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Abstract

In this thesis, a novel interferometric method for the spectroscopic and time-resolved
investigation of the complex optical and magento-optical refractive index in the spectral
range of extreme ultraviolet radiation and soft x-rays is presented. Compared to similar
methods, our method is self-normalizing and allows the determination of the real and
imaginary part of the complex refractive index in only one single measurement.

The wavefront splitter of our interferometer consists of a simple monolithic combination
of a double slit acting as a reference and an additional aperture containing the sample
system under investigation as a free-standing film. The interferogram measured in the far
field is evaluated by a single Fourier transformation. Via polarization-dependent measure-
ments, the dichroic contributions to the complex refractive index due to the magnetization
of the material can be extracted. We present proof-of-principle measurements using this
concept and discuss performance and limiting factors.

Results are presented for CoGd-alloy, FeGd-alloy, and Co/Pt-multilayers, investigating
for Co and Fe both the spectral regions of the respective M - and L-edges and for Gd
the spectral region corresponding to the N -edge. These experiments were carried out at
a synchrotron radiation source. We compare our results to experimental results in the
literature and to electronic structure calculations. For the case of Gd25Co75 alloy, to our
knowledge, we are the first to present experimental data on the magneto-optical refractive
index at the Gd N -edge.

Beyond static measurements, we present a proof-of-concept experiment for a time-
resolved investigation in a pump-probe scheme. Using a high-harmonic generation source
for interferometric probing, the evolution of the magneto-optical refractive index of Fe
in Gd28Fe72 is studied after optical excitation leading to ultrafast demagnetization. We
conclude by discussing the current limitations of our time-resolved experiment and discuss
improvements for future applications.
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Zusammenfassung

In dieser Arbeit wird eine neuartige interferometrische Methode zur spektroskopischen und
zeitaufgelösten Untersuchung des komplexen optischen und magentooptischen Brechungsin-
dex im Spektralbereich extremer ultravioletter Strahlung und weicher Röntgenstrahlung
vorgestellt. Im Vergleich zu ähnlichen Methoden ist unsere Methode selbst-normalisierend
und erlaubt die Bestimmung des Real- und Imaginärteils des komplexen Brechungsindex
in nur einer einzigen Messung.

Der Strahlteiler unseres Interferometers besteht aus einer einfachen monolithischen
Kombination von einem Doppelspalt, der als Referenz dient, und einer zusätzlichen
Apertur, welche das zu untersuchende Probensystem als freistehenden Film enthält. Das
im Fernfeld gemessene Interferogramm wird mittels einer einzelnen Fouriertransformation
ausgewertet. Durch polarisationsabhängige Messungen können die dichroitischen Beiträge
zum komplexen Brechungsindex aufgrund der Magnetisierung des Materials extrahiert
werden. Wir stellen proof-of-principle-Messungen unter Verwendung dieses Konzepts vor
und diskutieren Leistungsfähigkeit und limitierende Faktoren.

Die Ergebnisse werden für CoGd-Legierungen, FeGd-Legierungen und Co/Pt-Multilagen
vorgestellt, wobei für Co und Fe sowohl die Spektralbereiche der jeweiligen M - und L-
Kanten als auch für Gd der Spektralbereich entsprechend der N -Kante untersucht werden.
Diese Experimente wurden an einer Synchrotronstrahlungsquelle durchgeführt. Wir ver-
gleichen unsere Ergebnisse mit experimentellen Ergebnissen aus der Literatur und mit
elektronischen Strukturberechnungen. Für den Fall der Gd25Co75-Legierung sind wir
unseres Wissens nach die ersten, die experimentelle Daten über den magnetooptischen
Brechungsindex an der Gd N -Kante präsentieren.

Über statische Messungen hinaus stellen wir ein proof-of-concept-Experiment für eine
zeitaufgelöste Untersuchung mittels einer pump-probe-Methode vor. Unter Verwendung
einer Quelle zur Erzeugung hoher Harmonischer wird die zeitliche Entwicklung des
magnetooptischen Brechungsindex von Fe in Gd28Fe72 nach optischer Anregung untersucht,
die zu einer ultraschnellen Entmagnetisierung führt. Abschließend erörtern wir die
derzeitigen Grenzen unseres zeitaufgelösten Experiments und diskutieren Verbesserungen
für zukünftige Anwendungen.
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CHAPTER 1

Introduction

The complex index of refraction fundamentally describes the optical properties of an
optical medium. At extreme-ultraviolet (XUV) and soft x-ray photon energies, accurate
understanding of the refractive index is crucial for the design of optical coatings, multilayer
mirrors, and bandpass filters used for, e.g., lithography [1]. The aforementioned energy
intervals also include the absorption edges of magnetic elements. For the study and
development of new magnetic material, precise knowledge of the refractive index and its
magnetic dichroism around absorption edges and its transient behaviour after optical
excitation plays a significant role [2–4].

Previous work on the determination of the refractive index used the absorption of
radiation through thin foils or gases over a broad energy spectrum [5] to measure the
imaginary part β of the refractive index only. The real part δ of the refractive index was
subsequently calculated by the Kramers-Kronig relation [6–8]. This indirect determination
imprints any error in the measurement of β to δ, e.g., errors that can occur at the absorption
edge when the value of δ changes rapidly. Moreover, In order to apply the Kramers-Kronig
inversion successfully, it is also necessary that the data can be extrapolated beyond the
measured range to achieve a wider domain of integration. If this condition cannot be met,
further errors in the determination of the real part δ of the refractive index will occur [7].

Previous measurements of δ comprise x-ray reflectance measurements [9] and use
of a Fresnel bimirror interferomety [10]. While these techniques also do not provide a
complete understanding of the complex refractive index, the reflectance measurements are
additionally sensitive to surface roughness, contaminations, and absorption.

Techniques that allow the direct measurement of the complex refractive index involve
interferometry with Fresnel zone plates [11–13] or in-line holography approaches [1],
Bragg scattering from specifically manufactured multilayer samples [14–16], and Mie
scattering from polystyrene nanospheres [17]. While the first technique requires additional
measurements to normalize the data to the incident intensity on the sample or suffers
from the low transmittance of the optical setup, the latter techniques require a priori
knowledge of the refractive index, or use iterative non-linear least square fitting that is
susceptible to errors.
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Figure 1.1: Overview of our interferometric triple-slit method. Coherent x-ray or XUV
radiation is incident on the sample. The wavefront splitting apertures consists of three
slits that have been prepared in a gold mask (see inset for cutaway drawing). One of the
slits contains the sample layer to be examined, while the other two slits are devoid of
material and are used as references in the data analysis. The far-field diffraction pattern
is recorded by a detector. The selected distance between the sample and the detector
depends on the photon energy and the sample geometry. The lengths given in this figure
describe the typical orders of magnitude that we have used in the work presented in this
thesis.

In this thesis, we present a novel interferometric technique (Fig. 1.1) for the spectro-
scopic study of optical and magneto-optical refractive indices, that is self-normalizing,
allowing for easy time-resolved experiments, and determines β and δ from a single ex-
posure1 with non-iterative analysis. The only a priori knowledge needed, involves only
experimental parameters such as photon energy and layer-thickness of the investigated
element. Based on Thomas Young’s double slit experiment, we will call the technique
presented here the triple-slit method. In comparison to most other interferometric experi-
ments to determine the refractive index, the wavefront splitting apertures of our technique
are easily manufactured. Regarding magnetic materials in particular, the approach can
be used for samples with out-of-plane and in-plane magnetization.

This thesis is composed of six main chapters. After the general introduction in Ch. 1,
Ch. 2 discusses the interferometric principles of our method. Here, the mathematical
framework is introduced and compared to similar interferometric methods. We present the

1For the determination of the magneto-optical part of the refractive index, or the extraction of the
element-specific refraction from a multi-component multilayer two exposures are needed.

2



experimental details of the sample systems, the instrumentation, and the implementation
of our experiment at a XUV source and a soft x-ray source in Ch. 3. In Ch. 4, we show
our spectroscopic results from [Co(4)Pt(7)]×20, Gd25Co75, and Gd25Gd75 at the M -edge
and L-edge of the transition metals as well as at the Gd N -edge and compare them with
values from literature and theory. Chapter 4 is followed by a discussion of the influence
of experimental noise on the analysis of the refractive index (Ch. 5). This chapter is
used as preparation for the challenges in Ch. 6, where we demonstrate the time-resolved
capabilities of our method for a Gd28Fe72-alloy at the Fe M -edge and discuss future
developments and improvements of our triple-slit method.
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CHAPTER 2

Physical Principles

2.1 Concepts of Interferometric Measurements

Before we deal with the composition of the measured intensity distribution of the triple-
slit diffraction and its data analysis in Ch. 2.2, we first want to establish some basic
concepts of our method by examining two closely related experiments: the double slit
experiment and Fourier transform holography (FTH). Through the double-slit experiment
we will demonstrate how phase differences of light beams are mapped into the measured
intensity distribution. By reviewing FTH, we will explore how this mapping can be used
to reconstruct the amplitude and phase of light transmitted through the sample.

2.1.1 Double Slit Experiment

The double slit experiment is one of the central experiments in modern physics and
demonstrates the quantum nature of small particles like photons, electrons, neutrons, or
even molecules. The wave-particle duality, single particle interference and superposition
of states, Heisenberg’s uncertainty principle, as well as the collapse of the wave function
are just a few basic insights into the nature of the quantum world this simple experiment
offers. It is, therefore, not surprising that Richard Feynman used the following emphatic
words in his 1963 lecture to describe the observations of the double slit experiment [18]:
“We choose to examine a phenomenon which is impossible, absolutely impossible, to explain
in any classical way, and which has in it the heart of quantum mechanics. In reality, it
contains the only mystery.”

Quantum mechanics was still waiting for its dawn, when at the beginning of the 19th

century, Thomas Young famously discovered that the diffraction of light split into two
small beams cannot be explained by the simple addition of both single beam diffraction
patterns, as it would be expected by the prevailing Newtonian view on light. Young
described his findings in a new undulation theory of light [19,20] by comparing his results
to the behaviour of waves.

4



Figure 2.1: Sketch of the double slit experiment. a The figure was taken from T. Young’s
publication of his double aperture experiment from 1807 [20]. The corresponding caption
reads: “The manner in which two portions of coloured light, admitted through two small
apertures, produce light and dark stripes or fringes by their interference, proceeding in
the form of hyperbolas; the middle ones are however usually a little dilated, as at A.”. b
Monochromatic plane waves with the wave vector kin fall onto a wall with two small slits
1 and 2. The exit wave propagates to a screen over a distance z0. The far-field intensity
distribution I12(qx) equals the absolute square of the coherent sum from both single slit
intensities. The intensities from both individual slits, I1(qx) and I2(qx) are given by the
dashed lines.

Figure 2.1a shows an original sketch of T. Young’s double aperture experiment from
1807 [20]. “One-coloured light” shines onto a wall with a small opening. This opening
is split in half by a slim object like the side of a paper. In some distance light and
dark fringes can be observed due to the interference between both beams sections. The
modern representation of the double slit setup in Fig. 2.1b depicts both slits as sources
of spherical waves. If the right slit would be closed so that the left slit would be the
only one transmitting a spherical wave ψ1, the far-field intensity would be equal to the
corresponding dashed line depicted in the lower part of Fig. 2.1b. With both slits open,
the amplitude of both waves adds up to (ψ1 + ψ2). For the intensity I12 at the screen in
the distance z0 after the slits, we get:

I12 = |ψ1(z0) + ψ2(z0)|2 (2.1)

= I1 + I2 + 2
√︁
I1I2 cos(ϕ1 − ϕ2), (2.2)

with (ϕ1 − ϕ2) being the phase difference between both wave fields at z0.
The first two terms in Eq. 2.2 simply represent the incoherent sum of the individual

slit diffraction patterns. The last term is called the interference term. Depending on
the place of observation, the interference term modulates the incoherent summation of
the single-slit’s diffraction according to the phase difference. Consequently, the far-field
diffraction I12 maps the phase differences (ϕ1−ϕ2) between the individual slits as intensity

5



Figure 2.2: Geometric properties of the double slit diffraction. The wave field amplitude
at a point P located in the far field depends on the angle θ and, therefore, on the distance
∆s. Maxima of the intensity I(θ) can be observed if ∆s is a multiple of the wavelength
λ = 2π/|k|, with k being the wave vector.

modulations. As we will see at the end of this section, this principle is used in Fourier
transform holography (FTH) to overcome the problem that phase information is inevitably
lost in intensity measurements1 [22].

The analytical expression for the double-slit far-field diffraction can be derived from
Fourier optics, but even with some basic geometrical considerations some key findings
can be obtained. Figure 2.2 shows an observer in the far field looking at the double slit
diffraction under an angle θ. The light beam from the slit, which is further away from the
observer, travels an additional distance of ∆s. This translates into a phase difference of

∆ϕ =
2π

λ
∆s (2.3)

=
2π

λ
d sin θ. (2.4)

From Eq. 2.3 one can easily see that for a distance ∆s = nλ the phase difference is an
even multiple of π so that constructive interference will occur under the corresponding
angle θ. The spacing of the intensity maxima, called ∆qmax, at a distance z0 is given by

∆qmax =
z0λ

d
. (2.5)

An important result of Fourier optics is that the relationship between the exit wave
ψ(x, z = 0) and the wave in the far field ψ(x, z0) is modelled by a Fourier Transformation
F :

Ψ(qx) = (Fψ(x, 0))(qx). (2.6)

Here, qx stands for the reciprocal coordinate and, as we retain in the following, we use
capital letters for the Fourier transformation of a function.

1This problem is also referred to as the phase problem in imaging [21].
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In the following we will give the analytical solution of Eq. 2.6. We assume that the
exit wave ψ(x, 0) was generated by N rectangular apertures2 with an opening size of a
and a spacing of d:

ψ(x, 0) = rect
(︂x
a

)︂
∗

N∑︂
n=1

δ(x− nd), (2.7)

where we convoluted the rectangular function rect(x/a) with a comb of Dirac distributions
δ(x− nd) to get the periodic continuation of the rectangular function. With Eq. 2.7 and
Eq. 2.6, the far intensity distribution is then given by [23]:

I(q′x) =
⃓⃓⃓
Ψ(qx)

⃓⃓
qx=q′x/(λz0)

⃓⃓⃓2
(2.8)

=

(︃
a

λz0

)︃2

sinc2
(︃

a

λz0
q′x

)︃
sin2

(︃
N

d

λz0
q′x

)︃
sin−2

(︃
d

λz0
q′x

)︃
. (2.9)

In Eq. 2.8, we used the coordinate transformation qx = q′x/(λz0) to get qx independent
from the wavelength λ and the distance z0 between the apertures and the observation
plane. The first two factors in Eq. 2.9 describe the far-field diffraction of a single aperture,
while the last two sine functions give the expression for the interference between the N
apertures. From Eq. 2.9 one can see that the diffraction pattern I(q′x) scales in size with
the distance z0. The aperture size a/λ in units of the wavelength scales the height of the
diffraction orders, while the distance d/λ in units of the wavelength scales inversely their
position in relation to the zero order diffraction.

2.1.2 Connection to Holography

In the previous section, it was explained how the far-field interference of the double slit
maps the phase difference between both slits as intensity modulations (Eq. 2.2). This
property is exploited in a similar way for lensless imaging through a technique called
Fourier transform holography (FTH) [22, 24] to circumvent the phase problem3. Both our
triple-slit method and FTH use a similar approach to analyse the interferograms. In this
paragraph we will describe the similarities between the FTH and the triple-slit method
presented in this thesis.

In order to understand the basics of FTH, we imagine that one slit of the double slit
becomes small in relation to the other. Therefore, the position of the photons transmitted
through the smaller slit is very well known. According to the Heisenberg uncertainty
principle, the variable complementary to the photons position, its momentum q, must
become less known. If the smaller slit restricts the photons to one point in space, the
photons momentum in the reciprocal space of the detector plane becomes maximal
unknown and has, therefore, the same non-zero phase and amplitude on every point on
the detector plane. Because these photons have the same phase everywhere, the phase of

2For the sake of generalization we give the solution to Eq. 2.6 for N rectangular apertures which
includes the triple slit case explained in section 2.2.1.

3The phase problem is an inverse problem that states the inevitable loss of phase information during
intensity measurements, making it impossible to have a unique direct relationship between the far-field
intensity I(qx) and the object which caused I(qx).
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the photons from the larger slit can be exactly mapped as intensity modulations in I(qx)
by the interference term 2

√
I1I2 cos(ϕ1 − ϕ2).

Mathematically this can be expressed as follows4. The smaller slit s1(x), called the
reference, is equal to a delta distribution:

s1(x) = δ(x), (2.10)

while the other slit contains the object to be imaged and can have an arbitrary transmission
function:

s2(x) = t(x). (2.11)

In general, the transmission function is complex and describes the amplitude decrease and
phase shift of the incident wave after transmission through the material. If the incident
wave has constant phase of zero and an amplitude equal to one (plane wave), the exit
wave becomes:

ψ(x) = δ(x) + t(x). (2.12)

With Eq. 2.6 and Eq. 2.8 the far-field intensity is given by:

I(qx) = |(Fψ)(qx)|2 (2.13)

= |(Fδ)(qx)|2 + |(Ft)(qx)|2 + 2Re{(Fδ)(qx)(Ft)∗(qx)} (2.14)

To recover the transmission function t(x) of the object, which is illuminated by a
plane wave, we apply an inverse Fourier transformation to Eq. 2.14. With the convolution
theorem5, we arrive at the Patterson map:

p(x) = (F−1I)(x) (2.15)

= (δ(ξ) ∗ δ(−ξ))(x) + (t(ξ) ∗ t∗(−ξ))(x)
+(δ(ξ) ∗ t∗(−ξ))(x) + (t(ξ) ∗ δ(−ξ))(x), (2.16)

where the symbol ∗ indicates the convolution operator.
To write the Patterson map as an expression of correlations instead of convolution, we

use the following relationship between the convolution operator ∗ and the cross-correlation
operator6 ⋆:

(f ⋆ g)(t) = (f ∗(−τ) ∗ g(τ))(t). (2.17)

This allows the Patterson map p(x) from Eq. 2.16 to be expressed as follows:

p(x) = (δ ⋆ δ)(x) + (t ⋆ t)(x) + (t ⋆ δ)(x) + (δ ⋆ t)(x). (2.18)

The first two terms describe the auto-correlation of the individual exit waves of both slits.
The last two terms, called cross-correlations, contain the image information. Depending

4We restrict our mathematical analysis to one dimension for simplicity reasons. The extension to two
dimensions is straight forward.

5The convolution theorem states that the convolution of two functions a and b is given by the following
expression: f ∗ g = F−1((Ff)(Fg)).

6The cross-correlation is defined as (f ⋆ g)(t) :=
∫︁
f∗(τ)g(τ + t)dτ .
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on where the delta distribution δ(x) is located, it is either the neutral element of the
cross-correlation or becomes a parity operator for the complex conjugate. The images of
the object will, therefore, appear at the positions

(δ ⋆ t)(x) = t(x) (2.19)

and

(t ⋆ δ)(x) = t∗(−x) (2.20)

in p(x). The point-mirrored and complex conjugated image from Eq. 2.20 is called twin
image.

Figure 2.3 demonstrates the reconstruction process of the Patterson map p(x) from a
far-field intensity measurement I(qx) of an exit wave ψ(x). As object we have chosen a
rectangular transmission function with an arbitrary phase. The distance of the reference
to the center of the object is x0, while the object has a spatial half width of a. In the
Patterson map shown in Fig. 2.3c, we see that the autocorrelation is twice as large as the
object. Therefore, the spacing x0 between the object and reference must be larger than
3a to avoid overlapping between the cross-correlations and the auto-correlation.

As we have shown in Eq. 2.1.2 and Fig. 2.3, FTH can not only map spatial information
of the object, but is in principle also able to recover amplitude and phase of the complex
exit wave. In reality, the far-field intensity pattern requires high-dynamic-range detection,
which is not supported by most soft x-ray detectors. Experimentally, it is, therefore,
common to block the brighter central part of I(qx), which relates to a measurement of a
high-pass filtered version of I(qx). This makes it impossible to quantitatively determine
absorption and dispersion information from the reconstruction.

Another challenge for quantitative imaging is the need for a normalization routine.
While in our derivation of FTH we assumed a plane wave with unity amplitude as an
incident wave, in reality the intensity transmitted through the apertures varies with the
source properties during the exposure time of the detector. For this challenge alone,
one would need a source, stable in time, whose photon flux is well characterised over
a wide spectral range to normalise the signal to the incident intensity. Without this
normalisation, it would not be clear, for example, when investigating a dynamic process,
whether a change in the signal is due to a change in the response of the sample, or was
caused by a fluctuation of the source.

A further obstacle is that the reference aperture is spatially extended and, therefore,
the assumption of a point source is not justified. As a result, the reference’s part of
the interference term is no longer homogeneous. Additionally, photon-energy-dependent
wave-guiding effects can occur at the reference aperture, which further influence the exit
wave of the reference.

The method we want to present in this thesis is strongly related to FTH, as it also uses
an inverse Fourier transformation on the diffraction pattern to access the cross-correlations
but sacrifices the property of spatial imaging to overcome the problems of quantitative
mapping of absorption and dispersion. In section 2.2, we will see what modifications need
to be made to FTH, or more generally, to the double slit experiment to achieve this goal.
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Figure 2.3: Demonstration of the FTH principle in one dimension. a The amplitude of the
exit wave ψ(x) is given by the blue curve, which is composed of the delta-like reference
δ(x) at the origin and a rectangular transmission function t(x) for the object aperture
centred at −x0 with an half size of a. The phase of the exit wave, coloured in orange, has
an arbitrary shape inside the object aperture. b The far-field intensity I(x) for ψ(x) is
shown in logarithmic scaling. c Patterson map p(x) of the far-field intensity from b. The
amplitude of p(x) is shown in logarithmic scale to show the auto- and cross-correlation
simultaneously. The cross-correlation terms (δ ⋆ t)(x) and (t ⋆ δ)(x) appear at the position
−x0 and x0 respectively. The auto-correlation has a half size of 2a. The noise in the
amplitude is due to the logarithmic scaling and digital artefacts. With the comparison to
a, it is apparent that the distance from reference to object x0 must be greater than 3a to
avoid overlapping of auto-correlation and cross-correlation.
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2.2 Triple Slit Experiment

We have seen in the last section and in Fig 2.3 that the reconstruction algorithm of FTH
is able to quantitatively reproduce the relative phase shift between a reference and an
object aperture. However, the reconstructed amplitude does not only depend on the
absorption by the object, but also on the incident intensity. This problem can be expressed
mathematically as follows. Let the two arbitrary functions

s1(x) = a1(x)e
iϕ1(x) (2.21)

and

s2(x) = a2(x)e
iϕ2(x) (2.22)

represent the local exit waves of two corresponding slit. Their cross-correlation then
becomes:

(s1 ⋆ s2)(ξ) =

∫︂
s∗1(x)s2(x+ ξ)dx. (2.23)

We will call the position, where the cross-correlation integral has a maximum, ξm. If
the two exit waves are constant over the area of the slits, Eq. 2.23 then becomes:

(s1 ⋆ s2)(ξm) = a1a2we
i(ϕ2−ϕ1), (2.24)

with w being the width of the slits. The phase difference ϕ2 − ϕ1 is zero if both slits
are devoid of any material or contain the same material layer. If only one slit contains
a material layer, the phase difference ϕ2 − ϕ1 is equal to the relative phase shift that
the incident wave receives due to the interaction with the material. We will call the slit,
containing the material layer, material slit, and the slit without material layer vacuum
slit.

The amplitude of the cross-correlation |(s1 ⋆ s2)(ξm)| = a1a2w scales with the width w
of the slits and the product of the amplitudes a1a2. From the product a1a2, it is ambiguous
which part can be attributed to the absorption in the material layer and which to the
incident intensity. To solve the problem of the ambiguous amplitude reconstruction, we
need a normalization to the incident intensity. The idea of the triple-slit concept is that a
third vacuum slit is introduced to the vacuum/material double slit (Fig. 1.1). The two
vacuum slits act as references, whose cross-correlation monitor the incident intensity. We
will refer to both vacuum slits as reference slits when we want to emphasize their function
in the data analysis. The triple-slit configuration allows the measurement of the exit wave
properties and normalization simultaneously.

In the following section, we will discuss the formation of the triple slit exit wave, the
far field diffraction pattern, and the reconstruction of the absorption and dispersion of
the layer in the material slit.

2.2.1 Triple Slit Exit Wave

The important requirement of the interferometric method presented in this thesis is the
elastic scattering between photons and electrons in the sample. As the wavelength of the
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photons utilized during our experiments is much larger than the spacing of the atoms
in the samples, it is reasonable to use a continuous description of the scattering process.
The effect of the material on the passing radiation is described by the complex refractive
index n(ω). In the XUV and soft x-ray regime, it is common to write the refractive index
of a given material as deviation from vacuum as the difference is small [25]:

n(ω) = 1− δ(ω) + iβ(ω) (2.25)

The real part δ(ω) of the refractive index n(ω) describes the dispersive phase change of
a wave ψ(r), while the imaginary part β(ω) describes the absorptive amplitude change.
This is demonstrated in the following equation, where we assume a monochromatic plane
wave k · r = kzz for simplicity reasons, starting to propagate through a medium with
refractive index n at z = 0:

ψ(z, t) = ψ0 exp(i(nkz − ωt)) (2.26)

= ψ0 exp(i((1− δ + iβ)kz − ωt)) (2.27)

= ψ0 exp(−βkz) exp(−iδkz) exp(ikz) exp(−iωt), (2.28)

with k being the vacuum wave number and ω being the angular frequency of the light wave.
The first exponential in Eq. 2.28 describes the absorption through a decay in amplitude,
the second exponential describes a phase shift of the wave, the third exponential equals
the exponential of the vacuum propagation, and the last one is the global phase for the
time propagation. The goal of this thesis is to establish an interferometric method to
simultaneously measure the amplitude decay and the phase shift of a wave after interaction
with a medium and reconstruct the underlying optical constants. To see how our triple
slit method is able to achieve this goal, we will first look at the formation of the exit wave.

All three slits are illuminated by the incident wave ψin(r). Two of the three slits in
the triple slit setup are used as reference slits and are devoid of any material. The exit
wave after the reference double slit is given by:

sref(r) =
2∑︂

n=1

ψin(r)tref,n(r) (2.29)

with the binary reference transmission function

tref,n(r) =

{︃
1, for r ∈ ref. slit(n)
0, else,

(2.30)

where the index n labels the individual apertures of the reference double slit. Hereby, we
neglected any waveguiding and near-field propagation, as we assume the slits thickness to
be thin and the slits size to be significantly larger than the wavelength.

One of the three slits contains a thin film of the investigated medium. The time
independent exit wave behind the material slit with layer thickness d reads:

smat(r) = ψin(r)tmat(r) exp(−βkd) exp(−iδkd). (2.31)

As before, the binary function tmat(r) is equal to unity when r is element of the material
slit area and zero elsewhere.
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Figure 2.4: Illustration of the Fresnel number. The length a equals the characteristic
size of the aperture and z0 stands for the distance between the aperture and the detector.
If the wavelength λ equals the length x, the Fresnel number becomes F = a/z0 · a/x =
tan(ϕ)/ sin(ϕ) ≈ 1 for small angles ϕ. If the length x becomes small against the wavelength
λ, both sides of the triangle—z0 and c—can be treated as parallel regarding wave mechanics.
If this holds true for every point on the detector, the detector is said to be in the far-field.

