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Abstract

Neural field equations are used to model the spatio-temporal dynamics of the activity in a
network of synaptically coupled populations of neurons in the continuum limit. They exhibit
traveling wave solutions, modeling the propagation of activity. In this thesis we provide a
mathematical framework for the analysis of the influence of noise on these solutions.

The noise influences the dynamics on two scales. First, it causes fluctuations in the
wave profile, and second, it causes a random displacement of the wave from its uniformly
translating position. In order to analyze the stability of the wave under noise, we study the
linear operator that appears in the equation when linearizing around the traveling wave.
We show that this nonlocal operator has a spectral gap by proving a functional inequality,
expressing that perturbations in directions that are orthogonal to the direction of movement
are damped by the neural field dynamics.

By separating the two spatial scales, we obtain a simplified description of the dynamics.
Here we use a dynamic phase adaptation of a reference wave to determine the phase shift
caused by the noise. We prove an expansion of the stochastic traveling wave describing the
effects of the noise to different orders of the noise strength. We prove that, to first order,
the shift in the phase is roughly diffusive, and the fluctuations in the wave profile are given
by an Ornstein-Uhlenbeck process that is orthogonal to the direction of movement.

The neural field model approximates the network behavior in two ways. The local
dynamics in each population are summarized in a mean activity, and the large network
is approximated by a continuum. A possible source of noise on this level are deviations
from the mean field behavior due to the finite size of the populations, so-called finite-size
effects. By describing the evolution of the activity in a finite network of finite populations
by a Markov chain and analyzing the fluctuations of this process, we determine a stochastic
correction term to the mean field equation. We derive a well-posed L2-valued stochastic
neural field equation with a noise term accounting for finite-size effects on the traveling
wave solution, and prove it to be the continuum limit of an associated network of diffusion
processes.





Zusammenfassung

Neuronale Feldgleichungen werden benutzt, um die Dynamik der Aktivität in einem
Netzwerk synaptisch gekoppelter Populationen von Neuronen in Raum und Zeit zu model-
lieren. Eine spezielle Art von Lösungen dieser Gleichungen sind wandernde Wellen, welche
die Ausbreitung der Aktivität beschreiben. In dieser Dissertation führen wir einen mathe-
matischen Rahmen für die Untersuchung des Einflusses von Rauschen auf diese Art von
Lösungen ein.

Das Rauschen beeinflusst die Dynamik auf zwei verschiedenen Skalen. Zum Einen führt
es zu Fluktuationen im Profil der Welle. Zum Anderen verursacht es eine Störung der Ge-
schwindigkeit und somit eine Abweichung von der gleichmäßigen Fortbewegung der Wel-
le. Um die Stabilität der Welle unter Einfluss von Rauschen zu untersuchen, analysieren
wir Eigenschaften des linearen Operators, der in der Gleichung auftritt, wenn wir um die
Wellenlösung linearisieren. Wir zeigen, dass dieser nichtlokale Operator eine Spektrallücke
hat, indem wir eine Funktionalungleichung beweisen. Diese drückt aus, dass Störungen in
Richtungen, die orthogonal zur Bewegungsrichtung liegen, durch die Dynamik des Feldes
ausgeglichen werden.

Indem wir die zwei räumlichen Skalen trennen, erhalten wir eine vereinfachte Darstellung
der Dynamik. Hierbei bestimmen wir durch dynamisches Anpassen der Geschwindigkeit
eines Referenzprofils die durch das Rauschen verursachte Phasenverschiebung. Wir leiten
eine Entwicklung der stochastischen Welle in einem kleinen Parameter ε, der die Stärke des
Rauschens beschreibt, her, an der man den Einfluss der stochastischen Störung zu beliebiger
Ordnung in ε ablesen kann. Wir zeigen, dass die Positionsverschiebung der Welle zu erster
Ordnung in ε in etwa diffusiv ist und dass die Fluktutationen im Wellenprofil durch einen
Ornstein-Uhlenbeck Prozess, der orthogonal zur Bewegungsrichtung ist, beschrieben werden.

Das neuronale Feldmodell stellt in zwei Aspekten nur eine näherungsweise Beschreibung
des Verhaltens des Netzwerkes dar. Die lokale Dynamik in den einzelnen Populationen wird
zusammengefasst in einer mittleren Aktivität und das diskrete Netzwerk wird durch ein
stetiges Feld approximiert. Eine möglich Quelle von Rauschen auf diesem Level sind Ab-
weichungen vom Mittelwert, verursacht durch die endliche Größe der Populationen. Indem
wir die Evolution der Aktivität in einem endlichen Netzwerk endlicher Populationen durch
eine Markovkette beschreiben und deren Fluktuationen analysieren, leiten wir einen sto-
chastischen Korrekturterm her, der die Effekte dieser Abweichungen auf wandernde Wellen
beschreibt. Wir erhalten eine wohlgestellte L2-wertige stochastische neuronale Feldgleichung
und zeigen, dass diese Kontinuumsgrenzwert eines zugehörigen Netzwerkes von Diffusions-
prozessen ist.
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Chapter 1

Introduction

1.1 Neural Fields

We start by giving a very brief overview over the neuroscientific background and introduce
the models that will be considered in this thesis. Most of the content of this chapter is based
on chapter 2 in [39], chapters 10, 11, 12 in [28], chapters 5 and 6 in [33], and chapters 6 and
7 in [10], where also a lot of additional information can be found.

1.1.1 Neurons

A neuron is an electrically excitable cell, the signaling unit of the nervous system. The
human brain is estimated to contain on the order of 1011 neurons. They are interconnected
and communicate by sending electrical signals. A neuron receives input from other neurons
or from external stimuli (for example visual, audible, olfactory stimuli) on the dendrites.
The input is processed in the soma and a response is sent along the axon and transmitted
to other neurons via synapses.

Figure 1.1: A schematic neuron
(Notjim, Wikimedia Commons, licensed un-
der creative commons by-sa 3.0; URL
https:creativecommons.org/licenses/by-sa/3.0/deed.en)
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There is a difference between the electric potential inside and outside the neuron, called
the membrane potential. This is due to a difference in ion concentrations, which is main-
tained by means of the selective permeability of the cell membrane. The resting value of
the membrane potential is the difference between the potential inside and outside the cell
when it is at rest. Its value is approximately −70mV . The term excitable means that the
neuron’s membrane potential can change rapidly from its resting value to an excited state
of significantly higher voltage (spiking).

The input a neuron receives from a presynaptic cell or due to an external stimulation
leads to a depolarization or hyperpolarization of the cell. This causes the activation or
inactivation of voltage-gated ion channels in the cell membrane, controlling the flux of ions
into and out of the cell. If the membrane potential crosses a certain threshold, these ionic
mechanisms lead to the generation of an action potential. It propagates along the axon
and causes the release of neurotransmitter at the synapses. This leads to the activation
of receptors in the post-synaptic cell and causes a change in the potential, called the post-
synaptic potential.

Figure 1.2: Typical form of an action po-
tential

Such an action potential was first recorded by Hodgkin and Huxley in 1939 in a squid
giant axon [34]. They were also able to describe the mechanism underlying the generation
of the action potential by a system of four coupled differential equations [35]. One equa-
tion describes the evolution of the membrane potential, while the other three govern the
activation or inactivation of ion channels.

The form and amplitude of the action potential is basically always the same. To convey
information, other properties of the spiking network, such as the timing of action potentials,
their path in the network, or patterns in the collective signaling of many neurons, must
therefore be relevant.
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1.1.2 Noise

There are several evidences for ‘noise’ in neural systems. There is variability in the responses
of neurons to external stimuli from trial to trial. Spontaneous activity is observed in the
absence of any stimulus. While deterministic models produce regular spike trains, the spike
trains recorded in in vivo measurements are very irregular.

Several sources of noise have been identified. A source of intrinsic noise is the so-called
channel noise. While in the Hodgkin-Huxley model the proportion of open ion channels
is treated as a deterministic variable, the opening and closing of the channels is really
a probabilistic event. The implicit assumption is that their number is so large that the
proportion of open channels can be approximated by the probability of a channel being
open at a given potential.

A source of extrinsic noise is the so-called synaptic noise. A neuron receives input from
many other neurons, not all of which may be relevant. Input coming from neurons outside
the functional unit may rather be considered as background noise.

Other sources of noise are the spontaneous release of neurotransmitter at synapses, caus-
ing small changes in the potential of post-synaptic neurons, or transmission failures.

Noise has important effects. While in deterministic models identical neurons receiving the
same input all respond in exactly the same way, noise allows for variability. In particular it
can lead to sub-threshold firing. The neuron’s firing rate as a parameter of the input current
becomes a continuous variable and allows to track time-changing stimuli.

1.1.3 Population Models

Networks of neurons of growing size quickly become unwieldy. Even if one uses simpler
models than the Hodgkin-Huxley model, the analysis becomes involved from a computational
as well as from an analytical perspective. It may therefore be useful to zoom out from the
microscopic view and describe populations of neurons in terms of more macroscopic variables.
This is the approach used in so-called population models or firing rate models. Instead of
keeping track of single neuron spiking, a population activity is identified as an average over
a group of neurons.

This corresponds to measurement techniques such as the electroencephalography (EEG).
With extracellular electrodes synchronized activity in many neurons is detected, while single
spiking activity cannot be identified.

We consider a population of N neurons. We say that a neuron is ‘active’ if it is in the
process of firing an action potential such that its membrane potential is larger than some
threshold value κ. If ∆ is the width of an action potential, then a neuron is active at time t
if it fired a spike in the time interval (t−∆, t]. We define the population activity at a given
time t as the proportion of active neurons,

aN (t) = # neurons that are active at time t
N

∈ {0, 1
N
,

2
N
, . . . , 1}.
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We assume that all neurons in the population are identical and receive the same input. If
the neurons fire independently from each other, then for a constant input current I,

aN (t) N→∞−−−−→ F (I),

where F (I) is the probability that a neuron receiving constant stimulation I is active. In
the infinite population limit, the population activity is thus related to the input current via
the function F , called the gain function. Sometimes one also defines F as a function of the
potential u, assuming that the potential is proportional to the current as in Ohm’s law. F
is typically a nonlinear function. It is usually modeled as a sigmoid, for example

F (x) = 1
1 + e−γ(x−κ)

for some γ > 0 and some threshold κ > 0, imitating the threshold-like nature of spiking
activity.

Sometimes a firing rate is considered instead of a probability. We define the population
firing rate λN as

λδ,N (t) = # spikes in the time interval (t− δ, t]
δN

.

If δ = ∆, then ∆λδ,N (t) = aN (t). At constant potential u, limδ→0 limN→∞ λδ,N (t) = λ(u),
where λ(u) is the single neuron firing rate. Note that λ ≤ 1

∆ . The firing rate is related to
the probability F (u) via

F (u) ≈ λ(u)∆.

If the stimulus varies in time, then the activity may track this stimulus with some delay
such that

a(t+ τa) = F (u(t))

for some time constant τa. Taylor expansion of the left-hand side gives an approximate
description of the (infinite population) activity in terms of the differential equation

τaȧ(t) = −a(t) + F (u(t)),

to which we refer as the rate equation.
Population models describe the evolution of the activity in a network of synaptically

coupled populations of neurons. Instead of modeling explicitly the spiking behavior of all
the neurons, each population’s behavior is summarized in one variable, the activity, and the
description of the network dynamics is thus reduced to one equation for each population
in the network. In the following subsection, we give a heuristic derivation of a population
model.
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Heuristic Derivation

Consider a network of P populations, each consisting of N neurons. We assume that each
presynaptic spike in population j at time s causes a postsynaptic potential

h(t− s) = 1
N
wij

1
τm

e−
1
τm

(t−s)

in population i at time t. Here the (wij) are weights characterizing the strength of the
synaptic connections between populations i and j, and τm is the membrane time constant,
describing how fast the membrane potential relaxes back to its resting value.

Under the assumption that all inputs add up linearly, the potential in population i at
time t is given as

uNi (t) =
P∑
j=1

wij

∫ t

−∞

1
τm

e−
1
τm

(t−s)aNj (s)ds.

In the infinite population limit we obtain

ui(t) =
P∑
j=1

wij

∫ t

−∞

1
τm

e−
1
τm

(t−s)aj(s)ds, (1.1)

where
τaȧj(t) = −aj(t) + F (uj(t)).

The behavior of the coupled system (ui, ai) depends on the two time constants, τm and τa.
We consider two different regimes in which the model can be reduced to just one of the two
variables, u or a.

Case 1: τm � τa → 0

In this regime we can assume that the activity reacts to changes in input immediately such
that aj(t) = F (uj(t)). Then (1.1) can be closed in the variables ui and we obtain

ui(t) =
P∑
j=1

wij

∫ t

−∞

1
τm

e−
1
τm

(t−s)F (uj(s))ds. (1.2)

Differentiation yields the system of ordinary differential equations

d

dt
ui(t) = 1

τm

(
− ui(t) +

P∑
j=1

wijF (uj(t))
)
, (1.3)

which we will call the voltage-based neural network equation.



1.1 Neural Fields 17

Case 2: τa � τm → 0

By (1.1),

ai(t+ τa) = F

( P∑
j=1

wij

∫ t

−∞

1
τm

e−
1
τm

(t−s)aj(s)ds
)
.

Letting τm → 0 we obtain

ai(t+ τa) = F

( P∑
j=1

wijaj(t)
)
.

Using again that ai(t+τa) ≈ ai(t)+τaa′i(t), we end up with the system of ordinary differential
equations

τa
d

dt
ai(t) = −ai(t) + F

( P∑
j=1

wijaj(t)
)
, (1.4)

which we will call the activity-based neural network equation.

1.1.4 The Neural Field Equation

If the number of populations is large, the system of differential equations describing the
evolution of the potentials ui or the activities ai, respectively, can be further simplified by
considering a spatially distributed network and taking the continuum limit. We embed the
populations into an interval on the real line. Letting the size of the interval and the density
of populations go to infinity, we obtain a continuous model

τm
∂

∂t
u(x, t) = −u(x, t) +

∫ ∞
−∞

w(x, y)F (u(y, t))dy, (1.5)

or, in the activity-based setting,

τa
∂

∂t
a(x, t) = −a(x, t) + F

(∫ ∞
−∞

w(x, y)a(y, t)dy
)
. (1.6)

The P -dimensional system is thus reduced to a function-valued evolution equation. The
difficulty in the analysis lies in the nonlocal nature of the equation.

It might seem more natural to embed the populations in a domain in R3. In this thesis
we only consider the simplified one-dimensional model. It is argued that this can be seen
as an approximation for the dynamics of the activity in cortical columns. A very thin layer
of neurons can be treated as two-dimensional. If the neurons are organized according to
functionality in vertical columns, then each column may be treated as a population, indexed
by its position on the real line (cf. [10], 6.5).

Neural field equations were first introduced by Amari in the voltage-based setting [1],
and by Wilson and Cowan in the activity-based setting [61], [62]. Since then they have been
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used widely to model the propagation of activity in large networks of populations of neurons.
While of a relatively simple form, they exhibit a variety of spatiotemporal patterns. In this
thesis we focus on the analysis of traveling wave solutions, which will be introduced in the
next section. Other examples include bump solutions ([40, 45]), traveling pulses [51, 32], or
spiral waves ([36, 44]), see also [21].

Neural field models have found application to various phenomena such as wave propa-
gation in brain slices [51], binocular rivalry [14], working memory [45], hallucinations [26],
[11], and many others. For details on neural field modeling and many related references we
refer to the reviews [25], [9], and the books [28], [10], [22].

1.1.5 Traveling Waves

Assume that the strength of the synaptic connections between two populations depends only
on their distance such that w(x, y) = w(|x− y|), and that

∫∞
−∞ w(|x|)dx = 1. Assume that

the gain function F is such that x 7→ F (x)−x is bistable. That is, x 7→ F (x)−x has exactly
three zeroes 0 < a1 < a < a2 < 1, and that F ′(ai) < 1, i = 1, 2, and F ′(a) > 1.

Then the constant functions a1, a, and a2 are stationary solutions to the neural field
equation (1.5). a1 and a2 are stable, while a is unstable. a1 represents a stable state of low
activity, where basically all the neurons are inactive, and a2 corresponds to a stable state
of high activity, where basically all the neurons are active and the recurrent activity keeps
them active.

It was proven in 1992 by Ermentrout and McLeod [27] that, under certain additional
assumptions on the parameters, there exists a unique monotone traveling wave solution to
the neural field equation (1.5) connecting the two stable states. That is, there exists a unique
monotone wave profile û : R→ R and a unique wave speed c ∈ R such that

uTW (x, t) = û(x− ct)

is a solution to (1.5), and

lim
x→−∞

û(x) = a1, lim
x→∞

û(x) = a2.

Note that the traveling wave solution is determined only up to translation: for any a ∈ R,
(x, t) 7→ û(x− a− ct) is also a solution. The traveling wave profile satisfies the differential
equation

− cûx = −û+ w ∗ F (û). (1.7)

The traveling wave solution can be interpreted as activity (or inactivity, depending on the
value of c) spreading through the populations. This corresponds to the wave-like propagation
of activity that has been observed in brain slice experiments and in in-vivo recordings, see
for example [51, 52, 56].
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Figure 1.3: Traveling wave at different times t

The wave profile û and the wave speed c are usually unknown. In [27] it is proven that
the sign of c is the same as the sign of∫ a2

a1

x− F (x)dx =
∫ a

a1

x− F (x)dx−
∫ a2

a

F (x)− xdx. (1.8)

Whether the activity is spreading or dying out thus depends on whether the mass of |x−F (x)|
is concentrated near a2, in which case the wave is ‘pulled up’, or near a1, in which case the
wave is ‘pulled down’.

Figure 1.4: A situation where c > 0

Example: Heaviside Nonlinearity

Denote by H the Heaviside function,

H(x) = 1[0,∞)(x) =

0 x < 0

1 x ≥ 0
.

In the case where the gain function F is given as

F (x) = H(x− κ)
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for some threshold 0 < κ < 1, a traveling front solution to (1.5) can be calculated explicitly.
We fix a translation of the wave profile by setting û(0) = κ. Assume that c 6= 0. By

(1.7), for x ≥ 0,

û(x) = e
1
cxκ− 1

c

∫ x

0
e

1
c (x−y)w ∗H(û(·)− κ)(y)dy

= e
1
cxκ− 1

c

∫ x

0
e

1
c (x−y)

∫ ∞
0

w(y − z)dzdy,

and for x ≤ 0,

û(x) = e
1
cxκ+ 1

c

∫ 0

x

e
1
c (x−y)w ∗H(û(·)− κ)(y)dy

= e
1
cxκ+ 1

c

∫ 0

x

e
1
c (x−y)

∫ ∞
0

w(y − z)dzdy.

Set W (y) =
∫∞

0 w(y − z)dz. If w(x) = 1
2σ e
− |x|σ , then

W (y) =

1− 1
2e
− yσ y ≥ 0

1
2e

y
σ y ≤ 0

,

and

û(x) =

1− σ
2(σ+c)e

− 1
σ x + e

1
cx(κ− 1 + σ

2(σ+c) ) x ≥ 0(
κ− σ

2(σ−c)

)
e

1
cx + σ

2(σ−c)e
1
σ x

If c > 0, then û is bounded if and only if κ − 1 + σ
2(σ+c) = 0. Similarly, if c < 0, then û is

bounded if and only if κ = σ
2(σ−c) . This implies that

c =

σ
(2κ−1)
2−2κ c > 0

σ 2κ−1
2κ c ≤ 0.

In particular c > 0 if and only if κ > 1
2 (cf. (1.8)).

1.1.6 Stochastic Neural Field Equations

As outlined above, the communication of neurons is subject to noise. It is therefore interest-
ing to consider stochastic versions of the neural field equation (1.5). While several sources
of noise have been identified on the single neuron level (cf. subsection 1.1.2), it is not clear
how this translates to the level of populations, in particular because neural field equations
have not been rigorously derived from single neuron models.

A usual approach is therefore to add a Gaussian noise term to the equation to account
for any source of noise in the system.

Since the neural field equations are (heuristically) derived as mean field limits, the usual
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sources of noise should have averaged out on this level. However, the equations are derived
for the infinite population limit. The actual finite size of the populations causes deviations
from the mean-field behavior. A possible way to determine a suitable stochastic correction
term is therefore to study the nature of these finite-size effects.

1.2 Content of the Thesis

This thesis deals with the modeling and analysis of stochastic neural field equations. The
main goal is to provide a mathematical framework allowing for the analysis of the influence
of noise on traveling wave solutions. This involves the following questions:

1) How should one model the noise in the neural field?

2) In which sense does the stochastic neural field equation possess a solution?

3) In which way does the continuum model approximate the behavior of the network?

4) How can the influence of noise on spatio-temporal patterns be analyzed?

5) How can the stability of the wave under noise be expressed?

The main contribution to the analysis of stochastic neural fields is the work by P. Bressloff
and his coworkers. They have analyzed the influence of noise on diverse phenomena that
can be observed in neural fields. We refer to his book [10] and the review [9] for details.

However the methods applied are usually not rigorous. The mathematically rigorous
modeling of stochastic neural fields has received more attention recently. This includes
the work of M. Riedler and E. Buckwar ([54], questions 1, 3), J. Krüger and W. Stannat
([42], questions 2, 4, 5), J. Touboul ([59], question 3), C. Kuehn and M. Riedler ([43], large
deviations), O. Faugeras and J. Inglis ([30], question 2), J. Inglis and J. MacLaurin ([37],
questions 4, 5), O. Faugeras, J. Touboul and coworkers ([2, 7, 60, 31] (mean field limits)).
Their work will be reviewed in more detail when it becomes relevant in the respective
chapters.

Work that does not consider stochastic neural fields but is related in mathematical meth-
ods includes the work by W. Stannat [57, 58], where the stochastic stability of traveling wave
solutions to reaction-diffusion equations is studied. The approach of obtaining a simplified
description of the dynamics in stochastic evolution equations by separating different spatial
or temporal scales and approximating to a certain order of the noise strength (cf. Chapter
5) is related to D. Blömker’s work on amplitude equations ([6, 5] are examples among many
others), .

1.2.1 Structure and Main Results

In the following we outline the structure of this thesis, highlighting in particular the main
results. Chapter 5 and sections 4.1 and 4.2 are based on the preprint [46].
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1. In Chapter 2 we introduce the mathematical framework in which we will work. We
model the noise by a Q-Wiener process and solve the resulting stochastic neural field
equation. We introduce the operators that will be subject of our analysis in what follows.
In particular we give a possible answer to question 2, using the ideas already presented
in [42]. We introduce the notion of the phase of a wave-like function and explain our
dynamic approach to determining the phase of the stochastic wave.

2. The question of the stability of the traveling wave solution is related to spectral properties
of the linear operator appearing in the neural field equation when linearizing around the
traveling wave. In Chapter 3 we show that this nonlocal operator, denoted by L#, has a
spectral gap in L2(ρ) for a certain density ρ by proving the following functional inequality.

Main Theorem 1. Under rather general assumptions, there exists κ > 0 such that for
all v ∈ H1(ρ),

〈L#v, v〉ρ ≤ −κ
(
‖v‖2ρ − 〈v, ûx〉2ρ

)
. (1.9)

This inequality expresses that the neural field dynamics is contractive in directions or-
thogonal to ûx, the direction of movement of the wave. It will be the basis for the analysis
of the stability of the traveling wave under noise and an answer to question 5.

While it is known that L# has a spectral gap as an operator on C0, the space of continuous
functions vanishing at infinity (cf. [3]), to our knowledge, the L2(ρ)-spectral gap is a
new result, and the problem has not been considered from the perspective of functional
inequalities before. We show that this approach allows for a clear and general proof and
is in particular amenable to a stochastic setting.

The result is not restricted to the neural field case, but applies to a general class of
nonlocal evolution equations possessing traveling wave solutions.

3. In Chapter 4, we analyze a specific example in detail, namely the case where the strength
of the synaptic connections decays exponentially with the distance, that is, where the
kernel is given as w(x) = 1

2σ e
− |x|σ for some σ > 0. In particular, exploiting the fact that

w ∗ h = (I − σ2∆)−1h,

we compute explicitly the exponential rates of decay of the derivative of the wave profile
ûx and of the associated adjoint eigenfunction.

All the results presented in this thesis apply to this classical example. The assumptions
we make should hold in a very general context, but the nonlocal nature of the neural field
equation makes the analysis of the properties of the traveling wave solution difficult.

4. Chapter 5 is devoted to the analysis of the effects of the noise on the traveling wave
solution and thus an answer to questions 4 and 5. The noise influences the dynamics on
two scales. First it causes fluctuations in the wave profile, and second in the phase of the
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wave, that is, the wave is shifted randomly from its uniformly translating position. A
separation of these two scales allows us to obtain a simplified description of the stochastic
dynamics. We derive an expansion of the solution u(x, t) to the stochastic neural field
equation in the noise strength ε.

Main Theorem 2. Up to a certain stopping time τ satisfying P (τ = T ) ε→0−−−→ 1 for any
fixed time horizon T , u(x, t) can be decomposed as

u(x, t) = û(x− ct− C(t)) + εv0(x, t) + ε2v1(x, t) + . . .+ εkvk−1(x, t) + rk(x, t),

C(t) = εC0(t) + ε2C1(t) + . . .+ εkCk−1(t),

where the vk and Ck are independent of ε and are given explicitly as the solutions to
stochastic evolution/differential equations, and where the rest terms rk are of higher order
in ε. The Ck−1 describe the phase shift caused by the noise to order εk, and the vk describe
the fluctuations in the wave profile.

An approximate description of u is thus given by

u(x, t) ≈ û(x− ct− εC0(t)) + εv0(t).

We will see that C0 is roughly diffusive and that v0 is an Ornstein-Uhlenbeck process
orthogonal to the direction of movement ûx. This also expresses the stability of the
traveling wave.

The problem of describing the effects of noise on the traveling wave has already been
considered in [15]. Bressloff and Webber decomposed the solution into a shifted wave
profile and fluctuations around it, and by carrying out a formal expansion, supported by
numerical simulations, found that the phase shift is diffusive to first order of the noise
strength.

From a mathematically rigorous perspective, in [37], Inglis and MacLaurin describe the
phase of the stochastic wave by a stochastic differential equation and use it to study
stability properties. They do not derive an expansion or give an explicit description of
the influence of the noise.

To our knowledge, our result, building on work in [42], is the first mathematically rigorous
description of the effects of noise to different orders of the noise strength.

5. The neural field equation approximates the network behavior in two ways. First, in the
spirit of the law of large numbers, it describes the mean field behavior of the coupled
populations as their size tends to infinity. Second, the network is approximated by a
continuum. In Chapter 6 we make these two approximation steps explicit. In order to
describe deviations from the mean field behavior for finite population sizes, we set up a
Markov chain to describe the evolution of the activity in the finite network, extending a
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model by Bressloff and Newby [13]. The transition rates are chosen in such a way that
we obtain the voltage-based neural network equation in the infinite population limit. We
analyze the fluctuations of the Markov chain in order to determine a stochastic correction
term describing finite-size effects (question 1). We set up an approximating system of
diffusion processes and prove that a stochastic neural field equation is obtained in the
continuum limit (question 3).

Main Theorem 3. The L2-valued solution to the stochastic neural field equation

du(x, t) = −u(x, t) + w ∗ F (u(t))(x) + σ(u(t), t)(x)dW (t),

with a noise term accounting for finite-size effects on traveling wave solutions, is obtained
as the strong continuum limit of an associated finite-dimensional network.

The model introduced in [13] allows to determine finite-size effects in the activity-based
neural field equation. A candidate for a stochastic correction term was rigorously derived
in [54] using convergence theorems for infinite-dimensional Markov jump processes, but
the question of the well-posedness of the resulting stochastic neural field equation was
left open. A detailed comparison of our approach with [13] and [54] will follow in Chapter
6 below.

To our knowledge, a well-posed stochastic neural field equation has not been derived
in this context before, and finite-size effects in the voltage-based model have not been
described up to now.

1.2.2 Outlook

Stochastic neural field equations constitute a wide area of research. This thesis takes a first
step in providing a mathematical framework for their analysis. There are many interesting
questions and phenomena related to stochastic neural fields that go beyond what is covered
here.

A problem that is directly related is the analysis of the long-time behavior of the traveling
wave. It has recently been considered in [37] by J. Inglis and J. MacLaurin. Under assump-
tions related to the L2-spectral properties of the system they derive a long-term stability
result. However, it is not clear whether or in which cases the assumptions are satisfied. The
spectral gap we prove (cf. Chapter 3) allows for a stability analysis and for a description of
the influence of the noise up to a fixed time horizon T (cf. Chapter 5), but on larger time
scales we lose control over the nonlinear part of the dynamics in the weighted space L2(ρ).
We derive a long-term L2-stability result for small wave speeds c (cf. section 3.6) but have
not been able to generalize it to arbitrary values of c.

A related question is how noise influences the dynamics on larger time scales. Many
phenomena related to traveling waves in neural fields, such as stimulus locking or coupling
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of wave fronts, occur on a larger time-scale than considered in this thesis. A formal analysis
of the effects of noise in such situations has recently been carried out in [12].

Another interesting problem is the analysis of the influence of noise on more general
patterns, such as bumps or traveling pulses, and in higher-dimensional neural field equations.
The methods presented here rely on the monotonicity of the traveling wave. An adaptation
to other patterns is therefore not straightforward.



Chapter 2

Mathematical Setting

In this section, we introduce the mathematical setting in which we will work. We model the
noise by a Q-Wiener process and solve the stochastic neural field equation. We identify a
‘stochastic traveling wave solution’ and introduce the operators and measures that will be
studied in the following chapters.

2.1 Notation

We denote by Lp the Lebesgue space Lp(R) equipped with the Lebesgue measure and by
‖ ·‖p the associated norm. We will usually work in L2 with norm and inner product denoted
by ‖ · ‖ and 〈·, ·〉. We denote by Hk = Hk(R) = W k,2(R) the Sobolev space of k times
weakly differentiable functions h satisfying

∑k
i=0 ‖h(i)‖2 <∞ equipped with the norm and

inner product

‖h‖Hk =
( k∑
i=0
‖h(i)‖2

) 1
2
, 〈g, h〉Hk =

k∑
i=0
〈g(i), h(i)〉.

For a continuous density µ : R → (0,∞) we denote by Lp(µ) and Hk(µ) the Lebesgue and
Sobolev spaces with weight µ and associated norms

‖h‖Lp(µ) =
(∫

hp(x)µ(x)dx
) 1
p

, ‖h‖Hk(µ) =
( k∑
i=0
‖h(i)‖2L2(µ)

) 1
2

.

