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Abstra
t

Regularization te
hniques for the numeri
al solution of nonlinear inverse s
attering

problems in two spa
e dimensions are dis
ussed. Assuming that the boundary of a s
at-

terer is its most prominent feature, we exploit as model the 
lass of 
artoon-like fun
tions.

Sin
e fun
tions in this 
lass are asymptoti
ally optimally sparsely approximated by shear-

let frames, we 
onsider shearlets as a means for the regularization in a Tikhonov method.

We examine both dire
tly the nonlinear problem and a linearized problem obtained by

the Born approximation te
hnique. As problem 
lasses we study the a
ousti
 inverse

s
attering problem and the ele
tromagneti
 inverse s
attering problem. We show that

this approa
h introdu
es a sparse regularization for the nonlinear setting and we present

a result des
ribing the behavior of the lo
al regularity of a s
atterer under linearization,

whi
h shows that the linearization does not a�e
t the sparsity of the problem. The an-

alyti
al results are illustrated by numeri
al examples for the a
ousti
 inverse s
attering

problem that highlight the e�e
tiveness of this approa
h.

Keywords. Helmholtz equation, Inverse medium s
attering, Regularization, S
hrödinger

equation, Shearlets, Sparse approximation.
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1 Introdu
tion

The s
attering problem analyzes how in
ident waves, radiation, or parti
les, whi
h are trans-

mitted in a medium, are s
attered at inhomogeneities of this medium. The asso
iated inverse

problem aims to determine 
hara
teristi
s of the inhomogeneities from the asymptoti
 behav-

ior of su
h s
attered waves. This problem appears in various �avors in di�erent appli
ation

areas, su
h as e.g. non-destru
tive testing, ultrasound tomography, and e
holo
ation. For an

overview of the problem and re
ent developments, we refer to the survey arti
le [10℄.

Various numeri
al methods have been proposed for the solution of inverse s
attering prob-

lems. A very 
ommon approa
h to solve a nonlinear inverse s
attering problem are �x-point

iterations, whi
h produ
e a sequen
e of linear inverse s
attering problems with solutions that


onverge, under some suitable assumptions, to a solution of the nonlinear problem. One su
h

approximation te
hnique is the Born approximation, see e.g. [3, 28℄. However, one drawba
k

of this 
lass of approa
hes is the fa
t that it requires the solution of a linear inverse s
attering

problem in every iteration step, whi
h is typi
ally again an ill-posed problem that is hard
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to solve in the presen
e of noisy data or data with linearization errors. A re
ently intro-

du
ed di�erent te
hnique, see e.g. [26℄, ta
kles the nonlinear problem dire
tly by minimizing

a Tikhonov fun
tional with a suitably 
hosen regularization term. The su

ess of su
h an

approa
h depends heavily on how properties of the solution are en
oded in the regularization

term. This, however, requires typi
ally that a priori knowledge about 
hara
teristi
s of the

solution is available.

We dis
uss both these approa
hes and 
ombine them with a sparsity based methodology

whi
h makes use of representing the s
atterer in a sparse way, as it has been suggested in

several other areas of inverse problems. This methodology is based on the hypothesis that

most types of data indeed admit a sparse approximation by a suitably 
hosen basis or frame,

see Subse
tion 2.1, and today this is a well-a

epted paradigm. Generally speaking, knowledge

of a sparsifying basis or frame, appropriately applied, allows pre
ise and stable re
onstru
tion

from very few and even noisy measurements. One prominent way to infuse su
h knowledge is

by a regularization term su
h as in a Tikhonov fun
tional. Indeed, in [26℄, it is assumed that

the to-be-dete
ted obje
ts are sparse in the sense of small support, whi
h is then en
oded by

using an Lp-norm for p 
lose to 1 as regularization term, thereby promoting sparsity.

In this paper, we also aim to utilize sparsity to solve inverse s
attering problems, but follow

a di�erent path. The key idea of our new approa
h is to generate a model for a large 
lass

of natural stru
tures and an asso
iated representation system, whi
h provides asymptoti
ally

optimal sparse approximation of elements of this model 
lass. We use this approa
h for

both solution strategies for inverse s
attering problems, and we fo
us on the a
ousti
 and the

ele
tromagneti
 inverse s
attering problem.

1.1 Modeling of the S
atterer

Typi
ally, a s
atterer is a natural stru
ture, whi
h distinguishes itself from the surrounding

medium by a 
hange in density. In the 2D setting, this inhomogeneity 
an be regarded as a


urve with, presumably, 
ertain regularity properties. The interior as well as the exterior of

this 
urve is usually assumed to be homogenous.

In the area of imaging s
ien
es, the 
lass of 
artoon-like fun
tions [14℄ is frequently used

as model for images governed by anisotropi
 stru
tures su
h as edges. Roughly speaking, a


artoon-like fun
tion is a 
ompa
tly supported fun
tion whi
h is a twi
e 
ontinuously di�eren-

tiable fun
tion, apart from a pie
ewise C2
dis
ontinuity 
urve, see De�nition 2.3 below. This


artoon-like model is well-suited for many inverse s
attering problems, where the dis
ontinuity


urve models the boundary of a homogeneous domain. In some physi
al appli
ations, one may

debate this regularity of the 
urve as well as the homogeneity of the domains, but a 
ertain

smoothness on small pie
es of the boundary seems a realisti
 s
enario.

1.2 Dire
tional Representation Systems

Having agreed on a model, one needs a suitably adapted representation system whi
h ideally

provides asymptoti
ally optimal sparse approximations of 
artoon-like fun
tions in the sense

of the de
ay of the L2
-error of best N -term approximation. Su
h a system 
an then be used

for the regularization term of a Tikhonov fun
tional.

The �rst (dire
tional) representation system whi
h a
hieved asymptoti
 optimality were


urvelets introdu
ed in [6℄. In fa
t, in [7℄ 
urvelets are used to regularize linear ill-posed

problems. This is done under the premise, that the solution of the inverse problem exhibits
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edges, whi
h tend to get smoothed out in a regularization pro
edure, while 
urvelets as a

system adapted to edges over
omes this obsta
le. However, on the pra
ti
al side, 
urvelets

su�er from the fa
t that often a faithful numeri
al realization of the asso
iated transform is

di�
ult.

In [17℄ shearlet systems were introdu
ed, whi
h similarly a
hieve the requested optimal

sparse approximation rate [23℄, but in addition allow a uni�ed treatment of the 
ontinuum

and digital realm [25℄. As 
urvelets, shearlets are mainly designed for image pro
essing ap-

pli
ations, in whi
h they are also used for di�erent inverse problems su
h as separation of

morphologi
ally distin
t 
omponents [15, 24℄, re
overy of missing data [16, 19℄, or re
onstru
-

tion from the Radon transform [9℄. Furthermore, in 
ontrast to 
urvelets, 
ompa
tly supported

shearlet frames for high spatial lo
alization are available [20℄, see [22℄ for a survey.

In view of this dis
ussion, shearlet frames seem a good 
andidate as a regularizer for inverse

s
attering problems, and in fa
t this will be key to our new methodologi
al approa
h.

1.3 A
ousti
 and Ele
tromagneti
 Inverse S
attering Problems

We fo
us on two inverse s
attering problems, see e.g. [12℄, whi
h are the a
ousti
 inverse

s
attering problem, for whi
h we introdu
e and study a strategy to dire
tly solve the nonlinear

problem, and the ele
tromagneti
 inverse s
attering problem, for whi
h we analyze the strategy

to linearize the inverse s
attering problem by means of the Born approximation.

The a
ousti
 inverse s
attering problem aims to re
onstru
t a 
ontrast fun
tion whi
h en-


odes the s
atterer by emitting an a
ousti
 wave and measuring the returning s
attered waves.

Common appli
ation areas are radar, sonar, and geophysi
al exploration, see e.g. [12℄ for a

survey of appli
ations.

The minimization of a suitable Tikhonov fun
tional is a 
ommon approa
h to dire
tly solve

this nonlinear inverse problem. In [26℄ a sparsity-based regularization term is introdu
ed whi
h

uses the Lp-norm with p 
lose to 1 dire
tly on the fun
tion to-be-re
overed. This regularization

s
heme is very su

essful when the obje
t under 
onsideration has small support.

Following our methodologi
al 
on
ept, and assuming that 
artoon-like fun
tions are an

appropriate model for the s
atterer, we instead 
hoose as regularization term the ℓp-norm of

the asso
iated shearlet 
oe�
ient sequen
e with p larger or equal to 1. In Theorem 3.3 we

prove 
onvergen
e of this shearlet based regularization s
heme. We also present numeri
al

experiments that 
ompare our approa
h to that of [26℄, see Subse
tion 5.2. These examples

show 
onvin
ing results, both in terms of the re
onstru
tion error and the number of iterations.

In parti
ular, it is demonstrated that edges of the s
atterer are re
overed with high a

ura
y.

The ele
tromagneti
 inverse s
attering problem aims to determine the shape of a s
attering

obje
t from measurements of s
attered in
ident ele
tromagneti
 plane waves. These problems

appear, for instan
e, in appli
ations su
h as medi
al imaging, where mi
rowaves are used to

dete
t leukemia, or non-destru
tive testing, where small 
ra
ks need to be dete
ted inside of,

for instan
e, metalli
 stru
tures [11℄.

