the hardness instances we constructed can already be represented by neural networks
with a fixed number of layers and bounded weights. Excluding these instances by further
restricting these coarse hyperparameters would go against the idea of neural networks.
This only leaves the option of more subtle restrictions on the classifier functions and their
inputs that depend on the actual data structures on which they have been trained. These,
however, are not yet well enough understood. As long as this is the case, we have to rely
on heuristic solutions that are thoroughly evaluated numerically.

In Chapter 4 we present our own heuristic algorithm for a continuous (non-discrete)
variant of the 𝛿-Relevant-Input problem and classifier functions with compositional
(layered) structure (such as neural networks). For several image classification tasks we
demonstrate numerically that our algorithm approximates small relevant sets better than
other widely-used baseline methods.

44

4

Interpretability of Neural Network Classifiers

In this chapter we want to extend the concepts and results of Chapter 3 from Boolean
functions to more general classifier functions. In fact, recall that the overall goal of the first
part of this thesis is a study and analysis of the following questions regarding decisions
made by neural network classifiers.

Q1: Is there a small part of the input variables that determines the classification decision

with high probability?

Q2: What is the smallest part of the input variables that determines the classification

decision with high probability?

In the previous chapter we have seen a connection between prime implicants and the
explanation of decisions made by Boolean functions. The concept of prime implicants has
also been extended from Boolean logic to abductive reasoning in first order logics [Mar91;
Mar00] and to give explanations of more general classifier decisions [SCD18]. Recall that
an implicant explanation is a subset of the input variables that is sufficient for the decision.
In other words, keeping the implicant variables fixed will lead to the same classification
for all possible completions of the remaining variables. A prime implicant explanation is a
minimal implicant with respect to set inclusion and thus cannot be reduced further.

The deterministic requirement to produce the same classification for all completions is
often too strict, especially for high-dimensional problems as commonly found in modern
machine learning. Therefore, we introduced a relaxation of this notion, called 𝛿-relevance,
in Chapter 3. It can be seen as a probabilistic version of prime implicant explanations,
which only requires that the classifier prediction remains unchanged with high probability.
In order to analyze the interpretability of neural network classifiers we want to take this
idea further and extend it from the discrete to the continuous setting.

4.1 The 𝜖-Distortion-Input Problem

We start by extending the concept of 𝛿-relevant sets of variables in Definition 3.1 from
Boolean functions defined on a discrete domain to classifier functions defined on a
continuous domain. The notion of 𝛿-relevance relies on random completions of input
variables that are not part of the relevant set. In the discrete setting we restricted our analysis
to the uniform distribution𝒰({0, 1}𝑛), i.e., all variables are considered independently and
identically distributed. Let us first generalize this to other distributions as a preparation
for the continuous setting.

45

Chapter 4 Interpretability of Neural Network Classifiers

Definition 4.1. For fixed x ∈ {0, 1}𝑛 or x ∈ [0, 1]𝑛 , a probability distribution 𝒱 on
{0, 1}𝑛 or [0, 1]𝑛 respectively, and a set 𝑆 ⊆ [𝑛], we call the random vector defined as

z𝑆 = x𝑆 and z𝑆𝑐 = e𝑆𝑐 , e ∼ 𝒱 ,

an obfuscation of x with respect to𝒱 and 𝑆. We denote the resulting distribution as
𝒱𝑆,x (abbreviated as𝒱𝑆 whenever the dependence on x is clear from context).

Remark 4.2. The distribution𝒱𝑆,x of the obfuscation z is obtained by marginalizing𝒱
over all variables in 𝑆 and replacing them deterministically by x𝑆.

Remark 4.3. Instead of marginalizing over variables in 𝑆 one could also condition on
them. If 𝒱 has independently distributed variables, for example 𝒱 = 𝒰({0, 1}𝑛)
or 𝒱 = 𝒰([0, 1]𝑛), then 𝒱𝑆,x has the same distribution as z | (z𝑆 = x𝑆) with z ∼ 𝒱.
In other words, under the independence assumption there is no difference between
conditioning on or marginalizing over variables in 𝑆. In the context of determining
relevant variables it seems more natural to consider the marginalization approach for
distributions with correlated variables, see [JMB20] and Section 4.5 for a discussion.

The formulation of 𝛿-relevance in Definition 3.1 via a probability threshold for not changing
the classification decision is too strict for classifier functions with a continuous domain
and co-domain. Instead we use a reformulation based on expectation values.

Remark 4.4. The 𝛿-relevance property of a set 𝑆 of variables for a binary classifier
Ψ : {0, 1}𝑛 → {0, 1} and x ∈ {0, 1}𝑛 in Definition 3.1 can be rewritten as

P
z∼𝒰({0,1}𝑛) [Ψ(z) = Ψ(x) | z𝑆 = x𝑆] ≥ 𝛿

⇐⇒ P
z∼𝒰({0,1}𝑛) [Ψ(z) ≠ Ψ(x) | z𝑆 = x𝑆] ≤ 1 − 𝛿

⇐⇒ E
z∼𝒰({0,1}𝑛) [|Ψ(z) −Ψ(x)| | z𝑆 = x𝑆] ≤ 1 − 𝛿

⇐⇒ Ez∼𝒰𝑆
[|Ψ(z) −Ψ(x)|] ≤ 1 − 𝛿,

where Remark 4.3 was used in the last step.

This formulation using the expected difference of predictions is well-suited to be generalized
to classifiers on a continuous domain. Also other distance measures can be considered
instead of the absolute difference. In the following, the exact choice of the distance function
will not be of importance as long as it satisfies two basic properties.

Assumption 4.5. For the remainder of this chapter let dist : [0, 1] × [0, 1] → R≥0 be a
measurable function satisfying the two properties

(P1) dist(·, ·) is bounded on [0, 1]2 by a constant 𝑀 > 0,

(P2) dist(0, 0) = dist(1, 1) = 0 and dist(0, 1) = dist(1, 0) = 1.

46

4.1 The 𝜖-Distortion-Input Problem

This can be guaranteed (if necessary by appropriate rescaling) for most common positive
definite and symmetric distance measures, such as absolute or squared differences.

We are now ready to define the analogous concept to 𝛿-relevant sets.

Definition 4.6. Let Φ : [0, 1]𝑛 → [0, 1], x ∈ [0, 1]𝑛 , and𝒱 be a probability distribution
on [0, 1]𝑛 . Then the distortion of a set 𝑆 ⊆ [𝑛] with respect to Φ, x, and𝒱 is defined as

𝐷(𝑆,Φ, x,𝒱) = Ez∼𝒱𝑆 [dist(Φ(z),Φ(x))] .

We use the abbreviated notation 𝐷(𝑆)whenever Φ, x, and𝒱 are clear from the context.

In other words, a set of variables 𝑆 can be considered 𝛿-relevant if it achieves a limited
distortion 𝐷(𝑆) ≤ 1 − 𝛿.

Definition 4.7. Let Φ : [0, 1]𝑛 → [0, 1], x ∈ [0, 1]𝑛 , and𝒱 be a probability distribution
on [0, 1]𝑛 . Then the rate of a distortion limit 𝜖 ≥ 0 with respect to Φ, x, and 𝒱 is
defined as

𝑅(𝜖,Φ, x,𝒱) = min {|𝑆 | : 𝑆 ⊆ [𝑛], 𝐷(𝑆,Φ, x,𝒱) ≤ 𝜖} .
We use the abbreviated notation 𝑅(𝜖)whenever Φ, x, and𝒱 are clear from the context.

The distortion limit 𝜖 takes the role of 1 − 𝛿 from before. We will also refer to 𝑅 as the
rate-distortion function as it precisely describes the trade-off between distortion limits and
the sizes of relevant sets (rates) that are necessary to achieve them.

The idea of formulating relevance in a rate-distortion viewpoint can also be motivated
with the hypothetical setup illustrated in Figure 4.1. The terminology is borrowed from
information theory where rate-distortion is used to analyze lossy data compression. In
that sense, the set of relevant components can be thought of as a compressed description
of the signal with the expected deviation from the classification score being a measure for
the reconstruction error.

This framework is used to state a clearly defined objective that relevance maps should
fulfill: Given a distortion limit 𝜖, the goal is to find a set 𝑆 achieving the minimum in
Definition 4.7, i.e., evaluating the rate-distortion function. This generalizes the problem of
finding small 𝛿-relevant sets to functions on continuous domains. Thus, evaluating the
rate-distortion function amounts to answering the questions Q1 and Q2. We will show that
no efficient algorithm can always fulfill this objective. Still, it can be used to numerically
evaluate the quality of relevance maps that were produced by heuristic algorithms, as
discussed in Sections 4.3.1 and 4.4.

Analogous to the 𝛿-Relevant-Input problem in the binary case (Definition 3.3) we can
define the corresponding decision problem for the continuous setting.

Definition 4.8. For 𝜖 ≥ 0, ℱ ⊆ {Φ : [0, 1]𝑛 → [0, 1]}, and a probability distribution𝒱
on [0, 1]𝑛 , we define the (ℱ ,𝒱)-𝜖-Distortion-Input problem as follows.

Given: A function Φ ∈ ℱ , a signal x ∈ [0, 1]𝑛 , and 𝑘 ∈ [𝑛].

Decide: Does there exist 𝑆 ⊆ [𝑛]with |𝑆 | ≤ 𝑘 such that 𝐷(𝑆,Φ, x,𝒱) ≤ 𝜖?

47

Chapter 4 Interpretability of Neural Network Classifiers

Alice Bob
rate |𝑆𝑆 |

original image partial image random completion

Φ(x) = 0.97
“monkey”

Φ(z) = 0.91
“monkey”

Figure 4.1: Rate-Distortion Viewpoint. We motivate the rate-distortion viewpoint from the
following hypothetical scenario: two people, Alice and Bob, have access to the same neural
network classifier. Alice classified an image as a “monkey” and wants to convey this to Bob. She
is only allowed to send a limited number of pixels to Bob, who will complete the image with
random values. Alice’s best chance of convincing Bob is to transmit those pixels that are most
relevant for the class “monkey” and ensure a small difference between their classification scores
in expectation.

The set ℱ of “allowed” function takes the role of the Boolean circuits from before and will
be chosen as a set of neural network functions in our complexity analysis. The associated
minimization problem is defined in the usual way.

Definition 4.9. For 𝜖𝜖 ≥ 0, ℱ ⊆ {Φ : [0, 1]𝑛𝑛 → [0, 1]}, and a probability distribution 𝒱𝒱
on [0, 1]𝑛𝑛 , we define the Min-(ℱ ,𝒱𝒱)-𝜖𝜖-Distortion-Input problem as follows.

Given: A function Φ ∈ ℱ and a signal x ∈ {0, 1}𝑛𝑛 .

Task: Find the minimal 𝑘𝑘 ∈ N such that there exist 𝑆𝑆 ⊆ [𝑛𝑛] with |𝑆𝑆 | ≤ 𝑘𝑘 and so that
𝐷𝐷(𝑆𝑆,Φ, x,𝒱𝒱) ≤ 𝜖𝜖.

Remark 4.10. The (ℱ ,𝒱𝒱)-𝜖𝜖-Distortion-Input decision problem answers the question
if the rate-distortion function 𝑅𝑅(𝜖𝜖,Φ, x,𝒱𝒱) for a given Φ and x is at most 𝑘𝑘. The
corresponding minimization problem Min-(ℱ ,𝒱𝒱)-𝜖𝜖-Distortion-Input is equivalent
to evaluating 𝑅𝑅(𝜖𝜖,Φ, x,𝒱𝒱) for a given Φ and x.

4.2 Computational Complexity Analysis

The inapproximability of small relevant sets has been shown for binary functions, repre-
sented as Boolean circuits, and the uniform distribution 𝒰𝒰({0, 1}𝑛𝑛) on {0, 1}𝑛𝑛 in Corol-
lary 3.7. We will now generalize this result for classifiers on a continuous domain.

Theorem 4.11. Let 𝒱𝒱 = 𝒰𝒰([0, 1]𝑛𝑛), ℱ = 𝒩𝒩𝒩𝒩𝑛𝑛,∗,1
∗,𝜚𝜚 ,𝜚𝜚 , and 𝜖𝜖 ∈ (0, 1). Then for any 𝛼𝛼 ∈ (0, 1)

there is no polynomial time approximation algorithm for the Min-(ℱ ,𝒱𝒱)-𝜖𝜖-Distortion-Input

problem with an approximation factor 𝑛𝑛1−𝛼𝛼
unless P = NP.

Recall that 𝒩𝒩𝒩𝒩𝑛𝑛,∗,1
∗,𝜚𝜚 ,𝜚𝜚 is the set of all ReLU neural networks of finite depth with 𝑛𝑛 input

variables and a single output. For ease of presentation, we state and proof the result for

48

4.2 Computational Complexity Analysis

the uniform distribution. However, we want to remark that it is also valid for more general
distributions, see Section 4.5 for a discussion. The proof strategy is based on the fact that
neural networks with ReLU activations can efficiently represent Boolean circuits.

Definition 4.12. Let 𝑚 ∈ N, Ψ : {0, 1}𝑛 → {0, 1}𝑚 and Φ : [0, 1]𝑛 → [0, 1]𝑚 . Then Φ is
said to interpolate Ψ if Φ restricted to {0, 1}𝑛 is equal to Ψ.

Lemma 4.13. Let Ψ : {0, 1}𝑛 → {0, 1} be a Boolean circuit function. Then there exists a

ReLU neural network Φ ∈ 𝒩𝒩𝑛,∗,1
∗,𝜚 ,𝜚 that interpolates Ψ and has a size (depth and width)

polynomial in the size of Ψ.

This follows from results relating Boolean circuits to linear threshold circuits of comparable
size [Par96] and linear threshold circuits to ReLU networks of comparable size [MB17].
See also Figure 3.1 for an example of a neural network representation of a Boolean circuit.

The idea for the proof of Theorem 4.11 can be summarized in a few steps: Given a
Boolean circuit Ψ we choose an interpolating ReLU network Φ0. For any 𝜂 > 0 there exists
a fixed size ReLU network Φ𝜂 that transforms the uniform distribution𝒰([0, 1]𝑛) into the
binary distribution 𝒰({0, 1}𝑛) up to a small error depending explicitly on 𝜂, such that
Φ = Φ0 ◦ Φ𝜂 still interpolates Ψ. The difference of the distortions 𝐷(𝑆,Φ, x,𝒰([0, 1]𝑛))
and 𝐷(𝑆,Ψ, x,𝒰({0, 1}𝑛)) can be shown to depend explicitly on 𝜂 as well. Moreover, the
binary distortion is directly related to the probability lower bounded by 𝛿 in Definition 3.1.
Thus, it can be shown that for the right choice of 𝜂 any approximation algorithm for
Min-(𝒩𝒩𝑛,∗,1

∗,𝜚 ,𝜚 ,𝒰([0, 1]𝑛))-𝜖-Distortion-Input would also be an approximation algorithm
for the Min-𝛾-Gapped-𝛿-Relevant-Input problem with the same approximation factor. The
inapproximability result of Theorem 3.6 thus carries over to the continuous setting.

For brevity, we introduce the notation

𝐷𝑏
Φ,x(𝑆) = 𝐷(𝑆,Φ, x,𝒰({0, 1}𝑛)),

𝐷𝑐
Φ,x(𝑆) = 𝐷(𝑆,Φ, x,𝒰([0, 1]𝑛)),

for the distortions with respect to the uniform distribution on the binary and the continuous
domain respectively. As observed in Remark 4.4 we can relate the binary distortion 𝐷𝑏 to
𝛿-relevance.

Lemma 4.14. Let Ψ : {0, 1}𝑛 → {0, 1} and x ∈ {0, 1}𝑛 . Then for any 𝑆 ⊆ [𝑛] we have

P
z∼𝒰({0,1}𝑛) [Ψ(z) = Ψ(x) | z𝑆 = x𝑆] = 1 − 𝐷𝑏

Ψ,x(𝑆).

Proof. This follows from a direct calculation analogous to Remark 4.4 above using the
property (P2) of the distance function.

For 0 < 𝜂 ≤ 1 we set Φ𝜂(x) = 𝜑
(

1
𝜂

(
x − 1−𝜂

2 1𝑛

))
with

𝜑(𝑥) =

0, 𝑥 ≤ 0,
𝑥, 0 < 𝑥 ≤ 1,
1, 𝑥 > 1,

49

Chapter 4 Interpretability of Neural Network Classifiers

0 0.5 1

0

0.5

1

𝜂

𝑥

Φ
𝜂
(𝑥
)

Figure 4.2: Binarization of Inputs. Illustration of the binarization function Φ𝜂 for one component.
The event 𝐸𝑆 in the proof of Lemma 4.15 describes those z ∈ [0, 1]𝑛 for which at least one
component not indexed by 𝑆 falls into the gray marked region of width 𝜂.

and observe that Φ𝜂 interpolates the identity on {0, 1}𝑛 and can be realized by two ReLU
layers of size 𝒪(𝑛), cf. Figure 4.2.

The following lemma relates the distortions 𝐷𝑏 and 𝐷𝑐 for a discrete function Ψ and a
continuous map Φ interpolating it.

Lemma 4.15. Let Ψ : {0, 1}𝑛 → {0, 1} and x ∈ {0, 1}𝑛 . Then for any Φ0 : [0, 1]𝑛 → [0, 1]
interpolating Ψ, 𝑆 ⊆ [𝑛], and 0 < 𝜂 ≤ 1 we have for Φ = Φ0 ◦Φ𝜂 that

𝐷𝑏
Φ,x(𝑆) = 𝐷𝑏

Φ0 ,x
(𝑆) = 𝐷𝑏

Ψ,x(𝑆)

as well as

|𝐷𝑐
Φ,x(𝑆) − 𝐷

𝑏
Ψ,x(𝑆)| ≤ 𝑀𝑛𝜂.

Proof. The first part of the claim follows directly from the fact that Φ0 and Φ = Φ0 ◦ Φ𝜂

interpolate Ψ. For the second part we consider the event

𝐸𝑆 =

{
z ∈ [0, 1]𝑛 : ∃𝑗 ∈ 𝑆𝑐 such that 𝑧 𝑗 ∈

(
1 − 𝜂

2 ,
1 + 𝜂

2

) }
,

and observe
P

z∼𝒰([0,1]𝑛) [z ∈ 𝐸𝑆] = 1 − (1 − 𝜂)𝑛−|𝑆 | .
We introduce the abbreviated notation

𝐴𝑆 = E
z∼𝒰([0,1]𝑛) [dist(Φ(z),Φ(x)) | z𝑆 = x𝑆 , z ∈ 𝐸𝑆]

𝐵𝑆 = E
z∼𝒰([0,1]𝑛) [dist(Φ(z),Φ(x)) | z𝑆 = x𝑆 , z ∉ 𝐸𝑆] .

We can split the expectation value in the continuous distortion term as

𝐷𝑐
Φ,x(𝑆) = Ez∼𝒰([0,1]𝑛) [dist(Φ(z),Φ(x)) | z𝑆 = x𝑆]

= 𝐴𝑆Pz∼𝒰([0,1]𝑛) [z ∈ 𝐸𝑆] + 𝐵𝑆Pz∼𝒰([0,1]𝑛) [z ∉ 𝐸𝑆]

= 𝐴𝑆

(
1 − (1 − 𝜂)𝑛−|𝑆 |

)
+ 𝐵𝑆(1 − 𝜂)𝑛−|𝑆 | .

50

4.2 Computational Complexity Analysis

For the second term, we get

𝐵𝑆 = E
z∼𝒰([0,1]𝑛)

[
dist(Φ0 ◦Φ𝜂(z),Φ0 ◦Φ𝜂(x))

��
z𝑆 = x𝑆 , z ∉ 𝐸𝑆

]
= E

z∼𝒰({0,1}𝑛) [dist(Φ0(z),Φ0(x)) | z𝑆 = x𝑆]
= E

z∼𝒰({0,1}𝑛) [dist(Ψ(z),Ψ(x)) | z𝑆 = x𝑆]
= 𝐷𝑏

Ψ,x(𝑆),

where the second equality follows from the choice of Φ𝜂 and z ∉ 𝐸𝑆 and the third equality
follows from the fact that Φ0 interpolates Ψ. Thus, we conclude

𝐷𝑐
Φ,x(𝑆) = 𝐴𝑆

(
1 − (1 − 𝜂)𝑛−|𝑆 |

)
+ 𝐷𝑏

Ψ,x(𝑆)(1 − 𝜂)
𝑛−|𝑆 |

= 𝐷𝑏
Ψ,x(𝑆) +

(
1 − (1 − 𝜂)𝑛−|𝑆 |

)
(𝐴𝑆 − 𝐵𝑆).

Using Bernoulli’s inequality and 0 ≤ 𝐴𝑆 , 𝐵𝑆 ≤ 𝑀, this finally results in

|𝐷𝑐
Φ,x(𝑆) − 𝐷

𝑏
Ψ,x(𝑆)| ≤ 𝑀

(
1 − (1 − 𝜂)𝑛−|𝑆 |

)
≤ 𝑀(𝑛 − |𝑆 |)𝜂 ≤ 𝑀𝑛𝜂,

which finishes the proof.

We now come to the proof of the main theorem of this section.

Proof of Theorem 4.11. Given 𝜖 ∈ (0, 1) we choose 𝛿 ∈ (0, 1) and 𝛾 ∈ (0, 𝛿) such that
𝜖 = 1 − 𝛿 + 𝛾

2 . Let {Ψ, x} be an instance of Min-𝛾-Gapped-𝛿-Relevant-Input. We will
construct Φ ∈ ℱ so that the instance {Φ, x} of Min-(ℱ ,𝒰([0, 1]𝑛))-𝜖-Distortion-Input has
a solution that is also valid for the {Ψ, x} instance.

Let Φ0 : [0, 1]𝑛 → [0, 1] be a neural network that interpolates Ψ, set 𝜂 =
𝛾

2𝑀𝑛 and
Φ = Φ0 ◦ Φ𝜂. Recall that solving the Min-(ℱ ,𝒰([0, 1]𝑛))-𝜖-Distortion-Input instance
is the same as evaluating 𝑅(𝜖,Φ, x,𝒰([0, 1]𝑛)). We show that 𝑅(𝜖,Φ, x,𝒰([0, 1]𝑛)) is a
solution for the Min-𝛾-Gapped-𝛿-Relevant-Input problem instance {Ψ, x}, i.e., it fulfills
both conditions in Definition 3.26. To see this, let

𝑆∗ ∈ argmin {|𝑆 | : 𝑆 ⊆ [𝑛], 𝐷(𝑆,Φ, x,𝒰([0, 1]𝑛)) ≤ 𝜖} ,

and hence |𝑆∗ | = 𝑅(𝜖,Φ, x,𝒰([0, 1]𝑛)). Lemma 4.15 yields

1 − 𝐷𝑏
Ψ,x(𝑆

∗) ≥ 1 − (𝐷𝑐
Φ,x(𝑆

∗) +𝑀𝑛𝜂)

≥ 1 − 𝜖 − 𝛾

2 = 𝛿 − 𝛾,

and together with Lemma 4.14 we get

P
z∼𝒰({0,1}𝑛) [Ψ(z) = Ψ(x) | z𝑆∗ = x𝑆∗] ≥ 𝛿 − 𝛾,

showing that the first condition in Definition 3.26 is satisfied.
Similarly, for any 𝑆 with |𝑆 | < 𝑅(𝜖,Φ, x,𝒰([0, 1]𝑛))we know 𝐷(𝑆,Φ, x,𝒰([0, 1]𝑛)) > 𝜖.

Thus by Lemma 4.15

1 − 𝐷𝑏
Ψ,x(𝑆) ≤ 1 − (𝐷𝑐

Φ,x(𝑆) −𝑀𝑛𝜂)

< 1 − 𝜖 + 𝛾

2 = 𝛿,

51

Chapter 4 Interpretability of Neural Network Classifiers

and again using Lemma 4.14 we obtain

P
z∼𝒰({0,1}𝑛) [Ψ(z) = Ψ(x) | z𝑆 = x𝑆] < 𝛿,

showing that the second condition in Definition 3.26 is satisfied as well.
Hence, any algorithm approximating Min-(ℱ ,𝒰([0, 1]𝑛))-𝜖-Distortion-Input can also

be used as an approximation algorithm for Min-𝛾-Gapped-𝛿-Relevant-Input with the same
approximation factor. For the latter it is known by Theorem 3.6 that achieving the factor
𝑛1−𝛼 is NP-hard for any 𝛼 ∈ (0, 1), which completes the proof.

We want to stress that this is a worst-case analysis and does not imply that the task is
always infeasible in practical applications. Yet, performance guarantees cannot be proven
as long as the neural networks considered are powerful enough to represent arbitrary
logical functions, which is the case for ReLU networks. Hence, we have to rely on heuristic
solution strategies. Existing heuristics tend to produce continuous relevance scores instead
of a strict partition into a relevant and a non-relevant subset of input components. We
will discuss this in the next section and then present our own novel heuristic approach in
Section 4.3.2.

4.3 Relaxation of the Problem

Until now we considered partitions of the input components of a classifier into a set 𝑆 of
relevant and its complement 𝑆𝑐 of non-relevant ones. In contrast, many existing relevance
mapping algorithms produce continuous relevance scores for each variable. These can be
encoded by a vector s ∈ [0, 1]𝑛 , where 0 means least relevant and 1 means most relevant.1
It seems not immediately clear how the continuous scores relate to the partitions that were
discussed in Sections 4.1 and 4.2. However, we argue that the exact numerical values
of continuous relevance map are generally meaningless, in the sense that knowing the
precise value 𝑠 𝑗 of the 𝑗-th variable has no specific meaning. Instead, it is the ordering of
the input components according to their relevance scores that is of importance, i.e., the
relations 𝑠𝑖 < 𝑠 𝑗 or 𝑠𝑖 > 𝑠 𝑗 between different variables. Finally, any ordering of variables
can be associated to a partition by choosing to include the 𝑘 most relevant variables in 𝑆
and the remaining ones in 𝑆𝑐 for some value of 𝑘 ∈ [𝑛].

4.3.1 Relevance Scores and Orderings

Given an ordering of input components according to their relevance for a prediction (either
explicitly produced by an interpretability method, see Section 4.3.3, or implicitly inferred
from a score vector s produced by an interpretability method, see Section 4.3.2), we denote
by 𝜋 : [𝑛] → [𝑛] ∈ Sym(𝑛) the permutation that describes the ordering. This means that
𝜋(𝑘) is considered the 𝑘-th most relevant input component and 𝜋([𝑘]) is the set of the 𝑘
most relevant input components. Such an ordering can be seen as a greedy approach to
solve one of the following two questions2, related to our initial question Q2, for varying 𝜖.

1Some methods also consider “negative” relevance scores for features speaking against a classification
decision. In this case the scores are encoded in the range [−1, 1] instead of [0, 1].

2Fong and Vedaldi refer to these two formulations as a preservation and deletion game respectively [FV17].

52

4.3 Relaxation of the Problem

Productive Formulation: If we want to preserve the class prediction Φ(x) up to a maximal
distortion of 𝐷(𝑆) ≤ 𝜖, which is the smallest set 𝑆 of components we should fix?

Destructive Formulation: If we want to destroy the class prediction Φ(x) with minimal
distortion 𝐷(𝑆𝑐) ≥ 𝜖, which is the smallest set 𝑆 of components we should obfuscate?

Both formulations might be equally valid depending on the application. Though seemingly
equivalent, these questions do generally not have the same answer. Consider, for example,
the case of redundancy, e.g., a picture with two monkeys that was classified as containing
a monkey. In the productive scenario it can be sufficient to include just one of the monkeys
in 𝑆, while in the destructive scenario one should try to obfuscate both monkeys equally.

All existing quantitative evaluation methods for relevance maps implicitly use one
of these formulations: they are based on obfuscating or perturbing parts of the input
components that are deemed most or least relevant and measure the change in the
classification score. Zeiler and Fergus consider obfuscations by a constant baseline
value [ZF14], Samek et al. use obfuscations by random values [Sam+17], and Fong and
Vedaldi use both types of obfuscations as well as perturbations by blurring [FV17].

In this work we focus entirely on the productive formulation, but we conjecture that a
hardness result comparable to Theorem 4.11 also holds for the destructive case. The size
of the optimal solution for the productive formulation is described by our rate-distortion
function 𝑅(𝜖). A good relevance ordering is one that provides good approximations to
the optimal size, when we greedily include input components in descending order of
their relevance until the distortion limit is satisfied. Similar to the rate function of a set of
variables introduced in Definition 4.7 we can define the rate function of an ordering of
variables.

Definition 4.16. Let Φ : [0, 1]𝑛 → [0, 1], x ∈ [0, 1]𝑛 , and𝒱 be a probability distribution
on [0, 1]𝑛 . For a permutation 𝜋 : [𝑛] → [𝑛] ∈ Sym(𝑛) the rate associated to 𝜋 of a
distortion limit 𝜖 ≥ 0 with respect to Φ, x, and𝒱 is defined as

𝑅𝜋(𝜖,Φ, x,𝒱) = min {𝑘 ∈ [𝑛] : 𝐷(𝜋([𝑘]),Φ, x,𝒱) ≤ 𝜖} .

We use the abbreviated notation 𝑅𝜋(𝜖) whenever Φ, x, and 𝒱 are clear from the
context.

Remark 4.17. Clearly 𝑅(𝜖) ≤ 𝑅𝜋(𝜖) holds for any ordering 𝜋 and all 𝜖 ≥ 0. But we can
evaluate orderings by how well they can approximate the optimal rate 𝑅(𝜖).

It would be desirable to obtain meaningful upper bounds on the approximation error
between 𝑅(𝜖) and 𝑅𝜋(𝜖). Unfortunately, we have seen that no non-trivial approximation
bound can be given for any efficient method of calculating relevance maps. They cannot be
proven to perform systematically better than a random ordering and do not provably find
small relevant sets, even when they exist. Nevertheless, the ordering based rate functions
𝑅𝜋 can still be used for comparing different relevance maps to each other. This results
in a comparison test very similar to the test in [Sam+17]. We present our own approach
to obtaining relevance maps in the next sections and then come back to the relevance
orderings for comparing it to other established methods in Section 4.4.

53

Chapter 4 Interpretability of Neural Network Classifiers

4.3.2 Sparse Rate-Distortion Explanations

Finding the optimal partition into 𝑆 and 𝑆𝑐 for varying distortion limits 𝐷(𝑆) ≤ 𝜖 is a hard
combinatorial optimization problem. As we have seen, component orderings can serve as
greedy approximations. One could attempt to obtain such orderings either explicitly or
implicitly from continuous relevance scores. We start with the latter, since most of the
established interpretability methods for neural networks produce continuous relevance
scores. Therefore, we make use of the following problem relaxation that was already
briefly mentioned above. Instead of binary relevance decisions (relevant versus non-relevant)
encoded by the set 𝑆, we allow for a continuous score for each component, encoded by a
vector s ∈ [0, 1]𝑛 , where 0 means least relevant and 1 means most relevant. We redefine
the obfuscation of x with respect to s analogous to Definition 4.1.

Definition 4.18. For fixed x ∈ [0, 1]𝑛 , a probability distribution 𝒱 on [0, 1]𝑛 , and a
score s ∈ [0, 1]𝑛 , we call the random vector

z = x ⊙ s + e ⊙ (1𝑛 − s)

defined as the component-wise convex combination of x and a random vector e ∼ 𝒱
an obfuscation of x with respect to𝒱 and s. We denote the resulting distribution as𝒱s,x

(or simply abbreviated as𝒱s whenever the dependence on x is clear from context).

This is a generalization of the obfuscation introduced in Definition 4.1 which can be
recovered by choosing s equal to one on 𝑆 and zero on 𝑆𝑐 . The natural relaxation of the
set size |𝑆 | is the norm ∥s∥1 =

∑𝑛
𝑖=1 |𝑠𝑖 |. Analogous to the distortion of a set 𝑆 of variables

introduced in Definition 4.6 we can define the distortion of a score vector s.

Definition 4.19. Let Φ : [0, 1]𝑛 → [0, 1], x ∈ [0, 1]𝑛 , and𝒱 be a probability distribution
on [0, 1]𝑛 . Then the distortion of a score s ∈ [0, 1]𝑛 with respect to Φ, x, and 𝒱 is
defined as

𝐷(s,Φ, x,𝒱) = Ez∼𝒱s
[dist(Φ(z),Φ(x))] .

We use the abbreviated notation 𝐷(s)whenever Φ, x, and𝒱 are clear from the context.

Similarly we define the corresponding rate function.

Definition 4.20. Let Φ : [0, 1]𝑛 → [0, 1], x ∈ [0, 1]𝑛 , and𝒱 be a probability distribution
on [0, 1]𝑛 . Then the rate of a distortion limit 𝜖 ≥ 0 with respect to Φ, x, and 𝒱 is
defined as

𝑅(𝜖,Φ, x,𝒱) = min {∥s∥1 : s ⊆ [0, 1]𝑛 , 𝐷(s,Φ, x,𝒱) ≤ 𝜖} .

We use the abbreviated notation 𝑅(𝜖)whenever Φ, x, and𝒱 are clear from the context.

We call the approach of obtaining relevance mappings by finding score vectors s of small
rate with small distortion rate-distortion-explanations (RDE). There are three variants to
formulate this as an optimization problem.

54

4.3 Relaxation of the Problem

We can use the Lagrangian formulation with a regularization parameter 𝜆 > 0

minimize 𝐷(s) + 𝜆∥s∥1 (L-RDE)
subject to s ∈ [0, 1]𝑛

or the rate-constrained formulation with a maximal rate 0 ≤ 𝑘 ≤ 𝑛

minimize 𝐷(s) (RC-RDE)
subject to ∥s∥1 ≤ 𝑘,

s ∈ [0, 1]𝑛

or the distortion-constrained formulation with a maximal distortion 0 ≤ 𝜖 ≤ 1

minimize ∥s∥1 (DC-RDE)
subject to 𝐷(s) ≤ 𝜖,

s ∈ [0, 1]𝑛 .

The three formulations are of course connected, however the relation between 𝜆, 𝑘, and
𝜖 that would lead to comparable solutions is far from trivial. Hence, depending on the
application one of the three formulations is usually preferable: (RC-RDE) if we want to
precisely control the allowed rate, (DC-RDE) if we want to precisely control the allowed
distortion, or (L-RDE) if a balance between rate and distortion is desirable. Also, one
should keep in mind that the three formulation behave quite differently regarding their
numerical optimization.

The Lagrangian formulation (L-RDE) results in a non-convex optimization problem with
box constraints and can be solved by any gradient based algorithm capable of handling
box constraints, such as Projected Gradient Descent (PGD) [NW06], see Algorithm 1, or
L-BFGS-B [Byr+95].

The rate-constrained formulation results in a non-convex optimization problem with box
constraints as well as an additional linear constraint. Again it can be solved, for exampled,
via Projected Gradient methods, see Algorithm 2. This requires a non-trivial projection
step onto the feasible region 𝐶 = {s ∈ [0, 1]𝑛 : ∥s∥1 ≤ 𝑘} at every iteration. An alternative
projection-free first-order method is the Frank-Wolfe (FW) algorithm [FW56] or Conditional
Gradients method [LP66], see Algorithm 3. It replaces the projection step of PGD (which
is essentially a quadratic sub-problem) with the evaluation of an often computationally
cheaper Linear Minimization Oracle (LMO). We refer to Appendix B.1 for a more detailed
discussion of the algorithms, projections, LMOs, and choices of hyper-parameters used in
our experiments.

Finally, the distortion-constrained formulation yields an optimization problem with
linear objective but non-convex constraint. Such general constraints are typically hard to
handle. Possible approaches include primal log-barrier methods [NW06] or trust-region
SQP interior point methods [BHN99].

The distortion-constrained version is most closely related to the rate function in
Definition 4.20 and the Min-(ℱ ,𝒱)-𝜖-Distortion-Input problem of Section 4.2. How-
ever, we found that for high-dimensional problems, such as the STL-10 experiments,
cf. Section 4.4.4, (DC-RDE) behaves numerically rather unstable compared to (L-RDE)
and (RC-RDE). Therefore, we recommend to use (L-RDE) or (RC-RDE) and will only
consider these two variants in our numerical experiments.

55

Chapter 4 Interpretability of Neural Network Classifiers

Algorithm 1 Projected Gradient Descent (PGD) for (L-RDE)
Input: initial guess s

0 ∈ [0, 1]𝑛 , number of steps 𝑇, step sizes 𝜂𝑡 > 0, regularization
parameter 𝜆 > 0

Output: an (approximate) stationary point s
opt of (L-RDE)

1: for 𝑡 ← 1 to 𝑇 do

2: s← s
𝑡−1 − 𝜂𝑡(∇𝐷(s𝑡−1) + 𝜆 · 1𝑛) ⊲ Gradient Descent step

3: s
𝑡 ← argmin

v∈[0,1]𝑛 ∥s − v∥22 ⊲ Projection step, see Appendix B.1.3.
4: end for

5: return s
𝑇

Algorithm 2 Projected Gradient Descent (PGD) for (RC-RDE)
Input: initial guess s

0 ∈ 𝐶 = {s ∈ [0, 1]𝑛 : ∥s∥1 ≤ 𝑘}, number of steps 𝑇, step sizes 𝜂𝑡 > 0
Output: an (approximate) stationary point s

opt of (RC-RDE)

1: for 𝑡 ← 1 to 𝑇 do

2: s← s
𝑡−1 − 𝜂𝑡∇𝐷(s𝑡−1) ⊲ Gradient Descent step

3: s
𝑡 ← argmin

v∈𝐶 ∥s − v∥22 ⊲ Projection step, see Algorithm 5 in Appendix B.1.3
4: end for

5: return s
𝑇

Algorithm 3 Frank-Wolfe (FW) algorithm for (RC-RDE)
Input: initial guess s

0 ∈ 𝐶 = {s ∈ [0, 1]𝑛 : ∥s∥1 ≤ 𝑘}, number of steps 𝑇, step sizes
𝜂𝑡 ∈ [0, 1]

Output: an (approximate) stationary point s
opt of (RC-RDE)

1: for 𝑡 ← 1 to 𝑇 do

2: v
𝑡 ← argmin

v∈𝐶
〈
∇𝐷(s𝑡−1), v

〉
⊲ LMO, see Algorithm 6 in Appendix B.1.3

3: s
𝑡 ← s

𝑡−1 + 𝜂𝑡(v𝑡 − s
𝑡−1)

4: end for

5: return s
𝑇

56

4.3 Relaxation of the Problem

4.3.3 Ordered Rate-Distortion Explanations

Instead of first obtaining relevance scores and afterwards retrieving a relevance ordering
from them, one could find an optimal ordering directly by solving

minimize 1
𝑛 − 1

∑
𝑘∈[𝑛−1]

𝐷(𝚷p𝑘)

subject to 𝚷 ∈ 𝑆𝑛 ,

where 𝑆𝑛 denotes the set of (𝑛 × 𝑛) permutation matrices and p𝑘 =
∑𝑘
𝑗=1 e𝑗 is the vector

of 𝑘-ones and (𝑛 − 𝑘)-zeros. Hence, 𝐷(𝚷p𝑘) corresponds to the distortion of fixing the 𝑘
most relevant features (according to 𝚷) 3 and the objective aims at minimizing the average
distortion across all rates 𝑘 ∈ [𝑛−1] simultaneously. 4 We relax this combinatorial problem
(𝑆𝑛 is discrete) to

minimize 1
𝑛 − 1

∑
𝑘∈[𝑛−1]

𝐷(𝚷p𝑘) (Ord-RDE)

subject to 𝚷 ∈ 𝐵𝑛 ,

where 𝑆𝑛 is replaced with its convex hull, i.e., the Birkhoff polytope 𝐵𝑛 = conv(𝑆𝑛) of
doubly stochastic (𝑛 × 𝑛)matrices. Similar to (RC-RDE), this results in an optimization
problem with non-convex objective over a convex and compact feasible region, which can
be solved with the Frank-Wolfe algorithm (or a stochastic version of it [HL16] if 𝑛 is large
and evaluating the complete sum in (Ord-RDE) is too expensive, see Algorithm 4). There
is no exact projection method specific to the Birkhoff polytope, see Appendix B.1, hence
we do not consider PGD for solving (Ord-RDE).

Algorithm 4 Stochastic Frank-Wolfe (SFW) algorithm for (Ord-RDE)
Input: initial guess𝚷0 ∈ 𝐵𝑛 , number of steps𝑇, step sizes 𝜂𝑡 ∈ [0, 1], batch sizes 𝑏𝑡 ∈ [𝑛−1],

momentum factors 𝜌𝑡 ∈ [0, 1]
Output: an (approximate) stationary point 𝚷opt of (Ord-RDE)

1: M0 ← 0𝑛×𝑛
2: for 𝑡 ← 1 to 𝑇 do

3: sample 𝑘1 , . . . , 𝑘𝑏𝑡 i.i.d. uniformly from [𝑛 − 1]
4: G

𝑡 ← 1
𝑏𝑡

∑𝑏𝑡

𝑗=1 ∇𝐷(𝚷𝑡−1
p𝑘 𝑗)p⊤𝑘 𝑗 ⊲ Gradient estimate

5: M
𝑡 ← 𝜌𝑡M𝑡−1 + (1 − 𝜌𝑡)G𝑡 ⊲ Momentum update

6: V
𝑡 ← argmin

V∈𝐵𝑛
〈
M

𝑡 ,V
〉

⊲ Linear Minimization Oracle, see Appendix B.1
7: 𝚷𝑡 ← 𝚷𝑡−1 + 𝜂𝑡(V𝑡 −𝚷𝑡−1)
8: end for

9: return 𝚷𝑇

A solution 𝚷opt to (Ord-RDE) is a convex combination of permutation matrices (the
vertices of 𝐵𝑛). It can be used to obtain mappings for specific rates via 𝚷opt

p𝑘 , which we
3If 𝜋 ∈ Sym(𝑛) denotes the permutation represented by 𝚷, then 𝐷(𝚷p𝑘) exactly corresponds to the term
𝐷(𝜋([𝑘])) in Definition 4.16.

4For 𝑘 = 𝑛 the distortion 𝐷(𝚷p𝑛)will always be zero, hence this term can be omitted from the averaging.

57

Chapter 4 Interpretability of Neural Network Classifiers

interpret as a convex combination of the respective 𝑘 most relevant components according
to each permutation contributing to a convex decomposition of 𝚷opt. From now on we
refer to 𝚷opt

p𝑘 with 𝑘 ∈ [𝑛 − 1] as the single-rate mappings associated to 𝚷opt.
One should note that, in contrast to (RC-RDE), a straightforward approach to solv-

ing (Ord-RDE) is not feasible for large-scale problems: optimizing over matrices in R𝑛×𝑛
instead of vectors in R𝑛 results in increased computational costs, both in terms of memory
requirements and runtime (see also the descriptions of the LMOs in Appendix B.1). How-
ever, this might in part be remedied by a clever and more memory-efficient representation
of iterates.5

Another possibility to overcome this limitation is to emulate a similar multi-rate strategy
that relies solely on the rate-constrained formulation: we can separately solve (RC-RDE)
for all 𝑘 ∈ 𝒦 for some 𝒦 ⊆ [𝑛 − 1] and combine these solutions, e.g., by averaging, to
obtain relevance scores

s =
1
|𝒦 |

∑
𝑘∈𝒦

argmin 𝐷(s)
subject to ∥s∥1 ≤ 𝑘,

s ∈ [0, 1]𝑛 ,

 (MR-RDE)

that take multiple rates into account. Consequently, this effectively yields an induced
ordering of the variables according to their relevance across all rates (if a variable is
contained in the solutions for many of the rates then it contributes more to the averaging
of relevance maps over𝒦 and should be considered more relevant than a variable that is
only contained in a few solutions, hence it should come earlier in the ordering).

In summary, we can interpret the different RDE variants in terms of their objective
regarding the relevance ordering evaluation: solving a single (RC-RDE) problem aims
at optimizing the rate-distortion function, i.e., achieving low distortion, at a single rate.
This might lead to suboptimal results at other rates. In contrast, (Ord-RDE) aims at
directly optimizing the relevance ordering and thus optimizes the distortion for all rates
simultaneously on average. Finally, (MR-RDE) combines single-rate solutions spread
across the range of considered rates and thus approximately also aims at optimizing the
distortion everywhere by minimization at well-chosen attachment points.

4.3.4 Assumed Density Filtering

In order to solve any of the RDE problem variants by first-order methods we need an
efficient way of evaluating 𝐷(s) and its gradient. We will give a brief overview of one
possibility here. A more detailed discussion is given in Chapter 5. For the remainder of
this section we will only consider the squared distance dist(𝑎, 𝑏) = (𝑎 − 𝑏)2, which satisfies
both properties of Assumption 4.5.

5The 𝑡-th iterate 𝚷𝑡 of the Frank-Wolfe algorithm is a convex combination of an active set of at most 𝑡
permutations (corresponding to vertices of 𝐵𝑛). Storing these together with the convex weights allows
to effectively recover the iterate but reduces the memory requirement from 𝒪(𝑛2) to 𝒪(𝑡𝑛) (assuming
𝑡 < 𝑛). For algorithm variants keeping track of an active set anyways, such as the Away-Step Frank-Wolfe
algorithm, see Appendix B.1, there is no computational overhead. Similarly, a sparse matrix representation
reduces the memory requirement to 𝒪(#non-zero components). However, the bottleneck of our current
implementation is the LMO evaluation. The gradients will still be dense matrices. In fact, they are sums
of rank-1 matrices. We leave a study of the practical benefits of exploiting this structure for the LMO
evaluation to future research.

58

4.3 Relaxation of the Problem

Remark 4.21. For the squared distance dist(𝑎, 𝑏) = (𝑎 − 𝑏)2 the distortion can be
rewritten in a bias-variance decomposition

𝐷(s,Φ, x,𝒱) = Ez∼𝒱s

[
(Φ(z) −Φ(x))2

]
= (Ez∼𝒱s

[Φ(z)] −Φ(x))2 +Vz∼𝒱s
[Φ(z)] .

In this case the expected distortion is determined by the first and second moment of
the output layer distribution of the neural network classifier. The exact calculation of
expectation values and variances for arbitrary functions is in itself already a hard problem.
One possibility to overcome this issue is to approximate the expectation by a sample
mean. However, depending on the dimension 𝑛 and the distribution𝒱 sampling might
be infeasible. Thus, we focus on a second possibility, which takes the specific structure of
Φ more into account.

From Definition 4.18 it is straight-forward to obtain the first and second moment

Ez∼𝒱s
[z] = x ⊙ s + Ee∼𝒱 [e] ⊙ (1𝑛 − s)

Vz∼𝒱s
[z] = diag(1𝑛 − s)Ve∼𝒱 [e]diag(1𝑛 − s)

of the input distribution 𝒱s. It remains to transfer the moments from the input to the
output layer of Φ.

To address the challenge of efficiently approximating the expectation values in Re-
mark 4.21 we utilize the layered structure of Φ and propagate the distribution of the
neuron activations through the network. For this, we use an approximation method, called
Assumed Density Filtering (ADF), see for example [Min01; BK98], which has recently been
used for ReLU neural networks in the context of uncertainty quantification [GR18]. In
a nutshell, at each layer we assume a Gaussian distribution for the input, transform it
according to the layers weights W, biases b, and activation function 𝜚 , and project the
output back to the nearest Gaussian distribution (with respect to KL-divergence). This
amounts to matching the first two moments of the distribution [Min01]. A discussion of
why it is unavoidable to use an approximate method as well as a more detailed description
of the general ADF approach is given in Chapter 5. We now state the ADF rules for a
single network layer. Applying these repeatedly gives us a way to propagate moments
through all layers and obtain an explicit approximate expression for the distortion.

Let z ∼ 𝒩(𝝁,𝚺) be normally distributed with some mean 𝝁 and covariance 𝚺. An affine
linear transformation preserves Gaussianity and acts on the mean and covariance in the
well-known way, i.e.,

E
z∼𝒩(𝝁,𝚺) [Wz + b] = W𝝁 + b,

V
z∼𝒩(𝝁,𝚺) [Wz + b] = W𝚺W

⊤ , (4.1)

The ReLU non-linearity 𝜚 presents a difficulty as it changes a Gaussian distribution into a
non-Gaussian one. Let 𝑓 and 𝐹 be the probability density and cumulative distribution
function of the univariate standard normal distribution, respectively. Further, let 𝝈 be the
vector of the diagonal entries of 𝚺 and 𝜼 = 𝝁 ⊘ 𝝈. Then, as in [GR18, Eq. 10a], we obtain

E
z∼𝒩(𝝁,𝚺) [𝜚(z)] = 𝝈 ⊙ 𝑓 (𝜼) + 𝝁 ⊙ 𝐹(𝜼).

Unfortunately, the off-diagonal terms of the covariance matrix of 𝜚(z) are thought to have
no closed form solution [FA14]. Either, we make the additional assumption that the

59

Chapter 4 Interpretability of Neural Network Classifiers

network activations within each layer are uncorrelated. This amounts to propagating only
the diagonal Vdiag of the covariance matrices through the network, simplifies (4.1) to

V
diag
z∼𝒩(𝝁,𝚺) [Wz + b] = (W ⊙W)𝝈 ,

and results, as also seen in [GR18, Eq. 10b], in

V
diag
z∼𝒩(𝝁,𝚺) [𝜚(z)] = 𝝁 ⊙ 𝝈 ⊙ 𝑓 (𝜼) + (𝝈2 + 𝝁2) ⊙ 𝐹(𝜼) − E

z∼𝒩(𝝁,𝚺) [𝜚(z)]2 .

Or, we use an approximation for the full covariance matrix

V
z∼𝒩(𝝁,𝚺) [𝜚(z)] ≈ N𝚺N (4.2)

with N = diag(𝐹(𝜼)). This ensures positive semi-definiteness and symmetry. Depending
on the network size it is usually infeasible to compute the full covariance matrix at each layer.
However, if we choose a symmetric low-rank approximation factorizationVz∼𝒱s

[z] ≈ QQ
⊤

at the input layer with Q ∈ R𝑛×𝑟 for 𝑟 ≪ 𝑛 (for example half of a truncated singular value
decomposition), then the symmetric update (4.2) allows us to propagate only one of the
factors through the layers. The full covariance is then solely recovered at the output layer.
This immensely reduces the computational cost and memory requirement. More details
on low-rank approximations of covariance matrices can be found in Appendix B.7.

Altogether, combining the affine linear with the non-linear transformation, implies how
to propagate the first two moments through a ReLU neural network in the ADF framework.
Gradients can be obtained via automatic differentiation (backpropagation). We investigate
the diagonal as well as the low-rank approximation to the covariance matrix in our numerical
inquiry. However, for brevity we only report results for the diagonal approximation in the
next section and leave a comparison to the low-rank approximation to Appendices B.2.1
and B.2.2.

4.4 Evaluating and Comparing Explanations

RDE is strongly motivated by the formulation of 𝛿-relevance and clearly aims at answering
the questions Q1 and Q2. But it remains, like all other efficient relevance mapping methods,
a heuristic that can not provably achieve this goal in all situations.

Several approaches for the evaluation of relevance mapping methods have been pro-
posed. These include analytical tests for certain minimal requirements, e.g., invariance or
covariance to simple input transformations, as well as numerical evaluations on benchmark
tasks and quantitative post-hoc analyses for more realistic classification tasks. We review
and discuss these evaluation approaches and present two novel tests.

We advocate for a quantitative post-hoc analysis complementing the visual evaluation
of relevance maps, as also done in [Sam+17; FV17]. Relevance maps coincide with human
intuition only if the relevance algorithm performs correctly and the network has learned
precisely the reasoning a human would use, which is unclear in many circumstances. In
fact, the relevance method should be evaluated on quantitative terms and then be used to
access the reasoning of neural networks.

In addition to the quantitative evaluation and comparison tests in [Sam+17; FV17], we
propose to use designed classifiers and synthetic data as baseline tests. Here, as a proof

60

4.4 Evaluating and Comparing Explanations

of concept, we evaluate the performance of several methods for a classification task on
synthetic binary string data, where the optimal relevant sets are known.

In the numerical evaluations we compare RDE to a representative selection of estab-
lished methods, namely Layer-wise Relevance Propagation (LRP) [Bac+15], Deep Taylor
decompositions [MSM18], Sensitivity Analysis [SVZ13], SmoothGrad [Smi+17], Guided
Backprop [Spr+15], SHAP [LL17], and LIME [RSG16]. In the following, we keep the
description of the numerical experiments and the choice of all hyper-parameters brief and
refer to Appendices B.3 to B.6 for all details. Here, we only show results for RDE with
the diagonal ADF approximation for evaluating the distortion functional. A selection of
corresponding results for low-rank approximations is presented in Appendix B.2. Further,
also additional results for (RC-RDE) using variations of the vanilla Frank-Wolfe (FW)
algorithm and Projected Gradient Descent (PGD) can be found there.

4.4.1 Invariance to Input Transformations

Kindermans et al. propose that relevance mapping methods should be invariant or
covariant to simple transformations in the input domain, e.g., mean shifts or variable
permutations, if the transformation can be compensated by the first network layer [Kin+17].
However, they observe that some frequently used relevance mapping methods fail to
satisfy this basic requirement. The following result shows that RDE is invariant to shifts
and scalings and covariant to permutations of the input domain. We present the result and
proof for (L-RDE) but the same argument carries over to (RC-RDE),(DC-RDE),(MR-RDE),
and (Ord-RDE).

Lemma 4.22. Let s
∗ ∈ [0, 1]𝑛 be an L-RDE relevance score for Φ and x with respect to𝒱, i.e.,

a solution of (L-RDE). Further let P ∈ 𝑆𝑛 be a permutation matrix, 𝚲 ∈ (0, 1]𝑛×𝑛 a diagonal

scaling matrix, m ∈ [0, 1]𝑛 a shift vector, and x̃ = ℎ(x) = P𝚲x +m a transformed input. Let

Φ̃(̃x) = Φ(𝚲−1
P
⊤

x̃ −𝚲−1
P
⊤

m) be a classifier that compensates the input domain transform,

i.e., Φ̃(̃x) = Φ(x), and𝒱 = ℎ∗(𝒱) the transformed (pushforward) distribution. Then s̃
∗ = Ps

∗

is an RDE relevance score for Φ̃ and x̃ with respect to𝒱.

Proof. Since s ↦→ Ps is a bĳective transform on [0, 1]𝑛 , it suffices to show that

𝐷(Ps) + 𝜆∥Ps∥1 = 𝐷(s) + 𝜆∥s∥1 , for all s ∈ [0, 1]𝑛 ,
where 𝐷(̃s) = 𝐷(̃s, Φ̃, x̃,𝒱) denotes the distortion functional of the transformed problem.
For the distortion functional, we get

𝐷(Ps) = E
z̃∼𝒱Ps

[
dist

(
Φ̃(̃x), Φ̃(̃z)

)]
= E

ẽ∼𝒱

[
dist

(
Φ̃(̃x), Φ̃(̃x ⊙ Ps + ẽ ⊙ (1𝑛 − Ps)

)]
= Ee∼𝒱

[
dist

(
Φ̃(P𝚲x +m), Φ̃((P𝚲x +m) ⊙ Ps + (P𝚲e +m) ⊙ P(1𝑛 − s)

)]
= Ee∼𝒱

[
dist

(
Φ̃(P𝚲x +m), Φ̃(P𝚲(x ⊙ s + e ⊙ (1𝑛 − s)) +m

)]
= Ee∼𝒱 [dist (Φ(x),Φ(x ⊙ s + e ⊙ (1𝑛 − s))]
= Ez∼𝒱s

[dist (Φ(x),Φ(z))]
= 𝐷(s),

61

Chapter 4 Interpretability of Neural Network Classifiers

where we used the definition of the pushforward distribution 𝒱 in the third equation,
properties of the Hadamard product in the fourth equation, and the definition of Φ̃ in the
fifth equation. Clearly, the equality also holds for the ℓ1-norm term.

4.4.2 Synthetic Binary Strings

The above invariance test is merely a minimum requirement for relevance mapping
methods but far from sufficient. As an additional baseline, we propose to test relevance
mapping methods on a synthetic binary classification task where the optimal relevant sets
are known. We consider the Boolean function

Ψ : {0, 1}𝑛 → {0, 1} : x ↦→
𝑛−𝑘+1∨
𝑖=1

𝑖+𝑘−1∧
𝑗=𝑖

𝑥 𝑗 ,

that checks binary strings of length 𝑛 for the existence of a block of 𝑘 consecutive ones,
similar to the example shown in Figure 3.2.

If an input signal x contains a unique set of 𝑘 consecutive ones, then it is clear that
these variables are relevant for the classification. More precisely, the smallest rate that can
achieve distortion zero is 𝑘 and in fact any set 𝑆 containing the block of 𝑘 consecutive ones
will achieve it. On the other hand any smaller set of size |𝑆 | < 𝑘 will have distortion at
least 1

4 .
We can construct a ReLU neural network Φ : [0, 1]𝑛 → [0, 1] that interpolates Ψ, see

Appendix B.3 for details. Relying on the connection between the binary and continuous
setting established in Section 4.2 we expect that a relevance mapping method should also
find the block of 𝑘 consecutive ones as most relevant for Φ.

We test this for two input signals of size 𝑛 = 16 each containing a block of 𝑘 = 5
consecutive ones. The first has no disjoint other group of five consecutive variables that is
even close to being a block of ones, see Figure 4.3(a). The second also has a disjoint second
group of five consecutive variables that almost forms a block of ones (four of the five are
ones), see Figure 4.3(b).

In this setting we compare (L-RDE) and (RC-RDE) to SmoothGrad, SHAP, and LIME.
All other methods are excluded from the comparison as they produce constant relevance
mappings for this particular neural network and thus fail to identify the relevant block.
The rate for (RC-RDE) is 𝑘 = 6 and intentionally chosen larger than the optimal rate 𝑘 = 5
that allows for zero distortion in order to see how the “excess” relevance is distributed
across the signal. It also better corresponds to sparsity of the (L-RDE) solution that is
indirectly adapted to a specific rate via the regularization parameter 𝜆.

RDE, SHAP, and SmoothGrad identify the correct block as relevant in both cases, whereas
LIME identifies the correct block in the first case but gets distracted by the incomplete
block in the second case, see Figure 4.3.

4.4.3 An8flower Benchmark Dataset

Oramas, Wang, and Tuytelaars propose the benchmark dataset An8flower for the evaluation
of relevance mapping methods for image classifiers [OWT19]. It consists of synthetic
images of plants in various positions and rotations that are to be classified by the color of
their flower or stem. The dataset also provides binary masks marking the colored part of

62

4.4 Evaluating and Comparing Explanations

x 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SmoothGrad

SHAP

LIME

RC-RDE (FW)

L-RDE

0 1 1 0 1 1 0 0 1 0 1 1 1 1 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) (b)

Figure 4.3: Synthetic Binary Strings – Relevance Maps. Relevance mappings generated by several
methods for two binary strings. The left string (a) contains one block of five consecutive ones
whereas the right string (b) contains one complete and one incomplete block. The colormap
indicates positive relevances as red and negative relevances as blue. All methods clearly identify
the correct block as relevant in the example (a). RDE, SHAP and SmoothGrad identify the correct
block as most relevant in the example (b). For SmoothGrad the distinction from the incomplete
block is less pronounced. The rate constraint for RC-RDE is 𝑘 = 6 (𝑛 = 16). Additional results
for the diagonal and low-rank variants of RDE and for different FW variants for RC-RDE are
shown in Figure B.1 in Appendix B.

12
8
×

12
8

3

12
8
×

12
8

32

64
×

64

32

64
×

64

64

32
×

32

64

32
×

32

64
16
×

16 64

16
38

4

1

10
24

1

12

1

convolution 5 × 5 avg pool 2 × 2
flatten fully connected

Figure 4.4: An8flower – Network Architecture. Illustration of the convolutional neural network
architecture for the An8flower task. All convolutions and the first fully connected layer are
followed by ReLU activations. The final fully connected layer is followed by a softmax activation.

the plant that is responsible for its class. These masks are considered as the “ground truth”
explanations in [OWT19]. Consequently, relevance mapping methods are evaluated by
measuring the correlation between their relevance scores and the respective binary mask.

The dataset is synthetic, however the classifier Φ is trained on data samples and not
constructed, unlike in the synthetic binary string experiment. Hence, the true underlying
reasoning of the classifier remains unknown, and it is unclear whether the provided masks
can represent a true explanation of the classifier decisions. Nevertheless, we want to
include this test in our analysis, as it can be seen as an intermediate step between the
synthetic binary string setup (fully constructed) and the post-hoc relevance ordering test
discussed in the next section (based on real-world data).

We trained a convolutional neural network (three convolution layers each followed by
average-pooling and finally two fully-connected layers and softmax output, as illustrated
in Figure 4.4) on the An8flower dataset end-to-end up to a test accuracy of 0.99.

The relevance mappings for one example image of a plant with yellow stem are shown
in Figure 4.5. The mappings are calculated for the pre-softmax score of the class with the

63

Chapter 4 Interpretability of Neural Network Classifiers

Image Mask Sensitivity LRP-𝛼𝛼-𝛽𝛽 SHAP L-RDE

Guided Backprop SmoothGrad Deep Taylor LIME RC-RDE (FW)

Figure 4.5: An8flower – Relevance Maps. Relevance mappings generated by several methods for
an image from the An8flower benchmark dataset classified as yellow stem by our network. The
colormap indicates positive relevances as red and negative relevances as blue. The rate constraint
for RC-RDE is 𝑘𝑘 = 1000 (𝑛𝑛 = 49152). Additional results for the diagonal and low-rank variants of
RDE and for different FW variants for RC-RDE are shown in Figure B.2 in Appendix B.

Table 4.1: An8flower – Correlation Comparison. Similarity between relevance mappings generated
by several methods and the respective binary masks for the An8flower dataset with respect to
Pearson correlation coefficient and Jaccard index. Values closer to 1 mean more similar in both
measures. Results show the mean ± standard deviation over 12 images from the test set (1 image
per class). The rate constraint for RC-RDE is 𝑘𝑘 = 1000 (𝑛𝑛 = 49152). Additional results for the
diagonal and low-rank variants of RDE and for different FW variants for RC-RDE are shown in
Table B.1 in Appendix B.