The L2(µ)-norm will also simply be denoted by ‖ · ‖µ.
We say that a bounded linear operator A : H → H, where H is a separable Hilbert

spaces, is of finite trace, if for any orthonormal basis (ek) of H,

trA :=
∑
k

〈Aek, ek〉H <∞.
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If U is another separable Hilbert space, then a bounded linear operator A : U → H is said
to be Hilbert-Schmidt if

∑
k ‖Aek‖2H < ∞ for an orthonormal basis (ek) of U . We denote

by L2(U,H) the space of Hilbert-Schmidt operators from U to H equipped with the norm

‖A‖L2(U,H) :=
(∑

k

‖Aek‖2H
) 1

2

.

In both cases the norm is independent of the choice of basis. We simply write L2 for the space
L2(L2, L2). Given a bounded linear operator Q : U → U , the space Q(U) is a Hilbert space
with inner product 〈Q−1u,Q−1v〉U . When the reference to Q is clear we write L0

2(U,H) for
the space L2(Q(U), H) and simply L0

2 if U = H = L2.
We fix a probability space (Ω,F , P ). We denote by E the expectation with respect to

P and by Lp(Ω) the space of real-valued random variables X on Ω satisfying ‖X‖Lp(Ω) :=
E(|X|p)

1
p < ∞. We denote by Lp(Ω;H) the space of random variables on Ω with values

in the Hilbert space H for which E(‖X‖pH)
1
p < ∞, and by Lp(Ω × [0, T ];H) the space of

H-valued stochastic processes satisfying E
( ∫ T

0 ‖X(t)‖pHdt
) 1
p

<∞.

2.2 A Stochastic Neural Field Equation

As mentioned above, it is not clear what is the nature and consequently also what is the
right representation of the noise in neural fields. We therefore start by adding an abstract
stochastic correction term to the neural field equation and consider the stochastic evolution
equation

du(x, t) =
(
− u(x, t) + w ∗ F (u(t))(x)

)
dt+ εσ̃(t, u(t))dW (x, t), (2.1)

where W is a Q-Wiener process, ε > 0 is the strength of the noise, and σ̃ is a diffusion
coefficient. Details on the theory of Q-Wiener processes can be found in [23] or [53].

Usually solutions to the neural field equation are not L2-valued - think of the constant
solutions a1 and a2, or of the traveling wave, of course. In [30], Faugeras and Inglis proved
existence and uniqueness of a (mild) L2(µ)-valued solution to a stochastic neural field equa-
tion for densities µ ∈ L1 ∩ L∞ for which there exists a constant Cµ such that

w ∗ µ ≤ Cµµ. (2.2)

They show that, under very general assumptions, such a measure can be constructed using
the Fourier transform of the kernel w.

Here we follow an approach already used in [57], [58], and [42], that will allow us to
work in the unweighted space L2. Later, in section 2.4, we introduce a weight ρ that is
naturally associated to the problem. We will see that typically ρ satisfies (2.2), but grows
exponentially so that it is neither bounded nor integrable.

Since we are interested in stochastic perturbations of the traveling wave solution, we
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formally define
v(x, t) = u(x, t)− uTW (x, t)

to be the difference between any solution u to the neural field equation and the deterministic
traveling wave. Then formally, v satisfies the stochastic evolution equation

dv(x, t) =
(
−v(x, t)+w∗

(
F (uTW (t)+v(t))−F (uTW (t))

)
(x)
)
dt+εσ(t, v(t))(x)dWt, (2.3)

with σ(t, v) = σ̃(t, v + uTW (t)). This equation can be expected to possess an L2-valued
solution, and then uTW (x, t) + v(x, t) corresponds to a ‘stochastic traveling wave solution’.

In order to give a meaning to (2.1) we start by making precise assumptions on the
parameters.

2.2.1 Assumptions on the Parameters

The gain function F

We assume that

(i) F ≥ 0, limx→−∞ F (x) = 0, limx→∞ F (x) = 1

(ii) F (x)− x has exactly three zeros 0 < a1 < a < a2 < 1

(iii) F ∈ Ck for some k ≥ 2 and the derivatives are bounded

(iv) F ′ > 0, F ′(a1) < 1, F ′(a2) < 1, F ′(a) > 1

The kernel w

We assume that

(i) w ≥ 0 and w is homogeneous: w(x, y) = w(x− y)

(ii) w is even and
∫
w(x)dx = 1

(iii) w is absolutely continous and wx ∈ L1

Sometimes we will also assume that∥∥∥wx
w

∥∥∥
∞

:= sup
x:w(x)>0

∣∣∣wx(x)
w(x)

∣∣∣ <∞.
A classical choice for w is

w(x) = 1
2σ e

− |x|σ

for some σ > 0. We will refer to this example as the exponential example. It will be analyzed
in detail in Chapter 4.
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The traveling wave

Assumption (iv) on F implies that a1 and a2 are stable fixed points of the voltage-based
neural field equation (1.5), while a is an unstable fixed point. It has been shown in [27] that
under these assumptions there exists a unique monotone traveling wave solution to (1.5)
connecting the stable fixed points (and in [18], that traveling wave solutions are necessarily
monotone). That is, there exists a unique wave profile û : R → [0, 1] with ûx > 0 and a
unique wave speed c ∈ R such that uTW (x, t) := û(x− ct) is a solution to (1.5), i.e.

− c∂xuTWt (x) = ∂tu
TW
t (x) = −uTWt (x) + w ∗ F (uTWt )(x), (2.4)

and
lim

x→−∞
û(x) = a1, lim

x→∞
û(x) = a2.

As also pointed out in [27] (Thm. 3.4), we can without loss of generality assume that c ≥ 0
in the following sense: if (û, c) is the traveling wave associated with w,F , then (ũ,−c), where
ũ(x) = 1 − û(−x), is the traveling wave associated with w, F̃ , where F̃ (x) = 1 − F (1 − x)
satisfies the same assumptions as F , the fixed points of F̃ (x)− x being 1− a2, 1− a, 1− a1.

Note that ûx ∈ L2(R), since in the case c > 0∫
û2
x(x)dx =

∫
ûx(x)1

c
(û(x)− w ∗ F (û)(x)) dx

≤ 1
c

(
‖û‖∞ + ‖F (û)‖∞

∫
w(x)dx

)∫
ûx(x)dx = 2

c
a2(a2 − a1),

and in the case c = 0,∫
û2
x(x)dx =

∫
ûx(x) wx ∗ F (û)(x)dx ≤ ‖wx‖1a2(a2 − a1).

(I − c∂x)û = w ∗ F (û) implies that û can be represented as

û(x) =
∫ ∞

0
e−sw ∗ F (û)(x+ cs)ds. (2.5)

By (2.4), the regularity of F and w determine that of û. For example, if F ∈ Ck, then
û ∈ Ck+1, since

−cû(k+1)(x) = −û(k)(x) + w ∗ ((F (û))(k))(x).

The noise

Let Q : L2 → L2 be a symmetric non-negative bounded linear operator and fix some time
horizon T . We consider two different cases.
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Assumption (A).

(1) Additive noise: Q is of finite trace and σ(t, v) ≡ I is the identity operator on L2. For
example, Q 1

2 may be given by a symmetric integral kernel,

Q
1
2 v(x) =

∫
q(x, y)v(y)dy,

with q(x, y) ∈ L2(R× R). Then, by Parseval’s identity,

trQ =
∑
k

‖Q 1
2 ek‖2 =

∫ ∫
q2(x, y)dydx <∞.

(2) Multiplicative noise: σ : [0, T ]× L2 → L0
2(L2, L2), Lipschitz-continuous in the second

variable uniformly in t ≤ T . For example, Q may be given by a symmetric integral
kernel q(x, y) satisfying supx∈R(‖q(x, ·)‖2 + ‖q(x, ·)‖1) <∞, and σ(t, v) may be given
by a multiplication operator associated to σ̄(t, v) ∈ L2, where σ̄ is Lipschitz continuous
in v uniformly in t ≤ T . Then Q 1

2 : L2 → L2 since by the Cauchy-Schwarz inequality

‖Q 1
2 v‖2 ≤

∫ ∫
q(x, y)dy

∫
q(x, y)v2(y)dydx ≤ sup

x
‖q(x, ·)‖21‖v‖2,

and σ(t, v) ∈ L0
2 since by Parseval’s identity

‖σ(t, v)‖2L0
2

=
∑
k

‖σ̄(t, v)Q 1
2 ek‖22 =

∫
σ̄(t, v)2(x)‖q(x, ·)‖2dx

≤ sup
x
‖q(x, ·)‖2‖σ̄(t, v)‖2 <∞.

The Lipschitz continuity follows similarly since

‖σ(t, v1)− σ(t, v2)‖2L0
2
≤ sup

x
‖q(x, ·)‖2‖σ̄(t, v1)− σ̄(t, v2)‖2.

Sometimes we will ask for some more regularity and assume the following.

Assumption (B).

(1) Additive noise: Q
1
2 ∈ L2(L2, H1) and σ(t, v) ≡ I. For example, Q

1
2 may be

given by a symmetric integral kernel q(x, y) satisfying supx ‖∂xq(x, ·)‖ <∞ and∫
‖q(x, ·)‖2H1dx <∞. Then d

dxQ
1
2 v =

∫
qx(x, y)v(y)dy for all v ∈ L2, and for an or-

thonormal basis (ek) of L2, by Parseval’s identity,

‖Q 1
2 ‖2L2(L2,H1) =

∑
k

∥∥∥∥∫ q(x, y)ek(y)dy
∥∥∥∥2

H1

=
∫
‖q(x, ·)‖2 + ‖∂xq(x, ·)‖2dx =

∫
‖q(·, y)‖2H1dy <∞.
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(2) Multiplicative noise: σ : [0, T ] × H1 → L0
2(L2, H1), Lipschitz-continuous in v uni-

formly in t. For example, Q 1
2 may be given by a homogeneous kernel q ∈ H1 sat-

isfying q, qx ∈ L1 and σ(t, v) may be given by a multiplication operator associated to
σ̄ : [0, T ]×H1 → H1, Lipschitz continuous in the second variable uniformly in t ≤ T .
Then for v ∈ L2, Q 1

2 v ∈ H1 since

‖Qv‖2H1 ≤
∫ ∫

q(x− y)dy
∫
q(x− y)v2(y)dy +

∫
|qx(x− y)|dy

∫
|qx(x− y)|v2(y)dydx

= (‖q‖21 + ‖qx‖21)‖v‖2

and σ(t, v) ∈ L0
2(L2, H1) since for an orthonormal basis (ek) of L2, by Parseval’s iden-

tity,

‖σ(t, v)‖2L0
2(L2,H1)

=
∑
k

∫
σ̄2(t, v)(x)

((∫
q(x− y)ek(y)dy

)2
+
(∫

qx(x− y)ek(y)dy
)2)

dx

+
∫ ( d

dx
σ̄(t, v)(x)

)2
(∫

q(x− y)ek(y)dy
)2
dx

= ‖q‖2H1‖σ̄(t, v)‖2 + ‖q‖2
∥∥∥ d
dx
σ̄(t, v)

∥∥∥2
<∞.

The covariance operator Q defines a Q-Wiener process W on (Ω,F ,P). Q describes the
correlations of the process W . If Q 1

2 is given by an integral kernel q(x, y), then formally,

”E(Wt(x)Ws(y)) = E(〈δx,Wt〉〈δy,Ws〉) = s ∧ t
∫
q(x, z)q(z, y)dz”.

Note that if Q is of finite trace, then the correlations cannot be translation invariant. How-
ever, in the multiplicative noise cases it is possible to choose q(x, y) = q̄(x− y).

2.2.2 Solving the SNFE

Proposition 2.2.1. (i) If Q and σ satisfy assumption (A), then for every initial condi-
tion η ∈ L2, there exists a unique strong L2-valued solution v to (2.3). v admits a
continuous modification. For all p ≥ 1,

E
(

sup
0≤t≤T

‖v(t)‖p
)
<∞.

u(x, t) := uTW (x, t) + v(x, t) is a solution to (2.1).

(ii) If η ∈ H1, Q and σ satisfy assumption (B), and
∥∥wx
w

∥∥
∞ < ∞, then v takes values in

H1 and for any p ≥ 1,
E
(

sup
0≤t≤T

‖v(t)‖pH1

)
<∞.
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Proof. (i) It is enough to show that the drift B : [0, T ]× L2 → L2,

B(t, v) = −v + w ∗ (F (uTWt + v)− F (uTWt )),

is Lipschitz continuous in v uniformly in t. Then the claim follows for example from [23],
Thm. 7.2 (with A = 0). Now for v1, v2 ∈ L2, using Jensen’s inequality and the Lipschitz-
continuity of F ,

‖B(t, v1)−B(t, v2)‖2

≤ 2‖v1 − v2‖2 + 2
∫ ∫

w(x− y)
(
F (uTW (y, t) + v1(y))− F (uTWt (y, t) + v2(y))

)2
dydx

≤ 2‖v1 − v2‖2 + 2‖F ′‖2∞
∫ ∫

w(x− y)(v1(y)− v2(y))2dydx

= 2(1 + ‖F ′‖2∞)‖v1 − v2‖2.

(ii) If
∥∥wx
w

∥∥
∞ <∞, then for v1, v2 ∈ H1,

‖B(t, v1)−B(t, v2)‖H1

≤ 2‖v1 − v2‖2H1 + 2
(

1 +
∥∥∥wx
w

∥∥∥
∞

)
∫ ∫

w(x− y)
(
F (uTW (y, t) + v1(y))− F (uTWt (y, t) + v2(y))

)2
dydx

≤ 2‖v1 − v2‖2H1 + 2
(

1 +
∥∥∥wx
w

∥∥∥
∞

)
‖F ′‖2∞‖v1 − v2‖2.

2.3 Linearization around the Traveling Wave

2.3.1 The Traveling Wave Operator

The analysis of the influence of the noise on the traveling wave solution is related to proper-
ties of the linear operator appearing in the equation when linearizing around the traveling
wave. We write

dv(x, t) =
(
− v(x, t) + w ∗ (F ′(uTW (t))v)(x) +R(t, v(t))(x)

)
dt+ εσ(t, v(t))(x)dW (x, t),

where
R(t, v) = w ∗

(
F (uTW (t) + v)− F (uTW (t))− F ′(uTW (t))v

)
.

We define the traveling wave operator as the bounded linear operator on L2 acting as

Lv = −v + w ∗ (F ′(û)v), (2.6)
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and the family of uniformly bounded time-dependent linear operators

Ltv = −v + w ∗ (F ′(uTW (t))v). (2.7)

Note that
Lûx = −cûxx.

In particular, if c = 0, then ûx is an eigenfunction of L to the eigenvalue 0.
By Taylor’s formula, there exists ξ(y, t) such that

R(t, v) = 1
2

∫
w(x− y)

(
F ′′(uTW (y, t) + ξ(y, t))v2(y)

)
dy.

Using the Cauchy-Schwarz inequality it follows that

‖R(t, v)‖2 ≤ 1
4‖F

′′‖2∞
∫ ∫

w2(x− y)v2(y)dy
∫
v2(y)dydx

≤ 1
4‖F

′′‖2∞‖w‖∞‖v‖2
∫ ∫

w(x− y)dxv2(y)dy = 1
2‖F

′′‖2∞‖w‖∞‖v‖4.
(2.8)

The rest term R(t, v) is thus of higher order in ‖v‖. It can therefore be expected that the
stability properties of the traveling wave depend only on the linear operator L.

The traveling wave operator L is self-adjoint in L2(m), where

m(dx) = F ′(û(x))dx. (2.9)

Note that since F ′(û) is bounded from above and bounded away from 0, the L2(m)-norm is
equivalent to the L2-norm.

2.3.2 The Frozen Wave Operator

If c = 0, that is, if the traveling wave is actually a standing wave, then ûx is an eigenfunction
of L to the eigenvalue 0. If c 6= 0, then the movement of the wave makes the analysis more
difficult. In particular, ûx is no longer an eigenfunction of L.

It will therefore sometimes be useful to work in the moving frame picture. That is, we
can freeze the wave by moving instead the coordinates. For h : [0, T ]→ H1 set h#(x, t) :=
Φth(x, t) := h(x+ ct, t). If the solution v to the stochastic neural field equation (2.3) takes
values in H1, then for g ∈ H1, by Itô’s lemma,

〈v#(t), g〉 = 〈v(t), g(· − ct)〉

= 〈v(0), g〉 − c
∫ t

0
〈v(s), gx(· − cs)〉ds

+
∫ t

0
〈Lsv(s) +R(s, v(s)), g(· − cs)〉ds+ ε

∫ t

0
〈g(· − cs), σ(s, v(s))dWs〉



2.4 The Measure ρ 34

= 〈v#(0), g〉+ c

∫ t

0
〈∂xv#(s), g〉ds+

∫ t

0
〈−v#(s) + w ∗ (F ′(û)v#(s)), g〉ds

+
∫ t

0
〈R#(v#(s)), g〉ds+ ε

∫ t

0
〈g,Φsσ(s, v#(· − cs))dWs〉

= 〈v#(0), g〉+
∫ t

0
〈L#v#(s), g〉ds

+
∫ t

0
〈R#(v#(s)), g〉ds+ ε

∫ t

0
〈g,Φsσ(s, v#(· − cs))dWs〉,

where L# is the frozen wave operator given by

L#v = −v + c∂xv + w ∗ (F ′(û)v), D(L#) = H1,

and R#(v) = w ∗ (F (û+ v)− F (û)− F ′(û)v). That is, v#(t) is the weak solution in L2 to
the frozen wave equation

dv#(t) =
(
L#v#(t) +R#(v#(t))

)
dt+ εΦtσ(t, v#(· − ct))dWt.

Note that L#(ûx) = 0.

2.4 The Measure ρ

2.4.1 The Adjoint Eigenfunction

Proposition 2.4.1. The adjoint of L# is

L#,∗v = −v − c∂xv + F ′(û)w ∗ v, D(L#,∗) = H1.

There exists a unique (up to constant multiples) 0 6≡ ψ ∈ H1 such that L#,∗ψ = 0, and
ψ > 0.

Proof. The proof is similar to that of Thm. 4.2 and 4.3 in [27]. There exist δ,M > 0 such
that for all x with |x| ≥M , F ′(û(x)) ≤ 1− δ. Consider the operator on L2

w ∗ (F ′(û)v) = Kv +Bv

where
Kv(x) =

∫ M

−M
w(x− y)F ′(û(y))v(y)dy

and
Bv(x) =

(∫ −M
−∞

+
∫ ∞
M

)
w(x− y)F ′(û(y))v(y)dy.
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Then ‖B‖ ≤ 1− δ and since∫ ∫ (
w(x− y)1(−M,M)(y)F ′(û(y))

)2
dydx ≤ 2M‖F ′‖2∞‖w‖2 <∞,

K is Hilbert-Schmidt and hence compact. We have L# = A+K, where

A = −I + c∂x +B.

We show that A has a bounded inverse.

(i) A is injective.

Let v ∈ ker(A), then

0 = 〈Av, v〉 = −‖v‖2 + c〈∂xv, v〉︸ ︷︷ ︸
=0

+〈Bv, v〉 ≤ −δ‖v‖2,

which implies that v ≡ 0.

(ii) A−1 is continuous.

Indeed, for v ∈ H1 we have as in (i)

δ‖v‖2 ≤ 〈−Av, v〉 ≤ ‖Av‖‖v‖,

which implies that for all u ∈ ran(A)

‖A−1u‖ ≤ 1
δ
‖u‖.

(iii) D(A∗) = H1.

H1 ⊂ D(A∗) is clear. Let φ ∈ D(A∗). Then there exists φ∗ ∈ L2 such that 〈φ,Av〉 =
〈φ∗, v〉 for all v ∈ H1. Then

c〈vx, φ〉 = 〈φ,Av + v −Bv〉 = 〈φ∗ + φ−B∗φ, v〉

and it follows that φ ∈ H1.

(iv) A∗ is injective.

〈A∗φ, φ〉 = −‖φ‖2 − c 〈φx, φ〉︸ ︷︷ ︸
=0

+〈B∗φ, φ〉 ≤ −δ‖φ‖.

Thus, if φ ∈ ker(A∗), then φ ≡ 0.

(v) A is surjective.



2.4 The Measure ρ 36

We have ran(A) = ker(A∗)⊥ = L2. Let φ ∈ L2. Then there exist ξn ∈ H1 such that
for φn := Aξn, ‖φn − φ‖

n→∞−−−−→ 0. Since ‖ξm − ξn‖ ≤ ‖A−1‖‖φn − φm‖
n,m→∞−−−−−→ 0,

ξ := lim ξn exists in L2. Since for v ∈ H1

c〈ξ, vx〉 = lim c〈ξn, vx〉 = lim−c〈(ξn)x, v〉

= lim〈−Aξn − ξn +Bξn, v〉 = 〈−φ− ξ +Bξ, v〉,

it follows that ξ ∈ H1, and since

〈Aξ, v〉 = 〈ξ, A∗v〉 = lim〈ξn, A∗v〉 = lim〈φn, v〉 = 〈φ, v〉,

φ = Aξ.

We have A−1L# = I + A−1K and A−1K is compact. Since A−1L#ûx = 0 and since there
are no other eigenfunctions with eigenvalue 0 as proven in Thm. 4.2 in [27], there exists a
unique ψ̃ 6≡ 0 such that L#,∗(A∗)−1ψ̃ = 0, hence L#,∗ψ = 0 where ψ := (A∗)−1ψ̃ ∈ H1.

Since cψx = −ψ + F ′(û)w ∗ ψ, we actually have ψ ∈ C1. We show that ψ is of one sign.
Assume without loss of generality that there exists x such that ψ(x) > 0. Set ψ+(x) =
ψ(x) ∨ 0. Then ψ+ ∈ H1 with ψ+

x ≡ ψx on {ψ ≥ 0} and ψ+
x ≡ 0 on {ψ < 0}. Thus,

on {ψ ≥ 0}, L#,∗ψ+ = −ψ − cψx + F ′(û)w ∗ ψ+ ≥ L#,∗ψ(x) = 0, and on {ψ < 0},
L#,∗ψ+ = F ′(û)w ∗ ψ+ ≥ 0. Since ûx > 0, L#,∗ψ+ ≥ 0, and

0 = 〈L#ûx, ψ
+〉 = 〈ûx, L#,∗ψ+〉,

it follows that L#,∗ψ+ ≡ 0 and hence ψ+ ≡ ψ. As in (2.5), since (I + c∂x)ψ = F ′(û)w ∗ ψ,
ψ satisfies

ψ(x) =
∫ ∞

0
e−sF ′(û(x− cs))w ∗ ψ(x− cs)ds. (2.10)

Now the strict positivity of ψ follows as in the proof of Thm. 4.2 in [27].

We normalize ψ such that 〈ûx, ψ〉 = 1. Set

ρ(x) = ψ(x)
ûx(x) .

Note that for h ∈ H1,

〈L#h, ûx〉ρ = 〈L#h, ψ〉 = 〈h, L#,∗ψ〉 = 0, (2.11)

that is, L#(H1) ⊂ û⊥x , where we denote by û⊥x the orthogonal complement of ûx in L2(ρ).
In L2(ρ), the direction of movement of the wave ûx and the orthogonal directions are thus
naturally separated by L#, which makes it a natural choice of function space to work in.

Note that if c = 0, then ρ(x) = 1∫
û2
x(x)F ′(û(x))dx

F ′(û(x)) such that the L2(ρ)-norm is
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equivalent to the L2-norm. Typically, for c 6= 0, the L2(ρ)-norm will not be equivalent to
the L2-norm. We will see this for the exponential example in Proposition 4.2.1 below.

Remark 2.4.2. We cannot expect to have the same control over the rest term R in L2(ρ)
as in L2 (cf. (2.8)). We will see on the exponential example in section 4.2 that if c > 0, then
typically there exists Lρ > 0 such that ρ(y) ≤ Lρρ(x) for y ≤ x, and limx→−∞ ρ(x) = 0.
Now assume that there exists C > 0 such that for v ∈ L2(ρ),

‖w ∗ v2‖2ρ =
∫ ∫ ∫

w(x− y1)w(x− y2)v2(y1)v2(y2)ρ(x)dy1dy2dx ≤ C‖v‖4ρ.

Formally, letting v2 → δy we obtain∫
w2(x− y)ρ(x)dx ≤ Cρ2(y).

But ∫
w2(x− y)ρ(x)dx

ρ2(y) ≥
∫∞
y
w2(x− y)dxρ(y)
Lρρ2(y) =

∫∞
0 w2(x)dx
Lρρ(y)

y→−∞−−−−−→∞,

which is a contradiction.

2.4.2 Solving the SNFE in H1(1 + ρ)

To be able to work in L2(ρ) (or H1(ρ)), we need to verify that the solution to the stochas-
tic neural field equation is an element of this space. We therefore consider the space
H1(1 + ρ) = H1 ∩H1(ρ) equipped with the norm

‖h‖H1(1+ρ) =
(
‖h‖2H1 + ‖h‖2H1(ρ)

) 1
2
.

To obtain a solution to (2.3) in H1(1 + ρ) we adapt our assumptions on the noise.

Assumption (C).

(1) Additive noise: Q 1
2 ∈ L2(L2, H1(1 + ρ)). Q 1

2 may for example be given by a symmetric
integral kernel q(x, y) ≥ 0 with q(x, ·) ∈ H1(1 + ρ) and supx ‖∂xq(x, ·)‖ < ∞, and
satisfying

∫
‖q(x, ·)‖2H1(1+ρ)dx <∞. Then for any orthonormal basis (ek) of L2, using

Parseval’s identity,

∑
k

‖Q 1
2 ek‖2H1(1+ρ) =

∑
k

∫ (∫
q(x, y)ek(y)dy

)2
+
(∫

∂xq(x, y)ek(y)dy
)2

(1 + ρ(x))dx

=
∫ (
‖q(x, ·)‖2 + ‖∂xq(x, ·)‖2

)
(1 + ρ(x))dx

=
∫
‖q(·, y)‖2H1(1+ρ)dy <∞.
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(2) Multiplicative noise: σ : [0, T ]×H1(1+ρ)→ L0
2(L2, H1(1+ρ)), Lipschitz continuous in

the second variable uniformly in t ≤ T . In analogy to (B)(ii), Q 1
2 may for example be

given by a homogeneous kernel q ∈ H1(1+ρ) satisfying q, qx ∈ L1(1+ρ), and σ(t, v) may
be given by a multiplication operator associated to σ̄ : [0, T ] ×H1(1 + ρ) → H1(1 + ρ),
Lipschitz continuous in the second variable uniformly in t ≤ T .

We make the following assumptions on ρ.

Assumption 2.4.3.

(i) There exists a constant Lρ such that for all x ∈ R and y > 0,

ρ(x− y) ≤ Lρρ(x) if c ≥ 0,

ρ(x+ y) ≤ Lρρ(x) if c < 0.
(2.12)

(ii) There exists a constant Kρ > 0 such that

w ∗ ρ(x) ≤ Kρρ(x). (2.13)

Condition (i) says that ρ should be roughly increasing. It will be needed only later in
Chapter 5. If

∥∥wx
w ‖∞ <∞, then we have an a priori bound on the growth of ρ. By (2.10),

|ψx(x)| ≤
(∥∥∥F ′′(û)ûx

F ′(û)

∥∥∥
∞

+
∥∥∥wx
w

∥∥∥
∞

)
ψ(x).

Similarly, differentiating in (2.5) yields

|ûxx(x)| ≤
∥∥∥wx
w

∥∥∥
∞
ûx(x),

such that
|ρx| =

∣∣∣ψx
ψ
− ûxx

ûx

∣∣∣ρ ≤ (∥∥∥F ′′(û)ûx
F ′(û)

∥∥∥
∞

+ 2
∥∥∥wx
w

∥∥∥
∞

)
ρ =: Mρ. (2.14)

Condition (ii) says roughly that ρ should neither grow nor decay too quickly relative
to w. A condition of this kind has already been introduced in [30] to prove existence of
solutions to the stochastic neural field equation in a weighted space (cf. (2.2).

Both conditions are satisfied in the exponential example analyzed in chapter 4.

Proposition 2.4.4. Assume that σ and Q satisfy assumption (C), ρ satisfies (2.13), and
that

∥∥wx
w

∥∥
∞ <∞. Then for any initial condition η ∈ H1(1 + ρ) there exists a unique strong

H1(1+ρ)-valued solution v to the stochastic evolution equation (2.3). v admits a continuous
modification and for all p ≥ 1,

E

(
sup

0≤t≤T
‖v(t)‖pH1(1+ρ)

)
<∞.
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Proof. As in the proof of Proposition 2.2.1, it is enough to show that B : [0, T ]×H1(1+ρ)→
H1(1 + ρ), B(t, v) := −v+w ∗ (F (û(· − ct) + v)−F (û(· − ct))) is Lipschitz continuous in v.
This follows from the fact that for v1, v2 ∈ H1(1 + ρ), using (2.13),∥∥∥w ∗ (F (û(y − ct) + v1(y))− F (û(y − ct) + v2(y))

)∥∥∥2

H1(1+ρ)

≤
(

1 +
∥∥∥wx
w

∥∥∥2

∞

)
‖F ′‖2∞

∫ ∫
w(x− y)(1 + ρ(x))dx (v1(y)− v2(y))2dy

≤
(

1 +
∥∥∥wx
w

∥∥∥2

∞

)
‖F ′‖2∞

∫
(1 +Kρρ(y))(v1(y)− v2(y))2dy

≤
(

1 +
∥∥∥wx
w

∥∥∥2

∞

)
‖F ′‖2∞(1 +Kρ)‖v1 − v2‖21+ρ.

2.5 The Stochastic Traveling Wave

The solution u = uTW + v to the stochastic neural field equation (2.1) is a stochastic
perturbation of the traveling wave solution uTW . The noise has two effects. First, it causes
fluctuations in the wave profile. Second, it causes a random shift in the position, or phase,
of the wave. It is one of the main objectives in this thesis to give a mathematically rigorous
description of these two effects (cf. Chapter 5). To this end, we need to define what exactly
we mean by the ‘position’ of the wave.

2.5.1 The Phase of the Wave

We loosely define the phase ϕ of a ‘wave-like’ function u to be a minimizer of

a 7→ ‖u− û(· − a)‖, (2.15)

the L2-distance between u and all possible translations of the deterministic wave profile û.
In order to determine the phase shift caused by the noise, we dynamically adapt the

phase of a reference wave to match that of the stochastic solution. The idea is to move
along the gradient of (2.15) towards the minimum. This can be seen as a dynamic version
of the freezing of traveling waves applied by Lord and Thümmler [47]. If we let a depend
on a parameter s and differentiate, we obtain

d

ds
‖u− û(· − a(s))‖2 = 2ȧ(s)〈u− û(· − a(s)), ûx(· − a(s))〉.

