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Abstract. The packet routing problem, i.e., the problem to send a given set
of unit-size packets through a network on time, belongs to one of the most
fundamental routing problems with important practical applications, e.g., in
traffic routing, parallel computing, and the design of communication protocols.
The problem involves critical routing and scheduling decisions. One has to
determine a suitable (short) origin-destination path for each packet and resolve
occurring conflicts between packets whose paths have an edge in common.
The overall aim is to find a path for each packet and a routing schedule with
minimum makespan.

A significant topology for practical applications are grid graphs. In this pa-
per, we therefore investigate the packet routing problem under the restriction
that the underlying graph is a grid. We establish approximation algorithms
and complexity results for the general problem on grids, and under various
constraints on the start and destination vertices or on the paths of the pack-
ets.

1. Introduction

In this paper, we study the packet routing problem on grid graphs. In an instance
of this problem we are given a set of unit-size packets with specified source and
destination vertices. First, we need to define a path for each packet along which we
want to route it. Then we need to find a routing schedule to transfer the packets
through the network. This is not trivial since each link in the network can be used
by at most one packet at a time. The overall goal is to find a path assignment and
routing schedule that minimizes the makespan, i.e., the time when the last packet
has reached its destination. We study also the special case that the paths of the
packets are already given by some other source and we need to find only the routing
schedule.

The packet routing problem has several applications in practice, e.g., in parallel
computing or in cell structured networks. In those settings, packets of information
need to be transferred through the network. In order for the network to operate
efficiently, it is needed that the packets reach their respective destinations as quickly
as possible. Therefore, the paths of the packets and the routing schedule need to
be computed such that the packets encounter as few delay as possible. One of the
most common natural topologies of the routing problem in practical applications
are grid graphs, e.g. in parallel computing. Therefore, we take this special structure
into account when looking for efficient solution methods.

1.1. Packet Routing Problem. The packet routing problem is defined as follows:
Let G = (V,E) be an undirected graph (in our case this will usually be a grid
graph). A packet Mi = (si, ti) is a tuple consisting of a start vertex si ∈ V
and a destination vertex ti ∈ V . Let M =

{
M1,M2,M3, ...,M|M|

}
be a set of
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packets. Then (G,M) is an instance of the packet routing problem with variable
paths. The problem has two parts: First, for each packet Mi we need to find a path
Pi = (si = v0, v1, ...v`−1, v` = ti) from si to ti such that {vi, vi+1} ∈ E for all i with
0 ≤ i ≤ `− 1. Assuming that it takes one timestep to send a packet along an edge
we need to find a routing schedule for the packets such that

• each message Mi follows its path Pi from si to ti and
• each edge is used by at most one packet at a time.

We assume that time is discrete and that all packets take their steps simultaneously.
The objective is to minimize the makespan, i.e., the time when the last packet has
reached its destination vertex. For each packet Mi we define D̄i to be the length of
the shortest path from si to ti, assuming that all edges have unit length. Moreover,
the minimal dilation D̄ is defined by D̄ := maxi D̄i. It holds that D̄ is a lower
bound for the length of an optimal schedule.

Since there are algorithms known to determine paths for routing the packets (see
[31, 6, 18] or simply take shortest paths) we will also consider the packet routing
problem with fixed paths. An instance of this problem is a tuple (G,M,P) such that
G is a (grid) graph,M is a set of packets and P is a set of predefined paths, one for
each packet. Since the paths of the packets are given in advance they do not need
to be computed here. The aim is to find a schedule with the properties described
above such that the makespan is minimized. For each packet Mi we define Di to
be the length of the path Pi, again assuming that all edges have unit length. Like
above we define the dilation D by D := maxiDi. For each edge e we define Ce to be
the number of paths that use e. Then we define the congestion C by C := maxe Ce.
It holds that C and D are lower bounds for the length of an optimal schedule.

We distinguish between grid graphs in which two packets are allowed to use an
edge in opposite directions at the same time, or not. The infinite grid graph G# =
(V#, E#) is the undirected graph consisting of the vertices V# = {vi,j |i, j ∈ Z} and
the edges E# = {{vi,j , vi′,j′} | |i− i′|+ |j − j′| = 1}. The directed graph

↔
G# =(

V#,
↔
E#

)
is the bidirected infinite grid graph with

↔
E# = {(u, v) , (v, u) | {u, v} ∈ E#}.

We will consider infinite grid graphs rather than finite grids because we want the
borders of a finite grid not to have any impact on the problem.

Throughout the paper we will use the notation |S| for the length of a schedule
S. For a packet routing instance I with fixed or variable paths let OPT (I) denote
a schedule with minimum makespan. For an algorithm A for the packet routing
problem denote by A(I) the schedule computed by A for the instance I. The
algorithm A is an α-approximation algorithm if it runs in polynomial time and for
all instances I it holds that |A(I)| ≤ α · |OPT (I)|. We call α the approximation
ratio or performance ratio of A.

1.2. Related Work. Packet routing and related problems are widely studied in
the literature. Di Ianni show that the delay routing problem [8] is NP -hard. The
proof implies that the packet routing problem on general graphs is NP -hard as
well. Leung et al. [22, chapter 37] study packet routing on different graph classes.
In [5] Busch et al. study the direct routing problem, that is the problem of finding a
routing schedule such that a packet is never delayed once it has left its start vertex.
They give complexity results and algorithms for finding direct schedules. Peis et al.
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[27] present non-approximability results for the packet routing problem on several
graph classes and algorithms for the problem on trees.

In [19] Leighton et al. show that there is always a routing schedule that finishes in
O(C+D) steps. In [20] Leighton et al. present an algorithm that finds such a sched-
ule in polynomial time. However, this algorithm is not suitable for practical applica-
tions since the hidden constants in the schedule length are very large. There are also
some local algorithms for this problem, needing O (C) +(log∗ |M|)O(log∗|M|)

D +
poly (log |M|)6 [28] and O

(
C +D + log1+ε |M|

)
[25] steps with high probability.

For the case that all paths are shortest paths, Meyer auf der Heide et al. [4] present
a randomized online routing protocol which needs only O(C + D + log |M|) steps
with high probability. Using the algorithm by Leighton et al. as a subroutine Srini-
vasan and Teo [31] present an algorithm that solves the packet routing problem
with variable paths with a constant approximation factor. Koch et al. [18] improve
this algorithm for the more general message routing problem (where each message
consists of several packets).

Symnovis [32] show that every permutation on a tree with n vertices can be
routed in n− 1 routing steps. Alstrup et al. [3] give a direct routing algorithm for
trees that finds such a schedule of length n − 1 in sub-quadratic time. Mansour
and Patt-Shamir [23] study greedy scheduling algorithms (algorithms that always
forward a packet if they can) in the setting where the paths of all packets are shortest
paths. They prove that in this setting every packet Mi reaches its destination after
at most Di+ |M|−1 steps where Di is the length of the path of Mi and |M| is the
number of packets in the network. Thus, giving priority to the packets according
to the lengths of their paths yields an optimal algorithm if we assume that the
path-lengths are pairwise different.

Leighton, Makedon and Tollis [21] show that the permutation routing problem on
an n×n grid can be solved in 2n−2 steps using constant size queues. Rajasekaran
[29] presents several randomized algorithms for packet routing on grids. They also
give their bounds in terms of the grid size. For the case that each vertex of the grid
is the start vertex of at most one packet Mansour and Patt-Shamir [24] present an
algorithm with constant approximation factor which uses the algorithm by Leighton
et al. [20] as a subroutine.

The packet routing problem is related to the multi-commodity flow over time
problem [9, 10, 14, 15, 17]. In particular, Hall et al. [14] show that the latter
problem is NP -hard, even in the very restricted case of series-parallel networks.
It is equivalent to the packet routing problem if we additionally require unit edge
capacities, unit transit times, and integral flow values. If there is only one start and
one destination vertex then the packet routing problem can be solved optimally in
polynomial time, e.g., using the Ford-Fulkerson algorithm for the maximum flow
over time problem [7, 11, 12] together with a binary search framework. For the
quickest transshipment problem with multiple sources and multiple sinks Hoppe
and Tardos [17] present a polynomial time algorithm. As a consequence, the packet
routing problem with a single start vertex or a single destination vertex can be
solved optimally.

Finally, Adler et al. [1, 2] study the problem of scheduling as many packets as
possible through a given network in a certain time frame. They give approximation
algorithms and NP -hardness results.
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1.3. Our Contributions. For the case of the bidirectional grid
↔
G# with the

start- and the destination vertices of the packets being pairwise different we present
an optimal algorithm which always computes a schedule of length D. For the
undirected grid G# it can be adapted to a 2-approximation algorithm (we will show
later that in G# this setting is NP -hard). We also show that on the grid a bad
choice for the paths of the packets can yield an arbitrary high approximation factor
for the entire problem. This holds even we use an optimal scheduling algorithm
once the paths of the packets are fixed.

We investigate the case that there is only one start vertex but arbitrarily many
destination vertices. Note here that the algorithm by Hoppe et al. [17] does not
necessarily run in polynomial time since in our case the graph is not part of the
input but it is given implicitly. We present an algorithm that finds a schedule with
length at most OPT + 8. Then we improve this algorithm to a 1 + ε approximation
while still guaranteeing an absolute error of eight. Denote by k the number of sink
vertices and by n the length of the overall input. The runtime of our algorithm
is bounded by O (n log n+ f (1/ε)) (for an exponential function f). For the same
setting we give an optimal algorithm with running time O

(
k6n

)
. We achieve the

polynomial bound on the runtime by not considering the full grid but only certain
subgrids. Then we present a (b+ 1)-approximation algorithm for packet routing
on the grid where we assume that the paths are fixed and have at most b bends
each. For the case that the start- and destination vertices are sparsely distributed
(i.e., in each row/column there is at most one start/destination vertex) we present
a 9-approximation algorithm.

Finally, we study the complexity of the packet routing problem on grids. We
prove that if the paths are fixed, it is NP -hard on the bidirected grid

↔
G#, even

if there is only one start vertex and all predefined paths are shortest paths. Al-
lowing the paths to be variable, we show that the problem is still NP -hard on the
undirected grid G# even if no two packets share their start or destination vertex.

2. Unique Start and Destination Vertices

In Section 6 we show that the packet routing problem with variable paths on
the unidirectional grid graph G# is NP -hard even if no two packets have the same
start or destination vertex. In this section we present an optimal algorithm for the
same problem on the bidirectional grid

↔
G#. A slight modification yields a factor 2

approximation algorithm on G#. Moreover, we show that a bad choice of the
paths can result in arbitrarily bad schedules, even in the case of unique start and
destination vertices and under the assumption that an optimal routing schedule is
used.

2.1. Optimal Algorithm for
↔
G#. Let I =

(
↔
G#,M

)
be an instance of the

packet routing problem with variable paths. Assume that for each pair of packets
M = (s, t) and M ′ = (s′, t′) it holds that s 6= s′ and t 6= t′. We first need to
specify the paths of the packets and then the routing schedule. The path of each
packet M = ((sx, sy) , (tx, ty)) is defined as follows: First, M moves vertically on
the (unique) shortest path from (sx, sy) to (sx, ty) (call this the vertical part) and
then horizontally on the (unique) shortest path from (sx, ty) to (tx, ty) (call this
the horizontal part).
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Since each vertex is the start vertex of at most one packet, there can be no delay
in the vertical part of a packet’s path. For the horizontal part we use the farthest-
destination-first rule if there are two packets competing for an edge. Denote by
GRID (I) the obtained schedule for I and by OPT (I) a schedule with minimum
makespan.

Theorem 1. Let I =
(
↔
G#,M

)
be an instance of the packet routing problem

such that no two packets share a start- or destination vertex. Then it holds that
|GRID (I)| = D = |OPT (I)|.

Proof. Since D is a lower bound for the length of an optimal schedule it is sufficient
to show that |GRID (I)| ≤ D. For a packet M let makespan (M) be the number
of steps that M needs to reach its destination in GRID (I).

For packets Mi which are never delayed by another packet it clearly holds that
makespan (Mi) = Di ≤ D. Since each vertex is the start vertex of at most one
packet this holds in particular for packets which do not move horizontally.

Now consider a grid line ` and consider all packets that have their destination
vertex in `. Define the setML,` to be the set of packetsM = (vi,j , v`,j′) with j′ < j
(so in grid line ` these packets move to the left in the horizontal part of their path).
Analogously, we define the setMR,` to be the set of packets M = (vi,j , v`,j′) with
j′ > j. We order the packets inML,` ascendingly by the column of their destination
vertex (in the sequel the destination-x-coordinate or short the x-coordinate). We
prove by induction that for all packetsM ∈ML,` it holds thatmakespan (M) ≤ D.
We start with the packetM1 ∈ML,` with the lowest destination-x-coordinate (note
that this packet is unique). Since we use farthest-first routing in the horizontal part
and there is no delay by other packets in the vertical part of the path,M1 will never
be delayed by other packets. Thus, makespan (M1) ≤ D1 ≤ D. Now assume for
the induction hypothesis that for each packet M among the i packets with the
lowest x-coordinates it holds that makespan(M) ≤ D.

LetMi+1 be the (unique) packet with the i+1-th lowest x-coordinate. Denote its
x-coordinate by xi+1. From the algorithm it follows that Mi+1 can only be delayed
by packets whose x-coordinate is strictly lower than xi+1. Consider the time t when
Mi+1 encounters its last delay. Let M∗ be the packet that delays Mi+1 at time
t and let x∗ be the x-coordinate of M∗. Since x∗ < xi+1 and from the induction
hypothesis we know that makespan (M∗) ≤ D it follows that makespan (Mi+1) ≤
D.

A similar reasoning for all rows ` and all corresponding sets ML,` and MR,`

shows that makespan(M) ≤ D for all packets. Note that we can consider the sets
ML,` andMR,` independently since the paths of the two packets M ∈ ML,` and
M ′ ∈ MR,` do not share any edges on their path. Since D is a lower bound for
the length of an optimal routing schedule, we conclude that |GRID (I)| = D =
|OPT (I)|. �

2.2. 2-Approximation for G#. Now we look at the packet routing problem with
variable paths on the grid G# again with the condition that for each pair of packets
M = (s, t) and M ′ = (s′, t′) it holds that s 6= s′ and t 6= t′. Let I = (G#,M) be

such a packet routing instance. Let
↔
I =

(
↔
G#,M

)
be a packet routing instance

with the packets M on the bidirectional grid
↔
G#. First we compute the schedule
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GRID

(
↔
I

)
. Then we adjust it as follows: we split the timesteps into even (t ∈

{0, 2, 4, ...}) and odd (t ∈ {1, 3, 5, ...}) timesteps (in the analysis this will lead to an
approximation factor of two). In all even timesteps we move packets whose next
edge goes up or to the right. In all odd timesteps we move packets whose next edge
goes down or to the left. Denote by GRID2(I) the resulting schedule.

Theorem 2. Let I = (G#,M) be an instance of the packet routing problem such
that no two packets share a start- or destination vertex. Then, GRID2 (I) is a
valid schedule and it holds that |GRID2 (I)| ≤ 2 ·D ≤ 2 · |OPT (I)|.

Proof. From Theorem 1 we know that
∣∣∣∣GRID(↔I)∣∣∣∣ = D. Our adjustment of

GRID

(
↔
I

)
extends it by at most factor 2. This implies that |GRID2 (I)| ≤

2 · D ≤ 2 · |OPT (I)|. We know that GRID
(
↔
I

)
is a valid schedule. However,

it might happen that two packets use the same link in opposite directions at the
same time. In contrast to

↔
G# in G# we cannot use a link between two vertices by

two packets at a time. Since we split the timesteps into even and odd timesteps in
GRID2(I) an edge is used by at most one packet at a time. Thus, GRID2(I) is a

valid schedule since GRID
(
↔
I

)
is valid. �

2.3. Choice of the Paths. The choice of the paths in Theorem 1 might seem
pretty simple. However, in the above setting a bad choice of paths can result in an
arbitrarily high approximation factor.