Summarized, the exit wave behind the triple slits is given by:

ψ(r) = smat(r) + sref(r) (2.32)

= ψin(r)

(︄
tmat(r) exp(−βkd) exp(−iδkd) +

2∑︂
n=1

tref,n(r)

)︄
(2.33)

In the following sections, we will assign numbers to the slits to keep the formulas
concise. We will call the material slit

s1(r) := smat(r) (2.34)

and the reference slits

s2(r) := ψin(r)tref,1(r) (2.35)

s3(r) := ψin(r)tref,2(r). (2.36)

2.2.2 Far-Field Diffraction

The measured interferogram results from free space propagation of the triple slit exit wave
to the detector plane. The detector is said to be in the far-field regime, if the Fresnel
number F is much smaller than one for every point on the detector:

F =
a2

λz0
≪ 1, (2.37)

with the characteristic size of the exit wave a, the distance between sample and detector
plane z0 and the photon wavelength λ. This is another way of saying that in the far-field
the scattered beams can be treated as parallel in regards to the wave mechanics (Fig. 2.4).
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If this approximation is fulfilled, the propagated wave field at the detector plane is
given by the Fraunhofer diffraction integral:

Ψ(q) =

∫︂
r

ψ(r) exp(−i(q · r)) dr (2.38)

= (Fψ)(q), (2.39)

with the vectors q = (qx, qy) in the sample plane, r = (rx, ry) in the detector plane
(both orthogonal to the beam axis), and the Fourier operator F , which acts as free space
propagator for the wave field from the sample plane to the detector plane.

The measurable quantity of Ψ(q) in an experiment is the photon flux density Iph(q),
which is equal to the time average of magnitude of the poynting vector S:

Iph =
⟨|S(q, t)|⟩t

h̄ω
, (2.40)

with h̄ being the reduced Planck constant, ω the angular frequency of the photons, and
⟨.⟩t the time averaging operator.

The photon flux density Iph(q) is proportional to the intensity I(q) of the wave field.
By convention, in the following we will solely use the intensity I(q), when we are referring
to the quantity recorded by the detector:

I(q) = |Ψ(q)|2. (2.41)

= (Fψ)∗(q)(Fψ)(q) (2.42)

The expression for the far-field diffraction pattern I(q) of the triple slits results from
the following consideration. With Eq. 2.34 to 2.36 we write the triple slit exit wave ψ(r)
as the summation of the exit waves from the individual slits sn:

ψ(r) =
3∑︂

n=1

sn(r) (2.43)

With eq. 2.42 the far-field intensity reads:

I(q) =
3∑︂

n,m=1

S∗
n(q)Sm(q), (2.44)

with

Sn(q) = (Fsn)(q) (2.45)

being an abbreviation for the Fourier transformation of the individual slits.
As we saw for the double slit experiment in chapter 2.1.1, the terms with m = n equals

the incoherent sum of the individual slit diffraction patterns. The mixed terms m ≠ n
give the interference between the slits and modulate the incoherent summation of the
single slits diffraction according to the phase difference between the slits. See Fig. 2.5
(middle) for an example of a triple slit diffraction pattern.
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2.2.3 Analysis of Absorption and Dispersion

In this section, we will derive how the optical constants are determined from the measured
interferogram. In the following, we assume fully coherent monochromatic light. To
reconstruct the relative properties of the exit wave ψ(r), we use an inverse Fourier
transform F−1 onto the intensity I(q), which yields the spatial autocorrelation:

a(r) = (F−1I)(r) (2.46)

= F−1((Fψ)∗(Fψ))(r) (2.47)

= (ψ∗(−ρ) ∗ ψ(ρ))(r), (2.48)

with ∗ denoting the convolution operator. For the last step in this equation, the convolution
theorem was used.

With the exit wave from eq. 2.43, the spatial auto-correlation reads:

a(r) =

(︄
3∑︂

m=1

s∗m(−ρ) ∗
3∑︂

n=1

sn(ρ)

)︄
(r) (2.49)

=
3∑︂

n,m=1

cn,m(r) (2.50)

The terms with m = n belong to the auto-correlation of the individual slits, while
for m ̸= n the cross-correlations cn,m(r) between the slits are summarized. Figure 2.5
summarizes the nomenclature for the triple slit reconstruction process.

For the reconstruction of the refractive index, the most important correlations are the
cross-correlation between the material slit with one reference slit and the cross-correlation
between both reference slits. With Eq. 2.33, the cross-correlation between the material
and the first reference slit is:

c1,2(r) = (s∗1(−ρ) ∗ s2(ρ))(r) (2.51)

=
(︂[︁
ψin(−ρ)tmat(−ρ)e(−βkd)e(−iδkd)

]︁∗ ∗ [ψin(ρ)tref,1(ρ)]
)︂
(r) (2.52)

= e−βkdeiδkd
∫︂
ψ∗
in(ρ)tmat(ρ)ψin(ρ+ r)tref,1(ρ+ r) dρ (2.53)

The expression in Eq. 2.53 can be simplified if the illumination ψin(r) is approximated
by a plane wave ψc:

c1,2(r) = e−βkdeiδkd|ψc|2
∫︂
tmat(ρ)tref,1(ρ+ r) dρ (2.54)

= e−βkdeiδkd|ψc|2A1,2(r). (2.55)

If we evaluate the cross-correlation c1,2(r) at the position r = rmax where the trans-
mission functions tn(r) fully overlap, we get A1,2(rmax) = A1,2

max, and, therefore:

c1,2(rmax) = e−βkdeiδkd|ψc|2A1,2
max, (2.56)

with A1,2
max being the area of the smaller slit:

A1,2
max = min{area(tmat), area(tref,1)}. (2.57)

15



Figure 2.5: Nomenclature of the triple slit experiment. Both reference slits r1 and r2
transmit the incident light 100% and do not alter the phase. In this simulation, the
material slit m was set to absorb 50% of the incident light and shift the phase by π/4 rad.
The absolute value squared of the Fourier transform of the exit wave ψ gives the far-field
diffraction I(q). With an inverse Fourier transformation, one obtains the autocorrelation
map a(r). The dominant contributions to a(r) are the auto-correlation (AC) and the
cross-correlations (CC). The origin of the individual cross-correlations is marked by the
correlation of the individual slits (e.g. r2 ∗m denotes the cross-correlation between the
second reference slit r2 and the material slit m). The inset in the upper right corner
shows the phase of a(r). Instead of seven correlations contributions, as for the amplitude,
only four cross-correlations are non-zero. The missing correlations—marked by orange
arrows—have zero phase and belong to the AC and the two correlations of r1 ∗ r2.
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Equation 2.57 accounts for the case in which both slits have different widths. A benefit of
having slits with different widths is that the maximum value of the integral in Eq. 2.55
is not only given at the point r = rmax, but at an interval with the size of the width
difference of both slits. In this case, it can be averaged over the interval to obtain better
statistics in the analysis of the optical indices. Therefore, different sized slits are the
default aperture geometry used in our experiments. In the following, we will call the
interval of max(A1,2(r)) cross-correlation plateau.

The derivation of the twin image c2,1(r) of the cross-correlation c1,2(r) is identical to
the derivation above. In the reconstruction a(r), the cross-correlation and its twin image
are separated by twice the distance between both slits s1 and s2. When designing the
triple slit geometry, it is important to use a spacing between the slits, which is larger than
half the size of the autocorrelation, to avoid overlapping of the correlations.

From Eq. 2.56, it is apparent that the optical constants are given by:

β = − ln

(︃
|c1,2(rmax)|
|ψc|2A1,2

max

)︃
1

kd
(2.58)

and

δ = −i ln
(︃
c1,2(rmax)

|c1,2(rmax)|

)︃
1

kd
(2.59)

Like many methods for the determination of the absorptive part of the refractive index,
Eq. 2.58 contains the power |ψc|2A1,2

max of the incident radiation. With our method, we can
utilize the cross-correlation between both reference slits c2,3(rmax) to normalize c1,2(rmax)
as shown below.

With a similar derivation as for the material-reference cross-correlation, we arrive for
the cross-correlation between both reference slits c2,3(r) at a similar equation as Eq. 2.55:

c2,3(r) = |ψc|2
∫︂
tref,1(ρ)tref,2(ρ+ r) dρ. (2.60)

For the position rmax, where the integral in Eq. 2.60 is maximal, we get the following
equation:

c2,3(rmax) = |ψc|2A2,3
max. (2.61)

We can use this reference cross-correlation value to normalize the cross-correlation
between material slit and first reference slit c1,2(rmax) from Eq. 2.56 in regards to the
incident intensity:

cnorm1,2 (rmax) =
c1,2(rmax)

c2,3(rmax)
(2.62)

= e−βkdeiδkd
A1,2

max

A2,3
max

. (2.63)

The geometric factor A1,2
max/A

2,3
max in Eq. 2.63 is equal to one if both vacuum slits have the

same size or the smaller vacuum slit was used for the cross-correlation with the material
slit. If the larger reference slit was used for the analysis of the cross-correlation, the

17



geometric factor A1,2
max/A

2,3
max can easily be corrected by the reciprocal ratio of the reference

slit areas.
With the normalized material-reference cross-correlation, the optical constants can be

reconstructed with:

β = − ln

(︃
|c1,2(rmax)|
|c2,3(rmax)|

)︃
1

kd
(2.64)

and

δ = −i ln
(︃
c1,2(rmax)

|c1,2(rmax)|

)︃
1

kd
. (2.65)

Equations 2.64 and 2.65 only apply for samples with a single element present. During
most experimental cases, the sample contains layers of various elements, even if only to
support the layer to be examined. In these cases, Eqs. 2.64 and 2.65 describe an average
over the full layer stack.

To calculate the refractive index in question, one needs to perform a control measure-
ment I ′(q) of the sample without the layer of interest, in addition to the measurement
I(q) with all sample layers present. For the mathematical derivation, we use the prime
symbol ′ to denote quantities belonging to the control measurement. With multiple layers
present, the exit wave from Eq. 2.26 becomes:

ψ(z, t) = ψ0 exp(i(k
∑︂
j

njdj − ωt)), (2.66)

with the index j running over all elements present in the sample layer. The derivation of
the spatial auto-correlations a(r) and a′(r) follows the same argumentation we have seen
before for a single layer. For clarity purposes, we will use the following definitions:

cm,r1 := c1,2(rmax) (2.67)

and

cr1,r2 := c2,3(rmax), (2.68)

for the complex value of the cross-correlation plateau between the material slit and one
reference slit and the cross-correlation plateau of both reference slits, respectively.

With a(r) and a′(r), one can show that the real and imaginary part of the refractive
index of the investigated material layer, βmat and δmat, becomes:
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and

δmat = i

(︃
ln

(︃
c′m,r1

|c′m,r1
|

)︃
− ln

(︃
cm,r1

|cm,r1 |

)︃)︃
1

kdmat

(2.71)

= i ln

(︃
c′m,r1

|cm,r1 |
cm,r1 |c′m,r1

|

)︃
1

kdmat

, (2.72)

with dmat indicating the layer thickness of the material of interest.
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Figure 2.6: Consequences of sampling and undersampling a continuous diffraction pattern.
a The two point sources from the double slit generate a far-field diffraction pattern I(qx).
The dominant frequency is reciprocally dependent on the distance d between both point
sources. To detect this frequency in the digital signal I(qn), the sensitive area of the CCD
detector S(qx) (series of rect-functions) needs to sample the diffraction pattern by at least
twice the frequency [28]. b The left column shows the far-field diffraction pattern of a
triple slit, the right column shows the corresponding reconstructed auto-correlation. The
upper diffraction pattern is sufficiently sampled. All three cross-correlations are visible in
the reconstruction. The lower diffraction pattern is sampled with half the frequency. The
corresponding reconstruction shows only the cross-correlation of the two closest slits. The
interferometric information of the slits that are further apart is lost.

2.3 Digital Interferometry

The previous section dealt with the formation of the triple slit exit wave, the recording,
and the reconstruction of the wave properties. These considerations were all done with
continuous functions and variables. In this section, we will discuss the effects of digital
sampling and discretization on the measuring and reconstruction process.

A pixelated detector, like a CCD, records a center rectangle of finite size of the triple
slit far-field diffraction pattern I(q). If the far-field approximation is reasonably fulfilled,
the curvature of the Ewald’s sphere7 is close to zero over the detector area, so that no
gnomonic distortion of the diffraction pattern occurs [27]. The center rectangle of the
continuous diffraction pattern is sampled with a pixel spacing of s, yielding the diffraction
pattern I(qn), with the discrete reciprocal vector qn (Fig. 2.6a).

Principally, the size of the detected rectangle max(qn) and the sampling rate rs = 1/s
of I(qn) have both an influence on the reconstruction quality. We will first discuss the
effects of the finite size of the detected diffraction pattern on the reconstruction, followed
by a discussion on the sampling rate. For an analogous discussion of these effects in digital

7The center of the Ewald’s sphere is located at the scattering center. Its surface results from the
wave vectors of all possible elastically scattered photons. If the surface from the Ewald’s sphere deviates
significantly from the flat detector surface, the momentum transfer q is sampled non-linearly [26]
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holography, see [29].
One influence of max(qn), or, in other words, the maximum detected scattering angle,

can be seen by multiplying the continuous I(q) with the rectangular angular acceptance
function R(q) of the detector8:

a|R = F−1(IR) (2.73)

= F−1(FaFr) (2.74)

= a ∗ r, (2.75)

with the reconstruction a|R based on the finite size of the detected diffraction pattern
and r being the Fourier transformation of the detectors angular acceptance function R.
With Eq. 2.75, we see that the reconstructed correlation function a|R(r) equals the true
correlation function a(r) convoluted with the Fourier transform of the detector shape r(r).
One can identify r(r) with the point spread function (PSF) of the imaging system [29].

Another effect associated with the size of the physical detector is the achievable real
space resolution. The larger the sampled area, i.e., the more higher spatial frequencies are
measured, the higher the resolution in real space. Therefore, R(q) can be referred to the
numerical aperture of an imaging system [29].

For the reconstruction of the triple slit data, only the average values of the slit areas are
of interest (see discussion to Eq. 2.55). Therefore, the reconstructed real space resolution
is for the most part not an important parameter, except in one extreme case. If the
real space resolution is not sufficient, to sample the smallest size of the cross-correlations
by at least two pixels, signal loss will occur. Around this limit, the PSF will alter the
correlation plateaus and the true amplitude and phase maxima might not be resolvable.
Additionally, the noise surrounding the correlation will affect the amplitude and phase of
the reconstruction 9.

For the effect of the sampling rate rs of R(qn) on the correlation function a(rn), we
will use the derivation we had previously used in a reciprocal sense. Instead of connecting
the spatial expansion of the recorded diffraction pattern I(q)R(q) with the resolution of
the reconstruction a(rn), we will connect the resolution, or sampling, of I(qn)R(qn) to
the reconstructed field of view.

Ideally, the sampling rate in the reciprocal space rs = 1/s must be able to sample the
highest modulation occurring in the diffraction pattern by at least twice the rate, which
is known as Nyquist–Shannon sampling theorem [28]. The highest spectral component
corresponds to the point sources in the sample plane, which are farthest apart. If these
modulations are not sufficiently sampled, the information about the distance between both
point sources becomes inaccessible. In the reconstruction space this leads to a decreased
field of view (FOV)(Fig. 2.6b).

For the triple slit experiment, a relaxed version of the oversampling constraint is valid
(Fig. 2.6b). As we saw in section 2.2.3, Eq. 2.64 and Eq. 2.65, only two cross-correlations—
the reference cross-correlation c2,3 and the correlations c1,2 between the material slit and
one reference slit—are needed for the reconstruction of the refractive indices. The third
cross-correlations carries redundant information about the material slit. When the two

8The discrete sampling is omitted for simplicity reasons in the following calculation.
9For a typical experimental geometry presented in this thesis (see Fig. 1.1), the reconstructed real

space pixels must be smaller than 500 nm.
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corresponding slits are the one furthest apart, their spectral components do not need to
be oversampled. Nevertheless, for most experimental conditions it is beneficial to use this
redundant information for better signal-to-noise ratio (SNR).

Besides the FOV, the sampling rate also influences the spatial contrast distribution
within the reconstruction a(rn). As with the decrease in longitudinal coherence, visibility
decreases when the higher frequency intensity modulations are sampled less. Since higher
frequencies belong to higher distances in the sample, the contrast is reduced for slits that
are further apart. This influence is described by the modulation transfer function (MTF),
which can be calculated by the Fourier transform of the PSF of the detector. The PSF
can be approximated by the area of one individual pixel. For a similar discussion of the
MTF in digital holography, see [29].

Since the contrast reduction by the MTF is known, it can be corrected if necessary. In
most experimental cases, however, it will be possible to select sufficient sampling.

Another consequence of the measuring process is the introduction of noise sources to
the intensity signal I(qn). Associated with the CCD, there are three major types of noise:
dark noise, readout noise, and photon noise. The number of thermally generated electrons
within the CCD is subject to statistical variations and is called dark noise. During the
experiment, it is common to cool the CCD to reduce the dark noise. The readout noise
dominantly arises from the pre-amplifier converting the CCD-charges to a voltage signal.
The photon noise results from the quantum nature of light. Here, the detection probability
follows a Poisson distribution.

Under illumination conditions, where the scattered intensity is low, certain areas of the
diffraction pattern can become readout noise limited. In those regions, the readout noise
will dominate the signal. Typically, the camera exposure time can be increased to collect
more photons per pixel. However, two areas are particularly vulnerable to become readout
noise limited. First, in regions with higher momentum transfer the scattering probability
decreases. As we saw before, this affects only the resolution of the reconstruction, which is
not as important for the experiment as the level information of the correlations plateaus.
The second and more important case covers the areas where destructive interference occurs.
If the destructive interference minima are cut off by the readout noise level, the level of
the plateaus in the reconstruction will decrease. Therefore, it is important to make sure
that the SNR especially at the interference minima is sufficiently high, or that the photon
noise affects the plateaus less than the effect to be measured. The impact of low SNR at
the interference minima on the data analysis will be discussed in greater detail in Ch. 5.3.

2.4 Magneto-Optical Constants

Besides the reconstruction of optical indices described previously in section 2.2.3, one main
focus of the work presented is the spectroscopic and dynamic measurement of magneto-
optical indices. The complex magneto-optical index describes the element specific influence
of their magnetizationm on circularly polarized light with angular momentum lph through
phase shift and absorption [30]. To describe this influence, the refractive index n(ω) from
Eq. 2.25 is modified by a polarization and magnetization dependent correction term:

ncirc(ω) = n(ω)− s(∆δ(ω)− i∆β(ω)). (2.76)
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The absorptive and dispersive deviations from the refractive index for unpolarized light
n(ω) are indicated by the magneto-optical indices ∆β(ω) and ∆δ(ω), respectively. The
scaling factor

s = dpdml̂ph · m̂ (2.77)

describes the strength and sign of the whole correction term. Here, l̂ph stands for the unit
vector along the direction of the angular momentum of the photons, m̂ for the normalized
magnetization direction, and the constants dp and dm for the degree of polarization of the
photon beam and for the degree of magnetic saturation in the sample layer, respectively.
The sign of the correction term in Eq. 2.76 is defined by the scalar product l̂ph · m̂.

For the majority of the experiments presented in this thesis, the effect of the magneto-
optical constants is maximized by using sample magnetization parallel or anti-parallel to
the angular momentum of the photons lph, as well as circularly polarized light (dp ≈ 1)
and saturated magnetization with dm = 1.

For the reconstruction of the magneto-optical indices ∆δ and ∆β, we measured
the diffraction pattern I+(q) and I−(q) for both magnetization directions and fixed
polarization direction of the light. (Equivalently, it would be possible to use right and left
circularly polarized light with constant magnetization direction.) With the difference of
both corresponding reconstructions, we can remove the influence of the magnetization
independent part of the refractive index in Eq. 2.76 and calculate the magnetization
dependent part. The derivation is analogous to Eqs. 2.70 and 2.72, where we subtracted
the influence of supporting material layers. As a result, we get for the magneto-optical
constants:

∆β = − ln
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and
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where the subscripts + and − are indicating if the corresponding cross-correlations are
belonging to the measurement with parallel or anti-parallel magnetization with respect to
photon angular momentum.

2.4.1 Origin of the dichroic signals I+(q) and I−(q)

As we have seen in the last paragraph, the diffraction patterns I+(q) and I−(q) differ
from each other in terms of how strong the magnetization +m and −m affects the
radiation. This dicroidic signal is described by the magnetic circular dichroism (MCD).
For a thorough description of the MCD in the soft x-ray region and the interaction of
polarized photons with matter, we refer the reader to [30].

In general, the MCD can be attributed to a difference in transition probability between
spin-orbit split core levels and the exchange split valence states for different signs of l̂ph ·m̂
(Fig. 2.7). In [30], the MCD is described by a two-step model. First, in the presence of
spin-orbit coupling, the angular momentum of the photon can be partly transferred to the
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Figure 2.7: Illustration of the XMCD effect. Circularly polarized photons are absorbed
in spin-orbit coupled core levels. The photoelectrons are spin-polarized and are excited
to the free states above the Fermi-level. The amount of spin-polarization (indicated by
the width of the transition arrow) is opposite for opposite photon helicity. The valence
band on the left diagram shows no density of states (DOS) spin splitting and therefore no
MCD contrast. The diagram on the right illustrates a valence band with Stoner splitting,
chosen such that the ”spin-down” channel is completely filled. Due to the Stoner-splitting
the unoccupied DOS is higher for ”spin-up” states. Therefore, the ”spin-up” transition is
much more likely to occur (adapted from [30]).
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electron spin. Depending on the photon helicity, the photoelectrons are spin-polarized. A
change in helicity results in opposite spin-polarization. In the second step, the asymmetry
in the exchange split density of states (DOS) alters the transition probability in favour of
the quantum number with the most unoccupied states.

The MCD effect occurs predominantly at absorption edges due to spin-orbit split core
levels. This work investigates the M - and L-edges of Co and Fe, but dichroism can also
be observed at the K-edge. For 3d transition metals, the energy of the M -edge resonance
is located in the XUV range. Due to spin-orbit coupling, the 3p energy level of the 3p–3d
transition splits up into a fine structure: 3p3/2 (l+ s) and 3p1/2 (l− s). At the M -edge the
transitions from the 3p fine structure overlap in absorption spectra, because of lifetime
broadening.

At the L-edge, we are looking at the 2p–3d transition. The resonance energy for 3d
transition metals is located in the soft x-ray regime. As for the M -edge, the 2p level has
a fine structure due to spin-orbit coupling: 2p3/2 (l + s) and 2p1/2 (l − s). In contrast to
the M -edge, here both levels are energetically sufficiently separated from each other to
resolve them spectroscopically. Since the spin-orbit coupling has a different sign for both
fine structure resonances, the spin polarization and therefore the sign of the XMCD effect
will be opposite at those resonances.

2.5 Interferometric X-Ray Spectroscopy

The study of interferometric fringe patterns is employed to a wide range of applications,
e.g. from atomic displacement measurements in surface structure analysis [31] to the
3D-mapping of earth’s topography [32], or the observation of gravitational waves [33]. In
general, interferometric instruments are categorized by their ability to create two light
beams with different path lengths before they recombine at a recording device. Wavefront
splitting interferometers divide the incident beam into two spatially separated parts [34].
Amplitude splitting interferometers use an optical element to reflect a fraction of the
incident beams amplitude to create two beam paths [35]. Due to the refractive index in
the XUV and x-ray range, effective beam amplitude splitters are not available for this
energy range. Therefore, wavefront splitting interferometers are usually employed. The
simplest implementation of wavefront splitting would be Youngs double-slit.

The Fresnel bimirror setup from [10] achieves wavefront splitting by reflecting parts of
the beam under different angle. Coherent x-rays fall under grazing incidence onto two
plane mirrors whose planes are tilted by a small angle. In the region where both reflected
beams overlap, interference fringes do occur. When inserting a sample in one optical path,
the interference pattern will shift. From the absolute shift of both measurements, δ can
be deduced. This method depends on stable incident beam conditions and is prone to
signal deterioration due to surface roughness and surface contamination.

The method presented in [13] inserts a 200 nm thick sample foil into one part of
the incident beam, similar to the aforementioned Fresnel bimirror setup, but works in
transmission. The interferometer is formed by two Fresnel zone plates behind the sample.
The zone plates are arranged such that the first order diffraction of each zone plate
interferes with the zero order of the other at the detector plane. By analysing the phase
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shift and the intensity difference between the part with and without the foil, the complex
refractive index can be calculated. Compared to this method, one advantage of our triple-
slit method is that the sample layer is monolithically integrated into the interferometer,
which ensures a less complex and more stable setup.

Another interferometric method utilizing zone plates is described in [11,12]. Here, two
optical elements, a binary grating and a zone plate, are combined. The coherent x-ray
beam first passes the grating, which serves as beam splitter. The following zone plate
focuses the two beams from the (−1,+1) diffraction onto the sample mask. The sample
mask consists of pairs of double-slits, in which one double-slit is free of any material
and is used as reference and the other double-slit has one slit coated with a layer of
the investigated material. The complex refractive index is calculated by comparing the
far-field diffraction pattern of the reference double slit with the diffraction pattern of
the double slit that contains the material coated slit. The interference shift is connected
to the dispersive part of the refractive index, whereas the decrease in visibility depends
on the absorptive part. This method is similar to ours, but on the one hand uses two
more optical elements and, on the other hand, requires two successive measurements to
determine the refractive index which makes it prone to alignment errors.

Instead of measuring the complex refractive index completely, some techniques rely
on numerical models to iteratively approximate the complex refractive index partially or
completely.

The point diffraction interferometry measurement described in [1] uses a setup similar
to in-line holography to determine the dispersive part of the refractive index. A pinhole
with a diameter between 50 µm to 100 µm is prepared in the center of free-standing foils
with a diameter of 10mm. The coherent XUV-light generated by a HHG source falls
onto the foil. The center pinhole transmits a reference wave which interferes at the
far-field detector plane with the wave transmitted through the foil. As the HHG-beam
contains several harmonics, a grating behind the foil is used to spectroscopically resolve
the diffraction patterns. From the interference minima, the dispersive part of the refractive
index can be calculated. As there is no analytical procedure for the absorptive part, a
numerical fitting approach was utilized. Based on the Huygens-Fresnel principle, the
simulated diffraction patterns were iteratively fitted onto the measured diffraction pattern
by a downhill simplex algorithm with β, the pinhole size, and the foil-detector distance
as free parameters. An advantage of this method is that interferograms for different
wavelengths can be recorded simultaneously.

Another iterative technique to approximate the complex refractive index at multiple
wavelength is shown in [17]. Here, the diffraction from a single-layer of a self-assembled
hexagonal array of polystyrene nano-spheres is simultaneously recorded for multiple
harmonics of a HHG source. By non-linear least-square fitting the Mie-scattering intensities
to the recorded data, the algorithm converges to β and δ. This technique is limited by
the curvature of the phase front at the sample plane and the availability of nano-spheres
matching the wavelength employed. In terms of data analysis, another advantage of our
method is that we do not rely on iterative algorithms, but gain access to the complex
refractive index after only one numerical operation (Fourier transformation).
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CHAPTER 3

Experimental Details

In this chapter, we will describe in detail the physical properties of the sample systems
we have investigated. In the following sections, we present the coherent light sources we
used and discuss their properties in relation to the triple-slit experiment. We end this
chapter with a description of the experimental setup.

3.1 Sample Systems

To demonstrate the spectroscopic and dynamic imaging properties of our triple-slit method,
we used ferrimagnetic metallic alloys like GdCo or GdFe, and ferromagnetic multilayers
like Co/Pt as sample systems. Motivated by an application perspective in data storage
technology, these systems became scientifically relevant when it was discovered that
short laser pulses can demagnetize the magnetic order in a sub-picosecond timescale [36].
Further experiments showed not only demagnetization but also permanent reversal of
the magnetic order [37]. Despite major interest and ongoing research from experimental
and theoretical scientists in these results [3, 4, 38–40], key questions about the underlying
mechanisms of femtomagnetism have not yet been conclusively clarified, e.g., the angular
momentum transfer in non-equilibrium states after optical excitation [41].

In most cases, the magnetic layers used are binary or multi-component systems, where
it is important to separate the information about the individual elements spectroscopically.
If one arranges the magnetic systems in the triple-slit configuration, one gets access to
the element-specific and time-resolved complex electronic and magnetic responses of the
system. Figure 3.1 shows such a typical triple-slit arrangement.

