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Abstract
India’s land transportGHGemissions are small in international comparison, but growing exponentially.
Understandingof geographically-specific determinants ofGHGemissions is crucial to devise low-
carbon sustainable development strategies.However, previous studies on transport patterns have been
limited to socio-economic context in linear and stationary settings, andwith limited spatial scope.Here,
weuse amachine learning tool to develop a nested typology that categorizes all 640 Indian districts
according to the econometrically identified drivers of their commuting emissions. Results reveal that per
capita commuting emissions significantly vary over space, after controlling for socioeconomic
characteristics, and are strongly influenced bybuilt environment (e.g. urbanization, and roaddensity),
andmobility-related variables (e.g. travel distance and travelmodes). The commuting emissions of
districts are characterized byunique, place-specific combinations of drivers.Wefind that incomeand
urbanization are dominant classifiers of commuting emissions, whilewe explainmorefine-grained
patternswithmode choice and travel distance. Surprisingly themost urbanized areaswith highest
population density are also associatedwith the highest transportGHGemissions, a result that is
explainedbyhigh car ownership.This result contrastswith insights fromOECDcountries, where
commuting emissions are associatedwith low-density urban sprawl.Ourfindings demonstrate that
low-carbon commuting in India is best advancedwith spatially differentiated strategies.

1. Introduction

The IPCC indicates that rapid reduction of greenhouse
gas (GHG) emissions is necessary to keep temperatures
below 2 °C (Edenhofer et al 2014). In 2010, over one-
fifth (∼23%, 6.7 GtCO2) of total energy-related emis-
sions originated in the transportation sector (Kahn
Ribeiro et al 2012, Sims et al 2014). Moreover,
transportation sector’s contributions to overall GHG
emissions are growing, both in absolute and relative
terms, as structural change shifts activity from indus-
try to service sectors (Schäfer 2005). Rapid decarboni-
zation is also challenged by the (perceived) high costs
of decarbonizing transport, requiring high energy-
density fuels (Creutzig 2016). Nonetheless, halving
CO2 emission from transport by 2050 from 2010 levels
could be feasible, if not only electric two-, three- and

four-wheeler rapidly penetrate into motorized trans-
port markets, but if urbanization dynamics also shift
towards more compact urban form (Creutzig et al
2015).

Emerging and rapidly urbanizing countries, like
India, provide major opportunities to shape transport
systems and infrastructure around low-carbon
options (Shukla et al 2008, Bongardt et al 2013; Doll
et al 2013). These options have significant co-benefits,
such as reducing air pollutants (Xia et al 2015), enhan-
cing population health through physical activity
(Woodcock et al 2009, de Sá et al 2017), energy security
(Dhar and Shukla 2015), and possibly alleviating pov-
erty (Starkey 2002). In particular, air pollution is a
major motivation, as 660 million Indians are esti-
mated to live in areas with health-unsecure levels air
fine particulate matter, reducing life expectance in
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averagy by more than 3 years (Greenstone et al 2015).
Often these co-benefits outweigh the benefits of dec-
arbonization in transportation’s sector (Creutzig and
He 2009, Schipper et al 2011, World Health Organiza-
tion 2011, Creutzig et al 2012).

India’s motorized vehicle growth has increased
exponentially over time, and is dominated by two-
wheeler (figure 1(a)) that led to exponential increase in
the road transport sector’s GHG emissions (figure 1(b)).
Dhar et al (2018) estimated that Indian transport sector
energy demand would increase by 4.5 times, 2.7 times,
2.4 times, and 1.7 times in Business As Usual, Nationally
Determined Contributions, 2 °C, and 1.5 °C scenarios
respectively by 2050 compared to 2015 levels. Notably,
Dhar et al suggest that deep decorbonization in the trans-
port sector, such as envisaged in 2 °C or1.5 °C scenarios,
will require both demand and supply side policy inter-
ventions, including transformative human behaviors
relying on information technology, internet and the

sharing economy, the electrification of the transport sec-
tor, and innovations in national and sectoral policies,
including decarbonization of electricities and explicit
carbonprices.

Given the high and growing share of carbon emis-
sions from the transport sector, several studies have been
conducted to deepen the understanding on transport-
based GHG emissions, particularly, its measurements
and compositions, geographic/spatial variations, and
determinants or correlates. Major transport-based stu-
dies on GHG emissions used aggregate level assessment,
as those from the International Energy Agency’s studies
(IEA 2009), and integrated assessment modelling
(Edelenbosch et al 2017, Dhar et al 2018). Studies using
bottom-up approach utilized disaggregated GHG
emissions, such as activity-based (e.g. work, leisure)
(Millard‐Ball and Schipper 2011, Jones and Kammen
2014), or mobile sources based (e.g. road, aviation, rail-
ways, and navigation) (MoEF 2010). Geographic/spatial

Figure 1. (a)Growth trend in registeredmotor vehicles, 1990–2016. (b)Estimated road transport sector emissions in India,
1990–2013. Four-wheeler includes cars, jeeps and taxis. Trend analyses show exponential growth in vehicles and related emissions
over time. Source: (a)Ministry of RoadTransport &HighwaysMORTH (2018); (b) from various studies, as cited in Singh et al (2019).
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variations of transport-based GHG emissions are mostly
focused on region and country (Streets et al 2003,
IEA 2009, MoEF 2010). A few studies, but growing in
number, investigated transport-based GHG emissions at
subnational level, including the state level (Ramachandra
and Shwetmala 2009), the city level (Ahmad et al 2015)
and the sub-city level (Wang et al 2017). Studies have also
identified and quantified determinants of GHG emis-
sions at individual or household level (Ahmad et al
2015, 2017), and often spatially aggregated level (Marco-
tullio et al 2012, Guo et al 2014). Other studiesmeasured
vehicle miles travelled (Cervero and Murakami 2010),
person miles travelled (Krizek 2003, Jain et al 2018,
Korzhenevych and Jain 2018), or transport expenditure
(Ahmad et al 2016), proxies of transport-based GHG
emissions. While these studies provide valuable insights
about correlates of transport-based GHG emissions, one
of the characteristics features of these studies is the use of
aspatial (stationary) analysis methods such as multi-
variate regression that do not allow for variations of coef-
ficients over space.

