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Abstract

Distributed system technologies are fast developing and the complexity of net-
worked systems increases. For this reason the precise design of distributed
systems is necessary, comprising all key aspects. The employment of formal
methods is restricted to few aspects such as performance and correctness of
distributed algorithms, while the investigation of consistency issues, as they
arise e.g. when data is shared between different sites, is still a challenge. In
this work, approaches to visual modelling and validation of distributed systems
are considered focussing on the Unified Modeling Language (UML) as visual
modelling language and graph transformation as formal validation domain. To
meet the main requirements for distributed system modelling, UML has been
extended by a number of profiles and heavy-weight language extensions. For
visual reasoning about certain key aspects of distributed systems, the formal
calculus of distributed graph transformation has been developed. This calcu-
lus supports the formal validation of distributed systems, especially concerning
concurrency and consistency issues.

To precisely defining the syntax and semantics of a visual modelling lan-
guage like UML, graphs play a central role, since they are well suited to store the
multi-dimensional structures behind visual representations. As a consequence,
graph grammars are shown to be a promising technique to define visual lan-
guages. Theoretical results for graph transformation can be advantageously
used to speed up visual parsing and to show the functional behaviour of model
translations. Compared to other approaches to visual language definition, graph
grammars allow a fully visual approach which handles all structural aspects
visually. The presented approach builds the basis for the precise syntax and
semantics definition of visual modelling languages for distributed systems.



Zusammenfassung

Die Entwicklung von verschiedensten Technologien fiir verteilte Systeme ist ras-
ant vorangegangen und hat zu einer stetig wachsenden Komplexitdt von Soft-
waresystemen dieser Art gefiihrt. Deshalb ist ein praziser Entwurf von verteilten
Systemen, der zumindest die wichtigsten Systemaspekte modelliert, sinnvoll.
Die Verwendung von formalen Methoden ist iiblicherweise auf wenige Aspekte,
wie z.B. Performanz und Korrektheit von verteilten Algorithmen, beschrinkt.
Konsistenzeigenschaften, wie sie beispielsweise bei der gemeinsamen Daten-
nutzung durch verschiedene Prozesse auftreten, sind noch nicht hinreichend un-
tersucht worden. Diese Arbeit befasst sich mit Modellierungs- und Validations-
konzepten fiir verteilte Systeme, wobei wir uns auf die Unified Modeling Lan-
guage (UML) als visuelle Modellierungssprache sowie Graphtransformation als
formalen Validationskalkiil einschrinken. Um die wichtigsten Anforderungen
an das Modellieren von verteilten Systemen zu erfiillen, wurden eine Reihe von
Spracherweiterungen an der UML durchgefiihrt. Zur visuellen Validation von
verteilten Systemaspekten wurde der formale Kalkiil der verteilten Graphtrans-
formation entwickelt. Dieser Kalkiil unterstiitzt im wesentlichen den Nachweis
von Konsistenz- und Nebenldufigkeitsaussagen.

Graphen spielen eine zentrale Rolle, wenn es um die prézise Definition
der Syntax und Semantik von visuellen Modellierungssprachen geht, denn sie
eignen sich hervorragend zum Speichern von mehrdimensionalen Strukturen,
speziell visuellen Repréasentationsstrukturen. Folglich sind Graphgrammatiken
eine vielversprechende Technik zur Definition von visuellen Sprachen. Theo-
retische Resultate flir Graphtransformation kénnen gewinnbringend eingesetzt
werden, um den Parsierungsprozess von visuellen Darstellungen zu beschleuni-
gen und um das funktionale Verhalten von Modeltransformationen zu zeigen.
Im Vergleich zu anderen Ansétzen zur Definition von visuellen Sprachen er-
lauben Graphgrammatiken eine vollstandig visuelle Definition, die alle struk-
turellen Aspekte visuell behandelt. Der in der Arbeit vorgestellte Ansatz stellt
eine Grundlage fiir die prizise Syntax- und Semantikdefinition von visuellen
Modellierungssprachen fiir verteilte Systeme dar.
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1 Introduction

Distributed systems technologies developed fast over the last decades. Espe-
cially the Web and other Internet-based applications and services have become
of great interest. A range of useful languages, tools and environments have been
provided supporting the development of distributed applications. Due to its in-
creasing complexity, a distributed system can hardly be well designed without
modelling at least the key aspects of the system. Up to now, resource sharing
has been the primary aim for the development of distributed systems. Another
proven concept is redundancy of resources which improves the performance and
the fault-tolerance of a system. Since redundancy is expensive and increases the
complexity of distributed systems, good validation methods which are available
already at design time, are highly desirable. So far the main reasons to develop
formal models for distributed systems have been performance issues and cor-
rectness of distributed algorithms. Consistency issues have not been of interest.

Today resource sharing is taken for granted, but effective data sharing still is
a challenge. For example, data sharing plays an important role when considering
Distributed Shared Memory (DSM) systems. In DSM systems, data is shared
logically between computers that do not share physical memory. The main
point of DSM systems is that they appear more high-level to the developer
than usual message passing systems, since developers do not have to care about
distribution issues for shared data such as marshalling the data. The acceptance
of DSM systems is very much dependent on the efficiency with which they can
be implemented. Concurrent and conflicting updates may arise and it depends
heavily on the underlying consistency model, if a DSM system has an acceptable
performance. But occurring consistency issues are not yet well investigated in
the literature. Typical formal modelling techniques such as Statecharts, Petri
nets, and I/O-automata, are used for process modelling and do not support
an attractive integration of process and information modelling on a complete
formal basis.

Focussing on information modelling, the Unified Modeling Language (UML)
has evolved to the standard visual modelling language for object-oriented sys-
tems. For a flexible adaptability to further domains, UML supports a standard
extension mechanism by defining profiles. There exists a strong interest of re-
searchers and companies to complete UML by profiles such that it becomes
the universal modelling language for any kind of system. Recently, the compre-
hensive profile for Enterprise Distributed Object Computing (EDOC) has been
developed providing a lot of new concepts to model the important aspects of
distributed systems. Only few aspects are still missing in UML, e.g. concepts
for application-specific views and an adequate visual constraint language.

The definition of the visual modelling language UML is semi-formal, i.e. its
syntax and semantics are only partially defined in a precise manner. Compared
to textual languages, there does not exist a standard formalism like the Backus-
Naur-Form (BNF) and attribute grammars, to define the syntax and semantics
of a visual language (VL). For each VL, separate formalisms for precise language
definition, parsing and translation to some semantic domain are given. For
UML, a constraint-based approach, the so-called metamodel, is used which



provides class diagrams to define all types of model elements and their relations
as well as constraints of the Object Constraint Language (OCL) to restrict to
allowed structures. Other visual languages like the Specification and Description
Language (SDL) are defined by grammar-based approaches. Constraint and
grammar-based approaches use textual notions to a large extent which make
the multi-dimensional structure of diagrams and graphics difficult to understand
and to reason about.

The semantics of UML as specified by a standard of the Object Manage-
ment Group (OMG), is even more informal. It is described in natural language.
A large variety of semantic domains exist for UML which map UML models
partly or completely to semantic models focussing on certain system aspects.
Especially the behaviour part of UML models has been considered and mapped
to any sort of process model. A precise semantic model for investigating con-
sistency issues in distributed systems is not yet focussed in the literature.

Outline of the Habilitation Thesis

The habilitation thesis consists of this survey and seven research papers which
present the author’s contributions most relevant for the research on visual mod-
elling and validation of distributed systems. The following outline refers directly
to the work achieved in these papers. This survey embeds these achievements
into a larger context taking a large variety of related work into account.

The central framework for the habilitation thesis is outlined in [I]. After clar-
ifying the main requirements for distributed system modelling, UML is discussed
as visual modelling language for distributed systems. For offering a precise, but
intuitive approach to key aspects of distributed systems the formal calculus
of distributed graph transformation [5] has been developed. Distributed graph
transformation combines process and information modelling and can serve as se-
mantic model domain for a visual model [6] where all main aspects of distributed
systems can be considered. Moreover, distributed graph transformation offers
a validation support concerning issues seldom considered in distributed system
models, such as conflicts and dependencies of actions as well as consistency
issues. Choosing it as semantic domain for UML models offers the possibility
to reason about consistency of shared object structures as well as conflicting
and dependent updates. Furthermore, process issues such as an event structure
semantics are worthwhile to be investigated. The validation process can be sup-
ported by the AGG tool [7] offering an environment which allows to develop,
test and analyze graph transformation systems.

UML serves well as visual modelling language for distributed systems, es-
pecially since there exist various extensions to adapt it to different problem
domains. Concerning distributed system modelling, we found out that most of
the interesting concepts have been already captured by some extension. One
main extension is OCL, a constraint language used to formulate system invari-
ants, pre and post conditions as well as guards. Unfortunately, OCL is textual
and not yet well integrated with UML. Basing OCL on collaborations as done in
[2], paves the ground for a much closer integration with UML. Surely, a UML-
like graphical notation will increase the attractiveness of OCL consideringly. In
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Figure 1: Main topics and interrelations of the thesis

addition, a concept for application-specific views [4] has been developed which
is useful to support distributed specifications.

Having considered all language concepts of an adequately extended UML,
it has to be precisely defined for further investigations. The UML metamodel
provides a definition of all symbols and relations in their abstract form, i.e.
visual alphabet of the abstract syntax. Well-formedness rules which are given
in form of textual OCL constraints, restrict the set of all possible models to the
syntactically meaningful ones. In this approach, graphs are used as a natural
means to describe the inherent structure of diagrams. But instead of using OCL
as textual formalism for language description, graph grammars are much better
suited to define the abstract syntax of a visual language [3]. Similarly to the
BNF, the rule-based manipulation of syntactical forms is performed by graph
derivations. Adding attributes to store representational data and moreover, se-
mantical information, the graph grammar approach is well-suited to define the
concrete and abstract syntax of VLs as well as to translate to some semantic
domain. VLs are precisely defined and translations from concrete to abstract
syntax as well as to a semantic domain can be formally investigated, e.g. func-
tional behaviour of translations can be proven. Performing the definition of
UML sublanguages shows how clear and precise a VL can be defined follow-
ing the graph grammar approach. These and further examples show that graph
transformation has a great potential to become the ”BNF for visual languages”.

Figure [l sketches the main topics of this thesis and their interrelations.

Organization of the Survey

This article gives an overview on research activities concerning visual modelling
of distributed systems and the validation support which has led to a number of
published papers. First the requirements for distributed system modelling are
discussed (Section [2)). In Section Bl UML as adequate visual modelling language
for distributed systems as well as precise definition and parsing of visual lan-
guages are considered. Section Ml contains a discussion of the main validation
issues, discusses validation techniques for UML and shows how models in some
abstract syntax can be translated to a semantic domain by graph transforma-
tion. Taking graph transformation as semantic domain, Section [Bl first presents
the concepts of structured graph transformation which are needed to define the
mapping of all main aspects of distributed systems to this semantic domain.
Thereafter, available validation techniques are discussed together with their tool
support. The presentation style in this survey is informal, formal definitions and
further details can be found cited papers, especially in those papers referred to



in bold letters. At the end of this article, a summary of the papers submitted
for the habilitation thesis is given.
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2 Requirements for Distributed System Modelling

Distributed system modelling is an evolving discipline which mainly has coped
with performance issues and quality of service. But there are further aspects of
distributed systems to carefully think about. In the following, we first introduce
distributed systems and discuss the main design challenges in general. There-
after, three examples of distributed systems with their special challenges are
presented, namely mobile computing, distributed shared memory systems, and
web applications. At the end of this section, the requirements for distributed
system modelling are summarized.

2.1 Main Aspects of Distributed Systems

A distributed system consists of a number of hardware or software components
which are located at networked computers. These components usually proceed
concurrently but also have to communicate and interact with each others to
achieve productive work within the system. Communication is performed by
message passing or logically shared memory which is distributed physically.
Each distributed process has its own clock, thus there does not exist a global
clock. Distributed processes usually work asynchronously and have to run syn-
chronization protocols to get actions executed simultaneously. They even can
fail partially, e.g. one component stops while the others are still running. That
means each component in the system has to detect whether other components
failed which is not always possible to find out. After a failure happened, the
running components should react appropriately.

Typically computer networks are organized in layers: the basic layers are
concerned with the network, above those the middleware layers provide a com-
mon programming platform, used in the upper layers where distributed appli-
cations reside. Well-known examples of distributed systems are the Internet,
intranets, and mobile computing. Distributed applications like Web services
are distributed systems which only consist of software components belonging
all to the application layer. A comprehensive presentation of distributed sys-
tems, their concepts and design principles, is given in [41].

Reasons for developing a distributed system are either inherent distribution
of its components like the computers in the Internet or sharing resources. A
resource is an abstract notion for any system part. It ranges from hardware



components like processors, disks and printers to software-defined entities such
as files, databases, and any kind of data object.

2.2 Challenges

In the following, we discuss the main challenges a designer of distributed sys-
tems usually meets and has to take into account carefully when developing the
system.

Heterogeneity. Developing a distributed application, especially on the Inter-
net, confronts the designer with many different sorts of computers and networks.
The developer has not only to deal with different hardware and operating sys-
tems, but also with heterogeneous programming languages. Moreover, for larger
applications, several developers are engaged following different encoding styles.
One main concept to mask the heterogeneity of network layers is that of mid-
dleware which provides a programming abstraction for distributed applications
such that part of the heterogeneity is capsuled.

Openness. The openness of a distributed system determines the degree how
far the system can be modified and extended by new components. To achieve
openness the key interfaces have to be published. This is usually done on the
programming level using standards as the Common Object Request Broker
Architecture (CORBA) IDL [I7] or, more recently, the Simple Object Access
Protocol (SOAP) [15] which is based on XML. Moreover, open systems pro-
vide a uniform communication mechanism and published interfaces for access
to shared resources. In this way, open systems can be constructed from hetero-
geneous hardware and software, but the conformance of each component to the
published standard must be carefully tested and verified to be sure that the
system works correctly.

