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Zusammenfassung

Freistrahlen (engl. Jets) mit einer komplexen Stoßzellen-Struktur treten in
vielen technischen Anwendung auf. Die meisten Überschallfreistrahlen in
der Luftfahrt sind nicht perfekt angepasst, auch nicht solche aus sorgfältig
gestalteten konvergent-divergenten Düsen. Die Anpassung an den Umge-
bungsdruck erfolgt in einer Abfolge von schiefen Verdichtungsstößen, die mit
den freien Scherschichten interagieren und Lärm erzeugen. Dabei strahlt die
Interaktion von Stoß und Scherschicht einen breitbandigen Lärm ab. Dies
kann die dünne Scherschicht am Düsenaustritt anregen und eine Rückkop-
plungsschleife bilden, die einen diskreten Ton namens Screech (dt. Kreischen)
hervorruft. Beide Komponenten sind aus strukturellen und umgebungsbe-
dingten Gesichtspunkten unerwünscht (z. B. Kabinenlärm). Screech-Töne
erzeugen Schalldruckpegel von 160 dB und darüber hinaus.

Der Fokus der vorliegenden Arbeit liegt in der Minimierung von Überschall
Jet-Lärm, insbesondere in der Minimierung von Jet-Screech. Da Screech – ein
Phänomen, das noch nicht in allen Einzelheiten verstanden ist – durch die Ge-
ometrie der Jet-Düse beeinflusst wird, soll ein poröses Material an der Düse
angebracht werden, um den Rückkopplungsmechanismus zu unterdrücken.
Dadurch wird ebenfalls der Screech-Ton unterdrückt. Es ist keineswegs klar,
wie die charakteristischen Eigenschaften des porösen Materials beschaffen
sein sollten, um den Lärm zu minimieren. Zu diesem Zweck wird ein Op-
timierungsverfahren, basierend auf adjungierten Methoden, angewandt, um
die Materialeigenschaften in Bezug auf den Lärm zu optimieren.
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Abstract

Jets with complex shock-cell structures appear in numerous technological
applications. Most supersonic jets used in aeronautics will be imperfectly
adapted in flight, even those from carefully designed convergent–divergent
nozzles. The adaption to the ambient pressure takes place in a sequence of
oblique shocks which interact with the free shear layers and produce noise.
The shock/shear-layer interaction emanates a broadband noise component.
This may trigger the thin shear layer at the nozzle exit, forming a feedback
loop which results in a discrete noise component called screech. Both compo-
nents are undesirable from structural and environmental (cabin noise) points
of view. Screech tones produce sound pressure levels of 160 dB and beyond.

The focus of the present thesis lies in the minimization of supersonic jet-
noise and in particular in the minimization of jet-screech. Since screech – a
phenomenon which is not yet understood in all details – seems to be affected
by the presence of the jet-nozzle, a porous material will be added to the nozzle
exit to suppress the feedback mechanism. Thus, to minimize the emanated
noise. It is by no means clear how the shape an characteristic properties of
the porous material should be. To this end, an optimization technique, based
on adjoint methods, will be applied to optimize the material with respect to
the emanated noise.
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1
Introduction

Supersonic jets can be found in a variety of technical applications like in
civil- or military aircraft. The most famous supersonic civil aircraft, the
Concorde, reached Mach numbers of up to 2.23, using a turbojet engine. It
is worthwhile to point out that high speed aircraft are extremely loud. The
noise pollution of urban areas close to an airport is a common problem and
responsible for night flying restrictions and other noise mitigation programs.
During take-off and climb, the loudest noise sources are not the mechanical
parts of the jet-engine but the aeroacoustic noise sources of the exhaust jet.
This is especially true for supersonic jets. During landing, airframe noise,
generated by e. g. landing gears and flaps can be the dominant noise sources.

In 1952 Lighthill came up with his famous M8 law for jet noise. This law
for the mean acoustic power is a function of the jet Mach number Mj and
the jet diameter D and reads:

⟨ρ′2⟩ ∼ ρ2
0M8

j

D2

R2
(1.1)

with the density of the ambient fluid ρ0 and the distance R from the jet
to the observer. It states that the acoustic power radiated by the jet is
proportional to the eighth power of the jet Mach number. The dependence
of the jet diameter D to the acoustic power is quadratic. This law is only
valid for small Mach numbers Mj ≪ 1. Supersonic jets scale with M3

j [see
e.g. Goldstein, 1976]. The corresponding law reads:

⟨ρ′2⟩ ∼ ρ2
0M3

j

D2

R2
(1.2)
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Figure 1.1: Overall sound power level as a function of the Mach number [adapted from
Ffowcs Williams, 1963]. ( ) theory; ( ) M8- and M3-law, respectively; ◻
subsonic flows (M < 0.8); ○ supersonic turbo jet engines; ◇ supersonic rockets.

Both laws, for the sub- and supersonic jet, could be observed in several expe-
riments. An example presenting the overall sound power level (OASWL) for
different jets, ranging from sub- to supersonic, can be found in Fig. 1.1 with
measurements adapted from Ffowcs Williams [1963]. The OASWL and the
acoustic power are linked with the logarithmic law L = 10 log10(P /P0), with
the acoustic power P as in Eq. (1.1) or (1.2) and a reference power P0 (here:
P0 = 10−13 W).

The reduction of supersonic jet noise is a matter of particular concern.
Most supersonic jets used in aeronautics will be imperfectly expanded in
flight, even those from carefully designed convergent-divergent nozzles. As a
result, shocks form in the jet core to adapt the flow to the ambient pressure
and produce additional noise sources. This thesis is concerned with the pre-
diction and reduction of supersonic jet noise. In the following introduction,
the physical phenomenon of supersonic jets and their noise sources will be
presented.

1.1 Physics of a supersonic jet

Most supersonic jets are imperfectly expanded. What this means is that the
pressure at the nozzle exit is either below or above the ambient pressure.

4
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(a) (b)

Figure 1.2: Sketch of a supersonic jet for different pressure ratios. (a) over-expanded pe < p∞;
(b) under-expanded pe > p∞.

The former jets are called over-expanded whereas the latter ones are under-
expanded. Only when the pressure at the nozzle exit is equal to the ambient
pressure the jet would be perfectly adapted, or running under design condi-
tions. This phenomenon can only be found in supersonic jets. The pressure
at the nozzle exit of a subsonic jet is always equal to the ambient pressure.

In an imperfectly expanded jet, oblique shocks adapt the flow to the am-
bient pressure forming a regular shock cell pattern. Prandtl [1904] was the
first to observe this phenomenon. At the nozzle exit of an under-expanded
jet, an expansion fan is initiated to decrease the pressure discrepancy inside
and outside the nozzle. Once the expansion fan is passing the jet core, it
is reaching the opposite side of the jet, the mixing layer. As the outside of
the jet is subsonic, neither an expansion fan nor a shock may exist. To this
end, the expansion fan is reflected at the sonic line as a compression fan back
into the jet core. This phenomenon is repeated several times downstream
the jet forming a regular pattern of shock cells (cf. Fig. 1.2(a)). For high
Mach number jets, a normal shock (Mach disk) may appear at the end of
the first shock cell and create a region of mixed sub- and supersonic flow.
Mach disks appear at fully expanded Mach numbers above Mj ⪆ 2. Within
the present numerical study, Mach numbers in the range of 1 ≤ Mj ≤ 2 will
be investigated and the influence of the Mach disk will not be considered.

During the operation of a supersonic turbofan, shock cells can be clearly
visible without complex visualization techniques. They appear as bright areas
in the jet core. The reason for this is the high temperature inside a shock cell,
especially when passing a normal shock (Mach disk). It ignites any excess fuel
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Figure 1.3: Schlieren visualization of an under-expanded jet with a convergent nozzle (Md = 1)
for two different nozzle pressure ratios [Schulze, 2011]. (a) Mj = 1.45. (b) Mj = 1.11.

present in the exhaust plume. Due to the bright shining combustion inside
the shock cells, they are also referred to as shock diamonds.

In the over-expanded case (cf. Fig. 1.2(b)) the pressure at the nozzle exit
is below the ambient pressure initiating a oblique shock at the nozzle lip.
Together with the oblique shock from the opposite side if the nozzle they
may end up in a vertical shock (Mach disk, again depending on the pressure
ratio and Mach number and will not be considered here) increasing the overall
pressure. From that point on, the shock cell structure is similar to the one of
the under-expanded jet (cf. Fig. 1.2(a)).

In Fig. 1.3 a Schlieren visualization of an under-expanded jet for two differ-
ent nozzle pressure ratios is presented for a convergent nozzle [Schulze, 2011].
Panel (a) corresponds to a fully expanded jet Mach number of Mj = 1.45 and
panel (b) to Mj = 1.11. This Schlieren technique visualizes density gradients
in the stream-wise direction and highlights the shock cell structure (knife-edge
orientation is perpendicular to the jet axis as in a variety of experimental stud-
ies, like Yu & Seiner [1983]). One can see from this experimental investigation
that the shock cell spacing is increasing with the jet Mach number.
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over-expanded ideally expanded under-expanded

Mj <Md Mj =Md Mj >Md

Dj <D Dj =D Dj >D

pe > p∞ pe = p∞ pe < p∞

Table 1.1: Features of a supersonic jet with different stages of expansion. Over-expanded,
ideally expanded and under-expanded..

Tam et al. [1985] found a generalized relation based on the theory of Prandtl
[1904] and later Pack [1950] to obtain the pressure distribution in the shock
cells. Based on that theory an approximation for the shock cell length can
be obtained:

Ls ≈ π (M2
j − 1) 1

2
Dj

σ1

(1.3)

with the fully expanded jet Mach number Mj , the fully expanded jet diameter
Dj and the first root of the zero order Bessel function σ1 ≈ 2.404826. The fully
expanded values depend on the order of expansion. For an ideally expanded
jet the fully expanded jet Mach number Mj is equal to the jet exit Mach
number. The latter one is also referred to as the jet design Mach number Md

and only dependent on the cross section ratios inside the Laval nozzle. The
same holds true for the jet diameter Dj =D with the nozzle exit diameter D.
In the under- or over-expanded jet, the values differ. Both the fully expanded
jet Mach number and diameter for an under-expanded jet are larger than the
design Mach number and jet diameter, respectively. For an over-expanded
jet it is the other way round. In Tab. 1.1 these features are summarized.
Assuming an isotropic expansion inside the nozzle, an expression for the fully
expanded values can be obtained. The fully expanded jet Mach number can
be expressed based on the ratio of the reservoir pressure pr and the ambient
pressure p∞:

Mj = ⎛⎝
2

γ − 1

⎛
⎝(

pr

p∞
)

γ−1

γ − 1
⎞
⎠
⎞
⎠

1

2

, (1.4)

with the ratio of specific heats γ (here: γ = 1.4). The reservoir pressure pr

and the pressure at the nozzle exit pe are related as follows:

pr

pe

= (1 + γ − 1
2

M2
d)

γ

γ−1

(1.5)
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Combining Eq. (1.4) and (1.5) we obtain an expression for the fully expanded
jet Mach number Mj as a function of the pressure ratio at the nozzle exit:

Mj = ⎛⎝
2

γ − 1

⎛
⎝(

pe

p∞
)

γ−1

γ (1 + γ − 1
2

M2
d) − 1

⎞
⎠
⎞
⎠

1

2

(1.6)

The fully expanded jet diameter Dj is related to the jet diameter D and was
found by Tam & Tanna [1982] based on the condition of conservation of mass
flux:

Dj =D (1 + 1
2
(γ − 1)M2

j

1 + 1
2
(γ − 1)M2

d

)
γ+1

4(γ−1) (Md

Mj

)
1

2

. (1.7)

As we can see from Eq. (1.6), the fully expanded jet Mach number depends on
the pressure ratio at the nozzle exit and the design Mach number. The latter
one only depends on the geometry inside the nozzle and is independent on
the pressure. One can distinguish between two types of nozzles: convergent
and convergent-divergent nozzles. In the convergent case, the diameter of the
nozzle is being reduced from the reservoir with the smallest diameter at the
nozzle exit. As in a Laval nozzle the Mach number at the smallest diameter is
equal to one, the design Mach number of a convergent nozzle is always sonic
(Md = 1). If we neglect shocks in the Laval nozzle, the gas is accelerated in
the divergent part of a convergent-divergent nozzle. Hence, the design Mach
number of a convergent-divergent nozzle is always supersonic (Md > 1).

The cross section area A and the Mach number M in a Laval nozzle are
related as follows:

A

A0

= M0

M

⎛
⎝

1 + γ−1

2
M2

1 + γ−1

2
M2

0

⎞
⎠

1

2

γ+1

γ−1

(1.8)

based on an arbitrarily condition M0 with the cross section A0. An exemplary
geometry of a round convergent-divergent Laval nozzle is presented in Fig. 1.4
with an inlet Mach number of M = 0.25 and a design outlet Mach number of
Md = 1.5. The shape is based on a cubic spline one for each the convergent
and the divergent part of the nozzle and chosen such that the diameter at
the outlet is equal to one.

For the same parameters as in Fig. 1.4 a planar nozzle is presented in
Fig. 1.5. One can see that the hight of the nozzle inlet is larger as for the
round nozzle, yet with the same coss-section area. Based on this geome-
try, the flow inside the round nozzle of Fig. 1.4 can be computed with a

8



1.1 Physics of a supersonic jet
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Figure 1.4: (a) Geometry of a round convergent-divergent Laval nozzle for an inlet Mach
number of M = 0.25 and a design outlet Mach number of M = 1.5. Smallest diameter at
x/D = 2 with the diameter D measured at the outlet. Convergent and subsonic part for
0 < x/D < 2; Divergent and supersonic part for 2 < x/D < 3. (b) Three-dimensional view.

one-dimensional isentropic theory. Assuming a reservoir pressure and tem-
perature of pr = 734 kPa and Tr = 300 K, respectively, the state in the nozzle
is defined. In Fig. 1.6 the flow inside the nozzle is presented. Based on the
reservoir conditions, the fully expanded Mach number is Mj = 1.96 with a
pressure ratio of pe/p∞ = 2.0. Hence, the nozzle runs in under-expanded con-
dition. The smallest diameter in the figure is marked with a dashed line.
At this point the accelerated flow reaches M = 1 which can be seen in panel(f). The Mach number is increasing monotonously from sub- to supersonic
conditions and reaches the design Mach number of Md = 1.5 at the nozzle
exit.

The reservoir temperature is chosen to be equal to the ambient temperature
(Tr = T∞ = 300 K = 26.85 ○C). Inside the nozzle the temperature is decreasing
due to the acceleration of the fluid to an exit temperature of Te ≈ 209.5 K
(= −63.65 ○C) which is below the ambient temperature (cf. panel (a)). If the
temperature of the surrounding fluid is equal to the reservoir temperature
the jet is referred to as a cold jet. Hot jets, on the other hand, exhibit a
higher reservoir temperature of the jet than the ambient fluid. As we will
see later, one of the dominant noise sources of a supersonic jet – the screech
phenomenon – is decreasing with increasing temperature [see amongst others,
Krothapalli et al., 1997, Rosfjord & Toms, 1975, Shen & Tam, 2000, Tam
et al., 1994]. To this end, we restrict to cold jets in the present investigation.

As well as the temperature, the density is monotonously decreasing to
satisfy the assumption of an ideally gas (cf. panel (b)). The local speed of
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Figure 1.5: (a) Geometry of a planar convergent-divergent Laval nozzle for an inlet Mach
number of M = 0.25 and a design outlet Mach number of M = 1.5. Smallest height at x/h = 2

with the height h measured at the outlet. Convergent and subsonic part for 0 < x/h < 2;
Divergent and supersonic part for 2 < x/h < 3. (b) Three-dimensional view.

sound is a function of the temperature (c = √γRT , with the specific gas
constant R) and hence decreasing (cf. panel (e)). In panel (d) the stream-
wise velocity is presented and, based on the Mach number and local speed of
sound, increasing monotonously inside the nozzle. For an ideally expanded
nozzle or a nozzle at design point, the gas is leaving the nozzle with the
design Mach number and keeps this level in the jet core until it interacts with
the ambient fluid and adapts its velocity. In the imperfectly expanded jet the
picture looks different. Depending on the value of expansion, the gas is either
accelerating or decelerating. An under-expanded jet is accelerating the gas
and an over-expanded jet is decelerating the gas when leaving the nozzle.

The area where the flow is not affected by the ambient fluid is referred to
as the potential core. Its length is one of the most significant differences of
sub- and supersonic jets [see Nagamatsu et al., 1969]. In subsonic jets the
length of the potential core is independent on the jet Mach number and about
as long as four times the jet diameter as assumed by Lighthill [1963] (valid
in the Mach number range of 0 < Mj < 0.7). However, the potential core of
a supersonic jet is depending on the jet Mach number and probably on the
value of expansion. For a fully expanded supersonic jet one can identify that
the higher the jet Mach number, the longer the potential core. In Fig. 1.7
an exemplary result of the potential core length is presented as a function
of the Mach number. In addition to this the length of the sonic area – the
area, where the flow in the jet is supersonic – is presented for supersonic
Mach numbers. As an example, the potential core of a Mj = 2 jet is about
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Figure 1.6: Flow inside a round convergent-divergent Laval nozzle for an inlet Mach number
of M = 0.25 and a design outlet Mach number of M = 1.5 (cf. Fig. 1.4). Smallest diameter
at x/Lx = 2/3 ( ). Pressure ratio at the outlet: p/p∞ = 2.0; corresponding to a fully
expanded Mach number of Mj = 1.96 and a reservoir temperature and pressure of Tr = 300 K

and pr = 734 kPa, respectively (cold jet, under-expanded). (a) Temperature; (b) Density; (c)
Pressure; (d) Velocity; (e) Local speed of sound; (f ) Mach number.

as long as ten jet diameters and the length of the sonic area is about as long
as twenty jet diameters. Empirical results on supersonic jets show that the
length of the potential core scales with M0.9 and the length of the sonic area
with M2 [see Nagamatsu & Horvay, 1969]. For the sub- and supersonic jet,
the potential core is surrounded by the mixing layers and finally followed by
the fully developed jet.

In the following section we will see that the value of expansion, or the dif-
ference of the fully expanded Mach number Mj and the design Mach number
Md, is particular important for the noise generation mechanism in a super-
sonic jet.

1.1.1 Three sources of noise

The noise of a supersonic jet differs in many aspects from the one of a subsonic
jet. One of the first observations is that the noise intensity – the overall sound
pressure level (OASPL) – is several orders larger than the one of a subsonic
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Figure 1.7: Length of the jet potential core ( ) and length of the supersonic area
( ) as a function of the jet Mach number. Supersonic jet assumed to be ideally
expanded. Data adapted from Nagamatsu et al. [1969].

jet. Another observation is the distinct spectrum of supersonic jet noise.
Whereas the spectrum of a subsonic jet usually contains one wide peak, the
noise spectrum of a supersonic jet can exhibit sharp peaks and broadband
components. In addition to that the noise components of a supersonic jet
show strong directional characteristics compared to its subsonic counterpart.

Two essential phenomena are responsible for these differences. The first
one are large coherent structures in the jet convecting with supersonic phase
velocity and the second one are the shock cells in the jet core. The former one
can also occur in high temperature subsonic jets [Seiner, 1984, Viswanathan,
2004] where the phase velocity is supersonic with respect to the cold ambient
fluid. The second phenomenon is restricted to purely supersonic jets. In
the following a brief overview on supersonic jet noise will be presented. An
extensive overview of supersonic jet noise can be found in Seiner [1984], Tam
[1995] and with the focus on jet screech in Raman [1998, 1999b].

The aeroacoustic noise of a supersonic imperfectly expanded jet can be
divided in three parts, turbulent mixing noise, broadband shock-associated
noise and the screech tones. The latter two noise components are only present
in imperfectly expanded jets. Turbulent mixing noise is the dominant noise
source in subsonic jets but shows some additional effects in supersonic jets,
as we will see later. In Fig. 1.8 a typical noise spectrum of an imperfectly
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Figure 1.8: Noise measurements of an under-expanded supersonic jet with convergent-divergent
nozzle. Design Mach number Md = 1.5, jet Mach number Mj = 1.672. SPL over Strouhal
number measured at different nozzle inlet angles: Θ = 30○ ( ), Θ = 90○ ( ),
Θ = 120○ ( ). [Data from Norum & Seiner, 1982a, p. 172].

expanded supersonic jet, measured by Norum & Seiner [1982a], is presented.
The supersonic jet of this specific case is under-expanded with a convergent-
divergent nozzle. Hence, the design Mach number is supersonic (Md = 1.5)
with a fully expanded jet Mach number of Mj = 1.672.

Visualized is the sound pressure level (SPL) as a function of the Strouhal
number Sr. Both, the x- and y-axis are quasi logarithmic. The Strouhal
number is applied logarithmic on the axis and the sound pressure level is a
logarithmic law:

SP L = 20 log10 (p′rms

pref

) (1.9)

with the RMS value of the acoustic pressure fluctuations p′rms and a fixed
reference value pref = 2 ⋅ 10−5 Pa. The Strouhal number is a dimensionless
frequency f , scaled with the fully expanded jet diameter Dj (cf. Eq. (1.7))
and the fully expanded jet velocity Uj =Mjcj (cf. Eq. (1.6)):

Sr = fDj

Uj

(1.10)

Note, that the definition of the Strouhal number is not unique in the liter-
ature. In some references [like Seiner, 1984] instead of using the fully ex-
panded jet diameter Dj , the nozzle exit diameter D is chosen which can alter
the Strouhal number of up to 20 % and more (depending on the expansion).
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The three curves in Fig. 1.8 correspond to three measurement angles. One
in the upstream direction of the jet (Θ = 30○), one in the normal direction
(Θ = 90○) and one in the downstream direction (Θ = 120○) with the angle Θ
measured from the upstream direction. One can observe a strong directivity
of the noise with several peaks. Each of the three noise components can be
identified in the spectrum. The most prominent feature is the peak measured
in the upstream direction (Θ = 30○) with a frequency of Sr ≈ 0.3 and an
amplitude of 117.3 dB. This peak corresponds to the screech tone. It is more
than 10 dB louder than all other peaks in the spectrum.

Listening further in the downstream direction, normal to the jet axis (Θ =
90○), the peak of the screech tone vanished and an other component, the
broadband shock-associated noise, becomes the dominant noise source. The
peak of this source is less sharp than the screech tone and of higher frequency
(Sr ≈ 0.53). It is also visible in the upstream signal and in the downstream
signal with increasing frequency when increasing the observation angle (Sr ≈
0.4 and Sr ≈ 0.95, respectively). As we will see later, this is due to a Doppler
shift of convecting sources. In addition to this, the peak amplitude of the
broadband component in the upstream and normal direction of the jet is
about 5 dB louder than in the downstream direction.

The turbulent mixing noise is of low frequency and low amplitude (20 −
30 dB less than the screech tone) and can be detected at all three observation
angles. It is characterized by a wide and flat hill with a wide peak in the
spectrum. The frequency reaches from the largest wave length up the screech
frequency and beyond. Contrary to the screech tone and the shock-associated
noise the amplitude of the mixing noise is increasing with the observation
angle.

1.1.1.1 Turbulent mixing noise

Turbulent mixing noise is caused by the large and small scale turbulent struc-
tures in the jet mixing layers. Large scale structures are the dominant sources
whereas the small scale structures induce the background noise.

Turbulent mixing noise is of low frequency and is dominant in the range
of 0.1 < Sr < 0.25 [Tam, 1995]. It is obvious from Fig. 1.8 that the dominant
part of turbulent mixing noise is radiated in the downstream direction. In
the normal and downstream direction (Θ = 90○ and Θ = 120○) the turbulent
mixing noise is up to 10 dB louder than in the upstream direction. In Fig. 1.9
the OASPL is measured as a function of the observation angle Θ for the same
jet as in Fig 1.8. A distinct increase of the noise level is visible for observation
angles larger that 125○ (gray area). The two curves in that figure illustrate a
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Figure 1.9: Noise measurements of an under-expanded supersonic jet with convergent-divergent
nozzle. Design Mach number Md = 1.5, jet Mach number Mj = 1.672 (same case as in Fig. 1.8).
Overall SPL as a function of the observation angle Θ measured from the upstream direction.
Gray area (Θ > 125 deg) dominated by turbulent mixing noise. ( ) without screech
tone (tab inside the nozzle); ( ) with screech tone (no tab). [Data from Norum &
Seiner, 1982a, p. 44f.].

case with screech and one without screech (to suppress the screech, a tab is
included inside the nozzle [see Norum & Seiner, 1982a, p. 196]). As we will
see later, the screech tone is dominant in the upstream direction and does
not affect the dominant turbulent mixing noise.

The dominant noise sources in a supersonic jet are the large scale turbulent
structures in the jet. They are convected downstream in the mixing layers of
the jet and can reach a supersonic phase velocity (here the convection veloc-
ity with respect to the ambient fluid). Once the phase velocity is supersonic,
intense noise is radiated in the form of Mach waves. The first to observe
Mach wave was Lighthill [1954] when he studied supersonically convecting
sources. Later on, the underlying theory was added by Phillips [1960] and
Ffowcs Williams [1963]. In Fig. 1.10, a sketch of the noise generation mech-
anism is presented. The large coherent turbulent structures are modeled as
a sinusoidal instability wave with the wavelength as two consecutive eddies.
They are convected with the phase velocity cp. In the ambient fluid, the
speed of sound is constant and given by c∞. Now, if cp > c∞ a Mach wave
radiation will occur with the propagation angle θ = arccos(c∞/cp). Tam et al.
[1992] found that the peak Strouhal number of the emanated Mach waves is
corresponding to the most amplified instability wave.
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Figure 1.10: Mach wave radiation of a high speed jet with supersonic phase velocity cp with
respect to the ambient speed of sound c∞. Angle of radiation Θ = arccos(c∞/cp). Mach wave:
( ); Instability wave: ( ).

1.1.1.2 Broadband shock-associated noise

Broadband shock-associated noise is caused by the interaction of downstream
propagating large scale structures and the quasi periodic shock cell structure
in the jet plume. Harper-Bourne & Fisher [1973] were the first to derive a
theory on shock-associated noise and to identify the importance of the quasi
periodic shock cells. In their model they account for the Doppler shift of the
convecting sources which is associated with the convecting Mach number Mc

and can be expressed by the factor (1−Mc cosΘ)−1. This shift is clearly visible
from Fig. 1.8 where the peaks of the broadband noise components are shifted
to higher frequencies as the observation angle is increasing. For moderate
pressure ratios the directivity of the broadband noise is found by Norum &
Seiner [1982b] to be faced mainly in the upstream direction. Only for high
pressure ratios the noise component shows omnidirectional characteristics.

Despite the decrease of the noise intensity in the downstream direction,
Seiner [1984] concludes that for observation angles Θ larger than 75○, the
broadband noise component will be the dominant noise source. In addition
to that Norum & Seiner [1982a] observe at least one secondary peak with less
than twice the peak Strouhal number SrBB. Based on their data one can
approximate the second peak at Sr2BB ≈ 1.9SrBB.

Harper-Bourne & Fisher [1973] found that the acoustic intensity scales with

I ∼ (M2
j −M2

d)2 (1.11)

up to the point where a Mach disk forms in the jet plume [see Seiner &
Norum, 1979]. Hence, the broadband shock-associated noise intensity scales
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Figure 1.11: Peak Strouhal number SrBB of broadband shock-associated noise as a function
of the observation angle Θ and the fully expanded jet Mach number Mj . Theory based on
Eq. (1.13).

with the shock strength. Based on a stochastic model, a theory to predict
the spectra of broadband shock-associated noise has been proposed by Tam
[1987]. He decomposed the quasi periodic shock cell structure into several
time independent modes and superimposed the interaction of the instabil-
ity wave with the distinct modes to a spectrum of broadband shape. In a
one-dimensional analysis one obtains for the peak Strouhal number of the
broadband shock-associated noise:

fBBDj

uj

= ucDj

Ls(1 + uc

c∞
cosΘ)uj

(1.12)

with the shock cell spacing Ls and the convective velocity of the large scale
structures uc. Under the assumption that the convective velocity is uc = 0.7uj

and the shock spacing as defined in Eq. (1.3) we get:

fBBDj

uj

= 0.54

(M2
j − 1) 1

2 (1 + 0.7Mj cosΘ) . (1.13)

Hence, the peak Strouhal number of broadband shock-associated noise is only
depending on the fully expanded jet Mach number Mj and the observation
angle Θ. Note, that this relation is only valid for Mj > 1.

In Fig. 1.11 the dependence of the peak Strouhal number SrBB on the
observation angle Θ and the fully expanded jet Mach number Mj is presented.
One can observe on the one hand that the frequency is increasing with the
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Figure 1.12: Schematic view of the interaction of shock and turbulent mixing layer in a jet with
emanated noise. Upstream traveling acoustic waves are impinging at the nozzle and exciting
new instabilities in the thin mixing layer to close a feedback loop (screech).

observation angle due to the Doppler shift and on the other hand that the
frequency range is increasing with the Mach number. Due to the latter fact,
the Strouhal number is decreasing with the Mach number in the upstream
direction but increasing with the Mach number in the downstream direction.

1.1.1.3 Screech tones

Powell [1953a,b] was the first to observe screech tones. In his pioneering work
on choked jet nozzles above the design point he observed a dominant peak in
the spectrum which he called to be a powerful whistle or screech. He identified
that this peak may dominate the spectrum over mixing noise and broadband
shock associated noise.

As an explanation to this phenomenon, he correctly suggested that an
acoustic feedback mechanism is causing these discrete tones. In Fig. 1.12,
the screech noise generation process is presented in a sketch of a supersonic
jet including the jet nozzle. Upstream propagating acoustics are impinging
on the nozzle lip and forcing instabilities in the thin mixing layer at the noz-
zle exit. These Kelvin–Helmholtz instabilities are convected downstream and
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growing rapidly in the mixing layer of the jet. Subsequently, they are inter-
acting with the repeating shock cell structure and emanating noise. As for
the broadband shock-associated noise, these acoustics are emanated mainly
in the upstream direction and transported outside the jet towards the noz-
zle. Once they reach the nozzle, new instabilities embryo and the feedback
mechanism is closed.

Experimental investigations on screech tones has been performed by a
host of researchers like Davies & Oldfield [1962a,b], Krothapalli et al. [1986],
Mclaughlin et al. [1975], Nagel et al. [1983], Norum [1983], Seiner [1984],
Seiner & Norum [1979], Tam & Tanna [1982], Westley & Woolley [1975] and
more recently by Alkislar et al. [2003], Gutmark et al. [1990], Panda [1998,
1999], Panda et al. [1997], Ponton & Seiner [1992], Powell et al. [1992], Raman
[1997a, 1999a], Yu et al. [1998], Zaman [1999]. A detailed overview over the
research in jet screech from the beginnings with Powell in 1953 can be found
in Raman [1999b]. In the experiments on screech tones, sound pressure levels
of up to 160 dB could be observed. From Fig. 1.8, one can see that the screech
tone is discrete in its frequency. This discrete and intense acoustic of 160 dB
correspond to a RMS value of the pressure fluctuation of prms = 2000 Pa. On
a surface of one square meter (like e.g. the vertical tail of an airplane) these
pressure fluctuations are responsible for RMS loads of 2000 N. It is reported
in Hay & Rose [1970], Seiner [1994], Seiner et al. [1987] that screech tones
are responsible for structural damage and fatigue failure of airplane.

Powell [1953b] also observed that screech tones are not Doppler shifted.
Independent on the observation angle, the screech frequency is constant. This
leads to the conclusion that the source of screech tones is not convected
and hence linked to the quasi periodic shock cell structure. Despite the
independence on the frequency, the screech amplitude is strongly dependent
on the observation angle. Whereas in the upstream direction, the screech
tone is the dominant noise source, it is not detectable in the downstream
direction (cf. Fig. 1.8 for Θ = 30○ and Θ = 120○).

One of the most important observations of Powell [1953b] on his research on
axisymmetric (round) and two-dimensional (rectangular) jets, is the depen-
dence of the screech Strouhal number SrS on the fully expanded jet Mach
number Mj . For rectangular jets, he observed a smooth variation of the
Strouhal number when modifying the Mach number. More precisely, the
Strouhal number decays monotonously with an increasing jet Mach number.
A typical behavior of this phenomenon is presented in Fig. 1.13(b) based on
measurements from Panda et al. [1997]. In his experiments, he used a rect-
angular jet with an aspect ratio of the nozzle of 5:1 and varied the Mach
number in the range from 1.1 ≤Mj ≤ 1.85. The Strouhal number (here based
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Figure 1.13: Screech amplitude and frequency of a rectangular jet versus the fully expanded jet
Mach number Mj [measurements from Panda et al., 1997]. Aspect ratio of the nozzle 5:1 with
the smaller dimension h. (a) Screech amplitude versus the fully expanded jet Mach number. (b)
Dominant screech frequency as a function of the jet Mach number Mj . ( ) analytical
solution of Tam [1988] with uc = 0.5uj .

on the smaller height of the rectangular nozzle h) is decreasing from 0.3 to
a value below 0.1 with a smooth behavior. One can show that the inverse
of the Strouhal number (the wavelength of the acoustic) scales nearly linear
with the Mach number [see e.g. Seiner, 1984].

The corresponding peak amplitudes of the screech tones are presented in
Fig. 1.13(a). One can see that the amplitude strongly varies with the Mach
number. One might imply that the amplitudes are increasing with the Mach
number as the M3 law postulates the OASPL. In fact the SPL is increasing
rapidly in the lower Mach number range (1.1 ≤Mj ≤ 1.2) from 135 dB to more
than 150 dB. From this point on the slope is less steep until the amplitude
reaches its maximum with 155 dB at a Mach number of about Mj = 1.5. A
further increase of the Mach number up to Mj = 1.7 leads to a slow decrease
in the amplitude back to 150 dB. After that, the amplitude drops drastically
to 130 dB at the upper limit of a Mach number of Mj = 1.8. From this picture
it is evident that the screech tone for rectangular jets is limited to the Mach
number range of 1.1 ≤Mj ≤ 1.8. Other experiments observe screech tones for
rectangular jets up to Mj = 1.9 [see Panda et al., 1997]. The reason for the
cessation of screech at high Mach numbers will be given later.

For axisymmetric (round, cylindrical) jets the data of Powell [1953b] showed
discrete jumps in the Strouhal number. Compared to the case of a rectangu-
lar jet the curve is not smooth. These jumps are now referred to as screech
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Figure 1.14: Screech amplitude and frequency of a circular jet versus the fully expanded jet
Mach number Mj for different screech modes [measurements from Panda et al., 1997]: A1 ●;
A2 ○; B ∎; C ◻; D ▼; E ▽; (a) Screech amplitude versus the fully expanded jet Mach number.
(b) Dominant screech frequency as a function of the jet Mach number Mj . Analytic solution
for mode A ( ) and analytical solution for mode C ( ) by Massey [1997].

modes (before that: screech stages). It was first reported by Davies & Old-
field [1962a,b] that the screech modes are overlapping and that they can exist
simultaneously or switch randomly from the one to the other mode. A typical
behavior of this phenomenon is presented in Fig. 1.14(b) based on measure-
ments from Panda et al. [1997]. Up to now, five different screech modes
are reported and labeled in alphabetic order: A (A1 and A2), B, C, D and
E. Mode A can de separated in two modes with a similar behavior. All five
modes can be identified in Fig. 1.14(b) including the fact that they are indeed
overlapping for some Mach number regimes. Each mode represents a typical
instability of the jet. These are: toroidal, helical or flapping whereas the lat-
ter one is a superposition of two counter-rotating helical modes. In Fig. 1.15
an attempt is made to visualize the three different instability modes. Panel(a) toroidal, panel (b) helical and panel (c) flapping as superposition of two
helical modes (gray). The y- and z-axis represent the jet exit plane (nor-
mal to the jet axis x). The t-axis represents the time or alternatively the
x-axis. One can define the black lines in the figures as the path of an acoustic
wave front. The only existing dominant mode in a two-dimensional jet is the
flapping mode whereas it is not caused by helical modes.

During screech, the jet undergoes strong oscillations, based on the three
instabilities. Mode A is known to be toroidal, mode B is flapping, mode
C is helical, mode D is flapping and mode E is unknown. An exhaustive
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Figure 1.15: Instability modes in a jet (acoustic modes). y -z -plane normal to the jet axis. t-
axis: time (or x-axis). (a) toroidal (axisymmetric) mode (A-mode; A1: unstable, A2: stable);
(b) helical mode (C-mode: stable); (c) flapping mode (superposition of two counter-rotating
helical modes (gray)) (B, D-mode, B: unstable, D: unstable), flapping plane: z -t. [see Merle,
1956, Powell et al., 1992, for more information about the stability of the seperate modes].

description of the screech modes A-D can be found in Powell et al. [1992].
The first to observe the additional E mode was Panda et al. [1997]. Further
on Powell et al. [1992] summarizes that mode A1 is unstable and A2 is stable.
Mode B is very unstable, mode C on the other hand very stable and mode
D again very unstable and not always visible. The same holds true for mode
E. A similar result could be found by Yu & Seiner [1983] as they observe
that the helical mode is more stable than the toroidal mode at least for Mach
numbers in the range of 1.25 <Mj < 2.24. Westley & Woolley [1975] mention
that the helical mode rotates with the same frequency as the corresponding
screech tone. The same holds true for the toroidal and flapping mode.

Mode A (A1 and A2), the toroidal (axisymmetric) mode, only exists for
the lower Mach number range (1.1 ≤ Mj ≤ 1.25) whereas the unstable mode
A1 exists only in the lower bound of that interval. In a small region in the
middle of the Mach number interval the modes are overlapping and may
exist simultaneously or switch randomly back and forth. In such a case, the
jet would emanate two screech tones with similar amplitude but two sharp
frequencies. One with a Strouhal number of about Sr = 0.5 corresponding to
mode A1 and one with a Strouhal number of about Sr = 0.6 corresponding
to mode A2.

Mode B (flapping) exists for higher Mach number as mode A in the range
of 1.17 ≤Mj ≤ 1.5 with a corresponding Strouhal number range from 0.25 ≤
Sr ≤ 0.4. This mode overlaps the stable mode C which exists in the Mach
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number range from 1.3 ≤Mj ≤ 1.6. Mode C is of higher frequency as mode B
and exists without a neighboring mode in the small range from 1.5 ≤Mj ≤ 1.6.
What follows is mode D and E up to Mach numbers of Mj = 1.9. They do
not overlap each other which might imply that they are of similar structure.

In Fig. 1.14(a) the corresponding amplitudes of the screech tones are pre-
sented. One can observe that on the one hand the amplitudes vary with
the jet Mach number, similar as for the rectangular jet, and that each mode
exhibits different amplitudes. Modes A1 and A2 are comparable small in
their amplitude. Sound pressure levels of 140 - 150 dB could be measured. A
higher SPL can be gained for mode B with a peak value of 160 dB. This is
followed by mode C with the highest amplitude and a peak value of 162 dB.
It is interesting to note that in the overlapping area of mode B and C, the
amplitude of mode B drops to a value of about 132 dB which is a difference
of 30 dB. Finally, mode D and E exhibit less acoustic energy than the latter
two ones at which mode D drops rapidly from 155 dB down to 133 dB and
the SPL of mode E is around 145 dB.

Despite the dominant peak values of the screech tone of one individual
mode, additional subharmonics of that specific mode can exist. The am-
plitude of these modes is usually smaller than the one of the fundamental
frequency. A detailed description of additional subharmonics can be found
in Powell et al. [1992].

For a numerical experiment, mode instabilities and the so related randomly
back and forth switching of the individual states is extremely expensive. To
capture the separated modes for a statistically converged result, the exper-
iment needs to be simulated for a long time. To this end, we will focus in
our axisymmetric jet computations on the helical mode C as it is very sta-
ble. Furthermore we avoid an overlapping of other unstable modes. Thus,
the remaining Mach number range is 1.5 ≤ Mj ≤ 1.6. The benefit of this
Mach number range is also that the corresponding screech amplitude is very
powerful (in the order of 160 dB). Hence, a Mach number in the middle of
Mj = 1.55 will be used for axisymmetric (round) jet noise simulations. For
two-dimensional (rectangular) jets only one stable mode does exist [Note,
that Gutmark et al., 1990, observed a symmetric mode for rectangular jets
for Mach numbers slightly above chokeing (1 ≤Mj ≤ 1.15) which we will not
consider here]. Hence, the Mach number can be chosen arbitrarily. To vali-
date the present numerical method, a Mach number range of 1 ≤Mj ≤ 2 will
be investigated for the planar jet.

As we have seen in Fig. 1.13(b) and 1.14(b) the screech frequency, both for
the axisymmetric and rectangular jet, depends on the fully expanded Mach
number Mj . In fact, the screech frequency is depending on the shock cell
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Figure 1.16: Sketch of the mechanism involved in predicting the screech frequency. Ls : shock
cell spacing; c∞: ambient speed of sound; uc : convection velocity of the large scale structures
(eddies).

spacing which is also a function of the jet Mach number (cf. Eq. (1.3)). The
screech frequency can be approximated as the sum of the times to transport
a large coherent structure from one shock cell to the next one plus the time
an acoustic wave needs for the same distance. In Fig. 1.16 a sketch of the
the mechanism involved in predicting the screech frequency is presented with
the shock cell spacing Ls, the ambient speed of sound c∞ and the convection
velocity of the large scale structures uc. With this assumption, the screech
frequency can be obtained by computing the sum:

Ts = Ls

uc

+
Ls

c∞

and finally the Strouhal number:

fsDj

uj

= ucDj

Ls(1 +Mc)uj

(1.14)

with the convection Mach number Mc = uc/c∞. Note, that above equation
can be also obtained by setting the observation angle Θ in Eq. (1.12) to zero.

Equation (1.14) can be modified by including the length of the shock cell
spacing Ls based on Eq. (1.3) and the empirical observation that the con-
vection Mach number is about 0.7 times the jet Mach number (Mc = 0.7Mj).
In addition to that, it is assumed that the shock cell spacing at the location
of the screech source (usually at the third to fifth shock cell) is about 20 %
smaller than expected by Eq. (1.3). With these assumptions and Crocco’s
relation, it is straightforward to find an expression for the screech frequency
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only depending on the jet Mach number and the temperature ratio of the am-
bient fluid T∞ and the reservoir temperature Tr, as proposed by Tam et al.
[1986]:

fsDj

uj

= 0.67

(M2
j − 1) 1

2

⎛⎜⎝1 +
0.7Mj

(1 + γ−1

2
M2

j ) 1

2

( Tr

T∞
)−

1

2⎞⎟⎠
−1

(1.15)

Note, that the assumption by Tam et al. [1986] that the convective Mach
number is 0.7 times the jet Mach number is not consistent in the literature.
Powell et al. [1992] propose different values for the individual modes: 0.64
(mode A), 0.68 (mode B), 0.8 (mode C) and 0.75 (mode D). Similar results
are proposed by Panda et al. [1997]: 0.67 (mode A), 0.58 (mode B), 0.66
(mode C) and 0.69 (mode D). These differences indicate that it is difficult to
predict the convection Mach number [see also Gao & Li, 2010]. Furthermore,
the convection velocity of the disturbances is not constant in a specific jet as
the disturbances are accelerated right after passing a shock and decelerated
as they approach a shock [see Raman, 1999b]. Improvements in the screech
prediction formula, taking into account the individual modes of axisymmet-
ric jets can be found e. g. in Gao & Li [2010], Massey [1997], Panda et al.
[1997] and Powell et al. [1992]. An estimation of the screech frequency for
rectangular jets can be found in Tam [1988].

In most experimental studies, the Reynolds number is in the order of 106.
As we will see later, such high Reynolds numbers are unfavorable for direct
numerical investigations, based on the state of art high performance comput-
ers. In the present numerical investigation on planar and axisymmetric jet
screech, a Reynolds number of Re = 5000 is chosen. The remaining question is,
to which extent the Reynolds number influences screech tones. High Reynolds
number flows contain more small scale turbulent fluctuations. These fluctua-
tions will contribute to the shock-associated noise and will be responsible for
additional broadband components of high frequency. The screech frequency
is obviously depending on the shock cell spacing which is independent on
the Reynolds number. Hu & McLaughlin [1990] show that the small scale
turbulent structures are irrelevant to screech tones. They investigated a low
Reynolds number under-expanded jet (ReD = 8000) and compared the re-
sults to a high Reynolds number case (Re ≈ 106). It is demonstrated that the
large scale fluctuations and the shock cell spacing are responsible for screech
tones and independent on the Reynolds number. Only the broadband shock
associated noise components are reduced for the low Reynolds number jet.
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We have seen that the prediction of the screech frequency is straightforward
and, depending on the screech mode, can be approximated using empirical
results for the convection Mach number. In contrast to that is the predic-
tion of the screech amplitude. Up to now, no theory for the prediction of
the screech amplitude is available not even an empirical. The difficulty in
predicting the screech amplitude is its strong dependency on the surrounding
environment. Most sensitive to screech tones is the geometry of the nozzle,
since it is responsible for the receptivity process – the coupling of acoustic
and hydrodynamic instabilities. Raman [1997a] observed that increasing the
nozzle lip t of a rectangular jet with t/h = 0.2 to t/h = 2 increases the SPL
from 130 dB up to 148 dB measured in a distance of 10h normal to the nozzle
exit. This is a drastic increase of 18 dB by only changing the nozzle exit
lip, a part which does not directly influence the jet flow. Other researchers
like Glass [1968] indicate that screech tones can be enhanced by an acous-
tic reflector upstream the nozzle. The reflector can be placed such that the
reflected acoustic waves amplify the acoustic fluctuations at the nozzle exit
by means of a positive superposition of upstream and downstream propagat-
ing waves and therefore enhance the receptivity process. The same reflector
can be placed upstream the nozzle to suppress screech tones by means of
noise cancellation at the nozzle exit as reported by Nagel et al. [1983], No-
rum [1984]. Hence, the change of the surrounding environment, like reflecting
surfaces or the design of the nozzle have a significant impact on the screech
tone amplitude which makes its prediction a challenging task. In addition
to that, initial conditions, like a turbulent or laminar boundary layer inside
the nozzle, a swirl in the flow or the velocity distribution in the nozzle exit
plane (depending on the contour of the nozzle contraction) may influence the
individual screech modes [Powell et al., 1992]. Especially the position of the
neutral plane of the flapping mode may be exited randomly as reported by
Seiner et al. [1986b].

One could expect that the screech amplitude is linked to the shock strength,
as a certain shock amplitude is necessary to produce screech and strong
screech tones need strong shocks, but indeed the link between shock strength
and screech amplitude is very weak [see amongst others Raman, 1998]. The
shock strength is increasing monotonously [nearly linear; see Raman, 1997a]
with the jet Mach number whereas the screech amplitude is first increasing
up to a maximum value and then again decreasing (cf. Fig. 1.13(a)). In
the following section some techniques to influence supersonic jet noise and in
particular jet screech will be addressed.

26



1.1 Physics of a supersonic jet

1.1.2 Mechanism of jet noise reduction

As we have seen, supersonic jet screech can be responsible for a loud and
discrete noise source. In the early years of jet screech research it was thought
that screech tones do not exist in full scale aero-engines due to the non-
uniformity of the flow and the complex geometry of the nozzle. However, the
experiments of Jungowski [1979] demonstrate that even a non-uniform flow
does excite screech tones. It is furthermore reported in Hay & Rose [1970] and
Seiner et al. [1987] that screech tones are responsible for structural damage
and fatigue failure of airplane. To this end, the understanding and finally
the reduction of screech tones is a matter of particular concern. In the last
decades several techniques were developed to influence screech tones. Their
main idea is based on the cancellation of the feedback loop by means of active
and passive devices. In the following some active and passive devices will be
presented, beginning with the passive ones.

Acoustic reflector Glass [1968] was the first to observe that a passive acous-
tic reflector can be used to enhance screech tones. He placed the reflector in
an upstream position of the nozzle such that impinging acoustic waves (broad-
band shock-associated noise) are reflected back in the downstream direction
of the jet. These downstream wave are superimposed with the upstream
propagating waves and forming a standing wave with stationary nodes and
anti-nodes. Is the reflector located such that the position of an anti-node
matches that of the nozzle exit, the feedback loop will be amplified. This
phenomenon was also studied recently by Kweon et al. [2006] where they
could show that the jet mixing (here equivalent to screech) can be enhanced
by a reflector placed at the nozzle exit. On the other hand, if the reflector is
located such that the position of a node matches that of the nozzle exit, the
feedback loop will be canceled. The latter phenomenon was investigated by
a series of researches beginning with Nagel et al. [1983] and Norum [1984]. It
was also studied recently by Khan et al. [2004]. Based on the theory that the
anti-nodes and nodes of a standing wave can influence screech, the location
of the reflector to amplify and to cancel screech can be given. Assuming the
screech wave length to be λs and the fact that at the surface of the reflector
is an anti-node, the position for screech amplification and cancellation is at

x =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−
n

2
λs amplification

−
2n + 1

4
λs cancelation

(1.16)
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with an integer number n = 0, 1, 2, .... The wave length can be approximated
by Eq. (1.15) and with the constant speed of sound in the ambient fluid we
get: λs = c∞/fs.

Harper-Bourne & Fisher [1973] also used an acoustic reflector to amplify
screech tones. In addition to that they added a sound absorbing foam (porous
material) on the surface of the reflector. Compared to the reflector without
the foam, the screech tone was reduced but remained higher than a jet without
reflector. The effect of the reflector coated with foam in this experiment is
that the acoustic waves are reflected less efficient as in the case for a solid
reflector. Hence, the standing wave is damped and the amplification of the
screech tone is reduced. Still, as the screech tone of the jet with porous
reflector is louder than a jet without reflector, the damping properties of the
porous material are not optimal. Similar results were obtained by Kweon
et al. [2005]. In an experimental study, they investigated the influence of a
porous reflector (based on grass wool and polyurethane foam) compared to
a metal (solid) reflector. They found that the reflector with sound-absorbing
material reduces the screech tone up to 13 dB an the OASPL up to 5 dB
compared to the metal reflector.

Nozzle lip Based on Eq. (1.16) it is evident that a thick nozzle amplifies
screech tones. At the nozzle exit (x = 0) a thick nozzle acts as a reflector and
hence amplifies screech (for n = 0). This phenomenon has been reported by
numerous researchers. Norum [1983] was one of the first to investigate the
dependence of the nozzle lip thickness. In his experiment the peak screech
tone could be reduced by 13 dB with a nozzle of “zero” lip thickness. He also
investigated more complex nozzle configurations, like asymmetric nozzles,
nozzles with a tab and also solid and porous reflectors. He concluded that a
large reduction of the screech tone can be gained from modifications of the
jet exit geometry, although the extent of this reduction is mode dependent.

Ponton & Seiner [1992] noticed that despite the amplification of the screech
tone for a thick nozzle lip, the two remaining noise components (mixing noise
and broadband shock-associated noise) are affected as well. They also ob-
served that the existence of the individual screech modes varies in the Mach
number range with a modification of the nozzle lip. In particular, for a
thin-lipped nozzle the B mode cannot be detected at high Mach numbers.
Furthermore, an increase of the nozzle lip thickness caused a decrease of the
screech Strouhal number for the A and B mode and an increase for the C
mode.

In a recent numerical study by Kim & Lee [2007] the trend of an increase
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of the screech tone by a thicker nozzle lip of an axisymmetric jet could be
simulated based on the Euler equations. In a similar numerical study by Kim
& Nakamura [2006] the influence of the nozzle shape of a rectangular jet was
investigated. They observed a reduction of the dominant screech tone for a
non-uniform nozzle geometry.

Raman [1997b] studied jet screech in rectangular supersonic jets with span-
wise non-uniform exits. He also observed that a non-uniform exit (here: span-
wise-oblique) produced weaker screech tones than a uniform exit. In addition
to that, the Mach number range to exhibit screech tones was reduced for
non-uniform nozzles.

To summarize the influence of the nozzle lip thickness to supersonic jet noise
and in particular screech tones: the thicker the nozzle the louder the screech.
This strong influence of the surrounding environment makes the prediction of
the screech amplitude complicated [Seiner, 1984]. Raman [1998] notes that
when mounting a screech suppression device (like a reflector) care should be
taken not to increase the nozzle lip thickness.

Chevrons, Tabs, etc. It is well known that non-uniform flows can be re-
sponsible for screech tone cancellation. Especially for axisymmetric jets, the
non-uniformity influences the individual modes of the jet (A-E) and hence
the corresponding screech tone. Norum & Seiner [1982a] used in their experi-
mental investigation on screech tones a small tab inside the nozzle to suppress
screech. The small rectangular shaped protrusion extended 0.063D into the
jet with a width of 0.125D (with the jet diameter D). By adding this small
device at the nozzle exit the screech tone could be suppressed leading to a
peak noise level reduction of more than 13 dB. A similar investigation was
performed recently by Clement & Rathakrishnan [2006].

A more advanced geometry was used by Munday et al. [2011]. They added
chevrons to reduce supersonic jet noise. Chevrons are used especially in
subsonic jets and can be found at many civil aeroplanes like the recently
developed Boeing 747-8 (first flight in 20101. They are based on a sawtooth
shaped geometry placed at the nozzle exit to influence the mixing behavior
in the shear-layer. For supersonic jets, they are responsible for a non-uniform
flow and have been shown to reduce or suppress screech by more than 20 dB.

