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den Grad des Doktor Ingeniur im Fachgebiet Architektur 
 
 
 
 
Thesen zur Dissertation: 
 
Ein kleines territoriales Gebiet in Korea weist verschiedene mikroklimatische Bedingungen auf, je 
nachdem, wie viel Sonne, Schatten, Feuchtigkeit und Winden es ausgesetzt ist. Diese 
mikroklimatischen Bedingungen können durch zielgerichtete Betrachtung aller Elemente bei der 
Entwicklung und beim Bauen beeinflusst werden, so durch die Nutzung geneigter Geländeflächen, die 
Anwendung einer 3-dimensionalen Geometrie, wie die Kombination von architektonischen Elementen 
des Neubaues und der Einbeziehung bereits auf der Geländefläche existierenden Gebäuden. Diese 
Studie untersucht die Nutzung mikroklimatischer Veränderungen für ein effektives 
Niedrigenergiedesign unter Einbeziehung der von Elementen der traditionellen koreanischen Bauweise 
und des Passivhauses. 
 
 
Die untersuchte Methode der mikroklimatischen Analyse kann zu zeitlichen und räumlichen 
Vorhersage bezüglich der Gebäudegeometrie genutzt werden. Eine Kombination u.a. von passiver 
solarer Gewinne, gezielten Schutzmassnahmen vor kalten Winden, Sicherung der Zirkulation der 
Raumluft und natürlicher Belüftung sowie der Berücksichtigung der Sonnenscheindauer und der 
Ausbreitung des Schattens ist eine wichtige Voraussetzung für behagliches Wohnen und Arbeiten zu 
jeder Jahreszeit. Zugleich kann so eine wirkungsvolle Einflussnahme auf die Senkung des 
Energieverbrauches genommen werden. Für die passive Gewinne und Kühlung ist unbedingt eine 
ständige Betrachtung der Veränderungen in den mikroklimatischen Bedingungen erforderlich, um die 
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höchstmögliche Energieeffizienz in den Gebäuden zu sichern. Die vorliegende Arbeit enthält die 
Untersuchung der mikroklimatischen Veränderungen zur Nutzung der räumlichen Planung eines 
Gebäudes, des effektiven Einsatzes von Niedrigenergiemethoden, des Passivhaus-Standards und 
allgemeine physikalische Grundlagen in den Energiesimulationsmethoden. 

 

 

Die heißen und feuchten Sommer in Korea, erfordern immer zu beachten, dass eine ausreichende 
Luftzirkulation in den Gebäuden gewährleistet wird. So ist die Be- und Entlüftung eine wichtige 
Voraussetzung für die konvektive Kühlung oder Verdunstungskühlung in den Gebäuden. Der 
erforderliche Luftfluss in einem Gebäude wird durch die Geometrie und der Betrachtung des 
Unterschieds von Lufttemperatur und des Luftdrucks erreicht. Die Betrachtung der Positionen bereits 
bestehender Gebäude ist für die Führung des Luftflusses von großer Wichtigkeit. Die 
Gebäudegeometrie und die Gebäudeorientierung hat eine größere Wirkung auf die Tendenz des 
Luftflusses als die Luftgeschwindigkeit. 

 

 

Diesen Effekt richtig genutzt, wird er zu einer wichtigen Quelle der Energieeinsparung. Eine neuartige 
Simulationsmethode in der Kombination der Simulation von Multi-Zonen und CFD kann zu einer 
wirkungsvollen Analyse effektiver Energiespareffekte im Bereich der passiven und mikroklimatischen 
Elemente der Gestaltung von Gebäuden und Einrichtungen genutzt werden. Der Multi-Zone 
Energiesimulationstools „Energie Plus“ kann für die Erlangung von Parametern zur Vereinfachung der 
Energiesparprobleme für die verschiedensten Gebäudezonen (Räume, Flure usw.) genutzt werden. 

Diese Methode ist aber nicht geeignet, um Variationen in der Geometrie  von Gebäuden zu behandeln, 
da sie in ihrer Gesamtheit nur auf Schätzungen von durchschnittlichen Werten bezogen auf 
Energieverbrauch, Temperatur, Feuchtigkeit usw. beruht. Besser geeignet für Variationen in der 
Gebäudegestaltung ist die CFD Methode mit unterteilender „Grid-Unit“. Sie ermöglicht genauere 
Ergebnisse zu den Schätzungen des Luftflusses und der zielgerichteten Veränderung des thermischen 
Zustands. Für die Gestaltung eines Hausmodells  in Südkorea, sind Fallstudien und Methoden der 
Energieeinsparung, immer einer gründlichen Bewertung und Analyse, bezogen  auf die 
vorherrschenden mikroklimatischen Bedingungen zu unterziehen. 
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For the evaluation of the risk of climate change caused by human activity, the Intergovernmental Panel 
on Climate Change (IPCC) was established in 1988 by the World Meteorological Organization (WMO) 
and the United Nations Environment Programme (UNEP),1 and has published several reports on topics 
relevant to the implementation of the UN Framework Convention on Climate Change (UNFCCC).2 The 
IPCC Fourth Assessment Report (AR4)3 provides a comparison between projections of climate change 
in past reports and current observations. Fig.1.1-a indicates that the global average air temperature near 
the Earth’s surface rose 0.76±0.19℃ during the 100 year period ending in 2005 and will rise a further 
1.1℃ to 6.4℃ during the 21st century. The rate of warming averaged over the last 50 years is 
0.13±0.03℃ per decade, which is nearly twice that for the last 100 years. The global average surface 
temperature has increased, especially since about 1950. The bars and line shown in Fig.1.1-b represent 
annual changes in global mean CO2 concentration and the annual increases that would occur if all fossil 
fuel emissions stayed in the atmosphere. Global GHG emissions have grown with an increase of 70% 
between 1970 and 2004, and the total amount of GHGs in the atmosphere has increased by about 35%. 
 
It is clear that the problem of GHGs is related to buildings since buildings involve consumption of 
energy, and thereby cause GHG emissions. The WG-III4 report of IPCC AR4 identifies that building is 
one of the main contributors to global warming. Between 1970 and 1990, direct emissions from 
buildings grew by 26%, and remained at approximately at 1990 levels thereafter. However, the 
buildings sector has a high level of electricity use and hence the total of direct and indirect emissions in 
this sector is 75% higher than direct emissions alone. The UN Economic Commission for Europe 
(UNECE) also published similar statistical results,5 showing that 50% to 60% of total energy in the 
world is used for building operation and maintenance.  
 
In Asia, few low-energy houses have been developed although the international dimensions of Asian 
energy insecurity have grown more difficult. The regional increases in CO2 emissions by commercial 
buildings is 30% from developing Asia, 29% from North America and 18% from the OECD Pacific 
region. For the regional increases in CO2 emissions in residential buildings, developing Asia accounts 
for 42% and Middle East/North Africa for 19%.6 South Korea is also responsible for the large CO2 
emissions due to its rapid and large-scale industrialization and automotive revolution. Although S. 
Korea is the world’s 26th-largest country in population and 11th in Gross Domestic Product (GDP), S. 
Korea was 10th globally in primary energy consumption in 2002, 7th in oil usage, and 5th in crude oil 

                                                 
1 The WMO and the UNEP are two organizations of the UN. 
2 The UNFCCC is an international environmental treaty that acknowledges the possibility of harmful climate change. 
3 The IPCC published the first assessment report in 1990, a supplementary report in 1992, a second assessment report in 
1995, and a third assessment report in 2001. AR4 was released in 2007. The IPCC AR4 consists of four reports, WG-I: The 
Scientific Basis, WG-II: Impacts, Adaptation and Vulnerability, WG-III: Mitigation and The AR4 Synthesis Report.  
WG: Working Groups. 

4 See footnote 3. 
5 Economic Commission for Europe 1996. 
6 The Intergovernmental Panel on Climate Change (IPCC) 2007. 
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imports. S. Korea confronts some of the most severe energy security issues in the world. S. Korea lacks 
domestic sources of energy to fuel its remarkable, rapidly growing, and energy intensive economy. Of 
the total energy supply, 84% comes from abroad and it is one of the highest levels7 in the world. To 
make matters worse, it is unusually dependent on oil as a fuel source i.e. 50% of the primary energy 
from oil compared with a global average of 38%.  The amount of discharged CO2 person-1 is close to 3.5 
tons, and it is equivalent to the average of the OECD’s level. Household heating makes up 67.7% of 
CO2 sources. The scale is increasing and will be in the top 5 in 2010 and over the OECD’s level in 
2020.8 
 
Governmental awareness of energy security problems furthers low-energy housing and development. 
For example, the US Green Building Council (USGBC) has led to a green building rating system called 
“Leadership in Energy and Environmental Design (LEED)” which provides a list of standards. The 
LEED rating system 4 levels9 according to the energy performance of a building using an evaluation 
checklist which addresses six major categories: Sustainable sites, Water efficiency, Energy and 
atmosphere, Materials and resources, Indoor environmental quality and Innovation and design process. 
Buildings can qualify for 4 levels of certification. Only 35 of all residences, public and complex 
buildings in S. Korea could get the 1st or the 2nd grade by the LEED rating system until December 2005 
due to the lack of S. Korean governmental policy.10 Recently, low-energy housing has started to play a 
more important role in the establishment of Korea’s future energy policy. 
 
Awareness of sustainability has shifted the concerns of engineers, architects, inventors and decision 
makers towards a sustainable architectural design approach. Energy efficiency over the entire life cycle 
of a building can be achieved by the concept of sustainable architecture. Architects use many different 
techniques to reduce the energy needs of buildings and increase their ability to capture or generate their 
own energy. For example, a passive solar design allows buildings to harness sunlight for energy 
efficiently without active mechanical systems such as photovoltaic cells and solar hot water panels. It 
converts sunlight into usable heat, causes air movement for ventilating, or stores heat for future use, 
without the assistance of other energy sources. A passive building design generally has a very low 
surface area with high thermal mass to minimize heat loss.  
 
Fig.1.2 represents a classification between active and passive design elements. A passive design utilizes 
building design elements e.g. windows, sunspace and thermal mass etc. to improve the building’s 
energy performance while an active design employs some mechanics e.g. water/air collector, heat 
exchanger, photovoltaic, heat pumps.  

                                                 
7   By comparison, Japan imports 82% of its energy, Germany 60%, and the United States only 27%. 
8   Calder 2005. 
9   Platinum (52-69 points), Gold (39-51 points), Silver (33-38 points), Certified (26-32 points) and non-innovation points. 
10 The Korea Institute of Construction Technology (KICT) 2005. 
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1.2. Need for energy simulation 

 
Increased living standards in the developed world have increased energy consumption in the building 
sector. According to reports of Santamouris and Asimakopoulos (1996), the total number of world 
cooling units is more than 240 million. The reports also represent that the cooling units consume 15% of 
world electricity. In S. Korea, the number of houses which have an electric air conditioner or fans has 
rapidly increased and the electric consumption per person has greatly jumped from 4006 kWh person-1 
in 1996 to 7191 kWh person-1 in 2006. 15  The balance between energy conservation and the distributed 
point-of-use generation of renewable energy e.g. solar energy and wind energy etc. is a key factor to 
achieve energy-saving in the building sector. The design significantly departs from conventional 
construction practice and the energy consumption can be reduced by an appropriate passive design. For 
example, in hot and dry climates, e.g. Mediterranean, solar protection can reduce 20% of the cooling 
loads and air conditioning can be completely avoided since the internal heat gains are not important.  
However, energy-saving in a largely varying climate is often seen for architects to be too complex or 
too time consuming. A largely varying climate in S. Korea (i.e. cold and dry in winter, hot and humid in 
summer) requires consideration of both heat gain and heat loss. For example, passive solar design gives 
some heating gain in cold winter, but the heating gain makes the condition uncomfortable in hot 
summer.  
 
Korean climate16 is cold and dry during winter and extremely hot and humid in summer. The southern 
regions are classified as subtropical zone affected by warm ocean waters including the East Korea 
Warm Current. Fig.1.3-a shows the climate zones in S. Korea. The entire Korean peninsula is 
influenced by the East Asian monsoon in midsummer and the frequent incidence of typhoons in autumn. 
The majority of rainfall takes place during the summer months, with nearly half during the monsoon 
alone. During the spring and fall seasons, the movement of high atmospheric pressures brings clear and 
dry weather to the peninsula. The graphs shown in Fig.1.3-b are the local temperature and rainfall. The 
yearly average temperature ranges 6℃ to 16℃ with a relatively high temperature variance throughout 
the regions and the average temperature across the peninsula, with the exception of the mountainous 
areas, ranges 10℃ to 16℃. In August, which is considered to be the hottest month of the year, the 
average temperature ranges 26℃ to 32℃ whereas in January, which is considered to be the coldest 
month of the year, it falls below freezing between -6℃ to -7℃. In this climate, the thermal interactions 
between a building and its external environment are complex. To account for the complexities of the 
energy transfer processes occurring between inside and outside and among its various components and 
                                                 
15 Korea Electric Power Corporation 2007. 
16 See chapter 6.3. 
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accurate comfort prediction. Energy simulation software can predict the energy performance of a 
building with both passive designs and active building envelopes. However, the programs are based on 
the zonal approach in an attempt to reduce computation time and complexity. The zonal approach 
breaks down the object into zones, where each zone is considered to be in a thermal state. However, this 
method is unable to give an accurate and detail prediction result since the real thermal state of a zone is 
not uniform. The Computational Fluid Dynamics (CFD) approach is the quantitative process of 
modeling fluid flows by the numerical solution of governing partial differential equations or other 
mathematical equations of motion mass, and enthalpy conservation. The CFD approach uses 
realistically representative of the true 3D environment with non-uniform energy distributions. 3D space 
is divided into grids, where each node on the grid is given an initial value for different environmental 
parameters. This approach represents thermo- and aerodynamic movements and more accurately than 
the zonal approach. For this reason, there is a need to spend a lot more time and effort in simulation 
preparation.  
 
 

1.3. Research objective 

 

A problem with energy simulation tools is that climate data is not on the scale of individual buildings. 
General climate data of a region are generated by a weather station which is located across several 
hundred kilometers. The simulation tools generally assume isothermal condition19 in a building zone 
and set up the zones to utilize such large-scale climate data for the building energy analysis and comfort 
prediction.  However, a building can be placed in a local atmospheric zone where the climate differs 
from the surrounding area. Such a local climate with small-scale atmospheric phenomena is called 
“microclimate”. Fig.1.4 (a) shows four different climate scales i.e. micro-, local-, meso- and 
macroclimate. A small area such as a garden or courtyard can have several different microclimates 
depending on how much sunlight, shade, or exposure to the wind there is at a particular spot. 
Microclimate within a given area is usually influenced by hills, hollows, geometric structures or 
proximity to bodies of water. 
 
Microclimate is strongly related to energy balance which is a systematic presentation of energy flows 
and transformations. When energy source is concentrated at a particular spot, the energy is continuously 
moved from an area of high concentration to an area of low concentration in a given volume. Similarly, 
microclimate around the building can be modified by the environment and even by architect’s designs. 
Microclimate is important because it can alter the building’s energy efficiency. The building thermal 
condition can be modified by energy gains, leakages and distributions related to energy balance. In this  
                                                 
19 Zonal energy simulation methods use Finite Volume Method (FVM) which has a single node with an average temperature 

value for each zone. A zone is considered as an iso-thermal condition with the average temperature. 
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- Quantitative analysis and evaluation of the factors 
 
To achieve the microclimate energy-saving, design elements are considered by following questions: 

- What is the building microclimate? 
- Which microclimate phenomena will be considerable for energy-saving in buildings? 
- Why does a complex Passive House need energy simulation? 
- What is missing in previous energy simulation for complex Passive House designs? 
- What is the method of energy simulation?  
- How can microclimate effects be analyzed? 
- Is architectural design considering microclimate efficient? 

 
This study evaluates the indoor comfort problem in a real house model and tries to improve the human 
comfort condition without large energy requirements. A certain number of hypotheses are set out using 
common knowledge for Passive House designs: 

- West orientation of the building façade is not sufficient for assuring good thermal insulation for 
whole houses in slope topography. 

- Elimination of shading devices from the façade dramatically affects increasing heat entering through 
the windows into the house. 

- Bad insulation is partly responsible for the lack of convenient thermal comfort in the house. 
- Microclimate effects can be often observed with the lack of thermal comfort. 
- A suitable microclimate design improves the energy efficiency of the house in some special climate. 

 
 

1.4. Constraints 

 
(1) In this study, influences of neighboring buildings are not considered since analysis of microclimate 
in and around a building increases complexity. However, this consideration enables concentration on 
the accuracy of the building analysis.  
 
(2) This study assumes that the building site is a simple slope model without deformation. A simple 
slope model is useful for architects to define several site conditions with topography and makes the 
geometric analysis easy. Fig.1.5 shows a normal site condition with topography in S. Korea. In Seoul, 
the percentage of slope areas for building reconstruction is amounted to 66.5%.20  
 

                                                 
20 Kang 1996. 
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Figure 1.5. An example of S. Korean site set-up including slope areas. 
 
(3) Only 0˚ to 19˚ slopes are considered. According to data of Ministry of Construction and 
Transportation (MOCT) of S. Korea, only 32.5% of the land is flat with 0˚ to 9˚ slopes which a normal 
or flatland design can be applied. 10˚ to 29˚ slopes are possible to be developed by slope design. 
However, slopes above 30˚ are impossible to be used for building sites. In S. Korea, 10˚ to 29˚ slopes 
make up 53.2% of the total land. Within these angles, a lot of slope and flatland designs are mixed. 
Above 20˚, totally different forms from flatland designs should be considered. 21   
 
(4) This study targets high density housing in S. Korea. It is strongly related to a ratio between the 
population and the total habitable land. The population of S. Korea is 48 million people, which are 
about 60% of 82.43 million in Germany. The habitable land in Seoul is 606km2 and the population is 
10.35 million people. The population density (people m-2) of S. Korea is 17.994, which is lower than 
20.246 of Paris but higher than 13.657 of Tokyo, 9.475 of New York City and 2.093 of Hong Kong.22  
 
(5) The study target is a detached dwelling. About 80% of residences in Seoul were detached dwellings 
before the 1970s;23 developments from the detached dwellings to high rise apartments have decreased 
living quality and made several environmental problems. Recently, the percentage of high rise 
apartments in Seoul is 55.2% and detached dwellings and apartment units are respectively 22.8% and 
17.3%. It was caused by development policy during the 1970s and the 1990s to solve the population 
explosion of Seoul after the rapid industrialization. However, it is clear that an innovative design to 
improve the living quality and the economic attraction for the choice of a future detached dwelling or to 
propagate the low storey and high density houses widely is a continuing solution to reform the problems 
of prevailing high rise apartments progressively.  
 
In the last 15 years, an apartment is seen as an investment, with large profit margins.  In recent years, the 
S. Korean government policy which bans the large profits is in operation. 64% of old age people in S. 

                                                 
21 H.J. Kim 2001. 
22 Seoul Statistical Yearbook 2007. 
23 Seoul Statistical Yearbook 2007. 
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Korea are living in detached dwellings and only 17.3% in apartments. The fact suggests that the fashion 
of apartments was not for living but for profit. If no profit will be expected in the future real estate 
market by efforts by the S. Korean government, actual demands will pursue the living quality or to 
prepare for old age. A form of detached dwelling or the low storey and high density house in S. Korea 
which are built by environmentally friendly and “well-being” concepts may be expected to be popular. 
The goal of this study is to expand them and for this reason, a residence model in one suburb of Seoul 
has been chosen.  
  
 

1.5. Structure of thesis 

 

Chapter 2 introduces heating and cooling in Passive House designs in various climates and the 
importance of energy-saving in the designs. Advanced Passive House design methods use energy 
simulation which predicts energy gain, loss and distribution of building sectors in the design procedure. 
This chapter describes common physical bases in energy simulation methods.  
 
Many aspects for an energy-saving house which can be considered for the climate response, but not all 
of them can be useful for the climate. Heating and cooling in a passive design are not always efficient 
for human comfort, and additional energy should be input to try to correct the climate, actively. 
Therefore, it is important to establish at the early stage which elements in passive design cause the 
problems. Hence, the next chapter describes the energy-saving issues and the ill-posed problems of the 
existing passive designs. Energy-saving which is developed in this study is obtained by advanced 
design with computer simulation which can measure thermo- and aerodynamic variations by 
microclimate in the design.  
 
Passive and dynamic control of microclimate is helpful to accomplish the energy efficiency in the 
building. Chapter 3 gives the details of the high-performance novel design with microclimate 
energy-saving methods including dynamic flow controls. It includes issues of site planning and general 
concepts for building forms and the elements to modify the flow as well. The method can predict energy 
details, distributions, gains and losses in the thermo- and aerodynamic phenomena in building sectors. 
The simulation result enables to provide detail information about the energy usage and leakage in the 
zones. The method plays an important role in determining the overall efficiency of a complex 
architectural design with an early consideration that can be a great benefit. For example, when the 
methods are applied in a difficult mixed climate i.e. seasonally hot-humid and cold-dry, it makes the 
appropriate decision of an architectural design easier and economical. The numerical simulation is used 
to analyze microclimate effects by several design elements.  
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In chapter 4, a novel simulation model combining multi-zone and CFD energy simulations is introduced 
for the analysis of energy-saving aspects in passive and microclimate design elements. The multi-zone 
model generally uses a parameterization method to simplify the energy-saving problem for each space 
in a building. However, the model is not appropriate to handle the dynamic energy variations since it 
calculates the averages for each zone volume. On the contrary, the CFD method using subdivided grid 
units is more suitable for the microclimate analysis. However, the main difficulty of CFD is the 
convergence of the problem with the solution. These problems can be solved by a multi-scale hybrid 
method combining the multi-zone and the CFD models. The several climate scales can be a volume and 
the subdivision, which are adapted in units of the multi-scales. 
 
A case study using a real Passive House model in the mixed climate of S. Korea is represented in 
chapter 5 and 6. Energy-saving houses using general passive features are tested and evaluated in the 
house model. The multi-zones are simulated to evaluate the energy performance of the passive designs. 
If the microclimate method is tested, the difference of the energy usages can be compared by a 
quantitative analysis. The comparison between one of the most famous multi-zone energy simulation 
tools EnergyPlus (EP) and the simulation of microclimate energy-saving model in this study are 
evaluated to prove the efficiency of the novel method.  
 
The Conclusions and the future study are represented in chapter 7. This method can be utilized to bring 
about valuation items in microclimate phenomena to accomplish the energy-saving and the prediction 
possibility. 
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2. Energy-saving and climate in the 
Passive House 

 

 

2.1. Energy in Passive House 

 

In the field of architecture, a lot of endeavors for energy-saving, prevention against pollution and 
recycling resources were made, since 50% to 60% of the total energy in the world is used for building 
and maintenance of architecture.24 Fig.2.1 shows the CO2 emissions scenario for the buildings sectors 
of 10 world regions produced by IPCC (2007). There will be approximately 81% increase of total CO2 
emissions from 8.6 GtCO2 emissions in 2004 to 15.6 GtCO2 emissions in 2030. This scenario shows a 
range of increasing buildings related CO2 emissions. Especially most increases of CO2 emissions are 
produced in the developing world: Developing Asia, Middle East and North Africa, Latin America and 
sub-Saharan Africa, in that order. East Asia shows increase of more than 150%.  
 

