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ABSTRACT

Knowledge extraction and representation aims to identify informa-
tion and to transform it into a machine-readable format. Knowledge
representations support Information Retrieval tasks such as search-
ing for single statements, documents, or metadata. Requirements
specifications of complex systems such as automotive software
systems are usually divided into different subsystem specifications.
Nevertheless, there are semantic relations between individual doc-
uments of the separated subsystems, which have to be considered
in further processes (e.g. dependencies). If requirements engineers
or other developers are not aware of these relations, this can lead
to inconsistencies or malfunctions of the overall system. Therefore,
there is a strong need for tool support in order to detects semantic
relations in a set of large natural language requirements specifica-
tions. In this work we present a knowledge extraction approach
based on an explicit knowledge representation of the content of
natural language requirements as a semantic relation graph. Our
approach is fully automated and includes an NLP pipeline to trans-
form unrestricted natural language requirements into a graph. We
split the natural language into different parts and relate them to
each other based on their semantic relation. In addition to semantic
relations, other relationships can also be included in the graph. We
envision to use a semantic search algorithm like spreading acti-
vation to allow users to search different semantic relations in the

graph.
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1 INTRODUCTION

Complex systems are often developed by distributed teams or even
across several companies (e.g., suppliers) that deliver subsystems,
which are finally integrated into a product. One part of Require-
ments Engineering (RE) is to specify the requirements for the sub-
systems, i.e., write them down for further system development
process. Due to the heterogeneity of the subsystems and their stake-
holders, requirements are often spread across several specifications,
which contain a set of natural language requirements [8]. A com-
mon approach to handle the amount of requirements specifications
is to organize them in simple structures like documents, paragraphs,
and folders. Since specifications are mostly written in natural lan-
guage, they contain a lot of semantic content that is not formally
stated but important for many engineering tasks.

Such informally noted information may be needed by different
stakeholders, e.g., they need to know, how two subsystems interact
with each other or if there are other specifications that relate to
their current work-in-progress requirement. Several studies have
shown that in such distributed development contexts, there is a high
chance of developers being unaware of dependencies and important
information from related subsystems [6, 27]. The corresponding
task that may support developers is called Information Retrieval
(IR). There are various information needs in RE, where typically
a requirements engineer formulates a search query and a system
suggests relevant results (called targets). A generic setup for such IR
systems is to extract knowledge from the requirements, represent
it in a knowledge base and provide a search algorithm to execute a
query and show the results.

In order to obtain a comprehensive overview of the requirements,
the statements of the semantic content must be related to each other.
State-of-the-art Information Retrieval approaches use algebraic IR
models (e.g., vector space models, Latent Semantic Indexing) or
probabilistic models (e.g., Latent Dirichlet Allocation) [2]. More
recently, machine-learning approaches have also been applied suc-
cessfully [21]. While most approaches only consider single words or
small parts of natural language, they rely on the distributional hy-
pothesis [25] to compare semantic similarity and do not recognize
semantic statements with their relations. Another disadvantage
of such models is, that their knowledge base is often specific for
certain kind of search queries and therefore not or hardly reusable
for other IR tasks.
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We follow a different approach on an explicit model of the knowl-
edge represented in unrestricted NL requirements. We use a pipeline
to translate NL requirements automatically into a semantic relation
graph that encodes the terms as vertices and edges. We plan to
use the graph with a spreading activation algorithm as a basis for
various semantic searches (e.g. full text search, trace link recovery).

For analysis, we applied the pipeline to 7 datasets from different
domains, with different sizes, and compared two of them with
simpler knowledge graphs that we extracted in previous work.
Compared to our previous study, we show, that we have fixed some
shortcomings by adding more semantic content and considering
more semantic relations.

2 BACKGROUND

2.1 Natural Language Requirements

Requirements specifications are often stated through unstructured
natural language (NL) because it is equally available to all stake-
holders. While there is usually no consistently applied pattern or
template, requirements are expressed via technical terminology
which is characterized by a reduced choice of words and the use of
domain specific terms [9].

NL requirements specifications are typically arranged in docu-
ments as a hierarchy structure. A document consists of multi-level
paragraphs, each having a headline and specifications. To distin-
guish each specification from each other, they have their own iden-
tifier. In practice, complex systems are often developed in terms of
several loosely coupled subsystems, each of them stated in a sin-
gle document. Requirements are spread over several specifications,
so that a user can only understand them as a whole through the
context.