Given significant socio-spatial variation across
Indian districts, we hypothesize that major determi-
nants of transportation emissions vary widely over
space. This study aims (a) to understand spatial pat-
tern/typology of commuting GHG emissions in India,
and (b) to identify its correlates in spatial context (dis-
trict level). To address these issues, we investigate spa-
tially explicit data of commuting patterns employing
tree regression to identify typology of commuting
GHGemissions.

2.Methods

We describe first the regression model linking com-
muting emissions with it determinants, and then the
recursive partitions method used to identify the
different types of districts (each of which is subject to a
separate regression). Throughout the process, we also
test and validatemodels, wherever needed.

We start our analysis of the determinants of commut-
ing emissionswith the standard regression equation:

åb b e= + + ( )Y Xln ln , 1j
K

k jk j0

where, Yj is commuting emissions for district j, Xjk are
determinants factors, and ej is the classical error term
representing the effects of unobserved variables.
Determinants factors consist of built environment
(urbanization level, travel time to nearest city, popula-
tion density, and road density), mobility related
variables (travel distance, travel modes, and fuel
prices), and socio-economic characteristics (GDP, and
literacy rate). Four variables—commuting emissions,
population density, road density, GDP—are consid-
ered in their logarithmic transform respecting the
distribution of data, and following the econometric
literature on this topic (Ahmad et al 2015, Baiocchi
et al 2015).

For developing typology of districts with respect to
drivers of commuting emissions, we use the classifica-
tion and regression tree (CART) methods developed
by Breiman et al (1984), that iteratively partitions the
data into homogeneous subgroups, by fitting separate
regressionmodel at each node (equation (1)).We use a
regression tree approach since we want to predict the
values of a continuous variable, commuting emis-
sions, in different spatial and socio-economic con-
texts. The algorithm of CART is structured as a
sequence of questions, which resulted into a tree like
structure, where the ends are terminal nodes that cor-
respond to types of commuting patterns according to
spatial context. CART has three main elements: rules
for splitting data at a node based on the values of one
variable; stopping rules of splitting; and prediction for
the target variable in each terminal node. At each split,
the available sample is partitioned into two groups by
maximizing an information measure of node homo-
geneity and selecting the covariate showing the best
split. The split can be presented, as a binary decision
tree where the branch on the right of each non-term-
inal node contains the districts for which split variable
is greater than the split value. CART provides compu-
tationally efficient strategies for estimating non-para-
metric regression model (for detail discussion see
Baiocchi et al (2015)).

To avoid overfitting, a large tree is grown first and
then reduced in size by a pruning process. Given the
flexible non-parametric approach, it is possible to fit a
tree with many parameters, including noisy features,
whichmay render to some degree arbitrary and unsui-
table for generalization and interpretation. Here, we
hence improve the predictive ability of a tree of a spe-
cific size by using a technique known as cross-valida-
tion. Tree size is optimized by minimizing the cross-
validated error.

Alternatively, we have also used geographically
weighted regression to assess determinants of com-
muting emissions spatially to validate our overall find-
ings from the tree regressions (see SI is available online
at stacks.iop.org/ERL/14/045007/mmedia). In gen-
eral findings from bothmethods agree on the key find-
ings. However, we chose tree regression as the main
method for this paper as tree regression allows for rela-
tively straight-forward interpretation and enables the
construction of policy-relevant typologies. These ana-
lyses were performed using R, a free programming
language and software environment for statistical
computing and graphics.

2.1.Data
The commuting data were taken from the Census of
India enumeration on ‘other workers by distance from
residence to place of work and mode of travel to place
of work’ (Census of India 2011a). Here ‘other workers’
are those persons whose main activity was ascertained
according as their time spent as a worker producing
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goods and services or as a non-worker other than those
(a) working as cultivator, (b) working as agricultural
labourer, and (c) working at household industry. This
commuting data is disaggregated by location (urban
and rural), gender (male and female), and distance
ranges at district level. Travel mode shares related data
include walk, bicycle, two-wheeler, four-wheeler,
three-wheeler, bus, train, and water transport or their
groups, which are active transport (walk and cycle),
motorized transport-private (two-wheeler and four-
wheeler), and motorized transport-public (three-
wheeler, bus, train, and water transport). We have
used this data for calculating annual per capita
commuting emissions (kgCO2/p/yr) as follows:

å= ´

´

´

⎡⎣
⎤⎦

( )

( )

2

Y AvEmissions 2 . Commuting distance

Emission factor

300 d

District Pop
,

j i j

j

,

where i represents mean daily distance ranges in
kilometer (e.g. 0.5 km for 0–1 km range; 3.5 km for
2–5 km range; 8 km for 6–10 km range; 15.5 km for
11–20 km range; 25.5 km for 21–30 km range;
40.5 km for 31–50 km range; and 60.5 km for
51+km range), and j represents transportation

modes (e.g. two-wheeler, bus). To represent the return
trip, emissions were multiplied by 2. Values were
converted to annual emissions by assuming 300 mean
working days. Further divided by district population
to calculate per person emissions. Emission factor for
travel mode were taken from data of the India GHG
Program (2014) in kg CO2/km (or kg
CO2/passenger-km for pblic transport modes such as
bus) (see table S1).

Major explanatory variables data were extracted
from publicly available sources (table 1). Road density,
for instance, is calculated from the road network data
from the Open Street Map, a collaborative project to
generate a free map of the world based on crowed-
source data (openstreetmap.org).

3. Results

India’s mean annual commuting emissions (home to/
from work) is 20 kg CO2 per capita, with the highest
(140 kg CO2) in Gurgaon district (Haryana) and the
lowest (1.8 kg CO2) in Shrawasti district (Uttar Pradesh)
(table 1 and figure S1). The mean urbanization level is
26.4%, but varies immensely from null (e.g. Kinnaur
district, Himachal Pradesh) to 100% urban population
(e.g. Mumbai district, Maharashtra). The average travel

Table 1.Descriptive summary of the study population India, 2011.

