
Growth Simulations of
InAs/GaAs Quantum-Dots

vorgelegt von

Diplom-Physiker

Thomas Hammerschmidt

der Fakultät II-Mathematik und Naturwissenschaften

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

DOCTOR RERUM NATURALIUM

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Mario Dähne

Berichter: Prof. Dr. Eckehard Schöll
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Abstract

Semiconductor nanostructures, and particularly quantum dots (QDs), have promising poten-
tial for technical applications such as light-emitting diodes, lasers, new devices, and quantum
computers. But the big number of QDs needed, less than billions are hardly useful, is far
beyond the means of normal manufacturing methods. For this nanotechnology to prevail, the
QDs have to build themselves by self-assembly and self-organization. In this work, we study
the growth of InAs QDs on GaAs substrates.
For this purpose we developed a many-body potential of the Abell-Tersoff type that is able
to account for the energetic balance of strain relief and QD side-facet formation during QD
growth. It simultaneously captures many microscopic quantities of In, Ga, As, GaAs, and
InAs bulk phases, as well as GaAs and InAs surface structures as obtained from experiment
and density-functional theory (DFT) calculations with good overall accuracy. Its predictions
for biaxial strained GaAs and InAs are in good agreement with DFT calculations and analytic
results of continuum-elasticity theory.
Based on recent STM results, we set up detailed atomic structures of InAs QDs with In-
As wetting layers and homogenous InAs films on GaAs, relax them with our potential, and
compare the resulting total energies. We show that the lateral elastic interaction of ‘hut’-like
QDs dominated by {317} facets is significantly larger than that of ‘dome’-like QDs domina-
ted by {101} facets. A strain-tensor analysis suggests that this effect is due to the relative
orientations of the QD side facets to the elastic principal axes. Our calculated onset of the
Stranski-Krastanov growth mode with respect to the InAs coverage is in good agreement
with experimentally deduced values. The critical nucleus for QD formation is approximately
70 In atoms in size and poses an energy barrier of 5.3 eV. Furthermore, we can explain the
experimentally observed shape sequence of ‘hut’-like QDs and ‘dome’-like QDs through the
finding of distinct stability regimes. The regime separation depends strongly on the chemical
potentials and the QD density. The experimental finding of vertical growth correlation in QD
stacks can be explained by a distinct minimum in the potential-energy-surface (PES) of free-
standing QDs in different lateral positions above overgrown QDs. This effect vanishes with
increasing distance between the stacked QDs. The energy gain observed in our calculations
can lower the energy barrier for QD formation to 3.5 eV and the size of the critical nucleus
to only 25 In atoms.
Additionally, we calculated the PES for In adsorption on surfaces that correspond to major
side facets of ‘hut’- and ‘dome’-like QDs by means of DFT to study possible kinetic effects.
The dominating diffusion paths are perpendicular and parallel to the QD contour lines on
{317} facets, but only perpendicular on {101} facets. The In incorporation on {317} facets
could be kinetically limited due to the high barrier of approximately 1 eV for breaking As
dimers. The diffusion barriers on {101} facets are lowered near the bottom of ‘dome’-like
QDs, which supports the interpretation of the {317} facets on top as kinetic effect.





Zusammenfassung

Halbleiter Nanostrukturen, insbesondere Quanten-Punkte (QP), haben vielversprechendes
Potenzial für technische Anwendungen wie Leucht-Dioden, Laser, neue Bauelemente und
Quanten-Computer. Die große Zahl benötigter QP (weniger als Milliarden sind kaum nütz-
lich) übersteigt jedoch die Möglichkeiten normaler Herstellungsmethoden. Zum Durchbruch
dieser Nanotechnologie müssen sich die QP durch Selbst-Aufbau und Selbst-Organisation
selbst bilden. In dieser Arbeit untersuchen wir InAs QP Wachstum auf GaAs Substraten.
Dazu haben wir ein Viel-Körper-Potenzial vom Abell-Tersoff Typ entwickelt, welches die
Energie-Bilanz des Verspannungs-Abbaus und der Bildung von QP Flächen während des QP
Wachstums beschreiben kann. Es reproduziert mit guter Genauigkeit simultan viele, experi-
mentell und mit Dichte-Funktional-Theorie (DFT) Rechnungen bestimmte, mikroskopische
Eigenschaften von In, Ga, As, GaAs, und InAs Kristallen, sowie GaAs und InAs Oberflächen.
Die Vorhersagen für biaxial verspanntes GaAs und InAs stimmen gut mit DFT Rechnungen
und analytischen Ergebnissen aus Kontinuums-Elastizitäts-Theorie überein.
Anhand von neuen STM Resultaten konstruieren wir detaillierte atomare Strukturen von
InAs QP mit InAs Benetzungs-Filmen und homogene InAs Filme auf GaAs, relaxieren sie
mit unserem Potenzial und vergleichen die gewonnenen Gesamt-Energien. Wir zeigen, daß
die laterale elastische Wechselwirkung bei

”
hut“-artigen QP, die von {317} Flächen dominiert

werden, deutlich stärker ist als bei
”
dome“-artigen QP, die von {101} Flächen dominiert wer-

den. Eine Verspannungs-Tensor Analyse zeigt, daß dieser Effekt von der relativen Lage der
QP Flächen zu den elastischen Hauptachsen stammt. Das berechnete Einsetzen des Stranski-
Krastanov Wachstums bezüglich der InAs Bedeckung stimmt gut mit experimentellen Daten
überein. Der kritische Keim für QP Bildung ist etwa 70 In Atome groß und stellt eine Energie-
Barriere von 5.3 eV dar. Die experimentell beobachtete Abfolge von QP Formen können wir
durch das Auftreten unterschiedlicher Stabilitäts-Regime erklären. Deren Grenze hängt stark
von chemischen Potenzialen und der QP Dichte ab. Die experimentell gefundenen vertikalen
Wachstums-Korrelationen in gestapelten QP Lagen können mit einem deutlichen Minimum
in der Potenzial-Energie-Oberfläche (PEO) von freistehenden QP in verschiedenen lateralen
Positionen über vergrabenen QP erklärt werden. Bei größerem Abstand der gestapelten QP
wird dieser Effekt kleiner. Der berechnete Energie-Gewinn kann die Energie-Barriere für QP
Nukleation auf 3.5 eV und die kritische Keim-Größe auf 25 In Atome verringern.
Ferner haben wir zur Untersuchung eventueller kinetischer Effekte mit DFT Rechnungen die
PEO für In Adsorption auf Flächen, die

”
hut“- und

”
dome“-artige QP dominieren, berech-

net. Die Haupt-Diffusionspfade sind senkrecht und parallel zu den QP Höhenlinien auf {317}
Flächen, aber nur senkrecht dazu auf {101} Flächen. Der In Einbau auf {317} Flächen könnte
wegen der hohen Barriere zur Spaltung der As Dimere von etwa 1 eV kinetisch limitiert sein.
Die Diffusionsbarriere auf {101} Flächen ist am Fuß von

”
dome“-artigen QP erniedrigt und

stützt damit die Interpretation der {317} Flächen an der Spitze als kinetischen Effekt.
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Chapter 1

Introduction

We are living in an age of data storage, transport, and procession. The amounts of data are
increasing at a breathtaking speed and no limitation can yet be seen. In recent decades we
witnessed revolutionary developments that made it possible to increase the power of storage,
transport, and procession by an incredible amount. Light-emitting diodes made of semicon-
ductor materials are the backbone of transportable high-density storage media and broadband
glass-fiber cable connections. In addition, they are a possible realization of solid-state lighting
with the aim to replace light bulbs not only in traffic lights, but in fact everywhere. The in-
tegrated circuit faced enormous development to increase the efficiency of the data processing
device itself, we are already heading for devices with single-electron transistors. These tech-
nologies have reached a level of miniaturization where quantum-mechanical effects become
apparent, often referred to as nanotechnology. The first major impact of the peculiar optical
properties of nanoparticles dates back to the work of the chemist and glass manufacturer
J. Kunckel in the 17th century. He was able to realize the fabrication of ruby glass by embed-
ding small gold particles in crystal glass, an effort that brought the color red to many church
windows long before this effect was understood. The focus of present research endeavors
is more in the ultra-violet and the nanoparticles are semiconductor materials, embedded in
other semiconductor materials. In contrast to these ancient times we can now often predict
the optical properties of nanostructures but we are still facing similar problems in manufac-
turing them. We will need billions or trillions of quantum dots, the nanoparticles studied
in this work, to be useful. Because of this big number, normal manufacturing methods will
be useless and the nanostructures have to build themselves for nanotechnology to become
relevant. This possibly very complex process is called self-assembly, with some ingredients
from self-organization. The nanoparticles of this work are InAs quantum dots that form on
GaAs surfaces and we will use the help of information-age machinery to understand it.

1



2 1. Introduction

1.1 Quantum Dot Experiments

The transition from flat (2D) islands to raised (3D) islands during semiconductor heteroepi-
taxy [1] was incipiently an undesirable effect for the fabrication of semiconductor heterostruc-
tures. Further investigations, however, showed that these islands were crystalline with pho-
toluminescence lines at lower energies and very high intensity as compared to ‘island-free’
heterostructures, such as quantum wells [2]. The evidence that this self-assembly process can
in fact be utilized to create quantum dots (QDs) was first supplied for vicinal GaAs(001) [3],
and later for nominal GaAs(001) substrates[4, 5]. Shortly after that, the theoretically pre-
dicted δ-like density of states in such quantum dots was proven experimentally [6, 7], and the
first demonstration of lasing from self-assembled QDs was reported [8]. These findings led to
a change in paradigm of semiconductor technology and initiated a tremendous research effort
that is still going on. The topics range from the fabrication of new, customized optoelectronic
and single-electron devices to the realization of quantum computing and quantum cryptog-
raphy. It took no more than 10 years to develop a secure quantum-cryptography connection
over more than 100 km, based on QDs as single photon-sources [9]. With this rapid evolution,
it is no wonder that the ARDA roadmap for solid-state quantum-computing [10] considers
the development of a small-scale hybrid conventional/quantum processor possible by the year
2012. A major issue for materials science in this context is a thorough understanding of the
processes underlying the self-assembled formation of semiconductor nanostructures. In this
chapter we give a survey of previous experimental and theoretical achievements to expound
the starting point and goal of this work.

The key to semiconductor technology is the ability to engineer the electronic structure
by combining different materials to achieve the desired alignment of valence and conduction
band. A proper band arrangement can form a confinement potential that delimits the charge-
carriers to a certain region. In quantum dots, the mobility of the charge carriers is reduced
to zero dimensions by a three dimensional confinement potential. The energy spectrum of
these charge-carriers will no longer be continuous but form discrete levels if the confinement
potential is narrow enough to localize them sufficiently. It depends on the particular material
combination if the alignment of the valence and conduction band-edge acts as an effective
quantum-well or quantum-barrier. The QDs with a confinement of both electrons and holes
(e.g. InAs/GaAs) are named type-I QDs, whereas those with a confinement of either electrons
or holes (e.g. GaSb/GaAs) are called type-II QDs. Calling such islands with a sufficiently
narrow confinement potential quantum dots pays tribute to the manifestation of nanophysics
that is not just ‘down-scaling’, but rather involves the appearance of qualitatively new features
such as quantized energy-levels. The visualization of the electron wave-function in such levels
with scanning-tunneling microscopy as has only recently been achieved [11], is an expressive
demonstration of new physics at the bottom of solid-state length-scales.

The formation of such semiconductor objects with nanometer-scale dimensions perpen-
dicular to the growth direction is beyond the resolution of conventional lithography tech-
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niques used in contemporary semiconductor device technology. A promising way of realizing
electronic-structure engineering at this length scale is the self-assembly of semiconductor
nanostructures. The key to create technologically useful QDs is to find material combina-
tions with a lattice-mismatch that lead to the self-assembled formation of 3D islands, but
at the same time exhibit an alignment of valence and conduction band that confines the
charge carriers to inside the island. A guide to the identification of possible candidates is
the dependence of the band-gap energy on the lattice constant of the different semiconduc-
tor materials shown in Fig. 1.1. The best studied material combinations for QD formation

Figure 1.1: The map of band-gap energy versus lattice constant allows one to identify combi-
nations of semiconductor materials that form by self-assembly and pose a confinement potential
for the charge carriers, and are thus suitable for QDs (after Ref. [12]).

are Si/Ge and InAs/GaAs, but many others are of high interest for certain applications. A
prominent example are diodes with wide-gap semiconductors (e.g. III-N) that emit light at
short wave-lengths, a key technology e.g. for the Blu-ray Disc [13] and solid-state lighting.
In this study, we focus on InAs/GaAs QD nanostructures that are very well characterized
and exhibit a comparably large lattice-mismatch.

The research efforts of the last decades established a number of experimental techniques
for self-assembled QD growth (see e.g. Refs. [14, 15, 16, 17]), such as molecular-beam epitaxy
(MBE), metalorganic chemical vapor deposition (MOCVD), liquid-phase deposition (LPD),
and metalorganic vapor phase epitaxy (MOVPE). Good conditions for systematic investiga-
tions of QD growth are given in the case of MBE: The substrates are prepared atomically
clean in ultra-high vacuum (UHV) in contrast to MOCVD where residues of reactant gases
are unavoidable. The deposition of material can be accomplished at comparably low tem-
peratures, and the coverage is controllable down to the sub-monolayer regime. Furthermore,
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the possibility to perform in-situ RHEED measurements during MBE growth allows to follow
the growth transition from 2D films to 3D islands. The investigations performed in this work
address InAs/GaAs QD nanostructures grown by MBE.

The structure of freestanding semiconductor nanostructures can be characterized by direct
imaging techniques like scanning tunneling microscopy (STM) and atomic force microscopy
(AFM), or by transmission electron microscopy (TEM). A lot of insight was gained recently
from fascinating high-resolution STM experiments: The side facets of QDs on substrates of
several orientations could be identified in different growth stages for both, InAs/GaAs and
Ge/Si (see e.g. Refs. [18, 19]). We will use such STM results of InAs QDs on GaAs(001) as
shown in Fig. 1.2 to investigate the self-assembled QD growth (as described in Chap. 7 and 8).
The detailed structure of overgrown semiconductor nanostructures, that are in fact more rel-
evant for technical applications, has been determined with cross-sectional STM experiments
(see e.g. Refs. [20, 21]). Diffraction methods like e.g. reflection high-energy electron diffraction

Figure 1.2: Recent STM experiments of QD ensembles (left panel) allowed to investigate QD
size distributions [22, 23] and to identify QD side facets of single QDs (right panel) [18].

(RHEED) and (grazing-incidence) X-ray diffraction ((GI)-XRD) provide additional informa-
tion about the side facets and the chemical composition of QD ensembles. The interested
reader may gain more insight on direct-imaging and diffraction techniques from Ref. [16, 17].
An indirect and more subtle way of investigating QD nanostructures is the comparison of
optical properties observed by e.g. photoluminescence (PL), photoluminescence excitation
(PLE) or cathodoluminescence (CL) spectroscopy with theoretical results that were obtained
under certain assumptions on shape and chemical composition (see e.g. Ref. [24] for a re-
view of microscopic approaches): The relative position of hole and electron energy levels that
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determine the optical transition-energies depend not only on the band gap of the QD mate-
rial shown in Fig. 1.1, but also on the detailed energy levels that arise from the particular
confinement potential. A meaningful comparison with experimentally observed optical and
electronic properties thus may require a consideration of realistic shapes and compositions
of QDs, as well as accurate descriptions of the resulting strain tensor. A very convincing
example of such an approach given recently [25] compared PL spectra with k · p/CI calcu-
lations and concluded a discrete QD size distribution in increments of full monolayers. In
this work, we present accurate investigations of the structural stability of realistic, atomically
detailed QD nanostructures. Some of these results are currently used by A. Kleinsorge to
determine the electronic properties of the investigated QD nanostructures with an atomistic
tight-binding approach and to connect to the above indirect comparison.

1.2 Challenge for Theory: Length and Time Scales

In this work, we address the issue of QD growth by self-assembly with approaches of compu-
tational physics that allow us to solve complex problems in a numerical manner. The success
of computational physics in recent years is not only due to the exponential increase of the
CPU integration-density according to Moore’s ‘law’ [26] and the resulting gain of computa-
tional power. It is also and particularly the methodical development of the recent decades
that allows to overcome several obstacles: The solution of typical tasks, such as matrix di-
agonalization, Fourier transformation, and minimization of a function, with highly efficient
algorithms are already standard. In addition, much progress was made in modeling the evo-
lution of a system in time. This requires to either integrate the equations of motion with
Molecular Dynamics (see e.g. Ref. [27]) or to employ statistical approaches like kinetic Monte
Carlo (see e.g. Refs. [28, 29]). The latter is a strong motivation for improving the methods
to determine the reaction pathways (see e.g. Ref. [30]), and in particular the transition states
between two (meta)stable configurations. However, such algorithms can by no means replace
physical intuition. (Or, free after Seneca: There is no good algorithm for those who don’t
know where to go.) The computational effort to determine relaxation and time evolution
depends on the expenses of the various physical approaches to calculate the forces on the
atoms. It can differ by many orders of magnitude, and, of even greater concern, its scaling
with the characteristic system-length is typically less advantageous for methods with higher
accuracy.

Within an overall CPU time of tc one can perform N steps of CPU time τc, and thereby
advance the physical time by tp in steps of τp, i.e. tc = Nτc and tp = Nτp. The
best known scaling of the numerical effort with the number of atoms N is linear, the so-
called order-N scaling. The physical time reachable in a given CPU time for a system with
characteristic length L and characteristic density ρ = N/V = N · L−3 is then

tp = Ctcτp · L−3 (1.1)
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with a prefactor C that depends on the underlying method for force evaluation. A comparison
of different methods to study QD nanostructures within a given amount of CPU time is
given in Fig. 1.3. The regimes of ab-initio calculations (DFT, see Chap. 2) and many-body

Figure 1.3: Physical times and sizes of QD nanostructures that are accessible by different meth-
ods within a CPU time of tc = 24h and a time increment of τp = 1fs (left). The computational
effort of a typical relaxation with the MBP is also indicated (left: dashed line.) The region of
QD growth (red box in left panel) can be deduced (text) from the experimentally observed QD
densities (right, gray area), the relation between QD density and QD-QD distance (right: line),
and the reported typical formation times of a few seconds (c.f. Ref. [18] and Sec. 7.7).

potentials (MBP, see Chap. 5) are shown according to the CPU times observed in this work
(Ref. [31] and Appendix B). The typical regime of kinetic Monte-Carlo simulations (not
performed in this work) is also indicated. The regime of continuum-elasticity theory (CET)
is shown as being independent from the physical time to indicate that it is primarily a static
approach. The range of validity of CET for QD nanostructures is somewhat questionable:
In the literature, the numbers for the minimum QD size that can be treated properly by
CET range from about 1000 atoms [32, 33] to about 5000 atoms [34], corresponding to QD
base lengths of about 1 nm and 10 nm, respectively (Tab. 7.1 and 7.2). The latter is
consistent with a recent rigorous investigation [35] which showed that applying CET to QD
of sub-10 nm sizes introduces appreciable deviations in the strain tensor and shifts of the
conduction band. The additionally shown dashed line indicates the computational effort of
relaxing a QD nanostructure with the many-body potential: For large systems, as investigated
in this work, the computational effort of performing an iteration of a relaxation or a step in
a molecular-dynamics simulations is mainly determined by the cost of evaluating forces on
the atoms and therefore is very similar in both cases. If therefore the effort of the typically
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required 1000 iterations of the relaxation would instead have been spent in 1000 steps of a
molecular dynamics simulation with a physical-time step of 1 fs, the physical time would be
increased by 1 ps.

The method of choice is typically dictated by either the characteristic length-scale L or
the characteristic system time-scale. The lower bound of L is given by the resolution that
is needed to capture possibly relevant details. The upper bound of L is the length of the
irreducible super cell, i.e. the smallest super cell that still allows one to capture the anticipated
essential effects. In many cases like studies of surface stability, the problem can be captured
by irreducible supercells of a few nanometer extension. For QD growth studied in this work,
the long-range strain fields increase the characteristic length to about half the lateral distance
between two QDs. From the experimentally observed lateral QD densities of 1011 − 109cm−2

we expect L to be as large as 25−250 nm. The lower bound of the characteristic length-scale
of about 1 nm is needed to resolve different surface reconstructions, but also QD edges and
kinks. The region of interest for this work (red box in the left panel of Fig. 1.3) is spanned by
the shortest time-scale during growth (see e.g. Ref. [36]) and the typical time interval for QD
formation. The advantage of the many-body potential is its ability to describe the full range
of length scales that possibly play a role in self-assembled QD growth. The disadvantage of
such an approach is the simplified description of the quantum-mechanical nature of chemical
bonding. This can be a severe limitation in studies of structures with characteristic length
scales below about 5 nm: In such cases, the many-body potential may not be adequate to
describe e.g. quantum-size effects or changes of the surface reconstruction. The difficulty
and the art of a successful study with a many-body potential is the detailed knowledge of
limitations and a proper balance of inaccuracy and new insight.

1.3 Goal of this Work

Previous theoretical investigations of the self-assembled growth and structural stability of
semiconductor nanostructures initially started out with continuum approaches: The first ex-
planation for shape transitions of QDs was given in terms of a balance of energy contributions
from surfaces, interfaces and elastic relaxation [37]. The work of Shchukin et al. [38] sug-
gested that the material constants and the lattice mismatch determine if islands are stable
or undergo ripening. These authors neglected the existence of a wetting layer, but Daruka et
al. [39] found that the stability of islands depends sensitively on the thickness of the wetting
layer and gave a detailed ‘phase-diagram’ of growth close to thermodynamic equilibrium.
An important step beyond a pure continuum-model of QD growth was the development of
a hybrid approach [40] that combined DFT calculations of microscopic properties, particu-
larly surface energies and stresses, with long-range strain fields determined by CET. Using
this approach, it could be shown that the equilibrium shape of InAs QDs on GaAs(001)
substrates is also dependent on the volume of the QDs [33]. It was furthermore applied to
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show that a narrow distribution of QD sizes can be explained by a constraint equilibrium of
wetting-layer and QD [34], without the invocation of elastic QD-QD interactions proposed
earlier [38, 39]. Rather, the particular island size is a consequence of the chosen growth con-
ditions and nominal coverage [41]. Similar applications of this hybrid approach to the case
of Ge QDs on Si(001) substrates [42, 43] demonstrated quantitatively that the strain depen-
dence of the surface energies of experimentally observed QD side facets effectively stabilizes
small QDs. Furthermore, this approach was able to reveal a discontinuous change of the
chemical potential in the islands during a structural transition at a later growth stage [44].

In this work, we want to address issues of nanostructure self-assembly that require a
further increase in the level of detail in modeling and ultimately reach the limit of atomic
resolution: Instead of combining DFT results of microscopic systems with CET solutions of
macroscopic structures in a hybrid approach, we develop an all-in-one approach that is based
on microscopic properties, but is still able to describe systems of macroscopic size in atomic
detail. Such an atomistic approach has some major advantages over continuum approaches:

• Atomistic approaches are in principle complete in the sense that they can be directly
applied to arbitrary structures. For reasons of feasibility, some previously presented
investigations with a hybrid approach neglected elastic QD-QD interactions, the energy
contributions (and strain dependency) of steps, edges and kinks. Furthermore, the use
of CET with no intrinsic length-scale yields a strain tensor that is independent from
the size of the QD, an approximation that may introduce errors for small QDs. An
additional approximation is that the dependency of the surface energies of QD side-
facets on the local strain tensor is usually considered only with respect to the averaged
biaxial strain without off-diagonal components. But the most severe drawback of the
above hybrid approach is supposedly the necessity to extend them by additional DFT
calculations for every new surface that is modeled in the QD nanostructure.

• Studies of possible effects of the detailed structure require an atomistic treatment. The
hybrid approach developed so far provides no possibility to account for structural details
on an atomic length-scale. However, This natural feature of atomistic methods allows
the realization of static, kinetic, or even dynamic studies in atomic detail. The latter
are needed for an understanding of e.g. adatom diffusion and clustering on (strained)
substrates and QD side facets, the evolution of facet growth, the preferred formation
site of dislocations, and the preferred site of QD nucleation with respect to steps or
the surface reconstruction. A minor issue in this context is that continuum approaches
can hardly account for the finite character of structural motifs: This is of importance
particularly for small QDs with side-facet areas in the range of the according surface
unit-cells.

• The system-wide composition stoichiometry is a natural and well-defined quantity in
an atomistic treatment. The relative stability of structures with different composi-
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tion stoichiometry depends on the chemical potentials of the involved elements. These
composition stoichiometries of nanostructures with free-standing QDs depend on con-
tributions from surfaces, edges and corners and are therefore not obvious in the hybrid
approaches.

Even with the vast computing power currently available, there are only few atomistic ap-
proaches that allow systematic investigations of the structural evolution of million-atom sys-
tems within an acceptable CPU time: First-principles methods can be applied to already
relaxed nanostructures of up to about 104 atoms [45], but they are computationally too ex-
pensive for the required structural relaxations. Lower-level electronic-structure methods such
as tight-binding have a lot of potential for the near future, even for structural relaxation of
nanostructures. At the moment, however, classical interatomic potentials seem to be the
only feasible way of modeling macroscopically-sized systems in atomic detail and with a rea-
sonable accuracy. Among the many different classes of classical interatomic potentials, we
have chosen a bond-order potential of the Abell-Tersoff type (see Chap. 5), a many-body po-
tential that has proven to be useful in previous studies of group IV and III-V semiconductors.

The first goal of this work is to validate the applicability of this atomistic approach to
the modeling of semiconductor heterostructures with interfaces and surfaces. To this end we
collected a large number of theoretical and experimental reference values of the properties of
stable and meta-stable In, Ga, As, InAs, and GaAs bulk structures, as well as reconstructed
GaAs and InAs surfaces. As a result of detailed tests we found that the previously published
parameterizations left some room for improving the interaction parameters of the potential
to capture a larger portion of the reference data (Chap. 6). This required the development of
a flexible fitting environment, and computationally efficient implementations of energy and
force evaluations (technical details: Appendix B). We confirmed the applicability of the new
parameterization to the description of biaxially strained InAs by a comparison with results
from CET and DFT calculations. To this end we derived general expressions for the elastic
response upon biaxial strain in arbitrary planes from CET that have in fact a much broader
range of applicability (Chap. 4). In particular they strongly simplify numerical calculations
of elastic response to biaxial strain, and enable us to isolate non-linear elastic response by
comparing the results obtained within CET with those from DFT calculations.

Our second goal is to clarify the applicability of the newly parameterized many-body poten-
tial to kinetic and dynamic growth simulations. We compared the potential-energy surfaces
of adatom diffusion on different reconstructed GaAs and InAs surfaces with corresponding
results of DFT calculations that were performed previously and in the framework of this
study. Of particular interest for combining our approach with a kinetic Monte-Carlo scheme
is the effect of strain on the energy barriers of adatom diffusion. Additionally, we were in-
terested in realizing a kMC scheme for heteroepitaxy that allows for an on-the-fly search of
diffusion events, and therefore tested the Dimer method for transition-state search employing
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our many-body potential. Studies of growth simulations with (conventional and accelerated)
molecular dynamics are subject of a collaboration with M. Mignogna and Prof. K. Fichthorn
at the Pennsylvania State University (University Park, PA, USA).

The third goal is to develop a framework for initializing and relaxing nanostructures in
macroscopically sized simulation cells.. This requires a mapping of experimentally observed
free-standing QDs to atomic coordinates that we accomplish by truncating a sufficient amount
of zinc blende bulk material with specified QD side facets and by ‘reconstructing’ the resulting
structure according to surface unit-cells as obtained from relaxation with DFT calculations
(technical details: Appendix C). The routines for structural relaxation are optimized to
achieve a linear scaling of the computational effort with the number of atoms in these systems.
The calculation of the resulting strain tensor is implemented with linear scaling, too, and is
compared to results of a Green’s function approach for a simple model structure (Chap. 4).
The QD nanostructures obtained with our approach are already used in follow-up calculations
of the electronic structure with tight binding, and will soon be combined with a kMC scheme
for modeling heteroepitaxy.

The fourth goal is to understand several aspects of self-assembled growth of free-standing
QDs. After having reproduced the experimentally observed coverage at the growth transition
from a 2D film to 3D islands, we determine the size of the corresponding critical nucleus. Our
approach allows us to quantify the lateral elastic interactions between QDs in experimentally
observed shapes, which so far was investigated only in an approximative manner. The aspect
of major importance however, is to identify if the experimentally observed shape transition
upon QD growth is driven by the kinetic evolution or rather an equilibrium effect. In this
context we will exploit the atomistic character of our method to investigate the influence of
the chemical potentials and the lateral QD density on the shape transition (Chap. 7).

As a fifth goal we want to explain growth correlations in QD stacks by quantifying the
effect on the critical nucleus in the topmost layer. Until now, these experimentally observed
growth correlations were explained in a qualitative manner only. But due to the subtle balance
of energy contributions from strained surfaces and bulk regions, the relative importance of
strain-mediated diffusion and elastic interactions remained unclear. Our approach allows us
to settle this issue in line with experimental observations and to determine the size of the
critical nucleus for different stacking arrangements.

The sixth goal of this work is to study adatom diffusion on QD side facets. For this
purpose we performed DFT calculations to determine the potential-energy surfaces of In ad-
sorption on InAs(137) and InAs(101) surfaces (Chap. 9) which appear as dominant side facets
of small and large QDs. By means of additional DFT calculations we studied the importance
of the breaking of the As dimer on InAs(137) as a possible rate-limiting process and the strain
dependence of In diffusion on InAs(101) as an origin of kinetic effects.

With the achievement of the above goals we extend the study of InAs/GaAs QD nanos-
tructures to the atomistic level that is not yet accessible with other approaches. We thereby
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aim to gain a deeper understanding of the role of kinetic and thermodynamic effects of QD
self-assembly. Our results and the supplied method will hopefully stimulate future work on
the physics of these exciting tiny pieces of nature.



Chapter 2

Electronic-Structure Calculations

This chapter is intended to give a brief overview of the theory behind ab-initio electronic-
structure calculations. The interested reader might refer to one of the excellent review pa-
pers [46, 47, 48, 49] and textbooks [50, 51] for further information.

2.1 The Many-Body-Problem and Solutions

Electronic structure theory describes atoms, molecules and solids as non-relativistic (spin is a
non-relativistic, spin-orbit coupling is a relativistic effect), isolated N-electron systems. The
quantum-mechanical description of the ground-state of these systems is the time-independent
Schrödinger equation for ions (i.e. the atomic nuclei) and electrons for a many-body wave-
function |Ψ〉:

(H − E)|Ψ〉 = (Te + Ti + Ve−e + Ve−i + Vi−i − E)|Ψ〉 = 0. (2.1)

The terms Ve−e, Ve−i and Vi−i denote the Coulomb interactions between electrons and elec-
trons, electrons and ions, as well as ions and ions. The kinetic energies are given by

Te =
∑

i

p2
i

2m
, Ti =

∑

j

P2
j

2Mj
(2.2)

where pi,m and Pj ,M are momentum and mass of the electrons and ions, respectively. The
structure and properties of all static many-body systems can be determined by solving the
above Schrödinger equation. Dynamic phenomena are treated by solving the time-dependent
Schrödinger equation within the so-called time-dependent density-functional theory (see e.g.
Ref. [52]).

12
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2.1.1 Born-Oppenheimer Approximation

The task of solving Eq. 2.1 is much simplified by the Born-Oppenheimer approximation [53]
that reduces the complexity of the quantum-mechanical many-body problem. The mass of the
electrons is much smaller than the mass of the ions ( m

Mj
¿ 1). By neglecting the movement

of the ions, the equations of motion for the electrons at the positions r = (r1, ..., rN ) and
the ions at R = (R1, ...,RK) decouple. The (fixed) positions of the ions only modulate the
wavefunction of the electrons and the overall wavefunction can be written as:

Ψ(r,R) = Φ(R)ΨBO(r,R). (2.3)

Here ΨBO(r,R) is the solution of the Schrödinger equation without kinetic energy of the
ions Ti. This approximation is reasonable in cases where electron-phonon coupling has no
considerable effect on the investigated system properties. The hyper-surface that is formed by
the values of the total energy as a function of the ion positions is called the Born-Oppenheimer
surface.

2.1.2 e-e Interaction: Exchange and Correlation

The remaining complexity of the quantum-mechanical many-body problem is mainly due
to the interaction of the electrons among each other. This interaction is determined by the
Coulomb potential and the Pauli principle. The Coulomb forces between the electrons lead to
spatial separation, balanced against the increase in kinetic energy. This is an early problem
of quantum-mechanics and there are several theories addressing this issue. The earliest
approach, the Hartree theory [54] treats the Coulomb interaction by an average potential. The
many-body wavefunction |Ψ〉 is approximated by a product of single-particle wavefunctions
|ψi〉. Each of them satisfies a single-particle Schrödinger equation in an average, self-consistent
potential arising from the other particles. For electrons the Pauli principle holds and requires
an anti-symmetric wavefunction. In the Hartree-Fock theory [55, 56] the Fermi statistics for
the electrons is accounted for by constructing Ψ with the Slater determinant for a set of N
orthogonal spin-orbitals ψi(x) (where x comprises spatial coordinates r and spin s):

Ψ(x1, ...,xN ) =
1√
N !

det|ψi(x)|, ψi(x) = φi(r)χα(s). (2.4)

orthonormality :

∫

ψ∗
i (x)ψj(x)dx = δij (2.5)

This imposes an additional, nonlocal exchange-term, but the single-particle picture remains
unchanged. The wavefunction of the ground-state is determined by the minimization of
the total energy with respect to ψi(x). Usage of the Lagrangian multipliers εi yields the
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Hartree-Fock equations:

∫

d3x′
(

−1

2
∇2δ(x − x′) + Ve−i(x)δ(x − x′) + VH(x)δ(x − x′) + VX(x,x′)

)

ψi(x) =
∑

i

εiψi(x)

(2.6)
with the Hartree term VH(x) and the exchange term VX(x,x′). These equations need to
be solved self-consistently. The additional term results in a spatial separation between
two electrons with equal spin, thereby reducing the Coulomb-energy of these two electrons.
This reduction in energy of the electronic system due to the antisymmetric wavefunction is
called exchange-energy. The Coulomb-energy is further reduced by the spatial separation
of electrons with different spin (on the cost of kinetic energy). This difference (between
the many-body-energy of an electronic system and the energy calculated in the Hartree-
Fock-approximation) is called the correlation-energy. The Thomas-Fermi model can be seen
as the origin of the density-functional theory. It uses statistical considerations to approxi-
mate the distribution of electrons in an atom. This is based on two assumptions: electrons
are distributed uniformly in phase-space per h3-volume (h is Planck’s constant) and there
is an effective potential that is determined by the charge of the nuclei and the electrons.
The Thomas-Fermi model is too simple to give good accuracies for atoms and fails to predict
molecular binding. This model can be regarded as an approximation of the density-functional
theory for ground states. In the next section we will introduce the density-functional theory, a
formally exact theory with an exact energy functional E[ρ] and an exact variational principle.
The Kohn-Sham formalism, the core of DFT calculations, is based on the electronic ground-
state density. The latter determines the full many-body Hamiltonian and would in principle
allow the treatment of excitations which are the origin of most of the commonly measured
spectra. The limitations of the currently known exchange-correlation functionals, however,
limits DFT to the description of properties of the electronic ground-state. Other approaches
try to overcome this limitation: The GW-formalism is based on many-body perturbation-
theory with DFT as zero-order solution. An extension to ‘static’ DFT is time-dependent DFT,
which uses a time-dependent external potential and a time-dependent exchange-correlation
functional (review: Ref. [57]).

2.2 Density-Functional Theory

2.2.1 Kohn-Sham Formalism

The electron density The electron density ρ is the basic variable in density functional
theory. It describes the number of electrons per unit volume in a given state as expressed by

ρ(r1) = N

∫

...

∫

|Ψ(x1, ...,xN )|2dx2dxN . (2.7)
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This is a non-negative simple function of r that integrates to the total number of electrons

∫

ρ(r)dr = N. (2.8)

For an atom in its ground state the electron density ρ(r) decreases monotonically away from
the nucleus. The electron density of molecules is not only a superposition of the atomic
densities, but shows higher density in the regions of chemical bonding.

Hohenberg-Kohn theorem The Hohenberg-Kohn theorem [58] deals with the ground
state Ψ of an interacting electron gas in an external potential v(r) and consists of two parts.
The first part legitimizes the use of the electronic density ρ(r) as basic variable. Hohenberg
and Kohn showed that, within an additive constant c, there is a one-to-one correspondence
between the external potential v(r) and the electronic density ρ(r):

HK1 : v = v[ρ(r)] + c. (2.9)

Note that the ground-state electron density ρ(r) of a system of interacting electrons in some
external potential v(r) determines this potential uniquely up to an additive constant and
that ρ(r) determines implicitly all properties derivable from the Hamiltonian through the
solution of the time-independent Schrödinger equation. The similar Runge-Gross theorem
is a generalization to the time-dependent Schrödinger equation [52]. The second part of
the Hohenberg-Kohn theorem establishes the energy variational principle in analogy to the
variational principle for wavefunctions. The full many-body wavefunction Ψ is a unique
functional of the electron density ρ(r), since v(r) fixes the Hamilton operator:

Ψ = Ψ[ρ(r)]. (2.10)

As Ψ is a functional of ρ(r), so is the kinetic and interaction energy. A universal functional
F [ρ] that is valid for any number of particles and any external potential can be defined as

F [ρ(r)] = (Ψ, (T + U)Ψ). (2.11)

With this expression, an energy functional Ev[ρ] for a given potential v(r) can be defined
that equals the ground-state energy E for the correct electronic density ρ(r):

Ev[ρ] =

∫

v(r)ρ(r)dr + F [ρ]. (2.12)

With the restriction for the admissible functions ρ̃

N [ρ̃] =

∫

ρ̃(r)dr = N. (2.13)
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Hohenberg and Kohn proved that the functional Ev[ρ] assumes its minimum value E0 for the
correct ground state density ρ(r), which means that

HK2 : E0 ≤ Ev[ρ̃]. (2.14)

It can be shown that these expressions also hold for a degenerate ground-state. For a known
functional F [ρ(r)] the problem of determining the ground-state density and energy for a
given external potential reduces to the minimization of the energy functional Ev[ρ(r)] with
respect to the density. But an analytic expression for F [ρ(r)] can be given only for the two
limiting cases of nearly constant density and slowly varying density. For realistic systems
the complexity of the many-electron problem arises from the determination of the functional
F [ρ(r)]. The Thomas-Fermi theory approaches the unknown functional F [ρ(r)] directly by
assuming explicit expressions for F [ρ(r)]. This leads to analytic expressions depending on
the electronic density ρ(r) alone, but the applicability is very limited due to the rather crude
approximation for the functional. The density-functional theory is based on an indirect
approach to the unknown functional F [ρ(r)] from Kohn and Sham and allows one to perform
rigorous calculations.