Porous material As we have seen already, a porous material can influence
screech [cf. Harper-Bourne & Fisher, 1973]. The porous material can be
added on a passive acoustic reflector to act as a sound absorbing material. In

1http://boeing.com/
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1 Introduction

this case, the screech amplification of the acoustic reflector can be reduced.
A recent investigation on this topic is reported by Khan et al. [2008]. They
use a porous reflector at the nozzle exit to reduce the sound pressure at this
point. This prevents the unstable disturbances at the nozzle exit to be exited
and the loop of the feedback mechanism disappears. Hence, the screech tone
can be canceled. In their investigation, they use a porous material with a
porosity of φ = 0.4 (a definition of the porosity is given in Sec. § 3). Further
comments on the porous material investigated are not given.

Besides on the surface of acoustic reflectors, the porous material can be also
placed in the jet core as a porous center-body [first observed by Maestrello,
1979]. Seiner et al. [1980] indicate that a porous plug can eliminate shock-
associated noise (and hence screech) and reduce jet mixing noise. More than
20 dB of peak SPL reduction can be gained. The porous plug used in this
investigation extended two jet diameters into the jet core and eliminated
the shock cells since the porous material allows a smooth adjustment of the
pressure gradient in the flow. They conclude that the noise reduction of the
porous plug is particular dependent on the porosity and the length of the
plug. Similar results could be found by Kibens & Wlezien [1985].

Active devices In the previous paragraphs, the effect of passive devices, like
acoustic reflectors, chevrons or a porous material, on jet screech reduction is
presented. Besides the passive approach, active devices can be used to reduce
screech tones. Krothapalli et al. [2003] used water injection in high-speed jets
to reduce supersonic jet noise. They achieved a OASPL reduction of up to
6 dB. A similar approach is investigated by Munday et al. [2011]. They use
fluidic injection and fluidically enhanced chevrons to reduce jet screech. They
could gain a reduction of up to 20 dB for a fluidic injection configuration.

Kim et al. [2011] use plasma actuators, distributed uniformly at the nozzle
exit of contoured and conical axisymmetric nozzles. They could reduce or
even suppress the screech tone most likely due to weakening of naturally
occurring structures by forcing. In Chen et al. [2002] it is reported that
adding a swirl to the jet flow can eliminate screech tones of under-expanded
jets. They mention that the swirl in the jet can be responsible to reduce the
length of the shock containing core and hence reduce screech tones.

1.2 Objective of this thesis

As we have seen in the previous section, supersonic jet noise is a matter of
particular concern. In the presence of jet screech, it can be responsible for
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structural damage and fatigue failure of airplanes, like it has been reported
for the USAF F-15 fighter and the B-1B bomber [see Seiner, 1994]. Up
to now, jet screech is not understood in all details. No analytical or even
empirical prediction formula for the correct screech amplitude could be found.
The environmental influences on jet screech, like the shape of the nozzle,
play an important role. By a modification of the nozzle geometry or other
external devices, like an acoustic reflector, jet screech can be reduced. The
performance of the screech reduction strongly depends on the specific device.

The objective of the present thesis is to find a device which not only re-
duces screech, but minimizes it. To this end, a passive device, based on a
porous material, is added to the nozzle exit to influence the screech feedback
mechanism and finally to eliminate the screech tone. Porous media can be
characterized by the porosity and the permeability. As the choice of the op-
timal porous material (the optimal porosity and permeability) to minimize
jet screech is by no means clear, an optimization technique will be used to
identify the optimal material properties. In this context, a numerical inves-
tigation on supersonic jet noise is performed to identify the phenomenon of
jet screech. Both, planar and axisymmetric jets are studied. In a second
step, an optimization algorithm based on the adjoints of the compressible
Navier–Stokes equations is derived and used to optimize the parameters of
the porous material at the nozzle exit to minimize jet screech.

Thesis overview This thesis is divided in two parts. The first part deals
with the numerical computation of supersonic jet noise. It starts with the
present introduction, explaining the physics of a supersonic jet in chapter § 1.
This is followed, by presenting the governing numerical method of computing
supersonic jet noise. In chapter § 3, the theory of computing flow in porous
media is presented including the derivation and validation of the porous flow
equations. This chapter is closed with some numerical examples. Finally, at
the end of the first part, in chapter § 4, the results of the supersonic jet noise
computations are presented.

The second part deals with the numerical minimization of supersonic jet
noise. In its first chapter § 5, the underlying theory of adjoint based opti-
mization techniques is presented and validated with some examples. Results
of the minimization of supersonic jet noise with porous media is presented in
chapter § 6. In the last chapter § 7, the thesis is summarized with the main
results of the present investigation.

At the end of the thesis an appendix contains some additional information
and derivations.
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2
Theory of computing supersonic jet noise

A supersonic jet is a complex flow. The physical process acting on vastly dif-
ferent length and time scales are a commonplace observation for this applica-
tion. On the one hand, the propagation of long-wave acoustics (O(10−2m) –O(10−1m)) in the far field, like the mixing noise of low frequency or the roll-
up of a large vortex (O(10−1m)) in the mixing-layer, are comparatively large
scales. In contrast to that are small scale turbulent eddies in the order of the
Kolmogorov scale (η ≈ O(10−5m), for Re ≈ 106) or oblique or even vertical
shocks with a length scale in the order of the mean free path (O(10−7m)).
Different temporal scales originate e. g. in areas behind a bluff body, like the
nozzle, with a large separation zone (M ≈ 0) compared to the downstream
transported acoustics in the supersonic jet core (M ≫ 1).

Besides the vastly varying time and length scales, one also has to account
for different amplitudes in the flow. These arise in particular in the acous-
tic pressure fluctuations. The ambient pressure is in the order of O(105Pa).
Depending on the noise level, an acoustic wave fluctuates from O(10−4Pa) at
20 dB up to O(101Pa) at 120 dB. Propagating the quiet noise with 20 dB

causes a difference of 12 orders of magnitude in the pressure. It is needles to
say that this type of flow configuration causes a great challenge in computa-
tional resources as well as numerical methods.

In the last decades different classes of methods developed with increasing
complexity to compute turbulent flows. Beginning with the three-dimensional
(Un)steady Reynolds Averaged Navier–Stokes (URANS) followed by the Large
Eddy Simulation (LES) and finally the Direct Numerical Simulation (DNS).
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2 Theory of computing supersonic jet noise

In addition to that, several subclasses and hybrid approaches combining the
individual methods emerged. A brief overview of the different classes and
subclasses can be found in Spalart [2000].

Reynolds averaged Navier–Stokes simulations do not compute the Navier–
Stokes equations but their Reynolds averaged counterpart with the cost of
an additional statistical turbulence model. This method comes with the least
computational effort and needs, based on a high Reynolds number compu-
tation, like the flow past an aeroplane, about 107 grid points to resolve the
computational domain. To adjust the statistical turbulence model a lot of em-
pirical information of the flow-case needs to be available. The second class,
the Large Eddy Simulation, applies a low-pass filter to the Navier–Stokes
equations and hence resolves on the large scales (eddies). To close the system
of equations, a sub-grid scale model needs to be included. The computational
effort of this method is larger than the one of URANS computations and one
needs for the computation of the high Reynolds number example about 1012

grid points to resolve the large scales. Finally, the Direct Numerical Sim-
ulation, comes without any modeling and hence needs to resolve both the
largest and the smallest scales (Kolmogorov length-scale) of the turbulent
flow. To resolve the high Reynolds number flow past an aeroplane, a total of
about 1016 grid points need to be included in the computational domain. It is
therefore on the one hand the most expensive method but on the other hand
the most accurate one. State of the art high performance computers (HPC),
with a peak performance of more than one Petaflop/s and several hundred
Terabyte of main memory, are capable to handle about 109 grid points. Even
for LES, the high Reynolds number flow can not be resolved on the state of
the art computers. Hence, the numerical computation, especially the DNS
is limited to moderate to low Reynolds number flows as the number of grid
points scales with the Reynolds number, like:

NL ≈ L

η
≈ Re

3/4
L ; with ReL = UL

ν

in one direction. The smallest length-scale, the Kolmogorov scale η, and the
largest length-scale L determine the number of grid points and can be re-
placed with the Reynolds number, based on the characteristic velocity U , the
corresponding length L and the kinematic viscosity ν. In three dimensions,
the total number of grid points is:

NL ≈ Re
9/4
L

Based on the maximum number of grid points of state of the art computations
(109) the largest resolvable Reynolds number is Remax = 104 for a DNS [see
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also Kim et al., 1987]. To give an example on a supersonic jet computation
based on that Reynolds number and the assumption that the fluid is air
under standard conditions, the diameter of the jet would be 0.27mm (based
on Mj = 1.55 and T0 = 20○C). In the present application a Reynolds number
of 5000 is chosen which corresponds to a diameter of 0.14mm. This is about
the thickness of a human hair. According to that, DNS is still linked to simple
flow geometries and academic cases. It is proposed by Spalart [2000] that a
high Reynolds number DNS will be available in the year 2080 and a high
Reynolds number LES in the year 2045.

Above mentioned methods are capable to compute the aeroacoustic noise
directly, yet with different accuracy. Direct Numerical Simulation (DNS),
which resolves all scales, capture the aeroacoustic noise field without any
approximations and provide the full spectrum of the generated noise with
the drawback of low Reynolds number limitations.

Large Eddy Simulation, model the effect of the small scales and hence fail
in the prediction of high-frequency noise components. These missing or under
predicted high-frequency spectral components in LES jet noise computations
can be highly annoying to the human ear [2-3 kHz, see Bodony & Lele, 2005]
and are the most important components in noise regulation. In addition that,
the choice of the sub-grid model in the LES is of particular importance to
the predicted noise. Bogey & Bailly [2005] show that the results obtained by
a selective filter as sub-grid model are quantitatively closer to experimental
data than the ones obtained by the widely used dynamic Smagorinsky model
by Moin et al. [1991]. They explain this behavior with the lowered effective
Reynolds number of the jet computation by means of the eddy viscosity. A
reduction of a factor of 50 between the effective Reynolds number of the
dynamic Smagorinsky model and the one using a compact/selective filter can
be observed.

Mathew et al. [2006, 2003] show that an explicit filter applied to the flow
field can be used as sub-grid-scale modeling alone. They apply the filter
between every integration step of any DNS algorithm to obtain a LES and
conclude that the solution tends uniformly towards the DNS once the grid is
refined and the filter cut-off is shifted to higher wave numbers.

A direct prediction of aeroacoustic noise by URANS computations presents
the lowest level of flow details and spatial/temporal accuracy. This method
is only capable to predict the noise of the largest flow scales and fails in
the prediction of broadband components, like shock induced noise [see Wang
et al., 2006].

However, the computational domain of any direct approach is limited and
usually only contains the hydrodynamic fluctuations and the acoustic near-
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2 Theory of computing supersonic jet noise

field. To propagate the waves into the acoustic far field or to apply it to
URANS computations, hybrid methods can be used. These methods use some
kind of source information, either in a volume containing the hydrodynamic
(noisy) fluctuations (Lighthill), or on a surface enclosing the fluctuations
(Linearized Euler Equations (LEE), Ffowks-Williams-Hawkins (FWH)). The
latter ones, using the sources, distributed on a surface, can only be applied to
methods capable to compute the noise directly (LES or DNS). An application
of these hybrid methods to a two-dimensional shear layer can be found in
Schulze et al. [2007].

2.1 State of the art

In the following three paragraphs, an overview of the recent achievements
in the numerical simulation of supersonic jet noise, and in particular in su-
personic jet screech, is outlined and divided in the three major direct meth-
ods, beginning with the DNS, followed by the LES and finally the URANS
method. The numerical investigations are summarized in Tab. 2.1 and sorted
in chronological order.

Direct Numerical Simulation The first direct numerical simulation of su-
personic jet noise was reported by Freund et al. [2000]. They computed a
ReD = 2000 jet based on a fully expanded jet Mach number Mj = 1.92 un-
der design condition. Hence, no shocks and no screech was present, only
the Mach wave radiation in the acoustic near field could be observed. For
the spatial discretization they used a 6th order compact scheme proposed by
Lele [1992] and a 4th order Runge–Kutta method for the time integration.
Most following research projects on jet noise based on DNS and LES use this
combination of spatial and temporal discretization. The jet is computed on
a cylindrical grid containing about 21 million grid points without including
the nozzle directly. Instead, they use a inlet velocity profile to model the
presence of the nozzle.

One year later, Freund [2001] applied the DNS on a Mj = 0.9 subsonic
jet with a Reynolds number ReD = 3600 and a slightly increased spatial
resolution (26 million grid points). In this study, they could compare their
results to experimental data by Stromberg et al. [1980] and showd a good
agreement in terms of mean flow, noise-spectra and -directivity.

Supersonic jet screech was first reported by Manning [1999], Manning &
Lele [1998, 2000]. Instead of computing the whole jet and its acoustic field,
they investigated the interaction of a shock wave impinging on a supersonic
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mixing-layer in two dimensions. The emanated dominant noise component is
caused by a “leakage” of the shock tip in the ambient subsonic region once a
vortex passes the shock resulting in a loud and sharp acoustic wave. Similar
results on two-dimensional shock containing supersonic mixing-layers could

Author Year Method Screech Geom.

Shen & Tam 1998 URANS ∎ ○
Freund et al. 2000 DNS ◻ ○
Freund 2001 DNS ◻ ○
Al-Qadi & Scott 2003 LES ∎ ◻

Imamoglu & Balakumar 2003 LES ∎ ○
Loh et al. 2003 ILES ∎ ○
Hashimoto et al. 2004 LES ∎ ○
Lee et al. 2004 Euler Eq. ∎ ○
Li & Gao 2004 URANS ∎ ○
Fujimatsu & Misu 2005 Euler Eq. ∎ ○
Bodony et al. 2006 LES ◻ ○
Gao & Li 2006 URANS ∎ ○
Berland et al. 2007 LES ∎ ◻

Kim & Lee 2007 URANS ∎ ○
Ray & Lele 2007 URANS ◻ ○
Singh & Chatterjee 2007 LES ∎ ○
Schulze et al. 2009 DNS ∎ ◻

de Cacqueray 2010 LES ◻ ○
Shur et al. 2010 LES ∎ ○
Gao & Li 2011 LES ∎ ○
Kurbatskii 2011 URANS ∎ ○
Munday et al. 2011 LES ∎ ○
Manning & Lele 1998 DNS ML 2D
Suzuki & Lele 2003 DNS ML 2D
Schulze et al. 2007 DNS ML 2D
Schaupp et al. 2008 DNS ML 3D

Table 2.1: Overview of the numerical investigation on supersonic jet noise. Fields marked
with a ∎ include the prediction of screech tones; else (◻) mixing- and shock-associated noise.
Investigated nozzle geometry: ○ (round jet); ◻ (planar jet). ML: Shock containing Mixing-
Layer.
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be observed by Suzuki & Lele [2003]. Schulze et al. [2007] included several
hybrid approaches (Linearized Euler Equations (LEE), Ffowcs-Williams and
Hawkins (FWH) and Lighthill) to the two-dimensional mixing-layer to prop-
agate the noise in the acoustic far-field. They conclude that FWH besides
LEE are in good agreement to the DNS data and capable to propagate noise
of supersonic flow cases. Later, Schaupp et al. [2008] extended the shock
containing mixing-layer in three dimensions and conclude that the proposed
method is suitable for capturing the acoustic field generated in the interaction
region of shock and mixing-layer.

A DNS on a turbulent planar jet including screech could be observed by
Schulze et al. [2009a]. They computed an under-expanded planar jet, peri-
odic in the transverse direction, with a Reynolds number of ReD = 8000 and
a fully expanded jet Mach number Mj = 1.4. The thin computational domain
contains more than 8 million grid points and is based on a Cartesian domain
stretched in the stream-wise and transverse direction to refine the grid in
the turbulent region. The nozzle is modeled by a velocity profile as in the
work of Freund and does not include the solid nozzle itself. As the sensitiv-
ity of the instabilities of the mixing-layer to upstream propagating acoustics
seems to be amplified by the presence of the nozzle an artificial forcing of
the mixing-layer is applied to close the screech feedback loop. To this end,
two “microphones” measure the noise in the upstream direction (close to the
artificial nozzle exit) and apply this signal, together with a model spectrum,
containing the most unstable instability and its subharmonics, to a small
fringe region in the mixing-layer. With this technique, a good agreement
with the theoretically expected screech frequency can be observed whereas
the screech amplitude is under-predicted. The discrepancy in the screech
amplitude is probably related to the empirically adjustable gain of the arti-
ficial forcing of the mixing-layer. A DNS including nearly 300 million grid
points without artificial forcing (zero gain) showed no screech component in
the spectrum [see Schulze & Sesterhenn, 2010a, Schulze et al., 2009a].

Large Eddy Simulation LES prediction of supersonic jet noise was first
reported by Al-Qadi & Scott [2003, 2001]. They use a planar jet with a
Reynolds number based on the fully expanded jet height of Rehj

= 178000
and the fully expanded jet Mach number Mj = 1.44 of a convergent nozzle
(design Mach number Md = 1). Their Cartesian domain contains more than
5 million grid points and is stretched to refine the shear layers. To treat the
sub-grid scales, a compact low pass filter is applied together with a second
order TVD based dissipation to treat shocks.
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A screech containing LES of a round jet was first reported by Imamoglu &
Balakumar [2003] based on a fifth order Weighted Essentially Non Oscillatory
(WENO) spatial discretization and a third order total variation diminishing
(TVD) Runge–Kutta scheme for the time advancement. The fully expanded
jet Mach number is Mj = 1.43 with a sonic design Mach number. Shock
cell structure and screech frequency are in agreement to experimental data
without comparing the screech amplitude.

Loh et al. [2003], Loh & Hultgren [2006] use a second order finite volume
method to simulate screech of a round nozzle with an unstructured hexahedral
grid with a second order time integration. Based on a fully expanded jet Mach
number Mj = 1.42 they observe the flapping B-mode.

The helical C-mode was investigated by Hashimoto et al. [2004] with a LES
of a round jet and a Mach number of Mj = 1.7 with a design Mach number
of Md = 1.33 (under-expanded, convergent-divergent (CD) nozzle). Spatial
discretization is performed with a fourth order WENO scheme and a third
order Runge–Kutta method for the time advancement. Their grid contains
more than six million grid points with a Reynolds number of Re = 580000

In 2006, Bodony et al. simulate the noise radiation of a Mj = 2.2 round jet
with a design Mach number of Md = 1.95 (under-expanded). In this Mach
number regime screech tones are not present and only shock associated and
mixing noise can be observed. Based on the fully expanded jet Mach number
and jet diameter a Reynolds number of Re = 394000 is adjusted using a
cylindrical grid containing one million grid points.

A round over-expanded jet (Mj = 1.49, Md = 2.0) was investigated, as well
as an under-expanded jet (Mj = 1.19, Md = 1.0), by Singh & Chatterjee [2007]
using a WENO scheme.

Using an explicit spectral-like filtering of the flow variables, Berland et al.
[2006, 2007] aim to minimize the dissipation on the resolved scales by ad-
justing the filter close to the grid cutoff wavenumber. Thereby, the effective
Reynolds number of the inlet condition can be maintained [Bogey & Bailly,
2005]. In their investigation on planar under-expanded jet screech compu-
tation they simulate a Reynolds number of Reh = 60000 based on the jet
height and the fully expanded jet Mach number Mj = 1.55 (convergent noz-
zle, Md = 1). A total of 16 million grid points are used on a Cartesian grid
discretized with explicit fourth order schemes in space and time. To avoid
numerical instabilities at discontinuities, like shocks, they apply a selective
filter [Bogey et al., 2009]. Their results on screech frequency and amplitude
are in good agreement to analytical and experimental data. The observed
discrepancies are addressed to the computational geometry and initial shear
layer thickness.
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Later, de Cacqueray [2010], de Cacqueray et al. [2011] computed a high
supersonic round jet with a fully expanded jet Mach number Mj = 2.83 at
over-expanded conditions with a design Mach number Md = 3.3. This Mach
number regime is outside the range where screech can be observed, hence
only shock associated noise and turbulent mixing noise is considered. The
Reynolds number, based on the jet exit conditions, is set to ReD = 94000 and
simulated with the same methods as in the previous mentioned work using
27 million grid points. Spectral acoustic properties are in good agreement
with experimental data. Using the acoustic analogy based on the Linearized
Euler Equations (LEE) the acoustic information could be extrapolated into
the acoustic far-field.

Based on the FWH analogy, Shur et al. [2010] used a Mj = 1.36 round and
under-expanded jet, to capture the far-field acoustics including the screech
tone. Recently, Gao & Li [2011] computed the axisymmetric mode of a round
Mj = 1.19 under-expanded jet with roughly ten million grid points. A wide
range of Mach numbers (1.22 ≤Mj ≤ 1.71) is investigated recently by Munday
et al. [2011] for a round over- and under-expanded jet. They use a nozzle in-
cluding chevrons to reduce jet screech based on a finite element code including
11 million grid points.

Unsteady Reynolds Averaged Navier–Stokes The first investigation to ap-
ply a URANS to jet screech computations was performed by Shen & Tam
[1998]. They observed both axisymmetric screech modes (A1 and A2) in a
Mach number range of (1.0 ≤Mj ≤ 1.2) with a convergent nozzle. They also
investigate the influence of the temperature and the nozzle lip thickness on
screech tones in Shen & Tam [2000] and conclude that there is no strong
influence of the temperature and lip thickness on screech tones for the low
Mach number range. Later, Shen & Tam [2001, 2002] extend the Mach num-
ber range up to Mj = 1.5 to also capture the flapping B- and helical C-mode.
Their results regarding screech amplitude and frequency are in good agree-
ment to experimental data and they found that two screech tones can exist
simultaneously at one Mach number. They also mention that the present
method is not capable to predict broadband shock associated noise and that
empirical constants of the turbulence model need to be adjusted to match
the analytical results.

A similar setup was studied by Li & Gao [2004, 2005] in a Mach number
range of 1.05 ≤ Mj ≤ 1.2 where they could observe the A- and B-mode.
To observe also the C-Mode, the Mach number range was extended up to
Mj = 1.6 in Li & Gao [2007] and the helical behavior could be observed.
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Gao & Li [2006] use a similar method and investigate the influence of the
screech tone to the initial shear layer thickness for the low Mach number
regime (Mj = 1.1). They observe that the a thin shear layer produces a
5 dB louder screech tone than a thick shear layer as the thin shear layer
is responsible for steeper velocity gradients and hence stronger shocks. To
this end, they propose to reduce screech tones by enhancing the shear layer
thickness.

Kim & Lee [2007], Kim & Nakamura [2006] investigate the influence of the
nozzle lip to the screech tone and observe that a larger nozzle lip increases
the screech frequency. This phenomenon can be explained with an increased
momentum thickness for a larger nozzle lip due to the stronger reflections
at the thick nozzle lip. The better the reflection properties, the larger the
pressure fluctuations at the nozzle exit an hence the larger the momentum
thickness. A thicker shear layer will reduce the effective nozzle diameter and
therefore increase the screech frequency (reduce the sock cell spacing and
reduce the screech wavelength) while keeping the jet Mach number constant
(only depending on the nozzle pressure ratio).

Over- and under-expanded jets were investigated by Ray & Lele [2007] and
the acoustic field was extrapolated with the LEE method. They found that
the higher-frequency sound was missing in their computations which might
have its origin in the intense modeling assumptions.

Recently, Kurbatskii [2011] investigated screech with a general purpose
second order finite volume CFD code in the Mach number range of 1.3 ≤
Mj ≤ 1.6 for a convergent nozzle. He could capture the screech frequency
of the B- and C-mode in good agreement to experimental data, while the
amplitudes differ with more than 10 dB. In addition to that, he observed an
extended Mach number range for the B-mode (up to Mj = 1.6 compared to
Mj = 1.4 of the experimental data).

Other methods Besides the three above mentioned classes, another small
class emerged using the Euler equations instead of the Navier–Stokes equa-
tions. Hence, friction dependent influences are neglected and a comparison to
real flows is difficult. Lee et al. [2004] investigate screech tones from an under-
expanded axisymmetric jet using the two-dimensional Euler equations with a
grid containing a total of 160000 points solved with fourth order schemes in
space and time. For the lower Mach number range 1.08 ≤Mj ≤ 1.19 a good
agreement to experimental data can be found whereas the influence on the
nozzle lip thickness does not match the experimental data. A similar setup
is used by Fujimatsu & Misu [2005].
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Figure 2.1: Total number of grid points of the numerical investigations of supersonic jet noise
within the last decade (a). Divided in numerical method: ○ DNS; △ LES; ▽ URANS; ◻
Euler equations. Filled symbols: current computations. (b) Data extrapolated ( );
Number of grid points for a high Re LES ( ); Number of grid points for a high Re
DNS ( ).

Men’shov & Nenashev [2011], Men’shov et al. [2008] use the three-dimensio-
nal Euler equations in combination with a linear stability analysis to extract
the helical mode of a Mj = 1.7 under-expanded jet. A comparison of the
numerical results to experimental data shows a strong discrepancy in screech
frequency and amplitude although the helical mode is extracted.

In Fig. 2.1(a) an overview of the size of the numerical investigations on
supersonic jet noise is presented for the last decade. Despite some spikes, like
the DNS computations of Freund [2001], Freund et al. [2000], an exponential
growth of the computational expense (total number of grid points) over the
last decade is visible. This observation coincides with Moore’s law and the
exponential growth of the number of transistors which can be placed on one
CPU. Extrapolating this trend (cf. panel (b)), one would expect the ability to
solve a high Reynolds number jet with an LES (1012 points) in 2030 and with
a DNS in 2045. This extrapolation is more optimistic than the assumption
of Spalart [2000] that a high Reynolds number DNS will be available in 2080.
The current LES computations, as presented in Sec. § 4, are marked with a
filled symbol. The high resolution case exceeds the recent computations by
one order of magnitude but match the exponential trend.
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2.2 Equations of motion

As we have seen in the previous introduction, there is a number of methods
available in the literature to treat supersonic jet noise computations. In the
present application, we will use the three-dimensional compressible Navier–
Stokes equations in combination with a high order dissipative upwind scheme
applied to the convective terms and a high order central scheme applied to the
diffusive terms to solve the flow induced noise directly. As the upwind schemes
are dissipative, they behave like a filter applied to the flow variables. To this
end, the present method can be classified as a LES with explicit filtering as
proposed by e. g. Bogey & Bailly [2009], Mathew et al. [2006, 2003]. However,
as the Reynolds number of the investigated jet noise computations is small
(ReD = 5000) and the spatial resolution is high, the large scale computations
can be considered as an under-resolved DNS as the solution tends uniformly
towards the DNS once the grid is refined [see Mathew et al., 2006, 2003].

In the following section the governing equations of motion, as implemented
in the present investigation, are presented.

2.2.1 Compressible Navier–Stokes equations

The perturbations of an unsteady fluid flow are described by the Navier–
Stokes equations. They are divided in three equations: the mass conservation,
the balance of momentum and the balance of energy. All three equations are
highly nonlinear and coupled with each other. Following the derivations in
Kovasznay [1953], it is possible to decouple the Navier–Stokes equations when
one applies a linearization of small perturbations around a base-flow. The
three distinctly different modes are: vorticity mode, entropy mode and sound-
wave mode. To this end, the three-dimensional compressible Navier–Stokes
equations are written in non-conservative pressure p, velocity ui and entropy
s formulation and read:

∂p

∂t
+ ui

∂p

∂xi

= −γ p
∂ui

∂xi

+
p

Cv

(∂s

∂t
+ ui

∂s

∂xi

) (2.1a)

∂ui

∂t
+ uj

∂ui

∂xj

= −
1
ρ

∂p

∂xi

+
1
ρ

∂τij

∂xj

(2.1b)

∂s

∂t
+ ui

∂s

∂xi

= 1
ρT
(− ∂

∂xi

(−λ
∂T

∂xi

) +Φ) (2.1c)
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where

τij ∶= 2µ(sij −
1
3

skkδij) (2.2)

sij ∶= 1
2
( ∂ui

∂xj

+
∂uj

∂xi

) (2.3)

Φ ∶= τijsij (2.4)

and the Kronecker delta δij . The effects of the bulk viscosity are neglected.
To close the above set of equations the following thermodynamic relations
are used. The fluid is modeled by dry air represented as a perfect gas:

p = ρRT (2.5)

with the gas constant R = 287 [m2K−1s−2] and the density ρ. The viscosity
is modeled with Sutherland’s law

µ = µ0

T0 + S

T + S
( T

T0

)3/2
(2.6)

using the following constants: S = 110.4 [K] (Sutherland’s temperature), and
T0 and µ0 the total temperature and corresponding viscosity, respectively.
Heat conductivity is, following Fourier’s law, depending on the viscosity:

λ = µ
Cp

P r
. (2.7)

with γ = Cp/Cv = 1.4, Cp −Cv = R and P r = 0.71.

2.2.2 Characteristic Formulation

The Navier–Stokes equations are written in a characteristic formulation. This
has several advantages. First of all, the treatment of the boundary conditions
in aeroacoustic applications is fairly easy since the commonly usual recalcu-
lation in characteristic variables is no more necessary. For a non-reflecting
boundary condition simply the incoming acoustic wave is set to zero. Other
boundary conditions like solid walls can be treated in a similar way as for
codes written in primitive variables. Secondly, due to the decomposition of
the flow equations in waves one can use upwind schemes, where the up- and
down-traveling waves are discretized with up- and downwind schemes, respec-
tively. Compared to commonly used central schemes, upwind schemes are
numerically dissipative which increases the numerical stability and reduces
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2.2 Equations of motion

the use of additional filtering. The latter one can reduce the computational
cost of the code. Anyway, up- and downwind discretization is applied each
time the right hand side is evaluated, which is in each sub-step of the used
time integration method (e. g. five stage Runge–Kutta). Additional filter-
ing, used in classical implementations, is performed only after one completed
time-step, and can be thus less expensive. Due to the fact that the code gains
additionally numerical stability, the method of un-centered discretization is
used in the present code implementation.

Following Sesterhenn [2000], the three-dimensional characteristic Navier–
Stokes equations in p, u, s-formulation can be written as:

∂p

∂t
= −

ρc

2
((X+ +X−) + (Y + + Y −) + (Z+ +Z−))

+
p

Cv

(∂s

∂t
+Xs + Y s +Zs) (2.8a)

∂u

∂t
= −(1

2
(X+ −X−) + Y u +Zu) + 1

ρ

∂τ1j

∂xj

(2.8b)

∂v

∂t
= −(Xv +

1
2
(Y + − Y −) +Zv) + 1

ρ

∂τ2j

∂xj

(2.8c)

∂w

∂t
= −(Xw + Y w +

1
2
(Z+ −Z−)) + 1

ρ

∂τ3j

∂xj

(2.8d)

∂s

∂t
= − (Xs + Y s +Zs) + R

p
Φ (2.8e)

with the following abbreviations:

X± ∶= (u ± c) ( 1
ρc

∂p

∂x
±

∂u

∂x
) (2.9a)

Y ± ∶= (v ± c)( 1
ρc

∂p

∂y
±

∂v

∂y
) (2.9b)

Z± ∶= (w ± c)( 1
ρc

∂p

∂z
±

∂w

∂z
) (2.9c)
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Xv ∶= u
∂v

∂x
(2.10a)

Y u ∶= v
∂u

∂y
(2.10b)

Zu ∶= w
∂u

∂z
(2.10c)

Xw ∶= u
∂w

∂x
(2.11a)

Y w ∶= v
∂w

∂y
(2.11b)

Zv ∶= w
∂v

∂z
(2.11c)

Xs ∶= u
∂s

∂x
(2.12a)

Y s ∶= v
∂s

∂y
(2.12b)

Zs ∶= w
∂s

∂z
(2.12c)

The speed of sound c is computed using the following relation:

c =√γRT (2.13)

Above equations are valid for Cartesian coordinates, only. The general case
of curvilinear grids is presented in the appendix in Sec. § A.

2.3 Discretization

Especially in aeroacoustic applications (CAA) the choice of the temporal and
spatial discretization is particularly important. The range of temporal and
spacial scales in the aeroacoustic field spans several orders of magnitude.
To this end, a high order of accuracy for the discretization is necessary. In
the following two sections the methods used for the spatial and temporal
discretization are presented.

2.3.1 Space discretization

The spatial discretization in the present work is based on finite differences in
an implicit formulation. These compact schemes are modified Padé methods
of high order of accuracy using a small stencil. They show a low dispersion
error – an important feature especially for aeroacoustic applications. The
spectral-like resolution of these methods captures short length scales better
than standard finite differences [Lele, 1992]. In the last years, compact finite
differences developed to a standard tool not only in the field of aeroacous-
tics [see amongst many others, Ghosh et al., 2011, Jones et al., 2010, Mitchell
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Figure 2.2: Modified wavenumber for the compact fifth order upwind scheme Adams & Shariff
[1996] ( ) and the compact sixth order central schemeLele [1992] ( ). (a)
Dispersion. (c) Dispersion error. (b) Dissipation. (d) Dissipation error.

et al., 1995, Tam & Webb, 1993]. In the following section, two different com-
pact schemes, implemented for the present simulations, will be summarized.

2.3.1.1 Compact schemes

The hyperbolic part of the Navier–Stokes equations is decomposed into plane
characteristic waves. Based on the direction of the wave, they are discretized
with a fifth order upwind scheme of Adams & Shariff [1996] (CLUD). The
remaining terms of the Navier–Stokes equations (heat–flux and friction terms)
are of parabolic nature and are discretized with a sixth order central scheme
studied by Lele [1992]. Both schemes are characterized by a low dispersion
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Lele [1992] Adams & Shariff [1996]

α−2 0 0.027844800835984
α−1

1/3 0.455868829489
α0 1 1.0
α1

1/3 0.4774791908094
α2 0 0.038825537571968

a−2
1/36 −0.118727423955

a−1
7/9 −0.7482059425882

a0 0 0.00052666822731662
a1

7/9 0.7184558284235
a2

1/36 0.1479508698924

Table 2.2: Coefficients used for the compact schemes of Eq. (2.14) on a periodic domain
(interior points). Central tridiagonal scheme, sixth order: Lele [1992]; Upwind penta-diagonal
scheme, fifth order: Adams & Shariff [1996].

error which can be seen in Fig. 2.2(a). In the field of CFD and CAA these
schemes with its spectral like resolution have become popular and are used
for many aeroacoustic applications.

Central schemes come up with no numerical dissipation (cf. Fig. 2.2(b)).
Hence, on an under resolved grid, numerical instabilities can grow. A usual
fashion, to handle these instabilities is to filter the solution aver several time–
step. In the present investigation the upwind schemes undertake this task.
They exhibit a dissipative behavior for high wave numbers (cf. Fig. 2.2(b))
and an additional filter is only necessary for special purposes, like extremely
under resolved or discontinuous applications.

Compact schemes, to obtain the first derivative f ′i of a function fi at the
location xi, whether upwind or central, can be written as:

µr∑
µ=−µl

αµf ′i+µ = 1
h

νr∑
ν=−νl

aνfi+ν (2.14)

with the coefficients αµ and aν . If the coefficients αµ = α−µ and aν = a−ν , one
obtains a central scheme and apart from that an upwind scheme. In Tab. 2.2,
the coefficients for the two schemes, used for the present discretization on a
periodic domain, are presented. As compact schemes are implicit, a system of
equations has to be solved to obtain the derivative f ′i of a function fi at the
location xi. By means of a LU decomposition, followed by one forward and
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Figure 2.3: Stability map of the fourth order Runge–Kutta time integration. Eigenvalues in the
white area are stable; unstable in the gray area.

one backward elimination, the system of equations can be solved efficiently
with O(n) operation. One has to note that for the computation of the deriva-
tive, the data of the entire direction has to be accessible. This circumstance
makes special demands on the parallelization of the code (cf. § 2.5).

2.3.2 Time discretization

The time integration method is a crucial factor for performance of the code.
Its stability properties restrict the time-step and can, depending on the ap-
plication, slow down the whole performance of the code drastically. Different
time integration methods offer different stability maps, in which the eigenval-
ues and its corresponding modes of the evolution operator can be propagated
without numerical instabilities. Due to implementational issues of the paral-
lelization, the time integration is restricted to explicit methods. In the field of
CFD the fourth order Runge–Kutta time integration method of Williamson
[1980] has established to be one of the standard time integration schemes. Its
stability map is presented in Fig. 2.3.

This method is able to capture both acoustic (on the positive and nega-
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tive imaginary axis) and damped eigenvalues (on the negative real axis). For
most applications in the field of CFD and CAA this stability area is sufficient
unless no highly damped eigenvalues appear. The reason for such eigenvalue
are either extremely low Reynolds numbers or other numerical effects, usually
introduced through source terms. One could be a dissipative shock captur-
ing method, like an artificial hyperviscosity [Cook & Cabot, 2005]. Another
alternative is a porous medium. The latter one is implemented in the present
code and needs a time integration method with an extended stability area.

In many cases, the source of the temporal stiffness lies in the linear terms
of the governing equations. In this case, a more accurate description of the
linear solution operator (the matrix exponential for the autonomous case)
has the potential to greatly alleviate the time-step restrictions. Due to the
large number of degrees of freedom in high-performance fluid simulations, the
explicit calculation (and formation) of the matrix exponential is impractical;
rather, a significantly lower-dimensional approximation based on iterative
techniques is sought. This approximation represents the matrix exponential
in a low-dimensional Krylov space using a polynomial ansatz. The Krylov
subspace is formed by a repeated application of the linear (or linearized)
system matrix to a given starting vector. In this Krylov basis, the matrix
exponential can then be computed by direct methods.

The method of integrating a general system of ordinary differential equa-
tions (ODEs) using Krylov subspaces techniques is by no means new. It has
been shown Hochbruck et al. [1998] that various techniques can be devised
that provide approximations of different accuracy and error bounds. A com-
prehensive review of the techniques and their implementation is given in Gal-
lopoulos & Saad [1992], Saad [1992] and Sidje [1998]. Specific applications to
fluid dynamic equations, in particular, the incompressible Navier-Stokes equa-
tions, have been reported by e.g. Saad & Semeraro [1991] or Newman [2003]
where the linear system matrix has been extracted from a finite-elements dis-
cretization combined with a projection method. Numerical software for the
implementation of exponential integrators based on Krylov subspaces is also
available: the EXPOKIT -package provides various implementation and error
estimates Sidje [1998].

Although the general techniques has been developed and implemented for
general systems of ordinary differential equations and for simplified (incom-
pressible) flow situations, the exponential integration technique based on
Krylov subspaces has not yet found wide-spread use in more challenging (com-
pressible) fluid simulations where multi-scale effects combined with commonly
used explicit techniques represent the bottleneck for more efficient large-scale
simulations. This section will give an overview over the theory of integrating
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linear and nonlinear ODEs in time with an exponential Krylov scheme. A
more detailed review can be found in Schulze et al. [2009b] which is used as
a basis for this section.

2.3.2.1 Theory of Exponential Krylov Time Integration

The exponential time integration with on Krylov subspaces is based on a
low-dimensional approximation of the matrix exponential which represents
the exact evolution operator for an autonomous linear system. For inhomo-
geneous problems minor modifications have to be implemented, as will be
shown later. To start, however, we will consider the simplest case: the linear
and autonomous problem. The linear theory will be applied to the adjoint
compressible and porous Navier–Sokes equations as they are linear. The non-
linear theory of the subsequent paragraph unge be applied to the nonlinear
compressible and porous Navier–Sokes equations.

Linear equations The solution of the linear and autonomous problem

du(t)
dt

= Au(t) + q(t), (2.15a)

u(0) = v (2.15b)

with system matrix A, state vector u, initial condition v and external driving
q can formally be written as

u(t) = etAv +∫ t

0
e(t−s)Aq(s)ds. (2.16)

The first term involves the matrix exponential and represents the homoge-
neous part of the solution, whereas the second term consists of a convolution
integral, again involving the matrix exponential, and represents the particular
part of the full solution.

We will first consider the homogeneous case, i.e., the case where q = 0, for
which we need to compute the matrix exponential applied to a vector, etAv. If
A is a bounded operator, which is the case for most fluid dynamic equations,
the matrix exponential can be defined by a Taylor power series. For an
unbounded operator, like an elliptic operator, the meaning of A comes from
the mathematical theory of semigroups. A detailed discussion of this topic
can be found in Trefethen [2005]. Since the present research project focuses
on fluid dynamic equations, the solution of the matrix exponential will be
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A = Vm Vm+1= H̄eT1hm+1vm+1Hm +

Hm

= + =

Vm

Vm

Figure 2.4: Arnoldi decomposition for a square matrix A with m subspaces Vm and the reduced
Hessenberg matrix Hm.

understood as an expansion series for the remainder of this discussion, like

etAv = ∞∑
n=0

1
n!
(tA)n v. (2.17)

A straightforward approach to construct etA is thus a truncated form of
(2.17). This is in fact the underlying principle of a Runge–Kutta (or any
linear multi-step) scheme; in general, Runge–Kutta schemes approximate the
first few terms of the above Taylor series expansion, but are not a recom-
mended method – according to Moler & Loan [2003] – to approximate the
matrix exponential. Better approximations can be found if we seek a general
polynomial approximation of the product of the matrix exponential and a
given vector of the form

etAv ≈ pm−1(tA)v (2.18)

with pm−1 denoting a general (m − 1)-degree polynomial.
This approximation problem can be recast by introducing a m-dimensional

Krylov subspace based on the starting vector v and the system matrix A

Km = span{v, Av, ..., Am−1v}. (2.19)

Our problem thus reduces to finding an element in the Krylov subspace Km

that best approximates the solution to the homogeneous initial-value problem.
To efficiently manipulate the elements of the Krylov subspace we generate an
orthonormal basis Vm = [v1, v2, ..., vm] of Km. This orthonormal basis is
obtained by employing the well-known Arnoldi algorithm starting with the
initial vector v1 = v/β where β = ∥v∥2. Besides the orthonormal basis Vm,

the Arnoldi algorithm also produces an upper m×m Hessenberg-matrix Hm
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Input: initial vector v

Output: Hessenberg matrix H

Ritz vectors V

1: β = ∥v∥2
2: v1 = v/β
3: for j = 1 to m do
4: p =Avj

5: for i = 1 to j do
6: hi,j = vT

i p

7: p = p − hi,jvi

8: end for
9: hj+1,j = ∥p∥2

10: vj+1 = p/hj+1,j

11: end for

Algorithm 2.1: Arnoldi Decomposition.

which satisfies the relation (see also Fig. 2.4):

AVm = VmHm + hm+1,mvm+1eT
1 (2.20)

where, for a given k, ek denotes the k-th unit vector belonging to R
m, and

hij stands for an element of the matrix Hm.
The complete Arnoldi algorithm is outlined in Alg. 2.1. For the computa-

tion of the matrix Hm and the orthonormalized basis Vm only matrix-vector
and scalar products have to be evaluated. As an input the algorithm requires
the dimension of the Krylov subspace m, the initial vector v and the sys-
tem matrix A. Alternatively, the algorithm can be rewritten in a matrix-free
form such that only the matrix-vector product Av is used without explicitly
forming or evaluating the system matrix A.

Since we assume an orthonormal basis Vm of Km, we get Hm ≈ V T
m AVm;

in other words, Hm is a projection of the (large) system matrix A onto the
Krylov subspace Km using the orthonormalized basis Vm. We can then form
the vector uopt = VmV T

m etAv which is a projection of etAv onto Km. This
vector is the best approximation of etAv among the elements of the Krylov
subspace Km. Furthermore, a reformulation of the optimal vector, using the
definition of the orthonormal basis Vm, leads to

uopt = VmV T
m etAv = βVmV T

m etAVme1. (2.21)
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The optimal vector still depends on the matrix exponential etA based on the
(large) matrix A, which is in practice unobtainable. However, owing to the
orthogonality of the basis Vm, we can introduce the following approximation

V T
m etAVm ≈ etHm (2.22)

and finally rewrite the vector uopt as

uopt ≈ βVmetHm e1, (2.23)

or, with the improved approximation including the residual in Eq. (2.20) with
hm+1,m,

uopt ≈ βVm+1etHm+1e1. (2.24)

The original problem — which was to compute etAv with A ∈ Rn×n —
has been replaced by evaluating etHm v with Hm ∈ Rm×m and m ≪ n. For
the reduced problem, the matrix exponential can be computed using highly
accurate Padé methods [Moler & Loan, 2003].

It should be mentioned that the Arnoldi algorithm merely requires the
product of A and v to compute Vm and Hm; we thus do not explicitly need
to know the system matrix A — which is the case for the present applications.

Contrary to the formulation above, the solution u(t) at a given time t is
not computed directly, but rather advanced from the initial condition v via
a time-stepping algorithm. The problem to be treated by the exponential
time integration thus reduces to an initial-value problem over one time step[tn, tn + τ]

u(0) = v (2.25a)

u(tn + τ) = e(tn+τ)Av = eτAu(tn). (2.25b)

For various flow configurations the system of governing equations is non-
homogeneous, i.e., the source term q in (2.15) is nonzero. Examples include
reacting fluids where the combustion terms are modeled as temperature-
dependent source terms, or numerical boundary conditions such as an outflow
sponge term that applies a highly dissipative force near the boundary which
ensures that no (or negligible) energy is scattered back into the computational
domain. In the present case, the linear adjoint Navier–Stokes equations are
integrated backwards in time with this method. They contain a source term,
arising from the objective function, which drives the adjoint peturbations
backwards in time. The general solution for this problem is given in (2.16)
and can be rewritten using the solution of the integral term

u(t) = etAv + tϕ(tA)q (2.26)
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where ϕ(z) = (ez − 1)/z. The resulting method

un+1 = eτAun + τϕ(τA)q(tn), tn+1 = tn + τ (2.27)

is often called the (explicit) exponential Euler method. Exponential time-
integration methods of Runge–Kutta type are studied in Hochbruck & Os-
termann [2005].

If we use the following manipulation

u(tn + τ) = eτAu(tn) + τϕ(τA)q(tn),= (τAϕ(τA) + I)u(tn) + τϕ(τA)q(tn),= τϕ(τA)(Au(tn) + q(tn)) +u(tn), (2.28)

the only remaining expensive operation for the inhomogeneous case is to
evaluate ϕ(τA)v which can be approximated in a similar manner as eτAv.

We therefore obtain

ϕ(τA)v ≈ βVmϕ(τHm)e1. (2.29)

The Krylov subspace approximation to ϕ(τA)v converges toward the exact
solution as fast as eτAv converges to its exact equivalent, see Hochbruck &
Lubich [1997].

Following the formulation in Saad [1992], the function ϕ(Z) of a matrix
argument Z — or, more precisely, the product ϕ(Z)e1 — can be computed
using only one matrix exponential

exp( Z e1

0 0 ) = ( exp(Z) ϕ(Z)e1

0 1 ) . (2.30)

This expression can be obtained by explicitly deriving the matrix exponential
by a Taylor series expansion (cf. also Saad [1992]).

Nonlinear equations The exponential time-integration technique is based
on a linear problem given by the system matrix A. However, nonlinear gov-
erning equations are well within the reach of this technique. In particular, we
want to apply the Krylov time-integration method to the nonlinear compress-
ible porous Navier-Stokes equations, which calls for some small modifications.
First, the equations have to be linearized about the current state vector, and,
secondly, we need an approximation for the resulting Jacobian matrix A.
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We consider the general nonlinear initial-value problem

du(t)
dt

= f(u(t)). (2.31)

A Taylor expansion of the right-hand side about a given state u(tn) yields

f(u(t)) = f(u(tn)) + ∂f

∂u
(u(tn))(u(t)−u(tn)) + r(u(t)) (2.32)

with the remainder term r(u(t))and the Jacobian matrix

A ≡ ∂f

∂u
(u(tn)) (2.33)

The nonlinear governing equation can then be rewritten in the form

du(t)
dt

= f(u(tn)) +A(u(t) −u(tn)) + r(u(t)). (2.34)

Introducing an integrating factor e−tA in Eq. (2.34) and subsequently inte-
grating over the interval t ∈ [tn, tn + τ], the solution u(tn + τ) at the new
time-step yields

u(tn+τ) = u(tn)+(eτA−I)A−1f(u(tn))+∫ tn+τ

tn

e(tn+τ−s)Ar(u(s))ds.

(2.35)

Equation (2.35) still depends on A ∈ Rn×n and represents an exact solution to
problem (2.31). The integral term in Eq. (2.35) has to be evaluated numer-
ically. Different methods based on quadrature rules like Runge–Kutta and
multi-step methods are presented, e.g., in Tokman [2006] and Hochbruck et al.
[1998]. Solving this integral term numerically will enhance the accuracy of the
time-integration method at the expense of an increase in computational time.
More precisely, depending on the specific case and the chosen approximation
method for the integral, the computational time for the solution of the in-
tegral roughly matches the computational time for the approximated matrix
exponential [see Tokman, 2006]. This raises the question whether the inclu-
sion of this integral term is necessary for our specific fluid dynamic equations.
It is shown in Schulze et al. [2009b] that omitting the integral is comparable
to the error induced by a standard explicit Runge–Kutta method. Methods
of this type are referred to as exponentially fitted Euler methods Hochbruck
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et al. [1998] or exponential Rosenbrock-Euler methods Caliari & Ostermann
[2009]

Using the same ϕ-function from the linear, nonhomogeneous case, ϕ(z) =(ez −1)/z, and setting the integral to zero, we can rewrite Eq. (2.35) and give
an approximation for the solution at the new time-step as

u(tn + τ) ≈ u(tn) + τϕ1(τA)f(u(tn)). (2.36)

Employing the approximation of the matrix exponential in the ϕ-function,
we obtain

u(tn + τ) ≈ u(tn) + τβVm+1ϕ1(τH̄m+1)e1 (2.37)

including the improved approximation with H̄m+1 = [H̄ 0] .
The Jacobian A = ∂f

∂u
(u(tn)) of the system can be approximated using

a first Fréchet derivative. However, we choose to implement the Arnoldi
algorithm in a matrix-free form; we thus only need the matrix-vector product
Av (see Alg. 2.1) which can straightforwardly be approximated by

Av ≈ f(u + εv) − f(u)
ε

. (2.38)

The choice of ε in Eq. (2.38) can be influential on the stability of the simu-
lation, in particular, for large systems, and has to be adapted judiciously for
each case. For the numerical simulations presented in the next section, we
chose the parameter ε according to

ε = ∥u∥2√εmachine (2.39)

which yielded satisfactory results.
The present method shows excellent stability properties and is capable to

integrate stiff equations, like the porous Navier–Stokes equations of Sec. 3.1.
In Fig. 3.2 of Sec. 3.1.4 these properties are presented in detail. In addition
to that, the method is able to treat linear equation in an efficient way. This
is especially important for the solution of the adjoint equations of Sec. 5.4.1,
which are linear.

2.4 Including the nozzle

Supersonic jet screech is very sensitive to the shape of the nozzle geometry
and may be even eliminated for certain geometries. Hence, embedding the
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nozzle in the computational domain is of particular importance. Especially in
computational aeroacoustics, where high order schemes combined with finite
differences are used, the inclusion of solid boundaries is a challenging task.
Within the last two decades several methods are developed to simulate the
presence of solid objects with curved boundaries, like immersed-boundary
methods or overlapping (chimera) grids.

In the following, a brief overview of the possible methods to include a nozzle
for jet screech computations will be presented, beginning with a low order
modeling of the nozzle by a velocity profile, followed by immersed boundary
methods and finally chimera grids.

Velocity profile The presence of the nozzle can be modeled by a velocity
profile without explicitly including the nozzle geometry in the computational
domain. Instead, the velocity profile of the jet at the nozzle exit is modeled
and included in the domain as an inlet boundary condition. However, the
screech feedback mechanism which is amplified due to the reflections at the
solid nozzle lip will not be considered using this approach. It is shown in
Schulze et al. [2009a] that a jet with a nozzle modeled by means of a velocity
profile only, does not produce screech tones.

When modeling the nozzle with a velocity profile, there is the option to
force the screech feedback mechanism artificially [see Schulze et al., 2009a].
To this end, microphones (sensors) are placed in the upstream direction of the
jet (only positions which amplify screech can be considered; see Eq. (1.16)) to
capture the acoustic signal (pressure fluctuations) of the shock-associated jet
noise. This signal is then used to force the instabilities in a small fringe region
in the mixing layers at the nozzle exit. Hence, the feedback loop is closed
and screech tones can be detected. Yet, it is not clear how to adjust the gain
when transforming the measured signal into the forcing in the fringe region.
To this end, the screech amplitude, in contrast to the screech frequency, can
not be predicted properly.

Immersed-boundary These methods can be applied by introducing ghost
points inside the solid domain (which is included in the Cartesian computa-
tional grid) which are chosen such that the solid pressure boundary condition
is satisfied [see Kurbatskii & Tam, 1997]. These methods also include the
volume penalization techniques where the velocities inside the solid obstacle
are forced to zero for fixed bodies or the velocity of the obstacle if it is moving
to satisfy the no-slip condition [Kolomenskiy & Schneider, 2009, Schneider &
Farge, 2005]. In the present study, a volume penalization method for the
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compressible Navier–Stokes equations is implemented and presented in detail
in Sec. § 3.

Overlapping grids The most challenging approach to include a nozzle in
the computational domain is based on overlapping grids or also referred to
as chimera grids. They use a set of grids, usually containing a curvilinear
grid surrounding the solid body which is embedded in a Cartesian grid. The
exchange of information between both grids is based on a three-dimensional
spatial interpolation.