Variable Mean St. Dev. Min Max Data source

Dependent variable:

Commuting emissions, kg CO2/person/year 20.0 18.9 1.8 140.4 Authors’ calculation based onCensus of India

(2011a)
Independent variables:

Built environment

Urbanization level,% 26.4 21.1 0.0 100.0 Census of India (2011b)
Travel time nearest city,min 68.7 137.9 0.0 1,169.3 Authors’ calculation fromWeiss et al (2018)
Population density, persons/km2 934.4 3,025.3 1 37,346 Census of India (2011b)
Road density, km/km2 0.7 1.9 0.02 22.8 Authors’ calculation from theOpen Street

Map (June) 2017
Socio economic characteristics

GDP, ₹/cap 38 830 30 197 5,198 411 633 State’s planning department (c.2011)
Literacy rate,% 72.3 10.5 36.1 97.9 Census of India (2011b)
Mobility-related variables

Commuting distance, km 5.9 1.9 1.3 14.0 Census of India (2011a)
Walk share,% 13.2 8.3 3.1 57.3 -do-

Bicycle share,% 14.4 10.0 0.4 45.8 -do-

Active transport,% 27.6 11.8 5.6 68.3 -do-

Three-wheeler share,% 4.6 3.5 0.4 24.5 -do-

Bus share,% 31.6 16.7 0.6 74.2 -do-

Train share,% 11.2 11.2 0.01 70.1 -do-

Water transp. share,% 0.7 2.4 0.0 36.9 -do-

Motorized transport-public,% 48.1 15.5 7.3 85.5 -do-

Two-wheeler share,% 15.9 7.9 0.7 41.6 -do-

Four-wheeler share,% 6.3 6.3 0.5 46.5 -do-

Motorized transport-private,% 22.2 9.2 3.5 49.5 -do-

Diesel price, ₹/l 46.2 1.7 42.2 48.6 Ministry of Petroleum&Natural Gas, as cited

in Lok Sabha Secretariate (2013)

ValidN 640

Note: 1US$=44.7US$ on 31March 2011.
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time to the nearest urban center is about 69min, but it
can be as high as 20 h for inhabitants in remote disctricts.
The mean district density is 934 p km−2 (SD=
3025 p km−2), with the highest 37 000 p km−2 in North
East district (Delhi), and the lowest one p km−2 in
Dibang Valley district (Arunachal Pradesh). The road
density varies between 0.02 and 22.8 km km−2, with
mean 0.7 km km−2. Themean district GDP per capita is
39 000 ₹ (circa 2011), with a minimum of 5200 ₹ in
Sheohar district (Bihar) and amaximumof 411 000 ₹ in
Mumbai district (Maharashtra). The mean commuting
distance (among commuters) is 5.9 km, with the lowest

1.3 km in Longleng district (Nagaland) and the highest
14 km in Dharmapuri district (Tamil Nadu). Roughly,
annual per capita commuting mobility (mean travel
distance/day=9.007 km) is about 58% of per capita
passenger mobility 5685 km (Dhar and Shukla 2015).
There is a huge variation in travel mode choices in
Indian districts, for instance, four-wheeler share
between 0.5% and 47% and active transport (walking
and cycling) share between 6% and 68%. In the
following,wepresent seven insights of our analyses.

First, income and urbanization are the key drivers
of the district typology with respect to commuting

Figure 2.District types in India as determined by their Commuting CO2 emissions drivers. Key statistics are given for each type in the
table below (%values are rounded to the nearest whole number, GDP values rounded to the nearest thosand). CO2 emissions drivers
split districts recursively to producemaximally distinct district types. Rectangles indicate the splitting criteria in terms of splitting
variable and threshold value of splitting variable; Ovals are terminal nodes which represent the different district types and contain the
estimated subsamples (seefigure 3). Values inside the rectangles or ovals represents average commuting emissions for respective type/
node in kgCO2. Small square above rectangles or ovals represent node number, figure 3mapsfinal nodes that are in oval shape.N
represents number of districts at that node and parallel figure in% represents percentage of total districts.
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emissions (figure 2). Income is the best discriminator
for a typology of districts with respect to commuting
emissions. The split based on income occurs at the
threshold of about 28 000 ₹/capita. In the high-
income part of the tree (nodes 12, 13, 14, and 15) urba-
nization is the dominant discriminatory attribute
splitting clusters at about 43% level. However, urbani-
zation is not a discriminator in low-income district
types.

Second, average commuting emissions are highest
for districts with high-income inhabitants, that are
highly-urbanized, and that heavily rely on four-
wheeler for commuting (node 15), and lowest for
districts with low-income, have shorter commuting
distance, and rely least on three-wheeler for commut-
ing (node 8). These patterns contrast with observa-
tions from countries like the United States, where
commuting emissions are highest in low-dense settle-
ments (suburban or rural) (Grubler et al 2012, Jones
and Kammen 2014). Within high-income and highly-
urbanized districts, reduced reliance on four-wheeler
for commuting (<20%) cuts average commuting
emissions by 60% from 89 kg CO2 (node 15) to 36 kg

CO2 (node 14). Similarly, within low-income districts,
shorter commuting distance (<5.7 km) cuts average
commuting emissions by 51%, 12 kg CO2 (node 5) to
5.9 kg CO2 (node 4), and within low-income, and
shorter commuting district, reduced reliance on
three-wheeler (<6.1%) cuts average commuting emis-
sions by 58%, 13 kg CO2 (node 9) to 5.4 kg CO2

(node 8).
Third, commuting emissions drivers’ impact is not

homogeneous, but context dependent (figure 2 and
table S3). Thus emission drivers for commuting can-
not be adequately explained by a unique global model
(table S2), as also argued by Baiocchi et al (2015) for
residential CO2 emissions in England. The impact of
urbanization level on commuting emissions shows
strong variability over the study area in expected posi-
tive directionality. A one percentage point increase in
urbanization is associated with increase in commuting
emissions between 0.5% (node 14) and 2% (node 5).
Similarly, income has spatially varying influence in
increasing commuting emissions: a 1% increase in
income is associated with increase in commuting
emissions between 0.35% (node 8) and 0.40%

Figure 3.Human settlement type, as characterized by its commuting emission drivers in India. Each district is colored according the
corresponding node from the tree regression results it belongs to earlierfigure 2.
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(node 5). Commuting emissions also increase with
road density; a 1% increase in road density is asso-
ciated with increase in commuting emissions between
0.07% (node 14) and 0.24% (node 8). The impact of
commuting distance on commuting emissions shows
again strong variability in expected positive direction-
ality. A 1 km increase in commuting distance could
increase commuting emissions between 4.3% (node
13) and 20.5% (node 12). These heterogeneous rela-
tionships indicate that most of the explanatory vari-
ables have higher magnitude of influence in currently
low emitting districts/regions (nodes 8, 9 and 5), for
instance, urbanization, population density, road den-
sity, andGDP.