2.2 Knowledge Representations

Knowledge representation focuses on the depiction of information
that enables computers to solve complex problems. Borgida et al. [3]
already noted in 1985 that knowledge representation is the basis
for requirements engineering.

Dermeval et al. [8] report on the use of ontologies in require-
ments engineering in their systematic literature review. They re-
viewed 67 publications from academic and industrial application
contexts dealing with different types of requirements. While only
34% reused existing ontologies, most of them specified their own
ontology. The largest number of publications rely on textual re-
quirements as the RE modeling style, especially in the specification
phase.

Robeer et al. [24] automatically derive conceptual models from
user stories. The models enable discussion between stakeholders
and show promising accuracy results (precision and recall between
80 and 92%). They use heuristics to analyze the user stories due to
semi-structured natural language.

In an earlier study [26], we presented an NLP pipeline that ex-
tracts knowledge from requirement documents and transforms it
into a graph representing RDF! triples. We applied the approach to
2 datasets, an academic and an industrial one, and used the graph
of the academic requirements specification to show the separation

Thttps://www.w3.0rg/TR/2014/REC-rdf11-concepts-20140225/
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of two subsystems. The generated sample graphs were not well
connected and yielded only a subset of fully connected vertices in
a main graph.

3 APPROACH: GRAPH CONSTRUCTION

We use several techniques to extract information from the require-
ments and to build the semantic relation graph. Of course, a graph
is not capable to store every aspect of any kind of information. Our
graph does not meet the conditions of a valid ontology nor an RDF
graph, but it tries to depict major, semantic parts of common NL
(e.g., words and phrases within sentences, but also documents and
corpora) and their semantic relation to each other. An ontology
or an RDF graph would require at least some kind of typing of
information, which is not always fully automated achievable from
our point of view.

The main goal while building the graph is to store all available
pieces of information in vertices as small as possible and connect
those vertices with each other based on their relation. First, we
use an NLP pipeline for the semantic content of the requirements.
Second, we analyze the requirements for given structural character-
istics which should be added to the graph, too. Finally, we combine
all information to build the semantic graph as the knowledge base.

Currently, our approach only supports English, mainly because
there exist a variety of different NLP techniques and tools that
are not available for other languages. Furthermore, English is a
relatively easy language, e.g., it consists only of a small set of part-of-
speech tags, which we have to consider in the subsequent process.

3.1 Natural Language Processing Pipeline

Since we consider requirements as NL without any specific template
or similar characteristics, the NLP pipeline consists of common
components without special adjustments or optimizations for a
certain kind of requirements specifications and is therefore able to
process any kind of text. The core parts of our pipeline, Stanford
CoreNLP [18] and DeepSRL [16] for semantic role labeling, are
pipelines themselves and will be described in detail.

Stanford CoreNLP? is a collection of solutions for common
NLP tasks, which are assembled and coordinated in a pipeline. We
only use parts of it, particularly the tokenization, sentence splitting,
part-of-speech (POS) tagging, lemmatizing (morphological analy-
sis), dependency parser (grammatical structure), and coreference
resolution (Coref). The first two tasks determine tokens (words,
punctuation marks, etc.) and sentences in a NL text. Part-of-speech
tagging categorizes these tokens by their grammatical role inside
of a sentence, e.g., as noun, verb, or article.

Next, while lemmatizing, each word is annotated with its lemma,
a base form which depends on the part-of-speech. For example,
the lemma of “studying” (as verb) is “(to) study” (also a verb) and
in comparison the lemma of “students” (noun) is “student” (also a
noun). In contrast to this, stemming of these words would result in
“stud” as the word stem. Therefore we use lemmatizing instead of
stemming to keep the sense of each word.

Example 3.1. Barack Obama was born in the fabulous and tropi-
cal Hawaii, a small shallow isle in the big pacific ocean.

Zhttps://stanfordnlp.github.io/CoreNLP/
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The dependency parser determines the grammatical structure
of a sentence. While the result contains much more information,
we use basically two features: the identification of noun phrases
and the dependencies of coordinating conjunctions. In Example 3.1,
amongst others, “Hawaii”, “isle”, and “ocean” are noun phrases (de-
terminers and adjectives removed) and the coordinating conjunc-
tion “and” depend on the both adjectives “fabulous” and “tropical”.

