
This version is available at https://doi.org/10.14279/depositonce-6784

Copyright applies. A non-exclusive, non-transferable and limited
right to use is granted. This document is intended solely for
personal, non-commercial use.

Terms of Use

This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer
Science. The final authenticated version is available online at:
http://dx.doi.org/10.1007/978-3-642-15277-1_29

Briejer, M., Meenderinck, C., & Juurlink, B. (2010). Extending the Cell SPE with Energy Efficient Branch
Prediction. In Euro-Par 2010 - Parallel Processing (pp. 304–315). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-15277-1_29

Briejer, M., Meenderinck, C., & Juurlink, B.

Extending the Cell SPE with Energy
Efficient Branch Prediction

Accepted manuscript (Postprint)Chapter in book |

Extending the Cell SPE with Energy Efficient
Branch Prediction

Martijn Briejer1, Cor Meenderinck1, and Ben Juurlink2

1 Delft University of Technology, Delft, the Netherlands
cor@ce.et.tudelft.nl

2 Technische Universität Berlin, Berlin, Germany
juurlink@cs.tu-berlin.de

Abstract. Energy-efficient dynamic branch predictors are proposed for
the Cell SPE, which normally depends on compiler-inserted hint instruc-
tions to predict branches. All designed schemes use a Branch Target
Buffer (BTB) to store the branch target address and the prediction,
which is computed using a bimodal counter. One prediction scheme pre-
decodes instructions when they are fetched from the local store and
accesses the BTB only for branch instructions, thereby saving power
compared to conventional dynamic predictors that access the BTB for
every instruction. In addition, several ways to leverage the existing hint
instructions for the dynamic branch predictor are studied. We also in-
troduce branch warning instructions which initiate branch prediction
before the actual branch instruction is fetched. They allow fetching the
instructions starting at the branch target and thus completely remove the
branch penalty for correctly predicted branches. For a 256-entry BTB,
a speedup of up to 18.8% is achieved. The power consumption of the
branch prediction schemes is estimated at 1% or less of the total power
dissipation of the SPE and the average energy-delay product is reduced
by up to 6.2%.

1 Introduction

Since a few years there is a clear trend towards multicore processors to increase
performance. At the same time, the power consumption has become a major de-
sign constraint. Performance should therefore be maximized while staying within
the power budget. The Cell processor, which is still one of the most advanced
multicores, was designed exactly with this in mind. It contains one general pur-
pose core, the Power Processing Element (PPE), and eight specialized cores, the
Synergistic Processing Elements (SPEs). Especially the latter were designed with
minimal area and energy consumption in mind [1]. This was achieved, among
others, by omitting a dynamic branch predictor. Instead it uses compiler-directed
branch hint instructions that change the fetch behavior, i.e., instead of fetching
the instruction after the branch, they fetch the instruction at the branch target.

To further improve the Cell’s performance, researchers have proposed various
modifications to the SPEs. Different parts of the SPE have been targeted, ranging

2

from the memory system [2] to the instruction set [3]. However, to the best of
our knowledge, no research has been performed to improve the branch prediction
accuracy of the SPE.

Therefore, in this work we propose three dynamic branch prediction schemes
for the SPE. Energy efficiency is obtained by minimizing the number of pre-
dictions, i.e., by avoiding table lookups. The first branch predictor scheme is
a Simple Bimodal Predictor (SBP). In contrast to normal branch predictors, it
only predicts when a branch instruction enters the pipeline. Despite early branch
identification, it incurs a seven cycle branch delay. The second combines the SBP
with hint instructions and thus can have a zero branch delay. The third dynamic
branch predictor employs branch warning instructions to produce a prediction
before the branch instruction is fetched, thereby obtaining a zero branch delay.

This paper is organized as follows. Section 2 provides a brief overview of the
SPE architecture. Section 3 describes the experimental environment. In Section 4
the proposed dynamic branch predictors are presented. The performance and
energy efficiency results are presented in Section 5. Related work is discussed in
Section 6. Finally, conclusions are drawn in Section 7.