As expected fuel price is negatively associated with
commuting emissions, but only in low-income
districts (table S2) or specifically in Node 9 and 12
(table S3). With a 1 ₹ increase in diesel price, commut-
ing emissions decrease by 11% in node 9, and 10% in
node 8 (table S3), whereas aggregate 3% in low-
income districts (table S2). Given these districts have
least commuting emissions and low socio-economic
status (figure 2), our study finds limited support for
increasing gasoline prices as a strategy to mitigate
commuting emissions. Rather increasing gasoline
price would burden mobility among low socio-
economic status’ population. However, increasing
transport fuel prices in Indian metropolitan areas has

been identified as a strategy to improve public health
(Ahmad et al 2017).

Fourth, per capita commuting emissions decrease
with increase in population density, except in node 5
where commuting emissions increase with increase in
population density, but with lesser statistical sig-
nificance (p<0.1) (table S3). On average, a 10%
increase in densification reduces commuting emis-
sions by 1.1%, ceteris paribus. Figure 4 reveals residents
living in dense areas (mostly among metropolitan
regions) are affluent and that contribute to higher per
capita commuting emissions. However, there are sev-
eral regions (e.g. Gurgaon and Faridabad) that have
high per capita commuting emissions but relatively
low population density. Mostly, these regions fall in
nodes 14 and 15 that have high motorized transport
share as well as high road density, hence road conges-
tion (figure 2). This suggests increasing population
density with appropriate transportation systems (e.g.
active transport and public transport) could reduce
commuting emissions in a few regions, mostly across
metropolitan regions.

Fifth, themean per capita commuting emissions of
the district typologies vary by a factor of 16.5. Variance
in per capita commuting emissions is higher for high-
income districts (factor of 6) than for low-income dis-
tricts (factor of 2.5). This could be partially explained
by the variation in income, urbanization level and

Figure 4.Comuting emissions per capita increases with increasing economic activity. Residents living in higher density regions are
very affuluent, and have higher per capita commuting emissions (e.g.metropolitan regions). However, there are several regions with
low density but higher per capita commuting emissions (e.g. Faridabad, Gurgaon,NorthGoa, and SouthGoa). Scatterplot smoothing
uses local regressionmethod ‘loess’. TheNational Capital Territory of Delhi has following districts (mostly labelled): Central, North,
South, East, North East, SouthWest, NewDelhi, NorthWest andWest.
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transport mode choices between high- and low-
income district typologies (see figures 2, 4, and 5).
Importantly, districts with similar emissions may have
emissions driven by a different set of determinants.
For example, nodes 5, 9 and 12 have similar average
emissions (12, 13, and 13 kg CO2/cap respectively).
However, node 5 is characterized by low income, and
long distances, node 9 by low income, short distances,
and a high number of three-wheeler, and node 12 by
high income, low urbanization, and low road density
(figure 2). This result emphasizes the importance of
understanding location-specific determinants, even
when emission levels are similar, to derive location-
specific policies.

Sixth, among all Indian megacities, Delhi National
Capital Region (hereafter Delhi) has the highest com-
muting emissions per capita (part of node 15). Node
15, which includes Delhi’s region, has 2.5 times higher
commuting emissions than node 14, which includes
most other megacities—Mumbai, Kolkata, Chennai,
Bangalore, and Hyderabad. Delhi’s higher socio-eco-
nomic status and heavy reliance on private travel
modes (figures 2 and 5) led to higher commuting
emissions than in other megacities. This may also be
an effect of being the center of government; similarly,
as capital of China, Beijing’s emissions from car trans-
port exceed those of Shanghai (Liu et al 2007, Creutzig
andHe 2009). Delhi is also one of themost air-polluted
cities in India. This suggests that implementing

sustainable transportation options should have higher
priority inDelhi than inothermegacities.

Seventh, the same district types tend to cluster spa-
tially, as district typology map (figure 3) as well as
commuting emissions distribution map (figure S1)
reveal. Districts of the same type cluster demonstrates
that features covary spatially. The effects is due to
underlying drivers vary spatially, e.g. urbanization
level. This finding has policy-relevant implication, for
instance, adopting strategy fromone place to another.

4.Discussion and conclusion

This study provides an improved understanding of
commuting emissions in spatial context. To the best of
our knowledge, this is the first attempt to assess India’s
commuting emissions patterns and its drivers at
district level (n=640). Our results provide spatial
information relevant to sustainable transport policies
at district/regional levels.

Our analysis reveals that GHG emissions from com-
muting are grounded in urbanization, socio-economic
characteristics, and travel mode choices. This result is in
accordance with previous research. For instance, pre-
vious studies reveal a 1% rise in urbanization increases
road transport energy use by 0.37% (Poumanyvong et al
2012) and CO2 emissions by 0.30% (Poumanyvong and
Kaneko 2010) in the middle income counries. Similarly,

Figure 5.Urbanization andGDPper capita in reference to node levels commuting emissions in India, 2011. Vertical dashed line
(1) represents first split by income and horizontal dashed line (2) represents second split by urbanization level in high incomedistricts
as a result of tree regressions. Nodes are the same as in figures 2–5.
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Zhang and Lin (2012)find that in China a 1% increase in
urbanization is associated with 0.12% increase in CO2

emissions. Similarly, our estimate reveals that urbaniza-
tion is positively associated with commuting emissions
(urbanization-commuting emission elasticity value is
0.24, that is a 1% increase in urbanization correlates with
a 0.24% increase in commuting emissions). The situa-
tion in OECD countries is different. For example, Elliott
and Clement (2014) showed that per capita CO2 emis-
sions was negatively associated with urbanization and
density at county level in USA, after considering con-
stituents of urbanization (i.e. density, percentage of
developed land, and urban hierarchy). Urbanization is
also associated with denser built-environment, and the-
ory suggests that commuting distances are shorter and
more public transit is used, resulting in lower emissions
(Fujita 1989, Ahmad et al 2013, Creutzig 2014), in agree-
ment with global data analysis of cities and their energy
use andGHGemissions (Marcotullio et al 2013,Creutzig
et al 2015, Lohrey and Creutzig 2016). In contrast, our
analysis reveals that transport emissions are highest in
some of the dense urban areas (figure 4). Districts with
similar population density, however, significantly vary in
per capita commuting emissions (see node 14 in
figure 4). These results indicate that simple-minded den-
sification is an inappropriate policy for reducing com-
muters’GHG emissions. Instead, a focus on electric two,
three, or four-wheeler, and efficient public transit, e.g. in
terms of Bus Rapid Transit systems is warranted, like
Ahmedabad andBhopal.