A prominent method to linearize the inverse s
attering problem is by means of the Born

approximation. Modeling the s
atterer by 
artoon-like fun
tions, shearlets 
an be used again

as a regularizer, provided that the transition from the nonlinear towards the linear problem

does not in�uen
e the fa
t that the solution belongs to the 
lass of 
artoon-like fun
tions.

It has been shown in [29, 34℄ that 
ertain singularities of the s
atterer 
an still be found in

the solution of the asso
iated linearized problem. However, all these results require a global

regularity of the s
atterer to des
ribe the regularity of the inverse Born approximation. On
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the other hand, in the 
ase of 
artoon-like fun
tions we have strong lo
al but poor global

regularity and therefore the results of [29, 34℄ 
an not be applied to our situation. To provide

a theoreti
al basis for the appli
ation of shearlet frames, we prove that indeed the Born

approximation to the ele
tromagneti
 S
hrödinger equation gives rise to a s
attering problem

that exhibits sharp edges in the solution of the linearized problem. In parti
ular, we show that

the 
artoon model is almost invariant under the linearization pro
ess, see Theorem 4.3 and

Corollary 4.4. These results then provide the theoreti
al justi�
ation that shearlet systems


an be used as regularization for the numeri
al solution of the asso
iated linearized problems.

1.4 Outline of the Paper

The paper is organized as follows. The pre
ise de�nition of shearlet systems, their frame

properties, and their sparse approximation properties for 
artoon-like fun
tions is summarized

in Se
tion 2. Se
tion 3 is devoted to the a
ousti
 s
attering problem. We �rst des
ribe the

dire
t and asso
iated inverse problem, followed by the introdu
tion of our new approa
h to

regularize the inverse s
attering problem using the shearlet transform in Subse
tion 3.3. We

prove a 
onvergen
e result in Theorem 3.3. The ele
tromagneti
 s
attering problem is then

introdu
ed and studied in Se
tion 4 with Theorem 4.3 being the main result on lo
al regularity

of the inverse Born approximation. Corollary 4.4 analyzes the situation of using the 
artoon-

like model as s
atterer. Numeri
al experiments for the inverse a
ousti
 s
attering problem

are provided in Se
tion 5, highlighting the e�e
tiveness of the shearlet-based regularization

te
hnique for the a
ousti
 s
attering problem as 
ompared to other approa
hes.

2 Shearlet Systems

In this se
tion we provide a pre
ise de�nition of shearlet frames and re
all their sparse ap-

proximation properties, see [22℄ for a survey on shearlets and [8℄ for a survey on frames.

2.1 Review of Frame Theory

Representation systems whi
h are utilized for e�
ient en
oding strategies often require a 
er-

tain �exibility in their design, but should still lead to numeri
ally stable algorithms. These

desiderata are a

ommodated by the notion of a frame, whi
h generalizes the notion of or-

thonormal bases by only requiring a norm equivalen
e between the Hilbert spa
e norm of a

ve
tor and the ℓ2-norm of the asso
iated sequen
e of 
oe�
ients. To be more pre
ise, given

a Hilbert spa
e H and an index set I, then a system {ϕi}i∈I ⊂ H, is 
alled a frame for H, if

there exist 
onstants 0 < α1 ≤ α2 <∞ su
h that

α1‖f‖
2 ≤

∑

i∈I

|〈f, ϕi〉|
2 ≤ α2‖f‖

2
for all f ∈ H.

The 
onstants α1, α2 are referred to as the lower and upper frame bound, respe
tively. If

α1 = α2 is possible, then the frame is 
alled tight.

Frames provide a very good methodology for the analysis of fun
tions and for e�
ient series

expansions. For this, ea
h frame Φ := {ϕi}i∈I ⊂ H is asso
iated with three operators. The

analysis operator TΦ de�ned by

TΦ : H → ℓ2(I), TΦ(f) = (〈f, ϕi〉)i∈I ,
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de
omposes a fun
tion into its frame 
oe�
ients, whi
h typi
ally allows the analysis of the

original fun
tion. Se
ond, the synthesis operator T ∗
Φ, whi
h is the adjoint of TΦ, given by

T ∗
Φ : ℓ2(I) → H, T ∗

Φ((ci)i∈I) =
∑

i∈I

ciϕi,

allows to synthesize a fun
tion from the 
oe�
ients, and, third, the frame operator SΦ :=
T ∗
ΦTΦ, de�ned by

SΦ : H → H, SΦ(f) =
∑

i∈I

〈f, ϕi〉ϕi.

The operator Sϕ, whi
h 
an be shown to be self-adjoint and invertible, see e.g. [8℄, allows

both a re
onstru
tion of f given its frame 
oe�
ients and an expansion of f in terms of the

frame elements, i.e.,

f =
∑

i∈I

〈f, ϕi〉S
−1
Φ ϕi =

∑

i∈I

〈
f, S−1

Φ ϕi
〉
ϕi for all f ∈ H.

Hen
e, although Φ does not 
onstitute a basis, there exists a re
onstru
tion formula using the

system {ϕ̃i}i∈I := {S−1
Φ ϕi}i∈I , whi
h 
an a
tually be shown to also form a frame, the so-
alled


anoni
al dual frame. In the 
ase of a tight frame, the 
anoni
al dual frame is just a 
onstant

multiple of the original frame, whi
h makes tightness a desirable property.

As for e�
ient expansions of a fun
tion f ∈ H in terms of Φ, although redundan
y allows

in�nitely many 
oe�
ient sequen
es (ci)i∈I su
h that

f =
∑

i∈I

ciϕi,

we 
an identify with (〈f, ϕ̃i〉)i∈I one expli
it 
oe�
ient sequen
e. However, this is typi
ally

by far not the `best' possible in the sense of rapid de
ay in absolute value, sin
e this sequen
e

is only the smallest among all possible ones in ℓ2-norm. Sin
e one has better 
ontrol over

the sequen
e (〈f, ϕi〉)i∈I of frame 
oe�
ients, it is often advantageous to instead 
onsider the

expansion

f =
∑

i∈I

ciϕ̃i

of f in terms of the 
anoni
al dual frame. The reason is that, if fast de
ay of the frame


oe�
ients 
an be shown, then this form provides an e�
ient expansion of f .

2.2 Shearlet systems and Frame Properties

Shearlet systems are designed to asymptoti
ally optimal en
ode geometri
 features. The key

idea in shearlet systems are elements that are anisotropi
 and be
ome more and more needlelike

at �ne s
ales. For this, we 
hoose a paraboli
 s
aling matrix, given by

Aj =

[
2j 0

0 2
j
2

]
, j ∈ Z,

whi
h ensures that the elements of the shearlet system have an essential support of size

2−j×2−
j
2
following the paraboli
 s
aling law `width ≈ length

2
'. In fa
t, the 
hoi
e of paraboli
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s
aling is oriented towards the fa
t that the governing feature of our model will be a pie
ewise

C2
-dis
ontinuity 
urve. In addition to translation, we now require a third parameter for


hanging the orientation of the shearlets. In 
ontrast to 
urvelets [6℄ whi
h are based on

rotation, shearlets use shearing matri
es

Sk =

[
1 k
0 1

]
, k ∈ Z,

whi
h, by leaving the digital grid Z2
invariant, ensure the possibility of a faithful numeri
al

realization. The formal de�nition of a shearlet system as it was de�ned in [20℄ is as follows.

De�nition 2.1. Let ϕ,ψ, ψ̃ ∈ L2(R2), c = [c1, c2]
T ∈ R2

with c1, c2 > 0. Then the (
one-

adapted) shearlet system is de�ned by

SH(ϕ,ψ, ψ̃, c) = Φ(ϕ, c1) ∪Ψ(ψ, c) ∪ Ψ̃(ψ̃, c),

where

Φ(ψ, c1) =
{
ϕ(· − c1m) : m ∈ Z

2
}
,

Ψ(ψ, c) =
{
ψj,k,m = 2

3j
4 ψ(SkA2j · −Mcm) : j ∈ N0, |k| ≤ 2⌈

j
2⌉,m ∈ Z

2
}
,

Ψ̃(ψ̃, c) =
{
ψ̃j,k,m = 2

3j
4 ψ̃(STk Ã2j · −Mc̃m) : j ∈ N0, |k| ≤ 2⌈

j
2⌉,m ∈ Z

2
}
,

with Mc :=

[
c1 0
0 c2

]
, Mc̃ =

[
c2 0
0 c1

]
, and Ã2j = diag(2

j
2 , 2j).

The following theorem shows that shearlets, and in parti
ular 
ompa
tly supported shearlets,

form frames and gives theoreti
al estimates for the frame bounds.

Theorem 2.2 ([20℄). Let α > γ > 3, and let ϕ,ψ ∈ L2(R2) be su
h that

|ϕ̂(ξ1, ξ2)| ≤ C1min{1, |ξ1|
−γ}min{1, |ξ2|

−γ} and

|ψ̂(ξ1, ξ2)| ≤ C2min{1, |ξ1|
α}min{1, |ξ1|

−γ}min{1, |ξ2|
−γ},

for some positive 
onstants C1, C2 <∞. Setting ψ̃(x1, x2) := ψ(x2, x1), there exists a sampling

ve
tor c = [c1, c2]
T ∈ R2

, c1, c2 > 0 su
h that the shearlet system SH(ϕ,ψ, ψ̃; c) forms a frame

for L2(R2).