Kohn-Sham equations Kohn and Sham [59] transformed the many-body problem to
an exactly equivalent set of self-consistent one-electron equations with an auxiliary non-
interacting system with the same electron density. These so-called Kohn-Sham equations
form the core of density functional calculations (and are denoted by KS in the following
equations). The unknown functional F [ρ(r)] of a system of interacting electrons can be
written in terms of the ground-state kinetic energy T0[ρ(r)] of a system of non-interacting
electrons and the classical electrostatic self-interaction of the electronic density as

F [ρ(r)] = T0[ρ(r)] +

∫
ρ(r)ρ(r′)

|r − r′| drdr′ + Exc[ρ(r)]. (2.15)

This equation defines the so-called exchange-correlation energy functional Exc[ρ(r)]. For a
fixed number of electrons, the variation of this energy functional for a system of interacting
electrons with respect to ρ(r) leads to an equation that is formally the same as the one
that holds for a system of noninteracting electrons in an effective potential veff , the so-called
Self-Consistent-Field (SCF), that is given by:

KS1 veff(r) = vSCF(r) = v(r) + vH(r) + vxc(r) (2.16)

with vH(r) =

∫
ρ(r′)

|r − r′|d
3r′, and vxc(r) =

δExc[ρ(r)]

δρ(r)
. (2.17)

Here vH is the Hartree-potential of the electrons and vxc is the exchange-correlation poten-
tial. With this mapping of the interacting many-electron system onto a system of noninter-
acting electrons moving in an effective potential due to the other electrons, we can write the
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Schrödinger equation for an electron in the non-interacting system as:

KS2

[

−1

2
∇2 + veff(r)

]

ψi(r) = εiψi(r), i = 1 . . . N (2.18)

with the electronic density of N electrons of spin s

KS3 ρ(r) =
N∑

i=1

∑

s

|ψi(r, s)|2. (2.19)

The expressions 2.16-2.19 are the celebrated Kohn-Sham equations. The wavefunctions ψi(r)
are the so-called Kohn-Sham orbitals. Note that these are exact expressions: if the exchange-
correlation energy functional Exc[ρ(r)] was known exactly, then the above equations would
allow one to calculate the potential that included the effects of exchange and correlation
exactly. The remaining task is to find an expression for the exchange-correlation functional
and solve the Kohn-Sham equations self-consistently, such that the occupied electronic states
generate a charge density that produces the same electronic potential which was used to
construct the equations.

2.2.2 Approximations to the XC-Functional

The framework of density-functional theory given above requires appropriate approximations
for the unknown exchange-correlation functional Exc[ρ(r)] to be of practical use. These
approximations are physically motivated and are not part of the Kohn-Sham formalism. The
simplest but remarkably successful approximation to the exchange-correlation functional is
the local-density approximation (LDA) that uses only the exchange-correlation energy of a
homogeneous electron gas:

LDA : ELDA
xc [ρ(r)] =

∫

εhom
xc (ρ(r))ρ(r)dr. (2.20)

Although this relation is exact only for a homogeneous electron gas, it showed to give very use-
ful results for most applications. An extension of this expression is the so-called generalized-
gradient approximation (GGA) that additionally includes derivative information of the elec-
tron density:

GGA : EGGA
xc [ρ(r)] =

∫

εxc(ρ(r), |∇ρ(r)|)ρ(r)dr. (2.21)

Note that these local approximations to the exchange-correlation functional are only valid
for an electron gas of slowly varying density ρ(r). They are fundamentally inappropriate to
treat e.g. Van der Waals interaction between non-overlapping subsystems.
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2.2.3 Solving the Kohn-Sham Equations

For an infinite solid, the Kohn-Sham formalism leads to an infinite number of non-interacting
electrons in the static potential of an infinite number of ions. The wavefunctions of the elec-
trons extend over the entire solid and require an infinite basis-set. The task of handling these
two infinities is drastically simplified by the usage of periodic systems and the application of
Bloch’s theorem.

Bloch’s theorem In periodic systems, an electronic wavefunction ψi(r) can be written as
a plane wave modulated by a periodic function fi(r):

ψi(r) = exp[ik · r] · fi(r). (2.22)

The periodic function of a solid can be expressed in terms of reciprocal lattice-vectors G

fi(r) =
∑

G

ci,G exp[iG · r]. (2.23)

Then, every electronic wavefunction can be written as sum of plane-waves:

ψi(r) =
∑

G

ci,G exp[i(k + G) · r]. (2.24)

The infinite number of electrons in an infinite system occupy a finite number of electronic
states at each of the infinite number of k points. This changes the task of calculating an
infinite number of electronic wavefunctions to the task of calculating a finite number of
electronic wavefunctions for an infinite number of k vectors. Calculations of finite systems
can be performed by using periodic super-cells which are large enough to separate the periodic
images of the system by a sufficiently large vacuum region.

k-point sampling Each of the occupied states at the infinite number of k-points con-
tributes to the electronic potential in the system. The calculation of the potential therefore
requires an infinite number of numerical steps. But the electronic wavefunctions at k-points
that are very close together are almost identical. The electronic wavefunction over a certain
region of k-space can be approximated by those of a single k-point. Then only a finite num-
ber of k-points need to be sampled. Special sets of k-points in the Brillouin zone have been
developed for insulators and semiconductors. The Fermi-surface of metals is more complex
and calls for a denser set of k-points. The computed total energy converges with the number
of k-points and in principle the error from the k-point sampling can be reduced to zero for a
sufficiently dense set of k-points.
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Basis set The wavefunction can be represented by different basis sets that can be separated
into two groups. On the one hand there are the so-called all-electron approaches which
consider both core and valence electrons explicitly in the calculation. In contrast to these
methods there are also the so-called pseudo-potential approaches that do not include the core-
electrons explicitly. Instead, a pseudo potential is constructed that models the core-electrons
implicitly and only the valence-electrons are included in the calculation. The valence electrons
then are modeled with local orbitals or with plane-waves. An introduction to pseudo-potential
theory is given in Sec. 2.3.

Cutoff energy In an expansion of the electronic wavefunction in terms of an plane-wave
basis set, the coefficients ci,σ,k+G for the plane-waves with small kinetic energy are much more
important than those with larger kinetic energy. This allows one to create a finite plane-wave
basis set by truncating the basis set to include only plane waves that have kinetic energies
less than some particular cutoff energy :

|k + G|2 ≤ Ecut. (2.25)

The error imposed by neglecting contributions with higher energy decreases with increasing
cutoff energy. There is no ‘correct’ value of Ecut, rather, it depends on the system and the
desired accuracy of the calculation. Usually one requests a certain accuracy for the total
energy or a system-characteristic energy-difference and increases Ecut until the calculations
converged to the requested accuracy (see Appendix A). Note that the maximum G-value
and thus the maximum energy of the electronic states in a plane-wave basis-set increases
with the number of plane waves included. This allows one to create a sufficiently large basis
set systematically by increasing the cutoff energy Ecut and include as many plane waves as
required. In contrast to this, a basis set of localized orbitals is an expansion in angular
momentum eigenstates that does not allow a systematic creation of a sufficiently large basis
set.

Plane-wave representation of Kohn-Sham orbitals The usage of plane-waves as a
basis-set (Eq. 2.24) to represent the Kohn-Sham orbitals ψi(r) for a periodic system reduces
the Kohn-Sham equations (Eq. 2.16-2.19) after an integration over r to a particularly simple
expression:

∑

G′

[
h̄

2m
|k + G|2δGG′ +Vion(G−G′)+VH(G−G′)+Vxc(G−G′)]ci,k+G′ = εici,k+G. (2.26)

Here the kinetic energy is diagonal and the various potentials are given in terms of their
Fourier transforms. This equation is solved by the diagonalization of the Hamiltonian matrix
given in brackets. The required computing time depends on the rank of the Hamiltonian
matrix which increases with the cutoff radius Ecut. The matrix rank can be reduced by the
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pseudo-potential approximation (Sec. 2.3) that allows one to neglect the chemically inert
core electrons in the calculation. The diagonalization of the Hamiltonian is the most expen-
sive task within a density-functional calculation and requires approaches that are far more
sophisticated than just applying conventional matrix diagonalization algorithms.

2.3 Electron-Ion Interaction: Pseudo-Potentials

The tightly bound wavefunctions of the core-electrons and the rapidly oscillating wavefunc-
tions of the valence-electrons in the core-region are difficult to represent with Gaussians or
plane-waves. With increasing atomic number, the number of contributions from core-electrons
to the total energy increases. This gives rise to a smaller ratio between differences in total
energies and the total energy of similar sized systems one is typically interested in. This is
effectively a loss of relative accuracy. The basic idea of pseudo-potential theory is to distin-
guish between core and valence electrons and to treat them in a different way. The physical
motivation is the fact that the highly localized core wavefunctions cannot take part in the
atomic bonding. The core-electrons are removed and the ionic potential and the wavefunc-
tions of the valence-electrons are replaced by a pseudo potential and pseudo wavefunctions.
Outside a certain core-region they are identical, but inside this region the pseudo potential is
weaker and the pseudo wavefunctions have less or no nodes and can thus be represented by a
smaller set of plane waves than the true valence wavefunction. This is schematically shown
in Fig. 2.1. The shape (hardness) of the atomic pseudo potentials determines the size of the

Figure 2.1:
Schematic illustration of all-electron

(solid lines) and pseudo-electron
(dashed lines) potentials and their
corresponding wave-functions. The
core cutoff radius at which all-electron
and pseudo-electron values match is
denoted by rc. [46]

basis set that is required for a calculation. Consequently, the art of constructing a pseudo
potential is to find a ‘soft’ shape which minimizes the numerical costs while retaining the
accuracy of the approach. At the same time the pseudo wave-functions must yield the same
integrated charge inside the core cutoff radius as the corresponding all-electron wave-function
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to reproduce the scattering properties of the real atom (norm-conservation). Furthermore,
it must describe different bonding configurations accurately (transferability). Formally the
pseudo potentials can be written in a semi-local form in terms of a local pseudo potential
V loc(r) and l-dependent components δV ps

l (r) that vanish outside the core cutoff radius. An
alternative representation is the fully separable form with a fully non-local short-range term
that is usually used in plane-wave calculations because of its better scaling with system-size.
The ghost-states that are possibly introduced by the transformation from the semi-local to
the fully separable form can be traced and removed. The transferability and thus the validity
of the pseudo potentials in different bonding environments depends on the choice of the core
cutoff radius, the linearization of the core-valence exchange-correlation, the frozen-core ap-
proximation and the transformation from the semi-local into the fully separable form of the
pseudo potential. The pseudo potentials used in this work are generated with the program
fhi98PP [60]. They are derived from a scalar-relativistic all-electron calculation of a free atom
as reference state. There are separate pseudo potentials for calculations with LDA and GGA
descriptions of the exchange-correlation functional. The linearization of the exchange and
correlation between core and valence electrons in pseudo-potential calculations can result in
systematic errors as compared to the all-electron approach. This can be accounted for by the
non-linear core-correction [61] which is especially important for group I and II elements and
for magnetic systems.

2.4 Minimization of the Kohn-Sham Energy

The Kohn-Sham equations are considered to be solved self-consistently, when the charge den-
sity that would be produced by the Kohn-Sham-orbitals gives rise to the same potential that
was used to determine these orbitals. A density-functional calculation starts with selecting
or creating the pseudo potentials for the electron-ion interaction. Then initial values for

the wavefunctions and the electronic density are guessed: ψ
(0)
i (r) and ρ(0)(r). The Kohn-

Sham energy functional is minimized by iteratively improving the wavefunctions ψ
(n)
i (r) with

appropriate algorithms (e.g. Damped Joannopoulos, Williams-Soler, conjugate gradients).

2.5 Forces in the Ionic System

The solution of the time-independent Schrödinger equation gives the system’s energy and
wavefunction for the current configuration of fixed ion positions. The determination of the
equilibrium geometry and dynamic simulations require the knowledge of the forces that are
acting on the ions in the system. The expensive calculation of forces via a finite-difference
scheme of the energy can be avoided through the Hellmann-Feynman theorem [62] .

Let λ be a parameter in the Hamiltonian with an eigenfunction |Ψ〉. Treating the to-
tal energy with first order perturbation theory gives the Hellmann-Feynman theorem in its
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differential form
dE

dλ
=

〈Ψ|∂H/∂λ|Ψ〉
〈Ψ|Ψ〉 . (2.27)

Consider the parameter λ as the Cartesian coordinate Xα of the nucleus α and no external
fields, then the Hellmann-Feynman theorem yields

dE

dXα
= −

∑

β 6=α

ZαZβ

R3
αβ

(Xα −Xβ) − Zα

∫

ρ(r1)
(x1 −Xα)

r31α

dr1. (2.28)

This expression of the force on the nucleus α due to the other nuclei and the electron den-
sity is nothing but the expression that would be derived from purely classical electrostatic
interaction. The Hellmann-Feynman theorem allows one to calculate the forces on the nuclei
directly from the nuclear configuration in question and does not require the consideration of
two or more different neighboring configurations to derive the forces from the slope of the
energy-curve. Equation 2.28 holds true only for pure Coulomb potentials, i.e. all-electron
calculations. With pseudo potentials in a fully separable form the Hamiltonian separates
in local and non-local contributions from the pseudo-potential interaction. The explicit ex-
pression of the Hellmann-Feynman theorem then depends on the type of pseudo potential
used [47, 60]. Strictly speaking, there is one term missing in Eq. 2.28 that comes from the
derivative of the basis set with respect to the positions of the ions. This gives an additional
contribution to the forces on the ions, called Pulay forces [63]. If one uses e.g. Gaussians
as a basis set, the basis functions are ‘pinned’ to the position of the ions. This dependence
results in a non-vanishing value of the aforesaid derivative and hence non-vanishing Pulay
forces. The individual wavefunctions of a plane wave basis set, however, are independent of
the ion positions, which results in vanishing Pulay forces.

Once the electronic ground-state is found, the forces on the ions can be calculated and used
to relax a given structure. Usually equilibrium coordinates of the ions are not known a priori.
Instead, a (reasonable) initial geometry is assumed, the forces on the ions are calculated and
the ions are moved in the corresponding directions to minimize the total energy. In each step
the self-consistent electronic structure is determined which corresponds to constraining the
movement of the ions to the Born-Oppenheimer surface.



Chapter 3

Thermodynamic Concepts in
Surface Physics

In this chapter, we explain the thermodynamic concepts that are employed in the description
of surfaces and of crystal growth later in this work. For further discussions of the relation-
ship between thermodynamics and surface physics, we refer the interested reader to recent
monographes [29, 64, 65].

3.1 Physical Events During Growth

Real surfaces under atmospheric conditions are complex systems with a non-periodic struc-
ture and numerous kinds of adsorbates. Still, one can often gain insight by combining the
experimental findings of surfaces prepared in UHV with theoretical investigations of periodic
surface unit cells. Clean semiconductor surfaces are nowadays prepared by e.g. cleavage,
annealing, or condensation of monolayers on the surface with e.g. molecular-beam epitaxy
(MBE) or metal-organic chemical vapor deposition (MOCVD). In all stages of preparation,
a vast zoo of atomistic processes can possibly take place on the surface. Some of these events
affect the sample mainly, such as diffusion (on terraces, along or across steps, by hopping or
exchange), nucleation (of a 2D or 3D island), attachment and detachment (to steps, kinks,
or islands), defect formation, and segregation. Other events, however, manifest an interplay
of the surface with the gas phase, like desorption, adsorption, and dissociation.

A stable surface with no net growth is in thermodynamic equilibrium with the gas phase
and the substrate. In growth experiments, however, it depends on the particular growth
conditions if the resulting structures are ruled by thermodynamic equilibrium or by the
kinetic interplay of atomistic processes. A kinetic description of growth under non-equilibrium
conditions can be based on the effective rates of atomistic processes (see e.g. Ref. [66] for
a description of this concept). A so-called kinetic effect is the situation that the atomistic

23
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kinetics bring the system to a metastable state which is qualitatively different from the
thermodynamic equilibrium. In Chap. 9 we present a DFT study of atomistic events that
possibly trigger kinetic effects during QD growth. However, many aspects of QD growth
and stability can be explained with a thermodynamic rationale, as we shall see in Chap. 7
and 8. These results refer to growth conditions close to thermodynamic equilibrium, i.e. to
high mobilities of the deposited atoms, low deposition rates, or a sample annealing during
a growth interruption. In the following section, we introduce the concept of surface energy
that allows for a thermodynamic classification of crystal growth modes.

3.2 Surface Energy and Chemical Potential

A system is in the state of thermodynamic equilibrium at the minimum of the Gibbs free
enthalpy G(T, p,N) with respect to the inner variables at constant temperature T , pressure p,
and number of particles N [67]. With the common Legendre transformations, this condition
can be reformulated as the minimum of the Helmholtz free energy F (T, V,N) at constant
T , volume V , and N . The changes of these potentials due to infinitesimal changes in their
according thermodynamic variables are

dG = −SdT + V dp+ µdN and dF = −SdT − pdV + µdN. (3.1)

The chemical potential µ is given accordingly by

µ =

(
∂G

∂N

)

T,p
=

(
∂F

∂N

)

T,V
. (3.2)

The difference between the Helmholtz free energy and the Gibbs free enthalpy is the grand-
canonical potential Ω(T, V, µ). It reacts on infinitesimal changes in its thermodynamic vari-
ables as

dΩ = −SdT − pdV −Ndµ, (3.3)

where we made use of the Gibbs-Duhem relation SdT − V dp + Ndµ = 0. This is the
thermodynamic potential of choice for the description of surfaces, where processes typically
happen at constant temperature T , pressure p, and chemical potential µ. With Gibbs’ idea
of dividing surfaces, a surface system can be decomposed in a region A that represents the
solid with nA particles in a volume VA, a second region B that represents a vapor phase with
nB particles in a volume VB, and a transition region S between A and B that mimics the
surface. In the limit of a vanishing volume of S, the total volume and number of particles
reduces to V = VA +VB and N = nA +nB. The thermodynamic potentials F and G are then
composed of the contributions from regions A and B, and a surface term. In the same limit,
the Gibbs free enthalpy of the interface GS = NSµS vanishes as NS goes to zero. Müller and
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Saúl [64] gave an in-depth discussion of the different ways to derive this latter term. One of
them [65, 68] is to express the grand-canonical potential Ω for constant pressure as

Ω = −p(VA + VB) + Ωs where Ωs = γA (3.4)

to reflect the fact that the interface term should be proportional to the interface area A. The
term γ, the surface free energy, is connected to the Helmholtz free energy of the surface by

FS = ΩS = γA and dF = γdA+Adγ. (3.5)

Whereas the dividing surface in a single-component system can always be chosen such that
NS vanishes, this requirement can in general not be fulfilled simultaneously for all species of
a multi-component system, like surfaces of III-V semiconductors studied in this work. For
such systems, the Helmholtz free energy can be generalized to n components and the surface
free energy per area and its differential reads

γ =
1

A
ΩS =

1

A

(

FS −
n∑

i=1

N s
i µi

)

, dγ = − 1

A

(

SSdT +
n∑

i=1

N s
i dµi

)

(3.6)

where N s
i is the excess of species i in the surface region. The relative stability of different

structures of a surface with different stoichiometries, i.e. different ratios N s
1 : N s

2 : ... :
N s

n, can thus be discussed by comparing the according surface free energies. A reasonable
approximation [65] of many comparative studies of the surfaces of III-V semiconductors is to
neglect the effects of pressure variation and entropy changes. The remaining variable is the
dependence of the surface free energy on the chemical potentials.

The bulk chemical potentials of crystalline phases are the negative cohesive energies of
the most stable structure at T = 0 and p = 0. The difference between the chemical potentials
of a compound bulk system µbulk

AB and the according elemental bulk phases µA
bulk and µB

bulk

defines the heat of formation of the compound

∆HAB
f = −

(

µbulk
AB − µbulk

A − µbulk
B

)

. (3.7)

This gives the range for the actual chemical potentials for a multi-component surface in
equilibrium: Firstly, the chemical potential µi of each species i must be smaller than its
bulk value µbulk

i , since its gas phase would condensate to the elemental bulk phase otherwise.
Secondly, the j-rich conditions are fixed by ∆µj = µj − µbulk

j = 0. The chemical potentials
of the species of a multi-component surface in equilibrium are thus

− ∆HAB
f ≤ ∆µj ≤ 0. (3.8)

One possible representation of the grand-canonical potential of the surfaces of III-V semicon-
ductors is then in terms of the majority species V:

ΩS(∆µV) = E(NIIIa, NIIIb, NV) (3.9)

−µbulk
IIIa−VNIIIa − µbulk

IIIb−VNIIIb −
(

µbulk
V + ∆µV

)

(NV −NIIIa −NIIIb)
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where E(NIIIa, NIIIb, NV) is the total internal energy, and the indices IIIa, IIIb, and V refer
to Ga, In, and As, respectively. The relative stability of different structures of a surface,
such as the reconstructions of III-V semiconductor surfaces, are compared in so-called surface
phase diagrams that compile the different grand-canonical potentials with the according linear
dependencies on the chemical potential(s). (A phase diagram for different reconstructions
of GaAs(001) and InAs(001) is given in the right panel of Fig. 6.8). Practical aspects of
calculating bulk chemical potentials and surface free energies with density-functional theory
(Sec. 2.2) and the many-body potential (Sec. 5.2) are given in Sec. 5.4.2 and in the appendix A,
respectively.

The surface free energy depends on the crystallographic orientation (hkl). This is com-
monly represented in the so-called Wulff plot [69, 70], a spherical plot of the surface energy
with respect to the normal vector of the surface. The surface energy is a continuous function
of the Miller indices and exhibits minima with discontinuous derivative (cusps) at those (hkl)
that represent stable surfaces. Those orientations with a continuous derivative of the surface
energy with respect to (hkl) form step structures of the most nearby stable surface orien-
tation, these are the so-called vicinal surfaces. (These steps may even be extended to form
a hill-and-valley structure for strongly varying surface energies [71].) The crystal inherent
symmetries can strongly decrease the irreducible part of the Wulff plot. For cubic systems,
the remaining part is the so-called stereographic triangle, a projection of the spheric segment
between (001), (011), and (111) to the meridian plane. All surface orientations can be re-
garded as linear combinations of those in the corner. Despite the complexity of the high-index
surfaces inside the stereographic triangle, some of them were found to have a surprisingly
low surface energy, like GaAs(2 5 11) [72] surfaces, others were identified as dominant facets
at early stages of QD growth, like InAs(137) [18]. The knowledge of all relevant surface free
energies allows one to construct the equilibrium crystal-shape, that is given by the minimum
total surface-energy at a certain chemical potential for a given amount of material.

The comparisons of QD nanostructures with different stoichiometry later in this work are
based on the grand-canonical potential, too. These systems undergo deformations due to the
lattice mismatch of GaAs and InAs, thereby introducing an additional dependency of the
surface free energies on the surface strain. The concepts of stress and strain introduced in
Sec. 4.1 allow one to interpret a change in the surface area as the consequence of a surface-
stress tensor σij that involves a strain tensor εij . A subtle point of the application of Gibbs’
concept of a dividing surface to the case of strained surfaces is that the localization of the
dividing surface may change during deformations [64]: One can then either consider the
localization as fixed (Eulerian coordinates) or instead treat the Gibbs’s surface as attached to
a piece of matter (Lagrangian coordinates). This discrimination plays no role at undeformed
surfaces, but leads to e.g. a different stress dependence of surface energies in the case of

deformations. In particular, the linear term dF
(1)
S of an expansion of the Helmholtz free

energy of the surface in terms of the strain tensor using either Eulerian (E) or Lagrangian (L)
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coordinates reads
dF

(1)
S = A(ε)γE(ε) = A0γ

L(ε) = A0

∑

i,j

σijεij . (3.10)

The relation between surface stress and surface energy reads in either coordinates

σE
ij = γ0 +

(

∂γE

∂εij

)

T,µ

, σL
ij =

(

∂γL

∂εij

)

T,µ

. (3.11)

This so-called Shuttleworth equation [73] describes a fundamental difference between sur-
faces of solids and of liquids: The molecules of a liquid are mobile and can freely adjust to
deformations without the boundary condition of a long-range order. Then the derivative of
the surface energy with respect to deformations vanishes, leaving behind the equivalence of
surface energy γ0 and surface stress σE

ij (in Eulerian coordinates). In case of solids, however,
this identification does not hold, and the trace of the surface stress given by

Tr
(

σE
ij

)

= 2γ0 +

(

∂γE

∂εxx
+
∂γE

∂εyy

)

T,µ
︸ ︷︷ ︸

σE
xx+σE

yy

, T r
(

σL
ij

)

=

(

∂γL

∂εxx
+
∂γL

∂εyy

)

T,µ
︸ ︷︷ ︸

σL
xx+σL

yy

(3.12)

determines if the surface exhibits intrinsic tensile (σxx +σyy > 0) or compressive (σxx +σyy <
0) surface strain. In Sec. 6.4, we will determine the intrinsic surface stress and the strain
dependency of the surface energy for several GaAs and InAs surfaces numerically with the
many-body potential developed in this work and compare them with results of previously
performed DFT calculations [74]. This is an important test to verify that the many-body
potential captures the strain stabilization of surfaces that appear as QD side facets (see e.g.
Ref. [75, 76]). Note that a system under lateral strain ε = ∆x

x = ∆y
y will relax perpendicular

to the strain plane. In calculations of the intrinsic surface stress that employ slabs with
fixed bottom layers, this elastic response needs to be known a priori. We will derive general
expressions for such elastic response of cubic systems in Sec. 4.3 and apply these results in
our numerical calculations.

3.3 Crystal Growth

The interplay of the dependence of the surface energy on the crystallographic orientation
with the interface energy of a thin film on a substrate can be employed to classify elementary
modes of crystal growth with a thermodynamic rationale. Bauer [77] opposed the surface
energy of the substrate γs with the surface energies of a possibly deposited film γf and the
energy γi of the interface that is shared among them. This allows one to distinguish three of
the experimentally observed growth modes shown in the upper panel of Fig. 3.1:
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Franck-van der Merwe γf + γi ≤ γs for all θ
Volmer-Weber γf + γi > γs

Stranski-Krastanov γf + γi

{

> γs θ ≤ θ0
≤ γs θ > θ0

.

In the Franck-van der Merwe growth mode [78] the crystal grows in a layer by layer
fashion, whereas in the Volmer-Weber growth mode [79] three-dimensional islands form. A
combination of these two modes is the Stranski-Krastanov growth mode [80] that starts with
the formation of a 2D film, the so-called wetting layer, and proceeds with the appearance
of 3D islands after the film has reached a certain critical thickness θ0. A driving force for
3D island formation can be the lattice mismatch between substrate and deposited material
due to a different lattice constant, studied in this work. The elastic energy stored in the
strained wetting layer can be relieved in 3D islands by mechanisms of plastic relaxation, such
as defect formation, or by elastic deformation of the upper island part. The latter process
does not relieve the strain energy at the base of the islands, hence, one would always expect
the formation of defects for a sufficiently large base area.

Figure 3.1: The appearance of the crystal growth modes in the upper panels can be distin-
guished by relations between surface and interface energies, γs, γf , and γi. The ones in the lower
panel are due to kinetic effects.

The above classification covers all cases of the relationships between the surface energies,
but is limited to thermodynamic equilibrium. In this context, this would require that the
diffusion of the adsorbed atoms is able to establish the net mass transport required for the
particular growth shape. Under experimental conditions that do not ensure thermodynamic
equilibrium of the adsorbates with respect to diffusion, like e.g. low temperature and high de-
position rate, the picture can change significantly. In fact, kinetic effects extend the variety of
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growth modes by at least polycrystalline and columnar growth that are shown together with
the aforementioned growth modes in Fig. 3.1. The experimentally observed sample features
therefore leave some room for interpretation, particularly when it comes to distinguishing
equilibrium and kinetic effects. In fact, the terms for the above growth modes are mostly
applied in a phenomenological manner, based on experimental characterizations of the de-
tailed atomic structure after the growth process with e.g. atomic force microscopy (AFM) or
scanning tunneling microscopy (STM). (Appealing in-depth reviews of these methods were
given recently by Giessibl [81] and Hofer et al. [82].) Additional degrees of freedom in III-V
heteroepitaxy are e.g. the formation of ordered alloys [83], the dependence of the surface
energies on the elemental chemical potentials in the growth chamber, intermixing and segre-
gation processes, as well as strain effects due to the lattice mismatch of GaAs and InAs. One
aspect of the latter is the influence of strain on the relative stability of differently shaped
QDs.

3.4 Nucleation Theory

In this study we focus on the investigation of QD nanostructures as obtained in growth
experiments close to thermodynamic equilibrium. In this case, the morphology of the system
is determined by the minimum of the grand-canonical potential in each stage of evolution.
The transition from one state of aggregation A (e.g. a vapor phase) to another state B
(e.g. a crystal phase) starts out with the conglomeration of building units of the latter
(e.g. crystallites) initiated by local density fluctuations of the starting phase [84]. A direct
consequence of the locality of such fluctuations is that these conglomerates have a finite size
and are thus accompanied by energy contributions from broken bonds. The fluctuations are
present even in the thermodynamic equilibrium of one state, but increase in approaching the
phase equilibrium with equal chemical potentials µA = µB. As long as the initial state is more
stable (µA < µB), these conglomerates will decay on the same time scale as the fluctuations.
If, however, the final state becomes more stable (µB < µA) although the system is still in
the initial state, supersaturation is reached. In this situation, the transition is determined
by the balance between energy gain due to the formation of the stable state and energy cost
due to the formation of broken bonds. The different dependency of these contributions from
the volume of the conglomerate imposes effectively an energy barrier for the transition in
terms of the grand-canonical potential. This maximum of the difference in grand-canonical
potentials marks the volume of the critical nucleus, where the energy contributions are equal
and the conglomerate can gain energy by either dissolving or continuing growth. Below or
above this volume, the conglomerate can gain energy only by dissolving or continuing growth,
respectively. Note that this concept allows one to distinguish between the critical nuclei for
forming a 2D island on a surface, for forming a 3D island on a surface (e.g. in the Stranski-
Krastanov growth mode), and for forming a certain shape of a 3D island out of another shape.
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In this study, we don’t sample all possible configurations of equal size, but rather assume that
the most favorable final state exhibits the smallest barrier from the common initial state. To
be more precise, in our calculation of the critical nucleus for the formation of a ‘hut’-shaped
QD (Sec. 7.7) we vary the size of the QD under the constraint of an approximately constant
shape. For Ge islands on Si(001) there is some experimental indication that islands with
sizes of about the critical nucleus are already bound by those facets of the ‘hut’-shaped QD’s
that finally forms [85]. The alternative mechanism of nucleationless formation of islands from
morphological instabilities of the strained film was proposed for material combinations with
small lattice-mismatch [86, 87].

Note that the concept of a (‘thermodynamic’) critical nucleus employed in this study
describes the transition between two distinct states (e.g. film and ‘hut’-shaped QD). This is
not to be confused with the (‘kinetic’) critical nucleus i∗ of rate-equation approaches (see e.g.
Ref.[66]), where i∗ is the maximum number of atoms which is not yet stable against break-up.
(In other words: A conglomerate of i∗ + 1 atoms would be stable.) These concepts need to
be distinguished, particularly for the case that a group of atoms is larger than the ‘kinetic’
critical nucleus, but smaller than the ‘thermodynamic’ critical nucleus for the formation of a
3D island: Then the ‘kinetically stable’ 2D island would correspond to a ‘thermodynamically
unstable’ 3D island.

Our investigations of thermodynamic nucleation of 3D islands (Chap. 7 and 8) are footed
on classical nucleation theory. An instructive case is the formation of a homogenous liquid
droplet from a vapor phase [84]. The resulting change in the thermodynamic potential is

G1 = µvnv → G2 = µv(nv − nl) + µlnl + γlAl (3.13)

where µl,v and nl,v are the chemical potentials and the numbers of particles in the liquid
and vapor phase, respectively. For simplicity, we assumed that the surface free energy γl

is constant at all points of the droplet surface Al. The difference in the thermodynamic
potential ∆G = G2 −G1 in terms of the radius r of the droplet reads

∆G = −nl(µv − µl) + γlAl = −4πr3

3vl
∆µ+ γl4πr

2 (3.14)

with the volume per particle in the liquid vl and ∆µ = µv − µl. This quantity is shown in
Fig. 3.2 as a function of the droplet radius and the difference in chemical potentials. In the
regime of liquid stability (∆µ < 0) ∆G is monotonically increasing, thus the system can gain
energy by the nucleus decay for all droplet radii. In a supersaturated situation (∆µ > 0),
however, ∆G exhibits a maximum, the critical nucleus, at

rc =
2γlvl
∆µ

, ∆G(rc) =
16π

3

γ3
l v

2
l

∆µ2 =
1

3
γlA. (3.15)

A droplet of the critical radius rc can gain energy by either growing or decaying. Smaller nuclei
tend to decay whereas larger ones are most likely to grow further. The critical radius rc and
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Figure 3.2:
The formation energy ∆G of a liquid
droplet from a vapor phase depends
on the droplet radius r and the dif-
ference in chemical potentials ∆µ. In
classical nucleation-theory, the criti-
cal nucleus is given by the maximum
of ∆G. Additional influences that af-
fect the critical nucleus, such as elas-
tic interactions in stacked QD layers
(Fig. 8.9), can be interpreted as an
effective change of ∆µ.

the energy barrier ∆G(rc) for the formation of a droplet of a radius rc depend quantitatively
on the difference of chemical potentials. In Sec. 8.3.4 we will use this dependence to interpret
the elastic interaction energy in a stack of QD layers as an effective chemical potential.

The application of classical nucleation-theory to semiconductor heterostructures involves
several complications: The surface energy of a crystal is by no means a constant, but instead
an anisotropic function of the orientation given by the Wulff construction denoted above. This
implies the formation of edges and kinks of length Lj that appear as additional (positive)
energy contributions κj . Furthermore, there can be reconstructions of different stoichiometry
for the same orientation that possibly result in a piece-wise defined linear dependency of
the surface energy on the chemical potential. The strain tensor that is due to the lattice
mismatch of InAs and GaAs causes additional effects that can play a major role: The surface
energies can exhibit a different dependency on the strain tensor. Furthermore, the amount of
energy that is released by elastic relaxation depends on the particular shape and morphology
of the homogenous film or QD, and groups of QDs interact among themselves by long-range
elastic forces.

Previous studies (see e.g. Ref. [40]) combined the strain tensor as obtained from continuum-
elasticity theory with density-functional theory calculations of the surface energies and their
dependencies on (biaxial) strain. This approach is valid for large enough QDs (i.e. more than
5000-10000 atoms) and so far neglected the contributions from edges and kinks, but could
still provide great insight to QD growth. In this work, we account for all these contributions
simultaneously with the many-body potential developed in Chap. 5. Our results for the crit-
ical nucleus of 3D island formation, elastic interaction of QDs, and a transition between two
different 3D shapes are presented in Chap. 7. The influence of vertically stacked QDs on the
size of the critical nucleus is studied in Chap. 8.



Chapter 4

Continuum-Elasticity Theory and
Atomistic Strain

The lattice mismatch between two materials can lead to the Stranski-Krastanov growth mode
described in the previous section. Thereby, the island, the wetting layer and the substrate
undergo elastic deformations that depend on the material properties, the crystallographic
orientation of the substrate, and the island shape. In this chapter, we will expound those
elements of continuum-elasticity theory (CET) that are needed to describe such deformations
of continuous media, and how to determine them within atomistic approaches. The particular
properties of GaAs and InAs, and a detailed investigation of the deformations accompanying
InAs QDs on GaAs(001) substrates are given in Sec. 6 and Sec. 8, respectively.