The interpolation is performed in an interpolation zone close to the bound-
ary of the curvilinear grids. Depending on the order of interpolation, the
width of this interpolation zone has to be at lest n + 1 points, where n is the
order of the interpolation. It is proposed by Guenanff et al. [2003] that a
fourth order Lagrange interpolation is a good compromise between accuracy
and computational cost. Based on a Lagrange interpolation in three dimen-
sions, the values in the interpolation zone are updated within each iteration of
the time integration method. Due to the closed feedback loop in the present
application (screech) the information of the curvilinear grid and the Cartesian
grid needs to be interpolated in both directions. Thus, a two-way coupling
has to be applied. To increase the numerical stability of the interpolation
method the Lagrange interpolation can be written in a barycentric formu-
lation. For more information on the interpolation procedure in overset grid
techniques see Schulze & Sesterhenn [2010a].

The main advantage of overset grid techniques compared to immersed
boundary methods is the ability to obtain a smooth grid at the surface of
the obstacle and to easily adjust the grid resolution to efficiently resolve the
boundary layer. The main disadvantages of overset grid methods is the addi-
tional computational time due to the interpolation and the exchange of the
interpolated data between the individual grids using MPI interfaces in highly
parallelized environments [see Schulze & Sesterhenn, 2010b]. Another disad-
vantage of overset grid techniques is the creation of spurious waves at the
interface of both grids and the increase of numerical dissipation based on the
order of interpolation. The latter two phenomena will be addressed briefly in
the following.

To this end, the linear convection-diffusion equation is solved on a one-
dimensional computational domain with a one-way coupling of two overset
grids. Spatial discretization is performed with a sixth order compact finite
differentiation by Lele [1992] as used for the Navier–Stokes equations of the
present investigation. Due to the interpolation between both overlapping
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Figure 2.5: (a) Modified wavenumber for the sixth order compact finite differentiation by Lele
[1992] for two overlapping grids including interpolation of different order. No interpolation
( ); First order interpolation ( ); Second order interpolation ( );
Third order interpolation ( ); Fourth order interpolation ( ). (b) 2-norm
of the difference of the sixth order finite differences without interpolation to the one with
interpolation. For various interpolation orders.

domains, the dispersion increases with decreasing order of interpolation. In
Fig. 2.5(a) the combined modified wave number of the total system including
the interpolation is presented as a function of the interpolation order. One
can identify that the dispersion of the high wave numbers of a first order in-
terpolation is larger compared to a higher order interpolation and decreasing
for a second and third order interpolation. A further improvement of the
dispersion error for high wave numbers, when increasing the interpolation
order to four, can not be identified. In Fig. 2.5(b) the total error of a wave
propagating through both domains is presented as a function of the interpo-
lation order and scaled with the error of a first order interpolation. One can
see that the error is decreasing monotonically with the inerplation order. An
improvement of more than 25 % can be gained when changing a first order
interpolation to a fourth order interpolation. It is also visible from that figure
that additional benefit of a fourth order interpolation compared to a third
order interpolation is less than 2 %. Combining both observations from panel(a) and (b) a third order interpolation may be a good compromise between
accuracy and computational time.

To obtain a deeper inside in the numerical properties of the error related
to the interpolation, the eigenvalues and -vectors of the combined differen-
tiation and interpolation operator can be identified. In Fig. 2.6 both, the
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Figure 2.6: Eigenvalues of the linear convection diffusion operator, based on the sixth order
compact finite differences by Lele [1992]. Gray circles (○): no interpolation; Black dots (●):
fourth order interpolation.

eigenvalues of the discretization operator without interpolation and the com-
bined operator including a fourth order interpolation are presented. Both
operators show the characteristic behavior of a convection-diffusion operator.
In the combined case, including interpolation, additional eigenvalues appear
with both high frequency and low damping and also low frequency and high
damping. Two characteristic eigenvalues of the combined operator are pre-
sented in Fig. 2.7(a) including their corresponding eigenvector in panel (b).
The first eigenvalue is located close to the origin of the imaginary plane and
marked with a black circle. The corresponding eigenvector in panel (b) is
marked with a black curve. This eigenvalue connects both computational
domains with the interpolation zone in the center of the two overlapping do-
mains. No spurious reflections or discontinuities are visible. In contrast to
that, is the second eigenvalue investigated. This eigenvalue lies on a branch,
caused by the interpolation, and is marked with a gray circle. The corre-
sponding eigenvector in panel (b) (gray curve) shows a solution separated by
the two individual grids. On the left domain, the solution is zero whereas the
solution on the right domain is characterized by a high frequent wave num-
ber with increasing amplitude towards the end of the domain. These modes
on the additional branches, arising due to the interpolation, are responsible
for spurious reflections at the domain interfaces. In CAA and especially in
screech computations where an acoustic feedback is responsible for the domi-
nant noise source, spurious frequencies close to the nozzle (interpolation zone
of the curvilinear grid (cf. Schulze & Sesterhenn [2010b] for a possible setup of
a nozzle with overset grid techniques) can strongly influence the investigated
physical phenomenon.
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To this end, and due to the increased computational requirements, the
method of immersed boundary methods (volume penalization) will be used
in spite of the advantages of overlapping grid techniques.

2.4.1 Computational domain

Immersed boundary methods include the geometry as a space depended func-
tion in a Cartesian domain. In the present thesis, planar an round jets are
investigated. In the round case, the Cartesian domain is non-periodic in all
three directions. At the domain boundaries, specific numerical boundary con-
ditions are applied which are addressed briefly in section § 2.4.3. To refine the
grid in the areas with small scales, like in the turbulent areas of the jet, a grid
stretching is applied in the two transverse directions (y and z; see § 2.4.2). In
the planar case, one direction (here z) is supposed to be periodic and neither
a grid stretching nor any boundary conditions are applied in that direction.

The definition of the nozzle and the method of immersed boundary methods
(volume penalization) is presented in detail in § 3. A sketch of the Cartesian
domain including the boundary conditions and the nozzle for the planar and
round jet is presented in Fig. 2.8.
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(a) (b)

Figure 2.8: Sketch of the Cartesian domain including the boundary conditions (see § 2.4.3)
and the nozzle of the planar jet (a) and round jet (b). Only every tenth grid point is shown.

2.4.2 Grid stretching

As mentioned already, different length scales can be found in a compress-
ible turbulent flow, ranging from the smallest scales, the Kolmogorov length
scale [Kolmogorov, 1962], to the largest scales, like a large coherent struc-
ture or a large acoustic wavelength. The smallest scales can be found in the
turbulent areas, like the mixing-layer of a jet. The acoustic wavelength of a
moderate Reynolds number flow is usually larger than the smallest turbulent
scales. Audible acoustics lie in the range of 20 Hz to 20 kHz with the small-
est corresponding wavelength for 20 kHz. Considering standard conditions
(cf. Tab. 2.3) the wavelength for the upper bound of audible frequencies is
λ = c/fmax = 17 ⋅ 10−3 m. The smallest turbulent scale in a jet with Re = 5000
and a jet diameter of D = 1 m is η = 1.7 ⋅ 10−3 m, so one order of magnitude
smaller than the smallest audible acoustic wave. Increasing the Reynolds
number, this discrepancy becomes even larger (cf. Fig. 2.9). From a numer-
ical point of view it is reasonable to use different spatial resolutions for the
different flow regimes.

To this end, a grid stretching is implemented to refine the grid around the
jet core and to coarsen the grid in the acoustic near-field. The grid stretching,
as proposed by Anderson et al. [1984], can be expressed as:

y(η) = y0 + ηc (sinh(τy(η −B))
sinh(τyB) + 1)Ly, (2.40)

with the offset y0 and the length of the domain Ly. It is performed in the
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Figure 2.9: Kolmogorov scale for a jet with diameter D = 1m versus the Reynolds number
( ). Gray area marks the audible wavelength range (corresponding to 20Hz < f <
20kHz). For a Reynolds number larger than Re ≈ 200 the smallest turbulent scale is smaller
than the smallest audible wavelength.

normal directions (y and z) of the jet with a free parameter τy and the center
of the refinement ηc. The parameter B is defined as:

B ∶= 1
2τy

ln( 1 + (eτy − 1)ηc

1 + (e−τy − 1)ηc

) .

The choice of the two free parameters in the present jet computations is τy = 5
and ηc = 0.5. A showcase of the grid stretching is presented in Fig. 2.10. In
panel (a), the grid spacing is visualized, scaled with the equidistant grid
spacing dh = 1/(N − 1). Hence, values smaller than one represent a refined
grid whereas values larger than one a coarse grid. The values reach from 0.41
for the finest grid-spacing to 2.47 for the largest grid-spacing. Each point in
this panel marks one grid point (here total number of points N = 100). One
can see that the points are clustered around the center ηc. In panel (b), the
physical space y versus the computational space η is visualized. Note, that
all derivatives are evaluated in the computational space, so metric coefficients
need to be computed in the transformed coordinates (cf. Sec. § A).

2.4.3 Boundary conditions

According to Colonius & Lele [2004], in CAA the implementation of ro-
bust and accurate boundary conditions (BC) is one of the most challenging
aspects. A three-dimensional Cartesian domain has six boundaries which
we will denote with Xp and Xm for the left and right boundary in the
x-direction, respectively. A similar nomenclature exists for the y- and z-
direction (cf. Fig. 2.11). In the present study, several numerical boundary
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Figure 2.10: Grid stretching to refine the grid in the area of the jet core and to coarsen the grid
in the acoustic near-field. Based on Eq. (2.40). (a) Grid spacing scaled with the equidistant
grid spacing dh = 1/(N − 1) with the number of grid points N. Values smaller than one mark
a refined grid. (b) Physical space versus computational space.

conditions are implemented to treat the aeroacoustic application properly.
One can distinguish between two types of boundaries: a solid wall and an in-
or outflow. From an acoustic point of view, the main difference between a wall
and an outflow are the reflection properties. A solid wall reflects all acoustic
waves whereas a perfect in- or outflow shall not reflect any acoustic waves.
The latter type of boundary conditions are also referred to as non-reflecting
boundary conditions.

2.4.3.1 Non-reflecting BC

At a non-reflecting boundary condition, one has to distinguish between a pure
acoustic boundary with negligible aerodynamic fluctuations and a boundary
where aerodynamic fluctuations dominate the flow. The latter one is typical
for an outflow boundary whereas a pure acoustic boundary can be found in
the acoustic far-field. These non-reflecting acoustic boundaries are usually
based on a decomposition of the flow into characteristic waves [see Hedstrom,
1979]. With the decomposition, it is possible to identify the in- and out-
going waves depending on their sign. The unknown of a characteristic BC
is usually the ingoing wave. For a non-reflecting BC the ingoing wave has
to be zero such that all acoustic waves are leaving the domain without re-
flections. In a one-dimensional domain, these BC are exact and in a two-
or three-dimensional space a good approximation. The standard approach
to implement a non-reflecting BC is to first decompose the flow into charac-
teristic waves, setting the ingoing wave to zero and then to recompute the

65



2 Theory of computing supersonic jet noise

Figure 2.11: Nomenclature of the boundaries of the three-dimensional Cartesian domain. Xplus
for the right boundary and Xminus for the left boundary in the x-direction. Similar for the y -
and z -direction.

(a) (b)

σ
(x
)

x/Lx
0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

σ
(x
)

x/Lx
0 0.2 0.4 0.6 0.8 1

10−15

10−10

10−5

100

Figure 2.12: (a) Example of the sponge function σ(x) of Eq. (2.42) with LXp = 0.4Lx and
CXp = Lx . (b) Logarithmic scaling.

waves into flow variables. In the present case, the flow variables are already
decomposed into characteristic waves so that the numerical implementation
of this BC is straightforward.

2.4.3.2 Fringe region (sponge)

Outflow boundaries need a special numerical treatment. Besides a reflected
acoustic wave from the inside of the computational domain they can be re-
sponsible for spurious acoustic waves. The problem arises when large coherent
structures, like vortices, are leaving the artificial boundary of the computa-
tional domain. They are responsible for loud noise sources once they get
truncated by the boundary. To avoid these problems, a damping term is
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added in a region upstream the boundary to absorb the aerodynamic fluc-
tuations. Due to its physical interpretation, this BC is also referred to as a
sponge BC. From a mathematical point of view this additional source term
is added to the right-hand side of the Navier–Stokes equations and reads in
symbolic form:

∂q

∂t
= N (q) − τspσ(x)(q − q0) (2.41)

with the flow state q, the right-hand side of the Navier-Stokes equations N(q),
a spatially varying damping function σ(x) and some reference state q0. The
choice of q0, σ(x) and the strength of the sponge τsp has to be done carefully
to avoid numerical instabilities and acoustic reflections. Usually the reference
state q0 is chosen to be the mean flow field. For linear equations q0 would be
zero. The damping function σ(x) has to be smooth to absorb aerodynamic
fluctuations slowly. A fast increase of σ(x) can be responsible for acoustic
reflections. To this end, the damping function has to extend a large area
and thus occupies a large area of the computational domain. Points in the
sponge have no physical meaning and represent a computational overhead. To
increase the computational performance an additional grid stretching can be
applied in the area of the sponge (not performed in the present investigation).

The sponge function, as implemented in the present study, can be written
as follows:

σ(x) = 1
2
(1 + erf ( 2

LXp

(x −CXp))) . (2.42)

A sponge region can be also applied to boundaries in the acoustic far-field
and can be combined with other numerical BC like the non-reflecting BC of
Sec. § 2.4.3.1.

In the present investigation on round an planar jets, the sponge term is
added at the outflow boundary Xp (cf. Fig. 2.8). The parameters for both
jets are set to: LXp = 10D and CXp = Lx = 25D with the diameter/height
of the nozzle D and the strength of the sponge τsp = 103. The shape of the
sponge function σ is presented in Fig. 2.12 with the present parameters.

2.5 Parallelization

As we have seen in Sec. § 2.6, the Kolmogorov scale is the smallest scale
to resolve a DNS for reasonable Reynolds numbers. We have also seen that
there is an upper limit for a feasible Reynolds number in the order of 104. In
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Figure 2.13: Decomposed domain in two dimensions (x and y) of a three-dimensional domain.

most technical applications, like supersonic jets of real aircraft, the Reynolds
number is much higher. A real supersonic jet has a Reynolds number of the
order of 107. To resolve a DNS of such a flow needs approximately N ≈ 1017

grid points, which corresponds to a memory requirement of approximately
one million terabyte. Todays high performance hardware is equipped with
about one hundred terabyte of main memory.

To get as close as possible to real flows, the use of high performance comput-
ing is indispensable. As high performance computers are parallel computers,
the code is parallelized with a domain decomposition approach (cf. Fig. 2.13).
Each processor/core solves the Navier–Stokes equations on a small part of
the entire domain. Communication between the processors is necessary, es-
pecially when computing the derivatives. On the boundaries of a sub-domain
the finite difference stencil needs information of the neighboring process. In
the present investigation, communication is based on a hybrid approach using
the Message Passing Interface (MPI) and the OpenMP libraries. Whereas the
OpenMP is intended to communicate only between the cores of one proces-
sor/blade to avoid the memory-bottleneck for the memory consuming appli-
cation. The three-dimensional domain is decomposed in two dimensions (x
and y). In this plane, the MPI libraries are the underlying communication
routines. In the third direction (z) the OpenMP libraries divide the outer
loop in the shared memory of one multicore CPU.

For the case of compact finite differences, where a system of equations
needs to be solved, data of an entire direction needs to be accessible. To
this end, a special technique, to transform the domain in a certain direction,
has to be performed. This method is presented in Fig. 2.14 for the x and
y-direction (panels (a) and (b), respectively) and based on the methods in

68



2.5 Parallelization

(a) (b)

Figure 2.14: Transformation of the decomposed domain in two dimensions (x and y) of a three-
dimensional domain. (a) For the discretization in the x-direction. (b) For the discretization in
the y -direction.

Eidson & Erlebacher [1995]. All data in the decomposed domain is rearranged
to access each process the information in a new sub-domain including one
entire direction (x or y). Thereby, the total number of grid point allocated
to one process is not changing to allow a balanced work load and to avoid
deadlock. Eidson & Erlebacher [1995] mention, that for a periodic direction,
the “chained” algorithm can be faster than the present “transpose” algorithm.
In the work of Foysi [2005], both algorithm have been investigated, and it
could be shown that the performance of both algorithms matches each other.
To this end, only the transpose algorithm is implemented in the present code
and highlighted in Alg. 2.2.

In Fig. 2.15 the performance of the code is visualized. It has been measured
on two platforms with slightly different hardware. On the HLRB-II1 and on
the HLRN-II2. Two different test cases are investigated. A medium scale job
with 64 million grid points and a large scale job with one billion grid points.
For the medium scale job the code shows a nearly linear scaling on both
platforms with up to 1024 cores (cf. Fig. 2.15(a)). In the large scale job an
even superlinear scaling can be observed (cf. Fig. 2.15(b)). Due to resource
limitations, this job is only measured at the HLRB-II.

1Leibnitz–Rechenzentrum (LRZ). SGI Altix 4700. http://www.lrz.de/
2Norddeutscher Verbund zur Förderung des Hoch- und Höchstleistungsrechnens (HLRN).

SGI Altix ICE 8200 Plus (ICE2). http://www.hlrn.de/
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Figure 2.15: Speed-Up of the parallel code, measured on the HLRB-II ( ) and the
HLRN-II ( ). (a) Medium scale job with 64 million grid points. (b) Large scale job
with one billion grid points (only HLRB-II).

Quantity Unit Value Description

T0 [K] 293.15 temperature
p0 [Pa] 101325 pressure
µ0 [kg m−1 s−1] 1.7 ⋅ 10−5 dynamic viscosity
R [J kg−1 K−1] 287 specific gas constant
γ [⋅] 1.4 ration of specific heats

Table 2.3: Standard conditions for dry air, used in Fig. 2.16 before the shock (supersonic area).

2.6 Treating shocks

Shocks may appear in supersonic flows when the back pressure is increasing.
They are characterized by a nearly discontinuous change in the characteristics
of the fluid, like pressure, density and velocities. Especially shocks, which are
orientated normal to the flow direction are sharp. Their width is approxi-
mately one order larger than the mean free paths of the fluid [Salas & Iollo,
1996]. For dry air under standard conditions (cf. Tab. 2.3) the mean free path
of a gas molecule is 68nm = 68 ⋅ 10−9m. In the four panels of Fig. 2.16, the
profiles of the density, pressure, entropy and Mach number through a shock
are presented. The shock is computed, based on the compressible Navier–
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Input: field of one process u

Output: transposed field ut

1: for p = 0 to np − 1 do
2: m2 = n2/np

3: for k = 1 to n3 do
4: for j = 1 to m2 do
5: for i = 1 to n2 do
6: tmp1(i, j, k) = u(i, idest ∗m2 + j, k)
7: end for
8: end for
9: end for

10: send tmp1 to idest

11: receive tmp2 from idest

12: for k = 1 to n3 do
13: for j = 1 to m2 do
14: for i = 1 to n2 do
15: ut(i + idest ∗ n1, j, k) = tmp2(i, j, k)
16: end for
17: end for
18: end for
19: end for

Algorithm 2.2: Transpose algorithm for the parallelization.

Stokes equations of the present chapter in one dimension for dry air under
standard conditions (see Tab. 2.3). For the velocities, the pressure and the
density, the interior shape of a weak shock [Crighton, 1986] is similar to a
hyperbolic tangent profile [Taylor, 1910]. Pressure and density are increasing
when passing the shock, whereas the velocity is decreasing from supersonic
(M > 1) to a subsonic state (M < 1). The entropy, on the contrary, shows a
non monotonically behavior. Its value increases to a maximum in the center
of the shock and then decreases to its final value [Morduchow & Libby, 1949].
That the entropy is decreasing, one might notice a violation of the second
thermodynamic law. However, the final value of the entropy after passing the
shock has increased and the second thermodynamic law, valid for the entire
system and not locally, is satisfied.

Following the theory of Taylor [1910], one can obtain an approximation,
based on a linear theory, for the shock width. He also provided an expression
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Figure 2.16: Computation of the shock profiles, based on the one–dimensional Navier–Stokes
equations. (a) Density, (b) Pressure, (c) Entropy, (d)Mach number. The distance is measured
in µm = 10−6 m. Shock width one order larger than the mean free path of the gas (10 ⋅68 nm =
0.68 ⋅ 10−6 m).

for the velocity profile in the interior of the shock. A comparison of the linear
theory and the results of the one-dimensional Navier–Stokes equations can
be found in Fig. 2.17(a). The black dots represent the analytic solution and
the solid line the numerical results. Both curves are in very good agreement,
with only slight deviations in the subsonic part of the shock. Hence, the
implemented numerical method is capable to capture resolved shocks. To
answer the question, whether the investigated numerical method is able to
resolve a sharp shock, two issues need to be addressed. (i) In the numerical
experiments of the present work, the Reynolds number (viscosity, dimension)
is usually small compared to real flows. What is the relation of shock width
and viscosity? (ii) What is the resolution of a DNS?

To answer the first question, the theory of Taylor can be used to obtain
an expression for the shock width depending on the dynamic viscosity. To
obtain comparable results, instead of using the viscosity as a measure, the
Reynolds number is used as a function of the viscosity, only. All other pa-
rameters (velocity, density and length-scale) are kept constant with the values
of Tab. 2.3 and a length-scale of one meter. Following Taylors theory, the
shock width scales linear with the viscosity or linear with the inverse of the
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Figure 2.17: (a) Comparison of the Navier–Stokes computation with the linear theory of Taylor
[1910]. Black solid curve: Navier–Stokes computation. Black dots: linear theory. (b) Shock
width δ as a function of the viscosity (Reynolds number, under standard conditions and length-
scale one meter) (black solid curve). Kolmogorov scale (dashed curve). Black dots mark the
viscosity for dry air (µ = 1.7 ⋅ 10−5 [kg m−1 s−1]).

Reynolds number:

δ ∼ µ ∼ Re−1.

The result is presented in Fig. 2.17(b) (solid line) where the dot marks the
Reynolds number for dry air (µ = 1.7 ⋅ 10−5 [kg m−1 s−1]). In this point, the
shock width is 0.64333 µm.

To answer the second question, the standard method to determine the
resolution of the computational domain for a DNS, the Kolmogorov scale, is
presented in the same figure (dashed line). The Kolmogorov length scales
with [Pope, 2000]:

η ∼ µ
3/4 ∼ Re−

3/4.

Compared to the Kolmogorov scale, the shock width (solid line) decreases
with a steeper slope, as it scales linear with the viscosity. For Reynolds
numbers Re < 105, the shock width is larger than the Kolmogorov scale. For
Reynolds numbers Re > 105, the shock width is smaller than the Kolmogorov
scale [see also Sesterhenn et al., 2005].

Following Pope [2000], the resolution of a DNS or the number of grid points
needed to resolve the Kolmogorov scale can be approximated as:

N ≈ Re9/4.
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2 Theory of computing supersonic jet noise
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Figure 2.18: Computation of the shock profiles, based on the one–dimensional Navier–Stokes
equations with different resolutions and filters. Black solid line: Same case as Fig. 2.16 com-
puted with high resolution (approx. 50 points in the shock); no filter used. Gray solid line: low
resolution (only 7 points in the shock). No filter used. Black circles: low resolution (only 7
points in the shock) with shock filter Bogey et al. [2009].

To resolve a cubic domain with an edge length of one meter and a Reynolds
number of Re = 104, about one billion (109) grid points are needed. This
is at present in 2011 the upper limit for large scale computations in the
field of CFD. Hence, the upper limit of the Reynolds number to resolve the
Kolmogorov scale is Re = 104. Consequently, as in this Reynolds number
regime, the shock width is larger than the Kolmogorov scale, a DNS will
resolve a shock.

However, in many applications with a high Reynolds numbers, it is too
expensive to resolve the Kolmogorov scale or even the shock. Under these
assumptions, the unresolved shock causes numerical instabilities due to spu-
rious Gibbs oscillations and has to be treated separately. Different numerical
methods (so called shock–capturing methods) have been designed over the
last decades to address this issue, especially in the field of CAA with high
order requirements. In the present work, an adaptive spatial filter is used,
based on Bogey et al. [2009]3, to filter the spurious Gibbs oscillations. As the
filter is adaptive, it detects the location of a shock, by means of the dilata-

3with the adjustable parameter rth = 10−5 and using the optimized filter Fopt
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2.6 Treating shocks

tion of the velocities as a measure, and applies the filter in this area, only. In
Fig. 2.18, the same shock as in Fig. 2.16 is computed with a seven times lower
resolution. Only seven points remain in the interior of the shock. Without
any filter, the numerical result shows strong oscillations around the center
of the shock (gray solid line). To compare the result, the high resolution
case is presented with the black solid line. Although the under-resolved case
shows strong oscillations, the correct shock jump in all quantities is reached.
A small displacement of the center of the shock into the supersonic region
is visible. In contrast to that, the result treated with the shock filter and
the same low resolution, shows a very good agreement with the resolved case
(black circles). No oscillations are visible and the correct shock jump and
speed are preserved.
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3
Theory of computing flow

in porous media

In the literature, porous media are not only used to reduce aeroacoustic
noise, but can be found in a series of flow control applications. For instance,
Bruneau & Mortazavi [2008] controlled the vortex shedding of the flow past
a cylinder with a porous coating. In another numerical study by Sandham &
Luedeke [2009], the Mack mode was stabilized in a Mach 6 boundary layer
flow by means of a porous surface.

The porous medium investigated in the present study, is modeled by a vol-
ume force, similar to Darcy’s law for incompressible flow. For the present
aeroacoustic application the volume force is implemented in the fully com-
pressible Navier–Stokes equations leading to a new set of porous flow equa-
tions.

A porous medium can be characterized by only two parameters: the poros-
ity φ and the permeability K. Whereas φ describes the volume ratio of void
space Vf to the volume of the whole porous material (φ = Vf /V ). Thus, a
porosity equal to one represents void space only, and a porosity of zero a solid
body, where no fluid can penetrate. The latter extreme causes a singularity
in the porous flow equations, thus only values of 0 < φ ≤ 1 are feasible.

The second parameter K stands for the permeability of the material and
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3 Theory of computing flow in porous media

(a) (b)

ρf , Vf

Ð→
ρ, V

Figure 3.1: Replacing the density of the fluid ρf in a real porous medium (a) by the density ρ
in a homogenized volume V (b). The porosity is defined as φ = Vf /V = ρf /ρ.

is a symmetric and positive definite tensor [see e. g. De Wiest, 1969]:

K = ⎛⎜⎝
κ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33

⎞⎟⎠
The entries in that tensor can reach values of zero for a material which is not
permeable (solid) and infinity for a material with no influence on the fluid
(zero drag, void material). To keep the freedom in the design process of the
porous medium, the two coefficients φ and K are supposed to be functions of
space and time. Anyway, since the realization of a time dependent structure
of a porous medium for technical applications is hard to realize, only the
space dependence will be considered (φ = φ(x), K =K(x)).

To include a porous medium in the simulation, the equations of continuity,
momentum and energy have to be modified. The main idea is based on a
relation found by Darcy [1856] to relate the flow velocities and the pressure
gradient with the permeability of the porous medium in a linear way. This
relation, called Darcy’s law, has been validated in several experiments and
reads in the present terminology:

v = −K

µ
∇p, (3.1)

with the so called Darcy velocity v = φu. This additional volume force is
added to the momentum equation and acts like a source term damping all
velocities in the porous medium. In addition to that, the density of the fluid
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Name Material Permeability [m2]

Panacell 45 ppi PU-foam 2.4 ⋅ 10−8

M-Pore Al 45 ppi Metal-foam 1.7 ⋅ 10−8

M-Pore PU 45 ppi PU-foam 1.1 ⋅ 10−8

Arpro Synthetic foam 7.4 ⋅ 10−10

ArmaFoam Sound Elastomer foam 1.5 ⋅ 10−10

Oil Rocks Stone 1.0 ⋅ 10−11

Sandstone Stone 1.0 ⋅ 10−13

Limestone Dolomite Stone 1.0 ⋅ 10−15

Granite Stone 1.0 ⋅ 10−17

Table 3.1: Permeability for different porous media. Adapted from Bear [1972] and Geyer et al.
[2010].

in the porous medium, averaged in an infinitesimal small control volume, will
change [Fulks et al., 1971]. It is related to the porosity:

φ = Vf

V
= ρ

ρf

, (3.2)

with the density and volume of the fluid, ρf and Vf , respectively, and V as
the control volume (cf. Fig. 3.1). This second fundamental law for porous
media has to be included in the whole derivation of the compressible porous
flow equations.

The unit of the permeability is [m2] and can reach values of a wide range.
Darcy used his own unit to measure the permeability, called darcy. To convert
from darcy to the S.I. area unit, we get: 1 darcy = 9.8697 ⋅ 10−13 m2 [see e. g.
Bear, 1972]. Although the unit darcy is widely used in the literature, we will
keep the S.I. unit in all following derivations. In Tab. 3.1, some examples of
existing porous media are given.

In the literature, different ways to include Darcy’s law can be found. Espe-
cially the choice of the velocities (v or u) and the placement of the porosity φ

is not unique. Most applications deal with the incompressible Navier–Stokes
equations where terms simplify [see amongst others, Bruneau & Mortazavi,
2008, Kevlahan & Ghidaglia, 2001, Khadra et al., 2000]. In the compressible
case, Liu & Vasilyev [2007] and Kramer et al. [2008] use a set of modified
Navier–Stokes equations including Darcy’s law. As they use a different for-
mulation for the energy equation, without taking into account the transforma-
tion of kinetic energy into entropy, we will present the porous Navier–Stokes
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3 Theory of computing flow in porous media

equations for compressible flow, including an equation for the entropy in the
following section.

3.1 Porous flow equations

The derivation of the compressible porous flow equations is based on the
derivation in Fulks et al. [1971], yet with an additional energy equation.
Replacing consequently the density ρ by φρf (3.2) and including Darcy’s
law (3.1), one obtains a set of porous flow equations for compressible fluids,
based on the Navier–Stokes equations, including an equation for the energy.
In what follows, we will omit the subscript (⋅)f and relate all flow variables
to the fluid.

3.1.1 Porous mass equation

The density, averaged over the volume V is simply ρφ and the porosity can
be 0 < φ ≤ 1. To this end, the modified continuity equation reads:

∂φρ

∂t
+

∂φρui

∂xi

= 0. (3.3)

Although the time dependence of the porous material will not be consid-
ered in the optimization algorithm, the general assumption of a space and
time dependent material will be used to derive the porous flow equations as
they are not restricted to the optimization algorithm (φ = φ(x, t)). In the
present numerical analysis, the governing equations are based on the pressure
p, the velocities ui and the entropy s. To this end, the continuity equation is
rewritten using Gibbs fundamental relation which reads:

T ds = de − p d(1
ρ
) , (3.4)

with the specific entropy s, the specific internal energy e and the specific
volume v = 1/ρ. Again, the density has to be modified for porous media,
because only the part of the volume occupied by fluid is considered. With
the internal energy de = CvdT for an ideal gas, one obtains:

T ds = CvdT − p d( 1
φρ
) , (3.5)

Note, that φ can be a function of space and time and can not be considered
as constant. To eliminate the explicit dependence of the temperature from
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3.1 Porous flow equations

Eq. (3.5), the modified relation for an ideal gas is applied which reads:

p = φρRT, (3.6)

or in a variational formulation:

dp = R(ρT dφ + φT dρ + φρdT ), (3.7)

with the specific gas constant R. Now, combining Eq. (3.3), (3.5) and (3.7)
we end up with a continuity equation, written in pressure and entropy for-
mulation:

∂p

∂t
+ ui

∂p

∂xi

= −φρc2 ∂ui

∂xi

+
p

Cv

(∂s

∂t
+ ui

∂s

∂xi

) (3.8)

Setting φ = 1 (no porous medium), one obtains the original continuity equa-
tion for an undisturbed fluid written in pressure and entropy formulation as
in Eq. (2.1a). Consequently, this equation can be used for both, the porous
domain and the void domain.

It is interesting to see that this formulation of the continuity equation
is no more depending on the variation of the porosity as it is the case for
Eq. (3.3). Form a numerical point of view, this is of particular importance,
since φ can be a discontinuous function in space and time. Its derivative might
be undefined and can be responsible for numerical instabilities. Especially
in applications with mixed areas of porous media and void space, as in the
present application, discontinuities of φ arise at every boundary of the porous
material.

3.1.2 Porous momentum equation

To obtain the momentum equation, we follow the same strategy as for the
continuity equation, by replacing the density with φρ. Furthermore, the above
mentioned Darcy term (Eq. (3.1)) is added to the right hand side to account
for the viscous damping of the velocities in the porous medium, depending
on the permeability of the material [as proposed by Wooding, 1957].

Finally, the momentum equation for a compressible fluid, including porous
media, can be written as:

∂ui

∂t
+ uj

∂ui

∂xj

= − 1
φρ

∂p

∂xi

+
1

φρ

∂τij

∂xj

−
µ

ρ
(K−1)ijuj , (3.9)

with τij as defined in Eq. (2.2). As for the continuity equation, this equation
is also valid in the void domain with no porous medium, by setting φ = 1 and
K →∞ ⋅ I, with the identity matrix I.
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3 Theory of computing flow in porous media

3.1.3 Porous energy equation

In the present study, the energy is expressed by the entropy. An expression for
the entropy conservation can be obtained by subtracting the kinetic energy
from the total energy and using Gibbs fundamental relation together with
the conservation of mass. To this end, the equations for continuity (3.8) and
momentum (3.9), multiplied by ui (to obtain the kinetic energy), are com-
bined with Gibbs fundamental relation (3.5), to obtain the entropy equation
for porous media.

The total energy equation with modified density can be written as:

Cv

DT

Dt
+

D

Dt
(1

2
uiui) = 1

φρ

∂

∂xj

(−puj + uiτij + (λ ∂T

∂xj

)) (3.10)

Multiplying ui to the momentum equation (3.9) leads to an expression for
the kinetic energy, including Darcy’s law:

D

Dt
(1

2
uiui) = − 1

φρ
ui

∂p

∂xi

+
1

φρ
ui

∂τij

∂xj

− µρ(K−1)ijuiuj (3.11)

Subtracting Eq. (3.11) from Eq. (3.10) reads:

φρCv

DT

Dt
− p

∂ui

∂xi

+
∂

∂xj

(λ ∂T

∂xj

) +Φ + φµ(K−1)ijuiuj (3.12)

Finally, using Gibbs fundamental relation of Eq. (3.5), which can be rewritten
in the following form:

φρCv

DT

Dt
= φρT

γ

Ds

Dt
+

1
γ

Dp

Dt
(3.13)

leads to an expression for the entropy after some standard manipulations and
reads:

∂s

∂t
+ uj

∂s

∂xj

= 1
ρφT

( ∂

∂xj

(λ ∂T

∂xj

) +Φ)
+

µ

ρT
(K−1)

ij
uiuj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1

−
hs

φ
(T − Ts)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2

, (3.14)

with the dissipation function Φ as defined in Eq. (2.4) and the thermal con-
ductivity λ as defined in Eq. (2.7). In Eq. (3.14), two additional terms,
related to the porous medium, can be identified (marked with 1 and 2 ).
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3.1 Porous flow equations

The first term has its origin in the momentum equation (3.9) multiplied by
u, to obtain an expression for the kinetic energy. This term is in fact a
K−1-norm (uT K−1u), since K is a positive definite tensor, as is its inverse.
Hence, it can be positive only and represents the entropy production due to
the loss of kinetic energy in the porous medium. This entropy production is
responsible for a temperature increase in the porous medium which can lead
to particularly high temperatures.

Based on the above equations, the porous medium has the same thermody-
namic properties as the fluid. In a technical application the porous medium
is based e. g. on an aluminum foam. This foam will have a different heat con-
ductivity and thus a modified temperature. In the present study, we assume a
constant temperature of the porous medium Ts which is a good approximation
for most metal foams, based on aluminum or even copper. To this end, the
second term is added to the entropy equation with hs = Csτ−1

s T −1
s . Whereas

hs is a specific heat transfer coefficient with a characteristic time scale and
a characteristic specific heat Cs of the porous material. In the present in-
vestigation, the parameters are chosen as follows: Cs = 897 [Jkg−1K−1] as for
Aluminum and τs = 0.5 [s]. The temperature of the porous medium TS is
equal to the ambient temperature of the fluid T0 (here 300 [K]).

If the approximation of a constant temperature is not feasible, it might
be necessary to solve an additional heat conduction equation for the space
and time dependent distribution of the temperature in the porous material.
This equation would be a part of the system of coupled equations to solve
and would consequently produce a corresponding adjoint equation for the
adjoint temperature distribution in the adjoint porous medium which is not
considered here.

Finally, the modified Navier–Stokes equations for porous media are closed
with the thermodynamic relation for an ideal gas (Eq. (3.6)) and Sutherland’s
law to obtain the temperature dependent viscosity as in Eq. (2.6). The specific
gas constant is R = Cp−Cv = 287 [J kg−1 K−1] with a constant ratio of specific
heats γ = Cp/Cv = 1.4 and a constant Prandtl number P r = 0.71.

The difference between the Navier–Stokes equations of Sec. 2.2.1 and the
present porous Navier–Stokes equations is restricted to additional source
terms and the modified density. Hence, the decomposition of the porous
Navier–Stokes equations into characteristic waves can be performed in the
same way as described in Sec. 2.2.2. For all following numerical computa-
tions, the compressible and porous Navier–Stokes equations of the present
chapter will be used, together with the characteristic formulation. In appli-
cations, where no porous material is investigated, φ is set to one and the
permeability is set to infinity with an isotropic behavior.
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3 Theory of computing flow in porous media

3.1.4 Numerical Implementation

The porous flow equations of section § 3.1.1–§ 3.1.3 can be implemented using
the same methods as in Sec. § 2.3. Anyway, the time integration technique of
Sec. § 2.3.2 plays an important role. Depending on the value of the perme-
ability in Eq. (3.9), highly damped eigenvalues may appear in the evolution
operator. These eigenvalues will be the most damped eigenvalues of the
evolution operator when the Darcy term in the porous momentum equation
dominates the convection and diffusion terms. One can obtain an analytical
approximation for the porous dominated eigenvalue by only considering the
momentum equation with the Darcy term and neglecting the convection and
dissipation terms. The dominant term in the porous Navier–Stokes equations
(3.8 - 3.14) will be −µ/ρK−1u. According to that, the corresponding real val-
ued eigenvalue is −µ/ρ(K−1)ij which is scaling with the inverse of K. This
eigenvalue causes stiff equations and constitutes a restriction to the time-step
for standard explicit time integration methods, like Runge–Kutta. Extremely
low time-steps and a bad performance are the consequence. In contrast to
that, the implemented exponential time integration method based on Krylov
subspaces is able to handle these stiff equations. This method, based on the
Arnoldi algorithm (cf. Alg. 2.1), captures the largest eigenvalues of the oper-
ator including the ones dominated by the porous terms. Hence, these terms
can be advanced in time without causing numerical instabilities.

To compare the results of the following sections, a dimensionless value of
the permeability is introduced. The unit of the permeability is [m2] and in
the momentum equation its inverse scales with µ

ρ
:

µ

ρ
K−1 ∼ 1

ReL

K−1

to this end, the Reynolds number and the length-scale L are used to obtain
an expression for the dimensionless permeability:

χ ∶= L2

ReL

K−1. (3.15)

In addition to that, to extract the largest entry of a matrix, the non submul-
tiplicative matrix norm ∥A∥max =max{∣aij ∣} can be used. Now, a large value
of χ represents a rather solid body, whereas χ = 0 is void space. How to
choose the value of χ to obtain the desired properties is validated in section
§ 3.2.

In Fig. 3.2 an example of the spectrum of the evolution operator is pre-
sented. The case is based on a periodic chanel flow with 128 grid points in
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3.1 Porous flow equations
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Figure 3.2: Eigenvalues of the evolution operator extracted with a Krylov technique. White
area: Stable eigenvalues for fourth order Runge–Kutta. Taken for one time-step of a channel
flow with Re = 1000 including a porous medium and CFL = 1 (cf. case 1 of the validation
in Sec. § 3.2.1). Black dots ● represent the full spectrum (based on full Hessenberg matrix).
Circles ○ represent the eigenvalues of a reduced Hessenberg matrix with m = 6 subspaces

(corresponding to 6 eigenvalues). (a) No porous medium (∥χ∥max =
L2

Re
∥K−1∥max = 0). (b)

Porous medium with ∥χ∥max = 2000.

the wall normal direction. One side of the channel is coated with a porous
medium (case 1 of the validation in section § 3.2.1). Panel (a) shows the full
spectrum for one time-step (black dots) without a porous medium. Here, the
values of χ are set to zero and no damped eigenvalues, related to the porous
terms are visible. In addition to that, the spectrum of a reduced Hessenberg
matrix, based on six Krylov subspaces, is marked with black circles. One can
see that the Arnoldi algorithm captures the largest eigenvalues of the spec-
trum. In the background, the stability map of a fourth order Runge–Kutta
time integration method is shown for comparison, only. Eigenvalues in the
white area can be advanced stable in time with a fourth order Runge–Kutta
time integration method, whereas eigenvalues in the gray area will cause nu-
merical instabilities. For the present case, a CFL number of CFL = 1 is chosen
and all eigenvalues lie in the stable area.

In panel (b), the same case is presented, now including the porous coating
on one side of the channel. The value of the permeability is chosen such that∥χ∥max = L2

Re
∥K−1∥max = 2000. Compared to the case without porosity, sev-

eral highly damped eigenvalues of the full spectrum appear in the unstable
part of the stability map. Again, six eigenvalues of a reduced Hessenberg
matrix are marked with black circles. As for the case without porosity, the
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3 Theory of computing flow in porous media

largest eigenvalues are captured with the Arnoldi algorithm including the
highly damped eigenvalues related to the permeability. Integrating this case
with the a CFL number of CFL = 1 and a fourth order Runge–Kutta time
integration method, would cause numerical instabilities and finally fail. As
the eigenvalues are scaled with the time-step dt one could reduce the time-
step (CFL number) by a factor of about four to scale the highly damped
eigenvalues in the stable part of the stability map. Consequently, the perfor-
mance of the overall simulation would be reduced by the same factor of four.
Apparently, the chosen value of the permeability is directly linked to the per-
formance of the simulation, when using a standard explicit time integration
technique. To represent a solid body with a porous medium, the value of χ

has to be as large as possible. Values of ∥χ∥max ≈ 105 have shown to be a
good approximation for a solid body (cf. § 3.2). This value would cause much
smaller time-steps than the one with ∥χ∥max = 2000. The maximum value of
χ or the corresponding CFL number to guarantee a stable porous eigenvalue
for standard explicit methods can be approximated in the following way:

The eigenvalue, scaled with the time-step has to be in the order of one
(depending on the explicit time integration method):

µ

ρ
K−1dt < 1.

With the definition of the CFL number: CFL = u dt/dx, the Reynolds number:
Re = ρuL/µ and the approximation of the number of grid points used in one
direction: N = L/dx, we end up with an expression for the minimal value of
the permeability:

∥K∥max > CFL ⋅L2

Re ⋅N

or for the dimensionless value of the permeability χ:

∥χ∥max < N

CFL

In the present case, for CFL = 1 and N = 128 we get ∥χ∥max < 128 to obtain
a numerically stable result. The other way around, a value of ∥χ∥max = 105

representing a solid body, causes a CFL number of CFL ⪅ 10−3 to obtain sta-
ble results. Hence, the overall performance of the simulation would decrease
by the order of three.

To this end, the time advancement is performed using an exponential in-
tegration based on Krylov subspaces. As we have seen in Fig. 3.2, this time
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Figure 3.3: Dependency of the minimal eigenvalue of the evolution operator (Ritz value) on the
permeability K. Numerical measured eigenvalue ●, analytical eigenvalue ( ). Scaled
with the time-step. With the non submultiplicative matrix norm ∥A∥max = max{∣ai j ∣}.

integration method is able to capture the highly damped eigenvalues. In the
present analysis, a maximum number of 32 subspaces is used to simulate solid
like porous materials. Compared to a fourth order five stage Runge–Kutta
method, the Krylov technique with 32 subspaces is about six times as expen-
sive. Again, a simulation of a porous medium with solid-like properties, based
on the explicit Runge–Kutta method, would be 1000 times as expensive and
not feasible for High Performance Computations.

In Fig. 3.3 the dependence of the most damped eigenvalue of the evolution
operator, based on the channel flow, mentioned earlier (case 1), is presented.
One can see that the most damped eigenvalue starts to converge to its an-
alytical solution (−µ/ρ∥K−1∥max, solid line) for values of the dimensionless
permeability larger than ∥χ∥max = 102. This marks the point, where the
porous terms dominate the damped eigenvalues of the spectrum. Hence, the
values of the permeability can be classified in a convection dominated part
(0 ≤ ∥χ∥max ≤ 102) and a porous dominated part (102 < ∥χ∥max <∞). As we
will see later, most optimized porous media will exhibit eigenvalues in both
regimes.
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Figure 3.4: Validation cases for porous properties. (a) Channel with a porous coating on one
side of the channel walls (Sec. § 3.2.1). (b) Plane acoustic wave impinging on porous wall
(Sec. § 3.2.2). (c) Comparison of a porous cylinder with solid properties and a curvilinear
cylinder (Sec. § 3.2.3).

3.2 Validation

In the following section, three test cases will be used to investigate the prop-
erties of a porous material. The first test-case, in Sec. § 3.2.1, studies the
hydrodynamic properties. Especially the feasibility to use a porous material
as a solid body will be investigated. To this end, a periodic channel flow is
applied with a porous coating on side of the channel walls. A sketch of the
flow case is presented in Fig. 3.4(a).

The second case, in Sec. § 3.2.2, deals with the acoustic properties of a
porous material. The reflection and absorption of an impinging acoustic wave,
depending on its wavenumber, will be shown. In Fig. 3.4(b) the principle
setup of the numerical experiment is shown.

Finally, in the third test case in Sec. § 3.2.3, the properties of a porous
medium are investigated on a more complex application (cf. Fig. 3.4(c)).
The flow past a cylinder, based on a porous material with solid properties, is
compared to a cylinder with a curvilinear grid. Instantaneous and mean-flow
features are compared.

3.2.1 Hydrodynamic properties

As we have seen already in the beginning of this chapter, a porous material
can be characterized by two parameters, the porosity and the permeability.
The latter parameter determines the force (pressure) necessary to pass fluid
through the material. It can be chosen to either prevent any fluid to pass
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(a) (b)

Figure 3.5: (a) Shape of a specific geometry. (b) Shape of (a) represented by the technique
of volume penalization.

through the material or to let it pass without any resistance, including all
intermediate states. In the first case the permeability is set to K = 0 and the
porous material represents a solid body. In the second case, the permeability
is set to K =∞ and simply represents void space.

The first feature is particularly interesting, since one can easily create com-
plex geometries by placing a porous body with solid properties in the compu-
tational domain without transforming the computational grid. A Cartesian
grid is used in the background to embed the porous material as a function of
the space and eventually also of the time. The solid body encloses a certain
number of grid points representing the solid body. Depending on the reso-
lution of the underlying Cartesian grid, the surface of the solid body is as
rough as the resolution of the grid. In Fig. 3.5, the basic principle to include
a solid body in a Cartesian grid, by means of volume penalization, is shown.
In any technical application and experiment, a surface of a solid body in a
fluid flow will always show a certain roughness, depending on the fabrication
technique. The fabrication tolerance, especially in experimental setups, can
be in the order of one tenth of a millimeter.

Considering e. g. a drilled round laval nozzle with a diameter of 10mm
in an experimental setup with a fabrication tolerance of 0.1mm. To obtain
the same surface roughness in the numerical simulation, the resolution of
the embedding Cartesian grid needs 100 points inside the nozzle. The high
resolution numerical experiments of Sec. § 4.2 satisfy this property due to
a grid refinement in the jet core. One has to mention, that in the usual
fashion with curvilinear grids, the surface roughness of the numerical solution
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is zero. This influences the turbulence in the boundary layers and special
techniques are necessary to trip the laminar boundary layers to obtain a
similar turbulence value as measured in the experiment [Bogey & Bailly,
2010].

The technique to include a complex geometry in a Cartesian computational
domain is related to immersed boundary methods and is called in this context
volume penalization [see amongst others, Angot et al., 1999, Arquis & Calta-
girone, 1984, Baur et al., 2009, Carbou, 2008, Keetels et al., 2007, Kevlahan
& Ghidaglia, 2001, Kolomenskiy & Schneider, 2010, Liu & Vasilyev, 2007,
Schneider & Farge, 2005]). To only use the technique of volume penalization
to include complex geometries as solid bodies in the computational domain,
the porous flow equations can be extended with an additional term including
a second derivative of the velocities (Brinkmann penalization [see Brinkman,
1949]). This term is similar to the friction terms of the Navier–Stokes equa-
tions and adds an artificial viscosity inside the porous material. It reads:

∇p = −µK−1v + µ′∆v, (3.16)

where the first term on the right hand side corresponds to Darcy’s law of
Eq. (3.1) and the second term to the Brinkmann extension. The additional
viscosity µ′ in the second term my be different from µ, depending on the
configuration of the porous material [see Brinkman, 1949, Eq. (19)]. From
a numerical point of view, this additional Brinkmann term can be useful to
satisfy the non-slip condition at the surface of the solid body as the second
derivatives are large in these areas [see Liu & Vasilyev, 2007]. Especially for
incompressible, divergence free flows, this can be important [see Kolomen-
skiy & Schneider, 2009]. If K is close to zero, the first term will dominate
Eq. (3.16) even though if the velocity gradients are large. To this end, the
Brinkmann extension will only operate for large values of K which corre-
sponds to void space in the porous material. Considering a constant µ′ = µ0

and a measurable velocity gradient, a drag on the velocity will be present in
the porous medium even tough if K →∞ (void space).

The focus of the present research project is the optimization of porous
material to reduce flow induced noise by means of controlling the permeability
K. To maintain the freedom in the design process, to create areas of void
space in regions of porous material, the Brinkmann extension of Eq. (3.16) is
not included in this analysis.

To obtain a solid body with the present equations, one has to choose K → 0.
The only problem is that we can not choose a permeability of zero due to the
related stiffness of the flow equations and the corresponding restrictions of
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the time integration method. The remaining question is, how to choose the
value of K to obtain on the one hand a porous material with solid properties
and on the other hand a balance in computational effort.

To investigate this question a test-case, based on a periodic channel flow
is simulated. One side of the channel is a solid wall boundary condition with
adiabatic properties and on the other side of the channel a layer of porous
material is added to the wall. The layer extends 0.25h into the channel (with
the height of the channel h). In the wall normal direction, a total of 128
points are used with a grid stretching to refine the mesh at the interface
between porous material and the channel flow. The grid stretching is based
on Eq. (2.40) with ηc = 0.25h and τy = 5. All computations are based on the
compressible and porous Navier–Stokes equations, integrated with 32 Krylov
subspaces in time. Based on the channel height and the initial peak Mach
number M = 0.5, the Reynolds number is set to Reh = 100. Due to this
low value, the high dissipation causes the kinetic energy to decay rapidly
in time. The amplitude of the initially parabolic velocity profile, which is
defined in the area without porous medium and zero elsewhere, decreases in
time and in addition to that, penetrates into the porous material, depending
on the choice of the permeability. In the present investigation, five different
values of the permeability are chosen. Whereas the permeability is distributed
homogeneously in the porous layer and an isotropic behavior of the material
is assumed (K = ∥K∥maxI). Hence, only one scalar value is used to describe
the material properties in the present test-case.

A total of five computations are performed with different values of the
dimensionless permeability: χ = 0 (void space, no porous material), χ =
4 ⋅ 10−1, χ = 4 ⋅ 100, χ = 4 ⋅ 101, χ = 4 ⋅ 105. The simulation starts with the
parabolic velocity profile in the area without porous medium (0.25 ≤ y/h ≤ 1).
In the area of the porous medium, all velocity components are zero for the
initial condition. In Fig. 3.6(a), the velocity profiles are presented after 4000
time-steps, which corresponds to a bulk convection length of 2.34h. One can
see clearly, that the amplitudes of the velocity profiles decayed for all cases
by about 40 %. In addition to that, one can see that for most cases, the fluid
penetrates the porous material (gray area). The trend is obvious: the smaller
the dimensionless permeability, the easier it is to penetrate the material. For
the case with no porous material (dash-dotted curve), the largest amplitudes
of the velocities inside material can be detected. They decay with increasing
permeability and are finally no more detectable in this view for the largest
dimensionless permeability (χ = 105). From this view, this value can be
considered as a solid material, as the typical parabolic shape of the channel
flow is maintained and no penetration of the porous material is visible. It is
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Figure 3.6: Case 1: Channel flow with a porous coating on one side of the channel-walls (gray
area, 0 ≤ y ≤ 0.25h) for different permeabilities: ∥χ∥max = 4 ⋅ 105 ( ); ∥χ∥max = 4 ⋅ 101

( ); ∥χ∥max = 4⋅100 ( ); ∥χ∥max = 4⋅10−1 ( ); ∥χ∥max = 0 ( ).
(a) and (b) taken after 4000 time-steps with logarithmic scaling in (b). (c) and (d) taken
after 10000 time-steps with logarithmic scaling in (d). Initial condition ( ) in (a) and
(c) based on a peak Mach number M = 0.5. Reynolds number based on the channel height h
and the initial Mach number M: Re = 100.

interesting to note, that for this high value, a sharp gradient of the velocity
profile at the interface between porous material and fluid flow occurs without
visible oscillations. This is especially surprising as no additional treatment,
like a filter or even shock filter, is applied (except the dissipative upwind
schemes).