Sensitivity SmoothGrad SHAP Guided LRP-𝛼𝛼-𝛽𝛽 Deep LIME L-RDE RC-RDE
Backprop Taylor (FW)

Pearson
Corr. 0.14 ± 0.11 0.13 ± 0.11 0.14 ± 0.10 0.09 ± 0.12 0.21 ± 0.24 −0.02 ± 0.26 0.20 ± 0.23 0.23 ± 0.16 0.35 ± 0.20

Jaccard
Index 0.11 ± 0.07 0.12 ± 0.07 0.12 ± 0.07 0.06 ± 0.04 0.10 ± 0.08 0.04 ± 0.05 0.12 ± 0.10 0.14 ± 0.09 0.25 ± 0.16

highest activation. The performance of the relevance mapping methods with respect to
two different similarity measures averaged over 12 examples from the dataset (one for each
class) is summarized in Table 4.1. Both (L-RDE) and (RC-RDE) achieve the best results for
both the Pearson correlation coefficient as well as the Jaccard index compared to the other
baseline methods. Overall, (RC-RDE) performs best.

4.4.4 Relevance Ordering Test

Next, we generate relevance mappings for grayscale images of handwritten digits from
the MNIST dataset [LeC+98] as well as color images from the STL-10 dataset [CNL11].
The true optimal relevant sets are not known for image classifiers trained on these tasks.
Therefore, in the spirit of Section 4.3.1, we propose a variant of the relevance ordering-based
test introduced in [Sam+17] for a fair comparison of the methods.

We sort components according to their relevance score (breaking ties randomly). Then,
starting with a completely random signal, we replace increasingly large parts of it by the

64

4.4 Evaluating and Comparing Explanations

28
×

28

1

28
×

28

32

14
×

14

32

14
×

14

64

7
×

7

64

7
×

7

64

3
×

3 64

57
6

1

10
24

1

10
24

1

10

1

convolution 5 × 5 avg pool 2 × 2 flatten
fully connected dropout 30%

Figure 4.6: MNIST – Network Architecture. Illustration of the convolutional neural network
architecture for the MNIST task. All convolutions and the first fully connected layer are followed
by ReLU activations. The final fully connected layer is followed by a softmax activation.

original input, and observe the change in the classifier prediction. This is then averaged
over multiple random input samples. A good relevance mapping will lead to a fast
convergence to the classification prediction of the original signal when the most relevant
components are fixed first. In other words, the distortion quickly drops to zero. The
described process allows us to approximately evaluate the rate-distortion function. It
corresponds to calculating the inverse of the rate function 𝑅𝜋(𝜖) associated to the relevance
ordering 𝜋, as discussed in Section 4.3.1.

MNIST

We trained a convolutional neural network (three convolution layers each followed by
average-pooling and finally two fully-connected layers and softmax output, as illustrated
in Figure 4.6) end-to-end up to a test accuracy of 0.99.

The relevance mappings for one example image of the digit six are shown in Figure 4.7.
It shows (RC-RDE) mappings for FW and PGD at different selected rates 𝑘, as well
as respective (MR-RDE) mappings with 𝒦 = {50, 100, 150, 200, 250, 300, 350, 400} and
an (Ord-RDE) mapping compared to the other baseline methods.6 All mappings are
calculated for the pre-softmax score of the class with the highest activation. All RDE variants
generate similar results and highlight an area at the top as relevant, that distinguishes a six
from, for example, the digits zero and eight. Both FW and PGD are robust across varying
rates, in the sense that solutions for larger rates add additional features to the relevant
set without significantly modifying the features that were already considered relevant
at smaller rates. The (L-RDE) solution is most similar to the (RC-RDE) solutions at rate
𝑘 = 100.

The relevance-ordering test results are shown in Figure 4.8 for two different performance
measures (distortion and classification accuracy). All RDE methods result in a fast drop in
the distortion (respectively a fast rise in the accuracy), indicating that the relevant features
were correctly identified. They clearly outperform the comparison relevance mapping
methods. The FW solutions perform slightly better than the PGD solutions.

6Images are 28 × 28 grayscale, hence 𝑛 = 28 · 28 = 784.

65

Chapter 4 Interpretability of Neural Network Classifiers

Image Sensitivity LRP-𝛼𝛼-𝛽𝛽 SHAP Guided Backprop

SmoothGrad Deep Taylor LIME L-RDE

RC-RDE MR-RDE Ord-RDE
𝑘𝑘 = 50 𝑘𝑘 = 100 𝑘𝑘 = 150 𝑘𝑘 = 200

FW

PGD N/A

Figure 4.7: MNIST – Relevance Maps. Relevance mappings generated by several methods for an
image from the MNIST dataset classified as digit six by our network. The colormap indicates
positive relevance scores as red and negative relevances as blue. Multi-rate (MR-RDE) and
ordering (Ord-RDE) solutions are shown in a different colormap to highlight the fact, that they
are not to be viewed as sparse relevance maps but represent component orderings from least
relevant (blue) to most relevant (yellow). Additional results for different FW variants for RDE
are shown in Figure B.3 in Appendix B.

66

4.4 Evaluating and Comparing Explanations

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

di
st

or
tio

n
(s

qu
ar

ed
di

st
an

ce
)

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

ac
cu

ra
cy

L-RDE MR-RDE (FW) MR-RDE (PGD) SHAP
LIME LRP-𝛼𝛼-𝛽𝛽 Deep Taylor Sensitivity
SmoothGrad Guided Backprop

Figure 4.8: MNIST – Ordering Comparison. Relevance ordering test results of several methods for
the MNIST dataset using squared distance (left) and classification accuracy (right) as performance
measure. An average result over 50 images from the test set (5 random images per class) and
512 random input samples per image is shown (shaded regions mark ± standard deviation).
Additional results for different FW variants for MR-RDE are shown in Figure B.4 in Appendix B.

STL-10

We use a VGG-16 network [SZ14], as illustrated in Figure 4.9, pre-trained on the Imagenet
dataset and refined it on the STL-10 dataset to a final test accuracy of 0.935.

The relevance mappings for two example images of a monkey and a horse are shown in
Figures 4.10 and 4.11. They show (RC-RDE) mappings for FW and PGD at different selected
rates 𝑘𝑘, as well as respective (MR-RDE) mappings with 𝒦𝒦 = {2000, 4000, 6000, 8000, 10000,
14000, 18000, 22000, 26000, 30000, 34000, 38000, 42000, 46000, 50000} compared to the other
baseline methods. 7 Due to the large size of problem instances, we do not show (Ord-RDE)
solutions in this experiment. As before the mappings are calculated for the pre-softmax
score of the class with the highest activation. All RDE methods generate similar results and
highlight parts of the face and body of the monkey as relevant at small rates. Increasingly
large parts of the body and tail of the monkey are added to the relevant set at higher
rates. Similarly, parts of the head and front legs of the horse are marked relevant first and
larger parts of its body get added at higher rates. As before, the results are robust across
varying rates. Compared to MNIST, the difference between the FW and PGD solutions
and between the Lagrangian and the rate-constrained formulations are more pronounced
for STL-10. The sparsity of the (L-RDE) solution is most comparable to the (RC-RDE)
solutions at rate 𝑘𝑘 = 2000. However, it is less concentrated at a specific part of the body of
the animals, especially for the horse image.

Figure 4.12 shows the relevance ordering test results for two different performance
measures (distortion and classification accuracy). All RDE methods result in a fast drop
in the distortion (respectively a fast rise in the accuracy), indicating that the relevant
features were correctly identified. Again, they clearly outperform the other relevance

7Images are resized to 224 × 224 with three color channels, hence 𝑛𝑛 = 3 · 224 · 224 = 150528. Mappings are
visualized as a single channel heatmap that averages relevance scores across color channels.

67

Chapter 4 Interpretability of Neural Network Classifiers

22
4
×

22
4

3

22
4
×

22
4

64

11
2
×

11
2

64

11
2
×

11
2

128

56
×

56

128

56
×

56

256

28
×

28 256

28
×

28 512

14
×

14

512

14
×

14

512

7
×

7

512 . . .

. . .

25
08

8

1

25
08

8

1

40
96

1

40
96

1

40
96

1

40
96

1

10

1

conv block avg pool 2 × 2 flatten
fully connected dropout 50%

Figure 4.9: STL10 – Network Architecture. Illustration of the VGG-16 based convolutional neural
network architecture for the STL-10 task. The first two convolutional blocks each consists of two
3 × 3 convolutions with ReLU activation. The last three convolutional blocks each consists of
three 3 × 3 convolutions with ReLU activation. The first two fully connected layer are followed
by ReLU activations. The final fully connected layer is followed by a softmax activation.

attribution methods, especially at the lower rates. However, we observe that RDE does
not obtain the smallest distortions across all rates. The non-monotone behavior of the
Frank-Wolfe (RC-RDE) curve for rates between 30% and 70% can be explained by the fact
that the maximal considered rate in 𝒦 corresponds to about 33% of the total number
of components. Interestingly, PGD does not show the same behavior, which indicates
that PGD is not able to solve the (RC-RDE) problems to the same extent as FW for low
rates. The (L-RDE) solutions are (indirectly) adapted to only a single rate and show a
similar non-monotone behavior. Unlike for MNIST, there is a considerable difference
between (L-RDE) and (MR-RDE). The latter outperforms the former across all rates.

4.5 Discussion

We extended the concept of 𝛿-relevance, a probabilistic version of prime implicants, for
the explanation of classifier decisions from a binary to a continuous setting.

The resulting rate-distortion framework allows us to formulate a concrete objective that
relevance maps should solve and to analyze the complexity of this problem. Furthermore,
it enables us to compare different relevance maps in a quantitative numerical evaluation.

Our definition of the relevance of input components and our approach of generalizing
the concept of prime implicants to the neural network setting is by no means the only
possibility. We made some careful but maybe not always obvious choices, e.g., regarding
the reference distributions𝒱 and𝒱𝑆. In the following we want to discuss these choices as
well as point out some potential limitations and extensions of our analysis.

68

4.5 Discussion

Image Sensitivity LRP-𝛼𝛼-𝛽𝛽 SHAP Guided Backprop

SmoothGrad Deep Taylor LIME L-RDE

RC-RDE MR-RDE
𝑘𝑘 = 2000 𝑘𝑘 = 4000 𝑘𝑘 = 6000 𝑘𝑘 = 8000

FW

PGD

Figure 4.10: STL10 – Relevance Maps. Relevance mappings generated by several methods for an
image from the STL-10 dataset classified as monkey by our network. The colormap indicates
positive relevances as red and negative relevances as blue. Multi-rate (MR-RDE) solutions are
shown in a different colormap to highlight the fact, that they are not to be viewed as sparse
relevance maps but represent component orderings from least relevant (blue) to most relevant
(yellow). Additional results for different FW variants for RC-RDE are shown in Figure B.10 in
Appendix B.

69

Chapter 4 Interpretability of Neural Network Classifiers

Image Sensitivity LRP-𝛼𝛼-𝛽𝛽 SHAP Guided Backprop

SmoothGrad Deep Taylor LIME L-RDE

RC-RDE MR-RDE
𝑘𝑘 = 2000 𝑘𝑘 = 4000 𝑘𝑘 = 6000 𝑘𝑘 = 8000

FW

PGD

Figure 4.11: STL10 – Relevance Maps. Relevance mappings generated by several methods for
an image from the STL-10 dataset classified as horse by our network. The colormap indicates
positive relevances as red and negative relevances as blue. Multi-rate (MR-RDE) solutions are
shown in a different colormap to highlight the fact, that they are not to be viewed as sparse
relevance maps but represent component orderings from least relevant (blue) to most relevant
(yellow). Additional results for different FW variants for RC-RDE are shown in Figure B.14 in
Appendix B.

70

4.5 Discussion

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

rate (non-randomized components)

di
st

or
tio

n
(s

qu
ar

ed
di

st
an

ce
)

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

ac
cu

ra
cy

L-RDE MR-RDE (FW) MR-RDE (PGD) SHAP
LIME LRP-𝛼𝛼-𝛽𝛽 Deep Taylor Sensitivity
SmoothGrad Guided Backprop

Figure 4.12: STL10 – Ordering Comparison. Relevance ordering test results of several methods for
the STL-10 dataset using squared distance (left) and classification accuracy (right) as performance
measure. An average result over 50 images from the test set (5 random images per class) and
64 random input samples per image is shown (shaded regions mark ± standard deviation).
Additional results for different FW variants for MR-RDE are shown in Figure B.9 in Appendix B.

4.5.1 Sufficiency and Necessity of Finding Relevant Sets

Knowing the relevant set of input variables is not always sufficient to fully explain
every aspect of a classifier decision. In particular, further information might be needed to
completely reveal the workings of a classifier and to make it accessible to humans, rendering
the classifier transparent. However, we believe that finding the relevant components is a
necessary first step toward this goal. Any good explanation method should at least solve
(a variation of) the relevant set problem as a subproblem. Thus, explaining neural network
decisions in general is at least as hard as finding the relevant input components and our
hardness result carries over to other, possibly more elaborate, notions of “explaining”.

4.5.2 Non-Uniform Distributions

We use the uniform distribution 𝒰𝒰𝒰𝒰0, 1]𝑛𝑛) as a reference or baseline distribution 𝒱𝒱 in
our proof for the hardness result on approximating the rate-distortion function. This can
easily be extended to more general probability measures 𝜇𝜇 on 𝒰0, 1]𝑛𝑛 . We can choose 𝜇𝜇
as a product of any independent one-dimensional measures 𝜇𝜇𝑗𝑗 for the individual input
components as long as for every 𝑗𝑗 ∈ 𝒰𝑛𝑛] and 0 < 𝜂𝜂 ≤ 1 there exist lower and upper
thresholds 𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑗𝑗 ∈ 𝒰0, 1] with 𝑎𝑎𝑗𝑗 < 𝑏𝑏𝑗𝑗 such that

𝜇𝜇𝑗𝑗𝒰𝒰0, 𝑎𝑎𝑗𝑗]) = 𝜇𝜇𝑖𝑖𝒰𝒰𝑏𝑏𝑗𝑗 , 1]) and 𝜇𝜇𝑗𝑗𝒰𝒰𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑗𝑗]) ≤ 𝜂𝜂.

This is possible for all probability measures on 𝒰0, 1] without point masses, such as
truncated Gaussian or exponential distributions, as they have continuous distribution
functions. In that case we simply have to adapt the function Φ𝜂𝜂 to x ↦→ 𝜑𝜑𝒰𝒰x − a) ⊘ 𝒰b − a))
and proceed with the remaining proof as before.

71

Chapter 4 Interpretability of Neural Network Classifiers

4.5.3 Conditional versus Marginal Distributions

We want to make another remark regarding the choice of the distributions 𝒱𝑆 used in
our rate-distortion framework. We define the obfuscation z to be deterministically given
by z𝑆 = x𝑆 on 𝑆 and distributed according to z𝑆𝑐 = e𝑆𝑐 with e ∼ 𝒱 on the complement
𝑆𝑐 . This means that the resulting distribution 𝒱𝑆 of z corresponds to 𝒱 marginalized
over all components in 𝑆. One might be tempted to condition on the given components
x𝑆 instead of marginalizing. But this could actually be detrimental to uncover how the
classifier operates [JMB20]. Let us illustrate this with an example. Consider a classifier that
is trained to detect ships, but actually only learned to detect the water surrounding the
ship, as in [Lap+16]. The classifier can achieve high accuracy as long as the data set only
contains ships on water and no other objects surrounded by water. Now assume we have
a relevance map selecting a subset of pixels showing a ship as relevant. If we complete the
rest of the image with random values from a conditional distribution, we will most likely
see water in the completion, as most images with a ship will also have water surrounding
it. The classifier would correctly classify the completed image with high probability. The
potentially small subset of pixels containing the ship will thus give a small distortion and
will be considered relevant. However, this result is not useful to uncover the underlying
workings of the network. It does not tell us that the network does not recognize ships
but only the surrounding water. Using a very data adapted and restricted conditional
distribution compensates the shortcoming of the network. That is why we advocate for
using a less data adapted marginal distribution. In fact, we believe that using mostly
uninformed distributions like uniform or truncated Gaussian distributions is beneficial for
uncovering the reasoning of the network.

4.6 Conclusion

Our complexity result shows that no efficient algorithm can provably answer the questions
Q1 and Q2. Even more, we showed that no non-trivial error bounds for computing the
size of a minimal set of relevant input components can be given, since the problem is
not efficiently approximable. This holds as long as the considered neural networks can
represent arbitrary logical functions, which is true for ReLU networks (even with bounded
weights and depth).

Of course, this is a worst-case analysis. It is conceivable that the problem could be made
feasible by introducing more subtle restrictions on the neural networks and the inputs that
depend on the actual data structures on which the networks have been trained. However,
these are not yet well enough understood. As long as this is the case, we have to rely on
heuristic solution methods. In fact, many non-linear optimization problems are NP-hard in
general and yet performed successfully on a regular basis. In these situations a thorough
numerical evaluation of the solution methods is crucial, as no performance guarantees can
be proven.

In this spirit, we have proposed one solution strategy for the relevance mapping problem
and demonstrated that it performs better than existing alternatives in a wide range of
quantitative comparison tests.

72

5

The Necessity of Using Approximate ADF

An important theoretical as well as computational challenge is calculating the distribution
of outputs of a neural network from a given distribution of inputs. This task is a crucial
ingredient for uncertainty quantification, explainable AI and Bayesian learning. In
particular, it is a key component of our heuristic solution strategy to the relevance mapping
problem in Chapter 4.

More precisely, the task is to describe the distribution 𝜇out of

Φ(x) with x ∼ 𝜇in ,

where Φ is a neural network function and x is a random input vector distributed according
to some probability measure 𝜇in. In other words, we want to determine the push-forward

𝜇out = Φ∗𝜇in (5.1)

of 𝜇in with respect to the transformation Φ. Given the fact that neural networks are highly
non-linear functions this generally has no closed form solution. Obtaining approximations
through numerical integration methods is expensive due to the high dimensionality and
complexity of the function.

This lead to the application of other approximation schemes, such as Assumed Density
Filtering (ADF) [GR18], see also Section 4.3.4, and in the case of Bayesian neural networks
the more general framework of Expectation Propagation (EP) [JNV14; SHM14] which
contains ADF as a special case. Both methods were originally developed for general
large-scale Bayesian inference problems [Min01; BK98].

Recall that ADF makes use of the layered feed-forward structure of neural networks:
If we write Φ = Φ𝐿 ◦ Φ𝐿−1 ◦ · · · ◦ Φ2 ◦ Φ1 as a composition of its layers Φ𝑗 , then (5.1)
decomposes as

𝜇0 = 𝜇in ,

𝜇𝑗 = (Φ𝑗)∗𝜇𝑗−1 for 𝑗 = 1, . . . , 𝐿,
𝜇out = 𝜇𝐿. (5.2)

The task can then be described in terms of investigating how the distributions are
propagated through individual layers of the neural network. If each 𝜇𝑗 was in the same
family of probability distributions as the original 𝜇in then we could find efficient layer-wise
propagation rules for iteratively obtaining 𝜇out. Such a family, if expressible with a possibly
large but finite number of parameters, would be extremely useful for applications involving
uncertainty quantification or the need for explainable predictions.

ADF commonly propagates Gaussian distributions, or more generally exponential
families. While the Gaussian family is invariant under purely affine linear layers, this is
not the case for non-linear activations. Hence, the method relies on a projection step back

73

Chapter 5 The Necessity of Using Approximate ADF

onto the Gaussian family after each network layer. In general, for any chosen family of
probability distributions, (5.2) is replaced by

𝜇0 = proj(𝜇in),
𝜇𝑗 = proj((Φ𝑗)∗𝜇𝑗−1) for 𝑗 = 1, . . . , 𝐿,

𝜇out = 𝜇𝐿 ,

where proj(·) is a suitable projection. In this case only 𝜇out ≈ Φ∗𝜇in holds and there is no
guarantee how good the approximation is after multiple layers. This heuristic is justified
by the implicit assumption that no invariant families exist. Due to the flexibility and
richness of the class of neural network functions, it seems intuitively clear that such an
invariant family of distributions cannot be realized in a meaningful way—a fact that, to
the best of our knowledge, remained unproven. In this chapter we will fill this gap.

We give a complete characterization of families of probability distributions that are
invariant under the action of ReLU neural network layers. In fact, we prove that all
possible invariant families belong to a set of degenerate cases that are either practically
irrelevant or amount to sampling. Hence, the implicit assumption made by the ADF and
EP frameworks is justified. For each of the degenerate cases we give an explicit example
of an invariant family of distributions. Our proof technique is based on very intuitive
geometric constructions and ideas from metric dimension theory. This intuitive argument
is made rigorous using properties of the Hausdorff dimension of metric spaces. As a
result, we provide a theoretical underpinning for statistical inference schemes such as ADF
for neural networks.

Applications of ADF for Networks

Calculating output distributions of neural networks is a basic and central problem to make
neural networks more applicable. Good performance on test data alone is not sufficient to
ensure reliability. High-stakes applications such as, e.g., medical imaging or autonomous
driving, make questions regarding uncertainty quantification (UQ), robustness, and
explainability of network decisions inescapable [Oal+20; BBK19; Zha+18; Hol+17; MKG18;
KC17].

Uncertainty Quantification. Studying the propagation of input uncertainties through an
already trained (deterministic) network is used to analyze the reliability of their predictions
and their sensitivity to changes in the data. ADF is used toward this goal, e.g., for sigmoid
networks for automatic speech recognition [AN11; AAT14] and ReLU networks for image
classification and optical flow [GR18].

Explainable Artificial Intelligence. So far, neural networks are mostly considered opaque
“black-box” models. Recent approaches to make them human-interpretable have focused
on the crucial subtask of finding the most relevant input variables for a given prediction.
A probabilistic formulation of this task for classification networks was introduced in
Chapters 3 and 4, see also [FV17]. Our heuristic solution strategy for deep ReLU networks
in Section 4.3.2 is based on ADF with Gaussian distributions.

74

5.1 Characterization of Invariant Families of Distributions

Bayesian Networks. Instead of point estimates, Bayesian neural networks (BNN) learn
a probability distribution over the network weights through Bayesian inference. BNNs
provide an inbuilt regularization by choosing appropriate priors. They naturally lead to
network compression when using sparsity-promoting priors or encoding weights of high
variance with less precision. ADF with Gaussian distributions has been employed for the
fast calculation of posteriors during the training of BNNs with sigmoidal [OW98] and
ReLU [HA15; SCC17] activations. Wu et al. use a related moment-propagation approach for
deterministic variational inference in BNNs with ReLU or Heaviside activations [Wu+19].
Another approach was taken by Wang and Manning and relies on layer-wise Gaussian
approximations to yield a fast alternative to dropout regularized training [WM13].

5.1 Characterization of Invariant Families of Distributions

Before we rigorously state the main result of this chapter, we start by introducing some
notation and terminology and precisely specify what we mean by parametrized families of
probability distributions and by their invariance with respect to layers of neural networks.

Recall that ℬ(R𝑛) denotes the Borel 𝜎-Algebra on R𝑛 and 𝒟(R𝑛) is the set of Radon
probability measures on R𝑛 . We equip𝒟(R𝑛)with the Prokhorov metric [Pro56]

𝑑𝑃(𝜇, 𝜈) = inf{𝜖 > 0 :𝜇(𝐵) ≤ 𝜈(𝐵𝜖) + 𝜖 and
𝜈(𝐵) ≤ 𝜇(𝐵𝜖) + 𝜖 for any 𝐵 ∈ ℬ(R𝑛)},

where 𝐵𝜖 = { x ∈ R𝑛 : ∃y ∈ 𝐵 with ∥x − y∥ < 𝜖 } is the open 𝜖-neighborhood of a Borel set
𝐵 ∈ ℬ(R𝑛).1

Definition 5.1. Let Ω ⊆ R𝑑 and 𝑝 : Ω → 𝒟(R𝑛). We call 𝑝 a 𝑑-parameter family of

probability distributions. It is called a continuous family, if 𝑝 is continuous.

It might seem more intuitive to refer to the set {𝑝(𝜃)}𝜃∈Ω as the family of distributions.
However, a set of distributions can be parametrized in multiple ways and even the number
𝑑 of parameters describing such a set is not unique. Whenever we speak about a family
of distributions, we never think of it as a mere set of distributions but always attach it
to a fixed chosen parametrization 𝑝. All the following results are stated in terms of this
parametrization.

Example 5.2 (2-dimensional Gaussian Family). Consider the parameter space

Ω = R2 × {(𝜎1 , 𝜎2 , 𝜎3) ∈ R3 : 𝜎1 , 𝜎2 ≥ 0 and 𝜎1𝜎2 − 𝜎2
3 ≥ 0} ⊆ R5 ,

and
𝑝 : Ω→ 𝒟(R2) : (𝜇1 , 𝜇2 , 𝜎1 , 𝜎2 , 𝜎3) ↦→ 𝒩

([
𝜇1
𝜇2

]
,

[
𝜎1 𝜎3
𝜎3 𝜎2

])
,

1The original definition by Prokhorov only considers closed sets 𝐵, however this results in the same metric.

75

Chapter 5 The Necessity of Using Approximate ADF

where𝒩(𝝁,𝚺) denotes the Gaussian distribution with mean 𝝁 and covariance matrix
𝚺. Then 𝑝 is a continuous 5-parameter family of 2-dimensional Gaussian distributions.

Definition 5.3. Let Ω ⊆ R𝑑 and 𝑝 : Ω→ 𝒟(R𝑛) be a family of probability distributions
and Φ : R𝑛 → R𝑛 any measurable function. Then the family is called Φ-invariant, if for
any 𝜃 ∈ Ω the pushforward of the measure 𝑝(𝜃) under Φ is again in the family, i.e.,

𝑝(𝜔) = Φ∗𝑝(𝜃)

for some 𝜔 ∈ Ω. For a collection

ℱ ⊆ {Φ : R𝑛 → R𝑛 : Φ measurable }

of measurable functions it is called ℱ -invariant, if it is Φ-invariant for all Φ ∈ ℱ .

We are interested in the special case of invariance with respect to ReLU layers of neural
networks.

Definition 5.4. Let Ω ⊆ R𝑑 and 𝑝 : Ω→ 𝒟(R𝑛) be a family of distributions. The family
is called ReLU-invariant, if it is ℱ -invariant for the collection

ℱ = 𝒩𝒩𝑛
1,𝜚 = {Φ : R𝑛 → R𝑛 : x ↦→ 𝜚(Wx + b) : W ∈ R𝑛×𝑛 , b ∈ R𝑛 },

where 𝜚(𝑥) = max{0, 𝑥} is applied component-wise.

We observe that if a family 𝑝 is Φ1-invariant and Φ2-invariant for two functions Φ1 and Φ2
such that the composition Φ2 ◦ Φ1 is well-defined, then it is also (Φ2 ◦ Φ1)-invariant. In
particular, a ReLU-invariant family is invariant for𝒩𝒩𝑛

𝐿,𝜚 , i.e., for all ReLU networks of
any depths 𝐿.

5.1.1 The Two Main Characterization Results

We can now state the first main theorem of this chapter.

Theorem 5.5. Let Ω ⊆ R𝑑 and 𝑝 : Ω → 𝒟(R𝑛) be a continuous and ReLU-invariant

𝑑-parameter family of probability distributions. Then at least one of the following restrictions

has to hold:

R1. Restricted Dimension: 𝑛 = 1,

R2. Restricted Support: supp(𝑝(𝜃)) is finite for all 𝜃 ∈ Ω,

R3. Restricted Regularity: 𝑝 is not locally Lipschitz continuous.

This can be interpreted as follows: Besides some rather degenerate cases there can not be
any family of probability distributions that is invariant with respect to the layers of a ReLU
neural network. The three restrictions characterize which kind of degenerate cases can
occur.

76

5.2 Proof of the First Characterization Result

Restriction (R1). Neural networks with only one neuron per layer are not really powerful
function classes, so that the ReLU-invariance is not a strong limitation in this case. However,
already two dimensions are enough to unlock the expressive power of neural networks.

Restriction (R2). Under mild regularity assumptions on the parametrization the only
ReLU-invariant distributions in dimensions 𝑛 ≥ 2 are finite mixtures of Dirac distributions.
This amounts to sampling distributions of finite size, which of course can work in many
scenarios but are often too computationally expensive in high-dimensions.

Restriction (R3). Continuity alone is not a strong enough assumption on the parametriza-
tion. This is due to the fact that the class of continuous functions is too flexible and
includes non-intuitive examples such as space-filing curves. These can be used to construct
examples of invariant distributions. However such a kind of parametrization has to be be
rather wild and would be impractical to work with. A slightly stronger assumption like
local Lipschitz continuity is enough to exclude these degenerate examples.

We complement Theorem 5.5 by providing a kind of reverse statement showing that the
three restrictions are individually necessary.

Theorem 5.6. The following three statements hold independently of each other. There exists a

continuous ReLU-invariant 𝑑-parameter family of probability distributions that. . .

(i) . . . fulfills restriction (R1) but avoids restrictions (R2) and (R3) from Theorem 5.5.

(ii) . . . fulfills restriction (R2) but avoids restrictions (R1) and (R3) from Theorem 5.5.

(iii) . . . fulfills restriction (R3) but avoids restrictions (R1) and (R2) from Theorem 5.5.

The proof for Theorem 5.5 will be given in Section 5.2 and the proof for the reverse result
Theorem 5.6 in Section 5.3.

5.2 Proof of the First Characterization Result

The main idea for proving Theorem 5.5 is to use the layers of a neural network to transform
simple, more or less arbitrary probability distributions to complicated distributions that
need an arbitrarily high number of parameters to be described. But a family of parametrized
distributions necessarily has a finite number of parameters leading to a contradiction if
the family is assumed to be invariant under neural network layers. We present a high-level
construction before going into detail.

More precisely, ReLU neural network layers can be used to transform arbitrary probability
distributions to distributions that are supported on certain polygonal chains, which we
call arcs. This is visualized in Figure 5.1. These arcs can be described by the lengths
of their line segments. However, the number of segments can be made larger than the
number of parameters describing the family of distributions as long as the support of the
initial distribution is large enough. From this a contradiction can be derived. There are
only three ways to circumvent this, corresponding to the three restrictions in Theorem 5.5.
Firstly, restricting the allowed neural network layers so that transformations to the arcs are

77

Chapter 5 The Necessity of Using Approximate ADF

Figure 5.1: Transformation of Distributions. The main steps of transforming a generic probability
distribution to a distribution supported on a polygonal chain. The original distribution (left)
is projected onto a single dimension and partitioned into intervals (center) that each contain a
sufficiently large portion of the probability mass (shown as the lightly shaded region). Finally it
is “bent” into a polygonal chain (right). The number of segments of the chain and its segment
lengths can be chosen arbitrarily.

Ω ⊇ Ω𝛿,𝑚

𝒟(R𝑛) ⊇ 𝒟𝛿,𝑚(R𝑛) 𝒜𝑚

R𝑚−1
≥0 × {1} ⊆ R

𝑚
≥0

𝑝 |Ω𝛿,𝑚

arc

scal

Ξ

Figure 5.2: Distribution and Arc Spaces. Schematic overview of the spaces and functions involved
in our proof.

not possible. Secondly, restricting the support of the distributions so that the number of
line segments they can be transformed to is limited. Thirdly, using a wild parametrization
that leverages ideas similar to space-filling curves in order to use only few parameters to
describe a set that effectively would require more parameters.

The idea of mapping (a subset of) the parametrization domain to distributions supported
on polygonal arcs, then to the respective arcs, and finally to segment lengths is schematically
shown in Figure 5.2. We will give exact definitions of all involved spaces and mappings
below.

5.2.1 Details of the Proof

We will now present the main steps of the proof of Theorem 5.5. The proofs of the individual
steps will be deferred in order to not distract from the main idea. We will assume toward
a contradiction that all three restrictions in Theorem 5.5 are not satisfied.

Assumption 5.7. Let 𝑛 ≥ 2, Ω ⊆ R𝑑, and 𝑝 : Ω → 𝒟(R𝑛) be a locally Lipschitz
continuous and ReLU-invariant 𝑑-parameter family of probability distributions such
that there exists a 𝜃 ∈ Ω for which supp(𝑝(𝜃)) is not finite.

From this we will derive a contradiction. The proof is based on the idea of transforming
arbitrary probability distributions to distributions supported on certain polygonal chains,

78

5.2 Proof of the First Characterization Result

𝑚 = 4

𝑚 = 4

𝑚 = 3

𝑚 = 3

𝑚 = 5

𝐴1

𝐴2

𝑑1

𝑑2

𝑑3 𝑑4

𝑑𝒜 (𝐴1 , 𝐴2) = max{𝑑1 , 𝑑2 , 𝑑3 , 𝑑4}

Figure 5.3: Standard Arcs. Examples of several standard 𝑚-arcs for varying 𝑚 (left). Standardized
arcs are always contained within the non-negative orthant and end on a horizontal line segment.
The distance between two 𝑚-arcs is the maximal Euclidean distance of corresponding vertices
(right).

which we call arcs.

Definition 5.8. An 𝑚-arc is a subset 𝐴 ⊆ R2 defined as a polygonal chain, i.e., a
connected piecewise linear curve,

𝐴 =

𝑚⋃
𝑖=1

conv({v𝑖−1 , v𝑖}),

determined by 𝑚 + 1 vertices {v0 , . . . , v𝑚}, that satisfy

v𝑖 = v𝑖−1 + 𝑟𝑖
[
sin(𝑖𝛼𝑚)
cos(𝑖𝛼𝑚)

]
, 𝑖 = 1, . . . , 𝑚

for some length scales 𝑟1 , . . . , 𝑟𝑚 > 0 and the fixed angle 𝛼𝑚 = 𝜋
2𝑚 .

We denote the vertex set of an 𝑚-arc 𝐴 as vert(𝐴) = {v0 , . . . , v𝑚}, the set of its line segments

as segm(𝐴) = {ℓ1 , . . . , ℓ𝑚}, where ℓ𝑖 = conv({v𝑖−1 , v𝑖}), and the set of its scaling factors as
scal(𝐴) = {𝑟1 , . . . , 𝑟𝑚}.

It will turn out to be useful to remove some ambiguity from the set of 𝑚-arcs by
standardizing their behavior at the start and end vertices. Some examples can be seen in
Figure 5.3.

Definition 5.9. An 𝑚-arc 𝐴 with vertices {v0 , . . . , v𝑚} and length scales {𝑟1 , . . . , 𝑟𝑚}
is called standardized (or a standard 𝑚-arc), if it starts at the origin and has a normalized
last line segment, i.e., if v0 = 02 and 𝑟𝑚 = 1. The set of all standard 𝑚-arcs is denoted
𝒜𝑚 and equipped with the metric

𝑑𝒜(𝐴1 , 𝐴2) = max
𝑖=1,...,𝑚

∥ vert(𝐴1)𝑖 − vert(𝐴2)𝑖 ∥2.

The metric 𝑑𝒜 is induced by a mixed (ℓ2 , ℓ∞)-norm and thus indeed a proper metric. There
is a one-to-one correspondence between the sets𝒜𝑚 andR𝑚−1

+ ×{1} � R𝑚−1
+ via the scaling

factors.

79

Chapter 5 The Necessity of Using Approximate ADF

Definition 5.10. For 𝛿 > 0, a probability measure 𝜇 ∈ 𝒟(R2) is said to be 𝛿-distributed

on a standard 𝑚-arc 𝐴 ∈ 𝒜𝑚 if supp(𝜇) ⊆ 𝐴 and for each line segment ℓ ∈ segm(𝐴) we
have 𝜇(ℓ) ≥ 𝛿.

For 𝑛 > 2, a probability measure 𝜇 ∈ 𝒟(R𝑛) is said to be 𝛿-distributed on a standard
𝑚-arc 𝐴 ∈ 𝒜𝑚 if supp(𝜇) ⊆ span{e1 , e2} and by identifying span{e1 , e2} with R2 it is
𝛿-distributed on a standard 𝑚-arc in the above sense.

Remark 5.11. There is no particular significance to choosing span{e1 , e2} in the
definition of arc-supported measures. This is done for ease of notation, but any other
two-dimensional subspace would work as well.

We denote the set of Radon probability measures that are 𝛿-distributed on standard 𝑚-arcs
by𝒟𝛿,𝑚(R𝑛) ⊆ 𝒟(R𝑛).

Lemma 5.12. Let 𝜇 ∈ 𝒟𝛿,𝑚(R𝑛) be 𝛿-distributed on a standard 𝑚-arc, then this arc is unique.

Proof. Toward a contradiction assume that 𝜇 is 𝛿-distributed on 𝐴1 , 𝐴2 ∈ 𝒜𝑚 and 𝐴1 ≠ 𝐴2.
Let {ℓ 𝑗1 , . . . , ℓ

𝑗
𝑚} = segm(𝐴 𝑗) and {𝑟 𝑗1 , . . . , 𝑟

𝑗
𝑚} = scal(𝐴 𝑗) denote the line segments and

scaling factors of 𝐴1 and 𝐴2 respectively. Since 𝐴1 ≠ 𝐴2 and 𝑟1
𝑚 = 𝑟2

𝑚 = 1 there is a smallest
index 1 ≤ 𝑖 ≤ 𝑚 − 1 such that 𝑟1

𝑖
≠ 𝑟2

𝑖
. Without loss of generality assume 𝑟1

𝑖
< 𝑟2

𝑖
. Then ℓ 2

𝑖+1
lies outside of the convex hull of 𝐴1 and in particular

ℓ 2
𝑖+1 ∩ 𝐴1 = ∅,

which contradicts the fact that both 𝜇(ℓ 2
𝑖+1) ≥ 𝛿 and supp(𝜇) ⊆ 𝐴1 must hold.

This allows us to define the function that maps an arc-supported measure 𝜇 ∈ 𝒟𝛿,𝑚(R𝑛)
to its unique induced 𝑚-arc 𝐴𝜇 ∈ 𝒜𝑚 . We denote this as arc : 𝒟𝛿,𝑚(R𝑛) → 𝒜𝑚 : 𝜇→ 𝐴𝜇.
For a 𝑑-parameter family 𝑝 : Ω→ 𝒟(R𝑛)we denote by

Ω𝛿,𝑚 = { 𝜃 ∈ Ω : 𝑝(𝜃) ∈ 𝒟𝛿,𝑚(R𝑛) } ⊆ Ω

the subset of parameters mapping to arc-supported measures. Without further assumptions
this set might well be empty. We will see that this is not the case for ReLU-invariant
families as long as they contain at least one measure with support of cardinality at least 𝑚.

We are now ready to start discussing the main steps of the proof of Theorem 5.5. It relies
on the following three results.

Lemma 5.13. Under Assumption 5.7 and for any 𝑚 ∈ N there exists a 𝛿 > 0 such that

the map Ξ : Ω𝛿,𝑚 ⊆ R𝑑 → R𝑚−1
+ × {1} given by Ξ = scal ◦ arc ◦ 𝑝 |Ω𝛿,𝑚 is surjective. In

particular, in this case the domain Ω𝛿,𝑚 is non-empty.

The proof for this is given in Section 5.2.2. In short, we show that any measure with non
finite support can be transformed by ReLU layers into a measure supported on an arbitrary
standard arc. This can be done in four constructive steps:

80

5.2 Proof of the First Characterization Result

(i) projecting the measure onto a one-dimensional subspace,

(ii) partitioning its support along that line into segments,

(iii) appropriately scaling the line segments,

(iv) bending the line into arc shape by repeated rotations and projections onto the
non-negative orthant.

Finally, using the scaling factors to identify arcs with R𝑚−1
+ × {1} yields the claim.

Lemma 5.14. Under Assumption 5.7 and for any 𝑚 ∈ N let 𝛿 > 0, Ω𝛿,𝑚 ⊆ R𝑑, and

Ξ : Ω𝛿,𝑚 ⊆ R𝑑 → R𝑚−1
+ × {1} be as in Lemma 5.13. Then Ξ is locally Lipschitz continuous.

The proof for this is given in Section 5.2.3. In short, we show that all three partial functions
scal, arc, and 𝑝 are locally Lipschitz continuous, hence also their composition Ξ is.

As a final piece before the main theorem we need a rather general result on maps
between Euclidean spaces.

Lemma 5.15. Let Ω ⊆ R𝑑 and Ξ : Ω → R𝑚 be locally Lipschitz continuous. If the image

Ξ(Ω) is a Borel set with non-empty interior in R𝑚 , then 𝑚 ≤ 𝑑. In particular, if Ξ maps

surjectively onto R𝑚 or R𝑚+ , then 𝑚 ≤ 𝑑.

The full proof of this is given in Appendix C.1. It essentially uses the fact that locally
Lipschitz continuous maps cannot increase the Hausdorff dimension. Since the Hausdorff
dimension of Ω is at most 𝑑 and the Hausdorff dimension of Ξ(Ω) is 𝑚, the claim follows.

We now have all the ingredients to prove the main theorem.

Proof of Theorem 5.5. Toward a contradiction let Assumption 5.7 hold. Let 𝑚 > 𝑑 + 1 be
arbitrary. By Lemma 5.13 there exists a 𝛿 > 0 so that the domain Ω𝛿,𝑚 is non-empty and
Ξ : Ω𝛿,𝑚 → R𝑚−1

+ × {1} is surjective. By Lemma 5.14 Ξ is also locally Lipschitz continuous.
Since R𝑚−1

+ × {1} is isometric to R𝑚−1
+ and 𝑚 − 1 > 𝑑 this contradicts Lemma 5.15. Hence,

one of the assumptions in Assumption 5.7 cannot hold, which proves Theorem 5.5.

5.2.2 Surjectivity of Ξ (Proof of Lemma 5.13)

For the remainder of the section let Assumption 5.7 hold. We will prove Lemma 5.13 and
show that for any 𝑚 ∈ N there exists a 𝛿 > 0 so that the map Ξ : Ω𝛿,𝑚 → R𝑚−1

+ × {1} is
surjective. We will do this by transforming (through a series of ReLU layers) any measure
with infinite support into a measure that is supported on an arbitrary standard𝑚-arc. Such
an infinitely supported measure exists within the 𝑑-parameter family 𝑝 by assumption. Due
to the ReLU-invariance, the transformed measure is then also included in the family. As a
consequence Ω𝛿,𝑚 must be non-empty and in fact we show that arc ◦ 𝑝 |Ω𝛿,𝑚 : Ω𝛿,𝑚 →𝒜𝑚

is surjective. The choice of 𝛿 will depend on how “evenly spread” the support of the
original, untransformed, measure is. Finally,𝒜𝑚 can be identified with R𝑚−1

+ × {1} via the
scaling factors.

As a first step we observe how transforming measures by continuous functions affects
their support. The support supp(𝜇) of a Radon measure 𝜇 is defined as the complement

81

Chapter 5 The Necessity of Using Approximate ADF

of the largest open 𝜇-null set. A point x belongs to supp(𝜇) if and only if every open
neighborhood of x has positive measure. A Borel set contained in the complement of
supp(𝜇) is a 𝜇-null set. The converse holds for open sets, i.e., an open set intersecting
supp(𝜇) has positive measure (in fact it suffices if the intersection is relatively open in
supp(𝜇)).

Lemma 5.16. For any 𝑞, 𝑟 ∈ N let 𝜇 ∈ 𝒟(R𝑞) and let Φ : R𝑞 → R𝑟 be continuous. Then

supp(Φ∗(𝜇)) = Φ(supp(𝜇)),

where Φ∗(𝜇) ∈ 𝒟(R𝑟) is the pushforward of 𝜇 under Φ.

Proof. We begin by showing Φ(supp(𝜇)) ⊆ supp(Φ∗(𝜇)). Let t ∈ Φ(supp(𝜇)) and 𝑈 ⊆ R𝑟
be any open neighborhood of t. There exists x ∈ supp(𝜇) so that t = Φ(x). Since t ∈ 𝑈 ,
we get x ∈ Φ−1(𝑈). Thus Φ−1(𝑈) is an open neighborhood of x and since x ∈ supp(Φ)we
get Φ∗(𝜇)(𝑈) = 𝜇(Φ−1(𝑈)) > 0. Since 𝑈 was an arbitrary neighborhood of t this shows
t ∈ supp(Φ∗(𝜇)). This implies Φ(supp(𝜇)) ⊆ supp(Φ∗(𝜇)). But supp(Φ∗(𝜇)) is closed, so we
can even conclude Φ(supp(𝜇)) ⊆ supp(Φ∗(𝜇)).

We will show the converse inclusion by showing Φ(supp(𝜇))
𝑐
⊆ supp(Φ∗(𝜇))𝑐 . For

this let t ∈ Φ(supp(𝜇))
𝑐
. Then there exists an open neighborhood 𝑈 of t such that

𝑈 ∩ Φ(supp(𝜇)) = ∅, which implies Φ−1(𝑈) ∩ supp(𝜇) = ∅. But this is only possible if
Φ∗(𝜇)(𝑈) = 𝜇(Φ−1(𝑈)) = 0 and therefore t ∈ supp(Φ∗(𝜇))𝑐 .

To simplify notations in the following, we begin the transformation by establishing
a standardized situation that takes places exclusively in the two-dimensional subspace
span{e1 , e2} of R𝑛 . In fact, all 𝑚-arcs are essentially one-dimensional objects embedded in
a two-dimensional space. Therefore, we start by transforming the infinitely supported
measure to the non-negative part of the one-dimensional space span{e1}, which will then
subsequently be “bent” into the correct arc living in span{e1 , e2}.

Projection to a One-Dimensional Subspace

We use a projection to a one-dimensional space that preserves the infinite support.

Lemma 5.17. Let 𝜇 ∈ 𝒟(R𝑛) such that supp(𝜇) is not finite. Then there exists Φ ∈ 𝒩𝒩𝑛
1,𝜚

such that Φ(R𝑛) ⊆ span{e1} and supp(Φ∗(𝜇)) is infinite.

Proof. The map Φ : R𝑛 → R𝑛 has the form x ↦→ 𝜚(Wx + b) for some W ∈ R𝑛×𝑛 and b ∈ R𝑛 .
Consider the coordinate projections proj𝑖 : R𝑛 → R : x ↦→ e

⊤
𝑖

x. Clearly we have

supp(𝜇) ⊆ proj1(supp(𝜇)) × · · · × proj𝑛(supp(𝜇)).

By assumption supp(𝜇) is infinite and the product can only be infinite if at least one of
its factors is infinite, for example proj𝑗(supp(𝜇)). If proj𝑗(supp(𝜇)) ∩ R≥0 is infinite, we set
𝜎 = +1, otherwise proj𝑗(supp(𝜇)) ∩R≤0 must be infinite and we set 𝜎 = −1. Now choosing

W =
[
𝜎e𝑗 0𝑛 . . . 0𝑛

]⊤ and b = 0𝑛 ,

82

5.2 Proof of the First Characterization Result

clearly yields Φ(R𝑛) ⊆ span{e1}. Further, by Lemma 5.16 we have

supp(Φ∗(𝜇)) = Φ(supp(𝜇))
= 𝜚(𝜎 proj𝑗(supp(𝜇))) × {0} × · · · × {0}

=

{
proj𝑗(supp(𝜇)) ∩ R≥0 × {0} × · · · × {0}, if 𝜎 = +1
−proj𝑗(supp(𝜇)) ∩ R≥0 × {0} × · · · × {0}, if 𝜎 = −1

,

which by the choice of 𝜎 is infinite.

Partitioning into Line Segments

The infinite support on the non-negative real line can be partitioned into an arbitrary
number of intervals, which in the end will correspond to the arc line segments.

Lemma 5.18. Let 𝜇 ∈ 𝒟(R𝑛) such that supp(𝜇) is not finite. Then for any 𝑚 ∈ N there exist

points 0 = 𝑏0 < · · · < 𝑏𝑚 < ∞ and Φ ∈ 𝒩𝒩𝑛
3,𝜚 such that Φ(R𝑛) ⊆ span{e1} ∩ [0, 𝑏𝑚]𝑛 and

supp(Φ∗(𝜇)) ∩
(
(𝑏 𝑗−1 , 𝑏 𝑗) × {0} × · · · × {0}

)
≠ ∅.

Proof. By Lemma 5.17 there is Φ1 ∈ 𝒩𝒩𝑛
1,𝜚 such that Φ(R𝑛) ⊆ span{e1} and supp(Φ∗(𝜇))

is infinite. Hence, there exist 0 < 𝑠1 < · · · < 𝑠𝑚 < ∞ such that (𝑠 𝑗 , 0, . . . , 0) ∈ supp(Φ∗(𝜇))
for all 𝑗 = 1, . . . , 𝑚. Setting 𝑏0 = 0, and

𝑏 𝑗 =
𝑠 𝑗 + 𝑠 𝑗+1

2 for 𝑗 = 1, . . . , 𝑚 − 1,

and finally 𝑏𝑚 = 𝑠𝑚 + 1 we get 𝑠 𝑗 ∈ (𝑏 𝑗−1 , 𝑏 𝑗) for 𝑗 = 1, . . . , 𝑚. Now choosing Φ2 ∈ 𝒩𝒩𝑛
2,𝜚 as

Φ2 : R𝑛 → R𝑛 : x ↦→ 𝜚

(
−𝜚

(
−x +

[
𝑏𝑚

0𝑛−1

])
+

[
𝑏𝑚

0𝑛−1

])
and Φ = Φ2 ◦Φ1 ∈ 𝒩𝒩𝑛

3,𝜚 yields the claim.

Remark 5.19. The support of the transformed measures is one-dimensional after the
initial projection and partitioning steps. Further, two dimensions will be enough for
our construction to “bend” the measures into arc shape. Any two-dimensional ReLU
layer R2 → R2 : x ↦→ 𝜚(Wx+b) can easily be extended to an 𝑛-dimensional ReLU layer

R𝑛 → R𝑛 : x ↦→ 𝜚

([
W 02×(𝑛−2)

0(𝑛−2)×2 0(𝑛−2)×(𝑛−2)

]
x +

[
b

0(𝑛−2)×1

])
,

only operating on span{e1 , e2} ⊆ R𝑛 by appropriately padding with zeros. To simplify
the notation, we leave out these zero paddings and just assume 𝑛 = 2. Altogether,
without loss of generality we can from now on assume (for 𝑏 𝑗 chosen as in Lemma 5.18)
that 𝜇 is supported on [𝑏0 , 𝑏𝑚] × {0} ⊆ R2 and the support intersects each subset
(𝑏 𝑗−1 , 𝑏 𝑗) × {0} for 𝑗 = 1, . . . , 𝑚.

83

Chapter 5 The Necessity of Using Approximate ADF

Resizing the Line Segments

After partitioning the support of a distribution into intervals that each contain a certain
amount of the probability mass we now want to bend it into arc shape. Each interval in
the partition will correspond to a line segment. However, the bending will distort the
segment lengths, so in order to obtain an arc with specified segment lengths we first have
to resize the intervals. This is also possible with ReLU layers.

Lemma 5.20. For 𝑚 ∈ N, 𝑚 ≥ 2 let

0 = 𝑎0 < 𝑎1 < · · · < 𝑎𝑚 < ∞ and 0 = 𝑏0 < 𝑏1 < · · · < 𝑏𝑚 < ∞

be two collections of points in R≥0. Then there exists a ReLU network 𝐹 ∈ 𝒩𝒩2
𝑚+1,𝜚 that

satisfies

𝐹

([
𝑏𝑖
0

])
=

[
𝑎𝑖
0

]
for all 𝑖 = 0, . . . , 𝑚,

and restricted to R≥0 × {0} is a piecewise linear map with breakpoints (possibly) at 𝑏0 , . . . , 𝑏𝑚 .

Proof. We denote the layers of 𝐹 as 𝐹𝑗 ∈ 𝒩𝒩2
1,𝜚 , that is 𝐹 = 𝐹𝑚 ◦ · · · ◦ 𝐹0. The proof consists

of two parts. First, we iteratively construct a collection of piecewise linear and strictly
increasing functions { 𝑓𝑗 : R→ R} 𝑗=0,...,𝑚 such that

(𝑓𝑗 ◦ · · · ◦ 𝑓0)(𝑏𝑖) = 𝑎𝑖 for all 𝑖 = 0, . . . , 𝑗 , (5.3)

for any 𝑗 = 0, . . . , 𝑚. In particular for 𝑗 = 𝑚 and 𝑓 = 𝑓𝑚 ◦ 𝑓𝑚−1 ◦ · · · ◦ 𝑓0 we obtain 𝑓 (𝑏𝑖) = 𝑎𝑖
for all 𝑖 = 0, . . . , 𝑚. Afterwards we show how to construct {𝐹𝑗} 𝑗 from { 𝑓𝑗} 𝑗 .

Since 𝑏0 = 𝑎0 = 0, we can start with

𝑓0(𝑥) = 𝑥

and see that (5.3) is satisfied for 𝑗 = 0. Now assuming we have already constructed
strictly increasing and piecewise linear functions 𝑓0 , . . . , 𝑓𝑗 satisfying (5.3) we now want
to construct 𝑓𝑗+1. The idea is to choose it in such a way that it leaves the points already
correctly mapped by 𝑓𝑗 ◦ · · · ◦ 𝑓0 unchanged but linearly transforms the remaining points
so that 𝑏 𝑗+1 is mapped to 𝑎 𝑗+1. For brevity we denote 𝑏 𝑗

𝑖
= (𝑓𝑗 ◦ · · · ◦ 𝑓0)(𝑏𝑖) for 𝑖 = 0, . . . , 𝑚.

By assumption 𝑏 𝑗
𝑖
= 𝑎𝑖 for 𝑖 = 0, . . . , 𝑗 and by strict monotonicity 𝑏 𝑗

𝑗+1 > 𝑏
𝑗

𝑗
= 𝑎 𝑗 . We set

𝑓𝑗+1(𝑥) =

𝑥, 𝑥 ≤ 𝑎 𝑗 ,

𝑥 +
𝑎 𝑗+1−𝑏

𝑗

𝑗+1

𝑏
𝑗

𝑗+1−𝑎 𝑗
(𝑥 − 𝑎 𝑗), 𝑥 > 𝑎 𝑗 .

We can also express 𝑓𝑗+1 using 𝜚 , i.e.,

𝑓𝑗+1(𝑥) = 𝑥 +
𝑎 𝑗+1 − 𝑏 𝑗𝑗+1

𝑏
𝑗

𝑗+1 − 𝑎 𝑗
𝜚(𝑥 − 𝑎 𝑗). (5.4)

84

5.2 Proof of the First Characterization Result

Then 𝑓𝑗+1 maps 𝑏 𝑗
𝑗+1 to 𝑎 𝑗+1 and acts as the identity map on the region 𝑥 ≤ 𝑎 𝑗 where points

are already correctly mapped, as illustrated in Figure 5.4(left). Hence clearly (5.3) is also
satisfied for 𝑗 + 1. To see that 𝑓𝑗+1 is strictly increasing we observe that its slope is 1 on the
region 𝑥 ≤ 𝑎 𝑗 and

1 +
𝑎 𝑗+1 − 𝑏 𝑗𝑗+1

𝑏
𝑗

𝑗+1 − 𝑎 𝑗
=
𝑎 𝑗+1 − 𝑎 𝑗
𝑏
𝑗

𝑗+1 − 𝑎 𝑗
> 0

on the region 𝑥 ≥ 𝑎 𝑗 . This adds at most one new breakpoint at 𝑏 𝑗 to the composition
𝑓𝑗+1 ◦ · · · ◦ 𝑓0. Continuing this process until 𝑗 = 𝑚 finishes the first part, see Figure 5.4(right).

Next we derive the ReLU layers {𝐹𝑗} 𝑗 from the functions { 𝑓𝑗} 𝑗 . For 𝑗 = 0, . . . , 𝑚 − 1 we
denote

𝑤 𝑗+1 =
𝑎 𝑗+1 − 𝑏 𝑗𝑗+1

𝑏
𝑗

𝑗+1 − 𝑎 𝑗

and rewrite (5.4) as

𝑓𝑗+1(𝑥) =
[
1 𝑤 𝑗+1

]
𝜚

([
1
1

]
𝑥 +

[
0
−𝑎 𝑗

])
for 𝑥 ≥ 0.

Two consecutive maps can be combined as

𝑓𝑗+1(𝑓𝑗(𝑥)) =
[
1 𝑤 𝑗+1

]
𝜚

([
1 𝑤 𝑗

1 𝑤 𝑗

]
𝜚

([
1
1

]
𝑥 +

[
0
−𝑎 𝑗−1

])
+

[
0
−𝑎 𝑗

])
for 𝑥 ≥ 0, hence we set

𝐹𝑗 : R2 → R2 : x ↦→ 𝜚

([
1 𝑤 𝑗

1 𝑤 𝑗

]
x +

[
0
−𝑎 𝑗

])
for 𝑗 = 1, ..., 𝑚 − 1. It is now easy to check that with

𝐹0(x) = 𝜚

([
1 0
1 0

]
x

)
and

𝐹𝑚(x) ↦→ 𝜚

([
1 𝑤𝑚
0 0

]
x

)
we finally get

𝐹

([
𝑥

0

])
=

[
𝑓 (𝑥)
0

]
for 𝑥 ≥ 0

for 𝐹 = 𝐹𝑚 ◦ 𝐹𝑚−1 ◦ · · · ◦ 𝐹1 ◦ 𝐹0. Clearly all 𝐹𝑗 ∈ 𝒩𝒩2
1,𝜚 , hence 𝐹 ∈ 𝒩𝒩2

𝑚+1,𝜚 .

85

Chapter 5 The Necessity of Using Approximate ADF

𝑎1 𝑎2 𝑎 𝑗 𝑏
𝑗

𝑗+1 𝑏
𝑗

𝑚−1 𝑏
𝑗
𝑚

𝑎1

𝑎2

𝑎 𝑗

𝑎 𝑗+1

𝑏
𝑗+1
𝑚−1

𝑏
𝑗+1
𝑚

.

.

.

.

.

.

.

𝑏1 𝑏2 𝑏 𝑗 𝑏 𝑗+1 𝑏𝑚−1 𝑏𝑚

𝑎1

𝑎2

𝑎 𝑗

𝑎 𝑗+1

𝑎𝑚−1

𝑎𝑚

.

.

.

.

.

.

.

Figure 5.4: Construction of Arcs – Scaling. Illustration of the construction in the proof of
Lemma 5.20. The function 𝑓𝑗+1(𝑥) transforms the points 0 = 𝑎0 = 𝑏

𝑗

0 , 𝑎1 = 𝑏
𝑗

1 , . . . , 𝑎 𝑗 = 𝑏
𝑗

𝑗
and

𝑏
𝑗

𝑗+1 , . . . , 𝑏
𝑗
𝑚 (left). The region 𝑥 ≤ 𝑎 𝑗 is left unchanged and the region 𝑥 ≥ 𝑎 𝑗 is linearly rescaled

so that 𝑓𝑗+1(𝑏 𝑗𝑗+1) = 𝑎 𝑗+1. The piecewise linear function 𝑓 = 𝑓𝑚 ◦ · · · ◦ 𝑓0 maps 𝑏 𝑗 to 𝑎 𝑗 (right).

Bending the Arc

Let us next consider how to “bend” a one dimensional subspace into an 𝑚-arc. This
iterative procedure is illustrated in Figure 5.5. It starts with all vertices in a straight line on
the 𝑥2-axis. First, the polygonal chain is rotated by −𝛼𝑚 (“to the right”) and translated in
negative 𝑥1 direction (“to the left”) such that the second to last vertex lies on the 𝑥2-axis.
Then, a ReLU activation is applied, which projects all vertices up until the second to last
onto the 𝑥2-axis. The last last arc segment now has the correct angle and the process is
repeated until all segments are correctly “bent”. Note that each projection shrinks the
unbent line segments by a factor of cos(𝛼𝑚).

Lemma 5.21. For 𝑚 ∈ N, 𝑚 ≥ 2 let 0 = 𝑎0 < 𝑎1 < · · · < 𝑎𝑚 < ∞ be a collection of

points in R≥0. Then there exists a ReLU network 𝐺 ∈ 𝒩𝒩2
𝑚+1,𝜚 such that its restriction

𝐺 |[𝑎0 ,𝑎𝑚]×{0} parametrizes the unique 𝑚-arc 𝐴 starting in the origin with scaling factors

𝑟𝑖 = cos𝑚−𝑖(𝛼𝑚)(𝑎𝑖 − 𝑎𝑖−1) for 𝑖 = 1, . . . , 𝑚.

Proof. Let the rotation matrix of angle 𝛼 be denoted

𝑅𝛼 =

[
cos(𝛼) − sin(𝛼)
sin(𝛼) cos(𝛼)

]
and define

d𝑗 =

[
sin(𝛼𝑚) cos(𝛼𝑚)𝑗𝑎𝑚−𝑗

0

]
, for 𝑗 = 1, . . . , 𝑚,

as well as

𝐺0 : R2 → R2 : x ↦→ 𝜚
(
𝑅 𝜋

2
x

)

86

5.2 Proof of the First Characterization Result

and

𝐺 𝑗 : R2 → R2 : x ↦→ 𝜚
(
𝑅−𝛼𝑚x − d𝑗

)
for 𝑗 = 1, . . . , 𝑚,

and finally 𝐺 = 𝐺𝑚 ◦ · · · ◦ 𝐺0. Clearly all 𝐺 𝑗 ∈ 𝒩𝒩2
1,𝜚 , hence 𝐺 ∈ 𝒩𝒩2

𝑚+1,𝜚 .
We need to show that

v𝑖 = 𝐺

([
𝑎𝑖
0

])
and ℓ𝑖 = 𝐺([𝑎𝑖−1 , 𝑎𝑖] × {0})

are the vertices and line segments of the 𝑚-arc 𝐴 respectively. For this, it remains to check
that 𝐺 is a piecewise linear function in its first component with breakpoints 𝑎𝑖 , and that
v0 = 02 as well as

v𝑖 = v𝑖−1 + cos𝑚−𝑖(𝛼𝑚)(𝑎𝑖 − 𝑎𝑖−1)
[
sin(𝑖𝛼𝑚)
cos(𝑖𝛼𝑚)

]
, for 𝑖 = 1, . . . , 𝑚. (5.5)

We denote
v

𝑗

𝑖
= (𝐺 𝑗 ◦ · · · ◦ 𝐺0)

([
𝑎𝑖
0

])
for 𝑖 , 𝑗 = 0, ..., 𝑚.

By the choice of 𝛼𝑚 we know sin(𝛼𝑚) > 0 and cos(𝛼𝑚) > 0. Hence, the first component of
the bias vectors d𝑗 satisfy sin(𝛼𝑚) cos(𝛼𝑚)𝑗𝑎𝑚−𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑚. Therefore, v

𝑗

0 = 02 for
all 𝑗 and in particular v0 = v

𝑚
0 = 02. Further, we will show inductively over 𝑗 that for any

𝑖 , 𝑗 we have

v

𝑗

𝑖
− v

𝑗

𝑖−1 =

cos(𝛼𝑚)𝑗(𝑎𝑖 − 𝑎𝑖−1)

[
0
1

]
, 𝑖 ≤ 𝑚 − 𝑗 ,

cos(𝛼𝑚)𝑚−𝑖(𝑎𝑖 − 𝑎𝑖−1)
[
sin((𝑖 + 𝑗 − 𝑚)𝛼𝑚)
cos((𝑖 + 𝑗 − 𝑚)𝛼𝑚)

]
, 𝑖 > 𝑚 − 𝑗.