2 The SPU Architecture

The Cell processor consists of one PPE (Power Processing Element) and eight
SPEs (Synergistic Processing Elements) [4]. The PPE is a general purpose Pow-
erPC that runs the operating system and controls the SPEs. The SPEs function
as accelerators; they operate autonomously but receive tasks from the PPE to
execute. The SPE consists of a Synergistic Processing Unit (SPU), a Local Store
(LS), and a Memory Flow Controller (MFC), as depicted in Figure 1. The SPU
can access the LS directly, but global memory can only be accessed through the
MFC by DMA commands. As the MFC is autonomous, a double buffering strat-
egy can be used to hide the latency of global memory access. While the SPU is
processing a task, the MFC is loading the data, needed for the next task, into
the LS.

Fig. 1. Overview of the Cell SPE.

3

The SPU has 128 registers, each of which is 128 bits wide. All data transfers
between the SPU and the LS are 128-bit wide. Also the LS accesses are 128-
bit aligned. The ISA of the SPU is completely SIMD and the 128-bit vectors
can be treated as one quadword (128-bit), two doublewords (64-bit), four words
(32-bit), eight halfwords (16-bit), or 16 bytes.

Instructions are fetched from the LS into the Instruction Line Buffer (ILB)
in groups of 32, fitting in one line. The ILB can store up to 3.5 lines. The SPU
has six functional units, each assigned to either the even or odd pipeline. The
SPU can issue two instructions concurrently if they are located in the same
doubleword and if they execute in a different pipeline. Instructions within the
same pipeline retire in order.

The SPU has no dynamic hardware branch predictor. In case of branches,
the SPU continues execution sequentially. A branch miss has a penalty of 18
cycles. The compiler can insert hint instructions to predict that a branch will be
taken. If the hint is executed 16 cycles before the branch, execution can continue
without delay if the hint is correct.

Despite the use of hint instructions, many programs have a significant num-
ber of branch miss stall cycles. There are several reasons for that. First, not
every branch that should be hinted, can be hinted. Only one hint can be active
at a given time, thus if two branches are too close, only one of them is hinted.
Second, hints are static and cannot change during the executing of a program
while a branch predictor adjusts its prediction to the empirical findings. Finally,
branches that are not hinted can be taken too. To improve the branching ca-
pabilities of the SPE we propose to extend it with a power-efficient dynamic
branch predictor.

3 Experimental Setup

We used the CellSim [5] simulator to implement and test our branch predictors.
CellSim is a modular simulator developed using the Unisim environment and
very suitable for architectural research. It is an instruction set simulator, and
therefore not all parts of the SPE are modelled cycle-accurate. However, its
configuration parameters can be changed in order to obtain the performance
close to actual performance. For all benchmarks used throughout this work,
we tuned the configuration. The performance was validated using performance
statistics from IBM SystemSim, which is a cycle-accurate simulator. The results
of this performance validation are depicted in Table 1. It shows that in all cases
the error is less than 5%.

Benchmarks from different application domains have been selected. Because
CellSim does not run an operating system and not all system calls are im-
plemented, the available benchmarks were limited. Also, the simulation of the
benchmarks should finish within reasonable time and the performance statistics
should have a significant number of branch miss stall cycles in order to have
some room for improvement. In our opinion, the selected benchmarks are a good

4

Table 1. Validation of CellSim against IBM SystemSim. Execution time in cycles and
the relative error are stated.

Benchmark SystemSim CellSim Error

MiniGZip 22431156 2300309 2.5%
Listrank 18437301 18288224 -0.8%
ListrankP3 15085386 15662336 3.8%
MergeSort 672244 685548 2.0%
MergeSort Rnd 712395 744114 4.5%
QuickSort 363944 377308 3.7%
QuickSort Rnd 538141 551716 2.5%
SPE-JPEG 3278101 3132410 -4.4%
DB Filter 2372687 2363310 0.3%

representation of applications suitable for the Cell processor and comply with
our requirements