At a snapshot, taken after 10 000 time-step in panel (c), which corresponds
to a bulk convection length of 3.90h, the trend of the previous time-step (a)
can be confirmed. Still, the velocities of the highest permeability case are not
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detectable in this view. In fact, the velocities do not vanish completely. In
the corresponding panels (b) and (d), respectively, the velocity profiles are
visualized in a logarithmic scaling. For the high permeability case, the veloc-
ity components inside the porous medium are in the order of M = 10−6 which
can be neglected for the present numerical investigation, where supersonic
velocities with M > 1 dominate the flow.

From this analysis, one can conclude, that from a hydrodynamic point of
view, a dimensionless value of the permeability of χ = 105 can be considered
as a solid body.

3.2.2 Acoustic properties

In the following test case the acoustic properties of a porous medium, based
on the porous Navier–Stokes equations of this chapter are investigated. The
focus of this investigation lies on the acoustic properties of the interface of a
porous medium and void space depending on the permeability of the material.
It is well known, that a porous medium can be used as a sound absorber. For
example, the walls of any anechoic room can be regarded as a porous medium.

This test case is based on a one-dimensional simulation of a plane acoustic
wave impinging, reflecting and transmitting on a porous wall with a varying
permeability. In addition to that, the dependence of the wave number of the
impinging and reflecting wave is investigated. To measure the deviation of a
reflecting wave of a porous wall to a solid wall, a wall boundary condition is
implemented at the location of the interface of void space and porous material.

The one-dimensional plane wave is solved on a domain Ω ∈ [0, L] with
128 equidistantly spaced grid points. The interface of void space to porous
material is located at x = 3/4L with the porous material ranging from 3/4 ≤
x/L ≤ 1. As initial condition, the shape of the plane acoustic wave is of
Gaussian type and reads:

p(x) = p0 + exp
⎛
⎝−(

x − 3/8L

b
)2⎞
⎠

u(x) = 1
ρ0c

exp
⎛
⎝−(

x − 3/8L

b
)2⎞
⎠

with the center of the Gaussian distribution at x = 3/8L and the width
b = √2/2 ⋅ 10−1L. The acoustic Reynolds number is set to Rea = 5000 based
on the length of the domain L. In Fig. 3.7 the solution of the acoustic pulse
is visualized for four time-steps (t = [1/4, 2/4, 3/4, 4/4]T ) and for different per-
meabilities, ranging from ∥χ∥max = 2 ⋅ 100, . . . , 2 ⋅ 104 (with T = L/c and the

93



3 Theory of computing flow in porous media
∥χ
∥ m

a
x

t = 1/4T t = 2/4T t = 3/4T t = 4/4T

2
⋅
1
0
0

p
−
p
0

x/L
0 0.5 1

0

1

2

2
⋅
1
0
1

2
⋅
1
0
2

2
⋅
1
0
3

2
⋅
1
0
4

Figure 3.7: Validation case 2: Acoustic properties of a porous medium. Reflection of an acoustic
wave on a porous surface depending on the permeability. Columns: Snapshots taken at four
equidistant time-steps: t = [1/4, 2/4, 3/4, 4/4]T with T = L/c and the ambient speed of sound c .
Rows: Variation of the dimensionless permeability χ ranging from 2 ≤ ∥χ∥max ≤ 2 ⋅ 104. Porous
wall ( ); Wall boundary condition ( ). Gray area: porous domain. Amplitude
of the pressure peak: p − p0 = 1 [Pa].

ambient speed of sound c). The solid curve represents the acoustic pulse
impinging on the porous material, the dashed line is the reference solution,
based on the adiabatic wall boundary condition. The latter one is indepen-
dent on the choice of the permeability. For both curves, the left boundary
is non-reflecting and for the solid curve (including the porous material) the
right boundary at x = L is also non-reflecting.

In the first case, with ∥χ∥max = 2 ⋅ 100, the acoustic pulse of the solid line
is entering the porous material at t = 2/4T without any significant resistance.
Only a little reflection is visible. Most of the acoustic pulse is transmitting
into the porous medium and finally at t = T leaving the domain. Hence, the
reflection coefficient R is close to zero and the transmission coefficient T is
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Figure 3.8: (a) Reflection and transmission of a planar acoustic wave on porous material.
Amplitude of the impinging wave A1, amplitude of the reflected wave B1 and amplitude of the
transmitted wave A2. (b) Reflection coefficient R of Eq. (3.17a) for a porous medium over the
permeability for four different wave numbers: kh = 1/4π ( ); kh = 2/4π ( );
kh = 3/4π ( ); kh = 4/4π ( ). Only the peak values of the numerical solution
of the reflected wave are considered. Phase information neglected.

close to one. Both coefficients are defined as follows:

R = B1

A1

(3.17a)

T = A2

A1

(3.17b)

and related as follows: T = 1+R, with the amplitude of the impinging wave A1,
the amplitude of the reflected wave B1 and the amplitude of the transmitted
wave A2 (cf. Fig. 3.8(a) and see Ehrenfried [2004]).

A similar picture can be found for the next higher permeability with∥χ∥max = 2 ⋅ 101, whereas the amplitude of the reflected wave is now simi-
lar to the one of the transmitted wave (R ≈ T ). In addition to that, a phase
shift of the reflected wave is visible. It seems that due to the smooth sur-
face of the porous medium, the reflected wave is first penetrating the porous
medium and then reflected. Hence, the solid curve covers a larger distance
and lags behind the perfectly reflected wave.

A further increase of the permeability (∥χ∥max = 2 ⋅ 102), enhances the
reflection properties of the porous medium. The amplitude of the reflected
wave is larger than the transmitted wave and the phase shift is being re-
duced. Compared to the latter two cases, the transmitted wave is no more
transported deeply into the porous medium, but damped and diffused rapidly
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at the surface of the porous medium.
For the last two cases with ∥χ∥max = 2 ⋅ 103 and ∥χ∥max = 2 ⋅ 104, nearly no

phase shift is visible and the amplitude of the reflected wave is close to the
exact reflection. The remaining transmitted wave consists of a small but sharp
pressure peak at the surface of the porous medium. It is not transported in
the porous medium but as before, damped in time. For t→∞, the remaining
pressure fluctuation in the porous medium will become zero. A similar result
for this test case could be found by Liu & Vasilyev [2007] with a Brinkmann
penalization.

The reflection properties of the porous medium can be also found in Fig.
3.8(b). Here, the reflection coefficient R is presented as a function of the
dimensionless permeability χ. In addition to that, the reflection characteris-
tics are presented for four different wave-numbers (kh = 1/4π, 2/4π, 3/4π, 4/4π).
The trend for all wave-numbers is similar. With increasing dimensionless
permeability, the reflection properties are improving. For low values of χ

(comparable to void space), the reflection coefficient is close to zero. It starts
to become detectable for χ > 10−1 and reaches R = 0.5 for values of χ ≈ 102.
In the latter case, the half of the acoustic energy is reflected while the other
half is transmitted into the porous medium. Finally, for χ > 104 the reflec-
tion coefficient starts to converge to its maximum value which is reached at
χ ≥ 105. The maximum value depends on the wave-number and is in the
range of 0.95 ≤ R ≤ 0.98. It does not reach R = 1, which corresponds to a
perfect reflection, and is increasing with the wave-number.

One can see that the reflection coefficient is shifted to the low values of the
permeability when reducing the wave-number. Hence, a low wave-number
will be reflected more efficiently at a lower permeability χ than a high wave-
number acoustic. To give an example: a wave-number of kh = 3/4π with
χ = 102 will be reflected with R = 0.45; a wave-number of kh = 1/4π with the
same permeability will be reflected with R = 0.58. The dependence of the
wave-number is also visible in Fig. 3.9(b).

In all studies, concerning the reflection coefficient, only the amplitudes are
considered. The effect of a possible phase shift is neglected. To investigate
the overall efficiency of the reflection properties, including the phase infor-
mation, the difference of the perfectly reflected wave and the wave reflected
on the porous surface, is measured in the L2-norm. The results are presented
in Fig. 3.9(a). One can identify a similar behavior as in panel (b), where
no phase information is included, yet, the wave-number dependence is more
dominant. The least error (10−3) can be gained for a high permeability com-
bined with a high wave-number. The worst scenario can be obtained for the
opposite case. Here, the dependence on the wave-number has reverted com-
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Figure 3.9: (a) Deviation of the reflected wave of a porous medium compared to a wall boundary
condition over the permeability and wavenumber. Measured in the L2-norm. (b) Reflection
coefficient R of Eq. (3.17a) for a porous medium over the permeability and wavenumber.
Only the peak values of the numerical solution of the reflected wave are considered. Phase
information neglected. See also Fig. 3.8.

pared to the case where the reflection coefficient is considered, only which
is due to the included phase information. One has to keep in mind, that a
phase shift, especially in screech noise computations, can lead easily to wrong
noise predictions (see the influence of an acoustic reflector on screech tones
in Sec. § 1.1.2). Hence, care has to be taken, to guarantee sufficient solid
properties of e. g. a jet nozzle. For the present screech noise computations,
the dimensionless permeability is set to χ = 105 inside the solid part of the
nozzle.

3.2.3 Flow past a circular cylinder

To validate the porous material on a complex application the flow past a
circular cylinder is investigated. This flow configuration is a standard valida-
tion test in the field of fluid mechanics. For Reynolds numbers larger than
ReD = ρuD/µ ≈ 50 this flow is unstable and characterized by the well known
Kármán vortex street. The flow past the cylinder separates periodically with
a Strouhal number of Sr = fD/u ≈ 0.2 (depending on the Reynolds number
with the frequency f , the diameter of the cylinder D and the free stream
velocity u).

Two computations are performed to validate the porous cylinder flow.
First, a computation based on a Cartesian grid with an embedded porous
(solid) cylinder and secondly a cylinder surrounded by a curvilinear (body
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(a) (b)

Figure 3.10: Instantaneous snapshot of the vorticity past a cylinder. (a) porous cylinder with
Cartesian grid. (b) cylinder with solid boundary condition and curvilinear grid. Taken at two
similar flow situations. Only every tenth grid point is shown.

fitted) grid and an adiabatic wall boundary condition. The Reynolds number
is identical for both cases and set to ReD = 5000 based on the free stream
Mach number of M = 0.4. The permeability of the porous cylinder is set to
χ = 2 ⋅ 104, based on an isotropic and homogeneous material. In Fig. 3.10 an
instantaneous snapshot of the vorticity past the two cylinders is presented.
Panel (a) shows the cylinder modeled by the porous material with the Carte-
sian grid which is stretched in the stream-wise and transverse direction to
refine the grid at the boundary of the cylinder, based on Eq. (2.40) with
τx = τy = 5 and ηx = ηy = 0. Only every tenth grid point is shown. In
panel (b) the curvilinear grid is presented with the cylinder for a similar
flow situation. Note, that this flow is turbulent and an exact comparison of
instantaneous snapshots is not possible. In addition to that, the surface of
the porous cylinder is rough whereas the curvilinear cylinder has a smooth
surface. The roughness depends on the resolution of the Cartesian grid and
adds additional turbulence in the boundary layer of the cylinder surface. This
turbulence excites the unstable mode of the cylinder and is responsible for
a fast transition of the laminar initial condition (based on the potential the-
ory) to the unsteady oscillating flow. In the case of the curvilinear grid, the
numerical error or an artificially added noise is necessary for the transition
process and may take much longer. In the present case, noise of a relative
amplitude of 10−12 is added to each flow variable of the initial condition to
force the transition.

In Fig. 3.11 the mean Mach number for both computations is presented in a
close up of the cylinder surface to illustrate the grid resolution. In this figure
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Figure 3.11: Mean Mach number in the color range of 0 < M < 0.6 including the grid. (a)
porous cylinder with Cartesian grid. (b) cylinder with solid boundary condition and curvilinear
grid.

every grid point is visualized. The surface roughness of the porous cylinder
is clearly visible in panel (a) whereas the smooth surface of the curvilinear
cylinder is visible in panel (b). One can also identify that the boundary layer
of both computations is not well resolved.

A more quantitative comparison of both computations is presented in
Fig. 3.12. At six different measurement locations, the mean absolute ve-
locity profiles along the transverse direction are presented. The measure-
ments are taken at the stream-wise positions x/r = −1, −0.5, 0, 0.5, 1, 1.5
(cf. Fig. 3.13(a) for details). Each panel (a) – (f) corresponds to one mea-
surement location with the solid line corresponding to the data of the porous
cylinder and the circles to the measurements of the curvilinear cylinder. For
all positions the measurement from both computations are in good agreement.
Except for the measurement in the wake of the cylinder some deviations are
visible. Here, the measured velocities of the porous cylinder are slightly above
the ones of the curvilinear cylinder.

The oscillating flow past the cylinder is one of the characteristics of this
application. Periodically detaching vortices cause an oscillating force in the
transverse direction of the flow. This force can be expressed by the lift coeffi-
cient Cl and is presented in Fig. 3.13(b) for both computations. Again, both
results are in good agreement concerning the amplitude and frequency. The
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Figure 3.12: Mean absolute velocity profiles along the transverse direction for six measurement
locations (x/r = −1; −0.5; 0; 0.5; 1; 1.5; also shown in Fig. 3.13(a)). Circle (○): cylinder based
on solid boundary condition with curvilinear grid. Solid Line ( ): cylinder based on
porous medium with Cartesian grid.

deviations of the results and the non-periodic behavior may be explained due
to the turbulent (chaotic) behavior of the high Reynolds number flow.

3.3 Examples of porous flow simulations

In the following section some examples, to demonstrate the method of porous
flow simulations, are given. All examples demonstrate the ability to use
a porous medium as a solid body to model complex geometries. The first
example is based on the subsonic flow about a Joukowsky wing with a high
Reynolds number. The second case deals with the complex geometry of a
fluidic device used in active control environments. The results of the porous
jet nozzle can be found in Sec. § 4.

3.3.1 Porous wing

In fluid dynamics the flow past a wing profile is a standard application. In
the present application the flow past a Joukowsky profile with zero angle
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Figure 3.13: (a)Measurement locations ( ) a−f for the mean absolute velocity profiles
along the transverse direction of Fig. 3.12. Snapshot of the streamlines in the background.
(b) Comparison of the lift coefficient Cl for the porous ( ) and curvilinear cylinder
( ). Sr = 0.2.

of attack is presented. The geometry of the wing is based on the following
conformal mapping (Joukowsky):

z = ξ −
1
ξ

(3.18)

with the unit circle ξ ∈ C shifted in the complex plane with −0.1 + 0.1i.
The free stream Mach number is M = 0.5 with a Reynolds number based

on the chord length Lc of Re = 106. With the homogeneously distributed
and isotropic dimensionless permeability set to ∥χ∥max = 18490.0, the porous
wing can be represented as a solid body. The computation is based on a two-
dimensional Cartesian grid stretched in the normal direction (y-direction) to
refine the wall boundary layers on the wing surface (for the grid stretching
see § 2.4.2). It contains 2048×1024 grid points and is solved in parallel on 256
cores. The inlet boundary is fixed and the flow variables are approximated
based on the potential theory. At the outlet a sponge, similar to the one for
the jet computations (see § 2.4.3.2), avoids spurious energy scattering back
into the computational domain. Non-reflecting boundary conditions in the
normal direction remove reflections from acoustics leaving the domain. Time-
and space discretization is based on the methods presented in Sec. § 2.3.
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Figure 3.14: Two-dimensional simulation of a porous Joukowsky wing. Snapshots taken after
33790 time-steps. Reynolds number: ReLc = 106; free stream Mach number: M = 0.5;
Dimensionless permeability: ∥χ∥max = 18490. Scaled with the chord length Lc . (a) Mach
number in the range of (0 ∶ 0.75). (b) Absolute value of the z -vorticity in the range of
(0 ∶ 2000)[1/s].

In Fig. 3.14 two snapshots of the flow are presented. Panel (a) visualizes
the Mach number and in panel (b) the vorticity is presented. One can identify
the typical vortex shedding downstream the wing with a strong separation on
both sides of the wing. Due to the high Reynolds number, the flow structures
become very small which is especially visible in panel (b) at the trailing edge
of the wing. Although the grid resolution with its two million grid points in
the two-dimensional plane is high for a state of the art computation in the
field of CFD, the computation is still not resolved. Based on that Reynolds
number a total of N ∼ Re3/2 = 109 grid points would be necessary to resolve
the smallest scales based on Kolmogorov’s theory. Note, that Kolmogorov’s
theory accounts for three-dimensional turbulent flows. This flow is forced
to be two-dimensional due to the two-dimensional computational domain.
Hence, coherent structures, like vortices, do not break up to three-dimensional
turbulence and the smallest scales may be larger than expected.
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Figure 3.15: Snapshots representing the Mach number of the fluidics simulation taken at four
equidistant time-steps: (a) t = 8Tf ; (b) t = 8.16Tf ; (c) t = 8.33Tf ; (d) t = 8.5Tf . Color
range (0; 0.25).

This case demonstrates, that the computation of a high Reynolds number
flow with a complex geometry can be performed in an efficient way, using
porous media to define the solid geometry.

3.3.2 Porous fluidic

The next example is based on a fluidic oscillator to demonstrate the ability
to compute the flow in complex geometries with feedback. Fluidic oscillators
are feedback actuators with no moving parts. They are used as active control
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Figure 3.16: Relative mass flux at the upper and lower outlet of the fluidic of Fig. 3.15. Scaled
with the mass flux at the inlet. Upper outlet ( ); Lower outlet ( ).

devices in a variety of technological applications due to their robustness. The
oscillator investigated in this example is based on the geometry found in
Cerretelli & Gharaibah [2007].

The computation is based on a two-dimensional domain with an equally
spaced Cartesian grid containing 229×256 grid points. The Reynolds number
based on the height h of the straight inlet channel is Reh = 250 with a Mach
number of M = 0.7. To obtain a solid wall, the dimensionless permeability is
set to ∥χ∥max = 104.

In Fig. 3.15, the Mach number of four equidistant time-steps represent a
half switching cycle. In panel (a) the main mass-flux leaves the device at the
lower exit. At this stage of the oscillator, a part of the mass-flux is entering
the feedback chamber and redirected back to the jet at the inlet of the device.
This redirected flow forces the jet to swith in the upper channel. Panel (b)
shows an intermediate snapshot of the flow switching from the lower to the
upper exit. Still, the main flux is leaving the device at the lower exit. In
panel (c) the jet already points in the upper channel and the mass flux is
divided equally over the lower and upper exit. Finally, in panel (d) the jet
switched completely into the upper channel, resulting in a similar picture
as in panel (a) flipped at the x-axis. From this point, the cycle continues
to switch back to the lower exit. This process is repeated with a constant
frequency ff = 1/Tf .

In Fig. 3.16 the mass-flux of the upper an lower exit of the device is pre-
sented and scaled with the mass flux of the inlet. One can identify the
π-shifted oscillating behavior measured over seven cycles.
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3.3 Examples of porous flow simulations

As a conclusion of this chapter, we can see, that the presented porous
and compressible Navier–Stokes equations are capable to treat both, acoustic
and hydrodynamic flow problems with geometries of high complexity. These
equations will be used in the following section to include a convergent nozzle
in the Cartesian computational domain to investigate supersonic jet noise.
The focus of the jet noise computation will lie on jet screech, which is ampli-
fied due to the reflected acoustic wave at the nozzle lip. Hence, the porous
material needs to show its capability to handle both, a proper reflection char-
acteristic and sufficient hydrodynamic properties, like an impermeable wall.
In addition to this, in Sec. § 6, a porous material will be added to the noz-
zle exit to eliminate the feedback mechanism where high demands are made
on the damping properties of the porous material. All these properties are
shown to be controllable with the present porous flow equations.
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4
Results of supersonic jet noise simulation

In the following chapter the results on supersonic jet noise computations are
presented. It is divided in two main parts. The first part deals with planar
jets whereas axisymmetric jets are investigates in the second part. In both
cases the nozzle is implemented in the computational domain by means of
a porous material with solid properties. No porous material is added to
suppress screech tones. The results of the minimization of supersonic jet
noise are presented in Sec. § 6.

The focus of the computations presented in the present chapter is to in-
vestigate screech tones and to validate the numerical method. In the first
part, dealing with planar jets, a parametric study on the influence of jet
Mach number to the flow physics, like emanated noise and mean values are,
is performed. In the second part dealing with an axisymmetric jet, the Mach
number is kept constant and the spatial resolution is modified.

Tabular 4.1 gives an overview of the main parameters, like Mach number
and grid resolution, of the computations investigated. Both, the planar and
the round jet are based on a Reynolds number of Re = 5000. In the planar
case the Reynolds number is based on the jet height h and in the round case
on the jet diameter D:

ReD = ρ∞Duj

µ∞
(4.1a)

Reh = ρ∞huj

µ∞
(4.1b)
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4 Results of supersonic jet noise simulation

Mj pr/p∞ pe/p∞ n1 × n2 × n3 # points Re opt

pl
an

ar

1.00 1.89 1.00 512 × 256× 64 8.4 ⋅ 106 5000
1.10 2.14 1.13 512 × 256× 64 8.4 ⋅ 106 5000
1.20 2.42 1.28 512 × 256× 64 8.4 ⋅ 106 5000
1.30 2.77 1.46 512 × 256× 64 8.4 ⋅ 106 5000
1.40 3.18 1.68 512 × 256× 64 8.4 ⋅ 106 5000
1.50 3.67 1.94 512 × 256× 64 8.4 ⋅ 106 5000
1.55 3.95 2.09 512 × 256× 64 8.4 ⋅ 106 5000
1.60 4.25 2.25 512 × 256× 64 8.4 ⋅ 106 5000
1.70 4.94 2.61 512 × 256× 64 8.4 ⋅ 106 5000
1.80 5.75 3.04 512 × 256× 64 8.4 ⋅ 106 5000
1.90 6.70 3.54 512 × 256× 64 8.4 ⋅ 106 5000
2.00 7.82 4.13 512 × 256× 64 8.4 ⋅ 106 5000

ro
un

d 1.55 3.95 2.09 256× 128 × 128 4.2 ⋅ 106 5000 ∎

1.55 3.95 2.09 512× 256 × 256 33.6 ⋅ 106 5000 ∎

1.55 3.95 2.09 1024× 512× 512 268.4 ⋅ 106 5000

Table 4.1: Investigated numerical simulations on planar and round supersonic jets. The two
cases marked with a ∎ will be optimized in Sec. § 6. pr : reservoir pressure; pe : nozzle exit
pressure; p∞: ambient pressure.

with the fully expanded jet velocity uj =Mjcj and the density and viscosity
based on the ambient conditions. In Tab. 4.2 an exemplary sketch of the main
flow parameters of a jet with Mj = 1.55 are presented for four characteristic
locations: in the ambient fluid, in the reservoir chamber, at the nozzle exit
and in the fully expanded jet. Ambient temperature and pressure in all cases
is chosen to be T∞ = 300 [K] and p∞ = 105 [Pa], respectively. Based on
these conditions, the diameter or hight of the jet is D = h = 1.66 ⋅ 10−4 [m].
Prandtl number is P r = 0.71 with a constant ration of specific heats γ = 1.4.
In all simulations a CFL number (Courant-Friedrichs-Lewy) of CFL = 0.7 is
adjusted to compute the time step. During the Krylov time integration a
maximum of 15 subspaces is used.

4.1 Planar jet

The computational domain of the planar jet is periodic in the z-direction
and has the dimension of 25h × 15h × 4h in the x, y and z-direction (with
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4.1 Planar jet

Position p M T ρ s c u µ

Ambient (⋅)∞ 1.00 ⋅ 105 0 300.00 1.16 8110.19 347.19 0 1.71 ⋅ 105

Reservoir (⋅)r 3.95 ⋅ 105 0 300.00 4.59 7716.04 347.19 0 1.71 ⋅ 105

Nozzle exit (⋅)e 2.09 ⋅ 105 1.00 250.00 2.91 7716.04 316.94 316.94 1.48 ⋅ 105

Fully exp. jet (⋅)j 1.00 ⋅ 105 1.55 202.63 1.72 7716.04 285.34 442.28 1.24 ⋅ 105

Table 4.2: Showcase of the flow conditions for a Mj = 1.55 jet at four different characteristic
locations. With the pressure p [Pa], the Mach number M [-], the temperature T [K], the
density ρ [kgm−3], the entropy s [m2 K−1 s−2], the speed of sound c [ms−1], the stream-wise
velocity u [ms−1] and the viscosity µ [kgm−1 s−1].

the height of the nozzle h). The convergent nozzle extends 3h in the compu-
tational domain (cf. Fig. 2.8(a)). With a total of 16 × 16 = 256 blocks, the
computational domain is decomposed and solved in parallel on 256 cores.

In Fig. 4.1 a snapshot of the planar jet for the Mach number Mj = 1.55
is presented as an exemplary picture for this parametric study. It shows the
nozzle and the magnitude of the vorticity as an iso-surface. The slice, normal
to the periodic directions, visualizes the pressure fluctuations in the color-
range of ±10 [kPa]. One can identify loud acoustic waves emanating from the
position of the third shock cell with a distinct wavelength. These acoustic
waves correspond to the screech tone and dominate the acoustic near-field
with a wave length of about two shock cells. In addition to that, the flapping
mode can be identified as the acoustic signal on both sides of the jet is π-
shifted. The acoustic waves are emanated alternatively on each side of the
jet.

Responsible for this behavior is the secondary instability of the jet which
is clearly visible in the iso-surface of the vorticity. Whereas the first two
shock cells seem to be very stationary and stable, the jet undergoes a strong
oscillation (flapping) staring at the third shock cell. Thereby, alternating
vortices are generated at each side of the jet and convected downstream.
In the low vorticity region, between two consecutive vortices, the circularly
shaped acoustic wave is emanating. A phenomenon also referred to as shock-
leakage [see Suzuki & Lele, 2003].

At the nozzle exit, the interaction of upstream propagating acoustic waves
and the hydrodynamic instabilities in the mixing-layer takes place. As we
have seen already, this phenomenon can be amplified by increasing the nozzle
lip thickness. The upstream propagating acoustic waves are reflected at this
point and causing a strong acoustic pressure peak triggering the instabilities.
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4 Results of supersonic jet noise simulation

Figure 4.1: Snapshot of the planar jet showing the convergent nozzle and the iso-surface of the
vorticity magnitude. Slice visualizes the pressure fluctuation in the color-range of ±10 [kPa].
Sponge at the outlet not included.

To this end a thick nozzle, with a lip as thick as the jet height is chosen.
In Fig. 4.2 the dimensions of the planar nozzle are presented. The total
length of the nozzle is Lo = 3h with the height h of nozzle exit. At the
inlet of the nozzle, the height is chosen such that the Mach number of the
convergent nozzle is Mi = 0.5. This corresponds to a height of Dii = 1.34h

(cf. also Eq. (1.8)). At this point, an inlet condition prescribes the pressure,
the entropy and the velocities in the nozzle to match the state of under-
expansion. The velocity satisfies the non-slip condition at the inlet with
a sharp boundary layer thickness (one grid point). Inside the nozzle the
boundary layer develops and reaches its final thickness at the nozzle exit.
Pressure and entropy are distributed uniformly over the nozzle inlet. No
additional forcing or turbulent energy is applied.

Shock cell spacing In Fig. 4.3 the shock cell spacing of the planar jet is pre-
sented as a function of the fully expanded Mach number. The numerical data
are extracted for all investigated Mach numbers above Mj = 1 (cf. Tab. 4.1).
For this design Mach number, the jet is ideally expanded and no shocks are
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4.1 Planar jet

Figure 4.2: Dimensions of the planar convergent nozzle. Design Mach number Md = 1; inlet
Mach number Mi = 0.5. D = h, Dio = 3D, Di i = 1.34D, Doi = 2D, Li = 2.9D, Lo = 3D.

present. The values above the design point correspond to the mean length
of the first two shock cells and are taken from the mean pressure field of the
fully developed jet. In this study, experimental, analytical and other numeri-
cal data are included to validate the result. The analytical data corresponds
to a theory by Tam [1988] (solid and dashed line) whereas the dashed line
stands for a nozzle aspect ratio of b/h = 4 and the solid line for an infinitely
large aspect ratio (b≫ h). One can identify that the shock cell spacing of the
present investigation (filled black bullets) matches well the analytical theory
for a jet with aspect ratio b/h = 4 as in the present study, although the jet is
periodic (infinitely large aspect ratio). There seems to be a relation between
the domain length in the periodic direction and the aspect ratio of the jet.

Various experimental data on jets with different aspect ratios and Mach
numbers confirm the analytical theory of Tam [1988] and validate the present
numerical computation. In addition to that, two other numerical data are
included in the figure. The first corresponds to an investigation of a jet with
a nozzle modeled by a velocity profile at the inlet [Schulze et al., 2009a]
and a fully expanded jet Mach number of Mj = 1.61. Their results match
the analytical and experimental data. According to Tam [1988] an Morris
et al. [1989] the shock cell spacing is related to the jet Mach number and the
height of the supersonic area in the jet. The latter one strongly depends on
the shear layer thickness. For a velocity profile at the inlet, the initial shear
layer thickness can be adjusted to match the analytical data. Berland et al.
[2007] who provide the second numerical data in this figure underestimate

111
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Figure 4.3: Shock cell spacing as a function of the fully expanded jet Mach number Mj for var-
ious experimental and numerical data. Experimental: +, Hammitt [1961]; ◻, Powell [1953b];
▽, Raman & Rice [1994]; ○, Panda et al. [1997]; Numerical: ○, Berland et al. [2007]; ▲,
Schulze et al. [2009a] (nozzle: velocity profile); ●, current computation (porous nozzle); The-
ory: ( ), Tam [1988] for b ≫ h; ( ), Tam [1988] for b/h = 4 (as in the current
computation).

the shock cell length. They explain this deviation with the initial shear layer
thickness which is larger than in experimental data.

The mean velocity profile of the planar jet is shown in Fig. 4.4. Besides
experimental data from Gutmark & Wygnanski [1976], Bradbury [1965] and
Ramaprian & Chandrasekhara [1985] and numerical data from Berland et al.
[2006] it also contains an analytical solution based on [Pope, 2000, Eq. (5.187)]
which reads:

ū

Um

= cosh−2 (log (1 +√2) y

δ0.5

) (4.2)

with the distance to the jet axis y and the half width of the self-similar
profile δ0.5. The mean velocity profile of the current numerical computation is
measured at x/h = 17. It is in good agreement to the experimental, numerical
and analytical data especially in the area close to the jet axis 0 ≤ y/δ0.5 ≤ 2.
At the edges of the profile the numerical solution tends more rapidly to zero
as the analytical solution. This deviation is related to the “uniform turbulent
viscosity” assumption used in the analytical solution which can not be applied
in areas where the turbulent viscosity is diminishing [see L’vov et al., 2008,
Pope, 2000].
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Figure 4.4: Mean velocity profile in the transverse direction of the jet for analytical data:
( ), Pope [2000], experimental data: +, Gutmark & Wygnanski [1976]; ◻, Bradbury
[1965]; △, Ramaprian & Chandrasekhara [1985]; and numerical data: ○, Berland et al. [2006];
●, current computation with Mj = 1.55 measured at x/h = 17.

Screech frequency and amplitude According to the theory on jet screech
presented in the introduction of this thesis, the screech frequency strongly
depends on the shock cell spacing. Hence, the correct prediction of the shock
cell spacing is of particular importance for screech computations. The correct
prediction of the shock cell spacing could be shown in the last paragraph.

The screech frequency (here expressed with the Strouhal number Sr =
fh/Uj) as a function of the fully expanded jet Mach number is presented
in Fig. 4.5(b). It includes, besides the current numerical data (black filled
bullet), an analytical theory by Tam [1988] (solid line), experimental data by
Panda et al. [1997] and two numerical investigations. The current numerical
simulation on planar jet screech for Mach numbers in the range of 1.2 ≤Mj ≤
2.0 perfectly matches the theoretical prediction.

The acoustic signal (pressure fluctuations) is measured in the near field of
the jet in a distance of 6.5h to the jet axis and in an angle of Θ = 90○. Hence,
above the nozzle exit. It is decomposed in frequency space and the dominant
peak of the spectrum extracted and presented in the figure. For Mach number
below Mj = 1.2 no screech tone could be identified in the spectrum and the
corresponding data points are not included (for Mj =Md = 1 no shocks and
hence no screech is present). A screech tone for high Mach numbers above
Mj = 1.8 can be identified also. Even for Mj = 2 a peak, occurring at the
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Figure 4.5: Screech amplitude and frequency of a rectangular jet versus the fully expanded
jet Mach number Mj . Experimental: ○, Panda et al. [1997]; ◻, Raman [1997b]; ▽, Raman &
Rice [1994]; Numerical: ○, Berland et al. [2007]; ▲, Schulze et al. [2009a] (nozzle: velocity
profile); ●, current computation (porous nozzle); Theory: ( ), Tam [1988]. (a) Screech
amplitude versus the fully expanded jet Mach number. (b) Dominant screech frequency as a
function of the jet Mach number Mj .

estimated screech frequency, is visible in the spectrum. Yet, the amplitude
of this high Mach number peak, compared to the moderate Mach number
computations, is small.

In addition to the analytical theory by Tam [1988], the experimental data
by Panda et al. [1997] match the theoretical estimation and validate the
current numerical computation. Again, the two numerical data by Berland
et al. [2007] and Schulze et al. [2009a] confirm that the correct prediction of
the screech frequency is by no means trivial. As for the shock cell spacing,
the numerical data of Berland et al. [2007] show deviations due to the wrong
shear-layer thickness. A similar deviation can be found in the data of Schulze
et al. [2009a]. It may be a result of their artificial forcing to close the screech
feedback loop when modeling the presence of the nozzle.

To find an agreement of the screech amplitude between experimental data
and numerical data is even more challenging. Up to now no analytical the-
ory exists to predict the correct screech amplitude. Even between different
experimental data, big discrepancies can be found. In Fig. 4.5(a) the screech
amplitude of the detectable screech tones of the current computation is pre-
sented as a function of the fully expanded jet Mach number, including various
experimental and numerical data. Between the experimental data of Panda
et al. [1997] and Raman [1997b] a deviation of up to 15 dB occurs at a Mach
number of Mj = 1.4 with a jet of the same aspect ratio (b/h = 5) but differ-
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4.1 Planar jet

ent size (Raman used a two times larger nozzle than Panda et al.). Raman
& Rice [1994] used a similar height of the jet as Panda et al. [1997] (7 %
larger) yet with an aspect ratio of b/h = 9.63. At a Mach number of Mj = 1.4

a deviation of 10 dB is visible between the experimental data of Raman &
Rice and Panda et al.. This concludes that the prediction of the screech am-
plitude is strongly dependent on the environmental conditions and specific
nozzle geometries.

In the same figure the numerical data of the present investigation are in-
cluded and marked with a black filled bullet. The amplitudes of the Mach
number range 1.3 ≤ Mj ≤ 1.6 lie between the experimental data of Panda
et al. [1997], Raman [1997b] and Raman & Rice [1994]. They reach values
from 147 dB up to 155 dB increasing with the Mach number in the range
of 1.3 ≤ Mj ≤ 1.55. One can identify a slight dropping in the amplitude of
about 2 dB when increasing the Mach number up to a value of Mj = 1.6.
This dropping is also visible in the experimental data by Panda et al. [1997].
Raman [1996], who investigated the same nozzle as Panda et al. [1997], could
reproduce this dropping at the Mach number Mj = 1.6. It is noted by Ra-
man [1996] that the screech phenomenon becomes unstable for Mach num-
bers above Mj = 1.65. This unsteadiness may be the reason for the drop in
the amplitude. Furthermore, they explain the sudden cessation of screech
for higher Mach numbers Mj ≥ 1.75 due to a diminishing of the acoustic
feedback and receptivity. Responsible for this phenomenon is the increased
expansion of the jet boundary, the “barrel” shock (or “bottle” shock [see Crist
et al., 1966]). The growth of the maximum jet boundary beyond the nozzle
lip blocks the feedback. This concludes that a thicker nozzle can shift the
cessation of screech to higher Mach numbers and was proved experimentally
by Raman [1996]. In the experimental data shown in Fig. 4.5(a) the nozzle
thickness t is about t/h = 0.2. With such a nozzle the screech diminishes at a
Mach numbers of Mj ≥ 1.75. Increasing the nozzle lip to t/h = 2 the cessation
of screech can be shifted to Mj = 1.95 [see Raman, 1996]. Similar results on
axisymmetric jets could be observed by Ponton & Seiner [1992]. They in-
creased the nozzle lip of their axisymmetric jet from t/D = 0.2 to t/D = 0.625

and could shift the point of screech cessation from Mj = 1.6 up to Mj = 1.9.
In the present numerical investigation the nozzle lip thickness is t/h = 1

and the diminishing of the screech tone starts at Mj = 1.8 and ceases at
Mj = 2. The maximum height of the shear layer within the first shock cell
due to the barrel shock is presented in Fig. 4.6 including experimental and
analytical data by Raman [1996] and Love et al. [1959], respectively. A good
agreement of the current numerical data and the experimental and analytical
results can be found. For a Mach number of Mj = 1.8, the maximum height
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Figure 4.6: (a) Shape of the “barrel” shock based on the current computation for different
Mach numbers. Extracted for u > 0.1c∞. Starting from Mj = 1.1 (innermost curve) up
to Mj = 2.0 (outermost curve) in 0.1 steps. Gray area marks the size of the nozzle lip.
(b) Maximum height of the expanded jet within the first shock cell. Due to the imperfectly
expanded condition, the shear-layer follows the “barrel” shock. Current computation: (●) for
u > 0.1c∞; (○) for u > 0.4c∞. Experimental data: ◻ Raman [1996]. Analytical data: ∎ Love
et al. [1959].

(based on u = 0.5c∞) of the jet is about hmax = 2.0h which corresponds to a
lip thickness of t/h = 1. This confirms the assumption of Raman [1996] that
the barrel shock blocks the feedback loop and that one can shift the point of
screech cessation by increasing the nozzle lip. In the latter case, to shift the
point of screech cessation, the nozzle lip needs to be at lest as thick as the
corresponding maximum height of the barrel shock (cf. Fig. 4.6).

In Fig. 4.5, two other numerical data are presented. The first (Schulze
et al. [2009a]) underestimate the screech amplitude. As already mentioned,
they use an artificial forcing to close the feedback loop where the gain of the
forcing is chosen arbitrarily. So, a correct prediction of the screech amplitude
is not possible. The second numerical data by Berland et al. [2007] slightly
over-predicts the experimental data. They explain this behavior with an
increased shock strength of the planar geometry compared to the rectangular
geometries in the experiments.

As we could see, the present method is not only capable to predict the
correct screech frequency of planar jets but also suitable to estimate a screech
intensity comparable to experimental data. In the following paragraph the
noise signal emanated of a supersonic jet is investigated in more detail.
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Figure 4.7: Overall sound pressure level as a function of observation location.Mj = 1.0 (
), Mj = 1.1 ( ), Mj = 1.2 ( ), Mj = 1.3 ( ), Mj = 1.4 ( ),
Mj = 1.5 ( ), Mj = 1.6 ( ), Mj = 1.7 ( ), Mj = 1.8 ( ),
Mj = 1.9 ( ), Mj = 2.0 ( ) .

Noise and their spectra In Fig. 4.7 the OASPL of the planar jet as a func-
tion of the observation location (angle) is presented for all planar jets in-
vestigated. The OASPL includes all noise components of the jet and it is
measured along a line parallel to the jet axis in a distance of 6.5h. One can
see that the OASPL is increasing for all jets with an increase of the obser-
vation angle (measured from the upstream direction). The maximum peak
occurs in the area of 11 ≤ x/h ≤ 15 which corresponds to an observation angle
of about Θ = 150○ and agrees well with experimental data [see amongst others
Seiner et al., 1986a]. Only two curves, corresponding to Mj = 1 and Mj = 2,
grow monotonically in the noise level up to the peak value. For these two
Mach numbers no screech tone (for Mj = 1.0), or only a weak screech tone
(for Mj = 2.0) can be detected and the noise is dominated by mixing noise
in the downstream direction. As one might expect, the ideally expanded jet
with Mj = 1.0 shows the smallest noise level in all observation directions. All
higher jet Mach numbers are louder. For the imperfectly expanded Mach
numbers up to a Mach number of Mj = 1.9 local minima can be identified.
These minima occur mainly at observation angles of 90○ ≤ Θ ≤ 100○. In this
direction the screech tone is less dominant than in the upstream direction
and hence reduces the OASPL [Seiner, 1984].
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Figure 4.8: RMS pressure fluctuations just outside the jet boundary. Experimental data: ∎
Panda et al. [1997] for Mj = 1.42; current computation (same line types used as in Fig. 4.7).

It is interesting to note that the two highest Mach numbers Mj = 1.9 and
Mj = 2.0 are not the loudest jets. This correlates with the cessation of the
screech tone for these high Mach numbers. The Mj = 2.0 jet is quieter than
the Mj = 1.9 jet and still quieter than the low Mach number but screeching
jet with Mj = 1.2. This fact illustrates the efficient mechanism of noise
production on screeching jets. It can also be seen clearly in the jump of the
sound pressure levels when increasing the Mach number from Mj = 1.1 (no
screech detectable) to Mj = 1.2 (screeching jet). As in the remaining cases,
the jump of the Mach number is in the order of 5 dB when switching to
the next higher Mach number, it is more than 10 dB when the jet starts to
“screech”.

The overall loudest jet in the upstream direction can be identified with a
Mach number of Mj = 1.8 followed by decreasing Mach number (produces
also the loudest screech tone with 159 dB). In addition to that, this jet is the
loudest candidate in the downstream direction. Up to 170 dB are measured
at a location of x/h = 14. Only in a narrow band between 5 ≤ x/h ≤ 12 the
two slower jets (Mj = 1.6 and Mj = 1.7) are two to five dB louder.

Supersonic jet screech is due to a feedback mechanism of acoustic waves
propagating upstream and being reflected at the solid nozzle lip (assuming
that the nozzle lip is thick enough; cf. screech cessation due to the “barrel”
shock). A planar acoustic wave which is reflected at a solid wall forms a
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4.1 Planar jet

standing wave with nodes and antinodes (cf. § 1.1.2: “Acoustic reflector”). An
antinode can be found at the nozzle lip followed by a node in the distance of
one fourth of the screech wavelength λs. The presence of the standing wave in
the acoustic near-field, close to the boundary of the jet, is an indication for the
feedback loop. To visualize the standing wave, the RMS value of the pressure
fluctuation is presented in Fig. 4.8. It is measured in dB with a reference
pressure of pref = 2⋅10−5 [Pa] as a function of the downstream distance from the
nozzle exit, scaled with the shock cell spacing. The latter one is approximated
with Eq. (1.3). To avoid an interaction with the hydrodynamic pressure
fluctuations of the spreading jet, the measurement is performed on line with
an inclination angle of 10○ with respect to the jet axis and starts in a distance
of y/h = 1 from the centerline of the jet. The data points are interpolated
if they do not match the computational grid. It has to be mentioned that
a standing wave is not specific to supersonic screeching jets. Lepicovsky &
Ahuja [1985] found a standing wave in the near-field of subsonic edge-tone
situations [see also Raman, 1998].

One can identify clearly the standing wave characteristic in Fig. 4.8 for
Mach numbers larger than Mj = 1.1. One can also identify that, due to the
scaling with the shock cell spacing, the individual curves are aligned. This
feature is again an indication that the standing wave is a important length
scale for screeching jets [see Panda et al., 1997].

As there is no analytical solution for a shock cell spacing for the perfectly
expanded jet with Mj =Md = 1.0, the first jet shown starts at Mj = 1.1. The
corresponding curve shows no identifiable pressure modulation with respect
to a standing wave. It is nearly constant at a level of 144 dB over the whole
range in the downstream direction. For this jet no screech is detectable in
the measured spectrum which again is an indication that a standing wave is
essential for the formation of screech tones. The first jet including a detectable
screech in the spectrum has a Mach number of Mj = 1.2. In this case, the
corresponding curve is more than 10 dB louder than in the previous case and
the typical modulation for a standing wave is visible. The RMS value of the
pressure fluctuation starts with an antinode at the nozzle lip followed by a
node at x/Ls = 0.5. This pattern is repeated in the downstream direction.
Jets with larger Mach number show higher levels up to peak values of more
than 175 dB for the jet with Mj = 1.8 above the third shock cell. From this
point on, the levels are decreasing again (for Mj = 1.9, 2.0). The standing
wave pattern is still visible but with a low amplitude in the order of the
Mj = 1.2 jet. In addition to that, an experimental data from Panda et al.
[1997] for a Mj = 1.42 jet is included in this figure. The data is based on a
round jet measured at an inclination angle of 5.7○ (numerical data at 10○).
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4 Results of supersonic jet noise simulation

A good agreement between the numerical and the experimental data can be
observed. Both the standing wave spacing and the amplitude align with the
current computation.

In Fig. 4.9 the spectra of each planar jet investigated is presented. All
spectra are captured at an observation angle of Θ = 90○ in a distance of
y/h = 6.5 to the jet axis. A logarithmic scaling is used for the abscissa and
the frequency is expressed with the Strouhal number Sr = f ⋅h/uj in the range
of 0.01 ≤ Sr ≤ 3. The spectra for the screeching jets (1.2 ≤Mj ≤ 1.8) present
the typical spectrum of a supersonic jet including the screech tone. All three
noise components can be identified. The mixing noise with low frequency
and an amplitude in the order of 130 dB. The broadband shock-associated
noise with high frequency and finally the dominant peak in the spectrum,
the fundamental screech tone. In addition to that, the analytical solution
[based on the theory of Tam, 1988] of the screech tone including its seven
subharmonics is included in the spectra and marked with vertical dashed
lines (except for Mj = 1.0 as Mj =Md).

The first spectrum where one can observe screech is for Mj = 1.2. A peak
occurring at the analytical estimation of the fundamental screech tone with
an amplitude of 140 dB can be identified. No higher subharmonics of the
fundamental screech tone are detectable. This picture is different for the
next higher Mach number investigated (Mj = 1.3). Despite the fundamental
peak at the estimated screech frequency, up to seven subharmonics can be
identified with decreasing amplitude. Between two subsequent subharmonics
a decrease in the noise level of roughly 3 − 4 dB is visible. This behavior
is maintained up to a Mach number of Mj = 1.8. The next higher Mach
number Mj = 1.9 contains a peak at the estimated screech frequency, yet with
a 15 dB reduced amplitude to its preceeding case an without any detectable
subharmonics. In the highest Mach number case (Mj = 2.0), again a peak
at the estimated screech frequency is visible but hard to distinguish from
the remaining shock-associated noise level. Again, this observation concludes
that screech starts to cease for the present nozzle configuration at a fully
expanded jet Mach number of Mj > 1.8. For the present nozzle configuration
with a lip thickness of t/h = 1 this result is in good agreement to experimental
data [see amongst others, Ponton & Seiner, 1992, Raman, 1996].

The low Mach number under-expanded jet with Mj = 1.1 does not contain
any identifiable screech tones. Neither the fundamental one nor its subhar-
monics. However, a wide peak is visible with a maximum between Sr = 0.5
and Sr = 0.6 (the estimated screech Strouhal number is Sr = 0.37). One can
assume that the peak in the spectrum is due to shock-associated noise. And
indeed, when estimating the peak shock-associated noise based on Eq. (1.12)
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4.1 Planar jet
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Figure 4.9: Spectra of the planar jet for different Mach numbers (1.00 ≤ Mj ≤ 2.00 correspond-
ing to panel (a) to (l)). Vertical dashed lines represent the fundamental screech frequency
including the first seven subharmonics based on the theory of Tam [1988].
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4 Results of supersonic jet noise simulation

one obtains a Strouhal number of SrBB = 0.54 which matches the measured
peak. Another evidence for this peak to be related to shock associated noise
is the fact that it is missing in the Mj = 1.0 jet. In this case, the loudest noise
source is located at the lower end of the displayed spectrum and related to
jet mixing noise.

All spectra are based on a FFT of the pressure fluctuations starting from
the time where the screech tone is developed (cf. also Fig. 4.11). In Fig. 4.10
the signal corresponding to the spectra of Fig. 4.9 are presented. Only a small
time span containing the history of the last ten computed screech cycles is
shown. One can identify that the amplitude is increasing with the Mach
number at least up to a value of Mj = 1.8 and then decreasing again. In
addition to that, one can see that the screech tone is dominating the signal
for the screeching jet Mach numbers. For Mach numbers in the range of
1.4 ≤ Mj ≤ 1.8 the signal shows a characteristic sawtooth like shape with
sharp wave fronts. This is not as clearly visible in the Mj = 1.2 and Mj = 1.3
jet.

All signals are superimposed with a noise component of high frequency
corresponding th the broadband noise sources. Especially in the high Mach
number jet with Mj = 2.0 the noise of high frequency dominates the signal.
The signals of the screeching jets are indeed different to each other. Some
seem to be very regular, like the one for Mj = 1.4 whereas other seem to
be unstable, like the one for Mj = 1.6. However, most of them exhibit a
regular pattern. This is especially visible for the Mj = 1.5 and Mj = 1.8 jet,
where the shape of an individual wavefront is repeated every second screech
cycle. A high amplitude wave is followed by a low amplitude wave and so
on. One can also see that the peaks of the positive pressure fluctuations are
larger, sharper and more noisy than their negative counterparts (see e. g. the
signal for Mj = 1.8). This sharp and loud positive wavefront is likely due to
the shock which “leaks” through the mixing layer and creates this sawtooth
like structure. In Fig. 4.1 this behavior is also apparent where the acoustic
pressure fluctuations create circularly shaped sharp wavefronts on each side
of the jet. This observation confirms well with the results of e. g. Manning
[1999] and Suzuki & Lele [2003] on shock laden mixing layers.

In Fig. 4.11 two characteristic noise signals for a jet with Mj = 1.1 and a jet
with Mj = 1.55 are presented from the beginning of the numerical simulation.
In the high Mach number case it is clearly visible that it takes some time to
develop screech tones. The first time, the loud screech tone can be identified
starts from roughly t/Ts = 10 (with the time for one screech cycle Ts). This
initial time can be approximated using the following assumptions. During
the initial condition, the flow in the jet core is based on a velocity distri-
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4.1 Planar jet
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Figure 4.10: History of the pressure fluctuations containing the last ten computed screech cycles
for different Mach numbers.
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4 Results of supersonic jet noise simulation

(a) Mj = 1.10 (b) Mj = 1.55
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Figure 4.11: History of the pressure fluctuations captured from the beginning of the simulation.
Two characteristic Mach numbers shown: (a) Mj = 1.1 and (b) Mj = 1.55.

bution typical for jet flows, like the one used in Schulze et al. [2009a] with
a Mach number of Mj = Md = 1. The pressure distribution is uniform and
is equivalent to the ambient pressure. Hence, no shocks are present. When
the simulation begins and the jet starts to expand and to adapt to the ambi-
ent pressure the characteristic shock pattern forms. It develops downstream
with a velocity similar to the fully expanded Mach number. In contrast to
that, the disturbances in the mixing layer are transported downstream with
a convection Mach number of Mc ≈ 0.5. Assuming that the noise source for
screech tones is located at the end of the third shock cell, the first shock asso-
ciated noise will emerge after tc = 3Ls/(Mcc) (with the shock spacing Ls, the
ambient speed of sound c and the convective Mach number Mc = 0.5). This
noise signal is now propagating upstream and interacting with the nozzle lip
to trigger an instability. The elapsed time or the acoustic wave propagating
upstream can be given by ta = 3Ls/c. Now, the triggered instability is again
transported downstream with Mc and interacting with the shock at x = 3Ls

and the feedback loop is closed for the first time. Subsequently, the emanated
shock induced noise is emanated and will be detected by the microphone. In
the present investigation the distance of the microphone to the noise source
past the third shock cell is roughly 4Ls, hence the elapsed time is tn = 4Ls/c.
Summing up all individual times, we get:

t = 2tc + ta + tn = 19
Ls

c
.

For the present Mach number of Mj = 1.55 we can approximate the ratio of
screech wavelength and shock cell spacing based on Eq. (1.3) and (1.15) and
get: λs/Ls ≈ 2.30. With this information we can estimate the total time in
terms of screech cycles and get: t = 8.26Ts. Comparing this result with the
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Figure 4.12: Mean pressure along the centerline of the jet for various jet Mach numbers
( ). Nozzle exit at x/h = 0 marked with a dashed line ( ). Experimental
data: ◻, for Mj = 1.55 [Raman, 1997a]; ○, for Mj = 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8 and 1.9

[Norum, 1991].

signal of Fig. 4.11(b) where the screech tone starts at roughly t = 10Ts one
can conclude that the screech process, in the present numerical investigation,
starts from the first time the feedback loop is closed.

Mean flow field In the following two figures, the mean values of the pressure
and the stream-wise velocity are presented along the centerline of jet. The
mean pressure is visualized in Fig. 4.12 for all Mach numbers investigated.
Despite the numerical data, two experimental data by Raman [1997a] for
the Mj = 1.55 jet and Norum [1991] for the remaining Mach numbers are
included to validate the results. For the Mach numbers Mj = 1.0, 1.1 and 2.0
no experimental data are available.
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4 Results of supersonic jet noise simulation

For imperfectly expanded jets one can clearly identify the shock cells in
the jet core with an “U”-like shape. The perfectly expanded jet does not
contain any shocks in the jet core. With increasing Mach number, the nozzle
exit pressure is increasing as the value of under-expansion is increasing as
well (cf. Eq. (1.6)). As small part inside the nozzle (for −1 ≤ x/h ≤ 0) shows
the pressure drop in the convergent nozzle as the Mach number is increasing
here up to the design Mach number Md = 1. Note the not the whole nozzle
is visualized here. The total length of the nozzle is x/h = 3.