Notably, e-rickshaws are rapidly emerging in
metropolitans’ suburbs and secondary cities in India,
even though they are hardly supported by subsidies
(Altenburg et al 2012,Ward andUpadhyay 2018). This
suggests that India has the potential to leapfrog oil-dri-
ven mobility to electric mobility. Indeed, expansion
of e-vehicles would reduce both emissions and

air-pollutions, particularly in suburbs and secondary
cities (e.g. node 9). However, related infrastructures
need appropriate investments for public charging
infrastructures in simultaneously and in a coordinated
way (Altenburg et al 2012). With such investments,
e-vehicle could also become a viable option for long-
distance commuting.

Nonetheless, significant variation in commuting
emission drivers over space suggests that one-solution
fits-all for mitigating transport sector emissions will not
work. Solutions instead need to be tailored to geo-
graphical contexts (table 2). Finer spatial clustering of
determinants of commuting emissions enables both spe-
cialization and generalization of policies. Policy interven-
tions can be targeted to the district or region level,
acknowledging their different combinations of commut-
ing emission drivers; in turn, policies can also be general-
ized to similar district/region. Across similar regions,
policy makers can learn from context-specific best prac-
tice experiences. At a local scale, our analyses enable
nuances to be understood by highlighting the spatial het-
erogeneity of the relationships. For instance, variables’
coefficients significantly vary over space (tables S2 and
S3). Therefore, a similar change in built environment or
mobility-related variables may have different response in
mitigating commuting emissions across the country.

Another striking example is Delhi’s significantly
large commuting emissions than other metropolitan
cities, associated with high-income, a high share of
four-wheeler (node 15). Unlike other districts on the
same node, Delhi (and its region) has vast population
(over 46million), and one of themost polluted regions
in the world (Ahmad et al 2013). Our analysis
suggests immediate policy interventions to mitigate
commuting emissions in the region, particularly through
alternative commutingmodes (non-motorized, e-bikes),
also as feeders to improved private transport, as also

Table 2. Summary of district traits and potential interventions by nodes formitigating commuting emissions.

Node (Av. Emiss.) Trait of regiona Potential interventions

8 (5.4 kg) Low-income, short commuting distance, and

less use of three-wheeler

Improving public transport infrastructure

9 (12.5 kg) Low-income, short commuting distance, but

high use three-wheeler

Densification and taxes on fuels

5 (12.1 kg) Low income, but long commuting distance Reducing commuting distance (for instance throughmixed land

use) and improving active/public transport infrastructure

12 (12.9 kg) High-income, less urbanizedwith lower road

density

Reducing commuting distance, taxes on fuel, and improving active/

pulic transport infrastructure

13 (20.4 kg) High-income, less urbanized but higher road

density (e.g. Nellor)
Densification, reducing commuting distance, and improving active

transport infrastructure

14 (35.6 kg) High-income, high-urbanized, with less car

use for commuting (e.g.Mumbai)
Reducing commuting distance, and discouraging private transport

use, possibly taxes on fuelb

15 (89.4 kg) High-income, high-urbanized, and high car

use for commuting (e.g. Delhi)
Densification, reducing commuting distance, and improving public

transport infrastructure, possibly taxes on fuelb

Note:
a See figure 2 for cut-off line, and figure 3 for geographical location.
b Herewe suggest fuel taxes based on related study (Ahmad et al 2017).
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echoed while studying Delhi’s land cover change
(Ahmad et al 2016). Rapid action on both demand and
supply sides would avoid not only the worst aspects of a
collapsing mobility system, but would also support low-
carbon trajectories (Creutzig and He 2009, Dhar et al
2018). Delhi, in fact, can emerge as a laboratory for
experimenting sustainable options, which may be repli-
cated inother regions.

This study has two limitations: (a) adoption of a
modelling approach at district level using aggregated
data, whereas microdata (e.g. individual or household)
andhigh spatial resolution (e.g. lower administrative unit
than district) could provide a better estimate; (b) census
data has home to/fromwork commutingwith travelling
modes and distance ranges only. New types of data are
necessary to improve these types of studies. For next cen-
sus, we suggest to collect information on trip lengths and
reason and vehicle load factor. Unavailability of India’s
national travel survey, these additional information
couldbeuseful for better assessments.

Our new commuting emissions estimate over
space has several implications for urban policymakers.
The spatial estimate identifies hotspots for imple-
menting low-carbon commuting options, through
restructuring travel characteristics (e.g. travel mode
shift, and travel distance) and modifying the built
environment (e.g. urbanization, and density aspects).
As a result, we gain an improved understanding of the
transport sector’s mitigation options in spatial con-
text. This will be useful for multi-level of governments
to deduce transport policies and programs in local or
regional context as per their priorities.

The nonlinear, non-stationarity understanding of
India’s commuting patterns is scalable also to other
issues and other world regions. Our results suggest
that policies (e.g. to decrease emissions or improve
active transportation) should follow the spatial pat-
terns of the relationships to strengthen their efficiency.
Conceptually, our analyses highlights that the study of
commuting emissions should be not only socio-eco-
nomic specific but also location specific. Therefore, we
argue for making best use of the increasing availability
of big data sources for identifying context-based strati-
fied sustainable solutions.

Acknowledgments

Earlier versions of this article were presented in the Cities
and Climate Change Science Conference (Edmonton
2018), Systematizing and upscaling urban solutions
for climate change mitigation (SUUCCM) conference
(Berlin 2018), and Humboldt-Kolleg ‘Sustainable devel-
opment and climate change:Connecting research, educa-
tion, policy and practice’ (Belgrade 2018). The authors
gratefully acknowledge the comments and suggestions
received on these occasions. Authors acknowledge Ulf

Weddige for excellent data support in the project, and
SumitMishra for suggesting/providing relevant data and
maps. SA is thankful to Jérôme Hilaire, and Max
Callaghan for their valuable help innavigating spatial data
in ArcGIS/R, Anjali Ramakrishnan for her constructive
feedback on an earlier draft, and Vidhi Singh for data
assistance. SA acknowledges the Alexander von Hum-
boldt Foundation and the FederalMinistry for Education
andResearch (Germany) for the research fellowship.