4.1 Introduction

Continuum-elasticity theory describes the change of shapes of continuous media upon external
forces. This deformation is characterized by relations to the undeformed medium that serves
as reference. The fundamental quantity is the displacement vector u between the initial
position R = (x1, x2, x3) and the final position R′ = (x′1, x

′
2, x

′
3) of a point in the continuous

medium:

u := R′ − R. (4.1)

The deformation in a volume V of the medium is then completely given by the values of u(r)
for every point r in the volume V . The assumption of a continuous medium allows one to
define the displacement vector at r + δr in an infinitesimal neighborhood δV of point r. For
small displacements it can be written as [88]

ui(r + δr) = ui(r) +
∂ui(r)

∂x1
δx1 +

∂ui(r)

∂x2
δx2 +

∂ui(r)

∂x3
δx3, i = 1, 2, 3. (4.2)

32



4.1. Introduction 33

The partial derivatives ∂jui = ∂ui/∂xj describe the overall distortion of the media that can be
decomposed to deformation and rigid rotation by symmetrization and anti-symmetrization,
respectively,

εij =
1

2

(

∂ui(r)

∂xj
+
∂uj(r)

∂xi

)

, ωij =
1

2

(

∂ui(r)

∂xj
− ∂uj(r)

∂xi

)

. (4.3)

The symmetric part ε is called the strain tensor. The internal energy E(V, ε) of a crystal
with unstrained volume V can be in expanded in terms of the strain tensor:

E(V, ε) = E(V ) + V
3∑

i,j=1

σijεij +
V

2

3∑

i,j,k,l=1

εijcijklεkl + · · · (4.4)

where the stress tensor σ and the (adiabatic) elastic constants cijkl are given by

σij =
1

V

(

∂E(V, ε)

∂εij

)∣
∣
∣
∣
∣
ε=0

, cijkl =
1

V

(

∂2E(V, ε)

∂εij∂εkl

)∣
∣
∣
∣
∣
ε=0

. (4.5)

(The isothermic elastic constants are given similarly by an expansion of the Helmholtz free
energy [89].) The minimum of the internal energy in the above truncated expansion at
constant volume and entropy relates strain and stress in a tensor formulation of Hooke’s law:

σij = cijklεkl. (4.6)

Note, that the stress tensor σij is symmetric due to its definition as derivative of the total
internal energy with respect to the symmetric strain tensor ε in Eq. 4.5. The elastic constants
cijkl are relating two symmetric tensors and are thus symmetric with respect to the two pairs
of indices. These inner tensor symmetries strongly reduce the number of independent tensor
components and allow the introduction of a more compact notation. In this so-called Voigt
notation the indices are transformed like 11 → 1, 22 → 2, 33 → 3, 23 or 32 → 4, 13 or 31 →
5, and 12 or 21 → 6.

The above framework can be extended by a variational principle through employing min-
imum principles of thermodynamic potentials. This will allow the calculation of the equilib-
rium strain tensor for a given stress state. In this context, stress and strain form a pair of
thermodynamic variables, similar to pressure and volume. For the focus of this work, the
variables of choice are temperature and strain, rather than entropy and stress. Accordingly,
the characteristic thermodynamic potential is the free energy given by

F = E − TS and dF = σijdεij − SdT. (4.7)

The elastic response of the material to a certain stress is then determined by the minimum
of the free energy with respect to the possible relaxations. For isothermal deformations the
elastic energy reads

F =
1

2
cijklεijεkl. (4.8)
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For most crystal structures, the inherent symmetries can be used to determine a strongly
simplified expression [88] in terms of the strain tensor.

4.2 Elastic Constants of Cubic Systems

For structures with cubic symmetry that are studied in this work, the elastic energy density
given in Eq. 4.8 reduces to [88]

F (ε) = c11
2 (ε2xx + ε2yy + ε2zz) + 2c44(ε

2
xy + ε2xz + ε2yz)

+c12(εxxεyy + εxxεzz + εyyεzz) (4.9)

where the elastic constants are given in Voigt notation. For a properly chosen strain-tensor
the elastic energy in Eq. 4.4 can be solved for the elastic constants by taking the second
derivative of the internal energy. This can be done numerically with a unit cell based on the
equilibrium lattice constant that is deformed according to the applied strain tensor ε

x′ = [1 + ε]x =




1 +






εxx εxy εxz

εxy εyy εyz

εxz εyz εzz









x (4.10)

and the internal energy is minimized by relaxing all internal degrees of freedom. The elastic
constants can then be calculated with employing e.g. the following strain tensors:

εxx = x ∂2
xE = c11 · V0

εxx = εyy = εzz = x ∂2
xE = (c11 + 2c12) · 3V0

εzz = x2

4−x2 , εyz = x ∂2
xE = c

(0)
44 · V0

(4.11)

where we used ∂2
xE = ∂2E/∂x2 for brevity. The second derivative can be determined nu-

merically by e.g. a finite difference expression for numerically well-behaved data (like from a
many-body potential, see Chap. 2 ) or a fit to a polynomial (for numerically less well-behaved
data, like from DFT calculations, see Sec. 2).
Note that in the strain tensor for the calculation of c044 the four tetragonal bonds of an atom
in a zinc blende unit cell are no longer equivalent, which leads to a relaxation of the anion
lattice with respect to the cation lattice along the crystallographic direction [111]. The elas-
tic constants with and without consideration of the internal relaxation are denoted c44 and
c
(0)
44 , respectively. The relative relaxation is given by the Kleinman parameter ξ which can

vary from 0 for no internal relaxation to 1 when all four bonds adopt equal length [90]. The
numerical calculation of c44 is more tedious and would in principle require internal relax-
ation for each point that enters the numerical derivative, but Nielsen et al. [91, 92] derived
a procedure that reduces the numerical effort to only two independent calculations. They
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showed that within adiabatic and harmonic approximations, a displacement uτ and a strain
ε increase the energy per unit cell with volume V with k atoms by

∆E =
1

2

∑

k,k′

ukΦ(k, k′)uk′ + V
∑

ukD(k)ε+
1

2
V εc(0)ε (4.12)

with the tensors of force constants Φ, internal relaxation D, and elastic constants at vanishing
internal strain c(0). In cubic crystals the above expression reduces for certain combinations
of displacement and strain, particularly for u = u · (1 1 1 ) and εαβ = 1

2ε4(1 − δαβ) the force
reads:

F = µω2
Γ[ζ

a

4
ε4 + u] ·






1
1
1




 = F ·






1
1
1




 (4.13)

where µ is the reduced mass of the atoms, ωΓ is the frequency of the TO phonon at the Γ
point, and ζ is the Kleinman parameter. Similarly, the stress is given by

σαβ = σ4(1 − δαβ) with σ4 = c
(0)
44 ε4 + Ω−1Φζ

a

4
u. (4.14)

The actual displacement for a given strain value ε4 requires vanishing forces which yields the
following stress-strain relation:

σ4 = [c
(0)
44 − Ω−1Φ[ζ

a

4
]2]ε4 = c44ε4. (4.15)

Consequently, ω, c44 and ζ can be determined by applying firstly an atomic displacement

u = u(1)(1, 1, 1) and secondly a strain ε = ε
(2)
4 and calculating the resulting forces and stress:

I u = u(1), ε = 0 → ω2
Γ =

F (1)

u(1)µ
ζ(1) =

4Ωσ(1)

aF (1)
(4.16)

II u = 0, ε = ε
(2)
4 → ζ(1,2) =

4u(1)F (2)

aε
(2)
4 F (1)

. (4.17)

This procedure and the above strain tensors were used in this work to calculate the elastic
constants with the many-body potential in Sec 6.1.

The elastic constants fully describe the elastic response of crystals. Additional commonly
used quantities can be expressed in terms of these elastic constants: The bulk modulus B of
cubic crystals can be determined by

B = (c11 + 2c12)/3 (4.18)

or alternatively by applying isotropic strain (εxx = εyy = εzz = x) and determining the second
derivative of the elastic energy directly or from fitting the latter to a polynomial. Expressing
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the polynomial of the internal energy not in terms of the strain tensor, but rather in terms
of the volume and pressure of the unit cell yields the Murnaghan equation-of-state [93].

The knowledge of the values of the elastic constants and the minimum principle of the free
energy given in Eq. 4.9 are the only prerequisites to profit from the strength of continuum-
elasticity theory: Given e.g. an uniaxial external deformation, i.e. ε = δzzε0, the elastic
response in the xy-plane is given by

d

dν
F (ε0(δzz − νδxx − νδyy)) = 0 (4.19)

which yields the Poisson ratio ν for uniaxial strain. One can show that it depends on the
direction of strain n. This can also be expressed in terms of the Young modulus Y

ν(n) =
1

2

[

1 − Y (n)

c11 + 2c12

]

(4.20)

that depends on the direction of strain n as

Y −1(n) =
c11 + c12

(c11 + 2c12)(c11 − c12)
+

(
1

c44
− 2

c11 − c12

)

(n2
xn

2
y + n2

xn
2
z + n2

yn
2
z). (4.21)

The direction dependence vanishes for c44 = c11 − c12, in this case the material exhibits no
elastic anisotropy.

4.3 Biaxial Strain in Systems with Cubic Symmetry

In analogy to the uniaxial case above, one can define a Poisson ratio for isotropic two-
dimensional deformations, that we will refer to as biaxial deformations, in compliance with
most previous works. This kind of deformation occurs in the defect-free semiconductor het-
erostructures studied in this work where the crystal lattices of both materials need to adapt,
i.e. one of them may experiences tensile and the other compressive strain. The elastic en-
ergy associated with such deformations is of great importance for the structural stability and
often determines whether it is possible to obtain pseudomorphic growth. In fact, the elastic
energy stored in the biaxial strained film of deposited material is the driving force for the
occurrence of the Stranski-Krastanov growth mode. Furthermore, biaxial strained GeSi/Si
heterostructures increase the charge carrier mobility in high-speed transistors, an effect that
already reached the stage of application [94]. The use of epitaxial films on substrates with
high-index orientation [23, 95, 96] makes it desirable to have general expressions of the elas-
tic response to planar deformations. Marcus et al. [97] demonstrated a general scheme to
calculate the elastic response upon biaxial external deformations numerically. Nevertheless,
analytic solutions in terms of the Miller indices of the strain plane exist only for a few selected
cases in systems with cubic symmetry [98], and for thin films [99]. In this section, we solve
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the problem of cubic systems under biaxial strain in linear-response CET and present general
analytic expressions of the strain tensor, the Poisson ratio, and the elastic energy. These
results enable us to investigate non-linear effects with DFT, presented later in this work in
Sec. 6.2.

4.3.1 General Strain Tensor

Similar to the uniaxial case, the elastic relaxation upon biaxial strain in a plane (hkl) can
be given in an orthogonal coordinate-system of the deformation with two axes (e1, e2) in the
strain-plane (hkl) and a third (e3) along the direction of relaxation [hkl]. The relation to the
canonical coordinates can be given by a matrix T:

T(e1 e2 e3) = (ex ey ez). (4.22)

The biaxial strain-tensor εs that transforms a position xs to x′
s in this coordinate system of

the deformation is

x′
s = εsxs =






αs 0 0
0 αs 0
0 0 −ναs




xs (4.23)

where ν is the biaxial Poisson-ratio. A more general treatment is possible with introducing
commensurability constraints [100, 101], but for the comparison with DFT calculations, we
focus on the case of isotropic planar strain. The strain tensor εs can be combined with the
free energy of Eq. 4.9 by transforming εs from the coordinate system of the deformation to
the canonical coordinate-system of the crystal. This is advantageous as it allows us to use
the well-known structure-specific expressions of the free energy in canonical coordinates. The
above matrix T transforms also the strain tensor εs in deformation coordinates {e1, e2, e3}
to the corresponding strain tensor ε in canonical coordinates {ex, ey, ez}. This yields the free
energy in deformation coordinates

F (ε) = F (TεsT
T ). (4.24)

Together with the structure-specific free energy and the values of the elastic constants,
Eq. 4.24 allows us to calculate the elastic response upon biaxial strain in arbitrary planes by
determining the minimum of the elastic energy with respect to the biaxial Poisson-ratio:

∂

∂ν
F (ε) = 0. (4.25)

A general procedure of transforming the strain tensor to canonical coordinates with a tensor-
transformation law [102] was described in detail previously [97]. With this scheme Marcus [98]
determined the elastic energy of cubic systems upon biaxial strain analytically for low-index
planes and numerically for several high-index planes.
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A rigorous analytic derivation requires the knowledge of the transformation matrix T that is
not unique for a given strain plane due to the freedom to choose the in-plane vectors e1 and
e2. But for the case of biaxial strain, i.e. for two orthogonal deformations of equal absolute
value, the strain tensor is invariant under the particular choice of e1 and e2. In other words,
the elastic response can be calculated uniquely for a given plane of a structure with any
choice of e1 and e2, and thus depends solely on the elastic constants of the material, its
crystal structure, and the normal of the biaxial-strain plane e3‖[hkl]. This was already noted
by Marcus [98] for the elastic energy. Without loss of generality we choose an orthonormal
deformation coordinate-system that allows us to derive easily a general transformation matrix
T, similar to Lee [99]:

e1 = e2 × e3, e2 =
1

n2






kl
hl

−2hk




 , e3 =

1

n3






h
k
l




 (4.26)

with the normalization n2 =
√
k2l2 + h2l2 + 4h2k2 and n3 =

√
h2 + k2 + l2. This defines

the transformation matrix T that allows us to transform the strain tensor from deformation
coordinates to canonical coordinates:

ε = T






αs 0 0
0 αs 0
0 0 −ναs




TT (4.27)

= − αs

h2 + k2 + l2






νh2 − (k2 + l2) hk(ν + 1) hl(ν + 1)
hk(ν + 1) νk2 − (h2 + l2) kl(ν + 1)
hl(ν + 1) kl(ν + 1) νl2 − (h2 + k2)




 .

This strain tensor is obviously not altered by multiplying the Miller-indices with a common
prefactor. Note, that the cubic symmetry of the crystal lattice enters the transformation
matrix in the definition of the orthonormal deformation coordinate-system in Eq. 4.26. Hence
the canonic representation of the strain tensor as given in Eq. 4.27 holds true only for materials
with cubic symmetry. The corresponding result for non-cubic systems can in principle be
obtained in a similar way using a proper orthonormal basis in Eq. 4.26.

4.3.2 General Linear Elastic Response

With the elastic energy of Eq. 4.9 and the canonic strain tensor of Eq. 4.27, we determined
the elastic response of a system with cubic symmetry upon a biaxial deformation by min-
imizing the elastic energy with respect to the Poisson ratio ν, according to Eq. 4.25 with
MATHEMATICA [103]. The resulting Poisson ratio and elastic energy upon biaxial strain
in the (hkl) plane depend only on the elastic constants cij , the strain plane (hkl), the biaxial
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strain αs, and the strained volume V :

ν = 2 · c12(h
4 + k4 + l4) + (c11 + c12 − 2c44)(h

2k2 + h2l2 + k2l2)

c11(h4 + k4 + l4) + 2(c12 + 2c44)(h2k2 + h2l2 + k2l2)
(4.28)

=: ν(0)

F (αs) = (c11 + 2c12) · α2
s · V · (4.29)

[(c11 − c12)(h
4 + k4 + l4) − (c11 − c12 − 6c44)(h

2k2 + h2l2 + k2l2)]

c11(h4 + k4 + l4) + 2(c12 + 2c44)(h2k2 + h2l2 + k2l2)
.

These analytic results hold true for arbitrary biaxial strain and every material with cubic
symmetry. Materials are usually called elastically isotropic if 2c44 = c11 − c12, i.e. if the
Poisson ratio for uniaxial strain is independent from the direction of strain. The above
equations show that for such materials the Poisson ratio for biaxial strain is independent
from the strain plane, too. In that sense, elastic anisotropy with respect to uniaxial strain
implies elastic anisotropy with respect to biaxial strain. Note that the analytic results of
both, the Poisson ratio and the elastic energy are identical for values of (hkl) with constant
ratio m given by

m =
h4 + k4 + l4

h2k2 + h2l2 + k2l2
(4.30)

such as (110), (211), and (321). The analytic Poisson-ratios for (100) and (110) from Eq. 4.28
are identical to those given in previous works [88, 98, 104]. In a comparison of the elastic-
energy density upon biaxial strain in Fe, Cu, V, and Ni as obtained previously by Marcus [98],
and our analytic expression with the same elastic constants, we find identical results for (100),
(110), and (111), but different values for (211), (311), (310), (321), and (331).
The cubic symmetry of the crystal lattice is reflected in the invariance of the biaxial Poisson
ratio and the elastic energy under exchange of the Miller indices of the strain normal. This
symmetry is also apparent in Fig. 4.1 that shows a spherical plot of both quantities as a
function of the normal vector of the biaxial strain-plane. These figures were obtained by
multiplying the normalized vector (hkl) with ν or F as obtained from Eq. 4.28 and 4.29,
respectively, using the experimentally observed elastic constants of GaAs and InAs as given
in Ref [105]. The comparison of biaxial and uniaxial Poisson ratio of GaAs and InAs in the
right panel shows that they are qualitatively very similar, but differ quantitatively by about
a factor of two. Figure 4.1 illustrates the relationship between the elastic relaxation and
the elastic energy: Biaxial strain in a plane perpendicular to an elastically soft direction,
e.g. (001), allows for a comparably large relaxation along the plane normal with comparably
small elastic energy.

Note, that these results allow for an approximative calculation of the transition between
fcc and bcc phases, the so-called Bain path (see e.g. Ref. [106]). For this purpose, the elastic
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a) b) c)

d) e) f)

Figure 4.1: Poisson-ratio (left column) and elastic-energy density (middle column) of GaAs
(top row) and InAs (bottom row) as an example of a cubic system under biaxial strain in arbitrary
planes, together with the corresponding results for uniaxial strain (dashed lines in right column) in
the l = 0 plane. The directional dependence corresponds to the normal vector of the strain plane.
The colored dots mark selected orientations that will be discussed in Sec. 6.2: green=(0 0 1),
yellow=(1 1 0), black=(1 1 3), red=(3 1 7), white=(5 2 11), blue=(7 3 15).

constants of the two cubic phases can be employed to calculate the elastic energy upon
the particular biaxial strain along the path using Eq. 4.29. The quality of this (harmonic)
approach will depend on the importance of non-linear elastic response.

4.4 Atomistic Strain-Tensor

Strain in a material system can affect several properties that are relevant for growth: It af-
fects the surface energies [33], and can alter the relative stability of different surfaces [75] or
different reconstructions of the same surface [107, 108]. Furthermore, strain can modify the
energy barriers for surface diffusion, as observed both theoretically and experimentally (see
e.g. Refs. [109, 110], or even alter the qualitative character of diffusion [111]. In addition,
there are effects on a more mesoscopic level, such as the elastic interaction of steps [112] or
islands [113]. Later in this work we will present our results of lateral and vertical elastic
interaction of QDs, the latter effectively creating precursors for island nucleation (Sec. 8),
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and discuss the strain dependence of diffusion on QD side facets (Sec. 9). Another aspect is
that the change of the relative spatial position of cations and anions described by the strain
tensor causes piezoelectric charges. For materials with non-negligible ionicity, this can have
a strong impact on the electronic properties of nanostructures [114, 115, 116, 117], which is
already used for band-gap engineering [94]. In this section we describe the determination of
the strain tensor of heterostructures with InAs QDs that was provided for further usage in
tight-binding calculations.

The strain tensor of a semiconductor nanostructure is often much more complex than
the cases presented in the last sections. It can be determined numerically with both atom-
istic and continuum approaches (see e.g. Ref. [104] for a comparison). The latter are based
on minimizing the internal energy in the equations of continuum-elasticity theory with the
strain tensor as variable, and therefore naturally determine the strain tensor. In atomistic
approaches, however, the internal energy of a structure is minimized by relaxing the posi-
tions of the atoms that are considered in the energy functional of the particular method, such
that the strain tensor can be evaluated only afterwards. An assessment of local strain with
Eq. 4.3 requires the comparison of a relaxed structure with a reference structure. Pryor et
al. [104] gave a method for diamond and zinc blende lattices that compares the sides Rij of
the strained tetrahedron formed by the four anion neighbors of a cation with those of the
undistorted one R0

ij as shown in Fig. 4.2 where the indices number the atoms.

Figure 4.2:
The atomistic calculation of

the strain tensor ε is based on
the comparison of the sides
R

0 and R of an ideal and a
strained tetrahedron formed
by the next-neighbor anions
of a cation.

In general, the choice of the three considered tetrahedron sides is arbitrary as long as they
are linearly independent. Note, that using a reference structure for a tetrahedron with As in
the center and cations in the corners would require to determine systematically the structure
of InxGa1−xAs alloys, which is a field of research in itself. This scheme is applicable for
heterostructures, too, as every In or Ga atom has four As neighbors in every compound
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configuration. The local strain tensor of the distorted tetrahedron in this approach is
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 . (4.31)

The strain tensor is given in the same coordinate system as the atomic positions, therefore
it might be necessary to either rotate the strain tensor to canonical coordinates or supply
the distance vectors in the canonical coordinates of the crystal. In fact, we performed the
latter transformation for free-standing QDs that oriented along the directions of the surface
reconstructions, i.e. ex = (110) and ey = (11̄0). We used the following choice for the
canonical R0:

{exyz} = a0






1 0 0
0 1 0
0 0 1




 ⇒ {R0} =

a0

2






1 0 −1
1 −1 1
0 1 0




 . (4.32)

The strain tensor can be obtained from the {R} that corresponds to the position of the four
anion neighbors of each cation and evaluating

ε = {R} · {R0}−1 − 1. (4.33)

In this way, the atomistic strain tensor is given at the spatial positions of the relaxed cations,
i.e. on a non-regular grid. Further processing like e.g. visualization and calculation of the
piezoelectric potential usually require to interpolate the strain tensor from a non-regular to
a regular grid. For the pictures shown later in this work, we used an interpolation with
weighted Gaussian functions centered at the cation sites implemented by M. Winkelnkemper,
and a visualization tool developed by A. Schliwa.

Comparison: MBP vs Green’s-Function Approach The strain tensor ε plays a crucial
role during the self-assembled growth of lattice-mismatched QD nanostructures (see Chap. 7
and 8). Several approaches of calculating ε have been employed in previous studies, but
only few quantitative comparisons of such methods are available (e.g. Ref. [104]). In a
collaboration with R. Kunert and E. Schöll from the Technical University of Berlin, we
compared the strain tensor as obtained with the atomistic method developed in this work
(Chap. 5) with the results of a Green’s function approach for a simple representative model
structure [118]. The latter approach uses the numerically exact solution for the Green’s
tensor in k-space [119] in the homogeneous moduli approximation of continuum elasticity
theory [120]. This method was successfully employed in previous studies of strain properties
in various materials [121, 122].

As an example structure, we have chosen a circular plate-like inset of InAs with a radius
of 29 Å embedded in a box of GaAs with dimensions of Lx×Ly×Lz = 180 Å×180 Å×170 Å.
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This structure was relaxed with the many-body potential developed in this work (cf. Chap. 5
and App. B) until the maximum force on an atom in the system was below 0.01 meV/Å.
Then the atomistic strain tensor at the sites of the cations was calculated as described above,
and interpolated onto a rectangular grid for ease of comparison. The compressed InAs inset
appears as blue plate in the planar cuts of Tr(ε) shown in the left panel of Fig. 4.3, surrounded
by weakly affected GaAs. For a quantitative comparison with the strain tensor of the same
structure, determined with the Green’s function approach, we performed linescans along
the (110) crystallographic direction in different heights above the InAs inset (right panel of
Fig. 4.3).

Figure 4.3: Comparison of Tr(ε) for a simple InAs/GaAs heterostructure determined with
the many-body potential developed in this work (right: dashed lines) and a Green’s function
approach (right: solid lines): The sample is a GaAs box with a circular monolayer inset of InAs
that appears as blue plate in planar cuts of Tr(ε) obtained with the prior method (left). Selected
linescans (right) along the crystallographic direction (110) are in reasonable agreement in a height
of 9 ML (blue) above the InAs inset, but show some discrepancy (text) in the border regions of
weakly strained layers at a height of 17 ML (red).

Both methods yield an expansive strain of the central GaAs region that is directly above
the InAs inset, and a similar range of values of Tr(ε) in both investigated heights. The lateral
extension of the region with Tr(ε) > 0 obtained by the two methods is in good agreement
at a height of 9 ML (right panel: blue lines) and still reasonable for the weakly strained
layers at a height of 17 ML (right panel: red lines). Regarding the GaAs border regions
surrounding this tensile central area, both methods yield vanishing strain at small height,
but show some discrepancy in the description of the weakly strained GaAs regions at larger
height, namely an opposite sign of Tr(ε) (right panel: red lines) in the border regions. With
the applied periodic boundary conditions in mind, the compressively strained border region
as obtained with the many-body potential (right panel: dashed red lines at Tr(ε) < 0) seems



44 4. Continuum-Elasticity Theory and Atomistic Strain

to be more consistent with the tensile strain of the central region. The Green’s function
approach furthermore yields a weaker compression of the intermediate GaAs region above
the corner of the InAs inset as compared to the many-body potential that exhibits two distinct
minima of Tr(ε) (right panel: dashed blue line). This finding is interesting in the context
of investigations of growth correlations in stacked QD layers (see also Chap. 8) by kinetic
Monte-Carlo simulations with strain tensors from Green’s functions: An additional origin
for the observed weak size correlations of vertically stacked QDs [123] could be the outlined
underestimation of the compressive strain above the corner of the overgrown structure. It
would be interesting to see if the compressive ‘shadow’ of the perimeter of the overgrown
structure obtained with the many-body potential developed in this work would give rise to
more pronounced size correlations in such kinetic simulations.



Chapter 5

Many-Body Potential

Many-body potentials 1 are able to treat semiconductor nanostructures in full atomistic detail,
in contrast to continuum-elasticity theory described in the previous section. Calculations of
the strain tensor with continuum-elasticity theory (CET) show good agreement with atomistic
valence force-fields [117, 124] in the far field, but discrepancies in the short-range regime [104].
The force fields are limited to certain lattice structures and were not yet adapted to the
description of surfaces. Analytic many-body potentials, however, can be optimized to a much
broader variety of bonding situations. Such potentials allow not only the calculation of strain
tensors of structures modeled with millions of atoms, but also provide the corresponding
cohesive energies e.g. for the growth investigations presented in Chap. 7 and 8. At the
moment they seem to be the most promising approach for the description of long-range
strain effects in large-scale systems with an atomically detailed consideration of surfaces,
edges, and kinks. In this section we describe the many-body potential that we applied in this
work, as well as the optimization of its interaction parameters and the final values. Detailed
tests of the description of In, Ga, As, InAs, and GaAs bulk and surface properties are given
in Chap. 6.

5.1 Introduction

In quantum mechanics, the internal energy EQM of a set of i atoms is implicitly given by the
Schrödinger equation and can be determined by electronic-structure calculations that aim to
find a self-consistent solution for the unknown wave function and eigenvalues of the energy
(Sec. 2.2). A many-body potential in contrast aims at calculating the internal energy Epot

of a set of atoms explicitly and solely from the atomic positions {Xi}, without explicitly

1The different terms (semi-)empirical potential, interatomic potential, or many-body potential in the liter-
ature pronounce the motivation of the functionals or the kind of reference data they were optimized for. In
this work, we use only the term many-body potential.

45
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considering electrons.
EQM ≈ Epot = F ({Xi}) . (5.1)

The advantage is an increase in computation speed by typically several orders of magni-
tude as compared to electronic-structure calculations. The challenge is to find an explicit
expression F that allows one to study the phenomena of interest. (Note that the choice of
not explicitly considering electrons already implies several limitations, such as the inability
to investigate phenomena that arise from electronic excitations, spin properties, or electron
phonon coupling.) The complex quantum-mechanical nature of atomic bonds make the search
for suitable functional forms a formidable task. Even more challenging is the description of
bond-making-and-breaking that occurs during e.g. the diffusion of atoms on surfaces and the
formation of surface reconstructions, as we shall see in Sec. 6.3 and 6.5. Many-body po-
tentials found widespread application in molecular-dynamic (MD) and kinetic Monte-Carlo
simulations [125]. They play an important role in multi-scale approaches where they are
combined with electronic-structure methods such as DFT or tight-binding (see e.g. Ref. [76]
for a recent review).

There is a variety of many-body potentials available in the literature (see e.g. Ref. [126]
for a review). Some of them are expansions of the internal energy in terms of the bond lengths
and angles (e.g. Keating valence force-field [124]), others are motivated by empirical con-
siderations (e.g. Morse potential [127]), or low-order approximations of electronic-structure
theories (e.g. embedded-atom method [128] and bond-order potentials [129, 130]). Some of
them are fully equivalent [131] and some of them are subsets of others [132]. The following
criteria can be used to classify all of them:

• structural information: usage of n-body configuration with n−1 distances, n−2 planar
angles and n− 3 torsional angles;

• flexibility: given functional form of F (additive or non-linear with respect to contribu-
tions of different bonds of the same atom) for all bonding situations or combination
with data base for different bonding situations; and

• functional form: analytic functional with a set of parameters, or purely numerical
representation of F with e.g. splines or neural networks.

The description of a particular material system requires the proper adjustment of the ac-
cording functional. For this purpose the potentials with given analytical form provide sets
of parameters that need to be adjusted, as discussed in Sec. 5.3 and 5.4. Different sets of
parameters were found for many material systems using the same analytical form. For the
purpose of clarity, we refer to the analytical form as functional and consider the entity of
functional and parameters as potential. In this work, we have chosen to employ a bond-order
functional of the Abell-Tersoff type that showed to capture many effects of covalent bonding
in semiconductor heterostructures in previous works.
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5.2 Bond-Order Potentials

The Abell-Tersoff functional is motivated by the suggestion of Abell [133] to describe the pre-
viously observed universal binding-energy curves for solid cohesion and chemisorption as a
sum of next-neighbor pair-interactions that are altered by the local environment. Tersoff de-
veloped a functional to describe the binding in a large number of Si solid-state structures [134].
It was improved several times [135, 136, 137] and extended to the compounds SiC, SiGe [138]
and many other systems. Brenner [139] could improve the erroneous treatment of conjugacy
and the overbinding of radicals by introducing additional ad hoc terms in the bond-order
expression. These terms are sophisticated interpolations of a database of bond properties
in different situations of discrete numbers of neighbors. This route of improving a potential
by empirically introducing more terms in the functional increases the number of parameters
that need to be adjusted and relies heavily on the choice of the particular terms. Pettifor and
co-workers devised a systematic way of deriving bond-order potentials from approximations
to tight-binding models [129, 130, 140].

5.2.1 Derivation from Tight-Binding Bond Model

Sutton et al. [141] used the variational principle of density-functional theory (Chap. 2.2) to
formulate the tight-binding bond model that approximates the binding energy of a sp-valent
solid by

E = Ebond + Eprom + Erep. (5.2)

The promotion energy Eprom accounts for the energy involved in changing the occupancy of
orbitals during bond formation and can be neglected for most sp-valent solids [142]. The
repulsive term Erep accounts for electrostatic and exchange-correlation effects during the for-
mation of the solid from atoms, and can be approximated an effective pair-potential between
the atoms [141]. The energy of the attractive covalent bonds Ebond of a system with N atoms
can be determined within a two-center orthogonal tight-binding approximation from the local
density-of-states nα and the on-site atomic energy levels εα by [141, 143]

Ebond =
∑

α

∫ εF

(ε− εα)nα(ε)dε (5.3)

where εF is the Fermi energy and α is the orbital type, e.g. s and p. The energy difference
can be rewritten in terms of the Hamiltonian and the on-site atomic orbitals with the Green’s
function

(ε−H)G = 1 ⇒ (ε− εα)Giαiα = 1 +
∑

jβ,j 6=i

HiαjβGjβiα (5.4)

with Gjβiα = 〈jβ|(ε−H)−1|iα〉 and the two-center energy integral matrix elements Hiαjβ =
〈iα|H|jβ〉 [143]. Interpreting the imaginary part of the Green’s function as local density-of-
states allows one to express the global covalent bond energy Ebond as a sum of local covalent



48 5. Many-Body Potential

bond energies Eij
bond between atoms i and j

Ebond =
1

2

∑

i6=j

Eij
bond =

1

2

∑

jβ,j 6=i

HiαjβΘjβiα. (5.5)

The introduced bond order given by

Θjβiα = 2Im

∫ εF

Gjβiαdε (5.6)

can be understood as one-half the difference between the electron occupancy in the bonding
state 1√

2
|iα + jβ〉 and the anti-bonding state 1√

2
|iα − jβ〉. In saturated bonds with two

electrons in the bonding state and none in the anti-bonding state, the bond order reaches
a value of one, whereas it is less than one in the case of covalent bonds which are usually
unsaturated. The further derivation of an analytic expression of the bond energy requires
the determination of the matrix elements Hiαjβ of the Hamiltonian with e.g. the two center
approximation of Slater and Koster [144], and to calculate the bond order Θ. Pettifor and
co-workers [129] derived an exact many-atom expansion of the bond order by expressing
the diagonal matrix elements of the Green’s function with a Lanczos recursion and the off-
diagonal matrix elements as derivatives of the diagonal matrix elements. They show that the
recursion coefficients can be expressed in terms of the moments of the local density-of-states.

Expanding the local density-of-states of tetrahedral semiconductors up to the second
moment µ2 results in a bond-order term that is similar to the empirically found Abell-Tersoff
functional: The angular dependence g(θijk) of the strength of a bond between two atoms i
and j on the position of a third atom k is similar to that of a σ bond obtained from the above
procedure. In both cases, the overall functional form of the bond order is

Θ = f1(rij) [f1(rij , g(θijk))]
−1/2 (5.7)

where f1 and f2 are functionals and rij is the the distance between atoms i and j. New
developments and parameterizations for second order expansions of the local density-of-states
were presented recently [145, 146], higher-order expansions are subject of development.

5.2.2 Abell-Tersoff Functional

In the Abell-Tersoff functional the total cohesive energy Ecoh of a configuration of atoms is
given by a sum over all atoms i and their neighbors j:

Ecoh =
∑

i,j<i

f c
ij(rij)

[

V R
ij (rij) −Bij(rij)V

A
ij (rij)

]

(5.8)

with the pairwise interatomic distance rij = |ri − rj |. The pairwise attractive and repulsive
interaction V A

ij and V R
ij correspond to f1 in Eq. 5.7 and to Erep in Eq. 5.2, respectively. In
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the Abell-Tersoff functional, both terms are represented by a Morse potential:

V R
ij (rij) =

Dij

Sij − 1
exp

[

−βij

√

2Sij(rij −R0
ij)
]

, (5.9)

V A
ij (rij) =

SijDij

Sij − 1
exp

[

−βij

√

2/Sij(rij −R0
ij)

]

. (5.10)

The bond-order term Bij in the Abell-Tersoff functional corresponds to Θ in Eq. 5.5. It
is usually less than unity and therefore weakens the attractive pair potential dependent on
the bonds of an atom to all possible other bonding partners. The bond-order term in the
Abell-Tersoff functional differs slightly in the literature [138, 147, 148, 149], but can easily
be brought to a common form by introducing the additional parameters n and m in the
bond-order terms:

Bij(rij) = [1 + (γijχij(rij))
nij ]

− 1

2nij (5.11)

χij(rij) =
∑

k 6=ij

f c
ik(rik) · gik(θijk)e

[(αik(rij−rik))mik ]. (5.12)

Analytical bond-order functionals that were derived form a moment expansion [130, 150, 151]
as described in the previous section show a somewhat different functional form, but the overall
angular dependence of the bond order for a σ bond is quite similar [130, 152]. However, a
notable difference is that the moments expansion additionally yield π bonds that are absent
in the Abell-Tersoff functional. Therefore, the latter gives an erroneous description of radicals
that are important in e.g. hydrocarbons [139] but play a minor role in this work. The angular
function gik(θijk) in the Abell-Tersoff functional allows one to model anisotropic interactions
such as the sp3 hybridization of III-V semiconductors and is given by

gik(θijk) = δik

(

1 +
c2ik
d2

ik

− c2ik
d2

ik + (hik − cos θijk)2

)

(5.13)

where θijk denotes the angle between rij and rik. The nearest neighbor approximation of
the tight-binding scheme that was used in the previous section appears in the Abell-Tersoff
functional as a cutoff function f c

ij(rij) that limits the interaction range to neighbors within a
certain distance:

f c
ij(rij) =







1 rij −Rc
ij ≤ −Dc

ij

1
2

[

1 − sin

(

π
rij−Rc

ij

2Dc
ij

)]

|rij −Rc
ij | < Dc

ij

0 rij −Rc
ij ≥ Dc

ij

. (5.14)

Details on the implementation of the Abell-Tersoff functional and the analytic derivative for
calculating the forces on individual atoms are described in Appendix B. A major part of this
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work was to determine a new parameterization of the above functional for reliable studies of
InAs quantum dots on GaAs substrates. In the next sections we discuss general aspects of
fitting such a many-body potential and qualitative details of our fitting procedure together
with the new parameters. The quantitative properties of In, Ga, As, InAs, and GaAs bulk
and surface structures as obtained from experiment, density-functional theory, continuum-
elasticity theory, and the many-body potential with our new parameterization and previous
ones, are collected and compared in the following chapter.

5.3 Geometric Interpretation of Parameter Optimization

The goal of optimizing the parameters of a many-body potential is to reproduce the config-
urational energy of given structures {Xi} or other deduced properties, such as bulk elastic
constants, and surface energies within a certain accuracy. The match between the result of
the functional and a reference properties Di can be expressed analytically by a non-linear
equation. This defines a set of r non-linear equations that relate the r reference properties
and the p parameters of the potential by

FP

(

{Xi}j

)

= Dj , j = 1 . . . r (5.15)

where F is the functional and P is a particular choice of potential parameters. From the
point of view of parameter optimization to known reference properties Dj , this is an implicit
equation for the parameters. Consequently, the task of optimizing p parameters for a set
of r reference data points is equivalent to solving a set of r non-linear equations with p
unknowns. In contrast to a set of linear equations, even for p = r there may be no solution,
there may be one or several solutions, or even a continuum of solutions [153]. Each single
non-linear equation gives a relation between the parameters P that would allow the correct
description of the respective system property. This defines a solution manifold Mi, i.e. a
hypersurface in parameter space, given by the functional form of the potential and the system
properties to be fitted. Mij is the intersection of two manifolds, corresponding to parameter
sets which correctly describe two material properties i and j. Correspondingly, M1...r is
the solution manifold describing all material properties in the reference data set. In case
there is no solution (M1...r = ∅), the chosen potential cannot reproduce the desired material
properties exactly, but only with certain errors. The number and shape of intersections (i.e.
the number of exact solutions), depends on the number of manifolds (i.e. the number of
reference properties), their shapes and mutual location. If there is a continuum of solutions,
the given set of reference properties is redundant for the given potential; if there is no solution,
it is contradictory. Note that for noisy reference data there might be no solution, even if a
potential would be able to model the physical interaction properly.

