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Abstract
We discuss the singularity structure of Kahan discretizations of a class of quadratic
vector fields and provide a classification of the parameter values such that the corre-
sponding Kahan map is integrable, in particular, admits an invariant pencil of elliptic
curves.
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1 Introduction

The Kahan discretization scheme was introduced in the unpublished notes [13] as
a method applicable to any system of ordinary differential equations in R

n with a
quadratic vector field

f (x) = Q(x) + Bx + c, x ∈ R
n,

where each component of Q : Rn → R
n is a quadratic form, while B ∈ R

n×n and
c ∈ R

n. Kahan’s discretization reads as

x̃ − x
2ε

= Q(x, x̃) + 1

2
B(x + x̃) + c, (1)
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where

Q(x, x̃) = 1

2
(Q(x + x̃) − Q(x) − Q(̃x))

is the symmetric bilinear form corresponding to the quadratic form Q. Equation (1) is
linear with respect to x and therefore defines a rational map x̃ = φε(x). Since Eq. (1)
remains invariant under the interchange x ↔ x̃ with the simultaneous sign inversion
ε �→ −ε, one has the reversibility property φ−1

ε (x) = φ−ε(x). In particular, the map
φε is birational.

In this paper, we consider the class of two-dimensional quadratic differential equa-
tions

(

ẋ
ẏ

)

= �
1−γ1
1 (x, y)�1−γ2

2 (x, y)�1−γ3
3 (x, y) J∇H(x, y), (2)

where

H(x, y) = �
γ1
1 (x, y)�γ2

2 (x, y)�γ3
3 (x, y),

and

�i (x, y) = ai x + bi y

are linear forms, with ai , bi ∈ C, J = (

0 1−1 0

)

and γ1, γ2, γ3 ∈ R\{0}.
Integrability of the Kahan maps φ : C2 → C

2 was established for several cases of
parameters (γ1, γ2, γ3): If (γ1, γ2, γ3) = (1, 1, 1), then (2) is a canonical Hamiltonian
system on R

2 with homogeneous cubic Hamiltonian. For such systems, a rational
integral for the Kahan map φ was found in [4,17]. The Kahan maps for the cases
(γ1, γ2, γ3) = (1, 1, 2) and (γ1, γ2, γ3) = (1, 2, 3) were treated in [6,17,20]. In all
three cases, the level sets of the integral for both the continuous time system and the
Kahan discretization have genus 1. If (γ1, γ2, γ3) = (1, 1, 0), then (2) is a Hamiltonian
vector field onR2 with linear Poisson tensor and homogeneous quadratic Hamiltonian.
In this case, a rational integral for the Kahan map φ was found in [5]. The level sets
of the integral have genus 0.

In this paper, we study the singularity structure of the Kahan discretization as a
birational quadratic map φ : CP2 → CP

2. Based on general classification results by
Diller and Favre [9], we provide the following classification for the Kahan map φ of
(2) depending on the values of the parameters (γ1, γ2, γ3):

Theorem 1.1 Let φ : CP2 → CP
2 be the Kahan map of (2). The sequence of degrees

d(m) of iterates φm grows exponentially, so that the map φ is non-integrable, except
for the following cases:

(i) If (γ1, γ2, γ3) = (1, 1, 1), (1, 1, 2), (1, 2, 3), the sequence d(m) of degrees grows
quadratically. Themapφ admits an invariant pencil of elliptic curves. The degree
of a generic curve of the pencil is 3, 4, 6, respectively.
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1048 R. Zander

(ii) If (γ1, γ2, γ3) = (1, 1, 0) or (γ1, γ2, γ3) = (α, 1,−1), α ∈ R\Z∪{0}, the
sequence of degrees d(m) grows linearly. The map φ admits an invariant pencil
of rational curves.

(iii) If (γ1, γ2, γ3) = (n, 1,−1), n ∈ N, the sequence of degrees d(m) is bounded.

Here, (γ1, γ2, γ3) are fixed up to permutation and multiplication by λ ∈ R\{0}.
Some of the integrable cases are discussed in further detail in Sects. 4, 5, 6, 7 and 8.

2 Preliminary results

2.1 Birational maps of surfaces

Definition 2.1 Let φ be a birational map of a smooth projective surface X . The dynam-
ical degree of the map φ is defined as

λ1 = lim
m→∞‖(φm)∗‖1/m,

where (φm)∗ denote the induced pullback maps on the Picard group Pic(X).

Diller and Favre provide the following classification for birational maps with λ1 = 1:

Theorem 2.2 (Diller, Favre [9, Theorem 0.2]) Let φ : X → X be a birational map of
a smooth projective surface with λ1 = 1. Up to birational conjugacy, exactly one of
the following holds:

(i) The sequence ‖(φm)∗‖ is bounded, and φm is an automorphism isotopic to the
identity for some m.

(ii) The sequence ‖(φm)∗‖ grows linearly, and φ preserves a rational fibration. In
this case, φ cannot be conjugated to an automorphism.

(iii) The sequence ‖(φm)∗‖ grows quadratically, and φ is an automorphism preserv-
ing an elliptic fibration.

One says that φ : X → X is analytically stable (AS) if (φ∗)m = (φm)∗ on Pic(X).
This relates the dynamical degree λ1 to the spectral radius of the induced pullback
φ∗ : Pic(X) → Pic(X). Equivalently, analytic stability is characterized by the condi-
tion that there is no curve V ⊂ X such that φn(V ) ∈ I(φ) for some integer n � 0,
where I(φ) is the indeterminacy set of φ (see [9, Theorem 1.14]). Therefore, the notion
of analytic stability is closely related to singularity confinement (see [15]). Indeed, a
singularity confinement pattern for a map φ : X → X involves a curve V ⊂ X such
that φ(V ) = P is a point (so that P ∈ I(φ−1)) and φn−1(P) ∈ I(φ), so that φn(P)

is a curve again for some positive integer n ∈ N. Such a singularity confinement
pattern can be resolved by blowing up the orbit of P . Upon resolving all singularity
confinement patterns, one lifts φ to an AS map ˜φ : X ′ → X ′.

Diller and Favre showed that for any birational map φ : X → X of a smooth
projective surfacewe can construct by a finite number of successive blow-ups a surface
X ′ such that φ lifts to an analytically stable birational map ˜φ : X ′ → X ′ (see [9,
Theorem 0.1]).
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2.2 Birational quadratic maps ofCP2

As shown, e.g., in [7], every quadratic birational map φ : CP2 → CP
2 can be repre-

sented as φ = A1◦qi ◦ A2, where A1, A2 are linear projective transformations ofCP2

and qi is one of the three standard quadratic involutions:

q1 : [x, y, z] → [yz, xz, xy],
q2 : [x, y, z] → [xz, yz, x2],
q3 : [x, y, z] → [x2, xy, y2 + xz].