The triple-slits are prepared on commercially available silicon nitride (Si3N4) mem-
branes which are supported by a silicon frame. In the first processing step, a gold layer is
evaporated onto the Si3N4 membrane. This layer acts as opaque mask for the XUV and
soft x-ray photons during the experiments. The height of the Au-layer is usually in the
range of 1 µm. Afterwards, the material slit is processed into the gold film by focused
ion beam (FIB). The sample and support layers are then applied to the Si3N4-layer by
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Figure 3.1: Basic triple-slit geometry. A thick gold layer masks the sample layers except
where the three slits are present. Inside the reference slits, all other layers are removed,
whereas they are still present inside the material slit. The layers beneath the gold mask
contain a supporting Si3N4-layer, the sample layer and layers which act as protective
structure against oxidation. In our experiments, the typical height of the slits is in the
order of 10 µm. The width of the slits varied depending on the requirements of the
individual experiments.

magnetron sputtering. The material slit is prepared before the magnetic sample layer is
deposited to avoid possible changes to the properties of the magnetic sample layer by
the Ga+ ions used in the FIB process. In the last step, the two reference slits are milled
via FIB. The height of the three slits ranges usually between 4 µm to 10 µm, the width
between 0.5 µm to 3 µm. These parameters vary according to the requirements of the re-
spective experiment and are described in detail in the respective chapters (Ch. 4 and Ch. 6).

As we have seen in Ch. 2.4, the maximum MCD contrast is obtained for parallel or
anti-parallel orientation of magnetization and photon spin. Therefore, we aimed for an
out-of-plane orientation of the samples magnetization combined with a perpendicular
incidence of the beam. Perpendicular magnetic anisotropy for thin films can be tuned by
the stoichiometry of the sample or the use of multilayer [42, 43]. In the following, we give
an overview of the sample systems we have measured and which we present in this thesis.

3.1.1 Gd25Co75

With this sample, we are interested in the spectroscopic data of Co at the M -edge and of
Gd at the N -edge to derive their correspondent magneto-optical constants. The sample
layer had a total thickness of 30 nm. The atom percentages of the Gd25Co75 alloy sample
layer are 25% for Gd and 75% Co. This relates to an integrated layer thickness of 15 nm
for pure Co as well as 15 nm for pure for Gd. The 150 nm thick Si3N4 substrate was
masked with a 1.1 µm thick [Cr(5 nm)/Au(50 nm)]50 multilayer. The Gd25Co75 layer was
seeded with 3 nm and capped with 2 nm Ta to prevent oxidation of the sample layer.

The three slits (vacuum, vacuum, Gd25Co75) were 4 µm in height (vertical) and 1 µm,
1 µm, 3 µm wide (horizontal), respectively. The distances between the slits were 9.6 µm
(vacuum slit 1 to vacuum slit 2) and 4.5 µm (vacuum slit 2 to material slit), and chosen
such that the cross-correlations in the reconstructions were not overlapping.

The magnetic hysteresis loops for this sample, measured by polar magneto-optic Kerr
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Figure 3.2: Magnetic hysteresis loops of the Gd25Co75 layer for out-of-plane (a) and
in-plane (b) geometry measured by polar MOKE on a sister sample.

effect (MOKE) on a sister sample, are given in Fig. 3.2. Despite the intention during
the sputtering process to get perpendicular magnetic anisotropy, the hysteresis of the
Gd25Co75 reveals that the magnetic easy axis was in-plane (Fig. 3.2a) instead of out-of-
plane (Fig. 3.2b). The out-of-plane magnetization of the sample saturates at 350mT.
The maximal external magnetic field strength that was possible during the triple-slit
experiment was below this value. For the analysis of this data, an additional scaling factor
for incomplete magnetization must, therefore, be taken into account (see Eq. 2.77).

3.1.2 [Co(4)Pt(7)] 20

This sample was used to spectroscopically measure the magneto-optical constants of Co at
the M - and L-edge. We used a [Co(4)Pt(7)]×20 multilayer with a perpendicular magnetic
anisotropy originating from the Co/Pt interfaces (Fig. 3.3). The Si3N4 membrane had a
thickness of 200 nm and the gold mask consists of [Cr(5 nm)/Au(55 nm)]20. The Co/Pt
multilayer was seeded with Ta(2 nm) and capped with Pt(2 nm.

The triple-slit layout was different compared to the Gd25Co75 sample. Most impor-
tantly, we changed the two vacuum slits from having the same width to different width.
This ensures that there are no sampling problems for the vacuum-vacuum cross-correlation
during the spectroscopic measurements, as we will see in Ch. 4.2. The three slits (vacuum,
vacuum, CoPt) were 2 m in height (vertical) and 0.5 m, 1.0 m, 3.0 m wide (horizontal),
respectively. The distance between the slits was identical to the Gd25Co75 sample.

A similar multilayer was used in the time resolved small-angle scattering measurement,
presented in section 6.1. We performed pump-probe measurements of the magnetic M -
edge scattering from the magnetic domain network of a [Co(8)/Pt(8)]×16 multilayer. The
magnetic domains were aligned in a preferred direction with a demagnetization routine
(demagnetizing the sample in an in-plane field caused by an alternating current) prior
to the experiment to enhance the signal-to-noise ratio of the magnetic scattering on the
detector.
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Figure 3.3: Magnetic out-of-plane hysteresis loop of the [Co(4)Pt(7)]×20 multilayer mea-
sured by the triple-slit method.

3.1.3 Pure Co and Ta

With these samples, we aimed to reconstruct the optical constants of Co at the L-edge.
The first sample system consists of a pure Co layer with 30 nm thickness with a 3 nm thick
Ta layer above and below. The second sample had only one layer of Ta with a thickness of
3 nm. The data from the second sample was used as a reference measurement in order to
separate the Ta signal from the Co signal in the first sample. Both samples had a 200 nm
Si3N4 membrane and were masked with a [Cr(5 nm)/Au(55 nm)]20 layer. The three slits
(vacuum, vacuum, Co) were 2 m in height (vertical) and 0.5 m, 0.1 m, 0.5 m wide
(horizontal), respectively. The distances between the slits were 2.1 m (vacuum slit 1 to
vacuum slit 2) and 1.0 m (vacuum slit 2 to material slit).

3.1.4 Gd25Fe75 and Gd28Fe72

With the Gd25Fe75 sample, the Fe M - and L-edges as well as the Gd N -edge were
investigated. The total layer thickness was 30 nm. The atom percentages of the Gd25Fe75
alloy sample layer are 25% for Gd and 75% Fe. This relates to a integrated layer thickness
of 15.5 nm for pure Fe and 14.5 nm for pure Gd. The Si3N4 substrate and the gold mask
had the same parameters as the Gd25Co75 sample. The hysteresis of this alloy is shown in
Fig. 3.4 which indicates a perpendicular magnetic anisotropy. The geometry of the three
slits were equal to the one of the Gd25Co75 alloy sample.

The experiment demonstrating the dynamic capabilities of our triple-slit setup used also
a FeGd alloy as sample layer. The stoichiometry of this alloy was Ta(3)/Gd28Fe72(40)/Ta(3),
where the numbers in brackets represent the thickness in nanometer and the numbers
behind the elemental symbols denote the atom percentage in the alloy. The sample layer
was increased to 40 nm to increase the magnetic signal. To counter the limiting photon
flux of the HHG source, the absorption in the Si3N4 was reduced by using a Si3N4 layer
with only 10 nm layer thickness. The hysteresis of a sister sample is shown in Fig. 3.5.
The magnetization of the sample saturates at a external magnetic field of 50mT. The
low saturation field has the advantage that the electromagnet inside the vacuum chamber
can operate at a lower current. This significantly reduced the heat load in the immediate
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Figure 3.4: Magnetic out-of-plane hysteresis loop of the Gd25Fe75 multilayer measured by
polar MOKE on a sister sample.

Figure 3.5: Magnetic out-of-plane hysteresis loop of the Gd28Fe72 multilayer used in the
pump-probe experiment measured by polar MOKE on a sister sample.

vicinity of the sample.

3.2 X-Ray- and EUV-Sources

The data we present in this thesis were recorded at two different photon sources. In
the case of the spectroscopic measurements, the experiments were performed at different
beamlines of the BESSY II synchrotron source. The pump-probe measurements were
carried out at a lab-based HHG source. In the following, we will first discuss the beamlines
of the synchrotron sources.

X-Ray-Sources

The L-edge data was recorded at the UE52-SGM undulator beamline of BESSY II [44].
The beamline delivers linearly and circularly polarized light in a photon energy range
from 100 eV to 1500 eV. For photon energies around the Co and Fe L-edge the energy
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Figure 3.6: Schematic drawing of the HHG source. The blue line encircles the components
in vacuum with pressures < 1× 10−6mbar. High-harmonics are generated in the HHG
target by intense IR pulses which are consequently removed via the XUV/IR splitter and
Al filters. The switching mirror unit (SMU) directs the XUV radiation to the spectroscopy
endstation, or, if removed, lets the beam pass into the scattering endstation. The reference
grating and camera are used for intensity normalization. A monochromizing and focusing
mirror is used in the scattering chamber to define the incident wave on the sample. For
the pump-probe experiment, the CCD is covered by an additional Al-filter. The inset in
the upper left shows an image of the high harmonic spectrum. The figure was adapted
from [46].

resolution was E/∆E > 2000. The reflective focussing optics of the beamline had a
horizontal (vertical) divergence of 6mrad (1mrad) and achieved a minimal focus size in
the order 50 m. This results in a homogeneous beam profile on the area of the triple-slits
in a distance of 100mm from the focus. With a photon flux of 1× 1011 ph s−1 in the
aforementioned bandwidth, the experiment was not photon limited, even outside the focus
position.

The M -edge data of the ferromagnetic samples and the N -edge data of Gd was taken
at the UE112-PGM-1 undulator beamline of BESSY II [45]. The beamline offers variable
polarization in a photon energy range of 8 eV to 690 eV. Around the M -edges of the
investigated ferromagnetic samples, the energy bandwidth was 30meV. For the Gd
N -edge at 149 eV a energy bandwidth of 99meV was obtained. The optimum beamline
focus size was 80 m both horizontally and vertically. At 63.5 eV the horizontal (vertical)
divergence was 1.4mrad (0.6mrad). Like at the UE52-SGM beamlime, the experiment
was not photon limited, as the photon flux was >1× 1012 ph s−1 for the aforementioned
bandwidth in the investigated energy interval.

XUV-Source

The time resolved IR-pump/XUV-probe measurements were carried out at a lab-based
HHG-source located at the Max Born Institute [46].

An overview of the high harmonic generation setup is shown in Fig. 3.6. The driving
IR beam of the XUV-HHG radiation was provided by a commercially available Ti:sapphire
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Figure 3.7: HHG spectrum of Ne gas calculated back to the source position (see [46] for
details of the calculation). The spectrum has a cutoff at 72.6 eV due to the use of an
Al-filter in the beam path. Figure from [46]

amplifier laser system (Coherent Legend Elite Due HE +USX). The pulses of 25 fs had a
repetition rate of 3 kHz, a wavelength centred at 800 nm with a bandwidth of 80 nm, and
a pulse energy of 2.9mJ.

The non-linear process of the HHG depends on the temporal and spatial shape of
the IR beam. In front of the 2mm Ne gas target, both parameters were controlled by
a motorized compressor for the beam pulse length, a motorized iris for filtering larger
transverse vectors from the beam, and a focussing lens (f = 1m).

After tuning the optimal phase matching conditions, we found the optimal gas pressure
for maximal HHG to be 300mbar. A differential pumping station around the HHG gas
target allows for gas pressures up to 1 bar inside the gas cell and a pressure of around
10−5mbar outside the gas cell. The areas in Fig. 3.6 encircled by the blue outline are
under vacuum with a pressure of below 1× 10−6mbar.

The co-propagating IR light is attenuated by a XUV/IR splitter by 2–3 orders of
magnitude [46]. The reduced IR light is subsequently blocked from entering the experi-
mental chambers by 200 nm thick Al foils. The theoretical transmission of the XUV/IR
splitter for XUV photons is 60%. During our pump-probe experiments, we experienced
a transmission decrease through the splitter unit, due to thermal damage to the mirror
surfaces. We could increase the HHG flux by one order of magnitude by replacing the
XUV/IR splitter by a small aperture (0.5mm diameter) close to the entrance of the
SMU chamber. As the IR beam had a higher divergence compared to the HHG beam
this allowed to clip a portion of the IR beam without altering the HHG beam. After
approximately 1m propagation distance, the intensity of the remaining IR beam was
sufficiently low to be blocked by a 200 nm Al filter without damaging the filter if the
exposure time did not exceed times above 1min. The exposure time was controlled by a
fast shutter in front of the Al filter.

A motorized mirror switching unit (SMU, 4 grazing incidence) steers the XUV
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Figure 3.8: Reflectance of the multilayer mirror used in the pump-probe experiment of
the Gd28Fe72 alloy (Measurement provided by the manufacturer).

beam either to the XUV spectroscopy chamber, or to the XUV scattering chamber.
The spectroscopy beamline was used during our experiment only for beam diagnostics.
Figure 3.7 shows a typical spectrum measured with the reference camera from the
spectroscopy beamline. The total flux at the source is in the order of 3× 1011 ph s−1

(calculated, see [46] for details). The pulses of odd harmonics have an energy spacing of
3.1 eV, with a photon energy bandwidth ∆EFWHM of a single harmonic of approximately
200meV1. As we used Al filter in our beamline for blocking the IR laser, the spectrum
does not show harmonics beyond the Al L-edge around 72.5 eV. We utilized this known
cut-off to calibrate the energy axis of the spectrum. For a more detailed description of
this beamline, we refer the reader to [46].

A XUV phase shifter generated the circularly polarized XUV light. This yields an
ellipticity of p = 0.8 at 45 rotation angle of the XUV phase shifter. The principle and
the properties of the phase shifter are described in [46, 47]. The phase shifter is able
to provide right and left circularly polarized light. In practice, this involves a rotation
along the optical axis, which causes the beam to have small angular deviations from the
optical axis. At the sample plane, this angular deviations can translate to a lateral beam
shift in the order of 15 m. Therefore, in the dynamic measurements, we have kept the
polarization constant and changed the direction of the external magnetic field to change
the sign of the XMCD contrast.

The distance from the HHG cell to the XUV scattering chamber equals 3.5m. At this
point, due to divergence (approximately 2mrad at 60 eV), the XUV beam needs to be
refocused. Additionally, our experiment requires monochromatic radiation instead of the
spectrum of harmonics of Fig. 3.7. We used a spherical multilayer mirror (f = 250mm)
with a narrow band reflectivity under nearly normal incidence to select a single harmonic
peak and refocus it onto the sample plane. The multilayer of the mirror used during the
triple-slit experiment of the Gd28Fe72 alloy had a reflective maximum at 54.3 eV and a full
width at half maximum (FWHM) bandwidth of (1.7 eV) (Fig. 3.8). The focus size was
10 m (FWHM). To yield a reasonable homogeneity of the incident wave across the area

1Due to the reciprocal relationship ∆EFWHM∆τFWHM ≥ 1.825 eV· fs [25] between the energy bandwidth
∆EFWHM and the pulse duration ∆τFWHM, the theoretical lower limit of ∆τFWHM would be 9.1 fs.
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Table 3.1: Estimation of the XUV transmission after all optical elements at the sample
position. See [46] for details on the analysis of the transmission measurements. The
transmission value for the Al filter transmission was taken from [48].

Element XUV transmission in %

XUV/IR splitter 60
Phase shifter 20

Al filter (200 nm) 72
Spherical mirror 40

Total 4

of the triple-slits, while still maintaining sufficient photon fluence through the sample, the
sample was placed 75mm upstream from the focus position. At this position, the FWHM
beam size was 80 µm. After all optical elements described above, the total photon flux of
the harmonic centered around 54.3 eV incident at the sample position was approximately
1× 108 ph s−1 (Tab. 3.1). Compared to the photon flux at the sample position, which was
available at the UE112-PGM-1 undulator beamline of BESSY II, the photon flux of the
HHG source is up to four orders of magnitude smaller. To achieve reasonable exposure
times at the HHG source, it is, therefore, essential to use a smaller beam diameter on the
sample. As we will see in Ch. 5.1 and Ch. 6.3, the smaller beam diameter in combination
with the inhomogeneity of the beam profile with respect to the slit area increases the
measurement errors caused by beam instabilities.

For the pump beam, a 5% fraction was separated from the fundamental IR pulse.
The pump-probe delay was introduced via a four mirror setup, where two mirrors were
mounted on a linear translation stage. The pump intensity was controlled by a half-wave
plate and two polarisers. The diameter of the pump beam on the sample was adjusted by
two lenses and was typically around 350 µm (FWHM). Both pump and probe beams were
actively stabilized by two motorized mirrors and a corresponding detector pair, located 3m
upstream of the XUV scattering chamber. The temporal overlap at the sample position
was determined by detecting the sum-frequency generation of the fundamental IR that
drives the HHG process and the IR pump beam from a barium borate (BBO) crystal as
a function of pump-probe delay. This cross-correlation provides an upper limit for the
temporal resolution of 50 fs.

3.2.1 Coherence

The ability to form interference patterns requires a well-defined phase and amplitude
relationship throughout the illuminated area of interest. Depending on the light source,
the well-defined phase and amplitude relationships of the radiated wave fields are limited
in their spatial and temporal extension. This limitation is described by the degree of
coherence. During the discussion about the reconstruction of the optical and magneto-
optical constants in Ch. 2.2.1, we assumed that the part of the beam illuminating the
area of the three slits is fully coherent. This assumption is an oversimplification, as the
finite source size and its spectral bandwidth of every real physical illumination will limit

34



the region of coherence. In this section, we will discuss the impact of reduced degree of
coherence on the analysis of triple-slit data and compare it to the coherence characteristics
of HHG and synchrotron radiation.

In the most general way, the degree of coherence of an electric field at two different
positions, r1 and r2, and times, t and t+ τ , is mathematically described by the mutual
coherence function Γ:

Γ12(τ) = ⟨E1(t+ τ)E∗
2(t)⟩. (3.1)

Here, the scalar En stands for the electric field at the point rn, τ denotes the time delay of
the electric field between both points, and the square brackets symbolize a time averaging
of the product of the two electric fields. With the local intensities ⟨|Ei|2⟩ at both points,
the normalized complex degree of coherence is given by:

γ12(τ) =
Γ12(τ)√︁

⟨|E1|2⟩
√︁

⟨|E2|2⟩
. (3.2)

For coherent radiation such as a plane wave with a well-defined frequency, the amplitude
of the complex degree of coherence would be |γ12(τ)| = 1 at all combination of points
and time delays, meaning that the wave field at point 2 after all time delays τ is fully
determined by the wave field at point r1. All real existing light sources approach this
limit only in finite regions of coherence. In the following, we will discuss the influence of
partial coherence on the ability to form interference patterns.

In Eq. 2.2, we assumed full coherence for the interference of a double slit diffraction
pattern. Considering the normalized complex degree of coherence, we can rewrite the
interference term as

2
√︁
I1I2 cos(ϕ1 − ϕ2) = 2

√︁
⟨|E1|2⟩

√︁
⟨|E2|2⟩Re γ12(τ), (3.3)

where the real part of γ12(τ) can be written as:

Re γ12(τ) = |γ12(τ)| cos(arg γ12(τ)). (3.4)

For |γ12(τ )| < 1, the contrast between the minima and maxima of the interference pattern
will decrease compared to the contrast for full coherence while the modulation frequency
of the diffraction pattern deviates from a pure cosine depending on the phase of γ12(τ).
It is common to separate the influence of partial coherence in a temporal and a spatial
correlation of the electric field, as we will see in the following.

Temporal Coherence

As a measure of temporal coherence2, one can define a temporal coherence length lcoh, in
which the waves are expected to maintain their phase relation. Expressed in terms of the
normalized complex degree of coherence (Eq. 3.2), this means that one is interested in
the normalized complex degree of coherence γ11(τ) ≡ γ(τ) at the same point for different
time delays.

2In the case of a well defined propagation direction, the temporal coherence is also called longitudinal
coherence, to indicate the decomposition of coherence in a transverse and parallel part regarding the
propagation direction.
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One can connect γ(τ ) via a Fourier pair to the normalized spectral density s(ω) of the
wave field which is known as the Wiener-Khinchin theorem [49]:

γ(τ) =

∫︂ +∞

−∞
s(ω) exp(−iωτ) dω. (3.5)

Depending on the shape of s(ω), be it a pure Gaussian or a random distribution inside
a Gaussian envelope, the envelope of γ(τ) will change according to ∆τ ∝ 1/∆ω. This
implies for the interference term in Eq. 3.3 that the characteristic time in which γ(τ)
contributes significantly to the interference term is inversely proportional to the bandwidth
of s(ω).

From this, we can derive the temporal coherence length lcoh if we consider the edge
case in which only two frequencies contribute to the normalized spectral density s(ω) of
the wave. With the assumption that a wave field with a given bandwidth of ∆λ will
significantly dephase after 180° phase difference of E1(λ) and E2(λ+∆λ), the temporal
coherence length lcoh can be given as a number Ncoh of wavelengths:

lcoh = Ncohλ. (3.6)

Over this distance, the spectrally shifted wave undergoes a half wavelength less, to satisfy
the 180° dephasing criteria:

lcoh = (Ncoh −
1

2
)(λ+∆λ). (3.7)

Solving for the expected number of coherent wave cycles gives:

Ncoh =
λ

2∆λ
+

1

2
. (3.8)

Since usually ∆λ becomes very small against λ, the 1/2 term can be neglected compared
to the first term. If Ncoh is inserted into Eq. 3.6, the coherence length becomes:

lcoh =
λ2

2∆λ
, (3.9)

as it is commonly defined in textbooks, e.g. [25].
For the experiments at the HHG source, the harmonic centred at 54.3 eV, which had a

FWHM bandwidth of 0.2 eV, was used. Note that the bandpass of the multilayer mirror
(Fig. 3.8) is about an order of magnitude larger than the harmonic bandwidth and thus
does not affect the coherence length. For the harmonic at 54.3 eV, Eq. 3.9 results in a
coherence length of 3.1 µm. The maximal slit separation was 13 µm with the CCD detector
(2048 px× 2048 px, 13.5 µm edge size) placed 75mm downstream of the slits. For this
setup, the maximal possible path length difference from both slits to a position on the
detector was 2.4 µm. Since during the HHG experiment the triple-slit diffraction pattern
was only visible on a quarter of the detector area due to the signal-to-noise ratio, the
coherence length of the HHG source provided sufficient interference contrast.

The radiation emitted from the soft x-ray undulator beamlines is spectrally filtered
by a monochromator, which provides a spectral purity of E/∆E > 2000. The resulting
coherence length was, therefore, not a limiting factor during our experiments, even at the
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L-edges of Fe and Co, where the wavelengths are shorter compared to their M -edges, but
the scattering angles are also smaller.

As we have seen in Ch. 2.1.2, our triple-slit method is closely related to Fourier
transform holography (FTH). In FTH, it can be shown [50] that the decreasing coherence
length deteriorates the resolution of the reconstructed object. For a nanoscale imaging
technique, this deterioration means a strong limitation. In our method, however, a
reduced coherence length is less limiting, as we are not interested in the resolution of
spatial information, but only in the amplitudes and phases of the plateaus of the slit’s
cross-correlations (see discussion to Eq. 2.55 in Ch. 2.2.3).

Spatial Coherence

A measure for significant phase correlation of quasi-monochromatic radiation from an
extended source of independent emitters orthogonal to the propagation direction is given by
transverse coherence length ltrans. If only this transverse property of the wave correlation
is considered, the normalized complex degree of coherence γ12(τ) becomes for τ −→ 0:

γ12(0) =
⟨E1(t)E

∗
2(t)⟩√︁

⟨|E1|2⟩
√︁
⟨|E2|2⟩

(3.10)

≡ µ12. (3.11)

Analogous to the applicability of the Wiener-Khinchin theorem for the temporal degree
of coherence γ(τ) in Eq. 3.5, the degree of spatial coherence µ12 of quasi-monochromatic
radiation from a distribution of uncorrelated emitters, observed in the far-field, is linked
to the distribution of the source intensity via a Fourier transformation. This relationship
is described by the van Cittert-Zernike theorem [25]. In the following, we will consider
the normalized degree of coherence µO1 between a point O at the origin of the (x, y, z)
coordinate system and another arbitrary point r1 = (x1, y1, z = 0) in the observation
plane. The source plane, indicated by the coordinates (χ, η), is parallel to the observation
plane and located in the far field in a distance z = z0 to the observation plane. This
results in the following representation of the van Cittert-Zernike theorem:

µO1 = e(−iΨ)

∫︂ +∞

−∞
Inorm(χ, η)e

ik(x1χ+y1η)/z0 dχ dη, (3.12)

with Inorm(χ, η) standing for the normalized source intensity distribution, and Ψ =
k(x2 + y2)/2z giving the geometrical property of the phase oscillation, when altering the
distance between the points 1 and the origin.

Analogous to the reciprocal connection between the bandwidth ∆ω and the coherence
time ∆τ in Eq. 3.5, one can reciprocally connect the spatial extension w0 of the source
with the transverse coherence length ltrans:

ltrans =
λz

4πw0

. (3.13)

If the uncorrelated emitters have the intensity distribution of a Gaussian with standard
deviation of w0,

I = I0 exp

(︃
− r2

2w2
0

)︃
, (3.14)
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the normalized degree of spatial coherence is given by evaluating Eq. 3.12 for this Gaussian
distribution [25]:

µO1 = exp(−iΨ) exp

(︃
−(kw0r1)

2

2z2

)︃
. (3.15)

Using the transverse coherence length r1 = ltrans in Eq. 3.15, the normalized degree of
spatial coherence becomes:

|µ12| = exp(−1/8) ≈ 0.88. (3.16)

This means that within one coherence length ltrans, the partial spatial coherence of a
Gaussian intensity distribution does not reduce the amplitude of the interference term
from Eq. 3.3 by more than 88% as long as the far-field approximation is fulfilled.

For our triple-slit experiment, we need a high degree of spatial coherence over the
area of the slits, which is in the order of 10 µm. The spatial coherence of the HHG
radiation is largely due to the fully coherent driving IR laser field [25]. Although the
gas atoms participating in the HHG process are randomly distributed, the gas atoms
radiate with a fixed phase relationship to the driving IR field and thus to each other.
This causes the harmonics to add up constructively in the forward direction, generating
radiation proportional to the square of the number of atoms participating in the HHG
process. Studies of spatial coherence have shown that HHG radiation has a high degree
of spatial coherence across most of the XUV beam’s diameter [51–53]. However, some
factors of the HHG can reduce the spatial coherence. From Eq. 3.13, it follows that the
wavelength and focus size of the driving laser directly influence the transverse coherence
length. In addition, the gas type and gas pressure of the HHG influence the relative phase
velocities of the IR and the high harmonics, which leads to dephasing and a subsequent
reduction of coherence. A further disturbance of the IR phase front is caused by the
non-uniform generation of free electrons in the interaction region of the driving IR and
the gas volume [51,52].

During our HHG experiment, we optimized the set of values for gas pressure and
gas type, IR focus size, and IR laser intensity (see Ch. 3.2) to achieve a large dephasing
length and high spatial coherence. The fact that the size of the triple-slit apertures is
smaller than the XUV beam diameter at the sample position (sufficiently beyond the focus
position), further increases the spatial coherence. This is also known as spatial filtering.
From Eq. 3.13 and the the divergence half angle θtrans = ltrans/z, or more generally θ = r/z,
the following statement can be obtained:

w0θ ≥
λ

4π
. (3.17)

Radiation to which the equals sign in Eq. 3.17 applies, is called diffraction limited. This
limit can be approached, for example, by lasers with intra-cavity mode control operating
in the TEM00 mode [54], or, more generally, by using a pinhole-aperture combination that
restrict either the beam waist w0 or the divergence half angle θ, or both simultaneously.
With a slit size of maximal 10 × 3, µm, a maximal slit distance of 10 µm and a beam
diameter of 80 µm (FWHM) at a distance of 70mm from the focus (10 µm FWHM), in
addition to the optimization of the HHG parameters spatial coherence was not a limiting
factor for our HHG experiment.
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For undulator radiation, the degree of spatial coherence is optimized by spatial filtering
inside the beamline. As described for the HHG experiment, the triple-slit aperture size
compared to the beam diameter at the sample position at sufficient distance from the
beamline focus represents another spatial filter. Due to the high photon flux of undulator
radiation, the optimization of the sample position in relation to the beamline focus ensures
that spatial coherence does not become a limitation for our interferometric measurements
without the photon flux through the triple-slit apertures becoming insufficient.