(5.6)

Then (5.5) follows from (5.6) with 𝑗 = 𝑚.
To start the inductive proof we observe that for 𝑗 = 0 and 𝑖 = 1, . . . , 𝑚 we have

v
0
𝑖 − v

0
𝑖−1 = 𝐺0

([
𝑎𝑖
0

])
− 𝐺0

([
𝑎𝑖−1
0

])
= 𝑅 𝜋

2

[
𝑎𝑖
0

]
− 𝑅 𝜋

2

[
𝑎𝑖−1
0

]
= (𝑎𝑖 − 𝑎𝑖−1)

[
0
1

]
,

satisfying (5.6).
Next, let us assume that (5.6) holds for some 𝑗 < 𝑚. For any 𝑖 we denote w

𝑗

𝑖
= 𝑅−𝛼𝑚v

𝑗

𝑖
−d𝑗

and therefore v

𝑗+1
𝑖

= 𝐺 𝑗+1(v𝑗𝑖) = 𝜚(w𝑗

𝑖
) and

w

𝑗

𝑖
−w

𝑗

𝑖−1 =

cos(𝛼𝑚)𝑗(𝑎𝑖 − 𝑎𝑖−1)

[
sin(𝛼𝑚)
cos(𝛼𝑚)

]
, 𝑖 ≤ 𝑚 − 𝑗 ,

cos(𝛼𝑚)𝑚−𝑖(𝑎𝑖 − 𝑎𝑖−1)
[
sin((𝑖 + 𝑗 + 1 − 𝑚)𝛼𝑚)
cos((𝑖 + 𝑗 + 1 − 𝑚)𝛼𝑚)

]
, 𝑖 > 𝑚 − 𝑗.

87

Chapter 5 The Necessity of Using Approximate ADF

We also have sin((𝑖 + 𝑗 + 1 −𝑚)𝛼𝑚) > 0 and cos((𝑖 + 𝑗 + 1 −𝑚)𝛼𝑚) ≥ 0 for 𝑖 > 𝑚 − 𝑗 by the
choice of 𝛼𝑚 and therefore w

𝑗
𝑚 ≥ w

𝑗

𝑚−1 ≥ · · · ≥ w

𝑗

1 ≥ w

𝑗

0 = −d𝑗 component-wise, where
even all inequalities are strict in the first component. We immediately see that all w

𝑗

𝑖
lie in

the upper half-plane. Further,

w

𝑗

𝑚−𝑗 = w

𝑗

0 +
𝑚−𝑗∑
𝑖=1
(w𝑗

𝑖
−w

𝑗

𝑖−1)

= −d𝑗 +
𝑚−𝑗∑
𝑖=1

cos(𝛼𝑚)𝑗(𝑎𝑖 − 𝑎𝑖−1)
[
sin(𝛼𝑚)
cos(𝛼𝑚)

]
= −

[
sin(𝛼𝑚) cos(𝛼𝑚)𝑗𝑎𝑚−𝑗

0

]
+ cos(𝛼𝑚)𝑗𝑎𝑚−𝑗

[
sin(𝛼𝑚)
cos(𝛼𝑚)

]
= cos(𝛼𝑚)𝑗+1𝑎𝑚−𝑗

[
0
1

]
,

from which we can conclude that

(w𝑗

𝑖
)1 ≥ 0, for 𝑖 = 1, . . . , 𝑚 (5.7)

(w𝑗

𝑖
)2 < 0, for 𝑖 = 1, ..., 𝑚 − 𝑗 − 1, (5.8)

(w𝑗

𝑖
)2 ≥ 0, for 𝑖 = 𝑚 − 𝑗 , ..., 𝑚. (5.9)

Now v

𝑗+1
𝑖

= 𝜚(w𝑗

𝑖
) together with (5.7) to (5.9) implies

(v𝑗+1
𝑖
)1 = (w𝑗

𝑖
)1 , for 𝑖 = 1, ..., 𝑚,

(v𝑗+1
𝑖
)2 = 0, for 𝑖 = 1, ..., 𝑚 − 𝑗 − 1,

(v𝑗+1
𝑖
)2 = (w𝑗

𝑖
)2 , for 𝑖 = 𝑚 − 𝑗 , ..., 𝑚,

and therefore

v

𝑗+1
𝑖
− v

𝑗+1
𝑖−1 =

cos(𝛼𝑚)𝑗+1(𝑎𝑖 − 𝑎𝑖−1)

[
0
1

]
, 𝑖 ≤ 𝑚 − (𝑗 + 1)

cos(𝛼𝑚)𝑚−𝑖(𝑎𝑖 − 𝑎𝑖−1)
[
sin((𝑖 + 𝑗 + 1 − 𝑚)𝛼𝑚)
cos((𝑖 + 𝑗 + 1 − 𝑚)𝛼𝑚)

]
, 𝑖 > 𝑚 − (𝑗 + 1),

which shows that (5.6) holds for 𝑗 + 1 and concludes the inductive step.
Each 𝐺 𝑗+1 adds only one new breakpoint to the overall function, corresponding to

the point w

𝑗

𝑚−𝑗 where the second component of (𝐺 𝑗 ◦ · · · ◦ 𝐺0)(x) switches sign. This
corresponds to the breakpoint 𝑎𝑚−𝑗 of 𝐺.

Combining the Pieces

We are now ready to given the main proof of this section.

88

5.2 Proof of the First Characterization Result

i)

v
0
0

v
0
1

v
0
2

v
0
3

ii)

w
0
0

w
0
1

v
1
0

v
1
1

v
1
2

v
1
3

iii)

w
1
0 v

2
0

v
2
1

v
2
2

v
2
3

iv)

v
3
0

v
3
1

v
3
2 v

3
3

Figure 5.5: Construction of Arcs – Bending. Illustration of the “bending” of a 3-arc in 4 steps. Step
(i) shows 𝐺0 (90◦ rotation) applied to [𝑎𝑚 , 𝑎0] × {0}. Steps (ii) and (iii) show the image of 𝐺1 ◦ 𝐺0
and 𝐺2 ◦ 𝐺1 ◦ 𝐺0 respectively (blue) as well as the corresponding transform just before the last
ReLU activation (gray). Step (iv) shows the final arc arising as the image of 𝐺 = 𝐺3 ◦𝐺2 ◦𝐺1 ◦𝐺0.

Proof of Lemma 5.13. Let 𝑚 ∈ N be arbitrary. By assumption there exists a measure
𝜇 ∈ {𝑝(𝜃)}𝜃∈Ω with infinite support. By using Lemmas 5.17 and 5.18 and Remark 5.19 we
can without loss of generality assume 𝑛 = 2 and that supp(𝜇) is compact and contained
in the non-negative part of span{e1}. More precisely, supp(𝜇) = 𝑆 × {0} ⊆ [0, 𝑏] × {0} for
a set 𝑆 ⊆ R≥0 and some 𝑏 > 0 and there are points 0 = 𝑏0 < 𝑏1 < · · · < 𝑏𝑚 = 𝑏 so that 𝑆
intersects each (𝑏 𝑗−1 , 𝑏 𝑗). By the choice of 𝑆 and since (𝑏 𝑗−1 , 𝑏 𝑗) × {0} is relatively open in
𝑆 × {0} we have 𝜇((𝑏 𝑗−1 , 𝑏 𝑗) × {0}) > 0 for all 𝑗. Set 0 < 𝛿 ≤ min𝑗 𝜇((𝑏 𝑗−1 , 𝑏 𝑗) × {0}).

Now let 𝐴 ∈ 𝒜𝑚 be an arbitrary standard 𝑚-arc and denote its set of vertices by
(v0 , . . . , v𝑚) = vert(𝐴), its line segments by (ℓ1 , . . . , ℓ𝑚) = segm(𝐴), and its scaling factors
by (𝑟1 , . . . , 𝑟𝑚) = scal(𝐴). We set 𝑎0 = 0 and iteratively 𝑎 𝑗 = 𝑎 𝑗−1 + 𝑟 𝑗 cos𝑗−𝑚(𝛼𝑚) for
𝑗 = 1, . . . , 𝑚. By Lemma 5.20 there is a ReLU network 𝐹 ∈ 𝒩𝒩𝑛

𝑚+1,𝜚 satisfying

𝐹

([
𝑏 𝑗
0

])
=

[
𝑎 𝑗
0

]
for 𝑗 = 1, . . . , 𝑚,

and then by Lemma 5.21 another ReLU network 𝐺 ∈ 𝒩𝒩𝑛
𝑚+1,𝜚 satisfying

𝐺

([
𝑎𝑖
0

])
= v𝑗 for 𝑗 = 1, . . . , 𝑚.

Altogether Φ = 𝐺 ◦ 𝐹 ∈ 𝒩𝒩𝑛
2𝑚+2,𝜚 is a ReLU network that transforms b𝑗 =

[
𝑏𝑖 0

]⊤ to the
vertex v𝑗 and [𝑏 𝑗−1 , 𝑏 𝑗] × {0} to the line segment ℓ 𝑗 . By Lemma 5.16 we have

supp(Φ∗𝜇) = Φ(supp(𝜇)) ⊆ Φ([𝑏0 , 𝑏𝑚] × {0}) ⊆ 𝐴.

Also, for each 𝑗 we get

(Φ∗𝜇)(ℓ 𝑗) = 𝜇(Φ−1(ℓ 𝑗)) ≥ 𝜇((𝑏 𝑗−1 , 𝑏 𝑗) × {0}) ≥ 𝛿

and therefore Φ∗𝜇 ∈ 𝒟𝛿,𝑚(R2) and arc(Φ∗𝜇) = 𝐴. Using the ReLU-invariance, we know
that Φ∗𝜇 ∈ {𝑝(𝜃)}𝜃∈Ω𝛿,𝑚 ⊆ {𝑝(𝜃)}𝜃∈Ω. Altogether, since 𝐴 ∈ 𝒜𝑚 was arbitrary we conclude
that arc ◦ 𝑝 |Ω𝛿,𝑚 is surjective onto𝒜𝑚 . Clearly, scal : 𝒜𝑚 → R𝑚−1

+ × {1} is a bĳection, hence
also Ξ : Ω𝛿,𝑚 → R𝑚−1

+ × {1} is surjective.

89

Chapter 5 The Necessity of Using Approximate ADF

5.2.3 Local Lipschitz Continuity of Ξ (Proof of Lemma 5.14)

We will now show the local Lipschitz continuity of the map Ξ : Ω𝛿,𝑚 → R𝑚+ by showing it
for each of its three composite parts 𝑝 |Ω𝛿,𝑚 : Ω𝛿,𝑚 → 𝒟𝛿,𝑚(R𝑛), arc : 𝒟𝛿,𝑚(R𝑛) → 𝒜𝑚 , and
scal : 𝒜𝑚 → R𝑚+ .

Firstly, 𝑝 |Ω𝛿,𝑚 : Ω𝛿,𝑚 → 𝒟𝛿,𝑚(R𝑛) is locally Lipschitz continuous by Assumption 5.7, so
there is nothing to show.

Secondly, the local Lipschitz continuity of arc : 𝒟𝛿,𝑚(R𝑛) → 𝒜𝑚 can be derived from
geometric observations.

Lemma 5.22. The map arc : (𝒟𝛿,𝑚(R𝑛), 𝑑𝑃) → (𝒜𝑚 , 𝑑𝒜) : 𝜇 ↦→ 𝐴𝜇, is locally Lipschitz

continuous with Lipschitz constant
2
√

2
sin(𝛼𝑚) .

Proof. Let𝜇0 ∈ 𝒟𝛿,𝑚(R𝑛) be arbitrary. We will show Lipschitz continuity on the open ball of
radius 𝛿

2 around𝜇0. For this let𝜇1 , 𝜇2 ∈ 𝐵 𝛿
2
(𝜇0)∩𝒟𝛿,𝑚(R𝑛) and therefore 𝑑𝑃(𝜇1 , 𝜇2) ≤ 𝛿. We

know that 𝜇1 and 𝜇2 are 𝛿-supported on unique standard 𝑚-arcs 𝐴1 = arc(𝜇1) = 𝐴𝜇1 ∈ 𝒜𝑚

and 𝐴2 = arc(𝜇2) = 𝐴𝜇2 ∈ 𝒜𝑚 and by definition these lie in the same two-dimensional
subspace span{e1 , e2} of R𝑛 . So without loss of generality we carry out the remaining
proof in R2. Let (v1

0 , . . . , v
1
𝑚) = vert(𝐴1) and (v2

0 , . . . , v
2
𝑚) = vert(𝐴2) be the vertices and

(ℓ 1
1 , . . . , ℓ

1
𝑚) = segm(𝐴1) and (ℓ 2

1 , . . . , ℓ
2
𝑚) = segm(𝐴2) the line segments of 𝐴1 and 𝐴2

respectively. We denote the affine hulls of individual line segments as ℎ 𝑗
𝑖
= aff(ℓ 𝑗

𝑖
) and

further denote the Euclidean distance of two corresponding affine hulls by 𝑑𝑖 = dist(ℎ1
𝑖
, ℎ2

𝑖
).

An example for this can be seen in Figure 5.6.
We want to upper bound the Euclidean distances ∥v1

𝑖
−v

2
𝑖
∥2 of all corresponding vertices

of the two arcs. For any 𝑖 one of four cases can occur, as visualized in Figure 5.7. Firstly,
if v

1
𝑖
= v

2
𝑖

(cf. Figure 5.7, top left) we trivially get ∥v1
𝑖
− v

2
𝑖
∥2 = 0. Secondly, if v

1
𝑖
≠ v

2
𝑖

but
ℎ1
𝑖
= ℎ2

𝑖
(cf. Figure 5.7, top right) we obtain

∥v1
𝑖 − v

2
𝑖 ∥2 ≤

𝑑𝑖+1
sin(𝛼𝑚)

.

Thirdly, if v
1
𝑖
≠ v

2
𝑖

but ℎ1
𝑖+1 = ℎ2

𝑖+1 (cf. Figure 5.7, bottom left) we similarly get

∥v1
𝑖 − v

2
𝑖 ∥2 ≤

𝑑𝑖

sin(𝛼𝑚)
.

In the fourth case, where v
1
𝑖
≠ v

2
𝑖
, ℎ1

𝑖
≠ ℎ2

𝑖
, and ℎ1

𝑖+1 ≠ ℎ2
𝑖+1 the four intersections of the

affine spaces form a parallelogram (cf. Figure 5.7, bottom right). We obtain

∥v1
𝑖 − v

2
𝑖 ∥2 ≤

√
2(𝑑𝑖 + 𝑑𝑖+1)
sin(𝛼𝑚)

,

using the parallelogram identity. Thus, it remains to bound all the distances 𝑑𝑖 .
For this, assume that for some 𝑖 we have 𝑑𝑖 > 0. We say that ℓ 1

𝑖
is the outer line

segment and ℓ 2
𝑖

is the inner line segment if dist(02 , ℎ
1
𝑖
) > dist(02 , ℎ

2
𝑖
) and vice versa if

dist(02 , ℎ
1
𝑖
) < dist(02 , ℎ

2
𝑖
). Without loss of generality assume that ℓ 1

𝑖
is the outer line

90

5.2 Proof of the First Characterization Result

ℎ1
4

ℎ2
4

ℓ 1
4

ℓ 2
4

𝑑4

v
1
1

v
1
2

v
1
3

v
1
4

v
1
5

v
2
1

v
2
2

v
2
3

v
2
4

v
2
5

Figure 5.6: Outer and Inner Arcs. Example of two standard 𝑚-arcs 𝐴1 (blue) and 𝐴2 (orange) for
𝑚 = 5. Supporting affine subspaces ℎ1

4 and ℎ2
4 and their distance 𝑑4 are shown exemplarily for

the fourth line segments. At this segment 𝐴2 is the outer arc and 𝐴1 is the inner arc.

segment. Then for any point p ∈ 𝐴2 we have dist(p, ℓ 1
𝑖
) ≥ 𝑑𝑖 . Thus 𝜇2((ℓ 1

𝑖
)𝜖) = 0 for any

𝜖 < 𝑑𝑖 . But 𝜇1(ℓ 1
𝑖
) ≥ 𝛿 and therefore by definition of the Prokhorov metric

𝑑𝑖 ≤ 𝑑𝑃(𝜇1 , 𝜇2).

Altogether, we obtain

𝑑𝒜(𝐴1 , 𝐴2) = max
𝑖
∥v1

𝑖 − v
2
𝑖 ∥2 ≤

2
√

2
sin(𝛼𝑚)

𝑑𝑃(𝜇1 , 𝜇2).

Thirdly, the local Lipschitz continuity of scal : 𝒜𝑚 → R𝑚+ is a straight-forward calculation
if R𝑚+ is equipped with the metric induced by the ℓ∞-norm. By norm equivalence the same
also holds for R𝑚+ viewed as a subspace of Euclidean R𝑚 .

Lemma 5.23. The map scal : (𝒜𝑚 , 𝑑𝒜) → (R𝑚≥0 , ∥ · ∥∞) : 𝐴 ↦→ (𝑟1 , . . . , 𝑟𝑚) is Lipschitz

continuous with Lipschitz constant 2.

Proof. Let 𝐴1 , 𝐴2 ∈ 𝒜𝑚 be arbitrary standard 𝑚-arcs with vertices (v1
0 , . . . , v

1
𝑚) = vert(𝐴1)

and (v2
0 , . . . , v

2
𝑚) = vert(𝐴2) and scaling factors (𝑟1

1 , . . . , 𝑟
1
𝑚) = scal(𝐴1) and (𝑟2

1 , . . . , 𝑟
2
𝑚) =

scal(𝐴2) respectively. Since for all 𝑖 = 1, . . . , 𝑚 we have

𝑟1
𝑖 ≤ 𝑟

2
𝑖 + dist(v1

𝑖−1 , v
2
𝑖−1) + dist(v1

𝑖 , v
2
𝑖)

and vice versa
𝑟2
𝑖 ≤ 𝑟

1
𝑖 + dist(v1

𝑖−1 , v
2
𝑖−1) + dist(v1

𝑖 , v
2
𝑖),

we obtain
∥scal(𝐴1) − scal(𝐴2)∥∞ = max

𝑖=1,...,𝑚
|𝑟1
𝑖 − 𝑟

2
𝑖 | ≤ 2𝑑𝒜(𝐴1 , 𝐴2).

91

Chapter 5 The Necessity of Using Approximate ADF

ℎ1
𝑖
= ℎ2

𝑖
ℎ1
𝑖+1 = ℎ2

𝑖+1 𝛼𝑚
v

1
𝑖

v
2
𝑖

ℎ1
𝑖
= ℎ2

𝑖

ℎ1
𝑖+1

ℎ2
𝑖+1

𝛼𝑚
v

1
𝑖

v
2
𝑖

𝑑𝑖+1

ℎ1
𝑖

ℎ2
𝑖

ℎ1
𝑖+1 = ℎ2

𝑖+1
𝛼𝑚

v
1
𝑖

v
2
𝑖𝑑𝑖

ℎ1
𝑖

ℎ1
𝑖+1

ℎ2
𝑖

ℎ2
𝑖+1 𝛼𝑚

𝛼𝑚

v
1
𝑖

v
2
𝑖

𝑑𝑖+1

𝑑𝑖

Figure 5.7: Arc Arrangements. Four possible arrangements of corresponding vertices v
1
𝑖

and v
2
𝑖

of two arcs. In the first case both vertices are equal (top left). In the second and third case the
vertices are different but either the affine subspaces ℎ1

𝑖
and ℎ2

𝑖
or ℎ1

𝑖+1 and ℎ2
𝑖+1 coincide (top

right and bottom left). In the fourth case all affine subspaces differ and their intersections form a
parallelogram with v

1
𝑖

and v
2
𝑖

at opposite corners (bottom right).

Altogether we can combine the pieces and prove the local Lipschitz continuity of
Ξ : Ω𝛿,𝑚 → R𝑚+ .

Proof of Lemma 5.14. The claim follows directly from Assumption 5.7 and Lemmas 5.22
and 5.23 since the composition of locally Lipschitz continuous functions is again locally
Lipschitz continuous.

5.3 Proof of the Second Characterization Result

We will now come to the proof of Theorem 5.6 and show that exploiting any of the three
restrictions in Theorem 5.5 indeed allows us to find ReLU-invariant families of distributions.
We split the proof into three parts and construct examples for each of the three cases.

5.3.1 Families of Distributions in One Dimension

The first part of Theorem 5.6 corresponds to restriction (R1). We explicitly construct a
family of ReLU-invariant probability distributions on Rwith a locally Lipschitz continuous
parametrization map.

The key observation is that ReLU neural networks in one dimension are a rather restricted
class of functions unlike networks in higher dimensions. In fact, every one-dimensional
ReLU neural network of arbitrary depth is either constant or takes one of four forms,
illustrated in Figure 5.8, and can therefore be rewritten as a three layer network. Thus, we
only require a constant number of parameters to describe the set of all one-dimensional

92

5.3 Proof of the Second Characterization Result

ReLU networks. It is then straightforward to obtain a ReLU-invariant family of probability
distributions by explicitly making these parameters part of the family’s parametrization.

We will follow a similar idea to obtain ReLU-invariant families in higher dimension
when proving part (iii) of Theorem 5.6 in Section 5.3.3. However in this case the number
of parameters to describe the neural networks grows with their depth leading to the need
for an arbitrary large number of parameters to describe the distributions in the family.
Although it is possible to generalize our construction to higher dimensions this comes at
the cost of losing the local Lipschitz continuity of the parametrization map.

We proceed in three steps. We first analyze the set of one-dimensional ReLU networks
and show that it can be completely described by only six parameters. We then use these to
parametrize all ReLU neural networks as functions in 𝐶(𝐾,R) on some compact domain
𝐾 ⊆ R via a so called realization map 𝑅 : R6 → 𝐶(𝐾,R). Finally, we use a pushforward map
𝑄 : 𝐶(𝐾,R) → 𝒟(R)mapping neural network functions Φ ∈ 𝐶(𝐾,R) to the pushforward
of a fixed prototype measure 𝜇0 ∈ 𝒟(R) under Φ to generate the family of probability
distribution. The prototype measure is assumed to be supported within 𝐾. The one-
parameter family 𝑝 : R6 → 𝒟(R) is then simply given as 𝑝 = 𝑄 ◦ 𝑅. We will now discuss
each of the steps in more detail.

ReLU Neural Networks in One Dimension

Let us first show that any one dimensional ReLU network can be rewritten as a three layer
network. We observe that𝒩𝒩𝑛

1,𝜚 ⊆ 𝒩𝒩
𝑛
2,𝜚 ⊆ · · · ⊆ 𝒩𝒩

𝑛
𝐿,𝜚 ⊆ 𝒩𝒩

𝑛
𝐿+1,𝜚 ⊆ . . . holds for any

𝑛 ∈ N since “unused” layers can be set to act as the identity map (on R𝑛≥0). For 𝑛 ≥ 2 these
inclusions are strict, however for 𝑛 = 1 equality holds starting from depth 𝐿 = 3.

Lemma 5.24. For 𝐿 ∈ N, 𝐿 ≥ 3 we have𝒩𝒩1
𝐿,𝜚 = 𝒩𝒩1

3,𝜚 .

Proof. The inclusion𝒩𝒩1
𝐿,𝜚 ⊇ 𝒩𝒩

1
3,𝜚 is clear. We will show the reverse inclusion. For this,

let Φ ∈ 𝒩𝒩1
𝐿,𝜚 and for 𝑖 = 1, . . . , 𝐿 denote by 𝑤𝑖 , 𝑏𝑖 ∈ R the weight and bias of the 𝑖-th

layer Φ𝑖(𝑥) = 𝜚(𝑤𝑖𝑥 + 𝑏𝑖). If 𝑤𝑖 = 0 for some layer, then Φ is a constant function taking a
non-negative value, hence clearly Φ ∈ 𝒩𝒩1

3,𝜚 . So from now on assume 𝑤𝑖 ≠ 0 for all layers.
Denote by

𝐶𝑖 = { 𝑥 ∈ R : 𝑤𝑖𝑥 + 𝑏𝑖 ≥ 0 } for 𝑖 = 1, . . . , 𝐿

the domain on which the 𝑖-th layer is affine linear with slope 𝑤𝑖 . It is constant on the
complement 𝐶𝑐

𝑖
. Further, let

𝐷𝑖 = (Φ𝑖−1 ◦ · · · ◦Φ1)−1(𝐶𝑖) for 𝑖 = 2, . . . , 𝐿

and 𝐷1 = 𝐶1. Each 𝐶𝑖 is a convex and closed subset of R and Φ𝑖−1 ◦ · · · ◦Φ1 is continuous
and monotone as a composition of continuous and monotone functions. Hence, also all 𝐷𝑖

are closed and convex. In R these are exactly the (possibly unbounded) closed intervals or
the empty set.

Let now𝑈 ⊆ R\⋂𝐿
𝑖=1 𝐷𝑖 be an arbitrary connected set. We will show that Φ|𝑈 is constant.

To see this, observe that𝑈 =
⋃𝐿
𝑖=1𝑈 ∩𝐷𝑐

𝑖
. The complement 𝐷𝑐

𝑖
of the closed set 𝐷𝑖 is open,

hence𝑈∩𝐷𝑐
𝑖

is relatively open in𝑈 . By the choice of𝐷𝑖 we know (Φ𝑖 ◦· · ·◦Φ1)(𝑈∩𝐷𝑐
𝑖
) ≡ 0,

93

Chapter 5 The Necessity of Using Approximate ADF

hence Φ|𝑈∩𝐷𝑐
𝑖

is constant. Since Φ is continuous and𝑈 is connected this implies that Φ|𝑈
is constant.

From this we conclude that Φ is piecewise constant except for the (possibly empty)
closed and convex region

⋂𝐿
𝑖=1 𝐷𝑖 where all layers are non constant and act affine linearly.

On this region Φ is affine linear with slope
∏𝐿

𝑖=1 𝑤𝑖 .
Together with the fact that Φ is continuous, monotone and lower bounded by zero, this

leaves only few different cases that can occur and that determine the overall shape of the
function Φ, see Figure 5.8.

Bounded Case: Φ is bounded and has two constant and one affine linear region:

Φ(𝑥) =

𝑐1 , 𝑥 ≤ 𝑎1

𝑐2 , 𝑥 ≥ 𝑎2

𝑐1 + 𝑐2−𝑐1
𝑎2−𝑎1
(𝑥 − 𝑎1), 𝑎1 < 𝑥 < 𝑎2

for some 𝑐1 , 𝑐2 ≥ 0 and 𝑎1 < 𝑎2. This includes the degenerate case where Φ is constant
by choosing 𝑐1 = 𝑐2.

Unbounded Case: Φ is unbounded and has one constant and one affine linear region:

Φ(𝑥) =
{
𝑐, 𝑤(𝑥 − 𝑎) ≤ 0
𝑐 + 𝑤(𝑥 − 𝑎), 𝑤(𝑥 − 𝑎) > 0

for some 𝑐 ≥ 0, 𝑎 ∈ R, and 𝑤 ≠ 0.

It remains to find the weights 𝑤1 , 𝑤2 , 𝑤3 and biases �̃�1 , �̃�2 , �̃�3 of a three layer network
Φ̃ ∈ 𝒩𝒩1

3,𝜚 that represents the same function as Φ. In the first case of a bounded function
we choose

𝑤1 = 1, �̃�1 = −𝑎1 ,

𝑤2 = − |𝑐2 − 𝑐1 |
𝑎2 − 𝑎1

, �̃�2 = |𝑐2 − 𝑐1 |,

𝑤3 = − sign(𝑐2 − 𝑐1), �̃�3 = 𝑐2 ,

and in the second case of an unbounded function we choose

𝑤1 = sign(𝑤), �̃�1 = − sign(𝑤)𝑎,
𝑤2 = |𝑤 |, �̃�2 = 𝑐,

𝑤3 = 1, �̃�3 = 0.

The equality Φ = Φ̃ follows by straightforward calculations.

Neural Network Parametrization

Neural networks can be viewed algebraically (as collections of weights and biases) or
analytically (as functions in some function space). This distinction was made in [PV18]
and used in [PRV18] to study the dependence of neural network functions on their weights

94

5.3 Proof of the Second Characterization Result

unbounded case bounded case

slope 𝑤 > 0 slope 𝑤 < 0 slope 𝑐2−𝑐1
𝑎2−𝑎1

> 0 slope 𝑐2−𝑐1
𝑎2−𝑎1

< 0

𝑎

𝑐

𝑎

𝑐

𝑎1 𝑎2

𝑐1

𝑐2

𝑎1 𝑎2

𝑐1

𝑐2

Φ(𝑥) =
{
𝑐, 𝑤(𝑥 − 𝑎) ≤ 0
𝑐 + 𝑤(𝑥 − 𝑎), 𝑤(𝑥 − 𝑎) > 0

Φ(𝑥) =

𝑐1 𝑥 ≤ 𝑎1

𝑐2 , 𝑥 ≥ 𝑎2

𝑐1 + 𝑐2−𝑐1
𝑎2−𝑎1
(𝑥 − 𝑎1), 𝑎1 < 𝑥 < 𝑎2

Figure 5.8: Networks in One Dimension. ReLU networks in dimension 𝑛 = 1 can only take one of
five distinct forms. We show the four non-constant cases. This includes two unbounded cases
(left) and two bounded cases (right).

and biases. The mapping from weights and biases to the corresponding neural network
function is referred to as the realization map. In [PRV18] the continuity of the realization
map was shown for neural networks of fixed size with continuous activation function
(in particular this includes the ReLU activation), when they are viewed as functions in
𝐶(𝐾,R𝑛) on a compact domain 𝐾 ⊆ R𝑛 . If the activation function is Lipschitz continuous
(which again is the case for the ReLU activation) also the realization map is Lipschitz
continuous.

As we have seen all ReLU neural networks in one dimension can be rewritten into a three
layer network and can thus be parametrized by three weight and three bias parameters.
Let 𝐾 ⊆ R be any compact non-empty domain. For any collection of weights and biases
𝜃 = (𝑤1 , 𝑏1 , 𝑤2 , 𝑏2 , 𝑤3 , 𝑏3) ∈ R6 we denote the function that is the ReLU neural network
realization of these weights and biases as Φ[𝜃] : 𝐾 → R. Then the realization map is

𝑅 : R6 → 𝐶(𝐾,R) : 𝜃 ↦→ Φ[𝜃].
From [PRV18, Proposition 5.1] we obtain the following result.

Lemma 5.25. The realization map 𝑅 : R6 → 𝐶(𝐾,R) is Lipschitz continuous.

Pushforward Mapping

We want to connect neural network functions with the effect they have on probability
measures and obtain an invariant family of distributions. For this let 𝜇0 ∈ 𝒟(R) be any
probability measure on R with supp(𝜇0) ⊆ 𝐾. We call this the prototype measure and will
derive all other measures in the family as pushforwards of 𝜇0 under ReLU neural networks.
We define the pushforward function

𝑄 : 𝐶(𝐾,R) → 𝒟(R) : Φ ↦→ Φ∗𝜇0.

The restriction of𝑄 to the subset of ReLU neural network functions will be used to generate
the invariant family of distributions.

95

Chapter 5 The Necessity of Using Approximate ADF

Lemma 5.26. The pushforward function 𝑄 : 𝐶(𝐾,R) → 𝒟(R) is Lipschitz continuous.

Proof. Let Φ1 ,Φ2 ∈ 𝐶(𝐾,R) and 𝐵 ∈ ℬ(R). Assuming Φ−1
1 (𝐵) ≠ ∅, for any 𝑥 ∈ Φ−1

1 (𝐵) we
have Φ1(𝑥) ∈ 𝐵 and |Φ1(𝑥) −Φ2(𝑥)| ≤ ∥Φ1 −Φ2∥∞. Consequently, for any 𝜖 > ∥Φ1 −Φ2∥∞
we get Φ2(𝑥) ∈ 𝐵𝜖 and therefore 𝑥 ∈ Φ−1

2 (𝐵𝜖). Thus Φ−1
1 (𝐵) ⊆ Φ−1

2 (𝐵𝜖). Conversely, if
Φ−1

1 (𝐵) = ∅ then the same inclusion trivially holds. Analogously Φ−1
2 (𝐵) ⊆ Φ−1

1 (𝐵𝜖) can be
shown for any 𝜖 > ∥Φ1 −Φ2∥∞. This directly implies

𝑑𝑃(𝑄(Φ1), 𝑄(Φ2)) = 𝑑𝑃((Φ1)∗𝜇0 , (Φ2)∗𝜇0)
= inf { 𝜖 > 0 : (Φ1)∗𝜇0(𝐵) ≤ (Φ2)∗𝜇0(𝐵𝜖) + 𝜖 and

(Φ2)∗𝜇0(𝐵) ≤ (Φ1)∗𝜇0(𝐵𝜖) + 𝜖 for any 𝐵 ∈ ℬ(R)
}

= inf
{
𝜖 > 0 : 𝜇0(Φ−1

1 (𝐵)) ≤ 𝜇0(Φ−1
2 (𝐵𝜖)) + 𝜖 and

𝜇0(Φ−1
2 (𝐵)) ≤ 𝜇0(Φ−1

1 (𝐵
𝜖)) + 𝜖 for any 𝐵 ∈ ℬ(R)

}
≤ ∥Φ1 −Φ2∥∞.

ReLU-Invariance

We can now define the family of distributions as 𝑝 = 𝑄 ◦ 𝑅. The local Lipschitz continuity
of 𝑝 is clear from the previous steps. It remains to establish the ReLU-invariance.

Lemma 5.27. The six-parameter family of distributions 𝑝 : R6 → 𝒟(R) : 𝜃 ↦→ (𝑄 ◦ 𝑅)(𝜃) is
ReLU-invariant.

Proof. Let 𝜃 ∈ R6 be arbitrary and 𝑝(𝜃) ∈ 𝒟(R) the corresponding probability measure.
Further, let Φ ∈ 𝒩𝒩1

1,𝜚 be any ReLU layer. We need to show that there exists a 𝜔 ∈ R6 such
that 𝑝(𝜔) = Φ∗𝑝(𝜃).

By construction 𝑝(𝜃) = (𝑄 ◦ 𝑅)(𝜃) = (𝑅(𝜃))∗𝜇0 = (Φ[𝜃])∗𝜇0, where Φ[𝜃] = 𝑅(𝜃) is a
ReLU neural network. Clearly also Φ ◦ Φ[𝜃] is a ReLU neural network, and since by
Lemma 5.24 any ReLU network can be rewritten as a three-layer network, there exists
𝜔 ∈ R6 such that 𝑅(𝜔) = Φ[𝜔] = Φ ◦Φ[𝜃]. Finally,

𝑝(𝜔) = (Φ ◦Φ[𝜃])∗𝜇0 = Φ∗(Φ[𝜃])∗𝜇0 = Φ∗𝑝(𝜃)

yields the claim.

5.3.2 Families of Distributions With Finite Support

In this section we will prove the second part of Theorem 5.6 and show that ReLU-invariant
families of probability distributions exist in which all distributions are finitely supported.
A finitely supported Radon probability measure 𝜇 ∈ 𝒟(R𝑛) can be expressed as a mixture
of finitely many Dirac measures,

𝜇 =

𝑁∑
𝑖=1

𝑐𝑖𝛿a𝑖
,

96

5.3 Proof of the Second Characterization Result

for some 𝑁 ∈ N, a𝑖 ∈ R𝑛 , and 0 ≤ 𝑐𝑖 ≤ 1 with
∑𝑁
𝑖=0 𝑐𝑖 = 1. For any measurable function

Φ : R𝑛 → R𝑛 the pushforward of such a mixture is simply the mixture of the individual
pushforwards, that is

Φ∗(𝜇) =
𝑁∑
𝑖=1

𝑐𝑖Φ∗(𝛿a𝑖
).

The pushforward of a Dirac measure is again a Dirac measure, more precisely we simply
have Φ∗(𝛿a𝑖

) = 𝛿Φ(a𝑖), and therefore

Φ∗(𝜇) =
𝑁∑
𝑖=1

𝑐𝑖𝛿Φ(a𝑖).

In particular, for a ReLU layer Φ ∈ 𝒩𝒩𝑛
1,𝜚 with Φ(x) = 𝜚(Wx + b)we get

Φ∗(𝜇) =
𝑁∑
𝑖=1

𝑐𝑖𝛿𝜚(Wa𝑖+b).

Altogether, this shows that for any 𝑁 ∈ N the set

𝒟𝑁 = { 𝜇 ∈ 𝒟(R𝑛) : | supp(𝜇)| ≤ 𝑁 }

is ReLU-invariant in any dimension 𝑛 ∈ N. It can be described by 𝑑 = 𝑁(𝑛 + 1) parameters
by simply specifying all the locations a𝑖 and mixture coefficients 𝑐𝑖 . More precisely, let
Δ𝑁 = { c ∈ [0, 1]𝑁 :

∑
𝑖 𝑐𝑖 = 1 } and

Ω𝑁 = R𝑛 × · · · × R𝑛︸ ︷︷ ︸
𝑁 times

×Δ𝑁 ⊆ R𝑑

and

𝑝𝑁 : Ω𝑁 → 𝒟(R𝑛) : (a1 , . . . , a𝑁 , c) ↦→
𝑁∑
𝑖=1

𝑐𝑖𝛿a𝑖
.

Then 𝑝𝑁 is Lipschitz continuous and parametrizes𝒟𝑁 .

5.3.3 Families of Distributions Without Local Lipschitz Continuity

In this section we will prove the third part of Theorem 5.6. If we omit the local Lipschitz
continuity of the parametrization we can construct a ReLU-invariant one-parameter family
of distributions in R𝑛 for any dimension 𝑛 ∈ N. We proceed similar to the ideas in
Section 5.3.1, however we need to take care of the fact that the set of all ReLU networks can
not easily be described by a constant number of parameters, unlike in the one-dimensional
case.

We define a family of distributions each of which can be described by a finite but
arbitrarily large number of parameters. We use space-filling curves to fuse these arbitrarily
many parameters into a single parameter. The main idea is quite straightforward and
analogous to Section 5.3.1: If we have an arbitrarily large number of parameters available
to describe each distribution in the family we can simply use these parameters to specify

97

Chapter 5 The Necessity of Using Approximate ADF

the weights of the neural network transformations with respect to which we want to obtain
invariance. The challenge in the general 𝑛-dimensional setting is to show that this leads to
a continuous parametrization.

We start by clarifying what we mean by a finite but arbitrarily large number of parameters.
We use the conventional notation R𝜔 for the product of countably many copies of R
equipped with the product topology. In other words, R𝜔 is the space of all real-valued
sequences. Further we denote by

R∞ = { (𝑥1 , 𝑥2 , . . .) ∈ R𝜔 : 𝑥𝑖 ≠ 0 for only finitely many 𝑖 }
the subset of sequences that are eventually zero. The space R∞ will serve as the parameter
space. Each element in R∞ effectively uses only a finite number of parameters (since all
the remaining ones are zero), however this number can be arbitrarily large.

We proceed in three steps. We first introduce a one-parameter description Γ : R→ R∞
of the finitely-but-arbitrarily-many parameter set R∞. We then use a subset Ω∞ ⊆ R∞
to parametrize ReLU neural networks as functions in 𝐶(𝐾,R𝑛) using a realization map
𝑅 : Ω∞ → 𝐶(𝐾,R𝑛). Finally, we use a pushforward map 𝑄 : 𝐶(𝐾,R𝑛) → 𝒟(R𝑛)mapping
neural network functions Φ ∈ 𝐶(𝐾,R𝑛) to the pushforward of a fixed prototype measure
𝜇0 ∈ 𝒟(R𝑛) under Φ to generate the family of probability distribution. As before the
prototype measure is assumed to be supported within the domain 𝐾. The one-parameter
family 𝑝 : Ω→ 𝒟(R𝑛) is then given as 𝑝 = 𝑄 ◦ 𝑅 ◦ Γ for some suitable domain Ω. We will
now discuss each of the steps in more detail.

Space-Filling Curves

We want to continuously describe R∞ with a single parameter. This can be achieved by
gluing together continuous space-filling curves from the unit interval to cubes of arbitrary
dimension. The existence of such maps is guaranteed by the Hahn-Mazurkiewicz theorem,
see for example [Sag94, Chapter 6.8].

Lemma 5.28. There exists a continuous and surjective function Γ : R→ R∞.

The construction of Γ is deferred to Appendix C.2.

Neural Network Parametrization

We extend the realization map from Section 5.3.1 to arbitrary dimensions and arbitrary
numbers of layers. Further we will show that the results in [PRV18] concerning continuous
network parametrizations can be extended to networks of arbitrary depth.

A ReLU neural network in 𝑛 dimensions is characterized by the number of its layers
as well as 𝑛2 + 𝑛 parameters for the weights and biases for each of the layers. Using the
first component in R∞ to encode the number of layers, we can parametrize all such neural
networks with the set

Ω∞ = { (𝐿, 𝑥1 , 𝑥2 , . . .) ∈ R∞ : 𝐿 ∈ N and 𝑥𝑖 = 0 for all 𝑖 > 𝐿(𝑛2 + 𝑛) } ⊆ R∞.
It will be convenient to introduce notations for the subsets of parameters with a fixed
number of layers. For 𝐿 ∈ Nwe write Ω𝐿 = {𝐿} × R𝐿(𝑛

2+𝑛) × {0}∞ ⊆ Ω∞ and observe that

Ω∞ =
⋃
𝐿∈N

Ω𝐿.

98

5.3 Proof of the Second Characterization Result

In fact this is the partition of Ω∞ into its connected components and we will use Ω𝐿 to
parametrize𝒩𝒩𝑛

𝐿,𝜚 .
For any 𝜃 = (𝐿, 𝑥1 , 𝑥2 , . . .) ∈ Ω∞ we can regroup its leading non-zero components into

alternating blocks of size 𝑛2 and 𝑛 and write

𝜃 = (𝐿,W1 , b1 ,W2 , b2 , . . . ,W𝐿 , b𝐿 , 0, . . .)

with W𝑖 ∈ R𝑛×𝑛 and b𝑖 ∈ R𝑛 . As before let 𝐾 ⊆ R𝑛 be any non-empty compact domain
and denote the function that is the ReLU neural network realization of the weights
{W1 , . . . ,W𝐿} and biases {b1 , . . . , b𝐿} as Φ[𝜃] : 𝐾 → R𝑛 . Then we can define the extended
realization map

𝑅 : Ω∞ → 𝐶(𝐾,R𝑛) : 𝜃 ↦→ Φ[𝜃].

Lemma 5.29. The extended realization map 𝑅 : Ω∞ → 𝐶(𝐾,R𝑛) is continuous.

Proof. To show the continuity of 𝑅 : Ω∞ → 𝐶(𝐾,R𝑛) it suffices to show the continuity on all
connected components Ω𝐿 of the domain. But for each fixed 𝐿 ∈ N we know from [PRV18,
Proposition 5.1] that the realization map is continuous from Ω𝐿 to 𝐶(𝐾,R𝑛).

Pushforward Mapping

We extend our pushforward map from Section 5.3.1 to arbitrary dimension. As before
let 𝜇0 ∈ 𝒟(R𝑛), the prototype, be any probability measure on R𝑛 with supp(𝜇0) ⊆ 𝐾. We
define the pushforward function analogous to before as

𝑄 : 𝐶(𝐾,R𝑛) → 𝒟(R𝑛) : Φ ↦→ Φ∗𝜇0.

The restriction of𝑄 to the subset of ReLU neural network functions will be used to generate
the invariant family of distributions.

Lemma 5.30. The pushforward function 𝑄 : 𝐶(𝐾,R𝑛) → 𝒟(R𝑛) is continuous.

The proof works exactly as in the one-dimensional case in Section 5.3.1.

ReLU-Invariance

We can now define the one-parameter family of distributions as 𝑝 = 𝑄 ◦ 𝑅 ◦ Γ with the
domain Ω = Γ−1(Ω∞) chosen so that Γ maps it exactly to the feasible neural network
parametersΩ∞ and thus 𝑅◦Γmaps it to all ReLU neural network functions in 𝑛 dimensions.
The continuity of 𝑝 is clear from the three previous steps. It remains to establish the
ReLU-invariance.

Lemma 5.31. The one-parameter family of distributions 𝑝 : Ω→ 𝒟(R𝑛) : 𝜃 ↦→ (𝑄◦𝑅◦Γ)(𝜃)
is ReLU-invariant.

99

Chapter 5 The Necessity of Using Approximate ADF

Proof. Let 𝜃 ∈ Ω be arbitrary and 𝑝(𝜃) ∈ 𝒟(R𝑛) the corresponding probability measure.
Further, let Φ ∈ 𝒩𝒩𝑛

1,𝜚 be any ReLU layer. We need to show that there exists a 𝜔 ∈ Ω such
that 𝑝(𝜔) = Φ∗𝑝(𝜃).

By construction we have 𝑝(𝜃) = (𝑄 ◦𝑅◦Γ)(𝜃) = (𝑅(Γ(𝜃)))∗𝜇0 = Φ̃∗𝜇0, where Φ̃ = 𝑅(Γ(𝜃))
is a ReLU neural network. Clearly also Φ ◦ Φ̃ is a ReLU neural network, so there exists
𝜔 ∈ Ω such that 𝑅(Γ(𝜔)) = Φ ◦ Φ̃. Finally,

𝑝(𝜔) = (Φ ◦ Φ̃)∗𝜇0 = Φ∗Φ̃∗𝜇0 = Φ∗𝑝(𝜃)

yields the claim.

5.4 Discussion

We have limited our analysis in this chapter to the class of functions defined as layers of
ReLU neural networks, as this is generally an extremely important class of functions and
also the one for which ADF was used within the context of this thesis, cf. Section 4.3.4.
Similarly, one could ask the same question for other function classes.

Different Activations. The constructive steps in the proof of Lemma 5.13 (surjectivity of
Ξ) make explicit use of the fact that the ReLU is a continuous, piecewise linear function.
Alternative continuous, piecewise linear activations, for example the leaky ReLU [MHN13]
with a nonzero left-side slope, should allow for analogous constructions. Different
commonly used activation functions are the hyperbolic tangent function, the logistic
function, or the Heaviside function. Since the Heaviside function is not continuous and
has a discrete and finite range, it transforms any distribution into a distribution with
finite support. So clearly also in this case the only invariant distributions can be sampling
distributions. For smooth activation functions, such as hyperbolic tangent and the logistic
function, we are not aware of any characterization of invariant distributions. Extending
our proof strategy to this scenario is not straightforward as it relies on specific properties
of the ReLU. We leave this question open for future research.

Restricted Weights and Biases. A second variation on the class of functions would
be to put restrictions on the weight matrices or bias vectors. These could be either
general constraints, for example non-negativity or positive-definiteness, or more specific
restrictions by allowing the weight matrices only to be chosen from a small set of allowed
matrices. Both kinds of constraints arise in the context of iterative reconstruction methods
for solving inverse and sparse coding problems [Hoy02] or in corresponding unrolled
and learnable iterative algorithms [GL10; Kob+17]. Here, the restrictions on the weight
matrices often stem from physical constraints of the model describing the inverse problem.
We comment on both aspects of this variation in more detail in Appendix C.3. Interestingly,
allowing only a finite or even countable set of weights and biases results in a possible
parametrization of invariant distributions that circumvent the three restrictions (R1)–(R3)
in Theorem 5.5. This is because the resulting function collection ℱ is then countable as well,
in contrast to the continuum of functions we considered until now. To construct an invariant
family in this case, we can start with a prototype measure, analogously to Section 5.3.1
and Section 5.3.3. This gets mapped to a countable set of push-forward measures by

100

5.5 Conclusion

functions in ℱ . These can be locally Lipschitz-continuously parametrized making use of
interpolation functions based on tree-like graphs, see Figure C.1 in Appendix C.3. These
parametrizations, however, are purely of theoretical interest, since they rely on calculating
and interpolating infinitely many distributions and are thus not of practical relevance.

Approximate Invariance. Finally, we want to comment that exact invariance might
not be necessary for numerical computations in many application. Instead a notion
of approximate invariance could be sufficient if the resulting errors can be reasonably
bounded for every network layer. So far, to the best of our knowledge, no distribution
families are known for which meaningful bounds exist. Whether this can indeed be
realized is left for future investigations.

5.5 Conclusion

This chapter gives a comprehensive characterization of distribution families that are
invariant under transformations by layers of ReLU neural networks. The only invariant
distributions are either sampling distributions or rather degenerate and elaborately con-
structed distributions that are infeasible for practical applications. This justifies the use of
approximation schemes such as Assumed Density Filtering (ADF) or Expectation Propa-
gation (EP) for applications involving, e.g., uncertainty quantification or interpretability
methods for neural networks and Bayesian networks.

101

II

Reconstruction Tasks

6

Robustness of Reconstruction Methods

After discussing various questions connected to the interpretability of neural network
classifier functions in the first part of this thesis we now turn toward the problem of
reconstructing signals from incomplete measurements. In this chapter we consider another
important aspect of neural network functions that was first observed in the classification
setting, namely a potential lack of robustness, and examine whether it carries over to the
setting of reconstruction problems.

The existence of so called adversarial examples or adversarial perturbations for classification
neural networks is a well documented phenomenon in machine learning research. The
networks are susceptible to small perturbation of the input signals that, although mostly
unnoticeable to the naked eye, can have large effects on the networks output and completely
change the predicted class. Starting with the initial observations of Szegedy et al. [Sze+14]
there has been a substantial amount of work devoted to adversarial attacks, that is the finding
of these perturbations. Most commonly, the “attacker” exploits gradient information to
cross the discontinuous decision boundary of the network, while trying to stay as close as
possible to the original unperturbed input. In response to this, an almost equally large
research effort has been made to develop defense strategies that aim at making the trained
networks more robust and less susceptible to adversarial attacks. For example, adversarial

training exposes the network to perturbed inputs already during the training phase [GSS15].
This ongoing back and forth between novel attack and defense strategies led to the very
active research field of adversarial machine learning. Until now, even the most elaborate
defenses could eventually be defeated by more powerful attacks [MSG20]. It is not hard to
imagine that this phenomenon undermines the reliable use of neural networks in sensitive
applications and can pose a serious security threat, e.g., if a stop sign is misclassified in
autonomous driving.

Recently, similar attack strategies have been investigated also in the context of learned
reconstruction methods for inverse problems. Recall that we consider linear and finite-
dimensional inverse problems:

Given a linear forward operator A ∈ R𝑚×𝑛

and corrupted measurements y = Ax0 + e

with ∥e∥2 ≤ 𝜂, reconstruct the signal x0.

 (IP, restated)

Initial works present evidence that learned reconstruction schemes for (IP) based on neural
networks might be unstable as well [Ant+20; Got+20; Hua+18]. In particular, Antun et al.
observe that using deep learning for inverse problems comes at the cost of instabilities,
in the sense that „[. . .] certain tiny, almost undetectable perturbations, both in the image
and sampling domain, may result in severe artifacts in the reconstruction [. . .]“ [Ant+20].
Given that the indirect measurements are typically corrupted by noise, these findings raise
doubts regarding the usage of deep learning in sensitive fields such as medical imaging.

105

Chapter 6 Robustness of Reconstruction Methods

It seems peculiar that well-performing reconstruction neural network should be un-
stable. Indeed, the setting of classification tasks is fundamentally different from solving
inverse problems. The former is an inherently discontinuous task: neural networks map
high-dimensional signals to a low-dimensional discrete output space (the class labels).
This necessarily results in sharp decision boundaries that can be crossed by adding
perturbations to the input signals. In contrast, the latter is a regression task, requiring to
map measurements to a high-dimensional signal space. In many cases it can be shown
that this task is robustly solvable by classical model-based reconstruction methods [FR13],
in the sense that error bounds of the form

∥x0 − Rec(y)∥2 ≤ 𝐶 · 𝜂 (1.2, restated)

hold, which scale linearly with the strength of of the noise. Such a bound requires that the
reconstruction error approaches zero as the strength of the noise becomes arbitrarily small.
The accuracy of a reconstruction method usually refers to the noise-free limit 𝜂→ 0. This
case is evaluated and discussed in Chapter 7, while we generally consider noisy inverse
problems in this chapter.

It is unclear why training neural networks for solving (IP) should lead to accurate
but unstable methods, especially since model-based iterative algorithms often serve
as inspirations for designing the network architectures. In the absence of theoretical
recovery guarantees for learned methods we believe that a sound empirical verification of
robustness is crucial. This chapter is dedicated to an extensive empirical study regarding
the robustness of data-driven solution methods for inverse problems. A key component
is a quantitative comparison to a classical reconstruction method for which a recovery
guarantee as in (1.2) can be proven in certain situations.

Related Work

Initiated by Szegedy et al. [Sze+14], the study of the vulnerability of deep neural networks
to adversarial examples has emerged as an active research area.1 The vast majority
of existing articles is concerned with classification and related tasks, such as image
segmentation [AMT20]. On the other hand, only few works have explicitly addressed the
adversarial robustness of learned solvers for inverse problems.

To the best of our knowledge, Huang et al. have made the first effort to transfer adversarial
attacks to neural-network-based reconstruction methods [Hua+18]. They demonstrate
that a distortion of the network inputs may result in the loss of small features in image
signals. However, their initial findings are restricted to the specific problem of limited
angle computed tomography, where the robust recovery of certain parts of the image is
provably impossible [Qui93]. Moreover, the proposed perturbation model is non-standard
and does not correspond to noise in the measurements.

More recently, the topic was brought to attention by the inspiring article of Antun
et al. [Ant+20]. Their numerical experiments show instabilities of existing deep neural
networks with respect to adversarial noise, out-of-distribution features, and changes in
the number of measurements. An important difference to our work is that adversarial
noise is only computed for learned schemes. We believe that a comparative “attack” of a

1An online collection compiled by Carlini [Car22] reports almost 5000 works related to adversarial examples
(as of March 2022). For a systematic overview, we refer to the recent reviews [Yua+19; MSG20; Ort+20].

106

6.1 Methods and Preliminaries

classical benchmark method is crucial for a fair assessment of robustness. Furthermore,
the results of [Ant+20] are reported qualitatively by visualizing reconstructed images, as it
is common in adversarial machine learning. We argue that the mathematical setup of the
inverse problem (IP) calls for a quantitative error analysis that is in line with the bound
of (1.2). Finally, the training stage of the networks in [Ant+20] does not seem to account
for noise, which we have identified as a potential source of instability, see Section 6.3.1.
Note that our study also analyzes the FBPConvNet architecture [Jin+17], a relative of
AUTOMAP [Zhu+18], and an iterative scheme similar to DeepMRI [Sch+17]. Nevertheless,
a one-to-one comparison to [Ant+20] is subtle due to task-specific architectures and data
processing. A follow-up work of [Ant+20] presents a theoretical characterization of
instabilities in terms of the kernel of the forward operator [Got+20]. Our results provide
empirical evidence that the considered deep-learning-based schemes could be kernel
aware (cf. Section 6.3.4).

As a countermeasure to the outcome of [Ant+20], Raj, Bresler, and Li suggest a
sophisticated defense strategy resulting in robust networks [RBL20]. This work also
addresses shortcomings of the attack strategy in [Ant+20], see Section 6.1.4 for details. In
line with our findings, Kobler et al. propose the data-driven total deep variation regularizer
and demonstrate its adversarial robustness for image denoising [Kob+20].

Finally, in another line of research, [SAH20] conducts a theoretical error analysis of
a family of mappings (referred to as RegNets) that post-process classical regularization
methods. Under the assumption of Lipschitz-continuous networks, convergence rates in
the spirit of (1.2) are derived for the limit 𝜂→ 0. However, due to their asymptotic nature,
such results do not directly address the adversarial perturbation scenarios of this chapter,
where a whole range of noise levels 𝜂 is analyzed. Apart from that, the convergence rates
in [SAH20] linearly depend on the global Lipschitz constants, which are hard to compute
and control in practice [Sze+14; VS18; HCC18]. Our simulations reveal that pointwise

Lipschitz constants for common reconstruction networks are well-behaved, regardless of
possibly large global constants.

6.1 Methods and Preliminaries

In this section, we briefly introduce the considered reconstruction schemes for solving
the inverse problem (IP). This includes a representative selection of neural-network-based
methods and total-variation minimization as a classical benchmark. Furthermore, our
attack strategy to analyze their adversarial robustness is presented.

6.1.1 Neural Network Architectures

In the past five years, numerous deep-learning-based approaches for solving inverse
problems have been developed, see [Arr+19; Ong+20] for overviews. This chapter focuses
on a selection of widely used end-to-end network schemes that define an explicit reconstruction
map from R𝑚 to R𝑛 , see also Figure 6.1.

The first considered method is a post-processing network:

UNet : R𝑚 → R𝑛 , y ↦→ [U ◦A
‡](y).

It employs the U-Net architecture U : R𝑛 → R𝑛 [RFB15], illustrated in Figure 6.2, as a

107

Chapter 6 Robustness of Reconstruction Methods

y
A
‡ or L U or T

y
A
‡

U DC𝜆𝑘 ,y,A

x

x

iterate 𝐾 times

(linear)

inversion

signal

enhancement

data

consistency

Figure 6.1: Data-driven Reconstruction Methods. Schematic network reconstruction pipelines of
UNet, TiraFL (top), and ItNet (bottom).

25
6
×

25
6

1

25
6
×

25
6

24

12
8
×

12
8

24

12
8
×

12
8

48

64
×

64

48

64
×

64

96

32
×

32 96

32
×

32 192

16
×

16

192

16
×

16

384

32
×

32 384

32
×

32 192

64
×

64

192

64
×

64

96

12
8
×

12
8

96

12
8
×

12
8

48

25
6
×

25
6

48

25
6
×

25
6

24

25
6
×

25
6

1

two conv blocks
max pool 2 × 2
up conv
concatenate

Figure 6.2: U-Net Architecture. Each convolutional block consists of a 3 × 3 convolution, followed
by batch normalization, and ReLU activation. Figure adapted from [RFB15].

108

6.1 Methods and Preliminaries

𝑛
1
×
𝑛

2

𝑐in

𝑛
1
×
𝑛

2

𝑛
1
×
𝑛

2

𝑛
1
×
𝑛

2

𝑛
1
×
𝑛

2

𝑛
1
×
𝑛

2

𝑐out

conv block
concatenate

Figure 6.3: Dense Blocks. Blocks with five convolutional sub-blocks are used in the Tiramisu
architecture. Each convolutional sub-blocks consists of a 3 × 3 convolution, followed by batch
normalization, and ReLU activation. It receives a concatenation of the output of the previous
convolutional block (filled box) together with the inputs to all previous blocks (hollow box) as
input.

residual network [He+16] to enhance an initial, model-based reconstruction A
‡(y). Here,

A
‡ : R𝑚 → R𝑛 is an approximate inversion of the forward operator A, e.g., the filtered

back-projection for Radon measurements. Despite its simplicity, it has been demonstrated
that UNet is an effective solution method for (IP) [Jin+17], see also [KMY17; Che+17a;
Che+17b; Wol+17; Yan+18] for related approaches.

Our second reconstruction scheme is a fully-learned network:

TiraFL: R𝑚 → R𝑛 , y ↦→ [T ◦ L](y),

which is closely related to UNet, but differs in two aspects: It is based on the Tiramisu
architecture T : R𝑛 → R𝑛 [Jég+17] as a residual network, which can be seen as a refinement
of the standard U-Net. While T shares the same multi-level structure, it is built from
fully-convolutional dense-blocks [Hua+17] instead of standard convolutional blocks, see
Figure 6.3. More importantly, the fixed inversion A

‡ is replaced by a learnable linear layer
L ∈ R𝑛×𝑚 , so that TiraFL does not contain fixed model-based components anymore. The
approach of TiraFL is similar to [Zhu+18; Sch+19], which makes use of a fully-learned
reconstruction map for MRI. For the sake of completeness, we also conduct experiments
for Tira (a Tiramisu-based post-processing network) as well as for UNetFL (a U-Net-based
fully-learned network), see Appendix D for results.

Finally, we also analyze an iterative network:

ItNet : R𝑚 → R𝑛 , y ↦→
[(
⃝𝐾
𝑘=1[DC𝜆𝑘 ,y,A ◦U]

)
◦A
‡
]
(y)

where
DC𝜆𝑘 ,y,A : R𝑛 → R𝑛 , x ↦→ x − 𝜆𝑘 ·A∗ (Ax − y) .

The scalar parameters 𝜆𝑘 are learnable and A
∗ denotes the adjoint of A. Mathematically,

DC𝜆𝑘 ,y,A performs a gradient step on the loss x ↦→ 𝜆𝑘
2 ∥Ax − y∥22, promoting data consistent

solutions. Therefore, the alternating cascade of ItNet can be seen as a proximal gradient
descent scheme, where the proximal operator is replaced by a trainable enhancement
network. Here, the U-Net architecture is used again, due to its omnipresence in image-
to-image processing tasks. Unrolled methods in the spirit of ItNet are frequently used to
solve inverse problems, e.g., see [GL10; Yan+16; Ham+18; Sch+17; AMJ18; AÖ18; Ham+19;
Chu+20].

109

Chapter 6 Robustness of Reconstruction Methods

6.1.2 Neural Network Training

All the learnable parameters of the neural networks are trained from sample data pairs
{(y𝑖 = Ax

𝑖
0 + e

𝑖 , x𝑖0)}
𝑀
𝑖=1 by minimizing an empirical loss function. Depending on the

use case, the signals x
𝑖
0 are either drawn from a fixed publicly available training dataset

or according to a synthetic probability distribution. If Net[𝜽] : R𝑚 → R𝑛 denotes a
reconstruction network with all learnable parameters collected in 𝜽, then the training
amounts to (approximately) solving

min
𝜽

𝑀∑
𝑖=1

ℓ
(
Net[𝜽](y𝑖), x𝑖0

)
+ 𝛼 · ∥𝜽∥22 (6.1)

for some cost function ℓ : R𝑛 × R𝑛 → [0,∞], which in this chapter is the squared distance
unless stated otherwise. Overfitting is addressed by ℓ2-regularization with a hyper-
parameter 𝛼 ≥ 0.2 In order to solve (6.1), we utilize mini-batch stochastic gradient descent
and the Adam optimizer [KB14]. We found that larger mini-batches were beneficial for
the training performance during later epochs.3 Technically, this is achieved by gradient
accumulation, i.e., the gradient is cumulatively summed over several mini-batches before
executing a descent step.