Example 3.2. Barack Obama was born in Hawaii. He is the presi-
dent. Obama was elected in 2008.

Lastly, the coreference resolution is looking for mentions of
the same entities. There are two different kinds of mentions. In
Example 3.2, the word “he” refers to “Barack Obama” and is a
pronominal reference without any further meaning of the word
“he”. In another example, “he” might refers to a totally different
person. In contrast, “Obama” (in the last sentence from Example 3.2)
also refers to “Barack Obama” but is a nominal reference which
contains additional information, i.e., the person Barack Obama is
also just called Obama. Due to the interpretation of “is” as equation,
the phrase “the president” is also a coreference for “Barack Obama”.

Semantic role labeling (SRL) [4] is a sentence-based NLP task.
At first, all predicates of a sentence are searched. Subsequent, all
arguments for each predicate are associated with their roles within
this sentence. The role of an argument is represented by its type,
e.g., the verb gets V, main arguments are enumerated by A0, A1 etc.
and secondary arguments are prefixed by AM- and their concrete
function, e.g., AM-MNR for manner. In general, the first argument
is called the agent, the second the patient, all other roles depend
on the verb.

Example 3.3. If the user pushes the button, the engine is started.

Example 3.3 contains two predicates “push” and “start”. The verb
of the predicate “start” (from the main clause) is [ystarted], the
arguments are [;the engine] and [an-apvIf the user pushes the
button]. Because this is a passive clause, there is no first argument
and “the engine” is just the receiver/patient of the start procedure.
Also, the whole subordinate clause is labeled as an adverbial argu-
ment, as it describes the circumstances of the predicate. The verb
and arguments of “push” are [ypushes], [aothe user] and [41the
button]. The numbered arguments would be the same even if the
syntax of the sentence would change, e.g., “If [41the button] is
[vpushed] [aoby the user], [...]".

The semantic roles are predefined in the PropBank® database.
Most of the identified propositions have at least one argument,
about two-third also got a second argument [5, Table 1]. We use
DeepSRL* as state-of-the-art implementation for SRL tagging. It
uses a deep BiLSTM model to perform SRL and achieves an F1 score
of 97.4% for CoNLL 2005 [5].

3.2 Structural Information

Besides the semantics in NL, requirements specifications often con-
tain additional information. Very common is a hierarchical structure
like single documents for modules, chapters within these documents
and folders arranging the documents. It can also be concluded that

3https://verbs.colorado.edu/~mpalmer/projects/ace.html
4https://github.com/luheng/deep_srl
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Figure 3: Graph structure for Example 3.2

two documents in the same folder are more related to each other
than completely foreign ones.

Trace links also express some kind of relatedness between two
or more requirements which should be taken into consideration.

3.3 Semantic Relation Graph

As last step, we build a graph which contains all information and
relations, we have found in NL and the additional information. To
support common graph-based algorithms like Spreading Activation,
the graph must be a regular directed graph without hyperedges
(more than 2 vertices connected to a single edge) nor hypervertices
(a single vertex contains a graph within itself).

The leading structure for NL content is based on SRL predicates
including their verb and arguments. A predicate is represented
by the verb as a vertex in the graph (verb vertex) and additional
vertices for each argument (argument vertex), as shown in Figure 1.
If an argument contains a predicate itself, the graph structure for
that predicate is likewise added and connected via an edge between
both verb vertices as shown in Figure 2 for Example 3.3 instead
of adding a single argument vertex containing that predicate. If
there is a coreference between arguments, both argument vertices
are either connected for a nominal one or only a single argument
vertex is added for pronominal as shown in Figure 3.

If an argument occurs more than once, the same argument vertex
is used for both occurrences. This only applies to arguments that
contain at least one noun, otherwise simple adjectives (e.g., “down”)
would lead as single arguments to a relation which is undesirable.
To support this deduplication of arguments, the information text
of arguments is transformed into a simplified presentation. For
example, articles are removed, nouns and adjectives are replaced
by their lemma and their simplified POS tag which only differs
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hawaii small shallow

isle pacific ocean
isle ocean

Figure 4: Graph noun phrase structure for Example 3.1

between verbs, noun, and adjectives. For instance, “the engine” is
transformed into “engine#n”.