As we have seen for the temporal coherence, its influence on the triple-slit analysis can
be described by a comparison with FTH. In [50], it was shown that a reduction of spatial
coherence reduces the contrast of the FTH reconstruction. For our triple-slit method, a
reduction of the reconstruction contrast, i.e., the height of the triple-slit cross-correlations
plateaus, is directly related to an absorption change in the sample layer.

In the next section, we will investigate in more detail the impact of partial coherence
onto the analysis of the triple-slit experiment.

Partial Coherence and Triple-Slit Data Analysis

In this section, we will estimate the influence of three different factors on the degree of
coherence and discuss the corresponding parameter intervals in which our interferometric
experiment is not significantly affected by these error sources. These factors consist of
a spatially extended source of independent emitters (mainly associated with undulator
radiation), radiation with a photon energy bandwidth ∆E (associated with HHG radiation),
and a relative drift between beam, sample, and detector on a time scale shorter than
the exposure time of a diffraction pattern. For this purpose, we simulate a triple-slit
experiment using a 30 nm Gd25Fe75 sample layer as described in Ch. 3.1.4 at a center
photon energy of 54.3 eV and look at the partial coherence effects on the reconstructed
amplitude and phase of the triple-slit exit wave. The main focus of the simulation is its
comparability to the HHG experiment, since this radiation source has a lower photon
energy resolution and less stable relation between beam, sample, and detector then the
undulator source we used. The error estimation for the extended source volumes applies
for both HHG radiation and synchrotron radiation if spatial filtering is not sufficient, i.e.,
the sample positions is too close to the focus.

Figure 3.9a displays an overview of both the simulated geometry3 of the experiment
and the different origins of decoherence. The extended volume of the source causes light
from different directions to reach the slits. This lowers the spatial coherence. We simulated
this decrease of spatial coherence by changing the incident wave front from a fully coherent
TEM00 mode into an incoherent sum of four different orthonormal Laguerre-Gaussian
modes, (00), (01), (10), and (11), and scaling their respective occupancy4. In order to
keep the simulation dependent on only one parameter, we decided to define the occupancy
of the modes according to a fixed ratio among each other and to scale only their total
fraction of the total intensity by the scaling parameter s. In concrete terms this means
that the modes were occupied as follows: s·10% of the intensity were in the (10) mode,

3For clarity, only two slits with the corresponding diffraction pattern are shown in Fig. 3.9a. For the
simulation, three slits were used with dimensions as described in Ch. 3.1.4.

4See discussion to Eq. 3.17 and [54] for more information regarding Laguerre-Gaussian modes and
degree of coherence.
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Figure 3.9: Simulated impact of partial coherence on the triple-slit reconstruction. Three
different origins of incoherence were considered independently: An extended volume of
emitters which leads to an angular distribution of kin(θ), the magnitude of the the photon
energy bandwidth ∆E, and a relative drift d between sample and detector (distance
sample-detector z0 = 70mm). a Drawing of the simulation geometry. The three sources of
partial coherence are indicated. The angular distribution of kin(θ) in the incident beam is
simulated by a incoherent sum of the first four normalized Laguerre-Gaussian modes (00),
(10), (01), and (11). The four modes are shown with amplitude given as brightness value
and phase as hue. The corresponding color wheel is positioned in the center of the four
modes. The variable modes occupancy is given as percentage of the total intensity and
scaled by the factor s. The occupancy of mode (00) is determined by the residual intensity
fraction. The FWHM photon energy bandwidth ∆E had its center energy at 54.3 eV
and ∆E scaled from 0 eV to 1 eV. b-d Relative error of the reconstructed amplitude and
phase for different mode occupancies (b), variation of the bandwidth ∆E (c), and the
relative drift between sample and CCD (d).
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s·5% in the (11) mode, and s·1% in the (01) mode. The remaining intensity was used for
the primary (00) mode. For the mode occupation ratio, we have oriented ourselves on
values from the literature [55] concerning undulator radiation.

For the simulation, the scaling factor s was varied from 0 to 1 (Fig. 3.9b). The
reconstructed phase is not strongly influenced by a reduction in spatial coherence. The
relative error stays even for a scaling factor s = 1 under 1�. By reducing spatial coherence,
the interference contrast is generally reduced, but the position of the interference minima
and maxima remain largely unchanged. This explains why the reconstructed phase is less
affected by a reduction in spatial coherence, since it depends more on the modulation
frequency of the interference term. The reconstructed amplitude will deviate more than
1% from the ground truth, when the scaling factor s > 0.7. This mode occupancy
describes radiation from a undulator beamline with lower spatial coherence [55]. The
reduction of spatial coherence through the possible occupancy of higher modes does also
not pose a problem for the measurement with HHG radiation, since the coherent beam
properties of the driving IR laser are largely transferred to the HHG beam (see discussion
about spatial coherence in Ch. 3.2.1 and [25]). From this simulation, we can see that
under normal conditions and with the degree of spatial filtering we have used during the
experiments with HHG radiation and synchrotron radiation, spatial coherence is sufficient
for the reconstruction of amplitude and phase of the exit wave.

The next simulated degeneration of full coherence is a decrease of temporal coherence
through a photon energy bandwidth ∆E (FWHM) of the incident wave. The bandwidth
∆E was assumed to be Gaussian with a mean value around 54.3 eV. For the simulation,
the bandwidth ∆E was varied from 0 eV to 1 eV. Figure 3.9c shows the relative error of
amplitude and phase as a function of bandwidth. It can be seen that, in contrast to a
reduction in spatial coherence, a reduction in temporal coherence has a stronger influence
on the phase. A bandwidth of ∆E > 0.5 eV (E/∆E < 108.6) results in a relative phase
error of > 1%. The relative error of the amplitude, on the other hand, is much more
stable against larger bandwidths ∆E. The radiation of the HHG source had the largest
bandwidth ∆E = 0.2 eV of the experiments presented here. As we can see from Fig. 3.9c
the relative error for a bandwidth ∆E ≤ 0.2 eV is negligible.

The last of the three simulated reasons for decoherence is a relative drift between
sample and detector (distance sample-detector z0 = 70mm). If this drift occurs on shorter
time scales than the exposure time of a single diffraction image, the visibility of the
interference pattern will decrease in the direction of the drift. This effect is similar to
that of reduced spatial coherence in this direction [56]. With a reduced degree of spatial
coherence, the detector is illuminated at the same time from different directions. In
case of a point source, this illumination from different directions could occur over the
duration of the detector exposure time due to the relative drift of sample and detector.
Even if the sample and detector are stable over time, drift may occur as the incident
beam moves across the sample [57]. If the wavefront of the incident beam is curved, the
beam movement in relation to the slits causes them to be illuminated with k-vectors
from different angles. This has the effect that the diffraction pattern moves on the
detector and reduces the interference visibility5. Figure 3.9d shows the relative error of
the reconstructed amplitude and phase as a function of the relative drift between sample

5Both the effects of stationary curvature of the incident wave front and lateral drift are discussed in
the Ch. 5.1.
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Figure 3.10: Sketch of the basic scattering geometry employed at the HHG source and the
synchrotron beamlines UE112-PGM1 and UE52-SGM of BESSYII. This figure assigns the
parameters of the scattering experiment, which are given in Tab. 3.2 for the three different
radiation sources, to the scattering geometry: At the focus position the FWHM beam
diameter with photon energy E is given by 2w0. The sample is located in a distance z0 to
the focus. The FWHM beam diameter on the sample is given by 2w(z0). The distance
between sample and detector is denoted by d. The maximum scattering angle recorded by
the detector is given by qmax.

and detector for a sample-detector distance z0 = 70mm. As expected, the curves are
qualitatively very similar to the one for the decrease of spatial coherence in Fig. 3.9b.
However, this time the reconstructed phase is not disturbed by the relative drift. This
is an indication that the relative drift does not change the position of the interference
maxima and minima. The reconstructed amplitude, on the other hand, is affected by the
relative drift. The pixel size of the simulated detector was 13.5 m. In terms of pixel size,
a drift of 2 px will lead to a relative error of the amplitude of ≈ 1%. For a stable source
with high photon flux, like for synchrotron radiation, this does not pose a significant
problem. For HHG radiation with its lower photon flux, however, the exposure time can
reach values where the inherent drift of the experiment will become a significant source of
amplitude error. Therefore, during the HHG experiment, a trade-off between the drift
error due to too long exposure times and the shot noise error due to too short exposure
times must be found.

3.3 XUV Scattering Chamber

Most of the experiments presented in this thesis were performed with the XUV scattering
chamber constructed and commissioned in the frame of this thesis (Fig. 3.11). We have
designed this chamber to be highly flexible for various experimental geometries and
photon sources. Both experiments with synchrotron radiation and HHG-XUV light were
performed with the XUV scattering chamber as endstation, with exception of the L-edge
measurements. Here, we used the MAXI vacuum chamber of the Max Born Institute as
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Table 3.2: Parameters associated with the basic scattering geometry (Fig. 3.10). For
the three different radiation sources used in our experiments, the energy E, the FWHM
beam diameter 2w0 in focus, the distance between focus and sample z0, the FWHM beam
diameter 2w(z0) on the sample, the distance between sample and detector d, and the
maximum scattering angle qmax that can be measured by the detector are given. The
focus size of the beam from UE112-PGM1 and UE52-SGM was taken from [44,45].

source type
E 2w0 z0 2w(z0) d qmax

(eV) (µm) (mm) (µm) (mm) (1/µm)

HHG 54.3 10 70 80 75 50

UE112-PGM1
45–75
135–170

80 (opt.) 100 ≈ 190 135
23–39
70–88

UE52-SGM 770–800 ≈ 60 ≈ 50 > 250 720 75–78

endstation. For a description of the MAXI vacuum chamber, we refer to [58,59]. A sketch
of the basic scattering geometry employed at the HHG source and synchrotron sources is
given in Fig. 3.10. All relevant parameters associated with the scattering geometry are
summarized in Tab. 3.2. In the following, we will describe the instrumentation of the
XUV scattering chamber in the spectroscopic and dynamic triple-slit experiments, as well
as in the small-angle scattering pump-probe experiment.

At the bottom of the XUV scattering chamber, a 500mm× 800mm in-vacuum optical
breadboard allowed to freely arrange the required experimental instruments. Figure 3.11a
shows the configuration for the pump-probe measurements at the HHG-source. The
spherical multilayer mirror (custom order, optiX fab, Germany), described in section 3.2,
refocuses the XUV beam. The multilayer is specifically designed to reflect only the
harmonic needed for the experiment. The angle between the incident and reflected XUV
is minimized to avoid off-axis aberrations.

The sample holder can be moved in all three translation axes by a piezo-driven stage
(SmarAct GmbH, Germany) to align the sample inside the 3mm gap of an electromagnet.
The electromagnet was able to generate a magnetic field up to a magnetic flux density
of 230mT with a current through the coils of 4A. Both the electromagnet and the
piezo-stage were mounted on a three-axes stepper-motor stage (Standa Ltd, Lithuania)
and could be moved relative to the focus of the XUV beam to adjust the spot size on the
sample.

The back-illuminated in-vacuum CCD camera (GE-VAC, Greateyes GmbH, Germany)
detects the diffraction pattern with a raster of 2048 px× 2048 px of 13.5 µm edge size and
an electronic readout depth of 16 bit. During the experiment, the CCD is cooled down
to −40 °C to reduce thermal noise. The detector was covered by a 200 nm Al filter on a
100 nm parylene N substrate (Luxel, USA) to prohibit all visible light and IR-pump light
from reaching the CCD. With an optimized HHG source and a distance from sample to
CCD of 75mm, the exposure time for one diffraction pattern of the Gd28Fe72 triple-slit
was on the order of 30 s for approximately 40 000 counts in the most intense pixel. Values
above this count number will lead to a non-linear photon-count response of the CCD and
in extreme cases to saturation and blooming artefacts.
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Optionally, a beamstop can be moved by two stepper motors orthogonal to the beam
to block the direct transmission from small-angle scattering experiments. An additional
200 nm Al filter can be inserted in the XUV beam at the entrance of the chamber to
remove co-propagating IR light from the XUV.

The IR pump beam is coupled into the vacuum chamber through a window and is
guided to the sample by two flat mirrors. The position of the IR pump on the sample, as
well as the sample position itself, is monitored by a long-distance microscope (DistaMax
K2, Infinity Photo-Optical Company, USA) located outside the vacuum chamber.

The XUV scattering chamber is evacuated by two turbo pumps, which are supplemented
by a backing pump. The pressure inside the vacuum chamber reached values in the order
of 1× 10−6mbar. The volume between the CCD and the Al-filter of the CCD is connected
to the volume of the chamber by two small angled channels. To prevent a higher pumping
rate for the chamber volume in comparison to the small volume behind the Al-filter, a
pressure regulator constrained the pumping rate.

For the M -edge experiments at the synchrotron radiation source, the spherical mirror
and the IR-pump beam were not needed. The sample and the CCD were configured
inside the XUV scattering chamber in a forward geometry. The vacuum of the XUV
scattering chamber was coupled to the vacuum of the beamline via a pre-chamber, which
was connected to the XUV scattering chamber through a differential pumping stage.
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Figure 3.11: XUV scattering chamber. a Schematic top view of the pump-probe geometry
used for the HHG triple-slit experiment. The XUV beam is refocused under nearly normal
incidence onto the sample via a spherical multilayer mirror. The sample is surrounded by
an electromagnet with cut-outs for the XUV-probe and IR-pump beam. The sample holder
can be moved in all three axes via piezo motors. The piezo motors and the electromagnet
are attached to a three-axes stepper motor to adjust the magnet gap with the sample
in relation to the XUV-focus. The movement of the stepper motors are indicated by
the arrow direction. For general scattering experiments, a beamstop wire can optionally
block the forward scattered light. The far-field diffraction pattern is recorded by a CCD.
A stepper motor moves the CCD along the beam direction to set the distance between
sample and CCD. The CCD is covered by an Al-filter to block the scattered IR light.
An additional Al-filter can be moved in the XUV-beam at the entrance of the chamber
to remove co-propagating IR light from the XUV. The pressure of the XUV scattering
chamber is lowered via two turbo-pumps, which are supplemented by a backing pump. A
pressure regulator adjusts the pumping and venting rates to protect the Al-filter from
damage. A long-distance microscope monitors the position of the sample as well as the size
and position of the pump beam. b Drawing of the XUV scattering chamber. The vacuum
chamber was designed to provide high flexibility for different experimental geometries at
the HHG source as well as at synchrotron sources. The dimensions of the chamber are
given in mm.
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CHAPTER 4

Static Measurements

4.1 Introduction

In this chapter, we will first present the results of the simultaneously measured dispersive
and absorptive contributions to the complex refractive index of transition metals. The
XMCD contrast is used for investigating the magneto-optical changes to the refractive
indices. We investigate the resonant spectroscopic response from Co and Fe at the M -
and L-edges, and from Gd at the N -edge. We note that to our knowledge no simultaneous
measurement of the dispersive and absorptive part of the magneto-optical constants of
Gd in GdCo alloys or pure Gd at the N -edge resonance was published.

The results presented in this chapter are showing samples with out-of-plane magnetiza-
tion (Gd25Co75, Gd25Fe75, and [Co(4)Pt(7)]20). The experiments were carried out at the
beamlines UE112-PGM1 (M-edges) and UE52-SGM (L-edges) at the synchrotron facility
BESSY II. A sketch of the basic scattering geometry is shown in Fig. 4.1

To gain access to the complex refractive index of Co around the M -edge resonance, we
used circularly polarized XUV radiation in the energy range of 45 to 75 eV. The data were
recorded by a 2048 × 2048 pixelated CCD with 13.5 µm pixel edge size. The CCD was
placed 135mm behind the sample plane and cooled to −40 °C to reduce thermal readout
noise. The sample was exposed to a 200mT magnetic field from an electromagnet in the
out-of-plane direction of the sample. The magnetic field was switched in polarity for every
energy data point by inverting the current of the electro magnet from 3 to −3A.

4.2 Magneto-optical response from Gd25Co75

and [Co(7)Pt(6)]Ö12

4.2.1 Co M-edge Resonance

In this section, we are investigating the magneto-optical properties of Co at the M -edge.
We used a Gd25Co75 alloy as sample layer for the triple-slit setup. The atomic composition

46



Figure 4.1: Transmission geometry of the triple-slit setup. The sample is magnetized
out-of-plane. The electromagnet is able to saturate the sample magnetization in both
out-of-plane directions. Circular polarized XUV radiation is used in the energy range of
45 to 75 eV. The CCD is placed 135mm behind the sample.

used for the alloy are 25% for Gd and 75% Co. The Gd25Co75 layer was seeded with
3 nm and capped with 2 nm Ta. The geometry of the three slits is shown in Fig. 4.2. We
will call the left vacuum slit V1 and the vacuum slit in the middle V2. The distances
between the slits were chosen such that the cross-correlations in the reconstructions were
not overlapping. More details about this sample are given in Ch. 3.1.1.

Figure 4.3 shows the center section of a typical dark-current corrected triple-slit
diffraction pattern in logarithmic intensity scale. The exposure times varied with the
different photon energies. Depending on the transmission of the sample and the photon
flux of the beamline, the exposure time ranged from 300ms to 1200ms. Along the vertical
axis in Fig. 4.3, only one spatial frequency is visible. At the vertical center axis, slight

Figure 4.2: Triple-slit geometry for the Gd25Co75 sample. We will call the left vacuum
slit V1 and the vacuum slit in the middle V2.
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Figure 4.3: Dark-current corrected scattering pattern from the Gd25Co75 triple-slit at 75
eV in log-scale. The exposure time was 300ms.

changes of this modulations are visible. The dominant vertical spatial frequency and
the small deviations along the center are due to small deviations from the height of the
slits. Along the horizontal axis, the high-frequency spatial intensity modulation originates
from the largest distance in the triple-slit geometry (vaccum slit V1 to material slit,
11 m). The low-frequency modulation is related to the width of the two vacuum slits
(1 m). Beyond the scattering along the the horizontal center axis in Fig. 4.3, the signal
is dominated by shot noise. This will not have an impact on the reconstruction since only
the scattering along the horizontal axis from the center is important.

To reconstruct the magneto-optical indices, first, a 2D discrete Fourier transformation
is used on the diffraction pattern (upper and lower panel of Fig. 4.4). Before the
transformation is applied, it is important that the diffraction pattern is centred with
subpixel accuracy (see Appendix A for the complete analysis protocol). Otherwise, a phase
ramp will offset the phase values from the cross-correlations1. Beside the autocorrelation
in the center, the cross-correlation and twin images of the the cross-correlations of the
three slits are visible. The phase noise in between the auto/cross-correlation areas, visible
in the phase reconstruction in the upper panel in Fig. 4.4, has no physical meaning, as
the amplitude in this noisy region is nearly zero. Therefore, the phase is masked out in
these regions for the line scans in the center panel of Fig. 4.4.

The center panel of Fig. 4.4 shows the amplitude and phase of a horizontal line scan
through the Fourier transformation of the diffraction pattern. The highest amplitude peak
in the center corresponds to the autocorrelation. The phase of the autocorrelation is nearly
zero. This points to the fact that the plane wave approximation is valid, as otherwise a
phase ramp would be visible. The next plateau at 10 m stems from the cross-correlation
between the material slit and the adjacent vacuum slit V2. The amplitude and phase
values for the transmission and phase shift through the sample are averaged over this
plateau. The next peak at 20 m corresponds to the vacuum-vacuum cross-correlation.
As the two vacuum slits have both the same width, the maximum of this cross-correlation
is sampled by only one pixel. The phase of the vacuum-vacuum cross-correlation is
nearly zero for both twin correlations. This implies first, that the phase front incident

1This fact is related to a property of the Fourier transformation, which is known as time-shifting
property. A shift in time corresponds to a rotation of the phase in the frequency domain: (Fx)(t− t0) =
exp(−i2πft0)X(f), with t denoting the time, t0 the time shift and f being the frequency. Instead of the
time/frequency pair, in our case the shift in spatial frequency is connected with a phase rotation in real
space.
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Figure 4.4: Reconstruction for Gd25Co75 triple-slit at 75 eV. Upper (lower) panel shows the
phase (amplitude) of the Fourier transformation of the triple-slit diffraction pattern. The
graph in the middle shows the horizontal center line scan through the amplitude and phase
of the reconstruction. At 0 m, the autocorrelation is located. Towards positive distances
first, the cross-correlation of the material and vacuum slit V2 appear. This plateau is
used for extracting the transmission and phase shift through the material layer. The next
peak, around 20 m, corresponds to the vacuum-vacuum cross-correlation, of which the
amplitude is used for normalization. The last plateau stems from the cross-correlation of
the material slit with the vacuum slit V1. The line scan of the phase is set to zero for
amplitude values below 0.8 a.u. to mask out phase noise. This noise is still visible in the
upper panel around the 2D phase cross-correlations.
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Figure 4.5: Complications of the Gd25Co75 triple-slit analysis. a Center part of the
Gd25Co75 triple-slit diffraction for 45 eV in linear scale (normalized). Diffraction from
second harmonic is visible (red arrows). b Amplitude of the center line scan in positive
direction through the cross-correlations of the Fourier transformed diffraction pattern
from a. The blue arrows mark the cross-correlations from the second harmonic. The
second order reconstruction fits between the correlations from the fundamental order.
The vacuum-vacuum cross-correlation at 20 µm is highlighted by the light orange area. c
Magnification of the vacuum-vacuum cross-correlation for 46 eV. For this photon energy,
the maximum falls between two sample points. The maximum is approximated by the
intersection of two linear fits. Note that at 46 eV no significant contribution of second
harmonics is visible.

on both vacuum slits had the same phase as only the relative phase between the slits
is reconstructed and second, that the diffraction pattern was centred sufficiently. The
amplitude of this correlation peak was used to normalize the material slit transmission to
the incident photon intensity.

The plateau on the far right side in Fig. 4.4 corresponds to the material slit correlation
with the vacuum slit V1. This plateau is not used for reconstruction as interference of both
slits with a distance of 17 µm is already effected by the finite longitudinal incoherence. This
can be seen from the comparison of the plateau height of both material cross-correlations.
The amplitude of the outer correlation is lower by 12% compared to the inner one, showing
that the visibility for a distance of 17 µm is reduced.

Before we look at the reconstructed spectra, we will first mention two issues with the
reconstruction. At the lower photon energies, there was a significant contribution of second

50



Figure 4.6: Spectroscopic response of the relative transmission trel and phase shift φ at
the Co M -edge with circularly polarized light for parallel and anti-parallel out-of-plane
magnetization of the Si3N4(150 nm)/Ta(2 nm)/Gd25Co75(30 nm)/Ta(2 nm) sample layer.

harmonics in the beam (Fig. 4.5a). This leads to the addition of three cross-correlations
with twice the distance to the center and twice the size of the plateaus (Fig. 4.5b). Because
of the choice of our triple-slit geometry, the reconstruction of the second harmonic material-
vacuum correlation was falling in between the gap of the fundamental vacuum-vacuum
correlation and the outer material-vacuum correlation (left arrow in Fig. 4.5b). Only the
outer edge of the left flank overlaps with the fundamental vacuum-vacuum correlation.
Considering the height of the vacuum-vacuum correlation, this adds a possible error of
below 1%. From 52 eV to higher photon energies, the contribution of the second harmonic
is negligible. We note that the a possible error from the second harmonic has no impact
on the calculation of the magneto-optical constants as the error is subtracted out in
the difference of both magnetic field polarities. If the error of higher harmonics had an
influence on the quality of our reconstruction, the error could be corrected by interpolating
the fundamental triple-slit correlations by the factor two to match the sampling of the
second harmonic, adjusting interpolated correlations to the height of the measured second
harmonic correlations and subtracting them from the reconstruction.

Another problem with our triple-slit geometry arises when we analyse the data for
different photon energies. As both vacuum slits have the same width, their correlation
maximum is sampled by a single point. If the photon energy is changed, this maximum
falls periodically between two sampling points, effectively lowering the amplitude of the
correlation (Fig. 4.5c). To correct this periodic error in our normalization signal, we used
a linear fit to the sides of the vacuum-vacuum correlation. Their intersection was used
for the normalization signal which suppressed the periodic errors in the spectrum. A
complete protocol of the triple-slit reconstruction can be found in Appendix A.

Figure 4.6 shows the relative transmission and the relative phase shift through the
Si3N4(150 nm)/Ta(2 nm)/Gd25Co75(30 nm)/Ta(2 nm) sample layer for the photon energy
range from 45 eV to 75 eV. The most prominent feature is the overlapping Co M2 (3p1/2)
and M3 (3p3/2) absorption edges around 59 eV. In contrast to the L-edge resonance, no
3p1/2 and 3p3/2 separation is visible as the spin-orbit split core levels strongly overlap.
Another visible feature is a Ta signature from post O2 5p1/2 absorption edge below 50 eV.
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Figure 4.7: Spectroscopic response of the complex dichroic part of the optical constants
from Gd25Co75 at the Co M -edge with circularly polarized light. The left panel shows
the magnetic asymmetry for the relative transmission trel and phase shift φ, and the right
one shows the magneto-optical constants of the Co content in the Gd25Co75 sample layer.
The values of ∆δ and ∆β are not corrected for the incomplete out-of-plane magnetization
of the sample. For the rescaled spectra see Fig. 4.9.

For comparison, the transmission and phase shift spectrum of a pure Ta layer on Si3N4

for the energy range between 45 eV and 60 eV can be found in the appendix B.1. Close to
the M -edge resonance at 59 eV, the spectrum for the two magnetization directions differs
clearly.

The magnetic asymmetry2 of the spectrum in Fig. 4.6 is found in the left panel of
Fig. 4.7. In the off-resonant regions, where the asymmetry is nearly constant (45–57 eV and
68–75 eV), two adjacent data points were binned to one point located at the photon energy
average. The maximum standard deviation for those regions is σ(a(φ)) = 8 · 10−5 for the
phase asymmetry and σ(trel) = 1.5 · 10−3 for the asymmetry of the relative transmission.

The magneto-optical constants (right panel in Fig. 4.7) were calculated according to
Eq. 2.78 and Eq. 2.79 for the Co content of the Gd25Co75 alloy. The effective thickness
dCo of an equivalent pure Co layer was calculated to 15 nm from the atom percentages of
the Gd25Co75 sample, using the atomic mass and molar volume for Co and Gd.

The magneto-optical constants show the sum of the overlapping dichroic signals of
the M2- and M3-edges. Further, we observe a pre-edge asymmetry in accordance to
literature [3]. Below 48 eV, ∆δ changes the sign. The maximum of the phase shift φ
visible at 48 eV in Fig. 4.6 suggest, that the sign change of ∆δ at 48 eV in Fig. 4.7 can
be attributed to the Ta layer. We observe the same sign change also in the Gd25Fe75
sample (see Fig. 4.21 in Ch. 4.3.1), which also contained a Ta layer for protection against
oxidation. In the post-edge region above 65 eV, ∆β becomes slightly positive until 68 eV.
This observation also occurs for the Gd25Fe75 sample (Fig. 4.21 in Ch. 4.3.1) to an even
greater extent.

To compare these results to the literature, a scaling factor must be considered. The
Gd25Co75 sample layer magnetic easy-axis was in-plane (Fig. 4.8) despite the intention

2The magnetic asymmetry is defined as a(S) = (S+ − S−)/(S+ + S−), with S± being the signal for
positive (+) or negative (−) magnetic saturation.
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Figure 4.8: Out-of-plane hysteresis for the Gd25Co75 sample.

during the sputtering process of an out-of-plane magnetization. The applied magnetic
field of 200mT was only able to yield an out-of-plane magnetization of around (58± 2)%
from the saturation magnetization. The uncertainty of the scaling factor is due to the
uncertainty of the value for the magnetic field at the exact sample position. We estimate
the error of the value of the magnetic field at the sample position to be 10mT.