Theorem 3. For every k ≥ 1 there is an instance Πk =
(
↔
G#,Mk

)
of the packet

routing problem with variable paths with the following property: Let OPTk denote an
optimal solution for Πk. There is a choice for the paths of the packetsMk such that
for the best possible makespan OPT ′k using these paths it holds that OPT ′k

OPTk
∈ Ω (k).

Proof. We define the start and destination vertices of the packets inMk as follows:
For i ≥ 0 let M′i = {((−`,−i+ `) , (`, 1 + i− `)) |` ∈ {0, ..., i}} (see Figure 2.1).
Now we define

Mk :=
k⋃
i=0

M′i

From the definition of the packets it follows that each vertex is the start and
destination vertex of at most one packet. Thus, Theorem 1 implies that OPTk =
2k − 1. Now we define paths for the packets as follows: Let M = (s, t) be a
packet, let P1 = {s, v1, v2, ..., (0, 0)} be a shortest path from s to (0, 0), and let
P2 = {(0, 1) , v′1, v

′
2, ..., t} be a shortest path from (0, 1) to t. We define the path

for M by P1 ∪ P2. From this definition it follows that all packets use the edge e =
{(0, 0) , (0, 1)} (see Figure 2.2 for a possible choice of these paths). The congestion
C is a lower bound for the minimim makespan and we have k · (k + 1) /2 packets in
total. Thus, for the optimal makespan OPT ′k which we get when we use the paths
defined above it holds that OPT ′k ≥ k · (k + 1) /2. This implies that
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Figure 2.1. The packet routing instance constructed in the proof
of Theorem 3. The white symbols denote the start vertices and
the black symbols denote the destination vertices of the packets in
the respective sets.
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Figure 2.2. An inefficient choice for the paths of the packet rout-
ing instance.
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OPT ′k
OPTk

≥ k · (k + 1)
2

· 1
2k − 1

∈ Ω(k)

�

3. Single Start Multiple Destination Vertices

If we allow only one start vertex the packet routing problem with variable paths
on arbitrary graphs can be used with the algorithm presented by Hoppe et al.
[17]. However, if we are dealing with grid graphs the graph itself is not part of the
input but it is given implicitly. Thus, this algorithm does not necessarily run in
polynomial time.

First, we present an approximation algorithm with an absolute error of 8. Then
we extend this algorithm to an 1 + ε approximation algorithm. Finally, we present
an optimal algorithm with a higher bound on the runtime than the approximation
algorithm stated before.

3.1. Absolute Approximation. Let I = (G#,M) be an instance of the packet
routing problem with variable paths such that there is only one source and arbi-
trarily many sinks. W.l.o.g. we assume that the start vertex s is located on the
grid position s = (0, 0).

Our algorithm to solve this problem has two phases: in the first phase, we
construct a schedule S0(I). For its length it holds that |S0(I)| ≤ |OPT (I)| + 8.
The schedule is invalid in the sense that some edges are used by more than one
packet at a time. We call such incidents a collision. In the second phase we modify
S0 (I) in order to obtain a schedule S (I) without collisions. We do not change the
makespan of the schedule while doing this.

3.1.1. First Phase: Initial Schedule S0(I). We split the grid into eight segments,
one segment for each point of the compass. We define

• GNW := {(x, y) |x < 0, y < 0}
• GN := {(x, y) |x = 0, y < 0}
• GNE := {(x, y) |x > 0, y < 0}
• GE := {(x, y) |x > 0, y = 0}
• GSE := {(x, y) |x > 0, y > 0}
• GS := {(x, y) |x = 0, y > 0}
• GSE := {(x, y) |x < 0, y > 0}
• GE := {(x, y) |x < 0, y = 0}

We call GN , GS , GE , and GW the flat segments and the other segments the wide
segments. See Figure 3.1 for a sketch of the segments.

For a packet M = (s, t) ∈ M denote by dist(M) be the distance between s and
t. In the algorithm, we first sort the packets inM descendingly by dist(M). Ties
are broken arbitrarily. For simplicity of notation let M1,M2, ...,Mn be an order
such that dist (M1) ≥ dist (M2) ≥ ... ≥ dist (Mn). Now we schedule the packets
exactly in this order. Since s has four adjacent edges, we schedule four packets at
each timestep. To be precise, at time t we schedule the packetsM4t, M4t+1, M4t+2,
andM4t+3 (if packets with the respective indices exist). We assign the four packets
arbitrarily to the four outgoing edges of s: these edges form the first edges on the
path of the packets.
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GN

GS

GEGW

GSEGSW

s

GNEGNW

eS

eEeW

eN

s

Figure 3.1. The segments of the grid (left) and the four outgoing
edges of s (right).

Then we iterate over the packets backwards from Mn to M1. Depending on
the first edges on their paths and the segment of their destination vertices, the
remainder of the paths is defined as follows:

Denote the outgoing edges of s by eN , eE , eS , and eW . See Figure 3.1 for a
sketch. First we describe the path of a packet for the cases that its destination
vertex lies in GSE or GE . Then the paths for destination vertices in the other
segments are obtained by applying the same rules to the grid turned by 90, 180,
or 270 degrees. Let M be a packet and let (x, y) ∈ GSE be its destination vertex.
There are the following types of paths we can choose from:

• Type S: {(0, 0) , (0, 1) , ..., (0, y − 1) , (0, y) , (1, y) , ..., (x− 1, y) , (x, y)}
• Type E: {(0, 0) , (1, 0) , ..., (x− 1, 0) , (x, 0) , (x, 1) , ..., (x, y − 1) , (x, y)}
• Type N : {(0, 0) , (0,−1) , (1,−1) , ..., (x− 1,−1) , (x,−1) ,

(x+ 1,−1) , (x+ 1, 0) , (x+ 1, 1) , ..., (x+ 1, y) , (x, y)}
• Type N ′: {(0, 0) , (0,−1) , (1,−1) , ..., (x− 1,−1) , (x,−1) , (x, 0) ,

(x, 1) , ..., (x, y − 1) , (x, y)}
• Type W : {(0, 0) , (−1, 0) , (−1, 1) , ..., (−1, y − 1) , (−1, y) , (−1, y + 1) ,

(0, y + 1) , ..., (x, y + 1) , (x, y)}
• Type W ′: {(0, 0) , (−1, 0) , (−1, 1) , ..., (−1, y − 1) , (−1, y) ,

(0, y) , ..., (x− 1, y) , (x, y)}
See Figure 3.2 for a sketch of these paths. (Note that in the figures we assume

that the x- and y-indices of the vertices increase by going down and to the right,
respectively.) IfM leaves s through eS then we set type (M) := S and similarly ifM
leaves s through eE then we set type (M) := E. For packets leaving s through the
edge eN there are two possible paths, N and N ′. In order avoid collisions we choose
the paths depending on the packetM ′ that leaves s through eE two timesteps after
M is scheduled. If the path of M ′ uses the edge e0 = ((x, 0) , (x, 1)) then we set
type (M) := N , otherwise we set type (M) := N ′. Note that this ensures that M
and M ′ do not collide. If there is no such packet M ′ we simply set type (M) := N ′.
We do a similar assignment for packets leaving s through eW .

Now let M be a packet with the destination vertex (x, 0) ∈ GE . Depending on
the edge through which M leaves s there are different paths we can choose from:

• Type E0: {(0, 0) , (1, 0) , ..., (x− 1, 0) , (x, 0)}
• Type N0: {(0, 0) , (0,−1) , (1,−1) , ..., (x− 1,−1) , (x,−1) , (x, 0)}
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N

E

S

W

s

e0

s

N′

W ′

e0

Figure 3.2. The possible paths of a packet with its destination
vertex being in GSE . The dottet line in the right figure shows the
path E.

s E0

W0

N0

S0

s

W ′0

W ′′0e0

e1

e2

Figure 3.3. The possible paths of a packet with its destination
vertex being in GE . The dottet line in the right figure shows the
path W0.

• Type S0: {(0, 0) , (0, 1) , (1,+1) , ..., (x− 1,+1) , (x,+1) , (x, 0)}
• Type W0: {(0, 0) , (−1, 0) , (−1, 1) , (−1, 2) , (0, 2) , (1, 2) , ..., (x− 1, 2) ,

(x, 2) , (x+ 1, 2) , (x+ 1, 1) , (x+ 1, 0) , (x, 0)}
• Type W ′0: {(0, 0) , (−1, 0) , (−1, 1) , (−1, 2) , (0, 2) , (1, 2) , ..., (x− 1, 2) ,

(x, 2) , (x, 1) , (x, 0)}
• TypeW ′′0 : {(0, 0) , (−1, 0) , (−1, 1) , (0, 1) , (1, 1) , ..., (x− 1, 1) , (x, 1) , (x, 0)}

See Figure 3.3 for a sketch. IfM leaves s through eE , eN , or eS we set type(M) :=
E0, type(M) := N0, or type(M) := S0, respectively. If M leaves s through eW the
situation is more complicated. Let M ′ be the packet that leaves s through eS two
timesteps after M . If the path of M ′ does not use the edge e0 = ((0, 1) (1, 1))
then we set type(M) := W ′′0 . Now assume that the path of M ′ uses the edge
e0. Then we know that M will not collide with M ′ if the path of M uses the
edge e1 = ((0, 2) (1, 2)). Now let M ′′ be the packet that leaves s through eS four
timesteps after M . If M ′′ does not use the edge e2 = ((x, y) (x, y + 1)) then we
set type(M) := W ′0. Note that this ensures that M and M ′′ do not collide. If M ′′
uses the edge e2 then we set type(M) := W0. This ensures that M and M ′′ do not
collide.
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s

(2)

(4)
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Figure 3.4. The segments of the paths N and W0 as defined in
the proof of Lemma 4.

If (x, y) /∈ GSE∪GE we use the same rules as stated above for the grid turned by
90, 180, or 270 degrees. We route the packets along the described paths. Denote by
S0(I) the resulting schedule. Unfortunately, in general S0(I) is not a valid schedule
since there might be two packets M1 and M2 that need to use an edge e = (x, y)
at the same time t (a collision).

Lemma 4. Let M1 and M2 be two packets that collide in edge e = (u, v) at time
t. Then M1 and M2 need to use e in opposite directions, i.e., at time t the packet
M1 is located at vertex u and M2 is located at vertex v or vice versa.

Proof. Let M be a packet with its destination vertex (x, y) being a wide segment.
W.l.o.g. we assume that (x, y) ∈ GSE . Let t be the time when M leaves s. First
we assume that type (M) = N . We want to prove that M is not involved in a
direct collision, i.e., a collision in which both packets need to use an edge in the
same direction at the same time. In order to show this, we split the path of M into
the five parts {(0, 0) , (0,−1)}, {(0,−1) , ..., (x+ 1,−1)}, {(x+ 1,−1) , (x+ 1, 0)},
{(x+ 1, 0) , ..., (x+ 1, y)}, {(x+ 1, y) , (x, y)} (see Figure 3.4).

(1) LetM ′ 6= M be a packet that uses the edge {(0, 0) , (0,−1)} at time t. This
implies that type (M ′) ∈ {N,N ′, N0, N

′
0, N

′′
0 } =: N and that M ′ leaves s

at time t. But this is a contradiction since M leaves s at time t and
type (M) = N . Therefore, M is not involved in a direct collision at the
edge {(0, 0) , (0,−1)} at time t.

(2) Let M ′ 6= M be a packet that is involved in a direct collision with M
on one of the edges on the path (0,−1) , ..., (x+ 1,−1). Analyzing the
possible paths of the packets (depending on their type and their destination
segment) shows that type (M ′) ∈ N andM ′ must have left s at time t which
is a contradiction.

(3) Let M ′ 6= M be a packet that has a direct collision with M on the edge
((x+ 1,−1) , (x+ 1, 0)). Analyzing all possible paths of a packet shows
that M ′ must have left s at time t and type (M ′) ∈ {N,N ′}.

(4) Let M ′ 6= M be a packet that is involved in a direct collision with M
on one of the edges on the path (x+ 1, 0) , ..., (x+ 1, y). Analyzing all
possible paths of M ′ shows that either M ′ must have left s at time t and
type (M ′) ∈ {N,N ′} (which is a contradiction) or dest (M ′) ∈ GSE and
type (M ′) = E. In the latter case we know that M ′ left s at time t + 2.
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However, from the assignment of the types of the paths we conclude that
M ′ also uses the edge e0 = ((x, 0) , (x, 1)) which is a contradiction.

(5) Let M ′ 6= M be a packet that has a direct collision with M on the edge
((x+ 1, y) , (x, y)). Analyzing all possible paths of a packet shows that M ′
must have left s at time t and type (M ′) = N .

For the other path types for M the claim can be proven similarly. Now let M
be a packet with its destination vertex being in a flat segment. W.l.o.g. we assume
that dest(M) = (x, 0) ∈ GE . Let t be the time when M leaves s. First we assume
that type (M) = W0. We split the path ofM into the six segments {(0, 0) , (−1, 0)},
{(−1, 0) , ..., (−1, 2)},{(−1, 2) , (0, 2)} ,{(0, 2) , ..., (x+ 1, 2)}, {(x+ 1, 2) , (x+ 1, 1) , (x+ 1, 0)},
{(x+ 1, 0) , (x, 0)} (see Figure 3.4).

(1) LetM ′ 6= M be a packet that uses the edge {(0, 0) , (−1, 0)} at time t. This
implies thatM ′ left s at time t and that type (M ′) ∈ {W,W ′,W0,W

′
0,W

′′
0 } =:

W which is a contradiction.
(2) Let M ′ 6= M be a packet that is involved in a direct collision with M on

one of the edges on the path {(−1, 0) , ..., (−1, 2)}. This implies that either
M ′ left s at time t and that type (M ′) ∈ W (which is a contradiction) or
that M ′ left s at time t− 2 and that type (M ′) = N ′′0 and dest (M ′) ∈ GS .
But this is a contradiction since then the algorithm would have defined the
type of M ′ to be N0 or N ′0.

(3) LetM ′ 6= M be a packet that is involved in a direct collision withM on the
edge {(−1, 2) , (0, 2)}. This implies that either M ′ left s at time t and that
type (M ′) ∈ W (which is a contradiction) or that M ′ left s at time t − 2
and that type (M ′) = N ′′0 and dest (M ′) ∈ GS . But this is a contradiction
since then the algorithm would have defined the type of M ′ to be N0 or
N ′0.

(4) Let M ′ 6= M be a packet that is involved in a direct collision with M on
the edge {(0, 2) , ..., (x+ 1, 2)}. This implies that either M ′ left s at time
t and that type (M ′) ∈ W (which is a contradiction) or that dest (M ′) ∈
GSE and type (M ′) = S. The latter implies that M ′ left s at time t + 2.
However, from the assignment of the paths we conclude that M ′ uses the
edge e0 = ((0, 1) (1, 1)) which is a contradiction.

(5) Let M ′ 6= M be a packet that is involved in a direct collision with M on
one of the edges on the path {(x+ 1, 2) , (x+ 1, 1) , (x+ 1, 0)}. This implies
that M ′ left s at time t + 4 and type (M ′) ∈ {S, S′, S0, S

′
0}. In particular,

M ′ uses the edge (x+ 1, 1) , (x+ 1, 0). But this is a contradiction since
type (M) = W0 implies that M ′ uses the edge e2 = ((x, 0) (x, 1)).

(6) Let M ′ 6= M be a packet that is involved in a direct collision with M on
the edge {(x+ 1, 0) , (x, 0)}. This implies that type (M ′) = W0 and M ′ left
s at time t.

For the other path types for M the claim can be proven similarly. �

3.1.2. Second Phase: Fixing Collisions. In this phase we adjust the schedule S0(I)
in order to obtain a schedule S(I) without collisions. Due to Lemma 4 we know
that in all collisions in S0(I) the involved packets need to use the respective edge
in opposite directions.

Let e = (u, v) be an edge in which at time t a collisions occurs. Let M1 and
M2 be the packets on the vertices u and v at time t, respectively. We modify the
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...

sb v1 v2 vN−1 vN

Figure 3.5. A sketch of the graph Gb

schedule as follows: In the schedule up to time t we exchange M1 and M2. Then
at time t the packet M1 is located on the vertex v and M2 is located on the vertex
u. We do not move either packet in the timestep [t; t+ 1]. Then in the remaining
schedule we transfer the packets through the grid as previously defined. Now the
collision at the edge e at time t is resolved. Note that no new collisions are created.
We do this procedure with all collisions. Denote by S(I) the resulting schedule.