As with arguments, duplicates may occur with verbs, too. Since
a verb is on a par with its predicate, the arguments are also taken
into account and a verb vertex is only reused, if the lemma of the
verb and all argument vertices, except other verb vertices, are equal.

While the arguments in Example 3.2 and 3.3 only contain simple
phrases, an argument may be a much more complex phrase. In
Example 3.1, the whole phrase “in the fabulous and tropical Hawaii,
a small shallow isle in the big pacific ocean” is the second argument.
The resulting argument vertex will not lead to a deduplication, if
the argument of another predicate is just “Hawaii”. To circumvent
this issue, we add additional vertices to the graph based on the
given noun phrases and their dependencies as shown in Figure 4.

If an argument contains a coordinating conjunction that depends
on noun phrases, the argument is split and for each part, the corre-
sponding graph structure is added. Otherwise, a separation would
lead to undesirables vertices. In Example 3.1, “and” does not depend
on a noun phrase and would lead to two vertices for the splitted
arguments “in the fabulous” and “tropical Hawaii, a [...]".

Next to the vertices and edges for NL, the additional information
have to be add to the graph, too. This depends on the characteristics
of the additional information. For each requirement a vertex should
be added which is connected to all verb vertices, whose predicates
are contained in the requirement. A hierarchical structure may be
added as a tree to the graph, e.g., including vertices for each module
and chapter which are connected to the requirement vertices. Trace
links can also be interpreted as edges between requirement vertices.

4 ANALYSIS: GRAPH CHARACTERISTICS

In our previous study [26] we introduced knowledge representation
graphs which construction differs from the presented process. We
built graphs for two requirements documents, namely Automotive
System Cluster (ASC)® and “Charging system” (for electric vehicles)
by our industry partner, both having an automotive background
and containing real industrial data.

For our current approach, we reuse these datasets. Additional to
the graph construction described in section 3.3, we add vertices for
each requirement identifier which are connected to all predicates
of all sentences in this requirement text. The graphs are shown
in Figure 5. The colors in Figure 5a represent the two contained
subsystems of ASC: ELC is blue, ACC green, and intersections of
both are colored orange. Figure 5b has a different color coding
for the single “Charging System”: identifier vertices are blue, SRL

Shttps://www.aset.tu-berlin.de/fileadmin/fg331/Docs/ASC-EN.pdf
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Table 1: Datasets and corresponding graphs

Dataset vertices edges no trace path
ASC 1,277 2,320 -
ASC [26] 345 440 -
Charging S. 40,453 107,862 -
Charging S. [26] 13,676 19,769 -
Infusion P. 1,731 3,622 0
CCHIT 9,239 22,669 0
GANNT 824 1,755 0
CM-1 7,616 18,375 0
WARC 1,188 1,975 63

predicate vertices orange, SRL argument vertices green, and noun
phrase arguments are salmon.

For comparison, the graphs from [26] are shown in Figure 6. The
main difference to the current process is that we used from SRL only
the first two arguments of each predicate as vertices and connected
them via an edge that represents the predicate. In addition, there
were no vertices for identifiers or noun phrases.

Next to the 2 datasets, we analyze the tracing datasets Infusion
Pump, CCHIT, GANNT, CM-1, and WARC from [15]. They have
different domains, like health care, science, and business. Each of
them contain source and target requirements that are linked to each
other. In the graphs, source and target requirements are not directly
linked (i.e. trace links are not considered, no edges are inserted).

Table 1 gives an overview of the semantic knowledge graphs for
all datasets, including the number of vertices and edges. For the
tracing datasets, we determine, how often there is no path between
the source and target identifier vertices regardless of whether a
trace link is actually defined.

Figure 7 shows the degree centrality for each dataset, i.e., how
many incoming and outgoing edges a type has. Due to some ex-
treme outliers up to 2,130, the plot is cut off above 50 to make the
boxes clearly visible. We do not differentiate between indegree and
outdegree, because the direction of the edges is independent from
the statement, it represents, due to the fact that in most cases, the
semantics of an edge may be restated the other way around. While
the datasets and graphs vary in size, the average degree centrality
is nearly the same.