 
Figure 2.1. CO2 emissions for the buildings sector including electricity [The Intergovernmental Panel on 

Climate Change (IPCC) 2007]. 

 
Realizing the low-energy houses require an integrated design process which involves architects, 
engineers, contractors and clients, with full consideration of opportunities in reducing building energy 
                                                 
24 Economic Commission for Europe 1996. 
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demands. A lot of European countries are promoting the construction and distribution of low-energy 
buildings since the largest savings in energy-use can be obtained in new buildings through building 
design and operating plan. An EU project called CEPHEUS (the Cost Efficient Passive Houses as 
European Standards) is an example of the largest Passive House project which has built 221 houses25 
using Passive House standards.  
 
Passive house method focuses to accomplish energy-saving by architectural planning and modeling 
with minimum or without a mechanical assistance. However, it needs a lot of expertise and solutions 
because a Passive House design is composed of several thousand building components. Conservation of 
energy in innovations of architectural design should be checked for correspondence the Passive House 
Standard and the world’s premier test of energy efficiency. The following specifications have proven to 
achieve the Passive House Standard:26 

- Insulation value of the envelope must be under 0.15 W m-2K-1. 
- The external envelope must be constructed without thermal bridges. 
- An air leakage test must be performed, and the air exchange result must not exceed 0.6times h-1            

by over and under-pressurization tests with a pressure of 50Pa.  
- Windows, i.e. frame and glazing, must have total U-values under 0.8 W m-2K-1, and glazing must 

have total solar energy transmittance of at least 50% to achieve heat gains in winter. 
- Ventilation systems must be designed with the highest efficiency of heat recovery and have 

minimal electricity consumption. 
- A domestic hot water generation and distribution system with minimal heat losses should be used. 
- It is essential to use highly efficient electrical appliances and lighting and total primary energy 

consumption has to be below 120 kWh m-2year-1. 
 
Since the 1970s as solar architecture was first proposed, more advanced ideas were developed for 
Passive House: environmental architecture in the 1980s, ecological/green design and sustainable 
architecture in the 1990s. Nowadays they are integrated in new paradigms for the 21st century including 
high technologies, e.g. “Zero Energy Building” and “Green Building”. The methods additionally utilize 
natural energy, life-cycle-cost and comfortability modeling etc. to improve the energy efficiency of 
building and to suppress an increment in entropy leading to a disordered state of energy. Green space or 
Biotope can be also considered to recover the ecological balance. However, one of the most important 
factors is the improvement in the heating and cooling consumption for the economic feasibility of these 
technologies.   
 
Ulseth et al. (1999) estimated the expected development of the heating and the cooling consumption in 

                                                 
25 Feist et al. 2001. 

i.e. 84 houses were in Austria, 72 in Germany, 40 in France, 20 in Sweden and 5 in Switzerland. 
26 Feist et al. 2001. 
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building design policy since there is always a likelihood of some mismatch between the design intention 
and the real human perception. The relationship between the factors and comfort is not necessarily 
additive and practically never linear. Temperature and humidity largely affect human comfort more 
than other factors, and thereby understanding these factors is very important. Psychometric measures 
such as Givoni chart, Mahoney table and PMV (Predicted Mean Vote) etc. are studied for this purpose. 
 
 

2.2.1. Psychometric comfort scale 

 

Climate is a key factor for building design and it influences on the effectiveness of social activity, 
human comfort, health, physical resource and energy-use etc. Psychometric comfort scale is used to 
indicate measures of effectiveness, and the psychometric chart provides a graphic representation of the 
comfort state and the climate at a location. The most famous psychometric measures are the Givoni 
chart,27 Mahoney diagram28 and PMV. Psychometric comfort measures can be used to make building 
design policy. For example, if temperature and humidity are outside of the comfort zone, ventilation 
and dehumidification should be considered in building design.  
 
Fig.2.3 shows the Givoni chart for the climate of S. Korea. The horizontal and vertical axes of the chart 
respectively indicate temperature scale and moisture scale. The air temperature represented by the 
horizontal axis of the chart is known as the dry bulb temperature. The vertical axis is known by a 
number of names, such as specific humidity, absolute humidity and humidity ratio. They all represent 
the same measure: the amount of water by weight in the air.29 If the temperature of the air is decreased 
to the point at which it can hold no more moisture, the air becomes saturated. The corresponding 
temperature is called “dew point”. When the air is cooled to the dew point, it is at 100% relative 
humidity (RH). This saturation point is represented by the outer, curved boundary of the chart. The 
brightness in the graph represents the frequency of days corresponding to the value. In Fig.2.3, the 
seasonal climate of Korea can be estimated, and a lot of hot and humid days in summer and cold and dry 
days in winter make uncomfortable conditions. The square area in the chart represents the psychometric 
comfort condition. The Mahoney diagram30 offers a lot of design recommendations, e.g. layout, 
spacing, air movement, openings, walls, roofs, protection from rain, size of opening, position of 
openings, protection of openings, walls, floors, roofs and external features etc., for human comfort by 
analyzing the Givoni chart. However, the Givoni chart and the Mahoney diagram are often not exact in 

                                                 
27 Givoni chart is also called psychometric chart. 
28 Daoudi 2002. 
29 The units often can be given by the moisture scale, which is represented by two other names: vapor pressure, which is the 

partial pressure exerted by the moisture in the air, and dew point temperature which is an exponential temperature scale 
representing the temperature at which moisture will begin to condense from a given unit of air. 

30 Casey 2002. 



 

me
tem
wi
 

Fig

 
To
ba
ba
Ph
Ra
ind
37
urb
de
ind
a c
the
Th
ve
 

    
31 H
32 M

T
33 w

easuring the
mperatures 
ith solar rad

gure 2.3. P

o solve the 
alance to det
alance is M
hysiological
adiant Temp
dices such 

787).32 Rece
ban and reg
gree of disc
dicate uncom
case study33

e parameter
hese parame
ntilated city

                  
Höppe 1993. 
Mayer and Ma
The German V
www.lohmeye

e real condi
arising from

diant gain in

sychometric

problem, p
tailed enviro

Munich Ene
lly Equivale
perature (M
as PET, St

ently, PMV 
ional climat

comfort acco
mfortable fe
 for differen
rs of wind, 
eters determ
y centers, ef

                  

atzarakis 1999
VDI-Guideline
er.de/air-eia/c

ition of how
m detailed en
n a cold win

c chart of S

physiologic
onments we
ergy Balan
ent Temper

MRT) which
tandard Eff
is used for

te which are
ording to th
eelings due 
nt designs o
temperature

mine the ther
ffects of the

         

9.  
e 3787, VDI: 
asestudies/ 

w humans fe
nvironment

nter may not

eoul [autho

cally releva
ere establish
nce for Ind
rature (PET
h is required
fective Tem
r the physio
e based on t
e psycholog
to a hot sen

of the planni
e, humidity
rmal comfor
e air temper

Verein Deutsc

 
１８ 

eel because
ts. For exam
t be cold bu

or].    Table 
 metabo

ant indices 
hed.31 A mo
dividuals (M
T). A final o
d in the ene

mperature (S
ologically re
he human e
gical scales
nsation. Zero
ing called “S
y and radiati
rt in the com
ature and hu

cher Ingenieur

e they do no
mple, the felt
ut be warme

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1. Therm
lite rate 80W,

which are
del for the t

MEMI), wh
output of th
ergy balanc
SET) and P
elevant eval
energy balan
which are li
o is the neut
Stuttgart 21
ion for 2 di

mmunity. In 
umidity are

re/ German En

Sc

+

+

+

+

0

-

-

-

ot consider t
t temperatur
r than in rea

mal sensation
, 0.9 clo [May

derived fro
thermal com
hich uses t
he model is
ce model fo
Predicted M
luation of th
nce. The PM
isted in Tab
tral point, re
”, PMV and
ifferent met
densely bui

e also studie

ngineering So

cale S
 

+3.5 

+2.5 

+1.5 
Sli

+0.5 
Ne

0.5 
S

1.5 

2.5 

3.5 
V

 

the narrowe
re of a wind
ality.  

n scale for t
yer and Matzar

om the hum
mplex of hum
the assessm
s the calcul

or humans a
Mean Vote (

hermal com
MV index qu
ble 2.1. Nega
epresenting 
d PET are de
teorological
ilt up region

ed.  

ociety. 

Sensation 

Very  hot  

Hot 

Warm  

ightly  warm  

utral comfort 

lightly  cool 

Cool 

Cold 

Very  cold 

er range of 
dow façade 

the PMV,   
rakis 1999].

man energy
man energy
ment index
lated Mean
and thermal
(PMV, ISO

mponents of
uantifies the
ative values
comfort. In
erived from
l situations.
ns or poorly

 

y 
y 
x 
n 
l 

O 
f 
e 
s 
n 

m 
. 

y 



 

 
１９ 

 

 
 

2.2.2. Comfort zone 

 
A lot of statistical studies, which arrive at a quantitative description of human comfort, have been 
performed on large numbers of subjects of all ages, sexes and nationalities. The results of these studies 
provide a comfort zone with a relatively wide band of acceptability in which 80% of the population 
experiences the sensation of thermal comfort. Psychometric charts can be used to show graphically the 
condition of the comfort zone. However, only a few studies have attempted to express the additional 
major comfort variables such as Mean Radiant Temperature (MRT) and air motion.  

 

   

   a. With a large cool window        b. Without window 

Figure 2.4. Actual temperature as perceived by a person and MRT [author]. 

 
The MRT of a space is really the measure of the combined effects of temperatures of surfaces within that 
space. The MRT is the measure of all these surface areas and temperatures acting on a person’s location 
in the room. Even in an environment with some differences between the air temperature and the surface 
temperature of the walls, ceiling, windows and floor etc., a building zone which is well insulated and 
does not have extensive glazing as Fig.2.4-b shows have small temperature differences between the air 
and the surfaces. However, if there is a significant difference in the space as Fig.2.4-a represents, this 
difference will affect the perception of comfort. For the center of a zone, each surface plays an equal part 
in determining the average. However, if the person was sitting near a large window with a temperature of 
10℃, the MRT would be in a region of 17℃. At the optimum level, the radiant exchange of the human 
body with the surroundings can account for about 50% of the body’s ability to lose heat. Therefore, if 
MRT is increased, the net radiant exchange from the body to the surroundings will decrease. Inversely, if 
MRT is decreased, the net radiant exchange from the body to its surroundings will increase. This has 
proven to be a very powerful passive building technique for both heating and cooling. 
 
A large air motion across the skin can greatly increase the tolerance for higher temperature and 
humidity levels. HVAC studies by Fanger (1870) showed that at least 28℃, a very large air velocity of 
91.44m min-1 across the skin can maintain the human comfort even in 100% relative humidity. Ceiling 
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fans were used to produce this air motion. At below 50% relative humidity (RH), much higher 
temperatures up to 32℃ are also comfortable at this air velocity. Air motion across the skin 
accomplishes cooling through both convective and latent energy, i.e. evaporation of perspiration from 
the skin transfers. Since skin temperatures are relatively high, even 32℃ air temperatures can carry off 
some excess heat. Additionally, at high RH, near or at 100%, if dry bulb air temperatures are lower than 
skin temperatures, evaporation from the skin will occur. By the use of materials capable of storing 
relatively large amounts of thermal energy, e.g. concrete and masonry products, water, and Phase 
Change Materials (PCMs) etc. heat collection and rejection techniques can be effectively applied to 
Passive Houses. The studies of the comfort zone in effective design were provided by Givoni (1994). 
By architectural design with thermal mass and ventilation, various building zones based on exterior 
climate can have additional comfort producing potentials. A research of Loxsom and Clarke (1980) 
indicated that radiative night cooling in conjunction with thermal mass and air motion can extend the 
results of Givoni. 
 
 

2.3. Aerodynamic and energy contents 

 
The psychometric measures are important since the total energy in temperature and vapor content (i.e. 
energy content) of building air can be calculated.34 The total air energy is achieved by the sum of both 
the temperature content and vaporized moisture content. The temperature content is physically called 
“sensible heat”.35 The moisture content is called “latent energy” since the vapor in the air represents 
approximately 334 kJ kg-1 of latent heat energy. Normally, the humidity of the air is not generally 
regarded as being important since the humidity percentage usually ranges from about the mid 30s to the 
upper 60s and occupants are quite able to tolerate this range.36 However, if the humidity is in the upper 
60s along with high air temperatures and very little air movement this may give rise to a larger 
proportion of the occupants feeling uncomfortable. 
 
The sum of the latent energy and the sensible heat is called the air enthalpy (kJ kg-1). Air at 0℃ and 0% 
RH is assumed, by convection, to have an enthalpy of 0 and is used as the base for the enthalpy scale. In 

                                                 
34 Fairey 1994. 
35 Sensible heat is potential energy in the form of thermal energy or heat. The thermal body must have a temperature higher 

than its surroundings. The thermal energy can be transported via conduction, convection, radiation or by a combination 
thereof. The quantity or magnitude of the sensible heat is the product of the body’s mass, its specific heat capacity and its 
temperature above a reference temperature. A transport of heat from a warm area to a cold area is affected by the sensible 
heat in the form of warm air moving toward the cold air, and by latent heat as cold air moving toward the warm area. 

36 Ward 2004. 
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components such as direct light from the sky, reflected light from external surfaces of other buildings or 
internally reflected light. The average38 for a room is estimated as 

2(1 )
g

avg

A
DF

A R
θγ

=
−

      Eq.1  

where θ is the angle of visible sky measured from the center of the window shown in Fig.2.7 and ᵞ is the 
transmittance of glazing, e.g. 0.85 for clear glass and 0.5 for tinted glass. A is the total area of room 
surfaces such as floor, walls and ceiling, and Ag is the glazed area. R is the mean reflectance of the 
surfaces, e.g. 0.7 for light finishes. The initial size of glazing area can be estimated by the ratio Ag /A. 
 
The DF for a sun-space is estimated using a combination of transmittance T ≈ TgTmTf in the area of roof 
aperture (㎥). Tg is the transmittance of the glass e.g. 0.8 for single glazing and 0.65 for double glazing. 
Tm is the maintenance factor, 0.7 for horizontal glazing, 0.8 for tilted glazing and 0.9 for vertical glazing. 
Tf is a correction factor for light that is trapped in the room since the angle of view is 0.5 at the edge of 
the space and 0.7 in the center.  
 

 
Figure 2.7. Angles of visible sky for the average DF calculation [author]. 

 
In winter, the glazing has a lower air temperature than the surrounding air which causes the air near the 
surface of the glass to cool due to heat losses. In the summer, direct solar radiation by glazing causes 
overheating. The direct solar gain on a surface is a combination of the absorption of direct and diffuse 
solar radiation given by 

cos sunlight
solar direct diffuse sky gnd gnd

A
G I I F I F

A
α ϕ
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

   Eq.2 

where α is solar absorptance of the surface, φ is angle of incidence of the sun’s rays and Asunlight is 
sunlight area. Idirect, Idiffuse and Ignd are respectively the intensities of direct radiation, sky diffuse radiation 
and ground reflected diffuse radiation. The view factors to ground and sky are calculated using the tilt 
angleφ  of the surface as,39  

                                                 
38 Ward 2004. 
39 Walton 1983. 
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radiation exchange with the ground, sky and air. The radiation heat flux is calculated from the surface 
absorptive, surface temperature, sky and ground temperatures, and sky and ground view factors.  

rad gnd sky airG G G G= + +       Eq.5 

Applying the Stefan-Boltzmann Law to each component yields 

4 4 4 4 4 4( ) ( ) ( )rad gnd surf gnd sky surf sky air surf airG F T T F T T F T Tσ σ σ= − + − + −    Eq.6 

where σ=5.67 10-8W m-2 K-4 is Stefan-Boltzmann constant. Tsurf, Tgnd, Tsky and Tair are temperatures of 
outside surface, ground surface, sky and air. Fgnd, Fsky and Fair are the longwave view factors of surface 
to ground surface, sky and air temperature.  

 
Heat transfer rate due to exterior convection Gconv is calculated as  

( )conv surf airQ hA T T= −       Eq.7 

where Qconv is rate of exterior convective heat transfer, h is the convection coefficient related to material 
roughness and local surface wind speed and A is the surface area.41 

 

 
Figure 2.9. Indoor heat balance diagram and an example of longwave radiation from internal exchange 

[author]. 
 
The longwave-radiation heat exchange between surfaces depends on surface temperatures, spatial 
relationships between surfaces and surroundings, and material properties of the surfaces. Fig.2.9 
exemplifies the indoor heat balance with longwave radiation from internal exchange. The relevant 
material properties of the surface e.g. emissive and absorptive are complex functions which are related 
with temperature, angle, and wavelength for each participating surface. A grey interchange model 
based on the ScriptF concept42 simplifies the complexity. The method relies on a matrix of exchange 
coefficients between pairs of surfaces that include all exchange paths between the surfaces. If we 
assume that all surface radiation properties are grey and all radiation is diffuse, all reflections, 

                                                 
41 Walton 1983 
42 Hottel and Sarofim 1967. 
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absorptions and re-emissions from other surfaces in the enclosure are included in the exchange 
coefficient, which is called ScriptF. The long wave radiant exchange between surfaces i and j are,  

4 4
, , ( )i j i i j i jQ A F T T= −      Eq.8 

where Fi,j is the ScriptF between surfaces i and j. 
 
 

2.5. Design for heat loss 

 
If the heat gains cannot be balanced by the loss, a space will be overheated by internal heat gains. In 
order to determine the possibility of overheating occurring, a rough approximation of overheating in a 
space is estimated in two divided areas of passive and non-passive zones. If the glazing area of passive 
and non-passive zones is estimated, the overheating by the solar load can be estimated.  
 

Table 2.2. Solar heat gain through single thickness of common window glass through an unshaded 
window [Saini 1970]. 

Type of shade, finish on side exposed to the sun Heat gain (%)

Outside slatted shade, slats set to prevent direct sun falling on glass, white, cream. 15  

Outside commercial bronze shading screen, consisting of narrow metal slats, solar altitude above 40˚ so 
that no direct sun falls on glass, dark 

15  

Outside canvas awning, sides open, dark or medium color. 25  

Inside Venetian blinds, slats set to prevent direct sunshine passing though, diffuse reflecting aluminum. 45  

Ditto, white, cream 55  

Inside roller shutter fully drawn, dark 80  

 
To prevent overheating, the windows of the overheating area should be protected from direct solar gains. 
Internal and external shading efficiently removes the gains. Since internal shading only serves to direct 
the gains which are already in the space having passed through the window, external shading is more 
efficient for the overheating. While solar shading must give good protection in summer, in winter when 
the sun is not so strong and lower in the sky, the solar protection must be able to allow sufficient 
daylight and natural ventilation to enter the building. Horizontal shading devices are appropriate to 
blind south-facing windows but not appropriate with east or west facing windows. Different types of 
solar shading devices have the different percentage of the external radiation protection. Table 2.2 
clearly shows the effect of various types of shading devices for instantaneous solar heat gain through a 
single thickness of a common window glass.  
 
Fig.2.10 represents the external shading devices with horizontal overhang. The angle a and b 
respectively determines the angle from a line perpendicular to the bottom of the window to the edge of 
the overhang and from the middle of the window to the edge of the overhang. These angles represent 
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=      Eq.16 

where m is the mass per square meter of material (kg m-2), c is the specific heat of the material (J kg-1 
K-1), d is the thickness (m) and λ is the thermal conductivity (W m-1K-1).  
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3. Microclimate design for 
energy-saving 
 
 

3.1. Microclimate and building  
 
 

3.1.1. Definition of Macro- and Microclimate 
 
Microclimate is situated in a local atmospheric zone where it is related with the energy distribution. The 
definition of “macro-” and “micro-” depends on the spatial distance, and “-climate” is the environmental 
variation. Climatologists have concerned with the causality of these climates, while architects have 
interested in the effects of climate to the buildings. 
 
The macroclimate can be analyzed statistically in the annual climate data that can indicate the climate 
characteristic of a particular region. For example, the urban climatology concentrated on the heat island 
and progressively focused to the microclimate related to the building geometry.52 The aim is a study of 
energy exchanges between the urban canopy and the overlaying boundary layer or the surface, air and 
mass.53  
 
Meanwhile, architects want to know a kind of microclimate called indoor climate to improve the 
building performance. They calculate energy loads of a building to maintain internal comfort. Interest 
for these issues started at the oil crisis of 1973.54 The passive solar and energy efficiency by the mutual 
obstructions between buildings attracted attention. The passive solar design targets in managing the 
potential of the sun, and a solar envelope was proposed to maximize solar availability into the buildings 
by the amount of absorption versus reflectance of radiation.55 Next, there were several studies to link the 
indoor climates and to remove the mutual obstruction between buildings in the high density. The heating 
and cooling gains highly relate to mutuality between outdoor and indoor environments. For example, the 
air permeability gives the potential for airflow and ventilation cooling through a building. The 

                                                 
52 Landsberg 1981, Barry and Chorley 1987, Oke 1987, Oke et al. 1991, Escourrou 1991, Kuttler 2004. 
53 Mills 1997. 
54 Olgyay 1973, Markus and Morris 1980. 
55 Knowles 1981. 
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relationship between macro- and microclimate allows accurate analysis for building energy performance 
and adaptations for a comfortable condition.  
 
Extensive studies on microclimatology were done by Geiger et al. (1995) and by Landsberg (1981). The 
influence of different slopes, ridges, valleys, and even glaciers on the microclimate is carefully studied. 
The climatic factors are wind speed, access to solar radiation, humidity and temperature of the air, and 
associated building factors are topography, orientation and building geometry. Table 3.1 shows the 
climate factors of a building and related issues to analysis of microclimate effect. 
 
Table 3.1. The factors and related issues [author].  

Factors Related issues 
Wind exposure Infiltration, ventilation level and energy distribution, thermo- and aerodynamic pressure 
Sunlight exposure Local heating and pressure in the area 
Precipitation 
Moisture 

Building materials, insulation performance 
Wet materials degrade quickly and wet insulation conducts the heat. 