In these three cases, the indeterminacy set I(φ) consists of three, respectively two, one
(distinct) singularities. The last two cases correspond to a coalescence of singularities.
Therefore, the first case is the generic one.

In the present work, we only consider the first case: φ = A1◦q1 ◦ A2. In this case,
I(φ) = {B(1)

+ , B(2)
+ , B(3)

+ } consists of three distinct points. Let L(1)
− denote the line

through B(2)
+ , B(3)

+ , and similarly for permutations of the indices 1, 2, 3. (We have,

e.g., B(1)
+ = L(2)

− ∩ L(3)
− .) These lines are exceptional in the sense that they are blown

down by φ to points: φ(L(i)
− ) = B(i)

− . The inverse map is also quadratic with set of

indeterminacy points I(φ−1) = {B(1)
− , B(2)

− , B(3)
− }.

Suppose that the map admits s singularity confinement patterns, 0 � s � 3.
That means there are positive integers n1, . . . , ns ∈ N and (σ1, . . . , σs) such that
φni−1(B(i)

− ) = B(σi )+ for i = 1, . . . , s. We assume that the ni are taken to be mini-

mal and, for simplicity, we also assume that φk(B(i)
− ) �= φl(B( j)

− ) for any k, l � 0
and i �= j . As shown by Bedford and Kim [2], one can resolve the singularity con-
finement patterns by blowing up the finite sequences B(i)

− , φ(B(i)
− ), . . . , φni−1(B(i)

− ).
Those sequences are also called singular orbits. In this paper, we only encounter the
situation that the orbits of different B(i)

− are disjoint. As shown in [2], one can adjust
the procedure to the more general situation.

On the blow-up surface X , the liftedmap˜φ : X → X is AS, and is an automorphism
if and only if s = 3. The s-tuples (n1, . . . , ns), (σ1, . . . , σs) are called orbit data
associated toφ.We say that themapφ realizes the orbit data (n1, . . . , ns), (σ1, . . . , σs).

Let H ∈ Pic(X) be the pullback of the divisor class of a generic line in CP
2. Let

Ei,n ∈ Pic(X), for i � s and 0 � n � ni − 1, be the divisor class of the exceptional
divisor associated to the blow-up of the point φn(B(i)

− ). ThenH and Ei,n give a basis
for Pic(X), i.e.,

Pic(X) = ZH

3
⊕

i=1

ni−1
⊕

n=0

ZEi,n

that is orthogonal with respect to the intersection product, ( · , ·) : Pic(X)×Pic(X) →
Z, and is normalized by (H,H) = 1 and (Ei,n,Ei,n) = −1. The rank of the Picard
group is

∑

ni + 1.
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1050 R. Zander

The induced pullback ˜φ∗ : Pic(X) → Pic(X) is determined by (see Bedford, Kim
[2], and Diller [8])

H �→ 2H −
∑

j�s

E j,n j−1,

Ei,0 �→ H −
∑

j�s
σ j �=i

E j,n j−1, i � s, (3)

Ei,n �→ Ei,n−1, i � s, 1 � n � ni − 1.

The induced pushforward ˜φ∗ : Pic(X) → Pic(X) is determined by

H �→ 2H −
∑

j�s

E j,n j−1,

Ei,0 �→ H −
∑

j�s
σ j �=i

E j,n j−1, i � s, (4)

Ei,n �→ Ei,n−1, i � s, 1 � n � ni − 1.

Themaps˜φ∗, ˜φ∗ are adjoint with respect to the intersection product (see [9, Proposition
1.1]), i.e., (˜φ∗A, B) = (A, ˜φ∗B) for all A, B ∈ Pic(X).

Bedford and Kim computed the characteristic polynomial χ(λ) = det(˜φ∗ − λid)
explicitly for any given orbit data (see [2, Theorem 3.3]).

Let C(m) = (˜φ∗)m(H) ∈ Pic(X) be the class of the mth iterate of a generic line.
Set

d(m) = (C(m),H), (5)

so that d(m) is the algebraic degree of the mth iterate of the map φ. Set

μi (m + j) = (C(m),Ei, j ), i � s, 0 � j � ni − 1. (6)

The expression on the right-hand side indeed depends on i and m + j only: using that
the maps ˜φ∗, ˜φ∗ are adjoint with respect to the intersection product and the relations
(4), we find

(C(m),Ei, j ) = (C(m), ˜φ∗Ei, j−1) = (˜φ∗C(m),Ei, j−1) = (C(m + 1),Ei, j−1).

In particular, μi (m) = (C(m),Ei,0) can be interpreted as the multiplicity of B(i)
− on

the mth iterate of a generic line.
The sequence of degrees d(m) of iterates of the map φ satisfies a system of linear

recurrence relations.

Theorem 2.3 (Recurrence relations) Let φ be a birational map of CP2 with three dis-
tinct indeterminacy points, and with associated orbit data (n1, . . . , ns), (σ1, . . . , σs).

123



On the singularity structure of Kahan discretizations… 1051

The degree of iterates d(m) satisfies the system of recurrence relations

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

d(m + 1) = 2d(m) −
∑

j�s

μ j (m),

μi (m + ni ) = d(m) −
∑

j�s
j �=σi

μ j (m), i � s, (7)

with initial conditions d(0) = 1 and μi (m) = 0, for i � s and m = 0, . . . , ni − 1.

Proof With (5), (6) we find that

C(m) = d(m)H −
∑

i�s

ni−1
∑

j=0

μi (m + j)Ei, j .

With relations (3) we compute the pullback

˜φ∗C(m)

= d(m)

(

2H −
∑

i�s

Ei,ni−1

)

−
∑

i�s

( ni−1
∑

j=1

μi (m + j)Ei, j−1 + μi (m)

(

H −
∑

j�s
σ j �=i

E j,n j−1

))

.

Then we find

(˜φ∗C(m),H) = 2d(m) −
∑

j�s

μ j (m),

(˜φ∗C(m),Ei,ni−1) = d(m) −
∑

j�s
j �=σi

μ j (m), i � s,

(˜φ∗C(m),Ei, j ) = μi (m + 1 + j), i � s, 0 � j � ni − 2.

Finally, with C(m + 1) = ˜φ∗C(m), we obtain recurrence relations (7). The initial
conditions are d(0) = (H,H) = 1 and μi ( j) = (H,Ei, j ) = 0, for i � s and
0 � j � ni − 1. This proves the claim. ��

Corollary 2.4 (Generating functions) Consider the generating functions d(z), μi (z)
for the sequences from Theorem 2.3. They are rational functions which can be defined
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1052 R. Zander

as solutions of functional equations (8) with initial conditions as in Theorem 2.3.

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1

z
(d(z) − 1) = 2d(z) −

∑

j�s

μ j (z),

1

zni
μi (z) = d(z) −

∑

j�s
j �=σi

μ j (z), i � s.
(8)

3 The (�1,�2,�3)-class

The class of quadratic differential equations we want to consider is a generalization
of the two-dimensional reduced Nahm systems introduced in [11],

{

ẋ = x2 − y2,
ẏ = − 2xy,

{

ẋ = 2x2 − 12y2,
ẏ = − 6xy − 4y2,

{

ẋ1 = 2x2 − y2,
ẋ2 = − 10xy + y2.