Theorem 5. For the schedule S(I) it holds that

|S(I)| ≤ |OPT (I)|+ 8

Moreover, the length of S(I) can be computed in O (n log n).

Proof. In order to prove the approximative error we need a suitable lower bound.
In order to establish this bound, we construct an instance Ib = (Gb,Mb) of the
packet routing problem. We define N := maxM∈M dist(M). We construct Gb as a
path with N + 1 vertices. Between two vertices of the path there are four parallel
edges. Denote by sb the leftmost vertex and by v1, v2, ..., vN the other vertices of Gb
(see Figure 3.5 for a sketch). The vertex sb corresponds to s in G#. For each packet
M ∈ M we introduce one packet Mb =

(
sb, vdist(M)

)
in Mb. We claim that the

length of an optimal schedule for Ib is a lower bound for |OPT (I)|. Let OPT (I)
be an optimal schedule for I. We want to construct a schedule Sb for Ib such that
|Sb| ≤ |OPT (I)|. Consider the order in which the packets leave s in OPT (I). We
schedule each packet Mb ∈ Mb to leave sb at the same time as its corresponding
packet M ∈ M is scheduled to leave s in OPT (I). Once a packet has left sb we
move it directly to its destination without any delay. This is possible since at most
four packets can leave sb at a time and there are four edges connecting two adjacent
vertices. In order to prove that |Sb| ≤ |OPT (I)| we show the following invariant:
Let d (M, t) denote the distance of a packet M ∈M to its destination at time t in
OPT (I). Similarly, denote by db (Mb, t) the distance of a packet Mb ∈ Mb to its
destination at time t in Sb. We claim that d (M, t) ≥ db (Mb, t) for all t. Let tM be
the time at which M and Mb leave s and sb, respectively. For all t < tM it holds
that d (M, t) = dist(M) = db (Mb, t). Since after time tM the packet Mb moves one
edge per timestep it holds that db (Mb, t+ 1) = min {db (Mb, t)− 1, 0}. Since for
d (M, t) it holds that d (M, t+ 1) ≥ min {d (M, t)− 1, 0} it is possible to show by
induction that d (M, t) ≥ db (Mb, t) for all t. The schedule OPT (I) is finished at
time t if and only if d (M, t) = 0 for all packets M . Similarly, the schedule Sb is
finished at time t if and only if d (Mb, t) = 0 for all packets Mb. We conclude that
|Sb| ≤ |OPT (I)| and, therefore, |OPT (Ib)| ≤ |OPT (I)|. Since Gb is a directed
path, Ib can be solved optimally using the farthest-destination-first-algorithm[26].

First, we computed the (invalid) schedule S0. In S0 the packets are scheduled
according to the distance to their respective destination vertices. Moreover, for
each packet M = (s, t) we chose a path which is at most eight edges longer than
a shortest path between s and t (paths of type W0 have the maximum detour of
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8). This implies that |S0| ≤ |Ib| + 8 ≤ |OPT (I)| + 8. Since in the construction
of S from S0 the length of the schedule does not change it follows that |S(I)| =
|S0(I)| ≤ |OPT (I)|+ 8. For the computation of |S0 (I)| we first order the packets
descendingly by dist (M). This can be done in O (n log n). Let M1,M2, ...,Mn be
the resulting order. We partition the packets in setsMk of four packets each with
Mk = {M4k,M4k+1,M4k+2,M4k+3}. In order to determine the type of the path of
a packet M we need to check the type of at most two packets which are scheduled
after M . Doing this for all packets requires O (n) time. Denote by |path(M)| the
length of the path of a packet M . In the schedule, a packet M ∈Mk is delayed for
k timesteps before it leaves the source. Thus, it holds that

|S0| = max
k

max
M∈Mk

|path(M)|+ k

The sorting of the packets dominates the runtime of the computation. Therefore,
|S0| can be computed in O (n log n). �

Corollary 6. We can compute an upper bound S̄(I) for the length of S(I) with the
property that

|S(I)| ≤
∣∣S̄(I)

∣∣ ≤ |OPT (I)|+ 8
in O (k log k) time where k denotes the number of destination vertices.

Proof. In order to achieve a runtime ofO (k log k) we construct the orderingM1,M, ...,Mn

implicitly by ordering the destination vertices by their distance to the origin. This
can be done in O (k log k). For each sink tk let last (tk) be the time in the schedule
S0 when the last packet with destination tk leaves s. Let dist (tk) be the distance
between s and tk. Then it holds that

|S(I)| = |S0(I)| ≤ max
k

dist (tk) + last (tk) + 8 =:
∣∣S̄(I)

∣∣
The value of

∣∣S̄(I)
∣∣ can be computed in O (k) time when the ordering of the destina-

tions is given. For proving the absolute error recall the lower bound Sb established
in the proof of Theorem 5. It holds that |Sb| = maxk dist (tk)+ last (tk) ≤ OPT (I).
This implies that

∣∣S̄(I)
∣∣ ≤ |OPT (I)| + 8. Since |S0(I)| ≤ |Sb| + 8 we have that

|S(I)| ≤
∣∣S̄(I)

∣∣. �

3.2. Approximation Scheme. We can improve the algorithm described above
to an algorithm which finds a schedule Sε(I) such that |Sε (I)| ≤ |OPT (I)| + 8
and |Sε (I)| ≤ (1 + ε) |OPT (I)|. The idea is to solve instances which allow short
schedules optimally. Instances whose makespan is provably long are being solved
using the algorithm described above.

Let ε > 0 and let n be the number of packets in I. First we compute the dilation
D which is the maximum distance of a packet M = (s, t) between s and t. In an
instance of the packet routing problem with variable paths the congestion C is not
immediately clear since it depends on the chosen paths. However, here we obtain
a lower bound for C by Cmin := n/4. Clearly, Cmin and D are lower bounds for
OPT (I).

If D ≤ 8/ε and Cmin ≤ 8/ε we compute the optimal schedule directly. Note
that in this case n + D − 1 ≤ 40

ε is an upper bound for the length of the optimal
schedule. Therefore, only grid cells whose distance to s is at most 40

ε need to be
considered for this computation. Also, for the number of packets n it holds that
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n ≤ 32
ε (since n/4 = Cmin ≤ 8/ε). If D > 8/ε or Cmin > 8/ε we compute S(I)

using the algorithm described above and output it. Denote by Sε(I) the resulting
schedule.

Theorem 7. For the schedule Sε(I) it holds that

|Sε(I)| ≤ |OPT (I)|+ 8

and

|Sε(I)| < (1 + ε) · |OPT (I)|

Moreover, the length of Sε(I) can be computed in O
(
f
(

1
ε

)
+ n log n

)
time for an

exponential function f .

Proof. If D ≤ 8/ε and Cmin ≤ 8/ε then the claims for the approximation guarantee
are clear, since we compute an optimal schedule. For the runtime note that from
the above argumentation the routing instance has only O

(
1
ε

)
packets. Also, only

O
(

1
ε2

)
grid cells need to be considered (the other grid cells are further away from

the origin than our upper bound on the length of an optimal schedule). Assuming
that ε is constant we conclude that there are only a constant number of possible
distributions of the packets on the grid cells we need to consider. Thus, the optimal
schedule for I can be computed in constant time using e.g. breadth-first search. If
D > 8/ε or Cmin > 8/ε then the first claim follows from Theorem 5. In order to
show the second claim we conclude from

8
ε

< max {Cmin, D} ≤ OPT (I)

that

|Sε(I)| ≤ |OPT (I)|+ 8
< |OPT (I)|+ ε · |OPT (I)|
= (1 + ε) · |OPT (I)|

�

Corollary 8. We can compute an upper bound S̄ε(I) for the length of Sε(I) with
the property that

|Sε(I)| ≤
∣∣S̄ε(I)

∣∣ ≤ |OPT (I)|+ 8

and ∣∣S̄ε(I)
∣∣ ≤ (1 + ε) · |OPT (I)|

in O
(
f
(

1
ε

)
+ k log k

)
time where k denotes the number of destination vertices.

Proof. If D ≤ 8/ε and Cmin ≤ 8/ε we compute an optimal schedule in O
(
f
(

1
ε

))
.

Otherwise we do the same computation as described in the proof of Corollary 6. �
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3.3. Optimal Algorithm. In this section we present an optimal algorithm for
solving the packet routing problem with one start and many destination vertices
on the grid. It is based on the algorithm by Hoppe et al. [17] which solves the
quickest transshipment problem with many sources and many sinks on arbitrary
graphs in polynomial time. We will see that the flows computed by their algorithm
are integral (assuming that the capacities and transit times of the given graph are
all integral). Thus, the algorithm can be used to solve the packet routing problem
with one start vertex optimally.

In the case of grid graphs, the number of vertices which need to be considered
for solving the problem might be exponential in the input size (note that the grid
is given implicitly and is not part of the input). Thus, the algorithm by Hoppe
and Tardos does not yield a polynomial time algorithm for this setting. However,
we show how their algorithm can be adjusted to obtain an algorithm which solves
the packet routing problem on the grid with a single start vertex optimally in
polynomial time.

First we give an outline of the algorithm presented in [17]. Then we show how
it can be adjusted in order to obtain a strongly polynomial time algorithm for the
packet routing problem on the grid with a single start vertex. The general idea is
the following: As part of the computation it is necessary to compute minimum cost
flows on the input graph. Instead of computing these flows on the whole grid, we
compute them on subgraphs of the grid which result from considering only certain
rows and columns. We will denote those graphs by thinned out grids. We will show
that the resulting flows have the same value as the optimal flows on the entire grid.

As a general concept we introduce dynamic flows over time as defined in [17].
Let G = (V,E) be a graph and let maps τ and u denote the integral transit times
and the capacities on the edges, respectively. Let T ≥ 0 be an integer. The time-
expanded graph G(T ) = (V (T ), E(T )) is defined as follows: each vertex y ∈ V has
T + 1 copies in V (T ), denoted by y(0), ..., y(T ). Each edge yz ∈ E has T −|τyz|+ 1
copies in E(T ), each with capacity uyz, denoted by y (θ) z (θ + τyz) for any time
θ such that both y (θ) and z (θ + τyz) are in V (T ). In addition, E(T ) contains
a holdover edge y (θ) y (θ + 1) with infinite capacity for each vertex y and time
θ = 0, ..., T − 1.

Definition 9 (Flows over time). A dynamic flow f with time horizon T is a static
flow in G(T ).

3.3.1. Test for Feasibility of Dynamic Transshipment Problem. We sketch the al-
gorithm presented in [17] for testing whether an instance of the dynamic transship-
ment problem has a solution within a timebound T . Let G = (V,E) be a directed
graph with non-negative capacities ue and integral transit times τe for each edge
e ∈ E and a set of terminals S ⊆ V (the sources and the sinks). W.l.o.g. as-
sume that the sources have no ingoing edges and the sinks have no outgoing edges.
Denote by N = (G, u, τ, S) this dynamic network. Let v : S → R define the sup-
plies and demands of the terminals. We call an instance (N , v, T ) of the dynamic
transshipment problem feasible if there is a dynamic flow which satisfies the given
supplies and demands within T timesteps. Denote by U the maximum capacity
of an edge. Let MCF (m,n) be the time needed to compute a static mincost-flow
in a graph with m = |E| edges and n = |V | vertices. The algorithm presented
in [17] for checking whether a dynamic transshipment problem (N , v, T ) is feasible
needs a subroutine which finds a lexicographically maximum dynamic flow within
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a timebound T . Let f be a dynamic flow with time horizon T . Let f−(v) be the
amount of flow entering a terminal v between t = 0 and t = T . Similarly, let f+(v)
be the amount of flow leaving v in that time period. We define the flow value f(v)
for v by f(v) := f+(v)− f−(v).

Definition 10 (Lexicographically Maximum Dynamic Flow Problem). We are
given a time horizon T and an ordering for the terminals s1, s2, ..., sk. The ob-
jective is to find a dynamic flow f with time horizon T such that for all other
dynamic flows f ′ with time horizon T it holds that (f (s1) , f (s2) , ..., f (sk)) is not
lexicographically smaller than (f ′ (s1) , f ′ (s2) , ..., f ′ (sk)).

Theorem 11 (Hoppe et al. [17]). Checking whether a dynamic transshipment prob-
lem (N , v, T ) with k terminals is feasible can be done in O

(
k2MCF (m,n) log (nTU)

)
.

Proof. We give only an outline of the proof. For full details see [17] and [16]. We
discuss the steps that are needed to understand how we adjust this algorithm for
the graph G#.

We use Vaidya’s algorithm [33] on the polytope P ⊂ R of all transshipment
supplies and demands v′x for x ∈ S, such that (N , v′, T ) is feasible. The algorithm
needs O (kL) iterations, each consisting of the inversion of a k × k matrix and one
optimization over P. The latter is done by a routine which computes a lexicograph-
ically maximum dynamic flow for N for a given ordering of the terminals. This
routine needs k min-cost flow computations (see Section 3.3.3). It can be shown that
L ∈ O (log (nTU)). This gives a total runtime of O

(
k2MCF (m,n) log (nTU)

)
. �

3.3.2. Construction of an Optimal Dynamic Flow. Let T ∗ be the minimum value
for T such that (N , v, T ) is feasible. In the sequel we give a sketch of the algorithm
presented in [17] for computing a flow for (N , v, T ∗) which satisfies all demands.
Then we discuss why the resulting flow is integral if all capacities in the network
are integral.

First we define a dynamic network N ′ by N ′ := N . The set of sources in N ′ is
constructed by adding a source x0 for each source x ∈ S and an edge (x0, x) with
infinite capacity and zero transit time. Likewise, we add a sink y0 for each sink
y ∈ S and an edge (y, y0) with infinite capacity and zero transit time. The supply
map v′ is defined by v′ (z0) = v (z) for all sources and sinks z ∈ S. Denote by S′
the set of terminals in N ′.

The algorithm consists of k− 1 iterations in which the network N ′ and the map
v′ are adjusted. In each iteration, we take two sets R,Q ⊂ S′ and pick a terminal
s0 ∈ R \ Q. We describe the necessary steps if s0 is a source, sinks are treated
symmetrically. Let s be the original source in S which corresponds to s0. We
assume that there are i − 1 other sources in S′ which are adjacent to s. Under
certain conditions, we add two new sources si and si+1 to S′. Also, we add an
edge (si, s) with zero transit time and capacity α and an edge (si+1, s) with unit
capacity and transit time δ. Using binary searches, the values chosen for α and δ
are integral.

Let N ′ and v′ denote the resulting network with its demands. By construction,
if N and v are integral, then N ′ and v′ are integral, too. In order to obtain the
desired flow for (N , v, T ) we compute a lexicographically maximum dynamic flow in
N ′ with a certain ordering of the terminals. In Theorem 13 we will show that if the
given network is integral then the computed lexicographically maximum dynamic
flow is also integral. Thus, our computed dynamic flow is integral.
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3.3.3. Lexicographically Maximum Dynamic Flow. Now we sketch the algorithm
presented in [17] for computing a lexicographically maximum dynamic flow in a
network N within a timebound T . It is used as a subroutine in the algorithm
presented in Sections 3.3.2 and 3.3.1. First, we adjust the network N by adding
a super source ψ and edges (ψ, si) for all sources si with infinite capacity and
zero transit time. Denote by N k+1 the resulting network and denote by gk+1 the
zero flow in this network. In the sequel when computing minimum cost flows and
circulations, we will interpret the transit times as costs.