Local temperature Energy balance, heating and cooling requirements 
Building topography Access and the streamline of airflow to distribute the energy 
Building orientation The amount of contact and access between outdoor and indoor climates 
Indoor condition Heat gains and the absorption versus reflectance of radiation, air permeability for cooling 

 

3.1.2. Microclimate design 

 
The building microclimate can be achieved by building geometry, e.g. building surface, density, barrier, 
terrain, 3D objects and huge plant etc., which introduces a pathway of airflow, a windbreak and a 
non-uniform solar access etc. For example, a protected courtyard design against cold air can easily make 
warmer than exposed situations. The deviation in climate plays an important role in architectural 
planning. Most studies for microclimate have focused on the aspect proportion or height-to-width ratio, 
the orientations and the form of buildings, and the mixture of materials, the density or the rate of 
mixture. 
Table 3.2 shows the planning issues by the factors of microclimate around building and the positive 
effects. In site selection, favorable locations should be considered with every elevation difference, 
character of land cover, which induce variations in a local climate. A less favorable site can be improved 
by windbreaks and surrounding surfaces that induce an advantageous reaction to temperature and 
radiation impacts. A good passive design which gives some shade in summer and allows the sun to 
penetrate as much as possible in winter consider the positioning, orientation and height of buildings. 
Deciduous trees aid to achieve the windbreak and seasonal irradiation impacts related to the albedo56 of 
walls and other structures facing the sun. These make a substantial effect on the microclimate of 
intervening spaces as well as the heating of the buildings themselves. The energy balance in form and the 

                                                 
56 The ratio of the amount of solar radiation is reflected by a body to the amount incident upon it. 
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mixture of material is also related with the irradiation of floor and walls.57 Exposure versus shadow 
patterns affects the surface temperatures and consequently the amount of heat transferred to air as the 
sensible heat flux and consecutively the air temperature.58 The potential of airflow at low level also 
depends on these factors.59 The building materials of the surfaces were also found to be decisive in the 
heat storage rate60 as well as in the nocturnal cooling rate.61  
 
Table 3.2. Planning issues and the effects [author]. 

Planning issues  Effects 
- Improved solar radiation for heating and lighting 
- The use of insulation and draught proofing presents excessive 
energy consumption. 

Lower winter heating costs 

- Wind, temperature and vapor variation for ventilation and cooling 
- The provision of external shading, thermal mass and the use of 
night cooling make comfortable indoor air condition. 

Reduce overheating in summer and 
exceedingly dry in winter 

- High contact with the surrounding 
- Well-balanced temperature and vapor on the site 
-Pleasant outdoor air can be exchanged with indoor air. 

Create more pleasant outdoor conditions

- Low impact of environment  
- Pleasant outdoor condition 

Improve growth of external plants and 
trees 

 
However, all of these studies have focused at only one side of the indoor or outdoor. Few researches 
have performed for the microclimate of a building across outdoor and indoor to balance temperature and 
humidity for human comfort. A spatial modeling of microclimate effects, which can affect the human 
adaptive behavior to thermal stress,62 can be helpful to plan optimal energy loads in a house. 
 
 

3.1.3. Climate design process  
 
If a building has a control that reacts to climates, the results are presented in terms of the operative cost 
for thermal comfort and the time when comfort is reached. Although the architecture design is 
fundamentally correct in all aspects, thermal condition is uncertain. Hence, climate should be taken into 
account at the early design stages deciding on the overall concept of a project, on the layout and 
orientation of buildings, on the shape and the geometry on the spaces between buildings. Koenigsberger 
et al. (1974) distinguished between three stages in climate design: 

1. Forward analysis, which includes data collection and ends with a sketch design 
2. Plan developments, which include the design of solar controls, overall insulation properties, 

ventilation principles and activity adaptation 

                                                 
57 Mills 1997, Bourbia and Awbi 2004. 
58 Nakamura and Oke 1988, Yoshida et al. 1990/91, Santamouris et al. 1999. 
59 Hussein and Lee 1980, de Paul and Shieh 1986, Nakamura and Oke 1988, Santmouris et al. 1999. 
60 Oke 1976. 
61 Arnfield 1990, Mills 1997. 
62 Thermal stress is defined as the physical and physiological reactions of the occupant to temperatures that fall outside of the 

occupant’s normal comfort zone. 
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3. Element design comprises closer examination and optimization of all individual design elements 
within the frames of the agreed overall design concept. 

 
This consecutive approach uses rather simple tools in the forward analysis which gives some overall 
principles. Since in the last stage, it was practically impossible to go back and correct systematic errors, 
only minor changes in thermal performance could be obtained by a different element design. To remedy 
this, it is necessary to give the architect a set of methods and powerful tools which integrates data, 
knowledge and case studies for climate adaptation in the planning process. Developing appropriate and 
powerful tools and inclusion of evaluation and feedback in the system is therefore crucial to better 
integrate climate issues in a design process. Since the climate fluctuation is highly unpredictable in a 
short-term, a climate adaptation in a predictable way needs climate data over the long term. Information 
of climate variables is collected and made available in a number of forms e.g. maximum and minimum 
values, average values, probabilities and frequencies and time series.63  
 
 
3.2. Arrangement 

 
 
3.2.1. Microclimate effects adapting wind direction 

 
Microclimate effects include spatially influenced phenomena, e.g. heat transfer, thermal balance, 
humidification and insulation etc., which can be observed by partial differences in a local area. Since 
partial differences form gradients, microclimate can be analyzed and visualized as a kind of flow with 
the gradient. For example, if you are in a cold valley, your minimum winter temperatures may be lower 
than what the other area indicates, because cold air is heavier than warm air and cold air is accumulated 
in the valley. The main driving force causes the difference of air pressure and temperature, and the air 
moves on the gradients with differences of air pressures and temperature. The difference of temperature 
which derives air pressure and thereby airflow is called aerodynamic pressure and thermodynamic 
pressure. The aerodynamic pressure often causes horizontal ventilation i.e. draught, and the 
thermodynamic pressure causes vertical airflow from the bottom upwards. 
 
Airflow through buildings occurs with the difference of the pressure across the building, and the 
thermal balance may result in more comfort conditions for the same energy input. The airflow derives a 
small movement of air and thermal buoyancy, e.g. stack effects. These effects change proportionally 
according to strengths of the prevailing wind and the temperature. In principle, movement of air across 
the building occurs between areas of negative (-) and positive (+) pressure. Microclimate effects are 
observed between these polarities of pressure. Fig.3.1 (a) illustrates the polarities. When the building is 
                                                 
63 Dingman 2002. 
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row of buildings. Alternatively, using a staggered in a checker-board pattern shown in Fig.3.2-b, 
shadow and stagnant air zones are almost eliminated. 

 
For the microclimate design, another important factor to choose building orientation is the wind 
direction. The windward in the hot season and in the cold season in the place of construction should be 
considered to decide the proper house direction which uses cool wind in summer and prevents the cold 
wind from blowing into the house in winter. In Korean climate, the best orientation for the house is the 
southeast because in summer the cool wind blows into the frontal windows and in winter the Siberian 
cold wind blows from northwest.  
 
 

3.2.2. Optimum building orientation  

 
In the Passive House design, the building orientation is strongly related to the solar radiation. The 
orientation of the building and its position on the site also have a strong influence on how and when 
sunlight and air currents can enter, thus affecting daylight, air conditioning, ventilation and many other 
aspects. The efficacy of passive methods included at later design stages depends largely on the initial 
decision on how to situate the building within its immediate habitat. For example, east and west are bad 
directions since all the year-round the solar radiation is more deeply into the room and the related air 
temperature is the highest. The house facing southward is the best, because the solar radiation is little in 
summer and is the highest in winter. The optimum building orientation of Seoul, Korea is simulated by 
using average daily incident radiation on a vertical surface and the best orientation is South-Southeast 
i.e. clockwise 157.5˚ from North. Fig.3.3 represents the simulation results using the sun path for energy 
performance. 
 
For summer cooling, the aerodynamic pressure using wind is much more important since room 
 

 
Figure 3.3. House orientation considering the sun path [author]. 
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are warmer and drain earlier in hillside areas by the sun especially toward the south. The maximum load 
would be on a south 45˚ slope; whereas no direct-beam would reach north-facing slopes of greater than 
45˚ angle. To avoid shading of building, the development of the slope site needs a distance considering 
solar and topography angles between the buildings as 

 

-  tan
tan tan

h da
d

α
α β

=
+

     Eq.17 

where a,b and d are respectively the distance between buildings and the size of a building. α and β are 
respectively solar angle and topography angle. Fig.3.6 (b) represents the shadow range related to the 
distance between buildings. South-facing slopes allow tighter spacing b without loss of sunshine. The 
north façade has low energy flux density for large slope angle while the density is increasing for the 
south façade. North-facing slopes need a wider range of a, or otherwise it causes severe overshadowing. 
Developing slope area has higher building density than flat area since the building on the slope is more 
suitable to get sunshine. When the slope angle is larger, smaller pitch of building considering sunshine 
and higher land using rate are available. However, the careful design to maintain the scenic view is 
needed. 
 
By day, the air above the slopes can be more easily heated than the center of the lower land. Fig.3.7 (a) 
illustrates the interplay of slope and valley winds during a clear summer day with light winds. As the 
day progresses, the down-valley wind dies out with further heating. In the evening, the down-slope 
wind sets in. The slope winds are anabatic, and the valley wind fills the valley and moves upstream with 
the anti-valley wind coming downstream. Unstable upslope (i.e. the anabatic) flow arises with a closed 
circulation across the land involving air sinking in the center. It is at speeds of 2m s-1 to 4m s-1 with a 
maximum at about 20m to 40m from the surface.66 In hot and humid condition, it leads to the greater 
precipitation along the ridges. Since the cross-valley circulation effectively transports the sensible heat 
from the surrounding surfaces to warm the whole valley atmosphere, the valley air is much warmer and 
a plain-to-mountain flow develops. Since the maximum pressure gradient is near the surface, the 
maximum wind speed is as close to the ground. Above the ridges, an anti-valley air flowing down the 
valley occurs through day.  
 
At night, the slope winds are katabatic and reinforce the mountain wind that flows downstream, with the 
anti-mountain air flowing in the opposite direction above. Since the valley surfaces are cool by the 
emission of longwave radiation and cool air is heavier than warm, the outgoing radiation at night causes 
a cold air layer to form near the ground surface and the air slides down. These katabatic winds usually 
flow at about 2m s-1 to 3m s-1, but greater speeds are observed where the cold layer is thicker and where 
the slope is steeper. Cold air behaves somewhat like water flowing towards the lowest points. The 

                                                 
66 Geiger et al. 1995. 
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convergence of these slope winds at the valley center result in a weak lifting motion. All of these 
katabatic flows combine into a down-valley flow known as the mountain wind that seeps out of the 
mountain valleys onto the adjacent lowlands. The anti-mountain winds flow up valley aloft. The 
drainage of cold air down-slope or down-valley intermittently surges rather than a continuous flow. On 
winter nights, some valleys would be colder than neighboring slopes about 10˚ and more. Airflow 
occurs towards the valley floor. According to Geiger et al. (1995), valley walls affect the distribution of 
the nocturnal temperatures by dam action, and the concave terrain forms cold air lakes or cold air 
puddles. 
 

 
(a)    a.Sunrise      b.Morning   c.Midday   d.Afternoon   e.Evening 

 
 

(b)    
Figure 3.7. Slope wind systems, (a) interplay of slope and valley winds for a day, (b) streamlines in 

slopes and building arrangement [Geiger et al. 1995, Franke 1977]. 

 
Fig.3.7 (b) shows an example of the building arrangement for streamlines in slopes. A wind is blocked 
by the setbacks of buildings and plantation of trees along the streets. The arrangement of buildings takes 
the shape of the natural streamline, wind effectively produces the induced air movement through the 
wind paths. Natural ventilation of a building is affected by the streamlines resulting from the prevailing 
wind path over the natural terrain and existing obstructions of the site. The exposure to airflow will 
affect the air infiltration through the building shell. 
 
Oke  (1987) introduced the flow over moderate topography. The varying elevation of the surface over 
moderate topography i.e. slope up to about 17˚, usually brings about the adjusting flow. Essentially an 
increase in the ground elevation which vertically constricts the flow results in acceleration. Conversely, 
a drop of elevation results in a deceleration. Fig.3.8 represents some topographic forms in comparison 
of the flows. The increasing elevation results in speeding up to the maximum at the hilltop. On the hill, 
a wind speeds up over it like a ridge, but also around it with a maximum at the summit and on the 
valley’s neck forms a jetting through the gap with a maximum at its narrowest point. The decreasing 
elevation results in slowing down with a minimum speed near the base of the slope for flow downwards. 
On a valley, the wind speed decreases and forms the maximum shelter near its floor. Talyor and Lee 
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eliminate. Therefore, the pattern of wind speed in the lee conforms more to that of a high density 
barrier, so no advantage is gained. The lines are parallel to the direction of flows. Airflow encounters a 
solid barrier placed normal to its original direction. The horizontal and vertical dimensions in terms of 
the barrier height are efficient to compare the effects of different-sized barriers. The barrier affects flow 
to at least 3h above the surface. If a 10% speed reduction is assumed, the air passing by a solid barrier 
provides its influence to about 10h to 15h downwind.  
 
 A barrier with low density provides a “cushion” in the cavity zone. The point with 90% recovery of the 
wind speed occurs at 15h to 20h. The reduced wind speeds can be observed as far as at the 40h.  A 
drawing in Fig.3.14 (b) represents a distribution of wind speed and a medium density windbreak. The 
finite length of the barrier generates the spatial pattern which areas near the ends of the barrier 
experience increased wind speeds and probably greater turbulence. Behind a barrier, decreased 
turbulence reduces the fluxes of heat and the microclimate vertical profiles are steeper than in the open. 
The barrier being perpendicular to the wind is more effective. In a day, the sensible heat gives higher air 
temperatures than in the open. At night, radiative heat loss on the surface is not efficiently replenished 
from the atmosphere, and thus the air temperatures are lower.  
 
Woodruff and Zingg (1952) found the windward reduction in velocity through the analysis of airflows 
around four types of barriers, i.e., vertical plate, triangular and cylindrical shapes and model trees, using 
11.176 m s-1 input velocity as Table 3.3 represents. There is no 75% reduction for trees since there is a 
jet movement in the air through them. Trees cause a more extended area of protection than other shapes. 
This is marked by the 27h distance to a 25% reduction and the relatively great distance between a 25% 
and a 50% reduction in velocity. The vertical plate ranks the second best protection reducing about 44% 
more than the cylindrical shape. The plate also reduces the velocity about 10% more than the triangular 
shape at both near and far distances.  
 
Table 3.3. The amount of wind reduction measured against varying heights and object shapes [Woodruff 

and Zingg 1952]. 

 
 
 
 
 
The surrounding plants are a modifying factor to improve the microclimate.78 They are advantageous to 
the neighboring building due to the effects on the meteorological factors, e.g. Ta, RH or v, or to the 
induced energy savings in the buildings such as a result of less heating and/or cooling loads. The three 
main properties to improve the microclimate for the site comfort are shading, humidification i.e. 
                                                 
78 Escourrou 1991, Akbari et al. 1995, Avissar 1996, Taha et al. 1997. 

Object 75% reduction 50% reduction 25% reduction 
Vertical plate 13.0 h 15.5 h 21.5 h 

Triangular shape 10.5 h 15.0 h 20.5 h 
Cylindrical shape   7.0 h   9.0 h 14.0 h 

Model trees - 13.5 h 27.0 h 
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evapotranspiration and windbreak.79 A numerical modeling or a comparison of various scenarios have 
been performed in a number of related issues such as the seasonal growth of plants and changes of 
density and size etc.  
 
Fig.3.15 shows that the composition of a Korean traditional house is a large front yard and a small 
backyard. Thermodynamic ventilation occurs due to the radiation difference between the front yard and 
the backyard. The front yard should not have large plants that can disrupt the breeze in summer, the 
dense and large plants in the backyard enables to block the reflection of solar radiation and the cold and 
strong wind in winter. The residential area has 50% less wind speed by the dense and large plants.80 The 
thermodynamic ventilation acts even in the absence of wind since it occurs with the difference in air 
density between indoor and outdoor.  
 
Trees in the backyard increase shadow in summer, and the kind of tree and a proper position is chosen to 
increase the amount of shadow for the hottest time. The leaves absorb most of the solar radiation, 
transform a part of the radiant energy to the chemical energy by photosynthesis, and thereby reduce the 
heating rate of the yards. The air temperature decreases about 3℃ to 5℃ on a fine day.  Dense plants 
produce a relatively small wind wake area and the recirculation region with low velocity eddies behind 
the obstruction. A short and high line of trees, on the other hand, can produce a relatively large wake size 
acting as a windbreak.81 The density of plants generates distinct flow patterns. For a line of plants 
starting at about 1.5m from the ground, 30% to 50% of the airflow rates can be according to the distance 
between the individual trees. Since the wind can flow underneath and between large plants such as tree, 
the distance with the building is not significant for the ventilation purpose.  
 
 

 
Figure 3.15. Shading of backyard [K.H. Lee 1986]. 

 
Table 3.4. The effects of planting in Chicago [McPherson and Nowak 1993]. 

 Effect Reducing energy efficiency (%) 

Summer Shading 37 

Evapotranspirative cooling 42 

Winter Lower wind speeds 21 

 

                                                 
79 Moffat and Schiler 1981. 
80 McPherson et al. 1994. 
81 Honjo and Takakura 1990, McPherson et al. 1994 
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intermediate space was transformed into a glassed-in access hall with ramps the length of the building.  
The housings are accessed through a short entry hallway. In the housings along the access hall, the 
kitchens and baths are lit and ventilated via the hall: the outside-oriented housings have inside baths, but 
kitchens with large windows to the park. The glass surfaces in front of the sleeping and living areas 
developed around the façade recesses and the kitchen and the small bedroom can be entered from the 
living room. The hall is covered by roofs of glass and a passive energy concept enables for efficient 
planting under the glass roof. 
 
 

3.3.5. Roof opening and stack effect 

 
Ventilation is concerned with the supply of fresh air and especially in hot climates the promotion of 
convective cooling with the air movement at a relatively slow rate. The two main ways in which natural 
ventilation occurs are through the stack effect in calm conditions, through combined stack effect and 
wind and through wind only at air speed in excess of 3m sec-1.  Since the velocities above the roof level 
are much greater than at wall level, roof openings with clerestory windows, ridge projections or 
wind-catchers85 can derive more airflow. They are particularly advantageous in densely built areas 
which have significantly smaller projections than the building volumes. Gandemer et al. (1992) tested 
the effectiveness of clerestory openings in roofs by wind tunnels and showed that the clerestory area  

 
 
Table 3.5. Effects of clerestory on average internal airflow rates [Busato 2003].  

 
Not good Good 

 

    
Figure 3.21. Exposed roof-ventilation holes of the gable roof of Mr. Eu’s house [M.K. Kim 2001]. 

                                                 
85 They potentially act either as air inlets or as extractors depending on the wind direction. 
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the top of the same wall. It works well with buildings of three or more stories as Fig.3.22 represents.  
 
Warm and light air rise in an internal multi-storey solar chimney with venting at roof level. While the 
the sun heats a solar chimney at the top of the building, the air moves in a duct. The temperature 
differences significantly increases airflow. The ventilation can provide a comfortable temperature 
without air conditioning. Since the shaft is large enough and located high, the inlets and outlets 
maximize the effect of prevailing winds. 
 
 

3.4. Façade elements 

 
 

3.4.1. Microclimate in opening control  

 
If the difference between the indoor and outdoor temperatures is not large, the vertical pressure 
gradients do not differ between inside and outside since the difference between the air densities is not 
large. In this situation, an aerodynamic pressure with ventilation is higher than a thermodynamic 
pressure. If the air pressure on either side is equal by a single opening at a certain level in the building, 
there is no thermodynamic airflow and stack effect through this opening. Therefore, effective horizontal 
aerodynamic ventilation with wind is more important to modify the microclimate than stack effect 
ventilation. If the indoor air is warmer and thereby less dense than the outdoor air, a vertical pressure 
gradient in the building is smaller than one of the outside, and the indoor air does not flow well. If the air 
pressure between inside and outside, and above and below is different, the ventilation rate is 
proportional to the density of the air. For two openings at different heights, if the indoor temperature is 
higher than outside, a pressure difference forms. While a depression inducing an inward flow occurs at 
the lower level, high indoor pressure occurs near the upper opening and the air flows outwards. Thus, 
the indoor air can circulate. For the lower indoor temperature, the positions are interchanged and the 
flow direction reversed. 
 
Olgyay (1973), first proposed to systemize the incorporation of climate into architectural design. 
However, the method just considers the outdoor climate data only and it is not suitable to the largely 
varied indoor environment by outdoor climate. It is thus suitable for application only in humid regions 
where ventilation is essential during a day and there is little difference between the indoor and outdoor 
conditions. The application particularly in the subtropics, leads to erroneous results in Korean climate 
since the indoor climate does not always needs ventilation.  
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3.4.2. Opening locations and shapes 

 

For the design of an individual space, air distributions or concentrated jets should be determined to plan 
the most preferred ventilation. The main factors affecting airflow patterns are the sizes and shapes of 
inlet apertures. The location, type and configuration of the inlets and the configuration of other adjacent 
elements such as internal partitions and projections etc. affect the ventilation performance. 

 

The opening sizes and shapes are important factors that determine airflow inside a building. If air flows 
straight through the room, ventilations occur only in a limited part that has high air velocity. The cost of 
windows is expensive, i.e. a square meter of window is normally 2.5 times more expansive than a 
square meter of wall. A large window is more difficult to shield a direct solar penetration or a cold wind. 
In a district in high latitude, the main function of windows is to obtain natural lights, and the window 
shape is often vertically rectangular. In a tropical region, the window mainly performs ventilation, thus 
the window shape is frequently horizontally rectangular.  

 

Dăng (1985) analyzed the efficiency of different window heights for a hot and humid climate. If the 
height of a window is greater, the air can move quicker above the upper half of the room. On the 
contrary, the air velocity decreases for the lower half. When the height of a window is small, the air 
velocity is large, and the shape of the streamline is narrow. A large window performs better for the 
indoor ventilation. However, the width of the window should not be smaller than 0.5 times of the width 
of the room to generate air streams covering at least 70% of the floor area. The window form with a 
medium height and a large width stretches the air streams, and thereby has the best efficiency for natural 
ventilation. Moreover, it is the easiest to shield direct solar penetrations or a cold wind. 

 

The shape and configuration of opening modifies the internal airflow. For a fixed opening size, a 
horizontally square and vertically shaped inlet yields different air motions in the room. Horizontal inlets 
provide larger internal airflows than squared or vertical inlets. A wind incidence angle of 90˚ i.e. 
perpendicular to the window surface offers the optimal performance for horizontal inlets. Fig.3.23-a 
shows the percentage of indoor air speeds for different locations of openings. Hence, the introduction of 
vertical louvers increases the performance of ventilation in horizontally shaped inlets since they can 
catch more winds. Fig.3.23-b represents the percentage of indoor air speeds for different angles of 
louvers. Although a rectangular opening also provides well-distributed internal airflows, the 
performance is not enough to cover the room. 
 