If we now choose a such that ȧ(s) = −〈u− û(· − a(s)), ûx(· − a(s))〉,
then d

ds‖u− û(· − a(s))‖2 ≤ 0, which means a should move towards the right phase.
This motivates the following dynamics which were first introduced in [57] and [58] in the

context of reaction-diffusion equations and already used in [42] in the neural field setting.
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Let Cm(t) be the solution to the pathwise ordinary differential equation

Ċm(t) := −m〈u(t)− û(· − ct− Cm(t)), ûx(· − ct− Cm(t))〉, Cm(0) = 0, (2.16)

which has been proven to exist in [42], Prop. 3.5. Herem > 0 is a parameter that determines
the rate of relaxation to the right phase.

One might also want to consider the phase of the wave in L2(m) or L2(ρ). In a weighted
space, it is convenient to move the measure with the wave such that, for example,

‖û(· − ct− Cm(t))‖1+ρ(·−ct−Cm(t)) = ‖û‖1+ρ

for all times t. We define the phase adaptation in L2(m) as

Ċm(t) := −m〈u(t)− û(· − ct− Cm(t)), ûx(· − ct− Cm(t))〉m(·−ct−Cm(t)), (2.17)

or in L2(ρ) as

Ċm(t) := −m〈u(t)− û(· − ct− Cm(t)), ûx(· − ct− Cm(t))〉ρ(·−ct−Cm(t))

= −m〈u(t)− û(· − ct− Cm(t)), ψ(· − ct− Cm(t))〉.
(2.18)

Existence of a unique pathwise solution can be proven analogously.
It cannot in general be expected that there exists a unique global minimum of (2.15) as

discussed in [37]. Here Cm is designed to follow the local minimum that is closest to the
initial phase.

In [37], Inglis and MacLaurin derive an SDE describing the dynamics of this local min-
imum exactly. This should correspond to the case m → ∞ in our picture (cf. section 5.5).
For finite m, our approach gives an approximate description in terms of an ODE. In par-
ticular it provides a way of calculating the phase of the stochastic wave from a realization
without explicit knowledge of the noise.

Figure 2.1: A stochastic traveling wave at different times t.
Dashed line: û(x− ct). Dotted line: û(x− ct− Cm(t)).
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2.5.2 Stability under Noise

When simulating stochastic traveling waves, one can still clearly recognize a traveling front
(cf. Fig. 2.1). How can this stability be expressed? We expect that small perturbations of
the wave profile will over time be balanced out by the neural field dynamics. However, if
we consider two waves with different phases, then we would rather expect the two waves to
travel next to each other at a fixed distance.

This intuitive picture can be formalized in terms of the traveling wave operator. As
outlined in section 2.3.1,

d

dt
‖v(t)‖2 ≈ 2〈Ltv(t), v(t)〉.

If there exist κ, Z > 0 such that

〈Lv, v〉 ≤ −κ‖v‖2 + Z〈v, ûx〉2, (2.19)

then perturbations that are orthogonal to the direction of movement ûx will even out expo-
nentially fast. Perturbations in the direction of movement, on the other hand, correspond
to a shift in the phase.

We expect this shift to be compensated by the phase adaptation Ċm such that the
stochastic traveling wave can be represented as a fluctuating wave profile moving at an
adapted speed,

u(x, t) ≈ û(x− ct− Cm(t)) + ‘fluctuations’.

This question will be considered in detail in chapter 5.
Recall that for the frozen wave operator L# acting onH1(ρ), L#ûx = 0 and L#(H1(ρ)) ⊂

û⊥x , such that the direction of movement and the orthogonal directions are naturally sepa-
rated. That suggests to consider the L2(ρ)-version

〈L#v, v〉ρ ≤ −κ‖v‖2ρ + Z〈v, ûx〉2ρ (2.20)

of (2.19). In the next chapter, we will prove (2.20) for a general class of nonlocal evolution
equations possessing traveling wave solutions.



Chapter 3

The Spectral Gap

In this chapter, we prove that the frozen wave operator has a spectral gap in L2(ρ). The
result applies to a general class of nonlocal evolution equations exhibiting traveling wave
solutions. In section 3.5 we show that for small wave speeds c, the traveling wave operator
satisfies a spectral gap inequality (2.19) in L2(m). This space has the advantage that the
L2(m)-norm is equivalent to the L2-norm. Together with the phase adaptation defined in
section 2.5.1 it will allow us to derive a stochastic long-time stability result in section 3.6

3.1 Introduction

We consider a nonlocal evolution equation of the form

∂tu(x, t) = d∂xxu(x, t) + S(u,w ∗ g(u))(x, t), (3.1)

where x ∈ R, t ≥ 0, and

• d ≥ 0

• g ∈ C1(R) with g′ > 0

• S ∈ C1(R×R) with ∂2S > 0, and x 7→ S(x, g(x)) is bistable: there exist exactly three
zeroes a1 < a < a2 such that S(ai, g(ai)) = S(a, g(a)) = 0, d

dxS(ai, g(ai)) < 0, i = 1, 2,
and d

dxS(a, g(a)) > 0.

• w ≥ 0 is differentiable almost everywhere and
∫
w(x)dx = 1,

∫
|wx(x)|dx < ∞, and

w ∗ h denotes the convolution
∫
w(x− y)h(y)dy

We assume that there exists a unique monotone traveling wave solution connecting the
stable states of the equation, that is, there exists a unique wave profile û ∈ C1(R) with
ûx > 0 and limx→−∞ û(x) = a1, limx→∞ û(x) = a2, and a unique wave speed c ∈ R such
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that
uTW (x, t) = û(x− ct)

is a solution to (3.1).
In [19], Chen proved existence, uniqueness, and exponential stability (in L∞) of a mono-

tone traveling wave solution to (3.1) for a wide class of evolution equations of the form (3.1).
Apart from the neural field equation, he collected the following examples.

• Ising Model. Here
∂tu(t) = tanh(β(w ∗ u(t) + h))− u(t),

where β > 1, 0 ≤ w ∈ C2 is even and supported on [−1, 1], and 0 ≤ h ≤ h∗. Existence,
uniqueness and stability of a monotone traveling front was proven in [24] for small h
and in [49] in the general case.

• Convolution Model for Phase Transitions.

∂tu(t) = λw ∗ u(t)− u(t) + f(u(t)),

where λ > 0, 0 ≤ w ∈ C1 is even and f is bistable. Existence and Uniqueness of a
monotone traveling front is established in [4].

• Thalamic Model.

∂tu(t) = −u(t) + h(1− u(t))F (w ∗ (up(t))−Θ),

where h,Θ > 0, p ∈ 1, 2, 3, 4, w(x) = 1
2σ e
− |x|σ for some σ > 0, and F is a sigmoid

function.

• The above example is included as a special case of a class of nonlocal evolution equa-
tions of the form

∂tu(t) = r(u(t)) + p(u(t))S(w ∗ q(u(t)))

considered in [20], where existence and uniqueness of monotone traveling waves is
shown. We refer to [20] for the precise assumptions on the parameters.

So far, in most of the analysis, the stability of the traveling wave and spectral properties of
(3.1) were established in L∞(R) or C0(R), the space of functions vanishing at infinity, see
also [3]. A more recent exception is [63], where spectral properties in Lp, 1 ≤ p ≤ ∞, are
studied.

Here we consider the question of the L2-stability of the traveling wave solution in
the context of functional inequalities. In the frozen wave picture (cf. section 2.3.2),
u#(x, t) := u(x+ ct, t) satisfies

∂tu
#(x, t) = c∂xu

#(x, t) + d∂xxu
#(x, t) + S(u#, w ∗ g(u#))(x, t). (3.2)
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Linearization around the traveling wave yields the frozen wave operator

L#v = ∂1S(û, w ∗ g(û))v + c∂xv + d∂xxv + ∂2S(û, w ∗ g(û))w ∗ (g′(û)v).

Note that L#ûx = 0. Recall from section 2.4, that a measure that is naturally associated
with L# is the measure with density ρ(x) = ψ(x)

ûx(x) , where ψ is the eigenfunction to the
eigenvalue 0 of the adjoint operator L#,∗. As motivated in section 2.5.2 we are going to
prove that L# satisfies a spectral gap inequality in L2(ρ),

〈L#v, v〉ρ ≤ −κ
(
‖v‖2ρ − 〈v, ûx〉2ρ

)
(3.3)

for some κ > 0.
This way of expressing the stability of the traveling wave is in particular amenable to a

stochastic setting. Versions of (3.3) have been assumed in [42] (for the neural field equation)
and [37] (in a general setting) to derive stochastic stability results.

3.2 The Setting

Motivated by the traveling wave examples given above we consider the operator

L#v = −fv + c∂xv + d∂xxv + rw ∗ (qv), D(L#) = H2.

We make the following assumptions on the parameters.

• c ∈ R, d ≥ 0

• f, r, q ∈ C(R), r > 0 and q > 0

• f, r, and q are bounded, and q and r are bounded away from 0

• w ≥ 0 is absolutely continuous,
∫
w(x)dx = 1, and

∫
|wx(x)|dx <∞

If L# is the frozen wave operator associated to (3.1), then

f = −∂1S(û, w ∗ g(û)), r = ∂2S(û, w ∗ g(û)), q = g′(û).

We decompose L# into a local and a nonlocal part,

L#v = Av + Pv,

where the local part is given by

Av = −fv + c∂xv + d∂xxv,
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and the nonlocal part is
Pv =

∫
p(x, y)v(y)dy

with
p(x, y) = r(x)w(x− y)q(y).

The adjoint of L# is
L#,∗v = A∗v + P ∗v, D(L#,∗) = H2,

where the local part is
A∗v = −fv − c∂xv + d∂xxv,

and the nonlocal part is
P ∗v =

∫
p∗(x, y)v(y)dy

with
p∗(x, y) = p(y, x).

Assumption. There exists a unique (up to constant multiples) 0 6≡ ûx ∈ H2 such that
L#ûx = 0 and a unique (up to constant multiples) 0 6≡ ψ ∈ H2 such that L#,∗ψ = 0, and
ûx > 0 and ψ > 0.

Here we denote the eigenfunction of L# by ûx in reference to the traveling wave example.
We normalize ψ such that 〈ûx, ψ〉 = 1 and introduce the density

ρ(x) = ψ(x)
ûx(x) .

Recall from sections 2.4 and 2.5.2 that ρ is a natural density to consider since

〈L#v, ûx〉ρ = 〈L#v, ψ〉 = 〈v, L#,∗ψ〉 = 0,

i.e., D(L#) ⊂ û⊥x , the orthogonal complement of ûx in L2(ρ). The direction of movement
ûx and the orthogonal directions are thus naturally separated.

We assume that (2.13) is satisfied such that L# : H2(ρ)→ L2(ρ).

3.2.1 Reformulation

The following reformulation will be useful. Define the probability measure

ν(x) = ûx(x)ψ(x).

Expand v ∈ H2(ρ) as v = hûx and set

L#
0 h = A0h+ P0h, D(L#

0 ) = H2(ν)
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with
A0h = A(hûx)

Pûx
, P0h = P (hûx)

Pûx
.

Then
〈L#v, v〉ρ = 〈L#

0 h, h P ûxψ〉,

and P01 ≡ 1, so that

p0(x, y) = p(x, y)ûx(y)
Pûx(x) = w(x− y)q(y)ûx(y)

w ∗ (qûx)(x)

is a Markov kernel. Set

µ(x) = 1
Zµ

Pûx(x)ψ(x), µ∗(x) = 1
Zµ

ûx(x)P ∗ψ(x), (3.4)

where Zµ =
∫
Pûx(x)ψ(x)dx =

∫
ûx(x)P ∗ψ(x)dx, such that µ and µ∗ are probability mea-

sures. Then (3.3) is equivalent to

Eµ(L#
0 h h) ≤ − κ

Zµ
V arν(h).

3.3 The Spectral Gap Inequality

Denote by S the support of w, S = {x ∈ R : w(x) > 0}. We make the following additional
assumption on w.

Assumption 3.3.1.

(i) for all v ∈ L2(ρ), ∂xw ∗ v = wx ∗ v

(ii) M:=supx∈R
∫
x−S

(wx(x−y)
w(x−y)

)2
p0(x, y)dy <∞

Theorem 3.3.2. Assume that (2.13) and Assumption 3.3.1 are satisfied and that further-
more

(i) there exist δi, δ̃i > 0, i = 1, 2, such that

δ1ûx ≤ Pûx ≤ δ2ûx, δ̃1ψ ≤ P ∗ψ ≤ δ̃2ψ.

In particular, the ν-, µ-, and µ∗-norms are equivalent.

(ii) there exists κ0 > 0 such that for all h ∈ H1(µ),

V arµ(h) ≤ κ0

∫
h2
x(x)µ(dx) (3.5)

Then for all v ∈ H2(ρ),
〈L#v, v〉ρ ≤ −κ

(
‖v‖2ρ − 〈v, ûx〉2ρ

)
,
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where
κ = δ̃1

2

(
1− κ0M

1 + κ0M

)
.

Proof. I) Note that

Eµ(L#
0 h) = 1

Zµ

∫
L#(hûx)ψdx = 1

Zµ

∫
hûxL

#,∗ψdx = 0.

Therefore

1
Zµ
〈L#v, v〉ρ = Eµ(L#

0 h h) = Eµ
(
(L#

0 h− Eµ(L#
0 h))(h− Eµ(h))

)
= Covµ(L#

0 h, h) = Covµ(A0h, h) + Covµ(P0h, h)

≤ Covµ(A0h, h) + 1
2
(
V arµ(P0h) + V arµ(h)

)
.

II) We consider the first summand,

Covµ(A0h, h) = 〈A0h, h〉µ − Eµ(A0h)Eµ(h).

We have

Zµ〈A0h, h〉µ =
∫ (
− fhûx + c(hûx)x + d(hûx)xx

)
hψdx

=
∫
h2Aûxψdx+ c

∫
hhxûxψdx+ d

∫
hhxxûxψdx+ 2d

∫
hhxûxxψdx.

Note that ∫
h2Aûxψdx = −

∫
h2Pûxψdx = −Zµ

∫
h2dµ

and ∫
h2ûxA

∗ψdx = −
∫
h2ûxP

∗ψdx = −Zµ
∫
h2dµ∗.

Using integration by parts,

c

∫
hhxûxψdx = − c2

∫
h2ûxxψdx−

c

2

∫
h2ûxψxdx

= −1
2

∫
h2(−fûx + cûxx)ψdx+ 1

2

∫
h2(−fψ − cψx)ûxdx,

and

d

∫
hhxxûxψdx+ 2d

∫
hhxûxxψdx

= −d
∫
h2
xûxψdx− d

∫
hhxûxψxdx+ d

∫
hhxûxxψdx

= −d
∫
h2
xûxψdx+ d

2

∫
h2(ûxψxx − ûxxxψ)dx.
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Altogether we obtain that

Zµ〈A0h, h〉µ = −Zµ
∫
h2dµ− 1

2

∫
h2Aûxψdx+ 1

2

∫
h2ûxA

∗ψdx− d
∫
h2
xûxψdx

= −Zµ2

∫
h2dµ− Zµ

2

∫
h2dµ∗ − d

∫
h2
xûxψdx

≤ −Zµ2

∫
h2dµ− Zµ

2

∫
h2dµ∗.

Since
Eµ(A0h) = 1

Zµ

∫
A(hûx)ψdx = 1

Zµ

∫
hûxA

∗ψdx = −Eµ∗(h) (3.6)

and
Eµ(h)Eµ∗(h) ≤ 1

2Eµ(h)2 + 1
2Eµ

∗(h)2,

it follows that
Covµ(A0h, h) ≤ −1

2V arµ(h)− 1
2V arµ

∗(h).

III) Claim: ∃γ < 1 such that

V arµ(P0h) ≤ γV arµ∗(h).

Proof of the claim. By assumptions (ii) and 3.3.1(i),

V arµ(P0h) ≤ κ0

∫ (
∂xP0h(x)

)2
µ(dx) = κ0

∫ (∫
∂xp0(x, y)h(y)dy

)2
µ(dx).

Since
∫
∂xp0(x, y)dy = ∂xP01(x) = ∂x1 = 0, using the Cauchy-Schwarz inequality,

V arµ(P0h) ≤ κ0

∫ (∫
∂xp0(x, y)

(
h(y)− P0h(x)

)
dy

)2
µ(dx)

≤ κ0

∫ ∫
x−S

(
∂xp0(x, y)

)2
p0(x, y) dy

∫
p0(x, y)

(
h(y)− P0h(x)

)2
dyµ(dx).

For y ∈ x− S we have

∂xp0(x, y) =
(
wx(x− y)
w(x− y) −

∂xw ∗ (qûx)(x)
w ∗ (qûx)(x)

)
p0(x, y)

and therefore∫
x−S

(∂xp0(x, y))2

p0(x, y) dy =
∫
x−S

(wx(x− y)
w(x− y)

)2
p0(x, y)dy −

(
∂xw ∗ (qûx)(x)
w ∗ (qûx)(x)

)2

≤
∫
x−S

(wx(x− y)
w(x− y)

)2
p0(x, y)dy = M <∞
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by assumption 3.3.1(ii). It follows that

V arµ(P0h) ≤ κ0M

∫
P0h

2(x)− (P0h)2(x)µ(dx)

= κ0M
(
Eµ(P0h

2)− (Eµ(P0h))2 − V arµ(P0h)
)

and hence
(1 + κ0M)V arµ(P0h) ≤ κ0M

(
Eµ(P0h

2)− (Eµ(P0h))2
)
.

Since for any g ∈ L1(µ), as in (3.6), Eµ(P0g) = Eµ∗(g), it follows that

V arµ(P0h) ≤ κ0M

1 + κ0M
V arµ∗(h) =: γV arµ∗(h).

This proves the claim.
IV) From I) , II), and III) it follows that

〈L#v, v〉ρ ≤ −
(1− γ)Zµ

2 V arµ∗(h),

and since by assumption (i)

ZµV arµ∗(h) = Zµ

∫ (
h(x)− Eµ∗(h)

)2
µ∗(dx) ≥ δ̃1

∫ (
h(x)− Eµ∗(h)

)2
ν(dx) ≥ δ̃1V arν(h),

we obtain that
〈L#v, v〉ρ ≤ −κ

(
‖v‖2ρ − 〈v, ûx〉2ρ

)
with κ = δ̃1(1−γ)

2 .

3.4 Application to the Examples

We show that the assumptions in Theorem 3.3.2 are satisfied under rather general conditions.

Remark 3.4.1. Using a result by Muckenhoupt on Hardy’s inequalities with weights (orig-
inally obtained by Tomaselli, Talenti, Artola, cf. [48], Thm. 1), assumption (ii) in Theorem
3.3.2 is satisfied if and only if

B1 := sup
r>0

∫ ∞
r

µ(x)dx
∫ r

0

1
µ(x)dx <∞

and
B2 := sup

r>0

∫ −r
−∞

µ(x)dx
∫ 0

−r

1
µ(x)dx <∞.
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Then we can bound κ0 in (3.5) by

B1 ∧B2 ≤ κ0 ≤ 4(B1 ∨B2).

Theorem 3.4.2. Assume that w > 0 in a neighborhood of 0 and that (2.13) and Assumption
3.3.1 are satisfied. Assume further that there exist α, β, k, l > 0, such that for all x ≥ 0,
y ≥ 0

µ(x+ y) ≤ ke−αyµ(x), µ(−x− y) ≤ le−βyµ(−x), (3.7)

and that ∥∥∥ ûxxx
ûx

∥∥∥
∞

+
∥∥∥ ûxx
ûx

∥∥∥
∞

+
∥∥∥ψxx
ψ

∥∥∥
∞

+
∥∥∥ψx
ψ

∥∥∥
∞
<∞. (3.8)

Then the assumptions of Theorem 3.3.2 are satisfied.

Proof. (I) Since m :=
∥∥ ûxx
ûx

∥∥
∞ < ∞ by (3.8), −mûx ≤ ûxx ≤ mûx and hence for x, y ≥ 0,

ûx(x+ y) ≥ e−myûx(x) and ûx(−x− y) ≥ e−myûx(−x). It follows that for x ≥ 0,

Pûx(x) ≥ min rmin q
∫ 0

−∞
w(y)ûx(x− y)dy

≥ min rmin q
∫ 0

−∞
w(y)emydy ûx(x),

and analogously for x ≤ 0. Thus, there exists δ1 > 0 such that

δ1ûx(x) ≤ Pûx(x).

Using (3.8) it follows that there exists δ2 > 0 such that

Pûx = −Aûx = fûx − cûxx − dûxxx ≤ δ2ûx.

It can be proven analogously that there exist δ̃1, δ̃2 > 0 such that

δ̃1ψ ≤ P ∗ψ ≤ δ̃2ψ.

Assumption (i) of Theorem 3.3.2 is therefore satisfied.
(II)

B1 := sup
r>0

∫ ∞
r

µ(x)dx
∫ r

0

1
µ(x)dx

≤ k2
∫ ∞
r

e−α(x−r)dxµ(r)
∫ r

0
e−α(r−x)dx

1
µ(r) ≤

k2

α2 ,

and analogously

B2 := sup
r>0

∫ −r
−∞

µ(x)dx
∫ 0

−r

1
µ(x)dx ≤

l2

β2 .
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Using Remark 3.4.1, assumption (ii) of Theorem 3.3.2 is satisfied.

Remark 3.4.3.

1. We will see in Chapter 4 below that in the case of the neural field equation (1.5) with
w(x) = 1

2σ e
− |x|σ , σ > 0, ûx and ψ decay exponentially (cf. Thm. 4.1.2), and that ρ

grows exponentially at a rate smaller than 1
σ (cf. Prop. 4.2.1). Since

∥∥wx
w

∥∥
∞ < ∞,

it follows that in this case (2.13) and Assumption 3.3.1, as well as (3.7) and (3.8) are
satisfied.

2. In [63] it is shown in a rather general setting that for q ≡ 1 and w satisfying∫
w(x)eαxdx <∞

for all α ∈ R, ûx decays exponentially and the exact rates are given. Existence and
exponential decay of the adjoint eigenfunction are also proven. In particular, (3.7) and
(3.8) are satisfied.

3. If ûx and ψ decay exponentially, then ρ (or 1
ρ , depending on whether c > 0 or c < 0)

grows exponentially. Thus, if w has compact support and supx∈S
∣∣wx(x)
w(x)

∣∣ <∞, or if w
decays faster than exponentially, then (2.13) and assumption 3.3.1 are satisfied.

3.5 The Spectral Gap Inequality in L2(m) for Small
Wave Speeds

In this section we will assume that d = 0 and that f ≥ min f > 0. Recall from section 2.3.1
that another measure that is naturally associated with the problem is the symmetrizing
measure of the traveling wave operator

Lv = −fv + rw ∗ (qv)

with density
m(x) = q(x)

r(x) .

Note that the L2(m)-norm is equivalent to the L2-norm.
If c = 0, then ψ = 1

Z
q
r ûx, where Z =

∫
q
r û

2
xdx, and thus m = Zρ. In this case, if

the assumptions in Theorem 3.3.2 are satisfied, then L has a spectral gap in L2(m). We
can extend the spectral gap for the case c = 0 to small wave speeds c by a perturbation
argument.

Theorem 3.5.1. Assume that Assumption 3.3.1 is satisfied and that furthermore

(i) there exist δ1 < δ2 such that δ1ûx ≤ Pûx ≤ δ2ûx
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(ii) there exists κ0
0 > 0 such that for all h ∈ H1(µ0),

V arµ0(h) ≤ κ0
0

∫
h2
x(x)µ0(dx),

where µ0 = 1
Zµ0

q
rPûxûx with Zµ0 =

∫
q
rPûxûxdx.

Then there exists c∗ = c∗(w, f, r, q) > 0 (see (3.12) for the precise definition) such that if
c = c(w, f, r, q) satisfies |c| ≤ c∗, there exist κ, Z > 0 such that

〈Lv, v〉m ≤ −κ‖v‖2m + Z〈v, ûx〉2m. (3.9)

Proof. Set ϕ0 = Pûx
f and P 0v =

∫
p0(x, y)v(y)dy where p0(x, y) = p(x, y) ûx(y)

ϕ0(y) . Then
P 0ϕ0 = Pûx = fϕ0 so that L0ϕ0 = 0, where

L0v = −fv + P 0v, D(L0) = L2.

Let m0 be the associated symmetrizing measure,

m0 = qûx
rϕ0 = ûx

ϕ0m, (3.10)

ψ0 the eigenfunction of L0,∗,
ψ0 = 1

Z0
q

r
ûx,

where
Z0 =

∫
q

r
ûxϕ

0dx =
∫

q

rf
P ûxûxdx,

and set
ρ0 = ψ0

ϕ0 = 1
Z0m

0.

Note that assumption (i) implies that

δ1
max |f | ≤

ϕ0

ûx
≤ δ2

min |f | .

By Theorem 3.3.2 applied to L0 with eigenfunction ϕ0, there exists κ0 > 0 such that

〈L0v, v〉ρ0 ≤ −κ0
(
‖v‖2ρ0 − 〈v, ϕ0〉2ρ0

)
. (3.11)

Now

〈Lv, v〉m = 〈−fv + Pv, v〉m =
〈
− fv + P 0

(ϕ0

ûx
v
)
, v
〉
m

=
〈
− f ϕ

0

ûx
v + P 0

(ϕ0

ûx
v
)
, v
ϕ0

ûx

〉
m0
−
〈
f
(

1− ϕ0

ûx

)
v, v
〉
m
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=
〈
L0ϕ

0

ûx
v,
ϕ0

ûx
v
〉
m0
−
〈
f
(

1− ϕ0

ûx

)
v, v
〉
m
.

Applying (3.11) to vϕ
0

ûx
and using (3.10) we obtain that

〈Lv, v〉m ≤ −κ0

∥∥∥vϕ0

ûx

∥∥∥2

m0
+ κ0

Z0

〈
v
ϕ0

ûx
, ϕ0
〉2

m0
−
〈
f
(

1− ϕ0

ûx

)
v, v
〉
m

= −κ0

∫
v2ϕ

0

ûx
mdx+ κ0

Z0

(∫
vϕ0mdx

)2
−
∫
f
(

1− ϕ0

ûx

)
v2mdx

= −κ0‖v‖2m +
∫
v2
(

1− ϕ0

ûx

)
(κ0 − f)mdx+ κ0

Z0

(∫
vϕ0mdx

)2
.

Now∫
v2
(

1− ϕ0

ûx

)
(κ0 − f)mdx ≤

∥∥∥(1− ϕ0

ûx

)
(κ0 − f)

∥∥∥
∞
‖v‖2m =

∥∥∥c ûxx
ûxf

(κ0 − f)
∥∥∥
∞
‖v‖2m

and (∫
vϕ0mdx

)2
=
(∫

v
(
ûx − c

ûxx
f

)
mdx

)2

≤ 2〈v, ûx〉2m + 2c2
〈
v,
ûxx
f

〉2
m
≤ 2〈v, ûx〉2m + 2c2‖v‖2m

∥∥∥ ûxx
f

∥∥∥2

m
.

It follows that
〈Lv, v〉m ≤ −κ(c)‖v‖2m + 2 κ0

Z0 〈v, ûx〉
2
m,

where
κ(c) = κ0

(
1− 2c2

Z0

∥∥∥ ûxx
f

∥∥∥2

m

)
− |c|

∥∥∥ ûxx
ûxf

(κ0 − f)
∥∥∥
∞
.

Note that κ(c) c→0−−−→ κ0 > 0. Set

c∗ = min{|c| : κ(c) ≤ 0}. (3.12)

Then (3.9) is satisfied with κ = κ(c) if |c| ≤ c∗.

Note that c, κ(c), c∗ are usually unknown variables depending on w, f, q, r. It is a priori
not clear that there exists a setting in which Theorem 3.5.1 applies. This can be clarified in
the neural field example. Consider the neural field traveling wave operator

Lv = −v + w ∗ (F ′(û)v)

for some kernel w satisfying M :=
∥∥wx
w ‖∞ < ∞ and some gain function F and the cor-

responding traveling wave (û, c). We define an associated standing wave in the following
way. Set û0 = w ∗F (û) and F 0(x) = F (û((û0)−1(x))) (since û0 is increasing, (û0)−1 is well-
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defined). Then û0 = w ∗ F 0(û0) is the traveling wave solution to the neural field equation
with kernel w and gain function F 0, and û0

x is the eigenfunction to the eigenvalue 0 of L0,
where

L0v = −v + w ∗ ((F 0)′(û0)v) = −v + w ∗
(
F ′(û) ûx

û0
x

v
)
.

(Note that, in the notation of the proof of Theorem 3.5.1, û0
x = ϕ0.) Since

û0 = w ∗ F (û) = û− cûx, we have

û(x) = (I − c∂x)−1û0 =
∫ ∞

0
e−sû0(x+ cs)ds. (3.13)

In this setting, Theorem 3.5.1 therefore tells us the following. Assume that L0 satisfies a
spectral gap inequality in L2(m0) with constant κ0. Set

κ(c) = κ0

(
1− 2c2

Z0 ‖ûxx‖
2
m

)
− |c|

∥∥∥ ûxx
ûx

(κ0 − 1)
∥∥∥
∞
.

Since
∥∥wx
w

∥∥
∞ = M and, as in (2.5),

|ûxx(x)| =
∣∣∣∣ ∫ ∞

0
e−swx ∗ (F ′(û)ûx)(x+ cs)ds

∣∣∣∣ ≤Mûx(x),

it follows that
‖ûxx‖2m
Z0 =

∫
û2
xxF

′(û)dx∫
û0
xûxF

′(û)dx
≤ M2

1− |c|M

and
κ(c) ≥ κ0

(
1− 2c2M2

1− |c|M

)
− |c|M |κ0 − 1|.

Then for all c satisfying

κ0

(
1− 2c2M2

1− |c|M

)
− |c|M |κ0 − 1| > 0, (3.14)

the traveling wave operator associated to û as defined in (3.13) (that is, the operator with
kernel w and gain function F (x) = F 0(û0(û−1(x)))), satisfies a spectral gap inequality in
L2(m).

It would be desirable to express the smallness condition on c in terms of the parameters
of the system, w and F . We will do this in the next chapter for the exponential example
(cf. section 4.4).

3.6 L2(m)-Stability of the Traveling Wave

In this section we will stick to the neural field setting. As outlined in section 2.5, we expect
that shifts in the phase of the wave can be accounted for by adapting the speed according
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to (2.17). We therefore define

ṽ(x, t) = u(x, t)− û(x− ct− Cm(t)) = v(x, t) + û(x− ct)− û(x− ct− Cm(t))

to be the difference between the solution to the stochastic neural field equation and the
traveling wave moving at the adapted speed. Set ũ(x, t) = û(x − ct − Cm(t)) and mt(x) =
m(x− ct− Cm(t)). We move the measure with the wave such that ‖ũ(t)‖mt = ‖û‖m for all
t ≥ 0. ṽ satisfies the stochastic evolution equation

dṽ(t) =
(
− ṽ(t) + w ∗ (F ′(ũ(t))ṽ(t)) + R̃(t, ṽ(t)) + Ċm(t)∂xũ(t)

)
dt

+ εσ(t, ṽ(t) + ũ(t)− û(· − ct))dWt,

where
R̃(t, v) = w ∗

(
F (ũ(t) + v)− F (ũ(t))− F ′(ũ(t))v

)
.

