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Abstract
Weperformhydrodynamic simulations using themethod ofmulti-particle collision dynamics and a
theoretical analysis to study a single squirmermicroswimmer at high Péclet number, whichmoves in a
lowReynolds number fluid and under gravity. The relevant parameters are the ratioα of swimming to
bulk sedimentation velocity and the squirmer typeβ. The combination of self-propulsion,
gravitational force, hydrodynamic interactions with thewall, and thermal noise leads to a surprisingly
diverse behavior. At a > 1we observe cruising states, while for a < 1 the squirmer resides close to
the bottomwall with themotional state determined by stablefixed points in height and orientation.
They strongly depend on the squirmer typeβ.While neutral squirmers permanently float above the
wall with upright orientation, pullersfloat forα larger than a threshold value ath and are pinned to the
wall below ath. In contrast, pushers slide along thewall at lower heights, fromwhich thermal
orientationalfluctuations drive them into a recurrent floating state with upright orientation, where
they remain on the timescale of orientational persistence.

1. Introduction

The fact that active particles are inherently in non-equilibriumhas stimulated experimental [1–4], theoretical
[5, 6] and numerical [7–10] research in the last decade. This is also true forfluid systems at lowReynolds
number, where swimmers on themicron scale are considered, i.e. biological organisms [11, 12] and synthetic
particles [13, 14] aswell as continuummodels thereof [15]. A decisive factor for suchmicroswimmers are
hydrodynamic interactionswith surfaces andwith each other [16–27].

The behavior of active particle systems is intriguing and often counter-intuitive. This is especially truewhen
considering collective dynamics. For example, one can findmotility-induced phase separationwith purely
repulsive particle–particle interactions at lowdensities where passive particles would not phase-separate [13,
28–32]. In bacterial systems the formation of biofilms [33] has deservedly attractedmuch attention.However,
even the trajectory of a single active agent in a solvent can be very interesting. E.coli bacteria swim in circles close
to boundaries [34] and the sperm cellʼs navigation underflowhas intrigued researchers for over 50 years [35, 36].
Recently, the swinging and tumbling trajectories of single active particles in Poiseuilleflowhave been classified
[37, 38] and swinging has been observed for the African typanosome, a parasite causing the sleeping
sickness [39].

An ongoing field of study is the question how the addition of external forces influences the force-free
propulsion of active particles. An example are self-propelled particles or particle chains with additionalmagnetic
moments that alter the effective diffusion constant [40] or give rise to new interesting features such as
bifurcations and instabilities of linearmolecules or ringsmade ofmicroswimmers [23, 41]. A very natural
influence to consider is gravity. Breaking translational symmetry along one spatial direction leads to bound
swimmer states, polar order, and fluid pumps [42–45]. Furthermore, appealing pattern formation of bacteria
occur, known as bioconvection [46]. Novel phenomena have been discovered such as gravitaxis of asymmetric
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swimmers [47], inverted sedimentation profiles of bottom-heavy swimmers [48], the formation of thin
phytoplankton layers in the coastal ocean [49], and rafts of active emulsion droplets, which potentially occur due
to phoretic interactions [50].

Spherical squirmersmimic ciliated organisms like theVolvox algae or are used asmodel swimmers to
explore the consequences of their self-generated flowfields [51, 52].

Recently, states of squirmers close to a boundingwall have been presented [24, 25]. In [24] also a short-range
repulsion from thewall was included, which lead to oscillatory variations of the height above thewall with a
mean distance close to one particle radius. It was also demonstrated that far-field hydrodynamics cannot fully
explain the observed phenomenology.

In this article we report on full hydrodynamic simulations of a single squirmer under gravity close to
boundingwalls and supplement it by a theoretical analysis. In particular, we concentrate on the case where the
squirmer speed is comparable to the bulk sedimentation velocity.Wefind that this setting suffices to create very
diverse and unforeseen novel dynamics on distances several squirmer radii away from a bottomwall. To guide
the reader, wefirst introduce themain phenomenology observed in our simulations.