(9)

Such systems can be explicitly integrated in terms of elliptic functions and they admit
integrals of motion given respectively by

H1(x, y) = y

3
(3x2 − y2),

H2(x, y) = y(2x + 3y)(x − y)2,

H3(x, y) = y

6
(3x − y)2(4x + y)3.

Note that the curves {Hi (x, y) = λ} are of genus 1. Systems (9) were discussed in
[11] and discretized by means of the Kahan method in [17]. The integrability of the
Kahan discretizations

{

x̃ − x = 2ε(̃xx − ỹ y),
ỹ − y = − 2ε(̃x y + x ỹ),

{

x̃ − x = ε(4x̃ x − 24ỹ y),
ỹ − y = − ε(6x̃ y + 6x ỹ + 8ỹ y),

{

x̃ − x = ε(4x̃ x − 2 ỹ y),
ỹ − y = ε(− 10x̃ y − 10x ỹ + 2 ỹ y),

was shown in [17]. Theywere studied in the context ofminimization of rational elliptic
surfaces in [3]. The following generalization of reducedNahm systemswas introduced
in [6,20].
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On the singularity structure of Kahan discretizations… 1053

We use the notation x = (x, y) ∈ C
2. Consider the two-dimensional quadratic

differential equations

ẋ = �
1−γ1
1 (x)�1−γ2

2 (x)�1−γ3
3 (x) J∇H(x),

= γ1�2(x)�3(x)J∇�1 + γ2�1(x)�3(x) J∇�2 + γ3�1(x)�2(x) J∇�3,
(10)

where

H(x) = �
γ1
1 (x)�γ2

2 (x)�γ3
3 (x), (11)

and

�i (x, y) = ai x + bi y

are linear forms, with ai , bi ∈ C, J = (

0 1−1 0

)

and γ1, γ2, γ3 ∈ R\{0}. System (10)
has the function (11) as an integral of motion and an invariant measure form


(x) = dx∧dy

�1(x)�2(x)�3(x)
. (12)

The Kahan discretization of (10) reads

x̃ − x = εγ1(�2(x)�3(̃x) + �2(̃x)�3(x)) J∇�1

+ εγ2(�1(x)�3(̃x) + �1(̃x)�3(x)) J∇�2

+ εγ3(�1(x)�2(̃x) + �1(̃x)�2(x)) J∇�3.

(13)

It was shown in [20] that the Kahan map admits (12) as invariant measure form. Now,
multiplying (13) from the left by the vectors ∇�Ti , i = 1, 2, 3, we obtain

�1(̃x) − �1(x) = εd12γ2(�1(x)�3(̃x) + �1(̃x)�3(x))

− εd31γ3(�1(x)�2(̃x) + �1(̃x)�2(x)),
(14)

�2(̃x) − �2(x) = εd23γ3(�1(x)�2(̃x) + �1(̃x)�2(x))

− εd12γ1(�2(x)�3(̃x) + �2(̃x)�3(x)),
(15)

�3(̃x) − �3(x) = εd31γ1(�2(x)�3(̃x) + �2(̃x)�3(x))

− εd23γ2(�1(x)�3(̃x) + �1(̃x)�3(x)),
(16)

where

di j = aib j − a jbi .

From equations (14) to (16) it follows that the Kahan map leaves the lines {�i (x) = 0},
i = 1, 2, 3, invariant.
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1054 R. Zander

Explicitly, the Kahan discretization of (10) as map φ+ : CP2 → CP
2 is as follows:

φ+ : [x, y, z] → [x ′, y′, z′] (17)

with

x ′ = zx + εA2(x, y), (18)

y′ = zy − εB2(x, y), (19)

z′ = z2 + zεC1(x, y) − 2ε2C2(x, y), (20)

with homogeneous polynomials of deg � 2

A2(x, y) =
∑

(i, j,k)

γi�i (x, y)(bk� j (x, y) + b j�k(x, y)),

B2(x, y) =
∑

(i, j,k)

γi�i (x, y)(ak� j (x, y) + a j�k(x, y)),

C1(x, y) =
∑

(i, j,k)

γi (dik� j (x, y) + di j�k(x, y)),

C2(x, y) =
∑

(i, j,k)

γ jγkd
2
jk�

2
i (x, y),

where
∑

(i, j,k) denotes the sum over all cyclic permutations of (i, j, k) of (1, 2, 3).

The inverse φ− : CP2 → CP
2 of the Kahan map (17) is obtained by replacing ε

with −ε.

Lemma 3.1 The following identities hold:

A2(−λbi , λai ) = − bidi j dki (γ j + γk)λ
2, (21)

B2(−λbi , λai ) = − aidi j dki (γ j + γk)λ
2, (22)

C1(−λbi , λai ) = − di j dki (2γi − γ j − γk)λ, (23)

C2(−λbi , λai ) = γi d
2
i j d

2
ki (γ j + γk)λ

2, (24)

where (i, j, k) is a cyclic permutation of (1, 2, 3).

Proof This is the result of straightforward computations. ��
In the following, we assume that d12, d23, d31 �= 0, i.e., that the lines {�i (x, y) = 0}

are pairwise distinct. Also, we consider C2 as affine part of CP2 consisting of the
points [x, y, z] ∈ CP

2 with z �= 0. We identify the point (x, y) ∈ C
2 with the point

[x, y, 1] ∈ CP
2.

Proposition 3.2 The singularities B(i)
+ , i = 1, 2, 3, of the Kahan map φ+ and B(i)

− ,
i = 1, 2, 3, of its inverse φ− are given by

B(i)
± =

[

± bi
εdi j dki

,∓ ai
εdi j dki

, γ j + γk

]

,
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On the singularity structure of Kahan discretizations… 1055

where (i, j, k) is a cyclic permutation of (1, 2, 3). Let L(i)
∓ denote the line through the

points B( j)
± , B(k)

± . Then we have

φ±(L
(i)
∓ ) = B(i)

∓ .

Proof Substituting B(i)
+ into equations (18)–(20) and B(i)

− into equations (18)–(20)
with ε replaced by −ε, and using (21)–(24) the first claim follows immediately. The
second claim is the result of a straightforward (symbolic) computation using Maple.��
The map φ+ blows down the lines L(i)

− to the points B(i)
− and blows up the points B(i)

+
to the lines L(i)

+ .