MiniGZip is a parallel SPU implementation of the GZIP (de)compression pro-
gram based on the ZLIB library, implemented by Seunghwa Kang [6]. The list
ranking problem is a fundamental problem for many combinatorial and graph-
theoretic applications. Bader et al. [7] developed an implementation for the Cell
BE, which we optimized. The original benchmark is referred to as Listrank, while
our optimized version is referred to as ListrankP3. MergeSort and QuickSort are
the well known sorting algorithms. There are two different inputs, both contain-
ing 1024 elements. The first input is a decreasing sequence, while the second is a
random input. When the latter is used, the name of the benchmark is extended
with ’Rnd’. SPE-JPEG is a program made by Vitaly Vidmirov, that decodes a
JPEG-image on the SPU. We used version 0.6 beta which can be downloaded
from http://cellrb.blogspot.com/. A 512x384 demo image is included, which is
used in the benchmark. The Deblocking Filter is also from the media domain.
It is one of the kernels from the H.264 video processing coder/decoder and an
implementation was made by Azevedo et al. [8].

4 Energy Efficient Prediction Schemes

In this section we describe the different branch predictor implementations. They
are all based on a Bimodal Branch Predictor (BBP), which uses a bimodal
counter to make a prediction. As depicted in Figure 2, the counter consists of
two bits. The first bit indicates if a branch is predicted taken or not taken,
while the second bit indicates if the prediction is strong or weak. When a branch
instruction is executed, the counter is updated by adding one if it was taken or
subtracting one if not. By default, the prediction is not taken.

The prediction is stored in a Branch Target Buffer (BTB) as depicted in Fig-
ure 3. The BTB is indexed by the least significant bits of the branch instruction
word address. The remaining bits are used as a tag to identify the branch and
thereby preventing aliasing. The branch target address is also stored.

5

10

00 01

11

Not Taken

Taken

WeaklyStrongly

Fig. 2. State Diagram of the Bimodal Counter.

Tag Branch Target Address Prediction

16 – log2(size) bits 16 bits 2 bits

Branch Instruction Address

Branch Target Buffer

16 17

Used as index

0 15

Fig. 3. Design of the Branch Target Buffer.

4.1 Simple Bimodal Predictor

The first implementation that uses the BBP is the Simple Bimodal Predictor
(SBP). For energy efficiency, a BTB lookup is performed only for branch in-
structions. To be able to do that, the SPU needs to identify branch instructions.
Normally, instructions have been decoded after stage 9 (ID2) of the SPU pipeline
(see Figure 4), and thus in that stage the type of instruction is known. To im-
prove performance, we decided to add some hardware to the ILB, which detects
a branch instruction while it is still in the ILB, by partially pre-decoding it. This
is done in stage 6 (IB1) of the pipeline. In the next cycle, the prediction can be
performed. If the branch is predicted taken, the ILB is flushed and the instruc-
tions at the branch target address are fetched from the local store. A correctly
predicted taken branch now has a seven cycle penalty instead of the original 18
cycles. Hint instructions are ignored in the SBP predictor.

4.2 SBP Combined with Hints

The SBP ignores hint instructions, but they contain valuable information about
the branch. If a (correct) hint is executed at least 16 cycles before the branch, the
branch can be taken without delay, which is better than the seven cycle penalty of

6

SPU PIPELINE FRONT END

SPU PIPELINE BACK END

Branch Instruction

Load/Store Instruction

IF Instruction Fetch
IB Instruction Buffer
ID Instruction Decode
IS Instruction Issue
RF Register File Access
EX Execution
WB Write Back

Floating Point Instruction

Permute Instruction
EX1 EX2 EX3 EX4

EX1 EX2 EX3 EX4 EX5 EX6

EX1 EX2 WB

WB

RF1 RF2

WB

Fixed Point Instruction

EX1 EX2 EX3 EX4 EX5 EX6 WB

IF1 IF2 IF3 IF4 IF5 IB1 IB2 ID1 ID2 ID3 IS1 IS2

Odd execution pipeline

Even execution pipeline

Fig. 4. SPU pipeline diagram (based on [9]).

the SBP. Therefore, we also made an implementation of the SBP that uses hints.
Sometimes, however, hints are incorrect. Therefore, we implemented different
hint policies, ranging from always using the hint to letting the predictor overrule
the hint. We simulated the policies and the results showed that the policy that
overrules the hint if the branch is strongly predicted not taken provides the
highest performance. This branch prediction scheme is referred to as SBP-OH-
NLS (SBP - Overrule Hints - Not Loading hint of Strongly not taken).