Note that, analogously to (2.8),

‖R̃(t, v)‖2mt ≤
1
4‖w‖∞‖F

′′‖2∞‖v‖2
∫ ∫

w(x− y)v2(y)dymt(x)dx

≤ 1
4‖w‖∞‖F

′′‖2∞
‖m‖∞

min |m|2 ‖v‖
4
mt =: M2

R‖v‖4mt .
(3.15)

Here we assume that assumption (A) on the noise is satisfied and that there exist Lσ,Mσ

such that for all t ≥ 0

‖(σ(t, v1)− σ(t, v2)) ◦Q 1
2 ‖L2(L2,L2(mt)) ≤ Lσ‖v1 − v2‖mt ,

and
Mσ := sup

t≥0
‖σ(t, 0) ◦Q 1

2 ‖L2(L2,L2(mt)) <∞.

Then

‖σ(t, ṽ(t) + ũ(t)− û(· − ct)) ◦Q 1
2 ‖2L2(L2,L2(mt))

≤ 2L2
σ‖ṽ(t) + ũ(t)− û(· − ct))‖2mt + 2M2

σ

≤ 4L2
σ

(
‖ṽ(t)‖2mt + ‖ũ(t)− û(· − ct))‖2mt

)
+ 2M2

σ .

By Taylor’s theorem, there exists ξ(x, t) such that

ũ(x, t)− û(x− ct) = −C(t)ûx(x− ct− ξ(x, t)),
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and we obtain that

‖σ(t, ṽ(t) + ũ(t)− û(· − ct)) ◦Q 1
2 ‖2L2(L2,L2(mt))

≤ 4L2
σ

(
1 +m2‖m‖∞‖ûx‖2‖ûx‖2m

)
‖ṽ(t)‖2mt + 2M2

σ =: L̃2
σ‖ṽ(t)‖2mt + 2M2

σ .
(3.16)

If the traveling wave operator L satisfies a spectral gap inequality in L2(m), then we can
derive a time-uniform bound for ṽ(t). We obtain the following stability result. Similar
results have been proven in the context of reaction-diffusion equations in [57, 58].

Theorem 3.6.1. Assume that the traveling wave operator L satisfies a spectral gap inequality
in L2(m),

〈Lv, v〉m ≤ −κ‖v‖2m + Z〈v, ûx〉2m.

Assume that ε2L̃2
σ + |c|‖∂xmm ‖∞ < κ and m > Z. Set b∗ = κ

2MR+m‖ûx‖m‖ ∂xm
m ‖∞

and

τ := inf {t ≥ 0 : ‖ṽ(t)‖mt ≥ b∗} .

Then
P (τ <∞) ≤ 1

(b∗)2

(
‖ṽ(0)‖22 + 2M2

σε
2

κ− ε2L̃2
σ − |c|‖∂xmm ‖

)
.

Proof. For t ≤ τ , by Itô’s Lemma,

d‖ṽ(t)‖2mt = 2〈−ṽ(t) + w ∗ (F ′(ũ(t))ṽ(t)) + R̃(t, ṽ(t)), ṽ(t)〉mtdt

+
(

2Ċm(t)〈ṽ(t), ∂xũ(t)〉mt − (c+ Ċm(t))
∫
ṽ2(t)∂xmtdx

+ ε2‖
(
σ(t, ṽ(t) + ũ(t)− û(· − ct))

)
◦Q 1

2 ‖2L2(L2,L2(mt))

)
dt

+ 2ε〈ṽ(t), σ(t, ṽ(t) + ũ(t)− û(· − ct))dWt〉mt

Since m > Z,

〈−ṽ(t) + w ∗ (F ′(ũ(t)))ṽ(t)), ṽ(t)〉mt + Ċm(t)〈ṽ(t), ∂xũ(t)〉mt
≤ −κ‖ṽ(t)‖2mt + (Z −m)〈ṽ(t), ∂xũ(t)〉2mt ≤ −κ‖ṽ(t)‖2mt .

Set
Mt =

∫ t

0
〈ṽ(s), σ(s, ṽ(s) + ũ(s)− û(· − cs))dWs〉ms .

Using (3.15), (3.16), and∣∣∣∣(c+ Ċm(t))
∫
ṽ2(t)∂xmtdx

∣∣∣∣ ≤ (|c|+mb∗‖ûx‖m)
∥∥∥∂xm

m

∥∥∥
∞
‖ṽ(t)‖2mt ,



3.6 L2(m)-Stability of the Traveling Wave 57

we obtain that

d‖ṽ(t)‖2mt ≤
(
− 2κ+

(
2MR +m‖ûx‖m

∥∥∥∂xm
m

∥∥∥
∞

)
b∗ + ε2L̃2

σ

+ |c|
∥∥∥∂xm

m

∥∥∥
∞

)
‖ṽ(t)‖2mtdt+ 2ε2M2

σdt+ 2εdMt

≤ −
(
κ− ε2L̃2

σ − |c|
∥∥∥∂xm

m

∥∥∥
∞

)
‖ṽ(t)‖2mtdt

+ 2ε2M2
σdt+ 2εdMt.

Set κ̃ := κ− ε2L̃2
σ − |c|‖∂xmm ‖∞ > 0. Applying Itô’s formula to eκ̃t‖ṽ(t)‖2mt we get that

eκ̃t‖ṽ(t)‖2mt ≤ ‖ṽ(0)‖2m + 2ε2M2
σ

∫ t

0
eκ̃sds+ 2ε

∫ t

0
eκ̃sdMs

= ‖ṽ(0)‖2m + 2ε2M2
σ

κ̃

(
eκ̃t − 1

)
+ 2ε

∫ t

0
eκ̃sdMs.

Therefore, since E
( ∫ t

0 e
κ̃sdMs

)
= 0,

(b∗)2P (τ <∞) = E(‖ṽ(τ)‖2mτ ; τ <∞) = lim
t→∞

E(‖ṽ(t ∧ τ)‖2mt∧τ ; τ <∞)

≤ ‖ṽ(0)‖2m + 2ε2M2
σ

κ− ε2L̃2
σ − |c|‖∂xmm ‖∞

.

Remark 3.6.2.

1. The theorem tells us that the difference ṽ between the stochastic solution and the
adapted traveling wave stays small uniformly in t on the set {τ =∞}. The probability
of this set can be controlled by the initial difference ‖u(0)−û‖2 and the noise amplitude
ε. In particular, if u(0) = û, then

P (τ =∞) ≥ 1−O(ε2).

Note that this asymptotic result holds for arbitrarily small upper bounds b∗.

2. In section 2.5.1 we defined the phase adaptation Cm in the hope that it would allow
us to track the stochastic solution. It is a consequence of the theorem that it indeed
does what it is supposed to.

3. We cannot derive an analogous result in L2(ρ) since we do not have the same control
over the rest term R̃, cf. Remark 2.4.2.

4. Note that also in Theorem 3.6.1 |c| is required to be ‘small enough’ since we assume
that |c|‖∂xmm ‖∞ < κ. This smallness condition can be made explicit in the exponential
example as we will see in the next chapter.



Chapter 4

The Exponential Example

In this chapter, we explicitly analyze the traveling wave solution to the neural field equation
for the case where the strength of the synaptic connections decays exponentially with the
distance, that is, where the kernel w is given as

w(x) = 1
2σ e

− |x|σ

for some σ > 0. We exploit the fact that

w ∗ h = (I − σ2∆)−1h.

We start by analyzing the asymptotic behavior of the derivative of the traveling wave,
which is the eigenfunction of the frozen wave operator, and the associated adjoint eigen-
function ψ that has been proven to exist in Proposition 2.4.1. We show that both decay
exponentially and compute the rates of decay. This will also give us the asymptotic behavior
of the density ρ = ψ

ûx
in section 4.2. These first two sections are based on the preprint [46].

Together with Theorem 3.4.2, the results imply that the frozen wave operator L# satisfies
the spectral gap inequality in this particular example. Finally, we derive a bound on the
wave speed c in section 4.3. In section 4.4 we use this bound to make the smallness assump-
tion on c from sections 3.5 and 3.6 explicit in terms of the parameters of the system, σ and
F .

In all of this chapter we assume without loss of generality that c ≥ 0. Furthermore we
make the following assumption.

Assumption. There exist z1 ≤ z2 such that F ′′(x) ≥ 0 for x ≤ z1, F ′′(x) ≤ 0 for x ≥ z2.

Definition. We say that F is convex-concave if z1 = z2 in the above assumption.
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4.1 Asymptotic Behavior of ûx and ψ

Set φ(x) = w ∗ ψ(x).

Lemma 4.1.1.

(i) There exist y1 < y2 such that ûxx(x) ≥ 0 for x < y1 and ûxx(x) ≤ 0 for x > y2. If F
is convex-concave, then so is ûxx since we can choose y1 = y2.

(ii) There exist ỹ1 < ỹ2 such that φx(x) > 0 for x < ỹ1 and φx(x) < 0 for x > ỹ2.

(iii) For all x ≤ ȳ1 := min(û−1(z1), y1, ỹ1), ψx(x) ≥ 0,
while for all x ≥ ȳ2 := max(û−1(z2), y2, ỹ2), ψx(x) ≤ 0.

Proof. Note first that if c = 0, then û = w ∗ F (û) implies that σ2ûxx = û − F (û). Set
Z =

∫
û2
x(x)F ′(û(x))dx. We have ψx = 1

ZF
′′(û)û2

x+F ′(û)ûxx and φx = 1
Z (w ∗ψ)x = 1

Z ûxx.
In this case, (i)-(iii) are therefore satisfied. Now assume that c > 0.

(i) We have

û(x)− σ2ûxx(x) = (1− σ2∆)
∫ ∞

0
e−sw ∗ F (û)(x+ cs)ds

=
∫ ∞

0
e−sF (û(x+ cs))ds ≥ F (û(x)),

which implies that σ2ûxx ≤ û− F (û) < 0 for x > û−1(a).
Let b1 = min {x ≥ a1 : F ′(x) ≥ 1}. Assume that there exist x1 < x2 < û−1(b1) such

that ûxx(x1) = 0, ûxx(x2) = 0 and ûxx(x) < 0 for x1 < x < x2. Then ûxxx(x1) ≤ 0 and
ûxxx(x2) ≥ 0. We have

û− σ2ûxx − cûx + cσ2ûxxx = (1− σ2∆)(û− cûx)

= (1− σ2∆)w ∗ F (û) = F (û)

and therefore

0 = σ2(ûxx(x2)− ûxx(x1)) = cσ2(ûxxx(x2)− ûxxx(x1))︸ ︷︷ ︸
≥0

− c(ûx(x2)− ûx(x1))︸ ︷︷ ︸
<0

+ û(x2)− F (û(x2))− (û(x1)− F (û(x1)))︸ ︷︷ ︸
=
∫ x2
x1

(1−F ′(û(x)))ûx(x)dx>0

> 0,

which is a contradiction. Thus, since ûx > 0 implies that ûxx(x) > 0 for arbitrarily small x,
the claim follows.

If z1 = z, assume that there exist û−1(b1) < x3 < x4 < û−1(a) such that ûxx(x3) =
ûxx(x4) = 0, ûxx(x) > 0 for x3 < x < x4. Since F ′(b1) = 1 and F ′(a) > 1, F ′(û(x)) ≥ 1 for
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all x3 < x < x4. Therefore

0 = σ2(ûxx(x4)− ûxx(x3)) = cσ2(ûxxx(x4)− ûxxx(x3))︸ ︷︷ ︸
<0

− c(ûx(x4)− ûx(x3))︸ ︷︷ ︸
>0

+ ûx(x4)− F (ûx(x4))− (ûx(x3)− F (ûx(x3)))︸ ︷︷ ︸
=
∫ x4
x3

(1−F ′(û(x)))ûx(x)dx<0

< 0,

which is a contradiction. It follows that we can choose y1 = y2.
(ii): φ satisfies

F ′(û)φ = (1 + c∂x)ψ = (1 + c∂x)(1− σ2∆)φ

= φ+ cφx − σ2φxx − cσ2φxxx.
(4.1)

There exist z′1 < z′2 such that F ′(û(x)) < 1 for all x ≤ z′1 and x ≥ z′2. Since
∫ x
−∞ φx(y)dy =

φ(x) > 0 for all x, there exist arbitrarily small z such that φx(z) > 0. Analogously, since∫∞
x
φx(y)dy = −φ(x) < 0, there exist arbitrarily large z such that φx(z) < 0. We show that

there does not exist a non-negative local maximum of φx on {F ′(û) < 1}. Then (ii) follows.
So assume there exists x0 such that F ′(û(x0)) < 1 and φx attains a local maximum at

x0 with φ(x0) ≥ 0. Then, using (4.1),

0 < (1− F ′(û(x0)))φ(x0) = −cφx(x0)︸ ︷︷ ︸
≤0

+σ2φxx(x0)︸ ︷︷ ︸
=0

+cσ2 φxxx(x0)︸ ︷︷ ︸
≤0

≤ 0,

which is a contradiction.
(iii): ψ satisfies ψ + cψx = F ′(û)φ. Differentiating we obtain

ψx(x) + cψxx(x) = F ′′(û(x))ûx(x)φ(x) + F ′(û(x))φx(x) =: g(x).

For x ≤ ȳ1, g(x) > 0 and for x ≥ ȳ2, g(x) < 0. Thus, ψ does not attain a local maximum on
(−∞, ȳ1), nor a local minimum on (ȳ2,∞). Since ψ > 0 there exist arbitrarily small x such
that ψx(x) > 0 and arbitrarily large x such that ψx(x) < 0, and the claim follows.

Set δ1 = 1− limx→−∞ F ′(û(x)) = 1− F ′(a1), δ2 = 1− limx→∞ F ′(û(x)) = 1− F ′(a2).

Theorem 4.1.2. Let ε > 0. There exist x1(ε) < x2(ε) and
√
δ1 < δ̃1(c) < 1,

√
δ2 < δ̃2(c) <

1, such that for all x ≤ x1, y > 0,

ûx(x) ≤ e
√
δ1+ε
σ yûx(x− y)

e
δ̃1(c)−ε

σ yφ(x− y) ≤φ(x) ≤ e
δ̃1(c)+ε

σ yφ(x− y)
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and for all x ≥ x2, y > 0,

e−
δ̃2(c)+ε

σ yûx(x) ≤ûx(x+ y) ≤ e−
δ̃2(c)−ε

σ yûx(x)

e−
√
δ2+ε
σ yφ(x) ≤φ(x+ y).

For i = 1, 2, δ̃i(c) is the unique positive root of fi(x, c) = cx3 + σx2 − cx − δiσ, and is
increasing in c with δ̃i(0) =

√
δi and limc→∞ δ̃i(c) = 1.

Proof. Let ȳ1, ȳ2 be as in Lemma 4.1.1. Note that

σ2ûxxx(x)
ûx(x) = 1− (I − σ2∆)ûx(x)

ûx(x)

= 1−
(I − σ2∆)

∫∞
0 e−sw ∗ (F ′(û)ûx)(x+ cs)ds

ûx(x)

= 1−
∫∞

0 e−sF ′(û(x+ cs))ûx(x+ cs)ds
ûx(x) ,

and since F ′(û)φ = ψ + cψx = (I + c∂x)(I − σ2∆)φ,

σ2φxx(x)
φ(x) = 1− (I + c∂x)−1(F ′(û)φ)(x)

φ(x)

= 1−
∫∞

0 e−sF ′(û(x− cs))φ(x− cs)ds
φ(x) .

So if c = 0, then σ2ûxxx(x)
ûx(x) = σ2φxx(x)

φ(x) = 1 − F ′(û(x)), which converges to δ1 and δ2 for
x→ −∞ and x→∞, respectively.

Now assume that c > 0. For x ≤ ȳ1, ûxx(x) ≥ 0 and thus

σ2ûxxx(x)
ûx(x) ≤ 1−

∫ ȳ1−x
c

0
e−sF ′(û(x+ cs)) ûx(x+ cs)

ûx(x) ds

≤ 1−
∫ ȳ1−x

c

0
e−sF ′(û(x+ cs))ds x→−∞−−−−−→ δ1.

Thus, there exists x1(ε) such that for x ≤ x1,

ûxxx(x) ≤ δ1 + ε

σ2 ûx(x),

and since d
dx (û2

xx(x) − δ1+ε
σ2 û2

x(x)) = 2ûxx(x)(ûxxx(x) − δ1+ε
σ2 ûx(x)) ≤ 0 and

limx→−∞(û2
xx(x) − δ1+ε

σ2 û2
x(x)) = 0, it follows that ûxx(x) ≤

√
δ1+ε
σ ûx(x) and hence for

y > 0, ûx(x) ≤ e
√
δ1+ε
σ yûx(x− y).



4.1 Asymptotic Behavior of ûx and ψ 62

For x ≥ ȳ2, φx(x) ≤ 0 and thus

σ2φxx(x)
φ(x) ≤ 1−

∫ x−ȳ2
c

0
e−sF ′(û(x− cs))φ(x− cs)

φ(x) ds

≤ 1−
∫ x−ȳ2

c

0
e−sF ′(û(x− cs))ds x→∞−−−−→ δ2

and we obtain similarly to the above that there exists x2 such that for x ≥ x2, y > 0,
φ(x+ y) ≥ e−

√
δ2+ε
σ yφ(x).

Next we show that δ̃2
1(c) := limx→−∞

σ2φxx(x)
φ(x) and δ̃2

2(c) := limx→∞
σ2ûxxx(x)
ûx(x) exist. Note

that |φx| ≤ 1
σφ such that for x ≤ ȳ1 and y > 0, φ(x) ≤ e

1
σ yφ(x − y). It follows that for

x ≤ ȳ1,

σ2φxx(x)
φ(x) ≤ 1−

∫ ∞
0

e−sF ′(û(x− cs))e− 1
σ csds

x→−∞−−−−−→ 1− (1− δ1) σ

σ + c
= c

σ + c
+ δ1

σ

σ + c
=: δ(1)

1 (c),

with δ1 < δ
(1)
1 (c) < 1. It follows that there exists x1 such that for x ≤ x1, y > 0, φ(x) ≤

e

√
δ
(1)
1 (c)+ε
σ yφ(x− y). Using this improved bound, we obtain that

σ2φxx(x)
φ(x) ≤ 1−

∫ ∞
0

e−sF ′(û(x− cs))e−
√

δ
(1)
1 (c)+ε
σ csds

x→−∞−−−−−→ 1− (1− δ1) σ

σ + c

√
δ

(1)
1 (c) + ε

=: δ(2)
1 (c, ε).

Thus, lim supx→−∞
σ2φxx(x)
φ(x) ≤ δ

(2)
1 (c, ε) ε→0−−−→ 1 − (1 − δ1) σ

σ+c
√
δ
(1)
1 (c)

=: δ(2)
1 (c) with δ1 <

δ
(2)
1 (c) < δ

(1)
1 (c). Iterating this procedure we obtain a decreasing sequence δ(n)

1 (c) > δ1

satisfying
δ

(n+1)
1 (c) = 1− (1− δ1) σ

σ + c

√
δ

(n)
1 (c)

.

Thus, δ̃1(c) := limn→∞

√
δ

(n)
1 (c) satisfies

cδ̃3
1(c) + σδ̃2

1(c)− cδ̃1(c) = δ1σ

and is therefore the unique positive root of f1(c, x) = cx3 + σx2 − cx− δ1σ.
On the other hand, for small enough x,

σ2φxx(x)
φ(x) ≥ 1−

∫ ∞
0

e−sF ′(û(x− cs))ds x→−∞−−−−−→ δ1,
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and hence

σ2φxx(x)
φ(x) ≥ 1−

∫ ∞
0

e−sF ′(û(x− cs))e−
√
δ1−ε
σ csds

x→−∞−−−−−→ 1− (1− δ1) σ

σ + c
√
δ1 − ε

=: δ′(1)
1 (c, ε).

Thus, lim infx→−∞ σ2φxx(x)
φ(x) ≥ δ

′(1)
1 (c, ε) ε→0−−−→ 1 − (1 − δ1) σ

σ+c
√
δ1

=: δ′(1)
1 (c) with δ1 <

δ
′(1)
1 (c) < 1. Iteration of the procedure yields an increasing sequence δ′(n)

1 (c) < 1 and

δ′1(c) := limn→∞

√
δ
′(n)
1 (c) is the unique positive root of f1(c, x) = cx3 + σx2 − cx − δ1σ.

Hence, δ′1(c) = δ̃1(c) and it follows that there exists x1 such that for x ≤ x1, y > 0,

e
δ̃1(c)−ε

σ yφ(x− y) ≤ φ(x) ≤ e
δ̃1(c)+ε

σ yφ(x− y)

Analogously, we obtain that there exists x2 such that for x ≥ x2, y > 0,

e−
δ̃2(x)+ε

σ yûx(x) ≤ ûx(x+ y) ≤ e−
δ̃2(c)−ε

σ yûx(x),

where δ̃2(c) is the unique positive root of f2(c, x) = cx3 + σx2 − cx− δ2σ.
Since for i = 1, 2,

0 = d

dc

(
fi(c, δ̃i(c))

)
= ∂

∂c
fi(c, δ̃i(c)) + d

dc
δ̃i(c)

∂

∂x
fi(c, δ̃i(c)),

∂
∂cfi(c, δ̃i(c)) = δ̃3

i (c)− δ̃i(c) < 0, and ∂
∂xf(c, δ̃i(c)) > 0, it follows that δ̃i(c) is increasing in

c with δ̃i(0) =
√
δi and limc→∞ δ̃i(c) = 1.

4.2 The Asymptotic Behavior of ρ

The asymptotic behavior of ûx and ψ determine that of the density ρ.

Proposition 4.2.1. (i) There exists constants k̃1, k̃2 such that k̃1φ ≤ ψ ≤ k̃2φ.

(ii) Let ε > 0 (small enough) and let x1(ε) < x2(ε) be as in Theorem 4.1.2. There exist
constants k1, k2, k

′
1, k
′
2 such that for x ≤ x1, y > 0,

k1e
δ̃1(c)−

√
δ1−2ε

σ yρ(x− y) ≤ ρ(x) ≤ k2e
δ̃1(c)+ε

σ yρ(x− y)

and for x ≥ x2, y > 0,

k′1e
δ̃2(c)−

√
δ2−2ε

σ yρ(x) ≤ ρ(x+ y) ≤ k′2e
δ̃2(c)+ε

σ yρ(x).

Proof. (i) We have
(1 + c∂x)ψx = F ′′(û)ûxw ∗ ψ + F ′(û)wx ∗ ψ
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and thus

ψx(x) =
∫ ∞

0
e−s
(
F ′′(û(x− cs))ûx(x− cs)w ∗ ψ(x− cs)

+ F ′(û(x− cs))wx ∗ ψ(x− cs)
)
ds

≤
(∥∥∥F ′′(û)ûx

F ′(û)

∥∥∥
∞

+
∥∥∥wx
w

∥∥∥
∞

)
ψ(x).

It follows that there exists k̃1 such that

φ = ψ + cψx
F ′(û) ≤ 1

k̃1
ψ.

Let ȳ1, ȳ2 be as in Lemma 4.1.1. Fix δ > 0. Then for x ≥ ȳ2 + δ,

φ(x) = w ∗ ψ(x) ≥
∫ x

x−δ
w(x− y)ψ(y) ≥

∫ δ

0
w(y)dyψ(x),

and for x ≤ ȳ1 − δ,

φ(x) ≥
∫ x+δ

x

w(x− y)ψ(y)dy =
∫ δ

0
w(y)dyψ(x).

For x1 − δ ≤ x ≤ x2 + δ,

φ(x) ≥ minx1−δ≤y≤x2+δ φ(y)
maxx1−δ≤y≤x2+δ ψ(y)ψ(x),

and the claim follows.
(ii) For x ≤ x1, y > 0,

ρ(x− y) ≤ k̃2
φ(x− y)
ûx(x− y) ≤ k̃2e

− δ̃1(c)−
√
δ1−2ε

σ y φ(x)
ûx(x) ≤

k̃2

k̃1
e−

δ̃1(c)−
√
δ1−2ε

σ yρ(x)

and
ρ(x− y) ≥ k̃1

φ(x− y)
ûx(x− y) ≥ k̃1e

− δ̃1(c)+ε
σ y φ(x)

ûx(x) ≥
k̃1

k̃2
e−

δ̃1(c)+ε
σ yρ(x).

For x ≥ x2, y > 0,

ρ(x+ y) ≤ k̃2e
δ̃2(c)+ε

σ y φ(x)
ûx(x) ≤

k̃2

k̃1
e
δ̃2(c)+ε

σ yρ(x),

and
ρ(x+ y) ≥ k̃1

k̃2
e
δ̃2(c)−

√
δ2−2ε

σ yρ(x).
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We can now verify that ρ satisfies assumption 2.4.3.

Corollary 4.2.2. There exists a constant Lρ such that ρ(x− y) ≤ Lρρ(x) for all x ∈ R and
y ≥ 0.

Proof. By Proposition 4.2.1, there exist x1 < x2 and a constant k such that ρ(x−y) ≤ kρ(x)
for x ≤ x1, y > 0, and ρ(x− y) ≤ kρ(x) for x− y ≥ x2, y > 0. If x− y ≤ x1 ≤ x ≤ x2, then
ρ(x− y) ≤ kρ(x1) ≤ k ρ(x1)

minx1≤z≤x2 ρ(z)
ρ(x), if x− y ≤ x1 < x2 ≤ x, then ρ(x− y) ≤ kρ(x1) ≤

k2 ρ(x1)
ρ(x2)ρ(x), and if x1 ≤ x− y ≤ x2, then ρ(x− y) ≤ kmaxx1≤z≤x2 ρ(z)

minx1≤z≤x2 ρ(z)
ρ(x).

Corollary 4.2.3. There exists a constant Kρ such that for all x ∈ R,∫
w(x− y)ρ(y)dy ≤ Kρρ(x).

Proof. Fix ε > 0 (small enough) and let x1, x2 be as in Theorem 4.1.2. We denote by k an
arbitrary positive constant that may change from step to step. By Proposition 4.2.1, we
have for x ≤ x1,

w ∗ ρ(x) ≤ k
∫ x

−∞
w(x− y)ρ(x)dy + k

∫ x1

x

w(x− y)e
δ̃1(c)+ε

σ (y−x)ρ(x)dy

+
∫ x2

x1

w(x− y)dy max
x1≤y≤x2

ρ(y) + k

∫ ∞
x2

w(x− y)e
δ̃2(c)+ε

σ (y−x2)ρ(x2)dy

=: I1 + I2 + I3 + I4.

Clearly, I1 ≤ kρ(x). Since δ̃1(c) + ε < 1, also I2 ≤ kρ(x). Note that ρ(x) ≥
ke−

δ̃1(c)+ε
σ (x1−x)ρ(x1). As

∫ x2
x1
w(x− y)dy = 1

2 (e−
x1−x
σ − e−

x2−x
σ ), it follows that

I3 ≤ ke−
1−δ̃1(c)−ε

σ (x1−x) ρ(x)
ρ(x1) ≤ kρ(x).

Since
∫∞
x2
w(x− y)e

δ̃2(c)+ε
σ (y−x2)dy ≤ ke xσ , we have

I4 ≤ ke
x
σ e

δ̃1(c)+ε
σ (x1−x) ρ(x)

ρ(x1) ≤ ke
x1
σ e−

1−δ̃1(c)−ε
σ (x1−x) ρ(x)

ρ(x1) ≤ kρ(x).

For x1 ≤ x ≤ x2, we obtain as above that

w ∗ ρ(x) ≤ kρ(x1) + max
x1≤y≤x2

ρ(y) + kρ(x2) ≤ k ρ(x)
minx1≤y≤x2 ρ(y) .
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Finally, for x ≥ x2,

w ∗ ρ(x) ≤ kρ(x1) + max
x1≤y≤x2

ρ(y) + k

∫ x

x2

w(x, y)dyρ(x)

+ k

∫ ∞
x

w(x, y)e
δ̃2(c)+ε

σ (y−x)ρ(x)dy.

Noting that δ̃2(c) + ε < 1 and that ρ(x) ≥ kρ(x2), we see that also in this case w ∗ ρ(x) ≤
kρ(x), which concludes the proof.

Together with Theorem 4.1.2 it is now easily checked that the conditions of Theorem
3.4.2 are satisfied

Corollary 4.2.4. If the kernel w is given as w(x) = 1
2σ e
− |x|σ for some σ > 0, then the

frozen wave operator satisfies a spectral gap inequality in L2(ρ): there exists κ > 0 such that
for all v ∈ H1(ρ),

〈L#v, v〉ρ ≤ −κ(‖v‖2ρ − 〈v, ûx〉2ρ).

4.3 Bounds on the Wave Speed

In general, the speed c of the traveling wave is unknown. We have seen in section 1.1.5 that
it can be explicitly calculated in the case of a Heaviside nonlinearity. In [27], Thm. 3.1,
Ermentrout and McLeod proved that

c =
∫ a2
a1
x− F (x)dx∫

û2
x(x)F ′(û(x))dx

. (4.2)

We can use this representation to deduce a lower and an upper bound on c in the exponential
example.

Proposition 4.3.1. Assume that F is convex-concave. The wave speed is bounded in terms
of the parameters of the system, σ and F :

σ√
2

∫ a2
a1
x− F (x)dx√∫ a

a1
x− F (x)dx

≤ c ≤ σ

4

∫ a2
a1
x− F (x)dx∫ a2

a
F (x)− xdx

Proof. By Lemma 4.1.1, there exists a unique x0 such that ûxx(x0) = 0 and ûxx(x) ≥ 0 for
x ≤ x0 and ûxx(x) ≤ 0 for x ≥ x0.

We first prove the upper bound. Since |ûxx| ≤ 1
σ ûx, we have that

ûx(x) ≥ e−
|x−x0|
σ ûx(x0).
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This implies that∫
û2
x(x)F ′(û(x))dx ≥

∫
e−
|x−x0|
σ ûx(x)ûx(x0)F ′(û(x))dx

= 2σw ∗ (F ′(û)ûx)(x0)ûx(x0) = 2σ(ûx(x0)− cûxx(x0))ûx(x0)

= 2σû2
x(x0).