1.1. Phenomenology
Wewill use themethod ofmulti-particle collision dynamics (MPCD) to simulate a single spherical squirmer
moving under gravity in a quiescent fluid bounded by a top and bottomwall.Wewill demonstrate that already
such a simple setting shows differentmotional states.We shortly summarize themhere. The squirmer propels
itself with a velocity v0 due to a tangential surface velocity field, which is controlled by the squirmer-type
parameterβ and thereby allows us to distinguish between pullers (b > 0), neutral squirmers (b = 0), and
pushers (b < 0).

In the following, the ratio

a = ( )v v 1g0

of the swimming velocity v0 and the bulk sedimentation velocity vgwill be the relevant parameter, while all
squirmersmove persistently with a large Péclet number.

A neutral squirmerwith a > 1, where self-propulsion dominates, continuously cruises between the top and
bottomwall (see figure 1(b) and videoM1 in the supplementalmaterial available online at stacks.iop.org/NJP/
20/025003/mmedia). Each time it reaches awall, its orientation is reversed so that itmoves persistently to the
otherwall.

However, wewillmainly concentrate on the case a < 1, in particular, where gravity and activity are
comparable to each other. Then the squirmer resides close to the bottomwall but itsmotional state dramatically
depends on the squirmer typeβ, as we illustrate for a = 0.67 infigure 1. The neutral squirmer and aweak puller
(b = 2) show stablefloating in afinite distance above the bottomwall, where themaximal reachable height is
larger for the neutral squirmer (see also videoM2 in the supplementalmaterial). The strong puller (b = 5),
however, is in a wall-pinned state and hardly escapes thewall at all. Finally, the behavior of a strong pusher
(b = -5) is strikingly different. It recurrently switches betweenfloating at heights larger than a neutral squirmer
and sliding along thewall at lower heights (see also videoM3 in the supplementalmaterial). Particularly the fact
that long-lived states can occur several radii away from thewall (see figure 1) strikes us as amost interesting
feature.While hovering states have been reported in connectionwith catalytically active particles [26], squirmers

Figure 1. (a)Distribution ( )p z of heights z duringmotion of a squirmer for a = =v v 0.67g0 for different squirmer typesβ
illustrating stable floating (b = 0, 2), wall pinning (b = 5), and the bimodal state of recurrent floating and sliding (b = -5). (b)
Corresponding trajectories ( )z t . The green line illustrates a cruising state for a = 1.5 and b = 0.
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nearwalls either show, for example, the alreadymentioned oscillatory near-wall dynamics or escape thewall
altogether [24, 25]. In this article wewill analyze and explain in detail all themotional states illustrated infigure 1
and videosM1–M3 in order to obtain a full understanding of themotional states of a squirmer under gravity and
close to a bounding bottomwall. This will serve as a reference case for future studies.

The article is organized as follows. In section 2we outline the squirmermodel and the simulation technique
ofMPCD. In section 3 the theory of a squirmer under gravity and its hydrodynamic interactions with awall are
discussed andfirst conclusions for the observed squirmer orientations are drawn.We continuewith section 4,
wherewefirst present our simulation results and then discuss them further in the light of theory.We conclude in
section 5.

2. Squirmermodel and simulationmethod

The spherical squirmer is a versatilemodel system for active swimmers, such as various bacteria and artificial
microswimmers like Janus particles [51]. Itsmotion is induced by a tangentialflowfield on the squirmer surface
[52, 53],

b= + -( ) ( ˆ · ˆ )[(ˆ · ˆ ) ˆ ˆ] ( )Bv r e r e r r e1 . 2s s s s s1

Here, ê is the squirmer orientation and =ˆ ∣ ∣r r rs s s , where rs is a spatial vector pointing from the center to the
squirmer surface. In the following, we only take into account the first twomodes of the Fourier expansion used
in [51, 52] for the surface flowfield, ( )v rs s ,B1 andB2. The squirmerʼs swimming velocity is determined by

=v B2 30 1 and the parameter b = B B2 1 characterizes the squirmer type, as introduced above. Far from the
squirmer surface the twofirstmodes create the velocity fields of a source dipole (~ -r 3) and force dipole (~ -r 2),
respectively [54].