 

 
Tw
op
ind
wi
hig
wi
usi
fea

1

2

3
 
Th
the
rel
ve
rel
ve
wi
ex
 
Th
air
In 

    
87 G
88 H
89 G

Figure 3.23

wo opening
penings is r
dependent o
ind. With tw
gher, rangin
ind direction
ing two win
atures as fol
1. The relati

linear pro
2. A room n

distributio
3. If the mo

he performa
e ventilation
lated to the 
ntilation is 
latively hig
ntilation pe
indward wal

xists even th

he outlet siz
rflow rate oc
this case, p

                  
Givoni 1969. 
H.T. Kim et al
Givoni 1969. 

 a. 
3. Performa

gs in oppos
referred to 
of the wind 
wo opening
ng from 30%
n and the ax
ndows with 
llows; 
ionship betw
oportion. 
normally has
on of air sp
del’s length

ance of vent
n performan
wind direc
possible in

gher than th
erformance 
ll than at the

hough there 

ze affects th
ccurs. A sm
art of the ki

                  

l. 1988. 

With different
ance of diffe

site walls im
as “cross-v
direction an
s for both t

% to 50% of
xis between
1/4 size of 

ween the ou

s wind shad
eed and dir

h is long, th

ilation using
nce of windo
ction. Table
n an asymm
he pressure
of windows
e edges and
is no pressu

he indoor a
maller outlet 
inetic energy

         

t openings 
erent wind d

mproves ve
ventilation”
nd the indoo
the windwa
f the externa
n inlet and o
the wall pe

uter wind sp

ow with vor
ection. 
e distributio

g adjacent w
ows on adja

e 3.6-a class
metric place
s at the sid
s at a side o

d some press
ure differen

airflow rates
than the inle
y converts t

 
６４ 

         b.
direction wi

entilation ra
”. If there i
or velocity i
ard and the l
al wind spe
outlet.87  In 
rformed at t

peed and the

rtex after in

on of indoor

windows ex
acent walls d
sifies the w
ement of w
des of the 
of a building
sure differen
nce in the sy

s. If the out
et, the air ve
to static pres

With different
ith shape an

ates, and th
is one open
is approxim
leeward sid
ed for the d
a study of 
the center o

e average in

nflows. Ther

r air velocit

xtremely dep
depends on 

wind directio
windows sin

windward 
g. The press
nce in the as
ymmetric sch

tlet is large
elocity cann
ssure near th

 
t louver angle

nd angles of

he natural v
ning, the a

mately 10% t
des, the aver
different inle
indoor air m

of the oppos

ndoor air spe

refore, a par

ty is slowly 

pends on the
the pressur

on into goo
nce the pre
wall. Table
sure is great
symmetric p
heme.  

er than the i
not be distrib
he leeward o

es 
f opening [B

ventilation 
air velocity 
to 15% of th
rage velocit
et and outle
motion,88 a 
site wall sho

eed general

rt of inflows

decreased. 

e wind direc
e distributio
d or bad ca
ssure at the
e 3.6-b illu
ter at the ce
placement o

inlet openin
buted over t
opening. Fo

Busato 2003].

using two 
is almost 

he external 
ty is much 

et sizes, the 
simulation 

owed some 

lly is in the 

s has worse 

ction since 
ons closely 
ases. Some 
e center is 

ustrates the 
enter of the 
of windows 

ng, a large 
the room.89 
or the same 

 

 



 

 
６５ 

 

Table 3.6. Airflow related to the opening location or wind direction [modified from Lechner 1991]. 
a. Not 
good  

b. Good 
or 

Fair 
 

 
size of inlet and outlets, the internal air speed is related to the building envelope irrespective of the angle 
of incidence of the wind.  
 
Although the cross-ventilation using windows of two opposite walls are optimum in rooms with 
openings, such configuration is not common.90 If the angle of wind is perpendicular to the inlet for most 
configurations, opposed to inclined wind incidences, the high average air speeds can be achieved by 
openings in two adjacent walls. The total size of the openings in the walls with the smallest area of 
openings almost determines the internal air distributions with intermediate openings. It is also an 
important point in planning a multi-zone space.  
 
The different opening sizes between inlet and outlet modifies the airflow shape and solar penetration. In 
Korea, the Janggyeong Panjeon91 in Haeinsa Temple uses different sizes of the upper and lower parts 
for the front windows arrangement. The front windows form an iso-scales triangle with base size 1, 
height 2  as Figure 3.24 (a) shows, and the rear windows are reversely arranged. In the front elevation, 
the lower part opening size is 4 times larger than the upper part one. In the rear elevation, the upper part 
opening size is 1.5 times greater than the lower part one. The opening size comes up to around 18% to 
29% of the front-backside wall area and this result gives the constant air circulation. The design 
intended to be effective cross-ventilation for preservation of woodblocks of scriptures against 
deterioration.  
 
The building is quite famous in Korea due to the efficient ventilation, effective moisture prevention, 
proper balance of temperatures and well-designed arrangements. The building features different size 
and shape, of the windows at each wall of the building, different height of each side wall, arrangement 
of shelves in the hall, and the location of the building. Recently, computer simulations found out the 
airflow characteristic in Janggyeong Panjeon shows very well distributed airflows in the room even 
though the building is 60.5 m wide and 35 m deep. Fig.3.24 (b) shows that the indoor air velocity is very 
stable and low with about 0.15m/s while the outdoor air velocity is varying. On a winter day a breeze  
                                                 
90 Bittencourt 1993. 
91 It was added in the UNESCO world heritage lists in 1995.  
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holistic way. The German Energy Conservation Regulation “Energieeinsparverordnung” (EnEV,2001), 
implemented in February 2002, refers to a calculation methodology for the energy performance of 
buildings which already covers most of the aspects mentioned in the general framework for a 
calculation procedure in the EPBD. The German DIN (German Standardization Institute) V 18599 is an 
Excel-based calculation tool. The DIN V 18599 series of preliminary standards provide a method of 
calculating the overall energy balance of buildings. DIN 18599 is dealing with the energetic assessment 
of buildings in a much more detailed way. 
 
However, there are a few tools to deal with several climate modifications of building design in the 
energy assessment.  Climate models are classified by several scales: from kilometers to few centimeters. 
The main problem with the parametric analysis always uses a large scale that is probably suitable for 
urban planning issues. However, the microclimate modification of the building design is substantially 
variable in the large scale. Thus, the computer simulation tools for parametric analysis cannot be used 
for building microclimate analysis. For example, natural ventilation is very difficult to analyze with the 
parametric model accurately although the tools can predict the performance of mechanical ventilation 
systems. There are four main complex factors for the analysis of natural ventilation. 

- Geometric dimensions of building site 
- Exterior and interior configurations of buildings 
- Aerodynamic variation by airflow movement 
- Thermodynamic pressure by the temperature variation 

 
 

3.5.2. Previous methods 

 
Despite the difficulty to analyze the microclimate modification, a lot of research has been carried out to 
understand microclimate phenomena e.g. heat diffusion, natural ventilation, solar radiation heating and 
evaporative cooling etc. Most research has utilized three methods as follows94  
  
(1) Model/field experimental method 
  
Field experiments can provide the temporal average airflow rate passing through a naturally ventilated 
building. Katayama and Tsutsumi et al. (1996) performed a full-scale measurement of 4 indoor thermal 
factors, i.e. airflow speed, air temperature, wet bulb temperature and globe temperature, using a field 
experimental method. However, the problem is the complexity to obtain a good measurement. Model 
experiments are much suitable to be more controllable and reliable than the field experimental method. 

                                                 
94 Tan 2005. 
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A model with several design parameters for wind tunnel test provides the wind pressure coefficients 
around buildings. For example, model experiments with several types of windows can provide several 
detailed information on the velocity coefficients, jet contraction coefficients and discharge 
coefficients.95 A wind tunnel investigation virtually analyzes the aerodynamic effects on the pressure 
distribution on building adjacent.96 
 
(2) Analytical methods 
  
When we investigate the complex physical phenomena, some assumptions are efficient to simplify the 
problem and derive simplified equations. For example, the design of natural ventilation systems for 
passive cooling is very difficult to predict the natural forces, buoyancy offsets, the prediction of 
ventilation rates, position and size of the openings. However, analytical methods can investigate the 
complex problem by a simplified geometry model, e.g. simple analytical formulas for a volume or a 
zone. A theoretical expression for the stratification interface compares to an ousting model, and a good 
agreement with the experiment measurements can be obtained.  
 
For the multi-volume or –zone, the expression of each zone is combined to another to accomplish 
relatively networked-zone models. A multi-zone model assumes that a building zone has only one 
homogeneous condition with a uniform temperature and pressure. Several zones can be connected with 
other zones with different condition by openings between rooms and/or openings to the outside. The 
multi-zone analysis is the decomposition of the entire model into a so-called “connection model” or 
“graph model” as Fig.3.30 represents. A graph of the zones shows the physical structure with 
connections between zones.  
 

  
a. structural components          b. Room faces            c. Relational objects            d. Room graph  

Figure 3.30. The geometric representation of building zones and the structural component graph [van 

Treeck and Rank 2004].  

 
Several sub-level units (r1,2, f1,2,3, b1,2,3), that define room, wall, roof and floor etc. shown in Fig.3.30 , 
visualize the analysis structures for computer simulation. The topological relations between all faces can 
be derived by the graph of room faces. For example, wall is a unit being outside, inter-zone or inside 
                                                 
95 Flourentzou et al. 1998. 
96 Jozwiak et al. 1995. 
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walls. The room graph represents the geometric property between the indoor and outdoor or in the indoor 
air volumes. The graph model provides simplicity, straightforward solutions that allow the prediction of 
bulk flow through the whole building driven by wind buoyancy or mechanical systems. Most building 
analysis software is based on the multi-zone model.  
 
TRNSYS97 and EP98 are the most famous programs to analyze a complex building energy by breaking 
the problem into a series of smaller components. Each small component is independently analyzed at 
first, gradually couples with other components and forms a large component system. Although the 
software tools solve a parametric equation of mass and energy balance for multi-zone buildings, they 
cannot represent detailed temperature and airflow distributions related to the thermal and aerodynamic 
effects in the complex geometric configuration.  
 
(3) CFD methods  
 
Computational Fluid Dynamics (CFD) method numerically solves a set of partial differential equations 
for the conservation of mass, momentum (i.e. Navier-Stokes) equations, thermal energy, and 
concentrations. Navier and Stokes found the generic form of differential equations in the 19th century 
as a simple variation function derived by a small, or finite, volume of fluid. The variable represents 
predicted quantities such as pressure, velocities in three directions, temperature, concentration and 
turbulence quantities at any point in the 2- and 3 dimensional models. Small modifications, e.g. the 
amount advection into the volume or diffused out from it, can be represented by a variable in the space. 
The method can provide a detail of distributed air temperature, velocity and contaminant concentration 
within individual spaces and turbulence models throughout an entire building.  
 
The main process includes the geometry definition, the grid generation and the numerical simulation. 
The geometric definition sets up the boundary conditions where the problems are located, and the grid 
generation entails the specification of the physical configuration by dividing the boundary conditions 
up into a grid containing of small volume units. The partial differentials between nodes on the grid are 
iteratively solved. Fig.3.31-a shows the grid generation with physical configuration and Fig.3.31-b 
represents a partial differential, i.e. flow, in the grid.  For example, the mass flow rate m between two 
nodes i and j sets up in the grid, and a flow Aij between i and j is derived by different pressures p at the 
nodes. Kij is pressure loss coefficient of the flow between node i and j. The accuracy of result depends 
on the size of the grid. When the sums of total errors for all the variables reach a predetermined and 
acceptable level, the final solution can be obtained. The acceptable level is called “convergence into the 
solution”.  
 
                                                 
97 http://www.trnsys.com. 
98 The US department of energy 2007. 
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ventilation simulation. A multi-zone simulation can offer the initial condition to the CFD simulation. A 
recent interest of the building simulation research is the integration between a CFD method and another 
simple energy simulation method. Zhai (2003) introduced several coupling strategies to integrate a 
CFD method with the EnergyPlus (EP) simulation. Negrao (1995) also studied a CFD simulation 
integrating the building thermal simulation in the EP in order to improve the building energy 
consumption and the indoor air equality. His work especially focused to solve the ambiguity problem of 
the boundary condition in the CFD method using EP. EP interactively gives a feedback of building 
thermal changes to the CFD solver.   There are several reasons that EP is suitable for the integration: 

1. The performance of EP has proven through the long history. The initial prototype was developed by 
Clarke (1977). After that, it has been under constant development until today.99 

2. It was well validated through large scale exercises.100 
3. It has it’s own coupling capability between the energy simulation and CFD for combined building 

and plant systems. External coupling admits the use of user-defined functions to set up a broad 
range of parameters. A comparison between internal and external coupling is available.101  

 
 
Gao and Chen (2003) developed three strategies for the coupling of the CFD and multi-zone model as in 
Table 3.8. The virtual coupling does not mix a CFD simulation with a multi-zone simulation in the 
coupling procedure. This coupling calculates air pressures using the CFD method and then input the 
pressures into a multi-zone simulation tool. In the Quasi-dynamics coupling, CFD applies to the 
simulation of each single zone in a multi-zone network. A CFD analysis makes reliable information 
about the airflow field in a single zone. The accurate analysis of a zone can improve the calculation of 
another single zone. This means that transferring results of a CFD simulation once back to the 
multi-zone model, the multi-zone model simulation re-runs to update the results. This procedure is 
called “ping-pong”. The fully dynamic coupling is an extension of the quasi-dynamic coupling for the 
complete multi-zone. The CFD’s grid is laid on the multi-zone model’s network and substitutes a 
particular zone. The dynamic coupling method requires a mutual feedback called “onion” between the 
multi-zone and CFD simulations.  
 
A combination of a CFD method and multi-zone energy simulation method can provide complementary 
information for energy movements in the building. For a turbulence scheme, a model combining 3D 
flow and 2D energy simulations significantly reduces the complexity and saves the processing time.102  
These works mainly are utilized to improve the result in mechanical ventilation simulation. A 
multi-zone model predicts the average temperature in all zones and overall airflow, while a CFD 

                                                 
99  Djunaedy 2005. 
100 Lomas et al. 1994, Vandaele and Wouters 1994. 
101 Negrao 1995, Beausoleil-Morrison 2000. 
102 Arnfield et al. 1998. 
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balance between wall and room air [Vickery and Karakatsanis 1978, Zhai and Chen 2001]. 

 
For higher porosities, further corrections are possible by the error of the flow coefficients. Fig.3.34 (a) 
compares the predicted and observed coefficients for buildings with 46% porosity with and without 
wing walls.109 The predicted coefficients may include particular errors when the incident angle of the 
wind is skewed to the façade between 0˚, i.e. parallel to opening, and 45˚.  
A multi-zone energy simulation utilizes the energy balance equations110 derived from the analytic 
method of inter zone air and surface heat transfer. The energy balance equation for a room air is 

, _
1

/
N

i c i other heat extraction room P
i

q A Q Q V C T tρ
=

+ − = Δ Δ∑     Eq.22 

where Σqi,cAi is convective heat transfer from enclosed N surfaces to the room air by the convective flux 
qi,c from a surface i, and Ai is the area of total surface. Qheat_extraction and Qother respectively denote the heat 
extraction rate of a room and heat gains from lights, people, appliances and infiltration etc. 
ρVroomCpΔT/Δt is the energy change of room volume Vroom where ρ is the air density, and Cp is air specific 
heat.  The temperature change of room air ΔT can be observed by the sampling time interval Δt, i.e. 
normally one hour. Fig.3.34 (b) illustrates the energy balance on the interior surfaces of wall, ceiling, 
floors, roofs and slabs.  
 

Assuming the uniform and known room air temperature, the interior surface temperature can be 
determined by simultaneously solving the surface heat-balance equation. Inversely, the convective heat 
transfer of the enclosure surfaces determines the cooling and heating loads. A multi-zone simulation 
uses these methods to solve the heat-balance equation or to calculate heating and cooling loads. 
However, the method cannot estimate partial variations caused by a microclimate modification. 
Computational dynamic principles can define partial variations e.g. airflows driven by the temperature 
gradients and/or by the external wind pressures. CFD is a numerical method to solve the equations of 
partial variations.  
 
CFD consists of three main steps: building modeling, definition using 3D grids and numerical solution. 
The modeling of a building includes the arrangement of the various assemblies, geometries, enclosures, 
assignment of materials, the respective thermal properties, sources of radiant and convective heat, solar 
gains, occupancy and air resistances etc. The grid definition splits the building into a number of units for 
analysis. Thus, the size of grid is directly related to the complexity of solution and the size of errors. A 
more complex model requires a larger number of grid arrays and larger computer power.  
 
A combination of the multi-zone energy simulation and the CFD method is used for the energy 

                                                 
109 Vickery and Karakatsanis 1978. 
110 Zhai and Chen 2001. 
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simulation in this study. The multi-zone method predicts the average temperature using Finite Volume 
Method (FVM) that analyzes one node point per a zone. The CFD method refines the single node result 
of FVM at using multi-grids. EP and Fluent111 respectively performs the multi-zone simulation and 
dynamic simulation. A new proposal in this study is the allocation of multi-scale grids for the CFD, a 
coarse scale grid is used for the analysis of large outdoor winds, and fine scale grids with a large number 
of nodes is used to update the result of the coarse scale results. The results of FVM can be easily 
updated by the CFD method with a fine grid since the FVM uses a coarse scale grid for multi-zone 
analysis. 

                                                 
111 http://fluent.com/ 

Fluent Inc. is a company based in Lebanon, New Hampshire that develops software for CFD. 
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4. Microclimate energy simulation 
 

 

4.1. Multi-zone energy simulation 

 

4.1.1. Multi-zone simulation method using EP 

 

Multi-zone energy analysis and Computational Fluid Dynamics (CFD) methods respectively provide 
the complementary information of mean and variance of energy in the building zones. The multi-zone 
analysis method such as EnergyPlus (EP) addresses to calculate the energy performance of building 
zones and building envelops installed for HVAC.112 The results are averaged indoor condition with 
cooling/heating loads, coil loads and energy consumption in a time interval, e.g. from a sub-hour or 
hour, day to a year. However, the EP cannot analyze the microclimate effects in the building. On the 
other hand, CFD tools, such as Fluent software, can analyze the partial differences in air velocity, 
temperature, a relative humidity and contaminant concentration, that may offer some detailed 
prediction of the thermal comfort in building zones. For example, some partial differences are observed 
as dynamics of thermal and energy flows. Hence, a combination of EP and CFD can evaluate the 
average energy consumption and energy gains with a microclimate modification.  
 
EP has many innovative simulation capabilities such as time steps of less than one hour, heat 
valance-based zone simulation multi-zone airflow, thermal comfort and photovoltaic systems. Version 
2.0 has extensive examples of HVAC input files, weather processor, heat/cool option on furnace, air 
loop, high temperature radiant heating/cooling, more operative controls for all radiant modeling, 
desiccant dehumidifier, system sizing, plenum (return and supply), example active Trombe wall input 
template, air cooled condenser, energy meters, low temp radiant heating/cooling, interior surface 
convection, evaporative cooler models, airflow sizing, improved sky model for daylight calculations, 
ability to read multiple interval per hour weather data files, return air heat gain (from lights) 
enhancement calculation, flat plate exhaust air heat recovery.  

                                                 
112 Crawley et al. 2001. 
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       Eq.26 

If a layer is added to the left side of the first layer, the entire right side of the Eq.26 can be multiplied by 
the transmission matrix of the new layer. Conversely, if a layer is added to the right of the second layer, 
the vector containing the Laplace transform of the temperature variations can be replaced by the product 
of the transmission matrix of the new layer and the vector at the next state. The term dealing with the 
heat source is not affected. While Eq.27 is correct for any single or multi-layered elements, the first 
term in the heat source transmission matrix does not appear to match the compactness of the other terms 
in the matrix equation. Hence, for the n-th nodes, the extended series can be bundled by a generalized 
equation which is correct for any single or multi-layered elements as 

( )1 1

1 1

( ) 1 ( ) ( )( )
( ) ( )( ) ( ) ( )

( )
( ) ( )1 ( ) ( )

( ) ( ) ( )

source
n N

D s D s b sd s
q s T sB s B s B s

q s
q s T sA s b s

B s B s B s
+ +

−⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

   Eq.27 

The terms in the heat source transmission matrix may appear to be reversed. It is expected that only the 
layers to the left of the source will affect q1(s), but the presence of b(s) in the element multiplied by 
qsource(s) to obtain q1(s) seems to be contradictory. In fact, the entire term, b(s)/B(s), must be analyzed to 
determine the effect of qsource(s) on q1(s). In essence, the appearance of b(s) removes the effects of the 
layers to the right of the source from B(s) leaving only the influence of the layers to the left of the 
source.118 
 
For a transient solution, the airflow rate between i-th and j-th node can be approximated by the 
conservation assumption of air mass as119  

,
i

j i i
j

dm F F
dt

= +∑                         Eq.28 

where mi is the mass of air in the i-th node, and Fj,i and Fi respectively denote the airflow rate between 
i-th and j-th node and the non-flow process at the i-th node that is generally assumed as a quasi-steady 
initial condition dmi/dt=0.   
 
When multi-zones are set up with the FVM with a number of nodes, a control of the volume-to-volume 
heat transfer from a heat source to a sink is the next issue, since a control is a problematic issue for 
HVAC studies. A setpoint scheme is used to maintain the comfort temperature and the sum of energy 
consumption is calculated. Fig.4.5 illustrates the setpoint temperature scheme for heating and cooling.  

                                                 
118 The US department of energy 2007. 
119 Tan 2005. 
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year.120 
 
Here, three models for a microclimate architectural design are proposed: outdoor model, indoor model 
and microclimate model. These models make it possible to analyze separately the climate condition of 
outdoor and indoor energy performance, and the mutual relationship between the indoor and outdoor 
conditions is estimated by microclimate model. Fig.4.6 illustrates the relationship between the three 
modules. For the simulation of models, each module has a capability that can be sophisticatedly 
modulated and functionally optimized by the CFD method. Additionally, the modules can be mutually 
cooperated between the functions with an energy-saving effect. The energy balance among the models 
is the mediator between thermal condition and microclimate modification. When an architect inputs a 
design, the influences for outdoor and indoor thermal condition are calculated and evaluated for the 
energy-saving. If the design is not adequate to save building energy, the simulation tool shows 
quantitative results such as energy gain or loss.  
 
 

4.2.1. Outdoor model 

 
Outdoor model shows the direct relationship between the atmospheric process and indoor climate 
condition. Although some models of outdoor thermal comfort have studied to approximate the thermal 
condition of the street, field and urban etc. from several climate data, recent methods can simulate 
different scales of atmospheric processes. Outdoor climate models can be classified according to their 
scales that range from kilometers to a few centimeters. Although the general climate can be defined by 
macro scale, this is not suitable to use for architecture design since smaller scale modifications than 
building size occur. Microclimate should be considered to discriminate the microclimate effect in the 
partial architectural design. 
 
Table 4.1. The physical properties that can be analyzed using CFD [Novoselac 2005].  