Our rescaled curves of the magneto-optical indices from Co are compared to the results
obtained by Willems et al. [3] in Fig. 4.9. Their work determined the absorptive and
dispersive part of the magneto-optical indices by independently measuring XMCD and
the Farady rotation on pure Co. In the following, we will label our results with the index
Gd25Co75 and the results by Willems et al. with the index Co to indicate the chemical
composition of the sample. Note that the derived magneto-optical indices refer to the Co
content in the sample layer.

The density of states (DOS), locally at pure Co, is not expected to be significantly
different from the DOS at a Co atom in Gd25Co75, as for a given Co atom most of
their neighbours are itself Co atoms. The substitution of Co by Gd is expected to lead
to a slightly different spectrum due to the different valence DOS. Further, the lower
electronegativity of Gd compared to Co, is expected to slightly shift the spectrum of the
absorption edge towards lower energies.

In Fig. 4.9, we observe a shift of our spectrum by 0.5 eV to the one from literature.
The minimum for our ∆βGd25Co75 appears at 59.8 eV and the one from ∆βCo at 60.3 eV.
As mentioned, this shift is expected due to the lower electronegativity of Gd compared to
Co, but we note that a difference in the calibration of the beamline can not be excluded.
Apart from that, the quantitative agreement of the spectra coincides very well. At lower
energies (below 51 eV), the signal-to-noise ratio (SNR) of our ∆δGd25Co75 measurement is
clearly favourable compared to the SNR from the Faraday rotation. At 48.1 eV, ∆δGd25Co75

changes sign in our measurement. This is not in accordance with the Kramers-Kronig
(KK) inversion of ∆βGd25Co75 (comparison between ∆δGd25Co75 with the KK inversion of
∆βGd25Co75 is shown in the Appendix B.2). The zero crossing happens at the Ta edge (see
the phase shift φ at 48 eV in Fig. 4.6). Therefore, we relate this sign change to the Ta in
the sample. A further indication of the Ta contribution to the magnetic asymmetry is
that the sign change of ∆δCo at 48.1 eV was neither observed nor calculated by Willems
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Figure 4.9: Comparison of the corrected magneto-optical constants from the Co content
of the Gd25Co75 layer at the Co M -edge with data measured by Willems et al. [3] on a
pure Co sample.

et al. for their sample which used Al layer instead of Ta layer [3]3.
We observe the same significant off-resonance signal as Willems et al. below the

absorption edge. Due to their findings, the finite pre-edge values are stemming from
Fermi level electrons excited to higher unoccupied states [3]. A difference between our
data and the one from Willems et al. is found in the region from 64 eV to 68 eV, where
our ∆βGd25Co75 becomes slightly positive. The values of ∆βCo stay below zero in this
region. Due to the calculation by Willems et al. the positive maximum of ∆β after the
M -edge resonance can be attributed to the magnitude of the exchange splitting of semicore
states [3].

4.2.2 Gd N-edge Resonance

Next, we take a look at the Gd N4,5-edge spectrum. Figure 4.10 shows the Gd25Co75 relative
transmission and phase shift spectra for both parallel and anti-parallel magnetization
direction from 135 eV to 165 eV. The transition minimum can be found at 148.0 eV
for positive magnetization direction and at 148.8 eV for negative direction. The energy
shift of the transmission for different magnetization orientations originates from the
4d10 4f 7[8S] → 4d9 4f 8[8P ] transitions and stems from a different allowed intermediate
state. For parallel orientation of photon spin and sample magnetization, the 8P5/2 state
(148 eV) is populated, for anti-parallel orientation, the 8P9/2 state (150 eV) [60]. In
comparison to the 0.8 eV energy shift of the N -edge resonance maximum, the pre-edge
features from 138 eV to 143.5 eV only change in amplitude when the sample’s magnetization
is reversed. These findings are in line with results from pure Gd samples [61, 62].

The spectrum of the normalized difference of both magnetization directions is shown
in the left panel of in Fig. 4.11. The magneto-optical constants for the Gd content of the

3The SNR of the ∆δCo measured by Willems et al. is too low to exclude a sign change with certainty,
but the calculated data for ∆δ at the Co M -edge shows no sign change at 48.1 eV. For the calculated
spectrum and the calculation details we refer the reader to [3].
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Figure 4.10: Spectrum of relative transmission trel and phase shift φ of
Si3N4(150 nm)/Ta(2 nm)/Gd25Co75(30 nm)/Ta(2 nm) at the Gd N -edge with circularly
polarized light for parallel and anti-parallel out-of-plane magnetization.

Figure 4.11: The left panel shows the magnetic asymmetry for the relative transmission
trel and phase shift φ. The right panel shows the magneto-optical constants calculated for
the Gd content in the Gd25Co75 sample at the N4,5-edge.

55



Gd25Co75 alloy are shown on the right panel of Fig. 4.11. The absorptive part crosses zero
at 148.5 eV which is comparable to the findings of Willems et al. on a Gd29Co71 alloy [63]
and Prieto et al. on a pure Gd sample [61]. Beyond the N -edge resonance, the magnetic
asymmetry converges to zero, and no magnetic contrast is observed.

Figure 4.12 shows the comparison of the magneto-optical indices at the Gd N -edge
for the Gd content of our Gd25Co75 sample to the data measured by Prieto et al. and
Willems et al. The values of ∆βGd from Pietro et al. were calculated from absorption
spectra by total electron yield on in-plane magnetized thin Gd films, while the values of
∆δGd were derived by a Kramers-Kronig inversion of ∆βGd [61,62]. Prieto et al. calibrated
the absorption spectrum by matching the regions of the spectrum where the influence of
the resonance is expected to be negligible to tabulated absorption coefficient from Henke
et al. [5]. Due to this calibration, they attribute an error of ±15% to the maximum of
∆βGd. The absorptive and the dispersive part of the magneto-optical contributions to
the refractive index are both significantly larger (by a factor of 11 ± 2) compared to our
results. It is also notable that the magneto-optical indices found by Prieto et al. converges
significantly slower to zero after the N-edge resonance and before the pre-edge features,
than our data suggests.

Willems et al. derived ∆βGd29Fe71 from absorption spectra on Gd29Co71 alloys [63].
The values of ∆βGd25Co75 from our measurement are larger by a factor of 1.9 than the
values of ∆βGd29Fe71 from Willems et al. Note that Willems et al. analysed ∆βGd29Fe71

for the entire Gd29Co71 alloy instead of the Gd content [64]. If one would convert the
data from the Gd29Co71 alloy to the Gd fraction, one would expect a scaling factor of
1.8. Taking this scaling factor into account, the data from Willems et al. are in good
agreement with our data. The off-resonance convergence to zero is, like in our data, more
pronounce in the data of Willems et al. compared to the data found by Prieto et al. The
pre-edge features are not as pronounced as in our spectrum. Especially the feature of ∆β
at 139 eV is not visible in the data by Willems et al., which could be due to the lower
photon energy sampling (Fig. 4.13d shows a detailed view of the pre-edge spectrum).

Last, we compare our data to an ab initio TD-DFT linear response calculation4 done
for a Gd50Co50 alloy [65] with the elk code [66] (Fig. 4.13). Additionally, Fig. 4.13 also
shows the Kramers-Kronig inversion of our data for ∆βGd25Co75, the data for ∆βGd29Fe71 of
Willems et al. [63], and for the fine structure of the pre-edge region (136.5 eV to 146.5 eV)
the magneto-optical constants, ∆δGd and ∆βGd, from Prieto et al. [61].

The overall shape of magneto-optical constants from the ab initio calculation is in
reasonably good agreement with our data. In particular, the size of giant resonance is
in much better agreement to our experiment than to the values from Prieto et al. (see
Fig. 4.12 for the magneto-optical constants from Prieto et al. at the giant resonance) or the
values for ∆β from Willems et al. (Fig. 4.13b). However, the calculation differs from our
measured data in two aspects. In general, the calculation does not include large smearing
effects coming, e.g., from temperature, finite energy resolution, or instrumental broadening.
Therefore, the calculated spectrum shows more variations in its energy dependency then
our measured data.

The second deviation between the calculation and our data can be found in the position
and scaling of the pre-edge features. While the features of the pre-edge can be found

4The method of the calculation and the approximations involved are similar to the ones listed in [3].
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Figure 4.12: Comparison of magneto-optical indices at the Gd N -edge. The values for ∆βGd

from Prieto et al. were derived from absorption spectra on thin Gd films [61]. Similarly,
Willems et al. derived ∆βGd29Fe71 from absorption spectra on Gd29Co71 alloys [63]. Note
that Willems et al. analysed ∆βGd29Fe71 for the entire Gd29Co71 alloy instead of the Gd
content [64]. The values of ∆δGd were obtained by Kramers-Kronig transformation. These
values are compared to our analysis of ∆δGd25Co75 (top panel) and ∆βGd25Co75 (bottom
panel). The values of Willems et al. and the pre-edge features are show in Fig. 4.13 in
greater detail.
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Figure 4.13: Comparison of magneto-optical indices with ab initio calculations (Calc.).
∆δ and ∆β are shown for the pre-edge structure and the giant resonance in a and b,
respectively, and are compared to the solution of the TD-DFT linear response equation
for Gd50Co50. Additionally, in a the Kramers-Kronig inversion (KK) of ∆βGd25Co75 and
in b the data for ∆βGd29Fe71 from Willems et al. [63] is shown. Note that Willems et
al. analysed ∆βGd29Fe71 for the entire Gd29Co71 alloy instead of the Gd content [64], while
our magneto-optical constants are shown for the Gd content of Gd25Co75. In c and d the
fine structure of the pre-edge region is magnified and compared against the data measured
by Prieto et al. [61]. The values of the calculated pre-edge features are shifted by 1.55 eV
to match the slope of the measured data.
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between 138.3 eV and 146.2 eV for our data, the calculated spectra show the pre-edge
features between 139.1 eV and 146.2 eV. For better comparability, we have shifted the
calculated pre-edge fine structure by 1.55 eV in Fig. 4.13c and Fig. 4.13d to match the
measured data. In the energy interval of the fine structure, the magnitude of the values
from Prieto et al. seems to agree more with the theoretical calculation than our data, while
the spectral position of the maxima and minima of ∆δ and ∆β from Prieto et al. agree
more with our data then with the calculated data.

A significant difference between the values of ∆δ from Prieto et al. compared to our
data and the calculated data can be found in the off-resonant region below 138 eV. Here,
the ∆δ from Prieto et al. shows a positive offset of about 0.4× 10−2, while our data and
the calculated values for ∆δ are slightly negative (−0.1× 10−2). The values for ∆β, on
the other hand, converge to zero below 138 eV for all data shown in Fig. 4.13d (including
the one from Prieto et al.). While it is possible that the magneto-optical constants ∆δ and
∆β have both a finite weight in the pre-edge regions (see Co M -edge in Fig. 4.9, Ch. 4.2.1
and [3]), it is unusual that only ∆δ stays significantly above zero below the resonance,
while ∆β converges to zero. Also, above the Gd N -edge resonance (> 155 eV, Fig. 4.12),
the values for ∆δ from Prieto et al. have an offset significantly different from zero. An
offset for ∆δ above and below the resonance cannot be found in our data, nor in the data
from Willems et al., nor in the ab initio calculation (Fig. 4.13). Prieto et al. calculated
the values of ∆δ via a Kramers-Kronig inversion. The accuracy of the Kramers-Kronig
inversion depends mainly on the spectral range, which is available for integration. Prieto
et al. integrated the absorption spectra over an extended photon energy range of 110 eV to
200 eV. At both ends of their experimental photon energy range, the absorption difference
between both magnetization direction becomes asymptotically small. Although Prieto
et al. have explicitly taken care of providing suitable conditions for the integral of the
Kramers-Kronig inversion, we attribute the fact that ∆δ from Prieto et al. converges to
non-zero values and does not match the other data in the off-resonant regions to artefacts
of the Kramers-Kronig inversion integral.

In Fig. 4.13a and 4.13c, we show the Kramers-Kronig inversion of our ∆β and compared
it to our measured ∆δ. While for the giant resonance and the most part of the pre-
edge structure both ∆δ and the Kramers-Kronig inversion of ∆β are in good agreement,
below 140 eV ∆δ shows structure which is not present in the Kramers-Kronig inversion.
This deviation and the uncertainty of the off-resonant ∆δ offset in the data of Prieto et
al. emphasizing the strength of our method to exactly measure real and imaginary parts
of the refractive index at the same time.

4.2.3 Co L-edge Resonance

In this section, we present our measurements of the dichroic dispersion and absorption from
Co at the L3,2 edge measured at the UE52-SGM beamline of the synchrotron-radiation
facility BESSY-II. The photon energy was varied from 770 eV to 797 eV, and the photons
were circularly polarized. The CCD was placed 720mm behind the sample. The sample
was moved 170mm behind the beamline focus to increase transverse coherence and to
fulfil the plane wave approximation.

We used a [Co(4)Pt(7)]20 multilayer providing out-of-plane magnetization. We used
a different triple-slit layout than for the M -edge measurement. Most importantly, we
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Figure 4.14: Spectroscopic response of relative transmission trel and phase shift φ of
Si3N4(200 nm)/Ta(2 nm)/[Co(4)Pt(7)]20/Pt(2 nm) at the Co L-edge with circularly polar-
ized light for parallel and anti-parallel out-of-plane magnetization.

changed the two vacuum slits from having the same width to different widths. This ensures
that there are no more sampling problems for the vacuum-vacuum cross-correlation during
the spectroscopic measurements. The three slits (vacuum, vacuum, [Co(4)Pt(7)]20) were
2 m in height (vertical) and 0.5 m, 0.1 m, and 0.5 m wide (horizontal), respectively.

There was no change in the reconstruction process, except that now there was no need
to use the fitting routine shown in Fig. 4.5c. Instead, the vacuum-vacuum cross-correlation
c23 now shows a plateau, which enables the averaging of c23 like it is described in the
discussion to Eq. 2.57.

Figure 4.14 shows the spectroscopic response of the relative transmission and the phase
shift of our [Co(4)Pt(7)]20 multilayer in the photon energy range from 770 eV to 797 eV
for both magnetization directions5. We found the L3 absorption at 777.1 eV and the L2

absorption at around 792 eV. In contrast to the data from the x-ray data booklet [67],
our data appears shifted by approximately 1.0 eV towards lower energies. Compared to
the spectrum from the Co M -edge, we observe two clearly separated absorption peaks
due to the large spin-orbit splitting of the Co 2p levels.

In Fig. 4.15 (left), the normalized difference of both magnetization directions is shown.
The derived magneto-optical constants for the Co content are shown on the right side of
Fig. 4.15. The sign change of ∆β is a direct result of the sign change of the spin-orbit
coupling for both fine structure resonances. Between both edges, ∆δ does not fall to zero
and stays between 0.4× 10−3 and 0.25× 10−3. The Kramers-Kronig inversion of ∆δ is
compared in Fig. 4.15 (right) with our measured ∆β. Both graphs align very well, except
for the region below 776 eV. The very good agreement elsewhere suggests that also the
non-zero values in between the absorption edges are reliable.

In Fig. 4.16, we compare our results for the magento-optical index of Co at the Co
L-edge to data from literature. Mertins et al. obtained the values of ∆δ and ∆β by
analysing magneto-optical Kerr rotation and ellipticity spectra of Co samples. Kortright
et al. published the complex first-order scattering factor fm1. They measured the imaginary
part fm1 by magnetic circular dichroism absorption spectroscopy and provided the real

5We note that the data for M -edge of this sample system can be found in the appendix B.3.
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Figure 4.15: Spectroscopic response of the complex dichroic part of the optical constants
at the Co L-edge with circularly polarized light. The left graph shows the magnetic
asymmetry, and the right one shows the magneto-optical constants of the Co content from
the [Co(4)Pt(7)]20 multilayer. The values of ∆β is compared with the Kramers-Kronig
inversion of ∆δ.

part of fm1 via a Kramers-Kronig transformation. On the basis of the complex first-order
scattering factor fm1 from Kortright et al., we calculated the complex magneto-optical
index (shown in yellow in Fig. 4.16) by [25]

∆δ − i∆β = −nareλ
2

2π
(Re fm1 + Im fm1), (4.1)

with na being the Co number density and re the classical electron radius.
The spectra of ∆δ and ∆β measured by our triple-slit method appear shifted by

0.2 eV to lower energies compared to the spectra from Mertins et al. and by 0.3 eV to
lower energies compared to the spectra from Kortright et al. We attribute this shift to
calibration errors of the beamlines, as the both measurements on Co/Pt multilayer are
shifted in a different direction compared to the Co measurement. We find that the derived
magneto-optical indices from the scattering factor of Kortright et al. are too large by the
factor 2 compared to our data and the data from Mertins et al. Scaled by a factor of
0.5 the derived magento-optical indices from Kortright et al. are in very good agreement
with the data from Mertins et al. while both of them are in good agreement to our data.
However, it is noticeable that the magnitude of our data at the L3-edge is by about 23%
larger and at the L2 edge by about 19% smaller compared to the data of Mertins et al.

For the analysis of our triple-slit data, we use the effective thickness deff of Co in the
[Co(4)Pt(7)]20 multilayer as given parameter. If the effective thickness of Co deff = 8nm
has an error of ∆d = 0.4 nm the resulting ∆β and ∆δ have an error of 5%. The effect
of the different magnitudes of ∆β at the L3 and L2 edge is larger than our estimated
error and is known in the literature as an enhancement of the orbital moment in Co/Pt
multilayers via interfacial hybridization [30,70].
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Figure 4.16: Comparison of the magneto-optical indices ∆δ and ∆β from Co at the
Co L-edge. Our data (blue circles) was measured on a [Co(4)Pt(7)]20 multilayer. The
values from Mertins et al. were obtained by longitudinal magneto-optical Kerr rotation
and ellipticity spectrometry on a Co sample capped with Al [68]. Kortright et al. pub-
lished the first-order magnetic scattering factors fm1. They obtained the imaginary part
of fm1 by transmission absorption measurements with circularly polarized light on a
Pt(20 nm)/[Co(6)Pt(4)]50/Pt(3 nm) multilayer, while the real part of fm1 was calculated
via the Kramers-Kronig transformation [69]. The magneto-optical index shown as yellow
curve was derived by us on the basis of the scattering factors by Kortright et al. through
the relationship between scattering factor and the refractive index. We scaled the derived
values from Kortright et al. by a factor of 0.5 for easier comparison with the other spectra.
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Figure 4.17: Spectroscopic response of relative transmission trel and phase shift φ at the
Co L-edge with linear polarized light for [Ta(3 nm)/Co(30 nm)/Ta(3 nm)]. The relative
transmission and phase shift of a sample layer with 3 nm Ta is shown in less saturated
colors. In both samples a 200 nm thick Si3N4 layer was present.

In a next step, we aim to reconstruct the non-dichroic optical constants of Co at the
L-edge. For this, we used horizontally polarized synchrotron radiation. We changed the
sample system to a pure Co layer with 30 nm thickness with a 3 nm thick Ta layer above
and below. To correct the influence of the Ta layer and Si3N4 layer on the Co spectra, we
measured the relative transmission and phase shift of a Si3N4(200 nm)/Ta(3 nm) sample
as reference. The spectral response of the relative transmission and the phase shift
through both samples are shown in Fig. 4.17. While we observe the well known Co L3

and L2 absorption for the Co layer, the Ta sample shows a nearly constant spectroscopic
dependency for the observed energy range.

Compared to the relative transmission and phase shift of the [Co(4)Pt(7)]20 multilayer,
the following differences between the Co layer and the [Co(4)Pt(7)]20 multilayer can be
observed6 (Fig. 4.18):

The relative transmission of the Co sample exhibits a less pronounced transmission
recovery in the L3/L2 interpeak region than the [Co(4)Pt(7)]20 multilayer.

The maximum after the zero crossing at L3 (779 eV) of the relative phase shift is
more defined for the Co sample.

The spectrum of the Co sample appears shifted to higher energies by 0.2 eV.

These results are in accordance with literature [71] and can be explained by the hybridiza-
tion of the Co 3d and Pt 5d bands at the interfaces (see [63] for a discussion at the Co
M -edge). The hybridization shifts the distribution of the free states above the Fermi level
closer to the Fermi level. For the same reason there are consequently less free states for
Co/Pt 3d-states further away from the Fermi level and therefore a lower 2p–3d transition

6Note that the influence of the additional Ta layers in the Co sample and the Si3N4 layer in both the
Co sample and the [Co(4)Pt(7)]20 multilayer is negligible for the following comparison. In Fig. 4.18, we
subtracted the linear trend visible before the L3 resonance from the spectra.
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Figure 4.18: Normalized transmission spectra and relative phase shift spectra around the
Co L3-edge for the Co sample and the [Co(4)Pt(7)]20 multilayer. The spectra are linear
offset corrected and are normalized to the amplitude between the values before the L3

resonance and the L3 peak. The spectrum of [Co(4)Pt(7)]20 was averaged between the
spectra of parallel and anti-parallel out-of-plane magnetization from Fig. 4.14.

probability for energies between the L3 and L2 resonance, which explains the differences
between Co/Pt and Co in this spectral region.

Between the relative phase shift of the Co layer and the Co/Pt multilayer, another
difference after the L2 resonance above 793.5 eV can be found. Here, the value of the
relative phase shift for the Co layer stabilizes at more positive values than the relative
phase shift from the Co/Pt multilayer. We attribute this difference after the resonance to
the influence of the substrate of the samples.

In order to determine the optical constants from Co at the L-edge resonances, we used
the reference data of the Ta sample and subtracted the contributions of the Si3N4 and Ta
layers from data of the Co sample. The optical constants were calculated by:

βCo = −(ln |cn12,Co| − ln |cn12,Ta|+ ϕβ)/(2kdCo) (4.2)

and

δCo = (arg cn12,Co − arg cn12,Ta + ϕδ)/(2kdCo) (4.3)

with the correction terms:

ϕβ = kβTadTa (4.4)

and

ϕδ = kδTadTa. (4.5)

The correction terms are needed because the Co sample contained 6 nm of Ta and the Ta
reference sample was only a 3 nm thick layer. The optical constants for the Ta correction
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term were taken from CXRO [48]. This correction is valid because there are no Ta
resonances around the Co L-edge, making the CXRO values of Ta a good approximation
in this photon energy interval.

The uncertainty in the Ta layer thickness adds an error to the values of δ and
β. However, our data analysis is not strongly affected by the error in the Ta layer
thickness. For example, even if the difference in Ta film thickness was twice as large as
the 3 nm specified in the sample fabrication process, the error in β and δ would be only
ϵβ = −1.2 · 10−4 and ϵδ = 2.7 · 10−4 for the measured spectral region.

We show the resulting optical constants δ and β in Fig. 4.19 and compare them to
the values from literature7. The complex refractive index of Co from Mertins et al. was
determined via Faraday measurements and Bragg scattering [68]. Kortright et al. obtained
the imaginary part of the charge scattering factor fc by transmission absorption mea-
surements using circular polarization on a Pt(20 nm)/[Co(6)Pt(4)]50/Pt(3 nm) multilayer
and calculated the real part of fc by Kramers-Kronig transformation. On the basis of
the complex charge scattering factor fc from Kortright et al., we calculated the refractive
index (shown in yellow in Fig. 4.19) according to Eq. 4.1. In Fig. 4.19, we also include
values from CXRO [48]. We note that the model used for the calculation of the values from
CXRO is not correct at resonances, as it approximates the response by the superposition
of the the pure atomic responses, not taking the fine structure in the vicinity of the
absorption edges into account. Nevertheless, we can use those values to verify if our
measured data is converging to the CXRO data in the off-resonance energy regions.

The values of β from Mertins et al. agree very well with our data. However the values
of δ from Mertins et al. seem to have a constant negative offset. This can be seen from
the fact that below the L3 resonance, the values of δ of Mertins et al. are significantly
lower (offset approximately 1× 10−3) than those of CXRO and our data.

Our spectrum of β agrees very well with that of Kortright et al., while small deviations
of δ are visible below and at the L3 resonance and at the L2 resonance. We attribute the
small deviations of the δ between our values and the values from Kortright et al. to the
fact that Kortright et al. used a Kramers-Kronig transformation to obtain δ which can
cause artefacts. This can be seen, e.g., in the range below 772 eV, where our δ values
approach the CXRO curve, but the Kortright et al. values have a slight negative offset.
This again demonstrates the value of our method to be self-normalizing and to determine
the real and imaginary part of the refractive index simultaneously.

4.3 Magneto-optical response from Gd25Fe75

In this subsection, we are analysing the Fe M - and L edge, and the Gd N -edge on a
Gd25Fe75 sample layer. The sample was measured during the same beamtime as the
Gd25Co75 alloy. The reconstruction process and discussion follows the same steps as
described in the section Ch. 4.2.1.

7For better comparability, we have aligned the spectra to the edge of the CXRO data. Our data were
shifted by 0.7 eV, the spectrum from Mertins et al. by −2.3 eV, and the spectrum from Kortright et al. by
−0.4 eV
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Figure 4.19: Optical constants from Co at the L-edge resonances compared to values
from literature. Mertins et al. determined the complex refractive index of Co via Faraday
measurements and Bragg scattering [68]. Kortright et al. obtained the imaginary part of
the charge scattering factor fc by transmission absorption measurements using circular
polarization on a Pt(20 nm)/[Co(6)Pt(4)]50/Pt(3 nm) multilayer and calculated the real
part of fc by Kramers-Kronig transformation. The refractive index shown as yellow curve
was derived by us on the basis of the charge scattering factors by Kortright et al. The
values of CXRO [48] approximates the response by the superposition of the the pure atomic
responses and are shown to verify off-resonant convergence off the data. The spectra are
shifted to align with the edge of CXRO for better comparability. The individual shifts
are given in the text.
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Figure 4.20: Spectroscopic response of relative transmission trel and phase shift φ of the
Si3N4(150 nm)/Ta(2 nm)/Gd25Fe75(30 nm)/Ta(2 nm) sample layer at the Fe M -edge with
circularly polarized light for both magnetic out-of-plane saturation directions.

4.3.1 Fe M-edge Resonance

In Fig. 4.20, we show the spectrum of the relative transmission and phase shift in the
energy range from 40 eV to 70 eV for the Gd25Fe75 sample for both magnetic saturation
fields. The Fe M -edge begins at about 52 eV. Compared to the values from [67], this is
shifted by 0.7 eV to lower energies. The spectral shift is comparable to the one between
the measured spectrum of Gd25Co75 and pure Co. The same argumentation for the
origin of the spectral shift as for Gd25Co75 applies to Gd25Fe75, too (see Ch. 4.2.1). The
lower electronegativity of Gd compared to Fe is expected to cause a shift of the Gd25Fe75
spectrum toward lower energies compared to the spectrum for pure Fe. Nevertheless, we
cannot exclude a small energy offset due to a miscalibrated beamline.

Beside the M -edge resonance, the Ta signature below 47 eV is visible. The slope of
the whole spectrum can be explained by the Ta present in the sample. The relative
transmission and phase shift of a Ta layer is given in the appendix B.1.

In Fig. 4.21 (right panel), we show the normalized difference of the spectrum for both
saturation fields. In Fig. 4.21 (left panel), the magneto-optical constants are calculated.

In the off-resonant regions, where the asymmetry is nearly constant (40–51 eV and
61–70 eV), two adjacent data points were binned to one point located at the photon energy
average. The maximum standard deviation for those regions is σ(a(φ)) = 3 · 10−5 for the
phase asymmetry and σ(trel) = 6.5 · 10−4 for the asymmetry of the relative transmission.
The overall shape of the magneto-optical constants for Fe are similar to the one of Co
(see Fig. 4.7, left panel).

As for the Co data, we have a sizeable magnetic asymmetry in the pre-edge region.
For the dispersive part ∆δ of the Co and Fe data, the asymmetry changes sign at around
44 eV. In Ch. 4.2.1, we explained this sign change with the presence of Ta in the sample.
This explanation applies to the measurement with the Gd25Fe75 sample as well. In the
post-edge region at 57.6 eV, ∆β overshoots to positive values and falls to zero at 63.4 eV.
This overshoot is stronger than in the Co data. The maximum of ∆β can be found at
54.6 eV.