Our simulations should account for the full hydrodynamics at lowReynolds numbers. Thus, we use the
mesoscale particle-basedmethod ofMPCD [55, 56] to solve the Stokes equations. The details of our
implementation ofMPCD follows our previous works in [19, 21].We only give a few details here. Thefluid is
modeled by approximately ´5 105 point particles ofmassm0, the positions and velocities of which are updated
in two consecutive steps. In the streaming step eachfluid particlemoves with its velocity during timeDt . Thus,
fluidmomentumflows in the simulation box but is also transferred to the squirmer, when the fluid particles
collidewith it. In the collision stepfluid particles are sorted into cubic cells of side length a0. Then, the velocities
of the fluid particles aremodified by a collision operator, for whichwe use theMPC-AT+a rule [56]. It conserves
totalmomentum and angularmomentumof the fluid particles in each cell and sets up a thermostat at
temperatureT0. Importantly,momentum conservation is necessary for recovering theNavier–Stokes equations
on the length scale of themean free path of afluid particle [56–58]. Additionally, themethod includes thermal
noise. Note that the collision cells need to be shifted for each new collision step to restoreGalilean invariance
[59]. At surfaces the so-called bounce-back rule is applied to the fluid particles, which implements the no-slip
boundary condition at boundingwalls and the flowfield of equation (2) at the squirmer surface [60]. Squirmer
dynamics is resolved during the streaming step by 20molecular dynamics steps, wherewe also include the
gravitational force.

Hydrodynamic flowfields and near- and far-field interactions of squirmers arewell reproduced by the
MPCDmethod [19, 61, 62].We set the squirmer radius to =R a4 0 and the leading surface velocitymode to

=B 0.11 (inMPCDvelocity units k T mB 0 0 ). Sincewe choose for the duration of the streaming step

D =t a m k T0.02 B0 0 0 , we have for the fluid viscosity h = m k T a16.05 B0 0 0
2 [58, 60]. The translational and

rotational thermal diffusivities in bulkfluid then become ph= » ´ -( )D k T R a k T m6 8 10T B B
4

0 0 0 and

ph= » ´ -( )D k T R k T m a8 4 10R B B
3 5

0 0 0
2, respectively.With =v B2 30 1 this yields the active Péclet

number = =Rv DPe 330T0 and the persistence number = =( )v RDPe 420r R0 . The simulation box has an
edge length of R20 in x-, y- and z-direction.While it is bounded by a top and bottomno-slipwall, we use
periodic boundary conditions in the horizontal plane.

3. Theory

Inwall proximity a squirmer experiences three deterministic contributions to its vertical velocity (see figure 2).
First, it self-propels with velocity Jv cos0 , where v0 is the swimming velocity along the orientation vector e andϑ
the angle against the normal. Second, it sediments with a height-dependent velocity v1 since the friction
coefficient depends on the height z above thewall, which represents the hydrodynamic interaction of a passive
particle with thewall. Third, its self-generated flowfield also hydrodynamically interacts with thewall and
thereby induces a linear (v2) and angular (W2) velocity.

3
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We therefore write for the total vertical velocity and total angular velocity,

J= - + W = W ( )v v v vcos and . 30 1 2 2

For a passive particle all but the term v1 would vanish. Stochasticmotion due to translational and rotational
diffusion are not considered here. For the deterministic system

J J= W
⎛
⎝⎜

⎞
⎠⎟ ( )˙

˙ ≕ ( ) ( )
z v

f z, , 4

where the equilibrium states at * *J( )z , (fixed points) follow from * *J =( )f z , 0, one can then identify the
stable states by performing a stability analysis and demanding the eigenvalues of the Jacobian * *J( )Df z , to be
negative. This procedure should, in principle, identify themotional states introduced infigure 1.However, we
can only perform this stability analysis in the far-field approximation explicitly. This does not identify all the
observedmotional states as wewill discuss below.