Scalability. Distributed systems can be found at many different scales, rang-
ing from two processor machines to the Internet. A system is called scalable if it
will remain effective when the number of resources and clients significantly in-
creases. The design of scalable distributed systems has the following challenges:
It must be possible to add server computers to avoid performance bottlenecks
that would arise if a single server had to handle all requests. Considering ser-
vices which heavily rely on data sets whose size is proportional to the number
of users or resources in the system, their main algorithms have to be carefully
designed. For example, hierarchical net structures scale better than linear ones.
For a system to be scalable, the maximum performance loss should be no worse
than the one in hierarchical systems. Moreover, software resources such as In-
ternet addresses should not run out. This goal is very difficult to meet since
especially networking software is supposed to run for a long time and design-
ers cannot predict developments over years. In general, algorithms should be
decentralized to avoid bottlenecks. Usually, replication mechanisms are used
to improve the performance of resources which are heavily used such as cer-
tain Web pages. To handle possible scalability problems as early as possible



the developer should be supported in configuration management and should be
provided with techniques for early performance tests.

Concurrency. Distributed applications and services usually include a high
amount of concurrency which might lead to complex control flow difficult to
overlook during programming and even more difficult to test by distributed
debugging. Often resources are shared by several clients which might lead to
simultaneous attempts to access a shared resource. The process which man-
ages a shared resource could take only one client request at a time. Since this
approach limits the throughput, services usually allow multiple client requests
to be processed concurrently. A programmer has to take care about shared re-
sources and to ensure that operations access them in a synchronized way such
that its data remains consistent.

Partial failures. In distributed applications, it may happen that one com-
ponent fails while others continue to function, i.e. partial failures can occur.
Due to this fact, the handling of failures is particularly difficult in distributed
systems. Usual techniques to handle partial failures are failure detection, e.g.
checksums are used to detect corrupt data in messages or files, and masking of
failures. For example, messages can be retransmitted when they fail to arrive.
Further techniques are tolerating failures, e.g. informing the user when a Web
browser cannot contact a Web server and leave the further proceeding to the
user. Another technique is recovery from failures meaning to bring server data
to a consistent state after a failure occurred. Moreover, redundancy of hard-
ware components is a popular technique to make systems more fault tolerant.
A developer has to be aware of all the kinds of failures which can occur in a
distributed system and to choose the best practice for each kind of failure.

Security. Security issues are of considerable importance in distributed sys-
tems. Security for information resources has three aspects: protection against
unauthorized access, against alteration or corruption, and against interference
with the means to access the resources. A typical example occurs in electronic
commerce where users send their credit card numbers across the Internet. Al-
though resource protection is the main security issue, it is not the only one.
Another important security mechanism are digital signatures and certificates
to trust certain information given by others. A system designer has to choose
an adequate security policy meeting all security requirements while keeping the
process and management costs at a minimum.

Transparency. Due to its intrinsic complexity another important design issue
for a distributed system is the transparency (i.e. hiding) of certain aspects to
the users. The degree of transparency is much dependent on the design of a
distributed system. The scope of transparency can be broad: The access to
remote resources can be transparent, i.e. local and remote resources are accessed
using identical operations or at least the server location of remote resources is
not known like it is when typing the address of a certain web page. Furthermore,



the user might not be aware of concurrent processes, replication of resources,
partial failures, movements of resources to other places, or performance-specific
reconfigurations.

Availability and Fault Tolerance. Data replication is a key for providing
high availability and fault tolerance in distributed systems. The caching of data
at clients and servers is by now familiar as a means to performance enhance-
ment. Furthermore, data is sometimes replicated transparently between several
servers in the same domain. A general requirement for replicated data is that
of consistency. Dependent on the application, different forms of consistencies
are considerable and the developer has to choose the adequate one.

Having clarified the main aspects of distributed systems and the general
challenges when constructing them, we now discuss three examples of dis-
tributed systems and look closer at their specific challenges.

2.3 Examples of Distributed Systems

In the following, we present three examples of distributed systems belonging
to different system layers. While mobile computing is mainly concerned with
a platform for distributed applications, the other two examples belong to the
application layer itself describing distributed shared memory systems and web
applications. All examples are first introduced, and their main challenges are
discussed which results in requirements for their adequate modelling. After
this subsection, we draw our conclusion from these sample cases and present a
summary with the main requirements for distributed system modelling.

Mobile Computing. Mobile computing is concerned with the performance
of computing tasks while the user is on the move, i.e. is changing their envi-
ronment. Portable devices like mobile phones, laptops, handhelds, etc. together
with their ability to connect conveniently to networks in different places, often
wireless, makes mobile computing possible. Mobile computing raises important
system issues imposing new requirements on system modelling. A mobile device
should be easily connectable to a local network. The adaptation of a mobile de-
vice to its current environment should be done transparently for the user, e.g.
they should not have to type in the name or address of local services to achieve
connectivity. The available services in the current environment should be dis-
covered by the devices themselves such that the user does not have to do special
configurations, e.g. nowadays DHCP servers [I8] are installed in many networks
which automatically assign IP addresses to new devices and thus, allow a con-
venient access to the Internet.

Once connected to a network, local services have to be discovered, e.g. the
nearest local printer which is accessible by the device requesting a printer ser-
vice. It is the purpose of discovery services to accept and store details of services
that are available in the network and to respond to queries from a client about
them. That means a discovery service offers a registration service which records



details of available services, and a lookup service which accepts queries con-
cerning available services. Jini [19] is a Java-based system that is designed for
mobile networking. Among others it provides facilities for service discovery. The
discovery-related components in a Jini system are lookup services, Jini services
and Jini clients. A crucial point is the bootstrapping connectivity. If a Jini client
or service enters the network, it must use the lookup service. But how can it
locate the lookup service? Jini uses multicast to a well-known IP multicast
address which is known by all instances of Jini software.

In mobile environments, query processing has to be well designed to meet
best the typical restrictions in bandwidth and energy. Different types of queries
can be distinguished: concerning broadcasted and fast changing data. Broad-
casted data addresses a large number of clients. What should be the best or-
ganization of broadcasted data so that the energy spent on the client’s side
is minimized? Which information should be broadcasted and which should be
provided “on demand”? How will a contiguous query which is used to keep track
of the value of the query in a changing environment over time, be evaluated us-
ing broadcasted data? Another kind of queries concerns fast changing, update
intensive data. Location management viewed as establishing locations of indi-
vidual mobile users is one special case of this problem. Precise tracking may be
impossible or simply unnecessary. Instead, we may have to store incompletely
defined information. As a consequence, queries will be answered in an approx-
imate way. Scale is a very important factor when dealing with the above two
categories of queries. The benefit of data broadcasting is proportional to the
number of users serviced and the cost of broadcasting does not depend on the
number of users. Therefore broadcasting seems to be the method particularly
suitable for a large number of clients having the same query. In location man-
agement, scalability of solutions is also extremely important: what may work
for 100 users in a local area network that may not work for thousands of users
in the wide area network, e.g. informing the location server about each user’s
move will not scale up in large networks.

Security and privacy are important issues in mobile computing although it
is largely neglected presently. Here, we concentrate on the software issues and
will not discuss the also very important and difficult problem of security on
the physical level. Some systems track the moves of users, e.g. ”active badge”
technology [97], and this may threaten the user’s privacy. To protect privacy it
is necessary to enable and enforce the specification of personal profiles of users.
In such profiles, users should be able to determine whom, when and where
authorization is given to reach them, e.g. due to energy restrictions one may
want to restrict the list of users who are allowed to ”"wake up” the mobile unit
to send a message to it. Once a profile is created, it has to be managed. I.e.
where are such profiles to be stored? Should the profile migrate with the user?
A good solution has to cope with an adequate authentication policy for data
access.

Since the mobile terminals will often be disconnected from the static part of
the network, transactions will often be processed locally on the cached data. The
degree of connectivity of mobile devices to the fixed part of the network can vary
widely. Mobile users will ”check out” data for long periods of time. Thus, new



methods of cache synchronization reflecting different degrees of connectivity
will be necessary. Especially, when mobile hosts carry shared data, lock and
commit protocols have to be redefined to meet the new requirements. How
should integrity constraints which involve data residing on a number of mobile
and fixed hosts be efficiently maintained? Here, the main question is how to
partition data among static and mobile hosts such that the constraint can be
maintained without having to contact mobile hosts all the time.

Distributed Shared Memory Systems Distributed shared memory
(DSM) systems are a kind of distributed systems where components that do
not share physical memory communicate logically by sharing data. Compo-
nents access DSM by reads and updates of data which appears to be local but
in fact is distributed over a network. An underlying infrastructure has to make
sure that the shared data is consistent at all sites. Updates made at one site
have to be replayed at all other sites.

The main advantage of DSM is that the software developer does not have to
concern of message passing for communication. DSM is usually less appropriate
in client-server systems, where clients normally request server-held resources.
However, servers can provide DSM that is shared between clients. An example
of this kind of DSM system are distributed version management systems where
a number of revision archives are distributed over different sites and share large
parts of software project documents. Each revision archive cares about the
version control at one site where clients can store and access their revisions of
documents. Another example are chat systems where clients have to register
at a server. Thereafter, the server provides all clients registered with the new
chat contributions. One of the first notable examples of a DSM application
was the Apollo Domain file system [69] where files are shared between different
processes. Originally, DSM systems have been considered in connection with
shared memory multiprocessors.

Critical issues of DSM systems are the efficiency of their implementation
and the degree of consistency of shared data to be reached. In message pass-
ing systems, all remote data accesses are explicit and therefore the developer
is always aware of the expense of communication. Using DSM, however, any
particular data access may or may not involve communication costs. A data
update, for example, may cause immediate updates of all its replications. An-
other possibility is a lazy update which is performed first when this data is read
again. The update policies in DSM systems are highly dependent of particular
applications and the facilities of underlying infrastructures. The performance of
the implementation depends directly on the degree of consistency to be guar-
anteed. Strict consistency which means that written values are instantaneously
available at all sites, is usually very expensive. Temporal inconsistencies which
allow to delay propagating updates to all peers, can result in considerably faster
realizations.

An issue that is closely related to the structure of DSM is the granularity of
sharing. Considering e.g. a shared file system it would clearly be very wasteful
always to transmit the entire file system as answer to a read or update request.



A more adequate unit of sharing would certainly be a single file or directory.
Taking directories as unit for sharing it may be likely that two components try
to access the same directory, although two different files within this directory
have to be accessed. The phenomenon is known as false sharing and is caused
by choosing too large units. This effect does not occur when files are taken as
unit of sharing. In this case, however, access of whole directories would cause a
considerable overhead of communication costs. The determination of adequate
unit sizes is an important factor in developing efficiently working DSM systems.

For the development of DSM applications, middleware such as Linda [34]
and its derivate JavaSpaces [9] support the sharing of memory in a platform-
neutral way. JavaSpaces realizes tuple spaces of Java objects. The main access
operations are write, read, and take to create a new object, read an object
and delete an object from the tuple space if it exists. Moreover, an object
can register to be notified if a specified object has been written into the tuple
space. JavaSpaces is realized on top of JavaRMI [10] which offers the possibility
to invoke methods of remote objects.

Web Applications. The World Wide Web (WWW), created by Berners-Lee
while at CERNL is an evolving system for publishing and accessing documents
and services across the Internet. Through commonly available web browsers,
users use the Web to retrieve and view documents of any kind, or to interact
with an unlimited set of services. A web application is a software application
that is accessible using a web browser or HI'TP user agent. The Hyper Text
Transfer Protocol (HTTP) [12] defines exactly how a browser should format
and send a request to a Web server.

The Web is a hypermedia system, because the resources in the system are
linked to one another. It is especially this idea of a link which led to the term
Web. The structure of links can be arbitrarily complex and the set of resources
that can be added is unlimited, the web of links is indeed world-wide.

The Web is an open system, i.e. it can be extended by new components
without disturbing its existing functionality. First, communication between Web
browsers and Web servers is standardized by the HTTP. Second, the Web is
open with respect to the types of resources that can be published and shared
on it. The simplest resource is a Web page or some kind of content which is
storable in a file, e.g. text in PostScript or PDF format, images, audio streams,
etc. Web pages are usually written in HTML, the Hyper Text Markup Lan-
guage [11], a standardized tag language used to express the content and visual
formatting of a Web page. If Web pages also contain parts which accept user in-
put, they are called Web forms. Nowadays the Web moved beyond simple Web
pages and encompasses also applications, such as on-line banking, on-line regis-
tration, and any kind of E-commerce. Web applications include an application
server that enables the system to manage the business logic. The application
server often consults or updates a database when processing a request. CGI
(Common Gateway Interface) programs are the standard way to allow Web
users to run applications on the server. Sometimes the developers of Web ap-

LCERN is the European center for nuclear research.
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plications require some application-related code to run inside the browser. For
this purpose a script language such as JavaScript [§] can be used which has
quite limited functionality. Going beyond, applets can be downloaded and run
by a client. Applets are Java applications which have restricted functionality
due to security issues, described in the so-called sand box model.

Web services are a special kind of Web application. They are self-contained
components that can be published, located, and invoked across the Web. Web
services perform functions, which can be anything from simple requests to com-
plicated business processes. Web services are services that are made available
from a business’s Web server for Web users or other Web-connected programs.
The accelerating creation and availability of these services is a major Web trend.
The basic platform for web services is XML together with HTTP. On top of
that the Simple Object Request Protocol (SOAP) [15] is used which provides a
protocol specification that defines a uniform way of passing XML-encoded data.
For dynamically finding other web services, the Universal Description, Discovery
and Integration Service (UDDI) [23] has been introduced. It comprises registry
and discovery facilities for web services. The Web Service Definition Language
(WSDL)[14] provides a way for service providers to describe the basic format
of web service requests over different protocols or encodings. WSDL is used to
describe what a web service can do, where it resides, and how to invoke it.