ORCID iDs

Sohail Ahmad https://orcid.org/0000-0002-
2816-8484
FelixCreutzig https://orcid.org/0000-0002-5710-3348

References

Ahmad S, Avtar R, SethiM and SurjanA 2016Delhi’s land cover
change in post transit eraCities 50 111–8

Ahmad S, Baiocchi G andCreutzig F 2015CO2 Emissions from
direct energy use of urban households in India Environ. Sci.
Technol. 49 11312–20

Ahmad S, BalabanO,Doll CNHandDreyfusM2013Delhi
revisitedCities 31 641–653

Ahmad S, Pachauri S andCreutzig F 2017 Synergies and trade-offs
between energy-efficient urbanization andhealth Environ.
Res. Lett. 12 114017

Ahmad S andPuppimdeOliveira J A 2016Determinants of urban
mobility in India: lessons for promoting sustainable and
inclusive urban transportation in developing countries
Transport Policy 50 106–14

AltenburgT,BhasinS andFischerD2012Sustainability-oriented
innovation in the automobile industry: advancingelectromo-
bility inChina, France,Germany and India Innov.Dev.267–85

Baiocchi G, Creutzig F,Minx J and Pichler P-P 2015A spatial
typology of human settlements and their CO2 emissions in
EnglandGlob. Environ. Change 34 13–21

BongardtD,Creutzig F,HügingH, SakamotoK,Bakker S,Gota S and
Böhler-Baedeker S2013Low-CarbonLandTransport: Policy
Handbook (Abingdon-on-Thames:Routledge)

Breiman L, Friedman J,OlshenR and StoneC 1984Classification
andRegression Trees (Belmont:Wadsworth)

Census of India 2011a B-28Otherworkers’ by distance from
residence to place of work andmode of travel to place of
work,Office of the Registrar General &Census
Commissioner, India (http://www.censusindia.gov.in/
2011census/B-series/B_28.html)

Census of India 2011b PrimaryCensus Abstract. Delhi, Office of the
Registrar General &CensusCommissioner, India

Cervero R andMurakami J 2010 Effects of built environments on
vehiclemiles traveled: evidence from370USurbanized areas
Environ. Plann.A 42 400–18

Creutzig F2014How fuel prices determinepublic transport infra-
structure,modal shares andurban formUrbanClim.10 63–76

Creutzig F 2016 Evolving narratives of low-carbon futures in
transportationTransp. Rev. 36 341–60

Creutzig F,BaiocchiG,BierkandtR, Pichler P-P andSetoKC2015
Global typology ofurban energyuse andpotentials for an
urbanizationmitigationwedgeProc.NatlAcad. Sci.1126283–8

Creutzig F andHeD2009Climate changemitigation and co-
benefits of feasible transport demand policies in Beijing
Transp. Res.D 14 120–31

Creutzig F, JochemP, EdelenboschOY,Mattauch L, VuurenDPV,
McCollumDandMinx J 2015Transport: a roadblock to
climate changemitigation? Science 350 911–2

10

Environ. Res. Lett. 14 (2019) 045007

https://orcid.org/0000-0002-2816-8484
https://orcid.org/0000-0002-2816-8484
https://orcid.org/0000-0002-2816-8484
https://orcid.org/0000-0002-2816-8484
https://orcid.org/0000-0002-2816-8484
https://orcid.org/0000-0002-5710-3348
https://orcid.org/0000-0002-5710-3348
https://orcid.org/0000-0002-5710-3348
https://orcid.org/0000-0002-5710-3348
https://doi.org/10.1016/j.cities.2015.09.003
https://doi.org/10.1016/j.cities.2015.09.003
https://doi.org/10.1016/j.cities.2015.09.003
https://doi.org/10.1021/es505814g
https://doi.org/10.1021/es505814g
https://doi.org/10.1021/es505814g
https://doi.org/10.1016/j.cities.2012.12.006
https://doi.org/10.1016/j.cities.2012.12.006
https://doi.org/10.1016/j.cities.2012.12.006
https://doi.org/10.1088/1748-9326/aa9281
https://doi.org/10.1016/j.tranpol.2016.04.014
https://doi.org/10.1016/j.tranpol.2016.04.014
https://doi.org/10.1016/j.tranpol.2016.04.014
https://doi.org/10.1080/2157930X.2012.664036
https://doi.org/10.1080/2157930X.2012.664036
https://doi.org/10.1080/2157930X.2012.664036
https://doi.org/10.1016/j.gloenvcha.2015.06.001
https://doi.org/10.1016/j.gloenvcha.2015.06.001
https://doi.org/10.1016/j.gloenvcha.2015.06.001
http://www.censusindia.gov.in/2011census/B-series/B_28.html
http://www.censusindia.gov.in/2011census/B-series/B_28.html
https://doi.org/10.1068/a4236
https://doi.org/10.1068/a4236
https://doi.org/10.1068/a4236
https://doi.org/10.1016/j.uclim.2014.09.003
https://doi.org/10.1016/j.uclim.2014.09.003
https://doi.org/10.1016/j.uclim.2014.09.003
https://doi.org/10.1080/01441647.2015.1079277
https://doi.org/10.1080/01441647.2015.1079277
https://doi.org/10.1080/01441647.2015.1079277
https://doi.org/10.1073/pnas.1315545112
https://doi.org/10.1073/pnas.1315545112
https://doi.org/10.1073/pnas.1315545112
https://doi.org/10.1016/j.trd.2008.11.007
https://doi.org/10.1016/j.trd.2008.11.007
https://doi.org/10.1016/j.trd.2008.11.007
https://doi.org/10.1126/science.aac8033
https://doi.org/10.1126/science.aac8033
https://doi.org/10.1126/science.aac8033


Creutzig F,Mühlhoff R andRömer J 2012Decarbonizing urban
transport in European cities: four cases showpossibly high
co-benefitsEnviron. Res. Lett. 7 044042

deSáTH,TainioM,GoodmanA,EdwardsP,HainesA,GouveiaN,
MonteiroCandWoodcock J 2017Health impactmodellingof
different travel patterns onphysical activity, air pollutionand
road injuries for SãoPaulo,BrazilEnviron. Int.108 22–31

Dhar S, PathakMand Shukla P 2018Transformation of India’s
transport sector under global warming of 2C and 1.5C
scenario J. Cleaner Prod. 172 417–27

Dhar S and Shukla PR 2015 Low carbon scenarios for transport in
India: co-benefits analysis Energy Policy 81 186–98