In the following, we explain the different contributions v1, v2, and W2 inmore detail in sections 3.1 and 3.2.
Then, wefirst comment on stable squirmer orientations inwall proximity using far-field and lubrication
expressions in section 3.3. Thereby, wewill obtain a first understanding of themotional states presented in
figure 1.We complete the far-field analysis of the dynamical system in section 4.2, wherewe address stable
squirmer heights.

3.1.Height-dependent sedimentation velocity
The squirmer experiences a gravitational force = - ˆmgF z, where in a real experiment r r= -( )g g 10 f p

depends on themismatch offluid and particle densities rf,p and g0 is the gravitational acceleration. Tuning g by
tuning the solvent density rf , has been applied in [50] to active emulsion droplets.

The height-dependent sedimentation velocity

g
=( )

( )
( )v z

mg

z
51

is determined by a height-dependent friction coefficient, which takes the boundingwalls into account. For one
wall its inverse can bewritten as an expansion up to third order inR/z [63, 64]:

g g» - +-
¥
- ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )z

R

z

R

z
1

9

8

1

2
. 61w

1 1
3

Here g ph=¥ R6 is the Stokes friction coefficient of a particle with radiusR in a bulkfluidwith shear viscosity η.
Note that close to awall friction becomes anisotropic and in equation (6) only the component perpendicular to
thewall is considered.

The friction coefficient in equation (6) is only valid for a single wall. Tomodel our simulation results, we use
a simple approximation for the two-wall coefficient:

g g g= + - -- - -( ) ( ) ( )z h z 1, 72w
1

1w
1

1w
1

where thefirst and second termon the left-hand side refer to the single-wall friction coefficients oft the bottom
and topwall, respectively, and h is the box height. Obviously there is an error connectedwith this procedure,
calculated in [65–67] to be 15%–18%.

The height-dependent friction coefficient is already sufficient to understand the stablefloating of a squirmer
close to the bottomwall in the lower half of the simulation box. Suppose the upward swimming squirmer floats
at a certain heightwhere swimming velocity v0 and sedimentation velocity cancel. If (thermal)fluctuations drive
it to larger heights, the friction coefficient decreases. As a result the sedimentation velocity increases and drives

Figure 2.Apassive particle sediments with a velocity v1 including the height-dependent friction coefficient. An active particle, in
addition,moveswith the swimming velocity Jv cos0 along the vertical. Its self-generated flow field interacts with thewall and induces
a deterministic linear (v2) and angular (W2) velocity.
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the squirmer back to the initial height. Similarly,fluctuations to smaller heights decrease the sedimentation
velocity and the squirmermoves upwards. However, the flowfield generated by the squirmer during its
swimmingmotion also hydrodynamically interacts with the bottomwall, so that the behavior depends on
squirmer typeβ.

3.2.Hydrodynamic interactions of squirmerflowfieldwith awall
In the followingwe only consider hydrodynamic squirmer-wall interactions due to the self-propulsion flowfield
of the squirmer. The effect of the gravitational force was treated in the previous section.

3.2.1. Far field
The velocity far field of the squirmer consist of a force dipole with strength p and a source dipole with strength
>s 0:

= - - - -( ) [ ( · ˆ) ] ˆ [ ( · ˆ) ˆ] ( )p

r

s

r
v r e r r e e r r1 3 3 , 8

2
2

3

where = -∣ ∣r r r0 , = -ˆ ( ) rr r r0 , and r0 is the position and e the orientation of the squirmer. The strengths p
and s are connected to the squirmer velocity v0 and typeβ [54, 60]:

b= - = ( )p v R s v R
3

4
and

1

2
. 90

2
0

3

Note that while >s 0, the force dipole varies in the range Î -¥ ¥( )p , .
Thewall-reflexionfields for both dipoles in the far-field approximation are known. Therefore, thewall-

induced linear (v2) and angular (W2) velocities of the squirmer can be calculated fromFaxénʼs theorem [16, 54].
Using equation (9), they arewritten as

b J J= - -⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥( ) ( )v

v R

z

R

z2

9

16
1 3 cos cos , 102

0
2

2

J b JW = - +⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥ ( )v

R

R

z

R

z

3

16
sin

3

2
cos . 112

0
3

Note that we defined W2 such that J = Wtd d 2. Figure 3 plots W2 versus orientation angleϑ for differentβ at
=z R2 . For increasing z the stablefixed points in themiddle (W = 02 )move closer to p 2 and the overall

strength of W2 decreases.