Although the Web has a phenomenal success, there are some problems when
designing web applications [36]. First, there are problems concerning the web
structure. The hypertext model gets easily ”"dangling links” when target re-
sources are moved or deleted. Links to these resources still remain which causes
frustration for users, since resources cannot be found anymore. Furthermore,
information in the Web is semi-structured, often users follow confusingly many
links and get "lost in hyperspace”. Meta information about Web resources would
be helpful to support users in finding what they are looking for.

Another problem which is one of the most common challenges of Web appli-
cations is managing the client state on the server. Due to HT'TP the communi-
cation between client and server is connectionless, i.e. the communication takes
place without first establishing a connection. A server does not have an easy
job to keep track of the state of each client using the service. Often the relevant
information is stored on the client side, e.g. in form of so-called cookies being
short strings of characters. Cookies are persistent and can even last beyond the
lifetime of a browser’s execution. This mechanism is simple but not totally se-
cure, cookies can become risky when one service gets access to another’s cookies
which might contain personal data like identification information.

Using Web applications requires often the input of various user data which
might have a lot of interdependencies, e.g. on-line registration to a conference
comprises the input of personal data, conference-specific selections, accommo-
dation data and paying information. These data are highly interdependent, e.g.
the conference fee is dependent on the user’s profession, the selected events and
the date of registration. Submitting input data to the server without previous
validation means that the data has to be checked by the server. In case of in-
consistencies or missing data an error message is produced and the user has to
resubmit the revised data. This causes a high communication traffic and could
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distract the user from using the service. A better solution would be to already
validate the user’s input data on client side. But although Web applications
usually control user interfaces by Java applets which have to be downloaded
first, application developers are often not aware of all data interdependencies
and provide poor user interfaces not guiding the user enough and not validating
the input completely.

In the Web, problems of scalability can easily occur. Popular server pages
may have many “hits” per second, and as a result the response to users is
slow. The practice of caching in browsers and proxy servers is used to reduce
communication traffic, but a typical Web client has no efficient means to keep
users up to date with the latest versions of pages. Users have to reload pages
explicitly to check whether a local copy of a resource is still valid. Especially
during longer sessions caching might become problematic. Caching every page
could become too expensive, intelligent caching is needed which keeps track of
the most important information.

For searching Web services more efficiently, WSDL has been developed. It
provides a meta structure to describe interface signatures, but does not sup-
port a semantical description of the services, e.g. in form of certain kinds of
constraints.

Designing Web applications two major activities are different from designing
other (non-distributed) systems: object partitioning between clients and servers
and defining Web page user interfaces. Usually, objects for input field valida-
tion and specialized user interface widgets reside on the client, while the main
business objects will exist on the server. In general, objects should reside where
they have easiest access to data and collaborations they require.

2.4 Summary of Requirements

Although distributed applications can be found everywhere, they are seldom
backed by a model capturing all the main design decisions concerning archi-
tecture, data structure and interaction. A modelling technique for distributed
object computing should be able to cope with a variety of design aspects in a
flexible and intuitive way and should support validation of essential properties.
In the following, we state the modelling requirements which follow from the
challenges described above.

Intuitive Method. First of all, the method should support an intuitive ap-
pealing representation of all important system aspects. For example, it is natural
to represent computer networks as well as web page structures visually by some
kind of graph structure. All modelling concepts should be easy to learn and to
understand such that the model can be easily communicated to other develop-
ers as well as to customers. Moreover, the technique should provide different
views to separate system concerns. Views support a convenient approach to the
modelled system by different stake holders, such as developers, customers, and
quality managers.
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Abstraction Levels. An adequate model has to offer different abstraction
levels, concentrating on the main aspects first, and taking details into account
later. In the beginning, one may ask what are the main entities of the system
and how do they interact? What are the characteristics of their behaviour?
The model should help to make explicit all the relevant assumptions about the
system to be modelled and to discuss possible generalizations when designing
structures and algorithms, given by those assumptions. Despite all possible
heterogeneity the key design should be independent of that. Concrete systems,
languages, and protocols are relevant first on a more detailed design level.

Components. The distributed computing model should support a
component-based approach. Components with clear interaction only through
interfaces are the main feature to handle complex (distributed) systems. Clearly
they are the basis to facilitate open systems like the Web which can consist of
heterogeneous parts. To add a new system part, only the interfaces of existing
components are needed. Moreover, a component-based approach supports the
distributed development of a system by different teams. Altogether, compo-
nents are the very means for flexible distributed system architectures and thus,
essential in every modelling technique for distributed computing.

Interaction Modelling. Reasoning on concurrent execution of processes is
one of the main purposes for developing a distributed computing model. The
modelling technique should support the natural description of concurrent con-
trol flow as well as pre and post conditions of distributed operations. [74] is a
comprehensive work on distributed algorithms considering key problems for con-
current and distributed processes such as mutual exclusion or consensus prob-
lems. Furthermore, caching and replication mechanisms should be adequately
describable. Considering the kinds of failures which can occur, a distributed
computing model should also give the possibility to express them all and should
support the modelling of techniques how to deal with failures such that a high
availability of the whole system can be guaranteed. Moreover, there should be
the possibility to model and reason about security strategies such as protec-
tion against unauthorized users, manipulation and corruption of resources, and
accessibility of resources.

Formal Semantics. Concurrent process execution can easily become too
complex to follow, thus one of the main requirements of a distributed comput-
ing model is a clear formal background for reasoning about interesting process
properties like deadlocks, progress, and termination. Moreover, a distributed
computing model should offer means to describe precisely all interesting forms
of consistency as they occur when using distributed shared memory, and should
offer means to validate a modelled system concerning the chosen consistency
constraints. Considering web applications, we noticed that input data validation
is important which leads to a kind of domain-specific consistency constraints.
A precise constraint modelling with validation support is highly desirable to
improve design decisions such as the adequate consistency model and unit of
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sharing for DSM.

Reconfiguration Facilities. A distributed computing model should offer the
possibility to model the increase of resources and clients, i.e. it should have re-
configuration facilities. Here, testing of scalability, i.e. the performance when the
system scales up, should be supported. To achieve transparency, views should
be definable supporting aspect- and component-oriented selection of informa-
tion. A special modelling requirement comes from mobile computing: Due to
continuously changing environments, concepts for modelling system evolution
of network and data structures have to be provided.

Standardized Technique. To specify and document open interfaces on a
high level - as needed for web services - distributed computing models could
help to clear the understanding. For this purpose a proven technique should be
standardized.

3 Visual Modelling Languages

Nowadays visual languages and visual environments emerge in an increasing
frequency. This development is driven by the expectation to achieve a consider-
able productivity improvement when using visual languages and tools. Visual
languages are developed for very different tasks. They are most successful for
system modelling and building graphical user interfaces. Furtheron, visual pro-
gramming languages, and visual database query languages have been developed,
but with less user acceptance.

In the following subsection, we consider the visual modelling language per
se, the Unified Modeling Language (UML) [95] being the quasi standard lan-
guage for modelling software systems. Since we focus in this work especially
on modelling distributed systems, those extensions of UML are chosen for pre-
sentation which concern distributed system issues. The main basis for long
living open heterogeneous systems is a well-suited component concept. UML
offers two main approaches to components which are both presented and com-
pared. Furtheron, there are extensions concerning failures, security, and evo-
lution. Even for web applications as special kind of distributed systems, the
Web Application Extension (WAE) is available. But certain aspects are miss-
ing: an application-specific view concept and a visual constraint language. A
clear concept of application-specific views is needed, especially when large sys-
tems are developed where engineers with different skills and background specify
system parts in a distributed manner. As previous discussions of requirements
for distributed system modelling manifested, a powerful constraint language is
needed to state system invariants expressing consistency constraints, to express
pre and postconditions of operations and services such as web services, and to
build consistent user interfaces such as input validating web forms. Although
OCL [98] has been designed as constraint language for UML, it is seldom used,
since it is textual and quite complicated to use. A visualization of OCL is much
more attractive for users. The visualization of OCL presented here relies on

14



UML collaborations. In this way, it integrates much better with UML itself
than the textual OCL.

Although UML is the visual modelling language as such, we have to mention
two further visual languages for distributed system modelling, especially used to
model reactive systems. These are the Specification and Description Language
(SDL) [13] developed for modelling telecommunication systems, and Petri nets
[82, [84] which can advantageously be used to visualize concurrent control flow
and which are especially useful to reason about distributed algorithms [85]. In
the following, however, we concentrate on UML as the most comprehensive and
promising visual modelling language for distributed systems.

3.1 UML

The Unified Modeling Language is used for visual modelling of software systems
following an object-oriented design methodology. UML is an accepted standard
of the Object Management Group (OMG).

UML and one of its extensions, the profile for Enterprise Distributed Ob-
ject Computing (EDOC) [44], are often used for architecture modelling where
component diagrams describe the logical system structure and deployment dia-
grams handle its mapping to underlying hardware resources. The EDOC profile
defines process components, ports, connections, and roles, while a kind of State-
charts is chosen to model the behaviour of each component. Statecharts are also
used in other contexts for the behaviour description of concurrent processes.

UML defines a number of diagram types which describe the static, dynamic,
and management aspects of a system. The twelve kinds of diagrams defined by
the UML standard, are grouped into three classes:

1. Static Structure Diagrams. A class diagram is a graph of classifier elements
connected by their various static relationships. A classifier is one of many
static system constructs such as classes, interfaces, packages, relationships,
etc. An object diagram is an instance of a class diagram indicating the
static relationships between object instances, frozen in time.

Component diagrams are meant to document the overall structure of a
system itself. Deployment diagrams show configurations of real processing
systems. Elements contained in deployment diagrams include computers,
network nodes, processes, objects, connections, etc.

2. Behaviour Diagrams. A use-case diagram shows the relationship among
actors (active entities including software elements and human users) and
use cases (usage scenarios) in a system. It is mostly used to formulate
requirements. A Statechart diagram shows the sequences of states that
an object goes through during its life-cycle in response to stimuli. It also
documents the object’s responses and actions. An activity diagram is a
variation of a state machine in which the states are “activities” repre-
senting the execution of operations. By the completion of an operation,
transitions may be triggered. A sequence diagram represents an object in-
teraction in which messages are exchanged among a set of objects to effect
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a desired result. A collaboration diagram shows interaction among objects
as well, additionally the object’s relationships are presented. Unlike a se-
quence diagram, time is not visualized in a collaboration diagram, i.e.
the sequence of messages and concurrency must be indicated by sequence
numbers.

3. Model Management Diagrams. Model management diagrams include pack-
ages, subsystems, and models.

UML also provides a number of general mechanisms for annotating and
extending system specifications. The following light-weight constructs are pro-
vided: stereotypes, constraints and tagged values. A stereotype is a new class
of model element that is introduced at modelling time by specializing existing
model elements. Generally, a stereotype indicates a usage or semantic extension.
A constraint is a semantic relationship among model elements that specifies in-
variant conditions and propositions. Any value attached to a model element
(attributes, associations, tagged values, etc.) is a property. A tagged value is a
keyword value pair that can be attached to any model element. Tagged values
permit arbitrary annotation of models and model elements. Such an annota-
tion is considered as extension when the tagged values are precisely defined. All
these constructs are light-weight extensions of UML in contrast to a change of
the UML metamodel itself which is considered as heavy-weight extension.

Several extensions have been elaborated to adapt UML to the requirements
for distributed system modelling as stated in Subsection 224k Most important
for distributed system modelling is a well-suited component concept. Two main
proposals are discussed and compared below. Thereafter, further extensions con-
cerning web applications, failures, security, evolution, and application-specific
views are presented. Moreover, a visualization of OCL based on collaborations is
presented. Each extension concerns a certain system aspect which is orthogonal
to the others, i.e. to meet all requirements all extensions have to be integrated
with each other.

Components. The main aspect when developing distributed systems, is to
design a good component structure, with as small interfaces as possible to reduce
communication to the essentials. The basis for a good architecture supporting
open heterogeneous systems which might evolve over life time, is a well-suited
component concept.

One approach to modelling component systems can be found in the UML
specification itself [95]. Here, component diagrams are proposed for this pur-
pose. UML components can be considered as concrete software pieces that real-
ize abstract interfaces. A component diagram is meant to show the dependency
structure between components. Dependencies between components are usually
defined through interfaces. UML component diagrams show the classical use
relation between two components where provided functionality is presented in
interfaces. However, it is not possible to state required functionality for a use
relation between components stating what has to be imported.
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In [73], ports have been introduced which are distinguished in two kinds,
required and provided ports. Consider Fig. [2] which shows an extended form of
component diagram using required and provided ports. The required ports are
white, while the provided ports are black. A use relation from a required to a
provided one means that the provided port meets all requirements of the using
component. Similarly as in the component collaboration architecture described
below, ports could be stereotypes of classes which reside on certain components.

A component diagram has been used to show the logical structure of com-
ponents in principal. That’s why they only occurred in type form, and not in
instance form. In the newest version of UML, version 1.4, the type and instance
level have been explicitly distinguished for components. Another important step
towards a sufficient component description in UML has been done. For the in-
stance form a deployment diagram has to be used, a possibly degenerated one
without nodes if the system is not distributed. Otherwise, the actual distribution
of component instances is described by nodes within deployment diagrams. In
principle, a component might have multiple instantiations of a particular type of
interface. However, it remains unclear if this is valid also for UML components.

Furthermore, especially when considering open distributed systems, recon-
figuration of the architecture during runtime becomes an important issue. Since
UML deployment diagrams deal with component instances, they are also able
to capture dynamics, although this is not explicitly presented in [95]. Execu-
tion constraints can be defined on instances which describe the life time. These
constraints are described by tags {new}, {destroyed} and {transient} and can
advantageously used as notation for reconfiguration. In Fig. Bltwo simple recon-
figurations are shown creating a new ”Client” and ”FileServer” instance, resp.
Moreover, the migration of an instance can be expressed by a <<become>>
relationship between the instance at its old place and at its new place.