Due to the ubiquitous presence of noise in inverse problems, it is natural to account
for it in the training data. In many applications, measurement noise is modeled as an
independent random variable, for instance, following a Gaussian distribution. Therefore,
the perturbation e

𝑖 is treated as statistical noise during the training phase, i.e., a fresh
realization is randomly drawn in each epoch. This technique is well known as jittering in
machine learning research, where it is primarily used to avoid overfitting [SD91; HK92;
Bis95], see also [Vin+10]. In Section 6.3.1, we relate jittering to the phenomenon of
inverse crimes and demonstrate its importance for the robustness of learned reconstruction
schemes. Due to varying noise levels in the evaluation of our models, we design e

𝑖 as a
centered Gaussian vector with random variance, such that its expected norm E∥e𝑖 ∥2 is
distributed uniformly in a range [0, �̃�] for some �̃� ≥ 0.

6.1.3 Total Variation Minimization

Dating back to the seminal work of Rudin, Osher, and Fatemi [ROF92], total-variation

(TV) minimization has become a standard tool for solving signal and image reconstruction
tasks [CL97; BB18]. We apply it to the problem (IP) in the following form:

TV[𝜂] : R𝑚 → R𝑛 , y ↦→ argmin
x∈R𝑛

∥∇x∥1 subject to ∥Ax − y∥2 ≤ 𝜂, (6.2)

where ∇ denotes a discrete gradient operator. Crucial to the above optimization problem
is the use of the ℓ1-norm, which is known to promote gradient-sparse solutions. Indeed,
under suitable assumptions on A, compressed sensing theory suggests an error bound of
the form (1.2) for a gradient-sparse signal x0 and Rec = TV[𝜂], e.g., see [CRT06; NW13;
Poo15; GMS21]. In other words, TV minimization is provably robust with a near-optimal

2This is often referred to as weight decay in deep learning, since the ℓ2-term corresponds to a shrinkage of the
weights 𝜽 by a constant factor when performing the gradient update, e.g., see [GBC16, Sec. 7.1.1].

3One pass through all sample data pairs is called a training epoch.

110

6.1 Methods and Preliminaries

dependence on 𝜂. This particularly justifies its use as a reference method, allowing us to
empirically characterize the robustness of learned reconstruction schemes.

In our numerical simulations, the problem of (6.2) is solved by the alternating direction

method of multipliers (ADMM) [GM75; GM76]. For 1D signals, ∇ ∈ R𝑛×𝑛 is chosen as a
forward finite difference operator with Neumann boundary conditions, extended by a
constant row vector to capture the mean of the signal. For image signals, ∇ ∈ R2𝑛×𝑛

corresponds to a 2D forward finite difference operator with periodic boundary conditions.
Due to the non-separability of ∥∇(·)∥1 in 2D, the formulation of TV[𝜂] in (6.2) becomes
computationally infeasible for finding adversarial noise. In imaging scenarios, we therefore
solve the unconstrained version of TV[𝜂] instead, i.e., the objective function is changed
to x ↦→ 𝜆 · ∥∇x∥1 + ∥Ax − y∥22. Note that this strategy is theoretically equivalent [FR13,
Appx. B], but requires an appropriate choice of the regularization parameter 𝜆 > 0. A
near-optimal selection with respect to the relative ℓ2-error is determined by grid searches
over the test set and a densely sampled range of noise levels 𝜂. In any case, we emphasize
that TV[𝜂] is explicitly adapted to the amount of perturbation in the measurements.

6.1.4 Adversarial Perturbations

In the setup of (IP), adversarial noise for a given reconstruction method Rec: R𝑚 → R𝑛
can be computed by solving another optimization problem: for a fixed signal x0 ∈ R𝑛 and
noise level 𝜂 ≥ 0, find an additive perturbation eadv ∈ R𝑚 of the noiseless measurements
y0 = Ax0 that maximizes the reconstruction error, i.e.,

eadv = argmax
e∈R𝑚

∥Rec(y0 + e) − x0∥2 subject to ∥e∥2 ≤ 𝜂. (6.3)

Such an attack strategy is a straightforward adaption of a common approach in adversarial
machine learning [Yua+19]. In contrast to [Ant+20], we consider a constrained optimiza-
tion problem that avoids shortcomings of an unconstrained formulation. In particular,
this allows for precise control over the noise level. Moreover, (6.3) explores a natural
perturbation model, operating directly in the measurement domain, cf. the discussion
in [RBL20].

In order to solve the problem (6.3), we use the projected gradient descent algorithm in
conjunction with the Adam optimizer, which was found to be most effective (cf. [CW17]).
The non-convexity of (6.3) is accounted for by choosing the worst perturbation out of
multiple runs with random initialization. Assuming a whitebox model (i.e., Rec is fully
accessible), we use PyTorch’s automatic differentiation [Pas+17] to compute gradients of
the considered neural network schemes.

A central aspect of our work is that the above perturbation strategy is also applied to
TV[𝜂]. This is non-trivial, since the gradient of the implicit map y ↦→ TV[𝜂](y) has to be
computed. The large-scale nature of imaging problems prevents us from using the recent
concept of differentiable convex optimization layers [Agr+19]. Instead, we calculate the
gradient of the unrolled ADMM scheme for TV minimization by automatic differentiation.
In general, a large number of iterations might be required for the convergence of ADMM,
which in turn ensures an accurate gradient approximation for TV[𝜂]. This leads to
numerical difficulties in automatic differentiation, due to memory and time constraints and
error accumulation. We address this issue by decreasing the number of ADMM iterations
for the gradient computation (denoted by 𝑘grad). To compensate for a loss of accuracy, we

111

Chapter 6 Robustness of Reconstruction Methods

use a pre-initialization of the primal and dual variables by the output of a fully converged
ADMM scheme with input y0. Such a warm start is beneficial, since the gradient is only
evaluated in an 𝜂-ball around y0 during the attack. Note that the actual TV reconstructions
are always computed by a fully converged ADMM algorithm (with 𝑘rec ≫ 𝑘grad iterations).

6.2 Results

This section studies the robustness of neural-network-based solution methods for three
different instances of the inverse problem (IP). The goal of our experiments is to assess
the loss of reconstruction accuracy caused by noise. To that end, we rely on two types of
visualizations:

• Noise-to-error curves are generated by plotting the relative noise level 𝜂/∥Ax0∥2 against
the relative reconstruction error ∥x0 − Rec(Ax0 + e)∥2/∥x0∥2.

• Individual reconstruction results are shown for different relative noise levels and a
randomly selected signal from the test set.

In both cases, the perturbation vector e is either of statistical or adversarial type. The former
means that e is a random vector such that E[∥e∥22] = 𝜂2, whereas the latter is found by (6.3).
While noise-to-error curves are of quantitative nature, individual reconstructions facilitate
a qualitative judgment of robustness. Note that the sensitivity to noise is different in each
considered scenario. Therefore, we select the maximal level of adversarial noise such that
the benchmark of TV minimization does not yield a (subjectively) acceptable performance
anymore. A specification of all empirically selected hyper-parameters can be found in
Appendix D (Tables D.9 to D.11).

6.2.1 Case Study A: Compressed Sensing With Gaussian Measurements

Our first study is devoted to sparse recovery of 1D signals from Gaussian measurements,
which is a standard benchmark setup in the field of compressed sensing (CS) theory [FR13].
This means that the entries of the forward operator A in (IP) are independent Gaussian
random variables with zero mean and variance 1/𝑚. We consider two different scenarios
based on (approximately) gradient-sparse signals. Note that such a model is canonical for
TV minimization and compatible with the local connectivity of our convolutional neural
network schemes.

Scenario A1. We draw x0 from a synthetic distribution of piecewise constant signals with
zero boundaries and well-controlled random jumps, see Figure 6.5 for an example. In this
scenario, we choose 𝑚 = 100, 𝑛 = 256, and use 𝑀 = 200k training samples.

Scenario A2. We sample x0 ∈ [0, 1]28×28 from the widely used MNIST database [LeC+98]
with 𝑀 = 60k training images of handwritten digits. In the context of (IP), the images are
treated as 1D signals4 of dimension 𝑛 = 282 = 784. The number of Gaussian measurements
is chosen as 𝑚 = 300.

4We have decided for a vectorized data processing (i.e., TV[𝜂] and the neural networks operate on vectorized
images), since Scenario A2 is regarded as a direct continuation of the idealistic situation in Scenario A1.
However, for visual purposes, all reconstructions are displayed as images, see Figure 6.7.

112

6.2 Results

re
l.
ℓ 2

-e
rr

or
[%

]

0 1 2 3 4 5 6

0

5

10

15 TV[η]
UNet
TiraFL
ItNet

(a)

0 1 2 3 4 5 6

0

5

10

15 TV[η]

UNet
TiraFL
ItNet

(b)

0 1 2 3 4 5 6

0

5

10

15 TV[η]

UNet
TiraFL
ItNet

(c)

0 1 2 3 4 5 6

0

5

10

15 TV[η]

UNet
TiraFL
ItNet

(d)
re

l.
ℓ 2

-e
rr

or
[%

]

0 1 2 3 4 5 6

0

5

10

15

20 TV[η]

UNet
TiraFL
ItNet

(e)

0 1 2 3 4 5 6

0

5

10

15

20 TV[η]

UNet
TiraFL
ItNet

(f)

0 1 2 3 4 5 6

0

5

10

15

20 TV[η]

UNet
TiraFL
ItNet

(g)

0 1 2 3 4 5 6

0

5

10

15

20 TV[η]

UNet
TiraFL
ItNet

(h)

rel. noise level [%] rel. noise level [%] rel. noise level [%] rel. noise level [%]
adversarial Gaussian uniform Bernoulli

Figure 6.4: Scenario A1 – CS with 1D Signals. (a) shows the adversarial noise-to-error curve for
the randomly selected signal of Figure 6.5. (b)–(d) show the corresponding noise-to-error curves
for Gaussian, uniform, and Bernoulli (symmetrized, 𝑝𝑝 = 0.025) noise respectively, where the
mean and standard deviation are computed over 200 draws of e. (e)–(h) display the respective
curves averaged over 50 signals from the test set. For the sake of clarity, we omit the standard
deviations for UNet and TiraFL, which behave similarly.

In both scenarios, we choose the model-based, linear inversion layer of the networks as a
generalized Tikhonov matrix, i.e., A

‡ = (A⊤
A + 𝛼𝛼 · ∇⊤∇)−1

A
⊤ ∈ R𝑛𝑛×𝑚𝑚 with the empirically

chosen regularization parameter 𝛼𝛼 = 0.02. We were not able to train the neural networks
to a comparable reconstruction accuracy with other natural choices, such as A

‡ = A
⊤. The

above matrix is also used to initialize the inversion layer L ∈ R𝑛𝑛×𝑚𝑚 of the fully-learned
schemes.

Figure 6.4 shows the noise-to-error curves for Scenario A1 (CS with 1D Signals) for
adversarial perturbations and three types of random noise; see also Tables D.1 and D.2 in
Appendix D. The results for the three different types of random noise are virtually indis-
tinguishable from one another. The associated individual reconstructions for adversarial
and Gaussian noise are displayed in Figure 6.5 and Figure 6.6 respectively. Figure 6.9
shows the noise-to-error curves for Scenario A2 (CS with MNIST); see also Tables D.3
and D.4 in Appendix D. The associated individual reconstructions for adversarial and
Gaussian noise are displayed in Figure 6.7 and Figure 6.8 respectively. The TV[𝜂𝜂]-solutions
show horizontal line artifacts due to the fact that the MNIST images are treated as
vectorized 1D signals. Remarkably, although relying on 1D convolutional filters, the
neural-network-based reconstructions do not suffer from these artifacts.

Conclusion

The above results confirm that the considered neural-network-based schemes are at least
as robust to adversarial perturbations as the benchmark of TV minimization. Although
TV[𝜂𝜂] is perfectly tuned to each noise level 𝜂𝜂, it is clearly outperformed in the case of
statistical noise. The gap between statistical and adversarial perturbations is comparable
for all methods.

TV minimization is a perfect match for Scenario A1. In particular, exact recovery from

113

Chapter 6 Robustness of Reconstruction Methods

noiseless 0.5% rel. noise – adversarial 2% rel. noise – adversarial 6% rel. noise – adversarial

TV
[𝜂𝜂
]

rel. `2-err.: 0.00% rel. `2-err.: 1.33% rel. `2-err.: 5.46% rel. `2-err.: 15.74%

U
N

et

rel. `2-err.: 1.08% rel. `2-err.: 1.45% rel. `2-err.: 4.39% rel. `2-err.: 14.65%

Ti
ra

FL

rel. `2-err.: 0.39% rel. `2-err.: 0.84% rel. `2-err.: 3.46% rel. `2-err.: 13.47%

ItN
et

rel. `2-err.: 0.47% rel. `2-err.: 0.86% rel. `2-err.: 2.46% rel. `2-err.: 12.60%

Figure 6.5: Scenario A1 – CS with 1D Signals. Individual reconstructions of a randomly selected
signal from the test set for different levels of adversarial noise. The ground truth signal is
visualized by a dashed line.

0.5% rel. noise – Gaussian 2% rel. noise – Gaussian 6% rel. noise – Gaussian 12% rel. noise – Gaussian

TV
[𝜂𝜂
]

rel. `2 err.: 0.60% rel. `2 err.: 1.51% rel. `2 err.: 6.79% rel. `2 err.: 11.57%

U
N

et

rel. `2 err.: 1.05% rel. `2 err.: 1.43% rel. `2 err.: 2.37% rel. `2 err.: 8.95%

Ti
ra

FL

rel. `2 err.: 0.36% rel. `2 err.: 0.74% rel. `2 err.: 1.93% rel. `2 err.: 6.54%

ItN
et

rel. `2 err.: 0.52% rel. `2 err.: 0.83% rel. `2 err.: 1.68% rel. `2 err.: 4.49%

Figure 6.6: Scenario A1 – CS with 1D Signals. Individual reconstructions of the signal from
Figure 6.5 under Gaussian noise. The ground truth signal is visualized by a dashed line. In favor
of the more insightful noise level 12%, we omit the noiseless case.

114

6.2 Results

2% rel. noise 5% rel. noise 10% rel. noise 2% rel. noise 5% rel. noise 10% rel. noise
adversarial adversarial adversarial adversarial adversarial adversarial

TV
[𝜂𝜂
]

22.29% 36.10% 50.59% 34.61% 49.46% 64.04%

U
N

et

13.79% 18.74% 26.09% 14.48% 23.10% 33.97%

Ti
ra

FL

10.18% 13.96% 19.98% 9.07% 12.73% 19.53%

ItN
et

3.67% 9.83% 18.59% 4.27% 10.12% 18.57%

TV
[𝜂𝜂
]

13.36% 29.10% 43.10% 18.88% 29.89% 43.56%

U
N

et

10.73% 15.62% 26.44% 8.63% 12.90% 23.15%

Ti
ra

FL

10.09% 13.56% 19.68% 7.73% 10.87% 17.08%

ItN
et

3.19% 10.25% 19.39% 3.19% 9.12% 17.49%

Figure 6.7: Scenario A2 – CS with MNIST. Individual reconstructions of four randomly selected
digits from the test set for different levels of adversarial noise. Reconstructions and error plots
(with relative ℓ2-error) are displayed in the windows [0, 1] and [0, 0.6], respectively.

5% rel. noise 10% rel. noise 25% rel. noise 5% rel. noise 10% rel. noise 25% rel. noise
Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian

TV
[𝜂𝜂
]

22.63% 29.89% 44.55% 33.09% 40.72% 55.32%

U
N

et

13.18% 13.82% 15.11% 12.83% 12.94% 18.62%

Ti
ra

FL

9.36% 10.58% 15.32% 8.93% 9.80% 14.12%

ItN
et

4.28% 7.29% 12.71% 4.71% 6.51% 11.81%

TV
[𝜂𝜂
]

19.12% 26.25% 39.10% 19.61% 26.93% 44.88%

U
N

et

9.68% 11.57% 16.38% 7.80% 8.14% 15.04%

Ti
ra

FL

9.69% 9.66% 16.14% 7.33% 7.98% 9.95%

ItN
et

4.14% 6.66% 11.19% 3.89% 5.58% 10.21%

Figure 6.8: Scenario A2 – CS with MNIST. Reconstructions of the digits from Figure 6.7 under
Gaussian noise. Reconstructions and error plots (with rel. ℓ2-error) are displayed in the windows
[0, 1] and [0, 0.6], respectively. In favor of the more insightful noise level 25%, we omit 2% noise.

115

Chapter 6 Robustness of Reconstruction Methods

re
l.
ℓ 2

-e
rr

or
[%

]

0 2 4 6 8 10
0

10

20

30

40

50 TV[η]

UNet
TiraFL
ItNet

(a)

0 2 4 6 8 10
0

10

20

30

40

50 TV[η]

UNet
TiraFL
ItNet

(b)

re
l.
ℓ 2

-e
rr

or
[%

]

0 2 4 6 8 10
0

10

20

30

40

50

60
TV[η]

UNet
TiraFL
ItNet

(c)

0 2 4 6 8 10
0

10

20

30

40

50

60
TV[η]

UNet
TiraFL
ItNet

(d)

rel. noise level [%] rel. noise level [%]
adversarial Gaussian

Figure 6.9: Scenario A2 – CS with MNIST. (a) shows the adversarial noise-to-error curve for the
randomly selected digit three of Figure 6.7. (b) shows the corresponding Gaussian noise-to-error
curve, where the mean and standard deviation are computed over 200 draws of e. (c) and
(d) display the respective curves averaged over 50 signals from the test set.

noiseless measurements is guaranteed by CS theory [Ame+14; GMS21]. Although this
cannot be expected for neural-network-based solvers, they still come with an overall
superior robustness against noise. The situation is even more striking in Scenario A2. Here,
TV minimization performs worse, since the signals are only approximately gradient-sparse.
In contrast, the neural-network-based reconstruction schemes adapt well to the simple
MNIST database, leading to significantly better outcomes in every regard. Hence, the
increase in accuracy by learned methods does not necessarily imply a loss of robustness.

The performance ranking of the considered deep neural networks is as one might expect:
First, data consistency as encouraged by the ItNet-architecture is beneficial. Furthermore,
Tables D.1 to D.4 in Appendix D reveal that the Tiramisu architecture is superior to a simple
U-Net, and that a learnable inversion layer improves the recovery. The latter observation
is not surprising, since Tikhonov regularization is known to work poorly in conjunction
with subsampled Gaussian measurements.

6.2.2 Case Study B: Image Recovery of Phantom Ellipses

Our second set of experiments concerns the recovery of phantom ellipses from Fourier
or Radon measurements. These tasks correspond to popular simulation studies for
biomedical imaging, e.g., see [Jin+17; AÖ17; AÖ18; Bub+19]. We sample x0 ∈ [0, 1]256×256

from a distribution of superimposed random ellipses with mild linear intensity gradients
and well-controlled geometric properties, see Figure 6.11 for an example. The training is
performed on 𝑀𝑀 = 25k images. We consider the following two measurement scenarios
for (IP), associated with the problems of compressed sensing MRI [Lus+08] and low-dose

computed tomography (CT) [SP08; Jin+17], respectively:

Scenario B1. The forward operator takes the form A = PF ∈ C𝑚𝑚×𝑛𝑛 , where F ∈ C𝑛𝑛×𝑛𝑛 is
the 2D discrete Fourier transform and P ∈ {0, 1}𝑚𝑚×𝑛𝑛 is a subsampling operator defined by a
golden-angle radial mask with 40 lines (𝑚𝑚 = 10941 and 𝑛𝑛 = 2562 = 65536). Note that the

116

6.2 Results

re
l.
ℓ 2

-e
rr

or
[%

]

0 1 2 3 4 5 6 7 8

0

5

10

15

20

TV[η]

UNet
TiraFL
ItNet

(a)

0 1 2 3 4 5 6 7 8

0

5

10

15

20

TV[η]

UNet
TiraFL
ItNet

(b)

re
l.
ℓ 2

-e
rr

or
[%

]

0 1 2 3 4 5 6 7 8

0

5

10

15

20
TV[η]

UNet
TiraFL
ItNet

(c)

0 1 2 3 4 5 6 7 8

0

5

10

15

20
TV[η]

UNet
TiraFL
ItNet

(d)

rel. noise level [%] rel. noise level [%]
adversarial Gaussian

Figure 6.10: Scenario B1 – Fourier Measurements with Ellipses. (a) shows the adversarial noise-
to-error curve for the randomly selected image of Figure 6.11. (b) shows the corresponding
Gaussian noise-to-error curve, where the mean and (almost imperceptible) standard deviation
are computed over 50 draws of e. (c) and (d) display the respective curves averaged over
50 images from the test set. For the sake of clarity, we omit the standard deviations for UNet and
TiraFL, which behave similarly.

entire data processing is complex-valued, while the actual reconstructions are computed
as real-valued magnitude images, as common in MRI. We use the canonical inversion
layer A

‡ = A
∗ = F

−1
P
⊤ ∈ C𝑛𝑛×𝑚𝑚 .

Scenario B2. The forward operator A ∈ R𝑚𝑚×𝑛𝑛 is given by a sparse-angle Radon transform

with 60 views (𝑚𝑚 = 21780 and 𝑛𝑛 = 65536).5 The non-linear inversion layer A
‡ : R𝑚𝑚 → R𝑛𝑛 is

chosen as the filtered back-projection algorithm (FBP) with a Hann filter.

In contrast to Case Study A, the aforementioned problems are of significantly higher
dimensionality. Therefore, fully-learned schemes are difficult to realize, since the size of
the inversion layer scales multiplicatively in the image dimensions. In the Fourier case, the
number of free parameters can be reduced by enforcing a Kronecker product structure on
L ∈ C𝑛𝑛×𝑚𝑚 ; this exploits the fact that F is a tensor product of two 1D Fourier transforms, cf.
[Sch+19]. We do not consider fully-learned schemes in the case of Radon measurements.

Figure 6.10 shows the noise-to-error curves for Scenario B1 (Fourier Measurements with

Ellipses); see also Tables D.5 and D.6 in Appendix D. The associated individual reconstruc-
tions with adversarial and Gaussian noise are displayed in Figure 6.11 and Figure 6.12
respectively. In the tables and individual reconstructions, we also report the peak signal-to-

noise ratio (PSNR) and structural similarity index measure (SSIM) [Wan+04]. In the case of
Scenario B2 (Radon Measurements with Ellipses), we only present individual reconstructions
based on TV[𝜂𝜂] and UNet; see Figure 6.13 for adversarial noise and Figure 6.14 for the
common Poisson noise model. This restriction is due to the more complicated nature of
the Radon transform, and in particular, the need for automatic differentiation. The used
implementation [Ern20] requires significantly more computational effort, compared to the
fast Fourier transform.

5See Chapter 7 for a more detailed description of the Radon transform as a model for computed tomography.

117

Chapter 6 Robustness of Reconstruction Methods

noiseless 1% rel. noise 3% rel. noise 8% rel. noise
adversarial adversarial adversarial

TV
[𝜂𝜂
]

rel. `2-err: 0.52%

PSNR: 58.82
SSIM: 1.00

rel. `2-err: 4.77%

PSNR: 39.62
SSIM: 0.98

rel. `2-err: 11.00%

PSNR: 32.38
SSIM: 0.94

rel. `2-err: 20.29%

PSNR: 27.09
SSIM: 0.85

U
N

et

rel. `2-err: 4.16%

PSNR: 40.84
SSIM: 0.98

rel. `2-err: 7.03%

PSNR: 36.26
SSIM: 0.98

rel. `2-err: 12.30%

PSNR: 31.43
SSIM: 0.94

rel. `2-err: 22.51%

PSNR: 26.21
SSIM: 0.86

Ti
ra

FL

rel. `2-err: 2.48%

PSNR: 45.29
SSIM: 1.00

rel. `2-err: 5.83%

PSNR: 37.88
SSIM: 0.99

rel. `2-err: 11.28%

PSNR: 32.16
SSIM: 0.95

rel. `2-err: 22.90%

PSNR: 26.05
SSIM: 0.88

ItN
et

rel. `2-err: 1.94%

PSNR: 47.48
SSIM: 0.99

rel. `2-err: 4.78%

PSNR: 39.59
SSIM: 0.98

rel. `2-err: 10.27%

PSNR: 33.01
SSIM: 0.96

rel. `2-err: 20.95%

PSNR: 26.83
SSIM: 0.88

Figure 6.11: Scenario B1 – Fourier Measurements with Ellipses. Individual reconstructions
of a randomly selected image from the test set for different levels of adversarial noise. The
reconstructed images are displayed in the window [0, 0.9], also used for the computation of
the PSNR and SSIM. The error plots shown below each reconstruction are displayed in the
window [0, 0.6]. The ground truth image x0 is omitted, as it is visually indistinguishable from
the noiseless reconstruction by TV[𝜂𝜂].

118

6.2 Results

1% rel. noise 3% rel. noise 8% rel. noise 16% rel. noise
Gaussian Gaussian Gaussian Gaussian

TV
[𝜂𝜂
]

rel. `2-err: 1.33%

PSNR: 50.75
SSIM: 0.99

rel. `2-err: 2.96%

PSNR: 43.78
SSIM: 0.98

rel. `2-err: 6.37%

PSNR: 37.15
SSIM: 0.95

rel. `2-err: 10.28%

PSNR: 32.99
SSIM: 0.92

U
N

et

rel. `2-err: 4.16%

PSNR: 40.83
SSIM: 0.98

rel. `2-err: 4.31%

PSNR: 40.52
SSIM: 0.98

rel. `2-err: 5.00%

PSNR: 39.24
SSIM: 0.98

rel. `2-err: 6.25%

PSNR: 37.28
SSIM: 0.98

Ti
ra

FL

rel. `2-err: 2.51%

PSNR: 45.19
SSIM: 1.00

rel. `2-err: 2.60%

PSNR: 44.88
SSIM: 1.00

rel. `2-err: 3.29%

PSNR: 42.85
SSIM: 0.99

rel. `2-err: 5.18%

PSNR: 38.92
SSIM: 0.99

ItN
et

rel. `2-err: 1.96%

PSNR: 47.36
SSIM: 0.99

rel. `2-err: 2.12%

PSNR: 46.70
SSIM: 0.99

rel. `2-err: 3.00%

PSNR: 43.66
SSIM: 0.99

rel. `2-err: 4.83%

PSNR: 39.55
SSIM: 0.98

Figure 6.12: Scenario B1 – Fourier Measurements with Ellipses. Individual reconstructions of the
image from Figure 6.11 under Gaussian noise. The reconstructed images are displayed in the
window [0, 0.9], also used for the computation of the PSNR and SSIM. The error plots shown
below each reconstruction are displayed in the window [0, 0.15]. In favor of the more insightful
noise level 16%, we omit the noiseless case.

119

Chapter 6 Robustness of Reconstruction Methods

noiseless 0.5% rel. noise 1% rel. noise 2% rel. noise
adversarial adversarial adversarial

TV
[𝜂𝜂
]

rel. `2-err: 0.71%
PSNR: 54.04

SSIM: 1.00 rel. `2-err: 8.02%
PSNR: 33.06

SSIM: 0.97 rel. `2-err: 12.05%
PSNR: 29.61

SSIM: 0.92 rel. `2-err: 16.93%
PSNR: 26.79

SSIM: 0.85

U
N

et

rel. `2-err: 2.42%
PSNR: 43.56

SSIM: 0.99 rel. `2-err: 7.52%
PSNR: 33.58

SSIM: 0.98 rel. `2-err: 11.20%
PSNR: 30.12

SSIM: 0.93 rel. `2-err: 16.76%
PSNR: 26.61

SSIM: 0.81

Figure 6.13: Scenario B2 – Radon Measurements with Ellipses.

Reconstructions of a randomly selected image from the test set for
different levels of adversarial noise (displayed in the window [0, 1],
also used for the computation of PSNR and SSIM). The bottom
right shows the FBP inversion of the 2%-adversarial perturbation
found for UNet. The ground truth x0 is omitted, as it is visually
indistinguishable from the noiseless reconstruction by TV[𝜂𝜂].

A
‡ y

ad
v

0.5% rel. noise 1% rel. noise 2% rel. noise 3% rel. noise
Poisson Poisson Poisson Poisson

TV
[𝜂𝜂
]

rel. `2-err: 3.23%
PSNR: 40.91

SSIM: 0.98 rel. `2-err: 5.14%
PSNR: 36.89

SSIM: 0.97 rel. `2-err: 8.25%
PSNR: 32.77

SSIM: 0.94 rel. `2-err: 10.37%
PSNR: 30.80

SSIM: 0.90

U
N

et

rel. `2-err: 2.60%
PSNR: 42.91

SSIM: 0.99 rel. `2-err: 3.22%
PSNR: 41.02

SSIM: 0.99 rel. `2-err: 3.97%
PSNR: 39.18

SSIM: 0.99 rel. `2-err: 5.21%
PSNR: 36.80

SSIM: 0.98

U
N

et
w

/o
Jit

te
r

rel. `2-err: 2.69%
PSNR: 42.53

SSIM: 0.99 rel. `2-err: 3.90%
PSNR: 39.30

SSIM: 0.99 rel. `2-err: 6.73%
PSNR: 34.56

SSIM: 0.97 rel. `2-err: 9.10%
PSNR: 31.94

SSIM: 0.93

Figure 6.14: Scenario B2 – Radon Measurements with Ellipses. Reconstructions of the image from
Figure 6.13 under Poisson noise (displayed in the window [0, 1], also used for the computation of
PSNR and SSIM). In favor of the more insightful noise level 3%, we omit the noiseless case. The
bottom row shows reconstructions for a UNet trained without jittering; see also Section 6.3.1.

120

6.2 Results

ItNet(yadv) TV[𝜂𝜂 � 0%](yadv) TV[𝜂𝜂 � 1%](yadv) TV[𝜂𝜂 � 3%](yadv) TV[𝜂𝜂 � 8%](yadv)
8% rel. noise

Fo
ur

ie
r:

ItN
et

−→
TV

[𝜂𝜂
]

rel. `2-err: 20.95%

PSNR: 26.83
SSIM: 0.88

rel. `2-err: 16.54%

PSNR: 28.85
SSIM: 0.75

rel. `2-err: 16.25%

PSNR: 29.00
SSIM: 0.80

rel. `2-err: 15.47%

PSNR: 29.43
SSIM: 0.88

rel. `2-err: 13.88%

PSNR: 30.37
SSIM: 0.92

TV[𝜂𝜂](yadv) UNet(yadv) TiraFL(yadv) ItNet(yadv)
8% rel. noise

Fo
ur

ie
r:

TV
[𝜂𝜂
]−

→
N

N
s

rel. `2-err: 20.29%

PSNR: 27.09
SSIM: 0.85

rel. `2-err: 11.92%

PSNR: 31.70
SSIM: 0.95

rel. `2-err: 11.85%

PSNR: 31.76
SSIM: 0.96

rel. `2-err: 12.49%

PSNR: 31.30
SSIM: 0.95

UNet(yadv) TV[𝜂𝜂 � 0%](yadv) TV[𝜂𝜂 � 0.5%](yadv) TV[𝜂𝜂 � 1%](yadv) TV[𝜂𝜂 � 2%](yadv)
2% rel. noise

Ra
do

n:
U

N
et

−→
TV

[𝜂𝜂
]

rel. `2-err: 16.76%
PSNR: 26.61

SSIM: 0.81 rel. `2-err: 13.75%
PSNR: 28.91

SSIM: 0.71 rel. `2-err: 12.04%
PSNR: 29.65

SSIM: 0.82 rel. `2-err: 11.51%
PSNR: 29.99

SSIM: 0.85 rel. `2-err: 11.13%
PSNR: 30.24

SSIM: 0.88

Figure 6.15: Case Study B – Transferability of Perturbations. This figure analyzes how adversarial
noise transfers between TV minimization and neural-network-based solvers. The top row
shows the recovery behavior of TV[𝜂𝜂] in the case of Fourier measurements when an adversarial
perturbation yadv found for ItNet is used as input (cf. Figure 6.11). Here, we also demonstrate
the impact of the noise tuning parameter 𝜂𝜂, which controls the degree of regularization for TV
minimization. The middle row presents the reverse experiment: an adversarial perturbation
yadv found for TV[𝜂𝜂] is plugged into each considered neural network. The bottom row is the
analog of the top row in the case of Radon measurements (cf. Figure 6.13).

Conclusion

The main findings of Case Study A remain valid: (i) The adversarial robustness of neural-
network-based methods and TV minimization is similar with respect to the ℓ2-error. (ii)
Neural networks are more resilient against statistical perturbations in mid- to high-noise
regimes. (iii) There is a clear gap between adversarial and statistical noise that is comparable
for model-based and learned schemes.

The individual reconstruction results in Figures 6.11 and 6.13 allow for further insights.
First, the effect of adversarial noise for TV[𝜂𝜂] manifests itself in the well-known staircasing
phenomenon, a considerable loss of resolution as well as point-like artifacts (see the
zoomed region in Figure 6.11). In contrast, neural-network-based methods always produce
sharp images, with almost imperceptible visual errors up to 3% relative noise in the case
of Fourier measurements (1% noise in the case of Radon measurements). For the highest
noise level, on the other hand, they exhibit unnatural ellipsoidal artifacts.

At first sight, this observation might indicate a vulnerability to adversarial noise.

121

Chapter 6 Robustness of Reconstruction Methods

However, a simple transferability test refutes this conclusion (cf. [PMG16]): plugging the
perturbed measurements for ItNet into TV[𝜂] leads to the same ellipsoidal artifacts, see
Figure 6.15. Furthermore, Figure 6.13 reveals that the corresponding artifacts are already
present in the FBP inversion and are not caused by the post-processing network. This shows
that the learned solvers do not suffer from undesired instabilities, but the observed artifacts
are due to actual features in the corrupted measurements. Interestingly, adversarial
perturbations found for TV[𝜂] do not transfer to neural-network-based methods, see
Figure 6.15. Overall, the attack strategy of (6.3) has different qualitative effects on each
reconstruction paradigm: while known flaws of TV minimization are amplified, the neural
networks are perturbed by adding “real” ellipsoidal features to the measurements.

On a final note, we confirm the ranking of architectures as pointed out in Case Study
A. Nevertheless, there is no clear superiority of the fully learned schemes as in case of
Gaussian measurements, since the inverse Fourier transform appears to be a near-optimal
choice of a model-based inversion layer.

6.2.3 Case Study C: MRI on Real-World Data (fastMRI)

The third case study of this chapter is devoted to a real-world MRI scenario. To this
end, we use the publicly available fastMRI knee dataset, which consists of 1594 multi-coil
diagnostic knee MRI scans.6 Our experiments are based on the subset of 796 coronal
proton-density weighted scans without fat-suppression, resulting in 𝑀 ≈ 17k training
images. We draw magnitude images x0 ∈ R320×320, obtained from fully-sampled multi-coil7
data, and consider subsampled Fourier measurements as in Scenario B1 with 50 radial lines
(𝑚 = 17178 and 𝑛 = 3202 = 102400). As before, the data processing is complex-valued,
while the actual reconstructions are computed as real-valued magnitude images. The
model-based and learned inversion layers are realized as in Scenario B1. As common
in the fastMRI challenge, we have trained all networks with a cost function based on a
combination of the ℓ1- and SSIM-distance, see also [Zha+17]. TV minimization is solved in
the unconstrained formulation, with the regularization parameter determined by a grid
search over a subset of the validation set.

Figure 6.16 shows the noise-to-error curves; see also Tables D.7 and D.8 in Appendix D.
The associated individual reconstructions with adversarial and Gaussian noise are dis-
played in Figure 6.17 and Figure 6.18 respectively.

6Data used in the preparation of this work were obtained from the NYU fastMRI Initiative database [Zbo+18;
Kno+20b] (https://fastmri.med.nyu.edu). As such, NYU fastMRI investigators provided data but did
not participate in analysis or writing of this thesis. The primary goal of fastMRI is to test whether machine
learning can aid in the reconstruction of medical images.

7Note that our measurement model actually corresponds to the simpler modality of subsampled single-coil
MRI. While the fastMRI challenge also provides single-coil data, it is based on retrospective masking of
emulated Fourier measurements. The subsampling is done by omitting k-space lines in the phase-encoding
direction, which we found less suitable for our robustness analysis; see Section 6.3.4 for an experiment
with the original setup. Since emulating single-coil measurements is unavoidable, we have decided to
sample from the multi-coil magnitude reconstructions in favor of higher image quality. This was found to
be particularly important to ensure that TV minimization can serve as a competitive benchmark method,
at least for noiseless measurements.

122

https://fastmri.med.nyu.edu

6.3 Further Aspects of Robustness

re
l.
ℓ 2

-e
rr

or
[%

]

0.0 0.5 1.0 1.5 2.0 2.5

8

10

12

14 TV[η]

UNet
TiraFL
ItNet

(a)

0.0 0.5 1.0 1.5 2.0 2.5

8

10

12

14 TV[η]

UNet
TiraFL
ItNet

(b)

re
l.
ℓ 2

-e
rr

or
[%

]

0.0 0.5 1.0 1.5 2.0 2.5

6

8

10

12

14 TV[η]

UNet
TiraFL
ItNet

(c)

0.0 0.5 1.0 1.5 2.0 2.5

6

8

10

12

14 TV[η]

UNet
TiraFL
ItNet

(d)

rel. noise level [%] rel. noise level [%]
adversarial Gaussian

Figure 6.16: Case Study C – fastMRI. (a) shows the adversarial noise-to-error curve for the randomly
selected image of Figure 6.17. (b) shows the corresponding Gaussian noise-to-error curve, where
the mean and (almost imperceptible) standard deviation are computed over 50 draws of e. (c) and
(d) display the respective curves averaged over 30 images from the validation set. For the sake of
clarity, we omit the standard deviations for UNet and TiraFL, which behave similarly.

Conclusion

Our experimental results show that the main findings of Case Study A and B carry over to
real-world data. The noise-to-error curves in Figure 6.16 reveal a superior robustness of the
learned reconstruction schemes over TV minimization, even for noiseless measurements
(cf. Scenario A2). Figure 6.17 underpins this observation from a qualitative viewpoint: the
model-based prior of TV[𝜂𝜂] tends to blur fine details in the reconstructed images—this
“oil painting” effect becomes stronger with larger perturbations. In contrast, the neural-
network-based reconstructions always yield high resolution images. Despite adversarial
noise, the central image region—which is of main medical interest—remains largely
unaffected, whereas tiny vessel structures appear in the outside (fat) region. Such an
amplification of existing patterns is comparable to the ellipsoidal artifacts in Case Study
B. We emphasize that this phenomenon only occurs for large adversarial perturbations,
where the benchmark of TV minimization already suffers from severe distortions. In
particular, the performance of the learned methods is not impaired by the same amount of
Gaussian noise (see Figure 6.18).

6.3 Further Aspects of Robustness

This section presents several additional experiments that allow for further insights into
the robustness of learned methods.

6.3.1 Training Without Noise – An Inverse Crime?

In this section, the importance of jittering for the stability of deep-learning-based recon-
struction schemes is discussed (see Section 6.1.2). We have found that this technique can
be beneficial for promoting adversarial robustness, in particular, for iterative architectures.

123

Chapter 6 Robustness of Reconstruction Methods

noiseless 1% rel. noise 1.5% rel. noise 2.5% rel. noise
adversarial adversarial adversarial

gr
ou

nd
tr

ut
h

TV
[𝜂𝜂
]

rel. `2-err: 9.62%
PSNR: 30.30
SSIM: 0.74

rel. `2-err: 11.54%
PSNR: 28.72
SSIM: 0.69

rel. `2-err: 12.50%
PSNR: 28.02
SSIM: 0.67

rel. `2-err: 13.92%
PSNR: 27.09
SSIM: 0.64

U
N

et

rel. `2-err: 9.40%
PSNR: 30.50
SSIM: 0.76

rel. `2-err: 9.89%
PSNR: 30.05
SSIM: 0.75

rel. `2-err: 10.19%
PSNR: 29.80
SSIM: 0.75

rel. `2-err: 10.96%
PSNR: 29.16
SSIM: 0.74

Ti
ra

FL

rel. `2-err: 9.10%
PSNR: 30.78
SSIM: 0.77

rel. `2-err: 9.70%
PSNR: 30.22
SSIM: 0.76

rel. `2-err: 10.07%
PSNR: 29.90
SSIM: 0.75

rel. `2-err: 11.16%
PSNR: 29.01
SSIM: 0.74

ItN
et

rel. `2-err: 8.17%
PSNR: 31.71
SSIM: 0.79

rel. `2-err: 8.75%
PSNR: 31.12
SSIM: 0.77

rel. `2-err: 9.13%
PSNR: 30.75
SSIM: 0.77

rel. `2-err: 10.18%
PSNR: 29.81
SSIM: 0.75

Figure 6.17: Case Study C – fastMRI. Individual reconstructions of a central slice of a randomly
selected volume from the validation set for different levels of adversarial noise. The reconstructed
images are displayed in the window [0.05, 4.50], also used for the computation of the PSNR and
SSIM. The error plots shown below each reconstruction are displayed in the window [0, 1.25].
The ground truth image x0 is shown at the top left.

124

6.3 Further Aspects of Robustness

1% rel. noise 1.5% rel. noise 2.5% rel. noise 10% rel. noise
Gaussian Gaussian Gaussian Gaussian

gr
ou

nd
tr

ut
h

TV
[𝜂𝜂
]

rel. `2-err: 9.67%
PSNR: 30.25
SSIM: 0.74

rel. `2-err: 9.74%
PSNR: 30.18
SSIM: 0.74

rel. `2-err: 9.89%
PSNR: 30.06
SSIM: 0.73

rel. `2-err: 11.48%
PSNR: 28.76
SSIM: 0.69

U
N

et

rel. `2-err: 9.41%
PSNR: 30.49
SSIM: 0.76

rel. `2-err: 9.42%
PSNR: 30.47
SSIM: 0.76

rel. `2-err: 9.47%
PSNR: 30.43
SSIM: 0.76

rel. `2-err: 10.16%
PSNR: 29.82
SSIM: 0.73

Ti
ra

FL

rel. `2-err: 9.11%
PSNR: 30.77
SSIM: 0.77

rel. `2-err: 9.13%
PSNR: 30.75
SSIM: 0.77

rel. `2-err: 9.19%
PSNR: 30.70
SSIM: 0.76

rel. `2-err: 9.84%
PSNR: 30.10
SSIM: 0.74

ItN
et

rel. `2-err: 8.19%
PSNR: 31.69
SSIM: 0.78

rel. `2-err: 8.22%
PSNR: 31.66
SSIM: 0.78

rel. `2-err: 8.29%
PSNR: 31.59
SSIM: 0.78

rel. `2-err: 9.25%
PSNR: 30.63
SSIM: 0.75

Figure 6.18: Case Study C – fastMRI. Individual reconstructions of the image from Figure 6.17
under Gaussian noise. The reconstructed images are displayed in the window [0.05, 4.50],
also used for the computation of the PSNR and SSIM. The error plots shown below each
reconstruction are displayed in the window [0, 1.25]. In favor of the more insightful noise level
10%, we omit the noiseless case.

125

Chapter 6 Robustness of Reconstruction Methods

re
l.
ℓ 2

-e
rr

or
[%

]

0 5 10 15 20
0

50

100

150

200 ItNet w/o jittering
ItNet

(a)

0 5 10 15 20
0

10

20

30

40

50 ItNet w/o jittering
ItNet

(b)

rel. noise level [%] rel. noise level [%]
adversarial Gaussian

5% – adv. 10% – adv. 15% – adv. 20% – adv.

w
/o

jit
te

rin
g

w
/

jit
te

rin
g

Figure 6.19: An Inverse Crime? A comparison between ItNet trained with and without jittering.
The noise-to-error curves on the left are generated for the MNIST-digit three from Figure 6.7
with (a) adversarial and (b) Gaussian noise. Individual reconstructions for adversarial noise are
shown on the right (the intermediate steps performed by ItNet are visualized in Figure 6.20).

The previous claim is verified by an ablation study, comparing two versions of ItNet for
Scenario A2, one trained with jittering and the other without. The resulting noise-to-error
curves in Figure 6.19 reveal that noiseless training data can have drastic consequences.
Indeed, the relative recovery error blows up at ∼15% adversarial noise if jittering is not
used. In a similar experiment, we analyze the adversarial robustness of image recovery
from Radon measurements as in Scenario B2. The results of Figure 6.21 show a clear
superiority of the UNet that was subjected to noise during training (see also Figure 6.14
for the effect of Poisson noise). Without jittering, almost imperceptible distortions in the
FBP inversions are intensified by the post-processing network (see blue arrows).

The above observations can be related to the notion of inverse crimes in the literature on
inverse problems, e.g., see [KS06; MS12]. This term is commonly used to explain the phe-
nomenon of exact, but highly unstable, recovery from noiseless, simulated measurements.
In a similar way, networks seem to learn accurate, but unstable, reconstruction rules if
they are trained with noiseless data. We note that this does not only concern simulated
phantom data but also real-world scenarios. Indeed, in medical imaging applications, one
often acquires fully sampled (noisy) reference scans {ỹ𝑖𝑖}𝑀𝑀

𝑖𝑖=1, which are used to generate the
ground truth training images x

𝑖𝑖
0 = A

−1
fullỹ

𝑖𝑖 . The measurements are usually subsampled
retrospectively by y

𝑖𝑖 = Pỹ
𝑖𝑖 , where P denotes an appropriate selection operator. Neural-

network-based solution methods for the limited data problem (IP) with A = PAfull are
then obtained by training on {(y𝑖𝑖 , x𝑖𝑖

0)}
𝑀𝑀
𝑖𝑖=1. Importantly, such data pairs also “commit”

an inverse crime, since they follow the noiseless forward model Ax
𝑖𝑖
0 = PAfullx

𝑖𝑖
0 = y

𝑖𝑖 .
Hence, we believe that simulating additional noise might be helpful in the situation of
real-world measurements as well. Jittering is a simple and natural remedy in that regard
that can additionally reduce overfitting [SD91]. The exploration of further regularization
techniques or more sophisticated ways of injecting noise during training is left to future
research.

6.3.2 Training With Noise – A Loss of Accuracy?

One might wonder whether the aforementioned robustification via jittering has a detri-
mental effect on the resulting reconstruction scheme for unperturbed inputs. Indeed, if
a method—not necessarily learned—is too insensitive to small changes in the input, it

126

6.3 Further Aspects of Robustness

it. 1 it. 2 it. 3 it. 4 it. 5 it. 6 it. 7 it. 8

ou
tp

ut
U

A
‡
yadv
→

↓ ↗ ↓ ↗ ↓ ↗ ↓ ↗ ↓ ↗ ↓ ↗ ↓ ↗ ↓

ou
tp

ut
D

C

= ItNet(yadv)
w/o jittering

it. 1 it. 2 it. 3 it. 4 it. 5 it. 6 it. 7 it. 8

ou
tp

ut
U

A
‡
yadv
→

↓ ↗ ↓ ↗ ↓ ↗ ↓ ↗ ↓ ↗ ↓ ↗ ↓ ↗ ↓

ou
tp

ut
D

C

= ItNet(yadv)
w/ jittering

Figure 6.20: An Inverse Crime? Intermediate steps performed by ItNet with and without jittering.
The 20%-adversarial perturbations correspond to the individual reconstructions shown in
Figure 6.19.

w/o jittering w/ jittering

U
N

et

rel. `2-err: 14.61%
PSNR: 27.81

SSIM: 0.89 rel. `2-err: 11.19%
PSNR: 30.13

SSIM: 0.94

A
‡ y

ad
v

Figure 6.21: An Inverse Crime? A comparison between UNet trained with and without jittering for
image recovery from sparse-angle Radon measurements, see also Figure 6.13. The reconstructions
are obtained for 1% adversarial noise. The bottom figures show the FBP inversions of the found
perturbations, respectively. The blue arrows highlight tiny distortions that are amplified by the
post-processing network.

127

Chapter 6 Robustness of Reconstruction Methods

original added details

w
/o

jit
te

rin
g

rel. `2-err: 8.99%
PSNR: 30.89
SSIM: 0.77

rel. `2-err: 9.23%
PSNR: 30.65
SSIM: 0.77

ground truth

w
/

jit
te

rin
g

rel. `2-err: 9.10%
PSNR: 30.78
SSIM: 0.77

rel. `2-err: 9.36%
PSNR: 30.54
SSIM: 0.77

Figure 6.22: Losing Accuracy? The left column compares the image of Figure 6.17, when recon-
structed by TiraFL with and without jittering, respectively. The right column displays analogous
results after adding two out-of-distribution features (text and a 3× 3-square) to the ground truth;
note that the smallest letter ‘E’ has the lowest possible resolution. The reconstructed images are
displayed in the window [0.05, 4.50], also used for the computation of the PSNR and SSIM.

might become incapable of reconstructing fine details. In the context of our study, it is
useful to distinguish between the recovery accuracy with respect to in-distribution and
out-of-distribution (OOD) features. The former simply corresponds to a task evaluation
on regular images from the test set. Regarding this aspect, we observe only a marginal
impact of jittering: across all considered scenarios, no significant performance loss was
found when training with noise (e.g., see left column of Figure 6.22), and occasionally, the
accuracy even improved slightly (e.g., see Figure 6.19 and left column of Figure 6.14).

The behavior might be different for OOD attributes. Following [Ant+20], we address
this situation by exposing a neural-network-based solver to structural details that do not
belong to the data distribution. Figure 6.22 shows that inserted text and a 3 × 3-square are
recognizable with and without jittering. While the feature contrast is higher in the latter
case, no essential information was missed due to training with noise.

Nevertheless, the OOD generalization of learned methods is still poorly understood
in general. Among other factors, the outcome may also depend on the “richness” of
the training data; see [Ant+20, Fig. 5] and [ACH21, Fig. 5] for similar experiments as in
Figure 6.22 with phantom ellipses (Case Study B). However, we anticipate that a potential
loss of OOD performance is a consequence of our naive (non-adaptive) jittering strategy,
rather than an intrinsic trade-off between accuracy and stability. Although beyond the
scope of this work, an obvious improvement would be a more advanced approach, for
instance, by learning noise-aware neural networks for multiple values of 𝜂𝜂. This is
comparable to tuning TV[𝜂𝜂] with respect to the given noise level.

128

6.3 Further Aspects of Robustness

28
×

28

1

28
×

28

32

28
×

28

32

14
×

14

32

14
×

14

64

14
×

14

64

7
×

7

64

31
36

1

20
0

1

20
0

1

20
0

1

20
0

1

10

1

convolution 3 × 3 max pool 2 × 2 flatten
fully connected dropout 50%

Figure 6.23: Classification Network. Illustration of the convolutional neural network architecture
for classification from compressed measurements. All convolutions and the first two fully
connected layers are followed by ReLU activations. The final layer is followed by a softmax
activation.

6.3.3 Adversarial Examples for Classification From Compressed Measurements

In medical healthcare, image recovery is merely one component of the entire data-
processing chain. Indeed, machine learning techniques are particularly suitable for
automated diagnosis or personalized treatment recommendations. As argued in the
introduction of this chapter, the study of adversarial examples for such classification tasks
differs from the robustness analysis of reconstruction methods. In this section, we shed
further light on this subject by analyzing classification from compressed measurements—
think of detecting a tumor from a subsampled MRI scan.

To this end, we revisit the benchmark model of Scenario A2, with the goal to predict
MNIST digits from their Gaussian measurements. This is realized by training a basic
convolutional neural network classifier ConvNet : R𝑛 → [0, 1]10, mapping images to
class probabilities for each of the ten digits, see Figure 6.23. The concatenation with a
reconstruction method Rec: R𝑚 → R𝑛 then yields the following classification map:

CC: R𝑚 → [0, 1]10 , y ↦→ [ConvNet ◦Rec](y). (6.4)

The approach of CC can be seen as a simplified model for the automated diagnosis from
subsampled measurements; see also [BMR17] and the references therein for the related
problem of compressed classification. Inspired by [CW17], we adapt the attack strategy (6.3)
to the classification setting by (approximately) solving

eadv = argmax
∥e∥2≤𝜂

max
𝑘≠𝑐
[CC(y0 + e)]𝑘 − [CC(y0 + e)]𝑐

where 𝑐 ∈ {0, 1, . . . , 9} is the true class label of x0. Figure 6.24 shows a noise-to-accuracy

curve visualizing the relative amount of correct classifications for different choices of
Rec on the left. The corresponding image reconstructions Rec(y0 + eadv) as well as the
predicted classes argmax𝑘[CC(y0 + eadv)]𝑘 for an example digit are presented on the right.

All classifiers exhibit a transition behavior: the success rate is almost perfect for small
perturbations and then drops to zero at some point. The associated images show that we
have found adversarial examples in the ordinary sense of machine learning. Indeed, every
visualized reconstruction is still recognizable as the digit nine. In other words, although

129

Chapter 6 Robustness of Reconstruction Methods

ac
cu

ra
cy

[%
]

0 5 10 15 20 25 30 35 40
0

25

50

75

100
TV[η]

UNet
TiraFL
ItNet

rel. noise level [%] – adversarial

5% 10% 15% 20%

TV
[𝜂𝜂
]

9 3 3 3

U
N

et

9 9 3 3

Ti
ra

FL

9 9 9 3

ItN
et

9 9 9 4

Figure 6.24: Classification from Compressed Measurements. The left curve plots the relative
adversarial noise level against the prediction accuracy of the classifier (6.4) for different recovery
methods (averaged over 50 digits from the test set). The intermediate reconstructions of a
randomly selected digit are shown to the right for different noise levels. Their predicted class
labels are displayed in the bottom right corner.

being stable, each of the recovery methods is capable of producing slightly perturbed
images that fool the ConvNet-part. Remarkably, this phenomenon occurs independently
of using a model-based or learned solver for (IP). We conclude that deep-learning-based
data-processing pipelines (as in medical healthcare) remain vulnerable to adversarial
attacks, even if provably robust reconstruction schemes are employed.

6.3.4 The Original fastMRI Challenge Setup

This section demonstrates that the original fastMRI challenge data for single-coil MRI
is more susceptible to adversarial noise. In contrast to Case Study C, the challenge
measurement setup is based on omitting k-space lines in the phase-encoding direction
(corresponding to 4-fold acceleration), i.e., the subsampling mask is defined by vertical
lines. The resulting undersampling ratio of ∼23% is higher than in Case Study C (∼17%).
Figure 6.25 shows individual image reconstructions for TV[𝜂𝜂] and Tira.8 Compared to
Figure 6.17, the outcomes indicate a loss of adversarial robustness, as the reconstructed
images exhibit undesired line-shaped artifacts (see blue box in Figure 6.25). This phe-
nomenon occurs regardless of using a model-based (TV[𝜂𝜂]) or learned method (Tira). In
fact, the observed artifacts are a consequence of the underlying measurement system:
the anisotropic mask pattern implies that vertical image features become more “aligned”
with the kernel of the forward operator. Hence, clearly visible distortions may be caused
by relatively small perturbations of the measurements (cf. [Got+20]). This confirms that
the design of sampling patterns does not only influence the accuracy of a reconstruction
method (e.g., see [Boy+16]), but also its adversarial robustness.

8Since the fastMRI challenge setup does not rely on a fixed subsampling mask, the fully-learned approach for
Tiramisu is not available here. Our Tira-net performs competitively in the fastMRI public leaderboard: We
achieve an SSIM of 0.765, whereas the leading method has 0.783 (https://fastmri.org/leaderboards/,
teamname AnItalianDessert, accessed on 2020-11-08).

130

https://fastmri.org/leaderboards/

6.4 Discussion

noiseless 2.5% rel. noise – adv.

TV
[𝜂𝜂
]

rel. `2-err: 21.71%
PSNR: 22.96

SSIM: 0.41

rel. `2-err: 27.51%
PSNR: 20.97

SSIM: 0.34

Ti
ra

rel. `2-err: 15.72%
PSNR: 25.70

SSIM: 0.54

rel. `2-err: 22.24%
PSNR: 22.79

SSIM: 0.51

Figure 6.25: The Original fastMRI Challenge Setup. Reconstructions of a randomly selected
image from the validation set. Compared to the analogous experiment in Figure 6.17, the Fourier
subsampling operator is based on vertical lines in the k-space instead of a radial mask. The
reconstructed images are displayed in the window [0.05, 4.50], also used for the computation of
the PSNR and SSIM. Note that the data are given as emulated single-coil (ESC) measurements,
whereas the reconstructions in Figure 6.17 are based on multi-coil images. Hence, the signal-to-
noise ratios are not directly comparable.

6.4 Discussion

There are several aspects that go beyond the scope of our study: (i) We are restricted to a
selection of end-to-end neural network architectures, excluding other approaches, such as
generative models [Bor+17], the deep image prior [UVL18], or learned regularizers [Li+20].
However, since these algorithms typically involve more model-based components, we
expect their robustness to be comparable to the schemes considered in the present work.
(ii) Due to the non-convexity of (6.3), a theoretical optimality certificate for our attack
strategy is lacking. Nevertheless, our results provide empirical evidence that we have solved
the problem adequately: The gap between worst-case and statistical perturbations appears
consistent across all considered scenarios. More importantly, we have verified the ability to
detect an error blowup caused by adversarial noise (see Figure 6.19). (iii) Our analysis takes
a mathematical perspective on robustness, thereby relying on standard similarity measures,
in particular, the Euclidean norm. It is well known that such quantitative metrics are
insensitive to several types of visual distortions. For instance, even the winning networks
of the 2019 fastMRI challenge were occasionally unable to capture certain tiny pathological
features that rarely appear in the data [Kno+20a]. This issue was specifically addressed in
the follow-up 2020 fastMRI challenge, which focuses on pathology depiction instead of
an overall image quality assessment [Muc+20]. However, this time, hallucinations were
noted, i.e., non-physical features created by the reconstruction networks. Nevertheless,
in view of our findings, we suspect that both flaws are not due to perturbations of the
measurements. An investigation of causes and remedies seems to be a promising direction
for future research, e.g., see [Che+20].

131

Chapter 6 Robustness of Reconstruction Methods

6.5 Conclusion

In an extensive series of experiments, this chapter has analyzed the robustness of deep-
learning-based solution methods for inverse problems. Central to our approach was a study
of the effects of adversarial noise, i.e., worst-case perturbations of the measurements that
maximize the reconstruction error. A systematic comparison with a model-based reference
method has shown that standard deep neural network schemes are remarkably resilient
against statistical and adversarial distortions. On the other hand, we have demonstrated
that instabilities might be caused by the “inverse crime” of training with noiseless data. A
simple remedy in that regard is jittering—a standard regularization and robustification
technique in deep learning [GBC16]. However, it is well known that this does not cure
the adversarial vulnerability of deep neural network classifiers, which requires more
sophisticated defense strategies [MSG20]. While such defenses may also improve the
robustness in the context of image recovery [RBL20], our results allow for a surprising
conclusion: Injecting Gaussian random noise in the training phase seems sufficient to
obtain solution methods for inverse problems that are resistant to other types of noise,
including adversarial perturbations.

The relevance of artificial intelligence for future healthcare is undeniable. Reliable
reconstruction methods are indispensable in this field, since errors caused by instabilities
can be fatal. In light of the threat of intentional manipulations in medical imaging [Fin+19],
it is reassuring to know the limits of what could go wrong in principle. Of similar practical
interest is the robustness against random perturbations, which is the standard noise model
for common imaging modalities. We believe that our work makes progress in both regards,
by showing optimistic results on the use of deep neural networks for inverse problems in
imaging.

132

7

Accuracy of Reconstruction Methods

In the previous chapter we have studied the robustness of deep-learning-based approaches
for solving inverse problems of the following form:

Given a linear forward operator A ∈ R𝑚×𝑛

and corrupted measurements y = Ax0 + e

with ∥e∥2 ≤ 𝜂, reconstruct the signal x0.

 (IP, restated)

Recall, that the error of any reconstruction method Rec: R𝑚 → R𝑛 for (IP) can be
decomposed as

∥x0 − Rec(y)∥2 ≤ ∥x0 − Rec(Ax0)∥2︸ ︷︷ ︸
(𝑎)

+ ∥Rec(Ax0) − Rec(y)∥2︸ ︷︷ ︸
(𝑏)

, (1.1, restated)

with an accuracy term (a) describing the error in the noiseless limit 𝜂→ 0 and a robustness

term (b) describing the dependence of the error on the strength of the measurement noise.
It goes without saying that besides robustness also the ability to accurately solve an inverse
problem is indispensable for the reliable use of a reconstruction method in practice.

Critical voices have recently been heard regarding this aspect of neural-network-based
schemes. For instance, Sidky et al. have demonstrated that post-processing by the prominent
U-Net architecture may not yield satisfactory recovery precision in a sparse-view computed
tomography (CT) scenario [Sid+21b]. These findings have led to the “AAPM Deep Learning
Sparse-View Computed Tomography” grand challenge with the goal of identifying „[. . .] the
state-of-the-art in solving the CT inverse problem with data-driven techniques“ [Sid+21a].
Here, the expression “solving” is used to describe algorithms that provide perfect recovery
in the idealistic situation of noiseless measurements. Thus, the overall vision of the
AAPM challenge was to evaluate whether deep-learning-based schemes can achieve
(near-)exact precision, similarly to classical benchmark methods such as total-variation
(TV) minimization, cf. [Sid+21b].

In Chapter 6 we have considered scenarios that are similar to the sparse-view CT setup
of [Sid+21b] in the following sense: Exact signal recovery by TV minimization is possible
for noisefree measurements. In such situations, we were also able to train neural networks
that provide visually perfect reconstructions. However, it should be noted that Chapter 6
was mainly concerned with noisy measurements and the neural network schemes did
not achieve perfect accuracy in all scenarios (cf. left sides of the noise-to-error curves
in Figures 6.4, 6.9, 6.10 and 6.16). We took this as a motivation to participate in the
AAPM challenge with the goal of improving the accuracy of our iterative neural network
scheme from Chapter 6 and design a data-driven recovery workflow for (near-)exact image
recovery. Our approach is rooted in the following hypothesis:

133

Chapter 7 Accuracy of Reconstruction Methods

High reconstruction accuracy is possible when the forward model is explicitly
incorporated into the reconstruction mapping, e.g., by an iterative promotion
of data-consistent solutions.