One can identify a significant difference between the screeching jets (1.2 ≤
Mj ≤ 1.8) and the non screeching jets (remaining Mach numbers). The dif-
ference is clearly visible in the number of detectable shock cells. Whereas one
can count at least eight shock cells for the Mj = 1.1 jet, only two to three
shock cells are remaining for the screeching jets. This trend is also visible
for the two non screeching high Mach number jets although the presented
domain is limited and not all shock cells are visible. The reason for the re-
duced number of shock cells for a screeching jet has been reported by many
researchers and is mentioned already in the introduction of this thesis. It is
related to the enhanced mixing of the screeching jet. The jet undergoes a
strong oscillation (flapping or antisymmetric mode) when the screech cycle
forms and this destroys the periodic shock cell structure. Hence, the reduced
shock cells are an additional evidence for the screeching of a jet. In Sec. § 6
we will see that a jet with an optimized porous material (no screech) contains
additional shock cells compared to a jet without porous material (screech).

The experimental data by Raman [1997a] and Norum [1991] indicate that
on the one hand the shock cell spacing (which is increasing with the Mach
number) is captured correctly and on the other hand that the shape of the
pressure distribution along the jet axis is predicted correctly. There seems
to be a difference in the amplitude of the shock cells. Whereas the data
by Raman [1997a] underestimates the numerical data (Mj = 1.55) the data
by Norum [1991] over-predicts slightly the current computation. It is also
interesting to see that the number of shock cells in the experimental and
numerical data is comparable. Only for the Mach number cases Mj = 1.7 and
Mj = 1.8 the experimental data show an additional third and fourth shock
cell which is not visible in the numerical data. Once again, this is due to the
shifted cessation point of screech due to the thick nozzle lip in the present
numerical investigation. The nozzle lip of the experimental data by Norum
[1991] is inclined by 30○ and hence less efficient to form a standing wave.

Similar to Fig. 4.12 are the data presented in Fig. 4.13. Here, the absolute
velocity is shown along the centerline of the jet and scaled with the jet exit
velocity ue. One can identify first, that the velocity inside the convergent
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4.1 Planar jet
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Figure 4.13: Mean absolute velocity along the centerline of the jet for various jet Mach numbers
( ) scaled with the nozzle exit velocity ue . Nozzle exit at x/h = 0 marked with a dashed
line ( ).

nozzle is accelerated until it reaches the design Mach number Md = 1. From
this point on the velocity is accelerating further to match the value of under-
expansion. For the ideally expanded jet (Mj = 1) one can identify that the
potential core of the jet is about 5h long. After this point, the two mixing
layers of each side of the jet interact and decrease the velocity in the fully
developed jet to subsonic Mach numbers. The supersonic region of the Mj =
1.1 jet is about one jet diameter longer than the previous case (6h). Within
the shock cells the velocity is increasing to its maximum value and then
decreasing again until it reaches its minimum at the end of the shock cell.
This pattern is repeated in the downstream direction until the shock cells
vanish. The minimum value is the same as the jet exit velocity (here M = 1).
Again, about eight shock cells are visible for the Mj = 1.1 jet and only three
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4 Results of supersonic jet noise simulation
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Figure 4.14: Pseudo Schlieren (∣∇ρ̄∣) of the planar jet in the x-y -plane in the color-range of
0⋯ 3ρ∞/h. Visualization of all Mach numbers investigated (1.0 ≤ Mj ≤ 2.0) corresponding to
panel (a − l).

to four for the screeching jets. In the latter case, the enhanced mixing due to
the strong oscillations during screech blur out the regular pattern and create
a uniform velocity profile which is still supersonic. As in the ideally expanded
case it is decaying and finally reaching the subsonic regime (not shown for all
jets).

A two-dimensional view of the mean pseudo Schlieren is given in a x-
y-plane in Fig. 4.14 for all investigated Mach numbers. The visualization
includes the nozzle extending from −3 ≤ x/h ≤ 0 in the domain. One can
identify the complex shock cell pattern for the imperfectly expanded jets. In

128



4.1 Planar jet

the design case (Mj = 1.0, cf. panel (a)), no shocks are visible in the jet
core and only the mixing layers can be identified. They are growing in the
downstream direction until they finally close the potential core with a length
of x/h ≈ 5.

In the first under-expanded computation with a Mach number of Mj = 1.1

(cf. panel (b)) shock cells appear in the jet plume. Up to eight shock cells are
visible with a narrow spacing of Ls ≈ 0.86h. For the next higher Mach number
(Mj = 1.2) screech occurs and the number of shock cells is reduced (4 to 5).
The shape of the “barrel” shock starts to form and is just visible within the
first shock cell. Due to the screech and the corresponding enhanced mixing
of the jet, the jet spreads more rapidly than the two non screeching cases.
The increased spreading starts past the fourth shock cell. For higher Mach
numbers (1.3 ≤ Mj ≤ 1.8) the spreading starts earlier, past the third shock
cell, and seems to be more intense. In addition to that, one can identify larger
density gradients when increasing the Mach number due to stronger shocks.
An increase of the shock cell spacing is also visible with a widening of the jet
height due to the intense “barrel”-shock.

Comparing the mean pseudo Schlieren of Mj = 1.8 and Mj = 1.9 one can
clearly see that in the Mj = 1.8 case the high density gradient (shock) at the
end of the third shock cell is missing compared to the Mj = 1.9 jet. This
again is related to the fact that the screech tone ceases for a Mach number
larger than Mj = 1.8. Hence, mixing is reduced and the shock cell pattern
is preserved over a wider range. This phenomenon can also be identified
in panel (l) for the Mj = 2.0 jet. One can also see that the height of the
“barrel”-shock in the high Mach number jet is in the order of the height of
the nozzle lip (cf. also Fig. 4.6).

In Fig. 4.15 the RMS pressure fluctuations are presented in a two-dimen-
sional x-y-plane and measured in dB (pref = 2 ⋅ 10−5 [Pa]). As in Fig. 4.8 the
standing wave pattern is clearly visible for the screeching jets in the acoustic
near-field of the jet close to the nozzle exit (within the first three shock cells).
It is responsible for the feedback mechanism leading to the discrete screech
tones. In the non screeching jets (Mj = 1.0, 1.1, 1.9 and 2.0) the standing
wave is reduced or not detectable. In addition to that, one can identify
loud noise levels in the upstream direction of the jet for the screeching cases.
This is not visible in the non screeching jets. The acoustic near-field of the
non screeching jets is dominated in the downstream direction (mainly mixing
noise).
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Figure 4.15: RMS pressure fluctuations in dB of the planar jet in the x-y -plane (pref = 2 ⋅ 10
−5

[Pa]). Color scaling from white to black (150 - 190 dB). Visualization of all Mach numbers
investigated (1.0 ≤ Mj ≤ 2.0) corresponding to panel (a − l).

4.2 Round jet

The physics of a round jet is different to the ones of a planar jet which we
have seen in the last section. A round jet during screech undergoes oscil-
lations with different modes depending on the Mach number, whereas the
screeching planar jet is dominated by a flapping (antisymmetric) mode for
all Mach numbers (besides a small symmetric range for small Mach numbers
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4.2 Round jet

n1 × n2 × n3 dxmin/D η/dxmin nges/Re
9/4 dt [s] Srmax,dt Srmax,dx

256 × 128× 128 0.049 0.26 0.02 5.28 ⋅ 10−9 24.1 6.6

512 × 256× 256 0.024 0.53 0.16 2.63 ⋅ 10−9 48.3 13.3

1024× 512× 512 0.012 1.06 1.28 1.31 ⋅ 10−9 96.9 26.6

Table 4.3: Time-step and grid spacing for the investigated resolution of the round nozzle.
Kolmogorov scale: η = (ν3/u3rmsL)

1/4, with the approximation: urms = 0.3c∞. Maximum
Strouhal number: Srmax,dt = fmax,dtD/uj , with fmax,dt = 1/(2dt); Srmax,dx = fmax,dxD/uj , with
fmax,dx = c∞/(2dx).

[cf. Gutmark et al., 1990]). The modes of a axisymmetric jet can be either
toroidal (axisymmetric), helical or flapping (see the introduction § 1.1). It
has been reported by Merle [1956] that the helical mode C and the toroidal
mode A2 are very stable compared to the remaining modes. Mode C can be
observed in a Mach number range of 1.30 ≤ Mj ≤ 1.60 and mode A2 from
1.15 ≤Mj ≤ 1.25. Panda et al. [1997] observed in an experimental investiga-
tion that the peak noise level of the C mode is more that 10 dB louder than
the A2 mode.

As we will use the present flow case in section § 6 to minimize jet screech and
the fact that we prefer a stable screech behavior, especially for optimization
purposes, the helical mode will be investigated in the present section. To
avoid an exhaustive repetition of the numerical results, some results on the
axisymmetric jet will be found in comparison to the optimized jet in Sec. § 6.

The Mach number is chosen to be constant with Mj = 1.55 whereas the
computation is performed with three different grid resolutions. Beginning
with the lowest resolution of 256 × 128 × 128 grid points, followed by the
moderate resolution of 512×256×256 points and finally the highest resolution
of 1024 × 512 × 512 points. To the best of the authors knowledge, the latter
case with a total of 268 million grid points is the largest computation on
axisymmetric supersonic jet screech ever performed.

Despite the grid resolution, all other parameters are the same for all three
computations. The reservoir temperature is equal to the ambient temperature
(T∞ = 300K). Note, that the CFL number of all computations is CFL = 0.7.
As the time-step is a function of the grid spacing and CFL number, the time-
step is different in all three cases (dt = dxminCFL/(uj + c∞), see also Müller
[1990] for a more detailed description of the computation of the time-step).
A summary of the parameters, like the time-step and the grid spacing, can
be found in Tab. 4.3. In addition to that, an approximation of the smallest
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4 Results of supersonic jet noise simulation

Figure 4.16: Dimensions of the round convergent nozzle. Design Mach number Md = 1; inlet
Mach number Mi = 0.5. Dio = 3D, Di i = 1.16D, Lo = 3D.

scale, the Kolmogorov scale, can be found in the same table. It is scaled
with the smallest grid spacing and is a measure for the accuracy of the grid
resolution. A value of η/dxmin = 2 in combination with a spectral scheme
corresponds to a DNS, as it resolves and captures the smallest scales. In the
present investigation, the value ranges from 0.26 for the smallest resolution up
to 1.06 for the high resolution case. The latter one is close to a DNS although
there is a factor of two missing in the grid resolution and the discretization
scheme is only spectral-like (see Sec. § 2.3.1). A frequently cited numerical
work on jet noise by Freund [2001] shows a DNS of a high subsonic round jet
(Mj = 0.9) based on a Reynolds number of ReD = 3600. This leeds to a value
of (η/dxmin)Freund = 1.09 which is comparable to the present computation
with the high resolution (1.06). To this end, the grid of the high resolution
case with 1024 × 512 × 512 points, can be considered as a DNS. Yet, due to
the dissipative upwind schemes, it can be regarded as a LES with a DNS-like
resolution.

In contrast to the planar jet, all boundaries are non-periodic and based
on non-reflecting boundary conditions including a sponge at the outlet. The
convergent nozzle extends 3D inside the computational domain with the di-
ameter of the nozzle exit D. Based on that diameter, the total size of the
domain including the nozzle is 25D×15D×15D in the x-, y- and z-direction.

The computational domain is decomposed in all three directions and solved
in parallel. For the small resolution a total of 8 × 8 × 8 = 512 cores are used.
Twice as many cores are used for the moderate resolution (16 × 8 × 8 = 1024)
and with a further doubling of cores (8 × 16 × 16 = 2048) the high resolution
case is solved.
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4.2 Round jet

In Fig. 4.16 the dimensions of the round nozzle are presented. Compared
to the planar nozzle, the nozzle exit is straight and the inlet diameter is
smaller than the inlet height of the planar nozzle. This is due to the fact
that the cross-section ratio is important for the ratio of inlet to outlet Mach
number. As for the planar case, the inlet Mach number is Mi = 0.5. Inside
the nozzle the contoured part is based on a cubic spline with an inlet and
outlet inclination angle of 0○.

Instantaneous flow field Snapshots of the round jet for a Mach number of
Mj = 1.55 are presented in Fig. 4.17 and 4.18. Figure 4.17 shows a slice of the
pseudo Schlieren (∣∇ρ∣) in the x-y-plane for all three investigated resolutions
(panel (a)–(c)). All cases are captured for the same simulation time t = 20Ts

(with the time for one screech cycle Ts). In all cases, the turbulent structure
in the mixing-layers and the shock cell structure in the jet core is visible. The
shape of the shock cell structure within the first two shock cells is similar in all
cases. Between the moderate and high resolution, the differences are small
compared to the low and high resolution. The grid of the low resolution
case is very coarse and the resulting picture looks, compared to the higher
resolutions, noisy and diffuse. The difference between the moderate and high
resolution is a smaller shock width for the high resolution case, which is
especially visible in the compression and expansion waves within the first
shock cell. In addition to that, one can see that the size of the smallest
turbulent scales is decreasing for the high resolution jet.

Another difference of the moderate to high resolution jet is the increased
mixing for the jet with moderate resolution. The spreading of the jet, be-
ginning at x/D > 6 is more distinct for the moderate resolution as it is the
case for the high resolution. As we will see later, the screech intensity for
the jet with moderate resolution is about 1.2 dB louder than the jet with
high resolution. The screech intensity is linked to the corresponding (helical)
screech mode which is responsible for the mixing of the jet. This leads to the
conclusion that the helical mode of the jet with moderate resolution is more
distinct than for the high resolution jet.

In Fig. 4.18, both, the instantaneous pressure fluctuations (p′ = p − ⟨p⟩)
in the left column and the entropy in the right column are presented. The
increased mixing of the jet with moderate resolution is also visible in the
entropy. Note, that the entropy is a function of the temperature and the
pressure. As the present investigation is based on a cold jet, where the
reservoir temperature is equal to the ambient temperature (Tr = T∞ = 300K),
the entropy in the reservoir is different to the ambient entropy. Based on
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Figure 4.17: Instantaneous snapshot of the pseudo Schlieren (∣∇ρ∣) in the x-y -plane taken
at the same physical time t = 20Ts with the time for one screech cycle Ts . Three different
resolutions: (a): 256 × 128 × 128; (b): 512 × 256 × 256; (c): 1024 × 512 × 512.
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Gibbs fundamental relation, in combination with the assumption of an ideal
gas, a relation for the entropy as a function of the pressure and temperature
can be given:

s(p, T ) = Cp [ln R + ln T +
1 − γ

γ
ln p] .

Now, as (1 − γ)/γ is negative for γ = 1.4, the entropy in the reservoir is
below the ambient entropy. In the present case: s∞ = 8110.2 [m2 K−1 s−2]
and sr = 7716.0 [m2 K−1 s−2], with pr/p∞ = 3.95 (see also Tab. 4.2). The
expansion of the gas from the reservoir to the nozzle exit is an isentropic
process. To this end, the entropy at the nozzle exit is equal to the reservoir
entropy and hence below the ambient entropy. This circumstance is visible
in the right column of Fig. 4.18, where the low entropy jet is mixing with the
ambient fluid of high entropy (color scale from black to white).

In the left column of Fig. 4.18 the pressure fluctuations are presented and
based on the mean pressure field p′ = p−⟨p⟩ in the color-range of ±2000 [Pa]. In
all three cases with different resolution, the acoustic waves, corresponding to
the screech tone, are visible. Especially for the moderate and high resolution
distinct acoustic waves are propagating in the upstream direction of the jet.
Their origin seems to be around x = 7D which corresponds to x = 5.5Ls (with
the average shock cell spacing Ls = 1.28D; see next paragraph). The typical
π-shift of the waves at the upper and lower side of this plane is clearly visible
and is caused by the helical mode (investigated in detail later). In the high
resolution case, the amplitude of the upstream propagating screech noise is
slightly reduced compared to the moderate resolution. For the low resolution,
the amplitudes are even smaller and the screech tone is hard to see.

Comparing all three resolutions, it becomes evident that the higher the
resolution, the smaller the wavelength, especially for the broadband noise
components. This additional noise, which is missing in the low and moderate
resolution case will be visible in the noise spectra, discussed later. In the
downstream direction, the Mach wave radiation can be see particularly for
the high resolution jet although it is superimposed by the much louder screech
tone. In addition to the noise, the hydrodynamic turbulent fluctuations are
visible in the jet plume. For the present color-scale, the full range of the
hydrodynamic fluctuations can not be visualized. They range from ±45 [kPa].

Shock cell spacing As for the planar jet, the shock cell structure is a char-
acteristic feature of the supersonic round jet. Especially the shock cell spacing
is a crucial factor for the screech frequency. Hence, the correct prediction of
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Figure 4.18: Instantaneous snapshot of the pressure fluctuations (p′, left column) and the
entropy (s, right column) in the x-y -plane taken at the same physical time t = 20Ts with the
time for one screech cycle Ts . Three different resolutions: (a, b): 256 × 128 × 128; (c, d):
512 × 256 × 256; (e, f ): 1024 × 512 × 512.
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Figure 4.19: Mean shock cell spacing for the axisymmetric jet as a function of the fully expanded
jet Mach number Mj . Experimental data: ○, Seiner & Norum [1980]; ( ), logarithmic
fit of experimental data from Seiner & Norum [1980]; Numerical: current computation ▲,
1024 × 512 × 512; ●, 512 × 256 × 256; ▼, 256 × 128 × 128.

the shock cell spacing is important. In Fig. 4.19 the shock cell spacing of the
round jet for all three investigated resolutions, is presented. In what follows,
the resolutions are marked as:

Resolution Symbol Line style

1024× 512× 512 ▲

512 × 256× 256 ●
256 × 128× 128 ▼

if not mentioned differently. To obtain the shock cell spacing of the numerical
data, the average spacing of the first five shock cells is taken, based on the
mean pressure field. Besides the current numerical data, experimental data
of Seiner & Norum [1980] are included for comparison. One can see that
the moderate and high resolution case match each other and are in good
agreement to the expected experimental data. The low resolution case, on the
other hand, is slightly under predicted. Whereas the shock cell spacing for the
moderate and high resolution case is Ls = 1.28D and Ls = 1.29D, respectively,
a value of only Ls = 1.12D can be obtained for the low resolution case. This
deviation of 12 % will have a severe influence on the screech frequency. Based
on the theory of screech noise, we will expect a higher frequency due to the
reduced shock cell spacing for the low resolution case. As we will see later,
this feature will come true. One can see also that there is a strong deviation
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Figure 4.20: Screech amplitude and frequency of a circular jet versus the fully expanded jet
Mach number Mj for different screech modes Experimental data from Panda et al. [1997]: A1
△; A2 ▽; B ◻; C ○; D ◇; E ☆. Experimental data from Seiner [1984]: B ∎; C ●. current
computation: C ▲, 1024 × 512 × 512; ●, 512 × 256 × 256; ▼, 256 × 128 × 128. (a) Screech
amplitude versus the fully expanded jet Mach number. (b) Dominant screech frequency as a
function of the jet Mach number Mj . Analytic solution for mode A ( ) and analytical
solution for mode C ( ) by Massey [1997].

in the experimental data of Seiner & Norum [1980]. A difference of 10 % to
the logarithmic fit can be identified. The reason for these jumps might be
explained due to the individual screech modes.

Screech frequency and amplitude As we have already seen for the planar
jet, the correct prediction of the shock cell spacing is important for the cor-
rect prediction of the screech frequency. In the previous paragraph, the shock
cell spacing has been presented for all three resolutions. We could see that
the low resolution jet shows deviations to the experimental data by Seiner &
Norum [1980]. In Fig. 4.20(b) the screech frequency of the three numerical
investigations are presented and compared to experimental data by Panda
et al. [1997] and analytical data by Massey [1997]. The screech frequency is
expressed with the Strouhal number, based on the fully expanded jet values:
Sr = fsDj/uj. Note, that for the planar jet, the length-scale in the Strouhal
number is based on the nozzle exit conditions (h) and not on the fully ex-
panded jet conditions (hj) as in the present round case (Dj). All numerical
data of panel (a) and (b) are measured normal to the jet axis (Θ = 90○) in a
distance of 7.8D to the jet axis.

Both, the moderate and high resolution jet are in very good agreement to
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the analytical and experimental data. For both cases, a Strouhal number of
Sr = 0.2848 (moderate resolution) and Sr = 0.2803 (high resolution) can be
obtained for the fundamental screech tone. Based on the analytical data by
Massey [1997], a Strouhal number for the present Mach number Mj = 1.55

of Sr = 0.2801 can be predicted. Corresponding to the high resolution case,
this is an error of less than 0.1 %. The deviation of the moderate resolution
with respect to the analytical data is less than 1.7 %. In the case of the
low resolution, the error is larger (as expected) and reaches a value of 9.8 %.
Note, that the error in the correct prediction of the shock cell spacing for this
case is 12 %. The previous assumption that the under predicted shock cell
spacing for the low resolution jet will lead to a higher screech frequency could
be confirmed. Berland et al. [2007] observe a similar phenomenon in their
LES investigation on planar jet noise. They explain the reduced shock cell
spacing and the corresponding increase of the fundamental screech frequency
with the momentum thickness of the initial shear layers at the nozzle exit.
In their simulation, the momentum thickness is larger as for experimental
investigations. This leads to a reduction of the effective diameter (height)
of the jet nozzle and will consequently reduce the shock cell spacing. In the
present round case with the low resolution, the boundary layer is not properly
resolved. This will also lead to an increase of the momentum thickness and
finally increase the fundamental screech frequency [see also the experimental
work by Morris et al., 1989, where this phenomenon could be documented for
round jets].

In panel (a) of Fig. 4.20 the corresponding screech amplitudes are pre-
sented for all three resolutions. In addition to the present numerical data,
experimental results on round jets by Panda et al. [1997] and Seiner [1984]
are included for comparison. As usual for screech noise predictions, the am-
plitudes of the screech tone are spread over a wide range of noise levels.
Differences between both experimental data of more than 20 dB for the same
Mach number can be observed. Especially at the investigated Mach num-
ber Mj = 1.55, Panda et al. [1997] measures a value of 160 dB whereas the
results of Seiner [1984] show a value of 135 dB. Nevertheless, the present
numerical data is in the range of the experimental work of Seiner [1984]. For
the high resolution a noise level of 141.8 dB is computed, for the moderate
resolution a value of 143.0 dB and for the low resolution a value of 130.1 dB.
The largest amplitude can be obtained for the moderate resolution, followed
closely by the high resolution with 1.2 dB less amplitude and then finally
with a difference of about 10 dB, by the low resolution. As we will see in the
next paragraph, where the emanated noise signal is investigated in detail, the
noise level of the moderate and high resolution case matches well an addi-
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Figure 4.21: (a) Overall sound pressure level (OASPL) as a function of the observation direction
for different resolutions. (b) SPL of the fundamental screech tone (thick lines) and the first
subharmonic (thin lines) as a function of the observation direction for different resolutions.
Experimental data (◾) adapted from Panda [1999].

tional experimental data by Panda [1999] (cf. Fig. 4.21(b)). In combination
with the experimental data of Panda et al. [1997] in the present figure one can
conclude that the amplitude of the moderate and high resolution jet matches
well the experimental data, whereas the amplitude of the low resolution jet
is under-predicted.

Noise and their spectra In Fig. 4.21(a) the overall sound pressure level of
the round jet is presented for all three resolutions. It is measured along a
line parallel to the jet axis at the location y = z = 5.5 which corresponds to a
distance of 7.8D to the jet centerline. The high and moderate resolution are in
good agreement with deviations up to 3 dB. A large deviation of about 7 dB,
in peaks up to 10 dB, lies between the moderate/high resolution and the low
resolution. In all directions, the noise level of the low resolution jet is smaller
than the moderate/high resolution jet. Especially in the upstream direction,
where the screech tone is the dominant noise source, the largest deviations are
visible. At an observation angle of Θ = 90○, the OASPL of the low resolution
jet is 134.2 dB. For the moderate and high resolution jet, 143.7 dB and
143.6 dB, respectively. The loudest OASPL’s can be observed for all three
cases in the up- and downstream direction, yet with a different amplitude. In
the downstream direction for the high resolution case: 144.4 dB at 129.8○; for
the moderate resolution: 145.2 dB at 127.4○; for the low resolution: 138 dB
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at 126.4○. Hence, a loud noise can be observed in the downstream direction
at about Θ = 127○. Similar noise levels can be measured in the upstream
direction for the moderate and high resolution jet. At an observation angle
of Θ = 78○, the OASPL of the moderate and high resolution jet is 145.1 dB
and 144.6 dB, respectively. In this direction, the noise level is dominated by
the screech tone and is 0.5 dB louder for the moderate resolution jet.

In panel (b) the sound pressure level of the screech tone of the round jet is
presented for all three resolutions. In addition to that, the first subharmonic
of the screech tone is included (thin lines). To compare the results with ex-
perimental data, the SPL of the screech tone adapted from Panda [1999] is
included within a small region around Θ = 90○. One can identify a good agree-
ment of the SPL of the fundamental screech tone of the moderate and high
resolution jet and the experimental data. Both, amplitude and wavelength of
the experimental work are in good agreement to the present numerical data.
It seems that the screech amplitudes of the moderate resolution are slightly
larger as the ones of the high resolution. In the downstream direction, the
amplitudes start to vary and peak deviation up to 10 dB can be observed at
110○ and up to 6 dB at 138○. The amplitudes of the low resolution jet are
about 10 dB smaller than for the remaining two cases. Only in a small region
around 140○, the low resolution jet is 4 dB louder than the high resolution
jet.

All three curves of the fundamental screech tone, show the typical behavior
of a standing wave with nodes and antinodes. The standing wave is respon-
sible for the feedback mechanism of the screech generation process and is
caused due to the reflected waves at the nozzle exit. It is interesting to see
that the standing wave pattern of the first subharmonic of the screech tone
is not as prevalent as for the fundamental screech tone. It is hardly visible
in the upstream direction of the jet for the moderate and high resolution jet
with half the wavelength of the fundamental standing wave. Another feature
of the SPL of the first subharmonic is that it is not decreasing when mea-
suring further downstream, as it is the case for the fundamental frequency,
but shows a peak at Θ = 130○. At this location the subharmonic is louder
than the fundamental tone and dominates the overall spectrum, as we will
see later.

Another comparison of experimental data and the present numerical work
has been carried out in Fig. 4.22. Here, a well known figure of the exper-
imental work of Panda [1999] (panel (b)) has been adapted to the present
numerical data (panel (a)), where only the results of the moderate resolu-
tion are used. This figure is divided in two parts, in the top part the SPL
in a two-dimensional x-y-plane is given. In the bottom part of the figure,
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Figure 4.22: Top part: Sound pressure level in the acoustic near-field measured in dB. Bottom
part: (Pseudo)-Schlieren to visualize the shock cells with arbitrary color-scale. (a) OASPL of
the round jet based on the current numerical computation with Mj = 1.55. (b) SPL of the
screech frequency of a round jet based on experimental data by Panda [1999] with Mj = 1.42

(axis scaled to match the shock cell spacing of a jet at Mj = 1.55).

the (pseudo)-Schlieren of the jet are presented. They visualize the density
gradient in the stream-wise direction of the jet and highlight the shock cell
structure and the turbulence in the mixing-layers. For the experiment, the
Schlieren are integrated over the whole jet diameter and in the numerical
data only a two-dimensional slice is shown. This fact is responsible for a dif-
ference of both visualizations although the differences are small. In addition
to that, the color-scale of the Schlieren pictures are chosen arbitrarily as no
information of the amplitudes for the experimental data are available.

The noise measured in the top part of both panels is based on the OASPL
for the numerical data and on the screech SPL of the experimental data.
This circumstance leads to deviations, especially in the downstream direc-
tion, where the screech amplitude is decreasing and the OASPL in increasing
(compare also panel (a) and (b) of Fig. 4.21). Nevertheless, the deviations in
the upstream direction are small and a good agreement of the experimental
and the numerical data can be found. Not only the amplitudes of both cases
match each other but also the spatial distribution of the noise in the acoustic
near-field is in good agreement. Again, the standing wave pattern, typical
for screech noise, can be identified in both cases with the characteristic lobes
facing in the normal direction of the jet.
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Figure 4.23: Spectra for three different observation directions for different resolutions. First
row (a, b, c): low resolution; Second row (d, e, f ): moderate resolution; Third row (g, h, i):
high resolution.

Spectra The spectra of the noise measured at three different locations is
presented in Fig. 4.23 for all three resolutions. The signals are captured in
a constant distance to the jet axis at y = z = 5.5 and at the stream-wise
positions x = −2.1D (=̂ Θ = 75○), x = 4.5D (=̂ Θ = 120○) and x = 13.5D

(=̂ Θ = 150○). As we have seen already, the noise of the moderate and high
resolution jet are similar. This is also the case for the corresponding spectra.
Larger differences can be observed in comparison to the low resolution jet. In
all three cases, one can identify the three sources of noise. The screech tone is
clearly visible in the upstream direction (Θ = 75○). In a slightly downstream
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4 Results of supersonic jet noise simulation

position (Θ = 120○) broadband noise components and the first subharmonic of
the screech tone are visible. Further downstream, at Θ = 150○, mixing noise
is the dominant noise source in all three cases. In addition to the numerical
data, the analytical solution by Massey [1997] for the fundamental screech
tone and its subharmonics is marked with a dashed line for comparison.

In the low resolution case, one can see the deviation of the screech frequency
clearly in the upstream direction of panel (a) with a peak noise level of 135
dB. The computed screech frequency is slightly larger than predicted by the
analytical theory. The mixing noise of low frequency (around Sr = 0.15) is
very weak and in the order of 105 dB. For higher frequencies, the broadband
noise components are visible with a peak value of 120 dB at a frequency
of Sr = 0.45. The amplitudes of the broadband components are decreasing
exponentially up to a Strouhal number of Sr = 2. From this point on, the
amplitudes drop drastically with a steep slope. This phenomenon has no
physical interpretation and is related to the low numerical resolution of this
case. If we assume that we need six points to resolve one wavelength, based
on the present discretization method, then the largest resolvable Strouhal
number is Srmax,6dx = 2.2 (see also Tab. 4.3). This frequency is in good
agreement to the point where the amplitudes start to decay with the steep
slope. Hence, this phenomenon is related to the numerical method and the
low resolution. Another evidence that the low resolution is responsible for
the unresolved high frequencies, is the fact that for the moderate and high
frequency this sudden drop is not visible (see the second and third row of
Fig. 4.23).

It is well known that the screech frequency is constant and not a function
of the observation direction. This fact can be confirmed for all jet resolutions,
e. g. for the low resolution jet, when comparing panel (a) and (b). Here, the
screech frequency is not changing when measuring in the up- or downstream
direction. A different picture arises for the broadband components. They
are Doppler shifted, which corresponds to an increase of the frequency with
increasing observation angle in the downstream direction. This fact can be
also observed in panel (a) and (b) where the peak of the broadband noise is
at Sr = 0.45 for Θ = 75○ and Sr = 0.55 for Θ = 120○.

The screech frequency of the moderate and high resolution jet matches
well the analytical theory and dominate the noise spectrum in the upstream
direction (see panel (d) and (g)). As we have seen already, the screech
amplitude of the moderate resolution jet is slightly higher than the high
resolution case (about 0.5 dB). In the upstream direction, the amplitudes of
the mixing noise are comparable in both, the moderate and high resolution
jet. Nevertheless, the broadband components of the high resolution jet are
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Figure 4.24: One-third octave band spectra for three different observation directions and three
different resolutions.

slightly larger than for the moderate resolution case. A constant difference
of about 1 − 2 dB can be detected.

The differences of the individual resolutions are more evident in Fig. 4.24.
In the three panels, the one-third octave band spectra are presented for the
same three observation directions as in the previous Fig. 4.23. One can see
that the moderate and high resolution jet is in good agreement to each other
in terms of frequency and observation direction. Only in a narrow band of
high frequency – the broadband shock-associated noise – the high resolution
case is slightly louder (1-2 dB) than the moderate resolution. A reason for this
deviation may be the reduced spatial resolution of the moderate resolution
jet and the corresponding dissipation of the small wavenumber acoustics.
The low resolution is for all observation directions below the two remaining
resolutions with a difference of up to 10 dB (except some small exceptions).

The spectra of the previous figures are based on the acoustic pressure fluc-
tuations measured in the acoustic near-field. In Fig. 4.25 the history of the
pressure signal is presented. In the left column the signal is presented for two
opposing locations of the jet. One at y = z = −5.5 and the other one at the
opposite location at x = 0, y = z = +5.5. Both signals are measured at Θ = 90○

with a distance to the jet axis of 7.8D. For the moderate and high resolution
jet one can clearly identify the π phase shift of the two signals. As we have
already seen in the left column of Fig. 4.18, this is related to the helical mode
of the jet. It is also a known phenomenon for the flapping mode of round and
also planar jets.

In the right column, panel (b), (d) and (f), the pressure signal measured
at y = Z = 5.5 as a function of the observation direction Θ and the time is
presented. One can clearly identify the loud screech tone in the upstream
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Figure 4.25: History of the pressure fluctuations containing the last ten computed screech
cycles for different resolutions. Left column: signal measured at Θ = 90○ with a distance to
the jet axis of 7.8D. ( ) measured a x = 0, y = z = −5.5; ( ) measured a
x = 0, y = z = +5.5 (opposite location to the jet axis). Right column: two-dimensional view,
measured at y = z = 5.5 along the x-direction, expressed in angles measured from the upstream
direction. Dashed vertical line ( ) corresponds to the location where the pressure signal
is extracted for the panels in the left column.
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(a) t/TS = 0 (b) t/TS = 1/8 (c) t/TS = 2/8 (d) t/TS = 3/8

(e) t/TS = 4/8 (f ) t/TS = 5/8 (g) t/TS = 6/8 (h) t/TS = 7/8

Figure 4.26: Instantaneous slice in the y − z -plane (normal to the stream-wise direction) cap-
tured at eight equidistantly spaced time-steps. The snapshots represent one full screech cycle
(cf. helical mode in Fig. 1.15(b) and [Westley & Woolley, 1975, Fig. 9]). Contour-levels:
pressure fluctuation p′ in the range of 0 [Pa] (white) to 1000 [Pa] (gray). The jet is spinning
clockwise around the positive x-axis; counter-clockwise in this view towards the nozzle (negative
x-direction). (here: h = D).

direction with a constant wavelength at least for the moderate and high
resolution. In an observation direction Θ ≈ 130○ the firs subharmonic of the
screech tone can be identified. Further downstream, shock-associated noise
and mixing noise dominate the acoustic signal.

Helical mode A axisymmetric screeching jet at a Mach number Mj = 1.55
is supposed to undergo a helical mode. To verify this behavior, the pressure
fluctuations in a y-z-plane (normal to the jet axis) are presented in eight
snapshots in Fig. 4.26. The snapshots are taken upstream the nozzle exit at
x/D = −2 and are captured at eight equidistantly spaced time-steps, repre-
senting one full screech cycle (panel (a−h)). Pressure fluctuations are based
on a two color contour-map where white stands for 0 [Pa] and gray for 1000

[Pa]. One can identify clearly the spinning (helical) mode which wraps around
the nozzle (shown in a cross section in the center of each figure; outer diam-
eter Dio = 3D). Within one screech cycle Ts, the helical mode turned once
around the jet axis in the clockwise direction based on the positive x-axis. It
is reported in Westley & Woolley [1975] that the helical mode rotates with
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4 Results of supersonic jet noise simulation

Figure 4.27: Instantaneous pressure fluctuations in the y -z -plane (normal to the stream-wise
direction) adapted from experimental results of Westley & Woolley [1975]. Convergent nozzle
with Mj = 1.67. A good agreement to Fig. 4.26(c) can be found.

the same frequency as the corresponding screech tone. This observation is in
good agreement with the present numerical investigation.

To validate the shape of the pressure distribution in the plane perpendicular
to the jet axis, a snapshot of the pressure fluctuations based on experimental
data from Westley & Woolley [1975] are presented in Fig. 4.27. It shows a y-z-
plane at x/D = 0 of a Mj = 1.67 choked jet (convergent nozzle) with contour-
lines of the iso pressure (arbitrary scaling). Positive pressure fluctuations
are marked with thin solid lines whereas negative pressure fluctuations are
represented by gray dashed lines. The thick solid line marks the neutral line.
To compare the experimental data to the current numerical investigation,
the rotation direction is changed. In the original experimental data, the jet is
spinning clockwise. The distribution of the experimental measured pressure
fluctuations and the current numerical data are in good agreement. This is
especially visible in comparison to Fig. 4.26(c) where the experimental and
numerical data are in phase.

Mean flow field In the following figures, mean values of the jet are pre-
sented. In Fig. 4.28, the mean value of the pressure (⟨p⟩) is presented and
measured along a line parallel to the jet axis. The position of the axis is in the
center of the jet for panel (a) (r/D = 0) and at r/D = 0.45 for panel (b). In
the latter case, where the data are not extracted at the centerline, experimen-
tal data by Norum & Seiner [1982a] are included for comparison. The data
measured at the centerline show clearly the periodically repeated shock cell
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Figure 4.28: Mean pressure distribution along a line parallel to the jet axis. (a) at r/D = 0;
(b) at r/D = 0.45. ○, Norum & Seiner [1982a] for Mj = 1.49 at r/D = 0.45; Numerical:
current computation: ( ) 256 × 128 × 128; ( ) 512 × 256 × 256; ( )
1024 × 512 × 512.

pattern. For the moderate and high resolution jet, the pressure distribution
is comparable whereas the shock strength seems to be slightly larger for the
high resolution jet. In addition to that, the number of detectable shock cells
is larger for the high resolution jet. A total of seven shock cells are visible
whereas six shock cells can be identified for the moderate resolution jet. The
same number of seven shock cells can be extracted for the low resolution jet.
Nevertheless, as we have seen already, the shock cell spacing and the shock
strength is under-predicted. Comparing these results for the round jet with
the ones of the planar jet of Sec. § 4.1 one can conclude that for the round
jet about twice as many shock cells can be identified in the jet core. The
planar jet with Mj = 1.55 contains only three detectable shock cells. This
phenomenon might be related to the strong flapping mode of the planar jet
which has a stronger impact on the shock cell structure than the helical mode
of the round jet.
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Figure 4.29: Mean stream-wise velocity distribution along the centerline of the jet. ( )
256 × 128 × 128; ( ) 512 × 256 × 256; ( ) 1024 × 512 × 512.

Panel (b) shows the pressure distribution at r/D = 0.45. The comparison
to the experimental data shows a good agreement to the moderate and high
resolution jet. Within the first four shock cells, the experimental data match
well the numerical data in shape and amplitude. Further downstream, for the
fifth and the following shock cells, larger deviations are visible. The shock cell
structure of the experimental jet is much more extended in the downstream
location as for the numerical jet. Up to ten shock cells can be detected
in the experimental study whereas only seven shock cells are visible for the
numerical jet. In addition to that, the shock cell spacing is decreasing more
rapidly in the numerical case as in the experimental study, when measuring
further downstream. Again, the amplitudes and the shock cell spacing of the
low resolution jet is under-predicted.

That the low resolution shows strong discrepancies to the moderate and
high resolution jet is also visible in Fig. 4.29 where the mean velocity distri-
bution is displayed and measured along the centerline of the jet. A saw-tooth
like shaped distribution is visible for the moderate and high resolution jet,
with a slightly steeper slope for the high resolution jet. The velocity is scaled
with the jet exit condition (here: Me = Md = 1). Hence, values above one
indicate supersonic velocities and values below one mark the subsonic region.
The length of the high resolution jet is slightly larger than for the moder-
ate resolution case (10.5D and 8D, respectively). The length for the low
resolution jet lies between the two larger cases (9D).

In the last two figures of this section, the RMS values of the stream-wise
velocity and the entropy are presented and measured along the centerline of
the jet. The velocity fluctuations are presented in Fig. 4.30. In addition to the
present numerical data, experimental and other numerical data of subsonic
jets are included for comparison. It is visible that the moderate and high
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Figure 4.30: RMS stream-wise velocity distribution along the centerline of the jet. ( )
256×128×128; ( ) 512×256×256; ( ) 1024×512×512. Experimental data:
∎: Raman et al. [1989]; ◀: Jordan et al. [2002]; ▶: Bridges [2006]. Numerical data: ◻; Bogey
[2000]; ○: Cavalieri et al. [2011].
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Figure 4.31: RMS fluctuation of the entropy along the centerline of the jet. ( )
256 × 128 × 128; ( ) 512 × 256 × 256; ( ) 1024 × 512 × 512.

resolution jet is modulated with the shock cell structure – a phenomenon
which is missing in the subsonic experimental data. In the supersonic areas
of the jet the RMS value is increasing and decreasing in the subsonic areas.
The slope close to the nozzle exit of the experimental data seems to be steeper
than for the numerical jet. This causes a deviation of the present numerical
data to the external data in the range of 0 ≤ x/D ≤ 10. Further downstream,
the present numerical data match each other and are in the range of the
external data.

Finally, in Fig. 4.31 the RMS value of the entropy fluctuations are pre-
sented. These values indicate the length of the potential core which is about
5D for the moderate and high resolution jet and about 6D for the low res-
olution case. The shape of all three resolutions is similar whereas the shape
of the low resolution curve is shifted about one jet diameter downstream.
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supersonic jet noise





5
Optimization method

In the present application we search for the best porous material to minimize
supersonic jet noise. There will be a series of porous media which will reduce
jet noise and some of them might perform better than other ones. Numerical
[Lai & Luo, 2008] and experimental studies [Geyer et al., 2010] show that it
is by no means clear how to choose the porous medium (φ and K) to reduce
aeroacoustic noise. In some specific cases they show that a porous medium
could also amplify noise.

To search for a porous medium to reduce supersonic jet noise by trail and
error, especially for a numerical analysis with high performance computers,
is expensive. To find the best choice may be impossible. To this end, an
optimization algorithm is used to find the best porous material to minimize
supersonic jet noise and in particular jet screech.

In a mathematical formulation, the minimization of a function J under
nonlinear equality and inequality constraints reads:

min
x∈Rn

J(x) subject to{ ci = 0 i ∈ E

ci ≤ 0 i ∈ I
(5.1)

where x is an n-dimensional parameter vector. E and I are a subset of
equality and inequality constraints, respectively. In the present application,
x is the characteristic property of the porous material.

In the field of numerical optimization, two main classes of optimization
techniques can be identified: gradient based and gradient free optimization.
The latter class of optimization contains e.g. genetic algorithms. These meth-
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ods use a set of possible solutions (parents) and evaluate their fitness (ob-
jective function). Based on that value they choose the best candidates for
a recombination and mutation to build the next generation (children). The
children are now parents and the process can be repeated to build the next
generation and finally to find the “fittest” individual of the population. Such
algorithm have the ability to find a global minimum of a non convex function.
This depends on the distribution of the individuals in the first generation. An-
other advantage is that they do not necessarily need to deal with continuous
and differentiable functions. They can also handle integer numbers, like the
optimization of the number of rotors on a propeller. For the present appli-
cation, where we search for a continuously distributed material property of a
porous medium with up to several million degrees of freedom, these methods
are too expensive.

The second class of optimization algorithm use the gradient of the objec-
tive function to obtain the direction in which the objective function can be
minimized. In a numerical analysis, the gradient can be obtained with finite
differences, like

∇xi
J ≈ J(xi + δxi) − J(xi)

δxi

(5.2)

These finite differences need to be evaluated for each design variable xi sep-
arately. One evaluation of J corresponds in the present study to one compu-
tation of the Navier–Stokes equations and is very expensive. Performing this
technique for several thousand or million design variables x ∈ Rn is impracti-
cal.

Within the last years a method based on adjoint equations became more
and more popular in the field of fluid mechanics. With this technique it is
possible to evaluate the gradient of the objective function, independently on
the number of design variable, with only one additional computation of the
adjoint equations, where the solution of the adjoint equations is about as
expensive as for the direct equations. This method is particularly suitable to
handle the intended multidimensional problem and will be used to optimize
the porous material. In the following sections the method of adjoint based
optimization is presented.

5.1 A simple example

Let us start with a very simple example to introduce the method of Lagrange
multipliers (adjoint variables). Consider the following one-dimensional prob-
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lem:
min
x∈R

J(x) = x2 (5.3a)

subject to N(x, c) = x − c = 0 (5.3b)

In this example the objective is to minimize the function J(x) subject to
the equality constraint N(x, c) = 0 with the control c. The solution to this
problem is trivial. Setting c = 0, the objective function J(x) will reach its
minimum. Although the solution to this problem is trivial it will be used in
the following to introduce the concept of Lagrange multipliers.

With a new variable λ, the so called Lagrange multiplier, the corresponding
Lagrange function can be defined:

L(x, c, λ) = J(x) − λ ⋅N(x, c) (5.4)

whereas it is equivalent whether the latter term with λ is added or subtracted.
Now, if x is a stationary point of Eq. (5.3a), then there exists a λ so that(x, λ) is a stationary point of Eq. (5.4). One can reformulate the problem in
finding a stationary point of L instead of J including all constraints in one
equation. For a stationary point of a functional, all partial derivatives need
to vanish and one obtains a system of equations:

∂L
∂x

= 0 = 2x − λ (5.5a)

∂L
∂λ

= 0 = x − c (5.5b)

∂L
∂c

= 0 = λ (5.5c)

These three equations with the three unknowns x, c and λ form the opti-
mization framework which can be solved to obtain the optimal solution. For
the present system of equations, it directly follows that c = 0 is the optimum.
Such an optimization method, where the solution can be gained within one
step, is referred to as an one-shot method. Usually, when Eq. (5.3a) and
(5.3b) are nonlinear, this approach is no more possible. To this end, an itera-
tive gradient based method is needed. As long as the optimum is not reached,
Eq. (5.5c) is the gradient of the objective function with respect to the control
c. We obtain:

∂J

∂c
= λ (5.6)

The gradient is depending on the Lagrange multiplier λ and we need to solve
Eq. (5.5a) to obtain an expression for the Lagrange multiplier:

λ = 2x (5.7)
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Input: initial guess c

tolerance tol
Output: optimum c

1: while err > tol do
2: solve x Eq. (5.3b) (direct)
3: solve λ Eq. (5.7) (adjoint)
4: compute gradient ∂J

∂c
Eq. (5.6)

5: update control c(n+1) Eq. (5.8)
6: err = ∥c(n+1) − c(n)∥
7: n←Ð n + 1

8: end while

Algorithm 5.1: Algorithm for a simple optimization loop.

In the following, we will call this equation “adjoint equation” and the La-
grange multiplier “adjoint variable”. The reason for these names is given
later.

The gradient obtained from Eq. (5.6) can be used with a simple steepest
descent approach to converge to the optimum iteratively:

c(n+1) = c(n) − α(n) (∂J

∂c
)(n) (5.8)

In Alg. 5.1, the optimization loop to obtain the minimum is presented. We
start the algorithm with the initial guess of our control c and obtain the state
x of the system by evaluating the direct equation (5.3b). This is followed by
solving the corresponding adjoint equation (5.7) to obtain the solution of the
adjoint state. Finally, the gradient (5.6), which is a function of the adjoint
state, can be evaluated and with a steepest descent approach (5.8) the new
control is found. This is repeated iteratively until the algorithm converged.
In Fig. 5.5 the performance of the algorithm is presented with the initial
guess c = 1 and the constant step size α = 0.1. Panel (a) shows the objective
function J in the solution space including the intermediate solutions of each
iteration. One can see that the value of the objective function is decreasing
and approaching to its minimum. In panel (b) the objective function and the
corresponding gradient with respect to the control c is presented as a function
of the iteration number. It shows that the the objective function is decreasing
by nearly twenty orders of magnitude within the first 100 iterations. In the
same time, the gradient decays by nearly ten orders of magnitude.
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Figure 5.1: Simple example to illustrate the method of Lagrange multipliers. (a) Solution of
the direct equation (5.3b) starting with the initial guess c = 1, saved for all iterations. (b)
Convergence history for the objective function J ( ) and its gradient ( ).

Above example with Lagrange multipliers can be considered from an al-
ternative viewpoint. Let us again start with the problem formulation of
Eq. (5.3). The total derivative of the objective function J = J(x) (Eq. (5.3a))
with respect to the control c reads:

dJ

dc
= ∂J

∂x

dx

dc
(5.9)

subject to the constraint that the sensitivity of the solution dx
dc

satisfies the
direct equation:

∂N

∂x

dx

dc
+

dN

dc
= 0 (5.10)

One can define the following abbreviations:

u ∶= dx

dc
; A ∶= ∂N

∂x
; b ∶= ∂J

∂x
; f ∶= −dN

dc
(5.11)

and end up with the following equations:

dJ

dc
= bT u = λT f (5.12)

subject to

Au = f (5.13)
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under the constraint, that λ satisfies the adjoint equation:

AT λ = b. (5.14)

The equivalence of the last two terms in Eq. (5.12) is easily proved:

bT u = (AT λ)T u = λT Au = λT f (5.15)

with the adjoint matrix AT (if A ∈ R
n×n) and the corresponding adjoint

variable λ. From this viewpoint, one can deduce the origin of the name
adjoint optimization, which is not as evident when following the previous
approach with Lagrange multipliers.

One of the main advantages of adjoint based optimization, compared to
other gradient based optimization techniques, can be identified. The gradient
of the objective function in Eq. (5.12) can be either computed by the term
bT u or λT f . As f is a function of the control (f = f(c)), and if the dimension
of the control is large, the evaluation of bT u = bT A−1f , has to be performed
for every single f(c). To this end a system of equations has to be solved
as many times as the dimension of c. In contrast to that, as g ≠ g(c), the
evaluation of λT f including the solution of the adjoint equation λ = (AT )−1b

has to be carried out only once. Especially if the dimension of the control is
large and the solution of the direct equations is expensive, adjoint methods
are indispensable.

In the area of fluid mechanics the dimension of the control (e. g. geometry
parameters of a wing) is usually in the order of several hundred. In the
present study, where the optimal spacial distribution of a porous medium is
questioned, the dimension of the control can be easily in the order of several
million. In addition to that, the underlying equations, to obtain the state
(here u), are based on the Navier–Stokes equations. Their numerical solution
is expensive and requires the use of high performance techniques.

To apply this simple example to the Navier–Stokes equations of the present
investigation, the equality constraint in the Lagrange functional N(x, c) has
to be replaced by the Navier–Stokes equations. They constrain the solution
space of the flow variables.

5.2 State of the art

Adjoint based optimization in the field of fluid mechanics is by no means new
but a field of active research. The first to use adjoint based optimization was
Pironneau [1974]. He derived an optimization framework to minimize the
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drag of a hump on the surface of a body. At this time, he was not able to
provide a numerical solution to this problem and only delivered the theoretical
framework. A wide range of different research topics has followed within the
next years and decades and is still ongoing. The different topics on adjoint
based optimization can be classified in three main fields: shape optimization,
topology optimization and active optimization. In the following, the state of
the art will be addressed separately for each topic.

Shape optimization The use of adjoint equations has been pioneered by
Jameson [1988, 1995]. He used several setups from two- to three-dimensional
configurations based on potential equations, the Euler equations and the
Navier–Stokes equations. The main focus of shape optimization is to mini-
mize the drag of a wing while keeping or even increasing the lift. The early
work of Jameson was followed by a series of researchers working on that topic
up to the present date [see amongst others Asouti et al., 2008, Brezillon &
Gauger, 2004, Carpentieri et al., 2007, Fazzolari et al., 2007, Giles & Pierce,
2000, 1999, Gunzburger, 2000, Kim et al., 2004, Le Moigne, 2002, Nemec &
Zingg, 2001].

Some of the shape optimization applications also deal with transonic or
supersonic wing configurations where shocks are present. They were investi-
gated e. g. by Giles [2002], Giles et al. [2003], Nadarajah et al. [2001], Reuther
et al. [1996]. It was reported by Giles & Pierce [2001] in an analytic one-
dimensional study that the adjoint solution in the presence of shocks is in-
correct and needs additional internal boundary conditions in the vicinity of
the shock. The additional boundary condition arise due to the linearization
of the Navier–Stokes equations when deriving the corresponding adjoints. In
this step it is assumed that the solution of the equations is smooth and that a
linear perturbation theory can be applied. This assumption may be violated
in the presence of a shock. Especially strong shocks may be resolved in a nu-
merical investigation by only a view grid points and a linear theory may need
additional boundary conditions to predict the correct jump of the flow vari-
ables. If the shock is well resolved by the computational grid or smeared out
over several grid points due to a shock capturing method, the linear theory
can be applied and errors in the adjoint solution are not to be expected. The
same holds true for weak and oblique shocks [see Giles et al., 2003]. In the
present application on the optimization of a shock containing flow, first, no
strong shocks, like a Mach disk are present, and secondly, a shock capturing
scheme smears out strong gradients to obtain a smooth solution. Hence, an
additional boundary condition in the vicinity of shocks is not necessary.
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Shape optimization has not only been applied to lift and drag optimization
but also to flow induced acoustic, like the minimization of trailing edge noise
[Marsden et al., 2001, Rumpfkeil & Zingg, 2009] or the minimization of the
noise of a trailing step [Cao & Stanescu, 2002]. It has also been applied to
turbo-machinery noise like the minimization of fan-flow deflector noise [Xiong
et al., 2010]. In another application, by Feijoo et al. [2004], an inverse acoustic
scattering problem is presented to find the optimal geometry that satisfies a
certain measured acoustic signal. Applications of shape optimization for an
acoustic objective in combination with supersonic flows has been reported
by Nadarajah et al. [2003]. They minimized the sonic boom measured at the
ground surface by changing the geometry of the supersonic aircraft. A similar
investigation was performed by Mohammadi [2004].