Faithful implementations of shearlet frames and the asso
iated analysis operators are avail-

able at www.ShearLab.org, see also [25℄.

2.3 Sparse Approximation

Shearlets have well-analyzed approximation properties as 
an be seen, in parti
ular, for


artoon-like fun
tions as initially introdu
ed in [14℄. Denoting by χB ∈ L2(R2) the 
har-

a
teristi
 fun
tion on a bounded, measurable set B ⊂ R2
, we have the following de�nition.

De�nition 2.3. The 
lass E2(R2) of 
artoon-like fun
tions is the set of fun
tions f : R2 → C

of the form

f = f0 + f1χB ,

where B ⊂ [0, 1]2 is a set with ∂B being a 
losed C2
-
urve with bounded 
urvature and fi ∈

C2(R2) are fun
tions with support supp fi ⊂ [0, 1]2 as well as ‖fi‖C2 ≤ 1 for i = 0, 1.
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Figure 1: Example of a 
artoon-like fun
tion.

For an illustration of a 
artoon-like fun
tions, see Figure 1. We measure the approximation

quality of shearlets with respe
t to the 
artoon model by the de
ay of the L2
-error of best

N -term approximation. Re
all that for a general representation system {ψi}i∈I ⊂ H and

f ∈ H, the best N -term approximation is de�ned as

fN = argmin
Λ⊂N,|Λ|=N,

f̃N=
∑

i∈Λ

ciψi

‖f − f̃N‖.

In 
ontrast to the situation of orthonormal bases, if {ψi}i∈I forms a frame or even a tight

frame, it is not 
lear at all how the set Λ has to be 
hosen. Therefore, often the best N -term

approximation is substituted by the N -term approximation using the N largest 
oe�
ients.

To be able to 
laim asymptoti
 optimality of a sparse approximation, one requires a ben
h-

mark result. In [14℄ it was shown that for an arbitrary representation system {ψi}i∈I ⊂ L2(R2),
the minimally a
hievable asymptoti
 approximation error for f ∈ E2(R2) is

‖f − fN‖
2
2 = O(N−2) as N → ∞,

provided that only polynomial depth sear
h is used to 
ompute the approximation. Here, for

a fun
tion f , the Landau symbol O(f(a)) des
ribes the asymptoti
 
onvergen
e behavior as

a→ 0 for the set of fun
tions g su
h that lim supx→a
g(x)
f(x) <∞.

Shearlets a
hieve this asymptoti
ally optimal rate up to a log-fa
tor as the following result

shows.

Theorem 2.4 ([23℄). Let ϕ,ψ, ψ̃ ⊂ L2(R2) be 
ompa
tly supported, and assume that the

shearlet system SH(ϕ,ψ, ψ̃, c) forms a frame for L2(R2). Furthermore, assume that, for all

ξ = [ξ1, ξ2]
T ∈ R2

, the fun
tion ψ satis�es

|ψ̂(ξ)| ≤ Cmin{1, |ξ1|
δ}min{1, |ξ1|

−γ}min{1, |ξ2|
−γ},∣∣∣∣

∂

∂ξ2
ψ̂(ξ)

∣∣∣∣ ≤ |h(ξ1)|

(
1 +

|ξ2|

|ξ1|

)−γ

,

where δ > 6, γ ≥ 3, h ∈ L1(R) and C is a 
onstant, and ψ̃ satis�es analogous 
onditions

with the roles of ξ1 and ξ2 ex
hanged. Then SH(ϕ,ψ, ψ̃, c) provides an asymptoti
ally optimal

sparse approximation of f ∈ E2(R2), i.e.,

‖f − fN‖
2
2 = O(N−2 · (logN)3) as N → ∞.

Theorem 2.4 indi
ates that shearlet systems provide a very good model for en
oding the

governing features of a s
atterer.
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3 The A
ousti
 S
attering Problem

In this se
tion we fo
us on the �rst of the two s
attering problems, whi
h is the a
ousti


s
attering problem. After brie�y dis
ussing the dire
t problem, we introdu
e the related

inverse problem, whi
h we approa
h using a Tikhonov type fun
tional with regularization by

ℓp minimization, with p 
lose to or equal to 1, applied to the shearlet 
oe�
ients. For this

setting, we will derive 
onvergen
e results, whi
h in fa
t even hold for a larger 
lass of frames.

3.1 The Dire
t Problem

A very 
ommon model for the behavior of an a
ousti
 wave u : R2 → C in an inhomogeneous

medium is the Helmholtz equation [12℄. Given a wave number k0 > 0 and a 
ompa
tly

supported 
ontrast fun
tion f ∈ L2(R2), the Helmholtz equation has the form

∆u+ k20(1− f)u = 0, (1)

where the 
ontrast fun
tion f models the inhomogeneity of the medium due the s
atterer. In

a typi
al situation one models f as a fun
tion whi
h is smooth, apart from a model of the

s
atterer whi
h is again assumed to be an essentially homogeneous medium, whose density is,

however, signi�
antly di�erent from the surrounding medium. To model the boundary of the

s
atterer, a typi
al approa
h is to use a 
urve with a parti
ular regularity, say C2
. Re
alling

the de�nition of a 
artoon-like fun
tion in De�nition 2.3, we suggest to use E2(R2) as a model

for the boundary. Furthermore, even if the boundary of the s
atterer is only a pie
ewise C2


urve, then the shearlets provide a very good model, sin
e the sparse approximation results of

shearlets as well as our analysis also hold in this more general situation. As further ingredient

for the a
ousti
 s
attering problem, we introdu
e in
ident waves uin
, whi
h are solutions to

the homogenous Helmholtz equation, i.e., (1) with f ≡ 0. A large 
lass of su
h solutions take

the form

uin
d : R2 → C, uin
d (x) = eik0〈x,d〉 (2)

for some dire
tion d ∈ S1. Then, for a given f ∈ L2(R2) and a solution uin
 to the homogeneous

Helmholtz equation, every solution to (1) 
an be expressed as

u = us + uin
,

where us denotes the s
attered wave. To obtain physi
ally reasonable solutions we stipulate

that the s
attered wave obeys the Sommerfeld radiation 
ondition, see e.g. [12℄,

∂us

∂|x|
= ik0u

s(x) +O(|x|−
1
2 ) for |x| → ∞.

For a given k0 > 0, and 
ontrast fun
tion f ∈ L2(R2) with 
ompa
t support and in
ident

wave uin
, the a
ousti
 s
attering problem then is to �nd u ∈ H2
loc(R

2) su
h that

∆u+ k20(1− f)u = 0,

u = us + uin
,

∂us

∂|x|
= ik0u

s(x) +O(|x|−
1
2 ).

8



To obtain an equivalent formulation, we introdu
e the fundamental solution Gk0 to the Helmholtz

equation,

Gt(x, y) =
i

4
H

(1)
0 (t|x− y|), t > 0, x, y ∈ R

2, (3)

where H
(1)
0 is a Hankel fun
tion, see e.g. [1℄. Letting BR denoting the open ball of radius

R > 0 
entered at 0 and R 
hosen su
h that supp f ⊂ BR, the volume potential is de�ned by

V (f)(x) :=

∫

BR

Gk0(x, y)f(y) dy, x ∈ R
2.

Using this potential we 
an reformulate the a
ousti
 s
attering problem as the solution of the

Lippmann-S
hwinger integral equation given by

us(x) = −k20V (f(us − uin
)) in BR (4)

for f ∈ L2(R2) with supp f ⊂ BR. Any solution us ∈ H2
loc(BR) of (4) indeed solves the

a
ousti
 s
attering problem in BR and 
an, by the unique 
ontinuation prin
iple [18℄, be

uniquely extended to a global solution of the a
ousti
 s
attering problem, see e.g. [12℄.

Letting L2(BR) denote the square-integrable fun
tions de�ned on BR, whi
h are in parti
ular

ompa
tly supported, we now de�ne the solution operator of the a
ousti
 s
attering problem

by

S : L2(BR)× L2(BR) → H2
loc(BR), S(f, uin
) = u,

and the Lippmann-S
hwinger equation (4) allows to 
ompute this operator for a given s
atterer

f and in
ident wave uin
.