3.2.2. Near field in lubrication approximation
In our simulations, squirmers also encounter the top or bottomwall, where far-field hydrodynamics does not
apply. Therefore, we need to take into account results from lubrication theory, which gives for thewall-induced
angular velocity [20, 24, 53],

J b J eW = - +( ) ( ( )) ( )v

R

3

2
sin cos 1 1 log , 122

0

where e = -( )z R R is the smallness parameter giving the reduced distance of the squirmer surface from a
wall. Figure 4 plots W2 of equation (12) versusϑ for different squirmer typesβ.

Successful analyticalmethods tackling lubrication forces of self-propelled particles have been described
quite recently [68, 69]. Here, we do not attempt to calculate the vertical velocity in the near field. The authors of
[24] showed that its leading order depends on longer-range interactions between squirmer andwall and are
hence outside the scope of the lubrication approximation.

Table 1. Stable orientation angle *J for different squirmer types
from lubrication theory and in far-field approximation.

*J Lubrication Farfield

Pusher 0
b

⎡⎣ ⎤⎦∣ ∣
acos R

z

2

3
if b >∣ ∣ R

z

2

3

π if b < -1 0 otherwise

Neutral 0 0

Puller 0 if b < 1 0

b-acos 1 if b > 1 π if b > R

z

2

3
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3.3. Stable squirmer orientations
Wenow calculate the stable squirmer orientations in far-field approximation and in the lubrication regime at
thewall by setting *JW =( ) 02 in equations (11) and (12). In addition, the stability condition *J¶W ¶ <J∣ 02

has to be fullfilled. From equations (11) and (12)we obtain the respective derivatives as:

J
b J J J

¶W
¶

µ - - + <( ) ( )R

z

3

2
cos sin cos 0, 13

far
2 2

J
J b J J

¶W
¶

µ - + - <( ) ( )cos cos sin 0. 14
near

2 2

The stable orientation angles are indicated infigures 3 and 4 and summarized in table 1.
We shortly discuss the stable orientations and give afirst understanding of the squirmer states close to awall

as illustrated infigure 1. A thorough understanding of the squirmer dynamics is provided in section 4. The
neutral squirmer always points away from thewall ( *J = 0) bothwhen it is very close to thewall and in the far-
field regime. This explains the cruisingmotion for large swimming velocity, a > 1, introduced infigure 1(b).
Whenever the squirmer comes close to thewall, it reorients quickly due to hydrodynamic interactions with the
wall and leaves. A stable upward orientation near the bottomwall is also a necessary condition for the
permanently floating squirmer introduced infigure 1 for a < 1. This also applies to the puller, which in the far-
field can also point towards thewall, as it is well-known. Very close to thewall, where lubrication applies, a weak
puller (b < 1) is upright and a stronger one tilted against thewall normal. Finally, the pusher under lubrication
points upward or, if it is sufficiently strong, also towards thewall, where it is then pinned to thewall. In the far
field it tends towards thewell-knownparallel orientation ( *J p 2 for  ¥z ). Thus, when leaving thewall,
the pusher has to tilt away from the normal and then slides along thewall. This gives afirst understanding of the
sliding state, illustrated infigure 1.Of course, one also has to show the existence of a stable sliding height, which
wewill do in section 4.2. The recurrent floating state of the pusher has an upward orientation, which is not
stable. Thus, it can only be a transient state.

In [24] the authors also provide amatched expansion, where they extrapolate between the lubrication and
the far-field regime. In particular, this approach describes how the stable orientation of a pusher tilts from
*J = 0 towards p 2 when swimming away from thewall.