The algorithm consists of k iterations indexed descendingly. In iteration i ∈
{k, ..., 1} we consider the terminal si. We construct the network N i and the flows
f i and gi as follows: If si is a sink, we add an edge (si, ψ) to N i+1 with infinite
capacity and transit time − (T + 1). We compute a minimum cost circulation f i in
the residual network of gi+1 in N i. Then we define gi := f i + gi+1. We will show
later that equivalently we could have computed gi as a minimum cost circulation
in N i and could have defined f i := gi − gi+1. If si is a source, then we remove
(ψ, si) from N i+1 in order to obtain N i. Then we compute a maximum flow f i

from ψ to si with minimum cost in the residual network of gi+1 in N i. We define
gi := f i + gi+1. We will show later that equivalently we could have computed gi
as the minimum cost circulation in N i and could have defined f i := gi − gi+1.
Each flow f i is split into a standard chain decomposition ∆i which is later used in
order to compute the desired flow (see [17] for details). All these decompositions
are accumulated into a chain decomposition Γ :=

⋃
i ∆i.

As a consequence, for the flow f(e, t) on an edge e at a time t it holds that
f (e, t) =

∑
j λj,thj for flows hj which result from the chain decompositions ∆i and

coeffients λj,t ∈ Z. W.l.o.g. we assume that all computed minimum cost flows are
integral if optimal integral solutions exist.

Theorem 12 (Hoppe et al. [17]). A lexicographically maximum dynamic flow with
k sources and sinks can be computed via k minimum cost flow computations.

Theorem 13. If in N all transit times, capacities and supplies and demands are
integral, the resulting lexicographically dynamic flow is also integral.

Proof. If N is integral, then in all minimum cost computations integral solutions
exist. The claim then follows from the fact that f (e, t) =

∑
j λj,thj for integral

coefficients λj,t. �

3.3.4. Solving the Packet Routing Problem on G# with one Start Vertex Optimally.
The packet routing problem is closely related to the dynamic flow problem. In
particular, with the techniques described above we can solve the packet routing
problem on G# with variable paths assuming that there is only a single start vertex.
However, we need some adjustments since the number of vertices which need to be
considered for the computation might be exponential in the input length. We
will present an algorithm with runs in O

(
k6n

)
where k denotes the number of

destination vertices and n the length of the overall input.
Let I# = (G#,M) be an instance of the packet routing problem with variable

paths on G# with a single start vertex. W.l.o.g. we assume that the source is
located on the grid position s = (0, 0). First, we state the following theorem which
we will prove in Section 3.3.5.
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Theorem 14. Let N# = (G#, u, τ, S) be a dynamic network with ue = 1 and
τe = 1 for all edges e, only one source vertex s, and k sink vertices. Checking
whether the instance (N#, v, T ) of the dynamic transshipment problem is feasible
can be done in O

(
k6 log (Tk)

)
.

Now we can describe the algorithm for computing the optimal makespan T ∗ for
I. First we compute a constant T with OPT ≤ T ≤ OPT + 8 (see Corollary 6).
This implies that for T ∗ it holds that T − 8 ≤ T ∗ ≤ T . Let S be a set consisting of
the start vertex s and the destination vertices of the packets. We define a dynamic
network N# by N# = (G#, u, τ, S) with ue = 1 and τe = 1 for all edges e. The
map v : S → R is defined by

• v (si) = − |Mi| for destination vertices si andMi = {M = (s, t) |t = si}
• v(s) = |M| for the single start vertex s

For each T ′ with T − 8 ≤ T ′ ≤ T we test the feasibility of (N#, v, T
′) using the

algorithm which we will present in Section 3.3.5. Denote by T ∗ the minimum T ′

such that (N#, v, T
′) is feasible.

Theorem 15. It holds that T ∗ is the minimum time needed to solve the instance
I of the packet routing problem. Moreover, T ∗ can be computed in O

(
k6n

)
.

Proof. Since in (N#, v, T
∗) all capacities, transit times and demands are integral

the algorithm presented in Section 3.3.2 constructs an integral dynamic flow for
(N#, v, T

∗). Thus, this dynamic flow immediately yields a solution for the packet
routing problem. This implies that T ∗ is the minimum time needed to solve I.

Computing T can be done in O (k log k) (see Corollary 6). This is dominated
by the feasibility check for the respective values of T which takes O

(
k6 log (Tk)

)
steps (note that we check only eight values for T ′). Now let xi and yi be the x-
and y-coordinates of a sink si. We define N := maxi {|xi| , |yi|}. Denote by n the
length of the overall input. Since all xi and yi are part of the input, we know that
logN ≤ n. The length of an optimal routing schedule is bounded by 2N + |M|
since there is always a schedule of that length. This implies that T ≤ 2N + |M|+ 8
and thus O

(
k6 log (Tk)

)
⊆ O

(
k6n

)
.

�

3.3.5. Test for Feasibility in G#. Let G# = (V#, E#) be the infinite grid graph,
let S ⊂ V# denote the set containing the sink vertices and the single start vertex
s. We define ue = 1 and τe = 1 for all edges e. Then N# = (G#, u, τ, S) is a
dynamic network. Denote by v : S → R the demand/supply of each terminal and
by T the time horizon. We present an algorithm for testing whether (N#, v, T ) is
a feasible instance of the dynamic transshipment problem. As a subroutine we will
need an algorithm which computes a lexicographically maximum flow in G#. We
will present such an algorithm in Section 3.3.6. By definition, the graph G# is an
undirected graph. In the sequel, we will interpret it as the directed graph obtained
by replacing each undirected edge by the standard gadget depicted in Figure 3.6.
For simplicity we will still use the vertex and edge notation from G#.

Theorem 16. Computing a lexicographically maximum flow in G# with one source
and k sink vertices can be done in O

(
k5
)
.

We will prove this theorem in Section 3.3.6.
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u v u v

u′

v′

Figure 3.6. We replace of each undirected edge (u, v) in G# by
the gadget seen on the right. The edge (u′, v′) has the same capac-
ity and transit time as (u, v). All other edges in the gadget have
infinite capacity and zero transit time.

Theorem 17. Let N# = (G#, u, τ, S) be a dynamic network with ue = 1 and τe = 1
for all edges e and with only one source vertex s and k sink vertices. Checking
whether the instance (N#, v, T ) of the dynamic transshipment problem is feasible
can be done in O

(
k6 log (Tk)

)
.

Proof. We adjust the algorithm presented in the proof of Theorem 11. Again, we
use Vaidya’s algorithm [33] on the polytope P ⊂ R of all transshipment supplies
and demands v′x for x ∈ S, such that (N#, v

′, T ) is feasible. In each of the O (kL)
iterations, we need to invert a k × k matrix and compute a lexicographically max-
imum dynamic flow for G# with timebound T and the terminals S. Note that we
do not need to compute the flow itself but only its flow values. The runtime of the
matrix inversion is dominated by the computation of the flow (which needs O

(
k5
)

steps). For our special case we will show later that L ∈ O (log (Tk)). Thus, we
obtain a total runtime of O

(
k6 log (Tk)

)
.

In [16] it was proven that L ∈ O (log (nUT )) (there, U denotes the maximum
capacity of an edge). Here we show how this reasoning can be adjusted to show that
L ∈ O (log (Tk)) in our special case. In Lemma 7.1.4 in [16] it was shown that P ⊆
BZ∞

(
0,
√
knU(T + 2)

)
. In our setting no terminal can receive or send more than

four packets per timestep, from time t = 0 until time t = T . This implies that P ⊆
BZ∞ (0, 4(T + 1)) and thus P ⊆ BZ∞ (x̂, 4(T + 2)) and P ⊆ BZ2

(
x̂, 4
√
k(T + 2)

)
.

With Lemma 7.1.13 this proves that P ⊇ BZ2

(
0, 1√

k4(T+2)

)
. Lemma 7.1.10 shows

that P∗Zx̂ ⊆ BZ2 (0, 2k). We choose L ∈ Θ (log (Tk)). This ensures that P is
contained in a ball of radius 2L and it contains a ball of radius 2−L. �

3.3.6. Lexicographically Maximum Dynamic Flow in G#. Now we present an algo-
rithm for solving the lexicographically maximum dynamic flow problem in G# with
one source and k sink vertices. This problem needs to be solved in a subroutine
in the proof of Theorem 17. Since the number of vertices which are necessary to
consider might be exponential in the input length, the algorithm described in Sec-
tion 3.3.3 does not immediately yield a polynomial time algorithm for our problem.
In order to obtain polynomial runtime, we give an alternative algorithm for the
minimum cost flow computations.

Since the algorithm presented in [17] (sketched in Section 3.3.3) assumes that
the sources have no ingoing edges and the sinks have no outgoing edges we adjust
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Figure 3.7. The network Ḡ which results from adjusting G# such
that the source s′ has no ingoing edges and the sinks {s′1, s′2, ..., s′k}
have no outgoing edges.
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Figure 3.8. The network for the OSMCF-problem. The edge
(s′, s) has length 0 and the edges (si, ψ) have length − (T + 1).
All other edges have unit length.

the graph G# slightly: we added the new source vertex s′ and the directed edge
(s′, s). Also, for each sink si we add a new sink s′i and a directed edge (si, s′i). All
new edges have infinite capacity and zero transit time. Denote by Ḡ the resulting
graph. We define s′ to be the only source vertex and S = {s′1, s′2, ..., s′k} to be the
set of sinks. See Figure 3.7 for a sketch. The mincost-flow instances which need to
be solved are equivalent to the following problem:

Definition 18. The One-Source-MinCostFlow-Problem (OSMCF) is defined as
follows: Let Ḡ be the adjusted grid graph as defined above. Let s ∈ V# be a source
and let S ⊂ V# be a set of sink vertices. We introduce a super sink ψ and for each
s̄ ∈ S we introduce an edge es̄ := (s̄, ψ) with cost c (es̄) = − (T + 1) and infinite
capacity. Let G′ be the resulting graph. The problem is to find a minimum cost
flow with source s′ and sink ψ in G′.

See Figure 3.8 for a sketch of the resulting network.

Lemma 19. All mincost-flow computations in the lexicographically maximum dy-
namic flow algorithm (presented in Section 3.3.3) applied to G# with a single source
vertex can be reduced to the OSMCF-problem.
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Figure 3.9. The network N i in the setting of the grid graph with
only one source vertex.

Proof. Note that before the algorithm is applied to G# the network is adjusted to
Ḡ as defined above. Consider the i-th iteration of the lexicographically maximum
dynamic flow algorithm presented in Section 3.3.3. In this iteration, the algorithm
takes the terminal s′i. First we show that the minimum-cost flow computation in
this iteration can be equivalently done by computing a standard minimum cost
flow in the network N i. Then we show that this minimum cost flow problem is
equivalent to an instance of the OSMCF-problem.

If s′i is a sink, the algorithm adds an edge (s′i, ψ) with transit time − (T + 1) to
create N i. Then it computes a minimum cost circulation f i in the residual network
of gi+1 in N i, denoted by N i

gi+1 . We claim that this is equivalent to computing
gi as a minimum cost circulation in N i and defining f i := gi − gi+1. Let ĝi be a
minimum cost circulation in N i and define f̂ i := ĝi−gi+1. We claim that f̂ i is also
a minimum cost circulation in N i

gi+1 . Denote by cost(f) the cost of a flow f . The
flow f̂ i is a flow in N i

gi+1 since ĝi is a flow in N i. So now assume on the contrary

that cost
(
f̂ i
)
> cost

(
f i
)
. We conclude that

cost
(
f̂ i
)

> cost
(
f i
)

⇔ cost
(
ĝi − gi+1

)
> cost

(
f i
)

⇔ cost
(
ĝi
)
− cost

(
gi+1

)
> cost

(
f i
)

⇔ cost
(
ĝi
)

> cost
(
f i
)

+ cost
(
gi+1

)
⇔ cost

(
ĝi
)

> cost
(
f i + gi+1

)
But f i + gi+1 is a flow in N i which is a contradiction since ĝi is a flow in N i with
minimum cost.

Now we want to show that the computation of a minimum cost circulation in
N i can be reduced to solving an instance of the OSMCF-problem. The network
N i for our setting with a single source vertex is sketched in Figure 3.9 (note that
depending on the iteration the edge (ψ, s′) might not exist). If the edge (ψ, s′) does
not exist, then all edges with negative costs point to ψ and ψ has no outgoing edges.



PACKET ROUTING ON THE GRID 23

Therefore, the minimum cost circulation is simply the zero flow. Now assume that
the edge (ψ, s′) exists. It has infinite capacity and zero transit time. Thus, the
given problem is equivalent to finding a minimum cost flow with source s′ and sink
ψ in the network N i without the edge (ψ, s′). The latter is an instance of the
OSMCF-problem.

If s′i = s′, we delete the edge (ψ, s′) from N i+1 to create N i and compute a
minimum-cost maximum flow f i from ψ to s′ in N i

gi+1 . We show that equivalently
we could have computed gi as the minimum cost circulation in N i and could have
defined f i := gi − gi+1. Let ĝi be a minimum cost circulation in N i and define
f̂ i := ĝi − gi+1. We claim that f̂ i is also a minimum-cost maximum flow from
ψ to s′ in N i

gi+1 . With the same arguments as above we can prove that f̂ i is a

flow in N i
gi+1 and that cost

(
f̂ i
)
≤ cost

(
f i
)
. Denote by

∣∣∣f̂ i∣∣∣
s′

the amount of flow

entering s′ in f̂ i. Since by assumption s′ has no ingoing edges in N i it follows
that ĝi ((s′, s)) = 0. This implies that

∣∣∣f̂ i∣∣∣
s′

= gi+1 ((s′, s)) which is the maximum

amount of flow which can enter s′ in N i
gi+1 (again, since s′ has no ingoing edges in

N i).
If we want to compute a solution for the lexicographically maximum dynamic

flow problem on G# there is only a single source s′. Thus, if s′i = s′ all edges
with negative costs in N i point to ψ and ψ has no outgoing edges. Therefore, the
solution of the minimum cost circulation in N i is simply the zero flow. �

In Section 3.3.8 we will present a method to solve the OSMCF-problem in O
(
k4
)
.

Theorem 20. The OSMCF-problem can be solved in O
(
k4
)
time where k denotes

the number of sinks in the network.

Thus, we obtain the following theorem:

Theorem 21. Computing a lexicographically maximum dynamic flow in G# and
its flow values can be done in O

(
k5
)
.

Proof. As stated in Theorem 12 the computation of a lexicographically optimal
dynamic flow needs k mincost flow computations. From Lemma 19 we know that
each of these mincost flow computations can be reduced to solving an instance of
the OSMCF-problem in G#. The latter can be done in O

(
k4
)
(see Theorem 27).

Since our algorithm needs k iterations, for this we obtain a runtime of O
(
k5
)
. As

we will see in Section 3.3.8 the resulting flow will be given in a simplified grid
network with only O

(
k2
)
edges. Each chain flow in ∆i (see [17] for details) has a

start and an end terminal. Since each terminal vertex has degree four in G#, we
conclude that

∣∣∆i
∣∣ ∈ O (k) and thus |Γ| ∈ O

(
k2
)
.

When we want to compute the flow values for each terminal, we determine for
each chain flow in Γ its start and end terminal and its length. Since the length of
each path in Γ is bounded by O

(
k2
)
this can be done in O

(
k4
)
. For a terminal x′

denote by Γx′ the chain flows which use the edge (x′, x) (i.e., chain flows which start
in x′) and by Γ′x′ chain flows which use the edge (x, x′) (i.e., chain flows entering
x′). Then the flow value f (x′) for the terminal x′ is given by

f (x′) =
∑
γ∈Γx′

T −
∑
γ′∈Γ′

x′

(T − τ (γ′))
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with τ (γ′) being the length of γ′. (Note that in our setting each chain flow has
unit value since all edges in G# have unit capacity). This gives an overall runtime
of O

(
k5
)
for the computation of a lexicographically maximum flow in G# and its

flow values. �

3.3.7. Generic Algorithm for Solving the OSMCF-Problem. Now we show how the
OSMCF-problem can be solved. First, we give a generic algorithm. In the next sec-
tion we present an efficient implementation which allows the runtime to be bounded
by a polynomial in the number of sinks in the network.