3.2 The Inverse Problem

In the asso
iated inverse problem, we assume that we know the in
ident wave uin
 as well

as measurements of the s
attered wave us and we aim to 
ompute information about the

s
atterer f . Following [26℄, we model these measurements as us|Γmeas
, where Γmeas is the tra
e

of a 
losed lo
ally Lips
hitz 
ontinuous 
urve with Γmeas ∩BR = ∅.
In the 
ase that we just have one in
ident wave uin
, then the map (f, uin
) 7→ us|Γmeas

,

is 
alled mono-stati
 
ontrast-to-measurement operator in [26℄. For multiple in
ident waves,

and multi-stati
 measurements, a 
losed set Γ
in


is introdu
ed, whi
h is again the tra
e of a


losed lo
ally Lips
hitz 
urve en
losing BR, su
h that Γ
in


∩ BR = ∅. The set Γ
in


serves to


onstru
t single layer potentials, whi
h take the role of the in
ident waves. For ϕ ∈ L2(Γ
in


),
these single layer potentials are

SLΓ
in


ϕ :=

∫

Γ
in


Gk0(·, y)ϕ(y) dy ∈ L2(BR),

see Figure 2 for an illustration. Let LpIm≥0(BR) denote the set of Lp(BR)-fun
tions with

nonnegative imaginary part, and let HS(·, ·) denote the spa
e of Hilbert S
hmidt operators

[35℄. Then the multi-stati
 measurement operator N , whi
h assigns ea
h 
ontrast fun
tion

a Hilbert-S
hmidt operator, maps a single layer potential to the asso
iated solution of the

a
ousti
 s
attering problem. Formally, N is de�ned by

N : L2
Im≥0(BR) → HS(L2(Γinc), L

2(Γmeas)), f 7→ Nf ,

9



BR

S
atterer modeled by a


artoon-like fun
tion

Γmeas = Γ
in


SLΓ
in


ϕ = uin


Figure 2: Model for the a
ousti
 inverse s
attering problem in whi
h Γmeas = Γ
in


.

where

Nf : L2(Γinc) → L2(Γmeas), ϕ 7→ S(f, SLΓ
in


ϕ).

Note that indeed Nf ∈ HS(L2(Γinc), L
2(Γmeas)), see [26℄, where it was also shown, even in a

more general setting, that the operator N satis�es the following properties.

Theorem 3.1. [26℄ The operator N is 
ontinuous, 
ompa
t, and weakly sequentially 
losed

from L2
Im≥0(BR) into HS(L2(Γinc), L

2(Γmeas)).

Sin
e in realisti
 appli
ations the signals always 
ontain noise, we 
onsider the inverse

a
ousti
 s
attering problem with noise, whi
h for a noise level ε > 0, and noisy measurements

N ε
meas ∈ HS(L2(Γinc), L

2(Γmeas)) satisfying

‖N ε
meas −Nf†‖HS(L2(Γ

in


),L2(Γmeas)) ≤ ε, (5)

is to re
over the s
atterer f †. This inverse problem is ill-posed and requires 
areful regular-

ization whi
h is dis
ussed in the next subse
tion.

3.3 Regularization by Frames

A 
lassi
al regularization approa
h to solve inverse problems is to minimize an appropriate

Tikhonov fun
tional. In [26℄ it was suggested to minimize

T̃
ε
α(f) :=

1

2
‖Nf −N ε

meas‖
2
HS(L2(Γ

in


),L2(Γmeas))
+
α

p
‖f‖p

Lp(BR), f ∈ Lp(BR). (6)

for �xed p > 1 and α > 0. For p 
lose to 1, the regularization term in this fun
tional promotes

sparsity in the representation of the s
atterer.

Here we suggest a di�erent regularization, whi
h exploits that the s
atterer f is modeled as

a 
artoon-like fun
tion E2(R2) and that shearlet systems are used to obtain sparse approxima-

tions of the s
atterer f . Let Φ := SH(ϕ,ψ, ψ̃, c) be a shearlet frame satisfying the hypotheses

of Theorem 2.4, and let TΦ denote the analysis operator of the shearlet frame Φ, then the

proof of Theorem 2.4 yields the de
ay behavior of the asso
iated shearlet 
oe�
ients TΦ(f).
It has been shown in [26℄ that TΦ(f) is in ℓ

p
for every p > 2

3 .

We propose to regularize the a
ousti
 inverse s
attering problem by adapting the data �delity

term appropriately and by imposing a 
onstraint on the ℓp-norm of the 
oe�
ient sequen
e

10



TΦ(f). More pre
isely, for �xed 1 ≤ p ≤ 2 and α > 0, we 
onsider the Tikhonov fun
tional

given by

T
ε
α(f) :=

1

2
‖N (f)−N ε

meas‖
2
HS(L2(Γ

in


),L2(Γmeas))
+
α

p
‖TΦ(f)‖

p
ℓp , f ∈ L2(BR). (7)

Note that the 
ase of p = 1 is not ex
luded in our analysis in 
ontrast to the situation in [26℄.

Having introdu
ed the Tikhonov regularization, we now analyze the 
onvergen
e of the min-

imization pro
ess. For this we are parti
ularly interested in 
onvergen
e to a norm minimizing

solution f∗ ∈ L2(BR), i.e.,

N (f∗) = Nf and ‖TΦ(f
∗)‖p ≤ ‖TΦ(f)‖p for all f su
h that N (f) = Nf† .

Su
h 
onvergen
e properties have been extensively studied. Let us re
all the following result

of [33, Thm. 3.48℄, whi
h was stated for orthonormal bases but the extension to frames is

straightforward.

Theorem 3.2. [33℄ Let 1 ≤ p, q < 2, let U be a Hilbert spa
e with frame Φ = (ϕi)i∈I , and
let V be a Bana
h spa
e. Let τV and τU be the weak topologies on V and U , respe
tively.

Let w = (wi)i∈I be a sequen
e of weights with 0 < wmin ≤ wi < ∞ for all i ∈ I and

some 
onstant wmin. Let R : U → [0,∞] be de�ned as R(u) = ‖wTΦ(u)‖
p
ℓp
. Furthermore, let

D := D(F )∩D(R) 6= ∅ and assume that the operator F : D(F ) ⊂ U → V is weakly 
ontinuous

and its domain is weakly sequentially 
losed.

Suppose that (8) possesses a solution in D, and that α : (0,∞) → (0,∞) is a fun
tion whi
h

satis�es

α(x) → 0 and

xq

α(x)
→ 0 as x→ 0.

Let (δn)n ⊆ R+
be a sequen
e of noise levels 
onverging to 0 as n → ∞, let (vn)n ⊆ V be a

sequen
e of noisy measurements deviating from the noise-free measurement v by at most (δn)n,
i.e.,

‖v − vn‖V ≤ δn,

and set αn := α(δn), as regularization parameter. Then, for every sequen
e (un)n ⊆ U of

elements minimizing Tαn,vn , there exists a subsequen
e (unj
)j of (un)n and a norm minimizing

solution u∗ ∈ U su
h that

unj
→ u∗ as j → ∞, with respe
t to τU .

Theorem 3.2 provides 
onditions for 
onvergen
e with a general Tikhonov type fun
tional

Tα,v(u) := ‖F (u)− v‖qV + αR(u), u ∈ U, (8)

where 1 ≤ q <∞, α > 0, U is a Hilbert spa
e and V is a Bana
h spa
e. Based on Theorem 3.2,

using weights wi = 1, we obtain a 
onvergen
e result for the fun
tional Tεα introdu
ed in (7).

Theorem 3.3. Consider the fun
tional (7), let 1 ≤ p ≤ 2 and f † ∈ L2
Im≥0(BR). Furthermore,

let (εn)n ⊆ R+
be a sequen
e of noise levels 
onverging to 0 as n→ ∞, and let (N εn

meas)n∈N ⊂
HS(L2(Γinc), L

2(Γmeas)) be an asso
iated family of noisy measurements that obey (5). Finally,

let (αn)n be a sequen
e of regularization parameters satisfying

αn → 0 and

ε2n
αn

→ 0 as n→ ∞.

11



Then, for every n, there exists a minimizer fn ∈ L2(BR) of the fun
tional Tεnαn
from (7). In

addition, for every su
h sequen
e (fn)n ⊂ L2(BR), there exists a subsequen
e (fnl)l and a

norm minimizing solution f∗ ∈ L2(BR) su
h that

‖fnl − f∗‖L2 → 0 as l → ∞.

Proof. The proof is organized as follows. We �rst show that the assumptions of Theorem

3.2 are ful�lled, whi
h yields weak 
onvergen
e of subsequen
es (fnl)l to a norm minimizing

solution f∗. Afterwards we prove that in our setup we 
an even get strong 
onvergen
e.

To show weak 
onvergen
e, we apply Theorem 3.2 with q = 2, V = HS(L2(Γ
in


), L2(Γmeas))
and U = L2(BR), and we 
hoose τU , τV to be the respe
tive weak topologies. Moreover, we

use

D(N ) ∩ D(R) = L2(BR) ∩ T
−1
Φ (ℓp) = T−1

Φ (ℓp) 6= ∅.

The 
ontinuity, 
ompa
tness, and weakly sequentially 
losedness ofN implies that N is weakly


ontinuous. Theorem 3.2 then guarantees, that, for every n, there exists a minimizer fn ∈
L2(BR) of the fun
tional Tεnαn

. In addition, for every su
h sequen
e (fn)n ⊂ L2(BR), there
exists a subsequen
e (fnl)l that 
onverges weakly to a norm minimizing solution f∗ ∈ L2(BR).
To prove strong 
onvergen
e, we may assume w.l.o.g., that (fn)n is the weakly 
onverging

subsequen
e and we aim to prove that ‖fn − f∗‖L2 → 0 for n → ∞ . Sin
e fn 
onverges

weakly to f∗, we also obtain that, for all i ∈ I, 〈fn − f∗, ϕi〉 → 0 as n → ∞. Furthermore,

sin
e f∗ is a norm minimizing solution, we have that ‖TΦf
∗‖p < ∞ and, sin
e ‖TΦf

n‖pp ≤
Tεnαn

(fn) ≤ Tεnαn
(f∗), we obtain that

α

p
‖TΦf

n‖pp ≤ T
εn
αn

(f∗) =
1

2
‖N (f∗)−N εn

meas‖
2
HS(L2(Γ

in


),L2(Γmeas))
+
α

p
‖TΦ(f

∗)‖pℓp .