The concept of manifolds allows for a geometric formulation of the requirements to an
ideal functional: It would define r manifolds Mi that intersect in one point P0 only and
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thereby define a unique set of parameters that reproduce the r reference properties exactly.
For each additional reference data point, the perfect functional would define a manifold Mr+1

that contains P0. This would allow one to apply the parameters P0 that where obtained from
r reference data sets to the additional structure Sr+1 and obtain Dr+1 exactly.

In many cases it is not possible to exactly reproduce all reference properties at the same
time, but rather an approximate solution needs to be found. Consequently, parameter fitting
is done by minimizing a target function χ(P ) which depends on the deviations of the reference
properties D? and the corresponding properties D∼(P ) as obtained by the potential with a
parameter set P . The particular importance of different reference properties can be accounted
for by assigning appropriate weights wi. In this work, we used the target function

χ(P )2 =
r∑

i=1

(D?
i −D∼

i (P )

wi

)2

, (5.16)

but other forms might be better suited for fitting reference data with constraints. In the
following example we will demonstrate several characteristic problems of fitting parameters
of a many-body functional.

5.3.1 Example: Lennard-Jones Potential

We will try to describe the lattice constants and cohesive energy of an arbitrary material
in face-centered cubic and simple cubic structures with a Lennard-Jones potential. This is
certainly not the adequate potential to simultaneously capture fcc and sc structures, but it
can serve to illustrate more general conclusions. Later we will discuss the consequences of
choosing more complicated functionals.

Assume a cutoff radius that includes only the first neighbors of fcc (distance r(fcc) =
a0(fcc)/

√
2) and sc (r(sc) = a0(sc)). First, we consider a fcc lattice with a0(fcc) = 4 Å and

E0(fcc) = −2.5 eV. For this case the parameters PLJ = (c1, c2) can be easily determined
from

ELJ(r(fcc)) = E0(fcc),
∂ELJ

∂r

∣
∣
∣
r(fcc)

= 0. (5.17)

Each condition is an implicit definition of a manifold Mi in the parameter space of c1 and
c2 (without loss of generality we set c1 ≥ 0 and c2 ≥ 0):

M1 : 12 · 4c1 ·
[(

c2
r(fcc)

)12

−
(

c2
r(fcc)

)6
]

= E0(fcc), M2 : 2 ·
(

c2
r(fcc)

)6

− 1 = 0. (5.18)

This set of equations has an unique and exact solution that is given by the intersection of the
corresponding manifolds as shown in Fig. 5.1. For this simple example, the parameters could
easily be determined analytically, but for realistic cases this is no longer feasible. Similarly
to fcc, we consider a sc structure with a0(sc) = 0.6 · a0(fcc) and E0(sc) = 0.9 · E0(fcc)
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and thereby define additional manifolds M3 and M4, respectively. Such relations between
fcc and sc could represent e.g. Ga, In, or As (see Tab. 6.1- 6.3). The resulting set of
manifolds (Fig. 5.1) no longer has a common intersection, but rather several crossings of
subsets. The large distance between the manifolds M12 and M34 in parameter space indicates

Figure 5.1:
Solution manifolds in the parameter

space of a Lennard-Jones Potential.
The reference data Ecoh and a0 for fcc
and sc define M1, M2, and M3, M4,
respectively. Intersections of a set of
manifolds are exact solutions for the
corresponding reference data.

that the Lennard-Jones Potential is not suitable for a simultaneous description of the two
chemical environments fcc and sc for the given material (i.e., the given a0(fcc)/a0(sc) and
E0(fcc)/E0(sc) ratios). Already for this very simple case, the character of the parameter
solution depends strongly on the chosen subset of the reference data, even for an equal
number of reference data and parameters: There are four different exact solutions for the
subsets {a0(fcc), E0(sc)}, {a0(sc), E0(sc)}, {E0(fcc), E0(sc)}, and {E0(fcc), a0(sc)}. For
{a0(fcc), E0(sc)} there is only an approximate solution in the limit of c1 → ∞; and for
{a0(fcc), a0(sc)} there is a continuum of approximative solutions at constant c2, which gives
a bad description of both structures. Subsets with three properties, as well as the complete set
of four properties, define approximate solutions (i.e. different minima in the target function
χ) which depend on the chosen weights wi. The latter scale the contribution of the according
manifolds and thereby shift the position of the minimum of χ, i.e. they result in different
approximate solutions. The depth of these minima reflects the ability of the underlying
functional to describe the particular choice of reference data. In this example, the subset
{E0(fcc), a0(sc), E0(sc)} can be represented more accurately than any other subset with
three reference data points. This means that a potential which has been fitted to the simple
cubic structure (M34) describes the configurational energy of a fcc structure with lattice
constant a0(sc)/0.6 reasonably well (M1), but it cannot describe the fcc equilibrium lattice
constant (M2 is not crossed).
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5.3.2 Practical Consequences

This simple example illustrates some very basic characteristics of optimizing the parameters
of a many-body functional: A set of fitted parameters is the (approximate) solution for a
specific set of equations defined by the reference data, for a specific choice of error weights
and for a specific construction of the target function. Furthermore, the sum of quadratic
deviations in Eq. 5.16 for a set of reference data can be expressed as linear combination of
sums of quadratic deviations for subsets of the reference data. Hence, for this form of target
function, the minimum of χ for a set of r reference data is located (in parameter space)
inside the polyhedron whose corners are defined by the different minima of χ for the possible
subsets with r − 1 reference data. This means on the one hand, that the quality of the
parameters for a sufficiently large set of reference data can not be systematically improved
by including more reference data with similar bonding environment. And on the other hand,
the quality of the description of a subset of reference data can decrease by including reference
data with a different bonding environment. In other words, from a mathematical point of
view, it is not a priori known which subset of reference properties can be fitted within a
requested accuracy. Hence, it is not necessarily the best choice to optimize all parameters for
all reference data. Instead, there can be conflicting subsets of reference data that cannot
be fitted simultaneously with the requested accuracy. Thus, in practice, as soon as one
assumes a non-ideal functional, one needs to distinguish between those properties that should
be reproduced, and those that need not be reproduced and whose weights can be reduced for
the benefit of the former. The difficulty of anticipating the conflicting subsets is similar to
that of ‘postulating’ a functional: it requires a deep understanding of both the properties of
the functional and the physical nature of the involved bonding environments. We meet with
this obstacle of identifying conflicting subsets by performing extensive optimization attempts
that combine different subsets of parameters and different subsets of reference data. This
approach can be regarded as a systematic trial-and-error search. After having identified
conflicting subsets of reference data and having reduced the weight of one conflicting subset,
we repeated the search campaign until we successively optimized the potential parameters to
an acceptable overall quality. During this procedure we tried to avoid overfitting effects by
discarding those parameter sets that showed an improvement for the reference data, but a
deterioration of a set of test data that were not explicitly included in the optimization. In all
optimization steps we used the properties of high-index surfaces (see Sec. 6.3) as test data.

The parameters of the cutoff function were not varied in all optimization steps but rather
were set to the values in Tab. 5.1 to include at most the second neighbor shell of the in-
vestigated bulk structures. Increasing the interaction range effectively creates additional
contributions from the angular and/or pair-wise terms that enable the numerical fitting rou-
tine to distribute the energy contributions among different terms. Several attempts of fitting
parameters with an increased cutoff radius for all terms or for the pair-interactions only were
not promising and discarded. Note that the cutoff function creates a technical difficulty: If
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a fitting step in parameter space leads to unstable structures and one of the included refer-
ence data requires a structure relaxation, the fitting algorithm faces the situation that atoms
eventually leave the cutoff radius and do no longer interact at all. As a result, the algorithm
would fail to reproduce the corresponding target quantity.

5.4 Determination of the Parameters

The elemental materials As, Ga, In, and the compound materials GaAs, InAs are of great
technological importance and comprehensive experimental and theoretical results for the lat-
tice constants, cohesive energies and bulk moduli of various phases are available (see e.g.
Ref. [74, 105, 148, 154, 155, 156, 157, 158, 159, 160]). Nevertheless, only few analytical
many-body potentials were developed for this material system. Among these, the bond-order
functional of the Abell-Tersoff type [135, 138] that is used in this work is well suited to
describe the covalent bonding character of semiconductors. Previously published parameter-
izations [147, 148, 149, 161, 162, 163] of this functional for elemental In, Ga, As, and the
compound materials GaAs and InAs were optimized for equilibrium bulk properties. Our
detailed tests of these parameter sets with respect to the description of bulk elasticity and
surface properties pointed to the possibility of further optimizing them for quantitative in-
vestigations of the energetics of InAs/GaAs nanostructures. This implies the necessity to
determine appropriate numerical values for the parameters Rij , Dij , βij , Sij , γij , αij , δij ,
cij , dij , hij , nij , mij , R

c
ij , and Dc

ij introduced in Sec. 5.2. For this purpose, we optimize
these parameters for the description of a set of reference data that represent the anticipated
bonding configurations.

5.4.1 Reference Data

The reference data that we have chosen for the case of InAs/GaAs nanostructures are selected
properties of several bulk and surface structures (see Chap. 6). We started with a collection
of reference data that is based on previously published experimental and theoretical works
and extended our reference data by results of additional DFT calculations using the program
packages fhi98md [47] and SFHIngX [31]. We use norm-conserving pseudo potentials [60],
Monkhorst-Pack k-point meshes [164], and the local-density approximation (LDA) to the
exchange-correlation functional. The choice of the latter plays a minor role for the struc-
tural properties of the bulk phases: The scaling to experimental counterparts (see below)
cancels the different overbinding behavior of LDA and GGA (generalized-gradient approx-
imation), and the remaining relative differences are already within the achievable accuracy
of the parameter fit. The LDA was found to be more consistent with the experimentally
observed elastic constants of GaAs and InAs than GGA [74]. Furthermore, previous stud-
ies of the structure of InxGa1−xAs surfaces using LDA found very good agreement with
X-ray diffraction data (see e.g. Refs. [74, 165]). We successfully performed convergence
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tests with respect to energy cutoff and number of k-points for each physical property (Ap-
pendix A). The cohesive energies Ecoh, lattice constants a0, and bulk moduli B were de-
termined by fitting the equation of state to the empirical Murnaghan equation-of-state [93].
The surface calculations employed slabs passivated by pseudohydrogen atoms [166]. Non-
stoichiometric surfaces require the consideration of atom exchange with a reservoir (see
Sec. 3.2). The surface energy γ per area A is given by the total energy of the slab Etot

(after subtraction of the fixed lower part), the number of cations NIII and anions NV ,
and the chemical potentials µV and µIIIV by Eq. 3.9. In the following we give the value
of the surface energy γ for µAs = −Ecoh(As :α), i.e. for very As-rich conditions, and for
µGaAs = −Ecoh(GaAs : zinc blende) and µInAs = −Ecoh(InAs : zinc blende).

The consistency of mixing experimental and theoretical values of a0 and Ecoh was achieved
by scaling the theoretical data without an experimental counterpart with the ratios of those
theoretical data where experiments were available, too. To emphasize the vital importance of
this issue we would like the reader to recall the overbinding effect of DFT calculations: This
lowering of the absolute value of the cohesive energies does hardly alter the relative stability
of different bulk phases, rather, it reduces the absolute values of all cohesive energies. The
absolute value of the experimentally observed (unshifted) cohesive energy therefore appears
higher than the corresponding theoretical value. A naive compilation of cohesive energies
acquired by experiments and DFT calculations without scaling would alter the energy differ-
ences and could even end up in the situation that a (‘DFT-overbound’) meta-stable phase is
energetically favorable over the experimentally observed phase. The goal of scaling the DFT
results is therefore to preserve the relative stability of the theoretical results while achieving
consistency with the experimental values. Due to a lack of experimental data for metastable
structures, it is not completely clear if a multiplicative adjustment with a constant factor is
preferable to an additive adjustment with a constant shift. Nevertheless, in our calculations,
the difference between these two approaches was negligible as compared to the achievable
accuracy of the parameter optimization.

5.4.2 Optimization Procedure

The values of the various included physical quantities need to be calculated with the Abell-
Tersoff functional and the particular parameterization in each optimization step. In our
case, the considered quantities are the bulk and surface properties given in Sec. 6.1 and 6.3,
respectively. The parameter optimization of the functional starts with an initial guess for
the parameters. In many cases, a good initial guess for the parameter values can be made
up from previous parameterizations or from analytic expressions which may be deduced from
the functional for simple structures (e.g. dimers, high symmetry bulk phases). The nearly
1000 initial guesses of this work were obtained by following the procedure described by Albe
et al. [148], by using or scaling previous parameterizations [147, 148, 149, 161, 162, 163], and
by fitting different subsets of parameters and reference data successively.
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The numerical procedure is based on the sum of weighted quadratic differences of the
quantities as obtained from the potential (with a certain set of parameters) and the accord-
ing reference values as given in Eq. 5.16. We minimized this deviation value with respect to
the potential parameters by applying the Levenberg-Marquardt algorithm [153] that varies
smoothly from a steepest-descent minimization to an inverse-Hessian minimization as it ap-
proaches the minimal deviation value. The gradients in parameter space were calculated
numerically with Ridder’s method of polynomial expansion [153]. The numerical effort of
optimizing one subset of parameters with one initial guess can be estimated as follows: Let
us take the average CPU time for calculating one of the considered quantities as our unit of
measure. Our minimization of the deviation value in a typically 10-dimensional parameter
space requires the calculation of the Hessian matrix with O(100) matrix elements or line
minimizations of the conjugate gradient. To ensure the numerical accuracy of each of these
entries, we determine the numerical derivative based on O(10) calculations of the considered
quantity. These operations have to be performed in each of the O(100) steps of minimiz-
ing the deviation value. For the number of initial guesses of this work the overall effort is
then about O(108) times the calculation of the considered quantities with the many-body
potential. Note that the latter include line minimizations for the bulk properties and high-
dimensional conjugate-gradient relaxations of surface unit-cells. By highly optimizing these
calculations to a total CPU time of O(10) seconds, we could reduce the total computational
effort for the parameter optimization done in this work to O(10) CPU years.

5.4.3 Parameters

The parameters for each pair of species as obtained from our optimization are given in
Tab. 5.1. In compliance with most previously published parameterizations, the parameters
nij and mij were fixed in the optimization. The large value of DAsAs leads to an undesirable
overestimation of the cohesive energy of the As dimer, but was necessary to obtain proper
surface energies: Some of the considered surfaces are terminated by As dimers, and these
are only stable for large DAsAs. Otherwise the angular terms of the potential would tend
to continue the zinc blende lattice structure. Due to the limited interaction-range of the
potential, the In-Ga interaction does not occur in the investigated zinc blende InxGa1−xAs
nanostructures, therefore no potential parameters for In-Ga are reported here. In principle,
these parameters could be obtained in the manner described above, with the In-In and Ga-Ga
parameters as initial guesses, or by an averaging scheme [138].

In order to assess the transferability of a many-body potential to bonding situations that
were not included in the determination of its parameters, we need to investigate meaningful
test cases. In the next chapter we demonstrate that the above parameterization based on
bulk properties and reconstructed low-index surfaces is well suited to describe the energetic
balance and atomistic structure of lattice-mismatched nanostructures such as InAs QDs on
GaAs substrates. In particular, it describes several high-index facets that are known to form
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Table 5.1: Parameter sets for the different interactions

Ga-Ga As-As In-In Ga-As In-As

Rij [Å] 2.2625 1.9018 2.6639 2.3824 2.5492
Dij [eV] 1.4159 7.9717 1.5052 1.9561 1.8900
βij [1/Å] 0.9079 1.2165 1.1847 1.5396 1.4549
Sij 1.0646 2.3439 1.2440 1.1543 1.8578
γij 1.4401 4.8650 4.0976 0.2992 2.2113
αij [1/Å] 0.7469 2.5408 1.2117 -1.3824 1.1816
δij 0.0050 0.3609 0.0109 0.0424 0.0190
cij 1.4897 0.1749 1.0853 1.7796 3.9707
dij 0.8376 0.2140 0.9465 0.6450 0.9486
hij -0.3373 -0.1261 -0.4652 -0.4060 -0.5102
nij 1.0 1.0 1.0 1.0 1.0
mij 1.0 1.0 1.0 1.0 1.0
Rc

ij [Å] 2.95 3.1 3.5 3.1 3.7

Dc
ij [Å] 0.15 0.1 0.1 0.2 0.1

side-facets of QDs, but also the accompanying and energetically competing biaxially strained
InAs films on GaAs with reasonable reliability.



Chapter 6

Applicability of Many-Body
Potential to In, Ga, As, InAs, and
GaAs

In this chapter we compare the applicability of the new parameterization of the Abell-Tersoff
potential for In, Ga, As, GaAs, and InAs developed in Chap. 5 with previously published
ones, which we name chronologically as T1 (Smith [161]), T2 (Ashu et al. [147]), T3 (Sayed et
al. [162]), T4 (Nordlund et al. [163]), T5 (Albe et al. [148]), and T6 (Migliorato et al. [149]).
For each of these parameterizations, we use the identical bond-order functions as the cor-
responding authors by choosing nij and mij in Eq. 5.11 and 5.12 properly. In fact, we
used n = 1 for the parameterization developed in this work in compliance with most previ-
ous works, and in line with the results of the moments expansion of tight binding given in
Eq. 5.5. For compound systems we apply the same combinations of interaction parameter
sets as in the original works. The parameter values for the mutual interactions of In-In (T2),
Ga-Ga (T1,T5), As-As (T1,T5), Ga-As (T1,T3,T5), and In-As (T2,T4,T6) are given in the
corresponding publications. In this chapter we show that the many-body potential developed
in this work allows reliable studies of InAs/GaAs QD nanostructures, which are presented in
the following chapters.

6.1 Bulk Properties

For each pairwise interaction, the cutoff-radius of the many-body potential (Eq. 5.14) trun-
cates the interaction range of the potential. The values of Rc

ij and Dc
ij in Tab. 5.1 were chosen

similarly to previous parameterizations and limit the interaction to e.g. the first neighbor
in any InxGa1−xAs zinc blende structure. Thus, for this choice of cutoff-radii, the descrip-
tion of such systems with this potential is completely determined by the parameters of the

58
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interaction terms Ga-As and In-As. Nevertheless, the elemental parameters (In-In, Ga-Ga,
As-As) are needed because Ecoh of the stable elemental crystal structures (i.e. α-Ga (Cmca),
α-As (A7), and In(bct) shown in Fig. 6.1) enters in the formula for the surface energy (see
Eq. 3.9). A comparison of the lattice-parameters, cohesive energies and bulk moduli of sta-

a) b) c) d)

Figure 6.1: The conventional unit-cells of a) α-Ga (Cmca) (after [167]), b) α-As (A7) (af-
ter [168]), c) In (bct) (after [169]), and d) InAs (ZnS). The above color assignments to the atoms
are used throughout this work.

ble and meta-stable Ga, In, and As bulk-structures as obtained from experimental works,
(scaled) ab-initio calculations, and calculations with our new parameterization and previous
ones is given in Tab. 6.1- 6.3. The corresponding comparison for GaAs and InAs in Tab. 6.4
and 6.5 additionally include the elastic constants.

In the calculations with the many-body potential, the lattice constants a0 and cohesive
energies Ecoh were obtained by one-dimensional minimization of the cohesive energy Ecoh

with respect to a0. The structural parameters of phases with internal degrees of freedom,
i.e. α-Ga and α-As, were calculated successively by minimizing Ecoh with respect to each
individual parameter while keeping the others fixed on the reference values and then iterating
this procedure for all internal degrees of freedom. For these two structures, we adopt the
nomenclature for the internal lattice-parameters as given by Albe and co-workers [148]. The
bulk moduli B and elastic constants c11 and c12 were determined from the numerical second
derivative of Ecoh with respect to the volume under volume-conserving strain [170]. The

elastic constants c
(0)
44 , c44, and the Kleinman parameter ξ were calculated according to the

adiabatic and harmonic stress-method introduced by Nielsen et al. [92] as described in Sec. 4.2
of this thesis. Some of the bulk moduli in the tables below are given in brackets to indicate a
technical artifact of the many-body potential: Equilibrium neighbor distances that are within
the cutoff interval [Rc

ij −Dc
ij , R

c
ij +Dc

ij ] can lead to an unphysical influence of the curvature
of the cutoff function (Eq. 5.14) on the curvature at the minimum of the equation of state.
This can cause incorrect results for quantities that are given by second derivatives such as
the bulk modulus.

Table 6.1 shows that the parameterization developed in this work reproduces the lattice-
parameters and cohesive energies of all Ga structures with an error of only a few percent. This
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ensures a reliable description of the Pauling relation between bond-length and bond-energy, as
discussed in detail for T5 by Albe et al. [148]. In our optimization the bulk moduli of the meta-
stable structures turned out to form a conflicting subset with the GaAs surfaces and capturing
the surface properties required to tolerate a larger error on the bulk moduli. In Tab. 6.2 we

Table 6.1: Equilibrium properties of Ga phases as obtained from experiments
and ab-initio calculations, the potential developed in this work and previous
ones.

Ref. T1 T5 this work

diamond-Ga us-PP LDA [148]

a0 [Å] 5.680 5.7786 5.5369 5.5320
Ecoh [eV] 2.458 2.5505 2.4854 2.3745
B [GPa] 46.5 44.072 27.960 18.894

sc-Ga us-PP LDA [148]

a0 [Å] 2.626 2.6093 2.5992 2.6102
Ecoh [eV] 2.699 2.9244 2.6950 2.6799
B [GPa] 61.3 74.607 43.056 30.130

α-Ga (A11) exp. [154]

a0 [Å] 4.5192 4.3235 4.3819 4.4605
b0 [Å] 7.6586 8.0612 7.6756 7.6749
c0 [Å] 4.5258 4.4381 4.5195 4.5607
u 0.1539 0.16399 0.15943 0.15926
v 0.0798 0.087780 0.087669 0.087780
Ecoh [eV] 2.810 [171] 2.8431 2.8063 2.8243

Ga-II (bccTd) us-PP LDA [148]

a0 [Å] 5.901 6.3963 5.9088 5.9567
Ecoh [eV] 2.784 2.5808 2.7582 2.8307
B [GPa] 66.8 (589a) 50.882 36.607

fcc-Ga us-PP LDA [148]

a0 [Å] 4.09 4.1557 4.0636 4.0750
Ecoh [eV] 2.756 2.5611 2.7113 2.7793
B [GPa] 65.2 82.051 (1129a) (1374a)
a Value overestimated due to influence of cutoff function.

compiled the investigated properties of In bulk-structures that are reproduced within similar
accuracy as for Ga. The bulk moduli are captured with a significantly higher accuracy as
compared to those of the Ga bulk-structures, although they were not explicitly included
in the optimization procedure as well. The properties of As bulk-structures (Tab. 6.3) are
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Table 6.2: Equilibrium properties of In phases as
obtained from experiments and ab-initio calculations,
the potential developed in this work and previous ones.

Ref. T2 this work

diamond-In LDA

a0 [Å] 6.564 8.0962 6.5575
Ecoh [eV] 2.20 0.24934 2.1684
B [GPa] 28.49 (186a) 24.785

sc-In LDA

a0 [Å] 3.078 3.5291 3.0041
Ecoh [eV] 2.44 0.22094 2.3913
B [GPa] 36.75 (503a) 39.774

bcc-In LDA

a0 [Å] 3.741 4.0884 3.6099
Ecoh [eV] 2.44 0.20877 2.5375
B [GPa] 44.54 (909a) 52.686

bct-In exp [154]

a0 [Å] 3.2520 3.5783 3.2824
c0 [Å] 4.9470 5.4417 4.9392
Ecoh [eV] 2.52 [171] 1.2751 2.5209

fcc-In LDA

a0 [Å] 4.737 5.0247 4.7316
Ecoh [eV] 2.56 0.19760 2.5258
B [GPa] 47.39 (1520a) 53.347
a Value overestimated due to influence of cutoff function.

reproduced with slightly larger deviations as compared to Ga and In. This is due to the
dependence of the As-As parameters on the simultaneous optimization of As bulk-structures
and surface properties of both GaAs and InAs. The tendency to minimize the number of
dangling bonds of the surfaces is the driving force for several reconstructions with As dimers as
prominent features. Consequently, the As-As interaction is crucial for capturing the surface
energies of reconstructed surfaces. The angular terms of the cation-As interactions would
favor a continuation of the underlying zinc blende lattice. The formation of As dimers can
only be reproduced with the potential by a comparably strong As-As interaction. Despite
the resulting overestimation of the binding energy of the As dimer, the degrees of freedom in
terms of remaining parameters allow the potential to reproduce many bulk properties.

The energies per bond in different structures of the same element (or compound) were
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Table 6.3: Equilibrium properties of As phases as obtained from ex-
periments and ab-initio calculations, the potential developed in this work
and previous ones.

Ref. T1 T5 this work

diamond-As us-PP LDA [148]

a0 [Å] 5.913 6.0815 5.8086 5.9792
Ecoh [eV] 2.487 2.2367 2.5100 2.6088
B [GPa] 52.6 40.476 47.520 34.482

α-As (A7) exp. [154]

a0 [Å] 4.1320 4.0301 3.9056 4.0584
α [deg] 54.12 59.965 54.534 56.424
u 0.22707 0.25000 0.23218 0.22618
Ecoh [eV] 2.96 [171] 2.7344 2.9650 2.9087

sc-As us-PP LDA [148]

a0 [Å] 2.64 2.6377 2.6111 2.7271
Ecoh [eV] 2.89 3.3204 2.8874 2.7201
B [GPa] 96.8 92.355 81.071 52.550

bcc-As us-PP LDA [148]

a0 [Å] 3.26 3.5845 3.2016 3.3215
Ecoh [eV] 2.562 2.4368 2.4617 2.4470
B [GPa] 96.8 (945a) 84.555 58.221

fcc-As us-PP LDA [148]

a0 [Å] 4.217 4.3339 4.1264 4.2481
Ecoh [eV] 2.442 2.4005 2.4707 2.4789
B [GPa] 93.0 81.274 87.790 (439a)
a Value overestimated due to influence of cutoff function.

found to approximately depend exponentially on the according bond lengths L to the next
neighbors. This Pauling relation was found empirically [172] and can be motivated from a
two-center approximation to pseudo-potential theory [133]. In Tab. 6.1-6.3 we have given the
cohesive energy of the different structures per atom, but one can easily acquire the cohesive
energy per bond from division by the number of neighbors within the cutoff radius. The
particular number of neighbors, as well as the distances to them, depend on the crystal
structure. The energy per bond versus the bond length as obtained with our many-body
potential for the elemental and the compound materials are shown in Fig. 6.2 and 6.3 as
semi-logarithmic graphs. These data show good agreement with the Pauling relation that is
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obtained by fitting an exponential function to the values of the reference data.1

The parameterization of this potential was particularly optimized to capture the structural
and elastic properties of the zinc blende structures of the compound materials GaAs and
InAs. These are reproduced with high accuracy as shown in Tab. 6.4 and 6.5, a significant
improvement to previous parameterizations. The deviation of about 0.5 eV for the cohesive
energy of the NaCl structure of GaAs was necessary for the simultaneous description of the
reconstructed low-index GaAs surfaces.
Note that these compound interactions are sufficient to describe heterogenous systems of

Table 6.4: Equilibrium properties of GaAs phases as obtained from experiments
and ab-initio calculations, the potential developed in this work and previous ones.

Ref. T1 T3 T5 this work

GaAs (ZnS) exp. [173]

a0 [Å] 5.653 5.6553 5.6438 5.6527 5.6527
Ecoh [eV] 6.71 6.5015 6.5014 6.7087 6.7159
B [GPa] 74.8 79.941 74.942 73.485 75.195
c11 [GPa] 118.1 79.941 118.64 123.89 118.80
c12 [GPa] 53.2 79.941 53.090 48.281 53.393
c44 [GPa] 59.2 -0.014 68.988 39.190 58.616
ξ 0.77 [174, 175] 1.0002 0.5348 0.5480 0.6700

GaAs (NaCl) us-PP LDA [148]

a0 [Å] 5.278 5.3489 5.6902 5.3202 5.3938
Ecoh [eV] 6.168 5.1524 3.1348 6.1729 5.6236
B [GPa] 95.79 89.309 47.786 95.790 87.985

GaAs (CsCl) us-PP LDA [148]

a0 [Å] 3.276 3.5992 3.5993 3.2680 3.2372
Ecoh [eV] 5.73 3.7133 2.6523 5.5645 5.8438
B [GPa] 105.4 (17376a) (7473a) 105.43 114.26
a Value overestimated due to influence of cutoff function.

GaAs, InAs, and bulk interfaces formed by them. Their applicability to subtle effects of
InxGa1−xAs alloys [83, 177] needs to be tested separately which is beyond the scope of this
work.

A survey of the accuracy achieved with the many-body potential for the lattice constants
and cohesive energies of the different structures of all investigated elements and compounds

1In the case of α-Ga, In (bct), and α-As, the energy per atom needs to be distributed to different bonds,
because of the inequivalent neighbors in different distances. For this reason these structures were not included
in the fit of an exponential Pauling relation. Instead, we distribute the energy per atom to the bonds by using
the energy ratios that are obtained if one uses the occurring neighbor distances in the fitted Pauling relation.
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Table 6.5: Equilibrium properties of InAs phases as obtained from exper-
iments and ab-initio calculations, the potential developed in this work and
previous ones.

Ref. T2 T4 T6 this work

InAs (ZnS) exp. [105]

a0 [Å] 6.0583 5.9084 6.0597 6.0587 6.0499
Ecoh [eV] 6.20 7.1308 7.1310 6.2004 6.2042
B [GPa] 58.0 68.138 58.049 57.771 57.961
c11 [GPa] 83.29 68.138 83.605 82.917 83.355
c12 [GPa] 45.26 68.138 45.272 45.197 45.264
c44 [GPa] 39.59 0.012733 39.575 41.638 39.518
ξ 0.68a 0.99978 0.65015 0.64078 0.64884

InAs (NaCl) LDA

a0 [Å] 5.680 5.6539 5.7661 6.1427 5.6435
Ecoh [eV] 5.56 5.4212 5.4566 3.0108 5.2801
B [GPa] 68.16 72.178 62.241 36.891 70.506

InAs (CsCl) LDA

a0 [Å] 3.521 3.5998 3.5992 3.7787 3.5837
Ecoh [eV] 4.94 4.3422 5.0665 2.4191 5.2270
B [GPa] 64.51 (27778b) (8727b) 36.138 (879b)
a Value obtained with phenomenological theory in Ref. [176].
b Value overestimated due to influence of cutoff function.
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is given in Fig. 6.4. The agreement of the calculated lattice constants with the reference

Figure 6.2: Pauling relation of Ga (left), middle (In), and As (right) as calculated with the
many-body potential (black) and with DFT (red): Shown are the physically stable phases (©)
α-As (A7), α-Ga (Cmca), and In (bct) , as well as the meta-stable phases diamond (3), sc (2),
fcc (5), and bcc (4) or bccTd (4) for Ga.

Figure 6.3: Pauling relation of GaAs (left) and InAs (right) as calculated with the
many-body potential (black) and with DFT (red): Shown are the physically stable phases
ZnS (©), as well as the meta-stable phases NaCl (2) and CsCl (4). (The results for the
prior overlap.)

data is very good for all investigated phases. The cohesive energies of the most stable bulk
phases are reproduced with high accuracy, only some of the metastable structures show small
deviations.
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Figure 6.4: Survey of accuracy achieved with the newly developed many-body potential
for the lattice constants (left) and cohesive energies (right) of the investigated elemental
and compound phases (Tab. 6.1-6.5). The line would corresponds to perfect agreement
with the reference data.

6.2 Biaxial Poisson-Ratio and Elastic Energy

The applicability of the many-body potential developed in Chap. 5 to the description of the
Poisson ratio for biaxial strain is of decisive importance for capturing the atomistic relaxation
and elastic energy of pseudomorphic, lattice-mismatched interfaces and thin-films, like the
InAs wetting layer that appears in Stranski-Krastanov growth of QDs (see Chap. 7 and 8).
Although the strain is the driving force of self-assembly and can have an impact on the
electronic structure, little is known about the role of non-linear elastic effects in InAs/GaAs
heteroepitaxy: The linear-response approximation of continuum-elasticity theory (Chap 4)
is valid for small deformations. For deformations larger than a few percent, however, this
approximation may no longer be appropriate. In fact, the non-linear contributions to the
elastic response upon biaxial strain turned out to be necessary to explain the experimentally
observed light emission from InxGa1−xAs [178] and InxGa1−xN [179] quantum well lasers.
Even the phase stability of epitaxial films of noble metals is determined by non-linear elastic
contributions [180]. Although such effects can in principle be considered in CET, the required
higher-order elastic constants are often not known. Density-functional theory (DFT) calcula-
tions are a means to investigate non-linear effects numerically [180, 181], but until now they
were applied mainly to isotropic strain and biaxial strain in low-index planes. The results of
Sec. 4.3 now allow us to extend such investigations to a much wider range and enable us to
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investigate linear and non-linear elastic response to biaxial strain in arbitrary planes. In this
section we present an extensive comparison of results from CET and DFT calculations for the
case of biaxially strained InAs and compare them to results with the many-body potential
using our new parameterization and previous ones. Furthermore, we compare the predictions
of CET for GaAs with results obtained with different parameterizations of the many-body
potential.

In the linear response approximation of CET, the Poisson ratio ν and the elastic-energy
density F (αs) upon biaxial strain αs is given analytically by Eq. 4.28 and 4.29. In this study
we used the experimentally observed elastic constants of InAs [105]. The DFT calculations
were performed with the SFHIngX-package [31] using norm-conserving pseudo-potentials [60],
Monkhorst-Pack k-point meshes [164], and the local-density approximation for the exchange-
correlation functional. We employ the results of Sec. 4.3 to reduce the numerical effort
significantly: The strain tensor in canonical coordinates (Eq. 4.27) determines the strained
unit cell and atomic coordinates for biaxial deformations in any plane. This allows us to
perform the calculations for all strain planes with only a single zinc blende unit cell hosting
8 atoms in total2. An energy cutoff of 20 Ry and a 5×5×5 folding of one k-point in the center
of the Brillouin zone turned out to be sufficient to converge the value of ν (0) introduced below
(Eq. 6.2) to a remaining error of about 1% (see Appendix A). Alternatively, we obtained the
biaxial Poisson-ratio and elastic energy numerically with the many-body potential using the
new parameterization (Tab. 5.1) and the previously published parameter sets T2 (Ashu et
al. [147]), T4 (Nordlund et al. [163]), and T6 (Migliorato et al. [149]) for InAs as well as T1
(Smith [161]), T3 (Sayed et al. [162]), and T5 (Albe et al. [148]) for GaAs. In these calcu-
lations, we used periodic supercells with two unit vectors of the strain plane and minimized
the total energy E(ε) for a certain biaxial strain αi in the considered plane (hkl) with respect
to the elastic response βi perpendicular to this plane. These cells were generated from the
crystal vectors given below and rotated to align the (hkl) direction of the bulk super cell with
the Cartesian z-axis:
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2The SFHIngX-package is particularly convenient for such kind of calculations as it allows one to perform
algebraic operations in the input file and to enter the strain tensor explicitly (see Appendix A).
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This procedure used in the calculations with the many-body potential is equivalent to apply-
ing the strain tensor to only one unit cell which was used in the DFT calculations.

Biaxial strain can lift the equivalence of the atomic bonds inside the zinc blende (or
diamond) unit cell, causing the atoms to relax their position with respect to each other. This

is well known from the calculation of the elastic constants c
(0)
44 and c44 [92]. To investigate

the role of such internal relaxations under biaxial deformations, we performed two kinds of
calculations: In the first set, we scaled the unit cell and the position of the atoms according to
the strain tensor and computed the total energy. In the second set, we additionally relaxed the
atoms in the unit cell until the absolute value of the change in the total energy was less than
0.3 meV in the DFT calculations, or until the relative change in total energy was less than 10−3

in the calculations with the many-body potential. This procedure is similar to numerically

calculating c
(0)
44 and c44, respectively, and will be referred to as unrelaxed and relaxed in the

following discussion. In any case, we determined the biaxial Poisson ratio ν numerically for
different values of the strain αi. To address the case of InAs/GaAs heteroepitaxy3 with about
6.9% lattice mismatch, we have chosen αi ∈ {±0.07,±0.05,±0.03,±0.01}. For each αi, we
calculated the total energy of the strained InAs unit cell at ν(αi) = νa ± j · 0.05, where νa

is the analytic result and j = 0 . . . 54. The elastic energy Eel is given by the difference in
total energies of strained and unstrained unit cell. From the calculations using either DFT
or the many-body potential, we find that the elastic energy for a particular strain αi is well
described by

Eel(αi, ν) = E
(0)
el (αi) + E

(1)
el (αi) · ν + E

(2)
el (αi) · ν2. (6.1)

The minimum of the elastic energy with respect to ν yields the elastic response νi(αi) upon
this particular strain αi. The Poisson ratios for different αi in different planes (hkl) as
obtained from our calculations are shown in the left panel of Fig. 6.5. For this comparison we
have exemplarily chosen biaxial strain in the (001), (110), and (111) plane that correspond
to extremal values of Poisson ratio and elastic energy (Fig. 4.1), and strain in some examples
of high-index planes. For a quantitative discussion of linear and non-linear contributions we
performed linear regressions of the results from calculations with either DFT or the many-
body potential according to

ν(α) = ν(0) + ν(1) · α. (6.2)

According to the above equations, the dependency of the elastic-energy densities on α is well
described by

Eel(α) = E
(2)
el α

2 + E
(3)
el α

3 (6.3)

3For the technologically relevant case of heteroepitaxial growth of InAs on GaAs substrates, the elastic
energy is stored in the InAs film which is compressed to the lattice-constant of GaAs (see Sec. 7.3).