Figure 8 shows the distribution of existing shortest path lengths
between each source and target vertex of the tracing datasets. Again,
despite the different dataset and graph sizes, the average shortest
distance between a source and a target is nearly the same.

5 DISCUSSION

There are mainly two parts of the considered semantic search that
will affect the performance results, the graph and the search al-
gorithm, which both also depend on each other. In absence of a
concrete search algorithm, we will take a look at the graph char-
acteristics including its semantic relations and try to argue which
parts might not be optimal.

The graphs provide connections between almost all possible
queries and targets, i.e., there are paths between each pair of ver-
tices. The 3 vertices in the lower left corner of Figure 5a are an


https://www.aset.tu-berlin.de/fileadmin/fg331/Docs/ASC-EN.pdf

Knowledge Extraction from Natural Language Requirements into a Semantic Relation Graph

(a) Automotive System Cluster (ASC)

ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea

(b) Charging System

Figure 5: Semantic relation graphs
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Figure 6: Knowledge representation graphs from [26]

exception, they represent the identifiers AL-141 and FA-55, and
their content “<not elaborated within the demonstrator>". In Fig-
ure 5b at the bottom, most of the single vertices represent identifiers
without any text content like a sentence or a noun phrase. Our pre-
vious approach [26] in comparison yielded only a subset of fully
connected vertices in a main graph. This is also achieved, because
we include more information in more graph elements (see Table 1).

Figure 7 indicate, that there are only a few strongly connected
vertices while the majority is only connected to certain other, rele-
vant information. Excluding those strongly connected nodes, the
graph is able to depict a meaningful relationship path between
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Figure 7: Degree centrality for all datasets (cut above 50,
greatest outlier at 2,130)
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Figure 8: Shortest Path Lengths for Trace Links

single vertices. Figure 8 shows that the length of the shortest re-
lationship paths stays constant, i.e., even in larger datasets such
relationships are still comprehensible.

However, there is still room for improvement respectively other
interpretations how information should be parted and connected to
each other. For example, we do merge noun phrase vertices without
considering their adjectives or coreference. But in some cases, the
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adjective may crucially impact the meaning, e.g., “pacific ocean” vs.
(any) “ocean” in Example 3.1.

Furthermore, we do not merge or connect semantic similar ver-
tices. Two or more words/phrases are semantic similar, if they have
the same meaning but different spelling. There are different ap-
proaches to identify such semantic similarities. A very common
approach are word embeddings like word2vec [20] or GloVe [23].
They rely on the distributional hypothesis that similar words or
phrases are used in similar contexts. Such word embeddings are
build as mathematical vectors with many dimensions to calculate
the distance between words respectively their context. This also
causes words of opposite meaning to be related to each other be-
cause they occur in the same context [22]. Another approach is a
database which contain known similarities, e.g., WordNet®. They
usually contain only common similarities and are not aware of
technical terms.

Also there is no identification of common phrases. We plan to use
tf-idf to downgrade certain vertices which phrases are commonly
used. While a graph algorithm may also downgrade such vertices
(e.g. based on its edge count), it have only a local but not a global
scope (based on general corpora, e.g., newspaper), where these
phrases are commonly used but not in our datasets.

6 APPLICATION: SEMANTIC SEARCH

Since the graph includes structural and semantic vertices, a rela-
tionship may be found by structural or semantic artifacts. If all
vertices in a graph are connected through paths, each vertex has a
(depictable) relationship to all others. Different search applications
are conceivable, depending on the query, relationships between
artifacts (i.e. graph characteristics), and the targets.

6.1 Spreading Activation

We plan to use Spreading Activation as semantic search algorithm
to find for a given query all related information (targets). We’ll use
this to create a list of candidates to sort all (reachable) targets for a
query based on their relatedness.

Spreading Activation has its origin in the field of psychology.
It is a theoretical model, how our mind connects information and
tries to find an appropriate context with associated terms for a new
word. The basic assumption is that more relevant terms are highly
interconnected while less relevant are less or not connected at all.
This model is applied to various science areas like IR [7].