Employing that ‖N (f∗)−N εn
meas‖HS(L2(Γ

in


),L2(Γmeas))
≤ εn and

ε2n
α

→ 0 it follows that ‖TΦf
n‖pp

is uniformly bounded in n. By the frame inequality and the fa
t that p ≤ 2, we obtain that

there exists 
onstants 0 < C1, C2 <∞ su
h that

‖fn − f∗‖2 ≤ C1

(∑

i∈I

| 〈fn − f∗, ϕi〉 |
2

) 1
2

≤ C2

(∑

i∈I

| 〈fn − f∗, ϕi〉 |
p

) 1
p

.

Using the boundedness of ‖TΦf
n‖p and ‖TΦf

∗‖p and the dominated 
onvergen
e theorem

yields that for n → ∞ the right hand side of the above expression vanishes. The strong


onvergen
e and hen
e the assertion follow.

Note that Theorem 3.3 holds in more generality for arbitrary frames for L2(R2) with 
ertain

additional properties.

4 The Ele
tromagneti
 S
attering Problem

The se
ond inverse problem that we 
onsider is for ele
tromagneti
 s
attering. After introdu
-

ing the inverse problem, our goal will be to provide a theoreti
al basis for the appli
ation of

shearlet frames. As before, we base our 
onsiderations on the premise that edges, i.e., 
urve-

like singularities, are the governing features of the s
atterer leading to the 
artoon model as

appropriate 
hoi
e.

12



On
e we step away from the nonlinear situation and introdu
e a linearization, then this ar-

gument may, however, not be valid anymore. It 
ould be possible, that linearizing the inverse

problem introdu
es a smoothing that erases all edge-like stru
tures. Fortunately, it has been

shown, see, e.g., [29, 34℄, that when using a linearization via the inverse Born approxima-

tion, 
ertain singularities of the s
atterer prevail. This gives a �rst indi
ation, that methods

involving shearlets 
an play a role again in a regularization of the inverse ele
tromagneti


s
attering problem. However, all results on the regularity of the inverse Born approximation

in the literature des
ribe the global regularity in the sense of weak di�erentiability. In the


ase of 
artoon-like fun
tions we though have strong lo
al, but poor global regularity. To be

able to exploit shearlets in the 
ontext of this problem, in this se
tion, we will prove a lo
al

regularity result for the inverse Born approximation.

4.1 The Inverse Problem

The magneti
 S
hrödinger equation, for f ∈ L2(R2), a wave number k > 0, and with u =
us + uin
d as in (2), is given by

∆u+ (f + k2)u = 0,

lim
r→∞

(
∂us(x)

∂r
− ikus(x)

)
= 0.

For θ ∈ [0, π] and τθ = (cos(θ), sin(θ)), the asso
iated ba
ks
attering amplitude is de�ned by

A(k,−θ, θ) =

∫

R2

eik〈τθ,y〉f(y)u(y) dy,

and the inverse problem is to re
onstru
t the potential f from A.
Using |ξ|τθ := ξ to denote polar 
oordinates, the Born approximation of the solution f is

de�ned as the inverse Fourier transform of the fun
tion ξ 7→ A(k,−θ, θ), given by

fB(x) =

∫

R2

e−i〈ξ,x〉A(
|ξ|

2
, θ,−θ) dξ.

Applying the Lippmann-S
hwinger integral equation (4) iteratively as in [29℄, yields that

fB(x) =

m∑

j=1

qj(x) + qRm+1(x), (9)

with

qj(x) =
1

4π2

∫

R2

∫

R2

ei〈ξ,x+
y
2 〉f(y)(G|ξ|)

j(ei〈ξ,·〉)(y) dy dξ, 1 ≤ j ≤ m,

qRm+1(x) =
1

4π2

∫

R2

∫

R2

ei〈ξ,x+
y
2 〉f(y)(G|ξ|)

m+1(u(·, |ξ|, ξ̂))(y) dy dξ, (10)

where G|ξ| : L
2
loc(R

2) → L2
loc(R

2) is the integral operator with kernel G |ξ|
2

(x, y)f(y) as de�ned

in (3).

13



4.2 Lo
al Regularity of the inverse Born Approximation

To determine the lo
al regularity of the Born approximation fB from a given potential f , we
invoke the representation (9) and observe that we 
an equally well examine the regularity of

the fun
tions q1, . . . , qm, and q
R
m+1. To analyze the regularity of the qj 's, we will make use of

the Radon transform and the Proje
tion Sli
e Theorem, see e.g. [27℄.

De�nition 4.1. Let θ ∈ [0, π). Then the Radon transform Rθ of a fun
tion f ∈ L2(R2) along
a ray ∆t,θ = {x ∈ R2 : x1 cos(θ) + x2 sin(θ) = t} for t ∈ R is de�ned as

Rθf(t) :=

∫

∆t,θ

f(x) ds =

∫ ∫
f(x)δ0(〈x, τθ〉 − t) dx.

Theorem 4.2 (Proje
tion Sli
e Theorem). Let f ∈ L2(R2). Then, for all θ ∈ [0, π) and

ξ ∈ R,

R̂θf(ξ) = f̂(ξ cos(θ), ξ sin(θ)).

Here f̂ denotes the Fourier transform.

Before we state and prove the lo
al regularity of the fun
tions qj , j = 1, . . . ,m, we �x some

notion. We will denote the Sobolev spa
es of fun
tions with s weak derivatives in L2(R2) by
Hs(R2) and the fun
tions that are lo
ally in Hs(R2) by Hs

loc(R
2). Furthermore, Hs(x) is the

lo
al Sobolev spa
e of s times weakly di�erentiable fun
tions with weak derivatives in L2(x),
and L2(x) the spa
e of distributions that are L2

on a neighborhood of x, see [5℄. Finally,

we denote by Ck,α(R2) the k times di�erentiable fun
tions with a Hölder 
ontinuous k-th
derivative with Hölder 
oe�
ient α, writing Ck(R2) if the k-th derivative is simply 
ontinuous.

Then we have the following regularity result.

Theorem 4.3. Let ε > 0, let s ∈ N, s ≥ 2, and let, for some x0 ∈ R2
, f ∈ L2(R2)∩Hs+ε(x0)

be 
ompa
tly supported and real valued. Then the qj de�ned in (10) satisfy qj ∈ Hs(x0) for all
j ∈ N, and, in parti
ular, fB ∈ Hs(x0).

Proof. We start by proving the lo
al regularity of q1. Let x0 ∈ R2
be su
h that f ∈ Hs

loc(x0),
then we aim to prove that

q1(x) =
1

4π2

∫

R2

∫

R2

∫

R2

ei〈ξ,x+
y
2
+ z

2〉f(y)G|ξ|(y, z)f(z) dz dy dξ ∈ H
s(x0).

For this, we introdu
e a smooth 
uto� fun
tion ϕ supported in a neighborhood Ux0 of x0,
where f is Hs+ε

su
h that ϕ ≡ 1 on a stri
tly smaller neighborhood of x0. For x ∈ Ux0 , the
fun
tion ϕ is now used to de
ompose q1 as

q1(x) =
1

4π2

∫

R2

∫

R2

∫

R2

ei〈ξ,x+
y
2
+ z

2〉ϕ(y)f(y)G|ξ|(y, z)f(z) dz dy dξ

+
1

4π2

∫

R2

∫

R2

∫

R2

ei〈ξ,x+
y
2
+ z

2〉(1− ϕ)(y)f(y)G|ξ|(y, z)f(z) dz dy dξ

=: I1(x) + I2(x).
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We further de
ompose I2 as

I2 =
1

4π2

∫

|ξ|≥1

∫

R2

∫

R2

ei〈ξ,x+
y
2
+ z

2〉(1− ϕ)(y)f(y)G|ξ|(y, z)ϕ(z)f(z) dz dy dξ

+
1

4π2

∫

|ξ|≥1

∫

R2

∫

R2

ei〈ξ,x+
y
2
+ z

2〉(1− ϕ)(y)f(y)G|ξ|(y, z)(1 − ϕ)(z)f(z) dz dy dξ

=: I2,1(x) + I2,2(x).

and study ea
h of the integrals I1, I2,1, and I2,2 separately.