4.3 Branch Warning Predictor

To further improve performance, we want to perform the prediction earlier than
the seventh cycle. Therefore, we introduce a new instruction: the branch warn-
ing. This instruction is similar to the hint instruction, except it is inserted for
a branch with uncertain target. It is inserted well in front of the branch by the
compiler. If the branch warning is executed, a BTB lookup is performed. If the
branch is predicted taken, the instructions at the target address are prefetched
into an extra line in the ILB. Now the SPU can continue without delay, pro-
vided the branch was correctly predicted and provided the branch warning was
executed more than 16 cycles before the actual branch instruction. Hint instruc-
tions are also used, but are overruled when the predictor predicts strongly not
taken. Thus the branch target buffer is accessed for a branch warning or a hint
instruction, and branches that do not have either of them are not predicted. The
execution of the extra branch warning instructions can cost additional cycles.
The SPU is a dual issue processor, however, and therefore the number of extra
cycles could be relatively small and should be less than the cycles gained by pre-
dicting earlier. This branch prediction scheme is referred to as BWP-OH-NLS

7

(Branch Warning Predictor - Overrule Hints - Not Loading hint if Strongly not
taken).

In our current implementation, the branch warnings are implemented as hint
instructions with target 0. The compiler, however, assumes only one hint in-
struction can be active at any time. Therefore, the insertion of branch warnings
interferes with hints. To illustrate this, the left side of Listing 1.1 shows a part
of the original MiniGZip code. The hint on line 1 belongs to the loop-branch on
line 7, which is taken most of the time. The right side of the listing shows the
same code with a branch warning. Now the loop-exit-branch on line 10 has a
warning, but the loop-branch has no hint anymore, which introduces a lot of ex-
tra branch miss stall cycles. (The nop instructions were added by the compiler to
assure a distance of four instruction pairs between the hint and the correspond-
ing branch instruction.) To get the best performance out of this predictor, the
compiler should be optimized in such a way that it can treat warnings and hints
independently. Such a compiler optimization, however, has not been performed
as of yet.

4.4 Aggressive Bimodal Predictor

To investigate how much the performance potentially can be improved by using a
bimodal branch predictor, we also implemented an Aggressive Bimodal Predictor
(ABP). The main difference with the previous predictors is that it performs a
BTB lookup for every instruction. Because now there is no need to decode a
branch before doing the prediction, the prediction can be performed in stage
1 of the pipeline, when the instruction is fetched from the local store. Because
instructions enter the execution pipeline in groups of two, two lookups are done
every cycle. To prevent stalling the pipeline when multiple successive branches
are predicted taken, the ILB is extended with 8 lines that can store the targets
of 8 speculatively taken branches.

Because this implementation is much more complex than the others and uses
more energy and area, it is not a realistic candidate for extending the SPE.

1 hbra 0x18 , 0 x3e18 hbra 0x24 , 0
2 lqx $2 , $10 , $19 lqx $5 , $5 , $18
3 rotqby $2 , $2 , $8 nop $127
4 and $13 , $2 , $11 nop $127
5 c l g t $3 , $13 , $25 nop $127
6 brz $3 , 0 x8 nop $127
7 brnz $9 , 0 x3 f f 94 rotqby $2 , $5 , $8
8 and $12 , $2 , $10
9 c l g t $3 , $12 , $24

10 brz $3 , 0 x8
11 brnz $15 , 0 x3 f f 84

Listing 1.1. MiniGZip code. Left: Original with hint. Right: with branch warn-
ing instead of hint.

8

MiniGZ ip
SPE-JPEG

Listrank
Listrank P3

QuickSort
QuickSort Rnd

MergeSort
MergeSort Rnd

DB Filter
Average

0.80

0.90

1.00

1.10

1.20

1.30 1.55

Comparison of different predictors

SBP
SBP-OH-NLS
BWP-OH-NLS
ABP

S
pe

e
d

u
p

Fig. 5. Speedup, over the conventional SPE, obtained with the proposed branch pre-
dictors with a 256 entry BTB.