 
                                                 
120 Hawkes and Forster 2002. 
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In a micro scale, 3D air flows should be analyzed and visualized to obtain information of thermal and 
energy processes. Typically, these processes employ a simplified turbulence scheme. A computer 
simulation with CFD tool numerically solves the thermo- and aerodynamic equations that can be 
represented by a set of partial differences of temperatures, pressures, density and velocity etc. It can 
provide the distribution, balance and concentration of thermal condition in an individual space or 
throughout the entire building. In a building space, air velocity generates an indoor airflow’s Reynolds 
number that is in the transient of turbulent range. 'φ φ φ= +  is the flow property where φ  is the sum of a 
time average and 'φ is a fluctuation in the governing N-S equations. The form of the RANS 
(Reynolds-averaged Navier-Stokes) equations can be obtained by conservation of continuity, 
momentum, energy, concentration shown in Table 4.1. The continuity is the property of being 
continuous between topological spaces form. The mathematical property is obeyed by mathematical 
objects in which all elements are within a neighborhood of nearby points.  The momentum equation 
defines the product of the mass and velocity of an object. Since energy is strictly conserved and is also 
locally conserved, the energy equation in the Table defines the energy transferring from the potential 
energy to kinetic energy and then back to potential energy constantly.  The concentration is the measure 
of how much of a given substance there is mixed with another substance. The equation is very similar to 
the energy equation.   
 
These concerned equations consist of values of pressure p, component velocity ui, where i =1, 2, 3, 
temperature T, and concentration c with air density ρ, air viscosity μ, Prandtl number Pr, Schmidt 
number Sc and specific capacity c. The term ρβ(T0−T)gi is the Boussinesq model for the thermal 
buoyancy effect on momentum where β is the thermal expansion coefficient of air, g is the gravitational 
acceleration, and T0 is the reference temperature. The source terms for energy and concentration are 
respectively denoted by St and S.121 
 
The thermal comfort sensation in outdoor spaces is a factor that significantly influences the house shape 
and the pattern of heating and cooling. In a hot and humid area, an opened house is preferred to increase 
natural ventilation. Actually the heating and cooling designs depend on prevailing climatic conditions 
of the outdoor spaces. The outdoor model is the starting point for architecture designs based on climate 
data and site condition. The model is based on the fundamental laws of thermodynamics and prognoses 
the evolution of airflow, turbulence, temperature, humidity and short- and longwave radiation fluxes.  A 
CFD method is suitable to analyze the model since it provides a well-founded numerical basis for the 
fundamental laws of fluid dynamics and thermodynamics. The advantages of CFD are shown in Table 
4.2. CFD can obtain information of in-stationary, non-hydrostatic, prognoses all exchange processes 
including wind flow turbulence, radiation fluxes and temperature and humidity. It allows a process of 
several time periods from a day, week to year cycle. The high resolution of partial differences allows a 

                                                 
121 Novoselac 2005.   
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4.2.2. Indoor model  
 
The indoor model combines multi-zone energy simulation using EP shown in chapter 4.1 and 
microclimate energy simulation using CFD. The integrated analysis of the different zones can obtain 
the total energy influences of relative temperature and humidity in a building. However, the influence of 
the saturation pressure and the latent heat affect the multi-zone energy simulation. The saturation 
pressure induces the particular flow that affects the ventilations and evaporation in a zone or between 
zones as Fig.4.9 (a) shows. The indoor air flows should be controlled by several architectural design 
elements shown in Table 4.3 (b): courtyard dwelling designs, effects of afforestation, building 
geometry, internal partitioning, opening control and slits, roof opening and stack effect, overhangs and 
projections. 
 
When the sun enters through the windows, the warm air is circulated in the building’s interior space. 
The multi-zone energy simulation technique presents some energy-saving using thermal mass which 
absorbs excess heat during the day and releases the heat at night. Natural ventilation is employed for 
cooling of overheated air. However, a parametric ventilation model in the multi-zone model does not 
calculate the air movement. It solves some equations with parameters and approximates the uniform 
thermal conditions. For instance, FVM calculates the mean temperature of each volume. The problem is 
that a room with a large window allowing direct solar penetration has a partial uncomfortable condition 
in the room. Moreover, partially overheated air occurs by thermodynamic air circulations. A parametric 
model cannot analyze such a non-uniform air condition derived by thermo- and aerodynamic processes. 
Hence, the CFD method should be added to the multi-zone energy simulation.  
 

 
(a) a. Diagram of Non-uniform areas                    b. An example 

 

 
(b) a. Inlet   b. Airflow in a zone  c. Outlet 

Figure 4.9. Thermo- and aerodynamic processes, (a) thermodynamic, (b) airflow by aerodynamic 
microclimate [author]. 
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Table 4.4. The utilization of microclimate modification [author]. 
Effects Applications 

Cooling 
- Maintaining the indoor temperature below that of the outdoor air 
- Decreasing cooling load and improve indoor thermal comfort condition 
- Provision radiative cooling from shade, ventilation control and evaporative cooling 

Heating 
- Maintaining the indoor temperature above that of the outdoor air 
- Avoidance overheating problem 

Dehumidification - Elimination the water content of the ambient air to acceptable levels 

Humidification - Provision the water content to the dry air 

 
Table 4.5. Sub-tools of Fluent software [author]. 

Sub-tools Purpose 

Computational grid 
generation 

- Division of the domain into discrete control volumes 

Discrete dependent 
variables allocation 

- Integration of the governing equations on the individual control volumes 
- Construction of algebraic equations 
- Several discrete dependent variables: Velocities, pressure, temperature and 
conserved scalars 

Linear solutions 
- Linearization of the discretion equations and solution 
- Updated values of the dependent variables 

 
The thermo- and aerodynamic processes explain the exchange rates of momentum, heat sources, 
building zones and the atmosphere. The heat flux rates can be determined by a thermodynamic model. 
The heat flux can be modulated or suppressed by the aerodynamic resistance on a hard surface as Fig. 4.9 
(b) illustrates. The air resistance on a surface regulates the transpiration rate, global radiation, 
temperature, wind speed and pressure. A wall is primarily used for house design to mark boundaries that 
directly modify the air-circulation patterns. This changes the energy consumption because different air 
patterns cause different heat gains and losses. Thus, the analysis of air movement is important to make 
an energy efficient design. The microclimate modification can be used to distribute the overheated air or 
balance the indoor thermal condition. Cooling, heating, dehumidification and humidification effects of 
microclimate modification can be applied to several applications shown in Table 4.4.  
 
A simulation for complex 3D air flow with different air temperatures needs a reliable CFD tool. In this 
study, the Fluent software solving the governing integral equations for mass and momentum, energy, 
species transport, and other scalars such as turbulence is used. Fluent software package offers several 
sub-tools for the different purposes shown in Table 4.5. Any domain can be easily divided into discrete 
control volumes using a computational grid generator. The governing equations on the individual 
control volumes can be integrated to construct algebraic equations for discrete dependent variables such 
as velocities, pressure, temperature and conserved scalars. Linearization of the discretion equations and 
solution of the resultant linear equation system yields updated values of the dependent variables. 
 
The governing equations should be solved sequentially (i.e., segregated from one another) because the  
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Figure 4.11. Multi-scale scheme using macroclimate and microclimate scales [author]. 

 
 
Since the FVM solver in EP program results in a single result per volume, the smoothness assumption 
for several nodes of the volume is applied. In the volume, a grid with many nodes should be set up for 
the CFD solution. The initial condition of CFD is that the nodes of the CFD solver for the volume have 
the same value to the FVM result. Only corrections of EP are calculated by the CFD method.  
 
Let a set of linear equation as 

0realA bφ + =       Eq.29 

be a EP parametric linear equation. 
realφ  is the exact solution i.e. real value.  If we assume that the linear 

approximation is not accurate due to microclimate modifications, there may be a defect d associated with 
thermo-, aerodynamic components.   

A b dφ + =        Eq.30 

A correction ψ  for d should be estimated by a CFD method.  

CFD solution

EP solution
realφ φ ψ+           Eq.31 

Hence, the real combination of EP and CFD can seek the optimal real value as   

( ) 0A bφ ψ+ + =        Eq.32 
Instead of the real combination in Eq.32, a multi-scale analysis in this study uses EP solution A b dφ + =

and CFD update A dψ = − as  
( ) 0A b A d dφ ψ+ + = −                  Eq.33 

The combination will be simulated for energy-saving house design. The simulation strategy of EP-CFD 
coupling is shown in Table 4.7. 
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Table 4.7. Process of EP-CFD coupling [author]. 
Step Simulation strategy Detail 

Step 1 Site selection and 
climate data 
acquisition 

-Choose a local area of S. Korea.  
-The climate data of the area is obtained from Korean Meteorological 
Administration.122  

Step 2 Generalized climate -Approximation of the outdoor climate by the climate data given in Step 1 

Step 3 Indoor EP model -Indoor energy efficiency is estimated by multi-zone analysis using EP in 
the generalized climate. 

Step 4 Outdoor microclimate 
model 

-The thermal and humidity condition are varied by the outdoor microclimate 
effects and topographical gradient.  
-The energy consumption is modified by the evapotranspiration and 
balance process in thermo- and aerodynamic flow.  
-The thermo- and aerodynamic flow is estimated by CFD.  

Step 5 Indoor microclimate 
model 

-Several microclimate factors given in chapter 4.2.2 to support insulating, 
heating and cooling are added and evaluated.  
-The energy efficiency from EP is improved by several design factors using 
flows which are analyzed by CFD.  
-The factors support the indoor multi-zone simulation to improve the indoor 
thermal balance which takes a role as a Passive House design.  

Step 6 Evaluation of 
energy-saving effects 

-The economical cost and total energy are evaluated by comparison 
between the microclimate model and EP model. 

 
 

4.4. Graph modeling for real house analysis 

 

This chapter represents the graphs modeling of EP-CFD method for energy simulation shown in the 
previous chapters. An energy simulation with CFD is normally too complex to use for planning of a real 
house because a building has a lot of design elements, e.g. windows, walls, floors, doors and air 
leakages etc., related to airflows, and CFD uses all connections of complex design elements. A real 
house with several design elements shown in Fig.4.12 (a)-a needs a lot of information extracted from a 
building description to calculate airflows. Airflows can be modified by size, orientation and location of 
building surfaces which contain slits and openings. 3 zones are set up to simplify from real and complex 
airflows to a simple networked model such as airflow network shown in Fig.4.12 (a)-b. The airflow 
network model solves equations with building’s physical parameters which are modified by building 
design elements and predicts air pressures and temperature. 
  
The airflow network model is defined in a set of functions in EP called AirflowNetwork and the 
functions use wind pressure coefficients to simulate multi-zone airflows driven by natural wind and air 
distribution system. Heat and moisture gains or losses and distribution also can be calculated by the 
functions. Fig.4.12 (b) represents a set of the AirflowNetwork functions to simulate the model shown in  
                                                 
122 http://www.kma.go.kr. 
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5. Microclimate design methods in S. 
Korea: Simulation results using unit 
EP-CFD 

 
 
 
 
Energy simulation using EnergyPlus (EP) and Computational Fluid Dynamics (CFD) is applied to the 
cases shown in Table 5.1. The graph modeling described in the previous chapter is used for unit design. 
While EP calculates the air temperature of each zone, thermo- and aerodynamics among adjacent zones 
can be calculated by EP-CFD. In this study, Fluent software125 is employed for the CFD simulation. A 
combination of some design elements of Korean traditional, passive and climate architecture which are 
expected to be efficient for heating and cooling are tested by EP-CFD simulation and classified into 4 
cases. The 1st case is a combination of elements which are efficient for passive cooling, and the 2nd 
case includes all passive heating elements. Case 1 and 2 respectively includes design elements which 
are generally considered to improve the heating and cooling efficiency. Although a lot of different 
studies were surveyed and described in previous chapters, few studies considered the best combination 
since it is very difficult to counterbalance cooling and heating efficiencies. Some design elements can 
increase heating gain but decrease the efficiency for cooling gain and some other elements vice versa. In 
this study, cases of heating and cooling gains are separated firstly and the full combination of all cases is 
tested for the counterbalance. Case 3 is the full combination of all tested elements in case 1 and 2. 
Considering heating and cooling gains for heating and cooling efficient cases and full combinations, the 
best combination of the energy efficient design elements is chosen. The 4th case is the best combination 
which counterbalances heating and cooling efficiency.  
 
For the 1st and 2nd cases, some good building elements for thermo- and aerodynamics are chosen by 
the Passive House standard. Thermo- and aerodynamics can be utilized to make effective ventilation 
ratio in passive cooling and to avoid overheating in passive heating etc.  

                                                 
125 The Fluent simulation has been carried out in cooperationwith Prof. Dr.-Ing. P.U. Thamsen of the Fluidsystemdynamik 

Institut (SDI), TU-Berlin. License information: Fluent, Inc. license file for TU Berlin__9482_ren2006, License 
268961540 created 11-jun-2007 by al, Windows NEW or Renewed Floating/Network License, SERVER 
130.149.13.193 000102142b52 7241. 
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Table 5.1. List of Elements in classified microclimate design methods for energy-saving houses [author].

 
 
 
(1) Maximum cooling efficiency can be obtained when air flows through the zone are continuous 
through the geometry without a discontinuity on the streamline. Only continuous streamlines of airflow  
through a house can bring about a strong microclimate effect because air movement through a house, 
which occurs through partial pressure differences, distributes indoor air temperature and humidity. 
Hence, it is most important to set up building geometry which has a smooth and continuous streamlines 
through the house. Near the windows, doors, and openings, aerodynamics occur due to differences in 
wind pressures and cause ventilation effects. Airflow can be mixed with thermodynamic effects such as 
thermal buoyancy, stack effects due to the thermal distribution in the house.  
 
(2) Maximum heating efficiency can be obtained by a high performance Passive House design. 
However, overheating and imbalanced problems in the house should be avoided. The thermodynamics  
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of heat transfer is sufficient to solve these problems. Heat transfer always occurs from a warmer area to 
a cold one and can never stop.126  If thermal energy is transferred from an overheated area to a cold area, 
the areas reach thermal equilibrium. Thermal buoyancy, stack effects and solar chimney spreads the 
heat from overheated zones to cold zones and results in thermal balance. The thermal condition in 
thermally balanced rooms is easy to maintain and saves heating energy during cold nights. The 
simulation results with several design elements will be described in the following chapters. 
 
 
 
 
                                                 
126 Note that it can be slowed down. 
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5.1. Arrangement 
 
 

5.1.1. Microclimate of building orientation: the highest heating gain and small 

indoor airflow 
 
Above all, building orientation can play a significant role in determining the solar gains received. If a 
house is oriented to 45˚, facing east or west will be more susceptible to receiving adverse low altitude of 
sunlight in the morning and evening. The building zones are heated from early on the day and the 
overheated air of these zones within the building is maintained during the day. Fig.5.1 (a) represents the 
overheated temperature in the zone using CFD simulation. The maximum temperature of the air is 
estimated at 34.7822℃ and the value is much higher than for human comfort.  
 
Hence, the strong passive cooling through airflow is needed to discharge the overheated air. The 
overheated air in the zone cannot be ventilated due to the small microclimate. As mentioned in Chapter 
3.4.2, the opening control should be designed to drive the movement of the air more quickly and the 
perpendicular of the wind direction has the best efficiency to develop a large amount of air pressure. 
However, the amount of air through the window of a 45˚ oriented house is too small since the wall of the 
building set to a south easterly wind direction and flow over the exterior. Fig.5.1 (b) represents the form 
and the magnitude of airflow and the horizontal-vertical plots of the 3D CFD result. 
 

   
(a)   a. Temperature map               b. Aerodynamic flow plot 

 

  
(b)   a. Vertical plot                b. Horizontal plot 

Figure 5.1.  Result of orientation of the CFD, (a) 2D plot, (b) 3D plot [author]. 
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The minimum temperature 24.5918℃ is found in part of the wall but the average temperature is 
29.942℃. It is lower than 30℃ of the single EP simulation result but a very small cooling gain from 
microclimate can be expected. In general practice, air temperatures in the region of 23 to 25℃ are 
regarded as being acceptable as a comfort zone in summer and 20 to 22℃ in winter. This form does not 
have a good microclimate cooling effect in the design but it may be utilized when the zone needs no 
flow and still air. One solution for the oriented building is minimizing glazing on the east-west façades 
or providing solar shading of the south to avoid solar penetration. Fig.5.3-a shows the comparison of 
temperature between the zone to the southeast and to the south. 

 
 

5.1.2. Microclimate on topography: large microclimate cooling effect with high 

air pressure 

 
Building on topography has a strong microclimate effect since by day the air above the slopes can be 
more easily heated than the lower area. Hence, strong anabatic airflow which was described in Chapter 
3.2.3 is accompanied by strong air pressure due to the difference of air temperature. The building 
located higher on the hill side obtains a large amount of strong wind and the aerodynamic effect of 
microclimate enhances the performance of passive ventilation cooling. Fig.5.2-a illustrates the 
difference in thermal conditions between the higher and lower slopes. The building ventilation near the 
window in the thermal color map can be represented in comparison with the air temperature above the 
overheated ground. 
 

    
                    a. Thermal map                  b. 3D flow plot of aerodynamic 

Figure 5.2. Result of building in topography [author]. 

 
The maximum temperature of the air is calculated by the CFD method and the quantity value in the 
maximum temperature is 37.525℃ above the hill side. On the other side, the lowest temperature value 
is 20.4619℃ and the difference between maximum and minimum is 17.0631℃ which is much larger 
than the difference for flat land.  The flow plot from the strong aerodynamic in Fig.5.2-b shows the 
small eddy current in the zone, which adapts the indoor air temperature to the outdoor quickly. The 
average temperature in the zone on topography is 26.6817℃ and the microclimate cooling effect can be 
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even when the building is orientated in any direction. Fig.5.5 (a)-a illustrates the air velocity of outdoors 
and courtyard. When the outdoor air velocity is over 4m s-1, the aerodynamic velocity is 0m s-1 or very 
small. Hence, the microclimate gain in the courtyard is more related to the thermodynamic effect. The 
temperature difference between hot outdoors and cool courtyard forms a circulation vortex in the 
courtyard. Fig.5.5 (a)-b shows the microclimate air circulation due to the thermal difference between 
house and courtyard. 
 
By day, the courtyard is cooler than the house which heats up as a result of solar radiation, and the down 
flow air raises the air density. The dense cool air moves through the building through the courtyard 
 
 

    
(a)        a.Horizontal airflow plots     b. Vertical airflow plots 

 

   
(b)        a. 3D airflow plot           b. 2D airflow plot  

Figure 5.5. Result of courtyard cooling between house and courtyard, (a) air velocity and the 
microclimate air circulation, (b) thermodynamic air circulation [author]. 

 
openings. The wall of the house gets cool by night and the courtyard is then warmer than the house. 
Hence, the warm air in the courtyard rises and the pressure in the courtyard decreases. The air from 
outside at night comes through the house by cross-ventilation and the warmer air is evaporated in the 
courtyard. The night ventilation caused as a result of the courtyard is represented by the 2-D airflow plot 
shown in Fig.5.5 (b)-b. Fig.5.6 (a) shows the air temperatures of courtyard, indoor and outdoor by day 
and night. 
 
However, in the hot and humid Korean climate, the courtyard cooling is only partially effective in the 
building and the total cooling efficiency is not high as Fig.5.6 (a) represents. The average indoor 
temperature is 26.324℃ by day and 26.147 ℃ by night. However, the microclimate airflow produced 
by the thermal imbalance can always make indoor airflows and this feature can be utilized for designs 
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5.2. Form 

 
 

5.2.1. Microclimate in roof shapes: strong shading and control of wind stream 

direction 
 
The architect or designer typically designs the general shape of the roof in the preliminary design stage. 
As described in chapter 3.4.3, design of roof shapes is related to the both shading and wind streamline. 
The flat roof is a very common style in areas with little rain or snow to provide a platform for heating 
and other mechanical equipment. The flat roof can eliminate the ceiling joists. However, it is difficult to 
design a passive cooling system through the roof since when air is heated it becomes less dense and 
rises. The air movement through the zone generates local areas with high and low pressures. If a space 
has high air outlets in conjunction with low inlets, ventilation occurs as the air within the space is heated 
and the greater the vertical distance between the outlet and inlet, the greater the ventilation rate that can 
be obtained.   
 
The gable roof shown in Fig.5.8 is one of the most common type of roof in residential construction and 
uses two slanted roofs that meet to form a ridge between the support walls. The gable roof can offer the 
largest ceiling space and roof outlets near the ridge are sufficient to derive a stack effect in which the 
wind from outdoors is heated and naturally moved into the roof outlets. The positive air pressure in the 
 

  
a. Horizontal plot          b. Vertical plot 

 

  
c. Thermal map           d. 3D streamline plot of pressure 

Figure 5.8. Result of gable roof with shading overhang and roof ventilation [author]. 
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human comfort in summer. While the roof is overheated by solar radiation, the living zone can maintain 
the cool air temperature in the walls, using the shading effect and the microclimate aerodynamic 
cooling, resulting in strong ventilation effects. The minimum temperature 15.592℃ is formed in the 
floor and the average air temperature is 25.168℃. The 3D plot of the airflow is represented in Fig.5.8-a 
and b. The differences in cooling efficiency achieved by the design forms can be compared with the flat 
form shown in Fig.5.2. A temperature comparison between flat and gable roof is shown in Fig.5.10 (a). 
 
 

5.2.2. Microclimate of curved roof: minimum wind resistance and small eddy 
current 

 
The roof design in cold winter is an important factor to control energy flow. The Korean winter airflow 
blowing from Siberia is very strong and cold. In this condition, the wind resistance of the roof affects 
the pattern of air currents around the zone. In the colder regions, most residential roofs have a steep 
slope due to the large amount of snow. However, the Korean winter is not humid but dry and the amount 
of snow is not great. Hence, the consideration of airflow for roof design is more important. 
 
The most common design of roofs in Korea is the gable roof as Fig.5.9 (a)-a shows. By computer 
simulation, the gable roof form generates a large eddy current due to unstable pressure around the house. 
When a high wind blows, the positive pressure from the side and below and the negative pressure from 
above generate the uplift air pressure. The airflow accompanying the high wind resistance created by 
the roof eddies around the exterior of the house. The shape and slope of the roof deck and the edge 
configuration also involves similar high pressure effects. Strong local wind effects with the eddy 
current due to the pressure are difficult to control. 
 
A design form is investigated in this chapter to minimize the eddy current by controlling the energy 
flow. A curved roof using the streamline shape shown in Fig.5.9 (a)-b does not disturb the flow over the 
model and eliminates or reduces wall effects on the house. The streamline shape allows the wind to 
decelerate gradually along the back part of the building. This helps prevent the boundary layer from 
separating, and thus produces much less pressure drag. Hence, the streamline plot of the curved roof 
represents the very smooth airflow lines passing the house with such a roof shape. By comparing 
between 5.9 (a)-a and b, the magnitude of total pressure around a house using the curved roof is much 
smaller than one using a gable roof. A large amount of cold wind quickly passes over the roof surface 
and the flow path continues naturally without producing an eddy as Fig.5.9 (b) shows. The stable 
airflow over the house helps to avoid a loss of heat from interior sources through the wall. In the results, 
the energy losses decrease and about 9% additional energy gain can be obtained. Fig.5.9 (b)-b shows the 
thermal plot of the zone and the average temperature of the zone is 16.574℃. The comparison of  the 
average temperature of indoor and exterior between gable roof and curved roof is shown in Fig.5.10 (b). 
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5.2.3. Microclimate in fence design: deriving small wind and airflow on the site 
 
Air movement within an environment is required to get rid of discomfort through heat and humidity and 
to provide fresh air to the space. In the site condition, occupants do not need strong wind for human 
comfort. A strong wind reduces the sensible heat and humidity due to higher evaporative cooling on the 
skin. However, the extremely strong airflow cannot be endured due to the wind discomfort. The general 
design specifications for air movement are that the air speed should not be above 1.5 m s-1 around the 
body. 
 