Since (2.5) implies that σ2ûxx = û−
∫∞

0 e−sF (û(·+ cs))ds we obtain

û2
x(x) = 2

∫ ∞
x

−ûxx(y)ûx(y)dy = 2
∫ ∞
x

−
û(y)−

∫∞
0 e−sF (û(y + cs)ds

σ2 ûx(y)dy

≥ 2
∫ ∞
x

− û(y)− F (û(y))
σ2 ûx(y)dy = 2

σ2

∫ a2

û(x)
F (x)− x dx.

Therefore
û2
x(x0) = max û2

x(x) ≥ û2
x(û−1(a)) ≥ 2

σ2

∫ a2

a

F (x)− x dx.

Using (4.2), we obtain

c =
∫ a2
a1
x− F (x)dx∫

û2
x(x)F ′(û(x))dx

≤ 1
2σ

∫ a2
a1
x− F (x)dx
û2
x(x0) ≥ σ

∫ a2
a1
x− F (x)dx∫ a2

a
F (x)− xdx

.

This yields the upper bound.
We now prove the lower bound. We have

û2
x(x) = 2

∫ x

−∞
ûx(y)ûxx(y)dy = 2

σ2

∫ x

−∞

(
û(y)−

∫ ∞
0

e−sF (û(y + cs))ds
)
ûx(y)dy

≤ 2
σ2

∫ x

−∞
(û(y)− F (û(y)))ûx(y)dy = 2

σ2

∫ û(x)

a1

x− F (x)dx.

Since
0 = ûxx(x0) = 1

σ2

(
û(x0)−

∫ ∞
0

e−sF (û(x0 + cs))ds
)

it follows that
û(x0) =

∫ ∞
0

e−sF (û(x0 + cs))ds > F (û(x0))

and hence û(x0) < a, so that

û2
x(x0) ≤ 2

σ2

∫ û(x0)

a1

x− F (x)dx ≤ 2
σ2

∫ a

a1

x− F (x)dx.
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Thus, using (4.2),

c ≥
∫ a2
a1
x− F (x)dx

ûx(x0)
∫
F ′(û(x))ûx(x)dx

≥ σ√
2

∫ a2
a1
x− F (x)dx√∫ a

a1
x− F (x)dx

.

4.4 The Spectral Gap Inequality in L2(m)
In Theorem 3.5.1 we proved that the traveling wave operator L satisfies a spectral gap
inequality in L2(m) if the wave speed c is small enough. In the exponential example we can
express this smallness condition in terms of the parameters of the system, σ and F .

Proposition 4.4.1. Assume that F is convex-concave. For all small enough wave speeds
c the traveling wave operator L satisfies a spectral gap inequality in L2(m). The smallness
condition on c can be expressed explicitly in terms of the parameters of the system, σ and
F .

Proof. I) In view of Theorem 3.5.1, we explicitly calculate κ0
0 such that for all h ∈ H1(µ0),

V arµ0(h) ≤ κ0
0

∫
h2
xdµ

0,

where µ0(x) = 1
Zµ0

w ∗ (F ′(û)ûx)(x)ûx(x)F ′(û(x)) with Zµ0 =
∫
w ∗ (F ′(û)ûx)ûxF ′(û)dx.

By Lemma 4.1.1, there exists a unique x0 such that ûxx(x0) = 0 and ûxx(x) ≥ 0 for
x ≤ x0, ûxx(x) ≤ 0 for x ≥ x0. Let εi < δi, such that F ′(ai) = 1− δi < 1− εi, i = 1, 2. Let
b1 = min{x : F ′(x) ≥ 1−ε1} and b2 = max{x : F ′(x) ≥ 1−ε2}. Set F ′+ = maxa1≤y≤a2 F

′(y)
and F ′− = mina1≤y≤a2 F

′(y). Set ϕ0 = w ∗ (F ′(û)ûx). Then ϕ0−σ2ϕ0
xx = F ′(û)ûx and thus

σ2ϕ0
xx =

(
1− F ′(û) ûx

ϕ0

)
ϕ0.

We assume that c < ε1σ such that

1− F ′(û) ûx
ϕ0 = 1− F ′(û) ûx

ûx − cûxx
≥

ε2, x ≥ b2
1− (1− ε1) σ

σ−c , x ≤ b1
.

Then for x ≥ û−1(b2) ∨ x0∫ ∞
x

µ0(y)dy ≤
F ′+ûx(x)
Zµ0

∫ ∞
x

σ2

1− F ′(û) ûxϕ0

ϕ0
xxdy.

Since |ϕ0
x| ≤ 1

σϕ
0 if follows that∫ ∞

x

µ0(y)dy ≤
F ′+ûx(x)
ε2Zµ0

(−σ2ϕ0
x(x)) ≤

F ′+σ

F ′−ε2
µ0(x).



4.4 The Spectral Gap Inequality in L2(m) 69

Analogously, for x ≤ û−1(b1) ∧ x0, since ϕ0(x) = ûx(x)− cûxx(x) ≥ σ−c
σ ûx,∫ x

−∞
µ0(y)dy ≤

F ′+σ

F ′−
(
1− (1− ε1) σ

σ−c
)µ0(x).

If û−1(b2) > x0, then for x0 ≤ x ≤ û−1(b2),

∫ û−1(b2)

x

µ0(y)dy ≤ 1
Zµ0

σ + c

σ
F ′+

∫ û−1(b2)

x

û2
x(y)dy ≤ 1

Zµ0

σ + c

σ
F ′+û

2
x(x)(û−1(b2)− x0).

We have
û−1(b2)− x0 =

∫ b2

û(x0)

1
ûx(û−1(y))dy ≤

1
ûx(û−1(b2)) (b2 − û(x0))

and, since û− cûx = w ∗ F (û) implies that σ2ϕ0
x = û− F (û)− cûx,

1
ûx(û−1(b2)) ≤

σ + c

σ

1
ϕ0(û−1(b2)) ≤ −

σ + c

σ2
1

ϕ0
x(û−1(b2))

= σ + c

F (b2)− b2 + cûx(û−1(b2)) ≤
σ + c

F (b2)− b2
.

Analogously, if û−1(b1) < x0, then for û−1(b1) ≤ x ≤ x0,∫ x

û−1(b1)
µ0(y)dy ≤

F ′+
Zµ0

∫ x

û−1(b1)
û2
x(y)dy ≤

F ′+
Zµ0

û2
x(x)(x0 − û−1(b1)),

x0 − û−1(b1) ≤ 1
ûx(û−1(b1)) (û(x0)− b1),

1
ûx(û−1(b1)) ≤

1
ϕ0(û−1(b1)) ≤

1
σϕ0

x(û−1(b1)) = σ

b1 − F (b1)− cûx(û−1(b1))

≤ σ

b1 − F (b1)− c
σ b1

.

Thus, for x0 ≤ x ≤ û−1(b2),∫ ∞
x

µ0(y)dy ≤ σ + c

σ

F ′+
F ′−

µ0(x)(b2 − û(x0)) σ + c

F (b2)− b2

+ 1
Zµ0

F ′+σ

F ′−ε2
ϕ0(û−1(b2))ûx(û−1(b2))F ′(b2)),

and since ûx(û−1(b2)) ≤ ûx(x), F ′(b2) ≤ F ′(û(x)), and

ϕ0(û−1(b2)) ≤ σ + c

σ
ûx(x) ≤ σ + c

σ
ϕ0(x),
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we obtain∫ ∞
x

µ0(y)dy ≤ σ + c

σ

F ′+
F ′−

( σ + c

F (b2)− b2
(b2 − b1) + σ

ε2

)
µ0(x) =: α1(c)µ0(x).

Similarly we obtain ∫ x

−∞
µ0(y)dy ≤ α2(c)µ0(x),

where the dependence of α1(c) and α2(c) on c is explicit.
Set α(c) = α1(c) ∨ α2(c). Then for h ∈ H1(µ0)∫ x0

−∞
(h(x)− h(x0))2µ0(x)dx = −2

∫ x0

−∞
(h(x)− h(x0))hx(x)

∫ x

−∞
µ0(y)dydx

≤ 2α
∫ x0

−∞
|h(x)− h(x0)||hx(x)|µ0(x)dx

≤ 1
2

∫ x0

−∞
(h(x)− h(x0))2µ0(x)dx+ 2α2

∫ x0

−∞
h2
x(x)µ0(x)dx,

and hence ∫ x0

−∞
(h(x)− h(x0))2µ0(x)dx ≤ 4α2

∫ x0

−∞
h2
x(x)µ0(x)dx.

Similarly, ∫ ∞
x0

(h(x)− h(x0))2µ0(x)dx ≤ 4α2
∫ ∞
x0

h2
x(x)µ0(x)dx.

Together we obtain that

V arµ0(h) ≤
∫

(h(x)− h(x0))2µ0(x)dx ≤ 4α2(c)
∫
h2
x(x)µ0(x)dx.

II) Note that I) together with the fact that

σ − c
σ

ûx ≤ w ∗ (F ′(û)ûx) ≤ σ + c

σ
ûx

and
∥∥wx
w

∥∥
∞ = 1

σ imply that the conditions in Theorem 3.5.1 are satisfied. Therefore, as in
(3.14), L satisfies a spectral gap inequality if

κ0

(
1− 2

( c
σ

)2 σ

σ − c

)
− c

σ
|κ0 − 1| > 0,

where
κ0 = 1

2
σ2

σ2 + κ0
0

= 1
2

σ2

σ2 + 4α2(c)

Here the dependence on c is explicit. Using the bounds on c in terms of σ and F from
Proposition 4.3.1, this condition can be translated into a condition on σ and F , which
completes the proof.





Chapter 5

A Multiscale Analysis

In this chapter we analyze the influence of the noise on the traveling wave. We prove an
expansion of the solution to the stochastic neural field equation describing the effects to
different orders of the noise strength. By separating two scales - fluctuations in the wave
profile and shifts in the phase of the wave - we obtain a simplified description of the stochastic
traveling wave. The chapter is based on the preprint [46].

5.1 Introduction

In this chapter, it is our main goal to provide a mathematically rigorous analysis of the
influence of the noise on the traveling wave dynamics on multiple scales. The term multiscale
refers mainly to two different spatial scales: first, shifts in the phase of the wave, that
is, displacements of the wave profile from its uniformly translating position, and second,
fluctuations in the wave profile. Recall from section 2.5.1 that by tracking the solution u to
the stochastic neural field equation (2.1) with a reference wave we obtain an expression for
the stochastic phase C(t). We derive an expansion of u in the noise strength ε of the form

u(x, t) = û(x− ϕk(t)) + εv0(x, t) + ε2v1(x, t) + ...+ εkvk−1(x, t) + rk(x, t)

ϕk(t) = ct+ εC0(t) + ε2C1(t) + ...+ εkCk−1(t),

where the coefficients vk and Ck are independent of ε and where the rest terms rk are of
higher order in ε. The term multiscale may thus also refer to the different orders of the noise
strength, and the vk and Ck describe the influence of the noise on the scale εk+1. Here we
have separated the two spatial scales: the Ck describe the effects of the noise on the phase,
and the vk on the wave profile. The expansion is valid up to a stopping time τ which can
be shown to be large with high probability converging to 1 as ε goes to 0.

An analysis of the properties of the coefficients then allows to describe the effects of the
noise. To first order of the noise strength, the phase shift, given by C0, is roughly diffusive.
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Using the spectral properties of the linearized system (cf. Chapter 3) we find that the
fluctuations are to first order given by a L2(Ω;L2(ρ))-bounded Ornstein-Uhlenbeck process
that is orthogonal to the direction of movement, expressing in particular the stability of the
traveling wave under the noise.

The question of how noise influences the traveling wave dynamics in neural fields was
first considered by Bressloff and Webber in [15]. They identified the two effects and then
formally derived a decomposition of the solution. They obtained a stochastic differential
equation as an approximate description of the shift of the phase to first order of the noise
strength, and found that the noise causes diffusive wandering of the front.

In [42], Krüger and Stannat made first steps towards a mathematically rigorous derivation
of a decomposition of the solution and our results can be seen as an extension of their work.

The problem is also considered by Inglis and MacLaurin in [37]. Under assumptions
on the spectral properties of the dynamics they analyze the local stability and long-time
behavior of the stochastic solution. While we dynamically adapt the speed of the reference
wave such that its distance to the stochastic wave becomes minimal, they derive a stochastic
differential equation for the phase whose solution realizes the minimum exactly.

Working in the space L2(ρ) seems natural here for two reasons. First, it will allow us
to separate the two spatial scales. The dynamics of the phase and of the fluctuations in
the wave profile decouple, such that we can obtain a separate description of the effects of
the noise on the two scales (cf. section 5.4). Second, as we have seen in Chapter 3, we can
describe the spectral properties of the system in the space L2(ρ). This will allow us to derive
stability properties of the dynamics.

The method of obtaining a description of the stochastic dynamics by separating the
dynamics on different spatial (or temporal) scales and approximating to a certain order of ε
is related to Blömker’s work on amplitude equations (see for example [6] or [5]).

5.2 Setting

We consider the stochastic neural field equation

dv(t) =
(
Ltv(t) +R(t, v(t))

)
dt+ εdWt, v(0) = εη. (5.1)

Here (Lt) is the family of operators acting as

Ltv = −v + w ∗ (F ′(û(· − ct))v) (5.2)

and
R(t, v) = w ∗

(
F (û(· − ct) + v)− F (û(· − ct))− F ′(û(· − ct))v

)
.

For the moment we stick to the additive noise case and assume that assumption (C)(1)
is satisfied. We will comment on the multiplicative noise case in section 5.4.1 below. We
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assume that Assumption 2.4.3 is satisfied and that
∥∥wx
w

∥∥
∞ < ∞. This covers in particular

the case of the exponential example.
Recall that by Proposition 2.4.4, for every initial condition η ∈ H1(1 + ρ), there exists a

unique strong H1(1 + ρ)-valued solution to (5.1) admitting a continuous modification.
The family of linear operators (Lt) satisfies

‖Lth‖2H1(1+ρ) ≤ 2
(

1 +
(

1 +
∥∥∥wx
w

∥∥∥2

∞

)
(1 +Kρ)‖F ′‖2∞

)
‖h‖2H1(1+ρ) =: L2

∗‖h‖2H1(1+ρ).

It generates an evolution semigroup (Pt,s)0≤s≤t≤T with

‖Pt,sh‖H1(1+ρ) ≤ eL∗(t−s)‖h‖H1(1+ρ).

v can thus be represented as a mild solution

v(t) = εPt,0η +
∫ t

0
Pt,sR(s, v(s))ds+ ε

∫ t

0
Pt,sdWs.

Details on evolution semigroups can be found in [50].
Recall from section 2.3.2 that v#(x, t) = v(x + ct, t) is the weak solution to the frozen

wave equation. We assume that L# satisfies a spectral gap inequality: there exists κ > 0
such that for all v ∈ H1(ρ),

〈L#v, v〉ρ ≤ −κ
(
‖v‖2ρ − 〈v, ûx〉2ρ

)
.

Recall from Chapter 3 that this assumption is satisfied under rather general assumptions.
In particular it is satisfied in the exponential example analyzed in Chapter 4. Since

〈L#v, ûx〉ρ = 〈L#v, ψ〉 = 〈v, L#,∗ψ〉 = 0,

L# generates a contraction semigroup (P#
t ) on L2(ρ) that satisfies

‖P#
t v‖ρ ≤ e−κt‖v‖ρ. (5.3)

5.3 An SDE for the Wave Speed

As in section 2.5.1, we track the stochastic solution with a reference wave to determine its
phase. This is done using the phase adaptation in L2(ρ),

cm(t) := Ċm(t) = −m〈u− û(· − ct− Cm(t)), ûx(· − ct− Cm(t))〉ρ(·−ct−Cm(t))

= −m〈u− û(· − ct− Cm(t)), ψ(· − ct− Cm(t))〉.
(5.4)

Set vm(x, t) = u(x, t)− û(x− ct−Cm(t)) to be the difference between the solution u to
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the stochastic neural field equation (2.1) and the deterministic wave profile moving at the
dynamically adapted speed c+ cm(t). vm satisfies the stochastic evolution equation

dvm(t) =
(
− vm(t) + w ∗ (F ′(û(· − ct− Cm(t)))vm(t)) +Rm(t, vm(t))

+ cm(t)ûx(· − ct− Cm(t))
)
dt+ εdWt,

(5.5)

where

Rm(t, vm(t)) = w ∗
(
F (û(· − ct− Cm(t)) + vm(t))− F (û(· − ct− Cm(t)))

− F ′(û(· − ct− Cm(t)))vm(t)
)
.

Set ϕm(t) = ct+ Cm(t).

Lemma 5.3.1. The adaptation of the wave speed cm(t) = −m〈vm(t), ψ(· − ϕm(t))〉 solves
the SDE

dcm(t) =
(
−mcm(t) +m〈vm(t), ψx(· − ϕm(t))〉cm(t)

−m〈Rm(t, vm(t)), ψ(· − ϕm(t))〉
)
dt− εm〈ψ(· − ϕm(t)), dWt〉,

cm(0) = −εm〈η, ψ〉.

Proof. By Itô’s lemma,

cm(t) = −εm〈η, ψ〉+m

∫ t

0
(c+ cm(s))〈vm(s), ψx(· − ϕm(s))〉ds

−m
∫ t

0
〈−vm(s) + w ∗

(
F ′(û(· − ϕm(s)))vm(s)

)
, ψ(· − ϕm(s))〉ds

−m
∫ t

0
〈Rm(s, vm(s)), ψ(· − ϕm(s))〉ds−m

∫ t

0
cm(s)ds〈ûx, ψ〉

− εm
∫ t

0
〈ψ(· − ϕm(s)), dWs〉

= cm(0)−m
∫ t

0
〈vm(s), L#,∗ψ(· − ϕm(s))〉ds−m

∫ t

0
〈Rm(s, vm(s)), ψ(· − ϕm(s))〉ds

+m

∫ t

0
cm(s)〈vm(s), ψx(· − ϕm(s))〉ds−m

∫ t

0
cm(s)ds

− εm
∫ t

0
〈ψ(· − ϕm(s)), dWs〉

= cm(0)−m
∫ t

0
cm(s)ds+m

∫ t

0
cm(s)〈vm(s), ψx(· − ϕm(s))〉ds

−m
∫ t

0
〈Rm(s, vm(s)), ψ(· − ϕm(s))〉ds− εm

∫ t

0
〈ψ(· − ϕm(s)), dWs〉
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5.4 Expansion with respect to the Noise Strength

We expect û(·−ct−Cm(t)) to track the stochastic solution, which means vm should describe
the fluctuations in the wave profile. As long as m is finite, this can however only be an
approximate description.

We prove an expansion of the solution u to (2.1) that allows to analyze the behavior
of the coupled system (vm, Cm) to arbitrary order of ε. In Section 5.5 we will derive the
expansion in the limit m→∞ and analyze properties of the coefficients in the expansion. In
particular, we will show that the limiting regime indeed corresponds to immediate relaxation
to the right phase, thereby justifying the expansion as a description of the effects of the noise.

Fix a time horizon T > 0. Set ρt(x) = ρ(x− ct). For h ∈ C([0, T ], H1(1 + ρ)) set

‖h‖T = sup
0≤t≤T

‖h(t)‖H1(1+ρt),

and for f ∈ C([0, T ]) set |f |T = sup0≤t≤T |f(t)|. Here we move the measure with the wave
such that for all t ≥ 0,

‖∂xuTWt ‖H1(1+ρt) = ‖ûx(· − ct)‖H1(1+ρt) = ‖ûx‖H1(1+ρ).

Note that there exists a constant K > 0 such that ‖h‖∞ ≤ K‖h‖H1(1+ρ) for all
h ∈ H1(1 + ρ).

We start by formally identifying the highest order terms in cm(t) using Lemma 5.3.1.
Since we expect both Cm and vm to be of order ε (up to the time horizon T ) that leads us
to define cm0 (t) to be the unique strong solution to

dcm0 (t) = −mcm0 (t)dt−m〈ψ(· − ct), dWt〉, cm0 (0) = −m〈η, ψ〉. (5.6)

Set Cm0 (t) =
∫ t

0 c
m
0 (s)ds and ϕm0 (t) = ct+ εCm0 (t).

Formally identifying the highest order terms in (5.5) we define vm0 to be the unique strong
solution to

dvm0 (t) =
(
Ltv

m
0 (t) + cm0 (t)ûx(· − ct)

)
dt+ dWt, vm0 (0) = η,

where Lt is as defined in (5.2).

Remark 5.4.1. Note that, to first order, the dynamics of Cm decouple from those of vm.
This would not be the case if we had defined the phase in the unweighted space L2. It is
by defining the phase adaptation in L2(ρ) that we can achieve a separate description of the
influence of the noise on the two scales.

For ε > 0, 0 ≤ q < 1, set

τq,ε = inf{0 ≤ t ≤ T : ‖v(t)‖H1(1+ρt) ≥ ε
1−q}, (5.7)
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where v is the solution to (5.1), and

τmq,ε = inf{0 ≤ t ≤ T : |Cm0 (t)| ≥ ε−q}.

Theorem 5.4.2. Assume that F ∈ C3 so that û ∈ C4. Let q < 1
2 . Then on {τq,ε∧ τmq,ε = T},

u(x, t) = û(x− ct− εCm0 (t)) + εvm0 (t) + εrm1 (t)

with
‖rm1 ‖T ≤ α1(T )ε1−2q

for a constant α1(T ) independent of ε and m, and

P (τq,ε ∧ τmq,ε = T ) ε→0−−−→ 1.

Proof. Set

ṽm0 (t) = u(t)− û(· − ϕm0 (t)) = v(t) + û(· − ct)− û(· − ϕm0 (t)). (5.8)

By Taylor’s formula, there exist ξ(x, t), ξ̃(x, t), |ξ| ≤ ε|Cm0 |, ξ̃ ≤ ε|Cm0 |, such that

û(x− ct)− û(x− ϕm0 (t)) = ûx(x− ct+ ξ(x, t)),

ûx(x− ct)− ûx(x− ϕm0 (t)) = ûxx(x− ct+ ξ̃(x, t)),

and therefore

‖ṽm0 (t)‖H1(1+ρt) ≤ ‖v(t)‖H1(1+ρt) + ε|Cm0 (t)|
(
‖ûx‖1+ρ(·−ξ(t)) + ‖ûxx‖1+ρ(·−ξ̃(t))

)
.

Using (2.12) and (2.14),
ρ(x− ξ) ≤ (Lρ ∨ eM |ξ|)ρ(x), (5.9)

and thus on {τq,ε ∧ τmq,ε = T},

‖ṽm0 ‖T ≤ ε1−q
(
1 + (Lρ ∨ eMε1−q ) 1

2 ‖ûx‖H1(1+ρ)
)
. (5.10)

rm1 satisfies the pathwise evolution equation

drm1 (t) =
(
Ltr

m
1 (t)

+ 1
ε
w ∗

(
F (û(· − ϕm0 (t)) + ṽm0 (t))− F (û(· − ϕm0 (t)))

− F ′(û(· − ϕm0 (t)))ṽm0 (t)
)

+ 1
ε
w ∗

(
(F ′(û(· − ϕm0 (t)))− F ′(û(· − ct)))ṽm0 (t)

)
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+ cm0 (t)(ûx(· − ϕm0 (t))− ûx(· − ct))
)
dt

=:
(
Ltr

m
1 (t) + rm1,1(t) + rm1,2(t) + rm1,3(t)

)
dt.

By Taylor’s theorem there exist ξ1,1(x, t), ξ1,2(x, t) such that

εrm1,1(t) = 1
2w ∗

(
F ′′(û(· − ϕm0 (t)) + ξ1,1(·, t))(ṽm0 (t))2),

εrm1,2(t) = −εCm0 (t)w ∗
(
F ′′(û(· − ct+ ξ1,2(·, t)))ûx(· − ct+ ξ1,2(·, t))ṽm0 (t)

)
.

We therefore have, using the Cauchy-Schwarz inequality, that

‖rm1,1(t)‖21+ρt ≤
1

4ε2 ‖F
′′‖2∞

∫ ∫
w2(x− y)(ṽm0 )2(y, t)dy(1 + ρt(x))dx

∫
(ṽm0 )2(y, t)dy

≤ 1
4ε2 ‖F

′′‖2∞‖w‖∞(1 +Kρ)‖ṽm0 (t)‖2‖ṽm0 (t)‖21+ρt

(5.11)

and

‖rm1,2(t)‖21+ρt ≤ |C
m
0 (t)|2‖F ′′(û)ûx‖2∞(1 +Kρ)‖ṽm0 (t)‖21+ρt . (5.12)

Recall that rm1 can be represented as a mild solution,

rm1 (t) =
∫ t

0
Pt,s

(
rm1,1(s) + rm1,2(s) + rm1,3(s)

)
ds. (5.13)

Set Rm1,3(t) = 1
ε

(
− û(· − ϕm0 (t)) + û(· − ct) − εCm0 (t)ûx(· − ct)

)
. We have

rm1,3(t) =
(
d
dt + c∂x

)
Rm1,3(t) and therefore

∫ t

0
Pt,sr

m
1,3(s)ds =

∫ t

0

d

ds

[
Pt,sR

m
1,3(s)

]
+ Pt,s(Ls + c∂x)Rm1,3(s)ds

= Rm1,3(t) +
∫ t

0
Pt,s(Ls + c∂x)Rm1,3(s)ds.

Recall that ‖Pt,sh‖H1(1+ρs) ≤ eL∗(t−s)‖h‖H1(1+ρs). Using Taylor’s theorem, (2.12), and
(5.9) it follows that∥∥∥∥∫ t

0
Pt,sr

m
1,3(s)ds

∥∥∥∥
H1(1+ρt)

≤ ε

2 |C
m
0 (t)|2

(
‖ûxx(· − ct− ξ1,3,1(·, t))‖1+ρt + ‖ûxxx(· − ct− ξ1,3,2(·, t)‖1+ρt

)
(5.14)

+ L
1
2
ρ

∫ t

0
eL∗(t−s)

ε

2 |C
m
0 (s)|2(

L∗
(
‖ûxx(· − cs− ξ1,3,1(·, s))‖1+ρs + ‖ûxxx(· − cs− ξ1,3,2(·, s))‖1+ρs

)
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+ c
(
‖ûxxx(· − cs− ξ1,3,2(·, s))‖1+ρs + ‖ûxxxx(· − cs− ξ1,3,3(·, s))‖1+ρs

))
ds

≤ ε

2 |C
m
0 |2T (Lρ ∨ eMε1−q ) 1

2

(
(1 + L

1
2
ρ (eL∗T − 1))‖ûxx‖H1(1+ρ)

+ cL
1
2
ρ

L∗
(eL∗T − 1)‖ûxxx‖H1(1+ρ)

)
.

Since for i = 1, 2

‖Pt,srm1,i(s)‖2H1(1+ρt) ≤ Lρe
2L∗(t−s)‖rm1,i(s)‖2H1(1+ρs)

≤ Lρe2L∗(t−s)
(

1 +
∥∥∥wx
w

∥∥∥2

∞

)
‖rm1,i(s)‖21+ρs ,

(5.15)

putting (5.11), (5.12), (5.13), (5.14), and (5.15) together, we conclude that there exists a
constant α1(T ) independent of m and ε such that

‖rm1 ‖T ≤ α1(T )ε1−2q.

If τq,ε ∧ τmq,ε = τq,ε < T , then by continuity, almost surely, there exists t0 < T such that,

ε1−q = ‖v(t0)‖H1(1+ρt0 )

= ‖ − εCm0 (t0)ûx(· − ct0 + ξ(·, t0)) + εvm0 (t0) + εrm1 (t0)‖H1(1+ρt0 )

and thus

‖vm0 (t0)− Cm0 (t0)ûx(· − ct0 + ξ(·, t0))‖H1(1+ρt0 ) ≥ ε−q − ‖rm1 (t0)‖H1(1+ρt0 ).

We therefore have that

P (τq,ε ∧ τmq,ε = τq,ε < T )

≤ P
(
‖vm0 − Cm0 ûx(· − ct+ ξ(·, t))‖T ≥ ε−q − α1(T )ε1−2q)

≤ 2ε2q

(1− α1(T )ε1−q)2

(
E(‖vm0 ‖2T ) + E(|Cm0 |2T )(Lρ ∨ eMε1−q )‖ûx‖2H1(1+ρ)

) ε→0−−−→ 0.

Since
P (τmq,ε < T ) ≤ P (|Cm0 |T ≥ ε−q) ≤ ε2qE(|Cm0 |2T ) ε→0−−−→ 0,

it follows that

P (τq,ε ∧ τmq,ε < T ) ≤ P (τq,ε ∧ τmq,ε = τq,ε < T ) + P (τmq,ε < T ) ε→0−−−→ 0.

Analogously we can obtain an expansion to higher order of ε. Formally identifying the
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highest order terms in 1
ε c
m(t)− cm0 (t) we define cm1 (t) to be the unique strong solution to

dcm1 (t) =
(
−mcm1 (t)− 1

2m〈w ∗ (F ′′(û(· − ct))(vm0 )2(t)), ψ(· − ct)〉

+mcm0 (t)〈vm0 (t), ψx(· − ct)〉
)
dt+mCm0 (t)〈ψx(· − ct), dWt〉,

cm1 (0) = 0.

(5.16)

Set Cm1 (t) =
∫ t

0 c
m
1 (s)ds and ϕm1 (t) = ct+ εCm0 (t) + ε2Cm1 (t). Identifying the highest order

terms in 1
ε v
m − vm0 , set vm1 to be the unique strong solution to

dvm1 (t) =
(
Ltv

m
1 (t) + w ∗

(
F ′′(û(· − ct))

(1
2(vm0 )2(t)− Cm0 (t)ûx(· − ct)vm0 (t)

))
− cm0 (t)Cm0 (t)ûxx(· − ct) + cm1 (t)ûx(· − ct)

)
dt,

vm1 (0) = 0.

(5.17)

For arbitrary k ≥ 2, if F ∈ Ck+2 we can iterate the procedure and define cmk−1 and vmk−1

by successively identifying the highest order terms in 1
εk−1 (cm − εcm0 − . . .− εk−1cmk−2) and

1
εk−1 (vm(t)− εvm0 (t)− . . .− εk−1vmk−2(t). This way we obtain an expansion of u up to order
εk. Set

ϕmk−1(t) = ct+ εCm0 (t) + . . .+ εkCmk−1(t).

Theorem 5.4.3. Assume that F ∈ Ck+2 for some k ≥ 1. Let q < 1
k+1 .

Then on {τq,ε ∧ τmq,ε = T},

u(x, t) = û(· − ϕmk−1(t)) + εvm0 (t) + . . .+ εkvmk−1(t) + εkrmk (t)

with
‖rmk ‖T ≤ αk(T )ε1−(k+1)q

for some constant αk(T ) independent of ε and m.