Spreading Activation works on graphs and consists of three
phases. In the initial phase, start vertices representing the query
are activated, i.e., they will be assigned an initial activation value.
While the spreading phase, this activation is stepwise distributed
over the graph, i.e., the activation of a vertex is transferred to
related (connected) vertices. These steps are called pulses and at
the end of each pulse, a termination condition is checked to stop
the pulsation. In the end phase the activation values are used to
order all vertices by relevance. Depending on the type of elements
searched, the results list can also be filtered, but the values are
not used for classification (e.g., by a threshold), since they are not
limited to an upper or lower bound and not directly comparable.

Shttps://wordnet.princeton.edu/
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There are different ways to configure the spreading of the activa-
tion values. Berthold et al. [1] proved that restriction is necessary.
Otherwise, approaches are equivalently converging to a query-
independent state in which the same central vertices are displayed
as result for each query.

7 RELATED WORK

Other semantic approaches often deal with semantic distance mod-
els between single parts (e.g., words or phrases). Mahmoud et al. [17]
uses various semantically enabled IR methods like VSM including
thesaurus or Part-of-Speech, LSI, LDA, explicit semantic analysis,
and normalized Google distance. They calculate vectors for each
word and try to find related documents based on small distances.
Their results revealed that explicit semantic methods tend to do a
better job than latent methods.

Guo etal. [10] also focus on single words, using word embeddings
as semantic enhancement to train several RNN to accomplish a deep
learning approach. They focus on automatically generated trace
links and achieve a higher MAP than the existing approaches VSM
and LSI on their unpublished dataset.

Guo et al. [11] present a technique to build an ontology semi-
automatically. They focus on term mismatches between related
documents. Compared to the classification technique, which per-
forms best when sufficient training data is available, the ontology
shows improvements because it aims to add semantics which en-
ables higher levels of reasoning. The big disadvantage is the effort
to create an ontology. Another benefit of the ontology is that it
forms the basis for textual explanations of trace links [12].

Hartig et al. [13, 14] use Spreading Activation to find related
hazard analysis and risk assessments (HARA). Initially they map
a given class diagram including information such as classes, prop-
erties, instances, and data values to a Web Ontology Language’
model. Using this model, an ontology is automatically created from
existing HARA. During the search phase, they first apply Spreading
Activation to the ontology to find the relevant subnetwork. In a
second step, they filter the results within this subnetwork by the
sought-after type sorted by their assigned activation. Finally, they
generate a textual explanation for the user derived from spread
graphs by Michalke et al. [19].

8 CONCLUSION

In this paper, we present a novel approach for knowledge extraction
using semantic relations between parts of natural language that are
stored in a knowledge graph. The approach is fully automated, does
not have any prerequisites to the natural language requirements
(except English language) and is scalable to various sizes of corpora.
The graph and its semantic relations are independent from the syn-
tax of the natural language and able to depict user-comprehensible
paths between distant linked statements. We propose to use spread-
ing activation as semantic search algorithm and support the user
by providing an explanation for each result.

REFERENCES

[1] Michael R. Berthold, Ulrik Brandes, Tobias Kétter, Martin Mader, Uwe Nagel,
and Kilian Thiel. 2009. Pure spreading activation is pointless. In Conference

"https://www.w3.0rg/TR/owl2-overview/


https://wordnet.princeton.edu/
https://www.w3.org/TR/owl2-overview/

Knowledge Extraction from Natural Language Requirements into a Semantic Relation Graph

on information and knowledge management (CIKM). Association for Computing
Machinery (ACM), Beijing, China, 1915-1918. https://doi.org/10.1145/1645953.
1646264

Markus Borg, Per Runeson, and Anders Ardo. 2014. Recovering from a decade: A
systematic mapping of information retrieval approaches to software traceability.
Empirical Software Engineering (EMSE) 19, 6 (2014), 1565-1616. https://doi.org/
10.1007/s10664-013-9255-y

Alexander Borgida, Sol Greenspan, and John Mylopoulos. 1985. Knowledge
Representation as the Basis for Requirements Specifications. , 152-169 pages.
https://doi.org/10.1007/978-3-642-70840-4_13

Xavier Carreras and Lluis Marques. 2004. Introduction to the CoNLL-2004 Shared
Task: Semantic Role Labeling. In Computational Natural Language Learning
(CoNLL). Association for Computational Linguistics (ACL), Boston, MA, USA,