Figure 4.Wall-induced angular velocity of a squirmer from lubrication theory, W2 of equation (12), versusϑ for differentβ. Stable
fixed points (W = 02 and negative slope) are indicated by black dots.

Figure 3.Wall-induced angular velocity of a squirmer in far-field approximations, W2 of equation (11), versusϑ for differentβ at
=z R2 . Stablefixed points (W = 02 and negative slope) are indicated by black dots.
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4.Discussion of squirmer states

4.1. Simulation results
We simulated single squirmers under gravity varying both the squirmer parameterβ and the velocity ratio
a = v vg0 of the swimming and the bulk sedimentation velocity. In section 1.1we already explained that
cruising trajectories between the bottom and topwall occur for a > 1due to the persistentmotion at high Péclet
numbers. If a  1, gravity dominates and the squirmer simply sinks to the bottomwall. For intermediate
values, a< <0.2 1, and depending onβ, wefind constantfloating, recurrent floating andwall sliding, as well
as wall-pinned states, whichwe already introduced shortly in section 1.1. In the followingwe describe these
states inmore detail. Infigures 5(a) and (b)we show an overview of our numerical results by plotting themean
stable orientation Já ñcos stab and the observed (multi)stable heights zstab versusα for differentβ 1. These
quantities are characteristic for the different squirmer states.

4.1.1. Constant floating above the wall
Neutral squirmersfloat at afinite height above thewall for intermediateα. This is nicely illustrated infigure 6(a),
wherewe plot the height distribution for differentα. Thefloating height continuously shifts away from the
bottomwall with increasingα.We plot itsmaximumvalue infigure 5(b).

In addition, the heightfluctuations increase withα indicated by the growingwidth of the height
distributions. As explained in section 3.3, the neutral squirmer assumes an upward orientation, which is also
visible infigure 5(a). However, thermal fluctuations tilt the squirmer and, as a result, it sinks down. This
generates the height distributions. They become broader with increasingα, since at largerfloating heights the
restoring torque on the squirmer orientation is smaller. Nevertheless, the orientational stabilizationmeans that
after a downward excursion the swimmer regains itsfloating height rather quickly.

Figure 5. From simulations:mean stable orientation Já ñcos stab (a) and stable height zstab (b)plotted versus a = v vg0 for differentβ.
Depending on the observedmotional state, we plot in (b)floating, sliding, andwall-pinned heights. (c) From theory:floating height
zfloat versusα, determined in far-field approximation for *J = 0. Solid line: *J = 0 is stable upward orientation; dashed line:
*J = 0 is an unstable, equilibriumorientation orfixed point (W = 02 ). Note the colors in (a)–(c) refer to the same squirmer type as

indicated in (a).

Figure 6.Distribution of squirmer heights ( )p z for differentα for (a)floating neutral squirmers and (b) pullers with b = 2.

1
While we plot themaximumvalue of the floating height, the corresponding heights of the sliding andwall-pinned state are shown as an

average over time restricted to the respective state.
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Figure 6(b) shows that pullers alsofloat, however, only ifα exceeds a certain threshold value ath. The
maximumfloating height plotted infigure 5(b) for b = 2 and b = 3 illustrates the threshold value, which
increases with the squirmer parameterβ. As a consequence, we do not observe anyfloating for the strong puller
with b = 5. It is pinned to thewall with a tilted orientation (see figure 5(a), Já ñ <cos 1stab ). Thus, the threshold
value ath separates wall-pinned states from floating states.

4.1.2. Recurrent floating and sliding
The pusherʼs behavior is rather different. From the height distribution infigure 1(a)we clearly see that its
dynamical state is bistable. Sometimes it resides at thewall and sometimes above thewall. Itfloats recurrently.
Duringfloating phases the pusherfloats at systematically larger heights than the neutral squirmer, as
demonstrated infigure 5(b), in particular, for b = -5. However, while the height of neutral squirmers and
pullers during floating is recovered after a disturbance in the upward orientation, strong pushers sink down
towards thewall and assume their sliding state.