The connectors between components are described rather rudimentary in
component diagrams. Either components are in a dependency relation or they
contain each other. A more detailed description of these relationships is left to
future work.

In [44] the UML profile for Enterprise Distributed Object Computing
(EDOC) is specified which contains another approach to component modelling.
This profile uses the Reference Model for Open Distributed Processing (RM-
ODP) [80] as conceptual basis. RM-ODP follows the ”separation of concern”-
principle and provides five viewpoints for system specification: the enterprise

17



New Client:

«Client [~ Q777 :File
{new}| Navigable Navigable Server

New FileServer:

= {new}

:File 4@ """""" > -File

Server Replication Replication ST
{new}

Figure 3: Two simple architecture reconfigurations

viewpoint which contains the business model, the computational viewpoint
which describes the system through objects and their communications, the in-
formation viewpoint which specifies the information structures and processing,
the engineering viewpoint which describes distribution relevant design decisions,
and the technology viewpoint describing the concrete technology (hardware and
software) to be used. The UML profile for EDOC is structured in the Compo-
nent Collaboration Architecture (CCA) and four further profiles for events, en-
tities, relationships and processes. The CCA as well as the events, entities, and
process profiles are used for the enterprise and the computational specification.
The information specification uses the entities and relationships profiles.

CCA is a component model which incorporates concepts adapted from the
Object-Oriented Role Analysis Method (OORAM) and from Real-Time Object-
Oriented Modeling (ROOM) [89]. Its notion of components has the same basis
as UML components in [35]. CCA relies on processing components which pro-
vide a composition operation. Components can implement an arbitrary number
of protocols which are needed to specify collaboration with other components
using messages. Protocols are provided at ports which are the connection points
between components. Compositions define how components are used. They are
used to build composed components out of other components. ProcessCom-
ponents are stereotypes of classifiers whereas Component Usages which can
be considered as templates of instances, are classifier roles. Although this choice
seems to be quite natural, it is not perfect, since a component instance might
define additional structure not specified in its type. However, in UML an object
being the instance of some classifier role, cannot include parts that its classi-
fier does not also define. A Port is a stereotyped class which is linked to its
owner component. This solution allows ports to store some kind of state which
is not possible when ports would be stereotyped interfaces. But there is no
longer a clear semantic distinction between ports and components. Connec-
tions between components are stereotyped association roles. Since components
are stereotyped classifiers, this approach is straight forward and well suited to
basically describe the relationship between components. But instead of asso-
ciations, connections are supposed to be modelled independently of classifiers
storing additional information concerning e.g. states and roles. Compositions
describe whole component systems and are stereotyped collaborations. Since
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component usages are classifier roles and connections are association roles, this
choice looks natural, but there is a semantic mismatch. While collaborations
describe a representative interaction between objects, an architectural configu-
ration is meant to capture a complete description at some level of abstraction.

Summarizing up, two main approaches for a UML component concept exist,
UML component diagrams and the Component Collaboration Architecture. In
[53], Garlan et.al. compare several approaches to component modelling in UML
capturing the predecessors of the approaches discussed here as well. Although a
bit out-of-date, this article is still useful to understand precisely the characteris-
tics of each approach: While UML component diagrams are a natural approach
capturing the main, but not all aspects of components, the CCA approach is
comprehensive, but contains some semantic mismatches. This is due to the de-
cision to provide a profile and to avoid any heavy-weight extension of UML. A
combination of both approaches taking the concepts of CCA, but allowing an
adequate extension of the UML metamodel seems to be most promising. In this
way, semantic mismatches are avoided and all relevant component concepts are
considered.

Web Application Extension (WAE). The WAE [30] is a light-weight ex-
tension which defines a set of stereotypes, tagged values, and constraints that
enable us to model Web applications with UML. It mirrors the approach to
model Web pages by classes or even components, while different types of Web
pages are expressed by various stereotypes of these two basic model elements.
The principal model element specific to Web applications is the Web page. It
is a stereotype of Component which contains pages like Server Page, Client
Page, Form, and Frameset, all being stereotypes of Class. Furthermore, spe-
cial relationships between pages are defined such as Link, Frame Content,
and Submit, all being stereotypes of Association. Moreover, new stereotypes
of Attribute are defined, e.g. Input Element being used to input text to a
Web form. All new stereotypes of Class and Component come along with
new graphical notations to facilitate the reading of Web models.

Failures and Security. To model failures and security issues several profiles
have been developed for UML. E.g. in [100], a UML profile is presented which
models and assesses reliability. Failures are invented as stereotypes of events to
report on faults. Faults are classified concerning the name, origin, and persis-
tence, and cause error states of the system. Several UML extensions have been
found to model security issues, mainly the role-based control access (RBCA)
mechanism [I01]. Users, roles, permissions, sessions, and constraints are in-
troduced as new stereotypes to model an access mechanism where users get
permissions to access certain resources dependent on their roles. The structure
and behaviour of RBDA is then modelled by UML using these new stereotypes.

Evolution. UML extensions for evolution rely on profiles as well. In [52],
new stereotypes for dependency relationships are introduced expressing evolv-
ing structures. Moreover, inference diagrams are introduced which show trans-
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Figure 4: Views-related extension of the UML metamodel

formations of system structures such as class diagrams or some interaction di-
agram. In [77] evolution contracts are added as new model elements which are
defined between name spaces and which can be further stereotyped to primitive
contracts like addition, connection, removal and disconnection, and complex
contracts.

Application-Specific Views. Views in UML are aspect-oriented and mani-
fest themselves in a variety of diagram types2 In this way, views are completely
independent from applications to be modelled by UML. But when for example,
a team of application engineers with different skills and backgrounds is splitted
into subgroups to specify only that aspect of a system which is later seen and
used by a certain type of user, application-specific views should be definable.
When integrating different views later on, name conflicts, i.e. the same name
for different concepts and two different names for the same concept, can arise.
Moreover, two views can overlap in their behaviour specification which has to
be synchronized then. A detailed motivation as well as the semantic concepts of
the view concepts are presented in [4]. Here, we concentrate our discussion on
the abstract syntax of views in form of a UML metamodel extension. In chap-
ter Bl we take up the view discussion again to combine view and component
concepts semantically.

To adequately handle application-specific views the following extension of
the UML metamodel is proposed: Views are introduced as new model elements.
In the UML metamodel, View is supposed to be a stereotype of Namespace
and can contain any kind of model element. Two kinds of relationships are
basically for views, renamings and extensions. Thus, two stereotypes of De-
pendency are proposed, Renaming and Extension meaning that one view
renames or extends another view, resp. See Figure M for this views-related ex-
tension of the UML metamodel. Views are supposed to have no own graphical
notation. They would influence the graphical representation of a UML model
within a tool using tree or form-like notations.

Visualization of OCL. Negotiation about component interfaces becomes a
crucial issue in open distributed systems. Stating only the signature is often

2However, aspect-oriented views do not occur explicitly in the UML metamodel.
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Figure 5: OCL constraint: The birth date comes before the date of moving into
an apartment.

too loose, additional constraints in form of invariants or pre and postconditions
for methods and operations help fixing important properties which have to be
fulfilled by an interface. Originally, there was no such constraint language for
UML. This lack has been realized and OCL, the Object Constraint Language
[98] has been proposed for this purpose. Unfortunately, OCL is a textual lan-
guage and does not look very attractive to software developers. Moreover, it
does not fit well to UML and can be much better integrated relying on collab-
orations. In [2] and [31], we visualize OCL on the basis of collaborations and
integrate the UML and OCL metamodel to a larger extent than in the current
OCL specification [20].

In [31], a visualization of OCL is presented which departs from UML col-
laborations. The visualization of navigation paths in object structures uses that
of classifier and association roles in collaboration diagrams. The visualization of
navigation paths helps the developer to maintain an overview without forcing
a reformulation of a visually given object structure in a completely different
syntax, as done in OCL’s textual notation. Thus, this visualization adapts the
notation of UML core elements. An alternative proposal to visualize OCL are
constraint diagrams [66] and their evolution, spider diagrams [65], which are not
based on collaborations but extend Venn diagrams and Euler circles. However,
this approach is not based on graphical elements already present in the UML
core.

The following example show a sample constraint taken from the ’eGov-
ernment’ project in Berlin, Germany. The project objective is to replace the
software used in the residents’ registration offices in Berlin by a new one ex-
ploiting Internet technologies. Citizens and authorities shall have the possibility
to perform typical business processes like the registration of inhabitants using
web forms. Especially in this kind of applications the correctness of inputs plays
an important role. A visual constraint language is meant to help software de-
velopers to easily formulate input constraints unambiguously. Figure [ shows
a visualized OCL constraint on object properties. The constraint is stated in
natural language by the caption and given in textual OCL in the following.

context NaturalPerson inv:
self.birth.attrBirthDate < self.address.attrDateOfMoveln

A number of visual shortcuts are introduced for pre-defined operations to
support a compact notation of OCL constraints. OCL has built-in types being
primitive like integer, boolean and strings, and collections like sequences, sets
and bags.

21



Model Element
i
i

‘ TypeExp ‘ ‘ VarabIeExp‘

BooleanExpression

<> TypedCollectior+—— Typedset k>

Figure 6: A metamodel for OCL based on collaborations

For textual OCL, a metamodel has been developed building up on the meta-
model for UML. This OCL metamodel can be adapted also to the visual OCL.
Thus, the visual and textual notations for OCL can be used in parallel. Never-
theless, the visualization based on collaborations shows that the two metamod-
els for UML and OCL can be even further integrated, where property operation
expressions are described by collaborations. Figure [6] contains the main model
elements of an OCL metamodel which is based on collaborations. In addition,
two new steoretypes of ClassifierRole and AssociationRole are proposed,
namely NegClassifierRole and NegAssociationRole. They can be used to
express the non-existence of certain collaboration parts.

Semantics. Due to its status as quasi standard modelling language for soft-
ware systems, an enormous number of extensions have been elaborated for UML
to make it well-suited for system modelling. In this article, we focus on promising
extensions for distributed system modelling. As we have seen, all main aspects
of distributed systems can be modelled. However for validation, UML does not
yet provide a formal basis. The UML metamodel offers a semi-formal approach
which concentrates on the definition of the abstract syntax of UML. Hundreds
of researchers have proposed formal semantics relying on various formalisms,
mostly for restricted parts of UML. A kernel of those researchers is organized
in the “precise UML (pUML)” group [22]. One main aim of this group is to
define a standard semantics for UML which is precise. In Section [5] we discuss
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how distributed graph transformation can serve as a precise semantic domain
for UML focussing on distributed system issues.

3.2 Visual Language Definition and Parsing

The abstract syntax of the UML is defined by the metamodel being a class dia-
gram which describes the model elements and their relationships being available
in principle. Moreover, OCL is used to formulate well-formedness rules on the
abstract syntax structure, i.e. to restrict the allowed structures to meaningful
ones. Consequently, the abstract syntax of a concrete UML model is an in-
stance of the metamodel, i.e. a diagram containing model element instances.
The concrete syntax of the UML is given by a document called “UML nota-
tion” describing all concepts in natural language and showing their diagram-
matic representations. The interrelation between concrete and abstract syntax
is left vague.

Visual languages like the UML are considered with more rigor in visual
language (VL) theory. A number of questions and problems arise with visual
languages which are well answered for textual languages, but not for VLs. While
visual languages are used for many different tasks, it is still not clear how to
define the term ”visual language”. Surely, visual languages have to possess a
multi-dimensional representation of language elements. Diagrams and graphics,
so-called wvisual sentences, consist of a set of visual symbols such as graphic
primitives, icons or pictures, and a set of relations such as ’above’ or ’inside’.
There are textual as well as visual notions for the abstract syntax of visual sen-
tences. In textual notations, multi-dimensional representations have to be coded
into one-dimensional strings which is not convenient. A visual notation such as
UML metamodel instances being a sort of graph, looks much more natural.
Information concerning concrete representation is often added by attributes.

Visual languages can formally be defined by a grammar-based approach, e.g.
picture layout grammars, constraint multiset grammars, and positional gram-
mars, or by some kind of constraints and logics. The UML metamodel belongs
to the constraint-based approaches. A standard formalism as the Backus-Naur-
Form for textual languages, is missing to define VL syntax and semantics. Nev-
ertheless, the theory of visual languages [75], especially concerning a language
hierarchy and parsing algorithms, is very much oriented at its pendant for tex-
tual languages. A main subclass of VLs, i.e. context-free VLs, is distinguished
which allows more efficient parsing.

While constraint-based formalisms provide a declarative approach to VL
definition, grammars are more constructive, i.e. closer to the implementation.
For the special case of OCL constraints, in [2] we presented how they can be
translated to a certain graph grammar approach to support constructive con-
straint checking. Due to its appealing visual form, graph grammars can also
directly be used as high-level and visual meta modelling mechanism. Consider-
ing visual sentences as graphs, a graph grammar defines the language grammar.
Its graph language determines then the whole visual language. In [3], we com-
prehensively present the application of graph transformation to visual language
definition and parsing.
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In the following, we consider the graph transformation approach to VL
definition more closely and discuss its main properties. But first, we present a
short introduction to graph transformation in general.