For that reason, a long history of utilizing windbreaks including natural trees and artificial fences are 
used for preventing wind damage, increasing productivity, and improving the quality of the living 
environment. Fence design using walls and huge plants can be used to protect against wind and direct 
hot air. Layered spaces in the Korean traditional house usually use the design of low walls as a form of 
organic space with a cell structure divided by the walls.  
 
 
 
 

  
(a)   a. Velocity magnitude                b. Vertical plane cut of airflow field 
 

             
(b)     a. A part of the house                b. Aerial view of real site 
Figure 5.11. Result of fence design in Korean house, (a) 3D streamline plot of airflow, (b) the present 

state of Mr. Jung’s house [author]. 
 
Fig.5.11 (a)-a represents the streamline of wind control using the fence design. This simulation uses 
low fences which are generally constructed in Korean traditional architecture designs. The distribution 
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of the velocity magnitude is decreased by the walls and the small windbreaks in the fence. An effective 
barrier design for windbreak is perpendicular to the wind but the streamline through the site should not 
be blocked by the design. Hence, the continuous path of the airflow should be considered in the design 
stage. For the simulation purpose, the fence form is employed from “Mr. Jung’s house” which is located 
in Hamyang, Kyungsangnamdo, S. Korea. Fig.5.11 (b) shows a picture of the site and the aerial view of 
the real site condition. The simulation model is simplified to the single house using the real fence form. 
In the simulation result, the average wind speed through the site is 2.823m s-1 but the speed on the site 
surrounded by the wall is decreased to the 0.920m s-1. The percentage of the total decrease in speed is 
67.4%. 
 
In Fig.5.12 (a)-b, the temperature and flow shape are visualized by a horizontal plane cut of the flow 
field. The windbreaks are placed at various distances from the buildings and walls, and different effects 
exerted by the building and windbreak can be shown in the flow shape. If the distance was less than 4 
times of the fence’s height, the standing vortex in front of the building is dominated by the lower part of 
the flow field and there is no difference between porous windbreaks with afforestation and solid wall. 
 

 

5.2.4. Microclimate of windbreaks: cold wind protection in winter 

 
The direct wind blocking called wind shelter is the most efficient concept using microclimate in winter. 
Wind shelter can be provided by several design methods using other buildings, wall, natural 
afforestation or artificial windbreaks. However, the purpose of wind shelter is not only against wind 
velocity producing extra wind-chill but also driving rain and snow. 

 

    
(a)     a. Temperature plot   b. Flow plot with total pressure 
 

     
 (b)      a. Flow plot with total pressure     b. 3D streamline plot 

Figure 5.12. Cold wind protection, (a) using wall and projection, (b) using trees [author]. 
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temperature outdoors is 29.211℃, the minimum temperature 12.426℃ is reached in part of the floor as 
Fig.5.14 (a)-b shows and the average air temperature in the zone is 22.17℃. It shows that the design is 
suitable for cooling in the hot and humid Korean summer. For cross-ventilation performance, Fig.5.14 
(b) compares the difference of wind pressure distribution between building over pilotis and low- set 
building with varying degrees of porosities. At higher porosities, the flow through the building modifies 
the external pressures and airflow rates obtained from the pressure coefficients. A building on pilotis 
has a larger pressure coefficients and results in a better microclimate cooling effect since higher 
porosities are desirable for ventilation purposes in a warm and humid climate.  

 
One of the most important issues for passive architectural design is the internal environmental comfort 
and a target for the room temperature of the building is to range between 20℃ and 23℃ in summer. To 
adopt a design for comfort would be difficult since excessive mechanical ventilation should be avoided 
or at least minimized in the design. Designs considering natural ventilation performance have generally 
been employed without airflow simulation or microclimate consideration. Wrong design achieves only 
small effects since the natural ventilation problem is strongly related to the microclimate pressure as 
Chapter 3.4.1 and 3.4.2 introduced. If the pressure difference between outdoor and indoor is zero or too 
small, air movement cannot occur. Hence, a single opening is not efficient for natural ventilation since 
air pressure differences through the window is very small even when the temperature difference exists. 
To obtain a better ventilation rate with cross-ventilation, window openings in opposite walls are 
efficient. However, only few results from researches for cross-ventilation performance of window 
shape and position exist. Fig.5.15 compares the thermal condition between ventilation using pilotis and 
cross-ventilation of low-set building.  The building with pilotis can easily get a more cooling effect than 
cross-ventilation. However, the difference in maximum and average temperatures is not so big, i.e. 1℃ 
to 2℃. The building with piloties is not usual in normal house design on a flat site due to the high cost. 
The cross ventilation is a cost effective method although it needs more efforts for placing two opposite 
windows. The building with pilotis can be applied to sloping topography efficiently. 

 
 

 
Figure 5.15. Comparison of thermal condition with cooling gain between ventilation using pilotis and 

cross-ventilation of low-set building [author]. 
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5.2.6. Microclimate of heat diffusion: Indoor airflow for heat recovery 

 
Heat diffusion is one of the microclimate effects to balance the thermal condition. If part of a mass is 
heated, the heat transfers to another cool part. Diffusion equilibrium is reached when the concentrations 
of the diffusing substance in the two compartments become equal. Heat recovery is an efficient concept 
to utilize heating imbalance which often occurs in passive heating and cooling design.  
For example, if a room has a window which is getting the sun, the area in the sunshine is heated by solar 
radiation but the other area is relatively cooler than the heated area. In the afternoon, the region can be 
overheated. A lot of passive solar design, shading is a very important solution for the case but the heat 
diffusion from the overheated region which moves a part of the heat to the cold region can be a better 
solution.  
 

 

 
Figure 5.16. Thermodynamic heat diffusion process using isothermal particle tracking [author]. 

 
The heat recovery method is a process to transfer the heat energy in the air of an overheated zone to the 
supply air for the other zone. A combination of indoor ventilation designs can be applied to transfer heat. 
However, the natural ventilation concept is more complex to approximate the thermal condition of the 
zones. Microclimate simulations like the EP-CFD method enable the design of heat balance between 
the zones. Fig.5.16 shows a tracking of air particles of isothermal condition which diffuse from the air 
of heated source to the air of non-heated space. There are  some problems in visualizing the simulation 
result. The thermodynamic flow in the zone cannot visualize the aerodynamic simultaneously since the 
magnitude of the thermodynamic is much smaller than the outdoor aerodynamic airflow. Fig.5.17 (a)-a 
shows the situation. Large needle flows are shown outside of the zone and no needle flows in the zone. 
In this case, the distribution of the temperature shown in Fig.5.17 (a)-b can be utilized in visualizing the 
thermodynamic.  
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A good application is attached to sun-space design where the outdoor air is preheated and overheated in 
the space and the warmer air enters into the occupied zones in a building. Another application is the 
aniso-thermal condition of the zones. Neighboring two zones shown in Fig.5.17 (b)-a have different 
passive heating zones. The left zone does not have a window and cannot directly heat, and the right zone 
is getting large radiative heats by a large window. Fig.5.17 (b)-b shows the 3D model of the zone set-up. 
To observe the thermodynamic microclimate effect, the environmental condition should not derive 
aerodynamic flows. By setting of no airflow, and the  zones should be fully insulated by the material. 
The simulation result shows the heat transfer from the overheated right zone to the non-heated left zone. 
Although the direct heating gain of the left zone is zero, the thermodynamic heat gain can sufficiently 
recover the indoor temperature over 25℃.  
 
This feature can be utilized for heat recovery. If one zone cannot have any passive heating design, the 
consideration of microclimate air circulation, i.e. note that similar to zone-to-zone ventilation, is useful  
 
 

    
(a)       a. Needle map of airflow       b. Distribution map of temperature 
 
 

   
(b)        a. Heat balancing            b. 3D model of zone set-up 

Figure 5.17. Difficulty in visualizing thermo- and aerodynamic simultaneously, (a) simple zone, (b) 
two different heating zones [author]. 

 
for passive heating design. During a cold winter night, when the temperature of the zone decreases, the 
circulation of the air enables the maintenance of the thermal condition by transferring heat from the 
neighboring zone. 
 
Therefore, it shows that adequate indoor e.g. zone-to-zone natural ventilation designs can supply and 
maintain thermal comfort. Fig.5.18 represents the temperature with 5 hours passive heating by day and 
heat distribution by night. The temperature of the right zone quickly rises from the initial temperature 
10℃ to 40℃. The left zone similarly obtains the heat from the right zone and the temperature rises to 
30℃. By night, the right zone loses heat by the heat balancing to the left zone. The left zone can  
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(a)  a. Total pressure           b. Velocity magnitude 

 

      
(b)  a. Total pressure           b. Velocity magnitude 
 

       
(c)   a. Uniform window shape     b. Non-uniform window shape 

Figure 5.19. Airflow pattern in cross-ventilation, (a) uniform window shape, (b) non-uniform window 
shape, (C) 3D streamline plot of airflow [author]. 

 
 
induce the large amount of wind with large pressure, indoor air has regularly distributed pressure and 
the magnitude is smaller than the uniform window case because the outlet quickly emits the indoor air.  
 
Near the window, very fast airflow occurs but the density of the indoor air is low since the density of the 
air is proportional to the ventilation rate. The comparison of pressure and velocity between uniform 
window and non-uniform window is represented in Fig.5.20 (a). 
 
Two window openings at different heights using different window sizes form the vertical difference of 
pressure and the pressure difference result in indoor airflow distributed evenly. Air density is larger by 
inward flow through the larger window at the low level, rising air occurs. Hence, the streamline of 
cross-ventilation is low at the inlet and high at the outlet as Fig.5.19 (b)-b shows. The advantage is that 
the path of the streamlines is shorter than one for Fig.5.19 (a)-b and the indoor air can be exchanged 
quicker by the cross-ventilation with non-uniform window shape. As chapter 3.4.2 described, when the 
rooms with a wind shadow with vortex after inflow, the part of inflow is worse on distribution of air 
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Fig.5.21 represents the wind stream of the window opening with a medium height and large width. The 
aerodynamic in vertical plot shown in Fig.5.21-a exemplifies the smaller effect than the aerodynamic in 
horizontal plot. The horizontal plot shows the increased air velocity but a narrowed air-streamline since 
the air pressure is bigger when the height of the window is smaller. The amount of air density is 
sufficient to obtain the indoor ventilation effect. The configuration of the window opening modifies the 
internal airflow speeds since the horizontally and vertically shaped inlet openings yield different shapes 
of air motions. Horizontally shaped inlets provide much higher internal air speeds than square or 
vertical inlets as Fig.5.22-b shows. By comparing the average air velocities, the horizontal shape has 
70% to 130% larger velocity than the squared and vertical shapes and the highest air velocities are 
similar in the percentage gain of velocity for the horizontal shape.  
 
The cooling gain of horizontal shape is about -3 and -1.85℃ more than the vertical and squared shapes 
respectively. For the indoor condition with a horizontally shape window, the maximum temperature 
36.172℃ is formed in the wall near inlet due to the radiative gain and the minimum and the average 
indoor temperature are 20.3281 and 26.4127℃. Fig.5.22 respectively shows the comparison of 
temperatures and pressures between square, horizontal and vertical shaped windows. Fig.5.21-c 
represents the thermal streamline of a horizontal shape window that exemplifies that the horizontal 
shape front window and door at the back can be efficiently utilized for a cross-ventilation. The optimal 
glazing ratio of a horizontal shape window which is the same as the width of the wall is about 35% and 
the window has the best cooling gain in summer and passive heating gain in winter. . 
 
 

5.3.3. Microclimate of building projection: enhancing microclimate pressure and 
protecting direct solar gain 

 
In the previous chapter, for a building without projection, opening sizes and the shapes were important 
factors that determine the airflow. However, the opening design is often dependent upon the wind and 
solar direction and the microclimate effect is largely related to them. Hence, air density control to get 
more pressure difference is needed. Air pressure is produced when the difference of local density is 
distributed due to the amount of air input to the space. Hence, the horizontal and vertical projections e.g. 
external wing-walls, partitions and fins etc. affect the amount of air pressure and internal airflow rates 
by prevailing wind. Fig.5.23 (a) represents that external projections act as a wind-catcher which raises 
the internal ventilation rate for skewed and perpendicular winds due to the pressure difference near the 
projection.  
 
The airflow through the window raises the velocity of indoor flow since the projection increases the 
amount of the wind streams entering the inside. Another advantage of the horizontal projection is 
efficiency to protect from direct solar radiation and hot wind from the room. The shade of inlet opening 
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6. Application of microclimate 
simulation to a real-house design 
 
 

6.1. A real-house in a suburb of Seoul, S. Korea 

 
Although a lot of studies for energy simulation have been done by researchers of physics, climatology 
and architecture, they did not try to apply their method to a real house design. Single EP simulation 
cannot obtain the detail of energy flow in the design and single CFD simulation is too complex to make 
the problem to converge into the real solution in the whole house design. In this study, the problem can 
be overcome by the EP-CFD method and the microclimate analysis drew several efficient design factors 
for energy-saving in chapter 5. The factors are applied to estimate energy gain in real designs. The 
application of these factors in real house models is important to prove energy performance in real house 
design. Note that the purpose of this chapter is not to analyze house designs, but to test the energy 
efficiency of the microclimate factors in these designs. 
 
Pine Tree House which is the 6th design of Min-Maru series127 by GAWA Design Group128 is located in 
the highest area in the Min-Maru house complex. The main feature of the house is two masses with 
different kinds of space and the topography preservation by pilotis. Pile foundations with treated 
timbers are used to float the living room and the kitchen on the slope of the mountain and the room 
space forms a skip floor over the topography. The skip-up-floors form separated spaces for different 
uses as guest room, living room and bedroom by the building levels. The house has the size of 
12600×14700×7600 and two stories. Fig.6.1 shows the layouts and pictures of the house.  
 
The motive of the choice of Pine Tree House is  

- This house has several topographical features to be able to observe microclimate effects. 
- This house has high capacity to control several microclimate effects. 
- This house employs several Korean traditional designs e.g. Maru (Korean wooden floor), 

Jungja (Korean pavilion) and Ondol (a Korean floor heater) etc. which is attractive to the 
Korean people. 

                                                 
127 A&C Publishing 2004. 
128 GAWA Design Group, http://www.kawadesign.co.kr.  
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(a)        a. 1st floor plan          b. 2nd floor plan        c. Section 
 

 
(b)       a. On a slope  b. Panorama                     c. Court to the north              d. Living room  

Figure 6.1. Pine Tree House by S.Y. Choi, (a) drawings, (b) views [author]. 
 
Some limitation of this test in the real house model is that the actual measurement of microclimate was 
not available and the microclimate factors are estimated by computer simulation based on macro 
climate and the house design data. Thus, the test result may be not exactly equal to the real energy 
consumption however it is not exceed the allowable margin of error. 
 
By interview with the architect and residents, this house maintains the temperature of 18℃ to 20℃. The 
main heating of this house is floor heating using boiler and water coil and an assistance of heating of a 
fireplace is used. The energy consumption including hot water is approximated as a total of 1,000,000 
Won for oil, and 300,000 Won for electric charges including lighting. This house is sufficiently cool in 
summer due to the careful design and this house does not use electrical air conditioning and cooling. 
The architects and occupants suppose that employing some traditional house designs in the modern 
house designs may be helpful to obtain such results.  
 
The main construction using concrete with reinforcing rod and lightweight woods are represented in 
Table 6.1. The zones in the house are set up with microclimate design elements, geometrical features 
and materials. Fig.6.2-a and b represent the CAD model of the zones which are classified with layers 
and a plane cut of the CAD model. The sun-path diagram shown in Fig.6.2-c is used to estimate the 
solar and shadow range for EP energy simulation. The CAD model is converted to a 3D solid model 
since the CAD model with 2-D meshes cannot be directly used for CFD simulation. Fig.6.2-d shows the  
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Fig.6.5 shows the difference of heating and cooling loads between Korea and Germany. Although 
Korea has similar solar radiation gain, cooling load in summer is higher due to the higher air 
temperature and humidity and heating load in winter is due to the lower air temperature and humidity.  
This means that a house in Korea needs more cooling and heating energy than one in Germany.  
 
In East Asia, interactions between the rapidly mixing atmosphere and the slowly changing oceans are 
largely responsible for the monsoon season, particularly as they affect Korea, China and Japan. 
Geographically, Korea is a transitional zone between the continental landmass of northeast Asia and the 
island arc rimming the western Pacific Ocean. The western coast, which is open to continental Asia, is 
vulnerable to the influence of the winter continental climate. The eastern coast, on the other hand, is 
sheltered from the winter monsoon by the Taebaek-range, the backbone mountain of the eastern Korean 
Peninsula. Although Korea has the general characteristics of a temperate monsoon climate, there is 
geographic diversity, particularly during the cold winter season.   
 
The climate of Korea is characterized by four distinct seasons i.e. spring, summer, autumn and winter. 
The contrast between winter and summer is striking. Winter is bitterly cold and influenced primarily by 
the Siberian air mass while summer is hot and humid due to the maritime pacific high. The transitional 
seasons of spring and autumn are sunny and generally dry. 
 
Spring begins during the middle of April in the central part of the country, and toward the end of April 
in the northern region. As the Siberian high pressure weakens, the temperature rises gradually. Yellow 
sand dust which originates in the Mongolian desert occasionally invades Korea during early spring. The 
sandy dust phenomena often causes low visibility and eye irritation.  
 
The summer can be divided into two periods; a rainy period which occurs during the early summer 
months, a hot and humid period which occurs during late summer. The weather during the rainy period 
is characterized by a marked concentration of rainfalls. More than 60% of the annual precipitation is 
concentrated between June and July. In particular, July sees many rainy days which are followed by 
short dry spells and clear skies. Much of the rainfall is due to summer monsoons which originate in the 
Pacific Ocean. Rainfall during the summer time is characterized by heavy showers. Daily precipitation 
often exceeds 200mm, with extremes topping 300mm. Occasional torrential storms caused by typhoons 
that pass through the peninsula from China may sometimes cause a great deal of damage, although the 
loss of life is rare in these instances. Annually, about 28 typhoons occur in the western Pacific. Regional 
temperature contrasts are not striking during the summer season although the northern interior and the 
littoral are cooler than temperature in the south. In August, the temperature rises abruptly as the rainy 
season. During this period, the weather is extremely hot and humid, particularly in the western plains 
and the southern basin area. The daily high temperature often rises to over 38℃. Nights are also hot and 
humid.   
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Autumn is the season with crisp weather, much sunlight and changing autumn leaves. This is the 
transitional season between the hot and humid summer and the cold and dry winter months. Beginning 
in October, the continental air mass brings dry, clear weather. Traditionally, Koreans enjoy the season 
of harvest, which is one of the most important national holidays in Korea. It is celebrated as a harvest 
festival, and occasionally referred to as the Korean version of the American Thanksgiving. Autumn 
weather is nicely, expressed in the simple words of the old Korean saying “The sky is high and the 
horses get fat”.   
 
In winter, the monsoonal arctic air from the interior of the Asian continent brings bitter cold and dry 
weather and occasionally snowfall, adding warmth to the cold and dry winter weather periodically. 
Significant regional climate variations are caused by differences in elevation and proximity to the seas 
as well as by differences in latitudinal location. Regional difference in the monthly mean temperature 
during the month of January between the northern and the southern peninsula is about 26℃. Snow 
remains longer on the ground in the north. The frost-free period varies from about 130 days in the 
northern interior to about 180 days in the central region. In the southern coast, the frost-free period is 
roughly 225 days of the year. 
 
Temperatures in Seoul are similar to those in New York City which is located 500km farther north than 
the latitude of Seoul. Fig.6.6-a shows the outdoor dry-bulb temperature over 1 year of S. Korea. The 
variation of annual mean temperature ranges 10℃ to 16℃ except for the mountainous areas. August is 
the hottest month with the mean temperature ranging 23℃ to 33℃. January is the coldest month with 
the mean temperature ranging -5℃ to 5℃. Annual precipitation is about 1,500mm in the central region. 
More than a half of the total rainfall amount is concentrated in summer, while precipitation of winter is 
less than 10% of the total precipitation. The prevailing winds are southeasterly in summer, and 
northwesterly in winter. The winds are stronger in winter, from December to February, than those of 
any other season as the wind speeds graph in Fig.6.6-c shows. The land-sea breeze becomes dominant 
with weakened monsoon wind in the transitional months of September and October.  
 
The relative humidity shown in Fig.6.6-d is highest in July at 80% to 90% nationwide, and is lowest in 
January and April at 30% to 50%. It has a moderate value of about 70% in September and October. The 
monsoon front approaches the Korean Peninsula from the south in late June, migrating gradually to the 
north. Significant rainfall occurs when a stationary front lies over the Korean Peninsula. The rainy 
season over Korea continues for a month from late June until late July. A short period of rainfall comes 
in early September when the monsoon front retreats back from the north. This rain occurs over a period 
of 30 days to 40 days in June through July at all points of S. Korea, with only some lag in time at 
different stations, and accounts for more than 50% of the annual precipitation at most stations. The 
rainy season can be estimated by the direct and diffusion solar gain over 1 year shown in Fig.6.6-b. The 
southern coastal and its adjacent mountain regions have the largest amount of annual precipitation  
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a. Outdoor dry-bulb temperature      b. Direct and diffuse solar gain   

     

 
c. Wind Speeds        d. Outdoor Relative Humidity  

Figure 6.6. Korean climate analysis using EP over 1 year [author]. 
 
which is over 1,500mm. Since most of the precipitation is concentrated in the crop growing areas in the 
south, the water supply for agriculture is normally well met. Even though the annual mean precipitation 
is more than 1,200mm, however, Korea often experiences drought due to the large fluctuation and 
variation of precipitation, making the management of water resources difficult. 
 
 

6.4. Microclimate design elements 

 
Korean traditional design elements in Pine Tree House129 are employed to modify microclimate effects. 
However, there were no scientific evidences for the designs since few studies of them have been done. 
Chapter 5 investigated several microclimate design elements and analyzed the efficiency of the 
elements using EP-CFD simulation. These studies will be applied here to the real-house design  
                                                 
129 See Chapter 6.1. 



 

 
１３３ 

 

 
a. Orientation                b. Three air zones    c. Topography 

 

 
d. Sectional view         e. Building over pilotis    f. Windbreakers 

Figure 6.7. Microclimate design elements of Pine Tree House [author]. 