ICSEW’20, May 23-29, 2020, Seoul, Republic of Korea

https://doi.org/10.1109/ASE.2017.8115723

Nikola Mrksi¢, Diarmuid O Séaghdha, Blaise Thomson, Milica Gasi¢, Lina Maria
Rojas-Barahona, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen, and Steve J.
Young. 2016. Counter-fitting Word Vectors to Linguistic Constraints. In Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Association for Computational Linguistics (ACL),
San Diego, CA, USA, 142-148. https://doi.org/10.18653/v1/N16-1018

[23] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:

Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for Computational Linguistics (ACL),
Doha, Qatar, 1532-1543. https://doi.org/10.3115/v1/d14-1162

Marcel Robeer, Garm Lucassen, Jan Martijn E. M. van der Werf, Fabiano Dalpiaz,
and Sjaak Brinkkemper. 2016. Automated Extraction of Conceptual Models from

89-97. User Stories via NLP. In Requirements Engineering (RE). IEEE, Beijing, China,
[5] Xavier Carreras and Lluis Marquez. 2005. Introduction to the CoNLL-2005 196-205. https://doi.org/10.1109/RE.2016.40

shared task: Semantic role labeling. In Computational Natural Language Learning [25] Magnus Sahlgren. 2008. The distributional hypothesis. Italian Journal of Linguis-
(CoNLL). Association for Computational Linguistics (ACL), Ann Arbor, MI, USA, tics 20, 1 (2008), 33-54.
152-164. [26] Aaron Schlutter and Andreas Vogelsang. 2018. Knowledge Representation

[6] Marcelo Cataldo and James D. Herbsleb. 2011. Factors Leading to Integra-
tion Failures in Global Feature-oriented Development: An Empirical Analy-
sis. In International Conference on Software Engineering (ICSE). Association for
Computing Machinery (ACM), Waikiki, Honolulu, Hawaii, 161-170. https:
//doi.org/10.1145/1985793.1985816 [27

[7] Fabio Crestani. 1997. Application of Spreading Activation Techniques in In-
formation Retrieval. Artificial Intelligence Review 11, 6 (1997), 453-482. https:
//doi.org/10.1023/A:1006569829653

[8] Diego Dermeval, Jéssyka Vilela, Ig Ibert Bittencourt, Jaelson Castro, Seiji Isotani,
Patrick Brito, and Alan Silva. 2016. Applications of ontologies in requirements
engineering: A systematic review of the literature. In Requirements Engineering
(RE). Springer, Beijing, China, 405-437. https://doi.org/10.1007/s00766-015-0222-
6

of Requirements Documents Using Natural Language Processing. In Natu-
ral Language Processing for Requirements Engineering (NLP4RE) (CEUR Work-
shop Proceedings), Vol. 2075. RWTH Aachen, Utrecht, Netherlands.  https:
//doi.org/10.14279/depositonce-7776

Andreas Vogelsang. 2020. Feature dependencies in automotive software systems:
Extent, awareness, and refactoring. Journal of Systems and Software (JSS) 160
(2020). hitps://doi.org/10.1016/j.js5.2019.110458

[9] Alessio Ferrari, Giorgio Oronzo Spagnolo, and Stefania Gnesi. 2017. PURE:
A Dataset of Public Requirements Documents. In 2017 IEEE 25th International
Requirements Engineering Conference (RE). IEEE, Lisbon, Portugal, 502-505. https:
//doi.org/10.1109/RE.2017.29

[10] Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. 2017. Semantically Enhanced
Software Traceability Using Deep Learning Techniques. In International Con-
ference on Software Engineering (ICSE). IEEE, Buenos Aires, Argentina, 3-14.
https://doi.org/10.1109/ICSE.2017.9

[11] Jin Guo, Marek Gibiec, and Jane Cleland-Huang. 2017. Tackling the term-
mismatch problem in automated trace retrieval. Empirical Software Engineering
(EMSE) 22,3 (2017), 1103-1142. https://doi.org/10.1007/s10664-016-9479-8

[12] Jin Guo, Natawut Monaikul, and Jane Cleland-Huang. 2015. Trace links explained:
An automated approach for generating rationales. In Requirements Engineering
(RE). IEEE, Ottawa, Canada, 202-207. https://doi.org/10.1109/RE.2015.7320423