As a special case of the general mincost-flow problem the OSMCF-problem can
be solved by finding negative cycles and paths from s to ψ with negative cost in the
residual network and augmenting the flow along these cycles/paths. (Note that the
edge (s′, s) has infinite capacity and zero cost and therefore it can be neglected.)
If there are no paths or cycles with negative costs in the residual network we know
that the computed flow is optimal. We want to augment the flow always along
the path from s to ψ with minimum cost in the residual network. We will show
that then it is not necessary to augment the flow along cycles. Moreover, we will
show that we need at most four path augmentations. Each of these paths can be
found using a shortest path computation in the residual network. We compute the
mincost flow f as follows:

We define f0 to be the zero flow. In iteration i (for 0 ≤ i ≤ 3) we compute
a shortest path Pi in G′fi

from s to ψ. If c (Pi) ≥ 0 we do nothing (Pi is not an
augmenting path). If c (Pi) < 0 we augment the flow fi computed so far along Pi
and obtain fi+1. Finally, we output f := f4. Note that all flows are integral since
all capacities in the network are integral.

Lemma 22. Denote by fi the computed flow after the i-th iteration. It holds that
G′fi

does not contain any negative cycles.

Proof. We prove the lemma by induction. The flow f0 is the zero-flow. In Gf0
all edges with negatives weights are directed to ψ and there are no outgoing edges
from ψ. Thus, there are no negative cycles in Gf0 . Now assume that Gfi

does not
contain any negative cycles. From the algorithm we know that Pi+1 is a shortest
path from s to ψ in Gfi

. If c (Pi+1) ≥ 0 then the algorithm did not augment fi along
Pi+1 and we have that Gfi+1 = Gfi

. Thus, the claim follows from the induction
hypothesis. So now assume that c (Pi+1) < 0. Assume on the contrary that Gfi+1

contains a negative cycle C.
Let us consider C ′ = Pi+1 + C in Gfi

. Since C ′ is the sum of a path from s to
ψ and a cycle we conclude that C ′ can be expressed as the disjoint sum of a path
P ′i+1 from s to φ and a set of cycles C. From the induction hypothesis we know that
Gfi does not contain any negative cycles and therefore all cycles in C have positive
cost. This implies that c

(
P ′i+1

)
≤ c (C ′) = c (Pi+1 + C) < c (Pi+1) and therefore,

Pi+1 was not the shortest path from s to ψ which is a contradiction. �

Lemma 23. There is no augmenting path from s to ψ in G′f4 .

Proof. Assume on the contrary that there is an augmenting path P from s to ψ
in G′f4 . First we discuss the case that there is an iteration i in which no path Pi
from s to ψ with c (Pi) < 0 could be found. This implies that in all iterations
i′ ≥ i no path Pi′ from s to ψ with c (Pi′) < 0 could be found and thus there is no
such augmenting path in G′f4 . Now we discuss the case that in all iterations i an
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Figure 3.10. The thinned grid graph G#(S) for the vertices S =
{s, s1, s2, s3}. The dottet lines denote the edges of the underlying
full grid. The numbers denote the lengths of the respective edges.

augmenting path from s to ψ could be found. Since the out-degree of s is four and
all flows in the computation are integral it follows that all outgoing edges of s are
saturated. Thus, there can be no augmenting path from s to ψ in G′f4 . �

Theorem 24. The flow f is a solution for the OSMCF-problem.

Proof. Follows by standard flow arguments from Lemmas 22 and 23. �

3.3.8. Implementation for Solving the OSMCF-Problem. Since G# = (V#, E#) is
an infinite graph we need some adjustments in order to be able to actually run the
computation above. We employ a technique which we call thinned out grid graphs.
The intuition is the following: Given a set of vertices S ⊂ V#, we create a grid
graph G#(S) whose rows and columns are exactly the rows and columns of the
vertices in S. The lengths of the edges are set according to the distance of their
respective end-vertices in G#. See Figure 3.10 for an example.

Formally, let R(S) and C(S) be the sets of the row and column indices of the
vertices in S. We define V#(S) := {(x, y) |x ∈ C(S) ∧ y ∈ R(S)} and E# (S) :=⋃
i∈REH,i∪

⋃
j∈C EV,j with EH,i := {{(cj , i) , (cj+1, i)} |1 ≤ j ≤ C − 1} and EV,j :=

{{(j, ri) , (j, ri+1)} |1 ≤ i ≤ R− 1}. We define the cost of an edge e = {(cj , i) , (cj+1, i)}
by c(e) = (cj+1 − cj) and analogously for an edge e′ = {(j, ri) , (j, ri+1)} by
c (e′) = ri+1 − ri. We define G#(S) := (V#(S), E#(S)). We call a graph G a
thinned out grid graph if there is a set S such that G = G#(S). Note that the
resulting graph is again a thinned out grid graph.

Now let G = (V,E) be a thinned out grid graph. We define an operation
dense (G) which, intuitively, makes the thinned out grid a little “denser” by adding
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s
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s2

Figure 3.11. The graph dense (G#(S)) for S = {s, s1, s2, s3}.
The dottet lines denote the edges of the underlying full grid. Ver-
tices which already existed in G#(S) are marked in gray.

new rows and columns next to already existing ones. We define
V ′ := {(x− 1, y − 1) , (x, y) , (x+ 1, y + 1) | (x, y) ∈ V } and dense (G) := G# (V ′).
See Figure 3.11 for an example.

Now we present the variant of the generic algorithm described in Section 3.3.7:
We define the graphsG0, G1, G2, G3 byG0 := G# (S ∪ {s}) andGi+1 := dense (Gi).
For each graph Gi we define the graph G′i by introducing a super sink ψ and for
each s̄ ∈ S we introduce an edge es̄ := {s̄, ψ} with cost c (es̄) = − (T + 1) and
infinite capacity. In the i-th iteration of the original algorithm, we were looking for
an augmenting path in G′fi

. Instead, now we search for an augmenting path in the
residual network of fi in G′i (denoted by G′i,fi

). In the following lemma we show
that this is sufficient in order to find a path of minimum length. The rest of the
algorithm remains unchanged.

For technical reasons we define the notion of detailed thinned out grid graphs.
For a vertex v we define r(v) to be its row and c(v) to be its column index.

Definition 25 (Detailed Thinned Out Grids). Let G be a thinned out grid graph.
Then the graph detail (G) = (Vdetail, Edetail) is defined as follows: Let R and
C be the row and column sets of G and let G# = (V#, E#). We define Vdetail :=
{v ∈ V#|r(v) ∈ R ∨ c(v) ∈ C} and Edetail := {e = (u, v) ∈ E#|u ∈ Vdetail ∧ v ∈ Vdetail}
(see Figure 3.12).
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Figure 3.12. The graph detail (G(S)) for S = {s, s1, s2, s3}. The
vertices of G(S) are marked in gray.

In the sequel, we will compute (static) flows fi for the adjusted thinned out
grid graphs G′i. We will interpret them as flows in the graphs G′i+1 and G′ in the
canonical way.

Lemma 26. Let k be an integer. There is a path P from s to ψ with c(P ) ≤ k in
G′i,fi

if and only if there is a path P ′ from s to ψ in G′fi
with c (P ′) ≤ k.

Proof. If there is a path P with c (P ) ≤ k in G′i,fi
then there is clearly a path P ′

with c (P ′) ≤ k in G′fi
(recall that G′i,fi

is a subgraph of G′fi
).

For a path P̃ = (e0, e1, ..., em) in G′fi
let τ

(
P̃
)
be the index of the first edge in P̃

which does not belong to detail (Gi,fi
) or τ

(
P̃
)

=∞ if such an edge does not exist.
Now let P be the set of shortest paths from s to ψ in G′fi

. Note that P 6= ∅ since G′fi

does not contain any negative cycles, see Lemma 22. If i = 0 it is clear that there
is a shortest path P ∈ P from s to ψ in G′i,fi

= G′0. So from now on assume that
i > 0. Let P ′ ∈ P be the path in P which maximizes τ (P ′). Note that such a path
indeed exists since the support of fi is finite and thus there are only finitely many
shortest paths from s to ψ in G′fi

. Since there are no negative cycles in G′fi
we can

assume that P ′ is simple. We claim that τ (P ′) =∞ and thus P ′ is an augmenting
path in detail

(
G′i,fi

)
. Assume on the contrary that τ (P ′) = j <∞. We will show

in the sequel that P ′ can be changed to a path P ′′ such that τ (P ′′) > τ (P ′) with
c (P ′) ≥ c (P ′′). This constradicts the fact that τ (P ′) is maximal among all paths
in P. Thus, τ (P ′) =∞ and we can easily transform P ′ into a path P in G′i,fi

with
c (P ) ≤ k.
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s1

s2

Figure 3.13. A face in G′i−1 bordered by the vertices s1 and s2.
The outer vertices are marked in black, the middle vertices are
gray, and the inner vertices are white.

First, we partition the vertices of G# into outer, middle and inner vertices (see
Figure 3.13). Let Ri, Ci, Ri−1, and Ci−1 be the row and column sets of G′i and
G′i−1 respectively. A vertex v is an outer vertex if r(v) ∈ Ri−1 or c(v) ∈ Ci−1. A
vertex v is a middle vertex if it is not an outer vertex and r(v) ∈ Ri or c(v) ∈ Ci.
A vertex v is an inner vertex if it is neither an outer vertex nor a middle vertex.
Since τ (P ′) = j < ∞ the edge ej = (u, v) is the first edge in P ′ which does not
belong to detail

(
G′i,fi

)
. Let ej−1 = (w, u). There are three cases depending on

the alignment of ej . For two vertices u and v in the same row or column denote by
P (u, v) the direct path between u and v.

(1) u is an outer vertex and v is a middle vertex. W.l.o.g. we assume that
r(u) = r(v), c(u) = c(v)−1, and r (w) = r(u)+1 (see Figure 3.14). Denote
the vertices v1, ..., v4 as depicted in the figure. If c (P (v1, u)) < 0 then
c (P (u, v2)) = −c (P (v3, v)) and thus we can adjust P ′ to a path P ′′ by
replacing the part from u to v in P ′ by a path {u, ..., v2, v3, ..., v}. Then
c (P ′) = c (P ′′) but τ (P ′) < τ (P ′′). If c (P (v1, u)) > 0 then we can replace
the part from v1 to v in P ′ by a path {v1, ..., v4, ..., v} and obtain a path
P ′′. Then P ′′ has the properties that c (P ′) = c (P ′′) and τ (P ′) < τ (P ′′).

(2) u is a middle vertex and v is an outer vertex. W.l.o.g. we assume that
r(u) = r(v), c(u) = c(v)−1, and r (w) = r(u)+1 (see Figure 3.14). Denote
the vertices v1, ..., v4 and the parts of P ′ as depicted in the figure.

If the path P ′ (v4, v) exists in G′fi
(i.e., there is no flow from v4 to v in

fi) then we can adjust P ′ to a path P ′′ by replacing the part from v1 to v
in P ′ by a path {v1, ..., v4, ..., v}. Then c (P ′) ≤ c (P ′′) and τ (P ′) < τ (P ′′).
If P (v4, v) does not exist in G′fi

then c (P (v3, v)) = −c (P (u, v2)) and we
can adjust P ′ to a path P ′′ by replacing the part from u to v in P ′ by a
path {u, ..., v2, v3, ..., v} and obtain c (P ′) = c (P ′′) but τ (P ′) < τ (P ′′).
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Figure 3.14. Cases 1 and 2 in the proof of Lemma 26.

v3
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v′

w

v1

vu
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Figure 3.15. Cases 3 in the proof of Lemma 26.

(3) u is a middle vertex and v is an inner vertex. W.l.o.g. we assume that
r(u) = r(v), c(u) = c(v) − 1 , and r (w) = r(u) + 1. Let v′ be the next
middle vertex after v in P ′ (see Figure 3.15). Denote the vertices v1, ..., v4

as depicted in the figure.
• If r (v′) = r (v2) then we can adjust P ′ to a path P ′′ by replacing

the part from u to v′ in P ′ by a path {u, ..., v2, ..., v
′} and obtain

c (P ′) = c (P ′′) but τ (P ′) < τ (P ′′).
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• If c (v′) = c (v3) then we can adjust P ′ to a path P ′′ by replacing
the part from v1 to v′ in P ′ by a path {v1, ..., v3, ..., v

′} and obtain
c (P ′) = c (P ′′) but τ (P ′) < τ (P ′′).
• If c (v′) = c (u) then we can adjust P ′ to a path P ′′ by replacing the

part from u to v′ in P ′ by a path {u, ..., v′} and obtain c (P ′) > c (P ′′).
• If r (v′) = r (v1) then we can adjust P ′ to a path P ′′ by replacing the

part from v1 to v′ in P ′ by a path {v1, ..., v
′} and obtain c (P ′) > c (P ′′).

This proves that τ (P ′) = ∞ and thus we can easily transform P ′ into an aug-
menting path P in G′i,fi

with c (P ) ≤ k. �

Theorem 27. The flow f is an optimal solution for the OSMCF-problem in G′4.
Let f ′ be a minimum cost flow in from s to ψ in G′. Then cost (f) ≤ cost (f ′).
Moreover, f can be computed in O

(
k4
)
.

Proof. Our algorithm is a special implementation of the algorithm presented in
Section 3.3.6 in the following sense: In each iteration i we do not choose arbitrary
shortest paths between s and ψ but paths which do exist in G′i,fi

. Lemma 26 shows
that such paths are not longer than the shortest paths from s to φ in G′fi

. This
implies that cost (f) ≤ cost (f ′). The remainder of the reasoning for the correctness
works along the lines of Theorem 24.

For the runtime note that each graph G′i contains at most k · (1 + 4 · (i− 1))
rows and columns. Since 0 ≤ i ≤ 3 the number of vertices in G′i is bounded by
O
(
k2
)
. From the planarity of G′i it also follows that the number of edges in G′i is

bounded by O
(
k2
)
. For the computation of f we need at most four shortest path

computations. Using the Bellman-Ford-Algorithm such a path can be computed
in O (|V | · |E|) which gives a runtime of O

(
k4
)
(for all four paths). Computations

needed for constructing the residual network etc. are dominated by the computation
of the shortest paths. Thus, we obtain an overall runtime of O

(
k4
)
. �

4. Fixed Number of Bends

We present an algorithm which finds a factor (b+ 1) approximation for the packet
routing with fixed path with the assumption that the path of each packet has at
most b bends. Together with suitable routines for finding paths for the packets this
yields an algorithm for the packet routing problem with variable paths.

Definition 28 (Number of bends). Let P = {v1, v2, ..., vn} be a path on the grid
↔
G#. The path P has a bend at the vertex vi = (vi,x, vi,y) with 1 6= i 6= n if
for the vertices vi−1 = (vi−1,x, vi−1,y) and vi+1 = (vi+1,x, vi+1,y) it holds that
vi−1,x 6= vi+1,x and vi−1,y 6= vi+1,y.

Out algorithm works as follows: Let I =
(
↔
G#,M,P

)
be an instance of the

packet routing problem with fixed paths and n packets. Let the number of bends
in each path be bounded by b. We split the problem into b + 1 subproblems. Let
Mj = (sj , tj) be a packet with the path Pj = {vj,1, ..., vj,m}. Assume that Pj has
` bends. Let a1, ..., a` be indizes such that the bends of Pj are at the vertices vj,ai

with 1 ≤ i ≤ `. We define a0 = 1 and a`+1 = a`+2 = ... = ab = ab+1 = m. We split
Pj into ` + 1 subpaths Pj,i =

{
uj,ai , ..., vj,ai+1

}
with 0 ≤ i ≤ `. We do this for all

packets. For all i with 0 ≤ i ≤ b we defineMi :=
{(
vj,ai

, vj,ai+1

)
|1 ≤ j ≤ n

}
, Pi :=
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{Pi,j |1 ≤ j ≤ n} and consider the packet routing problem Ii =
(
↔
G#,Mi,Pi

)
.

Since in Ii no path has any bends, this reduces to the problem of finding optimal
schedules for the packet routing problem on paths. We solve these problems using
the Farthest-Destination-First-algorithm, see [22, Theorem 37.28]1. Finally, we
obtain a schedule for the instance I by successively executing the found schedules
for the subproblems Ii. Denote by BEND (I) the resulting schedule.