It was added to this analysis as a performance reference for the other branch
predictors.

5 Evaluation

In this section the experimental results are presented. First, we evaluate the
performance and then, we discuss the energy consumption.

5.1 Performance

Figure 5 shows the speedup of the different dynamic predictors over the original
SPU, using the selected benchmarks and a 256-entry BTB. It also depicts the
average speedup for each predictor.

As expected, the aggressive branch predictor provides the highest speedup
for all benchmarks. On average, its speedup is 15.5%. For QuickSort the highest
speedup is obtained, namely 55%. There are two reasons for that. First, about
45% of all cycles are branch miss stall cycles, which is much more than the other
benchmarks. Second, the code consist of small loops, which can be handled very
efficiently because the ABP can have 8 outstanding branches. The other predic-
tors cannot work that far ahead, and thus they achieve a lower speedup. When
a random input is used (QuickSort Rnd) instead of a reversed list (QuickSort),
the branches are less predictable and thus the performance is lower. The same
difference can be seen between MergeSort and MergeSort Rnd. The DB Filter
branching behavior also depends on the input and cannot be predicted very
accurate. Therefore the speedup is only 3.4%.

The SBP provides a speedup for only three benchmarks. In the original imple-
mentation, Listrank has a lot of wrongly hinted branches, while the SBP predicts
them correctly. MergeSort has a lot of branches that are taken but not hinted,
which are now correctly predicted by the SBP. The other benchmarks show no
significant difference or even a slowdown. Therefore the average speedup for the

9

SBP is only 1.4%. The main reason for that is that hints are ignored. If the SBP
is combined with hints (SBP-OH-NLS), the speedup is much higher, namely
7.3% on average. Using the advantages of both a predictor and hints provides
good results. With this combination there is only a slowdown for MergeSort
Rnd. Except for the QuickSort and MergeSort benchmarks, the performance is
also close to the ABP.

The branch warning predictor (BWP-OH-NLS) shows mixed results. For
Mergesort and Listrank it is faster than the SBP with hints (SBP-OH-NLS),
but for MiniGZIP, SPE-JPEG, QuickSort, and DB Filter it is even slower than
the SBP without hints (SBP). On average, however, the branch warning pre-
dictor has a speedup of 4.7%, which is in between both SBP predictors. The
mixed results are due to the suboptimal algorithm the compiler uses to insert
the branch warnings. Because of that, not all branches can be hinted/warned
significantly affecting performance. We do expect though, that if an optimized
compiler is used, the speedup of this branch warning predictor for all kernel will
be larger and on average it exceeds that of the SBP-OH-NLS.

5.2 Energy Consumption

IBM has not revealed much information about the SPE’s power consumption,
but an estimation can be made for the 3.2 GHz SPE manufactured in the 90nm
SOI process. Flachs et al. [4] present a voltage/frequency ’schmoo’ that gives a
power estimation for different frequencies and voltages. A 65nm SPE operates
with Vdd= 0.9V [10]. The 90nm SPE uses a 100mV higher voltage [11], thus
1.0V. For these values, the schmoo yields a power of 3W.

To estimate the BTB’s power consumption, CACTI 5.3 [12] was used. CACTI
is a tool for modelling dynamic and leakage power, area, and access time of caches
and memories. The BTB is quite similar to a direct mapped cache. However,
CACTI only supports caches with at least 8 bytes of data per line while the BTB
has only 18 bits of data. Therefore, we use the method presented by Kahn [13]
to correct for this by scaling the word and bit line power in the data array with
that factor of 18/64.

Table 2 shows the most important CACTI results, corrected for clock fre-
quency and data size. The dynamic power assumes the BTB is accessed every
cycle. In our case, however, the BTB is only accessed for branch instructions. In
the worst case, a branch instruction is executed in 5.07% of the cycles. For each
branch instruction, the BTB is read and written. With leakage power added,
the total power consumption of the BTB is 5.07% × (26.21 + 19.68) + 0.50 =
2.82mW, which is about 0.1% of the total SPE power consumption.