Theorem 3.3 (i) Suppose that nγi �= γ j + γk , for 0 � n < N. Then we have

φn+(B(i)
− ) =

[

− bi
εdi j dki

,
ai

εdi j dki
,− 2nγi + γ j + γk

]

, 0 � n � N , (25)

where (i, j, k) is a cyclic permutation of (1, 2, 3). In particular, we have

φ
ni−1
+ (B(i)

− ) = B(i)
+

if and only if

(ni − 1)γi = γ j + γk, (26)

for a positive integer ni ∈ N.
(ii) The only orbit data with exactly three singular orbits that can be realized is

(σ1, σ2, σ3) = (1, 2, 3) and (up to permutation)

(n1, n2, n3) = (3, 3, 3) if and only if (γ1, γ2, γ3) = λ(1, 1, 1),

(n1, n2, n3) = (4, 4, 2) if and only if (γ1, γ2, γ3) = λ(1, 1, 2),

(n1, n2, n3) = (6, 3, 2) if and only if (γ1, γ2, γ3) = λ(1, 2, 3),

for λ ∈ R\{0}.
(iii) The only orbit data with exactly two singular orbits that can be realized is

(σ1, σ2) = (1, 2) and

(n1, n2) ∈ N2 = N
2\{(3, 3),(2, 4), (4, 2), (4, 4),

(2, 3), (3, 2), (2, 6), (6, 2), (3, 6), (6, 3)}

if and only if

(γ1, γ2, γ3) = λ(n2, n1, n1n2 − n1 − n2),

for λ ∈ R\{0}.
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1056 R. Zander

(iv) The only orbit data with exactly one singular orbit that can be realized is σ1 = 1
and n1 ∈ N arbitrary.

Proof (i) We show (25) by induction on n. For n = 0 the claim is true by Proposition
3.2. In the induction step (from n < N to n+ 1) with (18)–(20) and (21)–(24) we find
that

x ′ = − 2(− nγi + γ j + γk)bi
εdi j dki

,

y′ = 2(− nγi + γ j + γk)ai
εdi j dki

,

z′ = 2(− nγi + γ j + γk)(− 2(n + 1)γi + γ j + γk).

Since nγi �= γ j + γk , we find that

φ+(φn+(B(i)
− )) =

[

− bi
εdi j dki

,
ai

εdi j dki
,− 2(n + 1)γi + γ j + γk

]

.

This proves the claim.

(ii) From conditions (26), for i = 1, 2, 3, we obtain the linear system

⎛

⎝

n1 − 1 −1 −1
−1 n2 − 1 −1
−1 −1 n3 − 1

⎞

⎠

⎛

⎝

γ1
γ2
γ3

⎞

⎠ =
⎛

⎝

0
0
0

⎞

⎠ .

This system has nontrivial solutions if and only if

1

n1
+ 1

n2
+ 1

n3
= 1. (27)

Equation (27) famously appears in the classification of tessellations of the Euclidean
plane by congruent triangles. Indeed, the triangles of such a tessellation all have interior
angles π/n1, π/n2, π/n3 satisfying (27), so that the following triples (n1, n2, n3) are
admissible:

(3, 3, 3), (4, 4, 2), (6, 3, 2).

(iii) From conditions (26), for i = 1, 2, we obtain the linear system

(

n1 − 1 −1 −1
−1 n2 − 1 −1

)

⎛

⎝

γ1
γ2
γ3

⎞

⎠ =
(

0
0

)

.

Note that we have to exclude those values (n1, n2) ∈ N
2 for which the solutions

(γ1, γ2, γ3) correspond to orbit data with three singular orbits. This yields the proof.
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(iv) From conditions (26), for i = 1, we obtain the linear equation

(

n1 − 1 −1 −1
)

⎛

⎝

γ1
γ2
γ3

⎞

⎠ = 0. (28)

This yields the proof. ��
We arrive at the following classification result (compare Theorem 1.1):

Theorem 3.4 The sequence of degrees d(m) of iterates φm+ grows exponentially, so
that the map φ+ is non-integrable, except for the following cases:

(i) If (γ1, γ2, γ3) = (1, 1, 1), (1, 1, 2), (1, 2, 3), the sequence d(m) of degrees grows
quadratically. The map φ+ admits an invariant pencil of elliptic curves. The
degree of a generic curve of the pencil is 3, 4, 6, respectively.

(ii) If (γ1, γ2, γ3) = (1, 1, 0) or (γ1, γ2, γ3) = (α, 1,−1), α ∈ R\Z ∪ {0}, the
sequence of degrees d(m) grows linearly. The map φ+ admits an invariant pencil
of rational curves.

(iii) If (γ1, γ2, γ3) = (n, 1,−1), n ∈ N, the sequence of degrees d(m) is bounded.

Here, (γ1, γ2, γ3) are fixed up to permutation and multiplication by λ ∈ R\{0}.
Proof We distinguish the number of singular orbits s = 0, 1, 2, 3 of the map φ+.
s = 3. If (γ1, γ2, γ3) = (1, 1, 1), (1, 1, 2), (1, 2, 3), the generating functions of the
sequences of degrees are given by (39) and (47), respectively. The sequences d(m)

grow quadratically. The invariant pencils of elliptic curves are given by (29), (34) and
(40), respectively. By Theorem 3.3 these are the only cases with three singular orbits.

s = 2. If (γ1, γ2, γ3) = (1, 1, 0), the sequence of degrees is given by (51). The
sequence d(m) grows linearly. The invariant pencil of rational curves is given by (48).
If (γ1, γ2, γ3) = (n, 1,−1), n ∈ N, the generating function of the sequence of degrees
is given by (54). The sequence d(m) is bounded. By Theorem 3.3 all other cases with
two singular orbits have orbit data (σ1, σ2) = (1, 2), (n1, n2) = (2 + i, 2 + j) with
i + j > 2. With [2, Theorem 3.3] and [1, Theorem 5.1] it follows that in those cases
λ1 > 1, i.e., the sequence d(m) grows exponentially.

s = 1. If (γ1, γ2, γ3) = (α, 1,−1), α ∈ R\Z∪{0}, by Theorem 3.3 and (28) we have
the orbit data σ1 = 1, n1 = 1. With Theorem 2.3 we find that the sequence d(m)

grows linearly. The claim about the existence of an invariant pencil of rational curves
follows from Theorem 2.2. With (28) we find that all other cases with one singular
orbit have orbit data σ1 = 1, n1 > 1. With [2, Theorem 3.3] and [1, Theorem 5.1] it
follows that in those cases λ1 > 1, i.e., the sequence d(m) grows exponentially.

s = 0. We have λ1 = 2. The sequence d(m) grows exponentially. ��

4 The case (�1,�2,�3) = (1, 1, 1)

By Theorem 3.3 this case corresponds to the orbit data (n1, n2, n3) = (3, 3, 3),
(σ1, σ2, σ3) = (1, 2, 3). In this case, we consider the Kahan map φ+ : C2 → C

2
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1058 R. Zander

corresponding to a quadratic vector field of the form

ẋ = J∇H(x), H(x) = �1(x)�2(x)�3(x).