4For some strain planes we experienced problems in the internal relaxation upon large strain values with
the parameterizations T1 and T6. In these cases we reduced the strain interval to α ∈ [−0.02, 0.02] at constant
number of calculation points.
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Figure 6.5: The Poisson ratio (left) of InAs for biaxial strain in different planes as obtained
with either DFT (straight lines) or our MBP (crosses) shows a linear dependency on the strain
and hence an anharmonic behavior of the associated elastic energy density (right: DFT). The
results of linear-response CET in contrast are purely harmonic (left: dashed lines).

as shown in the right panel of Fig. 6.5. Note, that the slope ν(1) leads to a non-linear
elastic response (Eq. 4.27) that is not captured by the continuum-elasticity theory approach
presented here. Under the assumption that the latter is valid for the comparably small
strain values shown in Fig. 6.5, the different slopes ν(1) could be interpreted as different
contributions of the strain dependencies of the elastic constants in Eq. 4.28: The shear strain
described by c44 is not present for biaxial strain in the (001) plane that shows a positive slope
of the Poisson ratio. The negative slope of all other Poisson ratios, however, are due to the
role of c44 in Eq. 4.28 and its strain dependence.

The biaxial Poisson ratio ν(0) that corresponds to linear elastic response as obtained
from our numeric calculations is compiled with the analytic result from Eq. 4.28 in Tab. 6.6
for different strain planes (hkl). The consideration of internal relaxations in the analytic

expressions obtained from CET by employing c44 or c
(0)
44 in Eq. 4.28 is compared to numeric

calculations without and with relaxation of the internal degrees of freedom, respectively. For
both cases, we also provide the value of ν(1) that leads to non-linear elastic response and is not
present in the CET calculations. In both cases, i.e. with and without internal relaxations, the
Poisson ratios of the investigated planes of biaxial strain as obtained from CET are in good
agreement with calculations using either DFT or the many-body potential. This confirms
that the consideration of internal relaxation in CET can be controlled by choosing either c44
or c

(0)
44 in Eq. 4.28. For the case of InAs studied here, the Poisson ratio varies between the

smallest and the largest value by a factor of five whereas the range of elastic energy densities
is about 30%.
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Table 6.6: Effect of internal relaxation on Poisson ratio ν(0) of InAs
under biaxial strains in selected planes as obtained from CET, DFT, and
the newly developed many-body potential (MBP).

without internal relaxation with internal relaxation
CET DFT MBP CET DFT MBP

ν(0) ν(0) ν(0) ν(0) ν(0) ν(0)

(0 0 1) 1.09 1.05 1.10 1.09 1.04 1.10
(1 1 0) 0.34 0.40 0.34 0.67 0.67 0.70
(1 1 3) 0.54 0.60 0.56 0.81 0.78 0.82
(3 1 7) 0.58 0.63 0.59 0.83 0.79 0.85
(3 7 15) 0.52 0.57 0.53 0.79 0.77 0.81

In order to assess our newly developed parameterization, we additionally determined the
elastic response upon biaxial strain in selected planes with previously published parameteriza-
tions for GaAs and InAs, employing internal relaxation in both cases. The resulting harmonic

terms of the Poisson ratio and the elastic-energy density, ν(0) and E
(2)
el , are shown in Tab.6.7

and 6.8, respectively, together with the according predictions of continuum elasticity theory
(Eq. 4.28 and 4.29). The potential developed in this work reproduces the harmonic part
of the biaxial Poisson ratio very well for all investigated strain planes in GaAs and InAs.
The previously published parameterizations T3, T4, and T6 give comparable results for the
biaxial Poisson ratio and the elastic energy, but they show deficiencies in capturing the sur-
face energies (Tab. 6.10 and 6.9). The parameterizations T1 and T2 overestimate the biaxial
Poisson ratio by a factor of 2 and show practically no dependence of the corresponding elastic

energy on the applied biaxial strain. The values of the anharmonic term E
(3)
el (Eq. 6.1) as

obtained with T3-T6 and the potential developed in this work is comparably small: It ranges
from -0.2 to -2.0 meV/Å3 for (001) and from -1.1 to -3.5 meV/Å3 for (110).

An interesting aspect of the elastic-energy densities given in Tab. 6.6 is that the formation
of InAs QDs was reported only for GaAs substrate orientations that correspond to minimal
or moderate elastic-energy densities of biaxially strained InAs, such as (001) and (113) [23],
(114) [96] and (2 5 11) [95], but not for (110) and (111) substrates that would correspond
to maxima in the elastic-energy density. In fact, STM experiments of heteroepitaxy of InAs
on GaAs(110) and ab-initio calculations of the formation energies of misfit dislocations at
this interface [182] suggested that in this case the formation of misfit dislocations is the
dominant mechanism of strain relief at already a few monolayers of deposited InAs. The
formation of either QDs or dislocations are obviously competing, but qualitatively different
mechanisms of relieving compressive stress: In the case of QD formation, the atoms in the
QD can adjust their comparably shortened bonds towards their equilibrium bond length
and relax compressive stress in the QD at the expense of introducing additional stress in the
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Table 6.7: Poisson ratio for biaxial strain ν(0) determined
analytically from CET with the experimental elastic constants
(Eq. 4.28) and numerically (Eq. 6.2) with the parameterization
determined in this work and with previous ones.

ν(0) CET T1 T3 T5 this work

GaAs (0 0 1) 0.91 2.00 0.91 0.80 0.92
GaAs (1 1 0) 0.56 2.01 0.47 0.38 0.59
GaAs (1 1 3) 0.67 2.01 0.66 0.51 0.69
GaAs (1 3 7) 0.69 2.00 0.69 0.53 0.71
GaAs (3 7 15) 0.65 2.01 0.65 0.49 0.68

ν(0) CET T2 T4 T6 this work

InAs (0 0 1) 1.09 2.01 1.09 1.09 1.10
InAs (1 1 0) 0.67 1.99 0.69 0.64 0.70
InAs (1 1 3) 0.81 2.04 0.82 0.78 0.82
InAs (1 3 7) 0.83 2.03 0.84 0.81 0.85
InAs (3 7 15) 0.79 2.04 0.80 0.77 0.81

Table 6.8: Elastic energy density for biaxial strain E
(2)
el

determined analytically from CET with experimental elastic
constants (Eq. 4.29) and numerically (Eq. 6.1) with the param-
eterization determined in this work and with previous ones.

E
(2)
el [meV/ Å3] CET T1 T3 T5 this work

GaAs (0 0 1) 0.77 0.00 0.76 0.84 0.76
GaAs (1 1 0) 1.02 0.00 1.09 1.14 1.00
GaAs (1 1 3) 0.94 0.00 0.98 1.04 0.93
GaAs (1 3 7) 0.93 0.00 0.99 1.03 0.91
GaAs (3 7 15) 0.95 0.00 0.97 1.06 0.94

E
(2)
el [meV/Å3] CET T2 T4 T6 this work

InAs (0 0 1) 0.50 0.00 0.49 0.49 0.48
InAs (1 1 0) 0.72 0.00 0.71 0.74 0.71
InAs (1 1 3) 0.65 0.00 0.64 0.66 0.64
InAs (1 3 7) 0.64 0.00 0.63 0.65 0.63
InAs (3 7 15) 0.66 0.00 0.65 0.67 0.65
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substrate (as we shall see in Sec. 7.6). In the case of misfit dislocations the stress of the lattice-
mismatched interface is released by the formation of a dislocation core. The interplay of the
energy for forming a dislocation core and the amount of released elastic energy determines
if and to what extent the formation of dislocations can eventually decrease the energy in
the system. A reduction of the energy by dislocations is more likely for small formation
energies of dislocation cores and large elastic energies due to the interface. This explains the
above mentioned experimental trend that QD formation is observed on films with small and
moderate elastic-energy densities, whereas dislocations are found on films with high elastic-
energy densities. If a QD has eventually formed and is growing in volume keeping the same
shape, the base area and hence the elastic-energy at the interface would increase. Possible
mechanisms of strain relief are a change of the QD shape to a geometry with less base area
(see Sec. 7.6), or the formation of dislocations. Both are observed experimentally [19].

6.3 GaAs and InAs Surfaces

In the previous sections we showed that the many-body potential developed in this work allows
one to model structural properties of the compound semiconductors GaAs and InAs, as well
as the elastic properties of heterostructures formed by these materials. In this section we will
show that the many-body potential is furthermore able to model the structure and energetics
of several surfaces reasonably well, an important ingredient for a reliable description of free-
standing InAs QDs on GaAs substrates. Our choice of investigated surfaces in this study is
motivated by recent high-resolution STM experiments that revealed the detailed atomistic
structure of InAs QDs on GaAs substrates of low-index and high-index orientations.

The physics of surfaces of semiconductors such as GaAs and InAs, is dominated by un-
saturated (dangling) bonds of the under-coordinated surface atoms. These atoms can lower
the surface free energy by forming new bonds that tend to be saturated and to compensate
charges (see e.g. Ref. [65] for an in-depth discussion). The emerging structures are the so-
called surface reconstructions that can have a different periodicity than the bulk unit-cells.
The possibly resulting variety of reconstructions of the same surface orientation typically
differ in chemical stoichiometry. As a consequence (see Sec. 3.2), the surface free energy
depends on the chemical potential and results in a phase diagram that allows one to identify
the energetically most favorable surface reconstruction for a particular chemical potential.

The (2×4) reconstructions of the (001) surfaces of GaAs and InAs that were investigated
in this work are shown in Fig. 6.6, each as 2×2 repetition of the 2×4 surface unit-cell in
top view, i.e. along the crystallographic direction [001̄]. These geometries were obtained
from DFT calculations [74, 183] and included the relaxation of the atomic positions in slab
calculations. The nomenclature of reconstructions is identical for (001) surfaces of GaAs
and InAs with the same topology, although the detailed atomic positions after relaxation
differ slightly. These reconstructions and many others are investigated in great detail in
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the PhD thesis of E. Penev [74]. The structures in Fig. 6.6 can be understood by noting
that the α(2×4) reconstruction emerges from cutting a zinc blende bulk-structure in a step-
like, stoichiometric fashion. Adding an As dimer per (2×4) surface unit-cell besides the
two others leads to the β(2×4) reconstruction. The removal of the two undercoordinated
Ga atoms per surface unit-cell yields β2(2×4), and further removal of one As dimer per
surface unit-cell finally results in the α2(2×4), which is again stoichiometric. Obviously, the
reconstructions β(2×4) and β2(2×4) have the same stoichiometry of two As excess atoms
per (2×4) surface unit-cell. The (110) surface that we have also included in our studies is
shown below in Fig. 6.13 and appears as QD side facet on both, (001) substrates [19] and
high-index substrates [95, 96, 184, 185, 186].

a) (001)α(2×4) b) (001)β(2×4)

c) (001)β2(2×4) d) (001)α2(2×4)

Figure 6.6: Low-index reconstructions of the (001) surface of GaAs and InAs. In the pa-
rameterization of the many-body potential we included GaAs(001)α(2×4), GaAs(001)β(2×4),
GaAs(001)β2(2×4), InAs(001)β(2×4), and InAs(001)β2(2×4), as well as the (110) surfaces of
GaAs and InAs shown in Fig. 6.13. (To guide the eye, we show a 2×2 repetition of the surface
unit-cells, viewed along the crystallographic direction [001̄].)

Furthermore, we investigated high-index surfaces that served as substrates for QD forma-
tion in experimental works ({113} [184, 185, 186], {2 5 11} [95]), or that were experimentally
identified to appear as QD side facet on either (001) substrates ({137} [18, 19]) or high-index
substrates ({137} [96], {2 5 11} [185, 186]). These surfaces are shown in Fig. 6.7 as 2×2
repetition of the surface unit-cell viewed along the crystallographic direction [001̄].
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a) b)

c) d)

Figure 6.7: The newly parameterized many-body potential is transferable from the low-index
surfaces of Fig. 6.6 to the high-index surfaces a) (113) (2x1)-α [158], b) (2 5 11), c) (137), and
d) (3 7 15) of both, GaAs and InAs without loss of accuracy. (To guide the eye, we show a 2×2
repetition of the surface unit-cells, viewed along the crystallographic direction [001̄].)

The surface calculations with the many-body potential proceeded by scaling the struc-
tures as obtained from DFT calculations with the corresponding bulk lattice constants as
obtained with the particular parameterizations. We relaxed the atoms in a slab calculation
by a conjugate-gradient algorithm [153] until the maximum force in the system was below
1 meV/Å. The surface energies were calculated with Eq. 3.9 and the cohesive energies as
obtained from the according parameterization. Furthermore, we introduced two artificial ob-
servables in the optimization procedure to quantitatively account for the structural difference
between relaxing the surfaces with DFT and with the Abell-Tersoff potential: Firstly, with
the Abell-Tersoff potential, we calculated the maximum force in the geometry relaxed with
DFT before. This value, F0, would vanish, if the geometry relaxed with DFT and with the
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Abell-Tersoff potential respectively would be identical. Secondly, we calculated the average
difference of all bond lengths < ∆r > in the surface unit-cells after relaxation with either
DFT, Rij(DFT), or the many-body potential, Rij(MBP), as

< ∆r >:=
N−1∑

i=1

N∑

j=i+1

2 · ‖Rij(DFT) −Rij(MBP)‖
N(N − 1)

. (6.4)

In our calculations we found no general, monotonous relationship between F0 and < ∆r >,
indicating that these two artificial quantities are not redundant as one might expect. Notwith-
standing the many theoretical works on the structure of III-V semiconductor surfaces (see
e.g. Schmidt [160] for a thorough discussion), there is still no general recipe how to describe
them with a many-body potential. Our approach is therefore to include the (110) and several
(2×4) reconstructions of the (001) surface of GaAs and InAs in the parameter optimization
with the potential given in Sec. 5.2 in a numerical manner, similar to the bulk phases5. Dur-
ing this procedure we tried to avoid overfitting effects by discarding those parameter sets
that showed an improvement for the reference data, but a deterioration of a set of test data
that were not explicitly included in the optimization. In all optimization steps we applied
our potential to the above high-index surfaces (113), (137), (3 7 15), and (2 5 11) with the
same relaxation criteria as for the low-index surfaces, calculated the same quantities and used
them as test data. This ensures the transferability of the many-body potential from the low-
index surfaces for which it was optimized to those GaAs and InAs high-index surfaces that
were not explicitly included in the optimization but are of particular importance as substrate
and QD facets. A comparison of the results for GaAs and InAs for all investigated surfaces
as obtained from ab-initio calculations and from calculations with our parameterization and
previous ones is put together in Tab. 6.9 and Tab. 6.10, respectively.

This comparison shows clearly that the potential developed in this work achieves much
higher overall accuracy in the description of the (110) and reconstructions of the (001) sur-
faces of both GaAs and InAs: The error of the surface energy of the investigated high-index
facets of about 10 meV/Å2 is very similar to the corresponding error for the low-index sur-
faces that were included in the optimization procedure. This is also indicated in the left
panel Fig. 6.8 that shows both, the fitted low-index and the tested high-index surfaces.
(The diagonal would correspond to perfect agreement with the reference data.) Addition-
ally, Tab. 6.9 and 6.10 show that the maximum initial force on the DFT-relaxed high-index
facets F0 and the average bond-deviation < ∆r > after relaxation with our potential is very
similar to those of the low-index surfaces. This trend of surface energies and initial force
is a clear indication that our parameterization for low-index facets is transferable to the in-
vestigated high-index facets without loss of accuracy. The reason is that these high-index
surfaces are reconstructed truncations of the zinc blende bulk dominated by As-dimer motifs

5The focus of our study are surfaces that are stable at As-rich conditions, therefore e.g. the ζ(4x2)
reconstruction [159] is not considered here.
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Table 6.9: Surface energies γ and relaxation differences F0 and < ∆r > of GaAs surfaces
as obtained from ab-initio calculations, the potential developed in this work and previous
ones.

GaAs(001)α(2x4) LDA [156] T1 T3 T5 this work

γ [meV/Å2] 65. 71.902 89.002 80.044 49.814
F0 [eV/Å] 0.001 6.486 8.430 4.797 2.905
< ∆r > [Å] 0. 0.1474 0.1675 0.1325 0.1111

GaAs(001)β(2x4) LDA [183]

γ [meV/Å2] 58. 110.25 89.754 114.79 63.523
F0 [eV/Å] 0.001 4.083 5.246 4.849 1.033
< ∆r > [Å] 0. 0.1259 0.1701 0.1090 0.1165

GaAs(001)β2(2x4) LDA [156]

γ [meV/Å2] 56. 111.02 100.58 115.41 63.670
F0 [eV/Å] 0.001 6.167 7.929 4.587 0.9273
< ∆r > [Å] 0. 0.1389 0.1599 0.1075 0.1156

GaAs(110) (cleavage) LDA[156]

γ [meV/Å2] 52. 13.893 10.707 57.693 62.477
F0 [eV/Å] 0.001 4.923 7.424 0.5510 0.5262
< ∆r > [Å] 0. 0.05371 0.09824 0.1023 0.1009

GaAs(113) (2x1)-α [158] LDA [158]

γ [meV/Å2] 47. 83.891 73.859 102.21 51.973
F0 [eV/Å] 0.001 2.0442 1.741 4.426 0.6975
< ∆r > [Å] 0. 0.1453 0.1292 0.1320 0.08517

GaAs(137) LDA [183]

γ [meV/Å2] 57.4 72.291 60.747 85.634 51.743
F0 [eV/Å] 0.001 8.320 11.23 4.593 0.8018
< ∆r > [Å] 0. 0.1632 0.1168 0.07964 0.08723

GaAs(2 5 11) LDA [72]

γ [meV/Å2] 53. 76.479 67.386 103.08 63.100
F0 [eV/Å] 0.001 10.05 13.90 4.580 0.8647
< ∆r > [Å] 0. 0.1577 0.1155 0.1030 0.09209

GaAs(3 7 15) LDA [72]

γ [meV/Å2] 55. 74.332 64.225 99.494 60.987
F0 [eV/Å] 0.001 7.036 10.83 3.971 0.8229
< ∆r > [Å] 0. 0.1519 0.1139 0.1076 0.1060
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Table 6.10: Surface energies γ and relaxation differences F0 and < ∆r > of InAs surfaces
as obtained from ab-initio calculations, the potential developed in this work, and previous
ones.

InAs(001)α2 LDA [74] T2 T4 T6 this work

γ [meV/Å2] 47. 70.131 62.721 44.136 35.758
F0 [eV/Å] 0.001 9.392 6.315 10.37 2.846
< ∆r > [Å] 0. 0.1814 0.1847 0.2233 0.1552

InAs(001)β2 LDA [74]

γ [meV/Å2] 45. 102.72 102.03 78.993 53.280
F0 [eV/Å] 0.001 6.432 1.036 1.573 0.7562
< ∆r > [Å] 0. 0.1596 0.1205 0.1711 0.1092

InAs(110) LDA [156]

γ [meV/Å2] 41. 10.298 16.241 -0.00074 47.215
F0 [eV/Å] 0.001 1.790 2.455 0.6952 0.3915
< ∆r > [Å] 0. 0.03072 0.1032 0.1027 0.1044

InAs(113) (2x1)-α [158] LDA [183]

γ [meV/Å2] 45.2 77.408 80.201 53.788 41.560
F0 [eV/Å] 0.001 7.827 4.673 8.131 1.995
< ∆r > [Å] 0. 0.1884 0.1100 0.1793 0.09198

InAs(137) LDA [183]

γ [meV/Å2] 43.0 65.958 69.256 42.092 40.425
F0 [eV/Å] 0.001 4.679 5.110 8.196 1.953
< ∆r > [Å] 0. 0.1343 0.06926 0.1327 0.0872

InAs(3 7 15) LDA [183]

γ [meV/Å2] 41.5 67.672 70.208 45.990 49.160
F0 [eV/Å] 0.001 6.756 4.987 8.665 2.054
< ∆r > [Å] 0. 0.1475 0.1089 0.1390 0.09640
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which also appear as the most prominent feature of the reconstructed low-index surfaces that
were included in the fitting procedure. Furthermore, we found that the applicability of the
potential to surface reconstructions with two As layers (e.g. GaAs(001) c(4x4) [156] and
In2/3Ga1/3As(001) α2(2x3) [187]) is rather limited due to an overestimation of the according
surface energies. From the viewpoint of possible reference structures (Sec. 5.3) for the fitting
procedure, these structures form a subset which is in conflict with the subset formed by the
As bulk properties and the other surface reconstructions. Consequently, we did not consider
these two reconstructed surfaces in our optimization of the potential parameters. The rela-

Figure 6.8: The many-body potential (MBP) developed in this work is transferable from the
fitted low-index (left: 2) to the not-fitted high-index (left: 4) surfaces without loss of accuracy.
The phase diagram (right) shows the deviation of the MBP results (solid lines) from DFT data
(dashed lines) for GaAs(001)α(2×4) (black), GaAs(001)β(2×4) (green), GaAs(001)β2(2×4) (red),
InAs(001)α2(2×4) (blue), and InAs(001)β2(2×4) (yellow). The total energy of nanostructures
investigated in the following chapters are corrected (Eq. 7.1) by the deviation per area.

tive stability of different surface reconstructions depends on the applied chemical potential(s)
(Eq. 3.9). In the right panel of Fig. 6.8 we compare the surface energies of different recon-
structions of GaAs(001) and InAs(001) obtained with MBP (solid lines) and DFT (dashed
lines) calculations with respect to the applied chemical potential of As. There is no common
trend of the deviations of the MBP results for different surface reconstructions. Therefore the
order of surface reconstructions upon a change of µAs is not reproduced by the MBP. In fact,
the MBP yields the α(2×4) and α2(2×4) reconstruction of GaAs(001) and InAs(001) as the
most stable reconstructions in the whole range of allowed values of µAs. In the DFT results,
however, GaAs(001)β2(2×4) and InAs(001)β2(2×4) are most stable at As-rich conditions.

Despite these deviations of the surface energies from the DFT results, we could signif-
icantly improve the description of InAs and GaAs surfaces as compared to the previously
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published parameterizations T1-T6. A survey of the surface energies acquired with DFT
and the different MBP (see Tab. 6.9 and 6.10) is presented in Fig. 6.9. The degree of agree-

Figure 6.9: A comparison of the surface energies as obtained from DFT calculations (black)
and the MBP developed in this work (red) shows the improvement to the previously published
parameterizations T1 (blue), T2 (violet), T3 (green), T4 (yellow), T5 (orange), and T6 (brown)
for GaAs (left) and InAs (right). The dashed lines have no physical meaning, they are shown for
ease of comparison.

ment with the DFT results depends strongly on the investigated surface/reconstruction for
all previously published parameterizations. The results acquired with our newly developed
parameterization, however, do not show this behavior. Rather, they are afflicted with errors
of approximately 10 meV/Å2 for all investigated surfaces/reconstructions. Furthermore, we
find some remarkable similarities in the observed errors: The surface energies of the β(2×4)
and β2(2×4) reconstructed (001) surfaces are larger than that of the α(2×4) and α2(2×4)
reconstructed surfaces for all parameterizations, whilst the results of the DFT calculations
show the opposite trend. Nearly all parameterizations (except T5 and ours) dramatically
underestimate the surface energy of the GaAs(110) and InAs(110). The surface energies of
the investigated high-index surfaces are distinctly overestimated by most parameterizations
(T1, T2, T4, and T5). Note that none of these parameterizations is able to capture the
surface energies accurately enough to provide a proper phase diagram of e.g. the different
reconstructions of the (001) surfaces of GaAs and InAs. In studies that rely on the latter,
such as e.g. molecular-dynamic simulations of changes in the surface reconstruction, one
should therefore use different functionals. Recently, Murdick et al. [146] presented a much
more accurate phase diagram for reconstructions of the GaAs(001) surface with a functional
that accounts for π and σ bonds, and employs an additional Coulomb interaction term (sum-
marized under the term BOP+CE). This MBP is also able to give a good description of
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clusters and defects, in contrast to any known parameterization of the Tersoff functional.
Despite these very convincing properties of the BOP+CE parameterization for GaAs, the
relative deviation of the lattice constant a0 (0.3%) and the elastic constant c44 (16%) of
zinc blende GaAs might be too large in some quantitative studies of strain effects in e.g.
lattice-mismatched nanostructures. To give a quantitative example, we can employ Eq. 4.29
to estimate the resulting deviation for the elastic energy density F (αs) of GaAs that is bi-
axially strained to the experimental lattice constant of InAs. For this (somewhat artificial)
case we find that the small deviation of a0 already results in an underestimation of F (αs)
by 5%. The influence of c44 depends on the plane of biaxial strain and ranges from no effect
for {001} planes to an (additional) underestimation of F (αs) by up to 8% for {111} planes.
The corresponding deviations obtained with our newly developed parameterization (of a less
sophisticated functional) are 0.1% and 0.2%, respectively. These different advantages show
once more (see e.g. Ref. [188] for a similar conclusion) that the choice of a MBP for a certain
application should be guided by the detailed knowledge of those modeling ingredients that
are of utmost importance to capture the anticipated physical behavior.

6.4 Surface Stress

A further test of applicability of our potential to the modeling of free-standing QDs is the
description of strained surfaces. For this reason we calculated the variation of the surface free
energy γ in Lagrangian coordinates (see Sec. 3.2) of the above surfaces upon biaxial strain
εs in the surface plane (Eq. 4.23), i.e. the surface stress σ as given by the Shuttleworth
equation (Eq. 3.11). In this work it was calculated from the corresponding surface energies
at −0.04 ≤ αs ≤ 0.04 and a fit of γ(ε) to a third-order polynomial γ(ε) =

∑3
n=0 γ

(n)εn. The
trace of the surface stress is then related to the polynomial coefficients by

γ(1) = Tr (σij) =

(

∂γ

∂εxx
+

∂γ

∂εyy

)

ε=0

= σxx + σyy. (6.5)

The elastic response of the slab upon biaxial strain is determined by the biaxial Poisson-ratio
ν that we determined analytically from continuum-elasticity theory in Sec. 4.3 for arbitrary
planes of biaxial strain. In our slab calculations of the surface stress, we scaled the fixed
bottom layers according to the particular biaxial strain and the corresponding biaxial Poisson
ratio as given in Eq. 4.23. Then the upper layers were relaxed until |Fmax| < 0.001eV/Å.

The surface energies γ
(hkl)
εij of slabs under biaxial strain εij are determined with the area of

the unstrained surface unit cell A
(hkl)
0 as

γ(hkl)
εij

(µV) =
1

A
(hkl)
0

[

E(hkl)
εij

−N IIIµIII−V
εij

− (NV −N III) · µV
]

, (6.6)

where µV
bulk − ∆HIII−V

εij
< µV < µV

bulk. (6.7)
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For each surface normal (hkl) the chemical potential of the strained bulk compound material
µIII−V

εij
was calculated from bulk supercells with the same periodicity of the surface unit cells

in the surface plane. For each strain value, εs the chemical potential µIII−V
εs

of the strained
compound material is the cohesive energy per formation unit in the bulk supercells scaled
with the applied strain and the (hkl)-specific biaxial Poisson ratio νhkl. Figure 6.10 shows
the surface energies for a set of biaxially strained surface unit cells after relaxation: The

Figure 6.10: Dependence of surface energy on strain for GaAs (left) and InAs (right) surfaces.

agreement of the intrinsic surface stress with DFT calculations of Penev [74] is not very
good. In many cases the sign of the surface stress σ is opposite, indicating that the intrinsic
tensile or compressive character of the surface stress as obtained from DFT calculations is
not captured by the many-body potential in this work for all surfaces. Still, the many-body
potential does capture an effect that is of even greater importance for the investigation of
InAs/GaAs QD nanostructures presented in the following chapters: The surface energies
are reduced at compressive strain by several percent as compared to the surface energies at
εs = 0. This lowering of the surface energy of particularly the surfaces that appear as QD
side facets is meanwhile accepted to play an important role in compensating the additional
surface energy upon QD formation, and thereby effectively stabilizing the QDs [75, 76]. This
effect is qualitatively captured with our many-body potential.

6.5 Adatom Diffusion on Surfaces: Limitations of MBP

6.5.1 Ga / GaAs(001)β2(2x4): Comparison of MBP with DFT

The description of potential-energy surfaces (PES) of adsorbed atoms on surfaces are usually
quite a challenge for many-body potentials. The motivation or derivation of the latter are
based on a focus of configurations that can hardly cover the variety of possible stable and
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intermediate bonding situations within a single functional. We investigated exemplarily the
adsorption of a Ga atom on the β2 (2x4) reconstruction of the GaAs(001) surface, and
compare the results to ab initio results by Kley et al. [157] and a previous study by Salmi
et al. [189] employing the T3 parameterization of the Tersoff potential. Additionally, we
performed similar PES calculations with the parameterization T5 [148]. Firstly, we relaxed
a super cell containing 3x5 units of reconstructed (2x4) unit cells without adatom, keeping
the lowest layers in the slab fixed. The resulting total energy is used to define the zero level
of the adatom adsorption energy. Secondly, we determined the PES for Ga adsorption by
positioning the Ga adatom on a grid of lateral positions to be held fixed, and relaxing its
height in the different lateral positions as well as the upper layers of the supercell until the
absolute maximum force in the system was below 1 meV/Å. The lateral spacing of the PES
grid of ∆x = ∆y = a0/25 results in more than 5.000 points that allow a highly resolved
PES with negligible interpolation artifacts. The calculated differences of the total energies
to that of the clean surface yields the PES of adatom binding energies shown in Fig. 6.11 for
the parameterization determined in this work. The topology of the PES obtained with the

Figure 6.11: The adsorption energies (eV) of a Ga atom on GaAs(001) β2(2x4) as obtained
with our many-body potential (right) show similarities with according DFT calculations [157]
(left), but exhibit several additional minima. The topmost Ga (black) and As (white) atoms are
indicated.

parameterization determined in this work and with T5 are in qualitative agreement with the
PES calculated previously using T3 and molecular dynamics [189]: The locations of the most
stable adsorption sites are similar and the ranges of adatom binding energies of about 2 eV are
comparable to the corresponding range of 1.75 eV from DFT calculations [157]. Nevertheless,
compared to the corresponding PES calculated with DFT [157], all these results with Tersoff
potentials exhibit additional minima that lead to artificial, additional transition-states which
hamper a quantitative comparison of diffusion barriers. The absolute depths of the realistic
minima of the adsorption energy depend quantitatively on the parameterization as shown
in Tab. 6.11. The parameterization determined in this work underestimates the adsorption
energy minima. The difference of the smallest and largest deviation as compared to the DFT
results is 0.71 eV, 0.52 eV, and 0.82 eV for T3, T5, and the parameterization developed in
this work, respectively.
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Table 6.11: Adsorption energies (eV) of a Ga adatom
at local minima on GaAs(001)β2(2x4) as obtained with
DFT, with the parameterization determined in this work
and with previous ones.

previous calculations new calculations
DFT [157] T3 [189] T5 [148] this work

A1 -2.5 -2.45 -2.38 -1.71
A2 -2.2 -2.43 -2.30 -1.77
A3 -3.2 -3.35 -2.78 -1.95
A4 -2.6 -3.26 -2.68 -1.94

To complete the picture of adsorption, we investigated the potential’s ability to describe
the effect of local changes in the hybridization (see Fig. 6.12). It was first observed by Kley
et al. [157], that a Ga adatom has two stable adsorption geometries with either sp2 or sp3

configuration at a surface As dimer of the GaAs(001) β2(2x4) reconstruction (left panel). In
similar calculations with the many-body potential developed in this work, a Ga adatom in
different heights above the As dimer and with different lengths of the latter exhibited only
one stable configuration (middle panel), and thus the analytic many-body potential does not
capture this local change of the hybridization. The reason for this deficiency is that there

Figure 6.12: DFT calculations show two stable positions of a Ga adatom near an As dimer
at the surface [157] (left). The MBP does not capture this local change in the hybridization
(middle), because there is only one minimum in the angular term g(θ) (cf. Eq. 5.13) (right).

is only one minimum in the angular function (right panel). We expect that introducing an
additional minimum in the angular term of the Tersoff potential would allow the description
of such multiple minima. Note that the one and only minimum for adsorption of the Ga
adatom on the As dimer observed with the many-body potential (middle panel) corresponds
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to the configuration where the As dimer is broken.

6.5.2 In / InAs(110): Analysis of Artifacts

The quality of the potential-energy surfaces as obtained with many-body potentials is a
long-standing issue in the literature (see e.g. Ref. [189]). In the following discussion we
address this issue through a detailed study of the observed adsorption energies that aims to
distinguish between effects that stem from the rather sharp onset of the cutoff function and
those that stem from the angular terms. For this study, we have chosen the adsorption of In
on the InAs(110) surface as a comparably simple case with relevance as side facet of larger
QDs. A topview of the InAs(110) surface is shown in Fig. 6.13 with the unit cell used in
the following calculations as a black frame and the In adatom at the most stable site (center
of frame bottom). The dominant motifs are zigzag chains that consist of In and As which
are slightly tilted against the surface plane and a trench between the zigzag chains. This
configuration with three bonds per surface atom is energetically favorable as compared to As
or In terminated surface structures for all allowed values of the As chemical potential [40].
The potential-energy surface of an In adatom on this surface was calculated with the many-
body potential in the manner already described in Sec. 6.5.1 and is shown in the right panel
of Fig. 6.13.

The corresponding DFT result is presented in detail later in Sec. 9.3.1 and shows two

Figure 6.13: The most stable site of an In adatom on InAs(110) is in the trench (left: surface
with adatom at bottom center of black frame). The PES (right, contour spacing: 0.15 eV) of In
adsorption in the surface unit-cell (left: black frame) as obtained with the many-body potential
is more rough than the corresponding DFT result (cf. Fig. 9.3, right). The dashed lines mimic
the topology of the right panel of Fig. 6.14 and are explained in the text.

significant minima. The many-body potential reproduces the energetically most favorable
adsorption sites in the trench, but gives rise to more structure and additional side minima.
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One might expect that the angular terms of the many-body potential would favor an sp3

configuration with the In adatom at the position of an In or As atom of the next full layer that
would correspond to the center of the dashed yellow circles in Fig. 6.13. But the observable
effect in the PES is only the very weak minimum in the center of the PES plot, where the
position of an In atom in the next full layer would be. Another possible origin of the deficient
PES obtained with the many-body potential is the reduction of the number of contributions
to the adsorption energy due to the limitation of the interaction range by the cutoff function
(Eq. 5.14). We therefore investigated the number of neighbors and the height z of the In
adatom after relaxation that contribute to the evaluation of the adsorption energy of the
adatom at this height with the many-body potential. Both properties are shown in Fig. 6.14
for the same surface unit cell as above. The map of the number of neighbors that interact

Figure 6.14: The number of neighbors N that are interacting with the In adatom in its different
lateral positions (left) shows much less structure than the corresponding PES (Fig. 6.13). But
the topology of observed z-coordinates of the relaxed In adatom (right, contour spacing: 0.25 Å)
can be correlated to the PES: To indicate this, we mimicked the topology of z with the dashed
blue, red and green lines, and transferred them to the PES. The positions of In or As atoms in
the next full layer (center of dashed yellow circles), however, are not apparent in the maps of N
and z.

with the In adatom in the calculations with the many-body potential (left panel of Fig. 6.14)
exhibits much less structure than the according PES (left panel of Fig. 6.13). In most regions
it interacts with only one surface atom, and thus, several features of the PES are arising
from the same set of interacting atoms. We can hence exclude that the additional structure
of the PES as obtained with the many-body potential is due to a change in the number of
contributions to the adsorption energy.

Additionally, we compiled the z-coordinate of the relaxed In adatom in the different grid
points as observed in the PES calculation (right panel of Fig. 6.14). The centers of the dashed
yellow circles in Fig. 6.14 again correspond to the positions of the In and the As atom in
the next full layer. A strong influence of the angular terms would appear as a preference
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for the adatom in the region of the dashed yellow circles, but we find no trace of such an
effect in the map of z-coordinates, similar to the PES. The overall topology resembles the
PES, i.e. the height of the adatom is related to its adsorption energy in many positions. It
appears that an understanding of the topology of adsorption heights of the adatom would
provide an understanding of the PES topology and vice-versa. To visualize the degree of
correlation between the adatom height and its adsorption energy, we mimicked features of
the map of z-coordinates by the dashed red, blue, and green circles introduced to the right
panel of Fig. 6.14, and transferred these circles without modification to the topview of the
surface structure and the calculated PES (Fig. 6.13). (Additional circles due to the symmetry
of the unit cell were not included.) We find that some of the features of the PES are in fact
coinciding with the circles that were determined by mimicking the topology of adsorption
heights. Interestingly, from a comparison of the transferred circles with the underlying surface
structure, we can identify the In and As atoms in the topmost zigzag chain as centers of the
blue and red circles, respectively. These circular features of adsorption height and binding
energy can thus be attributed to the onset of the spherical cutoff function around the topmost
atoms. The origin of the green ellipse, however, is not apparent, it could be an effect of the
cutoff of the angular function. We conclude that the major part of the PES as obtained
with the many-body potential is determined by the interaction of the adatom with only one
surface atom. The additional topological features as compared to DFT results are not due
to the angular terms but instead resemble the onset of the spherical cutoff function.