In Fig. 4.22, we compare the magneto-optical constants from our triple-slit measurement
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Figure 4.21: Spectroscopic response of the complex dichroic part of the optical constants
for the Fe content of the Gd25Fe75 alloy at the Fe M -edge with circularly polarized light.
Magnetic asymmetry a is shown on the left side, the magneto-optical constants are shown
on the right side.

to the ones published by Willems et al. [3]. Their work determined the absorptive and
dispersive part of the magneto-optical indices by independently measuring XMCD and
the Farady rotation on pure Fe. Even though the data is in qualitative good agreement,
the pre-edge and on-resonance values of our ∆δ and ∆β are only 70% in size compared to
the values from Willems et al. For the Gd25Co75 alloy, the deviation from the literature
values could be explained by the in-plane magnetization of the sample and corrected by an
appropriate scaling factor. In the case of our Gd25Fe75 data, the sample magnetic easy axis
was out-of-plane and saturated (hysteresis is shown in Fig. 3.4). It is possible that an error
during the sample fabrication process caused an error in the Gd25Fe75 layer thickness or
the Gd25Fe75 composition. Both uncertainties would manifest themselves as scaling errors
in the reconstruction of the magneto-optical indices, as the layer thickness of the magnetic
material is included in the calculation as a linear scaling factor. For example, if the
exact effective layer thickness of Fe would be 12.5 nm instead of 15.5 nm (corresponding
to 67 atomic% of the alloy instead of 75 atomic%), both the data of Willems et al. and
our data would match within the measurement error.

To investigate the parameters of the sample layer, we analysed slices of the sample
with transmission electron microscopy (TEM) and the sample composition with energy
dispersive x-ray analysis (EDX). The TEM analysis showed that the Gd25Fe75 layer
thickness was 27.5–32.0 nm ± 1.00 nm (Fig. 4.23), i.e., within the measuring error the
Gd25Fe75 layer thickness was as intended. Due to the low SNR of the EDX analysis, we
cannot clearly deduce the correct fraction of the Fe content. Within the measuring error of
the EDX analysis, it is possible that our sample Fe content was too low. An overestimation
of the layer thickness would explain the underestimation of the magneto-optical indices.
We note that usually the error in stoichiometry is below 1% due to the precise deposition
rate (0.2A s−1) in the magnetron sputtering process. Taking into account the results of
the TEM and EDX analysis, we are convinced that the values we determined for the
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Figure 4.22: Comparison of the magneto-optical constants for the Fe content in Gd25Fe75
alloy with data measured by Willems et al. measured on a pure Fe sample [3] at the Fe
M -edge.

Figure 4.23: TEM slice of Gd25Fe75 alloy.

complex magneto-optical index are most likely accurate.
Besides the mismatch in the pre-edge and on-resonance values, it is noticeable that

the post-edge ∆β becomes slightly more positive at around 59 eV. If our values of ∆β
are scaled to match the on-resonant amplitude of ∆β from Willems et al., the post-edge
peak is larger by 160% in our measurement compared to the findings by Willems et al.
This deviation from our data to the data of Willems et al. was also slightly visible in the
comparison between our Gd25Co75 spectrum and the spectrum for pure Co from Willems
et al. (Fig. 4.9). According to Willems et al., this difference can be attributed to a different
magnitude of the exchange splitting of the semicore states.

4.3.2 Gd N-edge Resonance

The spectrum for the Gd25Fe75 sample at the Gd N -edge for both saturation field directions
is shown in Fig. 4.24. The transition minimum can be found at 148.0 eV for positive
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Figure 4.24: Spectroscopic response of relative transmission trel and
phase shift φ at the Gd N -edge with circularly polarized light for the
Si3N4(150 nm)/Ta(2 nm)/Gd25Fe75(30 nm)/Ta(2 nm) sample layer.

magnetization direction and at 148.8 eV for negative direction. Contrary to the energy
shift of the N-edge resonance, the pre-edge features from 138 eV to 143.5 eV only change in
amplitude for different magnetization directions. This observation is similar to the results
from the results from the Gd25Co75 alloy in Ch. 4.2.2: The energy shift of the transmission
for different magnetization orientations originates from the 4d10 4f 7[8S] → 4d9 4f 8[8P ]
transitions and stems from a different allowed intermediate state. For parallel orientation
of photon spin and sample magnetization, the 8P5/2 state (148 eV) is populated, for
anti-parallel orientation, the 8P9/2 state (150 eV) [60].

In Fig. 4.25 (left panel), we show the normalized difference of the spectrum of both
magnetization directions. On the right panel of Fig. 4.25, the magneto-optical constants
of the Gd content in the Gd25Fe75 alloy are shown and compared to the ones from the
Gd25Co75 measurements. The overall appearance of the spectrum of both alloys, from
the pre-edge features to the resonance, and the off-resonant convergence to zero, matches
very well. The only deviation is a small difference in the on-resonance values. That the
deviation of both spectra is small is to be expected, since the electron configuration of Fe
and Co are similar. However, we cannot exclude the possibility that an uncertainty in the
composition of the Gd25Fe75 alloy leads to the small deviation of both spectra (see EDX
discussion in Ch. 4.3.1). Other than that, the good agreement of the magneto-optical
values for the Gd N -edge for both independently measured alloys increases the confidence
in our new method.

4.3.3 Fe L-edge Resonance

In this subsection, we discuss the measurement of the Fe L-edge for the Gd25Fe75 sample.
Due to experimental constraints, we could not change the sample-to-CCD distance to a
more beneficial distance. The results are presented as a demonstration for the performance
of the triple-slit method in an unfavourable experimental case.

As the scattering angle of the far-field diffraction pattern scales inversely with the
photon energy, our measurement at the Fe L-edge started to have sampling problems.
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Figure 4.25: Spectroscopic response of the complex dichroic part of the optical constants
for the Gd content of the Gd25Fe75 alloy at the Gd N -edge with circularly polarized
light. Magnetic asymmetry a is shown on the left panel, the magneto-optical constants
are shown on the right panel and compared to the magneto-optical constants of the Gd
content from the Gd25Co75 alloy.

Figure 4.26: Center part of nearly undersampled triple-slit scattering from the Gd25Fe75
alloy at 730 eV.
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Figure 4.27: Spectroscopic response of relative transmission trel and
phase shift φ at the Fe L-edge with circularly polarized light for the
Si3N4(150 nm)/Ta(2 nm)/Gd25Fe75(30 nm)/Ta(2 nm)sample layer. The data was
nearly undersampled. The relative transmission and phase shift in this figure was
averaged over both magnetization directions.

We will discuss the effect of undersampling on the reconstruction process in detail in
Ch. 5.2. Fig. 4.26 shows the center section of a scattering pattern at the Fe L-edge.
The diffraction pattern appears slightly rotated because the sample was not mounted
parallel to the axis of the CCD. In the case of a sufficiently sampled triple-slit diffraction
pattern, this is not a problem, as the center line scan through the tilted axis of the Fourier
transformation can be interpolated. In the case of undersampled data, this interpolation
adds an additional error as the effective pixel size becomes larger in a diagonal direction.
The undersampling in this data is apparent as the interference minima are slightly larger
as the size of one pixel. From a certain degree, undersampling leads to an overlapping
of cross-correlations between the slits whose interference can no longer be sufficiently
sampled and the cross-correlations of the sufficiently sampled slit interference. This
changes the plateau height of the affected cross-correlations and thus leads to an error in
the measurement signal.

Besides this problem, the SNR of the data is low. Only the first diffraction maximum
of the small vacuum slits had tolerable SNR. A weak signal for photons with higher
momentum transfer leads to a reduction of the resolution of the cross-correlations. For a
robust analysis of the triple-slit data, a clearly defined plateau of the cross-correlations is
needed (see discussion to Eq.2.55 in Ch. 2.2.3). Any degeneration of this plateau and its
amplitude, like through real space resolution loss, leads to errors in data analysis.

For the spectral response of the relative transmission and the phase shift shown in
Fig. 4.27, we averaged over six neighbouring values for the relative transmission and
phase shift (three of both magnetization directions) and binned them to their average
photon energy. The spectrum shows clearly both L-edges. The L3-edge can be found at
706.2 eV. In the literature, the L3-edge is located at 706.8 eV [67]. The same energy shift
of around 0.6 eV also appears at the L2-edge, for which the literature noted the value
719.9 eV. Since we have not measured pure Fe, but a Gd25Fe75 alloy, we expect an energy
shift to lower energies, due to the electronegativity of Gd compared to Fe. However, we
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Figure 4.28: Spectroscopic response of relative transmission trel and phase shift φ from the
Ta content from Si3N4(150 nm)/Ta(2 nm)/Gd25Fe75(30 nm)/Ta(2 nm) at the Ta N -edge.
The dichroic signal is most likely due to a relative beam-sample shift. The scan was done
first for one magnetization direction followed by the other. The periodic artefact from the
relative transmission stems from the fact that the reference slits had the same size.

cannot exclude an influence of the beamline calibration. The beamline was optimized for
the Gd N -edge. It is still worth mentioning that despite the undersampled scattering
data and the low SNR shown in Fig. 4.26, it is possible with our triple-slit method to
clearly detect the Fe L-edges, provided we average over a sufficient number of data points.

The standard deviation for the relative transmission in the energy interval 690 eV
to 703 eV (pre-edge) is σ = 0.004 and for the phase shift σ = 0.005 in the same energy
interval. These standard variations should be sufficient to resolve the magneto-optical
constants at the L-edge resonance through a XMCD difference measurement. However,
we have used a different measurement routine for measuring the Fe L-edge spectrum than
for the other data we have presented so far. Instead of alternating the magnetic saturation
of the sample for every photon energy, we first recorded a spectrum for one magnetic
saturation direction for the entire photon energy interval under investigation and then the
spectrum for the other magnetic saturation direction. Due to the greater time interval
between the acquisition of the associated XMCD data points, local beam parameters have
changed and thus become impressed as errors in the measurement signal. In the next
section and in Ch. 5.1 we will discuss this error in more detail.

4.4 SNR Analysis

Order of Data Acquisition

In this section, we continue to explore the experimental constraints of our interferometric
triple-slit method. In the discussion about the data from the Fe L-edge we have seen that
opposite magnetization states of the sample should be measured one after another in time.
If the total spectrum is measured first for one magnetization state and then for the other,
local beam parameters change over the longer time interval between the related XMCD
pairs. This introduces errors to the analysis of the magneto-optical and optical constants.
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Figure 4.29: Spectroscopic response of the complex dichroic part of the op-
tical constants at the Ta N3-edge with circularly polarized light from the
Si3N4(150 nm)/Ta(2 nm)/Gd25Fe75(30 nm)/Ta(2 nm) sample. The magnetic asymmetry a
is shown on the left side, the magneto-optical constants are shown on the right side.

In order to analyse the errors introduced by the order of data acquisition, we measured
the whole non-magnetic Ta N3-edge spectra of the relative transmission and phase shift
for one magnetic saturation directions followed by the other (Fig. 4.28). We measured the
Ta spectrum with the same Si3N4(150 nm)/Ta(2 nm)/Gd25Fe75(30 nm)/Ta(2 nm) sample
from Ch. 4.3, but a different triple-slit geometry, and the same setup as used during the
Gd N -edge measurement. With an exposure time of 120ms and a read-out time of 4 s,
there is a minimal time difference between points for the same photon energy of ∆t =
7min. We expect that no measurable dichroic signal should be present in the Ta spectra,
as its magnetic susceptibility is χ = 154.0 · 10−6 cm3 mol−1 [72] and no resonance of Fe and
Gd is overlapping with the Ta N3-edge. Any difference between both spectra of different
magnetization should be due to a change of the beam parameters (curvature of phase
and amplitude) along the area of the triple-slit, making the plane wave approximation no
longer applicable.

At 400.9 eV, we see a clear signature of Ta which was used in the sample as seed and
capping layer to protect the Gd25Fe75 layer against oxidation. In the relative transmission
(390–398 eV), a periodic artefact with a period of approximately 1.4 eV is visible. As
described in Ch. 4.2.1, this artefact originates from sampling problems of the cross-
correlation if both reference slits have the same width, which was the case for this
triple-slit sample. The artefact can be avoided by proper choice of the slit width, as
discussed in Ch.4.2.1. If present, the artefact can be corrected (see Fig. 4.5 c)) but was
untreated here for demonstration purposes. As this periodic sampling artefact is only
dependent on the experimental geometry and not on the magnetization of the sample,
it will have no influence on the difference of the spectra. Furthermore, the SNR of the
spectra is not optimal (comparable to the measurement at the Fe L-edge) and was caused
by sampling problems of the scattering pattern. This problem is circumvented in our
default setup with a suitable CCD to sample distance.
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Figure 4.30: Hysteresis of the [Co(4)Pt(7)]20 multilayer sample. The relative transmission
trel and phase shift φ are measured by our triple-slit method. The conversion from current
(A) to magnetic flux density (mT) can be found in Fig. 3.3.

The difference of both spectra normalized to the sum, and the resulting magneto-optical
constants are shown in Fig. 4.29. A linear drift in the relative transmission is clearly visible.
The acquisition time difference between related XMCD point was sufficient that the sample
significantly drifted relative to the intensity profile of the incident beam. We note that
the magnitude of the linear drift error is approximately one order of magnitude smaller
than the magnitude of the resonant magneto-optical indices of the elements presented
in this chapter. The dichroic signal of the phase shift shows constant noise (σ = 0.022)
with no apparent dependence on linear beam drift. We attribute this behaviour to the
fact that the phase is more strongly affected by the sampling problems of the scattering
pattern than the amplitude.

From these findings, one can conclude that it is advisable to measure both saturation
directions for one photon energy directly after the other to minimize drift artefacts. This,
on the other hand, could still include a global drift in the non-difference spectra of the
relative transmission and phase shift. To prevent this error, it is important that the
incident phase front can be approximated with a plane wave for the whole photon energy
range or the sample is realigned appropriately. The effects of beam drift and beam
curvature are discussed in more detail in Ch. 5.1.

As we will see in the time-resolved data in Ch. 6, the magnitude and time-scale of the
beam drift compared to the sample size and measurement times are a serious constraint
for the experiment.

Magnetic Contrast and SNR

For the reconstruction of the magneto-optical indices, the sensitivity of the measurement
signal to the sample magnetization plays an important role. To investigate the SNR of
the magnetic difference signal, we measured the hysteresis of the [Co(4)Pt(7)]20 multilayer
sample (Fig. 4.30) with our triple-slit method.

The maximal magnetic difference signal for the [Co(4)Pt(7)]20 multilayer sample has
to correspond to two times the magnetization in its magnitude. This corresponds to the
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difference of the relative transmission for both oppositely saturated states, amounting to
0.1110±0.0006. The difference of the phase shift for both saturation direction corresponds
to 0.0454 ± 0.0008. The error is given by the standard error. The relative error of the
phase shift is much higher compared to the relative error of the transmission. This finding
is in accordance with the simulations in the next chapter. The phase is much more
prone to errors like beam drifts or violations of the plane wave approximation than the
transmission.

Exposure Time and SNR

Lastly, we investigate the influence of the exposure time on the quality of the reconstructed
asymmetry. This experiment used the same experimental geometry as the [Co(4)Pt(7)]20
multilayer measurements in Ch. 4.2.3. In Fig. 4.31, we show the absolute difference
between the relative transmission trel and phase shift φ in relation to the weighted average,
trel and φ, determined from the entire data. The absolute difference of the relative
transmission is given by

ϵabs(trel,n) = |trel,n − trel| (4.6)

and the absolute difference for the phase reads:

ϵabs(φn) = |φn − φ|, (4.7)

with the weighted average

trel =

∑︁
texp.,ntrel,n∑︁
texp.,n

(4.8)

and

φ =

∑︁
texp.,nφi∑︁
texp.,n

, (4.9)

respectively. Here, texp.,n denotes the exposure time of the n-th measurement from the
exposure time series.

For higher exposure times (around 1500ms), the absolute difference converges to stable
values (ϵabs(trel,1500ms) = 0.0011 and ϵabs(φ1500ms) = 0.0028). For lower exposure times, the
fluctuations of the absolute difference increases. These fluctuations are due to dominance
of shot noise for the lower exposure times, as expected from the Poisson distribution.

The effects of different exposure times, like shot noise and resolution cut-off, will be
discussed in greater detail in Ch. 5.
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Figure 4.31: Absolute differences between the relative transmission (phase shift) and their
respective weighted averages for different exposure times.
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CHAPTER 5

Simulations of Experimental Parameters

In this section, we will model the influence of experimental noise and different geometric
parameters on the analysis of the triple slit data to determine the main sources of error
and to find optimal experimental parameters for the sample, source, and setup to improve
the practical application of the method.

In general, our simulation focuses on two aspects: the incident wave on the sample
surface and the far-field wave measured by the detector, and their respective influence on
the amplitude and phase of the slits cross-correlation plateaus. The data analysis of the
simulated triple-slit diffractions is performed similar to the data analysis presented in the
last chapter.

5.1 Beam Divergence and Curvature

Beam divergence plays a crucial part in the triple-slit experiment. On the one hand, it is
favourable that as much light as possible is transmitted through the slits, on the other
hand, the incident wave front should be as homogeneous as possible. One has, therefore,
to find a trade-off between efficient use of photons towards the focal position and a robust
and uniform illumination. This is especially important for the HHG source as photon flux
and beam stability are limiting issues for this transmission experiment. In this section,
we are investigating both the effect of incident wave front curvature across the area of the
three slits as well as the influence of beam drift orthogonal to the optical axis for XMCD
difference measurements.

In Fig. 5.1, we demonstrate the influence of a Gaussian beam curvature in combination
with an orthogonal beam drift on triple-slit transmission. The beam parameters were
chosen to be comparable to the HHG experiment. For this simulation, the following
derivation was used. The complex electric field vector ψ(r, z) of a Gaussian beam
propagating in +z-direction with a polarization in the x-direction is given by [73]:

ψ(r, z) = ψ0êx
w0

w(z)
exp

(︃
−r2

w(z)2

)︃
exp

(︃
−i
(︃
kz + k

r2

2R(z)
− ψ(z)

)︃)︃
. (5.1)
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Figure 5.1: Effects of curvature and beam drift orthogonal to the optical axis on the triple-
slit transmission. a Simulation of a normalized Gaussian beam amplitude |ψnorm(z, r)| as
a function of the focus distance z and radius r for a photon energy of 54.3 eV. A beam
waist of w0 = 10 m was used, which is comparable to the beam in the HHG experiment.
b Demonstration of the triple-slit exit wave depending on curvature and beam drift
orthogonal to the optical axis. A line scan orthogonal to the optical axis through the
Gaussian beam at the z = −50mm plane is shown. The amplitude and phase of the
Gaussian beam profile are given in light blue and light orange. The transmission profile
through three vacuum slits is indicated by more saturated colors. The Gaussian beam
profile is shifted by ∆r = 3 m for demonstration purpose (dashed line). c Radius of
curvature (ROC) R(z) of the wave front for the beam given in a as a function of distance to
the focus. The wave fronts have the strongest curvature (the smallest ROC) one Rayleigh
length zR away from the focus. At this point, the error in the phase reconstruction reaches
its maximum.
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Here, r denotes the radial coordinate, z the distance from the focus along the propagation
direction, and k the wave number. The Gaussian beam parameters are given by the
1/e-value of the radial field amplitude w(z), the beam waist radius at the focal position
w0 = w(0), the radius of curvature R(z), and the Gouy phase ψ(z).

In Fig. 5.1a, the Gaussian beam amplitude profile around the focus position is shown.
The beam waist of w0 = 10 µm is comparable to the focus diameter during the HHG
experiment as is the photon energy of E = 54.3 eV. From the intensity profile around the
focus position, it can be derived that the radial decrease in intensity causes a deviation
from a plane wave illumination across the area of the three slits that is stronger the closer
the slits are to the focus. Would the beam be stable over the time frame of the experiment,
the inhomogeneous illumination would cause an offset for the measurements of the optical
constants. For measurements investigating the difference in two sample states, however,
this is not a concern, as the curvature effects cancel out each other. Only when combined
with beam drift orthogonal to the optical axis between the two exposures for the different
sample states, beam curvature becomes a problem.

Figure 5.1b visualizes both sources of error at a distance of z = −50mm to the focus
of the Gaussian beam shown in Fig. 5.1a and for a slit geometry with a maximal spacing
between the slits of 19 µm1. The measurement signal is based on the relation of the slit’s
profile heights. Any change in this relative height that is not due to a change in the
sample response causes an error to the reconstruction.

For the reconstruction of the sample’s magnetic properties, only the difference of two
measurements is important. From Fig. 5.1b we can see that if the curvature of the beam
would be stable in the time frame of the two measurements, the curvature error would
cancel itself out. However, a relative orthogonal shift between the beam and the three
slits would change the height of the slit transmission profile in dependence of the local
beam curvature. This shift would, therefore, lead to an error in the reconstruction of the
magnetic properties.

From Eq. 5.1 and Fig. 5.1a, it is apparent that the curvature of the amplitude
decreases with the distance to the focus. The phase curvature, however, does not decrease
monotonously with z. Figure 5.1c shows the radius of curvature (ROC) R(z) as a function
of distance to the focal position. We can see that the absolute value of the ROC has a
minimum at z = zR, where zR = πw2

0/λ refers to the Rayleigh range2. At this point, the
curvature of the phase fronts is maximal as is the error in the reconstructed dispersive part
of the optical indices. For the experiments, it is, therefore, important to be sufficiently
far away from the Rayleigh range of the beam. In the remaining part of this section, we
will quantify our consideration regarding the error caused by the beam curvature and the
beam drift.

As we have seen in Ch. 2.2.3, the central quantities for the reconstruction are the
magnitudes of the cross-correlations cnm between the slits, where we used the label 1 for
the material slit, and 2 and 3 for the reference slits. We now ask for the error in cnm
if the illumination of slit n and m is not a plane wave. Equation 2.56 implies that the

1For demonstration purposes, the amplitude and phase transmission profiles are shown for three
vacuum slits, instead of two vacuum slits and one slit containing material layers.

2The Rayleigh range is defined by the distance to the beam waist w0 where the area of the beam’s
cross-section is doubled.
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cross-correlation c12 between the material and a vacuum slit is proportional to:

c12 ∝ e−βkdeiδkd|ψc|2. (5.2)

If we substitute the incident plane wave ψc with the mean value of the Gaussian beam
from Eq. 5.1 at the area of the nth slit

ψn = ane
−iϕn , (5.3)

with the mean amplitude of the Gaussian beam called an and the mean phase called ϕn,
Eq. 5.2 becomes:

c12 ∝ e−βkdeiδkdψ∗
1ψ2 (5.4)

∝ e−βkdeiδkda1a2e
−i(ϕ2−ϕ1). (5.5)

With the cross-correlation between both reference slits

c23 ∝ ψ∗
2ψ3 (5.6)

∝ a2a3e
−i(ϕ3−ϕ2), (5.7)

the normalized cross-correlation equals:

|cn12| =

⃓⃓⃓⃓
c12
c23

⃓⃓⃓⃓
(5.8)

= e−βkda1
a3
. (5.9)

From this, we see that the cross-correlation |cn12| differs from that for a plane wave by the
ratio of the amplitudes a1/a3 of the incident beam at the position of the material slit and
one vacuum slit. As the material slit with the label 1 and the reference slit with the label
3 are furthest apart, their amplitude ratio is prone to the strongest deviation in presents
of beam curvature. It could be beneficial to use the normalized cross-correlation c13/c23
for the reconstruction, as it will result in the amplitude ratio a1/a2 of slit 1 and slit 2,
which are closer together and, therefore, experience less curvature error. However, this
method must be weighed against possible coherence problems that could arise when using
the cross-correlation c13 between the material slit 1 and the reference slit 3, which are
spaced furthest apart in the slit geometry.

From Eq. 5.9, we see that the absorptive part of the optical index in the presence of
beam curvature is given by:

β = − ln(|cn12|)
kd

+
1

kd
ln

(︃
a1
a2

)︃
(5.10)

The error of β is given by εβ(w(z), r), which depends3 on the 1/e beam radius w(z) and
the radial distance r of the slit’s position to the center of the Gaussian beam:

εβ(w(z), r) =
1

kd
ln

(︃
a1
a2

)︃
. (5.11)

3Both variables w(z) and r are effecting the local averaged amplitude an
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This error scales with the wave number k and the layer thickness d. For this reason, we
define the exponent error εa(w(z), r), which is only dependent on the local Gaussian beam
parameters.

εa(w(z), r) = ln

(︃
a1
a2

)︃
. (5.12)

In a similar way, we arrive from Eq. 5.5 to the dispersive part of the refractive index:

δ =
arg(c12)

kd
+

(ϕ2 − ϕ1)

kd
. (5.13)

Here, the phase difference ϕ2 − ϕ1 between the material slit 1 and the reference slit 2 is
responsible for the error of δ:

εδ(w(z), r) =
(ϕ2 − ϕ1)

kd
. (5.14)

As for the error of β, the error εδ(w(z), r) depends on the product kd. The error of the
reconstructed phase is independent of kd and is given just by the incident phase difference
at the position of the two slits:

εϕ(w(z), r) = ϕ2 − ϕ1. (5.15)

The errors εδ and εϕ are directly related to the geometry of the three slits. The larger
the spacing between the slits, the larger is the effect of the curvature of the Gaussian beam.
For the simulation in this section, we used the triple-slit geometry shown in Fig. 5.1b
which is comparable to the geometries we used in this thesis.

Figure 5.2a and 5.2b depict the kd independent error εa and εϕ as a function of
beam radius w(z), ROC R(z), and radial distance r of the triple-slit to the center of the
Gaussian beam. The range of the beam radius w(z) and the range of the ROC R(z) of
both radiation sources, HHG and synchrotron radiation, available at the sample position
during our experiments, are indicated by dashed lines4. To quantify the errors in relation
to the experimental parameters, Fig. 5.2 shows the threshold curves were the relative
errors εrelβ and εrelδ reaches 1% of their respective optical constants. As stated before, this
threshold curve depends on the photon energy E and the layer thickness d. As the errors
εβ and εδ are larger for larger wavelengths, we show the 1% threshold curves for the Fe
M -edge to give a worst case estimation for our experiments. At the Fe M -edge, we used
the most favourable and unfavourable photon energies, i.e., the photon energies in the
M -edge energy interval where the absolute value of the optical indices and magneto-optical
indices is largest or smallest, respectively, for the threshold curves, to give an upper and
lower bond of the threshold curve. As layer thickness, we used 15 nm of Fe. On the basis
of Fig. 5.2a and 5.2b, we will first discuss the errors due to the triple-slit position r in
relation the the beam center, the beam radius w(z), and the ROC R(z) at the synchrotron
radiation source, followed by the errors for the HHG experiment.

From Fig. 5.2a, we see that our triple-slit experiment with synchrotron radiation at
the Fe M -edge, where the beam radius was approximately 90 µm, could in the worst

4Note that the simulation assumes a perfect Gaussian profile, which is only an approximation to the
experimental intensity distribution of the beam.
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case tolerate a radial shift of 0.2 µm at 52.1 eV from the beam center before the error εβ
becomes larger than 1%. During our synchrotron experiments, the alignment accuracy of
the sample to the center of the beam was sufficiently accurate. Therefore, the curvature
error for the determination of the β is negligible.

We estimate the ROC R(z) = z(1+(zR/z)
2), with zR being the Rayleigh length, of the

synchrotron beam with a photon energy near the Fe M -edge at our sample position to be
approximately R(z) = 7.5m (see Tab. 3.2 for an overview of the geometrical parameters
used during our experiments). In Fig. 5.2b, we show only one threshold line, because
the difference between the threshold lines for different energies in the M -edge energy
interval is not significant. We can see from Fig. 5.2b that in the synchrotron radiation
ROC interval a radial deviation from the optimal position of even 10 µm would not cause
the error εδ to be larger than 1%.

The radiation we used from the HHG source had a beam radius of around 40 µm
(z0 = 70mm) and an estimated ROC of 54mm. While the beam size is in the same order
of magnitude as the beam at the synchrotron source, the ROC of the HHG radiation is two
orders of magnitude smaller than the beam of the synchrotron source. The smaller ROC
is due to the smaller focus length of the focussing optics due to experimental constraints
of our HHG setup.