The Kahan map φ+ : C2 → C
2 admits an integral of motion (see [4,18]):

˜H(x) = H(x)
Q(x)

,

where

Q(x) = 1 + 4ε2
(

(d1d3 − d22 ) x
2 + (d1d4 − d2d3) xy + (d2d4 − d23 ) y

2),

with d1 = 3a1a2a3, d2 = a1a2b3+a1a3b2+a2a3b1, d3 = a3b1b2+a2b1b3+a1b2b3,
d4 = 3b1b2b3.

The geometry of the Kahan discretization was studied in [18]. The phase space of
φ+ : C2 → C

2 is foliated by the one-parameter family (pencil) of invariant curves

Eλ = {

(x, y) ∈ C
2 : H(x, y) − λQ(x, y) = 0

}

.

We consider C2 as an affine part of CP2 consisting of the points [x, y, z] ∈ CP
2 with

z �= 0. We define the projective curves Eλ as projective completion of Eλ:

Eλ = {[x, y, z] ∈ CP
2 : H(x, y) − λzQ(x, y, z) = 0

}

, (29)

where we set

Q(x, y, z) = z2Q(x/z, y/z).

(We have H(x, y, z) = z3H(x/z, y/z) = H(x, y) since H(x, y) is homogeneous of
degree three.) The pencil has deg = 3 and contains two reducible curves

E0 = {[x, y, z] ∈ CP
2 : H(x, y) = 0}

consisting of the lines {�i (x, y) = 0}, i = 1, 2, 3, and

E∞ = {[x, y, z] ∈ CP
2 : zQ(x, y, z) = 0}

consisting of the conic {Q(x, y, z) = 0} and the line at infinity {z = 0}. All curves
Eλ pass through the set of base points which is defined as E0 ∩ E∞. According to the
Bézout theorem, there are nine base points, counted with multiplicities.

Proposition 4.1 The nine base points are given by:

• two finite base points of multiplicity 1 on each of the lines �i = 0, i = 1, 2, 3:

B(i)
± =

(

± bi
2εdi j dki

,∓ ai
2εdi j dki

)

, (30)
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Fig. 1 The curves E0, E∞, E0.01 in resp. red, blue and green for H(x, y) = H1(x, y), ε = 1 (Color figure
online)

• one base point of multiplicity 1 at infinity on each of the lines �i = 0, i = 1, 2, 3:

F (i) = [bi ,−ai , 0]. (31)

The singular orbits of the map are as follows:

L
(1)
− −→ B(1)

− −→ F (1) −→ B(1)
+ −→ L

(1)
+ ,

L
(2)
− −→ B(2)

− −→ F (2) −→ B(2)
+ −→ L

(2)
+ ,

L
(3)
− −→ B(3)

− −→ F (3) −→ B(3)
+ −→ L

(3)
+ ,

(32)

where L(i)
∓ denotes the line through the points B( j)

± , B(k)
± .

Proof The singular orbits (32) are a consequence of Proposition 3.2 and Theorem 3.3.
It can be verified by straightforward computations that the points (30)–(31) are base
points of the pencil of invariant curves Eλ. ��

4.1 Lifting themap to a surface automorphism

Weblowup the planeCP2 at the nine base points B(i)
− , F (i), B(i)

+ , i = 1, 2, 3, and denote
the corresponding exceptional divisors by Ei,0, Ei,1, Ei,2, i = 1, 2, 3. The resulting
blow-up surface is denoted by X . On this surface φ+ is lifted to an automorphism ˜φ+
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1060 R. Zander

acting on the exceptional divisors according to the scheme [compare with (32)]

˜L
(1)
− −→ E1,0 −→ E1,1 −→ E1,2 −→ ˜L

(1)
+ ,

˜L
(2)
− −→ E2,0 −→ E2,1 −→ E2,2 −→ ˜L

(2)
+ ,

˜L
(3)
− −→ E3,0 −→ E3,1 −→ E3,2 −→ ˜L

(3)
+ ,

where ˜L
(i)
± denotes the proper transform of the line L(i)

± .
We compute the induced pullbackmap on the Picard group˜φ∗+ : Pic(X) → Pic(X).

LetH ∈ Pic(X) be the pullback of the class of a generic line inCP2. LetEi,n ∈ Pic(X),
for i � 3 and 0 � n � 2, be the class of Ei,n . Then the Picard group is

Pic(X) = ZH

3
⊕

i=1

2
⊕

n=0

ZEi,n .

The rank of the Picard group is 10. The induced pullback ˜φ∗+ : Pic(X) → Pic(X) is
determined by (3).

With Theorem 2.3 we arrive at the system of recurrence relations for the degree
d(m):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

d(m + 1) = 2d(m) − μ1(m) − μ2(m) − μ3(m),

μ1(m + 3) = d(m) − μ2(m) − μ3(m),

μ2(m + 3) = d(m) − μ1(m) − μ3(m),

μ3(m + 3) = d(m) − μ1(m) − μ2(m),

with initial conditions d(0) = 1, μi (m) = 0, for m = 0, . . . , 2, i = 1, 2, 3. The
generating functions of the solution to this system of recurrence relations are given by

d(z) = − 2z3 + 1

(z + 1)(z − 1)3
, (33)

μi (z) = − z3

(z + 1)(z − 1)3
, i = 1, 2, 3.

The sequence d(m) grows quadratically.

5 The case (�1,�2,�3) = (1, 1, 2)

By Theorem 3.3 this case corresponds to the orbit data (n1, n2, n3) = (4, 4, 2),
(σ1, σ2, σ3) = (1, 2, 3). In this case, we consider the Kahan map φ+ : C2 → C

2

corresponding to a quadratic vector field of the form

ẋ = 1

�3(x)
J∇H(x), H(x) = �1(x)�2(x)�23(x).
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The Kahan map φ+ : C2 → C
2 admits an integral of motion (see [6,20]):

˜H(x) = H(x)
P1(x)P2(x)Q(x)

,

where

P1(x) = 1 + ε(d23�1(x) − d31�2(x)),

P2(x) = 1 − ε(d23�1(x) − d31�2(x)),

Q(x) = 1 − ε2(9d212�
2
3(x) − 4d23d31�1(x)�2(x)).

The phase space of φ+ : C2 → C
2 is foliated by the one-parameter family (pencil) of

invariant curves

Eλ = {

(x, y) ∈ C
2 : H(x, y) − λP1(x, y)P2(x, y)Q(x, y) = 0

}

.

We define the projective curves Eλ as projective completion of Eλ:

Eλ = {[x, y, z] ∈ CP
2 : H(x, y) − λP1(x, y, z)P2(x, y, z)Q(x, y, z) = 0

}

,(34)

where we set

Pi (x, y, z) = zPi (x/z, y/z), i = 1, 2, Q(x, y, z) = z2Q(x/z, y/z).