Regularity of I1: We use a representation from [29, Lem. 1.1℄, whi
h yields, for a fun
tion

ν2 ∈ C
∞(R2) and x ∈ Ux0 ,

I1(x) =

∫

R2

∫

R2

F(f)(ξ)F(ϕf)(η)

〈η, ξ〉 − i0
ei〈x,ξ+η〉 dη dξ

=

∫

|ξ|≥1

∫

R2

F(f)(ξ)F(ϕf)(η)

〈η, ξ〉 − i0
ei〈x,ξ+η〉 dη dξ + ν2(x), (11)

where

(〈ξ, η〉 − i0)−1 = p.v.(〈ξ, η〉)−1 − πiδ0(〈ξ, η〉), (12)

with p.v. denoting the Cau
hy prin
ipal value as stated in [29, Lem. 1.2℄. Furthermore, we

omit the small values of ξ in the integration, sin
e they only 
ontribute to the smooth part of

I1 in (11). To show the lo
al regularity of (11) as a fun
tion of x, we introdu
e the symbol

a(x, ξ) :=

∫

R2

F(ϕf)(η)

〈η, ξ〉 − i0
ei〈x,η〉dη, (x, ξ) ∈ R

2 ×R
2.

It follows from [5, Thm. 1.3℄, that if the fun
tion

gξ : Ux0 → C, gξ(x) := a(x, ξ), ξ ∈ R
2,

is in Hs(x) for some s ∈ N, s > 1 and if ‖gξ‖Hs(x0) is independent of ξ, then the 
orrespond-

ing pseudo-di�erential operator a(x,D) is a bounded operator from Hs(x0) to Hs(x0). By

de�nition, we have

a(x,D)(f) = I1(x)− ν2(x). (13)

Thus it remains to prove that, for any |ξ| ≥ 1, we have gξ ∈ Hs(x0) and ‖gξ‖Hs(x0) is

independent of ξ. By (12), we obtain

a(x, ξ) = p.v.

∫

R2

F(ϕf)(η)

〈η, ξ〉
ei〈x,η〉 dη − πi

∫

〈η,ξ〉=0

F(ϕf)(η)ei〈x,η〉 dη. (14)

Sin
e ϕf ∈ Hs+ε(R2) is 
ompa
tly supported, it follows that F(ϕf) ∈ C∞(R2) and

∫

R2

(1 + |ξ|2)s+ε|F(ϕf)(η)|2dη <∞.
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Passing to polar 
oordinates yields

∫ 2π

0

∫

R+

r(1 + |r|2)s+ε|F(ϕf)(rτθ)|
2 dr dθ <∞,

and by the smoothness of

θ 7→

∫

R

r(1 + |r|2)s+ε|F(ϕf)(rτθ)|
2dr, (15)

the terms

∫
R
|r|(1 + |r|2)s+ε|F(ϕf)(rτθ)|

2dr are uniformly bounded with respe
t to θ. This

implies the desired regularity of the se
ond term of (14) as a fun
tion of x.
We 
ontinue with the �rst term of (14), i.e., with

p.v.

∫

R2

F(ϕf)(η)

〈η, ξ〉
ei〈x,η〉 dη = p.v.

π∫

0

1

〈τθ, ξ〉

∫

R

F(ϕf)(rτθ)e
ir〈x,τθ〉 dr dθ

By substitution, w.l.o.g. we may assume that ξ = (1, 0). Appli
ation of Theorem 4.2 shows

that (4.2) equals

p.v.

π∫

0

1

〈τθ, ξ〉
Rθ(ϕf)(〈x, τθ〉) dθ = lim

ε↓0

∫

[0,π
2
−ε]∪[π

2
+ε,π]

1

cos(θ)
Rθ(ϕf)(〈·, τθ〉) dθ.

For a given sequen
e εn → 0 as n → ∞, we set En := [0, π2 − εn] ∪ [π2 + εn, π] and show that

the sequen
e 

∫

En

1

cos(θ)
Rθ(ϕf)(〈·, τθ〉) dθ




n∈N

(16)

is a Cau
hy sequen
e in Hs(x0).
We �rst observe that by Theorem 4.2, the �niteness of the integral in (15) implies that

ξ 7→ |ξ|s+
1
2
+ε · R̂θ(ϕf)(ξ) ∈ L2(R).

This yields Rθ(ϕf) ∈ Hs+ 1
2
+ε(R). By the Sobolev embedding theorem, [2, Thm 5.4℄ we

have Hs+ 1
2
+ε(R) →֒ Cs,ε(R), whi
h implies that Rθ(ϕf)(〈·, τθ〉) ∈ Cs,ε(R2). Hen
e for a

multi-index γ with |γ| ≤ s, taking the γth derivative of ea
h element of (16) yields



∫

En

1

cos(θ)
Dγ(Rθ(ϕf))(〈·, τθ〉)dθ




n∈N

. (17)

To prove that this sequen
e is a Cau
hy sequen
e in L2(x0) we show that θ 7→ DγRθ(ϕf)(〈·, τθ〉)
is Hölder 
ontinuous on [0, π). In fa
t, by the 
hain rule and Theorem 4.2, for θ, θ′ ∈ [0, π),
we have

|Dγ(Rθ(ϕf))(〈·, τθ〉)−Dγ(Rθ′(ϕf))(〈·, τθ′〉)|

≤ C ·
(∣∣∣(Rθ′(ϕf))

(|γ|)(〈·, τθ′〉)− (Rθ′(ϕf))
(|γ|)(〈·, τθ〉)

∣∣∣

+
∣∣∣(Rθ′(ϕf))

(|γ|)(〈·, τθ〉)− (Rθ(ϕf))
(|γ|)(〈·, τθ〉)

∣∣∣
)
. (18)
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Sin
e Rθ(ϕf) ∈ Cs,ε(R), we obtain that the �rst term of (18) is bounded by C0|τθ − τθ′ |
α
for

some α ≤ ε and C0 > 0. Hen
e also the lo
al L2(x0)-norm of the �rst term is bounded by

C1|τθ−τθ′ |
α
with a possibly di�erent 
onstant C1. In the sequel, Cν , ν ∈ N will always denote

a positive 
onstant.

To estimate the L2(x0)-norm of the se
ond term of (18), it su�
es to show

‖(Rθ(ϕf))
(|γ|) − (Rθ′(ϕf))

(|γ|)‖L2(R) ≤ C2|τθ − τθ′ |
α

for some 0 < α < 1/2. (19)

Using the Plan
herel identity [27℄ and Theorem 4.2, we obtain

1

|τθ − τθ′ |α

∥∥∥
(
(Rθ(ϕf))

(|γ|) − (Rθ′(ϕf))
(|γ|)
)∥∥∥

L2(R)

=
1

2π

∥∥∥∥∥
(i ·)|γ|

|τθ − τθ′ |α
(F(ϕf)(· τθ)−F(ϕf)(· τθ′))

∥∥∥∥∥
L2(R)

≤
1

2π

∥∥∥∥(i ·)|γ|+α
F(ϕf)(· τθ)−F(ϕf)(· τθ′)

| · τθ − · τθ′ |α

∥∥∥∥
L2(R)

(20)

For |τθ−τθ′ | small enough, we now pi
k any multiindex ρ with |ρ| = |γ| and |τρθ |, |τ
ρ
θ′ | ≥

(
1
2

)|γ|
.

Thus, by (20),

1

|τθ − τθ′ |α

∥∥∥
(
(Rθ(ϕf))

(|γ|) − (Rθ′(ϕf))
(|γ|)
)∥∥∥

L2(R)

≤
1

2π

∥∥∥∥∥(i ·)
α τ

−ρ
θ F(Dρ(ϕf))(· τθ)− τ−ρθ′ F(Dρ(ϕf))(· τθ′)

| · τθ − · τθ′ |α

∥∥∥∥∥
L2(R)

≤
1

2π

∥∥∥∥(i ·)ατ
−ρ
θ

F(Dρ(ϕf))(· τθ)−F(Dρ(ϕf))(· τθ′)

| · τθ − · τθ′ |α

∥∥∥∥
L2(R)

+
1

2π

∥∥∥∥∥(i ·)
α τ

−ρ
θ F(Dρ(ϕf))(· τθ′)− τ−ρθ′ F(Dρ(ϕf))(· τθ′)

| · τθ − · τθ′ |α

∥∥∥∥∥
L2(R)

=: M1 +M2. (21)

Sin
e ϕf has 
ompa
t support, also Dρ(ϕf) is 
ompa
tly supported. Hen
e, its Fourier

transform is Hölder 
ontinuous and obeys

F(Dρ(ϕf))(rτθ)−F(Dρ(ϕf))(rτθ′)

|rτθ − rτθ′ |α
< h(rτθ), for all r ∈ R, θ ∈ [0, π),

for a fun
tion h ∈ L2(R2). Thus, the �rst term M1 in (21) is bounded, if α < 1
2 . To estimate

the se
ond term M2 in (21), we observe, that

1

τρθ
−

1

τρθ′
=
τρθ − τρθ′

τρθ τ
ρ
θ′

≤ C3|τθ − τθ′ |.

Thus, the M2 is bounded by C4|τθ − τθ′ |
1−α

, and we have proved (19). Using the estimates

for the two terms in (18), yields that

‖Dγ(Rθ(ϕf))(〈·, τθ〉)−Dγ(Rθ′(ϕf))(〈·, τθ′〉)‖Hs(x0) < C5|τθ − τθ′ |
α.