Graph Transformation. Graph transformation is a computational
paradigm which combines the potentials and advantages of both, graphs and
rules. Graphs are a well-known means to represent any kind of structure like sys-
tem states, object structures, computer networks, entity-relationship diagrams,
flow charts, etc. Rules are a clear and abstract concept to describe structure
changes in general. Computations in logic or functional programming, language
definitions, term rewriting, and concurrent processes are prominent example
for the use of rules. Graph transformation combines both concepts, graphs and
rules, providing the rule-based manipulation of graphs. [88] gives an overview
on all the main approaches to graph transformation. They are formalized on
the basis of set theory, algebra, logics, and category theory. The articles in
[45, [46] present a comprehensive collection of graph transformation applica-
tions, particularly to concurrent and distributed system specification. In [26],
an introduction to graph transformation is given, independently of a particular
graph transformation approach, i.e. independently of a certain kind of graphs
and rules and a specific way of rule application. Hence, this article is particu-
larly interesting for readers who want to know how graph transformation works
and how it is applied in principle. Moreover, the concept of transformation units
has been introduced in this article. It offers a structuring principle for building
large graph transformation specifications out of smaller ones. Transformation
units encapsulate mainly rules with their control conditions. Semantically, the
application of rules within one transformation unit may be interleaved with
other transformation units used.

Throughout this article, graph transformation will occur again and again
to serve for different purposes. Especially as meta modelling paradigm, graph
transformation is promising. We will use it for visual language definition and
parsing as well as for translating a visual language into some semantic domain
to enable model validation (described in Section .3). Even as semantic domain
itself graph transformation is well suited, compare Section [Bl

Defining the Syntax of Visual Languages by Graph Grammars. Sen-
tences of visual languages may be regarded as assemblies of pictorial objects
with spatial relationships, i.e. their structures are a kind of graph. We distin-
guish spatial relationship graphs (SRG) which describe the structure of a visual
sentence seen as a picture, and a more abstract graph, the so-called abstract syn-
tax graph (ASG). An ASG provides the information about the syntax of a visual
sentence in a more succinct form. It is oriented towards the interpretation or
compilation of the regarded sentence. The distinction between SRGs and ASGs
- as introduced in [86] - has been inspired by the Model-View-Controller con-
cept of Smalltalk and the traditional distinction between abstract and concrete
syntax of textual languages.

As both, SRGs and ASGs are graphs, graph grammars are a natural means
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VL concept graph grammars | UML metamodel
visual sentence (concrete syntax) | SRG -

visual sentence (abstract syntax) | ASG metamodel instance
interrelation (concrete - abstract) | graph translation | —
abstract VL definition graph grammar UML metamodel

Table 1: Comparison of graph grammar and UML metamodel concepts

for defining the concrete and abstract syntax of visual languages. In contrast
to other approaches to VL definition, graph grammar approaches use nodes
and edges to describe objects and any kind of their interrelationships. Addi-
tional attributes are used only to describe further information, i.e. layout of
visual objects and relations as well as their semantics. In [3] two different ap-
proaches to VL definition are presented: DiaGen, relying on hypergraph gram-
mars, and GenGED which is based on attributed graph transformation. In both
approaches, the graphs describe the graphic’s structures while the concrete lay-
out is specified by graphical constraints or graph algorithms. Graph grammars
are used to define the translation from SRG to ASG (low-level parsing) as well
as high-level parsing on the ASG solving the membership problem. A concrete
parsing approach based on graph transformation is given in [33]. Following this
approach, it is possible to formally define the concrete and the abstract syntax
of a VL as well as their interrelation (by graph translation). In Table[Il a com-
parison of the graph grammar and UML metamodel concepts for VL definition
is presented. For some VLs it happens that the structures of SRGs and ASGs
are very similar, as e.g. for class diagrams. In this case, it is more convenient to
work with only one graph structure which might differ in the sets of attributes
for concrete and abstract syntax definition. Parts of UML have been defined in
DiaGen as well as in GenGED, i.e. class diagrams [27, [78], statecharts [28| 78],
etc. showing that the graph grammar approach is promising to follow.

Following a graph grammar approach to VL definition like in DiaGen and
GenGED, the corresponding tools comprise general parsing algorithms to check
the membership problem for a concrete VL sentence. Changing the VL graph
grammar, automatically adjusts the parsing process for the changed VL. More-
over, theoretical results concerning e.g. independence of graph rule applications
can profitably be applied to efficiently parsing context-free as well as less re-
stricted languages [3],[33].

4 Model Validation

One general requirement to a modelling technique for distributed systems is
a clear formal background to have the possibility to reason about interesting
properties. For example, fault tolerance and trace properties like deadlocks and
termination, play an important role in distributed systems. The most interest-
ing validation issue for distributed systems has been performance, since one
of the main motivations to build distributed systems has been the sharing of
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resources. Today resource sharing is taken for granted and good performance
analysers have been developed. But data sharing is still a challenge and leads
to new kinds of problems. The possibility of concurrent updates can easily lead
to inconsistencies. On the other hand, important data should be replicated to
guarantee a fast access. But data replication leads also to problems of incon-
sistency which have to be solved adequately. Consistency issues are less well
investigated in the literature. Adequate techniques to guarantee consistency are
a central part of the author’s contributions concerning model validation. Syn-
tactic consistency checks for UML are considered in Section 4.2, while semantic
consistency is discussed in Section Bl

UML is a semi-formal modelling language: The UML metamodel defines the
abstract syntax of the UML by providing a class diagram containing all model
elements and their interrelations as well as well-formedness rules to restrict
the set of allowed models. Consistencies in aspect-oriented views and inter-
viewpoint consistency conditions are mainly captured by those well-formedness
rules. Distribution or domain-specific consistencies can be formulated using
OCL, but the UML standard [95] describes its semantics quite vaguely in nat-
ural language. There are various approaches to define a precise semantics for
UML or some of its sublanguages. In general, the semantic domain chosen de-
pends heavily on the validation issues which are taken into account. This is
natural, since the semantics can be more abstract when concentrating on the
validation of specific properties. This means in particular that the semantic
domain can be changed according to the property to be analysed. In Section
[42] selected validation techniques for UML are mentioned putting the main
emphasis on distribution issues.

As pointed out there is an increasing need for model translation into seman-
tic domains. In the literature a number of approaches can be found following
a grammar or logic-based approach such as [40], [48], [60], [25]. A promising
approach for automatic model translation is given by graph transformation.
Abstract syntax graphs are translated to semantic graphs or expressions by ap-
plying graph transformation rules. In contrast to other approaches, translation
rules can be completely visually developed. Since the author is partly concerned
with the development of such translation concepts, this approach is presented
more closely in Section 1.3l

4.1 Validation Issues

Performance and Quality of Service. Performance analysis has been one
of the primary interests when modelling distributed systems. Performance is-
sues arise from limited processing and communication capacities of computers
and networks. They comprise responsiveness, throughput and balancing of com-
putational loads. Using e.g. a remote service, a fast and consistent response is
required. But the response time is dependent of many factors, i.e. the load and
performance of any server needed and of the network as well as any delay caused
by some software component. Especially when considering Web services, fast
responses can be better achieved when intelligent caching mechanisms are used.

A traditional measure of performance for computer systems is the through-
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put - the rate at which computational work is done. In distributed systems,
throughput is measured by the processing speeds at clients and servers as well
as by data transfer rates. Discovering that the throughput differs heavily for
different users, tasks or hosts, the computational loads have to be balanced.
Load balancing exploits the available resources better and thus, enables a bet-
ter service. E.g. a heavily used Web service such as a search engine, has to be
hosted by several computers to provide an acceptable service.

The notion ’Quality of Service’ (QoS) has been formed to refer to the ability
of a system to meet time limits, especially when transmitting real-time multi-
media data. But QoS comprises reliability, security and performance as well.
Recently, adaptability has been added, meaning the ability to meet changing
environments which has recently been recognized as a further important aspect
of service quality. E.g. in mobile computing, load balancing mechanisms have
to be much more flexible than in traditional intranets to meet fast changing
requirements.

Consistency. Distributed systems are modelled by different views using UML
as well as extensions such as application-specific views. Each view concentrates
on a subset of system aspects. Especially when distributed teams are develop-
ing their own system views, inconsistencies between different views, i.e. Inter-
ViewPoint inconsistencies [49], can easily occur. But also inside of one view,
so-called In-ViewPoint inconsistencies have to be taken into account.

Data consistency is mainly application-specific, but there are also
distribution-specific issues. A typical technique for performance enhancement
is replication of hardware and software resource, including data replication.
Moreover, consistent data replication is the key aspect when considering a dis-
tributed shared memory model. The degree of consistency varies widely and
depends heavily on the use of data replication. E.g. authentication data has
to be always consistent to achieve a high security level, especially in the area
of Web applications such as E-commerce applications. Here, each data change
has to be immediately propagated to all replication servers, before subsequent
actions are performed. On the other hand in mobile computing, changes on
location data are not supposed to be handled promptly, since discovery services
are also allowed to respond suboptimal to restrict communication traffic.

Several notions of consistency have been formed (compare [41]): Linearizable
processes on replicated data meet the correctness criteria and real times of
executions as corresponding processes on non-replicated data. Since distributed
systems cannot always synchronize clocks, the accuracy of linearizable processes
is difficult to meet. A weaker correctness condition is sequential consistency
which captures the requirement on the same order of action processing instead,
without appealing to real time. Since sequentially consistent data structures are
costly to implement, even weaker forms of consistency have been developed.
One of them is coherence which means that processes agree on the order of
data manipulations to the same part of data, but not necessarily agree on the
order of data manipulations to different data parts. The weakest form is weak
consistency of data which is possible if the knowledge of synchronization is
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exploited. This model relaxes consistency temporarily, while appearing to the
user to implement sequential consistency. E.g. when data is locked, it can be
inconsistent as long as the lock exists, since no other user can access it. All
replications of a locked data part have to become consistent, before the lock is
released.

Typically for distributed systems are distributed data structures which are
accessed concurrently. Shared data is usually accessed by distributed transac-
tions implementing a weak consistency.

Trace Properties and Fault Tolerance. Basic trace properties are con-
cerned with action conflicts and dependencies. Two actions are in conflict if the
execution of one action prohibits the execution of the other one. On the other
hand, an action is dependent on another one if it cannot be executed without
the other one being executed first.

In general, trace properties are described by sets of action sequences, distin-
guished in safety and liveness properties. A safety property asserts that nothing
bad happens during execution, i.e. the process never reaches a bad state. While
a liveness property asserts that something good will eventually happen, i.e. the
process eventually reaches a good state.

For sequential processes, the most important safety property is correctness
(i.e. the process’ final state is correct); whilst the most important liveness prop-
erty is termination (i.e. the process eventually terminates). However, with dis-
tributed systems, we are often dealing with systems that may partially fail and
may not be supposed to terminate. Furtheron, there are many more safety and
liveness properties of interest.

Additional important examples of safety properties are mutual exclusion
and the absence of deadlocks and livelocks. Mutual exclusion is of great interest
when resources are shared. No matter if the resource is a printer or some data
which should be changed, there should be at most one process accessing the
resource at a time. When coordinating mutual exclusion and also during other
activities, process executions may come into a deadlock meaning that none of
the processes can continue its execution, or into a livelock where processes do
continue their executions but without really getting their work done.

An additional important kind of liveness properties are progress properties.
They allow us to assert that, no matter what state the system is in, it will always
be the case that a specified action will eventually occur. Progress properties are
essential, considering e.g. mutual exclusion, processes should be coordinated
such that a process accesses the shared resource finally.

Trace properties are most interesting when process or communication fail-
ures can occur. Even if some process or communication failed, the whole system
is supposed to continue correctly. In this case, it is called fault tolerant.

4.2 Validation Techniques for UML

After introducing all the validation properties which play an important role
in distributed system validation, we discuss now selected validation techniques
developed for UML. There exist various approaches to validate UML models, in
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the literature. We selected those approaches being most promising to support
validation of distributed system properties.

Abstract Syntax Checks. Consistency problems are two-fold: While syn-
tactic consistency ensures that a UML model is correct wrt. the metamodel,
semantic consistency presumes the model translation into a semantic domain.
The consistency condition has to be formulated in the same domain to be check-
able. Semantic consistency will be considered in the next paragraph.

Syntactic language-specific consistencies are formulated as well-formedness
rules which are OCL constraints on metamodel instances. For each constraint a
context has to be defined being a specific model element. In [2], we showed that
these language-specific constraints can be constructively checked by translating
them first to graph rules and graph transformation units (see Section [B.2]),
resp. Then, the language consistency of a UML model is checked by testing
the applicability of the resulting rules and transformation units to the abstract
syntax graph given showing an instance of the UML metamodel. If all rules
and transformation units are applicable to all instances of their context model
elements, a UML model is consistent. Otherwise, the model element instance to
which a specific rule or transformation unit is non-applicable, is reported to be
inconsistent to the corresponding OCL constraint. Another approach towards
a formal semantics for OCL is presented in [87]. This work relies on algebraic
specifications and is under discussion to define the standard semantics of OCL.
Moreover, it comes up with a nice tool, the USE tool, supporting the constraint
checking of UML models. Unfortunately, the OCL metamodel proposed in [87]
is only loosely coupled with the UML metamodel and can be much better
integrated using collaborations (see [31]).

A promising approach where distributed graph transformation is used to for-
mulate In- and Inter-ViewPoint consistency checks is presented in [54]. Again
consistency checking is performed by applying graph rules to abstract syn-
tax graphs. But here, each view is modelled separately and Inter-ViewPoint
checks result in synchronized graph transformations on several interrelated ab-
stract syntax graphs. Another approach, zlinkit [79], where the consistency of
distributed specifications can be checked automatically, is based on XML tech-
nologies.

Semantic Models. Hundreds of approaches exist to give UML a formal se-
mantics. On the one hand, we can gain insight into the precise meaning of
UML notations and diagrams. On the other hand, a formal semantics is a nec-
essary prerequisite to check important properties of a UML model. Especially
algebraic specification techniques have been chosen to build up a formal refer-
ence model for UML, e.g. [55] [64]. It is the declared aim of the precise UML
group to come up with a precise standard semantics of the whole language UML
and to use it for verification purposes then. Up to now, there are various ap-
proaches to formalize each a certain aspect of UML by some formal technique
and to use this precision for formal reasoning. Especially behaviour diagrams
have been considered and translated to process algebras [48], [51], abstract state
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machines [56] or labelled transition systems (e.g. UMLAUT [63] and vUML
[70]) for model checking purposes. UML behaviour diagrams are also used to
translate to stochastic and timed Petri nets and processes showing quality of
service |71}, [72].