Besides the BTB, the SBP also needs power for pre-decoding the instructions
in the ILB. This logic is quite simple, however, and thus we assume that it does
not consume more energy than a BTB read. This pre-decoding is performed every
cycle and thus the total power consumed by the SBP predictor is 2.82 + 26.21
= 29.03 mW, which is 1% of the total SPEs power consumption. The branch
warning predictor does not have to pre-decode instructions, but it has to prefetch
the target instructions. We estimate the energy consumption of the latter to be

10

Table 2. CACTI results for a 256-entry BTB, corrected for data size and frequency.

Parameter Value

Dynamic Read Power 26.21 mW
Dynamic Write Power 19.68 mW
Standby leakage per bank 0.50 mW

equal to that of the BTB, and thus in total the BWPs power consumption is
estimated to be 0.2%

To determine the energy efficiency of the predictors, we calculate the total en-
ergy used for executing a program. As depicted in Table 3, the energy consump-
tion decreases for all branch predictors. Due to its large speedup, the SBP with
overruled hints (SBP-OH-NLS) provides the highest improvement. Although the
branch warning predictor (BWP-OH-NLS) has a lower power consumption, the
total energy decrease is less because of its lower performance. However, using
an optimized compiler, the performance will improve and is expected to have
the largest energy reduction of all. The power consumption of the ABP was not
calculated due to its complexity. Its energy efficiency is expected to be low.

Table 3. Energy efficiency of the branch predictors. Energy consumption is power
times the execution time.

Predictor Power Average Energy
increase Speedup decrease

SBP 1.0% 1.4% 0.4%
SBP-OH-NLS 1.0% 7.3% 6.2%
BWP-OH-NLS 0.2% 4.7% 4.5%

6 Related Work

Several techniques have been proposed before to reduce the energy consumption
of branch predictors, which can be up to 10% of the total energy consump-
tion of modern processors [14]. Banking the branch predictor table reduces the
active part when performing a lookup, thereby reducing the energy consump-
tion. Parikh et al. [14] searched for an optimal banking strategy. They also
proposed a Predictor Probe Detector (PPD), which pre-decodes instructions in
the instruction cache to detect a branch. A BTB lookup is performed only for
a branch, which reduces the energy consumption of the branch predictor by ap-
proximately 45%. Kahn and Weiss [13] reduced the number of BTB lookups by
using a counting Bloom filter, that determines if an address is in the BTB or not.
They reduced the dynamic power consumption by 51%. Yang and Orailoglu [15]
proposed a Branch Identification Unit (BIU), which controls access to the BTB.

11

It uses statically extracted program control flow information inserted by the
compiler to predict branches early. Chaver et al. [16] used profiling information
to adapt the predictor hardware on the fly. Monchiero et al. [17] proposed to use
compiler-inserted hint instructions to inform the VLIW processor that a branch
is coming. If the target is known, the branch can be taken without penalty.

Our Simple Bimodal Predictor (SBP) draws from the PPD in the sense that
it also pre-decodes instructions to reduce the number of BTB lookups. PPD,
however, pre-decodes all instructions in the instruction cache and stores the
results in a table. We have incorporated the pre-decoding in the pipeline. Only
instructions in the ILB are pre-decoded and no table is required. Further, we
have extended the hint-based prediction scheme. Based on dynamically collected
information, the statically determined hint can be overruled to optimize the
prediction accuracy.

7 Conclusion

In order to improve the performance and reduce the energy consumption of the
Cell SPE we proposed three dynamic branch predictors. Predictions are calcu-
lated using a bimodal counter and stored in a branch target buffer. The Simple
Bimodal Predictor pre-decodes instructions while they are in the ILB, which
makes it possible to perform a BTB lookup for branch instructions only, thereby
saving energy. The SBP ignores hints though. We also proposed a version of
the SBP that uses hints, but they are overruled if the predictor strongly pre-
dicts not taken. The third predictor uses branch warning instructions to inform
the SPE of an upcoming branch. Hints are also used and can be overruled too.
Furthermore, we implemented an aggressive branch predictor to investigate the
maximum performance gain possible.