We will prove the expansion for k = 2. For larger k the analysis can be carried out
analogously, but the formulas become unwieldy.

We start by deriving a useful representation of Cm1 .

Lemma 5.4.4.

Cm1 (t) = −
∫ t

0
(1− e−m(t−s))

〈
w ∗

(
F ′′(û(· − cs))

(1
2(vm0 )2(s)

− Cm0 (s)ûx(· − cs)vm0 (s)
))
, ψ(· − cs)

〉
ds

+
∫ t

0
me−m(t−s)Cm0 (s)〈vm0 (s), ψx(· − cs)〉ds

− 1
2

∫ t

0
me−m(t−s)(Cm0 )2(s)ds〈ψx, ûx〉.
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Proof. Integrating (5.16) we obtain

Cm1 (t) =
∫ t

0
(1− e−m(t−s))

(
− 1

2 〈w ∗ (F ′′(û(· − cs))(vm0 )2(s)), ψ(· − cs)〉

+ cm0 (s)〈vm0 (s), ψx(· − cs)〉
)
ds+

∫ t

0
(1− e−m(t−s))Cm0 (s)〈ψx(· − cs), dWs〉.

By Itô’s Lemma,∫ t

0
(1− e−m(t−s))cm0 (s)〈vm0 (s), ψx(· − cs)〉ds

=
∫ t

0
me−m(t−s)Cm0 (s)〈vm0 (s), ψx(· − cs)〉ds

−
∫ t

0
(1− e−m(t−s))Cm0 (s)

(
〈vm0 (s), (L∗s − c∂x)ψx(· − cs)〉+ cm0 (s)〈ûx, ψx〉

)
ds

−
∫ t

0
(1− e−m(t−s))Cm0 (s)〈ψx(· − cs), dWs〉.

Using integration by parts we obtain that

−
∫ t

0
(1− e−m(t−s))cm0 (s)Cm0 (s)ds = 1

2

∫ t

0
−me−m(t−s)(Cm0 )2(s)ds,

and since (L∗s− c∂x)ψx(·− cs) = −F ′′(û(·− cs))ûx(·− cs)w ∗ψ(·− cs), the claim follows.

Proof of Thm. 5.4.3. Note first that, using Lemma 5.4.4,

|Cm1 |T ≤ ‖ψ‖
∫ ∥∥∥w ∗ (F ′′(û(· − cs))

(1
2(vm0 (s))2 − Cm0 (s)ûx(· − cs)vm0 (s)

))∥∥∥ds
+ |Cm0 |T ‖ψx‖

∫ t

0
me−m(t−s)‖vm0 (s)‖ds+ 1

2 |C
m
0 |2T ‖ψx‖‖ûx‖.

Since
vm0 (t) = 1

ε

(
v(t) + û(· − ct)− û(· − ϕm0 (t))

)
− rm1 (t) = 1

ε
ṽm0 (t)− rm1 (t),

where ṽm0 is defined in (5.8), using Theorem 5.4.2 and (5.10) it follows that there exists a
constant β1(T ) such that on {τq,ε ∧ τmq,ε = T}

‖vm0 ‖T ≤ β1(T )ε−q.

Therefore there exists a constant β2(T ) such that

|Cm1 |T ≤ β2(T )ε−2q. (5.18)

Set ṽm1 (t) = v(t) + û(· − ct) − û(· − ϕm1 (t)). By Taylor’s theorem there exists ξ(x, t) with
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|ξ| ≤ |εCm0 + ε2Cm1 | such that

ṽm1 (t) = v(t) + (εCm0 (t) + ε2Cm1 (t))ûx(·+ ξ(·, t))

and it follows that there exists a constant β3(T ) such that

‖ṽm1 ‖T ≤ β3(T )ε1−q.

We have
drm2 (t) =

(
Ltr

m
2 (t) + rm2,1(t) + rm2,2(t)

)
dt,

where

ε2rm2,1(t) = w ∗
(
F (û(· − ϕm1 (t)) + ṽm1 (t))− F (û(· − ϕm1 (t)))

− F ′(û(· − ϕm1 (t)))ṽm1 (t)− 1
2F
′′(û(· − ϕm1 (t)))(ṽm1 (t))2

)
+ w ∗

((
F ′(û(· − ϕm1 (t)))− F ′(û(· − ϕm0 (t)))

)
ṽm1 (t)

)
+ w ∗

((
F ′(û(· − ϕm0 (t)))− F ′(û(· − ct))

+ εCm0 (t)F ′′(û(· − ct))ûx(· − ct)
)
ṽm1 (t)

)
− εCm0 (t)w ∗

(
F ′′(û(· − ct))ûx(· − ct)(ṽm1 (t)− εvm0 (t))

)
+ 1

2w ∗
((
F ′′(û(· − ϕm1 (t)))− F ′′(û(· − ct))

)
(ṽm1 (t))2

)
+ 1

2w ∗
(
F ′′(û(· − ct))((ṽm1 (t))2 − ε2(vm0 (t))2)

)
=

6∑
i=1

rm2,1,i(t),

ε2rm2,2(t) = (εcm0 (t) + ε2cm1 (t))(ûx(· − ϕm1 (t))− ûx(· − ct))

+ ε2cm0 (t)Cm0 (t)ûxx(· − ct).

Now

ε4‖rm2,1,1(t)‖21+ρt ≤
1
36‖F

(3)‖2∞(1 +Kρ)‖w‖∞‖ṽm1 (t)‖21+ρt

∫
(ṽm1 )4(x, t)dx

≤ 1
36‖F

(3)‖2∞(1 +Kρ)‖w‖∞‖ṽm1 (t)‖21+ρt‖ṽ
m
1 (t)‖2∞‖ṽm1 (t)‖2

≤ 1
36‖F

(3)‖2∞(1 +Kρ)‖w‖∞K2‖ṽm1 ‖6T .
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Concerning rm2,1,4 and rm2,1,6, note that there exists ξ̃(x, t) such that

ṽm1 (t) = ṽm0 (t) + û(· − ϕm0 (t))− û(· − ϕm1 (t))

= εvm0 (t) + εrm1 (t) + ε2Cm1 (t)ûx(· − ϕm0 (t) + ξ̃(·, t)),

and hence, using (5.18) and Theorem 5.4.2, there exists a constant β4(T ) such that

‖ṽm1 − εvm0 ‖T ≤ β4(T )ε2−2q.

We have
ε2rm2,2(t) = Rm2,2(t) +

∫ t

0
Pt,s(Ls + c∂x)Rm2,2(s)ds,

where

Rm2,2(t) = −û(· − ϕm1 (t)) + û(· − ct)− (εCm0 (t) + ε2Cm1 (t))ûx(· − ct)

+ ε2
1
2(Cm0 )2(t)ûxx(· − ct).

Now all the terms can be estimated as in the proof of Thm. 5.4.2 and we obtain that there
exists α2(T ) independent of m and ε such that

‖rm2 ‖T ≤ α2(T )ε1−3q.

Remark 5.4.5. Note that in the case k = 1 (Thm. 5.4.2) we could also define the stopping
time τq,ε as an exit time of the L2(1 + ρt)-norm of v and obtain that supt≤T ‖rm1 (t)‖1+ρt ≤
α1(T )ε1−2q. This is not the case in the proof of Thm. 5.4.3, where we need to control
‖ṽm1 (t)‖∞.

5.4.1 Multiplicative Noise

A similar expansion can be proven in the case of a multiplicative diffusion coeffi-
cient as in assumption (C)(2). We assume the diffusion coefficient to be of the form
σ(t, v) = σ0(t) + σ1(t)v for some continuous σi : [0, T ]→ H1(1 + ρ). This covers the case
of the diffusion coefficient we will derive in Chapter 6 to describe finite-size effects. (Strictly
speaking, the σi should depend on Cm(t). For the sake of a clearer presentation, we omit
this dependence here. The analysis can be carried out analogously in this case.)

While in the additive case the noise enters directly only in the first order approximation
vm0 , in the multiplicative case, we keep a stochastic integral in the error term rm1 . vm0 satisfies

dvm0 (t) =
(
Ltv

m
0 (t) + cm0 (t)ûx(· − ct)

)
dt+ σ0(t)dWt, vm0 (t) = η,

leading to the additional error term Im1 (t) =
∫ t

0 Pt,s(σ1(s)v(s))dWs in rm1 . In order to obtain
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a pathwise estimate of Im1 we introduce the stopping time

τ I,1,mq,ε = inf{0 ≤ t ≤ T : ‖Im1 (t)‖H1(1+ρt) ≥ ε
1−2q}

and set τ1,m
q,ε = τq,ε ∧ τmq,ε ∧ τ I,1,mq,ε . Then it follows as above that on {τ1,m

q,ε = T},
‖rm1 ‖T ≤ α̃1(T, ω)ε1−2q.

Similarly we can estimate the higher order terms by introducing stopping times

τ I,k,mq,ε = inf{0 ≤ t ≤ T : ‖Imk (t)‖H1(1+ρt) ≥ ε
1−(k+1)q}

and τk,mq,ε = min{τq,ε, τmq,ε, τ I,1,mq,ε , . . . , τ I,k,mq,ε }, where for k > 1,

Imk (t) =
∫ t

0
Pt,sr̃

m
k−1(s)ds

for some rest term r̃mk−1(s) satisfying

‖r̃mk−1‖T ≤ β̃(T )ε1−kq

on {τm,kq,ε = T} for some constant β̃(T ). For example,

r̃m1 (t) = rm1 (t) + 1
ε

(
û(· − ϕm0 (t))− û(· − ct)− εCm0 (t)ûx(· − ct)

)
.

Note that

P (τ1,m
q,ε < T ) = P (τ1,m

q,ε = τq,ε ∧ τmq,ε < T ) + P (τ1,m
q,ε = τ I,1,mq,ε < T ).

The first probability can be estimated as in Theorem 5.4.2. By the stopped maximal in-
equality for stochastic convolutions (cf. [41]), there exists a constant KI(T ) such that

E
(
‖Im1 (· ∧ τ1,m

q,ε )‖2T
)
≤ KI(T )E

(∫ T∧τ1,m
q,ε

0
‖v(s)‖2H1(1+ρs)ds

)
≤ KI(T )ε2−2qT.

Thus, the second probability satisfies

P (τ1,m
q,ε = τ I,1,mq,ε < T ) ≤ P

(
‖Im(· ∧ τ1,m

q,ε )‖T ≥ ε1−2q)
≤ ε−2+4qE

(
‖Im(· ∧ τ1,m

q,ε )‖2T
)

≤ KI(T )Tε2q ε→0−−−→ 0.

P (τk,mq,ε = T ) can be estimated analogously.
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5.5 Immediate Relaxation

We now go over to the limit m→∞, presumably corresponding to immediate relaxation to
the right phase. Since all the estimates in section 5.4 are independent of m, the expansion
will translate to the limiting regime once we have computed the limits of the coefficients.

Denote by πs the projection onto the orthogonal complement of ûx(·− cs) in L2(ρs), i.e.,

πsh = h− 〈h, ûx〉ρ(·−cs)ûx(· − cs).

Note that while Cm0 (t) =
∫ t

0 c
m
0 (s)ds is a process of bounded variation, in the limit m→∞

we go over to a process of unbounded variation. The convergence is only locally uniform on
(0, T ) due to the initial jump to the right phase in the limit.

Lemma 5.5.1. For any δ > 0, for i = 1, 2, almost surely

sup
δ≤t≤T

|Cmi (t)− Ci(t)|
m→∞−−−−→ 0

and
sup
δ≤t≤T

‖vmi (t)− vi(t)‖H1(1+ρt)
m→∞−−−−→ 0,

where C0(0) = 0, v0(0) = η, and for t > 0,

C0(t) = −〈η, ψ〉 −
∫ t

0
〈ψ(· − cs), dWs〉

v0(t) = Pt,0π0η +
∫ t

0
Pt,sπsdWs,

and where

C1(t) = −
∫ t

0

〈
w ∗

(
F ′′(û(· − cs))

(1
2v

2
0(s)− C0(s)ûx(· − cs)v0(s)

))
, ψ(· − cs)

〉
ds

+ C0(t)〈v0(t), ψx(· − ct)〉 − 1
2C

2
0 (t)〈ûx, ψx〉,

v1(t) =
∫ t

0
Pt,sw ∗

(
F ′′(û(· − cs))

(1
2v

2
0(s)− C0(s)ûx(· − cs)v0(s)

))
ds

+ C1(t)ûx(· − ct)− 1
2

∫ t

0
Pt,sûxx(· − cs)dC2

0 (s)

We postpone the proof to the end of this section.

Theorem 5.5.2. Let τq,ε be as in (5.7) and set τ∞q,ε = inf{0 ≤ t ≤ T : |C0(t)| ≥ ε−q}. Then
on {τq,ε ∧ τ∞q,ε = T}, if F ∈ C3 and q < 1

2 ,

u(x, t) = û(x− ct− εC0(t)) + εv0(x, t) + εr1(x, t),
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and if F ∈ C4 and q < 1
3 , then

u(x, t) = û(x− ct− εC0(t)− ε2C1(t)) + εv0(x, t) + ε2v1(x, t) + ε2r2(x, t),

where for k = 1, 2,
‖rk‖T ≤ αk(T )ε1−(k+1)q,

with αk as in Thms. 5.4.2 and 5.4.3, and

P (τq,ε ∧ τ∞q,ε = T ) ε→0−−−→ 1.

Proof. Let 0 < t < τq,ε ∧ τ∞q,ε. Integrating (5.6) we obtain that

Cm0 (t) = −(1− e−mt)〈η, ψ〉 −
∫ t

0
(1− e−m(t−s))〈ψ(· − cs), dWs〉. (5.19)

By Itô’s Lemma,

Cm0 (t) = −(1− e−mt)〈η, ψ〉 −
∫ t

0
me−m(t−s)〈ψ(· − cs),Ws〉ds

− c
∫ t

0
(1− e−m(t−s))〈ψx(· − cs),Ws〉ds.

Therefore, for 0 < δ < t,

|Cm0 |δ ≤ |〈η, ψ〉|+
(
‖ψ‖+ cδ‖ψx‖

)
sup

0≤t≤δ
‖Wt‖

δ→0−−−→ |〈η, ψ〉| < ε−q.

Since for any δ > 0 supδ≤s≤t |Cm0 (s)| m→∞−−−−→ supδ≤s≤t |C0(s)| < ε−q it follows that also
t < τq,ε ∧ τmq,ε for sufficiently large m. Therefore, using Theorem 5.4.2 and Lemma 5.5.1,

‖εr1(t)‖H1(1+ρt) ≤ ‖u(t)− û(· − ct− εCm0 (t))− εvm0 (t)‖H1(1+ρt)

+ ‖û(· − ct− εCm0 (t))− û(· − ct− εC0(t))‖H1(1+ρt)

+ ε‖vm0 (t)− v0(t)‖H1(1+ρt)

≤ α1(T )ε2−2q + ε|Cm0 (t)− C0(t)|(Lρ ∨ e2Mε1−q ) 1
2 ‖ûx‖H1(1+ρ)

+ ε‖vm0 (t)− v0(t)‖H1(1+ρt)
m→∞−−−−→ α1(T )ε2−2q, a.s.

Thus, on {τq,ε ∧ τ∞q,ε = T}, ‖r1‖T ≤ α1(T )ε1−2q. The proof for the higher order expansion
is analogous.

P (τq,ε ∧ τ∞q,ε = T ) ε→0−−−→ 1

is proven as in Theorem 5.4.2.
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The term −〈η, ψ〉 in C0 accounts for the initial phase difference between u(0) and û. We
have

V ar(C0(t)) =
∫ t

0
〈ψ(· − cs), Q(ψ(· − cs))〉ds ≈ 〈ψ,Qψ〉t

if the correlations are roughly translation invariant (they cannot be translation invariant
since Q is of finite trace). This is in accordance with the analysis of Bressloff and Webber
in [15].

Note that for t > 0,

〈v0(t), ûx(· − ct)〉ρt = 〈Pt,0π0η, ψ(· − ct)〉+
〈∫ t

0
Pt,sπsdWs, ψ(· − ct)

〉
= 〈π0η, P

∗
t,0(ψ(· − ct))〉+

∫ t

0
〈P ∗t,sψ(· − ct), πsdWs〉

= 〈π0η, ψ〉+
∫ t

0
〈ψ(· − cs), πsdWs〉 = 0.

(5.20)

In the frozen wave setting, v#
0 is thus orthogonal to ûx in L2(ρ). Recall that the frozen wave

operator L# generates a contraction semigroup on û⊥x . For t > 0 we can therefore write

v#
0 (t) = P#

t π0η +
∫ t

0
P#
t−sΦsπsdWs = P#

t π0η +
∫ t

0
P#
t−sπ0ΦsdWs,

where Φsh = h(·+ cs). Using (5.3) it follows that

‖v0(t)‖ρt = ‖v#
0 (t)‖ρ ≤ e−κt‖η‖ρ +

∥∥∥∥∫ t

0
P#
t−sπ0ΦsdWs

∥∥∥∥
ρ

and hence

E(‖v0(t)‖2ρt) ≤ 2e−2κt‖η‖2ρ + 2
∫ t

0
‖P#

t−sπ0ΦsQ
1
2 ‖2L2(L2,L2(ρ))ds.

Let (ek) be an orthonormal basis of L2. We have

‖P#
t−sπ0ΦsQ

1
2 ‖2L2(L2,L2(ρ)) =

∑
k

‖P#
t−sπ0ΦsQ

1
2 ek‖2ρ ≤ e−2κ(t−s)

∑
k

‖Q 1
2 ek‖2ρs

≤ Lρe−2κ(t−s)
∑
k

‖Q 1
2 ek‖2ρ = Lρe

−2κ(t−s)‖Q 1
2 ‖2L2(L2,L2(ρ))

and thus

E(‖v#
0 (t)‖2ρ) ≤ 2e−2κt‖η‖2ρ + 2Lρ

1
2κ (1− e−2κt)‖Q 1

2 ‖2L2(L2,L2(ρ))
t→∞−−−→

Lρ‖Q
1
2 ‖2L2(L2,L2(ρ))

κ
.

v#
0 is thus an L2(Ω;L2(ρ))-bounded Ornstein-Uhlenbeck process on û⊥x .

So far it is not clear that the expansion in Theorem 5.5.2 gives the right description
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of the influence of the noise on the traveling wave. A different choice of C0 would yield
another expansion and we are left to justify that our particular choice of C0 provides the
right picture.

Set ϕk(t) = ct+ εC0(t) + . . .+ εk+1Ck(t). The Ck describe the phase shift caused by the
noise to order εk+1 in the sense of the following proposition.

Proposition 5.5.3. Under the assumptions of Theorem 5.5.2, for t < τq,ε ∧ τ∞q,ε,

‖u− û(· − ct− εa)‖2ρt = ‖u− û(· − ct− εC0(t))‖2ρt + ε2(a− C0(t))2 + o(ε2).

a 7→ ‖u− û(· − ct− εa)‖ρt is therefore locally minimal to order ε at a = C0(t).
Similarly,

‖u− û(·− ct− εC0(t)− ε2a)‖ρt = ‖u− û(·− ct− εC0(t)− ε2C1(t))‖2ρt + ε4(a−C1(t))4 +o(ε4).

a 7→ ‖u − û(· − ct − εC0(t) − ε2a)‖ρt(·−εC0(t)) is therefore locally minimal to order ε2 at
a = C1(t).

Proof. Note that, using (5.20) and Thm. 5.5.2,

1
2
d

da

∣∣∣∣
a=C0(t)

‖u(t)− û(· − ct− εa)‖2ρt = ε2〈v0(t) + r1(t), ûx(· − ϕ0(t))〉ρt

= ε2〈v0(t), ψ(· − ct)〉+ o(ε2) = o(ε2)

and
1
2
d2

da2

∣∣∣∣
a=C0(t)

‖u(t)− û(· − ct− εa)‖2ρt = ε2〈ûx, ψ〉+ o(ε2) = ε2 + o(ε2).

C0 is thus such that ‖u(t)− û(· − ct− εC0(t))‖ρt is locally minimal to order ε. Similarly we
have that

1
2
d

da

∣∣∣∣
a=C1(t)

‖u(t)− û(· − ct− εC0(t)− ε2a)‖2ρt(·−εC0(t))

= ε3〈v0(t) + εv1(t) + εr2(t), ûx(· − ϕ1(t))〉ρt(·−εC0(t))

= ε4
(
− C0(t)〈v0(t), ψx(· − ct)〉+ 〈v1(t), ψ(· − ct)〉

)
+ o(ε4).

Note that

〈v1(t), ψ(· − ct)〉

=
∫ t

0
〈w ∗

(
F ′′(û(· − cs))

(1
2v

2
0(s)− C0(s)ûx(· − cs)v0(s)

))
, ψ(· − cs)〉ds

+ C1(t) + 1
2 〈ûx, ψx〉C

2
0 (t)

= C0(t)〈v0(t), ψx(· − ct).
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We thus obtain

1
2
d

da

∣∣∣∣
a=C1(t)

‖u(t)− û(· − ct− εC0(t)− ε2a)‖2ρt(·−εC0(t)) = o(ε4)

and
1
2
d2

da2

∣∣∣∣
a=C1(t)

‖u− û(· − ct− εC0(t)− ε2a‖2ρt(·−εC0(t)) = ε4 + o(ε4).

Together with Proposition 5.5.3 and the properties of v#
0 , the expansion expresses the

stability of the traveling wave under the noise. With large probability, up to the time horizon
T , the stochastic solution can be described as a wave profile moving at an adapted speed,
and the variance of the fluctuations in the wave profile stays bounded uniformly in time.

Remark 5.5.4. The spectral gap of L# expresses linear stability properties. The control
over ‖v0(t)‖ρt allows us to derive local stability up to the time horizon T , since the rest
terms are of smaller order. The main problem in going over to larger time scales is that we
lose control of the L2-norm in estimates such as

‖w ∗ v2‖2ρ ≤ Kρ‖v‖2ρ‖v‖2.

Proof of Lemma 5.5.1. Using (5.19) we obtain that for t > 0,

Cm0 (t)− C0(t) = e−mt〈η, ψ〉+
∫ t

0
e−m(t−s)〈ψ(· − cs), dWs〉 =: e−mt〈η, ψ〉+ St.

By Itô’s Lemma,

St = 〈ψ(· − ct),Wt〉 −
∫ t

0
me−m(t−s)〈ψ(· − cs),Ws〉ds

+
∫ t

0
ce−m(t−s)〈ψx(· − cs),Ws〉ds

=
∫ t

0
me−m(t−s)(〈ψ(· − ct),Wt〉 − 〈ψ(· − cs),Ws〉

)
ds+ e−mt〈ψ(· − ct),Wt〉

+
∫ t

0
ce−m(t−s)〈ψx(· − cs),Ws〉ds.

Note that by the Hölder continuity of t → 〈ψ(· − ct),Wt〉, for any 0 < β < 1
2 , Mβ(T, ω) :=

sup|t−s|≤T
|〈ψ(·−ct),Wt〉−〈ψ(·−cs),Ws〉|

|t−s|β < ∞ almost surely (cf. [23], Thm. 3.3). We can thus
estimate ∣∣∣ ∫ t

0
me−m(t−s)(〈ψ(· − ct),Wt〉 − 〈ψ(· − cs),Ws〉

)
ds
∣∣∣

≤Mβ(T, ω)
∫ t

0
me−m(t−s)(t− s)βds
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≤Mβ(T, ω) 1
mβ

∫ ∞
0

e−rrβdr = Mβ(T, ω) 1
mβ

Γ(1 + β),

where Γ(t) =
∫∞

0 xt−1e−xdx is the gamma function, and we obtain that

|St| ≤Mβ(T, ω) 1
mβ

Γ(1 + β) + (e−mt‖ψ‖+ c

m
‖ψx‖) sup

0≤s≤t
‖W (s)‖.

Thus,

sup
δ≤t≤T

|Cm0 (t)− C0(t)|

≤ e−mδ‖ψ‖
(
‖η‖+ sup

0≤t≤T
‖W (t)‖

)
+ c

m
‖ψx‖ sup

0≤t≤T
‖W (t)‖+ 1

mβ
Mβ(T, ω)Γ(1 + β) m→∞−−−−→ 0, a.s.

Now we consider vm0 . Since for s ≤ t, Pt,sûx(· − cs) = ûx(· − ct), we have for t > 0

vm0 (t) = Pt,0η +
∫ t

0
cm0 (s)Pt,sûx(· − cs)ds+

∫ t

0
Pt,sdWs

= Pt,0π0η + 〈η, ψ〉ûx(· − ct) + Cm0 (t)ûx(· − ct)

+
∫ t

0
Pt,sπsdWs +

∫ t

0
〈ψ(· − cs), dWs〉ûx(· − ct)

= v0(t) + (Cm0 (t)− C0(t))ûx(· − ct),

and hence

sup
δ≤t≤T

‖vm0 (t)− v0(t)‖H1(1+ρt) ≤ sup
δ≤t≤T

|Cm0 (t)− C0(t)|‖ûx‖H1(1+ρ)
m→∞−−−−→ 0, a.s.

The convergence of Cm1 follows from Lemma 5.4.4 and the convergence of Cm0 and vm0 .
Using (5.17) and

− cm0 (s)Cm0 (s)Pt,sûxx(· − cs) + cm1 (s)Pt,sûx(· − cs)

=
( d
ds
Pt,s + Pt,s(Ls + c∂x)

)(
− 1

2(Cm0 )2(s)ûxx(· − cs) + Cm1 (s)ûx(· − cs)
)

we obtain

vm1 (t) =
∫ t

0
Pt,sw ∗

(
F ′′(û(· − cs))

(1
2(vm0 )2(s)− Cm0 (s)ûx(· − cs)vm0 (s)

))
ds

− 1
2(Cm0 )2(t)ûxx(· − ct) + Cm1 (t)ûx(· − ct)

− 1
2

∫ t

0
(Cm0 )2(s)Pt,s(Ls + c∂x)ûxx(· − cs)ds.
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Using the convergence of Cm0 , Cm1 , and vm0 , and the fact that by Itô’s Lemma

− 1
2C

2
0 (t)ûxx(· − ct)− 1

2

∫ t

0
C2

0 (s)Pt,s(Ls + c∂x)ûxx(· − cs)ds

= −1
2C

2
0 (t)Pt,tûxx(· − ct) + 1

2

∫ t

0
C2

0 (s) d
ds

(Pt,sûxx(· − cs))ds

= −1
2

∫ t

0
Pt,sûxx(· − cs)dC2

0 (s),

the convergence of vm1 to v1 follows.



Chapter 6

Finite-Size Effects

As outlined in section 1.1.6, it is not clear how noise translates from the single neuron level
to the level of populations, and therefore in particular what is the right representation of the
noise in stochastic neural field equations. In this chapter, we derive a stochastic correction
term accounting for finite-size effects and prove that the solution to the resulting stochastic
neural field equation is the continuum limit of an associated system of diffusion processes.

6.1 Introduction

Neural field equations are heuristically derived to model the spatio-temporal dynamics of
the activity in a large network of synaptically coupled populations of neurons (cf. section
1.1.3). This involves two approximation steps. First, under the assumption that the number
of populations is large, the finite network is approximated by a continuum. Second, the
equations describe the mean field behavior of the network. Under the assumption that the
number of neurons in each population is large, in the spirit of the law of large numbers, the
local dynamics in each population is reduced to a description of the mean activity.

While several sources of noise have been identified on the single neuron level (cf. section
1.1.2), it is not clear how noise translates to the level of populations. Since neural field
equations are derived as mean field limits, the usual effects of noise should have averaged
out on this level. However, the actual finite size of the populations leads to deviations from
the mean field behavior, suggesting finite size effects as an intrinsic source of noise.

In order to derive corrections to the neural field equation accounting for these effects,
in [8], Bressloff (following Buice and Cowan [16]) sets up a continuous time Markov chain
describing the evolution of the activity in a finite network of populations of finite size N .
The rates are chosen such that in the limit as N →∞ one obtains the usual activity-based
network equation. He then carries out a van Kampen system size expansion of the associated
master equation in the small parameter 1/N to derive deterministic corrections of the neural
field equation in the form of coupled differential equations for the moments. To first order,
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the finite-size effects can be characterized as Gaussian fluctuations around the mean field
limit.

The model is considered from a mathematically rigorous perspective by Riedler and
Buckwar in [54]. They make use of limit theorems for Hilbert-space valued piecewise deter-
ministic Markov processes recently obtained in [55] as an extension of Kurtz’s convergence
theorems for jump Markov processes to the infinite-dimensional setting. They derive a law
of large numbers and a central limit theorem for the Markov chain, realizing the double
limit (number of neurons per population to infinity and continuum limit) at the same time.
They formally set up a stochastic neural field equation, but the question of well-posedness
is left open.

In [13], Bressloff and Newby extend the original approach of [8] by including synaptic
dynamics and consider a Markov chain modeling the activity coupled to a piecewise deter-
ministic process describing the synaptic current (see also section 6.4 in [10] for a summary).
In two different regimes, the model covers the case of Gaussian-like fluctuations around the
mean-field limit as derived in [8], as well as a situation in which the activity has Poisson
statistics as considered in [17].

In this chapter, we consider the question how finite-size effects can be included in the
voltage-based neural field equation. To our knowledge, this has not been covered in the
literature yet. We take up the approach of describing the dynamics of the activity in a
finite-size network by a continuous-time Markov chain and motivate a choice of jump rates
that will lead to the voltage-based network equation in the infinite-population limit. The
model is not a modification of the one considered in [13] and does not contradict it, but
rather extends it to a different regime. We derive a law of large numbers and a central
limit theorem for the Markov chain. Instead of realizing the double limit as in [54], we split
up the limiting procedure, which in particular allows us to insert further approximation
steps. We follow the original approach by Kurtz to determine the limit of the fluctuations
of the Markov chain. By linearizing the noise term around the traveling wave solution,
we obtain an approximating system of diffusion processes. After introducing correlations
between populations lying close together (cf. section 6.5.1) we obtain a well-posed L2(R)-
valued stochastic evolution equation, with a noise term approximating finite size effects on
traveling waves, which we prove to be the strong continuum limit of the associated network.

The diffusion coefficient we derive satisfies the assumptions made on the noise in the
previous chapters. The stability results and the ε-expansion therefore also apply to this
setting.