Theorem 29. Let I =
(
↔
G#,M,P

)
be an instance of the packet routing problem

with fixed paths. Let the number of bends in each path be bounded by b. It holds
that |BEND (I)| ≤ (b+ 1) · |OPT (I)| and |BEND (I)| ≤ (b+ 1) · (C +D − 1).

Let Ci and Di be the congestion and the dilation in the subproblem Ii. In order
to prove the theorem, we first give a lemma that bounds the length of the schedule
of a subproblems Ii in terms of Ci and Di.

Lemma 30. Let Ii =
(
↔
G#,Mi,Pi

)
be one of the subproblems defined in the

algorithm. It holds that |OPT (Ii)| ≤ Ci +Di − 1.

Proof. W.l.o.g. we assume that in OPT (Ii) a packet is never delayed if the next
edge on its path is free. Let M be a packet which reaches its destination after
exactly OPT (Ii) steps. Let DM be the length of the path of M . If M is never
delayed then it holds that |OPT (Ii)| = DM ≤ Ci + Di − 1 (note that Ci ≥ 1).
So now assume that M is delayed at some point in the schedule OPT (Ii). Let
e = (u, v) be the last edge on whichM is delayed and assume thatM arrives at the
vertex v at time t (thus, M has passed e at time t). We claim that at each timestep
t′ < t the edge e was used by a packet. Assume on the contrary that there is a
timestep t0 < t in which no packet needs to use e. This implies that at time t0 no
packet is located on the vertex u. At each timestep at most one packet can arrive
at u and at each timestep we can move one packet from u to v. This implies that
after t0 no packet is delayed at u. But this contradicts that M is delayed at u and
M reaches v at time t. Note that this implies that Ci ≥ t. Let P ′M be the path on
whichM is sent after having passed e. It holds that |P ′M | = OPT (Ii)−t ≤ DM−1.
This implies that OPT (Ii) = (OPT (Ii)− t)+t ≤ (DM − 1)+Ci ≤ Ci+Di−1. �

Proof. (of Theorem 29): The optimal makespan |OPT (Ii)| for each problem Ii is a
lower bound for the optimal makespan of I. Since we have b+1 of these subproblems
and solve each subproblem optimally it holds that |BEND (I)| ≤ (b+ 1)·|OPT (I)|.
Moreover, since from Lemma 30 it holds that |OPT (Ii)| ≤ Ci+Di−1 and Ci ≤ C
and Di ≤ D for all i we conclude that |BEND (I)| ≤ (b+ 1) · (C +D − 1). �

Now we give an alternative routing algorithm which guarantees better bounds

in terms of C and D for the makespan. Let I =
(
↔
G#,M,P

)
be an instance of the

packet routing problem with fixed paths. Let the number of bends in each path be
bounded by b. For a packet Mj ∈M we split its path Pj into the subpaths Pj,i as
stated above. The routing schedule is defined as follows: We always move a packet
if the next edge on its path is free. A packet Mj is delayed only on the vertices

1Note that in our case the Farthest-Destination-First-algorithm produces the same schedule as
the Smallest-Slacktime-First-algorithm since the (implicit) deadlines of the packets are all equal.
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vj,ai
with 0 ≤ i ≤ `. The intuition is that if Mj is located on a vertex vj,ai

(where
the path of Mj has a bend or vj,ai is the start vertex of Pj) then Mj waits on
this vertex until there is no other packet that needs to use the edge (vj,ai , vj,ai+1).
In detail, assume that there are several packets M1, ...,Mk which are located on a
vertex u at a time t and they all need to use an edge e = (u, v) next. If for one
packet M ∈ {M1,M2, ...,Mk} the vertex u is neither a bend nor its start vertex
then we move M along e. We call such a packet M a running packet. We will show
later that there can be at most one running packet on a vertex u. If none of the
packets {M1,M2, ...,Mk} is a running packet we move an arbitrary packet among
{M1,M2, ...,Mk} along e. Denote by BEND2 (I) the resulting schedule.

Theorem 31. Let I =
(
↔
G#,M,P

)
be an instance of the packet routing problem

with fixed simple paths. Let the number of bends in each path be bounded by b. Then
BEND2 (I) is a valid schedule and it holds that |BEND2 (I)| ≤ (b+ 1) · (C − 1) +
D.

Proof. First we prove that the schedule is well-defined. I.e., we show that if there
are several packets M1,M2, ...,Mk being located on a vertex u and competing for
an edge e = (u, v) then at most one of them is a running packet. We give a proof by
induction: at time t = 0 the claim is true since there are now running packets (all
packets are located on their respective start vertex). Now suppose the claim is true
at time t = t0. Let e = (u, v) be an edge. W.l.o.g. assume that e is a horizontal
edge with u = (x, y) and v = (x+ 1, y). Assume on the contrary that at time
t = t0 + 1 there are two running packets M and M ′ located at the vertex u which
need to use e. By the induction hypothesis there has been at most one running
packet M̃ on u at time t = t0. From the algorithm it follows that is such a packet
M̃ exists then it has been moved over e between time t = t0 and t = t0 + 1. This
implies that M 6= M̃ 6= M ′. Since M and M ′ are both running packets and they
were not located at u at time t = t0 they were located at the vertex w = (x− 1, y)
at time t = t0. This is a contradiction, since there can be at most one packet which
is transfered over the edge e′ = (w, u) between t = t0 and t = t0 + 1.

Now we want to prove the length of the schedule. Let M be a packet. From the
algorithm it follows that M waits only in its start vertex or in a vertex where its
path PM has a bend. Denote by Me the set of packets whose path uses the edge
e. Whenever M waits for using an edge e it is delayed at most |Me| − 1 times. It
holds that |Me| ≤ C. Since PM has at most b bends (and one start vertex), M is
delayed at most (b+ 1) · (C − 1) times. Since the length of PM is bounded by D it
follows that M arrives at its destination vertex after at most (b+ 1) · (C − 1) +D
steps. This implies that |BEND2 (I)| ≤ (b+ 1) · (C − 1) +D. �

Remark 32. Note that our bound (b+ 1) ·(C − 1)+D for schedule which allows the
storage packets in nodes is better than the best known bound 4·(b+ 1)·(C − 1)+D
for a direct routing schedule.

In the packet routing problem with variable paths we first need to find a path for
each packet and then we can compute the schedule. As mentioned above, algorithms
for finding paths for the packets on the grid can be combined with our algorithm.
This yields an algorithm for the packet routing problem with variable paths. Let

I =
(
↔
G#,M

)
be an instance of this problem. Let C∗ andD∗ be the optimal values
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for the congestion and the dilation, respectively. In the case of the grid, paths with
congestion C ∈ O (C∗ log n) and dilation D ∈ O (D∗) and with b ∈ O (log n) bends
can be found using the algorithm presented by Busch et al. [6]. Using one of the
algorithms presented above for scheduling the packets (once the paths are fixed)
we obtain the following theorem:

Theorem 33. Let I =
(
↔
G#,M

)
be an instance of the packet routing problem

with variable paths. There is a randomized algorithm that finds a routing schedule
of length O (log n · (C∗ log n+D∗)) with high probability.

5. Sparse Start and Destination Vertices

In this section we investigate packet routing on the grid for the case that the
start vertices and the destination vertices are sparsely distributed over the grid:

Definition 34. Let
↔
G# = (V#, E#) be the infinite grid graph. A set of vertices

V ′ ⊆ V# is sparsely row distributed or short row-sparse if in each grid row there is
at most one vertex of V ′. Similarly, a set of vertices V ′ ⊆ V# is sparsely column
distributed or short column -sparse if in each grid column there is at most one
vertex of V ′.

We say a set of vertices V ′ ⊆ V# is sparsely distributed if it is either sparsely

row distributed or sparsely column distributed. Let I =
(
↔
G#,M

)
be an instance

of the packet routing problem on
↔
G# such that the start and destination vertices

are sparsely distributed. We present an algorithm which computes a factor 9-
approximation algorithm for such instances. Let S ⊂ V# denote the set of start
vertices and let D ⊂ V# denote the set of destination vertices. W.l.o.g. we have one
of these two cases: either S and D are both row-sparse or S is row-sparse and D
is column-sparse. Note that there could be still two packets which have the same
start vertex or the same destination vertex.

5.1. Start and Destination Vertices are row-sparse. In this section we assume
that in I the start and destination vertices are both row-sparse. We assume that
the start vertices are ordered such that their row indices increase. W.l.o.g. let
s1, s2, ..., sk be this (unique!) order. Now for each start vertex si we assign a
column for each packet which starts in si and goes up (i.e., has its destination
vertex in a row above si) and we assign a column for each packet which starts in si
and goes down. First we assign the columns for packets which go up. We iterate
over the start vertices from s1 to sk. In the ith iteration we consider the vertex
si = (ri, ci). If there are no packets which start in si and go up then we skip this
iteration. We assume that in the iterations before at most one column was assigned
to each start vertex. LetMi denote the packets which start in si. For a packet M
denote by destRow(M) the row of its destination vertex.

Let L′i := |min {destRow(M)|M ∈Mi} − ri|. Note that L′i is a lower bound
on the optimal makespan of I. We want to assign a column to si which has not
been assigned to any start vertices sj with rj ∈ [ri − L′i; ri]. We call such a column
free. Since in the previous iterations at most one column was assigned to each start
vertex, we can guarantee that in the set C = {c|ci − bL′i/2c ≤ c ≤ ci + bL′i/2c}
there is at least one free column. We assign an arbitrary column in C to si. Denote
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si

ti
L′i

C

c↑i

Figure 5.1. Sketch for used paths in SPARSErr(I). For the
figure we assume that si is the only start vertex and all other
vertices which are marked by a circle are destination vertices.

by c↑i the assigned column. We do this procedure for all start vertices si. See
Figure 5.1 for a sketch.

Now we assign a column to each start vertex si for packets which start in si and
go down (i.e., have their destination vertex in a row below si). At the beginning of
this procedure, we consider all columns to be free again. We iterate over the start
vertices from sk to s1 and do the same operations as above mirroredly. Denote by
c↓i the column assigned to si. We define Li := max

{∣∣∣c↑i − ci∣∣∣ , ∣∣∣c↓i − ci∣∣∣}.
Now we are ready to define the paths of the packets. Let M = (s, t) with

s = si = (sr, sc) and t = (tr, tc) be a packet starting in si which goes up (i.e.,
tr < sr). Its path goes from si = (sr, sc) via

(
sr, c

↑
i

)
and

(
tr, c

↑
i

)
to (tr, tc). For

each packet M ′ = (s, t′) with s = si = (sr, sc) and t′ = (t′r, t
′
c) which goes down

(i.e., tr > sr) we define its path from si = (sr, sc) via
(
sr, c

↓
i

)
and

(
tr, c

↓
i

)
to

(tr, tc). For packets which start in si and which have their destination vertex in
the same row as si we define their path simply to be the unique shortest path.

Now we define the routing schedule. We split the schedule into two phases. In
phase I we move each packet M = (si, (tr, tc)) from its start vertex to

(
tr, c

↓
i

)
or(

tr, c
↑
i

)
, respectively, along the path described above (packets which do not change
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their row are not moved at all). When there are two packets which compete for
using an edge (note that such two packets must have the same start vertex) we
give priority to the packet which has still the longest way to go to

(
tr, c

↓
i

)
(or(

tr, c
↑
i

)
, respectively). Then in phase II we move the packets along their remaining

path. Conflicts are resolved by giving priority to an arbitrary packet. Denote by
SPARSErr(I) the resulting schedule.

Theorem 35. Let I = (
↔
G#,M) be an instance of the packet routing problem on

↔
G#

such that the start and destination vertices are row-sparse. Then |SPARSErr(I)| ≤
9 · |OPT (I)|.

In order to prove the theorem, we first establish lower bounds for the two phases
of the schedule. First we consider phase I. Let si = (sr, sc) be a start vertex. Like
in the proof of Theorem 5 we construct an instance Ib = (Gb,Mb) of the packet
routing problem. We define N := maxM∈Mi

|destRow(M)− sr| and L := maxi Li.
We construct Gb as a path with N +L+ 1 vertices. Between two adjacent vertices
of the path we set four parallel edges. Denote by sb the vertex on the very left and
by v1, v2, ..., vN+L the vertices on the right of sb.

The vertex sb corresponds to si in
↔
G#. For each packet M ∈ Mi we introduce

one packet Mb =
(
sb, v|destRow(M)−sr|

)
in Mb. With similar arguments as in the

proof of Theorem 5 we can show that the length of an optimal schedule for Ib is a
lower bound for the optimal makespan of I.

Lemma 36. The packets which start in si need at most 4 · |OPT (Ib)| + bLi/2c
steps to reach their destination for phase I.

Proof. Starting with Ib for each pair of adjacent vertices we remove three edges of
the four edges which connect them. Denote by I ′b the resulting instance. Since now
not four but only one packet can leave sb at a time we conclude that |OPT (I ′b)| ≤
4 · |OPT (Ib)|.

Now we distinguish two cases:
∣∣∣c↑i − ci∣∣∣ 6= 0 6=

∣∣∣c↓i − ci∣∣∣ or either ∣∣∣c↑i − ci∣∣∣ = 0 or∣∣∣c↓i − ci∣∣∣ = 0. First we assume that
∣∣∣c↑i − ci∣∣∣ 6= 0 6=

∣∣∣c↓i − ci∣∣∣.
We change the instance again as follows: we modify each packet M = (sb, vi)

to M =
(
sb, vi+bLi/2c

)
. (Note that there is no packet which starts and ends in

sb.) Denote by I ′′b the resulting instance. For OPT (I ′′b ) it clearly holds that
|OPT (I ′′b )| ≤ |OPT (I ′b)|+ bLi/2c.

From the choice of the paths it follows that packets can be delayed only in their
start vertex (packets with different start vertices do not share edges). Moreover,
|OPT (I ′′b )| is an upper bound for the time that the packets starting in si need for
phase I in an optimal schedule for phase I. For the routing of phase I we use farthest-
destination-first-routing. This is optimal since the underlying graph structure is an
out-tree [22]. This implies that in our schedule the packets starting in si need at
most

|OPT (I ′′b )| ≤ |OPT (I ′b)|+ bLi/2c
≤ 4 · |OPT (Ib)|+ bLi/2c
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steps. If
∣∣∣c↑i − ci∣∣∣ = 0 or

∣∣∣c↓i − ci∣∣∣ = 0 the packets which start in si and move up do
not interfere with the packets which start in si and move down. Thus, this case can
be reduced to the first case by considering the two groups of packets separately. �

Similarly to the above we construct a lower bound instance for the routing in
phase II. Let di = (dr, dc) be a destination vertex. From the choice of the paths
it follows that in phase II packets interfere only if they share the same end vertex.
Let Mi denote the packets with destination vertex di. We distinguish between
the packets which enter di from the left and from the right. Since their paths
do not share any edges in phase II we can consider them separately. Denote by
Mi,L the packets with destination vertex di which enter di from the left (for the
packets which enter di from the right the reasoning works similarly). Again, we
construct an instance Ib = (Gb,Mb) of the packet routing problem. We define
N := maxM∈Mi,L

|startCol(M)− sr| (where startCol(M) denotes the column of
the start vertex ofM). We construct Gb as a path with N+L+1 vertices. Between
two adjacent vertices of the path there are four parallel edges. Denote by db the
vertex on the very left and by v1, v2, ..., vN+L the vertices on the right of db.

The vertex db corresponds to di in
↔
G#. For each packet M ∈ Mi we introduce

one packet Mb =
(
v|origCol(M)−dc|, db

)
in Mb. With similar arguments as in the

proof of Theorem 5 we can show that the length of an optimal schedule for Ib is a
lower bound for the optimal makespan of I.

Lemma 37. The packets which end in di and which enter di from the left in our
schedule need at most 4 · |OPT (Ib)|+ bL/2c steps in phase II.