Chapter 7

Self-Assembled QD Growth

In the previous chapter we showed that our newly developed many-body potential captures
many bonding-situations that typically occur in InAs/GaAs QD nanostructures with good
overall accuracy. In the following we describe the route from atomistic representations of
experimentally observed QD shapes to the relaxation with our many-body potential and the
analysis of the changes in formation energy and the strain relief during QD growth. In par-
ticular, we demonstrate the convergence with substrate thickness, quantify the lateral elastic
interaction of QDs, and identify the driving force for the experimental finding of a sequence of
shapes with increasing QD size. With our atomistic approach, we can furthermore complete
the thermodynamic interpretation of the shape transition by determining its dependency on
the chemical potential of As and the lateral QD density.

7.1 Experimental Findings

Due to the large number of careful experiments in the last decade, we already have a good
understanding of many aspects of quantum dot (QD) growth: The formation of QDs in
Stranski-Krastanov growth mode is due to the lattice mismatch of deposited and substrate
material. It could be realized for many different combinations of materials, and turned out to
be of similar nature for various systems, such as InAs/GaAs(001) and Ge/Si(001) [19]. The
QD nanostructures of these two materials are of major technological importance and very well
characterized. The lattice mismatch can be systematically decreased by depositing alloyed
instead of pure materials, such as InxGa1−xAs on a GaAs substrate. Such an alloying is
known to scale the characteristic lengths (like the transition coverage) for appropriate growth
conditions (see e.g. Ref. [190]). Still, it depends strongly on the experimental conditions if
semiconductor heteroepitaxy eventually leads to the self-assembled formation of coherent
QDs. In fact, many combinations of temperature, As pressure, and growth rate will result
in the formation of incoherent QDs, other coherent nanostructures (such as quantum wires,

87
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dashes or rings), or no nanostructures at all. (In the latter case one often finds rough or
stepped surfaces, possibly with defect formation.) The formation of QDs was observed on
different substrates, e.g. {001} [18], {113} [184, 185, 186], and {25̄1̄1} [95], within rather
small windows of experimental conditions. From in-situ RHEED measurements during MBE
growth, it is known that the transition from 2D film growth to 3D island growth sets in at a
coverage of about 1.7-1.9 ML of InAs on GaAs(001). The usage of direct-imaging methods
(AFM, STM) after growth show lateral QD densities of about 109 − 1011 cm−2. However,
the QD density of a particular sample depends strongly on the growth conditions (see e.g.
Ref. [191]), in particular on coverage, growth rate, flux ratio, and temperature. The effect
of the latter on the detailed diffusion kinetics was shown to have a strong impact on the
island density in GaAs homoepitaxy [28]. Additional effects in InAs/GaAs heteroepitaxy can
be due to segregation, island coalescence, and transitions of the island shape. (The latter
can significantly alter the elastic interaction between neighboring islands, as we shall see in
Sec. 7.5.) The detailed shape of QDs exhibits characteristic side facets which depend on both,
the material system and the substrate orientation. For InAs/GaAs(001) and Ge/Si(001)
it was shown that the QD shapes additionally depend on the QD size (see Fig. 7.1) and
undergo a transition from rather flat to steeper shapes (see e.g. Refs. [19, 192, 193]). In

Figure 7.1: QD shapes as observed in high-resolution STM experiments by Márquez et al. [18]
(left) and Costantini et al. [19] (middle and right). These shapes are referred to as hut and dome
in this work.

fact, very recent STM experiments observed a similar shape transition for InAs QDs on
GaAs(114) [96] which suggests that this is not a particular feature of (001) substrates. The
importance of a shape transition during growth is due to its ability to explain the unusual
bimodal distribution of QD sizes that is in contradiction to the expectation from conventional
Ostwald ripening. For meaningful comparisons with theoretical results, the discrimination of
kinetic and thermodynamic effects is of major importance. In this section and the following
one, we focus on the question of which aspects of QD growth can be understood within a
thermodynamic rationale. Our study is based on comparisons of formation energies calculated
with the many-body potential developed in this work.
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7.2 Calculations of QD Nanostructures

7.2.1 Initialization

The thorough investigation of realistic QD nanostructures requires the consideration of not
only the QD itself, but additionally an appropriate amount of substrate material that is
sufficient to converge the atomic forces that arise from the long-range strain field. Such
convergence tests are presented in the next section. The lateral extension of the simulation
cell with one QD defines the QD density per area (see Fig. 1.3). The densities used in our
studies correspond to the experimentally observed density of 1011 QD/cm2, and were varied
to investigate effects on the lateral QD-QD interaction energy of one layer of freestanding QDs
(Sec. 7.5) and of stacked layers of QDs (Sec. 8.3). The required vertical and lateral extension
of the simulation cell results in systems with typically one million atoms. We developed a
tool that allows us to easily initialize such systems with realistic surfaces, edges and kinks, as
described in Appendix C. It is based on the definition of the QD side facets by plane equations
that are specified by the corresponding Miller indices and the plane distance from the origin.
These planes are chosen according to results of STM experiments (e.g. Ref. [18, 19]). Note
that both the In and Ga atoms of the initial QD structures are located on a zinc blende
lattice with the lattice constant of GaAs as obtained with our parameterization (Tab. 6.4).
For all QD structures, the stoichiometry profile was chosen to generate a wetting layer of
1.75 ML of InAs and pure InAs QDs.

7.2.2 Relaxation and Formation Energy

We relax all investigated heterostructures with the many-body potential developed in Chap. 5
using an adapted version of the conjugate-gradient algorithm given in Ref. [153]. This method
yields the closest nearby local minimum of the total energy which is adequate as long as the
relaxation of the strained atomic bonds preserves the structure qualitatively. Investigations
of structural changes (e.g. defect formation or changes in the surface reconstruction) as well
as the search for the global minimum of the total energy for the given set of atoms would
require other techniques. We performed slab calculations in which the positions of the atoms
in the lowest four atomic layers were kept fixed, all other atoms were allowed to move freely,
and periodic boundary conditions were applied in the substrate plane. The lateral sizes of
the simulation boxes were held constant at multiples of the GaAs bulk lattice-constant to
model an ideal GaAs bulk underneath the InAs wetting layer. For finite size effects such
as wafer bending, different boundary conditions might be more appropriate. We relaxed the
structures until the absolute value of the maximum force in the system was below 1 meV/Å to
ensure that the total energy is well converged (see Fig. B.2 in the appendix).

Each surface i in a system with free standing QDs contributes to the total energy according
to the particular surface free energy γi per area and the area Ai. These contributions to the
total energy as obtained with the many-body potential are afflicted with errors per area δi
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as discussed in Sec. 6.3. Determining the areas of the involved surfaces then allows us to
perform a lowest order error-correction of the total energy by evaluating

Ec
tot = Etot −

∑

i

δiAi. (7.1)

The stoichiometry of the surfaces, edges, and kinks of the QD nanostructures lead to a
well-defined overall stoichiometry of the simulation cell that can be determined by simply
counting the atoms of the different species, NGa, NIn, and NAs. Then the formation energy
of an InAs/GaAs system S with respect to an initial structure I is given by

Ef(S) = ∆Ec
tot − ∆NGa ·Hf

GaAs − ∆NIn ·Hf
InAs − (∆NAs − ∆NIn − ∆NGa) · µAs (7.2)

where ∆X = X(S)−X(I) denotes the differences of the energy and the numbers of atoms per
species with respect to the initial system. The values of the heat of formation of GaAs and
InAs, Hf

GaAs and Hf
InAs, are given by the cohesive energies of the corresponding zinc blende

bulk structures. The freedom to choose the As chemical potential within µbulk
As − Hf

GaAs <
µAs < µbulk

As affects comparisons of QD nanostructures with different stoichiometries as we
shall see in Sec. 7.6.

7.3 Wetting Layer

The self-assembled growth of QDs in the Stranski-Krastanov mode (Sec. 3.3) starts out with
the formation of a wetting layer that covers the substrate completely, followed by the tran-
sition to 3D island growth. For the calculation of the critical nucleus, we need to determine
the formation energy of the InAs wetting layer on the GaAs(001) substrate with respect to
the increasing amount of InAs deposited. In Sec. 3.2 we have already noted that the relative
stability of different reconstructions of the same surface depends on the chemical potentials.
In the case of lattice-mismatched heteroepitaxy, the dependence of the surface energy on the
amount of biaxial strain introduces an additional degree of freedom (Sec. 6.4). Previously
preformed DFT calculations of Penev [74] showed that the most stable surface reconstruction
of InAs(001) under compressive strain (due to the lattice mismatch with the GaAs substrate)
is the α2(2×4) reconstruction shown in Fig. 6.6 for a wide range of As pressures. This surface
reconstruction is stoichiometric and therefore does not depend on the chemical potentials of
the gas phase. Following this work, we determined the formation energy of a α2(2×4) surface
reconstruction with the many-body potential developed in this work: The increasing InAs
coverage is mimicked by successively replacing the Ga atoms of a GaAs(001)α2(2×4) surface
reconstruction with In atoms. Similar to Ref. [74], we perform these replacements simultane-
ously for all atoms that are in the same row along the crystalline direction [1̄10], indicated by
numbers 1-7 in the right panel of Fig. 7.2. The increment of the InAs coverage for this unit
cell is therefore 0.25 ML InAs. We start the replacements from the topmost rows and consider
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all combinations for each value of coverage Θ. A coverage of Θ = 1.00 for example can be
realized by replacing the Ga atoms in the rows 1-3 and one out of 4-7. The formation energies
per unit area γf for all combinations of all values of coverage as obtained from relaxation
with our potential are collected in the left panel of Fig. 7.2, together with the previously ob-
tained results of DFT calculations. In all calculations we used a 4×2 repetition of the (2×4)
surface unit-cell, and periodic boundary-conditions in the surface plane that correspond to an
unstrained GaAs bulk lattice. In these calculations of the wetting layer we used 20 ML GaAs
to achieve reliable values of the formation energies. Our calculations with the many-body

InAs(001)α2-(2×4) (1.75 ML)

[110] →

Figure 7.2: Formation energy of InAs(001)α2 (2×4) wetting layer for different coverages (left)
as obtained with DFT calculations [74] (red) and the many-body potential developed in this
work1 (black). The coverage is increased in increments of 0.25 ML by successively replacing Ga
atoms with In atoms in rows along [1̄10] indicated by labels 1-7 (right panel).

potential are shifted with respect to the previously performed DFT calculations for up to
Θ = 1.75 by approximately 15 meV/Å2 which reflects the errors in the surface energy per
area already noted in Tab. 6.9 and 6.10. The curvature of γf (Θ) is very well reproduced with
the many-body potential1. Fitting the results for coverages up to 1.75 ML as obtained from
calculations with DFT and the many-body potential to second-order polynomials yields

γDFT
f (Θ) [meV/Å

2
] = 63.4 − 12.7 Θ + 7.9 Θ2 (7.3)

γMBP
f (Θ) [meV/Å

2
] = 47.4 − 11.9 Θ + 7.5 Θ2. (7.4)

For InAs coverages beyond 1.75 ML, the formation energy as obtained with the many-body
potential is not a continuation of the above polynomial, but rather a sequence of polynomials

1The deviations of Θ = 0.25 and Θ = 1.00 are due to contributions from In-Ga bonds that fall back on
parameters for the In-Ga interaction: These were not included in the optimization, but instead determined
from an averaging scheme [138]. This is the only case in this study, where In-Ga bonds come into play.
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defined in sections with discontinuous derivatives at Θ = 1.75 + n, where n = 0, 1, . . . . This
behavior can be understood by realizing that the latter coverages correspond to complete
layers of compressed InAs that comprise more elastic energy than intermediate coverages.
This effect vanishes for sufficiently large coverages where the dominant part of the elastic
energy is stored in the complete InAs layers. We performed analogous calculations with the
many-body potential for a wetting layer of 1.75 ML InAs with the β2(2×4) reconstruction
and found similar agreement with the DFT calculations of Penev [74].

7.4 Convergence with Substrate Thickness

The elastic relaxation of a system with only a homogeneous InAs film is dominated by biaxial
strain in the surface plane that affects mainly the film itself. The stress tensor due to a free-
standing QD in contrast has components perpendicular to the surface plane that can result
in a non-vanishing strain tensor deep in the GaAs substrate. This implies the possibility of
finite-size effects in our investigations with the many-body potential where we keep the atoms
in the lowest atomic layers fixed during the relaxation. We obviate such technical artifacts by
convergence tests of the formation energy of QD nanostructures with respect to the vertical
extension of the GaAs substrate. For this purpose, we initialized and relaxed hut-shaped
and dome-shaped QDs with a wetting layer of 1.75 ML InAs on a GaAs(001) substrate of
different vertical extension. In each case we determined the difference between the total
energy of the relaxed QD structure and a homogeneous InAs film of 1.75 ML thickness on a
GaAs substrate of the same size. This is the quantity that needs to be converged with respect
to substrate thickness for the calculation of formation energies, the other terms in Eqs. 7.1
and 7.2 are not altered upon variation of the substrate thickness. The resulting values of
∆Etot/∆Ntot as calculated for different lateral densities of QDs per unit area are shown in
Fig. 7.3. An in-depth investigation of the variation of the relative stability of homogeneous
films and differently shaped QDs with size will be presented in the following section. For these
two differently shaped QDs of comparable size however, we find that the formation energy
is converged to approximately 1 meV per atom for substrates of more than 60 Å thickness.
This accuracy is sufficient in all cases studied of this work (c.f. Fig. 7.5, 7.7, or 8.6). The
required amount of substrate corresponds to approximately two times the height of the dome-
shaped or three times the height of the hut-shaped QD. In all following calculations we will
use these relations to ensure that the formation energies are sufficiently converged. A rather
surprising observation of Fig. 7.3 is that these two shapes exhibit a very different behavior
with respect to the lateral QD density: The change in formation energy with variation of
lateral QD density is an order of magnitude larger for the hut-shaped QD than for the dome-
shaped QD. Previous investigations of truncated InAs pyramids with {101} side facets on
a InP(001) substrate using finite-element calculations [194] already showed that the elastic
interaction of islands of the same volume increases with decreasing aspect ratio of the QD.
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a) b)

Figure 7.3: The convergence of the formation energies (Eq. 7.2) of a QD in either a) hut
shape (with 1364 In atoms) or b) dome shape (with 2042 In atoms) with respect to the substrate
thickness is determined by the energy difference ∆Etot of the QD structures and homogeneous
films with identical GaAs substrate per additional atom in the QD, ∆Ntot. The colors indicate
different lateral QD densities.

This trend reflects the increase of substrate area covered by QDs (all having the same angle
of 45◦ between substrate and side facets) but does not explain the different elastic interaction
of hut- and dome-shaped QDs observed in Fig. 7.3. This difference observed in our study
can be understood by an analysis of the strain tensor ε in the substrate material below the
QDs. Particularly instructive in this case is the visualization of the hydrostatic strain Tr(ε):
In Fig. 7.4 we plotted those values of Tr(ε) in the (110) plane below the base center of the
QDs that are within [−0.005,+0.005]. The absolute value of the hydrostatic strain in large
portions of the substrate below the relaxed, free-standing InAs QDs is in fact less than 0.5 %.
This value is exceeded only in the regions below the base center and at the base edges that
comprise larger tensile and compressive hydrostatic strain, respectively, shown as yellow and
black regions in Fig. 7.4. The difference in the hydrostatic strain in the substrate is due to
the relative orientation of the QD side facets to the elastic principal axes. Our results on
the direction dependence of the biaxial Poisson-ratio (see Fig. 4.1) allow us to understand
this effect: Before the QD nanostructure is relaxed, the InAs is compressed to accommodate
an ideal zinc blende structure with the lattice constant of GaAs. The stress tensor at the
base of defect-free QDs has an effectively tensile part in the planes of the QD side facets.
In these planes, the substrate in the vicinity of the base is subject to compressive stress.
The resulting strain will be comparably small, if the stress (and hence the QD side facet) is
parallel to elastically hard axes like [101] and [111]. However, if the stress (and hence the
QD side facet) is parallel to an elastically softer axis like [137], the resulting strain in the
substrate will be larger, just as we observe it.
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a) hut-shaped QD: ‖Tr(ε)‖ < 0.5% b) dome-shaped QD: ‖Tr(ε)‖ < 0.5%

Figure 7.4: The trace of the strain tensor Tr(ε) in the (110) plane of the GaAs substrate below
the base center of a QD in either a) hut or b) dome shape reveals the origin of the different lateral
interactions observed in Fig. 7.3: The hydrostatic strain due to a hut-shaped QD is much more
extended in the substrate than those of a dome-shaped QD.

It can easily be verified that the direction-dependencies of the biaxial Poisson-ratio for
Ge and Si are similar to those of GaAs and InAs by employing the corresponding elastic
constants in Eq. 4.28. Therefore we conclude that also in the case of Ge/Si(001) the lateral
interaction between hut-shaped QD (with {105} side facets) is stronger than those between
dome-shaped QD (with {101} side facets). For this material system, such a repelling inter-
action between islands was even observed experimentally by an elaborate sequence of QD
growth, annealing, selective etching, and characterization of the surface with AFM (atomic
force microscopy) [195]: For islands at close quarters, the direction of lateral movement could
be correlated to the direction of the next-neighbor island [196].

Note that the above procedure of converging the formation energy with substrate thickness
refers to the limit of negligible thickness of the InAs film as compared to the GaAs substrate.
This assumption is appropriate for the majority of experimental investigations of InAs/GaAs
QD nanostructures. However, there are cases where finite-size effects play the dominant role
(see e.g. Ref. [197]).

7.5 Elastic Energy in Lateral QD Array

The strain tensor that a QD implies in the wetting layer and the substrate is of long-range
character and can interact with those of other QDs at a distance R, as we have in the
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previous section. The according elastic interaction energy can be expressed in terms of a
multi-pole expansion with the dipole-dipole elastic interaction as leading term [38, 113]. In
this approximation, the interaction energy of an array of elastically coupled QDs reads

Eelastic(R) = const ·
(

1

R

)3

· F (R) (7.5)

where the prefactor contains the elastic moduli, the atomic volume, the lattice mismatch,
and a shape function of the particular QDs, all being of constant value in this study. The
function F (R) comprises the density of the lateral QD array (right panel of Fig. 7.5), and a
correction term that accounts for the deviation of the dipole-dipole approximation at small R.
Previous works neglected the lateral QD-QD interaction [198], or used idealized QD shapes
and characteristic values of surface and edge energies [38]. In this work, however, we apply
the many-body potential developed in Chap. 5 to determine the elastic QD-QD interaction
of realistic, atomically detailed InAs QDs without approximations (apart from the potential
itself). In addition to the calculations with the hut-shaped QD from the previous section at
more than 100Å thick GaAs substrate, we determined the formation energy Eformation(R) =
E(0) + Eelastic(R) at small and intermediate values of R shown in the left panel of Fig. 7.5.
We find that the long-range, repulsive interaction energy per atom is well described by the

Figure 7.5: The elastic interaction of a lateral array of hut shaped QDs of size #3 in Tab. 7.1
(right: R = 160Å) can be determined from the formation energies at constant substrate thickness
and is of repulsive character. In the investigated range of QD distances R, it follows the relation
predicted for the interaction of elastic dipoles [113] (left). The inset (left) shows that the elastic
interaction energy at constant lateral QD density depends linearly on the volume of the QD.

dipole-dipole elastic interaction of Eq. 7.5 with a power law for F (R) as

Eelastic(R) = E(1)R−3Rα, where α ≈ 1.5. (7.6)
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The asymptote E(0) of an elastically non-interacting QD array was determined in two different
ways, by either treating α as variable (leading to α = 1.4) or by setting α = 1.5 in the fitting
of the formation energies. The difference in the resulting asymptotic value was not more than
0.7 meV. The elastic interaction energy at a certain value of R is then given by the difference
between the corresponding formation energy and E(0) as shown in the left panel of Fig. 7.5.
From similar calculations for larger QDs (# 6 and # 9 in Tab. 7.1) we find that the volume
dependence of E(1) is well described by a linear relationship (inset in left panel of Fig. 7.5).

The resulting difference in elastic energy between an array of hut-shaped QDs that almost
touch each other (D = 100Å) and the asymptote of infinite distances is as big as 25 meV per
atom, whereas it is negligible for the case of dome-shaped QDs. This finding has important
implications for the investigation of the relative stability of these two shapes presented in the
following section: If the QDs are closer to one another (due to increasing size or increasing
lateral density), the formation energies of dome-shaped QDs is nearly unaffected by elastic
interactions among neighboring QDs. The hut-shaped QDs instead repell each other with
increasing elastic energy as their mutual distance shrinks. The resulting increase in formation
energies is of the same order of magnitude as the difference in formation energy between hut-
shaped and dome-shaped QD. Hence, with increasing QD size or lateral QD density, the
different elastic interactions in a QD array tend to destabilize hut-shaped QDs in favor of
dome-shaped QDs. This finding contradicts the previously applied approximation that QD
shape-transitions are only slightly affected by lateral QD-QD interactions [37]. The origin of
this discrepancy is that these authors assumed an elastically isotropic substrate, whereas our
calculations include the elastic anisotropy of both GaAs and InAs.

These results allow a new interpretation of the experimental finding that the effective
film-stress of a Si(001) wafer with a layer of self-assembled Si0.8Ge0.2 islands2 is reduced
when the QDs undergo a transition from hut shapes with {105} facets to dome shapes with
{101} facets [199]. Transferring our findings from InAs/GaAs to Ge/Si, we conclude that
the elastic interaction of dome-shaped Ge QDs with side facets in elastically hard planes is
significantly weaker as for the case of hut-shaped Ge QDs with side facets that correspond to
elastically softer planes. Therefore, we conclude that the reduction of substrate stress upon
the shape transition is mainly due to the resulting difference in elastic interactions. The effect
of reducing the substrate area that is covered by QDs [199] is comparably small. A detailed
investigation of the shape transition for the case of InAs/GaAs is presented in the following
section.

2The growth behavior of depositing a SiGe alloy is only quantitatively different from depositing pure
Ge. The advantage is an increase of the characteristic length-scales that makes it much more tractable
experimentally.
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7.6 Regimes of Thermodynamic Stability

It was first observed experimentally for the case of Ge/Si(001) that the bimodal distribution
of QD sizes corresponds to two different shapes [192] with a small region of shape coexistence.
The interpretation as shape transition during growth was confirmed by theoretical investiga-
tions [200] that showed, that the minimum-energy shape of islands on a lattice-mismatched
substrate changes with volume. The slope of the formation energy with respect to the QD
volume is then discontinuous at the intersections of different shapes, which leads to a dis-
continuous evolution of the chemical potential µ = ∂G/∂N (Eq. 3.2) during growth. If the
evolution of the chemical potential with island size would be continuous, the QDs would
undergo the so-called Ostwald ripening, i.e. the larger ones would grow on the expense of
the smaller ones, thereby creating a unimodal size distribution (see e.g. Ref. [201]). A dis-
continuous dependence of the chemical potential on the island volume instead was shown to
produce a bimodal size distribution without introducing additional size-limiting effects [202].
The discontinuity in the above theoretical works was due the assumption of distinctively dif-
ferent minimum-energy shapes, but a very recent study could show that it is also observed in
traversing the intermediate shapes along the shape-transition path-way [44]. The bimodal size
distribution with different shapes are not specific to the material system Ge/Si, but in fact
a more general aspect of QD growth. Recent high-resolution STM experiments revealed the
shape of InAs QDs in atomic detail [18], and found a shape transition during growth for the
case of InAs/GaAs, too [193, 203]. In fact, careful experimental investigations [19] revealed
strong similarities with Ge/Si: In both cases, the size distribution is bimodal with small QDs
that are rather flat and dominated by {105} or {137} side facets for Ge/Si or InAs/GaAs,
respectively. The larger QDs are steeper and bound by {101} side facets in both material sys-
tems. These detailed experimental studies also showed that the shape transition is reversible
upon annealing. The previous theoretical investigations of the shape transition mentioned
above are mostly based on material-unspecific continuum models. In this work, however, we
employ our many-body potential to study this effect for the case of InAs/GaAs(001) in full
atomistic detail. This enables us to specify the location of the discontinuity quantitatively,
and to study its dependence on the chemical potential of the As gas phase. Furthermore, we
will discuss the implications of the lateral elastic interactions found in the previous section.

In particular, we investigated the above shown hut shapes dominated by {137} facets
with a minor share of {1̄11} facets, and the dome shapes with mainly {101} facets and minor
areas of {137},{111}, and {1̄11} facets on the top and the bottom, respectively. The resulting
atomistic representations of these experimentally observed QD nanostructures are shown in
the left panel of Fig. 7.6. Note that the {101} facets of the hut shape given in Ref. [18] is not
consistent with the given arrangement of the other planes, so we did not consider this facet
in our study.

The thermodynamic stability of homogeneous films or QDs with different shapes can be
compared by means of the according formation energies (Eq. 7.2) in dependence of the number
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Figure 7.6: Atomistic representations of InAs QDs in hut shape (top left) and dome shape
(bottom left) on a GaAs(001) substrate with 1.75 ML InAs as wetting layer. (The color scheme
for the different atoms is again according to Fig. 6.1, apart from the bottom layers to indicate that
they were kept fixed in the relaxation.) The ratios of characteristic lengths (right: ©=L001/L1̄10
(dome), 2=L110/L1̄10 (dome), 4=L001/L1̄10) (hut) ) used in this work (right: black) are close
to experimentally observed values (right: Ref. [22] (red), Ref. [19] (green), derived from Ref. [19]
(blue), Ref. [204] (orange)).

of atoms (or, equivalently, the volume) of the particular structure. Perfect isomorphic scaling
of a given structure can be achieved easily within continuum approaches, but in the atomistic
approach presented in this work, a change of the QD volume involves integer changes in the
number of atoms and the number of atomic layers of each facet. For different QD side facets,
the distance between subsequent layers along the surface normal and their projection to the
substrate plane can differ. This effectively leads to different (discrete) increments of the
characteristic lengths, like the QD base length along [110]. In an atomistic approach like
the one used in this work, the isomorphic volume-scaling of a given QD shape can only be
done in an approximative manner. We determined typical ratios of characteristic lengths of
experimentally observed QD shapes [18, 19, 22, 204, 205] and initialized the atomistic QD
structures in different sizes [206] such that the chosen length ratios are similar, as shown in the
right panel of Fig. 7.6. The parameters for isomorphic scaling as used in our initialization tool
are given in Tab. 7.1 and 7.2 for the hut shape and the dome shape, respectively, together with
the total number of atoms in the QDs. The lengths given in Tab. 7.1 and 7.2 characterize
the QD shape uniquely and were determined as the distances between those atoms at the
QD bottom that are not part of the surface reconstruction. The relative stability of different
surface reconstructions of the substrate depends on both the local strain due to the presence
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Table 7.1: Hut-shaped QDs: Miller indices of the side facets
and distances from origin of the coordinate system, as well as the
resulting characteristic lengths and the number of atoms.

# ‖n(11̄1)‖ ‖n(317)‖ L[110] [Å] L[1̄10] [Å] ∆NIn

01 32 25 52 52 272

02 40 28.7 74 76 663

03 48 33 88 92 1384

04 60 39 120 124 3121

05 76 44 151 164 5716

06 83 47 178 180 7541

07 90 50 183 196 9721

08 99 53.7 210 220 13112

09 106.5 55.1 212 236 14848

10 112 58 230 252 18215

of a QD and the chemical potential of As, as discussed in great detail in the Ph.D. thesis of
E. Penev [74]. In this study, however, we focus on the formation energies of different structures
with respect to a wetting layer (see Eq. 7.2) with the same surface reconstruction. The major
part of the surface energy of the wetting-layer reconstruction will therefore cancel out and
only the difference in substrate area that is covered by different QD shapes will contribute.
The resulting change in the formation energy increases with QD size, but is only of a value of
approximately 1 meV for the largest QD investigated in this work. Our particular choice of a
β2(2×4) reconstruction for the wetting layer is thus of minor importance for the kind of study
presented in this section. The QD nanostructures were investigated in simulation cells with a
side length of 480 Å along the crystalline directions (110) and (1̄10) corresponding to a lateral
QD density of 4 · 1010 cm−2. The lateral elastic interaction among the QD in the simulation
cell and its periodic images are comparably small for this density (c.f. Fig. 7.5), but we will
discuss the influence of higher densities in the next section. We relaxed each structure with
our many-body potential, corrected the surface-energy errors of the total cohesive energy
(Eq. 7.1), and calculated the formation energy with respect to a homogeneous InAs film of
1.75 ML thickness according to Eq. 7.2. Our results for the homogeneous InAs film and
QDs in either hut or dome shape with increasing number of deposited In atoms are shown in
Fig. 7.7 at As-poor conditions. We find that our calculated formation energies are very well
described by an analytic expression that was proposed previously [33, 40, 198]: These works
show that the formation energy of a strained QD can be decomposed in a contribution from
the elastic relaxation that scales linearly with the QD volume V , as well as contributions due
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Table 7.2: Dome-shaped QDs: Miller indices of the side facets and distances from origin of the
coordinate system, as well as the resulting characteristic lengths and the number of atoms.

# ‖n(101)‖ ‖n(111)‖ ‖n(1̄11)‖ ‖n(317)‖ L[110] [Å] L[001] [Å] L[1̄10] [Å] ∆NIn

01 26 28 28 25 44 11 44 224

02 31 38 34 33 64 20 60 654

03 37 44 41 39 82 25 76 1397

04 44 54 50 47 106 35 100 3087

05 50 61 57 54.4 120 42 116 5030

06 56 70 64 61 144 51 132 7677

07 62 76 70 69 164 59 148 11085

08 66 79 73 72 170 62 156 15314

09 68 82 76 76.4 178 68 164 13523

10 72 85 80 80.2 184 70 172 18365

to the formation of surfaces and edges that scale with V 2/3 and V 1/3, respectively:

EQD = EelV + EsurfV
2/3 + EedgesV

1/3. (7.7)

To be more precise, we find that the volume dependence of the formation energies per atom
(Eq. 7.2) of QDs with respect to a wetting layer of 1.75 ML InAs are well captured by

Ef(QD)

∆NIn
= E′

el + E′
surf(∆NIn)

−1/3 + E′
edges(∆NIn)

−2/3 (7.8)

if we assign an elemental volume of V0 = a3
0/8 to each In atom. The coefficients that we

obtained by fitting the formation energies as obtained from our calculations for the hut-shaped
and dome-shaped QDs to the above expressions are summarized in Tab. 7.3 for different
values of the chemical potential. This finding allows us to identify three different regimes
of thermodynamic stability: For a deposition of less than approximately 1900 In atoms on
an InAs wetting layer of 1.75 ML thickness, the formation of a homogeneous InAs film is
energetically most favorable. Beyond this amount of In atoms, our results predicts the onset
of the Stranski-Krastanov growth mode, i.e. the transition from a 2D film to 3D islands. The
number of In atoms in our simulation cell at the transition point corresponds to a coverage
of 1.9 ML. This is in line with typical values of 1.7-1.9 ML deduced in experimental works.
Previous theoretical works employing a hybrid approach of continuum-elasticity theory and
density-functional theory [34] found a transition coverage of 1.6-1.8 ML InAs for the lateral
QD density that we used in our calculation. In extension to previous theoretical works and in
agreement with experimental observations, we find two distinct regimes of QD-shape stability
for coverages beyond the onset of the Stranski-Krastanov growth mode. In particular, the
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Figure 7.7: The formation energies (left) of hut (black) and dome (red) shaped QDs obtained
with the many-body potential (points) are well described (lines) by previously suggested depen-
dencies on the QD volume (Eq. 7.7). The three observed stability regimes depend additionally
on the applied chemical potentials (left: µAs - µbulk

As =-0.6eV), which is shown for the case of As
in its allowed range (right).

results in the left panel of Fig. 7.7 show that small QDs are energetically favorable in the hut
shape, whereas larger ones are more stable in the dome shape.

An additional degree of freedom in this investigation is the stoichiometry of the different
QDs: In the calculation of the formation energy (Eq. 7.2) we consider the In and Ga atoms
to be in thermodynamic equilibrium with reservoirs of InAs and GaAs, respectively. The
remaining excess or lack of As atoms instead leads to a dependence of the formation energy
on the chemical potential of As, similar to the stoichiometry dependence of the surface free
energies described in Sec. 3.2. The particular stoichiometry δNAs of a nanostructure with a
QD of a certain size and shape is determined by the detailed atomic structure. It is naturally
accessible in our approach by evaluating

δNAs = ∆NAs − ∆NIn − ∆NGa (7.9)

with the number of atoms per species in the QD nanostructure and the reference film (see
Eq. 7.2 above). From this, we find that the dependence of the stoichiometry on the volume
of the hut- and dome-shaped QDs (Tab. 7.1 and 7.2) is well described by contributions from
the surface (V 2/3) and from edges (V 1/3), namely

hut : δNAs(∆NIn) = −0.111 · (∆NIn)
2/3 + 0.820 · (∆NIn)

1/3 (7.10)

dome : δNAs(∆NIn) = −0.509 · (∆NIn)
2/3 + 0.482 · (∆NIn)

1/3, (7.11)
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Table 7.3: The formation energies of hut- and dome-shaped QDs in different
sizes (Tab. 7.1 and 7.2) as obtained from relaxations with our many-body
potential are well described by an earlier proposed dependence on volume,
area, and kinks: E′

el, E
′

surf , and E′

edges in Eq. 7.8 for different values of the
chemical potential of As.

hut dome
µAs - µbulk

As E′
el E′

surf E′
edges E′

el E′
surf E′

edges

0.0 -6.107 0.03239 3.185 -6.152 1.319 0.4311

-0.2 -6.112 0.1868 2.124 -6.152 1.221 0.4987

-0.4 -6.115 0.2803 1.347 -6.154 1.154 0.3783

-0.6 -6.121 0.4232 0.3534 -6.154 1.051 0.5192

-0.8 -6.121 0.4367 0.0003241 -6.153 0.9468 0.5588

where the number of In atoms in the QD, ∆NIn, is proportional to its volume3. The resulting
effect of the chemical potential on the formation energies is shown in the right panel of
Fig. 7.7: The onset of the transition from 2D films to hut-shaped QD is only weakly affected
by the value of µAs. The transition from hut-shaped to dome-shaped QD instead changes
significantly with the chemical potential of As. The upper and lower bound for µAs are the
cohesive energy of As (A7) bulk and its difference to the formation enthalpy of InAs zinc
blende bulk. We found that the dependence of the transition coverages on the chemical
potential are well described by a 1/N relation, which one would expect from solving Eq. 7.2
for µ(As).

So far, we have discussed the transition from hut-shaped QD to dome-shaped QD only for a
fixed lateral QD density of approximately 4·1010 cm−2. The quantitative results of the lateral
elastic QD-QD interaction obtained in the previous section (see Fig. 7.5), however, allow us
to present a complete picture of the shape transition as a function of both, the chemical
potential of As, and the lateral QD density. To this end we employ the finding that the
elastic interaction energy per atom (Eq. 7.6) at constant lateral QD density grows linearly
with the QD volume (inset in left panel of Fig. 7.5). This allows us to isolate the lateral
interaction-energy Eelastic(R1) for the QDs with fixed distance R1 that were investigated
above (Tab. 7.1, 7.2, and Fig. 7.7) by evaluating

EQD(∞) = EQD(R1) − Eelastic(R1), (7.12)

and to determine the formation energy of QDs at infinite distances R = ∞. In this way,
we can also obtain these formation energies of non-interacting QDs for different chemical

3Note, that these results from counting the atoms in the simulation cell differ from what one would expect
by adding up the stoichiometries of the involved surfaces. The latter would lead to a nearly stoichiometric
system for the case of the dome shape and an As excess for the hut shape that increases with ∆NIn, in contrast
to our results.
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potentials of Arsenic, EQD(∞, µ(As)). This yields directly (Eq. 7.12) the formation ener-
gies of the investigated hut- and dome-shaped QDs, EQD(R,µ(As)), in dependence of both,
the QD-QD distances R and the value of the chemical potential µ(As). We determined

Figure 7.8: Number of In atoms in a QD on a wetting layer of 1.75 ML InAs at the transition
from the hut shape to the dome shape as a function of the lateral QD density (or QD distance)
and the chemical potential of As (colors). The allowed range of µAs is indicated gray and ranges
from µbulk

As (black line) to µbulk
As − ∆HInAs

f (orange line).

EQD(R,µ(As)) numerically for a number of tuples (R,µ(As)) where 250Å < R < 2000Å and
µbulk

As − ∆HInAs
f < µ(As) < µbulk

As . (Note, that the left panel of Fig. 7.7 corresponds to one of
these tuples.) For each tuple, we repeated the procedure of calculating the regimes of stabil-
ity, i.e. we fitted the according formation energies of hut- and dome-shaped QDs to Eq. 7.7
and determined the number of In atoms in the QD at the intersection of the stability lines
of these two shapes. This yields the transition point for the shape transition as a function
of lateral QD density and chemical potential µAs as shown in Fig. 7.8. The dependency of
the calculated transition points on the QD distance for a given chemical potential is well
described by

N(R)|µ(As) = a(µ(As)) − b(µ(As)) ·R−3/4. (7.13)

In interpretation of Fig. 7.8 we find that As-poor conditions and high QD densities shift
the transition from hut-shaped QD to dome-shaped QD to smaller QD volumes. The prior
dependence is a result of the different stoichiometries, the latter is due to the difference in
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elastic interactions. Note, that neglecting the elastic interaction and system stoichiometries
that were determined from the facet stoichiometries only may cause large deviations from
the experimentally observed transition points [193, 207].