6.2 Finite-Size Effects in Population Models

Consider a network of P populations, each consisting of N neurons. Recall from section
1.1.3 that, heuristically, the potential uNi in the populations is related to the activities aNj
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via

u̇Ni (t) = 1
τm

(
− ui(t) +

P∑
j=1

wija
N
j (t)

)
, (6.1)

where the activity aNj (t) of population j is defined as the proportion of neurons that are
active at time t,

aNj (t) = # neurons active at time t in population j
N

,

and where τm is the membrane time constant, determining how fast the membrane potential
relaxes back to its resting value. In the infinite population limit, the activity is related to
the potential via the nonlinear gain function F ,

aj(t+ τa) = F (uj(t)),

where τa is a possible delay in the reaction of the activity to a change in the potential. Its
evolution can therefore approximately be described by the neural rate equation

τaȧj(t) = −aj(t) + F (uj(t)). (6.2)

We identified two regimes in which the description of the evolution of the coupled system
(ai, ui) can be closed in one of the variables:

• the regime τa � τm → 0, leading to the activity-based network equation,

• the regime τm � τa → 0, leading to the voltage-based network equation.

6.2.1 Models in the Literature so far

In [13], Bressloff and Newby set up a model for the evolution of the activity in a network of
finite populations. They define the activity in population j as

aδ,Nj (t) = # spikes in (t− δ, t] in population j
δN

,

where δ is a time window of variable size. If δ is chosen as the width of an action potential
∆, then we obtain our original notion of the activity, ∆a∆,N = aN . Here the activity is
modeled as a rate rather than a probability. Note that the number of spikes in the time
interval (t− δ, t] is limited by nmax := N ∨

[
δN
∆
]
.

They describe the dynamics of aδ,N by a Markov chain with state space {0, 1
δN , ...,

nmax
δN }
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and jump rates

qNa (x, x+ 1
δN

ei) = 1
τa
δNλ(uNi (t)) if x(i) < nmax

δN

qNa (x, x− 1
δN

ei) = 1
τa
δNxi(t),

(6.3)

where ei denotes the i-th unit vector, where λ(u) is the firing rate at potential u, related to
the probability F (u) via ∆λ(u) = F (u), and where uN evolves according to (6.1). The idea
is that the activation rate should be proportional to λ(u), while the inactivation rate should
be proportional to the activity itself. The rates are chosen such that in the limit as N goes
to infinity, we obtain the neural rate equation (6.2).

They consider two regimes.

Case 1: δ = 1, τa � τm → 0

In the first regime, the size of the time window δ is fixed, say δ = 1. If τa � τm → 0, then
as in section 1.1.3, uNi (t) =

∑P
j=1 wija

δ,N
j (t). The description of the Markov chain can thus

be closed in the variables aδ,Ni , leading to the model already considered in [8]. In the limit
N →∞ one obtains the activity-based network equation

τaȧ
N
i (t) = −aNi (t) + λ

( P∑
j=1

wija
N
j (t)

)
. (6.4)

By formally approximating to order 1
N in the associated master equation, they derive a

stochastic correction to (6.4), leading to the diffusion approximation

daδ,Ni (t) ≈ 1
τa

(
− aδ,Ni (t) + λ

(
wij

P∑
j=1

aδ,Nj (t)
))

dt

+ 1√
τaN

(
aδ,Ni (t) + λ

( P∑
j=1

wija
δ,N
j (t)

)) 1
2

dBj(t)

for independent Browning motions Bj .
In [54], Riedler and Buckwar rigorously derive a law of large numbers and a central limit

theorem for the sequence of Markov chains as N tends to infinity. Note that the nature
of the jump rates is such that the process has to be ‘forced’ to stay in its natural domain
[0, nmaxN ] by setting the jump rate to 0 at the boundary. As they point out, this discontinuous
behavior is difficult to deal with mathematically. They therefore have to slightly modify the
model and allow the activity to be larger than nmax

N . They embed the Markov chain into
L2(D) for a bounded domain D ⊂ Rd and derive the LLN in L2(D) and the CLT in the
Sobolev space H−α(D) for some α > d.
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Case 2: δ = 1
N , τm � τa

In the second regime, the size of the time window δ goes to 0 as N goes to infinity such that
δN = 1. In this case,

aδ,Ni (t) = # spikes in (t− δ, t] in pop. i
δN

≈ λ(uNi (t))δN
δN

= λ(uNi (t)).

They show that at fixed voltage u, the stationary distribution of the activity aδ,N evolving
according to (6.3) is approximately Poisson with rate λ(u). This corresponds to the regime
considered in [17].

In the limit N → ∞, aj(t) = λ(uj(t)) and the system reduces to the voltage-based
network equation

τmu̇j(t) = −uj(t) +
P∑
j=1

wijλ(uj(t)).

Case 3: δ = ∆, τm � τa → 0

The third regime has not been considered explicitly in [13]. It is the one which is relevant
for us.

We go back to our original definition of the activity and fix the time window δ to be
the length of an action potential ∆. We assume that the potential evolves slowly, τm � 0.
Speeding up time, we define

ũNi (t) = uNi (tτm).

Then

ũNi (t) =
P∑
j=1

wij

∫ tτm

−∞

1
τm

e−
1
τm

(tτm−s)aNj (s)ds

=
P∑
j=1

wij

∫ t

−∞
e−(t−s)aNj (sτm)ds

For some large n,

ũNi (t) ≈
P∑
j=1

wij

[tn]−1∑
k=−∞

e−(t− kn )
∫ k+1

n

k
n

aNj (sτm)ds.

The potentials ũNi therefore only depend on the time-averaged activities given for
k
n ≤ t <

k+1
n as

ãNi (t) = n

∫ k+1
n

k
n

aNi (sτm)ds.
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We have

ũNi (t) ≈
P∑
j=1

wij

[tn]−1∑
k=−∞

1
n
e−(t− kn )ãNj (k

n
) ≈

P∑
j=1

wij

∫ t

−∞
e−(t−s)ãNj (s)ds. (6.5)

If τa � τm, the activity relaxes to its stationary distribution quickly on this time scale. At
fixed voltage u, under the stationary distribution ν(u),

ãNi (k
n

) = n

∫ k+1
n

k
n

aNi (sτm)ds ≈ Eν(u)(aNi (k
n
τm)) = F (u),

with equality if N →∞. If u is time-varying, then differentiation of (6.5) yields

d

dt
ãi(t) = d

dt
F (ũi(t))

= F ′(ũi(t))
(
− ũi(t) +

P∑
j=1

wijF (ũj(t))
)

= F ′(F−1(ãi(t)))
(
− F−1(ãi(t)) +

P∑
j=1

wij ãj(t)
)
.

(6.6)

If N <∞, then the finite size of the populations causes deviations from (6.6). In order
to determine these finite-size effects, in the next section we will set up a Markov chain XP,N

to describe the evolution of the time-averaged activity ãN .

6.3 A Markov Chain Model for the Activity

We describe the evolution of the time-averaged activity by a Markov chain XP,N with state
space EP,N = {0, 1

N ,
2
N , . . . , 1}

P . We define the jump rates as

qP,N (x, x+ 1
N
ei) = NF ′(F−1(xi))

(
− F−1(xi) +

P∑
j=1

wijxj

)
+

qP,N (x, x− 1
N
ei) = NF ′(F−1(xi))

(
− F−1(xi) +

P∑
j=1

wijxj

)
−

(6.7)

where for x ∈ R, x+ := x ∨ 0, x− := −x ∨ 0, and where ei denotes the i-th unit vector.
The idea behind this choice is the following: the time-averaged activity tends to jump

up (down) if the potential in the population, which is approximately given by F−1(xi), is
lower (higher) than the input from the other populations, which is given by

∑P
j=1 wijxj .

The probability that the activity jumps down (up) when the potential is lower (higher) than
the input is assumed to be negligible. The jump rates are proportional to the difference
between the two quantities, scaled by the factor F ′(F−1(xi)). They are therefore higher in
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the sensitive regime where F ′ � 1, that is, where small changes in the potential have large
effects on the activity. If aNi = F (uNi ) in all populations i, then the system is in balance.

Note that the state space is naturally bounded since limx↑1 F
−1(x) =∞ and

limx↓0 F
−1(x) = −∞, such that (−F−1(xk) +

∑P
l=1 wklxl)+ = 0 for x with xk = 1 − 1

N ,
xl ≤ 1− 1

N , when N ≥ N0 is large enough, and similarly at 0.
We will see in Proposition 6.3.1 below that the Markov chain converges to the solution

of (6.6) as the size of the populations N goes to infinity.
In [8] a different choice of jump rates was suggested in analogy to (6.3):

q̃(x, x+ 1
N
ei) = NF ′(F−1(xi))

P∑
j=1

wijxj

q̃(x, x− 1
N
ei) = NF ′(F−1(xi))F−1(xi).

Also this choice leads to (6.6) in the limit. In this picture, the jump rates are high in regions
where the activity is high. Since, as explained above, one should think of the Markov chain
as governing a slowly varying time-averaged activity, (6.7) seems like a more natural choice.

The generator of QP,N of XP,N is given for bounded measurable f : EP,N → R by

QP,Nf(x) = N
P∑
k=1

F ′(F−1(xk))
((
− F−1(xk) +

P∑
j=1

wkjxj

)
+

(f(x+ 1
N ek)− f(x))

+
(
− F−1(xk) +

P∑
j=1

wkjxj

)
−

(f(x− 1
N ek)− f(x))

)
.

Let N0 be such that the jump rates out of the interval
[ 1
N0
, 1− 1

N0

]
are 0.

Proposition 6.3.1. Let XP be the (deterministic) Feller process on [1/N0, 1−1/N0]P with
generator

LP f(x) =
P∑
k=1

F ′(F−1(xk))
(
− F−1(xk) +

P∑
j=1

wkjxj

)
∂kf(x).

If XP,N (0) d−−−−→
N→∞

XP (0) , then XP,N d−−−−→
N→∞

XP on the space of càdlàg functions

D([0,∞), [1/N0, 1 − 1/N0]P ) with the Skorohod topology (where d−→ denotes convergence in
distribution).

Proof. By a standard theorem on the convergence of Feller processes (cf. [38], Thm. 19.25)
it is enough to prove that for f ∈ C∞([1/N0, 1− 1/N0]P ) there exist bounded measurable
fN such that ‖fN − f‖∞

N→∞−−−−→ 0 and ‖QP,NfN − LP f‖∞
N→∞−−−−→ 0.

Let thus f ∈ C∞([1/N0, 1− 1/N0]P ) and set fN (x) = f
(( [x1N ]

N , ..., [xPN ]
N

))
. Then it is

easy to see that
QP,NfN (x) N→∞−−−−→ LP f(x)
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uniformly in x.

6.4 Diffusion Approximation

We are now going to approximate XP,N by a diffusion process. To this end, we follow the
standard approach due to Kurtz and derive a central limit theorem for the fluctuations of
XP,N . This will give us a candidate for a stochastic correction term to (6.6).

6.4.1 A Central Limit Theorem

We write
XP,N
k (t) = XP,N

k (0) +
∫ t

0
QP,Nπk(XP,N (s))ds+MP,N

k (t)

where πk : (0, 1)P → (0, 1), x 7→ xk, is the projection onto the k-th coordinate, and

MP,N
k (t) := XP,N

k (t)−XP,N
k (0)−

∫ t

0
QP,Nπk(XP,N (s))ds

is a martingale describing the fluctuations of the process.
We start by determining the limit of these fluctuations.

Proposition 6.4.1.

(√
NMP,N

k

)
d−−−−→

N→∞

(∫ t

0

(
F ′(F−1(XP

k (s)))
∣∣∣− F−1(XP

k (s)) +
P∑
j=1

wkjX
P
j (s)

∣∣∣) 1
2
dBk(s)

)

on D([0,∞),RP ), where B is a P -dimensional standard Brownian motion, and XP is the
Feller process from Proposition 6.3.1 .

Proof. The bracket process of MP,N
k is given in terms of the carré du champ operator as

〈
MP,N
k

〉
t

=
∫ t

0
QP,Nπ2

k(XP,N (s))− 2QP,Nπk(XP,N (s))XP,N
k (s)ds

=
∫ t

0

∑
y∈EP,N

qP,N (XP,N (s), y)(yk −XP,N
k (s))2ds

= 1
N

∫ t

0
F ′(F−1(XP,N

k (s)))
((
− F−1(XP,N

k (s)) +
P∑
j=1

wkjX
P,N
j (s)

)
+

+
(
− F−1(XP,N

k (s)) +
P∑
j=1

wkjX
P,N
j (s)

)
−

)
ds

= 1
N

∫ t

0
F ′(F−1(XP,N

k (s)))
∣∣∣− F−1(XP,N

k (s)) +
P∑
j=1

wkjX
P,N
j (s)

∣∣∣ds.
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Thus,

〈√
NMP,N

k

〉
t

N→∞−−−−→
∫ t

0
F ′(F−1(XP

k (s)))
∣∣∣− F−1(XP

k (s)) +
P∑
j=1

wkjX
P
j (s)

∣∣∣ds
in probability. For k 6= l,

〈
MP,N
k ,MP,N

l

〉
t

=
∫ t

0

∑
y

qP,N (XP,N (s), y)(yk −XP,N
k (s))(yl −XP,N

l (s))ds = 0,

since for y with qP,N (XP,N (s), y) > 0 at least one of yk − XP,N
k (s) and yl − XP,N

l (s) is
always 0. Now

E

(
sup
t

√
N‖MP,N (t)−MP,N (t−)‖2

)
≤ 1√

N

N→∞−−−−→ 0,

and the statement follows by the martingale central limit theorem, see for example Theorem
1.4, Chapter 7 in [29] .

This suggests to approximate XP,N by the system of coupled diffusion processes

daP,Nk (t) = F ′(F−1(aP,Nk (t)))
(
− F−1(aP,Nk (t)) +

P∑
j=1

wkja
P,N
j (t)

)
dt

+ 1√
N

(
F ′(F−1(aP,Nk (t)))

∣∣∣− F−1(aP,Nk (t)) +
P∑
j=1

wkja
P,N
j (t)

∣∣∣) 1
2
dBk(t),

1 ≤ k ≤ P .
Using Itô’s formula, we formally obtain an approximation for uP,Nk := F−1(aP,Nk ),

duP,Nk (t) =
(
− uP,Nk (t) +

P∑
j=1

wkjF (uP,Nj (t))

− 1
2N

F ′′(uP,Nk (t))
F ′(uP,Nk (t))2

∣∣∣− uP,Nk (t) +
P∑
j=1

wkjF (uP,Nj (t))
∣∣∣)dt

+ 1√
N

(∣∣∣− uP,Nk (t) +
∑P
j=1 wkjF (uP,Nj (t))

∣∣∣
F ′(uP,Nk (t))

) 1
2

dBk(t).

(6.8)

Since the square root function is not Lipschitz continuous near 0, we cannot apply standard
existence theorems to obtain a solution to (6.8) with the full multiplicative noise term.
Instead we will linearize around a deterministic solution to the neural field equation and
approximate to a certain order of 1√

N
.
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6.4.2 Fluctuations around the Traveling Wave

Let ū be a solution to the neural field equation (1.5). To determine the finite-size effects on
ū, we consider a spatially extended network, that is, we look at populations distributed over
an interval [−L,L] ⊂ R and use the stochastic integral derived above to describe the local
fluctuations on this interval.

Let m ∈ N be the density of populations on [−L,L] and consider P = 2mL populations
located at k

m , k ∈ {−mL,−mL+1, ...,mL−1}. We choose the weights wkl as a discretization
of the integral kernel w : R→ [0,∞),

wmkl =
∫ l+1

m

l
m

w( km − y)dy, −mL ≤ k, l ≤ mL− 1. (6.9)

Since we think of the network as describing only a section of the actual domain R, we add
to each population an input F (ūt(−L)) and F (ūt(L)), respectively, at the boundaries with
corresponding weights

wm,+k =
∫ ∞
L

w( km − y)dy,

wm,−k =
∫ −L
−∞

w( km − y)dy.
(6.10)

Fix a population size N ∈ N. Set ūk(t) = ū( km , t) and for u ∈ RP ,

b̂mk (t, u) = −uk(t) +
mL−1∑
l=−mL

wmklF (ul(t)) + wm,+k F (ū(L, t)) + wm,−k F (ū(−L, t)).

We write
uk = ūk + vk (6.11)

and assume that vk is of order 1/
√
N . Linearizing (6.8) around (ūk) we obtain the approx-

imation
duk(t) = b̂mk (t, u)dt+ 1√

NF ′(ūk(t))
|b̂mk (t, ū)| 12 dBk(t)

to order 1/
√
N .

Note that b̂mk (t, ū) ≈ ∂tūk(t) = 0 for a stationary solution ū, with equality if ū is
constant. The finite-size effects are hence of smaller order. Since the square root function
is not differentiable at 0 we cannot expand further.

However, the situation is different if we linearize around a moving pattern. We consider
the traveling wave solution uTWt (x) = û(x − ct) to (1.5) and we assume without loss of
generality that c > 0. Then b̂mk (t, ū) ≈ ∂tūk(t) = −c∂xuTWt < 0. This monotonicity
property allows us to approximate to order 1/N in (6.8). Indeed, note that since û and F
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are increasing,

− b̂mk (t, uTWt )

= uTWt ( km )−
∑
l

wmklF (uTWt ( l
m ))− wm,+k F (uTWt (L))− wm,−k F (uTWt (−L))

≥ uTWt ( km )−
∫ ∞
−L

w( km − y)F (uTWt )(y)dy −
∫ −L
−∞

w( km − y)(F (uTWt (−L))dy

= cûx( km − ct)−
∫ −L
−∞

w( km − y)(F (uTWt (−L))− F (uTWt (y)))dy

≥ cûx( km − ct)−
(
F (uTWt (−L))− F (a1)

)
L→∞−−−−→ cûx( km − ct) > 0.

(6.12)

So for L large enough, −b̂mk (t, uTWt ) > 0 and we have, using Taylor’s formula and (6.11),

(
|b̂mk (t, u)|
F ′(uk(t)))

) 1
2

=
(
−b̂mk (t, uTWt )
F ′(uTWt ( km ))

) 1
2

+ 1

2
√
−b̂mk (t, uTWt )F ′(uTWt ( km ))(

F ′′(uTWt ( km ))
F ′(uTWt ( km ))

b̂mk (t, uTWt )vk(t)

+ vk(t)−
∑
l

wklF
′(uTWt ( l

m ))vl(t)
)

+O
( 1
N

)
.

As a possible diffusion approximation in the case of traveling wave solutions we therefore
obtain the system of stochastic differential equations

duk(t) =
(
b̂mk (t, u) + 1

2N
F ′′(uTWt ( km ))
F ′(uTWt ( km ))2 b̂

m
k (t, uTWt )

)
dt

+ 1√
N

[(
−b̂mk (t, uTWt )
F ′(uTWt ( km ))

) 1
2

+ 1

2
√
−b̂mk (t, uTWt )F ′(uTWt ( km ))(

F ′′(uTWt ( km ))
F ′(uTWt ( km ))

b̂mk (t, uTWt )vk(t)

+ vk(t)−
∑
l

wklF
′(uTWt ( l

m ))vl(t)
)]
dBk(t),

(6.13)

for which there exists a unique solution as we will see in the next section.

6.5 The Continuum Limit

In this section we take the continuum limit of the network of diffusions (6.13), that is, we
let the size of the domain and the density of populations go to infinity in order to obtain
a stochastic neural field equation with a noise term describing the fluctuations around the
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deterministic traveling wave solution due to finite size effects.
We thus have to deal with functions that ‘look almost like the wave’ and choose to work

in the space S :=
{
u : R→ R : u− û ∈ L2}. Note that since for u1, u2 ∈ S, ‖u1−u2‖ <∞,

the L2-norm induces a topology on S.

6.5.1 A Word on Correlations

Recall the definition of the Markov chain introduced in section 6.3. Note that as long as
we allow only single jumps in the evolution, meaning that there will not be any jumps
in the activity in two populations at the same time, the martingales associated with any
two populations will be uncorrelated, yielding independent driving Brownian motions in the
diffusion limit (cf. Proposition 6.4.1).

This only makes sense for populations that are clearly distinguishable. In order to
determine the fluctuations around traveling wave solutions, we consider spatially extended
networks of populations. The population located at x ∈ R is to be understood as the
ensemble of all neurons in the ε-neighborhood (x − ε, x + ε) of x for some ε > 0. If we
consider two populations located at x, y ∈ R with |x − y| < 2ε, then they will overlap.
Consequently, simultaneous jumps will occur, leading to correlations between the driving
Brownian motions.

Thus the Markov chain model (and the associated diffusion approximation) is only ap-
propriate as long as the distance between the individual populations is large enough. When
we go over to the continuum limit and increase the density of populations, we therefore adapt
the model by introducing correlations between the driving Brownian motions of populations
lying close together.

6.5.2 The Stochastic Neural Field Equation

We start by defining the limiting object. For u ∈ S and t ∈ [0, T ] set

b(t, u)(x) = −u(x) +
∫ ∞
−∞

w(x− y)F (u(y))dy = −u(x) + w ∗ F (u)(x).

As in assumption (A)(ii), letWQ be a (cylindrical) Q-Wiener process on L2 with covariance
operator

√
Q given as

√
Qh(x) =

∫∞
−∞ q(x, y)h(y)dy for some symmetric kernel q(x, y) with

q(x, ·) ∈ L2 ∩ L1 for all x ∈ R and supx∈R(‖q(x, ·)‖+ ‖q(x, ·)‖1) <∞. We assume that the
diffusion coefficient is given as the multiplication operator associated with σ : [0, T ]× S →
L2(R), which we also denote by σ, where σ is Lipschitz continuous with respect to the second
variable uniformly in t ≤ T , that is, we assume that there exists Lσ > 0 such that for all
u1, u2 ∈ S and t ∈ [0, T ],

‖σ(t, u1)− σ(t, u2)‖ ≤ Lσ‖u1 − u2‖. (6.14)
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Recall that the correlations are described by q ∗ q(x, y) :=
∫
q(x, z)q(z, y)dz. We could for

example take
q(x, y) = q(x− y) = 1

2ε1(−ε,ε)(x− y) (6.15)

for some small ε > 0 (cf. section 6.5.1).
As in assumption (A)(ii), σ ∈ L0

2. Note that for uncorrelated noise (i.e. Q=E), this is
not the case. Therefore, in [54] Riedler and Buckwar derive the central limit theorem in the
Sobolev space H−α. Splitting up the limiting procedures, N → ∞ and continuum limit,
allows us to incorporate correlations and finally to work in the more natural function space
L2.

Proposition 6.5.1. For any initial condition u0 ∈ S, the stochastic evolution equation

dut(x) =
(
− ut + w ∗ F (ut) + 1

2N
F ′′(uTWt )
F ′(uTWt )2 ∂tu

TW
t

)
dt+ σ(t, ut)dWQ

t (x)

u0 = u0,

(6.16)

has a unique strong S-valued solution. u has a continuous modification. For any p ≥ 2,

E
(

sup
t∈[0,T ]

‖ut − uTWt ‖p
)
<∞.

The proof is exactly analogous to the proof of Proposition 2.2.1.

6.5.3 Embedding of the Diffusion Processes

As a next step we embed the systems of coupled diffusion processes (6.13) into L2(R). Let
m ∈ N be the population density and Lm ∈ N the length of the domain with Lm ↑ ∞
as m → ∞. For k ∈ {−mLm,−mLm + 1, ...,mLm − 1} set Imk = [ km ,

k+1
m ) and Jmk =

( km −
1

4m ,
k
m + 1

4m ), and let

Wm
k (t) = 2m〈WQ

t ,1Jmk 〉

be the average of WQ
t on the interval Jmk . Then the Wm

k are one-dimensional Brownian
motions with covariances

E(Wm
k W

m
l ) = 4m2〈

√
Q1Jm

k
,
√
Q1Jm

l
〉

= 4m2
∫ ∞
−∞

∫ k
m+ 1

4m

k
m−

1
4m

q(x, y)dy
∫ l

m+ 1
4m

l
m−

1
4m

q(x, z)dzdx

= 4m2
∫
Jm
k

∫
Jm
l

q ∗ q(y, z)dydz.

Note that while m < 1
4ε , the Brownian motions are independent.
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For m ∈ N let σ̂m : [0, T ] × RP → RP and assume that there exists Lσ̂m > 0 such that
for any t ∈ [0, T ] and u1, u2 ∈ RP ,

‖σ̂m(t, u1)− σ̂m(t, u2)‖2 ≤ Lσ̂m‖u1 − u2‖2.

Consider the system of coupled stochastic differential equations

dumk (t) = b̂mk (t, (umk )) + 1
2N

F ′′(uTWt ( km ))
F ′(uTWt ( km ))2 b̂

m
k (t, (uTWt ( km ))k)

+ wm,+k F (uTWt (Lm)) + wm,−k F (uTWt (−Lm))
)
dt

+ σ̂mk (t, um(t))dWm
k (t), −mLm ≤ k ≤ mLm − 1,

with weights as in (6.9) and (6.10).
We identify u = (uk)−mLm≤k≤mLm−1 ∈ RP with its piecewise constant interpolation as

an element of L2 via the embedding

ιm(u) =
mLm−1∑
k=−mLm

uk1Im
k
.

For u ∈ C(R) set

πm(u) =
mLm−1∑
k=−mLm

u( km )1Im
k
.

Then umt := ιm((umk (t))k) satisfies

dumt (x) = bm(t, umt )(x)dt+ 1
2N πm

( F ′′(uTWt )
F ′(uTWt )2

)
bm(t, πm(uTWt ))dt

+ σm(t, umt ) ◦ ΦmdWQ
t (x),

(6.17)

where bm : [0, T ]× L2(R)→ L2(R) and Φm : L2(R)→ L2(R) are given as

bm(t, u) = −ut +
∑
k

[ ∫ Lm

−Lm
w( km − y)F (ut)(y)dy

+ wm,+k F (uTWt (Lm)) + wm,−k F (uTWt (−Lm))
]
1Im

k
,

Φm(u) = 2m
mLm−1∑
k=−mLm

〈u,1Jm
k
〉1Im

k
,

and where σm : [0, T ]×L2(R)→ L2(R) is such that for u ∈ RP , σm(t, ιm(u)) = σ̂mk (t, u) on
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Imk . We assume joint continuity and Lipschitz continuity in the second variable uniformly
in m and t ≤ T , that is, there exists Lσ > 0 such that for u1, u2 ∈ L2(R) and t ≤ T ,

‖σm(t, u1)− σm(t, u2)‖ ≤ Lσ‖u1 − u2‖.

Proposition 6.5.2. For any initial condition u0 ∈ L2(R) there exists a unique strong L2-
valued solution um to (6.17). um admits a continuous modification. For any p ≥ 2,

E
(

sup
t≤T
‖umt ‖p

)
<∞.

Proof. Again we check that the drift and diffusion coefficients are Lipschitz continuous. Note
that

∑
k

1
m
w( km , y) =

∫ Lm

−Lm
w(x− y)dx+

∑
k

∫ k+1
m

k
m

w( km − y)− w(x− y)dx

≤ ‖w‖1 +
∑
k

∫ k+1
m

k
m

∫ k+1
m

k
m

|wx(z − y)|dzdx

= 1 +
∑
k

1
m

∫ k+1
m

k
m

|wx(z − y)|dz ≤ 1 + 1
m
‖wx‖1.

(6.18)

Therefore, for u1, u2 ∈ L2(R),

‖bm(t, u1)− bm(t, u2)‖22 ≤ 2‖u1 − u2‖2 + 2‖F ′‖2∞
∫ Lm

−Lm

∑
k

1
m
w( km − y) (u1(y)− u2(y))2

dy

≤ 2‖u1 − u2‖2 + 2‖F ′‖2∞
(

1 + 1
m
‖wx‖1

)
‖u1 − u2‖2

and for an orthonormal basis (ek) of L2(R) we obtain, using Parseval’s identity,

‖ (σm(t, u1)− σm(t, u2)) ◦ Φm‖2L0
2

=
∑
k

∥∥∥ (σm(t, u1)− σm(t, u2))
∑
l

2m〈ek,
√
Q1Jm

l
〉1Im

l

∥∥∥2

=
∫

(σm(t, u1)− σm(t, u2))2 (x)
∑
l

4m2
∫ (∫

Jm
l

q(z, y)dy
)2
dz 1Im

l
(x)dx

≤
∫

(σm(t, u1)− σm(t, u2))2 (x)
∑
l

2m
∫ ∫

Jm
l

q(z, y)2dydz 1Im
l

(x)dx

=
∫

(σm(t, u1)− σm(t, u2))2 (x)
∑
l

2m
∫
Jm
l

‖q(y, ·)‖2dy 1Im
l

(x)dx

≤ sup
x
‖q(x, ·)‖2L2

σ‖u1 − u2‖2
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6.5.4 Convergence

We are now able to state the main convergence result. We will need the following assumption
on the kernel w: there exists Cw > 0 such that for x ≥ 0,∫ ∞

x

w(y)dy ≤ Cww(x). (6.19)

That assumption is satisfied for classical choices of w such as w(x) = 1
2σ e
− |x|σ or

w(x) = 1√
2πσ2 e

− x2
2σ2 .

Theorem 6.5.3. Fix T > 0. Let u and um be the solutions to (6.16) and (6.17), respectively.
Assume that

(i) supk supx∈Im
k
‖2m
√
Q1Jm

k
− q(x, ·)‖ m→∞−−−−→ 0,

(ii) for any u : [0, T ]→ S with supt≤T ‖ut − û‖ <∞,

sup
t≤T
‖σm(t, ut1(−Lm,Lm))− σ(t, ut)‖

m→∞−−−−→ 0.

Then for any initial conditions um0 ∈ L2(R), u0 ∈ S such that
‖um0 − u0‖L2((−Lm,Lm))

m→∞−−−−→ 0, and for all p ≥ 2,

E
(

sup
t∈[0,T ]

‖umt − ut‖
p
L2((−Lm,Lm))

)
m→∞−−−−→ 0.

We postpone the proof to section 6.6.

Remark 6.5.4. Let ε > 0. The kernel q(x, y) = 1
2ε1(x−ε,x+ε)(y) satisfies assumption (i) of

the theorem. Indeed, note that for x, z with |x− z| ≤ 1
m ,

|{y : 1(x−ε,x+ε)(y) 6= 1(z−ε,z+ε)(y)}| ≤ |z − x| ≤ 1
m . Therefore we obtain that for all k and

for any x ∈ Imk ,

‖2m
√
Q1Jm

k
− q(x, ·)‖22 = 4m2

∫ ∞
−∞

(∫
Jm
k

q(z, y)− q(x, y)dz
)2
dy

≤ 2m
∫ ∞
−∞

∫
Jm
k

(q(z, y)− q(x, y))2
dz dy

≤ 2
∫
Jm
k

1
4ε2 dz ≤

1
4ε2m

m→∞−−−−→ 0.