Doll CNH,DreyfusM, Ahmad S andBalabanO2013 Institutional
framework for urban development with co-benefits: the
Indian experience J. Cleaner Prod. 58 121–9

EdenhoferO et al 2014Technical Summary. Climate Change 2014:
Mitigation of Climate Change. Contribution ofWorkingGroup
III to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change edOEdenhofer et al (Cambridge:
CambridgeUniversity Press)

EdelenboschOY et al 2017Decomposing passenger transport
futures: comparing results of global integrated assessment
modelsTransp. Res.D 55 281–93

Elliott J R andClementMT2014Urbanization and carbon
emissions: a nationwide study of local countervailing effects
in theUnited States Soc. Sci. Q. 95 795–816

FujitaM1989Urban Economic Theory: Land use and city Size
(Cambridge: CambridgeUniversity Press)

GreenstoneM,Nilekani J, Pande R, RyanN, SudarshanA and
SugathanA 2015 Lower pollution, longer lives life expectancy
gains if India reduced particulatematter pollution Econ.
PoliticalWkly. 50 40–6

Grubler A, Bai X, Buettner T,Dhakal S, FiskD J, Ichinose T and
WeiszH 2012Urban energy SystemsGlobal Energy
Assessment–Toward a Sustainable Future (Cambridge and
Luxembourg: CambridgeUniversity Press and International
Institute for Applied SystemsAnalysis) ch 18 pp 1307–400

GuoB,Geng Y, Franke B,HaoH, Liu Y andChiuA 2014
UncoveringChina’s transport CO2 emission patterns at the
regional level Energy Policy 74 134–46

IEA 2009Transport, Energy, andCO2:Moving Towards
Sustainability (France: IEAPublications)

IndiaGHGProgram2014Transport Emission Factor (https://
indiaghgp.org/transport-emission-factors)

JainM,Korzhenevych A andHecht R 2018Determinants of
commuting patterns in a rural-urbanmegaregion of India
Transp. Policy 68 98–106

Jones C andKammenDM2014 Spatial distribution ofUS
household carbon footprints reveals suburbanization
undermines greenhouse gas benefits of urban population
density Environ. Sci. Technol. 48 895–902

KahnRibeiro S, FigueroaM J, Creutzig F, DubeuxC,Hupe J and
Kobayashi S 2012Energy End-Use: Transport. Global Energy
Assessment—TowardA Sustainable Future (Cambridge,
Laxenburg: CambridgeUniversity Press, International
Institute for Applied SystemsAnalysis) ch 9, pp 575–648

KorzhenevychA and JainM2018Area- and gender-based
commuting differentials in India’s largest urban-rural region
Transp. Res.D 63 733–46

KrizekK J 2003Residential relocation and changes in urban travel:
does neighborhood-scale urban formmatter?’ J. Am. Plann.
Assoc. 69 265–81

LiuH,HeK,WangQ,HuoH, Lents J, DavisN,NikkilaN, ChenC,
OssesM andHeC 2007Comparison of vehicle activity and
emission inventory between Beijing and Shanghai J. Air
WasteManage. Assoc. 57 1172–7

Lohrey S andCreutzig F 2016A ‘sustainability window’ of urban
formTransp. Res.D 45 96–111

Lok Sabha Secretariate 2013 PetroleumPricesNo.7/RN/Ref./2013
Parliament library and reference, research, documentation
and information services (LARRDIS) (http://164.100.47.
193/intranet/Petroleumprices.pdf)

Marcotullio P J, Sarzynski A, Albrecht J and SchulzN 2012The
geography of urban greenhouse gas emissions inAsia: a
regional analysisGlob. Environ. Change 22 944–58

Marcotullio P J, Sarzynski A, Albrecht J, SchulzN andGarcia J 2013
The geography of global urban greenhouse gas emissions: an
exploratory analysisClim. Change 121 621–34

Millard‐Ball A and Schipper L 2011Arewe reaching peak
travel?Trends in passenger transport in eight industrialized
countriesTransp. Rev. 31 357–78

Ministry of RoadTransport &Highways (MORTH) 2018Motor
Transport Statistics (NewDelhi: Government of India)

MoEF 2010 India: Greenhouse Gas Emissions 2007Delhi,Ministry of
Environment and Forests, Government of India p 64

Poumanyvong P andKaneko S 2010Does urbanization lead to less
energy use and lowerCO2 emissions?a cross-country
analysisEcol. Econ. 70 434–44

Poumanyvong P,Kaneko S andDhakal S 2012 Impacts of
urbanization onnational transport and road energy use:
evidence from low,middle and high income countriesEnergy
Policy 46 268–77

RamachandraTVandShwetmala 2009Emissions from India’s
transport sector: statewise synthesisAtmos. Environ.43 5510–7

Schäfer A 2005 Structural change in energy use Energy Policy 33
429–37

Schipper L, Deakin E andMcAndrews C 2011 Carbon dioxide
emissions from urban road transport in Latin America:
CO2 reduction as a co-benefit of transport strategies
TransportMoving to Climate Intelligence (Berlin: Springer)
pp 111–27

Shukla P,Dhar S andMahapatraD 2008 Low-carbon society
scenarios for IndiaClim. Policy 8 S156–76

SimsR et al 2014Transport. Climate Change 2014:Mitigation of
Climate Change. Contribution ofWorkingGroup III to the Fifth
Assessment Report of the Intergovernmental Panel on Climate
Change edOEdenhofer et al (Cambridge: Cambridge
University Press)

SinghN,Mishra T andBanerjee R 2019Greenhouse gas emissions
in India’s road transport sectorClimate Change Signals and
Response (Berlin: Springer) pp 197–209

Starkey P 2002 Improving RuralMobility: Options forDeveloping
Motorized andNonmotorized Transport in Rural Areas
(Washington, DC:World Bank Publications)

StreetsDG, BondT, Carmichael G, Fernandes S, FuQ,HeD,
Klimont Z,Nelson S, TsaiN andWangMQ2003An
inventory of gaseous and primary aerosol emissions inAsia in
the year 2000 J. Geophys. Res.: Atmos. 108 8809

WangY, Yang L,Han S, Li C andRamachandra T 2017UrbanCO2
emissions inXi’an andBangalore by commuters:
implications for controlling urban transportation carbon
dioxide emissions in developing countriesMitigation
Adaptation Strateg. Glob. Change 22 993–1019