Highlighting the importance of incorporating the forward operator is by no means novel
and we have seen some of the benefits already in the previous chapter. It is one of
the central pillars of scientific machine learning, where neural networks are frequently
enriched (or constrained) by physical modeling. Indeed, the seminal works on deep-
learning-based solution strategies for inverse problems are inspired by unrolling classical
algorithms [GL10; Yan+16; Ham+18; AMJ18; AÖ18; Che+18; Sch+19; Ham+19; Chu+20;
Hea+21; GOW21]. At the present time, most state-of-the-art methods are based on iterative
end-to-end networks and related schemes, e.g., see [Kno+20a; Muc+20; Leu+21] for other
recent competition benchmarks.

Our approach to the AAPM challenge is no exception in that respect. We rely on a
conceptually simple, yet powerful deep learning workflow, which turns a post-processing
U-Net [RFB15] into an iterative reconstruction scheme. In fact, it is a slight modification of
the iterative network from Chapter 6. Recall, that from a technical perspective, most of its
design components have been previously reported in the literature. However, the overall
strategy appears to be novel and differs from more common unrolled networks in several
aspects, including:

(a) We make use of a pre-trained U-Net as the computational backbone.

(b) Data-consistency is inspired by an ℓ 2-gradient step, but utilizes the filtered backpro-
jection (FBP) instead of the regular adjoint (this is different from Chapter 6, where
the adjoint was used).

In line with many previous works, our iterative network involves only very few (five) eval-
uations of the forward operator (respectively six evaluations of the filtered backprojection).
However, we are the first to show evidence that this is sufficient to match the precision of
model-based solvers such as TV minimization, where the forward model often forms a
computational bottleneck due to hundreds or thousands of iterations before convergence.

A distinctive aspect of the AAPM challenge is, that the exact forward model is not
disclosed to the participants. It is only known that tomographic fanbeam measurements
were taken and tuples (x0 , y0) of ground truth image signals and their corresponding
noiseless measurements are provided. Therefore, we pursue a data-driven estimation
of the underlying fanbeam geometry as a first step. This is achieved by fitting a generic,
parametrized fanbeam operator to the provided sinogram-image pairs in a deep-learning-
like fashion (i.e., by gradient descent with backpropagation/automatic differentiation).
We hope that this approach can be of further use in the context of geometric calibration
and forward operator correction.

Overall, we were able to affirmatively answer the question raised by the AAPM challenge
setup: End-to-end neural networks can achieve near-perfect accuracy on the prescribed CT
reconstruction task. By matching the precision of widely-accepted classical benchmarks
(such as TV minimization) with our learned iterative scheme we were able to win the
AAPM challenge. We think that the proposed strategy will be of use for other inverse
problems as well, given that it outperformed the runner-up team and other state-of-the-art
data-driven approaches, such as the learned primal dual algorithm [AÖ18] by about an

134

7.1 The AAPM Challenge Setup

Sinogram Challenge FBP Ground Truth

Figure 7.1: The AAPM Challenge Data. Example of a 128-view sinogram, corresponding FBP
reconstruction, and the ground-truth phantom image taken from the AAPM challenge training
dataset.

order of magnitude with respect to the root-mean-square-error (RMSE). Our findings (in
particular in combination with the robustness observations of Chapter 6) provide evidence
for the possibility of a reliable use of deep-learning-based solutions to inverse problems.

7.1 The AAPM Challenge Setup

The AAPM challenge data is similar to the setting in [Sid+21b], i.e., it is based on synthetic
2D grayscale images of size 512 × 512 simulating real-world mid-plane breast CT device
scans. Four different tissues were modeled: adipose, skin, fibroglandular tissue, and
microcalcifications. Gaussian smoothing was applied in order to obtain smooth transitions
at the tissue boundaries. A fanbeam geometry with 128 projections over 360 degrees was
used to create sinograms and FBPs, see Figure 7.1 for an example. The exact fanbeam
geometry was not revealed to the participants. No noise was added to the provided
data, neither to the phantom images nor the measurements. The provided training set
consisted of 4000 tuples of phantom images, their corresponding sinograms, and FBP
reconstructions. A test set of 100 pairs of sinograms and FBPs (without publicly available
ground-truth phantoms) was used for the final challenge evaluation. Initially, about 50
international teams participated, out of which 25 submitted their method to the final
evaluation. For more details about the challenge setup and results see [Sid+21a; SP22].

7.2 Methods

We now give a more detailed overview of our approach, together with a motivation of its
design choices. A specification of all empirically selected hyper-parameters (describing the
network architectures and training procedures) can be found in Appendix E (Tables E.1
and E.2).

Step 1 – Data-Driven Geometry Identification

The first step of our reconstruction pipeline estimates the unknown forward operator from
the provided training data. The continuous version of tomographic fanbeam measurements is

135

Chapter 7 Accuracy of Reconstruction Methods

based on computing line integrals

𝑝(𝑠, 𝜑) =
∫
𝐿(𝑠,𝜑)

𝑥0(𝑥, 𝑦)d(𝑥, 𝑦),

where 𝑥0 is the unknown image and 𝐿(𝑠, 𝜑) denotes a line in fanbeam coordinates, i.e., 𝜑
is the fan rotation angle and 𝑠 encodes the sensor position along the detector array; see [Fes17]
for more details. In an idealized1 situation, the fanbeam model is specified by the following
geometric parameters, as illustrated in Figure 7.2(a):

• 𝑑source – the distance of the x-ray source to the origin,

• 𝑑detector – the distance of the detector array to the origin,

• 𝑛detector – the number of detector elements,

• 𝑠detector – the spacing of the detector elements along the array,

• 𝑛angle – the number of fan rotation angles,

• 𝝋 ∈ [0, 2𝜋]𝑛angle – a discrete list of rotation angles.

Here, it is assumed that integrals are only measured along a finite number of lines,
determined by 𝑚 = 𝑛detector · 𝑛angle. In the AAPM DL-Sparse-View Challenge, the resulting
forward operator is severely ill-posed, since only the measurements of a few fan rotation
angles 𝑛angle are acquired. Furthermore, the geometric setup is not disclosed to the
challenge participants. It is only known that fanbeam measurements are taken.

We address this lack of information by a data-driven estimation strategy that fits the
above set of parameters to the given training data. To this end, we first observe that the
previous parametrization is redundant, and without loss of generality, we may assume
that 𝑠detector = 1 (by rescaling 𝑑detector appropriately). Further, if the field-of-view angle 𝛾
is known, then the relation

𝑑detector =
𝑛detector · 𝑠detector

2 tan 𝛾
− 𝑑source (7.1)

can be used to eliminate another parameter, cf. Figure 7.2(b). Thus, the fanbeam geometry
is effectively determined by the reduced parameter set (𝑑source , 𝑛detector , 𝑛angle ,𝝋). The
training data provides pairs of discrete images x0 ∈ R512·512=𝑛 and its simulated fanbeam
measurements y0 ∈ R128·1024=𝑚 , from which the dimensions 𝑛angle = 128 and 𝑛detector = 1024
can be derived. We determine the field of view as 𝛾 = arcsin(𝑟/𝑑source), so that the
maximum inscribed circle of radius 𝑟 in the discrete image is exactly contained within
each fan of lines, which is a common choice for fanbeam CT (i.e., the radius corresponds
to half of the width or height of the image, thus 𝑟 = 256 for the 512× 512 image signals), cf.
Figure 7.2(b). Hence, (7.1) leads to

𝑑detector =
𝑛detector · 𝑠detector

2 · 𝑟 ·
√
𝑑2

source − 𝑟2 − 𝑑source.

1We have found that this basic model was enough to accurately describe the AAPM challenge setup. If
needed, it would be possible to account for other factors such as non-flat detector arrays, offsets of the axis
of rotation from the origin, misalignments of the detector array, etc.

136

7.2 Methods

detector array𝑠𝑠detector

rotate

𝑛𝑛detector21

𝑑𝑑source

𝑑𝑑detector

𝛾𝛾

x-ray source

2
3

𝑛𝑛angle

𝑟𝑟

𝑛𝑛detector·𝑠𝑠detector
2

𝛾𝛾 𝑑𝑑source

𝑑𝑑detector

(a) (b)

Figure 7.2: Fanbeam Geometry. (a) Illustration of the parameters determining the geometry of
the fanbeam CT model. (b) The field of view angle 𝛾𝛾 is chosen to fit the maximum inscribed
circle within the discretized image signals. The radius of the circle is equal to half the width and
height of the image.

The main difficulty of Step 1 lies in the estimation of the remaining parameters (𝑑𝑑source ,𝝋𝝋).
To that end, we have implemented a discrete fanbeam transform from scratch in PyTorch
(together with its corresponding filtered backprojection). A distinctive aspect of our
implementation is the use of a vectorized numerical integration that enables the efficient
computation of derivatives with respect to the geometric parameters by means of automatic

differentiation. This can be exploited for a data-driven parameter identification, for instance,
by gradient descent. More precisely, we use a ray-driven numerical integration for the
forward model and a pixel-driven and sinogram-reweighting-based filtered backprojection
(with a Hamming filter) [Fes17, Sec. 3.9.2]. In addition to the parameters (𝑑𝑑source ,𝝋𝝋), we
also introduce learnable scaling factors 𝑠𝑠fwd and 𝑠𝑠fbp for the forward and inverse transform,
respectively. They account for ambiguities in choosing the discretization units of distance
compared to the actual physical units of distance.

We estimate the remaining free parameters 𝜽𝜽fan = (𝑠𝑠fwd , 𝑑𝑑source ,𝝋𝝋) ∈ R130 of the
implemented forward operator A[𝜽𝜽fan] ∈ R𝑚𝑚×𝑛𝑛 in a deep-learning-like fashion: The ability
to compute derivatives d A[𝜽𝜽fan]

d𝜽𝜽fan allows us to make use of the 𝑀𝑀 = 4000 sinogram-image
pairs {(y𝑖𝑖

0 , x
𝑖𝑖
0)}

𝑀𝑀
𝑖𝑖=1 by solving

min
𝜽𝜽fan

1
𝑀𝑀

𝑀𝑀∑
𝑖𝑖=1

∥A[𝜽𝜽fan](x𝑖𝑖0) − y
𝑖𝑖
0∥

2
2 , (7.2)

with a variant of gradient descent (see Remark 7.1 for details). Finally, we determine the
last free parameter 𝑠𝑠fbp of the implemented filtered backprojection operator A

‡[𝜽𝜽fan , 𝑠𝑠fbp]
by solving

min
𝑠𝑠fbp

1
𝑀𝑀

𝑀𝑀∑
𝑖𝑖=1

∥x𝑖𝑖0 − A
‡[𝜽𝜽fan , 𝑠𝑠fbp](y𝑖𝑖

0)∥
2
2 , (7.3)

137

Chapter 7 Accuracy of Reconstruction Methods

while keeping the already identified parameters 𝜽fan fixed. From now on, we will use
the short-hand notation A and A

‡ for the estimated operators A[𝜽fan] and A
‡[𝜽fan , 𝑠fbp],

respectively.

Remark 7.1. The following observations regarding the estimation of the forward and
backward operators can be made:

(i) The formulation (7.2) is non-convex and therefore it is not clear whether gradient
descent enables an accurate estimation of the underlying fanbeam geometry.
Indeed, standard gradient descent was found to be very sensitive to the initial-
ization of 𝜽fan and got stuck in bad local minima. To overcome this issue, we
solve (7.2) by a block coordinate descent instead, which alternatingly optimizes
over 𝑠fwd, 𝑑source, and 𝝋 with individual learning rates. This strategy was found
to effectively account for large deviations of gradient magnitudes of the different
parameters. Indeed, we observed a fast convergence and a reliable identification
of 𝜽fan, independently of the initialization.

(ii) In principle, the strategy of (7.2) requires only few training samples to be
successful. However, when verifying the robustness of the outlined strategy
against measurement noise, we observed that it is beneficial to employ more
training data.

(iii) Subsequent to the estimation of an accurate fanbeam geometry, we still noted a
systematic error in our forward model. We suspect that it is caused by subtle
differences in the numerical integration in comparison to the true forward model
of the AAPM challenge. In compensation, we compute the (pixel-wise) mean
error over the training set, as an additive correction of the model bias.

Step 2 – Pre-Training a U-Net as Computational Backbone

As in Chapter 6 the centerpiece of our reconstruction scheme is formed by a standard U-Net
architecture U[�̃�] : R𝑛 → R𝑛 [RFB15]. It is first employed as a residual network to post-
process sparse-view filtered backprojection images, i.e., we consider the reconstruction
mapping

UNet[�̃�] : R𝑚 → R𝑛 , y ↦→
[
U[�̃�] ◦A

‡] (y). (7.4)

The learnable parameters �̃� of the U-Net are trained from the same collection of 𝑀 = 4000
sinogram-image pairs {(y𝑖0 , x

𝑖
0)}

𝑀
𝑖=1 as in Step 1. This is achieved by standard empirical risk

minimization, i.e., by (approximately) solving

min
�̃�

1
𝑀

𝑀∑
𝑖=1
∥x𝑖0 −UNet[�̃�](y𝑖0)∥

2
2 + 𝜇 · ∥�̃�∥22 , (7.5)

where we choose 𝜇 = 10−3. This minimization problem is tackled by 400 epochs of mini-
batch stochastic gradient descent and the Adam optimizer [KB14] with initial learning rate
0.0002 and batch size 4.

138

7.2 Methods

Remark 7.2. The post-processing strategy of Step 2 was pioneered in [KMY17; Che+17a]
and popularized by [Jin+17; Che+17b], among many others. Due to the multi-scale
encoder-decoder structure with skip-connections, the U-Net architecture is very
efficient in handling image-to-image problems. Therefore, solving (7.5) typically
works out-of-the-box without requiring sophisticated initialization or optimization
strategies (even in seemingly hopeless situations [HA20]). Making use of a more
powerful or a more memory-efficient network would be beneficial, e.g., see results
for the Tiramisu network below. However, we preferred to keep our workflow as
simple as possible and therefore decided to stick to the standard U-Net as the main
computational building block.

Step 3 – Constructing an Iterative Scheme

In this step, we discuss our main reconstruction method. It incorporates the (approximate)
forward model A from Step 1 (and the associated inversion by A

‡) via the following
iterative procedure, similar to Chapter 6:

ItNet[𝜽] : R𝑚 → R𝑛 , y ↦→
[
⃝4
𝑘=1

(
DC𝜆𝑘 ,y ◦U[�̃�]

)
◦A
‡] (y), (7.6)

with learnable parameters 𝜽 = [�̃�,𝜆1 ,𝜆2 ,𝜆3 ,𝜆4] and the 𝑘-th data-consistency layer

DC𝜆𝑘 ,y : R𝑛 → R𝑛 , x ↦→ x − 𝜆𝑘 ·A‡(A x − y). (7.7)

The main differences to the iterative approach in Chapter 6 are the use of the estimated
instead of the exact forward model and replacing the adjoint A

⊤ by the filtered back-
projection A

‡ in the data consistency layers (see below). ItNet is trained by empirical
risk minimization analogously to (7.5) with 𝜇 = 10−4. We run 500 epochs of mini-batch
stochastic gradient descent and Adam with an initial learning rate of 8 · 10−5 and a batch
size of 2 (restarting Adam after 250 epochs). The U-Net parameters �̃� are initialized by the
weights obtained in Step 2.

In the following, we will briefly discuss central aspects of the architecture in (7.6) and
motivate some of the important design choices:

(i) The computational centerpiece of ItNet is formed by the U-Net architecture. This
stands in contrast to earlier generations of unrolled iterative schemes, which rely on
basic convolutional blocks instead, e.g., see [AÖ18; Yan+16]. We have found that it is
advantageous to exploit the efficacy of U-Net-like image-to-image networks as central
image-enhancement blocks. This is in line with recent state-of-the-art architectures,
which also make use of various advanced sub-networks, e.g., see [Kno+20a; Muc+20;
Ham+19; RCS20; Sri+20]. The same U-Net is used in all four iterations (weight
sharing), cf. [AMJ18; Ham+19].

(ii) We have observed that it is crucial to initialize the U-Net parameters �̃� by the
post-processing weights from Step 2. This does not only increase the speed of
convergence, but it also significantly improves the final accuracy (see Figure 7.3).
In other words, our results show that the initialization of the U-Net block as a
post-processing unit makes it possible to find better local minima. To the best of our
knowledge, such an effect has not been reported in the literature yet. We emphasize

139

Chapter 7 Accuracy of Reconstruction Methods

UNet ItNet ItNet-post

RM
SE

epoch epoch epoch

Figure 7.3: Loss Curves and Network Training. The first two plots demonstrate that ItNet improves
the RMSE by approximately an order of magnitude in comparison to a post-processing by UNet.
Furthermore, the gain of our UNet-initialization strategy can be seen in the second graph. The
last two plots illustrate the advantages of restarting and of the post-training strategy, respectively.
Note that we display the RMSE on the training and validation sets instead of the actual ℓ 2-losses,
which behave similarly.

that this initialization strategy is enabled by making use of a powerful enough
post-processing sub-network.

(iii) Our data-consistency layer is inspired by a gradient step on the loss x ↦→ 𝜆𝜆𝑘𝑘

2 ∥A x−y∥2
2,

which would result in the update x ↦→ x − 𝜆𝜆𝑘𝑘 · A
⊤(A x − y). We depart from this

scheme by replacing the unfiltered backprojection A
⊤ by its filtered counterpart

A
‡. This modification leads to significantly improved results for two reasons: (a) It

counteracts the fact that the unfiltered backprojection is smoothing. (b) It produces
images with pixel values at the right scale. Therefore, we interpret the resulting
ItNet as an industry-like iterative CT-algorithm (e.g., see [WN19]), rather than a
neurally-augmented convex optimization scheme.

In our experiments, we witnessed only minor effects by computing more than four
iterations in (7.6). However, the accuracy was improved by the following post-training
strategy: First, the ItNet is extended by one more iteration:

ItNet-post[𝜽𝜽] : R𝑚𝑚 → R𝑛𝑛 , y ↦→
[
⃝5

𝑘𝑘=1
(
DC𝜆𝜆𝑘𝑘 ,y ◦U[�̃�𝜽𝑘𝑘]

)
◦ A

‡] (y), (7.8)

where �̃�𝜽𝑘𝑘 is initialized by the optimized weights of (7.6) for 𝑘𝑘 = 1, . . . , 5. Then, ItNet-post
is fine-tuned by keeping the weights �̃�𝜽1 = �̃�𝜽2 = �̃�𝜽3 of the first three U-Nets fixed and
training only the last two iterations (without weight sharing). The RMSE loss curves
of our full training pipeline, i.e., UNet → ItNet + restart → ItNet-post + 2 × restart are
visualized in Figure 7.3. The obtained improvements indicate that there is a trade-off
between increasing the model capacity by more iterations and the difficulty of optimizing
the resulting network. A systematic study of such iterative training strategies is left to
future research.

We have found that 𝝀𝝀 = [𝜆𝜆1 ,𝜆𝜆2 ,𝜆𝜆3 ,𝜆𝜆4] typically converges to values of the form
{𝜆𝜆1 < 𝜆𝜆2 < 𝜆𝜆3 ≫ 𝜆𝜆4} after sufficiently many training epochs of ItNet. For an additional
speed-up of the training, we use the initialization 𝝀𝝀 = [1.1, 1.3, 1.4, 0.08], which was
found by pre-training. Similarly, ItNet-post is initialized with the final values of ItNet for
𝑘𝑘 = 1, 2, 3, together with 𝜆𝜆4 = 1.0 and 𝜆𝜆5 = 0.1.

140

7.3 Results

Remark 7.3. To improve the overall performance of our networks, we have additionally
applied the following “tricks”, which are ordered by their importance:

(i) Due to statistical fluctuations, the networks typically exhibit slightly different
reconstruction errors, despite using the same training pipeline. For the com-
putation of our final reconstructions, we therefore ensemble 10 networks, each
trained on a different split of the training set.

(ii) Due to the training with small batch sizes, we replace batch normalization of
the U-Net architecture by group normalization [WH18].

(iii) We equip the U-Net architecture with a few memory channels, i.e., one actually
has that U[�̃�] : R𝑛 × (R𝑛)𝑐mem → R𝑛 × (R𝑛)𝑐mem (cf. [PW17; AÖ18]). While the
original image-enhancement channel is not altered, the output of the additional
channels is propagated through ItNet, playing the role of a hidden state (in the
spirit of recurrent neural networks). For our experiments, we have selected
𝑐mem = 5.

(iv) It was beneficial to occasionally restart the training of the networks, e.g., see
Figure 7.3.

Remark 7.4. The following modifications did not lead to a gain in performance and
were omitted:

(i) Improving A
‡ in Step 1 by making some of it components learnable (e.g., the

filter), cf. [Wür+16]. Although this is advantageous for the reconstruction quality
of A

‡ itself, it leads to worse results for UNet and ItNet. This suggests that a
combination of model- and data-based methods benefits most from precise and
unaltered physical models.

(ii) Adding additional convolutional-blocks in the measurement domain of ItNet.

(iii) Modifying the standard ℓ 2-loss by incorporating the RMSE or the ℓ 1-norm.

(iv) Utilizing different optimizers such as RAdam [Liu+20] or AdamW [LH19].

7.3 Results

In terms of quantitative similarity measures, we restrict ourselves to reporting the RMSE,
which is the main evaluation metric for the challenge [Sid+21a; SP22]. 2

Winning the Challenge. With our ensembling of ten ItNet-post we were able to achieve
near-exact recovery on the test set, thereby winning the challenge with a margin of about

2Note that the RMSE is reported for a hold-out subset of 125 images from the training set, which we
have used for validation. Hence, these values might differ from the actual results on the official
challenge test set. In the final challenge evaluation, our ItNet-post achieved an RMSE of 6.37e-6, see
https://www.aapm.org/GrandChallenge/DL-sparse-view-CT/winners.asp.

141

https://www.aapm.org/GrandChallenge/DL-sparse-view-CT/winners.asp

Chapter 7 Accuracy of Reconstruction Methods

Table 7.1: Reconstruction Results. This table reports the average reconstruction RMSE of different
methods over the hold-out validation set. The “Challenge FBP” result corresponds to the
filtered-backprojection provided as part of the challenge dataset while “Estimated FBP” results
correspond to the estimated filtered-backprojection according to Step 1.

Baselines Our Network Variants Comparison Networks

Chall. FBP Est. FBP UNet ItNet ItNet-post ItNet-post (ens.) Tiramisu LPD

RMSE 5.72e-3 3.40e-3 3.50e-4 1.64e-5 1.05e-5 6.42e-6 2.24e-4 1.24e-4

Challenge FBP (RMSE = 5.96e−03) Estimated FBP (RMSE = 3.73e−03)

Tiramisu (RMSE = 2.75e−04) ItNet-post ens. (RMSE = 6.23e−06)

Figure 7.4: Reconstruction Results. We display reconstructions of a validation image. The first
row compares the filtered backprojection A

‡ provided by the challenge with our own (see Step
1). The second row compares a post-processing by Tiramisu with the (ensembled) ItNet-post.
The ground truth image is omitted, since it is visually indistinguishable from the ItNet-post
reconstruction.

an order of magnitude ahead of the runner-up team. While the challenge evaluation
already provides a comparison to about 25 other methods we additionally provide our
own comparison baselines. For this we consider a post-processing of the FBP by the UNet
and by the more advanced Tiramisu architecture [Bub+19; Jég+17]. Furthermore, we have
also trained the iterative learned primal-dual (LPD) scheme [AÖ18] (slightly modified by
replacing the unfiltered backprojection A

⊤ with the filtered backprojection A
‡). LPD has

been recently reported as state-of-the-art in the literature, e.g., see [Leu+21]. Table 7.1 lists
the average RMSE scores of the considered methods. To give a visual impression as well,
reconstructions of an image from the validation set can be found in Figure 7.4. In line
with the official challenge evaluation, our own analysis confirms that all ItNet variants
outperform the comparison state-of-the-art methods by at least an order of magnitude.

Analysis of Data Consistency. An important feature of solvers for an inverse problem
is their data consistency. By this we mean that the reconstructions obtained from a
reconstruction method should be consistent with the measurements, in the sense that
y0 − A(Rec(y0)) is as small as possible. We analyze this aspect in Figure 7.5. We observe
that the data-consistency error of the ensembled ItNet-post mostly matches that of the

142

7.4 Discussion

Estimated Operator ItNet-post ens. Tiramisu
RMSE = 3.64e−04 RMSE = 3.65e−04 RMSE = 5.02e−04

Figure 7.5: Data-Consistency. The first image analyzes the accuracy of our forward model by
displaying the error y0 − A x0 for a sinogram-image pair (y0 , x0) from the validation set. The
visualization of y0 − A · ItNet-post(y0) in the middle is visually nearly indistinguishable, which
shows that ItNet-post inherits the inaccuracies from Step 1. Therefore, ItNet-post would allow
for even better results if a more accurate forward model was available. It is also interesting to
compare with y0 − A ·Tiramisu(y0). The considerably larger errors reveal that post-processing
by Tiramisu suffers from a lack of data-consistency. All images are shown in the same dynamical
range.

estimated forward operator. This suggests that the performance of ItNet-post could still
be improved if the exact forward model was available. Further, the data-consistency
of the Tiramisu approach is considerably worse, highlighting a typical disadvantage of
simple post-processing strategies. Even though the ItNet-post performs only five iterative
steps and thus evaluates the forward operator only five times (the corresponding FBP six
times), this leads to a significantly improved data-consistency and also improved final
reconstruction accuracy. This is in contrast to classical iterative algorithms, such as TV
minimization, which often require hundreds of iterations before convergence.

7.4 Discussion

It is worth noting that the reconstruction error of ItNet-post reported in Table 7.1 is not
exactly zero, yet comparable to the precision of TV minimization (cf. [Sid+21b]). There
is no evidence why even more accurate results should not be achievable, for example,
by increasing the internal machine precision of our PyTorch implementation (which is
≈1.19e-7 for the default float32 precision). This would certainly also affect model-based
algorithms in the same way. However, non-perfect recovery is not a severe issue from
an applied perspective, since it is typically not required for practical solutions to inverse
problems. We believe that our submission to the AAPM challenge has obtained satisfactory
results in that respect (i.e., the reconstruction accuracy is close to machine precision and
the reconstructions are visually indistinguishable from the ground-truth phantoms).

While the purpose of data-driven methods is to adapt to a specific data distribution, a
generalization to unseen features cannot be taken for granted. Such out-of-distribution

143

Chapter 7 Accuracy of Reconstruction Methods

(OOD) features commonly refer to test samples that were not drawn from the same
distribution as the training data. In general, the OOD generalization of learned methods is
still poorly understood and forms a field of active research [Ant+20; DCH21].

7.5 Conclusion

We have demonstrated that deep-learning-based solvers can produce near-perfect CT
reconstructions. While our approach provides some first evidence of feasibility, several
aspects remained unexplored as discussed above.

The academic setup of the AAPM challenge has provided an ideal experimental area
to test our research hypothesis. Although this has enabled an insightful reliability check,
a foundational understanding of learned reconstruction methods is still in its infancy.
Similar case studies for different inverse problems and real-world data are important steps
for future research. Here, the competitive setting of challenges could help to produce
objective results.

144

Bibliography

[AAT14] R. F. Astudillo, A. Abad, and I. Trancoso. „Accounting for the Residual
Uncertainty of Multi-Layer Perceptron Based Features“. In: 2014 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP). Institute
of Electrical and Electronics Engineers (IEEE), 2014, pp. 6859–6863. doi:
10.1109/ICASSP.2014.6854929.

[ACH21] V. Antun, M. J. Colbrook, and A. C. Hansen. „Can Stable and Accurate Neural
Networks be Computed? On the Barriers of Deep Learning and Smale’s 18th
Problem“. Preprint, arXiv: 2101.08286. 2021.

[Agr+19] A. Agrawal et al. „Differentiable Convex Optimization Layers“. In: Advances

in Neural Information Processing Systems 32 (NeurIPS). Ed. by H. Wallach et al.
Vol. 32. Curran Associates, Inc., 2019, pp. 9562–9574.

[Ake78] S. B. Akers. „Binary Decision Diagrams“. In: IEEE Transactions on Computers

C-27.6 (1978), pp. 509–516. doi: 10.1109/TC.1978.1675141.
[Alb+18] M. Alber et al. „iNNvestigate Neural Networks!“ Preprint, arXiv: 1808.04260.

2018.
[Ame+14] D. Amelunxen et al. „Living on the Edge: Phase Transitions in Convex

Programs With Random Data“. In: Information and Inference: A Journal of the

IMA 3.3 (2014), pp. 224–294. doi: 10.1093/imaiai/iau005.
[AMJ18] H. K. Aggarwal, M. P. Mani, and M. Jacob. „MoDL: Model-Based Deep

Learning Architecture for Inverse Problems“. In: IEEE transactions on Medical

Imaging 38.2 (2018), pp. 394–405. doi: 10.1109/TMI.2018.2865356.
[AMT20] A. Arnab, O. Miksik, and P. H. Torr. „On the Robustness of Semantic Seg-

mentation Models to Adversarial Attacks“. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence 42.12 (2020), pp. 3040–3053. doi: 10.1109/
TPAMI.2019.2919707.

[AN11] R. Astudillo and J. Neto. „Propagation of Uncertainty Through Multilayer
Perceptrons for Robust Automatic Speech Recognition“. In: 12th Annual

Conference of the International Speech Communication Association. International
Speech Communication Association (ISCA), 2011, pp. 461–464. doi: 10.21437/
Interspeech.2011-196.

[Ant+20] V. Antun et al. „On Instabilities of Deep Learning in Image Reconstruction
and the Potential Costs of AI“. In: Proceedings of the National Academy of Sciences

117.48 (2020), pp. 30088–30095. doi: 10.1073/pnas.1907377117.
[AÖ17] J. Adler and O. Öktem. „Solving Ill-Posed Inverse Problems Using Iterative

Deep Neural Networks“. In: Inverse Problems 33.12 (2017), p. 124007. doi:
10.1088/1361-6420/aa9581.

145

https://doi.org/10.1109/ICASSP.2014.6854929
https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1093/imaiai/iau005
https://doi.org/10.1109/TMI.2018.2865356
https://doi.org/10.1109/TPAMI.2019.2919707
https://doi.org/10.1109/TPAMI.2019.2919707
https://doi.org/10.21437/Interspeech.2011-196
https://doi.org/10.21437/Interspeech.2011-196
https://doi.org/10.1073/pnas.1907377117
https://doi.org/10.1088/1361-6420/aa9581

Bibliography

[AÖ18] J. Adler and O. Öktem. „Learned Primal-Dual Reconstruction“. In: IEEE

Transactions on Medical Imaging 37.6 (2018), pp. 1322–1332. doi: 10.1109/TMI.
2018.2799231.

[Arr+19] S. Arridge et al. „Solving Inverse Problems Using Data-Driven Models“. In:
Acta Numerica 28 (2019), pp. 1–174. doi: 10.1017/S0962492919000059.

[Bac+15] S. Bach et al. „On Pixel-Wise Explanations for Non-Linear Classifier Decisions
by Layer-Wise Relevance Propagation“. In: PLOS ONE 10.7 (2015), pp. 1–46.
doi: 10.1371/journal.pone.0130140.

[BB18] M. Benning and M. Burger. „Modern Regularization Methods for Inverse
Problems“. In: Acta Numererica 27 (2018), pp. 1–111. doi: 10.1017/S09624929
18000016.

[BBK19] E. Begoli, T. Bhattacharya, and D. Kusnezov. „The Need for Uncertainty
Quantification in Machine-Assisted Medical Decision Making“. In: Nature

Machine Intelligence 1.1 (2019), pp. 20–23.
[BCP21] M. Besançon, A. Carderera, and S. Pokutta. „FrankWolfe.jl: A High-Performance

and Flexible Toolbox for Frank-Wolfe Algorithms and Conditional Gradients“.
Preprint, arXiv: 2104.06675. 2021.

[Ber03] T. Berger. „Rate-Distortion Theory“. In: Wiley Encyclopedia of Telecommuni-

cations. Ed. by J. G. Proakis. American Cancer Society, 2003. doi: 10.1002/
0471219282.eot142.

[BGV92] B. E. Boser, I. M. Guyon, and V. N. Vapnik. „A Training Algorithm for Optimal
Margin Classifiers“. In: Proceedings of the 5th Annual Workshop on Computational

Learning Theory. Association for Computing Machinery (ACM), 1992, pp. 144–
152. doi: 10.1145/130385.130401.

[BHN99] R. H. Byrd, M. E. Hribar, and J. Nocedal. „An Interior Point Algorithm for
Large-Scale Nonlinear Programming“. In: SIAM Journal on Optimization 9.4
(1999), pp. 877–900. doi: 10.1137/S1052623497325107.

[Bis95] C. M. Bishop. „Training With Noise is Equivalent to Tikhonov Regularization“.
In: Neural Computation 7.1 (1995), pp. 108–116. doi: 10.1162/neco.1995.7.1.
108.

[BK98] X. Boyen and D. Koller. „Tractable Inference for Complex Stochastic Processes“.
In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI).
Morgan Kaufmann Publishers, Inc., 1998, pp. 33–42.

[BMR17] A. S. Bandeira, D. G. Mixon, and B. Recht. „Compressive Classification and
the Rare Eclipse Problem“. In: Compressed Sensing and its Applications: 2nd

International MATHEON Conference 2015. Ed. by H. Boche et al. Applied
and Numerical Harmonic Analysis. Springer Cham, 2017, pp. 197–220. doi:
10.1007/978-3-319-69802-1_6.

[Bor+17] A. Bora et al. „Compressed Sensing Using Generative Models“. In: Proceedings

of the 34th International Conference on Machine Learning (ICML). Ed. by D. Precup
and Y. W. Teh. Vol. 70. PMLR, 2017, pp. 537–546.

146

https://doi.org/10.1109/TMI.2018.2799231
https://doi.org/10.1109/TMI.2018.2799231
https://doi.org/10.1017/S0962492919000059
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1017/S0962492918000016
https://doi.org/10.1017/S0962492918000016
https://doi.org/10.1002/0471219282.eot142
https://doi.org/10.1002/0471219282.eot142
https://doi.org/10.1145/130385.130401
https://doi.org/10.1137/S1052623497325107
https://doi.org/10.1162/neco.1995.7.1.108
https://doi.org/10.1162/neco.1995.7.1.108
https://doi.org/10.1007/978-3-319-69802-1_6

Bibliography

[Boy+16] C. Boyer et al. „On the Generation of Sampling Schemes for Magnetic
Resonance Imaging“. In: SIAM Journal on Imaging Sciences 9.4 (2016), pp. 2039–
2072. doi: 10.1137/16M1059205.

[BPZ19] G. Braun, S. Pokutta, and D. Zink. „Lazifying Conditional Gradient Algo-
rithms“. In: Journal of Machine Learning Research 20.1 (2019), pp. 2577–2618.

[Bre+84] L. Breiman et al. Classification and Regression Trees. Taylor and Francis, 1984.
[Bri89] J. S. Bridle. „Training Stochastic Model Recognition Algorithms as Networks

Can Lead to Maximum Mutual Information Estimation of Parameters“. In:
Advances in Neural Information Processing Systems 2 (NIPS). Ed. by D. Touretzky.
Vol. 2. Morgan-Kaufmann, 1989.

[Bri90] J. S. Bridle. „Probabilistic Interpretation of Feedforward Classification Net-
work Outputs, With Relationships to Statistical Pattern Recognition“. In:
Neurocomputing. Ed. by F. F. Soulié and J. Hérault. Springer, Berlin Heidelberg,
1990, pp. 227–236.

[Bro+17] T. B. Brown et al. „Adversarial Patch“. Preprint, arXiv: 1712.09665. 2017.
[Bry86] R. E. Bryant. „Graph-Based Algorithms for Boolean Function Manipulation“.

In: IEEE Transactions on Computers 100.8 (1986), pp. 677–691. doi: 10.1109/TC.
1986.1676819.

[Bub+19] T. A. Bubba et al. „Learning the Invisible: A Hybrid Deep Learning-Shearlet
Framework for Limited Angle Computed Tomography“. In: Inverse Problems

35.6 (2019), p. 064002. doi: 10.1088/1361-6420/ab10ca.
[Byr+95] R. H. Byrd et al. „A Limited Memory Algorithm for Bound Constrained

Optimization“. In: SIAM Journal on Scientific Computing 16.5 (1995), pp. 1190–
1208. doi: 10.1137/0916069.

[Car22] N. Carlini. A Complete List of All (arXiv) Adversarial Example Papers. Available
online: https://nicholas.carlini.com/writing/2019/all-adversarial
-example-papers.html, accessed on 2022-03-16. 2022.

[CBP21] A. Carderera, M. Besançon, and S. Pokutta. „Simple Steps Are All You Need:
Frank-Wolfe and Generalized Self-Concordant Functions“. Preprint, arXiv:
2105.13913. 2021.

[CGL79] T. F. Chan, G. H. Golub, and R. J. LeVeque. Updating Formulae and a Pairwise

Algorithm for Computing Sample Variances. Tech. rep. Stanford University, 1979.
[Cha+17] S. Chakraborty et al. „Interpretability of Deep Learning Models: A Survey

of Results“. In: 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing,

Advanced Trusted Computed, Scalable Computing Communications, Cloud Big Data

Computing, Internet of People and Smart City Innovation (SmartWorld / SCALCOM

/ UIC / ATC / CBDCom / IOP / SCI). Institute of Electrical and Electronics
Engineers (IEEE), 2017, pp. 1–6. doi: 10.1109/UIC-ATC.2017.8397411.

[Che+17a] H. Chen et al. „Low-dose CT via Convolutional Neural Network“. In: Biomed-

ical Optics Express 8.2 (2017), pp. 679–694. doi: 10.1364/BOE.8.000679.
[Che+17b] H. Chen et al. „Low-dose CT With a Residual Encoder-Decoder Convolutional

Neural Network“. In: IEEE Transactions on Medical Imaging 36.12 (2017),
pp. 2524–2535. doi: 10.1109/TMI.2017.2715284.

147

https://doi.org/10.1137/16M1059205
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1088/1361-6420/ab10ca
https://doi.org/10.1137/0916069
https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
https://doi.org/10.1109/UIC-ATC.2017.8397411
https://doi.org/10.1364/BOE.8.000679
https://doi.org/10.1109/TMI.2017.2715284

Bibliography

[Che+18] H. Chen et al. „LEARN: Learned Experts’ Assessment-Based Reconstruction
Network for Sparse-Data CT“. In: IEEE Transactions on Medical Imaging 37.6
(2018), pp. 1333–1347. doi: 10.1109/TMI.2018.2805692.

[Che+20] K. Cheng et al. „Addressing the False Negative Problem of Deep Learning
MRI Reconstruction Models by Adversarial Attacks and Robust Training“. In:
Proceedings of the 3rd Conference on Medical Imaging With Deep Learning (MIDL).
Ed. by T. Arbel et al. Vol. 121. PMLR, 2020, pp. 121–135.

[Cho+14] K. Cho et al. „Learning Phrase Representations Using RNN Encoder-Decoder
for Statistical Machine Translation“. In: Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics (ACL), 2014, pp. 1724–1734. doi: 10.3115/v1/D14-
1179.

[Cho+15] F. Chollet et al. Keras. Available online: https : / / github . com / keras -
team/keras, accessed on 2019-02-06. 2015.

[Chu+20] I. Y. Chun et al. „Momentum-Net: Fast and Convergent Iterative Neural
Network for Inverse Problems“. In: IEEE Transactions on Pattern Analysis and

Machine Intelligence (2020), pp. 1–1. doi: 10.1109/TPAMI.2020.3012955.
[Cir+12] D. Cireşan et al. „Multi-Column Deep Neural Network for Traffic Sign

Classification“. In: Neural Networks 32 (2012), pp. 333–338. doi: 10.1016/j.
neunet.2012.02.023.

[CJ08] C. P. de Campos and Q. Ji. „Strategy Selection in Influence Diagrams Using
Imprecise Probabilities“. In: Proceedings of the 24th Conference on Uncertainty in

Artificial Intelligence (UAI). AUAI Press, 2008, pp. 121–128.
[CL97] A. Chambolle and P.-L. Lions. „Image Recovery via Total Variation Minimiza-

tion and Related Problems“. In: Numerische Mathematik 76.2 (1997), pp. 167–
188. doi: 10.1007/s002110050258.

[CM92] O. Coudert and J. C. Madre. „Implicit and Incremental Computation of Primes
and Essential Primes of Boolean Functions.“ In: Proceedings 29th ACM/IEEE

Design Automation Conference. Vol. 92. Institute of Electrical and Electronics
Engineers (IEEE), 1992, pp. 36–39. doi: 10.1109/DAC.1992.227866.

[CNL11] A. Coates, A. Ng, and H. Lee. „An Analysis of Single-Layer Networks in
Unsupervised Feature Learning“. In: Proceedings of the 14th International

Conference on Artificial Intelligence and Statistics (AISTATS). Ed. by G. Gordon,
D. Dunson, and M. Dudík. Vol. 15. PMLR, 2011, pp. 215–223.

[Com21] C. W. Combettes. „Frank-Wolfe Methods for Optimization and Machine
Learning“. PhD thesis. Georgia Institute of Technology, 2021.

[Coo71] S. A. Cook. „The Complexity of Theorem-Proving Procedures“. In: Proceedings

of the 3rd Annual ACM Symposium on Theory of Computing. Association for
Computing Machinery (ACM), 1971, pp. 151–158. doi: 10.1145/800157.
805047.

[Cor+09] T. H. Cormen et al. Introduction to Algorithms, 3rd Edition. MIT Press, 2009.
[CP21] C. W. Combettes and S. Pokutta. „Complexity of Linear Minimization and

Projection on Some Sets“. Preprint, arXiv: 2101.10040. 2021.

148

https://doi.org/10.1109/TMI.2018.2805692
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://github.com/keras-team/keras
https://github.com/keras-team/keras
https://doi.org/10.1109/TPAMI.2020.3012955
https://doi.org/10.1016/j.neunet.2012.02.023
https://doi.org/10.1016/j.neunet.2012.02.023
https://doi.org/10.1007/s002110050258
https://doi.org/10.1109/DAC.1992.227866
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047

Bibliography

[CRT06] E. J. Candès, J. K. Romberg, and T. Tao. „Robust Uncertainty Principles:
Exact Signal Reconstruction from Highly Incomplete Frequency Information“.
In: IEEE Transactions on Information Theory 52.2 (2006), pp. 489–509. doi:
10.1109/TIT.2005.862083.

[CV95] C. Cortes and V. Vapnik. „Support Vector Networks“. In: Machine Learning 20
(1995), pp. 273–297. doi: 10.1007/BF00994018.

[CW17] N. Carlini and D. Wagner. „Towards Evaluating the Robustness of Neural
Networks“. In: IEEE Symposium on Security and Privacy. Institute of Electrical
and Electronics Engineers (IEEE), 2017, pp. 39–57. doi: 10.1109/SP.2017.49.

[Dar00] A. Darwiche. „On the Tractable Counting of Theory Models and Its Applica-
tion to Belief Revision and Truth Maintenance“. Preprint, arXiv: cs/0003044.
2000.

[Dar11] A. Darwiche. „SDD: A New Canonical Representation of Propositional
Knowledge Bases“. In: Proceedings of the 22nd International Joint Conference

on Artificial Intelligence (ĲCAI). Ed. by T. Walsh. AAAI Press/ĲCAI, 2011,
pp. 819–826. doi: 10.5591/978-1-57735-516-8/IJCAI11-143.

[DB90] M. Drummond and J. Bresina. Anytime Synthetic Projection: Maximizing the

Probability of Goal Satisfaction. NASA, Ames Research Center, Artificial Intelli-
gence Research Branch, 1990.

[DCH21] M. Z. Darestani, A. Chaudhari, and R. Heckel. „Measuring Robustness in Deep
Learning Based Compressive Sensing“. In: Proceedings of the 38th International

Conference on Machine Learning (ICML). Ed. by M. Meila and T. Zhang. Vol. 139.
PMLR, 2021, pp. 2433–2444.

[DH73] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley New
York, 1973.

[DK17] F. Doshi-Velez and B. Kim. „Towards a Rigorous Science of Interpretable
Machine Learning“. Preprint, arXiv: 1702.08608. 2017.

[Don+16] C. Dong et al. „Image Super-Resolution Using Deep Convolutional Networks“.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 38.2 (2016),
pp. 295–307. doi: 10.1109/TPAMI.2015.2439281.

[DP94] X. Deng and C. H. Papadimitriou. „On the Complexity of Cooperative Solution
Concepts“. In: Mathematics of Operations Research 19.2 (1994), pp. 257–266.

[Duc+08] J. Duchi et al. „Efficient Projections Onto the ℓ1-Ball for Learning in High
Dimensions“. In: Proceedings of the 25th International Conference on Machine

Learning (ICML). Association for Computing Machinery (ACM), 2008, pp. 272–
279. doi: 10.1145/1390156.1390191.

[Dug66] J. Dugundji. Topology. Ed. by I. Kaplansky. Allyn and Bacon, Inc., 1966.
[Edg08] G. Edgar. Measure, Topology, and Fractal Geometry. Ed. by S. Axler and K. A.

Ribet. 2nd. Spinger, New York, 2008. doi: 10.1007/978-0-387-74749-1.
[EG95] T. Eiter and G. Gottlob. „The Complexity of Logic-Based Abduction“. In:

Journal of the ACM (JACM) 42.1 (1995), pp. 3–42.

149

https://doi.org/10.1109/TIT.2005.862083
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
https://doi.org/10.1109/TPAMI.2015.2439281
https://doi.org/10.1145/1390156.1390191
https://doi.org/10.1007/978-0-387-74749-1

Bibliography

[Ela17] M. Elad. Deep, Deep Trouble: Deep Learning’s Impact on Image Processing, Mathe-

matics, and Humanity. Available online: https://sinews.siam.org/Details-
Page/deep-deep-trouble, accessed on 2020-09-21. SIAM News. 2017.

[Ern20] P. Ernst. Pytorch Implementation of Scikit-Image’s Radon Function, Version 0.1.4.
Available online: https://github.com/phernst/pytorch_radon, accessed
on 2020-10-29. 2020.

[Eyk+18] K. Eykholt et al. „Robust Physical-World Attacks on Deep Learning Visual
Classification“. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). Institute of Electrical and Electronics Engineers
(IEEE), 2018, pp. 1625–1634. doi: 10.1109/CVPR.2018.00175.

[FA14] H. Fayed and A. Atiya. „An Evaluation of the Integral of the Product of
the Error Function and the Normal Probability Density With Application to
the Bivariate Normal Integral“. In: Mathematics of Computation 83.285 (2014),
pp. 235–250.

[Fan+21] F.-L. Fan et al. „On Interpretability of Artificial Neural Networks: A Survey“.
In: IEEE Transactions on Radiation and Plasma Medical Sciences 5.6 (2021),
pp. 741–760. doi: 10.1109/TRPMS.2021.3066428.

[Fes17] J. A. Fessler. Analytical Tomographic Image Reconstruction Methods (Chapter 3

of Book Draft). 2017. url: https://web.eecs.umich.edu/~fessler/book/c-
tomo.pdf.

[FH85] E. Fix and J. Hodges. Discriminatory Analysis: Nonparametric Discrimination,

Consistency Properties. Vol. 1-2. USAF School of Aviation Medicine, 1985.
[Fin+19] S. G. Finlayson et al. „Adversarial Attacks on Medical Machine Learning“. In:

Science 363.6433 (2019), pp. 1287–1289. doi: 10.1126/science.aaw4399.
[FR13] S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing.

Applied and Numerical Harmonic Analysis. Birkhäuser Basel, 2013. doi:
10.1007/978-0-8176-4948-7.

[Fuk80] K. Fukushima. „Neocognitron: A Self-Organizing Neural Network Model
for a Mechanism of Pattern Recognition Unaffected by Shift in Position“. In:
Biological Cybernetics 36 (1980), pp. 193–202. doi: 10.1007/BF00344251.

[FV17] R. C. Fong and A. Vedaldi. „Interpretable Explanations of Black Boxes by
Meaningful Perturbation“. In: Proceedings of the IEEE International Conference

on Computer Vision (ICCV). Institute of Electrical and Electronics Engineers
(IEEE), 2017, pp. 3429–3437. doi: 10.1109/ICCV.2017.371.

[FW56] M. Frank and P. Wolfe. „An Algorithm for Quadratic Programming“. In:
Naval Research Logistics Quarterly 3.1-2 (1956), pp. 95–110. doi: 10.1002/nav.
3800030109.

[FWJ08] S. S. Fatima, M. Wooldridge, and N. R. Jennings. „A Linear Approximation
Method for the Shapley Value“. In: Artificial Intelligence 172.14 (2008), pp. 1673–
1699. doi: 10.1016/j.artint.2008.05.003.

150

https://sinews.siam.org/Details-Page/deep-deep-trouble
https://sinews.siam.org/Details-Page/deep-deep-trouble
https://github.com/phernst/pytorch_radon
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.1109/TRPMS.2021.3066428
https://web.eecs.umich.edu/~fessler/book/c-tomo.pdf
https://web.eecs.umich.edu/~fessler/book/c-tomo.pdf
https://doi.org/10.1126/science.aaw4399
https://doi.org/10.1007/978-0-8176-4948-7
https://doi.org/10.1007/BF00344251
https://doi.org/10.1109/ICCV.2017.371
https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1016/j.artint.2008.05.003

Bibliography

[GBB11] X. Glorot, A. Bordes, and Y. Bengio. „Deep Sparse Rectifier Neural Networks“.
In: Proceedings of the 14th International Conference on Artificial Intelligence and

Statistics (AISTATS). Ed. by G. Gordon, D. Dunson, and M. Dudík. Vol. 15.
PMLR, 2011, pp. 315–323.

[GBC16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[Gil+18] L. H. Gilpin et al. „Explaining Explanations: An Overview of Interpretability
of Machine Learning“. In: 2018 IEEE 5th International Conference on Data

Science and Advanced Analytics (DSAA). Institute of Electrical and Electronics
Engineers (IEEE), 2018, pp. 80–89. doi: 10.1109/DSAA.2018.00018.

[Gil74] J. T. Gill. „Computational Complexity of Probabilistic Turing Machines“.
In: Proceedings of the 6th Annual ACM Symposium on Theory of Computing.
Association for Computing Machinery (ACM), 1974, pp. 91–95. doi: 10.1145/
800119.803889.

[GKX10] M. D. Gupta, S. Kumar, and J. Xiao. „L1 Projections With Box Constraints“.
Preprint, arXiv: 1010.0141. 2010.

[GL10] K. Gregor and Y. LeCun. „Learning Fast Approximations of Sparse Coding“.
In: Proceedings of the 27th International Conference on International Conference on

Machine Learning (ICML). Ed. by J. Fürnkranz and T. Joachims. Omnipress,
2010, pp. 399–406.

[GLS88] M. Grötschel, L. Lovász, and A. Schrĳver. Geometric Algorithms and Combinato-

rial Optimization. English. Vol. 2. Algorithms and Combinatorics. Springer,
1988.

[GM75] R. Glowinski and A. Marroco. „Sur l’Approximation, par Éléments Finis
d’Ordre Un, et la Résolution, par Pénalisation-Dualité d’une Classe de
Problèmes de Dirichlet Non Linéaires“. In: ESAIM: Mathematical Modelling

and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 9.R2
(1975), pp. 41–76.

[GM76] D. Gabay and B. Mercier. „A Dual Algorithm for the Solution of Nonlinear
Variational Problems via Finite Element Approximation“. In: Computers and

Mathematics With Applications 2.1 (1976), pp. 17–40. doi: 10.1016/0898-
1221(76)90003-1.

[GM86] J. Guélat and P. Marcotte. „Some Comments of Wolfe’s “Away Step”“. In:
Mathematical Programming 35.1 (1986), pp. 110–119.

[GMM20] M. Genzel, J. Macdonald, and M. März. „Solving Inverse Problems With Deep
Neural Networks – Robustness Included?“ Preprint, arXiv: 2011.04268. 2020.

[GMM21] M. Genzel, J. Macdonald, and M. März. „AAPM DL-Sparse-View CT Chal-
lenge Submission Report: Designing an Iterative Network for Fanbeam-CT
With Unknown Geometry“. Preprint, arXiv: 2106.00280. 2021.

[GMS21] M. Genzel, M. März, and R. Seidel. „Compressed Sensing With 1D Total
Variation: Breaking Sample Complexity Barriers via Non-Uniform Recovery“.
Preprint, arXiv: 2001.09952. 2021.

151

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1145/800119.803889
https://doi.org/10.1145/800119.803889
https://doi.org/10.1016/0898-1221(76)90003-1
https://doi.org/10.1016/0898-1221(76)90003-1

Bibliography

[Got+20] N. M. Gottschling et al. „The Troublesome Kernel: Why Deep Learning for
Inverse Problems is Typically Unstable“. Preprint, arXiv: 2001.01258. 2020.

[GOW21] D. Gilton, G. Ongie, and R. Willett. „Deep Equilibrium Architectures for
Inverse Problems in Imaging“. Preprint, arXiv: 2102.07944. 2021.

[GR18] J. Gast and S. Roth. „Lightweight Probabilistic Deep Networks“. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Institute of Electrical and Electronics Engineers (IEEE), 2018, pp. 3369–3378.
doi: 10.1109/CVPR.2018.00355.

[GSS15] I. J. Goodfellow, J. Shlens, and C. Szegedy. „Explaining and Harnessing
Adversarial Examples“. Preprint, arXiv: 1412.6572. 2015.

[HA15] J. M. Hernández-Lobato and R. P. Adams. „Probabilistic Backpropagation for
Scalable Learning of Bayesian Neural Networks“. In: Proceedings of the 32nd

International Conference on International Conference on Machine Learning (ICML).
Vol. 37. JMLR, 2015, pp. 1861–1869.

[HA20] A. Hauptmann and J. Adler. „On the Unreasonable Effectiveness of CNNs“.
Preprint, arXiv: 2007.14745. 2020.

[Ham+18] K. Hammernik et al. „Learning a Variational Network for Reconstruction
of Accelerated MRI Data“. In: Magnetic Resonance in Medicine 79.6 (2018),
pp. 3055–3071. doi: 10.1002/mrm.26977.

[Ham+19] K. Hammernik et al. „Σ-net: Systematic Evaluation of Iterative Deep Neu-
ral Networks for Fast Parallel MR Image Reconstruction“. Preprint, arXiv:
1912.09278. 2019.

[Has+20] H. Hassani et al. „Stochastic Conditional Gradient++“. Preprint, arXiv:
1902.06992. 2020.

[Hau+08] J. Haupt et al. „Compressed Sensing for Networked Data“. In: IEEE Signal

Processing Magazine 25.2 (2008), pp. 92–101. doi: 10.1109/MSP.2007.914732.
[Hau+20] A. Hauptmann et al. „Multi-Scale Learned Iterative Reconstruction“. In: IEEE

Transactions on Computational Imaging 6 (2020), pp. 843–856. doi: 10.1109/TCI.
2020.2990299.

[HCC18] T. Huster, C.-Y. J. Chiang, and R. Chadha. „Limitations of the Lipschitz
Constant as a Defense Against Adversarial Examples“. In: European Conference

on Machine Learning and Knowledge Discovery in Databases (ECML PKDD)

Workshops. Springer, Cham, 2018, pp. 16–29. doi: 10.1007/978-3-030-13453-
2_2.

[He+16] K. He et al. „Deep Residual Learning for Image Recognition“. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Institute of Electrical and Electronics Engineers (IEEE), 2016, pp. 770–778. doi:
10.1109/CVPR.2016.90.

[Hea+21] H. Heaton et al. „Feasibility-Based Fixed Point Networks“. Preprint, arXiv:
2104.14090. 2021.

[HK92] L. Holmstrom and P. Koistinen. „Using Additive Noise in Back-Propagation
Training“. In: IEEE Transactions on Neural Networks 3.1 (1992), pp. 24–38. doi:
10.1109/72.105415.

152

https://doi.org/10.1109/CVPR.2018.00355
https://doi.org/10.1002/mrm.26977
https://doi.org/10.1109/MSP.2007.914732
https://doi.org/10.1109/TCI.2020.2990299
https://doi.org/10.1109/TCI.2020.2990299
https://doi.org/10.1007/978-3-030-13453-2_2
https://doi.org/10.1007/978-3-030-13453-2_2
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/72.105415

Bibliography

[HL16] E. Hazan and H. Luo. „Variance-Reduced and Projection-Free Stochastic
Optimization“. In: Proceedings of the 33rd International Conference on Machine

Learning (ICML). Ed. by M. F. Balcan and K. Q. Weinberger. Vol. 48. PMLR,
2016, pp. 1263–1271.

[Hoe94] W. Hoeffding. „Probability Inequalities for Sums of Bounded Random Vari-
ables“. In: The Collected Works of Wassily Hoeffding. Springer, 1994, pp. 409–
426.

[Hol+17] A. Holzinger et al. „What Do We Need to Build Explainable AI Systems for
the Medical Domain?“ Preprint, arXiv: 1712.09923. 2017.

[Hor91] K. Hornik. „Approximation Capabilities of Multilayer Feedforward Net-
works“. In: Neural Networks 4.2 (1991), pp. 251–257.

[Hoy02] P. Hoyer. „Non-Negative Sparse Coding“. In: Proceedings of the 12th IEEE

Workshop on Neural Networks for Signal Processing. Institute of Electrical and
Electronics Engineers (IEEE), 2002, pp. 557–565. doi: 10.1109/NNSP.2002.
1030067.

[Hua+17] G. Huang et al. „Densely Connected Convolutional Networks“. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Institute of Electrical and Electronics Engineers (IEEE), 2017, pp. 4700–4708.
doi: 10.1109/CVPR.2017.243.

[Hua+18] Y. Huang et al. „Some Investigations on Robustness of Deep Learning in
Limited Angle Tomography“. In: 21st International Conference Medical Image

Computing and Computer Assisted Intervention (MICCAI), Proceedings, Part I.
Ed. by A. F. Frangi et al. Springer Cham, 2018, pp. 145–153. doi: 10.1007/978-
3-030-00928-1_17.

[Hub81] P. J. Huber. Robust Statistics. John Wiley and Sons, 1981.
[INM19] A. Ignatiev, N. Narodytska, and J. Marques-Silva. „Abduction-Based Ex-

planations for Machine Learning Models“. In: Proceedings of the 33rd AAAI

Conference on Artificial Intelligence. Vol. 33. Association for the Advancement
of Artificial Intelligence (AAAI), 2019, pp. 1511–1519. doi: 10.1609/aaai.
v33i01.33011511.

[IS15] S. Ioffe and C. Szegedy. „Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift“. In: Proceedings of the 32nd

International Conference on Machine Learning (ICML). Ed. by F. Bach and D. Blei.
Vol. 37. PMLR, 2015, pp. 448–456.

[Iva71] A. G. Ivakhnenko. „Polynomial Theory of Complex Systems“. In: IEEE

Transactions on Systems, Man, and Cybernetics SMC-1.4 (1971), pp. 364–378. doi:
10.1109/TSMC.1971.4308320.

[Jég+17] S. Jégou et al. „The One Hundred Layers Tiramisu: Fully Convolutional
DenseNets for Semantic Segmentation“. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). Institute of Electrical and
Electronics Engineers (IEEE), 2017, pp. 11–19. doi: 10.1109/CVPRW.2017.156.

153

https://doi.org/10.1109/NNSP.2002.1030067
https://doi.org/10.1109/NNSP.2002.1030067
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1007/978-3-030-00928-1_17
https://doi.org/10.1007/978-3-030-00928-1_17
https://doi.org/10.1609/aaai.v33i01.33011511
https://doi.org/10.1609/aaai.v33i01.33011511
https://doi.org/10.1109/TSMC.1971.4308320
https://doi.org/10.1109/CVPRW.2017.156

Bibliography

[Jin+17] K. H. Jin et al. „Deep Convolutional Neural Network for Inverse Problems in
Imaging“. In: IEEE Transactions on Image Processing 26.9 (2017), pp. 4509–4522.
doi: 10.1109/TIP.2017.2713099.

[JMB20] D. Janzing, L. Minorics, and P. Bloebaum. „Feature Relevance Quantification
in Explainable AI: A Causal Problem“. In: Proceedings of the 23rd International

Conference on Artificial Intelligence and Statistics (AISTATS). Ed. by S. Chiappa
and R. Calandra. Vol. 108. PMLR, 2020, pp. 2907–2916.

[JNV14] P. Jylänki, A. Nummenmaa, and A. Vehtari. „Expectation Propagation for
Neural Networks With Sparsity-Promoting Priors“. In: Journal of Machine

Learning Research 15.1 (2014), pp. 1849–1901.
[KB14] D. P. Kingma and J. Ba. „Adam: A Method for Stochastic Optimization“.

Preprint, arXiv: 1412.6980. 2014.
[KC17] J. Kim and J. Canny. „Interpretable Learning for Self-Driving Cars by Visu-

alizing Causal Attention“. In: Proceedings of the IEEE International Conference

on Computer Vision (ICCV). Institute of Electrical and Electronics Engineers
(IEEE), 2017, pp. 2942–2950. doi: 10.1109/ICCV.2017.320.

[KGB17] A. Kurakin, I. Goodfellow, and S. Bengio. „Adversarial Examples in the
Physical World“. Preprint, arXiv: 1607.02533. 2017.

[Kho+19] P. Khosravi et al. „What to Expect of Classifiers? Reasoning About Logistic
Regression With Missing Features“. In: Proceedings of the 28th International

Joint Conference on Artificial Intelligence (ĲCAI). ĲCAI, 2019, pp. 2716–2724.
doi: 10.24963/ijcai.2019/377.

[Kin+17] P.-J. Kindermans et al. „The (Un)reliability of Saliency Methods“. Preprint,
arXiv: 1711.00867. 2017.

[KMY17] E. Kang, J. Min, and J. C. Ye. „A Deep Convolutional Neural Network Using
Directional Wavelets for Low-Dose X-Ray CT Reconstruction“. In: Medical

Physics 44.10 (2017), e360–e375. doi: 10.1002/mp.12344.
[Kno+20a] F. Knoll et al. „Advancing Machine Learning for MR Image Reconstruction

With an Open Competition: Overview of the 2019 fastMRI Challenge“. In:
Magnetic Resonance in Medicine 84.6 (2020), pp. 3054–3070. doi: 10.1002/mrm.
28338.

[Kno+20b] F. Knoll et al. „fastMRI: A Publicly Available Raw k-Space and DICOM
Dataset of Knee Images for Accelerated MR Image Reconstruction Using
Machine Learning“. In: Radiology: Artificial Intelligence 2.1 (2020), e190007. doi:
10.1148/ryai.2020190007.

[Kob+17] E. Kobler et al. „Variational Networks: Connecting Variational Methods and
Deep Learning“. In: Pattern Recognition. Ed. by V. Roth and T. Vetter. Springer,
Cham, 2017, pp. 281–293.