 
 
elements of Pine Tree House.  
 
First, the building orientation of Pine Tree House has a small shift to southwest as Fig.6.7-a shows. 
However, a modification is used for the simulation since most Korean traditional architecture designs 
prefer to choose the south or southeast direction. Although the south direction is adequate to passive 
solar design, the main direction of summer winds in S. Korea is southeast direction. For the best 
microclimate effect, the simulation modem uses the modification of southeast direction for passive 
cooling performance with strong aerodynamic to discharge the overheated air. 
 
The most progress of microclimate design in Pine Tree House is the usage of openings, possibly opened 
or closed by seasonal features. The door of the space can be opened widely to diffuse air and heat in 
summer. This prevents some zones with solar radiation from overheating. If a zone is overheated, 
indoor ventilation with openings can spread the heat to the neighboring cool zone. For the local heating, 
the door should be closed as well. Thus, the zones are separated into isolated zones and the geometric 
relationships between the zones are defined as Fig.6.7-b shows. 
 
Pine Tree House is located on a low hill using architectural methods on topography. As the description 
in chapter 5.1.2, the topography plays roles to get strong microclimate effects with anabatic airflow. 
Some window designs enable large openings for the wind and partial building utilizes pilotis to avoid 
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heated ground and to obtain passive cooling effects. Fig.6.7-c represents the set-up of a building on the 
topography.  
 
Pine Tree House uses some non-uniform window shapes to raise a ventilation performance of vertical 
direction of the room since two window openings at different heights using different windows sizes 
form the vertical difference of pressure. Fig.6.7-d shows a non-uniform window of Pine Tree House. 
This design generates very effective cooling gain of ventilation in summer. Some windows, especially 
located in the front side, use small horizontal projections shown in Fig.6.7-d which play a role as a 
wind-catcher that raises the internal ventilation rate. The size of the projection is not sufficiently big to 
protect from solar radiation however, the large gable roof sufficiently shades a direct solar penetration. 
The projection modifies the pressure pattern near the window and thereby derives different 
microclimate effects. The house does not use many vertical projections since the “H” form, i.e. 
perimeter rectangular court, of the house is enough to perform vertical wind-catchers since two 
encircled courtyards draw a high density of wind. 
 
Instead of a roof overhang, a large gable roof is designed to block the direct solar radiation and performs 
a wind-catcher. A gable roof is efficient to derive a stack effect that the wind from outdoors is heated 
and naturally moved into the roof outlets. Some holes shown in Fig.6.7-e are accompanied with the 
slopes of large roof. The large roof edges act as horizontal wind-catchers like external projections that 
raise the internal ventilation rates or the sunshade. 
 
Living space in summer is very important since the hot days are much longer than cold days in Korea. 
Especially, the high humidity in summer is the biggest problem to design human comfort space using 
passive architecture designs. In traditional Korean architecture concepts, Maru (i.e. floor) using pilotis 
or pavilion using pilotis is very famous and favorite of people due to the effective cooling without 
artificial air conditioning. A floating architectural design using pilotis is used for a part of the living 
space as Fig.6.7-e shows. 
 
The real site condition of Pine Tree House does not use the wall since the house is connected to the 
neighboring house. The walls of the neighboring house act as windbreaks. The geometrical influences 
of the neighboring house are not considered due to the complexity of simulation. However, the 
microclimate efficiency of solid walls and windbreaks are driven by a simple set-up shown in Fig.6.7-f. 
For the backside of the house, an artificial fence as a dense windbreaker is laid to prevent the Siberian 
cold wind from the North and the trees of medium density block only strong wind. Small wind passed 
through the natural trees gives a cooling effect to reduce the sensible heat of occupants and visual 
beauty as well.  
 
Table 6.3 represents pictures of the design elements of Pine Tree House. The left column of the Table  
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Table 6.3. Drawing of details and snapshots for design elements of Pine Tree House [author]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
shows the partial details of section and the right column represents design concepts of Korean 
traditional houses. Parquetry is a small size of floor to generate a local cooling area and the kitchen 
court uses a concept of courtyard to preserve and utilize the cooking heats. The yellow soil is efficient 
material for floor heating since the soil includes large amount of minerals which radiates longwave ray. 
The Maru and pavilion using pilotis are an efficient structure for summer and Ondol is a traditional 
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Korean under floor heating system for indoor climate control similar in principle to a Roman hypocaust. 
The main components are a fireplace or stove (also used for cooking) located below floor level in 
outside (traditionally in separated kitchen), a heated floor underlay by horizontal smoke passages, and a 
vertical chimney to provide a draft. The heated floor is supported by stone piers, covered by clay and an 
impervious layer such as oiled paper. The Ondol was typically used as a sitting and sleeping area, with 
warmer spots reserved for honored guests. For these reasons, most modern residences in Korea utilize 
circulating hot water, or electrical cable. 
 
 

6.5. Energy efficiency  

 
Thermo- and aerodynamic microclimate design method including passive design is quantitatively 
evaluated by EP-CFD simulation. First, EP simulation results the average values of zones which are 
estimated from site and zones. The resolution of the values is one node per volume of zone, thus the EP 
simulation cannot estimate the streamline of real airflow. However, the method is not complex and easy 
to evaluate the energy performance of building zones with passive and active set-ups.  
 
The calculation of the heating and cooling loads on a building or zone is the most important step in 
determining the size and type of cooling and heating equipment required to maintain comfortable 
indoor air conditions. Building heat and moisture transfer mechanisms are complex and as 
unpredictable as the weather and human behavior, both of which strongly influence load calculation 
results.  
 
Table 6.4. Some of the factors that influence results [author]. 

 
 
If the factors as shown in Table 6.4 are once used for calculation of a complex equation, the heating and 
cooling loads can be obtained as the result of the equation. They are always used by active design 
researchers, developers of building envelop and architects etc., however, they can be useful factors to 
evaluate the thermal and comfort of the passive designs and the set-ups. Then, a comparison between 
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the passive design and active method e.g. electronic air conditioning concludes the needs of additional 
energy consumption of the passive designs, if the passive designs do not have sufficient condition of 
zero energy. The evaluation of microclimate design methods will perform such a comparison and 
concludes the needs of the amount of additional energy input. Although zero energy building with 
passive design methods is the best case, such a zero energy performance using only passive methods is 
too ideal and difficult to achieve. 
 
In winter, heat loss increases the total heating load. Transmissions through the confining walls, floor, 
ceiling, glass and other surfaces cause heat loss. If a zone loses the heat below a comfortable 
temperature, occupants feel discomfort. To recover the comfort condition, energy inputs should 
compensate the heat loss. The infiltration through trickles and openings causes large amounts of heat 
loss. The wind speed also has great effect on outside surface resistance in conduction heat transfer and 
on high infiltration loss. Normally, the heating load is estimated for evaluation of winter design. 
  
Otherwise, cooling load is related to the heating gain. If the heat is obtained in high temperature, the 
heat should be removed by a cooling method to make a comfort. Heat gain is the rate at which heat 
enters a space, or heat generated within a space during a time interval. Hence, cooling load is the rate 
that heat gains can be compensated to make a comfort air temperature. The difference between the 
space heat gain and the space cooling load is due to the storage of a portion of radiant heat in the 
structure. The convective component is converted to space cooling load instantaneously. 
 
By EP simulation, changes of topographic, window ratio and insulation are evaluated. Fig.6.8 
represents the heating and cooling loads which occur through the changes of different conditions.  EP 
does not have CFD calculation, the method uses a simple parametric estimation based on analytical data 
related to the pressure coefficients. The differences of slope angle increases the heating load and 
decrease the cooling load as Fig.6.8 (a) and (b) show. The additional heating gain is caused by the solar 
radiation since building can be warmer and drain earlier in hillside. The cooling gain i.e. decrease of 
cooling load is due to the large amount of microclimate which is produced by the different thermal 
condition by solar radiation.  Heating by day causes anabatic airflows since the heated air moves up and 
pressure decreases. The large amount of airflows makes a cooling gain of about 3kW m-2 per 10 degree. 
 
The changes of window ratio make smaller heating and cooling loads due to the large effects of the air 
movements. The average heating and cooling loads are respectively about 114kW m-2 and 72kW m-2 
and the values are much smaller than the results of topography. Fig.6.8 (b) represents the graphs heating 
and cooling loads. EP simulation shows that the larger window is not helpful for cooling since the 
increase of radiation through the window causes overheating and the cooling load is increased in 
summer. Although the windows are a cause of the heat loss in winter, the increase of heating gain 
through the window increases the heating gain. 
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with the values. The geometrical features which derive the thermo- and aerodynamic states can be 
analyzed by CFD method.  
 
Table 6.5. Heating and cooling models based on the simulation results of microclimate design elements 

130 [author].  

 

 

 

a. Heating load      b. Cooling load 

Figure 6.9. Comparison of heating and cooling loads EP-CFD method using microclimate design 
models [author]. 

 
                                                 
130 HTC: Heat Transmission Coefficient. 



 

 
１４０ 

 

4 energy-saving test models, i.e. 2 for heating and 2 for cooling are derived from the simulation results 
of microclimate design elements shown in Chapter 5, and compared to the energy performance of the 
original model.  Table 6.5 shows the 4 test models. The original model has a virtual house condition 
based on the Pine-tree house. The house is located on a slope to the southwest with a gable roof and 
double glazed window. For the heating model, wind-sheltering and insulation are added. For the  
cooling model, geometry and window shape are changed. The heating and cooling gains using 
modifications of Pine Tree House using the 4 models are compared to the results of the full application 
in the original model, i.e. blue dashed lines. The heating and cooling models can be jointly used for 
thermal condition for both winter and summer. Fig.6.9-a shows the comparison of heating loads 
between original model and 2 heating models and Fig.6.9-b represents the cooling load comparison 
between original model and 2 cooling models.  
 
The original model of Pine Tree House has a lot of Korean traditional design elements that enables to 
derive microclimate effects. However, the model does not consider passive solar design with strong 
insulation. Hence, the heating model 1 slightly modifies the original house for a better passive heating 
performance. Energy performance using design elements of Pine Tree House is analyzed by streamline 
of thermo- and aerodynamics showing physical distribution of temperature, pressure and kinetic energy 
etc. Fig.6.9 shows the heating and cooling load from CFD method. Only 12 times of the simulations are 
performed due to the complexity of calculation.131 The dashed lines indicate the results of the full 
application by using all design elements. Some design elements are efficient only for one between 
heating and cooling. For example, design elements for a high ventilation performance are good for 
summer but not efficient for winter. Hence, the main aim of EP-CFD simulation is to find some good 
combinations which accomplish positive microclimate effects.  
 
The orientation is shifted to the south and the wind-sheltering using medium density trees. The 
insulation is added and inter zone thermodynamic is utilized for air balancing between zones. The main 
changes in the “heating model 1” are the consideration of passive solar designs. The simulation results 
in Fig.6.9-a shows the improvement of peak heating load of more than 30kW·m-2 in winter due to the 
passive heating gain. For the heating model, wind-sheltering and insulation are added. For cooling 
model, geometry and window shape are changed. 
 
Designs using pilotis, non-uniform shape window which enhances the aerodynamic is not employed 
since aerodynamic microclimate makes better effects for cooling but worse effects for heating. The 2nd 
heating model is a trial to improve the 1st model. The enforcement of density in wind-sheltering shows 
a better performance to block the direct and small cold wind. The insulation of the roof and the window 
is used. The modification reduces 8.3kW m-2 in maximum heating load in cold winter as Fig.6.9-a 

                                                 
131  Note that CFD simulation generally needs about 1000~1000000 times more computation costs than EP method. 
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shows. 
 

A lot of progress of heating gain has been due to the studies of Passive House. However, passive 
cooling in hot and humid climate, such as S. Korea’s increases is getting attention from a lot of 
researchers since few studies have been done.  So far, microclimate design methods are methods that 
efficiently obtain the cooling gain by considering streamline by thermo- and aerodynamic pressures in 
the designs. The 2 modifications of the original model for cooling are proposed to obtain the better 
cooling gain and to decrease the cooling load in the hot and humid summer. The first model changes the 
orientation to south.  
 
The glass insulation is employed since the intrusion of hot winds was often observed in the 
microclimate simulations of Chapter 5. The thick wall insulation is not considered due to the result of 
Fig.6.8 (c), however roof insulation is very important to block the overheated air in the roof.   
 
To improve the blocking performance of the heated downwind from roof, cooling model 1 and 2 use a 
horizontal projection and a large gable roof respectively. The 1st cooling model uses uniform shape 
window for cross-ventilation. In addition, the cooling performance of the 1st cooling model is improved 
by employing the building using pilotis and strong ventilation using non-uniform shape windows. The 
1st cooling model reduces the 14kW m-2 of peak cooling loads and the 2nd model obtains additional 
cooling gain of 10kW m-2. The 2nd model totally reduces more than 20kW m-2 in peak cooling loads in 
summer and shows the lowest cooling load in summer as Fig.6.9-b shows. 
 

     
a. Thermal plot                                     b. Vertical  plot of airflows  

 

        
c. Horizontal plot of airflows at the 1st floor       d. Horizontal plot of airflows at the 2nd floor  

Figure 6.10. EP-CFD simulation results of Pine Tree House [author]. 
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The large gable roof and the non-uniform windows are a very efficient method to enable to improve the 
streamline of microclimate flow and the performance of solar control. Fig.6.10 shows the EP-CFD 
simulation results using needle flow plots and Table 6.6 shows the part of a building and the percentage 
of heat loss. The results show the decisive point for heating and cooling design since the heat loss has 
great effects related to the human comfort. 
 
The efficiency of passive designs can be compared to active methods since active methods can show us 
the amount of envelopes and operation time. A simple HVAC model in EP is used to calculate zone 
temperature. Fig.6.11 represents the temperature comparison between passive and active methods. 
 
In a cold winter day, the zone temperature using coil heating with a target temperature of 24℃ can offer 
20℃ to 23℃. The passive method using improved insulation raises the indoor temperature without 
energy input but causes an overheating problem at 12:00pm to 2:00pm. To solve the problem, the active 
 

Table 6.6.  Part of a building and percentage of heat loss (i.e. based on the Fine Tree house models) 

[author].  

 
 

 

a. Winter day (based on the coldest day)     b. Summer day (based on the hottest day)  

Figure 6.11. Zone temperature comparison between passive method and HVAC model [author]. 
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method uses inter-zone ventilation by using thermal sensors and controller. EP has the computer 
simulation module for inter-zone ventilation and the result shows the good passive heating performance 
with comfort thermal condition of 18℃ to 26℃. The inter-zone flow net method in EP enables to 
estimate the inter-zone ventilation by the virtual air-circulation network. It is not a real air circulation 
method132 and parametric approximation method. The method shows a similar thermal performance of  
19℃ to 27℃. The microclimate thermodynamic using inter-zone opening and small inlet opening with 
passive solar design can offer a thermal condition of 19℃ to 29℃ which overcomes the overheating 
problem. The peak temperature is uncomfortable 29℃ but the duration of the temperature is only 1 hour. 
The passive methods can save about 20% heating and electronic cost of the active methods. 
 
In a hot summer day with an average maximum temperature, the zone without ventilation is overheated 
by passive solar design and the thermal range is 32℃ to 41℃. The large cooling load is needed to 
reduce the heat of the zone. The objective is to compare the passive cooling methods with a 
performance of an active cooling and to find the best. A scheduled active cooler which starts operation 
at 7:00am and ends at 6:00pm can reduce 20% of the daytime temperatures. If the active cooler is turned 
off, the zone temperature is raised. Whole day ventilation in an insulated zone can offer a better thermal 
condition which has a smoothly varying curve in the range of 23℃ to 33℃. A mixed-ventilation shows 
similar a performance with the whole day ventilation but the input energy of whole day ventilation 
needs 48% additional energy. A summer cooling method using passive cooling and microclimate 
aerodynamic simultaneously improves the cooling performance and the thermal condition is laid on the  
 

 

Figure 6.12. 1 year temperature comparison between a passive method and a combination of passive 
method and flow net of microclimate design [author].  

                                                 
132 Note only CFD is a real airflow calculation based on partial differential method. 
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range of 23℃ to 29℃. The HVAC is very efficient in winter to make isothermal conditions but does not 
have a big advantage in summer. A large amount of air passing through the zone can quickly reduce the 
heat from a hot and humid zone, and the best method is to utilize cross-ventilation. 
 
The 1-year performance between simple passive modeling and a passive modeling combined with 
microclimate design method shows that microclimate method reduces the thermal variance. Fig.6.12 
represents the 1 year temperature by EP simulation. CFD cannot be utilized for 1 year calculation due to 
the complexity hence; the calculation utilizes the flow net method in EP after setting of the 
microclimate design elements. In the result, thermal variances in simple passive method are larger than 
10℃ but the combination with microclimate has smaller variances of 5℃ to 10℃. The main advantage 
of microclimate design elements improve the airflow between outdoor and indoor in summer and 
enable to utilize inter-zone air current in winter. Consequently, higher indoor temperatures in winter 
and lower temperatures in summer are obtained. The features make it possible to save building energy 
costs by reducing heating and cooling loads. 
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7. Conclusions 
 
 
Energy-saving is recently getting more attraction due to the increases of energy security in many 
countries. Increase of living standards has caused huge energy consumption for heating, cooling and air 
conditioning in many parts of the world. Nowadays, energy simulation, which analyzes climate, the 
physical features of architectural material and designs simultaneously, has become more popular. 
Energy loads of architecture are virtually predicted by energy simulation and then a controller adopts 
the HVAC system based on the prediction. Several methods provide quantities of predictions, of the 
performance of HVAC: experiment measurement, analytical model and multi-zone model.133 However, 
these methods are not suitable to be applied to passive heating and cooling without a controlling system. 
Passive heating and cooling can significantly reduce energy costs required for mechanically aided 
HVAC methods. However, the shortcoming is that it is difficult to control. Geometric analysis with heat 
and airflows is additionally needed to make passive heating and cooling designs controllable. 
 
Microclimate can modify heating and cooling loads, thereby overall energy consumption. The 
observation of microclimate for energy simulation is essential since the energy consumption is largely 
related to the local climate. Decisions taken by architects can have a significant impact on energy 
consumption, indoor climate performance, thermal comfort and productivity. Architects need to be able 
to predict air movement, temperature distribution and concentrations. Using well proven computational 
techniques such as dynamic thermal energy modeling and CFD, effects of microclimate modifications 
in architectural designs can be simulated without physical modeling tests. Dynamic thermal energy 
modeling measures thermodynamic effects e.g. inter-zone thermal balance and buoyancy force and 
CFD simulation is undertaken to examine the aerodynamic operation of the natural ventilation 
concepts.  
 
At the design stage, architects can predict annual energy and microclimate performance using these 
methods.  The contributions of this study include four main parts:  

- Study of energy simulation, dynamic thermal energy modeling and CFD simulation tools. 
- Development of a dynamic energy simulation method suitable for microclimate analysis 
- Study of microclimate modification for energy-saving by architecture design elements. 
- Design recommendation for passive, microclimate and energy-saving house design. 

                                                 
133 See chapter 3.3.2. 
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(1)  Study of energy simulation, dynamic thermal energy modeling and CFD simulation tools 
 
Energy simulation in a complex building geometry calculates very complex equations with several 
physical parameters. However, multi-volume, or multi-zone method reduces the complexity of the 
calculation by single node per zone. This method needs an algebraic equation representing partial 
differential equations of a zone and the solution is an average value. Most commercial software uses a 
multi-zone model and EnergyPlus (EP) is the most famous program to estimate the heating and cooling 
gain and energy consumption. However, single node per zone is too rough to consider airflow e.g. 
buoyancy and ventilation effects etc.  
 
CFD method numerically solves a set of partial differential equations with a grid array of many nodes 
per zone. The method can calculate the dynamics of distributed air temperatures, velocity throughout an 
entire building and hence it is more suitable for microclimate analysis than the multi-zone method. An 
advantage is that CFD can use realistic 3D geometry definition which is corresponding to CAD design. 
However, the method requires large computational power since it is complex to apply the method to 
building geometry. The most famous software for CFD is Fluent. The study presents comparisons 
between the multi-zone and CFD method shown in Table 7.1.  
 
 
(2) Development of a dynamic energy simulation method suitable for microclimate analysis 
 
Microclimate can be measured by a very complex combination of several factors e.g. heating location, 
solar radiation, inter-zone ventilation, size of opening, wind force and buoyancy force etc. For the 
simplicity, this study proposes a novel method to analyze microclimate of energy imbalance which is 
estimated by the multi-zones energy simulation. In this study, the term microclimate refers to energy 
distribution and its variations e.g. thermo- and aerodynamics in space and time.  

 

Table 7.1. Comparisons between multi-zone and CFD method [author]. 
 Multi-zone (EP) CFD (Fluent) 

Number of nodes 1 per a zone More than 1000 per a zone 
Heating analysis Average temperature Interzone balance, buoyancy force 
Cooling analysis Average temperature Natural ventilation, wind force 

Advantage Simplicity Accuracy 

 

Table 7.2. Accuracy of thermal prediction [author]. 

 Cooling (℃) Heating (℃) 
EP 28 22 

EP-CFD 22.8~32.4 17.2~24.7 
Differences -5.2~4.4 -4.8~2.7 
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At the early design stage, architects cannot detail fix the planning. Therefore, the multi-zone model 
rather than CFD can fit the prediction task and provide a whole building analysis to improve the design. 
CFD method always needs a careful preparation for the early stage of simulation. Instead of requiring 
the initial condition for CFD, EP-CFD method, i.e. the coupling method of multi-zone and CFD, 
calculates the average temperature of each zone by multi-zone method and puts in differences of the 
calculated temperatures to CFD for microclimate analysis. This method was validated for the buoyancy 
and inter-zone balance by comparing it with the single EP simulation. Table 7.2 shows that the EP-CFD 
can obtain more accurate results for microclimate effects with variances about ±18.57%~21.82% for a 
heating and cooling calculation than single EP. Although results from EP are the homogeneous average 
temperature in a zone, results from EP-CFD show thermal distribution. Simulation results in Chapter 5 
and 6 also show similar variances within the range between maximum and minimum temperatures. 
 
 
(3) Study of microclimate modification for energy-saving by architectural design elements  
 
This study investigated microclimate modification using design elements of Korean traditional and 
passive house for energy-saving. Microclimate modification involves the best use of architectural 
design elements to maximize or limit sunlight, shade and air movement. The modifications involve the 
design of the house and associated construction e.g. wall, fences and courtyard etc. Landscape 
modifications involve the use of plants to further increase or decrease the impact of the sun and wind 
upon the local environment. Several design elements strongly influence the degree to which interior 
comfort requires energy inputs for heating or air conditioning.  
 