Proof. This can be shown with similar ideas as used in the proof of Lemma 36: We
construct an instance I ′b by removing three of the four edges between each pair of
adjacent vertices. For this instance it holds that |OPT (I ′b)| ≤ 4 · |OPT (Ib)|. Then
from this we construct the instance I ′′b by extending the path of each packet by
bL/2c edges. Then |OPT (I ′′b )| ≤ |OPT (I ′b)|+ bL/2c. We have that |OPT (I ′′b )| is
an upper bound on the time that the packets inMi,L need in an optimal schedule
for phase II. Since all packets have the same destination vertex and we are on a path
it does not matter what packet we give priority in case that two packet compete
for using an edge. Thus, our schedule for phase II is optimal (assuming the given
paths to be fixed). Therefore, in phase II the packets inMi,L need at most

|OPT (I ′′b )| ≤ |OPT (I ′b)|+ bL/2c
≤ 4 · |OPT (Ib)|+ bL/2c

steps to reach their destination. �

Proof. (of Theorem 35): For each constructed lower bound Ib we have that |OPT (Ib)| ≤
|OPT (I)|. Thus, Lemmas 36 and 37 show that for phase I and II we need at most
4 · |OPT (I)|+ bL/2c steps each. Since L is a lower bound for |OPT (I)| this gives
that |SPARSErr(I)| ≤ 9 · |OPT (I)|. �

5.2. Start Vertices are row-sparse, Destination Vertices column-sparse.
In this section we assume that in I the start vertices are row-sparse and the des-
tination vertices are column-sparse. For a packet M = ((sr, sc) , (tr, tc)) we define
its path to go from (sr, sc) via (sr, tc) to (tr, tc). Again, we split the schedule into
two phases: In the first phase, we move each packet M = ((sr, sc) , (tr, tc)) from
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ti

si

Figure 5.2. Sketch for used paths in SPARSErc(I).

(sr, sc) to (sr, tc). In the second phase we move each packet M = ((sr, sc) , (tr, tc))
from (sr, tc) to (tr, tc). See Figure 5.2 for a sketch. We schedule each phase accord-
ing to the farthest-destination-first-rule. Denote by SPARSErc (I) the resulting
schedule.

Theorem 38. Let I =
(
↔
G#,M

)
be an instance of the packet routing problem

on
↔
G# such that the start vertices are row-sparse and the destination vertices are

column-sparse. Then |SPARSErc(I)| ≤ 8 · |OPT (I)|.
Proof. Using similar lower bound instances Ib and I ′b as in the proof of Theorem 35
we can show that phase I and II need at most 4 · |OPT (I)| steps each. Since we
have two phases this shows that |SPARSErc(I)| ≤ 8 · |OPT (I)|. �

5.3. Start and Destination Vertices Sparsely Distributed. Now we assume
that in I the start vertices S and the destination vertices D are sparsely distributed
without any further condition whether they are row-sparse or column-sparse. If S
and D are both row- or column-sparse then we compute SPARSErr(I) (if they
are both column-sparse then we mirror the instance in order to be able to apply
the algorithm as described above). If S is row-sparse and D is column-sparse then
we compute SPARSErr(I) (again, mirror the instance if necessary). Denote by
SPARSE(I) the resulting schedule.

Theorem 39. Let I =
(
↔
G#,M

)
be an instance of the packet routing problem

on
↔
G# such that the start and destination vertices are either row-sparse or column

sparse. Then |SPARSE(I)| ≤ 9 · |OPT (I)|.
Proof. Follows from Theorems 35 and 38. �

6. Complexity Results

We present complexity results for the packet routing problem on the grid. In
particular, we show that the packet routing problem with fixed paths is NP -hard
on grid graphs even if there is only one source vertex and all paths are shortest
paths. Using a different technique we show that the packet routing problem with
variable paths is also NP -hard.
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Figure 6.1. The example graph G1.

6.1. Packet Routing with Fixed Paths. In this Section we presentNP -hardness
results for the packet routing problem with fixed paths.

Theorem 40. The packet routing problem with fixed paths on grid graphs is NP-
hard.

Proof. In this proof we employ a technique which was used in [30, 5]. We reduce
to the packet routing problem from the 3-COLORING problem (which is NP -hard
[13]), i.e., the problem whether the vertices of a given graph can be colored with
three colors such that no two adjacent vertices have the same color.

For each vertex vi ∈ V we introduce a packet Mi. The paths of two packets Mi

and Mj share an edge if and only if vi and vj are adjacent in G. The paths for Mi

and Mj are constructed such that if Mi and Mj are never delayed on their path
they will eventually cause a collision. The main idea is that if G is 3-colorable,
then there is an optimal schedule as follows: In the beginning, each packet Mi is
delayed 0, 1, or 2 timesteps depending on the color of vi. Then the packets can be
transfered along their path through the network without ever being delayed again.
Thus, if G is 3-colorable there is a schedule such that all vertices are delayed at
most twice. Since in G the length of all paths are equal minimizing the makespan
is equivalent to finding the minimum k such that each packet is delayed at most k
times.

Now we define the construction in detail. Let G = (V,E) be the graph from our
3-COLORING instance. For each vertex vi we introduce a packet Mi. First we
define the paths such that the path of each packet shares one vertex with the path
of every other packet. The construction is rather technical to describe, in order
to facilitate the readability of the proof we refer to Figure 6.2 for a sketch of the
construction for a graph with n vertices.

Now we change the paths slightly. Every time a packet Mi moves up and crosses
the path of another packet Mj , we insert a move one step to the right to the path
of Mi. If vi and vj are adjacent we do this in the row where the paths of Mi and
Mj cross, otherwise we do this one row further up. By this modification we ensure
that the paths of Mi and Mj share an edge if and only if vi and vj are adjacent.
Note that all paths still have the same length. Figure 6.3 shows the construction
described above for the graph G1 shown in Figure 6.2.

Denote by C this whole setup. In our final construction we have three copies
of C which are glued together (see Figure 6.4 for the overall construction for the
graph G1). Note that the second copy of C has to be mirrored since, e.g., the packet
which started in the upper left vertex s1 of the first copy has to start at the bottom
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Figure 6.2. First path layout for the proof of Theorem 40
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Figure 6.3. Basic setup for the proof of Theorem 40

right vertex t1‘ of the second copy. For each packet Mi denote by si its starting
vertex, by ui its last vertex in the first copy of C, by wi its last vertex in the second
copy of C and by ti its destination vertex. We see that all predefined paths in each
copy of C have the same length. Let L be the length of the overall path of each
packet. (Note for the upcoming proof that L is divisible by 3.) In the proof we will
see that we need the three copies of C to ensure that if two packets Mi and Mj

arrive at ti and tj at the same time then vi and vj are really not adjacent.
The following observation is helpful to understand the proof: let vi,j be a vertex

where the paths of the packetsMi andMj intersect. Then vi,j has the same distance
to the start vertices of Mi and Mj . Thus, Mi and Mj arrive at vi,j at the same
time if and only if they were delayed the same number of times before reaching vi,j .
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Figure 6.4. Basic setup for the proof of Theorem 40, repeated
three times. Note that in the second copy the order of the packets
when read from the top left to the bottom right is reversed and
that the paths of the messages is adjusted to that.

Now we want to prove that G is 3-COLORABLE if and only if there is an
optimal schedule of length at most L+ 2. First assume that G is 3-COLORABLE.
Thus, there is a valid vertex coloring c : V → {0, 1, 2} for G which uses only three
colors in total. We define our schedule as follows: In the beginning, each packet
Mi is delayed c (vi) timesteps. After that each packet moves on its predefined path
without being delayed any further. Now we show that no two packets need to use
an edge at the same time, i.e., no packet needs to be delayed again. We see that
in the first copy of our construction no packet is delayed once it has left its start
vertex since this would imply that there are two packets Mi and Mj which collide
with c (vi) = c (vj) and the vertices vi and vj being adjacent. Since all paths of
all packets in the first copy of C have the same length L/3, we see that a packet
Mi arrives at vertex ui after L/3 + c (vi) timesteps. With the same reasoning we
can show that no packet is delayed in the second or third copy of C either. Thus,
the makespan of our schedule is at most L + 2 (in the case that G is bipartite or
contains only isolated vertices the makespan is even shorter).

Now assume that there is an optimal schedule of length at most L+ 2. We want
to show that G is 3-COLORABLE. W.l.o.g. we assume that the schedule never
delays a packet when it is not necessary, i.e., packets are delayed only if more than
one packet needs to use the same edge at a time. Let vi be a vertex and let L+ k
(for some k with 0 ≤ k ≤ 2) be the time when Mi reaches ti (recall that the length
of the path is L). We define our coloring c : V → {0, 1, 2} by c (vi) := k. (So we use
at most 3 colors.) We want to show that this is indeed a valid vertex coloring for
G. Let Vi (for 1 ≤ i ≤ 3) be all vertices corresponding to packets which reach the
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last vertex of the i-th copy of C after i · n2 + (i− 1) timesteps. We will show that
each set Vi is an independent set. This implies that all packets Mi which reach ui
after L/3 steps arrive at ti after L steps. Analogously, all packets Mi which reach
wi after 2 · L/3 + 1 steps reach ti after at most L + 1. Thus, the coloring defined
above is valid.

Let i = 1. If a packet Mj arrives at uj after L/3 timesteps, it has never been
delayed. Thus, all vertices corresponding to these packets form an independent set.
Denote by V1 these vertices and byM1 the corresponding packets. Moreover, this
implies that a packets Mj ∈ M1 reaches wj after 2

3 · L timesteps and tj after L
timesteps.

Now let i = 2. We know now that a packet Mj which reaches wj after 2
3 · L+ 1

timesteps is not inM1. Thus, Mj must have reached ui after 1
3 · L + 1 timesteps

(otherwise it would be inM1 or could not have reached wi after 2
3 ·L+1 timesteps).

This implies that the vertices vi corresponding to packets Mi which reach wi after
2
3 ·L+1 timesteps form an independent set. Denote byM2 the set of the respective
packets and by V2 the set of the respective vertices. We know that each packet
Mj ∈ M2 reaches tj after L + 1 timesteps (since two packets inM2 do not delay
each other and cannot be delayed by the packetsM1).

Finally consider a packet Mj which reaches tj after L + 2 timesteps. From the
above reasoning we conclude thatMj reaches wj after 2

3 ·L+2 timesteps (otherwise
it would be inM1 orM2). This implies that all vertices corresponding to packets
Mj which reach tj at time L+ 2 form an independent set. Since there is no packet
Mj which reaches ti after more than L + 2 timesteps, we conclude that the set V
splits into three independent set. Moreover, our coloring for G is a valid 3-coloring.

�

In the construction in the proof of Theorem 40 there are several start and des-
tination vertices. By extending the construction we can prove that packet routing
is NP -hard on grid graphs even if there is only a single start vertex.

Theorem 41. The packet routing problem with fixed paths is NP -hard on grid
graphs, even if there is only one start vertex. This holds even if all predefined paths
are shortest paths.

Proof. We reduce again from 3-COLORING. Let G be a graph. We extend the
construction used in the proof of Theorem 40 as follows: We add a super-start
vertex vs. We will call the packets defined so far the vertex packets. Then we
adjust the paths of the vertex packets such that they all originate at vs and use the
same edge to leave vs. We also add a set of packets that we call the delay packets.
These packets delay the vertex packets to ensure that all vertex packets Mi reach
their respective vertices si at the same time (si is the start vertex of Mi according
to the construction in the proof of Theorem 40).

The super-start vertex vs is placed at grid position (3 · |V |+ 1, 0). We introduce
|V | additional delay packets. They all follow the same predefined path but leave
vs through a different edge than the vertex packets. The path of the delay packets
shares exactly one edge with the path of each vertex packet. The length of this path
is 3 |V |+ L+ 3. The whole construction for the graph G1 (see Figure 6.1) is given
in Figure 6.5. The intuition is the following: The given graph is 3-colorable if and
only if there is a schedule of length at most 4 |V |+ L+ 2. In order to achieve this
makespan the delay packets must not be delayed by vertex packets at any time.
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Figure 6.5. Construction for the proof of Theorem 41.

Each vertex packet Mi will arrive at si after exactly 4|V | timesteps. After this
point, the whole construction works like in Theorem 40.

Now we prove that G is 3-colorable if and only if there is a schedule of length
4 |V |+L+ 2. Assume that the graph is 3-colorable. Our schedule works as follows:
The delay packets move on their path one after another and they are never delayed
by a vertex packet. The vertex packets leave vs in an arbitrary order. If a vertex
packet and a delay packet need to use an edge at the same time then the vertex
packet is delayed by the delay packet. Once each vertex packet Mi has reached its
respective vertex si the vertex packets are scheduled like in the proof of Theorem 40.

LetMi be a vertex packet and let (ci, c′i) be the edge which is shared byMi with
the delay packets. From the construction it follows that the length of the path of
Mi between vs and ci is 3i. Also, the length of the path of Mi between ci and si is
3|V | − 3i. This implies that Mi arrives at ci after at least 3i timesteps. Also, the
edge (ci, c′i) is blocked by the delay packets between timesteps 3i and 3i+|V |. Thus,
Mi arrives at si after exactly (3i+ |V |) + (3|V | − 3i) = 4|V | timesteps. Thus, all
vertex packets Mi arrive at their respective vertices si after exactly 4|V | timesteps.
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Since the length of the path for the delay packets is 3|V |+ L+ 3, there are |V |
delay packets in total. Once a delay packet has left vs it is not delayed any more.
Thus, all delay packets reach their destinations after 4|V |+L+ 2 timesteps. Using
the same reasoning as in the proof of Theorem 40, we can show that all vertex
packets reach their respective destination vertices after at most 4|V |+L+2 as well.
Thus, there is a schedule of length 4|V |+ L+ 2.

Now we assume that there is a schedule with makespan 4 |V |+ L+ 2. We want
to show that the formula is satisfiable. The length of the paths of the delay packets
is 3|V |+L+ 3. Since there are |V | delay packets in total and the overall makespan
is 4 |V | + L + 2, we conclude that the delay packets leave the vertex vs one after
another and they are never delayed after this. With the same reasoning as above
we can conclude that all vertex packets Mi reach their respective vertex si after at
least 4|V | timesteps. With the same reasoning as in Theorem 40 we can show that
the graph must be 3-colorable.

We observe that all paths used in the construction are shortest paths. �

Since in the construction of the proof of Theorem 41 start and destination vertices
can be exchanged without changing the result we have the following corollary:

Corollary 42. The packet routing problem with fixed paths is NP -hard on grid
graphs, even if there is only one destination vertex and all predefined paths are
shortest paths.

Proof. We simply apply the construction in Theorem 41 and swap start and desti-
nation vertices. �

6.2. Packet Routing with Variable Paths. A natural thing to look at is the
question of whether packet routing on grid graphs is still NP -hard if the paths are
not fixed.

Theorem 43. The packed routing problem with variable paths is NP -hard on the
unidirectional grid graph G#. This holds even if no two packets have the same start
and destination vertices.

Proof. We describe a reduction fromMONOTONE-NOT-ALL-EQUAL-3-SAT. This
is a variant of 3-SAT in which the objective is to find a truth assignment for the
variables such that in each clause there is at least one true literal and at least one
false literal. Additionally, the formula is monotone, i.e., in each clause there are
only positive literals. This problem can be shown to be NP -hard by using a reduc-
tion from NOT-ALL-EQUAL-3-SAT [13, p. 259] in which all negative literals x̄i
are replaced by new variables zi and clauses of the type (x̄i ∨ zi ∨ zi) are added to
the formula.

Now we give an overview of the construction. It is set up such that the formula
is satisfiable if and only if the length of an optimal makespan is at most L (for a
constant L to be defined later). The paths of the packets are not fixed, however,
in order to be able to arrive at their destinations after at most L timesteps they
all have to move on shortest paths between their respective start and destination
vertices. In particular, if a packet has its start and its destination vertex in the
same row there is only one possible way for this packet.

Let X = {x1, x2, ..., xk} be the set of variables and let C = {C1, C2, ..., Cm} be
the set of clauses (each clause is a set of two or three literals). For each variable
xi we introduce two variable packets vi and v̄i. The intuition is that in an optimal
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schedule either vi or v̄i is delayed once at time t = 0 and the other packet is never
delayed. Scheduling vi first (i.e., at time t = 0) corresponds to setting xi true in
the variable assignment. Scheduling v̄i first corresponds to setting xi false in the
variable assignment.