We show that we can apply the theorem in the case of the fluctuations described in
section 6.4.2. In order to ensure that the diffusion coefficients are in L2(R), we cut off the
noise outside a compact set {∂xuTWt ≥ δ}, δ > 0. Note that the neglected region moves with
the wave such that we always retain the fluctuations in the relevant regime away from the
fixed points.
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Theorem 6.5.5. Assume that the wave speed is strictly positive, c > 0. Fix δ > 0. The
diffusion coefficients as derived in Section 6.4.2,

σ(t, u) = 1√
N

(
α(t) + β(t)(u− uTWt )

− γ(t)w ∗ (F ′(uTWt )(u− uTWt ))
)
1{∂xuTWt ≥δ},

σm(t, u) = 1√
N

(
αm(t) + βm(t)(u− πm(uTWt ))

− γm(t)πm(w ∗ (πm(F ′(uTWt ))(u− πm(uTWt ))))
)
1{∂xuTWt ≥δ},

where

α(t) =

√
| − uTWt + w ∗ F (uTWt )|

F ′(uTWt )
=

√
c∂xuTWt
F ′(uTWt )

,

β(t) = 1
2
√
c∂xuTWt F ′(uTWt )

(
−F

′′(uTWt (x))
F ′(uTWt (x))

c∂xu
TW
t + 1

)
,

γ(t) = 1
2
√
c∂xuTWt F ′(uTWt )

,

αm(t) =

√
−bm(t, πm(uTWt ))
πm(F ′(uTWt ))

1[−Lm,Lm),

βm(t) = 1
2
√
−bm(t, πm(uTWt ))πm(F ′(uTWt ))

×
(
−π

m(F ′′(uTWt ))
πm(F ′(uTWt ))

(−bm(t, πm(uTWt ))) + 1
)
1[−Lm,Lm),

γm(t) = 1
2
√
−bm(t, πm(uTWt ))πm(F ′(uTWt ))

1[−Lm,Lm),

are jointly continuous and Lipschitz continuous in the second variable with Lipschitz constant
uniform in m and t ≤ T , and satisfy condition (ii) of Theorem 6.5.3.

The proof is carried out in section 6.6.
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6.6 Proofs of the Theorems

6.6.1 Proof of Theorem 6.5.3

Set vt = ut − uTWt and vmt = umt − πm(uTWt ). Note that

∫ Lm

−Lm
(πm(uTWt )(x)− uTWt (x))2dx ≤

∑
k

∫ k+1
m

k
m

(∫ k+1
m

k
m

∂xu
TW
t (z)dz

)2
dx

≤ 1
m2

∑
k

∫ k+1
m

k
m

(
∂xu

TW
t (z)

)2
dz

≤ 1
m2 ‖ûx‖

2.

(6.20)

We show that
E
(

sup
t≤T
‖vt − vmt ‖

p
2

)
m→∞−−−−→ 0,

then it follows that

E
(

sup
t≤T
‖ut − umt ‖

p
L2((−Lm,Lm))

)
≤ const×

[
E
(

sup
t≤T
‖uTWt − πm(uTWt )‖pL2((−Lm,Lm))

)
+ E

(
sup
t≤T
‖vt − vmt ‖

p
2

)]
m→∞−−−−→ 0.

By Itô’s formula,

1
2d‖v

m
t − vt‖22

= 〈bm(t, vmt + πm(uTWt ))− b(t, vt + uTWt )− πm(∂tuTWt ) + ∂tu
TW
t , vmt − vt〉dt

+ 1
2N

〈
πm
( F ′′(uTWt )
F ′(uTWt )2

)
bm(t, πm(uTWt ))− F ′′(uTWt )

F ′(uTWt )2 ∂tu
TW
t , vmt − vt

〉
dt

+ 1
2‖σ

m(t, vmt + πm(uTWt )) ◦ Φm − σ(t, vt + uTWt )‖2L0
2

+ 〈vmt − vt,
(
σm(t, vmt + πm(uTWt )) ◦ Φm − σ(t, vt + uTWt )

)
dWQ

t 〉.

In order to finally use Gronwall’s Lemma, we estimate the terms one by one.

The Drift

We start by regrouping the terms in a suitable way. We have

‖vmt − vt + bm(t, vmt + πm(uTWt ))− b(t, vt + uTWt )− πm(∂tuTWt ) + ∂tu
TW
t ‖2

=
∫ ∞
−∞

[∑
k

(∫ Lm

−Lm
w( km − y)F (vmt (y) + πm(uTWt )(y))dy
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+
∫ ∞
Lm

w( km − y)F (uTWt (Lm))dy +
∫ −Lm
−∞

w( km − y)F (uTWt (−Lm))dy
)
1Im

k
(x)

−
∫ ∞
−∞

w(x− y)F (vt(y) + uTWt (y))dy − πm(w ∗ F (uTWt )) + w ∗ F (uTWt )(x)
]2
dx

≤ 6
∫ ∞
−∞

[∑
k

∫ Lm

−Lm
w( km − y)

(
F (vmt (y) + πm(uTWt )(y))− F (vt(y) + uTWt (y))

)
dy1Im

k
(x)
]2

+
[∑

k

∫ Lm

−Lm

(
w( km − y)− w(x− y)

) (
F (vt(y) + uTWt (y))− F (uTWt (y))

)
dy1Im

k
(x)
]2

+
[∑

k

∫ ∞
Lm

w( km − y)
(
F (uTWt (Lm))− F (uTWt (y))

)
dy1Im

k
(x)
]2

+
[∑

k

∫ −Lm
−∞

w( km − y)
(
F (uTWt (−Lm))− F (uTWt (y))

)
dy1Im

k
(x)
]2

+
[(∫ ∞

Lm
+
∫ −Lm
−∞

)
w(x− y)

(
F (vt(y) + uTWt (y))− F (uTWt (y))

)
dy

]2

+
[ ∫ Lm

−Lm
w(x− y)

(
F (vt(y) + uTWt (y))− F (uTWt (y))

)
dy1(−∞,−Lm)∪[Lm,∞)(x)

]2
dx

=: 6(S1 + S2 + S3 + S4 + S5 + S6).

Using the Cauchy-Schwarz inequality we get

S1 ≤ ‖F ′‖2∞
∫ Lm

−Lm

∑
k

1
m
w( km − y)

(
vmt (y) + πm(uTWt )(y)− vt(y)− uTWt (y)

)2
dy

(6.18)
≤ 2

(
1 + 1

m
‖wx‖1

)
‖F ′‖2∞

(
‖vmt − vt‖22 +

∫ Lm

−Lm

(
πm(uTWt )(y)− uTWt (y)

)2
dy
)
.

With (6.20) it follows that

S1 ≤ 2
(

1 + 1
m
‖wx‖1

)
‖F ′‖2∞

(
‖vmt − vt‖22 + 1

m2 ‖ûx‖
2
2

)
.

Another application of the Cauchy-Schwarz inequality yields

S2 =
∑
k

∫ k+1
m

k
m

(∫ Lm

−Lm

(
w( km − y)− w(x− y)

)
(
F (vt(y) + uTWt (y))− F (uTWt (y))

)
dy

)2
dx

≤
∑
k

1
m

(∫ Lm

−Lm

∫ k+1
m

k
m

|wx(z − y)|dz
(
F (vt(y) + uTWt (y))− F (uTWt (y))

)
dy

)2
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≤
∑
k

1
m

∫ Lm

−Lm

∫ k+1
m

k
m

|wx(z − y)|dzdy

×
∫ Lm

−Lm

∫ k+1
m

k
m

|wx(z − y)|dz
(
F (vt(y) + uTWt (y))− F (uTWt (y))

)2
dy

≤ 1
m2 ‖wx‖

2
1‖F ′‖2∞‖vt‖22

Using integration by parts, (6.18), and assumption (6.19), we obtain

S3 =
∑
k

1
m

([
−
∫ ∞
y

w(z − k
m )dz

(
F (uTWt (Lm))− F (uTWt (y))

)]∞
y=Lm︸ ︷︷ ︸

=0

−
∫ ∞
Lm

∫ ∞
y

w(z − k
m )dz F ′(uTWt (y))∂xuTWt (y)dy

)2

≤ C2
w

∑
k

1
m

(∫ ∞
Lm

w(y − k
m )F ′(uTWt (y))∂xuTWt (y)dy

)2

≤ C2
w

(
1 + 1

m
‖wx‖1

)
‖F ′‖2∞

∫ ∞
Lm

(∂xuTWt (y))2dy.

Analogously,

S4 ≤ C2
w

(
1 + 1

m
‖wx‖1

)
‖F ′‖2∞

∫ −Lm
−∞

(∂xuTWt (y))2dy.

Last we observe that

S5 ≤ ‖F ′‖2∞
(∫ ∞

Lm
+
∫ −Lm
−∞

)
v2
t (y)dy.

and

S6 ≤ ‖F ′‖2∞
(∫ ∞

Lm
+
∫ −Lm
−∞

)(∫ Lm

−Lm
w(x− y)|vt(y)|dy

)2
dx

≤ ‖F ′‖2∞
(∫ ∞

Lm
+
∫ −Lm
−∞

)
(w ∗ |vt|(x))2dx.

Finally we consider

S7 :=
∥∥∥ F ′′(uTWt )
F ′(uTWt )2 ∂tu

TW
t − πm

( F ′′(uTWt )
F ′(uTWt )2

)
bm(t, πm(uTWt ))

∥∥∥2

≤ 4
[(∫ −Lm

−∞
+
∫ ∞
Lm

)(
F ′′(uTWt )(y)
F ′(uTWt )2(y)

∂tu
TW
t (y)

)2
dy

+
∥∥∥( F ′′(uTWt )

F ′(uTWt )2 − π
m

(
F ′′(uTWt )
F ′(uTWt )2

))
∂tu

TW
t 1(−Lm,Lm)

∥∥∥2

+
∥∥∥πm( F ′′(uTWt )

F ′(uTWt )2

)
(∂tuTWt − πm(∂tuTWt ))1(−Lm,Lm)

∥∥∥2
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+
∥∥∥πm( F ′′(uTWt )

F ′(uTWt )2

)(
πm(w ∗ F (uTWt ))− πm(w ∗ πm(F (uTWt )))

−
∑
k

(
wm,+k F (uTWt (Lm)) + wm,−k F (uTWt )(−Lm)

)
1Im

k

)∥∥∥2
]

= 4(S7,1 + S7,2 + S7,3 + S7,4).

We have

S7,2 ≤
∥∥∥F (3)(û)ûx

(F ′(û))2 −
2(F ′′(û)2ûx

(F ′(û))3

∥∥∥2

∞

1
m2 ‖∂tu

TW
t ‖2

and, as in (6.20),

S7,3 ≤
∥∥∥ F ′′(uTWt )
F ′(uTWt )2

∥∥∥2

∞
‖(∂tuTWt − πm(∂tuTWt ))1(−Lm,lm)‖2

≤ 1
m2 c

2
∥∥∥ F ′′(uTWt )
F ′(uTWt )2

∥∥∥2

∞
‖ûxx‖2.

The last summand satisfies, using (6.18) and (6.20),

S7,4 ≤ 3
∥∥∥ F ′′(uTWt )
F ′(uTWt )2

∥∥∥2

∞[∑
k

1
m

(∫ Lm

−Lm
w( km − y)(F (uTWt (y))− πm(F (uTWt ))(y))2dy

)2
+ S3 + S4

]
≤ 3
∥∥∥ F ′′(uTWt )
F ′(uTWt )2

∥∥∥2

∞
(1 + 1

m
‖wx‖1)‖F ′‖2∞

1
m2 ‖ûx‖

2 + S3 + S4).

The Itô Correction

‖σm(t, vmt + πm(uTWt )) ◦ Φm − σ(t, vt + uTWt )‖2L0
2

≤ 3
(
‖
(
σm(t, vmt + πm(uTWt ))− σm(t, (vt + uTWt )1(−Lm,Lm))

)
◦ Φm‖2L0

2

+ ‖
(
σm(t, (vt + uTWt )1(−Lm,Lm))− σ(t, vt + uTWt )

)
◦ Φm‖2L0

2

+ ‖σ(t, vt + uTWt ) ◦ Φm − σ(t, vt + uTWt )‖2L0
2

)
=: 3(S8 + S9 + S10).

Let (ek) be an orthonormal basis of L2(R). Note that by Parseval’s identity

∑
k

(
Φm(

√
Qek)

)2

=
∑
k

(∑
l

2m〈
√
Qek,1Jm

l
〉1Im

l

)2
=
∑
l

∑
k

4m2〈
√
Q1Jm

l
, ek〉21Im

l
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=
∑
l

4m2‖
√
Q1Jm

l
‖21Im

l
=
∑
l

4m2
∫ (∫

Jm
l

q(x, y)dy
)2
dx 1Im

l

≤
∑
l

2m
∫ ∫

Jm
l

q2(x, y)dydx 1Im
l
≤ sup

x
‖q(x, ·)‖21[−Lm,Lm).

Thus,

S8 =
∑
k

∫ ∞
−∞

(
σm(t, vmt + πm(uTWt ))

− σm(t, (vt + uTWt )1(−Lm,Lm))
)2

(x)
(

Φm(
√
Qek)

)2
(x)dx

≤ sup
x
‖q(x, ·)‖2 L2

σ‖vmt + πm(uTWt )− (vt + uTWt )1(−Lm,Lm)‖2

(6.20)
≤ 2 sup

x
‖q(x, ·)‖2 L2

σ

(
‖vmt − vt‖2 + 1

m2 ‖ûx‖
2
)

and

S9 = ‖
(
σm(t, (vt + uTWt )1(−Lm,Lm))− σ(t, vt + uTWt )

)
◦ Φm‖2L0

2

≤ sup
x
‖q(x, ·)‖2‖σm(t, (vt + uTWt )1(−Lm,Lm))− σ(t, vt + uTWt )‖2.

Using Parseval’s identity again we get

S10 =
∫ ∞
−∞

σ(t, vt + uTWt )2(x)
∑
k

(∑
l

2m〈
√
Qek,1Jm

l
〉1Im

l
(x)−

√
Qek(x)

)2
dx

=
∑
l

∫ l+1
m

l
m

σ(t, vt + uTWt )2(x)
∑
k

(
2m
∫
Jm
l

∫ ∞
−∞

(q(z, y)− q(x, y))ek(y)dydz
)2
dx

+
(∫ −Lm
−∞

+
∫ ∞
Lm

)
σ(t, vt + uTWt )2(x)

∑
k

(
√
Qek(x))2dx

≤
∑
l

∫ l+1
m

l
m

σ(t, vt + uTWt )2(x)
∥∥∥∥2m

∫
Jm
l

(q(z, ·)− q(x, ·))dz
∥∥∥∥2
dx

+
(∫ −Lm
−∞

+
∫ ∞
Lm

)
σ(t, vt + uTWt )2(x)

∑
k

(∫ ∞
−∞

q(x, y)ek(y)dy
)2

dx

≤ ‖σ(t, vt + uTWt )‖2 sup
l

sup
x∈Im

l

∥∥∥∥2m
∫
Jm
l

q(z, ·)dz − q(x, ·)
∥∥∥∥2

+ sup
x
‖q(x, ·)‖2

(∫ −Lm
−∞

+
∫ ∞
Lm

)
σ(t, vt + uTWt )2(x)dx.
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Application of Gronwall’s Lemma

We use K,K1,K2, K̃, etc. to denote suitable constants that may differ from step to step.
Summarizing the previous steps and using Young’s inequality we arrive at

1
2d‖v

m
t − vt‖2

≤
[
− ‖vmt − vt‖2 + 1

2‖v
m
t − vt‖2

+ 1
2

∥∥∥vmt − vt + bm(t, vmt + πm(uTWt ))− b(t, vt + uTWt )− πm(∂tuTWt ) + ∂tu
TW
t

∥∥∥2

2

+ 1
4N ‖v

m
t − vt‖2 + 1

4N

∥∥∥ F ′′(uTWt )
F ′(uTWt )2 ∂tu

TW
t − πm

( F ′′(uTWt )
F ′(uTWt )2

)
bm(t, πm(uTWt ))

∥∥∥2
]
dt

+ 1
2‖σ

m(t, vmt + πm(uTWt )) ◦ Φm − σ(t, vt + uTWt )‖2L0
2
dt

+ 〈vmt − vt,
(
σm(t, vmt + πm(uTWt )) ◦ Φm − σ(t, vt + uTWt )

)
dWQ

t 〉

≤ K1‖vmt − vt‖2dt+K2R(t, vt,m)dt+ dMt,

where

R(t, vt,m) = 1
m2

(
‖vt‖2 + ‖ûx‖2 + ‖ûxx‖2

)
+
(∫ ∞

Lm
+
∫ −Lm
−∞

)(
v2
t (x) + (w ∗ |vt|)2(x)

+ σ(t, vt + uTWt )2(x) + (∂xuTWt (x))2
)
dx

+ ‖σ(t, vt + uTWt )‖2 sup
k

sup
x∈Im

k

‖2m
√
Q1Jm

k
− q(x, ·)‖2

+ ‖σm(t, (vt + uTWt )1(−Lm,Lm))− σ(t, vt + uTWt )‖2

and
Mt =

∫ t

0
〈vms − vs,

(
σm(s, vms + πm(uTWs )) ◦ Φm − σ(s, vs + uTWs )

)
dWQ

s 〉

is a martingale with quadratic variation process

[M ]t =
∫ t

0

∑
k

〈vms − vs,
(
σm(s, vms + πm(uTWs )) ◦ Φm

− σ(s, vs + uTWs )
)
◦
√
Qek〉2ds

≤
∫ t

0
‖vms − vs‖2

∥∥∥(σm(s, vms + πm(uTWs )) ◦ Φm

− σ(s, vs + uTWs )
)∥∥∥2

L0
2

ds.

(6.21)
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Applying Itô’s formula to the real-valued stochastic process ‖vmt − vt‖2 we obtain for p ≥ 2

d‖vmt − vt‖p

= p

2‖v
m
t − vt‖p−2d‖vmt − vt‖2 + p(p− 2)

8 ‖vmt − vt‖p−4d
[
‖vmt − vt‖2

]
t

(6.21)
≤ K1p‖vmt − vt‖pdt+K2p‖vmt − vt‖p−2R(t, vt,m)dt+ p‖vmt − vt‖p−2dMt

+ p(p− 2)
2 ‖vmt − vt‖p−2‖

(
σm(t, vmt + πm(uTWt )) ◦ Φm − σ(t, vt + uTWt )

)
‖2L0

2
dt.

Estimating the last term as above and using Young’s inequality we obtain

d‖vmt − vt‖p

≤ K̃1‖vmt − vt‖pdt+ K̃2‖vmt − vt‖p−2R(t, vt,m)dt+ p‖vmt − vt‖p−2dMt

≤
(
K̃1 + K̃2

p−2
p

)
‖vmt − vt‖pdt+ K̃2

2
pR(t, vt,m)

p
2 dt+ p‖vmt − vt‖p−2dMt.

Integrating, maximizing over t ≤ T , and taking expectations we get

E

(
sup
t≤T
‖vmt − vt‖p

)
≤ ‖vm0 − v0‖p +

(
K̃1 + K̃2

p− 2
p

)
E

(
sup
t≤T

∫ t

0
‖vms − vs‖pds

)
+ K̃2

2
p
E

(
sup
t≤T

∫ t

0
R(s, vs,m)

p
2 ds

)
+ pE

(
sup
t≤T

∫ t

0
‖vms − vs‖p−2dMs

)
≤ ‖vm0 − v0‖p +

(
K̃1 + K̃2

p− 2
p

)∫ T

0
E

(
sup
s≤t
‖vms − vs‖p

)
dt

+ K̃2
2
p
E

(∫ T

0
R(s, vs,m)

p
2 ds

)
+ pE

(
sup
t≤T

∫ t

0
‖vms − vs‖p−2dMs

)
.

(6.22)

We estimate the last term using the Burkholder-Davis-Gundy inequality, (6.21), and Young’s
inequality:

pE

(
sup
t≤T

∫ t

0
‖vms − vs‖p−2dMs

)

≤ KE

(∫ T

0
‖vms − vs‖

2p−2
2 ‖

(
σm(s, vms + πm(uTWs )) ◦ Φm − σ(s, vs + uTWs )

)
‖2L0

2
ds

) 1
2

≤ KE
(

sup
t≤T
‖vmt − vt‖p−1

(∫ T

0
‖
(
σm(s, vms + πm(uTWs )) ◦ Φm − σ(s, vs + uTWs )

)
‖2L0

2
ds

) 1
2
)

≤ 1
2E
(

sup
t≤T
‖vmt − vt‖p

)
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+ K̃3E

(∫ T

0
‖
(
σm(s, vms + πm(uTWs )) ◦ Φm − σ(s, vs + uTWs )

)
‖2L0

2
ds

) p
2

.

Bringing the first summand to the left-hand side of (6.22) this implies that

E

(
sup
t≤T
‖vmt − vt‖p

)
≤ 2‖vm0 − v0‖p + 2

(
K̃1 + K̃2

p− 2
p

)∫ T

0
E

(
sup
s≤t
‖vms − vs‖p

)
dt

+ K̃2
4
p
E

(∫ T

0
R(s, vs,m)

p
2 ds

)

+ 2K̃3E

(∫ T

0
‖
(
σm(t, vmt + πm(uTWt )) ◦ Φm − σ(t, vt + uTWt )

)
‖2L0

2
ds

) p
2

.

We estimate the last term as before and obtain

E

(∫ T

0
‖
(
σm(s, vms + πm(uTWs )) ◦ Φm − σ(s, vs + uTWs )

)
‖2L0

2
ds

) p
2

≤ KE

(∫ T

0
‖vms − vs‖2 +R(s, vs,m)ds

) p
2

≤ K̃E

(∫ T

0
sup
s≤t
‖vms − vs‖pdt+

∫ T

0
R(s, vs,m)

p
2 ds

)
.

Altogether we arrive at

E

(
sup
t≤T
‖vmt − vt‖p

)
≤ 2‖vm0 − v0‖p2 + K̂1E

∫ T

0
R(t, vt,m)

p
2 dt

+ K̂2

∫ T

0
E

(
sup
s≤t
‖vms − vs‖p

)
dt.

An application of Gronwall’s Lemma yields

E

(
sup
t≤T
‖vmt − vt‖p

)
≤ K

(
‖vm0 − v0‖p + E

(
sup
t≤T

R(t, vt,m)
p
2

))
.

The sequence of continuous functions fm : [0, T ]→ R,

fm(t) =
((∫ ∞

Lm
+
∫ −Lm
−∞

)
v2
t (x) + (w ∗ |vt|)2(x) + σ(t, vt + uTWt )2(x) + (∂xuTWt (x))2dx

) p
2

is decreasing and converges pointwise to 0 since all the integrands are in L2(R). By Dini’s
Theorem the convergence is uniform. This together with the facts that
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‖σ(t, vt)‖22 ≤ K(1 + ‖vt‖2) and E
(
supt≤T ‖vt‖2

)
<∞ by Proposition 6.5.1, assumptions (i)

and (ii), and dominated convergence implies that

E

(
sup
t≤T

R(t, vt,m)
p
2

)
≤ K

(
1
mp

(
E

(
sup
t≤T
‖vt‖p

)
+ ‖ûx‖p + ‖ûxx‖p

)
+ E

(
sup
t≤T

fm(t)
)

+ E

(
sup
t≤T
‖σm(t, (vt + uTWt )1(−Lm,Lm)) ◦ Φm − σ(t, vt + uTWt )‖p

)
+ E

(
sup
t≤T
‖σ(t, vt + uTWt )‖p

)
sup
k

sup
x∈Im

k

‖2m
√
Q1Jm

k
− q(x, ·)‖p

)
m→∞−−−−→ 0

and hence
E

(
sup
t≤T
‖vmt − vt‖p

)
m→∞−−−−→ 0.

6.6.2 Proof of Theorem 6.5.5

The joint continuity follows essentially from the continuity of t 7→ uTWt . Note that because
of (6.12) there exists 0 < δ′ < δ such that −bm(t, πm(uTWt )) ≥ cδ′ on {∂xuTWt ≥ δ}. To see
the Lipschitz continuity, observe that for u1, u2 ∈ S,

‖σ(t, u1)− σ(t, u2)‖22

≤ 2
N
‖1{∂xuTWt ≥δ}

(
‖1{∂xuTWt ≥δ}β(t)‖2∞‖u1 − u2‖22

+ ‖1{∂xuTWt ≥δ}γ(t)‖2∞
∫

(w ∗ (F ′(uTWt )(u1 − u2)))2(x)dx
)

≤ 1
2Ncδmin[0,1] F ′

((
‖û‖∞max

[0,1]

∣∣∣F ′′
F ′

∣∣∣+ 1
)2

+ ‖F ′‖2∞
)
‖u1 − u2‖22,

and similarly for u1, u2 ∈ L2(R),

‖σm(t, u1)− σm(t, u2)‖22

≤ 1
2Ncδ′min[0,1] F ′

((
‖û‖∞max

[0,1]

∣∣∣F ′′
F ′

∣∣∣+ 1
)2

+ (1 + 1
m
‖wx‖1)‖F ′‖2∞

)
‖u1 − u2‖22.

We now show that the convergence property (ii) in Theorem 6.5.3 holds. Note first that
for u ∈ C1 with ‖ux‖∞ <∞,

‖(u− πm(u))1{∂xuTWt ≥δ}‖∞

≤ sup
x

∣∣∣∑
k

∫ x

k
m

ux(y)dy1Im
k

(x)
∣∣∣+ sup

x6∈[−Lm,Lm)
|u(x)1{∂xuTWt ≥δ}|
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≤ 1
m
‖ux‖∞ + sup

x6∈[−Lm,Lm]
|u(x)1{∂xuTWt ≥δ}|

m→∞−−−−→ 0.

Thus,

‖(c∂xuTWt − bm(t, πm(uTWt )))1{∂xuTWt ≥δ}‖∞

≤ ‖uTWt − πm(uTWt )‖∞

+ sup
k

∫ Lm

−Lm
w( km , y)|πm(F (uTWt ))(y)− F (uTWt (y))|dy

+ sup
k

∫ ∞
Lm

w( km , y)|F (uTWt (Lm))− F (uTWt (y))|dy

+ sup
k

∫ −Lm
−∞

w( km , y)|F (uTWt (Lm))− F (uTWt (y))|dy

+ ‖(w ∗ F (uTWt )− πm(w ∗ F (uTWt )))1{∂xuTWt ≥δ}‖∞

≤ ‖uTWt − πm(uTWt )‖∞ + ‖F ′ûx‖∞
1
m

+ |a2 − F ((uTWt (Lm))|+ |a1 − F (uTWt (−Lm))|

+ ‖(w ∗ F (uTWt )− πm(w ∗ F (uTWt )))1{∂xuTWt ≥δ}‖∞
m→∞−−−−→ 0.

The convergence is uniform in t ≤ T in both cases.
Using this one can show that

sup
t≤T
‖(α(t)− αm(t))1{∂xuTWt ≥δ}‖∞ + sup

t≤T
‖(β(t)− βm(t))1{∂xuTWt ≥δ}‖∞

+ sup
t≤T
‖(γ(t)− γm(t))1{∂xuTWt ≥δ}‖∞

m→∞−−−−→ 0.

It follows that for u : [0, T ]→ S with supt≤T ‖ut − û‖ <∞,

sup
t≤T
‖σ(t, ut)− σm(t, ut1(−Lm,Lm))‖2

≤ 5
N

(
sup
t≤T
‖(α(t)− αm(t))1{∂xuTWt ≥δ}‖

2
∞|{ûx ≥ δ}|

+ sup
t≤T
‖(β(t)− βm(t))1{∂xuTWt ≥δ}‖

2
∞ sup
t≤T
‖ut‖2

+ sup
t≤T
‖(γ(t)− γm(t))1{∂xuTWt ≥δ}‖

2
∞ sup
t≤T
‖w ∗ (F ′(uTWt )(ut − uTWt ))‖2

+ 1
2cδ′min[0,1] F ′

(
sup
t≤T

∥∥∥(w ∗ (F ′(uTWt )(ut − uTWt ))− πm(w ∗ (F ′(uTWt )(ut − uTWt )))
)∥∥∥2

+ sup
t≤T

∥∥∥πm(w ∗ (F ′(uTWt )(ut − uTWt )))− πm(w ∗ (πm(F ′(uTWt ))(ut − πm(uTWt ))))
∥∥∥2
))

.

We have already shown that all but the last two summands converge to 0 as m → ∞. We
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can show as in the proof of Theorem 6.5.3 that∥∥∥w ∗ (F ′(uTWt )(ut − uTWt ))− πm(w ∗ (F ′(uTWt )(ut − uTWt )))
∥∥∥2

≤ 1
m2 ‖wx‖

2
1‖F ′‖2∞‖u− uTWt ‖2 +

(∫ −Lm
−∞

+
∫ ∞
Lm

)
(w ∗ (F ′(uTWt )(ut − uTWt ))2(x)dx,

and using (6.18) we obtain that

‖πm(w ∗ (F ′(uTWt )(ut − uTWt )))− πm(w ∗ (πm(F ′(uTWt ))(ut − πm(uTWt ))))‖2

≤ 3
(∑

k

1
m

(∑
l

∫ l+1
m

l
m

w( km − y)
(
F ′(uTWt (y))− F ′(uTWt ( l

m ))
)

(ut(y)− uTWt (y))dy
)2

+
∑
k

1
m

(∑
l

∫ l+1
m

l
m

w( km − y)F ′(uTWt ( l
m ))(uTWt (y)− πm(uTWt )(y))dy

)2

+
∑
k

1
m

((∫ −Lm
−∞

+
∫ ∞
Lm

)
w( km − y)F ′(uTWt (y))(ut(y)− uTWt (y))dy

)2)
≤ 3
(

1
m2 (1 + 1

m
‖wx‖1)‖F ′′ûx‖2∞‖ut − uTWt ‖2

+ (1 + 1
m
‖wx‖1)‖F ′‖2∞‖uTWt − πm(uTWt )‖2L2((−Lm,Lm))

+ ‖F ′‖2∞(1 + 1
m
‖wx‖1)

(∫ −Lm
−∞

+
∫ ∞
Lm

)
(ut − uTWt )2(y)dy

)
.

Now supt≤T ‖uTWt − πm(uTWt )‖2L2((−Lm,Lm))
m→∞−−−−→ 0 by (6.20). The sequence of functions

fm(t) =
(∫ −Lm
−∞

+
∫ ∞
Lm

)
(ut − uTWt )2(y) + (w ∗ (F ′(uTWt )(ut − uTWt ))2(y) dy

is decreasing in m and converges pointwise to 0 since ut−uTWt and w∗(F ′(uTWt )(ut−uTWt ))
are in L2(R). The convergence is uniform by Dini’s Theorem. It follows that

sup
t≤T
‖σ(t, ut)− σm(t, ut1(−Lm,Lm))‖2

m→∞−−−−→ 0.
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