The ABP is the fastest, but because of its complexity and power consumption
it is not a serious candidate for implementation in the SPE. The SBP with
overruled hints is second fastest, with an average speedup of 7.3%. With only 1%
additional power consumption, the average total energy consumption is reduced
by 6.2%. Therefore this is currently the best predictor. The branch warning
predictor requires only 0.2% extra power, but in some cases the performance
was lower than it could be, because we did not optimize the compiler. If an
optimal compiler is used, it is expected to be even more efficient than the SBP
with hints.

References

1. Hofstee, H.: Power Efficient Processor Architecture and the Cell Processor. In:
Proc. Int. Symp. on High-Performance Computer Architecture (HPCA). (2005)

2. Gou, C., Kuzmanov, G., Gaydadjiev, G.N.: Sams: Single-affiliation multiple-stride
parallel memory scheme. In: Proc. Workshop on Memory Access on Future Pro-
cessors: a Solved Problem? (2008)

12

3. Meenderinck, C., Juurlink, B.: Specialization of the Cell SPE for Media Appli-
cations. In: Proc. Int. Conf on Application-Specific Systems, Architectures and
Processors. (2009)

4. Flachs, B., et al.: Microarchitecture and Implementation of the Synergistic Pro-
cessor in 65-nm and 90-nm SOI. IBM Journal of Research and Development 51(5)
(2007)

5. Cabarcas, F., Rico, A., Rodenas, D., Martorell, X., Ramirez, A., Ayguade, E.:
CellSim: A Validated Modular Heterogeneous Multiprocessor Simulator. In: XVIII
Jornadas de Paralelismo. (2006)

6. Bader, D., Agarwal, V., Madduri, K., Kang, S.: High Performance Combinatorial
Algorithm Design on the Cell Broadband Engine processor. Parallel Computing
33(10-11) (2007)

7. Bader, D., Agarwal, V., Madduri, K.: On the Design and Analysis of Irregu-
lar Algorithms on the Cell Processor: A Case Study of List Ranking. In: Proc.
IEEE/ACM Int. Parallel and Distributed Processing Symp. (2007)

8. Azevedo, A., Meenderinck, C., Juurlink, B., Alvarez, M., Ramirez, A.: Analysis
of Video Filtering on the Cell Processor. In: Proc. Int. Symp. on Circuits and
Systems. (2008)

9. Gschwind, M., Hofstee, H., Flachs, B., Hopkins, M., Watanabe, Y., Yamazaki, T.:
Synergistic Processing in Cell’s Multicore Architecture. IEEE Micro 26(2) (2006)

10. Wang, D.T.: ISSCC 2008 Cell Processor update. Real World Technologies
11. Riley, M., et al.: Implementation of the 65nm Cell Broadband Engine. In: Proc.

Custom Integrated Circuits Conference. (2007)
12. Thoziyoor, S., Muralimanohar, N., Ahn, J.H., Jouppi, N.P.: CACTI 5.1. Technical

report, HP Laboratories (2008)
13. Kahn, R., Weiss, S.: Thrifty BTB: A Comprehensive Solution for Dynamic Power

Reduction in Branch Target Buffers. Microprocessors & Microsystems 32(8) (2008)
14. Parikh, D., Skadron, K., Zhang, Y., Barcella, M., Stan, M.: Power Issues Re-

lated to Branch Prediction. In: Proc. Int. Symp. on High-Performance Computer
Architecture. (2002)

15. Yang, C., Orailoglu, A.: Power Efficient Branch Prediction through Early Identi-
fication of Branch Addresses. In: Proc. Int. Conf. on Compilers, Architecture and
Synthesis for Embedded Systems. (2006)

16. Chaver, D., Pinuel, L., Prieto, M., Tirado, F., Huang, M.: Branch Prediction
on Demand: an Energy-Efficient Solution. In: Proc. Int. Symp. on Low power
Electronics and Design. (2003)

17. Monchiero, M., Palermo, G., Sami, M., Silvano, C., Zaccaria, V., Zafalon, R.: Low-
Power Branch Prediction Techniques for VLIW Architectures: a Compiler-Hints
Based Approach. Integration VLSI Journal 38(3) (2005)