The pencil has deg = 4 and contains two reducible curves

E0 = {[x, y, z] ∈ CP
2 : H(x, y) = 0}

consisting of the lines {�i (x, y) = 0}, i = 1, 2, 3, with multiplicities 1, 1, 2, and

E∞ = {[x, y, z] ∈ CP
2 : P1(x, y, z)P2(x, y, z)Q(x, y, z) = 0

}

consisting of the two lines {Pi (x, y, z) = 0}, i = 1, 2, and the conic {Q(x, y, z) = 0}.
All curves Eλ pass through the set of base points which is defined as E0 ∩ E∞.

Proposition 5.1 The ten (distinct) base points are given by:

• four base points of multiplicity 1 on each of the lines �i = 0, i = 1, 2:

B(i)
± =

(

± bi
3εdi j dki

,∓ ai
3εdi j dki

)

, (35)

C (i)
± =

(

± bi
εdi j dki

,∓ ai
εdi j dki

)

, (36)
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• two base points of multiplicity 2 on the line �3 = 0:

B(3)
± =

(

± b3
2εd23d31

,∓ a3
2εd23d31

)

. (37)

The singular orbits of the map are as follows:

L
(1)
− −→ B(1)

− −→ C (1)
− −→ C (1)

+ −→ B(1)
+ −→ L

(1)
+ ,

L
(2)
− −→ B(2)

− −→ C (2)
− −→ C (2)

+ −→ B(2)
+ −→ L

(2)
+ ,

L
(3)
− −→ B(3)

− −→ B(3)
+ −→ L

(3)
+ ,

(38)

where L(i)
∓ denotes the line through the points B( j)

± , B(k)
± .

Proof The singular orbits (38) are a consequence of Proposition 3.2 and Theorem 3.3.
It can be verified by straightforward computations that the points (35)–(37) are base
points of the pencil of invariant curves Eλ. ��
According to the Bézout theorem, there are 16 base points, counted withmultiplicities.
This number is obtained by

∑

P∈E0∩E∞

(mult(P))2 = 8 ·1 + 2 ·4,

where mult(P) denotes the multiplicity of the base point P .

5.1 Lifting themap to a surface automorphism

We blow up the plane CP2 at the ten base points B(i)
− , B(i)

+ , i = 1, 2, 3, and C (i)
− ,C (i)

+ ,
i = 1, 2, and denote the corresponding exceptional divisors by Ei,0, . . . , Ei,ni−1,
i = 1, 2, 3. The resulting blow-up surface is denoted by X . On this surface φ+ is lifted
to an automorphism ˜φ+ acting on the exceptional divisors according to the scheme
[compare with (38)]

˜L
(1)
− −→ E1,0 −→ E1,1 −→ E1,2 −→ E1,3 −→ ˜L

(1)
+ ,

˜L
(2)
− −→ E2,0 −→ E2,1 −→ E2,2 −→ E2,3 −→ ˜L

(2)
+ ,

˜L
(3)
− −→ E3,0 −→ E3,1 −→ ˜L

(3)
+ ,

where ˜L
(i)
± denotes the proper transform of the line L(i)

± .
We compute the induced pullbackmap on the Picard group˜φ∗+ : Pic(X) → Pic(X).

LetH ∈ Pic(X) be the pullback of the class of a generic line inCP2. LetEi,n ∈ Pic(X),
for i � 3 and 0 � n � ni − 1, be the class of Ei,n . Then the Picard group is

Pic(X) = ZH

3
⊕

i=1

ni−1
⊕

n=0

ZEi,n .
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Fig. 2 The curves E0, E∞, E0.001 in resp. red, blue and green for H(x, y) = H2(x, y), ε = 1 (Color figure
online)

The rank of the Picard group is 11. The induced pullback ˜φ∗+ : Pic(X) → Pic(X) is
determined by (3).

With Theorem 2.3 we arrive at the system of recurrence relations for the degree
d(m):

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

d(m + 1) = 2d(m) − μ1(m) − μ2(m) − μ3(m),

μ1(m + 4) = d(m) − μ2(m) − μ3(m),

μ2(m + 4) = d(m) − μ1(m) − μ3(m),

μ3(m + 2) = d(m) − μ1(m) − μ2(m),

with initial conditions d(0) = 1, μi (m) = 0, for n = 0, . . . , 3, i = 1, 2, and
μ3(m) = 0, for m = 0, 1. The generating functions of the solution to this system
of recurrence relations are given by:

d(z) = − 2z4 + z2 + 1

(z2 + z + 1)(z − 1)3
, (39)

μi (z) = − z4

(z2 + z + 1)(z − 1)3
, i = 1, 2,

μ3(z) = − z2(z2 + 1)

(z2 + z + 1)(z − 1)3
.

The sequence d(m) grows quadratically.

123



1064 R. Zander

6 The case (�1,�2,�3) = (1, 2, 3)

By Theorem 3.3 this case corresponds to the orbit data (n1, n2, n3) = (6, 3, 2),
(σ1, σ2, σ3) = (1, 2, 3). In this case, we consider the Kahan map φ+ : C2 → C

2

corresponding to a quadratic vector field of the form

ẋ = 1

�2(x)�23(x)
J∇H(x), H(x) = �1(x)�22(x)�

3
3(x).

The Kahan map φ+ : C2 → C
2 admits an integral of motion (see [6,20]):

˜H(x) = H(x)
P1(x)P2(x)P3(x)P4(x)Q(x)

,

where

P1(x) = 1 + 3εd31�2(x),

P2(x) = 1 − 3εd31�2(x),

P3(x) = 1 + ε(3d23�1(x) − d12�3(x)),

P4(x) = 1 − ε(3d23�1(x) − d12�3(x)),

Q(x) = 1 − ε2
(

9d231�
2
2(x) + 16d212�

2
3(x)

)

.

The phase space of φ+ : C2 → C
2 is foliated by the one-parameter family (pencil) of

invariant curves

Eλ =
{

(x, y) ∈ C
2 : H(x, y) − λQ(x, y)

4
∏

i=1

Pi (x, y) = 0

}

.

We define the projective curves Eλ as projective completion of Eλ:

Eλ =
{

[x, y, z] ∈ CP
2 : H(x, y) − λQ(x, y, z)

4
∏

i=1

Pi (x, y, z) = 0

}

, (40)

where we set

Pi (x, y, z) = zPi (x/z, y/z), i = 1, . . . , 4, Q(x, y, z) = z2Q(x/z, y/z).

The pencil has deg = 6 and contains two reducible curves

E0 = {[x, y, z] ∈ CP
2 : H(x, y) = 0}
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consisting of the lines {�i (x, y) = 0}, i = 1, 2, 3, with multiplicities 1, 2, 3, and

E∞ =
{

[x, y, z] ∈ CP
2 : Q(x, y, z)

4
∏

i=1

Pi (x, y, z) = 0

}

consisting of the four lines {Pi (x, y, z) = 0}, i = 1, . . . , 4, and the conic
{Q(x, y, z) = 0}. All curves Eλ pass through the set of base points which is defined
as E0 ∩ E∞.