Mostly, the provided formalizations comprise only a subset of model as-
pects, enough to show specific properties. The formal semantics is stated, but
a rigorous translation from the abstract syntax to the semantic domain is of-
ten missing. If this is the case, nothing can be said about the correctness of a
given translation. Considering an automatic translation, we can at least reason
about its functional behaviour. In the following subsection, we argue that graph
transformation is well suited to serve for this purpose.

4.3 Model Translation by Graph Transformation

Model translation by graph transformation is a natural and rather popular ap-
proach, done by a number of researchers [48, [30, [42], 96] and [60]. Here, graph
transformation is applied on a meta level taking an abstract syntax graph as
input and producing a semantic domain model as output. The translation ap-
proaches vary in input and output formats dependent on the visual language and
its semantic domain chosen. Moreover, different approaches to graph transfor-
mation are used dependent on concepts and theoretical results needed as well as
personal preferences of the researchers. All the translation approaches referred
to above, are illustrated and proven at concrete translation scenarios. The ap-
proach by Baresi and Pezze [30] has been examined at several kinds of diagrams,
i.e. Structured Analysis, IEC Function Block Diagrams, a subset of UML, Con-
trol Nets and LEMMA, a language for medical model analysis. The semantic
domain for all these diagram types is always the same: High-Level Timed Petri
Nets. Lara and Vangheluwe report on the translation of Non-deterministic Fi-
nite Automata to deterministic ones in [42] and statecharts to some sort of
Petri nets in [43]. Varro presents the translation of Message Sequence Charts to
a partial order of events in [96] and refers to the translation of UML Statecharts
to Extended Hierarchical Automata.

In [48] and [60], the algebraic graph transformation approach is chosen. It
is illustrated by a subset of UML state diagrams that is translated to CSP. We
will consider this approach more closely in the following.

In all related approaches some formal definition of graph transformation is
used to define the translation rules, but none of them exploits the theory be-
hind. Often, some informal or semi-formal language is translated into a formal
domain, giving a formal semantics to a language in that way. It is useless to
reason about correctness of such a VL translation, in the sense of model equiva-
lence for these VLs. However, it makes sense to ask for functional behaviour of a
model translation, i.e. to show confluence and termination of translations in any
case. Otherwise, repeated model translation might lead to different results, or
model translation might not give any result, since it is not terminating. In [60],
we consider the critical pair analysis to show confluence of attributed graph
transformation systems and apply it to the translation of UML Statecharts to
CSP. Critical pair analysis computes all minimal conflicting situations, minimal
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Figure 7: Model translation for validation purposes

in the sense that there is no unnecessary context. If we can show that all critical
pairs can be joined, i.e. further rule applications lead to a common result graph
again, the graph transformation system is confluent.

Model translation is useful mainly for two reasons: validation of models
and code generation. Considering model translation for validation purposes,
first a model has to be created by some CASE tool. At a certain point the
model developer might ask for important model properties going beyond pure
syntax checks. This is the starting point for translating the model to some
semantic domain dependent on the properties to be examined. After translation,
a (separate) validation tool is started and gets the translated model as input.
The validation result produced has to be translated back to be useful for the
developer. This general procedure is depicted in Figure [ Code generation is a
similar procedure, but easier to perform, since back translation is not necessary.

To support a wide range of model translations, common exchange formats
for CASE tools, graph transformation engines and validation tools are needed.
For CASE tools, especially UML CASE tools, the XML-based format XMI
(XML Metadata Interchange) [24] has become a quasi-standard. For graph
transformation engines and other graph-based tools, an initiative has been
started to develop a common exchange format for graphs, called GXL [99],
also based on XML. Validation tools do not yet have a common exchange for-
mat, but that has been taken under consideration, e.g. in the ETT initiative for
an electronic tool integration platform [90] (http://www.eti-service.org).

Common Exchange Formats for Graph-Based Tools. Since graphs are
a very general data structure used in various fields in computer science, also
a variety of graph-based tools exist. To increase their interoperability, GXL, a
common exchange format for graphs, has been developed on the basis of XML
[99], [92]. GXL allows to store the logical structure of nearly all kinds of graphs,
e.g. typed and attributed graphs, with hyperedges, and also hierarchical graphs.
The layout of graphs can be stored by e.g. SVG [21], an XML format for scalable
vector graphics.

Discussing the tool support for model transformation by graph transforma-
tion, GXL will play a key role. It can be considered as the central format when
translating a model. Assuming a CASE tool producing XMI output, there has
to be some XML Stylesheet (XSL) transformation [16] to produce GXL input
for the model translator. The XSL transformation from any kind of XML for-
mat to GXL can be straight forward, since the underlying structure is a tree.
In this sense, tags are interpreted as nodes and subtags are translated to nodes
connected to their corresponding parent node. Interpreting tag references also
as edges leads to a proper graph structure. But considering formats like XMI,
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they are too verbose to be transformed in this simple way. The stylesheet has
additionally to compress the information adequately. After model translation,
a formal model in the input format of the corresponding validation tool should
have been produced which can be used to compute the actual validation. This
validation result has to be back translated into an input format of the CASE
tool. How this back translation looks like is very much dependent on the kind
of result. The whole tool chain is illustrated in Figure [

On top of GXL, the core exchange format for graph transformation systems,
GTXL [92], has been developed for the interchange of graph transformation
systems. Discussing graph transformation as a semantic model domain, as in
the next section, GTXL is supposed to be used as target format for model
translations and thus, as input format for graph transformation tools performing
validations.

5 Graph Transformation as Validation Domain

On the one hand, graphs are a very general means to formalize any kind of sys-
tem structures, on the other hand, they have a clear visualization and thus, are
well suited to intuitively present system structures. Using graph transformation
to describe a system model, graphs are usually taken to describe static system
structures such as component and object structures as well as deployments.
System behaviour expressed by state changes is modelled by rule-based graph
manipulations, i.e. graph transformation. The rules describe pre and postcondi-
tions of single transformation steps. The order of steps describes the temporal
or causal dependency of actions. The graph transformation paradigm is formal
and intuitive at the same time, thus an attractive framework to reason about
system properties. In Section 5.1 additional structuring concepts are discussed
for graph transformation yielding a comprehensive formalism well designed to
define all important system concepts and properties (see Section [(5.2)). Several
validation techniques have been developed for graph transformation which can
be applied to a formal semantic model to show conflicts and dependencies of
actions as well as structural consistencies (Section [B.3)).
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5.1 Structured Graphs and Graph Transformation

For modelling complex systems such as distributed systems usually are, a vari-
ety of structuring principles has been developed within the graph transforma-
tion paradigm. Parallel and distributed graph transformation both structure
rule applications, in temporal as well as spatial dimensions. Distributed graphs
contain an additional structure on graphs. On top of these basic structuring
concepts for rules and graphs, component concepts define the partitioning of
graph transformation systems into subsystems. Last but not least, views are
helpful to structure a system according to different aspects and localities.

Parallelism and Distribution. An excellent introduction to the double-
pushout (DPO) approach to graph transformation is given in [39], worthwhile
to get a comprehensive overview on all important results concerning this ap-
proach. Introducing the basic concepts of graphs and rule-based transformation
of graphs, graph transformation systems (GTSs) are defined by tuples of a type
graph, a start graph, and a set of rules. In the basic form of graph transfor-
mation, each rule is applied sequentially. Considering parallel transformation,
there are different approaches. If we stick to sequential execution, parallel trans-
formations have to be modelled by interleaving arbitrarily their atomic actions.
This interleaving leads to the same result, if the atomic actions are independent
of each other. Simultaneous execution of actions can be modelled, if a parallel
rule is composed from the actions. Atomic actions which are not independent of
each other, but synchronize in a common subaction, can be composed to a so-
called amalgamated rule which models the concurrent execution of the atomic
actions where their subaction is executed only once. Amalgamated transforma-
tions generalize parallel transformations by such an additional synchronization
mechanism. In [39], parallel graph transformation steps are restricted to two rule
applications in parallel. In [91], the author extended the theory to an arbitrary
number of parallel rule applications and showed that they can be amalgamated
to one rule application leading back to a basic graph transformation step.

Moreover, distributed graph transformation is discussed in [39] following a
simple approach. Graphs are allowed to be split into local graphs and after local
transformations, local graphs are joined again to one global graph. In [5], this
theory is extended by the author in several directions: First, in [39] the splitting
into two graphs together with a common interface graph is considered only. In
[5], more general topologies are allowed, actually all kinds of network structures
are possible. The network graph is the abstract part of a distributed graph which
is a structured graph on two levels. Each network node is refined by a local
graph, while each network edge is refined by a local graph morphism. Formally,
a distributed graph is a diagram in the category GRAPH. Second, splitting and
joining of graphs is not needed to change the distribution structure. Network
transformations which are usual graph transformations on the network level,
can be used for arbitrary network changes. Third, complex synchronizations
between an arbitrary number of local graphs can be described and fourth, local
transformations can be parallel transformations.

Parallel graph transformation as in [91] is a special case of distributed graph
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transformation where the host graph is non-distributed. The other way round,
the distributed host graph can be joined to one graph leading to a parallel trans-
formation. If additionally, the distributed rule and match are amalgamated to
one rule and one match we end up at a simple graph transformation step again.
If we want to keep the distribution structure, each distributed graph can be
considered as a simple graph if its network graph and its refinement are flat-
tened to simple graph parts of special types. Similarly, distributed graph rules
can be flattened to usual graph rules. This kind of reducing distributed graph
transformation to non-distributed graph transformation is interesting when ap-
plying validation techniques for graph transformation not directly available for
the distributed case. Vice versa, it is obvious that simple graph transformation
is a special case of distributed transformation where graphs and rules are non-
distributed. All graph transformation interrelations are summarized in Figure
)]

In [6], the theory of distributed graph transformation has been extended by
attributes at nodes and edges as well as application conditions for distributed
rules. These two extensions are necessary to provide a sound formal basis for
reasoning on distributed systems.

Components. During the last years, a variety of structuring concepts for
graph transformation systems has been developed. An overview and classifica-
tion of most of these concepts is given in [62]. Structuring concepts for graph
transformation systems differ heavily in features and notions. They are called
modules, packages or components and all support some kind of information hid-
ing. At least, an export interface is declared which provides some structural
and behavioural information about the body which hides the remaining parts.
Connections between such entities are realized by using the export interface of
other entities to implement the own import interface.

In the following, a component concept for graph transformation systems is
discussed which follows a distributed semantics for components. Semantically,
components are active processes and their semantics is restricted with each new
interconnection to other components. The component concept, presented in [1]
has its origin in the DIEGO approach presented in [93] and relies directly on
distributed graph transformation.

A graph transformation system (GTS) component C consists of one body
GTS B, aset of import GTS Uy <<y, i as well as a set of export GTS U< j<,, Ej,
each with an embedding morphism into B. Embedding morphisms relate the

34



type and start graphs as well as the rules. Note that not all body rules must
have a correspondence in each import/export GTS.

For the composition of GTS components, embedding morphisms are added
between import and export GTS leading to an import/export relation. Such
an embedding morphism is a usual GTS morphism. All import GTSs form
the import of the composed GTS, all export GTSs are still export interfaces.
Component rules related by embedding morphisms are applied simultaneously.
The composition details are described in [50] where GTS components together
with their connections to other component interfaces define local views.

Views. Two view concepts have been developed for graph transformation: the
type-oriented and the instance-oriented approach. The type-oriented approach is
followed in [4] to describe a system according to different aspects. The approach
is based on typed graph transformation which allows to describe a set of graphs
by a type graph. According to its types, each view specifies only partially the
system’s states and behaviour. It may happen that an action performed in one
view has to be concurrently coupled with actions of other views to ensure a
consistent state manipulation. Thus, each view specifies what at least has to
happen on a system’s state, i.e. its semantics is loose. Actions in other views
may be needed to complete the whole system’s behaviour. If several views are
developed independently of each other, inconsistencies, e.g. concerning names,
might occur which have to be solved before the view can be integrated. In [4],
an automatic integration algorithm is applied presuming a common reference
model which underlies all views and specifies correspondences between model
elements of different views. Two prerequisites are needed for automatic view
integration: It must be possible to rename views such that different names can
be used for the same concepts in different views. Furthermore, the extension
of views has to be defined componentwise for types and actions such that type
sets can be extended and a subaction relation can be established.

The instance-oriented approach to views has been considered in [6] and
[50] where different local systems are distinguished. Each local system is de-
scribed by a GTS component which defines a local view. The body, all import
and export interfaces, as well as all remote interfaces connected are comprised
in one local view. Thus, local views overlap in interfaces and their interrela-
tions. Each local view shows only that system part described by its component.
Considering a local action, actions of other components might be needed to
model a synchronized system behaviour. The synchronization is done by amal-
gamating local view rules by common interface rules. For each synchronization,
local view rules are synchronized as much as possible such that the resulting
amalgamated rule does not have unbound interface rules. During the lifetime
of a system, new local views can show up or old local views can vanish if cor-
responding components are created or deleted. Since local views directly rely
on distributed GTS components, they also have a formal semantics based on
distributed graph transformation.