[Kob+20] E. Kobler et al. „Total Deep Variation: A Stable Regularizer for Inverse
Problems“. Preprint, arXiv: 2006.08789. 2020.

[KS06] J. Kaipio and E. Somersalo. Statistical and Computational Inverse Problems.
Vol. 160. Applied Mathematical Sciences. Springer, New York, 2006. doi:
10.1007/b138659.

154

https://doi.org/10.1109/TIP.2017.2713099
https://doi.org/10.1109/ICCV.2017.320
https://doi.org/10.24963/ijcai.2019/377
https://doi.org/10.1002/mp.12344
https://doi.org/10.1002/mrm.28338
https://doi.org/10.1002/mrm.28338
https://doi.org/10.1148/ryai.2020190007
https://doi.org/10.1007/b138659

Bibliography

[KSH12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. „ImageNet Classification With
Deep Convolutional Neural Networks“. In: Advances in Neural Information

Processing Systems 25 (NIPS). Ed. by F. Pereira et al. Vol. 25. Curran Associates,
Inc., 2012, pp. 1097–1105.

[Kuh55] H. W. Kuhn. „The Hungarian Method for the Assignment Problem“. In:
Naval Research Logistics Quarterly 2.1-2 (1955), pp. 83–97. doi: 10.1002/nav.
3800020109.

[Lap+16] S. Lapuschkin et al. „Analyzing Classifiers: Fisher Vectors and Deep Neural
Networks“. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). Institute of Electrical and Electronics Engineers (IEEE),
2016, pp. 2912–2920. doi: 10.1109/CVPR.2016.318.

[LBH15] Y. LeCun, Y. Bengio, and G. Hinton. „Deep Learning“. In: Nature 521.7553
(2015), pp. 436–444. doi: 10.1038/nature14539.

[LeC+89] Y. LeCun et al. „Backpropagation Applied to Handwritten Zip Code Recog-
nition“. In: Neural Computation 1.4 (1989), pp. 541–551. doi: 10.1162/neco.
1989.1.4.541.

[LeC+98] Y. LeCun et al. „Gradient-Based Learning Applied to Document Recognition“.
In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.726791.

[Leu+21] J. Leuschner et al. „Quantitative Comparison of Deep Learning-Based Image
Reconstruction Methods for Low-Dose and Sparse-Angle CT Applications“.
In: Journal of Imaging 7.3 (2021), pp. 1–49. doi: 10.3390/jimaging7030044.

[LGM98] M. L. Littman, J. Goldsmith, and M. Mundhenk. „The Computational Com-
plexity of Probabilistic Planning“. In: Journal of Artificial Intelligence Research 9
(1998), pp. 1–36. doi: 10.1613/jair.505.

[LH18] B. Lyu and A. Haque. „Deep Learning Based Tumor Type Classification Using
Gene Expression Data“. In: Proceedings of the 2018 ACM International Conference

on Bioinformatics, Computational Biology, and Health Informatics. Association for
Computing Machinery (ACM), 2018, pp. 89–96.

[LH19] I. Loshchilov and F. Hutter. „Decoupled Weight Decay Regularization“. In: 7th

International Conference on Learning Representations (ICLR). OpenReview.net,
2019.

[Li+20] H. Li et al. „NETT: Solving Inverse Problems With Deep Neural Networks“.
In: Inverse Problems 36.6 (2020), p. 065005. doi: 10.1088/1361-6420/ab6d57.

[LIT92] P. Langley, W. Iba and, and K. Thompson. „An Analysis of Bayesian Classi-
fiers“. In: Proceedings of the 10th National Conference on Artificial Intelligence.
AAAI Press, 1992, pp. 223–228.

[Liu+18] X. Liu et al. „DPatch: Attacking Object Detectors With Adversarial Patches“.
Preprint, arXiv: 1806.02299. 2018.

[Liu+20] L. Liu et al. „On the Variance of the Adaptive Learning Rate and Beyond“. In:
8th International Conference on Learning Representations (ICLR). OpenReview.net,
2020.

155

https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1109/CVPR.2016.318
https://doi.org/10.1038/nature14539
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/5.726791
https://doi.org/10.3390/jimaging7030044
https://doi.org/10.1613/jair.505
https://doi.org/10.1088/1361-6420/ab6d57

Bibliography

[LJ15] S. Lacoste-Julien and M. Jaggi. „On the Global Linear Convergence of Frank-
Wolfe Optimization Variants“. In: Advances in Neural Information Processing

Systems 28 (NIPS). Vol. 28. MIT Press, 2015, pp. 496–504.
[LL17] S. M. Lundberg and S.-I. Lee. „A Unified Approach to Interpreting Model

Predictions“. In: Advances in Neural Information Processing Systems 30 (NIPS).
Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017, pp. 4765–4774.

[LMP01] M. L. Littman, S. M. Majercik, and T. Pitassi. „Stochastic Boolean Satisfiability“.
In: Journal of Automated Reasoning 27.3 (2001), pp. 251–296.

[LP66] E. Levitin and B. Polyak. „Constrained Minimization Methods“. In: USSR

Computational Mathematics and Mathematical Physics 6.5 (1966), pp. 1–50. doi:
10.1016/0041-5553(66)90114-5.

[Lus+08] M. Lustig et al. „Compressed Sensing MRI“. In: IEEE Signal Processing Magazine

25.2 (2008), pp. 72–82. doi: 10.1109/MSP.2007.914728.
[Mac+19] J. Macdonald et al. „A Rate-Distortion Framework for Explaining Neural

Network Decisions“. Preprint, arXiv: 1905.11092. 2019.
[Mac+20] j. Macdonald et al. „Explaining Neural Network Decisions Is Hard“. XXAI

Workshop, 37th International Conference on Machine Learning (ICML). 2020.
[Mar+15] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems. Available online: http://tensorflow.org/, accessed on 2019-02-06.
2015.

[Mar00] P. Marquis. „Consequence Finding Algorithms“. In: Handbook of Defeasible

Reasoning and Uncertainty Management Systems: Algorithms for Uncertainty and

Defeasible Reasoning. Ed. by J. Kohlas and S. Moral. Springer Netherlands,
2000, pp. 41–145. doi: 10.1007/978-94-017-1737-3_3.

[Mar91] P. Marquis. „Extending Abduction from Propositional to First-Order Logic“.
In: International Workshop on Fundamentals of Artificial Intelligence Research

(FAIR). Springer, 1991, pp. 141–155.
[MB17] A. Mukherjee and A. Basu. „Lower Bounds Over Boolean Inputs for Deep

Neural Networks With ReLU Gates“. Preprint, arXiv: 1711.03073. 2017.
[MBP21] J. Macdonald, M. Besançon, and S. Pokutta. „Interpretable Neural Networks

With Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings“. Preprint,
arXiv: 2110.08105. 2021.

[McB+18] M. P. McBee et al. „Deep Learning in Radiology“. In: Academic Radiology 25.11
(2018), pp. 1472–1480. doi: 10.1016/j.acra.2018.02.018.

[McC86] R. K. McConnell. „Method of and Apparatus for Pattern Recognition“. 1986.
url: https://www.osti.gov/biblio/6007283.

[MHK20] A. Mokhtari, H. Hassani, and A. Karbasi. „Stochastic Conditional Gradient
Methods: From Convex Minimization to Submodular Maximization“. In:
Journal of Machine Learning Research 21.105 (2020), pp. 1–49.

[MHN13] A. L. Maas, A. Y. Hannun, and A. Y. Ng. „Rectifier Nonlinearities Improve
Neural Network Acoustic Models“. Deep Learning for Audio, Speech and
Language Processing Workshop, 30th International Conference on Machine
Learning (ICML). 2013.

156

https://doi.org/10.1016/0041-5553(66)90114-5
https://doi.org/10.1109/MSP.2007.914728
http://tensorflow.org/
https://doi.org/10.1007/978-94-017-1737-3_3
https://doi.org/10.1016/j.acra.2018.02.018
https://www.osti.gov/biblio/6007283

Bibliography

[Min01] T. P. Minka. „A Family of Algorithms for Approximate Bayesian Inference“.
AAI0803033. PhD thesis. Massachusetts Institute of Technology, 2001.

[MKG18] R. Michelmore, M. Kwiatkowska, and Y. Gal. „Evaluating Uncertainty Quan-
tification in End-To-End Autonomous Driving Control“. Preprint, arXiv:
1811.06817. 2018.

[MOM98] V. M. Manquinho, A. L. Oliveira, and J. Marques-Silva. „Models and Algo-
rithms for Computing Minimum-Size Prime Implicants“. In: Proceedings of

the 3rd International Workshop on Boolean Problems (IWBP). 1998.
[MP43] W. McCulloch and W. Pitts. „A Logical Calculus of Ideas Immanent in

Nervous Activity“. In: Bulletin of Mathematical Biophysics 5 (1943), pp. 127–147.
doi: 10.1007/BF02478259.

[MS12] J. L. Mueller and S. Siltanen. Linear and Nonlinear Inverse Problems With Practical

Applications. SIAM, 2012. doi: 10.1137/1.9781611972344.
[MSG20] G. R. Machado, E. Silva, and R. R. Goldschmidt. „Adversarial Machine Learn-

ing in Image Classification: A Survey Towards the Defender’s Perspective“.
Preprint, arXiv: 2009.03728. 2020.

[MSM18] G. Montavon, W. Samek, and K.-R. Müller. „Methods for Interpreting and
Understanding Deep Neural Networks“. In: Digital Signal Processing 73 (2018),
pp. 1–15. doi: 10.1016/j.dsp.2017.10.011.

[Muc+20] M. J. Muckley et al. „State-of-the-art Machine Learning MRI Reconstruction
in 2020: Results of the Second fastMRI Challenge“. Preprint, arXiv: 2012.06318.
2020.

[MW22] J. Macdonald and S. Wäldchen. „A Complete Characterisation of ReLU-
Invariant Distributions“. In: Proceedings of the 25th International Conference on

Artificial Intelligence and Statistics (AISTATS). Ed. by G. Camps-Valls, F. J. R.
Ruiz, and I. Valera. Vol. 151. PMLR, 2022, pp. 1457–1484.

[Nég+20] G. Négiar et al. „Stochastic Frank-Wolfe for Constrained Finite-Sum Mini-
mization“. Preprint, arXiv: 2002.11860. 2020.

[NH10] V. Nair and G. E. Hinton. „Rectified Linear Units Improve Restricted Boltz-
mann Machines“. In: Proceedings of the 27th International Conference on Inter-

national Conference on Machine Learning (ICML). Omnipress, 2010, pp. 807–
814.

[Nie18] M. A. Nielsen. Neural Networks and Deep Learning. Available online: http:
//neuralnetworksanddeeplearning.com/, accessed on 2019-01-15. Online
Book. 2018.

[NW06] J. Nocedal and S. J. Wright. Numerical Optimization. second. Springer, 2006.
[NW13] D. Needell and R. Ward. „Near-Optimal Compressed Sensing Guarantees for

Total Variation Minimization“. In: IEEE Transactions on Image Processing 22.10
(2013), pp. 3941–3949. doi: 10.1109/TIP.2013.2264681.

[Oal+20] L. Oala et al. „ML4H Auditing: From Paper to Practice“. In: Proceedings

of the Machine Learning for Health NeurIPS Workshop. Vol. 136. PMLR, 2020,
pp. 280–317.

157

https://doi.org/10.1007/BF02478259
https://doi.org/10.1137/1.9781611972344
https://doi.org/10.1016/j.dsp.2017.10.011
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://doi.org/10.1109/TIP.2013.2264681

Bibliography

[Ong+20] G. Ongie et al. „Deep Learning Techniques for Inverse Problems in Imaging“.
In: IEEE Journal on Selected Areas in Information Theory 1.1 (2020), pp. 39–56.
doi: 10.1109/JSAIT.2020.2991563.

[Ort+20] G. Ortiz-Jimenez et al. „Optimism in the Face of Adversity: Understanding
and Improving Deep Learning Through Adversarial Robustness“. Preprint,
arXiv: 2010.09624. 2020.

[OW98] M. Opper and O. Winther. „A Bayesian Approach to On-Line Learning“.
In: On-Line Learning in Neural Networks (1998), pp. 363–378. doi: 10.1017/
CBO9780511569920.017.

[OWT19] J. Oramas, K. Wang, and T. Tuytelaars. „Visual Explanation by Interpretation:
Improving Visual Feedback Capabilities of Deep Neural Networks“. In: 7th

International Conference on Learning Representations (ICLR). OpenReview.net,
2019.

[Par02] J. D. Park. „MAP Complexity Results and Approximation Methods“. In:
Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence (UAI).
Morgan Kaufmann Publishers, Inc., 2002, pp. 388–396.

[Par96] I. Parberry. Circuit Complexity and Feedforward Neural Networks. Hillsdale, NJ:
Lawrence Erlbaum, 1996.

[Pas+17] A. Paszke et al. Automatic Differentiation in PyTorch. Available online: https:
//openreview.net/forum?id=BJJsrmfCZ, accessed on 2020-09-21. Autodiff
Workshop, Conference on Neural Information Processing Systems (NIPS).
2017.

[PD07] F. Perronnin and C. Dance. „Fisher Kernels on Visual Vocabularies for Image
Categorization“. In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). Institute of Electrical and Electronics Engineers
(IEEE), 2007, pp. 1–8. doi: 10.1109/CVPR.2007.383266.

[PMG16] N. Papernot, P. McDaniel, and I. Goodfellow. „Transferability in Machine
Learning: From Phenomena to Black-Box Attacks Using Adversarial Samples“.
Preprint, arXiv: 1605.07277. 2016.

[Poo15] C. Poon. „On the Role of Total Variation in Compressed Sensing“. In: SIAM

Journal on Imaging Sciences 8.1 (2015), pp. 682–720. doi: 10.1137/140978569.
[Pro56] Y. V. Prokhorov. „Convergence of Random Processes and Limit Theorems

in Probability Theory“. In: Theory of Probability and Its Applications 1.2 (1956),
pp. 157–214. doi: 10.1137/1101016.

[PRV18] P. Petersen, M. Raslan, and F. Voigtlaender. „Topological Properties of the Set
of Functions Generated by Neural Networks of Fixed Size“. Preprint, arXiv:
1806.08459. 2018.

[PSM10] F. Perronnin, J. Sánchez, and T. Mensink. „Improving the Fisher Kernel
for Large-Scale Image Classification“. In: Computer Vision – ECCV 2010,

Proceedings, Part IV. Springer, Berlin Heidelberg, 2010, pp. 143–156. doi:
10.1007/978-3-642-15561-1_11.

158

https://doi.org/10.1109/JSAIT.2020.2991563
https://doi.org/10.1017/CBO9780511569920.017
https://doi.org/10.1017/CBO9780511569920.017
https://openreview.net/forum?id=BJJsrmfCZ
https://openreview.net/forum?id=BJJsrmfCZ
https://doi.org/10.1109/CVPR.2007.383266
https://doi.org/10.1137/140978569
https://doi.org/10.1137/1101016
https://doi.org/10.1007/978-3-642-15561-1_11

Bibliography

[PV18] P. Petersen and F. Voigtlaender. „Optimal Approximation of Piecewise Smooth
Functions Using Deep ReLU Neural Networks“. In: Neural Networks 108 (2018),
pp. 296–330. doi: 10.1016/j.neunet.2018.08.019.

[PW17] P. Putzky and M. Welling. „Recurrent Inference Machines for Solving Inverse
Problems“. Preprint, arXiv: 1706.04008. 2017.

[Qui86] J. R. Quinlan. „Induction of Decision Trees“. In: Machine Learning 1.1 (1986),
pp. 81–106. doi: 10.1023/A:1022643204877.

[Qui93] E. T. Quinto. „Singularities of the X-Ray Transform and Limited Data Tomog-
raphy in R2 and R3“. In: SIAM Journal on Mathematical Analysis 24.5 (1993),
pp. 1215–1225. doi: 10.1137/0524069.

[RBL20] A. Raj, Y. Bresler, and B. Li. „Improving Robustness of Deep-Learning-Based
Image Reconstruction“. In: Proceedings of the 37th International Conference on

Machine Learning (ICML). Ed. by H. Daumé and A. Singh. Vol. 119. PMLR,
2020, pp. 7932–7942.

[RCS20] Z. Ramzi, P. Ciuciu, and J.-L. Starck. „XPDNet for MRI Reconstruction: An
Application to the fastMRI 2020 Brain Challenge“. Preprint, arXiv: 2010.07290.
2020.

[Red+16] S. J. Reddi et al. „Stochastic Frank-Wolfe Methods for Nonconvex Optimiza-
tion“. In: 54th Annual Allerton Conference on Communication, Control, and

Computing (Allerton). Institute of Electrical and Electronics Engineers (IEEE),
2016, pp. 1244–1251. doi: 10.1109/ALLERTON.2016.7852377.

[Řeh11] R. Řehůřek. „Scalability of Semantic Analysis in Natural Language Process-
ing“. PhD thesis. Masaryk University, 2011.

[RFB15] O. Ronneberger, P. Fischer, and T. Brox. „U-Net: Convolutional Networks
for Biomedical Image Segmentation“. In: 18th International Conference Medical

Image Computing and Computer Assisted Intervention (MICCAI), Proceedings,

Part III. Ed. by N. Navab et al. Springer Cham, 2015, pp. 234–241. doi:
10.1007/978-3-319-24574-4_28.

[ROF92] L. I. Rudin, S. Osher, and E. Fatemi. „Nonlinear Total Variation Based Noise
Removal Algorithms“. In: Physica D: Nonlinear Phenomena 60.1–4 (1992),
pp. 259–268. doi: 10.1016/0167-2789(92)90242-F.

[RSG16] M. T. Ribeiro, S. Singh, and C. Guestrin. „“Why Should I Trust You?”:
Explaining the Predictions of Any Classifier“. In: Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining.
Association for Computing Machinery (ACM), 2016, pp. 1135–1144.

[RSG18] M. T. Ribeiro, S. Singh, and C. Guestrin. „Anchors: High-Precision Model-
Agnostic Explanations“. In: Proceedings of the 32nd AAAI Conference on Artificial

Intelligence. Vol. 32. 1. Association for the Advancement of Artificial Intelli-
gence (AAAI), 2018, pp. 1527–1535.

[RZL17] P. Ramachandran, B. Zoph, and Q. V. Le. „Searching for Activation Functions“.
Preprint, arXiv: 1710.05941. 2017.

[Sag94] H. Sagan. Space-Filling Curves. Ed. by J. H. Ewing, F. W. Gehring, and P. R.
Halmos. Spinger, New York, 1994. doi: 10.1007/978-1-4612-0871-6.

159

https://doi.org/10.1016/j.neunet.2018.08.019
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1137/0524069
https://doi.org/10.1109/ALLERTON.2016.7852377
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/10.1007/978-1-4612-0871-6

Bibliography

[SAH20] J. Schwab, S. Antholzer, and M. Haltmeier. „Big in Japan: Regularizing
Networks for Solving Inverse Problems“. In: Journal of Mathematical Imaging

and Vision 62.3 (2020), pp. 445–455. doi: 10.1007/s10851-019-00911-1.
[Sam+17] W. Samek et al. „Evaluating the Visualization of What a Deep Neural Network

Has Learned“. In: IEEE Transactions on Neural Networks and Learning Systems

28.11 (2017), pp. 2660–2673. doi: 10.1109/TNNLS.2016.2599820.
[SCC17] S. Sun, C. Chen, and L. Carin. „Learning Structured Weight Uncertainty in

Bayesian Neural Networks“. In: Proceedings of the 20th International Conference

on Artificial Intelligence and Statistics (AISTATS). Ed. by A. Singh and J. Zhu.
Vol. 54. PMLR, 2017, pp. 1283–1292.

[SCD18] A. Shih, A. Choi, and A. Darwiche. „A Symbolic Approach to Explaining
Bayesian Network Classifiers“. In: Proceedings of the 27th International Joint

Conference on Artificial Intelligence (ĲCAI). AAAI Press/ĲCAI, 2018, pp. 5103–
5111.

[Sch+17] J. Schlemper et al. „A Deep Cascade of Convolutional Neural Networks for
Dynamic MR Image Reconstruction“. In: IEEE Transactions on Medical Imaging

37.2 (2017), pp. 491–503. doi: 10.1109/TMI.2017.2760978.
[Sch+19] J. Schlemper et al. „dAUTOMAP: Decomposing AUTOMAP to Achieve

Scalability and Enhance Performance“. Preprint, arXiv: 1909.10995. 2019.
[SD91] J. Sietsma and R. J. Dow. „Creating Artificial Neural Networks That Gen-

eralize“. In: Neural Networks 4.1 (1991), pp. 67–79. doi: 10 . 1016 / 0893 -
6080(91)90033-2.

[SGK17] A. Shrikumar, P. Greenside, and A. Kundaje. „Learning Important Features
Through Propagating Activation Differences“. Preprint, arXiv: 1704.02685.
2017.

[Sha53] L. S. Shapley. „A Value for n-Person Games“. In: Contributions to the Theory of

Games II. Ed. by H. W. Kuhn and A. W. Tucker. Princeton University Press,
1953, pp. 307–317. doi: 10.1515/9781400881970-018.

[She+19] Z. Shen et al. „Complexities in Projection-Free Stochastic Non-convex Min-
imization“. In: Proceedings of the 22nd International Conference on Artificial

Intelligence and Statistics (AISTATS). Ed. by K. Chaudhuri and M. Sugiyama.
Vol. 89. PMLR, 2019, pp. 2868–2876.

[SHM14] D. Soudry, I. Hubara, and R. Meir. „Expectation Backpropagation: Parameter-
Free Training of Multilayer Neural Networks With Continuous or Discrete
Weights“. In: Advances in Neural Information Processing Systems 27 (NIPS).
Ed. by Z. Ghahramani et al. Vol. 27. Curran Associates, Inc., 2014.

[Sid+21a] E. Y. Sidky et al. Deep Learning for Inverse Problems: Sparse-View Computed

Tomography Image Reconstruction (DL-Sparse-View CT). 2021. url: https://
www.aapm.org/GrandChallenge/DL-sparse-view-CT/.

[Sid+21b] E. Y. Sidky et al. „Do CNNs Solve the CT Inverse Problem?“ In: IEEE

Transactions on Biomedical Engineering 68.6 (2021), pp. 1799–1810. doi: 10.
1109/TBME.2020.3020741.

160

https://doi.org/10.1007/s10851-019-00911-1
https://doi.org/10.1109/TNNLS.2016.2599820
https://doi.org/10.1109/TMI.2017.2760978
https://doi.org/10.1016/0893-6080(91)90033-2
https://doi.org/10.1016/0893-6080(91)90033-2
https://doi.org/10.1515/9781400881970-018
https://www.aapm.org/GrandChallenge/DL-sparse-view-CT/
https://www.aapm.org/GrandChallenge/DL-sparse-view-CT/
https://doi.org/10.1109/TBME.2020.3020741
https://doi.org/10.1109/TBME.2020.3020741

Bibliography

[Sim75] J. Simon. „On Some Central Problems in Computational Complexity.“ PhD
thesis. Cornell University, 1975.

[Smi+17] D. Smilkov et al. „SmoothGrad: Removing Noise by Adding Noise“. Preprint,
arXiv: 1706.03825. 2017.

[SP08] E. Y. Sidky and X. Pan. „Image Reconstruction in Circular Cone-Beam Com-
puted Tomography by Constrained, Total-Variation Minimization“. In: Physics

in Medicine and Biology 53.17 (2008), pp. 4777–4807. doi: 10.1088/0031-
9155/53/17/021.

[SP22] E. Y. Sidky and X. Pan. „Report on the AAPM Deep-Learning Sparse-View CT
(DL-Sparse-View CT) Grand Challenge“. Preprint, arXiv: 2109.09640. 2022.

[SPM02] J. L. Starck, E. Pantin, and F. Murtagh. „Deconvolution in Astronomy: A
Review“. In: Publications of the Astronomical Society of the Pacific 114.800 (2002),
pp. 1051–1069. doi: 10.1086/342606.

[Spr+15] J. T. Springenberg et al. „Striving for Simplicity: The All Convolutional Net“.
ICLR Workshop Track. 2015.

[Sri+14] N. Srivastava et al. „Dropout: A Simple Way to Prevent Neural Networks from
Overfitting“. In: Journal of Machine Learning Research 15.56 (2014), pp. 1929–
1958.

[Sri+20] A. Sriram et al. „End-To-End Variational Networks for Accelerated MRI
Reconstruction“. In: 23rd International Conference Medical Image Computing

and Computer Assisted Intervention (MICCAI), Proceedings, Part II. Ed. by A. L.
Martel et al. Vol. 12262. Lecture Notes in Computer Science. Springer, 2020,
pp. 64–73. doi: 10.1007/978-3-030-59713-9_7.

[STE13] C. Szegedy, A. Toshev, and D. Erhan. „Deep Neural Networks for Object
Detection“. In: Advances in Neural Information Processing Systems 26 (NIPS).
Ed. by C. J. C. Burges et al. Vol. 26. Curran Associates, Inc., 2013, pp. 2553–2561.

[SVZ13] K. Simonyan, A. Vedaldi, and A. Zisserman. „Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps“.
Preprint, arXiv: 1312.6034. 2013.

[SWM17] W. Samek, T. Wiegand, and K. Müller. „Explainable Artificial Intelligence: Un-
derstanding, Visualizing and Interpreting Deep Learning Models“. Preprint,
arXiv: 1708.08296. 2017.

[SWS17] D. Shen, G. Wu, and H.-I. Suk. „Deep Learning in Medical Image Analysis“.
In: Annual Review of Biomedical Engineering 19.1 (2017), pp. 221–248. doi:
10.1146/annurev-bioeng-071516-044442.

[SZ14] K. Simonyan and A. Zisserman. „Very Deep Convolutional Networks for
Large-Scale Image Recognition“. Preprint, arXiv: 1409.1556. 2014.

[Sze+14] C. Szegedy et al. „Intriguing Properties of Neural Networks“. Preprint, arXiv:
1312.6199. 2014.

[TK10] E. Å. Trumbelj and I. Kononenko. „An Efficient Explanation of Individual
Classifications Using Game Theory“. In: Journal of Machine Learning Research

11.1 (2010), pp. 1–18.

161

https://doi.org/10.1088/0031-9155/53/17/021
https://doi.org/10.1088/0031-9155/53/17/021
https://doi.org/10.1086/342606
https://doi.org/10.1007/978-3-030-59713-9_7
https://doi.org/10.1146/annurev-bioeng-071516-044442

Bibliography

[TV81] A. Tarantola and B. Valetta. „Inverse Problems = Quest for Information“. In:
Journal of Geophysics 50.1 (1981), pp. 159–170.

[UVL18] D. Ulyanov, A. Vedaldi, and V. Lempitsky. „Deep Image Prior“. In: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Institute of Electrical and Electronics Engineers (IEEE), 2018, pp. 9446–9454.
doi: 10.1109/CVPR.2018.00984.

[Vas+17] A. Vaswani et al. „Attention is All You Need“. In: Advances in Neural Information

Processing Systems 30 (NIPS). Ed. by I. Guyon et al. Vol. 30. Curran Associates,
Inc., 2017, pp. 5998–6008.

[Vid+15] M. M.-C. Vidovic et al. „Opening the Black Box: Revealing Interpretable
Sequence Motifs in Kernel-Based Learning Algorithms“. In: European Confer-

ence on Machine Learning and Knowledge Discovery in Databases (ECML PKDD).
Vol. 2. Springer, Cham, 2015, pp. 137–153.

[Vin+10] P. Vincent et al. „Stacked Denoising Autoencoders: Learning Useful Repre-
sentations in a Deep Network With a Local Denoising Criterion“. In: Journal

of Machine Learning Research 11.110 (2010), pp. 3371–3408.
[VS18] A. Virmaux and K. Scaman. „Lipschitz Regularity of Deep Neural Networks:

Analysis and Efficient Estimation“. In: Advances in Neural Information Processing

Systems 31 (NeurIPS). Ed. by S. Bengio et al. Vol. 31. Curran Associates, Inc.,
2018, pp. 3839–3848.

[Wäl+21] S. Wäldchen et al. „The Computational Complexity of Understanding Binary
Classifier Decisions“. In: Journal of Artificial Intelligence Research 70 (2021),
pp. 351–387. doi: 10.1613/jair.1.12359.

[Wan+04] Z. Wang et al. „Image Quality Assessment: From Error Visibility to Structural
Similarity“. In: IEEE Transactions on Image Processing 13.4 (2004), pp. 600–612.
doi: 10.1109/TIP.2003.819861.

[WH18] Y. Wu and K. He. „Group Normalization“. In: Computer Vision – ECCV 2018,

Proceedings, Part XIII. Springer, Cham, 2018, pp. 3–19. doi: 10.1007/978-3-
030-01261-8_1.

[Wil94] M. R. William T. Freeman. Orientation Histograms for Hand Gesture Recognition.
Tech. rep. TR94-03. MERL - Mitsubishi Electric Research Laboratories, 1994.

[WM13] S. Wang and C. Manning. „Fast Dropout Training“. In: Proceedings of the 30th

International Conference on Machine Learning (ICML). Ed. by S. Dasgupta and
D. McAllester. Vol. 28. 2. PMLR, 2013, pp. 118–126.

[WN19] M. J. Willemink and P. B. Noël. „The Evolution of Image Reconstruction for
CT – From Filtered Back Projection to Artificial Intelligence“. In: European

Radiology 29.5 (2019), pp. 2185–2195. doi: 10.1007/s00330-018-5810-7.
[Wol+17] J. M. Wolterink et al. „Generative Adversarial Networks for Noise Reduction

in Low-Dose CT“. In: IEEE Transactions on Medical Imaging 36.12 (2017),
pp. 2536–2545. doi: 10.1109/TMI.2017.2708987.

[Wol70] P. Wolfe. „Convergence theory in nonlinear programming“. In: Integer and

Nonlinear Programming. Ed. by J. Abadie. North-Holland, 1970, pp. 1–36.

162

https://doi.org/10.1109/CVPR.2018.00984
https://doi.org/10.1613/jair.1.12359
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1007/978-3-030-01261-8_1
https://doi.org/10.1007/978-3-030-01261-8_1
https://doi.org/10.1007/s00330-018-5810-7
https://doi.org/10.1109/TMI.2017.2708987

Bibliography

[Wu+19] A. Wu et al. „Deterministic Variational Inference for Robust Bayesian Neural
Networks“. In: 7th International Conference on Learning Representations (ICLR).
OpenReview.net, 2019.

[Wür+16] T. Würfl et al. „Deep Learning Computed Tomography“. In: 19th Interna-

tional Conference Medical Image Computing and Computer-Assisted Interven-

tion (MICCAI), Proceedings, Part III. Springer, Cham, 2016, pp. 432–440. doi:
10.1007/978-3-319-46726-9_50.

[Yam+90] K. Yamaguchi et al. „A Neural Network for Speaker-Independent Isolated
Word Recognition“. In: Proceedings of the 1st International Conference on Spoken

Language Processing (ICSLP). International Speech Communication Associa-
tion (ISCA), 1990, pp. 1077–1080.

[Yan+16] Y. Yang et al. „Deep ADMM-Net for Compressive Sensing MRI“. In: Advances

in Neural Information Processing Systems 29 (NIPS). Ed. by D. D. Lee et al.
Vol. 29. Curran Associates, Inc., 2016, pp. 10–18.

[Yan+18] Q. Yang et al. „Low-dose CT Image Denoising Using a Generative Adver-
sarial Network With Wasserstein Distance and Perceptual Loss“. In: IEEE

Transactions on Medical Imaging 37.6 (2018), pp. 1348–1357. doi: 10.1109/TMI.
2018.2827462.

[YSC19] A. Yurtsever, S. Sra, and V. Cevher. „Conditional Gradient Methods via
Stochastic Path-Integrated Differential Estimator“. In: Proceedings of the 36th

International Conference on Machine Learning (ICML). Ed. by K. Chaudhuri and
R. Salakhutdinov. Vol. 97. PMLR, 2019, pp. 7282–7291.

[Yua+19] X. Yuan et al. „Adversarial Examples: Attacks and Defenses for Deep Learn-
ing“. In: IEEE Transactions on Neural Networks and Learning Systems 30.9 (2019),
pp. 2805–2824. doi: 10.1109/TNNLS.2018.2886017.

[Zbo+18] J. Zbontar et al. „fastMRI: An Open Dataset and Benchmarks for Accelerated
MRI“. Preprint, arXiv: 1811.08839. 2018.

[ZF14] M. D. Zeiler and R. Fergus. „Visualizing and Understanding Convolutional
Networks“. In: Computer Vision – ECCV 2014, Proceedings, Part I. Ed. by D. Fleet
et al. Springer, Cham, 2014, pp. 818–833. doi: 10.1007/978-3-319-10590-
1_53.

[Zha+17] H. Zhao et al. „Loss Functions for Image Restoration With Neural Networks“.
In: IEEE Transactions on Computational Imaging 3.1 (2017), pp. 47–57. doi:
10.1109/TCI.2016.2644865.

[Zha+18] Z. Zhang et al. „Opening the Black Box of Neural Networks: Methods for
Interpreting Neural Network Models in Clinical Applications“. In: Annals of

Translational Medicine 6.11 (2018), pp. 1–11. doi: 10.21037/atm.2018.05.32.
[Zha+21] Y. Zhang et al. „A Survey on Neural Network Interpretability“. Preprint,

arXiv: 2012.14261. 2021.
[Zhu+18] B. Zhu et al. „Image Reconstruction by Domain-Transform Manifold Learning“.

In: Nature 555.7697 (2018), pp. 487–492. doi: 10.1038/nature25988.

163

https://doi.org/10.1007/978-3-319-46726-9_50
https://doi.org/10.1109/TMI.2018.2827462
https://doi.org/10.1109/TMI.2018.2827462
https://doi.org/10.1109/TNNLS.2018.2886017
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1109/TCI.2016.2644865
https://doi.org/10.21037/atm.2018.05.32
https://doi.org/10.1038/nature25988

III

Appendices

A

Deferred Proofs of Chapter 3

A.1 Raising the Probability Threshold

We give constructive proofs of Lemmas 3.18 and 3.22, starting with the first.

Proof of Lemma 3.18. Let Ψ : {0, 1}𝑛 → {0, 1} be arbitrary and 0 ≤ 𝛿1 < 𝛿2 < 1. We will
construct a monotone function Π = Π

𝛿2
𝛿1 ,𝑛

: {0, 1}𝑑 → {0, 1} such that

Pz [Ψ(z)] > 𝛿1 ⇐⇒ P(z,r) [Ψ(z) ∨Π(r)] ≥ 𝛿2 , (A.1)

with

𝑑 ∈ 𝒪
((
𝑛 + log2

(
1 − 𝛿1
1 − 𝛿2

))2
)
.

In our context 𝛿1 and 𝛿2 are considered as constant and therefore 𝑑 ∈ 𝒪(𝑛2).
Denote Ψ′ : {0, 1}𝑛 × {0, 1}𝑑 → {0, 1} : (z, r) ↦→ Ψ(z) ∨Π(r), then

P[Ψ′] = P[Ψ] + (1 − P[Ψ])P[Π], (A.2)

which is monotonically increasing in both P[Ψ] and P[Π]. Thus, it suffices to consider the
edge case when P[Ψ] is close to 𝛿1. Since P[Ψ] can only take values in

{ 0
2𝑛 ,

1
2𝑛 , . . . ,

2𝑛
2𝑛

}
we

see that (A.1) is equivalent to the two conditions

P[Ψ] = ⌊𝛿12𝑛⌋
2𝑛 =⇒ P[Ψ′] < 𝛿2 ,

P[Ψ] = ⌊𝛿12𝑛⌋ + 1
2𝑛 =⇒ P[Ψ′] ≥ 𝛿2 ,

which together with (A.2) is equivalent to

⌊𝛿12𝑛⌋
2𝑛 + 2𝑛 − ⌊𝛿12𝑛⌋

2𝑛 P[Π] < 𝛿2 (A.3)

⌊𝛿12𝑛⌋ + 1
2𝑛 + 2𝑛 − ⌊𝛿12𝑛⌋ − 1

2𝑛 P[Π] ≥ 𝛿2. (A.4)

In the case 𝛿1 < 𝛿2 ≤ ⌊𝛿12𝑛⌋+1
2𝑛 these conditions are already fulfilled if we simply set Π ≡ 0.

Otherwise, if 𝛿2 > ⌊𝛿12𝑛⌋+1
2𝑛 , rearranging (A.3) and (A.4) yields the bounds

𝑎 ≤ P[Π] < 𝑏

167

Appendix A Deferred Proofs of Chapter 3

on P[Π], where

𝑎 =
𝛿22𝑛 − ⌊𝛿12𝑛⌋ − 1
2𝑛 − ⌊𝛿12𝑛⌋ − 1

,

𝑏 =
𝛿22𝑛 − ⌊𝛿12𝑛⌋
2𝑛 − ⌊𝛿12𝑛⌋ .

It is not hard to check that indeed we have 0 ≤ 𝑎 < 𝑏 ≤ 1.
In Appendix A.4 we show for 𝜂 ∈ [0, 1] and ℓ ∈ N the existence of a monotone

DNF-function Π𝜂,ℓ : {0, 1}𝑑 → {0, 1} such that Π𝜂,ℓ (0𝑑) = 0, Π𝜂,ℓ (1𝑑) = 1, and

|P[Π𝜂,ℓ] − 𝜂| ≤ 2−ℓ

with 𝑑 ≤ ℓ (ℓ+3)
2 ∈ 𝒪(ℓ 2). We conclude by choosing

𝜂 =
𝑏 + 𝑎

2 ,

ℓ =

⌊
− log2

(
𝑏 − 𝑎

2

)⌋
+ 1 ∈ 𝒪

(
𝑛 + log2

(
1 − 𝛿1
1 − 𝛿2

))
,

and setting Π = Π𝜂,ℓ . We get 𝑑 ∈ 𝒪(ℓ 2) = 𝒪
((
𝑛 + log2

(
1−𝛿1
1−𝛿2

))2
)
, which finishes the proof

of Lemma 3.18.

Proof of Lemma 3.22. We proceed analogously to before. For 0 ≤ 𝛿1 ≤ 𝛿2 < 1, we construct
a monotone function Π = Π

𝛿2
𝛿1 ,𝑛

: {0, 1}𝑑 → {0, 1} such that

Pz[Ψ(z)] ≥ 𝛿1 ⇐⇒ P(z,r)[Ψ(z) ∨Π(r)] > 𝛿2 ,

with

𝑑 ∈ 𝒪
((
𝑑 + log2

(
1 − 𝛿1
1 − 𝛿2

))2
)
.

Again, 𝛿1 and 𝛿2 are considered constant in our setting and therefore 𝑑 ∈ 𝒪(𝑛2).
Similar to before, in the case that 𝛿1 ≤ 𝛿2 < ⌈𝛿12𝑛⌉

2𝑛 , we can simply set Π ≡ 0. Otherwise,
we get the bounds

𝑎 < P[Π] ≤ 𝑏
with

𝑎 =
𝛿22𝑛 − ⌈𝛿12𝑛⌉
2𝑛 − ⌈𝛿12𝑛⌉ ,

𝑏 =
𝛿22𝑛 − ⌈𝛿12𝑛⌉ + 1
2𝑛 − ⌈𝛿12𝑛⌉ + 1

.

Again, we can check that 0 ≤ 𝑎 < 𝑏 ≤ 1, and set

𝜂 =
𝑏 + 𝑎

2 ,

ℓ =

⌊
− log2

(
𝑏 − 𝑎

2

)⌋
+ 1 ∈ 𝒪

(
𝑛 + log2

(
1 − 𝛿1
1 − 𝛿2

))
,

168

A.2 Lowering the Probability Threshold

and Π = Π𝜂,ℓ with 𝑑 ∈ 𝒪(ℓ 2) = 𝒪
((
𝑛 + log2

(
1−𝛿1
1−𝛿2

))2
)
, which concludes the proof of

Lemma 3.22.

A.2 Lowering the Probability Threshold

We give constructive proofs of Lemmas 3.19 and 3.23, starting with the first.

Proof of Lemma 3.19. Let Ψ : {0, 1}𝑛 → {0, 1} be arbitrary and 0 < 𝛿1 ≤ 𝛿2 ≤ 1. We will
construct a monotone function Π = Π

𝛿2
𝛿1 ,𝑛

: {0, 1}𝑑 → {0, 1} such that

Pz[Ψ(z)] > 𝛿2 ⇐⇒ P(z,r)[Ψ(z) ∧Π(r)] ≥ 𝛿1 , (A.5)

with

𝑑 ∈ 𝒪
((
𝑛 + log2

(
𝛿2
𝛿1

))2
)
.

In our context 𝛿1 and 𝛿2 are considered constant and therefore 𝑑 ∈ 𝒪(𝑛2).
Denote Ψ′ : {0, 1}𝑛 × {0, 1}𝑑 → {0, 1} : (z, r) ↦→ Ψ(z) ∧Π(r), then

P[Ψ′] = P[Ψ]P[Π], (A.6)

which is monotonically increasing in both P[Ψ] and P[Π]. Thus, it suffices to consider the
edge case when P[Ψ] is close to 𝛿2. Since P[Ψ] can only take values in

{ 0
2𝑛 ,

1
2𝑛 , . . . ,

2𝑛
2𝑛

}
we

see that (A.5) is equivalent to the two conditions

P[Ψ] = ⌊𝛿22𝑛⌋
2𝑛 =⇒ P[Ψ′] < 𝛿1 ,

P[Ψ] = ⌊𝛿22𝑛⌋ + 1
2𝑛 =⇒ P[Ψ′] ≥ 𝛿1 ,

which together with (A.6) is equivalent to

⌊𝛿22𝑛⌋
2𝑛 P[Π] < 𝛿1 (A.7)

⌊𝛿22𝑛⌋ + 1
2𝑛 P[Π] ≥ 𝛿1. (A.8)

In the case ⌊𝛿22𝑛⌋
2𝑛 < 𝛿1 ≤ 𝛿2 these conditions are already fulfilled if we simply set Π ≡ 1.

Otherwise, if 𝛿1 ≤ ⌊𝛿22𝑛⌋
2𝑛 , rearranging (A.7) and (A.8) yields the bounds

𝑎 < P[Π] ≤ 𝑏

on P[Π], where

𝑎 =
𝛿12𝑛

⌊𝛿22𝑛⌋ + 1
,

𝑏 =
𝛿12𝑛

⌊𝛿22𝑛⌋ .

169

Appendix A Deferred Proofs of Chapter 3

It is not hard to check that indeed we have 0 ≤ 𝑎 < 𝑏 ≤ 1.
In Appendix A.4, we show for 𝜂 ∈ [0, 1] and ℓ ∈ N the existence of a monotone

DNF-function Π𝜂,ℓ : {0, 1}𝑑 → {0, 1} such that Π𝜂,ℓ (0𝑑) = 0, Π𝜂,ℓ (1𝑑) = 1, and

|P[Π𝜂,ℓ] − 𝜂| ≤ 2−ℓ

with 𝑑 ≤ ℓ (ℓ+3)
2 ∈ 𝒪(ℓ 2). We conclude by choosing

𝜂 =
𝑏 + 𝑎

2 ,

ℓ =

⌊
− log2

(
𝑏 − 𝑎

2

)⌋
+ 1 ∈ 𝒪

(
𝑛 + log2

(
𝛿2
𝛿1

))
,

and setting Π = Π𝜂,ℓ . We get 𝑑 ∈ 𝒪(ℓ 2) = 𝒪
((
𝑛 + log2

(
𝛿2
𝛿1

))2
)
, which finishes the proof of

Lemma 3.19.

Proof of Lemma 3.23. We proceed analogously to before. For 0 < 𝛿1 < 𝛿2 ≤ 1, we construct
a monotone function Π = Π𝛿2

𝛿1 ,𝑛
: {0, 1}𝑑 → {0, 1} such that

Pz[Ψ(z)] ≥ 𝛿2 ⇐⇒ P(z,r)[Ψ(z) ∧Π(r)] > 𝛿1 ,

with

𝑑 ∈ 𝒪
((
𝑛 + log2

(
𝛿2
𝛿1

))2
)
.

Again, 𝛿1 and 𝛿2 are considered constant in our setting and therefore 𝑑 ∈ 𝒪(𝑛2).
Similar to before, in case that ⌈𝛿22𝑛⌉−1

2𝑛 ≤ 𝛿1 < 𝛿2, we can simply set Π ≡ 1. Otherwise,
we get the bounds

𝑎 < P[Π] ≤ 𝑏

with

𝑎 =
𝛿12𝑛

⌈𝛿22𝑛⌉

𝑏 =
𝛿12𝑛

⌈𝛿22𝑛⌉ − 1
.

Again, we can check that 0 ≤ 𝑎 < 𝑏 ≤ 1, and set

𝜂 =
𝑏 + 𝑎

2 ,

ℓ =

⌊
− log2

(
𝑏 − 𝑎

2

)⌋
+ 1 ∈ 𝒪

(
𝑛 + log2

(
𝛿2
𝛿1

))
,

and Π = Π𝜂,ℓ with 𝑑 ∈ 𝒪(ℓ 2) = 𝒪
((
𝑛 + log2

(
𝛿2
𝛿1

))2
)
, which concludes the proof of

Lemma 3.23.

170

A.3 Neutral Operation

A.3 Neutral Operation

We provide a constructive proof of Lemma 3.20.

Proof of Lemma 3.20. Let Ψ : {0, 1}𝑛 → {0, 1} be arbitrary and 0 < 𝛿 < 1. We will construct
a function Γ = Γ𝛿,𝑛 : {0, 1}𝑑 → {0, 1} so that for some 𝑇𝛿,𝑛 ∈ Nwe have

Pz [Ψ(z)] ≥ 𝛿 ⇐⇒ P(z,r,t)

(Ψ(z) ∧ Γ(r)) ∨ ©«
𝑇∧
𝑗=1

𝑡 𝑗
ª®¬
 ≥ 𝛿, (A.9)

for all 𝑇 ≥ 𝑇𝛿,𝑛 and

𝑑 + 𝑇𝛿,𝑛 ∈ 𝒪
(
log

(
1
𝛿

)
+ 𝑛2

)
.

We introduce Ψ′ = Ψ ∧ Γ and Ψ′′ = Ψ′ ∨ (∧𝑇
𝑗=1 𝑡 𝑗). Let us distinguish three cases

Case I: 𝛿 ≤ 2−𝑛 ,

Case II: 𝛿 > 2−𝑛 and ⌈𝛿2𝑛⌉ − 𝛿2𝑛 ≥ 2
3 ,

Case III: 𝛿 > 2−𝑛 and ⌈𝛿2𝑛⌉ − 𝛿2𝑛 <
2
3 .

Let us begin with the construction for the first case. Here, we see that P[Ψ] < 𝛿 is
equivalent to P[Ψ] = 0. We simply set Γ ≡ 1 and 𝑇𝛿,𝑛 = ⌈log(1𝛿)⌉ + 1. It is easy to check that
this satisfies (A.9).

Next, for the second case, we want to construct Γ such that

P[Ψ] = ⌈𝛿2𝑛⌉
2𝑛 =⇒ P[Ψ′] ≥ 𝛿, (A.10)

P[Ψ] = ⌈𝛿2𝑛⌉ − 1
2𝑛 =⇒ P[Ψ′] < 𝛿 − 1

32−𝑛 , (A.11)

which results in the condition
𝑎 ≤ P[Γ] < 𝑏

with

𝑎 =
𝛿2𝑛

⌈𝛿2𝑛⌉

𝑏 =
𝛿2𝑛 − 1

3
⌈𝛿2𝑛⌉ − 1

.

Thus we can set Γ = Π𝜂,ℓ according to Appendix A.4 with 𝜂 = 𝑏+𝑎
2 and ℓ = ⌊log(2

𝑏−𝑎)⌋ + 1.
Using the fact that 𝛿 > 2−𝑛 and hence

𝑏 − 𝑎 =
𝛿2𝑛 − 1

3 ⌈𝛿2𝑛⌉
⌈𝛿2𝑛⌉(⌈𝛿2𝑛⌉ − 1) ≥

1
32−2𝑛 ,

171

Appendix A Deferred Proofs of Chapter 3

we obtain ℓ ≤ 2𝑛 + ⌊log(6)⌋ + 1 = 2𝑛 + 3. From Appendix A.4 we known that 𝑑 ∈ 𝒪(ℓ 2)
and thus 𝑑 ∈ 𝒪(𝑛2). We continue to construct Ψ′′ by choosing 𝑇𝛿,𝑛 such that

P[Ψ′] ≥ 𝛿 =⇒ P[Ψ′′] ≥ 𝛿,

P[Ψ′] < 𝛿 − 1
32−𝑑 =⇒ P[Ψ′′] < 𝛿,

holds for all 𝑇 ≥ 𝑇𝛿,𝑛 . The first condition is automatically fulfilled. From

P[Ψ′′] = P[Ψ′] + (1 − P[Ψ′])2−𝑇 ,

as well as (1 − P[Ψ′]) ≤ 1 we observe that

2−𝑇 <
1
32−𝑛

is sufficient for the other condition. Thus, we choose 𝑇𝛿,𝑛 = 𝑛 + ⌊log(3)⌋ + 1 = 𝑛 + 2.
Finally, for the third case, we again want to construct Γ so that (A.10) and (A.11) hold.

Here, this is already satisfied by setting Γ ≡ 1. We continue analogously as in the second
case and choose the same 𝑇𝛿,𝑛 .

A.4 Construction of the Functions Π𝜂,ℓ

For 𝜂 ∈ [0, 1] (the target probability) and ℓ ∈ N (the accuracy) we construct a Boolean
function Π𝜂,ℓ : {0, 1}𝑑 → {0, 1} in disjunctive normal form with 𝑑 ∈ 𝒪(ℓ 2), Π𝜂,ℓ (0𝑑) = 0,
Π𝜂,ℓ (1𝑑) = 1, and

|𝜂 − P[Π𝜂,ℓ]| ≤ 2−ℓ .

If 𝜂 ≤ 2−ℓ , we can simply choose Π𝜂,ℓ (𝑧1 , . . . , 𝑧ℓ) =
∧ℓ
𝑗=1 𝑧 𝑗 . So from now on assume

2−ℓ < 𝜂 ≤ 1. In this case we construct a sequence of functions Π𝑖 : {0, 1}𝑑𝑖 → {0, 1}
such that 𝑝𝑖 = P[Π𝑖] is monotonically increasing and converges to 𝜂 from below. We
proceed according to the following iterative procedure: Start with the constant function
Π0 ≡ 0. Given Π𝑖 and 𝑝𝑖 we can stop and set Π𝜂,ℓ = Π𝑖 if |𝜂 − 𝑝𝑖 | ≤ 2−ℓ . Otherwise, we set
𝑑𝑖+1 = 𝑑𝑖 + Δ𝑑𝑖 with

Δ𝑑𝑖 = argmin{ 𝑑 ∈ N : 𝑝𝑖 + (1 − 𝑝𝑖)2−𝑑 ≤ 𝜂 }, (A.12)

and

Π𝑖+1(𝑧1 , . . . , 𝑧𝑑𝑖+1) = Π𝑖(𝑧1 , . . . , 𝑧𝑑𝑖) ∨
©«

𝑑𝑖+1∧
𝑗=𝑑𝑖+1

𝑧 𝑗
ª®¬ .

Clearly, we obtain 𝑝𝑖+1 = 𝑝𝑖 + (1 − 𝑝𝑖)2−Δ𝑑𝑖 . We will see below that Δ𝑑𝑖 can not be too large
and thus (A.12) can be efficiently computed by sequential search.

Lemma A.1. The sequence (𝑝𝑖)𝑖∈N is monotonically increasing and we have

|𝜂 − 𝑝𝑖+1 | ≤
1
2 |𝜂 − 𝑝𝑖 |

172

A.4 Construction of the Functions Π𝜂,ℓ

for all 𝑖 ∈ N. In particular |𝜂 − 𝑝𝑖 | ≤ 2−𝑖 and 𝑝𝑖 → 𝜂 as 𝑖 →∞.

Proof. Since 0 = 𝑝0 ≤ 𝜂 and by choice of Δ𝑑𝑖 , we have 𝑝𝑖 ≤ 𝜂 for all 𝑖 ∈ N. Also from (A.12)
we know that 𝑝𝑖 + (1 − 𝑝𝑖)2−(Δ𝑑𝑖−1) > 𝜂 since otherwise Δ𝑑𝑖 would be chosen smaller.
Therefore,

𝜂 − 𝑝𝑖+1 = 𝜂 − 𝑝𝑖 − (1 − 𝑝𝑖)2−Δ𝑑𝑖

= 𝜂 − 1
2𝑝𝑖 −

1
2 (𝑝𝑖 + (1 − 𝑝𝑖)2

−(Δ𝑑𝑖−1))

≤ 1
2 (𝜂 − 𝑝𝑖).

The second part simply follows by repeatedly applying the above recursion 𝑖 times and
from the fact that 𝜂 − 𝑝0 = 𝜂 ≤ 1.

We conclude that the desired accuracy is reached after at most ℓ iterations in which case
we stop and set Π𝜂,ℓ = Πℓ . It remains to determine how many variables need to be used in
total. We first bound how many variables are added in each step.

Lemma A.2. For any 𝑖 ∈ N, we have Δ𝑑𝑖 < − log2(𝜂 − 𝑝𝑖) + 1.

Proof. As before we know 𝑝𝑖 + (1 − 𝑝𝑖)2−(Δ𝑑𝑖−1) > 𝜂 since otherwise Δ𝑑𝑖 would be chosen
smaller. This implies

2−(Δ𝑑𝑖−1) >
𝜂 − 𝑝𝑖
1 − 𝑝𝑖

≥ 𝜂 − 𝑝𝑖 ,

and therefore Δ𝑑𝑖 < − log2(𝜂 − 𝑝𝑖) + 1.

This can finally be used to bound how many variables are used in total.

Lemma A.3. The total number of variables for Π𝜂,ℓ = Πℓ is

𝑑 = 𝑑ℓ =

ℓ∑
𝑖=1

Δ𝑑𝑖−1 ∈ 𝒪(ℓ 2).

Proof. From Lemma A.1 we get 𝜂 − 𝑝𝑖 ≥ 2(𝜂 − 𝑝𝑖+1) and thus 𝜂 − 𝑝𝑖 ≥ 2ℓ−1−𝑖(𝜂 − 𝑝ℓ−1).
Without loss of generality we can assume 𝜂 − 𝑝ℓ−1 ≥ 2−ℓ since otherwise we can stop the

173

Appendix A Deferred Proofs of Chapter 3

iterative construction of Π𝜂,ℓ at ℓ − 1. Using Lemma A.2, this immediately results in

𝑑 =

ℓ∑
𝑖=1

Δ𝑑𝑖−1

≤
ℓ∑
𝑖=1
− log2(𝜂 − 𝑝𝑖−1) + 1

≤
ℓ∑
𝑖=1
− log2(2ℓ−𝑖(𝜂 − 𝑝ℓ−1)) + 1

≤
ℓ∑
𝑖=1
− log2(2−𝑖) + 1

=
ℓ (ℓ + 1)

2 + ℓ ∈ 𝒪(ℓ 2).

174

B

Additions to Chapter 4

B.1 Algorithm Descriptions

The RDE variants (L-RDE), (RC-RDE), and (Ord-RDE) of Section 4.3 result in constrained
optimization problems with non-convex objectives over convex and compact domains
𝐶 ⊆ R𝑛 . We will now describe two possibilities for numerically solving such problems of
the form

minimize 𝐷(s)
subject to s ∈ 𝐶.

B.1.1 Projected Gradient Descent

Variants of Gradient Descent (GD) are by far the most popular optimization methods
when working with neural networks and can also be used for RDE. 1 Incorporating the
constraint s ∈ 𝐶 can be achieved through Projected Gradient Descent (PGD). This requires
a projection step

s𝑡+1 = proj𝐶 (s𝑡 − 𝜂𝑡∇𝐷(s𝑡))
with step size 𝜂𝑡 > 0 for each update in order to maintain feasible iterates. Here proj𝐶(·)
denotes the Euclidean projection

proj𝐶(x) = argmin
v∈𝐶

∥v − x∥2.

Depending on the feasible region 𝐶 projections can be challenging and computationally
costly. Algorithm 1 and Algorithm 2 show PGD for the (L-RDE) and (RC-RDE) problems
respectively. In contrast, PGD can not directly be used for the (Ord-RDE) problem, since
no exact projection method specific to its feasible region (the Birkhoff polytope) is known,
see Appendix B.1.3.

B.1.2 Frank-Wolfe Algorithms

An alternative projection-free first-order method is the Frank-Wolfe (FW) algorithm [FW56]
or Conditional Gradient method [LP66]. At its core, the Frank-Wolfe algorithm solves a
Linear Minimization Oracle (LMO)

v𝑡 = argmin
v∈𝐶

⟨∇𝐷(s𝑡), v⟩ , (B.1)

1More generally, proximal methods can be considered for non-smooth problems, e.g., including an ℓ1-norm
sparsity penalty as in (L-RDE).

175

Appendix B Additions to Chapter 4

over the feasible region 𝐶 and then moves in direction v𝑡 via the update

s𝑡+1 = s𝑡 + 𝜂𝑡(v𝑡 − s𝑡),

with step size 𝜂𝑡 ∈ [0, 1]. Feasibility is maintained for convex regions 𝐶 since the new
iterate is a convex combination of two feasible points s𝑡 and v𝑡 . Since its first appearance,
several algorithmic variations have been developed that enhance the performance of
the original algorithm, while maintaining many of its advantages. They offer potential
improvements over vanilla Frank-Wolfe in terms of iteration count or runtime in certain
specialized settings. In our experiments, we consider vanilla Frank-Wolfe (FW), Away-Step
Frank-Wolfe (AFW), Lazified Conditional Gradients (LCG), Lazified Away-Step Frank-
Wolfe (LAFW), and Stochastic Frank-Wolfe (SFW). The interested reader is referred to a
more detailed presentation of the algorithm variants and their implementation in [BCP21].

Vanilla Frank-Wolfe (FW). In its basic version, see Algorithm 3, a linear approximation
to the objective function at the current iterate (obtained from first-order information) is
minimized over the feasible region. Such a Linear Minimization Oracle (LMO) is often
computationally less costly than a corresponding projection (which amounts to solving
a quadratic problem). The next FW iterate is obtained as a convex combination of the
solution to the LMO and the current iterate. For convex regions 𝐶, this guarantees that
the algorithm produces iterates that remain feasible throughout all iterations. This basic
variant has the lowest memory requirements among all deterministic variants since it
only requires keeping track of the current iterate. Hence, it is well suited for large-scale
problems. However, other variants can achieve improvements in terms of convergence
speed (iteration count and time for more specialized setups).

Stochastic Frank-Wolfe (SFW). In some cases, evaluating the full objective function and
its gradients is expensive, but cheaper unbiased estimators are available. The typical
example is that of objective functions that are sums of a large number of terms, such as
in the (Ord-RDE) formulation. An estimator is given by evaluating the sum only over a
randomly chosen subset of terms. The stochastic version of Frank-Wolfe [HL16] developed
in Algorithm 4 uses a gradient estimate instead of the exact gradient in combination with
a momentum term [MHK20] to build the linear approximation to the objective in each
iteration. Then the LMO is evaluated and a step is taken exactly as in the vanilla FW
algorithm. Different variants of SFW have recently been studied also in the non-convex
setting [YSC19; She+19; Has+20; Nég+20].

Away-Step Frank-Wolfe (AFW). While the vanilla Frank-Wolfe algorithm can only move
toward an extreme point of the feasible set (solution of the LMO at the current iterate),
the Away-Step Frank-Wolfe algorithm [Wol70; GM86; LJ15] is allowed to move away from
some extreme points. More specifically, it maintains an active set of extreme points used in
the previous iterations as well as a convex decomposition of the current iterate in terms of
the active set. At each iteration either a standard FW step toward a new extreme point
or a step away from an extreme point in the active set is taken, whichever promises a
better decrease in the objective function. This can result in faster convergence (in terms of
iteration count and time) but requires additional memory to store the active set.

176

B.1 Algorithm Descriptions

Lazified Conditional Gradients (LCG). In some cases the evaluation of the LMO might
be costly (even if it is still cheaper than a corresponding projection). In such a setting, the
idea of lazy FW steps can help to avoid unnecessary evaluations of the LMO. Instead of
exactly solving the LMO subproblem, an approximate solution that guarantees enough
progress is used [BPZ19]. In other words, the LMO can be replaced by a weak separation
oracle [BPZ19], i.e., an oracle returning an extreme point with sufficient decrease of
the linear objective or a certificate that such a point does not exist. More precisely, the
algorithm maintains a cache of previous extreme points and at each iteration searches
the cache for a direction that provides sufficient progress. If this is not possible, a new
extreme point is obtained via the LMO and added to the cache. The lazification can result
in increased performance (due to fewer LMO evaluations) but requires additional memory
to store the cache of previous extreme points.

Lazified Away-Step Frank-Wolfe (LAFW). LAFW uses the same idea of a weak separation
oracle as in LCG. The search for an appropriate direction providing sufficient progress is
carried out over the active set of AFW.

Parameter Choices. The basic step size rule

𝜂𝑡 =
1√
𝑡 + 1

(B.2)

can be used for non-convex objectives [Red+16; Com21]. An adaptive step-size choice
similar to one proposed by [CBP21] is

𝜂𝑡 =
2−𝑟𝑡√
𝑡 + 1

(B.3)

where 𝑟𝑡 ∈ N is found by repeated increments starting from 𝑟𝑡−1 until primal progress
is made. This ensures monotonicity in the objective, which is not necessarily the case
for the basic rule (B.2). In our experiments, we use the monotone rule (B.3) for FW,
AFW, LCG, and LAFW and a corresponding (rescaled) variant also for PGD. Enforcing
monotonicity does not make sense in the stochastic setting and we use the basic rule (B.2)
for SFW. We test multiple configurations of SFW with constant or increasing batch sizes
and momentum factors as proposed by Hazan and Luo [HL16] and Mokhtari, Hassani,
and Karbasi [MHK20] respectively. A comparison can be found in Figure B.8. In all other
experiments we only show the best performing configuration with constant batch size
𝑏𝑡 = 40 and no momentum, i.e., 𝜌𝑡 = 0. In all cases, we terminate after a maximal number
of 𝑇 = 2000 iterations or if the dual gap ⟨s𝑡 − v𝑡 ,∇𝐷(s𝑡)⟩ (respectively ⟨𝚷𝑡 −V𝑡 ,M𝑡⟩ for
SFW) drops below the prescribed threshold � = 10−7.