[13] Kerstin Hartig. 2019. Entwicklung eines Information-Retrieval-Systems zur Unter-
stiitzung von Gefdhrdungs- und Risikoanalysen. Ph.D. Dissertation. Technische
Universitat Berlin. https://doi.org/10.14279/depositonce-8408

[14] Kerstin Hartig and Thomas Karbe. 2016. Recommendation-Based Decision
Support for Hazard Analysis and Risk Assessment. In Conference on Informa-
tion, Process, and Knowledge Management (eKNOW). International Academy,
Research and Industry Association (IARIA), Venice, Italy, 108-111.  https:
//doi.org/10.14279/depositonce-6974

[15] Jane Huffman Hayes, Jared Payne, and Mallory Leppelmeier. 2019. Toward Im-

proved Artificial Intelligence in Requirements Engineering: Metadata for Tracing

Datasets. In International Requirements Engineering Conference Workshops (REW).

IEEE, Jeju Island, South Korea, 256-262. https://doi.org/10.1109/REW.2019.00052

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettlemoyer. 2017. Deep Semantic

Role Labeling: What Works and What’s Next. In Association for Computational

Linguistics. Association for Computational Linguistics (ACL), Vancouver, Canada,

473-483. https://doi.org/10.18653/v1/p17-1044

[17] Anas Mahmoud and Nan Niu. 2015. On the role of semantics in automated
requirements tracing. In Requirements Engineering (RE). Springer, Ottawa, Canada,
281-300. https://doi.org/10.1007/s00766-013-0199-y

[18] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In System Demonstrations. Association for Computational
Linguistics (ACL), Baltimore, MD, USA, 55-60.

[19] Vanessa N. Michalke and Kerstin Hartig. 2016. Explanation Retrieval in Semantic
Networks. In Knowledge Discovery, Knowledge Engineering and Knowledge Man-
agement (IC3K). SciTePress, Porto, Portugal, 291-298. https://doi.org/10.14279/
depositonce-7136

[20] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

Estimation of Word Representations in Vector Space. In International Conference

on Learning Representations (ICLR). arXiv, Scottsdale, AZ, USA. https://arxiv.org/

abs/1301.3781

Chris Mills. 2017. Towards the automatic classification of traceability links. In

Automated Software Engineering (ASE). Urbana-Champaign, IL, USA, 1018-1021.

[16

[21


https://doi.org/10.1145/1645953.1646264
https://doi.org/10.1145/1645953.1646264
https://doi.org/10.1007/s10664-013-9255-y
https://doi.org/10.1007/s10664-013-9255-y
https://doi.org/10.1007/978-3-642-70840-4_13
https://doi.org/10.1145/1985793.1985816
https://doi.org/10.1145/1985793.1985816
https://doi.org/10.1023/A:1006569829653
https://doi.org/10.1023/A:1006569829653
https://doi.org/10.1007/s00766-015-0222-6
https://doi.org/10.1007/s00766-015-0222-6
https://doi.org/10.1109/RE.2017.29
https://doi.org/10.1109/RE.2017.29
https://doi.org/10.1109/ICSE.2017.9
https://doi.org/10.1007/s10664-016-9479-8
https://doi.org/10.1109/RE.2015.7320423
https://doi.org/10.14279/depositonce-8408
https://doi.org/10.14279/depositonce-6974
https://doi.org/10.14279/depositonce-6974
https://doi.org/10.1109/REW.2019.00052
https://doi.org/10.18653/v1/p17-1044
https://doi.org/10.1007/s00766-013-0199-y
https://doi.org/10.14279/depositonce-7136
https://doi.org/10.14279/depositonce-7136
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.1109/ASE.2017.8115723
https://doi.org/10.18653/v1/N16-1018
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.1109/RE.2016.40
https://doi.org/10.14279/depositonce-7776
https://doi.org/10.14279/depositonce-7776
https://doi.org/10.1016/j.jss.2019.110458

	Abstract
	1 Introduction
	2 Background
	2.1 Natural Language Requirements
	2.2 Knowledge Representations

	3 Approach: Graph Construction
	3.1 Natural Language Processing Pipeline
	3.2 Structural Information
	3.3 Semantic Relation Graph

	4 Analysis: Graph Characteristics
	5 Discussion
	6 Application: Semantic Search
	6.1 Spreading Activation

	7 Related Work
	8 Conclusion
	References