Both kinds of views are orthogonal to each other and can be easily com-
bined considering aspect-oriented views on distributed systems. In this case, the
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Figure 10: Schematic example of combined view concepts

aspect-oriented view concepts presented in [4] have to be based on distributed
graph transformation which defines a straight forward extension. In this way,
each part of a local view, i.e. the body, import and export interfaces, can be
presented aspect-oriented. For a schematic example of this view combination
see Figure

5.2 Distributed Graph Transformation as Semantic Domain

In the following, we discuss all key concepts of distributed object systems and
show how they can be mapped to corresponding graph transformation con-
cepts. We also draw connections to corresponding model elements in UML.
This discussion shows that graph transformation, and moreover, distributed
graph transformation seems to be an expressive and adequate formal frame-
work for visual modelling of distributed object systems, powerful enough to
give a semantics to all key aspects with adequate abstraction. It also yields a
concise basis for the comparison with other semantic reference models such as
[55]. However, the priority of a complete and precise mapping of a VL syntax
such as the UML metamodel, to a semantic domain is very dependent on the
validation techniques available in that domain. In Section [5.3] we consider vali-
dation techniques based on graph transformation which need only partial model
translations.

Intuitive and Formal Semantics. Graph transformation is one of the few
precise formalisms which come up with an intuitive appealing graphical rep-
resentation of structures. States and state changes can be visualized and thus
provide an easy access to the semantics discussion. Type- and instance-oriented
view concepts which are available for graph transformation allow to concentrate
on certain system parts and concerns at a time.

Abstraction Levels. Two abstraction levels are offered by distributed graph
transformation to concentrate on the overall system architecture first and re-
fine to the object level then. The system architecture and its reconfiguration is
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described on the more abstract network level. Network nodes are distinguished
into component and interface nodes containing a refinement of the correspond-
ing system part each. Each refinement belonging to the object level, models
some kind of object structures and their manipulation. This abstraction hier-
archy is clearly a structure-oriented one which suits well to the UML. It can be
complemented by behaviour refinement as defined by transformation units [26].
A combination of transformation units with distributed graph transformation
is discussed in [32]. It could be advantageously used to formalize UML use
cases and their main interdependencies being subuse case relations. In [58], we
discuss the refinement of use cases by activity diagrams and their formalization
by graph rules.

Components and Reconfiguration. GTS components have been devel-
oped as the central concept to describe subsystems of (distributed) systems. A
GTS component consists of a body GTS and two sets of interface GTSs which
define views on the body GTS. Considering CCA being part of the UML profile
for EDOC (see Subsection [3.1]) processing components would be modelled by
GTS components where the interface GTSs provide the connection points be-
tween components, i.e. they play the role of ports. Mapping ports to interface
GTSs allows ports to have a semantic state as well. Simple connections between
components can be mapped to embedding morphisms between import and ex-
port GTSs. More complex connections defining whole protocols with different
roles, have to be mapped to separate GTS components semantically.

CCA distinguishes components on the type and on the instance level. Com-
ponent instances, so-called component usages, are mapped to a template of
distributed graphs, so-called component graphs, semantically, each describing
a component usage in a certain state. Compositions can be considered as a
template of distributed graphs each being glued from single component graphs
which overlap in interfaces in the same state.

Component reconfigurations, in UML described by collaborations, can be
translated into network rules. Restricting to simple collaborations containing
only one action each, the translation can be done as follows: The left-hand
rule side contains all those parts of a reconfiguration not annotated by {new}
and the right-hand side all those not annotated by {destroyed}. The partial
graph morphism between the left and right-hand side relates that part which
is neither {destroyed} nor {new}. More complex reconfigurations have to be
modelled by several network rules applied in a certain order of control. Using
rules for reconfiguration, concurrency issues are well addressed, i.e. conflicts and
dependencies can be naturally expressed. As a special form of reconfiguration,
scaling can be modelled by applying creating network rules. In this way, a new
basis for performance tests is laid using the graph transformation paradigm. In
the case of real-time constraints, time attributes have to be added to certain
node types as done in [57].

Views. Two kinds of view concepts have been distinguished for graph trans-
formation systems: type-oriented views to concentrate on certain aspects and
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instance-oriented views for local views of components. Type-oriented views are
very common for visual languages. They are usually expressed by different kinds
of diagrams, e.g. UML has twelve kinds of diagrams to model software systems
from different perspectives. Additionally, application-specific views as presented
in Section [3.I] can semantically be mapped to type-oriented views. In the UML
model, all different views are integrated in one model by gluing them at common
model element instances.

Instance-oriented views play an important role when approaching the sys-
tem’s implementation. Concrete instances of components, packages, classes, and
objects are distributed to certain network nodes and interconnected. UML offers
deployment diagrams to model this kind of distribution.

Classes and Objects. The abstract syntax of a class diagram can be con-
sidered as graph structure. It describes the types of objects and links occurring
in the object system. Therefore, we map class diagrams to type graphs. Classes
are mapped to nodes while associations (except association classes) are mapped
to edges in the type graph. An association class can be represented by a node
together with arcs to all class nodes where the association relates to or an hyper-
edge with tentacles to all those class nodes. A generalization cannot directly be
mapped but its inheritance hierarchy has to be flattened first, i.e. associations
to a parent class and its features have to be prolonged to its child classes. Class
nodes may be further attributed, where each attribute is specified by a type,
a name and a possible default value. Multiplicities at associations and further
constraints result in additional graph constraints which have to be checked on
each instance graph being type graph compatible.

Object structures are expressed by templates of instance graphs, each repre-
senting the object structure in a certain state. An object structure is consistent
with its class structure if all corresponding instance graphs are type compatible
with the corresponding type graph and satisfy the additional graph constraints.

Object Interaction. There are various kinds of behaviour models for (dis-
tributed) systems. UML alone has five types of diagrams to describe different
aspects of behaviour. In UML a certain subset of common behaviour concepts
is distinguished which forms a basis to reason about behaviour. First of all,
behaviour is considered on the instance level, based on objects and links. Cor-
respondingly, instance graphs are used semantically. In the graph transforma-
tion paradigm, the only concept to express dynamics are rules which formulate
the preconditions and the effects of an action. Dependent on certain events
which can be considered as triggers for rule application, state transitions are
performed by graph transformations.

Object collaborations can be formalized similarly to component reconfigura-
tions. Collaborations restricted to one action are mapped to one rule where the
left-hand side of a rule contains all those parts of a collaboration not annotated
by {new} and not being the target of a <<becomes>>-relation. The right-
hand side contains all those not annotated by {destroyed} and not being the
source of a <<becomes>>-relation. The partial graph morphism between left
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and right-hand side relates both copies of that part which is neither {destroyed}
nor {new} as well as the object nodes related by the relation <<becomes>>.
Complex collaborations are mapped to several rules according to the control
flow specified. If parallel actions are modelled within a collaboration, they are
mapped to parallel rules.

Graph transformation can explicitly model failures which is presented in [1].
For this purpose, special rule triggers such as failure events can be considered,
which cause the application of certain error actions like stop actions. A stop
action changes the state of a local system in a way that no further action can
be performed. Furthermore, security issues resulting in a set of new stereotypes
in UML, can be based semantically on graph transformation leading to new
types of objects and dependencies. Recently, the well-known role-based security
mechanism RBCA has been specified with graph transformation [68].

Altogether, the rule concept of graph transformation provides one clear
concept to define system behaviour. Especially for modelling the intrinsic con-
currency of actions, graph rules are an adequate means, because they explicate
all structural interdependencies. Moreover, additional control flow for rule ap-
plication can be defined by control conditions in transformation units which
however, do not support a nice visualization of control flow structures so far.

Constraints. Constraints occur at different places in system models. Simple
ones can be translated to graph constraints, while more complex ones have to
be translated to rules and transformation units. Graph constraints and their
ensurance have originally be presented in [61]. We consider constraints in class
diagrams to describe the object structures allowed. Furthermore, they can oc-
cur as any kind of invariant, pre and postcondition for operations, guards in
state transitions or collaborations, etc. OCL has been defined as extension of
UML providing a constraint language for object systems. Although the follow-
ing explanations are formulated for a translation of OCL, please note that the
basic ideas of this approach are independent of the concrete language OCL, but
apply to any constraint language.

In [2], we showed how OCL constraints can be translated to graph rules
and transformation units. Each constraint is defined concerning a certain model
element which is specified as context. Invariants, pre and post conditions are
special kinds of constraints which specify when a translated constraint should
be checked, i.e. when its corresponding rules and transformation units are tried
to be applied to a certain instance graph. That means for an invariant that if
corresponding graph rules or transformation units are applicable to all instances
nodes of the context model element, the corresponding constraint is semantically
consistent, otherwise an inconsistency has been found.

The approach to base OCL heavily on collaborations suits well to its se-
mantic interpretation. As described above, collaborations can be semantically
explained as rules or transformation units. Pre-defined types and operations
such as collections and operations like forall, select, exist, etc. are mapped to
special object types and pre-defined transformation units.
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Evolution. Model evolution can be viewed as a process in which transfor-
mations are applied successively to a system model. Semantically, we describe
a distributed system by a distributed graph transformation system (DGTS).
Thus, model evolution means a DGTS transformation. Such a transformation
can be defined component-wise and can contain simple transformation concepts
as well as more complex ones. Evolution of static structures like classes struc-
tures is easily to describe. So-called inference diagrams on e.g. class diagrams as
they are presented in [52], can directly be interpreted as graph transformations.
Evolution of behaviour is more difficult to formalize in the graph transforma-
tion domain. Here, we have to follow the ideas of transforming graph grammars
presented in [81] which means applying rules to rules in particular. This ap-
proach to describe behaviour evolution seems to be promising and worthwhile
to be elaborated in future work.

Automatic Model Translation. So far, we discussed the semantic mapping
of a distributed object computing model, a UML metamodel instance in partic-
ular, to distributed graph transformation. In the previous section, we proposed
to use graph transformation to formulate an automatic model translation. Of
course, this approach can also be followed if the semantic domain is distributed
graph transformation. But there is one point to pay attention to: The formu-
lation of translation rules functions only if the target structure, being a dis-
tributed graph transformation system, is considered as a graph. But this not a
big problem, since any kind of structure can be considered as a graph. In the
next subsection, we consider the validation techniques offered by graph trans-
formation which can be advantageously used for distributed system validation.
In this way, we get a clear view which partial model translations are worth-
while to be further elaborated by supplying a translating graph transformation
system.

5.3 Validation Support by Graph Transformation

In the following, we consider validation techniques available for graph transfor-
mation. Although these techniques are elaborated for non-distributed graph
transformation, they can be used also for distributed graph transformation
in a slightly restricted way. If all distributed graphs are joined and all dis-
tributed rules are amalgamated, the resulting graph transformation systems
can be used for validation. Positive statements on consistency and indepen-
dencies are valid also in the original distributed graph transformation system.
Inconsistencies, conflicts and sequential dependencies can be transferred if the
distribution structure is flattened for validation.

Conflicts and Dependencies. The first validation technique is based on the
notion of independence of graph transformations which captures the idea that,
in a given situation, two transformations are neither in conflict nor causally
dependent. We distinguish parallel independence (absence of conflicts) and se-
quential independence (absence of causal dependencies). For both notions there
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exists a weak, asymmetric, and a strong, symmetric version (see, e.g., [39] for
a recent survey).

If two transformations are mutually independent, they can be applied in any
order yielding the same result. In this case we speak of parallel independence.
Otherwise, if one of two alternative transformations is not independent of the
second, the second will disable the first. In this case, the two steps are in conflict.
However, we lay here the focus on static analysis of potential conflicts and
dependencies, rather than on run-time analysis. Therefore, the above notions
have to be lifted to the level of rules.

The computation of potential conflicts and dependencies is based on the idea
of critical pair analysis which is known from term rewriting. Usually, this tech-
nique is used to check whether a rewriting system has a functional behaviour,
especially if it is locally confluent. Critical pairs have been generalized to graph
rewriting in [83] and further extended to attributed graph transformation in
[59]. They formalize the idea of a minimal example of a conflicting situation.
From the set of all critical pairs we can extract the objects and links which
cause conflicts or dependencies. In [58], critical pair analysis has been used to
detect conflicting functional requirements in a use case-driven approach.

Graph transformation is an ideal framework to reason about concurrent
computations. In [38], graph processes have been defined containing a partial
order of rule applications which results from causal dependency analysis. More-
over, an event structure semantics has been proposed for somehow restricted
graph transformation in [37] abstracting from concrete transformations. It just
models a collection of events with two relations, namely causal dependency and
conflict. However, the kind of graph transformation considered is restricted in
a way that only reactive behaviour instead of pro-active one can be modelled.

Considering for example distributed version control, we have to ensure that
configurations of documents are checked in in a synchronized way. For this
purpose, a lock has to be created in the beginning prohibiting the application
of rules such that another check-in can be started. This means applications
of rules which start a check-in, can be in conflict. Performing one of these
rule applications prohibits the other one as long as the lock is released. A
critical pair analysis finds all these conflicts which have to be analysed by the
system designer afterwards. If a mutual exclusion on resources is intended,
corresponding critical pairs are desired to show conflicts. Otherwise, critical
pairs can give information on conflicting situations which are not desired, e.g.
conflicts on check-out rules.

Structural Consistency Checking. Graph constraints [61] are used to de-
scribe basic consistency conditions on graphs such as existence or non-existence
as well as uniqueness of certain graph parts. For example, multiplicity con-
straints as they occur in UML class diagrams can be translated to graph con-
straints (compare [94]). A graph transformation system is consistent wrt. a set
of graph constraints if the start graph satisfies the constraints and all rules pre-
serve them. In [61], an algorithm has been developed which checks whether a
rule preserves all constraints. If a constraint is not preserved, new preconditions
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are generated for this rule restricting its applicability such that consistency is
always ensured. This procedure has been extended to attributed graph trans-
formation in [76].

More complex consistency conditions such as the existence of paths or cycles
of arbitrary length or other typical graph properties, have to be formulated by
a set of transformation units which encode a constructive approach to consis-
tency ensurance. Transformation units allow the definition of an initial graph
class which can be advantageously used to formulate when consistency checking
should be triggered. For example, consistency checking is useful when a new in-
stance of a certain node or edge type has been created whose existence is bound
to a number of conditions.