17



Returning to the sequen
e in (17), for m > n, we have the estimate

∥∥∥∥∥∥∥

π
2
−εm∫

π
2
−εn

1

cos(θ)
(Rθ(ϕf))(〈·, τθ〉)dθ +

π
2
+εn∫

π
2
+εm

1

cos(θ)
(Rθ(ϕf))(〈·, τθ〉)dθ

∥∥∥∥∥∥∥
Hs(x0)

=

∥∥∥∥∥∥∥

π
2
−εm∫

π
2
−εn

1

cos(θ)
(Rθ(ϕf))(〈·, τθ〉)dθ −

π
2
−εm∫

π
2
−εn

1

cos(θ)
(Rπ−θ(ϕf))(〈·, τπ−θ〉)dθ

∥∥∥∥∥∥∥
Hs(x0)

=

π
2
−εm∫

π
2
−εn

1

cos(θ)
‖(Rθ(ϕf))(〈·, τθ〉)− (Rπ−θ(ϕf))(〈·, τπ−θ〉)‖Hs(x0)

dθ

≤ C5

εn∫

εm

|τθ − τπ−θ|
α

cos(θ)
dθ ≤ C6

εn∫

εm

|π − 2θ|α

cos(θ)
dθ. (22)

Sin
e

∫ π
0 |π−2θ|α/ cos(θ) dθ <∞, (22) 
onverges to 0 form > n and as n→ ∞ and hen
e (16)

is a Cau
hy sequen
e in Hs(x0), whi
h implies the required regularity of gξ. Thus, a(·,D)(f)
is s−times weakly di�erentiable and using (13), we obtain the required di�erentiability of I1.
Regularity of I2,1: The proof of lo
al regularity of I1 
an be applied in a similar way to also

prove lo
al regularity of I2,1.
Regularity of I2,2: Using the same argument as for I1(x), we obtain

I2,2(x) =

∫

R2

∫

R2

F((1 − ϕ)f)(ξ)F((1 − ϕ)f)(η)

〈η, ξ〉 − i0
ei〈x,ξ+η〉 dη dξ

=

∫

|ξ|≥1

∫

R2

F((1 − ϕ)f)(ξ)F((1 − ϕ)f)(η)

〈η, ξ〉 − i0
ei〈x,ξ+η〉 dη dξ + ν3(x), x ∈ Ux0 ,

where ν3 ∈ C∞(R2). In this 
ase the approa
h as for I1(x) is not appli
able anymore, sin
e

(1−ϕ)f is not globally s-times di�erentiable and, 
onsequently, its Radon transform does not

need to be as well. Thus, it is not possible to 
onstru
t a pseudo-di�erential operator, whi
h

is bounded from Hs(x0) to H
s(x0).

However, sin
e (1 − ϕ)f ∈ L2(R2), using the argument of (22) with s = 0 and 
onsidering

the Radon transform Rθ((1 − ϕ)f) instead of Rθ(ϕf) yields that with the symbol b being

de�ned as

b(x, ξ) :=

∫

R2

F((1 − ϕ)f)(η)

〈η, ξ〉 − i0
ei〈x,η〉dη, (x, ξ) ∈ R

2 × R
2,

the fun
tion

hξ : Ux0 → C, hξ(x) := b(x, ξ), ξ ∈ R
2,

is an L2(R2) fun
tion with ‖hξ‖L2(R2) independent of ξ.
Approximating b via a sequen
e

bM (x, ξ) :=

∫

|η|≤M

F((1 − ϕ)f)(η)

〈η, ξ〉 − i0
ei〈x,η〉dη, for M ∈ N,
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we have that for �xed ξ, the fun
tion x 7→ bM (x, ξ) is C∞
on a neighborhood of x0. Hen
e,

bM (x,D) is a bounded operator from Ht(x0) to Ht(x0) for all t ≥ 0. In parti
ular, sin
e

(1− ϕ)f ≡ 0 on a neighborhood of x0, we obtain

bM (x,D)((1 − ϕ)f) ≡ 0 on a neighborhood of x0,

whi
h 
an be 
hosen to be the same for all M . Then

‖bM (·, ξ) − b(·, ξ)‖L2(R2) → 0 as M → ∞ uniformly in ξ,

and hen
e

‖bM (x,D)((1 − ϕ)f)− b(x,D)((1 − ϕ)f)‖L2(R2) → 0 as M → ∞.

In parti
ular, sin
e bM (x,D)((1−ϕ)f) = 0 on a neighborhood of x0, also b(x,D)((1−ϕ)f) = 0
on a neighborhood of x0. Sin
e I2 equals b(x,D)((1−ϕ)f) up to a smooth fun
tion, this yields

the 
laimed regularity of I2,2.
Combining all the terms I1, I2,1, and I2,2 �nishes the proof that q1 ∈ Hs(x0). For the

fun
tions q2, . . . , qm, using a similar 
omputation as in the proof of the main theorem of [34℄,

we obtain

qj+1(x) =
1

4π2

∫

R2

∫

R2

∫

R2

ei〈ξ,x+
y
2
+ z

2〉f(y)G|ξ|(y, z)qj(z) dz dy dξ, x ∈ R
2, 1 ≤ j ≤ m− 1.

Now we 
an apply similar arguments as in the proof for q1 ∈ Hs(x0), in parti
ular, splitting

f and qj into two parts and estimating the resulting terms in the same fashion as before.

Finally, to show that fB ∈ Hs(x0), the de
omposition (9) indi
ates that it remains to analyze

the regularity of the fun
tion qRm+1. It has been shown in [29, Prop. 4.1℄, that qRm+1 ∈ Ht(R2)
for all t < (m+ 1/2)/2 − 1. Hen
e 
hoosing m large enough yields the �nal 
laim.

Remark 4.1. Observe that in Theorem (4.3) we lo
ally lose an ε in the derivative for arbi-

trarily small ε > 0, when going from f ∈ L2(R2) ∩Hs+ε(x0) to fB ∈ Hs(x0). Certainly, one
might ask whether this is in fa
t ne
essary. The examination of I2,2 in the proof of Theorem

(4.3) suggests that the regularity of fB depends only on the term

∫

R2

∫

R2

∫

R2

ei〈ξ,x+
y
2
+ z

2〉ϕ(y)f(y)G|ξ|(y, z)ϕ(z)f(z) dz dy dξ.

A 
areful review of the methods of [29℄ and [34℄ seems to indi
ate that this term should be

even smoother than ϕ(y)f(y). Hen
e we believe that Theorem 4.3 
an be improved in the

sense that lo
ally the regularity of the Born approximation fB is higher than the regularity

of the 
ontrast fun
tion f .

We now turn to the question of how the Born approximation a�e
ts the regularity of a

fun
tion f that is modeled as a 
artoon-like fun
tion. It would 
ertainly be highly desirable

that fB is again a 
artoon-like fun
tion, and we show next that this is indeed almost the 
ase

when posing some weak additional 
onditions to f .
The proof will use both the known results that the inverse Born approximation does not

introdu
e a global smoothing, see [29, 32, 34℄, as well as Theorem 4.3, whi
h proves that
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lo
ally the smoothness does not de
rease. The key point will be that for a s
atterer, whi
h is

smooth ex
ept for some singularity 
urve, this 
urve will still be present in the inverse Born

approximation. For this result, we introdu
e the notion of a neighborhood Nδ(X) of a subset

X ⊂ R2
de�ned by Nδ(X) := {x ∈ R2 : infy∈X ‖x− y‖2 < δ}, where δ > 0.

Corollary 4.4. Let ε > 0, let f0, f1 ∈ H3+ε(R2) be 
ompa
tly supported, let B be some


ompa
t domain with pie
ewise C2
boundary ∂B, and set

f = f0 + f1χB .

Then, for every δ > 0, there exist f̃ δ0 , f̃
δ
1 ∈ H3(R2) with 
ompa
t support, hδ ∈ Hr(R2)

for every r < 1
2 with supp hδ ⊂ Nδ(∂B), and νδ ∈ C∞(R2) su
h that the inverse Born

approximation fB of f 
an be written as

fB = f̃ δ0 + f̃ δ1χD + hδ + νδ.

In parti
ular, fB is a 
artoon-like fun
tion up to a C∞
fun
tion and an arbitrarily well lo
alized


orre
tion term at the boundary.

Proof. Let f0, f1, B be as assumed. For a �xed δ > 0, 
hoose ϕ1, ϕ2, ϕ3 ∈ C∞(R2) su
h that

ϕ1 + ϕ2 + ϕ3 ≡ 1, ϕi ≥ 0 for i = 1, 2, 3, and

ϕ1 ≡ 1 on N δ
2

(∂B), supp ϕ1 ⊂ Nδ(∂B),

ϕ2 ≡ 1 on (supp f0 ∪ supp f1) \Nδ(∂B), supp ϕ2 ⊂ Nδ(supp f0 ∪ supp f1) \N δ
2

(∂B).

By Theorem 4.3, it follows that ϕ2fB ∈ H3(R2) and ϕ3fB ∈ C∞(R2). Then (9) implies that

ϕifB = ϕif + ϕiq
R
1 , for i = 1, 2, 3,

and thus ϕ2q
R
1 ∈ H3(R2) and ϕ3q

R
1 ∈ C∞(R2).