For each clause Cj there are two packets pj and nj . Intuitively, pj ensures that
if the makespan of the schedule is at most L there is a truth assignment such that
there is a true literal in Cj . Analogously, nj ensures that there is a false literal in
Cj . Both packets need to move L − 2 steps up and one step to the right. When
moving to the right they have to cross the path of a variable packet. Both of them
can move to the right in the row of a variable packet vi if and only if xi ∈ Cj .
Moreover, pj can move to the right in the row of vi only if vi was scheduled at time
t = 0 (which corresponds to setting xi true). Similarly, nj can move to the right in
the row of vi only if vi was scheduled at time t = 1 (which corresponds to setting
xi false).

Now we describe the construction in detail. Define L := 4k+ 4m− 2 (recall that
k is the number of variables and m is the number of clauses). We place the start
and destination vertices on the grid according to Table 1. We will prove later that
the optimal overall makespan is at most L if and only if the formula is satisfiable. In
addition to the packets already described above for each variable xi we introduce
two checker packets ci and c̄i. The checker packets will ensure that the packet
among vi and v̄i that started first is never delayed later in the schedule. We also
want to block some of the edges for a certain time interval in order to force the pj
and nj packets to cross the paths of the variable packets. In order to achieve this
we introduce sets of packets Ti which we call the train for the variable xi. These
packets block parts of a grid row for certain time intervals. (This grid row will be
the row below the row of the path of vi.) Each set Ti contains 8k + 8m packets.

Independently from the trains we block certain rows completely for the entire
duration of the schedule. In order to block a row r for each column c we introduce
a packet with start vertex (r, c) and destination vertex (r, c− L). Since the grid is
infinitely large we cannot block it completely using only a finite number of packets.
However, it is possible to block all the edges of a row which are important for the
rest of the construction using only a finite number of packets. We block all rows r
with 2k − L− 2 ≤ r ≤ 2 or 2k + 1 ≤ r ≤ 2k + 2m. The number of packets needed
for this is bounded by a polynomial in the length of the input. At the end of the
proof we will discuss what packets of this blocking procedure need to be removed in
order to meet the requirement that the start and destination vertices of the packets
are unique.

Additionally, we want the packets pj and nj only to be able to move to the right
in a row of a variable xi if xi ∈ Cj . In order to ensure this, for each pair (xi, Cj)
such that xi is not in Cj there is a filling packet fi,j . Table 1 describes the start
and destination vertices for the packets. Figure 6.6 shows how the filling packets
work. Figure 6.7 shows a sketch of the whole construction.

Now we want to prove that there is a schedule of length at most L if and only if
the formula is satisfiable. Assume that the formula is satisfiable. Then there is a
variable assignment which satisfies the formula. We need to describe the paths of the
packets and the routing schedule. First of all, all paths of the packets are shortest
paths. Thus, each variable packet vi never leaves row 2i and therefore moves on
the direct way from (2i, 2i) to (2i, 2i+ L− 1). Similarly, a variable packet v̄i and
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Figure 6.6. Depending if xi is set true (left) or false (right) at
times t = 2k+2j−2i, t = 2k+2j−2i+1, and t = 2k+2j−2i+2
we have the distribution of the packets sketched above (assuming
that the packets pj and nj have not moved to the right before). In
order to obtain a schedule with overall length L the packet fi,j can
be delayed at most once and the other packets cannot be delayed
at all. This forces the packets to be scheduled as sketched.

Packet Start vertex Destination vertex
vi (2i, 2i) (2i, 2i+ L− 1)
v̄i (2i, 2i+ 1) (2i, 2i− L+ 2)
c̄i (2i, 2i− L+ 3) (2i, 2i+ 2)
ci (2i, 2i+ L− 4) (2i, 2i− 3)
nj (2k + 2j, 2k + 2j) (2k + 2j − L− 2, 2k + 2j + 1)
pj (2k + 2j + 1, 2k + 2j) (2k + 2j − L+ 2, 2k + 2j + 1)
fi,j (2i, 4k + 4j − 2i+ 1) (2i+ 1, 4k + 4j − 2i+ 1− L+ 2)

Ti, pth packet (2i+ 1, 2i− L+ 5 + p) (2i+ 1, 2i+ 5 + p)
Table 1. Start and destination vertices for construction in Theo-
rem 43

checker packets ci and c̄i always stay on row 2i. Now consider the packets pj and
nj for a clause Cj . Both take one of the shortest paths from their start to their
destination vertex, so we only need to define in which row they take their step to
the right. Since the formula is satisfiable there must be at least one literal x` in
Cj which is true and at least one other literal x¯̀ which is false. We define that the



PACKET ROUTING ON THE GRID 46

c̄1 v̄1v1

vk v̄k

n1

4k + 4m− 2

2k 2(m− 1)4k + 4m− 1

...

...

train T1

train Tk

...
...

...
...

fk,j

nm

c1

p1

f1,j

pm

Figure 6.7. Sketch of the construction of Theorem 43. The dottet
lines denote the blocked rows. All vertices on the dashed line are
start vertices of a train packet.

packet nj takes its step to the right in row 2¯̀. For the packet pj we define that it
takes its step to the right in row 2`. For each train Ti all packets never leave row
2i+ 1 and move directly all the way to the right. Each filling packet fi,j also takes
one of the shortest paths between its start and destination vertex (going all the
way to the left and moving one step down). It moves one step down when it would
otherwise cause a collision with the checker packet c̄i which is moving towards it.
If the latter never happens, fi,j moves down in its very last step.

Now we describe the schedule of the variable packets: For each variable xi we
schedule vi at time t = 0 and v̄i at time t = 1 if xi is set true in the variable
assignment. If xi is set false we schedule vi at time t = 1 and v̄i at time t = 0.
Table 2 shows the priority ranking of the packets. Whenever there are two packets
which need to use an edge at the same time the packet with the higher priority
moves first.

Now we show that this leads to a makespan of at most L. Consider the packets
vi and v̄i for a variable xi. Each packet can be delayed at most once and therefore
will arrive at its destination after at most L steps. Consider the packets ci and
c̄i. If vi was scheduled at time t = 0 then at time t = 1 the packets vi, v̄i and
ci will be on odd grid columns and c̄i will be on an even grid column. From the
construction of the paths it follows that c̄i will be delayed once in its path (by v̄i)
and will not be delayed by ci. Thus, ci and c̄i will arrive at their destinations after
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Priority Packets
1 vi/ v̄i (see text)
2 ci
3 c̄i
4 nj
5 pj
6 fi,j
7 packets in Ti

Table 2. Packet priorities

at most L timesteps. If vi was scheduled at time t = 1 the proof works similarly.
Now consider a packet nj for a clause Cj and let 2r be the row in which nj moves
to the right. From the definition of the path it follows that xj is set false in the
variable assignment. Therefore, vr was delayed once at time t = 0. This implies
that nj arrives at the vertex (2r, 2k + 2j) after 2k + 2j − 2r timesteps which is
one timestep earlier than vi. After 2k + 2j − 2r timesteps the packets cr and c̄r
are located at the vertices (2r, 4r + 2k + 4m− 2j − 2) and (2r, 2j − 2k − 4m+ 2),
respectively, and therefore do not interfere with nj , since 1 ≤ j ≤ m and 1 ≤ r ≤ k.
Therefore, the packet nj reaches its destination after L− 1 timesteps.

Now consider a packet pj for a clause Cj and let 2r′ be the row in which pj moves
right. From the definition of the paths it holds that xr′ was set true in the variable
assignment. Therefore, pj arrives at the vertex (2r′, 2k + 2j) after 2k+ 2j− 2r′+ 1
timesteps, one timestep after vj . Similarly as above, after 2k+2j−2r′+1 timesteps
the packets cr′ and c̄r′ are located at the vertices (2r′, 4r + 2k + 4m− 2j − 3) and
(2r′, 2j − 2k − 4m+ 3), respectively, and therefore do not interfere with pj , since
1 ≤ j ≤ m and 1 ≤ r ≤ k. Thus, pj is never delayed and arrives at its destination
after L timesteps.

Now consider a packet fi,j . We will show that fi,j can be delayed at most once.
In particular, this proves that fi,j cannot be delayed by other filling packets fi′,j′ .
The existence of fi,j implies that the clause Cj does not contain the variable xi.
Since the packet v̄i is delayed at most once (and moves to the left), it cannot delay
fi,j . The packet vi can delay fi,j at most once. All packets vi′ with i′ 6= i cannot
interfere with fi,j by construction of the paths. The choice of the path of fi,j implies
that all packets ci′ , c̄i′ never delay fi,j . Now let nj′ be a packet which moves to the
right in row 2i. It moves to the right when it is located at the vertex (2i, 2k + 2j′).
This happens after 2k + 2j′ − 2i timesteps. The packet fi,j reaches the vertex
(2i, 2k + 2j′) after 2k + 4j − 2i− 2j′ + 1 or 2k + 4j − 2i− 2j′ + 2 timesteps (since
it might be delayed once). Since Cj does not contain the variable xi this implies
that j 6= j′ and therefore fi,j is not being delayed by nj′ . Similarly, the packet pj′
reaches the vertex (2i, 2k + 2j′) after 2k + 2j′ − 2i+ 1 timesteps and cannot delay
fi,j . Thus, fi,j arrives at its destination after at most L timesteps. See also Figure
6.6 for a sketch of filling packets passing by other packets.

Now consider a train Ti. The only packets that could cause a collision with the
packets in Ti are the filling packets. Assume on the contrary that there is a filling
packet fi′,j′ that needs to use an edge at the same time as a packet p ∈ Ti and
assume that this is the first time in the schedule that a packet of a train is delayed.
Assume this happens at time t = t0. Since p is delayed by fi′,j′ it must hold that
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i = i′ so the delay must happen when fi′,j′ is located in row 2i + 1. Assume that
p is located in the vertex (2i+ 1, j̄) when it is delayed. Since by construction of
the paths fi′,j′ moved down when it otherwise would have been delayed by c̄i′ this
implies that at time t0 the package c̄i′ must be in a grid column greater or equal
j̄. But this is a contradiction since this is the first time that a package of Ti was
delayed and all packages of Ti started in grid columns greater than the starting
grid column of c̄i. Therefore, all train packages reach their destinations after L
timesteps.

Now we want to show that the formula is satisfiable if there is a schedule of
length at most L. So assume that there is a routing schedule of length at most
L. First of all we observe that for each packet the length of its path from start to
destination is either L − 1 or L. Since the graph is a grid graph this implies that
each packet travels on a shortest path from its start vertex to its destination and
can be delayed at most once. Thus, for each variable xi at time t = 0 either vi or
v̄i is delayed by one timestep. We set xi true if and only if vi is scheduled at time
t = 0 and v̄i is scheduled at time t = 1. Now we want to show that this assignment
satisfies the formula. Let Cj be a clause and consider the two packets nj and pj .
From the blocking of the rows we conclude that nj moves to the right in a row
r = 2` with 1 ≤ ` ≤ k. This happens at time t = 2k + 2j − 2`.

We claim that x` was set false in our assignment and that x` is a literal in Cj . As-
sume on the contrary that x` was set true in our assignment. (Note that this implies
that v̄` has to delay the packet c̄i once.) Then the packets nj and v` arrive at the
vertex (2`, 2k + 2j) at the same time. Thus, either nj or v` must have been delayed.
If nj was delayed then it will arrive at the vertex (2k + 2j − L− 1, 2k + 2j + 1) at
the same time as pj and thus one of them will arrive at the destination after at
least L+ 1 timesteps. If v` was delayed then v` has to delay c` later in order to be
on time at its destination. Due to the parities of c` and c̄` one of them has to be
delayed twice in total and therefore will not reach its destination before t = L+ 1.
Thus, x` was set false in our assignment. It remains to show that x` is a literal
in Cj . Assume on the contrary that x` is not a literal in Cj . Then there exists a
filling packet f`,j (see Figure 6.6). Thus, after 2k + 2j − 2` timesteps v` is located
at the vertex (2`, 2k + 2j − 1), nj is at the vertex (2`, 2k + 2j) and f`,j is at the
vertex (2`, 2k + 2j + 1). This implies that either v` or nj are delayed once or f`,j
is delayed twice. Each case leads to a contradiction.

Now let r be the row in which the packet pj moves to the right. This happens
at time t = 2k+ 2j − r+ 1. Similarly to the above we can show that r is even, and
thus, r = 2`′ and that x`′ was set true in our assignment and that x`′ is a literal in
Cj . This reasoning implies that in each clause Cj there is at least one literal which
is set true and one literal which is set false. Therefore, the formula is satisfiable.

In the current construction there are packets with the same start and destination
vertices: for each packet pj there is one row blocking packet rj which has the same
start vertex as pj and one row blocking packet r′j which has the same destination
vertex as pj . We remove rj and r′j from the construction. Since the row blocking
packets move to the left the packet pj does not gain any flexibility from that. We
do the same procedure with each packet nj . Now the start and destination vertices
of all packets are unique. �
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7. Conclusion

We investigated the complexity of the packet routing problem on the grid. We
showed that if the paths are fixed the problem is NP -hard. This holds even if
there is only one start vertex and all paths are shortest paths. Note that in the
case that the paths are variable, the packet routing problem with one source vertex
can be solved in polynomial time as we showed in Section 3.3. It remains open to
investigate whether the problem with fixed paths is still NP -hard on the grid if all
packets share the same start and destination vertex. We showed that the packet
routing problem with variable paths on the unidirectional grid G# is NP -hard.
This holds even if we require the start and destination vertices of the packets to be
pairwise different. On general planar graphs there can be no 1 + ε approximation
algorithm for the packet routing problem (with fixed or variable paths) unless P =
NP [26]. The special structure of the grid prevented us from ruling out the existence
of an approximation scheme in this setting. It remains open to construct a PTAS
or to show that it cannot exist unless P = NP .

For the setting of unique start and destination vertices we presented an optimal
algorithm for the bidirectional grid

↔
G#. It implies a 2-approximation for the same

problem on G# (which we proved to be NP -hard). The paths chosen by this
algorithm are one-bend paths. This might look very simple at first sight, but we
showed that choosing the paths in a disadvantageous way can lead to arbitrarily
large approximation factors, even if the computed routing schedule which is based
on the computed paths is optimal.

For the special case of only one start vertex we gave a 1 + ε approximation
algorithm which simultaneously guarantees an absolute error of eight. For arbitrary
given graphs, the packet routing problem with variable paths with a single start
vertex can be solved in polynomial time. But in the case of the grid the graph is
not part of the input but it is given implicitly. Therefore, the number of vertices
in the relevant part of the grid can be exponential in the input length. Thus, the
usual methods for solving the problem do not lead to polynomial time algorithms.
Even if the grid is part of the input the runtime of our 1 + ε approximation of
O (f (ε) + k log k) (with k being the number of destination vertices in the instance)
is significantly faster. We also gave an optimal algorithm for this setting which
runs in O

(
k6 · n

)
which is strongly polynomial. Note that we can still guarantee

polynomial runtime if the number of packets which need to be delivered to each
destination vertex si is binary coded. It remains open to improve the runtime of
this algorithm. Moreover, it uses Vaidya’s algorithm [33] as a subroutine and thus
it would be interesting to find a purely combinatorial algorithm.

For the packet routing problem with fixed paths on the grid we presented an
algorithm with approximation factor b + 1 where b denotes the maximum number
of bends in each path. We gave another algorithm for the same setting which
constructs a schedule of length (b+ 1) ·(C − 1)+D. In comparison, the best known
result for a direct schedule guarantees a schedule of length 4 · (b+ 1) (C − 1) +
D [5]. Thus, it is desirable to find a path selection routine which finds paths
whose congestion, dilation and number of bends in each path is bounded by a
constant times the length of an optimal schedule. This would yield a constant
approximation for the problem. Srinivasan and Teo [31] already gave a constant
factor approximation for the general packet routing problem with variable paths.
However, they use the algorithm by Leighton et al. [20] for finding the routing
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schedule. Therefore, their approximation constant is very large (and not explicitly
given in the paper). It would be interesting to find a constant approximation with
a smaller constant which can be explicitly calculated.
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