Topology optimization In the latter paragraph, the control to achieve the
desired objective is to change the shape of one or several predefined geome-
tries. This approach is limited. The optimization algorithm will neither be
able to split a geometry in several geometries nor to “invent” new geometries.
As a user of the shape optimization algorithm a lot of empirical information
has to be provided and the solution space is restricted. In some applications,
where it is neither clear how the optimal shape of the geometry should be
configured nor how many obstacles should be place in the fluid flow, adjoint
based topology optimization is the method of choice.

Originally, adjoint based topology optimization was used in solid state me-
chanics [Bendsøe, 1995, Eschenauer & Olhoff, 2001]. The first application to
fluid mechanics was reported in Borrvall & Petersson [2003] with the topol-
ogy optimization of fluids in Stokes flow. The main idea of any adjoint based
topology optimization algorithm in fluid mechanics is based on a Darcy term
in the momentum equation whose sensitivity is obtained via an adjoint com-
putation. Hence, the Darcy term is being optimized and represents a passive
control. As in topology optimization only solid materials or void space is
allowed, one has to distinguish between zero permeability or a high perme-
ability (corresponding to a solid body) based on the sensitivity map emerging
from the adjoint computation. Following the early work of Borrvall & Pe-
tersson [2003], many others adapted the method like Olesen et al. [2004] for
Navier–Stokes flows in micro-fluidics. Gersborg-Hansen et al. [2005] applied
the method to the optimization of channel flow problems. A large scale Stokes
flow problem was investigated by Aage et al. [2008]. Using a continuous ad-
joint formulation for the computation of topological sensitivities, ducted flows
are optimized by Othmer [2008]. Recently Papoutsis-Kiachagias et al. [2011]
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applied topology optimization to laminar and turbulent flows, including heat
transfer.

Topology optimization is also applied to acoustic problems. Dühring et al.
[2008] used it to design geometries to reduce the noise level in a certain area
of a room. They applied it to the Helmholtz equations with a fluid in rest.
The first to apply topology optimization to an aeroacoustic application was
Schulze & Sesterhenn [2011]. They used the method to optimize the spatial
distribution of a porous medium (with a variable permeability) to reduce
trailing edge noise. Some of their main results are presented in Sec. § 5.5.3.

The present application on the minimization on supersonic jet noise by
means of an optimized porous material can be classified as a topology op-
timization. Up to now, it is the first time that topology optimization with
porous media is applied to supersonic jet noise. It will be discussed in detail
in the remaining part of this thesis.

Active optimization Despite shape and topology optimization, which be-
long to the class of passive control as long as the geometry is steady in state,
active control can be applied. Examples are blowing and suction, heating
and cooling of a boundary or any other form of volume forcing in the do-
main. The first to use blowing and suction in optimal control was Joslin et al.
[1995] to suppress the boundary layer instability. A similar investigation was
performed by Airiau et al. [2003]. Later, Guegan et al. [2006] applied it to
the optimal control in swept Hiemenz flow. Bewley et al. [2001] used blow-
ing and suction to reduce the kinetic energy in a plane channel flow. Up to
that time they performed the highest-dimensional control optimization with
a total of 107 control variables. Based on the compressible two-dimensional
Navier–Stokes equations Collis et al. [2002b] optimized two counter rotating
vortices impinging on a flat plate.

Active control strategies were frequently used in aeroacoustic applications.
It was first reported by Collis et al. [2002a] as they applied it to the blowing
and suction of a cylinder vortex interaction and could reduce the aeroacoustic
noise by 6 dB. An example based on the Euler equations and an optimal
transpiration control to reduce aeroacoustic noise is reported by Collis et al.
[2003].

The first application to free sher flow noise, like the one of mixing-layers or
jets, is proposed by Cervino et al. [2002]. They obtained in a two-dimensional
study of a Mj = 0.5 jet a sensitivity map to a noise signal measured in the
acoustic near field. No optimization was performed in this study. They
mention in Cervino & Bewley [2003] that on the one hand the actuation with
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mass sources is more efficient than with heat sources and on the other hand
that high frequency noise can be modified with a low frequency actuation.
Wei [2004], Wei & Freund [2002] were the first to control a mixing-layer based
on a thermal volume forcing in a small region in the mixing-layer. They could
reduce the noise by more than 6 dB and showed that the forcing is weak and
has little effect on the structures of the mixing-layer. Later, Wei & Freund
[2006] showed that it is not only vortex pairing which is responsible for mixing
noise, as the pairing phenomenon did not vanish for the controlled mixing-
layer. Similar studies on mixing-layer noise were performed by a series of
researchers, like Babucke et al. [2009], Barone [2003], Barone & Lele [2005],
Kleinman & Freund [2006], Spagnoli & Airiau [2008].

Recently, Freund [2011] presented an intermediate step of the optimization
of a supersonic axisymmetric jet by means of thermal actuation close to the
nozzle exit (similar to the work of Wei & Freund [2006]). The Mach number
of the perfectly expanded jet is Mj = 1.3 with a total of 2.8 ⋅ 106 grid points
(LES, nozzle is not included). They presented the first step of the Line Search
algorithm and gained a reduction of 37 % for the objective function. Their
simulations are ongoing.

5.3 Objective function

In the present application on supersonic jet screech the noise is character-
ized by a specific structure of the frequency spectrum. It contains distinct
frequency peaks with high amplitudes. In Fig. 5.2(a) a sketch of a typical
spectrum of aeroacoustic jet-screech is shown, characterized by a loud and
distinct peak at a specific frequency ωscreech. Other noise sources, such as the
low-frequency mixing noise of the jet or the broadband shock noise are rather
quiet by comparison.

Most recent attempts of noise reduction by iterative optimization use a
quadratic objective functional where the acoustic pressure fluctuations p′(x, t)
are squared and integrated over space and time. Although this approach
might reduce the objective functional, it is by no means clear which frequen-
cies of our noise source will ultimately be reduced. For example, applying
the above technique could dampen the sound level at some frequencies of the
spectrum, but readily amplify others. In a worst-case scenario, the domi-
nant noise sources – the peaks in Fig. 5.2(a) – may be amplified while the
other (already relatively quiet) parts in the spectrum are further reduced
(cf. Fig. 5.2(b)). This may yield an overall reduced objective functional but
does hardly meet the intentions. One then quickly realizes that, in order to
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(a) (b)

Figure 5.2: (a) Sketch of a typical spectrum for a supersonic jet-noise application with screech.
The peak of the screech signifies the dominant noise source and can be several dB louder
than all other noise sources [see Seiner, 1984]. (b) Sketch of a worst-case scenario for the
optimization of jet screech. Black curve: without optimization. Gray curve: with optimization.
Although the objective functional (shaded area under the black and gray curve, respectively) is
decreasing, the dominant noise peak is even higher than before.

design effective optimization tools for targeted noise reduction, the governing
objective functional has to be written in frequency space. Only then can
there be a guarantee that the dominant peaks in the spectrum can be singled
out and counteracted by appropriate control schemes while keeping the quiet
part of the spectrum mostly unchanged.

In this section the mathematical framework for combining an iterative
adjoint-based optimization technique with an objective functional formulated
in frequency space is presented. It is based on the work of Schulze et al. [2011].

If the goal of an optimization is the reduction of the aeroacoustic noise
levels, a commonly chosen objective functional is

J = 1

2
∫
Ω

t1

∫
t0

(p − p0)2M(x)dt dΩ, (5.16)

with p = p(x, t) as the pressure field and p0 denoting the mean pressure.
The acoustic pressure fluctuations are then given as p′(x, t) = p(x, t)−p0(x).
It should be noted that the mean pressure p0 has to be chosen carefully
so as to distinguish between acoustic and aerodynamic fluctuations. In the
cost functional (5.16) the noise is measured in the domain Ω and recorded
over a time span of (t1 − t0). With an additional weighting function in space
M(x), the area where to measure the noise can be selected. Measuring only
in one point (microphone), the weighting function would be the Dirac delta
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(M(x) = δ(x−xm), where xm is the location of the microphone). To increase
numerical stability, a Dirac delta can be smoothed out by replacing it with a
Gaussian distribution.

Following Parseval’s theorem the energy of a signal, in our case the square
of the measured noise, is the integral of the square of all its Fourier coefficients.
Applied to the temporal integral in (5.16) we obtain

∫
Ω

t1

∫
t0

(p′(x, t))2M(x)dt dΩ = 1

2π
∫
Ω

∞

∫
−∞

∣P ′(x, ω)∣2M(x)dω dΩ. (5.17)

A reduction in the objective functional J thus requires an equivalent reduc-
tion in the coefficients ∣P ′(x, ω)∣2, which corresponds to a decrease of the
amplitudes in the power-spectrum. As previously mentioned, however, by
following this approach it remains unclear which frequencies of the noise-
spectrum are ultimately reduced. Depending on the underlying physics as
well as on the applied control, it is conceivable that only a certain – maybe
uninteresting – frequency-band could be minimized using the above objective
functional. In the worst case, the dominant noise source may be amplified
even though J is decreasing (cf. Fig. 5.2(b)).
5.3.1 Objective functional in frequency space

Given an uncontrolled noise spectrum with peaks at distinct frequencies, one
can introduce an objective functional that allows not only to target certain
frequencies but also to identify sharp peaks. The objective functional in the
frequency domain can be written as

J = λ1

2
∫
Ω

ωu

∫
ωl

⎧⎪⎪⎨⎪⎪⎩
∞

∫
−∞

e−iωtp′(x, t)dt

⎫⎪⎪⎬⎪⎪⎭
2

M(x)dω dΩ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
J1

+
λ2

2
∫
Ω

ωu

∫
ωl

⎧⎪⎪⎨⎪⎪⎩
∂

∂ω

∞

∫
−∞

e−iωtp′(x, t)dt

⎫⎪⎪⎬⎪⎪⎭
2

M(x)dω dΩ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
J2

(5.18)

with λ1 and λ2 as user-defined weights to give more emphasis to the first or
second term in the above expression and to influence the convergence of the
optimization algorithm.
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Figure 5.3: Sketch of a typical spectrum of an aeroacoustic noise source. The objective
functional to be minimized consists of the gray area between ωl and ωu (J1) and a term
proportional to the gradient illustrated by the dashed lines (J2).

The first term in (5.18) denoted by J1 describes the area under the power-
spectrum between a lower frequency ωl and an upper frequency ωu and is ex-
pressed as an integral over the square of the Fourier-coefficients of the acous-
tic pressure fluctuations p′ between ωl and ωu. This area corresponds to the
frequency-band over which the acoustic noise is to be minimized (cf. Fig. 5.3).
Considering a high and wide peak in the frequency-band to minimize, the
term J1 might not be sufficient to accomplish this task. To specifically target
sharp peaks within the frequency band [ωl, ωu], a second term, denoted by
J2, is added to penalize high gradients of the power spectrum with respect to
the frequency ω (indicated by the dashed lines in Fig. 5.3). After some stan-
dard manipulations, expression (5.18) can be reformulated using the common

abbreviation F{q} = ∞∫
−∞

q(t)e−iωtdt to yield

J = 1

2
∫
Ω

ωu

∫
ωl

(λ1 (F{p′})2 − λ2 (F{t ⋅ p′})2)M(x)dω dΩ (5.19)

where the derivative with respect to ω in frequency-space (in term J2) trans-
forms into a multiplication by −t in the time-domain. For the present inves-
tigation, the weights are chosen as λ1/λ2 = 10. A detailed summary of the
parameters for a modified version of the objective function (5.20) is given in
Tab. 5.1 on page 168.

With expression (5.18) it is now possible to define an objective functional
that focuses on the reduction of a certain frequency band. Nevertheless, the
remaining frequencies outside the frequency band are not accounted for. It
is conceivable that the peak in the spectrum moves outside the frequency-
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band λ1,k λ2,k ωl,k ωu,k

k = 1 1 0.1 0 0.95 ωs

k = 2 10 1 0.95 ωs 1.05 ωs

k = 3 1 0.1 1.05 ωs ∞

Table 5.1: Parameters of the objective function (5.20) to minimize supersonic jet noise. Screech
frequency: ωs . The first band k = 1 accounts for mixing noise, the second band k = 2 for the
screech tone and the third band for shock-associated noise.

band [ωl, ωu] during the optimization process, therefore causing a substantial
drop in the objective functional. Consider, for example, the present applica-
tion of screech reduction. Changing the effective jet diameter by adding a
porous material inside the nozzle, would reduce the shock cell spacing and
consequently increase the screech frequency. If the screech frequency moves
outside the upper limit ωu, the objective function will be reduced but it would
certainly not solve the intended problem.

Different strategies are possible to address this issue. If our objective is
simply the reduction of noise with emphasis on a certain frequency, one could
add a second objective functional of the form (5.18) where the integration
is performed over all frequencies outside the dominant frequency, i.e. ω ∈]0, ωl[∪ ]ωu,∞[. By means of appropriate weights for the two expressions one
could focus on the frequency-band [ωl, ωu]. In a general case this approach
reads for N distinct frequency bands:

J = 1

2

N∑
k=0
∫
Ω

ωu,k

∫
ωl,k

(λ1,k (F{p′})2 − λ2,k (F{t ⋅ p′})2)Mk(x)dω dΩ (5.20)

Now, the different weights and frequency bands define the noise sources to
be minimized. In addition to that, the position where to minimize the noise
(Mk(x)) can be different for each frequency band. In the present application
on supersonic jet noise, the objective function as defined in Eq. (5.20) is used
to minimize jet screech. The parameters are summarized in Tab. 5.1. With
this set of parameters, the effect of the screech frequency is weighted ten times
stronger than the remaining frequencies (mixing noise and broadband shock-
associated noise). One could also account for the subharmonics of the screech
tone by adding additional frequency bands with ω = n ⋅ ωs (n = 2, 3, 4, ...).
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Nevertheless, the subharmonics are linked to the fundamental screech tone
and a reduction of the screech tone will also reduce its subharmonics. To this
end, only the fundamental screech frequency ωs is accounted for.

An alternative strategy is based on keeping the uncontrolled frequencies
unchanged. In the present application this corresponds to a reduction of
screech noise while keeping the amplitudes of the mixing noise and the shock-
associated noise on a constant level. From an environmental point of view,
this strategy is not desirable as the optimization may not be as efficient as
the reduction of all frequencies. Nevertheless, this approach can be of par-
ticular interest if our goal is not only the minimization of noise in particular
frequency bands but also the discovery and understanding of noise gener-
ation mechanisms by specific acoustic sources. In other words, by keeping
all uncontrolled frequencies unchanged and simultaneously reducing only the
dominant peak within a given frequency band, one can extract the mechanism
responsible for this specific peak in the spectrum. Mathematically, we intro-
duce non-negative terms that penalize any changes in the noise spectrum
from the uncontrolled spectrum for frequencies outside the target interval[ωl, ωu]. For this strategy, the uncontrolled spectrum has to be determined
and stored. We obtain

P = P1 +P2 (5.21a)

P1 = 1

2
∫
Ω

ωl

∫
−∞

(F{p′} −F{p′0})2 M(x)dω dΩ (5.21b)

P2 = 1

2
∫
Ω

∞

∫
ωu

(F{p′} −F{p′0})2 M(x)dω dΩ (5.21c)

with the controlled acoustic pressure fluctuations denoted by p′ and the un-
controlled fluctuations by p′0. The term P1 penalizes changes in the spectrum
below the target frequency-band, i.e, ω ∈ [−∞, ωl[); the term P2 ensures
minimal changes of the spectrum in the frequency-band ω ∈]ωu,∞[.

In the present investigation, the additional penalty term is not included
in the minimization of jet screech, as the focus also lies on the reduction of
the remaining noise sources. Nevertheless, this term can be used for future
investigations, to focus on the individual noise sources.

In addition to the two penalty terms P1 and P2 an additional penalty term
is usually added in control theory. This additional penalty term has the
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following form:

P3 = β

2
∫
Ω

t1

∫
t0

∥K∥22 dt dΩ (5.22)

where K = K(x) stands for the control variable, and β represents a user-
specified parameter that measures the cost of the control. Small values of β

will cause the control to be expended generously, while large values of β will
result in more parsimonious levels of control. In the present application, the
control is passive and no energy in the classical meaning is wasted when the
control is large. In other words, a large control in the present investigation
stands for a solid body, whereas a small control is equal to void space. As we
have seen in the previous chapters, on the derivation of the porous flow equa-
tions, a solid porous material can be responsible for numerical instabilities.
These instabilities can justify the additional penalty term to limit the stiff-
ness of the system of equations. Nevertheless, the choice of the user-defined
parameter β is by no means trivial. If the gain is too strong, it can lead to a
poor convergence and if it is too weak, it can lead to the already mentioned
numerical instabilities. To this end, the additional penalty term is not in-
cluded in the present investigation. Rather, the control is simply limited to
an upper pre-defined limit which guarantees numerical stability and sufficient
solid properties. In the present application, the upper limit is χmax = 2 ⋅ 105.

5.4 Optimization framework

With the objective function J (5.20) of the previous section, we can now
define the optimization framework. The goal of the present investigation is
to apply optimization methods to fluid-mechanical/aeroacoustical problem
described or modeled by nonlinear partial differential equations. The opti-
mization algorithm then drives the objective functional, given above, toward
a minimum while observing that the final solution has to satisfy the governing
equations, boundary and initial conditions. The latter set of equations thus
represents a constraint on the minimization problem, and the constrained
optimization problem can be recast into an unconstrained problem by adding
the constraints via Lagrange multipliers. We obtain the Lagrange functionalL as follows,

L = J − ⟨N (q, K), q⋆⟩ − [H(q), h⋆] − (G(q), g⋆) . (5.23)

The objective functional is given by (5.20). N (q, K) = 0 is a symbolic way of
stating the governing equations for the state variable q and control K, given
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by the compressible Navier-Stokes equations. In a similar symbolic form, the
boundary conditions and initial conditions can be formulated as H(q) = 0
and G(q) = 0, respectively. We note that the governing equations, boundary
and initial conditions are added to the objective functional and penalty terms
by the Lagrange multipliers q⋆, h⋆ and g⋆. Since the constraints have to be
satisfied locally, the Lagrange multipliers are fields, and the three different
scalar products in (5.23) are thus given as

⟨p, q⟩ =
t1

∫
t0

∫
Ω

p(x, t)Hq(x, t)dΩdt (5.24a)

(p, q) = ∫
Ω

p(x)Hq(x)dΩ (5.24b)

[p, q] =
t1

∫
t0

p(t)Hq(t)dt (5.24c)

with the superscript H denoting the complex conjugate transpose for vector
valued variables and simply the complex conjugate for scalar variables. For
real valued problems, as in the present application, the conjugate transpose
turns simply into a transpose with the superscript T . The variables q⋆, h⋆ and
g⋆ are the adjoint variables which enforce, respectively, the governing equa-
tions, the boundary conditions and the initial conditions. In what follows,
adjoint variables will be indicated by the superscript ⋆. A detailed and re-
cent review of adjoint optimization using a Lagrange functional can be found
in Bewley [2001].

The Lagrange functional depends on the independent variables q(x, t),
q⋆(x, t), h⋆(t), g⋆(x), K(x, t), and a minimum (or stationary point) ofL requires the first variations with respect to all independent variables to
vanish. Equating the first variation of the Lagrange functional with respect
to q, q⋆,h⋆, g⋆ and K to zero yields a system of equations that can be solved
iteratively to determine the minimum of the objective functional.
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This system of equations, in general form, can be written as

∂L
∂q⋆

δq⋆ = 0 → N (q, K) = 0 direct equation (5.25a)

∂L
∂h⋆

δh⋆ = 0 → H(q) = 0
direct boundary

conditions
(5.25b)

∂L
∂g⋆

δg⋆ = 0 → G(q) = 0 direct initial conditions (5.25c)

∂L
∂q

δq = 0 → N ⋆(q⋆, q, K) = 0
adjoint equation and its

boundary conditions
(5.25d)

∂L
∂K

δK = 0 → ∇KJ gradient (5.25e)

This set of equations can be used in an optimization loop to iteratively op-
timize the control parameter. In Fig. 5.4 the basic optimization framework
is presented including the necessary equations. Starting with an initial guess
of the control parameter, e. g. K = 0, the direct equations are solved for-
ward in time to obtain the state q based on which the objective functional J

can be computed. With an adjoint terminal condition q⋆(T ), depending on
the objective functional, the adjoint equations need to be solved backwards
in time. Due to the nonlinearity of the direct equations, the adjoint equa-
tions need the direct state q of the forward computation. Hence, q has to be
saved throughout one optimization loop. Finally obtaining the adjoint state
q⋆, the gradient of the objective functional can be evaluated and the control
parameter can be updated.

For a more detailed statement of the system of equations, specific infor-
mation about the governing equations, boundary and initial conditions, and
the objective functional have to be provided. In the next sections, we will
demonstrate the above optimization framework by deriving a set of govern-
ing equations for iteratively optimizing the frequency output of the nonlinear
Navier–Stokes equations.

Discrete vs. continuous approach The variation of the objective function
with respect to the independent parameters corresponds to a linearization,
followed by an integration by parts. This linearization and the integration
by parts can be performed in two ways: discrete or continuous. In the latter
case, the nonlinear PDEs are first linearized and then, during the integration
by parts, the corresponding adjoint equations can be found. Finally, these
equations can be discretized to solve them numerically. In the discrete case,
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Figure 5.4: Iterative optimization loop for the nonlinear Navier–Stokes equations. Beginning
with an initial guess K(0) of the desired control, the direct equation N(q,K) is solved forward
in time. With an adjoint terminal condition the adjoint equation N ⋆(q⋆,K, q) is solved
backwards in time, using the direct state q. Followed by a series of gradient evaluations, the
new control state K(n+1) is found. This loop is repeated iteratively n times until the algorithm
shows convergence.
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PDE

discretized

equations

nonlinear linear adjoint

Figure 5.5: Different ways of the discretization of adjoint equations [see e. g. Giles & Pierce,
2000].

the nonlinear PDEs are first discretized, then linearized and based on that,
the corresponding adjoint equations can be found. In Fig. 5.5 these two basic
concepts are presented. There is even an intermediate step, where one first
linearizes the equations and then discretizes the linear equations to finally
obtain the discrete adjoints. Nevertheless, this intermediate approach is not
common.

In the discrete approach, the discretized equations need to be differentiated.
This step is usually performed automatically with so called “automatic differ-
entiation” (AD) software like ADIFOR [see Bischof et al., 1992]. These tools
use an existing code and derive the first derivative of all dependent variables.
The new code can be used to obtain the discretized adjoint solution.

In the continuous approach, the equations need to be linearized and dis-
cretized by hand, which can be, especially for compressible codes, challenging.
Which approach is the best choice, is hard to answer and remains, following
Giles & Pierce [2000], a matter of personal taste. Giles & Pierce [2000] states
some advantages of the two methods, which will be summarized and com-
pleted in Tab. 5.2.

Obviously, both approaches show advantages, which may be a reason to
favor one of both methods. In the present investigation, we will follow the
continuous approach. The main reason to prefer this approach instead of the
discrete one, which is nowadays widely used, is the fact that the physical
significance of the adjoint variables and especially the influence of the fre-
quency based objective functional is much clearer. In addition to that, we
will see in the following sections, especially in Sec. § 5.4.8 and § 5.4.9, that
the main advantages of a discrete code, like the exact gradient and the same
eigenvalues of both operators, can be also gained in good approximation for
a continuous approach when carefully deriving and implementing the adjoint
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Discrete approach Continuous approach

The exact gradient of the objective
function is obtained. This ensures
the fully convergence of the opti-
mization algorithm.

Physical significance of adjoint vari-
ables, boundary conditions and ad-
joint forcing is much clearer.

Derivation of the discrete adjoints
can be performed with AD tools.
Hence, it can be straightforward.
The same eigenvalues of the direct
and adjoint operator can be ob-
tained.

The adjoint code is simpler and
needs less memory. It can be op-
timized easier.

The code is numerically more stable
than the continuous approach.

It is easier to include additional
terms, like the Darcy term, with-
out creating a completely new code
as in the discrete case.

Table 5.2: Advantages of the discrete and continuous approach to obtain the discretized adjoint
equations based on Giles & Pierce [2000].

equations. The continuous approach has also the advantage that the influ-
ence of the additional Darcy term on the adjoint equations is clearer and that
its implementation in an existing adjoint code is straightforward. Neverthe-
less, a disadvantage of the continuous approach remains: the poor numerical
stability. In the present investigation, a new method has been developed to
stabilize the continuous adjoint code without affecting the solution of the
gradient. It is presented in Sec. § 5.4.8 and shows that the disadvantage of
the poor numerical stability of a continuous code can be efficiently eliminated
without loosing the computational performance.

5.4.1 Application to the compressible porous Navier–Stokes
equations

To apply the optimization algorithm to the present case, the Navier–Stokes
equations, the objective functional and the initial and boundary conditions
need to be included in the Lagrange functional of Eq. (5.23). The optimiza-
tion framework can be obtained by evaluating the first variation with respect
to all independent variables of the Lagrange functional. Trivial solutions
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arise for the variation with respect to the adjoint variables, q⋆, h⋆ and g⋆,
corresponding to Eq. (5.25a), (5.25b) and (5.25c). As a result, one obtains
the direct equation and the boundary and initial conditions. These relations
are already present and nothing else has to be done at this step. More effort
has to be exerted to determine the equations stemming from the first varia-
tions with respect to the direct state q and the control K, corresponding to
Eq. (5.25d) and (5.25e). The first variation of the Lagrange functional with
respect to the control yields an expression for the gradient. Its derivation is
presented in Sec. § 5.4.3. The first variation of the Lagrange functional with
respect to the direct state yields an evolution equation for the adjoint state
and the corresponding boundary conditions. It reads:

∂L
∂q

δq = ∂J

∂q
δq

²
1

+(∂G

∂q
δq, g⋆)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2

− [∂H

∂q
δq, h⋆]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
3

− ⟨∂N
∂q

δq, q⋆⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

4

= 0 (5.26)

Each term of Eq. (5.26) can be treated separately. The first term 1 , the
variation of the objective function, yields a source term for the adjoint equa-
tions. It forces the adjoint state, while it is integrated backwards in time.
Its derivation is presented in Sec. § 5.4.1.3. The second 2 and the third
term 3 will result in the adjoint boundary and terminal condition. They
are summarized in Sec. § 5.4.2. Finally, the fourth term 4 yields an expres-
sion for the unforced adjoint Navier–Stokes equations. The variation of the
individual terms corresponds to a linearization, followed by an integration by
parts. Hence, the variation of the fourth term can be accomplished in two
steps. First, by linearizing the direct nonlinear equation and, secondly, by in-
tegrating the linearized equation by parts. These two steps are presented for
the nonlinear compressible Navier–Stokes equations in the following section.

5.4.1.1 Adjoint Navier–Stokes equations

In a common notation, the Navier–Stokes equations cover the conservation
of mass, momentum and energy. Nevertheless, the basic formulation of these
three equations is not closed. Additional information on the specific proper-
ties of the fluid needs to be included to close the system of equations. Three
additional algebraic equations for the density, the temperature and the vis-
cosity are necessary (see Sec. § 3.1). Hence, a total of eight coupled equations
are necessary to define the closed system. In the present three-dimensional
application they can be included in one state vector: q = [p u v w s ρ T µ]T .

When we derive the adjoint equations, we need to transpose the whole
closed system including the three algebraic equations. To this end, in the
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following linearization and the subsequent integration by parts, the dimension
of the system is always eight.

Without simplifications, like, e.g., a constant viscosity (µ = const.) or
setting Φ = 0 which is a commonplace [see e. g. Cervino et al., 2002, Col-
lis et al., 2002b, Spagnoli & Airiau, 2008, Wei & Freund, 2006], the lin-
earized compressible and porous Navier–Stokes equations can be written
in matrix formulation. With the variation of the state vector components
δq = [δp δu δv δw δs δρ δT δµ]T , we have

B
∂δq

∂t
+Ak

∂δq

∂xk

+Dij

∂2δq

∂xi∂xj

+Cδq = 0 (5.27)

The matrices can be found in the appendix in Sec. § B on page 261.
Based on the linearized matrix formulation, we give an expression for the

term in the tilted brackets. With the scalar product of Eq. (5.24a) we get:

⟨∂N (q, K)
∂q

δq, q⋆⟩ =
t1

∫
t0

∫
Ω

∂δqT

∂t
BT q⋆ +

∂δqT

∂xk

AT
k q⋆ +

∂2δqT

∂xi∂xj

DT
ijq⋆ + δqT CT q⋆ dΩdt

(5.28)

The dimension of the adjoint state q⋆ is consequently the same as for the
direct state q and it can be given as q⋆ = [p⋆ u⋆ v⋆ w⋆ s⋆ ρ⋆ T ⋆ µ⋆]T with
the adjoint pressure, the adjoint velocities, the adjoint entropy, the adjoint
density, the adjoint temperature and the adjoint viscosity.

After integration by parts and the fact, that the variation δqT is arbitrary,
the unforced adjoint equations read:

−
∂

∂t
(BT q⋆) − ∂

∂xk

(AT
k q⋆) + ∂2

∂xi∂xj

(DT
ijq⋆) +CT q⋆ = 0. (5.29)

Due to the integration by parts, the signs of the first partial derivatives change
while they keep unchanged for the second derivatives and the source term.
The negative sign of the temporal derivative forces us to integrate the adjoint
equations backwards in time to guarantee a numerically stable solution. Dur-
ing the integration by parts, the additional boundary conditions define the
adjoint boundary and initial conditions. They will be addressed separately
in Sec. § 5.4.2. Despite the boundary conditions, the adjoint Navier–Stokes
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equations are not complete, yet. The first variation of the objective func-
tion with respect to the direct state will contribute as a forcing/source term
to the equations and drive the solution backwards in time. The specific
role of the frequency based objective function will be discussed separately in
Sec. § 5.4.1.3.

Above matrix formulation can be expanded in separate equations leading
to a set of adjoint PDEs. A total of eight equations will arise as the dimension
of the square matrices in Eq. (5.29) is eight. Five PDEs, one for the adjoint
pressure, three for each adjoint velocity component and one for the adjoint
entropy. The additional three algebraic equations, the adjoint density, adjoint
temperature and adjoint viscosity close the system of equations. The five
PDEs read:

∂p⋆

∂t
= −ui

∂p⋆

∂xi

−
1

ρ

∂ui
⋆

∂xi

+Θp
e +Θ

p
f
+Θp

p (5.30a)

∂ui
⋆

∂t
= −uj

∂ui
⋆

∂xj

− γp
∂p⋆

∂xi

+Θui

e +Θui

f +Θui

p (5.30b)

∂s⋆

∂t
= −ui

∂s⋆

∂xi

+
p

Cv

(∂p⋆

∂t
+ ui

∂p⋆

∂xi

) +Θs
e +Θs

f +Θs
p (5.30c)

The abbreviation for the adjoint sources can be split into three contributions,
an Euler part without friction Θα

e , a friction-dependent part Θα
f and a part

arising from the porous terms Θα
p , where α can be one of p, ui or s. Depend-

ing on the application, some source terms might be omitted, e. g. the term
related to the porous Navier–Stokes equations (Θα

p ) when no porous material
is concidered.

The explicit form of the adjoint source terms is given as follows:

Friction independent adjoint sources

Θp
e ∶= −((1 − γ)∂uj

∂xj

+
1

Cv

(∂s

∂t
+ uj

∂s

∂xj

))p⋆ + ( 1

ρ2

∂ρ

∂xj

)uj
⋆

Θui

e ∶= −((γ − 1) ∂p

∂xi

+
p

Cv

∂s

∂xi

)p⋆ −
∂uj

∂xj

ui
⋆ +

∂uj

∂xi

uj
⋆ +

∂s

∂xi

s⋆

Θs
e ∶= 1

Cv

(∂p

∂t
+

∂(puj)
∂xj

)p⋆ −
∂uj

∂xj

s⋆
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Friction dependent adjoint sources

Θ
p
f
∶= −

1

c2
ρ⋆ −

1

ρR
T ⋆

Θui

f
∶= 2

∂

∂xj

(τij
⋆

ρ
) − ∂2

∂x2
j

(µ

̺
ui
⋆) − ∂2

∂xi∂xj

(1

3

µ

̺
uj
⋆) + 2

∂

∂xj

( τij

ρT
s⋆)

Θs
f ∶= p

c2Cv

ρ⋆

with the further abbreviations

τij
⋆ ∶= 2(sij

⋆ −
1

3
skk
⋆δij)

sij
⋆ ∶= 1

2
( ∂µ

∂xi

uj
⋆ +

∂µ

∂xj

ui
⋆) .

Porous dependent adjoint sources

Θp
p ∶= 0

Θui

p ∶= µ

ρφ
(K−1)

ij
uj
⋆ − 2

µ

ρφT
(K−1)

ij
ujs⋆

−(R

φ

∂φ

∂xi

+ 2
µ

ρφT
(K−1)

ij
uj) s⋆

Θs
p ∶= 0

Three additional algebraic equations, the adjoint density, temperature and
viscosity need to be introduced to close the system of adjoint equations (also
obtained by Eq. (5.28)). For the sake of clearness, the porous terms are
discussed in an extra term (⋅)p. We obtain the following expressions:

Adjoint density

ρ⋆ = −
1

ρ2
(− ∂p

∂xi

+
∂τij

∂xj

)ui
⋆

−
1

ρ2T
( ∂

∂xj

(λ ∂T

∂xj

) +Φ) s⋆ −
T

ρ
T ⋆ + ρp

⋆ (5.31)

ρp
⋆ ∶= µ

ρ2φ
(K−1)

ij
ujui

⋆ −
µ

ρ2φT
(K−1)

ij
uiujs⋆
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Adjoint temperature

T ⋆ = ∂

∂xk

(− 1

ρT

∂λ

∂xk

s⋆) − 1

ρT 2
( ∂

∂xj

(λ ∂T

∂xj

) +Φ) s⋆

−
∂2

∂x2
j

(− λ

ρT
s⋆) + dµ(T )

dT
µ⋆ + Tp

⋆ (5.32)

Tp
⋆ ∶= −

µ

ρφT 2
(K−1)

ij
uiujs⋆

Adjoint viscosity

µ⋆ = ∂

∂xi

(−τij

µρ
uj
⋆) + ∂

∂xi

(− Cp

P rρT

∂T

∂xi

s⋆)
+

1

ρ
( ∂

∂xj

(τij

µ
)ui

⋆)
+( Cp

P rρT

∂2T

∂x2
j

+
Φ

ρT µ
)s⋆ + µp

⋆ (5.33)

µp
⋆ ∶= −

1

ρφ
(K−1)

ij
ujui

⋆ +
1

ρφT
(K−1)

ij
uiujs⋆

Now, one can see that the adjoint equations are a function of the direct
state q. Therefore, the direct state has to be saved throughout the forward
computation. Remarks on that topic are given later. Due to the linearization
and the subsequent integration by parts a large number of source terms arise
which makes the implementation a challenging task. This fact is the reason
why it is a commonplace to use simplifications during the linearization, like
setting µ = const. or Φ = 0. Nevertheless, these simplifications will result in a
wrong gradient. Its impact on the gradient and finally on the solution of the
optimum is not clear and hence will not be used in the present investigation.

Despite the challenging implementation of the large number of source terms,
they can lead to a bad condition of the overall system and finally lead to
numerical instabilities. A method to deal with these numerical issues is pre-
sented in Sec. § 5.4.8.1.

5.4.1.2 Characteristic formulation

The direct Navier–Stokes equations are written in a characteristic formula-
tion of Sesterhenn [2000]. In a continuous adjoint approach it is important to
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use the same numerical method for the direct and for the adjoint computa-
tion. To this end, the adjoint Navier–Stokes equations are also decomposed
into characteristic waves. A detailed derivation is given in the appendix in
Sec. § C.

In three-dimensional space, the adjoint Navier–Stoles equations including
porous media can be written in a characteristic formulation:

∂p⋆

∂t
= −

1

2ρc
((X+⋆ +X−

⋆) + (Y +⋆ + Y −
⋆) + (Z+⋆ +Z−

⋆))
+Θp

e +Θ
p
f
+Θp

p (5.34a)

∂u⋆

∂t
= 1

2
(X+⋆ −X−

⋆) + Y u⋆ +Zu⋆ +Θu
e +Θu

f +Θu
p (5.34b)

∂v⋆

∂t
= Xv⋆ +

1

2
(Y +⋆ − Y −

⋆) +Zv⋆ +Θv
e +Θv

f +Θv
p (5.34c)

∂w⋆

∂t
= Xw⋆ + Y w⋆ +

1

2
(Z+⋆ −Z−

⋆) +Θw
e +Θw

f +Θw
p (5.34d)

∂s⋆

∂t
= Xs⋆ + Y s⋆ +Zs⋆ +

p

Cv

∂p⋆

∂t
+Θs

e +Θs
f +Θs

p (5.34e)

with the following abbreviation:

Xv⋆ ∶= −u
∂v⋆

∂x
(5.35a)

Y u⋆ ∶= −v
∂u⋆

∂y
(5.35b)

Zu⋆ ∶= −w
∂u⋆

∂z
(5.35c)

Xw⋆ ∶= −u
∂w⋆

∂x
(5.36a)

Y w⋆ ∶= −u
∂w⋆

∂y
(5.36b)

Zv⋆ ∶= −u
∂v⋆

∂z
(5.36c)

X±
⋆
∶= (−u ± c)(−ρc

∂p⋆

∂x
±

∂u⋆

∂x
) (5.37a)

Y ±
⋆
∶= (−v ± c)(−ρc

∂p⋆

∂y
±

∂v⋆

∂y
) (5.37b)

Z±
⋆
∶= (−w ± c)(−ρc

∂p⋆

∂z
±

∂w⋆

∂z
) (5.37c)
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Xs⋆ ∶= u( p

Cv

∂p⋆

∂x
−

∂s⋆

∂x
) (5.38a)

Y s⋆ ∶= v ( p

Cv

∂p⋆

∂y
−

∂s⋆

∂y
) (5.38b)

Zs⋆ ∶= w ( p

Cv

∂p⋆

∂z
−

∂s⋆

∂z
) (5.38c)

In the same way as for the direct Navier–Stokes equations the adjoint Navier–
Stokes equations can be derived for curvilinear grids. They are presented in
the appendix in Sec. § C.

5.4.1.3 Adjoint forcing

As mentioned already, the adjoint Navier–Stokes equations are not complete,
yet. The forcing term, which accounts for the specific structure of the objec-
tive functional is missing. Its origin lies in the first variation of the objective
functional with respect to the direct state. It is the first term 1 of Eq. (5.26).
Due to the uncommon frequency based structure, its derivation and interpre-
tation is discussed in detail in the following. The corresponding term reads:

∂J(q)
∂q

δq = ∫
Ω

ωu

∫
ωl

(λ1F{p′}F{δp′} − λ2F{tp′}F{tδp′})M(x)dω dΩ

We need to factor the variation of the state out of above equation. To this
end we include the definition of the Fourier transform in a next step and get
for the right hand side:

∫
Ω

ωu

∫
ωl

⎛
⎝λ1F{p′}

∞

∫
−∞

e−iωtδp′ dt − λ2F{tp′}
∞

∫
−∞

e−iωttδp′ dt
⎞
⎠M(x)dω dΩ

Now, the order of the integration can be changed and if we assume that the
state and its variation is only existing during the simulation time t ∈ [t0, t1]
and zero elsewhere, we can define the following transformation:

∞

∫
−∞

p′ dt =
t1

∫
t0

p′ dt, if p′(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, t < t0

p′, t0 ≤ t ≤ t1

0, t > t1

.
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Finally, after some rearrangement we get:

∫
Ω

t1

∫
t0

ωu

∫
ωl

(λ1F{p′}e−iωtδp′ − λ2F{tp′}e−iωttδp′)M(x)dω dt dΩ.

To clarify the meaning of this term, an abbreviation can be defined and
included in the relation above. We get:

∫
Ω

t1

∫
t0

(λ1F−1 {F{p′}∣ωu

ωl

} − λ2F−1 {F{tp′}∣ωu

ωl

} t)M(x)δp′ dt dΩ. (5.39)

with the definition of the abbreviation:

F−1 {F{p′}∣ωu

ωl

} =
ωu

∫
ωl

F{p′}e−iωt dω =
∞

∫
−∞

F{p′} ⋅ T (ω)e−iωt dω (5.40)

Now, this introduced abbreviation is nothing else as a filter with the filter
function T (ω) and the inverse Fourier transform F−1. The shape of the filter
function is a top-hat filter with:

T (ω) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, ω < ωl

1, ωl ≤ ω ≤ ωu

0, ω > ωu

(5.41)

It can be regarded as a band-pass filter for the quantity p′ (here the pressure).
Equation (5.40) and Eq. (5.28) can be added, as both terms appear in the
variation of the Lagrange function with respect to the state and both terms
are integrands of the same double integral. To this end, the forcing of the
adjoint Navier–Stokes equations can be written as:

N∑
k=0

(λ1,kF−1 {F{p′}∣ωu,k

ωl,k

} − λ2,kF−1 {F{tp′}∣ωu,k

ωl,k

} t)M(x) (5.42)

It is a source term, acting on the right hand side of the adjoint pressure equa-
tion (5.30a). It is forcing the equation with the band-passed pressure signal.
The latter one is measured during the forward computation and applied back-
wards in time with the spatial distribution M(x). With the introduction of
the sum in the forcing of the right hand side, we can account for N distinct
bands with different frequency ranges ωl,k ≤ ω ≤ ωu,k and individual weights
λ1,k and λ2,k, corresponding to the objective function (5.20).
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5.4.2 Adjoint boundary- and terminal-condition

The boundary conditions can be derived by carefully evaluating the two parts
marked with a 2 and 3 of the first variation of the Lagrange functional with
respect to the direct state (5.26). In addition to that, additional terms arise
as a result of the integration by parts of the remaining terms. These terms
can be combined and form the adjoint boundary conditions in space and the
adjoint initial (terminal) condition in time.

5.4.2.1 Adjoint terminal condition

In the adjoint case, the terminal condition at t = T is the initial condition,
as the adjoint equations are solved backwards in time. The specific character
of the adjoint terminal condition depends on the definition of the objective
function J . It can be either zero or reach any other state, depending on J .
If J is, e. g. an integral over the whole simulation time t ∈ [0, T ], then the
terminal condition will be zero. If the objective function is defined only at
the terminal condition, like in cases where the objective is the minimization
of the terminal kinetic energy, then the terminal condition will reach some
state unequal to zero. These relations can be easily proven with a simple
example.

In the present case, the objective function is an integral in time and its
influence on the adjoint equation is a source term rather than a terminal
condition. To this end, the terminal condition for the adjoint computation is
zero:

q⋆(x, T ) = 0. (5.43)

with the adjoint state q⋆ at the terminal time.
Several numerical boundary conditions are implemented to treat the aeroa-

coustic application properly. Each boundary condition for the direct compu-
tation needs a corresponding adjoint boundary condition. In the following,
three boundary conditions are presented: the adjoint sponge in Sec. § 5.4.2.2,
a non-reflecting boundary in Sec. § 5.4.2.3 and an adiabatic wall boundary
in Sec. § 5.4.2.4.

5.4.2.2 Sponge boundary condition

An easy but efficient way of implementing a boundary condition in the direct
and adjoint case, is a sponge (see Sec. § 2.4.3.2). This boundary condition
is a linear source term and can be implemented in a similar way as for the
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(a)
t = 0 t = 1/3TL t = 2/3TL t = TL

(b)
t = TL t = 2/3TL t = 1/3TL t = 0

(c)

Figure 5.6: Two–dimensional test of the sponge boundary conditions for the direct (a) and
the adjoin case (b). Each with the same initial condition. Pressure peak in the direct case
and adjoint pressure peak in the adjoint case with the same amplitude. The adjoint solution
is running backwards in time. Acoustic waves leaving the domain in both cases with negligible
reflections. Solved on a Cartesian mesh with 40 × 40 points. Solution is self–adjoint (linear
acoustic propagation). (c) Spatial distribution of the sponge based on Eq. (2.42) on all four
boundaries (Lsp = 0.1L, Csp = 0.05L, L: length of the quadratic domain). Values at the
domain boundary σ = 1. In the center of the domain σ = 0. Time for an acoustic wave to
propagate through the domain TL = L/c (c : speed of sound).

direct Navier–Stokes equations (see Eq. (2.41) and the references Meliga et al.
[2010], Spagnoli & Airiau [2008], Wei [2004]). Due to the linearization of the
direct equations and the fact that q0 is constant, the adjoint sponge looks
simply:

∂q⋆

∂t
= N ⋆(q⋆, q) + τspσ(x)q⋆ (5.44)

Compared to its direct counterpart, the adjoint reference solution is zero and
the sponge has a sign facing in the opposite direction to ensure its damping
properties and numerical stability. The sponge-function σ(x) has the same
shape for the direct and adjoint case (see Eq. (2.42) and Fig. 2.12). The same
holds true for the sponge amplitude τsp.

In Fig. 5.6 a two-dimensional acoustic example to test the boundary con-
dition is presented. In this validation case a Gaussian pressure peak is inte-
grated in time on a Cartesian domain with 40 × 40 points. For the forward
case (a), at the time t = 0, the pressure peak is in the center of the domain.
As there is no base flow, the occurring acoustic wave is propagating concen-
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tric in the domain and finally leaving the domain boundaries. At the final
time–step shown (t = TL), all acoustics left the domain without significant
reflections at the boundaries (time-span of an acoustic propagating through
the domain: TL = L/c with the length of the quadratic domain L and the
ambient speed of sound c). The spatial distribution of the sponge function
σ is visualized in sub–figure (c) and based on Eq. (2.42) acting on all four
boundaries.

In sub–figure (b), the corresponding adjoint pressure p⋆ is presented. To
compare the direct and adjoint case, the same Gaussian fluctuation is used
as initial condition. As the adjoint equations are integrated backwards in
time, its initial condition starts at t = TL. One can see, that the solution
of the adjoint pressure is identical to one of the direct pressure. The only
difference is the reversed time axis tadjoint = TL − tdirect. This behavior is not
surprising, since the propagation of acoustic waves is a linear phenomenon
and the sponge is a linear source term. For this strictly acoustic case, most
of the terms in the Navier–Stokes equations cancel out and the remaining
equation is of the type of a wave equation which is self-adjoint. According
to that, the direct and adjoint solution need to match each other. Again, no
spurious reflections at the domain boundaries are visible.

The kinetic energy (only u2) and the corresponding adjoint kinetic energy
(u⋆2) are presented in Fig. 5.7(a) as a function of the time. The energy is
scaled with the maximum energy in the domain and the time is scaled with
the time-span of an acoustic propagating through the domain TL = L/c. To
compare both, the direct and adjoint computation, the time axis of the adjoint
computation is reversed. One can see that most of the kinetic energy (four
orders of magnitude) is leaving the domain at t/TL = 1 when all acoustics
past the domain boundaries. The reflected acoustics are leaving the domain
within the next time-span 1 ≤ t/TL ≤ 2 and reduce the energy in the domain
for further three magnitudes to a total of seven orders of magnitude. At
this point (t/TL ≥ 2) a small deviation of the direct and adjoint solution is
visible. It seems that in the adjoint computation a larger amount of kinetic
energy stays in the domain as it is the case for the direct computation. This
additional energy is not related to inefficient adjoint boundary conditions and
the corresponding spurious acoustic reflections but can be reduced to a small
adjoint entropy spot (s⋆) in the center of the domain. This entropy spot
is created during the first time-steps of the adjoint computation and decays
only very slowly. Based on the coupled adjoint equations the entropy spot
is responsible for adjoint velocity components u⋆ and v⋆ which contribute to
the kinetic energy. This slowly decaying energy contribution is also visible in
panel (b) which corresponds to the non-reflecting boundary condition. Here,
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Figure 5.7: Kinetic energy as a function of the computational time in the two-dimensional
domain with three different boundary conditions. (a) sponge boundary condition; (b) non-
reflecting boundary condition; (c) adiabatic wall boundary condition. Energy scaled with the
maximum energy. Time scaled with the time-span of an acoustic propagating through the
domain (TL = L/c with the length of the quadratic domain L and the ambient speed of sound
c). Direct computation ( ); adjoint computation ( ) with reversed time axis.

the adjoint kinetic energy converges to the same value (∼ 10−7) for t/TL = 12.

5.4.2.3 Non-reflecting boundary condition

In the acoustic far-field, non-reflecting boundary conditions aid in reducing
acoustic reflections. As the direct and adjoint code are based on the charac-
teristic formulation, the realization of a non-reflecting boundary is achieved
by simply setting the incoming wave to zero. For the adjoint boundaries this
reads:

Ξk
±

⋆ = 0 (5.45)

for the boundary in the k–direction and the definition of the wave in Eq. (C.7a).
A subscript “+” corresponds to an acoustic wave in the positive k-direction
and a “−” to a wave in the negative k–direction. An analogous formulation
exists for the forward version of the code.

In Fig. 5.8 the same case as in Fig. 5.6 is presented, however with the
non-reflecting boundary conditions. In both solutions the acoustic waves are
leaving the domain without visible spurious reflections at the boundaries.
Again, this example is self–adjoint. So both, the direct and adjoint solution
need to match each other.

As for the sponge boundary condition, the kinetic energy (only u2) and
the corresponding adjoint kinetic energy (u⋆2) are presented in Fig. 5.7(b) as
a function of the time. The shape of the two curves for the direct and adjoint
computation are similar to the one of the sponge boundary condition (panel
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(a)
t = 0 t = 1/3TL t = 2/3TL t = TL

(b)
t = TL t = 2/3TL t = 1/3TL t = 0

Figure 5.8: Two–dimensional test of the non–reflecting boundary conditions for the direct (a)
and the adjoint case (b). Each with the same initial condition. Pressure peak in the direct case
and adjoint pressure peak in the adjoint case with the same amplitude. The adjoint solution
is running backwards in time. Acoustic waves leaving the domain in both cases with negligible
reflections. Solved on a Cartesian mesh with 40 × 40 points. Solution is self–adjoint (linear
acoustic propagation). Time for an acoustic wave to propagate through the domain TL = L/c
(L: length of the domain; c : speed of sound).

(a)). For the non-reflecting BC the kinetic energy of the direct computation
is reduced for eight orders of magnitude within 0 ≤ t/TL ≤ 4. Comparing
the results to the sponge boundary condition one can conclude that these
boundary condition show improved non-reflecting properties. In the adjoint
case the same amount of acoustic energy remains in the domain as for the
sponge boundary condition and is related to the entropy spot mentioned
earlier.

5.4.2.4 Adiabatic wall boundary condition

In the present application on supersonic jet noise no solid wall boundary con-
ditions are present. Nevertheless, for the sake of completeness and as these
boundary conditions are used for a validation case, the adjoint boundary con-
ditions for a solid wall with adiabatic properties will be presented. We will see
that the present adjoint implementation with an explicit formulation of the
adjoint temperature is particularly suited to deal with adiabatic conditions.
The non-slip condition of a wall sets the time derivative of the velocity com-
ponents to zero. This approach is valid for non moving walls and appropriate
chosen initial conditions (uw = 0). Setting the boundary condition

G(uw) = ∂u

∂t
= 0 (5.46)
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in the Lagrangian one obtains an analogous condition for the corresponding
adjoint boundary condition, namely:

∂u⋆

∂t
∣
w

= 0 (5.47)

for a wall at Xp and Xm, respectively. With this information and after some
rearrangement of the adjoint equations one can obtain a formulation for the
unknown waves at the boundaries:

• Wall at Xm

X+w
⋆ =X−w

⋆
− 2Y u

w
⋆
− 2Zu

w
⋆
− 2 (Θu

ew +Θu
fw +Θu

pw)
Xv

w
⋆ = 1

2
(Y +w ⋆ − Y −w

⋆) +Zv
w
⋆
−Θv

ew −Θv
fw −Θv

pw

Xw
w
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2
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• Wall at Xp
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Walls at the remaining two dimensions (y and z) can be applied in a similar
way.

Adiabatic Wall For an adiabatic wall the temperature fluxes are zero:

∂T

∂n
= 0 (5.48)

where n is the wall normal direction. Including this boundary condition in
the Lagrangian formulation one obtains the simple condition for the adjoint
temperature:

Tw
⋆ = 0 (5.49)

As we can see, the Neumann boundary condition for the direct case switched
to a Dirichlet boundary condition for the adjoint case. This is a typical be-
havior for adjoint boundary condition. The implementation of this boundary
condition is, due to the use of the additional adjoint variable T ⋆, straightfor-
ward. In Fig. 5.9 the same case as in Fig. 5.6 is presented, however with the
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(a)
t = 0 t = 1/3TL t = 2/3TL t = TL

(b)
t = TL t = 2/3TL t = 1/3TL t = 0

Figure 5.9: Two–dimensional test of the adiabatic wall boundary conditions for the direct (a)
and the adjoin case (b). Each with the same initial condition. Pressure peak in the direct case
and adjoint pressure peak in the adjoint case with the same amplitude. The adjoint solution
is running backwards in time. Acoustic waves are reflected at the domain boundaries in both
cases. Solved on a Cartesian mesh with 40 × 40 points. Solution is self–adjoint (linear acoustic
propagation). Time for an acoustic wave to propagate through the domain TL = L/c (L: length
of the domain; c : speed of sound).

adiabatic wall boundary conditions. In both solutions the acoustic waves are
reflected at the boundaries. Again, this example is self-adjoint. So both, the
direct and adjoint solution need to match each other.