Figure 5.2a shows the 1% threshold line for the worst case magnitude of β (E = 52.1 eV)
at a radial distance of around 50 nm from beam center. This radial distance is close to
position accuracy of our sample stage.

The error εϕ in Fig. 5.2b shows a minimum at a radial displacement of −5.5 µm. This
distance corresponds with the radial displacement of the triple-slit from their center
position to the position, where the material slit and the adjacent reference slits are exactly
at opposite sides of the Gaussian beam profile, i.e., where the phases are the same at
both slit positions. Around the radial displacement of −5.5 µm, a radial positioning error
greater than 50 nm will lead to an error of εδ > 1%

Comparing Figure 5.2a and Figure 5.2b, it is noticeable that for a ROC R(z) < 4m
(in combination with the simulated experimental parameters) there is no radial position
of the triple-slit sample in the beam where the errors εβ and εδ simultaneously become
negligible. For the determination of the optical indices at a HHG source, one, therefore,
needs a focussing optic with a longer focus length to increase the ROC of the phase and
to reduce the error εδ(w(z), r) of the real part of the optical index.

The work presented in this thesis did only use synchrotron radiation for the determi-
nation of the optical constants. The HHG source was applied to determine the temporal
change of the magneto-optical index of Fe after optical excitation. The benefit of the
magneto-optical index calculation is that all beam curvature errors cancel out if they are
the same for both sample magnetization directions. Similar to the cross-correlations from
Eq. 5.5 and Eq. 5.7, the cross-correlations for the uniform magnetized sample are

c±12 = e−(β±∆β)kdei(δ±∆δ)kda±ma
±
r1
e−i(ϕ±

r1
−ϕ±

m) (5.16)

and

c±23 = a±r1a
±
r2
e−i(ϕ±

r2
−ϕ±

r1
), (5.17)

where the ± exponent symbolizes the magnetization direction.
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Figure 5.2: Relative 1% threshold errors of the optical indices (magneto-optical indices)
for Fe in the presence of beam curvature and radial distance r between the triple-slit
position and the optical axis (radial sample-beam shift ∆r between exposures). Note that
the displayed errors depend on the geometry of the triple-slit. For this simulation, we
used a triple-slit geometry similar to the one in Fig. 5.1. Intervals of the beam curvature
parameters are marked by white dashed lines and are labeled HHG (SR) if they matched
the beam parameters used during our HHG (synchrotron) experiments. To quantify the
errors, threshold lines are given for the worst and best case photon energies around the
Fe M -edge (specified by the respective inset), where the error of the optical or magneto-
optical constants exceeds 1%. a The error εa represents the change in the reconstructed
real part of the logarithm of the material-reference slit cross-correlation cn12 and is given
as a function of beam radius w(z) and radial distance r of the sample to the optical axis.
b The error εϕ of the imaginary part of the exponent of c12 is given as a function of ROC
R and radial distance of the sample position to the optical axis. The dependency of εϕ
on R is shown in logarithmic scale. c The error ε∆a describes the logarithmic difference
between |cn,+12 | and |cn,−12 | as a function of beam radius w and radial beam-sample shift ∆r
between the scattering patterns on which the cross-correlations are based. d The error
ε∆ϕ gives the difference change between the phases of c+12 and c−12 as a function of ∆r, and
R in logarithmic scale.
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Comparable to the derivation in Ch. 2.4, the magneto-optical constants in the presence
of beam curvature results in:

∆β = − 1

2kd

(︃
ln

(︃
cn,+12

cn,−12

)︃
− ln

(︃
a+m
a−m

)︃
− ln

(︃
a−r2
a+r2

)︃)︃
(5.18)

and

∆δ =
arg(c+12)− arg(c−12)

2kd
+
ϕ+
r1
− ϕ−

r1

2kd
+
ϕ−
m − ϕ+

m

2kd
. (5.19)

The last two terms of Eq. 5.18 and Eq. 5.19 will become zero individually if the local
beam curvature does not change between both exposures for the different magnetization
states of the sample layer.

The errors the magneto-optical index are give by:

ε∆β(w(z), r) =
1

kd
ln

(︃
a+m
a−m

)︃
+ ln

(︃
a−r2
a+r2

)︃
(5.20)

and

ε∆δ(w(z), r) =
ϕ+
r1
− ϕ−

r1

2kd
+
ϕ−
m − ϕ+

m

2kd
. (5.21)

Figure 5.2c and Fig. 5.2d show the errors which result from a radial sample-beam shift
between both exposures as a function of beam radius and ROC. The errors are displayed
independently of the product kd and are called:

ε∆a(w(z), r) = ln

(︃
a+m
a−m

)︃
+ ln

(︃
a−r2
a+r2

)︃
(5.22)

and

ε∆ϕ(w(z), r) = ϕ+
r1
− ϕ−

r1
+ ϕ−

m − ϕ+
m. (5.23)

Figure 5.2c and Fig. 5.2d also display threshold curves, above which the errors ε∆β

and ε∆δ rise over 1% of the magnitude of their magneto-optical constants. In our HHG
experiment, we used the harmonic centred at 54.3 eV. At this photon energy, ∆β has a
maximum and is, therefore, most robust against a radial sample-beam shift ∆r between
both exposures. For our HHG setup, we estimated a radial shift of ∆r = 25 nm between
two corresponding exposures to cause an error of approximately 1% to ∆β. As typical
exposure time at our HHG source was around 30 s, special care to the sample alignment
and beam stability was necessary.

At the photon energy of 54.3 eV, ∆δ is close to zero. Therefore, every small change in
sample position between two exposures in the presence of beam curvature will lead to
a significant contribution of ε∆δ to the measured dispersive part of the magneto-optical
index.

As we see in Fig. 5.2c and Fig. 5.2d, our beam of the synchrotron radiation source
provided better conditions in the presence of relative beam-sample drift between two
corresponding exposures. For the worst case (Fe at 50.0 eV), a relative sample-beam drift
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Figure 5.3: Cutaway drawing for the simulated triple slit sample. The calculations in
this section are based on this sample geometry. The slits are 4 m in height. The frame
(golden color) is intransparent, the two 2 m and 1 m vacuum slits are fully transparent.
The transmission and phase shift for light (60 eV) through the material layer are 11.7%
and 1.43 rad. The material layers consist of 50 nm Si3N4, 30 nm Co and 5 nm Ta. In the
simulations, the whole sample is illuminated by 60 eV XUV with varying beam profiles.
The slits are numbered from right to left (slit 1: material slit, slit 2: middle reference slit,
slit 3: left reference slit).

of 12 nm between exposures will lead to an error of 1% to ∆β, for the best case (Fe at
54.3 eV), a relative sample-beam drift of approximately 130 nm will cause the 1% error
to ∆β. The ROC of the synchrotron radiation at the sample position was sufficient that
even a radial shift between sample and beam of 200 nm would only cause an error to ∆δ
significantly below 1%.

The more the incident beam resembles a plane wave, the smaller the errors ε∆β and
ε∆δ will become. To improved our HHG experiment, a longer focus length to reduce the
beam curvature is advisable. To measure the dynamic of ∆δ, it would also be beneficial
to select a harmonic close to 52.5 eV to reduce the effect of ε∆δ to ∆δ.

5.2 Sample-Detector Distance

The sample geometry, which is used throughout the last part of this chapter, is depicted
in Fig. 5.3. All slits are 4 m in height. For the two vacuum slits, different widths
are used (2 m and 1 m). This ensures that there are no sampling problems in the
reconstruction as it was discussed in Ch. 4.2.1. For the slit with the sample layer, the
widest aperture (3 m wide) is used. As the sample layer and the substrate layer are
absorbing a significant fraction of the incident photons, the larger dimensions of the
slit ensure sufficient transmission from this slit in relation to the transmission from the
two vacuum slits. The slits are numbered from right to left (slit 1: material slit, slit 2:
middle reference slit, slit 3: left reference slit). The distances between the slits are chosen
such that the size of the the reconstructed cross-correlations would fit in between. The
transmission of the sample layer was modelled by utilizing the optical constants of Si3N4

and Ta from CXRO [48] and the optical constants of the Co M -edge from Willems et
al. [3].

First, we investigate the relation of the sample-detector distance and the quality of
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Figure 5.4: Simulation of triple-slit scattering with varying distance between sample and
CCD. a, Scattering images of triple-slits for 0.2m and 0.6m CCD-sample distance plotted
in logarithmic scale. b Center slice thorough cross-correlations of the three slits. Only
the right half without autocorrelation is shown. The cross-correlation of the material slit
with the small vacuum slit equals the left plateau peak (correspondingly: vacuum-vacuum
cross-correlation equals middle plateau, material-large vacuum slit equals right plateau).
The inset in the lower left (upper right) displays a 20 times scaled region of the left
(middle) plateau. The upper (lower) panel corresponds to the 0.2m (0.6m) sample CCD
distance scattering pattern on the left in a. c Relative error of the reconstructed phase
shift and transmission amplitude to ground truth as a function of sample-CCD distances.

87



the amplitude and phase of the cross-correlations. The intensity values of the diffraction
pattern will not be discretized into photon counts nor is there any thresholding to simulate
CCD dynamic range. Any errors in the reconstruction originate from the windowing
(also called apodization [74]) of the infinite diffraction pattern by the finite area and the
sampling of the diffraction pattern on a finite pixel grid.

Figure 5.4c shows the resulting relative error ∆R of the cross-correlation phase ϕ and
normalized amplitude A as function of sample-CCD distance. The normalized amplitude
A is given by dividing the cross-correlation c12 by c23. For two selected sample-CCD
distances (0.2m and 0.6m), the corresponding triple-slit scattering pattern are shown in
Fig. 5.4a and the corresponding three cross-correlations in Fig. 5.4b. The auto-correlation
(located at 0 µm) is not shown in Fig. 5.4b. The cross-correlation c12 is located at 6.5 µm,
c23 at 11.0 µm, and c13 is located at 17.5 µm. The indices of the cross-correlation refer to
the number of the slit (see Fig. 5.3). The cross-correlation c12 (c23) is displayed 20 times
magnified in the insets on the left (right) side of Fig. 5.4b.

From Fig. 5.4c, two regions can be identified in which the relative error diverges (<
0.023m and> 0.15m). The sample-CCD distance has a lower bound for our interferometric
method. To use a discrete Fourier transformation as the reconstruction operator (see
Appendix A for the triple-slit analysis protocol), the far field approximation must be valid.
To test for this approximation, the Fresnel number F = a2/Lλ, with a: aperture size, L:
distance from the aperture and λ: wavelength, provides a useful measure. If F ≪ 1, far
field diffraction occurs. For a photon energy of 60 eV and an aperture size in the range
of 20 µm, the lower bound distance is in the range of 50mm. Besides this lower bound
for the sample-CCD distance, the pixelation of the CCD introduces another constraint
on the minimal distance. If the distance is too small, the diffraction pattern will get
undersampled (see first two data points in Fig. 5.4c).

The upper bound distance depends on the capability of the detector size to measure a
certain amount of the angular distribution of the diffraction pattern. In our experiments
and in this simulation, we used a 2048× 2048 pixelated detector with a single pixel size of
13.5 µm. We find in general that for tolerable signal-to-noise ratio, the size of the detector
must be large enough to measure at least up to the third order of the slit interference
pattern.

The diagram of the relative error ∆R in Fig. 5.4c shows a different behaviour for
amplitude A and phase ϕ of the reconstructed signal for larger distances (>0.2m). The
relative error of the phase is much more stable to the resolution loss for higher distances
than the relative error of the amplitude. Comparing this observation to the diagram of
the cross-correlation (Fig. 5.4b), we noticed a different behaviour of amplitude (blue) and
phase (red). The distortion on the plateau of the phase cross-correlation is stronger than
for the amplitude plateau. This translates to the opposite behaviour of the relative errors
when one normalizes the material-reference cross-correlation c12 with the reference cross-
correlation c23 to get the normalized amplitude A. The reference slits are smaller than
the material slit and are, therefore, more affected by the resolution loss when increasing
the distance between CCD and sample. The phase signal, on the other hand, does not
use normalization and is, therefore, not affected by an additional noise source.
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Figure 5.5: Simulation of triple slit scattering with varying exposure times (photonflux
5× 1011 photons/s, sample-CCD distance 0.125m). a Zoomed-in (2x) scattering images
of triple slits for 15ms and 155ms exposure time plotted in logarithmic scale. b Center
slice thorough cross-correlations of the three slits. The cross-correlations are described
in the caption of Fig. 5.4. The inset in the lower left (upper right) displays a 20 times
scaled region of the left (middle) plateau. The upper (lower) panel corresponds to the
15ms (155ms) scattering pattern on the left in a. c Relative error of reconstructed phase
shift and transmission amplitude to ground truth as a function of exposure times.

5.3 Exposure Time and Random Noise

In this section, we are looking at the effects of different CCD exposure times on the
reconstructed signal. Furthermore, the effects of random noise sources (shot noise and
read out noise) will be investigated.

For the calculation of the exposure times, the photon flux of the XUV source was
set to 5× 1011 photons/s which is comparable to the experiments with the synchrotron
radiation. In general, the exposure time influences the maximum measurable scattering
angle and consequently the shape of the plateaus of the cross-corrections.

Figure 5.5c shows the relative error of the normalized amplitude and the relative error
of the phase of the cross-correlation c12. In Fig. 5.5a, two selected scattering patterns
(for 15ms and 155ms) are shown, with the corresponding cross-correlation displayed in
Fig. 5.5b.

As is expected and can be seen see from Fig. 5.5a, shorter exposure times mean less
intensity detected at higher diffraction angles. If we examine the example of low exposure
in Fig. 5.5b (15ms), the noise on the phase plateau is stronger than on the amplitude
plateau. The noise stems from the stronger intensity cut-off5 in the scattering pattern,
increasing the areas of zero intensity around the destructive interference. The relative error
of the phase in Fig. 5.5c is less influenced by the noise on the plateau because the values
of the plateau gets averaged for the reconstruction. As in the last section, the normalized
amplitude’s relative error is more affected by the noise due to the noise contributions of
both the material-reference cross-correlation and the normalization cross-correlation.

5Only simulated photon events ≥ 1 are counted in this simulation
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Figure 5.6: Simulation of triple slit scattering with shot noise and varying exposure times.
The data points are averaged over 10 different simulations (photonflux 5× 1011 photons/s,
sample-CCD distance 0.125m). a Zoomed-in (2x) scattering images of triple slits for
1ms and 136ms exposure time plotted in logarithmic scale. b Center slice thorough
cross-correlations of the three slits. The cross-correlations are described in the caption of
Fig. 5.4. The inset in the lower left (upper right) displays a 20 times scaled region of the
left (middle) plateau. The upper (lower) panel corresponds to the 1ms (136ms) scattering
pattern on the left in a. c Relative error of reconstructed phase shift and transmission
amplitude to ground truth as function of exposure times.

For exposure times >140ms, the relative error diverges. Here, the CCD begins to
saturate. The reconstruction is very sensitive to this error. Just a few oversaturated
pixels in the center of the diffraction pattern will lead to a disturbed reconstruction. The
multiplicative function, which degenerates the true diffraction pattern into the saturated
one, will lead to a convolution with an ariy-like pattern in real space. This error can be
corrected in Fourier space through inpainting of the oversaturated areas (not shown).

For a XUV source with 5× 1011 photons/s, even an exposure time of 15ms leads to
acceptable values with only 2% relative error. During our HHG experiment, the photon
flux behind the sample was more likely to be in the order of 1× 108 photons/s (see Ch. 3.2).
An acceptable exposure time would thus be in the order of 10 s.

For the last simulation, the probability that a photon was detected was equal to one
within the intensity cut-off determined by the exposure time. Next, we are investigating
the effect of shot noise, following the Poisson distribution, on reconstructions with different
exposure times. For the shot noise simulation, the shot noise generator from [75] was used.
The relative errors in Fig. 5.6c were averaged over 10 runs each. The error bars indicate
the standard deviation of this average. As before with lower exposure times, when the
destructive interference minima were not measured smoothly, the relative error diverges.
The influence of the Poisson noise can be seen from the noise on the cross-correlation
plateaus. However, compared to the the noise-free data from Fig. 5.5, the average of the
values of the correlation plateaus is only affected slightly by the Poisson noise distribution
in the Fourier plane.

We now introduce Gaussian noise to the background to simulate the readout noise of
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Figure 5.7: Simulation of triple slit scattering with readout noise and varying expo-
sure times. The data points are averaged over 10 different simulations (photonflux
5× 1011 photons/s, sample-CCD distance 0.125m). a Zoomed-in (2x) scattering images
of triple slits for 1ms and 19ms exposure time plotted in logarithmic scale. b Center
slice thorough cross-correlations of the three slits. The cross-correlations are described
in the caption of Fig. 5.4. The inset in the lower left (upper right) displays a 20 times
scaled region of the left (middle) plateau. The upper (lower) panel corresponds to the
1ms (19ms) scattering pattern on the left in a. c Relative error of reconstructed phase
shift and transmission amplitude to ground truth as function of exposure times.

the CCD (σ = 15 counts), which is comparable to the Gaussian noise from the experiment.
The data points in Fig. 5.7c are averaged over 10 different runs. The error bars indicate
the standard deviation of this average. Even though the noise on the correlation plateaus
appears stronger than before (Fig. 5.7b), the evenly distributed Gaussian noise can be
mostly averaged out in the reconstruction. Compared to the shot noise simulation at 1ms,
the effect of the read out noise has a stronger impact on the relative error. We attribute
this to the disturbance of the destructive interference minima by the read-out noise.
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CHAPTER 6

Time-Resolved Measurements

This section presents the first time-resolved measurements using the triple slit interfero-
metric method. In Ch. 4, we demonstrated the capability of our method to simultaneously
measure spectroscopic self-normalized amplitude and phase changes of Co, Fe and Gd. In
this chapter, we will apply this capability to study the dynamics of the real and imaginary
part of the magneto-optical index of Fe at the M -edge after excitation with a femtosecond
800 nm-laser.

Previous techniques aiming to investigate the temporal dynamics of the magnetic
circular dichroism include femtosecond slicing at the synchrotron facility BESSY II [76] and
femtosecond IR-pump/XUV-probe experiments on HHG sources [3, 77]. Both techniques
access only the absorptive part of the refractive index. To our knowledge, our triple slit
method is the first to simultaneously access both the dispersive and the absorptive part
of the refractive index with temporal resolution in the femtosecond regime.

We performed our study with XUV light from a HHG source which offered a time
resolution of approximately 50 fs. The photon energy range of the HHG source from
40 to 72 eV covered the M -edges from the 3d transition-metals. The properties of the
generation of the higher harmonics, the experimental setup, and the sample geometry are
described in more detail in Ch. 3.2 and in [46].

Figure 6.1 shows a schematic overview of the pump-probe experiment. A spherical
multilayer mirror focussed the circularly polarized XUV-light from the HHG source onto
the Gd28Fe72 sample. The mirror had a maximum reflectivity at 54.3 eV to select the 35th

harmonic. To minimize astigmatism, the angle between incoming and outgoing XUV was
made as small as possible. The sample was magnetized out-of-pane and was mounted
in normal incidence transmission geometry. The electromagnet was able to saturate the
sample in both directions with up to maximal 250mT. The CCD was placed 75mm
behind the sample. The IR-pump was reflected by a flat mirror onto the sample (angle
IR-pump/XUV-probe: 9°). A 200 nm Al-filter covered the CCD from stray IR-light.

In the next section, we show a small-angle scattering experiment demonstrating
the capability of our setup to measure time resolved demagnetization in a pump-probe
configuration. Afterwards, we show the dynamics of the magnetic asymmetry as measured
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Figure 6.1: Triple slit transmission geometry for IR-pump and XUV-probe experiment.
The Gd28Fe72 sample was magnetized out-of-plane. The electromagnet was able to saturate
the sample magnetization in both directions with maximal 250mT. Circularly polarized
HHG light was used. The spherical mirror was selective for the harmonic at 54.3 eV and
focused the XUV beam to the sample plane. The CCD was placed 75mm behind the
sample. A 200 nm Al-filter covered the CCD to block the stray light from the IR-pump
beam.
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Figure 6.2: Small-angle resonant scattering from a [Co(8)/Pt(8)]×16 multilayer. The
domains were approximately horizontally aligned. The photons were circularly polarized
and had an energy of 60.5 eV. The center part containing the shadow of the beamstop wire
and parts of the direct beam is masked out by a circular disk. The first-order diffraction
of the magnetic stripe domains is marked by red arrows.

by our triple slit experiment, followed by a discussion of the results.

6.1 Time-Resolved Small-Angle Scattering of Mag-

netic Domains

Before we present the time-resolved triple-slit data, we tested the performance of our
experimental pump-probe setup by measuring the IR-laser-induced ultrafast demagne-
tization of a [Co(8)/Pt(8)]×16 multilayer in a small-angle scattering experiment. This
experiment itself is similar to the one published in [78]. The multilayer was deposited
on a silicon nitride membrane by magnetron sputtering. The multilayer exhibits a per-
pendicular magnetic anisotropy which supports the formation of a nanoscale domain
pattern of alternating magnetization direction. With a photon energy close to the Co
M -edge resonance, the photoabsorbtion on the domains leads to a ring-like intensity
distribution on the CCD. To maximize the SNR on the CCD, we prepared the domain
structure into aligned stripes by an in-plane demagnetization routine. The diffraction
of the aligned stripe domains will be concentrated into two first-order diffraction peaks.
The intensity I(q) of those areas is proportional to |(FM)(q)|2 with the operator of the
Fourier transformation F , the function of the magnetization of the sample M , and the
reciprocal vector q. The distance of the diffraction peaks from the center is reciprocal
connected to the spacing of the domain lattice.

For scattering in resonance with the Co M -edge, we used a spherical multilayer mirror
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with reflection maxima at 60.80 eV. We blocked the intense zero order with a narrow
strip of aluminium to prevent CCD saturation. The beamblock was mounted and moved
vertically by a stepper motor for alignment. Beyond these changes, the experimental
setup did not need any modification compared to the triple slit setup. Specifically, it has
the same time resolution of approximately 50 fs.

Fig. 6.2 shows a typical background corrected diffraction pattern before time zero.
The slight unevenness in the background originates from intensity fluctuations from the
IR pump laser, which were not completely filtered by the Al-filter in front of the CCD.
From the position of the first-order diffraction, a domain periodicity of 180 nm can be
derived.

We integrated the intensity in the first diffraction order radial and azimuthal for every
time delay of the pump beam. While the position of the diffraction peaks displays no
measurable change, indicating a recovery of the domain pattern with the same spatial
statistical properties, the intensity decreased noticeable during the first 60 fs after the IR
excitation (Fig. 6.3), indicating a transient reduction of the domain magnetization.

Figure 6.3 shows the ultrafast time evolution of the normalized magnetization M/M0

for three pump fluences (4.0mJ cm−2, 7.5mJ cm−2 and 9.9mJ cm−2). The magnetization
M was calculated by the square root of the integrated intensity values and normalized
to the unpumped magnetization M0 during negative delay times. The data points were
fitted by a double exponential fit:

M

M0

= G(t) ∗H(t)

[︃
A0t−

(τ2A1 − τ1A2)e
−t/τ1 + τ2(A2 − A1)e

−t/τ2

τ2 − τ1

]︃
(6.1)

with a Gaussian G(t) to account for finite temporal resolution, the Heaviside step func-
tion H(t), the amplitudes of the exponentials An, and the time constants for de- and
remagnetization τ1 and τ2. For every measured fluence, the characteristic demagnetization
time τ1 is in the range of 64 fs to 74 fs. For the highest fluence (9.9mJ cm−2), the relative
magnetization decreases to 34%. The ultra-fast demagnetization is followed by a slower
recovery.

Table 6.1 shows the characteristic fit parameters for every fluences. The time constant
for 4.0mJ cm−2 was averaged over four measurements. Both other fluences were only
measured one time, which explains the larger error. It should be noted that the SNR of
this measurement depends on the number of photons recorded on the CCD. For lower
magnetic scattering contrast, e.g., for stronger demagnetisation (9.9mJ cm−2, > 0.15 ps),
fewer photons are scattered and, therefore, the SNR becomes unfavourable.

The Co demagnetization times found in this experiment are shorter compared to the
dynamic HHG scattering experiment published in [78]. This can be explained by the
different sample compositions. In [78], a Co/Pd multilayer was used. In our sample,
the multilayer consists of Co/Pt. The enhancement of the demagnetization by Pt was
observed and explained in recent literature by higher spin-orbit coupling [79]. With this
experiment, we demonstrated the general capability of our setup to successfully perform
pump-probe measurements of demagnetization dynamics with a temporal resolution of
approximately 50 fs.
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Figure 6.3: Fluence series of the normalized ultra-fast demagnetization of [Co(8)/Pt(8)]×16

multilayer after fs-IR laser excitation derived from the small-angle scattering data. The
inset shows the remagnetization for longer ps-range. The solid lines represent the best
two-exponential fits through the data. The fit parameters are shown in Tab. 6.1.

Table 6.1: Characteristic fit parameters for ultra-fast demagnetization caused by different
pump fluences. τ1 and τ2 are fitting parameters of the double exponential fit and are
connected to the demagnetization and remagnetization times.

Fluence (mJ cm−2) min. rel. MCD (%) τ1 (fs) τ2 (ps)

4.0 0.83 64± 5 0.76± 0.07
7.6 0.65 74± 10 1.72± 0.48
9.9 0.34 69± 10 4.26± 1.49
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Figure 6.4: Cutaway drawing for the triple slit geometry used in the HHG pump-probe
experiment. To account for the lower intensity of the HHG source compared to the
synchrotron source used in the static measurements, the slits height was increased to
10 µm. Compared to the triple-slit geometry from the static measurement (Fig. 4.2), the
material slit position was switched with one reference slit to allow better performance in
combination with the longitudinal coherence of the HHG source. The sample was seeded
and capped with 3 nm Ta (not shown) and masked with 1 µm Au.

6.2 Sample Layout

The triple slit layout for the HHG pump-probe experiment is shown schematically in
Fig. 6.4. We used a 40 nm Ta(3)/Gd28Fe72(40)/Ta(3) layer for the pump-probe experiment.
We adjusted the geometry of the slits to account for the different beam properties compared
to the synchrotron experiments. Compared to the synchrotron experiment, the photon
flux at the HHG source is lower by approximately three orders of magnitude (s. Ch. 3.2).
It is, therefore, important to get as much interaction as possible from the cross section of
the HHG radiation with the slits to achieve reasonable CCD exposure times. This goal
has to be balanced with the necessary approximation that the incident wave has to be a
plane wave over the sample area. Beam vibrations and long term beam drift also make
the use of a small focus on the slits less beneficial. These instabilities can be countered
by a larger focal beam spot on the sample. We found that a slit height of 10 µm and a
beam diameter of 80 µm are a good compromise. The beam size ensures that small spatial
vibrations orthogonal to the slit’s height have reduced impact on the transmission through
the slits, while the slit height optimizes the transmitted signal. The long term beam drift,
on the other hand, has to be corrected after approximately every one hour of measuring,
by aligning the sample back into the beam.

Another challenge of the HHG experiment is the inhomogeneity of the XUV beam
profile. Imperfections in the optics and the non-linear HHG process add up to random
fluctuations of the curvature of the XUV beam profile. Every phase difference greater than
zero in the incident beam at the position of the individual slits cannot be distinguished
from a phase shift caused by an interaction with the sample. This problem only becomes
relevant for the XMCD difference measurement, when the vibrational and drift instabilities
occur on faster time scales than two exposure times. To manage this problem, we, first,
aimed at fast exposure times in expanse for higher SNR and, second, rearranged the
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position of the slits. Specifically, we exchanged one vacuum slit with the material slit from
the previous slit geometry and reduced their distance. The closer the material slit is to the
neighbouring vacuum slit, the lower the impact of a incident wave deviation from a plane
wave is on the data analysis. In the case of this geometry, the auto-correlation and the
cross-correlation between the right vacuum slit and the material slit are not completely
separated. For the reconstruction, we only used the separated part. Functioning as a
control experiment, we analysed the reconstruction from the vacuum slit, which is further
away from the material slit.