De�ning

f̃ δ0 := f0 + ϕ2q
R
1 , f̃ δ1 := f1, hδ := ϕ1q

R
1 , and νδ := ϕ3q

R
1 ,

then the Sobolev embedding theorem [2℄, implies that f̃ δ0 , f̃
δ
1 ∈ C2(R2). Then [29, Prop. 4.1℄

implies that qR1 ∈ Hr(R2) for all r < 1
2 , and hen
e hδ ∈ Hr(R2), and supp hδ ⊂ Nδ(∂B)

follows by 
onstru
tion. The fun
tion νδ is C∞
, sin
e ϕ3q

R
1 ∈ C∞(R2). Thus the main

assertion is proved and the `in parti
ular' part follows immediately.

As highlighted before in [7, 9, 30℄ as well as in [21℄, there exist various numeri
al approa
hes

to enhan
e the solution of linear inverse problems under the premise of sparsity in the shearlet

expansion. With the lo
al regularity of fB established, we now have the full repertoire of meth-

ods from shearlet theory at hand to enhan
e the solution of the inverse Born approximation

for the ele
tromagneti
 S
hrödinger equation.

5 Numeri
al Methods for the A
ousti
 Inverse S
attering Prob-

lem

In this se
tion, we will analyze numeri
al approa
hes to solve the a
ousti
 s
attering problem

of Se
tion 3. After dis
ussing an algorithmi
 realization of our approa
h (7), we brie�y present

the other numeri
al methods that we 
ompare with, followed by a detailed des
ription of the

numeri
al experiments. It will turn out that our new method is advantageous to the other

methods in the situation that the s
atterer is a body 
onsisting of a more or less homogeneous

medium, whose density is signi�
antly di�erent from the surrounding medium.
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5.1 The New Algorithmi
 Approa
h

As suggested in Subse
tion 3.3, we aim to solve the minimization problem, 
ompare also (7),

min
f∈L2(BR)

(
1

2
‖N (f)−N ε

meas‖
2
HS(L2(Γ

in


),L2(Γmeas))
+
α

p
‖TΦ(f)‖

p
ℓp

)
,

where Φ is a shearlet frame for L2(R2), and Φ̃ denotes the asso
iated 
anoni
al dual frame.

Employing the sign fun
tion, the mapping

Jq : BR → C, x 7→ [Jp(q)](x) := |q(x)|p−1sign(q(x)),

and the operator Sαµ,p := (I + αµJp)
−1
, it has been shown in [26℄ that the solution via the

standard Tikhonov fun
tional (6) 
an be obtained as the limit of the Landweber iteration

fn+1 = Sαµ,p
[
fn − µn[N

′(fn)]
∗(N (fn)−N ε

meas)
]

for (µn)n ⊂ R
+. (23)

By [31℄, the solution to (7) with a frame based regularization term 
an be 
omputed as a

limit of the iteration

fn+1 = TΦ̃∗Sαµ,p
[
TΦ(fn − µn[N

′(fn)]
∗(N (fn)−N ε

meas))
]

for (µn)n ⊂ R
+, (24)

see [26℄ for an expli
it 
onstru
tion of [N ′]∗.
Sin
e the ℓ1-norm promotes sparsity, in our experiments we will 
hoose p = 1. In this 
ase,

Sαµ,1 is the soft-thresholding operator, whi
h for a s
alar ω, is de�ned as

Sα,1(ω) =





ω − α, if ω ≥ α,
0, if |ω| < α,
ω + α, if ω ≤ α,

with element-wise appli
ation for sequen
es.

The general setup of the numeri
al experiments, whose results will be des
ribed in Sub-

se
tion 5.2, follows that for similar experiments presented in [26℄. We 
hose the stepsize µn
a

ording to the Barzilai-Borwein rule [4℄, and stop the iteration in a

ordan
e to the standard

dis
repan
y prin
iple with parameter τ = 1.6, i.e., when

‖N (fn)−N ε
meas‖HS(L2(Γi),L2(Γm)) ≤ τε, (25)

with ε being a �xed parameter 
hosen a

ording to the noise level.

In ea
h step of (24), one shearlet de
omposition and re
onstru
tion needs to be performed

for whi
h Shearlab [25℄ is used. In all experiments, a dis
retization of the domain with a

512×512 grid is used and the standard subsampled shearlet system of Shearlab using 5 s
ales

is 
hosen.

We sele
t as domain [−1, 1]2, and let the s
atterer be supported in BR with R = 0.75. We

then pi
k 32 transmitter-re
eiver pairs, equidistributed on the 
ir
le of radius 0.9. Thus 64
Lippmann-S
hwinger equations need to be solved in every step, 32 for the evaluation of N (fn)
for the di�erent single layer potentials, and 32 for the evaluation of [N ′(fn)]

∗
.

We then solve these equations with a simple, and admittedly slower, method than [26℄, by

dis
retizing the Lippmann-S
hwinger equation with respe
t to a wavelet system, in our 
ase

a Daube
hies 6 Wavelet, [13℄. We solve the resulting linear system using a GMRES itera-

tion without pre
onditioning. The results in Subse
tion 5.2 show that even with this simple
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k0 = 40 Regularization method Noise level Relative error #iterations

1. L1
Tikhonov 0.01 0.4095 19

2. Shearlets 0.01 0.3914 15

3. No Penalty 0.01 0.4580 11

4. L1
Tikhonov 0.005 0.2689 35

5. Shearlets 0.005 0.2100 31

6. No Penalty 0.005 0.2736 28

7. L1
Tikhonov 0.002 0.1664 91

8. Shearlets 0.002 0.1095 63

9. No Penalty 0.002 0.1719 67

10. L1
Tikhonov 0.001 0.1132 217

11. Shearlets 0.001 0.0635 123

12. No Penalty 0.001 0.1189 185

Table 1: Numeri
al results of the three regularization methods for di�erent noise levels with the

s
atterer 
hosen as in Figure 3.

approa
h the advantage of the shearlet regularization over other regularization methods 
an

be observed. The in
reased runtime per step does not a�e
t the overall runtime signi�
antly,

sin
e we require less iterations. However, using the method of [26℄ to solve the Lippmann-

S
hwinger equations should provide a signi�
ant further speed-up in our algorithm, when

aiming for higher numeri
al e�
ien
y and not only for the a

ura
y of the re
onstru
tion.

As s
atterers f , we 
onsider prototypes of a 
artoon-like fun
tions, as depi
ted in Figures 3

and 4.

5.2 Comparison Results

We 
ompare our approa
h with two other approa
hes, �rst the method introdu
ed in [26℄,

whi
h is based on the assumption that the s
atterer is itself sparse and hen
e an L1
regular-

ization is used, solving

min
f∈L2(BR)

(
1

2
‖Nf −N ε

meas‖
2
HS(L2(Γ

in


),L2(Γmeas))
+
α

p
‖f‖1L1(BR)

)

via the Landweber iteration (23), and se
ond

min
f∈L2(BR)

‖Nf −N ε
meas‖HS(L2(Γ

in


),L2(Γmeas))
,

whi
h does not 
ontain a regularization term, hen
e does not exploit sparsity in any way. We

stop the iteration when the dis
repan
y prin
iple is a
hieved.

In the �rst set of experiments we 
hoose a wave number of k0 = 40 and 
ompute re
onstru
-

tions with our approa
h, see Subse
tion 5.1. The di�erent noise levels we impose are des
ribed

in Table 1 and Figure 3. In Table 1, for ea
h of the three regularization methods, we provide

the relative error measured in the dis
rete L2
-norm as well as the number of iterations until

(25) is a
hieved for di�erent noise levels.

The shearlet s
heme shows the best performan
e both visually and with respe
t to the

relative error. Interestingly, it also requires the least number of iterations. The inferior

performan
e of the L1
regularization from [26℄ is due to the fa
t that the s
atterer is not

sparse itself in the sense of having a relatively small support. Certainly, if no penalty term
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Figure 3: Top: S
atterer. Se
ond Row: Re
onstru
ted s
atterers using the shearlet regular-

ization, noise levels from left to right: ε = 0.005, 0.002, 0.001. Third Row: Re
onstru
ted

s
atterers using the L1
regularization, noise levels from left to right: ε = 0.005, 0.002, 0.001.

is used, then the solution is not at all adapted to the spe
i�
 stru
ture and expe
tedly, the

performan
e is worse.

We also 
ondu
ted a se
ond set of experiments with a di�erent wave number, i.e., k0 =
30 and display the results in Table 2. Furthermore, the re
onstru
tion error is depi
ted in

Figure 4, where we observe that the shearlet regularization produ
es satisfying results. Most

importantly, the singularity 
urve of the s
atterer, whi
h is the most prominent feature of the


artoon model, is obtained with de
ent pre
ision.

The reason for the superior performan
e of the regularization by the shearlet transform is

also visible in Figure 4. All three methods handle the singularity 
urve fairly well, although,

naturally, the error is the largest, at points where the singularity is most pronoun
ed, i.e., the

upper and lower right 
orners as well as the middle of the left edge of the 
entered square.

Away from the singularities, the shearlet regularization yields a far better approximation than

the other two approa
hes, sin
e it is designed to deal very well with smooth regions.
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Figure 4: Top: Square in front of a smooth ba
kground, Se
ond Row: Error of the re
on-

stru
tion using the shearlet regularization, L1
Tikhonov Regularization, and without penalty

term, ε = 0.002.
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