As for the sponge and non-reflecting boundary condition, the kinetic energy
(only u2) and the corresponding adjoint kinetic energy (u⋆2) are presented
in Fig. 5.7(c) as a function of the time. Here the acoustic waves are reflected
at the boundaries and are trapped in the domain. Hence, the kinetic energy
should stay constant despite physical and numerical diffusion. The physical
diffusion is depending on the Reynolds number. In the present application a
Reynolds number of Re = 1000, based on the speed of sound and the diameter
of the Gaussian initial condition, is chosen. The shape of the two curves for
the direct and adjoint computation math each other.

5.4.3 Gradient

One of the main advantages of adjoint based optimization is the possibility to
obtain a multidimensional gradient in an efficient way. In the present appli-
cation the control is the space dependent permeability. In order to optimize
the permeability of a porous material the gradient of the objective functional
with respect to the permeability needs to be evaluated. The gradient can
be found by computing the first derivative of the Lagrange functional with
respect to the permeability (optimality condition, Eq. (5.25e)). As the per-
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meability is a symmetric tensor K = κij , the gradient has to be derived for
each element of the tensor κij separately. We get:

∇κij
L = − ⟨∇κij

N (q, K), q⋆⟩ . (5.50)

The gradient of the Lagrangian simply reduces to the gradient of the objective
functional [see e. g. Guegan et al., 2006], and we get:

∇κij
J = − ⟨∇κij

N (q, K), q⋆⟩ . (5.51)

Finally, after replacing N (q, K) by the porous Navier–Stokes equations of
Sec. § 3.1 one obtains the gradient of the objective functional with respect to
the permeability:

∇κij
J = − [µ

ρ
uj , ui

⋆] + [ µ

ρT
uiuj, s⋆] , (5.52)

with the scalar product defined in Eq. (5.24c) to obtain a space dependent
gradient. Hence, both terms on the right hand side of Eq. (5.52) are integrated
in time which corresponds to a time average. The first term is the scalar
product of the direct and adjoint velocity components. It arises from the
adjoint momentum equations. The second term is a scalar product of the
direct kinetic energy and the adjoint entropy. It has its origin in the adjoint
energy equation.

As we will see in the next section, we can not use this gradient directly but
need to transform it to account for an inequality constraint.

5.4.4 Treating inequality constraints

In the present study, the control is the permeability of the porous material.
This value can be positive or zero, only. A negative value of K would acceler-
ate the fluid in the porous material which has no physical meaning. Besides
that, positive eigenvalues would arise and cause numerical instabilities for
the time integration method. Thereby, the inequality condition (K ≥ 0) has
to be treated in a special way. One possibility is to use a projected gradi-
ent method like for non–negative matrix factorization [see Lin, 2007]. This
technique truncates the gradient to satisfy the constraint, which is easy to
implement with the tradeoff of bad convergence. Another common approach,
to treat inequality conditions properly, is to apply the optimization problem
to the Sequential Quadratic Programming (SQP). This technique interpo-
lates the objective function with a quadratic polynomial and linearizes the
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constraints. In addition to that is uses the second derivative of the objec-
tive function (Hessenberg matrix; usually approximated) in a Newton like
optimization method. For a small number of optimization parameters this
method is very efficient and, due to the variety of available implementations
(MatLab1, NLPQLP2, and many others), straightforward to use. Anyway,
as the approximation of the Hessenberg matrix is expensive, the method be-
comes impractical if the problem is too large as in the present application
[see Schittkowski, 2010].

A different approach is to transform the inequality condition into an equal-
ity condition by introducing a so called slack variable S = (sij) [see e. g. Boyd
& Vandenberghe, 2004], satisfying the following relation:

K = (κij) = (s2
ij). (5.53)

Note, that S2 = (sij)2 ≠ (s2
ij). The square in Eq. (5.53) is an element-wise

multiplication. In the following we will use the Hadamard product to notate
the element-wise product of two matrices: (s2

ij) = S ○S. In addition to that
the permeability is space dependent and each element of the tensor is a vector.

Now, since S ○S is positive only, the inequality constraint can be rewritten
to an equality constraint: K − S ○ S = 0. By introducing an additional La-
grange multiplier S⋆, this equality constraint can be added to the Lagrange
functional of Eq. (5.23), with the following scalar product:

⟨κij − s2
ij , sij

⋆⟩
The aim of the optimization task has now changed in finding the optimal
slack variable S instead of the optimal control K. So, K is replaced by
S ○ S and the gradient with respect to S has to be evaluated. Within the
optimization process, the slack variable is updated as in Eq. (5.58) and then
replaced by Eq. (5.53). The gradient ∇sij

J is obtained by the first variation
of the Lagrange functional with respect to the slack variable and reads:

∇sij
L = − ⟨2sij , sij

⋆⟩ . (5.54)

In an optimal point, the variation of the Lagrange functional has to vanish
and we obtain for the gradient:

∇sij
J = − ⟨2sij , sij

⋆⟩ . (5.55)

1http://www.mathworks.com
2http://www.ai7.uni-bayreuth.de/nlpqlp.htm
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Including the variation of the Lagrange functional with respect to the control
K in Eq. (5.55) and the relation that

dJ

dsij

= ∂J

∂κij

dκij

dsij

,

the gradient with respect to the slack variable reads:

∇sij
J = − ⟨2sij∇κij

N (q, K), q⋆⟩ . (5.56)

With the gradient with respect to the permeability as defined in Eq. (5.52),
we get:

∇sij
J = −2 [µ

ρ
sijuj, ui

⋆] + 2 [ µ

ρT
sijuiuj , s⋆] . (5.57)

This gradient is used, within the optimization loop (Fig. 5.4), to compute
the optimal distribution of porous media to minimize the objective function.
Given that K = (κij) and S = (sij) are tensors, the gradient itself is a tensor
and has to be evaluated pointwise. Each of the six elements of the symmetric
tensor are in addition to that fields in space. Consequently, the number of
parameters to control can be easily in the order of 106.

Note, that the method of slack variables is equivalent to replacing K = S○S

in the porous Navier–Stokes equations and then optimizing for S.

5.4.5 Steepest descent

The gradient of the objective function with respect to the control (here the
slack variable due to the inequality constraint of the previous section) can be
used in a simple steepest descent algorithm to compute a new set of control
variables in an iterative way. We have

S(n+1) = S(n) −α(n) (∇sij
J)(n) . (5.58)

The gradient is defined in Eq. (5.57) and is itself a tensor. The positive
and scalar valued step-size α(n) has to be chosen carefully to avoid numerical
instabilities and to guarantee an efficient convergence. How to choose a proper
step-size is outlined in Sec. § 5.4.7.

However, to improve the convergence properties and the robustness of the
optimization algorithm, a conjugate gradient (CG) algorithm is applied. In
the following section the implemented CG methods are presented an validated
on a test function.
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Figure 5.10: Convergence rate of three different optimization directions (SD: Steepest descent,
PR: Polak–Ribière, FR: Fletcher–Reeves). Objective function: Rosenbrock-Valley Eq. (5.59).

5.4.6 Conjugate gradient

The method of steepest descent can lead to a very slow convergence rate, espe-
cially for objective functions with a long, flat and narrow valley. An example
of a two-dimensional function with such properties is the Rosenbrock–Valley

J(x, y) = 100(y − x2)2 + (x − 1)2 (5.59)

This function is often used to test the performance of optimization algorithms
and will be used here as well. Three different methods are implemented:

• Steepest-Descent (SD)
• Conjugate Gradient – Polak–Ribière (PR)
• Conjugate Gradient – Fletcher–Reeves (FR)

Conjugate gradient methods use the direction not only of the current step
but a linear combination of all previous directions. With these information
one can construct a more straight way down the valley.

A prototype of each CG method is outlined in Alg. 5.2. The difference in
the methods lies in the computation of the new search direction h(n) in step
3. In the simplest case – the steepest descent – the new direction h(n) is the
negative gradient:

h(n) = −g(n)

Conjugate gradient methods compute h(n) as follows:

h(n) = g(n) + γ(n)h(n−1) (5.60)
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Input: initial guess x(0)
tolerance tol

Output: optimum x(n)
1: while err > tol do
2: g(n) = −∇J(n) (gradient)
3: h(n) = g(n) + γ(n)h(n−1) (conjugate gradient based on PR or FR)
4: α(n) (optimal step-size, see § 5.4.7)
5: K(n+1) =K(n) +α(n)h(n) (update control)
6: err = ∥x(n+1) − x(n)∥
7: n←Ð n + 1
8: end while

Algorithm 5.2: Algorithm for a simple CG loop.

with Fletcher–Reeves [see Polak, 1997, Alg. 42]:

γ(n) = (g(n), g(n))
(g(n−1), g(n−1)) (5.61)

or Polak–Ribière [see Polak, 1997, Alg. 51]:

γ(n) = (g(n) − g(n−1), g(n))
(g(n−1), g(n−1)) . (5.62)

In Fig. 5.10 the convergence history of all three implemented methods is
presented. One can see that the convergence of the steepest descent is very
slow compared to the conjugate gradient methods. A better convergence
can be identified for the Fletcher–Reeves method which decays the objective
function 20 orders of magnitude in 40 iterations. The best results can be
gained with the Polak–Ribière method. A decay of 20 orders of magnitude
can be gained in only 16 iterations. To this end, in what follows, the method
of Polak–Ribière will be used to compute conjugate gradients.

In Fig. 5.11 the optimization history is shown for the steepest descent (a
and b) and Polak–Ribière method (c and d). One can see that the steep-
est descent method is jumping from one side of the flat valley to the other
one (cf. panel b) and thus causing a very slow convergence rate. Even af-
ter 200 iteration the solution is far away (tolerance 10−6) from reaching the
optimum. On the other hand the Polak–Ribière method is taking the direct
way (cf. panel d) and reaching the optimality-condition ((xi+1 − xi)/xi+1 <
εmashine) after only 16 Iterations.
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Figure 5.11: Optimization history for SD (steepest descent (a) and zoom (b)) and PR (Polak–
Ribière (c) and zoom (d)). Test-function: Rosenbrock-Valley Eq. (5.59). Initial guess x = 4,
y = −4 (○). Analytical minimum at x = y = 1 (●). The method of steepest-descent is jumping
from one side of the flat valley to the other one and thus converging very slow, cf. (b).

5.4.7 Line search

Once the optimization direction is obtained, either by steepest descent or
conjugate gradients, the step-size (how far one has to go in the desired direc-
tion) has to be determined. Algorithm determining the (optimal) step-size
are referred to as line search methods. These methods are again some kind
of optimization algorithm and can be computational expensive. The idea is
to find the optimal step-size which minimizes:

Φ(α(n)) = J(S(n) + α(n)h(n)); α(n) ∈ R+
Different approaches exist in minimizing Φ(α(n)) exactly by solving Φ′(α(n)) =
0 or loosely by asking for a sufficient decrease of Φ. As the exact com-
putation of the optimal step-size is often too expensive, loosely methods
are used instead. The latter ones can be performed in several ways, e. g.
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Figure 5.12: Quadratic objective function (J = (x2 + 2y2)/10) for two optimization parameters
(x and y). Along the black line ( ; first search direction; steepest descent or conjugate
gradient) a local minimum (○) has to be found (quadratic line–search algorithm). From this
point on, a new search direction ( ) is computed and the optimization algorithm is
repeated iteratively until it is converged to the global minimum (●).

by using the Wolfes condition [Wolfe, 1969] (a generalization of the Armijo
method [Armijo, 1966]) or by assuming a quadratic shape of the objective
function. As methods based on the Wolfes condition can be still expensive
(more than five function evaluations) the latter method based on a quadratic
approximation will be applied.

In this case a quadratic shape of the objective functional is assumed and
a quadratic line-search algorithm is implemented to estimate the step-size
α(n). Three evaluations of the objective functional in the h(n)-direction are
performed at each optimization iteration (J([0, 1, 2]T α(n))). In fact, only
two new evaluations of J are necessary since the evaluation for J([0]T α(n))
is already available. With these three function values a quadratic polynomial
can be defined. The abscissa to its analytic minimum is the optimal value
α(n) (cf. Fig. 5.12).

This line-search algorithm is only valid for a quadratic shape of the ob-
jective functional. In a variety of applications the objective functional is
quadratic as in the present application of noise reduction (p′2). If the un-
derlying equations are linear then the objective function with respect to the
control will stay quadratic. In the nonlinear case, a quadratic objective func-
tion may be mapped on some unknown nonlinear state and the assumption
of a quadratic shape may be a poor approximation. In the present investiga-
tion, the equations are nonlinear (Navier–Stokes). Nevertheless, the present
numerical investigations show that it seems a good and above all efficient
approximation even for these nonlinear equations.

197



5 Optimization method

(a)
I
{λ
⋅
d
t}

R{λ ⋅ dt}
−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1

−3

−2

−1

0

1

2

3

(b)

×10−4
−1 0 1

0.2297

0.2298

0.2299

(c)

×10−5
−1 0 1

0.22979

0.22980

0.22981

Figure 5.13: (a) Instantaneous eigenvalues λ of the direct (●) and adjoint (○) evolution operator
for the case of the trailing edge, taken at t = 0 (initial condition). Extracted with a Krylov
subspace technique (full Hessenberg matrix, Schulze et al. [2009a]) for a small 64× 32 domain.
Scaled with the time–step dt, based on a CFL number of CFL = 1. Eigenvalues of the adjoint
operator should be flipped on the imaginary axis (negative transpose discrete matrix). As dt is
negative for the adjoint case, both eigenvalues coincide. Porosity in the advection dominated
regime (cf. Fig. 3.3). Magnified view in (b) and (c).

5.4.8 Numerical issues

In the following section some numerical peculiarities of adjoint based opti-
mization algorithms and implementational issues are summarized.

5.4.8.1 Numerical stability

In some specific cases, the present numerical experiments show, especially
in areas with strong gradients in the flow field, numerical instabilities in the
adjoint solution. To study this phenomenon, the eigenvalues of the direct and
adjoint evolution operator are investigated.

In Fig. 5.13 the eigenvalues of the direct and adjoint evolution operator
are presented. They are extracted with a Krylov subspace technique (full
Hessenberg matrix, Schulze et al. [2009a]) for a small 64×32 domain based on
a two-dimensional jet flow. A total number of 8192 eigenvalues are extracted.
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Figure 5.14: Solid curves represent boundaries of the ǫ-pseudospectra in a magnified visualiza-
tion around the center of the spectrum. Contour lines in log10 scaling ranging from ǫ = 10−7

(innermost curve), ǫ = 10−6.5 , . . . , ǫ = 10−5. Bold points represent eigenvalues. Scaled with the
time–step dt, based on a CFL number of CFL = 1. (a) Spectrum of the evolution operator
of the direct case. (b) Spectrum of the evolution operator of the adjoint case.

As in the discrete case, the adjoint operator is the negative transpose of the
discrete direct operator, the eigenvalues of the adjoint operator are simply
flipped on the imaginary axis (opposite sign of the real part). To compare the
direct and adjoint case, both eigenvalues are scaled with the corresponding
time–step. For the direct one dt and −dt for the adjoint one. Eigenvalues of
the direct operator are marked with a black bullet (●) and eigenvalues of the
adjoint operator with a gray circle (○). One can see in the big picture (a),
that the adjoint eigenvalues match the direct ones, which should be exactly
the case for a discrete adjoint approach. Following a continuous approach, as
it is carried out in the present work, the eigenvalues do not necessary need
to match each other. This strongly depends on the discretization of both
operators. According to this, such an analysis, together with the validation of
the gradient (see Sec. § 5.4.9), is a good proof for the correct implementation
of the adjoint equations.

To extract some more details, a magnified visualization of two characteristic
eigenvalues is presented in panel (b) and with an even stronger magnification
in panel (c). The scale of panel (b) is four orders of magnitude smaller than
the one of the panel (a) and five orders for panel (c). One can identify slight
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deviations of the eigenvalues of the adjoint operator compared to the direct
one. In particular, one adjoint eigenvalue is moving in the unstable half–
plane (positive real part). Such an instability grows exponentially for linear
equations, as for the adjoint equations. To avoid this numerical instability,
the spectrum of the adjoint operator is shifted in the stable half–plane. To
this end, the real valued amplitude of the most unstable eigenvalue R{λ}max

– which can be detected with a power iteration – is used to shift the spectrum.
In a matrix formulation this reads:

q̇⋆ = (N⋆ −R{λ}maxI)q⋆, (5.63)

with the discrete adjoint Navier–Stokes operator N⋆, the adjoint state q⋆ and
an identity matrix I. Note that in the present study, the adjoint operator N⋆

is accessed in a matrix free implementation. In the present applications on
supersonic jet noise, the largest detectable unstable eigenvalue of the adjoint
operator is less than R{λ}max ⋅ dt = 10−5 (cf. also Fig. 5.13(c)).

The numerical inaccuracy of the eigenvalues of the adjoint operator can be
explained with its high nonnormality. Compared to the direct operator, the
condition number of the adjoint operator is four orders of magnitude larger.
In Fig. 5.14 the boundaries of the ǫ-pseudospectra [see Trefethen, 2005] are
visualized in a magnified sketch. Panel (a) is based on the direct operator,
whereas panel (b) is based on the adjoint operator. Solid curves represent
boundaries of the ǫ-pseudospectra in log10 scaling, ranging from ǫ = 10−7 (in-
nermost curve), to ǫ = 10−5 in ∆ǫ = 100.5 steps. The fact that the contour
lines of the adjoint operator are less concentric than the ones of the direct
operator and about one order of magnitude further away form the center of
the spectrum, shows that these eigenvalues are extremely sensitive to per-
turbations. A small perturbation due to a discretization error in the adjoint
operator will cause an increased numerical error and can be responsible for
numerical instabilities.

By adding a shift only to the adjoint operator and not in the same way to
the direct operator, the gradient of the objective function with respect to the
control will change. As we will see in Sec. § 5.4.9, the error of the gradient
due to the applied shift is in the same order as without shift (10−5) and from
an engineering point of view insignificant.

5.4.8.2 Implementation

The adjoint equations are implemented in the same way as the direct equa-
tions and solved on the same computational domain and grid. In the adjoint
case, the flow direction is reversed and the fluctuations are leaving the domain
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at the inlet. Hence, the role of the in- and outlet changed. To this end, it may
be necessary to add a sponge boundary condition at the inlet (now outlet) of
the domain. In the present application, with supersonic jet noise, the co-flow
of the jet is at rest and the only fluid entering the domain is through the
jet nozzle. During the adjoint computation the fluctuations are transported
backwards through the jet plume inside the nozzle and are finally leaving the
domain. To avoid spurious reflections at this point, a small sponge, which
is existing only inside the nozzle and extends 0.5D in the domain, is added.
Note, that the nozzle extends 3D into the domain and the small additional
sponge has no effect on the gradient evaluation.

Another difference lies in the time integration which is now performed back-
wards in time (with a negative time-step). Furthermore, the adjoint equations
are linear equations and hence the linearization during the Krylov time in-
tegration (cf. Sec. § 2.3.2), which is necessary for the direct and nonlinear
Navier–Stokes equations, can be omitted.

During the adjoint computation, the direct state has to be provided and
hence needs to be saved throughout the computation. The additional time
used for I/O strongly depends on the used architecture. It can vary from
0 % (not measurable) up to 400 % of the computational time. The latter
extreme can occur when the I/O-load of the computer is high combined with a
small I/O-bandwidth. During the present investigations on the optimization
with adjoint based methods, the average additional time used for I/O is
less than 10 %. In addition to the increased computational time used for
writing and reading of the direct solution, the required space needs to be
available. Considering a three-dimensional optimization problem with 256 ×

128 × 128 grid points and an optimization window of 5000 time-steps (here
corresponding to 65 screech cycles) a total of [(256 ⋅128 ⋅128) ⋅5000 ⋅7] ⋅8byte ≈
1TB needs to be saved. This estimate takes into account that one needs to
save seven variables, the five primitive variables (p, u, v, w, s) and the two
time derivatives ∂p

∂t
and ∂s

∂t
. Furthermore, each variable is saved in double

precision and allocates 64bit = 8byte of the available hard disk space. The
state of the art High Performance Computers are equipped with a temporary
storage space of about 1PB = 1024TB, so the temporal space needed for the
adjoint computation is in the order of one per mill of the available storage
and hence is to be of no consequence.

When the available storage or the I/O-bandwidth is limited, methods for
data compression can be used. Possible approaches are storing not every
point in space and time but e. g. every second and reconstructing the data
by means of interpolation as applied in Wei [2004] and many others. Due to
the interpolation, this kind of data compression is lossy and hence will affect
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the accuracy of the gradient and finally of the optimized solution.
A lossless method and widely used technique to reduce the storage space

and I/O traffic is called checkpointing. Here, the computation of the adjoint
code is split and is done part-by-part from restart points called checkpoints
[see e. g. Charpentier, 2001]. The position of the checkpoints can be optimized
to achieve a logarithmic behavior with respect to storage and re-computation
based on e. g. the algorithm of Griewank [1992] when the number of time-steps
is known a priori. A dynamically algorithm when the number of time-steps
is not known is given by Wang et al. [2009].

5.4.9 Validation

A procedure to validate the adjoint based optimization framework is to com-
pare the gradient of the objective function obtained by the adjoint approach
with the one obtained by a finite difference approach. Finite differences yield
a numerical approximation of the exact gradient based on the order of the
differentiation. For a first order forward finite difference, the approximation
of the gradient reads:

∇KJ ≈ J(K + δK) − J(K)
δK

(5.64)

For the present validation case, the gradient is based on a one-dimensional
implementation of the porous Navier–Stokes equations and its adjoints. The
gradient is space dependent and evaluated at each discrete position in the
one-dimensional space. Here, 128 discrete points are used. Using the finite
difference approach of Eq. (5.64), a total of 128+1 evaluations are necessary to
compute the space dependent gradient. In the adjoint case, only one forward
(direct) and one backward (adjoint) computation is necessary.

As the inequality constraint K ≥ 0 can not be included in the gradient
formulation of the finite difference approach, only the gradient with respect to
the control K is considered (Eq. (5.52)). For a specific nonlinear example, the
finite difference based gradient and the adjoint based gradient are presented
in Fig. 5.15(a). Their relative difference is visualized in Fig. 5.15(b). Both
figures show a very good agreement between the two gradients. The relative
error is in the order of 10−5 which is a very good result for continuous adjoint
implementations.

Influence of the shift on the gradient In the following the influence of the
shift, as presented in Sec. § 5.4.8.1, on the gradient is considered. The value
of the shift depends on the most unstable eigenvalue λ of the adjoint operator
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Figure 5.15: Validation of the gradient. Comparison of finite difference based gradient and
adjoint based gradient. Based on a specific case for the compressible and porous Navier–
Stokes equations and its corresponding adjoints. (a) Adjoint based gradient ( ); finite
difference based gradient (○); difference of both gradients ( ). (b) Relative deviation
of the finite difference based gradient and the adjoint based gradient in logarithmic scaling.

(R{−λ}max, consider the negative sign due to the reverse time integration of
the adjoint equations). This value can be extracted with a power iteration of
the adjoint operator. As the adjoint operator is depending on the direct state
(nonlinear Navier–Stokes equations) the most unstable eigenvalue changes
in every time-step. A power iteration in each time-step is inefficient and
would reduce the total performance of the implemented optimization scheme
drastically. Instead, a default value, which showed to be a good compromise
between a sufficient numerical stability and caused error of the gradient, is
used. In the present study a value of R{λmax}dt = 10−5 is implemented.
This value is larger than the most unstable eigenvalue detected in the adjoint
operator and therefore guarantees numerical stability (see also Fig. 5.13(c)
for the location of the unstable adjoint eigenvalue with a real part of R{λ}dt =
0.2 ⋅ 10−5).

Figure 5.16 shows the error of the adjoint based gradient to the finite dif-
ference based gradient (∥(∇AdjJ −∇F DJ)/∇F DJ∥2) as a function of the shift
value. It shows that the influence of the shift parameter for values smaller
than λshiftdt = 10−5 – as used in the present study – is insignificant. To this
end the method of shifting the adjoint operator with a value of λshiftdt = 10−5

as described in § 5.4.8.1 is increasing the numerical stability of the adjoint
solution without affecting the solution of the of the optimization algorithm.
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Figure 5.16: Error of the adjoint based gradient to the finite difference based gradient (∥(∇AdjJ−
∇FDJ)/∇FDJ∥2) as a function of the shift value.

5.5 Examples

In the following sections some applications for validation purposes are given.
All cases are strictly two-dimensional. The following cases are studied:

5.5.1 Navier–Stokes equations:
noise cancellation in frequency space to test the formulation of the fre-
quency based objective function

5.5.2 Porous Navier–Stokes equations:
optimization of a porous wall to minimize the reflected acoustic wave to
test the performance of the optimization with porous media on a simple
example

5.5.3 Porous Navier–Stokes equations:
minimization trailing edge noise to test the performance of the opti-
mization with porous media on a complex and nonlinear aeroacoustic
example

5.5.1 Anti noise with Navier-Stokes (freq. space)

A widely used application to test the optimization scheme is given by the noise
cancellation problem using the compressible Navier-Stokes equations [see e. g.
Wei, 2004]. In this application, the compressible Navier-Stokes equations are
solved in a two-dimensional domain with the objective functional defined
in frequency space as shown in (5.18) and based on the work of Schulze
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Figure 5.17: Setup for noise-canceling problem based on the compressible Navier–Stokes equa-
tions solved in a two-dimensional domain. At the location (Q) a noise source produces a signal
with an artificial and fixed spectrum. At the location (C) a second noise source is positioned
with a controllable signal. At the location (M) we attempt to reduce a given frequency-band
of the noise by destructive interference (anti-noise, Ffowcs Williams [1984]) of the two signals.

et al. [2011]. An approach based on destructive interference or anti-noise
will be employed [see Ffowcs Williams, 1984]. The basic setup is presented
in Fig. 5.17. At the location Q (xQ = 0.5L and yQ = 0.5L; L: height of
the domain; length of the domain: 2L) a source produces an acoustic signal
with an artificial and fixed spectrum. This signal is propagating through the
domain and passing the measurement location M at xM = L. The objective
of this test is to reduce the noise along this line. To this end, a second noise
source C is located at xC = 1.5L and yC = 0.5L with a controllable signal to
eliminate the noise at the measurement location.

The computational domain is discretized by an equidistantly spaced grid
of 128× 64 points in the x- and y-coordinate directions. The four boundaries
of the domain are padded by a sponge layer which simulates non-reflecting
boundary conditions. Both, the direct and adjoint Navier–Stokes equation
are discretized with the methods discribed in Sec. § 2.3 and for this case, the
porous related parts of the equations are omitted (χ = 0).

To put the optimization procedure and the control of user-defined fre-
quency bands to a stringent test, the source at the location Q is emitting
an acoustic signal with an artificially generated spectrum that models the
main components of jet-noise — including screech (see, e.g., the spectrum in
Fig. 5.2(a)). Such a spectrum can be created by an envelope function, with
a similar shape of that in Fig. 5.2(a), multiplied by white noise in frequency
space and then transformed back into the time domain. In this input spec-
trum three distinct noise sources are included with different frequencies and
amplitudes. The objective of the present exercise is to reduce the screech
noise component independently from the other noise sources.
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Figure 5.18: (a) Spectrum of the uncontrolled ( ) and controlled ( ) case.
The area between the two dashed lines ( ) marks the frequencies to be reduced. (b)
Ojective function versus the optimization loops ( ). Gradient of the objective function
with respect to the control ( ).

5.5.1.1 Control of screech noise

For the control of screech noise only a narrow frequency band is singled out
from the spectrum (between the dashed lines in Fig. 5.18(a)) and included in
the objective functional. The uncontrolled spectrum is displayed in black in
Fig. 5.18(a) and is overlayed by the controlled spectrum in gray. A marked
reduction of about 10 dB in the screech frequency can be observed; the spec-
trum outside of the frequency band is rather unaffected by the control. The
two panels in the first row of Fig. 5.19 visualize pressure fluctuations for the
uncontrolled and controlled case (in panels a, b). The snapshots are taken at
a simulation time t = 0.75T ; the colormap covers the range of [−2000, 2000]
[Pa]. Noise is emitted from the control location such that screech (measured
at the black line) is optimally diminished. In panel (c) the OASPL of the
controlled case is presented. One can see that the noise at the measurement
location has been minimized. Nevertheless, for this case only the screech
component is investigated and the OASPL covers all frequancies. To this
end, the overall noise level at the measurement location is not zero.

The adjoint pressure fluctuations (Fig. 5.19(d)) give an indication of the
sensitivity of the objective functional to pressure forcing. It is interesting to
note that the adjoint pressure fluctuations propagate from the location where
the cost functional is evaluated (the area of the black line) toward the control
point; at the control point, they give information about how to modify the
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(c) SPL (d) adjoint p⋆

y
/λ
s

x/λs
−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

y
/λ
s

x/λs
−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

Figure 5.19: Reduction of screech noise by adjoint-based iterative optimization. (a) Pressure
fluctuations at t = 0.75T for the uncontrolled case. (b) Pressure fluctuations at t = 0.75T for
the controlled case. The objective functional is evaluated at the vertical black line ( ).
(c) OASPL in the domain. The objective functional is evaluated at the vertical dased line
( ). (d) Adjoint pressure fluctuations at t = 0.75T ; color-range [−10−3 , 10−3].

pressure forcing during the previous iteration such that a reduction in our
objective functional is accomplished during the next iteration.

The history of the objective functional is presented in Fig. 5.18(b). Within
the first iteration the objective function decays by more than one order of
magnitude. In the following iterations, no improvement of the noise reduction
can be gained. The corresponding gradient is presended in the same figure
(gray curve). After four iterations the gradient has been reduced by more
than one order of magnitude.

5.5.1.2 Control of all frequencies

As a second test of the present optimization scheme, all frequencies are in-
cluded in the objective functional and attempt to reduce the energy indis-
criminately over the entire spectrum. In Fig. 5.20(a) the spectrum of the
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Figure 5.20: (a) Spectrum of the uncontrolled ( ) and controlled ( ) case. All
frequencies will be reduced. (b) Ojective function versus the optimization loops ( ).
Gradient of the objective function with respect to the control ( ).

uncontrolled (black curve) and the controlled (gray curve) case are presented.
One can see, compared to the previous case, that not only the screech tone
is reduced, but also frequencies in the neighborhood of the screech tone. The
amount of the reduction in the neighborhood of the screech tone is in the
order of 10 dB. This value could be also gained in the previous case where
the focus is the reduction of the screech tone only. This shows, that the
presented method is not only able to reduce noise of specific frequency bands
but also reduces the noise bands with a high efficiency.

In the pressure fields of Fig. 5.21(a, b)) definite similarities to the case where
we targeted screech noise (Fig. 5.19(a, b)) are evident. As before, this can
be attributed to the dominance of the energy in the screech frequency which
overwhelms other noise sources. This also holds true for the corresponding
adjoint pressure fluctuation in panel (d) and the OASPL level in panel (c).
Only slight differences to the screech elimination case are visible.

In Fig. 5.20(b) the performance of the optimization algorithm is presented.
The objective function is being reduced by one order of magnitude within the
first four iterations. In the same time, the corresponding gradient is reduced
by more than two orders of magnitude.

The present test case shows that the implementation of a frequency based
objective functional is capable to reduce specific frequency bands of a noise
signal. This approach will be used in the application on supersonic jet noise
to focus on the screech component during the optimization process.
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(c) SPL (d) adjoint p⋆
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Figure 5.21: Reduction of all frequencies by adjoint-based iterative optimization. (a) Pressure
fluctuations at t = 0.75T for the uncontrolled case. (b) Pressure fluctuations at t = 0.75T for
the controlled case. The objective functional is evaluated at the vertical black line ( ).
(c) OASPL in the domain. The objective functional is evaluated at the vertical dased line
( ). (d) Adjoint pressure fluctuations at t = 0.75T ; color-range [−10−3 , 10−3].

5.5.2 Porous wall

In the following, the application to the optimization of a porous material is in-
vestigated. This two-dimensional case is based on a quadratic computational
domain with an adiabatic wall at Ym and non-reflecting boundary conditions
at the three remaining boundaries. The flow in the domain is at rest and only
disturbed with a small pressure peak during the initial condition (t = 0) with
an amplitude of one Pascal and a Gaussian distribution in space. Based on
the edge length L of the domain, the disturbance is located at x = 0.25L and
y = 0.5L. At the opposite side of the domain, at x = 0.75L and y = 0.5L a
microphone is located, weighted with the same Gaussian distribution as the
pressure peak of the initial condition. In Fig. 5.22 a sketch of the computa-
tional domain is given with the location of the pressure peak and the location
of the microphone, marked with F and M , respectively.
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Figure 5.22: Sketch of the two-dimensional computational domain of the case with a
porous wall. Adiabatic wall at Ym ( ); Non-reflecting boundary conditions otherwise
( ); area between adiabatic wall and dashed line ( ) can be filled with porous
material. Circle (○) at F indicates the location of the initial pressure disturbance (xF = 0.25L,
yF = 0.5L). Circle (○) at M indicates the location of the microphone (measurement location,
xM = 0.75L, yM = 0.5L). Edge length of the domain: L.

As there is no base-flow the disturbance of the pressure peak will cause
an acoustic wave propagating concentric through the domain. It will leave
the domain at the non-reflecting boundaries and will be reflected at the adi-
abatic wall located at the lower side of the domain. Finally, after a certain
period of time, the reflected wave will also leave the domain passing the three
non-reflecting boundaries. Within this time span the microphone detects
the passing of two acoustic waves. First, the non reflected acoustic of the
concentric wave and shortly after the reflected wave of the wall boundary.

The objective of the present test case is to minimize the noise measured
at the microphone by means of a spatially optimized porous medium. This
medium can be placed by the optimization algorithm only in a layer on top
of the wall with a thickness of 0.25L. It will influence mainly the reflected
wave and will not be able to eliminate the passing of the first acoustic wave.
The results of the spatially optimized porous medium will be compared to an
uniformly distributed porous medium.

The porous Navier–Stokes equations and its corresponding adjoints are
solved on an equidistantly spaced grid with 64 × 64 points. Based on a CFL

number of CFL = 1 a total of 100 time steps are integrated forwards and back-
wards in time. This corresponds to a time span of T = 1.5TL with TL = L/c,
the time for an acoustic wave propagating once through the computational
domain (c, ambient speed of sound). The Reynolds number, based on the
length of the domain and the ambient speed of sound, is ReL = 1000.

210



5.5 Examples

As initial condition, a Gaussian distribution of the pressure fluctuation is
chosen with the following shape:

σF (x) = exp(−(x − xF

δ
)2

− (y − yF

δ
)2)

and finally:

p′(x, t = 0) = αpσF (x) + p0

with the width of the peak δ = 0.04L, the ambient pressure p0 = 105Pa and
the amplitude of the fluctuation αp = 1Pa. The microphone (measurement
location) has the same shape as above equation only located at xM and yM

instead of F . With this weighting function, the objective function can be
given:

J = ∫
Ω

T

∫
0

σM(x)p′2(x, t)dt dx

Note, that in the present application no frequency dependent objective func-
tion is used, hence all frequencies detected by the microphone will be mini-
mized. The corresponding terminal condition or adjoint initial condition has
to be zero (q⋆(T ) = 0) and the adjoints are forced at the location M with the
pressure signal captured by the microphone during the forward computation.

In Fig. 5.23(a) the objective function is presented as a function of the
optimization iterations. A total of 30 iterations are performed (corresponds to
a tolerance of 10−4). One can see that during the first optimization iteration
most of the objective function can be reduced (more than 20 %). In the
remaining iterations, the objective function decreases for further 3 % to its
final value of 77.4 % of its initial value J0. Again, the objective function is
chosen such that it can not become zero as the first acoustic wave will always
pass the microphone and the integration time covers the whole computational
time (0 ≤ t ≤ T ). In panel (b) of the same figure, the time history of the signal
measured in the center of the microphone (xM and yM ) is presented. Both,
the optimized case (gray curves) and the case without porous material (black
curve) are presented, whereas two curves are shown for the optimized case.
One after the first iteration (gray dashed line) and one after 30 iterations
(gray solid line). The non optimized case (black curve) clearly shows the two
acoustic waves passing the microphone. First, the direct wave at t ≈ 0.5TL

and shortly after at t ≈ 1.2TL the reflected wave. In the optimized case,
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Figure 5.23: (a) Objective function over the optimization iterations. ( ) initial guess:
void space. ( ) initial guess: sinusoidal distribution. (b) Time history of the pressure
fluctuations in the center of the measurement area (x = 0.75L; y = 0.5L). No optimization
( ); Optimization after one iteration ( ); Optimization after 30 iterations
( ).

both, after one and 30 iterations, the reflected wave is nearly eliminated with
a better performance for the case after 30 iterations (gray solid line). The
main difference of the converged result after 30 iterations to the first iteration
can bee seen at t ≈ 0.7TL when the first acoustic passes the microphone. It
is especially apparent that the converged result shows less overshoots and
reaches the baseline (p′ = 0) faster than the result after one iteration. The
reason for this behaviour becomes more evident when we look at the optimized
porous medium in the following.

The spatial distribution of the optimized porous material is presented in
Fig. 5.24. Panel (a) shows the result after one optimization iteration and
panel (b) the converged result after 30 iterations. Both optimization results
are similar but differ mainly in the amplitude. Visualized is the dimensionless
permeability χ in the color-range of 0 ≤ χ ≤ 87 whereas a dark value corre-
sponds to a rather solid body and a light area to void space. In the converged
result the largest permeability is outside the color-range at χmax = 2700.
Comparing this high value to the validation cases of Sec. § 3.2 it is evident,
that the optimization algorithm created both, solid bodies (black areas) and a
porous medium (gray areas). The largest detectable permeability in panel (b)
corresponds to the sharply bounded thin bar ranging from 0.4 ≤ x/L ≤ 0.6 and
y = 0.25L. The porous material underneath this bar shows a parabolic shape
repeated in a regular pattern. Directly at the wall the permeability vanishes,
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Figure 5.24: Optimized porous material in the lower quarter of the computational domain
presented in the dimensionless variable χ. (a) Result after one optimization iteration. The
maximum value χmax corresponds to the largest color-range (χmax = 87) (b) Result after
30 optimization iterations. The maximum value χmax is outside the presented color-range
(χmax = 2700).

which is no surprise since the gradient is a scalar product of the direct and
adjoint velocities which are both zero at the wall (no slip condition).

In Fig. 5.25(a.3, b.3, c.3, d.3) the effect of the spatially distributed opti-
mal porous material with its solid bar and the porous medium distributed
underneath becomes more obvious. Presented are four snapshots of the pres-
sure fluctuation in the domain including the porous material (indicated by
the solid contour lines). The snapshots are taken at the non equidistantly
spaced time-steps t/TL = [0.29, 0.59, 0.75, 1.20]. In the first snapshot (a.3)
the acoustic wave is entering the porous material and hits the left corner of
the solid thin bar. The subsequent panel (b.3) shows the acoustic wave being
reflected at the solid bar and following the first acoustic wave. By means
of this reflected acoustic wave, which is following the first wave in short dis-
tance, the optimization algorithm achieved the goal to raise the pressure drop
in the wake of the first acoustic wave as fast as possible (cf. Fig. 5.23(b) at
0.6 ≤ t/TL ≤ 0.7). At the next time step captured (c.3) one can see that this
reflected wave is passing above the microphone with only little overlapping.
Finally, in the last panel (d.3) at t/TL = 1.20 most of the acoustic waves left
the domain.

To compare the optimized result with the uncontrolled case, the pressure
fluctuations without porous material are presented for the same time steps
in Fig. 5.25(a.1, b.1, c.1, d.1). One can clearly identify the reflected acoustic
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Figure 5.25: Four snapshots of the propagation of the acoustic wave in the quadratic com-
putational domain with an adiabatic wall at Ym and non-reflecting boundary conditions other-
wise. Top figures (?.1) without porous material (no optimization). Figures in the middle row
with uniformly distributed porous material with χmin. Figures in the last row with optimized
porous material (after 30 iterations). All snapshots taken at four (non equidistant) time-steps:
t/TL = [0.29, 0.59, 0.75, 1.20]. Contours of the porous medium marked with a black solid line
( ). Initial pressure peak and measurement location marked with a circle (○).

wave at the adiabatic wall and the passing of two waves in panel (b.1) and(d.1), the direct and reflected one, respectively.

How does a homogeneously distributed porous material perform? To
answer this question, a homogeneously distributed porous material is placed
in the lower quarter of the computational domain and the objective function
is evaluated for different values of the permeability. The result is presented
in Fig. 5.26(a). It shows the objective function as a function of the di-
mensionless permeability χ (solid line with circles). The curve is decreasing
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monotonically until it reaches a minimum point at χmin = 10.7 with a value
of J/J0 = 0.7926. From this point on the objective function is increasing
again and reaches J/J0 = 1.1232 at the end of the investigated range of per-
meabilities (0 ≤ χ ≤ 3 ⋅ 104). The global minimum of the investigated range
of permeabilities is at χmin = 10.7, which corresponds to the optimum of a
homogeneously distributed porous material to minimize the noise at the lo-
cation of the microphone. In addition to that, the optimal result obtained by
the adjoint based optimization algorithm is presented in the same figure and
marked with a dashed line at J/J0 = 0.7740. One can see that the value of the
dashed line lies below the minimum of the homogeneously distributed porous
material (a decrease of nearly 2 %). Hence, the result of the adjoint based
optimization algorithm is better (as expected) than the one of homogeneously
distributed porous material. The spatially distribution of the porous material
of the adjoint based optimization algorithm apparently plays an important
role.

In panel (b) of Fig. 5.26 the time history of the pressure fluctuations are
presented as already done in Fig. 5.23(b) with the difference that in this figure
the global minimum of the uniformly distributed porous medium is presented
and marked with a gray dashed line. The two remaining curves represent
the non optimized case (black curve) and the optimized case with adjoint
methods (gray solid line, after 30 iterations). In this figure the importance
of the solid thin bar to the optimized porous material becomes apparent as
it raises the pressure drop in the wake of the first acoustic wave faster than
in the case of the homogeneously distributed porous material.

For the sake of completeness the four snapshots of the pressure fluctuations
of the homogeneously distributed porous material with the minimal value of
χmin = 10.7 is presented in Fig. 5.25(a.2, b.2, c.2, d.2). The homogeneous dis-
tribution damps the acoustic wave during its way through the porous material
and minimizes the amplitude of the wave being reflected at the adiabatic wall.
During the penetration of the wave in the porous material a part of its energy
is reflected back into the computational domain. This part is contributing
to the noise detected at the microphone (peak at t = 0.75TL). In Fig. 5.27
the homogeneously distributed porous medium is presented with the same
color-range as in Fig. 5.24 for comparison.

Is it a global minimum? Gradient based optimization algorithms find lo-
cal minima, only. The chance to find the global minimum of the objective
function depends on the shape of the objective function itself and the choice
of the initial guess. Especially when optimizing a porous material one can
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Figure 5.26: (a) Objective function over the dimensionless permeability χ of a uniformly dis-
tributed porous medium in the lower quarter of the computational domain ( ). The
local minimum is at χmin = 10.7 with a value of J/J0 = 0.7926. The dashed line ( )
corresponds to the minimum obtained by the adjoint optimization algorithm with a value of
J/J0 = 0.7740. As the permeability varies in this case, no specific value for χ can be given. (b)
Time history of the pressure fluctuations in the center of the measurement area (x = 0.75L;
y = 0.5L). No optimization ( ); Global minimum of the uniformly distributed porous
medium (χmin = 10.7) ( ); Adjoint based optimization after 30 iterations ( ).

think of an infinitely large number of different porous material with the same
fluid-mechanical properties and hence the same value of the objective func-
tion. Considering e. g. the spatial distribution of a porous material inside
a cylinder surrounded by solid material will make, from a fluid-mechanical
point of view, no difference to an overall solid cylinder. Generally spoken,
in areas where the velocity components are zero, the present optimization
algorithm can not control the porous medium (see also the definition of the
gradient which is depending on the velocity). In these areas the solution of
the spatial distribution of the porous material is arbitrary and may lead to an
infinitely large number of optimal solutions. This fact makes the localization
of the global minimum an even more challenging task.

To test this property, the same optimization case is performed, yet starting
with a different initial guess. In the previous case the initial guess is simply
void space (no porous material). Now, as initial guess a regular pattern based
on a sinusoidal distribution is chosen and reads:

χ = 10.7(sin(4πx

L
) sin(4πy

L
))2

This initial distribution is presented in Fig. 5.28(a). The maximum value
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Figure 5.27: Optimal homogeneously distributed porous material in the lower quarter of the
computational domain presented in the dimensionless variable χ. To compare it with the adjoint
cased optimization, the same color-range as in Fig. 5.24 is chosen. Optimal permeability:
χmin = 10.7 (cf. also Fig. 5.26(a)).

(χmax = 10.7) is taken from the previous study with a homogeneously dis-
tributed porous medium as it showed to be the optimal value. The converged
optimal solution can be gained after 27 optimization iterations (with a toler-
ance of 10−4) and reaches the same optimal value as in the previous study. In
the history of the objective function (presented in Fig. 5.23(a), gray curve)
one can identify that the initial guess is a better choice as simply void space
since the value of the first iteration starts at J/J0 = 0.84, with the value of
the objective function J0 based on the void space initial guess. In addition to
that, the final optimal value after 27 iteration reaches the same value as the
one of the void space initial guess. Now, one could postulate that both opti-
mizations found the same optimal solution and hence ended up in the same
local minimum which now could be a global one. In fact, when comparing
both optimal solutions in Fig. 5.24(b) (void initial guess) and Fig. 5.28(b)
(sinusoidal initial guess) one can identify differences. Still the main features
are present, like the thin solid bar and the parabolic shaped porous medium
underneath it. A main difference is the missing porous medium directly be-
low the solid thin bar (gray area at x = 0.5L, y = 0.1L). Nevertheless, this
area is covered by the thin bar and surrounded by porous medium. To this
end, no fluid (acoustic waves) can penetrate this area from outside and, from
a fluid-mechanical point of view, does not play a role for the optimization
objective.

To conclude the results of this test case we can see that the optimization
with a spatially distributed porous medium is capable to minimize acous-
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Figure 5.28: Optimized porous material in the lower quarter of the computational domain
presented in the dimensionless variable χ. (a) Initial guess with a sinusoidal distribution.
Maximum permeability χmax = 10.7. (b) Result after 27 optimization iterations (converged
result with tol. 10−4). The maximum value χmax is outside the presented color-range (χmax =
1887).

tic noise. Moreover, it performes better than a homogeneously distributed
porous material. However, the optimal solution might look different based
on the initial guess but can show the same fluid-mechanical properties.

5.5.3 Trailing edge noise

The previous test case is a purely acoustic application. In the present test
case, we will now demonstrate the potential of such an iterative adjoint–based
optimization algorithm by identifying the optimal distribution of porous me-
dia to reduce flow induced trailing edge noise. For the present setup the
domain is discretized on a Cartesian grid with 512 × 256 points stretched in
the normal direction. To increase the performance, the code (forward and
backward) is parallelized with the Message Passing Interface (MPI) using 16
cores for the current setup. The results are based on Schulze & Sesterhenn
[2011] where additional information can be found.

5.5.3.1 Flow parameter

The Reynolds number is based on the mean velocity in the acoustic far-field
u0 and the height of the trailing edge h.

Re = ρ0u0h

µ0
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Figure 5.29: Pressure distribution of the uncontrolled (a) and controlled (b) case. Color-range:
p′ = ±2000 [Pa]. ( ) iso-countour of the abolute vorticity. Objective function (noise)
is measured along dash dotted line ( ).

For the present application, a Reynolds number of Re = 104 is adjusted with
a subsonic Mach number in the far field of M = 0.5. Ambient pressure and
temperature are set to p0 = 105 [Pa] and T0 = 300 [K], respectively.

5.5.3.2 Optimized porous medium

In Fig. 5.29 the pressure fluctuations of the uncontrolled (a) and controlled
case (b) are visualized in a color-plot together with the iso-lines of the normal
vorticity. Both snapshots are taken at the final time-step at t = T with the
same colormap covering a range of ±2 [kPa].

In the uncontrolled case one can see loud acoustic waves emerging from the
origin of the trailing edge and scattering in the far-field. This noise is directed
mainly in the upstream direction, while being shifted from the base-flow. In
the wake of the trailing edge periodically detaching vortical structures are
visible. The relative distance of two vortex cores, measured close to the
trailing edge, is approximately the height of the trailing edge h.

Along the dashed-dotted line, the noise is measured and being minimized.
The optimized case, presented in Fig. 5.29(b), shows a reduced fluctuating
pressure, not only along the line where to minimize the noise, but also in the
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Figure 5.30: (a) Noise reduction measured along the control-line, compared to the uncontrolled
case. Up to 19 dB reduction possible in the upstream direction (x ≈ 6h). (b) Pressure fluctu-
ation p′ measured at the position x = 6h in the control–line. Uncontrolled case ( );
Controlled case ( ).

whole domain. Some low amplitude acoustic waves are still visible, especially
in the transverse direction. In the wake of the trailing edge one can see a
distinct difference in the controlled and uncontrolled case. The wake is tilted
slightly in the negative y-direction, away from the line where to measure
the noise. Besides that, the detached vortices loosed in intensity and their
relative distance has doubled compared to the uncontrolled case.

The performance of the optimal control is presented in Fig. 5.30(a). Here,
the difference of the measured sound pressure level (SPL) of the controlled
case to the uncontrolled case is outlined as a function of the measurement
location. Negative values represent a noise reduction. One can see that
the noise is being reduced along the entire measurement section. A local
reduction of almost 20 dB is reached in the upstream direction (x ≈ 6h). In
the normal direction, where some acoustics are visible in Fig. 5.29 (x ≈ 15h),
the noise reduction is still 12 dB. Further downstream, especially in the area
where the sponge is acting (x > 34h), the noise reduction is less than 10 dB.

In Fig. 5.30(b) the reduction of the pressure fluctuation is visualized as a
function of the time. The fluctuations are measured in the control line at the
position x = 6h, where the noise reduction is most efficient (cf. Fig. 5.30(a)).
Visualized is the uncontrolled case with a black curve and the controlled
case with a gray curve. For the uncontrolled case one can see a periodic
fluctuation with amplitudes of up to ±1 [kPa] with a dominant frequency
and additional higher frequencies with lower amplitude. In the controlled
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Figure 5.31: (a) Sound pressure distribution (SPL) along the control-line depending on the
frequency. Uncontrolled case: black curve; Controlled case: gray curve. Sr = f h/u0. (b)
Objective function (Eq. (5.16)) depending on the number of iterations normed with J(1). The
algorithm obtained a converged result in only five iterations.

case the fluctuations are reduced by the order of one and seem to have less
broadband components as the uncontrolled case.

This effect can be also seen in Fig. 5.31(a) where the sound pressure level
is visualized as a function of the frequency. Following Parceval’s theorem, the
total energy of a signal is the integral in frequency space of its Fourier coeffi-
cients. This corresponds to the area below the curves in the power spectrum.
In Fig. 5.31(a) both, the uncontrolled (black curve) and the controlled case
(gray curve) is presented. One can identify a reduction of the total energy.
Anyway, for some frequencies, especially for the first dominant harmonic, the
noise reduction is only 3 dB. Additionally, the peaks of the first harmonic
and its sub-harmonics are shifted slightly to lower frequencies.

To get an impression of the spatial distribution of the porous material,
the permeability is visualized in Fig. 5.32. It represents the dimensionless
permeability χ in the color-range of 0 ≤ χ ≤ 1000. In panel (a) one can
identify a part with a high value of the dimensionless permeability close to
the trailing edge. This part can be treated as an additional solid extention
to the trailing edge with the shape of a quarter of a circle. In between the
shape of the trailing edge and the added solid structure, a tiny embedded
cavity (white area) is visible. As no fluid can neither enter nor leave this
closed system, it can be interpreted as a solid body. Again, the reason for
the appearance of such a cavity lies in the way the optimization algorithm
is evaluating the gradient. It is the scalar product of the direct and adjoint
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Figure 5.32: Optimal distribution of porous media. (a) Dimensionless permeability χ. Dark
values denote solid parts, light areas void space. (b) Dimensionless permeability in logarithmic
scaling to display the vast range of scales in the optimal porous medium.

velocities. If one of each is zero, the gradient will be zero and no porous
medium can be created. This particularly occurs in areas where already
some porous medium is available. During the optimization process the porous
medium is “growing” and the gradient can not reach areas inside a porous
medium. Hence, cavities can be the consequence.

Further downstream, the porous medium is hardly visible in this color-
range. It turns out that the optimization algorithm creates a porous medium
with a vast range of scales in the permeability. To visualize the spatial dis-
tribution of all scales in one figure, a logarithmic scaling of the dimensionless
permeability is used in panel (b). Two areas can be identified. First, the
solid part close to the trailing edge and secondly a porous part with a com-
plex structure of elongated pores and channels running through it. From
this sketch, a highly anisotropic behavior of the optimal porous medium is
recognized.