Considering application-specific consistency, distribution issues are irrele-
vant, thus, consistency checking on the amalgamated distributed graph trans-
formation system would provide a simple, but satisfactory procedure for this
kind of consistency. A consistency condition like the uniqueness of all document
names in a revision archive is of this type. It can be formulated by a simple
graph constraint not allowing graphs with two document nodes, both having
the same name.

Distribution-specific consistency instead, deals directly with replication and
sharing issues. For example, we postulate that document configurations have
always be replicated completely between revision archives. Furthermore, we
have to be sure that a document is not replicated several times to one and
the same archive. To reason about distribution-specific consistency, we do not
have to translate a model completely into the domain of distributed graph
transformation, but it is enough to translate the replication structures and
their modifications. Application-specific attributes are not needed for this kind
of validation. Distributed graph transformation implicitly supports coherence
(compare Section [1]) due to its rule-based character of behaviour specification.
Rules operating on different graph parts do not disturb each other, i.e. they are
independent, and can be applied in any order. Stronger forms of consistency like
sequential consistency, can be realized by additional graph structure enforcing
a deterministic order of rule applications. Weak consistency as it occurs in dis-
tributed transactions has been modelled with distributed graph transformation
in [67].

Tool Support by AGG. AGG is a general tool environment for algebraic
graph transformation which supports visual editing and simulation of graph
transformation systems as well as their validation. Its special power comes from
a very flexible attribution concept. AGG graphs are allowed to be attributed
by any kind of Java objects. Graph transformations can be equipped with ar-
bitrary computations on these Java objects described by Java expressions. The
AGG environment consists of a graphical user interface comprising several vi-
sual editors, an interpreter, and a set of validation tools. These are a critical
pair analyser, a graph parser, and a consistency checker for graph constraints.
The implementation of AGG follows the well-known model-view-control con-
cept, i.e. its kernel can be flexibly used by its graphical user interface or by an
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API when AGG is incorporated into a graph transformation-based application.
The kernel concepts of AGG are comprehensively described in [7]. Recently,
it has been extended by several validation techniques which are described in
[29],[58], and [76]. To use AGG mainly as validation tool, its XML interface is
important to connect AGG with a CASE tool as pointed out in Section [4£.3]l The
current version of AGG can be found at: http://tfs.cs.tu-berlin.de/agg.

6 Summary of the Papers Submitted for the Habil-
itation Thesis

Up to now, this survey has presented the state-of-the-art in visual modeling
and validation of distributed systems, focussing on UML as visual language
and graph transformation as semantic domain for validation. The description
of the main challenges when developing a distributed system and resulting re-
quirements for distributed system modelling, the presentation of UML together
with a variety of extensions as well as the description of validation issues and
techniques and graph transformation as semantic domain have drawn a wide
picture of research activities in this field. This section gives a summary of the
author’s achievements most relevant for the research on visual modelling and
validation of distributed systems. Each of the following subsections summa-
rizes one of the papers submitted for the habilitation thesis. These papers cover
the most relevant contributions of the author concerning visual modelling and
validation of distributed systems.

6.1 A Visual Modelling Framework for Distributed Object
Computing

In [1], the author outlines the central framework for the habilitation thesis. Af-
ter stating the main requirements for distributed system modelling a fragment
of a slightly extended UML is presented, focussing on architecture and inter-
action modelling. Thereafter, distributed graph transformation is introduced
as a semantic domain where the semantics of the architecture, object and in-
teraction models are given by network graphs and transformations as well as
object graphs and their transformations. Graph transformation system compo-
nents are introduced to describe distributed components and their interaction.
They are lateron related to I/O-automata [74] which are used as simple formal
models for reasoning about distributed algorithms. In this sense, the theory of
I/O-automata becomes applicable to (restricted) graph transformation systems
useful to reason about concurrency issues of distributed systems.

6.2 Consistency Checking and Visualization of OCL Con-
straints

The constraint language OCL is an important extension of UML to formulate
invariants, pre and post conditions as well as guards. Unfortunately, it has been
given in a textual, quite unintuitive form and without a precise semantics in
the beginning. In [2], G. Taentzer developed the main concepts to visualize
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OCL on the basis of collaborations and discussed her work with the other
three authors. She suggested a closer integration of the UML and the OCL
metamodels which is possible when relying on collaborations. The visualization
has been further elaborated in [31] and captures all main concepts of OCL.
Moreover, the authors consider consistency checking of OCL constraints by
translating OCL constraints to graph rules and transformation units. To check
the consistency of a UML model the applicability of resulting graph rules and
transformation units to the abstract syntax graph of the model is tested. If
all rules and transformation units are applicable to all instances of constrained
model elements, the UML model is consistent. Otherwise, an inconsistency can
be reported.

6.3 Application of Graph Transformation to Visual Languages

In [3], we show how graph transformation can be applied to visual languages:
On the metamodel level, graph transformation can be used to define visual
languages. Graphs are well suited to describe the multi-dimensional structure
of visual sentences such as diagrams and graphics. Similarly to textual lan-
guages, a grammar defines a visual language in terms of its graph language.
The general concept of visual language definition distinguishes Spatial Rela-
tions Graphs (SRGs) which describes the structure of a visual sentence seen
as a picture and Abstract Syntax Graphs (ASGs). Graph grammars are used
to define the translation from SRG to ASG (low-level parsing) and for high-
level parsing on the ASG solving the membership problem. Considering the
GenGED approach to visual language definition which has been developed by
R. Bardohl under the guidance of G. Taentzer, a generalized form of graphs,
i.e. graph structures, is used to describe visual sentences. The graphical layout
of visual sentences is described by graph attributes and graphical constraints.
The GenGED environment supports the visual definition of a visual language
and generates a corresponding visual editor and a visual simulator. The editor
offers a syntax-directed editing mode as well as more free-hand editing with
parsing facilities. GenGED is based on the graph transformation engine AGG
which has been developed under the leadership of the author. In future work,
the GenGED approach can advantageously be used to define e.g. a visual OCL
according to the concepts described in [31]. In this way, a visual editor and a
consistency checker could be generated.

On the other hand, graph transformation languages themselves provide a
visual modelling or high-level programming language where the underlying data
model is a graph. Graph rules and more sophisticated control structures for rule
application are used to describe data manipulation. Two general purpose lan-
guages PROGRES and AGG are presented by A. Schiirr and G. Taentzer. Fur-
thermore, two languages for visual language definition, DiaGen and GenGED,
are presented by M. Minas and R. Bardohl. All four languages have been dis-
cussed and compared to each other by all authors.
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6.4 A Combined Reference Model- and View-based Approach
to System Specification

Based on graph transformation, a specification technique is presented in [4]
which combines a reference and view-based approach. A formal notion of views
and view relations is developed and the behaviour of views is described by a
loose semantics. Moreover, the integration of views which are based on a com-
mon reference model, is considered by R. Heckel and G. Taentzer. For the view
integration, dependencies between views not given by the reference model are
determined first. Then, the reference model is extended by the model manager.
When the views and their common reference model are consistent, the actual
view integration can be performed automatically. In addition, several exten-
sions of this basic integration scenario are discussed. Throughout this paper,
R. Heckel and G. Taentzer illustrated all concepts at a running example being
a banking system. Based on this work, application-specific views in UML can
be defined as presented in Section 3.1l Semantically, views are defined as graph
transformation systems, compare Section 5.1l

6.5 Distributed Graphs and Graph Transformation

In [5], the author presents the formal framework of distributed graphs and
graph transformation. It defines structured graph transformation on two ab-
straction levels: the network and the local level. The network level contains the
description of the topological structure of a system. The local level covers the
description of states and their transitions. In this way, the state of a distributed
system is represented by a number of distributed states, partly dependent of
each other. State transitions can be local or distributed and might be synchro-
nized by common subtransitions. Modelling distributed systems in this way
offers a clear and appealing description due to its visual form and the few num-
ber of concepts which allow to describe all main concepts of distributed systems
such as complex distributed data structures, dynamic networks, distributed ac-
tions as well as communication and synchronization. The formalization is based
on category theory, namely the category DISTR(GRAPH) of distributed graphs
and graph morphisms. A distributed graph transformation step is characterized
by a double-pushout within this category which is constructed component-wise
for each local graph to reflect distributed computations best. Component-wise
transformations exist if certain conditions, so-called distributed gluing condi-
tions are satisfied, and lead always to a unique result.

6.6 Distributed Graph Transformation With Application to Vi-
sual Design of Distributed Systems

Having the formal framework of distributed graph transformation at hand, it
can be used to visually describe the key design of a distributed system. To
support precise modelling of network, data and interaction issues, the basic
formalism given in [5] has been extended in [6] by attributes and application
conditions for rules. This work has been done by M. Koch under the guid-
ance of G. Taentzer. In this approach, network graphs are not attributed, but
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labelled and network morphisms are injective in rules and occurrences to facil-
itate component-wise rule application.

The whole resulting framework is informally introduced and illustrated at
examples by G. Taentzer to show how main aspects of distributed systems
can be expressed by distributed graph transformation. A UML-like notation is
employed in the examples such that software developers familiar with object-
oriented modelling techniques can easily understand how distributed graph
transformation can be used to visually model distributed systems. Moreover, 1.
Fischer and V. Volle developed a larger reference application in [6] under the
guidance of G. Taentzer. The application is a distributed version management
system where several revision archives are distributed over a network and build
a distributed shared memory system. Each revision archive contains those doc-
uments relevant in its own site. It provides the service of versioning for local
workspaces and supports replication between sites. The system is designed as
open system where the number and the connections between revision archives
may evolve.

6.7 The AGG-Approach: Language and Environment

In [7], AGG is presented which can be considered as visual modelling or very
high-level programming language modelling the kernel data structures of soft-
ware systems as graphs. Since AGG graphs can be attributed by arbitrary Java
objects, its attribution concept is extremely flexible. It allows to use graphs on
very different abstraction levels: Control graphs coordinating processes would
be high-level whereas graphs as data model is a more low-level application.
The application’s behaviour is described by graph rules which can contain Java
expressions to describe attribute computations. The development of the AGG
environment in Java has been started by G. Taentzer in 1995. It comprises now
visual editors, an interpreter, debugger and graph parser as well as validation
tools. In [7], the kernel concepts of the AGG language and environment are
described by G. Taentzer. Moreover, C. Ermel worked out a case example solv-
ing the shortest path problem by AGG. AGG environment and implementation
issues being described by M. Rudolf, mirror the AGG version of the year 1999.
In the meantime, AGG has been updated and extended in several directions,
under the guidance of G. Taentzer: After having implemented the graph trans-
formation engine, all the validation techniques which have been developed for
attributed graph transformation, shall be gradually implemented in AGG. Up
to now, a graph parser, critical pair analysis, and a constraint checker have
been realized. Furthermore, the controlling of rule applications by rule layers
and attribute conditions as well as the concept of type graphs has been added.
The component concept for graph transformation described in Section (.1l has
been realized prototypical, its full realization in AGG is future work.

AGG has developed to one of the standard environments in the graph trans-
formation community. The current version and its documentation are available
at: http://tfs.cs.tu-berlin.de/agg.
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7 Conclusions

This survey describes the visual modelling and validation of distributed systems
focussing on the visual modelling language UML and graph transformation
as formal validation domain. UML has been extended in various directions
and meets now all main requirements for distributed system modelling. For a
precise definition of the syntax and semantics of a visual modelling language
like UML, graph transformation has been shown to be a promising technique. It
allows a visual language definition which handles all structural aspects visually.
For the visual reasoning on all key aspects of distributed systems, the formal
calculus of distributed graph transformation has been developed which serves as
a formal semantic domain for distributed system models. The main advantage
of this calculus is a support for the formal validation of consistency issues,
rarely investigated in distributed system models so far. Summarizing, main
contributions have been achieved concerning the following four subjects:

e A conceptual framework for the visual modelling of distributed systems
[1] where distributed graph transformation [5] is used as semantic domain

[6].

e An application-specific view concept for UML [4] and visualization con-
cepts for OCL [2].

e Definition of visual languages by graph transformation [3].

e Tool support concerning validation and visual language definition given
by AGG [7].

Main parts of this work have been developed in a project called ” Application
of graph transformation to the visual design of distributed systems”, supported
by the Deutsche Forschungsgemeinschaft (DFG). This project was leaded by
the author with regard to the realization of project activities. Main ideas con-
cerning distributed graph transformation as semantic domain for distributed
systems, a considerable tool support by AGG, and the GenGED approach to
visual language definition have been developed within this project. It is now
continued by the project ” Application of graph transformation to visual mod-
elling languages” and concentrates on the usage of graph transformation for
syntax and semantic definition of visual modelling languages. Elaborated con-
cepts are applied to concrete languages such as UML and extensions, Petri
net-based languages as well as domain-specific languages. This research on vi-
sual modeling techniques is flanked Europe-wide by the new European Research
Training Network on ”Syntactic and Semantic Integration of Visual Modeling
Techniques” (SeGraVis) which started in October 2002.

After laying the basis for the precise syntax and semantics definition of vi-
sual modelling languages for distributed systems, future activities are planned
to integrate UML and graph transformation-based techniques with other tech-
niques for modelling and validation to come up with adequate domain-specific
solutions. Furthermore, the developments of the last years produced an increas-
ing number of attractive modelling and validation tools, especially for UML.
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Time is mature also for graph and graph transformation-based tools which
play an important role to draw the attention of practitioners to concepts and
solutions as presented in this thesis. To enlarge the acceptance of these new
kinds of tools, their integration with established solutions has to be pushed.
The development of common exchange formats such as GXL for graphs and
GTXL for graph transformation systems, is one important step into this direc-
tion. These formats facilitate the usage of graph-based tools in various concrete
solutions which yields to a wide spread of numerous concepts and results for
graphs and graph transformation into different application fields such as soft-
ware engineering, visual languages and distributed systems.
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