We already know from section 3.3 that the upward orientation of a pusher during floating is not stable, while
we argued that the tilted orientation at smaller heights should be stable (see also Já ñ <cos 1stab for b = -5 in
figure 5(a)). Occasionally, fluctuations in the orientation vector towards J =cos 0 (see figure 5(a)) let the
squirmer rise to itsfloating height since reorientation either by thermal fluctuations or angular drift proceeds
slowly. As can be seen infigure 5(b), strong pushers (b = -5) do not show recurrentfloating for a 0.6 and
pushers with b = -2 do not assume the sliding state.We discuss this further in section 4.2.

3.Wall-pinned states
Both pushers and pullers also assume a state, where they are pinned to thewall and do notmanage to leave it
during thewhole simulation time. For the puller this state occurs for a a< th and the orientation is roughly
vertical with J< á ñ <0.6 cos 1stab depending onβ (see figure 5(a)). Note that the observed angles of pullers in
the simulations (see alsofigure 7) do not quantitatively recover the stable orientations of lubrication theory in
table 1, whichwould give Já ñ =cos 1

3
and 1

5
for b = 3 and 5, respectively. Possible reasons for the deviation are

that the squirmer does not always sit exactly at thewall due to thermalflucutations and that we cannot expect
MPCD to quantitatively resolve the lubrication result at thewall.

The pushers, however, occupy a separate state, where they point towards thewall (see Já ñ » -cos 1stab in
figure 5(a)), which is in agreementwith the stable near-field orientation in table 1. It is not impossible that a
transition between the recurrent floating state and thewall-pinned state occurs eventually, althoughwe never
observed it within the simulation time.

4.2. Stablefloating and sliding heights
It remains to analyze the vertical squirmer velocity of equation (10) in order to determine the floating heights.
Neutral squirmers and pullersfloat with upward stable orientation. Thuswe set *J = 0 in equation (10) and
plot vsq versus z for different squirmer typesβ infigure 8 for a = 0.67 (a) and a = 0.75 (b). A stablefloating
height zfloat is determined by =v 0sq and <v zd d 0sq . Such heights always exist for the neutral squirmer. The
corresponding curve infigure 5(c) shows that zfloat continuously increases withα as observed in the simulations
(see figure 5(b)).

For the pullers the behavior is different. This can be nicely illustrated for b = 2 infigure 8. For a = 0.67 (a),
the squirmer velocity is always negative and the puller sinks down to thewall. However, increasingα to 0.75 (b),

Figure 7.Distribution J( )p cos of orientation Jcos duringmotion of a squirmer for a = 0.67 and different squirmer typesβ for
recurrent floating and sliding (b = -5) and in thewall pinned state (b = 3, 5).
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a stablefloating height develops, which explains the existence of a threshold value ath abovewhich the puller
starts tofloat. The resultingfloating heights for b = 2 and 3 are drawn infigure 5(c). One realizes that ath

increases withβ as observed in the simulations.
We already stated that the pusher does not have a stable upward orientation besides when it is at thewall,

where it usually points upwards. As already discussed, the pusher assumes the sliding state with a stable tilted
orientation, which keeps it from swimming too high. Instead, due to strong orientational fluctuations (see left
peak in the orientational distribution function for b = -5 in figure 7), it performs a strong irregular up-and-
downmovement close to thewall (see videoM3 andfigure 9).Weak pushers reach larger sliding heights
compared to strong pushers (see sliding heights infigure 9) since their sliding angles tend towards the stable
upward orientation of the neutral squirmer and is thus smaller.

Finally, when orientational fluctuations in the sliding state drive the pusher towards an upward orientation,
it willmove upwards as the positive vertical velocity vsq for small z shows infigure 8.Ultimately, it reaches its
floating height at =v 0sq . Due to the large directional persistence of the squirmer in our simulations, it keeps
floating for a considerable amount of time until orientational fluctuations strongly tilt the pusherʼs orientation.
As a results, it sinks down, enters the sliding state, and the cycle begins again. Infigure 5(c)weplot thefloating
heights of the recurrent floating state. They nicely compare to the simulation results infigure 5(b). In particular,
the recurrentfloating height is larger for stronger pushers. Note that the pusherʼs recurrent floating state
corresponds to a saddle point in the dynamical systemof equation (4) since the upright orientation is only an
unstable fixed point.