Ward J andUpadhyay A 2018 India’s RickshawRevolution Leaves
China in theDust (Delhi: Bloomberg)

WeissD,NelsonA,GibsonH, TemperleyW, Peedell S, Lieber A,
HancherM, Poyart E, Belchior S and FullmanN2018A
globalmap of travel time to cities to assess inequalities in
accessibility in 2015Nature 553 333

Woodcock J, Edwards P, Tonne C, Armstrong BG, Ashiru O,
Banister D, Beevers S, Chalabi Z, Chowdhury Z and
Cohen A 2009 Public health benefits of strategies to reduce
greenhouse-gas emissions: urban land transport Lancet 374
1930–43

WorldHealthOrganization 2011Health Co-benefits of Climate
ChangeMitigation: Transport Sector (Geneva:WorldHealth
Organization Press)

Xia T,NitschkeM,Zhang Y, Shah P,Crabb S andHansenA 2015
Traffic-related air pollution andhealth co-benefits of
alternative transport in adelaide, SouthAustralia Environ. Int.
74 281–90

ZhangC and Lin Y 2012 Panel estimation for urbanization, energy
consumption andCO2 emissions: a regional analysis inChina
Energy Policy 49 488–98

11

Environ. Res. Lett. 14 (2019) 045007

https://doi.org/10.1088/1748-9326/7/4/044042
https://doi.org/10.1016/j.envint.2017.07.009
https://doi.org/10.1016/j.envint.2017.07.009
https://doi.org/10.1016/j.envint.2017.07.009
https://doi.org/10.1016/j.jclepro.2017.10.076
https://doi.org/10.1016/j.jclepro.2017.10.076
https://doi.org/10.1016/j.jclepro.2017.10.076
https://doi.org/10.1016/j.enpol.2014.11.026
https://doi.org/10.1016/j.enpol.2014.11.026
https://doi.org/10.1016/j.enpol.2014.11.026
https://doi.org/10.1016/j.jclepro.2013.07.029
https://doi.org/10.1016/j.jclepro.2013.07.029
https://doi.org/10.1016/j.jclepro.2013.07.029
https://doi.org/10.1016/j.trd.2016.07.003
https://doi.org/10.1016/j.trd.2016.07.003
https://doi.org/10.1016/j.trd.2016.07.003
https://doi.org/10.1111/ssqu.12079
https://doi.org/10.1111/ssqu.12079
https://doi.org/10.1111/ssqu.12079
https://doi.org/10.1016/j.enpol.2014.08.005
https://doi.org/10.1016/j.enpol.2014.08.005
https://doi.org/10.1016/j.enpol.2014.08.005
https://indiaghgp.org/transport-emission-factors
https://indiaghgp.org/transport-emission-factors
https://doi.org/10.1016/j.tranpol.2018.04.018
https://doi.org/10.1016/j.tranpol.2018.04.018
https://doi.org/10.1016/j.tranpol.2018.04.018
https://doi.org/10.1021/es4034364
https://doi.org/10.1021/es4034364
https://doi.org/10.1021/es4034364
https://doi.org/10.1016/j.trd.2018.07.013
https://doi.org/10.1016/j.trd.2018.07.013
https://doi.org/10.1016/j.trd.2018.07.013
https://doi.org/10.1080/01944360308978019
https://doi.org/10.1080/01944360308978019
https://doi.org/10.1080/01944360308978019
https://doi.org/10.3155/1047-3289.57.10.1172
https://doi.org/10.3155/1047-3289.57.10.1172
https://doi.org/10.3155/1047-3289.57.10.1172
https://doi.org/10.1016/j.trd.2015.09.004
https://doi.org/10.1016/j.trd.2015.09.004
https://doi.org/10.1016/j.trd.2015.09.004
http://164.100.47.193/intranet/Petroleumprices.pdf
http://164.100.47.193/intranet/Petroleumprices.pdf
https://doi.org/10.1016/j.gloenvcha.2012.07.002
https://doi.org/10.1016/j.gloenvcha.2012.07.002
https://doi.org/10.1016/j.gloenvcha.2012.07.002
https://doi.org/10.1007/s10584-013-0977-z
https://doi.org/10.1007/s10584-013-0977-z
https://doi.org/10.1007/s10584-013-0977-z
https://doi.org/10.1080/01441647.2010.518291
https://doi.org/10.1080/01441647.2010.518291
https://doi.org/10.1080/01441647.2010.518291
https://doi.org/10.1016/j.ecolecon.2010.09.029
https://doi.org/10.1016/j.ecolecon.2010.09.029
https://doi.org/10.1016/j.ecolecon.2010.09.029
https://doi.org/10.1016/j.enpol.2012.03.059
https://doi.org/10.1016/j.enpol.2012.03.059
https://doi.org/10.1016/j.enpol.2012.03.059
https://doi.org/10.1016/j.atmosenv.2009.07.015
https://doi.org/10.1016/j.atmosenv.2009.07.015
https://doi.org/10.1016/j.atmosenv.2009.07.015
https://doi.org/10.1016/j.enpol.2003.09.002
https://doi.org/10.1016/j.enpol.2003.09.002
https://doi.org/10.1016/j.enpol.2003.09.002
https://doi.org/10.1016/j.enpol.2003.09.002
https://doi.org/10.3763/cpol.2007.0498
https://doi.org/10.3763/cpol.2007.0498
https://doi.org/10.3763/cpol.2007.0498
https://doi.org/10.1029/2002JD003093
https://doi.org/10.1007/s11027-016-9704-1
https://doi.org/10.1007/s11027-016-9704-1
https://doi.org/10.1007/s11027-016-9704-1
https://doi.org/10.1038/nature25181
https://doi.org/10.1016/S0140-6736(09)61714-1
https://doi.org/10.1016/S0140-6736(09)61714-1
https://doi.org/10.1016/S0140-6736(09)61714-1
https://doi.org/10.1016/S0140-6736(09)61714-1
https://doi.org/10.1016/j.envint.2014.10.004
https://doi.org/10.1016/j.envint.2014.10.004
https://doi.org/10.1016/j.envint.2014.10.004
https://doi.org/10.1016/j.enpol.2012.06.048
https://doi.org/10.1016/j.enpol.2012.06.048
https://doi.org/10.1016/j.enpol.2012.06.048

	1. Introduction
	2. Methods
	2.1. Data

	3. Results
	4. Discussion and conclusion
	Acknowledgments
	References