For completeness, Fig. 5.31(b) displays the convergence behavior of the
optimization algorithm. Visualized is the objective function (5.16) depending
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on the number of iterations. The algorithm shows convergence in only five
iterations. This test case is the first to apply the optimization of a porous
material to an aeroacoustic application. It can be showed that the present
optimization algorithm is capable treat these problems. In the following
chapter. This method is applied to reduce the noise of a supersonic jet with
the focus on jet screech.
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6
Results of the minimization of

supersonic jet noise with porous media

In the following section the potential of adjoint-based optimization to reduce
supersonic jet noise will be demonstrated. The control objective is to optimize
a porous material at the nozzle exit to minimize the noise of the jet in a pre-
described location of the computational domain. From a physical point of
view, the porous material at the nozzle exit is supposed to influence the
receptivity at the nozzle lip to eliminate the feedback loop, responsible for
screech tones. To this end the dominant noise source in a supersonic jet will
be eliminated.

It has been shown by a series of researchers, who investigated supersonic
jet noise experimentally that a porous material can reduce the screech tone
(already mentioned Sec. § 1.1.2). Harper-Bourne & Fisher [1973] added a
porous material at the surface of an acoustic reflector to act as a sound ab-
sorbing material and showed that the screech tone could be reduced. A recent
investigation on this topic is reported by Khan et al. [2008]. They added a
porous reflector at the nozzle exit (similar as in the present investigation) and
showed that the screech tone could be reduced by more than 6 dB. However,
their data also show that on the one hand the screech tone is not completely
eliminated and on the other hand that the OASPL of the jet is nearly one
dB louder with the porous reflector than without. Especially the broadband
shock associated noise and the mixing noise is louder with porous material
than without (cf. Fig. 6.1). The correct choice of the porous material to
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Figure 6.1: Experimental result by Khan et al. [2008]. Screech reduction of a round jet with
Mj = 1.25 by a porous reflector at the nozzle exit (D = 10 [mm], measured at Θ = 90○).
( ): no porous reflector; ( ): with porous reflector. Screech tone reduced
by more than 6 dB with porous reflector. Mixing and broadband noise increased with porous
reflector.

not only reduce screech but also reduce supersonic jet noise in general, is
obviously by no means clear. To this end, we will use the adjoint-based opti-
mization algorithm of Sec. § 5.4.1 to optimize a porous material at the nozzle
exit to reduce supersonic jet noise with the focus on screech tones.

As we have seen in Sec. § 3 a porous material can be modeled by the poros-
ity and permeability. Both parameters are in general functions of space and
time. So, we can model a porous material with a non homogeneous material
distribution in space and also time. The latter one would represent a moving
material. From an manufacturing point of view, a moving porous material
(which is usually based on rigid materials like polyurethane or metal foams)
is hard to fabricate. Adding a moving material to reduce noise would also
create an active control device. In the present investigation we want to focus
on passive devices as they are much easier to handle in real world environ-
ments. To this end, the time dependency of the material properties we will
neglected in the present optimization study. The remaining degrees of free-
dom are the spacial distribution of the permeability and the porosity. Usually
both parameters are linked. So, changing for instance the porosity of the ma-
terial will also change the permeability. For the universal porous material
investigated in the present study, no correlation between permeability and
porosity is available. Hence, for simplicity, the only controllable parameter
in the present investigation will be the space dependant permeability. The
porosity is supposed to be constant and is set to φ(x, t) = 1.
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The remaining question is where to allow the optimization algorithm to
place a porous material. As, the permeability is a source term of the com-
pressible Navier–Stokes equations and valid in the whole computational do-
main, the optimization algorithm has the freedom to place the porous ma-
terial anywhere. This freedom usually creates some kind of trivial solutions.
One of such trivial solutions to reduce supersonic jet noise would be to place
a porous material with solid properties inside the nozzle. Hence, the flow
inside and outside the nozzle would stagnate and supersonic jet noise would
be eliminated completely. This is obviously the global minimum but not the
solution we search for. Another trivial solution could be a porous material
placed in between the noise source and the microphone. This again would
reduce the measured noise, but not solve the intended problem. There are
two possibilities to avoid these trivial solutions. The first is to add a penalty
term to the objective function which penalizes the optimization algorithm
when for example the mass flow inside the nozzle is reduced. This approach
can exclude only the trivial solution where the penalty term is sensitive to,
like the mass flow inside the nozzle. Therefore, for each trivial solution, one
penalty term has to be found and needs to be added to the objective func-
tion. This approach can be very time consuming, since the possible trivial
solutions are not always previously known, especially if the flow is complex.
The second possibility to avoid trivial solutions is to limit the domain where
the optimization algorithm can place a porous material. This approach is
used in the present investigation. In doing so, the domain is chosen such that
it does not intersect the mean-flow of the jet. Only acoustic properties of the
porous material will be investigated.

In Fig. 6.2 a sketch of the nozzle, including the domain where the porous
material can be optimized, is presented. The nozzle is identical to the round
nozzle of Sec. § 4.2 except that a porous domain is added at the nozzle
exit. This additional porous material has a thickness of 0.5D in the stream-
wise direction and covers the whole nozzle lip (same nozzle lip thickness of
t/D = 1). To avoid an interaction with the outwards tilted mixing-layers due
to the “barrel”-shock, the porous material is inclined by 45○. Compared to
the whole nozzle, this additional porous part is small and it has no direct
contact to the mean flow. But as we will see later it has a strong effect not
only on the acoustics of the jet but also on its mean flow.
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Figure 6.2: Dimensions of the round convergent nozzle with the domain where porous material
can be placed (shaded area). Design Mach number Md = 1; inlet Mach number Mi = 0.5.
Di i = 1.16D (cf. Fig. 4.16).

6.1 Adjoint solution

Adjoint based optimization, as implemented in the present investigation, is
an iterative algorithm and has to be repeated until it falls below some pre-
defined error bound. Within each iteration first the direct equations and
subsequently the corresponding adjoint equations need to be solved forward
and backwards in time, respectively. Both simulations run within the same
time window. The width of this window (the simulation time) can be chosen
arbitrarily. There is no general rule how to define the correct (optimal) sim-
ulation time. In the present investigation, where the gradient is an integral
over the total simulation time, the simulation time should be large enough to
obtain a converged result. As one optimization loop is expensive and the com-
plete history of the forward computation has to be saved, a tradeoff between
simulation time and computational resources has to be found.

In the present investigation this tradeoff looks as follows: First the adjoint
based optimization is performed on the coarse grid only (256 × 128 × 128).
The optimized porous material obtained by this investigation is then applied
to the higher resolution (512×256×256) by means of a three-dimensional in-
terpolation. As we will see later, both, the high and low resolution optimized
case show similar properties, which justifies this approach. From a computa-
tional point of view, it is much cheaper to perform the adjoint optimization
on the coarse grid. On the one hand, the computation itself is about eight
times faster (assuming that the same number of cores is used for the paral-
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Figure 6.3: Location of the objective function to measure the noise of the round supersonic
jet. Cylindrical surface: objective function flooded by instantaneous pressure fluctuations. Jet
in the center of the domain visualized by iso surface of the vorticity magnitude. Arbitrary
color-scaling. Box limits the size of the computational domain.

lelization). One the other hand, the snapshots to save on disc are eight times
smaller. And finally, due to the two times larger time-step of the coarse grid,
the physical process develops and converges faster. Still, one iteration loop
on the coarse grid is expensive. For the present investigation, a total of 5000

time-steps are used for the width of the time window. This corresponds to a
total of about 66 screech cycles. For a complete optimization loop, including
one forward computation, one backward computation and the subsequent
line-search, a wall-clock time of 48h is used. This corresponds to 24 576

COREh, as this case is solved in parallel with 512 cores. A total of 1.06TB
are saved throughout the computation ((256 × 128 × 128) × 7 × 5000 × 8byte,
with 7 variables to store (5 flow variables plus 2 time derivatives) and 64 bit
= 8 byte for each entry in double precision). To increase the performance of
the optimization loop and to avoid any spurious disturbances of the initial
condition, the optimization loop starts from a computation where the screech
tone is already fully established (t = 20Ts, with the time for one screech cycle
Ts).
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Figure 6.4: Solution of the absolute adjoint pressure fluctuation ∣p⋆∣ in a two-dimensional
x-y -plane in the range of [0 1000] (from white to black). Four subsequent time-steps (a − d).

The objective function measures the noise in a distance of 6D to the jet
axis on a cylindrical surface. This distribution is also used to force the adjoint
computation. To avoid numerical instabilities, the surface is smoothed with
a Gaussian distribution and finally reads:

σ(x, y) = exp
⎛⎜⎝−
⎛
⎝
√

y2 + z2 − rm

δm

⎞
⎠

2⎞⎟⎠ (6.1)

with the distance to the jet axis rm = 6D and the width of the Gaussian
distribution δm = 0.2D. In Fig. 6.3 the position of the surface is visualized,
flooded by instantaneous pressure fluctuations and including the vorticity of
the jet.

The adjoint solution is presented in Fig. 6.4 for four subsequent time-steps
in a two-dimensional slice in the x-y-plane. Visualized is the absolute value
of the adjoint pressure fluctuation ∣p⋆∣ in the range of [0 1000] (from white
to black). In the adjoint case, the simulation is running backwards in time.
The first snapshot is taken at t/Ts = 50 (panel (a)) which corresponds to
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6.1 Adjoint solution

75 % of the total computation time t = 66Ts. Hence, at this point the adjoint
computation is running since t = 16Ts (25 % of T ). In the top and bottom of
each panel, the dash dotted lines mark the area, where the objective function
is evaluated (cf. Eq. (6.1)). In this area, the adjoint equations are forced
(here the equation of the adjoint pressure) with the noise measured during
the direct computation. One can identify clearly the noise corresponding
to the Mach wave radiation which is dominant in the area of x/D = 10.
During the backwards running adjoint computation, these disturbances are
transported backwards towards their source location (the jet). In this area
(the acoustic near-field) the direct solution is mainly at rest and the adjoint
disturbances are transported with the speed of sound. In addition to that,
most of the source terms of the adjoint equations are zero and the adjoint
equations behave like a wave equation.

Once the disturbances reach the area of the jet, the adjoint source terms
can no more be neglected and they start to amplify the disturbances. With
the instantaneous velocity of the jet (supersonic in the jet core), the adjoint
pressure fluctuations are convected towards the nozzle and are finally sucked
up by the nozzle. Inside the nozzle the fluctuations are damped due to the
additional sponge. Some of the fluctuations in the mixing-layers of the jet
hit during their way towards the nozzle the nozzle lip and are deflected in
the radial direction. These deflected fluctuations are passing the area where
the porous material can be placed and are responsible for the shape of the
gradient. The area where the gradient is evaluated is marked by a dashed
line at the nozzle exit in each panel. In the first time-step shown (a) nearly
no adjoint fluctuation is visible in the porous area. This picture is different
in the next time-step shown (b). Here, the upper part of the porous area
and the half of the lower part contains nonzero adjoint contribution. The
same holds true for the subsequent time-step (c) although the amplitude is
decaying. Finally in the last time-step shown (d) the fluctuations are no more
present. This phenomenon is repeated throughout the adjoint simulation and
suggests that the frequency of the screech tone is dominating this region.

The adjoint solution also tells us where the placing of a porous material
is most sensitive to influence supersonic jet noise. This is obviously the case
inside the jet core and also inside the nozzle. Hence, placing the porous
material inside the nozzle and thus choking the flow would obviously influence
the noise. It would lead to one of the trivial solutions mentioned earlier. The
other dominant location is around the measurement lines. Placing a porous
material in this area would also reduce the noise since the porous material
acts as a sound absorbing device and reduces the noise. Finally and not to
neglect are the fluctuations inside the porous areas close to the nozzle lips,
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6 Results of the minimization of supersonic jet noise with porous media
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Figure 6.5: (a) Objective function as a function of the optimization loops. (b) Gradient of the
objective function with respect to the control.

hence in the areas where we want to place a porous material. In this case the
adjoints tell us that is efficient to place a porous material at the nozzle lip.
If one would not know the physical phenomenon responsible for screech in
advance, like the feedback loop and the receptivity at the nozzle lip, this would
be a helpful hint to understand the underlying physical processes. To this
end adjoints can not only be understood as a simple black box optimization
algorithm but also as a tool to investigate the flow physics.

In Fig. 6.5(a) the objective function of the optimization is presented.
Within the first loop, the objective function decreased by 27.54 %. In the
two subsequent iterations, the decrease is slower and reaches finally 28.62 %
after the fourth loop. In panel (b) the 2-norm of the corresponding gradient
is presented. With in the first four loops it drops by more than three orders
of magnitude (∥∇J∥2/∥∇J0∥2 = 3.1 ⋅ 10−4). The optimization stops when it
reaches a tolerance of 10−3.

6.2 Optimized nozzle

The optimized porous nozzle is presented in Fig. 6.6, 6.7 and 6.8. A three-
dimensional view is shown in Fig. 6.6 with the iso-surface of the permeability
(taken at χ = 10). One can identify a complex three-dimensional structure of
pores. In parts they are coherent and in parts they are free floating.

Several two-dimensional slices in the y-z-plane of the porous material are
presented in Fig. 6.7. They show the porous material at six different x-
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6.2 Optimized nozzle

Figure 6.6: Nozzle with optimized porous material. Dark gray: iso-surface of the solid part of
the nozzle. Light gray: iso-surface of the optimized porous material (at χ = 10).

locations. The first slice is taken slightly above the nozzle lip (x/D = 0.05,
panel (a)). Most of the porous material in this plane is located around the
nozzle exit. It has solid behavior (black color-range) and covers the whole
nozzle area in one coherent ring. The outer parts of the nozzle lip are void
space, only. In a further distance to the nozzle lip (x/D = 0.1, panel (b))
more porous material appears on the outer regions of the nozzle lip. This
trend is repeated in the subsequent slices (panel (d−f)). In these panels one
can identify large and small coherent areas with high permeability (black).
The permeability of these black areas is outside the color-range and reaches
values up to χ = 2000. It can be treated as a solid body.

The smallest identifiable solid obstacles are about 0.1D in diameter whereas
the largest obstacles are around 1.5D. In Fig. 6.8 several slices in the x-Φ-
plane are given. They are taken at constant radial positions (from r/D = 0.5
to r/D = 1.5 in 0.1 steps) and unwounded in a plane view. The abscissa s

measures circumferential distance (s = 2rπ, from 0 ≤ Φ ≤ 2π) whereas s = 0 is
at y/D = 0 and z = r (cf. Fig. 6.7). Positive s values measure in the clockwise
and negative values in the counterclockwise direction. Especially for locations
close to the nozzle exit (0.5 ≤ r/D ≤ 0.8) small solid obstacles (0.1D – 0.3D)
are visible. Further outside (0.8 < r/D ≤ 1.5) the size of the obstacles becomes
larger (up to 1.5D). One can also see that the solid parts in the outer regions
of the nozzle have no contact to the solid nozzle surface at x/D = 0. From a
manufacturing point of view, this feature is hard to realize.
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6 Results of the minimization of supersonic jet noise with porous media

(a) x = 0.05D (b) x = 0.1D (c) x = 0.2D
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Figure 6.7: Slice through the optimized porous material in the y -z -plane at six different x-
locations: x/D = 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 from panel (a − f ). Color-range from
0 ≤ χ ≤ 20. Inner concentric solid line: diameter of the nozzle; between outer concentric solid
line and dashed line: porous material.

6.3 Noise reduction

In the previous sections we have seen the performance of the optimization
algorithm. The objective function could be reduced by more than 28 %. We
will now investigate how the noise signal changes by adding the optimized
porous nozzle. To this end, the nozzle with and without porous material
will be compared. Both, the results of the low resolution (256 × 128 × 128)
and the higher resolution (512 × 256 × 256) will be presented. Again, the
adjoint based optimization is performed for the low resolution, only. To
adapt the results to the high resolution, the parameter of the porous material
are interpolated from the coarse to the fine grid (three-dimensional cubic
Lagrange interpolation in barycentric formulation).

The main result of the optimized porous material can be seen when we
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6.3 Noise reduction
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Figure 6.8: Slice through the optimized porous material in a x-Φ-plane at eleven different r -
locations: from r/D = 0.5 to r/D = 1.5 in 0.1 steps. s measures the circumferential distance
(s = 2rπ, from 0 ≤ Φ ≤ 2π) where s/D = 0 is at y/D = 0.

compare the spectra of the nozzle with and without porous material. In
Fig. 6.9 the acoustic spectra of the jet measured at three different locations
are presented for the low and high resolution. The three panels on the left
side ((a), (c) and (e)) stand for the low resolution and the remaining panels
in the right column ((b), (d) and (f)) for the high resolution. From the
top row to the bottom row of the panels, the observation angle is increasing.
Staring from an upstream position (Θ = 75○) in panel (a) and (b), followed
by two downstream position (Θ = 135○) in panel (c) and (d) and further
downstream (Θ = 150○) in panel (e) and (f). The screech tone is visible
mainly in the upstream position (Θ = 75○). In both cases, the low and high
resolution, the screech tone could be eliminated with the optimized porous
material. In the low resolution case, a drop from 130 dB down to 117 dB is
measured which corresponds to a screech noise reduction of 13 dB (10 %).
In the high resolution case, a drop from 143 dB to 125 dB can be identified.
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6 Results of the minimization of supersonic jet noise with porous media

(a) 256 × 128 × 128; Θ = 75○ (b) 512 × 256 × 256; Θ = 75○
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(c) 256 × 128 × 128; Θ = 135○ (d) 512 × 256 × 256; Θ = 135○
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(e) 256 × 128 × 128; Θ = 150○ (f ) 512 × 256 × 256; Θ = 150○
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Figure 6.9: Spectra of the axisymmetric jet for two different spatial resolutions and three
different observation angles Θ with respect to the upstream direction. Comparison of the
optimized porosity ( ) and without porous material ( ). Vertical dashed lines
represent the fundamental screech frequency including the first seven subharmonics based on
the theory of Massey [1997].
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6.3 Noise reduction

This corresponds to a noise reduction of 18 dB of the screech tone (12.6 %).
Compared to the experimental data of Khan et al. [2008], who obtained a
reduction of 6 dB (6.4 %), this numerical result is quite impressive.

In addition to the screech tone, the mixing noise could also be reduced. This
is especially visible in the high resolution case (b). For Strouhal numbers in
the range of 0.01 ≤ Sr ≤ 0.3 the amplitude of the mixing noise is reduced
by up to 20 dB. This trend is also visible in the low resolution case but less
dominant (up 10 dB mixing noise reduction). The reduction of mixing noise
for the optimized jet can be explained with the screech tone cancellation.
Once the jet is screeching it undergoes strong oscillations (here the helical
mode). These oscillations increase the mixing of the jet and emanate mixing
noise. In the optimized case, the helical mode is suppressed and the mixing
is reduced. This will also reduce the mixing noise.

The reduction of the broadband noise component in the upstream direction
is only visible for the low resolution case (a). A reduction of up to 5 dB can
be identified. This trend is not visible in the high resolution case where both,
the nozzle with and without porous material show the same shock-associated
noise characteristics.

In supersonic jet noise the screech tone is emanated mainly in the upstream
direction. Hence, in a downstream position (Θ = 135○), the amplitude of the
screech tone is reduced even for the nozzle without porous medium. In the
low resolution case (c), the screech tone of the un-optimized nozzle is still
visible with an amplitude of 125.2 dB and drops to an amplitude of 104.6 dB
with porous medium. A peak of the broadband noise component is visible
at the first subharmonic of the screech tone (Sr2 = 0.56). At this specific
frequency, the optimized nozzle is louder (1.5 dB) than the solid nozzle. This
increased broadband noise level is also responsible for a louder OASPL of the
controlled jet (cf. Fig. 6.10(a)). At the higher resolution (d) the behavior is
similar. In addition to the fundamental screech frequency of the solid nozzle
one can identify the first two subharmonics with amplitudes of 125.4 dB,
131.4 dB and 130.0 dB, respectively. All of witch are suppressed for the
optimized nozzle (110.0 dB (12 %), 122.4 dB (7 %) and 119.8 dB (8 %)).
As for the low resolution, the optimized nozzle is louder for this observation
angle (Θ = 135○). A peak of the broadband noise is visible in the signal of
the porous nozzle. This peak is about 5 dB louder than the noise of the solid
nozzle at the same frequency (cf. Fig. 6.10(b)).

Further downstream at an observation angle of Θ = 150○ again, both the
low and high resolution jets show the same characteristics. In both cases the
mixing noise components are reduced whereas the broadband components of
high frequency are unaffected due to the control. The reduction of mixing
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6 Results of the minimization of supersonic jet noise with porous media

(a) 256 × 128 × 128 (b) 512 × 256 × 256
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Figure 6.10: OASPL as a function of the observation angle with respect to the upstream
direction. No optimization ( ); optimized porous material ( ). Circles (○)
mark the positions where the spectra of Fig. 6.9 are captured.

noise at a Strouhal number of Sr ≈ 0.2 is in both cases around 10 dB.
In Fig. 6.10 the OASPL as a function of the observation angle is presented.

Although the low and high resolution case predict different OASPL’s the
trend is similar. The largest reduction can be identified in the upstream and
downstream direction. In the low resolution case (a) the OASPL drops from
134.39 dB to 132.35 dB in the upstream direction (Θ = 75○). This corre-
sponds to a reduction of 2.04 dB. A similar reduction can be reached in the
downstream direction (Θ = 150○). Here the OASPL drops from 136.42 dB to
133.79 dB (a reduction of 2.63 dB). In an observation angle of Θ = 135○

the OASPL with optimized nozzle is louder than with solid nozzle (plus
1.04 dB). Compared to the corresponding spectrum in Fig. 6.9(c), the broad-
band shock-associated noise component is responsible for the increase of the
OASPL in this direction. An explanation for this phenomenon may be the
increased number of shock cells in the optimized case due to the suppressed
helical mode (see the comparison of mean flow fields in Sec. § 6.4). The
additional shocks cells emanate shock associated noise and may increase the
SPL of the broadband noise components. This is the tradeoff between screech
noise reduction and the corresponding suppression of the helical mode.

A similar picture of the OASPL can be found for the high resolution case
(Fig. 6.10(b)). In the upstream direction, a reduction of 7.06 dB can be
observed, which corresponds to a drop from 144.40 dB to 137.34 dB. Less
efficient is the reduction in the downstream direction. At an observation
angle of Θ = 150○ the OASPL drops from 141.50 dB to 138.78 dB which
corresponds to a reduction of 2.72 dB. As for the low resolution case, in an
intermediate observation direction (Θ = 135○) the OASPL of the optimized
nozzle is louder. An increase of 0.15 dB can be measured (from 142.38 dB to
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6.3 Noise reduction

(a) 256 × 128 × 128 (b) 512 × 256 × 256
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Figure 6.11: Reduction of the OASPL as a function of the observation angle with respect to
the upstream direction. Reduction due to the optimized nozzle ( ). Mean reduction
averaged over all observation angles ( ).

142.53 dB). Again, the increased OASPL has its origin in the shock associated
noise components (cf. Fig. 6.9(d)) and may be explained due to the suppressed
helical mode.

The reduction of the OASPL as a function of the observation angle is
more clearly visible in Fig. 6.11 where the difference of the noise level of the
controlled an uncontrolled nozzle are presented. Positive values indicate an
increase of the OASPL due to the optimized nozzle and negative values a
reduction. In addition to that, a dotted line measures the mean reduction
averaged over all observation angles (in the range from 75○ ≤ Θ ≤ 160○). The
average reduction for the low resolution case is 1.24 dB. In the high resolution

res. min
Θ<90○

min
Θ>90○

min
75○≤Θ≤160○

max
75○≤Θ≤160○

mean
75○≤Θ≤160○

lo
w ∆OASPL -2.26 -3.01 -3.01 1.40 -1.24

Θ 76.81○ 153.10○ 153.10○ 135.74○ [.]

hi
gh ∆OASPL -7.62 -5.57 -7.62 1.56 -2.87

Θ 77.47○ 156.15○ 77.47○ 112.45○ [.]

Table 6.1: Reduction of the OASPL in different observation directions. Local and global minima
and maxima with the corresponding directions presented. Negative differences represent a noise
reduction. Positive values a noise amplification.
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6 Results of the minimization of supersonic jet noise with porous media

(a) 256 × 128 × 128 (b) 512 × 256 × 256
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Figure 6.12: OASPL in a two-dimensional x-y plane. Figure is split in two parts, separated by
dashed line; Top half: no optimization (solid nozzle); Bottom half: optimized nozzle (porous).
Solid line: M = 1.

case, the average reduction measures 2.87 dB.
A summary over the local minima and maxima of the noise reduction can

be found in Tab. 6.1. In both, the low and high resolution case, the minima in
the up- and downstream direction are measured at similar observation angles
(upstream: Θ ≈ 77○; downstream: Θ ≈ 155○). In the low resolution case, the
global minimum can be found in the downstream direction whereas in the
high resolution case, the global minimum is in the upstream direction.

In Fig. 6.12 the OASPL is presented in the two-dimensional x-y plane. The
figure is split in two parts. In the top half the uncontrolled case is presented
with the solid nozzle. In the bottom half, the solution of the optimized porous
nozzle is presented. The main differences can be seen in the high resolution
case (b). Especially in the upstream direction of the uncontrolled case, strong
acoustic pressure fluctuations are visible. These loud areas, where the screech
tone is dominant, are minimized in the controlled case (bottom half of panel(b)).

In the acoustic near field of the uncontrolled jet, pressure fluctuations in
the shape of lobes are visible. They represent the standing wave pattern,
responsible for the screech feedback closure. These lobes are still visible in
the controlled jet but with reduced amplitude. Especially at the nozzle lip
exit, where the standing wave forms an anti-node, the pressure fluctuations
are hardy visible in the controlled case. In addition to that, a solid line
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(a) 256 × 128 × 128 (b) 512 × 256 × 256
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Figure 6.13: OASPL along a measurement line slightly above the shear-layer. No optimization
( ); Optimization ( ); Experimental data: ∎ from Panda et al. [1997] for a
Mj = 1.51 axisymmetric jet. Scaled with the standing wave spacing Lsw .

represents the iso-contour of the mean velocity for M = 1. Inside this line,
the flow is supersonic and subsonic elsewhere. The extension of the supersonic
area of the controlled jet is about two shock cells longer in the downstream
direction than the one of the uncontrolled jet. Again, the reason for this is the
suppressed screech mode (helical) in the controlled case (see next section).
The differences of the OASPL in this two-dimensional view is hardly visible
for the low resolution jet (a).

To get a deeper insight in the differences of the standing wave pattern for
the controlled and uncontrolled case, the RMS pressure fluctuations (OASPL)
are measured along the shear layer boundary. To avoid an interaction with
the turbulent hydrodynamic pressure fluctuations, the data of Fig. 6.13 is
extracted from a line parallel to the growing shear layer with an inclination
angle of 5.7○ (same as in Panda et al. [1997]). In the high resolution case (b)
one can clearly identify the standing wave pattern of the uncontrolled case.
The numerical data matches quite well the experimental data of Panda et al.
[1997] for a Mj = 1.51 axisymmetric jet. In the controlled case (gray line),
the standing wave pattern is drastically reduced. A difference of more than
10 dB to the uncontrolled jet can be observed at the locations of the anti-
nodes. At the nodes of the standing wave (here at x/Lsw = 0.5, 1.5, 2.5, . . . )
the pressure fluctuation of the controlled and uncontrolled jet coincide only
within the first wavelength (0 ≤ x/Lsw ≤ 2). Further downstream, the noise
level at the nodes of the controlled jet is reduced (about 5 dB at x = 5.5Lsw).
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6 Results of the minimization of supersonic jet noise with porous media

(a) 256 × 128 × 128 no optimization (b) 512 × 256 × 256 no optimization
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Figure 6.14: Colormap of the SPL as a function of the observation angle Θ with respect to the
upstream direction and the Strouhal number Sr . Dashed lines ( ) correspond to the
fundamental screech frequency and its first subharmonic based on the theory of Massey [1997].
Dash dotted line ( ) corresponds to the central frequency of shock associated noise
based on the theory of Tam [1987] with Mc = 0.5 (cf. also Eq. (1.12)).

The reduced standing wave pattern for the controlled jet is a good evidence
for an efficient suppression of the screech generation mechanism. This trend
is also visible in the low resolution case (a) yet with a reduced amplitude and
strong discrepancies to the experimental data.

The spectra of the controlled an uncontrolled jet are presented in Fig. 6.9
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6.3 Noise reduction

for three different observation locations. A similar picture can be found in
Fig. 6.14 yet in a two-dimensional color plot including a wide range of obser-
vation directions. The x-axis covers the observation angle whereas the y-axis
is a function of the frequency. In the right column the high resolution case
is presented with the uncontrolled jet in panel (b) and the controlled jet in
panel (d). One can clearly identify the fundamental screech frequency and
its first subharmonic in the uncontrolled spectra (b). To validate the screech
frequency, a dashed line marks the theoretical screech frequency as predicted
by Massey [1997]. A good comparison between the numerical and analyti-
cal data is visible. In this view one can see that the fundamental screech
tone is dominant in the upstream direction up to an observation angle of
Θ = 100○. In this upstream range, the first subharmonic screech tone is not
visible. It starts to appear in the downstream direction for observation angles
in the range of 115○ ≤ Θ ≤ 135○. This is the range, where the predicted peak
shock-associated noise level crosses the first subharmonic screech frequency.
Shock-associated noise is affected by a Doppler shift by which the peak noise
level is shifted to higher frequencies when measuring further downstream.
This effect is indicated by a dash dotted line and based on the theory of
Tam [1987] with a convective Mach number of Mc = 0.5 (cf. also Eq. (1.12)).
That the peak value of the shock-associated noise is following the theoretical
prediction is especially visible in the controlled case (d). Here, the broad-
band shock-associated noise seems to be the dominant noise source within
the investigated observation directions. In addition to that, one can see that
the mixing noise of low frequency is drastically reduced, especially in the
upstream direction and, of course that all discrete screech tones are missing
in the spectrum. All these effects can also be identified in the low resolution
case (a and c) but with a reduced amplitude.

In Fig. 6.15 the history of the pressure fluctuations as a function of time
and observation angle is presented. The time axis is scaled with the funda-
mental screech frequency based on the theory of Massey [1997] and starting
from an arbitrary point at the end of the simulation. In the high resolution
case, the harmonic fluctuations due to the screech tone are clearly visible in
the upstream direction (b). Further downstream (Θ ≈ 135○), the amplitude of
the screech induced pressure fluctuations are decreasing and the broadband
components of the shock-associated noise become the dominant noise source.
In the controlled case (d), the amplitudes in the upstream direction are dras-
tically reduced and the harmonic pattern is missing. The upstream direction
is now governed by broadband noise components related to shock-associated
noise. Also in the far downstream direction, the amplitudes of the pressure
fluctuations are reduced and seem to exhibit more broadband characteristics
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6 Results of the minimization of supersonic jet noise with porous media

(a) 256 × 128 × 128 no optimization (b) 512 × 256 × 256 no optimization
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(c) 256 × 128 × 128 optimization (d) 512 × 256 × 256 optimization
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Figure 6.15: History of the pressure fluctuations as a function of time and observation angle
with respect to the upstream direction. Time scaled with the fundament screech frequency
based on the theory of Massey [1997] and starting from an arbitrary point at the end of the
simulation.

than in the uncontrolled jet. Again, these effects are also visible in the low
resolution case, but with reduced amplitude.

In the following section we will focus on the influence of the optimized
nozzle to the flow field. Some of these effects were already mentioned in the
present section.
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6.4 Influence on the flow field

(a) 256 × 128 × 128 (b) 512 × 256 × 256
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Figure 6.16: Mean values of the pressure (a) and (b), the stream-wise velocity u (c) and (d)
and the entropy (e) and (f ) along the centerline of the jet. No optimization ( );
optimized porous material ( ).

6.4 Influence on the flow field

Suppressing the screech tone of a supersonic jet has a fundamental effect on
the flow characteristics of the jet. During screech, the jet undergoes strong
oscillations, like the helical mode as in the present investigation. These oscil-
lations are responsible for an enhanced mixing of the jet. The screech source
location and the point, where the jet starts to undergo strong oscillations,
are linked and located between the third to fifth shock cell. From this point
on, the potential core of the screeching jet is reduced drastically compared to
a jet with screech suppression. These effects can be clearly seen in the mean
flow fields of the jet.

In Fig. 6.16 the mean values of the pressure p, the stream-wise velocity u
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6 Results of the minimization of supersonic jet noise with porous media
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Figure 6.17: Characteristics of the shock cells for the high resolution case (512 × 256 × 256).
No optimization ( ); optimized porous material ( ). (a) Position of the shock
cell. (b) Length of the shock cell. (c) Strength of the shock cell (p1 is the pressure upstream
the shock).

and the entropy s are presented along the centerline of the jet. The values
of the optimized nozzle with porous media (gray curve) are compared to
the solid nozzle without optimization (black curve). Both, the low and high
resolution case are presented whereas the high resolution case is presented in
the right column. Each of the values are scaled with its nozzle exit conditions
and the abscissa is scaled with the nozzle diameter. In panel (b) the mean
pressure is visualized. One can clearly see the shock cell pattern in the jet
core for both, the solid and the porous nozzle. Within the first three shock
cells (0 ≤ x/D ≤ 4.14), the pressure distribution of the controlled and the
uncontrolled jet are matching each other up to slight deviation. Further
downstream, beginning with the third shock cell, deviations between both
jets become visible. The shock cell pattern of the screeching jet (no porous
medium) starts to dissappear and can no more be detected past the sixth
shock cell (around x = 7.2D). In the optimized case, a lager number of shock
cells is preserved. Up to eight shock cells can be detected in the jet plume.
In addition to that, the shock cell spacing past the third shock cell is larger
for the optimized case.

This is also visible in Fig. 6.17(a) and (b), where the location of the shock
and the shock cell length is presented as a function of the shock cell number.
One can see that the position of the shock cell for the optimized jet is shifted
further downstream than for the screeching jet. In panel (b) the shock cell
length of each shock cell is presented. In both cases the shock cell length is
decreasing with the shock cell number. For the screeching jet, the shock cell
length starts to decrease more rapidly beginning with the third shock cell.
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6.4 Influence on the flow field

In panel (c) the shock cell strength is presented as a function of the shock
number. It measures the pressure ratio between the pressure upstream the
shock and the ambient pressure. The shock strength is decreasing monotoni-
cally with the downstream direction. A deviation between the screeching and
the optimized jet is already visible in the third shock cell. Here, the shock
amplitude of the screeching jet is reduced by 15 % compared to the optimized
jet. The shock strength drops to zero in the sixth chock cell for the screeching
jet and in the eighth shock cell for the optimized jet.

The shock cells are also visible in the velocity. In Fig. 6.16(d) the mean
stream-wise velocity u is presented. The velocity is scaled with the nozzle
exit velocity which is for the present convergent nozzle Md = 1. Hence, values
larger than one mark the supersonic regime. It is clearly visible that the
supersonic region of the screeching jet is smaller than for the optimized jet.
In the screeching case the supersonic region ends at x = 8.5D and for the
optimized jet at x = 12.0D. The slope of the decay of the velocity in the
subsonic region is comparable for both jets. Finally, in panel (f) of the same
figure, the mean value of the entropy is presented. The sudden increase of the
entropy marks the end of the potential core, where the surrounding mixing
layers merge. Again, the length of the potential core of the screeching jet is
smaller than the one of the controlled jet. For the screeching jet, the length
of the potential core is x = 5D and for the optimized jet x = 6.3D.

In the left column of 6.16 the corresponding mean values for the low reso-
lution case are presented. The optimized and the non optimized jet show the
same behavior as in the high resolution case, yet with different amplitudes.
The shock cell pattern is less dominant as in the high resolution case.

In Fig. 6.18 the RMS values of the pressure, the stream-wise velocity u

and the entropy s are presented along the centerline of the jet. Again, strong
deviations between the screeching jet and the optimized jet can be seen. In
panel (b), the pressure fluctuations are presented. In both cases, the values
are modulated with the shock cell pattern which is decaying faster past the
third shock cell for the screeching jet than for the optimized jet. In panel(d) the RMS velocity fluctuations are presented. They measure the turbu-
lent fluctuations in the jet. In addition to the two current numerical results,
other numerical (Bogey [2000], Cavalieri et al. [2011]) and experimental data
(Bridges [2006], Jordan et al. [2002], Raman et al. [1989]) are included for
validation purposes (all based on subsonic axisymmetric jets). One can see,
that the RMS values of the screeching jet are in good agreement to the nu-
merical and experimental data. In the optimized case, the RMS value of the
velocity is under predicted in the range of 5 ≤ x/D ≤ 10. Further downstream,
the current computation of the optimized nozzle matches again the external
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6 Results of the minimization of supersonic jet noise with porous media
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Figure 6.18: RMS values of the pressure fluctuations (a) and (b), the stream-wise velocity
fluctuations u′ (c) and (d) and the entropy fluctuations (e) and (f ) along the centerline of
the jet. No optimization ( ); optimized porous material ( ). For (c) and
(d): Experimental data: ▲: Raman et al. [1989]; ●: Jordan et al. [2002]; ◆: Bridges [2006].
Numerical data: ◻; Bogey [2000]; ▽: Cavalieri et al. [2011].

data. The delayed increase of the turbulence values of the optimized jet is
due to the suppression of the helical mode. In panel (f) the entropy fluctua-
tions are presented. As for the mean value of the entropy in Fig. 6.16(f), the
RMS value can be used to estimate the length of the potential core. The core
length of the optimized jet is about 2D longer than the one of the screeching
jet.

The RMS values of the low resolution case behave in a similar way as the
high resolution case. Their amplitudes are in general smaller than for the
high resolution jet.

In Fig. 6.19 the RMS value of the Lighthill sources ( ∂2

∂xi∂xj
Tij) are com-

248



6.4 Influence on the flow field
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Figure 6.19: RMS value of the fluctuations of the Lighthill source term along the centerline of
the jet. No optimization ( ); optimized porous material ( ).
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Figure 6.20: Mean velocity profiles of the jet measures at four different locations in the down-
stream direction. Black curve: no optimization; Gray curve: optimized porous material: Mea-
surement location: x = 0 ( ), x = 0.6D ( ), x = 5D ( ), x = 14D

( ).

pared. They are measured along the centerline of the jet and give an in-
dication of the location and strength of the acoustic source. In the high
resolution case in panel (b) one can clearly identify that the location of the
acoustic source for the optimized jet is shifted to the downstream direction
(about 2D further downstream). The peak source amplitudes of both, the
screeching and the optimized jet are in the same range. The same effects can
be observed for the low resolution case (a), but with a reduced amplitude.

The differences between the optimized and screeching jet are also visible
in the transverse y-direction. In Fig. 6.20 the mean velocity profiles are
compared and measured at four different downstream directions (x/D = 0,
0.6, 5 and 14). At the first two measurement locations, at the nozzle exit
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6 Results of the minimization of supersonic jet noise with porous media
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Figure 6.21: Pseudo-Schlieren in the x-direction of a two-dimensional slice. Slice divided in two
parts separated by dashed line ( ). Top part: no optimization; Lower part: optimized
porous material. Solid Line ( ): M = 1.

(x/D = 0) and slightly downstream (x/D = 0.6) the shape and amplitude of
the optimized and screeching jet match each other. Further downstream, at
x/D = 5 and x/D = 14, distinct deviations between both jets become visible.
In the screeching case, the amplitudes of the velocity profiles are reduced and
the width of the profile is increased compared to the optimized case. The
increased mixing of the screeching jet with its helical mode is responsible for
the early widening of the velocity profile. This effect is especially visible at
x/D = 14 for the high resolution case (b). Again, the same trend is visible in
the low resolution case (a) but less clearly.

Finally, to summarize the effects of the optimized porous media on the flow
field of the jet, two-dimensional slices of the jet are presented in Fig. 6.21.
Visualized are the pseudo-Schlieren in the x-direction (∂ρ/∂x) of the averaged
((a) and (b)) and the instantaneous flow field ((c) and (d)) for both, the low
and high resolution. Each panel is divided in two parts. The top half of
the figure shows the non optimized (screeching) jet whereas the lower part
shows the optimized case. In addition to the pseudo-Schlieren, a solid line
marks the sonic region (M = 1). Inside this line the flow is supersonic and
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6.4 Influence on the flow field

subsonic elsewhere. Past the nozzle exit, one can see that the sonic line
follows the shape of the barrel shock (visible in the time averaged panels).
This pattern is repeated in the downstream direction at least for the first
three shock cells. In the time averaged panels, the sonic line marks the main
difference in the flow field: the reduced potential core of the screeching jet.
As we have already seen in a previous figure, the supersonic region of the
screeching jet ends an x = 8.5D whereas it is extended up to x = 12D for
the optimized jet (suppressed helical mode). One can also identify a larger
number of shock cells in the jet core for the optimized jet (8 instead of 6).
In the instantaneous view of the high resolution case (d) it is visible that the
screeching jet is spreading faster than the controlled jet. Due to the increased
mixing, caused by the helical mode, turbulent fluctuations are visible further
apart from the centerline of the jet as in the controlled case.

In the last figure of this section in Fig. 6.22 the instantaneous pressure
fluctuations are presented for the optimized and screeching jet. This figure
highlights the instantaneous acoustic field of the jet. As the previous figure,
it is devided in two parts. The top half shows the jet without optimization
(screeching jet) and the bottom half with optimized porous material (screech
suppression). One can clearly see that the screech tone is minimized in the
optimized case, especially in the high resolution case of panel (b). In the
upstream direction the frequency of the screech tone is reduced and governed
by shock-associated noise. The dminant frequency of the shock-associated
noise in the upstream direction is equal to the screech frequency (at lest for
Θ = 0). Hence, the wavelength of the screech tone can still be identified
in the controlled case, yet with a reduced amplitude and superimposed by
broadband components. Again, the effect can be also identified for the low
resolution jet in panel (a) with a reduced amplidtude.
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6 Results of the minimization of supersonic jet noise with porous media
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Figure 6.22: Pressure fluctuation of a two-dimensional slice. Slice divided in two parts separated
by dashed line ( ). Top part: no optimization; Lower part: optimized porous material.
Solid Line ( ): M = 1.
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7
Conclusion and Outlook

Supersonic jet flows and their emanated noise are governed by complex phys-
ical phenomena. On the one hand, the periodic shock cell pattern in the jet
core, the shock–diamonds, and on the other hand, the propagation of the
aeroacoustic noise including the complex geometry of the jet nozzle, to close
the screech feedback loop, make high demands on the numerical method. To
this end, a high order scheme, to solve the compressible Navier–Stokes equa-
tion is implemented in the present investigation together with a high spatial
resolution. Up to now, the present work represents the largest computation
on axisymmetric supersonic jet noise ever performed. In addition to this, the
compressible Navier–Stokes equations were extended by a porous medium to
include both, a solid body of arbitrarily complexity and a porous material to
control the fluid flow.

The implemented numerical method shows the ability to solve the intended
problem with high accuracy. A perfect agreement of the computed aeroacous-
tic noise to experimental and analytical data can be shown. Especially the
computed frequency and amplitude of the screech tone, which is excited by
a series of coupled physical phenomena, can be captured with high precision.
It could be confirmed that the cessation of screech is a reason of the reduced
receptivity due to the “barrel”-shock as proposed by Raman [1996]. In addi-
tion to that, the presence of the helical screech mode, which is the dominant
mode of a Mj = 1.55 jet, could be identified.

Not only the acoustic properties matched the theoretical prediction but also
the noise generating supersonic jet flow. Shock cell spacing and amplitude
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7 Conclusion and Outlook

and the number of shock cells computed by the numerical method are in
good agreement to experimental observations. Statistical data concerning the
turbulent Reynolds stresses and pressure fluctuations found in the literature
could be reproduced by the present work. The results show that the method
presented in this thesis is not only capable to compute aeroacoustic noise
including complex geometries with high accuracy but also in a efficient way.

In the second part of the thesis a novel method is derived to obtain an
optimized porous material to minimize supersonic jet noise. The method is
based on the adjoints of the porous and compressible Navier–Stokes equations
which are derived in a continuous manner without any further simplifications.
Evaluating the direct and adjoint equations subsequently, one can obtain the
gradient information of the objective function with respect to the control.
In the present study, the control is the space dependent permeability of the
porous medium and the objective is to reduce supersonic jet noise with the
focus on jet screech. Repeating the evaluation of the gradient followed by
an update of the control in an iterative loop, the optimal control (porous
medium) can be obtained. Only three optimization loops were necessary to
reduce the gradient by three orders of magnitude. As a result, a complex
three-dimensional structure of a porous medium is created and placed at the
nozzle exit. It acts as a sound absorbing material to influence the receptiv-
ity at the nozzle lip and finally to eliminate the screech sustaining feedback
loop. A reduction of up to 20 dB of the screech tone could be observed which
corresponds to a complete elimination of this tone from the measured spec-
trum. In addition to that, mixing and broadband noise could be reduced
as well in the up- and downstream direction. Especially in the downstream
direction, the mixing noise is drastically reduced. The reason for this lies
in the elimination of the screech tone and the corresponding elimination of
the helical mode. The latter one is responsible for an increased mixing of
the jet including mixing noise. Hence, its suppression leads to a reduction
of the mixing noise which is emanated mainly in the downstream direction.
Only in a small area slightly tilted in the downstream direction, broadband
shock associated noise of the controlled jet is louder than of the one without
porous medium. Again, this phenomenon can be explained with the suppres-
sion of the helical mode. As the elimination of the screech mode sustains
the periodic shock cell pattern in the downstream direction of the jet, ad-
ditional sources for shock-associated noise are created. Outside this narrow
observation sector, an overall noise reduction of almost 3 dB can be observed.
The present method confirms the theoretical background on supersonic jet
screech, especially the role of the feedback loop.

The work on adjoint based control with porous media, as presented in this
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thesis, is the first to apply it to an aeroacoustic problem and can be consid-
ered as a “proof-of-concept”. An impressive performance of the optimization
algorithm could be shown, where the intended problem could be solved with
comparable little computational effort.

The remaining question of the present investigation is, how to obtain a
“real” porous material from the optimized permeability. There is no direct
link between permeability and existing porous material. Even if the relation
between permeability and the design of the material would be known, it may
be a challenging manufacturing process. Especially if solid obstacles would
not be connected to each other and hover in the material matrix. Hence, a
post-processing of the optimized permeability, to obtain a real world material
is necessary, and more work has to be carried out to interprete the meaning
of the optimized permeability with respect to its producibility.

Once a real porous material is found, its performance to eliminate screech
could be validated by an experimental setup. The supersonic jets investigated
in the present thesis are based on a Reynolds number of ReD = 5000. Assum-
ing air under standard conditions for the fluid flow, the diameter of the jet
would be in the order of a human hair (0.1mm). For an experimental investi-
gation including a porous material of this size, the diameter of the jet will be
too small. Hence, a computation based on a higher Reynolds number in the
order of Re ≈ 100 000 will be necessary. To resolve the small scales, a total
of about 10 billion grid points will be necessary. This is not a restriction for
the next generation high performance computers with a peak performance of
several PetaFlop/s (10.3PetaFlop/s, as of Nov. 2011, “K computer”). Based
on that Reynolds number, a comparison to experimental setups of jets with
a diameter of several centimeters will be possible.

The novel method of adjoint based optimization, in combination with
porous media, are a promising and efficient method to minimize supersonic
jet noise. Beyond the aeroacoustic field, this type of flow optimization may
find application in a variety of disciplines and configurations where the opti-
mization of any objective by means of a modification of the geometry and/or
material is desired.
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A
Compressible Navier–Stokes equations

In the following, the compressible Navier–Stokes equations are given in a
characteristic formulation based on non Cartesian coordinates. In the present
investigation, all derivatives are computed in the computational domain with
respect to the contravariant basis vectors ξ, η and ζ. If the grid is time
dependent, an additional time variable τ will arise. The physical variables
are described in the x, y and z domain with the time t. To compute a
derivative in the physical domain, a grid transformation has to be applied.
The contravariant basis vectors are dependent on the physical domain:

ξ = ξ(x, y, z, t)
η = η(x, y, z, t)
ζ = ζ(x, y, z, t)
τ = τ(t)

A derivative with respect to the physical space has to follow the chain rule:

∂

∂xi

= ∂ξ

∂xi

∂
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∂xi
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A Compressible Navier–Stokes equations

Transformed direct Navier–Stokes equations The direct Navier–Stokes equa-
tions can be rewritten for curvilinear grids:
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Introducing the contravariant velocity components ul = ξl
,iui and the abbrevi-

ation glm ∶= ξl
,iξ

m
,i , the Navier–Stokes equations can be rewritten for curvilin-

ear grids. A detailed derivation of these equations can be found in Sesterhenn
[2000].
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with the following abbreviations:
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B
Linearized Navier–Stokes equations

Based on the nonlinear, porous and compressible Navier–Stokes equations of
Sec. § 3.1, the linearized Navier–Stokes equations can be written in matrix
formulation. To obtain the adjoints of the direct equations, we need to include
all information to close the system of equations. Hence, besides the five
partial differential equations, three additional algebraic equations to close
system need to be included. To this end, the dimension of the system is eight
with the following state vector of the fluctuations:

δq = (δp, δu, δv, δw, δs, δρ, δT, δµ)T .

The first five entries correspond to the five PDE’s of the Navier–Stokes equa-
tions for the pressure δp, the three velocity components δu, δv, δw and the
entropy δs. The latter three entries correspond to the fluctuations of the
density δρ, the temperature δT and the viscosity δµ. Note, that the viscosity
is only a function of the temperature (see Sutherland’s law of Eq. (2.6)) and
its variational formulation can be given as:

δµ = dµ(T )
dT

δT

Finally, the linearized, porous and compressible Navier–Stokes equations can
be written as:

B
∂δq

∂t
+Ak

∂δq

∂xk

+Dij

∂2δq

∂xi∂xj

+Cδq = 0 (B.1)

with the matrices:
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B Linearized Navier–Stokes equations
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B Linearized Navier–Stokes equations
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D11 =
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D31 =D13; D32 =D23; D21 =D12
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C
Compressible adjoint Navier–Stokes

equations

The direct Navier–Stokes equations are written in a characteristic formulation
of Sesterhenn [2000]. In a continuous adjoint approach it is important to use
the same numerical method for the direct as for the adjoint computation.
To this end, the adjoint Navier–Stokes equations are also decomposed into
characteristic waves. First, the scalar product of

αT (−BT ∂q⋆

∂t
−Ak

T ∂q⋆

∂xk

) = 0 (C.1)

is calculated with αT = (α1, α2, α3, α4, α5), where, to simplify matters,
only the variations in x are considered and written in the form:
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∂x
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C Compressible adjoint Navier–Stokes equations

As for a characteristic, the time and space variables are in the same relation,
we get:

λ = (−α2γp −α1u +α5
p

Cv
u)

−α1

= (−α2u − α1

ρ
)

−α2

= (−α3u)
−α3

= (−α4u)
−α4

= (−α5u)
−α5

(C.2)

The eigenvalues of −AT
1

are:

eig(−A1
T ) =
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−u + c

−u − c

−u

−u

−u

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
So we get λ1,2,3 = −u, λ4 = −u + c and λ5 = −u − c for which we need to
discuss the cases separately to obtain the corresponding eigenvectors. In this
discussion we consider the following system of equations:

(−α1 + α5

p

Cv

)λ − α2γp −α1u + α5

p

Cv

u = 0 (C.3a)

−α2λ −α2u −
α1

ρ
= 0 (C.3b)

−α3λ −α3u = 0 (C.3c)

−α4λ −α4u = 0 (C.3d)

−α5λ −α5u = 0 (C.3e)

Case λ1,2,3 = u For this case the system of equations is rank deficient, so we
can choose the last three parameters α3, α4 and α5 free.

• Our first try is αT = (α1, α2, 1, 0, 0) and the solution of the system is
α1 = α2 = 0. The only remaining equation is:

−
∂v⋆

∂t
− u

∂v⋆

∂x
= 0

We use the following abbreviation:

Xv⋆ ∶= −u
∂v⋆

∂x
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• Our second try is αT = (α1, α2, 0, 1, 0) and the solution of the system
is α1 = α2 = 0. The only remaining equation is:

−
∂w⋆

∂t
− u

∂w⋆

∂x
= 0

We use the following abbreviation:

Xw⋆ ∶= −u
∂w⋆

∂x

• Our last try is αT = (α1, α2, 0, 0, 1) and the solution of the system is
α1 = α2 = 0. The only remaining equation is:
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We use the following abbreviation:

Xs⋆ ∶= u( p
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∂p⋆

∂x
−

∂s⋆
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)

Case λ4,5 = −u± c For the last two eigenfunctions we choose α1 =√γpρ = ρc

• Our first try is αT = (ρc, α2, α3, α4, α5) and the solution of the system
is α2 = ±1, α3,4,5 = 0. The two remaining equations are:

(−ρc
∂p⋆

∂t
±

∂u⋆
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) − (−u ± c) (−ρc

∂p⋆

∂x
±

∂u⋆
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) = 0

We use the following abbreviation for the adjoint wave:

X±
⋆
∶= (−u ± c)(−ρc

∂p⋆

∂x
±

∂u⋆

∂x
) (C.4)

Transformed adjoint Navier–Stokes equations In the same way as for the
direct Navier–Stokes equations the adjoint Navier–Stokes equations can be
derived for curvilinear grids (cf. § A). Again, beginning with the replace-
ment of the derivation in physical space by derivations in the computational
domain, we get:
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C Compressible adjoint Navier–Stokes equations

Finally, after some math in the same manner as for the direct Navier–Stokes
equations the adjoint Navier–Stokes equations can be written in characteristic
waves for curvilinear grids.
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and the abbreviation for the adjoint characteristic waves for curvilinear grids
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