Proposition 6.1 The eleven (distinct) base points are given by:

• six finite base points of multiplicity 1 on the line �1 = 0:

B(1)
± =

(

± b1
5εd12d31

,∓ a1
5εd12d31

)

, (41)

C (1)
± =

(

± b1
3εd12d31

,∓ a1
3εd12d31

)

, D(1)
± =

(

± b1
εd12d31

,∓ a1
εd12d31

)

, (42)

• two finite base points of multiplicity 2 on the line �2 = 0:

B(2)
± =

(

± b2
4εd12d23

,∓ a2
4εd12d23

)

, (43)

• one base point of multiplicity 2 at infinity on the line �2 = 0:

F (2) = [b2,−a2, 0], (44)

• two finite base points of multiplicity 3 on the line �3 = 0:

B(3)
± =

(

± b3
3εd23d31

,∓ a3
3εd23d31

)

. (45)

The singular orbits of the map are as follows:

L
(1)
− −→ B(1)

− −→ C (1)
− −→ D(1)

− −→ D(1)
+ −→ C (1)

+ −→ B(1)
+ −→ L

(1)
+ ,

L
(2)
− −→ B(2)

− −→ F (2) −→ B(2)
+ −→ L

(2)
+ ,

L
(3)
− −→ B(3)

− −→ B(3)
+ −→ L

(3)
+ ,

(46)

where L(i)
∓ denotes the line through the points B( j)

± , B(k)
± .

Proof The singular orbits (46) are a consequence of Proposition 3.2 and Theorem 3.3.
It can be verified by straightforward computations that the points (41)–(45) are base
points of the pencil of invariant curves Eλ. ��
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Fig. 3 The curves E0, E∞, E−0.002 in resp. red, blue and green for H(x, y) = H3(x, y), ε = 1 (Color
figure online)

According to the Bézout theorem, there are 36 base points, counted withmultiplicities.
This number is obtained by

∑

P∈E0∩E∞

(mult(P))2 = 6 ·1 + 3 ·4 + 2 ·9.

6.1 Lifting themap to a surface automorphism

We blow up the plane CP
2 at the eleven base points B(i)

− , B(i)
+ , i = 1, 2, 3, and

C (1)
− ,C (1)

+ , D(1)
− , D(1)

+ and F (2) and denote the corresponding exceptional divisors by
Ei,0, . . . , Ei,ni−1, i = 1, 2, 3. The resulting blow-up surface is denoted by X . On
this surface φ+ is lifted to an automorphism ˜φ+ acting on the exceptional divisors
according to the scheme [compare with (46)]

˜L
(1)
− −→ E1,0 −→ E1,1 −→ E1,2 −→ E1,3 −→ E1,4 −→ E1,5 −→ ˜L

(1)
+ ,

˜L
(2)
− −→ E2,0 −→ E2,1 −→ E2,2 −→ ˜L

(2)
+ ,

˜L
(3)
− −→ E3,0 −→ E3,1 −→ ˜L

(3)
+ ,

where ˜L
(i)
± denotes the proper transform of the line L(i)

± .
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We compute the induced pullbackmap on the Picard group˜φ∗+ : Pic(X) → Pic(X).
LetH ∈ Pic(X) be the pullback of the class of a generic line inCP2. LetEi,n ∈ Pic(X),
for i � 3 and 0 � n � ni − 1, be the class of Ei,n . Then the Picard group is

Pic(X) = ZH

3
⊕

i=1

ni−1
⊕

n=0

ZEi,n .

The rank of the Picard group is 12. The induced pullback ˜φ∗+ : Pic(X) → Pic(X) is
determined by (3).

With Theorem 2.3 we arrive at the system of recurrence relations for the degree
d(m):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

d(m + 1) = 2d(m) − μ1(m) − μ2(m) − μ3(m),

μ1(m + 6) = d(m) − μ2(m) − μ3(m),

μ2(m + 3) = d(m) − μ1(m) − μ3(m),

μ3(m + 2) = d(m) − μ1(m) − μ2(m),

with initial conditions d(0) = 1, μ1(m) = 0, for m = 0, . . . , 5, μ2(m) = 0, for
m = 0, 1, 2, and μ3(m) = 0, for m = 0, 1. The generating functions of the solution
to this system of recurrence relations are given by:

d(z) = − 2z6 + z4 + z3 + z2 + 1

(z4 + z3 + z2 + z + 1)(z − 1)3
, (47)

μ1(z) = − z6

(z4 + z3 + z2 + z + 1)(z − 1)3
,

μ2(z) = − z3(z + 1)(z2 − z + 1)

(z4 + z3 + z2 + z + 1)(z − 1)3
,

μ3(z) = − z2(z2 + z + 1)(z2 − z + 1)

(z4 + z3 + z2 + z + 1)(z − 1)3
.

The sequence d(m) grows quadratically.

7 The case (�1,�2,�3) = (1, 1, 0)

By Theorem 3.3 this case corresponds to the orbit data (n1, n2) = (2, 2), (σ1, σ2) =
(1, 2). In this case, we consider the Kahan map φ+ : C2 → C

2 corresponding to a
quadratic vector field of the form

ẋ = �3(x)J∇H(x), H(x) = �1(x)�2(x).
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For �1(x) = x + y, �2(x) = x − y, �3(x) = x the vector field reads

{

ẋ = − 2xy,
ẏ = − 2x2,

and the Kahan discretization (13) reads

{

x̃ − x = − 2ε(̃x y + x ỹ),
ỹ − y = − 4εx̃ x .

The Kahan map φ+ : C2 → C
2 admits an integral of motion (see [5,14]):

˜H(x) = �1(x)�2(x)
P1(x)P2(x)

,

where

P1(x) = 1 + εd12�3(x),

P2(x) = 1 − εd12�3(x).

The geometry of the Kahan discretization was studied in [19]. The phase space of
φ+ : C2 → C

2 is foliated by the one-parameter family (pencil) of invariant curves

Eλ = {

(x, y) ∈ C
2 : H(x, y) − λP1(x, y)P2(x, y) = 0

}

.

We define the projective curves Eλ as projective completion of Eλ:

Eλ = {[x, y, z] ∈ CP
2 : H(x, y) − λP1(x, y, z)P2(x, y, z) = 0

}

, (48)

where we set

Pi (x, y, z) = zPi (x/z, y/z), i = 1, 2.

The pencil has deg = 2 and contains two reducible curves

E0 = {[x, y, z] ∈ CP
2 : H(x, y) = 0}

consisting of the lines {�i (x, y) = 0}, i = 1, 2, and

E∞ = {[x, y, z] ∈ CP
2 : P1(x, y, z)P2(x, y, z) = 0

}

consisting of the two lines {Pi (x, y, z) = 0}, i = 1, 2. All curves Eλ pass through
the set of base points which is defined as E0 ∩ E∞. According to the Bézout theorem,
there are four base points, counted with multiplicities.