Infigure 5(b)we observe that at smallα the strong pusher (b = -5) does not assume the recurrentfloating
state. Due to the stronger gravity, the squirmer is closer to thewall and thus reorientation towards the vertical is
hindered by a larger restoring torque in the sliding state. For weak pushers (b = -2 infigure 9) the difference in
recurrentfloating and sliding heights becomes smaller and tends to zero for the neutral squirmer. Thuswe did
not attempt to determine and plot sliding heights infigure 5(b).

Figure 8.Vertical squirmer velocity vsq versus height z for a = 0.67 (a) and a = 0.75 (b). The far-field approximation of
equation (10) is used for vertical orientation *J = 0 and different squirmer parameters β.

Figure 9.Height variations ( )z t for pushers with b = -5,−4, and−2 at a = 0.75. Larger floating and smaller sliding heights are
distinguishable.
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5. Conclusion

A single squirmer under gravity is conceptually simple, yet in our studywe could classify very variable
microswimmer dynamics at high Péclet numbers. The decisive factors for the observedmotional states are
hydrodynamic interactionswith the no-slip surface, gravity, and thermal noise, which are usually present in
experimental systems. Since in experiments one can vary densitymismatch between fluid and a non-neutrally
buoyant particle, as well as temperature, particle radius, and also active velocity, we expect awide range of values
for the ratioα of the swimming and bulk-sedimentation velocity to be experimentally accessible. Our study thus
provides an interesting example for the non-equilibriumdynamics of amicroswimmer, in particular in the
regimewhere sedimentation velocity and active velocity become similar.

At a > 1we observe a cruising state, where the neutral squirmer and puller swimbetween the upper and
lower boundingwall due to their large persistencewhile pushers stay at thewalls. In contrast, at a < 1 several
motional states occur depending on squirmer typeβ and reduced swimming speedα.While neutral squirmers
constantlyfloat above thewall with upright orientation, pullers float forα larger than a threshold value ath and
are pinned to thewall below ath. The threshold value increases withβ. In contrast, pushers show recurrent
floatingwith upright orientation due to their strong orientational persistence, while they also slide along thewall
at lower heights, which is the stable state. Forweak pushers it is difficult to distinguish between both states since
for b  0 they both tend towards thefloating state of the neutral squirmer. At smallα strong pushers do not
show recurrent floating due to the strongwall-induced restoring torques, which keeps them in the stable sliding
state. Finally, pushers are also able to exhibit a wall-pinned state with downward orientation.We summarize our
findings about themotional states in a schematic diagramα versusβ infigure 10.

To arrive at the full understanding of the phenomenology of ourMPCD simulations, we performed a
theoretical anaysis of the total vertical squirmer velocity and its rotational velocity. Both are strongly determined
bywall-induced linear and angular velocities due to the hydrodynamic interactions of the squirmer flowfields
with thewall and thus depend on the squirmer typeβ. Thefloating and sliding states correspond to stable fixed
points in the height and orientation of the squirmer, while the upward orientation in the recurrent floating state
is only transient and occurs due to the strong persistent swimming.

We plan to advance this research by including an external torque acting on the swimmers, e.g., due to their
bottom-heaviness. Such a systemhas been studied in [48]without any hydrodynamics. Interestingly, for large
swimming speeds and strong bottom-heaviness inverted sedimentation profiles occur.Wewill also drastically
increase the particle number, similar to [70], wherewe expect these inverted profiles to become unstable due to
hydrodynamic interactions between the squirmers.

Another interesting research direction are catalytically poweredmicroswimmers [71–73]. Their phoretic
fields also interact with boundingwalls. This changes the surface flowfields on themicroswimmers and thereby
their translational and rotational velocities. This setup has already attractedmuch attention [14, 26, 27, 74–76].
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Figure 10. Schematic representation of themotional states of a squirmer depending on the position in parameter spaceα versusβ.
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