Table 7.3. Strength of thermo- and aerodynamic microclimate for architectural design elements [author]. 
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The elements are orientation, topography, roof shape, fence design, piloties, window shape and 
courtyard etc., 134 which are potentially efficient for energy-saving on various site conditions in S. 
Korea, and they can be classified into cooling or heating elements. These elements are applied to 
EP-CFD energy simulation to estimate heating and cooling loads and flow directions. Microclimate 
analysis, which is combined within the energy simulation, enables to predict and choose the elements 
for energy-saving. Microclimate effects can be observed by distribution of air temperature in building 
sectors and the distribution can be represented by thermo- and aerodynamic flows. The strength of 
thermo- and aerodynamic microclimate effects for design elements are compared in Table 7.3. The 
elements, i.e. courtyard, curved roof, fence design, windbreak, huge plant, uniform window shape, with 
few or no effects are marked using “–”.  
 
Building orientation has the strongest effects for both thermo- and aerodynamic microclimate since a 
concentration of solar access makes rising trend of the air and the difference of air pressure. 
Topography has also strong thermodynamic effects since by day the air above the slopes can be more 
easily heated than the lower area. The orientation is important to determine the directions of solar and 
wind access for heating and cooling respectively. Although microclimate of a courtyard is slight due to 
less daylight and natural ventilation, roof glazing of a courtyard provides better heating gain and more 
thermodynamic effect such as stack effect. Gable roof form is one of the most efficient designs which 
can utilize the stack effect for roof ventilation. However, thermodynamic of gable ventilation is 
stronger than the courtyard’s stack effect because fresh air coming from eaves of gable roof causes an 
effective aerodynamic effect pushing warm air in the room out. Curved roof is the method which 
minimizes aerodynamic effect in winter since it has very small air resistance. Wind-sheltering using 
fence design, windbreak and huge plants are efficient aerodynamic method to reduce strong winds in 
winter and save heating energy. The performances of wind-sheltering depend on the density of the 
elements and the order of aerodynamic strength is fence design, huge plants and windbreak. Windows 
act as solar and air inlets, which are very important for both heating and cooling. The shapes of 
windows modify the amount of inflows and streamline of the flows. Different size windows i.e. 
non-uniform windows shape induces a higher ventilation performance due to the pressure difference 
than the uniform window shape. Although aerodynamic effects of the horizontal window shape is 
smaller than one of the non-uniform window, the horizontal window is more efficient for heating 
because it can get more solar energy. Vertical and horizontal projections, e.g. external wing-walls, 
partitions and fins etc., can be combined with window designs and play a role as a wind blocker or a 
wind-catcher and they can be utilized as shading devices. The aerodynamic microclimates for vertical 
and horizontal projections have similar strengths although they generate different airflow shapes. 
Fig.7.1 classifies the thermo- and aerodynamic microclimate into heating and cooling elements and 
represents energy performances. If the elements in Table 7.3 are corresponded to heating and cooling  

                                                 
134 see Chapter 5. 
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Figure 7.2. Energy simulation method using EP-CFD coupling [author]. 

 
In this dissertation, a hybrid method of parametric equation and CFD is proposed. While the initial 
energy condition is calculated by a parametric equation in the EnergyPlus (EP) software, a CFD method 
considers the result of EP method as the initial condition of CFD solver and estimates the difference 
between the parametric estimates and the real building condition with microclimate modifications. This 
method can automatically initialize without any complex manual definitions and obtain much detailed, 
accurate and dynamic energy condition as Fig.7.2 depicts. 
 
 
(5) Design recommendation for arrangement  
 
Microclimate modification for heating gain is closely related to the common knowledge of Passive 
House, green building and sustainable architecture. A low-energy house reduces the energy resource 
and minimizes environmental impacts, i.e. 

-  Maximizing the opportunities to use solar energy 
-  Compact plan forms reduce infiltration losses 
-  Optimized glazing ratios for heat gains and lighting 
-  Using thermal mass to reduce fluctuations in room temperatures 

          -  Sheltering the building from strong cold wind.135 
 
However, the demand for cooling can be reduced by careful consideration of the site, building geometry, 
design elements for  

-  Maximizing the potential use of natural wind for natural ventilation 
-  Using thermo- and aerodynamic flow to avoid overheating 
-  Controlling the streamline of airflow using design elements 
-  Reducing the internal loads by distributing and balancing 
-  Shield windows from unwanted solar gain in the hot season. 

 

                                                 
135 This reduces the unwanted cold air infiltration. 
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Table 7.4. The thermal effects of glazing directions in S.Korea [author]. 
Clockwise orientation from North  Thermal effect 

150°~190° Best 

83°~150° and 190°~260° Fair 

0°~83° and 260°~360° worst 

 

Design recommendation based on EP-CFD energy simulations may be helpful for architects to assess 
energy conservation early and throughout the design process. A house is carefully sited and arranged to 
reduce energy-use for heating and cooling. Standard design elements e.g. site, form, windows, walls, 
and roofs etc., are selected to control/collect/store solar heat or to ventilate/ discharge/ exchange the 
heat. Typically, reductions of heating and cooling loads allow smaller HVAC equipment, resulting in 
little or no increase in construction cost.  
 
South-facing building orientation: Installing south-facing glazing enables the collection of solar energy, 
which is partially stored in walls, floors, and/or ceiling of the space, and later released. Glazing must 
face within 15˚ of true south, and the affected areas must be compatible with daily temperature swings. 
The savings of heating energy are augmented by productivity-enhancing benefits of lighting. The 
functioning of the space should not be compromised by direct glare from glazed openings or by local 
overheating. The optimum building orientation can be simulated by using average daily incident 
radiation on a vertical surface. The thermal effects for some building orientations are compared in Table 
7.4, The best building orientation in Seoul, Korea is South to South-Southeast i.e. clockwise 157.5˚ to 
180˚ from North as Fig.3.3 depicts. 
 
Topography: Differences in slopes make remarkably large modifications of microclimate, since the 
solar radiation and wind velocity are much large. A house on the slope is more suitable to use summer 
breezes. Air movements such as anabatic and katabatic winds occur generally due to the difference of 
radiation supply in a hilly area. If the opening control utilizes the upward and downward winds, the 
winds exchange the indoor air temperature to the outdoor quickly. An open floor plan and openings are 
located to catch prevailing breezes are efficient for summer cooling. Topography moderates the room 
temperature, saves energy and preserves open space. 
 
Local wind environment: For hot and humid summer, ventilation is beneficial for convective or 
evaporative cooling. The movement of air through a building geometry is generated by differences in 
air pressure as well as temperature. The layout of the surrounding buildings acts as barriers, diverting 
the flows into narrower. The resulting patterns of airflow are affected more by building geometry and 
orientation than by air speed.  

 
Building arrangement: It is important to make the largest passive heating effect with good solar access. 
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Solar access is possible by keeping the south elevation free from obstructions. Arrangement of 
buildings creates a wind shadow which is a low-pressure area at the back of each house. The best 
arrangement is to stagger the houses according to the prevailing wind direction. 
 
 
(6) Design recommendation for form  
 
Sun space: Avoid configurations that produce heat losses or gains with no compensatory benefits. The 
sun space should bring daylight to the interior while providing a solar chimney for natural ventilation 
during mild weather. In some cases, atriums can collect useful solar heat in cold climates—serving as a 
kind of transition zone, with larger temperature swings than would otherwise be appropriate in the rest 
of the building. The atrium’s configuration should be defined at the earliest possible stages of the design 
process, before an undesirable or arbitrary configuration is locked in. 

 
Courtyard dwelling: A courtyard does not perform well due to less daylight and natural ventilation. 
Sunspace performs in a similar way to a courtyard, although the ventilation is better than a courtyard 
due to stack effects. There may be a need to consider ventilation to the upper floors due to the low stack 
pressures at higher levels. Roof glazing can be applied to a courtyard to provide lighting and to improve 
the heating gain with the passive heating method. Atrium of courtyard easily obtains solar heat through 
the glass and avoids the direct heat loss. Solar heat gain can be controlled through use of fritted glass or 
louvers. 

 
Roof opening and stack-effect ventilation: Heated air rises within a mid- or high rise building to the top, 
where it exits through roof openings. This process induces ventilation of the adjoining spaces below. 
Spaces that are not adversely affected by increased air motion are appropriate targets for natural 
ventilation, which effectively conditions the space during fair weather without using air conditioning. 
In the very hot seasons, night cooling with cross-ventilation is more effective than stack-effect 
ventilation. An atrium often serves as an ideal solar chimney to exhaust hot air. 
 
Building shape: The shape of a building determines how much area is exposed to the outdoors through 
exterior walls and ceilings. Exposed area should be minimized to save energy. When a house has a 
complex shape, exposed surface area increases both construction and energy costs. Narrow form uses 
less energy in total, and this leads to a reduction in electrical load. This outweighs any slight increase in 
infiltration losses due to a large façade area.  

 
Differentiated Façades: Differentiated façade is really an approach to determinate designs and styles 
and is known as one of the most effective low-energy house strategies. The appearance of various 
façades makes differ in the environmental loads. The architects create variations in the façade design, 
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the use of space behind the façade, and the low-energy house strategies being employed. 
 

Windbreak: For winter, a house should be buffered against chilling winds to reduce infiltration into 
interior spaces and lower heat loss. A windbreak may be in the form of a narrow path, a garden wall, or 
a dense stand of trees. Windbreaks reduce wind velocity and produce an area of relative calm on their 
leeward side. The extent of this wind shadow depends on the height, depth, and density of the 
windbreak, its orientation to the wind, and the wind velocity. Windbreaks work either by deflecting the 
wind up and over a building thereby forming a protective wind shadow, or by catching it in the twigs 
and branches of a double or triple row of trees which breaks up its speed. A well designed windbreak 
can reduce wind velocity by 85%, and reduce winter heating costs by 10% to 25%. 

 
 

(7) Design recommendation for façade elements  
 

Window: The architect applies functional criteria to the size, proportion, and location of windows. 
When a windows size becomes larger, much more solar could enter the indoor, and the indoor 
temperature would rise. It is a disadvantage to reduce temperature in the hot and humid summer of 
Korea. Suitable window sizes should be optimized by glazing ratio. A window with a large width is 
better to obtain both solar radiation and good ventilation than one with a large height. For summer 
cooling, location of windows should be carefully chosen to serve as air inlets to face prevailing winds. 
Windows can be controlled by projection. The projection located ahead (or afterward) of a window 
respectively blocks (or catches) the wind. When cross-ventilation is planned for window shape, 
different sizes between inlets and outlets induce higher ventilation rate wind with large pressures. For 
the cold season, trickles around windows should be blocked since they usually are the major source of 
air leakage which affects significantly the building energy. With double glazing windows, the indoor 
temperature rises about 2℃ in winter while 0.1℃ in summer. Double glazing windows are a benefit for 
thermal comfort. 

 
Glazing ratio: Buildings with a very small glazing ratio consume more energy than ones with larger 
glazing ratios. However, increasing glazing ratios much above about 50% produces little extra benefit. 
The optimum glazing ratio is in the region of 35% for building surfaces. The optimum glazing ratio for 
roof-light is no more than 20%. Before finalizing, glazing ratios should be checked for overheating 
possibilities in summer. 

 
Thermal mass: For an optimum effect of passive house, floor and wall finish materials with high heat 
storage capacity must be exposed to direct illumination by the low winter sun. Thermal mass is ideally 
placed within the building and situated where it still can be exposed to winter sunlight but insulated 
from heat loss. However, for hot humid summer season, it needs to be strategically located to prevent 
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overheating. It should be placed in an area that is not directly exposed to solar gain and allowed 
adequate ventilation at night to carry away stored energy without increasing internal temperatures any 
further. The best solution is a proper shading design considering sun’s altitude because the sun’s 
altitude is higher than summer.  

 
Shading: Shading should be used to provide cost-effective, aesthetically acceptable, functionally 
effective solar control. Particularly in summer, shading is very important to decrease indoor 
temperature and to avoid an overheating problem. It works well on south façades where overhangs 
provide effective shading for the space and the angle of shading device should be optimized for 
moderate solar penetration. Shading west façades is critical in reducing peak cooling loads. A wide 
range of shading devices are available, including overhangs on south façades, fins on east and west 
façades, interior blinds and shades, louvers, and special glazing such as fritted glass. Reflective shading 
devices can further control solar heat gain and glare. Devices without moving parts are generally 
preferable. Movable devices on the exterior are typically difficult to maintain in corrosive environments 
or in climates with freezing temperatures. Other design elements, such as overhanging roofs, can also 
serve as shading devices. 

 
 

(8) Future work 
 
In this study, microclimate modification and energy simulation for a lot of design elements are studied 
for achieving comfortable indoor environment and minimizing energy consumption in low storey and 
high density. However, almost in all major cities in Asian countries, development of residential 
buildings is characterized by high rise apartments. Environmental influence in most apartments is much 
greater than single family houses. While increasing insulation levels and sealing air leaks in the 
building and ductwork are applied to newly developed houses, energy efficiency for similar thermal 
conditions is difficult in the low storey and high density housing. The studies of microclimate 
modification for low-energy house should be adapted and developed for energy-saving in low storey 
and high density houses. This means the spatial expansion from a small house to a low housing and high 
rise building. 
 
Architects and building planers want to maintain or increase the accuracy and quality of estimates. The 
microclimate is an extremely complex system consisting of a lot of feedback loops and nonlinear 
relationships between the different natural and artificial elements. Building microclimate is also 
influenced by neighboring buildings and urban geometry. Studies in this thesis do not consider the 
effects of neighboring buildings. For high accuracy result, combing method with other climate analysis 
tools which can handle larger scale, e.g. urban, than a building is needed. The topics arises a lot of ideas 
for future works: flow around and between buildings, thermal exchange processes at the ground surface, 
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at walls and vegetations etc. turbulence around building canyon, etc. 
Other interesting issue is to measure the accuracy of the computer simulation by using the physical 
simulation e.g. wind tunnel test, sensor measurement, etc. Although the computer simulation methods 
are quick, economic and efficient solution using virtual design analysis, they may result in some 
inaccuracy and non-practical solutions when unconsidered elements sometimes causes remarkable 
effects. Real measurements using physical sensors monitoring the temperature, humidity, air velocity 
etc. or wind tunnel test analyzes these inaccurate situations and helps to establish the more accurate and 
practical measures for the microclimate effects. The future works will include material tests, physical 
unit analysis, microclimate sensor measurements, wind tunnel tests for building geometries, etc. 
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Appendix  
 
A-1. Data flow in EP-CFD simulation 

 

 
A-2. EnergyPlus (EP) building parameters 
 
BUILDING, 
\unique-object 
\required-object 
\min-fields 7 
A1 , \field Building Name 
\required-field 
\default NONE 
N1 , \field North Axis 
\note degrees from true North 
\units deg 
\type real 
\default 0.0 
A2 , \field Terrain 
\note Country=FlatOpenCountry | Suburbs=CountryTownsSuburbs | City=CityCenter | 
Ocean=body of 
water (5km) | Urban=Urban-Industrial-Forest 
\type choice 
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\key Country 
\key Suburbs 
\key City 
\key Ocean 
\key Urban 
\default Suburbs 
N2 , \field Loads Convergence Tolerance Value 
\units W 
\type real 
\minimum> 0.0 
\default .04 
N3 , \field Temperature Convergence Tolerance Value 
\units deltaC 
\type real 
\minimum> 0.0 
\default .4 
A3 , \field Solar Distribution 
\note MinimalShadowing | FullExterior | FullInteriorAndExterior 
\type choice 
\key MinimalShadowing 
\key FullExterior 
\key FullInteriorAndExterior 
\key FullExteriorWithReflections 
\key FullInteriorAndExteriorWithReflections 
\default FullExterior 
N4 , \field Maximum Number of Warmup Days 
\type integer 
\minimum> 0 
\default 25 
A4 ; \field Calculate Solar Reflection From Exterior Surfaces 
\note deprecated field. Use SolarDistribution Value 
\type choice 
\key No 
\key Yes 
\note The choice Yes requires that Solar Distribution = FullExterior or FullInteriorAndExterior
\default No 
 
The IDF form is  
 
BUILDING, 
PSI HOUSE DORM AND OFFICES, ! Building Name 
36.87000, ! Building Azimuth 
Suburbs, ! Building Terrain 
4.0E-02, ! Loads Convergence Tolerance 
0.4, ! Temperature Convergence Tolerance 
FullInteriorAndExterior, ! Solar Distribution 
25; ! Maximum Number of Warmup Days 
 



 

 
１５９ 

 

A-2. Energyplus climate weather data file access 
 
DesignDay, 
\min-fields 15 
A1 , \field DesignDayName 
\type alpha 
\required-field 
\reference DesignDays 
N1 , \field Maximum Dry-Bulb Temperature 
\required-field 
\units C 
\minimum> -70 
\maximum< 70 
\note 
\type real 
N2 , \field Daily Temperature Range 
\note Must still produce appropriate maximum dry bulb (within range) 
\note This field is not needed if Dry-Bulb Temperature Range Modifier Type 
\note is "delta". 
\units deltaC 
\minimum 0 
\default 0 
\type real 
N3 , \field Humidity Indicating Temperature at Max Temp 
\note this will be a wet-bulb or dew-point temperature coincident with the 
\note maximum temperature depending on the value of the field 
\note Humidity Indicating Temperature Type 
\note required-field if Relative Humidity schedule is not used 
\units C 
\minimum> -70 
\maximum< 70 
\type real 
N4 , \field Barometric Pressure 
\required-field 
\units Pa 
\minimum> 70000 
\maximum< 120000 
\type real 
\ip-units inHg 
N5 , \field Wind Speed 
\required-field 
\units m/s 
\minimum 0 
\maximum 40 
\ip-units miles/hr 
\type real 
N6 , \field Wind Direction 
\required-field 
\units deg 
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\minimum 0 
\maximum 359.9 
\note North=0.0 East=90.0 
\type real 
N7 , \field Sky Clearness 
\required-field 
\minimum 0.0 
\maximum 1.2 
\default 0.0 
\note 0.0 is totally unclear, 1.0 is totally clear 
\type real 
N8 , \field Rain Indicator 
\minimum 0 
\maximum 1 
\default 0 
\note 1 is raining, 0 is not 
\type integer 
N9 , \field Snow Indicator 
\minimum 0 
\maximum 1 
\default 0 
\note 1 is Snow on Ground, 0 is no Snow on Ground 
\type integer 
N10, \field Day Of Month 
\required-field 
\minimum 1 
\maximum 31 
\type integer 
\note must be valid for Month field 
N11, \field Month 
\required-field 
\minimum 1 
\maximum 12 
\type integer 
A2 , \field Day Type 
\required-field 
\note Day Type selects the schedules appropriate for this design day 
\type choice 
\key Sunday 
\key Monday 
\key Tuesday 
\key Wednesday 
\key Thursday 
\key Friday 
\key Saturday 
\key Holiday 
\key SummerDesignDay 
\key WinterDesignDay 
\key CustomDay1 
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\key CustomDay2 
N12, \field Daylight Saving Time Indicator 
\minimum 0 
\maximum 1 
\default 0 
\note 1=Yes, 0=No 
\type integer 
A3 , \field Humidity Indicating Temperature Type 
\note Type of humidity indicating temperature (Wet-Bulb or Dew-Point) 
\type choice 
\key Wet-Bulb 
\key Dew-Point 
\key Schedule 
\default Wet-Bulb 
A4 , \field Relative Humidity Day Schedule 
\object-list DayScheduleNames 
\note only used when previous field is "schedule" 
\note the hour/time interval values should specify relative humidity (percent) from 0.0 to 100.0
A5 , \field Dry-Bulb Temperature Range Modifier Type 
\note Type of modifier to the dry-bulb temperature calculated for the time step 
\type choice 
\key Multiplier 
\key Delta 
\default Default Multipliers 
A6 ; \field Dry-Bulb Temperature Range Modifier Schedule 
\object-list DayScheduleNames 
\note the hour/time interval values should specify range from 0.0 to 1.0 of the 
\note maximum temperature 
 

A-3. EnergyPlus input data file for solar penetration calculation 

 
ZONE, 
Zone2, !- Zone Name 
...; 
LIGHTS, 
Zone2, !- Zone Name 
BLDG Sch 3, !- SCHEDULE Name 
1464.375, !- Design Level {W} 
...; 
SURFACE:HeatTransfer, 
Zone2-WallExt-South, !- User Supplied Surface Name 
WALL, !- Surface Type 
Vabs0.50, !- Construction Name of the Surface 
Zone2, !- InsideFaceEnvironment 
...; 
SURFACE:HeatTransfer:Sub, 
Zone2-WallExt-South-Wndo0, !- User Supplied Surface Name 
WINDOW, !- Surface Type 
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DOUBLE PANE WINDOW, !- Construction Name of the Surface 
Zone2-WallExt-South,!- Base Surface Name 
...; 
DAYLIGHTING:DELIGHT, 
DElight Zone2, !- User Supplied DElight Zone Name 
Zone2, !- Host Zone Name 
1, !- Lighting control type 
0.0, !- Min input power fraction for continuous dimming 
0.0, !- Min light output fraction for continuous dimming 
0, !- Number of steps for stepped control 
1.0, !- Probability lighting will be reset when needed 
0.5; !- Gridding Resolution {m2} 
 
DAYLIGHTING:DELIGHT:Reference Point, 
RefPt 4, !- User Supplied Reference Point Name 
DElight Zone2, !- DElight Zone Name 
2.25, !- X-coordinate of reference point {m} 
4.0, !- Y-coordinate of reference point {m} 
0.9, !- Z-coordinate of reference point {m} 
1.0, !- Fraction of zone controlled by reference point 
1000.; !- Illuminance setpoint at reference point {lux} 
 
DAYLIGHTING:DELIGHT:Complex Fenestration, 
CFS-REDIRECT, !- User Supplied Complex Fenestration Name 
BTDF^GEN^LIGHTSHELF^0.25^20.0^1.00^0.5, !- Complex Fenestration Type 
Zone2-WallExt-South, !- Base Surface Name 
Zone2-WallExt-South-Wndo0, !- Doppelganger Surface Name 
0.0; !- Fenestration Rotation {deg}  
 
A-4. Boundary condition setup in Fluent 
 
1. Zones and zone types are initially defined in pre-processor. 
2. To change zone type for a particular zone: 
3. Define Boundary Conditions... 
4. Choose the zone in Zone list. 
5. Can also select boundary zone using right mouse button in 
Display Grid window. 
7. Select new zone type in Type list. 
 
 
8. Explicitly assign data in BC panels. 
- To set boundary conditions for particular zone: 
- Boundary condition data can be copied from one zone to another. 
- Boundary condition data can be stored and retrieved from file. 
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- Boundary conditions can also be defined by UDFs and Profiles. 

 

  

 

9. Setup of velocity Inlet by specify Velocity by Magnitude, Normal to Boundary, Components and 
Magnitude and Direction 

 
 

10. Setup of pressure inlet by specifying total Gauge pressure, total temperature and inlet flow direction 

 
 

11. Setup of pressure outlet by specifying static gauge pressure 
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12. Setup of Wall Boundaries by specifying solid regions, thermal boundary conditions, wall roughness 
and translational or rotational velocity 

 
 
13. Setup of Internal Face Boundaries by specifying Fans, Radiators, Porous jump, preferable over 
porous media and interior walls.  
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