To further optimize the transmission through the sample, we changed the thickness of
the Si3N4 membrane from 30 nm to 10 nm, which increased the transmission through this
layer from approximately 50% to 80%. Additionally, we increased the Gd28Fe72 layer to
40 nm to enhance the magnetic signal. Another benefit of the Gd28Fe72 alloy was the fact
that it can be driven into full saturation with an external field of 50mT (see Ch. 3.1.4),
which reduced the heat load from the electro-magnet in the vicinity of the sample.

6.3 Pump-Probe Measurement on the Fe M-Edge

This section presents the first time-resolved triple-slit experiment. The dynamics of the
relative magnetic asymmetry of Fe after optical excitation with a 800 nm laser pulse are
derived from the difference of the relative transmission and phase shift between the two
out-of-plane magnetic saturation states of a Gd28Fe72 layer. The measured time-resolved
data are compared to simulated data. As for the pump-probe small-angle scattering
experiment from Ch. 6.1, the temporal resolution was approximately 50 fs. As probe, the
harmonic at 54.3 eV, resonant to the Fe M -edge, was selected by a spherical multilayer
from the HHG spectrum. The sample was pumped with 800 nm radiation at a fluence of
12mJ cm−2. The experimental details are described in Ch. 3.2 and Ch. 3.3.

A center section from a typical background corrected diffraction pattern from t < 0 is
shown normalized in logarithmic scale in Fig. 6.5b and compared to a simulated diffraction
pattern (Fig. 6.5a). The geometry for the simulated slits was taken from a scanning
electron microscope (SEM) image of the triple-slit sample. The magneto-optical constants
for the simulated 40 nm Gd28Fe72 sample layer were taken from the equilibrium results
from Ch. 4.3.1. We attribute the slight vertical shear distortion of the measured diffraction
pattern (Fig. 6.5b) to the invalidity of the plane wave approximation during the HHG
measurement. On the right side of the background in 6.5b, a larger area with lower
intensity is visible. The sensitivity of these pixels was reduced, caused by a previous
unwanted IR beam exposure. However, this has no major impact on the analysis of the
data, as the reduced sensitivity is small, the periodicity of the triple-slit diffraction is not
changed by it, and the area of less sensitive pixels is not changing the intensity of the
zero-order diffraction. In the background of the simulated diffraction pattern, vertical
lines are visible. These lines are an artefact of the shot noise generator only noticeable in
the logarithmic scaling.

The upper panel of Fig. 6.6 shows the relative transmission through the Gd28Fe72
slit for both out-of-plane magnetization directions, extracted from interference pattern
such as in Fig. 6.5b, recorded as a function of pump-probe delay. The corresponding
scattering pattern of an individual data point took an exposure time between 20 s and
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Figure 6.5: Comparison of a simulated (a) and measured (b) diffraction pattern produced
by the Gd28Fe72 triple-slit sample geometry at the Fe M -edge (54.3 eV) in log-scale. The
simulation used shot noise and read-out noise. We attribute the differences between a
and b to the invalidity of the plane wave approximation during the HHG measurement.

Figure 6.6: Measured transient relative transmission of Gd28Fe72 at 54.3 eV for both
magnetic saturation directions after excitation with a fs-IR laser (upper panel). The lower
panel shows the relative magnetic asymmetry and the corresponding two-exponential fit.
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Figure 6.7: Reference cross-correlation normalized to its average. The reference cross-
correlation was used for the normalization of the transmission of the Gd28Fe72 slit.

30 s depending on the performance of the HHG source at the respective time. The
transmission is normalized to the intensity transmitted through the reference slits, and,
therefore, normalized to the intensity of the incoming beam. The normalized reference
signal is shown in Fig. 6.7. The standard deviation of the average value is 0.07. This
demonstrates the importance of a reliable normalization signal when using a fluctuating
source like a HHG source, as it would otherwise be impossible to measure changes to the
demagnetization on the order of 2% or less of the signal. The slower trend visible in the
normalization signal in Fig. 6.7 originates from beam drifts over the sample area, while
the faster fluctuations arise from intensity fluctuations of the XUV probe.

We define the magnetic asymmetry a as

a =
Sp − Sm

Sp + Sm

, (6.2)

with Si: signal for the magnetic saturation direction i. This quantity expresses the
percentage of the magnetization dependent part of the transmission.

The measured magnetic asymmetry in the equilibrium state before time zero equals
2%. This is below the maximum possible magnetic asymmetry (3.4%) of the Gd28Fe72
sample, as the probe beam had not perfect circular polarization. The degree of circular
polarization produced by the phase shifter was expected to be between 70% and 80%.
Therefore, the MCD contrast is reduced by the same amount.

The relative magnetic asymmetry1 of both magnetization directions is plotted in the
lower part of Fig. 6.6. The fit of the data serves as guide to the eye.

Within the first picosecond, the relative magnetic asymmetry drops to zero and
does not recover in the observed time delay window of 10 ps within the statistical error.
Unfortunately, the SNR of our measurement is too low to make a quantitative statement
about the demagnetization time. Probe vibration, long term probe drift and intensity

1The relative magnetic asymmetry equals the magnetic asymmetry normalized to the average value of
the magnetic asymmetry before t = 0.
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fluctuations of the HHG process may not be a problem for such experiments, in which the
whole beam is transmitted through the sample and therefore the beam instabilities are
averaged out, such as the time-resolved small-angle scattering experiment presented in
Ch. 6.1. In the pump-probe experiment using the triple-slit mask, however, where the
sample apertures are much smaller than the beam, the local beam properties play a much
greater role.

Figure 6.8a shows six normalized 25ms long CCD exposures of the direct beam on the
detector position. In Fig. 6.8b, the horizontal and vertical linescans through the maximum
of each exposure are shown. It is apparent that in the time frame of this observation
the direct beam has two predominant intensity modes, which both appear at a different
spatial position. The intensity of one mode is reduced by 24% compared to the other,
while the beam position of the lower intensity mode is laterally shifted by about 10% to
the higher intensity mode. The intensity fluctuations would average out over the longer
exposures of the triple slit measurements and, beyond that, could be corrected by the
inherent reference signal of the vacuum slits. The positional fluctuations of the beam
are a more serious source of error. Short-term positional fluctuation would lower the
visibility of the interference pattern in the exposures, while long-term fluctuations would
alter the local phase and amplitude curvature of the beam. As the FWHM beam size at
the sample plane was 80 µm, positional fluctuations of up to 10% of the beam FWHM
are an important source of error for a sample with an aperture size in the order of 10 µm.
Based on the model presented in Ch. 5.1, we estimate that for the employed experimental
geometry a lateral beam shift of 8 µm between two corresponding exposures would cause
in the worst case2 an error to the relative magnetic asymmetry of the relative transmission
of up to 80%. We note that the beam fluctuations observed from Fig. 6.8 are happening
on a shorter time compared to the exposure time (fluctuation: 4 s, exposure time: 30 s).
The maximum beam shift error will only be caused when the beam is stable for one
exposure and shifts to the other mode for the next exposure. To improve this aspect of
the experiment, one could either refine the beam stabilization of the HHG process or
enhance the intensity of the HHG source to allow a larger beam profile on the sample,
where local curvature would have a lower impact on the experiment.

The reconstructed phase shifts of the XUV beam passing through the Gd28Fe72 layer
as a function of pump-probe time delay are shown for both out-of-plane magnetization
directions in the upper panel of Fig. 6.9. The lower panel of Fig. 6.9 shows the normalized
magnetic asymmetry of the phase shift. The phase reconstruction was significantly
more challenging compared to the amplitude reconstruction. Instead of our normal
reconstruction scheme, we used a correction term to deal with linear phase differences in
the incident wave front, as we will explain in the following.

In a pump-probe experiment that satisfies the plane wave approximation, the phase
difference between both vacuum slits would be constant over all time delays. In our
experiment, this phase difference was varying from exposure to exposure, indicating an
unstable phase curvature of the incident beam at the sample position. Up until now, we
only used the amplitude of the cross-correlation of both vacuum slits as normalization.

2This error depends on the change of amplitude gradient and phase gradient from the incident wave
at the position of the slits. The worst case error will occur when the maximum of the Gaussian beam
falls between the material slit and the adjacent reference slit for one exposure (lower gradient), and for
the second exposure, both slits are illuminated by one side of the Gaussian beam (higher gradient).
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Figure 6.8: Intensity changes and positional fluctuations of the HHG direct beam at the
detector plane. a Series of short CCD exposures (25ms) of the direct beam. The readout
time was 4 s. The exposure time is displayed in addition to the total time of the time
series at the top of each image. b Top (bottom) graph shows horizontal (vertical) line scan
through the maximum of each exposure from a. The numbers in the legend correspond to
the positions of the images in the time series in a.

The phase of the cross-correlation of both vacuum slits is zero for an incident plane wave
and non-zero for any deviation from a plane wave. For the case of the XUV probe beam,
the non-zero phase of the cross-correlation of both vacuum slits provide a linear phase
ramp approximation for phase curvature incident on the area of both vacuum slits.

The advantage of the geometry we introduced in this chapter is that the material
slit and one vacuum slit are close together. This leads to the fact that the linear phase
approximation between the two vacuum slits is approximately the same as between
the material slit and the vacuum slit further away (see Fig. 6.4 for overview over the
sample geometry). Thus, the corrected difference of the relative phase shifts for both
magnetization directions ∆ϕcorr was calculated by:

∆ϕcorr = ∆ϕ−∆ϕref , (6.3)

with the uncorrected phase shift difference between both saturation magnetization states
∆ϕ and, correspondingly, the difference between the relative phases of both reference slits
∆ϕref as approximation for the phase curvature. Similarly, the corrected relative phase
ϕcorr
i between material and vacuum slit for a single magnetic saturation state of the sample

was calculated by:

ϕcorr
i = ϕi − ϕref

i , (6.4)

with the uncorrected phase shift ϕi and the linear phase curvature approximation between
both reference slits ϕref

i . The index i stands for one of the two magnetization states.
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Figure 6.9: Measured transient relative phase of Gd28Fe72 at 54.3 eV for both magnetic
saturation directions after excitation with a fs-IR laser (upper panel). The lower panel
shows the relative difference of both signals. The phase shifts were corrected by a linear
phase ramp.
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The phase shifts for both magnetic saturation directions that are shown in the upper
panel of Fig. 6.9 as a function of pump delay were corrected by the linear phase ramp.
Both exhibit a steep jump of around 0.04 rad at time zero. This response of the sample
is not connected to the optically induced ultrafast demagnetization, as there is no such
behaviour visible in the relative difference between both magnetization states (lower panel
of Fig. 6.9). The changes of the phase shift happen in the first 300 fs after the IR-pump
excitation. This time delay interval has the highest density of sampling points. If plotted
with equal spacing, the phase shift shows a constant drift as a function of the exposure
time (data not shown). We attribute the constant phase shift to a drift between sample
and XUV beam, which changes the phase gradient of the incident wave and which could
not be corrected by the linear phase correction term in Eq. 6.4. Further investigation is
necessary to determine the contribution to the phase jump at time zero due to changes in
the electronic structure of the sample layer, e.g. due to heating.

In the lower panel of Fig. 6.9, the relative difference of the phase shifts for both
magnetization directions is shown. The signal is too small to gain any insight into the
temporal behaviour of the demagnetization.

To investigate why the SNR in the relative phase difference measurement is significantly
lower than in the amplitude difference, we simulated the diffraction pattern for the different
time delays (see Fig. 6.5 for comparison of the simulated and measured diffraction pattern),
based on the assumption that the change of relative transmission and phase shift is caused
by the change in magnetization induced by the IR laser pulse. The triple slit geometry
for the simulation was taken from an SEM image of the sample. We used shot noise
and read-out noise on the simulated diffraction pattern. The dynamic range of the CCD
and the CCD’s quantum efficiency were included. The magneto-optical constants for
the Gd28Fe72 sample layer were taken from the results measured in equilibrium at the
synchrotron source (Ch. 4.3.1). The simulated MCD was lowered, to account for a lower
degree of ellipticity. The simulated photon energy was 54.3 eV. The dynamics of the
magnetic contrast were taken from the fitted curve from the lower part of Fig. 6.6. We
used a plane wave as illumination of the sample.

Figure 6.10 shows the simulated dynamics of the relative transmission based on
demagnetization. The average value of the transmission is larger in the simulation than
in the experiment (compare Fig. 6.10 and Fig. 6.6). This difference is most likely caused
by a different layer height of the supporting silicon nitride membrane in the simulation
compared to the experiment, as all other sample layers were known with sufficient accuracy.
The transmission offset of the simulated sample has no effect on the difference signal.
The standard deviation of the simulated values of the relative transmission is σ = 0.17
and for the measured data σ = 0.31. The difference between the standard deviation of
the simulated data and the measured data can be used to estimate the error caused by
beam drift. As the simulation only used read-out noise and shot noise as error sources,
the standard deviation of the simulated relative transmission is fully based on both error
sources. We attribute the difference between the standard deviation of simulated and
measured data to the errors caused by beam drift.

The simulated demagnetization dynamics of the relative phase are shown in Fig. 6.11.
As for the transmission, the absolute values do not match the experiment due to a likely
different height of the non-magnetic layers in the sample, which does not affect the
magnetic contrast. The lower panel of Fig. 6.11 shows the relative difference of the relative
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Figure 6.10: Simulated transient change of the relative transmission of Gd28Fe72 at 53.4 eV
for both magnetic saturation directions (upper panel). For the simulated time dependency,
the fit to the measured data from Fig. 6.6 was used. A single simulated diffraction pattern
used for this analysis is shown in Fig. 6.5. In the lower panel, the relative magnetic
asymmetry of the simulated data is shown with its correspondent double-exponential fit.
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Figure 6.11: Simulated transient change of phase shift of Gd28Fe72 at 53.4 eV for both
magnetic saturations directions (upper panel). The lower panel shows the relative magnetic
asymmetry of both signals.

phase shifts for both magnetization states. As for the experimental data, the presence of
a dynamical process in the simulation can not be discerned due to low SNR.

Figure 6.12 shows the magneto-optical constants for Fe around the M -edge, which
we measured with our triple slit setup at the XUV-beamline UE112 at the synchrotron
source BESSYII. The energy of the 35th harmonic (54.3 eV) is marked by a vertical line.
It is apparent that while at that energy the dichroic absorptive contrast is maximal, the
dichroic dispersive contrast is close to zero. With nearly no magnetic phase contrast at
this energy, the SNR of the phase shift is expected to be low. An improvement of the
experiment presented in this chapter would be to use a different harmonic, in which both
∆β and ∆δ are sufficiently different from zero.

6.4 Discussion and Outlook

With the proof-of-principle experiment presented in this chapter, we have successfully
demonstrated that our method is capable of measuring ultra-fast magnetization dynamics
of absorption and dispersion at a HHG source. The photon energy of 54.3 eV was chosen
such that the absorptive part of the magneto-optical constant of Fe was at its maximum,
however, the dispersive part was close to zero. According to these magneto-optical
constants, we could only measure a transient signal in the absorptive part within the
measuring accuracy. We have shown by simulation that Poisson noise and readout noise
are one of the two main error sources of the experiment. In addition to Poisson noise
and readout noise, beam instabilities and beam inhomogeneities of the incident wavefront
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Figure 6.12: Magneto-optical constants for the Fe content of Gd25Fe75 at the M -edge.
The energy of the 35th harmonics is marked by a vertical line.

further reduced the SNR of our measurement. This led to the fact that we can only make
qualitative statements about the demagnetization dynamics.

In order to reduce the noise in subsequent measurements, we strongly recommend to
use a focusing optic with longer focus length than in our experiment (f = 250mm). As
we have shown in Ch. 5.1, a longer focus length leads to a larger focus size and thus to
less phase curvature. In Fig. 5.2d, we had estimated by a simulation that with our current
setup, a relative beam to sample offset of about 25 nm between measurements would
noticeable disturb the measurement. The exposure time for a scattering image was 30 s
on average. Within this time frame, beam drifts larger than 25 nm were likely to occur
(Fig. 6.8). If the ROC of the phase front were to increase by one order of magnitude, the
tolerance to relative beam displacement would improve to 50 nm to 125 nm (depending
on photon energy).

The properties of the HHG source should also be further optimized for subsequent
experiments. With better beam stabilization, beam drift would occur on longer time
scales. This would allow longer exposure times and thus increase the SNR. As we have
shown in Ch. 5.3, it is important for a robust analysis of the optical constants to measure
the scattering image at least up to the third main order. All destructive minima should
have sufficient SNR, i.e., a smooth intensity profile to minimize reconstruction artefacts.
The same effect would be achieved with a brighter source. The shorter the exposure time,
the less existing beam instabilities disturb the measurement. In the extreme case of a very
bright source, for instance a free electron laser (FEL), we are convinced3 that our method
is suitable for single-pulse measurements, making shot-to-shot fluctuations irrelevant.

We have seen that one problem of our experiment was that we could only measure
one photon energy at a time. With a simple addition to our experiment, it would be
possible to investigate the whole HHG spectrum at the same time (Fig. 6.13a). Assuming

3The total photon flux of the harmonic centred at 54.3 eV incident on the sample was 1× 108 ph s−1.
For sufficient SNR, the CCD needed to integrate the far-field diffraction pattern for approximately 30 s.
A FEL can provide a photon flux in the order of 1 × 1012 ph pulse−1 [25].
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we can focus the entire HHG spectrum on the triple-slit, an added transmission grating
behind the triple-slits could spatially separate the individual harmonics in the far field
(Fig. 6.13c and d). With such an experimental design, all harmonics can simultaneously
be investigated. In particular, this would allow to probe the M -edge response on- and
off-resonance, making full use of the maximum phase contrast as well as the amplitude
contrast.
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Figure 6.13: Simulation of a multi-color triple slit experiment. a Schematic demonstration
of the geometry. Instead of selecting one harmonic of the XUV-beam, the full spectrum
illuminates the standard triple slit. We add a grating 100 µm behind the triple slit.
In the far field, the grating spatially separates the individual harmonics according to
sinϕ = mλ/g, with ϕ being the angle between the incident and exiting wave vector,
m the order of the main maxima, and g the grating constant. b Simulated near field
wave incident on the grating. For the simulation, we used three single energies, 57.34 eV,
60.45 eV, and 63.54 eV. These energies are demonstrated in this figure by the three
different color channels red, green, and blue. The colormap displays the colors additive,
meaning for example that for the color white all three channels contribute equally. c
Magnification of the m = −1 diffraction order. The x-axis is labeled with the reciprocal
coordinate, while the y-axis shows the corresponding energy. The three energy channels
are spatially separated and the individual triple slit diffraction is clearly visible in each
case. d Full size far field diffraction pattern of the multi-color triple slit simulation. The
labels of the axis are similar as in c.
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CHAPTER 7

Summary

This thesis presents a novel interferometric method for the spectroscopic and time-resolved
investigation of the optical and magneto-optical refractive index of thin films in the soft
x-ray and XUV spectral range. Given the increasing availability of laboratory sources
and large-scale facilities providing ultra-short pulses in this photon energy range, the
application of this radiation for investigating ultrafast phenomena in condensed matter
with high specificity is largely increasing as well. As a result, a urgent demand for
spectroscopic data, in particular for the electronic resonances, was created. Still important
data of the refractive index is missing and previous experiments have often determined
the complex refractive index in separate measurements or have estimated the missing part
by a Kramers-Kronig transformation.

The wavefront splitter of our interferometer consists of a simple monolithic combination
of a double slit acting as a reference and an additional aperture containing the sample
system under investigation as a free-standing film. The interferogram measured in the
far field is evaluated by a single Fourier transformation. Via polarization-dependent
measurements, the dichroic contributions to the complex refractive index due to the
magnetization of the material can be extracted.

Compared to previous methods [5,9,10], our method determines the absorptive and
dispersive part of the refractive index within a single exposure and does not depend on
additional normalization measurements as it uses a self-normalizing approach. Due to the
simple experimental implementation of our interferometer and its low spatial requirements,
it is readily possible to realize elaborate and customized sample environments such as
the installation of an electromagnet in the direct vicinity of the sample to investigate the
magneto-optical properties. Other examples include a cryostat for temperature control
and optical or THz excitation.

Unlike other coherent methods that determine the complex refractive index [1,17], the
analysis of our data is not based on an iterative algorithm. A single numerical Fourier
transformation is sufficient to analyse the complex refractive index. In this sense, our
method is closely related to Fourier-transform holography [22,24].

We implemented our interferometric method at a synchrotron source (Ch. 4) and a

110



HHG source (Ch. 6). Spectroscopic results are presented for Gd25Co75-alloy, Gd25Fe75-
alloy, and [Co(4)Pt(7)]×20-multilayers, investigating for Co and Fe both the spectral
regions of the respective M - and L-edges and for Gd the spectral region corresponding
to the N -edge. A Kramers-Kronig transformation analysis showed the self-consistency
of our simultaneous measurement of the absorptive and dispersive part of the optical
and magneto-optical refractive index. For all of these measurements we find very good
agreement of our measurements with data from literature, demonstrating the reliability
of our method. As the only exception, we observe a deviation of our measurement from
previous experiments (Prieto et al. [61]) in the case of the magneto-optical spectrum
for the Gd N -edge (Ch. 4.2.2). In this case, we compared our data with theoretical ab
initio calculation and found a good agreement between both our data and theory. As
the sample layer thickness is a scaling parameter in our analysis of the refractive index,
we confirmed in particular the thickness of the Gd25Fe75 sample layer with transmission
electron microscopy (Ch. 4.3.1). We conclude that within the estimated error our values for
the magneto-optical indices of Gd in Gd25Fe75 and Gd25Co75 at the N -edge are accurate.

Beside the analysis of the magneto-optical index, we have determined the optical
constants for Co at the L-edge (Ch. 4.2.3). Our data showed very good agreement with
data from literature. A single measurement is sufficient to determine both the real and
imaginary part of the refractive index. Only if the influence of the substrate and potential
seed and cap layers has to be considered, a second measurement using a reference sample
is necessary. If differential information are sufficient for the experiment such as for the
investigation of the magneto-optical contributions or transient changes, this reference
measurement can be omitted.

To estimate the SNR limits of our method, we investigated the measured influence
of exposure time and data acquisition order (Ch. 4.4) and investigated the simulated
influence of different beam parameters (like partial coherence (Ch. 3.2.1) and beam
curvature, sampling, exposure time, and shot and read-out noise (Ch. 5)) on the data
analysis. The main statements from these considerations are:

1. The SNR must be sufficient to measure the destructive interference minima up to
the third main diffraction order in order not to get noticeable perturbation in the
analysis.

2. Slight undersampling of the data can be tolerated. In this case, however, the
reconstruction must be corrected because of the point spread function of the CCD
(Ch. 2.3).

3. The cross-correlations plateaus must be sampled by at least two pixels. This is
achieved by having reference slits with different sizes.

4. Since our method transmits only a small part of a wider coherent beam, this
spatial filtering is sufficient to ensure that spatial coherence is not a limitation for
reconstruction.

5. The bandwidth of the photon energy has to be also considered for the error of
refractive index’ real part and not only for the spectroscopic resolution. As an
example, a photon energy bandwidth of ≈ 0.5 eV with a central energy of 54.3 eV
leads to an error of ≈ 1% in the analysis of the phase shift of Fe in a Gd25Fe75
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sample layer. The largest photon energy bandwidth during our experiment was
0.2 eV for the HHG source and, therefore, not a concern for our experiment.

6. Shot noise and read-out noise in the scattering image are no major issues (as long
as point 1 is valid) because in the analysis the noise can be averaged out.

7. The main issues of our interferometric method are the curvature of the incident
wavefront and the temporal stability of the beam position on the sample. The wave
front curvature must be approximated by a plane wave over the size of all the slit
apertures for the measurements of the optical indices. For the magneto-optical
indices, the beam position must be stable during the exposure time of at least two
scattering images.

Another aim of this thesis was the application of our interferometric method on time-
resolved measurements. As a first step, we set up a time-resolved small-angle scattering
experiment using a high-harmonic generation source, where we measured the ultra-fast
demagnetization of Co in [Co(8)/Pt(8)]×16 at the Co M -edge for three different pump
fluences between 4.0mJ cm−2 and 9.9mJ cm−2 (Ch. 6.1). To switch from the small-
angle scattering experiment to the time-resolved interferometric experiment, no major
changes of the experimental geometry were necessary. We present a proof-of-concept
experiment for a time-resolved investigation in a pump-probe scheme (Ch. 6). Using
the high-harmonic generation source for interferometric probing, the evolution of the
magneto-optical refractive index of Fe in Gd28Fe72 at the Fe M -edge (54.3 eV) is studied
after optical excitation leading to ultrafast demagnetization. The results were compared
to a simulation to analyse the SNR of the measurement.

The main challenges of our time-resolved interferometric experiment turned out to
be the low dichroic phase signal at 54.3 eV and the positional beam instabilities. As we
discussed in Ch. 6.4, the low dicroidic phase signal can be enhanced by using a different
harmonic closer to the maximum of ∆δ. The errors caused by the beam instabilities
can be reduced by using a longer focus length for the focussing optic. This reduces
beam curvature and enhances the tolerance against orthogonal beam drift. For further
experiments, a brighter source would lead to faster exposure times. This would decrease
the impact of the slow beam drift onto the scattering image. In the extreme case of a
very bright source, for instance a free electron laser, we are convinced that our method is
suitable for single-pulse measurements of the absorptive and simultaneously the dispersive
part of the refractive indices. The photon flux of the harmonic centred at 54.3 eV incident
on the sample was 1× 108 ph s−1 (Ch. 3.2). For sufficient SNR, the CCD needed to
integrate the far-field diffraction pattern for approximately 30 s. A FEL can provide a
photon flux in the order of 1× 1012 ph pulse−1 [25]. This photon flux in combination with
single-pulse measurements would make shot-to-shot fluctuations irrelevant.
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APPENDIX A

Reconstruction Protocol of the Triple Slit Data

1. Average dark images and subtract them from the triple slit scattering patterns.

2. Correct cosmic rays in the scattering pattern.

3. Shift the center of all individual scattering patterns to the center of the array.

4. (Opt.) Use inverse gnomonic projection to correct tilted sample-detector plane.

5. Align the axis of the dominant spatial frequencies with the axis of the array, by
rotating the scattering pattern by the appropriate angle. This corrects a misalignment
between the axis of the triple slits with the detector.

6. Crop the image to exclude areas of zeros introduced to the array via the rotation
step.

7. Apply a 2D discrete Fourier transformation to the data to yield the 2D reconstruction
array of the data.

8. Use a line scan through the maxima of all 2D cross-correlations to get the 1D
reconstruction array.

9. Multiply an appropriate phase ramp to the 1D reconstruction array to correct for
subpixel misalignments of the data. The phase should be such that the image and
the twin-image of the phase cross-correlation between both reference slits become
mutually zero.

10. Average over the plateau of the cross-correlation of both reference slits to get the
normalizing factor c23. If the plateau of this cross-correlation is sampled by only
one pixel: use linear fits to the sides of the cross-correlation and their intersection
as normalizing factor c23.

11. Average over the first cross-correlation between reference slit and material slit to
get c12.
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12. Use |c12|/c23 to get the normalized transmission through the sample layer. Use
arg c12 to get the phase shift through the sample layer.
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APPENDIX B

Additional Spectra of Gd25Co75 Co/Pt and Ta

B.1 O-Edge Resonance of Ta

Figure B.1: Spectroscopic response of transmission and phase shift of
Si3N4(200 nm)/Ta(3 nm) at the Ta O-edge.

B.2 M-Edge Resonance of Gd25Co75ith KK Inversion

B.3 M-Edge Resonance of [Co(4)Pt(7)] 20
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Figure B.2: Comparison of ∆δ with the KK inversion of ∆β for Co at the M edge. The
Gd25Co75 layer was protected by a 3 nm capping layer and seeded by a 2 nm Ta layer.
The spectrum of ∆β was extended to lower photon energies by the average of the pre-edge
asymmetry to prevent discontinuity in the KK inversion integral.

Figure B.3: Spectroscopic response of transmission and phase shift of [Co(4)Pt(7)]20 at
the Co M -edge with circularly polarized light.
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Figure B.4: Spectroscopic response of the complex dichroidic part of the optical constants
of a [Co(4)Pt(7)]20 multilayer at the Co M -edge.
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