B.1.3 Feasible Regions, Projections, and Linear Minimization Oracles

Different feasible regions are of importance for the different RDE variants. For each, we
give a brief definition and description of the corresponding Linear Minimization Oracle
and Euclidean projection. In the following we denote the component-wise clipping of a

177

Appendix B Additions to Chapter 4

vector s to lower and upper bounds given by vectors ℓ and u as

(clip(s, ℓ , u))𝑗 =

ℓ 𝑗 , if 𝑠 𝑗 ≤ ℓ 𝑗
𝑠 𝑗 , if ℓ 𝑗 < 𝑠 𝑗 < 𝑢𝑗

𝑢𝑗 , if 𝑠 𝑗 ≥ 𝑢𝑗 .

Unit Cube. The unit cube in R𝑛 is the set [0, 1]𝑛 .
LMO: A valid solution v to (B.1) for the unit cube is given by the vector with components
𝑣 𝑗 = 1 if (∇𝐷(s))𝑗 < 0 and 𝑣 𝑗 = 0 otherwise. More generally, for a box with component-wise
lower and upper bounds given by vectors ℓ and u a LMO solution is 𝑣 𝑗 = ℓ 𝑗 if (∇𝐷(s))𝑗 > 0,
𝑣 𝑗 = 𝑢𝑗 if (∇𝐷(s))𝑗 < 0, and 𝑣 𝑗 ∈ [ℓ 𝑗 , 𝑢𝑗] if (∇𝐷(s))𝑗 = 0. The complexity of finding this
solution is 𝒪(𝑛).
Projection: Projections onto the unit cube are given by the clipping function clip(s, 0𝑛 , 1𝑛).
More generally, for a box with component-wise lower and upper bounds given by vectors
ℓ and u the projection is clip(s, ℓ , u). The complexity of finding the projection is 𝒪(𝑛).
The feasible region 𝐶 = [0, 1]𝑛 for the (L-RDE) problem is the unit cube.

𝑘-Sparse Polytope. For 𝑘 ∈ [𝑛], the 𝑘-sparse polytope of radius 𝜏 > 0 is the intersection of
the closed ℓ1-ball 𝐵1(𝜏𝑘) of radius 𝜏𝑘 and the closed ℓ∞-ball (hypercube) 𝐵∞(𝜏) of radius 𝜏.
It is the convex hull of vectors in R𝑛 with exactly 𝑘 non-zero entries, each taking the values
𝜏 or −𝜏.
LMO: A valid solution v to (B.1) for the 𝑘-sparse polytope is given by the vector with
exactly 𝑘 non-zero entries at the components where |∇𝐷(s)| takes its 𝑘 largest values. If 𝑣 𝑗
is such a non-zero entry then it is equal to −𝜏 sign((∇𝐷(s))𝑗). The complexity of finding
this solution is 𝒪(𝑛 log 𝑘).
Projection: Gupta, Kumar, and Xiao proposed an𝒪(𝑛) algorithm for projections onto ℓ1-balls
with box-constraints [GKX10], extending the work of Duchi et al. on efficient projections
onto ℓ1-balls [Duc+08]. It is based on linear time median finding, see e.g., [Cor+09].
More relevant to us is the following variation:

Non-Negative 𝑘-Sparse Polytope. For 𝑘 ∈ [𝑛] and 𝜏 > 0 the non-negative 𝑘-sparse polytope

of radius 𝜏 is defined as the intersection of the 𝑘-sparse polytope of radius 𝜏 with the
non-negative orthant R𝑛≥0.
LMO: A valid solution v to (B.1) for the non-negative 𝑘-sparse polytope is given by the
vector with at most 𝑘 non-zero entries at the components where ∇𝐷(s) is negative and
takes its 𝑘 smallest values (thus largest in magnitude as above). If ∇𝐷(s) has fewer than 𝑘
negative entries, then v has fewer than 𝑘 non-zero entries. If 𝑣 𝑗 is a non-zero entry then it
is equal to 𝜏. This is presented in Algorithm 6. As above the complexity of finding this
solution is 𝒪(𝑛 log 𝑘).
Projection: The same 𝒪(𝑛) algorithm for projections onto ℓ1-balls with box-constraints as
above can be used. A slightly simpler 𝒪(𝑛 log 𝑛) variant based on sorting is presented in
Algorithm 5 and used in our experiments.
The feasible region 𝐶 = {s ∈ [0, 1]𝑛 : ∥s∥1 ≤ 𝑘} for the (RC-RDE) problem is the
non-negative 𝑘-sparse polytope of radius 𝜏 = 1.

178

B.2 Supplementary Experimental Results

Birkhoff Polytope. The Birkhoff polytope 𝐵𝑛 is the set of doubly-stochastic (𝑛 × 𝑛)matrices.
It is the convex hull conv(𝑆𝑛) of the set 𝑆𝑛 of (𝑛 × 𝑛) permutation matrices.
LMO: The Birkhoff polytope arises in matching and ranking problems. Linear minimization
over 𝐵𝑛 results in a linear program, which can be solved with 𝒪(𝑛3) complexity using
the Hungarian method [Kuh55]. Linear minimization can also be performed using
the standard or network simplex algorithms, opening the possibility for optimized and
potentially parallelizable implementations. In our experiments we found that the LMO
was nonetheless more efficient, both in terms of runtime and memory footprint, when
using the Hungarian algorithm compared to off-the-shelf simplex solvers.
Projection: To the best of our knowledge, there is no exact projection method specific to
the Birkhoff polytope. An approximate method based on the Douglas-Ratchford splitting
algorithm was proposed in [CP21]. Its complexity to achieve 𝜖-convergence is 𝒪(𝑛2𝑐2/𝜖2)
where 𝑐 is not known a-priory and depends on the distance of the initial guess for the
algorithm to a fixed point of the proximal operator evaluated in each iteration.

The set 𝐵𝑛 is used as the feasible region for the (Ord-RDE) problem.

Algorithm 5 Projection onto the non-negative 𝑘-sparse polytope
Input: s ∈ R𝑛 , 𝑘 ∈ [𝑛]
Output: projection of s onto [0, 1]𝑛 ∩ {s ∈ R𝑛 : ∥s∥1 ≤ 𝑘}

1: if ∥ clip(s, 0𝑛 , 1𝑛)∥1 ≤ 𝑘 then

2: return clip(s, 0𝑛 , 1𝑛) ⊲ projection onto [0, 1]𝑛 already satisfies ℓ1-constraint
3: else

4: 𝜽← concatenate(s, s − 1𝑛) ⊲ possible break-point locations
5: 𝜽← sort(max(𝜽, 02𝑛)) ⊲ only non-negative break-points are valid
6: ℓ , 𝑢 ← 1, 2𝑛 ⊲ initialize bisection interval [𝜃ℓ , 𝜃𝑢]
7: while 𝑢 > ℓ + 1 do

8: 𝑚 ← ⌊ ℓ+𝑢2 ⌋
9: if ∥ clip(s − 𝜃𝑚 · 1𝑛 , 0𝑛 , 1𝑛)∥1 ≤ 𝑘 then

10: 𝑢 ← 𝑚 ⊲ continue bisection in left half [𝜃ℓ , 𝜃𝑚]
11: else

12: ℓ ← 𝑚 ⊲ continue bisection in right half [𝜃𝑚 , 𝜃𝑢]
13: end if

14: end while

15: 𝑘ℓ = ∥ clip(s − 𝜃ℓ · 1𝑛 , 0𝑛 , 1𝑛)∥1
16: 𝑘𝑢 = ∥ clip(s − 𝜃𝑢 · 1𝑛 , 0𝑛 , 1𝑛)∥1
17: 𝜃 = 𝜃ℓ + (𝜃𝑢 − 𝜃ℓ) (𝑘−𝑘ℓ)𝑘𝑢−𝑘ℓ ⊲ find correct value within interval [𝜃ℓ , 𝜃𝑢]
18: return clip(s − 𝜃 · 1𝑛 , 0𝑛 , 1𝑛)
19: end if

B.2 Supplementary Experimental Results

Below we present additional results for the experiments from Section 4.4. In partic-
ular, we show comparisons of different FW variants for solving (RC-RDE), (MR-RDE),

179

Appendix B Additions to Chapter 4

Algorithm 6 Linear Minimization Oracle for the non-negative 𝑘-sparse polytope
Input: ∇𝐷(s) ∈ R𝑛 , 𝑘 ∈ [𝑛]
Output: a minimizer of ⟨∇𝐷(s), v⟩ over [0, 1]𝑛 ∩ {v ∈ R𝑛 : ∥v∥1 ≤ 𝑘}

1: 𝑆← {indices of 𝑘 smallest components of ∇𝐷(s)} ∩ { 𝑗 ∈ [𝑛] : (∇𝐷(s))𝑗 < 0}
2: v𝑆𝑐 ← 0𝑛−|𝑆 |
3: v𝑆 ← 1|𝑆 |
4: return v

and (Ord-RDE) as well as selected results comparing the effects of using the diagonal or
the low-rank ADF approximation to evaluating the distortion functional 𝐷(s).

B.2.1 Synthetic Binary Strings

We show additional relevance mapping results for the two binary string signals from
Figure 4.3 comparing (L-RDE) to (RC-RDE) solved with different variants of Frank-Wolfe
algorithms as well as Projected Gradient Descent in Figure B.3. In all cases we present the
diagonal and low-rank ADF approximation to evaluating the distortion functional 𝐷(s).
The rate 𝑘 = 6 for (RC-RDE) is intentionally chosen larger than the optimal rate 𝑘 = 5 that
allows for zero distortion in order to see how the different RDE methods distribute the
“excess” relevance across the signal. It also better corresponds to sparsity of the (L-RDE)
solutions that are indirectly adapted to a specific rate via the regularization parameter 𝜆.
The first signal contains a single relevant block of five consecutive ones that is correctly
located by all RDE methods. The low-rank variants distribute excess relevance more evenly
around the relevant block whereas the diagonal variants put more emphasis on other
ones in the signal that could potentially form another relevant block. The PGD solution
is most similar to the vanilla FW solution. The second signal contains a single relevant
block of five consecutive ones but also an additional disjoint block that is almost relevant
(four out of five consecutive components are ones). Most RDE methods still locate the
correct relevant block. Again PGD is most similar to FW. The (RC-RDE) solutions with
AFW (diagonal and low-rank) and LAFW (only low-rank) could not locate the relevant
block and get distracted by additional ones in the signal. In all three cases we observe that
this constitutes a rare exception of non-robust behavior of RDE relevance mappings with
respect to the rate 𝑘. All three methods correctly locate the relevant block for larger rates
𝑘 ≥ 7 (not shown). We expect this to be an artifact of the synthetic and constructed nature
of this experiment. In fact, the chosen reference distribution𝒱 =𝒰({0, 1}𝑛) is completely
uninformative of any structure in the signals. We do not observe a similar behavior of
RDE relevance mappings in the An8flower, MNIST, and STL-10 experiments with more
realistic datasets.

B.2.2 An8flower Dataset

We show additional relevance mapping results for the yellow stem image from Figure 4.5
comparing (L-RDE) to (RC-RDE) solved with different variants of Frank-Wolfe algorithms
as well as Projected Gradient Descent in Figure B.2. In all cases we present the diagonal
and low-rank ADF approximation to evaluating the distortion functional 𝐷(s). All RDE

180

B.2 Supplementary Experimental Results

x 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RC-RDE (PGD, low-rank)

RC-RDE (LAFW, low-rank)

RC-RDE (LCG, low-rank)

RC-RDE (AFW, low-rank)

RC-RDE (FW, low-rank)

L-RDE (low-rank)

RC-RDE (PGD, diagonal)

RC-RDE (LAFW, diagonal)

RC-RDE (LCG, diagonal)

RC-RDE (AFW, diagonal)

RC-RDE (FW, diagonal)

L-RDE (diagonal)

0 1 1 0 1 1 0 0 1 0 1 1 1 1 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) (b)

Figure B.1: Synthetic Binary Strings – Relevance Maps. Relevance mappings generated by several
methods for two binary strings. The left string (a) contains one block of five consecutive ones
whereas the right string (b) contains one complete and one incomplete block. This complements
Figure 4.3.

methods mark the discriminative image region containing the stem as relevant. Low-rank
solutions tend to additionally mark regions surrounding the stem as relevant, which is
less pronounced for the diagonal variants. Table B.1 shows a quantitative evaluation of
the performance of the corresponding relevance mapping methods with respect to two
different similarity measures averaged over 12 examples from the dataset (one for each
class). The diagonal FW, LCG, and PGD variants of (RC-RDE) achieve the best results
with regard to the Pearson correlation coefficient. The diagonal FW and LCG variants also
perform best with respect to the Jaccard index. All RDE methods clearly outperform the
other comparison baseline relevance mapping methods in Table 4.1.

B.2.3 MNIST Dataset

Figure B.3 shows a comparison of results obtained using the different FW variants
for solving (RC-RDE) and (MR-RDE) for the MNIST experiment example image from
Figure 4.7. For clarity and due to the advantageous performance of the diagonal over the
low-rank ADF approximation to evaluating the distortion functional 𝐷(s) in the An8flower
experiment, we only show diagonal RDE results for MNIST.2 The last row shows the
single-rate mappings 𝚷opt

p𝑘 associated to the SFW solution of (Ord-RDE) as well as a
corresponding multi-rate mapping 1

𝑛−1
∑
𝑘∈[𝑛−1]𝚷

opt
p𝑘 . All FW variants yield similar

results and are robust across varying rates, in the sense that solutions for larger rates add
additional features to the relevant set without significantly modifying the features that
were already considered relevant at smaller rates.

Figure B.4 complements Figure 4.8 and shows the relevance ordering test results for all
FW variants for the MNIST experiment.

The quantitative effect of solving (RC-RDE) for different rates is illustrated in Figure B.5.
For the sake of clarity, we only show the relevance ordering test results for FW (left)

2We have checked for (L-RDE) and (RC-RDE) with vanilla FW that the low-rank variants behave qualitatively
and quantitatively comparably to the diagonal variants.

181

Appendix B Additions to Chapter 4

L-RDE RC-RDE RC-RDE RC-RDE RC-RDE RC-RDE
Image (diagonal) (FW, diagonal) (AFW, diagonal) (LCG, diagonal) (LAFW, diagonal) (PGD, diagonal)

L-RDE RC-RDE RC-RDE RC-RDE RC-RDE RC-RDE
Mask (low-rank) (FW, low-rank) (AFW, low-rank) (LCG, low-rank) (LAFW, low-rank) (PGD, low-rank)

Figure B.2: An8flower – Relevance Maps. Relevance mappings generated by several methods for
an image from the An8flower benchmark dataset classified as yellow stem by our network. The
rate constraint for RC-RDE is 𝑘𝑘 = 1000 (𝑛𝑛 = 49152). This complements Figure 4.5

Table B.1: An8flower – Correlation Comparison. Similarity between relevance mappings generated
by several methods and the respective binary masks for the An8flower dataset with respect to
Pearson correlation coefficient and Jaccard index. Values closer to 1 mean more similar in both
measures. Results show the mean ± standard deviation over 12 images from the test set (1 image
per class). The rate constraint for RC-RDE is 𝑘𝑘 = 1000 (𝑛𝑛 = 49152). This complements Table 4.1.

L-RDE RC-RDE RC-RDE RC-RDE RC-RDE RC-RDE
(diagonal) (FW, diagonal) (AFW, diagonal) (LCG, diagonal) (LAFW, diagonal) (PGD, diagonal)

Pearson
Corr. 0.23 ± 0.16 0.35 ± 0.20 0.32 ± 0.19 0.35 ± 0.20 0.33 ± 0.17 0.35 ± 0.20

Jaccard
Index 0.14 ± 0.09 0.25 ± 0.16 0.24 ± 0.16 0.25 ± 0.16 0.22 ± 0.13 0.20 ± 0.15

L-RDE RC-RDE RC-RDE RC-RDE RC-RDE RC-RDE
(low-rank) (FW, low-rank) (AFW, low-rank) (LCG, low-rank) (LAFW, low-rank) (PGD, low-rank)

Pearson
Corr. 0.27 ± 0.16 0.30 ± 0.13 0.30 ± 0.13 0.30 ± 0.13 0.31 ± 0.13 0.30 ± 0.12
Jaccard
Index 0.16 ± 0.08 0.17 ± 0.09 0.17 ± 0.09 0.16 ± 0.08 0.17 ± 0.09 0.16 ± 0.07

182

B.2 Supplementary Experimental Results

RC-RDE MR-RDE Ord-RDE
𝑘𝑘 = 50 𝑘𝑘 = 100 𝑘𝑘 = 150 𝑘𝑘 = 200

FW

AFW

LCG

LAFW

PGD N/A

SFW

Figure B.3: MNIST – Relevance Maps. Relevance mappings generated by different FW variants
for an image from the MNIST dataset classified as digit six by our network. Multi-rate (MR-RDE)
and ordering (Ord-RDE) solutions are shown in a different colormap to highlight the fact, that
they are not to be viewed as sparse relevance maps but represent component orderings from
least relevant (blue) to most relevant (yellow). This complements Figure 4.7.

183

Appendix B Additions to Chapter 4

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

di
st

or
tio

n
(s

qu
ar

ed
di

st
an

ce
)

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

ac
cu

ra
cy

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

di
st

or
tio

n
(s

qu
ar

ed
di

st
an

ce
)

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

ac
cu

ra
cy

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

di
st

or
tio

n
(s

qu
ar

ed
di

st
an

ce
)

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

ac
cu

ra
cy

MR-RDE (FW) MR-RDE (AFW) L-RDE Ord-RDE (SFW, Variant A)
MR-RDE (LCG) MR-RDE (LAFW) MR-RDE (PGD)

Figure B.4: MNIST – Ordering Comparison. Relevance ordering test results for different FW
variants for the MNIST dataset using squared distance (left) and classification accuracy (right) as
performance measure. An average result over 50 images from the test set (5 images per class
randomly selected) and 512 random input samples per image is shown (shaded regions mark ±
standard deviation). This complements Figure 4.8.

and PGD (right). The results for AFW, LCG, and LAFW are comparable. The (RC-RDE)
mappings achieve a low distortion at the rates for which they were optimized but are
suboptimal at other rates. The combined (MR-RDE) solution approximates the lower
envelope of the individual curves and performs best overall.

A comparison of runtimes for the MNIST experiment and the corresponding numbers
of iterations that are taken until the termination criterion ⟨s𝑡𝑡 − v𝑡𝑡 ,∇𝐷𝐷(s𝑡𝑡)⟩ < 𝜀𝜀 = 10−7 is
reached for the different FW variants is shown in Figure B.6(a). We observe that AFW
converges fastest for small rates 𝑘𝑘, while all variants perform similarly at higher rates
(with slight advantages of FW and LCG over AFW and LAFW). This is due to a reduced
number of iterations of AFW and LAFW at small rates. On the other hand, the increased
runtime of the active-set methods AFW and LAFW can be explained by the fact that each
vertex in the active set is a sparse vector with more and more non-zero components as the
rate increases. Hence, active set operations require more arithmetic operations at higher
rates. All methods reach the maximum number of 𝑇𝑇 = 2000 iterations before satisfying the
termination criterion at high rates. This can be explained by the fact that the termination
threshold 𝜀𝜀 = 10−7 is chosen quite conservatively to ensure convergence of all methods on
all instances. However, we observe that all methods typically converge much faster to a
satisfactory solution. Figure B.6(b) shows (RC-RDE) solutions at a single exemplary rate
𝑘𝑘 = 150 for the MNIST image from Figure 4.7 after 𝑇𝑇 = 50, 100, 150, and 200 iterations.
The solutions are visually indistinguishable for all methods, confirming that they were
already mostly converged after only 50 iterations. We do not show a comparable analysis
of runtimes and iteration counts for the STL-10 experiment. Due to higher computational
costs, the STL-10 mappings were computed in parallel on different machines. Hence, no
runtimes that are directly comparable between the different methods are available.

184

B.2 Supplementary Experimental Results

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0
𝑘𝑘
=

50
𝑘𝑘
=

10
0

𝑘𝑘
=

15
0

𝑘𝑘
=

20
0

𝑘𝑘 = 50

𝑘𝑘 = 100

𝑘𝑘 = 150

𝑘𝑘 = 200

rate (non-randomized components)

di
st

or
tio

n
(s

qu
ar

ed
di

st
an

ce
) MR-RDE (FW)

RC-RDE (FW)

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

𝑘𝑘
=

50
𝑘𝑘
=

10
0

𝑘𝑘
=

15
0

𝑘𝑘
=

20
0

𝑘𝑘 = 50

𝑘𝑘 = 100

𝑘𝑘 = 150

𝑘𝑘 = 200

rate (non-randomized components)

MR-RDE (PGD)
RC-RDE (PGD)

Figure B.5: MNIST – Ordering Comparison. Relevance ordering test results for FW and PGD
solutions of (RC-RDE) for MNIST at various rates. Vertical lines show the rates 𝑘𝑘 at which the
mappings were optimized. The combined (MR-RDE) solutions approximate the respective lower
envelopes of the individual curves. An average result over 50 images from the test set (5 images
per class) and 512 noise input samples per image is shown (shaded regions mark ± standard
deviation).

0
5

10
15
20

ru
nt

im
e

(s
ec

on
ds

)

50 100 150 200 250 300 350 400
0

500
1000
1500
2000
2500

rate constraint 𝑘𝑘

ite
ra

tio
ns

FW (RC-RDE) AFW (RC-RDE)
LCG (RC-RDE) LAFW (RC-RDE)

𝑇𝑇 = 50 𝑇𝑇 = 100 𝑇𝑇 = 150 𝑇𝑇 = 200

FW

AFW

LCG

LAFW

(a) (b)

Figure B.6: MNIST – RDE Convergence (a) Average runtimes (top) and number of iterations until
convergence (bottom) of the considered FW variants for (RC-RDE) on MNIST at different rates.
An average result over 50 images from the test set is shown (shaded regions mark ± standard
deviation). (b) Relevance mappings obtained at rate 𝑘𝑘 = 150 after different maximal numbers
of iterations. Results for the same MNIST image from Figure 4.7 classified as digit six by the
network are shown. All methods were converged effectively already after only 𝑇𝑇 = 50 iterations.

185

Appendix B Additions to Chapter 4

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

di
st

or
tio

n
(s

qu
ar

ed
di

st
.)

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

ac
cu

ra
cy

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

di
st

or
tio

n
(s

qu
ar

ed
di

st
.)

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

ac
cu

ra
cy

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

di
st

or
tio

n
(s

qu
ar

ed
di

st
.)

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

ac
cu

ra
cy

Ord-RDE (FW) Ord-RDE (AFW) Ord-RDE (SFW, Variant A)
Ord-RDE (LCG) Ord-RDE (LAFW)

Figure B.7: MNIST – Ordering Comparison. Relevance ordering test results for (Ord-RDE) on the
MNIST dataset for all considered FW variants. An average result over 50 images from the test
set (5 images per class) and 512 noise input samples per image is shown (shaded regions mark
± standard deviation). This complements Figure B.4. Additional SFW variants are shown in
Figure B.8.

The relevance-ordering problem (Ord-RDE) can be solved with a stochastic Frank-Wolfe
algorithm or with deterministic Frank-Wolfe algorithms if the number 𝑛𝑛 of terms in the
objective function is not too large. For the MNIST dataset, both approaches are feasible.
We compare the relevance-ordering comparison test results of all FW variants in Figure B.7.
We observe that all variants perform well and similarly for very low and high rates. For
rates between 20% and 80% of the total number of components SFW has an advantage
over FW and LCG which in turn perform slightly better than AFW and LAFW.

Further, we compare different hyperparameter configurations for SFW regarding the
batch sizes 𝑏𝑏𝑡𝑡 and momentum factors 𝜌𝜌𝑡𝑡 . Hazan and Luo suggest a linearly increasing3

batch size [HL16] and Mokhtari, Hassani, and Karbasi propose a momentum factor
𝜌𝜌𝑡𝑡 = 1 − 4/(8 + 𝑡𝑡) 2

3 approaching one [MHK20]. We consider the following combinations:

Variant A Variant B Variant C Variant D Variant E Variant F

momentum 𝜌𝜌𝑡𝑡 = 0 𝜌𝜌𝑡𝑡 = 0 𝜌𝜌𝑡𝑡 = 1
2 𝜌𝜌𝑡𝑡 = 1

2 𝜌𝜌𝑡𝑡 = 1 − 4

(8+𝑡𝑡)
2
3

𝜌𝜌𝑡𝑡 = 1 − 4

(8+𝑡𝑡)
2
3

batch size 𝑏𝑏𝑡𝑡 = 40 𝑏𝑏𝑡𝑡 = min {40 + 𝑡𝑡 𝑡 100} 𝑏𝑏𝑡𝑡 = 40 𝑏𝑏𝑡𝑡 = min {40 + 𝑡𝑡 𝑡 100} 𝑏𝑏𝑡𝑡 = 40 𝑏𝑏𝑡𝑡 = min {40 + 𝑡𝑡 𝑡 100}

The relevance-ordering comparison test results are shown in Figure B.8. For reference,
Variant A corresponds to the SFW result also shown in Figures B.4 and B.7. We observe
that all variants perform well and similarly across all rates. The batch size has negligible
effect in this experiment, while momentum yields no advantage. In particular, both
configurations without any momentum perform best. Hence, we show only Variant A (no
momentum, constant batch size) in all other experiments.

3We limit the batch size growth up to a maximal size 𝑏𝑏max = 100 in our experiments.

186

B.3 Specifications of the Synthetic Binary Strings Experiment

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

di
st

or
tio

n
(s

qu
ar

ed
di

st
.)

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

ac
cu

ra
cy

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

di
st

or
tio

n
(s

qu
ar

ed
di

st
.)

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

ac
cu

ra
cy

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

di
st

or
tio

n
(s

qu
ar

ed
di

st
.)

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

ac
cu

ra
cy

Ord-RDE (SFW, Variant A) Ord-RDE (SFW, Variant C) Ord-RDE (SFW, Variant E)
Ord-RDE (SFW, Variant B) Ord-RDE (SFW, Variant D) Ord-RDE (SFW, Variant F)

Figure B.8: MNIST – Ordering Comparison. Relevance ordering test results for (Ord-RDE) on
MNIST for different variants of SFW. An average result over 50 images from the test set (5 images
per class) and 512 noise input samples per image is shown (shaded regions mark ± standard
deviation). This complements Figure B.7.

B.2.4 STL-10 Dataset

Figure B.9 complements Figure 4.12 and shows the relevance ordering test results for all
FW variants for the STL-10 experiment. As in the MNIST experiment, for clarity and due
to the advantageous performance of the diagonal over the low-rank ADF approximation
to evaluating the distortion functional 𝐷𝐷(s) in the An8flower experiment, we only show
diagonal RDE results for STL-10.4

Further, we complement Figures 4.10 and 4.11 by Figures B.10 to B.19 showing additional
examples of relevance maps for images of different classes from the STL-10 dataset as well
as additional results for all FW variants for the images from Figures 4.10 and 4.11.

B.3 Specifications of the Synthetic Binary Strings Experiment

B.3.1 Network Architecture

Recall that the underlying binary classifier is given by the Boolean function

Ψ : {0, 1}𝑛𝑛 → {0, 1}, x ↦→
𝑛𝑛−𝑘𝑘+1∨
𝑖𝑖=1

𝑖𝑖+𝑘𝑘−1∧
𝑗𝑗=𝑖𝑖

𝑥𝑥𝑗𝑗 ,

that checks binary strings of length 𝑛𝑛 for the existence of a block of 𝑘𝑘 consecutive ones. A
ReLU network with two hidden layers that interpolates Ψ can be constructed as

Φ(x) = W3𝜚𝜚 (W2𝜚𝜚(W1x + b1) + b2) + b3

4We have checked for (L-RDE) and (RC-RDE) with vanilla FW that the low-rank variants behave qualitatively
and quantitatively comparably to the diagonal variants.

187

Appendix B Additions to Chapter 4

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

rate (non-randomized components)

di
st

or
tio

n
(s

qu
ar

ed
di

st
an

ce
)

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

ac
cu

ra
cy

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

rate (non-randomized components)

di
st

or
tio

n
(s

qu
ar

ed
di

st
an

ce
)

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

ac
cu

ra
cy

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

rate (non-randomized components)

di
st

or
tio

n
(s

qu
ar

ed
di

st
an

ce
)

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

ac
cu

ra
cy

MR-RDE (FW) MR-RDE (AFW) L-RDE MR-RDE (LCG)
MR-RDE (LAFW) MR-RDE (PGD)

Figure B.9: STL-10 – Ordering Comparison. Relevance ordering test results for different FW
variants for for the STL-10 dataset using squared distance (left) and classification accuracy (right)
as performance measure. An average result over 50 images from the test set (5 images per class
randomly selected) and 64 random input samples per image is shown (shaded regions mark ±
standard deviation). This complements Figure 4.12.

with

W1 =

𝑖𝑖+𝑘𝑘−1�
𝑗𝑗=𝑖𝑖

e
𝑇𝑇
𝑗𝑗

𝑛𝑛−𝑘𝑘+1

𝑖𝑖=1

∈ R(𝑛𝑛−𝑘𝑘+1)×𝑛𝑛 and b1 = −(𝑘𝑘 − 1) · 1𝑛𝑛−𝑘𝑘+1 ∈ R𝑛𝑛−𝑘𝑘+1 ,

W2 = −1
⊤
𝑛𝑛−𝑘𝑘+1 ∈ R1×(𝑛𝑛−𝑘𝑘+1) and b2 = 1 ∈ R1 ,

W3 = −1 ∈ R1×1 and b3 = 1 ∈ R1 ,

where e𝑗𝑗 is the 𝑗𝑗-th unit vector in R𝑛𝑛 . This network is purely constructed and not trained
on any data. We use 𝑛𝑛 = 16 and 𝑘𝑘 = 5 in our experiment.

B.3.2 RDE Optimization

For the (RC-RDE) optimization we consider FW, AFW, LCG, LAFW, and PGD with the
initial guess chosen as s = 0𝑛𝑛 . For the (L-RDE) optimization we solve the resulting box-
constrained problem via L-BFGS-B [Byr+95]. The initial guess for s is chosen as the mean
of 𝒰𝒰(𝒰0, 1]𝑛𝑛) in this case. As reference distribution 𝒱𝒱 we use the Gaussian distribution
with mean and variance equal to the mean and variance of 𝒰𝒰(𝒰0, 1]𝑛𝑛) for both (RC-RDE)
and (L-RDE). For all low-rank variants we use the full rank 𝑟𝑟 = 16. To estimate a good
value for the (L-RDE) regularization parameter 𝜆𝜆 we solve the optimization problem for
values 𝜆𝜆 = 10𝑞𝑞 with ten values of 𝑞𝑞 spaced evenly in the interval 𝒰−5, 0]. We compare the
results visually and empirically select 𝜆𝜆 = 1.67 · 10−3, which results in relevance maps with
a sparsity that corresponds well to the true block size 𝑘𝑘 = 5.

188

B.3 Specifications of the Synthetic Binary Strings Experiment

Image Sensitivity LRP-𝛼𝛼-𝛽𝛽 SHAP Guided Backprop

SmoothGrad Deep Taylor LIME L-RDE

RC-RDE MR-RDE
𝑘𝑘 = 2000 𝑘𝑘 = 4000 𝑘𝑘 = 6000 𝑘𝑘 = 8000

FW

AFW

LCG

LAFW

PGD

Figure B.10: STL-10 – Relevance Maps. Relevance mappings generated by several methods for
an image from the STL-10 dataset classified as monkey by our network. The colormap indicates
positive relevances as red and negative relevances as blue. Multi-rate (MR-RDE) solutions are
shown in a different colormap to highlight the fact, that they are not to be viewed as sparse
relevance maps but represent component orderings from least relevant (blue) to most relevant
(yellow). This complements Figure 4.10.

189

Appendix B Additions to Chapter 4

Image Sensitivity LRP-𝛼𝛼-𝛽𝛽 SHAP Guided Backprop

SmoothGrad Deep Taylor LIME L-RDE

RC-RDE MR-RDE
𝑘𝑘 = 2000 𝑘𝑘 = 4000 𝑘𝑘 = 6000 𝑘𝑘 = 8000

FW

AFW

LCG

LAFW

PGD

Figure B.11: STL-10 – Relevance Maps. Relevance mappings generated by several methods for an
image from the STL-10 dataset classified as cat by our network. The colormap indicates positive
relevances as red and negative relevances as blue. Multi-rate (MR-RDE) solutions are shown
in a different colormap to highlight the fact, that they are not to be viewed as sparse relevance
maps but represent component orderings from least relevant (blue) to most relevant (yellow).

190

B.3 Specifications of the Synthetic Binary Strings Experiment

Image Sensitivity LRP-𝛼𝛼-𝛽𝛽 SHAP Guided Backprop

SmoothGrad Deep Taylor LIME L-RDE

RC-RDE MR-RDE
𝑘𝑘 = 2000 𝑘𝑘 = 4000 𝑘𝑘 = 6000 𝑘𝑘 = 8000

FW

AFW

LCG

LAFW

PGD

Figure B.12: STL-10 – Relevance Maps. Relevance mappings generated by several methods for an
image from the STL-10 dataset classified as deer by our network. The colormap indicates positive
relevances as red and negative relevances as blue. Multi-rate (MR-RDE) solutions are shown
in a different colormap to highlight the fact, that they are not to be viewed as sparse relevance
maps but represent component orderings from least relevant (blue) to most relevant (yellow).

191

Appendix B Additions to Chapter 4

Image Sensitivity LRP-𝛼𝛼-𝛽𝛽 SHAP Guided Backprop

SmoothGrad Deep Taylor LIME L-RDE

RC-RDE MR-RDE
𝑘𝑘 = 2000 𝑘𝑘 = 4000 𝑘𝑘 = 6000 𝑘𝑘 = 8000

FW

AFW

LCG

LAFW

PGD

Figure B.13: STL-10 – Relevance Maps. Relevance mappings generated by several methods for an
image from the STL-10 dataset classified as ship by our network. The colormap indicates positive
relevances as red and negative relevances as blue. Multi-rate (MR-RDE) solutions are shown
in a different colormap to highlight the fact, that they are not to be viewed as sparse relevance
maps but represent component orderings from least relevant (blue) to most relevant (yellow).

192

B.3 Specifications of the Synthetic Binary Strings Experiment

Image Sensitivity LRP-𝛼𝛼-𝛽𝛽 SHAP Guided Backprop

SmoothGrad Deep Taylor LIME L-RDE

RC-RDE MR-RDE
𝑘𝑘 = 2000 𝑘𝑘 = 4000 𝑘𝑘 = 6000 𝑘𝑘 = 8000

FW

AFW

LCG

LAFW

PGD

Figure B.14: STL-10 – Relevance Maps. Relevance mappings generated by several methods for
an image from the STL-10 dataset classified as horse by our network. The colormap indicates
positive relevances as red and negative relevances as blue. Multi-rate (MR-RDE) solutions are
shown in a different colormap to highlight the fact, that they are not to be viewed as sparse
relevance maps but represent component orderings from least relevant (blue) to most relevant
(yellow). This complements Figure 4.11.

193

Appendix B Additions to Chapter 4

Image Sensitivity LRP-𝛼𝛼-𝛽𝛽 SHAP Guided Backprop

SmoothGrad Deep Taylor LIME L-RDE

RC-RDE MR-RDE
𝑘𝑘 = 2000 𝑘𝑘 = 4000 𝑘𝑘 = 6000 𝑘𝑘 = 8000

FW

AFW

LCG

LAFW

PGD

Figure B.15: STL-10 – Relevance Maps. Relevance mappings generated by several methods for an
image from the STL-10 dataset classified as deer by our network. The colormap indicates positive
relevances as red and negative relevances as blue. Multi-rate (MR-RDE) solutions are shown
in a different colormap to highlight the fact, that they are not to be viewed as sparse relevance
maps but represent component orderings from least relevant (blue) to most relevant (yellow).

194

B.3 Specifications of the Synthetic Binary Strings Experiment

Image Sensitivity LRP-𝛼𝛼-𝛽𝛽 SHAP Guided Backprop

SmoothGrad Deep Taylor LIME L-RDE

RC-RDE MR-RDE
𝑘𝑘 = 2000 𝑘𝑘 = 4000 𝑘𝑘 = 6000 𝑘𝑘 = 8000

FW

AFW

LCG

LAFW

PGD

Figure B.16: STL-10 – Relevance Maps. Relevance mappings generated by several methods for an
image from the STL-10 dataset classified as dog by our network. The colormap indicates positive
relevances as red and negative relevances as blue. Multi-rate (MR-RDE) solutions are shown
in a different colormap to highlight the fact, that they are not to be viewed as sparse relevance
maps but represent component orderings from least relevant (blue) to most relevant (yellow).

195

Appendix B Additions to Chapter 4

Image Sensitivity LRP-𝛼𝛼-𝛽𝛽 SHAP Guided Backprop

SmoothGrad Deep Taylor LIME L-RDE

RC-RDE MR-RDE
𝑘𝑘 = 2000 𝑘𝑘 = 4000 𝑘𝑘 = 6000 𝑘𝑘 = 8000

FW

AFW

LCG

LAFW

PGD

Figure B.17: STL-10 – Relevance Maps. Relevance mappings generated by several methods for an
image from the STL-10 dataset classified as bird by our network. The colormap indicates positive
relevances as red and negative relevances as blue. Multi-rate (MR-RDE) solutions are shown
in a different colormap to highlight the fact, that they are not to be viewed as sparse relevance
maps but represent component orderings from least relevant (blue) to most relevant (yellow).

196

B.3 Specifications of the Synthetic Binary Strings Experiment

Image Sensitivity LRP-𝛼𝛼-𝛽𝛽 SHAP Guided Backprop

SmoothGrad Deep Taylor LIME L-RDE

RC-RDE MR-RDE
𝑘𝑘 = 2000 𝑘𝑘 = 4000 𝑘𝑘 = 6000 𝑘𝑘 = 8000

FW

AFW

LCG

LAFW

PGD

Figure B.18: STL-10 – Relevance Maps. Relevance mappings generated by several methods for
an image from the STL-10 dataset classified as horse by our network. The colormap indicates
positive relevances as red and negative relevances as blue. Multi-rate (MR-RDE) solutions are
shown in a different colormap to highlight the fact, that they are not to be viewed as sparse
relevance maps but represent component orderings from least relevant (blue) to most relevant
(yellow).

197

Appendix B Additions to Chapter 4

Image Sensitivity LRP-𝛼𝛼-𝛽𝛽 SHAP Guided Backprop

SmoothGrad Deep Taylor LIME L-RDE

RC-RDE MR-RDE
𝑘𝑘 = 2000 𝑘𝑘 = 4000 𝑘𝑘 = 6000 𝑘𝑘 = 8000

FW

AFW

LCG

LAFW

PGD

Figure B.19: STL-10 – Relevance Maps. Relevance mappings generated by several methods for an
image from the STL-10 dataset classified as airplane by our network. The colormap indicates
positive relevances as red and negative relevances as blue. Multi-rate (MR-RDE) solutions are
shown in a different colormap to highlight the fact, that they are not to be viewed as sparse
relevance maps but represent component orderings from least relevant (blue) to most relevant
(yellow).

198

B.4 Specifications of the An8flower Experiment

B.3.3 Comparison Methods

We use the Innvestigate toolbox for generating relevance mappings according to Smooth-
Grad [Smi+17] with a noise scale of 0.5 and 64 noise samples. We use the SHAP toolbox
to generate relevance mappings according to SHAP [LL17] and use the DeepExplainer
method for deep network models with 1024 reference inputs drawn randomly from
𝒰([0, 1]𝑛). Finally, we use the LIME toolbox to generate relevance mappings according to
LIME [RSG16]. We use the local explanations of the LimeTabularExplainermethod with
1024 reference inputs drawn randomly from𝒰([0, 1]𝑛).

B.4 Specifications of the An8flower Experiment

B.4.1 Network Architecture and Training

For the An8flower experiments we use a convolutional neural network with three convolu-
tion layers each followed by average-pooling and finally two fully-connected layers and
softmax output, see Table B.2 for a detailed description of the architecture. We train the
randomly initialized network end-to-end for 100 epochs to a final test accuracy of 0.99. We
use cross-entropy loss and stochastic gradient descent with mini-batches of size 64 and a
learning rate of 1 · 10−3. A training/testing split of 90% / 10% of the data set is used.

B.4.2 RDE Optimization

We use the pre-softmax score of the class with the highest activation as the prediction
Φ(x). Since the pre-softmax scores are not guaranteed to lie in the range [0, 1] we
normalize the distortion function by Φ(x). For the (RC-RDE) optimization we consider
FW, AFW, LCG, LAFW, and PGD with the initial guess chosen as s = 0𝑛 . For the (L-RDE)
optimization we solve the resulting box-constrained problem via L-BFGS-B [Byr+95]. The
initial guess is chosen as s = 0.5 · 1𝑛 in this case. As reference distribution 𝒱 we use
the Gaussian distribution with mean and variance estimated from the training data for
both (RC-RDE) and (L-RDE). We estimate good values for the (L-RDE) regularization
parameter 𝜆 and the rank 𝑟 of the low-rank variants as follows: We use a single randomly
chosen image signal from the test set and solve the (L-RDE) optimization problem for
values 𝜆 = 10−2 , 10−1 , 100 , 101 , 102 to get a first rough estimate. We compare the results
visually and determine 100 and 101 as good candidates. We refine the search using values
𝜆 = 1, 2, . . . , 10 and finally empirically select 𝜆 = 5. Once the regularization parameter is
determined we proceed similarly for the rank and test the values 𝑟 = 5, 10, 30, 50, 100. We
observe that choosing ranks larger than 10 has negligible effect on the relevance mappings
and select 𝑟 = 10 as a promising option for all low-rank variants.

B.4.3 Comparison Methods

We use the Innvestigate toolbox for generating relevance mappings according to Layer-wise
Relevance Propagation (LRP) [Bac+15], Deep Taylor decompositions [MSM18], Sensitivity
Analysis [SVZ13], SmoothGrad [Smi+17], and Guided Backprop [Spr+15]. We use LRP-
𝛼-𝛽 with the parameter preset SequentialPresetAFlat recommended for convolutional
networks and numerical stability parameter 𝜖 = 0.2. We use the bounded Deep Taylor

199

Appendix B Additions to Chapter 4

Table B.2: An8flower – Network Architecture. Architecture of the convolutional neural network
for the An8flower data set.

layer feature maps size kernel size strides activation

input 3 128 × 128 × 3 - - -

convolutional 32 128 × 128 × 32 5 × 5 1 × 1 ReLU
average pooling 32 64 × 64 × 32 2 × 2 2 × 2 -

convolutional 64 64 × 64 × 64 5 × 5 1 × 1 ReLU
average pooling 64 32 × 32 × 64 2 × 2 2 × 2 -

convolutional 64 32 × 32 × 64 5 × 5 1 × 1 ReLU
average pooling 64 16 × 16 × 64 2 × 2 2 × 2 -

flatten - 16384 - - -
fully connected - 1024 - - ReLU
fully connected - 12 - - Softmax

output - 12 - - -

method with lower and upper bounds given by min𝑗 𝑥 𝑗 and max𝑗 𝑥 𝑗 respectively. For
SmoothGrad we use a noise scale of 0.3 · (max𝑗 𝑥 𝑗 −min𝑗 𝑥 𝑗) and 64 noise samples. We use
the SHAP toolbox to generate relevance mappings according to SHAP [LL17] and use the
DeepExplainermethod for deep network models with 8 reference inputs generated as the
component-wise mean of 8 mini-batches from the training data set. Finally, we use the
LIME toolbox to generate relevance mappings according to LIME [RSG16]. We use the
local explanations of the LimeImageExplainermethod recommended for image data.

B.5 Specifications of the Relevance Ordering Test Experiment for

MNIST

B.5.1 Network Architecture and Training

For the MNIST experiment we use a convolutional neural network with three convolution
layers each followed by average-pooling and finally two fully-connected layers and softmax
output, see Table B.3 for a detailed description of the architecture. We trained the randomly
initialized network end-to-end for 100 epochs to a final test accuracy of 0.99. We use
cross-entropy loss and stochastic gradient descent with mini-batches of size 128 and a
learning rate of 3 · 10−3. The standard training/validation/testing split of the data set is
used. We augment the training data by random shifts up to 0.05 of the image width and
height respectively, rotations up to 5 degree, shearing up to 0.05 degree, and zoom by a
factor in the range [0.995, 1.05]. Further, we pre-process all data by sample-wise mean
centering.

B.5.2 RDE Optimization

We use the pre-softmax score of the class with the highest activation as the prediction Φ(x).
Since the pre-softmax scores are not guaranteed to lie in the range [0, 1] we normalize the
distortion function by Φ(x). For the (RC-RDE) optimization we consider FW, AFW, LCG,
LAFW, and PGD with the initial guess chosen as s = 0𝑛 . For the (Ord-RDE) optimization
we consider FW, AFW, LCG, LAFW, and SFW with the initial guess chosen as 𝚷 = I𝑛×𝑛 . For

200

B.6 Specifications of the Relevance Ordering Test Experiment for STL-10

the (L-RDE) optimization we solve the resulting box-constrained problem via PGD with a
momentum term with factor 0.85 (chosen based on previous experiences and not further
tuned). The initial guess is chosen as s = 0.25 · 1𝑛 in this case. As reference distribution𝒱
we use the Gaussian distribution with mean and variance estimated from the training data
for both (RC-RDE) and (L-RDE). We estimate good values for the (L-RDE) regularization
parameter 𝜆 as follows: We use a single randomly chosen image signal from the test set
and solve the (L-RDE) optimization problem for values 𝜆 = 10−3 , 10−2 , . . . , 102 , 103 to get
a first rough estimate. We compare the results visually as well as using the relevance
ordering test described below and determine 10−1 and 100 as good candidates. We refine
the search using values 𝜆 = 0.1, 0.2, . . . , 1.0 and finally empirically select 𝜆 = 0.5.

B.5.3 Comparison Methods

We use the Innvestigate toolbox for generating relevance mappings according to Layer-wise
Relevance Propagation (LRP) [Bac+15], Deep Taylor decompositions [MSM18], Sensitivity
Analysis [SVZ13], SmoothGrad [Smi+17], and Guided Backprop [Spr+15]. We use LRP-
𝛼-𝛽 with the parameter preset SequentialPresetAFlat recommended for convolutional
networks and numerical stability parameter 𝜖 = 0.2. We use the bounded Deep Taylor
method with lower and upper bounds given by min𝑗 𝑥 𝑗 and max𝑗 𝑥 𝑗 respectively. For
SmoothGrad we use a noise scale of 0.3 · (max𝑗 𝑥 𝑗 −min𝑗 𝑥 𝑗) and 64 noise samples. We use
the SHAP toolbox to generate relevance mappings according to SHAP [LL17] and use the
DeepExplainermethod for deep network models with 8 reference inputs generated as the
component-wise mean of 8 mini-batches from the training data set. Finally, we use the
LIME toolbox to generate relevance mappings according to LIME [RSG16]. We use the
local explanations of the LimeImageExplainermethod recommended for image data.

B.5.4 Relevance Ordering Comparison Test

For the relevance ordering based comparison test we sort components according to their
relevance scores (breaking ties randomly). Then, starting with a completely random signal,
we replace increasingly large parts of it by the original input, and observe the change in
the classifier score. Here, we increase the set of fixed components always in groups of size
5 (resulting in 157 steps until all 784 components are fixed) and use 512 random samples
drawn from𝒰([0, 1]𝑛) per step. This procedure is repeated and the results are averaged
over 50 different input signals spaced evenly over the test data set (5 images for each of the
10 classes).

B.6 Specifications of the Relevance Ordering Test Experiment for

STL-10

B.6.1 Network Architecture and Training

For the STL-10 experiment we use a VGG-16 network [SZ14] pre-trained on the Imagenet
dataset as a baseline, see Table B.4 for a detailed description of the architecture. We refine
the network for the STL-10 dataset in three stages. First, we fix the convolutional blocks of
the Imagenet network and train only the fully-connected layers for 500 epochs. Then we
train the complete network end-to-end for another 500 epochs. Finally, after replacing all

201

Appendix B Additions to Chapter 4

Table B.3: MNIST – Network Architecture. Architecture of the convolutional neural network for
the MNIST data set.

layer feature maps size kernel size strides activation

input 1 28 × 28 × 1 - - -

convolutional 32 28 × 28 × 32 5 × 5 1 × 1 ReLU
average pooling 32 14 × 14 × 32 2 × 2 2 × 2 -

convolutional 64 14 × 14 × 64 5 × 5 1 × 1 ReLU
average pooling 64 7 × 7 × 64 2 × 2 2 × 2 -

convolutional 64 7 × 7 × 64 5 × 5 1 × 1 ReLU
average pooling 64 3 × 3 × 64 2 × 2 2 × 2 -

flatten - 576 - - -
fully connected - 1024 - - ReLU
dropout (30%) - 1024 - - -
fully connected - 10 - - Softmax

output - 10 - - -

max-pooling layers by average-pooling layers, we again train end-to-end for another 500
epochs to a final test accuracy of 0.935. We us cross-entropy loss and stochastic gradient
descent with mini-batches of size 64, a learning rate of 3 · 10−7, and momentum term with
factor 0.9 in all three stages. For the weight matrices of the fully connected layers we use
a combined ℓ2- and ℓ1-regularization term with regularization parameters 5 · 10−4 and
5 · 10−5 respectively. The standard training/validation/testing split of the data set is used.
We augment the training data by random shifts up to 0.2 of the image width and height
respectively, rotations up to 20 degree, shearing up to 0.2 degree, zoom by a factor in the
range [0.8, 1.2], and horizontal flipping.

B.6.2 RDE Optimization

We use the pre-softmax score of the class with the highest activation as the prediction Φ(x).
Since the pre-softmax scores are not guaranteed to lie in the range [0, 1] we normalize the
distortion function by Φ(x).

For the (RC-RDE) optimization we consider FW, AFW, LCG, LAFW, and PGD with
the initial guess chosen as s = 0𝑛 . For the (L-RDE) optimization we solve the resulting
box-constrained problem via PGD with a momentum term with factor 0.85 (chosen based
on previous experiences and not further tuned). The initial guess is chosen as s = 0.25 · 1𝑛
in this case. We estimate good values for the (L-RDE) regularization parameter𝜆 as follows:
We use a single randomly chosen image signal from the test set and solve the (L-RDE)
optimization problem for values 𝜆 = 10−3 , 10−2 , 10−1 , 100 to get a first rough estimate.
We compare the results visually as well as using the relevance ordering test described
below and determine 10−1 and 100 as good candidates. We refine the search using values
𝜆 = 0.1, 0.2, . . . , 1.0 and finally empirically select 𝜆 = 0.1.

B.6.3 Comparison Methods

See above. We use the same settings as in the MNIST experiment for all methods.

202

B.7 Statistics from Streaming Data

Table B.4: STL10 – Network Architecture. Architecture of the VGG-16 based convolutional neural
network for the STL-10 data set.

layer feature maps size kernel size strides activation

input 3 224 × 224 × 3 - - -

convolutional 64 224 × 224 × 64 3 × 3 1 × 1 ReLU
convolutional 64 224 × 224 × 64 3 × 3 1 × 1 ReLU
average pooling 64 112 × 112 × 64 2 × 2 2 × 2 -

convolutional 128 112 × 112 × 128 3 × 3 1 × 1 ReLU
convolutional 128 112 × 112 × 128 3 × 3 1 × 1 ReLU
average pooling 128 56 × 56 × 128 2 × 2 2 × 2 -

convolutional 256 56 × 56 × 256 3 × 3 1 × 1 ReLU
convolutional 256 56 × 56 × 256 3 × 3 1 × 1 ReLU
convolutional 256 56 × 56 × 256 3 × 3 1 × 1 ReLU
average pooling 256 28 × 28 × 256 2 × 2 2 × 2 -

convolutional 512 28 × 28 × 512 3 × 3 1 × 1 ReLU
convolutional 512 28 × 28 × 512 3 × 3 1 × 1 ReLU
convolutional 512 28 × 28 × 512 3 × 3 1 × 1 ReLU
average pooling 512 14 × 14 × 512 2 × 2 2 × 2 -

convolutional 512 14 × 14 × 512 3 × 3 1 × 1 ReLU
convolutional 512 14 × 14 × 512 3 × 3 1 × 1 ReLU
convolutional 512 14 × 14 × 512 3 × 3 1 × 1 ReLU
average pooling 512 7 × 7 × 512 2 × 2 2 × 2 -

flatten - 25088 - - -
dropout (50%) - 25088 - - -
fully connected - 4096 - - ReLU
dropout (50%) - 4096 - - -
fully connected - 4096 - - ReLU
dropout (50%) - 4096 - - -
fully connected - 10 - - Softmax

output - 10 - - -

B.6.4 Relevance Ordering Comparison Test

For the relevance ordering based comparison test we sort components according to their
relevance scores (breaking ties randomly). Then, starting with a completely random signal,
we replace increasingly large parts of it by the original input, and observe the change in
the classifier score. Here, we increase the set of fixed components always in groups of
size 512 (resulting in 294 steps until all 150528 components are fixed) and use 128 random
samples drawn from𝒰([0, 1]𝑛) per step. This procedure is repeated and the results are
averaged over 50 different input signals spaced evenly over the test data set (5 images for
each of the 10 classes).

B.7 Statistics from Streaming Data

In this section we describe algorithms for obtaining various sample statistics from batches
of a stream of data. This allows the processing of data sets that are too large to be handled
at once (due to memory constraints) or that are not immediately completely available
(online processing of streaming data). This is used, for example, for the estimation of
parameters of the noise distribution𝒱 from training data in the RDE approach.

More precisely, assume that we are given data samples x1 , . . . , x𝑁 ∈ R𝑛 where 𝑁 ∈ N is

203

Appendix B Additions to Chapter 4

very large or a priory unknown. Hence, the full data matrix X =
[
x1 . . . x𝑁

]
∈ R𝑛×𝑁 can

not be processed in its entirety. Instead we assume that it is partitioned into 𝑇 ∈ N batches
X =

[
X1 . . . X𝑇

]
with X𝑡 ∈ R𝑛×𝑁𝑡 and

∑
𝑡 𝑁𝑡 = 𝑁 . Our goal is to compute statistics of X,

such as the sample mean, sample variance, or sample covariance matrix, from the batched
data. When 𝑁 and therefore typically also 𝑇 is large, it is desirable to obtain these statistics
from a single pass through the data batches (if possible). Each algorithm presented in the
following is split into a main routine (collecting results from individual batches) and a
subroutine that processes a single batch X𝑡 of data.

B.7.1 Sample Mean, Variance & Covariance

We start with the most simple case of computing the sample mean

x =
1
𝑁

𝑁∑
𝑗=1

x𝑗 ,

which can easily be rewritten in terms of the batched data as

x =
1
𝑁

𝑇∑
𝑡=1

𝑁𝑡∑
𝑗=1

x𝑡 , 𝑗 ,

where x𝑡 , 𝑗 denotes the 𝑗-th column (𝑗-th data sample) in the 𝑡-th batch X𝑡 . This leads to
Algorithms 7 and 8.

The straight-forward approach to computing the sample variance

v =
1

𝑁 − 1

𝑁∑
𝑗=1

(
x𝑗 − x

)2
=

1
𝑁 − 1

©«
𝑁∑
𝑗=1

x
2
𝑗 − x

2ª®¬
can not easily be rewritten in a single pass batched form. Instead, it would require two
passes through the data: A first pass computes the sample mean x and a second pass sums
the squared deviations from that mean.

However, it is possible to combine this into a single pass algorithm5, as proposed by
Chan, Golub, and LeVeque in [CGL79]. They introduce a correction term at each step that
compensates a shift of the current estimate of x as new batches of data are being processed.
This is presented in Algorithms 9 and 10. Note that Algorithm 9 also computes the sample
mean as a byproduct, so that we obtain a combined computation of the sample mean and
variance in a single pass through the data batches.

The same correction term idea of Chan, Golub, and LeVeque can also be generalized to
computing the sample covariance matrix

Q =
1

𝑁 − 1 (X − x1
⊤
𝑁)(X − x1

⊤
𝑁)
⊤ =

1
𝑁 − 1

(
XX
⊤ − xx

⊤)
with a single pass through the batches of data. This results in Algorithms 11 and 12. As
before, Algorithm 11 also computes the mean as a byproduct.

5Here, single pass refers to the fact that each data batch is processed only once. Within each batch we can use
a straight-forward two pass approach, see Algorithm 10. This could also be further refined by recursively
applying the batched single pass approach to smaller sub-batches of X𝑡 if 𝑁𝑡 is still large.

204

B.7 Statistics from Streaming Data

Algorithm 7 Compute Mean
Input: data batches X1 , . . . ,X𝑇
Output: sample mean x

1: 𝝁← 0𝑛 ⊲ initialize accumulator
2: 𝑐 ← 0 ⊲ initialize counter
3: for 𝑡 ← 1 to 𝑇 do

4: 𝝁, 𝑐 ← BatchMean(X𝑡 , 𝑁𝑡 , 𝝁, 𝑐)
5: end for

6: return
1
𝑐𝝁 ⊲ normalize

Algorithm 8 Process Single Batch (Mean)

1: function BatchMean(X𝑡 , 𝑁𝑡 , 𝝁, 𝑐)
2: for 𝑗 ← 1 to 𝑁𝑡 do

3: 𝝁← 𝝁 + x𝑡 , 𝑗

4: end for

5: 𝑐 ← 𝑐 + 𝑁𝑡

6: return 𝝁, 𝑐
7: end function

Algorithm 9 Compute Variance
Input: data batches X1 , . . . ,X𝑇
Output: sample variance v

1: 𝝁, v← 0𝑛 , 0𝑛 ⊲ initialize accumulators
2: 𝑐 ← 0 ⊲ initialize counter
3: for 𝑡 ← 1 to 𝑇 do

4: 𝝁, v, 𝑐 ← BatchVar(X𝑡 , 𝑁𝑡 , 𝝁, v, 𝑐)
5: end for

6: return
1
𝑐−1v ⊲ normalize

205

Appendix B Additions to Chapter 4

Algorithm 10 Process Single Batch (Variance)

1: function BatchVar(X𝑡 , 𝑁𝑡 , 𝝁, v, 𝑐)
2: 𝝁𝑡 , v𝑡 ← 0𝑛 , 0𝑛
3: for 𝑗 ← 1 to 𝑁𝑡 do

4: 𝝁𝑡 ← 𝝁𝑡 + x𝑡 , 𝑗

5: end for

6: for 𝑗 ← 1 to 𝑁𝑡 do

7: v𝑡 ← v𝑡 + (x𝑡 , 𝑗 − 𝝁𝑡)2
8: end for

9: 𝚫← 1
𝑐𝝁 − 1

𝑁𝑡
𝝁𝑡

10: 𝝁← 𝝁 + 𝝁𝑡
11: v← v + v𝑡 + 𝑐𝑁𝑡

𝑐+𝑁𝑡𝚫
2

12: 𝑐 ← 𝑐 + 𝑁𝑡

13: return 𝝁, v, 𝑐
14: end function

Algorithm 11 Compute Covariance
Input: data batches X1 , . . . ,X𝑇
Output: sample covariance Q

1: 𝝁,Q← 0𝑛 , 0𝑛×𝑛 ⊲ initialize accumulators
2: 𝑐 ← 0 ⊲ initialize counter
3: for 𝑡 ← 1 to 𝑇 do

4: 𝝁,Q, 𝑐 ← BatchCov(X𝑡 , 𝑁𝑡 , 𝝁, Q, 𝑐)
5: end for

6: return
1
𝑐−1Q ⊲ normalize

Algorithm 12 Process Single Batch (Covariance)

1: function BatchCov(X𝑡 , 𝑁𝑡 , 𝝁, Q, 𝑐)
2: 𝝁𝑡 ,Q𝑡 ← 0𝑛 , 0𝑛×𝑛
3: for 𝑗 ← 1 to 𝑁𝑡 do

4: 𝝁𝑡 ← 𝝁𝑡 + x𝑡 , 𝑗

5: end for

6: for 𝑗 ← 1 to 𝑁𝑡 do

7: Q𝑡 ← Q𝑡 + (x𝑡 , 𝑗 − 𝝁𝑡)(x𝑡 , 𝑗 − 𝝁𝑡)⊤
8: end for

9: 𝚫← 1
𝑐𝝁 − 1

𝑁𝑡
𝝁𝑡

10: 𝝁← 𝝁 + 𝝁𝑡
11: Q← Q +Q𝑡 + 𝑐𝑁𝑡

𝑐+𝑁𝑡𝚫𝚫
⊤

12: 𝑐 ← 𝑐 + 𝑁𝑡

13: return 𝝁, Q, 𝑐
14: end function

206

B.7 Statistics from Streaming Data

B.7.2 Low-Rank Approximations of Covariance

The best rank 𝑟 ∈ N (𝑟 < 𝑛) approximation of X ∈ R𝑛×𝑁 (with respect to the Frobenius
norm) is given by a truncated singular value decomposition (SVD). Denote the full SVD as

X = U𝚺V
⊤

with orthogonal matrices U ∈ R𝑛×𝑛 , V ∈ R𝑁×𝑁 and diagonal matrix 𝚺 ∈ R𝑛×𝑁 containing
the singular values of X ordered from largest to smallest as diagonal entries. The truncated
SVD of rank (at most) 𝑟, also denoted 𝑟-SVD from now on, is obtained by setting all but
the 𝑟 largest singular values in 𝚺 to zero, or equivalently

X ≈ Ũ�̃�Ṽ
⊤ ,

where Ũ ∈ R𝑛×𝑟 , Ṽ ∈ R𝑁×𝑟 are the first 𝑟 columns of U and V respectively and �̃� ∈ R𝑟×𝑟
is the upper-left 𝑟 × 𝑟 sub-matrix of 𝚺. Unlike the computation of the mean, variance,
and covariance matrix, such a low-rank approximation can generally not be computed
exactly from streaming batches of data. In other words, combining the individual low-rank
approximations of two batches X1 and X2 is not equal to the best low-rank approximation
of the combined data

[
X1 X2

]
. However, it can still be a good approximation. We present

an efficient algorithm due to Řehůřek. It relies on reduced QR-factorizations for merging
two SVDs. See [Řeh11] for details and a discussion of the truncation effects of intermediate
steps on the final approximation. Given the fact, that the sample covariance matrix is
closely related to XX

⊤ = V𝚺𝚺⊤V
⊤, we will state all steps of the algorithm only in terms of

𝚺 and V. Even though left singular vectors U are computed as intermediate steps for each
data batch, it is not necessary to keep track of them in the merging step of two SVDs. We
begin with an algorithm for computing a low-rank approximation of the autocorrelation
matrix XX

⊤.