7.7 Critical Nucleus

With the formation energies calculated above, we can now tie up to the previous work of
Moll [198], and determine the critical nucleus for the formation of a QD on a wetting layer.
In Sec. 3.4 we showed that the formation of a liquid droplet from a vapor phase is accompanied
by a change in the thermodynamic potential ∆G with respect to the radius of the droplet.
The two different phases in the case of QD growth are a homogenous film and a QD on a
wetting layer, with the number of additional In atoms as variable. Therefore, we compare
the formation energies γf of homogenous InAs films of increasing thickness with QDs of
increasing volume on a wetting layer of constant thickness

γf(S) = ·
[

∆Ec
tot − ∆NGaH

f
GaAs − ∆NInH

f
InAs − (∆NAs − ∆NIn − ∆NGa)µAs

]

(7.14)

where ∆X = X(S) − X(I) is given in analogy to Eq. 7.2. Based on our results and those
of previous experimental and theoretical works, we assume that the initial structure I for
QD formation is an InAs wetting layer of 1.75 ML thickness. The formation energies of
the homogenous film and the QD structures refer to an identical area A given by the size
of our super cells. The size-dependent formation energies of the QDs, γf (QD,N), are fitted
to Eq. 7.7. The obtained γf (QD,N) is then subtracted from the formation energy of a
homogenous film, γf (film,N) as determined in Sec. 7.34. This difference of the formation
energy of a homogenous film and a hut-shaped QD with increasing amount of In atoms
allows us to determine the size of the critical nucleus (Fig. 7.9: line in left panel). The
critical nucleus is given by the number of additional In atoms at the maximum difference in
formation energies. For values larger (lower) than zero, the film (QD) is energetically favored.
Below the critical size of approximately 70 In atoms, the (unstable) QD can gain energy by
dissolving without a barrier, but needs to overcome a barrier to gain energy by continued
growth. If the QD is larger than the critical size but possibly still unstable, it can gain energy
by further growth. The critical nucleus is the transition between these two regimes: There
the QD can gain energy by either (barrier-less) dissolution or (barrier-less) growth. From our
calculations we find that the energy barrier for forming the critical nucleus of a hut-shaped
QD is 5.3 eV. Note that this result applies for growth conditions close to the thermodynamic
equilibrium, e.g. high adatom mobility and low deposition rate.

So far, we implicitly assumed that the decomposition of formation energies given in Eq. 7.2
is valid in the regime of very small QDs. Our atomistic approach allows us to verify this

4The formation energy of an extended wetting layer is the sum of formation energies of the involved surface
unit-cells, and therefore a sequence of piecewise defined, linearly varying functions as shown in Fig. 7.2.
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Figure 7.9: The difference between the formation energy of a homogenous InAs film and a
hut-shaped QD on InAs wetting layer allows us to determine the size of the critical nucleus to be
of approximately 70 In atoms (left) and the energy barrier of formation to be of 5.3 eV in our
simulation cell with an area of A = 2.3 · 105Å2. Such a critical hut-shaped QD (right: size B in
Tab. 7.4) is only a few monolayers high. (The atoms of the initial system are shown darker to
guide the eye.)

presumption by extending our study to small, unstable hut-shaped QDs (Tab. 7.4). These
structures were obtained by successively removing complete layers of the individual {137} and
the {111} facets. Therefore, they do not follow the isomorphic scaling that we approximately
achieved for the larger hut-shaped QDs (Tab. 7.1). The difference between the calculated

Table 7.4: Unstable hut-shaped QDs: Miller indices of the
side facets and distances from origin of the coordinate system,
as well as the resulting characteristic lengths and the number
of atoms.

# ‖n(11̄1)‖ ‖n(317)‖ L[110] [Å] L[1̄10] [Å] ∆NIn

A 19 19 16 19 29

B 19 20.5 24 20 47

C 22 26 38 35 106

D 23.5 28 48 44 174

formation energies of the small, unstable QDs and a wetting layer of according thickness
(Fig. 7.9: symbols in left panel) allows us to determine the critical nucleus in an atomistic
way. A comparison with the results that were obtained from the formation energies of larger
QDs (Fig. 7.9: line in left panel) shows good agreement for the size of the critical nucleus and
reasonable agreement for the nucleation barrier. We conclude that the decomposition of the
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formation energy given in Eq. 7.2 is a good approximation even in the regime of very small
QDs. Our results show that a many-body potential is able to resolve the energy differences
that stem from the absence of an isomorphic scaling for very small atomistic structures.

An interesting aspect of our results is that a hut-shaped QD of about the critical size has
a height of 2-3 atomic layers and therefore resembles a transition from a 2D to 3D island
(right panel in Fig. 7.9). This explains the impression of a ’spontaneous’ formation of QDs
that was deduced from RHEED experiments: Growth interruptions just after the onset of
the 2D-3D transition that can be observed as RHEED chevrons (see e.g. Ref. [208]) already
yield samples with QDs of several nm base-length [18]. The possible uncertainties of the
experiments (e.g. RHEED sensitivity) and of our approach do not allow a precise statement,
if the island at the experimentally observed 2D-3D transition is subcritical or supercritical.
However, our results suggest that the size of the islands at the 2D-3D transition observed
in RHEED experiments is very close to the size of the critical nucleus. Islands of this size
are still unstable, but the remaining barrier for a growth continuation is small, such that
growth to eventually stable QDs can set in without significant time delay once the 2D-3D
transition has occurred. If, on the contrary, the critical nucleus would have been much larger,
then a growth interruption just after the onset of the 2D-3D transition would leave unstable
islands behind that face a larger barrier for continuing 3D growth. They should therefore
preferentially dissolve, in contrast to experimental findings (e.g. Ref.[18]). Note, that this
is the first investigation of this kind that allows such quantitative explanations of the initial
growth stage of InAs QDs on GaAs(001) without further assumptions.



Chapter 8

QD Superlattices

In the previous chapter we found that many features of the self-assembled formation of
InAs/GaAs QDs in the Stranski-Krastanov growth mode are well reproduced by the newly
developed many-body potential. In this chapter we extend the application of the potential
to an investigation the experimental finding of growth correlations in stacked layers of InAs
QDs on a GaAs(001) substrate. We show that the dependence of the formation energy of
an overgrown QD on its length and height favors a rather flat QD shape. Most importantly,
we give the first quantitative investigation of the driving force of growth correlations in QD
stacks, based on the size of the critical nucleus in different lateral positions relative to the
overgrown QDs.

8.1 Experimental Findings

One of the prerequisites for utilizing QDs in future devices is a narrow distribution of the
electronic spectra of the involved QDs. This can result directly from homogeneous sizes,
shapes, and chemical compositions, but one might also think of combinations of different
sizes, shapes, and compositions that exhibit similarities of the electronic properties of inter-
est. Many experiments could demonstrate that the size distribution is narrow enough for
realizing lasers with small frequency bandwidth and high intensity. One of the most inter-
esting future applications, quantum computing, additionally requires a quantum-mechanical
coupling (entanglement) of the electronic states of neighboring QDs [209]. The smallest for-
mation unit of a quantum computer that is needed for procession of a logical qubit can be
realized with two coupled QDs. The occurrence of this effect is connected with a sufficiently
small spatial distance between the QDs, in practice either laterally or vertically. It was al-
ready demonstrated experimentally that the quantum states of a vertical arrangement of two
QDs can couple with each other, and act as optically driven solid-state quantum gate [210].
Very recent investigations showed that the degree of coupling can be controlled experimentally

107



108 8. QD Superlattices

and is consistent with a theoretical description [211].

A possible route to devices with high densities of homogeneous QDs is the successive
growth of stacked layers of spatially correlated QDs. Such growth correlations were re-
vealed [2] already in the infancy of QD studies, and are still investigated as a possible route
to the creation of ordered 3D arrays of QDs with a narrow size distribution. They are fab-
ricated experimentally by successive growth steps: At first, a layer of self-assembled QDs is
grown on a substrate by depositing e.g. InAs on GaAs(001). This layer of QDs is overgrown
by a spacer layer of e.g. GaAs, which serves then as a substrate in another cycle of grow-
ing self-assembled QDs by depositing e.g. InAs. Under appropriate growth conditions, this
procedure results in a crystalline, dislocation-free structure with QD layers stacked along the
growth direction and separated by the material of the spacer layer. The above mentioned
growth correlations are typically investigated by cross-sectional STM experiments (see e.g.
Ref. [212] for a recent review): For this purpose, the sample is cleaved in e.g. the (110) or
(11̄0) plane, and the exposed face is then investigated in a STM experiment. An exemplary
result of stacked layers with vertically aligned QDs is shown in the left panel of Fig. 8.1.

Figure 8.1: Cross-sectional STM experiments (e.g. Ref. [213]) revealed growth correlations in
stacked QD layers (left). Systematic investigations showed that the critical thickness decreases
with spacer thickness (middle, [214]), and that interstitial QDs possibly form between nearest
neighbors (right, [215]).

Systematic experimental and theoretical investigations revealed a deeper insight in the
nature of growth correlations in stacked QD layers: The elastic interactions between QDs
of different layers depends on the elastic anisotropy of the materials and differs qualita-
tively for different crystal structures and substrate orientations (see e.g. Ref. [122]), whereas
for InAs/GaAs(001) it results in a vertical alignment of QDs in subsequent layers (see e.g.
Ref. [213]). The growth correlations manifest also in a decrease of the critical thickness with
decreasing spacer thickness (middle panel of Fig. 8.1, observed for both, Ge/Si(001) [214] and
InAs/GaAs(001) [216]. The lateral ordering of the QDs in the first layer can furthermore be
controlled by patterning the GaAs substrate (e.g. with holes) that serve as preferential nu-
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cleation sites. How many of the preferred sites given by the pattern are actually occupied by
QDs depends on the relation between the QD density that would correspond to the particular
growth conditions and the density of preferred sites offered by the substrate pattern. In par-
ticular, for too small pattern densities one observes QD growth in interstitial positions [215]
as shown in the right panel of Fig. 8.1. Continuum-elasticity theory calculations suggested
that the experimentally observed interstitial positions between nearest neighbors (instead of
e.g. next-nearest neighbors) is due to the elastic anisotropy of the crystal lattice [215].

The theoretical interpretations of growth correlations in stacked QD layers are based on
either kinetic or thermodynamic arguments. The prior apply to growth conditions that do
not allow the system to reach an equilibrium state, but rather lead to a strong influence
of the individual diffusion events [217, 218]. The activation barriers for the latter can be
strongly influenced by the strain tensor that the overgrown QD causes at the substrate
surface [109]. From a thermodynamic point of view, the preferred relative arrangement of
QDs in subsequent layers is caused by an energy difference that alters the QD formation
energy dependent on its position. The first suggestion of this relation [219] and later works
are based on the qualitative assumption that nucleation is favorable in regions of tensile strain
at the surface. The focus was consequently on the calculation of the surface strain-tensor
above overgrown QDs with either continuum (e.g. Refs. [121, 122]) or atomistic approaches
(e.g. Ref. [220]). Although these previous works provided a lot of insight already, they did
not quantify the energetic gain for nucleation in a minimum of the surface strain tensor as
compared to other non-preferred sites. This absence made it hard to judge the impact of the
surface strain tensor arising from the overgrown QD as compared to possible kinetic effects.
Our approach, however, enables us to settle this issue through a quantitative calculation of
the size reduction of the critical nucleus in the preferred nucleation sites.

8.2 Truncated Pyramids in a QD Superlattice

The overgrowth of QDs with substrate material is not yet fully understood, but seems to be
governed by an interplay of different processes that depends sensitively on the experimental
growth conditions: After very fast (1-2 ML/s) InAs QD growth and GaAs overgrowth at mod-
erate temperatures by MOCVD [221], the QDs exhibit a truncated-pyramid like shape [222],
and consist of nearly pure InAs [20], indicating that In-Ga interdiffusion is negligible. Ele-
vating the overgrowth temperature by about 100◦ already results in a significantly altered
stoichiometry of the QDs that resembles an inverted cone profile [223] with a maximum In
concentration of about 60% [224]. The intermixing of Ga and In is usually more apparent in
MBE growth that takes place at much lower growth rates and results in e.g. a similarly re-
duced amount of In in the QDs [225] and the dissolution of the wetting layers [213]. Another
source of substantial material redistribution is incomplete or interrupted overgrowth [226],
which can lead to the formation of quantum rings or nanovoids (see e.g. Ref. [224] for a
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recent study).

In this study we focus on the nature of QD overgrowth at comparably large deposition
rates during growth and overgrowth. Consequently, we assume an atomically sharp interface
between the GaAs(001) substrate and the InAs wetting layer, as well as negligible segregation
of single In atoms to the GaAs environment. We mimic the formation of a truncated pyramid
during overgrowth by investigating pyramids with {101} facets of different base length that
are truncated in different heights. They are located on 2 ML InAs wetting layer and embedded
in a GaAs matrix, as sketched in the left panel of Fig. 8.2. In the relaxation with our
many-body potential we do not relax the coordinates of the atoms in the two topmost layers
individually, but rather fix the x and y coordinates of each atom, and relax these atoms under
the constraint of a common z coordinate to mimic a sufficiently large capping layer. We then
calculate the cohesive energy of each structure according to Eq. 7.2 and compare them at
constant volume of the QD, as shown in the right panel of Fig. 8.2. The cohesive energies

Figure 8.2: For a sequence of InAs {101} pyramids with different base lengths and truncation-
heights embedded in GaAs (left), we calculated the cohesive energies (right, gray scale: 0.1 eV
spacing). For a given amount of InAs (right, red lines), the formation energy of the pyramids
decreases (from light gray to black) with increasing base length and decreasing height, in line
with the experimentally observed truncated pyramids.

of pyramids with base lengths L/a0(GaAs) ∈ [6, 16] and truncation heights H/a0(GaAs) ∈
[0.5, 7.5] are shown in gray scale in Fig. 8.2, together with the iso-volume lines in red. (The
white region is due to the fact that for small base-lengths the maximum height is lower than
the range of plotted heights.) From the comparison of cohesive energies at a constant pyramid
volume, we can conclude that the shape of an InAs QD on a (001) wetting layer embedded
in GaAs is energetically more favorable at large base length and small height. This result
explains partially the driving force for the experimentally observed QD shapes that resemble
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truncated pyramids. It depends strongly, however, on the detailed growth conditions, to
which extent it effectively contributes or is ruled out by growth kinetics.

8.3 Growth Correlations in Stacked QD Layers

8.3.1 Initialization

In the following discussion, we address the experimental observation of growth correlations
between QDs in stacked layers within a stationary approach using our newly developed many-
body potential. In particular, we calculate the cohesive energy of a free-standing QD in
different lateral positions above an overgrown QD, and thus determine the effective potential-
energy surface for QD stacking. Note that this new kind of ansatz enables us to quantify the
effect of elastic interaction among stacked layers of QDs. A sketch of the investigated systems
in Fig.8.3 shows a side view of the two stacked QDs, together with a top view of the different
lateral positions of the upper QD. The x and y axes of the shown structures correspond the
crystallographic directions [110] and [1̄10], respectively. In the case shown here we used a

Figure 8.3: Setup of QD stack calculations: (a) A side view along [1̄10] shows the stacked
QD layers and (b) a schematic top view indicates the different lateral positions (green points)
of the upper QD. To guide the eye we plotted the lower capped QD as gray area and the upper
free-standing QD as red frame.

spacer thickness of 4.6 nm GaAs between the two InAs layers, and assumed both QDs as
hut-shaped with {317} facets. In the results below, we will further investigate the role of
spacer thicknesses, lateral QD density, and QD shapes. We have chosen the smallest hut- and
dome-shaped QD investigated so far (hut #1 in Tab. 7.1 and dome #1 in Tab. 7.2) to keep
the number of atoms in the investigated QD stacks below 1.5 million atoms. Throughout
the following discussion, we use QDs formed by pure InAs and embedding material of pure
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GaAs, in contrast to most experimentally observed stoichiometries. Our results can thus be
understood as an upper bound for the elastic effects that are possibly weakened by intermixing
of In and Ga.

For computational efficiency, we divide the QD stack in an upper part with the free-
standing QD, the WL and a few substrate layers, and a lower part with the overgrown QD
and the substrate below. Firstly, these two parts were pre-relaxed individually until the
maximum force |Fmax| acting on an atom in the system was smaller than 0.1 eV/Å. To
preserve a planar interface between the two parts, we relaxed the lower part applying the
constraint that the atoms in the upper layers (of the lower part) have a common height.
In the relaxation of the upper part, the atoms in the lower layers were kept fixed. In the
second step, we initialized the upper QD in different lateral positions by shifting all atoms
relative to the upper super cell and applying periodic boundary-conditions. The increments
of the lateral positions corresponded to four surface unit-cells to be in accordance with the
periodicity of the assumed (2x4) reconstruction of the wetting layer. In the third step, the
individual upper parts were joined again with the lower part, and the complete system was
relaxed until |Fmax| < 0.001 eV/Å with keeping only the lowest layers of the system fixed.
Finally, we calculated the formation energy of each structure according to Eq. 7.2 with the
overgrown QD beneath a wetting layer of 1.75 ML InAs as initial structure, i.e. ∆NIn is the
number of In atoms in the upper QD.

8.3.2 Potential-Energy Surface of Stacked QD Layers

The technical advantage of investigating QD growth correlations by a potential-energy surface
is that not only the numbers of atoms of the different species, but also the area of all involved
surfaces, is constant. Thus, in a comparison of total energies of different lateral positions of the
upper QD, the errors of the surface energies as obtained from the many-body potential with
respect to those obtained by DFT calculations cancel out exactly (Sec. 6.3). The remaining
leading contributions are the elastic energy in the GaAs substrate and capping regions, in
the InAs QDs, and in the two InAs wetting layers. These are well reproduced with the many-
body potential as already shown in Sec. 6.2 and 6.4. To limit the computational effort1, we
performed this study in several steps.

Symmetry of PES

At first, we investigated the overall shape of the PES to identify possible symmetries that
determine the irreducible scanning area by performing line scans in all quadrants, one of
them indicated in the right panel of Fig. 8.3. To be more precise, we calculated the formation
energies of the upper QD in different radial positions along the [100], [110], [010], [1̄10]

1Each calculated point of the investigated PES requires to relax up to 1.4 million atoms, dependent on
lateral QD density and spacer thickness.
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crystallographic directions with respect to the lower QD. To investigate the largest possible
impact of the shape combinations on the overall structure of the PES, we have chosen the hut
shape (that has less symmetry than the dome shape) for both QDs. The line scans in Fig. 8.4
show the energy gain δE per In atom of the upper QD in dependence of the lateral distance
between the centers of upper and lower QD with respect to the smallest observed value of δE.
The dominating feature of all line scans is the minimum that corresponds to the arrangement

Figure 8.4: Line scans of the PES along the {100}, and {110} directions in all quadrants of
the PES of a freestanding hut QD above an overgrown QD hut show an energetic minimum for
vertical stacking with high symmetry.

with the center of the upper (freestanding) QD above the apex of the lower (overgrown) QD.
For several groups of line scans the formation energies are practically identical; these form the
equivalent crystallographic directions of the PES calculation: [110]=[1̄1̄0], [1̄10]=[11̄0], and
[100]=[010]=[1̄00]=[11̄0]. From the difference between the first two groups we can conclude
that the two possible interstitial sites between nearest-neighbor QDs are similar but not
equivalent. There is however only one possible interstitial site between next-nearest neighbor
QDs, which is reflected in the full equivalency of the directions in the last group. The smallest
irreducible part of the PES is hence a quadrant that includes the two inequivalent nearest-
neighbor interstitial sites. From the following calculations for this quadrant only, the full
PES can be constructed by subsequent mirroring at the [110] and [1̄10] axes.
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Effect of QD Shapes

As a second issue, we investigated the effect of different shapes of the upper (free-standing)
and the lower (overgrown) QD. To this end, we calculated the formation energies of the upper
QD on top of the spacer layer above the lower QD for the four different combinations of hut-
shape and dome-shape for the free-standing or overgrown QD. The QDs in either shapes were
placed in different lateral positions in an area of 20×20 surface lattice constants s0 = a0/

√
2

in the quadrant of 40×40 s0 as indicated in the right panel of Fig. 8.3. For one of the shape
combinations (both QDs are hut-shaped), we calculated the PES for the full quadrant of
40×40 s0. The resulting PES for all combinations of shapes are compiled in Fig. 8.5. In

a) b)

c) d)

Figure 8.5: Potential-energy surface of total energies of free-standing QD in different lateral
positions above overgrown QD (contour line spacing: 1 meV): hut-shaped QD above (a) hut-
shaped of (b) dome-shaped QD, as well as dome-shaped QD above (c) hut-shaped of (d) dome-
shaped QD. The x and y axes correspond to the crystallographic directions (110) and (1̄10),
respectively.
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all investigated combinations of QD shapes, the arrangement with vertically aligned QDs is
energetically most favorable, qualitatively in line with the experimentally observed vertical
growth correlations in QD stacks. A comparison for Fig. 8.5 (a)-(d) shows clearly that the
shape of the two QDs has practically no influence on the qualitative shape of the PES of the
upper QD. An approximation by an array of interacting point sources of strain would thus be
well justified. Due to negligible influence of the QD shapes, we can also limit the investigation
of the full quadrant of 40×40 s0 to one combination of shapes only, e.g. the case of two hut-
shaped QDs shown in Fig. 8.5 (a): We find no further characteristic feature of the PES that
is of comparable importance to the minimum for vertically aligned QDs. The additional
minimum in the upper right edge corresponds to a weak preference for the interstitial sites
between next-nearest neighbor QDs. For an understanding of the experimentally observed
additional nucleation at interstitial sites between nearest neighbor QDs, one would need to
extend this study to higher QD densities in the top layer.

For a more detailed study of the energy gain for vertical stacking of QDs of different
shapes, we compare the line scans of the above PES along the crystallographic directions
[110], [010], and [1̄10] shown in Fig. 8.6. These line scans reveal some interesting aspects of

Figure 8.6: The line scans of PES of hut- and dome-shaped QD above overgrown hut-shaped
(left) or dome-shaped QD (right) show an energy gain for vertical stacking of approximately
20-25 meV per In atom.

QD stacking: Firstly, by comparing the energy ranges of the two panels in Fig. 8.6, we find
that the hut-shape is energetically more favorable by approximately 100 meV for the lower
QD than the dome-shape, regardless of the shape of the upper QD. This in is accordance with
the result of the previous section, that the formation energy of an embedded QD of given
volume is smaller for rather flat shapes. Secondly, the vertically aligned arrangements with
a dome-shaped QD on top are energetically favorable by nearly 5 meV as compared to those
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with a hut-shaped QD on top, independent from the shape of the overgrown QD. We find
thus no ‘shape inheritance’ from the overgrown QD to the free-standing QD. A further study
of the relative shape stability of the upper QD in its lateral position might be accomplished
in the way pointed out in Sec. 7.6. In this work though, we focus on the major effect due to
vertical stacking that is of highest relevance for understanding experimental works.

8.3.3 Effect of Lateral QD-QD Spacing and Spacer Thickness

The calculations outlined above were repeated for the case of two hut-shaped QDs with
different spacer thickness H and different lateral QD distance R . As a measure of the energy
gain for vertical alignment in the different cases we compare the difference per atom δE
between the formation energy at vertical alignment and at the energetically most favorable
interstitial site in Fig. 8.7. The lateral QD distance obviously plays a role only at very small

Figure 8.7: The energy gain δE for vertical alignment of two hut-shaped QDs with respect to
the most favorable interstitial site is decreasing with increasing spacer thickness (left, R=32 nm)
and vanishes at approximately 10 nm. The lateral QD distance at fixed spacer thickness (right,
H=4.6 nm) plays only a role at values that are close to that of the QD base length.

values. Note that the maximum energy gain for vertical QD alignment of δE ≈ 35 meV
per atom obtained from our calculations is significantly larger than the previously reported
value of 1 meV for PbSe/Pb1−xEuxTe QD superlattices determined by a phenomenological
argument [227]. This maximum energy gain for vertical alignment of the stacked QDs is
decreasing with increasing spacer thickness and reaches a negligible value at a spacer thickness
of D0 ≈8 nm, i.e. about 28 ML GaAs. A dependence of growth correlations on the spacer
thickness was observed earlier in both, experimental (e.g. Refs. [214, 221, 228, 227]) and
theoretical studies (e.g. Refs. [121, 123]). But a quantitative comparison of our results with
experimental observations is hampered by the dependencies on growth conditions, and the
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different sizes and stoichiometries of the QDs. The most direct comparison is probably with
nearly pure [20] InAs QDs grown by MOCVD on GaAs(001) [221]: For these QDs of about
twice the size of those studied in this work, the preference for vertical alignment vanishes at
a spacer thickness of D0 ≈9-12 nm. We can compare this value to our results with QDs of
a smaller base length L by noting that an increase of the characteristic system length would
increase both the QD volume and D0. Therefore, the value of the spacer thickness with
vanishing vertical alignment D0 ≈8 nm as calculated in this work can be considered as lower
bound for stacked layers of QDs with a base length of L >5 nm.

Together with the preference of vertical alignment, we conclude that QD stacks relieve
elastic energy by a vertical overlap of the strain tensors of the upper and the lower QD. The
difference between this attractive vertical interaction and the repulsive lateral interaction that
we observed in Sec. 7.5 is an interesting effect that we can clarify by comparing the trace
of the strain tensors in the investigated QD stack at different spacer thicknesses as shown
in Fig. 8.8. The two QDs and their surroundings exhibit a qualitatively different strain

Figure 8.8: The trace of the strain tensor of vertically stacked QD with different spacer thickness
of 3.5 nm (left) and 4.6 nm (right) shows the different overlap between the monopole-like lower
QD and the dipole-like upper QD.

tensor, particularly at larger spacer thickness (right panel): The presence of the lower, highly
compressed QD shows little effect on the embedding GaAs in its vicinity. The substrate below
the upper, less compressed QD, however, is expanded, even for distances of about the size of
the upper QD. This observation enables us to explain the origin of the lateral repulsive and
the vertical attractive interaction within a simplified picture: The entity of compressed QD
material and expanded substrate material below the free-standing QD can be regarded as a
elastic dipole. The compressed material of the embedded QD on the other hand, is surrounded
by only weakly expanded substrate material and therefore resembles more a elastic monopole.
The lateral repulsive interaction is then due to the two surface dipoles of equal orientation.
The vertical attractive interaction instead resembles more a dipole-monopole interaction with
the ‘positive’ end of the dipole pointing towards the ‘negative’ monopole.
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The few reports on experimentally observed anti-correlations (e.g Ref. [229]) were at-
tributed to a transition from correlation to anti-correlation with increasing spacer thick-
ness that was predicted qualitatively with both thermodynamic [121] and kinetic consider-
ations [123]. In all cases of different spacer thickness, QD shapes and lateral QD distances
studied in this work, however, we find a strong preference for vertical stacking, and no indica-
tion of an anti-correlation whatsoever. A thorough comparison to the previously mentioned
theoretical works would require further calculations to systematically determine the energy
gain of vertical or oblique arrangement for different QD sizes, shapes, and spacer thicknesses.
In this study, however, we are interested in a quantitative understanding of the effect of QD
stacking on the nucleation process itself.

8.3.4 Spatially Resolved Critical Nucleus

Furthermore, the results for the energy gain in different arrangements of stacked QDs pre-
sented above allow us to quantify the effect on the size of the critical nucleus. We will follow
the procedure outlined in Sec. 7.7, but additionally consider the energy contribution from
QD stacking. In the limit of vanishing elastic interaction (δE = 0), the formation energy of

the upper QD, γ
(0)
f (QD), is equal to that of the freestanding QD (with no overgrown QD

beneath) given by Eq. 7.14. Our results of the previous sections show that the average energy
gain per atom δE due to stacking is well approximated by an isotropic function that depends
on the lateral distance R between the centers of the upper and the lower QD in the stack. For
the following study of the size of the critical nucleus at different R, we need to additionally
consider that the energy gain depends on the volume V of the upper QD:

γf(QD, V, x, y) ≈ γ
(0)
f (QD, V ) + δE(V,R) · ∆NIn

A
(8.1)

where A is the area of the referred simulation cell. We performed additional calculations
with smaller sizes of the upper QD (Tab. 7.4) to reveal the volume dependence of δE. It is
reasonably well described by a proportionality to the base area of the upper QD (inset in
left panel of Fig. 8.9) that senses the strain due to the overgrown QD beneath. With this
result, we calculated the formation energies of hut-shaped QDs for different energy gains due
to the stacking arrangement. The latter is comprised as an additional contribution to Esurf

in the QD formation energy 7.7. Then we followed the procedure for determining the critical
nucleus of a freestanding QD (Sec. 7.7), but now including the energy gain due to stacking
(Eq. 8.1) within the observed range of δE ∈ [5, 35]meV. The obtained difference between the
formation energy of a homogenous film and a hut-shaped QD for different energy gains due
to different stacking arrangements is shown in Fig. 8.9. The energy gain reduces the energy
barrier for nucleation ∆γc and the size of the critical nucleus Nc and can be interpreted as
an additional chemical potential (see also Fig. 3.2). We find a linear relationship between
∆γc and Nc that gives the relationship between the two y axes shown in the right panel of
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Figure 8.9: The energy gain δE due to stacking arrangement reduces both, the nucleation
barriers and the size of the critical nucleus and leads to preferred nucleation above overgrown
QDs. The value of δE depends on QD shape (Fig. 8.6), spacer thickness Fig.8.7, and lateral
position with respect to overgrown QD (Fig. 8.5).

Fig. 8.9:
∆γc = 2.52 eV + 0.041 eV ·Nc. (8.2)

The critical nucleus of a free-standing QD of approximately 70 In atoms is reduced by the
elastic interactions in the QD stack by up to a factor of 3 to approximately 25 In atoms (right
panel) in the investigated range of energy gains δE. The energy barrier ∆γc for forming the
critical nucleus is lowered from approximately 5.3 eV to approximately 3.5 eV. The resulting
increase in the nucleation rate above the overgrown QDs can thus explain the strong tendency
of the experimentally observed vertical growth-correlations in QD stacks within classical
nucleation theory. Note that the above change of ∆γc by approximately 2 eV would increase
the nucleation rate Γ at a temperature of 800 K by several orders of magnitude if we assume
that Γ is proportional to exp(−∆γc/kT ). A weakening of the preference for vertical alignment
in experiments can be due to a reduced energy gain because of e.g. intermixing of Ga and
In, or the formation of defects.



Chapter 9

Kinetic Aspects of QD Growth

In the previous chapters, we found that many prominent features of InAs/GaAs(001) QD
growth can be explained by a thermodynamic rationale based on total energy calculations
with the many-body potential developed in this work. Nevertheless, the latter does not pro-
vide an adequate description of the adsorption of single adatoms on surfaces as shown in
Sec. 6.5. A thorough understanding of adatom diffusion is, however, an inevitable prerequi-
site for investigating kinetic effects during growth in atomic detail. We therefore extended
previous investigations of adatom diffusion on the substrate and wetting layer [74], by a DFT
study of In diffusion on QD side facets that are apparent at different stages of growth.

9.1 Introductory Remarks

The growth of InAs QDs on GaAs(001) is accompanied by a shape transition from small, hut-
shaped QDs to larger, dome-shaped QDs as discussed in depth in Chap. 7. These shapes are
dominated by side facets that correspond to {137} and {101} surfaces, respectively (left panel
of Fig. 7.6). The growth of QDs in either shape is governed by the adsorption and diffusion
of In and As atoms on these side facets. A means of analyzing such atomic events are
the corresponding potential-energy surfaces of adsorption that we determine in this chapter
by density-functional theory calculations for the case of In/InAs(137) and In/InAs(101).
Additional calculations try to investigate the role of breaking an As-dimer of the InAs(137)
surface as a possible rate-limiting step for In incorporation, as well as the strain dependency
of the diffusion barriers on the InAs(101) surface.

In our slab calculations for these two surfaces, we use 2×2 repetitions of the surface unit-
cell that are oriented with the surface normal along the z-axis. The bottom side is passivated
with pseudo hydrogen [166], and the In and As atoms in the bottom layers are not allowed to
move during the performed relaxations. The individual points of the PES were determined
in a two step procedure: First, for a given lateral position, we positioned the In adatom
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in a height where it has 2.5 Å distance to the nearest surface atom, which turned out to
save considerable CPU time as compared to starting the relaxation with the same height
of the In adatom in all lateral positions. Second, we performed DFT calculations to relax
the z-coordinate of the adatom with the constraint of fixed x- and y-coordinate, and the
slab atoms (aside from the bottom layers.) In these DFT calculations with the fhi98md-
package [47] we employed norm-conserving pseudo-potentials [60], Monkhorst-Pack k-point
meshes [164], and the generalized-gradient approximation (GGA-PBE) for the exchange-
correlation functional [230]. The structures were relaxed until the change in the total energy
was less than 1 meV.

9.2 Diffusion on Side Facets of Hut-Shaped QDs

9.2.1 Potential-Energy Surface of In/InAs(137)

It was first found experimentally that the InAs(137) surface is stable as side facet of small,
hut-shaped InAs QDs on GaAs(001) [18]. It is somewhat surprising that this surface has a low
formation energy (Tab. 6.10), although it lies inside the stereographic triangle (see Sec. 3.3)
and does not even fulfill the electron-counting rule [231]. The surface energy of InAs(137)
is further lowered by compressive strain (see Fig. 6.10) which makes it a favorable QD side
facet, very similar to the strain-stabilized Ge(105) surface for the case of Ge/Si(001) QDs [76].
The atomic growth of hut-shaped InAs QDs is ruled by the diffusion and incorporation of
In adatoms on this surface. The adsorption energy of an In adatom in different lateral
positions as obtained from DFT calculations is shown in Fig. 9.1. To guide the eye, we
present both the atomic structure (left panel) and the potential-energy surface, in a view
along the [001̄] crystallographic direction. (The grid of our calculations is indicated as tick
marks at the border.) The adsorption energies at the most prominent local minima and
transition states are collected in Tab. 9.1, relative to the most stable site. The most stable

Table 9.1: Adsorption energies of a In adatom at prominent local minima (M1-
M3) and transition states (T1-T4) on InAs(137) as obtained with DFT calculations,
normalized to the most stable adsorption site.

site (Fig. 9.1) M1 M2 M3 T1a T1b T2 T3 T4

adsorption energy [meV] 0 1 15 197 204 147 208 339

adsorption site M1 is a three-fold coordination with a surface As dimer and the nearby In
atom one atomic layer above the dimer. Despite its rather complex structure, the PES
reveals nearly isotropic diffusion of an In adatom on the InAs(137) surface: The diffusion
between two equivalent sites M1 along As surface dimers in the same height (with respect to
the (001) direction) involves two consecutive barriers of T1(a/b)-M1=197/204 meV and T2-
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Figure 9.1: Potential-energy surface (right) of an In adatom on the InAs(137) surface (left),
which appears as dominant side facet of small QDs, as obtained by DFT calculations (GGA-
PBE). (The surface As dimer and the neighboring three-fold As atoms are indicated as large and
small circles.)

M2=146 meV, whereas diffusion between two equivalent M1 at As surface dimers in different
heights can proceed by passing either a barrier of T3-M3=193 meV or T4-M1=339 meV. Thus,
the dominant diffusion barrier between two equivalent M1 of the same height with respect to
the (001) direction is very similar to those connecting two M1 of different height. Regarding
growth of hut-shaped QDs, we conclude from these DFT calculations that the diffusion of In
adatoms on the {137} facets is nearly isotropic along contour lines of hut-shaped QDs and
perpendicular to them.

9.2.2 Binding Sites at As Surface-Dimer

The adsorption site of In at the As surface dimer is of particular interest for diffusivity: It
was first found for the case of a Ga atom on a surface As dimer of the β2(2×4)reconstruction
of GaAs(001) [157], that the energy minimum of adsorption on top of the dimer is not the
only stable adsorption site. In fact, forcing the adatom to break the As dimer turned out to
result in an even more stable configuration. Similar investigations [74] showed that this effect
is weaker for In/In2/3Ga1/3As(001) and negligible for In/GaAs(001)-c(4×4), mainly due to



9.2. Diffusion on Side Facets of Hut-Shaped QDs 123

the elastic distortions that the In atom exerts on the As dimer. The energy gain for breaking
the surface As dimer of the InAs(137) is additionally altered by the presence of the three-fold
coordinated As atom nearby the dimer that possibly limits the range of elastic relaxation
of the broken dimer. Our constraint-free relaxation by DFT calculations from two different
starting configurations, one with the In atom on top of the dimer and the other one with the
In atom in the center of the dimer, showed two stable adsorption sites. Both minima are of
nearly the same depth and differ only by 27 meV in favor of the broken-dimer configuration.
The energy barrier for breaking the As dimer can be determined by forcing the In atom to
move from the on top position to the center of the broken dimer. We therefore performed a
linear interpolation of the coordinates of the In adatom, the dimer, and the slab atoms that
correspond to the two stable configurations, fixed the atomic coordinates of the In adatom and
relaxed all other atoms (aside from the bottom layers). The resulting binding energies show
a similar behavior as observed in previous studies [74, 157], shown in Fig. 9.2. The reference

Figure 9.2: Binding energy of an In atom at a surface As dimer of InAs(137) as obtained by
DFT calculations (GGA-PBE): The adsorption site on top of the As dimer (black) is slightly
higher in energy than the configuration with the In atom in the center of the broken dimer (red).
The barrier for As dimer breaking is estimated with third-order polynomials (lines) to be of
approximately 1 eV.

points for the binding energy and the height of the In atom are the adsorption energy and
the height of the broken-dimer configuration, respectively. We estimate the energy barrier
for breaking the As dimer from a fit of the adsorption energies to third-order polynomials
to be of approximately 1 eV. This energy barrier is a factor of five higher than the diffusion
barriers reported in the previous section. Nevertheless, it needs to be overcome in a growth
process to achieve the incorporation of In at this site. From the relation of these barriers, we



124 9. Kinetic Aspects of QD Growth

conclude that the diffusion of In atoms on the (137) surface is faster than their incorporation.
The breaking of the As dimer on the (137) surface for the incorporation of In atoms is thus
of higher importance as a possible rate-limiting step than the diffusion of In atoms on the
(137) surface.