Proposition 7.1 The four base points are given by:
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• two base points of multiplicity 1 on each of the lines �i = 0, i = 1, 2:

B(i)
± =

(

± bi
εdi j dki

,∓ ai
εdi j dki

)

. (49)

The singular orbits of the map are as follows:

L
(1)
− −→ B(1)

− −→ B(1)
+ −→ L

(1)
+ ,

L
(2)
− −→ B(2)

− −→ B(2)
+ −→ L

(2)
+ ,

(50)

where L(i)
∓ denotes the line through the points B( j)

± , B(k)
± .

Proof The singular orbits are a consequence of Proposition 3.2 and Theorem 3.3. It
can be verified by straightforward computations that the points (49) are base points of
the pencil of invariant curves Eλ. ��

With (25) we see that the point B(3)
− is a fixed point of φ+ while B(3)

+ is a fixed point
of φ−. Therefore, they participate in patterns

L
(3)
− −→ B(3)

− �,

� B(3)
+ −→ L

(3)
+ ,

which do not qualify as singularity confinement patterns [15,21] and need not be blown
up.

7.1 Lifting themap to an analytically stable map

We blow up the plane CP
2 at the four base points B(i)

− , B(i)
+ , i = 1, 2, and denote

the corresponding exceptional divisors by Ei,0, Ei,1, i = 1, 2. The resulting blow-up
surface is denoted by X . On this surface φ+ is lifted to an analytically stable map ˜φ+
acting on the exceptional divisors according to the scheme [compare with (50)]

˜L
(1)
− −→ E1,0 −→ E1,1 −→ ˜L

(1)
+ ,

˜L
(2)
− −→ E2,0 −→ E2,1 −→ ˜L

(2)
+ ,

where ˜L
(i)
± denotes the proper transform of the line L(i)

± .
We compute the induced pullbackmap on the Picard group˜φ∗+ : Pic(X) → Pic(X).

LetH ∈ Pic(X) be the pullback of the class of a generic line inCP2. LetEi,n ∈ Pic(X),
for i = 1, 2 and n = 0, 1, be the class of Ei,n . Then the Picard group is

Pic(X) = ZH

2
⊕

i=1

1
⊕

n=0

ZEi,n .
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Fig. 4 The curves E0, E∞, E0.1 in resp. red, blue and green for �1(x, y) = x + y, �2(x, y) = x − y,
�3(x, y) = x and ε = 1 (Color figure online)

The rank of the Picard group is 5. The induced pullback ˜φ∗+ : Pic(X) → Pic(X) is
determined by (3).

With Theorem 2.3 we arrive at the system of recurrence relations for the degree
d(m):

⎧

⎨

⎩

d(m + 1) = 2d(m) − μ1(m) − μ2(m),

μ1(m + 2) = d(m) − μ2(m),

μ2(m + 2) = d(m) − μ1(m),

with initial conditions d(0) = 1, μ1(m) = 0, for m = 0, 1, and μ2(m) = 0, for
m = 0, 1. The solution to this system of recurrence relations is given by

d(m) = 2m,

μi (m) = m − 1, i = 1, 2. (51)

The sequence d(m) grows linearly.

8 The case (�1,�2,�3) = (n, 1,−1)

By Theorem 3.3 this case corresponds to the orbit data (n1, n2) = (1, n), (σ1, σ2) =
(1, 2). In this case, we consider the Kahan map φ+ : C2 → C

2 corresponding to a
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quadratic vector field of the form

ẋ = �23(x)

�n−1
1 (x)

J∇H(x), H(x) = �n1(x)�2(x)
�3(x)

.

The case n = 1 was studied in [20].
For �1(x) = x , �2(x) = x + y, �3(x) = x − y the vector field reads

{

ẋ = 2x2,
ẏ = − nx2 + ny2 + 2xy,

and the Kahan discretization (13) reads

{

x̃ − x = 4εx̃ x,
ỹ − y = 2ε(− nx̃x + n ỹy + x̃ y + x ỹ).

Proposition 8.1 The Kahan map φ+ : C2 → C
2 admits an integral of motion

˜H(x) = H(x)
P(x)

,

where

P(x) =
∏

k∈I
(εd23k�1(x) + 1)(εd23k�1(x) − 1),

for I = {1, 3, 5, . . . , n − 1} if n is even and I = {2, 4, 6, . . . , n − 1} if n is odd.

Proof Note that the following identity holds:

− d12�3(x) − d31�2(x) = d23�1(x). (52)

Then, using (52), from Eq. (14) it follows that

�1(̃x) = �1(x)
2εd23�1(x) + 1

. (53)

Moreover, multiplying (15) by �3(x) and (16) by �2(x) and then subtracting the second
equation from the first equation and again applying (52), we arrive at

�2(̃x)
�3(̃x)

= − �2(x)(εd23(n + 1)�1(x) + 1)

�3(x)(εd23(n − 1)�1(x) − 1)
.

On the other hand, from (53) it follows that

εd23k�1(̃x) ± 1 = εd23(k ± 2)�1(x) ± 1

2εd23�1(x) + 1
,
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and therefore, with hk±(x) = (εd23k�1(x) ± 1), we find

P (̃x)
P(x)

= h−1− (x)h1−(x) · · · hn−3− (x) ·h3+(x)h5+(x) · · · hn+1+ (x)

(h2+(x))n ·h1−(x)h3−(x) · · · hn−1− (x) ·h1+(x)h3+(x) · · · hn−1+ (x)

= − hn+1+ (x)

(h2+(x))n hn−1− (x)
,

if n is even, and

P (̃x)
P(x)

= h0−(x)h2−(x) · · · hn−3− (x) ·h4+(x)h6+(x) · · · hn+1+ (x)

(h2+(x))n−1 · h2−(x)h4−(x) · · · hn−1− (x) ·h2+(x)h4+(x) · · · hn−1+ (x)

= − hn+1+ (x)

(h2+(x))n hn−1− (x)
,

if n is odd. This proves the claim. ��
With Theorem 2.3 we arrive at the system of recurrence relations for the degree d(m):

⎧

⎨

⎩

d(m + 1) = 2d(m) − μ1(m) − μ2(m),

μ1(m + 1) = d(m) − μ2(m),

μ2(m + n) = d(m) − μ1(m),

with initial conditions d(0) = 1, μ1(0) = 0 and μ2(m) = 0, for m = 0, . . . , n − 1.
The generating functions of the solution to this system of recurrence relations are
given by

d(z) = 1 + 2z + · · · + nzn−1 + (n + 1)zn

1 − z
, (54)

μ1(z) = z + 2z2 + · · · + (n − 1) zn−1 + nzn

1 − z
,

μ2(z) = zn

1 − z
.

Note that the degrees of φk+ grow linearly for k = 1, . . . , n − 1 and stabilize to n + 1
for k � n. This seems to be the first example of a birational map of deg = 2 with such
behavior.
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