Algorithm 13 Compute Low-Rank Autocorrelation
Input: data batches X1 , . . . ,X𝑇 , rank 𝑟
Output: approximate 𝑟-SVD of autocorrelation 1

𝑁−1XX
⊤

1: 𝚺,V← 0𝑟×𝑟 , 0𝑛×𝑟 ⊲ initialize accumulators
2: 𝑐 ← 0 ⊲ initialize counter
3: for 𝑡 ← 1 to 𝑇 do

4: 𝚺,V, 𝑐 ← BatchCorr(X𝑡 , 𝑁𝑡 , 𝚺, V, 𝑐, 𝑟)
5: end for

6: return
1
𝑐−1V𝚺𝚺⊤V ⊲ normalize

Algorithm 14 Process Single Batch (Autocorrelation)

1: function BatchCorr(X𝑡 , 𝑁𝑡 , 𝚺, V, 𝑐, 𝑟)
2: U𝑡 ,𝚺𝑡 ,V𝑡

𝑟−SVD← X𝑡

3: 𝚺,V←Merge(𝚺, V, 𝚺𝑡 , V𝑡 , 𝑟)
4: 𝑐 ← 𝑐 + 𝑁𝑡

5: return 𝚺, V, 𝑐
6: end function

207

Appendix B Additions to Chapter 4

X1 X2 X3 X4 X5 X6 X7

X1 X2 X3 X4 X5 X6 X7

(a) (b)

Figure B.20: Merge Orders. Illustration of two possible orders in which intermediates results of
the low-rank autocorrelation algorithm (example is shown for 𝑇 = 7 batches) can be combined:
(a) sequential and (b) hierarchical.

Algorithm 15 Merge Low-Rank SVD

1: function Merge(𝚺1, V1, 𝚺2, V2, 𝑟)
2: Z← V

⊤
1 V2

3: Q,R
reduced-QR← V2 −V1Z

4: U,𝚺,V
𝑟-SVD←

[
𝚺1 Z𝚺2

0𝑟×𝑟 R𝚺2

]
5: V←

[
V1 Q

]
U

6: return 𝚺, V

7: end function

The algorithm as presented above combines the results of processed batches in a sequential
“linear” manner where each new batch is merged with a running accumulation of all
previous batches, as illustrated in Figure B.20(a). This puts more emphasis on the influence
of later batches toward the overall approximation, as discussed in [Řeh11]. A more
balanced approach proposed (but not further investigated) in [Řeh11] combines the
results of processed batched in a pairwise “binary tree” manner instead, as illustrated
in Figure B.20(b). This can be achieved by pushing intermediate results onto a stack
(increasing memory requirements compared to the sequential approach) and retrieving
and merging them at the appropriate time.

Finally, low-rank approximations to the covariance matrix can be obtained in a two-pass
approach: First compute the sample mean x according to Algorithm 7. Second, compute
the autocorrelation on the shifted data batches X𝑡−x1

⊤
𝑁𝑡

according to Algorithm 13. It is not
immediately clear if a simultaneous estimation of the mean and low-rank approximation
to the covariance matrix can be achieved using a correction term 𝚫 at each step similar to
Algorithms 10 and 12.

A comparison of sequential and hierarchical low-rank approximations to the covariance
matrix of the MNIST dataset is presented in Figure B.21. It shows the relative Frobenius
norm errors of the approximations to the exact covariance matrix (left) and the singular
values of the approximations at five different selected ranks compared to the exact singular
values. In both cases we do not see a significant difference between the sequential and
hierarchical approximations for the MNIST dataset. In our experiments in Section 4.4

208

B.7 Statistics from Streaming Data

100 101 102
0

0.2

0.4

0.6

0.8

1

rank 𝑟𝑟

re
l.

er
ro

r(
Fr

ob
en

iu
sn

or
m

) hierarchical
sequential

100 101 102
0

0.2

0.4

0.6

0.8

1

index

si
ng

ul
ar

va
lu

es
(n

or
m

al
iz

ed
) exact

hierarchical
sequential

(a) (b)

Figure B.21: MNIST – Low-Rank Approximations. (a) Relative Frobenius norm errors of low-
rank approximations to the MNIST covariance matrix obtained with the hierarchical and
the sequential merge order. (b) Singular values of low-rank approximations to the MNIST
covariance matrix obtained with the hierarchical and the sequential merge order at selected
ranks 𝑟𝑟 = 3, 5, 10, 30, 50, 100 in comparison to the exact singular values.

and Appendix B.2 we use the hierarchical variant to estimate the reference distribution 𝒱𝒱
for the An8flower, MNIST, and STL-10 datasets.

209

C

Deferred Proofs of Chapter 5

C.1 Metric Spaces and Hausdorff Dimension

In this section we will proof Lemma 5.15. For this we will first review some concepts and
results regarding general metric spaces and their Hausdorff dimension, which we denote
by dim𝐻 . Applying these to Euclidean R𝑚 or subspaces thereof will yield the desired
result.

A topological space is called a Lindelöf space if every open cover of it has a countable
subcover. This is weaker than compactness, where the existence of finite subcovers is
required. For metric spaces the notions Lindelöf, separable, and second-countable are all
equivalent. It is easy to see that any 𝜎-compact space is Lindelöf. Subspaces of separable
metric spaces are again separable. We start with a collection of useful properties of the
Hausdorff dimension, see for example [Edg08].

Lemma C.1. Let (𝒳 , 𝑑𝒳) and (𝒴 , 𝑑𝒴) be metric spaces, 𝐴, 𝐵 ⊆ 𝒳 Borel sets, (𝐴𝑖)𝑖∈N a

countable collection of Borel sets 𝐴𝑖 ⊆ 𝒳, and Φ : 𝒳 → 𝒴 (globally) Lipschitz continuous.

Then

(i) 𝐴 ⊆ 𝐵⇒ dim𝐻(𝐴) ≤ dim𝐻(𝐵),

(ii) dim𝐻(𝐴 ∪ 𝐵) = max{dim𝐻(𝐴), dim𝐻(𝐵)},

(iii) dim𝐻(
⋃
𝑖∈N 𝐴𝑖) = sup𝑖∈N{dim𝐻(𝐴𝑖)},

(iv) dim𝐻(Φ(𝒳)) ≤ dim𝐻(𝒳).

If (𝒳 , 𝑑𝒳) is a separable space, then the last part can be generalized to locally Lipschitz
continuous maps.

Lemma C.2. Let (𝒳 , 𝑑𝒳) and (𝒴 , 𝑑𝒴) be metric spaces, Φ : 𝒳 → 𝒴 locally Lipschitz

continuous, and 𝒳 separable. Then

dim𝐻(Φ(𝒳)) ≤ dim𝐻(𝒳).

Proof. For every x ∈ 𝒳 there exists an open neighborhood 𝑈x of x such that Φ restricted
to𝑈x is Lipschitz continuous. Also (𝑈x)x∈𝒳 is an open cover of 𝒳. As 𝒳 is separable and
thus Lindelöf there exists a countable subcover (𝑈x𝑖

)𝑖∈N. From Lemma C.1 we conclude

dim𝐻(Φ(𝑈x𝑖
)) ≤ dim𝐻(𝑈x𝑖

) ≤ dim𝐻(𝒳)

211

Appendix C Deferred Proofs of Chapter 5

for all 𝑖 ∈ N. Since Φ(𝒳) = Φ(⋃𝑖∈N𝑈x𝑖
) = ⋃

𝑖∈NΦ(𝑈x𝑖
), we can again use Lemma C.1 to

conclude

dim𝐻(Φ(𝒳)) = dim𝐻(
⋃
𝑖∈NΦ(𝑈x𝑖

)) ≤ sup𝑖∈N dim𝐻(Φ(𝑈x𝑖
)) ≤ dim𝐻(𝒳).

We now come to the special case of the Euclidean space R𝑚 . Every Borel subset of R𝑚
with non-empty interior has Hausdorff dimension 𝑚, again see for example [Edg08]. A
direct consequence of this is the following result.

Lemma C.3. We have dim𝐻(R𝑚) = 𝑚 and dim𝐻(R𝑚+) = 𝑚.

We are now ready to prove Lemma 5.15.

Proof of Lemma 5.15. Since Ω ⊆ R𝑑 is a separable metric space, Φ is locally Lipschitz
continuous, and Φ(Ω) ⊆ R𝑚 has non-empty interior, we can use Lemmas C.2 and C.3 to
obtain

𝑚 = dim𝐻(Φ(Ω)) ≤ dim𝐻(Ω) ≤ dim𝐻(R𝑑) = 𝑑.

C.2 Space-Filling Curves in Arbitrary Dimensions

In this section we describe the construction of the continuous and surjective function
Γ : R→ R∞ and thus prove Lemma 5.28.

We start by constructing a map from the unit interval to the 𝑛-dimensional cube for any
𝑛 ∈ N. We can then glue these maps together to obtain Γ.

Let 𝑔 : [0, 1] → [0, 1]2 be any continuous and surjective space-filling curve. Examples for
such curves are the Sierpiński curve, the Hilbert curve, or the Peano curve, see [Sag94] for
an overview of various space-filling curves. We extend this to higher-dimensional cubes
by iteratively defining curves 𝑔𝑛 : [0, 1] → [0, 1]𝑛 for 𝑛 ≥ 2 as

𝑔2 = 𝑔

𝑔𝑛 = (id𝑛−2 × 𝑔) ◦ 𝑔𝑛−1 , 𝑛 ≥ 3,

which are again continuous and surjective. From these we can obtain continuous and
surjective curves ℎ𝑛 : [0, 1] → [−𝑛, 𝑛]𝑛 from the unit interval to the scaled symmetric
𝑛-dimensional cubes by scaling and translating. Since we ultimately want to glue all these
ℎ𝑛 together we also want to assure ℎ𝑛(0) = ℎ𝑛(1) = 0𝑛 for all 𝑛 ≥ 2. Thus we define

ℎ𝑛(𝑡) =

4𝑛𝑡(2𝑔𝑛(0) − 1𝑛), 𝑡 ∈ [0, 1

4],

𝑛(2𝑔𝑛(2𝑡 − 1
2) − 1𝑛), 𝑡 ∈ [14 , 3

4],

4𝑛(1 − 𝑡)(2𝑔𝑛(1) − 1𝑛), 𝑡 ∈ [34 , 1].

Finally, we glue the pieces together to get a continuous map from one real parameter to
any arbitrary finite number of parameters. We define the map Γ : R→ R𝜔 that maps the
interval [𝑛, 𝑛 + 1] surjectively to the [−𝑛, 𝑛]𝑛 cube on the first 𝑛 coordinates of R𝜔, that is

Γ(𝑡) =
{
ℎ⌊𝑡⌋(𝑡 − ⌊𝑡⌋) × {0}∞ , 𝑡 ≥ 2,
{0}∞ , 𝑡 < 2.

212

C.3 Restricting the Set of Weight Matrices

The only critical points regarding the continuity of Γ are the integers where we transition
from one interval to the next and thus ⌊𝑡⌋ changes. But by assuring ℎ𝑛(0) = ℎ𝑛(1) = 0𝑛 for
all 𝑛 ≥ 2 we achieve a continuous gluing at the interval transitions. Thus Γ is continuous
restricted to each of the intervals (−∞, 2], [2, 3], [3, 4], . . . respectively. These form a
locally finite cover of R by closed sets, hence we can use the pasting Lemma, see for
example [Dug66, Chapter III.9], to conclude the continuity of Γ on all of R. The map is not
surjective onto R𝜔. However for our purpose we only require surjectivity onto R∞ and
this is clearly satisfied, since

R∞ =
⋃
𝑛≥2
[−𝑛, 𝑛]𝑛 × {0}∞ =

⋃
𝑛≥2

Γ([𝑛, 𝑛 + 1]).

C.3 Restricting the Set of Weight Matrices

In this section we briefly discuss some variations of characterizations of ℱ -invariant
families of distributions, where ℱ is not the entire set of all ReLU layers. If the considered
collection ℱ of functions is much more restricted, it might be possible to obtain invariant
families of distributions.

C.3.1 General Restrictions of the Weight Matrices

The setting we considered so far has no restrictions on the weight matrices. We make
use of that in our constructive proof by repeatedly relying on rotation and projection
matrices. Putting restrictions on the matrices, such as non-negativity, symmetry, positive-
definiteness, or allowing only diagonal matrices, would prohibit our proof strategy. Using
only diagonal matrices renders the functions in ℱ separable in their input components and
thus effectively reduces to the one-dimensional case. For this we have already discussed
the invariant distributions in Section 5.3.1. For all other matrix restrictions it remains to be
investigated whether our approach can be adapted.

C.3.2 Restrictions on the Number of Weight Matrices and Bias Vectors

Another practical concern can be the number of different possible weight matrices. So far
we considered a continuum of matrices and biases. One possible restriction is to consider
finite collections ℱ instead.

We begin with the extreme case, in which the collection contains only a single measurable
function ℱ = {Φ : R𝑛 → R𝑛}, for example a ReLU layer Φ(x) = 𝜚(Wx + b) with a fixed
weight matrix W and bias vector b. As in Sections 5.3.1 and 5.3.3 we can construct an
invariant family of distributions starting with a prototype distribution 𝜇0 ∈ 𝒟(R𝑛). Next,
we iteratively define

𝜇𝑘 = Φ∗𝜇𝑘−1 , 𝑘 ∈ N,
and using 𝜂(𝑡) = 𝑡 − ⌊𝑡⌋ also the intermediate interpolations

𝜇𝑡 = (1 − 𝜂(𝑡))𝜇⌊𝑡⌋ + 𝜂(𝑡)𝜇⌊𝑡⌋+1 , 𝑡 ≥ 0. (C.1)

We quickly show the Lipschitz continuity of 𝑡 ↦→ 𝜇𝑡 . Let 0 ≤ 𝑡1 < 𝑡2 < ∞. Without loss
of generality, we can assume 𝑡2 ≤ 𝑡1 + 1, since the Prokhorov metric of two probability

213

Appendix C Deferred Proofs of Chapter 5

𝜀𝜀

0

00

000 001

01

010 011

Φ0

1

10

100 101

11

110 111

Φ1

Φ0

000000000000

𝑆𝑆0

𝑆𝑆1

𝑆𝑆2

(a) (b)

Figure C.1: Graphical Representation of Interpolated Measures. (a) Consecutively applying
either Φ0 or Φ1 to a prototype measure 𝜇𝜇 results in an infinite tree structure (only the first three
levels are shown). Transforming an intermediate (interpolated) point by Φ0 or Φ1 (dashed)
results in a point outside the tree structure. (b) Adding additional edges to represent also the
transformations of all interpolated points results in a layered bipartite graph in which all vertices
of consecutive levels are connected. All subgraphs 𝑆𝑆𝑘𝑘 induced by two consecutive levels of
vertices are complete bipartite graphs.

distributions is always bounded by one. First, we consider the case ⌊𝑡𝑡2⌋ = ⌊𝑡𝑡1⌋ = 𝑘𝑘 for
some 𝑘𝑘 ∈ N. Then

𝑑𝑑𝑃𝑃(𝜇𝜇𝑡𝑡2 , 𝜇𝜇𝑡𝑡1) ≤ ∥𝜇𝜇𝑡𝑡2 − 𝜇𝜇𝑡𝑡1 ∥TV

≤ ∥(𝜂𝜂(𝑡𝑡2) − 𝜂𝜂(𝑡𝑡1))(𝜇𝜇𝑘𝑘+1 − 𝜇𝜇𝑘𝑘)∥TV

≤ |𝜂𝜂(𝑡𝑡2) − 𝜂𝜂(𝑡𝑡1)|∥𝜇𝜇𝑘𝑘+1 − 𝜇𝜇𝑘𝑘 ∥TV

≤ |𝑡𝑡2 − 𝑡𝑡1 |(∥𝜇𝜇𝑘𝑘+1∥TV + ∥𝜇𝜇𝑘𝑘 ∥TV)
= 2|𝑡𝑡2 − 𝑡𝑡1 |,

where ∥·∥TV is the total variation norm whose induced metric upper bounds the Prokhorov
metric, see for example [Hub81, Chp. 2].

Second, we consider the case ⌊𝑡𝑡2⌋ = ⌊𝑡𝑡1⌋ + 1 = 𝑘𝑘. Then

𝜇𝜇𝑡𝑡2 − 𝜇𝜇𝑡𝑡1 = (1 − 𝜂𝜂(𝑡𝑡2) − 𝜂𝜂(𝑡𝑡1))𝜇𝜇𝑘𝑘 + 𝜂𝜂(𝑡𝑡2)𝜇𝜇𝑘𝑘+1 − (1 − 𝜂𝜂(𝑡𝑡1))𝜇𝜇𝑘𝑘−1

and since
|1 − 𝜂𝜂(𝑡𝑡2) − 𝜂𝜂(𝑡𝑡1)| ≤ |1 − 𝜂𝜂(𝑡𝑡1)| + |𝜂𝜂(𝑡𝑡2)| = 𝑡𝑡2 − 𝑡𝑡1

we obtain

𝑑𝑑𝑃𝑃(𝜇𝜇𝑡𝑡2 , 𝜇𝜇𝑡𝑡1) ≤ ∥𝜇𝜇𝑡𝑡2 − 𝜇𝜇𝑡𝑡1 ∥TV

≤ |1 − 𝜂𝜂(𝑡𝑡2) − 𝜂𝜂(𝑡𝑡1)| + |𝜂𝜂(𝑡𝑡2)| + |1 − 𝜂𝜂(𝑡𝑡1)|
≤ 2|𝑡𝑡2 − 𝑡𝑡1 |.

Thus, the one-parameter mapping 𝑡𝑡 ↦→ 𝜇𝜇𝑡𝑡 is Lipschitz continuous. It also satisfies
Φ∗𝜇𝜇𝑡𝑡 = 𝜇𝜇𝑡𝑡+1 for any 𝑡𝑡 ≥ 0, which means that it is Φ-invariant (hence ℱ -invariant).

This idea can also be extended to finite (or even countable) collections ℱ . For brevity
we only illustrate the concept for a collection ℱ = {Φ0 ,Φ1} of two functions. Again, we
start by choosing an arbitrary prototype measure, which we will simply denote 𝜇𝜇 in this
case. For any finite binary string z ∈ {0, 1}∗ of arbitrary length 𝑘𝑘 ∈ N ∪ {0}, we define

𝜇𝜇z = (Φ𝑧𝑧𝑘𝑘 ◦ · · · ◦Φ𝑧𝑧1)∗𝜇𝜇,

214

C.3 Restricting the Set of Weight Matrices

with the convention 𝜇� = 𝜇 for the empty string �. The procedure of obtaining measures
this way can be associated to a perfect binary tree of infinite depth with root �. A binary
string is the child of another string in this tree if it extends the other by exactly one digit 0
or 1, see Figure C.1. Note that different strings could result in the same measure so that
the set of measures {𝜇z}z∈{0,1}∗ is not in one-to-one correspondence to the vertices of the
tree. However, each measure 𝜇z is represented by at least one vertex in the tree.

In order to find a parametrization that includes all the measures 𝜇z and that is locally
Lipschitz continuous and ℱ -invariant, we will turn the tree into an undirected graph. The
parametrization will extend the interpolation idea from (C.1) and results from a walk
through all nodes of the graph.

Let len(z) denote the length of a binary string z. We define the graph 𝐺 = (𝑉, 𝐸)with
vertices 𝑉 = {0, 1}∗ and edges 𝐸 = {(z1 , z2) ∈ 𝑉 ×𝑉 : |len(z1) − len(z2)| = 1}, i.e., every
vertex is a binary string and all strings of consecutive lengths are connected by an edge.
The resulting graph is a bipartite graph where the vertices corresponding to binary strings
of even or odd length respectively are independent sets. Let us define subgraphs 𝑆𝑘 of 𝐺
for 𝑘 ∈ N ∪ {0} that are induced by the vertex sets

𝑉𝑘 = {0, 1}𝑘 ∪ {0, 1}𝑘+1 ,

where the convention {0, 1}0 = {�} for 𝑘 = 0 (with the empty string �) is used. The
resulting subgraphs are complete bipartite graphs, see Figure C.1. We define a walk
𝒲 ∈ {𝑉}∗ on 𝐺 as a sequence of vertices where two consecutive vertices are connected by
an edge. We are now looking for an infinite walk on 𝐺 that passes through all edges at
least once.

Since a walk can pass through an edge multiple times this is easy to construct: Each
subgraph 𝑆𝑘 has only finitely many edges, which means there exists a walk that passes
through them (except for 𝑆0 we can even find an Eulerian cycle for each subgraph). Without
loss of generality we can assume that the walk on 𝑆𝑘 starts and ends in 0𝑘 (the string of 𝑘
zeros) and denote it𝒲𝑘 . Let ⊓ symbolize the concatenation of two walks. We set

𝒲 =

∞/
𝑘=0
𝒲𝑘 ,

which is possible since in 𝐺 the two vertices 0𝑘 and 0𝑘+1 are connected by an edge for every
𝑘 ∈ N. Denoting the 𝑖-th vertex visited by𝒲 as𝒲(𝑖)we can now define

𝜇𝑡 = (1 − 𝜂(𝑡))𝜇𝒲(⌊𝑡⌋) + 𝜂(𝑡)𝜇𝒲(⌊𝑡⌋+1) , (C.2)

with 𝜂(𝑡) as before.
To see that this fulfills our criteria consider the following. All distributions in the

parametrized family are of the form

(1 − 𝑠)𝜇z1 + 𝑠𝜇z2 , with z1 ∈ {0, 1}𝑘 , z2 ∈ {0, 1}𝑘+1 , 𝑘 ∈ N ∪ {0}, 𝑠 ∈ [0, 1].

Transforming it by the function Φ𝑗 for 𝑗 ∈ {0, 1} results in the pushforward measure

(1 − 𝑠)𝜇z
′
1
+ 𝑠𝜇z

′
2
, with z

′
1 = (z1 , 𝑗), z′2 = (z2 , 𝑗).

But since z
′
1 and z

′
2 still have length difference one, they share an edge in 𝑆𝑘+1. The walk

𝒲 passes through all edges, so we can define 𝑖 ∈ N as the smallest number where either

215

Appendix C Deferred Proofs of Chapter 5

𝒲(𝑖) = z
′
1 and𝒲(𝑖 + 1) = z

′
2 or𝒲(𝑖) = z

′
2 and𝒲(𝑖 + 1) = z

′
1. Let us without loss of

generality assume that the former holds. Then

(1 − 𝑠)𝜇z
′
1
+ 𝑠𝜇z

′
2
= 𝜇𝑖+𝑠 ,

which shows 𝑡 ↦→ 𝜇𝑡 is ℱ -invariant. The Lipschitz continuity follows analogously to the
case with only a single function above.

The same argument can be used for more than two functions in ℱ . In this case the
binary tree is simply replaced by an |ℱ |-ary tree. It can even be extended to countably
many different measurable functions. In this case, we could define a sequence of trees
𝑇𝑖 and corresponding graphs 𝐺𝑖 where 𝑇𝑖 is 𝑖-ary, corresponding to the first 𝑖 functions.
Every tree 𝑇𝑖 is a subtree of 𝑇𝑗 whenever 𝑗 > 𝑖 and correspondingly the associated graph
𝐺𝑖 is a subgraph of 𝐺 𝑗 . Thus any walk on 𝐺𝑖 is also valid on 𝐺 𝑗 . If now𝒲𝑖 denotes a walk
on 𝐺𝑖 starting at the root �, covering every edge up to the 𝑖-th level in 𝐺𝑖 , and returning
back to the root �, then we can set

𝒲 =

∞/
𝑖=1
𝒲𝑖 .

It follows that every edge of every graph in the sequence will eventually be reached.
Defining the parametrization as in (C.2), ensures that both ℱ -invariance as well as
Lipschitz continuity hold.

216

D

Additions to Chapter 6

Table D.1: Scenario A1 – CS with 1D Signals. A numerical representation of the results of
Figure 6.4(e), including the additional methods UNetFL and Tira. The smallest relative error per
noise level is highlighted in bold.

rel. noise – adversarial 0.0% 0.1% 0.5% 1.0% 2.0% 4.0% 6.0%

TV[𝜂] rel. ℓ2-err. [%] 0.00±0.00 0.32±0.08 1.66±0.42 3.36±0.86 6.63±1.67 12.26±2.57 17.21±2.98
UNet rel. ℓ2-err. [%] 2.53±1.97 2.67±2.01 3.36±2.11 4.49±2.31 7.29±2.52 13.15±3.24 18.27±3.58
UNetFL rel. ℓ2-err. [%] 2.01±1.70 2.14±1.73 2.82±1.84 3.95±2.01 6.46±2.21 11.91±2.54 16.98±2.72
Tira rel. ℓ2-err. [%] 1.22±1.15 1.33±1.18 1.95±1.33 3.05±1.64 5.90±2.23 11.97±3.13 17.18±3.27
TiraFL rel. ℓ2-err. [%] 0.98±0.88 1.10±0.92 1.73±1.15 2.74±1.42 5.32±1.89 11.07±2.82 16.43±3.42
ItNet rel. ℓ2-err. [%] 0.45±0.18 0.52±0.18 0.93±0.17 1.80±0.80 4.50±1.90 11.62±3.67 16.42±3.70

Table D.2: Scenario A1 – CS with 1D Signals. A numerical representation of the results of
Figure 6.4(f), including the additional methods UNetFL and Tira. The smallest relative error per
noise level is highlighted in bold.

rel. noise – Gaussian 0.0% 0.1% 0.5% 1.0% 2.0% 4.0% 6.0%

TV[𝜂] rel. ℓ2-err. [%] 0.00±0.00 0.18±0.06 0.90±0.30 1.79±0.60 3.61±1.18 6.84±2.15 9.74±2.64
UNet rel. ℓ2-err. [%] 2.53±1.97 2.58±1.99 2.79±2.03 3.09±2.07 3.82±2.11 5.67±2.25 7.70±2.49
UNetFL rel. ℓ2-err. [%] 2.01±1.70 2.05±1.71 2.24±1.75 2.53±1.79 3.23±1.91 4.99±2.05 7.03±2.21
Tira rel. ℓ2-err. [%] 1.22±1.15 1.26±1.16 1.43±1.21 1.71±1.25 2.35±1.43 4.15±1.79 6.42±2.23
TiraFL rel. ℓ2-err. [%] 0.98±0.88 1.02±0.90 1.20±0.95 1.48±1.05 2.10±1.24 3.86±1.63 5.98±2.19
ItNet rel. ℓ2-err. [%] 0.45±0.18 0.47±0.18 0.59±0.17 0.80±0.17 1.38±0.50 2.91±0.99 5.33±2.15

Table D.3: Scenario A2 – CS with MNIST. A numerical representation of the results of Figure 6.9(c),
including the additional methods UNetFL and Tira. The smallest relative error per noise level is
highlighted in bold.

rel. noise – adversarial 0.0% 0.5% 1.0% 3.0% 5.0% 7.5% 10.0%

TV[𝜂] rel. ℓ2-err. [%] 15.32±10.13 18.18±9.83 20.50±9.60 28.68±8.77 35.92±8.45 43.87±7.95 50.85±7.35
UNet rel. ℓ2-err. [%] 9.79±2.14 10.24±2.17 10.71±2.19 12.96±2.37 15.71±2.58 20.23±2.91 25.08±3.15
UNetFL rel. ℓ2-err. [%] 7.88±1.42 8.23±1.42 8.60±1.42 10.23±1.42 12.13±1.45 14.97±1.47 18.28±1.51
Tira rel. ℓ2-err. [%] 8.56±1.77 8.95±1.78 9.37±1.79 11.21±1.81 13.50±1.80 16.87±1.95 20.66±2.11
TiraFL rel. ℓ2-err. [%] 7.64±1.38 7.99±1.37 8.36±1.36 9.99±1.34 11.94±1.34 14.91±1.28 18.25±1.30
ItNet rel. ℓ2-err. [%] 2.47±0.58 2.96±0.60 3.53±0.60 6.26±0.59 9.35±0.72 13.62±1.31 18.06±1.77

Table D.4: Scenario A2 – CS with MNIST. A numerical representation of the results of Figure 6.9(d),
including the additional methods UNetFL and Tira. The smallest relative error per noise level is
highlighted in bold.

rel. noise – Gaussian 0.0% 0.5% 1.0% 3.0% 5.0% 7.5% 10.0%

TV[𝜂] rel. ℓ2-err. [%] 15.32±10.13 16.55±9.71 17.48±9.31 21.52±8.19 25.53±7.75 30.00±7.48 34.20±7.18
UNet rel. ℓ2-err. [%] 9.79±2.14 9.87±2.15 9.96±2.14 10.36±2.13 10.86±2.18 11.54±2.16 12.37±2.11
UNetFL rel. ℓ2-err. [%] 7.88±1.42 7.88±1.42 7.89±1.42 7.99±1.41 8.16±1.40 8.49±1.38 8.92±1.36
Tira rel. ℓ2-err. [%] 8.56±1.77 8.56±1.77 8.57±1.76 8.67±1.75 8.85±1.72 9.17±1.69 9.59±1.65
TiraFL rel. ℓ2-err. [%] 7.64±1.38 7.70±1.38 7.77±1.37 8.12±1.35 8.52±1.36 9.18±1.35 9.88±1.35
ItNet rel. ℓ2-err. [%] 2.47±0.58 2.58±0.59 2.72±0.58 3.60±0.58 4.65±0.66 6.00±0.73 7.32±0.80

217

Appendix D Additions to Chapter 6

Table D.5: Scenario B1 – Fourier Measurements with Ellipses. A numerical representation of the
results of Figure 6.10(c), including the additional methods UNetFL and Tira. The best relative
error/PSNR/SSIM per noise level is highlighted in bold. Note that the high SSIM values for
TV[𝜂] for 5% and 8% can be explained by the fact that adversarial perturbations for TV[𝜂] cause
point-like artifacts, see the zoomed region in Figure 6.11. In contrast to the PSNR, the SSIM
seems to be less sensitive to such types of errors.

rel. noise – adversarial 0.0% 0.5% 1.0% 2.0% 3.0% 5.0% 8.0%

TV[𝜂]
rel. ℓ2-err. [%] 0.44±0.11 2.51±0.24 4.34±0.35 7.35±0.45 9.96±0.46 14.19±0.44 20.72±0.63
PSNR 60.00±3.26 44.73±2.20 39.98±2.16 35.38±2.00 32.74±1.91 29.66±1.82 26.37±1.93
SSIM 1.00±0.00 0.99±0.00 0.98±0.01 0.96±0.02 0.94±0.03 0.93±0.03 0.93±0.02

UNet
rel. ℓ2-err. [%] 2.94±0.63 4.27±0.55 5.70±0.53 8.38±0.52 10.88±0.53 15.20±0.70 20.41±0.96
PSNR 43.52±2.06 40.15±1.79 37.61±1.72 34.24±1.67 31.97±1.66 29.07±1.69 26.51±1.78
SSIM 0.99±0.01 0.98±0.01 0.97±0.01 0.96±0.01 0.94±0.02 0.91±0.02 0.85±0.03

UNetFL
rel. ℓ2-err. [%] 2.72±0.50 4.12±0.44 5.57±0.43 8.35±0.43 10.97±0.43 15.58±0.67 21.03±1.02
PSNR 44.13±2.29 40.46±1.96 37.80±1.87 34.28±1.76 31.90±1.73 28.85±1.76 26.25±1.82
SSIM 0.99±0.00 0.99±0.00 0.98±0.01 0.97±0.01 0.95±0.02 0.91±0.03 0.85±0.04

Tira
rel. ℓ2-err. [%] 1.74±0.37 3.33±0.33 4.85±0.37 7.73±0.42 10.42±0.53 15.01±0.74 20.39±0.99
PSNR 48.05±2.50 42.27±1.93 39.01±1.85 34.94±1.80 32.35±1.76 29.18±1.76 26.52±1.83
SSIM 1.00±0.00 0.99±0.00 0.99±0.00 0.97±0.01 0.95±0.02 0.91±0.03 0.87±0.04

TiraFL
rel. ℓ2-err. [%] 1.75±0.39 3.42±0.34 4.94±0.41 7.82±0.44 10.54±0.51 15.14±0.69 20.55±0.95
PSNR 48.05±2.58 42.05±1.93 38.85±1.86 34.85±1.83 32.24±1.80 29.10±1.75 26.45±1.81
SSIM 1.00±0.00 0.99±0.00 0.99±0.01 0.97±0.01 0.95±0.02 0.91±0.03 0.87±0.04

ItNet
rel. ℓ2-err. [%] 1.45±0.29 2.81±0.28 4.21±0.32 6.87±0.37 9.37±0.40 13.65±0.49 18.98±0.65

PSNR 49.63±1.80 43.76±1.62 40.23±1.64 35.97±1.63 33.27±1.67 30.00±1.64 27.13±1.65

SSIM 0.99±0.00 0.99±0.00 0.98±0.00 0.97±0.01 0.96±0.01 0.92±0.02 0.88±0.03

Table D.6: Scenario B1 – Fourier Measurements with Ellipses. A numerical representation of the
results of Figure 6.10(d), including the additional methods UNetFL and Tira. The best relative
error/PSNR/SSIM per noise level is highlighted in bold.

rel. noise – Gaussian 0.0% 0.5% 1.0% 2.0% 3.0% 5.0% 8.0%

TV[𝜂]
rel. ℓ2-err. [%] 0.44±0.11 0.80±0.12 1.18±0.15 1.93±0.25 2.64±0.35 3.90±0.50 5.52±0.58
PSNR 60.00±3.26 54.73±2.39 51.29±2.44 47.08±2.46 44.33±2.47 40.94±2.25 37.91±2.17
SSIM 1.00±0.00 1.00±0.00 0.99±0.00 0.98±0.01 0.96±0.02 0.96±0.02 0.92±0.04

UNet
rel. ℓ2-err. [%] 2.94±0.63 2.94±0.63 2.95±0.63 3.00±0.63 3.07±0.62 3.28±0.61 3.72±0.61
PSNR 43.52±2.06 43.50±2.06 43.47±2.06 43.33±2.07 43.12±2.07 42.51±2.09 41.41±2.12
SSIM 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.01 0.99±0.00 0.98±0.00

UNetFL
rel. ℓ2-err. [%] 2.72±0.50 2.73±0.50 2.74±0.50 2.80±0.51 2.88±0.51 3.13±0.53 3.61±0.55
PSNR 44.13±2.29 44.12±2.29 44.07±2.29 43.90±2.28 43.64±2.28 42.92±2.26 41.65±2.20
SSIM 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00

Tira
rel. ℓ2-err. [%] 1.74±0.37 1.75±0.37 1.77±0.37 1.83±0.38 1.92±0.38 2.19±0.40 2.70±0.45
PSNR 48.05±2.50 48.02±2.50 47.95±2.49 47.65±2.48 47.20±2.46 46.03±2.41 44.19±2.36
SSIM 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.99±0.00 0.99±0.00

TiraFL
rel. ℓ2-err. [%] 1.75±0.39 1.76±0.39 1.77±0.39 1.83±0.40 1.92±0.40 2.19±0.42 2.70±0.46
PSNR 48.05±2.58 48.02±2.57 47.94±2.57 47.66±2.55 47.20±2.54 46.04±2.47 44.21±2.39
SSIM 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.99±0.00

ItNet
rel. ℓ2-err. [%] 1.45±0.29 1.46±0.29 1.47±0.29 1.53±0.30 1.62±0.32 1.92±0.37 2.50±0.45

PSNR 49.63±1.80 49.60±1.80 49.52±1.82 49.19±1.89 48.65±1.98 47.18±2.18 44.89±2.27

SSIM 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00

218

Appendix D Additions to Chapter 6

Table D.7: Case Study C – fastMRI. A numerical representation of the results of Figure 6.16(c),
including the additional methods UNetFL and Tira. The best relative error/PSNR/SSIM per
noise level is highlighted in bold.

rel. noise – adversarial 0.0% 0.2% 0.5% 1.0% 1.5% 2.0% 2.5%

TV[𝜂]
rel. ℓ2-err. [%] 8.39±1.38 8.89±1.40 9.35±1.41 10.34±1.41 11.35±1.42 12.35±1.43 12.96±1.44
PSNR 31.70±1.47 31.18±1.40 30.73±1.34 29.85±1.22 29.02±1.10 28.28±1.02 27.85±0.98
SSIM 0.78±0.04 0.77±0.04 0.76±0.04 0.74±0.04 0.72±0.04 0.70±0.04 0.68±0.04

UNet
rel. ℓ2-err. [%] 8.18±1.27 8.29±1.27 8.41±1.27 8.67±1.26 8.99±1.25 9.38±1.22 9.84±1.18
PSNR 31.90±1.38 31.79±1.37 31.66±1.35 31.38±1.30 31.06±1.23 30.69±1.15 30.26±1.06
SSIM 0.80±0.04 0.80±0.03 0.79±0.03 0.79±0.03 0.78±0.03 0.78±0.03 0.77±0.03

UNetFL
rel. ℓ2-err. [%] 8.23±1.28 8.35±1.28 8.47±1.28 8.75±1.27 9.10±1.25 9.51±1.21 10.01±1.17
PSNR 31.85±1.39 31.72±1.37 31.59±1.34 31.30±1.29 30.96±1.22 30.56±1.13 30.10±1.04
SSIM 0.79±0.04 0.79±0.04 0.79±0.04 0.78±0.03 0.78±0.03 0.77±0.03 0.77±0.03

Tira
rel. ℓ2-err. [%] 7.97±1.26 8.10±1.26 8.24±1.26 8.58±1.25 9.00±1.21 9.52±1.17 10.16±1.12
PSNR 32.13±1.41 31.99±1.39 31.84±1.36 31.48±1.30 31.05±1.19 30.54±1.09 29.97±0.97
SSIM 0.80±0.03 0.80±0.03 0.80±0.03 0.79±0.03 0.79±0.03 0.78±0.03 0.77±0.03

TiraFL
rel. ℓ2-err. [%] 7.98±1.27 8.11±1.27 8.26±1.27 8.60±1.27 9.03±1.24 9.55±1.20 10.19±1.15
PSNR 32.12±1.42 31.98±1.40 31.82±1.37 31.46±1.31 31.03±1.22 30.52±1.11 29.95±1.00
SSIM 0.80±0.03 0.80±0.03 0.80±0.03 0.79±0.03 0.78±0.03 0.78±0.03 0.77±0.03

ItNet
rel. ℓ2-err. [%] 7.08±1.20 7.21±1.20 7.35±1.19 7.67±1.17 8.08±1.13 8.59±1.10 9.20±1.07

PSNR 33.18±1.52 33.02±1.49 32.85±1.45 32.45±1.35 31.99±1.23 31.45±1.12 30.84±1.02

SSIM 0.82±0.04 0.82±0.04 0.81±0.04 0.81±0.03 0.80±0.03 0.79±0.03 0.78±0.03

Table D.8: Case Study C – fastMRI. A numerical representation of the results of Figure 6.16(d),
including the additional methods UNetFL and Tira. The best relative error/PSNR/SSIM per
noise level is highlighted in bold.

rel. noise – Gaussian 0.0% 0.2% 0.5% 1.0% 1.5% 2.0% 2.5%

TV[𝜂]
rel. ℓ2-err. [%] 8.39±1.38 8.39±1.38 8.40±1.38 8.44±1.37 8.49±1.36 8.57±1.35 8.65±1.34
PSNR 31.70±1.47 31.69±1.47 31.68±1.47 31.65±1.46 31.58±1.44 31.51±1.41 31.42±1.38
SSIM 0.78±0.04 0.78±0.04 0.78±0.04 0.78±0.04 0.78±0.04 0.77±0.04 0.77±0.04

UNet
rel. ℓ2-err. [%] 8.18±1.27 8.18±1.27 8.18±1.27 8.20±1.26 8.22±1.26 8.24±1.26 8.27±1.26
PSNR 31.90±1.38 31.90±1.38 31.90±1.38 31.89±1.38 31.86±1.37 31.84±1.37 31.80±1.36
SSIM 0.80±0.04 0.80±0.04 0.80±0.04 0.80±0.04 0.80±0.04 0.80±0.04 0.79±0.04

UNetFL
rel. ℓ2-err. [%] 8.23±1.28 8.24±1.28 8.24±1.28 8.25±1.28 8.26±1.28 8.29±1.27 8.31±1.27
PSNR 31.85±1.39 31.84±1.39 31.84±1.38 31.83±1.38 31.81±1.38 31.79±1.37 31.76±1.37
SSIM 0.79±0.04 0.79±0.04 0.79±0.04 0.79±0.04 0.79±0.04 0.79±0.04 0.79±0.04

Tira
rel. ℓ2-err. [%] 7.97±1.26 7.97±1.26 7.98±1.26 7.99±1.26 8.01±1.26 8.04±1.25 8.07±1.25
PSNR 32.13±1.41 32.13±1.41 32.13±1.41 32.11±1.40 32.09±1.40 32.05±1.39 32.02±1.38
SSIM 0.80±0.03 0.80±0.03 0.80±0.03 0.80±0.03 0.80±0.03 0.80±0.03 0.80±0.03

TiraFL
rel. ℓ2-err. [%] 7.98±1.27 7.98±1.27 7.99±1.27 8.00±1.27 8.02±1.27 8.05±1.26 8.08±1.26
PSNR 32.12±1.42 32.12±1.42 32.12±1.42 32.10±1.41 32.08±1.41 32.05±1.40 32.01±1.40
SSIM 0.80±0.03 0.80±0.03 0.80±0.03 0.80±0.03 0.80±0.03 0.80±0.03 0.80±0.04

ItNet
rel. ℓ2-err. [%] 7.08±1.20 7.08±1.20 7.08±1.20 7.10±1.20 7.13±1.19 7.17±1.19 7.22±1.18

PSNR 33.18±1.52 33.18±1.52 33.17±1.52 33.15±1.51 33.12±1.50 33.07±1.48 33.01±1.47

SSIM 0.82±0.04 0.82±0.04 0.82±0.04 0.82±0.04 0.82±0.04 0.81±0.04 0.81±0.04

219

Appendix D Additions to Chapter 6

Table
D

.9:
R

e
c
o
n

s
t
r
u

c
t
i
o
n

T
a
s
k

s
–

N
e
t
w

o
r
k

A
r
c
h

i
t
e
c
t
u

r
e
s
.D

etailed
description

ofhyper-param
etersforallconsidered

neuralnetw
ork

architectures.
The

convolution
kernelsizesare

3
or3×

3,the
m

ax-pooling
sizesare

2
or2×

2,and
the

activation
functionsare

rectified
linearunits(ReLU

s)for
allnetw

orks.
Piecew

ise
C

onstant
M

N
IST

Ellipses(Fourier)
Ellipses(Radon)

fastM
RI(radial)

fastM
RI(challenge)

U
N

et
inversion

Tikhonov
(0
.02)

Tikhonov
(0
.02)

A
∗

FBP
(H

ann-Filter)
A
∗

–
U

-N
etlevels

5
5

5
5

5
channelsperlevel

(64,128,256,512,1024)
(64,128,256,512,1024)

(32,64,128,256,512)
(36,72,144,288,576)

(24,48,96,192,384)

U
N

etFL
inversion

learned,initTikh.(0
.02)

learned,initTikh.(0
.02)

learned
–

learned
–

U
-N

etlevels
5

5
5

5
channelsperlevel

(64,128,256,512,1024)
(64,128,256,512,1024)

(32,64,128,256,512)
(24,48,96,192,384)

Tira
inversion

Tikhonov
(0
.02)

Tikhonov
(0
.02)

A
∗

–
A
∗

A
∗

Tiram
isu

levels
5

5
5

5
5

dense
blocksperlevel

(5,7,9,12,15)
(5,7,9,12,15)

(5,7,9,12,15)
(5,7,9,12,15)

(6,8,10,12,14)
initialchannels

16
16

16
12

16
channelgrow

th
rate

16
16

16
12

12
bottleneck

layers
25

25
20

18
20

TiraFL
inversion

learned,initTikh.(0
.02)

learned,initTikh.(0
.02)

learned
–

learned
–

Tiram
isu

levels
5

5
5

5
dense

blocksperlevel
(5,7,9,12,15)

(5,7,9,12,15)
(5,7,9,12,15)

(5,7,9,12,15)
initialchannels

16
16

16
12

channelgrow
th

rate
16

16
16

12
bottleneck

layers
25

25
20

18

ItN
et

inversion
Tikhonov

(0
.02)

Tikhonov
(0
.02)

A
∗

–
A
∗

–
U

-N
etlevels

5
5

5
5

channelsperlevel
(64,128,256,512,1024)

(64,128,256,512,1024)
(32,64,128,256,512)

(24,96,192,384)
iterations

8
8

8
8

C
onvN

et
convolutionallayers

–
4

–
–

–
–

channelsperlayer
(32,32,64,64)

fully
connected

layers
3

featuresperlayer
(200,200,10)

rem
arks

dropout(𝑝
=

0
.5)betw

een
fc

layers

220

Appendix D Additions to Chapter 6

Ta
bl

e
D

.1
0:

R
e
c
o
n

s
t
r
u

c
t
i
o
n

T
a
s
k

s
–

N
e
t
w

o
r
k

T
r
a
i
n

i
n

g
.

D
et

ai
le

d
de

sc
rip

tio
n

of
hy

pe
r-p

ar
am

et
er

sf
or

al
ln

eu
ra

ln
et

w
or

k
tr

ai
ni

ng
s.

A
ll

ne
tw

or
ks

ar
e

tr
ai

ne
d

in
1

or
2

ph
as

es
an

d
re

sp
ec

tiv
e

pa
ra

m
et

er
sa

re
sh

ow
n

pe
rt

ra
in

in
g

ph
as

e.
D

ef
au

lt
pa

ra
m

et
er

sf
or

th
e

A
da

m
op

tim
iz

er
ar

e
us

ed
ex

ce
pt

fo
r

th
e
�

pa
ra

m
et

er
,w

hi
ch

is
re

po
rt

ed
fo

ra
ll

ne
tw

or
ks

an
d

tr
ai

ni
ng

ph
as

es
.

Pi
ec

ew
is

e
C

on
st

an
t

M
N

IS
T

El
lip

se
s(

Fo
ur

ie
r)

El
lip

se
s(

Ra
do

n)
fa

st
M

RI
(r

ad
ia

l)
fa

st
M

RI
(c

ha
lle

ng
e)

U
N

et
ep

oc
hs

(2
00

,7
5)

(2
00

,2
0)

(1
00

,1
0)

(1
55

,5
)

(1
00

)
–

m
in

i-b
at

ch
si

ze
(4

0,
40

)
(4

0,
40

)
(4

0,
40

)
(4

0,
40

)
(4

0)
le

ar
ni

ng
ra

te
(8
·1

0−
5 ,

5
·1

0−
5)

(8
·1

0−
5 ,

5
·1

0−
5)

(2
·1

0−
4 ,

5
·1

0−
5)

(2
·1

0−
4 ,

5
·1

0−
5)

(2
·1

0−
4)

w
ei

gh
td

ec
ay

(5
·1

0−
3 ,

5
·1

0−
3)

(5
·1

0−
3 ,

5
·1

0−
3)

(1
·1

0−
5 ,

1
·1

0−
5)

(5
·1

0−
4 ,

1
·1

0−
4)

(1
·1

0−
5)

A
da

m
�-

pa
ra

m
et

er
(1
·1

0−
5 ,

1
·1

0−
5)

(1
·1

0−
5 ,

1
·1

0−
5)

(1
·1

0−
5 ,

1
·1

0−
5)

(1
·1

0−
4 ,

1
·1

0−
4)

(1
·1

0−
4)

gr
ad

ie
nt

ac
cu

m
ul

at
io

n
(1

,2
00

)
(1

,2
00

)
(1

,2
00

)
(1

,2
00

)
(1

)
jit

te
rin

g
le

ve
l

2
4

10
50

0
15

0

U
N

et
FL

ep
oc

hs
(2

50
,5

0)
(2

00
,7

5)
(1

00
,1

0)
–

(4
5)

–
m

in
i-b

at
ch

si
ze

(4
0,

40
)

(4
0,

40
)

(4
0,

40
)

(4
0)

le
ar

ni
ng

ra
te

(2
·1

0−
4 ,

5
·1

0−
5)

(2
·1

0−
4 ,

5
·1

0−
5)

(2
·1

0−
4 ,

5
·1

0−
5)

(8
·1

0−
5)

w
ei

gh
td

ec
ay

(5
·1

0−
4 ,

5
·1

0−
4)

(5
·1

0−
3 ,

5
·1

0−
3)

(1
·1

0−
3 ,

5
·1

0−
4)

(1
·1

0−
5)

A
da

m
�-

pa
ra

m
et

er
(1
·1

0−
5 ,

1
·1

0−
5)

(1
·1

0−
5 ,

1
·1

0−
5)

(1
·1

0−
5 ,

1
·1

0−
5)

(1
·1

0−
4)

gr
ad

ie
nt

ac
cu

m
ul

at
io

n
(1

,2
00

)
(1

,2
00

)
(1

,2
00

)
(1

)
jit

te
rin

g
le

ve
l

2
4

10
15

0
re

m
ar

ks
in

it
U

fr
om

U
N

et

Ti
ra

ep
oc

hs
(2

00
,5

0)
(2

00
,5

0)
(5

0,
10

)
–

(5
0,

16
)

(4
0)

m
in

i-b
at

ch
si

ze
(4

0,
40

)
(4

0,
40

)
(8

,5
)

(6
,6

)
(4

)
le

ar
ni

ng
ra

te
(2
·1

0−
4 ,

5
·1

0−
5)

(2
·1

0−
4 ,

5
·1

0−
5)

(2
·1

0−
4 ,

5
·1

0−
5)

(8
·1

0−
5 ,

5
·1

0−
5)

(1
·1

0−
4)

w
ei

gh
td

ec
ay

(5
·1

0−
4 ,

5
·1

0−
4)

(1
·1

0−
5 ,

1
·1

0−
5)

(1
·1

0−
5 ,

1
·1

0−
5)

(1
·1

0−
6 ,

1
·1

0−
6)

(1
·1

0−
5)

A
da

m
�-

pa
ra

m
et

er
(1
·1

0−
5 ,

1
·1

0−
5)

(1
·1

0−
5 ,

1
·1

0−
5)

(1
·1

0−
5 ,

1
·1

0−
5)

(2
·1

0−
4 ,

2
·1

0−
4)

(1
·1

0−
4)

gr
ad

ie
nt

ac
cu

m
ul

at
io

n
(1

,2
00

)
(1

,1
00

)
(1

,2
00

)
(1

,1
)

(1
)

jit
te

rin
g

le
ve

l
2

4
10

15
0

10

Ti
ra

FL
ep

oc
hs

(2
00

,5
0)

(2
00

,5
0)

(3
0,

7)
–

(5
0,

20
)

–
m

in
i-b

at
ch

si
ze

(4
0,

40
)

(4
0,

40
)

(1
0,

5)
(6

,6
)

le
ar

ni
ng

ra
te

(2
·1

0−
4 ,

5
·1

0−
5)

(2
·1

0−
4 ,

5
·1

0−
5)

(2
·1

0−
4 ,

5
·1

0−
5)

(8
·1

0−
5 ,

5
·1

0−
5)

w
ei

gh
td

ec
ay

(5
·1

0−
4 ,

5
·1

0−
4)

(5
·1

0−
4 ,

5
·1

0−
4)

(1
·1

0−
4 ,

1
·1

0−
5)

(1
·1

0−
6 ,

1
·1

0−
6)

A
da

m
�-

pa
ra

m
et

er
(1
·1

0−
5 ,

1
·1

0−
5)

(1
·1

0−
5 ,

1
·1

0−
5)

(2
·1

0−
4 ,

1
·1

0−
5)

(2
·1

0−
4 ,

2
·1

0−
4)

gr
ad

ie
nt

ac
cu

m
ul

at
io

n
(1

,2
00

)
(1

,2
00

)
(1

,2
00

)
(1

,1
)

jit
te

rin
g

le
ve

l
2

4
10

15
0

re
m

ar
ks

in
it

T
fr

om
Ti

ra

ItN
et

ep
oc

hs
(1

00
,5

)
(1

00
,1

0)
(3

5,
6)

–
(1

5,
8)

–
m

in
i-b

at
ch

si
ze

(4
0,

40
)

(4
0,

40
)

(1
5,

15
)

(1
0,

10
)

le
ar

ni
ng

ra
te

(5
·1

0−
5 ,

2
·1

0−
5)

(8
·1

0−
5 ,

5
·1

0−
5)

(5
·1

0−
5 ,

5
·1

0−
5)

(5
·1

0−
5 ,

5
·1

0−
5)

w
ei

gh
td

ec
ay

(5
·1

0−
4 ,

5
·1

0−
4)

(1
·1

0−
3 ,

1
·1

0−
3)

(1
·1

0−
4 ,

1
·1

0−
4)

(1
·1

0−
6 ,

1
·1

0−
6)

A
da

m
�-

pa
ra

m
et

er
(1
·1

0−
5 ,

1
·1

0−
5)

(1
·1

0−
5 ,

1
·1

0−
5)

(2
·1

0−
4 ,

2
·1

0−
4)

(1
·1

0−
4 ,

1
·1

0−
4)

gr
ad

ie
nt

ac
cu

m
ul

at
io

n
(1

,2
00

)
(1

,2
00

)
(1

,2
00

)
(1

,1
)

jit
te

rin
g

le
ve

l
2

4
10

15
0

re
m

ar
ks

in
it

U
fr

om
U

N
et

in
it

U
fr

om
U

N
et

C
on

vN
et

ep
oc

hs
–

(2
0,

10
)

–
–

–
–

m
in

i-b
at

ch
si

ze
(4

0,
40

)
le

ar
ni

ng
ra

te
(2
·1

0−
4 ,

5
·1

0−
5)

w
ei

gh
td

ec
ay

(1
·1

0−
5 ,

1
·1

0−
5)

A
da

m
�-

pa
ra

m
et

er
(1
·1

0−
5 ,

1
·1

0−
5)

gr
ad

ie
nt

ac
cu

m
ul

at
io

n
(1

,1
)

jit
te

rin
g

le
ve

l
no

221

Appendix D Additions to Chapter 6

Table
D

.11:
R

e
c
o
n

s
t
r
u

c
t
i
o
n

T
a
s
k

s
–

A
d

v
e
r
s
a
r
i
a
l

P
e
r
t
u

r
b

a
t
i
o
n

s
.D

etailed
description

ofhyper-param
etersforfinding

adversarialperturbations.
The

param
etersreported

forN
etapply

equally
to

allnetw
ork

types.
Piecew

ise
C

onstant
M

N
IST

Ellipses(Fourier)
Ellipses(Radon)

fastM
RI(radial)

fastM
RI(challenge)

TV[𝜂]
A

D
M

M
iterations

𝑘rec
50000

50000
5000

200
5000

5000
A

D
M

M
iterations

𝑘grad
2000

2000
200

20
200

150
A

dam
iterations

30
30

250
15

250
50

step
size

5·10 0
5·10 0

5·10 0
5·10 0

5·10 0
5·10 0

random
initializations

200
100

6
6

6
6

N
et

A
dam

iterations
300

100
1000

500
250

200
step

size
5·10 0

5·10 0
5·10 0

5·10 0
5·10 0

5·10 0

random
initializations

200
100

6
6

6
6

C
onvN

et◦TV[𝜂]
A

D
M

M
iterations

𝑘rec
–

50000
–

–
–

–
A

D
M

M
iterations

𝑘grad
2000

A
dam

iterations
100

step
size

5·10 −1
random

initializations
100

C
onvN

et◦N
et

A
dam

iterations
–

100
–

–
–

–
step

size
5·10 −1

random
initializations

100

222

E

Additions to Chapter 7

Table E.1: AAPM Challenge – Network Architectures. Detailed description of hyper-parameters
for the neural network architectures. The convolution kernel sizes are 3 × 3, the max-pooling
sizes are 2 × 2, and the activation functions are rectified linear units (ReLUs) for all networks.

AAPM Sparse-View CT Challenge

UNet inversion estimated FBP (Hann-Filter)
U-Net levels 5
channels per level (32, 64, 128, 256, 512)

Tira inversion estimated FBP (Hann-Filter)
Tiramisu levels 5
dense blocks per level (4, 5, 7, 10, 12)
initial channels 18
channel growth rate 18
bottleneck layers 16

ItNet inversion estimated FBP (Hann-Filter)
U-Net levels 5
channels per level (32, 64, 128, 256, 512)
iterations 4

ItNet-post inversion estimated FBP (Hann-Filter)
U-Net levels 5
channels per level (32, 64, 128, 256, 512)
iterations 5

LPD inversion estimated FBP (Hann-Filter)
iterations 8
channels per iteration (primal) (32, 32, 32, 32, 32, 32, 32, 32)
channels per iteration (dual) (32, 32, 32, 32, 32, 32, 32, 32)

Table E.2: AAPM Challenge – Network Training. Detailed description of hyper-parameters for
the neural network trainings. Networks are trained in 1, 2, or 3 phases. Respective parameters
are shown per training phase. The Adam optimizer with default settings was used except for the
�-parameter, which is 10−5 for all networks and phases.

AAPM Sparse-View CT Challenge

UNet epochs 400
mini-batch size 4
learning rate 2 · 10−4

weight decay 1 · 10−3

Tira epochs (150, 250)
mini-batch size (2, 2)
learning rate (2 · 10−4 , 8 · 10−5)
weight decay (1 · 10−3 , 1 · 10−3)

ItNet epochs (250, 250)
mini-batch size (2, 2)
learning rate (8 · 10−5 , 3 · 10−5)
weight decay (1 · 10−4 , 1 · 10−4)
remarks init U from UNet, weight sharing across iterations

ItNet-post epochs (300, 300, 300)
mini-batch size (2, 2, 2)
learning rate (5 · 10−5 , 2 · 10−5 , 1 · 10−5)
weight decay (1 · 10−4 , 1 · 10−4 , 1 · 10−4)
remarks init U from ItNet, no weight sharing across iterations, train only iterations 4 and 5

LPD epochs 400
mini-batch size 4
learning rate 2 · 10−4

weight decay 1 · 10−3

223

	Preface
	Abstract
	Zusammenfassung
	Acknowledgments
	List of Figures
	List of Tables

	Introduction
	Interpretability of Learned Classifier Functions
	Accuracy and Robustness of Learned Reconstruction Methods
	Previous Publication of the Results in this Thesis
	Availability of Code

	Preliminaries and Notation
	Classification Tasks
	Interpretability of Boolean Circuit Classifiers
	The Delta-Relevant-Input Problem
	Related Concepts

	Computational Complexity Analysis
	Delta-Relevant-Input is NP^PP-hard
	Delta-Relevant-Input is Contained in NP^PP

	Variations of the Problem
	Introducing a Probability Gap
	Introducing a Set Size Gap

	Discussion
	Stability and Uniqueness of Delta-Relevant Sets
	Binary versus Continuous
	Choice of Distribution

	Conclusion

	Interpretability of Neural Network Classifiers
	The Epsilon-Distortion-Input Problem
	Computational Complexity Analysis
	Relaxation of the Problem
	Relevance Scores and Orderings
	Sparse Rate-Distortion Explanations
	Ordered Rate-Distortion Explanations
	Assumed Density Filtering

	Evaluating and Comparing Explanations
	Invariance to Input Transformations
	Synthetic Binary Strings
	An8flower Benchmark Dataset
	Relevance Ordering Test

	Discussion
	Sufficiency and Necessity of Finding Relevant Sets
	Non-Uniform Distributions
	Conditional versus Marginal Distributions

	Conclusion

	The Necessity of Using Approximate ADF
	Characterization of Invariant Families of Distributions
	The Two Main Characterization Results

	Proof of the First Characterization Result
	Details of the Proof
	Surjectivity of Xi (Proof of Lemma 5.13)
	Local Lipschitz Continuity of Xi (Proof of Lemma 5.14)

	Proof of the Second Characterization Result
	Families of Distributions in One Dimension
	Families of Distributions With Finite Support
	Families of Distributions Without Local Lipschitz Continuity

	Discussion
	Conclusion

	Reconstruction Tasks
	Robustness of Reconstruction Methods
	Methods and Preliminaries
	Neural Network Architectures
	Neural Network Training
	Total Variation Minimization
	Adversarial Perturbations

	Results
	Case Study A: Compressed Sensing With Gaussian Measurements
	Case Study B: Image Recovery of Phantom Ellipses
	Case Study C: MRI on Real-World Data (fastMRI)

	Further Aspects of Robustness
	Training Without Noise – An Inverse Crime?
	Training With Noise – A Loss of Accuracy?
	Adversarial Examples for Classification From Compressed Measurements
	The Original fastMRI Challenge Setup

	Discussion
	Conclusion

	Accuracy of Reconstruction Methods
	The AAPM Challenge Setup
	Methods
	Results
	Discussion
	Conclusion

	Appendices
	Deferred Proofs of Chapter 3
	Raising the Probability Threshold
	Lowering the Probability Threshold
	Neutral Operation
	Construction of the Functions Pi

	Additions to Chapter 4
	Algorithm Descriptions
	Projected Gradient Descent
	Frank-Wolfe Algorithms
	Feasible Regions, Projections, and Linear Minimization Oracles

	Supplementary Experimental Results
	Synthetic Binary Strings
	An8flower Dataset
	MNIST Dataset
	STL-10 Dataset

	Specifications of the Synthetic Binary Strings Experiment
	Network Architecture
	RDE Optimization
	Comparison Methods

	Specifications of the An8flower Experiment
	Network Architecture and Training
	RDE Optimization
	Comparison Methods

	Specifications of the Relevance Ordering Test Experiment for MNIST
	Network Architecture and Training
	RDE Optimization
	Comparison Methods
	Relevance Ordering Comparison Test

	Specifications of the Relevance Ordering Test Experiment for STL-10
	Network Architecture and Training
	RDE Optimization
	Comparison Methods
	Relevance Ordering Comparison Test

	Statistics from Streaming Data
	Sample Mean, Variance & Covariance
	Low-Rank Approximations of Covariance

	Deferred Proofs of Chapter 5
	Metric Spaces and Hausdorff Dimension
	Space-Filling Curves in Arbitrary Dimensions
	Restricting the Set of Weight Matrices
	General Restrictions of the Weight Matrices
	Restrictions on the Number of Weight Matrices and Bias Vectors

	Additions to Chapter 6
	Additions to Chapter 7