9.3 Diffusion on Side Facets of Dome-Shaped QDs

9.3.1 Potential-Energy Surface of In/InAs(101)

In a later stage of growth, the QDs undergo a transition from the hut shape with mainly {137}
side facets to the dome shape dominated by the steeper {101} facets (Chap. 7). The (101)
surfaces of zinc blende and diamond semiconductors are very well studied and in fact often
serve as an educational example, because they do not reconstruct and can be described by
comparably small simulation cells. In this section, however, we focus on the question of how
the diffusion barriers are affected by strain to understand the influence of the strain tensor
of dome-shaped QDs on the diffusion of In atoms on its side facets. The adsorption energies
of an In atom in different lateral positions on the InAs(101) surface as determined with
DFT calculations, similarly to the proceeding outlined in the previous section, are shown in
Fig. 9.3. Again, we indicate the grid of our calculations by tick marks and use the most stable

Figure 9.3: Potential-energy surface (right) of an In adatom on the InAs(101) surface (left),
which appears as dominant side facet of larger QDs, as obtained by DFT calculations (GGA-
PBE).

adsorption site for calibration of the energy scale. The binding energies at the most prominent
adsorption sites are summarized in Tab. 9.2. The diffusion on this surface is obviously highly
anisotropic due to the particular geometry with motifs that resemble zigzag-chains of In and
As atoms (left panel in Fig. 9.3). The barrier for diffusion perpendicular to a zigzag chain
(T3-M1) is more than 3 times larger than those parallel to the zigzag chains (T1-M1). In the
context of dome-shaped QD, we can therefore conclude that the diffusivity of In on the side
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Table 9.2: Adsorption energies of a In adatom at local minima
(M1-M3) and transition states (T1-T3) on InAs(101) as obtained with
DFT calculations, normalized to the most stable adsorption site.

site (Fig. 9.3) M1 M2 M3 T1 T2 T3

adsorption energy [meV] 0 30 310 164 385 524

facets is highly anisotropic and dominantly perpendicular to the contour lines of the QD, i.e.
from the bottom of the QD to its apex.

9.3.2 Dependence of Diffusion Barriers on Biaxial Strain

The directed diffusion to the apex of the dome-shaped QD takes course perpendicular to the
contour lines and thus perpendicular to the iso-strain lines of the QD. An understanding
of the diffusion kinetics therefore requires the knowledge of the dependency of the diffusion
barrier on the strain. The results of the elastic response upon a biaxial strain ε that we
reported in Sec. 6.2 now enable us to study this effect by scaling a unit cell of the (101)
surface accordingly, including non-linear elastic response (see Fig. 6.5) for the fixed bottom
layers. From our DFT calculations of the binding energies in the trench minima (M1,M2) and
the transition state connecting them (T1) upon biaxial compressive strains of −8% ≤ ε ≤ 0%
we obtained the strain-dependent diffusion barriers shown in Fig. 9.4. Both energy barriers

Figure 9.4: Dependence of energy barriers for diffusion of In atom in trench between zigzag
chains of InAs(101) on compressive biaxial strain as obtained by DFT calculations (GGA-PBE).

for In diffusion on the (101) surface are reduced upon biaxial strain in the surface plane. The
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effective barrier for diffusion in the trench between two zigzag chains, i.e. perpendicular to
the QD contour lines, is lower at the compressively strained bottom of the QD and higher
near the more relaxed top. The {137} side facets at the top of dome-shaped QDs (see e.g.
Ref. [19]) are not strain stabilized like the {137} side facets of a hut-shaped QD. So, from
a thermodynamic point of view, one might either expect the formation of a (001) facet at
the relaxed top of the QD (as this surface is lowest in energy in the absence of strain) or
the continuation of the {101} facets beyond the top truncation of {137} facets (as this would
maximize the amount of unstrained InAs). This indicates that the remaining {137} facets at
the relaxed upper parts of a dome-shaped QD are explainable as a kinetic effect: From our
calculated strain dependence of the diffusion barrier at compressive biaxial strain (Fig. 9.4),
we can conclude that the diffusion of In atoms on the {101} facets of dome-shaped QDs near
the bottom is faster than near the top. This suggests that the {101} facets grow from top to
bottom, which could be an explanation of the experimentally observed remains of {137} facets
on the top of dome-shaped QDs. Note that this mechanism is a kinetic effect, in contrast to
the many aspects that turned out to be consistent with a thermodynamic rationale in the
previous chapters. We hope to get further insight from ongoing work that aims to combine
the QD strain-tensor as obtained from the many-body potential with strain-dependent energy
barriers for adatom diffusion determined with density-functional theory calculations.
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Semiconductor quantum-dots (QDs) are a promising ingredient for future technologies, such
as new opto-electronic devices, single-electron transistors, and quantum computers. The key
challenges for modern solid-state physics in this context are the identification of required elec-
tronic properties and adequate semiconductor nanostructures, as well as their controlled and
robust fabrication. The small size of such structures (a few nm in length) calls for a consider-
ation of both atomic details and long-range strain. Both aspects have a significant bearing on
e.g. simulations of epitaxial growth and electronic-structure calculations of strained nanos-
tructures. The goal of this work is to study the growth and stability of InAs/GaAs(001) QD
nanostructures in atomic detail.

At first, we would like to draw attention to our continuum-elasticity theory (CET) results
for the elastic response of cubic materials upon biaxial strain: We determined general analytic
expressions for the strain tensor, the Poisson ratio, and the elastic energy for materials with
cubic crystal symmetry under biaxial strain in arbitrary planes. The analytic strain tensor
allows us to perform numerical calculations of elastic response upon biaxial strain in arbitrary
planes with only one conventional cubic unit cell, a dramatic reduction of the numerical effort
in e.g. density-functional theory (DFT) studies of such effects. The knowledge of the Poisson
ratio enables an appropriate consideration of the elastic properties of the fixed bottom-layers
in slab calculations of strained surfaces. With the general expression of the elastic energy
we found that QD formation occurs surprisingly on substrate orientations that correspond
to small and moderate elastic energies of biaxially strained InAs, but not on those that
correspond to high elastic energies where instead the formation of dislocations was observed.
A comparison of the elastic response from CET and DFT calculations enabled us to isolate
non-linear contributions to the elastic response systematically and describe them by a simple
polynomial expansion. The general expression of the elastic energy should in principle allow
one to predict the energy barriers of the so-called Bain path between bcc and fcc structures for
any material with cubic symmetry in an approximative manner. The quality of this harmonic
approach will depend on the importance of non-linear elastic response.

A very reliable and well established method for the investigation of the atomic structure
and thermodynamic stability of bulk and surface structures are DFT calculations. The numer-
ical effort, however, limits this high-accuracy method to systems with irreducible simulation
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cells of not more than about 1000 atoms. However, the lattice-mismatch of QD nanostruc-
tures causes long-range strain tensors that require typically three orders of magnitude more
atoms in the simulation cell and other approaches of modeling. The methodical progress of
this work is the development of an interatomic many-body potential that allows us to trans-
fer information obtained by DFT calculations to QD nanostructures that are represented by
million-atom simulation cells. In this part of the work we experienced fundamental draw-
backs of this approach that hinder a reliable assessment of interatomic potentials in general.
The common origin is that only a rather small subset of physical properties can be captured
simultaneously with acceptable accuracy, but unfortunately there is little knowledge on how
to identify conflicting subsets. The particular choice of a subset of reference data for the
parameter optimization is therefore often guided by the application in mind. This requires
a basic understanding of the relevant processes already in the stage of parameterization and
usually yields parameters that are suitable only for a certain group of applications, which
often limits the meaning of a comparison of different parameterizations. The numerical pa-
rameter optimization itself poses a non-linear optimization problem that can be tedious and
time-consuming although sophisticated algorithms are available.

The interatomic many-body potential developed in this work is a significantly improved
parameterization of the Abell-Tersoff functional for In, Ga, As, GaAs, and InAs. It was
thoroughly checked and compared with previous parameterizations regarding the description
of situations that are supposedly relevant for modeling the formation of InAs QDs on GaAs
substrates. This comparison was based on a consistent set of reference data from experiments
and DFT calculations, some of the latter performed in this work. The newly developed pa-
rameterization captures many more bulk and surface properties simultaneously with higher
overall accuracy and is transferable to strained GaAs and InAs. With our newly developed
parameterization, it is possible for the first time to perform reliable atomistic relaxations of
realistic InAs/GaAs nanostructures with reconstructed surfaces using million-atom simula-
tion cells, and to quantitatively study the resulting strain tensors and total energies with
dependable contributions from strained bulk and surface configurations. This can be consid-
ered a successful length-scale extension from a few nanometers of the DFT unit-cells used in
calculating reference data to a length of 0.5 µm in the largest simulation cell investigated with
the many-body potential. Our atomistic approach has some advantages over the previously
very successful hybrid approaches: The modeling of QD nanostructures with newly appearing
(substrate or QD) surfaces involves no additional calculations of the surface properties. The
atomic structure is well-defined, in particular, the side facets are either multiples of surface
unit cells or terminated by e.g. edges and kinks. The stoichiometry of the QD nanostructures
is thus a natural quantity and allows us to consistently capture the influence of chemical po-
tentials. The energy contributions are implicitly included in their full complexity, in contrast
to hybrid approaches that e.g. neglected lateral interactions between QDs in previous studies.

An important aspect of this work is the clarification of the role of thermodynamic effects
during QD formation that is driven by the balance between energy gain due to strain relief
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and energy cost due to formation of QD side facets and edges. We use recent atomically
resolved STM images of InAs QDs to set up QD nanostructures in atomic detail, apply our
potential to relax them, and compare the resulting total energies. In this way we could
identify three regimes of thermodynamic stability that are in line with the experimentally
deduced coverage at the 2D to 3D growth transition, and the shapes of small and larger QDs:
For coverages just above 1.75 monolayers InAs the film is most stable, followed by small hut-
shaped QDs dominated by {317} facets and larger dome-shaped QDs dominated by {101}
facets. An analysis of strain-tensors revealed that the coincidence of the side facets with
either elastically hard or soft axes causes a qualitative difference of the lateral interactions:
The elastic interaction-energy of hut-shaped QDs follows a power-law dependence on the
lateral QD distance, but is negligible for dome-shaped QDs, a fact that was not considered in
previous works. With the well-defined stoichiometry of our atomistic QD nanostructures, we
can show that the QD volume at the hut-dome transition can be altered by up to an order
of magnitude for different values of the QD density and the chemical potential of As. Using
classical nucleation-theory we determine the critical nucleus of QD formation for the case
of growth conditions close to thermodynamic equilibrium: We find that the energy barrier
to form the critical nucleus of approximately 70 In atoms is 5.3 eV. Our results suggest the
concurrence of the formation of critical nuclei with the onset of the 2D-3D transition observed
in RHEED experiments.

This fruitful combination of an interatomic many-body potential and a thermodynamic
rationale enabled us also to explain growth correlations in stacked QD layers. From potential-
energy surfaces of free-standing QDs in different lateral positions above overgrown QDs, we
find a nearly isotropic energetic preference for the experimentally observed vertical alignment
of QDs in subsequent layers. The QD shapes have no significant influence on this finding.
The energy gain for vertical alignment decreases with increasing amount of GaAs between the
stacked QD layers from a value of approximately 35 meV per atom for 3.2 nm to a negligible
value at 8 nm, in consistency with experimental results for nearly pure InAs QDs grown by
MOCVD. The calculated energy gain for vertical alignment reduces the size of the critical
nucleus by up to a factor of 4 as compared to an elastically isolated QD. The observed vertical
attractive and the lateral repulsive interaction of hut-shaped QDs is explainable within a
simple elastic dipole-monopole and dipole-dipole interaction, respectively.

Our investigations of the stability of QD nanostructures show that great insight can be
gained from the application of a many-body potential. Considering the ongoing discussion
about thermodynamic and kinetic effects in the field of self-assembled growth, it is surprising
that we found such a large number of experimentally observed features of InAs QD formation
to be consistent with a thermodynamic rationale. We hope that our development of the many-
body potential and the demonstration of its capabilities in describing QD nanostructures
opens the way for further studies in this direction. The still ongoing projects of this work
are the evolution of elastic contributions during the shape transition, the atomically detailed
growth front of partially grown facets, as well as structural effects on the electronic structure
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by tight-binding calculations in a close collaboration with A. Kleinsorge. But it might also
be of fundamental interest to clarify if the shape transition observed on (001) substrates
is connected to the substrate orientation or a more general feature. Another promising
investigation should be to find an upper bound of the Ga content in freestanding InAs QDs
by calculating the coverage at the 2D-3D transition of InxGa1−xAs/GaAs(001) at different
stoichiometries x and comparing it with experimentally deduced transition coverages. In
the context of stacked layers of QDs it would be interesting to see if the energy gain of
certain spatial arrangements is only due to a minimization of the distance between the QD
in proximate layers or rather mediated by elastically soft/hard axes.

Although such thermodynamic studies provide a lot of insight, it is essential to also know
the regimes where kinetic effects govern the growth of QD nanostructures. In extension to
our thermodynamic studies, we performed DFT calculations of the potential-energy surfaces
for In adsorption on the InAs(137) and InAs(101) that appear as dominant side facets of hut-
shaped and dome-shaped QDs. The diffusion barriers on the (137) surface in the two main
directions along As surface dimers of equal height with respect to the (001) direction, and
perpendicular to them, differ only by a few meV. The In incorporation could be kinetically
limited due to the high barrier of approximately 1 eV for breaking surface As dimers. The
highly anisotropic diffusion on InAs(101) is mainly perpendicular to the contour lines of
dome-shaped QDs. The diffusion barriers are lowered near the QD bottom, which supports
the interpretation of remaining (137) facets on top of dome-shaped QDs as kinetic effect. For
the realization of technical applications the highest priority for future studies has probably a
qualitative understanding of intermixing and segregation effects that take place during QD
overgrowth.



Appendix

A. DFT Calculations

In several parts of this work we present new results from DFT calculations, in particular
for the structural and elastic properties of stable and metastable In and InAs bulk phases
(Tab. 6.2, 6.5, and 6.6), and the potential-energy surface for adsorption of In on InAs
surfaces (Chap. 9). We performed extensive and systematic convergence tests of the bulk
calculations with respect to the number of k-points, and the cutoff energy. In the surface
calculations we successively optimized the parameters of the electronic minimization with the
Williams-Soler algorithm [47] to achieve optimal convergence of the structural relaxation. In
Fig. A.1 we show exemplarily the convergence tests of the InAs zinc blende lattice constant
and the Poisson ratio ν (cf. Sec. 4.3) for InAs under biaxial strain in the (113) plane. For

Figure A.1: Examples of convergence tests performed in the DFT calculations of this work: the
lattice constant a0 of InAs (left) and the Poisson ratio ν(0) (cf. Eq. 6.2) for biaxial strain in the
(113) plane (right) as a function of plane-wave cutoff and of the density of the Monkhorst-Pack
k-point grid [164].

the calculation of the biaxial Poisson-ratio we employed the results of Chap. 4 and entered
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the strain tensor directly in the input file of the SFHIngX package:

...

// --- biaxial strain and Poisson ratio from script

include "./strain.sx";

include "./poisson.sx";

eps = strain; // taken from ./strain

nu = poisson; // taken from ./poisson

// Miller indices that define plane of biaxial strain

h=1;

k=1;

l=3;

// components of strain tensor in canonical coordinates

fac = -eps/(h*h+k*k+l*l);

hh = 1+fac*(nu*h*h-(k*k+l*l));

kk = 1+fac*(nu*k*k-(h*h+l*l));

ll = 1+fac*(nu*l*l-(h*h+k*k));

hk = fac*h*k*(nu+1);

hl = fac*h*l*(nu+1);

kl = fac*k*l*(nu+1);

// ZnS unit cell (a0 = lattice constant)

structure {

cell = a0 *[ [ hh, hk, hl ],

[ hk, kk, kl ],

[ hl, kl, ll ] ];

// atomic positions in unit cell times strain tensor

species {

include species_1;

atom { coords = a0/2*[0 , 0 , 0 ];}

atom { coords = a0/2*[ hk+hl, kk+kl, kl+ll ];}

atom { coords = a0/2*[hh +hl, hk +kl, hl +ll ];}

atom { coords = a0/2*[hh+hk , hk+kk , hl+kl ];} }

species {

include species_2;

atom { coords = a0/4*[ hh+ hk+ hl, hk+ kk+ kl, hl+ kl+ ll];}

atom { coords = a0/4*[ hh+3*hk+3*hl, hk+3*kk+3*kl, hl+3*kl+3*ll];}

atom { coords = a0/4*[3*hh+ hk+3*hl, 3*hk+ kk+3*kl, 3*hl+ kl+3*ll];}

atom { coords = a0/4*[3*hh+3*hk+ hl, 3*hk+3*kk+ kl, 3*hl+3*kl+ ll];} }

}

...
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Note that the convergence of ν(0) in the right panel of Fig. A.1 is more sensitive to the
cutoff energy than that of a0 in the left panel. The origin of this effect is the change of
the size and shape of the unit cell (cell) for different values of the applied biaxial strain
(eps) in the calculation of ν(0): The resulting difference in the plane-wave basis sets of the
differently deformed unit cells introduces an additional error in the comparison of the total
energies during the determination of min(Eel(αi, ν), ν) (Eq. 6.1) and the linear regression
ν(α) = ν(0) + ν(1)α (Eq. 6.2 and Fig. 6.5). The correction of this error with the scaling
hypothesis presented by Rignanese et. al [232] as demonstrated in the thesis of E. Penev for
total energies of biaxially strained surfaces [74] is advantageous for large systems as it allows
us to limit the calculations to comparably small cutoff energies and numbers of k-points.
The general strain tensor of biaxially deformed zinblende bulk material derived in this work,
however, limits the irreducible simulation cell to a single unit cell. This allows us to easily
perform calculations at increased cutoff energy and number of k-points to systematically
reduce the above error due to comparing total energies obtained with different plane-wave
basis sets.

B. Implementation of the Many-Body Potential

The main application of the empirical potential in this work is the description of large systems
with up to millions of atoms. Similar to other numerical methods in computational physics,
it is of major importance to minimize the computational effort. The bottlenecks of relaxing a
large system with an empirical potential are the evaluation of the force and energy functions,
the determination of the interacting neighbor atoms, and the efficiency of the relaxation
algorithm itself. Our Fortran 77 implementation uses the analytic derivative of the energy
functional given in the following, determines the list of neighboring atoms with a linked-
cell algorithm (see e.g. Ref. [125]) and performs minimizations with a conjugate-gradient
algorithm taken from Ref. [153]. Furthermore, the code performs efficient access management
of arrays, loop nesting with recycling of intermediate results, and separate treatment of fixed
and non-fixed degrees of freedom.

The typical convergence behavior of the total energy and the absolute value of the max-
imum force Fmax on an atom in the system during the relaxation with our implementation
is shown in the left panel of Fig. B.1 for a system with more than one million atoms. All
relaxations in this work were performed until Fmax was less than 1 meV/Å. We found this
sufficient to converge the total energy of the investigated systems to below 1 meV, as ex-
emplarily shown in the left panel of Fig. B.1. This level of convergence corresponds to an
average error of 10−6 meV per atom in a million-atom system. For an assessment of the
CPU time spent in each relaxation step, we monitored the calculations of three systems with
different sizes: an InAs wetting layer, a hut-shaped InAs QD, and a dome-shaped InAs QD on
a GaAs(001) substrate. The results shown in Figure B.1 clearly indicate an order N behavior,
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Figure B.1: A typical evolution of the maximum force in the system Fmax and the convergence
of the total energy with respect to the final value during relaxation (left) shows that a force limit
of Fmax <1 meV/Å is sufficient to provide well converged total energies. The implementation
of the force and energy evaluation as well as the relaxation were optimized to achieve a linear
scaling of the computational effort per relaxation step with the number of involved atoms (right).

i.e. the computational effort scales linearly with the number of involved atoms.

The relaxation of a QD nanostructure transfers it from a stressed state to a stress-free
strained state with a strain tensor that is determined by the system-inherent stress sources
and the material response. The required number of relaxation steps depend not only on the
number of atoms involved, but also on the complexity and the range of elastic response. In
our calculations, the number of steps ranges from less than 100 for heterostructures with a
wetting layer only to about 1000 if large QDs are present. The line-minimization algorithm
used to determine the step width along the conjugate-gradient direction assumes a parabolic
dependence of the energy on the step width. The quality of this assumption depends on the
system itself and leads to the different slopes in Fig. B.1.

Analytic Force Expression

For empirical potentials with analytic energy functional the force on each atom can be given
in closed analytical form as well. The numerical evaluation of the latter is usually significantly
faster than a numeric derivative employing the energy functional only. The x component of
the force on atom L defined as

F (xL) = −dEcoh

dxL
(B.1)
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is determined by the energy functional Ecoh of Eq. 5.8- 5.14 where some parameters can be
merged for computational efficiency:

V R1
ij :=

Dij

Sij − 1
· eβij

√
2SijR0

ij , V R2
ij := βij

√

2Sij ,

V A1
ij :=

SijDij

Sij − 1
· e

βij

√
2

Sij
R0

ij
, V A2

ij := βij

√

2

Sij
,

G1
ik := δik(1 +

c2ik
d2

ik

) , G2
ik := δikc

2
ik .

Applying the chain rule in the analytic derivative leads to nested sums with delta functions
due to

drij
dxL

= (δiL − δjL) · xij

rij
(B.2)

with the Kronecker symbol δij . These expressions can be simplified by using
∑

i

∑

j 6=i

(δiL − δjL)fij =
∑
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[fLi − fiL] ,
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i
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The analytic force is then given by

F (xL) =
∑

i6=L
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where the following combined terms were introduced
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Aijk = Hij · e[(αik(rij−rik))mik ] · gik(θijk) · df c
ik(rik) ·

xik

rik
,

B1
ijk = Hij · e[(αik(rij−rik))mik ] · f c

ik(rik) · dgik(θijk) · d cos1ijk(rij , rik) ,
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C1
ijk = Hij · e[(αik(rij−rik))mik ] · f c

ik(rik) · gik(θijk) · deijk(rij , rik) ·
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rij
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rik
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The remaining expressions from applying the chain rule are

df c
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π
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xij

rij
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d cos2ijk(rij , rik) = (
xik

rik
− xij

rij
· cos θijk)/rij , and

deijk(rij , rik) = mik · αik · (αik(rij − rik))
mik−1 .

The expressions above are formulated for ease of implementation.

C. Initialization of QD Supercells

The investigation of QD nanostructures in atomic detail requires us to initialize supercells
that contain the atomic coordinates. The physically relevant QD shapes can be deduced from
high-resolution STM experiments as indicated in Fig. C.1 for Ref. [18]. In many cases it is
sufficient to generate a supercell of the embedding bulk material and swap the atomic species
to the QD material in the region of a given QD shape. The treatment of free-standing QDs
however requires us to model the emerging surfaces that would be reconstructed in a real
experiment.

The geometries of the InAs/GaAs QD nanostructures investigated in this work were
generated with a newly developed tool named CHEOPS: The system is represented by the
substrate orientation and reconstruction, the supercell basis for rotated and non-orthogonal
super cells, the corners of the supercell, the composition profile, and the list of facets with
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Miller indices, distance from origin, and reconstruction. The size of the supercell defines
the density of QDs per unit area of the substrate (see Fig. 1.3). The initialization of QD
nanostructures starts with cutting a sufficiently large, cubic supercell of zinc blende GaAs
by these planes. Then, the emerging cleavage surfaces are covered with periodically repeated
surface unit-cells as obtained after relaxation with DFT calculations. For this purpose, these
cells are scaled to the employed GaAs lattice constant, rotated to canonical crystal coordinates
and shifted along the surface normal. The stoichiometric composition is created by swapping
Ga atoms to In atoms according to a specified profile, resulting in the QD nanostructure in its
initial stage where both In and Ga atoms are located on a zinc blende lattice with the lattice
constant of GaAs. This procedure is sketched in Fig. C.1 that shows the zinc blende unit
cells of GaAs and InAs, as well as the surface unit-cells of InAs(001)α2(2×4) and InAs(137).

Figure C.1: The atomically resolved QD shapes from high-resolution STM experiments are used
to derive atomistic representations of QDs (left) by means of the identified surfaces. The emerging
surfaces in the atomistic representations are completed with reconstructed surface unit-cells as
obtained from DFT calculations (right).

The overlap of reconstructions of neighboring surfaces at edges and kinks is treated by
removing one atom from each pair of atoms which is closer than a certain threshold. Possibly
occurring pairs of under-coordinated atoms at edges and kinks are modified to form dimers
with a specified bond length. A similar procedure is used to create supercells of QDs with
sockets or partially grown side facets, and of overgrown QDs. Systems with more than
one QD, such as the QD stack structures in Sec. 8.3, were initialized by merging partial
structures holding one QD each. The newly developed tool allows us not only to specify
different reconstructions of the particular surfaces but also to incorporate more reconstructed
surface unit-cells. Furthermore, it was extended to create wurtzite structures for InN/GaN
QD nanostructures by M. Winkelnkemper from the Technical University of Berlin.
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D. Surface Area of QD Side Facets

The total cohesive energies Etot of the investigated systems with freestanding QDs include
errors in the surface free energy as described in Sec. 6.3 that can be corrected if the areas
of the involved surfaces are known (Eq. 7.1). These areas are determined by the planes that
were used to initialize the QD nanostructures, i.e. their Miller indices (hkl) and their distance
from the origin dhkl. Figure C.2 shows these planes for the case of the hut and dome shape
that were investigated in this work.

Figure C.2: Areas of QDs in hut (left) and dome (right) shape.

The corners of the involved QD facets are given by the intersections of the adjacent planes,
and can be determined analytically by solving the set of linear equations defined by the plane
equations. These points are then used to calculate the area of the corresponding surface, and
one obtains, e.g. for the base area of the above hut and dome geometry:
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5
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Evaluating the expressions of all surfaces for a particular QD structure, i.e. for a particular
choice of planes and distances from the origin, allows us to correct the error that the surface
energies introduce to the total cohesive energy in lowest order.
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[123] M. Meixner, and E. Schöll, Kinetically enhanced correlation and anti correlation effects
in self-organized quantum dot stacks, Phys. Rev. B 67, 121202 (R) (2003).

[124] P. N. Keating, Effect of invariance requirements on the elastic strain energy of crystals
with application to the diamond structure, Phys. Rev. 145, 637 (1966).

[125] D. Frenkel, and B. J. Smit, Understanding Molecular Simulation: From Algorithms to
Applications, 2nd ed., Academic Press, 2001.

[126] A. E. Carlsson, Beyond pair potentials in elemental transition metals and semiconduc-
tors, Solid State Phys.: Adv. Res. Appl. 43, 1 (1990).

[127] P. M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels,
Phys. Rev. 34, 57 (1929).



148 Bibliography

[128] M. S. Daw, S. M. Foiles, and M .I. Baskes, The embedded-atom method: a review of
theory and applications, Mater. Sci. Rep. 9, 251 (1993).

[129] D. G. Pettifor, and I. I. Oleinik, Analytic bond-order potentials beyond Tersoff-Brenner.
I. Theory, Phys. Rev. B 59, 8487 (1999).

[130] I. I. Oleinik, and D. G. Pettifor, Analytic bond-order potentials beyond Tersoff-Brenner.
II. Applications to the hydrocarbons, Phys. Rev. B 59, 8500 (1999).

[131] I. J. Robertson, M. C. Payne, and V. Heine, Multi-atom bonding in aluminum over a
wide-range of coordination-number, Euro. Phys. Lett. 15, 301 (1991).

[132] D.W. Brenner, Relationship between the embedded-atom method and Tersoff potentials,
Phys. Rev. Lett. 63, 1022 (1989).

[133] G. C. Abell, and references therein, Empirical chemical pseudopotential theory of molec-
ular and metallic bonding, Phys. Rev. B 31, 6184 (1985).

[134] J. Tersoff, New empirical model for the structural properties of silicon, Phys. Rev. Lett.
56, 632 (1986).

[135] J. Tersoff, New empirical approach for the structure and energy of covalent systems,
Phys. Rev. B 37, 6991 (1988).

[136] J. Tersoff, Empirical interatomic potential for silicon with improved elastic properties,
Phys. Rev. B 38, 9902 (1988).

[137] B.W. Dodson, Development of many-body Tersoff-type potential for silicon, Phys. Rev.
B 35, 2795 (1987).

[138] J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent
systems, Phys. Rev. B 39, R5566 (1989).

[139] D.W. Brenner, Empirical potentials for hydrocarbon for use in simulating the chemical
vapor deposition of diamond films, Phys. Rev. B 42, 9458 (1990).

[140] D. G. Pettifor, New many-body potential for the bond order, Phys. Rev. Lett. 63, 2489
(1989).

[141] A. P. Sutton, M. W. Finnis, D. G. Pettifor, and Y. Ohta, The tight-binding bond model,
J. Phys. C: Solid State Phys. 21, 35 (1988).

[142] J. C. Cressoni, and D. G. Pettifor, Theory of structural trends within the sp bonded
elements, J. Phys.: Cond. Mat. 3, 495 (1991).



Bibliography 149

[143] P.A. Alinaghian, P. Gumbsch, A.J. Skinner, and D.G. Pettifor, Bond-order potentials:
a study of s- and sp-valent systems, J. Phys.: Cond. Mat. 5, 5795 (1993).

[144] J. C. Slater, and G. F. Koster, Simplified LCAO method for the periodic potential
problem, Phys. Rev. 94, 1498 (1954).

[145] R. Drautz, D. A. Murdick, D. Nguyen-Manh, X. W. Zhou, H. N. G. Wadley, and
D. G. Pettifor, Analytic bond-order potential for predicting structural trends across the
sp-valent elements, Phys. Rev. B 72, 144105 (2005).

[146] D. A. Murdick, X. W. Zhou, H. N. G. Wadley, D. Nguyen-Manh, R. Drautz, and D. G.
Pettifor, Analytic bond-order potential for the gallium arsenide system, Phys. Rev. B
73, 045206 (2005).

[147] P. A. Ashu, J. H. Jefferson, A. G. Cullis, W. E. Hagston, and C. R. Whitehouse, Molec-
ular dynamics simulation of (100)InGaAs/GaAs strained-layer relaxation processes, J.
Cryst. Growth 150, 176 (1995).

[148] K. Albe, K. Nordlund, J. Nord, and A. Kuronen, Modeling of compound semiconductors:
Analytical bond-order potential for Ga, As, and GaAs, Phys Rev B 66, 035205 (2002).

[149] M. A. Migliorato, A. G. Cullis, M. Fearn, and J. H. Jefferson, Atomistic simulation
of strain relaxation in InxGa1−xAs/GaAs quantum dots with nonuniform composition,
Phys. Rev. B 65, 115316 (2002).

[150] D. Conrad, and K. Scheerschmidt, Empirical bond-order potential for semiconductors,
Phys. Rev. B 58, 4538 (1998).

[151] P. Alinaghian, S. Nishitani, and D. Pettifor, Shear constants using angularly dependent
bond order potentials, Philos. Mag. B 69, 889 (1994).

[152] D. Pettifor, Bonding and Structure of Molecules and Solids, Oxford Science Publica-
tions, 1995.

[153] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes
in F77: The Art of Scientific Computing, 2nd ed., Cambridge University Press, 1992.

[154] J. Donohue, The Structure of Elements, John Wiley & Sons, 1974.

[155] L. Bosio, Crystal-structures of Ga(II) and Ga(III), J. Chem. Phys. 68, 1221 (1978).

[156] N. Moll, A. Kley, E. Pehlke, and M. Scheffler, GaAs equilibrium crystal shape from first
principles, Phys. Rev. B 54, 8844 (1996).



150 Bibliography

[157] A. Kley, P. Ruggerone, and M. Scheffler, Novel diffusion mechanism on the GaAs(001)
surface: The role of adatom-dimer interaction, Phys. Rev. Lett. 79, 5278 (1997).

[158] J. Platen, A. Kley, C. Setzer, K. Jacobi, P. Ruggerone, and M. Scheffler, The importance
of high-index surfaces for the morphology of GaAs quantum dots, J. Appl. Phys. 85,
3597 (1999).

[159] S.-H. Lee, W. Moritz, and M. Scheffler, GaAs(001) surface under conditions of low As
pressure: Evidence for a novel surface geometry, Phys. Rev. Lett. 85, 3890 (2000).

[160] W. G. Schmidt, III-V compound semiconductor (001) surfaces, Appl. Phys. A 75, 89
(2002).

[161] R. Smith, A semiempirical many-body interatomic potential for modeling dynamic pro-
cesses in gallium-arsenide, Nucl. Inst. and Meth. B 67, 335 (1992).

[162] M. Sayed, J. H. Jefferson, A. B. Walker, and A. G. Cullis, Molecular dynamics simula-
tions of implantation damage and recovery in semiconductors, Nucl. Instr. and Meth.
B 102, 218 (1995).

[163] K. Nordlund, J. Nord, J. Frantz, and J. Keinonen, Strain-induced Kirkendall mixing at
semiconductor interfaces, Comput. Mater. Sci. 18, 283 (2000).

[164] H. J. Monkhorst, and J. D. Pack, Special points for Brillouin-zone integrations, Phys.
Rev. B 13, 5188 (1976).

[165] L. Bellaiche, K. Kunc, M. Sauvage-Simkin, Y. Garreau, and R. Pinchaux, Local aspects
of the As stabilized 2×3 reconstructed (001) surface of strained InxGa1−xAs alloys: A
first-principles study, Phys. Rev. B 53, 7417 (1996).

[166] K. Shiraishi, A new slab model approach for electronic structure calculations of polar
semiconductor surface, J. Phys. Soc. Jpn. 59, 3455 (1990).

[167] M. Bernasconi, G. L. Chiarotti, and E. Tosatti, Ab initio calculations of structural and
electronic properties of gallium solid-state phases, Phys. Rev. B 52, 9988 (1995).

[168] L. F. Mattheiss, D. R. Hamann, and W. Weber, Structural calculations for bulk As,
Phys. Rev. B 34, 2190 (1986).
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R. Kunert, E. Schöll, T. Hammerschmidt, and P. Kratzer, Strain field calculations of
quantum dots — a comparison study of two methods, ICPS proceedings, submitted

T. Hammerschmidt, P. Kratzer, and M. Scheffler, Quantitative Atomistic Investiga-
tion of Correlations in Stacked InAs/GaAs Quantum Dot Arrays: Role of the Critical
Nucleus, in preparation

T. Hammerschmidt, P. Kratzer, and M. Scheffler, Thermodynamic Shape-Stability of
InAs Quantum Dots on GaAs(001) by Atomistic Investigations, in preparation

T. Hammerschmidt, P. Kratzer, and M. Scheffler, General Expressions for Linear Elas-
tic Response of Cubic Crystals upon Biaxial Strain and ab-initio Calculations of Non-
Linear Contributions for InAs, in preparation

T. Hammerschmidt, P. Kratzer, and M. Scheffler, Analytic Many-Body Potential for
the Investigation of InAs/GaAs Surfaces and Nanostructures: Application to Elastic
Interactions in Arrays of InAs Quantum-Dots, in preparation

2005 T. Hammerschmidt, A. Kersch, and P. Vogl, Embedded Atom Simulations of Titanium
Systems with Grain Boundaries, Phys. Rev. B 71, 205409, (2005)

2004 T. Hammerschmidt, and P. Kratzer, Role of Strain Relaxation during Different Stages
of InAs Quantum Dot Growth, In: Physics of Semiconductors: 27th Int. Conf. on the
Physics of Semiconductors (ICPS-27). (Eds.) J. Menéndez, C.G. Van de Walle. AIP
Confer. Proc. 772. American Institute of Physics 2005, 601-602. ISBN 0-7354-0257-4.

2003 S.Boeck, A. Dick, C. Freysoldt, F. Grzegozewski, T. Hammerschmidt, L. Ismer, L.
Lymperakis, M. Wahn, and J. Neugebauer, SFHIngX, User’s Guide

2001 T. Hammerschmidt, Atomistic growth simulations of Titanium thin films and grains,
Annual Report 2001 Walter-Schottky-Institute, Technical University of Munich

156



Presentations and Publications 157

Presentations

03/2006 German Physical Society Spring Meeting in Dresden, Germany. Talk: Understanding
Growth of InAs/GaAs Quantum Dot Nanostructures in Atomic Detail

03/2006 American Physical Society March Meeting 2006 in Baltimore, Maryland, U.S.A, Talk:
Atomic-Scale Modeling of Shape Stability-Regimes and Stacking in InAs/GaAs Quan-
tum Dot Nanostructures

11/2005 SANDiE (Network of Excellence) workshop: Characterization and Modeling of Self-
assembled Semiconductor Nanostructures, Eindhoven, Netherlands. Talk: Under-
standing Growth of InAs/GaAs Quantum Dot Nanostructures in Atomistic Detail

10/2005 IPAM Long Program: Bridging Time and Length Scales in Materials Science and Bio-
Physics, Materials Modeling Seminar, UCLA, Los Angeles, USA. Invited Talk: Growth
Properties of InAs/GaAs Nanostructures studied with a DFT derived Many-Body Po-
tential
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